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1. Introduction

Since at least when the giant magnetoresistance in magnetic multilayers was discovered in
1988, the vast opportunities by utilizing the spin degree of freedom in information technol-
ogy started to emerge [1, 2]. Form that point on, a lot of research was conducted in the field
of spin-based electronics investigating the influence of the spin on the conductivity of elec-
trons. Together with further development of thin film fabrication techniques, this resulted
in the great success of the hard disk drive, which is part of the everyday life today [3]. An-
other prominent example of modern spin-based electronics is represented by the successful
development of the magnetic random access memory, which is a non-volatile memory and
is commercially available since 2006 [4]. Nowadays, the modern research field spintronics,
which further evolved from those great scientific findings, investigates spin currents car-
ried by magnons, spin-triplet supercurrents, superconducting quasi-particles and so on [5].
One of the major research objectives is the improvement of modern electronics in terms of
computational speed and energy efficiency by building spin current based logical devices.
Therefore, further improvements of the generation, the detection and the manipulation of
pure spin currents are mandatory.

An important mechanism for the generation of spin currents is the spin Hall effect, which
was theoretically predicted in 1971 and experimentally verified in 2004 [6–8]. The spin Hall
effect describes the process which converts a charge current partially into a transverse spin
current in heavy metals with strong spin-orbit coupling. Furthermore, the inverse spin
Hall effect, which originates from identical microscopic mechanisms as the spin Hall effect,
describes the partially conversion of a spin current into a transverse charge current. Thus,
the spin Hall effect together with the inverse spin Hall effect are important mechanisms
for the detection and generation of spin currents. Additionally, the spin Seebeck effect de-
scribes a further generation mechanism for spin currents which are thermally activated by
a temperature gradient across the interface of an magnetically ordered insulator (MI) and
an adjacent heavy metal (HM) [9]. The spin Seebeck effect is the most important thermo-
electric effect in the new field of spin caloritronics describing the interaction of heat and
spin currents [10].

Recently, the non-local transport properties of magnons in magnetically ordered insula-
tors have drawn the attention of today’s research. So far it was shown, that the diffu-
sive magnon transport through a magnetically ordered insulator e.g. Y3Fe5O12 [11] and
Gd3Fe5O12 [12] can be measured and controlled over distances of up to 40µm. These impor-
tant findings provide the foundation for three terminal magnon based devices [13], which
are a promising candidate for logical spin current based devices. Analogously to electrons,
magnons which contribute to diffusive spin currents behave according to the spin wave
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2 Introduction

dispersion relation, i.e. the magnon band structure of the magnetically ordered insula-
tor. Thus, a detailed knowledge of the spin wave dispersion relation of a wide range of
magnetically ordered material systems is mandatory for the progress towards logical spin
current based devices. This is the mainspring of this work, which focuses on the relation of
the spin Seebeck effect in Tb3Fe5O12|Pt heterostructures to the spin wave dispersion rela-
tion of Tb3Fe5O12. The aim of this thesis is the experimental verification of this connection,
which consequently proposes the spin Seebeck effect as a probe of the spin wave dispersion
relation of magnetically ordered insulators. This would result in a simplified experimental
accessibility of key properties of the spin wave dispersion relation via spin Seebeck effect
experiments.

Up to now, the temperature profile of the amplitude of the spin Seebeck effect was con-
nected to calculated spin wave dispersion relations in Y3Fe5O12 [14, 15] and Gd3Fe5O12

[16]. The ferrimagnetic insulator Y3Fe5O12 is a prominent candidate for magnon based
experiments due to its quasi-ferromagnetic behavior originating from two strongly antifer-
romagnetically coupled magnetic sublattices together with its record low Gilbert-damping.
This results in a simple one-band spin wave dispersion relation up to 25 meV and a positive
spin Seebeck effect amplitude in Y3Fe5O12|Pt heterostructures up to room temperature. On
the other hand, the compensated ferrimagnetic insulator Gd3Fe5O12 which consists of three
antiferromagnetically coupled magnetic sublattices exhibits a more complicated spin wave
dispersion relation. Thus, the temperature profile of the spin Seebeck effect amplitude in
Gd3Fe5O12|Pt heterostructures is non-monotonic up to room temperature and addition-
ally shows two sign changes [16]. Both temperature profiles of the spin Seebeck effect have
been explained using calculated spin wave dispersion relations but these dispersion rela-
tions have not yet been experimentally verified.

Within this work, the compensated ferrimagnetic insulator Tb3Fe5O12 is used as showcase
material system. Tb3Fe5O12 is similar to Gd3Fe5O12 with three antiferromagnetically cou-
pled magnetic sublattices. Since Gd has a large cross section to capture thermal neutrons
[17], Tb3Fe5O12 is chosen to allow for inelastic neutron scattering experiments. As a first
step, the spin wave dispersion relation is determined experimentally by inelastic neutron
scattering with polarization analysis on a Tb3Fe5O12 single crystal at temperatures between
10 K and 280 K. With the experimentally obtained data, the full spin wave dispersion rela-
tion is simulated using the software package SpinW. This spin wave dispersion relation is
then connected to the temperature profile of the spin Seebeck effect in Tb3Fe5O12|Pt het-
rostructures. Overall, this work aims to provide the experimental proof for the already
proposed connection of the temperature profile of the spin Seebeck effect amplitude to the
spin wave dispersion relation.

This work consists of 6 chapters and is structured as follows: In chapter 2, the theory of
spin currents and the spin Seebeck effect is summarized. Additionally, the material proper-
ties and crystallographic structure of the discussed material systems Y3Fe5O12, Gd3Fe5O12

and Tb3Fe5O12 are presented. Chapter 3 then outlines the theory of inelastic neutron scat-
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Introduction 3

tering experiments with polarization analysis. Subsequently, the experimental results of
inelastic neutron scattering with polarization analysis on a Tb3Fe5O12 single crystal at
temperatures between 10 K and 280 K are presented and discussed. Chapter 4 focuses
on SpinW-simulations of the full spin wave dispersion relation of Y3Fe5O12, Gd3Fe5O12

and Tb3Fe5O12. This results in a full description of the spin wave dispersion relation of
Tb3Fe5O12 from 10 K to 280 K. The experimental procedure and sample preparation for
spin Seebeck effect experiments is described in chapter 5. The obtained temperature profile
of the spin Seebeck effect amplitude in Tb3Fe5O12 single crystal|Pt heterostructures is then
connected to the spin wave dispersion relation. Additionally, experiments on Tb3Fe5O12

thin film|Pt heterostructures are discussed in detail. Chapter 6 summarizes the results ob-
tained within this work and gives an outlook on future investigations in context with the
spin Seebeck effect and its connection to the spin wave dispersion relation.
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2. Theory

This chapter outlines the theoretical foundations of this work. In the first part, an intu-
itive model is introduced to describe spin currents in electrically conducting materials. The
second part describes the spin Hall effect and its inverse, which is used as a spin current
detection mechanism. Subsequently, the theory behind the spin Seebeck effect is summa-
rized and a qualitative expectation of the signal in field-dependent and angle-dependent
spin Seebeck experiments is given. The last part of this chapter describes the key physical
properties of rare-earth iron garnets, which are used as a sample system to gain insight into
the connection between the spin Seebeck effect and the magnon dispersion relation.

2.1. Spin currents

Electrons do not only carry the charge q = −e but also the intrinsic angular momentum s =

±~
2 , the spin. Due to the quantization of space, this spin can only align parallel (s = ~

2 = ↑)
or anti-parallel (s = −~

2 = ↓) relative to a quantization axis. Thus, a full description of
electronic currents needs to include the transport of angular momentum next to the charge
transport. To cover this, Mott’s two channel model will be introduced here [18].
Within the two channel model, a charge current JC is described as the sum of two fully
spin polarized charge currents:

JC = J↑ + J↓ , (2.1)

where each current or channel (J↑, J↓) describes the charge current carried by electrons
with s = ±~

2 , respectively.
A pure charge current within this model consists of two equal sized fully spin polarized
currents (J↑ = J↓) (see Fig. 2.1.1 (a)). If the two channels have different absolute values
(|J↑| 6= |J↓|), the model describes a spin polarized current, which transports electronic
charge as well as spin angular momentum (see Fig. 2.1.1 (b)). The size of the spin current
JS, which is flowing parallel or anti-parallel to the charge current, is proportional to the
difference of the two channels (J↑ − J↓):

JS = − ~
2e

(J↑ − J↓) . (2.2)

Therefore, in this simple two channel model, a pure spin current consists of two equal sized
channels flowing in opposite directions (J↑ = −J↓) (see Fig. 2.1.1 (c)).
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6 Theory

J↑ J↑
J↓ J↓

= = =

(a) Pure charge current (b) Spin-polarized current (c) Pure spin current

Js
Js

JcJc

J↓

J↑

Figure 2.1.1.: Two channel model: (a) Pure charge current: the charge current is carried by s = ↑
and s = ↓ electrons in equal amounts. (b) Spin polarized current: the charge
current is mainly carried by s = ↑ electrons. This current transports charge and
spin angular momentum. (c) Pure spin current: s =↑ electrons and s =↓ electrons
are moving in equal amounts in opposite direction. Only spin angular momentum
is transported. Figure taken from Ref. [18].

The two channel model for spin currents can give an intuitive understanding of spin cur-
rents, but is only suitable for metals, where the spin current is carried by electrons.
In the framework of this thesis, we will discuss spin currents in ferrimagnetic insulators in
detail. In those material systems, spin currents are carried by magnons. Magnons are the
quasi-particle excitations of the magnetically ordered ground state of electron spins and
can propagate through ordered spin systems according to their dispersion relation. Here,
we will investigate the propagation of magnons in ferrimagnetic insulators caused by ther-
mal excitation. The application of a finite temperature difference across the sample volume
causes a finite temperature gradient ∇T . This temperature gradient leads to a finite gradi-
ent in the chemical potential of magnons, the so-called spin chemical potential∇µS, which
is resulting in a diffusive spin current

JS =
~
2
σS · ∇µS (2.3)

parallel to the gradient in a closed boundary condition. The characteristics of this diffu-
sive spin current are depending on the spin conductivity σS and the level of the chemical
potential within the magnon dispersion relation. Thus, the characteristics can be tuned
by experiments at different temperatures and with different materials. This work focuses
on the group of the rare-earth iron garnets, since these material systems offer non-trivial
magnon dipersion relations, long spin diffusion lengths and high spin conductivities σS.

2.2. Spin Hall effect

The spin Hall effect offers a possibility to generate spin currents in metals with large spin
orbit coupling. Therefore, this effect is large in heavy metals such as Platinum.
Due to the spin Hall effect, a charge current JC propagating through a heavy metal gets
partially transformed into a transverse spin current JS parametrized by

JS = ΘSH

(
− ~

2e

)
[JC × s] . (2.4)
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Theory 7

Here, s is the spin polarization and ΘSH = σSH
σ is the dimensionless spin Hall angle, which

is the ratio of the spin hall conductivity σSH and the electrical conductivity σ and deter-
mines the efficiency of the charge to spin current conversion. For the heavy metal Platinum,
the spin Hall angle is ΘSH = 0.11.

(a) (b)

Js

Js

Jc

Jc

Figure 2.2.1.: (a) Spin Hall effect: A charge current JC propagating through a heavy metal with
large spin orbit coupling is partially converted to a transverse spin current JS. (b)
Inverse spin Hall effect: A spin current JS is partially converted to a transverse
charge current JC. Both effects originate from the same microscopic mechanisms.
Figure taken from Ref. [18].

There are three main mechanisms underlying the spin Hall effect. Two of them, the side-
jump scattering and the skew scattering, are extrinsic and describe spin dependent scatter-
ing. The third mechanism is intrinsic and arising from the electronic band structure, which
leads to spin dependent deflection of electrons [19].
The reciprocal effect is called the inverse spin Hall effect. Due to the inverse spin Hall effect,
a spin current JS propagating through a heavy metal with large spin orbit coupling gets
partially converted into a transverse charge current JC, orthogonal to the spin polarization
s of the spin current:

JC = ΘSH

(
−2e

~

)
[JS × s] . (2.5)

The inverse spin Hall effect is providing a method to detect and quantify spin currents
in an adjacent magnetic material. In this work, the inverse spin Hall effect is used to in-
vestigate the characteristics of spin currents in rare-earth iron garnets via a simple voltage
measurement in an open boundary condition within the adjacent platinum layer.
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8 Theory

2.3. Spin Seebeck effect

The spin Seebeck effect provides another possibility to generate spin currents. In contrary
to the spin Hall effect, a heavy metal|magnetic insulator (HM|MI) interface with a temper-
ature gradient parallel to the interface normal is mandatory, which results in a spin current
propagating through the HM|MI interface.

2.3.1. Theory of the spin Seebeck effect

In this section, a brief summary of the theory behind the spin Seebeck effect, according to
the work of Hoffman et al. is presented [20].
The dynamics inside the bulk of a magnetic material at temperatures well below the Curie
temperature are described by the Landau-Lifshitz-Gilbert (LLG) equation in the following
form:

∂tm = −γm× (Heff + hl) + αm× ∂tm . (2.6)

Here, m = M/Ms is the unit-vector of the magnetization direction with the saturation
magnetization MS, Heff the effective magnetic field acting on the magnetization M, hl a
random ’white’ field accounting for stochastic fluctuations according to the fluctuation-
dissipation theorem, γ the gyromagnetic ratio and α the Gilbert-damping. The effective
magnetic field

Heff = Hext · ez +Ax∇2m (2.7)

within this theory consists of the external magnetic field Hext = Hextez along the z-direction
and the exchange field Ax∇2m. The random Langevin field hl hereby is described by the
correlator

< hl,i(r, t)hl,j(r
′, t′) >=

2α

γMs
kBT (r)δijδ(r− r′)δ(t− t′) . (2.8)

The following part outlines the theory within the classical limit ~ω < kBT . In the first step
the LLG equation is transformed into a spin density representation by application of the
following transformation:

s = sn = −MS

γ
m . (2.9)

In this representation, s = MS/γ describes the saturated spin density and n = −m its
polarization direction. After the transformation, the LLG equation has the form

s(1 + αn×)∂tn + n× (Hz + h) + ∂iJs,i = 0 (2.10)

where
Js,i = −An× ∂in (2.11)

is defined as the spin current density in i-direction (i = x, y, z) and h is the random magnetic
field taking thermal and quantum fluctuations into account, equivalent to Eq. (2.8). The
magnetic field is redefined as H = MSHext and the exchange field as A = MSAx = Axs/γ.
The experimental setup which is considered within this theory is shown in Fig. 2.3.1. The
trilayer heavy metal 1|ferromagnetic insulator|heavy metal 2 (HM1|FMI|HM2) struc-

8



Theory 9

ture is built up of a ferromagnetic insulator with thickness d sandwiched between a heavy
metal, which is a very poor spin sink (HM1) and thus does not allow any spin current
across the HM1|F interface, and a heavy metal 2, which is a perfect spin sink and thus
allows the electrons to thermalize with the magnons inside the ferromagnet.

Hext y

z

x

n

0 d

HM1 FMI HM2

T1 T2

Js1 Js2

Figure 2.3.1.: Setup considered by Hoffman et al.. The trilayer structure consists of a ferromag-
netic insulator (FMI) sandwiched between a heavy metal (HM1) which is a poor
spin sink such that Js1 = 0 and a heavy metal (HM2) which is an ideal spin sink
resulting in Js ≈ Js,2. The force driving the spin current originates from a con-
stant thermal gradient applied across the ferromagnetic insulator in x-direction.
The external magnetic field Hext is considered to be along the z-direction. Figure
adapted from Ref. [20].

The temperature gradient ∇T = dxT (x)x driving the spin Seebeck effect is parametrized
as

T (x) = T1 +
x

d
(T2 − T1) , (2.12)

assuming that the magnon-phonon scattering is the main contribution to the Gilber damp-
ing α.
The resulting boundary conditions for the setup shown in Fig. 2.3.1 at T → 0 are

Js,x = 0 (x = 0) (2.13)

and

Js,x =
~g↑↓

4π
n× dn

dt
(x = d) , (2.14)

which is the spin pumping current across the FMI|HM2 interface under the assumption
of HM2 being a perfect spin sink. Here, the real part of the spin-mixing conductance
g↑↓ = Re g↑↓tot describes the transparency of the FMI|HM2 interface with regard to DC
spin currents.
At finite temperatures, the boundary condition at x = d has to be modified by a stochastic
term h′, analogously to the LLG equation, yielding the modified boundary condition

A∂xn +
~g↑↓

4π
∂tn + h′ = 0 (x = d) , (2.15)

9
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where h′ describes the stochastic and thermal fluctuations at the interface.
The main outcome of a temperature gradient across the HM1|FMI|HM2 trilayer struc-
ture is a spin current across the FMI|HM2 interface, which is described by equation (2.11).
Under the assumption that the polarization of the spin current is parallel to the z-axis in
thermal average (< Js,x >= Jsz), the spin current can be rewritten by introducing a com-
plex notation n = nx − iny:

Js = A Im < n∗∂xn > |x=d . (2.16)

Due to the translational invariance within the yz-plane, this can be expressed as

Js = A Im

∫
d2qdω

(2π)3

< n∗(q, ω)∂xn(q′, ω′) >

(2π)3δ(q− q′)δ(ω − ω′)
(2.17)

where
n(q, ω) =

∫
d2ρ dt ei(ωt−q·ρ)n(ρ, d, t) (2.18)

is the Fourier transform over the in-plane coordinate ρ on the FMI|HM2 interface and
time t.
The same two-dimensional Fourier transformation is applied to the random field genera-
tors h and h′ leading to the two dimensional Fourier transformed and linearized stochastic
LLG equation

A(∂2
x − κ2)n(x,q, ω) = h(x,q, ω). (2.19)

Here, κ is defined as

κ2 = q2 +
H − (1 + iα)ω

Ax/γ
. (2.20)

The Fourier transformed boundary conditions are

A (∂x − κ′)n(x,q, ω) = −h′(q, ω) (x = d) (2.21)

and
∂xn = 0 (x = 0). (2.22)

Here, κ′ is defined as

κ′ = i
α′γω

Ax
, (2.23)

where

α′ =
~g↑↓

4πs
(2.24)

has the dimensions of length. α′/d is the enhanced Gilbert damping due to spin pumping
across the interface for a monodomain precession of the ferromagnetic layer. Equations
(2.19) to (2.22) form a closed system of differential equations, which was solved for n(q, ω)

by Hoffman et al. [20].
With the definition of the spin Seebeck coefficient

S =
Js

kB(T1 − T2)
(2.25)

and the substitution of the solution for n(q, ω) into Eq. (2.17), the final form of the spin

10
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Seebeck coefficient becomes

S =
αα′s2

8π3A2d

∫ ∞
−∞

d2q

∫ ∞
−∞

dωω(q, d)

|κ sinh(κd)− κ′cosh(κd)|2
×
[

sin2(κid)

κ2
i

+
sinh2(κrd)

κ2
r

]
, (2.26)

where κr and κi is the real and imaginary part of κ, respectively.
To account for the quantum mechanical statistics of magnons for ~ω ≈ 1/β, which are
distributed according to Bose-Einstein statistics, an additonal factor

F (β~ω) =

[
β~ω/2

sinh(β~ω/2)

]2

(2.27)

has to be taken into account. This factor effectively cuts off the contribution from magnons
with energy ~ω � kBT . This finally yields

S =
αα′s2

8π3A2d

∫ ∞
−∞

d2q

∫ ∞
−∞

dωω(q, d)F (β~ω)

|κ sinh(κd)− κ′cosh(κd)|2
×
[

sin2(κid)

κ2
i

+
sinh2(κrd)

κ2
r

]
. (2.28)

2.3.2. Spin Seebeck effect in the bulk limit

For large thicknesses, the boundary condition at the HM1|FMI interface becomes irrel-
evant, since only magnons within a distance smaller than the decay length for thermal
magnons

l =
1

α

√
~Ax

γkBT
(2.29)

from the interface contribute to the spin Seebeck effect. In rare-earth iron garnets l is ≤
10µm. In the limit d� l, we can take d →∞ for the integrand in Eq. (2.28), which gives

S =
αα′s2

8π3A2d

∫ ∞
−∞

d2q

∫ ∞
−∞

dωω(q, d)F (β~ω(q, d))

κ2
r |κ− κ′|2

. (2.30)

Within this limit, the integrand is independent of the thickness d, which yields S ∝ 1/d, as
expected. Here, the two-dimensional dispersion relation at the FMI|HM2 interface ω(q, d)

inside the integrand is related to the bulk magnon dispersion relation ω(q) [20].
In a ferrimagnetic showcase material system with two magnetic sublattices Mred and Mblue,
which are antiferromagnetically coupled with |Mred| > |Mblue|, the first, acoustic magnon
band describes the precession of the two sublattices in phase yielding a quasi-ferromagnetic
behavior with Mtot = Mred + Mblue (see red band in Fig. 2.3.2). According to Eq. (2.9) this
magnon band is described by

Mtot =
∑

i

Mi = −γtotstotntot (2.31)

with stot > 0.
The upper, optical band (see blue band in Fig. 2.3.2) is related to the precession of the
weaker magnetic sublattice, with the sublattice magnetization Mblue �� Mtot, inside the
exchange field of the stronger magnetic sublattice Mred �� Mtot leading to an energy gap
Egap at the center of the Brillouin-zone. Thus, for a showcase dispersion relation with the
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two bands, well separated in energy as shown in Fig. 2.3.2, the spin Seebeck coefficient S
can be split up into the sum of two parts

S = Sred + Sblue, (2.32)

where

Si =
αα′s2

i

8π3A2d

∫ ∞
−∞

d2q

∫ ∞
−∞

dωiωi(q, d)F (β~ωi(q, d))

κ2
r |κ− κ′|2

. (2.33)

Due to the opposite chiralities of the magnon bands resulting from Mred ��Mblue, the spin
density si is positive for the red band and negative for the blue band, yielding Sred ∝ sred >

0 and Sblue ∝ sblue < 0. At finite temperatures, the contribution of the gapped, blue mode
is exponentially suppressed for 1/β = kBT < Egap due to F (β~ω(q, d)) ∝ e−βEgap in this
temperature regime. Thus, for temperatures T < Egap/kB the contribution from the red
band dominates the total spin Seebeck coefficient S ≈ Sred. With rising temperatures, the
blue magnon mode gets populated, such that a gradual sign change at T ' Egap/kB of the
spin Seebeck coefficient is expected.

E
ne

rg
y

(a
.u

.)

Momentum (a.u.)

s > 0
s < 0

Egap

Г H

Figure 2.3.2.: Showcase dispersion relation for a ferrimagnetic material with two sublattices re-
sulting in two magnon bands with opposite chirality and thus opposite spin den-
sities si within the LLG theory of the spin Seebeck effect. The upper, blue band
is gapped by the Energy Egap at the Γ point and thus exponentially suppressed
by a factor of e−βEgap for T < Egap/kB. Similar magnon dispersion relations are
present in compensated rare-earth iron garnets.

2.3.3. Experimental accessibility of the magnon-driven spin Seebeck effect

J. Barker and G.E.W. Bauer found that the spin-spin correlation function at the interface of
a FMI|HM heterostructure is equivalent to the wave vector and frequency integral of the
power spectrum of a bulk ferrimagnet in perturbation theory:

< ∂xny nx − ∂xnx ny >=

∫∫
d3q dω ω(Sxy(q, ω)− Syx(q, ω)) (2.34)

with
Sαβ = < Mα∗(q)Mβ(q) >T,ω , (2.35)

12
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where Mα is the α-component of the local magnetization [15]. Overall, this can be con-
nected to Eq. (2.16), which yields

Js
A

= Im < n∗∂xn > |x=d ∝ Im

∫∫
d3q dω nBE(ω, kBT )ω(Sxy(q, ω)− Syx(q, ω)) (2.36)

where nBE(ω, kBT ) is the Bose-Einstein distribution for the thermal energy kBT and
(Sxy(q, ω) − Syx(q, ω)) is the power spectrum of the transverse spectral function and Js

the spin current across the FMI|HM interface. Here, nBE(ω, kBT ) is again included to ac-
count for the bosonic statistics of spin wave excitations. The bulk quantity Im(Sxy(q, ω) −
Syx(q, ω)) = −i ·(Sxy(q, ω)−Syx(q, ω)) is directly accessible via inelastic neutron scattering
with polarization analysis and can furthermore be extracted from simulations of spin wave
dispersion relations with SpinW, which both will be conducted within this work. Overall,
Eq. (2.36) states that the sign and the size of the spin current across the interface are de-
pending on the sign and the size of the power spectrum of the bulk spin wave dispersion
relation −i · (Sxy(q, ω)−Syx(q, ω)) as well as on the thermal energy kBT which defines the
statistics of the spin wave excitations within the Bose-Einstein distribution nBE(ω, kBT ).

