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• macroscopic solid-state systems

- usually consideration of thermodynamic limit → 𝑁 → ∞, Ω → ∞, 𝑁/Ω = 𝑐𝑜𝑛𝑠𝑡.

• what happens if system size becomes small ?

- discrete spectrum of electronic levels

- coherent motion of electrons
→ phase memory due to lack of inelastic scattering within system size:

system size 𝐿 smaller than phase coherence length 𝐿𝜙
→ new interference phenomena

- validity of Boltzmann theory of electronic transport and concept of resistivity ?
→ system size 𝐿 smaller than mean free path ℓ: ballistic transport

- discreteness of electric charge and magnetic flux becomes important
→ single electron and single flux effects

- concept of impurity ensemble breaks down
→ sample properties show „fingerprint“ of detailed arrangement of impurities

II.1 Introduction

II.1.1 General Remarks
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• mesoscopic systems (coined by Van Kampen in 1981):

− system size is between microscopic (e.g. atom, molecule) and macroscopic system (e.g. bulk solid)

− system size 𝑳 is smaller than phase coherence length 𝑳𝝓 (typically in nm - µm regime)

→ phenomena related to phase coherence become important
→ statistical concepts no longer applicable due to smallness of system size
→ still coupling to environment/reservoir present (in contrast to microscopic objects such as atoms)

study of nanostructures at low temperature

mesos (Greek): between

• properties of mesoscopic systems are usually studied at low temperatures

− phase coherence length 𝐿𝜙 decreases rapidly with increasing 𝑇

➔ 𝐿 < 𝐿𝜙 can usually be satisfied only at low 𝑇

− observation of level quantization effects require 𝑘B𝑇 < Δ𝐸 ≃ 1/𝐿2

II.1.2 Mesoscopic Systems



Chapter 2/RG   - 8www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI
II.1.2 Mesoscopic Systems

III.8
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II.1.2 Mesoscopic Systems
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II.1.2 Mesoscopic Systems

65 nm process
2005

45 nm process
2007 32 nm

2009 22 nm
2011

(Source: Intel Inc.)

gate length of transistors

• miniaturization of electronic devices
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II.1.2 Mesoscopic Systems
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II.1.3 Characteristic Length Scales

Fermi wave length: 𝜆F < 1 nm  (for metals)

 ”size” of charge carrier

electron mean free path: ℓ  10 - 100 nm

 distance between (elastic) scattering events

phase coherence length: 𝐿𝜑  1 mm

 loss of phase memory

sample size: 𝐿,𝑊  0.01 - 1 mm

microscopic  mesoscopic  macroscopic

mesoscopic regime:   𝐿 < 𝐿𝜑 𝑇

• from microscopic to macroscopic systems
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II.1.3 Characteristic Length Scales

10 µm

1 mm

100 µm

1 µm

100 nm

10 nm

1 nm

0.1 nm distance between atoms

Fermi wave length in metals

mean free path in polycrystalline metal films

Fermi wave length in semiconductors

size of commercial semiconductor devices

mean free path in the Quantum Hall regime

mean free path / phase coherence length in
high mobility semiconductors at 𝑇 < 4 K

phase coherence length in clean metal films
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II.1.3 Characteristic Length Scales

→ elastic impurity scattering: 𝜏𝜑 → ∞ or 𝛼𝜑 → 0

→ electron-phonon scattering: 𝜏𝜑 ≈ 𝜏𝑒−𝑝ℎ ??

→ electron-electron scattering: 𝜏𝜑 ≈ 𝜏𝑒−𝑒 ??

→ electron-impuritiy scattering

• electron wavelength: 𝝀𝐅 =
𝒉

𝟐𝒎⋆𝜺𝐅
=

𝟐𝝅

𝟑𝝅𝟐𝒏
𝟏/𝟑 (Fermi wavelength)

collision time

effectiveness of collision: 0 < 𝛼𝑚 < 1• mean free path: ℓ = 𝒗𝐅 ⋅ 𝝉𝒎 𝝉𝒎
−𝟏 = 𝝉𝒄

−𝟏 ⋅ 𝜶𝒎

(with internal degree of freedom, e.g. spin)

• phase relaxation length: 𝑳𝝋 = 𝒗𝑭𝝉𝝋 𝝉𝝋
−𝟏 = 𝝉𝒄

−𝟏 ⋅ 𝜶𝝋 effectiveness of collision in destroying
phase coherence: 0 < 𝛼𝜑 < 1

ballistic

diffusive 𝑳𝝋 = 𝑫𝝉𝝋 =
𝟏

𝟑
𝒗𝐅
𝟐𝝉𝒎𝝉𝝋



Chapter 2/RG   - 15www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI

𝜏𝜑 is time required to acquire a phase change of ≈ 2𝜋

Δ𝜑 ≈
Δ𝐸

ℏ
𝜏𝜑 ≈ 2𝜋 ⇒ 𝜏𝜑 ≈

𝜏𝑐
𝜔2

1/3

Δ𝐸 2 = ℏ𝜔 2
𝜏𝜑

𝜏𝑐

II.1.3 Characteristic Length Scales

− Altshuler, Aronov, Khmelnitsky (1982):

if ℏ𝜔 is the characteristic energy of an inelastic process (e.g. phonon energy),
then the mean-squared energy spread of electron after collisions is

• question: what is the effectiveness of an inelastic scattering process regarding destruction of phase coherence ?

square of energy change

number of scattering events

− at low 𝑇: e-e scattering is dominating

low-frequency excitations
are less effective in destroying
phase coherence !!
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• size quantization

II.1.4 Characteristic Energy Scales

− Fermi wavelength: 

if 𝝀𝐅 > 𝑳𝒙, 𝑳𝒚, 𝑳𝒛 → reduction of dimension by size quantization

3D → 2D → 1D → 0D

for metals: 𝑛 ≈ 1022 − 1023 cm-3
→ 𝜆F ≈ 1 nm

for semiconductors: 𝑛 ≈ 1016 − 1019 cm-3
→ 𝜆F ≈ 10 - 100 nm

− electron in a box:

L

− single charge/flux effects:   
𝒆𝟐

𝟐𝑪
> 𝒌𝐁𝑻, 

𝚽𝟎
𝟐

𝟐𝑳
> 𝒌𝐁𝑻

Δ𝐸 =
ℎ2

2𝑚⋆

1

𝐿

2

𝜆F =
ℎ

2𝑚⋆𝜀F
=

2𝜋

3𝜋2𝑛 1/3

1 nm ↔ 10.000 K ↔ 800 meV
10 nm ↔ 100 K ↔ 8 meV
100 nm ↔ 1 K ↔ 0.08 meV

level spacing:
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II.1.4 Characteristic Energy Scales

quantum wire

1-dim

bulk

3-dim

superlattice

𝐷(𝜀)

𝜀

quantum well

𝐷(𝜀)

𝜀

2-dim

quantum dot

0-dim

𝐷(𝜀)

𝜀

𝐷(𝜀)

𝜀

𝐷(𝜀)

𝜀

• size quantization: DOS in 3D, 2D, 1D, and 0D

𝐷 𝜀 ∝ 𝜀 𝐷 𝜀 = 𝑐𝑜𝑛𝑠𝑡.
𝐷 𝜀 ∝ 1/ 𝜀 𝐷 𝜀 ∝ 𝛿 𝜀 − 𝜀𝑖
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(𝑣F: Fermi velocity)

− ballistic transport regime (see below): 

𝑡 =
𝐿

𝑣F
𝜀Th =

ℏ

𝑡
=
ℏ𝑣F
𝐿

II.1.4 Characteristic Energy Scales

𝐿

− how long does it take for an electron
to diffuse through a sample of length 𝐿

(Thouless energy)
➢ macroscopic samples: 𝜀Th ≪ 𝑘B𝑇
➢ mesoscopic samples: 𝜀Th > 𝑘B𝑇

− low 𝑇
− small 𝐿
− clean samples (large 𝐷)

− mean diffusion time is related to the characteristic energy (uncertainty relation)

𝐿 = 𝐷𝑡 𝑡 =
𝐿2

𝐷

𝜀Th =
ℏ

𝑡
=
ℏ𝐷

𝐿2

𝐿 <
ℏ𝐷

𝑘B𝑇

• Thouless energy

𝐷 = 𝑣2𝜏: diffusion constant
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II.1.4 Characteristic Energy Scales

→ electrons in energy interval Δ𝜀 = 𝜀Th stay phase coherent in sample of length 𝐿

if  𝜟𝜺 ≤ 𝜺𝐓𝐡, the acquired phase shift is less than 𝟐𝝅

example:  𝐷 = 10³ cm²/s,  𝐿 = 1 µm    → 𝜀Th /𝑘B ≈ 1 K

• physical meaning of the Thouless energy

𝜀Th =
ℏ

𝑡
=
ℏ𝐷

𝐿2

𝜀 + Δ𝜀

𝜀

(ballistic case)

(diffusive case)

𝜀Th

𝐿

after length 𝐿,  if Δ𝜀 = 𝜀Th

𝜑 = 𝜑𝑖 +
𝜀 + Δ𝜀

𝜔

ℏ
ฐ2𝜋𝑡

𝜏

𝑡 =
𝐿

𝑣F

𝑡 =
𝐿2

𝐷

𝜑 = 𝜑𝑖 +
𝜀

ℏ
2𝜋𝑡

Δ𝜑 = 2𝜋



Chapter 2/RG   - 20www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI
II.1.5 Transport Regimes

macroscopic sample mesoscopic sample

diffusive: 𝐿,𝑊 ≫ ℓ ballistic: 𝐿,𝑊 < ℓ

quasi-ballistic: 𝑊 < ℓ

incoherent: 𝐿 ≫ 𝐿𝜑 coherent: 𝐿 < 𝐿𝜑

− @ 300 K: ℓ ∼ 10 nm due to e-ph scattering
− @ at low 𝑇: ℓ is limited by impurity and e-e scattering→ sample quality matters
− 𝐿𝜑 is limited by inelastic processes: e-ph and e-e scattering:

strong 𝑇 dependence: 𝐿𝜑increases with decreasing T

𝐿𝜑 ≈ 1 𝜇𝑚 @ 1K
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II.2 Description of Electron Transport by Scattering of Waves

Ψ 𝐫, 𝑡 wave function

|Ψ 𝐫, 𝑡 |2 probability to find electron at position 𝐫 at time 𝑡

𝑉 normalization volume

𝐤 wave vector

𝐩 = ℏ𝐤 momentum

𝜀 𝐤 =
ℏ2𝑘2

2𝑚
energy

II.2.1 Electron Waves and Waveguides (true only in vacuum)

Ψ 𝐫, 𝑡 =
1

𝑉
exp 𝚤𝐤 ⋅ 𝐫 −

𝚤

ℏ
𝜀 𝐤 𝑡
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II.2.1    Electron Waves and Waveguides

→ Pauli principle (state either occupied by single electron or empty)

→ density of states in 𝑘-space:  2
𝑉

2𝜋 3 (factor 2 due to spin)

→ fraction of filled states: 𝑓(𝐤, 𝑇)

− important quantities:

− 𝑓 determined by statistics:
Fermi statistics
for electrons

• electrons as fermions:

density
energy density
current density

=

𝜌
𝜀
𝐉
= 2න

d3𝑘

2𝜋 3

1
𝜀(𝐤)

𝑒𝐯 𝐤
𝑓(𝐤)

𝑓 𝐤, 𝑇 = exp
𝜀 𝐤 − 𝜇

𝑘B𝑇
+ 1
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II.2.1    Electron Waves and Waveguides

− example: 1D free motion of charge carriers, e.g. in 𝑥-direction with confinement in 𝑦, 𝑧-direction

Source: Handouts Nazarov, TU Delft

mode index 𝑛,𝑚 standing wave
plane wave

Ψ𝑘𝑥,𝑛,𝑚 𝒓, 𝑡 = 𝜙𝑛,𝑚 𝑦, 𝑧 exp[𝑖 𝑘𝑥𝑥 − 𝜔𝑡 ] 𝜀𝑛,𝑚 𝑘𝑥 =
ℏ2𝑘𝑥

2

2𝑚⋆ + 𝜀𝑛,𝑚 𝜀𝑛,𝑚 =
𝜋2ℏ2

2𝑚⋆

𝑛𝑦
2

𝑎2
+
𝑚𝑧
2

𝑏2

𝜺𝐅

𝜀
/

𝜋
2
ℏ
2

2
𝑚
⋆
𝑎
2

𝜋𝑘𝑥/𝑎

• ballistic conductor as waveguide
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II.2.1    Electron Waves and Waveguides

II

III

I
4 unknown variables:

𝑨, 𝑩, 𝒓, 𝒕
𝒕: transmission amplitude
𝒓: reflection amplitude

4 equations
(wave function matching

at interfaces)

𝑑

en
er

g
y

𝑈0
𝑡𝑟

1

I II III

𝑥

𝜀

𝜀𝑛,𝑚 𝑘𝑥 =
ℏ2𝑘𝑥

2

2𝑚⋆
+ 𝜀𝑛,𝑚 0

𝜀𝑛,𝑚 𝑘𝑥 − 𝑈0 =
ℏ2𝜅2

2𝑚⋆

Ψ 𝑥 = 1 ⋅ exp 𝑖𝑘𝑥𝑥 + 𝑟 ⋅ exp −𝑖𝑘𝑥𝑥

Ψ 𝑥 = 𝐴 ⋅ exp 𝑖𝜅𝑥 + 𝐵 ⋅ exp −𝑖𝜅𝑥

Ψ 𝑥 = 𝑡 ⋅ exp 𝑖𝑘𝑥𝑥

• wave guide with potential barrier
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II.2.1    Electron Waves and Waveguides

for 𝜿𝒅 ≫ 𝟏:
sinh2(𝜅𝑑) = exp 𝜅𝑑 − exp −𝜅𝑑 2

≃ exp 2𝜅𝑑

• wave guide with potential barrier  → example: rectangular barrier

thick
barrier

thin
barrier

𝜺 / 𝑼𝟎

𝑻
classical

result

𝟐𝒎𝑼𝟎

𝒅

ℏ
=

transmission probability/coefficient:

𝑇 𝜀 ≡ 𝑡2 =
1

1 +
𝑘𝑥
2 − 𝜅2

2𝑘𝑥𝜅

2

sinh2 𝜅𝑑
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WMI
II.2.1    Electron Waves and Waveguides

𝑑

− total reflection at boundary
(barrier with infinite thickness)

• quantum tunneling through a thin potential barrier 

− partial reflection/tunneling 
at barrier of finite thickness

𝑅 = 1 𝑇 = 0

𝑅 < 1 𝑇 > 0
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WMI
II.2.1    Electron Waves and Waveguides

− in regions 1 and 3:

• quantum tunneling through a thin potential barrier: a rectangular  barrier

region 1 region 2 region 3

Ψ 𝑥 = 1 ⋅ exp 𝑖𝑘𝑥𝑥

Ψ 𝑥 = 𝑟 ⋅ exp −𝑖𝑘𝑥𝑥

Ψ 𝑥 = 𝑡 ⋅ exp 𝑖𝑘𝑥𝑥Ψ 𝑥 = 𝐴 ⋅ exp 𝑖𝜅𝑥

Ψ 𝑥 = 𝐵 ⋅ exp 𝑖𝜅𝑥

𝑈0
𝜀

𝜀 = 0
−𝑑/2 +𝑑/20 𝑥

− in region 2:

−
ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
= 𝜀 Ψ 𝑥 𝑘𝑥

2 =
2𝑚𝜀

ℏ2

−
ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
= 𝜀 − 𝑈0 Ψ 𝑥 𝜅2 =

2𝑚 𝜀 − 𝑈0
ℏ2
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WMI
II.2.1    Electron Waves and Waveguides

