Spinelektronik

Vorlesungsskript zur Vorlesung im SS 2004

Prof. Dr. Rudolf Gross

und Dr. Achim Marx

Walther-Meissner-Institut Lehrstuhl für Technische Physik (E23) Walther-Meissner-Strasse 8 D-85748 Garching Rudolf.Gross@wmi.badw.de

©Rudolf Gross — Garching, April 2004

Inhaltsverzeichnis

Vo	/orwort 9						
Ei	nleit	ung		1			
I	I Grundlagen						
1	Gru	Indbeg	riffe und Messmethoden	11			
	1.1	Grund	lbegriffe des Magnetismus	12			
	1.2	Messr	nethoden	13			
2	Spin	nabhän	giger Transport	15			
	2.1	Magn	etoresistive Effekte – ein phänomenologischer Überblick	16			
		2.1.1	Der positive Magnetwiderstand	16			
		2.1.2	Der negative Magnetwiderstand – Streuung an Spinunordnung	17			
		2.1.3	Der anisotrope Magnetwiderstand – AMR	18			
		2.1.4	Der Riesenmagnetwiderstand – GMR	19			
		2.1.5	Der Tunnelmagnetwiderstand – TMR	22			
		2.1.6	Der kolossale Magnetwiderstand – CMR	24			
	2.2	Elektr	ischer Transport in unmagnetischen Metallen	28			
		2.2.1	Boltzmann-Gleichung und Relaxationszeit	28			
		2.2.2	Elektrische Leitfähigkeit	33			
		2.2.3	Magnetwiderstand und Hall-Effekt im Einbandmodell	36			
		2.2.4	Vertiefungsthema: Magnetwiderstand und Hall-Effekt im Zweibandmodell	38			
		2.2.5	Streuprozesse	42			
		2.2.6	Streuprozesse in dünnen metallischen Schichten	48			
	2.3	.3 Elektrischer Transport in magnetischen Metallen					

		2.3.1	Experimentelle Beobachtungen	52
		2.3.2	Das Zwei-Spinkanal-Modell	54
		2.3.3	Streuung in magnetischen Systemen	57
		2.3.4	Streuung von Leitungselektronen an lokalisierten magnetischen Momenten	61
		2.3.5	Vertiefungsthema: Der Kondo-Effekt	67
		2.3.6	Vertiefungsthema: Einfluss der Leitungselektronen auf lokale magnetische Momente	69
		2.3.7	Vertiefungsthema: Der Kondo-Widerstand	73
		2.3.8	Hall-Effekt in ferromagnetischen Metallen	75
II	Ma	igneto	resistive Effekte	83
3	AM	R-Effek	ct	85
	3.1	Experi	mentelle Beobachtungen	86
	3.2	Ansch	auliche Erklärung des AMR	88
	3.3	Wider	standstensor und AMR-Effekt	91
		3.3.1	Anwendungsaspekte	92
	3.4	Außer	gewöhnlicher Hall-Effekt	94
4	CM	R-Effek	ct	95
	4.1	Experi	mentelle Beobachtungen	97
	4.2	Kristal	llstruktur	99
		4.2.1	Toleranzfaktor	99
		4.2.2	Vertiefungsthema: Ruddlesden-Popper-Serie	102
	4.3	Elektro	onische Struktur	103
		4.3.1	Das Kristallfeld	103
		4.3.2	Jahn-Teller-Effekt	108
	4.4	Grund	llagen zur magnetischen Struktur	113
		4.4.1	Experimentelle Beobachtungen	113
		4.4.2	Der Superaustausch	114
		4.4.3	Vertiefungsthema: Ladungstransfer- und Mott-Hubbard-Isolatoren	118
		4.4.4	Die Goodenough-Kanamori-Anderson Regeln	120

		4.4.5	Der Doppelaustausch	124		
	4.5	Elektrische Transporteigenschaften				
		4.5.1	Temperatur- und Magnetfeldabhängigkeit des spezifischen Widerstands .	132		
		4.5.2	Skalenverhalten des CMR-Effektes	134		
5	GM	R-Effel	kt	137		
	5.1	Zwisc	henschicht-Austauschkopplung	139		
		5.1.1	Experimentelle Beobachtungen	139		
		5.1.2	Kopplungsarten	140		
		5.1.3	Phänomenologische Beschreibung der Zwischenschichtkopplung	143		
		5.1.4	Mikroskopisches Modell der Zwischenschichtkopplung	144		
		5.1.5	RKKY-Wechselwirkung	152		
	5.2	Der R	iesenmagnetwiderstand	154		
		5.2.1	Einfache Modellvorstellungen	154		
		5.2.2	Intrinsischer GMR	157		
		5.2.3	Extrinsischer GMR	160		
	5.3	Skaler	verhalten des GMR	165		
		5.3.1	Anwendungsaspekte	166		
6	Spir	nventil	e	169		
	6.1	Austa	usch-Anisotropie	171		
		6.1.1	Phänomenologische Beschreibung der Austausch-Anisotropie	171		
		6.1.2	Theoretische Modelle zur Austausch-Anisotropie	176		
	6.2	Realis	ierung von Spinventilen	187		
		6.2.1	Optimierung des magnetoresistiven Effekts von Spinventilen	188		
		6.2.2	Wahl des Antiferromagneten	190		
7	TM	R-Effel	<t st<="" td=""><td>195</td></t>	195		
	7.1	Theor	etische Behandlung des Tunnelns von Elektronen	198		
		7.1.1	Elastisches Tunneln durch eine eindimensionale rechteckförmige Barrie- re – zeitunabhängiger Ansatz	198		
		7.1.2	Vertiefungsthema: Elastisches Tunneln durch eine eindimensionale rechteckförmige Barrie- re – zeitabhängiger Ansatz	202		
		7.1.3	Vertiefungsthema: Elastisches Tunneln durch eine eindimensionale Barriere beliebiger Form – WKB-Näherung	203		

