Chapter 1

Quantum Liquids
Contents Part I: Quantum Liquids

Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subsections</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Foundations and General Properties</td>
<td>I.1.1 Quantum Gases & Liquids, I.1.2 Helium, I.1.3 Van der Waals Bonding, I.1.4 Zero-Point Fluctuations, I.1.5 Helium under Pressure, I.1.6 pT-Phase Diagram of ^4He and ^3He, I.1.7 Characteristic Properties of ^4He and ^3He, I.1.8 Specific Heat of ^4He and ^3He</td>
</tr>
<tr>
<td>I.2</td>
<td>^4He as an Ideal Bose Gas</td>
<td>I.2.1 Bose-Einstein Condensation, I.2.2 Ideal Bose Gas, I.2.3 Bose Gas with Interactions, I.2.4 Bose-Einstein Condensation of ^4He</td>
</tr>
<tr>
<td>I.3</td>
<td>Superfluid ^4He</td>
<td>I.3.1 Two-Fluid Model, I.3.2 Experimental Observations, I.3.3 Two-Fluid Hydrodynamics, I.3.4 Excitation Spectrum of ^4He</td>
</tr>
<tr>
<td>I.4</td>
<td>Vortices</td>
<td>I.4.1 Quantization of Circulation, I.4.2 Experimental Study of Vortices</td>
</tr>
<tr>
<td>I.5</td>
<td>^3He</td>
<td>I.5.1 normal fluid ^3He, I.5.2 solid ^3He and Pomeranchuk effect, I.5.3 superfluid ^3He</td>
</tr>
<tr>
<td>I.6</td>
<td>^3He / ^4He mixtures</td>
<td></td>
</tr>
</tbody>
</table>
I.1 Foundations and General Properties

• Satyendranath Bose (1924)

– letter to Einstein: proposes a new method to derive Planck’s law for spectral density of electromagnetic radiation emitted by a black body

– Bose describes the radiation emitted by a black body in thermal equilibrium by a gas on non-interacting identical particles \(\rightarrow \) photons

– description is in perfect agreement with Einstein’s explanation of the photoelectric effect

– Einstein immediately recognized that this description can be transferred to many other systems:
 (i) gases of identical particles with finite mass,
 (ii) phonons

– Einstein strongly supported the publication of Bose’s results, he translated the paper into German

I.1 Foundations and General Properties

What happens if you cool down a gas of non-interacting bosons?

Below a certain temperature the particles feel each other due to their finite de Broglie wavelength, although they are non-interacting!

phase transition driven by statistics of particles (not by their interactions)

Bose-Einstein Condensation

thermodynamic phase transition into a gas of non-interacting particles:
driven by statistics of particles and not by interactions
I.1 Foundations and General Properties

• 1924: prediction of Bose-Einstein Condensation (BEC) by Einstein

• 1995: first observation of BEC on alkali atoms by

![Images of Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman]

Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

→ long period between theoretical prediction and experimental realization:

high density, ultra-cold gas of non-interacting atoms required

→ problem: gas liquefies or solidifies due to finite interactions

→ more simple to realize:

interacting quantum gas, e.g. superfluid \(^4\)He
I.1 Foundations and General Properties

- **nomenclature**

 - system of **non-interacting** particles: classical gas
 - if quantum fluctuations dominate: quantum gas
 - e.g. Bose-Einstein Condensate, Fermi gas

 - system of **interacting** particles: classical liquid
 - if quantum fluctuations dominate: quantum liquid
 - e.g. superfluid helium-4, Fermi liquid
I.1.1 Quantum Liquids

- supercurrents
- U-tube oscillation
- thermomech. effects

Quantum liquids & condensates show fascinating properties ➔ discussed in this lecture

- superleaks
- beaker film flow
- critical velocity

Source: D.I. Bradley, Lancaster Univ.
I.1.1 Quantum Liquids

- classical liquids and solids – characteristic energy scales:

 characteristic energies: (1) average interaction energy: \langle V \rangle or \langle E_{\text{pot}} \rangle
 (2) thermal (kinetic) energy: \ k_B T \ or \ \langle E_{\text{kin}} \rangle

 criterion for liquid/solid: liquid: \ k_B T \gg \langle V \rangle
 solid: \ k_B T \ll \langle V \rangle

- characteristic length scales in a gas:

 - particle distance: \ d = n^{-1/3}
 - interaction range: \ r_0 \approx a \quad \text{(scattering length} \ a)

 - de Broglie wavelength:
 \[\lambda_T = \sqrt{\frac{\hbar^2}{2\pi m k_B T}} = \sqrt{\frac{2\pi \hbar^2}{mk_B T}} \]

 \[\frac{\hbar^2 k_T^2}{2m} \approx k_B T \quad k_T = \frac{2\pi}{\lambda_T} \]
 \[\frac{\hbar^2}{2m\lambda_T^2} \approx k_B T \rightarrow \lambda_T \approx \left(\frac{\hbar^2}{2mk_BT} \right)^{1/2} \]

 \textit{classical non-interacting gas:} \ d \gg r_0, \lambda_T, \text{ since atoms interact only during collisions}
I.1.1 Quantum Liquids

• calculation of the average thermal wavelength of a statistical ensemble (1)

we consider a classical gas of N particles:

\Rightarrow probability for a specific particular configuration at temperature T is given by Boltzmann distribution

$$P(p_1, ..., p_N, r_1, ..., r_N) = \frac{1}{Z_N} \exp(-\beta \mathcal{H})$$

$$\beta = \frac{1}{k_B T}, \mathcal{H} = \text{Hamiltonian}$$

$$Z_N = \frac{1}{N!} \int d^3p_1, ..., d^3p_N d^3r_1, ..., d^3r_N \exp(-\beta \mathcal{H})$$

partition function can be factorized into two terms (related to kinetic and potential energy)

$$Z_N = \frac{1}{N!} \prod_i \int d^3p_i \exp\left(-\frac{p_i^2}{2mk_B T}\right) \cdot \int d^3r_1, ..., d^3r_N \exp\left(-\frac{1}{2} \beta \sum_{i \neq j} V(r_i - r_j)\right)$$

kinetic energy contribution

kinetic energy contribution

$$\left[(2\pi mk_B T)^3/2\right]^N$$

potential energy contribution

(product of independent factors)

(momenta of particles are statistically independent)
I.1.1 Quantum Liquids

- calculation of the average thermal wavelength of a statistical ensemble (2)

probability that particle has momentum in volume d^3p of phase space

$$P(p)d^3p = \left(2\pi mk_BT\right)^{-3/2} \exp\left(-\frac{p_i^2}{2mk_BT}\right)d^3p$$

probability that particle has momentum between p and $p + dp$

$$P_{MB}(p)dp = \frac{4\pi p^2}{\left(2\pi mk_BT\right)^{3/2}} \exp\left(-\frac{p^2}{2mk_BT}\right) dp$$

Maxwell-Boltzmann distribution

the most likely momentum of the particles is $p = \sqrt{2mk_BT}$, the average momentum is $\bar{p} = \sqrt{8mk_BT/\pi}$

⇒ thermal de Broglie wavelength

$$\lambda_T = \frac{h}{p_T} = \sqrt{\frac{h^2}{2\pi mk_BT}} = \sqrt{\frac{2\pi h^2}{mk_BT}}$$
I.1.1 Quantum Liquids

- cooling down a classical gas $\rightarrow \lambda_T = \sqrt{\frac{\hbar^2}{2\pi m k_B T}}$ increases and we can distinguish three regimes

(1) classical regime: $\lambda_T \ll r_0 \ll d$

(2) quantum collisions: $r_0 \ll \lambda_T \ll d$

- collisions can no longer be treated classically

(3) quantum degeneracy: $r_0 \ll d \leq \lambda_T$

- all degrees of freedom of the gas must be treated quantum mechanically
I.1.1 Quantum Liquids

- define new energy scale related to particle distance d

(3) zero-point energy E_{zp}

with - particle density $n = N/V$, $d = n^{-1/3}$

\rightarrow momentum uncertainty $\Delta p = \hbar \Delta k = \frac{\hbar}{d} = hn^{1/3}$

\rightarrow zero-point energy

$$E_{zp} = \frac{\Delta p^2}{2m} = \frac{\hbar^2}{2md^2} = \frac{\hbar^2 n^{2/3}}{2m} = \pi k_B T_{zp}$$

characteristic temperature

for an ideal gas the energy $E = \pi k_B T$ is assumed; the factor π results from the partition function
I.1.1 Quantum Liquids

- **classification of liquids** (interacting liquids with \(\langle V \rangle > 0 \)):

(a) classical liquid: \(T_{zp} \ll T_{\text{melting}} \ll T \) (quantum fluctuation play no role)

(b) quantum liquid: \(T_{\text{melting}} < T < T_{zp} \) (quantum fluctuation dominate)

proportional to \(\langle V \rangle \) or \(\langle E_{\text{pot}} \rangle \)

quantum parameter:

\[
\Lambda \equiv \frac{\langle E_{zp} \rangle}{\langle E_{\text{pot}} \rangle}
\]

quantum liquid: \(\Lambda > 1 \)

classical liquid: \(\Lambda < 1 \)
I.1.1 Quantum Liquids

- **classification of gases** *(non-interacting systems: ⟨V⟩ = 0)*:

 (a) classical gas: \(T_{zp} < T \)

 (b) quantum gas: \(T < T_{zp} \)

\[
T_{zp} = \frac{\hbar^2 n^{2/3}}{2\pi m k_B} = \frac{\hbar^2}{2\pi m k_B d^2}
\]

\[
T = \frac{\hbar^2}{2\pi m k_B \lambda_T^2}
\]

(a) classical gas: \(\lambda_T \leq n^{-1/3} \approx d \rightarrow n \cdot \lambda_T^3 \leq 1 \)

(b) quantum gas: \(\lambda_T \geq n^{-1/3} \approx d \rightarrow n \cdot \lambda_T^3 \geq 1 \)

The average particle distance

e.g. electrons @ 300 K: \(\lambda_T = 4.2 \text{ nm, } d \approx 0.2 \text{ nm for Cu (} n \approx 8.5 \times 10^{28} \text{ m}^{-3} \) \)

⇒ **particles become indistinguishable** ⇒ **degenerate quantum liquid**
I.1.1 Quantum Liquids

• cooling down a classical gas \(\rightarrow \lambda_T = \sqrt[2]{\frac{\hbar^2}{2\pi m k_B T}} \) increases and we can distinguish three regimes

(1) classical regime: \(\lambda_T \ll r_0 \ll d \)

(2) quantum collisions: \(r_0 \ll \lambda_T \ll d \)

collisions can no longer be treated classically

(3) quantum degeneracy: \(r_0 \ll d \leq \lambda_T \)

all degrees of freedom of the gas must be treated quantum mechanically
I.1.1 Quantum Liquids

Quantum liquid: \(\lambda_T > d \) \(T < T_{zp} \)

Classical liquid: \(\lambda_T > d \) \(T > T_{zp} \)

\[T = T_{zp} \]

\(T \) (K)

\(\lambda_T / d \)

\(T \) (K)

4He: \(m = 6.65 \times 10^{-27} \) kg
\(n \approx 4 \times 10^{27} \) m\(^{-3} \)

\(e^- \): \(m = 9.11 \times 10^{-31} \) kg
\(n \approx 3.6 \times 10^{27} \) m\(^{-3} \)

degenerate: indistinguishable particles

non-degenerate: distinguishable particles

\[\lambda_T = \sqrt{\frac{\hbar^2}{2\pi mk_BT}} \propto \frac{1}{\sqrt{T}} \]
I.1.1 Quantum Liquids

- **quantum statistics:**
 - photons, mesons, 4He-atoms, ... integral spin $S = 0, \hbar, 2\hbar, 3\hbar, ...$
 - electrons, nucleons, 3He-atoms, ... half-integral spin $S = \hbar/2, 3\hbar/2, 5\hbar/2, ...$

 indistinguishability of identical particles:

 symmetry of many-particle wavefunction with respect to particle exchange

 \[
 \phi \Psi(1,2) \equiv \Psi(2,1) = e^{i\alpha} \Psi(1,2) \\
 \phi \Psi(2,1) \equiv \Psi(1,2) = (e^{i\alpha})^2 \Psi(1,2)
 \]

 $\phi = e^{i\alpha} = \pm 1$

- **bosons** (integral spin)

 \[
 \Psi_{AB}(1,2) = \frac{1}{\sqrt{2}} [\Psi_A(1)\Psi_B(2) + \Psi_A(2)\Psi_B(1)]
 \]

- **fermions** (semi-integral spin)

 \[
 \Psi_{AB}(1,2) = \frac{1}{\sqrt{2}} [\Psi_A(1)\Psi_B(2) - \Psi_A(2)\Psi_B(1)]
 \]

- **Pauli principle**: *two fermions cannot occupy the same quantum state*
I.1.1 Quantum Liquids

- example: two particles (1,2) in quantum states A and B:

 classical: 4 possibilities
 double-occupancy ratio: \(1/2 \)
 \[A(1)A(2) \quad B(1)B(2) \]
 \[A(1)B(2) \quad B(1)A(2) \]

 bosons: 3 possibilities
 double-occupancy ratio: \(2/3 \)
 \[\frac{1}{\sqrt{2}} \{ A(1)B(2) + A(2)B(1) \} \]
 \[B(1)B(2) \]

 fermions: 1 possibility
 double-occupancy ratio: 0
 \[\frac{1}{\sqrt{2}} \{ A(1)B(2) - A(2)B(1) \} \]

 bosons: tendency to occupy the same quantum state
 fermions: multiple occupancy of the same quantum state is forbidden
I.1.1 Quantum Liquids

Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann distributions as a function of normalized energy. For the Bose-Einstein distribution we assumed $\mu = 0$, for the Fermi-Dirac distribution $\mu = 5k_B T$ (for a metal μ is several eV corresponding to temperatures of several 10 000 K). For the Maxwell-Boltzmann distributions we also assumed $\mu = 0$ und $5k_B T$ so that the classical distribution coincides with the quantum mechanical distributions for large $\varepsilon \gg k_B T$.
I.1.1 Quantum Liquids

particle number per energy interval: \[\frac{dN}{d\varepsilon} = D(\varepsilon) \cdot f(\varepsilon) \]
I.1.1 Quantum Liquids

boson

high T

low T

fermions

number of bosons

number of fermions
I.1.1 Quantum Liquids

• well-known quantum liquids:

1. liquid helium:
 - small mass and \(d\) \(\Rightarrow\) high \(T_{zp}\) (a few K)
 - small \(\langle V\rangle\) \(\Rightarrow\) liquid down to \(T = 0\)
 - \(^4\text{He}:\) spin 0 \(\Rightarrow\) Bose liquid
 - \(^3\text{He}:\) spin \(\frac{1}{2}\) \(\Rightarrow\) Fermi liquid

2. electrons in metals:
 - “non-interacting” electron gas
 - very small electron mass, higher density as for He
 \(\Rightarrow\) very high \(T_{zp}\) (a few \(10^4\) K)
 \(\Rightarrow T_{zp} \gg T_{melting}\)
 - spin \(\frac{1}{2}\) \(\Rightarrow\) Fermi gas (Fermi liquid due to finite interactions)

3. nuclear matter:
 - fermions in nuclei, neutron stars, ...
 - very high density \(\Rightarrow\) very high \(T_{zp}\) (a few \(10^{12}\) K)
 - spin \(\frac{1}{2}\) \(\Rightarrow\) Fermi liquid
I.1.1 Quantum Liquids

<table>
<thead>
<tr>
<th></th>
<th>mass (kg)</th>
<th>(n, (m^{-3}))</th>
<th>(T_{zp}, (K))</th>
<th>statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\text{He})</td>
<td>5.01 \times 10^{-27}</td>
<td>1.63 \times 10^{28}</td>
<td>6.50</td>
<td>Fermi</td>
</tr>
<tr>
<td>(^4\text{He})</td>
<td>6.65 \times 10^{-27}</td>
<td>2.18 \times 10^{28}</td>
<td>5.93</td>
<td>Bose</td>
</tr>
<tr>
<td>electrons in Na</td>
<td>9.11 \times 10^{-31}</td>
<td>2.65 \times 10^{28}</td>
<td>4.94 \times 10^{4}</td>
<td>Fermi</td>
</tr>
<tr>
<td>nuclear matter</td>
<td>1.67 \times 10^{-27}</td>
<td>1.95 \times 10^{38}</td>
<td>1 \times 10^{12}</td>
<td>Fermi</td>
</tr>
</tbody>
</table>

\[
E_{zp} = \frac{\Delta p^2}{2m} = \frac{h^2}{2md^2} = \frac{h^2n^{2/3}}{2m} = \pi k_B T_{zp}
\]
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.1.2 Helium

- **history: ^4He**

 application of ^4He in low temperature physics

 - soon after discovery on earth, race for the liquefaction of He
 - main opponents: *Heike Kamerlingh Onnes* and *James Dewar*
 - Onnes extracted 360 l of He gas out of Monazit sand from North Carolina

 - **1908**: first liquefaction: July 10, 1908

 - **1925**: first liquefaction of He in Germany (March 7, 1925: 4.2 K, 200 ml) by *Walther Meißner*, 3rd system world-wide besides Leiden and Toronto

 - **1932**: Linde supplies first industrial He liquefier to University of Charkov, Ukraine

 - **1947**: first commercial liquefier by *S.C. Collins*

Heike Kamerlingh Onnes
* 21. 09. 1853
† 21. 02. 1926

James Dewar
* 20. 09. 1842
† 27.03.1923
I.1.2 Helium

Sir James Dewar, (1842-1923) was a chemist and physicist, best known for his work with low-temperature phenomena. Dewar was born in Kincardine, Scotland, and educated at the University of Edinburgh. He was professor of experimental natural philosophy at the University of Cambridge, England, in 1875 and professor of chemistry at the Royal Institution of Great Britain in 1877, where he was appointed director of the Davy-Faraday Research Laboratory.

Dewar developed structural formulas for benzene (1867). He studied the specific heat of hydrogen and was the first person to produce hydrogen in liquid form (1898) and to solidify it (1899). He constructed a machine for producing liquid oxygen in quantity (1891). He invented the Dewar flask or thermos (1892) and co-invented cordite (1889), a smokeless gunpowder, with Sir Frederick Abel. His discovery (1905) that cooled charcoal can be used to help create high vacuums later proved useful in atomic physics. Dewar was knighted in 1904.

The Dewar flask or vacuum flask/bottle is a container for storing hot or cold substances, i.e. liquid air. It consists of two flasks, one inside the other, separated by a vacuum. The vacuum greatly reduces the transfer of heat, preventing a temperature change. The walls are usually made of glass because it is a poor conductor of heat; its surfaces are usually lined with a reflective metal to reduce the transfer of heat by radiation. Dewar used silver. The whole fragile flask rests on a shock-absorbing spring within a metal or plastic container, and the air between the flask and the container provides further insulation. The common thermos bottle is an adaptation of the Dewar flask. Dewar invented the Dewar flask in 1892 to aid him in his work with liquid gases.

The vacuum flask was not manufactured for commercial/home use until 1904, when two German glass blowers formed Thermos GmbH. They held a contest to rename the vacuum flask and a resident of Munich submitted "Thermos", which came from the Greek word "Therme" meaning "hot."
I.1.2 Helium

- **history:** ^3He

 - 1933: discovery by *Oliphant, Kinsey* and *Rutherford*
 (they believed that ^3He is unstable, disproven by *Alvarez* and *Cornog* in 1939)

 - 1947: first experiments with gaseous ^3He

 - 1949: first condensation of ^3He gas (*Sydorniak and Co.*)

 - 1960s: first experiments with the Fermi liquid ^3He (*various groups*)

 - 1963: first theory of superfluid ^3He (*Anderson and Morel, Balian and Werthamer*)

 - 1977: first experiments on superfluid ^3He in Germany at WMI (*Eska, Schuberth, Uhlig*)
Helium

- **He isotops: ^4He and ^3He**
 - ^4He: obtained out of natural gas (e.g. sources in USA, Poland, Katar, Algeria, Russia contain up to 10%)
 - $L = 0$, $S = 0$, nuclear spin $I = 0 \Rightarrow \text{boson}$
 - ^3He: natural amount of ^3He in ^4He is only 0.14 ppm
 - artificial generation of ^3He by nuclear reaction
 \[\frac{6}{3}\text{Li} + \frac{1}{1}\text{n} \rightarrow \frac{3}{1}\text{T} + \frac{4}{2}\text{He} + 4.78 \text{MeV} \]
 \[\frac{3}{1}\text{T} \rightarrow \frac{3}{2}\text{He} + e^- + \bar{\nu}_e \] (12.5 years)
 - ^3He is very expensive, several 1000 € per liter
 - $L = 0$, $S = 0$, nuclear spin $I = \frac{1}{2} \Rightarrow \text{fermion}$
 - despite their simple electronic structure, the liquids of both He isotopes show
 - a rich variety of exotic phenomena
 - pronounced differences due to different quantum statistics
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.1.3 Van der Waals Bonding

- **neutral atom**, average dipole moment vanishes: $\langle p_A \rangle = 0$

 \rightarrow dipole moment induced by electric field: $p_A^{\text{ind}} \propto E$

 proportionality constant is **polarizability** α_A of atom A:

 $$p_A^{\text{ind}} = \alpha_A E$$

- **assumption:**
 E-field is generated by charge q_B of ion B at distance R

 $$p_A^{\text{ind}} = \alpha_A E_{B,\text{ion}} = \alpha_A \frac{q_B}{4\pi \varepsilon_0 R} \hat{R}$$

- potential energy of atom A

 $$E_{\text{pot}} = -p_A^{\text{ind}} \cdot E_{B,\text{ion}} = -\left(\alpha_A E_{B,\text{ion}}\right) \cdot E_{B,\text{ion}} \propto E_{B,\text{ion}}^2$$
I.1.3 Van der Waals Bonding

- **assumption:**
 - field \(\mathbf{E}(\mathbf{p}_B) \) at position of atom A is generated by atom B with dipole moment \(\mathbf{p}_B \)
 - \(\mathbf{E}(\mathbf{p}_B) \) induces dipole moment \(\mathbf{p}_A \) of atom A, which in turn generates field \(\mathbf{E}(\mathbf{p}_A) \) at position of atom B

\[
\mathbf{E}(\mathbf{p}_B) = \frac{1}{4\pi\varepsilon_0 R^3} (3p_B \cos \vartheta_B \mathbf{R} - \mathbf{p}_B)
\]

\[
\mathbf{E}(\mathbf{p}_A) = \frac{1}{4\pi\varepsilon_0 R^3} (3p_A \cos \vartheta_A \mathbf{R} - \mathbf{p}_A)
\]

- **Interaction energy** (same atoms: \(p_A = p_B = p \), \(\alpha_A = \alpha_B = \alpha \))

\[
E_{\text{pot}}^{dd}(R) = \frac{1}{4\pi\varepsilon_0} p_A p_B - 3 \frac{(\mathbf{R} \cdot \mathbf{p}_A)(\mathbf{R} \cdot \mathbf{p}_B)}{R^3}
\]

\[
E_{\text{pot}}^{dd}(R) \propto -\frac{p_A p_B}{R^3} - \alpha - \frac{p}{R^3} \frac{\alpha p}{R^3} \frac{\alpha}{R^6}
\]

\[
E_{\text{pot}}^{dd}(R) = -C \frac{\alpha}{R^6}
\]

- **induced dipole-dipole interaction**
 - attractive interaction
 - weak
 - short range
I.1.3 Van der Waals Bonding

Van der Waals (right) and Heike Kamerlingh Onnes in Leiden with the helium 'liquefactor' (1908)

Johannes Diderik Van der Waals (1837 - 1923)

Nobel Prize in Physics (1910)

“for his work on the equation of state for gases and liquids”
I.1.3 Van der Waals Bonding

• *interaction potential* with short range repulsion due to Pauli principle:

$$E_{\text{pot}}(R) = 4\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^6 \right]$$

Lennard-Jones potential

<table>
<thead>
<tr>
<th></th>
<th>Ne</th>
<th>Ar</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ (eV)</td>
<td>0.0031</td>
<td>0.0104</td>
<td>0.0141</td>
<td>0.0200</td>
</tr>
<tr>
<td>σ (Å)</td>
<td>2.74</td>
<td>3.40</td>
<td>3.65</td>
<td>3.98</td>
</tr>
<tr>
<td>R_0/σ</td>
<td>1.14</td>
<td>1.11</td>
<td>1.10</td>
<td>1.09</td>
</tr>
</tbody>
</table>

11.6 K \leftrightarrow 1 meV

➔ Van der Waals bonding *is very weak*!!
determination of **equilibrium distance** of atoms in lattice: \(\nabla \) minimize total potential energy

\[
U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
\]

we rewrite

\[
U_{\text{tot}}(R) = 2N\epsilon \left[A_{12} \left(\frac{\sigma}{R} \right)^{12} - A_{6} \left(\frac{\sigma}{R} \right)^{6} \right]
\]

with

\[
A_{k} = \sum_{i \neq j} \frac{1}{\alpha_{ij}^{k}}, \quad k = 6, 12
\]

(lattice sum)

equilibrium distance: \(\partial U_{\text{tot}}(R) / \partial R = 0 \)

\[
R_{0} = \left(\frac{2A_{12}}{A_{6}} \right)^{1/6} \cdot \sigma \quad R_{0} = 1.09 \cdot \sigma
\]

hcp has lowest energy but fcc is found experimentally for nobel gases

\(\nabla \) **effect of zero-point fluctuations**

\(\nabla \) **more detailed band structure calculation is required**

(modification of Van der Waals binding energy due to overlap of excited atomic states with neighboring atoms in crystal structure)

\[
U_{\text{tot}}(R_{0}) = -N\epsilon \left(\frac{8.61016}{8.61107} \right) \text{ fcc \text{\textemdash} structure}
\]

\[
U_{\text{tot}}(R_{0}) = -N\epsilon \left(\frac{12.253}{12.1323} \right) \text{ hcp \text{\textemdash} structure}
\]

\[
\sum = \text{binding energy of a single atom } j \text{ with all other atoms } i. \text{ Total binding energy is obtained by multiplication with } N/2.
\]
I.1.4 Zero Point Fluctuations

- estimate of \textit{zero-point fluctuation amplitude} for harmonic oscillator:

\[E_{\text{tot}} = E_{\text{kin}} + E_{\text{pot}} \]

for \(x = x_{\text{max}} \):

\[E_{\text{kin}} = 0, \quad E_{\text{pot}} = \frac{1}{2} k x_{\text{max}}^2 = \frac{1}{2} M \omega^2 x_{\text{max}}^2 \quad \omega^2 = \frac{k}{M} \]

Spring constant \(k \) is given by second derivative of the interaction potential.

- by equating \(\frac{1}{2} k x_{\text{max}}^2 \) with the ground state energy \(\frac{1}{2} \hbar \omega \) of the harmonic oscillator, we obtain

\[x_{\text{max}}^2 = \frac{\hbar}{M \omega} = \frac{\hbar}{\sqrt{kM}} \]

for He: \(x_{\text{max}} \approx 0.3 - 0.4 \) times the lattice constant \(a \)

\[a \approx \left(\frac{V_{\text{mol}}}{N_A} \right)^{1/3} \quad V_{\text{mol}} = \text{mole volume, } N_A = \text{Avogadro number} \]

\textbf{(Lindeman criterion for melting of solid: } x_{\text{max}} \approx 0.3 \cdot a)\]

\(\Rightarrow \) Helium stays liquid even at \(T = 0 \) due to large zero-point fluctuations caused by

\(i \) weak Van der Waals forces (small \(k \))

\(ii \) small mass \(M \)
I.1.4 Zero Point Fluctuations

- we can use uncertainty relation to estimate the **kinetic energy** due to zero-point fluctuations:

\[
\Delta p \cdot \Delta x \simeq \hbar \quad \Rightarrow \quad \Delta p \sim \frac{\hbar}{\Delta x} \approx \frac{ \hbar}{0.3a} \approx \frac{\hbar}{a}
\]

\(a = \text{lattice constant}\)

\[
E_{zp} = \frac{\Delta p^2}{2m} \approx \frac{\hbar^2}{2Ma^2} \approx 18 \text{ K}
\]

⇒ large quantum mechanical zero-point energy due to small mass \(M\)

⇒ kinetic energy due to zero-point fluctuations is comparable to potential energy due to Van der Waals interaction

due to strong influence of quantum fluctuations, helium stays liquid down to temperatures, where \(\lambda_T \geq d \approx a\)

⇒ **Helium becomes a quantum liquid**
I.1.4 Zero Point Fluctuations

- total potential energy for solid and liquid He

solid: regular lattice

- same distance between atoms
- $E_{\text{pot}} (R) \approx \text{potential } U_{\text{tot}} (R)$

liquid: disordered system

- varying distance between atoms
- E_{pot} is smeared out due to averaging over various distances
- reduced depth and increased width of $E_{\text{pot}} (\langle R \rangle)$

Why does He not become solid at low T ??
I.1.4 Zero Point Fluctuations

- zero point fluctuations play a crucial role

For liquid helium:
- contribution of E_{zp} smaller due to broadened E_{pot}

- **without quantum fluctuations:**
 - 4He would be solid at a molar volume of 10 cm3

- **with quantum fluctuations:**
 - 4He stays liquid with molar volume of 28 cm3
I.1.4 Zero Point Fluctuations

Comparison of *ab initio* potential energies for Ne, Ar, Kr, Xe (symbols) with SAAP calculations (solid lines)

https://doi.org/10.1063/1.5085420

Comparison of 4He and Ne:

<table>
<thead>
<tr>
<th></th>
<th>He</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>potential minimum ε</td>
<td>1.03 meV</td>
<td>3.94 meV</td>
</tr>
<tr>
<td>interatomic distance R_0</td>
<td>0.265 nm</td>
<td>0.296 nm</td>
</tr>
</tbody>
</table>

1 meV = 11.6 K

Curvature determines spring constant:

$$k = \frac{1}{2} \left. \frac{\partial^2 E_{\text{pot}}(R)}{\partial R^2} \right|_{R=R_0} = \frac{36\varepsilon}{R_0^2} \quad \text{(for fcc)}$$
I.1.4 Zero Point Fluctuations

Quantum Parameter:

\[
\Lambda \equiv \frac{\langle E_{zp} \rangle}{\langle E_{pot} \rangle}
\]

Quantum Liquid:

\[
\Lambda > 1
\]

<table>
<thead>
<tr>
<th>liquid</th>
<th>Xe</th>
<th>Kr</th>
<th>Ar</th>
<th>Ne</th>
<th>H₂</th>
<th>(^4)He</th>
<th>(^3)He</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda)</td>
<td>0.06</td>
<td>0.10</td>
<td>0.19</td>
<td>0.59</td>
<td>1.73</td>
<td>2.64</td>
<td>3.05</td>
</tr>
</tbody>
</table>

- Large \(E_{zp}\), but also large \(E_{pot}\)
- Identical \(E_{pot}\), but different \(E_{zp}\)

Mass of \(^3\)He smaller than of \(^4\)He

- Even stronger effect of quantum fluctuations
- Larger quantum parameter
- Larger molar volume

\(^3\)He: **40 cm\(^3\)/mole**, \(^4\)He: **28 cm\(^3\)/mole**
I.1.6 \(pT \) phase diagram of \(^4\text{He} \)

- general nomenclature, definitions

![Phase diagram of \(^4\text{He} \)](https://commons.wikimedia.org/wiki/File:Phase-diag2.svg)
I.1.5 Helium under Pressure

- **enthalpy**: \(H = U + pV \)
 \(H = \min ? \)

- use of isenthalpy lines:
 \(H = \text{const.} \)

- with \(U = H - pV \)
 \(\Rightarrow \) straight lines with slope \(-p\)

- lowest isenthalpy:
 \(\Rightarrow \) tangent with slope \(-p\)

\[dH = \frac{dU}{dV} + pdV + Vdp \]

\[dH = TdS + Vdp \]
I.1.6 pT phase diagram of 4He

- **Clausius-Clapeyron:**

\[
\frac{\partial p_m}{\partial T} = \frac{\Delta S_m}{\Delta V_m}
\]

\[
\Delta S_m = S_{\text{liquid}} - S_{\text{solid}}
\]

\[
\Delta V_m = V_{\text{liquid}} - V_{\text{solid}}
\]

\[
\frac{\partial p_m}{\partial T} = \frac{\Delta S_m}{\Delta V_m} > 0
\]

\[
\Delta S_m \to 0 \quad \text{for} \quad T \to 0
\]

\[
\Rightarrow \frac{\partial p_m}{\partial T} \to 0 \quad \text{for} \quad T \to 0
\]

(agrees with 3rd Law of thermodynamics)

Phase diagram of 4He at low temperatures. 4He remains liquid at zero temperature if the pressure is below 2.5 MPa (approximately 25 atmospheres) \(\rightarrow\) no triple point.