2.3.4. Sample geometry and measurement setup for spin Seebeck effect
experiments

This work will focus on the longitudinal spin Seebeck effect in FMI|HM samples, as shown
in Fig. 2.3.3 (a). For the application of the thermal gradient, the heavy metal layer is heated
by the application of a heating current orthogonal to the voltage detection direction. The
spin current across the FMI|HM interface, caused by the spin Seebeck effect, is partially
converted into a charge current J ISHE

c by the inverse spin Hall effect, which can be detected
as a voltage drop in an open boundary condition.
There are two options to measure the amplitude VSSE of the spin Seebeck effect. The first
one is field-dependent measurements of the voltage drop across the interface (FD-SSE).
Within these experiments, the orientation of the externally applied magnetic field µ0Hext is
constant at α = 0◦ and the magnitude of the field is varied from +µ0Hext,max to−µ0Hext,max

to +µ0Hext,max so that the full magnetic hysteresis of the ferrimagnetic insulator is covered.
Since the magnon polarization is proportional to the magnetization of the ferrimagnetic
insulator, the expectation is that the voltage drop V measured in the HM layer mimics
the the magnetic hysteresis Mtot(µ0Hext) (see Fig. 2.3.3 (b)). Here, the field dependent
amplitude VSSE(µ0Hext) of the spin Seebeck effect is defined as

VSSE(µ0Hext) =
V (+µ0Hext)− V (−µ0Hext)

2
. (2.37)

The second type of experiment is the angle-dependent measurement of the spin Seebeck
effect (AD-SSE). For this experiment, the external magnetic field µ0Hext is rotated inside
the interface plane with a fixed magnitude. Here, the angle α describes the orientation of
the external magnetic field µ0Hext with respect to the applied current direction (α = 0◦ for
the magnetic field parallel to the current direction, see Fig. 2.3.3 (a)). When the external
magnetic field is rotated with its magnitude larger than the saturation field, the sublattice
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magnetizations of the ferrimagnetic insulator follow the magnetic field and thus also the
magnon polarizations. This results in an overall rotation of the inverse spin Hall effect
charge current JISHE

c direction parallel to the FMI|HM interface. Due to our fixed detection
scheme, we can only probe the projection of JISHE

c along the x-axis leading to a cos(α)-
dependent voltage signal

V (α) = VSSE · cos(α) (2.38)

with the amplitude of the spin Seebeck effect VSSE as the oscillation amplitude
(see Fig. 2.3.3 (c)).
Overall, the AD-SSE experiment offers a more precise measurement of the spin Seebeck
effect amplitude VSSE due to larger statistics by fitting a cosine-function to the experimen-
tal data, but is only applicable to magnetically softer materials and does not cover effects
depending on the field magnitude. On the other hand, the FD-SSE experiment allows to
align the magnetization parallel to the magnetic easy axis allowing experiments with mag-
netically anisotropic FMIs and gives insight into effects depending on the field magnitude.
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Figure 2.3.3.: (a) Measurement setup for longitudinal spin Seebeck effect (SSE) experiments car-
ried out within this work. The temperature gradient across the ferrimagnetic in-
sulator (FMI) is generated by resistive heating of the heavy metal layer (Pt) apply-
ing the current Iheat. The spin current across the interface is partially converted
into a charge current by the inverse spin Hall effect resulting in a voltage drop
V ∝ JS in an open boundary condition. (b) Qualitative normalized voltage drop
within the Pt-layer expected for field dependent SSE experiments (FD-SSE) with
α = 0◦. (c) Qualitative normalized voltage drop within the Pt layer expected for
angle-dependent SSE experiments (AD-SSE) with fixed external magnetic field
magnitude Hext
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2.4. Rare-earth iron garnets

This section outlines the main physical properties of rare-earth iron garnets (REIG), which
are used as ferrimagnetic insulators for spin Seebeck effect experiments within this work.
The first identified REIG was Y3Fe5O12, which was described by Bertaut et al. in 1956 [21].
REIGs are famous for their low Gilbert damping and large magnon propagation lengths,
making them an ideal material system for magnon transport experiments.
Rare earth iron garnets are commonly described within a body centered cubic (bcc) unit cell
with the space group Ia3d [22]. REIGs have the chemical formula RE3Fe5O12 with 4 formula
units per lattice point, resulting in a total of 160 atoms per bcc unit cell (see Fig. 2.4.1). As
rare earth (RE) all of the 4f -Lanthanoides as well as Yttrium can be substituted, which al-
lows to tune the materials properties over a wide range.

RE
c

Fe
d

Fe
a

a

b

c

(a) (b)

Figure 2.4.1.: (a) Body centered cubic (bcc) unit cell of REIGs with the space group Ia3d. For
clarity, the O2− ions are neglected. Within the Ia3d space group, the Fe3+ ions
are located on the 24d- (green spheres) and 16a-sites (blue spheres) leading to two
magnetic sublattices, which are strongly antiferromagnetically coupled resulting
in a Néel temperature TN ≈ 550 K almost independent of the RE-ion on the 24c-
site (red spheres). (b) Center layer of the bcc unit cell including the O2− ions (yel-
low spheres). The Fea and Fed sites are octahedrally and tetrahedrally coordinated
with the O2− ions, respectively.

Within the Ia3d space group the RE3+ ions are located on the 24c sites and the Fe3+ ions
on the 24d and 16a sites [23]. The ratio of 16a : 24d Fe3+ sites is 2 : 3. Thus, the chem-
ical formula is often written as Re3Fe2Fe3O12. The two Fe3+ sites form strongly coupled
magnetic sublattices with antiparallel aligned sublattice magnetizations MFea �� MFed re-
sulting in a ferrimagnetic order with a Néel temperature of TN ≈ 550 K. Due to the overall
strong magnetic Fe-Fe coupling, the Néel temperature is nearly independent of the RE-ion
(see Fig. 2.4.2). The magnetic exchange mechanism is the indirect antiferromagnetic su-
perexchange mediated by the O2− ions on the 96h sites, leading to an antiferromagnetic
inter- and intra-sublattice coupling with different magnitudes resulting in an antiparallel
magnetic structure of the two Fe3+ sublattices.
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Figure 2.4.2.: Magnetization versus temperature of rare-earth iron garnets (REIGs) for several
REs from Bertaut and Pauthenet [21, 24]. For all REIGs, the Néel temperature
TN ≈ 550 K is similar demonstrating that the strongly antiferromagnetically cou-
pled Fe-sublattices determine TN. The magnetic compensation temperature Tcomp,
where the total remanent magnetization Mtot vanishes, exists for all REIGs with
RE3+-ions possessing a finite magnetic moment and is strongly depending on the
RE3+-ion. Figure taken from Ref. [25].

2.4.1. Yttrium-Iron-Garnet

Yttrium-Iron-Garnet (YIG) with the chemical formula Y3Fe5O12 is the most prominent REIG
due to its smallest known Gilbert damping α = 4 · 10−5 [26] and thus very high magnon
propagation and coherence lengths. Even for YIG thin films grown by pulsed laser deposi-
tion, the Gilbert-damping is smaller than α / 1 · 10−3 [27].
Due to the non-magnetic RE-ion Y3+, YIG is a ferrimagnet with two antiferromagnetically
coupled Fe3+-sublattices and thus the magnetically simplest REIG. Due to the very strong
inter-sublattice coupling Jad = 6.8meV [28], YIG has a quasi ferromagnetic behavior. This
attribute is also found in the spin wave dispersion relation (see Fig. 2.4.3), where the red,
parabolic band up to f ≈ 7.5 THz (E ≈ 31meV) mimics a ferromagnetic dispersion relation.
This band describes the spin wave excitation, where the local magnetic moments from the
two magnetic sublattices precess in phase. The color code describes the spin current chiral-
ity from red (χ = +1) to blue (χ = −1).
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Figure 2.4.3.: Spin wave dispersion relation for Y3Fe5O12 at T = 1 K calculated by J. Barker and
G.E.W. Bauer. The key feature is the red, parabolic band up to f = 7.5THz ≈
31 meV/h allowing a quasi ferromagnetic description up to room temperature.
Figure taken from Ref. [15].

2.4.2. Gadolinium-Iron-Garnet

With Gadolinium-Iron-Garnet (GdIG), a third magnetic sublattice MGdc within the Ia3d is
introduced due to the Gd3+-ions on the 24c site exhibiting a spin moment of S = 7/2. The
magnetic sublattice consisting of the Gd3+-ions is only weakly coupled to the two magnetic
Fe3+-sublattices with a ratio of exchange constants Jdc/Jad = 0.29 and Jac/Jad = 0.07 [16].
Its remanent sublattice magnetization MGdc is oriented antiparallel to the total magnetiza-
tion of the Fe3+-sublattices (MGdc ��MFe = MFea + MFed). The weak coupling of MGdc to
the two magnetic Fe3+-sublattices is leading to a strong temperature dependence of MGdc

resulting in a magnetic compensation temperature Tcomp, where the remanent sublattice
magnetizations sum up to Mtot(Tcomp) = 0. When crossing Tcomp in finite magnetic fields,
the sublattice magnetizations invert their orientations to ensure that the total magnetiza-
tion Mtot is aligned along the external magnetic field Hext. In a small temperature region
around the magnetic compensation temperature Tcomp, the sublattice magnetizations are
not aligned collinear to each other and form the so-called canting phase in finite external
magnetic fields [29].
The presence of a third magnetic sublattice with sublattice magnetization MGdc causes fun-
damental changes in the spin wave dispersion relation. Figure 2.4.4 shows the calculated
spin wave dispersion relation of GdIG. The first, gapless mode describes the ferrimagnetic
resonance mode, where at the Γ-point the sublattice magnetizations of the three magnetic
sublattices (MFea,MFed,MGdc) precess in phase. This mode has a parabolic dispersion
around the Γ point, which is typical for ferrimagnetic materials. The upper boundary of
the ferrimagnetic resonance mode is defined by the energy level of the approximately dis-
persionless, red flat bands which describe the precession of the Gd3+-moments in the local
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exchange field of the Fe3+-moments. The flatness can be explained by the negligible intra-
sublattice coupling constant Jcc of Gd3+-moments.
Above the flat bands, the spin wave dispersion relation exhibits a strongly dispersing, first
optical mode with opposite chirality (χ = −1, blue) which is attributed to the precession of
the Fe3+ moments in the exchange field originating from the Gd3+-moments. Thus, the en-
ergy gap Egap of this first optical mode is proportional to the size of the exchange field act-
ing on the total Fe-sublattice magnetization (MFe = MFea +MFed). Due to the antiparrallel
orientation of the Gd-sublattice magnetization to the total Fe-magnetization (MGd ��MFe)
and the antiparallel configuration of the Fe-sublattice magnetizations (MFed �� MFe and
MFea ��MFe), this yields the following proportionality of the energy gap:

Egap ∝ |MGd|(Jdc|MFed| − Jac|MFea|) , (2.39)

where (Jdc|MFed| − Jac|MFea|) > 0. Thus, Egap is strongly temperature dependent due
to the strong temperature dependence of MGd, which is leading to a gradual sign change
in the temperature profile of the amplitude of the spin Seebeck effect in GdIG|Pt bilayer
structures [16].

Figure 2.4.4.: Calculated spin wave dispersion relation for Gd3Fe5O12 at T = 40 K. The color
code depicts the chirality of the magnon modes. The interplay between the gap-
less, red band which describes the ferrimagnetic resonance mode and the first op-
tical, blue mode with opposite chirality causes a gradual sign change in VSSE(T )
measured in Gd3Fe5O12|Pt bilayer structures. Figure taken from Ref. [16].

2.4.3. Terbium-Iron-Garnet

The reason for introducing TbIG as a showcase material system is the extraordinary large
cross section for capture of thermal neutrons of Gd [17]. Since the motivation of this work
is the relation of the spin wave dispersion relation measured by inelastic neutron scatter-
ing to the spin Seebeck effect, GdIG cannot be used as a showcase material system. Thus,
TbIG is chosen as material system due to its smaller cross section for capture of thermal
neutrons, non-trivial spin wave dispersion relation and low Gilbert-damping. In total, this
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makes TbIG a good showcase material system for studying the origin of the spin Seebeck
effect.
The material system Terbium-Iron-Garnet Tb3Fe5O12(TbIG) is the next step in complexity
in terms of REIGs by substitution of the Gd3+-ions by Tb3+-ions with the ground state 7F6

on the 24c site. The finite orbital momentum as well as the highly anisotropic properties in
terms of crystal field and exchange interactions of the Tb3+-moments lead to a very strong
cubic anisotropy parallel to the cubic [111]bcc-directions [30]. Similar to GdIG, TbIG has a
magnetic compensation temperature Tcomp = 250.5 K, where the total remanent magneti-
zation vanishes.
TbIG, in contrast to YIG and GdIG, is subject to a rhombohedral distortion for
T < Trh ≈ 190 K (see Fig. 2.4.5) [23, 31].
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Figure 2.4.5.: Rhombohedral lattice constant arh and rhombohedral angle αrh of the primitive
unit cell for TbIG as a function of temperature. At T = 280 K, the primitive, rhom-
bohedral unit cell (spacegroup R3̄) and the conventional, cubic unit cell (space-
group Ia3d) are equivalent. Data taken from Ref. [23].

The second key feature of TbIG is the so called ’double umbrella’ structure found by La-
houbi et al. [32]. It describes the gradual formation of a non-collinear magnetic structure
below Tdu ≈ 160 K, where the magnetic moments of the Tb3+-ions tilt away from the cubic
[111]bcc-direction. Due to the rhombohedral distortion, the degeneration of the 24c sites in
the cubic Ia3d space group is lifted to non-degenerate 6e and 6e′ sites with equal occupation
numbers within the rhombohedral R3̄ space group. For each Tb3+-site (6e and 6e′), there
are three degenerate orientations for the magnetic moments within the [111]bcc × [100]bcc

and equivalent planes in the cubic description, which can be fully described by the opening
angle θ and θ′ with θ > θ′ (see Fig. 2.4.6 (a)). The ’double umbrella’ structure with finite
angles θ and θ′ starts gradually below Tdu ≈ 160 K and reaches the maximum opening an-
gle in the 0 K limit. Experimentally, the maximum values of the opening angles are found
to be θ = 32◦ and θ′ = 27◦ at 5 K. (see Fig. 2.4.6 (b)) [33].
The influence of the double umbrella structure on the magnon dipersion relation is yet
unknown and will be discussed in chapter 4.
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(a) (b)

Figure 2.4.6.: (a) Illustration of the magnetic double umbrella structure within the cubic descrip-
tion of TbIG. The Tb3+-moments tilt away from the cubic [111]bcc-direction within
three equivalent glide planes and thus can be fully described by the opening an-
gles θ and θ′. (b) Opening angles θ and θ′ of the double umbrella structure as a
function of temperature. The opening angles become finite below Tdu ≈ 160 K
reaching their maximum slope around 80 K and saturate at 5 K with θ = 32◦ and
θ′ = 27◦. Figures taken from Ref. [33]

Furthermore, Kang et al. found a coupling between magnons at the Γ-point and ligand
field excitations by performing far-infrared spectroscopy on TbIG single crystals at differ-
ent temperatures (see Fig. 2.4.7) [34]. The authors identified the magnetic excitation and the
ligand field excitation due to their strong and weak temperature dependence, respectively.
The avoided-crossing visible in Fig. 2.4.7 indicates a coupling between the magnon and the
ligand-field excitation leading to the hybrid modes Ω

(1)
LF−M and Ω

(2)
LF−M.

(b)(a)

Figure 2.4.7.: Far-infrared spectroscopy of TbIG as a function of temperature. (a) Color map of
the normalized transmitted light intensity as a function of temperature and fre-
quency for a TbIG single crystal. (b) Extracted experimental data for hybridized
excitations Ω

(1)
LF−M and Ω

(2)
LF−M originating from a coupling of the ligand-field ex-

citations and magnons at the Γ-point. The frequency gap ∆LF−M determines the
strength of the interaction between magnons and ligand field excitations. Figures
taken from Ref. [34].
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3. Inelastic neutron scattering on a
Tb3Fe5O12 single crystal

This chapter describes the results of inelastic neutron scattering with polarization analysis
on a Tb3Fe5O12 single crystal at 280 K, 100 K and 10 K. In the first part, the theory of neu-
tron scattering on magnetic structures is summarized and connected to the spin Seebeck
effect. Subsequently, the experimental setup for inelastic neutron scattering with polar-
ization analysis is explained together with the experimental procedure and the performed
data analysis. The main part of this chapter then focuses on the presentation and interpre-
tation of the experimental results.

3.1. Inelastic neutron scattering with polarization analysis - A
powerful investigation technique for magnetic properties

Inelastic neutron scattering is a powerful technique for the investigation of magnetic prop-
erties, since it directly measures the Fourier transform of the time dependent magnetic pair
correlations. In the following, a brief introduction into the fundamentals of neutron scat-
tering according to the lecture of M. Enderle is given [35].
The experiments within this work are conducted with thermal neutrons, which show weak
interaction with matter in general. The reason is either the weakness of the interaction it-
self (e.g. dipole-dipole scattering on magnetic moments of the electrons) or the short range
character of the interaction (e.g. strong interaction with the nucleus). Thus, the neutron
probes the whole sample volume and multiple scattering can be neglected. In mathemati-
cal words, the Born approximation is valid and the scattering on the scattering potential V
is treated as first order perturbation such that Fermi’s golden rule for the differential cross
section applies. This is resulting in the following main equation for the differential cross
section:

d2σ

dΩdEf
=
kf

ki

( m

2π~2

)2 ∑
si,sf ,n0,n1

p(si)p(n0)| < kfsfn1|V |kisin0 > |2 δ(ε1 − ε0 − ~ω) . (3.1)

Here, ~ω = Ei − Ef is the energy transfer of the scattered neutron with initial energy Ei

and final energy Ef , ki and kf are the wave vectors of the incident and the final, scattered
state of the neutron with spin si and sf , respectively. The sample properties are described
by the states n0 and n1 with energies ε0 and ε1. The description of the neutron as a plane
wave ∝ eik·r = |k > is valid due to the generation and detection of the neutron far away
from the sample. This is leading to a Fourier-transformation of the scattering potential at
q = kf − ki. The Fourier transformation is allowed, if q · r commutes with the scattering
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potential V , which is true for magnetic dipole-dipole scattering. A schematic drawing of a
neutron scattering mechanism is shown in Fig. 3.1.1.

V
ki si p(si)

k
f s

fq

Incident neutron beam Analysed neutron beam

Figure 3.1.1.: Schematic drawing of inelastic neutron scattering. The incident neutron beam
with wave vector ki, spin si and polarization p(si) is scattered on a scattering
potential V . The final state of the neutron beam is described by the wave vector
kf and spin sf . In total a coherent scattering mechanism (e.g. neutron-magnon
scattering) is fully described by E(q) = ~2

2mneutron
· (k2

i − k2
f ) with q = kf − ki.

The scattering potential VM considered here is the magnetic interaction potential of the
neutron magnetic moment µn with the magnetic field from the electrons Be:

VM = −µn ·Be(r) . (3.2)

Here, Be(r) is the local magnetic field emitted by the magnetic moments of the electronic
crystal structure. This leads to the following matrix-element describing the scattering pro-
cess, where the plane wave states of the incident and final neutron state are contracted
eikf ·r · e−iki·r = eiq·r. By subsequent integration over space the matrix-element is then
Fourier transformed:

< kfsfn1| − µn ·Be(r)|kisin0 > = < sfn1| − µn ·Be(q)|sin0 > . (3.3)

The Fourier transformation is allowed due to the vanishing commutator [VM,q · r] = 0,
with q = kf − ki. Additionally, the Fourier transformation of the Maxwell equation that
states a divergence free magnetic field yields

∇ ·Be(r) = 0⇔ q ·Be(q) = 0. (3.4)

Physically, this means that the neutron is only interacting with the magnetic field perpen-
dicular to the momentum transfer q due to the divergence-free character of the magnetic
field. For the magnetic moment of a single electron µtot

e = µS
e + µL

e at r = 0, the interaction
potential can be written as

VM(r) = −µn · ∇ × (∇× µS
e

r
+∇× µL

e

r
) = −µn · ∇ ×∇×

µtot
e

r
(3.5)

due to B = ∇×A and A = ∇× µ
r . By Fourier transforming the interaction potential with

the contraction of the plane wave states,∇× is transformed to −iq×, which is a non-trivial
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step leading to the matrix-element

< sfn1|µn ·
(
q̂× (q̂× µtot

e

)
|sin0 > = < sfn1| − µn · µtote⊥(q)|sin0 > (3.6)

∝ < sfn1| − s · µtote⊥(q)|sin0 > . (3.7)

For an ensemble of magnetic moments, e.g. a magnetically ordered system µtote⊥ is essen-
tially substituted by

M⊥(q) =
∑

µtote⊥(q) . (3.8)

This is leading to the cross section for inelastic neutron scattering on magnetically ordered
system

d2σ

dΩdEf
=
kf

ki

(
γr2

0

)2 ∑
si,sf ,n0,n1

p(si)p(n0)| < sfn1|s ·M⊥(q)|sin0 > |2 δ(ε1 − ε0 − ~ω) (3.9)

with

M⊥(q) = q̂× (M(q)× q̂) (3.10)

and

M(q) =

∫
d3r eiq·rM(r) , (3.11)

where M(q) is the Fourier transformation of the magnetization within the sample.
The following step is conducted for an incoming unpolarized neutron beam and no polar-
ization analysis of the scattered beam such that the sum over the neutron polarizations is
straightforward. Furthermore, the δ-function is rewritten in its integral form:

d2σ

dΩdEf
=
kf

ki
(γr0)2

∑
si sf
n0n1

p(si)p(n0)| < sfn1|s ·M⊥(q)|sin0 > |2 δ(ε1 − ε0 − ~ω) (3.12)

=
kf

ki
(γr0)2

∑
n0

p(n0)
1

2π~

∫
dt e−iωt < n0|M∗⊥(q, 0) ·M⊥(q, t)|n0 > (3.13)

=
kf

ki
(γr0)2 <M∗⊥(q) ·M⊥(q) >T,ω (3.14)

=
kf

ki
(γr0)2

∑
αβ

(δαβ − q̂αq̂β) < Mα∗(q)Mβ(q) >T,ω (3.15)

=
kf

ki
(γr0)2 (Sxx(q, ω) + Syy(q, ω)) (3.16)

with

Sαβ = < Mα∗(q)Mβ(q) >T,ω . (3.17)

In the last step, the coordinate system used within this work is considered, which is defined
by B �� q �� ẑ. The main result is the connection of the differential scattering cross section

23



24 Inelastic Neutron scattering on a Tb3Fe5O12 single crystal

with the Fourier transformation of the magnetic pair-correlation function in Eq. (3.16). This
proves that neutron scattering can directly access the Fourier transformation of the mag-
netic pair-correlation function, which makes neutron scattering a unique technique for the
investigation of magnetic properties.
For inelastic neutron scattering with polarization analysis, the calculation of the cross sec-
tion is more complicated. Up to Eq. (3.11), the calculation is performed for a general type
of neutron scattering mechanism. Since in the case of inelastic neutron scattering with po-
larization analysis the sum over the neutron polarization is not straightforward, the result
of the cross section for inelastic neutron scattering with polarization analysis will be pre-
sented without further derivation. A more detailed derivation is given in the lecture from
M. Enderle [35].
In the following, the neutron polarization of the incident and final, scattered neutron beam
is described relative to q �� Hext �� ẑ, where z is indicating sn �� ẑ and z̄ is indicating
sn �� ẑ. Within an inelastic neutron scattering experiment with polarization analysis, three
main types of scattering events can be investigated independently within three consecu-
tively probed channels. The three channels are monitoring three different differential cross
sections: Two channels track spin-flip scattering mechanisms (z → z̄ and z̄ → z) and one
channel tracks non-spin-flip scattering mechanisms (z → z). Incoherent scattering is ne-
glected in the following. The cross-section of the non-spin-flip channel is given by

d2σ

dΩdEf
|z→z =< N∗N >T,ω , (3.18)

while the cross-sections of the two spin-flip channels yield

d2σ

dΩdEf
|z→z̄ = <M∗⊥ ·M⊥ >T,ω +i <M∗⊥ ×M⊥ >T,ω ·ẑ (3.19)

= Sxx + Syy + i · (Sxy − Syx) (3.20)

d2σ

dΩdEf
|z̄→z = <M∗⊥ ·M⊥ >T,ω −i <M∗⊥ ×M⊥ >T,ω ·ẑ (3.21)

= Sxx + Syy − i · (Sxy − Syx) . (3.22)

Here, < N∗N >T,ω with N = N(q) describes coherent scattering on the nuclear structure
of the sample (e.g. Bragg scattering or neutron-phonon scattering). Within this work the
quantity of interest is the spectral function i·(Sxy−Syx) (see Eqs. (3.20), (3.22)), which is the
Fourier transformation in space and time of the transversal spin-spin correlation function
and related to chiral spin wave excitations. The chirality of magnetic excitations is defined
as

χ =
i · (Sxy − Syx)

Sxx + Syy
. (3.23)

Thus, the chirality can only take values −1 < χ < +1, due to the physical constraint of
positive definite differential cross sections (see Eqs. (3.20) and (3.22)). In general, magnetic
excitations appear in both spin-flip channels. If an excitation is fully chiral (|χ| = 1), it
appears in only one of the spin-flip channels depending on the chirality (χ = +1 (z → z̄),
χ = −1 (z̄ → z)).
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The quantity i · (Sxy − Syx), which is only finite for chiral magnetic excitations (χ 6= 0), is
directly related to the amplitude of the spin Seebeck effect according to J. Barker and G.E.W.
Bauer [15] (see section 2.3.3). Thus, the microscopic origin of the spin Seebeck effect can
be directly accessed by the investigation of spin-flip scattering events within an inelastic
neutron scattering experiment with polarization analysis.