	7.1.4	Elastisches Tunneln in planaren Metall/Isolator/Metall-Kontakten 2	204
	7.1.5	Vertiefungsthema: Tunneln unter Berücksichtigung des Bildpotenzials	209
	716	Bandstruktureffekte beim elastischen Tunneln	207 210
	7.1.0	Vortiofungsthoma:	210
	7.1.7	Resonantes Tunneln	211
7.2	NIN-	und NIS-Kontakte	214
7.3	Ferror	nagnet/Isolator/Supraleiter-Kontakte	218
	7.3.1	Zeemann-Aufspaltung der Quasiteilchen-Zustandsdichte in Supraleitern	218
	7.3.2	Zustandsdichte und Spinpolarisation in Ferromagneten	221
7.4	Ferror	nagnet/Supraleiter-Kontakte: Andreev-Reflexion	227
	7.4.1	Andreev-Streuung an Metall/Supraleiter-Grenzflächen	227
	7.4.2	Andreev-Streuung an Ferromagnet/Supraleiter-Grenzflächen	234
7.5	FM/I,	/FM-Tunnelkontakte	239
	7.5.1	Jullière – Modell	241
	7.5.2	Weiterentwicklungen des Jullière-Modells	242
7.6	Exper	imente zu FM/I/FM-Tunnelkontakten	249
	7.6.1	Untersuchung und Verbesserung der Barriereneigenschaften	251
	7.6.2	Temperatur- und Spannungsabhängigkeit des JMR	253
	7.6.3	Dotierung der Tunnelbarriere	256
	7.6.4	$FM/I/FM$ Tunnelkontakte mit nichtmagnetischen Zwischenschichten \ldots	258
	7.6.5	Grenzflächeneffekte und Vorzeichen der Spinpolarisation	259
	7.6.6	Neue Materialsysteme	261
	7.6.7	Rastertunnelmikroskopie	263
7.7	Inelas	tisches Tunneln	266
	7.7.1	Inelastisches Tunneln mit Wechselwirkungsprozessen in der Barriere 2	266
	7.7.2	Inelastisches Tunneln mit Wechselwirkungsprozessen in den Tunnelek-	n 60
	772	Tunnaln über Zwischenzustände Clazmann Metwory Medell	203
78	7.7.3 Tunno	In durch forrom amotische Barrieren Spinfilter	209
7.0	Austa	uschoffekte an Cronzflächen zu Ferremagneten	273
7.9	Austa		270
EM	R- und	BMR-Effekt	281
8.1	Der ba	allistische Magnetwiderstand	282
	8.1.1	Punktkontakte	282
	8.1.2	Ballistischer Magnetowiderstandseffekt in Nanokontakten	284
	8.1.3	BMR-Effekt: Artefakte	287

III Spininjektion und Spintransport					
IV	Μ	aterial	ien für die Spinelektronik	291	
V	An	wendu	ingen	293	
9	XM	R-Effek	te – Anwendungen	295	
	9.1	Sensor	en	298	
		9.1.1	GMR Sensoren	301	
		9.1.2	Anwendungen von GMR-Sensoren	307	
	9.2	Magne	etoresistive Leseköpfe	312	
		9.2.1	Design von Lese- und Schreibköpfen	314	
	9.3	Magne	etic Random Access Memory – MRAM	319	
		9.3.1	Geschichtlicher Hintergrund	319	
		9.3.2	MRAM basierend auf AMR und GMR	322	
		9.3.3	MRAM basierend auf Spinventilen	324	
		9.3.4	MRAM basierend auf magnetischen Tunnelkontakten	324	
		9.3.5	Ansteuerkonzepte für MRAMs	326	

VI Quanten-Spinelektronikk

VII	Appen	dix	333
А	Litera	atur	335
В	SI-Eir	nheiten	336
	B.1	Geschichte des SI Systems	336
	B.2	Die SI Basiseinheiten	338
	B.3	Einige von den SI Einheiten abgeleitete Einheiten	339
	B.4	Vorsätze	341
	B.5	Abgeleitete Einheiten und Umrechnungsfaktoren	342
С	Physi	ikalische Konstanten	346

