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Abstract

Superconducting quantum bits (qubits) coupled to coplanar waveguide resonators have
not only proven to be essential building blocks of quantum information and simulation
architectures, but are also capable of giving deep insight into the physics of light-matter
interaction. In analogy to cavity quantum electrodynamics (QED), where atoms interact
with the light field in an optical cavity, in circuit QED superconducting qubits acting
as ’artificial atoms’ interact with the modes of a quasi-onedimensional superconducting
microwave transmission line resonator. As the mode volumes of these transmission line
resonators are small compared to those of optical cavities and the dipole moments of the
artificial atoms are large compared to those of their natural counterparts, the regime of
strong and even ultrastrong light-matter interaction is easily achieved in circuit QED.

With increasing complexity of today’s experimental setups, a profound understanding
of the coupling mechanisms between the circuit QED building blocks has become a main
research focus. We therefore study the influence of a Josephson junction inserted into a
superconducting line shared between a galvanically coupled superconducting flux qubit
and a transmission line resonator and find a nontrivial relation between the coupling
strength and the junction’s critical current.

For many applications it is not sufficient to engineer the coupling strength to a fixed
value, but the coupling between adjacent circuits must be tunable and switchable in situ
by an external control parameter. The latter becomes even more important in the light of
recent proposals for quantum simulations of many-body physics. In this work, we present
important experimental progress towards the development of a complete toolbox required
for this purpose. In particular, we demonstrate the flux qubit coupler, a circuit QED setup
enabling switchable and tunable coupling between two frequency-degenerate transmission
line resonators mediated by a superconducting flux qubit. We provide a detailed analysis
of the tunable coupling in time and frequency domain and show that the coupling between
two resonators can be reduced by more than one order of magnitude. We show how the
coupling can be tuned by either adjusting the magnetic flux through the qubit loop
or saturating the qubit using a strong drive signal. We discuss the parameter regime for
optimal coupler performance both with respect to resonator input and qubit drive power.
We also show how additional resonant modes originate from the galvanic coupling of the
flux qubit to the resonators and provide a detailed analysis of the mode structure. We
show that one of these resonant modes is even coupled ultra-strongly to the qubit and
present an unambiguous spectroscopic proof of the breakdown of the Jaynes-Cummings
model.





Kurzfassung

An koplanare Wellenleiter-Resonatoren gekoppelte supraleitende Quantenbits (Qubits)
haben sich nicht nur als essentielle Bausteine von Quanteninformations- und -simulations-
architekturen erwiesen, sondern gewähren auch tiefgehende Einblicke in die Physik der
Licht-Materie-Wechselwirkung. In Analogie zur Hohlraum-Quantenelektrodynamik (ca-
vity QED oder kurz CQED), in der Atome mit den quantisierten Moden eines Licht-
feldes in einem optischen Hohlraumresonator interagieren, wechselwirken im Feld der
Schaltkreis-Quantenelektrodynamik (circuit QED oder kurz cQED) supraleitende Quan-
tenbits, die sich wie künstliche Atome verhalten, mit den quantisierten Moden eines
quasi-eindimensionalen, supraleitenden Mikrowellen-Übertragungsleitungsresonators. Da
die Modenvolumina solcher Übertragungsleitungsresonatoren klein im Vergleich zu de-
nen optischer Hohlraumresonatoren sind und die Dipolmomente von künstlichen Ato-
men groß im Vergleich zu denen ihrer natürlichen Gegenstücke sind, kann das Regime
der starken und sogar der ultrastarken Licht-Materie-Wechselwirkung in der Schaltkreis-
Quantenelektrodynamik leicht erreicht werden.

Mit zunehmender Komplexität heutiger Versuchsanordnungen ist ein tiefgreifendes
Verständnis der Kopplungsmechanismen zwischen den einzelnen Bausteinen der Schalt-
kreis-QED zu einem zentralen Forschungsschwerpunkt geworden. Deshalb untersuchen
wir den Einfluss eines Josephson-Kontaktes, der sich in dem gemeinsamen Zweig eines
galvanisch gekoppelten Flussquantenbits und eines Übertragungsleitungsresonators befin-
det, und finden einen nichttrivialen Zusammenhang zwischen der Kopplungsstärke und
dem kritischen Strom des Kontaktes.

Für viele Anwendungen ist es jedoch nicht ausreichend, die Kopplungsstärke konstruk-
tiv auf einen vorgegebenen Wert einzustellen. Es ist vielmehr notwendig, die Kopplungs-
stärke zwischen angrenzenden Schaltkreisen in situ mit Hilfe eines von außen einstell-
baren Kontrollparameters abstimmen und schalten zu können. Dies ist insbesondere vor
dem Hintergrund jüngster Exposés zu Quantensimulationen im Bereich der Vielteilchen-
Physik von großer Bedeutung. In dieser Arbeit stellen wir wichtige experimentelle Fort-
schritte hin zur Realisierung eines Baukastens zu diesem Zweck vor. Insbesondere de-
monstrieren wir den Flussquantenbitkoppler, einen Schaltkreis-QED-Versuchsaufbau, der
eine über ein supraleitendes Flussquantenbit vermittelte schaltbare und abstimmbare
Kopplung zwischen zwei frequenzentarteten Übertragungsleitungsresonatoren ermöglicht.
Wir stellen eine detaillierte Analyse der abstimmbaren Kopplung in der Zeit- und Fre-
quenzdomäne zur Verfügung und zeigen, dass die Kopplung zwischen zwei Resonatoren
um mehr als eine Größenordnung reduziert werden kann. Wir zeigen, dass die Kopp-
lung entweder durch Anlegen eines magnetischen Flusses am Qubit oder durch Anre-
gung des Qubits mittels eines starken Mikrowellensignals abgestimmt werden kann. Wir
diskutieren den Parameterraum im Hinblick auf Resonator-Eingangsleistung und Qubit-
Anregungsleistung, bei dem die optimale Leistungsfähigkeit des Kopplers erreicht wird.
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Wir zeigen auch, dass die galvanische Kopplung des Flussqubits an die beiden Resonato-
ren zur Entstehung von zusätzlichen resonanten Moden führt und stellen eine detaillierte
Untersuchung der Modenstruktur zur Verfügung. Wir zeigen darüber hinaus, dass eine
dieser Moden ultrastark an das Qubit gekoppelt ist und weisen nach, dass in diesem Fall
eine Beschreibung mit dem Jaynes-Cummings-Modell nicht mehr möglich ist.
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Introduction

Over the last decade, the research field of circuit quantum electrodynamics (QED) has

evolved into a powerful experimental platform for the study of light-matter interaction,

fundamental aspects of quantum mechanics, quantum information processing and, re-

cently, also quantum simulation [1, 2]. It was already shown in the late 1990s that

quantum two-level systems, referred to as quantum bits or qubits, can be realized by

macroscopic devices comprised of billions of atoms and electrons and that coherent con-

trol of quantum states can be done by means of such devices [3, 4]. The field of circuit

QED started with the seminal work of Wallraff et al. [5] when a Cooper pair box qubit

[6] was coupled to a superconducting microwave transmission line resonator. This ex-

periment can be seen as the first solid-state implementation of the prototypical cavity

quantum electrodynamics experiment where the light field confined in a three-dimensional

optical cavity interacts with a single atom [7–11]. Achieving the regime of strong coupling,

where the coupling strength between light field and atom is large compared to the decay

rates of the atom and the optical cavity, is hard to achieve in the cavity QED architecture

due to the large mode volumes of the three-dimensional optical cavities and the small

dipole moments of atoms. In the field of circuit QED, however, the small mode vol-

umes of quasi-one-dimensional superconducting resonators in combination with the large

dipole moments of the micrometer-sized quantum bits make the regime of strong cou-

pling easily achievable even if decay rates of the artificial solid-state atoms are significant.

As a consequence, it was soon recognized that the circuit QED architecture provides

all necessary components to reach the long-term goal of realizing a universal quantum

computer based on five criteria formulated by DiVincenzo [12]. In the early years of cir-

cuit QED, an important task was the development of different types of superconducting

qubits with long coherence times. Today, the most widespread types are the transmon

qubit [13–15], where the quantum information is encoded into different excitation states

of a nonlinear superconducting LC-resonator and the flux qubit [16–19] where the qubit

states are symmetric and antisymmetric superpositions of clock- and counter-clockwise

circulating persistent currents in a superconducting loop intersected by three or four

Josephson junctions. Improved fabrication methods for both qubits and resonators pro-

vided coherence times long enough to implement single- and multiple qubit gates [20–23]
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2 Introduction

and to perform proof-of-principle experiments representing important steps towards a

universal quantum computation architectures. The latter include protocols for prime

factor calculation [24] or quantum error correction [25, 26]. Furthermore, specialized

qubit designs have been introduced [27] as the main building block of the surface code

[28, 29] which, as of today, seems to be the most promising architecture for a universal

quantum computer. The next critical steps towards a universal quantum computer are

the realization of a logical memory with longer lifetimes than physical qubits and opera-

tions on logical qubits [2].

However, the applications of the circuit QED architecture are not limited to quan-

tum information processing. The quantum mechanical resemblance of quantum bits to

atoms allows to gain insight into fundamental aspects of quantum mechanics such as

nonclassical states of light [30–32], entanglement [33, 34], quantum teleportation [35, 36]

or regimes of light-matter-interaction not accessible with atoms [37–39]. Furthermore,

the circuit QED architecture also allows to model quantum systems which are difficult

or even impossible to study in the laboratory and are impossible to simulate using clas-

sical computers [40, 41]. A good example is the dynamical Casimir effect [42], where a

superconducting circuit is used to model a mirror undergoing relativistic motion. Today,

one major focus of quantum simulation is many-body physics of interacting spin systems

[43–46] described by the Bose-Hubbard model [47] which aims at observing the transition

between the Mott insulator regime and the regime of superfluidity [48, 49]. Furthermore,

there is a proposal to simulate the regime of ultrastrong coupling with a standard circuit

QED setup [50]. Such a simulation can not only be used to gain further insight into

physics beyond the Jaynes-Cummings-model [51], but the fact that this regime can also

be accessed directly in experiments [37, 39] also allows to compare the predictions of

quantum simulations with experimental findings.

With increasing experimental complexity and the demand to integrate more and more

components such as qubits and resonators into the respective setups, the coupling be-

tween individual building blocks has become a very important research topic in circuit

QED. One main focus is on engineering the coupling strength between qubits and res-

onators. A good example is the coupling strength between a flux qubit and a transmission

line resonator which can be engineered in a range spanning several orders of magnitude

[52] by coupling the qubit either non-galvanically or galvanically to the signal line of

the resonator. In the latter case, the coupling strength can be enhanced by inserting

an additional Josephson junction into the shared branch between qubit and signal line

[37, 51]. However, a systematic study of the coupling strengths in galvanically coupled

qubit-resonator systems has yet to be done. Furthermore, the maximum qubit-resonator
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coupling strength that can be achieved in circuit QED still has to be determined.

Recent proposals for quantum simulation protocols and progress in quantum infor-

mation and communication lead to increased demand for tunable coupling between in-

dividual circuit QED building blocks [48, 49]. While the coupling between qubits and

resonators can be switched off by tuning the qubit away from the resonator [24, 25, 29],

dedicated coupler circuits are required to realize tunable and switchable coupling between

two fixed-frequency devices such as resonators. For instance, single Josephson junctions

and SQUIDs have been used as coupler circuits since their inductance can take negative

values and can therefore compensate the mutual inductance between inductively coupled

circuit QED building blocks. Furthermore, their inductance can be tuned using external

control parameters such as bias currents or external magnetic flux. In this way, the catch

and release of photons in a microwave resonator has been demonstrated [53, 54]. Further-

more, Josephson junctions and SQUIDs have also been used as tunable couplers between

two qubits [27, 55–57] or between a single qubit and a resonator [58]. In this work, we

report on the successful realization of the flux qubit coupler, a device allowing for tunable

and switchable coupling between frequency-degenerate transmission line resonators.

This thesis is divided into four parts. In chapter one, we introduce the theoretical

foundations of circuit quantum electrodynamics. We provide a detailed description of

the building blocks relevant for our work, namely transmission line resonators and su-

perconducting flux qubits. The dipolar interaction between the latter is described by

the quantum Rabi model which, in the case of sufficiently small coupling strengths, can

be approximated by the renowned Jaynes-Cummings-model. Coupling a flux qubit to

two frequency-degenerate, geometrically coupled transmission line resonators constitutes

the quantum switch architecture. We provide a detailed description of the corresponding

Hamiltonian and discuss how the flux applied to the qubit and the qubit population can

be used to tune and switch the coupling between the two resonators.

In the second chapter, we discuss the experimental techniques required for our measure-

ments. The samples investigated in the course of this thesis are operated at millikelvin

temperatures which requires complex experimental setups allowing us to deliver dc and

microwave signals from room temperature to the samples and also demand specialized

techniques for signal detection. We show how the characteristic transition frequencies of

coupled qubit-resonator systems can be inferred from transmission spectroscopy measure-

ments and how time-domain measurements provide access to the coherence properties of

our quantum bits.



4 Introduction

In chapter three, we study a flux qubit coupled galvanically to the signal line of a

transmission line resonator where the coupling strength is determined by an additional

Josephson junction inserted into the shared branch between qubit and resonator signal

line. Our findings show that there is a nontrivial dependence of the coupling strength

on the critical current of the coupling Josephson junction. This provides a starting point

for further systematic studies of galvanically coupled qubit-resonator systems with and

without coupling junction. Furthermore, we test our time-domain spectroscopy setup by

characterizing the energy decay rate of our qubit.

In the last chapter, we demonstrate tunable and switchable coupling between two

frequency-degenerate transmission line resonators. In our setup, a flux qubit is coupled

galvanically to the signal lines of two coplanar stripline resonators. We first perform a

spectroscopic characterization of our sample and find that the galvanic coupling gives rise

to a resonant mode which is coupled ultrastrongly to the qubit. With the demonstration

of physics beyond the Jaynes-Cummings model, our sample provides interesting insights

into the regime of ultrastrong light-matter interaction and also represents an important

step towards a systematic understanding of galvanically coupled qubit-resonator systems.

Finally, we show that the coupling between the two resonators can be tuned over more

than one order of magnitude by varying the magnetic flux applied to the qubit and

can be switched to the desired coupling strength by varying the qubit population. In

this way, we demonstrate the working principle of the quantum switch architecture and

our measurement results suggest that our work indeed adds the missing tool of tunable

coupling between frequency-degenerate transmission line resonators to the circuit QED

toolbox.



Chapter 1

Superconducting quantum circuits

Circuit quantum electrodynamics (QED) has become a versatile toolbox for quantum

information processing, quantum simulation and the study of light-matter interaction

and fundamental aspects of quantum mechanics. The circuit QED architecture is based

on two classes of superconducting circuits, namely linear circuits such as resonators and

nonlinear circuits such as quantum bits. In this chapter we will lay the theoretical foun-

dations necessary to understand how macroscopic circuits with dimensions ranging from

the nanometer to the centimeter range can exhibit quantum mechanical behaviour and

resemble microscopic entities such as natural atoms studied in the field of cavity QED.

We begin with a short introduction to superconductivity before introducing the most

important linear element in the circuit QED architecture, the coplanar waveguide res-

onator. Subsequently, the superconducting flux qubit is introduced and its quantum me-

chanical description is provided. In Sec. 1.4, the theoretical framework of circuit QED is

discussed and the coupling between a linear quantum mechanical oscillator and a two-level

system is studied in detail. Adding a second resonator interacting with both the qubit

and the first resonator constitutes the prototypical circuit for the field of two-resonator

circuit QED. We will see how the qubit can be used to tune and switch the coupling

between the two resonators and how the quantum nature of the qubit can be exploited

to generate non-classical states such as Greenberger-Horne-Zeilinger or Schrödinger Cat

states.

1.1 Superconductivity

The effect of superconductivity was discovered in 1911 when Heike Kamerlingh Onnes

investigated the temperature dependence of the resistance of mercury and found that

it drops to an immeasurably small value below a certain temperature [59]. Today, this

characteristic temperature is called the transition temperature Tc and the transition to

the superconducting phase has been observed in a wide range of materials. The transi-

5
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tion temperatures for two materials widely used in the field of circuit QED, niobium and

aluminum, are given by1 Tc,Nb = 9.2 K and Tc,Al = 1.2 K.

The charge carriers of the superconducting phase are strongly correlated electrons re-

ferred to as Cooper pairs. Quantum mechanically, the state of the Cooper pair condensate

can be described by a macroscopic wave function given by

Ψsc(r,t) =
√
ns(r,t)e

ıθ(r,t), (1.1)

where ns is the density of Cooper pairs and θ(r,t) is the phase of the wave function Ψsc.

At T = 0, for weak coupling superconductors such as Al the quasiparticle energy spectrum

is separated by the energy gap ∆sc(0)≈ 1.76 kBTc, where kB is the Boltzmann constant.

For aluminum, this yields an energy gap of 2∆sc,Al(0)≈ 88 GHz × h which is well above

typical transition frequencies of aluminum based quantum circuits which are typically on

the order of several gigahertz. However, most circuit QED experiments are conducted

at finite temperatures below approx. 100 mK. The strong temperature dependence of

the Cooper pair density ensures that the number of quasiparticles, i.e. (thermally) split

Cooper pairs, with a continuous excitation spectrum is negligible for T > 0 as long as

T �Tc.

The relation between the supercurrent density [61]

Js = qsns(r,t)

(
~
ms

∇θ(r,t)− qs

ms

A(r,t)

)
, (1.2)

where ms and qs are the mass and charge of a Cooper pair and A is the magnetic vector

potential, and the electromagnetic field in a superconductor is given by the London

equations

∂ΛJs

∂t
= E, (1.3)

∇× (ΛJs) + b = 0, (1.4)

in which Λ =ms/(nsq
2
s ) is the London coefficient, E is the electric field and b is the

magnetic flux density. A notable consequence of these equations is that magnetic fields

are expelled from the insides of superconductors, i.e. b = 0, when cooled down below

their transition temperature. However, near the surface the magnetic flux density is not

completely cancelled, but decays exponentially towards the inside of the superconductor.

1The stated values are valid for bulk material. We note that the transition temperatures increase for
thin Al films [60]. However, for the samples discussed in this thesis the film thicknesses justify using
the transition temperatures of the respective bulk materials.
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The corresponding length scale is given by the London penetration depth,

λL =

√
ms

µ0nsq2
s

, (1.5)

where µ0 is the vacuum permeability. For bulk aluminum, the London penetration depth

is 16 nm [62], however, we note that its effective value increases dramatically for thin films.

For the particular 90 nm thin Al films used in this work, one finds λL,Al,90nm≈ 190 nm [63].

1.2 Coplanar waveguide resonators

In architectures for quantum information processing, resonators serve two main purposes.

On the one hand, they act as quantum buses transferring quantum information, i.e. data

encoded in photonic states, from one building block to another. On the other hand,

resonators are used to store quantum information. In experiments, mostly resonators in

a quasi-one-dimensional transmission line geometry fabricated in thin-film technology on

dielectric substrates are used. We start with a classical description of transmission lines

and introduce their characteristic parameters. We present two important transmission

line resonator designs, namely the coplanar waveguide and the coplanar stripline res-

onator.

If a resonator is cooled down to low temperatures T such that ~ωR� kBT , where ωR

is the resonant frequency and kB is the Boltzmann constant, classical electric quantities

such as magnetic flux and electric charge are promoted to quantum mechanical operators

and the resonator can be modeled as a quantum harmonic oscillator. Finally, we discuss

the case of two coupled resonators and give a short introduction to input-output theory,

a powerful mathematical tool allowing to calculate the scattering parameters of coupled

resonators analytically.

1.2.1 Transmission line theory

Electrically conductive structures designed to carry alternating currents at radio fre-

quencies are subsumed under the term transmission lines. As the wavelengths of the

transmitted signals typically are on the same order of magnitude as the physical dimen-

sions of the transmission line, electrical quantities such as voltages and currents can vary

over its length [64]. Therefore, transmission lines are referred to as distributed element

circuits in contrast to lumped element circuits whose electrical components such as induc-

tors, capacitors or resistors exhibit physical dimensions which can be treated point-like

as compared to the wavelengths of the transmitted electrical signals.
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Dz

LlDz

ClDz GlDz

RlDz

+

-

V(z, t)

+

-

V(z+∆z, t)

I(z, t) I(z+∆z, t)

Figure 1.1: Distributed element representation of a transmission line. The transmission line
is subdivided into parts of length ∆z with a series inductance per unit length Ll
and a series resistance per unit length Rl. The connection to ground (lower line)
is modeled by a shunt capacitance per unit length Cl and a shunt conductance per
unit length Gl. Voltage and current vary over the length of the transmission line.

Schematically, a transmission line can be represented as a two-wire line as shown in

Fig. 1.1. A short section of length ∆z can be modeled as lumped element circuit with a

series inductance per unit length Ll representing the self inductance of the two conduc-

tors and a series resistance per unit length Rl taking into account the finite conductivity

of the inductors. The shunt capacitance per unit length Cl arises from the close proxim-

ity of the two conductors. Dielectric losses in the material surrounding the conductors

are represented by a shunt conductance per unit length Gl. For superconducting trans-

mission lines and low-loss dielectric materials as discussed in the course of this thesis,

Rl and Gl can be neglected. For a detailed description of transmission line theory and

waveguide designs, we refer to Refs. [64–66]. In what follows, we restrict ourselves to the

most relevant results needed throughout this thesis.

The phase velocity of electromagnetic waves propagating along a loss-free transmission

line is given by [67]

vph =
c
√
εeff

=
1√
LlCl

, (1.6)

where c is the speed of light in vacuum and εeff is the effective dielectric constant. The

latter is a function of the transmission line geometry and the relative permittivity of the

dielectric surrounding the conductors of the transmission line [68]. The characteristic

impedance Z0 of a transmission line is given by

Z0 =

√
Ll
Cl
. (1.7)

The characteristic impedance is a very important quantity since it defines the reflec-

tion coefficient Γ at the transition between two transmission lines with characteristic



1.2 Coplanar waveguide resonators 9

impedances Z1 and Z2, respectively, and is given by [64]

Γ =
Z2 − Z1

Z2 + Z1

. (1.8)

Most microwave equipment is designed to have a characteristic impedance of 50 Ω. Hence,

all microwave components fabricated in-house should also be designed to that character-

istic impedance in order to minimize reflections.

