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Abstract

Superconducting circuits have become a key technology platform in the field of
quantum science and technology, and the quantum properties of the microwave
signals emitted from these circuits have become a popular object of study. The
related experiments can be divided in experiments where the focus is put on the
implementation of continuous-variable quantum protocols and the ones which aim
at realizing scattering experiments of microwave photons. This latter set of exper-
iments, to which also this work contributes, is closely related to the concepts of
generation, routing, manipulation, and detection of propagating quantum states.
These areas have been actively explored in photonics at optical frequencies and are
- in analogy to optics - therefore often referred to as microwave quantum photonics.
In this work, we study the scattering of an incident microwave field off an artificial
atom placed in a broadband, but nevertheless carefully engineered, open environ-
ment provided by a superconducting quantum circuit. To this end, we design and
fabricate the according microwave circuits, and optimize their design, packaging
and shielding. We conduct spectral measurements for a broad range of frequencies.
We use a transfer matrix model to fit the obtained spectral data, and extract the
decoherence parameters of the physical system. Based on model assumptions, we
extract the noise characteristics of our sample. Finally, we confirm that the high
frequency noise in our system can be described by the spin boson model and the low
frequency noise is well described in the 1/f -noise limit of the Ornstein-Uhlenbeck
approach.





Kurzzusammenfassung

In den letzten Jahren haben sich supraleitende Schaltkreise zu einer Schlüsseltech-
nologie im Bereich der Quantentechnologien entwickelt, wobei die Eigenschaften
von Mikrowellensignalen, die von solchen Schaltkreisen emittiert werden, ein belieb-
tes Studienobjekt darstellen. In Hinblick auf die dazu durchgeführten Experimen-
te lassen sich zwei Klassen unterscheiden. Es gibt einerseits Experimente, die ihr
Hauptaugenmerk auf Protokolle mit kontinuierlichen Variablen legen, und anderer-
seits solche, die die Streuung von Mikrowellenphotonen untersuchen. Diese Arbeit
fällt die zweite Kategorie von Experimenten und ist somit artverwandt zu Unter-
suchungen zur Generation, Manipulation und Detektion von Photonen, welche bei
optischen Frequenzen bereits intensiv untersucht wurden und dem Gebiet der op-
tischen Photonik zuzuordnen sind. In dieser Arbeit untersuchen wir die Streuung
eines eingehenden Mikrowellenfeldes an einem in einer breitbandigen, ingenieursmä-
ßig maßgeschneiderten, Umgebung platzierten, künstlichen Atom. Zu diesem Zweck
entwerfen, fabrizieren und optimieren wir die Mikrowellenschaltkreise, welche Umge-
bung und künstliches Atom realisieren. Wir verbessern zusätzlich das Gehäuse und
die Abschirmung, sowie die Verbindungstechnik der verwendeten Chips. Wir führen
spektral aufgelöste Messungen über einen breiten Frequenzbereich durch und nutzen
das Transfermatrizenmodell, um die erhaltenen Messdaten zu fitten. Basierend auf
wenigen Annahmen schließen wir auf die Rauscheigenschaften unserer Probe. Wir
bestätigen dadurch, dass sich das hochfrequente Rauschen in unserem System mit
dem Spin-Boson Modell erklären lässt, während sich der niederfrequente Rauschan-
teil gut mit einem Ornstein-Uhlenbeck Ansatz im 1/f -Limit darstellen lässt.
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Chapter 1

Introduction

Since the first descriptions of physical effects in the framework of quantum me-
chanics, its specific predictions have been verified in many experiments in modern
physics. These experiments have led to what is meanwhile called the first quan-
tum revolution, coming together with huge technological progress. The resulting
technologies heavily influence our daily life. Almost everybody uses a cell phone
based on transistors or navigates based on global positioning systems. People rely
on nuclear magnetic resonance for medical imaging. Coherent light sources (lasers)
are used for broadband communication. The entertainment industry uses lasers
for, e.g., projections, compact discs, digital versatile discs, and blu-ray discs. Even
such simple things as a holding magnet cannot be understood without the concepts
of quantum mechanics. All these technologies are based on a fundamental under-
standing of quantum mechanics, in most cases especially on the interaction between
electromagnetic radiation and matter.

In these days, we are in the middle of a second quantum revolution[1], in which
not solely understanding the effects of quantum mechanics, but the direct control
of quantum mechanical processes is in the focus. This will allow for incredibly ac-
curate devices in quantum sensing, new materials and drugs enabled by quantum
simulations, unbreakable security in quantum communications, and exponentially
growth in the complexity of problems solved in quantum computing. For all of these
areas, superconducting quantum circuits provide a promising platform for impor-
tant reasons. First, they show quantum mechanical effects on a mesoscopic level,
their fabrication is based on scalable thin film technology and they are operated
at frequencies of several gigahertz, used in mobile telecommunications (LTE, WiFi,
...). Second, although superconducting circuits have to be operated at temperatures

1



2 1. Introduction

well below 100mK, the required effort is still reasonable. In practice, one employs
dilution refrigerators, which meanwhile are commercially available. Due to these
two factors, superconducting circuits provide good experimental accessibility and
have become a key player in the field of quantum science and technology. In the
last decade, also the quantum properties of the microwave signals emitted from
these circuits have become a popular object of study. The related experiments can
be divided into two major groups. In one of them, the focus is put on the imple-
mentation of continuous-variable quantum protocols [2–7]. The other group aims
at realizing scattering experiments with a quantum system using either microwave
photons in a discrete-variable description or quasi-classical coherent states as probe
signals [8–14]. The latter set of experiments, to which also this work contributes, is
closely related to the concepts of generation, routing, manipulation, and detection.
These areas have been actively explored in photonics at optical frequencies and are
therefore often referred to as microwave quantum photonics [15].

In this work, we study the scattering of an incident microwave field off an artificial
atom placed in a broadband, but nevertheless carefully engineered, open quantum
circuit. In theory, such a system can be described in the framework of the spin-boson
model [16, 17]. In this model description, the relaxation and dephasing rates of the
qubit are determined by the spectral function of the electromagnetic environment.
Therefore, measuring the qubit relaxation and dephasing rates over a wide range
of the qubit transition frequencies allows one to obtain valuable information on the
environment.

Especially in the areas of quantum sensing, quantum simulation, and quantum
computing, the understanding of the interaction of quantum mechanical systems
with their environment is of essential importance, even if it is a dissipation channel.
Understanding dissipation is a key to quantum sensing applications. For quantum
simulations, this loss of information may introduce dynamics that harms the model
to be simulated. In quantum computing, such a dissipation channel is a significant
source of decoherence. In both cases, a detailed understanding is the first step to
mitigate the problem. This thesis will contribute to the field of quantum microwave
photonics by investigating the interaction of a two-level system implemented in
superconducting microwave circuits with a broadband environment modeled within
the framework of the spin-boson model. Specifically, we couple a transmon qubit
to an on-chip microwave interferometer. Using the qubit as a probe, we extract
information on the structure of the environment from the relaxation and dephasing
rates. As mentioned before, our results are of high interest in quantum microwave
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sensing and quantum microwave communications, where interaction with broadband
environments might obscure results, if not handled properly.

This work is structured as follows. Chapter 2 introduces quantum microwave
photonics and the theoretical framework used to describe the measurements con-
ducted. Chapter 3 describes the experimental techniques used to obtain the mea-
surement data, including cryogenics and fabrication of sample chips. In Chapter 4,
the measurements are presented, while in Chapter 5, a summary and an outlook are
given.
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Chapter 2

Quantum microwave photonics

The field of quantum microwave photonics aims at generating, routing, and ma-
nipulating propagating microwave fields in the spirit of optical photonics [15] at a
quantum level. Whereas optical photonics uses mostly lasers and atomic systems,
in microwave photonics, the radiation is controlled by electrical circuits and coaxial
cables. Electrical circuits can be engineered to imitate the properties of atoms when
interacting with the electromagnetic field of microwaves and thus are called artifi-
cial atoms. By this, in the recent years, it has become possible to investigate strong
interaction [18] between electromagnetic radiation and matter at the single photon
level and gain deep experimental insight into quantum electrodynamics (QED). This
development has opened the door for new applications in quantum technologies such
as quantum computers and quantum sensors [19–21].
In this chapter, we first introduce the transfer matrix formalism as a convenient
method for modeling scattering experiments. We then describe the various mi-
crowave circuits used within this thesis at the level of a classical model. Afterwards,
the quantization of these circuits is discussed along with the quantum mechanical
model of a transmon qubit. Finally, we look into modeling open quantum systems,
composed of the components described earlier, and their decoherence properties.

2.1 Transfer matrix formalism
In microwave as well as in optical photonics, we investigate interactions between
electromagnetic radiation and matter which can be described as a wave signal be-
ing scattered by a potential. The transfer matrix formalism [22] is used to describe
the relation between the incident and reflected propagating electromagnetic waves,
resulting from the interaction with a scattering potential. This method can be

5



6 2. Quantum microwave photonics

used to describe electric circuits based on the transfer matrices of their fundamen-
tal components. Proper parametrization allows for the description of both elastic
(energy-conserving) and inelastic (dissipative) processes. . Here, we first introduce
the closely related scattering parameters (S-parameters) constituting the scattering
matrix [23, 24], which is holding information equivalent to the one of the transfer
matrix. We want to analyze a microwave network with N ports, where, at each
port, we are interested in the voltage Vi and current Ii at a reference plane Ti (see
Fig. 2.1). We assume that for each port, the microwave voltages Vi(z, t) and currents

VN
+ (z,t), -IN

+ (z,t)

V4
+ (z,t), -I4

+(z,t)

V3
+ (z,t), -I3

+ (z,t)

V3
- (z,t), -I3

- (z,t)

V2
- (z,t), -I2

- (z,t)

V2
+ (z,t), -I2

+ (z,t)

V1
+ (z,t), -I1

+ (z,t)

V1
- (z,t), -I1

- (z,t) V4
- (z,t), -I4

- (z,t)

VN
- (z,t), -IN

- (z,t)

T3

T4

TN

T1

T2

S

Figure 2.1: Transmission and reflection S-parameter for a device with N ports. We
are interested in the voltages Vi and currents Ii evaluated at reference planes Ti.
Figure with kind permission of Christian Schneider [25].

Ii(z, t) at position z in the connected mircowave line and time t are described by
phasors, which are defined as linear combinations of incident and reflected waves:

Vi(z, t) = V +
i (z, t) + V −

i (z, t) = V +
i,0 · e−γz−iωt + V −

i,0 · eγz−iωt (2.1)

Ii(z, t) =
1

Z0

(V +
i (z, t) + V −

i (z, t)) = I+i,0 · e−γz−iωt − I−i,0 · eγz−iωt. (2.2)

Here, superscript + denotes an incident wave, while superscript − denotes a re-
flected wave and by convention the reflected current is multiplied by (−1). Further,
γ = α + iβ is the complex propagation constant, consisting of the real attenuation
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constant α and the imaginary part β, called phase factor. Z0 is the characteristic
impedance, with I = V/Z0 giving the relation between voltage and current. We
need to distinguish between the complex wave quantity V

+/−
i (z, t) and its ampli-

tude V +/−
i,0 . The notation can by simplified by skipping the second subscript for the

amplitudes, thus V +/−
i,0 becomes V +/−

i and is distinguished from the phasors by the
lack of parameters V +/−

i ̸= V
+/−
i (z, t),

Vi(z, t) = V +
i (z, t) + V −

i (z, t) = V +
i · e−γz−iωt + V −

i · eγz−iωt. (2.3)

S-parameters and S-matrix

In order to analyze a circuit, we need to know which output is generated by a certain
input. For an N-port network, this is achieved via scattering parameters:

Sij =
V −
i (z, t)

V +
j (z, t)

∣∣∣∣
V +
k (z,t)=0 for k ̸=j

(2.4)

In the simple case of a terminated transmission line [a 1-port network, see Fig. 2.2(a)],
the S-parameter S11 is equivalent to the reflection coefficient Γ 1. It relates the inci-
dent part of the phasor V +

1 (z, t) of a wave traveling towards the device port, to the
reflected part of the phasor V −

1 (z, t) of the wave reflected at the same port.

S11 = Γ =
V −
1 (z, t)

V +
1 (z, t)

(2.5)

Port 1

V1
+(z,t), 

I1
+(z,t)

V1
+(z,t), 

I1
+(z,t)

V1
-(z,t), 

I1
-(z,t)

V1
-(z,t), 

I1
-(z,t)

V2
-(z,t), 

I2
-(z,t)

V2
+(z,t), 

I2
+(z,t)

Port 1 Port 2

S21

S12

S11 S22

(a) (b)

S11=¡

Figure 2.2: (a)The voltage phasor of the wave reflected at a terminated transmission
line, which is a very simple one-port network, defines the reflection coeffient Γ =
V −
1 (z, t)/V +

1 (z, t). (b) The four transmission and reflection coefficients at a two-
port device define a 2× 2 matrix.

1While the greek letter Γ is often used for rates, we follow the notation of Ref. [23] here.
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For two-port networks, not only reflection, but also a transmission has to be
taken into account. To do so, two reflection coefficients S11, and S22, one for each
port and two transmission coefficients S12, and S21, one for each direction, are used
[see Fig. 2.2(b)].
As they connect two phasors, S-parameters can take complex values. For example
for a lossless two port device with a signal V +

2 (z, t) = V +
2 e−iβz−iωt entering at port

2 and exiting at port 1 as V −
1 (z, t) = V −

1 e
−iβz−iωt−iϕ21 one obtains

V −
1 (z, t) = S12V

+
2 (z, t) = e−iϕ21V +

2︸ ︷︷ ︸
V −
1

e−iβz−iωt, (2.6)

where S12 =
V −
1 (z, t)

V +
2 (z, t)

=
e−iϕ21V −

1 e−iβz−iωt

V +
2 e−iβz−iωt

= e−iϕ21 . (2.7)

This simple equation tells us that the signal picks up an additional phase of ϕ21.
Experimentally, the S-parameter Sij is determined by measuring the amplitude

and phase of the wave coupled out of port i, for a known input at port j, while
all other ports are terminated with matched loads (see chapter 3 for the actual
setup used for experiments presented in this thesis). Exploiting the linearity of
electrical circuits, we can construct a matrix relating arbitrary incident signals to
the corresponding output. In this way, we know how a network will react to any
input signal.