𝑑

en
er

g
y

𝑈0 𝑡𝑟

1

I II III

𝑥

𝜀

• quantum tunneling through a thin potential barrier: a rectangular  barrier

𝑇 𝜀 ≡ 𝑡2 =
1

1 +
𝑘𝑥
2 − 𝜅2

2𝑘𝑥𝜅

2

sinh2 𝜅𝑑

𝑇 𝜀 ≡ 𝑡2 =
1

1 +
𝑈0
2

4𝜀 𝑈0 − 𝜀
sinh2 𝜅𝑑

for 𝜿𝒅 ≫ 𝟏:
sinh2(𝜅𝑑) = exp 𝜅𝑑 − exp −𝜅𝑑 2 ≃ exp 2𝜅𝑑

𝑇 𝜀 ≡ 𝑡2 =
1

1 +
𝑈0
2

4𝜀 𝑈0 − 𝜀
exp 2𝜅𝑑
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WMI
II.2.1    Electron Waves and Waveguides

→ transport channels + potential barrier

re
se

rv
o

ir

re
se

rv
o

ir

Tn

scattering region

ideal waveguides

sufficient to describe transport !!

examples:
(i) adiabatic quantum transport
(ii) quantum point contact

− description of transport by a set of transmission coefficients 𝑻𝒏

• modelling of nanostructures as complex waveguides
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WMI
II.2.1    Electron Waves and Waveguides

− example: adiabatic quantum transport→ constriction as a potential barrier

𝑎 = 𝑐𝑜𝑛𝑠𝑡

𝑎 = 𝑎(𝑥)

𝑦

𝑥

3 open channels
𝑇 = 1

𝒙

𝜺
𝒏
,𝒎
(𝒙
)

𝜺

closed channels
𝑇 = 0

adiabatic waveguide:
variation of dimensions occurs on length scale large 
compared to width
→ waveguide walls can be assumed parallel locally

𝜀𝑛,𝑚(𝑘𝑥 , 𝑥) =
ℏ2𝑘𝑥

2

2𝑚⋆
+
𝜋2ℏ2

2𝑚⋆

𝑛𝑦
2

𝑎2(𝑥)
+

𝑚𝑧
2

𝑏2(𝑥)

• modelling of nanostructures as complex waveguides
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WMI
II.2.1    Electron Waves and Waveguides

− example: adiabatic quantum transport→ constriction as a potential barrier

𝑎 = 𝑎(𝑥)

𝑦

𝑥

• modelling of nanostructures as complex waveguides

𝑉 𝑥 ∝
𝜋2ℏ2

2𝑚⋆𝑎2 𝑥

𝜀F

𝑥

𝑑

𝑉 𝑥

− parabolic approximation of potential step 𝑉 𝑥 ≃ −
1

2
𝑚Ω2 𝑥2

𝑇 𝜀F =
1

exp −
2𝜋𝜀F
ℏΩ

+ 1
transmission probability:

E.C. Kemble, 1935

𝜀𝑛,𝑚(𝑘𝑥 , 𝑥) =
ℏ2𝑘𝑥

2

2𝑚⋆
+
𝜋2ℏ2

2𝑚⋆

𝑛𝑦
2

𝑎2(𝑥)
+

𝑚𝑧
2

𝑏2(𝑥)

=𝑉 𝑥
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WMI
II.2.1    Electron Waves and Waveguides

− example: quantum point contact

le
ft

 r
e

se
rv

o
ir

ri
gh

t
re

se
rv

o
ir

𝜀

𝝁𝒍
𝝁𝒓

closed

open

𝑓0 1

𝑓 01

net current:

𝐼 = 𝐼𝑙 − 𝐼𝑟
spin

quantized
conductance !!

𝒆𝑽

• modelling of nanostructures as complex waveguides

𝐼𝑙 = 𝑇
2

2𝜋
න𝑑𝑘𝑥 𝑒𝑣𝑥 𝑓𝑙 𝑘𝑥

𝐼𝑟 = 𝑇
2

2𝜋
න𝑑𝑘𝑥 𝑒𝑣𝑥 𝑓𝑟 𝑘𝑥

𝑣𝑥 =
1

ℏ

𝜕𝜀

𝜕𝑘𝑥

𝐼 =
2𝑒

2𝜋ℏ
෍

open ch

නd𝜀 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀

=𝜇𝑙−𝜇𝑟

=
2𝑒

2𝜋ℏ
𝑁open 𝜇𝑙 − 𝜇𝑟

=𝑒𝑉

= 2
ด

𝑒2

ℎ
=𝐺𝑄

𝑁open 𝑉

open channel: 𝑇 = 1
closed channel: 𝑇 = 0
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WMI

𝐺𝑐
−1 =

ℎ

𝑒2
1

2𝑁open
= 𝐺𝑄

−1
1

2𝑁open

II.2.1    Electron Waves and Waveguides

• what is the meaning of the quantity

quantum resistance
25 812.807 𝛀 = 1 Klitzing

number of available modes

➢ for ballistic transport and reflectionless contacts (𝑇 = 1) there should not be any resistance!

➢ where does the resistance come from ?

→ contact resistance from the interface between the ballistic conductor and the contact pads

→ resistance is denoted as contact resistance

➢ 𝐺𝑄 determined by fundamental constants, does not depend on materials properties,   
geometry or size of nanostructure

𝐺 =
𝐼

𝑉
= 2

𝑒2

ℎ
𝑁open = 2 𝐺𝑄 𝑁open
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WMI
II.2.1    Electron Waves and Waveguides

+𝒌 states (quasi Fermi level)

ballistic conductor reservoirreservoir

k

E
E

E

k

k

𝒙

−𝒌 states
average value: „quasi“ Fermi level

➔ voltage drop at interfaces (contact resistance) !!

𝝁𝒍

𝝁𝒓

𝝁𝒍

𝝁𝒓
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WMI
II.2.1    Electron Waves and Waveguides

K.J. Thomas et al., Phys. Rev. B 58, 4846 (1998)

increasing gate voltage
narrows channel
→ reduction of 𝑁open

2DEG

first experiment by
Van Wees et al., Phys. Rev. Lett. 60, 848 (1988) 

𝑇 = 0.6 K

• quantum point contact: experimental results
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WMI
II.2.1    Electron Waves and Waveguides

conduction through a single atom !

(Elke Scheer, Univ. Konstanz)
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WMI
II.2.2    Landauer Formalism

• considered examples have been too simple: 𝑻 only 1 (open) or 0 (closed)

• more complicated situation: ideal sample + scattering sites

transmission probability
of the different modes

will no longer be only 0 or 1
➔

„dusty waveguide“

𝟎 ≤ 𝑻 ≤ 𝟏

• 𝑇 represents the average probability that an electron injected at one end will be 
transmitted to the other end

• treatment of the situation by a scattering matrix
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WMI
II.2.2    Landauer Formalism

𝒓𝟏𝟐

𝒓𝟐𝟐

𝒓𝟑𝟐

1
𝒕𝟏𝟐

𝒕𝟐𝟐

𝒕𝟑𝟐𝑵𝒍 𝑵𝒓

𝑵𝒍+ 𝑵𝒓 incoming amplitudes 𝒂𝒍, 𝒂𝒓

𝑵𝒍+ 𝑵𝒓 outgoing amplitudes 𝒃𝒍, 𝒃𝒓

scattering region
left
reservoir

right
reservoir

scattering matrixscattering matrix

𝑵𝒍 × 𝑵𝒍 reflection matrix ො𝒓 𝑵𝒍 × 𝑵𝒓 transmission matrix ො𝒕

𝐛𝑙
𝐛𝑟

=
Ƹ𝑠𝑙𝑙 Ƹ𝑠𝑙𝑟
Ƹ𝑠𝑟𝑙 Ƹ𝑠𝑟𝑟

𝐚𝑙
𝐚𝑟

= Ƹ𝑟 Ƹ𝑡′

Ƹ𝑡 Ƹ𝑟′
𝐚𝑙
𝐚𝑟

𝐛 = ො𝒔 𝐚

➔ relates amplitudes of outgoing waves with those of incoming waves

transfer matrix ෡𝑴:

𝐛𝑟
𝐚𝑟

= ෡𝑀
𝐚𝑙
𝐛𝑙

=
Ƹ𝑡 − Ƹ𝑟′ Ƹ𝑡′

−1
Ƹ𝑟 Ƹ𝑟′ Ƹ𝑡′

−1

− Ƹ𝑡′
−1

Ƹ𝑟′ Ƹ𝑡′
−1

𝐚𝑙
𝐛𝑙

relates amplitudes of waves right 
of the scatterer with those left of 
the scatterer
➔ “transfers” states across 

the scatterer
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WMI
II.2.2    Landauer Formalism

− for given time reversal symmetry: symmetric matrix

− electrons do not disappear:

unitary matrix

𝑅𝑛 = Ƹ𝑟† Ƹ𝑟
𝑛𝑛

𝑇𝑛 = 𝑡† Ƹ𝑡
𝑛𝑛

conjugate transpose of Ƹ𝑠

• properties of the scattering matrix

Ƹ𝑡𝑇 = Ƹ𝑡′ Ƹ𝑠𝑇 = Ƹ𝑠

෍

𝑛′

𝑟𝑛𝑛′
2

𝑅𝑛

+෍

𝑚

𝑡𝑚𝑛
2

𝑇𝑛=1−𝑅𝑛

= Ƹ𝑠† Ƹ𝑠
𝑛𝑛

= 1

Ƹ𝑠† Ƹ𝑠 = ෠1

Ƹ𝑠 = Ƹ𝑟 Ƹ𝑡′

Ƹ𝑡 Ƹ𝑟′
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WMI
II.2.2    Landauer Formalism

r t

1 0 0 1

r´t´

one channel scatterer

𝑅 = 𝑟 2 = 1 − 𝑡 2 = 1 − 𝑇

− example:

𝑟, 𝑡, 𝑟′, 𝑡′ are complex numbers
condition of unitarity

→ only three independent parameters

follows from condition of unitarity

• properties of the scattering matrix

𝐛𝑙
𝐛𝑟

=
𝑟 𝑡′

𝑡 𝑟′
𝐚𝑙
𝐚𝑟

Ƹ𝑠 =
𝑟 𝑡′

𝑡 𝑟′
=

𝑅 e𝚤𝜃 𝑇 e𝚤𝜂

𝑇 e𝚤𝜂 − 𝑅 e𝚤 2𝜂−𝜃

− the phases 𝜃 and 𝜂 do not manisfest themselves in transport across a single scatterer
➔ lead to quantum interference effects in multi-scatterer configurations
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WMI
II.2.2    Landauer Formalism

Ƹ𝑟⋆ Ƹ𝑡′
⋆

Ƹ𝑡⋆ Ƹ𝑟′
⋆ ⋅ Ƹ𝑟 Ƹ𝑡

Ƹ𝑡′ Ƹ𝑟′
=

𝑟 2 + 𝑡′ 2
=1

𝑟⋆𝑡 + 𝑡′⋆𝑟′
=0

𝑡⋆𝑟 + 𝑟′
⋆
𝑡′

=0

𝑡 2 + 𝑟′ 2

=1

= ෠1

𝑟⋆𝑡 + 𝑡′
⋆
𝑟′ = 0

𝑅𝑒−𝑖𝜃 𝑇e𝑖𝜂 − 𝑇e−𝑖𝜂 𝑅e𝑖 2𝜂−𝜃 =

𝑇 𝑅e−𝑖 𝜃−𝜂 − 𝑇 𝑅 e−𝑖 𝜃−𝜂 = 0 !!

𝑡⋆𝑟 + 𝑟′
⋆
𝑡′ = 0

𝑇 e−𝑖𝜂 ⋅ 𝑅 e𝑖𝜃 − 𝑅 e−𝑖 2𝜂−𝜃 ⋅ 𝑇e𝑖𝜂 =

𝑇 𝑅 e𝑖 𝜃−𝜂 − 𝑇 𝑅 e𝑖 𝜃−𝜂 = 0 !!

(i)

(ii)

• properties of the scattering matrix: condition of unitarity: መ𝑆† መ𝑆 = ෠1

Ƹ𝑠 =
𝑟 𝑡′

𝑡 𝑟′
=

𝑅 e𝚤𝜃 𝑇 e𝚤𝜂

𝑇 e𝚤𝜂 − 𝑅 e𝚤 2𝜂−𝜃
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WMI

− expression for the current:

II.2.2    Landauer Formalism

• description of transport properties by scattering matrix

𝐼 = 2 𝑒 ෍

𝑛

෍

𝑘𝑥

𝑣𝑥 𝑘𝑥 𝑓𝑛 𝑘𝑥 = 2𝑒෍

𝑛

න

∞

∞
𝑑𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 𝑓𝑛 𝑘𝑥

spin

sum over transport channels
ocuppation
probability

𝑎 = 𝑎(𝑥)

− occupation probabilities for right- and left-moving electrons (for current in the left waveguide):

i. 𝑘𝑥 > 0: 𝑓𝑙(𝜀) (electrons moving to the right)

ii. 𝑘𝑥 < 0: 𝑅𝑛𝑓𝑙 𝜀 + 1 − 𝑅𝑛 𝑓𝑟(𝜀) (electrons moving to the left)

𝐼 = 2𝑒෍

𝑛

න

0

∞
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 𝑓𝑙 𝜀 + න

−∞

0
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 𝑅𝑛𝑓𝑙 𝜀 + 1 − 𝑅𝑛 𝑓𝑟(𝜀)

𝐼 = 2𝑒෍

𝑛

න

0

∞
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 1 − 𝑅𝑛 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀 ณ=
d𝑘𝑥=d𝜀/ℏ𝑣𝑥

2𝑒

2𝜋ℏ
න

0

∞

d𝜀 Tr 𝑡† Ƹ𝑡 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀

1 − 𝑅𝑛 =෍

𝑚

𝑡𝑚𝑛
2 = 𝑇𝑛 = 𝑡† Ƹ𝑡

𝑛𝑛

෍

𝑛

𝑡† Ƹ𝑡
𝑛𝑛

= Tr 𝑡† Ƹ𝑡
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𝜎 = 2𝑒2𝑁 𝜀F 𝐷 ⇔ 𝐺 = 2
𝑒2

ℎ
𝑁 𝑇

− Tr 𝑡† Ƹ𝑡 can be represented by sum of ‚transmission‘ eigenvalues 𝑇𝑝 of Hermitian matrix Ƹ𝑡† Ƹ𝑡 (for each energy 𝜀)

this gives just the number of
open channels, if 𝑇𝑝 is either 0 or 1

Landauer
fomula

Rolf Wilhelm (William) Landauer
born 4. February 1927 in Stuttgart
† 27. April 1999 in Briarcliff Manor, N.Y.