1.2.2 Transmission line resonators

A transmission line resonator is formed by adding boundary conditions to a section of a

transmission line with finite length l. In the course of this thesis, we restrict ourselves

to the case where the boundary conditions are formed by two identical capacitors Cc

inserted into the signal line coupling the transmission line to an external load RL. The

distributed element representation of a capacitively coupled transmission line resonator

[67] is shown in Fig. 1.2. This results in the formation of standing waves with current

LlDz RlDz

ClDz GlDzRL

Cc Cc

RL

l

RL

Cc Cc

RLL C R

(a)

(b)

Figure 1.2: (a) Distributed element representation of a transmission line resonator. The res-
onator (length l, highlighted by the green rectangles) is coupled symmetrically to
an external load RL via the coupling capacitors Cc (grey rectangles). (b) Parallel
LCR-representation of the transmission line resonator.

nodes at the position of the coupling capacitors. The only modes fulfilling this boundary

condition are those with wavelengths

λn =
2l

n
, (1.9)
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where n is a non-negative integer. Since the length l of the resonator matches half the

wavelength of the fundamental resonant mode, a transmission line coupled capacitively

on both sides is also called half-wavelength resonator or λ/2-resonator. Using Eq. (1.6),

we can calculate the resonant frequency of the n-th mode as

fn =
ωn
2π

=
vph

λn
= n

c

2l
√
εeff

=
n

2l
√
LlCl

=
n

2
√
L̃C̃

, (1.10)

where L̃≡Lll is the total inductance and C̃ ≡Cll is the total capacitance of the trans-

mission line resonator. We note that large coupling capacitors Cc shift the resonance

frequency of the n-th mode by [67]

δω ≈ −ωn
Cc

C
. (1.11)

Close to resonance, the transmission line resonator can be modeled as a lumped element,

parallel LCR-circuit as shown in Fig. 1.2(b). The inductance Ln, capacitance C and

resistance R modeling the resonant mode n are given by [67]

Ln =
2Lll

n2π2
, (1.12)

C =
Cll

2
, (1.13)

R =
Z0

αl
, (1.14)

where we introduce the attenuation constant α. We note that α= 0 for a lossless transmis-

sion line resonator. Neglecting the frequency shift introduced by the coupling capacitors,

the resonant frequency of the mode n is then given by ωn =1/
√
LnC.

Another very important characteristic quantity of a resonator is its quality factor Q.

The general definition for a mode with resonant frequency ωn is given by [64]

Q = ωn
time-average energy stored

energy loss per second
. (1.15)

Introducing the decay rate of each resonant mode γn = 2πδfn, the corresponding quality

factor is given by

Qn =
fn
δfn

=
ωn
κn
. (1.16)

In most experiments, all resonators are connected to external circuitry, in most cases

by means of coupling capacitors. The energy loss per second in Eq. (1.15) then is a
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combination of internal energy loss mechanisms and transfer of energy to that external

circuitry. The former are taken into account by the internal quality factor Qint and the

latter by the external quality factor Qext. The quality factor taking into account both

loss channels is referred to as loaded quality factor QL and is given by [64]

1

QL

=
1

Qint

+
1

Qext

. (1.17)

The internal quality factor is linked to the attenuation constant α by Qint =nπ/2αl. For

a detailed description of the various loss mechanisms we refer the reader to Refs. [67, 69–

71]. The external quality factor can be engineered to the desired value by adjusting the

coupling capacitors Cc. If QL is governed by the external quality factor, i.e. Qext�Qint,

the resonator is referred to as overcoupled. Contrarily, if internal losses dominate over the

transfer of stored energy to the feed lines via the coupling capacitors (i.e. Qext�Qint),

the resonator is referred to as undercoupled [67]. Today, the highest internal quality fac-

tors that can be reached with coplanar transmission line resonators exceed one million2

[72]. Thus far, higher internal quality factors can only be reached in the emerging field

of three-dimensional circuit QED, where 3D-cavities with Qint = 7.4 · 108, corresponding

to a photon lifetime of 10 ms, have been demonstrated [73].

The (loaded) quality factor also manifests itself in transmission measurements through

the resonator. Each resonant mode n exhibits a Lorentzian line shape given by

FLor,n(f) = An
δfn

(f − fn)2 + δf 2
n/4

(1.18)

where fn is the resonant frequency, An is the insertion loss and δfn is the full width at

half maximum of the resonance.

1.2.2.1 Kinetic inductance

We briefly come back to the inductance per unit length indicated in Fig. 1.1. For su-

perconducting lines, it is comprised of a purely geometric contribution and the kinetic

inductance. While the former accounts for the electric energy stored external to the con-

ductor, the latter accounts for the kinetic energy of the charge carriers of the supercurrent

[74]. For superconducting lines with dimensions much larger than the London penetra-

tion depth λL, the kinetic contribution to the inductance per unit length can typically

be neglected. However, for thin superconducting lines the kinetic inductance Lkin has to

2We note that the achievable quality factors depend strongly on resonant frequency and material of the
respective coplanar transmission line resonators.
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be taken into account and is given by [74–76]

Lkin = µ0λ
2
L

l

S
, (1.19)

where l is the length and S is the cross section of the line.

1.2.2.2 Coplanar waveguide resonator

In the field of circuit QED, one of the most widespread transmission line resonator designs

is the coplanar waveguide resonator (CPW). It is sketched in Fig. 1.3. The signal line

is realized as a thin strip line of width W whose ends form one half of the capacitors

determining the coupling to the feed lines. The ground planes are separated by a distance

G from the signal line and are wide enough that they can be treated as semi-infinite

[66]. Signal line and ground planes are fabricated on a dielectric substrate with relative

dielectric constant εr. Since the resonator is typically mounted inside a box made of

conducting material (e.g. gold-plated copper), we consider an additional ground plane on

the back side of the substrate. This architecture is referred to as conductor-backed CPW.

We note that the theoretical model described above is only valid if all ground planes are

at the same electrical potential. In experiments, this is ensured by connecting all ground

planes with low-resistance electric conductors such as bond wires.

(a) (b)

h

t

er

W
G

Figure 1.3: The conductor-backed coplanar waveguide resonator. (a) Top view. The signal
line is shown in green, the feed lines in orange, the ground planes in blue, and the
dielectric substrate in grey. Subfigure (b) shows the cut along the dashed black
line. (b) Side view. The lower ground plane (shown in blue) takes the effects of a
conducting sample package into account. The space above the top ground planes
and the signal line is assumed to be vacuum.

In order to design the CPW to the desired frequency and impedance, the effective

dielectric constant εeff , cf. Eq. (1.10) has to be known. For the conductor-backed CPW,

it can be calculated analytically following Ref. [68] from the CPW geometry and the

substrate relative dielectric constant εr.
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1.2.2.3 Coplanar stripline resonator

The coplanar stripline resonator layout is very similar to that of the CPW. The only

qualitative difference is that one of the two ground planes is missing, see Fig. 1.4. We

will see in Sec. 4.1 why this layout is advantageous in certain scenarios. Again, there are

analytical expressions allowing to calculate resonant frequency and impedance from εr of

the substrate and the geometry of the coplanar stripline [77].

(a) (b)

h

t

er

W
G

Figure 1.4: The conductor-backed coplanar stripline resonator. In contrast to the conductor-
backed CPW, it misses one of the semi-infinite ground planes. (a) Top view.
(b) Side view, cut along the dashed black line.

1.2.3 Quantum mechanical description

Thus far, the distributed transmission line resonator has been modeled as a parallel

lumped element circuit as shown in Fig. 1.2(b). Next, we turn to a quantum mechanical

description where electric quantities are represented by quantum mechanical operators.

The derivation presented below follows mainly Ref. [78].

The classical Hamiltonian of the lossless parallel LC-circuit is given by

HLC =
Φ2

2L
+

q2

2C
(1.20)

where Φ =LI is the flux through the inductor. The potential energy of the capacitor

is (q− q0)2/2C, where q0 is the offset charge of the capacitor. The current through

the inductor and the voltage at the node connecting the inductor and the capacitor are

obtained from Hamilton’s equations of motion,

q̇ =
∂HLC

∂Φ
=

Φ

L
= I, (1.21)

Φ̇ = −∂HLC

∂q
= − q

C
= V. (1.22)
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The quantities q and Φ correspond to generalized canonical position and momentum

variables. Hence, they can be mapped to quantum mechanical operators q̂ and Φ̂ obeying

the commutation relation

[Φ̂,q̂] = −ı~. (1.23)

With the resonant frequency ωR = 1/
√
LC, we find

ĤLC = ~ωR

(
â†â+

1

2

)
. (1.24)

The bosonic annihilation and creation operators are given by

â = +ı
1√

2L~ωR

Φ̂ +
1√

2C~ωR

q̂, (1.25)

â† = −ı 1√
2L~ωR

Φ̂ +
1√

2C~ωR

q̂, (1.26)

obeying the commutation relation

[â,â†] = 1. (1.27)

Using the above equation and the characteristic impedance of Eq. (1.7), we can express

the charge and flux operators in terms of the annihilation and creation operators as

q̂ =

√
~

2Z0

(â† + â) and (1.28)

Φ̂ = ı

√
~Z0

2
(â† − â) (1.29)

in analogy to a massive particle moving in a harmonic potential [79].

1.2.4 Coupled resonators

We consider the scenario depicted in Fig. 1.5 where two resonators A and B with identical

resonant frequency ωR are coupled. Depending on the current and voltage distribution

in the resonators, the coupling can be of capacitive (for nonzero voltages) or inductive

(for nonzero currents) nature or can be a combination of both. The coupling rate, here

and in what follows denoted by gAB, is assumed to be small compared to the resonant

frequency. The Hamiltonian of the two coupled resonators then reads

ĤRR = ~ωR

(
â†â+

1

2

)
+ ~ωR

(
b̂†b̂+

1

2

)
+ ~gAB

(
âb̂† + â†b̂

)
, (1.30)

in which â (b̂) and â† (b̂†) denote the annihilation and creation operators of resonator A

(B).
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resonator A

resonator B

gAB

a1,in(t)

a(t)

b(t)

a2,in(t)

a1,out(t) a2,out(t)

b1,in(t) b2,in(t)

b1,out(t) b2,out(t)

1 2

3 4

Figure 1.5: Two coupled resonators A and B. The coupling strength is given by gAB. The
encircled numbers are used to identify the ports and thus the S-parameters of the
coupled resonators. The internal fields of resonator A and B are denoted by a(t)
and b(t), respectively. The corresponding input (output) fields are denoted by a1,2,in

(a1,2,out) for resonator A and analogously for resonator B.

The Hamiltonian of Eq. (1.30) can be diagonalized introducing the operators

ĉ± =
1√
2

(
â± b̂

)
and ĉ†± =

1√
2

(
â† ± b̂†

)
, (1.31)

yielding

ĤRR = ~(ωR − gAB)

(
ĉ†−ĉ− +

1

2

)
+ ~(ωR + gAB)

(
ĉ†+ĉ+ +

1

2

)
. (1.32)

This result corresponds to a linear combination of two harmonic oscillators with resonant

frequencies ωR ± gAB. The eigenmodes ĉ− and ĉ+ correspond to in-phase and out-of-

phase oscillating currents in the resonators and are referred to as the parallel mode and

antiparallel mode, respectively.

Next, we analyze the scattering parameters, i.e. the frequency response of two coupled

resonators. To this end, we use input-output theory as presented in Ref. [80].

We define the Fourier components of the fields â(t) and b̂(t) inside the resonators A

and B as

â(t) =
1√
2π

∞∫
−∞

eıω(t−t0)â(ω)dω (1.33)

b̂(t) =
1√
2π

∞∫
−∞

eıω(t−t0)b̂(ω)dω. (1.34)

The Fourier components of the input and output fields are defined in the same way. We
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denote the Fourier components of the input fields by â1,in and â2,in for resonator A and

by b̂1,in and b̂2,in for resonator B, cf. Fig. 1.5. Furthermore, we no longer restrict ourselves

to the case of identical resonators, instead, we consider two resonators with resonant

frequencies ωA and ωB and decay rates κA and κB. However, we assume equal coupling

rates to the two feed lines for both resonators. Again, we denote the coupling between

the resonators by gAB. The Hamiltonian of the two coupled resonators then reads

ĤAB = ~ωA

(
â†â+

1

2

)
+ ~ωB

(
b̂†b̂+

1

2

)
+ ~gAB

(
âb̂† + â†b̂

)
, (1.35)

Following Ref. [80], the Heisenberg equations of motion for the fields inside resonators A

and B read

dâ(t)

dt
= − ı

~
[â(t),ĤAB]− κAâ(t) +

√
κAâ1,in(t) +

√
κAâ2,in(t) (1.36)

db̂(t)

dt
= − ı

~
[b̂(t),ĤAB]− κBb̂(t) +

√
κBb̂1,in(t) +

√
κBb̂2,in(t). (1.37)

The commutators are calculated to

[â(t),ĤAB] = ~ωAâ(t) + ~gABb̂(t) and (1.38)

[b̂(t),ĤAB] = ~ωBb̂(t) + ~gABâ(t), (1.39)

yielding a system of two coupled differential equations:

0 = −ı(ωA − ω)â(t)− κAâ(t)− ıgABb̂(t) +
√
κAâ1,in(t) +

√
κAâ2,in(t)

0 = −ı(ωB − ω)b̂(t)− κBb̂(t)− ıgABâ(t) +
√
κBb̂1,in(t) +

√
κBb̂2,in(t) (1.40)

The relations between input and output fields are given by

â1,out(t) + â1,in(t) =
√
κAâ(t),

â2,out(t) + â2,in(t) =
√
κAâ(t),

b̂1,out(t) + b̂1,in(t) =
√
κBb̂(t),

b̂2,out(t) + b̂2,in(t) =
√
κBb̂(t). (1.41)

To derive the scattering parameters of the coupled resonators, we identify the classical

input (output) fields a1,in(out), a2,in(out), b1,in(out) and b2,in(out) with the complex envelope

functions of the corresponding field operators [81, 82]. Furthermore, we assume that an

input field is applied only to port 1, cf. Fig. 1.5, and the input fields at all other ports

are zero, i.e. a2,in(t) = b1,in(t) = b2,in(t) = 0. With these boundary conditions, the coupled
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differential equations (1.40) can be solved analytically, yielding the expressions

S11 =

∣∣∣∣a1,out

a1,in

∣∣∣∣ =

∣∣∣∣ −g2
AB + (ω − ωA)(ω − ωB + ıκB)

g2
AB − (ω − ωA + ıκA)(ω − ωB + ıκB)

∣∣∣∣ (1.42)

S21 =

∣∣∣∣a2,out

a1,in

∣∣∣∣ =

∣∣∣∣ κA(ı(−ω + ωB) + κB)

g2
AB − (ω − ωA + ıκA)(ω − ωB + ıκB)

∣∣∣∣ (1.43)

S31 =

∣∣∣∣b1,out

a1,in

∣∣∣∣ =

∣∣∣∣ gAB
√
κAκB

g2
AB − (ω − ωA + ıκA)(ω − ωB + ıκB)

∣∣∣∣ (1.44)

S41 =

∣∣∣∣b2,out

a1,in

∣∣∣∣ =

∣∣∣∣ gAB
√
κAκB

g2
AB − (ω − ωA + ıκA)(ω − ωB + ıκB)

∣∣∣∣ . (1.45)

Figure 1.6 shows theoretical calculations for the S-parameters S21 and S31 of two cou-

pled resonators. In Fig. 1.6(a), identical resonators are assumed. Two transmission

maxima at ωA± gAB =ωB± gAB with identical relative transmission are observed. In

Fig. 1.6(b), however, we assume unequal resonant frequencies while we leave the other

parameters unchanged. Still, we observe two transmission maxima, however, there is no

analytic solution for their frequencies and the respective relative transmissions.

Next, we discuss the transmission minimum of S21 referred to as antiresonance [83].

It occurs at ω=ωB, cf. Eq. (1.43). In the same way, if also S34, i.e. the transmission

through resonator B, is experimentally accessible, the bare resonant frequencies of both

resonators can be determined with high precision as shown in Fig. 1.6(d). We will use

these findings to characterize the flux qubit tunable coupler in Sec. 4.2.1.

1.3 Superconducting three Josephson junction flux qubit

Even though linear superconducting devices such as transmission line resonators show

quantum mechanical behaviour, they are not sufficient for most quantum information

processing applications. To this end, non-linear devices have to be used. Today, one of

the most important building blocks of the circuit QED architecture is the Josephson junc-

tion since it represents the only known electronic element which is both dissipationless

and non-linear [84]. After a short introduction to Josephson physics and flux quantisa-

tion, we introduce the flux qubit, a superconducting loop intersected by three Josephson

junctions. In this circuit, the quantum states correspond to symmetric and antisymmet-

ric superpositions of clockwise and counterclockwise persistent currents. In contrast to

another widely used quantum bit, the transmon [13, 14], the flux qubit comes very close

to an ideal quantum mechanical two-level-system as, due to the large anharmonicity of
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Figure 1.6: Theoretical transmission spectra through two coupled resonators. The S-parameter
nomenclature follows the definition shown in Fig. 1.5. (a) Identical resonators with
ωA =ωB = 5 GHz and κA =κB = 1 MHz. Two transmission maxima can be identi-
fied. They correspond to in-phase (solid arrow) and out-of-phase (dashed arrow)
oscillating currents in the resonators. The antiresonance (AR) is located in the
center between the two peaks. (b) Current distribution for the parallel (top) and
antiparallel (bottom) first harmonic modes. (c) Theoretical S21 and S31 transmis-
sion spectra for two resonators with unequal resonant frequency (ωA = 5.01 GHz,
ωB = 5 GHz, κA =κB = 1 MHz). The antiresonance allows for a precise determina-
tion of ωB. (d) Same as (c) for S43 and S13. The antiresonance occurs at ωA.

the flux qubit potential, the third energy level is far detuned and not relevant in most

experiments.

1.3.1 Josephson effect

The Josephson effect describes the tunneling of Cooper pairs through a thin insulating

barrier separating two superconductors. It was postulated in 1962 by Brian D. Josephson

[85] and demonstrated experimentally one year later by J. M. Rowell et al [86]. For a

detailed description of the Josephson effect, we refer to Refs. [61, 87, 88].
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A Josephson junction of the SIS-type3 is depicted in Fig. 1.7. The macroscopic wave

function describing the Cooper pair condensate in both superconductors separated by

the insulating barrier is given by Ψ1,2 =
√
n1,2eıφ1,2 , cf. Eq. (1.1). If the barrier is thin, the

two wave functions overlap. Similar to the hydrogen atom, where the coupling energy

arises from the overlap of the electronic wave functions of the constituting atoms, the

Josephson junction can also be regarded as a molecule with the corresponding coupling

energy EJ =EJ0(1− cosϕ), where EJ0 = IcΦ0/2π [89]. Here, the critical Josephson cur-

rent Ic is the maximum supercurrent that can flow through the barrier and Φ0 =h/2e is

the flux quantum with Planck’s constant h and the Cooper pair electric charge −2e.

The supercurrent Is through the barrier is described by the first Josephson equation,

also known as the current-phase-relation,

Is = Ic sinϕ (1.46)

where, in the absence of a magnetic vector potential, the phase difference ϕ is defined by

ϕ=φ2−φ1.

super-
conductor 1

super-
conductor 2

barrier

ψ1∝ exp(iφ1) ψ2∝ exp(iφ2)

CJ

IC

RJ

Is

(a) (b)

Figure 1.7: (a) Sketch of an SIS-type Josephson junction. Two superconductors with corre-
sponding wave functions Ψ1,2 are separated by a thin insulating barrier. (b) Equiv-
alent circuit of a Josephson junction. In the RCSJ-model, a real Josephson junction
is modeled as an ideal junction shunted by a resistance RJ and a capacitance CJ.

The second Josephson equation, also known as the voltage-phase-relation reads

∂ϕ

∂t
=

2π

Φ0

V (1.47)

where V denotes the voltage drop across the Josephson junction [61]. We note that this

relation is used to define the Volt since 1990 [90].

The most important property of a Josephson junction for applications in circuit quan-

3superconductor-insulator-superconductor
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tum electrodynamics is that it behaves as a nonlinear inductance. Considering the time

derivative of the first Josephson equation (1.46) yields

dIs

dt
= Ic cosϕ

dϕ

dt
. (1.48)

With the second Josephson equation, one arrives at

dIs

dt
= Ic cosϕ

2π

Φ0

V. (1.49)

Comparing this to the law of induction, V =Lİ, the Josephson inductance is defined as

LJ =
Φ0

2πIc cosϕ
. (1.50)

A real Josephson junction can be modeled by an equivalent circuit as depicted in

Fig. 1.7(b). In this resistively and capacitively shunted junction (RCSJ) model, the

(in general voltage dependent) resistance RJ in parallel to the ideal Josephson junction

accounts for quasiparticle tunneling. The resemblance of a Josephson junction to a plate

capacitor is taken into account by a shunt capacitance CJ. Kirchhoff’s law provides a

classical equation of motion for the phase difference ϕ [91],

Φ0

2π
CJϕ̈+

Φ0

2π

1

RJ

ϕ̇ = Is − Ic sinϕ. (1.51)

Multiplying both sides of Eq. (1.51) with (Φ0/2π), the result can be interpreted as the

classical equation of motion of a ‘phase particle’ with mass M and damping ς in the

so-called tilted washboard potential U(ϕ), where

M =

(
Φ0

2π

)2

CJ, (1.52)

ς =

(
Φ0

2π

)2
1

RJ

and (1.53)

U(ϕ) = EJ0(1− cosϕ− Is

Ic

ϕ). (1.54)

The junction parameters are related by the Steward-McCumber-parameter [92, 93]

βc =
2π

Φ0

IcR
2
JCJ. (1.55)

Josephson junctions with βc > 1 are referred to as underdamped and their current-voltage

characteristic shows a hysteric behaviour. Conversely, overdamped contacts with βc< 1
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do not show a hysteric current-voltage characteristic [90].

1.3.2 Quantum mechanical description of a Josephson junction

Thus far, we have treated the Josephson junction as a classical system where both

the phase difference ϕ and its time derivative ϕ̇, which is proportional to the charge

Q=CJV = ~
2e
CJϕ̇, have been treated as purely classical variables. In this section, we

discuss the limits of the classical description following Ref. [89].