2004

7

Einleitung

Otto Stern¹ und Walter Gerlach² führten 1921 das nach ihnen benannte Stern-Gerlach-Experiment durch. Dieses Experiment zeigte klar, dass Elektronen außer ihrer Ladung -eund ihrer Ruhemasse m_0 noch eine weitere Eigenschaft besitzen müssen. Samuel A. Goudsmit und George E. Uhlenbeck stellten 1925 die Hypothese auf, dass freie Elektronen eine Eigenrotation besitzen. Den damit verbundenen Eigendehimpuls bezeichneten sie als Elektronenspin. Eine derartige Rotation setzt voraus, dass wir es mit einem räumlich strukturierten Teilchen zu tun haben. Es macht keinen Sinn, von der Rotation eines Massenpunkts zu sprechen. Im Unterschied zum Proton, für das in Streuexperimenten eine echte Substruktur nachgewiesen werden kann (Quarks), ist dies für das Elektron (zumindest bis heute) nicht der Fall. Das heißt, wir müssen von einem punktförmigen Teilchen ausgehen. Theoretiker wie Wolfgang Pauli³ fanden diese Vorstellung nicht akzeptabel. Große Probleme bereitete ihnen vor allem der Spin-g-Faktor von etwa $g_s = 2$. Das Problem wurde gelöst, als Werner Heisenberg⁴ seine Matrizenmechanik entwickelte. Da diese Darstellung der Quantenmechanik im Gegensatz zur Schrödingerschen Wellenmechanik auf ein explizites Koordinatensystem verzichten kann, ist es legitim von einem abstrakten Raum der Spinzustände zu sprechen. Dieser Raum ist eine zwingende Folge der relativistischen Dirac-Gleichung. Von der anschaulichen Eigenrotation des Elektrons müssen wir Abstand nehmen.

Im Stern-Gerlach Experiment wurden nur zwei mögliche Einstellungen Komponente des Spins parallel zum angelegten Magnetfeld gefunden. Wir können den Spin freier Elektronen also mit der Spinquantenzahl s = 1/2 beschreiben. Etwas lax sagen wir meist, dass Elektronen den Spin 1/2 besitzen und wir sprechen aufgrund der zwei möglichen Einstellmöglichkeiten bezüglich einer Quantisierungsachse häufig von Spin- \uparrow und Spin- \downarrow -Elektronen.

Obwohl der Spin eine zentrale Eigenschaft des Elektrons ist, spielt er in der konventionellen "Elektronik" keine Rolle. Unsere

Abbildung 1: Elektron als Träger elektrischer Ladung -e und eines mit seinem Spin verknüpften magnetischen Moments μ .

heutigen elektronischen Bauelemente basieren nur auf dem Transport und der Manipulation von elektrischen Ladungen. In unseren elektronischen Geräten werden Elektronen hin- und

¹Otto Stern (1888-1969), Nobelpreis für Physik 1943.

²Walter Gerlach (1889-1979).

³Wolfgang Pauli (1900 – 1958), Nobelpreis für Physik 1945.

⁴Werner Heisenberg (1901 – 1976), Nobelpreis für Physik 1932.

hergeschoben, die gerade 50% Spin-↑ und 50% Spin-↓ besitzen. Es wird bisher nur der Ladungsfeiheitsgrad ausgenutzt, der Spinfreiheitsgrad der Elektronen ist dagegen in der konventionellen Elektronik von keinerlei Bedeutung. Anschaulich könnten wir sagen, dass wir in elektronischen Bauelementen zwei verschieden farbige Elektronenflüssigkeiten haben (rot = Spin- \uparrow , blau = Spin- \downarrow), die aber immer perfekt gemischt sind, so dass der Farbfreiheitsgrad keine Rolle spielt. Erst in den letzten Jahren hat der Spin der Elektronen wieder mehr Beachtung gefunden. Dies hängt unter anderem mit dem durch das Mooresche Gesetz beschriebenen phänomenalen Fortschritt unserer Halbleiterelektronik bei der Verbesserung der Leistungsdaten von Bauelementen durch Reduktion ihrer räumlichen Abmessungen zusammen. Diese Entwicklung scheint jetzt allerdings bis etwa zum Jahr 2010 an praktische und fundamentale Grenzen zu stoßen. Deshalb ist das Interesse an neuartigen Konzepten erheblich gestiegen. Da das Elektron sowohl Ladung als auch Spin besitzt, ist es naheliegend, den Spin als zusätzlichen Freiheitsgrad auszunutzen, um dadurch neuartige Bauelemente mit erweiterter Funktionalität und verbesserten Leistungsdaten (Geschwindigkeit, Leistungsverbrauch) zu erhalten. Dieser Ansatz hat zu dem heute sehr aktiven und ständig wachsenden Arbeitsgebiet der Spinelektronik oder kurz der Spintronik geführt. Darüberhinaus könnte sich die heutige "klassische Spinelektronik" zu einer "Quanten-Spinelektronik" und damit zu einer möglichen Hardware-Plattform für die Quanteninformationsverarbeitung weiterentwickeln

Was ist Spinelektronik?

