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Introduction and Motivation

The interaction of light and matter is amongst the most thoroughly studied research
topics in physics. The discovery of the photoelectric effect [1] has given rise to a new
generation of experiments where light can no longer be treated classically. Today, all
experiments where the quantum nature of light plays a decisive role fall into the realm
of quantum optics. The most basic quantum optics experiments study the interaction
of a single atom and a single photon. For several decades, reaching this regime has
been a major research focus and has created the field of cavity quantum electrodyna-
mics (QED) [2,3]. However, one limiting factor of all cavity QED experiments are small
coupling strengths between the atom and the respective field stored in the cavity as the
coupling strength is determined by the small dipole moment of the atom and the rela-
tively large mode volume of the cavity.

Replacing the natural atom by a superconducting two-level system and the cavity by
an on-chip transmission line resonator, the field of circuit quantum electrodynamics was
born. With these superconducting circuits, the regime of strong coupling can be reached
more easily [4, 5], as the coupling strength is several orders of magnitude larger than
in cavity QED. In the field of circuit QED, many experiments known from the optical
regime could be reproduced [6–9]. Furthermore, circuit QED also opened the door to
new phenomena that are either difficult to observe in cavity QED [10] or do not have an
optical analogon at all [11, 12].

But there is also a severe drawback of circuit QED. As the energy per photon is orders
of magnitude smaller in the microwave (GHz) regime than in the optical regime, a sin-
gle microwave photon has insufficient energy to trigger solid-state photo detectors such
as avalanche diodes. Therefore, the microwave signals used in circuit QED have to be
amplified before they can be detected. However, the predominantly used linear, phase-
insensitive amplifiers inevitably add noise to the signal that may be much larger than the
signal itself.

The reason why these amplifiers add noise is due to a fundamental principle of quantum
physics - the uncertainty principle. However, if an amplifier treats the quadratures of an
input signal differently, the uncertainty principle allows for the noiseless amplification of
one of the signal quadratures.

Proposals for the realization of phase-sensitive amplifiers involving the Josephson effect
go back to the 1970s [13–16]. In 1988, B. Yurke et al. demonstrated the squeezing of
4.2 K thermal noise using a current-driven Josephson parametric amplifier (JPA) [17]
with a noise temperature below the quantum limit of linear, phase-insensitive amplifiers.
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Two years later, experimental progress enabled R. Movshovich et al. to squeeze vacuum
noise [18]. The flux-driven design of the Josephson parametric amplifier was introduced
in 2008 by T. Yamamoto et al. [19] based on a theoretical proposal by T. Ojanen and
J. Salo [20]. Up to this date, the use of JPAs was limited to squeeze thermal noise or
vacuum noise. This changed in 2009 when a Josephson parametric amplifier was used by
K. Lehnert et al. in a setup measuring the motion of a nanomechanical resonator [21].
Today, Josephson parametric amplifiers are of broad interest in the circuit QED commu-
nity [19,21–23].

In the course of this thesis, a flux-driven Josephson parametric amplifier, designed by
T. Yamamoto and fabricated by I. Kunihiro, was studied. The working principle can
be compared to a playground swing. By periodically leaning back and forth, the re-
sonant frequency of the swing is varied periodically, increasing its deflection amplitude
with time. The very same amplification principle applies to the flux-driven Josephson
parametric amplifier. The oscillating system here is no mechanical pendulum, but its
circuit analogon, a microwave resonator. The resonant frequency of such a resonator
is determined by its capacitance and inductance, which is where the Josephson effect
comes into play. A superconducting quantum interference device (SQUID) consisting
of a superconducting loop intersected by two Josephson junctions terminates the center
conductor of the resonator to ground, thus adding a flux-dependent nonlinear inductance
to the resonator. Applying a periodically varying flux to the SQUID thus varies the re-
sonant frequency periodically, amplifying the microwave signal coupled into the resonator.

This thesis is divided into three parts. In chapter 1, we shall lay the theoretical ground-
works for a profound understanding of the flux-driven Josephson parametric amplifier.
We will begin with the introduction of the coherent and squeezed states as two sets
of basis states of the quantized electromagnetic field. After a short discussion of the
principle of parametric amplification we will provide a detailed treatment of Josephson
junctions and SQUIDs, the latter being one central building block of the flux-driven JPA.
Subsequently, we shall have a look at the quantum mechanical treatment of Josephson
parametric amplifiers. We will conclude the first chapter with a discussion of the noise
properties of linear amplifiers.

A detailed description of the experimental setup is provided in chapter 2. We start with a
short description of the samples and the corresponding sample holders before introducing
the measurement setup. The latter involves a specialty, the use of mechanical microwave
switches at Millikelvin temperatures. We describe our efforts to make switching at cryo-
genic temperatures possible.

In chapter 3, we present the experimental results obtained. In the course of this thesis,
we provide a detailed characterization of two Josephson parametric amplifier samples.
We have performed a thorough analysis of the central building block of our samples, the
resonator. Both the phase-dependent and phase-independent gain of the JPAs were mea-
sured at different working points in order to find the parameter space were the amplifiers
are working best. For the optimal working point, also the bandwidth was determined.
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1 Theory of Josephson parametric
amplifiers

The construction of low-noise or even noiseless amplifiers for the detection of weak quan-
tum microwave signals is a fundamental challenge in the field of circuit QED. As men-
tioned in the introduction, noiseless amplification, however, is only possible if an amplifier
treats its input signals differently with respect to phase. One promising representative of
this class of amplifiers is the flux-driven Josephson parametric amplifier. In this chapter
we shall therefore lay the foundations for a fundamental understanding of its functional
principles. We will first establish the required quantum mechanical basis by introducing
the coherent and squeezed states. After discussing the principle of parametric amplifica-
tion on the basis of an example from classical mechanics, we provide a detailed description
of the constituents of the flux-driven Josephson parametric amplifier. The central build-
ing block, the SQUID-terminated transmission line resonator, will be treated in detail
before we provide a quantum mechanical description of the working principle of the JPA.
We will conclude the theory section outlining the quantum mechanical limits of linear
amplifiers due to the influence of vacuum fluctuations.

1.1 Minimum-uncertainty states

First of all, we introduce two sets of basis states of the quantized electromagnetic field.
We will outline the class of coherent states as these come closest to a classical treatment
of light. Squeezed states are vital for a profound understanding of Josephson parametric
amplifiers as they establish the theoretical basis for its most important characteristic,
namely the potential to amplify one signal quadrature without, in principle, adding any
noise.

The quadratures X1 and X2 of a sinusoidal signal with amplitude A0, frequency ω and
phase ϕ are defined by

X(t) = A0 cos (ωt− ϕ)

= A0 cos(ϕ)︸ ︷︷ ︸
X1

cos(ωt) + A0 sin(ϕ)︸ ︷︷ ︸
X2

sin(ωt)

= X1 cos(ωt) +X2 sin(ωt)

= Re
[
(X1 + iX2) e−iωt

]
, (1.1)

with the imaginary unit i.

1



2 1. Theory of Josephson parametric amplifiers

In a coordinate system rotating with the angular frequency ω, this sinusoidal signal is
represented by the point (X1, X2), called the phase space representation of X(t). We note
that X1 and X2 are conjugate variables such as position and momentum. The derivation
of coherent and squeezed states presented below mainly follows the book by Walls and
Milburn [24].

1.1.1 Coherent states

Coherent states play an important role in quantum electrodynamics. In the limit of large
photon numbers, they represent the quantum mechanical state closest to a classical, si-
nusoidal electromagnetic wave.

Let us first consider the ground state, that is to say the state with lowest possible energy,
of an arbitrary mode of the electromagnetic field as the vacuum state. In phase-space
representation where the uncertainty of a state is depicted by an error contour in a
plain defined by the real and imaginary part of the complex amplitude of an arbitrary
quantum state, the vacuum state is represented by a circle centered at the origin, see
Fig. 1.1. The fact that the uncertainty of this state is described by a circle can be
understood considering that the vacuum exhibits no preferred direction with respect to
phase and thus the orientation of X1 and X2 can be chosen arbitrarily. The radius of the
circle can be interpreted as a measure of the vacuum energy [25].

X1

X2

ÄX1

ÄX2

Figure 1.1: The vacuum state in phase space representation. X1 and X2 are the real and
imaginary parts of the complex amplitude of an arbitrary quantum state. The
radius ∆X1 = ∆X2 illustrates the uncertainties in the quadratures.

A coherent state |α〉 is now created by applying the unitary displacement operator,

D̂ (α) = exp
(
αâ† − α∗â

)
, (1.2)

on the vacuum, where â† and â are bosonic creation and annihilation operators and α is
an arbitrary, nonzero complex number,

|α〉 = D̂ (α) |0〉 . (1.3)

In phase space representation, creating a coherent state corresponds to shifting the va-
cuum by α, see Fig. 1.2.
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X1

X2

X1

X2

α

D(α)

Figure 1.2: A coherent state is generated by applying the displacement operator D̂(α) on
the vacuum.

1.1.2 Squeezed states

A quantum mechanical state that has less uncertainty in one quadrature than in the
other belongs to the class of the so-called squeezed states. We want to start by defining
the class of states with minimum uncertainty. We therefore begin with a general bosonic
annihilation operator of a single mode field,

â =
X̂1 + iX̂2

2
, (1.4)

with Hermitian operators X̂1 and X̂2 representing the two quadratures of the single
mode field with expectation values X1 and X2. Expressed in creation and annihilation
operators, the quadrature operators read

X̂1 = â† + â, (1.5a)

X̂2 = i
(
â† − â

)
. (1.5b)

From the commutation relations for the bosonic creation and annihilation operators we
obtain the commutation relation for X̂1 and X̂2,[

X̂1, X̂2

]
= 2i. (1.6)

Next, we consider the universal uncertainty principle [26] for arbitrary Hermitian opera-
tors Â and B̂,

∆A ·∆B ≥ 1

2

∣∣∣〈Ψ
∣∣∣[Â, B̂]∣∣∣Ψ〉∣∣∣ , (1.7)

in which Ψ is an arbitrary normalized function and the uncertainty ∆A is defined as the
root mean square of the deviation of A from its mean, i.e. (∆A)2 = 〈Ψ|(Â − A0)2|Ψ〉
where the mean value of A is defined by A0 = 〈Ψ|Â|Ψ〉. The uncertainty ∆B is defined
in the same way. We then get the uncertainty principle for X1 and X2,

∆X1 ·∆X2 ≥ 1. (1.8)

As an example let us consider a harmonic oscillator with frequency ω0 and mass m. The
corresponding annihilation operator reads

â =
1

2

(√
2mω0

h̄
q̂ − i

√
2

mω0h̄
p̂

)
(1.9)
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with the position operator

q̂ =

√
h̄

2mω0

(
â+ â†

)
(1.10)

and the momentum operator

p̂ = i

√
h̄mω0

2

(
â− â†

)
. (1.11)

For this special case, the uncertainty principle (1.8) turns into the well-known Heisenberg
uncertainty principle

∆p ·∆q ≥ h̄

2
. (1.12)

A family of minimum-uncertainty states is now defined by considering the equal
sign in (1.8):

∆X1 ·∆X2 = 1 (1.13)

Among these minimum-uncertainty states, a special case are the coherent states discussed
in Section 1.1.1, where the uncertainty is distributed equally on both quadratures,

∆X1 = ∆X2 = 1. (1.14)

A more general class of states are the squeezed states, where the uncertainty is reduced
in one quadrature and increased in the other1, see Fig. 1.3,

∆X1 < ∆X2 or ∆X1 > ∆X2. (1.15)

From the quantum electrodynamics’ point of view, squeezed states are generated by
applying the squeezing operator Ŝ (ε),

Ŝ (ε) = exp

(
1

2
ε∗â2 − 1

2
εâ†2

)
, (1.16)

where ε = re2iϕ defines the squeezing factor r = |ε|, a measure for the attenuation and
amplification of the uncertainty in the respective quadratures. The angle ϕ accounts for
the fact that squeezing is not necessarily carried along the axis X1 and X2, see Fig. 1.3. A
general squeezed state |α, ε〉 is generated from the vacuum by first squeezing the vacuum
and then displacing it, see Fig. 1.4,

|α, ε〉 = D̂ (α) Ŝ (ε) |0〉 . (1.17)

1.2 The principle of parametric amplification

In classical physics, the concept of parametric amplification can be understood consider-
ing a pendulum whose length can be varied periodically by means of a drive, see Fig. 1.5.

1In literature, a squeezed state that also is a state of minimum uncertainty, i.e. ∆X1 < ∆X2 and
∆X1 ·∆X2 = 1, is sometimes referred to as an ideal squeezed state [27].
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X1

X2

Y2

Y1φ

-re

re

Figure 1.3: A squeezed state in phase space representation with the squeezing factor r.
Y1 + iY2 = (X1 + iX2) · e−iϕ is the rotated complex amplitude.

X1

X2

X1

X2

S(ε)

X1

X2

α

D(α)

Figure 1.4: A squeezed state is generated by first squeezing the vacuum and subsequent
displacement.

If the length l of the pendulum is constant in time, the classical equation of motion
describing the time-dependence of the small angle deflection ϕ of the pendulum is given
by

ϕ̈+
g

l
ϕ = 0, (1.18)

where g is the acceleration of gravity. The eigenfrequency ω0 of the pendulum reads

ω0 =

√
g

l
. (1.19)

Parametric amplification of the oscillation amplitude is obtained by setting the drive
(cf. Fig. 1.5) to twice the eigenfrequency and thus periodically varying the pendulum
length2

l→ l(t) = l + ∆l · cos (2ω0t) . (1.20)

The differential equation obtained by substituting the length (1.20) into (1.18) can be
solved numerically. The solution for the initial conditions ϕ̇(0) = 0, ϕ(0) = 1 is shown in

2An everyday example, the pumping of a playground swing, can also be modeled by a parametrically
driven harmonic oscillator. The case where one stands on a swing and periodically leans back and forth
is straightforward to understand [28]. In the seated case, however, it is only a good approximation [29].
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Drive

Fixed pivot point

Pendulum bob
m

ö l(t)

Figure 1.5: A pendulum whose length can be varied periodically.

Fig. 1.6. It can be seen that the work done by the drive to periodically vary the length
of the pendulum increases the angular deflection of the pendulum in time. For clarity,
we have neglected damping terms in our calculation that would limit the deflection.

From these classical considerations, we shall now pass on to a quantum mechanical treat-
ment of parametric amplification. To derive the Hamiltonian of a quantum mechanical
driven harmonic oscillator (cf. Appendix A), we again start with the unperturbed equa-
tion of motion

d2q

dt2
+ ω2

0q = 0 (1.21)

and introduce a modulation of the eigenfrequency ω0 → ω0 [1 + δ cos (αω0t)], in which δ
is the amplitude and αω0 is the frequency of the modulation. Neglecting δ2-terms, this
leads to

d2q

dt2
+ ω2

0 [1 + 2δ cos (αω0t)] q
2 = 0. (1.22)

The Hamiltonian corresponding to this equation of motion is

Ĥ =
p̂2

2m
+
m

2
ω2

0 [1 + 2δ cos (αω0t)] q̂
2. (1.23)

Introducing annihilation and creation operators (1.10, 1.11) leads to the Hamiltonian of
a parametrically pumped harmonic oscillator,

Ĥ = h̄ω0

[
â†â+

1

2
+ 2δ cos (αω0t)

(
â+ â†

)2
]
. (1.24)

The vacuum component of Ĥ, i.e. the term 1
2
h̄ω0, is usually omitted as it merely represents

a constant energy offset. In the following sections we will treat the flux-driven Josephson
parametric amplifier, a device that is described by this Hamiltonian.
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Figure 1.6: Parametrically pumping a pendulum increases its deflection with time. In a
real setup, however, friction limits the maximum amplitude. We also note
that for large deflections, the small-angle approximation used in (1.18) no
longer holds.

1.3 The Josephson effect

The Josephson effect, predicted by Brian D. Josephson in 1962, is observed for two weakly
coupled superconductors. Among other possibilities, such a coupling can be achieved by
isolating the two superconductors by means of an insulating layer, see Fig. 1.7. Analogical
to a normal metal - insulator - metal junction, where electrons can tunnel through the
barrier if it is sufficiently thin, Cooper pairs can tunnel through the insulator between
the two superconductors. The supercurrent in the two superconductors is described by
the macroscopic wave functions Ψ1 and Ψ2,

Ψ1 =
√
n∗1e

iθ1 , (1.25a)

Ψ2 =
√
n∗2e

iθ2 , (1.25b)

in which
√
n∗1 and

√
n∗2 are the Cooper pair densities and θ1 and θ2 are the phases of

the macroscopic wave functions of the two superconductors. For thin insulating barriers,
the two macroscopic wave functions overlap. Similar to the hydrogen molecule, where
molecular binding is a result of the coupling energy that arises from the overlap of the
electronic wave functions of the constituting atoms, the two weakly coupled supercon-
ductors can also be regarded as a molecule. The corresponding coupling energy is called
the Josephson coupling energy and will be derived below.
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Superconductor 1 Superconductor 2

Insulator

Ψ1 Ψ2

Figure 1.7: A Josephson junction where two superconductors are connected via an insu-
lating layer.

1.3.1 The Josephson equations

The Josephson equations establish a relation between the phase differences of the macro-
scopic wave functions of the superconductors and the supercurrent across the insulating
barrier between them. For a detailed derivation we refer to Ref. [30].

In the presence of a magnetic field, the gauge-invariant phase difference γ is defined
as [31]

γ (~r, t) = θ2 (~r, t)− θ1 (~r, t)− 2π

Φ0

2∫
1

~A (~r, t) · d~l, (1.26)

where Φ0 = h
2e

is the magnetic flux quantum and ~A is a magnetic vector potential. The
integration path is along the direction of current, for an SIS3-type junction the path
is across the barrier from superconductor 1 to superconductor 2. The first Josephson
equation, also known as the current-phase relation, describes the Josephson current across
the barrier as a function of the gauge-invariant phase difference,

Is(γ) = Ic sin γ, (1.27)

in which Ic is the maximum or critical Josephson current. In the absence of scalar and
vector potentials, the first Josephson equation simplifies to

Is(γ) = Ic sin (θ2 − θ1) (1.28)

and denotes a supercurrent varying sinusoidally with the phase difference θ2 − θ1 across
the junction.

The second Josephson equation reads

∂γ

∂t
=

2π

Φ0

2∫
1

~E (~r, t) · d~l, (1.29)

where
∫ 2

1
~E (~r, t) · d~l corresponds to a voltage drop across the junction. Therefore, the

second Josephson equation is also called the voltage-phase relation. In the case of a

3superconductor-insulator-superconductor
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constant voltage V applied to the Josephson junction, this equation simplifies to

∂γ

∂t
=

2π

Φ0

V. (1.30)

Integrating this equation over time yields

γ(t) = γ0 +
2π

Φ0

V · t. (1.31)

Inserting this result in the first Josephson equation (1.27), we obtain that the Josephson
current Is(t) = Ic sin γ(t) oscillates at the Josephson frequency

ν

V
=

ω

2πV
=

1

Φ0

= 483.5979
MHz

µV
. (1.32)

The Josephson constant KJ−90 := 1
Φ0

is used to define the Volt since 1990 [32].