To this end, we consider a strongly underdamped junction, i.e. βc� 1, with capacitance

CJ. The energy of the electric field is given by

K =
Q2

2CJ

=
1

2
CJ

(
~
2e

)
ϕ̇2, (1.56)

which corresponds to the energy related to an extra charge Q on one of the junction

electrodes relative to the other due to the finite voltage V . Together with the potential

energy, the total energy of the junction is then given by

EJ,tot = EJ0

(
1− cosϕ+

1

2

(
~CJ

2eIc

)2

ϕ̇2

)
. (1.57)

For a quantum mechanical description of the Josephson junction, we consider this equa-

tion as the Hamiltonian of the junction and identify the corresponding kinetic energy

with the electric field energy K. Together with the mass analogue of Eq. (1.52), we find

that the momentum corresponds to the quantity ~
2e
Q. This allows us to promote the

classical variables Q and ϕ to quantum mechanical operators

Q→ Q̂ = −ı2e ∂
∂ϕ

, (1.58)

ϕ→ ϕ̂. (1.59)

As a consequence, the Hamiltonian of a Josephson junction can be written as

ĤJJ =
Q̂2

2CJ

+ EJ0(1− cos ϕ̂) = −EC
∂2

∂ϕ̂2
+ EJ0(1− cos ϕ̂), (1.60)

where EC = (2e)2/2CJ is the charging energy of the junction for a single Cooper pair.

The commutation relation for the operators reads

[ϕ̂,Q̂] = ı2e (1.61)
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and the uncertainty relation for the number of Cooper pairs N =Q/2e and the phase is

given by

∆N ×∆ϕ ≥ 1. (1.62)

1.3.3 Flux quantization

Postulated by London in 1950 [94] and demonstrated experimentally by Doll and Näbauer

[95] and Deaver and Fairbank [96], flux quantization is a direct proof of the macroscopic

quantum nature of superconductivity. We consider a superconducting ring, cf. Fig.1.8,

where the Cooper pair condensate is described by a macroscopic wave function, cf. Eq. (1.1)

Ψ(r,t) = Ψ0(r,t)eıφ(r,t). (1.63)

F
C

Figure 1.8: Superconducting ring (blue) with an integration path C enclosing the area F .

For the superconducting circulating current in the ring shown in Fig. 1.8, a stationary

solution is only expected if the macroscopic wave function interferes constructively along

the circumference of the ring. Integrating the supercurrent density Js, cf. Eq. (1.2), along

a closed path C yields [61, 90]∮
C

(ΛJs) · dl +

∫
F

b · dF = nΦ0 (1.64)

where b = rotA is the magnetic flux density and F is the area enclosed by the closed

path C. The left hand side of Eq. (1.64) is called the fluxoid which is an integer multiple

of the flux quantum Φ0. If the path C is located deep inside the superconductor such

that the supercurrent density is zero, Eq. (1.64) simplifies to the flux quantisation∫
F

b · dF = nΦ0. (1.65)
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1.3.4 Flux qubit potential

A persistent current flux qubit consists of a superconducting loop intersected by three

Josephson junctions as shown in Fig. 1.9. Two of them are designed to the same critical

current Ic while the critical current of the third junction, referred to as the α-junction,

is designed to αIc. Typical values for α range from 0.5 to 0.8 and typical junction areas

are 0.02 µm2 - 0.04 µm2[52]. The flux qubit potential can be written as the sum of the

EJ

EJ

αEJ

(a) (b)

Figure 1.9: (a) Sketch of a three Josephson junction flux qubit. The superconducting ring (red
loop) is intersected by three Josephson junctions where two of them are of equal
size and the size of the third junction is reduced by a factor α. (b) Flux qubit
fabricated in Al-technology on a silicon substrate coupled galvanically to the signal
lines of two coplanar stripline resonators (green stripes). The position of the three
Josephson junctions is highlighted by the white dashed rectangle. Sample image
by courtesy of E. Hoffmann [97].

potential energies of the three juncions [16],

UQ = EJ0[(1− cosϕ1) + (1− cosϕ2) + α(1− cosϕ3)] (1.66)

where ϕ1,2 denote the phase differences of the identical Josephson junctions and ϕ3 is

the phase difference of the α-junction. The phase difference ϕ3 in Eq. (1.66) can be

eliminated using fluxoid quantisation. If the geometric inductance of the qubit loop is

small compared to the Josephson inductance, the flux qubit potential rewrites to4

UQ = EJ0[2 + α− cosϕ1 − cosϕ2 − α cos(2πf + ϕ1 − ϕ2)], (1.67)

where f = Φext/Φ0 is the frustration and Φext is the magnetic flux threading the qubit loop.

The flux qubit potential of Eq. (1.67) is shown in Fig. 1.10 for α= 0.7 and Φext = Φ0/2.

The potential is 2π-periodic in both ϕ1 and ϕ2 which allows us to define unit cells by

4We use the sign convention of Ref. [16].
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connecting neighbouring potential maxima. Within each unit cell, we find two potential

minima which we identify with counterclockwise and clockwise persistent currents in

the qubit loop. As can be seen from Fig. 1.10(b) and Fig. 1.10(c), the potential barrier

between two adjacent minima within one unit cell is significantly lower than the potential

barrier between adjacent minima in different unit cells.
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Figure 1.10: (a) Potential landscape of a three-Josephson flux qubit for α= 0.7 and f = 0.5. A
unit cell is defined by the white dashed square. In each unit cell, two minima,
denoted by L and R, can be identified corresponding to counterclockwise and
clockwise persistent currents in the qubit loop. (b) Cut through the qubit potential
along the line connecting two minima within one unit cell. A double well potential
can be observed. (c) Same as (b), cut along a line connecting two minima in
adjacent unit cells. The potential barrier is significantly larger as compared to the
one shown in (b).

1.3.5 Flux qubit as a quantum system

Following Eq. (1.60), we can write the full Hamiltonian of the three Josephson junction

flux qubit as [98]

ĤQ,full =
1

2

(
Q̂2

1

2CJ

+
Q̂2

2

2CJ(1 + 2α)

)
+EJ0[2 + α− cos ϕ̂1 − cos ϕ̂2 − α cos(2πf + ϕ̂1 − ϕ̂2)]

(1.68)

in which Q̂1,2 are the charge operators of the junctions corresponding to the phase oper-

ators ϕ̂1,2 and CJ is the capacitance of a regular junction.
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Close to a degeneracy point, where f =n+ 1
2
, n∈Z, the flux qubit can be described

quantum mechanically by a general two-level Hamiltonian

ĤQ =
ε

2
σ̂z +

∆

2
σ̂x =

1

2

(
ε ∆

∆ −ε

)
, (1.69)

where σ̂z and σ̂x denote Pauli operators. The eigenstates of (ε/2)σ̂z correspond to the

counterclockwise and clockwise persistent currents mentioned above. We assign to them

the states |+Ip〉 and |−Ip〉. They are coupled via the energy term ∆ proportional to the

tunneling matrix element of the potential barrier shown in Fig. 1.10. Due to the lower

barrier height, the dominant coupling mechanism between the states |+Ip〉 and |−Ip〉 is

tunneling through the potential barrier between two minima within one unit cell referred

to as intracell tunneling. For ϕ1 = − ϕ2, the qubit potential of Eq. (1.67) simplifies to a

double well potential. While ∆ is independent of the magnetic flux threading the qubit

loop, the energy bias ε is given by

ε(Φext) = 2
∂UQ

∂Φext

∣∣∣∣
ϕ1=−ϕ2

δΦext = 2IpδΦext, (1.70)

where δΦext = [Φext−Φ0/2](mod Φ0). For the minima of the double-well potential, we

find ϕ1 = −ϕ2 = ± arccos(1/2α), yielding an expression for the persistent current

Ip = Ic

√
1− (1/2α)2. (1.71)

The energy level diagram of the Hamiltonian of Eq. (1.69) is shown in Fig. 1.11(a). At

the degeneracy point δΦext = 0, the classically degenerate energy levels are split by the

tunnel coupling ∆. The qubit ground and excited states are given by an antisymmetric

and symmetric superposition of |+Ip〉 and |−Ip〉, respectively. The qubit transition energy

between ground and excited state depends on the external magnetic flux and is given by

~ωQ =
√

∆2 + ε(Φext)2. (1.72)

Figure 1.11(b) shows the classical expectation values of the qubit persistent current

Ip〈σ̂z〉= ∂UQ/∂Φext of the qubit ground and excited state. As can be seen, the expectation

value of the persistent current is zero at the degeneracy point.

1.3.6 Coherence

In all practical applications, it is impossible to isolate a qubit from the environment.

Interaction with e.g. a thermal bath or other uncontrolled external or internal degrees
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Figure 1.11: (a) Eigenenergies of the flux qubit Hamiltonian of Eq. (1.69) as a function of the
frustration. Depending on the external magnetic flux, the ground state corre-
sponds to a counterclockwise or clockwise persistent current. Around the degen-
eracy point δΦext = 0, the energy degeneracy is lifted by the tunnel coupling ∆.
Dashed grey lines: Eigenenergies for the classical case ∆ = 0. (b) Expectation
value of the circulating currents for ground and excited state as a function of the
frustration. The circulating current associated with the excited state is drawn
with reduced opacity. (c) Double-well potential along the line connecting intra-
cell minima, cf. Fig. 1.10, for three different frustration values. The double well
potential in the center corresponds to δΦext = 0, where ground and excited state
are given by antisymmetric and symmetric superpositions of counterclockwise and
clockwise persistent currents.

of freedom will lead to a loss of quantum information, a process subsumed under the

term decoherence [99, 100]. Following Bloch-Redfield theory [101, 102], decoherence of a

quantum two-level system is described in terms of two characteristic rates. The first one is

the so-called longitudinal relaxation rate Γ1 =T−1
1 describing the relaxation of the excited

qubit state to the ground state. The rate Γ1 can be measured directly by means of Rabi

measurements, cf. Sec. 2.2 and Sec. 3.3. The loss of phase coherence within a qubit state

is described by the pure dephasing rate Γϕ =T−1
ϕ [99]. In contrast to the longitudinal
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relaxation rate, it cannot be measured directly. Instead, the transverse relaxation rate

T−1
2 = Γ2 =

1

2
Γ1 + Γϕ (1.73)

has to be extracted from Ramsey and spin echo measurements [17, 103]. For flux qubits,

the highest reported coherence times are T1 = 12 µs and Tϕ> 100 µs [104, 105]. Signifi-

cantly longer coherence times of some 10 µs can be reached with transmon qubits in 3D

microwave cavities [106].

1.4 Circuit quantum electrodynamics

Coupling a quantum mechanical two-level system such as a flux qubit to a quantum

mechanical harmonic oscillator such as a transmission line resonator constitutes the pro-

totypical setup of the circuit quantum electrodynamics (QED) [5] architecture. This

scenario represents the circuit equivalent of the prototypical setup of cavity QED where

a natural atom interacts with the light field confined in a three-dimensional optical cavity.

The correspondence between cavity and circuit QED is depicted in Fig. 1.12.

In order to use circuit QED as a platform for the study of light-matter interaction or

quantum information and simulation protocols, the regime of strong coupling, where the

coupling strength between the light field and the two-level system has to be much larger

than the qubit and cavity decay rates, has to reached. This goal is hard to achieve

with natural atoms and three-dimensional cavity resonators in the field of cavity QED

[107, 108]. However, in the field of circuit QED, the large dipole moments of supercon-

ducting qubits and the small mode volumes of the quasi-one-dimensional transmission

line resonators lead to coupling strengths exceeding the ones observed in cavity QED by

several orders of magnitude, making the limit of strong coupling easily attainable.

In this section, we provide the quantum mechanical treatment of the interaction between

a flux qubit and a transmission line resonator.

1.4.1 Rabi model

We consider a flux qubit with the Hamiltonian of Eq. (1.69) and a single resonant mode

described by the Hamiltonian of Eq. (1.24) coupled via dipolar interaction [109]. The

corresponding Hamiltonian is given by

ˆ̃H = ĤQ + ĤLC + Ĥint =

=
ε

2
σ̂z +

∆

2
σ̂x + ~ωR

(
â†â+

1

2

)
+ ~gσ̂z(â† + â). (1.74)
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κ

γ

g
g

(a) (b)

Figure 1.12: (a) Cavity QED architecture. A natural (two-level) atom interacts with the light
field confined in a three-dimensional optical cavity. Photons are exchanged be-
tween light field and atom at the coupling rate g. Photons are lost from the cavity
at rate κ and incoherent relaxation of the qubit occurs at rate γ. (b) Prototypical
setup of the circuit QED architecture. A single artificial atom (here: a flux qubit)
interacts with the microwave field inside a quasi-one-dimensional transmission line
resonator.

For a flux qubit coupled to a transmission line resonator, the coupling is of inductive

nature. The corresponding coupling energy is [110]

~g = MIpIres (1.75)

where M is the mutual inductance between resonator and qubit and Ip is the qubit per-

sistent current, cf. Eq. (1.71). Ires =
√

~ωR/2LR is the rms value of the current flowing

in the signal line of the resonator with resonant frequency ωR and inductance LR.

In what follows we drop the term ~ωR/2 since it merely represents an energy offset.

We rotate the Hamiltonian of Eq. (1.74) into the eigenbasis of the qubit by performing

the transformations

σ̂z → cos θσ̂z − sin θσ̂x (1.76)

σ̂x → sin θσ̂z + cos θσ̂x, (1.77)

where we introduce the mixing angle θ= arctan(∆/ε) with sin θ= ∆/~ωQ and cos θ= ε/~ωQ.

With this transformation, the Hamiltonian of Eq. (1.74) reads

Ĥ =
~ωQ

2
σ̂z + ~ωRâ

†â+ ~g(â† + â)(cos θσ̂z − sin θσ̂x). (1.78)

At the degeneracy point Φext = Φ0/2, we find ε= 0 and therefore cos θ= 0, simplifying
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the Hamiltonian of Eq. (1.78) to

Ĥε=0 =
~ωQ

2
σ̂z + ~ωRâ

†â− ~g sin θσ̂x(â
† + â). (1.79)

In analogy to the Rabi model [111] which describes the interaction of a natural atom

and a classical light field, we refer to the Hamiltonian of Eq. (1.79) as a quantum Rabi

model. Following Ref. [112], we refer to the more general Hamiltonian of Eq. (1.78) as a

generalized Rabi model.

Defining the qubit state raising and lowering operators σ̂±= (σ̂x± ıσ̂y)/2, the generalized

Rabi Hamiltonian rewrites to

Ĥ =
~ωQ

2
σ̂z + ~ωRâ

†â+ g cos θ(â† + â)σ̂z − g sin θ(â†σ̂+ + âσ̂− + â†σ̂− + âσ̂+). (1.80)

1.4.2 Jaynes-Cummings model

In 1963, E. T. Jaynes and F. W. Cummings presented a theoretical study of the in-

teraction between an atom and a quantized mode of a radiation field [113]. Because

of its importance, it is sometimes referred to as the standard model of quantum optics

[80, 114]. Below, we derive the Jaynes-Cummings model by transforming the Hamilto-

nian of Eq. (1.80) into the interaction picture following Ref. [115]. To this end, we split

the Hamiltonian into two parts,

Ĥ0 =
~ωQ

2
σ̂z + ~ωRâ

†â (1.81)

Ĥ1 = g cos θ(â† + â)σ̂z − g sin θ(â†σ̂+ + âσ̂− + â†σ̂− + âσ̂+). (1.82)

The transformation into the interaction picture is performed by calculating

Ĥint = eıĤ0t/~Ĥ1e−ıĤ0t/~. (1.83)

Using the Baker-Campbell-Hausdorff formula [116], we find that the annihilation and

creation operators and the Pauli operators are transformed to

â→ âe−ıωRt, (1.84)

â† → â†eıωRt, (1.85)

σ̂− → σ̂−e−ıωQt, (1.86)

σ̂+ → σ̂+eıωQt, (1.87)

σ̂z → σ̂z. (1.88)
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Applying these transformations to the Hamiltonian of Eq. (1.80) yields

Ĥint = g cos θ(â†eωRt + âe−ωRt)σ̂z+

− g sin θ(â†σ̂+eı(ωR+ωQ)t + âσ̂−e−ı(ωR+ωQ)t + â†σ̂−eı(ωR−ωQ)t + âσ̂+e−ı(ωR−ωQ)t).

(1.89)

In circuit (and also cavity) QED, the resonator mode frequency ωR is typically on

the same order of magnitude as the qubit (atom) transition frequency ωQ such that

|ωR−ωQ|�ωR, (ωR +ωQ). This allows to identify fast and slowly rotating terms in the

interaction Hamiltonian of Eq. (1.89). If in addition the coupling strength g, which defines

the timescale of the slowly rotating terms [117], is small enough to fulfill g�ωR, (ωR +ωQ),

we can perform a rotating wave approximation, reducing the above interaction Hamilto-

nian to

Ĥint,RW = −g sin θ(â†σ̂−eı(ωR−ωQ)t + âσ̂+e−ı(ωR−ωQ)t). (1.90)

By rotating the Hamiltonian back into the Schrödinger picture and reintroducing the

energy offset ~ωR/2 we arrive at the Jaynes-Cummings Hamiltonian,

ĤJC =
~ωQ

2
σ̂z + ~ωR

(
â†â+

1

2

)
− g sin θ(â†σ̂− + âσ̂+). (1.91)

One notable property of the Jaynes-Cummings-Hamiltonian is that it commutes with the

operator of the total number of excitations, M = â†â+ σ̂+σ̂−. As a consequence, the total

number of excitations is conserved.

Next, we discuss the eigenstates of the Jaynes-Cummings-Hamiltonian. We write the

eigenstates of an uncoupled qubit-resonator system, i.e. g= 0, as |q,n〉 where q= {g,e}
denotes the qubit ground and excited state, respectively, and n∈N denotes the photon

occupation of the resonator. We note that the eigenstates of the Jaynes-Cummings-

Hamiltonian are not pure resonator or qubit eigenstates, but superpositions of resonator

and qubit states. The ground state is given by |g,0〉 and the excited states, referred to

as dressed states, by [1]

| − ,n〉 = cos Θ|g,n〉 − sin Θ|e,n− 1〉, (1.92)

|+ ,n〉 = sin Θ|g,n〉+ cos Θ|e,n− 1〉. (1.93)

The photon number dependent mixing angle is defined by 2Θ = arctan(2g
√
n/δ) with

the qubit-resonator detuning δ=ωQ−ωR. The corresponding eigenenergies are given by

E±,n = n~ωR ±
~
2

√
4g2 sin2 θ + δ2. (1.94)
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1.4.2.1 The resonant regime

In the resonant regime, the qubit transition frequency matches the resonator frequency,

i.e. the detuning δ= 0, yielding sin Θ = cos Θ =1/
√

2. In this situation, the eigenstates

of the Jaynes-Cummings-Hamiltonian reduce to

| ± ,n〉 =
|g,n〉 ± |e,n− 1〉√

2
. (1.95)

From Fig. 1.13(a) it can be seen that degeneracy of the states with equal total numbers of

excitations is lifted and a photon number dependent energy splitting of 2g
√
n is formed.

We note that the states of Eq. (1.95) represent maximally entangled qubit-resonator

states [1]. An initial state |e,0〉, where the qubit is excited and zero photons are stored in

the resonator, will flop into the state |g,1〉 and back at the vacuum Rabi frequency g/π.

1.4.2.2 The dispersive regime

Next, we discuss the regime where the qubit is far detuned from the resonator, i.e.

δ� g sin θ. Insight into this regime is gained by performing the unitary transformation

Û = exp
[g
δ

(âσ̂+ − â†σ̂−)
]

(1.96)

on the Jaynes-Cummings Hamiltonian of Eq. (1.91). Expanding ÛĤJCÛ † to second order

in g yields

Ĥdisp
JC = ÛĤJCÛ † ≈ ~

(
ωR +

g2 sin2 θ

δ
σ̂z

)(
â†â+

1

2

)
+

~
2
ωQσ̂z. (1.97)

The resulting Hamiltonian resembles the Jaynes-Cummings Hamiltonian of Eq. (1.91),

however, the resonator frequency is shifted to

ω̃R =ωR ±
g2 sin2 θ

δ
〈σ̂z〉. (1.98)

We note that this qubit-state dependent shift can be utilized to read out the qubit state

without destroying it [118]. The effective Hamiltonian of Eq. (1.97) can be rearranged to

Ĥdisp
JC ≈ ~ωR

(
â†â+

1

2

)
+

~
2

[
ωQ +

2g2 sin2 θ

δ
â†â+

g2 sin2 θ

δ

]
σ̂z. (1.99)

As can be seen, two shifts are imposed on the bare qubit frequency ωQ. The ac Zeeman

shift (2g2 sin2 θ/δ)â†â is proportional to the photon number in the resonator. We will see

in Sec. 2.1.4 how this effect can be used to calibrate the photon number in the resonator.



32 Chapter 1 Superconducting quantum circuits

The Lamb shift g2 sin2 θ/δ is independent of the photon number and thus represents an

energy offset which is not accessible experimentally. The energy level diagram of the

Jaynes-Cummings Hamiltonian in the dispersive regime is shown in Fig. 1.13(b).
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Figure 1.13: Schematic energy level diagram of the Jaynes-Cummings Hamiltonian. Black
lines: Eigenenergies of the uncoupled system for the qubit in the ground state
(left side) and excited state (right side), respectively. Red lines: Eigenenergies of
the coupled system. The number of photons n in the resonator is denoted by |n〉.
(a) Resonant regime. The splitting of the energy levels is given by 2g sin θ×

√
n.

(b) Dispersive regime. The resonator mode frequency is shifted by (+)
− (g sin θ)2

(brown arrows) for the qubit in the ground (excited) state. The dressed qubit
transition frequency is shifted to ω̃Q =ωQ + (2n+ 1)(g sin θ)2/δ (purple arrows).

1.4.3 The multimode Rabi and Jaynes-Cummings model

The high flexibility of the circuit QED architecture allows to couple a quantum bit to

multiple modes of a single resonator or even to multiple resonators. We therefore expand

the Rabi Hamiltonian of Eq. (1.74) to multiple modes ωn coupling to the qubit with the
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coupling strengths gn. The multimode Rabi Hamiltonian reads

Ĥ = HQ +
∑
n

ĤLC,n +
∑
n

Ĥint,n =

=
ε

2
σ̂z +

∆

2
σ̂x +

∑
n

[
~ωn

(
â†nân +

1

2

)
+ ~gnσ̂z(â†n + ân)

]
. (1.100)

If the criteria for applying the Jaynes-Cummings model are fulfilled for all modes,

i.e. g�ωn, (ωn−ωQ) holds and |ωn−ωQ|�ωn, (ωn−ωQ) for all n, the multimode Rabi

Hamiltonian can be approximated by the multimode Jaynes-Cummings Hamiltonian. In

the qubit eigenbasis, it reads

ĤJC =
~ωQ

2
σ̂z +

∑
n

[
~ωn

(
â†nân +

1

2

)
− gn sin θ(â†nσ̂− + ânσ̂+)

]
. (1.101)

1.4.4 Ultrastrong coupling

Another notable feature of the circuit QED architecture is that the coupling strength

between qubit and resonator can be engineered to the desired value within several orders

of magnitude. Due to the small mode volumes of the quasi-one-dimensional transmission

line resonators and the large dipole moments of the qubits, even the regime of ultra-

strong coupling can be reached where the coupling strength reaches a significant fraction

of the resonant frequency and the Jaynes-Cummings model breaks down [37–39]. There-

fore, counterrotating terms of the form â†σ̂+ and âσ̂−, which have been neglected in

the Jaynes-Cummings-Hamiltonian of Eq. (1.91), have to be taken into account. If we

again consider coupling of the qubit to multiple modes, the ultrastrongly coupled qubit-

resonator system has to be described by the multimode Rabi Hamiltonian of Eq. (1.100).