Es ist wohlbekannt, dass Elektronen die thermischen, elektrischen und magnetischen Eigenschaften von Festkörpern wesentlich bestimmen. Korrelationen im Elektronensystem führen zu interessanten Phänomenen wie zum Magnetismus, zu Metall-Isolator-Übergängen oder zur Supraleitung. Die Erforschung dieser Phänomene ist von grundlegendem Interesse und stellt ein zentrales Thema der modernen Festkörperphysik dar. Anderseits erwachsen aus diesen Phänomenen zahlreiche Innovationen für Technikfelder von großer wirtschaftlicher Bedeutung (Elektromotoren, Generatoren, Stromkabel, Medizintechnik, Sensoren, Leseköpfe für Festplatten, Aktoren, Mikrowellenbauelemente, Speichermedien, etc.).

Das Gebiet der *Spinelektronik* ist aus der Idee entstanden, den Spin- und Ladungsfreiheitsgrad von Elektronen gemeinsam in elektronischen Bauelementen zu benutzen. Der Ansatz, verschiedene Freiheitsgrade zusammen mit dem Ladungsfreiheitsgrad in Bauelementen auszunutzen ist nicht neu. Er ist, wie Abb. 2 zeigt, bereits mehrfach angewendet worden und hat zu erfolgreichen Gebieten wir der *Optoelektronik*, der *Fluxonik* oder der *Mechatronik* geführt.

Feld	Elektronik	Optoelektronik	Fluxonik	Mechatronik	Spintronik
Freiheits- grade	Ladung	Ladung +	Ladung +	Ladung +	Ladung +
-		optischer Freiheitsgrad	fluxonischer Freiheitsgrad	mechanischer Freiheitsgrad	Spin- Freiheitsgrad

Abbildung 2: Zur Kombination des Ladungsfreiheitsgrades mit anderen Freiheitsgraden und den daraus entstehenden Arbeitsgebieten bzw. Technikfeldern.

Der Spin- und Ladungsfreiheitsgrad von Elektronen wurde lange Zeit nur getrennt in den Feldern Elektronik und Magnetismus verwendet. Die Ladung der Elektronen spielt, wie oben bereits gesagt wurde, in elektronischen Bauelementen, in denen Ladungen transportiert und manipuliert werden, die zentrale Rolle. In diesen Bauelementen hat dagegen der Spin meist überhaupt keine Bedeutung. Umgekehrt spielt der Spin des Elektrons in magnetischen Systemen, die z.B. zur Datenspeicherung eingesetzt werden, die zentrale Rolle. Hier geht es nicht um die Bewegung von Ladungen, d.h. um elektrische Ströme durch eine Schaltkreisstruktur, sondern um die lokale Ausrichtung ihrer Spins zur Erzeugung von magnetischen Mustern. Das heißt, lange Zeit wurden in weitgehend getrennten Arbeitsgebieten entweder nur die dynamischen Eigenschaften von Ladungen (Ströme) und die statischen Eigenschaften von Spins (Magnetisierung) ausgenutzt. Durch die kontinuierliche Weiterentwicklung bei der Miniaturisierung von magnetischen Strukturen wurden Ende der 1980er Jahre überraschende Effekte gefunden, welche die Wechselwirkung der "statischen magnetischen" und der "dynamischen elektrischen" Eigenschaften von Festkörpern betreffen. Es wurde festgestellt, dass die Beeinflussung der "Bewegung" von Elektronen in einer magnetischen Schicht oder einer komplexen Vielschichtstruktur aus magnetischen und nicht-magnetischen Schichten durch die "statische" Spinanordnung zu interessanten *magnetoresistiven Effekten* führt. Ein wichtiger Meilenstein war dabei die Entdeckung des Riesenmagnetowiderstandseffekts (GMR: Giant MagnetoResistance) durch Albert Fert an der Université Paris Sud und Peter Grünberg am Forschungszentrum Jülich.^{5,6} Bis heute wurden mehrere weitere magnetoresistive Effekte entdeckt:

- AMR (Anisotropic MagnetoResistance)
- GMR (Giant MagnetoResistance)
- CMR (Colossal MagnetoResistance)
- TMR (Tunneling MagnetoResistance)
- BMR (Ballistic MagnetoResistance)
- EMR (Extraordinary MagnetoResistance)
- GMI (Giant MagnetoImpedance)

Die physikalischen Grundlagen und Anwendungsmöglichkeiten dieser magnetoresistiven Effekte werden wir ausführlich in Teil II diskutieren.

