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4 Microscopic Theory

4.9 Particle Current Density
Exercise:

Within Boltzmann transport theory the particle current density in a metal can be written as
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Here, n is the particle density, v the particle drift velocity, e = #?k2/2m, ey, = hk - v, and
fo (ex) the thermal equilibrium Fermi-Dirac distribution.
(a) Use the above definition of the particle current density to derive the particle density in a
normal metal.

(b) Calculate the density n9P of Bogoliubov quasiparticles in a superconductor (normal fluid
density).

(c) Calculate the density n° of the paired electrons in a superconductor (superfluid density
density).

(d) Use the superfluid density to discuss the temperature dependence of the London pene-
tration depth Ar close to the transition temperature 7.



Solution:

(a) The it component (i = 1,2, 3) of the particle current density can be written as

(b)
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With this result we can define the particle current density in a normal metal as
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To evaluate (2) we have to convert the summation into an integration. We replace ey by
¢k = €k — p in (3) and obtain
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Here, k = k/|k| and |k| ~ kg. Furthermore, we have used D(u + &) ~ D(Eg) = const,
since the function 9f_/9Ey is finite only in a narrow energy interval ~ kgT around the
chemical potential 3, and we have set the lower integration limit to —oo, since typically
1/2kgT > 1 for a metal. Obviously we obtain the expected result that the particle density
is given by the electron density of the normal metal.

We next consider the superconducting state of a metal and calculate the normal fluid
density n of the Bogoliubov quasiparticles. To calculate n9P we can use egs. (2) and (3)

but have to replace {x = ex — j by the quasiparticle energy Ex = /&2 + A2 in (3). With



Z(k)d%k = D(Ey)dEyx = D(&)d& (conservation of states) we obtain
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We see that the normal fluid density is given by the normal state particle density mul-
tiplied by the Yosida function Y(T) (cf. Fig. 1). The Yosida function is zero at T = 0
and continuously increases towards one at T = T.. Therefore, the quasiparticle density
decreases from ng.P(T) =nd;atT =T to ng.P(T) =0atT =0.

(c) Since the total particle number is conserved on going from the normal to the supercon-
ducting state, the density of the paired electrons in the superconducting state (superfluid
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Figure1: Yosida func-
tion plotted versus
A(T)/kgT using
(a) a linear and (b)
logarithmic scale.



density density) is given by
nfj(T) = n— ngp(T) = n[l1-Y(T)] dij
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We can use the temperature dependence of the Yosida function to discuss the temperature
dependence of the superfluid density and, in turn, the London penetration depth
A
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For T ~ T, (A(T) — 0), we can approximate the temperature dependence of the Yosida
function by
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We see that Ay (T) diverges for T — T. This result is obvious since a normal metal cannot
screen stationary magnetic fields.

For T — 0, the Yosida function shows a thermally activated behavior
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as can be seen in Fig. 1(b). Since Y(T <« T,) < 1, according to (7) the London penetration
depth shows a very weak temperature dependence in the temperature regime well below
T..
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