Spinelektronik

Vorlesungsskript zur Vorlesung im SS 2004

Prof. Dr. Rudolf Gross

und Dr. Achim Marx

Walther-Meissner-Institut Lehrstuhl für Technische Physik (E23) Walther-Meissner-Strasse 8 D-85748 Garching Rudolf.Gross@wmi.badw.de

©Rudolf Gross — Garching, April 2004

Inhaltsverzeichnis

Vo	orwoi	rt		9
Ei	nleit	ung		1
I	Gru	ındlag	en	9
1	Gru	Indbeg	riffe und Messmethoden	11
	1.1	Grund	lbegriffe des Magnetismus	12
	1.2	Messr	nethoden	13
2	Spin	nabhän	giger Transport	15
	2.1	Magn	etoresistive Effekte – ein phänomenologischer Überblick	16
		2.1.1	Der positive Magnetwiderstand	16
		2.1.2	Der negative Magnetwiderstand – Streuung an Spinunordnung	17
		2.1.3	Der anisotrope Magnetwiderstand – AMR	18
		2.1.4	Der Riesenmagnetwiderstand – GMR	19
		2.1.5	Der Tunnelmagnetwiderstand – TMR	22
		2.1.6	Der kolossale Magnetwiderstand – CMR	24
	2.2	Elektr	ischer Transport in unmagnetischen Metallen	28
		2.2.1	Boltzmann-Gleichung und Relaxationszeit	28
		2.2.2	Elektrische Leitfähigkeit	33
		2.2.3	Magnetwiderstand und Hall-Effekt im Einbandmodell	36
		2.2.4	Vertiefungsthema: Magnetwiderstand und Hall-Effekt im Zweibandmodell	38
		2.2.5	Streuprozesse	42
		2.2.6	Streuprozesse in dünnen metallischen Schichten	48
	2.3	Elektr	ischer Transport in magnetischen Metallen	52

		2.3.1	Experimentelle Beobachtungen	52
		2.3.2	Das Zwei-Spinkanal-Modell	54
		2.3.3	Streuung in magnetischen Systemen	57
		2.3.4	Streuung von Leitungselektronen an lokalisierten magnetischen Momenten	61
		2.3.5	Vertiefungsthema: Der Kondo-Effekt	67
		2.3.6	Vertiefungsthema: Einfluss der Leitungselektronen auf lokale magnetische Momente	69
		2.3.7	Vertiefungsthema: Der Kondo-Widerstand	73
		2.3.8	Hall-Effekt in ferromagnetischen Metallen	75
II	Ma	igneto	resistive Effekte	83
3	AM	R-Effek	ct	85
	3.1	Experi	mentelle Beobachtungen	86
	3.2	Ansch	auliche Erklärung des AMR	88
	3.3	Wider	standstensor und AMR-Effekt	91
		3.3.1	Anwendungsaspekte	92
	3.4	Außer	gewöhnlicher Hall-Effekt	94
4	CM	R-Effek	t	95
	4.1	Experi	mentelle Beobachtungen	97
	4.2	Kristal	llstruktur	99
		4.2.1	Toleranzfaktor	99
		4.2.2	Vertiefungsthema: Ruddlesden-Popper-Serie	102
	4.3	Elektro	onische Struktur	103
		4.3.1	Das Kristallfeld	103
		4.3.2	Jahn-Teller-Effekt	108
	4.4	Grund	llagen zur magnetischen Struktur	113
		4.4.1	Experimentelle Beobachtungen	113
		4.4.2	Der Superaustausch	114
		4.4.3	Vertiefungsthema: Ladungstransfer- und Mott-Hubbard-Isolatoren	117
		4.4.4	Die Goodenough-Kanamori-Anderson Regeln	120