As mentioned above, a Josephson junction can be considered as a molecule with a finite
binding energy due to the overlap of the macroscopic wave functions. In order to derive
the energy stored in the junction, we integrate the power from time t = 0 to time t = t0,

EJ =

t0∫
0

IsV dt. (1.33)

Substituting the two Josephson equations 1.27 and 1.30 into 1.33 we obtain

EJ =

t0∫
0

(Ic sin γ̃)

(
Φ0

2π

dγ̃

dt

)
dt. (1.34)

With the phase difference γ(0) = 0 and γ(t0) = γ this integral rewrites to

EJ =
Φ0Ic
2π

γ∫
0

sin γ̃ dγ̃. (1.35)

Integration gives an expression for the energy stored in the junction, the Josephson
coupling energy,

EJ =
Φ0Ic
2π

(1− cos γ) = EJ0 (1− cos γ) . (1.36)

Another notable property of the Josephson junction is that it behaves as a nonlinear
inductance. To demonstrate this, we consider the time derivative of the current-phase
relation (1.27),

dIs
dt

= Ic cos γ
dγ

dt
. (1.37)

Using the voltage-phase relation yields

dIs
dt

= Ic cos γ
2π

Φ0

V. (1.38)
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Comparing this result with the law of induction, V = L · dI
dt

, we can define the Josephson
inductance Ls,

Ls =
Φ0

2πIc cos γ
= Lc

1

cos γ
(1.39)

with the critical Josephson inductance

Lc =
Φ0

2πIc
. (1.40)

1.3.2 The dc SQUID

Derivating the Josephson equations, we have seen that the macroscopic wave function
manifests itself in temporal interference resulting in the Josephson ac currents. Now we
shall consider a device where spatial interference can be observed in analogy to the double
slit experiment. Figure 1.8 shows a schematic illustration of a Superconducting Quantum
Interference Device, SQUID. It consists of a superconducting loop that is intersected by
two Josephson junctions. The ring is penetrated by a magnetic field perpendicular to its
surface normal. A transport current I flows across the loop. The Josephson junctions
however will provide a limit for the maximum current Is,max that can be sent across the
loop. For a detailed analysis of the SQUID, we refer to Ref. [33]. In the course of this
work however we will restrict our discussion of the SQUID to the aspects relevant for
understanding the functionality of the Josephson parametric amplifier.

B
I I

I1

I2

J

Figure 1.8: A dc SQUID consists of a superconducting loop that is intersected by two
Josephson junctions. A current I, divided into I1 and I2 along the loop arms,
is sent through the SQUID. A magnetic field B is applied to the SQUID. Flux
quantization requires the generation of a circular current J .

If a magnetic field is applied to a superconducting loop without Josephson junctions,
the total magnetic flux in the loop will be an integer multiple of the flux quantum Φ0.
This effect, known as flux quantization, was postulated by F. London in 1950 [34] and
experimentally proven by R. Doll and M. Näbauer in Munich [35] and B. S. Deaver
and W. M. Fairbanks in Stanford [36]. As the superconducting loop can be exposed
to arbitrary magnetic fields, a ring current J in the superconducting loop is generated
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such that its contribution to the total flux rounds the external flux to the nearest integer
multiple of Φ0 i.e.,

Φtot = Φext + LJ = n · Φ0, (1.41)

where L is the self inductance of the loop, Φext is the external magnetic flux and n is an
integer.

Using the denotations from Fig. 1.8, we shall now provide a derivation for the maximum
current through the SQUID depending on of the external magnetic flux [32]. The current
I through the SQUID is divided into the currents I1 and I2 flowing along the SQUID
arms. Current conservation demands

I = I1 + I2. (1.42)

As we assume the loop arms and the two Josephson junctions to be identical, the current
I will be distributed on both arms. Taking the ring current into account, we can write
down expressions for I1 and I2,

I1 =
I

2
+ J, (1.43a)

I2 =
I

2
− J. (1.43b)

With the current-phase relation (1.27) and assuming that the critical currents Ic of both
Josephson junctions are identical, we get

I

2
+ J = Ic sin γ1, (1.44a)

I

2
− J = Ic sin γ2, (1.44b)

in which γ1 and γ2 are the gauge-invariant phase differences across the two Josephson
junctions. It can now be shown [32] that integrating the phase gradient ∇γ over the loop
(cf. Fig. 1.8) yields an expression for the phase difference

γ2 − γ1 =
2π

Φ0

Φtot =
2π

Φ0

(Φext + LJ). (1.45)

We now assume that we can neglect the contribution of LJ to the magnetic flux. It
is evident that the ring current J cannot be larger than the critical current Ic of the
Josephson junctions. Therefore, the flux LJ has to be smaller than LIc. We now demand
that the flux LJ is small compared to half a flux quantum, that is

βc :=
2LIc
Φ0

� 1, (1.46)

where βc is called the screening parameter. If we neglect the flux contribution of the ring
current, we get Φtot = Φext. Combining (1.44) and (1.45) allows to eliminate γ2, yielding

I = Ic

[
sin γ1 + sin

(
2π

Φext

Φ0

+ γ1

)]
. (1.47)
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Defining the variable χ := γ1 + πΦext

Φ0
and applying trigonometric identities allows to

rewrite (1.47) to

I = 2Ic · sinχ · cos

(
π

Φext

Φ0

)
. (1.48)

At a given flux Φext and current I, χ will adjust itself to satisfy (1.48). The current I
can only grow as long as −1 < sinχ < 1. For larger currents I, (1.48) can no longer be
satisfied and a voltage will drop across the SQUID. We have therefore found an expression
for the maximum supercurrent across the SQUID,

Is,max = 2Ic

∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣ . (1.49)

The reasoning used to derive the inductance of a single Josephson junction (1.37 - 1.40)
can also be used to derive the flux-dependent inductance of a SQUID [37].

Lc,SQUID(Φext) =
h̄

2eIs,max

=
Φ0

4πIc

∣∣∣cos
(
πΦa

Φ0

)∣∣∣ (1.50)

1.4 The layout of the flux-driven Josephson parametric
amplifier

In this section we shall give an overview of our Josephson parametric amplifier, designed
and manufactured by T. Yamamoto and K. Inomata at NEC in the group of Y. Nakamura
[19]. We will get to know the constituents and their role for the operation of the amplifier.
A circuit diagram of the sample is shown in Fig. 1.9. We provide a detailed analysis of the
main constituents, namely the transmission line resonator with the coupling capacitor,
the dc SQUID and the pump line.

1.4.1 Lumped-element model for the transmission line resonator

The central element of our Josephson parametric amplifier is a transmission line resonator
with capacitance C, inductance L, resistance R and the coupling capacitance Cc. De-
scribing the resonator using a lumped-element approach [38] yields a resonant frequency
of

ω0 =
1√
LC

. (1.51)

The calculations presented below will provide expressions for the internal and external
quality factor. With these expressions, suitable design parameters for the resonator can
be chosen in order to adjust the quality factors to the desired values.



1.4 The layout of the flux-driven Josephson parametric amplifier 13

Transmission Line Resonator

CcSignal In

Signal Out

dc
SQUID P

u
m

p

Signal In

Signal Out

P
u
m

pΦ

dc
SQUID

Transmission Line Resonator

CC

Figure 1.9: Sample layout (top figure) and circuit diagram (bottom figure) of a flux driven
Josephson parametric amplifier. A magnetic flux Φ is applied to the SQUID.
The output signal of the Josephson parametric amplifier is detected at the
same port where the input signal is applied.

The input impedance Zin of such anRLC-resonator with coupling capacitance Cc (cf. Fig. 1.10)
is given by

Zin =
1

iωCc
+

1
1
R

+ 1
iωL

+ iωC

=
1

iωCc
+

1

1
R

+ iωC
(

1− ω2
0

ω2

)
≈ 1

iωCc
+

1
1
R

+ 2i (ω − ω0)C
, (1.52)

for ω ≈ ω0. The expression for Zin can be divided into real and imaginary parts,

Zin =
R

1 + 4C2R2 (ω − ω0)2 − i
[

1

ωCc
+

2 (ω − ω0)CR2

1 + 4C2R2 (ω − ω0)2

]
. (1.53)

At resonant frequency, the imaginary part of the impedance equals zero [39]. As a
consequence of the coupling capacitance, this loaded resonant frequency ωL will differ
from ω0 and is given by

ωL =
CRω0 (4C + Cc)±

√
C (R2ω2

0C
2
cC − 4C − 2Cc)

2CR (2C + Cc)
. (1.54)
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With the approximation R2ω2
0C

2
cC � 4C, 2Cc, the two solutions reduce to

ωL,1 = ω0, (1.55a)

ωL,2 =
ω0

1 + Cc
2C

. (1.55b)

The only physically relevant solution is ωL,2. The other solution ωL,1 implies a very large
real part of the impedance [39] resulting in a large impedance mismatch between both
sides of the coupling capacitance, thus preventing a signal from being coupled into the
resonator via the coupling capacitance. In what follows we will refer to the relevant so-
lution of (1.54) as ωL.

In the case of the Josephson parametric amplifier, however, the resonator is not connected
to ground directly, but via a SQUID with the flux-dependent inductance (1.50). Hence,
the total inductance of the resonator reads

Ltot = L+ Lc,SQUID. (1.56)

Substituting L by Ltot in (1.51) yields the flux-dependent resonant frequency

ωr(Φext) =
ω0√

1 +
Lc,SQUID(Φext)

L

, (1.57)

where ω0 is the resonant frequency and L is the inductance of the quarter-wavelength
transmission line resonator without the SQUID.

Another characteristic quantity of a resonator is its quality factor Q with the general
definition [40]

Q = ωL ·
time-average energy stored in the system

energy loss per second in the system
, (1.58)

in which ωL is the resonant frequency of the resonator. The bandwidth ∆ωFWHM of the
resonator is found to be the inverse quality factor [41],

∆ωFWHM =
ω0

Q
, (1.59)

where ∆ωFWHM is the full width at half maximum (FWHM) of the resonance peak of the
resonator, see Fig. 1.11. We will now consider the different loss channels of the resonator.

First we consider a resonator that is not coupled to the environment. Loss therefore is only
determined by the imperfections of the resonator. The resonator is operated at a finite
temperature, so quasi-particle excitations give rise to a loss mechanism. Furthermore,
high-frequency electromagnetic fields can penetrate the surface of a superconductor up
to a certain depth, a mechanism comparable to the skin effect in normal metals. Due to
the presence of quasi-particle excitations, the resistance of the superconductor becomes
finite [42]. The resistance taking all these loss mechanism into account is called the
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R* C* L R CZ0

Cc

L R C

I

Zin

Figure 1.10: The circuit of the coupled transmission line resonator (left) can be trans-
formed into its so-called Norton equivalent circuit (right) [45]. The resonator
part of the circuit is marked by the blue area. I represents the microwave
source that delivers the input signal to the resonator. Zin denotes the input
impedance seen by the source. Expressions for the quantities L, R, C, R∗

and C∗ are provided in text.

surface resistance Rs. Its dependence on the temperature T , the frequency ω and the
residual resistance Rres is given by [32]

Rs ∝
ω2

T
e
− ∆0
kBT +Rres, (1.60)

in which ∆0 is the energy gap of the superconductor and kB is the Boltzmann constant.
As we can see, the surface resistance scales with ω2 in contrast to the skin effect of a
normal metal where the surface resistance is proportional to

√
ω [43].

In a resonator, losses do not only occur in the conductor [44]. In the dielectric, two-level
systems can be excited. Regardless of material losses, energy is also lost by radiation into
free space [39]. The quality factor taking all these loss mechanisms of the conductor and
the dielectric into account is called the internal quality factor Qint given by [38]

Qint = ωLRCeff |ω=ωL
, (1.61)

with the characteristic parameters

Ceff(ω) = C + C∗(ω), (1.62)

C∗(ω) =
Cc

1 + ω2C2
cZ

2
0

, (1.63)

Z0 =

√
L

C
, (1.64)

in which Z0 is the load impedance, see Fig. 1.10.

Now we consider a perfect cavity that is coupled to the environment, in our case via the
coupling capacitance Cc, see Fig. 1.9. The corresponding quality factor is hence called
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the external quality factor Qext and its dependence on the coupling capacitance is given
by

Qext = ωLR
∗Ceff |ω=ωL

(1.65)

in which R∗ is defined as

R∗(ω) =
1 + ω2C2

cZ
2
0

ω2C2
cZ0

. (1.66)

The overall quality factor of the cavity, also called the loaded quality factor, taking all
loss channels into account is given by [46]

1

Q
=

1

Qint

+
1

Qext

. (1.67)

Another very important quantity is the reflection coefficient Γ. If an input signal Ain is
applied to the resonator, the detected output signal will be Γ ·Ain. The theoretical value
for the complex quantity Γ is given by (cf. Appendix A)

Γ =
(ω − ωL)2 + iκ2 (ω − ωL) +

κ2
1−κ2

2

4(
ω − ωL + iκ1+κ2

2

)2 (1.68)

with the coupling constants

κ1 =
ωL
Qext

, (1.69)

κ2 =
ωL
Qint

. (1.70)

Magnitude and phase of the complex reflection coefficient Γ are shown in Fig. 1.11. If
the external quality factor is greater than the internal quality factor, the resonator is
undercoupled. Otherwise, for Qext < Qint, the resonator is overcoupled.
In Fig. 1.12, we compare the magnitude and phase of Γ for different values of Qint for
a fixed external quality factor. It can be seen that the phase shows only marginal de-
pendence on Qint, whereas the magnitude shows a strong dependence. The latter can be
understood considering that, as discussed above, the internal quality factor is a measure
for imperfections of the resonator. The smaller Qint is, the more signal is lost inside the
resonator. Thus, the detected output signal level is smaller for decreasing Qint.

The lumped-element approach presented here provides a relatively simple model for the
calculation of the resonator parameters. However, the real physical device is a transmis-
sion line resonator with length l and distributed capacitance Cl and inductance Ll per
unit length. The modes of the electric field in such a resonator depend on the boundary
conditions. Considering a resonator with one end open and the other directly connected
to ground, one has the case of a quarter-wavelength resonator with resonant frequency

ω̃0 =
1

4l
√
LlCl

. (1.71)
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Figure 1.11: Magnitude (top) and phase (bottom) of the reflection coefficient Γ
(cf. Eq. 1.68) as a function of frequency. The calculation was performed
with Qext = 100, Qint = 600, ωL = 6.0 GHz for the overcoupled case and
Qext = 1000, Qint = 600, ωL = 6.0 GHz for the undercoupled case. The black
arrows in the top plot denote the full width at half maximum (FWHM).

1.4.2 The pump line

The pump line, the second building block of the Josephson parametric amplifier, is induc-
tively coupled to the SQUID, see Fig. 1.9. By applying a microwave signal at frequency
ωpump to the pump port, the SQUID loop can be interspersed with a periodically varying
magnetic flux. This flux contribution adds to the external magnetic flux which is con-
stant in time and used to set the resonant frequency of the transmission line resonator in
terms of (1.57). In our experiments, this external flux was generated by a coil mounted
in the vicinity of the sample.
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Figure 1.12: Magnitude (top) and phase (bottom) of the reflection coefficient Γ
(cf. Eq. 1.68) as a function of frequency for different values of Qint. The
resonator parameters Qext = 300 and ωL = 6.0 GHz are the same for all
three curves. The magnitude strongly depends on the internal quality factor
whereas the phase shows only little dependence.

As now the magnetic flux penetrating the SQUID loop is varied periodically, it follows
from (1.50) that the inductance of the SQUID and therefore the boundary condition of
the transmission line resonator is also varied periodically. According to (1.57), this results
in a periodic variation of the resonant frequency. From a quantum mechanical point of
view, we end up with the pumped harmonic oscillator discussed in Section 1.2.

The pump port is physically separated from the signal port, which is a major advantage of
the design developed by T. Yamamoto compared to previous designs [17]. Furthermore,
the pump frequency is not a harmonic of the quarter wavelength resonator, increasing the
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isolation between pump and signal port by orders of magnitude. The latter is important
since the amplitude of the pump signal usually is several orders of magnitude larger than
the input signal and crosstalk of the pump to the input signal should be held as small as
possible.

A general design advantage of all parametric amplifiers featuring a SQUID-terminated
transmission line resonator is the possibility to set the resonance frequency during the
experiment by applying an easy-to-control external magnetic field. This allows to tune
the Josephson parametric amplifier to the frequency of other components of a circuit
QED setup, e.g. artificial atoms.

The fact that the periodic variation of the resonant frequency is governed by the periodic
variation of the flux through the SQUID loop is the reason why this design class of
Josephson parametric amplifiers is called the flux-driven Josephson parametric amplifiers
in contrast to e.g. the current-driven design developed by AT&T [17].

1.5 Generation and detection of squeezed states

In this section, we shall get familiar with the functionality of Josephson parametric
amplifiers. Before providing a detailed quantum mechanical analysis, we will first give a
rough idea of the general working principle.

1.5.1 Working principle of a Josephson parametric amplifier

The Josephson parametric amplifier is operated in reflection, i.e. the input signal is
applied to the same port where the output signal is detected, which will be referenced to
as the signal port in what follows.

If an input signal at frequency ω0 − ω is applied to the signal port of the Josephson
parametric amplifier, where ω0 is half the pump frequency (cf. Section 1.2), an additional
signal at frequency ω0 + ω, called the idler mode, is generated, cf. Fig. 1.134. This can
be understood as a result of mixing5 the pump signal and the input signal [23]:

ωpump − ωsignal = 2ω0 − (ω0 − ω) = ω0 + ω = ωidler (1.72)

Both the signal and the idler mode are amplified by means of the parametric work per-
formed by the pump and reflected back to the signal port where they can be detected.

4For a detailed quantum mechanical analysis of the idler mode generation we would like to refer to
Appendix A.

5Mixing two signals is understood as a multiplication of these signals. For sinusoidal signals at the
frequencies ω1 and ω2 the result is a superposition of two sinusoidal signals, one at the sum fre-
quency and one at the difference frequency. This follows directly from the theorem sin(α) · sin(β) =
1
2 [cos(α− β)− cos(α+ β)].
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Figure 1.13: Working principle of a Josephson parametric amplifier. The schematic shows
the process of idler mode generation and signal mode amplification by means
of a pump signal. The amplification factors M and G will be derived in
Section 1.5.2.

1.5.2 Quantum mechanical treatment

For a mathematical analysis of the amplification process, we consider an input signal
consisting of two modes, one at ω0 − ω and one at ω0 + ω. The calculations presented
below basically follow Ref. [47].

The corresponding operator of the electric field reads

Âin (t) = A
[
â(ω)e−i(ω0+ω)t + â(−ω)e−i(ω0−ω)t + â†(ω)ei(ω0+ω)t + â†(−ω)ei(ω0−ω)t

]
, (1.73)

where, classically, a(ω) and a(−ω) are defined as the amplitudes of the incoming signal
at the frequencies ω0 + ω and ω0 − ω. Quantum mechanically, â and â† are bosonic
annihilation and creation operators satisfying the usual commutation relations[

â(ω), â†(ω)
]

=
[
â(−ω), â†(−ω)

]
= 1, (1.74a)

[â(ω), â(ω)] = [â(−ω), â(−ω)] = 0, (1.74b)

[â(ω), â(−ω)] =
[
â(ω), â†(−ω)

]
= 0. (1.74c)

The amplified reflected signal then has the same form as (1.73),

Âout (t) = A
[
b̂(ω)e−i(ω0+ω)t + b̂(−ω)e−i(ω0−ω)t + b̂†(ω)ei(ω0+ω)t + b̂†(−ω)ei(ω0−ω)t

]
.