3.1.1. Experimental setup for inelastic neutron scattering with polarization
analysis

The inelastic neutron scattering experiments with polarization analysis are carried out at
the instrument IN20 of the Institut Laue-Langevin (ILL) in Grenoble. The instrument IN20
is a triple axis spectrometer with polarization analysis offering a polarized neutron beam
with a very high flux Φn within thermal energy range due to close vicinity to the reactor
core (Φn(ki = 2.662 Å

−1
) = 1.05× 107 cm−2s−1) [36]. A schematic drawing of the setup

of IN20 is shown in Fig. 3.1.2. Due to legal issues a photograph of the setup cannot be
provided.

Heusler crystals (monochromator & analyzer)
Monitor (BF3)
Neutron spin �ipper
Sample inside magnet cryostat with Hext   q
Detector
Incoming unpolarized neutron beam
Polarized neutron beam (channel                )
Polarized neutron beam (channel                )
Polarized neutron beam (channel                )

Inelastic neutron scattering with polarization analysis

q

Figure 3.1.2.: Schematic drawing of the experimental setup for inelastic neutron scattering
with polarization analysis. The incoming thermalized, diffuse neutron beam is
monochromatized and polarized by scattering on a Heusler crystal. Subsequently,
the monochromatic beam intensity is measured by a monitor filled with BF3. To
switch the spin polarization, the incident neutron beam is passed through a neu-
tron spin flipper before being scattered on the sample inside a magnet cryostat,
which is aligned such that Hext �� q. The final beam is again passed through
a neutron spin flipper, since the analyzing Heusler crystal is only selecting one
neutron energy with fixed spin polarization to be analyzed in the detector. This
setup with two Heusler crystals and two neutron spin flippers allows to separate
spin-flip (red and blue neutrons) and non-spin-flip (green neutrons) scattering
mechanisms. With this technique chiral spin wave excitations can be identified.
The arrows on the neutrons depict the neutron spins sn.
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Since the property under investigation is i · (Sxy−Syx), which is related to chiral spin wave
excitations, the external magnetic field Hext with a magnitude of 1 T has to be aligned par-
allel to the scattering vector q. To identify the chiral spin wave excitations, the intensity of
all three channels (two spin-flip channels z → z̄ (red), z̄ → z (blue) and one non-spin-flip
channel z → z (green)) is measured at every measurement point in the four dimensional
energy-momentum space. This allows to separate magnon-neutron and magnon-phonon
scattering. For the control of the sample temperature and the external magnetic field, the
Tb3Fe5O12 single crystal (see inset of Fig. 3.1.2) is mounted on a cold finger inside a mag-
net cryostat. The experimental data is acquired at sample temperatures of 280 K, 100 K

and 10 K to cover all known magnetically ordered and structural phases of Tb3Fe5O12 (see
section 2.4.3).

26



Inelastic Neutron scattering on a Tb3Fe5O12 single crystal 27

3.1.2. Measurement procedure and data analysis

In the following, the vectors of the reciprocal space are given in lattice units relative to the
conventional, bcc unit cell (conv. l. u.) of Tb3Fe5O12 (TbIG). The experiments are conducted
with the scattering vector parallel to the crystallographic [111]bcc-direction of the cubic bcc-
lattice: q ‖ [111]bcc. This is mandatory, since the measurement of spin wave excitations
requires the magnetization to be aligned parallel to the scattering vector (MTbIG ‖ q) (see
section 3.1). Due to the large magnetic anisotropy of TbIG in particular at low temper-
atures, the measurement geometry is set with q ‖ [111]bcc, which is a magnetically easy
axis, to ensure saturation of the magnetization of TbIG within an external magnetic field of
µ0Hext = 1 T at all temperatures.
Since small angle scattering is not possible with a triple axis spectrometer, the experiment
is carried out along the [111]bcc-direction around the TbIG Bragg-reflection (444) with re-
ciprocal lattice vector [444]bcc, which is the Γ-point in this Brillouin-zone. Thus, the exper-
iments are performed for q ∈ [ΓP] with the center of the Brillouin-zone Γ and the corner
of the Brillouin-zone P = [3.5 3.5 3.5]bcc, at a fixed scattering vector q with a step size of
∆q = [0.1 0.1 0.1]bcc, while scanning the energy loss of the scattered neutron E = Ei − Ef .
The energy loss is scanned within estimated regions of interest according to previous simu-
lations of spin wave dispersion relations for the similar material system Gd3Fe5O12 (GdIG)
[16]. Depending on the energy range, an energy step size between ∆E = 0.1 meV − 1 meV

is used.
Furthermore, the experiments are conducted with a fixed final wave vector of the neutron
kf while sweeping the size of the initial wave vector ki. In this way kf can be selected to
match a peak of the analyzer and detector efficiency. Additionally, this procedure guar-
antees a constant detector efficiency such that no post-processing of the data is required.
To calculate the scattering rate, the events counted by the detector are normalized to the
monitor counts, which are chosen as 106 monitor counts for both spin-flip channels (z → z̄

(red), z̄ → z (blue)) and 105 monitor counts for the non-spin-flip channel (z → z (green)). In
total, this procedure gives a three-dimensional intensity-map I(E,q) consisting of energy
loss line scans at fixed scattering vectors I(E,q)|q∈[ΓP].
For the processing of a chirality dependent spin wave dispersion relation, the line scans
of the three channels (red, blue, green) are fitted by a superposition of Gaussian-functions
on top of a baseline accounting for the background. The resulting peak positions are then
plotted with corresponding colors as data points in anE−q diagram revealing the chirality
dependent spin wave dispersion relation of TbIG.

3.2. Inelastic Neutron scattering with polarization analysis at
280 K

At 280 K, Tb3Fe5O12 (TbIG) shows no rhombohedral distortion and is described by the
body centered cubic Ia3d space-group, which is identical to the space-group of Gd3Fe5O12

(GdIG). The cubic magnetic anisotropy with magnetically easy axes along the cubic
[111]bcc-directions present in TbIG is considerably weak and thus negligible. The magneti-
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zation of the magnetic Tb3+-sublattice is small within the collinear ferrimagnetic structure
of TbIG at 280 K. Overall, the properties of TbIG are similar to that of GdIG at 280 K. Thus,
the expectation is to find a spin wave dispersion relation similar to the theoretically calcu-
lated spin wave dispersion relation previously reported by Geprägs et al. (see Fig. 2.4.4)
[16].
The experimental data of inelastic neutron scattering with polarization analysis at a sam-
ple temperature of 280 K is shown in Fig. 3.2.1. The raw data normalized to the monitor
counts is plotted as data points in colors depicting the different scattering channels (z → z̄

(red), z̄ → z (blue), z → z (green)) together with the fitted superposed Gaussian-functions
as solid lines in respective colors (see Fig. 3.2.1 (a)). The extracted peak positions are then
plotted in Fig. 3.2.1 (b) for all measurements at different scattering vectors q.
At the Γ-point (q = [444], see Fig. 3.2.1 (a)), magnon modes around 30 meV to 37 meV are
clearly visible in the blue spin-flip channel with i · (Sxy − Syx) < 0, while only at low
energy loss (E < 15 meV) a finite intensity is observed in the red spin-flip channel with
i · (Sxy − Syx) > 0. The tail at low energies is considered as a data point in Fig. 3.2.1 (b)
with a large error bar (see also Fig. B.0.1). For q = [3.8 3.8 3.8] a chiral magnon mode in the
blue channel (i · (Sxy − Syx) < 0) at an energy loss of 37 meV is found. The tail in the red
channel at an energy loss E < 25 meV is considered as data point with large uncertainty in
Fig. 3.2.1 (b). At q = [3.7 3.7 3.7] another chiral magnon mode in the red channel is located,
which seems to be connected to the red modes found at scattering vectors q closer to the
Γ-point (q = [444]). Additionally, a chiral magnon mode in the red channel is visible at
q = [3.5 3.5 3.5] with an energy loss of E = 32 meV. The pronounced intensity increase at
low energy loss (E < 8 meV) is considered as artefact of elastic scattering (see finite inten-
sity in the non-spin flip (green) channel) and is not related to magnetic excitations.
Overall, the measurement at 280 K shows a strongly dispersing fully chiral band in the
red channel (i · (Sxy − Syx) > 0) starting at low energy at the Γ-point up to 32 meV at
the P-point (see Fig. 3.2.1 (b)). Furthermore, the peak positions extracted from the blue
(i · (Sxy − Syx) < 0) spin-flip channel with 30 meV at Γ and with 37 meV at q = [3.8 3.8 3.8]

correspond to a second optical mode with opposite chirality to the red mode at lower en-
ergies. Compared to the spin wave dispersion relation in GdIG at 40 K (see Fig. 2.4.4), all
modes found here have opposite chirality. This is attributed to the crossing of the magnetic
compensation temperature Tcomp,TbIG = 250.5 K leading to an inversion of all magnetic
moments and spin wave chiralities in a finite external magnetic field.
Due to the leakage of the elastic scattering into the spin-flip channels and the low energy
resolution, no magnon bands could be resolved in the low energy region with E < 3 meV.
Presumably, those bands, which should be chiral as well, could be found in inelastic neu-
tron scattering experiments with cold neutrons due to the higher energy resolution in the
low energy regime.
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Figure 3.2.1.: Inelastic neutron scattering with polarization analysis at T = 280 K. The color
depicts the different scattering channels: non-spin-flip channel (green), spin-flip
channel with i · (Sxy − Syx) < 0 (blue) and i · (Sxy − Syx) > 0 (red). (a) Intensity
normalized to the monitor counts as a function of the energy loss for different
scattering vectors q. The intensity is fitted with superposed Gaussian-functions
(solid lines). (b) Extracted energy values of magnon modes. The tail in the red
channel (i · (Sxy − Syx) > 0) at q = [444] (Γ-point) in (a) is considered as a data
point with a large uncertainty in (b) (see also Fig. B.0.1).
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3.3. Inelastic Neutron scattering with polarization analysis at
100 K

With decreasing the sample temperature to 100 K, changes in the crystal structure and the
magnetic structure of TbIG occur. At 100 K, TbIG exhibits a rhombohedral distortion, char-
acterized by an angle ∆αrh,280K−100K = 0.03◦. This leads to a reduction of the crystal sym-
metry to the rhombohedral R3̄ space group. Within the R3̄ space group, the degeneracy
of the Tb3+-ions is lifted to two non-degenerate 6e (Tb) and 6e′ (Tb’) sites. Additionally,
the magnetic structure changes to the non-collinear ’double-umbrella’ structure, where the
magnetic moments of the Tb- and Tb’-ions form a cone with opening angles θ > θ′ around
the magnetic easy axis parallel to the cubic [111]bcc-direction within three degenerate glide
planes [111]bcc × [100]bcc [23, 33] (see section 2.4.3). With decreasing temperature, the Tb-
sublattice magnetization increases, which is typical for rare-earth iron garnets with mag-
netic rare-earth-ions (see Fig. 2.4.2).
The experimental data acquired by inelastic neutron scattering with polarization analysis
on a TbIG single crystal at a sample temperature of 100 K is shown in Fig. 3.3.1. To ex-
tract the energy position of the magnon modes, the intensity as a function of energy loss
(data points) is fitted by superposed Gaussian-functions (see solid lines in Fig. 3.3.1 (a)).
The extracted peak positions are then plotted as a function of the momentum
(see Fig. 3.3.1 (b)).
Compared to the inelastic neutron scattering experiment at a sample temperature of 280 K,
the coloring of all modes, i.e. the chirality, is inverted due to the crossing of the magnetic
compensation temperature Tcomp = 250.5 K. The previously strongly dispersing mode (red
mode in Fig. 3.2.1) is shifted to higher energies with an energy gap of Egap = 5 meV at the
Γ-point and a maximum energy of 40 meV at the P-point. The opening and the size of the
energy gap at the Γ-point is mainly correlated to the increasing Tb-sublattice magnetiza-
tion with decreasing temperatures. The splitting of this mode into two modes at q = [444],
q = [3.7 3.7 3.7] and q = [3.5 3.5 3.5] is most likely related to the coupling of magnons
to ligand-field excitations in TbIG previously reported by Kang et al. [34]. The energy of
the second optical mode at the Γ-point (finite signal at E > 35 meV in the red spin-flip
channel) also shifted up in energy compared to 280 K, which was also found in simulations
of spin wave dispersion relations in the material system GdIG [16]. In line with the data
at a sample temperature of 280 K, magnon modes at low energy (E < 3 meV) could not be
resolved. In particular, the acoustic magnon modes as well as expected flat bands which
are visible in the spin wave dispersion relation of the similar material system GdIG (see
red bands with E < 3 meV in Fig. 2.4.4) need to be verified in further experiments with
cold neutrons. Overall, the experimental spin wave dispersion relation at 100 K matches
the simulated dispersion relation of GdIG at 40 K except the splitting of the low energy
magnon mode due to the ligand-field excitations. Hence, the experimentally determined
spin wave dispersion relation does not show attributes which can be directly connected to
the non-collinear ’double-umbrella’ magnetic structure.
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Figure 3.3.1.: Inelastic neutron scattering with polarization analysis at T = 100 K. The color
depicts the different scattering channels: non-spin-flip channel (green), spin-flip
channel with i · (Sxy − Syx) < 0 (blue) and i · (Sxy − Syx) > 0 (red). (a) Intensity
normalized to the monitor counts as a function of the energy loss for different scat-
tering vectors q. The intensity is fitted with superposed Gaussian-functions (solid
lines). (b) Extracted energy values of magnon modes. The data shows clearly the
first optical mode in blue which is split due to the coupling of magnons to ligand
field excitations.
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3.4. Inelastic Neutron scattering with polarization analysis at
10 K

At a sample temperature of 10 K, the rhombohedral distortion increases further to
∆αrh,280K−10K = 0.06◦ as well as the opening angles θ = 31.37◦ and θ′ = 26.46◦ of the
’double-umbrella’ structure. The Tb-sublattice magnetization is saturated with 7.6µB/ion

at 10 K with a large cubic magnetic anisotropy of the total magnetization along the cubic
[111]bcc-directions.
The results of the inelastic neutron scattering experiment with polarization analysis on a
TbIG single crystal at a sample temperature of 10 K are shown in Fig. 3.4.1. The energy
positions of the magnon modes are extracted by fitting the intensity (data points) with su-
perposed Gaussian functions (solid lines in Fig. 3.4.1 (a)). The extracted energies of the
magnon modes are then plotted as a function of momentum in Fig. 3.4.1 (b).
In line with the previously discussed results, the experiment at 10 K is able to track the first
optical, blue mode from the Γ-point at 10 meV to the P-point at 41 meV. Additionally, the
second optical, red mode is found at the Γ-point. These two optical modes shift further
upwards in energy with decreasing temperatures, again, in agreement with simulations of
the spin wave dispersion in GdIG [16]. In accordance with the data published by Kang et
al. on the coupling of magnons at the Γ-point of the first optical blue mode to ligand-field
excitations in TbIG (see Fig. 2.4.7), the splitting at the Γ-point increased relatively to the
splitting at 100 K.
In addition to the two optical modes, the experiment revealed two dispersionless red bands
at 11 meV and 30 meV. At around 11 meV, a small intensity above the noise level within
the green, non-spin-flip channel is observed. Due to the low intensity in the green channel,
a leakage from a phonon-neutron scattering mechanism, which should only appear in the
non-spin-flip channel, into the spin-flip channels can be excluded. Nevertheless, a struc-
tural excitation is visible, which should be subject to further investigation.
Similar to the data acquired at 280 K and 100 K, the experiment could not resolve any of
the acoustic and flat bands in the low energy region < 10 meV, which are predicted for the
similar material system GdIG (see Fig. 2.4.4).
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Figure 3.4.1.: Inelastic neutron scattering with polarization analysis at T = 10 K. The color
depicts the different scattering channels: non-spin-flip channel (green), spin-flip
channel with i · (Sxy − Syx) < 0 (blue) and i · (Sxy − Syx) > 0 (red). (a) Intensity
normalized to the monitor counts as a function of the energy loss for different
scattering vectors q. The intensity is fitted with superposed Gaussian-functions
(solid lines). (b) Extracted energy values of magnon modes. Compared to the
data at 100 K, the energy gap of the first optical mode increased with an increase
of the splitting at the Γ-point which is attributed to the coupling of magnons to
ligand-field excitations [34].
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3.5. Summary - Inelastic neutron scattering with polarization
analysis on a Tb3Fe5O12 single crystal

In total, inelastic neutron scattering with polarization analysis is able to reveal the first op-
tical and second optical mode with opposite chirality at 10 K, 100 K and 280 K. Both modes
are fully chiral (|χ| = 1) at the investigated temperatures. With increasing temperature, the
first optical mode shifts downwards in energy from 10 meV at 10 K to approximately zero
energy at 280 K. Also the second optical mode shifts down in energy with increasing tem-
peratures. These shifts are mainly correlated to the decreasing Tb-sublattice magnetization
with increasing temperatures, which is leading to a decrease of the exchange-field originat-
ing from the Tb-sublattice. Overall, this results in a decrease of the energy at the Γ-point
of both optical modes. Additionally, an inversion of the chirality of all magnon modes at
280 K compared to 100 K and 10 K is observed due to the inversion of the sublattice magne-
tizations while crossing the magnetic compensation at Tcomp = 250.5 K (see section 2.4.3).
The acoustic bands and flat band structure which are expected at low energies E < 5 meV

could not be resolved within the experiments and should be subject to further inelastic
neutron scattering experiments on TbIG with cold neutrons in the low energy range.
In the following chapter, the experimental data discussed here is used to simulate the full
spin wave dispersion relation in TbIG at 10 K, 100 K and 280 K and to extract the exchange
constants of TbIG at different temperatures.
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4. Simulation of spin wave dispersion
relations with SpinW

This chapter describes the simulation of the full spin wave dispersion of Tb3Fe5O12 for dif-
ferent temperatures using SpinW. The goal is to get the best possible agreement between
the simulated spin wave dispersion relation and the data of the inelastic neutron scatter-
ing experiment with polarization analysis discussed in the previous chapter. In the first
part, the theory behind the used simulation tool SpinW is presented. Subsequently, the
simulation of the spin wave dispersion relation in Tb3Fe5O12 is obtained by first simulat-
ing the spin wave dispersion relations in the well known material systems Y3Fe5O12 and
Gd3Fe5O12. The main part of this chapter then focuses on the simulation results for spin
wave dispersion relations in Tb3Fe5O12 at 280 K, 100 K and 10 K, to cover all magnetic and
structural phases present in Tb3Fe5O12.

4.1. Simulation of spin wave dispersion relations with SpinW

SpinW is a MATLAB-based simulation tool which allows to simulate spin wave dispersion
relations within an advanced Heisenberg model using a semi-classical ansatz [37].
SpinW considers the Hamilton operator

H =
∑
mi,nj

STmi · Jmi,nj · Snj +
∑
mi

STmi ·Ai · Smi + µBH
T
∑
mi

giSmi , (4.1)

which allows to simulate a specific material system considering magnetic exchange interac-
tions Jmi,nj, where m,n label the unit cell and i, j the magnetic moment within the unit cell,
as well as the Dzyaloshinskii–Moriya interaction and anisotropies Ai acting on the mag-
netic moments Smi under an external magnetic field H. Here, gi is the g-factor for the atom
on site i, which can differ from the free-ion value due to e.g. crystal field effects. SpinW
diagonalizes the Hamiltonian by applying the Holstein-Primakoff transformation as well
as by subsequently applying a numerical method of the Bogoliubov transformation for an-
tiferromagnets or ferrimagnets. For the diagonalization of the Hamiltonian, SpinW uses
approximations within the linear spin wave theory. The eigenvalues of the diagonalized
Hamiltonian describe the dispersion relation and the spin-spin correlation function

Sαβ(q, ω) =
1

2π~

∫
dt e−iωt < Sα(q, 0)Sβ(q, t) > (4.2)

is determined from the eigenvectors. SpinW does not account for thermal effects and thus
can only provide insights into magnon properties at 0 K, neglecting second or higher order
processes e.g. magnon-magnon and magnon-phonon scattering. A more detailed descrip-
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tion of the algorithm used to diagonalize the Hamiltonian (4.1) is given in Ref. [37].
The schematic work-flow for the setup of a simulation with SpinW is shown in Fig. 4.1.1.
The required inputs are the crystallographic structure defined by its space group, and the
magnetic coupling constants Jmi,nj as well as the spin-values for each ion site which in
total defines the structure of the magnetic interaction. Additionally, one can define site-
dependent g-factors and anisotropies A. In the next step, the magnetic structure can be
generated by SpinW using a mean field optimization or can be directly input using e.g.
an experimentally determined magnetic structure. In both cases, SpinW allows a multi-
sublattice ferrimagnetic structure, which is present in compensated ferrimagnets such as
Y3Fe5O12, Gd3Fe5O12 and Tb3Fe5O12.
According to J. Barker and G.E.W. Bauer [15], the spin Seebeck effect is mainly driven by
the frequency and wave vector integral over

Im
(
< ωSx(q, ω)Sy∗(q, ω) > − < ωSy(q, ω)Sx∗(q, ω) >

)
= ω Im

(
Sxy(q, ω)− Syx(q, ω)

)
(4.3)

multiplied with the Bose-Einstein distribution (see section 2.3.3). Thus, in the following
together with the spin wave dispersion relation also the antisymmetric transverse spec-
tral function i · (Sxy(q, ω) − Syx(q, ω)) is plotted in a false color representation. The color
indicates the chirality of the spin wave excitations, which is equivalent to the spin of the
magnon in a particle picture. Here, the + (−) sign represents the magnon spin parallel
(antiparallel) to the external magnetic field as well as the polarization strength of the band.

Figure 4.1.1.: Schematic work-flow for the setup of a SpinW simulation. The required inputs for
the simulation are the lattice structure and all microscopic parameters for the def-
inition of the structure of the magnetic interaction (exchange interaction matrix J ,
anisotropy vector A, g-factor). The magnetic structure can be generated by SpinW
using a mean field optimization or an experimentally determined magnetic struc-
ture can be input directly. The result of the simulation is the spin wave dispersion
relation and the spin-spin correlation function, which is obtained by diagonaliza-
tion of the Hamiltonian within the linear spin wave theory (LSWT). Figure taken
from Ref. [38].

36



Simulation of spin wave dispersion relations with SpinW 37

4.2. Simulation of the spin wave dispersion relation of Y3Fe5O12
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Figure 4.2.1.: (a) Magnetic structure of Y3Fe5O12 with Fe3+ ions on the d-site (Fed, blue spheres)
and a-site (Fea, green spheres) shown in the conventional body centered cubic unit
cell with space group Ia3d. The conventional unit cell contains 40 magnetic atoms
and has a lattice constant of abcc,yig = 12.376 Å [39]. The exchange interactions
between the same iron sites (Jdd and Jaa) as well as between the two different
iron sites (Jad) are marked by green, blue, and orange lines. (b) Magnetic Fe3+-
ions shown in the primitive, rhombohedral unit cell of the bcc-lattice (aYIG,rh =

10.718 Å, αYIG,rh = 109.47◦). The rhombohedral, primitive unit cell contains 20
magnetic atoms. The orientation of the magnetic moments of the Fe3+-ions along
the cubic [111]bcc-direction are marked with blue and green arrows. (c) Center
layer of the conventional bcc unit cell of Y3Fe5O12 with the O2−-polyhedra (yellow
spheres) surrounding the Fe3+-ions. The Fe3+a -ions are octahedrally coordinated
with 6 O2−-ions whereas the Fe3+d -ions are tetrahedrally coordinated with 4 O2−-
ions. (d) Schematic drawing of the orientation of the sublattice magnetizations
MFea and MFed as well as the total magnetization Mtot of YIG for T < TN under
a finite external magnetic field Hext.