		4.4.5	Der Doppelaustausch	124
	4.5	Elektri	ische Transporteigenschaften	132
		4.5.1	Temperatur- und Magnetfeldabhängigkeit des spezifischen Widerstands .	132
		4.5.2	Skalenverhalten des CMR-Effektes	134
5	GM	R-Effel	<t< td=""><td>137</td></t<>	137
	5.1	Zwisc	henschicht-Austauschkopplung	139
		5.1.1	Experimentelle Beobachtungen	139
		5.1.2	Kopplungsarten	140
		5.1.3	Phänomenologische Beschreibung der Zwischenschichtkopplung	143
		5.1.4	Mikroskopisches Modell der Zwischenschichtkopplung	144
		5.1.5	RKKY-Wechselwirkung	152
	5.2	Der Ri	iesenmagnetwiderstand	154
		5.2.1	Einfache Modellvorstellungen	154
		5.2.2	Intrinsischer GMR	157
		5.2.3	Extrinsischer GMR	160
	5.3	Skaler	verhalten des GMR	165
		5.3.1	Anwendungsaspekte	166
6	Spir	ventile	e	169
	6.1	Austa	usch-Anisotropie	171
		6.1.1	Phänomenologische Beschreibung der Austausch-Anisotropie	171
		6.1.2	Theoretische Modelle zur Austausch-Anisotropie	176
	6.2	Realis	ierung von Spinventilen	187
		6.2.1	Optimierung des magnetoresistiven Effekts von Spinventilen	188
		6.2.2	Wahl des Antiferromagneten	190
7	TM	R-Effek	ct	195
	7.1	Theore	etische Behandlung des Tunnelns von Elektronen	198
		7.1.1	Elastisches Tunneln durch eine eindimensionale rechteckförmige Barrie- re – zeitunabhängiger Ansatz	198
		7.1.2	Elastisches Tunneln durch eine eindimensionale rechteckförmige Barrie- re – zeitabhängiger Ansatz	202
		7.1.3	Elastisches Tunneln durch eine eindimensionale Barriere beliebiger Form – WKB-Näherung	203
		7.1.4	Elastisches Tunneln in planaren Metall/Isolator/Metall-Kontakten	204

281

	7.1.5	Tunneln unter Berücksichtigung des Bildpotenzials 208
	7.1.6	Bandstruktureffekte beim elastischen Tunneln
	7.1.7	Resonantes Tunneln
7.2	NIN-	und NIS-Kontakte
7.3	Ferror	nagnet/Isolator/Supraleiter-Kontakte
	7.3.1	Zeemann-Aufspaltung der Quasiteilchen-Zustandsdichte in Supraleitern 217
	7.3.2	Zustandsdichte und Spinpolarisation in Ferromagneten 219
7.4	FM/S	-Kontakte – Andreev-Reflexion
	7.4.1	Andreev-Streuung an Metall/Supraleiter-Grenzflächen
	7.4.2	Andreev-Streuung an Ferromagnet/Supraleiter-Grenzflächen 234
7.5	FM/I,	/FM-Tunnelkontakte
	7.5.1	Jullière – Modell
	7.5.2	Weiterentwicklungen des Jullière-Modells
7.6	Exper	imente zu FM/I/FM-Tunnelkontakten
	7.6.1	Untersuchung und Verbesserung der Barriereneigenschaften 251
	7.6.2	Temperatur- und Spannungsabhängigkeit des JMR 253
	7.6.3	Dotierung der Tunnelbarriere
	7.6.4	FM/I/FM Tunnelkontakte mit nichtmagnetischen Zwischenschichten $\therefore 258$
	7.6.5	Grenzflächeneffekte und Vorzeichen der Spinpolarisation 259
	7.6.6	Neue Materialsysteme
	7.6.7	Rastertunnelmikroskopie
7.7	Inelas	tisches Tunneln
	7.7.1	Inelastisches Tunneln mit Wechselwirkungsprozessen in der Barriere 266
	7.7.2	Inelastisches Tunneln mit Wechselwirkungsprozessen in den Tunnelek- troden
	7.7.3	Tunneln über Zwischenzustände – Glazmann-Matveev Modell 269
7.8	Tunne	eln durch ferromagnetische Barrieren – Spinfilter
7.9	Austa	uscheffekte an Grenzflächen zu Ferromagneten