The operator of the total number of excitations M = â†â+ σ̂+σ̂− does not commute with

the Rabi Hamiltonian. As a consequence, the total number of excitations is no longer

conserved which has been demonstrated experimentally in Ref. [37].

We consider a qubit coupled ultrastrongly to one or multiple resonant modes at fre-

quency ωn. In the dispersive regime, the Hamiltonian can again be expanded to second

order in the coupling strength gn [109], yielding a dispersive shift given by

2(gn sin θ)2

(
1

ωQ − ωn
+

1

ωQ + ωn

)
. (1.102)

The second term is referred to as the Bloch-Siegert shift [119] and has been demonstrated

experimentally in a circuit QED setup in Ref. [38].
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1.5 Two-resonator circuit quantum electrodynamics

Even though the prototypical circuit QED architecture has already proven to give deep

insight into the physics of light-matter interaction and fundamental quantum mechan-

ics, the realization of complex quantum gates and quantum information and simulation

protocols require more complex setups consisting of a multitude of quantum bits and

resonators. To ensure the controlled transfer of quantum information between the indi-

vidual circuit elements, the coupling between the latter needs to be tunable in situ.

In this section we present an architecture allowing for tunable and switchable coupling

between two transmission line resonators.

1.5.1 The quantum switch

The quantum switch architecture is comprised of a flux quantum bit with energy gap ∆

and flux-dependent energy bias ε coupled to two transmission line resonators A and B with

resonant frequencies ωA and ωB. The corresponding qubit-resonator coupling strengths

are denoted by gA and gB. In addition, the mutual coupling strength gAB between the

two resonators is taken into account. A possible setup is sketched in Fig. 1.14(a). The

theoretical treatment of this architecture is presented below and follows mainly Refs. [120,

121]. The quantum switch Hamiltonian is a two-mode Rabi Hamiltonian extended by

the resonator-resonator coupling and reads

ĤQS =
ε

2
σ̂z +

∆

2
σ̂x + ~ωA

(
â†â+

1

2

)
+ ~ωB

(
b̂†b̂+

1

2

)
+

+ ~gA(â† + â)σ̂z + ~gB(b̂† + b̂)σ̂z+

+ ~gAB(â† + â)(b̂† + b̂). (1.103)

To demonstrate the relevant physical effects, we restrict ourselves to the simplified case

of frequency degenerate resonators (ωR =ωA =ωB) and equal qubit-resonator coupling

strengths (g= gA = gB). Neglecting global energy offsets and rotating the qubit into its

eigenbasis (cf. Eqs. (1.76) and (1.77)) yields

ˆ̃HQS =
~ωQ

2
σ̂z + ~ωR(â†â+ b̂†b̂)+

+ ~g (cos θσ̂z − sin θσ̂x)
[(
â† + â

)
+
(
b̂† + b̂

)]
+ ~gAB

(
â† + â

) (
b̂† + b̂

)
(1.104)

with the qubit transition frequency ωQ =
√

∆2 + ε2 and the mixing angle θ= arctan(∆/ε).

The Hamiltonian in the interaction picture can be obtained by means of the unitary
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transformation

Û = exp(−λδD − λΣS − λΩW) (1.105)

with the parameters

λδ =
g sin θ

δ
, δ = ωQ − ωR, (1.106)

λΣ =
g sin θ

Σ
, Σ = ωQ + ωR, (1.107)

λΩ =
g cos θ

ωR

(1.108)

and the operators

D̂ = σ̂−â
† − σ̂+â+ σ̂−b̂

† − σ̂+b̂, (1.109)

Ŝ = σ̂−â− σ̂+â
† + σ̂−b̂− σ̂+b̂

†, (1.110)

Ŵ = σ̂z(â− â†) + σ̂z(b̂− b̂†). (1.111)

In the dispersive limit, where |λδ|,|λΣ|,|λΩ|� 1, the effective Hamiltonian ĤQS,int = Û †ĤQSÛ
can be expanded to second order in λδ, λΣ and λΩ, yielding

ĤQS,eff =~
ωQ

2
σ̂z + ~ωR

(
â†â+ b̂†b̂

)
+

+ ~σ̂zgdyn

(
â†â+ b̂†b̂

)
+

+ ~(gAB + gdynσ̂z)
(
â†b̂+ âb̂†

)
. (1.112)

The dynamic coupling is given by

gdyn =
(g sin θ)2

ωQ − ωR

+
(g sin θ)2

ωQ + ωR

. (1.113)

The effective Hamiltonian is comprised of the qubit and the two resonators. The resonant

frequencies of the latter differ from the resonant frequencies of the bare resonators by

dispersive shifts. The last term describes the coupling between the two resonators. The

total resonator-resonator coupling

gres = gAB + gdynσ̂z (1.114)

is mediated by two mechanisms. The first is the constant geometric coupling gAB which

is determined solely by the sample layout. The second contribution depends on the qubit

state and, via ωQ and sin θ, on the external magnetic flux, cf. Fig. 1.14(b).
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Figure 1.14: Layout of the quantum switch. (a) Two resonators A and B are coupled to a
flux qubit Q with coupling strengths gA and gB (black arrows). The grey boxed
crosses denote the Josephson junctions of the qubit. The geometric coupling
strength between the two resonators is gAB (blue arrow). The flux qubit can
be tuned by varying the magnetic flux applied to the qubit loop. (b) The total
resonator-resonator coupling strength is determined by the constant, geometry-
dependent coupling and the second-order, flux-dependent dynamic coupling gdyn

(red arrows).

1.5.2 Flux qubit as tunable coupler

In this section we theoretically investigate two ways of controlling the coupling between

the two resonators A and B: first, via the external magnetic field and, second, via the

qubit population.

1.5.2.1 Tuning the coupling via the external field

Using sin θ= ∆/~ωQ and ~ωQ =
√

∆2 + ε2, an analytical expression for the flux depen-

dence of the dynamic coupling is

gdyn =
2g2∆2

√
∆2 + ε2(∆2 − ω2

R + ε2)
, (1.115)

where ε= 2IpδΦext, cf. Eq. (1.70). If the qubit is kept in the ground state, i.e. 〈σ̂z〉= − 1

and the parameters g, gAB,∆ and ωR are designed to suitable values, there exist certain

flux values where

gdyn = gAB. (1.116)

We refer to this condition as the switch setting condition, where the coupling between

the resonators is switched off. Further insight is gained by considering the normal modes

of the coupled resonators

ĉ± =
1√
2

(â± b̂), and ĉ†± =
1√
2

(â† ± b̂†), (1.117)
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which allows to rewrite the Hamiltonian of Eq. (1.112) to

ĤQS,eff = ~
ωQ

2
σ̂z + ~ωR(ĉ†+ĉ+ + ĉ†−ĉ−) + ~gAB(ĉ†+ĉ+ − ĉ†−ĉ−) + 2~gdynσ̂z ĉ

†
+ĉ+ = (1.118)

= ~
ωQ

2
σ̂z + ~ω−ĉ†−ĉ− + ~(ω+ + 2gdynσ̂z)ĉ

†
+ĉ+, (1.119)

with ω−=ωR − gAB and ω+ =ωR + gAB. The modes ĉ− and ĉ+ correspond to in-phase

and out-of-phase oscillating currents in the two resonators, respectively. As only the

out-of-phase oscillating mode generates a magnetic field at the position of the qubit, only

this mode couples to the qubit. Figure 1.15 shows the flux dependence of the quantum

switch modes for frequency-degenerate resonators and ∆>ωR.
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Figure 1.15: Numerical simulation of the mode spectrum of the quantum switch with the qubit
in the ground state. The quantum switch modes ω+ and ω− are shown in red
and blue, respectively. While the in-phase mode ω− does not couple to the qubit,
the out-of-phase mode ω+ is shifted downwards by the dynamic coupling when
the external magnetic flux is tuned towards the degeneracy point. At the switch
setting conditions (SSC), the coupling between the two resonators is switched off.
Black dashed line: Mode corresponding to a single uncoupled resonator.

1.5.2.2 Tuning the coupling via the qubit population

Next, we consider the case where the qubit is driven by a strong excitation signal. This

results in equal probabilities to find the qubit in the ground and excited states, yielding

the density matrix

ρM =
1

2
(|g〉〈g|+ |e〉〈e|). (1.120)

Consequently, the expectation value 〈σ̂z〉= Tr[ρMσ̂z] = 0. From Eq. (1.112) and Eq. (1.118),

we find that in this scenario the coupling between the two resonators is given by gAB in-

dependently of the external magnetic flux applied to the qubit loop.

For weak qubit drive signals, the probability P|g〉 of finding the qubit in the ground state
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is higher than finding the qubit in the excited state as a consequence of the qubit decay

rate. The corresponding density matrix is thus given by

ρM,weak = P|g〉|g〉〈g|+ (1− P|g〉)|e〉〈e|. (1.121)

Hence, the expectation value 〈σ̂z〉weak = Tr[ρM,weakσ̂z] =P|g〉− 1
2

and therefore the total

coupling between the resonators can be adjusted to arbitrary values between (gAB− gdyn)

and gAB by adjusting the qubit drive power [122].

1.5.2.3 Nonclassical states and entanglement

The quantum nature of the coupling element, the flux qubit, can be utilized to create

nonclassical states and entanglement. For a detailed description of the protocols presented

below we refer to Ref. [120]. The two resonators A and B can be entangled by preparing

resonator A in Fock state |1〉A and resonator B in |0〉B with the switch turned off, i.e. the

coupling between the resonators is off. Subsequently, we turn on the switch such that

the coupling between the resonators is given by a finite coupling strength gon. After a

time t, a coherent linear superposition of bipartite states is created,

cos(gont)|1〉A|0〉B + sin(gont)|0〉A|1〉B. (1.122)

Choosing t= π/4gon yields the maximally entangled state

|1〉A|0〉B + |0〉A|1〉B√
2

. (1.123)

Starting from the same initial condition as above allows to create tripartite entangled

states. To this end, the qubit is brought into the state (|g〉 + |e〉)/
√

2 before the switch

is turned on for a time t= π/2gon, yielding the Greenberger-Horne-Zeilinger [123] state

|g〉|1〉A|0〉B + eıπ/2|e〉|0〉A|1〉B√
2

. (1.124)

Finally, the quantum switch architecture also allows to generate entangled coherent

states. Again, resonator B is prepared in the vacuum state and the qubit in (|g〉+|e〉)/
√

2,

however, in contrast to the previous initial conditions, resonator A is populated with a

coherent state |α〉. After switching on the coupling and waiting for a time t= π/2gon,

the Schrödinger cat state [124]

|g〉|α〉A|0〉B + eıπ/2|e〉|0〉A|α〉B√
2

(1.125)



1.5 Two-resonator circuit quantum electrodynamics 39

is generated. All these examples reveal the quantum nature of the switch and open the

door to applications not feasible with coupling circuits composed of SQUIDs or tunable

inductances [54, 56, 58, 125].





Chapter 2

Experimental techniques

In the course of this thesis, two circuit QED samples were investigated. The first one

consists of a flux qubit coupled galvanically to a transmission line resonator and therefore

comes close to the prototypical circuit QED architecture. We refer to this sample as the

flux qubit sample. The second sample, referred to as the flux qubit coupler, consists of

a flux qubit coupled galvanically to two coplanar stripline resonators and is described

theoretically in Sec. 1.5.

In this chapter, we discuss the experimental setup and the measurement techniques re-

quired to characterize our samples. In order to perform measurements at the single mi-

crowave photon level, experiments with superconducting samples have to be performed

at millikelvin temperatures. We therefore provide a description of the cryostat and show

how microwave and dc signals are delivered to and received from our circuit QED sam-

ples.

Subsequently, we describe the two most important microwave spectroscopy protocols

needed to infer relevant resonator and qubit parameters. Finally, we discuss the techno-

logical aspects of time-domain spectroscopy which provides experimental access to the

coherence properties of a quantum bit.

2.1 Continuous-wave spectroscopy

Continuous-wave spectroscopy measurements represent the most important technique

to characterize circuit QED setups as they provide experimental access to characteristic

resonator and qubit properties such as resonant frequencies or line widths. In this section

we discuss the cryogenic and room-temperature equipment required to perform such

measurements.

41
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2.1.1 Setup

Both samples investigated in the course of this thesis are mounted inside gold-plated

copper boxes onto the base temperature stage of a dilution refrigerator. Equipping the

refrigerator with microwave and dc lines was performed by the author and three other

PhD students. The cryostat is notable for its large sample space where at least four

circuit QED samples can be cooled down in parallel. Despite featuring seven microwave

input lines, four microwave output lines and 64 dc wires, the cryostat still reaches a base

temperature below 30 mK. The cryogenic setup for one of the samples characterized in

the course of this thesis, the flux qubit sample, is shown in Fig. 2.1.

2.1.1.1 Spectroscopy setup for the flux qubit sample

The spectroscopy setup for the flux qubit sample is shown schematically in Fig. 2.2. Both

resonator ports are connected to microwave lines. One of these lines, denoted as the input

line, allows to apply a probe signal to the resonator. The probe signal is generated at

room temperature by a vector network analyzer (Rohde & Schwarz ZVA24). For typical

transmission measurements, the mean resonator population is around one photon on av-

erage (poa), corresponding to powers on the order of attowatts (10−18 W). To ensure a

sufficient signal-to-noise ratio even for these small powers, the output signal of the VNA

has to be several orders of magnitude larger than the room temperature thermal noise

power which inevitably adds to the wanted input signal. The signal applied to the input

microwave line, consisting of the wanted signal and thermal noise, is attenuated at the dif-

ferent temperature stages of the cryostat. Since each attenuator also adds thermal noise

corresponding to the temperature stage at which it is mounted, an optimal signal-to-noise

ratio would be achieved if attenuation would only be done at the base temperature stage

of the cryostat. However, the dissipated power would by far exceed the cooling power of

the cryostat at the base temperature stage. Thus, the attenuators are distributed over

the various temperature stages of the cryostat in a way that the signal-to-noise ratio at

the sample input is optimal and the dissipated power at each attenuator does not exceed

the cooling power of the respective temperature stage. For a detailed description of the

attenuator configuration, we refer to Ref. [126].

The signal transmitted through the resonator passes two cryogenic circulators before it

is amplified by a cryogenic HEMT1 amplifier (Low Noise Factory LNC4 8A) and, after

passing a room temperature circulator, by a second amplifier (Miteq JS2) at room tem-

perature. The circulators isolate the HEMT amplifier and the sample from thermal noise

and reflected signal components propagating down via the output line. The amplified

signal is eventually detected by the input port of the VNA. In this way, the transmission

1high electron mobility transistor
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Figure 2.1: The dilution refrigerator. Green labels: Flux qubit sample package. Red labels:
Important microwave components used for measurements on the samples discussed
in this thesis. Grey labels: Cryogenic microwave switches and beam splitters allow
us to use one input line for multiple experiments. Black labels: Technical compo-
nents of the cryostat and the experimental setup. (a) Temperature stages of the
cryostat from 4 K to base temperature. The base temperature stage is 50 cm long.
(b) Side view of the sample rod. (c) Front view of the sample rod.
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through the resonator can be measured.

In addition, the qubit can be excited using an on-chip antenna connected to an additional

input line referred to as the antenna line. Similar to the resonator input line, attenuators

are installed at the different temperature stages of the cryostat to ensure good signal-

to-noise ratio at base temperature. The signal applied to the qubit via the antenna is

generated by a microwave source (Rohde & Schwarz SMF 100A). The latter and the VNA

are synchronized using a 10 MHz rubidium reference source (Stanford Research FS 725).

The magnetic field applied to the flux qubit is controlled by a superconducting solenoid

mounted close to the sample box.

2.1.1.2 Spectroscopy setup for the flux qubit coupler

The flux qubit coupler sample features a flux qubit coupled galvanically to two super-

conducting resonators, cf. Sec. 1.5. One port of each resonator is connected to a highly

attenuated input line and the other port to an output line containing cryogenic and room

temperature circulators and amplifiers. This configuration allows us to measure the

transmission through both individual resonators and also allows us to measure the trans-

mission from the input port of one resonator to the output port of the other resonator.

Transmission measurements are performed using a 4-port vector network analyzer (Ro-

hde & Schwarz ZVA24). The flux qubit coupler does not feature an antenna to drive or

excite the qubit. Instead, qubit drive or excitation signals are fed down to the sample via

one of the resonator input lines. To this end, a beam splitter is installed at room temper-

ature allowing to combine the output signals of the VNA and an additional microwave

source (Rohde & Schwarz SMF 100A). The latter and the VNA are synchronized using a

10 MHz reference source. The magnetic flux applied to the qubit loop is again controlled

by a superconducting coil mounted in the vicinity the sample box.

2.1.2 Transmission spectroscopy

In circuit QED architectures comprised of quantum bits coupled to resonators, transmis-

sion spectroscopy provides the most straightforward experimental access to determine

the resonator mode frequencies. In measurement setups such as the ones depicted in

Fig. 2.2 and Fig. 2.3, transmission is measured by a VNA with the qubit kept in the

ground state, i.e. 〈σ̂z〉=−1. Provided that the qubit is far detuned from the resonator,

the detected resonant frequency is given by ω̃R =ωR− g2 sin2 θ/δ, cf. Eq. (1.98). For very

large detunings δ� g2 sin2 θ, the dispersive shift is negligible and the bare resonator mode

frequencies are observed. The frequency response of such transmission spectroscopy mea-

surements is given by a Lorentzian line shape, cf. Sec. 1.2.2, allowing to extract the line

width, and therefore the quality factor, of the resonator under test.
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Figure 2.2: Spectroscopy setup for the flux qubit sample. A vector network analyzer is con-
nected to resonator input and output lines (blue). The resonator input signal is
attenuated passing through the different temperature stages. The output port of
the resonator is isolated from noise propagating down via the output line by cryo-
genic circulators. The resonator output signal is amplified at the 4.2 K stage by
a low-noise HEMT amplifier and at room temperature by an additional amplifier.
An excitation signal generated by an additional microwave source can be applied to
the qubit by means of an antenna (red line). The magnetic field applied to the flux
qubit can be controlled via a superconducting coil mounted on top of the sample
package.



46 Chapter 2 Experimental techniques

20
dB

3
dB

10
dB

20
dB

50 Ω

50 Ω

50 Ω

cryogenic
HEMT
ampli�er

JS 2
ampli�er

cryo. circ.

circulator

cryo. circ.

res. A input res. A output

res. B output res. B input

4.2 K

still
700 mK

100 mK

sample stage
50 mK (stabilized)

SMF 100A

microwave
source

ZVA 24

port
1

port
3

port
2

port
4

vector network analyzer

phase
reference FS 725

coil

coil
current source

20
dB

3
dB

10
dB

20
dB

50 Ω

50 Ω

50 Ω

cryogenic
HEMT
ampli�er

JS 2
ampli�er

cryo. circ.

circulator

cryo. circ.

room
temperature

sample

beam
splitter

Figure 2.3: Spectroscopy setup for the flux qubit coupler. Both resonators are connected to
one input and one output line each, allowing to measure the transmission through
individual resonators and also the transmission from the input of one resonator to
the output of the other resonator. In addition, a qubit excitation signal can be
applied through resonator B.
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Transmission spectroscopy can also be used to calibrate the magnetic flux applied to

the flux qubit. As discussed in Sec. 1.3.4 and Sec. 1.3.5, the flux qubit transition fre-

quency is Φ0-periodic. As a consequence, the dispersively shifted mode frequency is also

Φ0-periodic, allowing to relate electric currents applied to a superconducting solenoid

mounted in the vicinity of a coupled qubit-resonator-system to the magnetic flux pene-

trating the qubit loop.

2.1.3 Two-tone spectroscopy of the qubit

Even though the presence of a flux qubit manifests itself in magnetic field dependent shifts

of the resonant frequencies, transmission spectroscopy does not provide direct access to

the qubit transition frequency. The latter can be detected using two-tone spectroscopy.

From a theoretical point of view, this measurement technique is based on the qubit state

dependence of the dispersively shifted resonant frequency,

ω̃R =ωR ±
g2 sin2 θ

δ
〈σ̂z〉. (1.98)

If the qubit is in the ground state, i.e. 〈σ̂z〉=−1, resonance occurs at ωR−χ, where

χ= g2 sin2 θ/δ denotes the dispersive shift. If the qubit is driven, i.e. it is put in a

classical superposition with equal probabilities of finding the qubit in the ground or

excited state as described by the density matrix ρM = 1
2
(|g〉〈g|+ |e〉〈e|), the expectation

value 〈σ̂z〉= Tr[ρMσ̂z] = 0. Consequently, resonance occurs at the bare resonator frequency

ωR, cf. Fig. 2.4. In a two-tone spectroscopy measurement, one frequency is chosen as the

so-called probe tone frequency. To ensure good measurement contrast, typically either

the bare resonator frequency ωR or the dispersively shifted resonant frequency for the

qubit being in the ground state, ωR−χ, is chosen.

Using a second microwave source, the so-called spectroscopy tone is applied to the qubit.

