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Exercise to the Lecture
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4 Microscopic Theory

4.9 Particle Current Density

Exercise:

Within Boltzmann transport theory the particle current density in a metal can be written as

J =
1
V ∑

kσ

h̄k
m

[ f (εk)− f0 (εk)] =
1
V ∑

kσ

h̄k
m

[
−∂ f0 (εk)

∂εk
δεk

]
= nv

with f0 (εk) =
1

e(εk−µ)/kBT + 1
.

Here, n is the particle density, v the particle drift velocity, εk = h̄2k2/2m, δεk = h̄k · v, and
f0 (εk) the thermal equilibrium Fermi-Dirac distribution.

(a) Use the above definition of the particle current density to derive the particle density in a
normal metal.

(b) Calculate the density nqp of Bogoliubov quasiparticles in a superconductor (normal fluid
density).

(c) Calculate the density ns of the paired electrons in a superconductor (superfluid density
density).

(d) Use the superfluid density to discuss the temperature dependence of the London pene-
tration depth λL close to the transition temperature Tc.
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Solution:

(a) The ith component (i = 1, 2, 3) of the particle current density can be written as

Ji =
1
V ∑

kσ

h̄ki

m

[
−∂ f0 (εk)

∂εk
h̄k jvj

]
= nijvj . (1)

With this result we can define the particle current density in a normal metal as

nij =
1
V ∑

kσ

yk
h̄2kk

m
, (2)

where kk is the dyadic product and

yk = −∂ f0 (εk)

∂εk
=

1
2kBT

1
cosh(εk/kBT) + 1

=
1

4kBT
1

cosh2(εk/kBT)
. (3)

To evaluate (2) we have to convert the summation into an integration. We replace εk by
ξk = εk − µ in (3) and obtain

nij =
1
V ∑

kσ

(
−∂ f0(ξk + µ)

∂ξk

)
h̄2kk

m

=
1
V

h̄2k2
F

m

∫ dΩk

4π
k̂k̂︸ ︷︷ ︸

= 1
3 δij

∞∫
−µ

dξkD(µ + ξk)

(
−∂ f0(µ + ξk)

∂ξk

)

≃ 1
3

δij
D(EF)h̄2k2

F
mV︸ ︷︷ ︸
=3n

1
4kBT

∞∫
−µ

dξk

cosh2 ξk
2kBT

x=ξk/2kBT
=

1
2

nδij

∞∫
−∞

dx
cosh2 x︸ ︷︷ ︸

=tanh(∞)−tanh(−∞)=2

= nδij . (4)

Here, k̂ = k/|k| and |k| ≃ kF. Furthermore, we have used D(µ + ξk) ≃ D(EF) = const,
since the function ∂ f 0

k/∂Ek is finite only in a narrow energy interval ∼ kBT around the
chemical potential µ, and we have set the lower integration limit to −∞, since typically
µ/2kBT ≫ 1 for a metal. Obviously we obtain the expected result that the particle density
is given by the electron density of the normal metal.

(b) We next consider the superconducting state of a metal and calculate the normal fluid
density nqp of the Bogoliubov quasiparticles. To calculate nqp we can use eqs. (2) and (3)

but have to replace ξk = εk − µ by the quasiparticle energy Ek =
√

ξ2
k + ∆2 in (3). With
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Z(k)d3k = D(Ek)dEk = D(ξk)dξk (conservation of states) we obtain

nqp
ij =

1
V ∑

kσ

yk
h̄2kk

m

=
1
V

h̄2k2
F

m

∫ dΩk

4π
k̂k̂︸ ︷︷ ︸

= 1
3 δij

∞∫
−µ

dξkD(µ + ξk)

(
− ∂ fk

∂Ek

)

≃ 1
3

δij
D(EF)h̄2k2

F
mV︸ ︷︷ ︸
=3n

1
4kBT

∞∫
−µ

dξk

cosh2 Ek
2kBT

x=ξk/2kBT
=

1
2

nδij

∞∫
−∞

dx

cosh2
√

x2 +
(

∆(T)
2kBT

)2

︸ ︷︷ ︸
=2Y(T)

= nδij Y(T) . (5)

We see that the normal fluid density is given by the normal state particle density mul-
tiplied by the Yosida function Y(T) (cf. Fig. 1). The Yosida function is zero at T = 0
and continuously increases towards one at T = Tc. Therefore, the quasiparticle density
decreases from nqp

ij (T) = nδij at T = Tc to nqp
ij (T) = 0 at T = 0.

(c) Since the total particle number is conserved on going from the normal to the supercon-
ducting state, the density of the paired electrons in the superconducting state (superfluid
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Figure 1: Yosida func-
tion plotted versus
∆(T)/kBT using
(a) a linear and (b)
logarithmic scale.
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density density) is given by

ns
ij(T) = n − nqp

ij (T) = n [1 − Y(T)] δij

= n

1 −
∞∫

0

dx

cosh2
√

x2 +
(

∆(T)
2kBT

)2

 δij . (6)

(d) We can use the temperature dependence of the Yosida function to discuss the temperature
dependence of the superfluid density and, in turn, the London penetration depth

λL(T) =

√
ms

µ0ns(T)q2
s

=
λL(0)√
1 − Y(T)

. (7)

For T ≃ Tc (∆(T) → 0), we can approximate the temperature dependence of the Yosida
function by

lim
T→Tc

Y(T) = 1 − 2
(

1 − T
Tc

)
(8)

and obtain

lim
T→Tc

λL(T) =
λL(0)√

2
(

1 − T
Tc

) . (9)

We see that λL(T) diverges for T → Tc. This result is obvious since a normal metal cannot
screen stationary magnetic fields.

For T → 0, the Yosida function shows a thermally activated behavior

lim
T→0

Y(T) =

√
2π∆(T)

kBT
e−

∆(T)
kBT , (10)

as can be seen in Fig. 1(b). Since Y(T ≪ Tc) ≪ 1, according to (7) the London penetration
depth shows a very weak temperature dependence in the temperature regime well below
Tc.
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