Magnetoelektronik vs. Spinelektronik

Heute werden parallel die Bezeichnungen *Magnetoelektronik* und *Spinelektronik* verwendet und es ist häufig nicht klar, ob damit das gleiche oder etwas Unterschiedliches gemeint ist. Wir wollen die beiden Begriffe durch die in Abb. 3 gezeigten Bauelemente klarmachen.

Zweitor-Bauelemente: Mit Hilfe von magnetoresistiven Effekten können einfache magnetoresistive Bauelemente realisiert werden. Diese funktionieren in der Regel so, dass man mit Hilfe eines Magnetfeldes die Spinanordnung (z.B. die Magnetisierungsrichtung in einer ferromagnetischen Schicht) ändert und dadurch die Beweglichkeit der Elektronen, d.h. den elektrischen Widerstand steuert. Typischerweise sind also magnetoresitive Bauelemente so genannte passive **Zweitor-Bauelemente** (magnetfeldabhängige ohmsche Widerstände, siehe Abb. 3a), die mit Hilfe eines externen Magnetfeldes gesteuert werden. Im einfachsten Fall misst man einfach den elektrischen Widerstand zwischen den beiden Toren als Funktion des angelegten

⁵N. N. Baibich, J. M. Broto, A. Fert, F. Hguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friedrich, J. Chazelas, *Giant Magnetoresistance in (001)Fe/(001)Cr Magnetic Superlattices*, Phys. Rev. Lett. **61**, 2472 (1988).

⁶G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. **B 39**, 4828 (1989).

Abbildung 3: Zur Verdeutlichung der Begriffe Magnetoelektronik und Spinelektronik mit Hilfe von Zwei-(a) und Dreitor-Bauelementen (b). Die dicken Pfeile geben die Magnetisierungsrichtung in den ferromagnetischen Bereichen an, die mit einem externen Magnetfeld *H* gedreht werden kann. Die dünnen Pfeile in (b) geben die Richtung des Elektronenspins an, der durch eine Gate-Spannung gedreht werden kann (F: Ferromagnet, N/I: nicht-magnetisches Metall/Isolator, Se: Halbleiter, M: Magnetisierung).

Feldes. Deshalb wurde und wird das Arbeitsgebiet, das sich mit solchen Bauelementen befasst, auch als *Magnetoelektronik* bezeichnet. In diesem Arbeitsgebiet geht es neben der Klärung grundsätzlicher Fragen zum elektrischen Transport in magnetischen Systemen (siehe hierzu Teil I) vor allem um die Optimierung des magnetoresistiven Effekts MR (siehe hierzu Teil II), der wie folgt definiert ist:

$$MR \equiv \frac{R(H) - R(0)}{R(0)} = \frac{\Delta R}{R}$$
(0.0.1)

Üblicherweise wird der magnetoresistive Effekt in Prozent angegeben:

$$MR [\%] = \frac{R(H) - R(0)}{R(0)} \times 100 [\%] .$$
(0.0.2)

Magnetowiderstandseffekte können sowohl positiv als auch negativ sein, je nachdem ob der Widerstand im Magnetfeld zu oder abnimmt. In der neueren Literatur wird bei negativen Magnetowiderstandseffekten häufig eine Normierung auf R(H) statt auf R(0) vorgenommen. Falls $R(H) \ll R(0)$, erhält man dadurch sehr große MR-Werte, was vielen Autoren als opportun erschien. Für Anwendungen von magnetoresistiven Bauelementen (z.B. in der Sensorik oder der Datenspeicherung) ist es oft wichtig, dass ein großer MR-Effekt bereits bei einem kleinen Magnetfeld H_s erreicht wird, das heißt, man strebt eine hohe Empfindlichkeit $S = MR/H_s$ an.

Dreitor-Bauelemente: Passive Zweitor-Bauelemente sind für die Realisierung von komplexen elektronischen Schaltungen nicht ausreichend. Eine zentrale Fragestellung ist deshalb die

