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Abstract

The microscopic mechanism and the experimental identification of unconventional

superconductivity is one of the most vexing problems of contemporary condensed

matter physics. Raman spectroscopy provides a new avenue for this quest by access-

ing the hierarchy of superconducting pairing propensities. The doping-dependent

study of competing pairing channels in Ba1−xKxFe2As2 for 0.22 ≤ x ≤ 0.70 is one

of the main aspects of this thesis. The observations demonstrate the importance of

spin fluctuations for Cooper pairing.

Kurzzusammenfassung

Die experimentelle Identifizierung des mikroskopischen Mechanismus, der zu un-

konventioneller Supraleitung führt, ist aktuell eines der irritierensten Probleme im

Bereich der Physik der kondensierten Materie. Die Raman-Spektroskopie offenbart

eine Hierarchie von Paarungstendenzen im supraleitenden Zustand und ermöglicht

so einen neuen Zugang zu diesem Problem. Die Studie der Dotierungsabhängigkeit

von konkurrierenden Paarungskanälen in Ba1−xKxFe2As2 für 0.22 ≤ x ≤ 0.70 ist

eines der zentralen Themen dieser Arbeit. Die Beobachtungen zeigen die Bedeu-

tung von Spinfluktuationen für die Cooper-Paarung.
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Chapter 1

Introduction

“The only reason why we cannot do this problem of superconductivity is that we

haven’t got enough imagination.”

R. P. Feynman, 1957 [1]

Superconductivity is known for more than a century, since 1911, when Heike Kamer-

lingh Onnes discovered the disappearance of resistivity in Hg below a critical tem-

perature Tc = 4.2 K [2]. Since then central fundamental questions have been solved

[3–15].

A major step towards a microscopic understanding of superconductivity was the

development of the BCS theory, as advanced by John Bardeen, Leon N. Cooper and

John R. Schrieffer in 1957 [4]. The BCS theory is based on an effective attractive

potential between electrons, which is responsible for the formation of pairs of elec-

trons, the Cooper pairs [16]. The Cooper pairs constitute a coherent ground state,

which breaks gauge symmetry and is described by the macroscopic wave function

Ψ(r, t) = Ψ0(r, t)eiϕ(r,t) with both the amplitude Ψ0 and the phase ϕ depending on

space r and time t. In the superconducting state an energy gap ∆ opens up which

also quantifies the energy that is required to break a Cooper pair by 2∆.

Yet the nature of the underlying attractive interaction is not specified by the BCS

theory. Earlier proposals already assumed that lattice vibrations (phonons) may me-

diate the attraction between electrons [17]. And indeed, the discovery of the isotope

effect [18, 19] verified this assumption for the materials hitherto known. Phonon-

driven superconductivity is present in many metals [20] like Pb (Tc = 7.2 K) [21] or

compounds like MgB2 (Tc = 39 K) [22]. There are even indications for a phonon-

based mechanism in H3S with a record Tc of 203 K at 155 GPa [23].

1



2 1. Introduction

In 1986 however, a revolutionary discovery reinitiated the search for the pairing

mechanism. Johannes G. Bednorz and Karl A. Müller found superconductivitiy in

CuO-based compounds, the cuprates [12]. With a maximum Tc of 135 K the cuprates

still hold the record at ambient pressure [24]. The undoped parent compounds are

magnetically ordered [25–27] Mott insulators and turn into a superconductor upon

doping [28]. Another peculiarity of the cuprates is the sign change of the order pa-

rameter, exhibiting a dx2−y2 symmetry in momentum space on a tetragonal lattice

thus breaking a second symmetry beyond gauge symmetry [29, 30]. This discovery

triggered a renaissance of the research into superconductivity beyond the limits of

phonon-driven pairing mechanisms. However, the pairing mechanism is still not

pinned down experimentally.

A more recent discovery opened up a new perspective of this problem. One decade

ago, Kamihara and coworkers discovered superconductivity in LaOFeP below a tran-

sition temperature Tc ≈ 4 K [31, 32] thus heralding the “iron-age” of superconduc-

tivity. Since then a plethora of new iron-based superconductors (IBSs) was discov-

ered with transition temperatures reaching up to 55 K [33–36] for bulk materials

and even exceeding 100 K for FeSe monolayers on a SrTiO3 substrate [37–40]. The

IBSs opened also new vistas on the pairing mechanism after 30 years of research into

the cuprates. Inspired by this possibility, one of the main questions of this thesis

addresses the pairing mechanism in IBSs.

One way to investigate the interactions relevant for superconductivity is based on

the study of the symmetry of the superconducting ground state. For instance in

the cuprates the interaction is believed to have repulsive components entailing a

sign change of the gap. In turn, if the gap is strongly momentum dependent and of

lower symmetry than the underlying lattice the usual electron-phonon interaction

can be excluded as a pairing mechanism [41]. The anisotropic pairing interaction

Vk,k′ opens another entrance to the pairing mechanism through collective excita-

tions of the phase ϕ of the order parameter [42]. For an entirely isotropic potential

phase fluctuations require no energy. As soon as the potential becomes anisotropic

both phase and amplitude fluctuations require energy. The signature of phase fluc-

tuations are modes inside the gap having an energy below the gap edge similarly

as excitons in semiconductors. In a superconductor the energy difference between

the gap edge and the collective in-gap mode encodes the residual pairing strength in

channels orthogonal to the ground state, Vk,k′ = Φ0V0 +Φ1V1 + . . . with orthonormal

functions Φµ and coefficients Vµ. Phase fluctuations with finite energy in supercon-

ductors were predicted by Bardasis and Schrieffer (BS) as early as in 1961 [43] and
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consecutively applied to rotons in 4He [44], the A15 compounds [45], and the IBSs

[46]. Evidence for the existence of BS modes in IBSs was reported recently [47].

The strength of the residual interaction was found to be as strong as 50% of the

ground state interaction. This is supported by theoretical work [48–51] proposing

the existence of several competing interactions of similar strength, as caused by the

extraordinary Fermi surface of the IBSs.

In the presence of competing pairing interactions in a singlet superconductor, elec-

tronic Raman scattering is an exceptional tool [45, 46]. Raman scattering probes

not only the energy of a certain excitation with high precision but also its symmetry.

Yet a caveat of several scattering experiments is that only the magnitude of the gap

|∆| can be accessed whereas sign changes remain elusive [30, 52–54]. This is the case

for Raman scattering as well [55]. However, in the special case of subleading pairing

interactions, electronic Raman scattering is sign/phase sensititive [46]. This means,

that the symmetry of collective modes can be unambiguously determined which fa-

cilitates conclusions about the symmetry and nature of the corresponding pairing

interactions. Obviously Raman scattering probes the magnitude of the energy gap of

the superconducting ground state together with symmetry-resolved collective modes

reflecting the hierarchy of competing pairing interactions.

Once the hierarchy of pairing states is pinned down the fundamental question arises

as to the origin of the pairing interaction [56, 57]. Given the proximity of super-

conductivity and magnetic ordering in the IBSs the related fluctuations indicate a

high susceptibility to perturbations and possible avenues towards pairing [41]. Par-

ticularly in the spin channel this possibility was considered from the beginning [58].

The existence of a superconducting dome displaying a maximal Tc close to the end

of the phase boundary of the spin-density-wave (SDW) phase is an indication of

intertwined superconductivity and magnetic ordering and a nearby quantum crit-

ical point (QCP) [59]. This context calls for an experiment which is sensitive to

interactions beyond the leading one.

Electronic Raman scattering is utilized in this thesis for the investigation of the su-

perconducting state beyond the leading interaction, and critical fluctuations above

the SDW phase. The thesis is structured in the following way: The phase diagram

of the studied compounds is introduced in Chapter 2. The electronic structure,

basic interactions and instabilities are discussed. In Chapter 3 the studied samples

are characterized and the experimental Raman scattering setup is presented. This

is followed by a theoretical introduction to Raman scattering in Chapter 4 con-

centrating on the effects that appear in the combined theoretical and experimental
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Chapter 5. Section 5.1 covers the analysis of collective modes. Previous work on

collective modes [47] is extended by further experimental and theoretical analysis.

This analysis is extended to various doping levels in Section 5.2. A comparison to

theoretical calculations was utilized to find the relevant pairing interactions in the

present system. In Section 5.3 the fluctuations above the SDW state are discussed

and Section 5.4 refers to a phonon anomaly at optimal doping.



Chapter 2

The iron-based superconductors

Since 2006, various superconducting compounds based on the transition metal Fe

were discovered [31, 32]. Similar to the cuprates, the IBSs are layered structures.

These layers are formed by Fe and an element of either the pnictogen or chalcogen

group. Hence two classes of IBSs are defined, the iron pnictides and iron chalco-

genides. Like the cuprates the family of the IBSs has common properties which are

discussed in the following part.

2.1 Basic properties

The undoped compounds of the IBSs are metallic. Their resistivity in the range of

ρ ≈ 10−5 Ohm m [60] is similar to that of graphite and exhibits a metal-like increase

with temperature [61]. The plasma frequency of 1.6 eV [62] of BaFe2As2 (BFA) is

comparable to that of many metals, e.g. 4.1 eV for Fe or 7.4 eV for Cu [63]. In

contrast, undoped cuprates are Mott insulators and need to be doped to turn into

a metal.

As for the cuprates, the most extensively studied property of the pnictides and

chalcogenides is their superconductivity. The highest superconducting transition

temperatures in IBSs exceed 50 K, for instance in SmO0.9F0.1FeAs with Tc = 55 K

[35]. Experiments with monolayer FeSe on a SrTiO3 substrate revealed even higher

critical temperatures (Tc = 109 K) beyond the boiling point of liquid nitrogen [39].

In contrast, conventional superconductors at ambient pressure such as MgB2 reach

a maximum Tc = 39 K [22]. According to many conventional superconductors, the

Cooper pairing in the pnictides and the resulting formation of the superconducting

ground state could be driven by lattice vibrations (phonons). However, the higher

transition temperatures in IBSs and qualitative similarities to the phase diagram of

5



6 2. The iron-based superconductors

the cuprates led to the assumption that more exotic pairing mechanisms may play

a role [56] which will be elucidated in the course of this thesis.

The main focus of this thesis is placed on the pnictide BaFe2As2 which exhibits

various phases as a function of doping. Hence, we first introduce the crystal structure

of BaFe2As2 and then explore the doping-dependent phase diagram, as shown in Fig.

2.1(a) and (b), respectively.
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Figure 2.1: Crystal structure and phase diagram. (a) Crystal structure of BaFe2As2 [34].
Thin grey lines indicate the edges of the unit cell. Grey connecting lines between Fe and As
illustrate covalent Fe-As bonds [64]. (b) The phase diagram shows the doping-dependent
phase transitions as adopted from Refs. [60] (for Co-doping) and [65] (for K-doping). The
dashed pink and grey line indicates a simultaneous structural transition at Ts and SDW
transition at TSDW [66]. The green shaded area indicates the existence of fluctuations next
to the SDW transition. Note that the scaling in x (hole doping) and y (electron doping)
direction differ.

2.1.1 Crystal structure

Fig. 2.1 shows a tetragonal crystal with lattice constants a = b = 3.96 Å and

c = 13.02 Å at room temperature, above any of the indicated phase transitions [34].

The symmetry of the crystal is described by the space group I4/mmm.

A covalent bond is formed between Fe and As, causing the tetrahedral structure in

the FeAs layers to develop. Among each other the Fe atoms exhibit metallic bonds.

The Ba atoms ([Xe]6s2) acquire the positive charge of Ba2+ and thus the bonds to

the FeAs− planes [64] are ionic.
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In summary, the electronic properties are by and large determined by the FeAs

planes [64]. The metallic Fe-Fe bonds supply free electrons according to the elec-

tron configuration of Fe = [Ar]3d64s2. Six electrons in the 3d orbitals are available

per Fe atom.

Though the mother compound is already metallic it does not exhibit superconducti-

vity. The superconducting phase can be obtained by both hole and electron doping

[60, 65]. Hole doping is achieved by substituting Ba2+ by K+ in Ba1−xKxFe2As2

(BKFA), resulting in one hole per two Fe atoms and a doping of x/2. The number

of 3d electrons per Fe is then reduced to 6 − x/2. Electron doping is realized by

replacing Fe by Co in Ba(Fe1−yCoy)2As2 (BFCA). Here the number of 3d electrons

is increased to 6 + y. For Co-doping however, a theoretical study claims that the

extra electrons stay localized at the Co-sites. Hence they do not supply electrons

to the FeAs-layers and act just as random scatterers, which is considered the main

reason for the dependence of the phases on Co substitution [67]. In the following,

the doping picture is used yielding the doping concentration z to be −x/2 for hole

and y for electron doping, respectively.

2.1.2 Phase diagram - Electron- and hole-doped BaFe2As2

Doping BFA with K or Co yields the phase diagram of Fig. 2.1(b). The mother

compound BaFe2As2 is undoped with z = 0. Here a SDW phase is formed below

TSDW(z = 0) = 135 K [68]. At the same temperature a structural distortion takes

place, indicated by Ts. Below Ts the two perpendicular Fe-Fe distances develop a

difference of 0.7% [69], i.e. the Fe structure changes from tetragonal to orthorhombic.

Consequently, any cut of the unit cell in the ab-plane changes from a square into a

rhombus.

With increasing hole doping TSDW continuously decreases until it vanishes at x ≈
0.28 [70]. Both transitions coincide for the entire hole-doped range [66]. In contrast,

on the electron-doped side the transitions split, with Ts exceeding TSDW by a few

Kelvin. The difference Ts−TSDW continuously increases with higher electron doping

up to approximately 15 K at y ≈ 0.06 [60]. In the temperature range confined by

TSDW < T < Ts the so called nematic phase is present.

Close to the SDW and nematic phase a region (green) is indicated where fluctuations

are present [71–74]. The characterization of this region will be one of the main

questions to be addressed in this thesis.

Another central aspect of this work is the investigation of the superconducting state

in the hole-doped compound. Superconductivity emerges above x ≈ 0.16, reaches
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its maximum at optimal doping (x ≈ 0.4) with Tc = 39 K and survives up to x = 1

in the compound KFe2As2 with Tc = 3 K.

All of the phases are closely related to the electronic band structure. Hence, to

investigate the phases presented here on a physical basis, the electronic structure

will be described in the following parts.

2.2 Electronic system

As mentioned above, the electronic system is predominantly determined by the Fe

3d orbitals. Various experimental and theoretical studies have been performed to

obtain the band structure of the IBSs. Though the basic electronic structure is well

established, there is still no consensus about some parts of the Fermi surface [75, 76].

Hence the analysis is based on the most widely used electronic structure found in

the current literature.

2.2.1 Multi-orbital structure in the FeAs layer

To illustrate the multi-orbital structure, the FeAs layer is shown in Fig. 2.2 along

with five Fe 3d orbitals as located at each Fe atom. In the undoped compound, six

electrons populate these orbitals. The mobility of the electrons is formally described

y x

z
d3z2-r   2 dyz dxz

dx2-y 2 dxy

(a) Fe-As layer (b) Fe 3d orbitals
   

b’
a’

out of plane:

in plane:

Fe As (above)

+

-

+

-

As (below)+ -

c’

Figure 2.2: Fe 3d orbitals embedded in the FeAs layer. (a) The FeAs layer is shown with
As atoms located alternately above and below the Fe plane (grey plane). (b) The Fe 3d
orbitals oriented according to the FeAs plane of (a) are depicted.

by finite hopping amplitudes between orbitals of neighboring Fe sites [48, 77]. In

the simplest case, the electrons hop inside the Fe plane, unaffected by the As atoms.
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Hence the 1 Fe unit cell as shown in Fig. 2.3(a) sufficiently describes the electronic

system. The corresponding Brillouin zone (BZ) is the 1 Fe BZ as displayed in Fig.

(a) Unit cells Ba

Fe

As

a
b

c

(b) Brillouin zones

2 Fe

kx

ky

kz

2  F
e

1  F
e

1 Fe

a’b’

c’

a
b

c

~
~
~

Figure 2.3: Unit cells and corresponding Brillouin zones. (a) The crystal structure of
Fig. 2.1(a) is repeated. The grey axes indicate the large tetragonal unit cell introduced
in this figure with the axes a, b, and c. The 1 Fe unit cell (black) is described by the
axes a′, b′ and c′. (b) The Brillouin zone corresponding to the 1 Fe unit cell is shown as
a black frame. Black dots indicate the reciprocal lattice points. The momenta in kx, ky
and kz direction are parallel to a′, b′ and c′, respectively. However, for illustrative purpose
the coordinate system in momentum space is manually rotated by 45◦ around kz with
respect to the (a′, b′, c′) system in real space. The 2 Fe unit cell (blue) is described by the
coordinate system defined by ã = a, b̃ = b, and c̃. The transform into reciprocal space
adds the blue reciprocal lattice points at the corners of the 1 Fe BZ. The solid blue 2 Fe
BZ is constructed out of these vectors. An adjacent 2 Fe BZ is displayed, illustrating the
additional translational symmetry by the grey vector.

2.3(b). The tetragonal 1 Fe cell transforms into a tetragonal BZ. The corresponding

spanning vectors are a′, b′ and c′ for the unit cell and kx, ky, and kz for the BZ,

defined by the Wigner-Seitz cell of the reciprocal lattice.

The 1 Fe cell accounts for the major features of the electronic system. However, if

hopping via the As atoms plays a role, the As superstructure must be taken into

account, i.e. the adequate unit cell must be chosen. In this case a monoclinic cell,

namely the 2 Fe unit cell describes not only the As superstructure but is the smallest

unit cell adequate to describe the entire crystal. With respect to the 1 Fe unit cell,

this cell transforms to a BZ as indicated, reduced in volume to 1/2. The zones are

staggered in a way that an additional translational symmetry is introduced along

the vector (π/a′, π/b′, π/c′). Note that the normalization with the lattice constants

is sometimes omitted and the vector is simply written as (π,π,π).
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2.2.2 Fermi surface

To construct the Fermi surface (FS) we start on the basis of the 1 Fe unit cell and

BZ. From a theoretical point of view, a tight binding model describes the electronic

system adequately, with the corresponding Hamiltonian [48]

H0 =
∑
k

5∑
m,n=1

(ξmn(k) + εm(k)δm,n)d†m(k)dn(k) (2.1)

in orbital basis, where d†m(k) and dm(k) generate and, respectively annihilate an

electron of momentum k in orbital m ∈ {d3z2−r2 , dxy, dxz, dyz, dx2−y2}. ξmn is the

kinetic energy term describing the hopping parameters from orbital m to n and εm

is the onsite energy of orbital m. Solving the eigenvalue problem yields the band

structure in momentum space. The eigenvalues define the energy Ei(k) of band i.

The resulting band structure is schematically drawn in Fig. 2.4(a). As the band

structure is invariant under rotation by 90◦ around kz, the equality E(kx) = E(ky)

holds. Two bands (red), opened downwards, are centered at the Γ point. These

bands are unoccupied as long as Ei(k) > EF, i.e. in a region close to the Γ point

and filled with electrons outside of that region. This region can equally be consid-

ered as occupied by holes. Hence the bands opened downwards are called hole bands

(red). The bands which are opened upwards, like those centered at the X and Y

points, are accordingly called electron bands (blue).

The intersections of the bands with EF yield the FS structure in the kx − ky-plane

(1 Fe BZ) as shown in Fig. 2.4(b). The bands form nearly circular hole pockets

around Γ and elliptical electron pockets encircling the X and Y points. The pockets

around M emerge (cross the Fermi energy) at small hole doping [78].

The transformation of the Hamiltonian not only yields the band structure but also

defines the orbital composition at each k point for each band, as encoded in the

eigenvectors. The components of these eigenvectors am,i(k) are called orbital char-

acters with |am,i(k)|2 giving the probability of an electron of band i at k to be in

orbital m. Fig. 2.4(c) shows the dominant orbital characters at the FS [78]. The

hole pockets centered at Γ predominantly originate from dxz and dyz orbitals, the

electron pockets from dxz, dyz, and dxy, and the hole pockets at M from dxy orbitals.

The theoretical approach was used to give an introduction to the band structure

based on a physical model. In the following the experimental results are discussed.

In the experiment the 2 Fe BZ is useful to capture also the influence of the As su-

perstructure. This means, that the electron pockets of Fig. 2.4(b) at X and Y
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M

Figure 2.4: Band structure and resulting FS. (a) shows the generic band structure, i.e. the
band energy with respect to the momentum kx. Depending on the sign of the curvature,
red and blue bands illustrate hole and electron bands, respectively. (b) presents the Fermi
surface as obtained from a cut at the Fermi energy EF. The band structure along kx
is identical to the structure along ky due to 90◦ rotational symmetry. For hole doping,
additional pockets at M emerge. (c) shows the dominant orbital character [78]. (d) and
(e) display schematically drawn FSs accroding to ARPES experiments of Refs. [75] and
[76], respectively. Here the 2 Fe BZ is relevant. The hole pockets at the M -point are
omitted for clarity. They are identical to those at Γ.

are shifted on top of each other due to the additional translational symmetry in-

troduced in Fig. 2.3(b). With the same translation the pocket at M is shifted into

the center. The qualitative Fermi surface obtained by angle-resolved photo-emission

spectroscopy (ARPES) experiments on optimally hole-doped BKFA was measured

by two groups [75, 76, 81, 85], who found different results as shown in Fig. 2.4(d)

and (e). Both measurements agree on the nature of the pockets in the center being

hole-like and on the existence of electron pockets at X and Y . However, Fig. 2.4(d)

shows two elliptical electron pockets on top of each other, whereas (e) exhibits a

“propeller”-like structure composed of a small electron pocket and four hole-like

lobes around.

A clear discrepancy is observed, which is still not resolved. Most of the related pub-

lications however, are based on the structure in Fig. 2.4(d). Hence this structure is
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x = 1.0(a) x = 0.7(b) x = 0.4(c) x,y = 0(d)

Ba1-xKxFe2As2 BaFe2As2 (T >Ts)OPT

x,y = 0(d) y = 0.075(e) y = 0.15(f)

BaFe2As2 (T >Ts) Ba(Fe1-xCox)2As2OPT

BaFe2As2 
(T <TSDW)

x,y = 0(g)

Figure 2.5: Doping dependence of the Fermi surface. (a-f) display the doping dependence
of the Fermi surface as obtained from Refs. [79], [80], [81],[82],[83], and [84], respectively.
The FS is shown with respect to the 2 Fe BZ. Hole pockets at M are omitted as they repeat
the pockets at Γ in the 2 Fe zone. (g) shows the FS in the SDW state with a smaller BZ.
The green FS sheets emerge from a folding involving electron and hole pockets.

referred to throughout this thesis.

Accordingly, Fig. 2.5 compiles quantitative ARPES results for various doping levels.

Some important properties shall be highlighted: (i) With increasing hole doping, the

electron pockets shrink and the hole pockets increase, and vice versa for increasing

electron doping. (ii) The FSs from x = 0.4 up to x = 0.7 are qualitatively similar,

i.e. they evolve smoothly with doping. (iii) A qualitatively different FS is obtained

in the SDW phase. The reason is another folding into a smaller BZ as imposed by

the SDW superstructure [82]. Doping levels from x = 0 to x = 0.7 and y = 0 to

y = 0.085 are investigated in this thesis, as highlighted by the grey shaded area.

Outside of this doping range, qualitative changes are observed. At x = 1.0, the

electron pockets disappear completely, whereas at y = 0.15 the hole pockets have

vanished.
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2.2.3 Interactions

With the knowledge of the FS, various basic interactions of the system can be

discussed. In the weak coupling limit these interactions are responsible for the phase

transitions, e.g. causing the SDW state to emerge or providing a pairing interaction

for superconductivity. An introduction to three different classes of interactions will

be presented: Phonon-driven interactions [17], antiferromagnetic (AFM) exchange

J1 J2

J1

Figure 2.6: Interactions in the
J1 − J2 model. The AFM ex-
change acts between the spins
of neighboring Fe sites (red cir-
cles) via the nearest-neighbor
interaction J1 (pink) and the
next-nearest-neighbor interac-
tion J2 (green).

coupling between spins of neighboring Fe atoms [86–

89] and the fluctuation-exchange interaction [90].

Phonons can act as exchange bosons mediating an

electron-electron interaction. Within the BCS ap-

proximation, this interaction is isotropic and attrac-

tive, the interaction range is not limited. Hence

the interaction can act within a single pocket (intra-

band) or in between of two different pockets (inter-

band).

The AFM exchange interaction is described by

HAFM = J1

∑
l,k
~Sl~Sk [86], in the simplest case where

J1 acts between spins ~Sl and ~Sk at nearest neighbor

Fe sites l and k, i.e. along a′ or b′. The interaction

J1 reaches up to about 100 meV as found by neu-

tron scattering experiments [91]. An extension is the

J1− J2 model, where J1 is the nearest neighbor interaction and J2 the next-nearest

neighbor interaction as illustrated in Fig. 2.6. The exchange mechanism can be

responsible for superconductivity and for generating a magnetic ground state, in

the simplest case (J2 = 0) an AFM state.

The mechanism of exchanging fluctuations between electrons is more complicated

as there are several kinds of fluctuations. In any case, a typical set of starting pa-

rameters used for this problem is based on Coulomb interaction and contains intra-

(Uintra) and inter-orbital (Uinter) interaction, Hund’s rule coupling (JHund), which fa-

vors parallel spin alignment, and the pair-hopping energy (Jpair). These parametrs

enter the interaction Hamiltonian [77, 92–95]

Hint =
∑
i

[
Uintra

∑
a

nia↑nia↓ + Uinter

∑
a<b,ss′

niasnibs′

+ JHund

∑
a<b,ss′

c†iasc
†
ibs′cias′cibs + Jpair

∑
a<b

c†ia↑c
†
ia↓cib↓cib↑

] (2.2)
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with fermionic creation c†ias, annihilation cias, and number nias = c†iascias operators

at site i, in orbital a and with the spin s. Various theoretical techniques use this set

and renormalize the parameters in the many-particle system in order to calculate

a realistic interaction potential Vk,k′ responsible for Cooper pairing. Rather than

describing the renormalization process, an introduction to the results is presented

here using the “nesting” picture. Nesting is a term that describes how well parts

of the FS are mapped onto one another by a specific vector Q, the nesting vector.

This concept is based on the Lindhard susceptibility

χL(q, ωm) =
∑
k

f(E(k + Q))− f(E(k))

iωm + E(k + Q)− E(k)
(2.3)

with the Fermi distribution f(E) and the bosonic Matsubara frequency ωm. A good

nesting is reflected by a large Lindhard susceptibility, i.e. in the case of ωm = 0,

the denominator diverges for E(k + Q) → E(k) on an extended part of the FS.

With good nesting, a huge enhancement of the fluctuation-exchange coupling can be

achieved which will finally cause an ordered state to appear such as a spin- or charge-

density wave [48]. In addition, a possible pairing interaction for superconductivity

is provided. In the special case of a multi-band superconductor, however, nesting

Ve-h

Ve-e

(a) (b)

Figure 2.7: Nesting vectors for circular pockets of similar sizes. (a) shows an interaction
Ve−h between hole and electron pockets. With the nesting vectors (±π, 0) and (0,±π),
the hole pocket can be perfectly mapped onto the electron pockets. (b) displays crossed
nesting vectors between electron pockets with the interaction Ve−e.

is not only determined by the shape of the FS but also by the orbital contents. A

strong interaction related to nesting can only appear between the same orbitals, i.e.

identical orbital characters at k and k′ must be large [49].

