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2 Thermodynamic Properties of Superconductors

2.1 Specific Heat of Superconductors

Exercise:

We consider the superconducting materials Al, Nb and Pb with the characteristic parameters
listed in Table 1.

Table 1: Material properties of Al, Nb and Pb.

Material Tc Bcth(0) ∆c/cn ∆(0) γ M ρ

(K) (mT) exp. (meV) (mJ/mol K2) (g/mol) (g/cm3)

Al 1.2 10 1.4 0.17 1.35 27.0 2.7
Nb 9.2 206 1.9 1.52 7.79 92.9 8.4
Pb 7.2 80 2.7 1.37 2.98 207.2 11.4

(a) Calculate the jump in the specific heat of a superconductor at Tc, ∆c/cn = (cs − cn)/cn,
from the free enthalpy density.

(b) Calculate ∆c/cn for Aluminium, Niobium and Lead from the measured thermodynamic
critical magnetic field Bcth(0) and the transition temperature Tc listed in Table 1.

(c) According to microscopic (BCS) theory of superconductivity the difference in the free
enthalpy densities of the normal and superconducting state is given by 1

4V D(EF)∆2(0).
Here, D(EF) is the electronic density of states (for both spin directions) at the Fermi en-
ergy and ∆(0) the energy gap of the superconductor at T = 0. The latter can be derived
from the low temperature dependence of the specific heat cs, or can be obtained from
tunneling and optical experiments. Use the Sommerfeld expression for the normal state
specific heat cn to derive ∆c/cn from the microscopic quantities.

(d) Compare and discuss the results of (b) and (c).
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Solution:

(a) With the differential of the inner energy, dU = TdS− pdV + VBextdM, where VBextdM
is the magnetization work performed on the system, and the free energy F = U − TS we
obtain the differential of the free energy as

dF = −SdT − pdV + VBextdM . (1)

In order to be able to neglect the terms −pdV and VBextdM we would have to perform
experiments at constant volume and magnetic moment (magnetization). However, this
is difficult to realize. Therefore, it is more appropriate to consider the free enthalpy G =
U − TS + pV −VMBext, with its differential given by

dG = −SdT + Vdp−VMdBext . (2)

If we perform an experiment at constant pressure and external magnetic field (what is
easy to realize) we obtain dG = −SdT and hence

S = −
(

∂G
∂T

)
p,Bext

. (3)

The specific heat at constant pressure and magnetic field is then given by

cp =
Cp

V
=

1
V

(
δQ
δT

)
p,Bext

δT→0︷︸︸︷
=

T
V

(
∂S
∂T

)
p,Bext

= − T
V

(
∂2G
∂T2

)
p,Bext

= −T
(

∂2g

∂T2

)
p,Bext

. (4)

Here, we have used the free enthalpy density g = G/V.

The difference of the free enthalpy densities in the superconducting and normal conduct-
ing state is given by

∆g(T) = gs(0, T)− gn(0, T) = −
B2

cth(T)
2µ0

, (5)

where Bcth is the thermodynamical critical field of the superconductor. Using eq. (4) we
obtain

∆cp = cp,s − cp,n =
T
µ0

[
Bcth

∂2Bcth

∂T2 +

(
∂Bcth

∂T

)2
]

. (6)

This relation is usually called Rutgers Formula.1 For T → Tc, we can neglect the first term
in the brackets, since Bcth → 0. Using cp,n = γT, where γ is the Sommerfeld coefficient,
and the empirical temperature dependence Bcth = Bcth(0)

[
1− (T/Tc)2], we obtain for

T = Tc

∆cp

cp,n
=

cp,s − cp,n

cp,n
=

1
γTc

Tc

µ0

(
∂Bcth

∂T

)2

T=Tc

=
8

γT2
c

B2
cth(0)
2µ0

. (7)

1A.J. Rutgers, Bemerkung zur Anwendung der Thermodynamik auf die Supraleitung, Physica 3, 999 (1936).
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Table 2: Calculated and measured specific heat values of Al, Nb and Pb together with
further material properties of Al, Nb and Pb.

Material Tc Bcth(0) ∆c/cn ∆c/cn γ γ M ρ

(K) (mT) exp. ber. (mJ/mol K2) (J/m3K2) (g/mol) (g/cm3)

Al 1.2 10 1.4 1.6 1.35 135 27.0 2.7
Nb 9.2 206 1.9 2.2 7.79 704 92.9 8.4
Pb 7.2 80 2.7 2.4 2.98 164 207.2 11.4

(b) Equation (7) shows that we expect a jump of the specific heat at Tc. This jump can be
measured directly by calorimetric techniques. On the other hand, we can also determine
Bcth(0) from magnetization measurements at low temperatures and use this value to cal-
culate the jump in the specific heat at T = Tc. We will do so in the following by using the
values of Bcth(0), Tc and γ listed in Table 1. For the calculation we first have to convert
the units into SI units. To obtain the Sommerfeld coefficient in units of J/m3K2 we have
to multiply the value given in units of mJ/mol K2 by a factor of 1000 and then divide by
the molar mass M and finally multiply by the mass density ρ. The result and the derived
value of ∆cp/cp,n are also listed in Table 2. We see that the calculated values agree well
with the calorimetrically measured values.