− expression for the current:

Landauer formula → ‘mesoscopic version’ of Einstein relation

𝐼 =
2𝑒

2𝜋ℏ
෍

𝑝

නd𝜀 𝑇𝑝 𝜀 ⋅ 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀 = 2𝐺𝑄෍

𝑝

𝑇𝑝 ⋅ 𝑉

II.2.2    Landauer Formalism

• description of transport properties by scattering matrix

Einstein relation ↔ Landauer formula

single
spin DOS

diffusion 
constant

number 
of modes

transmission
probability

can usually assumed to be
independent of 𝜀
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II.2.2    Landauer Formalism

− consider a conductor with a single conduction channel

− reservoir biased at 𝑉 sends out the following number of electrons:

− the chance to pass is 𝑇0, then the passed charge is just 𝑄 𝑡 = 𝑒𝑇0𝑁 𝑡

− the average current is charge per time: 𝐼 =
𝑄

𝑡
= 2

𝑒2

ℎ
𝑇0 𝑉

− many channels: just sum up to obtain

emission frequency

𝐼 = 2𝐺𝑄෍

𝑝

𝑇𝑝 𝑉

• description of transport properties by scattering matrix: plausibility consideration

𝑁 𝑡 = 𝑍 𝑘 Δk
number

⋅
1

ℏ

Δ𝜀

Δ𝑘
velocity

⋅ ณ𝑡
time

=
ฎ2

spin

2𝜋
Δ𝑘 ⋅

𝑒𝑉

ℏΔ𝑘
⋅ 𝑡 =

2𝑒𝑉

ℎ
⋅ 𝑡
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II.2.2    Landauer Formalism

• description of transport properties by scattering matrix: limitations and restrictions

− restrictions:

→ only elastic scattering (electrons pass the conductor at constant energy)
→ no interactions between electrons

− limitations:

→ low temperatures and low voltages
→ short conductors (shorter then inelastic scattering length)
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II.2.3    Multi-terminal Conductors

− so far discussion of two-terminal systems, extension to multi-terminal conductors?

V1

V2

V3

I2
I1

I3

reservoir
ideal

conductor

gate

scattering 
region

how to express currents in terms of voltages using the Landauer formalism ?

• Landauer formalism: multi-terminal conductors
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− properties of conduction matrix:

→ current conservation (Kirchhoff‘s law):

→ no current, if potential is shifted by the same amount in all leads

• Landauer formalism: multi-terminal conductors

V1

V2

V3

I2

I1

I3

4

− conduction matrix 𝐺𝑘𝑙

𝐼𝑘 =෍

𝑙

𝐺𝑘𝑙 𝑉𝑙

෍

𝑘=1

𝑛

𝐼𝑘 = 0 ⇒ ෍

𝑘=1

𝑛

𝐺𝑘𝑙 = 0

෍

𝑙=1

𝑛

𝐺𝑘𝑙 = 0

II.2.3    Multi-terminal Conductors

𝐼1
⋮
𝐼𝑛

=
𝐺11 ⋯ 𝐺1𝑛
⋮ ⋱ ⋮

𝐺𝑛1 ⋯ 𝐺𝑛𝑛

𝑉1
⋮
𝑉𝑛

sum of conduction 
coefficients in each 
column must be zero

sum of conduction 
coefficients in each 
row must be zero

− consequence of the sum rules: currents 𝐼𝑘 voltage differences  
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• Landauer formalism: multi-terminal conductors

− simplest case: two-terminal conductor

− the conduction matrix only has a single independent element:

V1 V2

I1 I2

𝐼1
𝐼2

=
−𝐺 𝐺
𝐺 −𝐺

𝑉1
𝑉2

𝑮

II.2.3    Multi-terminal Conductors

𝐼1 = 𝐺 𝑉2 − 𝑉1

𝐼2 = 𝐺 𝑉1 − 𝑉2
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• Landauer formalism: multi-terminal conductors

− scattering matrix for multi-terminal conductors

− number of modes: 𝑁 = 𝑁1+𝑁2+ 𝑁3+⋯
→ scattering matrix is 𝑁 × 𝑁 matrix

− meaning of 𝑠𝛽𝑚,𝛼𝑛:  𝑏𝛽𝑚 = 𝑠𝛽𝑚,𝛼𝑛 𝑎𝛼𝑛
→ propagation amplitude

from terminal 𝛼, transport channel 𝑛, 
to the terminal 𝛽, transport channel 𝑚

− transmission probability
from lead 𝛼 to 𝛽:

− reflection probability
from lead 𝛼 into 𝛼:

𝒔𝟏𝟏, 𝟏𝟐
𝒔𝟏𝟐, 𝟏𝟐
𝒔𝟏𝟑, 𝟏𝟐

1𝑵𝟏

II.2.3    Multi-terminal Conductors

𝑵𝟑

𝑵𝟐

𝑅𝛼 = ෍

𝑛=1

𝑁𝛼

෍

𝑚=1

𝑁𝛼

𝑠𝛼𝑛,𝛼𝑚
2

𝑇𝛼𝛽 = ෍

𝑛=1

𝑁𝛼

෍

𝑚=1

𝑁𝛽

𝑠𝛼𝑛,𝛽𝑚
2

𝑅𝛼 + ෍

𝛽,𝛽≠𝛼

𝑇𝛼𝛽 = 𝑁𝛼

# of transport channels
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• Landauer formalism: multi-terminal conductors

− properties of scattering matrix:

→ reflection back into same lead 𝛼: 𝑠𝛼𝑛,𝛼𝑚

→ transmission from lead 𝛽 to lead 𝛼: 𝑠𝛼𝑛,𝛽𝑚

(unitary matrix)

II.2.3    Multi-terminal Conductors

Ƹ𝑠† Ƹ𝑠 = ෠1

෍

𝛼𝑛

𝑠𝛼𝑛,𝛾𝑙
∗ 𝑠𝛼𝑛,𝛽𝑚 = 𝛿𝛾𝛽𝛿𝑙𝑚

𝑠𝛼𝑛,𝛽𝑚 𝐁 = 𝑠𝛽𝑚,𝛼𝑛 −𝐁

− time reversibility relation
➢ we know: if Ψ 𝐫, 𝐁 solves Schrödinger equation then also Ψ∗ 𝐫, −𝐁
➢ application to asymptotic scattering states: taking complex conjugate of scattering state 𝑏, then the incoming

state 𝑎 becomes the complex conjugate of 𝑏∗➔ corresponds to reversal of time direction

− current conservation requires

𝑏 = 𝑠 𝐁 𝑎 ⇒ 𝑏∗ = 𝑠∗ 𝐁 𝑎∗

𝑎∗ = 𝑠 −𝐁 𝑏∗ ⇒ 𝑠−1 −𝐁 𝑎∗ = 𝑠−1 −𝐁 𝑠 −𝐁 𝑏∗ ⇒ 𝑠−1 −𝐁 𝑎∗ = 𝑏∗
⇒ 𝑠−1 −𝐁 = 𝑠∗ 𝐁 = 𝑠† 𝐁

due to unitarity
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𝛽 = 1 𝛽 = 2 ෍ =

𝛼 = 1
𝛼 = 2

𝑅1 𝑇12
𝑇21 𝑅2

𝑁1
𝑁2

෍= 𝑁1 𝑁2

• Landauer formalism: multi-terminal conductors

− sum rules:

transmission function is reciprocal !
→ time reversal symmetry

II.2.3    Multi-terminal Conductors

𝑅𝛼 = ෍

𝑛=1

𝑁𝛼

෍

𝑚=1

𝑁𝛼

𝑠𝛼𝑛,𝛼𝑚
2

𝑇𝛼𝛽 = ෍

𝑛=1

𝑁𝛼

෍

𝑚=1

𝑁𝛽

𝑠𝛼𝑛,𝛽𝑚
2

𝑅𝛼 + ෍

𝛽,𝛽≠𝛼

𝑇𝛼𝛽 = 𝑁𝛼 # of transport channels in lead 𝛼

𝑅𝛽 + ෍

𝛼,𝛼≠𝛽

𝑇𝛽𝛼 = 𝑁𝛽 # of transport channels in lead 𝛽

− example: two-terminal conductor

𝑅1 + 𝑇12 = 𝑅1 + 𝑇21 ⇒ 𝑇12 = 𝑇21
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• Landauer formalism: multi-terminal conductors

− multi-terminal expression of Landauer formula relates currents to voltages via a scattering matrix (cf. page 42)

II.2.3    Multi-terminal Conductors

𝐼𝛼 = 2𝑒෍

𝑛

න

0

∞
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 𝑓𝛼 𝜀 + න

−∞

0
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 ෍

𝛽𝑚

𝑠𝛼𝑛,𝛽𝑚
2
𝑓𝛽(𝜀)

𝐼𝛼 = 2𝑒෍

𝑛

න

0

∞
d𝑘𝑥
2𝜋

𝑣𝑥 𝑘𝑥 ෍

𝛽𝑚

𝑠𝛼𝑛,𝛽𝑚
2
− 𝛿𝛼𝛽𝛿𝑚𝑛 𝑓𝛽 𝜀 ณ=

d𝑘𝑥=d𝜀/ℏ𝑣𝑥
ถ

2𝑒

2𝜋ℏ
=𝐺𝑄/𝑒

න

0

∞

d𝜀 ෍

𝛽𝑚𝑛

𝑠𝛼𝑛,𝛽𝑚
2
− 𝛿𝛼𝛽𝛿𝑚𝑛 𝑓𝛽 𝜀

𝐼𝛼 = −
𝐺𝑄
𝑒
න

0

∞

d𝜀෍

𝛽

Tr 𝛿𝛼𝛽𝛿𝑚𝑛 − Ƹ𝑠𝛼𝛽
† Ƹ𝑠𝛼𝛽 𝑓𝛽 𝜀

- trace includes all possible transport channels

− probability for transmission from 𝛼 to 𝛽: 

− we apply voltage 𝑉𝛾 to terminal 𝛾 and keep all other at 𝜀F ➔ the only surviving term in σ𝛽 is the one for

𝛽 = 𝛾 and the integral yields 𝑒𝑉𝛾

- if all 𝑓𝛽 ε are the same, e.g. in thermal equilibrium and no voltages

applied, then σ𝛽 = 0 (current conservation, follows from unitarity )

𝐼𝛼 = −
𝐺𝑄
𝑒
Tr 𝛿𝛼𝛾𝛿𝑚𝑛 − Ƹ𝑠𝛼𝛾

† Ƹ𝑠𝛼𝛾 𝑒𝑉𝛾 = 𝐺𝛼𝛾 𝑉𝛾 𝐺𝛼𝛾 = −𝐺𝑄 Tr 𝛿𝛼𝛾𝛿𝑚𝑛 − Ƹ𝑠𝛼𝛾
† Ƹ𝑠𝛼𝛾

multi-terminal 
Landauer formula
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• Summary: Landauer formalism: multi-terminal conductors

− linear transport regime:

− relation to two-terminal expression: 𝛼, 𝛾 = 𝑙, 𝑟

− time reversal symmetry:

this is in agreement with Onsager symmetry relations !

II.2.3    Multi-terminal Conductors

𝐺𝛼𝛾 = −𝐺𝑄 Tr 𝛿𝛼𝛾𝛿𝑚𝑛 − Ƹ𝑠𝛼𝛾
† Ƹ𝑠𝛼𝛾

𝐺𝑙𝑟 = 𝐺𝑄 Tr Ƹ𝑠𝑙𝑟
† Ƹ𝑠𝑙𝑟 = 𝐺𝑄Tr 𝑡† Ƹ𝑡

𝐺𝛼𝛾 𝐁 = 𝐺𝛾𝛼 −𝐁
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• Landauer formalism: multi-terminal conductors

− example: three-terminal scattering element

1

2

3

fully symmetric ideal beam splitter

II.2.3    Multi-terminal Conductors

Ƹ𝑠BS =
1

3

1 + 2e𝚤𝜑 1 − e𝚤𝜑 1 − e𝚤𝜑

1 − e𝚤𝜑 1 + 2e𝚤𝜑 1 − e𝚤𝜑

1 − e𝚤𝜑 1 − e𝚤𝜑 1 + 2e𝚤𝜑

1 + 2e𝚤𝜑 /3scattering matrix for fully symmetric beam splitter: 

diagonal elements: 𝑅 = 1 + 2e𝚤𝜑 2 = 5 + 4 cos𝜑 /9

𝑅 = 1 for 𝜑 = 0 (total reflection)

𝑅 = 1/3 for 𝜑 = 𝜋 (equal division)
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• Landauer formalism: multi-terminal conductors

− example: three-terminal scattering element T-type symmetric ideal beam splitter

II.2.3    Multi-terminal Conductors

Ƹ𝑠BS =

−sin2
𝜑

2
cos2

𝜑

2
sin

𝜑

2

cos2
𝜑

2
− sin2

𝜑

2
sin

𝜑

2

sin
𝜑

2
sin

𝜑

2
−cos𝜑

scattering matrix: 

conductance matrix:
(for 𝜑 = 𝜋/2)

example: 𝐼3 = 𝐺𝑄𝑉, 𝐼1 = 𝐼2 = −𝐺𝑄𝑉/2

for 𝜑 = 𝜋/2:

sin 𝜑/ 2

sin𝜑/ 2

−
co
s
𝜑

Ƹ𝑠BS =

−1/2 1/2 1/ 2

1/2 −1/2 1/ 2

1/ 2 1/ 2 0

𝐺𝛼𝛽 = 𝐺𝑄

−3/4 1/4 1/2
1/4 −3/4 1/2
1/2 1/2 1

1 2

3

𝑉

0 01 2

3
𝐺𝛼𝛽 = −𝐺𝑄 Tr 𝛿𝛼𝛽𝛿𝑚𝑛 − Ƹ𝑠𝛼𝛽

† Ƹ𝑠𝛼𝛽
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II.2.4    Statistics of Charge Transport

• Landauer formalism: counting electrons

− electron transfer is stochastic process

➔measured number of electrons transferred in time interval 𝜟𝒕 is random

− important aspects:

i. averaging allows to get rid of fluctuations of individual measurements

ii. study of statistics provides additional information on transport through nanostructure

time

𝑃
𝑁

𝑁

⟨𝑁⟩

⟨ 𝑁 − 𝑁 2⟩

− probability 𝑃𝑁 to count 𝑁 electrons: ෍

𝑁

𝑃𝑁 = 1

𝑁 =෍

𝑁

𝑁 𝑃𝑁

𝑁 − 𝑁 2 =෍

𝑁

𝑁2 𝑃𝑁 − ෍

𝑁

𝑁 𝑃𝑁

2

normalization of distribution

average number (1st cumulant)

variance (2nd cumulant)

measurement 1 measurement 2 measurement 3 measurement 4 time
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𝑘th cumulant: differentiate expansion 𝑘-times with
respect to 𝑡 and evaluate result at 𝑡 = 0

𝜅𝑛 =
𝜕𝑛

𝜕𝑡𝑛
ቚ𝐾𝑁 𝑡
𝑡=0

example: 1st cumulant
𝜕

𝜕𝑡
ቚ𝐾𝑁 𝑡
𝑡=0

= ቚ𝜅1 + 𝜅2
2𝑡 + ⋯

𝑡=0
ณ=
𝑡=0

𝜅1 = 𝑁

(Fourier transform of the probability density function)

II.2.4    Statistics of Charge Transport

• cumulant generation function of random variable 𝑵

𝐻 𝑡 = ln e𝚤𝑡𝑁 = ෍

𝑛=1

∞

𝜅𝑛
𝚤𝑡 𝑛

𝑛!
= 𝜅1 𝚤𝑡 − 𝜅2

2
𝑡2

2
+⋯

• characteristic function of random variable 𝑵

𝐾𝑁 𝑡 = ln e𝑡𝑁 = ෍

𝑛=1

∞

𝜅𝑛
𝑡𝑛

𝑛!
= 𝜅1 𝑡 + 𝜅2

2
𝑡2

2
+ ⋯

𝜅1 = 𝜇 = 𝑁 average value

𝜅2
2 = 𝜎2 = 𝑁 − 𝑁 2 variance

e𝚤𝑡𝑁 =෍

𝑁

𝑃𝑁 e
𝚤𝑡𝑁

(Fourier transform of the probability density function)