For spin-fluctuation exchange, Fig. 2.7 shows two sets of nesting vectors. One set

(a) displays the vectors between hole and electron pockets, the other one (b) those

between two neighboring electron pockets. Regarding the FS of this simple model,
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a perfect nesting between the electron and hole pockets is achieved for the first

set with the nesting vectors Q ∈ {(±π, 0), (0,±π)}. As spin fluctuations mediate a

repulsive interaction, a sign change between the electron and hole bands of the order

parameter of the superconducting ground state [58] can be expected according to

the BCS gap equation [4]

∆(k) = −1

2

∑
k′

Vk,k′∆(k′)√
E(k′)2 + |∆(k′)|2

(2.4)

with the momentum-dependent gap energy ∆(k). For the case of interactions

between electron pockets, an intuitive guess would lead to nesting vectors Q ∈
{(±π,±π), (±π,∓π)} yielding a perfect mapping of two neighboring electron pock-

ets. However, due to the need of matching orbital characters, the nesting vectors

as depicted in Fig. 2.7(b) are preferred [49]. Here a sign-changing ground state

between two neighboring electron pockets is expected.

2.3 Instabilities and their precursors

BFA exhibits three notable phase transitions, all depicted in the phase diagram of

Fig. 2.1: A SDW phase, a nematic phase, and superconductivity. Special attention

is paid to the superconducting state and the fluctuations appearing above the SDW

state. The origin of theses phases will be discussed on the basis of the interactions

presented above and then analyzed with the help of the experiments performed in

this thesis.

2.3.1 Spin-density-wave phase

It is shown by many experiments, that magnetic order is established in a doping

range around the mother compound and develops as a SDW [68, 70, 96–98]. In BFA

the local magnetic moment at the Fe sites is 0.87µB [68]. The spin alignment in a

real-space and momentum-space picture is explained in the following [99, 100].

Applied to the pnictides, the SDW state in real space describes the orientation of the

spins at the Fe sites. In the FeAs planes, the spins are aligned antiferromagnetically

along one Fe-Fe direction and ferromagnetically along the perpendicular direction.

This means that the 90◦ rotational symmetry Z2 is broken. As the spin degrees of

freedom are frozen out in a magnetically ordered system, the spin-rotational O(3)

symmetry is broken as well. In Fig. 2.8 two possible SDW states are shown in (c1)
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Figure 2.8: Development of the spin configuration with temperature in real and momentum
space. Three sections are presented: (a1,a2) The normal state, (b1-b3) the spin-nematic
phase between Ts and TSDW, and (c1-c3) the SDW phase below TSDW. Yellow squares
depict 1 Fe unit cells with spins (black arrows) on the Fe sites. (a1) The spins are com-
pletely disordered in the normal state. (a2) shows the magnetic susceptibility (from Ref.
[99]), equally peaked at the wavevectors Qx = (π/a′, 0), Qy = (0, π/b′), −Qx, and −Qy,
where Qx and Qy are associated with an antiferromagnetic (AFM) order along a′ and b′,
respectively. Spin-rotational symmetry O(3) and 90◦ rotation symmetry Z2 is preserved.
(b1-b3) The nematic state is visualized by a linear combination of two states depicted in
(b1) and (b2). In (b1) the AFM direction is oriented along a′, in (b2) along b′. The pref-
actors h and v define the probabilities of the respective states. The grey double arrow on
the upper left indicates spin-rotational symmetry. Another equally probable configuration
is indicated by light grey arrows. As h = v in (a1) and h 6= v in the nematic phase, the Z2

symmetry is broken. Consequently the magnetic susceptibility in (b3) equally shows the
broken Z2 symmetry. In this case, the susceptibility along Qx is higher than along Qy, i.e.
h > v. (c1-c3) In the SDW state, O(3) is broken as well and the system selects either the
state of (c1) or the one of (c2). The susceptibility shows the case, where the configuration
of (c1) is favored, the one of (c2) doesn’t exist. Hence the magnetic response from the
configuration of (c2) at Qy has completely vanished.
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and (c2). The (ideal) system chooses one of them, which extends throughout the

whole crystal.

In momentum space, the corresponding wave vector is oriented along the AFM di-

rection. If the wavelength extends over two Fe sites, as illustrated, the magnetic

susceptibility exhibits a peak at ±Qx = (π/a′, 0) as shown in Fig. 2.8(c1) or at

±Qy = (0, π/b′) in (c2). The first case is depicted in (c3). As one state is chosen in

the whole system, the other one cannot give a (magnetic) response.

The real-space picture implies magnetic moments fixed to the iron sites, i.e. the

moments are localized. However, an itinerant (non-localized) state is also possible

[101–105]. In any case the picture in momentum space remains valid.

This is highly relevant for the mechanism at the origin of the SDW. Localized magne-

tization can be achieved by AFM magnetic-exchange interactions, whereas itinerant

magnetization is based on a nesting condition, as described above. The Fermi sur-

face of the pnictides is predestined for a nesting by Qx,y. The nesting is optimal for

the undoped compound and weakens with increasing doping. Hence TSDW decreases.

The nesting also causes a SDW gap to open. As the nesting vector defines a super-

structure the Fermi surface is folded back by Q and degeneracies appear where the

Fermi surfaces intersect each other. Anticrossing lifts the degenaracies and a gap

opens up. This gap decreases with increasing doping [106].

2.3.2 Nematic phase

Above TSDW a nematic phase may be found. Signatures of a nematic phase have only

been found for the electron-doped BFCA and are lacking for BKFA. The driving

force behind nematicity is currently debated with candidates being charge, orbital

and spin interactions.

The spin picture is presented first. In contrast to the SDW state, O(3) symmetry is

preserved, whereas Z2 is still broken [100]. Hence any net magnetization vanishes.

The nematic state is a linear combination of the two states shown in Fig. 2.8(b1) and

(b2) with different probabilities. These probabilities are quantified by the prefactors

h and v attributed to the states with horizontally (along a′) and vertically (along b′)

oriented AFM directions. If the AFM ordering vector point into x direction (h > v),

the peaks in the susceptibility of (b3) are higher at ±Qx than at ±Qy. The degree

of nematic order can thus be defined as h− v.

A nematic state based on charge and orbital order is explained in Fig. 2.9, showing

an orbital-nematic state. It is again a linear combination of two states with unequal

population, defined by h′ and v′. However, in contrast to spins there is no O(3)
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symmetry. In the orbital picture this transforms from a continuous to an Ising-like

symmetry, where only two instead of infinite orientations are possible. So even if

h′ > v′ the net orbital order vanishes.

+ +( () )+h′ v 
′

Figure 2.9: Illustration of an orbital-nematic state in analogy to Fig. 2.8. The orbitals dxz
and dyz are shown as green and red lobes in the Fe lattice with Fe atoms at the corners of
the yellow squares. Extended and shrinked orbitals illustrate orbital order, which breaks
90◦ rotational symmetry. The sums in the brackets add up to zero net orbital order. States
with horizontal and vertical antiferro-orbital directions are associated with the prefactors
h′ and v′, respectively. The inequality h′ 6= v′ is the condition for the existence of an
orbital-nematic state. In the orbitally ordered state, the system develops long-range order
according to one of the four states.

2.3.3 Fluctuations in the normal state

In the state above Ts the spins are completely disordered, see Fig. 2.8 (a1). O(3)

and Z2 is preserved and hence h = v. The momentum picture (a2) also shows Z2

symmetry. In this state, fluctuations emerge below a doping-dependent tempera-

ture. Yet it is unclear, as in the nematic phase, weather these fluctuations are of

spin, charge or orbital origin.

Fluctuations can be understood as small patches, where the order-parameter is fi-

nite. In the case of nematic fluctuations, patches with h > v and h < v are equally

present, in total no nematic order is formed. These patches have a typical extension

in space of ξ, which is the correlation length and decay after a typical time τ . Both

values are small for high temperatures. However, if ξ and τ diverge upon approach-

ing a critical temperature T ∗, a long-range ordered state is formed.

The relation to possible experiments probing fluctuations is formulated by the

fluctuation-dissipation theorem [107]. A susceptibility is measured, which probes

the response of a system to an external field. The external field is generated in a

way to drive the system into the ordered state. The susceptibility then describes

the tendency of the system to follow this external field. Hence the susceptibility

also diverges at T ∗. In a more theoretical view, the fluctuations are defined by a
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correlation function which is proportional to the imaginary part of the related sus-

ceptibility.

In terms of Feynman diagrams, the fluctuations are illustrated by bosonic propa-

gators. Spin fluctuations can, for example, be described by the Ornstein-Zernike

propagator [108]

DOZ(q, ωm) =
1

|ωm|+ v|q− qc|2 +m
(2.5)

with the bosonic frequency ωm, a velocity v, the momentum q, the critical momen-

tum qc, and the temperature-dependent mass m ∝ 1/ξ2. According to Fig. 2.8 the

critical momenta for spin fluctuations are (±π, 0) and (0,±π).

A relation to superconductivity could be based on the existence of a QCP and

quantum fluctuation emerging from this QCP. These fluctuations are candidates to

mediate Cooper pairing. A superconducting dome develops around the QCP, ex-

tending to a doping range where no long-ranged magnetic or nematic order is present

anymore.

2.3.4 Superconducting state

Superconductivity and SDW order share a region of coexistence in the phase diagram

for both electron and hole doping. The superconducting ground state is discussed

in the following for various underlying pairing interactions [109].

The ground state is described by a fermionic wave function having a spin- and a

momentum-dependent part. For a singlet superconductor with Cooper pairs of the

configuration (k ↑,−k ↓), only even symmetries are allowed for the k-dependent part

due to the antisymmetry of a fermionic wave function. Knight shift measurements

provide evidence for singlet pairing in the present systems [110].

Several configurations of the ground state are presented in Fig. 2.10, defined by the

momentum dependence of the generally complex energy gap ∆(k). The simplest one

is an isotropic gap on every FS sheet as shown in Fig. 2.10(a), i.e. ∆(k) = ∆0. The

gap structure is of zero order s-wave symmetry referred to as s++. An anisotropic

gap of the same symmetry is displayed in Fig. 2.10(b), with minimal (∆min) and

maximal (∆max) gaps as indicated. The second order s-wave symmetry (also called

s±) is depicted in Fig. 2.10(c) with a sign-change between electron and hole pockets

but otherwise momentum independent. In Fig. 2.10(d) a gap of dx2−y2-symmetry

is presented with nodes on the hole pockets. Nodes describe the momenta on the

FS, where ∆(k) = 0. Fig. 2.10(e) illustrates a combination of states having the

orthogonal symmetries s± and dx2−y2 , which results in an s + id state [111, 112].
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s++ s++ s+-

dx2-y2 s+id

s+-
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Figure 2.10: A selection of superconducting ground states [109]. The gap ∆(k) is illus-
trated by red (positive gap) and blue (negative gap) belts, surrounding the Fermi surface
sheets. The thickness of the belts indicates the momentum-dependent magnitude. (a)
and (b) show s++ states with no sign change. (c) depicts the sign-changing s± state. (d)
displays the dx2−y2-symmetric gap with nodes (∆ = 0) at the hole pocket. (e) illustrates
the combined state s± + idx2−y2 . Orange arrows are vectors in the complex plane as de-
fined by the coordinate system on the left hand side of (e) with Re[∆(k)] = ∆s(k) and
Im[∆(k)] = ∆d(k). The single arrow in the center of each electron pocket is valid for the
whole pocket. In contrast to the state in (d), the magnitude |∆| never vanishes.

If such a state is formed, the system can gain energy from both s- and d-wave

symmetric pairing interactions. The squared magnitude |∆s + i∆d|2 = ∆2
s + ∆2

d

shows that the full gap is always finite(|∆(k)| > 0).

The realization of the ground states discussed above depends on the pairing potential

Vk,k′ . The BCS gap equation yields the ground state for a defined pairing potential

as created by the underlying pairing mechanism. The actual mechanism in IBSs

remains elusive and is strongly debated. Hence, the results for pairing mechanisms

based on phonons, fluctuations and AFM exchange as listed in Fig. 2.11 will be

discussed in the following. In the case of phonon-mediated pairing, both attractive

channels cooperate and form an s++ ground state. A d-wave channel is also present

but negligible [113–115]. Fluctuation-mediated pairing contains spin [49, 58, 77],

charge [116] and orbital [117, 118] channels [15]. As spin-fluctuation interactions

are repulsive they form a sign-changing s±-wave or dx2−y2-wave ground state. In

the case of charge-fluctuation mediated pairing the states e+ and h+ are present
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Figure 2.11: Interactions compiled as a tree diagram. Three candidates for the pairing
mechanism are shown: Phonons, fluctuations, and anti-ferromagnetic (AFM) exchange
interactions. They split into a variety of interactions in momentum space and resulting
superconducting ground states. In this context, “e/h” stands for independent intra-band
pairing in the electron (e) and hole (h) pockets. “e-e” and “e-h” describes inter-band
pairing between two neighboring electron pockets and between electron and hole pockets,
respectively. The resulting ground states are described by sign-preserving (turquoise) and
sign-changing (pink) order parameters. A combination of both colors indicates that sign-
changing and sign-preserving states are possible. s++, s± and dx2−y2 correspond to the
states as illustrated in Fig. 2.10(a), (c), and (d), respectively. Furthermore it is defined
that e++ is a sign-preserving state between neighboring electron pockets, and e+ as well
as h+ is sign-preserving within a single electron and hole pocket, respectively.
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for the topmost channel. As both charge and ferro-orbital interactions rely on a

small momentum transfer the relative sign between hole and electron pocket is not

defined a priori. The smallest inter-band interaction or a form factor (e.g. dx2−y2

symmetry) attributed to one of these channels determines the relative sign [119–121].

If the interaction between the Fe d- and As p- orbitals is included, the charge channel

contains two more possible pairing channels [116]. The antiferro-orbital inter-band

attractive interaction generates the sign-preserving s++ state. Pairing via AFM

exchange yields the states dx2−y2 and s±. In the case of J1 >> J2 the second

strongest channel is a nodal s-wave state whereas a dxy-wave state is subdominant

for J1 << J2 [87–89, 122].



Chapter 3

Experiment

Here a brief introduction to Raman spectroscopy [55, 123] is given and the ex-

perimental setup is explained. Furthermore, a characterization of the investigated

samples is presented.

3.1 Samples

A main aspect of this thesis is the study of the superconducting state in the hole-

doped compound Ba1−xKxFe2As2 in the range 0.22 ≤ x ≤ 0.70. Fluctuations

were investigated in the hole- and electron-doped samples at x = 0.22 and, re-

spectively y = 0.051 in Ba(Fe1−yCoy)2As2. The data were compared to previously

obtained results for undoped BaFe2As2 and y = 0.025, 0.55, 0.61 and 0.085 (cf. Refs.

[73, 124, 125]).

Both electron- and hole-doped compounds were grown from FeAs self-flux. The el-

ements Ba, K/Co, and prereacted FeAs were mixed in the desired ratio, enclosed in

Al2O3 crucibles, and heated up in steps to 1000-1200 ◦C. For a temperature range of

about 200 ◦C a small cooling rate in the range of 0.1-10 ◦C/h was applied [60, 65, 126–

130]. During this process the single crystals grow. When the crystals reach their

typical size of 5x5 mm (in the ab plane) and a thickness (along the c axis) of ap-

proximately 1 mm, the crucible is tilted to separate the flux from the crystals.

The K-doped crystals were grown in the groups of Thomas Wolf [65, 128] at the

Karlsruhe Institute of Technology and Hai-Hu Wen at the National Laboratory for

Superconductivity in Beijing [130], the Co-doped samples in the group of Ian Fisher

at Stanford University [60].

The samples were characterized by determining the superconducting transition tem-

perature Tc and the structural ordering temperature Ts. In the case of electron

23
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doping, the SDW transition temperature TSDW was obtained separately as it differs

from Ts.

3.1.1 Ba1−xKxFe2As2

The superconducting transition of the bulk was investigated by a contactless AC

magnetic susceptibility measurement. An oscillating external field was applied par-

allel to the c-axis. In a type-II superconductor the magnetic field creates vortices

which are usually pinned by defects. The depinning results in a hysteretic magneti-

zation and the generation of higher harmonic contributions to the AC susceptibility

which can be described by a Fourier series. Here the magnetic susceptibility of the

third harmonic channel χ3 was measured. Pick-up coils were used to obtain the

magnetization of the sample via the induced voltage. A lock-in amplifier isolated

the contribution at three times the frequency of the applied field. A detailed de-

scription is found in Ref. [131].

The amplitude of the induced voltage V 0
3 is proportional to |χ3| and is plotted in

Fig. 3.1 for all BKFA samples studied. The susceptibility is a measure for the dis-

Table 3.1: Superconducting transition temperature Tc and variation ∆Tc of differently
doped samples Ba1−xKxFe2As2 as obtained from Fig. 3.1. The sample ID refers to the
documentation of this thesis.

K-content x Tc (K) ∆Tc (K) Sample grower Sample ID

0.22 24.6 0.9 T. Wolf 151111
0.25 30.9 2.1 H.-H. Wen 140728
0.35 38.9 0.9 T. Wolf 141001
0.40 38.6 0.4 H.-H. Wen 100909
0.43 36.7 1.3 T. Wolf 150218
0.48 34.3 1.1 T. Wolf 141027
0.62 26.6 1.4 T. Wolf 150115
0.70 21.6 0.8 T. Wolf 150717

sipation in the system. As long as T . Tc, the external field can move the vortices

and energy is dissipated resulting in a finite susceptibility. For smaller temperatures

however, the pinning potential increases and the vortices stay fixed at their posi-

tion. When the sample is cooled, the signal is expected to set in abruptly at Tc and

form an asymmetric peak [132]. However, in most of the samples a slow increase, a

“foot”, precedes this peak. The width of this foot is associated with the variation

∆Tc of Tc, as caused e.g. by spatial inhomogeneities in the doping concentration or
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Figure 3.1: The superconducting transition in Ba1−xKxFe2As2. Measurements of V 0
3 as

a function of temperature for various doping levels are presented. For comparison, the
temperature range extends over 10 K for every panel. The grey lines illustrate the linear
extrapolation of the right flank, the black lines indicate the temperature, where the signal
starts to emerge out of the noise, determining Tc and ∆Tc, respectively. (a) shows a small
bump on the left flank at 22 K, which is an artifact caused by a fluctuating cooling rate.
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disorder. The extrapolation of the linear part of the right hand side of the peak we

define as Tc. Here, the resistivity is already zero and the static susceptibility reaches

its midpoint.

The voltage V 0
3 was recorded as a function of temperature upon cooling and warming

the sample through the superconducting transition with a typical rate of 2 K/min.

Averaging over both measurements yields Tc as listed in Table 3.1 for 0.22 ≤ x ≤
0.70. For ∆Tc the maximal value is reported.

For x = 0.22 the structural transition temperature Ts was determined in addition

to the superconducting transition at Tc. For this sample, Ts and TSDW are identi-

cal. Below Ts the 1 Fe unit cell changes from tetragonal to orthorhombic and twin

boundaries form [133]. This structural transition was identified by exploiting the

emergence of stripes on the surface of the sample [73, 74, 125, 134, 135]. The stripes

can be observed on the sample surface in the focus of the laser and are oriented along

the crystallographic axes a or b. They appear abruptly below a certain temperature.

74.0 K 74.5 K 75.0 K 75.5 K

(a) (b) (c) (d)

0 1 2 3 4
68

72

76

80

84
Ba0.78K0.22Fe2As2

T st
rip

es
(K

)

Pabs (mW)

Ts = TSDW= 81.4 K

(e)

Figure 3.2: Determination of Ts by the observation of stripes [135]. (a-d) show the elasti-
cally scattered light from the laser focus on the sample surface. These images were taken
with an absorbed laser power of 2 mW. The temperature indicated is that of the sample
holder. The stripes, which can be clearly observed at 74.0 K fade towards higher tem-
peratures and vanish between 75.0 K and 75.5 K. (e) The transition temperature Tstripes,
indicated for 2 mW by the pink bar is determined for several absorbed laser powers Pabs.
The open symbol corresponds to Tstripes as obtained from the images on the left, the black
line shows a linear extrapolation to Pabs = 0.

As twin boundaries are deviations from the perfect crystal, they can generate an in-

creased polarity at the sample surface, resulting in the adsorption of molecules of the

residual gas in the cryostat. The light is scattered elastically from these molecules

and makes the twin boundaries visible as stripes. This is displayed in Fig. 3.2. As

the laser light is partially absorbed inside the sample, the sample temperature is

slightly increased in the focus. Accordingly, the transition temperature Tstripes is

obtained as a function of the absorbed laser power Pabs, shown in (e). The observed
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linear dependence yielded Ts = 81.4 K and the laser-induced heating of 3.0 K/mW.

As Ts could be determined with an uncertainty of 0.2 K, the doping in the laser focus

is very homogeneous.

3.1.2 Ba(Fe1−yCoy)2As2

A similar analysis was performed for the Co-doped compound for y = 0.051, see Fig.

3.3. Here, the structural transition temperature is Ts = 60.9 K, the laser-induced

57.0 K 58.0 K 59.0 K 59.8 K

(a) (b) (c) (d)
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Figure 3.3: Determination of Ts in Ba(Fe0.949Co0.051)2As2 [134]. The figure is built up in
analogy to Fig. 3.2. (a-d) show the stripes at Pabs = 1 mW.

Table 3.2: Structural (Ts) and SDW (TSDW) transition temperatures of the samples re-
ferred to in this thesis (Ba1−xKxFe2As2 and Ba(Fe1−yCoy)2As2). The references lead to
the corresponding Raman measurements.

K,Co-content Ts (K) TSDW (K) Sample ID References

x = 0.22 81.4 81.4 151111 this thesis, [135]
x, y = 0.000 135 135 100310 [124, 136]
y = 0.025 102.5 98 131028 [124, 125]

y = 0.051 60.9 49.5
150330,
100121

this thesis, [124, 134]

y = 0.055 unknown 090810 [124]
y = 0.061 not existent 090126 [124]

y = 0.085 not existent
090723,
110123

[124]

heating was found to be 1.5 K/mW.

According to the phase diagram of Fig. 2.1, the SDW transition is expected to be

approximately 10 K below Ts. With the help of Raman scattering the temperature

TSDW = 49.5 K was determined as explained in Appendix 7.5.
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The study of fluctuations in this thesis is an extension of earlier work on differently

doped samples [124, 125]. All the samples compiled in Tab. 3.2 are taken into

account to analyze the phase diagram of fluctuations.

3.2 Raman spectroscopy

Raman spectroscopy is equivalent with inelastic light scattering [55, 123, 137]. A

photon of momentum ki, frequency ωi and polarization ei hits a sample, and the

scattered photon (ks, ωs, es) is analyzed. In the scattering process an excitation

in the sample is either created or annihilated. The first process is called Stokes

Anti-Stokes process

(q,Ω)

Stokes process(a) (b)

(ki,ω i,ei)

(q,Ω)
I

ν

F

(ks,ω s,es)

ν

F

I

(ki,ω i,ei)
(ks,ω s,es)

Figure 3.4: Energy level diagram of the Raman effect. The energy levels of the initial
|I〉, intermediate |ν〉, and final state |F 〉 are depicted. (a) shows the Anti-Stokes process
where an excitation is destroyed and (b) the Stokes process where an excitation is created.
Hence the incident photon (green wavy line) transform into a blue- or red-shifted scattered
photon, respectively.

process, in this case the scattered photon is red-shifted and leaves the sample with

a lower energy than the incident photon. The annihilation of an excitation is called

Anti-Stokes process, and the scattered photon is blue-shifted. Both processes are

shown in Fig. 3.4. Here the incident photon creates an electron-hole pair in the

state |ν〉, which in general is not an eigenstate, out of the initial state |I〉. If this

intermediate state happens to be a real state, e.g. an electron is lifted above a

band gap, the scattering intensity can be strongly enhanced. In either case, the

electron-hole pair emits (absorbs) an excitation, recombines and emits a red-shifted

(blue-shifted) scattered photon, leaving the sample in the final state |F 〉.
The Raman shift Ω = ωs − ωi probes the energy of the excitation. In a Raman

spectrum, the scattering intensity is measured as a function of the Raman shift Ω.

Due to the dispersion of light, high energies and small momenta are transferred.

Hence the momentum of a probed excitation is close to zero, i.e. q ≈ 0 [138]. Some
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processes involve two excitations with q and −q, which can be observed as well as

the net momentum sums up to zero.

3.3 Experimental setup

The actual experiment is performed with the setup as illustrated in Fig. 3.5. The

light source is either a solid state laser (Coherent, Genesis MXSLM), emitting at

575 nm (yellow), or an Ar+ ion laser (Coherent, Innova 300) with multiple lines. In

this thesis the ion laser was operated with the blue line at 458 nm and the green line

O3

L9

CCD

S

cryostat
sample

coldfinger
spectrometerλ/4

A

λ/2

O2

M4M3

M2 M1

PMP
SBC

L8

λ/2

O1 S3 L7

L6

L5

S2

PMC

L4 L3S1

Ar+ laser

L1
L2

solid state laser

PH1

Slit

PH2

Figure 3.5: Setup of the Raman experiment. The ion and solid state lasers are located
as indicated, with the mirror M1 used for the latter. The optical elements are mirrors
(M), lenses (L), pinholes or slits (S), the prism monochromator (PMC), λ/2 and λ/4 wave
plates as indicated, a polarizer (P) and another one used as analyzer (A), the Soleil-Babinet
compensator (SBC), the power meter (PM) and objectives (O). The figure is adopted from
Ref. [139].

at 514 nm.

To improve the quality of the laser beam, the lens-pinhole-lens systems PH1 and

PH2 are installed, which filter out divergent parts and restore the Gaussian intensity

profile of the beam. Furthermore, a prism monochromator PMC is used to select
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the desired wavelength and deflect the plasma lines produced by the ion laser.

To adjust the power absorbed in the sample and set the polarization, additional

optical elements are needed. The power is regulated by rotating the λ/2 wave plate

with respect to the polarizer P. The combination of the polarizer P and the Soleil-

Babinet compensator SBC modifies the polarization in a way that any elliptical

polarization can be set. The polarization outside the sample is chosen in a way that

the desired polarization results inside the sample. A detailed explanation can be

found in Ref. [139]. The lens L8 focuses the beam on the sample surface, which is

the ab-plane for all measurements in this thesis.

The scattered light is collected along the surface normal by an objective O2. A

λ/4 wave plate and another polarizer are used to select either linearly or circularly

polarized light. Another λ/2 wave plate rotates the polarization into the direction

of the highest sensitivity of the spectrometer. The spectrometer selects a small

window of photon energies. This window can be set manually to choose the energy

resolution; a typical value is 5 cm−1 (0.6 meV). The CCD camera counts the photons

passing through the band pass. Finally, a computer controls the position of the

spectrometer, reads the CCD and associates the recorded intensities (photon counts

per second and absorbed power Pabs) with the Raman shift Ω (in units of cm−1) and

a spectrum is generated.



Chapter 4

Theory

In this chapter the interpretation of the Raman response is addressed from a the-

oretical point of view. First, electronic Raman scattering is described in general

and then certain processes are studied: These are (i) Cooper-pair-breaking pro-

cesses in the superconducting ground state [55, 123, 140–143], (ii) excitations in the

presence of residual interactions emerging in the spectra as “Bardasis-Schrieffer”

(BS) modes [43, 45, 46] and (iii) fluctuations above the SDW phase appearing

only as higher-order processes, described by the so-called “Aslamasov-Larkin” (AL)

[72, 108, 144, 145] diagrams. The quantitative analysis using a 3-dimensional model

of the doping-dependent Fermi surface [48] was implemented during this thesis.

Therefore, Raman scattering in the superconducting state is discussed in detail

here.

4.1 Basic principles of electronic Raman

scattering

In a Raman scattering experiment the reaction of a system to an external pertur-

bation by photons is investigated. On the basis of a linear response theory the

scattered light can be linked to the incident light via a susceptibility [146]. The

derivation of this susceptibility is outlined briefly in the following. Several authors

elaborated on this derivation in detail [55, 123, 147–152]. Only the major physical

steps are presented here following by and large Ref. [55].