(c) We now use the prediction of BCS theory that the ground state energy density of the
superconducting state at T = 0 is lowered by D(EF)∆2(0)/4V below that of the normal
conducting state. Then, the difference of the free enthalpy densities can be written as

∆g = gs(0, T)− gn(0, T) = −1
4

D(EF)

V
∆2(0) = −

B2
cth(0)
2µ0

. (8)

Here, ∆(0) is the energy gap in the excitation spectrum of the superconductor at T = 0.
We can use this expression to derive ∆cp/cp,n. In order to do so we have to express the
Sommerfeld coefficient γ as a function of the density of states, D(EF), at the Fermi energy:

γ =
π2

2
n

k2
B

EF

D(EF)=
3
2

nV
EF︷︸︸︷

=
π2

3
D(EF)

V
k2

B . (9)

With this expression we obtain

∆cp

cp,n
=

8
γT2

c

B2
cth(0)
2µ0

=
8

γT2
c

1
4

D(EF)

V
∆2(0)

=
8

π2

3
D(EF)

V k2
BT2

c

1
4

D(EF)

V
∆2(0) =

6
π2

(
∆(0)
kBTc

)2

. (10)

Using the BCS prediction ∆(0)/kBTc = π/eγ = 1.76387699 for weakly coupled supercon-
ductors (γ = 0.5772 . . . is Euler’s constant), we obtain

∆cp

cp,n
= 1.8914 . (11)
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Table 3: Jump ∆cp/cp,n of the specific heat of Al, Nb and Pb calculated according to eqs. (10)
and (12) with the given values of ∆(0) and Tc. For comparison, also the calorimetrically
measured values are shown.

Material Tc ∆(0) ∆c/cn ∆c/cn ∆c/cn

(K) (meV) exp. eq.(10) eq.(12)

Al 1.2 0.17 1.4 1.6 1.2
Nb 9.2 1.52 1.9 2.2 1.7
Pb 7.2 1.37 2.7 2.9 2.2

Note that the prefactor 6/π2 = 0.6079 . . . in eq. (10) has been calculated using the BCS
condensation energy density D(EF)∆2(0)/4V for T = 0 and the empirical temperature
dependence ∝ [1 − (T/Tc)2]. Therefore, this prefactor is slightly larger than the value
0.4601 . . . predicted by BCS theory. The BCS theory yields (cf. R. Gross and A. Marx,
Festkörperphysik, Oldenbourg-Verlag (2012), Section 13.5.4)

∆cp

cp,n
=

D(EF)

2γTc

(
−d∆2(T)

dT

)
Tc

. (12)

With ∆(T) = 1.7366 ∆(0) [1− (T/Tc)]
1/2 for T ' Tc, this results in

∆cp

cp,n
=

3 · 1.73662

2π2

(
∆(0)
kBTc

)2

= 0.45837
(

∆(0)
kBTc

)2

= 1.4261 . . . . (13)

The smaller value is caused by the fact that BCS theory yields a temperature depen-
dence Bcth(T) which slightly deviates from the empirical approximation Bcth(T) ∝ [1−
(T/Tc)2]. If we use the values given for ∆(0) and Tc in Table 1 we obtain the values for
∆cp/cp,n listed in Table 3.

(d) The ratio ∆(0)/kBTc is a measure for the coupling strength between the conduction elec-
trons in superconductors. In the limit of weak coupling (BCS theory), ∆(0)/kBTc =
π/eγ = 1.7638 . . . in the isotropic case (γ = 0.5772 . . . is Euler’s constant) and hence
∆cp/cp,n = 12/7ζ(3) = 1.4261 . . . (with Riemann’s ζ-function). In contrast, we obtain
∆cp/cp,n = 1.8913 . . ., if we use eq. (10), and ∆cp/cp,n = 2, if we use the thermodynamic
low temperature limit. In this context it is important to note that besides the BCS result
the numbers are not relevant. They only should show that one can approach the correct
value by simple considerations.

The jump ∆cp/cp,n increases with increasing coupling strength. Particularly interesting
is the fact that the macroscopic and microscopic parameters can be measured and/or cal-
culated independent of each other. Therefore, we can use simple thermodynamic consid-
erations to derive qualitative relations between them, thereby performing a consistency
check. The achieved consistency is astonishingly good in view of the simplicity of the
assumptions made in deriving the BCS expressions.
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