8 EMR- und BMR-Effekt

III	Sp	pininje	ktion und Spintransport	283
IV	Μ	aterial	ien für die Spinelektronik	285
V	An	wendu	ingen	287
9	XM	R-Effek	te – Anwendungen	289
	9.1	Sensor	ren	292
		9.1.1	GMR Sensoren	295
		9.1.2	Anwendungen von GMR-Sensoren	301
	9.2	Magne	etoresistive Leseköpfe	306
		9.2.1	Design von Lese- und Schreibköpfen	308
	9.3	Magne	etic Random Access Memory – MRAM	313
		9.3.1	Geschichtlicher Hintergrund	313
		9.3.2	MRAM basierend auf AMR und GMR	316
		9.3.3	MRAM basierend auf Spinventilen	318
		9.3.4	MRAM basierend auf magnetischen Tunnelkontakten	318
		9.3.5	Ansteuerkonzepte für MRAMs	320

VI Quanten-Spinelektronikk

VII	Appen	dix	327
А	Litera	tur	329
В	SI-Ein	heiten	330
	B.1	Geschichte des SI Systems	330
	B.2	Die SI Basiseinheiten	332
	B.3	Einige von den SI Einheiten abgeleitete Einheiten	333
	B.4	Vorsätze	335
	B.5	Abgeleitete Einheiten und Umrechnungsfaktoren	336
С	Physil	kalische Konstanten	340

325

7

2004

Teil I

Grundlagen

Teil II

Magnetoresistive Effekte

Teil III

Spininjektion und Spintransport

Teil IV

Materialien für die Spinelektronik

Teil V

Anwendungen

Teil VI

Quanten-Spinelektronikk

Teil VII

Appendix

C Physikalische Konstanten

Fundamentalkonstanten treten im Netz der physikalischen Theorien als quantitative Verknüpfungspunkte dieser Theorien auf. So ist beispielsweise die Theorie der Hohlraumstrahlung über die Planck-Konstante *h* mit der Quantentheorie sowie über die Vakuum-Lichtgeschwindigkeit mit der Elektrodynamik und über die Boltzmann-Konstante k mit der Statistischen Mechanik verknüpft. Die Konstanten werden durch die Theorien nicht festgelegt, sie sind vielmehr experimentell so genau wie überhaupt nur möglich zu ermitteln. Denn die quantitativen Aussagen der Theorien können nur so genau sein, wie die Konstanten bekannt sind. Die möglichst genaue Kenntnis der Fundamentalkonstanten setzt aber eine möglichst genaue experimentelle Darstellung der im Internationales Einheitensystem (SI) definierten physikalischen Einheiten voraus. Dieser Sachverhalt bindet die Ermittlung der Werte der Fundamentalkonstanten eng an die Metrologie, die Wissenschaft vom genauen Messen, deren vornehmste und wichtigste Aufgabe die bestmögliche experimentelle Realisierung der definierten Einheiten ist.

Umgekehrt aber sind die Fundamentalkonstanten deshalb von besonderem Interesse für die Metrologie, weil sie selbst als ideale Einheiten dienen oder die ideale Basis für Einheiten bilden können. Schon heute werden sie zur Darstellung der SI-Einheiten herangezogen. Experimente zur Bestimmung einer Fundamentalkonstanten werden häufig direkt an metrologischen Instituten wie der Physikalisch-Technischen Bundesanstalt oder zumindest in enger Zusammenarbeit mit solchen Instituten ausgeführt.

Im Jahre 1999 hat die Task Group on Fundamental Constants des *Committee on Data for Science and Technology* (CODATA) des International Council of Scientific Unions (ICSU) einen neuen Satz von Fundamentalkonstanten erstellt und ihn zur einheitlichen Verwendung in Wissenschaft und Technik empfohlen. Dessen Werte sind das Ergebnis einer multivariaten Ausgleichsrechnung und beruhen auf Daten, die bis zum 31. Dezember 1998 publiziert vorlagen. Es ist geplant, zukünftig regelmäßig alle vier Jahre eine neue Ausgleichsrechnung unter Hinzuziehung neuer Daten vorzunehmen.

Eine Auswahl der wichtigsten Fundamentalkonstanten sind in der folgenden Tabelle zusammengefasst. Quelle: Peter J. Mohr und Barry N. Taylor, *CODATA Recommended Values of the Fundamental Physical Constants 1998, Journal of Physical and Chemical Reference Data* **28**, No. 6, (1999) und *Reviews of Modern Physics* **72**, No. 2, (2000).

Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler
universelle Konstanten				
Lichtgeschwindigkeit	С	299 792 458	m/s	exakt
Plancksche Konstante	h	$6.626~068~76(52) imes10^{-34}$	Js	$7.8 imes10^{-8}$
$h/2\pi$	ħ	$1.054~571~596(82) imes 10^{-34}$	Js	$7.8 imes10^{-8}$
		$6.582\ 118\ 89(26) imes 10^{-16}$	eVs	$3.9 imes10^{-8}$
Gravitationskonstante	G	$6.673(10) imes 10^{-11}$	m^3/kgs^2	
Induktionskonstante, ma- gnetische Feldkonstante	μ_0	$4\pi imes 10^{-7}$	N/A^2	exakt
				C 1

Fortsetzung auf nächster Seite

Fortsetzung von letzter Seite

Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler
Influenzkonstante, elektri- sche Feldkonstante, $1/\mu_0 c^2$	ϵ_0	$8.854\ 187\ 817\ldots imes 10^{-12}$	F/m	exakt
	$1/4\pi\epsilon_0$	$8.987~551\ldots imes 10^9$	Nm^2/C^2	exakt
Vakuumimpedanz $1/\mu_0 c^2$	Z_0	376.730 313 461	Ω	exakt
Planck-Masse $\sqrt{\hbar c/G}$	m_P	$2.1767(16) imes 10^{-8}$	kg	$7.5 imes 10^{-4}$
elektromagnetische Konstan	ten			
Elementarladung	е	$1.602\ 176\ 462(63) imes 10^{-19}$	С	$3.9 imes10^{-8}$
Magnetisches Flussquant $h/2e$	Φ_0	$2.067833636(81) imes 10^{-15}$	Vs	$3.9 imes 10^{-8}$
von Klitzing Konstante h/e^2	R_K	25 812.807 572(95)	Ω	$3.7 imes10^{-9}$
Leitfähigkeitsquant $2e^2/h$	G_0	$7.748091696(28) imes 10^{-5}$	S	$3.7 imes10^{-9}$
Josephson-Konstante $2e/h$	K _I	483 597.898(19)	Hz/V	$3.9 imes10^{-8}$
Bohrsches Magneton $e\hbar/2m_e$	μ_B	$9.274\ 008\ 99(37) imes 10^{-24}$	J/T	$4.0 imes 10^{-8}$
, -		$5.788381749(43) imes 10^{-5}$	eV/T	$7.3 imes10^{-9}$
		$1.399\ 624\ 624(56) imes 10^{10}$	Hz/T	$4.0 imes10^{-8}$
Kernmagneton	μ_K	$5.05078317(20) imes 10^{-27}$	J/T	$4.0 imes10^{-8}$
		$3.152\ 451\ 238(24) imes 10^{-8}$	eV/T	$7.6 imes10^{-9}$
		$7.62259396(31) imes 10^6$	Hz/T	$4.0 imes 10^{-8}$
atomare und nukleare Konst	anten			
Feinstrukturkonstante $e^2/4\pi\epsilon_0\hbar c$	α	$7.297352533(27) imes 10^{-3}$		3.7×10^{-9}
	1/lpha	137.036 999 76(83)		$3.7 imes10^{-9}$
Ruhemasse des Elektrons	m _e	$9.10938188(72) imes10^{-31}$	kg	$7.9 imes10^{-8}$
		$5.485799110(12) imes 10^{-4}$	u	$2.1 imes 10^{-9}$
Ruheenergie des Elektrons	$m_e c^2$	$5.10998902(21) imes 10^5$	eV	$4.0 imes10^{-8}$
Ruhemasse des Protons	m_p	$1.672~621~58(13) imes 10^{-27}$	kg	$7.9 imes10^{-8}$
		$1.007\ 276\ 466\ 88(13)$	u	$1.3 imes 10^{-10}$
Ruheenergie des Protons	$m_p c^2$	$9.38271998(38) imes 10^8$	eV	$4.0 imes10^{-8}$
Ruhemasse des Neutrons	m_n	$1.674~927~16(13) imes 10^{-27}$	kg	$7.9 imes10^{-8}$
		$1.008\ 664\ 915\ 78(55)$	u	5.4×10^{-10}
Ruheenergie des Neutrons	$m_n c^2$	$9.39565330(38) imes10^8$	eV	$4.0 imes10^{-8}$
Magnetisches Moment des Elektrons	μ_e	$9.28476362(37) imes 10^{-24}$	J/T	4.0×10^{-8}
	μ_e/μ_B	1.001 159 652 1869(41)		4.1×10^{-12}