As a starting point, the more simple compound Y3Fe5O12 (YIG) is chosen with the aim to
reproduce the results of the SpinW-simulation of the spin wave dispersion relation recently
published by Princep et al. [28].
YIG crystallizes in the body centered cubic Ia3d space group with 4 formula units per lat-
tice point. The conventional bcc unit cell of YIG is shown in Fig. 4.2.1 (a) and (c) with the
Fed-site and Fea-site marked in blue and green, respectively, and the non-magnetic Yc-site
marked in red. The rhombohedral, primitive unit cell of YIG is shown in Fig. 4.2.1 (b). In
Fig. 4.2.1 (a) and in the following figures illustrating the crystalline and magnetic structure,
the oxygen ions are not shown for better visibility. Additionally, the exchange interac-
tions originating from the antiferromagnetic superexchange via the oxygen ions between
the magnetic Fe3+-ions are depicted by orange (Jad), green (Jdd), and blue (Jaa) lines. The
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38 Simulation of spin wave dispersion relations with SpinW

primitive unit cell with the coordinate system a-b-c and the magnetic moments of the 20

Fe3+-ions (blue and green arrows) aligned along the magnetic easy axis parallel to [111]bcc

([111]bcc||[111]prim) is shown in Fig. 4.2.1 (b). The ferrimagnetic ordering for T < TN ≈ 550K

of the Fe3+-ions is resulting from the dominant antiferromagnetic inter-sublattice exchange
interaction Jad (orange lines in Fig. 4.2.1 (b)) between the two magnetic Fe3+-sites. The an-
tiferromagnetic intra-sublattice exchange interactions between the same Fe-sites (Jaa and
Jdd) are weaker, since the respective exchange paths are much longer. The resulting orien-
tation of the sublattice magnetizations MFea and MFed as well as the total magnetization
Mtot of YIG are schematically shown in Fig. 4.2.1 (d) for T < TN under a finite external
magnetic field Hext.
To reproduce the SpinW-simulation reported by Princep et al. [28], a SpinW-code is writ-
ten based on the YIG-structure shown in Fig. 4.2.1 (a). The exchange interactions used
by Princep et al. are listed in Table 4.2.1. These exchange interactions were determined
by refining the simulated magnon dispersion relation to data acquired by a time-of-flight
inelastic neutron scattering experiment [28]. Princep et al. reported two non-degenerate
Fea-Fea couplings Jaa1 and Jaa2 with identical coupling length due to different Fe-O-Fe
pathways, which affects the coupling strength of the O2−-superexchange. Furthermore,
the authors considered next-nearest neighbour (nnn) interactions resulting in a total of 6
non-degenerate magnetic bond types.

Coupling constant Coupling energy (meV)
Jad 6.8
Jdd 0.52
Jaa1 0
Jaa2 1.1
Jad,nnn −0.07
Jdd,nnn 0.47
Jaa,nnn −0.009

Table 4.2.1.: Magnetic exchange couplings of YIG reported by Princep et al. acquired by refining
the simulated spin wave dispersion relation (see Fig. 4.2.2) to data of a time-of-
flight inelastic neutron scattering experiment [28]. These values are used as input
for the SpinW-simulation shown in Fig. 4.2.2 (b).

With the use of these exchange parameters, the spin wave dispersion relation of YIG re-
ported by Princep et al. is reproduced [28] (see Fig. 4.2.2). The difference in the coloring
of the reproduced spin wave dispersion relation (see Fig. 4.2.2 (b)) compared to the spin
wave dispersion relation reported by Princep et al. (see Fig. 4.2.2 (a)) can be traced back on
post-processing of the published figure. This demonstrates, that the SpinW-code, which is
set up to reproduce these results is valid and yields reasonable results.
The first key feature of the spin wave dispersion relation of YIG is the non-gapped fun-
damental ferrimagnetic resonance mode up to 25 meV, colored in red due to positive chi-
rality of the spin wave excitation (spin angular momentum of the magnon �� Mtot,YIG,
i · (Sxy − Syx) > 0). Subsequently, the second key feature is the optical mode, colored in
blue due to opposite chirality, which is strongly dispersing and gapped at the Γ-point.
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Figure 4.2.2.: (a) SpinW simulation of the spin wave dispersion relation of YIG, which was re-
fined to a time-of-flight inelastic neutron scattering data set, reported by Princep
et al. [28]. (b) SpinW simulation of YIG set up within this work with identical
exchange coupling constants as found by Princep and coworkers. The simulation
is able to reproduce the spin wave dispersion relation reported by Princep et al..
The different contrast in the coloring might be originating from post-processing of
figure obtained by SpinW. The two key features are the ferrimagnetic resonance
mode (red) and the first optical mode with opposite chirality (blue), which has an
energy gap at the Γ-point.

When comparing the spin wave dispersion relations in Fig. 4.2.2 with previously calculated
dispersion relations (e.g. Fig. 4.2.3 (a)), one finds that the dispersion relation obtained by
using the magnetic structure of YIG reported by Princep et al. shows a high number of
bands. Especially those bands running from high energy at the N-point to low energy at
the P-point or vice versa (e.g. non-gapped red band at the P-point in Fig. 4.2.2 (a)) might
be not real due to the missing inversion symmetry in the vicinity of the Γ-point.
The solution to this problem is to implement the primitive, rhombohedral unit cell within
the SpinW simulation (see Fig. 4.2.1 (b)). Since SpinW takes the given unit cell as primitive
unit cell, it diagonalizes an Hamilton operator of the size n × n where n is the number
of magnetic atoms within the given unit cell. Thus, in a maximum non-degenerate case,
SpinW calculates n non-degenerated magnon bands. Therefore, this will result in partially
artificial magnon bands in the case of a given non-primitive unit cell.
Figure 4.2.3 (b) shows a spin wave dispersion relation calculated by SpinW, where the in-
put is the primitive, rhombohedral unit cell of YIG. To compare the simulation results, the
coupling constants reported by J. Barker and G.E.W. Bauer (see Table 4.2.2) are used for this
simulation [15]. The comparison with the magnon dispersion relation in the low temper-
ature regime (T = 1 K) obtained by J. Barker and G.E.W. Bauer (see Fig. 4.2.3 (a)) reveals,
that the SpinW-simulation which is set up within this work, is able to achieve similar re-

39



40 Simulation of spin wave dispersion relations with SpinW

sults. Thus, the solutions obtained by the diagonalization of the Heisenberg Hamiltonian
within the linear spin wave theory, using the SpinW-code are valid.

Coupling constant Coupling energy (meV)
Jad 20.0
Jdd 6.7
Jaa 1.9

Table 4.2.2.: Exchange coupling constants of YIG used by J. Barker and G.E.W. Bauer to cal-
culate the spin wave dispersion relation of YIG shown in Fig. 4.2.3 (a). The au-
thors used normalized spins for their model. Within this work, these coupling
constants are utilized to reproduce the spin wave dispersion relation with SpinW
(see Fig. 4.2.3 (b)).
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Figure 4.2.3.: (a) Spin wave dispersion relation of YIG for T = 1 K calculated by J. Barker and
G.E.W. Bauer. The authors calculated the antisymmetric transverse spectral func-
tion i · (Sxy(q, ω) − Syx(q, ω)) as a function of frequency and the momentum in
relative lattice units by using the local spin dynamics within a Landau-Lifshitz-
Gilbert description. Figure taken from Ref. [15]. (b) Spin wave dispersion calcu-
lated by a SpinW simulation within this work. The coupling constants are taken
from Ref. [15]. The primitive, rhombohedral unit cell of YIG is implemented in
the SpinW-simulation to avoid artificial bands.

4.3. Simulation of the spin wave dispersion relation of
Gd3Fe5O12

The next step towards the simulation of magnon properties in Tb3Fe5O12 is the simulation
of the spin wave dispersion relation of Gd3Fe5O12 (GdIG). GdIG exhibits only spin angular
momenta and thus its spin wave dispersion relation can be ideally simulated with SpinW,
which considers only spin angular momentum.
GdIG has a third magnetic sublattice, additional to the two magnetic Fe3+-sublattices in
YIG. The magnetic Gd3+-ions with spin S = 7/2, which form the magnetic sublattice MGdc

are located on the 24c sites within the Ia3d space group (see red atoms in Fig. 4.3.1 (a)).
The intra-sublattice coupling of MGdc is neglected, since there are no valid reports on mag-

40



Simulation of spin wave dispersion relations with SpinW 41

netic ordering of the Gd-sublattice at low temperatures. The inter-sublattice coupling to the
two iron sublattices is considerably weak (Jdc/Jad = 0.29; Jac/Jad = 0.07) [16]. Thus, the
Gd3+-moments can be described as ’exchange-enhanced’ paramagnetic moments, which
are oriented antiparallel to the total Fe-magnetization MGdc ��MFe,tot = MFea + MFed (see
red arrows in Fig. 4.3.1 (a)). A more detailed description of GdIG is given in section 2.4.2.
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Figure 4.3.1.: (a) Primitive, rhombohedral unit cell of the bcc lattice of GdIG with
aGdIG,rh = 10.80 Å and αGdIG,rh = 109.47◦ [16], containing 32 magnetic ions re-
sulting in a maximum of 32 bands in the spin wave dispersion relation. The mo-
ments in this figure are aligned along the cubic [111]bcc magnetic easy axis. (b)
Schematic drawing of the orientation of the collinear sublattice magnetizations
MGd, MFea, MFed as well as the total magnetization Mtot in a finite external mag-
netic field Hext in GdIG. In finite external magnetic fields, the sublattice magneti-
zations invert above the magnetic compensation temperature Tcomp ≈ 288 K [40],
where the total remanent magnetization vanishes (MGdIG,tot(Tcomp) = 0).

As input for the SpinW simulation, the exchange constants reported by Geprägs et al. are
used (see Table 4.3.1) [16]. The spin wave dispersion relation calculated within this work
using SpinW (see Fig. 4.3.2 (b)) is identical to the spin wave dispersion relation reported
by Geprägs et al. (see Fig. 4.3.2 (a)) in the low temperature region T = 40 K. In Ref. [16],
the spin wave dispersion relation was calculated by using the local spin dynamics within
a Landau-Lifshitz-Gilbert approach. The larger values of the coupling constants in com-
parison with those listed in Table 4.2.1 is based on the approach with normalized spins in
Ref. [16].

Coupling constant Coupling energy (meV)
Jad 11.48
Jaa 2.29
Jdd 2.29
Jdc 3.41
Jac 0.85

Table 4.3.1.: Coupling constants of GdIG used by Geprägs et al. to calculate the spin wave dis-
persion relation shown in Fig. 4.3.2 (a). For the calculation, the authors used the
local spin dynamics within a Landau-Lifshitz-Gilbert description with normalized
spins. By using these coupling constants together with normalized spins, an iden-
tical spin wave dispersion relation can be obtained by SpinW (see Fig. 4.3.2 (b)).
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The key characteristics of the calculated spin wave dispersion relation of GdIG shown in
Fig. 4.3.2 are the acoustic, so-called fundamental ferrimagnetic resonance band, which
has a parabolic shape in the vicinity of the Γ-point and the two optical parabolic bands,
colored in blue and red. The size of the energy gap of the first optical, blue mode, which
is Egap ≈ 6.5 meV at 40 K, is strongly dependent on the exchange field acting on the total
Fe-sublattice magnetization, which overall yields Egap ∝ |MGd|(Jdc|MFed| − Jac|MFea|). In
the lower energy region at ≈ 2.8 meV, on top of the acoustic band, there are furthermore
several approximately dispersionless bands originating from the weakly coupled magnetic
moments of the Gd3+-ions precessing in the exchange field of the Fe3+-sublattices.
In conclusion, Fig. 4.3.2 reveals that SpinW is a valid simulation tool for calculating the
spin wave dispersion relation at low temperatures for complex materials with only spin
angular momentum, e.g. GdIG.
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Figure 4.3.2.: (a) Spin wave dispersion relation of GdIG at T = 40 K reported by Geprägs and
coworkers [16]. The calculation was carried out using local spin dynamics in a
Landau-Lifshitz-Gilbert approach. The acoustic band is running up to 2.5 meV,
where it is bound by the approximately dispersionless bands originating from the
weakly coupled Gd3+-moments. At higher energies around 6.5 meV, GdIG has
a gapped, strongly dispersing optical band, which has opposite chirality (blue
mode). Figure taken from Ref. [16]. (b) Spin wave dispersion relation calcu-
lated using SpinW within this work. With the exchange coupling constants from
Geprägs et al. [16], the spin wave dispersion relation of figure (a) can be repro-
duced. This result confirms SpinW as a proper simulation tool for calculating
spin wave dispersion relations at low temperatures.
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4.4. Simulation of the spin wave dispersion relation of
Tb3Fe5O12

The next step after the successful simulation of the spin wave dispersion relation of YIG
and GdIG is the simulation of the spin wave dispersion relation of Tb3Fe5O12 (TbIG). TbIG
increases the difficulty in terms of spin wave dynamics due to an additional orbital angular
momentum on the 24c site within the cubic Ia3d space group. The goal of this section is to
find a spin wave dispersion relation with one coupled set of parameters, that can explain
the experimentally determined dispersion relation obtained by inelastic neutron scattering
on a TbIG single crystal at 10 K, 100 K and 280 K (see section 3). For the calculation of the
spin wave dispersion relation at 100 K and 280 K, several assumptions have to be made,
since with SpinW only an approximation to magnon properties far away from the 0 K-limit
can be provided.

(a) (b)

Tb’
c

Fe
a

Fe
d

J
ad

J
ac

J
dc

J
dd

J
aa

Tb
c

b

a
c

H
ext

M
Fed

M
Fea

M
tot

M
Tbc

T > T
comp

M
Fed

M
Fea

M
tot

M
Tbc

T < T
comp

(c)

M
Fed

M
Fea

M
tot

M
Tbc

M
Tb’c

T < T
du

[111]

Figure 4.4.1.: (a) Magnetic atoms within the rhombohedrally distorted unit cell of TbIG using
the values of the rhombohedral lattice constant aTbIG,rh and angle αTbIG,rh as well
as the opening angles of the ’double-umbrella’ structure θ and θ′ at 10 K (see Figs.
2.4.5 and 2.4.6). The arrows show the directions of the Fed (green) and Fea (blue)
as well as of the non-equal Tbc (red) and Tb’c (dark red) magnetic moments. Fur-
thermore, the exchange interaction between different sites (Jad, Jaa, Jdd, Jdc, Jac)
are shown by colored lines. (b) Magnetic atoms within the primitive unit cell of
TbIG. The crystallographic [111] direction is pointing out of the drawing plane,
which makes the ’double-umbrella’ structure visible. (c) Schematic drawing of
the three different magnetic phases in TbIG. A small external field along the cu-
bic [111]bcc-direction is considered. For T < Tdu ≈ 160 K, TbIG is described by
the double-umbrella structure which is defined by the two opening angles θ, θ′.
Above the magnetic compensation temperature Tcomp, the directions of the sub-
lattice magnetizations are reversed to maintain a parallel orientation of the total
magnetization Mtot with the external magnetic field Hext.
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For T > Trh ≈ 190 K, the properties of TbIG are similiar to GdIG [31]. Below T <

Trh, TbIG shows a rhombohedral distortion, thus its space group changes to R3̄ (see sec-
tion 2.4.3). The degeneracy of the 24c-sites within the Ia3d space group is lifted to non-
degenerate 6e- and 6e′-sites within the R3̄ space group and the collinear magnetic struc-
ture is replaced by the ’double-umbrella’ structure [33] (see Fig. 4.4.1). This structure is
defined by the two opening angles θ, θ′, which describe the tilting of the magnetic mo-
ments of Tb3+-ions and Tb3+′

-ions on the 6e- and 6e′- sites, respectively. Within the dou-
ble umbrella structure, the magnetic moments of Tb3+ and Tb3+′

tilt away from the cubic
[111]bcc-direction within the three degenerated [111]bcc × [100]bcc planes. A more detailed
description of the properties of TbIG is given in section 2.4.3.

Coupling constant Coupling energy (meV)
Jad 5.51
Jaa 1.10
Jdd 1.10
Jdc 1.17
Jac 0.29

Table 4.4.1.: Coupling constants used for the simulation of the spin wave dispersion relation in
GdIG. Due to the transition to unnormalized spins, the coupling constants differ
from the coupling constants displayed in Table 4.3.1, such that they yield the same
spin wave dispersion relation but with unnormalized spins. These coupling con-
stants are used as a starting point for the simulation of the spin wave dispersion
relation of TbIG for T = 280 K, above the temperature of the structural distortion
Trh ≈ 190 K.

As a starting point for the simulation, the coupling constants found for the simulation of
GdIG (see Table 4.4.1) are used. As TbIG exhibits an additional orbital angular momentum,
a pseudo-spin angular momentum of the Tb3+-ions is used, which is determined from tem-
perature dependent magnetization measurements M(T ), obtained by
SQUID-magnetometry (see Fig. 4.4.2 (a)). For this purpose, the M(T )-measurement with
an external applied magnetic field of 1 T along the cubic [111]bcc-direction of a YIG sin-
gle crystal is added (subtracted) to (from) that of a TbIG single crystal below (above) the
magnetic compensation temperature Tcomp = 250.5 K of TbIG. With this method, the mag-
netization of the Tb3+-ions ‖ [111]bcc is determined, assuming that the Y3+-ions of YIG
are non-magnetic. The magnetization of the Tb3+-ions is corrected by a factor 1/cos(θ)

and 1/cos(θ′) for the 6e and 6e′ sites, respectively, within the ’double-umbrella’ phase us-
ing the opening angles θ and θ′ determined from neutron diffraction by Lahoubi [33]. By
the assumption of gTb = 2, the quasi-spin STb of the Tb3+-ions describing the sum of the
spin angular momentum and the orbital angular momentum is calculated, which is used
as input for the SpinW simulation. This method is needed, since SpinW does not allow
an orbital angular momentum and thus the quasi-spin assumption is the only possibility
to describe a magnetic ion that possesses an additional orbital angular momentum with
SpinW. Due to Tb being a heavy element this assumption is valid since j = l + s is the
only good quantum number describing the total angular momentum of the electron in the
strong spin-orbit coupling regime. Here, j is used as a quasi-spin where the size of the
spin, whose absolute value is extracted from a M(T ) measurement, is the main source for
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the implementation of the temperature dependence.
For further reduction of the parameter space, only the two Fe-Tb exchange coupling con-
stants Jdc and Jac as well as a factor which is multiplied to all Fe-Fe exchange coupling
constants Jad, Jaa, Jdd, which is called ’Fe-factor’ in the following, are considered as free
parameters. The physical argument behind this assumption is given by the rigidity of the
magnetic Fe-subsystems for all rare-earth iron garnets RE3Fe5O12, which also leads to a
similar Néel temperature TN ≈ 550 K for all known RE3+-ions (see Fig. 2.4.2). Thus, the
free parameters for the refinement of the spin wave dispersion relation to get the best pos-
sible agreement to the experimental data obtained by inelastic neutron scattering on a TbIG
single crystal are the ’Fe-factor’ and the two Fe-Tb exchange couplings Jdc and Jac.
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Figure 4.4.2.: Temperature dependent magnetization measurements M(T ) obtained by
SQUID-magnetometry (see section A.2.2) with an external magnetic field ap-
plied parallel to the cubic [111]bcc-direction. The magnetization is given in
Bohr magnetons per formula unit of Tb3Fe5O12 (µB/f.u.). (a) Magnetizations
MYIG,[111] and MTbIG,[111] parallel to the cubic [111]bcc-direction of a YIG sin-
gle crystal and a TbIG single crystal, respectively, in an external magnetic
field of µ0Hext = 1 T. For the determination of the Tb3+-sublattice mag-
netization MTb,[111] the M(T )-measurements for YIG and TbIG are subtracted
(added) for temperatures above (below) the magnetic compensation temperature
Tcomp,TbIG = 250.5 K. The discontinuity in MTb,[111](T ) at Tcomp can be traced
back on a finite ∂HextM(Tcomp, Hext) and would vanish in the 0 T-limit. (b) M(T )-
measurements of a TbIG single crystal in several external magnetic fields. Below
100 K, the magnetization shows a rapid increase up to 17.6µB per formula unit at
10 K for external magnetic fields larger than 0.5 T. As expected, the dependence
of the magnetization on the external magnetic field ∂Hext

M(T,Hext) is increasing
with rising temperatures, resulting from the suppression of thermal excitations by
an external magnetic field. A spin-canting phase [29] is found for external mag-
netic fields above 3 T in a small temperature region in the vicinity of Tcomp.

4.4.1. Spin wave dispersion relation of Tb3Fe5O12 at 280 K

The discussion of the spin wave dispersion relation of TbIG starts at high temperatures
(T = 280 K), where the material properties of TbIG are similar to GdIG. This implies that
at 280 K TbIG does not show a rhombohedral distortion and the sublattice magnetizations
are aligned collinear. Thus, the SpinW-simulation which was set up for GdIG can be used
as a starting point. The quasi-spin for the Tb3+-ion is found as STb = 0.564 ~ at 280 K (see
Fig. 4.4.2 (a)).
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In Fig. 4.4.3, the data points obtained by inelastic neutron scattering with polarization
analysis on a TbIG single crystal at a sample temperature of 280 K (see Fig. 3.2.1 (b)) are
plotted together with the simulated spin wave dispersion relation (see Fig. 4.4.3). The color
of the data points depicts the experimentally determined chirality of the respective magnon
mode, i.e. the sign of i · (Sxy − Syx).
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Figure 4.4.3.: Three examples of spin wave dispersion relations of TbIG at 280 K simulated with
SpinW. The simulation parameters are shown on top. The data points plotted
together with the simulation are obtained by inelastic neutron scattering with po-
larization analysis (see Fig. 3.2.1 (b)). The three simulations are able to reproduce
the experimental data such that the simulated magnon modes are within the error
bars of the extracted energy positions of the magnon modes found by the inelastic
neutron scattering experiment. The thermal energy is marked in green. Spin wave
modes up to this energy are thermally excited and contributing to thermally acti-
vated spin currents in e.g. spin Seebeck effect experiments. Remarkably, the first
optical mode at temperatures below Tcomp = 250.5 K becomes the acoustic mode
for temperatures above Tcomp (red dispersing mode below 30 meV), whereas the
previous acoustic mode is found to have an energy gap at the Γ point (blue dis-
persing mode below 8 meV). This behavior is consistent with simulations of GdIG
above Tcomp reported by Ganzhorn et al. [12].

To refine the simulated spin wave dispersion relation, the free parameters are varied until
the spin wave dispersion relation matches the experimental data points. It turns out that
the Fe3+ exchange couplings Jad, Jaa, Jdd remain unchanged and thus are equal to the Fe3+

exchange couplings found for GdIG. This is true for the whole temperature region inves-
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tigated in this work. The three best matching results with respect to the remaining free
parameters which are the exchange couplings between the Tb3+-moments and the Fe3+-
moments, i.e. the Jdc and Jac exchange constant, are shown in Fig. 4.4.3. From these sim-
ulations, the parameters with their respective uncertainties are determined (see Table 4.4.2).

Simulation parameter Fitted values Simulation parameter Fixed value
Jac (0.039± 0.015) meV STb 0.564 ~
Jdc (1.52± 0.12) meV θ 0◦

Jad (5.51± 0.11) meV θ′ 0◦

Jaa (1.10± 0.02) meV arh 10.767 Å
Jdd (1.10± 0.02) meV αrh 109.47◦

Table 4.4.2.: Simulation parameters obtained by refining the spin wave dispersion relation sim-
ulated by SpinW to experimental data obtained by inelastic neutron scattering with
polarization analysis at a sample temperature of 280 K (see Fig. 4.4.3). The error is
calculated form the entity of spin wave dispersion relations which match the ex-
perimental data within the error bars. The fixed simulation parameters on the right
are obtained from SQUID-magnetometry measurements (STb) and from Ref. [23]
(arh, αrh) and Ref. [33] (θ, θ′), respectively. For the simulation, the primitive, rhom-
bohedral unit cell of the bcc symmetry with the respective rhombohedral lattice
constant arh and angle αrh is used.

