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1 Basic Properties of Superconductors

1.3 Surface Impedance of Normal Metals and Superconductors

Exercise:

In the discussion of high frequency properties of normal metals and superconductors the sur-
face impedance Zs is a useful quantity.

(a) Consider a normal metal with carrier density n, momentum relaxation time τn and fre-
quency dependent conductivity σ(ω) = σ0

1−ıωτn
with σ0 = neτn/m the Drude conductiv-

ity. Calculate the surface impedance in the limit ωτn ≪ 1.

(b) Consider a superconductor with frequency dependent conductivity σ(ω).

Solution:

We start by introducing the concept of the surface impedance. We know that for an ideal
conductor in an electromagnetic field, the tangential component Et of the electric field at the
surface has to vanish. However, a current flows in a thin sheet on the surface, as required to
support the magnetic field Ht tangential to the surface. In this short-circuit boundary condition,
all fields are excluded from the interior of the ideal conductor. In a real conductor, the situation
is slightly different. Here, fields extend into the conductor, but decay rapidly with distance
from the surface. To avoid to be forced to solve Maxwell’s equations inside conductors, one
makes use of the concept of the surface impedance. The surface impedance

Zs = Rs + ıXs ≡ Et

Ht
(1)

provides the boundary condition for fields outside the conductor. It also accounts for the dissi-
pation and energy stored inside the conductor. Here, Rs is the surface resistance and the Xs the
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Figure 1: Zur Definition der Oberflächenimpedanz: Eine elektro-
magnetische Welle mit E-Feld Ex und H-Feld Hy breitet sich
in z-Richtung aus und trifft bei z = 0 auf einen halbunendlich
ausgedehnten, elektrisch leitenden Festkörper.

surface reactance. The physical reasoning is that the magnetic field Ht causes a surface current
flowing in a δ-layer with the sheet current density J□ = J · δ = Ht, so that Zs = Et/Ht = Et/J□.

For a semi-infinite conductor (cf. Fig. 1), the internal fields decay exponentially with distance
from the surface with a characteristic decay length δ = 1/k. If we assume that the surface of
the semi-infinite conductor extends in the xy-plane, we can write the tangential electric field
Ex(z) as1

Ex(z) = Ex(0) eıkz = Ex(0) eık′z e−k′′z , (2)

where we have separated the complex decay constant k = k′ + ık′′ into real and imaginary part.
With the Maxwell equation ∇× E = −∂B/∂t we obtain for a harmonic field

−ıωµ0Hy(z) = −ıkEx(z) = −ıEx(z)(k′ + ık′′) (3)

resulting in the surface impedance

Zs =
Ex

Hy
=

µ0ω

k
=

µ0ω

k′ + ık′′
. (4)

(a) For normal conductors with conductivity σ(ω), this decay constant (cf. exercise 1.2) is
given by

k2(ω) =
1

δ2(ω)
= −ıωσ(ω)µ0 . (5)

The frequency dependent conductivity of a normal metal is given by

σ(ω) =
ne2τ

m (1 − ıωτn)
=

σ0

1 − ıωτn
(6)

with the Drude conductivity σ0 = ne2τn
m and the momentum relaxation time τn. Since τn

is typically less then 10−12s, the limit ωτ ≪ 1 applies up to the GHz regime. In this case
the metal has an about frequency independent conductivity σ(ω) ≃ σ0 = ne2τn/m. Since
the conductivity is purely real, we obtain

k2 =
1
δ2 ≃ −ıωσ0µ0

k =
1
δ

≃
√

ωσ0µ0

2
(1 − ı) . (7)

1We make the Ansatz Ex(z) = E0 exp[ı(kz − ωt)] with the complex decay constant k = k′ + ık′′ related to the
skin depth by k2 = 1/δ2.
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where we have used
√
−ı = 1√

2
(1 − ı). Obviously, in this case the magnitude of the

real and imaginary part of k are the same and given by k0 = 1/δ0 =
√

ωσ0µ0/2. Then,
according to eq. (4) we obtain

Zs =
µ0ω

k
=

µ0ω√
µ0ωσ0/2(1 − ı)

=

√
µ0ω

2σ0
(1 + ı) =

µ0ωδ0

2
(1 + ı) . (8)

We see that the surface resistance Rs and reactance Xs are equal and given by

Rs = Xs =

√
µ0ω

2σ0
=

µ0ωδ0

2
. (9)

For normal metals both Rs and Xs are proportional to
√

ω. For example, in Au or Cu at
100 GHz and room temperature, δ0 ≃ 0.25 µm and Zs ≃ 0.1(1 + ı)Ω/□.