𝜅1 = 𝜇 = 𝑁 average value

𝜅2 = 𝜎2 = 𝑁 − 𝑁 2 variance

e𝚤𝑡𝑁 =෍

𝑁

𝑃𝑁 e
𝚤𝑡𝑁

𝑘th cumulant: differentiate expansion 𝑘-times with
respect to 𝚤𝑡 and evaluate result at 𝑡 = 0

𝜅𝑛 =
1

𝚤𝑛
𝜕𝑛

𝜕𝑡𝑛
ቚ𝐻𝑁 𝑡
𝑡=0

example: 1st cumulant
1

𝚤

𝜕

𝜕𝑡
ቚ𝐻𝑁 𝑡
𝑡=0

= ቚ𝜅1 + 𝚤𝜅2
2𝑡 + ⋯

𝑡=0
ณ=
𝑡=0

𝜅1 = 𝑁



Chapter 2/RG   - 60www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI

• characteristic function (1)

− use of characteristic function 𝐻𝑁 𝑡 = ln e𝚤𝑡𝑁 = ln෍

𝑁

𝑃𝑁 e
𝚤𝑡𝑁

− application to statistics of electron transfer: 

➢ we assume large measurement time Δ𝑡 so that 𝑄 = 𝐼 Δ𝑡 ≫ 𝑒

➢ we divide Δ𝑡 into very small intervals d𝑡 so that 𝑄 = 𝐼 d𝑡 ≪ 𝑒
➔ probability to transfer one electron within d𝑡: 𝚪 𝐝𝒕 ≪ 𝟏 (𝚪 = transfer rate)
➔ probability to transfer no electron within d𝑡: 1 − Γ d𝑡

➢ we assume that all electrons move in the same direction

➢ we neglect probability to transfer two (or more) electrons within d𝑡 (𝒪(Γd𝑡)2))

e𝚤𝑡𝑁 𝑁,d𝑡 = σ𝑁 𝑃𝑁 e
𝚤𝑡𝑁 = 1 − Γ d𝑡

𝑁=0

+ Γ d𝑡 e𝚤𝑡

𝑁=1

+⋯ = 1 + Γ d𝑡 e𝚤𝑡 − 1
≪1

+⋯ ≃ exp Γ d𝑡 e𝚤𝑡 − 1

e𝚤𝑡𝑁 𝑁,Δ𝑡 ณ=
independent events

Π𝑁,d𝑡 𝑡
Δ𝑡/d𝑡

= exp Γ d𝑡 e𝚤𝑡 − 1 Δ𝑡/d𝑡 = exp ถΓ Δ𝑡
=ഥ𝑁

e𝚤𝑡 − 1 = exp ഥ𝑁 e𝚤𝑡 − 1

𝑃𝑁 = න

0

2𝜋
d𝑡

2𝜋
e𝚤𝑡𝑁 𝑁,Δ𝑡 e

−𝚤𝑁𝑡 ≃ න

0

2𝜋
d𝑡

2𝜋
e ഥ𝑁 e𝚤𝑡−1 e−𝚤𝑁𝑡 =

ഥ𝑁𝑁

𝑁!
e−ഥ𝑁Δ𝑡

Poisson distribution

( e𝚤𝑡𝑁 = Fourier transform of the probability density function)

individual transfer processes are not 
correlated since Γ d𝑡 ≪ 1

II.2.4    Statistics of Charge Transport
𝑘th cumulant: differentiate expansion 𝑘-times with
respect to 𝚤𝑡 and evaluate result at 𝑡 = 0

𝜅𝑛 =
1

𝚤𝑛
𝜕𝑛

𝜕𝑡𝑛
ቚ𝐻𝑁 𝑡
𝑡=0

example: 1st cumulant
1

𝚤

𝜕

𝜕𝑡
ቚ𝐻𝑁 𝑡
𝑡=0

= ቚ𝜅1 + 𝚤𝜅2
2𝑡 + ⋯

𝑡=0
ณ=
𝑡=0

𝜅1 = 𝑁
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− opposite example: ideally transmitting channel
➢ since there is no scattering, the total momentum of all electrons does not change➔ current does not fluctuate

𝑃𝑁 = 𝛿 𝑁 − ഥ𝑁 ⇒ e𝚤𝑡𝑁 =෍

𝑁

𝑃𝑁 e
𝚤𝑡𝑁 = e𝚤𝑡 𝑁−ഥ𝑁

− intermediate case: 0 < 𝑇𝑝 < 1:

ln e𝚤𝑡𝑁 = 2 Δ𝑡 න
d𝜀

2𝜋ℏ
෍

𝑝

ln 1 + 𝑇𝑝 e𝚤𝑡 − 1 𝑓𝑙 𝜀 1 − 𝑓𝑟 𝜀 + 𝑇𝑝 e−𝚤𝑡 − 1 𝑓𝑟 𝜀 1 − 𝑓𝑙 𝜀

➢ the transfer processes from left to right and vice versa are correlated
➢ for 𝑓𝑙 𝜀 = 𝑓𝑟 𝜀 = 1, the total current is zero
➔ if there are no correlations, there would be current fluctuations
➔ electrons moving left are blocked by electrons filling the state and vice versa

➢ the transmitted electrons are correlated, but not fully

➢ characteristic function is given by Levitov formula

− limiting case: 𝑘B𝑇 ≪ 𝑒𝑉: integral over energy gives 𝑒𝑉

note:

ln e𝚤𝑡𝑁 = ±
2𝑒𝑉Δ𝑡

2𝜋ℏ
෍

𝑝

ln 1 + 𝑇𝑝 e±𝚤𝑡 − 1 ± for different sign of voltage

II.2.4    Statistics of Charge Transport

• characteristic function (2)

L. S. Levitov and G. B. Lesovik, 
JETP Lett. 58, 230 (1993)
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• calculation of cumulants

II.2.4    Statistics of Charge Transport

ln e𝚤𝑡𝑁 = 2 Δ𝑡 න
d𝜀

2𝜋ℏ
෍

𝑝

ln 1 + 𝑇𝑝 e𝚤𝑡 − 1 𝑓𝑙 𝜀 1 − 𝑓𝑟 𝜀 + 𝑇𝑝 e−𝚤𝑡 − 1 𝑓𝑟 𝜀 1 − 𝑓𝑙 𝜀

− starting point is Levitov formula

− 1st cumulant: 𝑁 = อ
𝜕 ln e𝚤𝑡𝑁

𝜕 𝚤𝑡
𝑡=0

=
2𝑒𝑉Δ𝑡

2𝜋ℏ
෍

𝑝

නd𝜀 𝑇𝑝 𝜀 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀

𝐼 = 𝑒
𝑁

Δ𝑡
=
2𝑒𝑉

2𝜋ℏ
෍

𝑝

නd𝜀 𝑇𝑝 𝜀 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀 Landauer fomula

− 2nd cumulant: 𝑁 − 𝑁 2 = อ
𝜕2 ln e𝚤𝑡𝑁

𝜕 𝚤𝑡 2

𝑡=0

𝑁 − 𝑁 2 =
2𝑒Δ𝑡

2𝜋ℏ
෍

𝑝

නd𝜀 𝑇𝑝 𝜀 𝑓𝑙 𝜀 1 − 𝑓𝑙 𝜀 + 𝑓𝑟 𝜀 1 − 𝑓𝑟 𝜀 + 𝑇𝑝 𝜀 1 − 𝑇𝑝 𝜀 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀
2

Case 1: equilibrium: 𝑉 = 0 𝑓𝑙 𝜀 = 𝑓𝑟 𝜀 :
𝑄 − 𝑄 2

eq =
2𝑒2Δ𝑡

2𝜋ℏ
=2𝐺𝑄Δ𝑡

𝑘B𝑇෍

𝑝

𝑇𝑝

=1

= 2𝐺𝑄𝑘B𝑇Δ𝑡
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• Nyquist-Johnson noise

II.2.4    Statistics of Charge Transport

𝑄 − 𝑄 2
eq = 2𝐺𝑄𝑘B𝑇Δ𝑡− interpretation of result

𝐴𝐶𝐼 𝜏 = 𝐼 𝑡 መ𝐼∗ 𝑡 + 𝜏

= lim
Δ𝑡→∞

න

−Δ𝑡

+Δ𝑡

d𝑡 𝐼 𝑡 መ𝐼∗ 𝑡 + 𝜏

Nyquist-Johnson noise

➢ if Δ𝑡 is large enough, variance of the transmitted charge can be interpreted as zero-frequency current noise

with Δ𝐼 = Δ𝑄/Δ𝑡 we obtain the current fluctuation Δ𝐼2 = 𝑄 − 𝑄 2
eq/Δ𝑡

2 = 2𝐺𝑄𝑘B𝑇/Δ𝑡

➢ with the current noise power spectral density 𝑆𝐼(0) = Δ𝐼22Δ𝑡 =
Δ𝐼2

BW
, we obtain

𝑆𝐼(0) = 4𝐺𝑄𝑘B𝑇

− Wiener–Khinchin theorem: relates the autocorrelation function 𝐴𝐶𝐼(𝜏) to the power spectral density 𝑆𝐼(𝜔)

𝐴𝐶𝐼 𝜏 =
1

2𝜋
න

−∞

∞

𝑆𝐼 𝜔 e𝚤𝜔𝜏 d𝑓 𝑆𝐼 𝜔 = න

−∞

∞

𝐴𝐶𝐼 𝜏 e−𝚤𝜔𝜏 d𝜏

𝜏

𝑆 𝜔 = 2 න

−∞

∞

d𝜏 e−𝚤𝜔𝜏 𝐼 𝑡 𝐼 𝑡 + 𝜏
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• shot noise

II.2.4    Statistics of Charge Transport

𝑁 − 𝑁 2 =
2𝑒Δ𝑡

2𝜋ℏ
෍

𝑝

නd𝜀 𝑇𝑝 𝜀 𝑓𝑙 𝜀 1 − 𝑓𝑙 𝜀 + 𝑓𝑟 𝜀 1 − 𝑓𝑟 𝜀 + 𝑇𝑝 𝜀 1 − 𝑇𝑝 𝜀 𝑓𝑙 𝜀 − 𝑓𝑟 𝜀
2

Case 2: e𝑉 ≫ 𝑘B𝑇➔ only 2nd term on rhs survises (we assume 𝑇𝑝 𝜀 = 𝑐𝑜𝑛𝑠𝑡.) 

𝑄 − 𝑄 2
e𝑉≫𝑘B𝑇 = 4𝑒𝐺𝑄𝑉Δ𝑡෍

𝑝

𝑇𝑝 1 − 𝑇𝑝

with 𝑆𝐼 = 𝑄 − 𝑄 2
eq/Δ𝑡

2

𝑆𝐼(𝜔) = 4𝑒𝐺𝑄𝑉෍

𝑝

𝑇𝑝 1 − 𝑇𝑝

with 𝐼 = 2𝐺𝑄𝑉σ𝑝 𝑇𝑝

𝑆𝐼 𝜔 = 2𝑒 𝐼
σ𝑝 𝑇𝑝 1 − 𝑇𝑝

σ𝑝 𝑇𝑝

Fano factor
𝟎 ≤ 𝑭 ≤ 𝟏
takes into account correlations in the transmission processes

Schottky expression
𝐹 = 1

no correlations in transmission: Poisson process

ideal quantum point contact:
only open (𝑇𝑝 = 1) or closed (𝑇𝑝 = 0) channels

➔ no shot noise !
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Contents Part II: Quantum Transport in Nanostructures

Contents:

II.4 From Quantum Mechanics to Ohm‘s Law

II.5 Coulomb Blockade

II.1 Introduction
II.1.1 General Remarks
II.1.2 Mesoscopic Systems
II.1.3 Characteristic Length Scales
II.1.4 Characteristic Energy Scales
II.1.5 Transport Regimes

II.2 Description of Electron Transport by
Scattering of Waves
II.2.1 Electron Waves and Waveguides
II.2.2 Landauer Formalism
II.2.3 Multi-terminal Conductors
II.2.4 Statistics of Charge Transport

II.3 Quantum Interference Effects
II.3.1 Double Slit Experiment
II.3.2 Two Barriers – Resonant Tunneling
II.3.3 Aharonov-Bohm Effect
II.3.4 Weak Localization
II.3.5 Universal Conductance Fluctuations
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II.3    Quantum Interference Effects

charge carriers are phase coherent if 𝐿𝜑 > 𝐿

• low temperatures (→ 𝐿𝜑 gets large), nanoscale samples (L gets small)

➢ interference of multiply scattered charge carriers

➢ corrections to the classical conductance

• macroscopic and mesoscopic samples: 

weak localization (WL)

• mesoscopic samples: 

Aharonov-Bohm (AB) oscillations

Universal Conductance Fluctuations (UCFs)
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• effect of quantum coherence: transmission through double slit 

II.3.1    Double Slit Experiment

A B

1

2

− basic quantum mechanics: double slit experiment

− probability of propagation from point A to point B:

classical
result

interference term:
quantum mechanical

𝑃AB = 𝐴1 + 𝐴2
2 = 𝐴1

2

=𝑃1

+ 𝐴2
2

=𝑃2

+ 𝐴1𝐴2
∗ + 𝐴1

∗𝐴2
2Re 𝐴1𝐴2

∗
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• effect of quantum coherence: transmission through double slit 

II.3.1    Double Slit Experiment

A B

1

2

interference terms may be 
destructive or constructive

→ depends on phase shift 𝜑

problem: 
calculate phase shift 𝜑 as a function of geometry, electric potential, magnetic field, …

𝑃AB = 𝑃classical + 2 𝑃1𝑃2 cos𝜑

𝑃AB = 2𝑃 + 2𝑃 cos𝜑 = 2𝑃 1 + cos𝜑𝑃1 = 𝑃2:
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• phase shifts

II.3.1    Double Slit Experiment

− geometric phase:

definition: geometric phase = phase difference acquired when a system is subjected to cyclic adiabatic 
processes, which results from the geometrical properties of the parameter space of the Hamiltonian
➔ geometric phase occurs when system parameters are changed very slowly (adiabatically), 

and eventually brought back to the initial configuration

example: in quantum mechanics, this could involve rotations but also translations of particles, 
which are apparently undone at the end 

important:
one might expect that the waves in the system return to the initial state (characterized by amplitude and phase). However, if the parameter 
excursions correspond to a loop instead of a self-retracing back-and-forth variation, then it is possible that the initial and final states differ in their 
phases. This phase difference is the geometric phase, and its occurrence typically indicates that the system’s parameter dependence is singular (its 
state is undefined) for some combination of parameters. 