31
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4.1.1 Fermi’s golden rule

The calculation of any transition rate from an initial to a final state is described

by Fermi’s golden rule, which is the main ingredient to obtain the scattering cross

section. Applied to Raman scattering this reads [55]

∂2σ

∂Ω∂ωs

= ~r2
0

ωs

ωi

1

Z
∑
I,F

e−βEI |MF,I |2δ(EF − EI − ~Ω) (4.1)

with the Raman shift Ω, the frequency of the incident and scattered light ωi and ωs,

respectively, the Thompson radius r0 = e2/mc2, and the partition function Z. The

sum includes β = 1/kBT , the energies EI,F of the initial (I) and final (F ) states

and the matrix element MF,I = 〈F |M |I〉, where M is the effective light-scattering

operator, transforming I to F .

I and F describe states of the many electron system. The interaction with light

transforms I to F , as specified by an interaction Hamiltonian. It is emphasized that

this interaction Hamiltonian especially contains the polarizations of the incident and

scattered light, ei and es, respectively.

With the explicit form of the light-scattering operator M , the summation over all

final states F and the thermal averaging over the initial states I, the cross section

can be rewritten as [55]

∂2σ

∂Ω∂ωs

= ~r2
0

ωs

ωi

∑
I

e−βEI

Z

∫
dτ e−βΩτ 〈I|Tτ ρ̃(q, τ)ρ̃(−q, 0)|I〉 (4.2)

with Tτ the time-ordering operator with respect to the complex time τ and the

Raman density [55]

ρ̃(q) =
∑
k,σ

γ(k,q)c†k+q,σck,σ, (4.3)

including the Raman vertex γ and fermionic creation and annihilation operators c†

and c. The polarizations ei and es are now incorporated in the Raman vertex.

The general result is a density-density correlation function giving the scattering

cross section (4.2), which can now be compared to the experiment. However, within

this equation, only the coupling of the electronic density to the light is described.

If bosons such as phonons, magnons, or spin fluctuations are available and Raman

active, corrections must be included, which will be discussed in the following parts.

An adequate description of these corrections is the goal of a theoretical approach,

ideally embedded in a microscopic picture.
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4.1.2 Raman susceptibility

For this aim Feynman diagrams are used to illustrate the relevant processes. Eval-

uating the Feynman diagrams yields the Raman susceptibility χ. The quantity

extracted form the experiment is χ′′ = Im(χ), the imaginary part describing dissi-

pative processes. The fluctuation-dissipation theorem relates the cross section with

the imaginary part of the susceptibility by [55, 107]

∂2σ

∂Ω∂ωs

∝ −[1 + n(Ω, T )]χ′′(q,Ω) (4.4)

with the Bose-Einstein distribution n(Ω, T ).

The general Feynman diagram of a Raman scattering process is shown in Fig. 4.1.

The coupling of light with electrons is described by the Raman vertex γ. This part

was extracted in the previous section. Without any excitations or interactions the

γ γ? = γ γ +...

Figure 4.1: Feynman diagram of the general Raman response. Wavy lines indicate incident
and scattered photons, solid lines electronic propagators. The vertex, that couples the
electrons to the light is the Raman vertex γ. The black box incorporates all the interactions
and excitations in the system. If none are present, only the bare bubble on the right hand
side remains.

first-order diagram on the right hand side, the “bare bubble” builds up the full

response. In the normal state, this diagram describes particle-hole excitations. The

black box incorporates all higher order renormalizations of the bare bubble.

For example, a bosonic optical phonon propagator can be introduced, yielding a

peak in the Raman spectrum at the characteristic phonon frequency. The phonon

eigenvectors are determined by the symmetry operations of the crystal (and can

be described by irreducible representations of the crystal’s point group), which can

be extracted as well. The Raman vertex links the photon polarizations and the

eigenvectors, yielding symmetry selection rules.
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4.1.3 Selection rules

Selection rules are not only applicable to phonons. They are applicable to any kind

of excitation. The Raman vertex shows a crucial dependence on the polarization

of the incident and scattered light [153, 154]. Therefore the vertex is decomposed

into symmetries µ. Depending on the choice of ei and es certain symmetries µ are

A1g B1g B2g

(a) (b) (c)

+
-

ei es

Figure 4.2: Polarization configurations and graphical representations of A1g, B1g and
B2g symmetries [154]. The signs of these representations correspond to the signs of the
respective Raman vertex. The polarization configurations are indicated on the FeAs-layer.
The round arrows display circular polarized light, the straight ones linear polarized light.
The lowest order A1g symmetry is a constant and not shown here.

isolated. Thus the Raman vertex can be described by three properties: (i) A basis

set of Raman vertices can be obtained with elements γµ assigned to every even

symmetry µ, (ii) depending on the symmetry, the vertex highlights the response

from electrons having certain momenta in the BZ, and (iii) the vertex is enhanced

if the incident or scattered photon energy is close to a band gap.

The first property will be investigated in detail. Fig. 4.2 shows the sign of the

Raman vertex γµ in the BZ, indicated along with the Fermi surfaces for the first

and second order. The Raman vertex has a node (γ = 0) at the momenta, where

positive and negative areas touch. Here only symmetries µ ∈ {A1g, B1g, B2g} are

shown. The response in A2g symmetry is typically very small and neglected here.

The Eg symmetry is defined with respect to the ac and bc planes, hence not relevant

as well. For certain polarization configurations ei, es, the response from excitations

having different symmetries is projected out. This is a vital part of the experimental
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analysis, as the symmetry of an excitation encodes valuable information about its

nature.

4.2 Raman response in the presence of

interactions

Specific interactions and excitations are studied in the following replacing the black

box in the Feynman diagram of Fig. 4.1. From a theoretical point of view, these

interactions and excitations can be described by bosonic propagators.

4.2.1 Coupling between electrons and fluctuations

in the normal state

The phase diagram of Fig. 2.1 showed a region above the SDW state, where fluctua-

tions are expected to appear. Yet the nature of these fluctuations remains unknown.

The question arises, if Raman scattering can probe these fluctuations and which re-

sults can be obtained from the experiment.

To address the first point the bare bubble is renormalized by introducing a bosonic

fluctuation propagator. Several diagrams can be constructed involving a certain

γ γ

qc

-qc

γ γ

qc

-qc

++ + ...γ γf f
q=0 f

f

f

f

f

f

f

f

G1

G2
G3

Figure 4.3: Raman scattering processes involving one (first-order) and two (second-order)
fluctuations . Solid lines are fermionic propagators with the corresponding Green’s func-
tions Gi, dashed pink lines fluctuation propagators, and wavy lines are photons. The
Raman vertex γ and the form factor f describe the interaction of fermions with light and
fluctuations, respectively. Both processes provide for a vanishing net momentum. The
fermionic triangles of the second order processes are called “electronic loops”.

number of these propagators. A selection of diagrams with one and two propa-

gators is depicted in Fig. 4.3, the second-order diagrams are called AL diagrams

[72, 108, 120, 144, 155–158]. Processes involving self-energy correction are omitted

[145]. The fluctuation propagators in the case of AL diagrams can be described

by the Ornstein-Zernike propagator DOZ from Eq. 2.5. The diagrams show, how

fluctuations can be probed by Raman scattering.
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However, there are some constraints. First, no momentum can be transferred in a

Raman scattering process. This is realized in the first-order diagram by a vanishing

momentum of the fluctuation propagator. In the second-order diagram, any mo-

mentum qc is possible, as long as both fluctuation momenta (qc and −qc) cancel.

Another constraint is given by the Raman vertex. In the first-order diagram, the

electron-fluctuation vertex f must have the same symmetry as the Raman vertex γ to
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Figure 4.4: Generic Raman response as ob-
tained from the uncrossed AL diagram in-
volving a phenomenological fluctuation prop-
agator. Note the finite slope for Ω→ 0.

avoid cancellation. This means that a

fluctuation of e.g. B1g symmetry can

only be observed with a polarization

configuration, that projects out B1g. An

example for this case are charge and

orbital fluctuations possessing a B1g-

symmetric form factor f .

This is different in the case of the

second-order AL diagrams. Here, the

coupling between light and fluctuations

is realized via an electronic loop Λµ
0 . The

electronic loop contains the Raman ver-

tex and, in general, form factors that

are related to the symmetry of a fluc-

tuation. However, as these form factors

enter quadratically as f 2, which is insensitive to sign changes, they are irrelevant for

symmetry considerations. Thus they are usually omitted in the diagrams. A sim-

plified form of the electronic loop, which sufficiently describes the selection rules,

reads [108, 145]

Λµ
0(qc) = T

∑
k

γµ(k)XG1(k)G2(k + qc)G3(k) + “qc ↔ −qc”. (4.5)

with fermionic propagators G1, G2, and G3. The indices indicate different energy

dependencies, X is an operator taking care of the corresponding energy integrals

in the multi-band system. For further approximation, the three Green’s functions

are assumed to pin the vectors k and k ± qc onto the Fermi surface but are irrel-

evant otherwise. This defines the so-called “hot spots” k0 being the origin of the

vectors ±qc, which connect two FS sheets. For a certain critical vector and a set of
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corresponding momenta k0 a simple selection rule demands

Λµ
0(qc) ∝

∑
k0

γµ(k0) (4.6)

to be finite for a finite response. This is only the case for adequate symmetries µ. For

example, a response in µ is expected, if the critical vectors exclusively connect parts

of the FS where γµ has the same sign. Note that this symmetry is not necessarily

equal to the symmetry f of the fluctuation itself. The application of this selection

rule to spin fluctuations is described in App. 7.1.

A typical Raman response as obtained from the AL diagrams (Fig. 4.3) is shown in

Fig. 4.4 [47, 73, 108, 145]. From this response several properties of the fluctuations

can be extracted. The selection rules hint towards the critical vectors qc. The

mass m, which is an intrinsic property of the propagator DOZ as defined in Eq. 2.5

(dashed pink lines in the AL diagrams of Fig. 4.3) can be obtained as a function of

doping and temperature.

4.2.2 Interactions in a multi-band superconductor

To describe the response of a superconductor, the lowest order diagram (the bare

bubble) is sufficient. The propagators in the superconducting state are different

from those above Tc. A gapped system can still be described by the single-particle

Green’s function (propagator) [159],

G(k, iωn) = − iωn + Ek

(iωn)2 + Ek + ∆2
k

, (4.7)

it is the coherence of the state that requires another propagator to be taken into

account, the anomalous Green’s function

F (k, iωn) = F †(k, iωn) =
∆k

(iωn)2 + Ek + ∆2
k

. (4.8)

The response in the superconducting state is given by a coherent superposition of

G and F and is illustrated in Fig. 4.5.

An important conclusion can be derived from these diagrams. Evaluating the di-

agrams yields a Raman response which depends quadratically on γµ(k). As γ2
µ(k)

is positive, sign-changes as e.g. in B1g symmetry cannot be resolved, i.e. the sym-

metry selection rules are lost. However, the selectivity in momentum space is still

preserved. This means, that every symmetry µ individually highlights or attenuates
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the response originating from certain parts of the Fermi surface, according to the

momentum dependence of γ2
µ(k).

The Raman response at T = 0 for the simplest case of an isotropic gap 2∆ and a

γ γ
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Figure 4.5: Feynman diagrams and corresponding response from the superconducting gap
[160]. (a) Wavy lines illustrate photons, solid lines with a single arrow indicate normal
Green’s functions G and double-arrow lines anomalous Green’s functions F and F †. The
Raman vertices γ are highlighted in grey. (b-d) show the response for different k-dependent
gaps in the approximation of a constant Raman vertex. The corresponding gaps are
presented in the insets, according to the gaps on the hole pockets of Fig. 2.10(a), (b), and
(d).

constant Raman vertex is depicted in Fig. 4.5(b). The response vanishes inside the

gap, i.e. below 2∆, as there are no available states. Above 2∆ the equal contribu-

tions from the two diagrams form a square-root singularity right at 2∆ followed by

a monotonic decay. Two further examples are shown in (c) and (d), the Raman ver-

tex is still kept constant. The response of an anisotropic gap exhibits a “step-peak”

structure, the step is located at 2∆min, the peak at 2∆max. For higher energies the

typical decay is observed. In the case of a nodal gap as in (d) the response never

vanishes. For every energy a pair-breaking process can occur, as the gap ranges

from zero to 2∆max. At twice the maximum gap, a peak is present.

In a multi-band system, the total response is simply the sum of the response from

every band. In principle, isotropic gaps on n bands can produce n peaks in the

Raman spectrum at 2∆n.

In A1g symmetry however, the spectra are modified by a screening term. The screen-

ing originates from Coulomb-interaction, which can couple only to the totally sym-

metric A1g Raman vertex. In this case the bare bubble is renormalized by an infinite
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series of diagrams as illustrated in Fig. 4.6. A summation in a 5-band model yields

the renormalized response [143]

χγγsc =
5∑

a=1

χγγa + V

5∑
a,b=1

χγ1
a χ

1γ
b

∞∑
n=0

χnC (4.9)

with

χC = V
5∑
i=1

χ11
i . (4.10)

Here, χpqi describes the bare bubble on band i with vertices p and q being either γ for

the coupling to light or 1 for the coupling by the Coulomb interaction. Evaluating

γ 1 γ1χγ1 χ1γ

γ 1 11χγ1 χ11 γ1 χ1γ

γ 1 11χγ1 χ11 γ1 χ1γ11 χ11

γ γχγγγ γχγγ
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Figure 4.6: Multi-band screening in A1g symmetry. The renormalized susceptibility χγγsc

is obtained by the evaluation of a geometric series, involving the Coulomb-interaction V
(green dashed line) coupling via the totally symmetric vertex 1. The combination of the
vertices yields the susceptibilities χγγ , χγ1, χ1γ , and χ11. Band indices range from 1 to 5
in the case of a 5-band model. Wavy photon lines re omitted.

the geometric series and using the equality χγ1 = χ1γ the relation

χγγsc =
5∑

a=1

χγγa + (
5∑

a=1

χγ1
a )2 V

1− V
∑5

i=1 χ
11
i

(4.11)
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is found. For a large Coulomb interaction V this simplifies to

χγγsc =
5∑

a=1

χγγa −
(
∑5

a=1 χ
γ1
a )2∑5

i=1 χ
11
i

(4.12)

and shows, that screening is determined mostly by the sum
∑5

a=1 χ
γ1
a , where γ enters

linearly. If the sum is large, a huge screening effect is expected, reducing the response

considerably. A1g is the only symmetry, where positive and negative regions of γ(k)

do not (necessarily) add up equally. Hence screening can have an influence in A1g

symmetry only.

4.3 Bardasis-Schrieffer mode

Another possible excitation, that replaces the black box, is the BS mode [43, 45–47,

155, 161–163]. A BS mode is a collective, bosonic mode in the superconducting state.

Such a mode exists if the pairing interaction Vk,k′ between the electrons of a Cooper

2∆

EB

(a) (b) (c)

hωi

s

dx2-y 2

Figure 4.7: Combined processes yielding the Raman response in the presence of a sub-
domint interaction [47, 162]. Occupied and unoccupied bands of a superconductor are
shown in pink and grey, respectively. The dashed line in the middle illustrates the Fermi
energy. (a) The incident photon lifts an electron (black) above the superconducting gap
2∆. (b) A Cooper pair of the s-wave ground state is broken by applying an energy of
2∆. (c) A Cooper pair is split and immediately recombines as a bound pair. The bound
pair has dx2−y2 symmetry, the corresponding in-gap state is split off from the unoccupied
states by the binding energy EB.

pair is not isotropic as in the BCS approximation but depends on momentum. Then

it can be expanded into orthogonal functions dictated by the crystal symmetry. As
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γ γ + γ γ
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γ γ
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G
+

Figure 4.8: Feynman diagrams referring to the three processes of Fig. 4.7. The first two
terms are responsible for the pair-braking peak, the third diagram includes the subdomi-
nant interaction resulting in the BS mode to emerge.

an immediate consequence, there exist pairing channels beyond the superconducting

ground state [43]. Usually they are much weaker than the ground state interaction.

In BKFA however, pairing interactions with similar strength are present [47, 162]. As

the interactions are orthogonal, they compete with each other (On the other hand, if

two non-orthogonal interaction were present, they would always support each other

and generate a common superconducting ground state of their symmetry). For a

0
0.0

0.1

χ'
' (
Ω

,T
) (

ar
b.
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ni

ts
)

Raman Shift Ω (cm-1)

EB

(a),(b)(c)

2∆ΩBS

Figure 4.9: Schematic Raman response in the
presence of a subdominant interaction. The pair-
breaking peak above 2∆ (light purple) is gener-
ated by processes as illustrated in Fig. 4.7(a) and
(b). The process shown in Fig. 4.7(c) drains spec-
tral weight out of the pair-breaking peak into the
BS mode (orange) at ΩBS, leaving only a reduced
pair-breaking peak (dark purple). The binding
energy is determined by EB = 2∆-ΩBS.

hierarchy of competing pairing in-

teractions, the dominant interac-

tion determines the superconduct-

ing ground state. The emergence

of a BS mode in the experiment re-

flects the presence of a subdominant

interaction.

But how can this be understood mi-

croscopically? The BS mode can be

described in a particle picture and a

wave picture. The wave picture il-

lustrates the collective character of

the mode and the particle picture

leads to a qualitative description of

the Raman response.

In the wave picture the BS mode

is characterized by an oscillation of

the phase ϕ as defined in the com-

plex description of the gap ∆ =

∆0e
iϕ [42]. In general, the phase has a momentum dependence and can thus be

classified by symmetries. If the ground state, for example, has A1g symmetry and

the subdominant interaction has B1g symmetry, the phase oscillates with a B1g pat-
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tern. This underlines the collective behavior of the BS mode as all the Cooper pairs

at the Fermi energy participate.

In contrast to that, just one Cooper pair is considered in the particle picture as

illustrated in Fig. 4.7. The corresponding Feynman diagrams are illustrated in Fig.

4.8 and can be separated into three terms related to the three panels of Fig. 4.7.

The first diagram shows the bare bubble built up by the single-particle propagators

G. This process is illustrated in Fig. 4.7(a). An incident photon excites one particle

above the gap 2∆. The second diagram includes the anomalous Green’s function F ,

the corresponding process is shown in Fig. 4.7(b). A Cooper pair is broken, which

costs an energy of 2∆. Both processes combined yield the typical Raman response

of a superconductor [see e.g. Fig. 4.5(b)].

In the third diagram, the subdominant interaction is introduced. This diagram refers

to the combined process of Fig. 4.7(c). The electrons of the broken Cooper pair

recombine as a bound pair in the gap with a binding energy EB. This process costs

an energy of 2∆− EB. At this energy a peak in the Raman spectrum is expected.

An important property can be derived from the renormalized diagram. Due to the

subdominant interaction the diagram decomposes into two equal halfs. Each of them

is described by a product of G and F and the Raman vertex enters linearly [46].

Hence the selection rules are restored (in contrast to the other two diagrams) and

the symmetry of the BS mode can be determined.

All the three diagrams combined yield the total response as shown schematically in

Fig. 4.9. In the absence of a subdominant interaction, a typical square-root singu-

larity would emerge at 2∆, as equally generated by process (a) and (b). Switching

on the subdominant interaction activates process (c), resulting in two effects on

the spectrum: (i) Spectral weight is drained from the pair-breaking peak and (ii)

the BS mode emerges below 2∆, split off by the binding energy EB. An approx-

imation yields the relative strength of the subdominant coupling parameter to be

λd/λs ≈
√
EB/2∆ for an s-wave symmetric ground state and a d-wave symmetric

subdominant interaction [45].

4.4 Competing interactions embedded in a 5-band

model

In Section 5.1 a quantitative analysis of the Raman spectra in the presence of in-

teractions will be presented. To this end a band structure is required. Here the

5-band tight-binding model developed by Graser and coworkers [77] is presented, on
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the basis of which the experimentally obtained Raman results are studied.

4.4.1 Rigid band model

Starting from the five Fe d-orbitals the transformation to a band basis is discussed

first, then the backfolding from the 1 Fe BZ to the 2 Fe BZ is outlined for the 3-

dimensional case.

The tight-binding Hamiltonian of the five d-orbitals consists of five on-site energies

(b)

-π-π π

π

(c)

kz= π/2

(d)

(e)

kz= -π/2

(f)

kx

ky

(a)

kx

ky

kz

kz= -π

kz= π

kz= 0

Figure 4.10: Fermi surface of the 1 Fe BZ. (a) shows the complete Fermi surface. Green
surfaces depict hole pockets, purple ones electron pockets. Thin grey lines indicate the
boundaries of the 1 Fe BZ, ranging from −π to π on every axis. (b-f) displays several
two-dimensional cuts at certain values of kz. Here the black lines frame the 1 Fe BZ, the
grey lines illustrate the boundaries of several adjacent 2 Fe BZs.

and ten inter-orbital hopping parameters as described by Eq. 2.1. A diagonalization

performs the transformation from an orbital to a band basis, yielding five bands in

the 1 Fe BZ.

As a simplification the rigid band model is used, where only the filling 6 + z deter-

mines the doping-dependent Fermi energy. At optimal hole doping, the K-content

of 0.4 yields a filling of 5.8. The corresponding Fermi surface is shown in Fig. 4.10.

Note that only three bands cross the Fermi energy, generating five different Fermi
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kz= 0

(a) (b) (c)

kz= -π/2

kz= π/2 e1e2

k′

k′

E(d)

EF
kz= -π (π,

π,π
)

Figure 4.11: Backfolding and anticrossing. (a) Panels (f) and (d) of Fig. 4.10 are arranged
on top of each other, shifted by the vector (π, π, 0). As both panels differ by a value of
∆kz = π, the total shifting vector is (π, π, π). (b) The same shift is illustrated for different
kz cuts. (a) shows intersecting hole pockets, (b) additionally exhibits intersecting electron
pockets. (c) The intersecting electron pockets of (b) are enlarged. Lifting the degeneracies
at the highlighted spots yields and outer (e1) and inner (e2) electron pocket. (d) illustrates
the underlying splitting in energy along the diagonal vector k′.

surface sheets. Two different electron-like and three different hole-like sheets are

visible. All of them encircle an axis in kz direction. The pockets which can be

shifted onto each other by the reciprocal lattice vector are considered as the same

pocket.

The question arises, if the As superstructure has a significant influence on the elec-

tronic structure, as induced by finite hopping via As. Several experiments indicate

an impact on the Fermi surface motivating the inclusion of the superstructure [164].

This is formally achieved by a backfolding from the 1 Fe BZ to the 2 Fe BZ. As the

2 Fe BZ follows the additional translational symmetry by the vector (π, π, π), back-

folding is equivalent to imposing this new symmetry to the band structure of the

1 Fe BZ. Thus the whole band structure is shifted by (π, π, π), then the emerging

degeneracies are lifted yielding the bands of the 2 Fe BZ.

This procedure is exemplarily demonstrated in Fig. 4.11. The three hole pockets

are shifted on top of each other. The same happens for the two electron pockets. A

constant splitting energy is introduced leading to three non-intersecting hole pockets

and two separated electron pockets appearing as an outer and inner pocket e1 and

e2, respectively. Note that this reconstruction for the electron pockets only happens

around kz = ±π/2. At kz = 0,±π the original electron pockets do not intersect

each other.

The resulting Fermi surface of the 2 Fe BZ is presented in Fig. 4.12, however for

reasons of simplicity still shown in the (larger) 1 Fe BZ.
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Figure 4.12: Fermi surfaces of the folded band structure. (a) The Fermi surface is still
shown in the 1 Fe BZ even though the more complicated 2 Fe zone would be the correct
one. Hence the Fermi surfaces can be transformed into each other by the translation
operation along the vector (π, π, π). Two new electron pockets emerge (light and dark
blue) and three new hole pockets (magenta, red and yellow). (b) shows that these hole
pockets are repeated at the corners of the 1 Fe BZ. They are omitted for all the following
representations. (b,d) To illustrate the Fermi surface in the 2 Fe BZ, we highlighted one
and the same area with respect to the 2 Fe zone by the green shaded part.

4.4.2 Gap structure and subdominant interactions

This Fermi surface structure is now used as a starting point for various interactions.

The dominant interaction is responsible for the superconducting ground state, caus-

ing a gap with the energy ∆(k) to emerge on the Fermi surface. In combination

with the Raman vertex γ(k), the Raman response of this multi-band system can be

obtained.

In addition to that, several subdominant interactions can be included, acting on the

various Fermi pockets. These interactions are usually classified by symmetry. From

a theoretical point of view, any interaction can be described by a set of eigenvalues

λi and the corresponding eigenvectors gi(k). The eigenvalue is the coupling strength

and the eigenvector defines the momentum dependence, i.e. is the form factor of

this interaction channel, and consequently determines the symmetry.

As described above, the Raman response is modified in the presence of subdominant
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interactions. Spectral weight is drained off of the pair-breaking peak and BS modes

appear. One BS mode can be expected per (orthogonal) subdominant coupling

channel [165].



Chapter 5

Results and Discussion

In the last chapter the way was paved for a quantitative analysis of the experimental

data to be presented in the following four sections. In the first section a continua-

tion of earlier work by Kretzschmar and coworkers [47, 125] will be described, where

collective modes were found in Ba0.6K0.4Fe2As2. These modes were interpreted in

terms of BS modes [43]. However, the experimental data left room for different ex-

planations. New aspects were found within this work by a temperature-dependent

Raman measurement and the application of a quantitative model calculation. This

analysis revealed the true nature of the observed peaks and provided evidence for

at least one BS mode in a multi-band superconductor. It could be concluded, that

two competing pairing interactions are present, the stronger of which forming the

superconducting ground state.

The hierarchy of interactions turned out to be sensitive to the size of the Fermi

surface sheets and thus can be tuned by changing the doping. The doping depen-

dence will be examined in the second section and discussed for different models of

the pairing mechanism.

Fluctuations as those appearing above the SDW phase could mediate the pairing.

Motivated by this possibility, the fluctuations above TSDW were investigated in the

third section as a function of temperature and doping, extending earlier work based

on Ref. [73]. Questions as to the microscopic origin of the fluctuations, their correla-

tion length and strength will be addressed. Special attention is paid to the question

if the fluctuations reflect signatures of the electron-hole asymmetry.

Finally, a phonon anomaly at optimal doping will be discussed in the fourth section,

which may open a new perspective for probing interactions or excitations in the

vicinity of a QCP.

47
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5.1 Experimental evidence for competing pairing

interactions in optimally doped Ba0.6K0.4Fe2As2

The major step towards revealing the pairing mechanism is the knowledge of the

relevant interactions. In a multi-band system, various interactions such as phonon-

mediated, AFM exchange and fluctuation-based interactions (see Fig. 2.11) are

present [49, 58, 77, 87, 113, 116], the intertwining of which yields the rich phe-

nomenology of the IBSs [39, 40, 100, 117, 119, 120]. To gain insight into this com-

plex structure of interactions, a way to disentangle them must be found. This was

achieved here by (i) exploiting the Raman selection rules, (ii) analyzing the tem-

perature evolution of the prominent features appearing in the symmetry-resolved

spectra, and (iii) applying a quantitative model calculation to the experimental

results of Ba0.6K0.4Fe2As2.

5.1.1 Symmetry analysis

Following this path, a first study sheds light on the superconducting state of opti-

mally doped Ba0.6K0.4Fe2As2. The Raman experiments were realized with an exci-

tation wavelength of λL = 575 nm and an energy resolution of 5 cm−1. The results

for the symmetry dependence of the Raman spectra are presented in Fig. 5.1. The

spectra were collected in both the superconducting state at 10 K (light blue) and in

the normal state at 44 K (orange), just above Tc = 38.6 K.

To gain symmetry-resolved information, the pure symmetries A1g, A2g, B1g, and

B2g [55] were extracted from spectra accessible by polarizations in the Fe-As-planes.

The symmetries refer to the Brillouin zone of the 1 Fe unit cell. Linear combina-

tions of these symmetries as obtained by polarizations RR, xy, and x’y’ are shown

in Fig. 5.1(a-c). All spectra have a similar contribution of A2g symmetry. Includ-

ing the spectra in RL polarization, the bare A2g spectra could be extracted. Their

contribution proved to be the smallest of all four symmetries, the A2g spectra are

structureless and do not change between 10 and 44 K.