© Walther-Meißner-Institut

5

Ausnutzung des Spinfreiheitsgrades in aktiven Dreitor-Bauelementen (siehe Abb. 3b), wie sie aus der Halbleiterelektronik (Transistor) bestens bekannt sind. Diese verfügen über eine Steuerelektrode, die eine Kontrolle des Bauelements auch mit elektrischen oder optischen Kontrollgrößen erlaubt. Der Prototyp dieses Bauelementtyps ist der in Abb. 3b gezeigte Spintransistor. Bei diesem Bauelement werden spinpolarisierte Ladungsträger aus einer ferromagnetischen Quelle (Source) in einen nicht-magnetische (z.B. halbleitende) Kanal injiziert, beim Transport durch diesen Kanal mit Hilfe einer Gate-Elektrode manipuliert und in der Senke (Drain) bezüglich ihrer Spinrichtung detektiert. Die entscheidenden Prozesse, die physikalisch verstanden und technologisch beherrscht werden müssen, sind hier also (i) die Spininjektion, (ii) der Spintransport, (iii) die Spinmanipulation und (iv) die Spindetektion, die wir ausführlich in Teil III diskutieren werden. Solche Bauelemente erlauben prinzipiell die Ausnutzung des Spinfreiheitsgrades in der heute dominierenden Halbleiterelektronik und werden, falls die Prozesse (i) bis (iv) beherrscht werden, auch wirtschaftlich erfolgreich sein. Ein Grund dafür ist die Tatsache, dass in solchen Bauelementen die sehr günstigen elektronischen Eigenschaften von Halbleitern (Maßschneidern der Bandstruktur, Variation der Ladungsträgerdichte) mit den günstigen magnetischen Eigenschaften von Metallen (hohe Curie-Temperatur und hohe Spinpolarisation) verknüpft werden können. Da zusätzlich zur Spinmanipulation über die Gate-Elektrode noch die Möglichkeit besteht, mit Hilfe eines externen Feldes die Magnetisierungsrichtung in Source und Drain zu ändern, können wir formal auch von einem Viertor-Bauelement mit entsprechend erweiterter Funktionalität sprechen.

Der Begriff Magnetoelektronik passt sehr gut zu dem Feld der magnetoresistiven Zweitor-Bauelemente. Da bei den Dreitor-Bauelementen allerdings nicht unbedingt eine Steuerung mit Hilfe eines Magnetfeldes vorgenommen wird, passt hier der Begriff Magnetoelektronik schlecht. Deshalb wird heute der allgemeinere Begriff Spinelektronik verwendet, der als Untergebiet natürlich die Magnetoelektronik mit beinhaltet.

Auf der Basis dieser Überlegungen können wir folgende Definition für das Arbeitsgebiet *Spinelektronik* geben:

Spinelektronik – physikalische Definition:

Die Spinelektronik beschäftigt sich mit all denjenigen Phänomenen, bei denen der Spin von Ladungsträgern die elektrischen Eigenschaften beeinflusst.

Spinelektronik – technische Definition:

Die Spinelektronik bezeichnet eine neue Elektronik, welche den Spinfreiheitsgrad von Ladungsträgern in neuartigen elektronischen Bauelementen ausnutzt.

Anwendungen

Das Feld der Spinelektronik wurde und wird sicherlich durch die Vielzahl von interessanten Anwendungsmöglichkeiten stimuliert. Die Magnetowiderstandseffekte waren aber zunächst von grundlagenphysikalischen Interesse. Beim Riesenmagnetwiderstand (GMR) standen die magnetische Kopplung in Mehrlagenstrukturen aus magnetischen und nicht-magnetischen Schichten im Vordergrund, beim Kolossalen Magnetwiderstand war das komplexe Wechselspiel zwischen Struktur, Magnetismus sowie Ladungs- und orbitalen Ordnungsstrukturen von großem Interesse. Insgesamt spielte auch die Untersuchung und das Verständnis des spinabhängigen Transports in komplexen Materialsystemen eine große Rolle. Die technische Anwendbarkeit der durch die physikalische Grundlagenforschung entdeckten Effekte hat vor allem zu einer schnellen Weiterentwicklung der Materialtechnologie und damit zu wesentlich besseren Proben geführt, die wiederum für die Grundlagenforschung von großem Nutzen waren. Heute laufen grundlagen- und anwendungsorientierte Forschung Hand in Hand und befruchten sich gegenseitig.

Von Magnetowiderstandseffekten zu XMR-Technologien

Die Nutzung von MR-Effekten ist vor allem überall dort naheliegend, wo das technische Problem der Umwandlung von magnetischer Information in elektrische Signale zu lösen ist. Die Magnetowiderstandseffekte sind deshalb für weite Bereiche der heutigen Sensorik und der magnetischen Speichertechnik von Interesse. Mit Hilfe der XMR-Effekte können Magnetfeldänderungen, welche Indikatoren für magnetische, elektrische oder mechanische Parameter sein können, in elektrische Signale umgewandelt werden, die dann mit herkömmlicher Elektronik weiterverarbeitet werden können. Interessant ist hierbei, dass die Magnetfeldänderungen berührungsfrei gemessen werden können. Die zur Zeit größte kommerzielle Anwendung sind Festplattenleseköpfe. Weitere Anwendungen im Fahrzeug- und Maschinenbau, der zerstörungsfreien Werkstoffprüfung oder der Medizintechnik sind absehbar. Seit etwa 1990 ist mit den so genannten XMR-Technologien (X: any, MR: magnetoresistance) ein ganz neues Anwendungsgebiet des Magnetismus entstanden, das sich gegenwärtig weltweit sehr dynamisch entwickelt. Eine Übersicht zu den verschiedenen MR-Effekten gibt Tabelle 1.