𝛾𝑚(𝑡) = 𝚤 න

𝑡0,Γ

𝑡

𝑚[𝐑 𝑡 ] 𝛁𝐑 𝑚[𝐑 𝑡 ]
𝐀𝑚(𝐑)

Mead−Berry Vector Potential

⋅ d𝐑

− we consider eigenstate 𝜓 𝑡0 = ⟩|𝑚[𝐑 𝑡0 ] with energy 𝜀𝑚 𝑡0 and change system parameter 𝐑 adiabatically along path Γ

geometric phase or Berry phase
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• phase shifts

II.3.1    Double Slit Experiment

− dynamical phase (phase shift due to energy or potential):

local wave vector at position 𝑥

𝜓 𝑥 = exp 𝚤𝜑 𝑥 = exp 𝚤𝑘 𝑥 𝑥
d𝜑

d𝑥
= 𝑘 𝑥 = 2𝑚 𝜀 − 𝑉 𝑥 /ℏ

we consider wave function of electron in semi-classical approximation

Δ𝜑 = න

𝐴

𝐵
d𝜑

d𝑥
d𝑥 = න

𝐴

𝐵

𝑘 𝑥 d𝑥 = 𝜑 𝐵 − 𝜑 𝐴 ณ=
𝑉 𝑥 =𝑐𝑜𝑛𝑠𝑡

𝑘𝐿

(i) 𝑉 𝑥 = 𝑐𝑜𝑛𝑠𝑡.

time of flight between points
𝐴 and 𝐵 at energy 𝜀

usually, absolute value of phase is
not interesting, but the relative 
phase shift between different paths

d𝜑

d𝑘
=

d

d𝑘
∫
d𝜑

d𝑥
d𝑥 =

d

d𝑘
∫ 𝑘 d𝑥 = ∫ d𝑥

d𝜑

d𝜀
=
d𝜑

d𝑘 ด

d𝑘

d𝜀

𝑣=
1
ℏ
d𝜀
d𝑘

=
d𝜑

d𝑘

1

ℏ𝑣(𝑥)
= න

𝐴

𝐵
d𝑥

ℏ𝑣 𝑥
= න

𝑡𝐴

𝑡𝐵
d𝑡

ℏ
=
𝜏

ℏ

(ii) 𝑉 𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡.

depends on the state’s energy and 
the time it takes the system to 
propagate from 𝐴 to 𝐵

Δ𝜑 =
d𝜑

d𝜀
Δ𝜀 = න

𝐴

𝐵

𝜀 𝑥
d𝑥

ℏ𝑣 𝑥
= න

𝑡𝐴

𝑡𝐵

𝜀 𝑥 𝑡
d𝑡

ℏ
ณ=

𝑉(𝑥)=𝑐𝑜𝑛𝑠𝑡

𝜀

ℏ
𝜏
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WMI
II.3.1    Double Slit Experiment

➢ canonical momentum:  𝐩 = 𝑚𝐯 + 𝑞𝐀

➢ gauge invariant quantity is the phase accumulated along a closed path (electron returns to the same point):

A B

1

2

F

(in superconductors we have 𝑞𝑠 = −2𝑒
and therefore Φ0 = ℎ/2𝑒)

results in phase shift 𝜑mag due to vector potential 𝐀 𝑥

• phase shifts

− Aharonov-Bohm phase (charged particle in magnetic field)

𝐤 𝑥 → 𝐤 𝑥 −
𝑞

ℏ
𝐀 𝑥

𝜑mag =
𝑒

ℏ
න

𝐴

𝐵

𝐀 ⋅ d𝐱 =
𝑒

ℏ
න

𝑡𝐴

𝑡𝐵

𝐀 ⋅ 𝐯 𝑡 d𝑡 (𝑞 = −𝑒)
opposite phase shift for time-
reversed path

note: 𝜑mag depends on gauge 𝐀 → 𝐀 + 𝛁𝜒(𝑥) and is therefore unphysical and not observable

𝜑AB =
𝑒

ℏ
ර𝐀 ⋅ d𝐱 ณ=

Stokes
theorem

𝑒

ℏ
න𝐁 ⋅ d𝐅 = 2𝜋

Φ

Φ0

Φ0 =
ℎ

𝑒
(„normal“ flux quantum)

phase difference Δ𝜑 = 𝜑1 − 𝜑2 between 1 and 2 corresponds to 𝜑AB due to opposite sign of phase shift on time-reversed path

Aharonov-Bohm phase
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WMI

• quantum interference effect in double tunnel junction

II.3.2    Double Tunnel Junction

1

𝑟tot

𝑡tot

− „classical“ expectation:

(tunneling) resistances are added

multiplication of transmission probabilities 𝑇L ∙ 𝑇R

L R

− we consider only a single conductance channel
− no magnetic field

− what is the role of quantum interference?

− how do individual scattering matrices have to be combined?

Ohm‘s law:

𝑹𝟏 𝑹𝟐

𝑅 = 𝑅1 + 𝑅2

𝐺 =
𝐺1𝐺2
𝐺1 + 𝐺2

?
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WMI
II.3.2    Double Tunnel Junction

1

L R

𝑎 𝑐

𝑏 𝑑

scattering matrix

of left barrier

scattering matrix

of right barrier
propagation

between

barriers

s

acquired phase

during propagation

between barriers𝑟tot

𝑡tot

𝝋 = 𝒌 ⋅ 𝒔

Ƹ𝑟𝐿 Ƹ𝑡𝐿
′

Ƹ𝑡𝐿 Ƹ𝑟𝐿
′

Ƹ𝑟𝑅 Ƹ𝑡𝑅
′

Ƹ𝑡𝑅 Ƹ𝑟𝑅
′

e𝑖𝜑 0
0 e𝑖𝜑

• quantum interference effect in double tunnel junction
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WMI
II.3.2    Double Tunnel Junction

1

L R

s

𝑟tot

𝑡tot

• quantum interference effect in double tunnel junction

𝑎 𝑎e𝑖𝜑

𝑑e𝑖𝜑 𝑑

outgoing modes incoming modes outgoing modes incoming modes

𝑟tot
𝑎0

=
Ƹ𝑟𝐿 Ƹ𝑡𝐿

′

Ƹ𝑡𝐿 Ƹ𝑟𝐿
′

1
𝑑e𝑖𝜑

𝑑
𝑡tot0

=
Ƹ𝑟𝑅 Ƹ𝑡𝑅

′

Ƹ𝑡𝑅 Ƹ𝑟𝑅
′

𝑎e𝑖𝜑

0
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WMI
II.3.2    Double Tunnel Junction

process amplitude probability

… … …
sum of all amplitudes: sum of all probabilities:

coherent incoherent

𝑇tot = 𝑡tot
2

path can be viewed
as Feynman path

• quantum interference effect in double tunnel junction

𝑡𝐿𝑡𝑅e
𝚤𝜑 𝑇𝐿𝑇𝑅

𝑡𝐿𝑡𝑅𝑟𝐿
′𝑟𝑅e

𝚤3𝜑 𝑇𝐿𝑇𝑅𝑅𝐿𝑅𝑅

𝑡tot =
𝑡𝐿𝑡𝑅

1 − 𝑟𝐿
′𝑟𝑅e

𝚤2𝜑 𝑇classical =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅

𝑇tot = 𝑡tot
2 =

𝑇𝐿𝑇𝑅

1 + 𝑅𝐿𝑅𝑅 − 2 𝑅𝐿𝑅𝑅 cos 𝜒

for 𝑇𝐿,𝑅 ≪ 1:

𝐺class = 𝐺𝑄𝑇class =
𝐺𝐿𝐺𝑅

𝐺𝑄 1 − 1 − 𝑇𝐿 1 − 𝑇𝑅

𝐺class ≃
𝐺𝐿𝐺𝑅

𝐺𝑄 𝑇𝐿 + 𝑇𝑅
=

𝐺𝐿𝐺𝑅
𝐺𝐿 + 𝐺𝑅
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WMI
II.3.2    Double Tunnel Junction

1

L R

s

𝑟tot

𝑡tot

• quantum interference effect in double tunnel junction

𝑎 𝑎e𝑖𝜑

𝑑e𝑖𝜑 𝑑
𝑡tot =

𝑡𝐿𝑡𝑅
1 − 𝑟𝐿

′𝑟𝑅e
𝚤2𝜑

𝑇tot(𝜀) = 𝑡tot
2 =

𝑇𝐿𝑇𝑅

1 + 𝑅𝐿𝑅𝑅 − 2 𝑅𝐿𝑅𝑅 cos 𝜒 𝜀

phase accumulated
during the round trip

𝜒 𝜀 = 2𝜑 𝜀 = 2𝑘 𝜀 𝑠

𝑘 𝜀 =
2𝑚𝜀

ℏ2
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WMI
II.3.2    Double Tunnel Junction

• quantum interference effect in double tunnel junction

− transmission coefficient depends on energy

assume 𝑇𝐿 = 𝑇𝑅 = 𝑇 ≪ 1, 
𝑅𝐿 = 𝑅𝑅 = 𝑅 ≃ 1

between peaks: 𝑇 𝜀 ≈ 𝑇2

maximum value: 𝑇max =
𝑇𝐿𝑇𝑅

1− 𝑅𝐿𝑅𝑅
2 ≃ 1 @ 𝜒 = 𝑛 ⋅ 2𝜋

maximum value: 𝑇min =
𝑇𝐿𝑇𝑅

1+ 𝑅𝐿𝑅𝑅
2 ≪ 1 @ 𝜒 = 𝑛 +

1

2
⋅ 2𝜋

➔ resonant tunneling
(or Fabry-Perot resonances)

→ double barrier structure behaves as an optical interferometer
→ resonant tunneling is quantum interference effect

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

 

T

 / 2

T = 0.5

T = 0.1

𝑇tot(𝜀) = 𝑡tot
2 =

𝑇𝐿𝑇𝑅

1 + 𝑅𝐿𝑅𝑅 − 2 𝑅𝐿𝑅𝑅 cos 2𝑘 𝜀 𝑠
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WMI
II.3.2    Double Tunnel Junction

• quantum interference effect in double tunnel junction

− how does the transmission 𝑇(𝜀) look like close to the transmission resonances?

𝐷 = level spacing in 
potential well of width s

− after some math:

transmission assumes Lorentzian shape

➢ interpretation in terms of a particle that moves back and forth between the two potential  wells and 
escapes at a certain tunneling rates Γ𝐿 and Γ𝑅

➢ with 𝑑 = ℏ(Γ𝐿 + Γ𝑅) according to uncertainty relation we obtain well-known Breit-Wigner formula

energy width of transmission resonance: 𝑑 = 𝐷 𝑇𝐿 + 𝑇𝑅

𝐷

𝑠

cos𝜒 = cos 2𝑘𝑠 ≃ 1 −
1

2
2𝑘𝑠 2 for 𝜒 ≪ 1

2𝑘𝑠 2 =
8𝑚𝑠2 𝜀 − 𝜀res

ℏ2
=
𝜀 − 𝜀res

𝐷cos𝜒 ≃ 1 −
𝜀 − 𝜀res
2𝐷

𝑇(𝜀) =
𝑇𝐿𝑇𝑅

𝑇𝐿 + 𝑇𝑅
2

2

+
𝜀 − 𝜀res

𝐷

2

𝑇(𝜀) =
𝐷2 𝑇𝐿𝑇𝑅

𝐷(𝑇𝐿 + 𝑇𝑅)
2

2

+ 𝜀 − 𝜀res
2
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WMI

• quantum interference effects in multiply connected conductors, e.g. rings

II.3.3    Aharonov-Bohm Effect

two trajectories enclosing
magnetic flux

accumulated phase
with vector potential:

all quantities are periodic in 𝚽/𝚽𝟎 , 

even if there is NO magnetic field at 

the trajectories!

− phase shift due to magnetic field

Φ

𝐤 𝑥 → 𝐤 𝑥 −
𝑞

ℏ
𝐀 𝑥

𝜑1,2 = 𝑘𝐿1,2 +
𝑒

ℏ
න

1,2

𝐀 ⋅ d𝐱 (𝑞 = −𝑒)

𝜑2 − 𝜑1 = 𝑘(𝐿2 − 𝐿1) +
𝑒

ℏ
ර𝐀 ⋅ d𝐱

𝜑AB =
𝑒

ℏ
ර𝐀 ⋅ d𝐱 ณ=

Stokes
theorem

𝑒

ℏ
න𝐁 ⋅ d𝐅 = 2𝜋

Φ

Φ0

(in superconductors we have 𝑞𝑠 = −2𝑒
and therefore Φ0 = ℎ/2𝑒)

Φ0 =
ℎ

𝑒
(„normal“ flux quantum)
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WMI

e𝚤 𝜒1+𝜑mag,1

e𝚤 𝜒1−𝜑mag,1

• description of Aharonov-Bohm ring by two beam splitters and loop

II.3.3    Aharonov-Bohm Effect

𝚽1

r

t

𝑏1

𝑎1

𝑐1

𝑑1

𝑏2

𝑎2

𝑐2

𝑑2

𝑟
𝑏1
𝑑1

=

0 1/ 2 1/ 2

1/ 2 −1/2 1/2

1/ 2 1/2 −1/2

1
𝑎1
𝑐1

left beam splitter

𝑡
𝑏2
𝑑2

=

0 1/ 2 1/ 2

1/ 2 −1/2 1/2

1/ 2 1/2 −1/2

0
𝑎2
𝑐2

0

right beam splitter

upper arm (1) lower arm (2)

0 e𝚤 𝜒1+𝜑mag,1

e𝚤 𝜒1−𝜑mag,1 0

0 e𝚤 𝜒2−𝜑mag,2

e𝚤 𝜒2+𝜑mag,2 0

dynamical phase:
𝜒1,2 = 𝑘𝐿1,2

magnetic phase:

𝜑mag,1 + 𝜑mag,2 = 𝜑AB = 2𝜋
Φ

Φ0

e𝚤 𝜒2+𝜑mag,2

e𝚤 𝜒2−𝜑mag,2
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WMI

• description of Aharonov-Bohm ring by two beam splitters and loop

II.3.3    Aharonov-Bohm Effect

➢ example 1: electron enters from left, takes lower path and goes out to the right: 

𝑡1 =
1

2
e𝚤 𝜒2+𝜑mag,2

1

2
=
1

2
e𝚤 𝜒2+𝜑mag,2

➢ example 2: electron enters from left, takes upper path and goes out to the right: 

𝑡2 =
1

2
e𝚤 𝜒1−𝜑mag,1

1

2
=
1

2
e𝚤 𝜒1−𝜑mag,1

➔ phase difference in two paths:  𝜒2 − 𝜒1 + 𝜑mag,2 + 𝜑mag,1 = 𝜒2 − 𝜒1 + 𝜑AB (depends on dynamical phases 𝜒2, 𝜒1)
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WMI

• description of Aharonov-Bohm ring by two beam splitters and loop

II.3.3    Aharonov-Bohm Effect

➢ example 3: electron takes upper path + full clockwise turn: 

𝑡3 =
1

2
e𝚤 𝜒1−𝜑mag,1

1

2
e𝚤 𝜒2−𝜑mag,2

1

2
e𝚤 𝜒1−𝜑mag,1

1

2
=
1

8
e𝚤 2𝜒1+𝜒2−2𝜑mag,1−𝜑mag,2

➢ example 4: electron takes upper path + full counter-clockwise turn (time-reversed path): 

𝑡4 =
1

2
e𝚤 𝜒1−𝜑mag,1 −

1

2
e𝚤 𝜒1+𝜑mag,1

1

2
e𝚤 𝜒2+𝜑mag,2

1

2
= −

1

8
e𝚤 2𝜒1+𝜒2+𝜑mag,2

➔ phase difference in two paths:  2𝜑mag,2 + 2𝜑mag,1 = 2𝜑AB (independent of dynamical phases 𝜒2, 𝜒1)
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WMI
II.3.3    Aharonov-Bohm Effect

• description of Aharonov-Bohm ring by two beam splitters and loop

𝑃AB = 𝑃classical + 2 𝑃1𝑃2 cos Δ𝜑

Δ𝜑 = 𝜒2 − 𝜒1 + 𝜑AB Δ𝜑 = 2𝜑AB

𝑃AB ∝ cos 𝜒2 − 𝜒1 + 𝜑AB 𝑃AB ∝ cos 2𝜑AB

A B

universal conductance fluctuations Altshuler-Aronov-Spivak oscillations

𝑃AB depends on dynamical phases
→ configuration of scattering sites matters
→ removed by ensemble averaging
→ cos 2𝜋 Φ/Φ0 : flux period Φ0 = ℎ/𝑒

𝑃AB independent of dynamical phases
→ configuration of scattering sites does not matter
→ survives ensemble averaging
→ cos 4𝜋 Φ/Φ0 : flux period Φ0/2 = ℎ/2𝑒

𝜒1,2 = 𝑘𝐿1,2

𝜑mag,1 + 𝜑mag,2 = 𝜑AB = 2𝜋
Φ

Φ0

+ many other trajectories



Chapter 2/RG   - 84www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI
II.3.3    Aharonov-Bohm Effect

• description of Aharonov-Bohm ring by two beam splitters and loop

− summing up (without closed loops):

+ + +  ….