This enables an identification of the various features by their pure symmetry. The

features are for example the phonons [166] in (a) at 188 and in (b) at 215 cm−1 having

A1g and B2g (= B1g with respect to the crystallographic unit cell) symmetry, respec-

tively. Another phonon mode appears at 130 cm−1 in both A1g and B2g symmetry.

This phonon has Eg symmetry but shows up in these two in-plane symmetries as

the vector ei of the incoming photons has a finite projection on the c-axis if the
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angle of incidence is large and ei is not perpendicular to the plane of incidence. The

phonons show only little changes between the normal and superconducting state.

Hence the phonons are disregarded in the following analysis, where the effects emerg-

ing in the superconducting state are explored. Except for A2g, all symmetries exhibit

superconductivity-induced features. These features are extracted in Fig. 5.1(d) by

plotting the difference ∆Rχ′′(Ω) = Rχ′′(Ω, 10 K) − Rχ′′(Ω, 44 K). This is done to

minimize all the features which do not change when entering the superconducting

state. Note that the phonon of B2g symmetry slightly hardens and softens between

44 and 10 K. This creates the narrow artifact at 215 cm−1 in the B2g difference

spectrum which is ignored in the current analysis. It is emphasized that the tem-

perature independence of the A2g spectra enables the isolation of pure symmetries in

the difference spectra. The three Raman-active symmetries exhibit various distinct

features. In terms of the total spectral weight of these features, the three symmetry

channels are similar.

The analysis commences with the superconducting energy gap, which is expected to

open up below Tc [4, 141, 167, 168]. In a complex system like BKFA it is not sur-

prising if multiple Fermi surfaces host several gaps with different magnitudes. This

was indeed detected by several other techniques such as ARPES [75, 169], neutron

scattering [170], muon spin rotation [171], infrared spectroscopy [172], scanning tun-

neling spectroscopy [173], specific heat [174], and critical field measurements [35].

Thus the symmetry analysis is crucial to distinguish between the response from sev-

eral gaps and other features like a BS mode. In Raman spectroscopy, the opening

of a gap ∆ manifests itself in a reduction of scattering intensity below 2∆ in con-

junction with an increase in intensity just above the gap edge.

Here the shift of spectral weight [55, 123, 147] is observed in all three symmetries.

The reduction of spectral weight (negative values in ∆χ′′) is followed by an increase

above roughly 155 cm−1. The range, in which this increase appears, is marked by

the light grey shaded area in Fig. 5.1(d). Importantly, the increase sets in at a

common energy for all three symmetries. Even if the peak positions for the different

symmetries do not coincide in energy, it is safe to assume, that all the features above

155 cm−1 are pair-breaking phenomena. They originate from at least one full gap

with the gap edge 2∆min ≈ 155 cm−1. Eventually the spectra of the normal and

superconducting state merge (∆χ′′ → 0) at higher energies.

To characterize the gap another coincidence is remarkable, as indicated by the ver-

tical grey line. Here, the superconducting B2g response crosses the normal state

response, the B1g response exhibits a peak and the A1g response shows its steepest
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Figure 5.1: Raman spectra of Ba0.6K0.4Fe2As2. (a-c) show spectra in the normal (or-
ange) and superconducting (light blue) state containing linear combinations of different
symmetries. (d) As A2g is temperature independent the difference spectra ∆Rχ′′(Ω) =
Rχ′′(Ω, 10 K)−Rχ′′(Ω, 44 K) resolve the bare symmetries A1g, B2g, and B1g. Earlier mea-
surements on the same sample with an excitation wavelength of 532 nm can be found in
Refs. [47, 125].

slope. The single peak above 155 cm−1 is suggestive for a single more or less isotropic

gap. It is likely that the same gap causes the increase of intensity in both B2g and

A1g symmetry. This suggests that a single gap is responsible for the pair-breaking

processes close to the gap edge. Another feature is a peak at about 80 cm−1 which

is most pronounced in B1g symmetry. There is a weak hump in A1g symmetry at a

similar energies. As the energy of this peak coinicdes with an ARPES measurments

[75] of a smaller gap, this peak is analyzed in terms of a second pair-breaking peak.

Beyond the similarities there are also distinct differences between the symmetries

above 155 cm−1. They can either be caused by an anisotropic gap structure or by

a k-dependence of the scattering intensity. With the help of quantitative model

calculations this issue will be clarified below. It is clear that further investigation

is required, especially with respect to the peak in B1g symmetry at 175 cm−1 which

has an untypical line shape for a pair-breaking peak. It has a width of only 17 cm−1

and does not show the typical decay at higher energies[142, 143, 175].
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The main focus of this analysis will be placed on the B1g feature at 140 cm−1, which

is by far the narrowest peak having a width of 7 cm−1, close to the resolution limit,

and pure B1g symmetry. If the assumption of the gap edge being at 155 cm−1 is

correct, this mode lies inside the gap. As there are no other states inside the gap to

scatter from at T = 0, it is not surprising that the lifetime of this mode is high and

thus the linewidth is small.

Following the considerations of the previous chapters the data are consistent with

the scenario of an s-wave ground state (2∆min ≈ 155 cm−1) and a d-wave BS mode

[43, 45–47, 147, 162] at 140 cm−1. This set of measurements provides clear evidence

for the dx2−y2 character (i.e. appearance in B1g) of the mode. Hence the origin of

such a mode is a subdominant dx2−y2 interaction.

5.1.2 Temperature dependence

In addition to the symmetry analysis, the temperature dependence may furnish fur-

ther support for the identification of the B1g peaks at 140 and 175 cm−1 with a BS

mode and a pair-breaking peak, respectively.

To this end, spectra at various temperatures between 8 K and 46 K were obtained in

B1g symmetry as compiled in Fig. 5.2. Fig. 5.2(a) shows the temperature evolution

of the spectra in B1g symmetry. To extract the peak positions, the electron-hole

continuum [55, 176, 177] in the vicinity of the peaks is approximated by a smooth

function, as depicted by the black line in Fig. 5.2(b). A subtraction of the contin-

uum leaves the bare peaks which were then fitted by two Lorentz functions, yielding

the peak frequency, the width and an estimate for the error. The small red and blue

lines in Fig. 5.2(a) illustrate the peak positions. The grey shaded areas indicate the

error range and the dashed lines the peak positions at T = 8 K. The inset compiles

all peak positions, normalized to the energy at the lowest temperature.

The temperature dependences of the two peaks are found to be different. The nar-

row peak (red) softens at higher temperature, whereas the high-energy peak (blue)

depends only weakly on temperature up to 0.7Tc. This substantiates one part of

the assumption as it indicates that the peaks emerge from two distinct effects.

It must be checked however, if the observed temperature dependence is consistent

with the interpretation of these effects as a BS mode and a pair-breaking peak, as

indicated in Fig. 5.2. At first glance, the temperature evolution of a pair-breaking

peak is assumed to follow the BCS prediction for the gap size ∆(T ) [4]. However,

there are various reasons for a deviation from the BCS behavior.

An Eliashberg calculation for SmFeAsO0.8F0.2 and Ba0.6K0.4Fe2As2 [178] in the
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Figure 5.2: Temperature dependence of the peaks in B1g symmetry. (a) shows spectra
taken at temperatures ranging from 8 to 46 K, stacked above each other with an offset
of 0.4. The peak energies of the BS mode (full red dots) and the pair-breaking peak
(open blue dots) are compiled in the inset. (b) They are extracted by a fit with two
Lorentzian curves after subtraction of a phenomenological electronic continuum (black
curve). The red and blue shaded areas indicate the contribution from the BS mode and
the pair-breaking peak, respectively.
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strong coupling limit showed that the gap itself stays nearly constant for a wide

temperature range until it suddenly drops to 0 close to Tc. The Eliashberg calcula-

tion accounts for the renormalization effects appearing in the case of strong coupling

by self-energy corrected Green’s functions.

Another approach includes renormalization effects by introducing a temperature and

energy-dependent scattering rate Γ(T,Ω) [148, 149, 179–181] enabling the treatment

of strong coupling effects as well as impurity scattering. The Raman spectra get

influenced in two ways: (i) The 2∆ singularity is chopped off. However, this ef-

fect is insufficient to suppress the pair-breaking peak for all temperatures up to

28 K [Fig. 5.2(a)]. (ii) The peak position can no longer be associated with twice

the single-particle gap (which follows the BCS temperature dependence). Now, the

temperature variation of the peak position deviates from a BCS-like prediction to-

wards a weaker temperature dependence of the pair-breaking peak [148, 149, 179].

In contrast to that, though a bit counterintuitive, the BS mode is expected to follow

the single-particle gap, i.e. has a BCS temperature dependence [45] if, as usual, the

subdominant coupling parameters are independent of temperature and energy.

Following these considerations, the weakly temperature-dependent peak is the pair-

breaking peak, whereas the other peak with a BCS-like temperature evolution is

unlikely to have the same origin. This analysis consolidates the assumption about

the nature of these two peaks and is another piece of evidence for the collective

character of the narrow mode thus supporting the identification as a BS mode. Yet

the unusual shape of the pair-breaking peak remains unexplained, especially the

missing 1/Ω2 tail expected from the relation χ′′(Ω) ∝ 1/(Ω
√

Ω2 − 4∆2) [123].

5.1.3 Phenomenological model

The shape anomalies of the pair-breaking peak in the presence of BS modes can be

accounted for in a phenomenological description [46, 48, 162]. In addition, the band

and momentum dependence of the gap ∆(k) and indications of the anisotropy of the

pairing potential Vk,k′ can be derived thereof. More specifically, those components

of Vk,k′ can be extracted which the BS modes can be traced back to. Since the BS

modes reflect subleading pairing instabilities beyond the winning ground state the

components will be labeled V sub
k,k′ . To decompose V sub

k,k′ into symmetries, the eigenval-

ues λi and eigenvectors gi(k) are determined. λi and gi(k) correspond to the pairing

strength and form factor of channel i. The symmetry of channel i is described by

the momentum dependence of the form factor. In the present case, g(k) of the sub-

dominant channel has B1g symmetry.
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The quantities ∆(k), g(k), and λ shall now be obtained based on the tight-binding 5-

band model [48] outlined in the previous chapter. To illustrate the derived quantities

in k-space, the 1 Fe Brillouin zone is used, unless stated otherwise. The symmetries

A1g, A2g, B1g, and B2g are thus defined with respect to the 1 Fe BZ, e.g. B1g has

nodes along the diagonals of the kxky plane. However, as the 1 Fe unit cell does not

account for the total crystal symmetry, especially the As superstructure [34], the

2 Fe BZ is the adequate zone to describe the additional translational symmetry by

the vector (π,π,π) [48] .

This vector is shown as dark grey arrow in Fig. 5.3(c), embedded in the 1 Fe

BZ. The figure illustrates the Raman vertices γµn(k) for different symmetries µ ∈
{A1g, B2g, B1g} and bands n. The momentum-dependent and symmetry-resolved

vertices are a measure for the Raman scattering intensity, originating from a certain

k-point in the respective symmetry. They are calculated using the effective mass

approximation [55, 147] (in the proper 2 Fe cell),

γA1g
n (k) =

1

2

{
∂2En(k)

∂kx∂kx
+
∂2En(k)

∂ky∂ky

}
, (5.1)

γB2g
n (k) =

∂2En(k)

∂kx∂ky
, (5.2)

γB1g
n (k) =

1

2

{
∂2En(k)

∂kx∂kx
− ∂2En(k)

∂ky∂ky

}
, (5.3)

where En is the energy of band n. In practice, the evaluated k-points are limited to

the Fermi surface of band n. Justification for using the effective mass approximation

yielding Eqs. 5.1, 5.3, and 5.2 is presented in App. 7.2. The resulting Raman

vertices are compiled in Fig. 5.3. A closer look reveals that a contribution from

every band can be expected in A1g symmetry. For B2g and B1g symmetry only

the outer electron bands will give a substantial contribution to the Raman response

which will be particularly helpful to interpret the B1g spectrum.

In the absence of a subdominant coupling, the response will be built up by the

superconducting gaps at the various Fermi surfaces, weighted by the squared Raman

vertex. The Raman response χ′′(q = 0,Ω) = Imχ(q = 0,Ω) is calculated using the

bare bubble approximation at T = 0 [123, 147]

χ(Ω) =
∑
n

∑
k

γ2
n(k)λn(k,Ω) (5.4)
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Figure 5.3: Raman vertices of A1g, B2g, and B1g symmetry as derived from Eqs. 5.1 -
5.3. The thin black lines depict the edges of the 1 Fe BZ with the Γ-point in the center.
The vertex on each Fermi surface n ∈ {h1, h2, h3, e1, e2} is illustrated with a colorscale
showing positive (red) and negative (blue) regions, the brightness of the color scales with
the magnitude of the vertex. In B2g and B1g symmetry the vertex on the outer electron
band e1 is by far the largest. The dark grey arrow in (c) shows the (π,π,π) translational
symmetry, responsible for the sign change of the B1g vertex along kz.

with the Tsuneto function λn [182]. This is valid for B1g and B2g symmetry, where

the response on the FS n is given by

χ′′n(Ω) = 4π〈 γ2
n(k)|2∆n(k)|2

Ω
√

Ω2 − |2∆n(k)|2
〉 (5.5)

for Ω > |2∆n(k)| and χ′′n(Ω) = 0 for Ω < |2∆n(k)| with 〈...〉 denoting the individual

FS average. The total response is a simple summation χ′′(Ω) =
∑

n χ
′′
n(Ω). The

susceptibility of the totally symmetric A1g symmetry is affected by the Coulomb in-

teraction which introduces a multi-band screening term [143, 183–185] renormalizing

the susceptibility to

χA1g(Ω) =
∑
n

∑
k

γ2
n(k)λn(k,Ω)−

∑
n

∑
k γn(k)λn(k,Ω)∑

n

∑
k λn(k,Ω)

(5.6)

as derived in Chapter 4.

With the response known from the experiment and the Raman vertices derived from

the rigid band model, an iterative fitting procedure is applied to determine the gaps

∆n(k). Using a suitable starting guess for the gaps, the equations are evaluated

numerically and are compared with the spectra, then the gaps are varied until a

satisfactory agreement is obtained. This procedure will exclusively be performed for

the A1g and B2g symmetries, as B1g is expected to deviate substantially due to the

subdominant coupling.

The gap on the outer electron band e1 [defined in Fig. 5.3(a)] will be discussed in
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detail to illustrate the procedure. The response of this gap is expected to domi-

nate the B2g spectrum, as the B2g Raman vertex on band e1, γ2
e1, is considerably

larger than the vertices on all other bands [see Fig. 5.3 (b)]. The spectrum shows

that the gap opens at 2∆min ≈ 155 cm−1, then the intensity rises monotonically

and reaches its maximum at 2∆max ≈ 210 cm−1. A slope like this, covering a range

of about 50 cm−1, can only be observed if the Raman vertex is vanishingly small

around 2∆min. Otherwise, e.g. for a constant Raman vertex as shown in Fig. 4.5(c)

the pair-breaking response would exhibit a step at Ω = 2∆min. As there is no step

observed the minimum gap must be located in areas where γ2
e1 is small [white in Fig.

5.3(b)]. Following the crystal symmetry a fourfold symmetry of the gap around the

outer electron band is assumed which results in a k-dependent gap as indicated in

Fig. 5.4. This contributes to the B2g spectrum as illustrated in Fig. 5.5(b) and (e).

The spectrum is dominated by the pair-breaking response (light blue) of the outer

electron pocket e1.

Table 5.1: Gap energies (meV) obtained by the model calculation for bands h1-e2. The
ARPES results are from Ref.[75], with the same value for the hole bands h1 and h2, as
they were not distinguishable in the ARPES measurement.

Band ∆Raman
min ∆Raman

max ∆ARPES
av

h1 9.5 12.1 12.3± 0.6
h2 10.4 15.9 12.3± 0.6
h3 4.2 5.0 5.8± 0.8
e1 10.3 13.3 12.2± 0.3
e2 10.8 11.4 11.4± 0.5

To obtain the gaps on the other pockets, and their contribution to the response,

this analysis is continued with initial guesses from ARPES measurements [75, 76,

83, 169]. For the hole bands they suggest a kz-dependence [80, 186] of the gaps

rather than an angular variation. Eventually a gap on every band is defined, all of

them being compiled in Fig. 5.4. The model parameters and k-dependences of the

gaps are summarized in Table 5.1, along with ARPES results. The functional form

of the gaps on the hole bands is ∆hi(kz) = ∆+
hi

+ ∆−hi cos(kz) with a kz-dispersion,

whereas the gaps on the electron bands ∆ei(ϕ) = ∆+
ei

+ ∆−ei cos(4ϕ) vary by the

azimuthal angle ϕ. Here the average ∆+ = (∆Raman
min + ∆Raman

max )/2 and the variation

∆− = (∆Raman
min −∆Raman

max )/2 are used.

One finds that the gap magnitudes are in agreement with the photoemission mea-

surements. The gap anisotropy in the Raman experiments is larger than in the
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Figure 5.4: Gap structure 2∆(k) as a false color plot. The gap magnitude and anisotropy
is compiled here for every Fermi surface. The gaps on the hole bands have a kz dispersion,
those on the electron bands a variation along the azimuthal angle ϕ.

photoemission though still small on an absolute scale. All the magnitudes are in a

similar range, except for the gap on the outer hole band h3.

The results of the phenomenological Raman response using the vertices dictated by

the band structure (Fig. 5.3 and the momentum dependence of the gap (Fig. 5.4)

is shown in Fig. 5.5. The black lines in (a) and (b) are the response as obtained

from Eq. (5.5) and (5.6) with the parameters given in Table 5.1. A comparison

with the difference spectra [Fig. 5.1(e)] is the best approximation here as the weak-

coupling model does not account for any quasi-particle interaction leading, among

other things, to the extended electron-hole continuum. Negative intensities of ∆χ′′

below the gap edge are a consequence of the gap. Thus the negative intensity is

disregarded.

For the black curves one overall scaling factor is naturally required for all symme-

tries. In addition a relative scaling factor is used per symmetry. They are 0.23

for A1g and 0.67 for B2g with respect to 1 for B1g. Then, for the most prominent

peaks an agreement of the model calculations with the experiment is observed. The

spectra in A1g and B2g symmetry are reproduced very accurately. Now Eq. 5.5 will

be applied to calculate the response for B1g symmetry which has not been included

for the determination of the gaps yet. This yields the grey line in Fig. 5.5(c) and,

as shown in (f), mainly the gap on band e1 contributes. However, the agreement

between theory and experiment is unsatisfactory.

In the following the subdominant coupling will be considered with the goal to im-

prove the agreement. Doing so results in a shift of spectral weight out of the pair-

breaking peak (grey area) into the BS mode. The redistribution of intensity is
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described by [46]

δχ′′B1g
(Ω)=

8

Ω2
Im

{
〈γB1g(k)g(k)∆e1(k)P̄ (Ω̃k)〉2(
λ−1
d − λ−1

s

)
− 〈g2(k)P̄ (Ω̃k)〉

}
. (5.7)

which yields the total B1g response χ′′tot,B1g
= χ′′B1g

+ δχ′′B1g
. P̄ (Ω̃k) is the response

kernel with Ω̃k = Ω/2∆e1(k) such that

P̄ (Ω̃k)=


Ω̃k√
1−Ω̃2

k

arcsin(Ω̃k), | Ω̃k |< 1

Ω̃k√
Ω̃2

k−1

[
ln

(
| Ω̃k |−

√
Ω̃2

k−1

)
+iπ

2

]
, | Ω̃k |>1.

(5.8)

The dominant parameter λs is attributed to the superconducting ground state. The

ground state can either be an s++ or s± wave state [see Fig. 2.10(b) and (c), re-

spectively] which cannot be distinguished by light scattering experiments. In any

case, the gap has A1g symmetry but remains observable in other symmetries as well

because the Raman vertex and the gap enter the response quadratically. This is

different for the BS mode. The mode originates from the subdominant coupling of

the d-wave interaction with the coupling strength λd. Its k-dependence is described

by the form factor g(k). For the BS mode the unique chance arises to determine

the symmetry (phase) of the subdominant coupling. The numerator in Eq. 5.7 de-

termines the selection rule. To get a finite Fermi surface average, the symmetry of

γ(k)g(k)∆e1(k)P̄ (Ω̃k) must contain a totally symmetric A1g contribution to avoid

total cancellation. γ(k) has B1g symmetry, ∆e1(k)P̄ (Ω̃k) transforms as A1g. Hence

g(k) must have B1g symmetry. Since γ(k) highlights the outer electron pocket the

subdominant interaction having B1g symmetry acts on the outer electron band e1,

generating a BS mode.

The position of this mode is determined by the root in the denominator generating

a pole in δχ′′. Assuming λs to be close to 1, the ratios of the coupling strengths

λd/λs can estimated to be as large as 0.6. This ratio λd/λs and the k-dependence

g(k) were determined in an iterative way similar to the extraction of the gap values.

It turns out that the subdominant interaction is strongest close to those momenta,

where the gap maxima of the s-wave ground state are located. In these regions it

resembles the k-dependence of γ(k). So except for the diagonal direction, where

g(k) vanishes, g(k) ∝ γ(k). This momentum dependence of g(k) is a result of the

complex interrelation of γ(k) and g(k). For nearly constant g(k) the FS average of



5.1 Experimental evidence for competing pairing interactions in optimally . . . 59

0.0

0.4

0.0

0.4

0 100 200 300

0.0

0.4

0.8

0 100 200 300

B1g

B2g

A1g

∆
R
χ'

' (
Ω

,T
) (

co
un

ts
 

m
W 

-1
 

s-1
)

Ba0.6K0.4Fe2As2

Tc = 39 K
λL = 575 nm

Raman Shift Ω (cm-1)

(a)

(b)

(c) B1g

B2g

A1g

 h1
 h2
 h3
 e1
 e2

Ba0.6K0.4Fe2As2

Tc = 39 K

L = 575 nm

(d)

(e)

(f)

Figure 5.5: Comparison of the model calculations with the difference spectra. (a,b) The
black curves in A1g and B2g symmetry are the calculated Raman response functions. (c)
The grey curve shows the B1g response generated solely by pair breaking, whereas the
black curve shows the response after switching on the subdominant interaction. Spectral
weight from the pair-breaking peak (grey shaded area) is shifted into the BS mode. (d-f)
show the measured spectra in grey with the response calculated separately for each band.
The colors indicate the bands as illustrated in the inset of (d). There is no screening
applied in the calculation shown in (d) and no subdominant interaction included in (f).
Note the dominance of the contribution from e1 (light blue) in (e) and (f).
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γ(k)g(k) would cancel and the BS mode would not appear.

g(k) is displayed in Fig. 5.6. The comparison with Fig. 5.4 shows immediately that

the subdominant coupling drains spectral weight from the regions close to 2∆max
e1

but rather than 2∆min
e1 . This central result of the analysis clearly indicates a compe-

tition of the subdominant pairing with the dominant one for certain regions of the

Fermi surface.

To derive V sub
k,k′ from this analysis, it is necessary to determine k and k′, which give

kx

ky

kz

 g(k) 
(a.u.)

φ

0

1

-1kx

ky

(a) (b)

Figure 5.6: The structure of the subdominant coupling g(k) on the outer electron band.
(a) The sign change along kz is a consequence of the (π,π,π) translational symmetry. Two
possible scattering scenarios are depicted. The corresponding vectors are shown in green
for one scenario and pink for the other. They act between every pair of neighboring Fermi
surface sheets but are shown just for one pair here. (b) Qualitative momentum structure
of g(k).

the initial and final momentum of a scattering process. Next to an intra-band inter-

action, where k and k′ are located in the same pocket, two suggestions are proposed

for possible inter-band interaction vectors k′−k found very commonly in literature

[48, 49]. The green and pink arrows show these vectors exemplarily. The pink one

is close to the (π,π,0) vector. The origin and tip of this vector are simultaneously

experiencing an altering (between vanishing and maximal g(k)) interaction potential

on their way around the outer electron pocket. The green ones on the other hand

connect those parts of the FS, where g(k) is maximal.

Although this question cannot be clarified ultimately, a conclusion on the interaction

can be drawn that both vectors have in common: They represent an inter-band in-

teraction with a sign change between the Fermi surfaces connected by the interaction

vectors.
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5.1.4 Discussion

The experimental results narrow down the types of interactions (as outlined in Fig.

2.11). Here, the resulting constraints are discussed before other proposals for col-

lective modes [155, 161, 163, 187] are summarized.

Interactions

In the superconducting state, a nearly isotropic and full gap was found on every

pocket. Hence the ground state either has s++ or s± symmetry, a nodal structure

is excluded.

A phonon-driven mechanism would yield the correct ground state (s++), however,

the strength of the subdominant dx2−y2 pairing interaction is negligible in this case

[113–115] and thus cannot reproduce the BS mode as observed. However, a combina-

tion of a phonon-driven ground state and a subdominant interaction e.g. generated

by spin fluctuations remains possible.

An AFM exchange interaction yields an s± ground state in the case of J1 << J2.

A subdominant dx2−y2 interaction is present here as well but too weak to yield a

ratio of λd/λs ≈ 0.6 [88]. In addition, inelastic neutron scattering experiments yield

J1 >> J2 for BaFe2As2 [91]. In this branch the present Raman experiments are

already in conflict with the ground state.

In the case of fluctuation mediated pairing, a full gap can be generated in the

spin, charge and (antiferro) orbital channel. As the ferro-orbital and the intra-band

charge channel acquire a dx2−y2 form factor, also a subdomiannt interaction can be

produced by these three channels. Further insight is gained from the momentum

dependence of g(k) as depicted in Fig. 5.6 and the possible interaction vectors. For

the (subdominant) B1g-symmetric pairing, Kuroki and coworkers [49] argue that

in the case of spin-fluctuation mediated pairing the orbital matching of the dx2−y2

orbital contribution between two neighboring electron pockets becomes crucial and

quenches the simple (π, π, 0) nesting [50, 51, 78, 111, 188]. The dx2−y2 orbital con-

tribution of the electron pockets is maximal along kx and ky but small along the

diagonal directions ϕ ∈ {45◦, 135◦, 225◦, 315◦} defining the momenta of strong and

weak interactions, respectively. This momentum dependence qualitatively coincides

with that of g(k). The corresponding nesting vectors are the intersecting ones con-

necting two neighboring electron pockets (green arrows in Fig. 5.6).

This provides a consistent explanation of the Raman experiments in the picture of

spin-fluctuation mediated pairing: The superconducting ground state of s± sym-
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metry is generated by repulsive spin fluctauations acting between the electron and

hole pockets with the nesting vectors (±π, 0, 0) and (0,±π, 0). The subdominant

interaction is of B1g symmetry as generated by spin-fluctuation exchange between

neighboring electron pockets with the interecting nesting vectors [49, 51, 77, 90, 94].

Leggett modes

A recent theoretical study [189] shows, that Leggett modes with A1g symmetry

contribute to the Raman response of IBSs. In the original theory by A. Leggett

[187] a collective phase mode is discussed. In the simplest case of a 2-band model,

intra-band interactions can generate the superconducting ground state having gaps

∆e,h = ∆e,h
0 eiϕ

e,h
on the electron and hole bands e and h. If an inter-band interaction

is present, an oscillation of the relative phase ϕe − ϕh can appear, resulting in a

Josephson-like oscillation, the Leggett mode [187, 190–193].