	AMR	GMR	TMR	CMR	GMI
Effektgröße: $\Delta R/R$ [%]	3 bis 4	6 bis 8 in Trila- gen, bis zu 100 in Multilagen bei 300 K	bis zu 60 bei 300K in plana- ren Tunnelkon- takten	200 bis 400 bei 300 K, bis zu 10 ⁸ bei tiefen Temperaturen	$\Delta Z/Z$ bis zu 360
Sensitivität $S = \frac{\Delta R}{R}/H_s$ [%/Oe] bei 300 K	1 bis 2 <i>, H</i> s klein	0.01 in Trilagen, bis zu 3 in Viel- fachschichten, <i>H_s</i> mittel	bis zu 1.5, <i>H_s</i> klein	0.001 <i>, H_s</i> groß	$(\Delta Z/Z)/H$: 10 bis 30, H_s klein bis mittel
physikalisches Funktionsprin- zip	anisotrope Streuung im Volumen	spinabhängige Streuung an Grenzflächen, Bandstruktur- Effekte	spinabhängiges Tunneln	spinabhängige Streuung im Volumen	Impedanz in zweiter Ord- nung abhängig von der Per- meabilität
Entdeckung	1857	1988	1994 (erste Ar- beiten aber be- reits in 1970er Jahren	1950 bei tiefen Temperaturen, 1993 bei Raum- temperatur	1992
erste technische Anwendung	erste Vor- schläge 1971, seit 1990 in Leseköpfen	erster Sensor 1996, seit 1998 in Leseköpfen	erste Vor- schläge 1995, ab 2004 in MRAM	bisher keine	erste Vor- schläge 1995

Tabelle 1: Übersicht zu den verschiedenen Magnetowiderstandseffekten. Die für Anwendungen in der Sensorik wichtige Größe ist die Sensitivität *S*. Die angegebenen Werte beziehen sich, soweit nichts anderes angegeben ist, auf Raumtemperatur. Kleine Felder: $H_s < 100$ Oe, mittlere Felder: $H_s < 10$ kOe, hohe Felder: $H_s > 10$ kOe (Stand: Ende 2002).

Eine aufgrund der ökonomischen Bedeutung sehr wichtige Anwendung können Magnetic Random Access Memories (MRAMs) werden, mit denen nicht-flüchtige Datenspeicherelemen-

© Walther-Meißner-Institut

te realisiert werden können. Diese Bauelemente können mit Hilfe des TMR Effektes realisiert werden. In einer Pressemitteilung vom Dezember 2000 haben die Firmen IBM und Infineon mitgeteilt, dass sie im Rahmen einer Gemeinschaftsentwicklung bis zum Jahr 2004 MRAM Speicherbausteine bis zur Marktreife entwickeln wollen. Man hofft, mit Hilfe von MRAMs leistungssparende Bauelemente realisieren zu können, was für mobile Geräte enorm wichtig ist. Ferner könnte durch den Einsatz von MRAMs das Booten von Computern vermieden werden, da ja die Speicherinformation nach Abschalten des Rechners erhalten bleibt. Im September 2002 verkündeten die Elektronikkonzerne NEC und Toshiba, dass sie gemeinsam an der Entwicklung von MRAM-Speicherbausteinen arbeiten. Bereits im Jahr 2005 soll die Produktion von 256-MBit-MRAM-Chips aufgenommen werden. Auch die Firmen Motorola, Honeywell, NVE und Micromem arbeiten fieberhaft und mit massiver öffentlicher Förderung an der Entwicklung von MRAM-Chips.

Auf dem Weg zum Spintransistor?

Der Einzug der Spinelektronik in die etablierte Halbleitertechnologie liegt wohl noch in weiterer Zukunft. Hier müssen noch grundlegenden physikalische und materialtechnische Probleme gelöst werden. Erste Ergebnisse der Grundlagenforschung sind allerdings ermutigend und lassen erwarten, dass der Spinfreiheitsgrad der Elektronen auch in der Halbleiterelektronik in Zukunft eine wichtigere Rolle spielen wird. Der Gewinn wären Bauelemente mit erweiterter Funktionalität und verbesserten Leistungsdaten.

Es zeigt sich klar, dass sich aus den physikalischen Grundlagenphänomenen sehr schnell wichtige Zukunftstechnologien entwickeln. Dieses Zusammenspiel von Grundlagenforschung, anwendungsorientierter Forschung und Technologieentwicklung macht das Feld der Spinelektronik sehr attraktiv. Insgesamt ist Spinelektronik ein sehr junges und noch stark wachsendes Forschungsgebiet, von dem starke Innovationsimpulse für die Bereiche Sensorik für den Maschinen-, Fahrzeugbau und die Medizintechnik sowie für den Bereich der Elektronik und Informationstechnik (z.B. Leseköpfe für Festplatten, nicht-flüchtige magnetische Datenspeicherelemente: Magnetic Random Access Memory – MRAM) erwartet werden. Die verschiedenen MR-Effekte erlauben unterschiedliche Nutzungsmöglichkeiten:

