
WALTHER–MEIßNER–INSTITUT 09 November 2021
Bayerische Akademie der Wissenschaften
Lehrstuhl für Technische Physik E23, Technische Universität München
Prof. Dr. Rudolf Gross
Tel.: +49 (0)89 289 14249
E-mail: rudolf.gross@wmi.badw.de Exercise 4

Exercise to the Lecture

Superconductivity and Low Temperature Physics I
WS 2021/2022

3 Phenomenological Models of Superconductivity

3.1 Magnetization of Superconductors

Exercise:

The relation between magnetic flux density B, magnetic field H and magnetization M is given
by

B = µ0(H + M) = µ0(H + χH) = µ0H(1 + χ) .

Due to its perfect diamagnetism, we have χ = −1 for a superconductor. In the most simple
case of an infinitely long cylinder with external magnetic field Hext = Bext/µ0 applied parallel
to the cylinder we can neglect demagnetization effects. However, in the case of samples with a
finite demagnetization factor N, we have to consider the so-called macroscopic magnetic field
given by

Hmac = Hext + HN = Hext − NM .

In addition to the external field we have to take into account the demagnetization field HN
originating from magnetic charges on the surface of the magnetized sample. For a particular
sample shape, the demagnetization factor N is obtained by solving the boundary problem ∇ ·
B = 0 and ∇ × B = µ0J. For a long cylinder or a thin planar disk parallel to the applied
magnetic field Hext we have N = 0. For a sphere, N = 1/3 and for a cylinder and planar disk
perpendicular to the applied field we have N = 1/2 and N = 1, respectively.

(a) How does N qualitatively look like for a cylinder? Which sample geometry is most ap-
propriate for a quantitative measurement of the magnetization of a superconductor?

(b) Calculate Hmac, Bi and M for a sphere as a function of χ and Hext.

(c) How could a realistic measuring configuration for the determination of χ look like? How
can we obtain χ for a homogeneous isotropic sample with demagnetization factor N from
the measured quantities?
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(d) Discuss the meaning of H and B by considering a cylindrical superconducting sample
located in a long solenoid. Neglect demagnetization effects in this discussion.

(e) Consider a superconducting sphere in the Meißner state. What is the value of the mag-
netic flux density Bext(r = R) right outside this sphere at the poles and the equator?

(f) Calculate the magnetic flux density outside a superconducting sphere in the Meißner
state in spherical coordinates by using

B(r ≥ R) = µ0Hext + |µ0Hext|
R3

2
∇
(

cos θ

r2

)
.

Solution:

Demagnetization and demagnetization factor: Before discussing the solution we first define
the demagnetization factor N. The macroscopic magnetic field Hmac for a magnetized piece of
material is identical to the externally applied magnetic field Hext only if the permeable mate-
rial completely fills in the volume of the external field (e.g. for a ring-shaped or infinitely long
solenoid). If in contrast the materials fills the field volume only along a limited part of the mag-
netic field lines, magnetic poles are forming at the free ends of the inserted piece of material,
which are the starting point of field lines. Depending on the sign of the magnetization M or
to be precise the magnetic susceptibility χ, these field lines weaken or strengthen the original
field Hext (cf. Fig. 1). This phenomenon is called demagnetization. The size of the demagne-
tization on the one hand depends on the magnetization M induced in the permeable material
and on the other on the geometric shape of the considered piece of material. In general, both
the magnitude and direction of the magnetization, as well as the demagnetization factor deter-
mined by the geometrical shape, are complicated functions of the spatial coordinate. Only for
the special case of a homogeneously magnetized sample having the shape of a prolate ellipsoid
also the demagnetization field is homogeneous. In this case we can describe the impact of the
demagnetization simply by the demagnetization field

HN = −NM . (1)

For the macroscopic magnetic field Hmac we then obtain

Hmac = Hext + HN = Hext − NM .

The demagnetization factor N only depends on the geometrical shape of the homogeneously
magnetized body. In general, it is given by a second rank tensor HN,x

HN,y
HN,z

 = −

 Nxx Nxy Nxz
Nyx Nyy Nyz
Nzx Nzy Nzz

 Mx
My
Mz

 .