(1.75)
We shall now establish a relationship between the input signal and the reflected signal
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by means of a scattering matrix[
b̂(ω)

b̂†(−ω)

]
=

[
G(ω) M(ω)
M∗(−ω) G∗(−ω)

] [
â(ω)
â†(−ω)

]
. (1.76)

This allows to write the annihilation and creation operators of the output signal as a
linear combination of input signal annihilation and creation operators, introducing the
signal amplitude gain G and the intermodulation amplitude gain M.

From the commutation relations (1.74) it follows

|G(±ω)|2 − |M(±ω)|2 = 1 (1.77)

and
G(ω) · M(−ω) = G(−ω) · M(ω). (1.78)

Equations (1.77) and (1.78) yield

|G(ω)|2 = |G(−ω)|2 , (1.79a)

|M(ω)|2 = |M(−ω)|2 . (1.79b)

A very important result of (1.76 - 1.79) is

|G(ω)|2 − |M(−ω)|2 = 1, (1.80)

indicating that signal and intermodulation gain converge to the same limiting value for
large gains, an assumption that holds for well performing parametric amplifiers [19,47].

Up to now, we have not considered the effects of internal and external noise sources
in our analysis of the Josephson parametric amplifier. These are best described by a
model consisting of an ideal, noiseless and lossless Josephson parametric amplifier, a
beam splitter and external noise sources, see Fig. 1.14. The power transmittance6 of the
beam splitter is denoted as

√
η. As we assume the beam splitter to be non-absorptive,

the power reflectance is consequently 1 − √η. The different noise sources are modeled
as noise coupled in via the beam splitter at the same frequency as the input signal,
but uncorrelated in phase. The noise operators ĉin and ĉout are also bosonic operators
satisfying commutation relations similar to (1.74). The signal at the input port of the
ideal Josephson parametric amplifier then reads:

â(ω) = 4
√
η âin(ω) +

√
1−√η ĉin(ω) (1.81)

Both the signal and the noise component of the input are now amplified by the ideal
Josephson parametric amplifier in terms of (1.76). The output signal including the noise
contribution ĉout is then

b̂out(ω) = 4
√
η b̂(ω) +

√
1−√η ĉout(ω). (1.82)

6The reason for the somewhat unusual definition of the power transmittance using a square root will
become clear in (1.90), where we will see that η is a physical quantity that can be measured directly.
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Figure 1.14: The beam splitter model for the lossy Josephson parametric amplifier.

The output of the Josephson parametric amplifier, a superposition of the amplified signal
and idler modes, is a squeezed state, as we will see below. An adequate detector for
squeezed coherent radiation is a homodyne detector [48] that multiplies the output of
the amplifier by 2B cos(ω0t + ϑ), the so-called local oscillator. In doing so, sum- and
difference frequencies are generated in the same way as described on p. 19.

As the sum frequencies usually are filtered away using a low pass filter, the output current
of the homodyne detector reads

Î = AB
[
b̂out(ω)e−i(ωt−ϑ) + b̂out(−ω)ei(ωt+ϑ) + b̂†out(ω)ei(ωt−ϑ) + b̂†out(−ω)e−i(ωt+ϑ)

]
.

(1.83)
We shall now consider the classical case where the creation and annihilation operators
are complex amplitudes and let the incoming electromagnetic field consist of a signal at
frequency ω0 + ω. Following from (1.76) and neglecting the noise contributions cin and
cout, the output spectral density S(ω) of the homodyne detector reads

S(ω) =
ηh̄ω0

2

[
|G(ω)|2 + |M(−ω)|2 + e2iϑG(ω)M(−ω) + e−2iϑG∗(ω)M∗(−ω)

]
· |a(ω)|2 .

(1.84)

Introducing the signal power gain G := |G(ω)|2, (1.77) rewrites to |M(ω)|2 = G − 1,
which allows to rewrite the complex number G(ω)M(−ω),

G(ω)M(−ω) =
√
G
√
G− 1e2iψ, (1.85)

where ψ is an intrinsic phase of the Josephson parametric amplifier. In absence of a
pump signal applied to the Josephson parametric amplifier, there is no signal-to-idler
conversion resulting in M(ω) = 0 and G = 1.

The quantity F is now defined as the signal power ratio when the pump is turned on
relative to when it is turned off and, using (1.84) and (1.85), is given by

F (ϕ) = 2G− 1− 2
√
G
√
G− 1 cos 2ϕ, (1.86)
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with ϕ := ϑ+ ψ. Obviously, the homodyne detector is phase sensitive, proving that the
output signal of the Josephson parametric amplifier is indeed a squeezed state [25]. If
one now sets the local oscillator phase ϑ in a way that cos(2ϕ) = 1, maximum parametric
amplification is observed by the detector,

Fmax = 2G− 1 + 2
√
G
√
G− 1. (1.87)

By adjusting the local oscillator phase such that cos(2ϕ) = −1, parametric deamplifica-
tion of the signal is observed,

Fmin = 2G− 1− 2
√
G
√
G− 1. (1.88)

Fmax and Fmin obey the relation

Fmax · Fmin = 1. (1.89)

Furthermore, the maximally amplified and the maximally deamplified component of the
signal differ in local oscillator phase by π

2
, i.e. they are in quadrature.

So far we have shown that a Josephson parametric amplifier deamplifies one quadrature
of a signal applied to the input port and that this deamplification can be detected with
a homodyne detector. Considering now an input signal with more than one frequency
component, the spectral density at the input of the homodyne detector reads

S(ω) = ηF (ϕ)Sin(ω) + (1−√η) [
√
ηF (ϕ) + 1]Sloss(ω), (1.90)

in which Sin(ω) is the spectral density of the input signal at the beam splitter in front
of the Josephson parametric amplifier and Sloss(ω) is the spectral density of the internal
and external noise sources.

The quantity η can be determined experimentally. Without any pump signal, (1.86)
yields F (ϕ) = 1 and thus, (1.90) simplifies to S(ω) = ηSin(ω) neglecting noise terms7.
Considering now that an ideal short exhibits total reflection, the quantity η can be mea-
sured by comparing the reflectance of the Josephson parametric amplifier to that of a
short.

Now we shall deal with the special case where the input signal frequency is ω0 and there-
fore matches half the pump frequency. This is called the degenerate-mode operation of the
parametric amplifier. Considering again Fig. 1.13, it can be seen that signal mode and
idler mode coincide in the output. As they are at the same frequency and have a fixed
phase relative to each other, they will interfere. We note that in the case of degenerate
gain no homodyne detector is needed to observe phase dependence.

7The determination of η should be performed at lowest possible temperature to minimize thermal noise.
In order to maximize the signal-to-noise ratio, a coherent state with a defined frequency is chosen as
the input signal. This allows to choose a small resolution bandwidth of the detector. Thus, only a
small fraction of the thermal noise is coupled into the detector [47].
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If the input signal frequency matches half the pump frequency of the resonator, the-
ory (cf. Appendix A) gives the resulting phase-dependent gain of the degenerate-mode
operation,

Gd =

(
κ2

1−κ2
2

4
+ 4δ2ω2

0

)2

+ 4δ2κ2
1ω

2
0 − 4δκ1ω0

(
κ2

1−κ2
2

4
+ 4δ2ω2

0

)
sin (2φ)(

κ2

4
− 4δ2ω2

0

)2 , (1.91)

in which δ is the pump amplitude from (1.24), φ is the signal phase and the coupling
constants are defined by

κ1 =
ω0

Qext

(1.92a)

κ2 =
ω0

Qint

(1.92b)

κ = κ1 + κ2. (1.92c)

The sinusoidal dependence on the phase φ proves that the parametric amplifier is also
phase sensitive in the degenerate-mode operation. Adjusting the phase, we get expres-
sions for the minimum and maximum gain:

Gmin
d =

(
2δω0 − κ1−κ2

2

2δω0 + κ1+κ2

2

)2

< 1 for φ =
π

4
+ nπ, (1.93a)

Gmax
d =

(
2δω0 + κ1−κ2

2

2δω0 − κ1+κ2

2

)2

> 1 for φ =
3π

4
+ nπ, (1.93b)

where we have assumed the condition (κ2
1 − κ2

2)/4 + 4δ2ω2
0 > 0. Apparently we get a

similar expression as (1.89) for the degenerate case,

Gmin
d ·Gmax

d = 1. (1.94)

1.6 Noise properties of linear amplifiers

As we have discussed in the introduction, signals in circuit quantum electrodynamics are
too weak to be measured directly and therefore have to be amplified. In recent years,
good progress was made to reduce the noise added by microwave amplifiers, and with
the development of HEMT8 amplifiers the noise temperature of these amplifiers could be
brought down to less than 3 Kelvins [49]. At 6 GHz, a noise temperature of 3 K corre-
sponds to approximately 10 noise photons. However, as we will see in this section, there
is a physical lower limit for the amplifier noise.

8High Electron Mobility Transistor
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1.6.1 Quantum mechanical limits of amplifier noise properties

Measuring small microwave signals, linear amplifiers are predominantly used. A linear
amplifier is an amplifier with a linear dependence of the output on the input9. This very
broad class of amplifiers can be divided into phase-sensitive and phase-insensitive linear
amplifiers.

If we write the input signal of an amplifier in quadrature representation,

X(t) = X1 cos (ωt) +X2 sin (ωt) = Re
[
(X1 + iX2) e−iωt

]
, (1.95)

in which X1 and X2 are the amplitudes of the two quadratures, we can define a phase-
insensitive linear amplifier as a linear amplifier exhibiting the same amplification for both
quadratures.

It was shown by Caves [50] that the quantum limit for the noise added to the output
signal by any linear, phase-insensitive amplifier is given by

A ≥ 1

2

∣∣∣∣1− 1

G

∣∣∣∣ , (1.96)

where the amplification G is given in units of number of quanta and A is the number of
noise quanta added to the signal by the amplifier. One can see that in the limit of large
gains, “half a photon” is added by the amplifier.

A phase-sensitive linear amplifier on the contrary is a linear amplifier responding differ-
ently to the two quadratures. Defining gains G1 and G2 and noise numbers A1 and A2

for the two quadratures, Caves [50] has shown that the amplifier uncertainty principle
holds for the quantum limit of phase-sensitive linear amplifiers:

A1A2 ≥
1

16

∣∣∣∣1− 1√
G1G2

∣∣∣∣2 . (1.97)

For the special case of a phase-insensitive linear amplifier (G1 = G2 = G and A1 = A2 =
1
2
A), (1.97) reduces to (1.96).

Considering the very important case G1G2 = 1, which we have already seen above for the
Josephson parametric amplifier, the amplifier is allowed not to add any noise to either
quadrature of the signal. However, the equation G1G2 = 1 implies that only one signal
quadrature can be amplified, the other needs to be deamplified.

In order to link the unequal treatment of the two quadratures with the squeezed states
discussed in Section 1.1.2, we consider a coherent state as the input of a phase-sensitive
amplifier, see Fig. 1.15. We arbitrarily choose G1 = 2 and G2 = 1

2
, fulfilling G1G2 = 1, as

the linear amplification factors of the phase-sensitive linear amplifier for the two quadra-
tures. We can see that the output is indeed a squeezed state with reduced uncertainty
in the X2-Quadrature.

9In literature, the term “linear amplifier” is sometimes used for phase-insensitive amplifiers. However,
in the scope of this work, we will use the definition given above.
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Figure 1.15: A coherent state is amplified by a phase-sensitive linear amplifier with the
amplification factors G1 = 2 and G2 = 1

2
. The output is a squeezed state

with reduced uncertainty in the X2-Quadrature. The amplifier leaves the
area of the error contour unchanged, which implies amplification without
adding noise.

1.6.2 A hypothetical setup with two Josephson parametric amplifiers

In a gedankenexperiment, we consider a setup like the one depicted in Fig. 1.16. The
signal to be amplified is first split by a 50:50 beam splitter. For the signal transmit-
ted through the beam splitter, one signal quadrature is amplified noiselessly in terms of
(1.97). For the signal reflected by the beam splitter, the other quadrature is amplified in
the same way. If one now joined the amplified signals with another 50:50 beam splitter,
one would effectively have amplified both quadratures of the initial signal without adding
any noise, violating the uncertainty principle.

In this hypothetical setup, the uncertainty principle is saved by the fact that it would
require an ideal three-port beam splitter, that is to say a lossless, matched, reciprocal
three-port device. However, it can be shown that such devices do not exist [51].

It can even be shown that an alleged three port microwave beam splitter such as a Wilkin-
son Power Divider has an internal, hidden fourth port [52] introducing vacuum noise into
the system before amplification. Thus, after the signal has passed the first beam splitter,
it contains a signal component and a vacuum noise component which are both amplified
by the respective parametric amplifier.

The noise properties of the whole setup shown in Fig. 1.16 are thus described by (1.96)
and also comply with the definition of a phase-insensitive amplifier as both signal quadra-
tures are treated in the same way.
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Figure 1.16: A hypothetical setup with two parametric amplifiers. The uncertainty prin-
ciple is saved by the fact that ideal three-port beam splitters do not exist at
the quantum level.





2 Experimental setup

In this chapter, we introduce the experimental setup used to characterize our Josephson
parametric amplifiers. We start with a short description of the samples and the corres-
ponding sample holders. We also describe our efforts to optimize the transition from
the sample to the microwave feed lines. In Section 2.2 we provide a detailed description
of the experimental setup below room temperature. A special feature of our setup is
the use of mechanical microwave switches at Millikelvin temperatures, allowing for the
independent characterization of two samples in one setup. In a pilot experiment, we have
tested whether mechanical switching at cryogenic temperatures is possible at all. The
results of this experiment are described in Section 2.2.1. The last part of this chapter
introduces the room temperature setup containing the microwave sources necessary to
create the pump signal and the input signal for the Josephson parametric amplifier and
the detectors used to measure and characterize the output signal of the JPA.

2.1 Sample and sample holder

In Section 1.4 we have discussed the constituents necessary to build a flux-driven Joseph-
son parametric amplifier. Looking at the actual sample designed by T. Yamamoto and
K. Inomata at NEC, we will see how the individual components were realized. Alto-
gether, we have received 16 samples with four different sets of design parameters from
NEC. In Section 2.1.1 we give a short overview of the materials used and the core de-
sign parameters. For a detailed description of the samples, we would like to refer to
Appendix B.

2.1.1 The Josephson parametric amplifier sample

The substrate of the Josephson parametric amplifier sample is a silicon wafer. The ground
plain, the center conductor of the transmission line resonator and the pump line are fab-
ricated in niobium technology with a layer thickness of 50 nm. The SQUID Josephson
junctions, however, are made from aluminum with an aluminum oxide barrier and are
fabricated by shadow evaporation [54]. A microscope image of one of our samples is
provided in Fig. 2.1.

The coupling capacitor (see Fig. 2.1(b)) defines the external quality factor of the trans-
mission line resonator. For the two samples we have characterized in the course of our
measurements, the design values were Qext = 30 and Qext = 300, respectively. Both
design and fabrication process were directed to maximize the internal quality factor.

29
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1mm

(a) The Josephson parametric amplifier sample. The color transitions were generated by stitch-
ing the picture together from single frames. The meandering structure in the center is the
transmission line resonator. The red rectangle marks the coupling capacitor. The pump line
resides at the right hand side of the image and is marked by the yellow rectangle. The center
conductors of the resonator and the pump line are approximately 10µm wide. The width of the
adjacent gaps is approximately 6µm. The structures on the top and bottom are test SQUIDs
and single Josephson junctions which were not used in the course of our experiments.

100µm

(b) The coupling capacitor Cc.
The finger structure is used to
increase the capacity without
widening the center conductor.

50µm

p
u
m

p
 li

n
e

SQUID

(c) The SQUID terminating
the transmission line resonator
can be identified as the horizon-
tal narrow white bands inter-
secting the vertical blue line to
the left. The vertical structure
in the center is the pump line.

500µm

(d) The pump line. The
ground plane is punctuated
with many small holes in order
to immobilize trapped vortices
in the ground plane [53].

Figure 2.1: Microscope images of one of the Josephson parametric amplifiers (Sample
Cat. 0-2a, Q30) that we have characterized in the course of this thesis. Figure
(a) shows the whole sample, whereas Figs. (b) - (d) show details with greater
magnification.
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The samples were designed to work best for input signal frequencies around 5.75 GHz.
The reason for this is that key components we intend to use in follow-up experiments are
designed for this frequency. For the measurements conducted in the course of this thesis,
however, we have chosen a setup consisting only of components that allow to character-
ize the Josephson parametric amplifier over a broad frequency range. The only limiting
components are the cryogenic HEMT-amplifier (cf. Section 2.2) working from 3.5 GHz
to 8.5 GHz and the base temperature stage circulator (cf. Section 2.2.2) certified from
4.0 GHz to 8.0 GHz [51].

2.1.2 The alumina boards

Electrical contact between the sample and other microwave components utilized in the
experimental setup is established by means of coaxial microwave feed lines. However,
these microwave feed lines are not connected to the JPA sample directly. One reason
is that connecting a coaxial microwave plug to a coplanar waveguide is technically de-
manding and requires soldering or complex bonding. Connecting the microwave plug
directly to the sample would therefore be fraught with risk for the latter. Therefore,
additional printed circuit boards (PCBs, see Fig. 2.4) are inserted between the sample
and the microwave connectors. These PCBs are easier to fabricate and less sensitive
than the JPA samples. As their thickness matches the thickness of the sample, estab-
lishing electrical contact between the PCB and the sample by bonding is uncritical. The
PCBs are made from alumina1. On the top is a coplanar waveguide made from gold
consisting of a center conductor and ground planes to the left and right, cf. Fig. 2.4. The
width of the center conductor and the adjacent gaps are exactly the same as the ones
at the edges of the JPA sample, see Fig. 2.1(a). The bottom is completely coated with
a gold layer. The ground planes on the top are connected to the bottom by means of vias.

Inserting these alumina boards has additional advantages. The transition between the
coaxial microwave feed line and the coplanar waveguide constitutes a discontinuity of
the electromagnetic field and is therefore accompanied with an impedance mismatch.
This leads to the generation of spurious ground plane modes of the electromagnetic field.
These modes decay while propagating along the waveguide and therefore are sufficiently
damped before reaching the Josephson parametric amplifier. The vias ensure that the
ground planes of the waveguide are sufficiently connected to ground in the vicinity of the
connector and in particular ensure that both ground planes of the waveguide are at the
same electric potential. This leads to further suppression of ground plane modes.

2.1.3 The sample holder

The sample holder has multiple functions. The most important one is to provide a fix-
ation for the sample, the alumina boards and the microwave connectors, see Fig. 2.4.
Another task is to enable attaching the sample to the sample rod in the dilution fridge,

1aluminum oxide, Al2O3
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see Fig. 2.8. A well designed sample holder in addition provides shielding from high-
frequency radiation.

We have designed two kinds of sample holders. For the first one, the microwave con-
nector is perpendicular to the top of the sample holder and therefore also perpendicular
to the center conductor of the PCB, see Fig. 2.2. We will refer to this design as the
topmount design or topmount sample holder, respectively. For the second sample holder
design, referred to as sidemount, the microwave connector is parallel to the center strip
of the coplanar waveguide, see Fig. 2.3. Using one topmount and one sidemount sample
holder allows for stacking two sample holders on the sample rod and therefore enables
the space-saving integration of two Josephson parametric amplifiers into the measurement
setup, see Fig. 2.8. Furthermore, stacking the sample holders ensures that both JPAs
are placed in the center of the field generated by the coil. Both sample holders were fab-
ricated from gold-plated OFHC2 copper. Fabrication was done by the in-house workshop.