In the special case of the IBSs, where the Raman vertices of hole and electron-pockets

change sign in A1g symmetry, a Leggett mode affects the A1g-symmetric Raman

response [189]. Here, the approximation of a two-band model with parabolic bands

having the same density of states, similar gaps |∆e| = |∆h|, and constant Raman

vertices γe = −γh in A1g symmetry is made. If the Leggett mode is not considered,

the A1g Raman response is expected to be the typical pair-breaking peak at 2∆e,h

[Fig. 4.5(b)]. If Leggett modes are included two cases must be considered: Intra-

band dominated pairing and inter-band dominated pairing. In the first case, the

pair-breaking peak disappears completely (see Fig. 2 of Ref. [189]) and a narrow

Leggett mode appears below twice the gap edge. Such a mode is not observed in

the present analysis. In the second case, the pair-breaking peak is replaced by a

Leggett mode at 2∆e,h, with a response that is similar to that of pair breaking. This

is another possibility that could explain the response in A1g symmetry suggesting

inter-band dominated pairing in the ground state [189]. As the B2g and B1g spectra

are unaffected by Leggett modes with A1g symmetry, the central results of the

analysis remain valid.

The particle-hole channel

In general, the particle-hole channel must also be considered for the BS mode in

B1g symmetry. The theory of Scalapino and Devereaux [46] accounts for the sub-

dominant interaction to act in the particle-particle (p-p) channel only. There are

theories that include the particle-hole (p-h) channel as well. The theory by Khodas

and coworkers (Ref. [155]) will be discussed in greater detail here.
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They consider the simplified case [194] of a two-band model with couplings in the

s- and d-wave channel. As they examine vertex corrections both in the p-p and

p-h channel they also have to include a mixing term between p-p and p-h channel.

This results in a renormalized Raman susceptibility. The theory expects two dis-

tinct modes to appear in Raman scattering experiments, one p-p like, the other p-h

like. They further argue that only one in-gap mode exists if the mixing between

the channels is high. This is the case when the term 〈GF 〉, i.e. the term that

interchanges p-p and p-h channels, is large, with G and F being the normal and

anomalous Green’s functions, respectively. The relevance of the mixing term can be

derived from the k-dependence of the gap, which enters F and thus GF linearly,

see Eq. 4.7 and 4.8. In the case of nearly isotropic and sign-preserving gaps on the

electron-bands 〈GF 〉 is finite and the inclusion of the p-h channel results in a single

in-gap mode of B1g symmetry. Further calculations show that this mode would then

have a combined p-p and p-h character and indicate that even the inclusion of the

p-h channel does not alter the results obtained above.

Open problems

Up to this point, the two most pronounced B1g features were explained. However,

the third peak at 80 cm−1 has not been addressed in detail so far. The spectral

weight of this peak is largest in B1g symmetry, in A1g only a weak hump with 10%

of the spectral weight is visible. The response in B2g symmetry shows no clear

feature at all as visible in Fig. 5.1. This peak was assigned to the pair-breaking

peak originating from the gap on the outer hole pocket, as suggested by ARPES

experiments. However, the phenomenological model yields a peak in B1g symmetry

with a spectral weight that is by far too small, see Fig. 5.5, making another origin

more likely. Raman experiments on further doping levels in section 5.2 provide

evidence for another BS mode of d-wave symmetry at 80 cm−1 with an even stronger

subdominant coupling strength but less spectral weight.

Finally, the selection rules need to be addressed. In Ref. [122], Hirschfeld points out

that the bands involved in the generation of the BS mode are hard to identify within

a complex multi-band system as here. From the calculation of the Raman vertices

(Fig. 5.3) it is clear that in BKFA only the outer electron pockets are projected out

in B1g symmetry. While the vertices allow for the identification of the band where

the observed features arise from, their momentum dependence also shows that only

a fraction of the FS is projected.
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5.2 Doping dependence of competing interactions

in Ba1−xKxFe2As2 (0.22 ≤ x ≤ 0.70)

In the previous part, evidence was provided for the emergence of a BS mode in op-

timally doped Ba0.6K0.4Fe2As2. It was further possible to assign and quantitatively

0 . 0 0 . 4 0 . 80
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K - c o n t e n t  x
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Figure 5.7: Sampling points in the
phase diagram of Ba1−xKxFe2As2.
The phase diagram is adopted from
Ref. [70]. For the investigation of
superconductivity spectra between
x = 0.22 and x = 0.70 were recorded
at low temperatures in the super-
conducting state (blue diamonds)
and in the normal state, right above
Tc (red diamonds). Between ap-
proximately 0.16 and 0.28 SDW and
superconductivity coexist.

describe the prominent features related to super-

conductivity [162]. This analysis shall now be

extended to various doping levels to unravel the

relation of the pairing interactions with the elec-

tronic band structure [50, 51, 77]. The smooth

changes of the Fermi surface sheets close to opti-

mal doping allows for a continuous tuning of the

inter-band couplings λs and λd and helps gaining

insight into their microscopic origin.

Furthermore, superconductivity was explored far

off optimal doping, inside the SDW state at

x = 0.22 and x = 0.25, and for the high dop-

ing levels x = 0.62 and x = 0.70. The highest

studied doping x = 0.70 is close to the doping

level where the electron pockets disappear com-

pletely (x ≈ 0.8) and reemerge as hole pockets

[80] as detected in KFe2As2 [195]. The doping

and measuring temperatures are indicated in the

phase diagram of Fig. 5.7. All Symmetries were

measured for the respective temperatures.

First, a general overview of the spectra is presented with a focus on the

superconductivity-induced features, then the more exotic states below the SDW

ordering temperature are discussed. Special attention is payed to the range around

optimal doping for a more quantitative analysis of the coupling channels. Finally the

samples with doping concentrations of x = 0.62 and x = 0.70 are studied utilizing

the results obtained from the optimally doped samples.

5.2.1 Doping dependence of the superconducting features

The doping dependence of the symmetry-resolved spectra in the normal and su-

perconducting state are compiled in Fig. 5.8. All measurements shown here were



5.2 Doping dependence of competing interactions . . . 65

0.0

0.5

0

1

0

1

0

1

0

1

0

1

0.0

0.5

0 100 200
0.0

0.2

0 100 200 0 100 200 300

(a1) A1g+A2g
B2g+A2g

B1g+A2g
(a2)

x = 0.22

Tc = 30.9 K

x = 0.35

(b1)

(a3)

Tc = 24.6 K

(b2)

Tc = 38.9 K

x = 0.25

x = 0.40

(c1)

(b3)

 normal state
 sc state

(d3)(d2)(d1)

(c3)(c2)

(e1) (e2) (e3)

(f1) (f2) (f3)

(g1) (g2) (g3)

(h1) (h2) (h3)

x = 0.70

x = 0.62

 

Ba1-xKxFe2As2

Tc = 36.7 K

Tc = 34.3 K

Tc = 26.6 K

Tc = 21.6 K

λL = 575 nm

Tc = 38.6 K

R
χ'

' (
Ω

,T
) (

co
un

ts
 

m
W 

-1
 

s-1
)

x = 0.48

x = 0.43

Raman Shift Ω (cm-1)

Figure 5.8: Superconducting and normal state spectra of Ba1−xKxFe2As2 for eight doping
levels 0.22 ≤ x ≤ 0.70. The panels are labeled from a to h for different doping levels
appended by 1, 2 and 3 for B1g, B2g and A1g symmetry, respectively. All spectra contain
a small contribution from A2g symmetry (see App. 7.3). The data are split into three
qualitatively different regions: (a) and (b) show the spectra inside the SDW state. (c-f)
compile spectra around optimal doping and are shaded in grey. (g) and (h) show the doping
levels x = 0.62 and x = 0.70. The energy ranges of the pair-breaking peaks are marked
by horizontal bars at the bottom of each panel. The arrows in B1g symmetry highlight
the features that emerge in the superconducting state. The color code introduced here is
maintained in the whole section.
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performed with an excitation wavelength of 575 nm. To analyze these measurements

the spectra were investigated in detail in order to extract the superconductivity-

induced features and study their evolution with doping in comparison with results

from Refs. [47, 124, 125, 134, 135, 155, 162, 196, 197].

As a starting point, the spectra at optimal doping (x = 0.4) are chosen, which

were extensively studied in the previous section. The spectra of Fig. 5.8(d1-d3) are

identical to those in Fig. 5.1. Three peaks are detected in B1g symmetry, marked

by the green, orange and purple arrow in Fig. 5.8(d1). The orange arrow identifies

the BS mode, which is split off from the pair-breaking peak. The remainder of this

pair-breaking peak is indicated by the purple arrow. Its spectral range from the

onset of the peak to the merging point with the normal spectrum is indicated by a

red bar at the bottom of the panel. The ranges for the B2g and A1g symmetries are

indicated in green and blue in columns 2 and 3, respectively. These bars show the

features at the highest energies which are located in a range around 2∆/kBTc = 7,

as compiled in Fig. 5.9. Eliminating the dependence on Tc [4] enables a comparison

of the B1g peak with the full range of the pair-breaking features as found in B2g and

A1g symmetry.

The spectra close to optimal doping, in the range from x = 0.35 to x = 0.48, are

qualitatively similar. All the features observed in the optimally doped compound

also exist in this doping range. Especially the three peaks in B1g symmetry as in-

dicated by green, orange and purple arrows in Fig. 5.8(c1), (d1), (e1), and (f1) are

clearly visible. In (c1) the BS mode overlaps with the pair-breaking peak but can

still be resolved. The binding energy EB, corresponding to the energy difference be-

tween the BS mode and the pair-breaking peak increases with doping. For x = 0.43

and x = 0.48, the pair-breaking features of all symmetries move to lower energies

along with the decrease of Tc. This is accompanied by a reduction of intensity, i.e.

the spectral weight of the pair-breaking peak decreases, especially for B1g and B2g

symmetry.

This decrease continues through x = 0.62 and x = 0.70. (Note the different inten-

sity scale in Fig. 5.8.) Here, for x > 0.48, the B1g response is qualitatively different

from that around optimal doping. There are still three peaks at x = 0.62 but the

monotonic decrease of the first peak’s energy (green arrow), clearly visible around

optimal doping, is not continued. For x = 0.70 only one feature (black arrow) re-

mains pronounced with a small shoulder (cyan arrow) at its left wing.

Below x = 0.35, at x = 0.22 and x = 0.25, the spectra experience another dis-

continuous change. Here the three-peak structure in B1g symmetry turns into a
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Figure 5.9: Compilation of all features in Ba1−xKxFe2As2. (a) shows the energy range
where pair breaking occurs, illustrated by vertical bars in B1g (red), B2g (green) and A1g

(blue) symmetry. They correspond to the horizontal bars of Figure 5.8. The blue shaded
areas show regions in units of 2∆/kBTc, from 0 to 3.52 for the area at the bottom, from
3.52 to 7 for the middle one, and for 7 to 12 for the topmost area. The horizontal grey bars
illustrate the energy range of the optical phonons in B1g (upper bar) A1g (middle bar)
and Eg (lower bar) symmetry. Note that the B1g Fe phonon appears in the B2g symmetry
of the 1 Fe unit cell. (b) compiles the peak positions in B1g symmetry as marked by the
arrows in Fig. 5.8. Open bars and symbols are used if the interpretation is not in analogy
to the optimally doped case.

single peak (pink arrow) followed by a broad hump (blue arrow). In A1g symmetry,

the intensity of the pair-breaking peak decreased rapidly and in B2g symmetry the

spectra in the superconducting and the normal state are identical.

The investigation of the doping dependence of the spectra led to a classification

into three phenomenologically different categories. Furthermore, the energy ranges

of the pair-breaking peaks and the peak positions of the features in B1g symmetry

could be obtained. Their doping dependence is illustrated in Fig. 5.9. The vertical

bars correspond to the horizontal bars of Fig. 5.8. Outside 0.35 ≤ x ≤ 0.48 the

interpretation is different from that around optimal doping.

As a guide to the eye, blue shaded areas are introduced which show different regions

of 2∆/kBTc. The pair-breaking peaks for 0.22 ≤ x ≤ 0.40 reach up to ratios of

12 and are in agreement with other measurements [171, 172, 198–201]. This ra-

tio progressively decreases with increasing doping. In the optimally doped range

between x = 0.35 and x = 0.48, the onset energies of the pair-breaking peaks of
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approximately 5 kkTc coincide in B1g and B2g symmetry. Small discrepancies of

these energies arise from the continuous rather than abrupt intensity onset which

occurs in the presence of a gap anisotropy. The gradual increase entails some un-

certainty in the determination of the onset energy. In spite of these complications

the agreement across the symmetries is remarkable and supports the identification

of the pair-breaking peaks and their onset energies on the outer electron pocket for

the doping concentrations 0.35 ≤ x ≤ 0.48. The energy range in B2g symmetry

extends to higher values than in B1g symmetry, which indicates the shift of spectral

weight out of the B1g pair-breaking peak into the BS mode. The corresponding peak

positions are illustrated in Fig. 5.9(b) and show the increase of the binding energy

EB from x = 0.35 to x = 0.48.

Next to the superconductivity-induced features, three Raman-active optical phonons

are observed [166, 202]. Their peak positions extend over an energy range marked

by the horizontal grey bars in Fig. 5.9(a) and will be analyzed in detail in Section

5.4.

5.2.2 Effects of Fermi surface reconstruction in the SDW

phase

A SDW instability emerges for doping levels x ≤ 0.28 [70]. The onset of supercon-

ductivity lies at x = 0.16, in between, a coexistence is expected [60, 170, 203, 204].

As introduced above, two of the samples lie in this doping range, one at x = 0.22,

the other at x = 0.25. New structures appear in the spectra of this doping range. In

the following, these structures are analyzed in detail in order to compare them with

a model that explicitly takes into account the reconstruction of the Fermi surface

[106, 205–207], that is expected to arise from the superstructure imposed by the

SDW order.

The strongest structures were found to appear in B1g symmetry. A single peak

followed by a broad hump is observed in Fig. 5.8 (a1) and (b1) at x = 0.22 and

x = 0.25, respectively. For elucidating the origin of the various peaks the tempera-

ture dependence is studied for both doping levels as shown in Fig. 5.10. (a) indicates,

that the hump moves down to lower energies upon increasing the temperatures up to

15 K. This coincides with a reduction of the energy where the superconducting and

normal spectra merge. In contrast to that, the peak at 31 cm−1 stays nearly pinned

as indicated by the dashed vertical line. At this energy there is no peak in A1g

symmetry. At higher energies, a hump is observed in the A1g spectrum at 8 K. The



5.2 Doping dependence of competing interactions . . . 69

yellow area marks the energy range of this hump, starting at 58 cm−1 and ending

at about 148 cm−1, where normal and superconducting spectra merge. This range

completely coincides with the hump in B1g symmetry. The coincidence suggests pair

breaking and a highly anisotropic gap to be at the origin of this hump. The usual

anisotropy parameter r = (∆max −∆min)/(∆max + ∆min) equals 0.4 here similar to

what was observed by thermal transport experiments [208].

The B1g spectra for x = 0.25 are very similar. The peak stays pinned at 67 cm−1,

independent of temperature. The hump in the 120 cm−1 range also shifts to lower

energies, but this effect is weaker here. For comparing the two doping levels the en-

ergy scales are normalized to the respective Tc values. The normalization is inspired

by BCS theory, that states a constant ratio 2∆/kBTc ≈ 3.52 for the weak coupling

case [4]. Hence the difference spectra of both doping levels are plotted as a function

of the normalized energy which reveals that the position of both the peak and the

hump move downwards on reducing the doping.

These findings can now be compared to the model by Maiti et al. [112]. The model

is based on the reconstruction of the FS in the SDW state which affects the (super-

conducting) gap structure in the coexisting state. A widely used interpretation of

this coexistence is a phase separation in k-space rather than in real space [209, 210].

In this picture the parts of the Fermi surfaces, which are well nested by the SDW

vector QSDW = (π, 0), are gapped out by the SDW gap. The remaining electrons,

having momenta away from the best nesting condition, can still participate in super-

conductivity [106, 206]. The model calculations show that the reconstructed Fermi

surfaces are sensitive to small changes of the doping. A simplified 2D band structure

with a circular hole pocket in the center and elliptic electron pockets at (π,0) and

(0,π) is used. In the SDW state the electron pocket around (π, 0) is back-folded onto

the hole pocket encircling the Γ point by QSDW = (π, 0) [106] thus breaking the 90◦

rotational symmetry. The combined pockets exhibit four degeneracy points, where

the pockets intersect each other. These degeneracies are lifted by the opening of the

SDW gap ∆SDW, yielding band energies which are the eigenvalues of(
ε1(k) M(x)

M(x) ε2(k)

)
=

(
1− k2

x − k2
y M(x)

M(x) −1 + 0.55k2
x + 2k2

y

)
(5.9)

with the energies of the original bands ε1(k) (circular hole band) and ε2(k) (elliptic

electron band) slightly different from those used in Ref. [206]. The sizes of the

original pockets vary only slowly with doping. Hence the approximation of doping

independent (original) pockets is made. The SDW order parameter is tuned by
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Figure 5.10: Temperature dependence of the Raman response for Ba1−xKxFe2As2 for
x = 0.22 and x = 0.25. (a) shows the temperature evolution of the spectra in B1g

symmetry for x = 0.22. The spectra are stacked by an offset of 0.2 and shown along
with the spectrum in the normal state (grey) at 38 K. (b) depicts the spectra of A1g

symmetry. The yellow area highlights the hump in A1g symmetry and is extended to
(a) for comparison. (c) and (d) present B1g spectra and respective difference spectra for
x = 0.25. (e) shows a comparison of difference spectra of both doping levels stacked by
0.5 counts mW−1 s−1 with the pink arrow indicating the peak energy on an energy scale
normalized to the respective Tc. The blue arrow shows the maximum of the hump.

M(x). Upon reducing the doping level x the SDW gap and M(x) increase rapidly

along with an increase of TSDW. Eventually, four new Fermi surfaces are formed,

two larger ones, which are hole pockets and two smaller ones of electron character.

An example is shown in Fig. 5.11(a). Right below x ≈ 0.28 [70], a small value of

the SDW gap yields new pockets, which nearly follow the original ones. Increas-

ing values of ∆SDW reduce the size of the new pockets. At a certain doping below

x = 0.28 the small pockets disappear and at even lower doping levels also the larger

ones disappear, i.e. the FS is completely gapped out by the SDW. The evolution

of the FS with doping is indicated in Fig. 5.12(c-f), corresponding to the phase

diagram of (a).

To calculate the superconducting gaps in the coexistence phase, Maiti and cowork-

ers [206] started with interaction parameters yielding the proper gap structure at

optimal doping, i.e. nearly isotropic gaps of s± symmetry. These parameters were

defined in band basis, according to the bands of the original 1 Fe BZ. Upon trans-
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Figure 5.11: Fermi surface reconstruction in the SDW state [205, 206]. (a) shows the
original pockets in grey, the circular hole pocket and the elliptical electron pocket in a
BZ, which has the size of only a quarter of the original 1 Fe BZ. Due to anti crossing at
the intersection points the blue and pink “banana”-shaped pockets emerge (M = 0.281 in
Eq. 5.9). (b) shows their dispersions E(kx, ky) which are stretched in (c) by a factor of
10 along the E-axis with the Fermi energy illustrated as the grey plane. The larger FS
(blue) has a hole-like character, the smaller ones (pink) an electron-like character.

forming (folding) the bands by the procedure described above, the interaction pa-

rameters are transformed in the same way, i.e. by the same transformation matrix.

One ends up with new interaction parameters defined with respect to the new bands.

The larger pockets host a large gap and the smaller pockets a small gap. Both gap

magnitudes merge towards the optimally doped case for very small ∆SDW. For in-

creasing ∆SDW, they find a strong angular dependence of the gaps, even accidental

nodes are possible. The largest gap values are found at the tips of the reconstructed

Fermi surfaces [206].

A comparison of this phenomenology with the experiment makes it tempting to as-

sign the two observed features to the two gaps of the model. The hump is associated

with the superconducting gap on the larger FS, whereas the peak emerges from the

superconducting gap on the smaller one. If this is correct, the peak should vanish

when the small FS disappears. The hump is expected to persist down to lower dop-

ing levels, but finally also vanishes when the FS is fully gapped out. This marks the

onset of superconductivity at x = 0.16 [70]. Hence the doping dependence was scru-

tinized by extrapolating the peak positions down to lower doping levels, as shown

in Fig. 5.12(b). Striking evidence in favor of the results of the model calculation

are found. Further clarification can be expected from studies of more doping levels,

e.g. at x = 0.15 where the model predicts only the larger pocket to exist.

Finally, the Raman vertices of the new pockets are calculated to derive an esti-

mate for the intensities that can be expected in the spectra for different symmetries.

The effective mass approximation according to Eqs. 5.1, 5.3, and 5.2 is used. The
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Figure 5.12: Analysis of the peak energies and Raman vertices in the coexisting state.
(a) shows the phase diagram with the coexisting phase of superconductivity and SDW
extended to (b) by the dark blue shaded area. The frequencies of the peak (pink) and the
hump (blue) are depicted and extrapolated to zero frequency. (c-f) illustrate the doping
dependent FS reconstruction. (g) The FS of (e) is used to calculate the squared Raman
vertices. The 2D Fermi surfaces are artificially extended in γ2

µ-direction for illustrative
purpose, indicating the Raman vertex at the FS.

squared Raman vertices of the three symmetries A1g, B1g and B2g are plotted in

Fig. 5.12(g). The B2g Raman vertex is suppressed in comparison to A1g and B1g

in agreement with the temperature independence of the response in B2g symmetry.

As 90◦ rotational symmetry is broken both A1g and B1g symmetries are affected

by Coulomb screening effects. Note, that the phenomenological model applied in

Section 5.1 yielded intensity factors for the response in each symmetry resulting in

a suppression of the response in A1g symmetry by a factor of 3 with respect to B1g

symmetry. If this factor is considered here as well, an agreement of the theory and

the experiment is achieved. Although the interpretation of the peak at lower ener-

gies in terms of a collective mode can not completely be excluded, it is less plausible

than the phenomenology by Maiti et al.. In addition, the qualitative success of the

phenomenology can be considered a support of repulsive pairing interactions from

which it started.
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5.2.3 Evolution of competing pairing interactions close to

optimal doping

The previous section clearly showed a strong dependence of the superconductivity-

induced features on the shape of the Fermi surface. It follows a study in the doping

range 0.35 ≤ x ≤ 0.48 where the smooth evolution of the FS with doping serves

as the basis on which the pairing interactions are tuned, see Fig. 2.5 of Chapter 2

[80, 81]. In BKFA the doping is directly proportional to the filling, which defines

the number of extra holes. Hence the hole pockets grow and, simultaneously, the
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Figure 5.13: Doping dependent spectra of Ba1−xKxFe2As2 in B1g symmetry, ranging from
x = 0.35 to 0.48. (a) shows difference spectra on a normalized energy scale. (b) and
(c) display two sketches of the Fermi surface [48, 80] giving an orientation in the doping
range. The size change is exaggerated for better visibility. (d) compiles the peak positions
as a function of doping, associated with the pair-breaking peak at ΩPB(x) (purple), the
BS mode at ΩBS(x) (orange) and the low energy peak at Ω′(x) (green).

electron pockets shrink with doping.

According to Fig. 5.13, which shows all energies in units of kBTc, the B1g spectra

symmetry exhibit the strongest doping dependence. The two modes at low energies

(at Ω′ and ΩBS) move more than the high-energy peak (at ΩPB). This dichotomy

is clearly visualized in Fig. 5.13(d). The peak frequencies (in absolute units) are

summarized in Table 5.2. Fig. 5.13 shows that (i) the high energy peak (purple

arrows), assigned to the surviving part of the pair-breaking peak, stays at a nearly

constant ratio of ~ΩPB/kBTc ≈ 6.5, (ii) the narrow peak in the middle (orange



74 5. Results and Discussion

Table 5.2: Peak frequencies as obtained from B1g spectra of Ba1−xKxFe2As2 in the doping
range 0.35 ≤ x ≤ 0.48.

K-content x ΩPB (cm−1) ΩBS (cm−1) Ω′ (cm−1)

0.35 171 147 86
0.40 175 140 78
0.43 165 119 56
0.48 148 100 36

arrows), identified as BS mode, splits increasingly off the pair-breaking peak with

increasing doping and (iii) the small peak (green arrows) shows a similar evolution

as the BS mode.

Advanced theoretical studies [165] propose that the peak at Ω′ (green) might be

attributed to a second BS mode rather than a pair-breaking peak. In fact, two BS

modes can independently show up in the same symmetry (B1g in this case) if they

correspond to orthogonal (e.g. first and second order B1g) interactions. As this

mode signals a second subdominant interaction to be present, having a much larger

binding energy and hence higher subdominant coupling, the corresponding peaks

are reinvestigated in the light of this hypothesis.

Identification of the low energy peak

For this purpose, the doping dependence of Ω′ is compared with the magnitudes of

the pair-breaking peaks found in the literature. Fig. 5.14 shows the results from

ARPES and heat capacity measurements. According to ARPES experiments a small

gap opens up on the outer hole pocket. However, the peak frequency Ω′ does not

follow the trend observed in the ARPES experiments [198] and the heat capacity

measurements by Kant and coworkers [211]. In contrast, there is an agreement with

the heat capacity measurements by Hardy and coworkers [212].

As this comparison is not finally conclusive, two possible origins for the peak at

Ω′ are discussed in the following: (i) The peak at Ω′ is a pair-breaking peak and

corresponds to a gap on the outer hole pocket [163]. (ii) A second BS mode appears

at Ω′.

To solve this issue, the symmetry-resolved spectra are compared in Fig. 5.15. In ad-

dition, the temperature dependence of the optimally doped sample is reinvestigated

and finally the spectral weight of a possible pair-breaking peak is discussed on the

basis of the phenomenological model calculation applied in Section 5.1.

In Fig. 5.15, the peak frequency Ω′(x) is highlighted in green for each doping level
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along with features at comparable frequencies in other symmetries. In order to check

for coincidences, the various doping levels will be discussed successively. At x = 0.35,

the spectrum in B2g symmetry (c2) exhibits a weak peak in the superconducting
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Figure 5.14: Comparison of Ω′(x) with gap
magnitudes from literature. ARPES mea-
surements by Nakayama et al. [198] and heat
capacity measurements by Kant et al. [211]
and Hardy et al. [212] show the doping de-
pendence of the small gap 2∆/kBTc. Dashed
lines are guides to the eye.

state in a similar position as Ω′(0.35).

However, since the spectrum above Tc

shows a similar yet weaker structure, the

difference spectra are expected to pro-

vide more insight. Apparently, both the

onset and center positions of the B2g

peak are at energies higher by 7.5 cm−1

(corresponding to 3 sampling points)

than the respective B1g energies. As

there is no close by feature in A1g sym-

metry either, the B1g peak at Ω′(0.35)

has no correspondence in the other sym-

metries.

For x = 0.40 there are neither promi-

nent features in B2g (d2) nor A1g (d3)

symmetry, corresponding to Ω′(0.40). The difference spectra reveal a weak hump in

A1g, with an onset of roughly 10 cm−1 below the onset of the peak in B1g symmetry.

Even though screening effects may reduce the intensity of potential pair-breaking

features in A1g, they are still expected to onset at the same energy 2∆ [55, 143]. A

similar behavior is observed at x = 0.43. No indication of a peak is present neither

in the raw data [Fig. 5.15(e1)] nor in the difference spectra [Fig. 5.15(e4)] for sym-

metries other than B1g. Hence for all three doping levels there is more experimental

evidence for a BS mode than for a pair-breaking peak.

In contrast peaks close to Ω′(0.48) are observed both in B2g (f2) and A1g (f3) sym-

metry. The A1g peak is 5 cm−1 above Ω′(0.48), so only the peak in B2g symmetry

remains to consider. In fact, a pair-breaking peak cannot be excluded a priori. The

missing A1g signature of a putative gap and the results from the other doping levels

suggest the peaks at Ω′ to more likely originate in BS modes than pair breaking.