For an N-port network such as the one sketched in Fig. 2.1, evaluating the volt-
ages at reference planes Ti yields:

V− =



V −
1 (z, t)

V −
2 (z, t)

V −
3 (z, t)

...

V −
N (z, t)


=



S11 S12 S13 · · · S1N

S21 S22 S23 · · · S2N

S31 S32
...

...

SN1 SN2 SN3 · · · SNN





V +
1 (z, t)

V +
2 (z, t)

V +
3 (z, t)

...

V +
N (z, t)


= SV+.(2.8)

S is called the scattering matrix.

Definition of the T-Matrix

The transfer matrix T allows to overcome an disadvantage of the scattering matrix
S, when it comes to find a scattering matrix describing a series of devices whose
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T
V1
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V1
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2

Figure 2.3: (a) A transfer matrix relates the waves at the input port (red) of a device
to waves at the output port(s) (blue). (b) In contrast, a scattering matrix connects
all incident waves (red) to all rejected waves (blue), regardless of the port.

individual matrices are known. As the scattering matrix S connects all incident
waves to all reflected waves [see Fig. 2.3(b)], it is not straightforward to matrix-
multiply two or more S-matrices to obtain a matrix reflecting the relation between
input ports and output ports of two devices put in series (see Fig. 2.4). The S-
Matrix connects incident to reflected waves regardless of the port. Usually one or
more ports of a device are defined as input, and one or more as output and this
output is input for the next device in a series of connected devices. To overcome
this, the transfer matrix T connects all modes at the input ports, incident and
reflected, of a device (or, in general, a scattering potential) to all modes at the
output ports, again incident and reflected [see Fig. 2.3 (a)]. In this way, the relation
between waves at the input port of the first and the waves at the output port of the
last of two or more connected components can be described by the product of two
or more T-matrices [Fig. 2.4 and Eq. (2.19)]. In this context, it is important to note
that individual T-matrices represent point-like effective objects properly describing
all reflection/transmission properties due to the internal structure. For a 2-port
device, we define the transfer matrix T and the scattering matrix S via: V −

2 (z, t)

V +
2 (z, t)

 = T

 V +
1 (z, t)

V −
1 (z, t)

 =

 T11 T12

T21 T22

 V +
1 (z, t)

V −
1 (z, t)

 (2.9)

 V −
1 (z, t)

V −
2 (z, t)

 = S

 V +
1 (z, t)

V +
2 (z, t)

 =

 S11 S12

S21 S22

 V +
1 (z, t)

V +
2 (z, t)

 (2.10)

A relation between S- and T-parameters can be derived using the definition of the
scattering matrix [Eq. (2.10)] and written as a system of equations :

V −
1 (z, t) = S11V

+
1 (z, t) + S12V

+
2 (z, t) (2.11)
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V −
2 (z, t) = S21V

+
1 (z, t) + S22V

+
2 (z, t). (2.12)

From Eq. (2.11), we get an explicit term for V +
2 (z, t):

V +
2 (z, t) =

(
−S11

S12

)
︸ ︷︷ ︸

T21

V +
1 (z, t) +

1

S12︸︷︷︸
T22

V −
1 (z, t). (2.13)

Inserting V +
2 (z, t) into Eq. (2.12) to express V −

2 (z, t) gives:

V −
2 (z, t) = S21V

+
1 (z, t) + S22

(
1

S12
V −
1 (z, t)− S11

S12
V +
1 (z, t)

)
(2.14)

=

(
S21 −

S11

S12

)
︸ ︷︷ ︸

T11

V +
1 (z, t) +

S22

S12︸︷︷︸
T12

V −
1 (z, t) (2.15)

Thus, the entries Tij of the transfer matrix T can be expressed by means of the
scattering parameters Sij:

T =

 T11 T12

T21 T22

 =

 S21−S11S22
S12

S22

S12

−S11

S12

1
S12

 . (2.16)

From Eq. (2.16), we see that for devices with no reflection the anti-diagonal entries
T12 and T21 of the transfer matrix are zero. This will become obvious for the trans-
fer matrix of a transmission line [see Eq. (2.35)]. From Eq. (2.15) and Eq. (2.13)
it can also be understood that S21 appears in T11, while the inverse of S12 ap-
pears in T22. T11 reflects the contribution of the incident wave V +

1 (z, t) at port
1, to the reflected wave at port 2, V −

2 (z, t). By definition, these are related by
S21 = V −

2 (z, t)/V +
1 (z, t). T22 gives the contribution of the reflected wave V −

1 (z, t) at
port 1, to the incident wave V +

2 (z, t) at port 2. By definition S12 = V −
1 (z, t)/V +

2 (z, t),
thus V +

2 (z, t) = V −
1 (z, t)/S12. A more physical interpretation of the inverse S-

parameter is the reversal of the propagation direction.

From a practical point of view, the most useful property of the transfer matrix is
that two or more matrices can be concatenated via matrix multiplication to model
a sequence of devices whose output ports form the input for the next device in a
series (see Fig. 2.4). Here, a direct connection of the devices is assumed, otherwise
information on the phase is lost and the method cannot account for interference
effects as observed in double tunnel junctions. Suppose T1 connects incident and
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reflected waves at the input port 1 to all incident and reflected waves at the output
port 2 of device A, and T2 connects incident and reflected waves at the input port
3 to all incident and reflected waves at the output port 4 of device B. By using
the output of device A as input for device B we can derive a transfer matrix for
the series of A and B by matrix multiplication of T1 and T2 to connect incident and
reflected waves at port 1 to the waves at port 4 (see Fig. 2.4):

T1po
rt 

1

po
rt 

2 T2po
rt 

3

po
rt 

4

device A device B

V1
+(z,t)

V1
-(z,t)

V2
-(z,t)=V3

+(z,t)

V2
-(z,t)=V3

+(z,t)

V4
-(z,t)

V4
+(z,t)

Figure 2.4: A sequence of transfer matrices can be used to model several scatterers
in series. The modes at the output port (port 4) of a chain of two devices can be
obtained by applying T1 on the modes at the input port of the first device (port 1),
which gives the modes at the output of the first device (port 2), which are use as
input for the second device (port 3). Finally T2 is applied to obtain modes at the
output port (port 4).

 V −
4 (z, t)

V +
4 (z, t)

 = T2

 V +
3 (z, t)

V −
3 (z, t)

 , (2.17)

 V +
3 (z, t)

V −
3 (z, t)

 =

 V −
2 (z, t)

V +
2 (z, t)

 , (2.18)

 V −
2 (z, t)

V +
2 (z, t)

 = T1

 V +
1 (z, t)

V −
1 (z, t)

 (2.19)

=⇒

 V −
4 (z, t)

V +
4 (z, t)

 = T2T1︸︷︷︸
T

 V +
1 (z, t)

V −
1 (z, t)

 (2.20)

Using the S-matrix formalism, it is not possible to decompose an S-matrix into
the product of two or more S-matrices modeling several connected physical devices.
Suppose S1 connects all incidents waves of device A at its ports 1 and 2 and S2

connects all incidents waves of device B at its ports 3 and 4. Furthermore suppose
device A and B are connected via ports 2 and 3 (see Fig. 2.4 for transfer matrices
and Fig. 2.5 for S-matrices). By defining an S-matrix of the composite device, con-
stituted by the two individual devices put in series, we connect the incident waves
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[V +
1 (z, t), V +

4 (z, t)] to the reflected waves [V −
1 (z, t), V −

4 (z, t)]. An S-matrix for de-
vice B connects [V +

3 (z, t), V +
4 (z, t)] to [V −

3 (z, t), V −
4 (z, t)] and an S-matrix for device

A connects [V +
1 (z, t), V +

2 (z, t)] to [V −
1 (z, t), V −

2 (z, t)]. Thus, the S-matrix for the
composite device cannot be obtained by multiplication of the individual S-matrices
of the device A and device B, as S2 cannot be applied to [V +

1 (z, t), V +
4 (z, t)], which

would be needed for an S-parameter model of the composite device.

 V −
1 (z, t)

V −
2 (z, t)

 = S1

 V +
1 (z, t)

V +
2 (z, t)

 ,

 V −
3 (z, t)

V −
4 (z, t)

 = S2

 V +
3 (z, t)

V +
4 (z, t)

 (2.21)

=⇒

 V −
1 (z, t)

V −
4 (z, t)

 ̸= S1S2︸︷︷︸
S

 V +
1 (z, t)

V +
4 (z, t)

 (2.22)
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device C composed by A and B in sequence

Figure 2.5: Scattering matrices cannot be used sequencially to model the effect of
several scatterers. The scattering matrix S3 connecting the incident and reflected
modes of a chain of device A and B cannot be decomposed into a product of the
individual S-matrices S1 and S2.

Transmission spectrum

In a typical transmission spectrum experiment, as it is often used within this the-
sis, we compare an incident wave at an input port, to the amplitude and phase of
the same wave leaving a device under test (DUT) at the output port (see Fig. 2.6)
for a range of probe frequencies. In other words, we conduct frequency-dependent
S-parameter measurements. To model this situation using the transfer matrix for-
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V1
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V2
-(z,t)=?

V2
+(z,t)=0

Figure 2.6: In a transmission measurement we apply a well defined signal V +
1 (z, t)

at one defined input port and no signal at the other. Reflection and transmission
are measured.

malism, the single incident wave is well defined by V +
1 (z, t), while all other incident

wave amplitudes are set to zero, and the system V −
2 (z, t)

V+
2 (z, t) = 0

 =

 T11 T12

T21 T22

 V+
1 (z, t)

V −
1 (z, t)

 (2.23)

is solved for the transmitted and reflected phasors V −
2 (z, t), V −

1 (z, t). For more com-
plex systems, such as beam splitters or interferometers treated in the thesis, the
matrix will be of higher dimension, but still exactly one incident signal is well de-
fined and the system is solved for the reflected signals at all other ports. It also
needs to be remarked, that in most cases only the amplitude and phase of transmit-
ted waves are experimentally accessible due to the technical effort of implementing
reflection measurements.
Together with Eq. (2.16), the measured S-parameters allow us to evaluate the frequency-
dependent transfer matrix T of the DUT.
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2.2 Lumped element circuit theory

In this section, we look at the classical lumped element circuit theory for lossless
circuits used throughout this thesis. We derive the Hamiltonian description of the
classical dynamics of non-dissipative circuits (see Ref. [26]) in order to obtain the
equations of motion for circuit elements. Although textbook knowledge it is useful
to revisit this in preparation of Sec. 2.4, where the quantum mechanical description
of circuits is obtained by a promotion of the classical conjugate variables to opera-
tors. Finally, comparing the mathematical structure of the circuit to the one of an
atom motivates using these circuits as artificial atoms (see App. C).
The lumped element circuit model describes the dynamics of voltage and current in
electronic circuits based on the assumption that the internal structure of circuit ele-
ments can be neglected. For basic elements such as capacitors, Josephson junctions,
and inductors, used in the experiments performed in this thesis, this assumption is
legitimate, as their electric circuit structure size is on the order of micrometers and
below, which is small compared to the wavelengths of the microwaves propagating
in the circuits, which is on the order of centimeters.
An electrical circuit is represented by a network of elements connected via nodes
[see Fig. 2.7(a)]. We restrict our consideration to circuit elements with two terminals
only, such as capacitors and inductors.

We will use the nodal analysis method [27] and the Lagrange formalism to solve
the circuit. Here, solving means to obtain the equations of motion for each circuit
element. To do so, we have to:

1. Create a circuit diagram of elements with two terminals and identify nodes
and branches.

2. Introduce the descriptive variables of the system and assign a set of de-
scriptive variables for each node and circuit element.

3. Use Kirchhoff’s current law (KCL) and branch constitutive equations (BCE)
to obtain a system of equations describing the circuit (Nodal analysis [27]).

4. Derive a classical Hamiltonian by finding the system Lagrangian and apply-
ing Legendre transformations.

This procedure is reviewed in detail for a capacitively coupled LC-resonator and
the Cooper pair box in App. B.
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Circuit diagram

A circuit diagram or equivalent circuit is a graphical representation of the physical
circuit made of three constituents: Circuit elements, nodes and branches [Fig. 2.7(a)].
A circuit element is represented in the diagram by a specific circuit symbol [see

circuit
element

loop

branch

node

I V

ci
rc

ui
t

el
em

en
t

A

B

(a) (b)

Figure 2.7: (a) An electric circuit is represented by a network of elements. We
restrict our considerations to elements with two terminals. The connection between
the elements is drawn as line and constitutes a branch. Branches meet at nodes (red
dots). Nodes that can be reached via different paths form loops. (b) Single circuit
element, for which the voltage drop V and the current intensity I are investigated.
The reference directions for current and voltage are reflected by the orientation of
the associated arrows. Although both can be chosen at will, it is standard to have
opposite reference orientation for voltage and current.

Figs. 2.7(b), 2.9, and 2.10 for examples]. The connection between two circuit ele-
ments is drawn as a line.
A node is the intersection of the lines connecting different circuit elements.
A branch is defined as the connection and the element between two nodes.
As we are using a lumped element model, the lines (wires) between circuit elements
are not taken into account, despite the fact they define the interconnection between
the different elements and thus the topology of the circuit.