For the discussion of the SpinW-simulation for TbIG shown in Fig. 4.4.3, it is compared to
the spin wave dispersion relation of GdIG at T = 40 K (see Fig. 4.3.2). This is a valid com-
parison, since the macroscopic material properties of TbIG at 280 K and GdIG are similar
with an identical crystal structure and space-group.
For the simulation of TbIG at 280 K, i.e. above the magnetic compensation temperature
Tcomp, the chirality (depicted by the coloring) of all bands is inverted relatively to the spin
wave dispersion relation of GdIG at 40 K, i.e. below Tcomp. When crossing the magnetic
compensation temperature Tcomp in finite magnetic fields, the total magnetization remains
aligned parallel to the external magnetic field (Mtot �� Hext �� +ẑ), whereas the orientation
of the sublattice magnetizations is inverted (see Fig. 4.4.1 (c)). Since the chirality of a spin
wave is depending on the orientation of the magnetic moments, the inversion of all sublat-
tices causes an inversion of the chirality.
The most remarkable property of the spin wave dispersion relation of TbIG at 280 K is the
acoustic, red mode below 30 meV, which is related to the first optical, blue mode of GdIG
at 40 K shown in Fig. 4.3.2. Furthermore, the first optical, blue mode below 6.5 meV is re-
lated to the acoustic mode of GdIG at 40 K. Physically, this interchange of the acoustic and
the first optical mode is related to the acoustic mode describing the precession of the local
moments from all sublattices in phase, leading to a magnetic moment of the magnon an-
tiparallel to the total magnetization, which is equal to i · (Sxy − Syx) > 0 (red) in the wave
picture. To satisfy this constraint, the acoustic mode and the first optical mode switch roles
while crossing Tcomp. This was also found for the spin wave dispersion relation in GdIG
by Ganzhorn et al. [12]. Additionally, Ganzhorn et al. found that the temperature and field
dependence of the band position in GdIG are strongly linked to the acoustic and optical
character of the band. This results in an interchange of the susceptibility of the two bands
on temperature and field changes, which might also be true for TbIG due to the resem-
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blance to GdIG at T > Trh ≈ 190 K. Further intuitive interpretation of the bands in the spin
wave dispersion relation of TbIG is similar to GdIG, which is given in section 4.3.

4.4.2. Spin wave dispersion relation of Tb3Fe5O12 at 100 K

After the successful simulation of the spin wave dispersion relation of TbIG at 280 K, where
the material properties are comparable to the well known GdIG, the next step is the simula-
tion of the spin wave dispersion relation of TbIG at 100 K. Below Trh ≈ 190 K, TbIG exhibits
a structural distortion resulting in the rhombohedral R3̄ structure. Despite the small rhom-
bohedral distortion, pointed out by the small difference of 0.03◦ of the rhombohedral angle
relative to that of the non-distorted primitive rhombohedral unit cell of the bcc-lattice, a
’double-umbrella’ structure on the non-equal 6e- and 6e′-sites within the R3̄ structure is
present for T < Tdu (see section 2.4.3). For the quasi-spin, a value of STb = 1.86 ~ is ob-
tained by M(T )-SQUID-magnetometry measurements (see Fig. 4.4.2). This is taken into
account by using a non-collinear magnetic structure as input of the SpinW-simulation (see
Fig. 4.4.1 (b)). As mentioned earlier, the opening angles θ and θ′ of the double umbrella
structure found by neutron diffraction experiments reported by Lahoubi [33] are used as
fixed simulation parameters.
Analogously to the simulation of the spin wave dispersion relation for 280 K, the data
points obtained by inelastic neutron scattering with polarization analysis at a sample tem-
perature of 100 K (see Fig. 3.3.1) are plotted together with the simulation results in Fig.
4.4.4. The simulation is refined to the neutron scattering data by optimizing the exchange
interactions Jac, Jdc and the ’Fe-factor’ defined in section 4.4, which is adjusting the Fe-
Fe interactions. As an example, three SpinW-simulations, which agree with the results of
the inelastic neutron scattering experiment within the error range, are shown in Fig. 4.4.4.
From all the exchange interactions, which result in spin wave dispersion relations repro-
ducing the experimental data of the inelastic neutron scattering within the error range, the
final material parameters as well as the corresponding uncertainties are calculated (see Ta-
ble 4.4.3).
The spin wave dispersion relation of TbIG at 100 K mimics the spin wave dispersion re-
lation of GdIG at 40 K (see Fig. 4.3.2). Due to the higher temperature and thus lower
Tb-sublattice magnetization, the energy gap at the Γ-point of the first optical, blue mode
Egap = 4.5 meV is smaller than in GdIG at 40 K.
Compared to the spin wave dispersion relation of TbIG at 280 K (see Fig. 4.4.3), the first
optical mode (here in blue) and the acoustic mode (here in red) have swapped their key
properties, which in the first place results in the acoustic mode being a non-gapped mode
at the Γ-point in the absence of an external magnetic field. Additionally, the colors of all
magnon modes, i.e. i · (Sxy−Syx), are inverted compared to the spin wave dispersion rela-
tion of TbIG at 280 K. Both findings can be explained by the crossing of the magnetic com-
pensation temperature Tcomp = 250.5 K where the sublattice magnetizations invert within
a finite external magnetic field.
The splitting of the first optical, blue mode found by inelastic neutron scattering (c.f. two
blue data points at 4.6 meV and 6.8 meV at the Γ-point) is attributed to the coupling of the
magnon to ligand field excitations resulting in two gapped hybrid modes and thus can-

48



Simulation of spin wave dispersion relations with SpinW 49

not be simulated with SpinW (see Fig. 2.4.7) [34]. Most remarkable is the small, blue area
within the acoustic band in close vicinity of the Γ-point at E ≈ 0 meV, which is indicat-
ing a mixed chirality of the acoustic band. This can be traced back to the opening of the
’double-umbrella’ structure within TbIG below Tdu ≈ 160 K.
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Figure 4.4.4.: Three examples of spin wave dispersion relations of TbIG at 100 K. The spin wave
dispersion relations are obtained by adjusting the interaction between the Tb3+-
and the Fe3+-ions as well as the Fe-Fe interactions, such that the simulated spin
wave dispersion relation matches the data of inelastic neutron scattering with po-
larization analysis within the error range (red and blue data points). Spin wave
modes are excited up to the thermal energy, marked in green, leading to contribu-
tions of all modes up to thermal energy to thermally driven spin currents under
the constraints of the Bose-Einstein distribution. All of the three simulation results
can fit the experimental data leading to an error range of the fitted parameters
listed in Table 4.4.3.
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Simulation parameter Fitted values Simulation parameter Fixed value
Jac (0.12± 0.04) meV STb 1.86 ~
Jdc (1.17± 0.13) meV θ 15.56◦

Jad (5.51± 0.11) meV θ′ 11.39◦

Jaa (1.10± 0.02) meV arh 10.753 Å
Jdd (1.10± 0.02) meV αrh 109.44◦

Table 4.4.3.: Simulation parameters obtained by refining the spin wave dispersion relation sim-
ulated by SpinW to experimental data obtained by inelastic neutron scattering with
polarization analysis at a sample temperature of 100 K (see Fig. 4.4.4). The error is
calculated form the entity of spin wave dispersion relations which match the ex-
perimental data within the error bars. The fixed simulation parameters on the right
are obtained from SQUID-magnetometry measurements (STb) and from Ref. [23]
(arh, αrh) and Ref. [33] (θ, θ′), respectively.

4.4.3. Spin wave dispersion relation of Tb3Fe5O12 at 10 K

The last step towards the full simulation of the spin wave dispersion relation of TbIG is
the investigation of the low temperature regime, which is covered by the simulation of the
spin wave dispersion relation at T = 10 K within this work. At very low temperatures, the
rhombohedral distortion is still small ∆αrh,280K−10K = 0.06◦, where αrh,280K = 109.47◦ is
the rhombohedral angle of the non-distorted primitive bcc unit cell. On the other hand, the
opening angles of the double umbrella structure with θ = 31.37◦ and θ′ = 26.46◦ [33] are
large, leading to drastic changes in the spin wave dispersion relation. Also the quasi-spin
of the Tb-moments is considerably large (STb = 4.35 ~) which results in a high total mag-
netization |Mtot| = 17.6µB/f.u. of TbIG (see Fig. 4.4.2).
The procedure of refining the simulated spin wave dispersion relation to the data of inelas-
tic neutron scattering with polarization analysis at a sample temperature of 10 K remains
identical to that previously described. The results of the SpinW-simulation of the spin wave
dispersion relation of TbIG at 10 K for three different sets of input parameters are shown
in Fig. 4.4.5 together with the experimental data obtained by inelastic neutron scattering.
The final simulation parameters and the corresponding uncertainties (see Table 4.4.4) are
obtained by evaluating the entity of simulated spin wave dispersion relations matching the
experimental data of the inelastic neutron scattering within the error range.
The spin wave dispersion relation of TbIG at 10 K shows, as expected, a larger energy gap
at the Γ-point of the first optical, blue mode of Egap = 9.1 meV compared to that at 100 K.
This is related to the large Tb-sublattice magnetization |MTb|(10 K) = 22.8µB/f.u. (see
Fig. 4.4.2 (a)). Same as for the spin wave dispersion relation at 100 K, the splitting of the
first optical, blue mode at the Γ-point found by inelastic neutron scattering is related to
the coupling of the magnons to ligand field excitations leading to two hybrid modes at the
Γ-point [34] (see two blue data points at 9.7 meV and 12.7 meV in Fig. 4.4.5).
Due to the even larger opening of the ’double-umbrella’ at 10 K than at 100 K, the blue
area in the vicinity of the Γ-point increased its size which means that the acoustic band
shows a pronounced mixed chirality, same as the flat bands above the acoustic band. These
flat bands are related to the Tb-moments precessing in the exchange field of the two Fe-
sublattices which is supporting the theory that the mixed chirality is originating from the
canted Tb3+-moments of the magnetic double umbrella structure. The most remarkable
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feature is that all bands of the spin wave dispersion relation are gapped at the Γ-point. At
q ≈ 0.2·P, the acoustic band goes towards E = 0 meV. This behavior is also linked to the
canting of the Tb-moments within the pronounced magnetic ’double-umbrella’ structure of
TbIG at low temperatures. Furthermore, there are two flat, chiral bands at around 12 meV

and at 30 meV which were found by inelastic neutron scattering with polarization analysis
but could not be reproduced by a SpinW simulation. The physical origin of these bands
is still unclear but is supposed to be linked with the ’double-umbrella’ structure or by a
possible ordering of the Tb-moments at low temperature. However, this should be subject
to further investigation. Since these flat bands were only found at 10 K within this work,
their temperature evolution should be tracked within future inelastic neutron scattering
experiments on TbIG, which could give new approaches to their physical origin.
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Figure 4.4.5.: Three examples of spin wave dispersion relations of TbIG at 10 K obtained by
refining the dispersion relation to experimental data of inelastic neutron scattering
with polarization analysis (red and blue data points). The flat bands at 12 meV and
30 meV found by inelastic neutron scattering cannot be reproduced by a SpinW
simulation but are presumably originating from the pronounced double-umbrella
structure or might be caused by an ordering of the Tb-sublattice moments, which
is not implemented in this simulation. At 10 K, the thermal energy (marked in
green) is located within the acoustic band of the spin wave dispersion relation.
This results in only the acoustic spin wave excitations (i.e. magnons) contributing
to thermally activated spin currents in the low temperature regime.
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Simulation parameter Fitted values Simulation parameter Fixed value
Jac (0.17± 0.02) meV STb 4.35 ~
Jdc (0.99± 0.06) meV θ 31.37◦

Jad (5.51± 0.11) meV θ′ 26.46◦

Jaa (1.10± 0.02) meV arh 10.744 Å
Jdd (1.10± 0.02) meV αrh 109.41◦

Table 4.4.4.: Simulation parameters obtained by refining the spin wave dispersion relation sim-
ulated by SpinW to experimental data obtained by inelastic neutron scattering with
polarization analysis at a sample temperature of 10 K (see Fig. 4.4.5). The error is
calculated form the entity of spin wave dispersion relations which match the ex-
perimental data within the error bars. The fixed simulation parameters on the right
are obtained from SQUID-magnetometry measurements (STb) and from Ref. [23]
(arh, αrh) and Ref. [33] (θ, θ′), respectively.

4.4.4. Magnon properties in Tb3Fe5O12 between 10 K and 100 K

Another interesting property, which can be extracted from the SpinW simulations of TbIG
is the temperature Tcross, where the thermal energy (green line) crosses the first optical,
blue mode at the Γ-point (Egap(Tcross) = kBTcross). Slightly above this temperature the first
optical, blue mode is populated according to Bose-Einstein statistics leading to a second
thermal spin current channel when a temperature gradient is applied (see section 2.3.2).
Since the chirality of the optical mode is opposite to the chirality of the already populated
acoustic mode, the spin current channel originating from the optical mode cancels out the
spin angular momentum which is transported by the channel originating from the acoustic
mode, when a temperature gradient is applied. In total, this leads to a vanishing thermally
activated spin current parallel to the temperature gradient. Within the spin Seebeck effect,
this leads to a sign change in the total amplitude which is expected in the vicinity of the
crossing temperature Tcross.
There are two attributes contributing to the value of Tcross. One is the position of the tem-
perature itself. The other one is the size of the energy gap Egap ∝ |MTb|(Jdc|MFed| −
Jac|MFea|) at the Γ-point of the first optical mode, which is mainly influenced by the strong
temperature dependence of Tb-sublattice magnetization MTb. Since MTb is rapidly de-
creasing for 25 K < T < 100 K and Egap is dependent on multiple parameters, the crossing
temperature Tcross can only be extracted from a simulation in close vicinity of Tcross.
The spin wave dispersion relations for temperatures between 10 K and 100 K are shown in
Fig. 4.4.6. As a first order approximation, the values of the magnetic exchange coupling
constants are linearly interpolated between 10 K and 100 K. The temperature dependent
quasi-spin value for the magnetic moments of the Tb3+-ions has been extracted from tem-
perature dependent SQUID-magnetometry measurements on TbIG (see Fig. 4.4.2 (a)) and
the opening angle is taken from the values found by Lahoubi (see Fig. 2.4.6)[33]. This is
leading to Tcross = 70 K, where also a sign change in the amplitude of the spin Seebeck
effect is expected.
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Figure 4.4.6.: Spin wave dispersion relations for 10 K < T < 100 K obtained by SpinW-
simulations. For the simulation of the temperature evolution, the exchange cou-
pling constants are linearly interpolated between 10 K and 100 K. All recorded
data points obtained by inelastic neutron scattering are plotted together with the
results of SpinW-simulations. At the temperature Tcross = 70 K, the thermal en-
ergy (green horizontal line) crosses the first optical, blue mode at the Γ-point.
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4.5. Summary - Simulation of the spin wave dispersion relation
of Tb3Fe5O12 with SpinW

This chapter discussed the SpinW-simulations of the spin wave dispersion relation of YIG,
GdIG and TbIG. The comparison of the simulated spin wave dispersion relations of YIG
and GdIG with literature data demonstrates the validity of SpinW for the simulation of
spin wave dispersion relations of complex rare-earth iron garnet materials.
The SpinW-simulations of TbIG for 10 K, 100 K and 280 K match the data obtained by in-
elastic neutron scattering with polarization analysis. The choice of temperatures covers all
structural and magnetic phases of TbIG and leads to simulations which are able to outline
the magnon properties (i.e. spin wave dispersion relations) in the magnetically ordered
phases of TbIG. The obtained spin wave dispersion relations are set in context with the
temperature profile of the spin Seebeck effect in the next chapter.
The second important result is a full set of exchange interaction constants, which is listed in
Table 4.5.1. Furthermore, the temperature where the thermal energy crosses the first optical
mode at the Γ-point is determined as Tcross = 70 K. This temperature is connected to the
low temperature sign change of the spin Seebeck effect amplitude within the next chapter.

Simulation parameter Fitted values (10 K) Fitted values (100 K) Fitted values (280 K)
Jac (0.17± 0.02) meV (0.12± 0.04) meV (0.039± 0.015) meV
Jdc (0.99± 0.06) meV (1.17± 0.13) meV (1.52± 0.12) meV
Jad (5.51± 0.11) meV (5.51± 0.11) meV (5.51± 0.11) meV
Jaa (1.10± 0.02) meV (1.10± 0.02) meV (1.10± 0.02) meV
Jdd (1.10± 0.02) meV (1.10± 0.02) meV (1.10± 0.02) meV

Table 4.5.1.: Parameters resulting from refining the spin wave dispersion relation to experimen-
tal data obtained by inelastic neutron scattering. Together with the data plotted in
Figs. 2.4.5, 2.4.6 and 4.4.2 this gives a full set of parameters describing the magnetic
interaction in TbIG. Remarkably, the Fe-Fe exchanges (Jad, Jaa, Jdd) are constant
within the considered temperature region, which is typical for the rare-earth iron
garnet material class.
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5. Spin Seebeck effect in Tb3Fe5O12|Pt
heterostructures

This chapter discusses the spin Seebeck effect experiments with Tb3Fe5O12|Pt heterostruc-
tures. The first part of this chapter describes the experimental setup and the data analysis
for the extraction of the spin Seebeck signal. The main part then focuses on the spin See-
beck effect in the Tb3Fe5O12 single crystal|Pt heterostructures and its connection to the spin
wave dispersion relation of Tb3Fe5O12 discussed in the previous chapter. Subsequently, the
third section discusses the spin Seebeck effect in Tb3Fe5O12 thin film|Pt heterostructures
and highlights the differences to Tb3Fe5O12 single crystal|Pt heterostructures. These differ-
ences are then addressed by several experimental attempts, which aim to reveal the origin
of the different signatures of the spin Seebeck effect observed in Tb3Fe5O12 single crystals
and Tb3Fe5O12 thin films.

5.1. Experimental procedure and data analysis for spin
Seebeck effect experiments

For the investigation of the spin Seebeck effect in Tb3Fe5O12 (TbIG)|Pt heterostructures, the
samples are patterned into a Hall-bar mesa-structure using optical lithography and Ar-ion
milling. The mesa-structure is then wire-bonded to a chip-carrier, which enables the record-
ing of the longitudinal Vlong and the transverse voltage drop Vtrans within a four point mea-
surement setup while a DC-current Id along the Hall-bar is applied (see Fig. 5.1.1). Within
this work, the Hall-bar is aligned with the current direction parallel to the magnetically
easy cubic [111]bcc-direction of TbIG. To establish a good thermal contact with the sample
holder, the sample is mounted on the copper block of a chip-carrier with GE Varnish. The
chip-carrier is then mounted on a dipstick which is inserted into a magnet cryostat. Due to
good thermal contact between the bottom side of the sample and the dipstick, the assump-
tion that the dipstick temperature equals the temperature at the bottom side of the sample
is valid. The sample is oriented such that the magnetic field, parametrized by the angle α
and magnitude H , can only be varied within the sample plane (see Fig. 5.1.1). The magnet
cryostats at the Walther-Meißner-Institute which are used in this work allow to control the
temperature of the dipstick Tdip from 5 K to 300 K and the magnetic field up to µ0H = 15 T.
To establish a thermal gradient in out-of-plane direction, which is the driving force of the
spin Seebeck effect, a current of Id = 5 mA is applied for resistively heating the Pt-layer. At
each point of the measurement, the DC-current direction is inverted 6 times allowing a sep-
aration of thermal and resistive voltage signals. For the determination of the established
Pt-temperature TPt due to resistive heating, the longitudinal voltage Vlong as a function of
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temperature is recorded while a current of Id = 100µA is applied. With the calculated
resistance R(TPt) of the Pt-layer as a function of temperature, the Pt-temperature can be
estimated while resistively heating the Pt-layer with a current of Id = 5 mA. Therefore,
first, any resistive heating of the Pt-layer for a current of Id = 100µA is neglected, such that
the dipstick temperature is assumed to be equal to the Pt-temperature and, second, Ohm’s
law is also applicable in the case of Id = 5 mA, where an additional quadratic voltage-
dependence is expected due to resistive heating of the Pt-layer.
Within this work, only field-dependent spin Seebeck effect experiments (FD-SSE) are con-
ducted due to the large magnetic anisotropy of TbIG along the cubic [111]bcc-directions,
in particular at low temperatures (for a more detailed description see section 2.3.4). Thus,
the external magnetic field H as well as the current direction Id are aligned parallel to the
cubic [111]bcc-direction which is equal to α = 0◦. The FD-SSE experiments are conducted
at constant temperatures Tdip between 5 K and 300 K. To cover the full hysteresis loop, the
magnitude of the external magnetic field H is swept from +Hmax → −Hmax → +Hmax with
Hmax = 7 T or Hmax = 15 T depending on the used experimental setup. For measuring the
voltage drops Vlong and Vtrans, Keithley K2182 Nanovoltmeters are used as voltmeters to-
gether with a Keithley K2400 Source Meter as current source.
To analyze the data, the thermal Vtherm and the resistive Vres voltage signals have to be sep-
arated by usage of the so-called delta-method. This method utilizes, that resistive effects
yield point symmetric V −I dependencies, whereas thermal effects yield mirror symmetric
V − I dependencies. This leads to following identities:

Vtherm(I) = Vtherm(−I) (5.1)

Vres(I) = −Vres(−I) (5.2)

Vtherm =
V (+I) + V (−I)

2
(5.3)

Vres =
V (+I)− V (−I)

2
. (5.4)

Here, V (+I) and V (−I) are the raw voltage signals with the current density J �� x and
J �� x, respectively. The size of current density is defined by |J| = Id/(dPt · wHB), where
dPt is the thickness of the Pt-layer and wHB is the width of the current path of the Hall-bar
mesa-structure. The expected voltage signals originating from the spin Seebeck effect are
schematically shown and explained in section 2.3.4 and in Fig. 2.3.3. Since the external
magnetic field is aligned at α = 0◦ and the spin Seebeck effect is a thermally driven effect,
the voltage signals originating from the spin Seebeck effect are expected in the thermal
component of the transverse voltage drop Vtherm,trans.
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Figure 5.1.1.: (a) Schematic drawing of a Hall-bar mesa-structure after patterning and wire-
bonding which is enabling a four point measurement of the transverse Vtrans and
longitudinal Vlong voltage drop. The sample is mounted inside a magnet cryostat
such that the magnetic field can be varied in the sample plane (x-y-plane). Due
to application of a DC-heating current Id = 5 mA with alternating directions a
thermal gradient is established in out-of-plane (z) direction. (b) Photograph of a
TbIG|Pt heterostructure after optical lithography and Ar-ion milling.

5.2. Spin Seebeck effect in Tb3Fe5O12 single crystal|Pt
heterostructures

5.2.1. Sample preparation

The spin Seebeck effect experiments with the Tb3Fe5O12 (TbIG) single crystal|Pt heterostruc-
ture are conducted with a single crystal, which has the cubic [110]-direction oriented par-
allel to the out-of-plane direction. To flatten the sample surface, the crystal is polished
in the first step. Subsequently, the crystal is dipped into Piranha-acid for two minutes.
For the Piranha-acid, a mixture of H2SO4 and 35% H2O2 in aqueous solution at a ratio of
3 : 1 is used. After dipping the crystal in Piranha-acid, it is stored in a container filled
with distilled water to prevent contamination of the surface. The third step is annealing
the TbIG single crystal in the PLD-chamber of the UHV-cluster (see section A.1.3). For
this procedure, the sample is mounted on a Kanthal sample holder, which is heated from
the backside by an infrared Laser up to a temperature of 450 ◦C with an on- and off-ramp
of 25 ◦C/min. To avoid oxygen vacancies, the whole annealing process is performed in-
side an oxygen atmosphere with a pressure of 10µbar. Since the amplitude of the spin
Seebeck effect is directly proportional to the spin-mixing conductance g↑↓, which mainly
relies on a high interface quality, a clean interface between the Pt-layer and the TbIG sin-
gle crystal is mandatory (see section 2.3.1). Therefore, the sample is transferred in-situ,
without breaking the vacuum, into the EVAP-chamber of the UHV-cluster, where a Pt-thin
film with a thickness of (4.0± 0.1) nm is deposited via electron beam evaporation (see sec-
tion A.1.4). To pre-characterize the sample, X-ray diffraction experiments are performed.
The two main X-ray diffraction measurements are shown in Fig. 5.2.1. From the reflec-
tometry (see Fig. 5.2.1 (a)), the Pt-thickness dPt = (4.0± 0.1) nm, the interface roughness
RRMS,interface = (0.2± 0.1) nm and the surface roughness RRMS,surface = (0.55± 0.10) nm

are extracted by refining a LEPTOS-simulation to the raw data. The single peak structure
of the rocking curve (see Fig. 5.2.1 (b)) around the (880) Bragg-reflection of TbIG with a
full width at half maximum (FWHM) of only (0.0160± 0.0001)◦ reveals a single crystalline
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TbIG sample with a small mosaicity and no secondary crystallites. As a final step of prepa-
ration, the sample is patterned and wire-bonded as described in section 5.1.
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Figure 5.2.1.: X-ray diffraction measurements on the TbIG single crystal|Pt heterostructure,
which is used for spin Seebeck effect experiments within this work. (a) Reflec-
tometry measurement (black curve) plotted together with the LEPTOS-simulation
(red curve). The determined simulation parameters are dPt = (4.0± 0.1) nm,
RRMS,interface = (0.2± 0.1) nm and RRMS,surface = (0.55± 0.10) nm. (b) Rocking
curve around the (880) Bragg-reflection of the TbIG single crystal. The fit of a
Gaussian function to the data (red curve) reveals a small mosaicity and a very
high crystalline quality resulting in a full width at half maximum (FWHM) of
only (0.0160± 0.0001)◦.