The question arises as to why no pair-breaking features are visible in the range of Ω′

although the gap of the outer hole band is expected to be near by. Three arguments

must be considered in this context: (i) The model calculation of Section 5.1 predicts

a low intensity for a peak arising form pair-breaking at the outer hole pocket as

shown in Fig. 5.5. Presumably the signal-to-noise ratios too poor to clearly resolve
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Figure 5.15: Symmetry-resolved spectra of Ba1−xKxFe2As2 around optimal doping. (c-f)
display spectra of doping levels x = 0.35 to x = 0.48, appended by 1, 2, and 3 referring to
the symmetries B1g +A2g, B2g +A2g and A1g +A2g, respectively [according to Fig. 5.8],
4 compiles the difference spectra. They show the bare symmetries and are stacked with
an offset of 0.3. Note that the energy scale is different to enlarge the examined features.
Dotted grey lines indicate the positions Ω′(x) of the low energy peak in B1g symmetry.
Green ellipses highlight features in other symmetries close to Ω′(x). (c4-f4) The arrows
indicate the onset (black) and peak (grey) positions. The base of the arrows refer to B1g

symmetry, the head to the highlighted features in other symmetries.
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this feature. (ii) Theoretical calculations suggest, that in the present two-gap system

the pair-breaking peak related to Ω′ vanishes if it exists at energies above the BS

0 0.8 0.6

1.0

 

 E
(T

)/E
0

 

 BCS
 PB
 BS
 Ω’

T/Tc

Figure 5.16: Temperature dependence of the three peaks in B1g symmetry of the optimally
doped sample. The peak energies are normalized to their respective energy E0 at T = 8 K.

mode due to vertex corrections [122]. Hence in total only three peaks remain in B1g

symmetry, two BS modes and the surviving part of the high energy pair-breaking

peak, as observed. (iii) The temperature dependences of the three superconducting

B1g peaks at optimal doping, as shown in Fig. 5.16, are studied. The peak posi-

tions are extracted from the spectra of Fig. 5.2. The peak at Ω′(x = 0.40, T ) shifts

to lower frequencies with increasing temperature and follows the same temperature

dependence as the BS mode at 140 cm−1 [162]. Due to the simultaneous decrease of

the intensity, the concomitant increasing of measurement time and the accumulation

of surface layers, it was not possible to obtain data at T > 23 K.

In spite of the limited temperature range, also this study leads to the conclusion that

the peaks at Ω′(x) are most naturally interpreted in terms of BS modes and thus

correspond to a second subdominant channel in B1g symmetry. As B1g highlights

the electron pockets only (see Fig. 5.3 of Section 5.1), the mode is attributed to a

phase oscillation of the gap on the electron pockets, as it is the case for the weaker

subleading channel at ΩBS as well.

Competing pairing interactions as a function of doping

Given the compelling experimental evidence for the interpretation of the two low-

energy B1g modes in terms of two BS excitons a hierarchy of competing pairing

interactions is the natural conclusion for BKFA near optimal doping. The discus-

sion starts with a quantification of the relative pairing propensities and includes
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two independent model calculations scrutinizing the interactions and leading to a

hypothesis for the most relevant pairing mechanism.

Fig. 5.17(a) illustrates the resulting generic Raman response in B1g symmetry which

emerges from this picture. The BS modes are renamed as ΩBS1 ≡ Ω′ (green) and

ΩBS2 (orange). BS1 is split off further from 2∆ than BS2, as quantified by the

binding energies E
(1)
B and E

(2)
B , respectively. Hence BS1 corresponds to a stronger

EB
(2)

EB
(1)
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Figure 5.17: Results of the analysis in the doping range 0.35 ≤ x ≤ 0.48. (a) shows a
schematic drawing of the Raman response in B1g symmetry. Green and orange peaks refer
to the BS modes. The pair-breaking peak in the absence of BS modes is shown in light
purple, the surviving part in the presence of the modes in dark purple. (b) For both modes
the ratio λd(i)/λs is extracted, with i = 1, 2 corresponding to BS1 and BS2, respectively.
(c) shows the spectral weights Z of the modes. The experimentally obtained spectral
weights Zexp

BS1 and Zexp
BS2 are shown along with prediction of Eq. 5.11 with the relation

ZBS1 = 0.65ZBS2. With λs = 0.7, the scaling on the top axis of abscissa is obtained.

subdominant channel than BS2. From the position of the BS(i) (i = 1, 2) modes and

the magnitude of the corresponding superconducting gap, the coupling parameters

λd(i) can be extracted. As there are too many degrees of freedom the approximation

of an isotropic gap (∆(k) = ∆) on the electron pockets has to be made. This gap is

defined by the peak in B1g symmetry at 2∆ = ΩPB as illustrated in Fig. 5.13. The

pairing parameters are related to the frequency of the BS mode ΩBS(i) by [45, 46]

〈g2
(i)(k)〉P̄ (ΩBS(i)) ≡ η(i)P̄ (ΩBS(i)) =

[
λ

(i)
z

Ω2
BS(i)

(2∆)2 +
1

1
λd(i)
− 1

λs

]−1

λ
(i)
z =0−−−→ 1

λd(i)

− 1

λs

(5.10)

with definitions as in Eq. 5.8. For the determination of the ratio λd(i)/λs the factor

η(i) ≡ 〈g2
(i)(k)〉 is irrelevant. The additional coupling parameter λ

(i)
z , which acts in

the particle-hole (or zero-sound) channel, appears in Eq. 5.10. It was neglected in

Ref. [46] but its magnitude can be as large as λ
(i)
z = −λd(i) in the BCS approx-
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imation [45]. Since the potential influence of λz increases with increasing λs the

ratio λd(i)/λs was calculated for various realistic values of λs for the two limiting

cases λz = 0 and λz = −λd (App. 7.4). For λs ≈ 0.7 relevant here [48, 49, 51] λ
(i)
z

was found to be of small influence. With λz = 0 and λs = 0.7, the ratios λd(i)/λs

of BS1 and BS2 are shown in Fig. 5.17(b). The ratio λd(1)/λs always stays well

above λd(2)/λs, reaching close to 1 (λd = λs) and thus proving the existence of a

strong competition between s-wave and d-wave channels. A clear increase of the

ratios λd(i)/λs with doping is observed for both modes as can either be caused by

the increase of the subdominant pairing strengths or the weakening of the dominant

pairing.

The analysis of the relative spectral weights of the modes provides further in-

sight. First, the dependence of the spectral weight on the binding energy is de-

rived following Refs. [45] and [46]. Close to ΩBS(i), the expansion η(i)P̄ (ΩBS(i)) ≈
1/λd(i) − 1/λs +

∂η(i)P̄

∂Ω

∣∣
Ω=ΩBS(i)

(Ω − ΩBS(i)) can be used. According to Eq. 5.7, the

spectral weight in the limit of an isotropic gap is given by

ZBS(i)(ΩBS(i)) = θ(i)

∞∫
−∞

dΩ Im

[
8∆2

Ω2
BS(i)

P̄ 2(ΩBS(i))
1

λd(i)
− 1

λs
− η(i)P̄ (Ω)− iδ

]

= θ(i)

8∆2P̄ 2(ΩBS(i))

Ω2
BS(i)

∞∫
−∞

dΩ
δ[

∂η(i)P̄

∂Ω

∣∣
Ω=ΩBS(i)

(Ω− ΩBS(i))
]2

+ δ2

=
θ(i)

η(i)

8∆2P̄ 2(ΩBS(i))π

Ω2
BS(i)

∂P̄
∂Ω

∣∣∣
Ω=ΩBS(i)

(5.11)

with the phenomenological broadening δ and the momentum dependence of g(i)(k)

and γB1g(k) as isolated by the factor

θ′(i) ≡
θ(i)

η(i)

= 〈
g(i)(k)
√
η(i)

γB1g(k)〉2 ≡ 〈g′(i)(k)γB1g(k)〉2 (5.12)

with the normalized form factor g′(i)(k). It is evident from Eq. 5.11 that the spec-

tral weight can be formulated in a way that it only depends on ΩBS(i) and 2∆, or

alternatively on E
(i)
B /2∆ if the absolute spectral weight is irrelevant. Hence the ex-

perimentally obtained spectral weights can be compared to the result of Eq. 5.11.

It is obvious from this equation that ZBS(i) does not explicitly depend on λs and

λd(i). Fig. 5.17(c) compiles experiment and theory displaying the following results:

(i) The experimentally obtained spectral weights of both modes (Zexp
BS1 and Zexp

BS2)
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follow the trend predicted by Eq. 5.11. The experimentally obtained weight Zexp
BS2

remains nearly constant whereas Zexp
BS1 decreases with E

(i)
B /2∆. (ii) ZBS1 lies below

ZBS2.

This relative suppression can only be caused by the momentum dependence as in-

corporated in θ′(i), i.e. ZBS1/ZBS2 = θ′(1)/θ
′
(2). As the Raman vertices are equal for

both modes, the difference in relative spectral weight must result from g′(1)(k) 6=
g′(2)(k). For competing interactions, a further requirement is orthogonality, i.e.

〈g′(1)(k)g′(2)(k)〉 = 0. As a first approximation, g′(2)(k)) and g′(1)(k) are proposed

to be of first and second order B1g symmetry, which guarantees orthogonality [com-

pare Fig. 4.2 of Chapter 4]. The first order B1g eigenvector is nearly constant on

the electron pockets, whereas and the second order one has nodes which lead to

cancellation effects in the FS average. Since the BS1 and BS2 modes are associated

with the nodal second and, respectively, non-nodal first order eigenvetor, ZBS1 is

smaller than ZBS2.

The pairing mechanism

The results of the previous analysis allow already some qualitative conclusions as

to the pairing before a detailed theoretical analysis will be discussed in the next

paragraph.

Whereas phonon-based mechanisms have been discarded early [113, 114, 213–215]

AFM exchange is more likely to be a player. There are ARPES experiments that

argue in favor of this interaction because of the observed gap structure [198, 216].

However, calculations show that the subdominant d-wave coupling strength within

this framework rapidly decreases with increasing doping [88]. As exactly the opposite

is observed in the Raman experiments, AFM interactions are unlikely to be at work

in BKFA.

Hence a suitable interaction is searched for in the picture of fluctuation-mediated

pairing, which still offers a huge variety of possibilities [15, 49, 58, 77, 116–118], as

illustrated in Fig. 2.11.

The case for spin fluctuations is discussed first. Spin fluctuations provide for an inter-

band interaction between hole and electron pockets. As this interaction is repulsive

it generates a superconducting s± state. A second interaction acts between two

neighboring electron pockets, which is repulsive as well, yielding a d-wave pairing.

Both interaction rely on a nesting condition [49]. As the matching of the sizes of

electron and hole pockets diminishes with higher doping, λs will decrease but λd will

be unaffected, resulting in a rise of λd/λs.
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A similar effect arises for both charge and orbital fluctuations. The attractive inter-

band charge or antiferro-orbital coupling channels can support an s++ ground state.

Additionally, an attractive subdominant intra-band interaction with an interaction

vector Q ≈ (0, 0) is acting. However, if this interaction acquires a B1g-symmetric

form factor, which is the case for intra-band charge and ferro-orbital interactions,

it competes with the s++ ground state. This will result in a BS mode to appear.

It is thus possible that the ground state coupling decreases more rapidly than the

subdominant coupling, resulting in a doping dependence as observed.

In summary it is found that fluctuation mediated pairing is favored. The discussed

proposals for spin, charge, and orbital fluctuations can independently generate a BS

mode and a doping dependence as found in the experiment.

Comparison of experiment and theory

For a microscopic picture a functional renormalization-group (fRG) study [92, 188,

217–219] and an RPA-based analysis [49, 51, 77, 90, 183–185] will be discussed now.

Motivated by the Raman experiment new fRG and RPA analyses were performed

by Christian Platt based on Ref. [92], and respectively, by Thomas Maier according

to Ref. [48].

Both techniques yield a hierarchy of pairing interactions. The leading interaction

forms the superconducting ground state, the subleading ones are responsible for BS

modes. The pairing interaction Vk,k′ is decomposed into form factors (eigenvectors)

gl(k) and corresponding coupling parameters (eigenvalues) λl [77, 92]

−
∑
b

∫
k′ ∈FSb

dk′

(2π)3

1

vF(k′)
Vk,k′gl(k

′) = λlgl(k). (5.13)

The space group of the electronic system defines a basis for gl(k), containing irre-

ducible representations in first and higher orders.

Both methods will yield an s±-symmetric (A1g) ground state and subdominant d-

symmetric (B1g) channels with the eigenvalues λs > λd(1) > λd(2) > ... . As two

BS modes were observed, the following analysis will be confined to the first two

subdominant interactions λd(1) and λd(2). The theoretical calculations were applied

to the kz = 0 cut of the 1 Fe BZ as depicted in Fig. 4.10(d). To derive the pairing

interactions, they are based on the same interaction Hamiltonian as introduced in

Eq. 2.2.

The fRG and RPA analyses start from bare interactions [220] of Tab. 5.3. In an fRG

analysis, the bare propagators and bare interactions are iteratively renormalized in
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Table 5.3: The bare interaction parameters used as starting parameters of the fRG and
RPA analyses are listed.

Parameter fRG (eV) RPA (eV)

Uinter 4.0 0.85
Uintra 2.0 0.43
JHund 0.7 0.21
Jpair 0.7 0.21

a self-consistent way [92]. As all renormalization processes are included, the fRG

represents an unbiased method to gain the final, effective interaction Vk,k′ [221].

The obtained eigenvectors and eigenvalues are illustrated in Fig. 5.18(a-c) and (d),

(a) (b) (c)
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Figure 5.18: Comparison of the fRG results with the experiment. (a-c) depict the eigen-
vectors g(k) at the Fermi surfaces of the first quadrant of the BZ. The panels correspond
to the dominant s± channel in (a) and the two subdominant channels d1 and d2 in (b)
and (c), respectively. (d) shows the eigenvalues of these channels as a function of doping.
(e) The ratios λd(i)/λs as extracted from the BS modes BS1 and BS2 (open symbols) are
compared with the fRG results.

respectively. A comparison of the relative coupling strengths λd(i)/λs found in the

experiment and in fRG is presented in Fig. 5.18(e). An agreement is found, not only

the increasing ratios with doping but also the absolute magnitudes are reproduced
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very well for both BS modes. In addition, the eigenvectors are compatible with the

relative spectral weights of BS1 and BS2 [Fig. 5.17(c)] since the sign-changing nodal

state d1 has a smaller FS average 〈g′(k)γB1g(k)〉 than the sign-preserving state d2.

As the fRG treats spin, charge and orbital channels on an equal footing, the domi-

nant interaction cannot be determined directly. Hence a comparison with the RPA

based calculation is performed, which explicitly favors the spin-fluctuation channel.

Whereas the starting parameters are being renormalized in the fRG flow, RPA uses

renormalized parameters (see Tab. 5.3) from the start. Yet this approach still yields

the same results if the spin channel is really dominating the system [222]. The results

are shown in Fig. 5.19. The eigenvectors g′(i)(k) [Fig. 5.19(a-c)], the magnitudes

[Fig. 5.19(d)], and the ratios λd(i)/λs [Fig. 5.19(e)] agree qualitatively with the RPA
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Figure 5.19: Comparison of the RPA results with the experiment. Similar to Fig. 5.18,
(a-c) show the RPA eigenvectors, (d) shows the eigenvalues and (e) a comparison with the
experiment.

results and with the experiment. This agreement suggests repulsive spin fluctuation

to be the main driving force for the subdominant interactions and hence responsible

for the emergence of the BS modes. According to the theoretical analysis, it is a

small step to determine spin fluctuations as the most relevant interaction for the

leading channel as well in the hole-doped iron pnictide Ba1−xKxFe2As2. Following

the theory, the detailed shape and size of the Fermi surface is an important prop-
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erty, as the enhancement of spin fluctuations depends on the nesting. However, as

opposed to the SDW where a single nesting vector dominates, the Lindhard suscep-

tibility is large for a variety of Q vectors in the case of superconductors [50, 77, 223].

As small changes of the FS have a huge influence on the subdominant coupling

strength, it is not surprising, that the spectra exhibit qualitative changes already

above x = 0.48.

5.2.4 Development of the gap structure at high doping

levels

To explain the new peaks and the changes at x = 0.62 and x = 0.70 the Fermi

surface is considered first. In this range, the sizes of the Fermi surface sheets change

considerably up to x = 0.62 and x = 0.70, however, there is no qualitative difference,

i.e. the smooth evolution of the FS, starting at x = 0.35 continues up to x = 0.70

[198]. Hence it is possible that the qualitative change of the spectra is triggered

by the strongly competing interactions discovered above, resulting in a qualitative

change of the superconducting ground state at a critical doping level [109].

To determine if this is really the case, the spectra as compiled in Fig. 5.20 will

be analyzed now. The changes are most pronounced in B1g symmetry: (i) For

x = 0.48 → 0.62 the BS1 mode (green) disappears [Fig. 5.8(f1) and (g1)], (ii) the

low-energy response in the superconducting state changes from displaying a true

gap to a linear increase and (iii) a new peak pops up [Fig. 5.20(a) and (d)].

Fig. 5.20(a) displays that the intensity increases continuously with the Raman shift,

starting from the first point measured at 7.5 cm−1. The same linear rise is observed

for x = 0.70 in (d). A linear increase is typical for a nodal gap at T << Tc, where

the pair-breaking response is not vanishing even for the smallest energies as illus-

trated in Fig. 2.10(d). This is in contrast to a full gap, where no pair breaking

occurs below a certain energy 2∆min [160]. This is a first indication of a changed

superconducting ground state.

Going towards higher energies, a very narrow peak at 55 cm−1 is present for x = 0.62.

This peak is closely followed by another peak at 70 cm−1, as shown in Fig. 5.20(b),

marked by a cyan open diamond and a black asterisk, respectively. Finally a broader

maximum is observed, which is centered at about 110 cm−1.

The first of the observed peaks (cyan) follows the BCS temperature dependence

[4]. In combination with its narrow linewidth and the unique appearance in B1g,

an identification as a BS mode is very likely. The second peak at 70 cm−1 has not
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Figure 5.20: Raman response of Ba1−xKxFe2As2 at x = 0.62 and x = 0.70. (a-c) are
related to x = 0.62, (d-f) to x = 0.70. (a) and (d) show the raw data, (b) the differ-
ence spectra offset by 0.2 and in (e) by 0.1 counts mW−1 s−1, here with a liner function
subtracted. The temperature dependence of peaks in (b) as illustrated by open cyan di-
amonds is comprised in (c) along with the temperature dependence of the gap according
to BCS theory (grey line). (e) and (f) show a similar analysis. Here the wine triangles
indicate the onset frequency, the open black stars the peak frequency. (g-i) compare the
difference spectra of the two samples in B1g, B2g, and A1g symmetry, respectively, using
an energy scale normalized to the respective Tc. Note the different intensity scales for the
doping levels. The grey dashed lines indicate the positions of various features.
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been observed so far. It appears for the two lowest temperatures, 8 and 10 K, but

for higher temperatures, at 15 and 17 K it is no longer present. The special temper-

ature dependence indicates clearly that this peak is a new feature emerging first at

x = 0.62.

Since the broader maximum around 110 cm−1 has the same ratios 2∆/kBTc ≈ 6 for

x = 0.62 and x = 0.48 it is tempting to interpret it in terms of pair-breaking simi-

larly as for lower optimal doping levels, i.e. originating from pair-breaking processes

on the electron pocket.

For x = 0.70 [Fig. 5.20(d-f)] the intensity of the first peak decreases dramatically.

It appears as a shoulder at 8 K and as a small peak at 10 K, for higher temperatures

it can not be resolved any further. However, it may still be a part of the total

response though indistinguishable from the second peak right above, marked by the

black asterisk. Thus the energies are extracted where the spectra first deviate from

a linear energy dependence, as indicated by the wine triangles in Fig. 5.20(e) and (f)

yielding approximately the onset of the first peak. The second peak (black asterisk),

which was found to be new at high doping levels, is stronger in comparison to the

other features and now persists up to the highest measured temperature of 16 K.

Both peaks exhibit a BCS-like temperature dependence.

Finally the spectra are compared in all symmetries for x = 0.62 and x = 0.70. The

feature assigned as pair-breaking peak for x = 0.62 is very weak for x = 0.70 if vis-

ible at all. A plot of all difference spectra in 5.20(g-i) on a normalized energy scale

~Ω/kBTc shows that this very small peak in B1g symmetry is located at roughly 6

(marked with the rightmost dashed line). This may suggest the interpretation as

a small remaining pair-breaking peak as for x = 0.62. Next to this feature, all the

other ones in B1g symmetry coincide in position for both doping levels but differ in

intensity. It is evident that the first peak (leftmost dashed line) appears uniquely in

B1g symmetry as in the case of the BS mode. The new peak (middle dashed line)

is close to the peak in A1g, but not exactly at the same position. Hence this might

also be attributed to a second mode.

With these findings, two ideas are presented to explain the changes that occur at

x = 0.62 and x = 0.70. Since the Fermi surface is believed to develop smoothly up to

x = 0.70 and the d-wave and s-wave coupling strengths approach each other a change

of the symmetry of the superconducting state is proposed [50, 111, 112, 191, 224].

Either a combined s+ id state emerges, or the d-wave interaction even exceeds the

s-wave interaction and forms a d-wave ground state.

One of the ideas is based on the work of Khodas and coworkers [155]. They ar-
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Figure 5.21: Expected doping dependence of a BS and MSBS mode [112]. The BS mode
(grey) in the s-wave state around optimal doping turns into a MSBS mode in the s + id
state. Its frequency drops to zero at the transition, which is located at around x = 0.53.

gue, that, in general, two modes arise, one in the particle-particle and one in the

particle-hole channel. Both channels are intertwined, if the momentum average of

〈GF 〉 on the FS is large, resulting in only one mode below the gap edge. (G and F

refer to the normal and anomalous Green’s function as defined in Eqs. 4.7 and 4.8.)

In the case of 〈GF 〉 ≈ 0 they are disentangled and can separately be observed as

two modes. F is linearly proportional to the gap ∆, but G only depends on the gap

squared. Hence a simple approximation yields 〈GF 〉 → 〈∆(k)〉. For an isotropic

gap only one mode is expected, whereas for a sign-changing gap two modes will

appear in this framework. So the two peaks with lowest energies in B1g symmetry

could resemble these two modes, indicating a d-wave ground state.

Another idea was suggested by Maiti and Hirschfeld [112], who analyzed an s + id

ground state, where s- and d-wave states are mixed. The response of this state yields

a full gap, as |∆s + i∆d|2 = ∆2
s + ∆2

d never vanishes, even if the d-wave part itself

is nodal at the Fermi surface. The Raman spectra are thus expected to show an

anisotropic pair-breaking response as discussed in Section 5.1. Below the gap edge a

BS mode exists with a special frequency dependence on doping as illustrated in Fig.

5.21. The frequency vanishes at the onset of the s+ id state and the mode reappears

in the mixed phase as a so-called mixed-state BS (MSBS) mode. If a linear extrap-
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olation is applied to the frequency dependence of the peaks in the optimally doped

region, the BS1 peak (green) is the only candidate that reaches zero frequency below

x = 0.62. The corresponding nodal d-wave state, combined with the original s-wave

state yields the new s + id state. To check this possibility a Raman experiment is

suggested on a sample with a doping of x = 0.55, between x = 0.48 and x = 0.62.

In summary it was demonstrated that the system may transform into a new state

of superconductivity with a manifold of new effects. In spite of some open ques-

tions, a consistent picture of spin-fluctuation-mediated superconductivity could be

presented. A detailed analysis of spin fluctuations will thus be studied in the next

section. The unique opportunity arises to directly observe the fluctuations [73] and

gain a microscopic understanding of them rather than to reverse engineer the pairing

interaction from the investigation of the superconducting state, though this proved

to be successful here as well.
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5.3 Fluctuations in Ba(Fe1−yCoy)2As2

and Ba0.78K0.22Fe2As2

Fluctuations were observed by Raman scattering relatively early [214]. However, for

an extended period of time the “quasi-elastic” response was interpreted in terms of

orbital and charge fluctuations [163, 225, 226]. Spin fluctuations as an origin of the

response was considered first theoretically [145, 227–229] and later experimentally

[73]. However, the interrelation of fluctuations and superconductivity remains elu-

sive.

To procede here, the results on BFCA on the electron doped side [73, 74, 124, 125]

shall be augmented by studying Ba(Fe0.949Co0.051)2As2, and extended to the hole

doped Ba0.78K0.22Fe2As2.

The phase diagram of Fig. 5.22 compiles all measurements performed on these com-

pounds, locating the doping and temperature for which spectra were obtained in

0.4 0.2 0.0
0

100

200

300

400

Te
m

pe
ra

tu
re

 T
 (K

)

K-content x

SDW

SC

Ba1-xKxFe2As2 Ba(Fe1-yCoy)2As2

0.05 0.1 0.15
Co-content y

SC

Figure 5.22: Sampling points in the phase diagram of K and Co doped BaFe2As2. The K-
and Co-doped sides are adopted from Ref. [70] and Ref. [60], respectively. Red diamonds
show the doping and temperature, where B1g spectra were obtained, blue dots depict
the sampling points in A1g symmetry. The narrow nematic phase (magenta) is of special
interest.

B1g and A1g symmetry. The following study will concentrate on the new data and

refer to Refs. [73, 124, 125] for details of the analysis.

The phase diagram exhibits certain peculiarities that motivated a study of the dop-

ing dependence of the fluctuations. The discussion will thus be based on three

aspects: (i) The asymmetry of the hole- and electron-doped side [65, 230], especially
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the splitting of the structural and magnetic transition for electron doping, (ii) the

investigation of the correlation length and possibility for a QCP close to optimal

doping [231–233], and (iii) the doping- and temperature-dependent strength of the

fluctuations with an outlook to a possible relation with superconductivity [234, 235].

5.3.1 Experimental results and analysis

Before several doping levels are compared, the temperature and symmetry depen-

dence of the spectra is analyzed in terms of fluctuations [71–74, 108, 124, 125, 134,

135, 158, 163, 236–239]. For this purpose the experimental results of the new sam-
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Figure 5.23: Raman spectra of Ba(Fe0.975Co0.025)2As2 [73, 134]. (a) and (b) show spectra
in B1g symmetry. The colors represent different regions in the phase diagram: Red and
yellow colors show the range where the electron-hole continuum dominates the response,
green colors mark the region where fluctuations emerge, magenta stands for the nematic
phase and blue for the SDW phase. (c) and (d) show spectra in A1g and B2g symmetry,
respectively. The spectra from 100 K to 300 K in A1g symmetry were adopted from Ref.
[124].

ples (y = 0.051 and x = 0.022) are presented in combination with a method that

enables the isolation of the bare contribution from the fluctuations.
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To compare the temperature and doping dependent measurements the spectra were

multiplied in a way that they merge at 1000 cm−1 for all temperatures and doping

levels. They are normalized to the raw spectra of the undoped mother compound

BaFe2As2, separately for each symmetry. The normalization eliminates potential

surface and overall scaling effects due to a doping-dependent Raman vertex, specif-

ically the effect of resonances.

The normalized B1g Raman spectra for y = 0.051 are shown in Fig. 5.23. They

were obtained with an excitation wavelength of 514 nm and a spectral resolution of

7 cm−1. Fig. 5.23(a) illustrates the temperature evolution above the structural tran-
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Figure 5.24: Analysis of the spectra in B1g symmetry at a doping of y = 0.051 [73]. (a)
shows the spectrum at 80 K as copied from Fig. 5.24. The contributions from fluctuation
processes and electron-hole (eh) excitations are shaded in red and grey, respectively. The
initial slopes of the total response τ0 (green) and the electron-hole continuum τeh (grey) are
illustrated by arrows. (b) and (c) show the model electron-hole continuum for all temper-
atures along with the spectra at 330 K and 49.5 K. (d) compares the static relaxation rates
Γ0 with the resistivity in ab plane [60]. Open symbols mark the results for 80 K. (e) Below
Tf (green) and in the nematic phase (purple) fluctuations exist which can be described
by AL processes. The inset demonstrates the enhancement of the AL fit with decreasing
temperature for a constant electronic loop Λ2

0 and decreasing mass m. Accordingly the
initial slope τAL (red arrow) increases.
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sition Ts and (b) shows the continuation in the nematic phase TSDW < T < Ts and

below TSDW. The nematic phase between TSDW and Ts extends over a temperature

range of 11.4 K here in comparison to 4.5 K for y = 0.025. As compiled in Table 3.2

the transition temperatures were determined to be Ts = 60.9 K and TSDW = 49.5 K.