Descriptive variables

For each element of a circuit, the time evolution of the voltage-drop V (t) at the
element and the electric current I(t) flowing through it are of interest. Thus, I and
V are called the dynamic or descriptive variables. Figure 2.7(b) shows a generic
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circuit element connected to nodes A and B. Here, alternatively to voltage V and
current I, the magnetic flux induced in the branch Φ and the charge Qi as defined
in Ref. [28] will be used:

Φ(t) =

∫ t

−∞
V (t′)dt′ (2.24)

Q(t) =

∫ t

−∞
I(t′)dt′, (2.25)

Using these variables is advantageous when building a Lagrangian function.

Nodal analysis

The nodal analysis provides a systematic way to obtain the dynamics of the de-
scriptive variables for each element contained in the circuit. It utilizes Kirchhoff’s
Voltage Law [KVL, see Fig. 2.8(b)] and Kirchhoff’s Current Law [see Fig. 2.8(c)] to
obtain a set of equations relating the descriptive variables based on the topology of
a circuit.

Branch constitutive equations

The equations obtained from the nodal analysis alone do not provide sufficient infor-
mation to extract all descriptive variables. Thus, also branch constitutive equations
(BCE), reflecting the actual physics of a circuit element, are taken into account. The
BCE can also be a differential equation. To find the respective differential equa-
tions, we are able to build a set of N equations in N variables and obtain a solution
for the circuit. In the following, we give the descriptive equations (aka BCE) for
capacitors and inductors.
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a

Figure 2.8: (a) A circuit diagram is used to do a nodal analysis, which is a systematic
way to find a set of equations relating the descriptive variables of a circuit. (b) KCL
is used to relate currents flowing in or out of nodes. Node a: I1 + I2 + I3 = 0. (c)
KVL is used to relate the voltages drops across circuit elements within loops. Loop
C: V1 − V2 = 0.

Capacitor

A generic capacitor is modeled as a plate capacitor.
Voltage V and current I, respectively flux Φ and
charge Q, are related via the capacitance C:

I = C
d

dt
V ⇐⇒ Q̇ = CΦ̈ (2.26)

The energy ECap stored in this element is stored
in the electric field and given as

ECap(Φ) =
1

2
CV 2 =

C

2
Φ̇2 (2.27)

A

I

V

B

I +
+
+
+

-
-
-
-

Figure 2.9: Circuit dia-
gram symbol for a capaci-
tor with I and V depicted.
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Inductor

For a general inductor, voltage and current,
respectively flux and charge, are related via the
inductance L:

V = L
dI

dt
⇐⇒ Φ̇ = LQ̈ (2.28)

Here, the energy EInd is stored in the magnetic
field caused by the current flowing through the
inductor:

EInd =
1

2
LI2 =

Φ2

2L
. (2.29)

A

V

B

I

Figure 2.10: Circuit dia-
gram symbol for an induc-
tor with I and V depicted.

Equation (2.28) and Eq. (2.26) are the BCE reflecting the actual physics of the cor-
responding circuit elements. Together with the equations derived from the topology
of the circuit by KVL and KCL, a system of equations of sufficient order to solve
for all descriptive variables of the circuit can be stated [27].

System Hamiltonian

The above procedure leads to a system of N equations with N unknowns, thus can
be solved with linear algebra. From the electrical engineering point of view, we have
all the required input to fully describe the system under test. As we are interested
in the physics of the system, we will use the result to obtain a description of the
system in terms of a Hamiltonian by defining a Lagrangian function and deriving
the Hamiltonian from it. The Lagrangian function is defined as:

L = T − U, (2.30)

where T is the kinetic energy and U is the potential energy in the system. Now, the
dynamics of the system then is obtained by the Euler-Lagrange equation:

d

dt

∂L
∂Q̇

=
∂L
∂Q

. (2.31)
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Finally, the classical system Hamiltonian can be derived by use of the conjugate
momenta and the Lagrangian

H = QΦ̇− L. (2.32)

Lumped element LC resonator

Investigating a first more complex circuit, we look at a lumped element parallel
LC resonator, constituted of an inductance Lr and a capacitance Cr in parallel.
This circuit is shown in Fig. 2.11(a) and has a resonance frequency ω0 =

1√
LrCr

. Its
dynamics is obtained by the method explained earlier, a detailed discussion is given
in appendix B.1. By adding a drive to the circuit, such as a microwave source, its
physics is in full analogy to the driven, damped harmonic oscillator[29]. The LC
resonator has maximum transmission at ω0, while for other frequencies it suppresses
the transmission of signals. The full width at half maximum is denoted ∆ω and gives
the bandwidth of the resonator, if coupled to a transmission line. Near resonance,
the transmission spectrum can be approximated by a Lorentzian [see Fig. 2.11(b)].
In the absence of damping (∆ω → 0), the resonator supports only a single microwave
mode.

Cr

Lr

(a) (b)
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Δω

Figure 2.11: (a) Equivalent circuit for a LC-resonator consisting of an inductance
Lr and a capacitance Cr with a resonance frequency ω0 = 1√

LrCr
. In shaded grey

we see how this circuit can be integrated to another via coupling capacitors. Re-
sistive elements, introducing damping to the system, are not modeled. (b) Typical
Lorentzian shaped transmission magnitude spectrum for a damped resonator.

Next, we want to find the system Lagrangian LLC. We chose to attribute kinetic en-
ergy to capacitors, T = (C/2)Φ̇2 [see Eq. (2.27)], and potential energy to inductors,
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U = Φ2/(2Lr) [see Eq. (2.29)]. We get

LLC = T − U =

(
Cr

2
Φ̇2 − 1

2Lr
Φ2

)
. (2.33)

Using charge Q = ∂L/∂Φ̇ = CrΦ̇ and flux Φ as descriptive variables and applying
the Legendre transformation H = QΦ̇−L, the classical Hamiltonian is found to be

HLC =
Q2

2Cr
+

Φ2

2Lr
. (2.34)
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2.3 Classical lossless circuits
In this section, we describe basic microwave circuits used throughout this thesis,
which can be modeled without using quantum mechanics. This again can be con-
sidered textbook knowledge, but provides the model for basic building blocks used
in our experiments, thus is reviewed here. In the previous section, we have made the
assumption, that basic circuit elements in question are small compared to the wave-
length of the microwave signals used to probe them. The structures investigated in
this section are on the order of the probe signal wavelength. Basic circuit elements,
such as capacitors and inductors, are still modeled as point-like scatterers. Never-
theless, the finite geometric dimensions of connecting lines do not only define the
topology, but introduce parameters into the transfer matrix. This is possible, as we
are not interested in wave properties inside the structures, but only in the properties
of the probe signal after passing the circuit. This can be compared with detecting
the resulting wave after being scattered at a potential with some internal structure
(see Fig. 2.12). First, we introduce the transmission line and the transmission line

x

Po
te
nt
ia
l

Vi(z,t) Vf(z,t)

Figure 2.12: We model the effect of our circuit on a probe signal as a scatter-
ing potential acting on an incoming wave. Thus a parameterized transfer matrix
T (p⃗) gives the relation between the final waveform Vf(z, t) and the initial waveform
Vi(z, t). Thus Vf(z, t) = T (p⃗) · Vi(z, t). Here the internal structure of the potential
is modeled in the parameter vector p⃗

resonator. Then, we describe microwave circuits implementing a beam splitter and
an interferometer and show their transfer matrices.

2.3.1 Coplanar waveguide transmission line

A transmission line (TL) is a structure designed to convey microwave frequency
signals. There are several possible designs ranging from simple cables to complex
3D-structures. We focus on co-planar waveguides (CPWs) which are used in our
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experiments. They provide quasi one-dimensional wave-propagation in the sense
that the electrical field is confined to an area much smaller than the wavelength in
two of three dimensions [23]. In CPWs, we find transverse electromagnetic (TEM)
modes, where the electric field in TEM modes is oriented perpendicular to the
direction of propagation. Modeling a transmission line, we have to account for
its non-negligible size along the propagation direction, compared to the microwave
wavelength (see App. D for further details).

Transfer matrix

We define the transmission coefficient for a transmission line, t(k) = e−ikl, with real2

wave number k and length l. Here, k = (ω
√
ϵr)/c with angular frequency ω and

dielectric constant ϵr. This results in a phase difference for the microwave between
entry point and exit point in and out of the transmission line (see Fig. 2.13). Thus,
propagation of a wave in a transmission line adds a phase depending on the length
of the line and results in voltage (anti-)nodes at defined positions on the line.

l1

x0 x1
l

V

φ
φ0 φ1

Figure 2.13: Phase of an EM wave propagating down a transmission line: At Position
x1 we measure a phase-difference ∆φ01 = φ1 − φ0, compared to the phase φ0 at
position x0. Thus, T11 = e−ı∆φ01 is the transfer matrix element for a TL of length
l1.

We assume a constant characteristic impedance over the transmission line, thus
there is no reflection and the reflection coefficient r = 0. In this way, for the transfer
matrix TTL,1, we obtain:

TTL,1(ω, l) =

 t 0

0 1
t

 =

 e−ikl 0

0 eikl

 =

 e−i∆φ01 0

0 ei∆φ01

 , (2.35)

2Lossless circuits, damping is discussed later.
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where ∆φ = kl = 2π(l/λ) is the phase difference picked up by a microwave with
wavenumber k when propagating through a piece of transmission line of length l.

As in our final sample a segment of two transmission lines will be used, we define
the transfer matrix of two transmission lines of equal length

TTL(ω, l) =

 TTL,1(ω, l) 0

0 TTL,1(ω, l)

 =


t 0 0 0

0 1
t

0 0

0 0 t 0

0 0 0 1
t

 (2.36)

Transmission spectrum

For the transfer matrix of a transmission line described above, the transmission
magnitude simply is unity for all frequencies, as we did not incorporate any loss,
which is a good approximation for superconducting circuits. The transmission phase
decreases linear with frequency.

Lossy transmission line

For real experiments, also lossy transmission lines at room temperature need to be
modeled. Following Ref. [23], we define the complex propagation constant

γ = α + iβ. (2.37)

We model the resistive components causing loss in a TL by considering a non-zero
attenuation constant α. This causes a frequency dependent damping of the signal
propagating in a transmission line [30].
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2.3.2 Transmission line resonator

A transmission line resonator can be fabricated by enclosing a piece of transmis-
sion line between two coupling capacitors, such as gaps in the center conductor (see
Fig. 2.14). It is modeled in the same way as an LC-resonator, using an effective

g

g

l

w

d2d1

ground plane

ground plane

center conductor

Ceff

Leff

V

(b)(a)

Ck,2Ck,1

Figure 2.14: (a) Design of a half-wavelength transmission line resonator. g and w
define the characteristic impedance of the TL and together with l the characteristic
frequency of the resonator. d1,2 then define the coupling capacitors Ck,1 and Ck,2.
(b) Equivalent circuit for the design shown in (a).

inductance Leff and an effective capacitance Ceff, which are mainly determined by
the length of the piece of transmission line in between the coupling capacitances. In
many experiments, the coupling capacitances Ck,1, Ck,2 are implemented as a simple
gap in the center conductor or as finger capacitor [31, 32]. As in this model dielec-
tric losses are seen as resistive components, the theoretical description of the system
comes down to a damped oscillator, even though resistance is zero in superconduct-
ing circuits [33, 34]. Close to the resonance frequency ω0 and for high Q = ∆ω/ω0,
where ∆ω is the full width at half maximum (FWHM) of the resonator transmission
spectrum, the transmission spectrum of a TL-resonator can be approximated by a
Lorentz function [32].

Hamiltonian

The transmission line resonator is modeled as a damped resonator with effective
inductance Leff, and effective capacitance Ceff [32]. Thus, the classical Hamiltonian
is given as

H =
1

2Ceff
(Q− qg)

2 +
1

2Leff
Φ2. (2.38)



2.3 Classical lossless circuits 25

Here, Q and Φ are the conjugate variables for charge and flux, while qg is the gate
charge on the coupling capacitors. The resistive component is omitted for simplicity.
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2.3.3 Quadrature hybrid beam splitter

One main building block for the experiments conducted throughout this thesis is a
50/50 beam splitter. Ideally, at the design frequency ωBS, it splits an incident wave
such that half of the power goes to each of two output ports and none is reflected
back. Figure 2.15 shows, one particular circuit for this task, the quadrature hybrid

Reflection

Input

Straight

CrossIsolation

Port 4 Port 3

Port 2

Port 1

A1

A4=0

A2

A3

Figure 2.15: Circuit diagram of a quadrature hybrid beam splitter.

ring, a four-port device built from several T-junctions and lines of different charac-
teristic impedance. At the design frequency ωBS, an input signal of amplitude A1

(port 1 in Fig. 2.15) is split into two outputs with A2,3 = (1/
√
2)A1 of the original

amplitude, but with a phase shift of 90◦ (ports 2 and 3 in Fig. 2.15). We make
the convention to call port 2 straight and port 3 cross, due to geometry (Fig. 2.15).
The length and characteristic impedance of the lines between the T-junctions is
chosen such that the microwaves will constructively and destructively interfere at
the output ports. As the working principle of this device relies on interference, it is
frequency dependent. It has a design or working frequency ωBS, where it provides a
perfect 50-50 splitting of the input signal. Fig. 2.18 shows the transmission spectrum
of an ideal beam splitter.

The treatment of the Hamiltonian is omitted for beam splitter and interferometer,
as it is not relevant for data analysis.