𝜒1 = 𝜒2 = 𝜒 = 𝑘𝐿1,2 = 𝑘𝐿
𝜑mag,1 = 𝜑mag,2 = 𝜑mag

𝜑mag,1 + 𝜑mag,2 = 𝜑AB = 2𝜋
Φ

Φ0

Aharonov-Bohm effect: flux dependent transmission 𝜑AB

𝑇

𝑇 =
1 − cos 2𝜒 1 + cos2𝜑AB

sin2 2𝜒 + cos 2𝜒 −
1
2 1 + cos𝜑AB

2

2𝜒 =
𝜋

4
⇒ 𝑇 =

1 + cos2𝜑AB

1 +
1
4 1 − cos𝜑AB

2
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WMI

• description of Aharonov-Bohm ring by two beam splitters and loop

➢ example 5: electron takes full clockwise turn: 

𝑟3 =
1

2
e𝚤 𝜒1−𝜑mag,1

1

2
e𝚤 𝜒2−𝜑mag,2

1

2
=
1

4
e𝚤 𝜒1+𝜒2−𝜑mag,1−𝜑mag,2

➢ example 6: electron takes full counter-clockwise turn (time-reversed path): 

𝑟4 =
1

2
e𝚤 𝜒2+𝜑mag,2

1

2
e𝚤 𝜒1+𝜑mag,1

1

2
=
1

4
e𝚤 𝜒1+𝜒2+𝜑mag,1+𝜑mag,2

➔ phase difference in two paths:  2𝜑mag,2 + 2𝜑mag,1 = 2𝜑AB (indepent of dynamical phases 𝜒2, 𝜒1)

𝑃AA ∝ cosΔ𝜑 ∝ cos 4𝜋
Φ

Φ0

@ 𝐵 = 0: enhanced back-
scattering due to time-
reversed paths
➔ weak localization

A B

II.3.4    Weak Localization
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WMI

• Aharonov-Bohm effect: experiments

II.3.3    Aharonov-Bohm Effect

Aharonov-Bohm (AB) oscillations:

• period: Φ = Φ0 = ℎ/𝑒
• amplitude: 𝐺Q = 2𝑒2/ℎ

• one channel in Landauer model

Fourier analysis shows that there are 
also weak oscillations with half period

→ higher order interferences:
Altshuler-Aronov-Spivak (AAS) oscillations

• period: Φ = Φ0/2 = ℎ/2𝑒
• Interference of time-reversed traces
• constructive interference for 𝐵 = 0
• coherent backscattering

R. Webb et al, PRL 54, 2696 (1985)
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WMI

• Aharonov-Bohm effect: experiments

II.3.3    Aharonov-Bohm Effect

D.Y. Sharvin, Y.V. Sharvin, Sov. Phys. JETP Lett. 34, 272 (1981).

Aharonov–Bohm like magneto-conductance 
oscillations (Altshuler-Aronov-Spivak (AAS) 
oscillations) observed in normally conducting
Mg cylinders of diameter 1.5 µm. Left and right 
resistance scales correspond to samples 1 and 
2, respectively. The periodicity of the 
oscillations corresponds to ΔΦ = ℎ/2𝑒.

ΔΦ = ℎ/2𝑒
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II.3.3    Aharonov-Bohm Effect

• Aharonov-Bohm effect: experiments

Cu ring on Si, width 80 nm

F. Pierre et. al., PRL 89, 206804 (2002)

• conductance of a Cu ring in units of
𝐺Q = 𝑒2/ℎ, as a function of

magnetic field at 𝑇 = 100 mK. 
• narrow AB oscillations Δ𝐵 ≈ 2.5 mT

are superimposed on larger and 
broader universal conductance
fluctuations. 
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II.3.3    Aharonov-Bohm Effect

• Aharonov-Bohm effect: experiments

8.6 km
Benzene ring ring accelerator

Large Electron Positron Collider at CERN (Geneva)

0.5 nm

1013

AB effect: one flux quantum (h/e) through ring area:

ℎ/𝑒

𝜋𝑟2
= 5000 𝑇

ℎ/𝑒

𝜋𝑟2
= 7 × 10−23 𝑇



Superconductivity
and

Low Temperature 
Physics II

Lecture  No. 10
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II.3.4    Weak Localization

Weak localization:

interference of time reversed electron paths
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WMI

A1

A2

𝐀 = 𝐁

II.3.4    Weak Localization

• quantum interference of time-reversed trajectories

time-reversed trajectories:

we consider a closed loop with A = B

➔ the amplitude 𝐴2 is just a time reversal of 𝐴1

− the backscattering probability is enhanced by factor 2 for all time-reversed paths!!!

− this is a predecessor of localization

does averaging over many paths
destroy interference effects

in diffusive conductor ?
classical

result
interference term:

quantum mechanical

𝑃AB = 𝐴1 + 𝐴2
2 = 𝐴1

2

=𝑃1

+ 𝐴2
2

=𝑃2

+ 𝐴1𝐴2
∗ + 𝐴1

∗𝐴2
2Re 𝐴1𝐴2

∗

2 𝐴1𝐴2 cos Δ𝜑

cosΔ𝜑 = 0 !?

𝐴1 + 𝐴2
2 = 𝐴1 + 𝐴1

∗ 2 = 4 𝐴1
2

𝑩𝐞𝐱𝐭 = 𝟎
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II.3.4    Weak Localization

• quantum interference of time-reversed trajectories

− increased backscattering probability to original 

position makes self-intersecting scattering 

paths important

− interference effects make it more likely that a 

charge carrier is doing closed paths than 

without any interference

➔ increased net resistivity

− applied magnetic field reduces backscattering 

probability

➔ decrease of resistivity with increasing field
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II.3.4    Weak Localization

• magnetic field dependence of weak localization A1

A2

F

− loss of constructive interference due to additional 𝜑AB

Φ = 𝐵ext ⋅ 𝐹 = flux enclosed in the loop
𝐹 = area of the enclosed loop

− characteristic field defined by 𝜑mag,𝐴2 − 𝜑mag,𝐴1 = 2𝜋 (complete dephasing):

− calculate phase difference of time 

reversed paths:

𝜑mag,𝐴2 − 𝜑mag,𝐴1 =
2𝑒

ℎ
ර𝐀 ⋅ d𝐬 = 2𝜑AB

𝜑mag,𝐴2 − 𝜑mag,𝐴1 =
2𝑒

ℎ
ර𝐀 ⋅ d𝐬 = 2𝜑AB = 4𝜋

Φ

Φ0

𝐵∗ =
Φ0

2𝐹
=

Φ0

2𝜋𝐿𝜑
2 =

ℏ

2𝑒𝐿𝜑
2
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II.3.4    Weak Localization

• weak localization: important facts

− coherent backscattering: called the weak localization 
(the relative number of contributing closed loops is small)

− effect is important, since it is sensitive to weak magnetic fields:

➢ small fields: contributions of large rings oscillate rapidly, 
phase difference in small rings almost unchanged

➢ the larger the field, the fewer loops/rings contribute to constructive 
backscattering

➢ resistance drops to classical value for large fields, if phase shift in smallest 
rings is about 2

− weak localization has to be distinguished from strong localization 
(due to strong disorder)
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II.3.4    Weak Localization

weak localization
in SiGe 2-dimensional quantum well
with hole gas

− requirement: 

sample larger than elastic scattering length: 𝐿 > ℓ (diffusive transport) 

− observations:

➢ conductivity is reduced by ≈ 2𝑒2/ℎ for 𝐵ext = 0

➢ large 𝐵ext: Shubnikov de-Haas oscillations

V. Senz, Ph.D. Thesis, ETH Zürich (2002)

• weak localization: experiments
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II.3.4    Weak Localization

− as dependence of magnitude of WL on the coherence time is known to be 𝜏𝜑 ≃ 𝐿𝜑
2 /𝐷

➔ weak localization experiments can be used to determine 𝝉𝝋

Senz et al., PRB 61, 5082 (2000)

• weak localization: measurement of phase coherence time

𝐵∗ =
Φ0

2𝐹
=

Φ0

2𝜋𝐿𝜑
2 =

ℏ

2𝑒𝐿𝜑
2
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II.3.3    Aharonov-Bohm Effect

S. Pedersen, A.E. Hansen, A. Kristensen, C.B. Sørensen, P.E. Lindelof,
Aharonov–Bohm effect in GaAs/GaAlAs ring interferometers,
Materials Science and Engineering: B 74, 234-238 (2000)

GaAs ring

• weak localization: in combination with Aharonov-Bohm effect 
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II.3.5    Universal Conductance Fluctuations

Universal Conductance Fluctuations:
fluctuation of conductance due to different configuration of scatters

𝑃AB = ෍

𝑝

𝐴𝑝e
𝚤𝜒𝑝

2

=෍

𝑝

𝐴𝑝
2 + ෍

𝑝≠𝑝′

𝐴𝑝𝐴𝑝′e
𝚤 𝜒𝑝−𝜒𝑝′

phases 𝜒𝑝 depend on specific configuration of scatters

in each sample
➔ 𝑃AB and hence conductance is fingerprint of this

configuration
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WMI

𝑃AB = ෍

𝑝

𝐴𝑝e
𝚤𝜒𝑝

2

=෍

𝑝

𝐴𝑝
2 + ෍

𝑝≠𝑝′

𝐴𝑝𝐴𝑝′e
𝚤 𝜒𝑝−𝜒𝑝′

II.3.5    Universal Conductance Fluctuations

• experimental study of universal conductance fluctuations

− would require fabrication of many samples with different (random) configuration of scatters
− ergodicity theorem: same result is obtained for a single sample measured at different applied magnetic fields

-8 -6 -4 -2 0 2 4 6 8

-0.5

0.0

0.5

1.0

1.5

 200mK

 

 

 

B(T)


G

(e
2
/h

)   

 800mK

A

B

F

 random phase shifts
 position of scatters

becomes important

+𝜑mag



Chapter 2/RG   - 101www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI

• experimental observations and facts

II.3.5    Universal Conductance Fluctuations

− irregular conductance variations as a function of field (𝐵), carrier density (𝑛), and voltage (𝑉)

− conductance variations are symmetric with respect to 𝑩 (2 probe setup)

− different in each individual sample (”magnetic fingerprint”), fluctuations characterize impurity

configuration

− caused by quantum interference

− amplitude of conductance variations is of the order 𝒆𝟐/𝒉,  not noise

− theory based on ergodicity theorem

consider an ensemble of
macroscopically identical but 
microscopically different samples
(different configurations of scattering centers)

→ complicated calculation

variance of ensemble conductance:

𝐺 − 𝐺 2 =
𝑒4

ℎ2
෍

𝑚𝑛

𝑇𝑚𝑛 −෍

𝑚𝑛

𝑇𝑚𝑛

2

𝑇𝑚𝑛 = 𝑡𝑚𝑛
2
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WMI

• UCFs in Au wires

II.3.5    Universal Conductance Fluctuations

1 2 3 4 5 6 7
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

G
 -

 <
G

> 
 (

e2
/h

)

 

 

B (T)

50 nm

Au

Au 𝑳𝝓

ℓ ≫ 𝝀𝑭

(a) (b)

(c)
T = 20 mK

Walther-Meißner-Institut

red and blue curve taken at 
different days without warming up
the sample
➔ no noise effect !!
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II.3.5    Universal Conductance Fluctuations

H. Hegger,  Ph.D. Thesis, Universität zu  Köln (1997)

UCF in gold nanowire

𝐿 = 600 nm

𝑊 = 60 nm

UCF amplitude decreases with increasing 𝑇 as phase
coherence length becomes smaller than sample length

• UCFs in Au wires
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II.3.5    Universal Conductance Fluctuations

data from Heinzel (2003)

• UCFs in GaAs quantum wire



Chapter 2/RG   - 105www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI
Contents Part II: Quantum Transport in Nanostructures

Contents:

II.4 From Quantum Mechanics to Ohm‘s Law

II.5 Coulomb Blockade

II.1 Introduction
II.1.1 General Remarks
II.1.2 Mesoscopic Systems
II.1.3 Characteristic Length Scales
II.1.4 Characteristic Energy Scales
II.1.5 Transport Regimes

II.2 Description of Electron Transport by
Scattering of Waves
II.2.1 Electron Waves and Waveguides
II.2.2 Landauer Formalism
II.2.3 Multi-terminal Conductors
II.2.4 Statistics of Charge Transport

II.3 Quantum Interference Effects
II.3.1 Double Slit Experiment
II.3.2 Two Barriers – Resonant Tunneling
II.3.3 Aharonov-Bohm Effect
II.3.4 Weak Localization
II.3.5 Universal Conductance Fluctuations
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WMI
II.4    From Quantum Mechanics to Ohm‘s Law

• two different points of view:

➔ quantum transport
(electron waves, scattering/transfer matrix)

➔ classical transport
(electric currents, charged particles, friction due to scattering, Ohm‘s law)

What is the bridge between these limiting cases ??
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WMI

• consider two conductors with transmission probabilities 𝑻𝟏 and 𝑻𝟐 connected in series

II.4    From Quantum Mechanics to Ohm‘s Law

𝑻𝟏
𝑹𝟏

𝑻𝟐
𝑹𝟐

− what is the transmission probability 𝑇12 ?  