This can be done via an antenna as shown in Fig. 2.2 or directly via the resonator as

indicated in Fig. 2.3. In the latter case, the spectroscopy tone power has to be increased in

order to overcome the filtering effect of the resonator since the spectroscopy tone typically

is off-resonant with the cavity. If the spectroscopy tone frequency matches the qubit

transition frequency, the expectation value 〈σ̂z〉 changes and takes the value of 〈σ̂z〉= 0

if the spectroscopy tone power is strong enough to saturate the qubit. Consequently,

the resonant frequency of the coupled qubit-resonator system shifts to the bare resonator

frequency ωR. As indicated in Fig. 2.4(a), transmission at the probe tone frequency

decreases if the latter is chosen as the dispersively shifted cavity frequency ω̃R. Contrarily,

if the bare resonator frequency ωR is chosen as the probe tone frequency, transmission

increases if the qubit is saturated by the spectroscopy tone. Alternatively, also the phase
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of the transmitted probe tone can be monitored in order to detect the qubit frequency

as shown in Fig. 2.4(b). The strong dependence on the frequency makes the transmitted

phase a precise meter for determining whether the resonator is dispersively shifted or

not, i.e. whether the qubit is in the ground state or driven. This is especially useful if the

dispersive shift χ is smaller than the resonator linewidth and the difference in the probe

tone transmission magnitude between the qubit in the ground state and the driven qubit

is small. An advantage of choosing the dispersively shifted resonant frequency as the
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Figure 2.4: Working principle of two-tone spectroscopy. (a) Readout using the transmission
magnitude. Red line: Lorentzian transmission amplitude of the resonator. The
resonant frequency is dispersively shifted due to the presence of the qubit in the
ground state. Blue line: If the qubit is saturated by a strong spectroscopy tone, the
resonant frequency is shifted to the bare resonator frequency. Saturating the qubit
manifests itself in decreased transmission at the probe tone frequency if the latter
matches the dispersively shifted resonant frequency or in increased transmission
if the bare resonator frequency is chosen as probe tone frequency. (b) Readout
using the transmission phase[65]. Especially if the dispersive shift χ is small, the
phase represents a more precise meter for the qubit state than the transmission
magnitude.

probe tone frequency is that it can be measured directly using transmission spectroscopy,

see Sec. 2.1.2. However, the dispersive shift depends on the qubit transition frequency

and therefore on the magnetic flux applied to the qubit loop. This implies that the probe

tone frequency has to be redetermined every time the magnetic flux is changed. If known,

it is advantageous to set the probe tone frequency to the bare resonator frequency ωR

since the latter does not depend on the magnetic flux applied to the qubit loop.

To map out the hyperbolic dependence of the qubit transition frequency on the external

magnetic flux [cf. Eq. (1.72)], the qubit transition frequency is determined depending on

the external magnetic flux applied to the qubit.
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2.1.4 Power calibration

The mean number of photons in the resonator is not accessible directly in most cir-

cuit QED setups. Even though the output power of microwave sources can be set to a

well defined value, the signal loss of microwave cables, attenuators and other microwave

components is afflicted with large uncertainties, one reason being the strong dependence

of the transmission properties of the latter on the temperature. In addition, also the

resonator’s insertion loss is not directly accessible. However, the two-tone spectroscopy

protocol described in the previous section provides a very precise method to calibrate the

mean number of photons in the resonator. To this end, we again consider the Jaynes-

Cummings Hamiltonian in the dispersive regime,

Ĥdisp
JC ≈ ~ωR

(
â†â+

1

2

)
+

~
2

[
ωQ +

2g2 sin2 θ

δ
â†â+

g2 sin2 θ

δ

]
σ̂z. (1.99)

Introducing the number of photons in the resonator n= â†â, we can see that the qubit

transition frequency is shifted to ω̃Q =ωQ + (2n+ 1)χ if the resonator is populated with

n photons on average.

To calibrate the number of photons in the cavity, two-tone spectroscopy is performed

at a fixed magnetic flux for varying probe tone powers. Assuming that the signal loss

between microwave source and sample is independent of the power, the frequency shift of

the qubit is proportional to the mean number of photons n in the resonator2. For weak

drive powers, i.e. n≈ 0, the bare qubit transition frequency, shifted only by the constant

Lamb shift, ωQ + χ is detected by the two-tone spectroscopy protocol. If the dispersive

shift χ is known, the mean number of photons in the resonator can be derived from the

probe tone power dependence of the qubit transition frequency.

In many experiments, the qubit does couple to more than one mode, cf. Sec. 1.4.3. In this

scenario, power calibration should be performed for all relevant resonator modes. The

reason for this is that cable losses and also the resonator’s insertion loss strongly depend

on the frequency.

2.2 Time domain spectroscopy

For practical applications in the fields of quantum information processing, the required

protocols can only be executed successfully if quantum information can be stored in the

constituents of circuit QED architectures for time spans long enough to complete the

respective protocols. To this end, knowledge of the coherence times (cf. Sec. 1.3.6) of

quantum bits is essential. In this section, we discuss the measurement technique allowing

2We note that proportionality only holds for small n.
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us to measure the energy relaxation time T1 of a flux qubit coupled to a transmission line

resonator.

2.2.1 Setup

The measurement protocol allowing us to determine whether a qubit is in the excited

or ground state is based on the principles of two-tone spectroscopy. The main extension

to the protocol discussed in Sec. 2.1.3 is that the transmission through the resonator,

i.e. the probe tone, is recorded in a time-resolved way. In our experiments, the probe

tone frequency matches the dispersively shifted resonant frequency. Eventually, we in-

fer the probability of finding the qubit in the excited state as a function of time from

reading magnitude and phase of the transmitted spectroscopy tone in a time-resolved way.

2.2.1.1 Time-domain detection setup

The detector used in our measurements is an FPGA3-enhanced A/D-converter with a

sampling rate of 150 MHz. As a consequence, the probe tone has to be converted from

the GHz-regime down to the MHz-regime before detection using a technique referred

to as heterodyne detection. Down-conversion is performed by an IQ-mixer, the central

building block of the measurement setup shown in Fig. 2.4.

A (single-ended) mixer is a nonlinear electrical device multiplying the input signal at

frequency ωp, which in our case is the spectroscopy tone, with an additional microwave

signal called local oscillator at frequency ωLO. Following trigonometric identities, the re-

sulting output signal consists of two components, one at the difference frequency ωp−ωLO

and one at the sum frequency ωp +ωLO. The difference frequency is referred to as inter-

mediate frequency ωIF and in our case set to 10 MHz. The sum frequency therefore is in

the GHz-regime and can thus be filtered out using a low-pass filter.

An IQ-mixer is a parallel connection of two identical single-ended mixers where the local

oscillator is shifted by 90◦ between both mixers. Considering an input signal of the form

P (t) = Ã(t) sin(ωpt+ φ(t)) (2.1)

and a local oscillator of the form LO(t) =B sin(ωLOt) =B sin((ωp +ωIF)t), an ideal IQ-

mixer yields the quadratures

IIF(t) = A(t) cos(ωIFt+ φ(t)) (2.2)

QIF(t) = A(t) sin(ωIFt+ φ(t)). (2.3)

3field-programmable gate array, Innovative Integration Virtex-5, X5-RX
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From these equations it can be seen why using an IQ-mixer is advantageous compared

to a single-ended mixer. If one tries to infer amplitude and phase from, e.g., IIF(t) alone,

there are points in time where the cosine, and therefore IIF(t), is zero. At these points,

all information about A(t) is lost. However, the absolute value of the sine in QIF(t) is

maximum when the cosine in IIF(t) is zero. In this way, information about the amplitude

A(t) is accessible at all times.

As indicated in Fig. 2.5, I and Q are subsequently amplified such that their amplitude

is slightly below the maximum input amplitude of the A/D-converter. In this way, the

resolution of 16 bits of the latter can be fully used. In addition, the signal is filtered

by band pass filters to avoid higher harmonics of the IF signal. At a sampling rate

IQ-
mixer

IF-
ampli�er

band pass
�lter

A/D-
converter

RF

LO

Chn. 1

Chn. 2
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Q

probe tone
(from resonator)

SMF

microwave
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phase
reference

trigger

FS 725

DTG

Figure 2.5: Schematic of the time-domain detection setup. The probe tone is converter down
to the intermediate frequency by means of an IQ-mixer and subsequently amplified
and filtered. An FPGA-enhanced A/D-converter is used to digitize the signal.
The microwave source generating the local oscillator and the A/D-converter are
connected to a 10 MHz reference source.

of 150 MHz and an IF-frequency of 10 MHz, 15 data points are recorded by the A/D-

converter per oscillation, allowing for a precise reconstruction of the quadratures IIF(t)

and QIF(t). From a mathematical point of view, also ωIF = 0 could be chosen, referred to

as homodyne detection. However, the latter is disadvantageous since the resulting DC-

signal is susceptible to 1/f -noise and drifts [69].

Since the wanted component of the transmitted probe tone is overlain by noise, a large

number of traces (typically 105 to 108) has to be recorded and averaged. The averaging

process is very sensitive to phase fluctuations, thus, the microwave sources generating

the probe tone and the local oscillator, the A/D-converter and also the pulse generator

providing the trigger for the A/D-converter have to be synchronized by a 10 MHz reference

source.
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Amplitude and phase of the probe tone are extracted from the trace-averaged IIF and QIF

by applying a transformation rotating the quadratures at the frequency ωIF [69], which

corresponds to applying the matrix

R(t) =

(
cosωIFt sinωIFt

− sinωIFt cosωIFt

)
(2.4)

to the vector (I(t), Q(t))>, yielding the quadratures of the wanted component of the

probe tone,

I(t) = A(t) cos(φ(t)), (2.5)

Q(t) = A(t) sin(φ(t)). (2.6)

This method is referred to as digital homodyning. However, due to technical imperfec-

tions, the amplitudes of the IIF and QIF signals may not be the same. Furthermore, also

the phase difference between the two quadratures may differ from 90◦. As a result, the

averaged quadratures of the IF signal have to be corrected for these imperfections. To

this end, a microwave test signal with good signal-to-noise ratio is generated by a mi-

crowave source and applied to the input of the IQ-mixer. Following Ref. [69], we assume

that the imperfect quadratures of the IF-signal can be written as

I imp
IF (t) = (A(t) + εA1) cos(ωIFt+ φ(t)), (2.7)

Qimp
IF (t) = (A(t) + εA2) sin(ωIFt+ φ(t) + εφ). (2.8)

Amplitude imbalances in the two channels can be corrected by a matrix of the form

EA =

(
(1 + εa1)−1 0

0 (1 + εa2)−1

)
. (2.9)

As shown in Ref. [69], imperfections in the phase difference between I imp
IF (t) and Qimp

IF (t)

can be corrected by means of the matrix

Eφ =
1

cos(εφ)

(
cosωIFt+ εφ sinωIFt

sinωIFt+ εφ cosωIFt

)
. (2.10)

The quadratures I(t) and Q(t) are than obtained by calculating(
I(t)

Q(t)

)
= EφEA

(
I imp

IF (t)

Qimp
IF (t)

)
. (2.11)

We note that this correction method only works for εφ� π/2. For a signal correction
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method working also for larger phase errors, we refer to Ref. [126].

2.2.1.2 Pulse generation

In order to manipulate the qubit state in a controlled way, microwave pulses of a well

defined duration τ , corresponding to a well defined amount of energy, have to be ap-

plied to the qubit. In our case, these pulses are generated by means of a mixer. The

latter multiplies a sinusoidal microwave tone at frequency ωs (generated by a microwave

source4) with a rectangular pulse, in our case generated by the Tectronix DTG 5334 pulse

generator. The corresponding setup is sketched in Fig. 2.6. Again, microwave source and

pulse generator are connected to the same phase reference as the one shown in Fig. 2.5.

The pulse generator also provides the trigger pulse for the A/D-converter discussed in the

previous section, synchronizing pulse generation and signal detection. Technically, two

PSG

DTG

microwave
source

to qubit
(via antenna or
resonator)

trigger
(to A/D-converter)

phase
reference

FS 725

mixer

Figure 2.6: Pulse generation setup. A sinusoidal continuous-wave signal generated by a mi-
crowave source is mixed with a rectangular pulse to create a microwave pulse. As
indicated by the grey dashed line, the mixer may be integrated in the microwave
source. The pulse generator also creates the trigger pulse for the A/D-converter
discussed in Sec. 2.2.1.1. Microwave source and pulse generator are synchronized
by a 10 MHz reference source.

alternatives are available for the mixer. One is to use the internal mixer of the microwave

source. However, this method is not suitable for short pulses (< 5 ns) and closely spaced

pulse sequences. If one of the latter is required, pulses can also be created by external

mixers. A serial combination of two single-ended mixers as sketched in Fig. 2.7 ensures

a sufficient on/off-ratio of the microwave pulse. We note that the cables connecting the

outputs of the beam splitter to the inputs of the mixers should be identical and the con-

nection between the two mixers should be as short as possible to keep signal propagation

delays, which may distort the pulse shape, as small as possible.

4Agilent E8267D PSG
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Figure 2.7: Pulse generation by external mixers. To ensure sufficient on/off ratio of the mi-
crowave pulse, a serial combination of two single-ended mixers is used.

2.2.2 Rabi measurements

The measurement of Rabi oscillations represents one of the most important measurement

techniques providing experimental access to the energy relaxation time T1. Applying a

short microwave pulse with duration τ to the qubit changes the polar angle of its state

on the Bloch sphere depending on the energy transferred to the qubit, see Fig. 2.8. The

final state on the Bloch sphere can be described by

|Ψ〉 = α|g〉+ β|e〉, (2.12)

where α,β ∈C and |α|2 + |β|2 = 1. After state preparation, the qubit state is read out by

means of the time-domain detection technique described in Sec. 2.2.1.1. The ground state

will be detected with probability |α|2 and the excited state with probability |β|2. Typi-

cally, between 105 and 108 traces are recorded and averaged for each pulse length applied

to the qubit, allowing for a precise determination of |α| and |β|. Due to the finite inter-

action of the qubit with its environment, cf. Sec. 1.3.6, the qubit will only maintain its

state for a finite time before it decays to the ground state. This energy relaxation process

occurs with a probability proportional to [1− exp(−t/T1)]. Thus, independently of the

qubit state after applying the pulse, after a time t�T1 it will always be back in state |g〉.

For certain combinations of pulse duration and power, the qubit is brought from the

ground state |g〉 to the excited state |e〉, cf. Fig. 2.8. Such a pulse is referred to as π-pulse

as it changes the polar angle of the qubit state by 180◦. Interestingly, a qubit can also

be brought from the excited state to the ground state by the same π-pulse. It is worth

mentioning that the latter also is the most important difference between a quantum two-

level system and a quantum harmonic oscillator, where an arbitrary number of photons
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|e

|g

π

Ψ=α|g+β|e

Figure 2.8: Bloch sphere representation of the qubit state. The south pole is identified with
the qubit ground state and the north pole with the excited state. A π-pulse (green
arrow) applied to the qubit in the ground state changes its state to the excited
state. Pulses of arbitrary duration (red arrow) displace the polar angle of the qubit
state such that the final state is described by |Ψ〉=α|g〉+β|e〉.

can be stored in any resonant mode. This effect also gives rise to the so-called driven

Rabi oscillations. For a given pulse energy, the expectation values for |α| and |β| are

periodic with respect to the pulse duration. This is best understood considering that a

(2n−1)π-pulse, drives the transition |g〉→ |e〉 for all n∈N as long as the pulse duration

τ�T1. The corresponding periodicity is referred to as Rabi frequency. Since the pulse

energy depends linearly on the pulse amplitude, the duration of, for example, a π-pulse

is inversely proportional to the pulse amplitude. As a consequence, the Rabi frequency

scales linearly with pulse amplitude.

τ

ωS
=
ωQ

Pq

Pr

0 4321
time (µs)

ωp=ωR-χ

Figure 2.9: Pulse scheme for Rabi measurements. The resonator is probed by means of a
weak continuous sinusoidal signal at the dispersively shifted resonant frequency. A
microwave pulse with the qubit transition frequency and length τ is used to excite
the qubit. The time t= 0 corresponds to the point in time where the A/D-converter
is triggered.

The pulse scheme used to measure these Rabi oscillations is sketched in Fig. 2.9. The

resonator is probed with a continuous probe tone at the frequency of the dispersively

shifted resonator. The probe tone power is chosen as low as possible in order not to

impose a power-dependent shift on the qubit frequency. Typical mean resonator popu-



56 Chapter 2 Experimental techniques

lations are around one photons on average or less. Microwave excitation pulses at the

qubit transition frequency with variable duration are applied to the qubit at a repetition

rate low enough to ensure the qubit relaxes back to the ground state between subsequent

pulses. In our case, the time between the rising edges of two pulses was set to 4 µs.

Next, we show in detail how the time-dependent probability of finding the qubit in the

excited state is measured after a π-pulse has been applied to the qubit. The transmitted

resonator probe tone is recorded in a time-resolved way using the setup discussed above.

Figure 2.10 shows the raw, uncorrected I and Q quadratures averaged over 2.3× 107

traces as detected by the A/D-converter. The π-pulse has been applied to the qubit 1 µs

after recording of the A/D-converter is started as shown in Fig. 2.9. At approximately

1.2 µs, a clear decrease in the magnitudes of I and Q is observed in agreement with

decreased resonator probe tone transmission which is expected when the qubit is excited.

The reason that the response of the probe tone to the qubit excitation pulse is visible with

an additional delay of approx. 200 ns is that the internal mixer of the PSG microwave

source, which is used to create the qubit excitation pulse, imposes a delay on the pulse.

The phase and amplitude errors in the raw I and Q time traces are subsequently corrected
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Figure 2.10: 2.3 · 107 averages over the uncorrected, down-converted I and Q traces recorded
by the A/D-converter. At approx. 1.2 µs, the response of the resonator probe tone
to a π-pulse sent to the qubit is observed. For this measurement, ωIF/2π= 10 MHz
is chosen.

as described in Sec.2.2.1.1. The corrected, but not digitally homodyned, down-converted

probe tone signal is shown in Fig. 2.11 in comparison to the ideal sinusoidal probe tone

signal one would expect if the qubit would be left in the ground state. For the data

shown in the figure, the ideal probe tone signal is determined by making a sinusoidal

fit to the measured transmitted probe tone signal in the time span prior to the qubit

excitation pulse. As compared to the ideal signal, the measured signal deviates both in

phase and amplitude from the unperturbed probe tone, indicating that a change of the
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qubit state changes the resonator transmission properties as discussed in Sec. 2.1.3. Due

to its finite coherence time, the qubit will decay to the ground state. The probability

of qubit relaxation increases with time. This can be seen from the convergence of the

measured probe tone towards the ideal probe tone for t> 1.3 µs.
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Figure 2.11: Green line: Ideal, unperturbed probe tone one would expect without qubit state
change. The green line is obtained by a sinusoidal fit to the measured probe
tone between t= 0 µs and t= 1 µs, i.e. before the qubit excitation pulse. Black
line: Down-converted measured probe tone after amplitude and phase correction.
When the qubit is excited, the measured probe tone deviates in amplitude and
phase from the ideal, unperturbed probe tone.

In order to make the deviation in amplitude and phase better visible, digital homo-

dyning is performed on the measured probe tone data as discussed in Sec. 2.2.1.1. The

resulting time dependent amplitude and phase are shown in Fig. 2.12. For times prior to

the qubit excitation pulse, amplitude and phase are at an almost constant value. When

the qubit is excited, amplitude and phase change. When the qubit relaxes back to the

ground state, also amplitude and phase converge towards the original values before the

pulse. As discussed in Sec. 2.1.3, the phase information may be more precise than the

amplitude information. We therefore infer the relaxation time of the qubit from the time-

dependent phase as indicated in Fig. 2.12. In Sec. 3.3, we provide a detailed analysis of

the qubit relaxation times inferred from such measurements performed for different pulse

durations and amplitudes.
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Figure 2.12: Amplitude and phase inferred from digitally homodyning the corrected probe tone
signal. The effect of the π-pulse applied to the qubit is clearly visible. As described
in the main text, the energy relaxation rate of the qubit is inferred from the
phase information (red line). Dashed black lines: Amplitude and phase of the
unperturbed probe tone.
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Circuit QED with a flux qubit

Over the last decade, the circuit quantum electrodynamics (QED) architecture has be-

come a well-established platform for the investigation of light-matter-interaction [37, 38],

quantum information processing [26, 27, 29, 127] and fundamental quantum mechanics

[36, 128–130]. However, a successful implementation of these applications make high

demands on the coherence times of the various circuit QED components such as quan-

tum bits or resonators. In order to be able to fulfill these requirements, measurement

techniques allowing to determine coherence properties of qubits and resonators have to

be developed. These measurement techniques also represent the fundamental prereq-

uisite for a controlled optimization of coherence times. Another key advantage of the

circuit QED architecture is that coupling strengths between qubits and resonators can

be designed to the desired value over several orders of magnitude [37]. In order to be

able to match the required coupling strength for a specific application, a profound under-

standing of the coupling mechanisms between the circuit QED building blocks is essential.

The flux qubit sample discussed in this section is comprised of a persistent current flux

qubit coupled galvanically to the signal line of a transmission line resonator. Inserting

a coupling Josephson junction in the shared arm between qubit and resonator signal

line in the spirit of Ref. [37] serves the purpose of getting deeper insight into galvanically

coupled qubit-resonator systems and the corresponding coupling strengths. Furthermore,

our sample is used to set up and put into operation the measurement technique for time

domain measurements.

3.1 Single resonator sample layout

The flux qubit sample, fabricated by M. Häberlein, consists of a coplanar waveguide

resonator coupled galvanically to a flux quantum bit. The latter is placed at one of the

current antinodes of the third harmonic mode of the resonator. In this way, the qubit

couples inductively to the three lowest resonator modes as the currents corresponding

59
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to these modes are nonzero at the qubit position, see Fig. 3.1. An antenna, also de-

signed as coplanar waveguide, can be used to apply drive or excitation microwave signals

to the qubit. The sample layout is shown in Figs. 3.2(a)-3.2(e). The coplanar waveg-

uide resonator and the antenna are fabricated in Nb technology on a thermally oxidized

Si substrate. The flux qubit is comprised of a superconducting Al loop intersected by

three Josephson junctions where one of the junctions is smaller by a factor α≈ 0.7. The

Al/AlOx/Al Josephson junctions are produced using shadow evaporation. For details on

the fabrication process we refer to Refs. [52, 97, 131].

A fourth Josephson junction is placed in the branch shared by the flux qubit loop and

the resonator signal line. This is done in the spirit of Refs. [37, 51, 52] where the induc-

tance of the Josephson junction contributes to the mutual inductance between resonator

and qubit. In doing so, the regime of ultrastrong coupling can be reached and a rela-

tive qubit-resonator coupling strength as high as 12 % of the respective resonator mode

frequency has been achieved with a coupling junction seven times larger than a regular

qubit junction. In our sample, the coupling junction, here and in what follows denoted

as the β-junction, is designed to the same size as a regular Josephson junction.

A schematic drawing of the sample and the measurement principle is provided in

Fig. 3.2(f). All measurements discussed in this chapter are based on measuring trans-

mission through the resonator with and without applying drive or excitation signals to

the qubit using the on-chip antenna. The magnetic flux threading the qubit loop can be

tuned by means of a superconducting coil mounted in the vicinity of the sample. For a

detailed description of the measurement setup, we refer to Sec. 2.1.1.1.