The liquid has a phase transition to a superfluid phase, also known as He-II, at the temperature of 2.17 K (at vapor pressure). The solid phase has either hexagonal close packed (hcp) or body centered cubic (bcc) symmetry.
I.1.6 pT phase diagram of 3He

- phase diagram of 3He: note the logarithmic temperature scale. There are two superfluid phases of 3He, A and B.
- the line within the solid phase indicates a transition between spin-ordered and spin disordered structures (at low and high temperatures, respectively).

log T scale !!!

- normal/superfluid transition dominated by quantum effects
- quantum statistics matters!! (bosons vs. Fermions)
- nature of superfluid phase in 4He and 3He is different

big difference in value of T_{sf}
I.1.6 pT phase diagram of 3He

- **Clausius-Clapeyron:**

$$\frac{\partial p_m}{\partial T} = \frac{\Delta S_m}{\Delta V_m}$$

$$\frac{\partial p_m}{\partial T} = \frac{\Delta S_m}{\Delta V_m} < 0$$

since volume of liquid state is larger, the entropy of the liquid state must be smaller

→ more ordered liquid state!?
→ explanation follows later:
 ordering in momentum space in Fermi liquid
Characteristic Properties of Helium Isotopes

<table>
<thead>
<tr>
<th></th>
<th>^3He</th>
<th>^4He</th>
</tr>
</thead>
<tbody>
<tr>
<td>boiling point T_b (K) (@ p = 1 bar)</td>
<td>3.19</td>
<td>4.21</td>
</tr>
<tr>
<td>critical temperature T_c (K)</td>
<td>3.32</td>
<td>5.20</td>
</tr>
<tr>
<td>critical pressure p_c (bar)</td>
<td>1.16</td>
<td>2.29</td>
</tr>
<tr>
<td>superfluid transition temperature T_s (K)</td>
<td>0.0025</td>
<td>2.177</td>
</tr>
<tr>
<td>density ρ (g/cm3) (for $T \rightarrow 0$ K)</td>
<td>0.076</td>
<td>0.145</td>
</tr>
<tr>
<td>density ρ (g/cm3) (@ boiling point)</td>
<td>0.055</td>
<td>0.125</td>
</tr>
<tr>
<td>classical molar volume V_m (cm3 /mole) (@ saturated vapor pressure and $T = 0$ K)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>actual molar volume V_m (cm3 /mole) (@ saturated vapor pressure and $T = 0$ K)</td>
<td>36.84</td>
<td>27.58</td>
</tr>
<tr>
<td>melting pressure p_m (bar) (@ $T = 0$ K)</td>
<td>34.39</td>
<td>25.36</td>
</tr>
</tbody>
</table>

strong difference between superfluid properties of ^4He and ^3He

- different nuclear spin
- different quantum statistics
I.1.7 Characteristic Properties of Helium Isotopes

<table>
<thead>
<tr>
<th></th>
<th>^4He</th>
<th>^3He</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p^+ \uparrow$ $p^+ \downarrow$</td>
<td>n^\uparrow n^\downarrow</td>
</tr>
<tr>
<td></td>
<td>$p^+ \uparrow$ $p^+ \downarrow$</td>
<td>n^\uparrow</td>
</tr>
</tbody>
</table>

^3He:
- **pairing similar to superconductivity in metals**
- weak attractive interaction between Fermions \rightarrow „Cooper pairs“

^4He:
- **Bose-Einstein condensation of Bosons** without „pairing interaction“
- \rightarrow no attractive interaction required

3 He: different nuclear spin:
- $^4\text{He}: I = 0$
- $^3\text{He}: I = 1/2$

- different properties
- same chemical properties
- different statistics

[Diagram showing HE-3 and HE-4 superfluid condensation and Bose-Einstein condensation of Bosons in a lattice of positive ions.]
I.1.8 Specific Heat of 4He – Lambda Point

- first measurements by Dana and Kamerlingh Onnes in 1923
 - anomalous increase of C_p at about $T_\lambda = 2.177$ K
 - in publication (1926) some data points were omitted, since they were believed to result from exp. artefacts
- confirmation by Clusius and Keesom in 1932 (introduced denotation He I and He II → phase transition)
 - He I: normal fluid, He II: superfluid

Specific heat:

$$C_V \equiv \left(\frac{\partial U}{\partial T} \right)_V$$

Observation: specific heat diverges at $T = T_\lambda$

→ 1st order phase transition ??

→ shape: Lambda point

Free energy F: kink

$$F = U - TS \Rightarrow dF = -SdT - pdV + \mu dN$$

Entropy $S \propto (-\partial F / \partial T)^{V,N}$: jump

Spec. heat $C_V \propto (-\partial^2 F / \partial T^2)^{V,N}$: divergence

I.1.8 Specific Heat of ^4He – Lambda Point

- comparison of specific heat of ^4He and that of an ideal Bose-Einstein condensate

![Graph showing specific heat vs. temperature ratio](image)

- experimental result for ^4He
- ideal Bose gas
- ^4He II superfluid
- ^4He I normal fluid

$C_V \propto T^{3/2}$ for ^4He II superfluid

$C_V \propto T^3$ for ^4He I normal fluid

2^{nd} order phase transition is expected for ideal Bose-Einstein condensate

\Rightarrow no divergence of C_V at $T = T_\lambda$

measured behavior of ^4He near T_λ is more complicated

(detailed discussion follows later)
I.1.8 Specific Heat of 4He – Precision Measurement

- specific heat is measured with very high temperature resolution (\approx nK)
- extreme purity of liquid He is important
 \Rightarrow model system for testing physics of phase transitions
- experimental problem:
 \Rightarrow hydrostatic pressure
 \Rightarrow space experiments

$C_V \propto \log \left| \frac{T - T_\lambda}{T_\lambda} \right|$

$T < T_\lambda$

$T > T_\lambda$

$\log_{10} \left| \frac{T}{T_\lambda} - 1 \right|$

key result: second order phase transition with logarithmic singularity

Specific heat of liquid helium in zero gravity very near the lambda point
I.1.8 Specific Heat of 3He

$C_V(T)$ similar to a metallic superconductor

- $T > T_c$:
 linear $C_V(T)$ of Fermi liquid
 \[C_V(T) = \gamma T \]
 \[\gamma = \frac{3}{2} n \frac{\pi^2}{E_F} \frac{k_B^2}{3} \]
 (Sommerfeld, 1927)

- $T = T_c$:
 jump due to superfluid transition
 (as for SCs and predicted by BCS theory)

- $T < T_c$:
 reduction of C_V due to condensation of Fermions (similar to superconductors)

Source:
3He specific heat and thermometry at millikelvin temperatures
I.1 Summary of Experimental Observations

- specific heat of \(^4\text{He}\) is large: \(C_V \approx 1 \text{ J/g K}\) (compared to about \(10^{-5} \text{ J/g K}\) of Cu, \(C_V \propto n \cdot T/T_F\))

- latent heat of evaporation of \(^4\text{He}\) is small (20.59 J/g), but large compared to specific heat of other materials → application as cooling liquid

- strong anomaly of specific heat at \(T_\lambda\), origin unknown for more than 30 years
 → originates from Bose-Einstein condensation (bosonic character of \(^4\text{He}\), interacting bosonic system)

- shape of anomaly resembles greek letter \(\lambda\) → Lambda point

- below \(T_\lambda\) entropy and specific heat decrease rapidly with decreasing \(T\)
 → condensation into superfluid

- for \(^4\text{He}\) temperature variation of \(C_V\) below \(T_\lambda\) determined by collective excitations in superfluid (phonons, rotons – discussion later)
I.1 Summary of Experimental Observations

• for 4He phase transition at $T_\Lambda \rightarrow$ Lambda point is due to bosonic character of 4He

\Rightarrow no such transition was expected for 3He due to nuclear spin $I = 1/2$ (fermionic character of 3He)

• only after the development of BCS theory in 1957 (condensation of Cooper pairs into macroscopic quantum state), the search for the superfluid phase of 3He has been intensified

• 1963: Theory of superfluid 3He (Anderson and Morel, Balian and Werthamer)

• 1971: after the temperature regime below 5 mK has been accessed, the superfluid phase of 3He has been found by Osheroff, Richardsen and Lee in NMR experiment

D.D. Osheroff, R.C. Richardsen, D.M. Lee,

• there is not only a single superfluid phase, but three, depending on temperature, pressure and applied magnetic field

• 1977: first experiment with 3He in Germany at WMI (Eska, Schuberth, Uhlig,)
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.2 \(^4\text{He} \) as Ideal Bose Gas

- basic assumption

\(^4\text{He} \) is treated as a non-interacting gas of bosons

we already have learnt that there are Van der Waals interactions

➔ treatment of \(^4\text{He} \) as an ideal bosonic gas is only a \textit{first order approximation}

➔ interactions lead to deviations from behavior of ideal gas of non-interacting bosons
I.2 4He as Ideal Bose Gas

• high temperatures:

average distance \bar{R} of atoms in gas is large compared to *de Broglie wavelength* $\lambda_T = h/p \propto 1/\sqrt{T}$

\Rightarrow *classical gas with Maxwell-Boltzmann statistics*

thermal de Broglie wave length:

$$\lambda_T = \sqrt{\frac{\hbar^2}{2\pi mk_B T}} = \sqrt{\frac{2\pi \hbar^2}{mk_B T}}$$

• low temperatures:

- quantum mechanical description, as soon as average particle distance $\bar{R} = \lambda_T$

- classical gas of distinguishable particles turns into quantum soup of indistinguishable identical particles

\Rightarrow *quantum gas with Bose statistics for 4He (or Fermi statistics for 3He)*

\Rightarrow *Bose-Einstein condensation for bosons (4He)*
I.2.1 Bose-Einstein Condensation

high temperature:
- thermal velocity \(v_T \)
- density \(\frac{N}{V} = n \approx \frac{1}{R^3} \)
 - billiard balls

low temperature:
- de Broglie wavelength \(\lambda_T \)
 \[\lambda_T = \frac{h}{mv_T} \propto \frac{1}{\sqrt{T}} \]
 - wave packets

\[T = T_{\text{BEC}} : \]
- Bose-Einstein condensation
 \[\lambda_T \approx \frac{\bar{R}}{} \]
 - wave packets overlap

\[T \to 0 : \]
- pure Bose-Einstein condensate
 "Super"-mater wave

decreasing temperature
I.2.1 Bose-Einstein Condensation
I.2.1 Bose-Einstein Condensation

- phase transition occurs for *interactionless bosonic particles*
- originates from the *indistinguishability of identical particles*

Albert Einstein und Satyendranath Bose

proposed in 1924 that below a characteristic temperature T_0 a macroscopic number of bosons can condense into the state of lowest energy

Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman

experimental confirmation in 1995

Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"
I.2.1 Bose-Einstein Condensation

A. Einstein. Quantentheorie des einatomigen Gases.
SITZUNGSBERICHTE DER PREUSSECHEN AKADEMIE DER WISSENSCHAFTEN PHYSIKALISCH-MATHEMATISCHE KLASSE 3, 1925.
Pauli exclusion principle does not allow further compression of fermions in momentum space at low T.
I.2.1 Bose-Einstein Condensation

- degenerate multiparticle system: Bosons and Fermions (cf. I.1.1)

- at given density n:
 particle occupies cube with $d = 1/n^{1/3}$

- **classical gas (liquid)**: $\lambda_T \leq d$
 particles are distinguishable

- **quantum gas (liquid)**: $\lambda_T \geq d$
 particles are indistinguishable
 \Rightarrow degenerate quantum gas (liquid)

- **Bosons**: (4He,)
 \Rightarrow Bose-Einstein condensation

- **Fermions**: (3He, e, p, n,)
 \Rightarrow Fermi sea

4He: $n = 4 \cdot 10^{21}$ cm$^{-3}$,
3He: $n = 4 \cdot 10^{21}$ cm$^{-3}$,
e$^-$: $n = 3.6 \cdot 10^{21}$ cm$^{-3}$
I.2.1 Bose-Einstein Condensation

- cooling down atoms

<table>
<thead>
<tr>
<th></th>
<th>temperature</th>
<th>density (1/cm³)</th>
<th>phase space density</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic oven</td>
<td>500 K</td>
<td>10^{-1}</td>
<td>10^{-13}</td>
</tr>
<tr>
<td>Laser cooling</td>
<td>50 µK</td>
<td>10^{11}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>evaporation cooling</td>
<td>500 nK</td>
<td>10^{14}</td>
<td>2.612</td>
</tr>
<tr>
<td>Bose-Einstein condensation</td>
<td>10^{15}</td>
<td></td>
<td>10^{7}</td>
</tr>
</tbody>
</table>

$$\lambda_T^3/d^3$$

$$\lambda_T = \sqrt{\frac{\hbar^2}{2\pi mk_B T}} = \sqrt{2\pi \frac{\hbar^2}{mk_B T}} \propto \frac{1}{\sqrt{mT}}$$
I.2.1.1 Laser Cooling

- **Laser cooling:**
techniques in which atomic and molecular samples are cooled down to near absolute zero through the interaction with one or more laser fields

- **Laser cooling techniques**
 - Doppler cooling (Schawlow, Hänsch)
 - other techniques
 - Sisyphus cooling
 - Resolved sideband cooling
 - Velocity selective coherent population trapping (VSCPT)
 - Anti-Stokes inelastic light scattering (typically in the form of fluorescence or Raman scattering)
 - Cavity mediated cooling
 - Sympathetic cooling

- **Nobel Price in Physics 1997:**
 "for the development of methods to cool and trap atoms with laser light"
 for Steven Chu, Claude Cohen-Tannoudji und William D. Phillips
I.2.1.1 Laser Cooling – Doppler Cooling

- In Doppler cooling, the frequency of light is tuned slightly below an electronic transition in the atom.
- Because the light is detuned to the "red" (i.e., at lower frequency) of the transition, the atoms will absorb more photons if they move towards the light source, due to the Doppler effect.

- A stationary atom sees the laser neither red- nor blue-shifted and does not absorb the photon.
- An atom moving away from the laser sees it red-shifted and does not absorb the photon.
- An atom moving towards the laser sees it blue-shifted and absorbs the photon, slowing the atom.
- The photon excites the atom, moving an electron to a higher quantum state.
- The atom re-emits a photon, as its direction is random, there is no net change in momentum over many absorption-emission cycles.
I.2.1.1 Laser Cooling – Doppler Cooling

• **Doppler shift** (how does the moving atom see the laser frequency)

\[f_O = \frac{f_S}{1 - \frac{v_S \cdot e_{SO}}{c}} \]

atom = observer (O)
fixed position
laser = signal source (S) with frequency \(f_S \)
moving at velocity \(v_S \) towards atom

- red detuned laser light becomes resonant if atom moves towards the laser

• **momentum/velocity change of atom due to photon absorption**

\[\frac{\Delta p}{p} = \frac{\hbar k_{ph}}{m v} = \frac{\Delta v}{v} \Rightarrow \Delta v = \frac{\hbar k_{ph}}{m} \]
• atom-laser detuning with atom at rest:
 \[\delta_0 = \omega_{\text{atom}} - \omega_{\text{laser}} \]

• atom-laser detuning with atom moving at velocity \(\mathbf{v} \):
 \[
 \delta_{\text{Doppler}} = 2\pi(f_0 - f_S) = 2\pi f_0 \frac{\mathbf{v} \cdot \mathbf{e}_{SO}}{c} = 2\pi f_0 \frac{\hbar \mathbf{k} \cdot \mathbf{v}}{\hbar \omega_0} = \mathbf{k} \cdot \mathbf{v}
 \]

 effective detuning between atom and laser
 \[\delta_{\text{eff}} = \delta_0 - \delta_{\text{Doppler}} = \delta_0 - \mathbf{k} \cdot \mathbf{v} \]

• force acting on the atom:
 \[
 \mathbf{F} = \hbar \mathbf{k} \gamma = \hbar \mathbf{k} \frac{\Gamma}{2} \left(\frac{l}{I_0} \right) \frac{(l/l_0)}{1 + \frac{l}{I_0} + \left(2\delta_{\text{eff}}\right)^2} \]

 large intensity \(l \gg l_0 \):
 \[
 \mathbf{F} \rightarrow \hbar \mathbf{k} \frac{\Gamma}{2}
 \]

we use:
\[
\begin{align*}
 p &= \frac{E}{c}, \\
 c &= \frac{E}{p} = \frac{\hbar \omega}{m \mathbf{v}} = \frac{\hbar \omega}{\hbar \mathbf{k}}
\end{align*}
\]

\(\gamma \) = absorption rate
\(\Gamma \) = line width of atom transition, spontaneous emission rate
\(I_0 \) = saturation intensity
I.2.1.1 Laser Cooling – Doppler Cooling

- velocity distribution of an atom beam before and after (dashed line) the interaction with a laser beam of fixed frequency

- velocity distribution of an atom beam before and after (dashed line) the interaction with a laser beam of continuously decreasing frequency
I.2.1.1 Laser Cooling – Doppler Cooling

- **achievable minimum temperature in Doppler cooling:**
 - spontaneous absorption and emission are random processes
 - the average force acting on the atoms is statistically fluctuating
 - Brownian motion in phase space

- minimum temperature is given by the compensation of heating effect due to the random absorption and emission processes and maximum cooling rate

\[k_B T_{\text{Doppler}} = \frac{\hbar \Gamma}{2} \]

- e.g. \(T_{\text{Doppler}} = 240 \, \mu K \) for Na corresponding to average velocity of 1 km/h
 \(T_{\text{Doppler}} = 140 \, \mu K \) for Rb
I.2.1.1 Laser Cooling – Optical Molasses

- **optical molasses** (Steven Chu, 1985)
- An optical molasses consists of 3 pairs of counter-propagating circularly polarized laser beams intersecting in the region where the atoms are present.
- While for simple Doppler cooling the minimum temperature for Na atoms is about 250 µK, optical molasses can cool the atoms down to 40 µK, i.e. an order of magnitude colder.
I.2.1.1 Laser Cooling – Optical Molasses

• force acting by two laser with opposite directions

\[
\begin{align*}
F &= +\hbar k \Gamma \frac{1}{2} \frac{(I/I_0)}{1 + \frac{I}{I_0} + \left(\frac{2(\delta_0 - k \cdot v)}{\Gamma}\right)^2} - \hbar k \Gamma \frac{1}{2} \frac{(I/I_0)}{1 + \frac{I}{I_0} + \left(\frac{2(\delta_0 + k \cdot v)}{\Gamma}\right)^2}
\end{align*}
\]

total force
Superconductivity and Low Temperature Physics II

Lecture No. 3

R. Gross
© Walther-Meißner-Institut
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.2.2 Ideal Bose Gas

- consider a gas of \(N \approx 10^{22} \) bosons of mass \(m \) in a cube of volume \(V = L^3 \approx 1 \text{ cm}^3 \), canonical ensemble (given \(T, V, N \))

 \[\varepsilon_k = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L} \right)^2 n^2 \]
 \[\text{with } n^2 = n_x^2 + n_y^2 + n_z^2 \]

- \(\Delta \varepsilon/k_B T \leq 10^{-14} \) \(\Rightarrow \) level spacing small compared to thermal energy (e.g. He @ 10 K)
 \(\Rightarrow \) no influence on experimental result

- occupation probability:
 \[n_k = \frac{1}{\exp \left(\frac{\varepsilon_k - \mu}{k_B T} \right) - 1} \]

 Bose-Einstein distribution
 \(\mu = \) chemical potential

 important note:
 - \(\mu \leq \varepsilon_k \) for all \(k \) to avoid negative occupation probabilities
 - usually one sets \(\varepsilon_0 = 0 \) for the lowest energy state

- energy and particle number:
 \[U(T,V,\mu) = \sum_k \varepsilon_k n_k \]
 \[N(T,V,\mu) = \sum_k n_k \]
I.2.2 Ideal Bose Gas

• derivation of Bose-Einstein distribution (1)

- we use the single spin density of states of free particles in 3D:

$D(\varepsilon) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{\varepsilon}$,

$N(\varepsilon) = \frac{D(\varepsilon)}{V}$

- total entropy of the particle gas:

$S = k_B \ln \Omega$ \hspace{1cm} \Omega = \text{number of the available states at given total energy } E$

- Ω is determined by the number of possibilities to distribute the N particles on the available states

- we divide the k-space into spherical shells with the shell s containing M_s states

- the number of possibilities to put N_s particles on M_s states is given by

$\Omega_s = \frac{(N_s + M_s - 1)!}{N_s! (M_s - 1)!}$ \hspace{1cm} (we use $M_s = D(\varepsilon)\delta\varepsilon_s$ for the number of available states in the shell s)

- the total number Ω of possibilities is obtained by multiplying the numbers Ω_s

$\Omega = \prod_s \Omega_s = \prod_s \frac{(N_s + M_s - 1)!}{N_s! (M_s - 1)!}$
I.2.2 Ideal Bose Gas

• derivation of Bose-Einstein distribution (2)

 we use the Stirling approximation \(\ln N! = N \ln N - N \) and for \(N_s, \Omega_s \gg 1 \) we obtain

 \[
 S = k_B \ln \Omega = k_B \sum_s [(N_s + M_s) \ln(N_s + M_s) - N_s \ln N_s - M_s \ln M_s]
 \]

 in thermal equilibrium the particles are distributed on the shells to maximize \(S \) under the boundary conditions \(N = \sum_s N_s = \text{const.} \) and \(U = \sum_s \epsilon_s N_s = \text{const.} \).

 we maximize \(S \) for \(N = \text{const.} \) and \(U = \text{const.} \) we obtain

 \[
 \frac{\partial S}{\partial N_s} - \frac{1}{T} \frac{\partial U}{\partial N_s} + \frac{\mu}{T} \frac{\partial N}{\partial N_s} = 0 = \frac{\partial S}{\partial N_s} - k_B \beta \frac{\partial U}{\partial N_s} + k_B \beta \mu \frac{\partial N}{\partial N_s} \quad \beta = 1/k_B T
 \]

 performing the differentiation we obtain

 \[
 \ln(N_s + M_s) - \ln N_s - \beta \epsilon_s + \beta \mu = 0 \quad \Rightarrow \quad N_s = \frac{1}{\exp(\beta(\epsilon_s - \mu)) - 1} \quad M_s
 \]

 average particle number occupying state in shell \(s \)

 \[
 n_{BE} = \left[\exp \left(\frac{\epsilon_s - \mu}{k_B T} \right) - 1 \right]^{-1}
 \]
I.2.2 Ideal Bose Gas

- how to get rid of the summation over \(k \) ?

\[
\sum_k \ldots \Rightarrow \int Z(k) d^3 k = \frac{V}{(2\pi)^3} \int d^3 k
\]

\[
\sum_k \ldots \Rightarrow \int D(\varepsilon) d\varepsilon = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int \sqrt{\varepsilon} d\varepsilon
\]

\[
U(T, V, \mu) = \sum_k \varepsilon_k n_k \Rightarrow \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int \frac{\varepsilon^{3/2}}{\exp\left(\frac{\varepsilon - \mu}{k_B T}\right) - 1} d\varepsilon
\]

\[
N(T, V, \mu) = \sum_k n_k \Rightarrow \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int \frac{\varepsilon^{1/2}}{\exp\left(\frac{\varepsilon - \mu}{k_B T}\right) - 1} d\varepsilon
\]

Note:
we assume that the states are not degenerate, otherwise we have to multiply with degeneracy \(g_k \)
\[\Rightarrow \text{we assume } g_k = 1 \]

crucial point: the integral is bounded!! If the particle number \(N \) is too large and the temperature too low, the equation can no longer be satisfied
I.2.2 Ideal Bose Gas

- evaluation of the equation for the particle number

\[
N(T, V, \mu) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2}}{\exp\left(\frac{\varepsilon - \mu}{k_B T}\right) - 1} \, d\varepsilon = \frac{V}{4\pi^2} \left(\frac{2mk_B T}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{ye^{-x}}{1 - ye^{-x}} x^{1/2} \, dx
\]

with \(x = \varepsilon/k_B T = \beta \varepsilon\) and fugacity \(\gamma = \exp\left(\frac{\mu}{k_B T}\right)\)

Gamma function: \(\Gamma(t) = \int_0^\infty e^{-y} y^{t-1} \, dy\)

- to solve the integral we use the series expansion

\[
\frac{ye^{-x}}{1 - ye^{-x}} = ye^{-x} (1 + ye^{-x} + y^2 e^{-2x} + \ldots) = \sum_{p=1}^\infty \gamma^p e^{-px}
\]

- plugging in this expression we can perform the integration by using

\[
\int_0^\infty e^{-px} x^{1/2} \, dx = \frac{1}{p^{3/2}} \Gamma\left(\frac{3}{2}\right)
\]

\[
\int_0^\infty e^{-y} y^{1/2} \, dy = \frac{\sqrt{\pi}}{2} \Gamma\left(\frac{3}{2}\right)
\]

\[
\Rightarrow \int_0^\infty \frac{ye^{-x}}{1 - ye^{-x}} x^{1/2} \, dx = \frac{\sqrt{\pi}}{2} \sum_{p=1}^\infty \frac{\gamma^p}{p^{3/2} g_{3/2}(\gamma)}
\]

\[
N(T, V, \mu) = V \left(\frac{mk_B T}{2\pi\hbar^2}\right)^{3/2} g_{3/2}(\gamma) = \frac{V}{\lambda_T^3} g_{3/2}(\gamma)
\]

\[
N(T, V, \mu) \lambda_T^3 = g_{3/2}(\gamma)
\]
I.2.2 Ideal Bose Gas

- analysis of the function \(g_{3/2}(\gamma) \)

\[
g_{3/2}(\gamma) = \sum_{p=1}^{\infty} \frac{\gamma^p}{p^{3/2}}
\]

i. \(|\gamma| < 1\): the series converges
ii. \(|\gamma| > 1\): the series diverges
iii. \(|\gamma| = 1\): the series converges and has the value \(g_{3/2}(1) \)

\[
g_{3/2}(1) = \sum_{p=1}^{\infty} \frac{1}{p^{3/2}} = \zeta \left(\frac{3}{2} \right) = 2.612
\]

\[\zeta(3/2) = 2.61237 \ldots\]

\[
\zeta(s) = \sum_{p=1}^{\infty} \frac{1}{p^s}
\]

(Rieman Zeta function)

\[
\frac{dg_{3/2}(z)}{dz} = \frac{1}{z} \sum_{p=1}^{\infty} \frac{\gamma^p}{p^{1/2}}
\]

slope diverges for \(\gamma = 1 \)

important fact: \(g_{3/2}(\gamma) \) has maximum value 2.61 for \(\gamma \to 1 \), resp. \(\ln \gamma \to 0 \)

particle number \(N \) at given \(T \) is bounded to maximum value !!
I.2.2 Ideal Bose Gas

- what happens with decreasing T?

- λ_T increases $\propto 1/\sqrt{T}$ $\Rightarrow g_{3/2}(\gamma)$ has to increase to keep $N(T, V, \mu)$ constant

- problem:

$g_{3/2}(\gamma)$ has maximum value $g_{3/2}(1) = \zeta(3/2) = 2.61$ for $\gamma = 1$, resp. $\mu = 0$,

$\Rightarrow g_{3/2}(\gamma = 1)$ is related to maximum value $\lambda_T = \lambda_{T,\text{BEC}}$, resp. to minimum temperature T_{BEC}

\[
\lambda_{T,\text{BEC}}^3 \cdot n = g_{3/2}(\gamma = 1) = \zeta(3/2) = 2.61237 \ldots
\]

defines the characteristic temperature T_{BEC}:
for $T < T_{\text{BEC}}$ it is not possible to satisfy the equation $N(T, \mu) = \frac{V}{\lambda_T^3} g_{3/2}(\gamma)$

- with $\lambda_{T,\text{BEC}} = \frac{h}{\sqrt{2\pi mk_B T_{\text{BEC}}}}$, we obtain:

\[
n = 2.612 \left(\frac{mk_B T_{\text{BEC}}}{2\pi \hbar^2} \right)^{3/2}
\]

\[
T_{\text{BEC}} = \frac{2\pi \hbar^2}{mk_B} \left(\frac{n}{2.612} \right)^{2/3}
\]

Bose-Einstein condensation temperature

\[
\lambda_{T,\text{BEC}}^3 \cdot n \approx O(1) \rightarrow \text{criterion for the importance of quantum effects or degeneracy}
\]
I.2.2 Ideal Bose Gas

• how to solve the problem?