Fortsetzung	von	letzter	Seite
-------------	-----	---------	-------

Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler
Magnetisches Moment des Protons	μ_p	$1.410\ 606\ 633(58)\times 10^{-26}$	J/T	$4.1 imes 10^{-8}$
	μ_v/μ_B	1.521 032 203(15)		$1.0 imes 10^{-8}$
	μ_p/μ_N	2.792 847 337(29)		$1.0 imes 10^{-8}$
Massenverhältnis Pro- ton/Elektron	m_p/m_e	1836.152 6675(39)		$2.1 imes 10^{-9}$
spezifische Ladung des Elektrons	e/m_e	$1.758\ 820\ 174(71)\times 10^{11}$	C/kg	$4.0 imes 10^{-8}$
Rydberg-Konstante $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 549(83)	1/m	$7.6 imes 10^{-12}$
		$2.17987190(17) imes 10^{-18}$	J	$7.8 imes10^{-8}$
		13.605 691 72(53)	eV	$3.9 imes10^{-8}$
Bohrscher Radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2$	a _B	$5.291772083(19) \times 10^{-11}$	m	3.7×10^{-9}
Klassischer Elektronenradi- us $\alpha^2 a_B$	r _e	$2.817940285(31)\times 10^{-15}$	m	$1.1 imes 10^{-8}$
Compton Wellenlänge des Elektrons h/m_ec	λ_C	$2.426\ 310\ 215(18) imes 10^{-12}$	m	$7.3 imes 10^{-9}$
physikalisch-chemische Kon	stanten			
Loschmidtsche Zahl, Avo- gadro Konstante	N_A	$6.022\ 141\ 99(47)\times 10^{23}$	1/mol	$7.9 imes 10^{-8}$
Atomare Masseneinheit $\frac{1}{12} m(^{12}C)$	и	$1.660\ 538\ 73(13) imes 10^{-27}$	kg	$7.9 imes10^{-8}$
Faradaysche Konstante $N_A e$	F	96 485.3415(39)	C/mol	$4.0 imes10^{-8}$
Gaskonstante	R	8.314 472(15)	J/mol K	$1.7 imes 10^{-6}$
Boltzmann-Konstante	k_B	$1.380~6503(24) imes 10^{-23}$	J/K	$1.7 imes 10^{-6}$
Molvolumen eines idealen Gases RT/p (bei $T = 273.15$ K, p = 101 325 Pa)	V_m	$22.413\ 996(39) imes 10^3$	m ³ /mol	$1.7 imes10^{-6}$
Tripelpunkt des Wassers	T_t	273.15	Κ	
	T_0	272.16	Κ	
		0	°C	
Stefan-Boltzmannsche Strahlungskonstante $(\pi^2/60)k_B^4/\hbar^3c^2$	σ	$5.670\ 400(40) imes 10^{-8}$	W/m ² K ⁴	$7.0 imes 10^{-6}$

Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler			
Wiensche Verschiebungs- konstante $b = \lambda_{\max} T$	b	$2.8977686(51) imes 10^{-3}$	m K	$1.7 imes 10^{-6}$			
fundamentale physikalische	Konstante	n – angenommene Werte	2				
Normaldruck	p_0	101 325	Pa	exakt			
Standard Fallbeschleuni-	8	9.806 65	m/s^2	exakt			
gung							
konventioneller Wert der	K_{J-90}	483 597.9	Hz/V	exakt			
Josephson-Konstante							
konventioneller Wert der	R_{K-90}	25 812.807	Ω	exakt			
von Klitzing-Konstante							