− problem: if we assume 𝑇12 = 𝑇1𝑇2 , then we do not take into account multiple reflections

→ to obtain the correct result we have to add the probabilities of multiply reflected paths

− if 𝑇12 = 𝑇1𝑇2 , then for a chain of scatterers we would expect the transmission probability to drop
exponentially with the length of the chain:

→ no Ohm‘s law

as 𝑒𝑥1 ⋅ 𝑒𝑥2 = 𝑒𝑥1+𝑥2𝑇 𝐿 = exp −𝐿/𝐿0



Chapter 2/RG   - 108www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

) 
 -

su
p

p
le

m
e

n
ta

ry
 m

at
e

ri
al

WMI

• two scatterers in series 

II.4    From Quantum Mechanics to Ohm‘s Law

..... .....

transmission
probabilities

+

+

+

incoherent processes

with 𝑇1 = 1 − 𝑅1 and 𝑇2 = 1–𝑅2 additive property

𝑇1𝑇2

𝑇1𝑇2𝑅1𝑅2

𝑇1𝑇2𝑅1
2𝑅2

2

𝑇12 =
𝑇1𝑇2

1 − 𝑅1𝑅2

1 − 𝑇12
𝑇12

=
1 − 𝑇1
𝑇1

+
1 − 𝑇2
𝑇2
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II.4    From Quantum Mechanics to Ohm‘s Law

− number of scatterers in conductor of length 𝐿 can be written as 𝑁 = 𝑛 𝐿, where 𝑛 is the linear density

• 𝑵 scatterers in series 

1 − 𝑇(𝑁)

𝑇(𝑁)
= 𝑁

1 − 𝑇

𝑇
𝑇(𝑁) =

𝑇

𝑁 1 − 𝑇 + 𝑇

𝑇(𝐿) =
𝐿0

𝐿 + 𝐿0
with 𝐿0 =

𝑇

𝑛 1 − 𝑇

linear density
of scatterers

scattering
probability

(for 𝑇 close to 1)

− 𝐿0 is of the order of the mean free path ℓ

ℓ =
1

𝑛 1 − 𝑇 ℓ =
1

𝑛 1 − 𝑇
≃

𝑇

𝑛 1 − 𝑇
= 𝐿0
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WMI

• quantum conductance for 𝑵 channels

II.4    From Quantum Mechanics to Ohm‘s Law

− wide conductor with 𝑀 ≈ 𝑘F𝑊/𝜋 modes:

or

resistance
obeying Ohm‘s law

length independent
interface resistance

− 2D density of tranverse modes: 

≈ diffusion constant 𝐷

≈ 𝜎 (Einstein relation)

− using 𝑇(𝐿) =
𝐿0

𝐿+𝐿0
yields:

𝐺 ≈ 2𝐺𝑄𝑀 𝑇 = 2
𝑒2

ℎ
𝑀 𝑇 ≈

𝑒2𝑊

𝜋
𝑇
2𝑘F
ℎ

𝑛2𝐷 =
1

2𝜋

2𝑚

ℏ2
𝑛2D𝑣F =

1

2𝜋

2𝑚

ℏ2
ℏ𝑘F
𝑚

=
2𝑘F
ℎ

𝐺 ≈
𝑒2𝑊

𝜋
𝑇
2𝑘F
ℎ

=
𝑒2𝑊

𝜋
𝑇 𝑛2D𝑣F

𝐺 ≈
𝑊

𝐿 + 𝐿0
𝑒2𝑛2D 𝑣F 𝐿0𝜋

𝐺 ≈
𝑊

𝐿 + 𝐿0
𝜎 𝑅 =

1

𝐺
≈
𝐿 + 𝐿0
𝑊

1

𝜎
=

𝐿

𝜎𝑊
+

𝐿0
𝜎𝑊
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WMI

• conclusions

II.4    From Quantum Mechanics to Ohm‘s Law

− Ohm‘s law is obtained from the expression for the quantum conductance

→ by summing up probabilities of multiply reflected paths

→ note that by summing up probabilities coherence effects are neglected
(of course these are not contained in Ohm‘s law, incoherent transport)

− sample size 𝐿 ≫ phase coherence length 𝐿𝜑: large phase shifts (also affected by disorder)

formally identical samples: - very different phase shifts, 
- but same ohmic resistance, since interference

effects average out for 𝐿 ≫ 𝐿𝜑

− 𝐿 < 𝐿𝜑: interference effects play important role

→ deviation from Ohm‘s law
→ different resistance for formally identical samples due to different 

impurity configurations
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• Where is the resistance ??

II.4    From Quantum Mechanics to Ohm‘s Law

− expression for quantum conductance:

→ scatterers give rise to resistance by reducing 𝑇

− example: waveguide with 𝑀 modes and a single scatterer

→ scatterer resistance determined by properties of scatterer via its transmissivity

„scatterer“ resistance„interface“ resistance

− remaining questions:
→ can we associate a resistance with the scatterer ?

→ what about the potential drop ? Does it occur across the scatterer ?

→ what about Joule heating ? Dissipation at the scatterer ?

𝐺 = 2
𝑒2

ℎ
𝑀 𝑇

1

𝐺
=

ℎ

2𝑒2
1

𝑀
+

ℎ

2𝑒2
1

𝑀

1 − 𝑇

𝑇
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• energy distribution of the electrons

II.4    From Quantum Mechanics to Ohm‘s Law

reservoirreservoir

µ1 µ2

T

1-T

µ1
EE

f

f +f

F´

far
left

near left

µ2 µ1
EE

f

f +f

F´´

far 
right

near right

µ2

• reservoirs:

• near left and right:

• far left and right:  

𝑓+ = 𝜗(µ1 − 𝐸) 𝑓− = 𝜗(µ2 − 𝐸)

𝑓+ = 𝜗(µ1 − 𝐸) + 𝑇 𝜗(µ1 − 𝐸) − 𝜗(µ2 − 𝐸)

𝑓− = 𝜗(µ2 − 𝐸) + (1 − 𝑇) 𝜗(µ1 − 𝐸) − 𝜗(µ2 − 𝐸)

partial filling
of states for
µ2 < E < µ1

𝑓+ = 𝜗(𝐹´ − 𝐸) 𝑓− = 𝜗(𝐹´´ − 𝐸)

𝐹´ = µ2 + (1 − 𝑇) µ1 − µ2 𝐹´´ = µ2 + 𝑇 µ1 − µ2

(follows from the conservation of the number of electrons)

(non-equilibrium)

(equilibrium)

step functions

µ2µ1
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• spatial variation of the electrochemical potential

II.4    From Quantum Mechanics to Ohm‘s Law

• left and right to the scatterer (after energy relaxation):

• close to scatterer (nonequilibrium distribution, F can be defined via the number of electrons)

𝐹+ = µ1 (left)

𝐹+ = µ2 + 𝑇 µ1 − µ2 (right)

𝐹− = µ2 + (1 − 𝑇) µ1 − µ2 (left)
𝐹− = µ2 (right)

µ𝟏 =
𝟏+k states

-k states µ𝟐 =
𝟎

𝑭1

1 − 𝑇

0

T

- drop of electrochemical potential across scatterer→ localized „scatterer“ resistance
- drop close to contact→ contact resistance

region of 
energy relaxation
→ heat dissipation
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Contents Part II: Quantum Transport in Nanostructures

Contents:

II.4 From Quantum Mechanics to Ohm‘s Law

II.5 Coulomb Blockade

II.1 Introduction
II.1.1 General Remarks
II.1.2 Mesoscopic Systems
II.1.3 Characteristic Length Scales
II.1.4 Characteristic Energy Scales
II.1.5 Transport Regimes

II.2 Description of Electron Transport by
Scattering of Waves
II.2.1 Electron Waves and Waveguides
II.2.2 Landauer Formalism
II.2.3 Multi-terminal Conductors
II.2.4 Statistics of Charge Transport

II.3 Quantum Interference Effects
II.3.1 Double Slit Experiment
II.3.2 Two Barriers – Resonant Tunneling
II.3.3 Aharonov-Bohm Effect
II.3.4 Weak Localization
II.3.5 Universal Conductance Fluctuations
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• charge quantization and charging energy

II.5    Coulomb Blockade

− electric charge is quantized for an isolated island

𝑸 = 𝑵 𝒆

𝐄

typically in meV regime for 100 nm-sized samples

typically in µeV regime for 100 nm-sized samples

𝜀𝑐

level splitting

− charging energy:

− how large is 𝜀𝑐 for island of size 𝐿 (bring charge 𝑒 from ∞ to island)

− level splitting in nm-sized island:

𝜀 =
𝑄2

2𝐶
=
𝑁2𝑒2

2𝐶
= 𝑛2𝐸𝑐 with 𝜀𝑐 =

𝑒2

2𝐶

𝜀𝑐 ≃
𝑒2

𝜖0𝐿
≈

10 eV

𝐿 [nm]

𝛿𝜀 ≃
𝜀F

𝑁atom
≈

1 eV

𝐿3 [nm3]
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II.5    Coulomb Blockade

• capacitance model for metallic island

𝑉1

𝑉2

𝑉3

𝑉4

𝑉5

𝑉6
𝑄1

𝑄2

𝑄3
𝑄4

𝑄5

𝑄6

− charge on the island 𝑄0 =෍

𝑖=1

𝑘

𝐶𝑖𝑉𝑖 + ത𝑄0 charge for all 𝑉𝑖 = 0
„background charge“

− potential 𝑉0 of the island is not known, but its charge 𝑄0 is known to be 𝑁𝑒
➔ electrostatic potential of the island:

𝑉0 𝑄0 =
𝑄0 − ത𝑄0
𝐶Σ

−෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖 with 𝐶Σ =෍

𝑖=1

𝑘

𝐶𝑖

− electrostatic energy needed to put additional 
charge Δ𝑄 = 𝑁𝑒 on island

𝜀el 𝑁 = න

ത𝑄0

ത𝑄0+𝑁𝑒

𝑉0 𝑄0 𝑑𝑄0 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖

− energy needed to charge the island with
one additional charge Δ𝑄 = 𝑒 𝜀el 𝑁 + 1 − 𝜀el 𝑁 =

𝑒2

𝐶Σ
𝑁 +

1

2
− 𝑒෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖
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II.5    Coulomb Blockade

• capacitance model for metallic island – only a single capacitance (𝑪𝚺 = 𝑪)

− electrostatic energy 𝜀el Δ𝑄 = 𝑁𝑒 =
𝑁𝑒 2

2𝐶
− 𝑒𝑁𝑉 =

𝑒2

2𝐶
𝑁 −

𝐶𝑉

𝑒

2

−
𝐶𝑉

2

2

omitted as independent of 𝑁

𝜀el Δ𝑄 =
𝑒2

2𝐶
𝑁 −

𝐶𝑉

𝑒

2

= 𝐸𝐶 𝑁 −
𝐶𝑉

𝑒

2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

 

 

e el
 /

 e
C

CGVG / e

𝑵 = 𝟎

𝑵 = − 𝟐 𝑵 = + 𝟐

𝜀𝑪

𝑵 = 𝟏𝑵 = − 𝟏

𝜀𝑪 𝜀𝑪

𝜀el Δ𝑄 = 𝑁𝑒 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖
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II.5    Coulomb Blockade

• capacitance model for 2-terminal device

−
𝑽𝐒𝐃
𝟐

+
𝑽𝐒𝐃
𝟐

𝐶𝑆 𝐶𝐷

𝜀el Δ𝑄 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖

− electrostatic energy barrier for adding an electron from source: Δ𝑄 = −𝑒

𝜀el Δ𝑄 =
𝑒2

2𝐶Σ
+ 𝑒

𝐶S
𝐶Σ

(−𝑉SD)

2
− 𝑒

𝐶D
𝐶Σ

𝑉SD
2

ณ=
𝐶𝑆=𝐶𝐷=𝐶

𝑒2

2𝐶Σ
−
𝑒𝑉SD
2

− electrostatic energy barrier for removing one electron to drain:  Δ𝑄 = +𝑒 on island

𝜀el Δ𝑄 =
𝑒2

2𝐶Σ
+ 𝑒

𝐶S
𝐶Σ

−𝑉SD
2

− 𝑒
𝐶D
𝐶Σ

𝑉SD
2

ณ=
𝐶𝑆=𝐶𝐷=𝐶

𝑒2

2𝐶Σ
−
𝑒𝑉SD
2

− at 𝑇 = 0, current transport sets in if energy barrier is reduced to zero

𝑉SD
thres =

𝑒

𝐶Σ
Coulomb blockade effect
for 𝑉SD ≤ 𝑉SD

thres

island

tunnel barries

threshold SD-voltage:

𝐶Σ = 𝐶𝑆 + 𝐶𝐷

𝑉SD
thres

𝑉SD
−𝑉SD

thres

𝐼SD

𝝁𝐃

𝝁𝐒

𝒆𝟐

𝑪𝚺

source

drain

𝑒𝑉SD
thres/2

𝑒𝑉SD
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II.5    Coulomb Blockade

𝜀el Δ𝑁 =
−𝑁𝑒 2

2𝐶Σ
+ 𝑁𝑒

𝐶S
𝐶Σ

−𝑉SD
2

− 𝑁𝑒
𝐶D
𝐶Σ

𝑉SD
2

− 𝑁𝑒
𝐶G
𝐶Σ

𝑉𝐺 ณ=
𝐶𝑆=𝐶𝐷=𝐶

𝑁𝑒 2

2𝐶Σ
− 𝑁𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉G

− charging the neutral island by Δ𝑄 = −𝑁𝑒 from source at constant 𝑉𝐺

𝜀el Δ𝑄 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖

− electrostatic energy difference between adding
Δ𝑁 = 𝑁 + 1 and Δ𝑁 = 𝑁 electrons

𝜀el 𝑁 + 1 − 𝜀el 𝑁 = 𝑁 +
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉𝐺

• capacitance model for SET: electrostatic energy

source

drain

−𝑒 𝑉SD/2
(−𝑒)(−𝑉SD)/2 𝝁𝐃

𝝁𝐒
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II.5    Coulomb Blockade

𝜀el Δ𝑄 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖

𝜀el Δ𝑁 =
Δ𝑁𝑒 2

2𝐶Σ
− 𝑁 𝑒

𝐶S
𝐶Σ

−𝑉SD
2

+ 𝑁𝑒
𝐶D
𝐶Σ

𝑉SD
2

+ 𝑁𝑒
𝐶G
𝐶Σ

𝑉𝐺 ณ=
𝐶𝑆=𝐶𝐷=𝐶

Δ𝑁𝑒 2

2𝐶Σ
+ 𝑁𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉G

− charging the island by removing Δ𝑄 = −𝑁𝑒 to drain at constant 𝑉𝐺 (corresponds to adding Δ𝑄 = +𝑁𝑒 to island ) 

− electrostatic energy difference between
removing Δ𝑁 = 𝑁 − 1 and Δ𝑁 = 𝑁 electrons

𝜀el 𝑁 − 𝜀el 𝑁 − 1 = 𝑁 −
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉𝐺

𝜀el 𝑁 + 1 − 𝜀el 𝑁 − 𝜀el 𝑁 − 𝜀el 𝑁 − 1 =
𝑒2

𝐶Σ

energy ladder with
fixed spacing 𝒆𝟐/𝑪𝚺

• capacitance model for SET: electrostatic energy

source

drain

−𝑒 𝑉SD/2
(−𝑒)(−𝑉SD)/2

𝒆𝟐

𝑪𝚺

𝝁𝐃

𝝁𝐒
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source drain

II.5    Coulomb Blockade

• capacitance model for 3-terminal device: single electron transistor (SET)

−
𝑽𝐒𝐃
𝟐

+
𝑽𝐒𝐃
𝟐

𝑪𝑺 𝑪𝑫

island

𝑽𝐆

gate

at 𝑽𝐒𝐃 ≃ 𝟎: 𝜀el Δ𝑄 =
𝑒2

2𝐶Σ
− ถ𝑒𝑉SD

≃0

− 𝑒
𝐶G
𝐶Σ

𝑉G ➔ transport allowed for 𝑉G
trans =

𝑒

2𝐶G

𝑪𝐆

𝜀el Δ𝑄 =
𝑁𝑒 2

2𝐶Σ
− 𝑒𝑁෍

𝑖=1

𝑘
𝐶𝑖
𝐶Σ
𝑉𝑖

➔ periodic peaks in 𝐼SD at 𝑉G = 𝑁 ⋅
𝑒

2𝐶G

additional 𝑽𝑮 shifts potential energy of island

𝜀el Δ𝑄 =
𝑒2

2𝐶Σ
+ 𝑒

𝐶S
𝐶Σ

−𝑉SD
2

− 𝑒
𝐶D
𝐶Σ

𝑉SD
2

− 𝑒
𝐶G
𝐶Σ

𝑉𝐺 ณ=
𝐶𝑆=𝐶𝐷=𝐶

𝑒2

2𝐶Σ
− 𝑒𝑉SD − 𝑒

𝐶G
𝐶Σ

𝑉𝐺 with 𝐶Σ = 𝐶𝑆 + 𝐶𝐷 + 𝐶𝐺

− electrostatic energy barrier for removing one electron to drain (Δ𝑄 = +𝑒) [or adding one electron from source (Δ𝑄 = −𝑒)] at finite 𝑉G

− analog result for adding one electron from source (Δ𝑄 = −𝑒) at finite 𝑉G

𝝁𝐃𝝁𝐒
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II.5    Coulomb Blockade

• capacitance model for SET: current flow at 𝑽𝐒𝐃 ≃ 𝟎 as a function of 𝑽𝐆

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

 

 

N

CGVG / e

 

 

G
SD

 (
b

el
. E

in
h

.)