 − physical solution of the problem that we cannot satisfy the equation $N(T, V, \mu) = \frac{V}{\lambda^3} g^{3/2}(\gamma)$ below T_{BEC}

 \Rightarrow we have to put a significant number N_0 of the particles into the ground state $k = 0$

 \Rightarrow this is in agreement with the Bose-Einstein distribution

 \Rightarrow setting $\epsilon(k = 0) = \epsilon_0 = 0$, the number of bosons in the ground state is

 $$N_0(T, \mu) = \frac{1}{\exp\left(\frac{0 - \mu}{k_B T}\right) - 1} \approx \frac{1}{1 - \frac{\mu}{k_B T} - 1} = \frac{k_B T}{|\mu|} \Rightarrow N_0(T, \mu) \to \infty \text{ for } |\mu| = |\epsilon_0 - \mu| \to 0$$
I.2.2 Ideal Bose Gas

\[N_0 = \infty \]

\[\gamma = 1, \mu = 0 \]

\[n_k = \frac{1}{\gamma^{-1} \exp \left(\frac{\epsilon_k}{k_B T} \right) - 1} \]

\[\gamma = \exp \left(\frac{\mu}{k_B T} \right) \]

\[\gamma = 0.5, \mu = -0.69 \, k_B T \]

\[\gamma = 0.25, \mu = -1.39 \, k_B T \]

if \(|\epsilon_0 - \mu| = |0 - \mu| = |\mu| \to 0 \), the occupation number \(N_0 = n(k = 0) \) of the ground state \(\epsilon_0 = 0 \) strongly increases
I.2.2 Ideal Bose Gas

- calculation of \(N_0(T) = N(\varepsilon_0, T) \) for \((\varepsilon_0 - \mu) = (0 - \mu) = -\mu \to 0 \):

\[
N_0(T, \mu) = \frac{1}{\exp\left(\frac{\varepsilon_0 - \mu}{k_B T}\right) - 1} \approx \frac{1}{1 + \frac{\varepsilon_0 - \mu}{k_B T} - 1} = \frac{k_B T}{\varepsilon_0 - \mu} \to \infty \text{ for } \varepsilon_0 - \mu \to 0
\]

\(\Rightarrow N_0(T, \mu) \) grows dramatically for \((\varepsilon_0 - \mu) \to 0 \), that is, for \(\mu \to 0 \)

Note:

\[
\varepsilon_0 - \mu = k_B T \ln \left(1 + \frac{1}{N_0}\right) \approx k_B T \frac{N_0}{N_0} = k_B T
\]

\(\Rightarrow \) difference between ground state and chemical potential is much smaller than \(k_B T \)
I.2.2 Ideal Bose Gas

- detailed analysis of the chemical potential

\[n(T, \mu) = \frac{N(T, V, \mu)}{V} = \left(\frac{mk_B T}{2\pi \hbar^2} \right)^{3/2} \]

\[g_{3/2}(\gamma) = \frac{1}{\lambda_T^3} g_{3/2}(\gamma) \Rightarrow g_{3/2}(\gamma) = \left(\frac{2\pi \hbar^2}{mk_B T} \right)^{3/2} n(T, \mu) \]

- for high temperatures \(T \) and/or small particle density \(n \) we can use the approximation \(g_{3/2}(\gamma) \approx \gamma + \cdots \approx e^{\beta \mu} + \cdots \)

\[\Rightarrow e^{\beta \mu} = \left(\frac{2\pi \hbar^2}{mk_B T} \right)^{3/2} n(T, \mu) \]

\[\mu \approx -\frac{3}{2} k_B T \ln \left(\frac{mk_B T}{2\pi \hbar^2 n^{2/3}} \right) \]

- for \(T \to \infty \):
 \(\lambda_T \to 0, \mu \to -\infty, \gamma \to 0, \ln \gamma \to -\infty \) and therefore \(g_{3/2}(\gamma) \to 0 \)

- for decreasing \(T \):
 \(\lambda_T \) increases, \(\mu/k_B T \) increases \(\to 0, \gamma \) increases \(\to 1 \) and therefore \(g_{3/2}(\gamma) \to 2.61 \)
I.2.2 Ideal Bose Gas

- what happens if we decrease T to values below T_{BEC}?
 - for $T < T_{\text{BEC}}$, there is no solution of equation $n(T, \mu) = \frac{1}{\lambda^3} g_{3/2}(\gamma)$ as $g_{3/2}(\gamma)$ has maximum value $g_{3/2}(1)$ for $\gamma \to 1$

 \Rightarrow for $T < T_{\text{BEC}}$, the particle number N_0 in the ground quantum state ($\varepsilon_0 = 0$) must become large (first recognized by Einstein)

 occupation of the ground state $\varepsilon_0 = 0$: $N_0 = \frac{1}{\exp(-\mu/k_B T) - 1} \Rightarrow \mu = -k_B T \ln \left(1 + \frac{1}{N_0} \right) \approx -k_B T \frac{1}{N_0}$

 - from the total particle number N a macroscopically large number N_0 has to be placed in ground state ε_0
 - macroscopically large means that N_0 is proportional to system volume V

 - if the fraction of particles in the ground state becomes finite at $T = T_{\text{BEC}}$, then in the thermodynamic limit $V \to \infty$ the particle number $N_0 \to \infty$ and hence the chemical potential $\mu \to 0$

 $\Rightarrow \mu = 0$ for $T \leq T_{\text{BEC}}$

as μ corresponds to the average energy required to add a particle to the system, the result is evident: we are adding particles only to the ground state $\varepsilon_0 = 0$
I.2.2 Ideal Bose Gas

- for $T \leq T_{\text{BEC}}$: how are the N particles distributed among the available states?

\[
N = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2} \right)^{3/2} \int_0^\infty \frac{\sqrt{\epsilon}}{\exp \left(\frac{\epsilon - \mu}{k_B T} \right) - 1} d\epsilon \quad \text{yields } \mu \to 0 \text{ for } T \to T_{\text{BEC}}
\]

- for $\mu \to 0$ ($T \to T_{\text{BEC}}$), we obtain

\[
N_0 = \frac{1}{\exp \left(\frac{\epsilon_0 - \mu}{k_B T} \right) - 1} \approx \frac{k_B T}{|\mu|} \to \infty
\]

\[
\epsilon_0 = \frac{\hbar^2}{2m} \left(\frac{\pi}{L} \right)^2 \propto \frac{1}{V^{2/3}} \propto \frac{1}{N^{2/3}} \to 0 \quad \text{for } N \to \infty \quad \text{(thermodynamic limit)}
\]

below T_{BEC}: macroscopic occupation $N_0 \gg 1$ of the ground state is required

- key result:

 - at $T \leq T_{\text{BEC}}$ a finite fraction of all particles occupies the ground state
 - this phenomenon is called Bose-Einstein condensation
 - the name „condensation“ is used since in analogy to the gaseous-liquid transition the condensed particles do no longer contribute to the pressure (see discussion below)
I.2.2 Ideal Bose Gas

• for $T \leq T_{\text{BEC}}$: occupation of the first excited state

for $\mu \to 0$ and $T \sim 1$ K: level spacing for 10^{22} atoms in a box with $L = 1$ cm: \[\Delta \varepsilon / k_B T = \varepsilon_1 / k_B T \leq 10^{-14} \]

\[
n_1(T) = \frac{1}{1 + \exp \left(\frac{\varepsilon_1 - \mu}{k_B T} \right) - 1} \approx \frac{1}{1 + \frac{\varepsilon_1 - \mu}{k_B T} - 1} \approx \frac{k_B T}{\varepsilon_1 - \mu} \approx 10^{14}
\]

n_1 and all $n_k > 1$ are small compared to N_0 and the total particle number $N = 10^{22}$ (justifies why only the ground state was singled out in the calculation of T_{BEC})

– more detailed calculation: $n_1/N_0 \propto N^{-1/3}$, i.e. $n_1/N_0 \to 0$ for $N \to \infty$

\[
n_1 = \frac{k_B T}{\varepsilon_1 - \mu} \cdot \frac{\varepsilon_0 - \mu}{k_B T} = - \frac{\mu}{\varepsilon_1 - \mu} \approx - \frac{\mu}{\varepsilon_1} \approx \frac{k_B T}{N_0 \varepsilon_1}
\]

we use $N_0(T, \mu) \approx \frac{k_B T}{\varepsilon_0 - \mu} = \frac{k_B T}{-\mu}$

for $T < T_{\text{BEC}}/2$ we can use the crude approximations $N_0 \approx N$, $T \approx T_{\text{BEC}} \propto N^{2/3}$:

\[
n_1 \propto \frac{1}{N^{1/3}} \propto \frac{1}{V^{1/3}} \quad \Rightarrow \text{already at } T \approx T_{\text{BEC}}/2, \text{ we have } N_0 \gg n_1, n_{k>1}
\]

– for $T \to 0$: $\varepsilon_{k>0}/k_B T \to \infty$ and hence $n_{k>0} \to 0$, $\mu/k_B T = 1/N_0 \approx 0$: all bosons occupy ground state
I.2.2 Ideal Bose Gas

• For $T < T_{\text{BEC}}$ we have to treat the ground state ε_0 separately

\[
N = \sum_{\mathbf{k}} \frac{1}{\exp\left(\frac{\varepsilon_{\mathbf{k}} - \mu}{k_B T}\right) - 1} = N_0 + N_{\text{ex}} = N_0 + \sum_{\mathbf{k} \neq 0} \left[\exp\left(\frac{\varepsilon_{\mathbf{k}}}{k_B T}\right) - 1 \right]^{-1} = N_0 + \int_0^\infty D(\varepsilon)n(\varepsilon) \, d\varepsilon
\]

Particles in ground state

Particles in excited states

• We obtain for free bosons:

\[
N_{\text{ex}} = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2}}{\exp\left(\frac{\varepsilon - \mu}{k_B T}\right) - 1} \, d\varepsilon = \frac{V}{4\pi^2} \left(\frac{2mk_B T}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{\gamma e^{-x}}{1 - \gamma e^{-x}} x^{1/2} \, dx
\]

With $x = \beta\varepsilon$ and

\[
\text{fugacity } \gamma = \exp\left(\frac{\mu}{k_B T}\right) = 1
\]

\[
n = n_0 + n_{\text{ex}} = n_0 + 2.612 \left(\frac{mk_B T}{2\pi \hbar^2}\right)^{3/2}
\]

\[
\frac{n_0}{n} = 1 - \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}
\]

n_0: condensate density
n_{ex}: normal fluid density

\[
T_{\text{BEC}} = \frac{2\pi \hbar^2}{mk_B} \left(\frac{n}{2.612}\right)^{2/3} \Rightarrow n = 2.612 \left(\frac{2\pi \hbar^2}{mk_B T_{\text{BEC}}}\right)^{3/2}
\]
I.2.2 Ideal Bose Gas

- **Summary: temperature dependence of N_0 and N_{ex}**

- $T > T_{\text{BEC}}$: $N_0 = O(1)$ \Rightarrow can be neglected

$$N = N_{ex} = \frac{V}{4\pi^2}\left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{\sqrt{\varepsilon}}{\exp\left(\frac{\varepsilon - \mu}{k_BT}\right) - 1} \, d\varepsilon$$

we assume constant particle number:

$$N = N_0(T) + N_{ex}(T) = \text{const.}$$

- $T = T_{\text{BEC}}$: $\mu \to 0$, $\lambda^3_{T,\text{BEC}} \cdot n = 2.612$ \Rightarrow $N = N_{ex} = 2.612 \cdot \frac{V}{\lambda^3_{T,\text{BEC}}}$

- $T \leq T_{\text{BEC}}$: $\mu = 0$, $N = N_0 + N_{ex} = N_0 + 2.612 \cdot \frac{V}{\lambda^3_{T}} = N_0 + 2.612 \cdot \frac{V}{\lambda^3_{T}} \cdot \frac{\lambda^3_{T,\text{BEC}}}{\lambda^3_{T,\text{BEC}}}$

$$N = N_0 + 2.612 \cdot \frac{V}{\lambda^3_{T,\text{BEC}}} \cdot \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} = N_0 + N \cdot \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}$$

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \quad \frac{N_{ex}}{N} = \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}$$
I.2.2 Ideal Bose Gas

- normal fluid density \((T < T_{\text{BEC}})\)
 \[
 \frac{N_{\text{ex}}}{N} = \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}
 \]

- superfluid or condensate density
 \[
 \frac{N_0}{N} = 1 - \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}
 \]

\[
T_{\text{BEC}} = \frac{2\pi \hbar^2}{mk_B} \left(\frac{n}{2.612}\right)^{2/3}
\]

\[
\lambda_T^3 = \left(\frac{2\pi \hbar^2}{mk_BT}\right)^{3/2}
\]
I.2.2 Ideal Bose Gas

Total number N (inset) and ground-state fraction N_0/N as a function of T/T_{BEC}.

The solid (dotted) line shows the infinite (finite) N theory curves. At the transition, the cloud consists of 40 000 ^{87}Rb atoms at 280 nK.

Bose-Einstein Condensation in a Dilute Gas: Measurement of Energy and Ground-State Occupation

J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman, and E. A. Cornell
I.2.2 Ideal Bose Gas

$$N_{0} = \frac{1}{1 - \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2}}$$

$$n_{k} = \frac{1}{\exp\left(\frac{\xi_{k}}{k_{B}T} \right) - 1}$$

$$N_{\text{ex}} = \sum_{k \neq 0} \left[\exp\left(\frac{\xi_{k}}{k_{B}T} \right) - 1 \right]^{-1}$$
I.2.2 Ideal Bose Gas

- Bose-Einstein condensation can be viewed as condensation of gas in momentum space
 \[\text{all atoms have the same momentum} \]

- Bose-Einstein condensation corresponds to order-disorder phase transition (first order phase transition)

\[T = 0 \]
only ground state is occupied

\[0 < T < T_{\text{BEC}} \]
still macroscopic occupation of the ground state
we defined the Bose-Einstein temperature T_{BEC} as the temperature, where $N_{\text{ex}}/N = 1$:

$$T_{\text{BEC}} = \frac{2\pi \hbar^2}{mk_B} \left(\frac{n}{2.612} \right)^{2/3}$$
I.2.2 Ideal Bose Gas

\[T > T_{\text{BEC}} \]

\[0 < T < T_{\text{BEC}} \]

\[T = 0 \]

- \(T > T_{\text{BEC}} \):
 - Excitations

- \(0 < T < T_{\text{BEC}} \):
 - Excitations
 - Condensate

- \(T = 0 \):
 - Condensate
I.2.2 Ideal Bose Gas

thermodynamic properties of ideal Bose gas: inner energy U

$$U = \sum_k \varepsilon_k n_k \Rightarrow U = \int D(\varepsilon) \varepsilon \, d\varepsilon = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int \frac{\varepsilon^{3/2}}{\exp\left(\frac{\varepsilon - \mu}{k_B T}\right) - 1} \, d\varepsilon$$

$$U = \frac{V}{4\pi^2} k_B T \left(\frac{2mk_B T}{\hbar^2}\right)^{3/2} \int_0^\infty \frac{ye^{-x}}{1 - \gamma e^{-x}} x^{3/2} \, dx$$

we use again $\frac{ye^{-x}}{1 - \gamma e^{-x}} = ye^{-x}(1 + \gamma e^{-x} + \gamma^2 e^{-2x} + \ldots) = \sum_{p=1}^{\infty} \gamma^p e^{-px}$ and

$$\int_0^\infty e^{-p x} x^{3/2} \, dx = \frac{1}{p^{5/2}} \int_0^\infty e^{-y} y^{3/2} \, dy = \frac{1}{p^{5/2}} \frac{3\sqrt{\pi}}{4} \Gamma(5/2)$$

$$\Rightarrow \int_0^\infty \frac{ye^{-x}}{1 - \gamma e^{-x}} x^{3/2} \, dx = \frac{3\sqrt{\pi}}{4} \sum_{p=1}^{\infty} \frac{\gamma^p \Gamma(5/2) g_{5/2}(\gamma)}{p^{5/2} g_{5/2}(\gamma)} = \Gamma(5/2)g_{5/2}(\gamma)$$

$$\Rightarrow U = V \frac{3}{2} k_B T \left(\frac{mk_B T}{2\pi \hbar^2}\right)^{3/2} g_{5/2}(\gamma)$$

with $V = N\lambda_T^3 / g_{3/2}(\gamma)$, resp. $V = N\lambda_{T,BEC}^3 / g_{3/2}(1)$ we obtain

$$U = \frac{3}{2} Nk_B T \frac{g_{5/2}(\gamma)}{g_{3/2}(\gamma)}$$

$$U = \frac{3}{2} Nk_B T \left(\frac{T}{T_{BEC}}\right)^{3/2} \frac{g_{5/2}(\gamma)}{g_{3/2}(1)}$$
I.2.2 Ideal Bose Gas

- thermodynamic properties of ideal Bose gas: inner energy U

i. $T > T_{\text{BEC}}$:

$$U(T) = \frac{3}{2} N k_B T \frac{g_{5/2}(\gamma)}{g_{3/2}(\gamma)}$$

ii. $T \gg T_{\text{BEC}}$: it is sufficient to use only the first term in the series evolution of g:

$$g_{5/2}(\gamma) = \sum_{p=1}^{\infty} \frac{\gamma^p}{p^{5/2}} \approx \gamma; \quad g_{3/2}(\gamma) = \sum_{p=1}^{\infty} \frac{\gamma^p}{p^{3/2}} \approx \gamma \quad \text{since} \ \gamma \to 1$$

$$U(T) = \frac{3}{2} N k_B T$$

result for gas of classical non-interacting particles
(quantum statistics does not play any role at high T)

iii. $T < T_{\text{BEC}}$:

$$U(T) = \frac{3}{2} N k_B T \frac{g_{5/2}(1)}{g_{3/2}(1)}$$

$$g_{5/2}(1) = \zeta\left(\frac{5}{2}\right) = 1.341, \quad g_{3/2}(1) = \zeta\left(\frac{3}{2}\right) = 2.612$$

$$U(T) = \frac{3}{2} N_{\text{ex}} k_B T \frac{g_{5/2}(1)}{g_{3/2}(1)} = \frac{3}{2} N \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} k_B T \frac{g_{5/2}(1)}{g_{3/2}(1)} = 0.770 N \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} k_B T$$

we use

$$N_0 = 1 - \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \Rightarrow N_{\text{ex}} = N - N_0 = N \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}$$

particles in ground state $\epsilon_0 = 0$ do not contribute!
Ideal Bose Gas

\[U(T) = \frac{3}{2} N k_B T \]

classical result

- \(U(T) \) decreases towards lower \(T \) since more and more particles condense into the ground state \(\varepsilon_0 \)
I.2.2 Ideal Bose Gas

- thermodynamic properties of ideal Bose gas: specific heat: \(C_V(T) = \left(\frac{\partial U}{\partial T} \right)_{V,N} \)

i. \(T > T_{\text{BEC}} \): \(\mu < 0, \gamma < 1, g_{5/2}(\gamma) \) and \(g_{3/2}(\gamma) \) are functions of \(T \) and \(n = N/V \)

with \(V = N\lambda_T^3 / g_{3/2}(\gamma) \), resp. \(V = N\lambda_{T,\text{BEC}}^3 / g_{3/2}(1) \) we obtain

\[
U(T) = \frac{3}{2} N k_B T \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \frac{g_{5/2}(\gamma)}{g_{3/2}(1)} = \frac{3}{2} N k_B T \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \frac{g_{5/2}(\gamma)}{\zeta(3/2)}
\]

\[
C_V(T) = \left(\frac{\partial U}{\partial T} \right)_{V,N} = \frac{15}{4} N k_B \frac{g_{5/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} + \frac{3}{2} N k_B \frac{T}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \frac{\partial g_{5/2}(\gamma)}{\gamma^{-1} g_{3/2}(\gamma)} \frac{\partial \gamma}{\partial T}
\]

to derive \(\left(\frac{\partial \gamma}{\partial T} \right)_N \) we use \(\lambda_T^3 \cdot \frac{N}{V} = \lambda_T^3 \cdot n = g_{3/2}(\gamma) \) \(\Rightarrow 1 = \frac{g_{3/2}(\gamma)}{\lambda_T^3 \cdot n} = \frac{g_{3/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \)

temperature derivative yields: \(0 = \frac{3}{2 T} g_{3/2}(\gamma) \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} + \frac{1}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \frac{\partial g_{3/2}(\gamma)}{\partial \gamma} \frac{\partial \gamma}{\gamma^{-1} g_{1/2}(\gamma)} \frac{\partial \gamma}{\partial T}
\]

\(\Rightarrow \left(\frac{\partial \gamma}{\partial T} \right)_N = -\frac{3 \gamma g_{3/2}(\gamma)}{2 T g_{1/2}(\gamma)} \)
I.2.2 Ideal Bose Gas

- thermodynamic properties of ideal Bose gas: specific heat: $C_V(T) = \left(\frac{\partial U}{\partial T}\right)_{V,N}$

i. $T > T_{\text{BEC}}$:

$$C_V(T) = \left(\frac{\partial U}{\partial T}\right)_{V,N} = \frac{15}{4} N k_B \frac{g_{5/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} + \frac{3}{2} N k_B \frac{T}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \frac{\partial g_{5/2}(\gamma)}{\partial \gamma} \frac{\partial \gamma}{\partial T} \frac{\gamma^{-1} g_{3/2}(\gamma)}{N}$$

$$C_V(T) = \frac{15}{4} N k_B \frac{g_{5/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} + \frac{3}{2} N k_B \frac{T}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \frac{g_{3/2}(\gamma)}{\gamma} \frac{\gamma^{-1} g_{3/2}(\gamma)}{2T g_{1/2}(\gamma)}$$

$$C_V(T) = N k_B \frac{g_{5/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \left[\frac{15}{4} - \frac{9}{4} \frac{g_{3/2}(\gamma)}{g_{5/2}(\gamma)} \frac{g_{3/2}(\gamma)}{g_{1/2}(\gamma)}\right]$$

$$C_V(T) = N k_B \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2} \left[\frac{15}{4} \frac{g_{5/2}(\gamma)}{\zeta(3/2)} - \frac{9}{4} \frac{g_{3/2}(\gamma)}{\zeta(3/2)} \frac{g_{3/2}(\gamma)}{g_{1/2}(\gamma)} \frac{T_{\text{BEC}}}{T} \right]$$

we use $\lambda_T^3 \frac{N}{V} = \lambda_T^3 \cdot n = g_{3/2}(\gamma) \Rightarrow 1 = \frac{g_{3/2}(\gamma)}{\lambda_T^3 \cdot n} = \frac{g_{3/2}(\gamma)}{\zeta(3/2)} \left(\frac{T}{T_{\text{BEC}}}\right)^{3/2}$
I.2.2 Ideal Bose Gas

- thermodynamic properties of ideal Bose gas: specific heat: \(C_V(T) = \left(\frac{\partial U}{\partial T} \right)_{V,N} \)

ii. \(T \gg T_{\text{BEC}} \):

\[
C_V(T) = \frac{3}{2} N k_B, \quad C_V^{\text{mol}}(T) = \frac{3}{2} N_A k_B = \frac{3}{2} R
\]

result for classical gas of non-interacting particles

(quantum statistics does not play any role at high \(T \))

iii. \(T < T_{\text{BEC}} \):

\[
C_V(T) = \frac{15}{4} N k_B \frac{\zeta_{5/2}(1)}{\zeta_{3/2}(1)} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} = 1.925 \cdot N k_B \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2}
\]

interpretation: all \(N_{\text{ex}} = N \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \) non-condensed particles contribute \(O(k_B) \) to the specific heat

\[
C_V(T) = \frac{5}{2} \frac{U(T)}{T} \quad C_V = T \frac{\partial S}{\partial T} \quad S(T) = \frac{5}{3} U(T) \quad F = U - TS \quad F(T) = -\frac{2}{3} U(T)
\]
I.2.2 Ideal Bose Gas

- thermodynamic properties of ideal Bose gas: specific heat: \(C_V(T) = \left(\frac{\partial U}{\partial T} \right)_{V,N} \)

\[C_V(T) = \frac{3}{2} N k_B \] classical result

- \(C_V(T) \) decreases towards lower \(T \) since more and more particles condense into the ground state \(\varepsilon_0 \)
- temperature \(T_{\text{BEC}} \) represents phase transition temperature
- \(C_V(T) \) shows cusp at \(T_{\text{BEC}} \), indicating that the free energy is not analytical at \(T_{\text{BEC}} \)
- phase transition is usually interpreted as 2nd order phase transition
• thermodynamic properties of ideal Bose gas: pressure \[p = \left(\frac{\partial F}{\partial V} \right)_{N,T} \]

we discuss only the case \(T < T_{\text{BEC}} \):

\[p = -\left(\frac{\partial F}{\partial V} \right)_{N,T} = \frac{2}{3} \left(\frac{\partial U}{\partial V} \right)_{N,T} \]

with \(V = N \lambda_{T,\text{BEC}}^3 g_{3/2}(1) \) we obtain

\[U = \frac{3}{2} N k_B T \frac{g_{5/2}(1)}{g_{3/2}(1)} = \frac{3}{2} \lambda_{T,\text{BEC}}^3 \frac{V}{g_{3/2}(1)} k_B T \frac{g_{5/2}(1)}{g_{3/2}(1)} = \frac{3}{2} \lambda_{T,\text{BEC}}^3 \]

\[p = \frac{2}{3} \left(\frac{\partial U}{\partial V} \right)_{N,T} = \frac{k_B T}{\lambda_{T}^3} g_{5/2}(1) \]

pressure of the gas does not depend on \(V \) in the BEC regime \(\Rightarrow \) compressibility of the BEC phase is infinite

this pathological behavior is removed by the inclusion of finite interactions
I.2.2 Ideal Bose Gas

- experimental realization with ultra-cold atomic gases
 - first realization in 1995 with trapped alkali metal atoms, e.g. ^{87}Rb (Eric A. Cornell, Carl E. Wieman, Wolfgang Ketterle)
 - typical densities: $n \approx 10^{11} - 10^{15} \text{ cm}^{-3} \Rightarrow T_{\text{BEC}} \approx 10 \text{ nK} - 1 \mu\text{K}$ due to large atomics mass (compared to ^4He)
 - ^{87}Rb: electron configuration: $(\text{Kr})5s^1 \Rightarrow J = \frac{1}{2}$, nuclear spin $I = \frac{3}{2} \Rightarrow$ total spin is even $\Rightarrow \text{boson}$
 - similar behavior: ^7Li, ^{23}Na
 - important: alkali metal atoms interact (short-range repulsion, attractive Van der Waals interaction)
 - atoms do not cluster since most interactions are elastic two-particle interactions:
 - particles cannot bind since they cannot get rid of their kinetic energy
 - rate for three-particle interactions is very small
 - description of pairwise interactions: $V(r_1 - r_2) \approx g \delta(r_1 - r_2)$

 $g = \text{strength of the scatterer}$

 $a_s = \frac{\hbar^2}{mg} = s\text{-wave scattering length}$

 (interactions and effect of trapping potential will be discussed later)
velocity distribution for a gas of rubidium atoms, \(n = 2.5 \times 10^{12} \text{ cm}^{-3} \)

the measured distribution confirmed the existence of a Bose-Einstein condensate.

Left: \(T > T_{\text{BEC}} \approx 170 \text{ nK} \)
Center: \(T < T_{\text{BEC}} \)
Right: nearly pure condensate

experimental technique:

- switch-off the trap potential and let the condensate freely expand
- image the position of the atoms after a specific time by absorption of laser light by the atom cloud
- measured spatial distribution is proportional to velocity distribution in condensate

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor
I.2.2 Ideal Bose Gas

velocity distribution for a gas of sodium atoms, \(n \sim 10^{14} \text{ cm}^{-3} \)

the measured distribution confirmed the existence of a Bose-Einstein condensate.