The transition between the microwave feed lines and the alumina boards was realized
using V-type microwave connectors [55] in combination with glass beads [56]. These
glass beads establish the transition from the connector through the sample holder wall
to the alumina board. They are soldered into the housing wall, ensuring a tight fit. This
is important as on one end of the glass bead, the microwave connector is screwed into its
thread transferring torque to the bead. The other side of the center pin of the glass bead
is connected to the alumina board by a solder connection which would break if the glass
bead would move or rotate. For a detailed description of the preparation of the sample
holders, we refer to Appendix C.

2.1.4 The transition from the alumina board to the microwave
connector

As mentioned in Section 2.1.2, an impedance mismatch occurs at the transition between
the coaxial microwave feed line and the coplanar waveguide. This leads to partial reflec-
tion of the signal. The corresponding amplitude reflection coefficient Γ is given by [57]:

Γ =
ZL − Z0

ZL + Z0

(2.1)

in which ZL is the actual impedance of the transition and Z0 = 50 Ω is the matched
impedance.

We have examined the influence of different wire- and ribbon-bonding techniques on the
impedance in order to make it as close to 50 Ω as possible. We have chosen Time Domain
Reflectometry (TDR) in order to determine the impedances. Here, a signal in the form
of a step function is generated at one end of the device under test, in our case a chain
consisting of a microwave cable, the microwave connector, the alumina board and a bond
between the latter two. Impedance mismatches now lead to partial reflection of the step

2Oxygen-Free High-Conductive



2.1 Sample and sample holder 33

26mm
30mm

(a) Top view (left) and bottom view (right) of the topmount
sample holder. The rectangular notches provide fixation for
two PCBs and one sample in between. The heightened rim
ensures that PCBs, sample and bonds are not touched by the
lid. The microwave connectors are mounted in the big holes
at the bottom. The holes in the side provide fixations for
e.g. thermometers.

(b) The lid for the top-
mount sample holder.

Figure 2.2: CAD drawing of the topmount design. One major design advantage is the
easy-to-fabricate lid without any accurately fitting flanges. The lid can be
omitted if another sample holder is placed on top of the topmount sample
holder as it is the case in our setup.

26mm
27.4mm

(a) The sidemount sample
holder. The sample and the
PCBs are placed in the rect-
angular notches in the same
way as in the topmount sam-
ple holder. The plugs how-
ever are mounted sideways in
the flanges.

(b) The corresponding lid.
The notches have to be fab-
ricated accurately in order
to insure tight fit with the
flanges.

Figure 2.3: CAD drawing of the sidemount sample holder design. One design advantage
is that the microwave connectors are mounted sideways, allowing for stacking
multiple sample holders. One disadvantage compared to the topmount design
is the need for a more precise manufacturing to ensure high accuracy for fitting
the flanges.
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Figure 2.4: The topmount sample holder with sample and alumina boards. a The Joseph-
son parametric amplifier sample. b Alumina board ground plane with screw
hole and vias. c Alumina board center conductor. d Microwave glass bead
center pin.

signal. These reflected signal components are detected time resolved. The amplitude of
the reflected component gives quantitive information about the impedance mismatch. If
the dielectric constant and the magnetic permeability, and therefore the speed of light,
for the component under test are known, the position of an impedance mismatch can be
determined as well. If the speed of light is not known, the position can also be identified
by changing the electromagnetic environment, e.g. by shortening the coplanar waveguide
with a conducting pencil, and monitoring the change in the TDR signal. Figure 2.5 shows
TDR data for four combinations of wire and ribbon bonds between the alumina board and
the center pin of the glass bead. As the impedance diverges at open ends, the transition
point between pin and coplanar waveguide could be determined measuring the impedance
when neither the pin nor the ground were connected to the alumina board, cf. Fig. 2.5(a).

Figure 2.5(b) shows the case where the pin was connected to the center conductor by
one single bond wire and the ground connection was only established via the sample
holder and the alumina board vias. Comparing the results of this case to the results
of Fig. 2.5(e), where ribbons were used to connect the pin to the center conductor and
to establish a direct connection to the ground planes, the impedance mismatch at the
transition point was reduced from 6.2 Ω to 2.3 Ω, following Eq. (2.1). The amplitude
reflection at the transition was reduced from 5.8 % to 2.2 %. We will see in Section 2.2
why reducing the reflection is of prime importance.

Figures 2.5(b) and 2.5(c) provide a direct comparison between a wire bond and a ribbon
bond. As the impedance mismatch is reduced by more than 1 Ω, it becomes clear why
ribbon bonding should be the method of choice. However, the ribbons used for the tests
described here were hand-cut from a piece of gold ribbon and bonded to the pin and the
board using the head of a wire bonder. Although this method was sufficient for a test,
it seemed not reliable enough to be used in the actual experiment at low temperatures.
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Therefore, we have decided to use standard wire bonds in our experiment except for the
transition between glass bead center pin and alumina board where we have used a solder
connection.

After the installation of the glass beads, the microwave connectors and the alumina boards
and soldering the glass bead center conductor to the alumina board center conductor,
but before bonding the alumina board ground plane to the sample holder and inserting
the samples, we have measured the impedance of the sample holders, again using TDR.
The results are shown in Fig. 2.6. These results were also used to decide which of the
sample holder ports to use for the signal or pump line, respectively. As mentioned above,
reflections in the signal line should be held as small as possible. We have therefore used
the port that showed a smaller impedance mismatch as signal port. For the signal port of
the sidemount and topmount sample holder, we have measured amplitude reflections of
2.3% and 3.2%, respectively. We note that TDR utilizes a broadband 30 GHz signal for
the impedance measurements. In our experiments, however, we have only used signals
from 3 − 6 GHz. Therefore, the impedance mismatches measured with TDR can be
considered as worst case scenarios.

2.2 The cryogenic setup

The cryogenic setup comprises all components that are operated below room temperature,
in particular the sample, the cryogenic amplifier and microwave components that are
operated at or near base temperature. We have designed our cryogenic setup so that it
meets three major demands:

• Capability to fully characterize two Josephson parametric amplifiers.

• Possibility to compare the reflection of each of the amplifiers to that of a short in
order to determine η, cf. Section 1.5.2.

• Possibility to calibrate the input line and the output line including the amplifier
chain.

Our setup meeting all of the above demands is shown in Fig. 2.7. The input signal is
passing a series of attenuators at the different temperature stages before it reaches a
cryogenic circulator at base temperature. This circulator directs the input signal to two
cryogenic switches arranged in series. These switches allow to guide the input signal
either to one of the samples or to a short. As the Josephson parametric amplifier is
operated in reflection, i.e. input and output port are identical, the output signal is prop-
agating back to the circulator. As the circulator treats signals differently with respect
to their direction of propagation, the output signal is separated from the input signal
and is directed into the output line. At the 4-K stage, a cryogenic HEMT3 amplifier
amplifies the signal before it enters the room temperature part of the setup. The pump
signal also passes a series of attenuators before it is split by a Wilkinson power divider at

3High Electron Mobility Transistor
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Figure 2.5: Impedances corresponding to different bonding techniques are shown for the
transition between the connector pin and the alumina board. In the small
figures (a) - (e), the yellow circle depicts the pin and the yellow stripes depict
the center conductor and the ground planes of the coplanar waveguide on the
alumina board. Figure (a), where the pin is not connected to the alumina
board at all, acts as a reference. The open end causes the impedance to
diverge. The black arrow in the top figure therefore marks the end of the pin.
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Figure 2.6: Impedance properties of the (a) sidemount sample holder and (b) topmount
sample holder. In both figures, the black curve was recorded when the sample
holder was disconnected from the cable going from the TDR probe to the
microwave connector in the sample holder, therefore marking the position of
the microwave connector.

base temperature and sent to the pump ports of the samples. In the following sections
we provide a detailed description of the components used below room temperature. The
images provided in Figs. 2.8 and 2.9 show how the base temperature components and the
samples were mounted to the sample rod of the cryostat.

2.2.1 The cryogenic switches

The demand on our setup of being able to compare the reflection of the Josephson para-
metric amplifiers to that of a short requires microwave switches working at cryogenic
temperatures. In a pilot experiment we have shown that a modified version of the Ag-
ilent N1810UL coaxial switch [58] is working at low temperatures down to 1.2 K. The
N1810UL is a single-pole double-throw4 switch certified for signals ranging from dc to
20 GHz. One major advantage of this switch, making it suitable for low-temperature
operation, is the fact that it is stable in both switch positions, so a current only needs to
be applied when switching between these two positions and not for holding one of them.
This property is referred to as latching. To switch between the two states, a current pulse
of 100 mA needs to be applied to the switch coils for about 20 ms.

We have designed and built a pulse driver, that, at the push of a button, sends the re-
quired current pulse to the switch coils and thus changes its state. As the switch coils
change resistance with temperature, the voltage applied to the switch coils needs to be
adjustable, which was taken into account designing the driver. The pulse driver was

4A single-pole double-throw (SPDT) switch is a three-port changeover switch where one port, called
the COM (common) port, can be connected to one of the remaining ports.
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Figure 2.7: The cryogenic setup. The input signal is attenuated passing through the
different temperature stages. At the base temperature stage, a circulator
directs the input signal towards the cryogenic switches which guide the input
signal either to one of the JPAs or towards the short. The output signal, after
passing the circulator, is amplified at the 4-K stage before it enters the room
temperature stage. The pump signal is also attenuated before it reaches the
base temperature stage where it is distributed equally on both samples by a
Wilkinson power divider.
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Figure 2.8: Front view of the setup at base temperature. a Sample rod. b Sidemount
sample holder with sample Cat. 2-1c, Q300. c Topmount sample holder with
sample Cat. 0-2a, Q30. d Thermometer monitoring the sample temperature.
e Circulator (cf. Section 2.2.2). f Wilkinson power divider (cf. Section 2.2.3).
g Heatable attenuator (cf. Section 2.2.5). In the picture, the thermaliza-
tion is not in place. h Heatable attenuator thermometer. i 5-port switch
N1812UL. j 3-port switch N1810UL. k Sample heater to stabilize the sample
temperature.
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Figure 2.9: Rear view of the setup at base temperature. a Sample rod. b Superconducting
coil used to set the resonant frequency of the resonator. c 5-port switch
N1812UL. d 3-port switch N1810UL e Calibration short used to determine η.
f Circulator (cf. Section 2.2.2).
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designed so that it can also be computer operated by means of TTL signals. An image
of the pulse driver is provided in Fig. 2.10.

The key element of the driver is a retriggerable monostable multivibrator [59] with an
upstream debouncing circuit consisting of two cross-coupled NAND-gates. On the push of
a button, the output of the debouncing circuit is a rising edge. An invertor, consisting of a
NAND Schmitt-trigger gate, converts the rising edge into a falling edge. The retriggerable
monostable multivibrator, then delivers the rectangular pulse required for changing the
switch state to a Darlington transistor. The latter amplifies the pulse and provides the
current needed to operate the cryogenic switch. The height of the rectangular pulse can
be regulated by an adjustable voltage regulator setting the voltage of the collector of the
Darlington transistor. The pulse length can be set by choosing a suitable combination for
the external capacitance and resistance of the monostable multivibrator. For the latter,
we have used another potentiometer that allows to fine adjust the pulse length to the
desired value of 20 ms.

a
f

c

b

ed

Figure 2.10: The pulse driver. All operation controls and circuits are implemented twice
so that two switches can be controlled independently. a Switch to discon-
nect the switch driver from the switch feed lines. b Voltmeter displaying the
switching voltage. c Measuring range shifter for the voltmeter. d Poten-
tiometer to adjust the switching voltage. e BNC connector. An oscilloscope
can be connected to analyze the switching pulse. The measured voltage has
to be divided by 10 Ω in order to determine the pulse current. f Buttons
(blue) to trigger a switching pulse. The top row LED lamps flash up if a
switching pulse was triggered. The bottom row LED lamps indicate the
switch state.

This circuit was implemented twice, with one circuit for each switching direction. The
above mentioned debouncing circuit is of utmost importance as it prevents the generation
of multiple sequent current pulses. These would not harm the switch itself, but as energy
of approximately 15 mJ is dissipated to the base temperature stage of the cryostat per
pulse, every additional pulse would unnecessarily heat the cryostat.
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For the test of the switch, we have mounted it in a He-4-cryostat with vacuum insert
(cf. Fig. 2.11), cooled it down to its base temperature of 1.2 K and measured the trans-
mission through the switch for both switch positions. For the measurement we have
used an HP8722D vector network analyzer set to an output power of -10 dBm and an
IF-bandwidth of 100 Hz. The measured transmission curves in the frequency range from
50 MHz to 10 GHz are shown in Fig. 2.12. The COM port of the switch is here denoted
as port “3”.

Figure 2.11: Testbed for the Agilent N1810UL coaxial switch.

We see that the switch has very good transmission properties at cryogenic temperatures.
The transmission is sufficiently flat over the whole frequency spectrum and shows an
insertion loss smaller than the room temperature specifications of 0.37 dB at 1 GHz and
0.52 dB at 10 GHz. The negative transmission values result from inaccuracies in the
available cold calibration data for the microwave feed lines. Comparing both transmission
curves in Fig. 2.12, one can see that some peaks and dips appear in both curves at the
same frequencies. We therefore can exclude noise as the origin of these peaks. Possible
reasons include inaccuracies in the calibration data of the microwave feed lines as they
were recorded in a separate cooldown, features of the microwave feed line and adapters
connected to the COM-port and the COM-port itself. The most important result for us,
however, is the fact that switching is possible at cryogenic temperatures and that we do
not see any changes of the transmission properties after several switching cycles.

We have therefore concluded that the Agilent N1810UL coaxial switch is suitable for
cryogenic applications and have decided to integrate the 3-port switch and its 5-port
sister model, the N1812UL in our setup. How the switches are actually used in the
setup can be seen in Fig. 2.7. The 3-port N1810UL allows for switching between the two



2.2 The cryogenic setup 43

0 2 4 6 8 1 0- 0 . 2
- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 

Tra
ns

mi
ssi

on
 S3

1 (
dB

)

F r e q u e n c y  ( G H z )
0 2 4 6 8 1 0- 0 . 2

- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 

Tra
ns

mi
ssi

on
 S3

2 (
dB

)

F r e q u e n c y  ( G H z )

Figure 2.12: Insertion loss of the Agilent N1810UL microwave switch at 1.2 K. The green
line denotes the room temperature specification.

Josephson parametric amplifiers and therefore makes it possible to characterize both of
them independently which is one of the major requirements on our setup.

The 5-port N1812UL was installed in order to measure the reflection of the Josephson
parametric amplifier relative to that of a short. Wiring the outputs of the 3-port switch
to the COM ports of the 5-port switch makes it possible to do so for every Josephson
parametric amplifier independently, see Fig. 2.7. The short used in our setup is a special
calibration short. As both an ideal short and a perfect (lossless) Josephson parametric
amplifier with the pump turned off exhibit total reflection, comparing the reflectance of
a real (lossy) Josephson parametric amplifier to that of a short gives direct access to the
quantity η discussed in Section 1.5.2.

2.2.2 The circulators

As described in Section 1.5.1, the input signal is applied to the same port of the Joseph-
son parametric amplifier where the output signal is detected. To separate the output
signal from the input signal, a device is needed that treats signals differently with respect
to their direction of propagation and therefore breaks the time-reversal symmetry of the
electromagnetic field. This property is denoted as directivity. Examples for directive mi-
crowave devices are directional couplers and circulators. The latter have the advantage
of almost lossless transmission in comparison to the coupling losses of the former while
still providing isolations of approx. 20 dB. Therefore, we are using a circulator where
breaking the time-reversal symmetry is achieved by means of a piece of ferrite placed
in the vicinity of the microwave lines inside the circulator [57]. To avoid the effects of
magnetic fields leaking out of the circulator, we have used a shielded model.
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The unitary, nonreciprocal scattering matrix of an ideal 3-port circulator is given by

S =

 0 0 1
1 0 0
0 1 0

 . (2.2)

Apparently, power can only be transferred from port 1 to 2, 2 to 3 and 3 to 1. At the
same time, power transfer between any other port combinations is suppressed. It can
now be understood why signal reflections at the sample holder should be held as small as
possible. The reflected fraction of the signal is not only unavailable for amplification in
the Josephson parametric amplifier, but, even worse, is directly coupled into the output
line, distorting the output signal of our sample. The circulator does not only direct the
input signal from the input line to the sample and the output signal from the sample into
the amplification chain, but also isolates the sample from noise generated by a 50 Ω load
at the 600 mK stage. This load is mounted to another circulator. This circulator is used
to prevent noise from the amplifier from reaching the base temperature stage. Port 2
is terminated with the 50 Ω matched load. Amplifier noise entering the circulator from
port 1 via the output line is directed to port 2 where it is absorbed, whereas the signal
entering the circulator via port 3 is guided to the output line at port 1. For a detailed
description of the cryogenic HEMT amplifier we refer to [51].

2.2.3 The pump line

Also the pump signal has to be fed to the two Josephson parametric amplifiers. Our
solution here was to use a single pump line down to the base temperature stage, where
the pump signal is split by a Wilkinson power divider [60] and distributed equally on
both samples.

We have chosen the Wilkinson power divider to split the pump signal as we know that it
is working reliably at cryogenic temperatures. An advantage of this solution compared to
separate feed lines is that for a given signal fed into the pump line at room temperature,
both samples are supplied with identical pump power levels.

2.2.4 The attenuator configuration

Neither the pump signal nor the input signal can be sent down to the Josephson para-
metric amplifier directly as the 300 K thermal noise would obscure the input signals.
Furthermore, the center conductor of the microwave cables has to be thermally coupled
to the respective temperature stage.

Thus, attenuators are used at the various temperature stages of the cryostat. As these
attenuators not only damp the noise, but also the signal, the latter has to be increased
accordingly before being fed into the input line. Attenuators do not only damp the signal,
but also add thermal noise themselves corresponding to the temperature stage at which
they are placed.
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The attenuator configuration of both the signal and the pump line are chosen such that
the noise after the last attenuator, and thus at the signal and pump port of the Josephson
parametric amplifier, is minimized. In doing so, several boundary conditions had to be
taken into account.

• The maximum available input signal at the beginning of the microwave lines is
limited by the maximum output power of the signal sources and the insertion loss
of microwave components that may be placed in the respective line. In our case,
this maximum available input power at the top end of the cryostat was measured
to be 18.6 dBm.

• The pump line attenuator configuration had to be designed such that -30 dBm
of pump power are available at the pump port of the sample. The experiments
conducted by T. Yamamoto were performed at pump powers up to this level. In
addition, a loss of 3 dB had to be taken into account for the power divider.

• The insertion loss of the microwave cables itself had to be considered.

• Only certain attenuator values are available. To widen the scope, we have used up
to two attenuators for every temperature stage.

• The power dissipated at each temperature stage must not outvalue the cooling
capacity of each stage. The maximum allowed values are given in Tab. 2.1.

Stage Temperature Max. dissipation
(mK) (µW)

1K-pot 1200 20000
Still 600 500

Step exchanger 50 200
Sample 30 50

Table 2.1: Maximum allowed values for the power dissipation at each stage.

The thermal noise in units of quanta added by each attenuator is given by [51]

S =
1

2
+

1

exp
(

h·ν
kB ·T

)
− 1

(2.3)

in which h = 6.626 · 10−34 Js is the Planck constant, kB = 1.381 · 10−23 J/K is the Boltz-
mann constant, T is the temperature of the attenuator and ν is the signal or the pump
frequency, respectively.