0 xL

I(x)

qubit
position

Figure 3.1: Current distribution of the three lowest resonant modes in a half-wavelength res-
onator of length L. Placing the qubit at one of the current antinodes of the third
harmonic allows to couple the qubit to the three lowest resonant modes. Red: First
harmonic. Blue: Second harmonic. Green: Third harmonic.
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1mm
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Figure 3.2: (a) Layout of the flux qubit sample. Nb ground planes are shown in blue, feed
lines in orange, the signal line in green and the antenna in yellow. (b) Coupling
capacitor defining the resonator. (c) Antenna (yellow) in CPW geometry. (d) SEM
image of the flux qubit (red) coupled galvanically to the signal line of the resonator.
(e) SEM image of a regular Josephson junction. (f) Schematic of the sample layout.
A three Josephson junction flux qubit (red) is coupled galvanically to the signal line
of the resonator (green). To enhance the coupling, an additional Josephson junc-
tion (brown) is placed in the shared arm between qubit and resonator (green/red
dashed). Excitation signals can be applied to the qubit by means of the antenna
(yellow).

3.2 Continuous wave spectroscopy

For a first characterization of our sample, we perform continuous-wave transmission spec-

troscopy. These measurements allow us to determine the resonator mode frequencies and

the flux-dependent qubit transition frequency. The measurement setup used for this

purpose is discussed in Sec. 2.1.1.1.
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3.2.1 High-power continuous-wave spectroscopy

We measure transmission through the resonator with the qubit kept in the ground state

as a function of the magnetic flux applied to the qubit loop. We note that the measure-

ments presented in this section are limited by a damaged HEMT amplifier [cf. Fig. 2.2]

worsening the signal-to-noise ratio of the transmitted signal. Using a vector network

analyzer, we first measure the transmission spectra of the first three resonator modes

at slightly increased powers corresponding to approx. 2 poa calibrated for the third har-

monic, cf. Sec. 3.2.3. The results are shown in Fig. 3.3. Pronounced avoided crossings

are observed for the third and second harmonics and also, less pronounced, for the first

harmonic. Far away from the degeneracy point δΦext = Φext−Φ0/2 = 0, the bare resonant

mode frequencies are obtained. Analyzing the linewidths allows to extract the quality

factors of the respective modes. However, the first mode is located outside the amplifier

bandwidth which leads to a significantly reduced signal-to-noise ratio of less than 3 dB,

making it impossible to determine the quality factor. For the second harmonic, we find

a decay rate of κ2/2π= 1.3 MHz, corresponding to a quality factor of Q2 = 4.1× 103. For

the third harmonic, we find κ3/2π= 0.8 MHz and Q3 = 8.5× 103.

3.2.2 Two-tone spectroscopy

In order to get access to the qubit energy gap ∆ and the persistent current Ip, we perform

two-tone spectroscopy as described in Sec. 2.1.3. The spectroscopy tone is applied to the

qubit via the on-chip antenna, cf. Fig. 3.2. We choose the dispersively shifted frequency

of the third harmonic as the flux-dependent probe tone frequency. In order to ensure

negligible shifts of the qubit transition frequency due to the mean resonator photon pop-

ulation, the probe tone power is set to approx. 0.3 poa. The probe tone transmission

is shown in Fig. 3.4 as a function of the spectroscopy tone frequency and the magnetic

flux applied to the qubit. As expected, transmission is maximum if the qubit is in the

ground state. If the qubit is saturated by the spectroscopy tone, the mode frequency is

shifted and decreased transmission is observed. Since the qubit energy gap appears to

be close to the second harmonic mode frequency, an anticrossing between the latter and

the qubit hyperbola is observed, corresponding to the dressed states |+,1〉2 and |−,1〉2,

cf. Sec. 1.4.2. The subscript denotes the resonator’s second harmonic. When the flux

is tuned away from the degeneracy point, the qubit is far detuned from the second har-

monic and the dressed states can be approximated as |+,1〉2≈ |e,0〉2 and |−,1〉2≈ |g,1〉2,

cf. Fig. 3.4. This leads to decreasing spectroscopic response for the latter since the two-

tone spectroscopy protocol is insensitive to states where the qubit is in the ground state.

We note that in the resonant regime it is impossible to read the qubit energy gap
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Figure 3.3: Single-tone spectroscopy of the first three harmonics of the resonator. Large input
powers allow to clearly resolve the mode spectrum despite the damaged HEMT
amplifier. (a) Third harmonic. The power calibration was performed for this mode
and yields a resonator population of 2 poa, cf. Sec. 3.2.3. (b) Second harmonic.
(c) First harmonic. This mode is located outside of the amplifier bandwidth which
limits the signal-to-noise ratio.
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directly from the spectroscopy data. However, as will be shown in Sec. 3.2.4, the combi-

nation of the two-tone spectroscopy data and single-tone continuous-wave spectroscopy

data allows to extract the qubit parameters from a fit of the Hamiltonian to the data.

For this purpose, first the mean photon number in the resonator has to be calibrated.
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Figure 3.4: Two-tone spectroscopy of the qubit. Shown is the probe tone transmission as a func-
tion of the spectroscopy tone frequency ωs and the magnetic flux. An anticrossing
is observed between the second harmonic and the qubit hyperbola, resolving the
dressed states |±,1〉2 where the subscript denotes the second harmonic. Black lines:
Fit to the Hamiltonian of Eq. (3.3).

3.2.3 Power calibration

Power calibration can be performed straightforwardly as described in Sec. 2.1.4 only if

the qubit is dispersive with respect to all resonant modes. In our situation, the detuning

between the qubit and the second harmonic at the degeneracy point is of the same order

of magnitude as the qubit-mode coupling. Hence, one could perform power calibration

away from the degeneracy point, however, this would be done at the cost of high sensitiv-

ity to fluctuations of the magnetic flux which shift the qubit transition frequency. Since

power calibration is very sensitive to variations of the qubit frequency, it is advantageous

to perform such measurements at the degeneracy point where the qubit hyperbola is flat

and small flux deviations do not change the qubit transition frequency.

Our measurement data obtained in order to perform the power calibration are shown

in Fig. 3.5(a). We perform two-tone spectroscopy with the flux set to δΦext = 0 for probe

tone powers ranging from −25 dBm to 5 dBm (referenced to the VNA output). To take

into account the fact that the qubit is not dispersive with respect to the second harmonic

at frequency ω2, we make a more general approach [126] to calibrate the average number

of photons in the third harmonic, which is the mode used to read out the qubit. Following
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Eq. (1.99), the bare qubit transition frequency ωQ is shifted by the number of photons

n3 to

ω̃Q = ωQ +
g2

3

δω3

(2n3 + 1) = ωQ + χ3(2n+ 1) (3.1)

in which the detuning δω3 is approximated as δω3 =ωQ−ω3≈∆−ω3. This is justified

since the dispersive shift per photon χ3� δω3. We then describe the coupling of the

qubit to the second harmonic by the Hamiltonian

Ĥcal = ~

(
ω2 g2

g2 ω̃Q

)
, (3.2)

where g2 denotes the coupling of the second harmonic to the qubit. Calculating the

eigenenergies of the Hamiltonian of Eq. (3.2) yields the frequencies λ± of the two eigen-

states corresponding to the dressed states |±,1〉2 depending on the mean photon number

n3, see Fig. 3.5(b). For low powers, n3≈ 0 and the separation between the two eigenstates

is given by 2g2≈ 2× 87 MHz. We further take into account that the mean photon num-

ber n3 is proportional to the (linear) output power of the VNA. This allows to gauge the

mean number of photons n3 using the frequencies of the two eigenstates, cf. Fig. 3.5(b).

We find that a VNA output power of −14 dBm results in a mean population of the third

harmonic of approx. 1 poa.

3.2.4 Low-power continuous-wave spectroscopy

After power calibration, spectroscopic transmission measurements are performed for all

three modes with negligible mean resonator population. To this end, the VNA output

power is set corresponding to n3≈ 0.2 poa. The results are shown in Fig. 3.6. For the

first harmonic, the phase of the transmitted signal is shown due to its better contrast

instead of the magnitude, owing to the fact that this mode is located outside the amplifier

bandwidth which worsens the signal-to-noise ratio. In order to get access to the qubit

and resonator frequencies, we fit both the spectroscopy data and two-tone data shown in

Fig. 3.4 to the Hamiltonian taking the coupling of the qubit to the three lowest modes

into account. Following Eq. (1.100), the Hamiltonian reads

Ĥ =
ε

2
σ̂z +

∆

2
σ̂x +

3∑
n=1

[
~ωn

(
â†nân +

1

2

)
+ ~gnσ̂z(â†n + ân)

]
. (3.3)
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Figure 3.5: Power calibration for the flux qubit sample. (a) Two-tone spectroscopy at the
degeneracy point performed for VNA output powers ranging over three orders of
magnitude. Two dips, corresponding to the dressed states |±,1〉2, are observed with
frequencies depending on the probe tone power. White dashed lines correspond to
the powers at which (i) high-power spectroscopy (n3≈ 2 poa, Fig. 3.3), (ii) two-tone
spectroscopy (n3≈ 0.6 poa, Fig. 3.4) and (iii) low-power spectroscopy (n3≈ 0.2 poa,
Fig. 3.6) are recorded. (b) Frequencies of the two eigenstates as a function of
the mean photon number. Blue and red lines: Eigenvalues of the Hamiltonian of
Eq. (3.2). Blue and red circles: Measured mode frequencies taken from (a), scaled
to best fit the theoretical model. The scaling factor determines the relation between
VNA output power and mean photon number n3.
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Figure 3.6: Low-power single-tone spectroscopy of the first three resonant modes. (a) Third
harmonic. (b) Second harmonic. (c) The first harmonic is located outside the
amplifier bandwidth, leading to a reduced signal-to-noise ratio. Therefore, the
phase is shown for this mode instead of the magnitude. White lines: Fit to the
Hamiltonian of Eq. (3.3).
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From the fit, we get the following set of parameters:

∆/h = 5.02 GHz, Ip = 208 nA

ω1/2π = 2.642 GHz, g1/2π = 32 MHz

ω2/2π = 5.067 GHz, g2/2π = 72 MHz

ω3/2π = 7.106 GHz, g3/2π = 88 MHz

With relative coupling strengths gn/ωn≈ 0.01, the interaction between qubit and res-

onator is far from the regime of ultrastrong coupling. Actually, the observed relative cou-

pling strengths are on the same order of magnitude as the ones presented in Refs. [52, 132],

where an identical flux qubit is coupled galvanically to the signal line of a coplanar waveg-

uide resonator, but without an additional coupling Josephson junction. To qualitatively

understand this behaviour, we consider the distribution of the resonator transport current

to the qubit branch containing the three qubit Josephson junctions and to the shared

branch between qubit and resonator signal line containing the β-junction, cf. Fig. 3.7. We

assume that the inductance of the Al lines composing the qubit is negligible compared

to the inductances of the Josephson junctions [52]. Following Kirchhoff’s law, the res-

Ires

Ires,Q

Ires

Ires,β

LQ

Lβ

Ip

Figure 3.7: A coupling junction (yellow) with large inductance Lβ is placed in the shared arm
between qubit and resonator, causing the resonator mode current Ires to distribute
among the qubit arm containing the three qubit junctions and the shared arm
between qubit and resonator. Since the qubit persistent current has different sign
with respect to Ires,Q and Ires,β, respectively, a β-junction with large inductance
Lβ ≈LQ results in comparably low qubit-resonator coupling strengths.

onator mode current Ires =ωn
√

~/Z, where ωn is the mode frequency and Z = 50 Ω is the

impedance, will distribute between the qubit branch containing the three qubit junctions

with a total inductance of LQ and the shared branch between qubit and resonator, see

Fig. 3.7. For the case of a large β-junction [37], i.e. LQ�Lβ, the fraction of the resonator

mode current flowing across LQ will be negligible and the qubit-mode coupling strength

gn can be calculated via ~gn =LβIpIres with the qubit persistent current Ip.

In our scenario, however, β= 1 and therefore the fraction of the resonator mode current

flowing across LQ is estimated to Ires,Q = Ires,βLβ/LQ and can no longer be neglected.



3.3 Driven Rabi oscillations 69

In this scenario we can only make a qualitative statement about the expected coupling

strength since the Josephson inductance is hard to compute due to its proportionality

to 1/ cosϕ, cf. Eq. (1.50). Since the persistent current has a different sign when flowing

across Lβ and LQ, respectively, the total qubit-mode coupling is given by

~gn = LβIpIres,β − LQIpIres,Q � LβIpIres. (3.4)

Apparently, the regime of ultrastrong coupling cannot be reached with the configura-

tion of this particular sample. We note that a very critical reader could argue that the

β-junction could be short-connected due to a fabrication problem and therefore Lβ = 0.

However, as can be seen in Fig. 3.6, the spacing between the resonator modes is not uni-

form. Specifically, ω2 6= 2ω1 and ω3 6= 3ω1. This observation is in agreement with Ref. [37],

where the mode spacing is also not uniform due to the presence of the β-junction. In

turn, data presented in Refs. [52, 132] where an identical flux qubit is coupled galvani-

cally to a similar resonator, but without a β-junction, show an almost perfectly uniform

mode spacing. Furthermore, warming up our sample and cooling it down again caused all

Josephson junctions to be short-connected. In this situation we also find evenly spaced

resonator modes at ω∗1/2π= 2.29 GHz, ω∗2/2π= 4.58 GHz and ω∗3/2π= 6.90 GHz. This

also supports our assumption that a short-connected β-junction can not be blamed for

the observed low relative coupling strengths.

Even though it has been shown that inserting a Josephson junction in the shared branch

between qubit and resonator can enhance the coupling significantly [37], our findings on

the sample investigated in the course of this thesis indicate that a coupling Josephson

junction does not allow to reach arbitrarily large coupling strengths by increasing the

Josephson inductance of this coupling junction. Since this scenario is hard to analyze

theoretically, we propose to find the maximum coupling which can be reached with such

a coupling junction by measuring a series of qubits coupled to resonators for a set of

different coupling junction sizes. We are convinced that such a systematic study will in

turn provide a basis for further theoretical studies of the influence of coupling junctions

on the qubit-resonator coupling strength.

3.3 Driven Rabi oscillations

In this section we aim at characterizing the coupled qubit-resonator system in the time

domain. To this end, we run the protocol allowing to observe driven Rabi oscillations

as discussed in Sec. 2.2. We note that also the time-domain measurements are affected

by the damaged cryogenic HEMT amplifier. However, the primary goal of putting into
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operation and testing the time-domain measurement setup could be reached despite this

technical problem. In order to not being affected by flux instabilities, we first perform

measurements at the degeneracy point δΦext = 0. Excitation pulses are applied to the

qubit using the on-chip antenna (cf. Fig. 3.2). At the degeneracy point, the qubit is not

dispersive with respect to the second harmonic as shown in Fig. 3.4. We apply drive

pulses of length τ at the frequency of the |−,1〉2-state given by ωs/2π= 4.960 GHz.
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Figure 3.8: Driven Rabi oscillations measured at the degeneracy point. (a) Probe tone phase
as a function of time and pulse length measured for an excitation pulse power of
−16 dBm (referenced to the signal generator output). Black dashed line: Points
in time coinciding with the falling edge of the excitation pulse. White dashed
line: Pulse length identified with maximum probability to prepare the qubit in the
excited state. (b)-(e) Blue circles: Phase of the probe tone measured at the point in
time coinciding with the falling edge of the excitation pulse. Red lines: Sinusoidal
fits overlain by linear trend.
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The qubit state is read out using a continuous-wave probe signal at the frequency of

the dispersively shifted third harmonic at ωp/2π= 7.109 GHz. The power of the latter is

chosen such that the third harmonic is populated with approx. one photon on average.

The transmitted probe signal is recorded in a time-resolved way using the setup and the

error correction protocol presented in Sec. 2.2.1.1. For all pulse lengths τ , we average

over 2.3× 107 traces. Figure 3.8(a) shows the phase of the transmitted probe tone as a

function of time and pulse length for 5 ns≤ τ ≤ 55 ns. An oscillatory dependence of the

phase response on the pulse length is observed as expected. To make the oscillatory be-

haviour better visible, we show the phase response at the time coinciding with the falling

edge of the qubit excitation pulse as a function of pulse length measured for four different

pulse amplitudes in Figs. 3.8(b)-(e). As can be seen, the expected oscillatory behaviour,

identified with Rabi oscillations, is overlain by a linear trend of unknown origin.
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Figure 3.9: (a) Blue lines: Fast Fourier transforms of the probe tone phase (cf. Fig.3.8) mea-
sured for different excitation pulse powers (referenced to the signal generator out-
put). Green circles: Frequency determined by a sinusoidal fit to the probe tone
phase as a function of pulse length. The latter agree well with the results ob-
tained by an FFT. (b) Rabi frequency as a function of pulse amplitude. Below
approx. 50 mV (referenced to the signal generator output), the Rabi frequency fol-
lows the expected proportionality to the drive pulse amplitude.
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An unambiguous characteristic of driven Rabi oscillations is the proportionality be-

tween the Rabi frequency and the pulse power, cf. Sec. 2.2.2. In order to verify the

proportionality, we calculate the fast Fourier transforms (FFT) of the phase-time curves

for nine different pulse amplitude. The results are shown in Fig. 3.9(a). As can be seen,

the FFT maxima coincide well with the frequencies extracted from sinusoidal fits as

shown in Figs. 3.8. In Fig. 3.9, we plot the power-dependent Rabi frequencies extracted

from sinusoidal fits and from the FFT analysis versus the pulse amplitude. Fig. 3.9(b)

shows that the dependence of the Rabi frequency on the pulse amplitude obeys the ex-

pected proportionality up to a pulse amplitude of approx. 50 mV (referenced to the signal

generator output). For larger drive amplitudes, the Rabi frequency seems to saturate to

a value coinciding with the coupling strength g3. Such a phenomenon where the Rabi

frequency converges towards characteristic system frequencies has also been observed in

Ref. [19], but in a frequency range two orders of magnitude larger than in our case.

Next, we analyze the qubit energy relaxation time T1. To this end, we again consider

Fig. 3.8(a). We identify a pulse length of 30 ns with a (2n − 1)π-pulse (n∈N), i.e. we

assume that the qubit is in the excited state after the pulse has been applied. We then

consider the exponential decay of the phase as a function of time, cf. Fig. 3.10. From an

exponential fit to the data, we find a decay time Tdecay≈ 1.0× 102 ns. However, in our

situation we are not observing the decay of a pure qubit state, but a dressed state also

containing a resonator contribution. To extract the qubit energy relaxation time T1, we

make the ansatz

T−1
decay = T−1

1 + κ2/2π, (3.5)

where κ2/2π= 1.3 MHz is the decay rate of the second resonator harmonic. With this,

we find a qubit energy relaxation time at the degeneracy point of T1≈ 1.2× 102 ns.

Thus far, we have investigated the response of the probe tone to pulses applied to the

state |−,1〉2 at the degeneracy point. Next, we detune the magnetic flux applied to the

qubit away from the degeneracy point to δΦext≈ 1 mΦ0 such that ωQ = 5.34 GHz. Using

the same protocol as above, we again record the phase response of the probe tone trans-

mitted through the resonator at the frequency of the third harmonic as a function of time

for different pulse lengths applied to the qubit. The results are shown in Fig. 3.11(a).

Again, a pronounced oscillatory behaviour is observed. Plotting the phase response at

the point in time coinciding with the falling edge of the qubit excitation pulse versus the

pulse length, we find that the data can be well described by an exponentially decaying si-

nusoidal fit overlain by a linear trend. Also the FFT spectrum shows a clearly pronounced

maximum in agreement with the observation of driven Rabi oscillations. Unfortunately,
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Figure 3.10: Black line: Probe tone phase as a function of time for an excitation pulse with
τ = 30 ns and Ps =−16 dBm. Red line: Exponential decay allowing to extract the
energy relaxation time of T1≈ 115 ns.

instabilities of the magnetic flux1 made subsequent measurements of the Rabi frequency

for different drive pulse amplitudes impossible. Nevertheless, we can extract an estimate

for the T1-time. To this end, we identify a pulse length of τ = 24 ns with maximum prob-

ability of preparing the qubit in the excited state. For this pulse length, the phase is

shown as function of time in Fig. 3.12. An exponential fit to the data yields an energy

relaxation time of T 1 mΦ0
1 ≈ 1.1× 102 ns which is on the same order as the T1-time found

at the degeneracy point.

In conclusion, we have successfully set up and tested the measurement setup for time-

domain spectroscopy measurements. The measurement technique presented here has also

been used for the measurements presented in Sec. 4.3.2. Furthermore, our setup also al-

lows to perform time-domain measurements on more complex systems like gradiometric

flux qubits with tunable gaps [133]. Furthermore, the sample provides insight into galvan-

ically coupled qubit-resonator systems and suggests a systematic study of the influence

of coupling Josephson junctions on the qubit-resonator coupling strengths.

1Caused by insufficiently shielded external sources of magnetic fields, e.g. strong magnets in neighbour-
ing labs. Flux variations on the order of 0.1 mΦ0− 1 mΦ0 per hour were observed.
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Figure 3.11: Driven Rabi oscillations measured at δΦext≈ 1 mΦ0. (a) Probe tone phase as a
function of time and pulse length τ . Black dashed line: Points in time coinciding
with the falling edge of the excitation pulse. White dashed line: Pulse length
identified with maximum probability to prepare the qubit in the excited state.
(b) Blue circles: Phase of the probe tone measured at the point in time coinciding
with the falling edge of the excitation pulse. Red lines: Exponentially decaying
sinusoidal fit overlain by linear trend. (c) Fast fourier transform of the probe tone
phase (as a function of τ). A single pronounced peak is observed.
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Figure 3.12: Black line: Probe tone phase as a function of time for an excitation pulse with
τ = 24 ns and Ps =−10 dBm. Red line: Exponential decay allowing to extract the
energy relaxation time of T1≈ 1.1× 102 ns.