Transfer matrix

The transfer matrix of a beam splitter can be obtained by even-odd mode analysis[25,
35] or the transfer matrix formalism. For the latter, we start with the transfer
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TH

Z2

Z0

h

Z0 Z1

Z1V1(z,t) V2(z,t)

V4(z,t) V3(z,t)

a

b

port 1

port 4 port 3

port 2

Vab(z,t)

Figure 2.16: The H-section is the main building block for a microwave beam splitter.
It consists of two T-junctions in nodes a and b.
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Figure 2.17: Two H-sections (blue, red) connected by two transmission lines (dark
green) form a beam splitter. A theoretical description is obtained by multiplication
of the according transfer matrices TH,1, TTL, and TH,2.

matrix TH(ω, h) for an H-section (see Fig. 2.16) with height h. TH(ω, h) is derived
from first principles by applying Kirchoffs rules for voltage and current. First, we
define phasors [see Eq. (2.1)] for the waves in all parts of the H-section (see Fig. 2.16)

Vj(z, t) = V +
j (z, t) + V −

j (z, t), for j = 1, 2, 3, 4, and (2.39)
Vab(z, t) = V +

ab(z, t) + V −
ab(z, t), (2.40)

where Vab is the phasor of the microwave between nodes a and b, with V +
ab(z, t)

propagating towards b. The voltage phasors are continuous at each node. Thus we
find a system of equations

V +
1 (z, t) + V −

1 (z, t) = V +
ab(z, t) + V −

ab(z, t), (2.41)
V +
1 (z, t) + V −

1 (z, t) = V +
2 (z, t) + V −

2 (z, t), (2.42)
V +
4 (z, t) + V −

4 (z, t) = V +
ab(z, t)e

−i2π(h/λ) + V −
ab(z, t)e

i2π(h/λ), (2.43)
V +
4 (z, t) + V −

4 (z, t) = V +
3 (z, t) + V −

3 (z, t). (2.44)

Here, λ is the wavelength of the mircowave signal. The spatial coordinate z is defined
differently for each port. Equation (2.41) and Eq. (2.42) account for voltage phasors
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in node a, while Eq. (2.43) and Eq. (2.44) account for node b. From the parameter
h, giving the height of the H-section, we deduct that the wave at node b has to
pick up an additional phase 2π(h/λ), compared to node a, and accounted for this
in Eq. (2.43).
Second, we investigate the current phasors, whose relation is determined by the
KCL. From Eq. (2.1) we know that voltage and current phasor are connected by the
impedance Z. All currents in a node need to sum up to zero, thus we find two more
equations

V +
1 (z, t)− V −

1 (z, t)

Z0

− V +
2 (z, t)− V −

2 (z, t)

Z1

−

V +
ab(z, t)− V −

ab(z, t)

Z2

= 0 (2.45)

V +
4 (z, t)− V −

4 (z, t)

Z0

− V +
3 (z, t)− V −

3 (z, t)

Z1

+

V +
ab(z, t)e

i2π(h/λ) − V −
ab(z, t)e

−i2π(h/λ)

Z2

= 0 (2.46)

Combining Eqs. (2.41-2.46), we find the frequency-dependent transfer matrix of a
general H-section with parameters h, Z0, Z1, Z2 to be

TH(ω, Z0, Z1, Z2, h) =


TH,11 TH,12 TH,13 TH,14

TH,21 TH,22 TH,33 TH,24

TH,31 TH,32 TH,43 TH,34

TH,41 TH,42 TH,43 TH,44

 , (2.47)

where

TH,11 =
(Z0+Z1)Z2−iZ0Z1 cot(2πs)

2Z0Z2
TH,12 =

(Z0−Z1)Z2−iZ0Z1 cot(2πs)
2Z0Z2

TH,13 =
iZ1 csc(2πs)

2Z2
TH,14 =

iZ1 csc(2πs)
2Z2

TH,21 =
(Z0−Z1)Z2+iZ0Z1 cot(2πs)

2Z0Z2
TH,22 =

(Z0+Z1)Z2+iZ0Z1 cot(2πs)
2Z0Z2

TH,23 = − iZ1 csc(2πs)
2Z2

TH,24 = − iZ1 csc(2πs)
2Z2

TH,31 =
iZ1 csc(2πs)

2Z2
TH,32 =

iZ1 csc(2πs)
2Z2

TH,33 =
(Z0+Z1)Z2−iZ0Z1 cot(2πs)

2Z0Z2
TH,34 =

(Z0−Z1)Z2−iZ0Z1 cot(2πs)
2Z0Z2

TH,41 = − iZ1 csc(2πs)
2Z2

TH,42 = − iZ1 csc(2πs)
2Z2

TH,43 =
(Z0−Z1)Z2+iZ0Z1 cot(2πs)

2Z0Z2
TH,44 =

(Z0+Z1)Z2+iZ0Z1 cot(2πs)
2Z0Z2
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with s = h/λ and csc(z) = 1/ sin(z). Here, λ is the wavelength of the propagating
wave. The transfer matrices for the H-sections are now used to construct the beam
splitter transfer matrix. As shown in Fig. 2.17, we set Z0 = Z̃0, Z1 = Z̃0/

√
2,

Z2 = Z̃0, and h = λBS/4 for the first H-section, with λBS being the wavelength
corresponding to the design frequency ωBS. For signals at the design frequency, we
find

TH,1 = TH(ωBS,
λBS

4
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 (2.48)

For the right H-section (see Fig. 2.17), we set Z0 = Z̃0/
√
2, Z1 = Z̃0, Z2 = Z̃0, and

h = λBS/4. We then find

TH,2 = TH(ωBS,
λBS

4
,
Z̃0√
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(2.49)

Next, we combine the transfer matrix of the first H-section TH,1(ω, h) with the matrix
TTL(ω, l) for a piece of transmission line of length l at every output port. Finally,
we add the second H-section matrix TH,2(ω, h) to construct a beam splitter transfer
matrix (see Fig. 2.17 to identify the circuits represented by TH,1(ω, h), TTL(ω, l), and
TH,2(ω, h)). We fix l to be a quarter of the wavelength corresponding to the design
frequency ω = ωBS of the beam splitter. In this way, we get a matrix for the beam
splitter, which depends only on ω:

TBS(ω, h, l) = TH,1(ω, h) · TTL(ω, l) · TH,2(ω, h) (2.50)
TBS(ω) = TH,1(ω, λ/4) · TTL(ω, λ/4) · TH,2(ω, λ/4) (2.51)
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At the design frequency ω = ωBS, we expect perfect amplitude splitting of the input
signal (A2,3 = A0/

√
2). The transfer matrix for ω = ωBS becomes

TBS(ω = ωBS) =


i√
2

0 − 1√
2

0

0 − i√
2

0 − 1√
2

− 1√
2

0 i√
2

0

0 − 1√
2

0 − i√
2

 . (2.52)

Transmission spectrum

The transmission matrix at the working frequency TBS(ω = ωBS) shown in Eg. (2.52)
is rather simple. For ω ̸= ωBS, the transmission matrix TBS(ω) depends on ω, thus
the transmission spectrum is more complex there. The full transmission spectrum
for typical device parameters can be seen in Fig. 2.18.
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Figure 2.18: Calculated isolation, straight, and cross transmission / reflection spec-
trum of an ideal beam splitter (see inset) with ωBS/(2π) = 5.75GHz [Method
equivalent to Ref. [25], using Eq. (2.51)]. (a) Magnitude (b) Phase
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2.3.4 Mach-Zehnder interferometer

The Mach-Zehnder interferometer was brought up in 1891 [36] in the optical domain.
While two half transparent mirrors are the main building block for the optical Mach-
Zehnder interferometer, a microwave analog can be realized by combining two beam
splitters (see Fig. 2.19). In full analogy to the optical case an object can be placed in

a) b)

Figure 2.19: The structure presented in (a) is a microwave equivalent of a Mach-
Zehnder interferometer in optics shown in (b). The scatterer (depcited as symbolic
atom in a box), whose phase shift is measured, in our composite system will be
replaced by a transmon qubit.

one arm of the interferometer and the phase shift resulting from the scattering of the
wave at the object can be measured [see Fig. 2.19(b)]. To obtain a model of such a
system, we again make use of the fact that a matrix product of transfer matrices can
be used to model cascaded devices. Fig. 2.20 shows the equivalent circuit diagram of
a Mach Zehnder type microwave interferometer composed of two microwave beam
splitters connected by transmission lines of length L. Thus the transfer matrix for
an interferometer can be constructed by combining the matrix for a beam splitter
TBS, for two connecting transmission lines TTL [see Eq. (2.36)], and another beam
splitter TBS. In the very same fashion as for Eq. (2.52), we derive:

TIF(ω, l) = TBS(ω) · TTL(ω, l) · TBS(ω) (2.53)
TIF(ω) = TBS(ω) · TTL(ω, λ/4) · TBS(ω) (2.54)

As the interferometer circuit is based on beam splitters with design frequency ωBS,
it is not surprising, that it got the same design or working frequency ωIF = ωBS. For
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Figure 2.20: Circuit diagram of microwave interferometer (Mach-Zehnder type) with
indication of transmission of an incident signal of frequency ωIF at port 1. Blue
shaded areas mark parts of the circuit modeled by according transfer matrices.

ω = ωIF, we obtain

TIF(ω = ωIF) =


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

 (2.55)

From Eq. (2.55), we see that the output signal of an interferometer has the same
amplitude as the input signal, but is phase shifted by 180◦.

Transmission spectrum

The transmission matrix at the working frequency TBS(ω = ω0) shown in Eg. (2.55)
is again simple. For ω ̸= ω0, the transmission matrix TIF(ω) depends on ω, thus the
transmission spectrum is expected to be more complex there, which can be seen in
Fig. 2.21.
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2.4 Superconducting quantum circuits

In this section, we present the quantum circuit theory for the transmission line and
for the transmon qubit. No quantum mechanical treatment of beam splitter and
interferometer is needed for the analysis done in the course of this thesis, classical
transfer matrices for lossless circuits are sufficient.

To quantum mechanically analyze a circuit, we follow the procedure described
in Sec. 2.2 and Refs [26, 37, 38] of constructing a Lagrangian, deriving the Hamilto-
nian of the system from it, and finally quantize it. For systems, where we already
derived Hamiltonians based on flux ϕ and charge Q, the quantization is done by a
transition from descriptive variables to operators and introducing a commutation
relation between them. The use of operators instead of variables is indicated in the
notation by putting hats on top the variables, thus

Q −→ Q̂, Φ −→ Φ̂. (2.56)

In general, operators do not necessarily commute. For Φ̂ and Q̂, we find:[
Q̂, Φ̂

]
= iℏ. (2.57)

where [x, y] is the commutation relation between x and y. Additionally, this leads
to the Heisenberg uncertainty principle. Applied to charge and flux it reads:

∆Q̂∆Φ̂ ≥ 1

2
ℏ, (2.58)

for the standard deviation of the observables ∆Q̂ =

√
⟨Q̂2⟩ − ⟨Q̂⟩2 and ∆Φ̂ =√

⟨Φ̂2⟩ − ⟨Φ̂⟩2.

2.4.1 LC-resonator

Based on the derivation of the classical Hamiltonian, for the lumped element LC-
resonator we find the quantum mechanical Hamiltonian to be:

ĤLC-res =
Q̂2

2Cr
+

Φ̂2

2Lr
. (2.59)
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Creation and annihilation operators

We now look at the formal analogy between the Hamiltonian of a LC-resonator
circuit and the motion of a particle in a harmonic potential. We conclude that
we can use creation and annihilation operators to climb and descend on a ladder
of energy levels in our circuit. Comparing the Hamiltonians of the two problems
reveals their formal analogy [38]:

LC- resonator circuit Particle in harmonic potential
Hamiltonian Ĥ = 1

2C
Q̂2 + 1

2L
Φ̂2 Ĥ = 1

2m
p̂2 + mω2

2
x̂2

Commutation
[
Φ̂, Q̂

]
= iℏ [x̂, p̂] = iℏ

Table 2.1: Formal analogy between LC-resonator and particle in a harmonic poten-
tial. We can see that the structure of the terms is similar.

From that we deduce that C takes the role of the particle mass m and L plays
the role of the harmonic potential:

C ↔ m, (2.60)
1

2L
↔ 1

2
mω2 (2.61)

Combining these mappings, we find the fundamental frequency of the LC-resonator
to be ω0 =

1√
LC

. We define:

Φ̂ = ΦZPF
(
â+ â†

)
, (2.62)

Q̂ = QZPF
1
i

(
â− â†

)
, (2.63)

with zero-point fluctuation amplitudes ΦZPF =
√

ℏZ
2

and QZPF =
√

ℏ
2Z

. Here Z =

L/C is the impedance and plays the role of the wavepacket size. We use this to
explicitly express the annihilation and creation operator:

â = Φ̂
2ΦZPF

+ i Q̂
2QZPF

, (2.64)

â† = Φ̂
2ΦZPF

− i Q̂
2QZPF

(2.65)

Thus, the standard formulation of the Hamiltonian of a particle in a harmonic
potential with use of creation and annihilation operators can be used:

Ĥ = ℏω(â†â+
1

2
) = ℏω(n̂+

1

2
), (2.66)
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We obtain a set of equidistant energy levels (see Fig. 2.22).
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Figure 2.22: An LC resonator is analogous to a particle in a harmonic potential.
Both are quantum harmonic oscillators with equidistant energy levels ∆E = ℏω0.