Along the principal axes of the prolate ellipsoid HN and M are collinear. Then, in the com-
ponent representation there are only three different demagnetization factors Na, Nb and Nc for
the field components along the direction of the three principal axes a, b and c. If we consider
a prolate ellipsoid and if his principal axes coincide with the axes of the cartesian coordinate
systems used in the discussion, the demagnetization tensor becomes diagonal and the diagonal
elements have to satisfy the condition

Nxx + Nyy + Nzz = Na + Nb + Nc = 1 .
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Figure 1: (a) A diamagnetic sample with magnetic susceptibility χ < 0 is brought into a
homogeneous magnetic field Hext. (b) In the sample a finite magnetization M = χHmac
is induced which is antiparallel to the local magnetic field due to χ < 0. (c) Because
of the finite sample size magnetic poles are appearing on the sample surface, resulting
in the demagnetization field HN . The latter is antiparallel to the magnetization and its
magnitude depends on the sample geometry. (d) For a perfect diamagnet (χ = −1) the
magnetic flux density Bi = µ0(Hmac + M) vanishes inside the sample. The flux density
outside the sample results from the superposition of the spatially homogeneous applied
magnetic field Hext and the stray field due to the magnetic surface poles.

In practice, we often use demagnetization factors also for the description of the internal mag-
netic fields of bodies (e.g. cylinders, disks) which are no prolate ellipsoids and therefore do not
have a homogeneous demagnetization field. In this case, the shape of the body is approximated
by a prolate ellipsoid in a first approximation.

(a) We consider a cylinder which we approximate by a prolate ellipsoid to estimate its de-
magnetization factor for certain limiting cases. For a cylinder with a ≥ b = c and a paral-
lel to Bext according to (2) the demagnetization factor has to range between Na = Nxx = 0
for a � b, c and Na = Nxx = 1/3 for a = b = c. For a cylinder with a ≥ b = c and
a perpendicular to Bext the corresponding demagnetization factor must range between
Nb = Nyy = Nc = Nzz = 1/3 for a = b = c and Nb = Nyy = Nc = Nzz = 1/2 for
a � b, c. If for the latter case b 6= c, then Nb 6= Nc. For c � b and c parallel to Bext, we
have Nc = Nzz = 0; for c perpendicular to Bext we obtain Nb = Nyy = 1. For quantitative
measurements of the magnetization a sample geometry with N = 0 is optimal. This is
realized by a long and thin cylinder with a� b, c and Bext parallel to a.

We easily see that due to a = b = c for a sphere we obtain Nxx = Nyy = Nzz = N = 1/3
from (2). A planar thin plate with c perpendicular to the plate we can approximate by a
prolate ellipsoid with a, b� c. For Bext parallel to the plate we obtain Nxx = Nyy = 0, for
Bext perpendicular to the plate we have Nzz = 1.

(b) If we bring a magnetically isotropic sphere with magnetic susceptibility χ into a homo-
geneous external magnetic field Hext, we magnetize the sphere (cf. Fig. 2). However, the
magnetization is not proportional to Hext, but to the macroscopic magnetic field Hmac:

M = χHmac = (µ− 1)Hmac . (2)

The finite magnetization of the sphere results in magnetic poles on its surface leading to a
demagnetization field HN . Depending on the direction of M, that is, of the magnetic sus-
ceptibility χ, the demagnetization fields result in an increase or decrease of the externally
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Figure 2: (a) A superconducting sphere with magnetic susceptibility χ = −1 is brought
into a homogeneous external magnetic field Hext. (b) A homogeneous magnetization
M = χHmac = − 3

2 Hext is induced in the sample which is antiparallel to the locally acting
magnetic field due to χ = −1. (c) The magnetic poles with area density σm = M · ên
appearing on the sample surface (ên is the unit vector perpendicular the the surface of the
sphere), result in the demagnetization field HN = −NM = 1

3
3
2 Hext =

1
2 Hext antiparallel

to the magnetization. (d) The magnetic flux density Bi = µ0(Hmac + M) vanishes inside
the sample. The flux density outside the sample can be viewed as resulting from the the
superposition of the homogeneous applied magnetic field and the stray field due to the
magnetic surface poles.

applied magnetic field Hext (cf. Fig. 2). For the macroscopic magnetic field we obtain

Hmac = Hext + HN

= Hext − NM = Hext − NχHmac = Hext − N(µ− 1)Hmac . (3)