Left: \(T > T_{\text{BEC}} \approx 2 \mu K \)
Center: \(T < T_{\text{BEC}} \)
Right: after further evaporation cooling

Bose-Einstein Condensation in a Gas of Sodium Atoms
I.2.2 Ideal Bose Gas

- what determines the width of the central peak associated with the condensate

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

expected:
- delta function distribution since condensate atoms occupy the same state

observed:
- finite width Δx of the condensate due to trapping of condensate in trapping potential of finite width Δx
 - resulting finite momentum distribution:
 $$\Delta p \approx \hbar/\Delta x \quad \Rightarrow \quad \Delta v \approx \hbar/m\Delta x$$
- width of the normal component:
 $$\frac{1}{2} m \langle v_x^2 \rangle = \frac{1}{2} k_B T \quad \Rightarrow \quad \Delta v \approx \sqrt{k_B T/m}$$
Space Station Experiment (2018)

Changing density of a cloud of rubidium atoms as it is cooled to lower and lower temperatures (going from left to right) approaching absolute zero. The emergence of a sharp peak in the later graphs confirms the formation of a Bose-Einstein condensate occurring here at about $T_{\text{BEC}} = 130 \text{ nK}$
• concluding remarks

– Bose-Einstein condensates have been realized with many different atoms
– ideal model system, as most parameters can we well controlled and changed
– it became evident the the finite interactions between the particles has an important impact

➢ ideal non-interacting Bose gas is not a superfluid that can show frictionless flow
 ➢ no persistent current of the condensate
 ➢ no vortices

➢ we will see later that this is due to fact that the so-called Landau critical velocity of the superfluid is zero
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
I.1.1 Quantum Gases & Liquids
I.1.2 Helium
I.1.3 Van der Waals Bonding
I.1.4 Zero-Point Fluctuations
I.1.5 Helium under Pressure
I.1.6 pT-Phase Diagram of 4He and 3He
I.1.7 Characteristic Properties of 4He and 3He
I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
I.2.1 Bose-Einstein Condensation
I.2.2 Ideal Bose Gas
I.2.3 Bose Gas with Interactions
I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
I.3.1 Two-Fluid Model
I.3.2 Experimental Observations
I.3.3 Two-Fluid Hydrodynamics
I.3.4 Excitation Spectrum of 4He

I.4 Vortices
I.4.1 Quantization of Circulation
I.4.2 Experimental Study of Vortices

I.5 3He
I.5.1 normal fluid 3He
I.5.2 solid 3He and Pomeranchuk effect
I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.2.3 Bose Gas with Interactions

• How to treat the finite interaction between particles?
 ➢ description by **pairwise interaction**: \(V(\mathbf{r}_1 - \mathbf{r}_2) \approx g \, \delta(\mathbf{r}_1 - \mathbf{r}_2) \)
 \[g = \text{strength of the interaction} \]
 \[a_s = \frac{\hbar^2}{mg} = \text{s-wave scattering length} \]
 ➢ modeling of pairwise interactions by **average „mean field“ potential** seen by every particle due to interaction with all others
 \[V_{\text{eff}}(\mathbf{r}) \approx g \, n(\mathbf{r}) \]
 ➢ in addition, particles see finite **trapping potential** \(V_{\text{trap}}(\mathbf{r}) \) of e.g. a magnetic trap
 ➢ Schrödinger equation for particles in trap:
 \[\left(-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{trap}}(\mathbf{r}) + V_{\text{eff}}(\mathbf{r}) \right) \psi_k(\mathbf{r}) = \varepsilon_k \psi_k(\mathbf{r}) \]

important:
Schrödinger equation is nonlinear since \(V_{\text{eff}}(\mathbf{r}) \) depends on \(n(\mathbf{r}) \) and hence on wave function \(\psi_k(\mathbf{r}) \) itself
➔ **self-consistent solution**: **Gross-Pitaevskii equations**

particle density and number:
\[
 n(\mathbf{r}) = \sum_k \left[\exp \left(\frac{(\varepsilon_k - \mu)}{k_B T} \right) - 1 \right]^{-1} |\psi_k(\mathbf{r})|^2
\]
\[
 N = \int n(\mathbf{r}) d^3r = \sum_k \left[\exp \left(\frac{(\varepsilon_k - \mu)}{k_B T} \right) - 1 \right]^{-1}
\]
I.2.3 Bose Gas with Interactions

• Now: more detailed discussion of finite interactions between particles

assumptions: (i) weak interaction (allows pertubative treatment)
(ii) repulsive interaction (attractive interaction may lead to instability)

we will show: repulsive interaction stabilizes the Bose-Einstein condensate
(counter-intuitive, as a repulsive interaction is expected to push particles out of a single-particle ground state)

• Gedanken experiment:
we consider two bosons and show that in the presence of a repulsive interaction it is more favorable to put them into the same eigenstate
I.2.3 Bose Gas with Interactions

• We first consider the case without any interaction:

 - bosons = particles in a box described by normalized wave functions \(\phi(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r}), \phi(\mathbf{r}) = \exp(i\bar{\mathbf{k}} \cdot \mathbf{r}), \)

 ➢ two bosons in the same eigenstate
 \[(\mathbf{k} = \bar{\mathbf{k}}, \phi = \bar{\phi}, |\phi(\mathbf{r}_1)|^2 = |\phi(\mathbf{r}_2)|^2 = 1) \]

\[\psi(\mathbf{r}_1, \mathbf{r}_2) = \phi(\mathbf{r}_1)\phi(\mathbf{r}_2) = \exp(i\mathbf{k} \cdot (\mathbf{r}_1 + \mathbf{r}_2)) \]

 symmetric wave function: \(\psi(\mathbf{r}_1, \mathbf{r}_2) = \psi(\mathbf{r}_2, \mathbf{r}_1) \)

 \[\int |\psi(\mathbf{r}_1, \mathbf{r}_2)|^2 d^3r_1 d^3r_2 = 1 \]

 ➢ two bosons in different eigenstates:
 \[(\mathbf{k} \neq \bar{\mathbf{k}}, \phi \neq \bar{\phi}, |\phi(\mathbf{r}_1)|^2 = |\bar{\phi}(\mathbf{r}_1)|^2 = 1) \]

\[\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\sqrt{2}} [\phi(\mathbf{r}_1)\bar{\phi}(\mathbf{r}_2) + \phi(\mathbf{r}_2)\bar{\phi}(\mathbf{r}_1)] \]

 symmetric superposition of the two possibilities \(\phi(\mathbf{r}_1)\bar{\phi}(\mathbf{r}_2) \) and \(\phi(\mathbf{r}_2)\bar{\phi}(\mathbf{r}_2) \)

 \[\int |\psi(\mathbf{r}_1, \mathbf{r}_2)|^2 d^3r_1 d^3r_2 = 1 \]
I.2.3 Bose Gas with Interactions

• what happens if we add repulsive potential $V(r_1 - r_2)$ between the two bosons?

- energy change for the two bosons in the same eigenstate: $\psi(r_1, r_2) = \phi(r_1)\phi(r_2) = \exp(ik \cdot (r_1 + r_2))$

$$(k = \tilde{k}, \phi = \tilde{\phi}, |\phi(r_1)|^2 = |\phi(r_2)|^2 = 1)$$

$$\delta E = \int d^3r_1 d^3r_2 |\psi(r_1, r_2)|^2 V(r_1 - r_2) = \int d^3r_1 d^3r_2 V(r_1 - r_2) = \int d^3r V(r) = E_0 > 0$$

we use $r = r_1 - r_2$ and $R = (r_1 + r_2)/2$ and $d^3r_1 d^3r_2 = d^3R d^3r$

note that $\delta E = \int d^3r V(r) = E_0 > 0$ for a purely repulsive potential
I.2.3 Bose Gas with Interactions

➢ energy change for the two bosons in different eigenstates:
\[\psi(r_1, r_2) = \frac{1}{\sqrt{2}} [\phi(r_1)\bar{\phi}(r_2) + \phi(r_2)\bar{\phi}(r_1)] \]

\[\delta E = \int d^3r_1 d^3r_2 |\psi(r_1, r_2)|^2 V(r_1 - r_2) \]

\[= \frac{1}{2} \int d^3r_1 d^3r_2 \left[|\phi(r_1)|^2 |\bar{\phi}(r_2)|^2 + |\phi(r_2)|^2 |\bar{\phi}(r_1)|^2 + \phi(r_1)\bar{\phi}(r_2)\phi^*(r_2)\bar{\phi}^*(r_1) + c.c. \right] V(r_1 - r_2) \]

o since \(|\phi(r_1)|^2 = 1 \) and \(|\phi(r_2)|^2 = 1 \), the first two terms in [] yields the contribution \(\int d^3r \ V(r) = E_0 \)

o the last term in [] comes from the fact that the wave function must be symmetric with respect to the exchange of particles (bosons) since they are indistinguishable ➔ results in additional exchange energy

o since \(\phi(r_1)\bar{\phi}(r_2)\phi^*(r_2)\bar{\phi}^*(r_1) = \exp[i(\vec{k} - \vec{\kappa}) \cdot (r_1 - r_2)] \), last term in [] results in an energy change \(V_{\vec{k} - \vec{\kappa}/2} \)

with

\[V_{\vec{k} - \vec{\kappa}} = \int d^3r \ e^{i(\vec{k} - \vec{\kappa}) \cdot r} V(r) \]

Fourier transform of \(V(r) \)

(we assume \(V(r) = V(-r) \) so that the FT is real: \(V_{\vec{k}} = V_{\vec{k}} \) ➔ the complex conjugate yields the same contribution \(V_{\vec{k} - \vec{\kappa}/2} \))

\[\Rightarrow \delta E = E_0 + V_{\vec{k} - \vec{\kappa}} \] (if we assume two bosons with different wave numbers)

\[\Rightarrow \delta E = E_0 \] (if we assume two bosons with the same wave number)

due to the bosonic nature of the particles, it is energetically favorable to put them into the same quantum state in the presence of a repulsive interaction potential
I.2.3 Bose Gas with Interactions

- description of the finite interaction between particles within second quantization formalism

\[\mathcal{H}_{\text{int}} = \frac{V_0}{2} \sum_{k_1,k_2,q}^N \hat{b}^\dagger_{k_2+q/2} \hat{b}^\dagger_{-k_1+q/2} \hat{b}_{-k_2+q/2} \hat{b}_{k_1+q/2} \]

describes the following scattering process:

particle \(|\mathbf{k}_1 + \mathbf{q}/2\rangle \) is destroyed and \(|\mathbf{-k}_1 + \mathbf{q}/2\rangle \) created and particle \(|\mathbf{-k}_2 + \mathbf{q}/2\rangle \) is destroyed and \(|\mathbf{k}_2 + \mathbf{q}/2\rangle \) created

interaction range with radius \(R \)
I.2.3 Bose Gas with Interactions

- description of the finite interaction between particles within second quantization formalism

\[
\mathcal{H}_{\text{int}} = \frac{V_0}{2} \sum_{k_1,k_2,q}^N \hat{b}^\dagger_{k_2+q/2} \hat{b}^\dagger_{-k_1+q/2} \hat{b}_{-k_2+q/2} \hat{b}_{k_1+q/2}
\]

we have made the following simplifying assumptions:

- we assume a **local interaction** \(V(\mathbf{r}_1 - \mathbf{r}_2) \) → Fourier transform \(V_{k_1,k_2,q} \) does not depend on \(k_1 \) and \(k_2 \):
 \[
 V_{k_1,k_2,q} \approx V_q
 \]
- since we are at very low \(T \), the involved velocities and hence wavevectors \(q \) are very small
- if the interaction range \(R \) of the potential is small, \(qR \ll 1 \), then the FT \(V_q \) is essentially independent of \(q \)
 and we can use the approximation \(V_q = V_0 \)
- as above, we assume two bosons with the same wave number \(k_1 = k_2 \) and set it equal to zero
- we describe the two states of the interacting bosons with the bosonic operators \(\hat{b} \) and \(\hat{b}^\dagger \)

\[
\mathcal{H}_{\text{int}} = \frac{V_0}{2} \left[\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} \right]
\]

we do not include terms like \(\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} \), as we do not consider states occupied with two \(\hat{b} \) bosons
I.2.3 Bose Gas with Interactions

- relevant relations
 - both states occupied with single boson: \(|1,1\rangle = \hat{b}^\dagger \hat{b}^\dagger |0\rangle \) with \(|0\rangle = \) normalized vacuum state
 - \(\langle 1,1|1,1\rangle = \langle 0|\hat{b} \hat{b} \hat{b}^\dagger \hat{b}^\dagger |0\rangle = 1 \), as \(\hat{b} \) and \(\hat{b}^\dagger \) commute and \(\hat{b} \hat{b}^\dagger |0\rangle = 0 \)
 - one state occupied with two bosons and the other is empty: \(|2,0\rangle = \hat{b}^\dagger \hat{b}^\dagger |0\rangle = (\hat{b}^\dagger)^2 |0\rangle \)
 \[\langle 2,0|2,0\rangle = \langle 0|bb \hat{b}^\dagger \hat{b}^\dagger |0\rangle = \langle 0|b(1 + \hat{b}^\dagger b)\hat{b}^\dagger |0\rangle = 2 \], as \([b, \hat{b}^\dagger] = 1 \) and \(b\hat{b}^\dagger |0\rangle = 0 \)
 \[\Rightarrow |2,0\rangle = \frac{1}{\sqrt{2}} (\hat{b}^\dagger)^2 |0\rangle \] correctly normalized state

- interaction energy for the states \(|1,1\rangle \) and \(|2,0\rangle \):
 - \(|2,0\rangle \): only the first term in \(\frac{V_0}{2} \left[\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} \right] \) contributes
 \[\langle 0|\hat{b} \hat{b} (\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b}) \hat{b}^\dagger \hat{b}^\dagger |0\rangle = 2\langle 0|\hat{b} \hat{b} (\hat{b}^\dagger)^2 |0\rangle = 2 \rightarrow \langle 2,0|\mathcal{H}_{\text{int}} |2,0\rangle = V_0 \]
 - \(|1,1\rangle \): all four last terms in \(\frac{V_0}{2} \left[\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} + \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} \right] \) contribute equally, since \(\hat{b} \) and \(\hat{b}^\dagger \) commute
 \[4 \langle 0|\hat{b} \hat{b} (\hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b}) \hat{b}^\dagger \hat{b}^\dagger |0\rangle = 4\langle 0|\hat{b} \hat{b} \hat{b} \hat{b}^\dagger |0\rangle \langle 0|\hat{b} \hat{b}^\dagger \hat{b}^\dagger |0\rangle = 4 \rightarrow \langle 1,1|\mathcal{H}_{\text{int}} |1,1\rangle = 2V_0 \]
I.2.3 Bose Gas with Interactions

- generalization to states with N bosons (without calculation)

$$\langle N, 1|\mathcal{H}_{\text{int}}|N, 1 \rangle - \langle N + 1, 0|\mathcal{H}_{\text{int}}|N + 1, 0 \rangle = N V_0$$

- it is energetically more favorable to put an additional boson into the same state as occupied by all the others rather than putting it into another state

- energy difference scales with the particle number N and is therefore an extensive variable
I.2.3 Bose Gas with Interactions

- **Bogoliubov theory of weakly interacting Bose gas** (N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947))

 - **starting hypothesis:** condensation of a large number of bosons into ground state also exists at finite interactions
 - since ground state $k = 0$ is occupied by large particle number, we have to deal with large quantum numbers
 - quantum fluctuations become negligible
 - the value of the commutator $\left[\hat{b}_0, \hat{b}_0^\dagger\right] = 1$ is small compared to these large values
 - we can set $\left[\hat{b}_0, \hat{b}_0^\dagger\right] = 0$, i.e. the operators commute like classical quantities
 - number of bosons in ground state, $N_0 = \langle \hat{b}_0^\dagger \hat{b}_0 \rangle \approx \hat{b}_0^\dagger \hat{b}_0$, is large and also the numbers \hat{b}_0^\dagger and \hat{b}_0 themselves
 - as \hat{b}_0^\dagger and \hat{b}_0 are complex conjugate, we can take them real by eliminating an irrelevant phase factor:
 $$ N_0 = \hat{b}_0^\dagger \hat{b}_0 = \hat{b}_0^2 \quad \text{and} \quad \hat{b}_0^\dagger = \hat{b}_0 = \sqrt{N_0} $$

 - **interaction energy:**
 $$ H^{(0)}_{\text{int}} = \frac{V_0}{2} \left[\frac{\hat{b}_0^\dagger \hat{b}_0^\dagger \hat{b}_0 \hat{b}_0}{\hat{b}_0^\dagger \hat{b}_0^\dagger \hat{b}_0 \hat{b}_0 = N_0^2} + \hat{b}_0^\dagger \hat{b}_0^\dagger \hat{b}_0 \hat{b}_0 \right] $$
 - dominating term is the one with all wave numbers equal and zero
 $$ E^{(0)}_{\text{int}} = \frac{V_0}{2} N_0^2 $$
I.2.3 Bose Gas with Interactions

- interaction energy, next order term in powers of \hat{b}_0:

 → we cannot have three \hat{b}_0 factors due to momentum conservation

 → we have to consider only terms with two \hat{b}_0 factors in the next order

 → momentum conservation requires that we have factors $\hat{b}_k^+\hat{b}_k^-$ (4 possibilities), $\hat{b}_k^+\hat{b}_{-k}^+$ (1 possibility) and $\hat{b}_k\hat{b}_{-k}$ (1 possibility)

 $$\mathcal{H}_{\text{int}}^{(1)} = \frac{V_0}{2} \hat{b}_0^2 \sum_k (4\hat{b}_k^+\hat{b}_k + \hat{b}_k^+\hat{b}_{-k}^+ + \hat{b}_k^+\hat{b}_{-k}^+)$$

 $\mathcal{H}_{\text{int}}^{(1)}$ contains a contribution $\hat{b}_0^2 \sum_k \hat{b}_k^+\hat{b}_k = N_0 \sum_k \hat{n}_k$, where \hat{n}_k is the particle number operator for bosons in state k

 → we have to take into account the bosons that are not in the ground state $k = 0$ (as already done for the non-interacting Bose gas)

 $$N = N_0 + \sum_k \hat{b}_k^+\hat{b}_k \Rightarrow \frac{V_0}{2} (\hat{b}_0^2)^2 = \frac{V_0}{2} N_0^2 = \frac{V_0}{2} \left(N - \sum_k \hat{b}_k^+\hat{b}_k \right)^2 \approx \frac{V_0}{2} \left(N^2 - 2N \sum_k \hat{b}_k^+\hat{b}_k \right) \approx \frac{V_0}{2} N_0^2 - \frac{V_0}{2} 2N \sum_k \hat{b}_k^+\hat{b}_k$$

 the last two terms do not conserve particle number:
 additional states are excited out of the condensate or absorbed into the condensate

$$\mathcal{H} = \sum_k \varepsilon_k \hat{b}_k^+\hat{b}_k + N \frac{V_0}{2} \left(2\hat{b}_k^+\hat{b}_k + \hat{b}_k^+\hat{b}_{-k}^+ + \hat{b}_k^+\hat{b}_{-k}^+ \right)$$

kinetic energy additional ground state energy
I.2.3 Bose Gas with Interactions

- diagonalization of the Hamiltonian by Bogoliubov transformation
 - introduction of new operators being linear combinations of the original bosonic operators

\[B_k^\dagger = (\alpha_k^\dagger, \beta_{-k}) = \frac{c_k^\dagger}{(b_k^\dagger, b_{-k})} u_k \quad B_k = (\alpha_k, \beta_{-k}^\dagger) = u_k^\dagger \frac{c_k}{(b_k, b_{-k}^\dagger)^T} \]

\[\alpha_k^\dagger = u_k b_k^\dagger - v_k b_{-k} \quad \alpha_k = u_k^* b_k - v_k^* b_{-k}^\dagger \]

\[\beta_{-k} = v_k^* b_k^\dagger + u_k b_{-k} \quad \beta_{-k}^\dagger = v_k b_k + u_k^* b_{-k}^\dagger \]

- appropriate unitary matrix to make transformed energy matrix \(\tilde{\mathcal{E}}_k = u_k^\dagger \mathcal{E}_k u_k \) diagonal:

\[u_k = \begin{pmatrix} u_k & v_k \\ -v_k & u_k \end{pmatrix} \quad u_k^\dagger = \begin{pmatrix} u_k^* & -v_k^* \\ v_k & u_k \end{pmatrix} \]

\[u_k^\dagger \mathcal{E}_k u_k = \tilde{\mathcal{E}}_k = \begin{pmatrix} E_k & D_k \\ -D_k & -E_k \end{pmatrix} \]

choose \(u_k \) and \(v_k \) such that off-diagonal terms vanish
I.2.3 Bose Gas with Interactions

- **diagonalization of the Hamiltonian by Bogoliubov transformation** (without detailed calculation)

\[u_k = \sqrt{\frac{1}{2} \left(\frac{\varepsilon_k + NV_0}{E_k} \right)} + 1 \]

\[v_k = \sqrt{\frac{1}{2} \left(\frac{\varepsilon_k + NV_0}{E_k} \right)} - 1 \]

\[u_k^2 + v_k^2 = 1 \]

with

\[E_k = \sqrt{(\varepsilon_k + NV_0)^2 - (NV_0)^2} = \sqrt{\varepsilon_k (\varepsilon_k + 2NV_0)} \]

resulting Hamiltonian

\[\mathcal{H} = \mathcal{H}_0 + \sum_k \left\{ E_k \alpha_k^{\dagger} \alpha_k + E_k \beta_{-k}^{\dagger} \beta_{-k} \right\} \]

elementary excitations of the interacting Bose gas are non-interacting bosonic quasiparticles described by the creation and annihilation operators \(\alpha_k^{\dagger} \alpha_k \) and \(\beta_{-k}^{\dagger} \beta_{-k} \)
I.2.3 Bose Gas with Interactions

- nature of excitations

 - large k: kinetic energy dominates: $\varepsilon_k \gg NV_0 \Rightarrow E_k \simeq \varepsilon_k, u_k \approx 1, v_k \approx 0$,

 $\alpha_k^+ = u_k \hat{b}_k^+ - v_k \hat{b}_{-k} \approx \hat{b}_k^+$

 excitations are identical to bare bosons

 - $k \to 0$: kinetic energy vanishes: $\varepsilon_k \ll NV_0 \Rightarrow E_k \simeq \sqrt{2NV_0\varepsilon_k} = \sqrt{NV_0/m} \hbar k = \hbar k c_s$

 $c_s = \text{sound velocity}$

 propagating sound waves are expected for interacting system, correctly described by Bogoliubov theory \Rightarrow quantized sound waves: phonons

 $u_k \simeq v_k$ with $u_k^2 \approx v_k^2 = 1/2$

 excitations are equal superpositions of \hat{b}_k^+ and \hat{b}_{-k} (\hat{b}_k^+ and \hat{b}_{-k}) both adding (removing) a momentum $\hbar k$ to the system \Rightarrow consistent with excitation of quantized sound waves
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of \(^4\)He and \(^3\)He
 I.1.7 Characteristic Properties of \(^4\)He and \(^3\)He
 I.1.8 Specific Heat of \(^4\)He and \(^3\)He

I.2 \(^4\)He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of \(^4\)He

I.3 Superfluid \(^4\)He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of \(^4\)He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 \(^3\)He
 I.5.1 normal fluid \(^3\)He
 I.5.2 solid \(^3\)He and Pomeranchuk effect
 I.5.3 superfluid \(^3\)He

I.6 \(^3\)He / \(^4\)He mixtures
I.2.4 Bose-Einstein Condensation of 4He

• What do we already know about 4He?

- 4He does not become solid at ambient pressure due to the weak Van der Waals interaction and the large zero-point fluctuations

- 4He is a boson and shows superfluidity discovered in 1937 by Pyotr Kapitsa ("Viscosity of Liquid Helium Below the λ-Point", Nature 141, 74 (1938)) and John F. Allen, and Don Misener ("Flow of Liquid Helium II", Nature 142, 643 (1938))

- the properties of superfluid 4He often deviate from those of an ideal Bose-Einstein condensate
 - $C_V \propto T^3$ instead of $C_V \propto T^{3/2}$ at low T
 - behavior of C_V around T_{BEC} is different – sharp λ-shaped peak instead of “cusp”: 4He shows critical behavior consistent with 3D-XY universality class

- description of superfluid 4He by macroscopic wave function $\psi(\mathbf{r})$

\[
\psi(\mathbf{r}) = \psi_0(\mathbf{r}) e^{i\theta(\mathbf{r})}, \quad |\psi_0(\mathbf{r})|^2 = n_0(\mathbf{r}), \quad N_0 = \int |\psi_0(\mathbf{r})|^2 \, d^3r
\]

\[
n_0 = \frac{N_0}{V} = \text{particle density in condensate}
\]
Bose-Einstein Condensation of 4He

I.2.4

How well does the ideal Bose gas describe the normal-superfluid transition temperature?

- $T_{BEC} \approx 0.5 \text{ K}$ by using data of gaseous 4He (is well below normal-superfluid transition temperature)
- $T_{BEC} \approx 3.1 \text{ K}$ by using data of liquid 4He (agrees only qualitatively with measured $T_\lambda = 2.17 \text{ K}$)

4He is not an ideal Bose gas:

interaction of He atoms

- hard core repulsion
- admixture of higher k-states (is equivalent to larger k-uncertainty)
- reduction of particle number in ground state

$T_{BEC} = \frac{2\pi \hbar^2}{mk_B} \left(\frac{n}{2.612} \right)^{2/3}$
• superfluid fraction of 4He is only about 14% for $T \to 0$: $n_0(T = 0) \approx 0.14 n$

experimental observations

\[T \ll T_\lambda: \quad n_s(T) \approx n_s(0) - AT^\alpha \quad \text{with} \quad \alpha \approx 4 \]

\[T \sim T_{\text{BEC}}: \quad n_s(T) \approx \begin{cases} B(T - T_\lambda)^\beta & \text{for} \quad T < T_\lambda \\ 0 & \text{for} \quad T > T_\lambda \end{cases} \]

data obtained from x-ray scattering and neutron scattering

I.2.4 Bose-Einstein Condensation of 4He

- superfluid fraction of 4He

condensate fraction of superfluid 4He as a function of the density. Open circles are experimental results obtained from deep inelastic neutron scattering, squares are HD predictions at the same densities. The star diamond, and hexagonal points correspond to quantum-field hydrodynamics (HD) results using the experimental measures of the static structure factor $S(p)$

I.2.4 Bose-Einstein Condensation of ^4He

- superfluid fraction of ^4He – more detailed treatment (1)
 - reduced superfluid fraction is caused by the fact that superfluid ^4He is a strongly interacting Bose gas described by
 \[
 \mathcal{H} = \sum_{i=1}^{N} \frac{\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} V(r_i - r_j)
 \]
 - solutions are symmetric N-particle wave functions
 \[
 \psi(r_1, ..., r_i, ..., r_j, ..., r_N) = \psi(r_1, ..., r_j, ..., r_i, ..., r_N)
 \]
 \[
 \mathcal{H}\psi(r_1, r_2, ..., r_N) = E_n\psi(r_1, r_2, ..., r_N)
 \]
 - occupation probability of eigenstate with energy E_n
 \[
 P_n = \frac{1}{Z_N} \exp(-E_n/k_B T) \quad \text{with partition function} \quad Z_N = \sum_{n} \exp(-E_n/k_B T)
 \]
 - if particle number is not fixed (grand canonical ensemble):
 \[
 Z_N = \sum_{n,N} \exp\left(-\frac{E_n^{(N)}}{k_B T} - \mu N\right)
 \]
I.2.4 Bose-Einstein Condensation of 4He

- superfluid fraction of 4He – more detailed treatment (2)

 - for grand canonical ensemble:

 $$\Omega(T, \mu) = -k_B T \ln Z$$

 grand canonical potential

 $$\langle N \rangle = k_B T \frac{\partial \ln Z}{\partial \mu}$$

 average particle number

 $$U = \langle H \rangle = \mu \langle N \rangle - k_B T \frac{\partial \ln Z}{\partial \beta}$$

 inner energy (with $\beta = 1/k_B T$)

 - calculations have to be performed numerically, e.g. by perturbation theory (if interactions are weak) or quantum Monte Carlo simulations in the case of strong interactions (as for superfluid 4He)

 key result: superfluid 4He forms a condensate of He atoms in the ground state, however, not all atoms occupy ground state at $T = 0$

see e.g. D.M. Ceperley, Rev. Mod. Phys. 67, 279-355 (1995)
I.2.4 Bose-Einstein Condensation of 4He

- superfluid fraction of 4He – more detailed treatment (3)

 - single particle density matrix:
 \[
 \rho(r_1 - r_1') = N \int \psi_0^*(r_1, r_2, ..., r_N)\psi_0(r_1', r_2, ..., r_N) d^3r_2 ... d^3r_N
 \]
 - corresponds to correlation function between the many-body wave functions at the coordinates $r_1, r_2, ..., r_N$ and $r_1', r_2, ..., r_N$
 - by integrating of all coordinates despite r_1 and r_1', we average over all configurations of the particles despite the first ones

 - properties of the single particle density matrix:
 - depends only on relative coordinate $r_1 - r_1'$ due to translational invariance
 - for $r_1 = r_1'$ we obtain:
 \[
 \int \rho_1(0) d^3r_1 = \frac{N}{V} = n
 \]

 - for ideal non-interacting Bose gas, we have $\psi_0(r_1, r_2, ..., r_N) = \psi_0(r_1)\psi_0(r_2) ... \psi_0(r_N)$
 \[
 \rho(r_1 - r_1') = N\psi_0^*(r_1)\psi_0(r_1') \left| \psi_0(r_1) \right|^2 |\psi_0(r_2)|^2 ... |\psi_0(r_N)|^2 d^3r_2 ... d^3r_N = N\psi_0^*(r_1)\psi_0(r_1')
 \]
 \[
 \rho(r_1 - r_1') = \frac{N}{V} = n \text{ since } \psi_0(r) = \frac{1}{\sqrt{V}} \exp(ik \cdot r)
 \]
• superfluid fraction of 4He – more detailed treatment (4)
 – for interacting Bose gas we obtain more complicated result
 ➢ $\rho(\mathbf{r}_1 - \mathbf{r}_1')$ is no longer independent of $\mathbf{r}_1 - \mathbf{r}_1'$
 ➢ $\rho(\mathbf{r}_1 - \mathbf{r}_1')$ decreases with increasing $\mathbf{r}_1 - \mathbf{r}_1'$ and converges towards a constant value at large $\mathbf{r}_1 - \mathbf{r}_1'$
 – condensate density:

\[
n_0 = \lim_{|\mathbf{r}_1' - \mathbf{r}_1| \to \infty} \rho(\mathbf{r}_1 - \mathbf{r}_1')
\]

for superfluid 4He:

\[
n_0(T = 0) \approx 0.14 n
\]
I.2.4 Bose-Einstein Condensation of 4He

- superfluid fraction of 4He – more detailed treatment (5)
 - plausibility consideration by considering spatial distribution function

- without interactions particles can be described by plane waves with $k = k_0$
 $g(\mathbf{r}_1 - \mathbf{r}_2) = 1$, all particles in ground state: $n_0 = n$

- in the presence of interactions, $g(\mathbf{r}_1 - \mathbf{r}_2) \neq 1$ for short distances
 - we have to admix states with higher k to describe the situation: spatial localization requires finite Δk
 - some states with $k > k_0$ are occupied: $n_0 < n$
 - n_0 becomes smaller, if $g(\mathbf{r}_1 - \mathbf{r}_2)$ deviates more strongly from $g(\mathbf{r}_1 - \mathbf{r}_2) = 1$, i.e. with increasing interactions
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.3 Superfluid 4He

- nomenclature and history
 - superfluid 4He can flow through tiny capillaries without any friction → nomenclature superfluidity
 - discovery of superfluidity in 1937 by two groups:
 (i) P. Kapitza, Nature 141, 74 (1938)
 (ii) J.F. Allen, A.D. Misener, Nature 141, 75 (1938)
 - theory of superfluidity:
 - F. London (1938): superfluidity caused by ordered state in momentum space
 - L. Tisza (1938): two-fluid model: prediction of second sound
 - L.D. Landau (1941-47): two-fluid hydrodynamics of superfluid 4He
 → superfluidity as a consequence of the excitation spectrum
 L.D. Landau, J. Phys. USSR 5, 71 (1941); ibid. 8, 1 (1944); ibid. 11, 91 (1947).
 - R.P. Feynman (1953): excitation spectrum postulated by Landau follows from quantum mechanics
I.3.1 Two-Fluid Model

- **two-fluid model allows phenomenological description of superfluid 4He**
 microscopic description is difficult → treatment using hydrodynamics

- already in 1938: anomalous properties of superfluid 4He can be well described by two-fluid model:
 mixture of two non-interacting fluid components
 (I. Tisza, J. de Phys. et Radium 1, 164 (1938))

- formal description of superfluid 4He as the sum of a *normal* and a *superfluid* component

\[\rho = \rho_s + \rho_n \]

- $\rho_s, \rho_n =$ superfluid and normal fluid densities

- $T = 0$: $\rho_s = \rho$ and $\rho_n = 0$

- $T = T_\lambda$: $\rho_s = 0$ and $\rho_n = \rho$

- **superfluid component:** *no entropy:* \(S_s = 0 \)* \hspace{1cm} **zero viscosity:** \(\eta_s = 0 \)

- **normal fluid component:** *carries total entropy:* \(S_n = S \)* \hspace{1cm} **finite viscosity:** \(\eta_n = \eta \)
I.3.1 Two-Fluid Model

- **superfluid component**

 - description of superfluid component by macroscopic wave function

 \[
 \psi(\mathbf{r}) = \psi_0(\mathbf{r})e^{i\theta(\mathbf{r})}, \quad |\psi_0(\mathbf{r})|^2 = n_0(\mathbf{r}), \quad N_0 = \int |\psi_0(\mathbf{r})|^2 \, d^3r
 \]

 \[
 n_0 = \frac{N_0}{V} = \text{particle density in condensate}
 \]

 - use quantum mechanics to derive expression for the particle current density (probability current density in 3D)

 \[
 J_\rho = \frac{\hbar}{2mu} \left[\psi^*(\mathbf{r})\nabla \psi(\mathbf{r}) - \psi(\mathbf{r})\nabla \psi^*(\mathbf{r}) \right]
 \]

 \[
 J_\rho = \frac{\hbar}{2mu} \left[\sqrt{n_0} e^{-i\theta(\mathbf{r})} \left(e^{i\theta(\mathbf{r})} \nabla \sqrt{n_0} + i \sqrt{n_0} e^{i\theta(\mathbf{r})} \nabla \theta(\mathbf{r}) \right) \right.