2.4.2 Transmission line

We model the transmission line as an infinite sum of LC resonators (see App. D for
details). After promoting the conjugate variables to operators, we get

ĤTL =
N∑
i=1

ℏωi(â
†
i âi +

1

2
). (2.67)
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2.4.3 Qubit

A quantum system with (effectively) only two energy levels is called a two level sys-
tem (TLS). A TLS with sufficient level of external control implements a quantum
bit (qubit) analog to classical computation, where the basic unit of information is
called a binary digit (bit). A qubit is the basic unit of information in quantum infor-
mation processing (QIP). The qubits quantum state is described as a superposition
of its two basis states, the ground state |g⟩ and the excited state |e⟩

|Ψ⟩ = α|g⟩+ β|e⟩ (2.68)

= cos
θ

2
|g⟩+ eiξ sin

θ

2
|e⟩, (2.69)

with complex amplitudes α = cos(θ/2), β = eiξ sin(θ/2), α, β ∈ C, ξ ∈ [0, 2π[, and θ ∈
[0, π]. Qubit states are graphically represented by a vector in the Bloch sphere (see
Fig. 2.23) starting at the origin. For pure states, the amplitudes are normalized as
α2 + β2 = 1 and the vector ends on the surface, for mixed states it ends inside the
sphere.

z

x

 ξfree

|g>

|e>

θ

ξ

r

y

Figure 2.23: The Bloch sphere is a graphical representation of the quantum state of
a qubit. The vector r = (r sin θ cos ξ, r sin θ sin ξ, r cos θ) represents the qubit state
|ψ >= cos θ

2
|g⟩+eiξ sin θ

2
|e⟩. For free evolution in time, the state vector r precesses

around the z-axis.

The state of a qubit can of course also be described by its density matrix, which
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for a pure state is given as:

ρ = |Ψ⟩⟨Ψ| =

 |α|2 αβ∗

α∗β |β|2

 , (2.70)

In this matrix, the diagonal elements give information about the population of the
ground and excited qubit state, while the off-diagonal elements carry information
about dephasing.

Pauli Operators

In full analogy to the ladder operators of an harmonic oscillator, we use Pauli ma-
trices and Pauli operators to describe level transitions of a qubit:

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , σ̂z =

 1 0

0 −1

 (2.71)

σ̂+ = |e⟩⟨g| =

 0 0

1 0

 , σ̂− = |g⟩⟨e| =

 0 1

0 0

 (2.72)

Free evolution

The free evolution in time of |Ψ⟩ is given by the time evolution operator exp(−iĤ/ℏ),
thus its components evolve at its characteristic exponential factor due to their
eigenenergy [39]. For pure superposition states this leads to precession of the state
vector about the quantization axis, thus the z-axis (see Fig. 2.23).

Driven evolution

A microwave pulse Vµw = A cos(ωpt + χ) applied to the circuit couples to σx, thus
it can be used to rotate the qubit state about x or y axes, respectively, depending
on the phase χ of the applied pulse [40, 41].

Decoherence

A pure qubit state can lose its information by either relaxing to the ground state
or losing the phase information. The combination of these two processes is called
decoherence. In a nutshell, the decoherence is mainly governed by environmental
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Figure 2.24: The phase χ of the applied microwave pulse determines the axis of the
rotation of the qubit state.

fluctuations at frequencies near the qubit transition frequency ω = ωqb and at fre-
quencies near zero ω → 0 (see Fig. 2.37).

The transition of the qubit from |e⟩ to |g⟩ is called longitudinal relaxation with
the according rate Γ1. It is called longitudinal in remembrance of NMR as it is
a change of the spin orientation along the z-orientation and the related state and
energy change, which is per definition alined with the strong external magnetic field
there. Noise at the TLS transition frequency ω ≈ ωqb is the main source of such
processes [see Fig. 2.37(b)]. It induces absorption or emission of a microwave photon.
The second process is transverse relaxation (pure dephasing) at the rate Γφ. It gives
the characteristic time scale on which the qubit will lose the information on the
phase between the basis states. It is known to be mainly caused by low frequency
noise (ω → 0) ≪ ωqb [see Fig. 2.37(b)], inducing an adiabatic shift of the qubit
transition frequency [42]. Together, Γ1 and Γφ define the decoherence rate3 Γ2:

Γ2 =
Γ1

2
+ Γφ. (2.73)

Summarizing, the time evolution of a qubit state is characterized by two rates, the
relaxation rate Γ1 and the pure dephasing rate Γφ. These rates also define the

3in the Bloch-Redfield approach
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characteristic timescales

T1 =
2π

Γ1

. . . relaxation time, (2.74)

T2 =
2π

Γ2

. . . decoherence time, and (2.75)

Tφ =
2π

Γφ

. . . pure dephasing time. (2.76)

Qubit realizations

Above, some general properties of qubits have been discussed and we have realized
that potentially every TLS is a qubit. TLS are omnipresent in physical systems, but,
in the following, we apply the term ”qubit” solely to TLS realized in a controlled
way by means of suitable superconducting circuits. Among others, there are several
realizations of qubits based on the strong non-linearity introduced by Josephson
junctions [19]. For the experiments conducted in this thesis, the transmon qubit,
which is a special implementation in superconducting circuits, is used. It is described
in the following section.

Transmon qubit circuit

The transmon qubit design describes a non-linear electric circuit. Its quantized
energy levels are not equidistant and thus can be addressed individually. We make
use of this by regarding the lowest two energy levels of the transmon qubit as an
artificial spin state. Starting from a Josephson junction placed in a dc SQUID
circuit, we explain why we can do this.

Josephson junction

A Josephson junction (JJ) is a trilayer of a superconductor, insulator, and supercon-
ductor, also known as SIS-structure [43] [see Fig. 2.25(a)]. We consider a lumped-
element JJ and include all internal properties to material parameters. In electrical
engineering, it is modeled as a capacitance in parallel to a perfect non-linear in-
ductance, represented as a cross for the Josephson inductance LJ in parallel with a
symbol representing the junction capacitance CJ [see Fig. 2.25(b)]. For this thesis
we use only the description of a zero dimensional, thus pointlike JJ.
For the superconducting areas of the JJ, macroscopic wavefunctions Ψ1,2 =

√
neiθ1,2

describe the superconducting condensate [see Fig. 2.25(a)], where |Ψ|2 is proportional
to the density of Cooper pairs and θ is the phase of the macroscopic wavefunction.
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Figure 2.25: (a) A Josephson junction is a sandwich structure of two supercon-
ductors separated by a thin insulator-layer. Macroscopic wavefunctions model the
superconducting areas of the junction. (b) Circuit diagram representation as induc-
tor and capacitor (top) or as cross inside a square (bottom).

Despite an exponential decay of Ψ in the insulating barrier, for a thin enough bar-
rier, the wavefunctions of the two superconductors overlap and allow for tunneling
of Cooper pairs [depicted in Fig. 2.25(a)]. This tunneling of Cooper pairs between
the two superconducting layers leads to the Josephson effect, predicted by Brian
Josephsons in 1962 [44]. In Fig. 2.25(a), the light gray dashed line indicates how Ψ1

would extend, to visualize the difference of the wave function phases ∆θ = θ2 − θ1.
We define the gauge invariant phase difference φSC of the macroscopic wave function
across the junction [see Fig. 2.25(a)].

φSC = ∆θ − 2π

Φ0

∫ 2

1

A, (2.77)

where A is the magnetic vector potential. The integration path of
∫ 2

1
is along the

direction of current, thus across the insulating area shown in blue in Fig. 2.25(a). In
the follwing, we will consider φSC as internal degree of freedom of the JJ (detailed
derivation in Ref. [43]).
Then the voltage and current across a JJ is described by the first and second Joseph-
son equation:

I = Ic sin (φSC) (2.78)
dφSC

dt
=

2πV

Φ0

. (2.79)

From Eq. (2.78) and Eq. (2.79), we see that a JJ has the same effect as a nonlinear
inductance. An inductance is characterized by V = Lİ. Using the chain rule on
the first Josephson equation, Eq. (2.78), and combining the result with the second,
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Eq. (2.79), we get:

V =
Φ0

2πIC cos(φSC)︸ ︷︷ ︸
LJ

İ = LJ İ . (2.80)

Here,
LJ =

Φ0

2πIC cos(φSC)
(2.81)

is the Josephson inductance, which depends on cosine of the gauge invariant phase
difference φSC. This cosine shaped dependency is at the heart of the nonlinearity
for this circuit element.
A JJ has two relevant energy scales, EC and EJ. The charging energy EC is the
energy needed to store one elementary charge in the capacitance of the junction:

EC =
e2

2CJ

, (2.82)

where e is the elementary charge and CJ is the capacitance of the JJ.
The Josephson energy EJ is the kinetic energy of the supercurrent flowing in the
Josphson inductance (LI2). EJ can also be interpreted as a kind of molecular binding
energy comparable to a dimer, resulting from the overlap of the two macroscopic
wavefunctions in superconducting electrodes of the JJ.

EJ = EJ0(1− cos (φSC)), (2.83)

where EJ0 = Φ0Ic/(2π) is the maximum Josephson energy determined by the critical
current Ic of the junction.

dc SQUID

A dc superconducting quantum interference device (SQUID) is a superconducting
loop interrupted by two JJ [see Fig. 2.26(a)], which is very sensitive to magnetic
flux. The loop has inductance LSQ and the two JJs have the same critical current
Ic. We assume that the flux caused by the loop inductance LSQ is small compared to
an applied external flux Φext, which is denoted by a negligible screening parameter
βL = 2IcLSQ/Φ0 ≪ 1 for the dc SQUID. In this situation, the Josephson energy
depends directly on the external magnetic frustration fext = Φext/Φ0 of the SQUID
loop.

The condition βL ≪ 1 implies that the SQUID can be considered a single JJ
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Figure 2.26: (a) An ideal dc SQUID consists of a superconducting ring interrupted
by identical two JJs (EJ,1 = EJ,2). (b) The coupling energy of a dc SQUID is
modulated by the external frustration fext = Φext/Φ0 with asymmetry parameters
d = 0 and d = 0.15.

with a Josephson energy which is tunable by the external flux threading the loop.
Its dependence on the external flux is given as:

EJ,SQ(fext) = 2
Φ0Ic
2π

| cos (πfext)|. (2.84)

We see, that the Josephson energy of a dc SQUID EJ,SQ is related to the cosine
of the external magnetic frustration fext. To be able to later on treat imperfect
SQUIDs as a single Josephson junction, we define is the asymmetry parameter

d =
EJ,1 − EJ,2

EJ,1 + EJ,2

, (2.85)

where EJ,1 and EJ,2 are the Josephson energies of the two Josephson junctions in the
SQUID. The parameter d also appears in the flux dependent EJ of an asymmetric
SQUID[40] (see Fig.2.26):

EJ,SQ(fext) = 2
Φ0Ic
2π

| cos (πfext)|
√
1 + d2 tan2 (πfext). (2.86)

Transmon qubit

The transmission line shunted plasma oscillation (transmon) qubit has historically
developed from the charge qubit design or Cooper pair box (CPB) [45]. It con-
sists of a dc SQUID circuit shunted by additional capacitances Csh/2 [45, 46] [see
Fig. 2.27(a)]. Here, plasma oscillation refers to the oscillation of the superconduct-
ing phase particle in the potential of the SQUID. Due to the non-linear LSQ of the
SQUID, this potential is not shaped like a perfect parabola, causing a distinguish-
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able energy levels. The shunt capacitances are added to the capacitance CJ of the
JJ, resulting in an accumulated capacitance4

CΣ = CJ + Csh. (2.87)

Effectively, this lowers the capacitive energy of the JJ, as due to Eq. (2.82), EC ∝
1

2CΣ
. The large effective capacity and thus low capacitive energy suppresses the

sensitivity of the transmon to charge noise, but at the other hand causes a smaller
difference between the energy levels.
A ratio of EJ/EC ≈ 50 between Josephson and charging energy has been found to be
an optimal. The Hamiltonian is constructed from capacitive and Josephson energy
and reads (see App. B.2)

ĤTM =
1

2CΣ

(
Q̂a −Qg

)2
− 2π

Φ0

EJ,SQ(fext) cos(φ̂SC), (2.88)

where EJ,SQ is the energy of the dc SQUID given by Eq. (2.84), CΣ = CJ + Csh is
the total capacitance, Qg is the externally induced charge, Q̂a is the operator of
charge on the SC island, and φ̂SC is the phase operator. Here and in the following,
we treat the dc SQUID in the transmon qubit as a single Josephson junction with
flux-tunable EJ,0 = EJ,SQ(fext) and a single phase degree of freedom, φSC. This
assumption is well justified because βL ≪ 1 holds for our devices.
By applying a taylor expansion to the cosine part of the Hamiltonian in Eq. (2.88)
and neglecting terms of order higher than four, the qubit Hamiltonian can be ap-
proximated by the Hamiltonian of a nonlinear (Duffing) oscillator [47]:

ĤTM ≈ 1

2
CΣ(

Φ0

2π
)2 ˙̂φ2

SC +
1

2
EJ,SQ(fext)φ̂

2
SC − EJ,SQ(fext)

φ̂4
SC
24

+O(φ̂6
SC). (2.89)

In the transmon regime EJ/EC > 20, we can deduce simple analytic expressions for
the lowest transition energies. Specifically, we obtain

E01 = ℏωqb, (2.90)
E12 = ℏωqb − EC, (2.91)

where ωqb = ωp =
√
8EJEC/ℏ is the plasma frequency extracted from the harmonic

part of the potential [48] [see Fig. 2.27(b)]. The perturbation to the harmonic case in
Eq. (2.89) gives rise to the qubit anharmonicity ℏα = E12−E01 ≈ −EC . The energy

4For a transmon connected to a drive, also a coupling capacitor Cg is taken into account.
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Figure 2.27: (a) Equivalent circuit of a transmon qubit. The branches marked in
red are additional in comparison to a dc SQUID. (b) Potential and energy levels
of a transmon. The blue line shows the transmon potential, the dashed red line a
harmonic potential.

levels in the transmon potential significantly differ from the equidistant harmonic
levels and thus can be addressed individually. By restricting our considerations to
the first two energy levels E0 and E1, we can regard this circuit an artificial two
level system (TLS). We regard the level E0 as the ground state |g⟩ and the level
E1 as the excited state |e⟩. For a derivation of the Hamiltonian of a CPB in the
laboratory frame see Appendix B. Thus, we find

ĤCPB/TM = −1

2
(Ech(ng)σ̂z + EJσ̂x) , (2.92)

with the Josephson energy EJ = EJ(fext) depending on the external flux frustration
fext = Φext/Φ0 and the charging energy Ech(ng) = EQ(1− 2ng), gate charge ng and
Pauli σ-operators.