Resolving for Hmac yields

Hmac =
1

1 + Nχ
Hext =

1
1 + N(µ− 1)

Hext . (4)

We see that for a superconducting sphere (N = 1/3, χ = −1) we have the macroscopic
field Hmac =

3
2 Hext. Inserting (4) into (2) results in

M = χHmac =
χ

1 + Nχ
Hext =

(µ− 1)
1 + N(µ− 1)

Hext . (5)

For a superconducting sphere (N = 1/3, χ = −1) we then obtain M = − 3
2 Hext. Without

taking into account for demagnetization effects, apparently we would determine the sus-
ceptibility to χ̃ = −3/2. With the expressions for Hmac and M, the magnetic flux density
Bi inside the sample is obtained to

Bi =
1 + χ

1 + Nχ
Bext =

µ

1 + N(µ− 1)
Bext . (6)

For a superconducting sphere (N = 1/3, χ = −1) we have Bi = 0 as expected for a
perfectly diamagnetic material (cf. Fig. 2).

(c) A realistic measuring configuration is sketched in Fig. 3. For the measurement of the
sample magnetization we use a detection coil (not shown) inside the solenoid gener-
ating the applied magnetic field. Ideally the detection coil tightly encloses the sample
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(large filling factor) and is connected to a voltmeter. Letting the applied magnetic field
Hext(t) = Bext(t)/µ0 oscillate slowly – e.g. at a frequency of a few ten Hertz (quasistatic
limit) – allows us to determine the change in the flux density Ḃi(t) inside the sample
by measuring the voltage Vind(t) = −∂Φi/∂t ∝ −∂Bi/∂t induced in the detection coil.
Hence, after a calibration process the integral

∫
Vind(t)dt ∝ −Bi can directly be related to

Bi(t). With the above expression for Bi we can determine the magnetic susceptibility χ of
the sample if we know its demagnetization factor. Resolving eq. (6) for χ results in

χ =
Bi − Bext

Bext − NBi
. (7)

We note that the above equations are only exact for homogeneous isotropic materials
and sample shapes (e.g. prolate ellipsoid, infinitely thin plate, infinitely long cylinder)
resulting in a homogeneous magnetization parallel to the applied magnetic field. For
more complex sample shapes and in the presence of a finite magnetic anisotropy the
corresponding expressions become much more complicated.

Ba Bext Bi 

G1 
Dℓ1 

G2 Dℓ2 

d 

Figure 3: Cylindrical superconducting sample inside an infinitely long
solenoid.

(d) In the following we use the configuration shown in Fig. 3 to provide a clear distinction
between H and B. With B = µ0(H + M) we can write

∇× B = µ0(∇×H +∇×M) = µ0(Jsp + Jm) . (8)

We see that the curl of B is related to the total current density, which is given as the
sum of the usual “external current density” Jsp – e.g. flowing in the electrical conductor
forming the solenoid – and the “magnetization current density” Jm, which is related to
the internal currents in the magnetized material. In contrast, the curl of H is related only
to the external current density Jsp. The latter is provided by an external current source
and is flowing in the solenoid generating the external magnetic field. For the integral
over the area S enclosed by the closed path Γ = ∂S we therefore obtain∫

S

dS ·∇× B =
∮
∂S

B · d` = µ0

∫
S

dS ·
(
Jsp + Jm

)
(9)

∫
S

dS ·∇×H =
∮
∂S

H · d` =
∫
S

dS · Jsp . (10)
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Here, we have used Stoke’s theorem. We now apply this result to the configuration shown
in Fig. 3. To keep our discussion simple, we neglect demagnetization effects at the sample
ends (N = 0), that is, we assume an infinitely long sample. For the integral over the area
S enclosed by the closed path Γ1 = ∂S1 we obtain∫

S1

dS ·∇× B =
∮

∂S1

B · d` = µ0

∫
S1

dS ·
(
Jsp + Jm

)
. (11)

The current density Jsp is related to the current I0 flowing in the solenoid, whereas the
current density Jm is related to the internal currents resulting in the finite magnetization
of the superconductor, that is, to the supercurrent density Js in the superconductor. This
is an important statement. Since the supercurrent density can be considered as a macro-
scopic current density – in contrast to the microscopic diamagnetic currents flowing on an
atomic scale in other diamagnetic materials – it is often forgotten that Js is a magnetiza-
tion current density. Of course, treating Js as an external current density leads to paradox
results.