CGVG / e

𝑻 = 𝟎

𝑻 > 𝟎

for 𝑽𝐒𝐃 ≃ 𝟎:

periodic peaks in SD-current 𝐼SD at 𝑉G = 𝑁 ⋅
𝑒

2𝐶G

𝑉SD ≃ 0
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II.5    Coulomb Blockade

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

at a given 𝑁 on island, four different
electron transfer processes are possible

1. from the left: 𝑁 → 𝑁 + 1 Δ𝜀FL 𝑁 = 𝜀el 𝑁 + 1 − 𝜀el 𝑁

2. to the left: 𝑁 → 𝑁 − 1 Δ𝜀TL 𝑁 = 𝜀el 𝑁 − 1 − 𝜀el 𝑁

3. from the right: 𝑁 → 𝑁 + 1 Δ𝜀FR 𝑁 = 𝜀el 𝑁 + 1 − 𝜀el 𝑁

4. to the right: 𝑁 → 𝑁 − 1 Δ𝜀TR 𝑁 = 𝜀el 𝑁 − 1 − 𝜀el 𝑁
e(V1 –V2)

(−𝑒)(−𝑉SD)/2

(−𝑒)𝑉SD/2

𝑒2/𝐶Σ

𝑉G

𝑒𝑉SD
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II.5    Coulomb Blockade

➢ 𝑻 > 𝟎: all transfer processes are allowed (by thermal activation)

Coulomb blockade

𝚫𝜺𝐅𝐋,𝐓𝐋,𝐅𝐑,𝐓𝐑 𝑵 > 𝟎

single electron tunneling

no second additional or missing electron on island !!

allowed and forbidden electron transfer processes: 

𝑁 + 1

𝑁 + 2

𝑁

𝑁 − 1

➢ 𝑻 = 𝟎: only transfer processes with Δ𝜀 < 0 are allowed

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

𝚫𝜺𝐅𝐋 𝑵 < 𝟎 𝚫𝜺𝐓𝐑 𝑵 < 𝟎

𝚫𝜺𝐅𝐋 𝑵+ 𝟏 > 𝟎 𝚫𝜺𝐓𝐑 𝑵− 𝟏 > 𝟎

𝑁 + 1

𝑁

𝑁 − 1

𝑁 − 2
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II.5    Coulomb Blockade

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

− in which range of 𝑉SD and 𝑉G is the electron transport blocked ?

− assumptions: 𝐶𝑆 = 𝐶𝐷 = 𝐶, symmetric SD voltage bias

𝜀el 𝑁 + 1 − 𝜀el 𝑁 = 𝑁 +
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉𝐺

1. from the left: 𝑁 → 𝑁 + 1 Δ𝜀FL 0 = 𝜀 +1 − 𝜀 0 = −
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

2. to the left: 𝑁 → 𝑁 − 1 Δ𝜀TL 0 = 𝜀 −1 − 𝜀 0 = −
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

3. from the right: 𝑁 − 1 → 𝑁 Δ𝜀FR 0 = 𝜀 0 − 𝜀 −1 = +
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

4. to the right: 𝑁 + 1 → 𝑁 Δ𝜀TR 0 = 𝜀 0 − 𝜀 +1 = +
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

𝜀el 𝑁 − 𝜀el 𝑁 − 1 = 𝑁 −
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G
𝐶Σ

𝑉𝐺

(𝑁 = −1,𝑁 + 1 = 0)   A

(𝑁 = +1,𝑁 − 1 = 0)   B

(𝑁 − 1 = −1,𝑁 = 0)   A

(𝑁 + 1 = 1,𝑁 = 0)   B

A

B

We consider processes where the final state is always the state with 𝑁 = 0
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WMI
II.5    Coulomb Blockade

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

blue areas mark blockade regimes:

„Coulomb diamonds“½ -½ 

1 

-1 

0 +1 -1    

𝑒𝑉SD / 𝑒2/𝐶Σ

𝐶G
𝐶Σ

𝑒𝑉𝐺

𝟎
−𝟏

𝟎
−𝟏

+𝟏
𝟎

+𝟏
𝟎

+𝟐
+𝟏

+𝟐
+𝟏

−𝟏
−𝟐

−𝟏
−𝟐

1. from the left: 𝑁 → 𝑁 + 1 Δ𝜀FL 0 = 𝜀 +1 − 𝜀 0 = −
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

2. to the left: 𝑁 → 𝑁 − 1 Δ𝜀TL 0 = 𝜀 −1 − 𝜀 0 = −
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

3. from the right: 𝑁 − 1 → 𝑁 Δ𝜀FR 0 = 𝜀 0 − 𝜀 −1 = +
1

2

𝑒2

𝐶Σ
− 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺

4. to the right: 𝑁 + 1 → 𝑁 Δ𝜀TR 0 = 𝜀 0 − 𝜀 +1 = +
1

2

𝑒2

𝐶Σ
+ 𝑒

𝐶

𝐶Σ
𝑉SD +

𝐶G

𝐶Σ
𝑉𝐺
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WMI
II.5    Coulomb Blockade

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

Single Electron Transistor – Coulomb Diamonds: 

Data: ETH Zurich

blue regions of vanishing
conductance correspond to
the Coulomb blockade regime (no

current flow) 

𝑉G (mV)
𝑉
S
D
(m

V
)

conductance 𝐺 (𝜇𝑆)
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WMI
II.5    Coulomb Blockade

• capacitance model for SET: current flow at finite 𝑽𝐒𝐃, 𝑽𝐆

weak coupling of island to metallic leads (reservoirs)  
→ too weak: no electron transfer
→ too strong: no conservation of charge number, no single electron effects

too little just right too much

−
𝑽𝐒𝐃
𝟐

+
𝑽𝐒𝐃
𝟐

𝐶𝑆 𝐶𝐷

island
tunneling barries
(characterized by tunneling resistance 𝑅)
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WMI
II.5    Coulomb Blockade

• requirements for the experimental observation of the Coulomb blockade: 

− thermal fluctuations must be small enough:

𝐸𝐶

𝐸𝐶

Δ𝐸

Δ𝐸

Δ𝐸
𝑅𝑄 = quantum resistance

− quantum fluctuations must be small enough:

− requirement for voltage: 

𝐸𝑐 =
𝑒2

2𝐶
> 𝑘B𝑇 ⇒ 𝐶 <

𝑒2

2𝑘B𝑇
≈ 1 fF @ 1 K

𝐸𝑐 =
ℏ

𝜏
≃

ℏ

𝑅𝐶
level broadening Δ𝐸

⇒ 𝑅 >
ℎ

𝑒2
= 𝑅𝑄 ≃ 25 𝑘Ω

𝐸𝑐 > 𝑒𝑉 ⇒ 𝑉 <
𝑒

2𝐶
≈ 80 𝜇V @ 1 fF
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II.5    Coulomb Blockade

• SET: current-voltage characteristics

− facts: (i) charging state is determined by 𝑁
(ii) no quantum coherence between different states

− if we know 𝑝𝑁 for stationary state, we get currents as

− probability 𝑝𝑁(𝑡) to find system in state 𝑁 at time 𝑡:
→ given by Master equation

d

d𝑡
𝑝𝑁 𝑡 = − Γ𝐹 𝑁 + Γ𝑇 𝑁 𝑝𝑁 𝑡

tunneling from
and to island

with N electrons

+ Γ𝑇 𝑁 − 1 𝑝𝑁−1 𝑡

tunneling to island
with N−1 electrons

+ Γ𝐹 𝑁 + 1 𝑝𝑁+1(𝑡)

tunneling from island
with N+1 electrons

with tunneling rates Γ𝐹 = Γ𝐹𝐿 + Γ𝐹𝑅 and    Γ𝑇 = Γ𝑇𝐿 + Γ𝑇𝑅

𝐼𝐿 = 𝑒 ෍

𝑁

Γ𝐹𝐿 𝑁 − Γ𝑇𝐿 𝑁 𝑝𝑁

𝐼𝐿 = 𝑒 ෍

𝑁

Γ𝑇𝑅 𝑁 − Γ𝐹𝑅 𝑁 𝑝𝑁

𝐼 = 𝐼𝐿 + 𝐼𝑅
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II.5    Coulomb Blockade

• SET: current-voltage characteristics

tunneling rates for single tunnel junction:

tunneling without CB

tunneling rate:

tunneling with CB

𝑒𝑉

energy interval
for available final states

tunneling rate:

𝑒𝑉
EC

energy interval
for available final states

𝑒𝑉 − 𝐸𝐶

blockade regime

𝐼 = 𝐺tun𝑉

Γtun =
𝐼

𝑒
=
𝐺tun
𝑒2

𝑒𝑉

Γtun =
𝐺tun
𝑒2

𝑒𝑉 − 𝐸𝑐 for 𝑒𝑉 < 𝐸𝑐

Γtun = 0 for 𝑒𝑉 < 𝐸𝑐
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II.5    Coulomb Blockade

• SET: current-voltage characteristics

IVC for tunneling with
Coulomb blockade

𝑹 = 𝟎
𝑹 sufficiently large   

no quantum
fluctuations

large quantum
fluctuations

island

𝑅tun, 𝐶tun

2𝐶tun
𝑒

𝑉

2
𝑅
tu
n
𝐶
tu
n

𝑒
𝐼
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II.5    Coulomb Blockade

• SET: tunneling rates and IVC

− electrostatic energy changes as electron tunnels
→ determine tunneling rate at electron energy change of Δ𝜀:

2

Δ𝜀

1
source island

− total transition rate from conductor 1 (source) to 2 (island):
➢ tunneling rate proportional to density of states 𝐷 𝜀
➢ occupation probability given by Fermi functions 𝑓 𝜀
➢ integration over all energies

Γ𝑖→𝑓 =
2𝜋

ℏ
𝑖 𝐻tun 𝑓

2 𝛿 𝜀𝑓 − 𝜀𝑖 − Δ𝜀

Fermi‘s Golden Rule

Γ𝑖→𝑓 Δ𝜀 =
2𝜋

ℏ
න

−∞

∞

d𝜀 𝑖 𝐻tun 𝑓
2 𝐷𝑖 𝜀 𝑓 𝜀

occupied
initial states

𝐷𝑓 𝜀 + Δ𝜀 1 − 𝑓 𝜀 + Δ𝜀
empty

final states

Γ𝑖→𝑓 Δ𝜀
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WMI
II.5    Coulomb Blockade

− simplifying assumptions: 
→ 𝐻tun is energy independent
→ 𝐷(𝜀) is energy independent

with

at low 𝑇: Fermi functions ≈ step functions

(equivalent expression for current from island to drain)

− net current

− current from current source (1) to island (2) in steady state

• SET: tunneling rates and IVC

𝑓 𝜀 1 − 𝑓 𝜀 + Δ𝜀 =
𝑓 𝜀 − 𝑓 𝜀 + Δ𝜀

1 − exp Δ𝜀/𝑘B𝑇

Γ𝑖→𝑓 Δ𝜀 =
1

𝑒2𝑅tun

Δ𝜀

exp Δ𝜀/𝑘B𝑇 − 1
𝑅tun =

ℏ

2𝜋𝑒2
𝐷2 𝑖 𝐻tun 𝑓

2

-4 -2 0 2 4
0

1

2

3

4

5
 


 e

2
R

E / k
B
TΔ𝜀/𝑘B𝑇

Γ
𝑒
2
𝑅
tu
n

𝐼 = 𝑒 Γ1→2 Δ𝜀1→2 − Γ2→1 Δ𝜀2→1

𝐼 = 𝑒෍

𝑁

𝑝(𝑁) Γ1→2 Δ𝜀1→2 𝑁 − Γ2→1 Δ𝜀2→1 𝑁
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• SET: current-voltage characteristics

Coulomb
diamonds
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WMI
II.5    Coulomb Blockade

source: lt.px.tsukuba.ac.jp 

𝑉SD

𝐼SD
movie shows variation of IVC with varying gate voltage

• SET: current-voltage characteristics - Coulomb staircase

1st step in IVC

ground|𝑽𝐒𝐃|/𝟐

𝑽𝑮

|𝑽𝐒𝐃|/𝟐

2nd step in IVC

ground

𝑽𝑮

|𝑽𝐒𝐃|/𝟐

|𝑽𝐒𝐃|/𝟐
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• SET: variation of the gate voltage – Coulomb oscillations: 

𝑒|𝑉SD|/2

𝑒|𝑉SD|/2 𝑒|𝑉SD|/2

− gate voltage shifts up and down the energy levels of the island

− at small SD-voltages: conductance can be varied considerably by gate voltage

➔ Coulomb Oscillations

𝑒|𝑉SD|/2
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• SET: variation of the gate voltage – Coulomb oscillations: 

𝑒𝑉SD/2𝐸𝐶 =

note:
• large 𝒅𝑰𝐒𝐃 / 𝒅𝑽𝑮

➔ use as ultra-sensitive electrometer



Chapter 2/RG   - 141www.wmi.badw.de Superconductivity and Low Temperature Physics II

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

2
0

2
3

)

WMI
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• SET: variation of the gate voltage – Coulomb oscillations: 

J. Schuler, Ph.D. Thesis (WMI 2005)

experimental data on
Al/AlOx /Al/AlOx /Al - SET

𝑉SD is varied for
different curves

𝐼 S
D

(p
A

)

𝑉𝐺 (mV)
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• SET Coulomb oscillations - effect of single fluctuating background charges 

Al/AlOx / Al/AlOx /Al - SET

shift of 𝐼𝑆𝐷(𝑉𝐺) curve due to
fluctuating background
charge

J. Schuler, Ph.D. Thesis (WMI 2005)

𝐼 S
D

(p
A

)

𝑉𝐺 (mV)
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• SET fabrication by two-angle shadow evaporation

resist mask structure resist mask structure

resist mask first layer second layer tunnel junction

ghost

structures

small

junctions

large

junction

J. Schuler, Ph.D Thesis (2005)

fabrication of sub-µm 
Josephson Junctions by
shadow vaporation technique

resist mask
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• SET fabrication by two-angle shadow evaporation

Optical Lithography

(a) (b) (c)

two-layer

e-beam resist

Si substrate

Electron Beam Lithography
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• SET fabrication by 
two-angle shadow 
evaporation

shadow evaporation

substrate

resist layer 1

resist layer 2

first evaporation of 
Al

oxidation of 1st Al 
layer

2nd evaporation of 
Al

after 
liftoff
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• SET application: single electron detector

prototype of a self-
referenced quantum current 
source developed at PTB 
with four semiconductor 
single-electron current 
sources (“single-electron 
pumps“) connected in series 
and three metallic single 
electron detectors
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• SET applications

− sensitive electrometers: 
𝚫𝑸

𝑸
≃ 𝟏𝟎−𝟓 𝒆

− electron pumps

→ transporting electrons one by one: 
counting of electrons

→ current standard: 𝑰 = 𝒆 ⋅ 𝒇
→ application of oscillating gate voltage

− charge Qubits

→ basic element for quantum information systems

Quantum oscillations in two coupled charge qubits
Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin and J. S. Tsai
Nature 421, 823-826(20 February 2003)

PTB

http://www.nature.com/nature/journal/v421/n6925/full/nature01365.html
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• SET applications – the quantum metrology triangle 

frequency

voltage current𝑽 = 𝑹𝐊 ⋅ 𝑰

𝑲𝐈 = 1/𝑒 not yet availabe

𝑲𝐉 =
2𝑒

ℎ
=

1

Φ0

= 483 597.848 4… GHz/V

𝑹𝐊 =
ℎ

𝑒2
= 25 812.807 45…Ω
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