Qubit-resonator coupling

In Sec. 2.4.3, we have seen that the transmon qubit has evolved from the charge
qubit design. In 2004, it was shown that a Cooper pair box (CPB, the simplest
charge qubit) can be strongly coupled to a microwave field on the single photon
level inside a transmission line resonator [31]. The qubit acts in analogy to a natural
atom in the radiation field, thus it is sometimes called and artificial atom. This
situation can also be achieved with a transmon qubit[49, 50]. The equivalent circuit
is shown in Fig. 2.28. The corresponding Hamiltonian is:

H = Hres +Hqb +Hint, (2.93)
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fextCsh / 2 Csh / 2

Cg

Cg

Cr Lr

Figure 2.28: Transmon qubit coupled to a single resonator. Both entities are modeled
with their equivalent circuits.

where Hres is the bare resonator Hamiltonian, Hqb is the qubit Hamiltonian and Hint

gives the interaction terms describing how excitations are exchanged between the
resonator and the qubit. From Eq. (2.59), Eq. (2.66), and Eq. (2.92) we already know
the Hamiltonians for the LC-resonator Hres and for a qubit Hqb. The interaction
termHint describes the interaction between the resonator, or more precise the electric
field Ê in it (a single mode field) and the qubit. Light-matter interaction is treated
within the multipole expansion for electromagnetic fields [51]. Following the picture
of an artificial atom, the qubit couples to the electric field via the electric dipole
moment. Thus, Ĥint = −d̂ ·Ê is the negative product of the operators for the atomic
dipole moment of the qubit d⃗ and the electric field E⃗, where d̂ ∝ (σ̂+ + σ̂−) [40] and
Ê ∝

(
â† + â

)
[38]. Here, σ̂+, σ̂− are the creation and annihilation operators of the

qubit and â†, â are the ladder operators of the resonator. Thus, we get:

Ĥres =
Q̂2

2Cr
+

Φ̂2

2Lr
= ℏωres(â

†â+
1

2
),

Ĥqb = ℏωqbσ̂z,

Ĥint = hg
(
σ̂+ + σ̂−) (â† + â

)
,

where the coupling constant g absorbs all proportionality constants and is a measure
of how strong the light field couples to the qubit, or vice versa. Using the rotating
wave approximation, we arrive at the Jaynes-Cummings model [52, 53], with

ĤJC = ℏωres(â
†â+

1

2
)︸ ︷︷ ︸

Hres

+ ℏωqbσ̂z︸ ︷︷ ︸
Hqb

+hg
(
σ̂+â+ σ̂−â†

)︸ ︷︷ ︸
Hint

(2.94)
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The Jaynes-Cummings Hamiltonian ĤJC has two interesting regimes, the disper-
sive regime, where |g| < |ωres −ωqb|, and the resonant regime, where |ωres −ωqb| = 0

(see Fig. 2.29). In the dispersive regime, energy levels of the combined qubit-
resonator system are blue or red shifted due to ac Stark and Lamb shift [54]. In
the resonant regime, states, with an energy degeneracy of ±ℏg

√
n+ 1 are formed,

where n is the number of excitations in the resonator. In the transmission spectrum
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|g> |e> |g> |e>

|1>

|2>

|n>
|n,+>
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(e.g. ωres<ωqb)

ωres

ωres

ωres

ωqb
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Figure 2.29: The energy levels of the JC Hamiltonian. (a) In the resonant regime,
energy levels of degenerate doublets split due to the coupling g. (b) In the dispersive
regime, where qubit and resonator are strongly detuned, the coupling gives rise to
dressed states with ac-Stark- and Lamb-shifted energy levels.

of a qubit-resonator system with tunable qubit frequency ωqb this leads to avoided
crossings, meaning that the spectral lines of the combined system repel each other
where they would intersect for the noninteracting systems (see Fig. 2.30).

The resonant frequency ωQR of a qubit-resonator system can be used to extract
the parameters of the underlying resonator and transmon qubit by fitting [49] the
spectral data.

ωQR = ωres ±
1

2

(
∆(fext) +

√
4g2 +∆(fext)2

)
, (2.95)

with
∆(fext) = ωqb(fext)− ωres
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and

ωqb(fext) = ωqb, max

√
|cos(fext)|

√
1 + d2 tan(fext)2 − Eoffset/ℏ. (2.96)

Here, ωQR is the frequency of the coupled system and d is the asymmetry parameter.
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Figure 2.30: The transmission spectrum of the qubit-resonator system. Coupled
system (black), noninteracting resonator (red), noninteracting qubit (blue).
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Qubit- transmission line coupling

Similarly to the way a transmon qubit couples to the single mode of a resonator, it
can couple to the continuum of modes of an EM field. To model this situation, we
replace one of the infinitely many LC-resonators in the model of a transmission line
by a transmon qubit (see Fig. 2.31). Thus, we obtain a Hamiltonian constituted of

Qi-1  Фi-1 QJ  ФJ Qi+1  Фi+1

Δx

C0

L0 L0

C0

L0

QJ

 ФJ

Cc

CJ Csh

Figure 2.31: In the equivalent circuit of a transmission line, one of infinitely many
LC-resonators is replaced by a transmon qubit.

three parts:

H =
∑
k

ℏωk(â
†
kâk +

1

2
)︸ ︷︷ ︸

HTL

+
ℏωqb

2
σ̂z︸ ︷︷ ︸

Hqb

+
∑
k

gk

(
σ̂+âk + σ̂−â†k

)
︸ ︷︷ ︸

Hint

(2.97)

where HTL is the transmission line Hamiltonian [see Eq. (2.67)], Hqb is the qubit
Hamiltonian [see Eq. (2.88)], and Hint is the interaction Hamiltonian. Its structure
is similar to one of Eq. (2.94), but this time the coupling of the qubit gk ∝

√
ωk [38]

to each modes of transmission line is considered.
This is a special case of the spin-Boson Hamiltonian. The spin-Boson Hamiltonian
describes a qubit coupled to a bosonic bath and has many applications in solid-state
physics and solid-state quantum information [16]. We will draw more attention on
this in Sec. 2.5.1.

Transfer matrix

To find the transfer matrix of a qubit in a transmission line, we analyze the reflec-
tion and transmission coefficients of a qubit in a transmission line. We start by
an impedance analysis of a transmission line, whose characteristic impedance Zeff

value at a certain position is different to the rest of the line. The deviant impedance
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is caused by capacitively coupling the qubit there. In this approach, we approxi-
mate the transmon qubit with an LC resonator (see Fig. 2.32). For low power, this
approximation is valid, as the transmon potential still is very close to a harmonic
potential for low excitation numbers [see Fig. 2.27(b)].

Cr

Cc

Lr

Z0 Z0

Z1

Zeff

Figure 2.32: A transmission line of characteristic impedance Z0 (white), with a small
piece having a different characteristic impedance Zeff (dark blue), caused by an LC
resonator circuit and a coupling capacitor (light blue).

At the position where the chracterastic impedances changes from Z0 to Zeff, a wave
propagating in the transmission line is partly reflected. The ratio of the incident
and reflected wave phasor is given by the reflection coefficient (see Sec. 2.1)

r =
Zeff − Z0

Zeff + Z0

, (2.98)

where Z0 =
√
L0/C0 is the characteristic impedance of the transmission line, Zeff is

the impedance of the piece of transmission line which is coupled to the LC resonator.
As in the actual sample, the transmon qubit is capacitively coupled to the line, a
coupling capacitor is used to model the coupling of the LC resonator. Thus Z1 is
the impedance of the coupling capacitor Cc in series with the LC resonator and
can be obtain by simply adding the individual impedances Z1 = ZC + ZLC, where
ZC = 1/(iωCc) is the impedance of the coupling capacitor. ZLC is obtained as the
impedance of a capacitor and an inductor in parallel. It is given by the reciprocal
sum of the reciprocals of the individual components

ZLC =

(
1

ZL
+

1

ZC

)−1

. (2.99)
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With the impedance ZL = iωLR for the inductor in the LC resonator, we obtain an
effective impedance for the LC resonator and the coupling capacitor as

Z1 =
1

iωCc

+

(
1

iωLR
+ iωCR

)−1

. (2.100)

By applying the rule for the impedance of parallel components another time, the
effective impedance of the line at the location of the LC resonator is obtained:

Zeff =
Z0Z1

Z0 + Z1

(2.101)

Inserting Eq. (2.101) into Eq. (2.98), we obtain an exact expression for reflection
coefficient

r = − i (−1 + ω2 (Cc + CR)LR)Z0

i− iω2 (Cc + CR)LR + ωCc (−1 + ω2CRLR)Z0

, (2.102)

Following Ref. [40], the above formula can be rewritten as

r =
1− i∆ω/Γcl

1 + ∆ω2/Γ2
cl
, (2.103)

where Γcl = (ω2
0C

2
cZ0)/ (4(Cc + CR)), ∆ω = ωp − ω0 with probe frequency ωp and

resonance frequency ω0 of the LC resonator [40]. This model is only valid for small
powers below the one photon limit, where the harmonic potential is a good approx-
imation for the qubit potential. A more detailed quantum mechanical analysis is
given in Refs. [9, 40, 55]. They take into account relaxation rate Γ1, decoherence
rate Γ2 and drive power Ω into the equation and find

r = r0
1− i (∆ωp/Γ2)

1 + (∆ωp/Γ2)2 + Ω2
p/(Γ1Γ2)

, (2.104)

t = 1− r, (2.105)

where ∆ωp = (ωp − ωqb), in full analogy to ∆ω, is the difference between probe
frequency ωp and qubit transition frequency ωqb. In the limit of zero drive power,
Ω = 0, and r0 = 1, we obtain the same result for the classical LC oscillator and
the exact quantum mechanical equations within the analogy Γcl ⇔ Γ2.We find the
transfer matrix to be:

TQB =

 t− r2

t
r
t

− r
t

1
t

 , (2.106)

with r defined in Eq. (2.103).
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Transmission spectrum

We use TQB [see Eq. (2.106)] to plot magnitude and phase of a transmon qubit
in a transmission line at low drive powers. At the qubit working frequency, we
expect suppressed transmission, while for reflection an increased magnitude is to
be observed. This can be explained by absorption and re-emission of a photon by
the qubit, which is know as resonance fluorescence [9]. Constructive and destructive
interference leads to the observed increased and suppressed transmission magnitude.
Taking into account that the decoherence rate Γ2 is composed of relaxation rate
Γ1 and pure dephasing rate Γφ, it becomes apparent that one can obtain these
important rates by fitting to measurement data. Figure 2.33 shows magnitude and
phase of a qubit in a TL plotted from Eq. (2.104) and Eq. (2.105) for different values
of Γ1,Γφ, respectively.
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Figure 2.33: The transmission and reflection spectrum of an qubit in a transmission
line in the low power limit. (a) Transmission magnitude (b) Phase.
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2.4.4 Qubit in a microwave interferometer

In the previous sections, we have developed transmission matrices for interferometer
and a transmon qubit in a transmission line. The investigations in this thesis focus on
a transmon qubit in an microwave interferometer. Thus here, we derive the transfer
matrix for a transmon qubit in one arm of an interferometer [see Fig. 2.34(a)]. To

(a) (b)

TBS

a4,in

a4,out

a1,out

a1,in

a3,out

a3,in

a2,in

a2,out

TTL TTL TBS

TQB

I

Figure 2.34: (a) A transmon qubit placed in one arm of a microwave interferometer.
(b) Transfer matrix to model circuit in (a).

deduce the transfer matrix for our composite sample we combine the individual
transfer matrices of beam splitter TBS [Eq. (2.52)], transmission line TTL [Eq. (2.35)]
and transmon qubit in a transmission line TQB [Eq. (2.106)]. The scheme in Fig. 2.34
reflects that this circuit is composed of two beam splitters, connected by a bare
transmission line in one arm, and by a transmission line with a transmon qubit
placed in it in the other arm. The transfer matrices can be combined by simply
matrix multiplication. Solely the inner parts with a negligible small piece of bare
transmission line in one arm and a transmission line with a qubit inside in the other
arm of the interferometer is not completely straightforward. Nevertheless it is easy
to nest the 2× 2 matrix TQB, accounting for the qubit, and a 2× 2 identity matrix
I, accounting for the infinitesimal small piece of bare transmission line, in a 4 × 4

matrix and multiply it on the two beam splitter and transmission line matrices TBS

and TTL. Thus we find

T = TBSTTL


TQB, 11 TQB, 12 0 0

TQB, 21 TQB, 22 0 0

0 0 1 0

0 0 0 1

 TTLTBS, (2.107)

where TBS is the tansfer matrix of a beam splitter, TTL is the transfer matrix of two
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parallel transmission lines, and TQB, ij are the components of a transmission line and
a qubit in transmission line transfer matrix, respectively. Figure 2.35 shows the a
schematic of the sample design we use in most of our experiments and indicates the
components corresponding to the matrices TBS, TTL, and TQB.

Reflection

Input

Isolation

Port 4

Port 1

Straight

Cross

Port 3

Port 2

L

Z0 Z0 Z0

Z0 Z0Z0

Z0Z0

Z0

Z0

Z0

Z0Z0

Z0

QB

TBS TBSTTL I TTL

TQB

Figure 2.35: Circuit diagram of a transmon qubit placed in one arm of a microwave
interferometer. The transfer matrices of the individual components are marked in
blue.