 \left. - \sqrt{n_0} e^{i\theta(\mathbf{r})} \left(e^{-i\theta(\mathbf{r})} \nabla \sqrt{n_0} - i \sqrt{n_0} e^{-i\theta(\mathbf{r})} \nabla \theta(\mathbf{r}) \right) \right]
 \]

 \[
 J_\rho(\mathbf{r}) = n_0 \frac{\hbar}{m} \frac{\nabla}{\psi} \nabla \theta(\mathbf{r}) = n_0 v_s(\mathbf{r})
 \]

 current density – phase relation (as in superconductivity)

 \[
 v_s = \text{superfluid velocity}
 \]
I.3.1 Two-Fluid Model

- what is the ratio of the normal und superfluid component? How does it depend on temperature?

 - torsional pendulum experiment: 50 Al disks, thickness: 13 µm, diameter: 3.5 cm, disk separation: 210 µm

 \(\text{(E.L. Andronikashvili, Zh. Eksperim. i. Teor. Fiz. 18, 424 (1948))} \)

 - only normal component is moved during rotation
 - skin depth of viscous wave:
 \[\sqrt{2 \eta_n / \rho_n \omega} \]
 \(\rightarrow \) large compared to disk separation below \(T_\lambda \)
 \(\rightarrow \) complete normal component is moved
 - moved mass of normal component results in change of moment of inertia
 \(\rightarrow \) change of oscillation frequency: \(\omega \propto 1/\text{mass} \)

 empirical relation by fitting data:

 \[\frac{\rho_n}{\rho(T_{T_{\lambda}})} = \left(\frac{T}{T_{\lambda}} \right)^{5.6} \]

 cf. normal fluid density of ideal BEC:

 \[\frac{\rho_n}{\rho} = \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \]
I.3.1 Two-Fluid Model

- physical consequence of macroscopic wave function description

\[J_\rho (\mathbf{r}) = n_0 \frac{\hbar}{m} \nabla \theta (\mathbf{r}) = n_0 v_s (\mathbf{r}) \Rightarrow v_s (\mathbf{r}) = \frac{\hbar}{m} \nabla \theta (\mathbf{r}) \]

- since the curl of the gradient of a scalar function vanishes, we obtain

\[\nabla \times v_s (\mathbf{r}) = 0 \]

\(v_s (\mathbf{r}) \) cannot take the form \(\Omega \times \mathbf{r} \) corresponding to a rotating liquid

⇒ it is impossible to set the superfluid into rotation

Note:
we will see later that this is true only for slow enough rotations of the vessel containing the superfluid. At large rotation speed, we are generating vortices in the superfluid
⇒ the critical rotation speed corresponds to the lower critical field in superconductors!!
I.3.2 Experimental Observations

- boiling of liquid helium

 - \(T > T_\lambda \):
 - liquid He is boiling
 - latent heat of evaporation is removed from bath
 - temperature is decreasing

 - \(T \approx T_\lambda \):
 - temperature is decreasing only slowly
 - temperature does not stay constant
 - generation of vapor bubbles
 - boiling suddenly stops !!!

boiling of "normal" liquid:

- lower \(T \) at surface: vapor pressure decreases
- higher \(T \) within liquid: vapor pressure > hydrostatic pressure
 \(\Rightarrow \) generation of vapor bubbles

boiling of superfluid helium:

- very high thermal conductivity
- low \(T \) not only at surface, but also within liquid
- no vapor bubbles in liquid
 \(\Rightarrow \) evaporation only from surface, no boiling
I.3.2 Experimental Observations

- viscosity η of superfluid 4He: \textit{two different measuring methods}

- flow through narrow capillary
 - $\eta < 10^{-11}$ poise
 - (cf. water: 8.90×10^{-5} poise @ 25°C)
 - flow without measurable friction
 - viscosity $\eta \approx 0$
 - \Rightarrow \textit{superfluid component flows out}
 - (1 Poise = 1 g/cm s = 0.1 Pa · s)

- torsional pendulum
 - $\eta \approx 10^{-5}$ poise
 - damping of oscillation: $\eta > 0$
 - scattering of \textit{phonons} and \textit{rotons}
 - \Rightarrow \textit{normal component picks up momentum}
I.3.2 Experimental Observations

- viscosity η of superfluid 4He: experimental results

- flow through narrow capillary
 - flow velocity v about independent of pressure
 - flow velocity increases v with decreasing diameter a of capillary

 expected for viscous flow through tube of length L and diameter a: $\Delta p/L \sim \eta (v/a^4)$ (laminar flow, Hagen-Poiseuille law)

 experimental result of Kapitza: $\Delta p \approx 0$ independent of flow velocity v $\Rightarrow \eta \approx 0$

- torsional pendulum

 experimental result depends on measuring method!!

 explanation by two-fluid model
I.3.2 Experimental Observations

- superfluid film flow

- helium film covers container via absorption of atoms from the vapor phase (van der Waals forces)
- superfluidity of He: "mobile" film

overshooting during fill up and draining out ➔ oscillation of filling height
I.3.2 Experimental Observations

- superfluid film flow: *estimate of superfluid film thickness*
 - in equilibrium *chemical potentials* are identical: $\mu_{\text{film}} = \mu_{\text{vap}} = \mu_0$ (*for film in saturated vapor*)
 - for film: $\mu_{\text{film}} = \mu_0 + mgh - \alpha / d^n$
 - $= 0$ (bulk liquid, gravitation, van der Waals potential)
 - $n \approx 3$ for $d < 5$ nm, $\alpha =$ Hamaker constant, α is determined by dielectric properties of wall and He atoms
 - for vapor: $\mu_{\text{vap}} = \mu_0 + mgh$

equilibrium condition: $\mu_{\text{film}} = \mu_0$

\[d = \left(\frac{\alpha}{mgh} \right)^{1/3} \]

typical values:
\[d \ (\text{nm}) \approx 30/\left[h \ (\text{cm}) \right]^{1/3} \]
\[h = 5 \ \text{cm} \rightarrow d = 20 \ \text{nm} \]

normal fluid blocked in thin film ➔ *superleak*
I.3.2 Experimental Observations

- superfluid film flow: *acting as a heat leak*

 - film creeps up along the container walls and pumping line
 - film creeps up to the position, where $T = 2.18 \text{ K}$
 - evaporation from film dominates, since vapor pressure at height h is much lower
 - estimate of film thickness for "unsaturated film"
 ➔ d depends on gas pressure p (kinetic gas theory)

 \[
 p(h) = p_{\text{sat}} \exp \left(- \frac{mg h}{k_B T} \right) \quad \Rightarrow \quad h = - \frac{k_B T}{mg} \ln \left(\frac{p(h)}{p_{\text{sat}}} \right)
 \]

 \[
 d = \left(\frac{-\alpha}{mgh} \right)^{1/3} \quad \Rightarrow \quad d = \left(\frac{-\alpha}{k_B T \ln(p/p_{\text{sat}})} \right)^{1/3}
 \]

 ➢ estimate of the flow of liquid for a critical superfluid velocity of $v_s = 30 \text{ cm/s}$:

 \[
 \dot{V}_{\text{liq}} = 2\pi R d v_s \approx 1 \text{ cm}^3/\text{h} \quad \text{for} \quad R = 5 \text{ mm} \quad \Rightarrow \quad \dot{V}_{\text{gas}} \approx 1 \text{ l/h}
 \]

 ➢ min. pressure achieved by vacuum pump with $\dot{V}_{\text{pump}} \approx 10^4 \text{ l/h}$

 \[
 p_{\text{min}} = \frac{p \dot{V}_{\text{gas}}}{\dot{V}_{\text{pump}}} \approx 10^{-4} \text{ bar} \quad \Rightarrow \quad T_{\text{min}} \approx 1 \text{ K}
 \]
I.3.2 Experimental Observations

- thermomechanical effect: *generate ΔT by applying Δp*

- starting point: same filling level and temperature T of container A and B
- apply $\Delta p \Rightarrow$ only superfluid component flows through capillary from A to B, but cannot transport heat from A to B
- temperature decreases in B and increases in A, since normal fluid fraction increases in A and decreases in B
- remove $\Delta p \Rightarrow$ original state is recovered
- note: mass flow is not accompanied by heat flow since only superfluid component can flow

Only superfluid can flow from A to B through narrow capillary

Increase/decrease of normal fluid concentration in A/B

Similar experiment:
- only superfluid flows through powder
- increase of normal fluid concentration
- increase of T in container
I.3.2 Experimental Observations

- thermomechanical effect: \(\text{generate } \Delta T \text{ by applying } \Delta p \)

- the configuration can be considered as two systems A and B in equilibrium:
 \[\mu_A = \mu_B = \mu \text{ and particle number is conserved: } N = N_A + N_B \]

- Gibbs-Duhem relation:
 \[G(T, p, \mu_A, \mu_B) = N_A \mu_A + N_B \mu_B = N\mu \]
 \[\Rightarrow dG = \mu dN + N d\mu \]

- comparison with \(dG = -SdT + Vdp + \mu dN \) yields
 \[-S(T_B - T_A) + V(p_B - p_A) - N(\mu_B - \mu_A) = 0 \]
 \[= 0 \]

\[\text{since superfluid flow does not carry heat, there is no mechanism to equilibrate } T_A \text{ and } T_B \]

\[\text{nevertheless, the particle flow results in } \mu_A = \mu_B = \mu \]

- only superfluid can flow from A to B through narrow capillary

\[\Delta p = \frac{S_n}{V} \Delta T = \frac{S_n}{M_n} \frac{M_n}{V} \Delta T = \sigma_n \rho_n \Delta T \]

\[\Delta p \rightarrow 0 \text{ for } \rho_n \rightarrow 0 \]
I.3.2 Experimental Observations

- thermomechanical effect: generate ΔT by applying Δp

\[\Delta p = \frac{S_n}{V} \Delta T = \frac{S_n M_n}{M_n} \Delta T = \sigma_n \rho_n \Delta T \]

\[\Delta p = \sigma_n \rho_n \Delta T \Rightarrow \Delta p \to 0 \text{ for } \rho_n \to 0 \]

I.3.2 Experimental Observations

- *inverse thermomechanical effect*: _generate Δp by applying ΔT_

- heating generates increase of normal fluid concentration

- superfluid components flows through capillary to establish balance

- analogous to osmotic pressure

- superfluid flows very rapidly through capillary so that a fountain pressure can be generated

⇒ _fountain effect_
I.3.2 Experimental Observations

- inverse thermomechanical effect: \textit{fountain effect}

- light is absorbed by emery powder \rightarrow heating

- lower opening is closed by cotton wool \rightarrow only superfluid can enter

- a He fountain is generated by the thermomechanical effect (typical height up to 30 cm)
I.3.2 Experimental Observations

- thermal conductivity
 - thermal conductivity of superfluid 4He is by more than five orders of magnitude larger than that of normal liquid 4He
 - explains disappearance of boiling below T_λ
 - heat conduction through narrow capillaries has maximum at ≈ 1.8 K
 - heat current density varies as $J_Q \propto \nabla T^{1/3}$
 (if we would use $J_Q \approx -\lambda \nabla T$, then $\lambda \propto \nabla T^{-2/3}$ and would diverge for small ∇T)
 - linear $J_Q \propto \nabla T$ dependence only for small heat current densities

→ no Umklapp (U) processes possible in superfluid 4He
 (no periodic lattice)

→ excitations (phonons, rotons) move ballistically, only surface scattering

W.H. Keesom, B.F. Saris, L. Meyer, Physica 7, 817 (1940)
I.3.2 Experimental Observations

- thermal conductivity: comparison to thermal conductivity of solids

solids at low T:

- ballistic phonons
- N processes do not cause momentum relaxation
- only surface scattering

kinetic gas theory:

$$\kappa = \frac{1}{3} \langle v \rangle \ell C_V$$

thermal conductivity κ is proportional to:

- mean velocity of the particles
- mean free path
- density of the particles
- specific heat carried by particles

function of d $n \cdot C_V^*$

(e.g. Hagen-Poiseuille)

superfluid 4He

$\kappa \propto T^3$

phonons

Dennis S. Greywall
Superconductivity and Low Temperature Physics II

Lecture No. 5

R. Gross
© Walther-Meißner-Institut
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
- I.1.1 Quantum Gases & Liquids
- I.1.2 Helium
- I.1.3 Van der Waals Bonding
- I.1.4 Zero-Point Fluctuations
- I.1.5 Helium under Pressure
- I.1.6 pT-Phase Diagram of 4He and 3He
- I.1.7 Characteristic Properties of 4He and 3He
- I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
- I.2.1 Bose-Einstein Condensation
- I.2.2 Ideal Bose Gas
- I.2.3 Bose Gas with Interactions
- I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
- I.3.1 Two-Fluid Model
- I.3.2 Experimental Observations
- I.3.3 Two-Fluid Hydrodynamics
- I.3.4 Excitation Spectrum of 4He

I.4 Vortices
- I.4.1 Quantization of Circulation
- I.4.2 Experimental Study of Vortices

I.5 3He
- I.5.1 normal fluid 3He
- I.5.2 solid 3He and Pomeranchuk effect
- I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.3.3 Two-Fluid Hydrodynamics

- **two-fluid hydrodynamics**
 - starting point for hydrodynamic description are **Navier-Stokes equations**:

 ➢ **normal fluid**:

 \[
 \frac{\rho_n \, D \vec{v}_n}{Dt} = -\rho_n \, \nabla p \quad - \quad \rho_n \sigma_n \, \nabla T \quad - \quad \frac{\rho_s \rho_n}{2\rho} \, \nabla (\vec{v}_n - \vec{v}_s)^2 \quad + \quad \eta_n \nabla^2 \vec{v}_n
 \]

 with the definition of the material derivative Dv/Dt:

 \[
 \frac{D \vec{v}_n}{Dt} = \frac{\partial \vec{v}_n}{\partial t} + \left(\frac{\partial \vec{v}_n}{\partial x} \right) \cdot \vec{v}_n \quad \text{and} \quad \left(\frac{\partial \vec{v}_n}{\partial x} \right) = \nabla \left(\frac{\| \vec{v}_n \|^2}{2} \right) + \left(\nabla \times \vec{v}_n \right) \times \vec{v}_n
 \]

 the tensor derivative of the velocity vector

 curl of the velocity (called vorticity) disappears for irrotational flow (no vortices)

 \[
 \rho_s, \rho_n = \text{superfluid and normal fluid densities} \\
 \vec{v}_s, \vec{v}_n = \text{superfluid and normal fluid velocities} \\
 \eta_n = \text{normal fluid viscosity}
 \]

 terms have unit force/volume
I.3.3 Two-Fluid Hydrodynamics

- **two-fluid hydrodynamics**

 ➢ **superfluid (no viscous friction):**

 \[
 \frac{D\mathbf{v}_s}{Dt} = -\rho_s \nabla p - \rho_s \sigma_s \nabla T - \frac{\rho_s \rho_n}{2\rho} \nabla (\mathbf{v}_n - \mathbf{v}_s)^2 + \frac{\eta_s}{\eta_n} \nabla^2 \mathbf{v}_s
 \]

 \(\rho_s, \rho_n = \) superfluid and normal fluid densities
 \(\mathbf{v}_s, \mathbf{v}_n = \) superfluid and normal fluid velocities
 \(\eta_n = \) normal fluid viscosity

 terms have unit force/volume

 with the definition of the material derivative \(D\mathbf{v}/Dt\):

 \[
 \frac{D\mathbf{v}_s}{Dt} = \frac{\partial \mathbf{v}_s}{\partial t} + \left(\frac{\partial \mathbf{v}_s}{\partial \mathbf{x}}\right) \cdot \mathbf{v}_s \quad \text{and} \quad \left(\frac{\partial \mathbf{v}_s}{\partial \mathbf{x}}\right) = \nabla \left(\frac{\|\mathbf{v}_s\|^2}{2}\right) + (\nabla \times \mathbf{v}_s) \times \mathbf{v}_s
 \]

 the tensor derivative of the velocity vector

 curl of the velocity (called vorticity) disappears for irotational flow (no vortices)

 ➢ **Euler type equation for superfluid** (if there are no vortices)

 ➢ detailed treatment including vortices: **Gross-Pitaevskii equation**
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics (1) - a simplified description
 - mass flow density: \(J = \rho_n v_n + \rho_s v_s \)
 \[v_n, v_s \text{ normal, superfluid component} \]
 - conservation of mass: \(\frac{\partial \rho}{\partial t} = -\nabla \cdot J \)
 - viscosity of normal component is very small and can be neglected in most situations
 → in first order approximation we treat superfluid He is ideal liquid
 → description by Euler equation (motion of a compressible, inviscid fluid)
 \[\frac{\partial J}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} \approx 0 \]
 \[p = \text{pressure} \]
 → if \(\mathbf{v} \) is small, quadratic terms in \(\mathbf{v} \) can be neglected
 - since we are neglecting dissipative effects (no viscous friction), entropy is conserved:
 \[\frac{\partial S}{\partial t} = \frac{\partial (\rho \sigma)}{\partial t} = -\nabla \cdot (\rho \sigma) v_n \]
 \(\sigma = \text{entropy per mass} \)
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics (2)
 - exact derivation of equation of motion of normal and superfluid phase is difficult
 → we use approach following „Gedanken“ experiment of Landau
 - we are adding superfluid component at constant volume and consider change of inner energy
 → the resulting operation only changes the mass of the superfluid component, no entropy and volume change

\[dU = TdS - pdV + \mu dN = TdS - pdV + \frac{\mu m}{m} dm \]

\[\Rightarrow -\nabla (\mu m dm) = F = dm \frac{dv_s}{dt} \]

- since adding particles to the superfluid does not change the energy, we have

\[0 = TdS - pdV + \mu m dm \]

\[\Rightarrow \frac{dv_s}{dt} = \frac{\Delta S}{\Delta m} \nabla T - \frac{\Delta V}{\Delta m} \nabla p = \sigma \nabla T - \frac{1}{\rho} \nabla p \]

- with \(\frac{dv_s}{dt} = \frac{\partial v_s}{\partial t} + v_s \cdot \nabla v_s \approx \frac{\partial v_s}{\partial t} \) (neglecting quadratic terms in \(v_s \)) we obtain

\[\frac{\partial v_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p \]
• two-fluid hydrodynamics (3)

for the normal fluid component we obtain

\[
\frac{\partial \mathbf{v}_n}{\partial t} = \frac{\partial (\rho_n \mathbf{v}_n + \rho_s \mathbf{v}_s)}{\partial t} = -\nabla p
\]

\[
\Rightarrow \frac{\partial \mathbf{v}_n}{\partial t} = -\frac{1}{\rho_n} \nabla p - \frac{\rho_s}{\rho_n} \frac{\partial \mathbf{v}_s}{\partial t}
\]

with \(\frac{\partial \mathbf{v}_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p \) we then obtain

\[
\frac{\partial \mathbf{v}_n}{\partial t} = -\frac{1}{\rho_n} \nabla p - \frac{\rho_s}{\rho_n} \sigma \nabla T + \frac{\rho_s}{\rho_n} \frac{1}{\rho} \nabla p = -\frac{\rho_s}{\rho_n} \sigma \nabla T + \frac{\rho_s - \rho}{\rho_n \rho} \nabla p = -\frac{\rho_s}{\rho_n} \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

\[
\frac{\partial \mathbf{v}_n}{\partial t} = -\frac{\rho_s}{\rho_n} \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

– equations of motion

\[
\frac{\partial \mathbf{v}_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

\[
\frac{\partial \mathbf{v}_n}{\partial t} = -\frac{\rho_s}{\rho_n} \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

note:
the equations of motion are valid only for the linear regime!
I.3.3 Two-Fluid Hydrodynamics

- example: explanation of thermomechanical effect:

\[
\frac{\partial v_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

- in steady state: \(\frac{\partial v_s}{\partial t} = 0 \)

\[
0 = \sigma \nabla T - \frac{1}{\rho} \nabla p
\]

\[
\Delta p = \sigma \rho \Delta T
\]
I.3.3 Two-Fluid Model

- **two-fluid hydrodynamics can be used to understand sound propagation in superfluid helium**
 - *first sound:*
 normal and superfluid component move *in-phase:*
 \[v_n = v_s \]
 \[v_1 = 238 \text{ m/s for } T \to 0 \]
 - *second sound:*
 normal and superfluid component move *out-of-phase:*
 \[\rho_n v_n + \rho_s v_s = 0 \]
 \[v_2 = \frac{v_1}{\sqrt{3}} \approx 137 \text{ m/s for } T \to 0 \]
 - *third sound:*
 waves propagating in thin He films
 - *fourth sound:*
 compression wave propagating in a super leak
 (super leak: very small opening or capillary, in which normal fluid cannot move because of its finite viscosity)

- use two-fluid hydrodynamics to understand this behavior
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics – sound propagation (1)

\[\frac{\partial^2 \rho}{\partial t^2} = -\nabla \cdot \left(\frac{\partial J}{\partial t} \right) = -\nabla \cdot (-\nabla p) \Rightarrow \frac{\partial^2 \rho}{\partial t^2} = \nabla^2 p \]

- elimination of terms with \(v_n \) and \(v_s \) in \(\frac{\partial S}{\partial t} = \frac{\partial (\rho \sigma)}{\partial t} = -\nabla \cdot (\rho \sigma) v_n \) and \(\frac{\partial v_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p \) (cannot be observed experimentally)

\[\frac{\partial v_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p \]

\[\frac{\partial v_n}{\partial t} = -\frac{\rho_s}{\rho_n} \sigma \nabla T - \frac{1}{\rho} \nabla p \]

\[\frac{\partial^2 \sigma}{\partial t^2} = \frac{\rho_s}{\rho_n} \sigma^2 \nabla^2 T \]

- in the two equations we have four variables: \(\rho, \sigma, p \) and \(T \) \(\Rightarrow \) only two of them are independent, we choose \(\rho \) and \(\sigma \)

- dependence of \(p \) and \(T \) on \(\rho \) and \(\sigma \) can be expressed as

\[\delta p = \left(\frac{\partial p}{\partial \rho} \right)_\sigma \delta \rho + \left(\frac{\partial p}{\partial \sigma} \right)_\rho \delta \sigma \]

\[\delta T = \left(\frac{\partial T}{\partial \rho} \right)_\sigma \delta \rho + \left(\frac{\partial T}{\partial \sigma} \right)_\rho \delta \sigma \]

we insert relations into expression for \(\frac{\partial^2 \rho}{\partial t^2} \) and \(\frac{\partial^2 \sigma}{\partial t^2} \)
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics – sound propagation (2)

\[
\frac{\partial^2 \rho}{\partial t^2} = \left(\frac{\partial p}{\partial \rho} \right)_\sigma \nabla^2 \rho + \left(\frac{\partial p}{\partial \sigma} \right)_\rho \nabla^2 \sigma
\]

\[
\frac{\partial^2 \sigma}{\partial t^2} = \frac{\rho_s}{\rho_n} \sigma^2 \left[\left(\frac{\partial T}{\partial \rho} \right)_\sigma \nabla^2 \rho + \left(\frac{\partial T}{\partial \sigma} \right)_\rho \nabla^2 \sigma \right]
\]

2\text{nd} order partial differential equations

- to solve these equations we use the ansatz (1D for simplicity)

\[
\rho = \rho_0 + \rho_1 \exp \left(i \omega \left(t - \frac{x}{v} \right) \right)
\]

\[
\sigma = \sigma_0 + \sigma_1 \exp \left(i \omega \left(t - \frac{x}{v} \right) \right)
\]

- inserting the ansatz yields

\[
\begin{bmatrix}
\left(\frac{v}{v_1} \right)^2 - 1 \\
\n\end{bmatrix} \rho_1 + \left(\frac{\partial p}{\partial \sigma} \right)_\rho \left(\frac{\partial \rho}{\partial \sigma} \right)_\sigma \sigma_1 = 0
\]

\[
\begin{bmatrix}
\left(\frac{v}{v_2} \right)^2 - 1 \\
\n\end{bmatrix} \rho_1 + \left(\frac{\partial T}{\partial \rho} \right)_\sigma \left(\frac{\partial \sigma}{\partial T} \right)_\rho \sigma_1 = 0
\]

linear system of equations

with abbreviations

\[
v_1^2 = \left(\frac{\partial p}{\partial \rho} \right)_\sigma
\]

\[
v_2^2 = \frac{\rho_s}{\rho_n} \sigma^2 \left(\frac{\partial T}{\partial \sigma} \right)_\rho
\]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics – sound propagation (3)

 - constraint equation for coefficients

 \[
 \left[\left(\frac{v}{v_1}\right)^2 - 1\right] \cdot \left[\left(\frac{v}{v_2}\right)^2 - 1\right] = \left(\frac{\partial p}{\partial \sigma}\right)_{\rho} \left(\frac{\partial \rho}{\partial \sigma}\right)_{\rho} \left(\frac{\partial T}{\partial \rho}\right)_{\sigma} \left(\frac{\partial \sigma}{\partial T}\right)_{\rho}
 \]

 - the r.h.s. can be rewritten by using known thermodynamic relations

 \[
 \left[\left(\frac{v}{v_1}\right)^2 - 1\right] \cdot \left[\left(\frac{v}{v_2}\right)^2 - 1\right] = \frac{C_p - C_V}{C_p} C_p, C_V: \text{specific heat at constant pressure/volume}
 \]

 - for superfluid helium the difference \(C_p - C_V\) is very small \(\rightarrow\) we can use the approximation

 \[
 \left[\left(\frac{v}{v_1}\right)^2 - 1\right] \cdot \left[\left(\frac{v}{v_2}\right)^2 - 1\right] \approx 0
 \]

 \[
 v_1^2 = \left(\frac{\partial p}{\partial \rho}\right)_{\sigma} \quad v_2^2 = \frac{\rho_s}{\rho_n} \sigma^2 \left(\frac{\partial T}{\partial \sigma}\right)_{\rho}
 \]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: first sound
 - propagation of usual sound waves with velocity $v = v_1$ is given by
 \[
 \left[\left(\frac{v}{v_1} \right)^2 - 1 \right] \rho_1 + \left(\frac{\partial p}{\partial \sigma} \right)_\rho \left(\frac{\partial \rho}{\partial \sigma} \right)_\sigma = 0
 \]
 if we set $\rho_1 \neq 0$ and $\sigma_1 = 0$

 under these conditions we have $\nabla T = 0$ as for a usual sound waves (first sound)

 - from $\frac{\partial J}{\partial t} = -\nabla p$ and $\frac{\partial v_s}{\partial t} = \sigma \nabla T - \frac{1}{\rho} \nabla p$ we obtain
 \[
 v_n = v_s
 \]
 (acoustic mode)

\Rightarrow normal and superfluid component move in phase (first sound)
 - density changes are adiabatic
 - superfluid He behaves as usual liquid
 - sound velocity $v = v_1 = 238 \text{ m/s}$ for $T \to 0$
 - $v_1(T)$ shows anomaly at $T = T_\lambda$
I.3.3 Two-Fluid Hydrodynamics

- **two-fluid hydrodynamics: second sound**
 - if we set $\rho_1 = 0$ and $\sigma_1 \neq 0$ we obtain temperature wave propagating with velocity $v = v_2$
 \[
 \left(\frac{\partial T}{\partial \rho} \right)_\sigma \left(\frac{\partial \sigma}{\partial T} \right)_\rho \rho_1 + \left[\left(\frac{v}{v_2} \right)^2 - 1 \right] \sigma_1 = 0
 \]
 - from $\frac{\partial^2 \rho}{\partial t^2} = \nabla^2 p$ we obtain $\nabla p = 0$
 - together with Euler’s equation $\frac{\partial \mathbf{J}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p$ we obtain:
 \[
 \frac{\partial \mathbf{J}}{\partial t} = \frac{\partial (\rho_n \mathbf{v}_n + \rho_s \mathbf{v}_s)}{\partial t} = 0
 \]
 - since \mathbf{J} cannot be constant in a closed container $\rightarrow \mathbf{J} = 0$
 \[
 \rho_n \mathbf{v}_n + \rho_s \mathbf{v}_s = 0 \quad \text{(optical mode)}
 \]
 - velocity of the temperature wave
 \[
 v_2^2 = \frac{\rho_s}{\rho_n} \sigma^2 \left(\frac{\partial T}{\partial \sigma} \right)_\rho = \frac{\rho_s}{\rho_n} \sigma^2 \frac{T}{C_p}, \quad v_2 = \frac{v_1}{\sqrt{3}} \approx 137 \text{ m/s for } T \to 0
 \]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: second sound – experiment