The dissipated power in µW is given by

Pdiss, µW = 1000 ·
(

10
Pin, dBm

10 − 10
Pin, dBm−AdB

10

)
[µW] (2.4)
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in which Pin, dBm is the input power of the attenuator in dBm and AdB is the attenuation
in dB.

With available attenuators of 1, 3, 6, 10, 20 and 30 dB and an assumed insertion loss
of the microwave cables of 7 dB, a brute force Maple algorithm5 was used to find the
optimal attenuator configuration with respect to lowest noise, but taking all boundary
conditions into account. The results, which were subsequently implemented in our setup,
can be found in Tab. 2.2 for the signal line and in Tab. 2.3 for the pump line.

Stage Temperature Attenuation dissipated Power Noise
(mK) (dB) (µW) (quanta)

He-Bath 4200 6 2.98 289
1K-pot 1200 20 0.99 7.25

Still 600 20 0.01 2.94
Step Exchanger 100 3 < 0.005 2.04

Sample 30 30 < 0.005 0.502

Table 2.2: Attenuator configuration of the input line. The values were calculated for a
signal frequency of 5.75 GHz and a signal power of -24 dBm before the first
attenuator. With these values, the input signal power reaching the sample
was calculated to be -110 dBm.

Stage Temperature Attenuation dissipated Power Noise
(mK) (dB) (µW) (quanta)

He-Bath 4200 23 7.21 · 104 10.3
1K-pot 1200 0 0.00 10.3

Still 600 3 181 6.34
Step Exchanger 100 6 136 2.10

Sample 30 6 34.23 1.03

Table 2.3: Attenuator configuration of the pump line, calculated for a pump frequency
of 11.5 GHz and a pump power of 18.6 dBm before the first attenuator. The
calculated pump power at the sample is -29.4 dBm.

2.2.5 The heatable attenuator

In order to be able to calibrate both the amplification chain and the input line, we have
equipped the 30 dB attenuator of the signal line at the base temperature stage with a
heater and a thermometer which allows us to stabilize the temperature of this attenua-
tor to values ranging from base temperature to 800 mK. The temperature is controlled
by a PICOWATT TS-530A temperature controller together with an AVS-47A resistance

5Programmed and optimized by E. P. Menzel
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bridge. Both devices are controlled by a LabView programme6. The attenuator is not
mounted to the sample rod directly, thus avoiding direct thermal contact. This allows to
stabilize the temperature of the attenuator independently of the sample rod temperature
as long as the temperature difference between them is not too large. A schematic of
the thermal coupling of the heatable attenuator to the different temperature stages is
provided in Fig. 2.13.

The temperature dependence of the thermal noise of a resistor is well-known [52]. One
can now calibrate the amplification chain applying neither an input signal nor a pump
signal to the sample and thus only detecting the thermal noise at the top end of the
amplification chain. Comparing the measured amplified thermal noise to the well-known
input signal provides a good calibration of the amplification chain. If one now applies a
signal to the signal input line, again with the pump turned off, and detects the amplified
signal at the top end of the amplification chain, one is able to also calibrate the input
line, as the output line characteristics are known. We will discuss the results of this
experiment in Section 3.6.

As mentioned above, the aim of decoupling the 30 dB attenuator from the sample rod
is to vary its temperature independent of the sample temperature. But as described
in Fig. 2.13, a microwave cable still causes weak thermal coupling between attenuator
and sample. In order to find out how far we can heat the attenuator until the sample
also starts to heat up, we have set the attenuator temperature to values between 30 mK
and 740 mK and stabilized it for about 30 minutes at each temperature. We have then
measured the sample temperature. The results are shown in Fig. 2.14(a). It can be seen
that the sample temperature rises to about 50 mK for high attenuator temperatures.
To evaluate these data, we have calculated the thermal noise in units of quanta at the
sample by means of Eq. (2.3) with a frequency of 5.639 GHz. The results are shown in
Fig. 2.14(b). We see that the thermal noise differs only marginally from the vacuum
limit of 0.5. We therefore conclude that we can indeed vary the temperature of the 30 dB
attenuator without generating additional thermal noise at the sample stage.

2.2.6 The superconducting coil

The superconducting coil (cf. Fig. 2.9) is used to expose the samples to a magnetic field.
This magnetic field in particular intersperses the SQUID terminating the transmission
line resonator of the Josephson parametric amplifier with a magnetic flux.

The coil itself consists of a superconducting wire. Also the cryogenic section of the feed
lines is superconducting. A current is now applied to the coil by means of a current
source at room temperature. In order to take advantage of one of the most important
properties of superconductivity, namely the current conduction without resistance, the
current source can be bypassed by a persistent current switch located in the Helium
bath. The switch is equipped with a heater. If the persistent current switch is normal

6Programmed by the author during his employment as working student
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Figure 2.13: Thermal coupling of the 30 dB attenuator. The attenuator is coupled weakly
to the 50 mK stage and to the base temperature stage by the microwave
cables. Using a well tempered silver ribbon, the dominating thermal coupling
is established to the second step exchanger.
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Figure 2.14: Sample temperature (left) and thermal noise at the sample (right) plotted

against the attenuator temperature. Even if the sample temperature rises
to about 50 mK when heating the attenuator to 740 mK, the thermal noise
at the sample stage differs only marginally from the vacuum limit.

conducting, the current through the coil is determined by the current source. If the heater
is switched off, i.e. the persistent current switch is superconducting, the current through
the coil at the moment of transition will be constant in time even if the room temperature
current source is switched off as the electric circuit consisting of the coil, parts of the feed
lines and the persistent current switch is all superconducting and therefore maintains the
supercurrent flowing through it. As the current noise caused by the current source is
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decoupled from the coil by the switch, the flux noise in the SQUID will be minimized.

2.3 The room temperature setup

In this section we shall introduce the room temperature part of our experimental setup.
We will give a short description of the microwave sources and detectors and motivate
the other components used. A schematic of the room temperature setup is provided in
Fig. 2.15. All detectors and sources are connected to a 10 MHz Stanford FS725 Rubid-
ium frequency standard in order to assure frequency and phase lock between the devices.
The major advantage of our setup is that one can switch sources and detectors without
unplugging and plugging back in, resulting in a reproducibility of the transmission prop-
erties better than 0.03 dB. Another advantage is that the switch used can be controlled
remotely with a LabVIEW program.

2.3.1 The input line

As described in Section 2.2, the role of the input line is to send a microwave signal down
to the Josephson parametric amplifier which can then be amplified by the latter. In our
setup, we have two ways of generating this input signal. One is to use the output port
of the Rohde & Schwarz ZVA24 Network Vector Analyzer (ZVA). The signal power can
not only be set by adjusting the ZVA output power, but also using two step attenuators
with 110 dB in 10 dB steps and 11 dB in 1 dB steps, respectively. They were originally
installed in order to test a more complex setup, but were left in place as the ZVA only
offers an output power range from +16 dBm to -44 dBm. With the step attenuators in
place, the output power can now be set arbitrarily from +13 dBm to -165 dBm. The
switch placed after the step attenuators allows to utilize another input signal source, the
Rohde & Schwarz SMF Microwave Signal Generator (SMF 100A). Inside the shielded
room, the signal is attenuated by 40 dB before entering the cryogenic part of the setup.

2.3.2 The pump line

The pump signal is generated by the Agilent E8267D PSG Microwave Vector Signal
Generator (PSG). As discussed, the pump signal frequency is close to twice the signal
frequency. In order to suppress crosstalk of pump frequency subharmonics, we have
placed four 7.15 GHz highpass filters after the PSG in order to attenuate subharmon-
ics by at least 106 dB. The phase of the pump signal can be controlled in two ways.
One is the digital phase shifter of the PSG microwave source. Another is a mechanical
motor-driven phase shifter. This was originally integrated as we intended to use the
ZVA output signal simultaneously for both the JPA input signal and the pump utilizing
a frequency doubler. However, we realized that the mechanical phase shifter strongly
increases the measurement time, so we stuck to the digital phase shifter in the course of
our measurements.
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Figure 2.15: The room temperature setup. The input signal can either be generated by
the SMF microwave source or the ZVA network vector analyzer. The output
signal is amplified by about 73 dB (including the cryogenic amplifier) before
it is split by a Wilkinson power divider, allowing for the utilization of two
different detectors, the ZVA network vector analyzer and the FSP spectrum
analyzer, without unplugging and plugging back in. The pump signal is
generated by the PSG microwave source. Pump frequency subharmonics
are suppressed by means of four high-pass filters. All sources and detectors
are frequency-locked by a 10 MHz phase reference.
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2.3.3 The output line

When the output signal of the Josephson parametric amplifier leaves the cryostat, it is
already amplified by the cryogenic HEMT amplifier [51] (cf. Section 2.2) by 25 dB. At
the room temperature stage, it is further amplified by two JS2 amplifiers with serial
numbers 1448282 and 599349. The amplifiers are placed inside the shielded room as one
wants to keep the cable length before the amplifiers as short as possible in order to not
diminish the signal-to-noise ratio (SNR). Furthermore, spurious signals that may couple
into the amplifiers are reduced inside the shielded room. At 6 GHz, the JS2 amplifiers
amplify the signal by 23 dB and 25 dB, respectively. Between the amplifiers, circulators
are placed in order to suppress reflections between subsequent amplifiers. After leaving
the shielded room, the signal is split by a Wilkinson Power Divider. This allows to utilize
two detectors without unplugging and plugging back in as mentioned above.

One detector is the Rohde & Schwarz FSP7 Spectrum Analyzer (FSP). A spectrum
analyzer is able to measure the frequency-domain representation of a signal, i.e. its time-
averaged power density versus the frequency [51, 61]. The RF input signal is first down-
converted by an oscillator whose frequency is tuned by a sweep generator. The resulting
IF signal is amplified and filtered by a low-pass filter in order to set the resolution band-
width and to remove possible intermodulation products from the signal. In order to
achieve a wide dynamic range, the signal is subsequently amplified by a logarithmic re-
sponse amplifier before it is detected by a diode detector. At last, a video filter with a
variable bandwidth is used to display the signal.

The other detector we have used is the ZVA network analyzer [51, 62], which can mea-
sure the complex S-parameters of a device under test (DUT). A known signal, usually a
sweep over a frequency band of interest, is generated by the ZVA. Part of this signal is
used as reference and the other is sent to the DUT. The signal going to the DUT passes
a directional coupler, so that each port of the vector network analyzer can be used as
input or output port or both at the same time. Both the measurement signal and the
reference signal are down-converted, filtered and amplified. In this stage, phase locking
between reference and measured signal is assured. All signals are then converted to dig-
ital signals, analyzed and displayed. The bandwidth of the downconverted signal, called
the intermediate frequency (IF) bandwidth, is an important quantity for measurements
with a network analyzer as it determines the bandwidth of white noise coupled into the
receiver. However, for small bandwidths, the measurement time is inverse proportional
to the IF-bandwidth.

If the FSP is used as detector, the input signal can either be generated by the SMF or
the ZVA as a spectrum analyzer only measures absolute quantities. If the ZVA is used
as detector, the input signal also needs to be generated by the ZVA so that a reference
signal is provided to the network vector analyzer.





3 Experimental results

After the discussion of the theoretical foundations and the measurement setup, we shall
now turn towards the experiments we have conducted with our Josephson parametric am-
plifiers. As mentioned in Section 2.1, we have received 16 samples from NEC. We have
chosen the samples Cat. 2-1c, Q300 and Cat. 0-2a, Q30 for our measurements. Their dis-
tinguishing feature is the design value for the external quality factor of the resonator of
300 and 30, respectively. Our decision was based on the fact that these two samples have
the smallest and largest external quality factors among the samples we have received.
For further details of the sample nomenclature, we refer to Appendix B.

The main aspect of our measurements was to characterize the samples, i.e. to find out if
they are actually working, if they meet the design parameters and to find good working
points concerning frequencies and input and pump power levels. For both samples, we
have therefore started with a detailed analysis of the tunable resonator as this is the
main constituent of a flux-driven Josephson parametric amplifier. Subsequently, we have
investigated the gain properties of the samples. We also have looked at the amplifier
bandwidth. As discussed in Section 2.2.1, our setup is also capable of determining the
quantity η, which we will discuss in Section 3.5.

Unless otherwise stated, all power levels mentioned in this chapter refer to the output
powers of the respective microwave sources or the input powers of the respective detectors
and not to the power that is coupled into or coupled out of the sample. In the last section
of this chapter, we will provide calibration data for the input and output line which allow
to deduce the power levels at the sample.

3.1 Characterization of the resonator

As discussed in the theory section, the SQUID-terminated resonator is the central build-
ing block of the Josephson parametric amplifier. Hence, our first experiments were aiming
at determining the properties of the resonator for both samples and checking the agree-
ment with the design values. The most interesting property for us is the flux dependence
of the resonant frequency. Further important properties are the internal and external
quality factor.

3.1.1 Flux-dependence of the resonant frequency

In a first experiment, we have measured the reflection of the resonator at different mag-
netic flux values. We have therefore applied an input signal Ain to the resonator and have
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detected the reflected signal Γ · Ain. As described in Section 1.4.1, this allowed for the
determination of the resonant frequency. In order to check if the SQUID terminating the
transmission line resonator is actually working, we have measured the resonant frequency
at different flux values and have indeed observed a periodic flux dependence. The flux
was generated by the magnetic coil mounted in the vicinity of the samples (cf. Fig. 2.9).

The room temperature measurement setup differed from the one presented in Section
2.3. The measurements were conducted using the ZVA network analyzer set to an output
power of -14 dBm and an IF-bandwidth of 100 Hz. The input power was chosen such that
the resonator is operated in the linear regime. Both ports of the ZVA were connected to
the input and output line feedthroughs of the shielded room via a 2 m SMA cable each,
where port 2 was used as the signal source and port 1 as receiver. Furthermore, the
room temperature circulators were not installed. The persistent current switch (cf. 2.2.6)
was heated during the measurements as we have conducted measurements for 601 flux
values. Switching the persistent current switch on and off for every flux value would have
been too time consuming. For all measurements described in this section, the sample
temperature was stabilized at 30 mK.

The results for sample Cat. 2-1c, Q300 are shown in Fig. 3.1. The phase was recorded
in phase deviation mode. Here, the network vector analyzer calculates a linear fit to the
raw phase data of the first trace. This linear fit now acts as a reference for the first and
all further traces. The phase deviation that is displayed by the network vector analyzer
is the deviation of the measured phase from the reference. At resonant frequency, we
expect to observe a dip in magnitude and a phase shift by 2π on going from ω � ωres to
ω � ωres. The magnitude dip, however, is barely visible suggesting high internal quality
factors as discussed in Section 1.4.1. The 2π phase shift is clearly visible, indicating that
the resonator is operated in the overcoupled regime. For the flux values where the phase
shift is almost unrecognizable, the resonator is operated in the undercoupled regime and
the phase assumes the form shown in Fig. 1.11. The reason for the transition between
over and undercoupled regime is the resonant frequency dependence of the internal and
external quality factor as described in Section 1.4.1.

In order to improve data quality, we have turned towards the calibration of the setup.
As described in Section 2.3, a vector network analyzer compares input and output signal
and delivers the complex S-parameters of the device under test. In our case, however, the
comparison of the ZVA input and output signal does not give the reflection coefficient of
the resonator, but does give the transmission coefficient of the whole setup. To this end,
we have set the flux such that the resonator was operated in the undercoupled regime
and the resonant frequency was outside of the measurement range. The corresponding
trace detected by the network analyzer thus only contained features of the measurement
setup and none of the resonator so that we could use this trace as calibration for all
further measurements on sample Cat. 2-1c, Q3001. In order to reduce noise, we have
performed the calibration with a reduced IF-bandwidth of 10 Hz. Also, the persistent

1The calibration procedure had to be repeated only when the room temperature setup was changed.
For sample Cat. 0-2a, Q30, separate calibration data were recorded.
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current switch heater was switched off in order to minimize flux noise. After calibration,
we have repeated the measurement of the flux-dependent resonant frequency. The results
are shown in Fig. 3.2. Looking at the lower panel of Fig. 3.2, the phase shift2 is clearly
observable and again is well separated from the undercoupled regime. Also the dip in
magnitude is better recognizable in some flux ranges.

We also observe that, as expected, the resonant frequency is periodic with the external
magnetic flux. The theoretical dependence derived in Section 1.4.1,

ωr(Φ) =
ω0√

1 +
Lc,SQUID(Φ)

L

(1.57)

and

Lc,SQUID(Φ) =
Φ0

4πIc

∣∣∣cos
(
π Φ

Φ0

)∣∣∣ (1.50)

allows to write the flux axis in units of Φ
Φ0

, where Φ is the external magnetic flux and Φ0

is the flux quantum, considering that the resonant frequency is Φ0-periodic and shows a
maximum for Φ = 0. We find that the change in coil current necessary to change the
flux through the SQUID by Φ0 is 138µA.

The same measurements, with and without calibration, though with a wider flux range
and with the room temperature circulators in place for the calibrated measurement, were
performed for sample Cat. 0-2a, Q30. The results are shown in Figs. 3.3 and 3.4. Ap-
parently, a larger coil current, 385µA, is needed compared to sample Cat. 2-1c, Q300 in
order to change the flux through the SQUID by one flux quantum. This can be explained
by the fact that sample Cat. 0-2a, Q30 is mounted on top of sample Cat. 2-1c, Q300 and
therefore is farther away from the coil.

Now that we have seen that the properties of the resonators of both samples show a good
qualitative agreement with theory, we shall now turn towards a quantitative analysis of
the resonator. The complex reflection coefficient Γ, defined as the amplitude of the signal
coupled out of the resonator relative to the amplitude of the resonator input signal has
a theoretical value of

Γ =
(ω − ωL)2 + iκ2 (ω − ωL) +

κ2
1−κ2

2

4(
ω − ωL + iκ1+κ2

2

)2 , (1.68)

where κ1 = ωL
Qext

, κ2 = ωL
Qint

and ωL is the (flux-dependent) loaded resonant frequency

(cf. Eq. (A.79) in Appendix A for ε = 0, α = 2, 〈cin〉 = 0).

2The network analyzer was set to measure the unwrapped phase, that is to say the actual phase difference
is displayed even if it is larger than 360◦.
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Figure 3.1: Magnitude (top figure) and phase (bottom figure) of the resonator reflectance
for sample Cat. 2-1c, Q300. The measurement was conducted with the ZVA
network analyzer with no calibration applied. The dip in magnitude is barely
visible, suggesting high internal quality factors. The expected phase shift
of 2π, however, is clearly visible for most flux values. For some small flux
regions, the 2π phase shift is no longer visible as the resonator is operated
in the undercoupled regime (cf. Fig. 1.11). As described in the text, this
measurement can be used to gauge the flux axis and to find flux values where
the network analyzer can be calibrated for further measurements.
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Figure 3.2: Magnitude (top figure) and phase (bottom figure) of the resonator reflectance
after calibration for sample Cat. 2-1c, Q300. In the magnitude plot, the
resonator turns out more clearly as the calibration removes all features of
the remaining setup from the measured traces. In the phase plot, the phase
is no longer referenced to the first trace, but to the calibration trace. The
overcoupled regime with the 2π phase shift and the undercoupled regime
with the hardly pronounced phase shift are both clearly identifiable and well
separated. As described in the text, the axis of abscissa is now gauged to
units of flux quanta.
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Figure 3.3: Uncalibrated magnitude (top figure) and phase (bottom figure) of the resona-
tor reflectance for sample Cat. 0-2a, Q30. The phase data were again recorded
in phase deviation mode. As described in the text, the sample is mounted
farther from the coil compared to sample Cat. 2-1c, Q300 (cf. Fig. 2.8). There-
fore, a larger coil current needs to be applied in order to intersperse the sample
with the same magnetic flux.
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Figure 3.4: Calibrated resonator reflectance for sample Cat. 0-2a, Q30. Again, the 2π
phase shift is clearly visible and can be well separated from the undercoupled
regime.
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The magnitude measured by the calibrated network analyzer is given by |Γ| and the
phase is given by arctan ImΓ

ReΓ
. We have performed a least mean square fit simultaneously

for both magnitude and phase with the fitting parameters Qext, Qint and the loaded
resonant frequency ωL. In this way, the loaded resonant frequency was determined for
every flux value. The resonant frequencies found in doing so are represented by the black
squares in Figs. 3.5(a) and 3.5(b).