Chapter 4

Two-resonator circuit QED

One of the most important advantages in using superconducting circuits for the inves-

tigation of light-matter interaction [37], quantum information processing and, recently,

quantum simulation [40, 45, 134] is the large coupling strength between the main build-

ing blocks of the circuit QED architecture, namely superconducting quantum bits and

microwave resonators. Noticeably, the coupling strength remains considerable even for

second-order mechanisms. However, to realize quantum gates and quantum information

and simulation protocols, the coupling between the individual circuit elements needs to

be tunable in situ. This can be realized in at least two ways. One way is to decouple

two circuits by detuning them in frequency, for example by using the frequency tun-

ability of superconducting qubits. With this technique, systems with up to nine qubits

and up to ten microwave resonators were studied [24, 26, 29, 134], entangled quantum

states were created [33, 34, 135] and quantum teleportation [36] and quantum comput-

ing protocols were demonstrated [25, 136, 137]. Alternatively, the coupling between two

circuit QED building blocks can be mediated by additional coupling circuits. Examples

for coupling circuits include single Josephson junctions [27, 55, 138], SQUIDs [53, 54, 56–

58, 139] or qubits [140–142] which were used to realize tunable coupling between qubits,

resonators and transmission lines. Furthermore, new types of qubits were introduced

featuring intrinsic tunability of the coupling to microwave resonators [143–146]. In this

chapter, we report on tunable and switchable coupling between two frequency-degenerate

superconducting transmission line resonators mediated in a second-order process by a su-

perconducting flux qubit [120, 121]. Our setup is in a way dual to the usage of a resonator

as quantum bus between two qubits [147, 148].

After introducing the sample layout, we analyze the complex mode structure by means

of transmission spectroscopy. We show that one resonant mode is coupled ultrastrongly

to the qubit and present an unambiguous spectroscopic proof for the breakdown of the

Jaynes-Cummings approximation. We find that ultrastrong coupling of a qubit to a dis-

tributed resonator structure can be reached solely by the geometrical configuration of

75
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the latter without making use of additional inductive elements realized for example by

Josephson junctions.

Finally, we discuss tunable and switchable coupling between the two resonators. One

particular property of our scheme is that the coupling between the two resonators can

either be tuned via the magnetic flux applied to the qubit loop or switched by varying

the qubit population via a microwave drive. We perform time domain measurements to

find the parameter regimes for optimal sample performance. We point out that tunable

coupling between frequency-degenerate resonators is of particular importance in the light

of recent proposals for quantum simulations of many-body physics [40, 43–45, 48, 49]. All

these proposals and experiments would obviously profit from a well-controlled tunable

resonator-resonator coupling such as the one presented in this work.

4.1 Two-resonator sample layout

Our sample, designed and fabricated by E. Hoffmann [97], is composed of two coplanar

stripline resonators, A and B (cf. Sec. 1.2.2.3), fabricated in Nb technology on a ther-

mally oxidized Si substrate. A superconducting persistent current flux qubit is coupled

galvanically to the signal lines of both resonators at the position of the current antinodes

of the lowest frequency modes as shown in Fig. 4.1(a)-4.1(e). The flux qubit consists of

a superconducting Al loop intersected by three Josephson junctions. Two of them, re-

ferred to as regular Josephson junctions, have the critical current Ic. The third one has a

junction area smaller by a factor α' 0.7. The galvanic coupling of the qubit to the signal

lines of both resonators gives reason for using the coplanar stripline architecture instead

of the coplanar waveguide architecture. For the latter, one of the resonator ground planes

would have to be interrupted around the position of the qubit, cf. Fig. 4.1(c). However,

transitions from the CPW to the coplanar stripline (CSL) architecture require elements

such as slotline radial stubs or baluns [66] which are both space consuming and nontrivial

to design. Furthermore, bonding would be required in close proximity to the qubit. For

these reasons, the transition from the CPW architecture, in which the resonator feed lines

are fabricated, to the CSL resonator is done at the position of the coupling capacitor,

cf. Fig. 4.1(b).

The sample is mounted inside a gold-plated copper box attached to the base tempera-

ture stage of a dilution refrigerator stabilized at 45 mK. The magnetic flux Φext applied

to the qubit can be adjusted by means of a superconducting solenoid mounted on top of

the sample box.



4.1 Two-resonator sample layout 77

1mm 30µm

100µm
30µm

500nm

(a) (c)

(b) (d) (e)

gAB

g

g

A

B

Φext

(f )

1

34

2

cross

through

Figure 4.1: Sample and sketch of the coupling mechanisms. (a) False-color image of the sample
chip. Nb ground planes are shown in blue and feed lines in orange. The resonator
signal lines reside along the ground plane edges. The green and red rectangles mark
the areas shown on an enlarged scale in (b) and (c), respectively. (b) Coupling
capacitor defining the resonators. (c) Resonator coupling area with signal lines
(green) and flux qubit (red). Light/dark green stripes highlight Nb-Al overlap
areas. The yellow rectangle marks the area shown in (d). (d) Flux qubit galvanically
coupled to both resonators. The black rectangle marks the area shown in (e). (e)
Al/AlOx/Al Josephson junction fabricated using shadow evaporation. (f) Sketch of
the coupling mechanisms. The wiggly arrows symbolize the input microwave lines
connected to both resonators and the black triangles denote the corresponding
output lines featuring microwave amplifiers. The crosses intersecting one qubit
branch symbolize the three Josephson junctions. To characterize the mode structure
of the sample, we first measure transmission through the two resonators. Encircled
numbers denote the port identifiers. Sample images by courtesy of E. Hoffmann
[97].
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4.2 Ultrastrong coupling in two-resonator circuit QED

One characteristic feature of the circuit QED architecture is the large coupling strength

that can be reached between qubits and resonators as a consequence of the large qubit

dipole moments of the former and the small mode volumes of the latter. Remarkably, even

the regime of ultrastrong coupling can be reached in superconducting circuits where the

Jaynes-Cummings approximation breaks down. In this situation, the interaction between

light and matter can only be described correctly by the quantum Rabi model [111, 112]

which also takes into account the counterrotating terms describing processes where the

number of excitations is no longer conserved, see Sec. 1.4. Reaching the regime of ul-

trastrong coupling paves the way for various applications and the study of interesting

phenomena. For instance, it allows for the realization of ultrafast gates [149] and pro-

vides deeper insight into Zeno physics [150] or photon transfer through cavity arrays [50].

Furthermore, a protocol allowing to simulate the regime of ultrastrong coupling with a

standard circuit QED setup has been suggested [151]. Such simulations can be used to

interpret the results obtained in actual ultrastrong coupling experiments.

4.2.1 Mode structure

For coupled microwave resonators, we expect to observe two resonant modes correspond-

ing to out-of-phase and in-phase oscillating currents in the two resonators, cf. Fig. 4.2(a)

and Fig. 4.2(b). We refer to these modes as the antiparallel and parallel mode and assign

to them the annihilation operators ĉ+ and ĉ−, respectively.

To determine the resonator properties, we measure the transmission through both res-

onators (referred to as a ‘through’ measurement) and the transmission from one to the

respective other resonator (‘cross’ measurement) as a function of frequency, cf. Fig. 4.1(f).

The flux is set far away from the qubit degeneracy point such that the qubit is far detuned

and its influence is negligible. The results are shown in Fig. 4.3. First, we determine the

fundamental mode frequencies of both resonators from the positions of the antiresonances

as discussed in Sec. 1.2.4 and find ωA/2π= 4.8965 GHz and ωB/2π= 4.8955 GHz. Subse-

quently, we fit the theoretical transmission of Eq. (1.43) derived from input-output theory

to the transmission spectrum measured through resonator A, using the coupling and the

resonator decay rates as fit parameters. We determine the geometric coupling between

the resonators gAB/2π= 8.4 MHz. For the decay rates, we find κA/2π= 2.3 MHz and

κB/2π= 0.5 MHz. With this set of parameters, we calculate the theoretical transmission

as a function of the frequency for the remaining S-parameters shown in Figs. 4.3(b)-4.3(d).

As can be seen, all measured S-parameters are described very well by the resonator pa-
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Figure 4.2: Resonant modes of the galvanically coupled qubit-resonator system. The arrows
indicate in-phase and out-of-phase oscillating currents. (a) Antiparallel mode ĉ+.
(b) Parallel mode ĉ−. (c) Transverse mode ĉt. (d) Hypothetical antiparallel trans-
verse mode. As the mode currents cancel along the shared branch connecting both
resonators, this mode is equivalent to the parallel mode ĉ−.

rameters stated above.

Next, we measure the transmission S21 through resonator A as a function of frequency

and magnetic flux. The input power is chosen such that the population of both resonators

is approximately one photon on average1 and the qubit is kept in the ground state. Far

away from the qubit degeneracy point δΦext = Φext−Φ0/2 = 0, the antiparallel and paral-

lel mode can be identified in the spectroscopy data presented in Fig. 4.4. Their resonant

frequencies are found to be ω+/2π= 4.904 GHz and ω−/2π= 4.888 GHz.

As discussed in Sec. 1.5, the qubit can be used to tune the coupling between the two

resonators. In addition to the geometric coupling there is the qubit mediated second-

order dynamic coupling which depends on the magnetic flux applied to the qubit loop

and on the qubit state. If the qubit is in the ground state, there exist certain flux values

which we refer to as switch setting conditions where the geometric coupling is (in the

ideal case) fully compensated by the dynamic coupling such that the total coupling be-

tween the two resonators vanishes [120]. The influence of the dynamic coupling manifests

1For a detailed description of the power calibration we refer the reader to Ref. [97].
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Figure 4.3: Through- and cross-transmission measured with a VNA as a function of frequency
with the qubit far detuned (ωq≈ 16 GHz). Brown circles: measurement data. Solid
lines: Theoretical description using input-output theory. (a) Transmission S21

through resonator A. The anticrossing is located at the resonant frequency of the
bare resonator B. The blue line represents a fit of Eq. (1.43) to the data using the
coupling and the resonator decay rates as fit parameters. (b) Cross transmission S41

measured from resonator A (input) to resonator B. (c) Transmission S43 through
resonator B. The anticrossing is located at the resonant frequency of the bare
resonator A. (d) Cross transmission S23 measured from resonator B (input) to
resonator A.
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itself in the spectroscopy data of Fig. 4.4 as a flux dependence of the antiparallel mode

frequency and will be discussed in full detail in Sec. 4.3.

The galvanic coupling of the qubit to both resonators gives rise to a third mode ĉt

which we refer to as the ‘transverse mode’. It is identified as a parallel mode across the

qubit as shown in Fig. 4.2(c). We note that a hypothetical antiparallel transverse mode

as shown in Fig. 4.2(d) cannot be observed. Since the mode currents cancel along the

branch connecting the resonators A and B, this mode is identical to the parallel mode ĉ−.

However, additional resonant structures besides the coupler modes ĉ+ and ĉ− and

the (parallel) transverse mode ĉt can be observed in the spectroscopy data of Fig. 4.4.

Near the degeneracy point, an additional resonant structure is visible at the frequency

of 4.904 GHz coinciding with the transition between the eigenstates corresponding to the

second and sixth lowest eigenenergies of the Hamiltonian of Eq. (4.3). In agreement

with a similar resonant structure observed in Ref. [38], we attribute this resonance to

a small thermal population of the qubit excited state due to the finite sample temper-

ature of 45 mK. Furthermore, an additional resonant structure is observed around the

degeneracy point at the frequency of 4.44 GHz, however, there is no transition between

eigenstates of the Hamiltonian of Eq. (4.3) which can be associated with this frequency.

An alternative explanation for this structure has yet to be found. We note that both

resonant structures are not included in the data basis for the fits described below.

Far away from the qubit degeneracy point, the resonant frequency of the transverse

mode ĉt is found to be ωt/2π= 4.508 GHz. To explain the large frequency detuning

between the transverse and the (anti)parallel mode, we assume that the inductance of

the qubit has to be taken into account in order to correctly describe the frequency of the

transverse mode. Following Refs. [152–154], we calculate the resonant frequency of the

transverse mode to ωt =ωR/(1 +LQ/LR), where LQ is the inductance of the flux qubit and

LR is the inductance of a single resonator. The latter is given by LR =Z/2ωR = 8.2 nH,

where Z = 80 Ω is the characteristic impedance of the resonator [77]. For simplicity, we

assume equal resonator frequencies ωR/2π= 4.896 GHz≈ωA,B/2π. The inductance of the

flux qubit is given by LQ = (∂2UQ/∂Φ2
ext)
−1, where

UQ =EJ[2 +α− cosϕ1− cosϕ2−α cos(2πf +ϕ1−ϕ2)] (4.1)

is the flux qubit potential, cf. Sec. 1.3.4 and Ref. [16]. The phase drops across the regular

qubit junctions are denoted by ϕ1 and ϕ2, f = Φext/Φ0 is the frustration and EJ = Φ0Ic/2π

is the Josephson energy. Introducing ϕ−= (ϕ1−ϕ2)/2, the inductance of the flux qubit
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reads as

LQ = Φ0/[2παIc cos(2πf + 2ϕ−)], (4.2)

with a minimum value of LQ(f = 0,ϕ−= 0) = Φ0/2παIc = 719 pH, yielding a resonant fre-

quency of ωt,theo/2π= 4.501 GHz. This value is in excellent agreement with the experi-

mental value ωt/2π= 4.508 GHz measured far away from the degeneracy point. To keep

the theoretical modelling simple, in the following we assume a constant transverse mode

frequency ωt. That is, we assume that the experimentally observed flux dependence is

solely due to the interaction with the flux qubit.

To gain further insight, we consider the Hamiltonian describing the coupling of the

qubit to all resonant modes:

Ĥ = ĤQ +
∑
n=

{+,−,t,3t,3+}

Ĥn

+ ~g
√

2 σ̂z(ĉ
†
+ + ĉ+)

+ ~gt σ̂z(ĉ
†
t + ĉt)

+ ~g3t σ̂z(ĉ
†
3t + ĉ3t)

+ ~g3+ σ̂z(ĉ
†
3+ + ĉ3+). (4.3)

Here, ĤQ = (ε/2)σ̂z + (∆/2)σ̂x is the qubit Hamiltonian and Ĥn = ~ωnĉ†nĉn is the Hamil-

tonian describing the resonant mode ĉn. ∆ is the qubit energy gap, ε(Φext) = 2IpδΦext

denotes the qubit energy bias, and Ip = Ic

√
1− (2α)−2 the qubit persistent current. σ̂x

and σ̂z are the Pauli operators. As shown in Ref. [39], the coupling of the qubit to

the antiparallel mode is given by g+ =
√

2g whereas there is virtually no coupling of the

qubit to the parallel mode as the latter does not generate a magnetic field at the po-

sition of the qubit. To increase precision of our description, we also take into account

the third harmonic of the ĉt-mode (denoted by ĉ3t, located at ω3t/2π= 13.1 GHz) and

the third harmonic of the ĉ+-mode (denoted by ĉ3+, at ω3+/2π= 14.3 GHz). We do not

consider the second harmonics since they exhibit current nodes at the qubit position and

therefore do not couple to the qubit. The coupling strengths g3t and g3+ are not con-

sidered as independent parameters, but are calculated via g3t/2π= (gt/2π)
√
ω3t/ωt and

g3+/2π= (g+/2π)
√
ω3+/ω+, taking into account the current distribution in the resonator.

Fitting the Hamiltonian of Eq. (4.3) to our data (cf. Fig. 4.4), the qubit energy gap is

determined to ∆/h= 3.55 GHz and the persistent current to Ip = 458 nA. We find that

the coupling strength between the qubit and each resonator is given by g/2π= 96.7 MHz

and the coupling strength of the mode ĉt to the qubit is gt/2π= 775 MHz which is as

high as 17.2 % of the respective mode frequency. Remarkably, the coupling strength even



4.2 Ultrastrong coupling in two-resonator circuit QED 83

-5 0 5

m
ag

ni
tu

de
 (d

B)

-50

-20

-30

-40

4.2

4.4

4.6

4.8

5.0

ω
/2
π 

(G
H

z)

δΦext (mΦ0)

-5 0 5

m
ag

ni
tu

de
 (d

B)

-50

-20

-30

-40

4.2

4.4

4.6

ω
/2
π 

(G
H

z)

δΦext (mΦ0)

(a)

(b)

c+

c-

ct

^

^

^

ct
^

Figure 4.4: (a) Transmission measured through resonator A depending on the applied magnetic
flux with the qubit in the ground state. Green line: Fit using the Hamiltonian of
Eq. (4.3). The area shown in panel (b) is marked by the black rectangle. (b) Detail
of (a). Solid green line: Fit using the Hamiltonian of Eq. (4.3). Dashed black line:
Description within the Jaynes-Cummings model.
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exceeds the relative coupling strengths observed in Ref. [37] although the coupling is de-

termined solely by the geometrical properties of the qubit arm and not by an additional

inductive element such as a Josephson junction introduced in Ref. [37] to enhance the

coupling strength. To understand the origin of the exceptionally large coupling strength,

we assume that the coupling strength of the qubit to resonator A and B, respectively,

is determined by the shared arms between the qubit and the resonators A and B, re-

spectively. We further assume that the transverse mode current is flowing predominantly

through the qubit arm without Josephson junctions as shown in Fig. 4.2(c). This assump-

tion is well justified since the geometric inductance of the qubit arm without Josephson

junctions is much smaller than the total inductance of the branch containing the three

Josephson junctions.

Following Ref. [155], we can estimate the geometric inductance of the qubit branch

connecting the two resonators A and B (length 30 µm, width 0.5 µm, thickness 0.1 µm)

to 31 pH which adds to the kinetic inductance [63] of approx. 27 pH, yielding a total

inductance of the qubit branch Lt = 58 pH. We further can estimate the inductance of

the shared arms (length 20 µm) between the resonators (total length 11.55 mm) A and B

and the qubit to Lr =LR · 20 µm/11.55 mm = 14.2 pH. The coupling strength g+ between

the antiparallel mode and the flux qubit is given by ~g+ = 2LrIpI+ where I+ =
√
~ωR/2LR

is the vacuum current of the antiparallel mode [37]. The total coupling strength gt of

the mode ĉt to the qubit is comprised of two contributions. The first one is the coupling

mediated by the shared branch between qubit and resonator and the second one is the

coupling mediated by the qubit branch connecting the two resonators. Therefore, we can

calculate the coupling strength ~gt = 2LrIpIt + 2LtIpIt, where It is the vacuum current of

the mode ĉt. With these results, we estimate a ratio gt/g+ = (ωt/ωR) · (2Lt + 2Lr)/2Lr ≈
4.7 in good agreement with the experimentally found ratio of 5.7.

4.2.2 Ultrastrong coupling

In what follows, we briefly reiterate the theoretical framework needed to describe the

interaction between the qubit and the multimode structure arising from our two-resonator

circuit QED architecture, cf. Sec. 1.4.3. First, we rotate the Hamiltonian of Eq. (4.3)

into the qubit eigenbasis using the transformations

σ̂z → cos θσ̂z − sin θσ̂x, (4.4)

σ̂x → sin θσ̂z + cos θσ̂x, (4.5)
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where sin θ= ∆/~ωq and cos θ= ε/~ωq and ~ωq =
√

∆2 + ε2 is the flux-dependent qubit

transition energy. In the qubit eigenbasis, the Hamiltonian reads

Ĥ∗= Ĥ∗Q +
∑
n=

{t,+,3t,3+}

[
Ĥn + ~gn

(
ĉ†n + ĉn

)
(cos θσ̂z− sin θσ̂x)

]
(4.6)

with Ĥ∗Q = ~ωq

2
σ̂z. At Φext = Φ0/2, the Hamiltonian of Eq. (4.6) represents a multimode

quantum Rabi model. We note that we drop the ĉ−-mode since it does not couple to the

qubit. Defining the qubit state raising and lowering operators σ̂±= (σ̂x± iσ̂y)/2, we find

that the Hamiltonian of Eq. (4.6) explicitely contains counterrotating terms of the form

ĉ†nσ̂+ and ĉnσ̂−. For gn�ωn, a rotating wave approximation reduces the Hamiltonian of

Eq. (4.6) to the well known multimode Jaynes-Cummings Hamiltonian for arbitrary Φext.

Following Ref. [37], the regime of ultrastrong coupling is reached when the interaction be-

tween the qubit and one or multiple modes can only be described by the quantum Rabi

model, but qualitative deviations from the Jaynes-Cummings model are observed. De-

spite these deviations, the system dynamics still reflects the intuition of several distinct,

but coupled systems exchanging excitations. This intuition breaks down completely in

the deep strong coupling regime [156], where g&ω and the dynamics of the system is

characterized by the emergence of two parity chains.

Next, we analyze whether our multipartite circuit QED setup comprised of a flux qubit

and two galvanically coupled resonators is consistent with the Jaynes-Cummings model or

whether it has to be treated within the more general Rabi model. First, we assume that

the Rabi model represents a valid theoretical model for our setup and fit the Hamiltonian

of Eq. (4.6) to our spectroscopy data. As shown by Fig. 4.5(a), theory and experimental

data agree very well for the ĉ+-mode. However, if we drop the counterrotating terms

without making a new fit, we find a pronounced qualitative deviation between our ex-

perimental data and the Jaynes-Cummings model prediction. The observed deviations

are in agreement with the observation of the Bloch-Siegert shift in a system comprised

of a flux qubit coupled ultrastrongly to an LC-resonator [38]. Figure 4.4(b) shows the

fit of the full Hamiltonian to our spectroscopy data for the transverse mode ĉt and the

corresponding description within the Jaynes-Cummings model. Even if a small quantita-

tive difference can be observed, there is no qualitative difference between the two models.

This can be understood considering the fact that the Bloch-Siegert shift is proportional to

g2 sin2 θ/(ωQ +ωR) and, hence, is most prominent near the qubit degeneracy point. How-

ever, the pronounced qualitative deviation between Rabi and Jaynes-Cummings model

for the ĉ+-mode (cf. Fig. 4.5(a)) indicates that the rotating wave approximation is no

longer valid. This demonstrates that the full quantum Rabi model has to be used to
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Figure 4.5: Breakdown of the Jaynes-Cummings model. (a) Transmission measured through
resonator A depending on the magnetic flux applied to the flux qubit (detail from
Fig. 4.4) with the qubit in the ground state. Green line: Fit of the full Hamiltonian
of Eq. (4.3). Blue dashed line: Prediction by the Jaynes-Cummings model. Black
dashed line: Fit to the Jaynes-Cummings model neglecting the transverse mode.
White dashed line: Measurement frequency for two-tone spectroscopy. (b) Same as
(a), qubit driven with strong excitation signal. (c) Two-tone spectroscopy. Green
lines: Fit of the spectroscopy data to the full Hamiltonian (4.3). Black dashed lines:
Description within the Jaynes-Cummings model. (d, e) Details from (c).

correctly describe our experimental findings.