5.2.2. Results of field-dependent spin Seebeck experiments

The key part of the experimental data of FD-SSE experiments with the Tb3Fe5O12 single
crystal|Pt heterostructure after the application of the delta method to the transverse Vtrans

(upper panels) and longitudinal Vlong (lower panels) is plotted in Fig. 5.2.2. The plotted
data is the average of three subsequent measurements at each point of the hysteresis loop.
Starting at low temperatures TPt = (33± 1) K (see Fig. 5.2.2 (a)), the hysteresis loop of the
transverse thermal voltage signal Vtherm,trans is running from negative voltages at negative
fields to positive voltages at positive fields resulting in a positive amplitude of the spin
Seebeck effect (SSE) (VSSE(TPt) > 0). When the temperature is increased to TPt = 53 K (see
Fig. 5.2.2 (b)), the hysteresis of the transverse thermal voltage drop Vtherm,trans and thus the
amplitude of the SSE VSSE is inverted. As the temperature is further increased, also the
absolute value of the SEE-amplitude increases (see Fig. 5.2.2 (c), (d),(e)), whereas no sig-
nature which can be attributed to the rhombohedral-to-cubic structural phase transition of
TbIG at Trh ≈ 190 K [31] is found. As the temperature crosses the magnetic compensation
temperature Tcomp = 250.5 K, the hysteresis loop of the transverse thermal voltage is in-
verted a second time, leading to a positive SSE-amplitude. Therefore, TbIG exhibits similar
to GdIG two sign changes of the SSE-amplitude: At low temperatures, between TPt = 33 K

and TPt = 53 K, a first sign change at Tsign1 occurs and a second sign change takes place
around the magnetic compensation temperature at Tsign2.
The longitudinal thermal voltage Vtherm,long shows as expected no signature of the SSE due
to the vanishing longitudinal component resulting from the cross-product
Vtherm,long ∝ (JS × s) · x̂ = 0 which parametrizes the inverse spin Hall effect (see Eq. (2.5)).
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The longitudinal and transverse resistive voltage signals Vres,long and Vres,trans are caused
by the spin Hall magnetoresistance, which will be discussed in the following subsection
in more detail. This leads to peaks (dips) of the recorded transverse (longitudinal) resis-
tive voltage signal at the coercive fields and is in good agreement to magnetic hysteresis
measurements by SQUID-magnetometry (see Fig. B.0.2), which e.g. at 10 K ⇔ TPt = 33 K

show a small coercive field of HC = 40 mT and a remanent magnetisation of Mr/Ms = 0.15

where Ms is the saturated magnetization along the [111]bcc-direction. This accordance of
the resistive voltage signals and SQUID-magnetometry measurements is valid for all in-
vestigated temperatures. In the vicinity of Tsign,2 and therefore Tcomp (see Fig. 5.2.2 (e),(f)),
the transverse resistive voltage Vres,trans shows an upturn at high fields which is not found
further away from Tsign,2. Thus, this behavior is related to a canting of the sublattice mag-
netizations which occurs in high fields around Tcomp and is well known for the similar
material system GdIG [29]. The longitudinal resistive voltage signal Vres,long shown in
Figs. 5.2.2 (d),(e),(f) is attributed to temperature drifts during the measurements.
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Figure 5.2.2.: Thermal (black) and resistive (red) voltage signals measured transverse (upper
panels) and longitudinal (lower panels) to the current direction in field-dependent
SSE (FD-SSE) experiments on a TbIG single crystal|Pt heterostructure. The data
shown here is measured around the critical temperatures of TbIG. (a),(b) Inver-
sion of the hysteresis loop of the thermal transverse voltage Vtherm,trans signal at
Tsign,1. (c),(d) No signature related to the rhombohedral-to-cubic phase transition
of TbIG at Trh ≈ 190 K. The absolute value of the SSE-amplitude VSSE increases
with increasing temperatures. (e),(f) Inversion of the hysteresis loop of the trans-
verse thermal voltage signal Vtherm,trans in the vicinity of the magnetic compensa-
tion temperature Tcomp at Tsign,2. The upturn of the transverse resistive Vres,trans
voltage signal in high fields is related to a canting of the sublattice magnetizations
around Tcomp. Overall, the resistive voltage signals show the signature which is
expected for the spin Hall magnetoresistance.
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Spin Hall magnetoresistance extracted from field-dependenent spin Seebeck effect
experiments

This chapter briefly outlines the expected resistive longitudinal and transverse voltage sig-
nal due to the spin Hall magnetoresistance according to Althammer et al. [41]. The spin
Hall magnetoresistance describes the absorption of a spin accumulation at a ferrimagnetic
insulator (FMI)|heavy metal (HM) interface by the magnetic sublattices of the FMI. The
spin accumulation at the interface is generated by the inverse spin Hall effect when a charge
current with current density J = |J| = Id/(dPt ·wHB) is flowing through a heavy metal with
strong spin-orbit coupling, e.g. Platinum. If the sublattice magnetization of the ferrimag-
netic insulator is not parallel or antiparallel to the spin accumulation, the accumulated
spins exert a torque on the magnetization and thus get absorbed. This is opening an addi-
tional dissipation channel depending on the angle between the spin accumulation and the
magnetization of the FMI. In total, the longitudinal and transverse voltage drop due to the
spin Hall magnetoresistance is parametrized as

Vlong = J · (ρ0 + ρ1[m̂ · ŷ]2 (5.5)

= J · (ρ0 + ρ1cos2(α)) (5.6)

Vtrans = J · (ρ2[m̂ · ẑ] + ρ3[m̂ · x̂][m̂ · ŷ]) (5.7)

= Jρ3(−1

2
+ cos2(α− 45◦)) (5.8)

with the normalized magnetization vector m̂ = M/M .
Within this work, TbIG is used as the FMI and Pt as the HM layer. TbIG exhibits a strong
cubic magnetic anisotropy with magnetically easy axes along the cubic [111]bcc-directions.
SQUID-magnetometry measurements reveal a small remanent magnetization and low co-
ercive field Hc between 10 K and 300 K (e.g. Mr(10 K)/Ms(10 K) = 0.15 and Hc(10 K) <

10 mT, see Fig. B.0.2). Thus, the assumption that the magnetic structure of the (110)-
oriented TbIG single crystal for H = Hc consists of four different, equally distributed
magnetic domains with magnetizations parallel to the four degenerated cubic [111]bcc-
directions in the sample plane is valid (see Fig. 5.2.3). Due to the not symmetric distri-
bution of the [111]bcc-directions with respect to α = 0◦ this is leading to the following
expected longitudinal voltage drop at H = Hc.

Vlong(H = Hc) =
1

4

(
Vlong(m̂ ‖ [111]) + Vlong(m̂ ‖ [1̄1̄1̄])

+ Vlong(m̂ ‖ [111̄]) + Vlong(m̂ ‖ [1̄1̄1])
)

(5.9)

=
1

2

(
Vlong(m̂ ‖ [111]) + Vlong(m̂ ‖ [111̄])

)
(5.10)

=
1

2

(
Vlong(α = 0◦) + Vlong(α = −54.73◦)

)
(5.11)

= J ·
(
ρ0 + ρ1

1 + cos2(−54.73◦)

2

)
< Vlong(α = 0◦) (5.12)

In Eq. (5.10), the 180◦-symmetry of the spin Hall magnetoresistance is exploited. For
|µ0H| > 0.3 T � Hc, the magnetization is saturated along the cubic [111]bcc-direction
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(α = 0◦) and thus Vlong(|µ0H| > 0.3 T) = Vlong(α = 0◦). This is leading to the observed dip
in the longitudinal resistive voltage signal Vres,long at the coercive field Hc, which matches
the spin Hall magnetoresistance effect. Analogously,

Vtrans(H = Hc) =
1

2

(
Vtrans(α = 0◦) + Vtrans(α = −54.73◦)

)
(5.13)

= Jρ3

(
−1

2
+

1

2
(cos2(−45◦) + cos2(−99.73◦)

)
< Vtrans(α = 0◦) (5.14)

where ρ3 = −ρ1 according to Ref. [41]. Thus, a peak in the transverse resistive voltage
signal Vres,trans at H = Hc is expected.
In total, the parametrization of the spin Hall magnetoresistance together with the cubic
magnetic anisotropy of TbIG explains the resistive voltage signals extracted from the FD-
SSE experiments with a TbIG single crystal|Pt heterostructure.
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Figure 5.2.3.: (a) Photograph under a microscope of the (110)-oriented TbIG single crystal|Pt
heterostructure with the patterned Hall-bar aligned along the cubic [111]bcc-
direction. (b) Crystallographic directions within the cubic (110)-plane. Due to the
strong cubic magnetic anisotropy with the magnetically easy axes along the cubic
[111]bcc-directions, the magnetic structure in the absence of an external magnetic
field consists of four different, equally distributed domains with magnetizations
parallel to the four degenerated [111]bcc-directions within the (110)-plane. The
angle between the [111]bcc-directions, which is used in the calculation above, is
highlighted in red. This is resulting in a small remanent magnetization Mr and
low coercive field Hc as well as the peak (dip) structure in the transverse (longitu-
dinal) resistive voltage signal due to the spin Hall magnetoresistance.

5.2.3. Magnon driven spin Seebeck effect in Tb3Fe5O12 single crystal|Pt
heterostructures

To obtain the main result of the FD-SSE experiment, the SSE-amplitude VSSE as a function
of the Pt-layer temperature TPt is calculated for magnetic fields between 0.5 T and 7 T us-
ing Eq. (2.37) (see Fig. 5.2.4 (d)). In the following, the temperature evolution of VSSE with
respect to the chirality dependent spin wave dispersion relation, which is determined by
inelastic neutron scattering and subsequent simulation with SpinW at T = 10 K, T = 100 K

and T = 280 K (see Fig. 5.2.4 (a),(b),(c)) is presented.
At low temperatures (T = 10 K, see Fig. 5.2.4 (a)), the spin wave dynamics are mainly gov-
erned by the fundamental ferrimagnetic resonance mode, which describes the precession
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of the local magnetic moments of all sublattices in phase. This ferromagnetic resonance
mode is the red mode up to 2.3 meV, which additionally shows a mixed chirality in the
vicinity of the Γ-Point due to the opening of the magnetic double-umbrella structure at low
temperatures. In total, the spin Seebeck effect is mainly driven by spin waves with positive,
red chirality leading overall to a positive SSE-amplitude VSSE.
With increasing temperatures, the optical modes shift downwards in energy, which is lead-
ing to the crossing of the thermal energy and the energy gap of the first optical mode with
negative chirality (i · (Sxy−Syx) < 0 (blue)) at Tcross = 70 K (see section 4.4.4). Due to grad-
ual population of the first optical mode in this temperature regime, a gradual sign change
of the SSE-amplitude VSSE is expected in this temperature region. In a simple two chan-
nel model at Tsign,1 both channels transport the same amount of spin angular momentum
across the interface, leading in total to a vanishing spin current across the interface due to
opposite chirality of both channels. Experimentally, the temperature of the first sign change
is found at Tsign,1 = (36± 3) K, which is well below Tcross. The reason for this observation
is most likely originating form the mixed chirality of the acoustic mode and flat band struc-
ture due to the presence of the magnetic ’double-umbrella’ structure. This is supported by
the higher temperature of the first sign change Tsign,1,GdIG = 77 K in the similar material
system GdIG, which exhibits a collinear magnetic structure at low temperatures far away
from the magnetic compensation temperature [42]. Since so far there are no experimental
data points in the low energy region of the spin wave dispersion relation, this should be
subject to further experimental investigation.
At 100 K (see Fig. 5.2.4 (b)), the thermal energy is already within the first optical, strongly
dispersing mode with negative chirality (i · (Sxy − Syx) < 0 (blue)) due to the increasing
thermal energy and downwards shift in energy of the first optical mode. Thus, the spin
Seebeck effect with its amplitude VSSE is mainly driven by this mode leading to a further
decreasing negative SSE-amplitude up to 150 K.
When the magnetic compensation temperature Tcomp = 250.5 K is crossed, all magnetic
sublattices and thus the spin wave chiralities invert, leading to a second, abrupt sign change
in the temperature profile of the SSE-amplitude. Here, the temperature of the second sign
change Tsign,2 = (255± 5) K matches the magnetic compensation temperature determined
by SQUID-magnetometry Tcomp = 250.5 K within the uncertainty range. The chirality in-
version of the spin wave excitations is also found in the spin wave dispersion relation at
280 K (see Fig. 5.2.4 (c)). Additionally, above Tsign,2 the simulations show an exchange of
the acoustic mode by the previous optical mode. This was also observed in simulations
by Ganzhorn et al. for GdIG [12]. Physically, this observation can be explained by the
constraint that the fundamental magnetic excitation requires its magnetic moment to be
antiparallel to the magnetization, which is equal to i · (Sxy − Syx) > 0 (red).
In summary, the experimentally determined spin wave dispersion relation (see section 3),
which was successfully simulated with SpinW (see section 4), is able to explain the tem-
perature profile of the spin Seebeck effect. This was also predicted by theory (see sections
2.3.1 and 2.3.3) and is confirmed within this work. Thus, the spin Seebeck effect provides
an experimental setup to probe the fundamentals of spin wave dispersion relations in mag-
netically ordered insulators.
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Figure 5.2.4.: (a),(b),(c) Experimentally verified chirality dependent spin wave dispersion rela-
tions in TbIG at 10 K, 100 K and 280 K. The data points are extracted from inelastic
neutron scattering with polarization analysis on a TbIG single crystal and plotted
together with the results of the SpinW-simulation. The thermal energy level is
marked as a green line. (d) SSE-amplitude as a function of temperature VSSE(TPt)
extracted from the data shown in Fig. 5.2.2 at external magnetic fields between
0.5 T and 7 T. The temperatures of the spin wave dispersion relations shown in
(a)-(c) are marked by vertical green lines. The temperature profile matches the
spin wave dispersion relations found in this work. This proves that the spin See-
beck effect provides an easy experimental setup to probe the fundamentals of spin
wave dispersion relations in magnetically ordered insulators.
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5.3. Spin Seebeck effect in Tb3Fe5O12 thin film|Pt
heterostructures

In addition to the investigation of the spin Seebeck effect in TbIG single crystal|Pt het-
erostructures, the spin Seebeck effect in TbIG thin film|Pt heterostructures is investigated
within this work. The usage of TbIG thin films offers a further simplification in the sample
production for spin Seebeck effect experiments and is an important step towards spintronic
devices.
The first part of this section focuses on the sample preparation followed by the discussion
of the results of field-dependent spin Seebeck experiments. Subsequently, the differences
of the spin Seebeck effect in TbIG single crystal|Pt and TbIG thin film|Pt heterostructures
are highlighted and various attempts to overcome these differences are presented.

5.3.1. Sample preparation

For the fabrication of TbIG thin film|Pt heterostructures (in the following TbIG|Pt het-
erostructures), Gd3Ga5O12 (GGG) substrates, which are comercially fabricated by Crys-
Tec GmbH, are used. This choice of substrate is based on the small lattice mismatch
εGGG = aGGG−aTbIG

aTbIG
= −0.5% between TbIG and GGG and the identical cubic space group

at the growth temperature. The GGG-substrates are one-side-polished and have a size of
5 mm×5 mm with the crystallographic [110]bcc-direction pointing out-of-plane. Prior to the
growth of the TbIG thin film, a Pt-layer with a thickness of ≈ 180 nm is deposited on the
unpolished back side of the substrate with a high vacuum sputtering device. This Pt-layer
is needed to increase the absorption of the infrared heating laser and therefore to ensure a
high homogeneity of the substrate temperature. Subsequently, the sample is cleaned with
isopropanol and acetone and mounted inside the load-lock of the UHV-cluster (see section
A.1.2)
The TbIG thin film is deposited by pulsed laser deposition (PLD) (see section A.1.3). Dur-
ing the deposition process, the substrate is heated from the back side by an infrared-laser,
which is controlled by a feedback-loop of a pyrometer measuring the sample temperature.
This ensures a constant substrate temperature TS, which is needed since only the right tem-
perature allows the adsorbed atoms from the plasma to form a crystalline thin film. The
whole process is carried out inside an oxygen atmosphere with pressure pO2. With the right
pressure pO2, oxygen vacancies are suppressed and an ideal crystalline thin film without
parasitic phases (e.g. TbFeO3) is fabricated. For the deposition, the pulsed UV-excimer
laser hits a stoichiometric polycrystalline target with an energy density of ρL = 2 J/cm2

at frequency of 10 Hz and creates a plasma, which propagates towards the substrate. The
total number of 25000 pulses is divided into packs of 250 pulses with a relaxation time of
tR = 10 s between the pulses to assure a low surface roughness and a high quality crys-
talline growth of the TbIG thin film.
After the PLD-process, the sample is transferred in-situ, without breaking the vacuum into
the electron beam evaporation (EVAP) chamber (see section A.1.4), where a Pt-thin film
is deposited on top of the TbIG thin film. Since EVAP is a soft deposition process with
thermal energies of the evaporated particles and the sample is kept in ultra high vacuum,
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interdiffusion between the layers is suppressed and an ideal interface between the Pt and
the TbIG layer is established. Finally, the TbIG|Pt heterostructure is patterned and wire-
bonded as described in section 5.1.
To find the ideal process parameters for the fabrication of high-crystalline TbIG thin films,
the results from previously conducted growth optimization at the Walther-Meißner-Institute
are used as a starting point. To obtain TbIG thin films with good structural and magnetic
properties, TbIG thin films with different oxygen pressures pO2 at a constant substrate tem-
perature of TS = 450 ◦C during the deposition covered with Pt are fabricated and investi-
gated in terms of crystalline quality and spin Seebeck effect.

5.3.2. Results of field-dependent spin Seebeck experiments

The structural properties of the TbIG|Pt heterostructures with different oxygen growth-
pressures pO2 of the TbIG layer are shown in Fig. 5.3.1 (a) - (c). Additionally, also re-
flectometry measurements are carried out, of which the thicknesses of the TbIG|Pt het-
erostructures are extracted (see Fig. B.0.3). The thickness of the thin films together with
the main process parameters are shown on top of the corresponding experimental data in
Fig. 5.3.1. For all samples, field-dependent spin Seebeck effect (FD-SSE) experiments are
conducted leading to the VSSE(T )-diagrams shown in Fig. 5.3.1 (d) - (f).
The 2θ-ω scans reveal that with decreasing oxygen pressure (see Fig. 5.3.1 (a)-(c)) the
(880) TbIG thin film reflection shifts towards larger 2θ angles, corresponding to an increase
of the out-of-plane lattice spacing. The 2θ-angle of the (880) reflection for bulk TbIG is
2θTbIG,bulk = 88.87◦, which would correspond to a fully relaxed TbIG lattice of the TbIG
thin film. For the sample which is fabricated under an oxygen pressure of pO2 = 50µbar

(see Fig. 5.3.1 (a)), the thin film peak is far away from the expected bulk value and is match-
ing the parasitic, perovskite phase TbFeO3. With decreasing oxygen pressure the lattice
constant is approaching the bulk value. The TbIG thin film with best structural properties,
which is fabricated under an oxygen pressure of pO2 = 10µbar (see Fig. 5.3.1 (a)), shows
a high intensity thin film reflection in the vicinity of the bulk value as well as pronounced
Laue-oscillations. Overall, this is attributed to a high quality crystalline epitaxial growth of
the TbIG thin film on a (110)-oriented GGG substrate.
The temperature profile of the SSE-amplitude VSSE(T ) for the samples fabricated under
an non-ideal oxygen pressure of pO2 = 50µbar and pO2 = 25µbar (see Fig. 5.3.1 (d),(e))
shows additionally a very strong field dependency as well as overall a small SSE-amplitude
VSSE. Additionally, the temperature of the second, abrupt sign change Tsign,2 is far below
Tsign2,bulk = (255± 5) K for these samples, which as an indication for a non-stoichiometric
composition. In contrast, the sample produced under an oxygen pressure of pO2 = 10µbar

shows the second sign change at Tsign,2 = (260± 10) K and is indicating an overall high
sample quality. In conclusion, the TbIG|Pt heterostructure with the TbIG thin film fabri-
cated at an oxygen pressure of pO2 = 10µbar exhibits the best structural and spin Seebeck
effect properties. The latter properties of this heterostructure will be discussed in more
detail in the following.
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Figure 5.3.1.: Structural and spin Seebeck properties of three TbIG thin film|Pt heterostructures
fabricated under different oxygen pressures 50µbar > pO2 > 10µbar at a constant
substrate temperature of TS = 450 ◦C. The growth parameters of the TbIG thin
films (pO2, TS) as well as the thickness of the TbIG (dTbIG) thin film and the Pt (dPt)
layer extracted from reflectometry measurements (see Fig. B.0.3) are indicated on
top of the panels. (a)-(c) The 2θ-ω scans reveal that the sample fabricated with
pO2 = 50µbar consists of the parasitic phase TbFeO3. In contrary, the (880) TbIG
reflection of the sample fabricated with pO2 = 10µbar is close to the TbIG-bulk
reflection (2θTbIG,bulk = 88.87◦). Furthermore, pronounced Laue-oscillations, in-
dicating a high crystalline quality are visible. (d),(e) Spin Seebeck amplitude as
a function of the dipstick temperature VSSE(Tdip) extracted from field-dependent
SSE experiments (see Figs. B.0.5 and B.0.6) for different applied magnetic fields.
For the two TbIG thin film|Pt heterostructures with non-ideal TbIG thin films,
the spin Seebeck amplitude as a function of the dip-stick temperature VSSE(Tdip)
shows a smaller SSE-amplitude in all temperature regions together with a strong
field dependence compared to VSSE(Tdip) of the TbIG|Pt heterostructure with a
high crystalline TbIG layer grown under an oxygen pressure of pO2 = 10µbar.
This is underlined by the lower temperature of the second abrupt sign change
close to the magnetic compensation temperature, which is an indicator for a non-
stoichometric composition of the TbIG thin film. (f) VSSE(T )-diagram extracted
from field-dependent SSE experiments (see Fig. 5.3.2) for the structurally ideal
sample, which is discussed in the following.