Upon crossing these temperatures, the spectra exhibit qualitative changes. Starting

from the spectrum at the highest temperature, 330 K, a continuous pile up of spectral

weight towards Ts is observed. This enhancement progressively concentrates around

smaller energies for lower temperatures. It is accompanied by the development of a

new maximum below roughly 150 K, which accordingly moves towards lower energies

with decreasing temperature. The maximal intensity is reached close to Ts. Below

Ts, inside the nematic phase, the intensity quickly drops but the maximum stays

nearly pinned at one energy [73]. The reduction of intensity continues even below

TSDW but the temperature dependence weakens. This is obvious from the spectra

at 46 K and 49.5 K, which are nearly identical although they were recorded for tem-

peratures differing already by 4.5 K. This evolution is identified with the continuous

opening of the SDW gap, see App. 7.5.

In contrast to the strong temperature dependence in B1g symmetry the spectra in

A1g symmetry, as presented in Fig.5.23(c), exhibit a much weaker dependence. The

spectra in B2g symmetry of (d) show no change between Ts and 40 K above.

In analogy to the results in differently doped samples, the increase of the B1g re-

sponse on approaching Ts is attributed to a new scattering channel, projecting out

fluctuations [72, 73, 124, 125]. This channel and the typical electron-hole contin-

uum add up to the total spectrum in the range TSDW < T < Tf , with Tf being the

highest temperature where fluctuations can be observed by Raman scattering. For

separating the two scattering channels a phenomenological model for the electron-

hole continuum is subtracted from the total response. The remaining response can

be can now be compared to theoretical predictions for the response of fluctuations

[108]. This strategy for the analysis was first used by Kretzschmar and coworkers

[73].

For illustrating the analysis the spectrum at 80 K in B1g symmetry is selected as

shown in Fig. 5.24(a). First, the electron-hole continuum is modeled on the assump-

tion that it smoothly evolves with temperature. The phenomenological function

Rχ′′eh(Ω, T ) = α(T ) tanh

(
Ω

γ(T )

)
+ β(T )Ω (5.14)
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Figure 5.25: Fluctuation contribution for y = 0.0051 [73]. (a) and (b) show the fluctuation
contribution along with fits by AL functions (red). (c) displays the two fitting parameters,
mass m and the scaling factor Λ2. (d) presents the initial slopes of the AL fits.

is used for T > Ts with α(T ), β(T ) and γ(T ) depending linearly on temperature.

For large Ω, this function converges to the linear approximation α(T ) + β(T )Ω.

As the contribution from fluctuations is expected to be small at large energies a

linear function describes the continuum adequately. To determine the temperature

dependence of α(T ) and β(T ) the spectra at 330 K and 49.5 K are utilized as upper

and lower bounds, respectively. The fluctuations are expected to be very weak at

high temperatures and not present in the ordered SDW state below 49.5 K. The

determination of γ(T ) is based on the resistivity measurements in the ab-plane [60].

The inverse initial slope τ−1
eh of the electron-hole continuum is a measure for the

resistivity [240],

Γeh
0 ≡ R̃(T )τ−1

eh (T ) ∝ ρab(T ), (5.15)

where R̃(T ) = R
∫∞

0
dΩχ′′(Ω, T )/Ω is a normalization factor which is only weakly

temperature dependent in this case. To determine the temperature dependence of

γ(T ), the static relaxation rates Γ0 were extracted for the model continuum and for

the total B1g response. As the spectra cannot be obtained down to zero energy, it
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Figure 5.26: Raman spectra of Ba0.78K0.22Fe2As2 [74]. (a) and (b) show spectra in B1g

symmetry. (c) and (d) present the spectra in A1g and B2g symmetry, respectively.

is hard to directly extract the initial slope. Hence a more sophisticated approach

was applied based on the memory-function method and a Kramers-Kronig transform

[240, 241]. This method is described in Refs. [73, 124, 125, 134, 135, 240] and referred

to in App. 7.6. Then γ(T ) is set in a way that Γeh
0 (T ) matches the temperature

evolution of the resistivity. If the same analysis is performed with the spectra in A1g

symmetry (after subtracting the phonons) it is found that ΓA1g
0 follows the resistivity.

This shows that the A1g spectra are dominated by the electron-hole continuum with

a temperature dependence dictated by the change of the resistivity. The same is

observed for B1g above Tf . Below Tf the inverse initial slope of the entire spectra

increasingly drops below Γeh
0 [Fig. 5.24(d)].

Subtracting the continuum yields the contribution shown in Fig. 5.24(e). A fit with

the function [108, 144]

χ′′AL(Ω) = Λ2

∞∫
0

dz [b(z − Ω/2)− b(z + Ω/2)]
z+z−
z2

+ − z2
−

[F (z−)− F (z+)] (5.16)
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the fluctuation contribution along with fits by AL functions. (c) displays the two fitting
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as derived from AL diagrams [108, 144] was performed, with the Bose function b(z),

F (z) = [arctan(Ω0/z) − arctan(m/z)]/z, and z± = (z ± Ω/2)[1 + (z ± Ω/2)2/Ω2
0].

Λ2 is a scaling factor, m is the mass as defined in Eq. 2.5 and Ω0 = 350 cm−1 is a

cutoff parameter given by a typical phonon frequency [108] and held constant for all

doping levels. Eq. 5.16 describes the data very well in the whole temperature range

TSDW < T < Tf as shown in Fig. 5.25. Minor deviations are observed only for tem-

peratures close to Ts. The agreement supports the identification of the additional

contribution with fluctuations.

From this analysis parameters such as the initial slope τAL [Fig. 5.24(d)], the mass m

and Λ2 [Fig. 5.25(c) and (d)] can be extracted. From Fig. 5.25(c) it is evident that

a constant scaling factor Λ2 reproduces the data above T s. This constant value is

labeled Λ2
0 and quantifies the electronic loop (see Fig. 4.3). The only fitting param-

eter in this range is the mass m. It is observed that the mass decreases rapidly on

approaching Ts and reaches a finite value at Ts. Inside the nematic phase the mass

increases again. However, this increase is too weak to fully reproduce the reduction

of intensity. The scaling factor Λ must account for this effect in the nematic phase.

Note that the electronic loop Λ2
0 is still expected to be constant. The analysis is
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limited to the extraction of these values here, a physical interpretation will be given

later when the data from different doping levels are collected.

A similar analysis is performed for the hole-doped Ba0.78K0.22Fe2As2. The spectra

are compiled in Fig. 5.26 and normalized in the same way as those at y = 0.051.

An excitation wavelength of 575 nm and a spectral resolution of 5 cm−1 was used.

The structural trasition temperature is Ts = 81.4K. On the hole-doped side no

nematic phase is expected, according to neutron, x-ray diffraction, and magnetiza-

tion measurements [66], hence TSDW = Ts. In BKFA the sample surface degraded

rapidly and data with sufficient counting statistics could be obtained only for a few

temperatures. In spite of these complications the existence of fluctuations in the

hole-doped case could be demonstrated.

The analysis of the fluctuations yields the results of Fig. 5.27. The contribution

from the fluctuations is shown in (a). A reduction of the intensity by a factor of

5 with respect to y = 0.051 is observed. The fluctuations appear below Tf=190 K.

The fitting procedure according to Eq. 5.16 was applied to collect values for m,

Λ2, and the initial slopes τAL as a function of temperature, Fig. 5.27(b) and (c),

respectively.
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The investigation of the new samples confirmed the interpretation of the additional

Raman response in B1g symmetry in terms of fluctuations. This is in accordance to

the results found for x = y = 0 and y = 0.025 [73, 124, 125]. Fig. 5.28 compiles the

extracted parameters in the doping range from x = 0.22 to y = 0.051.

Based on these results, the following discussion will address new aspects of the fluc-

tuations, going beyond the analysis performed in the PhD theses by B. Muschler

[124] in the year 2012 and F. Kretzschmar [125] in 2015. They both advanced the

analysis of fluctuations in terms of AL processes and analyzed the relaxation rates

in detail. The thesis by F. Kretzschmar [125] additionally provides evidence for

spin fluctuations and concentrates on the analysis of the nematic susceptibility. In

this thesis, the spin fluctuation picture will be scrutinized taking into account the

work by Gallais et al. [72] of 2016. They claim the fluctuations to be of charge

origin. Furthermore, the increased temperature range of the nematic phase in the

sample with y = 0.051 enabled a study of the temperature-evolution of the nematic

order parameter which was not achieved so far. The analysis of the hole-doped

sample with x = 0.22 made it possible to distinguish between intrinsic and doping-

dependent properties of the fluctuations. Finally, the strength of the fluctuations is

discussed as a function of doping and temperature.

5.3.2 Evidence for spin fluctuations

In the light of the findings in the superconducting state (Section 5.1 and 5.2), a dis-

cussion of spin-, charge-, and orbital-driven scenarios above TSDW [100] is presented

with a special focus on spin fluctuations. The following considerations are based on

two aspects: The fact that fluctuations still appear inside the nematic phase, and the

difference between scattering processes involving intra- and inter-band fluctuations

(see Fig. 4.3), possessing small and large momenta, respectively. In this context,

special attention is payed to the selection rules.

First, the interrelation between charge fluctuations and orbital fluctuations must be

clarified [72]. The discussion is limited to ferro-orbital fluctuations here, antiferro-

orbital fluctuations are addressed later. Furthermore, only fluctuations appearing in

B1g symmetry are considered. Hence these fluctuations are described by a B1g form

factor. To avoid confusion it is noted that some authors include Pomeranchuk [242]

and quadrupolar [119, 163] fluctuations into their analysis. Both of them describe

a B1g-symmetric deformation of the band structure, similar to ferro-orbital fluctua-

tions. For the present discussion they behave in analogy to ferro-orbital fluctuations

and will thus not be addressed separately. Fig. 5.29 illustrates a ferro-orbital band
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deformation along with the corresponding charge transfer. It is evident, that charge

and ferro-orbital fluctuations in B1g symmetry are interdependent and appear si-

multaneously [72, 243]. Hence they are referred to as “charge/orbital” fluctuations

in the following.

To investigate the nature of the fluctuations, the Raman scattering processes are

considered up to second order, as shown in Fig. 4.3. Analyzing these diagrams in

terms of charge/orbital and spin fluctuations yields the following results: The first

order diagram is limited to fluctuations with small momentum, thus charge/orbital

dxz

dyz

charge

Figure 5.29: Relation between ferro-
orbital and charge fluctuations. The
figure shows the intertwining of
charge and ferro-orbital order. For
simplicity the whole electron pocket
is of dxz/dyz character. Pink shows
a pocket that lowers its energy
and thus gathers electrons from
the pocket that increases its energy
(green). This causes, or is induced
by a charge transfer from green to
pink. The change of band energies
constitutes ferro-orbital order. The
transfer of charges is referred to as
charge order. It is evident that these
two ordering phenomena cannot oc-
cur separately.

fluctuations are possible, spin fluctuations with

finite q do not contribute. Another requirement

is that the Raman vertex must have a sufficient

overlap with the form factor of the fluctuations

in terms of FS average. In the case of B1g-

symmetric charge/orbital fluctuations, the selec-

tion rules allow a finite response. In contrast

to that, the selection rules in the AL diagrams

do not depend on the symmetry of the fluctu-

ations but on their wave vector, incorporated

in the electronic loops (Eq. 4.6). For fluctu-

ations with small momenta, the AL response

is approximately determined by the FS aver-

age of the Raman vertex 〈γ(k)〉 entailing can-

cellation in all symmetries including A1g sym-

metry due to its s± form factor [162]. Hence,

charge/orbital fluctuations with q ≈ (0, 0) do

not contribute. Spin fluctuations with finite mo-

menta qc ∈ {(±π, 0), (0,±π)} are possible. A

detailed discussion of the selection rules can be

found in App. 7.1 based on Refs. [73, 125, 145].

It was pointed out, that the second-order AL

diagrams contribute, if spin fluctuations are

present, whereas the first order diagrams project out charge/orbital fluctuations.

A quantitative comparison would be necessary but is beyond the scope of this the-

sis.

One step towards that quantitative analysis is made by Gallais and Paul [72]. They

found that the first-order diagram does not contribute unless a finite impurity-
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scattering rate is introduced. Hence the required rate of impurity scattering is

estimated in the case of the first-order diagram describing charge/orbital fluctua-

tions. Gallais and Paul calculated the peak frequency of the fluctuations to be at

[72]

Γpeak
charge/orbital =

r0

(r0 + c3)τi

(5.17)

with r0 = a/ξ depending on the lattice constant a and the correlation length ξ

and c3 ∝ g0 the fluctuation-electron coupling. At high temperatures the bare im-

purity scattering rate Γi = τ−1
i can be obtained directly from the peak frequency

of the fluctuations: At T . Tf , ξ approaches its smallest value ξ → a and thus

r0 → 1. Furthermore c3 is expected to be small as g0 decays like 1/T 4 [99]. Thus

Γpeak
charge/orbital ≈ Γi for T . Tf . The experiment locates the peak at about 100-

150 cm−1 for y = 0.051. This lies by a factor of roughly 3 above the superconducting

pair-breaking peak 2∆. Such a high impurity scattering rate would quench the pair-

breaking response completely [148, 149, 244–246]. However, a pair-breaking peak is

clearly observed in the experiment which argues against charge/orbital fluctuations

and in favor of spin fluctuations to dominate the Raman response. It is noted that

Ref. [72] explicitly includes scattering caused by impurities. However, they further

state that τi only provides a finite lifetime for the electronic excitations. Hence

strong interactions could also be included in τi. Yet a thorough investigation goes

beyond the scope of this thesis.

The second argument against charge/orbital fluctuations is based on the fact, that

ARPES measurements show orbital order to be nearly fully established below Ts for

a twinned crystal of doping y = 0.025 [82]. The fact that fluctuations are expected

to appear only above an ordered state but are clearly observed below Ts in our

experiment provides another argument against the scenario where charge/orbital

fluctuations dominate.

The possibility for antiferro-orbital fluctuations with qc ∈ {(±π, 0), (0,±π)} is also

excluded to be the dominant part in the AL diagrams as there is no antiferro-orbital

ordered state found in the IBSs. The observation of ferro-orbital order [82] argues

against the existence of antiferro-orbital order as both orders are orthogonal and

thus cannot coexist. Hence, antiferro-orbital fluctuations are very unlikely to exist.

Although the presented Raman study is no “smoking-gun” experiment, two pieces

of evidence against charge/orbital fluctuations were presented and a conclusive de-

scription in the case of spin fluctuations was given. Hence, the analysis of the data

will be continued on this premise.
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5.3.3 Discussion

The parameters extracted via the AL fits will now be discussed as a function of

doping and temperature. From these parameters, a nematic order parameter can

be defined. Furthermore, the correlation length will be analyzed and finally the

strength of the fluctuations will be examined.

In this context physical questions are addressed as to the order of the phase tran-

sitions, the possibility of a QCP and the asymmetry between the electron- and

hole-doped sides in terms of fluctuations.

Nematic order

To investigate how nematic order is established below Ts, a nematic order parameter

ϕexp will be defined from the experiment and compared to the theoretically obtained

order parameter ϕth from Ref. [100]. For this goal the temperature dependence of
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Figure 5.30: Suppression of the fluctuation contribution inside the nematic phase. (a)
shows the suppression ϕexp for the Co-doping levels y = 0.025 and y = 0.051. The respec-
tive transitions are indicated by vertical lines. Open symbols illustrate full suppression at
TSDW. Solid lines are guides to the eye. (b-d) compile the theoretically obtained nematic
(ϕth) and magnetic (M) order parameters for three different regions defined in (e). The
theoretical results are adopted from Ref. [100]. Tmag and Tnem have to be identified with
our TSDW and Ts, respectively. The dashed and solid lines mark first- and second-order
phase transitions.

the fluctuations is utilized.

The observed fluctuations reach their maximal spectral weight at Ts and contin-

uously weaken upon decreasing the temperature until they vanish at TSDW. As
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nematic fluctuations cannot exist in a fully nematically ordered state, the suppres-

sion of the fluctuations in the range TSDW < T < Ts measures the degree of nematic

order. The SDW state implies full nematic order [Fig. 2.8(c3)] and thus no fluctua-

tions are present below TSDW. As the nematic order parameter is associated with the

suppression of the fluctuations it can be quantified by ϕexp(T ) ≡ (Λ2
0 − Λ2(T ))/Λ2

0.

This parameter is 0 (no suppression) above Ts, it increases in the nematic phase and

stays at 1 (full suppression) in the SDW state.

With this definition the phase transitions at Ts and TSDW can be described by their

order. ϕexp(T ) is shown in Fig. 5.30(a) for y = 0.025 and y = 0.051, where the

structural transition is separated from the SDW transition. ϕexp(T ) exhibits a dis-

continuity only for y = 0.025 at Ts. Here, a first order phase transition is present,

the other transitions in Fig. 5.30(a) are of lower order. In the case of x = 0.22 and

x = y = 0, where both transitions coincide a discontinuous increase of ϕexp from 0

to 1 and hence a first order transition appears at Ts = TSDW.

Further insight is gained from the comparison with the theory of Fernandes and

coworkers [100], where the order of the nematic and magnetic phase transition is

studied as a function of elasto-magnetic coupling, doping and disorder. The theory

is based on a spin-driven scenario, where the fluctuations interact with each other

via electrons. The indirect fluctuation-fluctuation interaction g is responsible for

the separation of Ts and TSDW and the appearance of a nematic phase. The mag-

netic and structural phase transitions can be separated into three regions, as shown

in Fig. 5.30(b-d) with a compilation in (e). In region (I), where electron doping

is small, the transition temperatures merge Ts = TSDW, and the transition is first

order. Both ϕth and the SDW order parameter M change discontinuously. With

increasing electron doping, region (II) is reached: A moderate split is present here

and the nematic transition turns into a second-order transition (no discontinuity),

whereas the SDW transition stays first order. In region (III) both transitions are

second order and none of the corresponding order parameters has a discontinuity.

The comparison of ϕexp(T ) and ϕth(T ) shows that x = 0.22 and x = y = 0 are

located in region (I). A simultaneous first order transition is present here. For

y = 0.025 it is observed that ϕexp(T ) is strikingly similar to ϕth(T ) of region (II).

The results of y = 0.051 are best described by region (III). Although the order

parameters differ between theory and experiment, the largely split second order

transitions describe the experimentally obtained results adequately.

In summary it was found that (i) a nematic order parameter can be extracted from

the fluctuations, (ii) the nematic order is not established abruptly at Ts but increases
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smoothly towards TSDW, and (iii) a spin-driven scenario [100] is in agreement with

the experimental results. Here, the scaling factor Λ2 was used to investigate the ne-

matic phase. Above Ts, where ϕexp = 0 the mass gives valuable information about

the fluctuations.

Deviations from mean-field theory

In mean-field theory all temperature-dependent quantities such as the correlation

length ξ or, equivalently, the mass m ∝ ξ−2 are predicted to obey characteristic

power laws close to the transition. For instance the correlation length varies as

ξ(T ) ∝ (T − T0)−ν with the critical exponent ν = 1/2 and a transition at T0

[74, 108, 247]. The values m(T ) for four different doping levels are plotted in Fig.
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Figure 5.31: Dependence of the mass on doping and temperature. (a) compiles all the
masses obtained from the AL fits. Their temperature dependence follows Eq. 5.18. The
inset shows the data of y = 0.051 with double-logarithmic scales. The first point is at
8.6 K above Ts as the error bars of the mass difference m(T )−m0 below that temperature
are too large. (b) shows the offset m0 which is monotonically related with Ts.

5.31 along with the function

m(z, T ) = m0(z) + a(z)(T − Ts(z))2ν(z) (5.18)

used to describe the temperature dependence. Eq. 5.18 facilitates the extraction of

the mass offset at Ts, m0(z), and the critical exponent ν(z) as a function of doping z.
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Fig. 5.31(a) shows that ν depends monotonically on doping. For hole doping a value

of ν = 0.63 is obtained, for electron doping ν varies between 0.74 and 0.95. Hence

the mean-field expectation is nearly reached for hole doping, whereas a substantial

deviation by a factor of 2 is observed for electron doping. This asymmetry between

electron and hole doping is unexpected and remains as an open question for further

studies.

Another unexpected observation is the offset m0 of the mass. When approaching a

transition from higher temperatures, the correlation length is expected to diverge.

Hence the mass should decrease down to zero instead of saturating at m0. However,

a finite m0 is observed for all doping levels, which monotonically depends on Ts as

illustrated in Fig. 5.31(b). Due to the dependence on Ts, this aspect is considered

to be an intrinsic property of the spin fluctuations.

To explain the offset m0 the Ornstein-Zernike propagator of Eq. 2.5 is analyzed.

In the spirit of Dyson’s equation, the propagator can be renormalized by a self-

energy correction, which effectively yields the mass renormalization m → m + m0.

Hinojosa and coworkers [156] showed that m0 = gΠ with the electron-fluctuation

coupling g and the electron-hole bubble Π. Calculating an electron-hole bubble

yields the Lindhard susceptibility, a measure for the nesting condition. In this case

the nesting vector for the SDW state is qc. Within this framework, the experiment

shows that the nesting condition, which is quantified by m0, improves with rising

Ts, as expected.

The question arises, how m0 develops for Ts → 0. Fig. 5.31(b) shows that m0

extrapolates approximately to zero. m0 → 0 corresponds to a diverging correlation

length and defines a QCP [74]. The dependence of m0 on Ts suggests, that this QCP

appears both in the electron- and hole-doped case, whenever Ts = 0. If this is true,

quantum spin fluctuations above this QCP could mediate superconductivity an lead

to a superconducting dome around the QCP.

Quantification of the fluctuations

Inspired by this possibility the strength of the fluctuations will now be quantified

and studied as a function of doping and temperature. Here, we use the initial slope

[73, 73, 74, 145] of the fluctuations τAL [Fig.5.28(e-h)] to measure their strength.

In addition, proper normalization procedures must be applied to isolate intrinsic

effects of the fluctuations and eliminate side effects such as the doping dependence

of the (Raman-specific) electronic loop Λ2
0 and different surface qualities. The B1g

spectra of different doping levels were already normalized to the respective BFA
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spectra. However, this normalization is insufficient to describe all side effects. It

is obvious from Fig. 5.28(a-d) that the electronic loops Λ2
0 are still dependent on

doping. Khodas and Levchenko [229] found a relation between Λ2
0 and the doping

dependence of the FS. In coincidence with their results Λ2
0 is largest for z = 0 and

decreases for both electron and hole doping. Hence the adequate measure for the

strength of the fluctuations is κ(z, T ) ≡ τAL(z, T )/Λ2
0(z).

The results are presented in Fig. 5.32. κ(T = Ts) is smallest for z = 0 and

increases with increasing electron and hole-doping. The question arises if the asym-

metry between electron and hole doping is reflected by the doping dependence of

the fluctuations. To answer this question the dependence of the fluctuations will be

presented as a function of Ts rather than z. For this purpose, Fig. 5.33(a) shows κ

as a function of T −Ts. It turns out, that the temperature dependencies κ(z, T −Ts)

only differ by a single factor per doping. This factor normalized to κ(z = 0, T − Ts)

is called the enhancement η(z) ≡ κ(z, T − Ts)/κ(z = 0, T − Ts). η(z) expressed as

a function of Ts(z) is plotted in Fig. 5.33(b). The figure shows a monotonic, nearly

linear dependence of η on Ts. This monotonic dependence of the results from both

hole- and electron-doped samples argues against an asymmetry between electron

and hole doping in terms of fluctuations.

To complete the doping-dependent analysis of the fluctuations, the onset temper-
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ature Tf(z) is shown in Fig. 5.34. Here the data obtained by B. Muschler for

y = 0.055, y = 0.061 and y = 0.085 [124] are included. Extrapolating Tf(z) along

z determines a roof-shaped area below which the existence of fluctuations might be

expected. For the Co-doped side this roof area covers the whole superconducting

region, for K-doping a similar result is obtained, however, more measurements are

required here to make a profound statement.

In summary, fluctuations were found in the hole- and electron-doped region below a

doping-dependent temperature Tf . The strength of the fluctuations increases with

decreasing Ts with the strongest enhancement occurring at Ts = 0, i.e. at the puta-

tive QCPs of both the hole- and electron-doped sides.

In the spirit of these results, one could end up with the following speculations: Ei-

ther the fluctuations are the only reason for pairing [248] or at least boost Tc close

to the QCP [249]. In the first scenario superconductivity in BKFA and BFCA is me-

diated by the exchange of repulsive quantum spin fluctuations which are strongest

right above the QCPs, defining optimal doping. The fluctuations decay for higher

doping where superconductivity vanishes more or less with the fluctuations. In the

second scenario a yet unidentified interaction leads to a moderate Tc in a wide range

of doping and the fluctuations above the QCP enhance Tc around optimal doping.
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5.4 Phonon anomaly in the vicinity of a quantum

critical point

A completely different way of probing interactions in the vicinity of a QCP, e.g.

quantum fluctuations, may be provided by optical phonon modes [250, 251].

(a)    A1g (b)    B1g (c)    Eg

187 cm-1 217 cm-1 125 cm-1

Figure 5.35: Eigenvectors of the optical phonon
modes. The eigenvectors are illustrated by black ar-
rows according to Ref. [166].

The phonon modes were mea-

sured in the normal and super-

conducting state of BKFA in

the doping range 0.22 ≤ x ≤
0.70, see Fig. 5.8. In contrast

to the previous sections, where

the 1 Fe unit cell was used

throughout, the adequate cell

to describe the phonon modes

is the crystallographic unit cell.

Hence, the out-of-phase vibra-

tion of the Fe atoms appears

now in the proper B1g symme-

try as opposed to B2g symme-

try in the 1 Fe unit cell used for

electronic excitations. Three

optical phonon modes of A1g,

B1g, and Eg symmetry are observed. The corresponding eigenvectors are depicted

in Fig. 5.35(a-c).

The B1g mode is close to 217 cm−1 for low temperatures. This mode is described by

an oscillation of the Fe atoms along the c-axis [166]. The oscillation of the As atoms

along the c-axis corresponds to the phonon in A1g symmetry close to 187 cm−1. The

frequency of this phonon is doping independent. Furthermore, one of the two in-

plane Eg shear modes was observed in a range from 120 cm−1 to 134 cm−1.

The evolutions of the frequency and line width (FWHM) of the B1g phonon as a

function of doping are presented in Fig. 5.36(b-c). The frequency and FWHM were

extracted by applying a Voigt function to the spectra in a narrow range around the

phonon (see App. 7.7). Both the position and the width vary nonmonotonically.

The slight hardening and the decrease of the width with increasing doping inside the

SDW state is in agreement with other Raman experiments where the SDW state was

investigated in detail [202, 252]. For higher doping levels the peak position of the
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phonon shifts towards lower energies and arrives at a minimum for x = 0.40 [253].

The maximal softening is observed at optimal doping (x = 0.40) and visible already
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Figure 5.36: Doping dependence of the optical phonon modes. The data of (a) are a copy
of Fig. 5.9 with B1g and B2g flipped since the crystallographic unit cell is used here. (b)
and (c) show the peak positions and FWHM of the B1g phonon, respectively. (d) displays
the peak positions of the Eg phonon as a function of doping. Due to the low intensity
of the Eg phonon the difference in position between superconducting and normal state is
below the resolution of about 1 cm−1. Thus they are not plotted separately.

in the normal state [Fig. 5.36(b)]. In the superconducting state the renormaliza-

tion becomes stronger. The FWHM shows a continuous increase with doping in the

normal state with a weak hump around optimal doping [Fig. 5.36(c)]. In the super-

conducting state the FWHM increases substantially in the range 0.35 ≤ x ≤ 0.48

and the maximum is reached again at optimal doping.