- heat pulse substrate
- resistive heater
- SC close to T_c
- measurement of $R(T)$

\[\delta T \]

\[\text{Diffusion} \]

1.17K

\[t \]

\[v_2 \text{ (m/s)} \]

\[150 \]

\[100 \]

\[50 \]

\[0 \]

\[0.0 \]

\[0.5 \]

\[1.0 \]

\[1.5 \]

\[2.0 \]

\[T \text{ (K)} \]

1st sound

2nd sound

I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: second sound – experiment

\[T \to T_\lambda: \]

\[\rightarrow \text{collision probability increases} \]
\[\rightarrow \text{picture of elementary excitations no longer valid} \]
\[\rightarrow \text{vortex rings} \]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: third sound – thickness waves in thin helium films

 - we already discussed the thickness of helium films on surfaces

\[
d = \left(\frac{-\alpha}{k_B T \ln(p/p_{sat})} \right)^{1/3} = \left(\frac{\alpha}{k_B T (\ln p_{sat} - \ln p)} \right)^{1/3}
\]

- film thickness depends on pressure and temperature
- local periodic heating causes thickness variation propagating along surface

- viscous normal component is fixed at surface
- superfluid component oscillates freely parallel to surface

wave crest: surplus of superfluid \(\rightarrow\) cold
wave valley: deficit of superfluid \(\rightarrow\) hot

sound velocity: \(v_3 \sim 10 \ldots 100\) m/s

detailed discussion complicated due to additional evaporation and condensation at surface
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: third sound – thickness waves in thin helium films

\[v_3^2 = \frac{3\alpha}{d^3} \frac{\rho_s}{\rho} \left(1 + \frac{\sigma T'}{L} \right) \]

\(L = \) latent heat

I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: forth sound – compression waves in superleaks
 (super leak = very small opening or capillary, in which normal fluid cannot move because of its finite viscosity)

- only superfluid can move, whereas normal fluid is blocked due to its finite viscosity
- compression waves are not only density oscillations, but also oscillations of the superfluid density ρ_s/ρ_n, the pressure p, the temperature T, and the entropy σ

- sound velocity (without derivation)

$$v_4^2 \approx \frac{\rho_s}{\rho} v_1^2 + \frac{\rho_n}{\rho} v_2^2$$

[Diagram showing first sound, forth sound, and second sound as functions of temperature T (K).]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: heat transport
 - example: mass flow \dot{V}_n through capillary of diameter d:
 - the normal fluid component flows from hot to cold side
 - this mass flow is compensated by opposite flow of superfluid component
 - due to different entropies of both components this results in a finite heat flow (limited by η_n)
 - mass flow \dot{V}_n of normal component according to classical hydrodynamics
 $$\dot{V}_n = \frac{\beta}{\eta_n} \frac{\Delta p}{L}$$
 - η_n: viscosity of normal component
 - L: length of capillary
 - Δp: pressure difference
 - the parameter β depends on the geometry of the capillary: e.g. $\beta \propto r^4$ according to Hagen-Poiseuille law
 - heat flow = mass flow times heat/mass:
 $$\dot{Q}_n = \rho_n \dot{V}_n \cdot \sigma_n T = \dot{V}_n S_n T$$
 $$\dot{Q}_n = \frac{\beta}{\eta_n L} \frac{\Delta p}{L} \sigma_n T$$
 with $\Delta p = \rho_n \sigma_n \Delta T$ \Rightarrow
 $$\dot{Q}_n = \frac{\beta T}{\eta_n L} (\rho_n \sigma_n)^2 \Delta T$$
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: heat transport

\[\dot{Q}_n = \frac{\beta T}{\eta_n L} (\rho_n \sigma_n)^2 \Delta T \]

- experiment:
 heat flow is found to be proportional to \(\beta \propto d^3 \) (for slit of width \(d \))

A. Broese Van Groenou, J.D. Poll, A.M.G. Delsing, C.J. Gorter
Physica 22, 905-910 (1956)
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: momentum flow associated with heat flow

- momentum flow (momentum / area and time): \(\rho \mathbf{v} \cdot \mathbf{v} \)

- resulting pressure on heat source:
 \[
 p = \rho_n v_n^2 + \rho_s v_s^2
 \]

- with heat flow per area:
 \[
 J_h = \rho \sigma T \, v_n
 \]

- and the fact that there is no mass transport, \(\rho_n v_n + \rho_s v_s = 0 \), we obtain pressure

\[
 p = \frac{\rho_n J_H^2}{\rho_s \rho T^2 \sigma^2} = \frac{J_h^2}{v_s^2 \rho C_p T}
\]
I.3.3 Two-Fluid Hydrodynamics

- two-fluid hydrodynamics: momentum flow associated with heat flow

\[
p = \frac{\rho_n J_H^2}{\rho_s \rho T^2 \sigma^2} = \frac{J_H^2}{v_2^2 \rho C_p T}
\]

Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties

- **I.1.1** Quantum Fluids
- **I.1.2** Helium
- **I.1.3** Van der Waals Bonding
- **I.1.4** Zero-Point Fluctuations
- **I.1.5** Helium under Pressure
- **I.1.6** pT-Phase Diagram of ^4He and ^3He
- **I.1.7** Characteristic Properties of ^4He and ^3He
- **I.1.8** Specific Heat of ^4He and ^3He

I.2 ^4He as an Ideal Bose Gas

- **I.2.1** Bose-Einstein Condensation
- **I.2.2** Ideal Bose Gas
- **I.2.3** Bose Gas with Interactions
- **I.2.4** Bose-Einstein Condensation of ^4He

I.3 Superfluid ^4He

- **I.3.1** Two-Fluid Model
- **I.3.2** Experimental Observations
- **I.3.3** Two-Fluid Hydrodynamics
- **I.3.4** Excitation Spectrum of ^4He

I.4 Vortices

- **I.4.1** Quantization of Circulation
- **I.4.2** Experimental Study of Vortices

I.5 ^3He

- **I.5.1** normal fluid ^3He
- **I.5.2** solid ^3He and Pomeranchuk effect
- **I.5.3** superfluid ^3He

I.6 $^3\text{He} / ^4\text{He}$ mixtures
I.3.4 Excitation Spectrum of Superfluid 4He

• important question: does the formation of a condensate automatically result in superfluidity? Does an ideal Bose-Einstein condensate show superfluidity as 4He-II?

Answer: *Structure of the excitation spectrum is crucial for observability of superfluidity* (Lev Landau, 1947)

– note:
 - we have used a phenomenological two-fluid model to describe superfluid current density in 4He-II

\[J_\rho (\mathbf{r}) = n_0 \frac{\hbar}{m} \nabla \theta (\mathbf{r}) = n_0 v_s (\mathbf{r}) \]

– still unknown:
 - is there a maximum value for the superfluid velocity v_s ?
 - if yes, what determines the value of v_s ?
 - is there a qualitative difference between a condensate of a non-interacting Bose gas and an interacting Bose gas ?
I.3.4 Excitation Spectrum of Superfluid 4He

• Gedanken experiment by Lev Landau
 - what happens, if we move an object (e.g. sphere) of mass M at velocity v_i through the condensate/superfluid?
 \rightarrow at $T = 0$, the deceleration of the object is possible only by the generation of excitations
 \rightarrow at which velocity can the moving object generate an excitation of energy E_p and momentum $p = \hbar k$?
 - with velocity difference $v_i - v_f$ of object we obtain
 (energy and momentum conservation):
 $E_p = \frac{1}{2} M (v_i^2 - v_f^2)$ \hspace{1cm} $p = M (v_i - v_f)$
 - elimination of v_f yields
 \[E_p = p \cdot v_i - \frac{1}{2M} p^2 = p \cdot v_i - O \left(\frac{1}{M} \right) \]
 \Rightarrow there may be a minimum value of v_i for which the equation can be satisfied
 \Rightarrow mass of object can be large \rightarrow we can neglect 2nd term on rhs

\[v_L = \min \left(\frac{E_p}{|p|} \right) \hspace{1cm} \text{Landau critical velocity} \]
\[v_L = \text{smallest } v_i \text{ for momentum } p \text{ of the excitation parallel to } v_i \]
I.3.4 Excitation Spectrum of Superfluid \(^4\text{He} \)

- Gedanken experiment by Lev Landau

 - for free bosons: \(E_p = \frac{p^2}{2m} \) \((m = \text{mass of the boson}) \)

 \[
 \frac{p^2}{2m} = \mathbf{p} \cdot \mathbf{v}_i \quad \text{equation always satisfied for cone of momentum vectors} \ |p| = 2mv \cos \vartheta, \text{ where } \vartheta = \angle(\mathbf{p}, \mathbf{v}_i) \]

 ➔ object (e.g. a sphere) moving in superfluid can always transfer momentum to superfluid and is thereby decelerated ➔ \(v_L = 0 \)

ideal Bose-Einstein condensate of free (non-interacting) bosons with dispersion \(E_p = \frac{p^2}{2m} \) does not show superfluidity !!
I.3.4 Excitation Spectrum of Superfluid 4He

- motivation for Landau critical velocity

 - deceleration of moving object by generation of excitations with energy E_p only possible if $\frac{p^2}{2m} = p \cdot v_i$ can be satisfied

\[E_p = \hbar \omega = \frac{\partial E_p}{\partial p} \cdot p = \hbar v_i \cdot k = \hbar v_i k \cos \vartheta \leq \hbar v_i k \]

\[v_i \geq \frac{\omega}{k} = v_{ph} \]

\[v_L = \min (v_{ph}) \]

no deceleration of object, if $v_i < v_L$

Laudau:
in order to have a superfluid, we need a dispersion relation differing significantly from that of free bosons!
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: historical aspects (1)

Nikolai Bogoliubov (1947):
- interaction effects drastically change the nature of elementary excitations
 - collective excitations (many particles move at the same time)
- even for weak repulsive interaction: $E_p = c |p|$ (phonon-like dispersion)

Lev Landau (1947) and **Richard Feynman** (1953):
- discussion of situation for superfluid 4He (stronger interaction)
- postulation of the following excitation spectrum (phonons and rotons):

 (i) small p:
 $$\lim_{p \to 0} E_p = c_s |p|$$
 - phonon-like collective excitations

 (ii) higher p:
 $$\lim_{|p| \to p_0} E_p = \Delta_{\text{rot}} + \frac{(|p| - p_0)^2}{2m_{\text{rot}}}$$
 - roton-like collective excitations
 (finite energy gap Δ_{rot} for excitation)

expression „roton“ used by Feynman due to analogy with „smoke ring“, since it is connected with a forward motion of a particle accompanied by a ring of back-flowing particles

- however: detailed nature of rotons still not clarified
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: historical aspects (2)

weak interactions:
- *phonons*

 [Bogoliubov, 1947]

strong interactions:
- *phonons and rotons*

\[
\lim_{p \to 0} E_p = c_s |p|
\]

\[
\lim_{|p| \to p_0} E_p = \Delta_{\text{rot}} + \frac{(|p| - p_0)^2}{2m_{\text{rot}}}
\]
I.3.4 Exctation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: historical aspects (3)

Richard P. Feynman:
(from: „The beat of a different drum“
Jagdish Mehra, 1994)

„I cannot remember, how it happened. I was walking along the street... and zing! I understood it!“ ...

... „But of course, that is just what liquids must do. If you measure X-ray diffraction, then because of the spatial structure of the liquid, which is almost like a solid, there will be a maximum corresponding to the first diffraction ring of the X-ray pattern! That was a terrific moment!“
I.3.4 Excitation Spectrum of Superfluid ^{4}He

- excitation spectrum of superfluid ^{4}He: plausibility considerations

Physical interpretation of the phonon and roton part of the excitation spectrum

- wavelength $\lambda = \frac{2\pi}{k} \gg$ atomic distance
- coupled motion of group of atoms (like for acoustic phonon in solid)

- wavelength $\lambda = \frac{2\pi}{k} \simeq$ interatomic distance
- central atom moves forward while closely packed neighbors move (backward) out of the way in circular motion (like smoke ring)

In both cases we have collective excitations with dispersion $E_p(k) \rightarrow$ quasiparticles
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: measurement by inelastic scattering experiments

- **experimental study:**
 - inelastic neutron scattering (coupling to density)

- **experimental parameter:**
 \[
 \frac{\Delta_{\text{rot}}}{k_B} = 8.61 \text{ K}, \quad \frac{p_0}{\hbar} = 1.92 \text{ Å}^{-1}, \quad m_{\text{rot}} = 0.14 m_{^4\text{He}}
 \]

| Table IV. Zero pressure roton parameters (this work) compared to previous results: Woods et al. [58], Stirling [14,62,64], Andersen et al. [68–72], Gibbs et al. [73,74], and Pearce et al. [76]. Δ_{rot} at $P = 0$ (shown below in italics) is taken from Refs. [62,64] in our instrument calibration procedure. |
|-----------------|--------|-------|
| Δ_{rot} (meV) | k_x (Å$^{-1}$) | μ_x |
| This work | 0.74(8)(10) | 1.918(2) | 0.14(2) |
| Woods 1977 | 0.742(6)(10) | 1.926(5) | 0.126(30) |
| Stirling 1991 | 0.7418(10) | 1.920(2) | 0.136(5) |
| Andersen 1992-1994 | 0.743(1) | 1.931(3) | 0.144(3) |
| Gibbs 1999 | 0.742(6)(21) | 1.929(2) | 0.161(4) |
| Pearce 2001 | 0.74(4)(0)(20) | 1.926(-) | 0.166(10) |

I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: measurement by inelastic scattering experiments

Liquid helium excitation spectrum $S(Q, \hbar\omega)$ from *inelastic neutron* scattering measurements.

Main panel, excitation spectrum in 4He for $1.5 < T < 1.8$ K. Data for wave vector $Q \geq 2.3$ Å$^{-1}$ are reproduced from ref. 13, data at smaller Q are from C.L.B. and S.-H. Lee, unpublished results. Solid black line, dispersion from ref. 13; red circle with cross, spectrum termination point at $Q = Q_c$ and $\hbar\omega = 2\Delta$. White line, Feynman–Cohen bare dispersion in absence of decays; horizontal red line at $\hbar\omega = 2\Delta$, onset of two-roton states for $\hbar\omega \geq 2\Delta$. Inset, excitations near termination point, at $Q = 2.6$ Å$^{-1} \approx Q_c$, for several temperatures.

Quasiparticle breakdown in a quantum spin liquid
Matthew B. Stone, Igor A. Zaliznyak, Tao Hong, Collin L. Broholm and Daniel H. Reich
Nature **440**, 187-190 (9 March 2006)
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: qualitative understanding

periodic crystal:

k and $k + G$ are equivalent

liquid:

only short distance ordering

$\Rightarrow a$ becomes smeared out

\Rightarrow also $G = 2\pi/a$ is smeared out

$a = 3.6 \, \text{Å} \rightarrow 2\pi/a \approx 1.8 \, \text{Å}^{-1}$

(reasonable agreement)
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: qualitative understanding

- **smearing of $G = 2\pi/\alpha$**
 - modelling by average solid + continuum

- **other liquids:**
 - rotons strongly damped

- **superfluid He:**
 - no damping, since there are no single particle excitations

- **critical velocities:**
 - $v_L = 238$ m/s for phonons
 - $v_L \approx 60$ m/s for rotons

measured v_L usually smaller

⇒ *excitation of vortices*
measurement of drag on ions in 4He-II

- no generation of excitations for $v < v_L$
- no friction

key result:

there is a finite Landau critical velocity in 4He-II!

The breakdown of superfluidity in liquid 4He: an experimental test of Landau's theory
D. R. Allum, Peter V. E. McClintonck, A. Phillips, R. M. Bowley
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: pressure dependence

 - average distance a becomes smaller
 - He becomes harder \rightarrow sound velocity increases
 - ordering increases \rightarrow roton gap decreases

![Graph showing excitation spectrum of superfluid 4He with pressure dependence.](image)
I.3.4 Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: pressure dependence

The experimental INS phonon–roton curve for molecular para-hydrogen at $T = 15.7$ K. The filled symbols (inverted triangles, diamonds and crosses) depict data measured at different spectrometers and the open circles with a dot show the simulation results.

Excitation Spectrum of Superfluid 4He

- excitation spectrum of superfluid 4He: pressure dependence

FIG. 17. Dispersion curves $\varepsilon(k)$ measured for several pressures in the 0 to 24 bar range. The individual data points are represented by small circles (best seen on-line). Accurate values for the pressures are given in Table I.

I.3.4 Excitation Spectrum of Superfluid 4He

- specific heat of 4He revisited

\begin{itemize}
 \item deviations from ideal Bose gas are expected due to finite interactions
 \item collective excitations: phonons, rotons
 \item $C_V(T)$ determined by freeze out of phonons and rotons at $T < T_\lambda$
 \item 2^{nd} order phase transition is expected for interacting Bose gas
 \item however, no jump of C_V at $T = T_\lambda$ is observed, as expected for 2^{nd} order phase transition
\end{itemize}
I.3.4 Excitation Spectrum of Superfluid 4He

- specific heat of 4He revisited: temperature dependence below T_λ

1. $T < 0.6$ K:
 - in this temperature regime the dominant excitations are long wave length phonons

$$C_{V, ph} \propto T^3 \quad \text{(corresponds to Debye model in solid state physics)}$$

$$\frac{C_V}{M} = \frac{2}{15} \frac{\pi^2 k_B^4 V}{\hbar^3 v_s^3 M} T^3 \quad \text{single crystal, for single acoustic phonon branch}$$

$$\frac{C_{V, ph}}{M} = \frac{2}{15} \frac{\pi^2 k_B^4 V}{\hbar^3 v_s^3 M} T^3 \quad \text{phononic specific heat of 4He-II}$$

thermal conductivity:

$$\kappa = \frac{1}{3} C_V v \ell \simeq \frac{1}{3} C_V v f(d) \propto T^3$$

if $\ell \simeq d$ (sample dimension, Casimir regime)

absolute value of κ depends on details:
- e.g., $\kappa \propto d^3$ for flow through narrow slit of width d

Specific Heat and Phonon Dispersion of liquid 4He
I.3.4 Excitation Spectrum of Superfluid 4He

• specific heat of 4He revisited: temperature dependence below T_λ

II. $0.6 \, K < T < 1.2 \, K$:
in this temperature regime the dominant excitations are rotons,
number N_R of rotons increases with $T \rightarrow$ thermal activation

$$C_{V,R} \propto N_R \propto \frac{1}{\sqrt{T}} \exp \left(-\frac{\Delta_{\text{rot}}}{k_B T} \right)$$

III. $1.2 \, K < T < T_\lambda$:
- lifetime broadening of roton states comparable to Δ_{rot}
- additional excitations
- more complicated behavior
I.3.4 Excitation Spectrum of Superfluid 4He

- **normal fluid density**

 - within two-fluid model, the normal component can be considered as formed by the excitations out of the ground state (quasiparticles)

 \[\rho_{n,\text{ph}} = \frac{1}{V} \int D_{\text{ph}}(E) n_{\text{ph}}(E,T) \, dE \]

 \[\rho_{n,\text{rot}} = \frac{1}{V} \int D_{\text{rot}}(E) n_{\text{rot}}(E,T) \, dE \]

 - temperature dependence of phonon and roton density is given by

 \[\rho_{n,\text{ph}} = \frac{2\pi^2 k_B^4}{45\hbar^3 v_{\text{ph}}^5} \, T^4 \]

 \[\rho_{n,\text{rot}} = \frac{2p_0^4}{3\hbar^3} \frac{m_{\text{rot}}}{(2\pi)^3 k_B T} \exp\left(-\frac{\Delta_{\text{rot}}}{k_B T}\right) \]

 \[n_{\text{ph}}, n_{\text{rot}} = \text{occupation probability} \]

 \[D_{\text{ph}}, D_{\text{rot}} = \text{density of states} \]

 - after some math

 \[\Delta_{\text{rot}} = 8.61 \, \text{K} \]

 \[\frac{p_0}{\hbar} = 1.92 \, \text{Å}^{-1} \]

 \[m_{\text{rot}} = 0.15 \, m_{\text{He}} \]

 \[v_{\text{ph}} = 238 \, \text{m/s} \]
I.3.4 Excitation Spectrum of Superfluid 4He

- specific heat of 4He revisited: temperature dependence close to T_λ

Experiment:

second order phase transition with logarithmic singularity

Theory of phase transitions:

$$C_p = a^\pm + b^\pm \frac{t^{-\alpha}}{\alpha} \left(1 - c^\pm t^\delta + \ldots\right)$$

with $t = \frac{T}{T_\lambda} - 1$

$\alpha \approx -0.0127 \pm 0.0003$ (critical exponent), $\delta = 0.529$

$a^\pm, b^\pm, c^\pm = \text{constants}$ (agree well with 3D XY universality class)

note that $t^{-\alpha} = \exp(-\alpha \ln t) \approx 1 - \alpha \ln t$, since $\alpha \ln t \ll 1$

$$\Rightarrow C_p \propto b^\pm \frac{t^{-\alpha}}{\alpha} = \frac{b^\pm}{\alpha} - b^\pm \ln t$$

- T_λ depends on pressure, i.e. on the filling height of the He container
 \Rightarrow results in an experimental broadening of the cusp

- deviations also appear, if the size of the container becomes smaller than the coherence length, which diverges at T_λ

Specific heat of liquid helium in zero gravity very near the lambda point

I.3.4 Excitation Spectrum of Superfluid 4He

- specific heat and thermal conductivity of 4He revisited: temperature dependence close to T_λ

Averaged data close to the transition. Line shows the best-fit function.

Log-log plot of thermal conductivity vs reduced temperature above the lambda point. Filled circles: data, curve: theory model.

Specific heat of liquid helium in zero gravity very near the lambda point
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
- I.1.1 Quantum Gases & Liquids
- I.1.2 Helium
- I.1.3 Van der Waals Bonding
- I.1.4 Zero-Point Fluctuations
- I.1.5 Helium under Pressure
- I.1.6 pT-Phase Diagram of 4He and 3He
- I.1.7 Characteristic Properties of 4He and 3He
- I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
- I.2.1 Bose-Einstein Condensation
- I.2.2 Ideal Bose Gas
- I.2.3 Bose Gas with Interactions
- I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
- I.3.1 Two-Fluid Model
- I.3.2 Experimental Observations
- I.3.3 Two-Fluid Hydrodynamics
- I.3.4 Excitation Spectrum of 4He

I.4 Vortices
- I.4.1 Quantization of Circulation
- I.4.2 Experimental Study of Vortices

I.5 3He
- I.5.1 normal fluid 3He
- I.5.2 solid 3He and Pomeranchuk effect
- I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.4 Vortices
I.4 Vortices

• vortices in superfluid 4He

➢ in the discussion of the two-fluid model, we assumed the absence of turbulence in J_s: ⇒ $\nabla \times \mathbf{v}_s = 0$

➢ 1941: Landau proposed to check this assumption in experiments with superfluid He in rotating containers

➢ 1949: Onsager predicted the appearance of vortices in rotating superfluid He

➢ 1953: Feynman noted that circulation in superfluid 4He should be quantized

➢ 1961: first experimental proof of quantization by Vinen

⇒ quantized vortices in superfluid 4He as in superconductors

⇒ difference: superfluid 4He is not charged, neutral circulation
I.4.1 Quantization of Circulation

- vortices – nomenclature and some definitions

 - ideal vortex in z-direction at position \(\mathbf{r} = 0 \):
 \[
 \nabla \times \mathbf{v}(\mathbf{r}) = \Gamma \cdot \delta(x) \cdot \delta(y)
 \]

 - circulation \(\Gamma \):
 \[
 \int_A \nabla \times \mathbf{v}(\mathbf{r}) \, dA = \oint_S \mathbf{v}(\mathbf{r}) \cdot d\mathbf{r} = \Gamma = \text{const.}
 \]
 Stokes
 Thomson circulation theorem

 - if \(A \) is a circle, then
 \[
 \Gamma = 2\pi r \cdot v_\phi
 \]
 and
 \[
 v_\phi = \frac{\Gamma}{2\pi r} \hat{e}_\phi
 \]
 note that \(\nabla \times v_\phi = 0 \) apart from the vortex core

\(\rightarrow \) for superfluid He: circulation \(\Gamma \) is quantized
I.4.1 Quantization of Circulation

- description of superfluid component by macroscopic wave function

\[\psi(\mathbf{r}) = \psi_0(\mathbf{r}) e^{i\theta(\mathbf{r})}, \quad |\psi_0(\mathbf{r})|^2 = n_0(\mathbf{r}), \quad N_0 = \int |\psi_0(\mathbf{r})|^2 \, d^3r \]

\[n_0 = \frac{N_0}{V} = \text{particle density in condensate} \]

- phase is related to velocity \(\mathbf{v}_s(\mathbf{r}) \) of superfluid:

\[\mathbf{J}_\rho(\mathbf{r}) = n_0 \frac{\hbar}{m_{\text{He}}} \mathbf{v}_s(\mathbf{r}) = n_0 \mathbf{v}_s(\mathbf{r}) \]

current density – phase relation (as in superconductivity)

\(\mathbf{v}_s = \text{superfluid velocity}, \quad n_0 = \text{superfluid density} \)

- analogy to superconductors

\[\mathbf{J}_s(\mathbf{r}) = n_s q_s \left[\frac{\hbar}{m_s} \nabla \theta(\mathbf{r}) - \frac{q_s}{m_s} \mathbf{A}(\mathbf{r}) \right] \quad \mathbf{v}_s(\mathbf{r}) = \frac{\hbar}{m_s} \nabla \theta(\mathbf{r}) - \frac{q_s}{m_s} \mathbf{A}(\mathbf{r}) \]

superfluid He is uncharged: \(q_s = 0 \)

\[\mathbf{v}_s(\mathbf{r}) = \frac{\hbar}{m_{\text{He}}} \nabla \theta(\mathbf{r}) \]
I.4.1 Quantization of Circulation

- circulation of superfluid component

\[\Gamma = \oint_S \mathbf{v}_s(\mathbf{r}) \cdot d\mathbf{r} = \frac{\hbar}{m_{\text{He}}} \oint_S \nabla \theta(\mathbf{r}) \cdot d\mathbf{r} = \frac{\hbar}{m_{\text{He}}} \cdot 2\pi n = \frac{\hbar}{m_{\text{He}}} \cdot \frac{\kappa}{\pi} n \]

\[\Rightarrow \] circulation is quantized in units of \(h/m_{\text{He}} = \kappa \) (vorticity)

\[\Rightarrow \] quantum number \(n \) corresponds to topological winding number

(counts the \(2\pi \) windings along a closed contour)

- generation of vortices by rotation:

 angular frequency \(\Omega = \Gamma/A \) \(\iff \) magnetic field \(B = \Phi/A \)

 Coriolis force \(\mathbf{F}_{\text{cor}} = 2m_{\text{He}} \mathbf{v}_s \times \Omega \) \(\iff \) Lorentz force \(\mathbf{F}_L = q_s \mathbf{v}_s \times \mathbf{B} \)

\[2m_{\text{He}} \Omega \iff q_s B \]
I.4.1 Quantization of Circulation

• consequences of macroscopic quantum description of superfluid

 - superfluid velocity: \(\mathbf{v}_s(\mathbf{r}) = \frac{\hbar}{m_{\text{He}}} \nabla \theta(\mathbf{r}) \) \(\Rightarrow \) \(\nabla \times \mathbf{v}_s(\mathbf{r}) = \frac{\hbar}{m_{\text{He}}} \nabla \times \nabla \theta(\mathbf{r}) = 0 \)

 \[\int \mathbf{v}(\mathbf{r}) \cdot d\mathbf{r} = \Gamma = 0 \quad \text{an uncharged superfluid cannot rotate homogeneously} \]

 - experimental observation:

 ➢ if we rotate a cylinder filled with superfluid \(^4\text{He}\) at angular frequency \(\omega \), the surface of the superfluid does not stay flat but shows curvature due to centrifugal force

 parabolic radial height profile: \(z = \frac{\omega^2}{2g} r^2 \)

 ➢ apparent contradiction is caused by the presence of vortices

 ➢ \(\nabla \times \mathbf{v}_s(\mathbf{r}) = 0 \) is satisfied apart inside the vortex core at \(r = 0 \):

 macroscopic wave function \(|\psi_0(0)|^2 = 0 \), phase \(\theta \) is not defined, superfluid density \(J_s = n_0 v_s = 0 \)
some estimates

- magnitude of the superfluid velocity (in circular vortex)
 \[\Gamma = \oint \mathbf{v}(\mathbf{r}) \cdot d\mathbf{r} = \frac{h}{m_{\text{He}}} n = 2\pi r \, v_\varphi \]

 \[v_\varphi = \frac{h}{m_{\text{He}}} n \frac{1}{2\pi r} = \frac{\kappa}{2\pi r} n \approx \frac{1.5 \times 10^{-8}}{r} n \frac{[\text{m}]}{[\text{s}]} \]

- diameter \(d_{vc} \) of vortex core
 \[d_{vc} = \frac{h}{m_{\text{He}}} n \frac{1}{2\pi v_L} = \frac{\kappa}{2\pi v_L} n \sim 3 \text{ Å} \]

 for \(n = 1 \) and \(v_L \approx 45 \frac{m}{s} = \text{critical (Landau) velocity for roton formation} \)

- energy of vortex is proportional to \(v_\varphi^2 \)
 \[E_v \approx E_{\text{kin}} \propto \kappa^2 \propto n^2 \]

 \(\Rightarrow \) it is more favorable to generate two vortices with \(n = 1 \) instead of a single vortex with \(n = 2 \)
I.4.1 Quantization of Circulation

- are there vortices in thermal equilibrium?
 - excitation energy $\approx E_{\text{kin}}$ should be as small as possible:
 - minimum v_s $\rightarrow n = 1$
 - minimum length \rightarrow vortex rings
 - smallest ring \rightarrow atomic dimension

- vortex still macroscopic object
 $\rightarrow E_V \gg k_B T$ except for $T \sim T_\lambda$
 \rightarrow momentum is large $v_L = E / p$ is small for vortex rings

- critical velocity v_L is determined by excitation of vortex rings
I.4.2 Experimental Study of Vortices

- cooling down a rotating 4He container below T_λ

 ➢ above T_λ:
 - rigid rotation
 - weak circulation
 - strong circulation

 ➢ below T_λ:
 - flat surface
 - screening of circulation "Meißner State"
 - penetration of circulation "Mixed State"

first experiments by Vinen in 1961

I.4.2 Experimental Study of Vortices

• what is the density of vortices inside the container?