Subsequently, another fit was performed in order to check if the flux dependence of the re-
sonant frequency follows the theoretical relationship described by Eqs. (1.50) and (1.57).
The results are shown in Fig. 3.5(a) for sample Cat. 2-1c, Q300 and Fig. 3.5(b) for sample
Cat. 0-2a, Q30. The fit shows very good agreement with theory. The deviation of the
fitted curve from the measured data is less than 0.5% for both samples in the frequency
range around 5.75 GHz.

However, if we wanted to set the resonator to a specific resonant frequency, we could not
just take the corresponding coil current value determined by the fit, as the deviations are
still in the order of several MHz. For all following experiments, we thus had to adjust
the coil current to the desired resonant frequency using the 2π phase shift visible in the
phase trace of the network analyzer.

Furthermore, the curves shown in Figs. 3.5(a) and 3.5(b) are not symmetric with respect
to the coil current. We suspect that leakage fields from components of the cryogenic setup,
e.g. the switches or the cryogenic circulators, may expose the samples to an additional
flux contribution that is not generated by the coil. We also cannot exclude external
magnetic flux, created somewhere outside of the cryostat, as the source of the spurious
flux contributions.
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Figure 3.5: Flux-dependence of the resonant frequency for (a) sample Cat. 2-1c, Q300
and (b) sample Cat. 0-2a, Q30. The black squares indicate the resonant
frequency determined from the simultaneous fit of magnitude and phase data
presented in Figs. 3.2 and 3.4. For the red line, we have fitted the flux-
dependent resonant frequencies to the theoretical dependence described by
Eqs. (1.50) and (1.57). We find that the measured resonant frequencies are
well described by the fit. The flux is given in units of coil current as this is
the only parameter we can control directly in order to adjust the flux.



62 3. Experimental results

3.1.2 Determination of the quality factors

We shall continue our quantitative analysis of the resonator with the determination of
the internal and external quality factor. As we have seen in Section 1.4.1, the internal
quality factor determines the depth of the dip in the reflection magnitude at resonant
frequency. However, we have observed above that neither of our samples shows a clearly
pronounced dip in the relevant frequency range of 5.0 GHz to 5.8 GHz. Thus, the internal
quality factor cannot be determined accurately fitting the theoretical value of |Γ| to the
measured reflection magnitude data. In order to estimate at least a lower limit of Qint,
we have set the resonator to a resonant frequency of 5.75 GHz and recorded a single mag-
nitude and phase trace with the ZVA network analyzer set to an IF-bandwidth of 1 Hz,
thus reducing noise. We have then again performed a simultaneous fit of the magnitude
and phase trace using only the resonant frequency and the external quality factor as fit
parameters. The internal quality factor was fixed to three different values. The results
are shown in Fig. 3.6 for sample Cat. 2-1c, Q300. Comparing the fitted curves to the
actual data, we conclude that the internal quality factor is in the range between 5000
and 10000. At the same time, we can exclude internal quality factor values as low as 1000.

The dip-peak-structure in the magnitude could result from spurious signals coupled from
the input line directly into the output line as a result of the non-ideal isolation of the cir-
culator. However, so far the origin of this structure is not understood in detail. We also
suspected that the ZVA network analyzer might not separate the two signal quadratures
exactly by 90◦. Calculations and simulations have shown that this could not explain the
dip-peak-structure.

The characteristic 2π phase shift however is clearly visible and allows to extract reliable
values for the external quality factor, see Fig. 3.7. For reasonable values of Qint, the fit
yields an external quality factor of approximately 249 for 5.75 GHz. Only for the un-
reasonably small value of Qint we get a different result for Qext. We therefore conclude
that in order to determine the external quality factor, it is sufficient to know the order
of magnitude of the internal quality factor, which actually can be determined by fitting
the reflection magnitude.

As described in Section 3.1.1, a simultaneous fit of phase and magnitude was performed at
different flux values with the fitting parametersQint, Qext and ωL in order to determine the
frequency dependence of the resonant frequency. Now we are interested in the resonant
frequency dependence of the external quality factor for both samples. Fig. 3.8 shows the
results. Sample Cat. 2-1c, Q300 was designed to an external quality factor of 300 at
5.75 GHz. However, we see that the real value is about 50 lower than the design value.
For sample Cat. 0-2a, Q30, the design value of 30 is hit almost exactly at 5.75 GHz.
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Figure 3.6: Blue trace: Measured reflection magnitude of sample Cat. 2-1c, Q300. The
resonant frequency is set to 5.75 GHz. Instead of a pronounced dip, the curve
exhibits a dip-peak-structure. The reason for this is unknown. Red curves:
Magnitude fits with assumed internal quality factors of 5000, 10000 and 1000,
respectively. Depending on whether one interprets the full or half height of
the dip-peak-structure as the determining factor, the measured curve is best
described by internal quality factors of 5000 or 10000. If Qint would be as low
as 1000, we expect to see a distinct dip in the reflection magnitude.
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Figure 3.7: Blue trace: Measured reflection phase of sample Cat. 2-1c, Q300 corres-
ponding to Fig. 3.6. Red curves: Phase fits with assumed internal quality
factors of 5000, 10000 and 1000, respectively. For reasonable values of Qint,
the external quality factor is found to be approximately 249.
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Figure 3.8: Resonant frequency dependence of the external quality factor. The external
quality factors and the corresponding resonant frequencies were determined by
a simultaneous fit of magnitude and phase with the fitting parameters Qint,
Qext and ωL. The horizontal lines indicate the design values at 5.75 GHz.
(a) Sample Cat. 2-1c, Q300. (b) Sample Cat. 0-2a, Q30.
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3.2 The degenerate Gain

In order to determine the phase-dependent degenerate gain of our samples, we have made
use of the measuring method presented by T. Yamamoto et al. in [19] in order to compare
the results. Here, the degenerate gain is not measured simply by applying an input signal
at half the pump frequency to the JPA and measuring the output signal at the input signal
frequency. Instead, the input signal is subjected to an amplitude modulation before it is
applied to the sample. To understand the concept of amplitude modulation, we consider
a signal of the form

Ain = A0 cos (ωmodt+ φ) (3.1)

with amplitude A0, frequency ωmod and phase φ. A constant component Ac is now added
to the signal before it is multiplied by a carrier signal at frequency ωc, yielding

Amod = [Ac + A0 cos (ωmodt+ φ)] · cos (ωct)

= Ac cos (ωct) +
A0

2
cos ((ωc − ωmod) t− φ) +

A0

2
cos ((ωc + ωmod) t+ φ) . (3.2)

The modulated signal therefore consists of three frequency components. One at frequency
ωc and two components where the frequency is increased or decreased by ωmod, respec-
tively. As follows from Eq. (3.2), the three signal components have a fixed phase relation
with respect to each other. The modulation depth is defined as

m =
A0

Ac
. (3.3)

For our measurements, the modulation frequency ωmod was set to 10 kHz, the carrier
frequency ωc to the respective resonant frequency of the resonator and the modulation
depth to m = 1. The pump signal frequency was set to 2ωc.

The JPA input signal component at frequency ωc + ωmod undergoes signal amplification
as described in Section 1.5.1. The input signal component at frequency ωc − ωmod leads
to the creation of an idler mode also at frequency ωc + ωmod. The total signal detected
at frequency ωc + ωmod thus is the sum of two components with a fixed phase relation.
Depending on the pump phase, they will interfere constructively or destructively.

In the course of our measurements, the phase dependent degenerate gain was determined
comparing the signal level at frequency ωc +ωmod when the pump was turned on relative
to when it was turned off. The signal levels were detected with the FSP7 spectrum ana-
lyzer set to a resolution bandwidth of 10 Hz and a video bandwidth of 1 Hz.

In order to find a good working point with high gain of sample Cat. 0-2a, Q30, we have
measured the phase-dependent degenerate gain for different resonant frequencies of the
resonator. The input signal was generated by the SMF signal generator set to an output
power of -20 dBm. The pump signal was generated by the PSG signal source with an
output power of +20 dBm. The PSG was also used to digitally vary the phase of the pump
signal in steps of 2◦. As can be seen in Fig. 3.9, we have achieved a maximum gain of
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Figure 3.9: The phase-dependent degenerate gain for sample Cat. 0-2a, Q30 at different
resonant frequencies. The maximum achievable gain decreases for increasing
resonant frequencies.

14.0 dB for a resonant frequency of 5.06 GHz. At our desired working point of 5.75 GHz,
the maximum gain goes down to as low as 1.6 dB. This can be explained considering
Fig. 3.10, which is a close-up of Fig. 3.5(b). We have seen in Section 1.2 that parametric
amplification is achieved by periodically varying the resonant frequency. The stronger
the frequency is varied, the more amplification is gained. In our samples, however, we
are not changing the resonant frequency directly, but the flux through the SQUID. At a
given resonant frequency ωL, the frequency variation ∆ω is given by

∆ω ≈ dω

dΦ

∣∣∣∣
ωL

·∆Φ (3.4)

in which the derivative represents the slope of the curve shown in Fig. 3.10. Apparently,
these slopes - and therefore the frequency modulation - become larger for smaller reso-
nant frequencies. A quantitative comparison of the slopes and the maximum achievable
amplifications and deamplifications is provided in Tab. 3.1.

In order to achieve higher gains for our desired working point around 5.75 GHz, we would
have to apply more power to the JPA pump port. However, even with a PSG output
power of +20 dBm, the fridge could not be held at its base temperature but was already
warming up to approximately 70 − 80 mK. Thus, applying more pump power was not
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Figure 3.10: The efficiency of the conversion of pump power applied to the JPA into signal

amplification depends on the slope of the resonant frequency dependence on
the magnetic flux. For small resonant frequencies, the slopes become larger.
The consequence is higher gain for smaller resonant frequencies. The data
shown here correspond to sample Cat. 0-2a, Q30.

desirable. We have therefore characterized the degenerate gain operating the JPA at
5.06 GHz. The sample temperature was stabilized at 90 mK.

One very important property of an amplifier is its 1 dB compression point. As the output
power of any amplifier is physically limited, the input signal will be less amplified if it
is too large. We have therefore applied input signals of various power levels to the JPA
and measured the phase-dependent gain as described above. The 1 dB compression point
is defined as the signal power at which the gain is reduced by 1 dB in comparison to
smaller output powers where the gain is power independent. The data shown in Fig. 3.11
were taken at a pump level of +20 dBm, whereas the pump was set to +10 dBm for the
data shown in Fig. 3.13. In order to find the 1 dB compression point, we have extracted
the maximum gain for each signal power and plotted it against the input power. For a
pump power of +20 dBm, we find that the amplifier is linear over at least three orders
of magnitude and has its 1 dB compression point for an input signal power of -8.1 dBm,
see Fig. 3.12. Comparing this result to the measurements for a pump power of +10 dBm,
see Fig. 3.14, we find on the one hand that the maximum amplification has decreased
as a result of the reduced pump power. On the other hand, the amplifier is now lin-
ear over nearly five orders of magnitude and the 1 dB compression point is shifted to
+7.5 dBm. This can be understood considering that the output power is determining the
1 dB compression point. If the amplification is reduced, the 1 dB compression point is
reached at higher input powers. For both pump power values, the deviations in the gain
for input powers lower than -30 dBm have to be attributed to noise, cf. Figs. 3.11 and 3.13.
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Res. frequency slope Max. deg. gain Min. deg. gain

(GHz)
(

GHz
Φ/Φ0

)
(dB) (dB)

5.060 -16.9 14.0 -14.3
5.356 -10.4 6.23 -6.11
5.750 -3.65 1.58 -1.75
5.850 -2.56 1.34 -1.34

Table 3.1: Slopes of the resonant-frequency-dependence on the coil current and the corres-
ponding values for the maximum amplification and deamplification for sample
Cat. 0-2a, Q30. The slopes were extracted from Fig. 3.10, whereas the gains
were extracted from Fig. 3.9. It can be seen that the gain decreases signif-
icantly if the absolute value of the slope decreases. We also note that the
maximum amplification approximately equals the maximum deamplification,
therefore fulfilling the equation Gmin

d [dB] + Gmax
d [dB] = 0, cf. Eq. (1.94).

For sample Cat. 2-1c, Q300, we have first measured the phase-dependent degenerate gain
at a resonant frequency of 5.7513 GHz as this is close to our desired working point of
5.75 GHz. The setup was not changed compared to the measurement of sample Cat. 0-2a,
Q30. The input signal power level was set to -13.4 dBm. The PSG pump signal source
was used again to vary the phase in steps of 2◦. The results can be found in Fig. 3.15 for
two different pump powers. Whilst the expected dependence of the gain on phase and
pump power can be observed, the maximum achievable gains of only 3.7 dB and 2.6 dB
at pump powers of +17 dBm and +14 dBm, respectively, fall short of our expectations.

We have therefore decreased the resonant frequency in order to enter a regime where the
slope of the resonant-frequency-flux-curve is steeper, see Fig. 3.5(a). The setup was left
unchanged, only the step size of the phase sweep was increased to 10◦. Figure 3.16 shows
the results for a resonant frequency of 5.6389 GHz. Contrary to the other measurements
of the degenerate gain, we have not amplitude modulated the input signal, i.e. the input
signal consisted of one frequency component at half the pump frequency. The gain was
determined for two different input signal power levels, -13.4 dBm and -23.4 dBm and two
pump powers each, namely +20 dBm and +17 dBm. As the gain only depends on the
pump power, we can conclude that the JPA has not entered the nonlinear regime for any
of our power combinations. The maximum gains that can be extracted from Fig. 3.16
are 20.7 dB for a pump power of +20 dBm and 12.2 dB for a pump power of +17 dBm.
Apparently, reducing the pump power by 3 dB already diminishes the gain by 8.5 dB.

For both samples and all studied resonant frequencies, we see that the maximum ampli-
fication approximately equals the maximum deamplification, fulfilling the equation

Gmin
d [dB] + Gmax

d [dB] = 0. (1.94)
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Figure 3.11: Phase dependent gain of sample Cat. 0-2a, Q30 for different input signal

power levels. The resonant frequency was set to 5.06 GHz and the pump
power to +20 dBm. For clarity, the traces were shifted in phase so that the
minima coincide.
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Figure 3.12: Gain maxima extracted from Fig. 3.11 plotted versus the corresponding in-

put power levels. The lines connecting the black squares are provided as a
guide to the eye. The 1 dB compression point of the amplifier operated at
5.06 GHz was found to be about -8.1 dBm for a pump power of +20 dBm.



70 3. Experimental results

0 6 0 1 2 0 1 8 0 2 4 0 3 0 0 3 6 0 4 2 0
- 6

- 4

- 2

0

2

4

6  - 4 0  d B m
 - 3 5  d B m
 - 3 0  d B m
 - 2 5  d B m
 - 2 0  d B m
 - 1 5  d B m
 - 1 0  d B m
 - 5    d B m
  0    d B m
 + 5   d B m
 + 1 0  d B m
 + 1 5  d B m
 + 2 0  d B m

 

De
ge

ne
rat

e g
ain

 (d
B)

P h a s e  ( d e g )

0 1 2 0 2 4 0 3 6 0- 6
- 4
- 2
0
2
4
6

 

 

Figure 3.13: Phase dependent gain of sample Cat. 0-2a, Q30 for different input signal
power levels, with the resonator set to 5.06 GHz. The pump power was
reduced to +10 dBm. The traces were shifted in phase in order to get coin-
cident minima.

- 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0
1

2

3

4

5

 

Ma
x. 

of 
de

ge
ne

rat
e g

ain
 (d

B)

I n p u t  p o w e r  ( d B m )
Figure 3.14: Determination of the 1 dB compression point for a pump power of +10 dBm.

The gain maxima were extracted from Fig. 3.13 and plotted against the input
power. Compared to Fig. 3.12, we find that the 1 dB compression point is
shifted to a higher input power level of +7.5 dBm.
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Figure 3.15: Phase-dependent gain of sample Cat. 2-1c, Q300 set to a resonant frequency

of 5.7513 GHz. The measurement was performed for two different pump
power levels.
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Figure 3.16: Phase-dependent gain of sample Cat. 2-1c, Q300 set to a resonant frequency

of 5.6389 GHz. The traces were shifted in phase so that the minima coincide.
The lines connecting the data points are provided as a guide to the eye. Four
different combinations of pump and input signal power levels were studied.
For the chosen input signal levels, the degenerate gain only depends on the
pump power.
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3.3 Signal and Intermodulation gain

If an input signal at frequency ω0 + ∆ω, and thus differing from half the pump frequency
ω0, is applied to a Josephson parametric amplifier, the output signal will consist of two
components as discussed in Section 1.5.1. In addition to the signal mode at input signal
frequency ω0 + ∆ω the idler mode at frequency ω0 −∆ω will be generated.

The signal gain was determined comparing the output level at signal frequency when the
pump was turned on relative to when it was turned off. The pump-off level at signal
frequency also served as reference level for the determination of the intermodulation gain
at idler mode frequency. However, for small pump powers the idler mode level will be
smaller than the reference level, resulting in negative gain values. Contrary to the mea-
surement of the degenerate gains, negative gain values here do not imply deamplification,
they just express that there is only little signal-to-idler conversion.

For both samples, we have determined the signal and intermodulation gain at our desired
working point of 5.75 GHZ. In addition, we have performed measurements at resonant
frequencies of 5.06 GHz for sample Cat. 0-2a, Q30 and 5.639 GHz for sample Cat. 2-1c,
Q300, respectively. For all measurements, the input signal frequency was 10 kHz higher
than half the pump frequency. The pump signal itself was set to twice the resonant
frequency and created by the PSG signal source. As for the detector, we have used the
FSP7 spectrum analyzer set to a resolution bandwidth of 10 Hz and a video bandwidth
of 1 Hz.

The results for sample Cat. 0-2a, Q30 can be seen in Fig. 3.17(a) for a resonant frequency
of 5.06 GHz and in Fig. 3.17(b) for a resonant frequency of 5.75 GHz. At 5.06 GHz, the
signal gain is, depending on the input signal power, between 4.4 dB and 5.0 dB, whereas
the intermodulation gain is between 2.8 dB to 3.7 dB. According to theory, signal gain
and intermodulation gain should obey the relation

|G(ω)|2 − |M(−ω)|2 = 1 (1.77)

where G and M are (linear) amplitude amplification factors of signal and idler mode,
respectively. For the measurement at 5.06 GHz, the difference |G(ω)|2 − |M(−ω)|2, cal-
culated separately for the four different input power levels, gives values between 0.68
(-43.4 dBm) and 0.91 (-23.4 dBm) which is in sufficient agreement with theory.