Transmission spectrum

The transmission spectrum for the composite design is mostly the same as for an
interferometer, except for the region near the qubit frequency. As discussed in
Sec. 2.4.3, the qubit transition frequency can be tuned by applying an external field.
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2.5 Open quantum systems

In an open quantum system, a subsystem S of interest is coupled to another system
B often called ”bath” or ”environment”. The number of degrees of freedom of S is
sufficiently small to allow for a rigorous treatment on the microscopic level. Quite
on the contrary, the bath has so many degrees of freedom that its effect on S can
only be evaluated by certain macroscopic parameters [see Fig. 2.36(a)]. In many
scenarios, it is sufficient to evaluate the impact of these macroscopic parameters on
the evolution of the subsystem S.

In open systems, the standard situation is that the action of the bath into the
open system dynamics is determined by a single function, called the spectral function
[Eq. (2.109)]. In more detail, the bath will perturb S with a noise whose statistical
or spectral properties will be fully determined by such a function. We use this to
analyze the noise properties of the interferometer (corresponding to the bath B) in
our experiments using the transmon qubit (corresponding to the system S).

(S+B)Environment / Bath B

(S+B)Environment / Bath B

System S

(a)

(b)

System S

open quantum system

spin boson model

Figure 2.36: (a) Open quantum systems consider a small system S coupled to a
system B with many degrees of freedom, called bath or environment. (b) The spin
boson model (SBM) describes an open quantum system, where the system S is a
single spin and all modes of the bath B are bosonic.
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2.5.1 Spin-boson model

The spin-Boson model (SBM) is one of the most paradigmatic models to describe
an open quantum system. Here, S is a single spin and the bath is constituted of
bosonic modes. The complete Hamiltonian of the open system in this case is of the
form:

HSBM =
∑
k

ℏωk(â
†
kâk +

1

2
)︸ ︷︷ ︸

HBath

+
ϵ

2
σ̂z + ℏ

∆0

2
σ̂x︸ ︷︷ ︸

HSpin

+
∑
k

gk σ̂z

(
âk + â†k

)
︸ ︷︷ ︸

HInt

(2.108)

where HSpin is the Hamiltonian of the spin system, HBath is the bosonic bath Hamil-
tonian and HInt describes the interaction between spin system and bath. HSpin is
equivalent to the Hamiltonian of a spin 1/2-particle in a magnetic field, which can
be diagonalized with eigenvalues ±(ϵ2 + (ℏ∆0)

2)(1/2). [16]
The effects of the environment onto the spin dynamics (for instance its characteristic
time scales) are solely encoded in the spectral function J [16, 38], where

J(ω) = 2π
∑
k

|gk|2

ℏ2
δ (ω − ωk). (2.109)

The spectral function is a measure for the ability of the environment to emit or
absorb energy of a certain frequency and thus a measure for the coupling strength
at those frequencies. The properties of the SBM strongly depend on the choice of
the spectral function. For many systems of interest, it takes the form

J(ω) = παωs, (2.110)

where three further subregimes are distinguished by the exponent s of ω. For s = 1

the system is in the ohmic regime of the SBM, whereas s < 1 is called subohmic
and s > 1 is called superohmic [16, 38].

Comparing Eq. (2.108) to Eq. (2.97), we see that the Hamiltonian for a qubit in
a transmission line is a special case of the general SBM Hamiltonian with gk(ωk) ∝√

(ωk). This dependence results in an Ohmic spectral density (s = 1) and α =

d̃2/(ℏcϵ0), with the Planck constant ℏ, the speed of light c, the electrical vacuum
permittivity ϵ0, and the qubit dipole moment divided by the cross-sectional area of
the CPW d̃ [56].
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2.5.2 Noise and decoherence

In quantum information processing and quantum computation, the decoherence time
is an important figure of merit. It gives the typical time a quantum mechanical state
retains its information and thus can be used for experiments or computations. In this
sense, it also tells us about the characteristic timescale on which quantum coherence
is lost due to interaction with the environment. This also is at the heart of the third
DiVincenzo criterion for quantum computing [57].
Here, we consider the particular scenario of an open quantum system, where the
subsystem S is a single qubit. For this system we investigate decoherence properties,
based on the assumption that relaxation is caused by noise at the qubit transition
frequency, while pure dephasing is caused by low frequency noise (see Fig. 2.37).

ГΦ

Г1S(ωqb)

S(0)

relaxation

dephasing

|e>

|g>

re
la

xa
tio

n
dephasing

S(ω 0)

S(ωqb)

(b)(a)

Figure 2.37: The bath drives two types of decoherence processes in the qubit.
Relaxation is governed by interactions at the transition frequency of the qubit, thus
S(ω = ωqb) is of special interest in this case. Dephasing is mainly caused by
interactions at low frequencies, S(ω → 0), which are not driving state transitions.

Relaxation

For dissipation of energy from the system S, a qubit, we will model the bath B to be
bosonic and thus use the SBM. State transitions of a qubit happen in a statistical
mixture of excitation (transition from |g⟩ to |e⟩) at a rate Γ1,↑ and relaxation (decay
from |e⟩ to |g⟩) at a rate Γ1,↓.

Γ1 = Γ1,↑ + Γ1,↓ (2.111)

Fermi’s golden rule states that the rates are Γ1,↑ = N(ωqb)J(ωqb) and Γ1,↓ =

(1 + N(ωqb))J(ωqb) , where N(ωqb) = 1/(e−ℏωqb/kbT − 1) is the Bose-Einstein dis-
tribution, which determines the number of excitations in the field exciting at the
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qubit frequency. Experiments with superconducting qubits like in this thesis are
conducted at millikelvin temperatures, where kbT ≪ ℏωqb, and therefore we can
consider that Γ1,↑ ≈ 0, while Γ1,↓ ≈ J(ωqb). Using Eq. (2.111), we find

Γ1 = Γ1,↓ = J(ωqb) (2.112)

This equation relates the spectral function at the qubit frequency to the measurable
parameter Γ1. In other words, the qubit probes the noise of the environment. We
note that Eq. 2.112 is only valid for baths satisfying the Markovian approximation
(e.g., Ohmic baths), where excitations emitted to the environment are not allowed
to excite the qubit again.

Dephasing

Dephasing is typically determined by the low-frequency properties of the bath. In
practice, these are dominated by non-Markovian processes such as 1/f -noise. We
therefore consider the particular scenario of an open quantum system, where the
subsystem S is a single qubit, while the bath B is characterized by an arbitrary
spectral density. When interacting with a bath B, the qubit Hamiltonian Ĥ0 is
modified by the interaction with the bath. Thus, from the point of view of the qubit,
interactions with the bath can be considered as noise. The modification of the qubit
Hamiltonian caused by the bath is described with second order perturbation theory
as

Ĥ(λ+ δλ) = −1

2

[
H⃗0(λ0) +

∂H⃗0

∂λ
∂λ+

∂2H⃗0

∂λ2
∂λ

]
· ⃗̂σ. (2.113)

Here, the dimensionless parameter λ describes the physical quantity mediating the
interaction between the qubit and the bath, e.g. the normalized external magnetic
flux Φext/Φ0. Thus, λ is called the qubit-bath coupling parameter. ⃗̂σ is a vector of
Pauli operators. The parameter λ = λ0+ δλ can chosen to be any physical quantity
influencing the qubit transition frequency, e.g. δλ = δEJ, δΦ, δEC, . . . [41, 42, 58].
The perturbed Hamiltonian can be written as

Ĥ = −1

2
ℏ
[
ωqbσ̂z +

(
Dλ,zδλ+Dλ2,z

δλ2

2
+ · · ·

)
σ̂z +

(
Dλ,⊥δλ+ · · ·

)
σ̂⊥

]
,

(2.114)
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with

Dλ,z ≡
∂ωqb

∂λ
, (2.115)

Dλ2,z ≡
∂2ωqb

∂λ2
−
D2

λ,⊥

ωqb
, and (2.116)

Dλ,⊥ ≡ ∂ω⊥

∂λ
. (2.117)

The interactions between the bath B and the system S (qubit) results in a time
evolution of the qubit density matrix ρ [Eq. (2.70)], which can be written as [41]

ρ(t) =

 1 + (|α|2 − 1)e−Γ1t αβ∗ei∆ωte−
Γ1
2
te−χ(t)

α∗βe−i∆ωte−
Γ1
2
te−χ(t) (|β|2)e−Γ1t

 , (2.118)

where ∆ω = ω − ωqb, e−χ(t) is the so-called decay function5 and χ(t) is called
coherence function. For coupling to environments with an arbitrary spectrum, we
expect a non-trivial decay and coherence function [42] in Eq. (2.118)

χ(t) =
t2

2
(Dλ,z)

2

∫ ∞

−∞
Sλ(ω) sinc(

ωt

2
)2 dω. (2.119)

Here, Sλ(ω) is the noise power spectral density, which describes the spectral behavior
of environment or bath B the open system S couples to. Thus, it describes the noise
seen by the system S. It is used to differentiate different types of noise. For example,
white noise has a flat spectral distribution Sλ(ω) = const., while 1/f -noise has a
spectral distribution as implied by the name Sλ(ω) ∝ 1/ω (see Fig. 2.38). The noise
spectral density is given by the Fourier transform of the autocorrelation function of
λ:

Sλ(ω) =

∫ ∞

−∞
dτ⟨λ(τ)λ(0)⟩e−iωτ , (2.120)

where cλ = ⟨λ(τ)λ(0)⟩ is the autocorrelation function of the fluctuating parameter.
Here, we consider the bath B as the only source of noise.

5fz in [42]
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For white noise, characterized by Sλ = const., in Eq. (2.120) we find

χ(t) =
t2

2
(Dλ,z)

2

∫ ∞

−∞
Sλ(ω) sinc(

ωt

2
)2 dω (2.121)

=
t2

2
(Dλ,z)

2π

t
= t

π

2
(Dλ,z)

2. (2.122)

From this expression, we obtain the decay function e−χ(t) and a characteristic rate
Γφ

e−χ(t) = e−(π
2
(Dλ,z)

2)t = e−Γφt (2.123)
⇒ Γφ = Γφ(ω) ∝ (Dλ,z)

2. (2.124)

For 1/f noise, where Sλ = σ/ω (with noise strength σ), the same analysis according
to Eq. (2.120) leads to [42]

e−χ(t) = e−(
√

σ ln (2)Dλ,zt)
2t = e−(Γφ(ω)t)2 (2.125)

⇒ Γφ(ω) ∝ Dλ,z, (2.126)

Next, we assume that pure dephasing is caused by flux noise, thus

Dλ,z = DΦ,z ∝
∂ωqb

∂Φ
, (2.127)

where Φ is the magnetic flux threading the SQUID loop of the transmon qubit.
Looking at Eq. (2.124) and Eq. (2.126), we can use the functional dependence of the
pure dephasing rate Γφ = Γφ(ωqb) to distinguish between white- and 1/f -noise in
the system [41, 42, 58].

Γφ(ωqb)

∝ (Dλ,z)
2 ≡ (

∂ωqb
∂Φ

)2 white noise

∝ Dλ,z ≡ ∂ωqb
∂Φ

1/f noise
(2.128)

Figure 2.38(a) shows a plot of Γφ(ωqb) for white and 1/f -noise, respectively. In other
words, the functional dependence of Γφ(ωqb) can be used to conclude on the spectral
distribution Sλ(ω) of the noise in the system.

2.5.3 Ornstein-Uhlenbeck model

For the low frequency regime of our experiments, we expect to find a mixture of
1/f and white noise. Two level fluctuators are known to dominate this frequency
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Figure 2.38: (a) Functional dependence of Γφ(ωqb) if caused by white-, compared to
1/f−noise. (b) The spectral distribution characterizes noise sources. The Ornstein-
Uhlenbeck model smoothly interpolates between its limiting cases 1/f , and white
noise by introducing a parameter κ (see Sec. 2.5.3 for details).

regime and a white noise background is expected from the fact that experiments
are conducted at millikelvin temperatures, which still produces nonnegligible white
noise for frequencies on the order of the inverse experimental timescales.

To characterize the properties of these noise sources, we model the noise in the
system via an Ornstein-Uhlenbeck process [59, 60], which allows us to smoothly in-
terpolate between the limits of fast (white) and slow (low-frequency dominated, col-
ored) noise. We note that the latter limit is similar, but does not exactly correspond
to 1/f noise. To first order, the transmon qubit transition frequency fluctuates as
ωqb(t) = ωqb + δωqb(t), where the deviations δωqb(t) are related to random flux
fluctuations via the first derivative as,

δωqb(t) =
∂ωqb

∂Φ
δΦ(t). (2.129)

In addition, our noise model relies on a specific autocorrelation function for random
flux fluctuations,

⟨δΦ(0)δΦ(τ)⟩ = σ2e−κ|τ |. (2.130)

Here, σ describes the flux noise amplitude and κ is a rate describing the temporal
range of the correlations or “speed of noise”. The noise spectrum corresponding to
this model is S(ω)=

∫
eiωt⟨δωqb(0)δωqb(τ)⟩dτ . In the white noise limit, for κ → ∞,

we expect fast noise, because limκ→∞ S(ω) becomes constant. The model smoothly
connects this limit to the opposite case, κ → 0, where one obtains colored quasi-
static Gaussian noise, because limκ→0 S(ω) diverges at low frequencies. This limit
would correspond to a Gaussian decay envelope in a Ramsey or spin echo type
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time domain experiment [42]. Figure 2.38(b) illustrates the effect of small and large
κ on the modeled noise spectrum. Based on numerical simulations, quantitative
parameters of the Ornstein-Uhlenbeck process and possbile white noise background
can be fitted to the data of Γφ(ωqb) and thus be used to characterize the noise
causing it.