 - circulation at the edge of the container with radius R:
 \[
 \Gamma = \oint S \mathbf{v}(\mathbf{r}) \cdot d\mathbf{r} = 2\pi R \; v(R) = 2\pi R \; \Omega R = 2\pi R^2 \Omega
 \]

 - circulation must be equal to number of vortices $N_V \times$ vorticity $\kappa \times$ area πR^2
 \[
 \Gamma = N_V \kappa \pi R^2 = 2\pi R^2 \Omega
 \]

\[
N_V = \frac{2\Omega}{\kappa} = \frac{2m_{\text{He}} \Omega}{\hbar} = \frac{m_{\text{He}} \Omega}{\pi \hbar}
\]

\[
N_V \approx \frac{20}{\text{mm}^2} \times \Omega \; \text{[Hz]}
\]
I.4.2 Experimental Study of Vortices

- rotating cryostats

Fig. 1 a) Schematic vertical section of the rotating cryostat: (a) Steel frame, (b) rotating o-ring seal, (c) ball bearing, (d) aluminum/FRP dewar, (e) 1K cryostat insert, (f) sample space, (g) instruments, (h) duralumin round tables, (i) slip ring for power supply, (j) AC servomotor, (k) GPIB-USB interface and wireless USB device server and (l) wireless LAN access point. b) Photograph of the rotating cryostat (Color figure online)

A Compact Rotating 1K Cryostat for 3He Studies
Takahiko Makiuchi, Satoshi Murakawa & Keiya Shirahama

Helsinki university
http://ltl.tkk.fi/research/applied/rotating3he.html
I.4.2 Experimental Study of Vortices

- imaging of vortices in superfluid 4He
 - He is covered by electrons
 - electrons are trapped in vortex cores
 - on applying an electric field, electrons are extracted to fluorescent screen

pattern and camera are rotating

pinning of vortices at bottom of container

$T = 0.1\,\text{K}$

I.4.2 Experimental Study of Vortices

- imaging of vortices in a Bose-Einstein condensate of Na atoms

Formation and decay of a vortex lattice. The condensate was rotated for 400 ms and then equilibrated in the stationary magnetic trap for various hold times. (A) 25 ms, (B) 100 ms, (C) 200 ms, (D) 500 ms, (E) 1 s, (F) 5 s, (G) 10 s, and (H) 40 s. The decreasing size of the cloud in (E) to (H) reflects a decrease in atom number due to inelastic collisions. The field of view is about 1 mm by 1.15 mm.

Observation of Vortex Lattices in Bose-Einstein Condensates
W. Ketterle et al., Science 292, 476 (2001)
I.4.2 Experimental Study of Vortices

- imaging of vortices

A sheet of laser light illuminates frozen hydrogen particles trapped on vortex cores, which are then captured on video.

Quantized vortices arrange themselves in a triangular lattice pattern.

A still image captures the vortex lattice along the axis of rotation in a vat of superfluid helium. A perfect lattice is not observed due to waves and other boundary effects.

I.4.2 Experimental Study of Vortices

- **generation of persistent current**
 - rotate a normal fluid at $T > T_\lambda$
 - cool down the rotating normal fluid to $T < T_\lambda \Rightarrow$ the rotation is frozen in and does not decay

- **generation of circulation jumps or phase slip events**
 - start with a non-rotating fluid at $T < T_\lambda$: $\kappa = 0, \ n = 0$
 - rotate the cylindrical vessel containing the fluid:
 - normal fluid rotates at the speed of the vessel
 - superfluid stays in rest
 - reduce the temperature:
 - more and more particles of the normal fluid enter the superfluid
 - the lost angular momentum is transferred to the superfluid, which starts to rotate
 - the circulations and the vorticity κ do not change continuously but in jumps of \hbar/m_{He}
 - jumps are associated with **additional vortex** corresponding to phase change of 2π called **phase slip**
 - phase slips correspond to **transition between two quantum states** with different quantum number n
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
• basic properties of 3He

<table>
<thead>
<tr>
<th>4He</th>
<th>$p^+\uparrow\ p^+\downarrow$</th>
<th>$n\uparrow\ n\downarrow$</th>
<th>$e^-\uparrow\ e^-\downarrow$</th>
<th>boson</th>
</tr>
</thead>
<tbody>
<tr>
<td>3He</td>
<td>$p^+\uparrow\ p^+\downarrow$</td>
<td>$n\uparrow$</td>
<td>$e^-\uparrow\ e^-\downarrow$</td>
<td>fermion</td>
</tr>
</tbody>
</table>

– 3He has spin $\frac{1}{2}$ \rightarrow Fermion

– fluid 3He: *interacting Fermi gas* \rightarrow Fermi liquid (*ideal non-interacting Fermi gas with finite interaction*)
\rightarrow theoretical description by Landau (1956-1958)

– solid 3He shows nuclear magnetism

\rightarrow due to different quantum statistics:

liquid 3He has completely different properties than liquid 4He
I.5.1 Normal Fluid 3Helium

- **first approximation**: description by an **ideal Fermi gas** (non-interacting Fermions)

 - Fermi-Dirac distribution:
 \[
 f(\varepsilon_k) = \frac{1}{\exp\left(\frac{\varepsilon_k - \mu}{k_B T}\right) + 1}
 \]

 - **Boltzmann**
 - **degenerate**

 - $\varepsilon_F / k_B T = 200$

 - $\mu(T)$
 - $0.9887 \cdot T_F$
I.5.1 Normal Fluid 3Helium

- **ideal (non-interacting) Fermi gas**

\[N = \int D(\varepsilon)f(\varepsilon)\,d\varepsilon \]

\[\frac{dN}{d\varepsilon} = D(\varepsilon)f(\varepsilon) \]

For metals:

\[\frac{T}{T_F} \approx 0.01 \]

\[\text{at room temperature } \mu(T) \approx \varepsilon_F \]

\[\mu(T) = \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right] \]
I.5.1 Normal Fluid 3Helium

- ideal (non-interacting) Fermi gas

\[
\begin{align*}
\varepsilon_F &= \frac{\hbar^2 k_F^2}{2m} = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} \\
T_F &= \frac{\varepsilon_F}{k_B} \\
\lambda_F &= \frac{2\pi}{k_F} \\
v_F &= \frac{p_F}{m} = \frac{\hbar k_F}{m}
\end{align*}
\]

\[\varepsilon_F, T_F, \lambda_F, v_F\] **Fermi energy**, **Fermi temperature**, **Fermi wavelength**, **Fermi velocity**

\[m = m_{\text{He}} \text{ is large} \implies \text{expected Fermi temperature (energy) is small: } T_F \approx 4.2 \text{ K}\]

comparison to electron gas in metal:

electrons in metals:
\[n \approx 10^{23} \text{ cm}^{-3} \text{ is large}, \quad m = m_e \text{ is small} \]
\[\implies T_F \approx 10^5 \text{ K is large}\]

3He:
\[n \approx 10^{22} \text{ cm}^{-3} \text{ is slightly smaller}, \quad m = m_{\text{He}} \text{ is large} \]
\[\implies T_F \approx \text{few K is small}\]
I.5.1 Normal Fluid 3Helium

- **ideal (non-interacting) Fermi gas: specific heat**
 - **classical:**
 \[
 C_V^{\text{class}} = \left. \frac{\partial \langle U \rangle}{\partial T} \right|_V = N \cdot 3 \cdot \frac{1}{2} k_B = \frac{3}{2} N k_B
 \]
 (Dulong-Petit)
 - **quantum mechanical:**
 \[
 U = \int_0^\infty \varepsilon \ D(\varepsilon) f(\varepsilon) \, d\varepsilon
 \]

 Sommerfeld expansion
 \[
 U = U(T = 0) + (k_B T)^2 \frac{\pi^2}{6} D(E_F)
 \]

 Sommerfeld coefficient
 \[
 \frac{C_V^{\text{qm}}}{V} = \frac{\pi^2}{2} n k_B^2 \frac{T}{E_F} = \gamma \cdot T
 \]

- **only small fraction $\approx T/T_F$ of particles in energy interval $k_B T$ around E_F contributes to specific heat**
- **energy change per particle $\approx k_B T$**
- **total energy change $\approx k_B T \cdot N k_B \left(\frac{T}{T_F} \right) \propto D(E_F) T^2$$
- **$C_V \propto D(E_F) T$**
I.5.1 Normal Fluid 3Helium

- ideal (non-interacting) Fermi gas: specific heat

- interacting Fermi gas \rightarrow Fermi liquid (Landau)
- increased effective mass m^*
 \rightarrow smaller Fermi temperature $T_F \propto 1/m^*$
 $m^*/m_{He} \approx 2.8$ (@ $p=1$ bar)
 ≈ 5.5 (@ $p=30$ bar)
- additional contribution due to spin fluctuations (paramagnons)
 \rightarrow strong repulsive interaction at short distance \rightarrow antisymmetric orbital wavefunction
 \rightarrow symmetric spin wavefunction \rightarrow parallel orientation of neighboring spins

measured Fermi temperature is significantly smaller than expected

![Graph showing specific heat C_V vs. temperature T for 3He]

$T_F \approx 0.6$ K
I.5.1 Normal Fluid 3Helium

- Intuitive argument for increased effective mass:

Interaction causes "backflow" of particles

\Rightarrow increased effective mass m^*

\Rightarrow reduced Fermi temperature $T_F \propto 1/m^*$
I.5.1 Normal Fluid 3Helium

- magnetic susceptibility: nuclear spin $I = \frac{1}{2}$ determines magnetic properties

 - $T > T_F$: non-degenerate Fermi gas \Rightarrow magnetic susceptibility follows Curie law: $\chi \propto C/T$

 $$\chi = \mu_0 \left(\frac{\partial M}{\partial B_{\text{ext}}} \right)_{T,V} = \frac{\mu_0 n \mu_{\text{eff}}^2}{k_B T} = \frac{C}{T} \quad \mu_{\text{eff}} = g_n \mu_n$$

 \(g_n = \) Landé factor

 \(\mu_n = \) magnetic moment of 3He

 - $T < T_F$: degenerate Fermi gas \Rightarrow temperature independent Pauli spin susceptibility (only fraction T/T_F contributes)

 for electron liquid: $\chi_P = \mu_0 \left(\frac{\partial M}{\partial B_{\text{ext}}} \right)_{T,V} = \mu_0 \mu_B^2 \frac{D(\varepsilon_F)}{V} = \frac{3}{2} \frac{\mu_0 n \mu_B^2}{k_B T_F} \approx \text{const.}$

 for 3He liquid: $\chi_P = \mu_0 \mu_{\text{eff}}^2 \frac{D(\varepsilon_F)}{V}$ with $\mu_{\text{eff}} = g_n \mu_n$

\[M = \frac{\mu_{\text{eff}} \Delta N}{V} = \mu_{\text{eff}} \Delta n\]

\[\Delta n \approx \mu_{\text{eff}} B_{\text{ext}} \cdot D(\varepsilon_F)/V\]

\[\chi = \mu_0 \mu_{\text{eff}}^2 D(\varepsilon_F)/V\]

\[D(\varepsilon_F) \propto m^*\]
I.5.1 Normal Fluid 3Helium

- magnetic susceptibility

\[\chi T \approx \text{const.} \Rightarrow \chi = C/T \]
(Curie law)

\[\chi T \propto T \Rightarrow \chi = \text{const.} \]
(Pauli susceptibility)

\[T_F \approx 0.6 \text{ K} \]

3He

cannot be measured for an electron gas system in a metal since $T_F \gg$ melting temperature
I.5.1 Normal Fluid 3Helium

• transport properties

 – description by *kinetic gas theory*:

 \rightarrow viscosity: $\eta = \frac{1}{3} \rho v \ell$ \((\ell = \text{mean free path}) \)

 \rightarrow diffusion coefficient: $D = \frac{1}{3} v \ell$ \((\text{self-diffusion}) \)

 \rightarrow thermal conductivity: $\kappa = \frac{1}{3} c_V v \ell$

 – classical gas: $v_{th} = \text{thermal velocity}$ $v_{th} = \sqrt{\frac{2k_B T}{m}}$ \((\text{Maxwell-Boltzmann statistics}) \)

 – Fermi gas: $v_F = \text{Fermi velocity}$ $v_F = \frac{\hbar}{m} \left(\frac{3\pi^3 n}{1} \right)^{1/3}$ \((\text{Fermi statistics}) \)

 – Fermi gas, with $\ell = v_F \tau$

 $\eta = \frac{1}{3} \rho \tau v_F^2 \propto \frac{1}{T^2}$

 $D = \frac{1}{3} \tau v_F^2 \propto \frac{1}{T^2}$

 $\kappa = \frac{1}{3} c_V \tau v_F^2 \propto \frac{1}{T}$

 $\tau^{-1} \propto \left(\frac{T}{T_F} \right)^2$

 particle-particle scattering rate
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
I.1.1 Quantum Gases & Liquids
I.1.2 Helium
I.1.3 Van der Waals Bonding
I.1.4 Zero-Point Fluctuations
I.1.5 Helium under Pressure
I.1.6 pT-Phase Diagram of ⁴He and ³He
I.1.7 Characteristic Properties of ⁴He and ³He
I.1.8 Specific Heat of ⁴He and ³He

I.2 ⁴He as an Ideal Bose Gas
I.2.1 Bose-Einstein Condensation
I.2.2 Ideal Bose Gas
I.2.3 Bose Gas with Interactions
I.2.4 Bose-Einstein Condensation of ⁴He

I.3 Superfluid ⁴He
I.3.1 Two-Fluid Model
I.3.2 Experimental Observations
I.3.3 Two-Fluid Hydrodynamics
I.3.4 Excitation Spectrum of ⁴He

I.4 Vortices
I.4.1 Quantization of Circulation
I.4.2 Experimental Study of Vortices

I.5 ³He
I.5.1 normal fluid ³He
I.5.2 solid ³He and Pomeranchuk effect
I.5.3 superfluid ³He

I.6 ³He / ⁴He mixtures
I.5.1 Normal Fluid 3Helium

- comparison of properties of liquid 3He with those of ideal (non-interacting) Fermi gas

<table>
<thead>
<tr>
<th></th>
<th>3He</th>
<th>Fermi Gas</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_V^{\text{mol}}/N_A k_B T$</td>
<td>2.78</td>
<td>1.0</td>
<td>2.78</td>
</tr>
<tr>
<td>v_F (m/s)</td>
<td>56</td>
<td>157</td>
<td>2.80</td>
</tr>
<tr>
<td>$\chi/\mu_0 \mu_{\text{eff}}^2$ (Jm3)$^{-1}$</td>
<td>$3.3 \cdot 10^{51}$</td>
<td>$3.6 \cdot 10^{50}$</td>
<td>9.2</td>
</tr>
</tbody>
</table>

significant deviations due to finite interactions → Landau Fermi liquid → effective mass

mole volume: 36.84 cm3 @ $p = 0$ bar, $T = 0$ K $\Rightarrow n = 1.63 \times 10^{28}$ m$^{-3}$
mass: $m_{^3\text{He}} = 3.016$ amu $= 5.006 \times 10^{-27}$ kg
I.5.2 Solid ^3He and Pomerantchuk Effect

- comparison of phase diagrams of ^3He and ^4He
 - ^4He mostly hcp, small region with bcc, at high T: fcc
 - ^3He shows bcc-hcp transition at 100 bar, at high T: fcc
 - ^3He shows minimum in melting curve at $T = 0.32$ K

➤ can be used for cooling of ^3He

Pomerantchuk effect

Isaak Jakowlewitsch Pomerantchuk
(Исаак Яковлевич Померанчук;
geb.: 20. Mai 1913 in Warschau;
gest.: 14. Juli 1966 in Moskau)
russischer Physiker.
I.5.2 Solid 3He and Pomerantchuk Effect

- Clausius-Clapeyron equation:
 \[
 \left. \frac{\partial p_m}{\partial T} \right|_{\text{melting}} = \frac{S_{\text{liq}} - S_{\text{sol}}}{V_{\text{liq}} - V_{\text{sol}}} = \frac{\Delta S_m}{\Delta V_m} = \frac{\Delta Q_m}{\Delta V_m T} \quad \text{and } V_{\text{liq}} > V_{\text{sol}}
 \]

 for $T < 0.32 \text{ K}$:
 \[
 \left. \frac{\partial p_m}{\partial T} \right|_{\text{melting}} < 0 \quad \Rightarrow \quad S_{\text{liq}} < S_{\text{sol}} \quad \Rightarrow \quad \text{disorder larger in solid than in liquid phase ??}
 \]

- explanation:

 → **solid phase**: atoms are ordered,

 → spins are disordered and determine entropy: $S_{\text{solid}} = N_A k_B \ln 2 = R \ln 2$

 at low T: antiparallel ordering of spins, S decreases towards zero

 → **liquid phase**: atoms are spatially disordered, but ordering in k-space (Fermi liquid)

 → entropy of Fermi liquid:

 \[
 S_{\text{liquid}} = \int_0^T \frac{C_V}{T'} dT' \propto \frac{T}{T_F}
 \]

 drop due to interactions

\[
S \quad \Rightarrow \quad \begin{cases} \text{solid} \quad R \ln 2 \\ \text{liquid} \quad 320 \text{ mK} \end{cases}
\]

\[
0 \quad \ln T
\]
I.5.2 Solid 3He and Pomerantchuk Effect

- Pomerantchuk cooling

 - precooling to $T < T_{\text{min}}$
 - adiabatic compression \Rightarrow solidification and cooling
 - lowest T: ≈ 1.5 mK

\Rightarrow limitation due to antiparallel spin ordering in solid 3He
Pomeranchuk's suggestion for cooling a melting mixture of 3He:

The solid phase has a higher entropy than the liquid at low temperatures. As the liquid-solid mixture is compressed, heat is removed from the liquid phase as solid crystallites form. The fractional change of volume required to completely convert liquid into solid is approximately 5%. Unlike melting water, the solid phase forms at the hottest part of the container.
I.5.2 Solid 3He and Pomerantchuk Effect

- **solid 3He: single crystals**

 Sequence of interferograms of a growing 3He crystal at $T = 0.55$ mK. The dashed white lines outline the identified facets marked with Miller indices.

 Computer-generated shape of a bcc crystal presented together with an elementary patch of a crystal habit where the facets are labeled with Miller indices.
Superconductivity
and
Low Temperature
Physics II

Lecture No. 7

R. Gross
© Walther-Meißner-Institut
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of \(^4\)He and \(^3\)He
 I.1.7 Characteristic Properties of \(^4\)He and \(^3\)He
 I.1.8 Specific Heat of \(^4\)He and \(^3\)He

I.2 \(^4\)He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of \(^4\)He

I.3 Superfluid \(^4\)He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of \(^4\)He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 \(^3\)He
 I.5.1 normal fluid \(^3\)He
 I.5.2 solid \(^3\)He and Pomeranchuk effect
 I.5.3 superfluid \(^3\)He

I.6 \(^3\)He / \(^4\)He mixtures
I.5.3 Superfluid 3He

- **initial believe**: no superfluid 3He due to Pauli’s exclusion principle for fermions
 \rightarrow no Bose-Einstein condensation of 3He, no superfluid phase

- **after development of BCS theory**: *pairing of 3He atoms to Cooper pairs* ??
 \rightarrow problem: liquid 3He is system of strongly interacting particles
 \rightarrow formation of Cooper pairs out of „naked“ 3He atoms not possible (nature of exchange boson ??)
 \rightarrow Landau: weakly interacting quasiparticles in Fermi liquid

- **1963**: critical pairing temperature of about 100 mK was expected

- **1971**: discovery of superfluid 3He at $T < 2.7$ mK by Osheroff, Richardson and Lee (used Pomerantschuk cooling)
 (*Nobel Prize in Physics 1996 „for their discovery of superfluid 3He“*)

- **initially**: two superfluid phases A and B
 later: three phases (in magnetic field additional A_1 phase)

- experimental result: pairs have spin $S = 1$, *spin triplet pairs*
 \rightarrow pairs with $S = 1$ must have $L = 1$ (see below)
 \rightarrow occupation probability for same position is negligible (*reduction of short length repulsion*)
I.5.3 Superfluid 3He

- discovery of superfluid 3He in 1971

Douglas D. Osheroff, Stanford University, Stanford, California, USA

David M. Lee, Cornell University, Ithaca, New York, USA

Robert C. Richardson, Cornell University, Ithaca, New York, USA

The Nobel Prize in Physics 1996

"for their discovery of superfluidity in helium-3"
I.5.3 Superfluid 3He

- discovery of superfluid 3He in 1971

- cool down of 3He via Pomeranchuk effect
- observation of melting curve → anomalies give hint to phase transitions

source: Nobel Prize Lecture Lee/Osheroff (1996)
Superfluid 3He: phase diagram for $B = 0$

- phase diagram of 3He: note the logarithmic temperature scale. There are two superfluid phases of 3He, A and B.
- the line within the solid phase indicates a transition between spin-ordered and spin disordered structures (at low and high temperatures, respectively).

big difference in value of T_{sf} compared to 4He

- normal/superfluid transition is dominated by quantum effects
- quantum statistics matters!! (bosons vs. fermions)
- nature of superfluid phase in 4He and 3He is different
I.5.3 Superfluid 3He: phase diagram for $B = 0$

- **paramagnetic bbc solid**
- **sf 3He-A**
- **normal liquid 3He**
- **polycritical point (PCP) 21.5 bar, 2.56 mK**

Pressure increases pairing interaction

linar T scale !!!

- **$p = 34.4$ bar**
- **$T_A = 2.79$ mK**
- **$T_B = 2.16$ mK**
- **$T_z = 1.04$ mK**
I.5.3 Superfluid 3He: specific heat

- T_c: 2. order phase transition \rightarrow jump of C_p as for superconductor
- T_{AB}: 1. order phase transition \rightarrow small change of temperature dependence of C_p
 \rightarrow hysteresis, latent heat
- PCP: first and second order phase transition merge

$\Delta C_p/C_p \approx 2$
$@ p = 30 \text{ bar}$

$\Delta C_p/C_p \approx 1.4$
$@ p = 1 \text{ bar}$

weak coupling BCS theory:
$\Delta C_p/C_p = 1.43$

T. A. Alvesalo et al., JLTP 45, 373 (1981)
I.5.3 Superfluid 3He: proof of superfluidity

- use of **vibrating wire**, measurement of quality factor $\nu / \Delta \nu$

 \[\Delta \nu \]

 \[T \text{ (mK)} \]

 viscosity changes by 5 orders of magnitude

 normal fluid freezes out

- **other experiments:***

 → persistent flow experiments:

 - viscosity of B phase changes at least by 12 orders of magnitude
 - persistent flow in A phase decays slowly (appearance of textures)
 - small critical velocity: 1 to 100 mm/s

 Persistent-Current Experiments on Superfluid He 3-B and He 3-A
 J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, R. E. Packard,
I.5.3 Superfluid 3He: pairing

- 3He is **strongly interacting Fermi liquid** (different to electrons in metals)
 - exchange interaction favors parallel spin alignment
 - Fermi statistics favors anti-parallel spin orientation

- 3He forms Cooper pairs with spin $S = 1$ (spin triplet pairs)
in contrast to electrons in metals: $S = 0$ (spin singlet pairs)

- note the general requirement: **antisymmetric pair wave function** for fermions

<table>
<thead>
<tr>
<th>symmetric spin wave function</th>
<th>\Rightarrow antisymmetric orbital wave function ($L = 1,3,\ldots$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>antisymmetric spin wave function</td>
<td>\Rightarrow symmetric orbital wave function ($L = 0,2,\ldots$)</td>
</tr>
</tbody>
</table>

examples:
(i) Cooper pairs in metallic superconductors ($L = 0, S = 0$) \Rightarrow s-wave, spin-singlet pairs
(ii) Cooper pairs in high T_c superconductors ($L = 2, S = 0$) \Rightarrow d-wave, spin-singlet pairs
(iii) Cooper pairs in superfluid 3He ($L = 1, S = 1$) \Rightarrow p-wave, spin-triplet pairs

p-type orbital wave function minimizes hard core repulsion

complex behavior due to 3 x 3 combinations for L_z / S_z
I.5.3 Superfluid 3He: in $B \neq 0$

spin triplet pairs have magnetic moment \rightarrow phase diagram depends on magnetic field

\[B = 0 \quad \text{0} < B < 0.6 \, \text{T} \quad B > 0.6 \, \text{T} \]

- new phase A_1
- phase A gains
- phase B looses

\[\approx 20 \, \mu \text{K} \]
I.5.3 Superfluid 3He: in $B \neq 0$

- specific heat

$B = 0.88 \, T$

$p = p_{\text{melting}}$

clear demonstration of existence of A_1 phase !!

W.P. Halperin et al.,
I.5.3 Superfluid 3He: in $B \neq 0$

- phase diagram of 3He

source: http://ltl.tkk.fi/research/theory/helium.html
• description of liquid 3He by a Fermi liquid (interacting Fermi gas)

Landau: what happens, if we increase the interaction strength in a non-interacting systems continuously?

- **non-interacting system**: addition/removal of one particle with momentum k and spin σ to ground state $|\tilde{\Psi}_0\rangle$

 $$|\tilde{\Psi}_{k\sigma}\rangle = c^\dagger_{k\sigma}|\tilde{\Psi}_0\rangle$$

 $$\tilde{\varepsilon}_k = \frac{\hbar^2(k^2 - k_F^2)}{2m}$$

 $$f_{k\sigma}(T = 0) = \begin{cases} 0 & \text{for } k < k_F \\ 1 & \text{for } k > k_F \end{cases}$$

- **interacting system**: addition/removal of one particle changes energies of all other particles due to interaction

 Landau’s argument of adiabatic continuity (wave function changes continuously, when switching on interaction):

 quasiparticle energy has similar k-dependence:

 $$\varepsilon_k = \frac{\hbar^2(k^2 - k_F^2)}{2m^*} \quad m^* = \text{effective mass}$$

 for k close to k_F:

 $$\varepsilon_k = \left. \frac{\partial \varepsilon_k}{\partial k} \right|_{k = k_F} (|k| - k_F) = \frac{\hbar k_F}{m^*} (|k| - k_F)$$

 $f_{k\sigma}(T = 0)$ shows discontinuity, but height of the discontinuity is reduced to smaller value $Z < 1$

 $$|\Psi_n\rangle$$

 $$f_{k\sigma}(T = 0) = \langle \Psi_n | c^\dagger_{k\sigma} c_{k\sigma} | \Psi_n \rangle$$

 k_F stays unchanged: Luttinger theorem
I.5.3 Superfluid \(^3\)He: Fermi liquid description

- description of liquid \(^3\)He by a Fermi liquid (interacting Fermi gas)

 - total energy:
 \[
 E = \underbrace{E_0}_{\text{ground state}} + \sum_{k\sigma} \varepsilon_k n_{k\sigma} + \frac{1}{2} \sum_{k\sigma,k'\sigma'} \eta(k\sigma,k'\sigma') n_{k\sigma} n_{k'\sigma'}
 \]

 - two particle energy:
 \[
 \varepsilon_k + \varepsilon_{k'} + \eta(k\sigma,k'\sigma') \neq \text{sum of single particle energies } \varepsilon_k, \varepsilon_{k'}
 \]
 describes effective interaction between two quasiparticles:
 is usually split in parts \(\eta_1(k,k')\) and \(\eta_2(k,k')\) for singlet and triplet contribution

 - at low \(T\): \(|k|, |k'| \approx k_F\) and due to spherical symmetry \(\eta(k,k') \propto k \cdot k' = k_F^2 \cos \theta\)
 \(\Rightarrow\) we can express \(\eta_1(k,k')\) and \(\eta_2(k,k')\) by Legendre polynomials \(P_\ell(\cos \theta)\)

 \[
 g(\varepsilon_F) \eta_1(k,k') = \sum_\ell F_\ell P_\ell(\cos \theta) \quad g(\varepsilon_F) \eta_2(k,k') = \sum_\ell Z_\ell P_\ell(\cos \theta)
 \]

 \(g(\varepsilon_F)\) = density of states (states per energy interval) \(\Rightarrow F_\ell, Z_\ell\) are dimensionless

Theory by Leggett:
- \(F_0, F_1\) are large and positive \(\Rightarrow m^* = m(1 + F_1/3)\) with \(F_1 \approx 5.4\) (increases with pressure)

 - \(Z_0 \approx -3\) and \(Z_1\) is small \(\Rightarrow\) magnetic susceptibility \(\chi = \frac{m^*}{m} \frac{\chi_0}{1 + (Z_0/4)}\) with \(Z_0 \approx -2.78\)
 \(\Rightarrow \chi \approx 9.2 \chi_0\): He is close to ferromagnetic instability
I.5.3 Superfluid 3He: pairing interaction

- interaction of 3He atoms due to van der Waals potential $V(\mathbf{r}_i - \mathbf{r}_j) = V(\mathbf{r})$

$$V(\mathbf{k}, \mathbf{k}') = \int e^{-i(\mathbf{k}-\mathbf{k}') \cdot \mathbf{r}} V(\mathbf{r}) \, d^3r$$

pairing potential in k-space

- at low T: $|\mathbf{k}|, |\mathbf{k}'| \approx k_F$ and due to spherical symmetry $V(\mathbf{k}, \mathbf{k}') \propto \mathbf{k} \cdot \mathbf{k}' = k_F^2 \cos \theta$

\Rightarrow we can express $V(\mathbf{k}, \mathbf{k}')$ by Legendre polynomials $P_\ell(\cos \theta)$

$$V(\mathbf{k}, \mathbf{k}') = \sum_\ell \frac{2\ell + 1}{2} V_\ell P_\ell(\cos \theta)$$

with $V_\ell = \frac{1}{4\pi} \int V(\mathbf{n}(\theta, \phi), \hat{e}_z) P_\ell(\cos \theta) \sin \theta \, d\theta \, d\phi$

$$\frac{2\ell+1}{2} = \int P_\ell^2(\cos \theta) \sin \theta \, d\theta \quad \text{(normalization)}$$

- calculation of V_ℓ for van der Waals potential (e.g. by Leggett 1975):

 $V_0 = \text{strongly repulsive}, V_1, V_2 = \text{weakly attractive} \Rightarrow \text{cannot explain pairing in superfluid } ^3\text{He}$