The experimental data of spin Seebeck effect experiments using the ideal
TbIG (70.8 nm)|Pt (3.3 nm) heterostructure fabricated under an oxygen pressure of
pO2 = 10µbar is plotted in Fig. 5.3.2. To obtain the data, the delta method is applied to
the transverse (upper panels) and longitudinal (lower panels) voltage drops to separate
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thermal (black) and resistive (red) voltage signals (see section 5.1).
For the TbIG|Pt heterostructure, the transverse thermal voltage drop Vtherm,trans shows
a large linear component at low temperatures, which is not saturating in external mag-
netic fields ≤ 15 T (see Fig. 5.3.2 (a)-(c)). Due to the large linear component with positive
slope, a low temperature sign change Tsign,1(µ0H), which is thus strongly field dependent,
is observed despite no inversion of the low-field SSE hysteresis is resolved. This low tem-
perature hysteresis inversion is visible below Tsign,1,bulk = (36± 3) K for the TbIG single
crystal|Pt heterostructure (see Fig. 5.2.2 (a),(b)) and is matching the spin wave dispersion
relation in TbIG. The linear component present in Vtherm,trans in the TbIG thin film|Pt het-
erostructuresis found for TPt < 278 K and increases with decreasing temperatures, whereas
the size of the hysteresis decreases with decreasing temperatures illustrated by the re-
manent SSE amplitudes Vr(137 K) = 1.3µV, Vr(94 K) = 0.5µV, Vr(74 K) = 0.2µV. For
TPt < 50 K, no SSE-hysteresis could be resolved (see Fig. 5.3.2 (b)-(d)). At 105 K, the size
of the linear component of Vtherm,trans at 15 T exceeds the size of the remanent SSE ampli-
tude Vr causing a sign change not because of an inversion of the low-field SSE-hysteresis,
but because of the linear component (see Fig. 5.3.1 (f)). Therefore, the low temperature
sign change visible in Fig. 5.3.1 (f) is caused by the additional nearly linear dependence
of the Vtherm,trans as a function of magnetic field magnitude. The second, abrupt sign
change of VSSE(TPt) is observed together with the expected inversion of the hysteresis at
Tsign,2 = (260± 10) K, which is in agreement with the observed second sign change of
VSSE(TPt) in the TbIG single crystal|Pt heterostructure at Tsign2,bulk = (255± 5) K near the
magnetic compensation temperature and thus indicating a stoichiometric composition of
the epitaxially grown TbIG thin film.
Following the theoretical predictions, the longitudinal thermal voltage signal Vtherm,long is
expected to not show any signal which is attributed to the spin Seebeck effect due to the ge-
ometric requirements of the inverse spin Hall effect (Vtherm,long ∝ (JS×s)·x̂ = 0). However,
the TbIG thin film|Pt heterostructure shows a hysteretic thermal voltage signal above the
noise level for TPt > 105 K, which is attributed to the spin Seebeck effect (see black sym-
bols in Fig. 5.3.2 (d)-(f)). In line with Vtrans,therm the hysteresis is inverted at Tsign,2 (see
Fig. 5.3.2 (e),(f)). The most remarkable property of Vtherm,long is the size of the hysteresis,
which is rapidly increasing from being non-resolvable for TPt < 105 K to VSSE,long ≈ 15µV

for TPt > 180 K. Thus, for TPt > 180 K, VSSE,long is multiple times larger than the trans-
verse SSE-amplitude VSSE, which is geometrically only possible if the polarization of the
spin current across the TbIG|Pt interface has its major component perpendicular to the
current direction J ‖ x̂. This requires the magnetization of an ordered subsystem of TbIG
to be not aligned with the external magnetic field ‖ x̂ up to an external magnetic field
of µ0H = 15 T. Overall, none of this is observed within the TbIG single crystal|Pt het-
erostructure (see Fig. 5.2.2).
The longitudinal and transverse resistive voltage signals are connected to the spin Hall
magnetoresistance in vicinity of µ0H = 0 T, where the separated peak-dip structure indi-
cates the coercive fields, where the magnetization switches its orientation. This was also
not observed in the TbIG single crystal|Pt heterostructure, where the remanent magneti-
zation and coercive field are small. The behavior observed here is known for epitaxially

68



Spin Seebeck effect in Tb3Fe5O12|Pt heterostructures 69

grown thin films due to pinning of magnetic moments at the interface together with a high
geometrical anisotropy, which is leading to the hysteretic behavior resulting in the double
peak structure observed here [43] (see also Fig. B.0.4). Additionally, there is a magnetoresis-
tive effect which is scaling with the external magnetic field. This is not known for magnon
driven effects such as e.g. the spin Seebeck effect or the spin Hall magnetoresistance in
ordered magnetic systems.
In total, the resistive and thermal voltage signals observed in field-dependent spin Seebeck
experiments using the TbIG thin film|Pt heterostructure differ fundamentally from the
signals observed in the TbIG single crystal|Pt heterostructure. To further investigate these
differences, the structural properties (see section 5.3.3) and the influence of the substrate
(see section 5.3.4) are further discussed in the following sections.
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Figure 5.3.2.: Thermal (black) and resistive (red) voltage signals measured transverse (upper
panels) and longitudinal (lower panels) to the current direction in field-dependent
spin Seebeck effect (FD-SSE) experiments using the TbIG (70.8 nm)|Pt (3.3 nm)
heterostructure fabricated on a (110)-oriented GGG substrate with the TbIG thin
film grown at optimum conditions. The data shown here is measured around
the critical temperatures of bulk TbIG (Tsign,1,bulk = (36± 3) K, Trh ≈ 190 K,
Tsign,2,bulk = (255± 5) K). (a),(b) Large linear component (∝ H) at low tempera-
tures dominating the transverse thermal voltage signal Vtherm,trans. For TPt < 50 K
a hysteresis is not resolvable. (c),(d) Linear component in Vtherm,trans is smaller
than the SSE-hysteresis. Typical SSE signal is also observed in Vtherm,long which
should be suppressed by the measurement geometry. (e),(f) Inversion of the hys-
teresis in Vtherm,trans and Vtherm,long at Tsign,2 = (260± 10) K indicating a stoichio-
metric composition of the TbIG thin film.
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Despite all the differences between the TbIG thin film|Pt (see Fig. 5.3.3) and the TbIG sin-
gle crystal|Pt heterostructure (see Fig. 5.2.4 (d)) observed in FD-SSE experiments, the SSE-
amplitude VSSE(TPt) shows qualitatively the same behavior. However, the first, low tem-
perature, gradual sign change Tsign,1 is induced by the linear component (∝ H) found in the
transverse thermal FD-SSE voltage Vtherm,trans at low temperatures in the TbIG thin film|Pt
heterostructure. Furthermore, in this heterostructure an inversion of the SSE-hysteresis,
which is expected at Tsign,1 is not observed in the low temperature regime. This results in
the strong field dependence of Tsign,1 and a large SSE-amplitude VSSE for TPt < 40 K and
µ0H > 5 T. The second sign change found at Tsign,2 = (260± 10) K matches the second sign
change in the VSSE(TPt)-diagram of the TbIG single crystal|Pt heterostructure Tsign,2,bulk

and therefore the bulk magnetic compensation temperature. This indicates a stoichiomet-
ric composition of the TbIG thin film. Experiments to address the differences between the
TbIG thin film|Pt heterostructure and the TbIG single crystal|Pt heterostructure observed
in FD-SSE experiments are discussed in the following sections.
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Figure 5.3.3.: VSSE(TPt)-diagram for the TbIG thin film|Pt heterostructure with the TbIG thin
film fabricated under an oxygen atmosphere of pO2 = 10µbar. Qualitatively,
this diagram matches the VSSE(TPt)-diagram for the TbIG single crystal|Pt het-
erostructure (see Fig. 5.2.4 (d)). However, the raw data reveals unexpected differ-
ences between the two samples resulting in a strong field dependence at low tem-
peratures and thus in a strong field dependence of Tsign,1 between 70 K and 120 K.
Tsign,2 = (260± 10) K matches the temperature of the second, abrupt sign change
in the TbIG single crystal|Pt heterostructure Tsign,2,bulk = (255± 5) K within the
error range.

5.3.3. Resonant elastic X-ray scattering on TbIG thin films

Resonant elastic X-ray scattering (REXS) experiments on a 93.6 nm thick TbIG thin film
grown on a (100)-oriented GGG substrate and a TbIG single crystal reveal major structural
differences at low temperatures 1. The rocking curves around the (008) Bragg-reflection of
TbIG, which are detected during the REXS experiment, are shown in Fig. 5.3.4. At high
temperatures (T = 230 K, see Fig. 5.3.4 (a)), the TbIG single crystal is described by its non-
distorted bcc-latice with space group Ia3d. At lower temperatures (T = 52 K < Trh, see
Fig. 5.3.4 (b)), the TbIG lattice is subject to a rhobohedral distortion resulting in the descrip-
tion by the lower symmetry R3̄ spacegroup [23]. This rhombohedral distortion results in

1The REXS experiments are performed by Dan Mannix at the beamline I16 of the Diamond Light Source (for
details, see Ref. [44]).
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the splitting of the (008) Bragg-reflection of the TbIG single crystal due to different struc-
tural domains, which is clearly observed at 52 K.
In contrary, the TbIG thin film sample with a TbIG layer thickness of dTbIG = 93.6 nm (see
Fig. 5.3.4 (c)) does not show an indication of a splitting of the (008) Bragg reflection. Thus,
either the sample is in a rhombohedral monodomain state or the cubic-to-rhombohedral
structural phase transition is absent in the TbIG thin film due to the elastic clamping of the
thin film to the GGG substrate. Overall, this is a clear indication for fundamental structural
differences between the TbIG thin film and the TbIG single crystal.
Since these structural differences observed by REXS can not be directly connected to the
differences observed in spin Seebeck effect experiments, the influence of the substrate ma-
terial on the SSE will be discussed in the following subsection.
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Figure 5.3.4.: Rocking curves around the (008) Bragg-reflection of TbIG measured during an
REXS experiment at Diamond Light Source. (a) Single peak structure indicating
a TbIG single crystal with no structural distortionl at T = 230 K. (b) Splitting
of the (008) Bragg-reflection due to different rhombohedral domains in TbIG at
T = 52 K. (c) Single peak structure of the (008) Bragg-reflection of a TbIG thin
film grown on a (100)-oriented GGG substrate at T = 8 K indicating the absence
of the cubic-to-rhombohedral structural phase transition.

5.3.4. Influence of the substrate material on the spin Seebeck effect in
Tb3Fe5O12 thin film|Pt heterostructures

To further investigate the differences between the magnetic field-dependent spin Seebeck
effect in the TbIG thin film|Pt heterostructure and the TbIG single crystal|Pt heterostruc-
ture, TbIG thin film|Pt heterostructures on a (100)-oriented Y3Al5O12(YAG) substrate are
fabricated and investigated. To this end, the ideal parameters (pO2 = 10µbar, TS = 450 ◦)
found for the deposition of TbIG thin films on GGG substrates are used for the PLD-
deposition process of the TbIG thin film. For this sample the Hall-bar mesa-structure is
patterned with the current path parallel to the [110]bcc-direction, since (110)-oriented YAG
substrates are not available. One of the two main reasons for the choice of YAG as a sub-
strate material is the identical crystal structure of TbIG and YAG. Furthermore, in con-
trast to the strong quasi-paramagnetic behavior of GGG, YAG is diamagnetic and therefore
is not expected to interfere the spin Seebeck effect of the TbIG thin film|Pt heterostruc-
tures. On the other hand, there is a larger lattice mismatch between TbIG and YAG of
εYAG = aYAG−aTbIG

aTbIG
= −3.5%.
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The pre-charecterization of the TbIG (72.8 nm)|Pt (4.1 nm) heterostructure on a YAG sub-
strate using X-ray diffraction (see Fig. B.0.7) reveals a very high crystalline quality of the
TbIG thin film despite of the large lattice mismatch. Furthermore, an almost fully relaxed
growth is detected with the TbIG thin film reflection close to the bulk reflection of TbIG.
Subsequently, the sample is used for FD-SSE experiments with the main results around the
critical temperatures shown in Fig. 5.3.5.
The transverse thermal voltage signal Vtherm,trans shows the expected hysteresis curve of
the spin Seebeck effect at high temperatures (see Fig. 5.3.5 (d)-(f)) with the inversion of
the hysteresis at Tsign,2 = (256± 5) K close to Tcomp = 250.5 K. At lower temperatures
(TPt < 154 K), this sample shows a strong linear component (Vtherm,trans ∝ H) analogously
to the previously discussed TbIG thin film|Pt heterostructure, which is fabricated on a
GGG substrate. Also the remanent SSE amplitude decreases whereas the slope of the linear
component increases with decreasing temperatures such that for TPt < 48 K the hysteresis
in Vtherm,trans is not resolvable (see Fig. 5.3.5 (a)-(c)). Overall, these effects are identical for
the two different TbIG thin film|Pt heterostructures grown on the two different substrates
(GGG, YAG) in this work, which suggests that the origin of this behavior is originating
from the TbIG thin film|Pt heterostructures itself.
The longitudinal thermal voltage signal Vtherm,long shows no signal above the noise level at
all temperatures. This matches the expectation since the signal of the spin Seebeck effect is
suppressed by geometry (Vtherm,long ∝ (JS × s) · x̂ = 0). In contrast to this experiment, the
experiment conducted with the TbIG thin film|Pt heterostructure on the GGG substrate re-
veals a large SSE-signal in Vtherm,long (see Fig. 5.3.2 (c)-(f)). The main geometrical difference
between the two samples is the orientation of the Hall-bar mesa-structure (J ‖ [110] for
TbIG|Pt on YAG, J ‖ [111] for TbIG|Pt on GGG) which could be the reason for this obser-
vation. To clarify this behavior, further FD-SSE experiments of TbIG|Pt heterostructures
on GGG with J ‖ [110] have to be conducted. These experiments could point to different
magnetic anisotropies in TbIG thin films compared to bulk TbIG.
The transverse resistive voltage Vres,trans shows a hysteretic behavior up to µ0H = 7 T at
low temperatures (see red symbols in Fig. 5.3.5 (a),(b)). The well separated double dip
structure indicates a large coercive field and large remanent magnetization, which is also
found for the previously discussed TbIG thin film|Pt heterostructure on GGG (see also
Fig. B.0.4). Overall, the signature observed in Vres,trans at low temperatures differs from the
TbIG|Pt heterostructure on GGG, whereas it matches for TPt > 105 K. A possible reason
for the difference only at low temperatures might be the different crystallographic orienta-
tion of the Hall-bar mesa-structure, since the strength of the anisotropy in TbIG increases
strongly at low temperatures [45]. The origin of the magnetoresistive effect, scaling with the
external magnetic field H cannot be found within this experiment. For further investiga-
tion of this property, an FD-SSE experiment using a TbIG thin film|Pt heterostructure on a
(110)-oriented YAG substrate with J ‖ [111] has to be conducted. The resistive longitudinal
voltage signal Vres,long shows no proper signals which can be used for a detailed analysis.
The reason for this is the large susceptibility of Vres,long to small temperature changes which
occurred during the performed measurements. Thus, only the transverse resistive voltage
signal Vres,trans, which is less susceptible to temperature changes could be analyzed.
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Figure 5.3.5.: Thermal (black) and resistive (red) voltage signals measured transverse (upper
panels) and longitudinal (lower panels) to the current direction within the FD-
SSE experiment using a TbIG (72.8 nm)|Pt (4.1 nm) heterostructure fabricated
on a (100)-oriented YAG substrate. The data shown here is measured around
the critical temperatures of bulk TbIG (Tsign,1,bulk = (36± 3) K, Trh ≈ 190 K,
Tsign,2,bulk = (255± 5) K). (a),(b) Large linear component in the transverse ther-
mal voltage Vtherm,trans ∝ H dominating the signal. Additionally, the hysteresis
can not be resolved for TPt < 48 K such that the temperature of the first sign
change Tsign,1 is strongly field-dependent. (c),(d) The slope of the linear com-
ponent decreases whereas remanent SSE amplitude of Vtherm,trans increases with
increasing temperatures. For TPt > 105 K, the field-dependence of Vres,trans is sim-
ilar to that of the TbIG thin film|Pt heterstructure fabricated on a GGG substrate.
(e),(f) Inversion of the hysteresis in Vtherm,trans at Tsign,2 due to reorientation of the
sublattice magnetizations above the magnetic compensation temperature.
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From the FD-SSE experiment, the SSE-amplitude VSSE(TPt) is extracted and shown in
Fig. 5.3.6. The resulting VSSE(TPt)-diagram for the TbIG thin film (72.8 nm)|Pt (4.1 nm) het-
erostructure fabricated on a (100)-oriented YAG substrate shows similar properties than
the VSSE(TPt)-diagram for the TbIG thin film|Pt heterostructure fabricated on the (110)-
oriented GGG substrate (see Fig. 5.3.3). Analogously, the temperature of the first gradual
low temperature sign change Tsign,1 is strongly field-dependent. The observed low temper-
ature sign change is mainly influenced by the linear component VSSE ∝ H . The second,
abrupt sign change Tsign,2 = (256± 5) K matches the second sign change in VSSE(TPt) of
the TbIG single crystal|Pt heterostructure Tsign,2,bulk = (255± 5) K within the error range.
In total, the FD-SSE experiment using the TbIG thin film|Pt heterostructure grown on a
(100)-oriented YAG substrate reveals a similar behavior compared to the FD-SSE exper-
iment using a TbIG|Pt heterostructure on (110)-oriented GGG substrate. Therefore, the
different FD-SSE signatures of TbIG thin film|Pt heterostructures compared to TbIG sin-
gle crystal|Pt heterostructures is not related to the substrate material and is caused by the
TbIG thin film|Pt heterostructure itself.
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Figure 5.3.6.: VSSE(TPt)-diagram for the TbIG (72.8 nm)|Pt (4.1 nm) heterostructure fabricated
on a (100)-oriented YAG substrate. Qualitatively, the temperature and field-
dependence of the SSE amplitude is in agreement with that of the TbIG
thin film|Pt heterostructure fabricated on a (110)-oriented GGG substrate (see
Fig. 5.3.3). This demonstrates that the different FD-SSE in TbIG thin film|Pt het-
erostructures compared to TbIG single crystal|Pt heterostructures is not related
to the substrate.

5.4. Summary - Spin Seebeck effect in Tb3Fe5O12|Pt
heterostructures

This chapter discussed the results of field-dependent spin Seebeck experiments using
Tb3Fe5O12|Pt heterostructures. In the first part, the resistive and thermal voltage sig-
nals extracted from these FD-SSE experiments using a (110)-oriented Tb3Fe5O12 single
crystal|Pt heterostructure are discussed. From these measurements, the SSE-amplitude
VSSE(TPt) as a function of temperature and magnetic field is determined and correlated
to the experimentally verified spin wave dispersion relation of TbIG. This successfully
demonstrates that the spin Seebeck effect provides a powerful investigation technique for
fundamental magnon properties.
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The second part of this chapter discussed the spin Seebeck effect in Tb3Fe5O12 thin film|Pt
heterostructures, which exhibit major differences in particular at low temperatures
(TPt < 120 K). In this temperature range, the FD-SSE experiments reveal a component
of Vtherm,trans linearly depending on the magnetic field. Furthermore, for TPt < 50 K, the
SSE-hysteresis could not be resolved. To address those differences several experimental
attempts are conducted, which so far could not reveal the origin for those findings. How-
ever, these experiments reveal that TbIG thin films might not exhibit a rhombohedral phase
transition. Furthermore, the origin of the differing results of FD-SSE esperiments originates
from the Tb3Fe5O12|Pt heterostructure itself and is not related to the substrate material.

5.5. Outlook - Investigation of interface alloying in Tb3Fe5O12

thin film|Pt heterostructures

Vasili et al. studied the effects of interface alloying on the spin Hall magnetoresistance in
CoFe2O4|Pt heterostructures by comparing the longitudinal magnetoresistance in samples
with and without artificially induced interface alloying [46]. For a measurement geometry
identical to the measurement geometry of Vres,long within this work, the authors report a
resistive longitudinal signal which is proportional to the applied magnetic field magnitude
H of the alloyed sample. Furthermore, the total size of the magnetoresistive effect of the
alloyed sample and exceeds the magnetoresistive effect of the sample without artificial in-
terface alloying (see Fig. 5.5.1). The authors argue that in the special case of Pt, alloying at
the interface can induce magnetic ordering within the alloyed interlayer due to the prox-
imity of Pt to fulfilling the Stoner-criterion. This is supported by the observed anomalous
hall effect in the sample with artificial alloying.
Since the field-dependent longitudinal resistive voltage Vres,long of the TbIG thin film|Pt
heterostructures investigated within this work shows a strong dependence on the applied
magnetic field magnitude H at all investigated temperatures (see Figs. 5.3.2 and 5.3.5),
an investigation of potential interface alloying might reveal the origin of the fundamental
changes observed in TbIG thin film|Pt heterostructures compared to TbIG single crystal|Pt
heterostructures. For further investigation of this property, X-ray absorption and magnetic
circular dichroism (XMCD) experiments together with supporting transport experiments
with MTbIG in out-of-plane direction on Tb3Fe5O12 thin film|Pt heterostructures are a pos-
sible approach to this problem.
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Figure 5.5.1.: Longitudinal magnetoresistance of a CoFe2O4|Pt heterostructure with artificial
alloying at the interface (HT) and without alloying at the interface (RT). A compa-
rable behavior is observed within this work for the resistive longitudinal voltage
Vres,long in field-dependent experiments with TbIG thin film|Pt heterostructures.
Figure taken from Ref. [46].
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6. Summary and outlook

In the framework of this thesis, the relation between the spin Seebeck effect and the spin
wave dispersion relation is investigated. The verification of this correlation would con-
sequently propose the spin Seebeck effect as a probe for the spin wave dispersion rela-
tion in magnetically ordered insulators. Accordingly, this would allow to measure the key
properties of spin wave dispersion relations of a wide range of material systems and nano-
structures by simple electric transport experiments. To reveal the relation between the spin
Seebeck effect and the spin wave dispersion relation, inelastic neutron scattering with po-
larization analysis at temperatures between 10 K and 280 K is carried out. Subsequently,
the spin wave dispersion relation is refined to the experimental data using the software
package SpinW. Finally, the thus obtained spin wave dispersion relation is connected to
the temperature profile of the amplitude of the spin Seebeck effect. To this end, the com-
pensated ferrimagnetic insulator Tb3Fe5O12 (TbIG) is used as a showcase material system.
In the remainder of this section, the fundamental properties of TbIG are recapped to sub-
sequently highlight the key experimental results which are achieved within this work. In
conclusion, an outlook on future investigations in context with the spin Seebeck effect and
its connection to the spin wave dispersion relation is given.
TbIG is a compensated ferrimagnetic insulator consisting of three antiferromagnetically
coupled magnetic sublattices MTbc, MFea and MFed with a Néel temperature of TN ≈ 550 K

[25]. Below Trh ≈ 190 K, the unit cell of TbIG distorts from a cubic bcc-lattice to a rhom-
bohedral crystal structure [23]. Additionally, the collinear ferrimagnetic structure gradu-
ally transforms into the ’double-umbrella’ magnetic structure below Tdu ≈ 160 K by tilt-
ing the magnetic moments of the Tb-sublattice MTbc away from the magnetically easy
[111]bcc-direction while the orientation of the total Tb-sublattice magnetization remains un-
changed (MTbc ‖ [111]bcc) [33]. The cubic magnetic anisotropy of TbIG with the magnetic
easy axes along the [111]bcc-directions becomes extraordinarily large at temperatures be-
low Trh [45]. Furthermore, the coupling of the magnetic Tb-sublattice MTbc to the two
Fe-sublattices MFea and MFed is considerably weak, which results in a strong tempera-
ture dependence of the remanent Tb-sublattice magnetization MTbc. Due to the config-
uration of the sublattice magnetizations, this leads to magnetic compensation where the
total remanent magnetization of TbIG vanishes at the magnetic compensation temperature
Tcomp = 250.5 K. When the compensation temperature is crossed in finite external magnetic
fields, an inversion of all remanent sublattice magnetizations occurs.
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6.1. Inelastic neutron scattering with polarization analysis on a
Tb3Fe5O12 single crystal

The inelastic neutron scattering experiment with polarization analysis on a TbIG single
crystal is able to track the first optical and second optical mode of the spin wave dispersion
relation of TbIG at 10 K, 100 K and 280 K. Both optical modes are fully chiral with opposite
chiralities and shift downwards in energy with increasing temperatures due to the strong
temperature dependence of the Tb-sublattice magnetization MTbc. Furthermore, the chi-
rality of both optical modes is inverted at 280 K compared to 100 K and 10 K because of
the crossing of the magnetic compensation temperature Tcomp = 250.5 K. The obtained
experimental spin wave dispersion relations are the basis of the simulation of spin wave
dispersion relations of TbIG with SpinW in the following step.

6.2. Simulation of the spin wave dispersion relation of
Tb3Fe5O12 with SpinW

After the successful verification of SpinW as a simulation tool for spin wave dispersion
relations in complex compensated ferrimagnetic insulators by reproducing the spin wave
dispersion relations of Y3Fe5O12 and Gd3Fe5O12 from literature, the spin wave dispersion
relation of TbIG is successfully simulated. In particular, the simulated spin wave dispersion
relations of TbIG at 280 K, 100 K and 10 K are refined in such a way that a good agreement
to the experimentally determined spin wave dispersion relations by inelastic neutron scat-
tering with polarization analysis at respective temperatures is obtained. With this, a full
set of parameters is gained to describe the magnetic structure of TbIG in the temperature
range from 10 K to 280 K. Furthermore, the simulated spin wave dispersion relations reveal
that with increasing opening angles θ and θ′ of the magnetic ’double-umbrella’ structure
describing the Tb-moments, the acoustic mode transforms from a state with single chirality
to a state with mixed chirality around the Γ-point. Especially at 10 K, where the opening
angles θ and θ′ reach their maximum, all modes of the spin wave dispersion relation have
an energy gap at the Γ-point which is related to the pronounced magnetic double-umbrella
structure. Additionally, the investigation of the temperature dependent spin wave dis-
persion relation of TbIG reveals that at Tcross = 70 K, the thermal energy is equal to the
energy gap of the first optical mode Egap at the Γ-point (Egap(Tcross) = kBTcross). After the
successful simulation of the spin wave dispersion relation of TbIG, the next step towards
the verification of the relation to the temperature profile of the spin Seebeck effect is the
investigation of the spin Seebeck effect in TbIG|Pt heterostructures.