However, one may doubt our interpretation of the transverse mode and argue that

the latter is not originating from the galvanic coupling of the qubit to the resonators A

and B. One could further assume that the mode ĉt is an independent phenomenon in

the sense that its flux dependence is not a manifestation of its coupling to the qubit. In

other words, a very critical reader may suggest to omit the transverse mode from the
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Hamiltonian of Eq. (4.6) and fit only the coupler modes to the Hamiltonian

Ĥ = Ĥ∗Q +
∑

n={+,3+}

Ĥn

+ ~g+(ĉ†+σ̂− + ĉ+σ̂+)

+ ~g3+(ĉ†3+σ̂− + ĉ3+σ̂+) (4.7)

which contains no counterrotating terms anymore. As shown in Fig. 4.5(a), our trans-

mission data are described well by this model. However, even if the fit looks nice, this

ansatz yields qubit parameters deviating strongly from the qubit parameters given in

Sec. 4.2.1, where we performed the fit using the Hamiltonian of Eq. (4.6). In order to

verify which of the two parameter sets is incorrect, we make use of the fact that our

measurement setup does not only provide access to the eigenmodes of the coupled qubit-

resonator system, but also allows to perform spectroscopy of the qubit using a two-tone

spectroscopy experiment. To this end, we record the transmission through resonator A at

the frequency of ω+/2π= 4.904 GHz. When the qubit is far detuned, this corresponds to

the resonant frequency of the ĉ+-mode. In addition, a second microwave tone, the spec-

troscopy tone, with variable frequency ωs is applied to the coupled qubit-resonator system

via the input port of resonator B. When the qubit is in the ground state, the measured

transmission as a function of the magnetic flux applied to the qubit loop corresponds to

a cut through Fig. 4.5(a) along ω+/2π as highlighted by the white dashed line. When

the qubit is saturated by means of the spectroscopy tone, the qubit state is described

by the density matrix ρM = 1
2
(|g〉〈g|+ |e〉〈e|) and the transmission spectrum turns into

the one shown in Fig. 4.5(b). Evidently, the transmission magnitude at ω+/2π increases

near the degeneracy point when the qubit is driven. Using this protocol, we record the

change in resonator transmission as a function of the spectroscopy tone frequency ωs and

the applied magnetic flux, cf. Figs. 4.5(c)-(e). We compare the measured data to the en-

ergy level spectrum of the Hamiltonian of Eq. (4.6) by calculating the energy differences

between the ground state and the 15 lowest energy levels. As can be seen, there is very

good agreement between our two-tone spectroscopy data and their description within the

full Hamiltonian of Eq. (4.6). However, the energy level spectrum calculated from the

qubit parameters found by a fit of the ĉ+-mode within the Jaynes-Cummings approxi-

mation clearly deviates from the two-tone spectroscopy data. In other words, treating

the mode ĉt independently of the mode ĉ+ clearly does not allow us to correctly describe

our experimental data within the Jaynes-Cummings model. In turn, our findings also

strengthen our interpretation of the transverse mode.

Finally, we compare our findings to previous work on ultrastrong coupling in super-
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conducting circuits. In the present sample, the access to both resonator and qubit spec-

troscopy data allows us to rigorously rule out the validity of the Jaynes-Cummings model

without having to assume the validity of the Rabi model. Hence, our analysis goes be-

yond the treatment presented in Ref. [38], where only quantitative, but no qualitative

deviations between the quantum Rabi model and the Jaynes-Cummings model were ob-

served in a system comprised of a flux qubit coupled to an LC-resonator. In addition,

the present work is markedly different from the approach used in Ref. [37]. There, it was

shown that in a multimode system the number of excitations is no longer preserved in

the ultrastrong coupling regime. Despite this difference, it appears that physics beyond

the Jaynes-Cummings model in circuit QED is favourably demonstrated by analyzing the

complex mode structure of multipartite setups.

4.3 Tunable and switchable coupling between

superconducting resonators

In this section we demonstrate tunable and switchable coupling between the two res-

onators A and B. Using transmission spectroscopy, we find that the coupling can be

tuned via the external magnetic flux applied to the qubit loop. Finally, we perform a

time-domain experiment making the switching process directly observable and show that

the coupling can be switched by varying the qubit population.

In Sec. 4.2.1 we have found that the resonators A and B are not exactly frequency

degenerate. However, the deviation of the fundamental mode frequencies is on the order of

the resonator decay rates and therefore negligible. In what follows, we therefore round the

fundamental mode frequencies of both resonators to ωR/2π= 4.896 GHz. Furthermore,

as shown in Ref. [120], the working principle for tunable and switchable coupling using

the architecture described in this thesis also applies to detuned resonators.

4.3.1 Tuning the coupling via the external field

To demonstrate tunable coupling between the two resonators, we measure transmission

through the latter with a vector network analyzer as shown in Fig. 4.6 as a function of the

applied magnetic flux Φext. Fig. 4.7(a) shows the results of the ‘through’-measurement

of resonator A whereas Fig. 4.7(b) represents a ‘cross’-measurement from the input of

resonator A to the output of resonator B. For both measurements, the qubit remains in

the ground state. The input power is chosen such that the population of both resonators

is approximately one photon on average. The splitting between the antiparallel and the

parallel mode, cf. Sec. 4.2.1, far away from the qubit degeneracy point is 2gAB. If the flux
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Figure 4.6: To demonstrate tunable coupling via the external magnetic field, we measure trans-
mission through resonator A (‘through’-measurement, S21) and transmission from
the input of resonator A to the output of resonator B (‘cross’-measurement, S41) as
a function of external magnetic flux. The coupling between the resonators is me-
diated by the geometry-defined flux-independent geometric coupling and the flux-
and qubit-state-dependent dynamic coupling.

is tuned towards the degeneracy point, the frequency of the lower mode stays constant

while the frequency of the upper mode is shifted to lower frequencies as expected from

Eq. (1.118).

In this way, the flux can be tuned such that the frequency of the upper mode matches

the frequency of the lower mode. We refer to these points as the switch setting conditions

where the geometric coupling is fully compensated by the dynamical coupling. Conse-

quently, the two resonators are expected to be decoupled from each other if the switch

setting condition is fulfilled. In order to find the minimum value of the coupling for our

device, we fit the mode spectrum shown in Fig. 4.7(a) using input-output theory [80, 83]

and analyze the coupling depending on the magnetic flux. Results are shown in Fig. 4.8.

At the switch setting condition, the coupling is reduced to |gres,min/2π|. 1.5 MHz. Here,

our analysis is limited by the decay rates of the resonators. Compared to the coupling

far off the degeneracy point, the coupling at the switch setting condition is reduced by a

factor of at least 5.5.

4.3.2 Tuning the coupling via the qubit population

So far, we have investigated how to tune the coupling via the magnetic flux applied to the

qubit loop. Next, we show that the coupling is also controlled by the qubit population

as expected from Eq. (1.118). To this end, we record the resonator transmission while

driving the qubit with a strong excitation signal applied through the input port of the

other resonator. This results in equal probabilities to find the qubit in the ground and

excited state, yielding 〈σ̂z〉= Tr [ρMσ̂z] = 0 where ρM = 1
2

(|g〉 〈g|+ |e〉 〈e|). As expected
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Figure 4.7: (a) Transmission through resonator A depending on the applied magnetic flux with
the qubit in ground state. (b) ‘Cross’ measurement, qubit in ground state. (c)
‘Through’ measurement, qubit driven with strong excitation signal. (d) Same as
(c) for the ‘cross’ measurement. (e) ‘Through’ measurement, transmission at the
frequency of the lower mode at 4.888 GHz [dashed lines in (a) and (c)] with qubit in
ground state (blue line) and saturated qubit (red line). Dashed black lines: Switch
setting conditions. (f) Same as (e) for the ‘cross’ measurement.
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Figure 4.8: Magnitude of the total coupling between the resonators extracted from a ‘through’
measurement near the switch setting condition. Black: qubit in ground state.
Red: saturated qubit. Inset: Measurement with increased flux resolution around
switch setting condition.

from Eq. (1.112) we observe that the coupling between the two resonators is then given by

gAB independently of the applied flux, see Figs. 4.7(c), 4.7(d) and Fig. 4.8. To analyze the

interplay of flux- and qubit state dependence in more detail, we show the transmission

at the frequency of the lower mode at ω/2π= 4.888 GHz in Fig. 4.7(e) and Fig. 4.7(f).

For the qubit in the ground state, we observe increased transmission for the ‘through’-

measurement at the switch setting conditions compared to flux values not matching a

switch setting condition or compared to the qubit being driven. This is in agreement with

our expectation that, when turning off the coupling, the signal incident on one resonator

cannot cross over to the other one. Consistently, we observe reduced transmission at the

switch setting condition in the ‘cross’ measurement shown in Fig. 4.7(f). Two dips are

visible in the through transmission [Fig. 4.7(e)], when the qubit is in the ground state.

They originate from the differences in the linewidths and also from the small detuning

between the two resonators. The resonant structure close to the frequency of the out-

of-phase mode [cf. Fig. 4.7(a) and Fig. 4.7(b)], is suppressed by approx. 15 dB and not

relevant for the discussion presented here.

Next, we conduct time domain experiments making the switchable coupling directly

observable. To this end, we set the flux bias corresponding to the switch setting condition

and apply a microwave probe pulse (length τres = 30 µs) to one of the resonators at the

frequency ωres/2π= 4.888 GHz of the lower (ĉ−) mode. In addition, a 10 µs long microwave

driving pulse switches on the coupling between the resonators for a period of 10 µs as

shown in Fig. 4.9(a). The output signals of both resonators are detected in a time-
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resolved way using FPGA-enhanced A/D-converters. Typical pairs of time traces are

shown in Figs. 4.9(b)-4.9(d). After switching on the qubit drive, the output signal level

of the resonator where the probe pulse is applied decreases, whereas it increases for the

other resonator. This result represents a direct experimental evidence for the expected

switching behaviour because it implies that the transfer of energy from one into another

resonator can be controlled via the qubit. However, for an ideal coupler, one would expect

that at the switch setting condition the output signal level for the ‘cross’-measurement is

zero when the qubit is in the ground state, even if the probe pulse is on. Nevertheless, in

our case a finite output power can be observed. We attribute this to the complex mode

structure of our particular device, cf. Fig. 4.4 and Fig. 4.5. Specifically, the transverse

mode ĉt might give rise to an additional coupling channel between the two resonators

A and B which cannot be tuned by means of the external magnetic flux. To test this

hypothesis, additional measurements on a non-galvanically coupled sample, where the

mode structure simplifies to the two coupler modes, would have to be performed.

To quantify the coupler performance, we define the switching efficiency

η≡ 1−noff
B /noff

A = 1−Boff/Aoff . (4.8)

Here and in the following, n
on/off
B and n

on/off
A denote the resonator populations when the

coupling is switched on/off. Following input-output theory [80], the ratio noff
B /noff

A is

equal to that of the quantities Boff and Aoff indicated in Fig. 4.9. The switching efficiency

η is most intuitively understood by looking at its limiting cases. For a perfect coupler

(η= 1), we find non
A =non

B when the coupling is switched on and noff
A =n, noff

B = 0 when

the coupling is switched off. Conversely, when the coupler is not tunable at all (η= 0),

n
on/off
A =n

on/off
B regardless of the coupler state. For intermediate values of η, a fraction of

(1− η)/(2− η) photons leaks into resonator B despite the coupler being in the ’off’ state.

Next, we analyze η as a function of mean number of photons (calibrated via dispersive

shift of the qubit, cf. Ref. [97]) in the ĉ−-mode. The results are shown in Fig. 4.10(a).

For low photon numbers we find a switching efficiency of η ≈ 0.62. Above approximately

1 photon, η starts to decrease and vanishes for photon numbers exceeding 104. This

behaviour is in agreement with the disappearance of the Jaynes-Cummings-doublet due

to a quantum-to-classical transition observed in a transmon-resonator system.[157]

Finally, we demonstrate that the resonator-resonator coupling strength can also be

controlled via the qubit drive power, cf. Fig. 4.10(b). This scenario is of particular im-

portance for the simulation of, e.g., the Bose-Hubbard-Hamiltonian where it is favorable

to be able to vary the coupling between adjacent resonators by an easily controllable

external parameter such as the qubit drive power. For a given qubit drive pulse power
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Figure 4.9: (a) Pulse pattern for the time-domain probe of the coupler. (b) Typical measured
time traces of the output signals of the two resonators. The qubit drive pulse is
strong enough to saturate the qubit. Blue: ‘through’ transmission measurement.
red: ‘cross’ transmission measurement. The power levels are referred to those inside
the resonators, i.e. they are scaled such that they are equal when the coupling
is ‘on’. This assumption is justified because gAB�κA,κB. (c) Same as (b) for
intermediate qubit drive pulse power. (d) Same as (b) for small drive pulse power.
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and mean resonator photon number, we measure the output powers of both resonators.

The latter can also be calculated theoretically using input-output theory, cf. Sec. 1.2.4,

as a function of the resonator-resonator coupling strength. Comparing our measurements

to the theoretical calculations then allows us to determine the resonator-resonator cou-

pling strength in dependence of qubit drive power and resonator population. For low

resonator probe photon numbers and weak qubit drive, the residual coupling between

the resonators is determined as 0.62(16) MHz, representing a reduction of the coupling

strength by one order of magnitude as compared to the geometric coupling gAB. The

error bars in Fig. 4.10(b) account for small detunings between the resonator probe signal

frequency and the frequency of the lower switch mode ĉ−. For strong qubit driving, the

resonator-resonator coupling increases and converges towards the geometric coupling gAB.

We note that for high qubit drive powers, the calculated coupling rates are very sensitive

to small uncertainties in the quantities Aweak and Bweak [cf. Fig. 4.9(c) and Fig. 4.9(d)]

since the mean resonator population becomes independent of the coupling rate gres as

soon as gres � κA,κB.

In conclusion, we present a device allowing to tune the coupling between two coplanar

stripline resonators via a flux qubit coupled to both of them. We characterize the indi-

vidual constituents and the switching behaviour by means of spectroscopy and perform a

quantitative analysis of the coupler performance using a time domain experiment. From

the latter experiments, we find a coupling range of 0.62 MHz≤ gres/2π≤ 8.4 MHz. This
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corresponds to a maximum switching efficiency of 62%. Improved designs are promising

candidates for applications in future quantum information processing setups where our

coupler can be used for the controlled transfer of excitations between a fast bus resonator,

to which additional qubits can be coupled, and a long-lived storage resonator serving as

quantum memory. Furthermore, even with its current performance, our coupler may be-

come a key element in quantum simulation architectures such as chains or networks of su-

perconducting nonlinear resonators for the simulation of the Bose-Hubbard-Hamiltonian

[40, 43–45, 48, 49].





Summary and Outlook

Circuit quantum electrodynamics (QED) provides a powerful platform for studies in

one of the most fundamental research topics in physics, the interaction between light and

matter. Over the last decade, the field has developed from proof-of-principle experiments

such as the coupling of a single qubit to a single resonator and the demonstration of the

strong coupling regime [5] to a powerful toolbox enabling researchers to execute complex

measurement protocols [22, 24–26] in architectures comprised of multiple circuit QED

building blocks. With increasing complexity of the experimental setups, controlled cou-

pling between adjacent circuit QED building blocks becomes a key requirement. While

some circuit QED components such as quantum bits feature intrinsic tunability of their

coupling strength to resonators, from which they can be detuned in frequency, the cou-

pling between two fixed-frequency devices such as resonators can only be tuned using

dedicated coupler circuits. For future quantum simulation and quantum information

protocols [48, 49], tunable and switchable coupling between frequency-degenerate res-

onators are an important prerequisite. In this work we successfully realize the flux qubit

tunable coupler comprised of a three Josephson junction flux qubit coupled galvanically

to two frequency-degenerate coplanar stripline resonators.

In the first chapter of this thesis, the theoretical foundations of circuit quantum electro-

dynamics are provided. Superconducting coplanar waveguide resonators are introduced

as the fundamental linear building block of the circuit QED architecture. The input-

output formalism provides a powerful method to infer the characteristic parameters of

two coupled resonators. Subsequently, the three-Josephson-junction flux qubit is dis-

cussed as a non-linear building block of circuit QED coming close to an ideal quantum

two-level system. The interaction between a quantized mode of the electromagnetic field

and a two-level system is described theoretically by the quantum Rabi Hamiltonian.

If the coupling strength is small compared to the mode frequency, the quantum Rabi

Hamiltonian reduces to the Jaynes-Cummings-Hamiltonian which provides a valid de-

scription of the vast majority of the experiments conducted in the fields of both cavity

and circuit quantum electrodynamics. We provide a detailed analysis of the boundaries

of the Jaynes-Cummings model. Finally, we discuss the quantum switch, an architecture

allowing for tunable and switchable coupling between two superconducting resonators

97
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mediated by a flux quantum bit which represents the main objective of this work.

In chapter two, the relevant experimental techniques are introduced. We show how

single- and two-tone continuous wave spectroscopy provide insight into the characteristic

resonator and qubit transition frequencies of circuit QED architectures and also allow

one to calibrate the number of photons in a transmission line resonator. We also discuss

the measurement setup and the technical requirements for measurements at millikelvin

temperatures. Furthermore, we present the time-domain detection and the pulse gener-

ation setup enabling us to analyze the coherence properties of quantum bits.

The prototypical setup of circuit QED is studied experimentally in chapter three. We

couple a flux qubit galvanically to a coplanar waveguide resonator where the additional

inductance of a Josephson junction placed in the shared branch between qubit and res-

onator contributes to the qubit-resonator coupling strength. After a characterization in

frequency domain by means of transmission spectroscopy, we infer the energy relaxation

time of the flux qubit by conducting driven Rabi oscillation measurements. One main

goal of this thesis is successfully reached, namely the implementation and test of a mea-

surement setup for time-domain spectroscopy. The qubit-resonator coupling strength

observed in our sample motivates a series of experiments where identical qubits and res-

onators are coupled galvanically and the coupling strength is measured as a function of

the critical current of a coupling Josephson junction. We are confident that the latter

can not only provide a basis for a thorough theoretical analysis of the influence of such

coupling Josephson junctions on the coupling strength but will also pave the way for a

systematic insight into the physics of circuit QED architectures with galvanic coupling.

In chapter four, we successfully demonstrate tunable and switchable coupling between

two frequency-degenerate coplanar stripline resonators within the quantum switch archi-

tecture. The galvanic coupling of the flux qubit to both resonators gives rise to a complex

mode structure which we analyze in detail. We observe the phenomenon of ultrastrong

coupling and provide an unambiguous proof for the breakdown of the Jaynes-Cummings

model. From a fundamental physics point of view, our sample in this way provides impor-

tant insights into the physics of light-matter interaction beyond the Jaynes-Cummings

model. Furthermore, we also study the technological aspects of our sample in the sense

of a tool for future quantum information and quantum simulation architectures. Using

transmission spectroscopy, we find that the coupling between the two resonators can be

tuned by an external magnetic flux applied to the qubit loop. We perform a time-domain

experiment to proof the theoretical prediction that the coupling can also be tuned and

switched by means of the qubit population which we adjust by a drive pulse with variable
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amplitude. Our experiments show that the coupling between the resonators can be set to

an arbitrary value in the range from gmin/2π= 0.62 MHz to gAB/2π= 8.4 MHz and, in ad-

dition, make the switching process directly observable and demonstrate the dependence

of the coupling on the interplay between external magnetic flux and qubit population.

Even though the successful realization of the flux qubit coupler adds an important de-

vice to the circuit QED toolbox, the coupling range spanning over more than one order

of magnitude still leaves room for design improvements. The complex mode structure of

our particular sample is of high relevance from a fundamental physics point of view, but a

simpler mode structure without the complications of ultrastrong coupling is desirable for

using the flux qubit coupler as a tool in future circuit QED setups. We therefore propose

to build a flux qubit tunable coupler where the qubit is not coupled galvanically to the

signal lines of both resonators. To be able to compensate the geometric coupling with

the second-order qubit-mediated coupling, the qubit-resonator coupling strength needs

to be sufficiently large. In Ref. [52], qubits were placed in the gap between the signal

line and one ground plane of a coplanar waveguide resonator and coupling strengths up

to approx. 1 % of the respective mode frequency were reported. We are confident that

the coupling strength can be enhanced to sufficiently large values by reducing the dis-

tance between qubit and signal line. Furthermore, the geometric coupling between the

resonators can be reduced significantly by modifying their geometric layout such that

the sections in which the signal lines are in close vicinity are as short as possible. Such

improved designs with a structure reduced to the two coupler modes also is a prerequi-

site for a systematic optimization of the coupler’s on/off-ratio. Specifically, the question

whether the ultrastrongly coupled transverse mode is limiting the coupler performance

of the particular sample discussed in the course of this thesis can be answered.

We would like to stress that even with its current performance, the flux qubit tunable

coupler is able to serve as the main building block of architectures for the quantum

simulation of the Bose-Hubbard-Hamiltonian [40, 43–45, 48, 49]. For the latter, chains or

networks of frequency-degenerate nonlinear microwave resonators are coupled by nearest-

neighbor interaction. The corresponding Hamiltonian takes the form [49]

ĤBH =
∑
n

[
~ωâ†nân + Uâ†nâ

†
nânân + J

(
â†nân+1 + ânâ

†
n+1

)]
,

where ω is the resonator frequency, U is the Kerr nonlinearity and J is the nearest-

neighbor coupling energy. In this scenario, two regimes are of particular interest, namely

the Mott insulator regime where U� J , and the superfluid regime where U� J . While a

fixed on-site nonlinearity U can for example be realized by inserting a Josephson junction
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into each resonator, which adds a current-dependent inductance as shown in Sec. 1.3.1,

the flux qubit coupler is an ideal device to provide tunable coupling between adjacent

resonators. For a suitable choice of U , the tunability of the flux qubit coupler presented

in this thesis is already sufficient to grant access to both the Mott insulator and the

superfluid regime in situ. The switchability of the coupling, demonstrated in this thesis

using a time-domain experiment, even allows for fast transitions between both regimes

by applying drive pulses to the coupler qubits.

In conclusion, we are confident that the flux qubit tunable coupler makes an impor-

tant contribution to the circuit QED toolbox and will find various applications in future

quantum simulation and quantum information processing setups. Furthermore, the com-

plex mode structure of the flux tunable coupler and the observation of physics beyond

the Jaynes-Cummings model also provide interesting insights into galvanically coupled

qubit-resonator systems and motivate further studies on this subject.
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• F. Wulschner, J. Goetz, F. R. Kössel, E. Hoffmann, A. Baust, P. Eder, M. Häberlein,
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[150] I. Lizuain, J. Casanova, J. J. Garćıa-Ripoll, J. G. Muga & E. Solano. Zeno physics
in ultrastrong-coupling circuit QED. Phys. Rev. A 81, 062131 (2010).

[151] D. Ballester, G. Romero, J. J. Garćıa-Ripoll, F. Deppe & E. Solano. Quantum
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