- attractive interaction results from exchange of virtual spin fluctuations

one 3He atom polarizes neighboring nuclear spins which then result in an effective attractive interaction for 2nd 3He atom

$$V(\mathbf{k}, \mathbf{k}') \propto \frac{1}{g(\varepsilon_F)} \frac{\chi_0}{1 + (Z_0/4)} \hat{s}_k \cdot \hat{s}_{k'}$$

(Leggett 1975)

$$\hat{s}_k \cdot \hat{s}_{k'} = +1/4 \text{ for triplet}$$

$$\hat{s}_k \cdot \hat{s}_{k'} = -3/4 \text{ for singlet}$$
I.5.3 Superfluid 3He: superfluid phases

- starting point: BCS Hamiltonian

BCS Hamiltonian for N interacting electrons

$$
\mathcal{H}_{\text{BCS}} = \sum_{\sigma} \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\text{ext}}(\mathbf{r}_i) \right) + \frac{1}{2} \sum_{\sigma} \sum_{i,j=1}^{N} V_{\text{int}}(\mathbf{r}_i - \mathbf{r}_j)
$$

Spin, kinetic energy, potential energy, interaction energy

- **Insertion of field operators and integration over volume**
 - FT of \mathcal{H}_{BCS} into k-space (see R. Gross, A. Marx, „Festkörperphysik“, 4. Auflage, appendix H.2)

Operator describes scattering from state

$$
(\mathbf{k},\mathbf{\delta})\rightarrow(\mathbf{k'},\mathbf{\alpha})\text{ by exchange of exchange boson with wave vector } (\mathbf{k} - \mathbf{k'})
$$

Energy of non-interacting free electron gas

$$
\varepsilon_\mathbf{k} - \mu = \frac{\hbar^2 (k - k_F)^2}{2m}
$$

Interaction energy

$$
V(\mathbf{k}, \mathbf{k'}) = \frac{1}{\Omega} \int V(\mathbf{r}) e^{i(\mathbf{k} - \mathbf{k'}) \cdot \mathbf{r}} dV
$$

- Factor $\frac{1}{2}$ avoids double counting

Formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)
I.5.3 Superfluid 3He: superfluid phases

- **symmetry of the pair wavefunction**

 - **important**: pair consist of two fermions \Rightarrow **total wavefunction must be antisymmetric: minus sign for particle exchange**

 \[
 \Psi(r_1, \sigma_1, r_2, \sigma_2) = \frac{1}{\sqrt{V}} e^{i K_s \cdot R_s} f(q, r) \chi(\sigma_1, \sigma_2) = -\Psi(r_2, \sigma_2, r_1, \sigma_1)
 \]

 - center of mass motion orbital spin
 - we assume $K_s = 0$ part part

 - possible **spin wavefunctions** $\chi(\sigma_1, \sigma_2)$ for electron pairs

 \[
 S = \begin{cases}
 0 & m_s = 0 & \chi^a = \frac{1}{\sqrt{2}} (\uparrow\downarrow - \downarrow\uparrow) \\
 -1 & m_s = -1 & \chi^s = \downarrow\downarrow \\
 0 & m_s = 0 & \chi^s = \frac{1}{\sqrt{2}} (\uparrow\downarrow + \downarrow\uparrow) \\
 +1 & m_s = 1 & \chi^s = \uparrow\uparrow
 \end{cases}
 \]

 - **singlet pairing**, antisymmetric spin wavefunction
 symmetric orbital function: $L = 0, 2, \ldots (s, d, \ldots)$
 - **triplet pairing**, symmetric spin wavefunction
 antisymmetric orbital function: $L = 1, 3, \ldots (p, f, \ldots)$

 \[
 R_s = (r_1 + r_2)/2 \\
 r = (r_1 - r_2) \\
 K_s = (k + k')/2 \\
 q = (k - k')
 \]
I.5.3 Superfluid 3He: superfluid phases

• BCS mean-field approximation

$$\hat{c}_{-\mathbf{k}\alpha} \hat{c}_{\mathbf{k}\beta} = \frac{\langle \hat{c}_{-\mathbf{k}\alpha} \hat{c}_{-\mathbf{k}\beta} \rangle}{g_{\alpha\beta}(\mathbf{k})} + \frac{\langle \hat{c}_{-\mathbf{k}\alpha} \hat{c}_{\mathbf{k}\beta} \rangle}{\delta g_{\alpha\beta}(\mathbf{k})}$$

$$\hat{c}_{\mathbf{k}\alpha} \hat{c}_{-\mathbf{k}\beta} = \frac{\langle \hat{c}_{\mathbf{k}\alpha} \hat{c}_{-\mathbf{k}\beta} \rangle}{g_{\alpha\beta}^*(\mathbf{k})} + \frac{\langle \hat{c}_{\mathbf{k}\alpha} \hat{c}_{-\mathbf{k}\beta} \rangle}{\delta g_{\alpha\beta}^*(\mathbf{k})}$$

- make use of **pairing potential**

$$\Delta_{\alpha\beta}(\mathbf{k}) \equiv -\sum_{\mathbf{k}',\gamma,\delta} V_{\alpha\beta\gamma\delta}(\mathbf{k},\mathbf{k}') g_{\alpha\beta}(\mathbf{k}')$$

$$\Delta^*_{\alpha\beta}(\mathbf{k}) \equiv -\sum_{\mathbf{k}',\gamma,\delta} V_{\alpha\beta\gamma\delta}(\mathbf{k},\mathbf{k}') g_{\alpha\beta}^*(\mathbf{k}')$$

- with $\alpha, \beta = \uparrow, \downarrow$: two fermions with $s = \frac{1}{2}$ and $\alpha, \beta = m_s = \uparrow, \downarrow$

$$g(\mathbf{k}) \equiv \begin{pmatrix} \langle \hat{c}_{-\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\uparrow} \rangle & \langle \hat{c}_{-\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\downarrow} \rangle \\ \langle \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \rangle & \langle \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\downarrow} \rangle \end{pmatrix} \quad g^*(\mathbf{k}) \equiv \begin{pmatrix} \langle \hat{c}_{\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\uparrow}^\dagger \rangle & \langle \hat{c}_{\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\downarrow}^\dagger \rangle \\ \langle \hat{c}_{\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow}^\dagger \rangle & \langle \hat{c}_{\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\downarrow}^\dagger \rangle \end{pmatrix} \quad \Delta(\mathbf{k}) = \begin{pmatrix} \Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k}) \\ \Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix} \quad \Delta^*(\mathbf{k}) = \begin{pmatrix} \Delta_{\uparrow\uparrow}^*(\mathbf{k}) & \Delta_{\uparrow\downarrow}^*(\mathbf{k}) \\ \Delta_{\downarrow\uparrow}^*(\mathbf{k}) & \Delta_{\downarrow\downarrow}^*(\mathbf{k}) \end{pmatrix}$$

4 components covering all spin orientations before and after interaction
I.5.3 Superfluid 3He: superfluid phases

- diagonalization of mean-field Hamiltonian by Bogoliubov transformation

- BCS energy gap equation: (Nambu, 1962)

\[
\begin{pmatrix}
\varepsilon_k - \mu & 0 \\
0 & \varepsilon_k - \mu
\end{pmatrix}
\begin{pmatrix}
\Delta_{11}(k) \\
\Delta_{1\bar{1}}(k)
\end{pmatrix}
\begin{pmatrix}
\Delta_{1\bar{1}}(k) \\
\Delta_{11}(k)
\end{pmatrix} =
\begin{pmatrix}
\varepsilon_k - \mu & 0 \\
0 & -\varepsilon_k + \mu
\end{pmatrix}
\begin{pmatrix}
u_{k\uparrow n} \\
v_{k\downarrow n}
\end{pmatrix}
= E_{kn}
\begin{pmatrix}
u_{k\uparrow n} \\
v_{k\downarrow n}
\end{pmatrix}
\]

- 4 x 4 matrix equation instead of 2 x 2 matrix equation for spin singlet superconductor
- diagonalization by suitable Bogoliubov transformation
- two positive eigenvalues E_{kn} ($n = 1, 2$) and two negative eigenvalues $-E_{kn}$
- general gap equation allows for both spin singlet and spin triplet pairing

- symmetry properties of pairing amplitude and pairing potential (follows from anti-commutation relation of fermionic operators)

\[
g_{\alpha\beta}(k) = \langle \hat{c}_{-\alpha\alpha} \hat{c}_{\alpha\beta} \rangle = -\langle \hat{c}_{\bar{\beta}\beta} \hat{c}_{\bar{\alpha}\alpha} \rangle = -g_{\beta\alpha}(-k)
\]

\[
\Delta_{\alpha\beta}(k) = -\Delta_{\bar{\beta}\alpha}(-k)
\]
I.5.3 Superfluid 3He: superfluid phases

- representation of the energy gap matrix $\Delta_{\alpha\beta}(\mathbf{k})$ by a scalar gap function $\Delta(\mathbf{k})$ and a vector $\mathbf{d}(\mathbf{k})$

\[
\begin{pmatrix}
\Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k}) \\
\Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k})
\end{pmatrix} = i [\Delta(\mathbf{k}) \mathbf{I} + \mathbf{d}(\mathbf{k}) \cdot \sigma] \sigma_y
\]

Pauli spin matrix $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

$\mathbf{d} = \hat{\mathbf{d}} |\mathbf{d}| e^{i\Phi}$

- amplitude $|\mathbf{d}|$ (d is vector with complex components):
 - pair density $|d|^2 = d_x^2 + d_y^2 + d_z^2 = n_s$

- direction $\hat{\mathbf{d}} = \mathbf{d} / |\mathbf{d}|$:
 - spatial orientation of spin wave function: $\hat{\mathbf{d}} \cdot \mathbf{S} = 0$
I.5.3 Superfluid 3He: superfluid phases

• parity consideration

 – with $g_{\alpha\beta}(\mathbf{k}) = -g_{\beta\alpha}(-\mathbf{k})$ and $\Delta_{\alpha\beta}(\mathbf{k}) = -\Delta_{\beta\alpha}(-\mathbf{k})$ we obtain

\[
\Delta(\mathbf{k}) = \Delta(-\mathbf{k})
\]

scalar component is even with respect to inversion $\mathbf{k} \rightarrow -\mathbf{k}$

\[
d(\mathbf{k}) = -d(-\mathbf{k})
\]

vector component is odd with respect to inversion $\mathbf{k} \rightarrow -\mathbf{k}$

– anti-symmetry of pair wave function requires

• spin singlet ($S = 0$):

\[
\begin{pmatrix}
\Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k}) \\
\Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k})
\end{pmatrix}
= \begin{pmatrix}
0 & \Delta(\mathbf{k}) \\
-\Delta(\mathbf{k}) & 0
\end{pmatrix}
\]

• spin triplet ($S = 1$):

\[
\begin{pmatrix}
\Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k}) \\
\Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k})
\end{pmatrix}
= \begin{pmatrix}
-d_x(\mathbf{k}) + id_y(\mathbf{k}) & +d_z(\mathbf{k}) \\
+d_z(\mathbf{k}) & d_x(\mathbf{k}) + id_y(\mathbf{k})
\end{pmatrix}
\]
I.5.3 Superfluid ^3He: superfluid phases

- representation of the scalar function $\Delta (k)$ and vector $d(k)$
 - we can restrict ourselves to wave vectors near the Fermi level
 - due to spherical symmetry, we can use spherical harmonics Y_{lm} to represent
 \[
 d_i(k) = \sum h_{ilm} Y_{lm}(\theta_k, \varphi_k) \quad i = x, y, z
 \]
 - spin singlet: $l = 0, 2, 4, ...$
 - spin triplet: $l = 1, 3, 5, ...$

 - in general, one has to sum up over all angular momentum quantum numbers l
 - practically, one can restrict oneself to a particular quantum number (dominating pairing channel, all other channels have much smaller T_c)
 - for superfluid ^3He, the **dominating pairing channel is the $l = 1$ channel** mediated by spin fluctuations

- practically, one can restrict oneself to a particular quantum number (dominating pairing channel, all other channels have much smaller T_c)
 - for superfluid ^3He, the **dominating pairing channel is the $l = 1$ channel** mediated by spin fluctuations

\[
\begin{align*}
 p_x(\theta_k, \varphi_k) &= \sqrt{3/4\pi} \cos \varphi_k \sin \theta_k \\
 p_y(\theta_k, \varphi_k) &= \sqrt{3/4\pi} \sin \varphi_k \cos \theta_k \\
 p_z(\theta_k, \varphi_k) &= \sqrt{3/4\pi} \cos \theta_k
\end{align*}
\]

\[h_{im} = 3 \times 3\text{ matrix as } i = x, y, z\text{ and } m = -1, 0, +1\]

complex matrix elements have to be determined by solving BCS gap equation
I.5.3 Superfluid 3He

- Superfluid phases of 3He

\[
\begin{pmatrix}
\Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k}) \\
\Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k})
\end{pmatrix} = \begin{pmatrix}
-d_x(\mathbf{k}) + i d_y(\mathbf{k}) & +d_z(\mathbf{k}) \\
+ d_z(\mathbf{k}) & d_x(\mathbf{k}) + i d_y(\mathbf{k})
\end{pmatrix}
\]

\[d_i(\mathbf{k}) = \sum h_{im} p_m(\theta_{\mathbf{k}}, \varphi_{\mathbf{k}})\]

- Anderson-Brinkman-Morrel (ABM or A) phase

\[h_{im} = h \begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}\]

\[d_x(\mathbf{k}) = p_x + i p_y\]

|\psi\rangle_{ABM} = (p_x + i p_y) |\downarrow\downarrow\rangle - (p_x - i p_y) |\uparrow\uparrow\rangle

linear combination of $S_z = \pm 1$

(i) $B = 0$: \(|h_{xx}| = |h_{xy}| \Rightarrow \langle S_z \rangle = 0$

(ii) $B \neq 0$: \(|h_{xx}| \neq |h_{xy}| \Rightarrow \langle S_z \rangle \neq 0$ (anisotropic, paramagnetic)
I.5.3 Superfluid 3He

- Anderson-Brinkman-Morrel (ABM or A) phase

- both spins are always parallel
- all paired atoms are moving in plane perpendicular to L

$$|\psi\rangle_{ABM} = (p_x + ip_y) |\downarrow\downarrow\rangle - (p_x - ip_y) |\uparrow\uparrow\rangle$$

- unpaired atoms moving in L direction do not perturb \(\Rightarrow\) no energy gap in L-direction

- axial (chiral) state
- note that $L \parallel S$ would result in repulsive spin-orbit interaction

- d-vector has constant direction but varying length
- Fermi sphere
- $\text{anisotropic energy gap}$
- nodes \Rightarrow low lying qp excitations
I.5.3 Superfluid 3He

- Superfluid phases of 3He

$$\begin{pmatrix}
\Delta_{\uparrow\uparrow}(k) & \Delta_{\uparrow\downarrow}(k) \\
\Delta_{\downarrow\uparrow}(k) & \Delta_{\downarrow\downarrow}(k)
\end{pmatrix} =
\begin{pmatrix}
-d_x(k) + i d_y(k) & +d_z(k) \\
+ d_z(k) & d_x(k) + i d_y(k)
\end{pmatrix}$$

$$d_i(k) = \sum h_{im} p_m(\theta_k, \varphi_k)$$

$$h_{im} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

\[\Rightarrow d_x(k) = p_x, \ d_y(k) = p_y, \ d_z(k) = p_z, \]

$$|\psi\rangle_{\text{BW}} = (p_x + i p_y) |\downarrow\downarrow\rangle - (p_x - i p_y) |\uparrow\uparrow\rangle + p_z (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

Linear combination of $S_z = -1, 0, +1$ (all spin states are represented equally)

$$|h_{xx}| = |h_{yy}| = |h_{zz}| \neq 0 \Rightarrow \langle S_z \rangle = 0 \text{ (isotropic, non-magnetic)}$$

$$B \neq 0: \ S_z = 0 \text{ component is non-magnetic} \Rightarrow \chi_{\text{BW}} = \frac{2}{3} \chi_{\text{ABM}}$$

**BW phase energetically less favorable than ABM phase in applied magnetic field **
I.5.3 Superfluid 3He

- Balian-Werthamer (BW or B) phase

- \mathbf{d}-vector has constant length all over the Fermi surface
- constant magnitude of the energy gap

$|\psi_{BW} = \langle p_x + ip_y | \downarrow \downarrow \rangle - \langle p_x - ip_y | \uparrow \uparrow \rangle + p_z (| \uparrow \downarrow \rangle + | \downarrow \uparrow \rangle)$

Fermi sphere is isotropic energy gap

no nodes!

pseudo-isotropic state (constant gap as s-wave superconductor)

$C_V(T) \propto \exp(-\Delta(T)/k_BT)$

d-vectors (thick lines) are rotated by 104° about a vector defining the radial directions (thin lines) for all points on the Fermi sphere.

I.5.3 Superfluid 3He

- superfluid phases of 3He

\[
\begin{pmatrix}
\Delta_{\uparrow\uparrow}(k) & \Delta_{\uparrow\downarrow}(k) \\
\Delta_{\downarrow\uparrow}(k) & \Delta_{\downarrow\downarrow}(k)
\end{pmatrix}
= \begin{pmatrix}
-d_x(k) + i d_y(k) & +d_z(k) \\
+d_z(k) & d_x(k) + i d_y(k)
\end{pmatrix}
\]

\[
d_i(k) = \sum h_{im} p_m(\theta_k, \varphi_k)
\]

\[
h_{im} = \begin{pmatrix}
h_{xx} & h_{xy} & h_{xz} \\
h_{yx} & h_{yy} & h_{yz} \\
h_{zx} & h_{zy} & h_{zz}
\end{pmatrix}
\]

- A_1 phase (only for $B > 0$)

\[
h_{im} = h \begin{pmatrix}
1 & i & 0 \\
i & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[
d_x(k) = p_x + i p_y
\]

\[
d_y(k) = i p_x + p_y
\]

\[
|\psi\rangle_{A_1} = 2(p_x + i p_y) |\uparrow\uparrow\rangle
\]

only state $|\uparrow\uparrow\rangle$ contributes: $\langle S_z \rangle = 1$ (“ferro” magnetic)

\[
\Rightarrow \text{long-range ordered magnetic liquid}
\]
I.5.3 Superfluid 3He: broken symmetries

Disordered state
(isotropic with respect to orientation of both degrees of freedom)

Broken gauge and rotational symmetry in spin space
“ferromagnetic superfluid”

Broken gauge symmetry “superfluid”

Broken gauge and rotational symmetry in orbital space
“ferroorbital superfluid”

Only symmetry related to relative orientation is broken

Rotational symmetry is broken separately in spin and orbital space

Rotational symmetry is broken separately in spin and orbital space

- Spin moment
- Orbital
Contents Part I: Quantum Liquids

Contents:

I.1 Foundations and General Properties
 I.1.1 Quantum Gases & Liquids
 I.1.2 Helium
 I.1.3 Van der Waals Bonding
 I.1.4 Zero-Point Fluctuations
 I.1.5 Helium under Pressure
 I.1.6 pT-Phase Diagram of 4He and 3He
 I.1.7 Characteristic Properties of 4He and 3He
 I.1.8 Specific Heat of 4He and 3He

I.2 4He as an Ideal Bose Gas
 I.2.1 Bose-Einstein Condensation
 I.2.2 Ideal Bose Gas
 I.2.3 Bose Gas with Interactions
 I.2.4 Bose-Einstein Condensation of 4He

I.3 Superfluid 4He
 I.3.1 Two-Fluid Model
 I.3.2 Experimental Observations
 I.3.3 Two-Fluid Hydrodynamics
 I.3.4 Excitation Spectrum of 4He

I.4 Vortices
 I.4.1 Quantization of Circulation
 I.4.2 Experimental Study of Vortices

I.5 3He
 I.5.1 normal fluid 3He
 I.5.2 solid 3He and Pomeranchuk effect
 I.5.3 superfluid 3He

I.6 3He / 4He mixtures
I.6 $^3\text{He}/^4\text{He}$ mixtures

- **why interesting:**
 - model system for testing Fermi liquid theories

 (^3He is fermion, can be diluted in passive ^4He background \(\rightarrow\) change of interaction strength)

 - technical application in cooling machines

- **experimental observations:**
 - specific heat vs. T curve of ^4He is shifted to lower T on adding ^3He, but does not change its shape

 - phase separation of ^4He and ^3He at low T
I.6 $^3\text{He}/^4\text{He}$ mixtures: phase diagram

- high T:
 ^3He reduces $T_\lambda \propto n_4$ (^4He concentration)

- tricritical point $T_{\text{tri}} = 0.87 \text{ K}$

- $T < T_{\text{tri}} = 0.87 \text{ K}$:
 - \textit{phase separation}
 - ^3He rich phase: lighter
 - ^3He poor phase: heavier

- $T \to 0$:
 - \textit{incomplete phase separation}
 - 6.5\% of ^3He still dissolved in ^4He

- concentrations: $x_3 = \frac{n_3}{n_3 + n_4}$; $x_4 = 1 - x_3 = \frac{n_4}{n_3 + n_4}$

- limiting concentrations:
 $$x_4 = a T^{3/2} e^{-b/T} \quad (a = 0.85 \text{ K}^{-3/2}, b = 0.56 \text{ K}^{-1})$$
 $$x_3 = 0.0648 (1 + c T^2 + d T^3) \quad (c = 8.4 \text{ K}^{-2}, d = 9.4 \text{ K}^{-3})$$
I.6 $^3\text{He}/^4\text{He}$ mixture as diluted Fermi liquid

- at $T_{\text{phase sep}} < T < T_\lambda(x_4)$:
 - ^4He forms superfluid with negligible amounts of excitations (phonons, rotons)
 - viscosity, entropy and specific heat go to zero: $^4\text{He} = \text{inert superfluid background}$

- ^3He obeys Fermi statistics
 - Fermi temperature is about 1 K for pure ^3He
 - dissolving ^3He in ^4He reduces the Fermi temperature

$$T_F = \frac{\hbar^2}{2m_{^3\text{He}}^*} (3\pi^2 n_{^3\text{He}})^{2/3} \propto x_3^{2/3}$$

$m_{^3\text{He}}^*$: effective mass of ^3He dissolved in ^4He

$$n_{^3\text{He}} = \frac{N_{^3\text{He}}}{V} = \frac{x_3 N}{V}$$: density of ^3He atoms
I.6 $^3\text{He}/^4\text{He}$ mixture as diluted Fermi liquid

- specific heat

- Fermi gas ($T \ll T_F$)
 \[C_{\text{mol}} = \frac{\pi^2}{2} R \frac{T}{T_F} \]

- classical gas ($T > T_F$)
 \[C_{\text{mol}} = \frac{3}{2} N_A k_B = \frac{3}{2} R \]

- T_F increases with x_3

- Interaction with ^4He

\[m_{3\text{He}}^* = 2.4 m_{3\text{He}} \]

\[T_F = \frac{\hbar^2}{2m_{3\text{He}}^*} \left(3\pi^3 n_{3\text{He}}\right)^{2/3} \propto x_3^{2/3} \]
I.6 $^3\text{He}/^4\text{He}$ mixtures: miscibility gap in binary systems

- Bonding:
 - $V_{AB} > \frac{1}{2}(V_{AA} + V_{BB})$ complete miscibility (e.g. water and alcohol)
 - $\frac{1}{2}(V_{AA} + V_{BB}) > V_{AB}$ phase separation (e.g. water and petrol)

Increasing mixing with increasing T:

$F = U - TS \rightarrow \text{min}$

→ minimization of free energy

Critical point
I.6 3He/4He mixtures: finite solubility of 3He in 4He

- binding energy of 3He in 3He (V_{33}) and 4He (V_{34}):

 i. **single 3He atom in liquid 3He**: average binding energy is given by the latent heat of evaporation L_3:

 \[\epsilon_{3,c} = -\frac{L_3}{N_A} = \mu_{3,c} \]

 - $|\epsilon_{3,d}(0)| > |\epsilon_{3,c}|$ or vice versa?

 3He has smaller mass \rightarrow larger zero point fluctuations \rightarrow occupies larger volume

 \rightarrow binding of 3He is larger in 4He than in 3He due to larger density of 4He

 $\rightarrow |\epsilon_{3,d}(0)| > |\epsilon_{3,c}|$ (it is energetically more favorable to add a 3He atom to the 4He superfluid than to pure 3He)

 \rightarrow corresponds to case $V_{AB} > \frac{1}{2}(V_{AA} + V_{BB})$ \Rightarrow **complete miscibility expected, why miscibility only up to 6.5%??**

\[L_3 = U_{vap} - U_{liq} + p\Delta V \]
\[p\Delta V = \text{work done against ambient pressure} \]
I.6 3He/4He mixtures: finite solubility of 3He in 4He

- questions

- why can’t we dissolve more than 6.5% of 3He in 4He at $T = 0$?

 we have to take into account two effects:

 i. 3He forms degenerate Fermi liquid
 \rightarrow T_F increases with x_3
 \rightarrow for $x_3 > 6.5\%$, the increase of Fermi energy exceeds the gain in binding energy

 ii. effective attraction between two 3He atoms (*magnetic and volume effect*)
 $\rightarrow |\epsilon_{3,d}(x_3)| > |\epsilon_{3,d}(x_3 = 0)|$

- why don’t we have a complete phase separation into pure 3He and pure 4He at $T = 0$?

 \rightarrow incomplete phase separation results in finite disorder, violation of 3rd law of thermodynamic?
 \rightarrow no: *we have degenerate Fermi gas, ordering in k-space*
I.6 $^3\text{He}/^4\text{He}$ mixtures: finite solubility of ^3He in ^4He

- gaseous ^3He
- pure liquid ^3He
- ^3He diluted in ^4He

$E_{\text{pot}}(x_3 = 1) + k_B T_F(x_3 = 1)$

$E_{\text{pot}}(x_3) + k_B T_F(x_3)$

$E_{\text{pot}}(x_3) = 1 + k_B T_F(x_3)$

energy

0.065

x_3

for $x_3 > 6.5\%$:

$|E_{\text{pot}}(x_3) + k_B T_F(x_3)| < |\epsilon_{3,c} = E_{\text{pot}}(x_3 = 1) + k_B T_F(x_3 = 1)|$

⇒ separation of pure ^3He
I.6 \(^3\)He/\(^4\)He mixtures: cooling effect

- \(^3\)He/\(^4\)He dilution refrigeration
 - operation principle:
 - remove \(^3\)He atoms from the dilute phase below \(T_{\text{tri}} = 0.87\) K
 - transport of \(^3\)He atoms across phase boundary to maintain equilibrium concentration
 - corresponds to evaporation of \(^3\)He from concentrated phase
 - cooling effect as the latent heat of evaporation is removed
 - for Fermi liquid:
 \[C_V,\text{concentrated} < C_V,\text{diluted} \quad (x_3 = 0.065) \]
 \[C_V \propto T/T_F, \quad T_F \propto n_{^3\text{He}}^{2/3} \]
 - with \(U = Q = \int_0^T C_V(T') \, dT' = \frac{\gamma}{2} T^2\) we therefore obtain \((C_V = \gamma T, \gamma = \text{Sommerfeld coefficient})\):
 \[U_{\text{concentrated}}(T) < U_{\text{diluted}}(T) \]
 - on transition across phase boundary:
 \[dG = 0 = dU - T \, dS \quad \Rightarrow \quad dU = T \, dS = dQ \]
 - removal of heat \(\Delta Q = T \Delta S = T \left[S_{\text{dil}}(T) - S_{\text{con}}(T) \right] \Rightarrow \text{cooling effect} \]
 - \(^3\)He/\(^4\)He dilution refrigerator

\[3^\text{He}\]
\[\text{diluted, 6.5\%} \]
\[\text{(heavier)}\]
\[\text{concentrated (lighter)}\]
I.6 $^3\text{He}/^4\text{He}$ mixtures: cooling effect

- $^3\text{He}/^4\text{He}$ dilution refrigeration: cooling power

 - assumption: one mole of ^3He crosses boundary between diluted and concentrated phase

 - removed heat:
 \[
 \Delta Q = T\Delta S = T \left[S_{\text{dil}}(T) - S_{\text{con}}(T) \right]
 \]

 - cooling power: \(\dot{Q} = \left(\frac{\Delta Q}{n_{3\text{He}}} \right) \cdot \dot{n}_{3\text{He}} \Rightarrow \dot{Q} = \dot{n}_{3\text{He}} T \left[s_{\text{dil}}(T) - s_{\text{con}}(T) \right] \)

 - since there is no volume change:
 \[
 dQ = dU = TdS = C_V dT, \quad U(T) = \int_0^T C_V dT', \quad S(T) = \int_0^T \frac{C_V}{T'} dT'
 \]

 - with \(C_{\text{mol}} = \frac{\pi^2 N_A k_B^2 T}{2\varepsilon_F} \) and \(\varepsilon_F = \frac{\hbar^2}{2 m_{3\text{He}}^*} \left(\frac{3\pi^2 N_{3\text{He}}}{V} \right)^{2/3} = \frac{\hbar^2}{2 m_{3\text{He}}^*} \left(\frac{3\pi^2 N_A}{V_{\text{mol}}} \right)^{2/3} \)

 \[
 S_{\text{mol}} = \frac{\pi^2 N_A k_B^2 m_{3\text{He}}^*}{\hbar^2} \left(\frac{V}{3\pi^2 N_{3\text{He}}} \right)^{2/3} T \propto T \frac{T}{n_{3\text{He}}}
 \]

 we obtain the entropy

 \[
 S_{\text{dil}} < S_{\text{con}} \quad \text{as} \quad n_{3,\text{con}} > n_{3,\text{dil}}
 \]

 \[
 Q(T) = 84 \dot{n}_{3\text{He}} T^2 \text{[W]} \quad \text{(cooling power} \propto \text{3He throughput} \dot{n}_3 \text{[mol/s]})
 \]
I.6 \(^3\)He/\(^4\)He mixtures: cooling effect

- \(^3\)He/\(^4\)He dilution refrigeration: plausibility consideration

plausibility consideration

\[k_B T \]

thermally excited \(^3\)He atoms

\[\text{large } ^3\text{He density} \]
\[\text{large Fermi sphere high } T_F \]

\[\text{small } ^3\text{He density} \]
\[\text{small Fermi sphere low } T_F \]

\[\text{fraction of thermally excited } ^3\text{He atoms increases (} \propto T/T_F \text{)} \]

\[\text{entropy increases going from concentrated to diluted phase} \]

\[\text{removed heat: } dQ = T dS \]