- magnetoresistive Sensoren (extreme Miniaturisierung, hohe Empfindlichkeit, geringe Herstellungskosten)
- magnetoresistive Speicherbauelemente (MRAM)
- Spintransistoren, Spin-LED (light emitting diodes)
- Bolometer, magnetische Schalter
- neue magnetische Materialien

Materialien

Das starke Interesse an den physikalischen Grundlagen und Anwendungen der Spinelektronik hat auch zu einer intensiven Weiterentwicklung und Suche nach geeigneten Materialsystemen

geführt. Von großer Bedeutung sind Materialien mit einer hohen Spinpolarisation

$$P[\%] = \frac{N_{\uparrow}(E_F) - N_{\downarrow}(E_F)}{N_{\uparrow}(E_F) + N_{\downarrow}(E_F)} \times 100 [\%] .$$
(0.0.3)

der Ladungsträger beim Fermi-Niveau. Die Anwendung bei Raumtemperatur erfordert ferner eine Curie-Temperatur, die weit oberhalb von 300 K liegt. Für eine Optimierung/Vergrößerung der MR-Effekte (z.B. des TMR-Effektes) oder der Spininjektion sind Materialien mit $P \simeq 100\%$ erwünscht. Solche Materialien, die nur noch eine Spinsorte bei der Fermi-Energie besitzen, nennen wir *Halbmetalle*. In den letzten Jahren wurden einige potentiell halbmetallische Materialien wie die kubischen Heusler-Verbindungen (X₂YZ, X und Y sind Übergangsmetalle und Z ein Gruppe-III, -IV oder -V Element) und verschiedene ferromagnetische Oxide (dotierten Manganate, Doppelperovskite, Magnetit oder Chromdioxid) intensiv hinsichtlich ihrer Eignung für die Spinelektronik untersucht. Hierbei ist neben der Kompatibilität mit Halbleitermaterialien auch die Beherrschbarkeit von Grenzflächen ein entscheidendes Kriterium, da spintronische Bauelemente meist aus Mehrlagensystemen bestehen. Durch eine Degradation der Grenzfläche kann die prinzipiell hohe Spinpolarisation eines Materialsystems stark reduziert werden und damit für spintronische Bauelemente nicht ausgenutzt werden.

Die Kompatibilität zu Halbleitermaterialien und die theoretische Vorhersage von Curie-Temperaturen um 300 K für Mn-dotiertes ZnO und GaN hat die Untersuchung von verdünnten magnetischen Halbleitern (DMS: Diluted Magnetic Semiconductors) stark stimuliert und eine weltweite Suche nach neuen DMS getriggert. Der durchbrechende Erfolg ist hier aber noch nicht geglückt. Entweder sind die erreichten Curie-Temperaturen zu niedrig (Mn-dotierte III-V Halbleiter) oder die erreichten hohen Curie-Temperaturen stark umstritten (Mn-dotiertes GaN). Mit Co-dotiertem TiO₂ wurde aber auch ein neuer DMS mit einer Curie-Temperatur knapp oberhalb von Raumtemperatur gefunden.

Die derzeitigen Forschungsergebnisse zu Materialien für die Spintronik werden in Teil IV zusammengefasst.

Quanten-Spinelektronik

Obwohl die "Klassische Spinelektronik" noch nicht in allen Grundlagen- und Anwendungsaspekten verstanden ist, arbeiten viele Wissenschaftler bereits heute an der so genannten "Quanten-Spinelektronik". Diese Arbeiten wurden durch die Tatsache stimuliert, dass kohärente Spinzustände in Halbleitern eine genügend lange Lebensdauer haben, um mit diesen Spinzuständen brauchbare Quantenbits zu realisieren. In der Quanteninformationverarbeitung wird Information in Quantenbits kodiert, die ganz allgemein durch einen kohärenten Überlagerungszustand eines qunatenmechanischen Zwei-Niveausystems gebildet werden. Das Spin-1/2-System eines Elektrons stellt ein solches Zwei-Niveausystem dar. Das entscheidende Kriterium ist nun, dass die Kohärenz dieses Überlagerungszustandes genügend lange erhalten bleibt, um genügend viele Operationen mit dem Zustand durchführen zu können. Spinbasierte Systeme scheinen hier besonders gut geeignet zu sein, da Spins weniger stark mit den zu Dekohärenz führenden Umgebungsfreiheitsgraden (z.B. Phononen, Ladungen) wechselwirken als z.B. Ladungen. Allerdings befinden wir uns zur Zeit erst ganz am Anfang des Weges zu einer Quanten-Spinelektronik und wir wissen noch nicht einmal, ob dieser Weg überhaupt gangbar ist (siehe hierzu Teil VI).

Teil I

Grundlagen

Teil II

Magnetoresistive Effekte

Teil III

Spininjektion und Spintransport

Teil IV

Materialien für die Spinelektronik

Teil V

Anwendungen

Teil VI

Quanten-Spinelektronikk

Teil VII

Appendix