(b) We next consider a superconducting metal with complex ac conductivity σ(ω) = σ′(ω)+
ıσ′′(ω) given by

σ′(ω) =
1

Λs

[
πδ(ω) +

nn

ns

τn

1 + (ωτn)2

]
(10)

σ′′(ω) =
1

Λs

[
1
ω

+
1
ω

nn

ns

(ωτn)2

1 + (ωτn)2

]
. (11)

Here we have used the London coefficient Λs ≡ ms/ñsq2
s = m/nse2 = µ0λ2

L (λL is the
London penetration depth). For ωτn ≪ 1, we can use the approximations

σ′(ω) ≃ 1
ωΛs

nn

ns
τn =

nn

n
σ0 (12)

σ′′(ω) ≃ 1
ωΛs

=
1

ωµ0λ2
L

. (13)

By inserting this into the expression (4) for the surface impedance and using k2 =
−ıωµ0σ(ω) we obtain

Zs =
µ0ω

k
=

µ0ω√
−ıµ0ωσ0

nn
n + µ0ω

µ0ωλ2
L

=
µ0ωλL√

1 − ıµ0ωλ2
Lσ0

nn
n

. (14)

To evaluate this further we use
√

z =
√
(|z|+ℜ(z))/2 + ısgn(ℑ(z))

√
(|z| − ℜ(z))/2.

We obtain

Zs =
µ0ωλL√

1 + 1
2 µ2

0ω2λ4
Lσ2

0

( nn
n

)2 − ı
√

1
2 µ2

0ω2λ4
Lσ2

0

( nn
n

)2
. (15)

We multiply the denominator by
(√. . . + ı√. . .

)
and make use of the fact that

1
2 µ2

0ω2λ4
Lσ2

0
( nn

n

)2 is about the square of the ratio of the conductivities of the normal and
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Table 1: Conductivity σ, penetration depth δ0 due to the normal skin effect, London pen-
etration depth λL, surface resistance Rs and surface reactance Xs of normal conductors
and superconductors for ωτn ≪ 1 and temperatures T ≪ Tc.

property normal conductor superconductor

conductivity σ0 =
ne2τn

m
σ′ + ıσ′′ =

ne2τn

m

(nn

n

)
+

ı
ωµ0λ2

L

field penetration depth δ0 =
√

2/ωµ0σ0 δs = λL

surface resistance Rs =
1
2

ωµ0δ0 =

√
ωµ0
2σ0

Rs =
1
2

ω2µ2
0λ3

Lσ0

(nn

n

)
surface reactance Xs =

1
2

ωµ0δ0 =

√
ωµ0
2σ0

Xs = ωµ0λL

the superfluid. Since this ratio is small compared to unity for temperatures not to close to
the transition temperature Tc, we can further approximate (15) to obtain

Zs = Rs + ıXs ≃ 1
2

µ2
0ω2λ3

Lσ0
nn

n
+ ıµ0ωλL . (16)

We see that the surface resistance Rs, the real part of Zs, increases proportional to ω2 in
contrast to normal conductors, where Rs ∝

√
ω. Furthermore, it increases proportional

to λ3
L and the conductivity σ0nn/n of the normal fluid component. In Table 1 the most

relevant characteristics of superconductors are compared to those of normal metals. For
a superconductor at a frequency well below its energy gap frequency and T ≪ Tc, the
London penetration depth λL is about constant. For niobium at 4.2 K and frequencies
below about 700 GHz, λL ≃ 0.1 µm and we obtain Zs ≃ ıµ0ωλL = ıωLk, corresponding to
a surface or kinetic inductance Lk = µ0λL [Henry/□], which is independent of frequency.
In niobium, Lk ≃ 0.13 pH/□, giving Zs ≃ ı0.08 Ω/□ at 100 GHz.

Fig. 2 shows the theoretically expected surface resistance as a function of frequency for
the superconductor Nb and the normal metal Cu. We see that for frequencies below
about 100 GHz the surface resistance of Nb is considerably lower than for Cu at 77 K. At
high frequencies, there is a cross-over due to the much weaker frequency dependence of
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Figure 2: Intrinsic surface resistance ver-
sus frequency for Nb and oxygen free
high conductance (OFHC) Cu. For Cu,
σ0 = 108Ω−1m−1, for Nb, λL(0) =
85 nm and σ0 = 108Ω−1m−1 were used.
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the surface resistance of normal metals. Note that the surface resistance is expected to
be further reduced by going to lower temperatures due to the strong decrease of nn. At
T/Tc ≪ 1, λL(T) ≃ const and nn ∝ exp(−2∆0/kBT). Therefore, an exponential decrease
of Rs with decreasing T is expected. However, this behavior is usually not observed in
experiments. Rather a temperature independent residual surface resistance is measured
at very low T, which is attributed to material defects. For Nb this residual resistance is as
low as 10−9Ω/□ at 10 GHz, whereas it reaches only about 10−5Ω/□ for high temperature
superconducting YBa2Cu3O7−ffi films.

Kinetic Inductance The surface reactance Xs, the imaginary part of the surface
impedance, is purely inductive. The equivalent inductance Lk is denoted as kinetic in-
ductance

Lk = µ0λL . (17)

The kinetic inductance reflects the inertia or equivalently the kinetic energy of the carriers
of the superfluid.
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