6.3. Spin Seebeck effect in Tb3Fe5O12|Pt heterostructures

In a first step, field-dependent spin Seebeck effect (FD-SSE) experiments using a
(110)-oriented TbIG single crystal|Pt heterostructure are carried out. The extracted tem-
perature dependent spin Seebeck effect amplitude VSSE(TPt) shows two characteristic sign
changes at Tsign,1 = (36± 3) K and Tsign,2 = (255± 5) K. The first, gradual sign change at
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Tsign,1 = (36± 3) K is related to the population of the first optical mode with negative chi-
rality opposite to the acoustic mode. Compared to the predicted temperature Tcross = 70 K,
the first sign change is found at lower temperatures which is most likely originating from
the mixed chirality of the acoustic mode below Tdu ≈ 160 K. The second sign change
Tsign,2 = (255± 5) K is related to the magnetic compensation temperature Tcomp = 250.5 K,
where all magnetic sublattices and thus all spin wave chiralities invert in a finite external
magnetic field. In total, the experimentally verified spin wave dispersion relations at 280 K,
100 K and 10 K are conclusively connected to the temperature profile of the spin Seebeck
effect amplitude VSSE(TPt) of TbIG single crystal|Pt heterostructures. This strong relation
proposes the spin Seebeck effect as a powerful investigation technique for magnon proper-
ties.
Additionally, the spin Seebeck effect in TbIG thin film|Pt heterostructures is investigated.
TbIG thin films offer a further simplification of the sample fabrication and are an impor-
tant step towards spintronic devices. However, the spin Seebeck effect in TbIG thin film|Pt
heterostructures reveals major differences compared to that of TbIG single crystal|Pt het-
erostructures. In particular at low temperatures TPt < 120 K, the spin Seebeck effect am-
plitude exhibits a component linearly depending on the applied magnetic field whereas
the hysteresis of the spin Seebeck effect can not be resolved for TPt < 50 K. To investigate
the origin of those differences, resonant elastic X-ray scattering experiments are conducted.
These experiments reveal that the TbIG thin films might not exhibit a rhombohedral dis-
tortion at low temperatures. Furthermore, the spin Seebeck effect in TbIG thin film|Pt
heterostructures on different substrates is investigated. From these experiments, no corre-
lation of the spin Seebeck effect with the substrate materials is found.

6.4. Outlook

Despite the various experiments carried out during this thesis, some issues remain un-
solved. Since so far the acoustic modes and the flat bands at E < 5 meV in the spin wave
dispersion relation of TbIG are not confirmed by inelastic neutron scattering with polar-
ization analysis, the experimental verification of those bands should be subject to future
inelastic neutron scattering experiments. In particular, the verification of the mixed chiral-
ity in vicinity of the Γ-point at low energies is an important objective.
Additionally, the inelastic neutron scattering experiment revealed two flat bands at 10 K

which are not observed at 100 K and 280 K. These bands are of unknown origin and could
not be simulated with SpinW. Investigating the temperature dependence of those bands
could probably reveal their origin. Kang et al. reported for the similar material system
Dy3Fe5O12 indications of magnetic ordering of the magnetic Dy-sublattice below 16 K [47].
This motivates further investigations of the inter-sublattice magnetic ordering of the Tb-
moments in TbIG by e.g. AC-magnetometry measurements. In Dy3Fe5O12, the magnetic
ordering of the Dy-sublattice leads to many additional bands for T < 16 K. Analogously,
a possible ordering of the Tb-sublattice might be a reason for the flat bands observed by
inelastic neutron scattering on TbIG at 10 K.
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The field-dependent spin Seebeck experiments using TbIG thin film|Pt heterostructures
revealed major differences to TbIG single crystal|Pt heterostructures which could not be
explained so far. The resistive longitudinal voltage Vres,long of the TbIG thin film|Pt het-
erostructures exhibits a strong field-dependence which might be originating from alloying
at the TbIG|Pt interface. Therefore, investigations on possible alloying at the TbIG|Pt in-
terface by X-ray absorption and magnetic circular dichroism (XMCD) experiments could
reveal the origin of the observed deviations in TbIG thin film|Pt heterostructures.
Overall, this work successfully verified the relation between the spin wave dispersion re-
lation and the temperature dependent spin Seebeck effect amplitude. Thus, the develop-
ment of a simulation tool for calculating a refinement of the temperature dependent spin
Seebeck effect amplitude, analogouysly to e.g. Rietveld refinement in X-ray or neutron
powder diffraction, could establish the spin Seebeck effect as investigation technique for
spin wave dispersion relations in magnetically ordered insulators in the future.
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A. Appendix - Experimental methods

The first part of this chapter focuses on the fabrication of the Tb3Fe5O12|Pt thin film het-
erostructures and the used experimental techniques. The samples are fabricated by pulsed
laser deposition (PLD) and subsequent electron beam evaporation (EVAP). In the second
part of this chapter, the used investigation techniques, X-ray diffraction (XRD) and SQUID-
magnetometry, are outlined. These techniques are used to characterize the magnetic and
structural properties of the fabricated samples.

A.1. Fabrication of Tb3Fe5O12 thin film|Pt heterostructures

A.1.1. Substrate preparation

The first step in the fabrication of a Tb3Fe5O12 thin film|Pt (TbIG|Pt) heterostructure is the
deposition of a Pt thin film (d ≈ 180 nm) on the backside of the substrate. For this purpose,
the substrate is inserted inside a high vacuum sputtering device, where the Pt thin film is
sputtered on the backside of the substrate. The Pt thin film on the backside is mandatory
for a high and homogeneous absorption of infrared laser light, which is used to heat the
substrate during the pulsed laser deposition process.

A.1.2. Ultra high vacuum cluster

After the substrate preparation, the substrate is inserted into the load-lock of the ultra-high
vacuum (UHV) deposition cluster (see Fig. A.1.1). The UHV cluster consists of five cham-
bers: load-lock, transfer chamber, PLD chamber, EVAP chamber and sputtering chamber.
The pressure of the UHV cluster is in the low 10−9 mbar region, which enables the fabrica-
tion of high purity epitaxially grown thin film heterostructures with high quality interfaces.
Due to the connection of all chambers to the transfer chamber, multiple processes can be
conducted without breaking the vacuum (’in-situ’) by transferring the sample with a trans-
fer arm. During deposition, the chambers are separated by a plate valve which minimizes
contamination of the UHV cluster. Within this work the sputtering chamber is not used.
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PLD chamber EVAP chamber
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transfer arm
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Figure A.1.1.: Schematic drawing of the ultra-high vacuum (UHV) cluster, which is used for
epitaxial thin film fabrication. The samples are inserted into the load-lock and can
be transferred into the pulsed laser deposition (PLD) chamber, the electron beam
evaporation (EVAP) chamber and the sputtering chamber with a transfer arm.
This allows an overall ’in-situ’ fabrication of thin film heterostructures which is
mandatory for high quality samples. The sputtering chamber is not used within
this work. Figure taken from Ref. [48].

A.1.3. Pulsed laser deposition (PLD)

Within this work, the crystalline epitaxially grown Tb3Fe5O12 thin films are fabricated by
pulsed laser deposition (PLD). The PLD process is conducted inside the PLD-chamber of
the UHV-cluster allowing the production of a high quality Tb3Fe5O12 thin film. A schematic
drawing of the PLD-process is shown in Fig. A.1.2.
The pulsed laser deposition is a fabrication technique for high quality mono-crystalline thin
films, which are epitaxially grown on mono-crystalline substrates. For the fabrication of a
thin film, the pulsed UV-excimer-laser (KrF, 248 nm) hits a target material, which ionizes
into a plasma plume. The target material is a poly-crystalline pellet with an atomic compo-
sition equal to the stoichiometry of the fabricated thin film. Within the plasma plume, the
ionized atoms and molecules diffuse towards the substrate where they get adsorbed. Due
to the automatic lens system, the energy density per pulse at the target surface ρL can be
adjusted. Within this work, the energy density per pulse is kept constant at ρL = 2 J/cm2.
During the deposition process, the substrate is heated at a constant temperature TS by an
infrared laser. The infrared laser is heating the substrate from the backside, where the
temperature is monitored by a pyrometer. To ensure a constant substrate temperature the
pyrometer adjusts the power of the infrared laser via a feedback-loop. A properly adjusted
constant substrate temperature TS is mandatory to provide the surface activation energy
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for high quality two-dimensional crystalline thin film growth. The PLD-process is con-
ducted within a gas atmosphere with pressure px. For the adjustment of the pressure px,
the inward gas flow is set. The system subsequently adjusts the position of the plate valve
in front of the turbomolecular pump, which controls the outward gas flow, to establish the
gas atmosphere at constant pressure px. The gas atmosphere reduces the kinetic energy of
the ionized particles by scattering prior to adsorption by the substrate. Within this work
oxygen with a pressure pO2 is used to avoid oxygen vacancies within the Tb3Fe5O12 thin
film.
Additionally, the PLD-system is equipped with a RHEED-setup (reflection high-energy
electron diffraction). The RHEED allows growth monitoring during the process by ana-
lyzation of a scattering scheme. The scattering scheme is produced by an electron beam,
which is scattered at the sample surface and visualized on a scintillating RHEED-screen.
By analysis of the intensity of the scattered electron beam with a camera, the type of growth
and the number of adsorbed mono-layers is observable during the deposition process. The
RHEED-setup is not used within this work.

excimer laser

lens system

plasma
plume

RHEED-screen

infrared laser

substrate

rotating target table

Figure A.1.2.: Schematic drawing of the pulsed laser deposition. During the deposition pro-
cess an UV-excimer-laser hits a stoichiometric target, which produces a plasma
plume consisting of ionized atoms. The ionized atoms are adsorbed by the sub-
strate material. To provide the surface activation energy for a two-dimensional
crystalline growth, the substrate is heated from the backside by an infrared laser.
The RHEED-setup allows to in-situ monitor the deposition process. Figure taken
from Ref. [48].

A.1.4. Electron beam evaporation (EVAP)

The electron beam evaporation (EVAP) is a fabrication technique for most metallic thin
films by vapor deposition, which is used within this work. A schematic drawing of the
EVAP-chamber during the deposition process is shown in Fig. A.1.3.
The material, which is deposited during the process, is placed under the sample within a
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crucible. Subsequently, the material is targeted by an electron beam and being heated up
to its evaporation temperature. The electrons for the electron beam are originating from
a filament by thermionic emission, which therefore is heated with a filament current of
30 A. After the thermionic emission, the electrons are accelerated by an acceleration volt-
age of 7.5 kV and deflected by a magnetic field, such that the electron beam hits the material
within the crucible.
For the determination of the deposition rate a piezoelectric oscillating quartz crystal is in-
stalled below the shutter. Due to deposition of the quartz crystal, the resonance frequency
decreases which allows to determine the deposition rate at the substrate position taking
geometrical factors into account. When the set deposition rate is reached and stabilized,
the shutter is opened until the set thin film thickness is deposited onto the substrate. Nev-
ertheless, the quartz crystal provides only an estimation of the deposited layer thickness.
Thus, for proper measurement of the thickness of the metallic layer, a reflectometry mea-
surement using X-ray diffractometry (see section A.2.1) has to be conducted.
Within this work, the EVAP-chamber is used to fabricate ’in-situ’ Pt-thin films on top of
Tb3Fe5O12. Due to the soft deposition process, compared to e.g. sputtering, interdiffusion
at the Tb3Fe5O12|Pt heterostructures is suppressed.
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Figure A.1.3.: Schematic drawing of the electron beam evaporation chamber (EVAP), which is
used to fabricate metallic thin films. The electron beam, which is generated by
thermionic emission from the filament and subsequent acceleration by the ac-
celeration voltage is deflected by a magnetic field to hit the material, which is
deposited. Due to exposure to the electron beam, the material is vaporized. The
vapor is then adsorbed by the substrate, when the set and stable deposition rate
is reached and the shutter is opened. The oscillating quartz crystal allows to de-
termine the deposition rate and therefore the thickness of the fabricated metallic
thin film. Figure taken from Ref. [48].

86



Appendix - Experimental methods 87

A.2. Investigation techniques

The next step, after the fabrication of the samples is the structural investigation by X-ray
diffractometry, which is discussed in the first part of this section. The second part focuses
on SQUID-magnetometry, which is an important tool for the investigation of the magnetic
properties of the sample.

A.2.1. X-ray diffraction

For the investigation of structural properties of the sample, X-ray diffraction is used within
this work. The measurements are conducted with a Bruker AXS D8 Discover 4-axis diffrac-
tometer, which uses the monochromatic Cu-Kα1 X-ray with a wavelength of λ = 1.5406 Å.
The two axis used for the measurement (2θ, ω) are shown schematically in Fig. A.2.1 (a),
whereas the other two axis are only used for alignment within this work. X-ray diffrac-
tometers allow to analyze an X-ray beam, which is scattered at the sample under an inci-
dent angle ω and analyzed under the total deflection angle 2θ. In the following, the funda-
mentals of X-ray diffraction are briefly summarized. Subsequently, the performed types of
measurements are described.

dhkl

incident X-ray beam
ki

outgoing X-ray beam
kf

scattering vector
q

dhkl sin(  )

(a) (b)

detector

crystalline
sampleincident

monochromatic

X-ray beam

Figure A.2.1.: (a) Schematic drawing of a two axis X-ray-diffractometer with the two axis ω and
2θ. Here, the angle ω describes the angle which is drawn by the lattice planes
and the monochromatic incident X-ray beam and the total deflection angle 2θ
describes the position of the probed, outgoing X-ray beam. Figure taken from
Ref. [43]. (b) Schematic drawing of elastic X-ray scattering, where the incident
X-ray beam with wavevector ki is scattered elastically at the lattice planes result-
ing in an outgoing X-ray beam with wavevector kf , where |ki| = |kf |. The total
scattering process is described by the scattering vector q = kf − ki. Bragg’s law
is fulfilled when 2dhklsin(θ) = λ (see Eq. (A.1)). Figure adapted from Ref. [49].

Since the wavelength of X-rays is in the range of atomic distances within crystals (≈ Å),
the atomic structure of the crystal acts as diffraction gating, which is leading to destructive
and constructive interferences under distinct angles ω and 2θ. Thus, when the intensity of
the scattered X-ray beam is measured as a function of the angles ω and 2θ, X-ray diffraction
represents a powerful tool to obtain information about structural properties of the crystal
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under investigation. Bragg’s law provides the necessary measurement geometry for find-
ing constructive interferences:

2dhkl sin(θ) = λ . (A.1)

Here, dhkl is the distance of atomic layers in direction [hkl], which is described by the
Miller’s indices h, k, l. Furthermore, θ, the half of the total deflection angle 2θ, is the angle
between the incident beam and the atomic layer (see Fig. A.2.1 (b)). For crystals with cubic
symmetry, as most of the rare-earth iron garnets, dhkl is related to the cubic lattice constant
a by the following relation:

dhkl =
a√

h2 + k2 + l2
. (A.2)

Due to the structure factor of the rare-earth iron garnets, not all combinations (hkl) lead
to constructive interferences. The first constructive interference in rare-earth iron garnets
is found for the reflection, described by the Miller’s indices (400). In the following, the
conducted scan types together with their purpose are described:

• 2θ-ω-scan: With the 2θ-ω-scan the intensity of the scattered X-rays along a fixed q-
direction with q ‖ (hkl) is measured. Therefore, the incident beam is penetrating the
sample under the angle ω = θ, where the angle θ is drawn by the lattice planes (hkl)

and the incident beam. The detector is aligned such that 2θ = 2ω during the scan. By
keeping this constraint during the measurement and scanning the angle ω, an inten-
sity scan along a fixed q-direction is obtained (see Fig. A.2.1 (b)). Within this work,
the scattering vector q is aligned parallel to the crystallographic direction pointing
out of the sample plane.
With this scan type, a characteristic peak structure is obtained, when Bragg’s law for
the crystalline substrate and the crystalline thin film is fulfilled. Thus, this measure-
ment provides insight into the present crystalline phases within the sample together
with the respective out-of-plane lattice constant.
Due to the finite thickness of the multilayer structure, reflections at the surface and
the interface of the sample lead to an additional scattering pattern in the vicinity of
the Bragg-peaks, which is called Laue-oscillations. These Laue-oscillations or finite
thickness fringes are similar to the optical Fraunhofer diffraction pattern caused by
diffraction of a slit and indicate a coherent growth of the epitaxial thin films.

• Reflectometry: The reflectometry is a scan mode equal to the 2θ-ω-scan at small an-
gles 2θ < 5◦. Therefore, the sample is aligned such that the angle ω is drawn by
the incident X-ray beam and the sample surface. During the measurement, the con-
straint 2θ = 2ω is fulfilled. With this procedure, a characteristic scattering pattern
due to inference of the reflections at the surface and the interfaces of the heterostruc-
ture is obtained. Subsequently, the program Leptos is used to simulate the scattering
pattern for a reflectometry measurement of an equal sample. The simulated reflec-
tometry measurement is then refined to the data by adjusting the layer thicknesses
and the roughness of the interfaces and the surface.

• Rocking-curve: For the rocking curve, ω and 2θ are aligned, such that Bragg’s law is
fulfilled for a set of Miller’s indices (hkl). Then, ω is scanned, while 2θ remains at a
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fixed value, which results in a peak structure. The shape of this peak together with
the full width at half maximum are figures of merit for the mosaicity and therefore
the crystalline quality of the sample.

Additional information on X-ray diffraction is given in Ref. [49].

A.2.2. SQUID-magnetometry

The magnetization measurements for the investigation of magnetic sample properties within
this work are conducted with a SQUID-magnetometer by Quantum Design. The used
SQUID-magnetometer, which is a vibrating sample magnetometer, allows the precise mea-
surement of the total magnetization of the sample in external magnetic fields up to ±7 T at
sample temperatures between 1.2 K and 390 K. To this end, the magnetization is measured
by an axial second order gradiometer as shown in Fig. A.2.2.
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Figure A.2.2.: Schematic drawing of the gradiometer inside the SQUID-magnetometer. When
the sample is moved through the gradiometer at a constant velocity, a supercon-
ducting current is induced within the gradiometer, which is according to Fara-
day’s law proportional to the magnetization. A SQUID then transforms the cur-
rent into a voltage signal. By measuring the voltage signal and subsequently
fitting the obtained curve, the magnetization along the axis of the gradiometer is
precisely determined. The magnetization can be measured under external mag-
netic fields of up to ±7 T and at sample temperatures between 1.2 K and 390 K
with the used setup from Quantum Design. Figure adapted from Ref. [48].

For a precise measurement, the gradiometer consists of three superconducting coils, which
are connected in series. The number of windings for the outer coils is (−1), whereas the
number of windings of the middle coil is (+2). Thus, when the sample is moved through
the gradiometer at a constant velocity, a superconducting current is induced which is, ac-
cording to Faraday’s law, proportional to the change of the magnetic flux along the axis
of the gradiometer (see Fig. A.2.2). Here, the axis of the gradiometer is equal to the di-
rection of the external magnetic field. For the detection of the superconducting current,
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it is transformed to a voltage by a RF-SQUID. Due to the serial connection of three su-
perconducting coils, a fit to the raw data allows the precise determination of the samples
magnetic moment. The voltage curve is automatically fitted by the software of the SQUID-
magnetometer provided by Quantum Design, such that overall precise temperature depen-
dent and field dependent magnetization measurements can be performed. Further infor-
mation of the working principles of SQUID-magnetometers are provided in Ref. [50].
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Figure B.0.1.: Inelastic neutron scattering with polarization analysis at T = 280 K. The color
depicts the different scattering channels: non-spin-flip channel (green), spin flip
channel with i · (Sxy − Syx) < 0 (blue) and i · (Sxy − Syx) > 0 (red). The intensity
is normalized to the monitor counts and plotted as a function of the energy loss
for q = [444], which is a Γ-point. The intensity is fitted with superposed Gaussian
functions (solid lines). This data is equal to the data shown in Fig. 3.2.1 (a) but
plotted with wider range on the intensity-axis, such that the pronounced red tail
for E < 15 meV is visible. This energy tail is considered as a data point with large
error bar of a magnon mode, which is plotted in Fig. 3.2.1 (b).
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Figure B.0.2.: Field-dependent magnetization measurements M(H) of a TbIG single crystal at
2 K (a) and at 300 K (b) with the external magnetic field applied along the cubic
[111]bcc-direction. The magnetization is given in Bohr magnetons per formula
unit of Tb3Fe5O12 (µB/f.u.). The insets show the regions around µ0H = 0 T of the
respective measurement. The M(H)-measurements reveal a narrow hysteresis
loop with small coercive fields Hc and small relative remanent magnetizations
Mr/Ms, where Ms is the saturated magnetization. The larger field dependence
observed in the measurement at 300 K originates from the suppression of thermal
excitations by an external magnetic field.
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Figure B.0.3.: Reflectometry measurements on TbIG thin film|Pt heterostructures grown on
(110)-oriented GGG substrates which are used for spin Seebeck effect experi-
ments within this work. The experimental data (black curve) is plotted together
with the LEPTOS-simulation (red curve). The extracted simulation parameters
are shown on top of the respective measurement together with the main fabrica-
tion parameters (substrate temperature Ts and oxygen pressure pO2).
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Figure B.0.4.: Field-dependent magnetization measurements M(H) of a TbIG thin film|Pt het-
erostructure grown on a (100)-oriented Y3Al5O12 substrate at a sample temper-
ature of 10 K (a) and 50 K (b) with the external magnetic field applied along the
cubic [110]bcc-direction. The M(H)-measurements show a large coercive field Hc

and a large relative remanent magnetization Mr/Ms, whereas the coercive field
and the relative remanent magnetization are small in TbIG single crystals (see
Fig. B.0.2).
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Figure B.0.5.: Thermal (black) and resistive (red) voltage signals measured transverse (up-
per panels) and longitudinal (lower panels) to the current direction in field-
dependent SSE (FD-SSE) experiments using the TbIG (57.6 nm)|Pt (4.1 nm) het-
erostructure fabricated under an oxygen atmosphere of pO2 = 50µbar on a (110)-
oriented GGG substrate. The data shown here is measured around the critical
temperatures of bulk TbIG ((a),(b) Tsign,1,bulk = (36± 3) K, (c),(d) Trh ≈ 190 K,
(e),(f) Tsign,2,bulk = (255± 5) K). The transverse thermal voltage signal Vtherm,trans
is used to calculate the SSE amplitude as a function of the dipstick temperature
VSSE(Tdip) shown in Fig. 5.3.1 (d). Overall, the data does not match the expec-
tations, which is mainly originating from the presence of the parasitic crystalline
phase TbFeO3 (see Fig. 5.3.1 (a)).
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Figure B.0.6.: Thermal (black) and resistive (red) voltage signals measured transverse (up-
per panels) and longitudinal (lower panels) to the current direction in field-
dependent SSE (FD-SSE) experiments using the TbIG (50 nm)|Pt (5.0 nm) het-
erostructure fabricated under an oxygen atmosphere of pO2 = 25µbar on a (110)-
oriented GGG substrate. The data shown here is measured around the critical
temperatures of bulk TbIG ((a),(b) Tsign,1,bulk = (36± 3) K, (c),(d) Trh ≈ 190 K,
(e),(f) Tsign,2,bulk = (255± 5) K). The transverse thermal voltage signal Vtherm,trans
is used to calculate the SSE amplitude as a function of the dipstick temperature
VSSE(Tdip) shown in Fig. 5.3.1 (e). Overall, the data does not match the expecta-
tions, which is mainly originating from the poor sample quality. This is visible
in the 2θ-ω-measurement shown in Fig. 5.3.1 (b), where the TbIG-thin film Bragg-
reflection is far away from the 2θ-value for the Bragg reflection of a TbIG single
crystal which indicates the presence of oxygen vacancies.
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Figure B.0.7.: X-ray diffraction measurements on the TbIG (72.8 nm)|Pt (4.1 nm) heterostruc-
ture, which is used for spin Seebeck effect experiments within this work (see
section 5.3.4). The heterostructure is fabricated on a (100)-oriented YAG sub-
strate. (a) Reflectometry measurement (black curve) plotted together with the
LEPTOS-simulation (red curve). The extracted simulation parameters are dPt =
(4.1± 0.2) nm and dTbIG = (72.8± 0.8) nm. (b) 2θ-ω measurement around
the (400) YAG substrate Bragg-reflection and the (400) TbIG thin film Bragg-
reflection. The proximity of the TbIG thin film Bragg reflection to the bulk value
2θ(400)TbIG,bulk = 28.7◦, the high intensity of the TbIG thin film reflection and the
pronounced Laue-oscillations are indicators for a high quality crystalline growth
of the TbIG (72.8 nm)|Pt (4.1 nm) heterostructure.
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