At a resonant frequency of 5.75 GHz, where we have already seen a very low degenerate
gain, there is almost no signal and intermodulation gain at all. Furthermore, we also
note that the JPA gain seems to saturate at pump power levels as low as +17 dBm. We
feel that the data quality is not sufficient to say this with certainty. For the observed
low gains, the SQUID design may be responsible. Enlarging the SQUID and therefore
increasing the coupling to the pump line may help to realize higher gains.

Figure 3.18(a) shows signal and intermodulation gain for sample Cat. 2, Q300 for a re-
sonant frequency of 5.639 GHz. First we note that both signal and intermodulation gain
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converge to the same limiting value in the limit of large gains, therefore fulfilling (1.77).
The measured gain maximum is 15.1 dB, but as the amplifier is not yet saturated at a
pump power of 100 mW, we assume that higher gains would be possible by applying more
pump power. We also see that the gains are similar for all four input powers applied.
Therefore, the amplifier is linear over at least three orders of magnitude.

At 5.75 GHz, see Fig. 3.18(b), the gains are much smaller which is not surprising com-
paring the degenerate gains for 5.639 GHz (Fig. 3.16) and 5.75 GHz (Fig. 3.15). We can
also see here that similar gains are achieved for both input power levels and that we have
not yet reached the compression point.

For a consistency check, we perform a calculation in order to find the maximum degener-
ate gain that we expect for given signal and intermodulation gain. We therefore assume
that signal and idler mode frequency are so close to half the pump frequency that the
respective gains can be considered frequency-independent. If the signal frequency con-
verges towards half the pump frequency, signal and idler mode will interfere, resulting
in the phase-dependent degenerate gain. The maximum of the latter is reached if signal
and idler mode interfere constructively, i.e. their amplitudes add. With the signal gain
Gsig and the intermodulation gain Gint, we get for the maximum degenerate gain Gdeg

Gdeg[dB] = 20 log10

(
10

Gsig[dB]

20 + 10
Gint[dB]

20

)
. (3.5)

In the limit of large gains, signal and idler gain converge to the same limiting value G,

Gdeg[dB] = 20 log10

(
10

G[dB]
20 + 10

G[dB]
20

)
= 20 log10

(
2 · 10

G[dB]
20

)
= 6 dB + G[dB]. (3.6)

Therefore, the degenerate gain is expected to be 6 dB larger than signal and intermo-
dulation gain. Comparing the results of Fig. 3.18(a), where we have seen a signal and
intermodulation gain of 14.5 dB for sample Cat. 2-1c, Q300 at 5.639 GHz and an in-
put power of -13.4 dBm to Fig. 3.16, where we have found a degenerate gain of 20.7 dB
for the same parameters, one can see that the difference indeed is approximately 6 dB.
For the other measurements of signal and intermodulation gains, Eq. (3.5) gives a good
quantitative explanation for the small gains.
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(a) Signal and intermodulation gain at 5.06 GHz. There is an indication that the amplifier saturates at
50 mW of pump power.
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(b) Signal and intermodulation gain at 5.75 GHz. Note that the ordinate is rescaled above the break.

Figure 3.17: Signal and intermodulation gain for sample Cat. 0-2a, Q30 for the resonant
frequencies 5.06 GHz (top) and 5.75 GHz (bottom). The squares connected
with solid lines denote the signal gain, whereas the squares connected with
dotted lines denote the intermodulation gain. In both cases, the lines are
provided as a guide to the eye.
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(a) Signal and intermodulation gain for 5.639 GHz. For large gains, signal and intermodulation gain
converge on each other as predicted by theory. The amplifier is linear over at least three orders of
magnitude.
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(b) Signal and intermodulation gain for 5.75 GHz.

Figure 3.18: Signal and intermodulation gain for sample Cat. 2-1c, Q300 for the resonant
frequencies 5.639 GHz (top) and 5.75 GHz (bottom). The squares connected
with solid lines denote the signal gain, whereas the squares connected with
dotted lines denote the intermodulation gain. In both cases, the lines are
provided as a guide to the eye.
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3.4 Bandwidths

The bandwidth of an amplifier is another characteristic quantity important for its ap-
plication. We have determined the signal and intermodulation bandwidth for sample
Cat. 2-1c, Q300 with the resonant frequency set to 5.6391 GHz. For sample Cat. 0-2a,
Q30, we have not seen significant signal and intermodulation gain at any resonant fre-
quency and have therefore refrained from determining the bandwidth. The same applies
to sample Cat. 2-1c, Q300 at 5.75 GHz. For the measurement, the pump signal was gen-
erated by the PSG signal generator and its frequency was fixed. The input signal was
delivered by the ZVA network vector analyzer. For the measurement of the signal gain,
the ZVA was set to measure at input signal frequency. For the intermodulation gain
however, the ZVA was set to measure at idler frequency, i.e. at a frequency differing from
the ZVA output signal frequency. The ZVA itself was set to an IF-bandwidth of 3 Hz
and a 2 MHz step size between the measuring frequencies. Figure 3.19 shows the signal
gain for different input signal frequencies and two different pump power levels and the
corresponding Lorentzian fits. In Fig. 3.20 we present the corresponding intermodulation
gains. The ZVA was set to deliver an output power of 12 dBm that was attenuated by
24 dB by the subsequent step attenuators, cf. Fig. 2.15. We have chosen Lorentzian fits
as the JPA bandwidth should be determined by the resonator bandwidth, cf. Eq. (A.79)
in Appendix A. For the latter, we know that it is described by a Lorentzian curve. Con-
sidering the figures, we find that it describes our measurement data very well.

The 3 dB bandwidth of an amplifier is defined as the full width at half maximum (FWHM)
of the frequency-gain-curve. As it can be seen in both figures, the bandwidth depends
on the maximum gain, increasing for smaller gains. If a signal with white (i.e. frequency
independent) spectrum is to be amplified, the output power in the whole bandwidth of
the amplifier will be optimal if the product of gain and bandwidth is maximal. We have
calculated this gain-bandwidth-product for both signal and intermodulation gain in de-
pendence of the pump power. From Figs. 3.19 and 3.20, we have extracted values for the
maximum signal and intermodulation gains and the corresponding bandwidths. As it
can be seen in Tab. 3.2, the gain-bandwidth-product decreases significantly if the pump
power is reduced. The same holds for the intermodulation gain, see Tab. 3.3. Thus,
the decrease in gain is not compensated by the increasing bandwidth. If this Josephson
parametric amplifier is used to amplify signals with white spectrum, one would therefore
choose maximum gain over bandwidth.

Comparing the bandwidth of our samples to commercially available, classical HEMT am-
plifiers points out one major disadvantage of our Josephson parametric amplifiers. These
HEMT amplifiers offer bandwidths of several GHz, that is three orders of magnitude more
than the bandwidth of our JPAs. This of course is compensated by the fact that these
HEMT amplifiers inevitably add noise to the signal as discussed in Section 1.6. We also
note that the small bandwidth is irrelevant for the amplification of narrow-band signals.
Furthermore, the resonant frequency of the resonator, and therefore the amplifier, can
be tuned over a frequency range of some GHz.
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Figure 3.19: Signal bandwidth for sample Cat. 2-1c, Q300 set to a resonant frequency
of 5.639 GHz measured for two different pump power levels. The squares
mark the data points whereas the continuous lines mark the Lorentzian fits.
The 3 dB bandwidth, marked by the black arrows, increases if the gain is
decreased.
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Figure 3.20: Intermodulation bandwidth for sample Cat. 2-1c, Q300 operated at 5.639
GHz. The data points are represented by the squares. The Lorentzian
fit (continuous line) suggests an intermodulation gain higher than the signal
gain in Fig. 3.19. As we only have few data points around resonant frequency,
the maximum gain is associated with a relatively high degree of uncertainty.
The arrows indicate the 3 dB bandwidth.
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Pump power Max. gain 3-dB bandwidth Gain-bandwidth-product
(dBm) (lin. units) (MHz) (MHz)

20 24.6 3.13 77.0
17 4.29 6.34 27.2

Table 3.2: Signal bandwidth and gain-bandwidth-product for sample Cat. 2-1c set to a
resonant frequency of 5.639 GHz extracted from Fig. 3.19. A decrease in gain is
not compensated by an increasing bandwidth in the gain-bandwidth-product.

Pump power Max. gain 3-dB bandwidth Gain-bandwidth-product
(dBm) (lin. units) (MHz) (MHz)

20 28.8 2.71 78.0
17 3.70 5.82 21.5

Table 3.3: Intermodulation bandwidth and gain-bandwidth-product for sample Cat. 2-1c
operated at 5.639 GHz extracted from Fig. 3.19. Again, increasing the band-
width by decreasing the maximum gain does not increase the gain-bandwidth
product.
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3.5 Determination of η

The quantity η, as discussed in Section 1.5.2, is defined as the (power) reflectivity of
the Josephson parametric amplifier with the pump turned off relative to the reflectivity
of a short at resonant frequency. We have therefore set the 5-port switch in our setup
such that input signals are directed to the calibration short (cf. Fig. 2.7) instead of the
sample. With this switch position, calibration data were recorded for the ZVA network
vector analyzer. Switching the 5-port switch back so that incoming signals are directed
towards the sample again now allowed for a direct measurement of η. However, unlike the
short, the Josephson parametric amplifier sample is not connected to the switch directly.
From the switch, a microwave cable is leading to the sample holder, where a PCB is
inserted in front of the Josephson parametric amplifier sample, see Fig. 3.21.

N1812UL
short

cable

sample holder

JPA
reference
plane

PCB

solder

connector

bond

Figure 3.21: The quantity η is determined for the entity consisting of the microwave cable,
the alumina board and the JPA sample.

Choosing the switch output port as reference plane, η now describes the reflectance of the
interconnected system consisting of the cable, the alumina board and the actual JPA. In
this system, reflections in particular can occur at the interface between two components
as a result of impedance mismatch, cf. Section 2.1.4. If the sample is to be used in future
experiments, the value determined for η only stays valid if the sample is not removed from
the sample holder and if the sample holder is connected to the rest of the setup using
the same microwave cable again. Figure 3.22 and Tab. 3.4 show the results determined
for sample Cat. 0-2a, Q30 at three different resonant frequencies. As one can see, at two
of these resonant frequencies we have found values slightly exceeding 1. However, the
Josephson parametric amplifier physically cannot exhibit larger reflectance than a short.
We suspect that either noise or calibration artifacts are responsible for this. We have
recorded the calibration data with an IF-bandwidth of 10 Hz, which may have been to
large.

In order to determine η for sample Cat. 2-1c, Q300 we have recorded new calibration
data. The results for η are shown in Fig. 3.23 and Tab. 3.5. Sources of error for the
values of η for both samples are noise and also potential unequal transmission properties
of the different switching states of the 5-port switch. Considering the resonant frequencies
where we have seen significant gains, the values for η are 0.93 for sample Cat. 0-2a, Q30
at 5.05 GHz and 0.92 for sample Cat. 2-1c, Q300 at 5.64 GHz.
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Figure 3.22: The quantity η was determined for three different resonant frequencies for
sample Cat. 0-2a, Q30. The resonant frequencies were determined from the
characteristic 2π phase shift in the resonator reflectance.

Resonant frequency η
(GHz)

4.80 1.02
5.05 0.93
5.74 1.01

Table 3.4: Values for the quantity η for sample Cat. 0-2a, Q30 extracted from Fig. 3.22.
We believe that either noise or calibration artifacts are responsible for values
exceeding 1.
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Figure 3.23: For sample Cat. 2-1c, Q300 we have determined η for four different resonant
frequencies. The resonant frequencies were determined from the character-
istic 2π phase shift in the resonator reflectance.

Resonant frequency η
(GHz)

5.55 0.86
5.64 0.92
5.75 0.89
5.86 0.72

Table 3.5: Values of η extracted from Fig. 3.23 for sample Cat. 2-1c, Q300.
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3.6 Calibration of input and output line

As described in Section 2.2.5, we have equipped the 30 dB input line attenuator at base
temperature with a heater and a thermometer so that we can control its temperature
from base temperature to approximately 800 mK independent of the sample tempera-
ture. Now we want to use this in order to calibrate input and output line. The thermal
state generated by the heated attenuator is directed through the circulator towards the
sample where it is reflected. There is no pump signal applied to the sample. The reflected
signal is again passing the circulator before it is amplified in the output line.

Depending on the attenuator temperature T , the output signal power P obeys the equa-
tion [51]

P = η ·G ·B ·

(
hν

e
hν

kB(T+δT ) − 1
+

1

2
hν + kBTN

)
(3.7)

in which h = 6.626 · 10−34 Js is the Planck constant, kB = 1.381 · 10−23 J/K is the
Boltzmann constant, ν is the frequency, B is the detector bandwidth, G is the power
amplification factor of the amplification chain and TN is the amplification chain noise
temperature. As the signal generated by the attenuator is reflected at the sample, the
quantity η has to be taken into account. In our case, the signal was reflected at sample
Cat. 2-1c, Q300 set to a resonant frequency of 5.6365 GHz. Near this frequency, we have
found η = 0.92, cf. Tab. 3.5. The parameter δT takes into account that the electronic
temperature of the resistors inside the attenuator may differ from the measured attenu-
ator temperature [52]

In Eq. (3.7), the first two terms describe the Bose-Planck-distribution of the noise of a
resistor. The third term takes into account that not only the amplified thermal state
will be detected, but also noise that is added by the amplifiers or coupled into the am-
plification chain. In our case, the output signal was detected by the FSP spectrum ana-
lyzer set to the center frequency of 5.6365 GHz and a resolution bandwidth of 100 kHz.
The temperature was varied from 30 mK to 800 mK in steps of 10 mK. The measured
temperature-dependent output power is shown in Fig. 3.24.

We have then performed a fit with the fit parameters G, δT and TN . For the amplification
factor G, we have determined a value of G = 6.99·105, corresponding to a gain of 58.4 dB.
In addition, the fit gives the noise temperature of the amplification chain, 13.38 K. The
quantity δT was determined to be -28.7 mK.

After letting the attenuator cool down to base temperature again, we have applied an
input signal at 5.6365 GHz to the input line and detected the reflected signal with the
spectrum analyzer. The input signal was generated by the PSG microwave source. An
additional cable with an insertion loss of 0.8 dB was inserted between the input line and
the PSG. The total transmission measured was -68.0 dB. As we know the amplification
from the attenuator to the detector and the insertion loss of the additional cable, we can
calculate the total attenuation of the input line. A signal generated by the SMF signal
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Figure 3.24: In order to calibrate the input and output line, the heatable attenuator is

set to temperatures from 30 mK to 800 mK. The thermal state generated by
the attenuator is detected by the spectrum analyzer. By means of Eq. (3.7),
the gain of the output line can be determined. Measuring the transmission
through input and output line subsequently gives the input line attenuation.

generator, as used in our measurements, will be attenuated by 127.2 dB after having
passed through the 30 dB base temperature attenuator. Provided that the switches and
the microwave cables from the last attenuator to the sample all have small insertion loss,
it is safe to assume a total attenuation of approximately 127 dB from the signal source
to the sample.

We cannot determine the attenuation of the pump line in the same way. But we can give
an estimation considering that the attenuators mounted in the input line have a total
attenuation of 109 dB. Therefore, the microwave cables at and below room temperature
have a total insertion loss of about 18 dB. As the microwave cables used for the pump line
are approximately of the same length, and as we have attenuators and a power divider
with a total attenuation of 41 dB installed, we can estimate that the pump signal leaving
the signal source is attenuated by about 59 dB before it reaches the pump port of the
sample.





Summary and Outlook

The detection of weak quantum microwave signals presently is a fundamental challenge
in the field of circuit quantum electrodynamics. One approach to the problem is to use
phase-sensitive amplifiers that, in principle, allow for noiseless amplification. A very
promising representative of this class is the flux-driven Josephson parametric amplifier.
From our co-operation partners at NEC in Japan we have received a set of JPA samples
with different design parameters.

In the course of this thesis, we have characterized two of these samples with respect to
their resonator characteristics, gains, bandwidths and reflection coefficients. To this end,
we have designed and implemented a highly flexible measurement setup allowing for the
independent characterization of two Josephson parametric amplifier samples in the same
cooldown.

In the first chapter of this thesis, we have discussed the theoretical background of the
flux-driven Josephson parametric amplifier. In chapter 2 we have provided a detailed
description of our measurement setup. We have demonstrated that mechanical switching
between microwave cables is possible at cryogenic temperatures and that it is possible to
create thermal states up to 800 mK at the base temperature stage of the cryostat without
significant heating of the sample.

The two Josephson parametric amplifier samples we have characterized differ in the de-
sign value of the external quality factor of the resonator. We have determined the flux
dependence of the resonant frequency of the coplanar waveguide resonator and observed
good agreement with theory. The resonant frequency dependence of the external quality
factor was measured and a lower limit for the internal quality factor could be provided.
The phase dependent degenerate gain for both samples at different resonant frequencies
was determined and gains of 14.0 dB for sample Cat. 0-2a, Q30 at 5.06 GHz and 20.7 dB
for sample Cat. 2-1c, Q300 at 5.639 GHz were observed. However, we have found signifi-
cantly smaller gains for our desired working point at 5.75 GHz. The decreasing gains for
larger resonant frequencies could be explained considering the slope of the resonant fre-
quency dependence on the magnetic flux. Sample Cat. 0-2a, Q30 exhibited a signal gain
of 5.0 dB and an intermodulation gain of 3.7 dB at 5.06 GHz, whereas sample Cat. 2-1c,
Q300 set to 5.639 GHz showed a signal and intermodulation gain of 15.1 dB. We have
seen that signal and intermodulation gains are consistent with the corresponding degen-
erate gains. For sample Cat. 2-1c, Q300 the signal and intermodulation bandwidth at
maximum amplification was determined to be 3.13 MHz and 2.71 MHz, respectively. It
also turned out that decreasing the gain is not compensated by the increasing bandwidth.
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For both samples, we have compared the reflection of the JPA with no pump signal ap-
plied to the reflection of a short and could therefore determine the quantity η at different
resonant frequencies. The possibility to create thermal states up to 800 mK at base tem-
perature allowed for a precise calibration of input and output line.

All in all, we have proved that both samples are performing very well and that we have
chosen a highly flexible measurement setup suitable for the independent characteriza-
tion of two samples and for the determination of the reflection coefficient η in a single
cooldown. Despite the high pump power levels, the sample stage of the cryostat could
be held near base temperatue. The measured data are all mutually consistent and the
large gains observed for sample Cat. 2-1c, Q300 suggest that squeezed states with a high
degree of squeezing can be created.

The next step will be to analyze these squeezed states generated by the Josephson para-
metric amplifier with the cross-correlation detection scheme introduced by E. P. Menzel
et al. [63]. This method is primarily designed to characterize propagating microwaves at
the quantum level. The key element of the cross-correlation detection scheme is the uti-
lization of two independent amplification chains. In both chains, linear, phase-insensitive
off-the-shelf HEMT amplifiers are used that obscure the signals with noise much larger
than the signal itself. However, cross-correlation measurements and massive averaging
allow for the recovery of, in principle, all statistical signal moments. With the knowledge
of all statistical moments, the Wigner function can be reconstructed using the inverse
Radon transform [64,65]. The Wigner function completely characterizes a quantum me-
chanical state.