This broadening can be explained if one considers the pair-breaking peak in the B1g
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symmetry (with respect to the crystallographic unit cell) as illustrated by vertical

green bars in Fig. 5.36(a). For doping levels in the magentic phase the B1g spectra

do not show a pair-breaking peak. On the other hand, for x = 0.62 and x = 0.70

the energy region of pair breaking is too far below the phonon energy of 217 cm−1.

The energies of phonon and gap are similar just around optimal doping. New scat-

tering channels open up due to the continuum above 2∆ resulting in the observed

linewidth broadening [254–258]. Consequently, this broadening decreases when the

pair-breaking peak moves away from the phonon energy.

The frequency shift in the superconducting state with respect to that in normal state

can be explained as well. Calculations show, that in terms of frequency, the phonon

is repelled by the pair-breaking peak [255, 256, 259]. Hence for Ωphonon < ΩPB the

phonon frequency is pushed down, whereas for Ωphonon > ΩPB, its frequency in-

creases. In fact, this effect is observed in the whole doping range with ΩPB being

defined by the pair-breaking peak in B1g symmetry. Yet this effect is weak as the

maximal softening lies below 0.5%.

A doping-dependent softening already appears above the superconducting transi-

tion. As the dip is centered at optimal doping, it is tempting to assume that this

effect originates from an interaction, which is closely related to superconductivity,

already existing above Tc. Yet a quantitative statement requires a calculation that

describes the renormalization of the phonon energy in the presence of various inter-

actions [260]. A renormalization of this kind must obey B1g symmetry in the limit of

small momenta q. In terms of Fe 3d orbitals, there are only two possible transitions

which are not orthogonal to the B1g symmetry and thus can couple to B1g phonons:

This is (i) the transition from dxz to dyz with a symmetry obeying the functional

form xyz2, and (ii) from d3z2−r2 to dxy and vice versa. Note that both transitions

have the common form factor xy which reflects B2g symmetry in the 1 Fe unit cell

and B1g symmetry in the crystallographic one. Both transitions contain Fe orbitals

with a z-component, oriented out of the Fe-As plane. These orbitals experience a

strong influence from the Fe oscillation. They are alternately stretched and com-

pressed, whereas the in-plane orbitals are modulated only quadratically with the Fe

displacement.

Another doping dependence is observed for the shear mode in Eg symmetry. This

mode softens monotonically with increasing doping as plotted in Fig. 5.35(c) by

as much as 14 cm−1 (10%). In addition, a small hump around optimal doping is

observed which hints towards at an additional impact of the QCP The large soften-

ing could be related to the doping dependence of the lattice parameters and bond
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angles. With increasing hole doping, a (and concomitantly the Fe-Fe distance) de-

creases whereas c increases. Accordingly, the As-Fe-As bond angle decreases from

approximately 110◦ to 108◦ [261]. In the tetrahedral structure of the FeAs layers,

the antiparallel in-plane eigenvectors of the Fe and As oscillations [Fig. 5.35(c)]

can be projected into directions along and perpendicular to the Fe-As bonds. With

decreasing bond angles the perpendicular projection increases and the parallel one

decreases. As the orbitals are modulated linearly with a parallel and quadratically

with a perpendicular displacement, the change of bond angles could result in the

softening of the Eg mode with doping.

In summary, this analysis demonstrated the existence of a phonon anomaly around

optimal doping, predominantly observed for the B1g phonon, which appears already

in the normal state and becomes more pronounced in the superconducting state. It

was shown that a few interactions can induce the renormalization close to optimal

doping. This may open a window towards probing interactions above a QCP which

may be related to superconductivity but are not limited to temperatures below Tc.
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Summary

This thesis covers the study of competing pairing channels in iron-based supercon-

ductors and the investigation of critical fluctuations above the spin-density-wave

phase. The experimental study was performed by electronic Raman scattering on

hole- and electron-doped samples derived from the mother compound BaFe2As2.

The theoretical analysis is based on a phenomenological model and a comparison

between experiments and the results from a functional renormalization group (fRG)

study and a spin-fluctuation model as obtained on the basis of a random-phase ap-

proximation (RPA).

In optimally doped Ba0.6K0.4Fe2As2 Bardasis-Schrieffer (BS) excitons were studied

in the superconducting state along with gap excitations using symmetry-resolved Ra-

man scattering. The experiments demonstrated the existence of a weakly momentum-

dependent gap on the electron bands and the dx2−y2-wave character of the BS

mode. An analysis of the temperature-dependence of the response identified the

pair-breaking peak of the superconducting ground state and the subdominant d-

wave interaction at the origin of the BS mode. The experiments provided evidence

for competing pairing interactions of similar strength. A phenomenological calcula-

tion of the response was found to be in agreement with the experiment. This enabled

the extraction of the momentum-resolved structure of the subdominant interaction,

providing indications for an orbital-dependent inter-band nesting scenario.

These results motivated a systematic, doping-dependent study of the superconduct-

ing state in Ba1−xKxFe2As2 in the range 0.22 ≤ x ≤ 0.70. BS modes were clearly

identified in a range close to optimal doping, 0.35 ≤ x ≤ 0.48. Samples of sev-

eral doping concentrations showed, that two subdominant d-wave interactions are

present. As a function of increasing doping a continuous increase of the subdomi-

nant coupling strengths with respect to the leading s-wave strength was observed,

111
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reaching up to 90%. Both results agree well with an fRG analysis which includes all

interactions on equal footing. RPA yields similar results even though only the spin

channel is dominant in this model. The agreement of experiment, fRG and RPA led

to the conclusion that spin fluctuations dominate the pairing.

Inspired by this result, critical fluctuations above the spin-density wave phase were

investigated in Ba0.78K0.22Fe2As2 and Ba(Fe1−yCoy)2As2. The selection rules, the

spectral shape and the persistence of the fluctuations in the nematic phase argue for

spin rather than orbital or charge fluctuations. The comparison of the experimen-

tal results with a theoretical model description based on higher-order fluctuation-

exchange processes enabled the extraction of the temperature and doping depen-

dence of the nematic order parameter, the correlation length and the spectral weight

of the fluctuations. The order of the transitions into the spin-density-wave and the

nematic phase could be determined. It was found that nematic order is established

continuously and not abruptly below the structural transition temperature. The

investigation of the correlation length indicated the existence of a quantum critical

point. The analysis of the strength of the fluctuations did not reflect the asymmetry

between hole and electron doping. Rather a universal dependence on the structural

transition temperature was found irrespective of hole and electron doping. If the

structural transition temperature was decreased as a function of doping an increase

of the strength of the fluctuations was detected inferring the existence of a quantum

critical point close to the doping level with the highest superconducting transition

temperature Tc.

Along with the electronic properties the doping dependence of optical phonons was

investigated. The in-plane shear mode of the Fe and As atoms with Eg symmetry

decreases monotonically upon doping roughly reflecting the change of the lattice

parameters and bond angles. The out-of-plane Fe phonon with B1g symmetry de-

pends non-monotonically on doping, and the energy and the width have a minimum

and, respectively, maximum at optimal doping. The anomaly is clearly observable

already in the normal state and becomes stronger below Tc indicating that interac-

tions intertwined with Cooper pairing couple to the phonons.
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Appendix

7.1 Selection rules in the case of spin fluctuations

The Raman selection rules for AL processes as described in Eq. 4.6 will be applied to

spin fluctuations with the critical vectors qc ∈ {(±π, 0), (0,±π)} [73, 108, 125, 145].

A finite response can only be expected in symmetries µ where
∑

k0
γµ(k0) is finite

with γµ(k0) being the Raman vertex at the hot spot k0.

The case for qc = (π, 0) is illustrated in Fig. 7.1. Four hot spots are highlighted in

(a)

kx

ky

B1g

(b)
B2gA1g

(c) (d)

+-

Figure 7.1: Selection rules of AL processes adopted from Refs. [73, 125]. (a) The critical
vector qc = (π, 0) defines the hot spots at k0 on the FS. For illustration, the electron
pocket (black) is shifted on top of the hole pocket (grey) by (−π, 0). The intersections
(yellow ellipses) mark the hot spots. (b) illustrates the signs of the s± Raman vertex in
A1g symmetry with positive (red) and negative (blue) areas. Fig. 5.3 shows that the s±

symmetry is preferred here. (c,d) Signs of the first order B2g and B1g Raman vertices. A
selection of hot spots (which is sufficient for the analysis) at k0 is shown along with the
connecting vectors qc.

each symmetry A1g, B2g, and B1g. The summation as in Eq. 4.6 yields a cancellation

in A1g and B2g symmetries as the Raman vertex changes sign at different hot spots.

The sign is preserved only in B1g. Hence, in the case of spin fluctuations, a response

from AL processes can only be expected in B1g symmetry.

113
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7.2 Resonances in Ba0.6K0.4Fe2As2

The effective mass approximation as used in Eqs. 5.1, 5.3, and 5.2 is only valid if

resonances do not play a significant role. Resonances are likely to occur in iron-

based superconductors having a bandwidth of about 3 eV [98, 201] (visible light is

ranging from 1.8 eV to 3.2 eV). To study the influence of resonances for the Raman

spectra of Ba0.6K0.4Fe2As2 measurements with different excitation wavelength were
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Figure 7.2: Difference spectra obtained with various excitation energies. Excitation wave-
lengths of 458 nm, 514 nm, 532 nm [47], and 575 nm were used. The colors approximately
refer to those of the incident light.

performed.

Fig. 7.2 shows difference spectra in all symmetries for incident photons with a wave-

length of 575 nm (yellow) and 532 nm (green) [47]. Spectra measured with 514 nm

(green) and 458 nm (blue) were recorded just for B1g symmetry. The A1g and B2g

spectra are nearly identical, the B1g spectra vary as a function of excitation wave-
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length. Three peaks are visible in B1g for all excitation energies. Whereas the

intensities of the peaks change considerably the line shape and position remain sim-

ilar for green and yellow photons. The largest change is observed for blue photons.

Here the pair-breaking peak and the peak at 80 cm−1 are much broader.

This leads to the conclusion that resonances may play a role for blue photons but are

insignificant for excitation energies lower than 2.4 eV (514 nm). Hence the effective

mass approximation is valid for green and yellow photons. Excitation energies other

than 514 nm and 575 nm were not used in this work.

7.3 Symmetry analysis in Ba1−xKxFe2As2 (0.35 ≤ x ≤
0.70)

Setting the polarizations of the incident (ei) and scattered (es) light parallel to the

ab plane always yields two of the even symmetries A1g, A2g, B1g, and B2g. Despite

of the rapid aging of the sample surface in the case of Ba1−xKxFe2As2, satisfactory

statistics and a complete symmetry analysis could be achieved by measurements in

the polarization configurations (eies) ∈ {xx, x′y′, RL,RR} [55].

The resulting spectra of the bare symmetries, as obtained from linear combinations

of the measured spectra, are shown in Fig. 7.3. The response in A2g symmetry in

Fig. 7.3(c4-h4) is smaller than in the other symmetries, independent of temperature,

and structureless. The temperature independence justifies the identification of the

difference spectra ∆Rχ′′(Ω) = Rχ′′(Ω, T � Tc) − Rχ′′(Ω, T & Tc), for which the

pure symmetries were not derived, with the bare symmetries. No signatures of chiral

excitations, as isolated by the A2g symmetry, are observed in the examined energy

range [55, 262].
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Figure 7.3: Symmetry analysis of the spectra obtained from Ba1−xKxFe2As2. The bare
symmetries B1g (c1-h1), B2g (c2-h2), A1g (c3-h3), and A2g (c4-h4) are shown in the doping
range 0.35 ≤ x ≤ 0.70. The applied subtraction procedure yielding these symmetries
generates an artifact at 210 cm−1, which results from the large intensity of the Fe B1g

phonon (appearing in B2g symmetry as the 1 Fe unit cell is used here).
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7.4 Relative strength of competing interactions

In Ba1−xKxFe2As2 around optimal doping three peaks appear in the B1g Raman

spectra in the superconducting state, two BS modes and a pair-breaking peak. The

following discussion will explain, how the ratios λd(i)/λs for the corresponding sub-

dominant channels (i = 1, 2) are determined.

It will be shown, that λd(i)/λs is mainly determined by the pairing in the particle-

particle (Cooper) channel. The changes induced by the inclusion of the particle-hole

(zero-sound) interaction will also be studied as a function of the dominant pairing

interaction λs. Furthermore, the validity of the approximation [47, 162]

E
(i)
B

2∆
= 1−

ΩBS(i)

2∆
≈
(λd(i)

λs

)2

(7.1)

will be scrutinized.

In general, Eq. 5.10 determines the ratio λd(i)/λs for a given λs. Hence for a

vanishing zero-sound coupling λ
(i)
z = 0 and the simplification η(i) ≡ 〈g2

(i)(k)〉 = 1 the

equation [46]
ΩBS(i)√

(2∆)2 − Ω2
BS(i)

sin−1
(ΩBS(i)

2∆

)
=

1

λd(i)

− 1

λs
(7.2)

holds.

This changes to [45]

ΩBS(i)√
(2∆)2 − Ω2

BS(i)

sin−1
(ΩBS(i)

2∆

)
=

[
−

λd(i)

Ω2
BS(i)

(2∆)2 +
1

1
λd(i)
− 1

λs

]−1

(7.3)

if the zero-sound channel is included according to BCS approximation, λ
(i)
z = −λd(i)

[45].

The relation between ΩBS(i)/2∆ and λd(i)/λs is shown in Fig. 7.4 for values of λs

ranging from 0.14 to 1.0 using the three equations above. The range 0.14 ≤ λs ≤ 1

is used since 0.14 is the result of the weak-coupling microsopic theories and 1 is

expected from the Tc values [49, 51]. It is obvious, that only Eq. 7.1 is independent

of λs. This approximation matches the result from Eq. 7.2 very well for small λd(i)/λs

and values of λs close to 1. For decreasing λs, the results increasingly deviate from

one other.

Fig. 7.4 shows that Eq. 7.2 and 7.3 yield similar results for small λs and different

yet comparable results for increasing λs. This justifies neglecting λ
(i)
z .
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For the current analysis, λs = 0.7 is chosen to determine λd/λs from the experiment

as shown in Fig. 7.4(b). Both fRG and RPA yield smaller values of λs close to 0.14,

see Fig. 7.4(a). But even with λs = 0.14 the qualitative results obtained in Section

5.2 remain valid. The discrepancy comes from the tendency of fRG and RPA to

underestimate the absolute coupling parameters λs/d(i) and Tc.
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0.0

0.5

1.0
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pi = 2
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2∆
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z
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(a)

λs = 0.14

λd /λs

Figure 7.4: Determination of the relative pairing interaction λd(i)/λs. The BS modes at
ΩBS1 and ΩBS2 are indicated by the green and orange lines, respectively. The pair-breaking
peak defines 2∆. This example is applied to the peak positions of Ba0.6K0.4Fe2As2 in B1g

symmetry. The relation between ΩBS(i)/2∆ and λd(i)/λs is defined by Eq. 7.1, 7.2, and
7.3 yielding the approximation “a”, the result for a vanishing zero-sound coupling “p”,

and “z” in the BCS case λ
(i)
z = −λd(i). For the choice of λs = 0.7 with the relation “p”,

the ratio λd(i)/λs is defined by the open symbols in (b), corresponding to BS1 (green) and
BS2 (orange).

7.5 Determination of TSDW in Ba(Fe0.949Co0.051)2As2

In Ba(Fe0.949Co0.051)2As2, the structural transition temperature Ts = 60.9 K was

determined by the appearance of stripes below Ts. The SDW transition temper-

ature TSDW can be extracted from the development of the Raman spectra in the

temperature range 23 K≤ T ≤ 61.6 K. The Raman spectra of B1g symmetry in this

temperature range are presented in Fig. 7.5. It is observed that the intensity of the

Raman spectra continuously decreases in the range up to about 250 cm−1 upon low-

ering temperature. This is the case for all the spectra in the examined temperature

range and makes it difficult to pin down TSDW.

Therefore several experimental parameters were analyzed quantitatively. First the

decrease of continuum intensity was quantified by an integral in the range from

15 cm−1 to 130 cm−1. Instead of integrating up to 250 cm−1, a smaller energy range
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Figure 7.5: Determination of TSDW. (a) and (b) show the Raman spectra in B1g symmetry
above and below 49.5 K, respectively. (c) compiles the development of the area A(T ) below
the spectra as a function of temperature. As an example, A(23 K) is illustrated in (b) by
the grey area. (d) shows the static relaxation rate Γ0(T ). (e) displays the spectral weight
of the As phonon at 175 cm−1 as indicated by the dark cyan arrow in (b). The results
are adopted from Ref. [134]. The transition temperature TSDW = 49.5 K and Ts=60.9 K
are illustrated by dashed black lines, separating the SDW region (grey) from the nematic
region (magenta) and the region with fluctuations (green) as in Fig. 2.1.

was chosen, as the intensity of the phonon appearing above 130 cm−1 exhibits an op-

posite temperature dependence. The integral yields a temperature dependent area

A(T ) as shown in Fig. 7.5(c). The decrease of A(T ) with lowering temperature

shows a clear kink at 49.5 K. The slope dA/dt above 49.5 K is larger than below.

Without going into detail, the fast decrease above 49.5 K is associated with the re-

duction of fluctuations, whereas the slow decrease below 49.5 K is assigned to the

opening of the SDW gap. When a gap ∆SDW opens, the intensity below 2∆SDW is

suppressed, wheres the intensity above is enhanced, as a minimum energy of 2∆SDW

must be supplied to lift an electron above the gap. Such scattering processes are

just possible for energies greater than 2∆SDW. In fact, a slight but visible increase

of intensity in the energy range above the black arrow in Fig. 7.5(b) is observed.

This happens for the spectra below 49.5 K with respect to the spectrum at 49.5 K.

This is not the case above 49.5 K. Both observations hint towards TSDW = 49.5 K.

This is supported by the anomaly in the static relaxation rate (see App. 7.6) as

shown in Fig. 7.5(d). A discontinuity is observed close to 49.5 K.
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Similarly as the continuum and the initial slope the change of the spectral weight

(integrated intensity) of the As A1g phonon develops discontinuously at TSDW as

shown in Fig. 7.5(e). The spectral weight itself has a kink at 49.5 K as desribed in

detail in Ref. [134].

In summary, the SDW transition temperature at 49.5 K manifests itself in three

independent anomalies. Whereas the first anomaly can be explained in terms of the

SDW gap, the detailed description of the other two other is missing.

7.6 Relaxation rates

Relaxation rates Γ(Ω) are extracted from the Raman spectra and serve two purposes

in the current analysis: (i) The temperature Tf , below which fluctuations emerge, is

determined, and (ii) a comparison with the in-plane resistivity helps to disentangle

the contribution from fluctuations and electron-hole excitations in the B1g Raman

spectra. In both cases only the static relaxation rate Γ0 ≡ Γ(Ω→ 0) is of interest.

The memory function approach yields [240, 241]

Γ(Ω) =
χ̄′′(Ω)

[χ̄′′(Ω)]2 + [ΩK(Ω)]2
(7.4)

with χ̄′′(Ω) ≡ χ′′(Ω)/Ω and the Kramers-Krönig transform K(Ω) of χ̄′′(Ω). The

resulting frequency-dependent relaxation rate is fitted by the function

Γ(Ω) ≈ a
b+ cΩ2

a+ b+ cΩ2
(7.5)

with the fitting parameters a, b and c, yielding Γ0 = ab/(a+b). A detailed description

and analysis is given in Refs. [73, 74, 124, 125, 134, 135, 240, 241].

The results are compiled in Fig. 7.6. In a Drude model, the resistivity in the

ab-plane ρab(T ) is related to Γ0(T ) by [240]

Γ0(T ) = 1.08ω2
pl ρab(T ) (7.6)

with the plasma frequency ωpl in eV and ρab in µΩcm. It is observed that Γ0(T )

as extracted from the spectra in A1g symmetry follows by and large the resistivity

ρab(T ). The same holds for B1g symmetry above Tf . Below Tf the emergence of a

new scattering channel causes Γ0(T ) of B1g to decrease faster than Γ0(T ) of A1g and

ρab(T ). This determines the onset of fluctuations.

To explain the resistivity above Tf the Raman vertices are scrutinized. The momentum-
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dependence of the Raman vertices in A1g and B1g symmetry (see Fig. 5.3) shows

that only the electron pockets are highlighted in B1g symmetry, whereas both hole

and electron pockets contribute in A1g symmetry. Hence the coincidence of Γ0(T ) in

A1g and B1g symmetry suggest that the resistivity is mainly related to the electron

pockets. The influence from the hole pockets is small.

7.7 Analysis of the phonon anomaly

In addition to the electronic response the frequencies and line widths (FWHM) were

derived from the spectra of Ba1−xKxFe2As2. To extract these values, a Voigt fit was
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Figure 7.7: Voigt fits to the phonons in
Ba1−xKxFe2As2. Data points and fits
are shown in the superconducting (blue)
and normal (red) state.

applied to the response in B1g symmetry

(here with respect to the crystallographic

unit cell). Fig. 7.7 presents the spectra as

data points in the range from 200 cm−1 to

235 cm−1. In this range, the Voigt fit ac-

cording to the function

V (Ω) = (L ∗G)(Ω) (7.7)

with the Lorentzian function L(Ω) and the

Gaussian function G(Ω) was applied to the

phonon. The Voigt function is a convolu-

tion of a Gaussian for the resolution of the

instrument and a Lorentzian for the phonon.

Contributions from the electronic continuum

were approximated by a linear function. Ac-

cording to the resolution of the spectrom-

eter, the Gaussian width of the Voigt fit

was set to 5 cm−1. The agreement of the fit

with the data shows, that the phonons are

symmetrically centered around their peak

frequencies. The simple superposition of

phonon contribution and electronic continuum indicates a weak electron-phonon

coupling. Otherwise an assymmetric shape described by a Fano function would be

observable [264–266]. This phonon can hence be considered as a probe of certain

effects as elucidated in Section 5.4.
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J. Schmalian, S. Caprara, M. Grilli, C. Di Castro, J. G. Analytis, J.-H. Chu,

I. R. Fisher, and R. Hackl, Nature Physics 12, 560 (2016).
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B. Büchner, M. S. Viazovska, G. L. Sun, V. Hinkov, A. V. Boris, C. T. Lin,

B. Keimer, A. Varykhalov, A. A. Kordyuk, and S. V. Borisenko, Physical

Review B 79, 054517 (2009).

[77] S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New Journal of

Physics 11, 025016 (2009).

[78] A. F. Kemper, T. A. Maier, S. Graser, H.-P. Cheng, P. J. Hirschfeld, and

D. J. Scalapino, New Journal of Physics 12, 073030 (2010).

[79] T. Sato, K. Nakayama, Y. Sekiba, P. Richard, Y.-M. Xu, S. Souma, T. Taka-

hashi, G. F. Chen, J. L. Luo, N. L. Wang, and H. Ding, Physical Review

Letters 103, 047002 (2009).

[80] N. Xu, P. Richard, X. Shi, A. van Roekeghem, T. Qian, E. Razzoli, E. Rienks,

G.-F. Chen, E. Ieki, K. Nakayama, T. Sato, T. Takahashi, M. Shi, and

H. Ding, Physical Review B 88, 220508 (2013).

[81] H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T. Takahashi, M. Ne-

upane, Y.-M. Xu, Z.-H. Pan, A. V. Fedorov, Z. Wang, X. Dai, Z. Fang, G. F.

Chen, J. L. Luo, and N. L. Wang, Journal of Physics: Condensed Matter 23,

135701 (2011).

[82] M. Yi, D. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, B. Moritz,

S.-K. Mo, R. G. Moore, M. Hashimoto, W.-S. Lee, Z. Hussain, T. P. Dev-

ereaux, I. R. Fisher, and Z.-X. Shen, Proceedings of the National Academy

of Sciences 108, 6878 (2011).

[83] K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato,

P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Taka-

hashi, Proceedings of the National Academy of Sciences 106, 7330 (2009).

[84] Y. Sekiba, T. Sato, K. Nakayama, K. Terashima, P. Richard, J. H. Bowen,

H. Ding, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, and T Takahashi, New

Journal of Physics 11, 025020 (2009).

[85] V. B. Zabolotnyy, D. S. Inosov, D. V. Evtushinsky, A. Koitzsch, A. A. Ko-

rdyuk, G. L. Sun, J. T. Park, D. Haug, V. Hinkov, A. V. Boris, C. T. Lin,

M. Knupfer, A. N. Yaresko, B. Büchner, A. Varykhalov, R. Follath, and S. V.

Borisenko, Nature 457, 569 (2009).

http://dx.doi.org/ 10.1103/PhysRevB.79.054517
http://dx.doi.org/ 10.1103/PhysRevB.79.054517
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/ 10.1088/1367-2630/12/7/073030
http://dx.doi.org/10.1103/PhysRevLett.103.047002
http://dx.doi.org/10.1103/PhysRevLett.103.047002
http://dx.doi.org/ 10.1103/PhysRevB.88.220508
http://dx.doi.org/10.1088/0953-8984/23/13/135701
http://dx.doi.org/10.1088/0953-8984/23/13/135701
http://dx.doi.org/ 10.1073/pnas.1015572108
http://dx.doi.org/ 10.1073/pnas.1015572108
http://dx.doi.org/ 10.1073/pnas.0900469106
http://dx.doi.org/ 10.1088/1367-2630/11/2/025020
http://dx.doi.org/ 10.1088/1367-2630/11/2/025020
http://dx.doi.org/10.1038/nature07714


BIBLIOGRAPHY 129

[86] Q. Si and E. Abrahams, Physical Review Letters 101, 076401 (2008).

[87] K. Seo, B. A. Bernevig, and J. Hu, Physical Review Letters 101, 206404

(2008).

[88] R. Yu and A. H. Nevidomskyy, Journal of Physics: Condensed Matter 28,

495702 (2016).

[89] P. Goswami, P. Nikolic, and Q. Si, EPL (Europhysics Letters) 91, 37006

(2010).

[90] N. E. Bickers, D. J. Scalapino, and S. R. White, Physical Review Letters 62,

961 (1989).

[91] N. Qureshi, P. Steffens, S. Wurmehl, S. Aswartham, B. Büchner, and
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G. F. Chen, N. L. Wang, and J. L. Luo, EPL (Europhysics Letters) 87, 37001

(2009).

[205] D. Parker, M. G. Vavilov, A. V. Chubukov, and I. I. Mazin, Physical Review

B 80, 100508 (2009).

[206] S. Maiti, R. M. Fernandes, and A. V. Chubukov, Physical Review B 85,

144527 (2012).

[207] J. G. Analytis, R. D. McDonald, J.-H. Chu, S. C. Riggs, A. F. Bangura,

C. Kucharczyk, M. Johannes, and I. R. Fisher, Physical Review B 80, 064507

(2009).

[208] J.-P. Reid, M. A. Tanatar, X. G. Luo, H. Shakeripour, S. R. de Cotret,

A. Juneau-Fecteau, J. Chang, B. Shen, H.-H. Wen, H. Kim, R. Prozorov,

N. Doiron-Leyraud, and L. Taillefer, Physical Review B 93, 214519 (2016).

[209] E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts,

B. Banusch, H.-H. Klauss, and D. Johrendt, Physical Review Letters 107,

237001 (2011).

[210] A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Physical Review B 81,

174538 (2010).

[211] C. Kant, J. Deisenhofer, A. Günther, F. Schrettle, A. Loidl, M. Rotter, and

D. Johrendt, Physical Review B 81, 014529 (2010).
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