With the current I0 flowing in the solenoid and the winding distance d, eq. (11) yields

(Bi − Ba) ∆`1 = µ0

[
JsλL∆`1 + I0

∆`1

d

]
. (12)

Here we have assumed that the supercurrent is flowing only within a surface sheet of
thickness λL (London penetration depth). Since we have Bi = 0 in the Meißner state and
furthermore Ba = 0 outside an infinitely long solenoid, we find

Js = − I0

dλL
. (13)

Since for N = 0 the macroscopic magnetic field Hi is equal to the externally applied field
Hext [compare (4)], we obtain the expected result

Hi = Hext =
I0

d
. (14)

Applying Ampère’s law to the involved magnetic fields, according to eq. (10) we obtain
for the integration path Γ1 = ∂S1∮

∂S1

H · d` =
∫
S1

dS · Jsp ⇒ Hi =
I0

d
. (15)

Again, for N = 0 we obtain the expected result Hi = Hext. If we instead use the total
current density Jsp + Jm on the right hand side of (15) – this would mean that we would
not interpret Js as a magnetization current density – we would obtain the paradox result

Hi = JsλL +
I0

d
= 0 . (16)

In the same way we would get a paradox result, if we use only the external current density
Jsp on the right hand side of (9). Since Ba = 0 for an infinitely long solenoid, this would
lead to the astonishing result Bi 6= 0.
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(e) With the considerations made above we discuss in the following the magnetic flux den-
sity outside a superconducting sphere. Because of ∇ · B = 0 we know that the normal
component Bn of the flux density on the surface of the sphere must be continuous. This
means that B(r = R, θ = 0) disappears at the poles of the sphere. According to part (b),
the magnetic field inside the sphere is constant and given by

Hmac =
Hext

1 + Nχ

N=1/3,χ=−1︷︸︸︷
=

Hext

1− 1
3

=
Hext

2/3
=

3
2

Hext . (17)

Since the tangential component Ht of H must be continuous, we obtain the following
relation at the equator of the sphere: B(r = R, θ = π/2) = 3

2 Bext.

(f) For the magnetic flux density outside a superconducting sphere one finds the following
expression in textbooks:

B(r ≥ R) = Bext + Bext
R3

2
∇
(

cos θ

r2

)
. (18)

Here, Bext = |Bext|. The relation between spherical coordinates (r, θ, ϕ) and cartesian
coordinates (x, y, z) is given by

x = r sin θ cos ϕ

y = r sin θ sin ϕ (19)
z = r cos θ .

The gradient reads in spherical coordinates as

∇ = er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ
. (20)

We first have to express Bext in spherical coordinates. We obtain

Bext = Bext(er cos θ − eθ sin θ) . (21)

Because of the symmetry of the problem there is no projection on the eϕ-axis. Further-
more, eθ is antiparallel to the ez-axis, resulting in a negative sign of the eθ term. With the
derivatives with respect to r and θ

∂

∂r

(
cos θ

r2

)
= −

(
2 cos θ

r3

)
1
r

∂

∂θ

(
cos θ

r2

)
= −

(
sin θ

r3

)
(22)

we obtain

Br = Bext cos θ

(
1− R3

r3

)
Bθ = −Bext sin θ

(
1 +

R3

2r3

)
. (23)

For r = R, we have Br ≡ 0 and Bθ = − 3
2 Bext sin θ. The magnetic flux density at the equator

is increased by 50% as already discussed above. The magnetic field outside the sphere is
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a superposition of the applied magnetic field Bext = µ0Hext and the field resulting from
the magnetic moment m of the sphere. The latter corresponds to that of a dipole located
in the center of the sphere with m = (4π/3)R3M = −2πR3Hext.

Due to ∇×H = 0, we can derive H from a scalar potential, that is, we can write H =
−∇Φm. With the given boundary conditions we then obtain for the field outside the
sphere

Φm(r, θ) = −Hext cos θ

(
r +

R3

2r2

)
. (24)

Obviously, the first term is related to the external magnetic field applied in z-direction
and the second to the far field of the dipole, resulting from the superconducting screening
currents on the sample surface.
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