In proof-of-principle experiments, the resolution limit of the cross-correlation detection
scheme was determined to be less than 10−3 photons on average (poa) for the mean value,
1-2 poa for the variance and 10-20 poa for the third central moment. The method has
already been successfully demonstrated for coherent states and weak thermal states.

As the dual-path scheme is capable of removing amplifier noise from the signal, it is
well-suited for the measurement of the noise temperatures of our Josephson parametric
amplifiers. Applying a squeezed state, it shall be proved that the dual-path scheme is
also capable of reconstructing non-classical1 signals.

1Non-classical in the sense that a squeezed state cannot be described using classical electromagnetics.
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A Quantum analysis on the flux-driven
parametric amplifier

The quantum analysis on the flux-driven parametric amplifier was performed by T. Ya-
mamoto, Y. Nakamura and K. Koshino. Parts of it are imprinted below by courtesy of
T. Yamamoto.

A.1 The Hamiltonian and the equation of motion

We start from an equation of motion for a harmonic oscillator,

d2q

d2t
+ Ω2

0q = 0, (A.1)

and introduce a modulation of Ω0, namely, Ω0 → Ω0 [1 + δ cos (αΩ0t)]. Then,

d2q

d2t
+ Ω2

0 [1 + 2δ cos (αΩ0t)] q = 0, (A.2)

where we neglected δ2 term. The Hamiltonian which gives this equation of motion is

H =
p2

2m
+
m

2
Ω2

0 [1 + 2δ cos (αΩ0t)] q
2. (A.3)

Introducing the creation and annihilation operators as follows,

q =
a+ a†

2

√
2h̄

mΩ0

(A.4)

p =
a− a†

2i

√
2h̄mΩ0 (A.5)

we arrive at the Hamiltonian of the parametrically-modulated harmonic oscillator,

H = h̄Ω0

[
a†a+ 2δ cos (αΩ0t)

(
a+ a†

)2
]
. (A.6)

Now the Hamiltonian of the system including signal and loss ports [24] is given by (ε = 2δ)

H = h̄Ω0

[
a†a+ ε cos (αΩ0t)

(
a+ a†

)2
]

+

∫
dω

[
h̄ωb(ω)†b(ω) + ih̄

√
κ1

2π

(
a†b(ω)− b(ω)†a

)]
+

∫
dω

[
h̄ωc(ω)†c(ω) + ih̄

√
κ2

2π

(
a†c(ω)− c(ω)†a

)]
. (A.7)
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The coupling constants κ1 and κ2 are related to the quality factors of the cavity as follows:

κ1 =
Ω0

Qext

(A.8)

κ2 =
Ω0

Qint

. (A.9)

From the Heisenberg equation of motion for a,

da

dt
=

1

ih̄
[a,H] , (A.10)

we obtain,

da

dt
= −iΩ0a− 2iΩ0ε cos (αΩ0t)

(
a+ a†

)
+

√
κ1

2π

∫
dωb(ω) +

√
κ2

2π

∫
dωc(ω). (A.11)

Here we used following relations. [
a, a†

]
= 1 (A.12)[

a, a†a
]

= a (A.13)[
a, (a+ a†)2

]
= 2(a+ a†) (A.14)

From the Heisenberg equation of motion for b(ω), we obtain

db(ω)

dt
= −iωb(ω)−

√
κ1

2π
a. (A.15)

By solving this differential equation, we have

b(ω) = e−iω(t−t0)b0(ω)−
√
κ1

2π

∫ t

t0

e−iω(t−t′)a(t′)dt′, (A.16)

where b0(ω) means b(ω) at t = t0. Similarly,

c(ω) = e−iω(t−t0)c0(ω)−
√
κ2

2π

∫ t

t0

e−iω(t−t′)a(t′)dt′. (A.17)

Substituting Eqs. (A.16) and (A.17) into Eq. (A.11), we have

da

dt
= −iΩ0a− 2iΩ0ε cos(αΩ0t)(a+ a†)

+

√
κ1

2π

∫
dωe−iω(t−t0)b0(ω)− κ1

2π

∫
dω

∫ t

t0

e−iω(t−t′)a(t′)dt′

+

√
κ2

2π

∫
dωe−iω(t−t0)c0(ω)− κ2

2π

∫
dω

∫ t

t0

e−iω(t−t′)a(t′)dt′. (A.18)
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We define input field operators by

bin(t) =
1√
2π

∫
dωe−iω(t−t0)b0(ω) (A.19)

cin(t) =
1√
2π

∫
dωe−iω(t−t0)c0(ω). (A.20)

Using the relation ∫
dωe−iω(t−t′) = 2πδ(t− t′), (A.21)

and ∫ t

t0

dt′δ(t− t′) =
1

2
, (A.22)

Eq. (A.18) reads

da

dt
=
(
−iΩ0 −

κ

2

)
a− 2iΩ0ε cos(αΩ0t)(a+ a†) +

√
κ1bin(t) +

√
κ2cin(t), (A.23)

where
κ = κ1 + κ2 (A.24)

Equation (A.15) can also be solved in terms of the final condition at t1 > t. Namely,

b(ω) = e−iω(t−t1)b1(ω) +

√
κ1

2π

∫ t1

t

e−iω(t−t′)a(t′)dt′. (A.25)

Taking the same procedure and defining output operators by

bout(t) =
1√
2π

∫
dωe−iω(t−t1)b1(ω) (A.26)

cout(t) =
1√
2π

∫
dωe−iω(t−t1)c1(ω), (A.27)

we have

da

dt
=
(
−iΩ0 +

κ

2

)
a− 2iΩ0ε cos(αΩ0t)(a+ a†) +

√
κ1bout(t) +

√
κ2cout(t). (A.28)

Subtracting Eq. (A.28) from Eq. (A.23), we obtain

bin(t)− bout(t) =
√
κ1a (A.29)

cin(t)− cout(t) =
√
κ2a. (A.30)

A.2 Gain

Now we return to Eq. (A.23).

da

dt
+W (t)a+ V (t)a† = F (t), (A.31)
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W (t) = iΩ0 +
κ

2
+ 2iεΩ0 cos(αΩ0t) (A.32)

V (t) = 2iΩ0ε cos(αΩ0t) (A.33)

F (t) =
√
κ1bin(t) +

√
κ2cin(t) (A.34)

By taking the Hermite conjugate of Eq. (A.31), we obtain (we will drop the explicit
expression of time dependence for W (t), V (t), and F (t))

da†

dt
= −W ∗a† − V ∗a+ F †. (A.35)

Also from Eq. (A.31),

a† =
1

V

(
F − da

dt
−Wa

)
(A.36)

Taking the time derivative in both sides of Eq. (A.31),

d2a

dt2
+
dW

dt
a+W

da

dt
+
dV

dt
a† + V

da†

dt
=
dF

dt
(A.37)

Substituting Eqs. (A.35) and (A.36) into Eq. (A.37), we obtain

d2a

dt2
+

[
W +W ∗ − 1

V

dV

dt

]
da

dt
+

[
dW

dt
− W

V

dV

dt
+ |W |2 − |V |2

]
a =

=
dF

dt
+

(
W ∗ − 1

V

dV

dt

)
F − V F †. (A.38)

If we consider a classical signal, namely a = 〈a〉, 〈b〉 = Ee−iβΩ0t, and 〈c〉 = 0, and apply
rotating wave approximation in Eq. (A.31) (α ≈ 2, β ≈ 1),

W (t) = iΩ0 +
κ

2
(A.39)

V (t) = iΩ0εe
−iαΩ0t (A.40)

F (t) =
√
κ1Ee

−iβΩ0t (A.41)

we have

d2〈a〉
dt2

+ [κ+ iαΩ0]
d〈a〉
dt

+

[
κ2

4
+ Ω2

0(1− ε2 − α) + iαΩ0
κ

2

]
〈a〉 =

=
√
κ1E

[κ
2

+ i(α− β − 1)Ω0

]
e−iβΩ0t − iεΩ0

√
κ1E

∗e−i(α−β)Ω0t. (A.42)

Now we consider the homogeneous equation for Eq. (A.42), namely

d2〈a〉
dt2

+ [κ+ iαΩ0]
d〈a〉
dt

+

[
κ2

4
+ Ω2

0(1− ε2 − α) + iαΩ0
κ

2

]
〈a〉 = 0. (A.43)

The solution is of the form
〈a〉g = C1e

λ1t + C2e
λ2t, (A.44)
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where

λ1 = −κ+ iαΩ0

2
+ Ω0

√
ε2 −

(α
2
− 1
)2

(A.45)

λ2 = −κ+ iαΩ0

2
− Ω0

√
ε2 −

(α
2
− 1
)2

. (A.46)

Next we consider the special solution of Eq. (A.42). It is given by the following,

〈a〉s = −y1

∫
f(t)y2

∆
dt+ y2

∫
f(t)y1

∆
dt, (A.47)

where

y1 = eλ1t (A.48)

y2 = eλ2t (A.49)

∆ = y1y
′
2 − y2y

′
1

= (λ2 − λ1)e(λ1+λ2)t (A.50)

f(t) =
√
κ1E

[κ
2

+ i(α− β − 1)Ω0

]
e−iβΩ0t − iεΩ0

√
κ1E

∗e−i(α−β)Ω0t. (A.51)

From these equations, we obtain

〈a〉s = Ase
−iβΩ0t + Aie

−i(α−β)Ω0t, (A.52)

where

As =

√
κ1E

[
κ
2

+ i(α− β − 1)Ω0

][
κ
2

+ i(1− β)Ω0

] [
κ
2

+ i(α− β − 1)Ω0

]
− ε2Ω2

0

(A.53)

Ai =
iεΩ0
√
κ1E

∗[
κ
2
− i(1− β)Ω0

] [
κ
2
− i(α− β − 1)Ω0

]
− ε2Ω2

0

. (A.54)

Thus, from Eqs. (A.44) and (A.52), the solution of Eq. (A.42) is

〈a〉 = C1e
λ1t + C2e

λ2t + Ase
−iβΩ0t + Aie

−i(α−β)Ω0t. (A.55)

From Eqs. (A.45) and (A.46), the real part of λ2 is always negative, while that of λ1 can
be positive when κ

2
< Ω0

√
ε2 − (α

2
− 1)2, which gives the threshold of pump power for

the divergence,

ε >

√(
κ

2Ω0

)2

+
(α

2
− 1
)2

. (A.56)

Here, we define the critical value of ε as follows,

εc =
κ

2Ω0

=
1

2

(
1

Qext

+
1

Qint

)
. (A.57)
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Now, let us consider the case where λ1 is negative (below threshold). In this case, the
steady state solution of Eq. (A.42) is 〈a〉s. From Eq. (A.29),

〈b〉out = (E −
√
κ1As) e

−iβΩ0t −
√
κ1Aie

−i(α−β)Ω0t. (A.58)

In the case of non-degenerate-mode operation (α 6= 2β), we can define the signal and the
intermodulation gains (Gs and Gi, respectively), which are given by

Gs ≡
∣∣∣∣E −√κ1As

E

∣∣∣∣2 =

∣∣∣∣∣1− κ1

κ
2

+ i(α− β − 1)Ω0[
κ
2

+ i(1− β)Ω0

] [
κ
2

+ i(α− β − 1)Ω0

]
− ε2Ω2

0

∣∣∣∣∣
2

(A.59)

Gi ≡
∣∣∣∣√κ1Ai
E∗

∣∣∣∣2 =

∣∣∣∣∣ κ1εΩ0[
κ
2

+ i(1− β)Ω0

] [
κ
2

+ i(α− β − 1)Ω0

]
− ε2Ω2

0

∣∣∣∣∣
2

. (A.60)

In the case of degenerate-mode operation (α = 2β), equation (A.58) becomes

〈b〉out = (E −
√
κ1As −

√
κ1Ai) e

−iβΩ0t. (A.61)

The phase-dependent gain Gd is given by

Gd ≡
∣∣∣∣E −√κ1As −

√
κ1Ai

E

∣∣∣∣2 =

∣∣∣∣∣1− κ1

κ
2

+ i(β − 1)Ω0 + iεΩ0e
−2iθ

κ2

4
+ (1− β)2Ω2

0 − ε2Ω2
0

∣∣∣∣∣
2

, (A.62)

where E = |E| eiθ. Let us consider a special case, α = 2β = 2. Equation (A.62) leads,

Gd =

(
κ2

1−κ2
2

4
+ ε2Ω2

0

)2

+ ε2κ2
1Ω2

0 − 2εκ1Ω0

(
κ2

1−κ2
2

4
+ ε2Ω2

0

)
sin 2θ(

κ2

4
− ε2Ω2

0

)2 (A.63)

From this formula, Gd for ε = 0 is given by

G0
d =

(
κ1 − κ2

κ1 + κ2

)2

. (A.64)

The minimum gain is achieved when θ = π
4

+ nπ, and given by

Gmin
d =

(
εΩ0 − κ1−κ2

2

εΩ0 + κ1+κ2

2

)2

. (A.65)

The maximum gain is achieved when θ = 3π
4

+ nπ, and given by

Gmax
d =

(
εΩ0 + κ1−κ2

2

εΩ0 − κ1+κ2

2

)2

. (A.66)

Note that in Eqs. (A.65) and (A.66), the condition (κ2
1 − κ2

2)/4 + ε2Ω2
0 > 0 is assumed.

First we define the field operator A as follows,

a = e−i
α
2

Ω0tA. (A.67)

92



The Fourier transform of A is defined by

F [A(t)] ≡ A(ω) =
1√
2π

∫ ∞
−∞

dtA(t)eiωt. (A.68)

Taking the Hermite conjugate,

F †[A(t)] ≡ A†(ω) =
1√
2π

∫ ∞
−∞

dtA†(t)e−iωt. (A.69)

On the other hand, the Fourier transform of A† is given by

F [A†(t)] =
1√
2π

∫ ∞
−∞

dtA†(t)eiωt. (A.70)

Comparing Eqs. (A.69) and (A.70), we obtain

A†(−ω) = F [A†(t)]. (A.71)

Now we start from Eq. (A.23). Substituting Eq. (A.67) into Eq. (A.23), we obtain

dA

dt
+
[(

1− α

2

)
iΩ0 +

κ

2

]
A+ iεΩ0A

† = ei
α
2

Ω0tF (t). (A.72)

Taking the Hermite conjugate of both sides, we obtain

dA†

dt
+
[
−i
(

1− α

2

)
Ω0 +

κ

2

]
A† − iεΩ0A = e−i

α
2

Ω0tF †(t). (A.73)

The Fourier transform of Eq. (A.72) and (A.73) leads to(
−iω − i

(
α
2
− 1
)

Ω0 + κ
2

iεΩ0

−iεΩ0 −iω + i
(
α
2
− 1
)

Ω0 + κ
2

)[
A(ω)
A†(−ω)

]
=

[
F (ω + α

2
Ω0)

F †(−ω + α
2
Ω0)

]
,

(A.74)
where

F (ω) =
√
κ1bin(ω) +

√
κ2cin(ω). (A.75)

From this equation, we obtain
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From Eqs. (A.29) and (A.67),

ei
α
2
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α
2
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κ1A(t), (A.77)

which leads,

bout

(
ω +

α

2
Ω0

)
= bin

(
ω +

α

2
Ω0

)
−
√
κ1A(ω). (A.78)
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From Eqs. (A.76) and (A.78), we obtain
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where
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0
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B Nomenclature and design
parameters of the samples

The Josephson parametric amplifier samples were delivered in a gel-pack, see Fig. B.1.
The sample names arise from the row (a - d) and column (1 - 4) designations. All samples
in one row belong to the same sample category, where Cat.-0-samples are found in row
a, Cat.-1-samples in row b and so forth. Table B.1 shows the design parameters for the
samples.

1 432
a
b
c
d

Figure B.1: The JPA samples were delivered in a gel-pack. The samples highlighted with
a yellow frame were characterized in the course of our measurements.

Cat. Qext Cc Ic/Josephson junction Josephson junction size Squid loop size
(fF) (µA) (µm2) (µm2)

0 30 94 1.0 0.44 x 0.38 4.2 x 2.4
1 100 51 1.0 0.44 x 0.38 4.2 x 2.4
2 300 30 1.6 0.44 x 0.38 4.2 x 2.4
3 300 42 1.6 0.44 x 0.38 4.2 x 2.4

Table B.1: Design values for the different JPA sample categories.
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C Preparation of a sample holder with
Anritsu V102M microwave
connectors

This instruction manual on the preparation of a sample holder with Anritsu V102M
microwave connectors and Anritsu V100 glass beads is based on the author’s experi-
ence. The connector, the glass bead and the alumina boards were assembled exactly as
presented below.

C.1 Integrity check and cleaning

1. Check the dimensions of the sample holders. Check dimensions and positions of
holes and pockets.

2. Carefully remove chips and burrs from holes, threads and faces with tweezers, a
scalpel or a toothpick.

3. Check all via holes for clearance.

4. Check for a tight fit of the sample holder lid.

5. Clean the sample holder in an ultrasonic bath with acetone and isopropanol for five
minutes each. During and after cleaning, do not touch the sample holder with bare
fingers!

6. Check if samples and PCBs fit in their designated pockets. If necessary, carefully
enlarge pockets with a scalpel or a small milling cutter. Repeat the cleaning in the
ultrasonic bath afterwards if enlarging the pockets was necessary.

7. Store the sample holder in a closable container to avoid collecting dust.

C.2 Gold plating

8. Have the sample holder gold-plated. Make sure the plating is not too thick.

9. Check via holes and threads again for clearance and burrs that may have developed
during the plating. Remove burrs if necessary.

10. Check if samples and PCBs still fit in their designated pockets.

97



C.3 Installation of the glass beads

11. If the PCBs have to be installed before the plugs are mounted, insert them into
their designated pocket and carefully screw them.

12. Set hot plate to 200 ± 10◦C. Use an external thermometer to control the tempera-
ture of the hot plate. A metal plate is recommended for better heat transfer.

13. Insert the glass bead long-end first into the holding fixture.

14. Flux the glass bead evenly. Do not flux the pin.

15. Use the holding fixture to hand-screw the bead into the mounting hole. Do not
remove the holding fixture until the bead is soldered!

16. Repeat the last steps until all glass beads are mounted.

17. Check that all pins are centered in their designated via holes at the backside of the
interface. Else remove the glass bead and repeat steps 15 - 17.

18. Insert solder into the soldering access holes and cut it flush with the top of the
holes.

19. Place the sample holder on the hot plate.

20. After the solder melts, leave the sample holder on the hot plate for another 15 - 20
seconds before removing it.

21. Let the sample holder cool down to room temperature.

22. Remove the holding fixtures and check the quality of the soldering. A little amount
of solder has to be visible all around the glass bead when looking from where the
holding fixture was.

23. Clean the sample holder in an ultrasonic bath with a compound of 1:1 acetone and
ethanol for one minute to remove flux remnants. Flush with isopropanol subse-
quently.

24. If necessary, carefully remove residual flux remnants with tweezers or a toothpick
and redo step 23.

C.4 Installation of the Anritsu V102M V Male Sparkplug
Connector

25. Use centering fixture to stabilize the sparkplug insert.

26. Carefully hand-screw the plug into the housing without damaging the glass bead
pin.
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27. Make sure the pin is centered in the plug.

28. Use the Anritsu torque wrench to tighten the plug. The torque wrench has to click
two times.

29. Check again for the centering of the pin at both sides of the plug.
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