Full frequency noise spectrum

In the previous sections, we have investigated noise in different frequency regions.
To obtain a picture of the overall noise spectrum we combine information on the

• white noise floor, which is expected to be constant at any frequencies.

• low frequencies noise spectrum from Γφ(ωqb),

• high frequency noise spectrum from Γ1 (assumed to be ohmic in the sense of
the SBM),

As mentioned earlier, the low frequency noise spectrum is described by the Ornstein-
Uhlenbeck model, which assumes a bath supporting 1/f noise and thus goes beyond
the SBM. The high frequency contributions are assumed to be Ohmic within the
SBM, thus linear in frequency.



Chapter 3

Experimental techniques

In this chapter, we introduce the experimental techniques and technical equipment
used throughout this thesis. This includes cryogenics, fabrication, packaging, and
measurement setup & devices. First, we briefly introduce cryogenics. Next, we
present the fabrication of our sample chips and their design. We then explain the
packaging of the samples, which ensures an environment where the environmen-
tal noise is reduced as much as possible. Finally, we describe the measurement
techniques used to obtain our data.

3.1 Cryogenics
Most experiments presented in this work are done at cryogenic temperatures. Prechar-
acterization measurements of PCBs, beam splitters and interferometer devices are
conducted in helium bath cryostats, while experiments involving transmon qubits
are performed in dilution refrigerators with base temperatures of 30 − 50mK. Our
beam splitter and interferometer structures are made of Nb with a critical temper-
ature Tc,bulk ≃ 9.3K, which easily is reached in helium bath cryostats. For circuits
including transmon qubits not only the lower superconducting transition temper-
ature of Aluminum (Al)-structures (Tc,bulk ≃ 1.2K) has to be reached, but also
thermal noise from microwave lines of higher temperature stages has to be taken
into account. To ensure that thermal noise is small enough to avoid noise driven
state transitions of our quantum mechanical system, the circuits are measured in
a dilution refrigerator. Even at absolute zero, we would need to consider vacuum
fluctuations. At finite temperatures, we expect noise from black body radiation.
Since, for a typical sample temperature of T = 50mK, the corresponding frequency
scale is kBT/h ≈ 1GHz, the residual thermal population in the frequency range

65
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of our measurements (4 − 8GHz) is well below unity. Furthermore, the supercon-
ducting gap of Al protects the qubit from excitations in the continuous spectrum
of the solid-state materials forming the circuits. The cryogenic temperatures are
provided by home-made 3He/4He dilution refrigerators at the WMI. In appendix A
we describe the implementation of relevant cryogenic apparatuses in more detail.

3.2 Fabrication

The sample chips used for this thesis are fabricated in a process widely established
in the field of quantum information processing with superconducting circuits[3, 31,
45, 61]. We deposit a thin film of superconducting material (either Nb or Al) on a
polycrystalline Si-substrate and pattern an electrical circuit into the film via pho-
tolithography or electron-beam lithography. The more complex structures needed
for the transmon qubits consist of two layers of Al.

resist
Nb
Si

(a) Sputter
deposition

(b) Coating with
photo resist

(c) Exposure to
ultraviolet light

(d) Resist 
development

(e) Reactive ion
echting (RIE)

(f) Cleaning

lithographical
mask

Figure 3.1: Fabrication steps for Nb structures.
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3.2.1 Niobium structures

Beam splitters and interferometers are fabricated from niobium (Nb). Nb has a crit-
ical temperature Tc,bulk ≃ 9.3K, the fabrication of Nb-structures is well established
at WMI and the patterning can be done fast and easily by optical lithography. To
this end, first, a 100 nm thin film of polycrystalline Nb is sputter-deposited on a
525 µm thick silicon substrate (insulating at low temperatures), covered with ap-
proximately 50 nm of thermal insulating oxide [see Fig. 3.1(a)]. In order to pattern
the necessary structures for the CPWs into this film, we use optical lithography. We
then cover the Nb-film with AZ 5214 E photo-resist [Fig. 3.1(b)] and exposure it by
ultraviolet (UV)-light through a lithographic contact-mask of chrome coated glass
[Fig. 3.1(c)] using a mask aligner (Carl Süss MJB 3). Developing the resist with AZ
726 MIF photo developer removes the resist from the areas which were exposed to
the UV light [Fig. 3.1(d)]. Finally, by the Nb film not covered with resist is etched
away by reactive ion etching (RIE)[62, 63] using a process gas [Fig. 3.1(e)]. After
a cleaning protocol using acetone and isopropanol in an ultrasonic bath, and thus
removing the remaining resist, we obtain the desired structure in the Nb-film on
the Si substrate [Fig. 3.1(f)]. As the metal film finally residing on the substrate is
inverted compared to the mask, this is called a negative process.

3.2.2 Aluminum structures

Structures which incorporate JJ are made of Al at WMI based on electron beam
lithography and a two-angle shadow evaporation procedure[41, 61, 63, 64]. To this
end, a substrate is covered with a suitable two-layer e-beam resist, which is exposed
by e-beam lithography (EBL) in the areas which finally shall be covered by an Al
film. After this, the resist is developed in a temperature controlled process (see [51]
for a detailed description). Now, the sample is cleaned using the standard cleaning
process described before (using acetone followed by isopropanol in an ultrasonic
bath), which results in the non-activated resist sticking to the substrate and the
rest being removed. In this way, we obtain a patterned resist film on the substrate
representing the inverted circuit structure. After depositing Al, the circuit structure
is patterned on the chip. Al which has been deposited onto the resist is removed
during the cleaning procedure (lift-off). As we exposure the e-beam resist in those
areas we finally want to be metalized, this is called a positive process.
The Al-AlOx-Al sandwich structure forming the JJ, is fabricated by facilitating
resist bridges and double-angle shadow evaporation. To this end, the substrate
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is coated by two layers of photo resist with different sensitivity (lower layer with
high sensitivity: PMM/MA 33%, upper layer with low sensitivity:PMMA 950K).
Exposing this system to electron beam doses suited to develop specific regions on the
chip allows one to pattern openings, bridges and undercut structures into the resist.
After resist development, Al is evaporated on the substrate under two different
angles (in the shadow of the resist bridge). This step is called double-angle shadow
evaporation (see Fig. 3.2).

evaporation I oxidation evaporation II
2 µm

resist bridge
top layer

bottom
layer

undercut
Josephson junction

+θ -θ

(b)

Figure 3.2: Double-angle shadow evaporation process to make nanoscale Josephson
junctions. Process steps are shown from left to right. Top: Resist system, Bottom:
Material layers on the substrate (Figure used with kind permission of Jan Goetz).

3.2.3 Designs

Here, we present the designs for the samples used in the experiments in this thesis.
We start with the microwave beam splitter and the microwave Mach-Zehnder type
interferometer.

Beam splitter

A microwave beam splitter (see Sec. 2.3.3) is a four port device composed of CPWs
with different characteristic impedance and four T-junctions. The characteristic
impedance of the lines is adjusted by having different ratios between width of center
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conductor and gap of the CPW, respectively, while the T-junction provides two
propagation paths for the signal [see Figs. 3.3(a,c,d)]. This design has the disadvan-

(a)

(c)

(b)

(d)

12 m
m

T-junction

50 Ω-line

35.4 Ω-line

Figure 3.3: Quadrature hybrid design: (a) Design of whole chip, (blue...Nb struc-
tures, white...substrate), (b) Photograph of the sample chip, (c) Detail with T-
junction and CPWs of 50Ω and 35.4Ω characteristic impedance, respectively. (d)
Optical micrograph of same detail as in (c).

tage to divide the ground plane of sample into two galvanically unconnected entities.
We use wire bonds to ensure that all ground plane parts are on the same electrical
potential [Fig. 3.3(b)].

property 50Ω 36.4Ω

inner conductor width 34.4 µm 125.2 µm
gap width 20 µm

Nb thickness 100 nm

Si substrate thickness 525 µm

Table 3.1: CPW design parameters of beam splitter lines with an impedance of 50Ω
and 36.4Ω
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Interferometer

In complete analogy to a Mach-Zehnder interferometer in the optical domain, we
construct our mircowave interferometer by using two beam splitters (BS) in series
[Fig. 3.4(a)]. Fig. 3.4(b) shows a photograph of the chip. At its working frequency,
the first BS splits the signal into two waves of equal amplitude with 90◦ phase shift,
while the second BS recombines it. Any phase difference gained by the split signals
will cause imperfect recombination and thus manifest in interference effects.

(a) (b)

12 m
m

Figure 3.4: Interferometer: (a) In the design (blue...Nb structures, white...substrate)
it is clearly recognizable that the interferometer is composed of two beam splitters
(yellow rectangles), (b) On the sample picture we see that again on-chip wire bonds
are used to ensure a good electrical connection between all parts of the ground plane.

Transmon qubit in λ/4-resonator

In order to check the functionality of our qubit design, we put a transmon qubit in a
λ/4 resonator. The design of the sample chip is shown in Fig. 3.5. Here, two qubit-
resonator systems have been put on one 12mm× 12mm chip, which is cut into two
pieces for conducting measurements. The experiments for this precharacterization
were done in course of a Master’s thesis [49]. Since the geometries of qubit and CPW
are the same as for the interferometer studied later, we expect similar coupling in
both devices.

The transmon itself constitutes of a small SQUID loop shunted by a large ca-
pacitance formed by two finger capacitors. The SQUID loop, as well as the finger
capacitors, can be seen in Fig. 3.5(b). The position of one Josephson junction of the
SQUID is marked by an red rectangle, also in Fig. 3.5(b).
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�nger capacitors

SQUID loop

antenna structure

JJs

resonator

Figure 3.5: Transmon qubit in λ/4 resonator: (a) Chip design (blue...Nb structures,
green...Al structures, white...substrate). The yellow rectangle marks the position
of the transmon qubit. (b) Zoom onto the transmon cicruit (green...Al structures,
white...substrate). Red rectangles mark the position of Josephson junctions (c)
Micrograph of transmon qubit. Black: SQUID loop. Red: Finger capacitors of the
transmon structure, (d) Mask layout of a Josephson junction. (e) SEM image of a
Josephson junction.
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Transmon qubit in interferometer

The most important sample design is the interferometer with a transmon qubit in
its bottom arm. Fig. 3.6(a) shows the design, which at first sight looks alike the
interferometer design shown in Fig. 3.4. The magnified view in Fig. 3.6(c) reveals

12 m
m

(a)

(c)

(b)

(d)

(e) (f)

100 μm
500 nm

Figure 3.6: Transmon qubit in interferometer. Left: (a/c/e) Design and details (de-
signs: blue...Nb structures, green...Al structures, white...substrate), Right: (b/d/f)
Photographs of sample chip, micrograph of transmon qubit and SEM image of a
Josephson junction. Left and Right are to the same scale.

the transmon structure placed in one of the interferometer arms. Figures 3.6(b),(d),
and (f) show photo- and micrographs and SEM-pictures of the sample. Comparing
the design of the bare interferometer in Fig. 3.4 and the design of the interferometer
with a transmon qubit in the bottom arm in Fig. 3.6, it is evident that these designs
use the same parameters for the CPWs, which is indeed the case. For this reason
we expect these samples to have very similar measured spectra, except around the
working frequency of the transmon qubit. Wire bonds were used to assure the equal
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electrical potential at the ground planes (Fig. 3.6).
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3.3 Measurement setup
To perform circuit QED experiments, we have to take an elaborate technological
effort in terms of cooling, shielding, control, and measurement. A schematic view
next to a photograph of the setup mainly used in this thesis is shown in Fig. 3.7
Packaging, housing, shielding— The sample chip is mounted in a specially tai-
lored sample box and additionally shielded from parasitic magnetic fields for the
experiments (see Sec. 3.3.1).
Control— A source-meter (Keithley 2450) provides a current-source working with
high accuracy even at the required low currents in the range of micro-amperes. We
feed it through a superconducting coil with approx 8000 windings to generate a
magnetic field in the SQUID loop of the transmon qubit. In this way, we tune the
transmon qubit to different working frequencies. Current source and coil are con-
nected by superconducting twisted-pair wires passing through a room-temperature
low-pass filter (see Fig. 3.7). The coil is mounted at the sample stage and thus also
is cooled to Millikelvin temperatures.
Sensing— A Rohde & Schwarz ZVA24 four-port vector network analyzer (VNA)
connects two heavily attenuated and filtered microwave lines to the input ports of the
sample. Two lines are used to guide the filtered output signals back to the remaining
ports of the VNA after amplification by a cryogenic HEMT amplifier and a room-
temperature amplifier (see Fig. 3.7). The attenuation of the input lines prevents
thermal noise of high-temperature stages from disturbing the sample. Experiments
are done with a signal power of P = −140 dBm at the transmon qubit, half populat-
ing the first qubit transition. These low powers are realized by further attenuating
the signal at the VNA output (P = −33 dBm) with attenuators (87 dBm), cabling
(17 dBm), and the on-chip beam splitter (3 dBm) inside the cryostat. Spectroscopic
measurements with this setup are at the heart of the data acquisition for this theses
and are described in detail in Sec. 3.4.
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Figure 3.7: Setup of the experiment including crygenics, cabling, etc. Left:
Schematic, Right: Photograph.
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3.3.1 Packaging

In order to conduct sensitive measurements at the quantum level (1 POA), the sam-
ples have to be shielded well against parasitic microwave signals and magnetic fields
originating from other simultaneously running experiments or others uncontrollable
sources like cell phones etc. Another difficulty is that standard SMA microwave
connectors are bulky (diameter 11mm) and up to eight lines have to be connected
for future experiments. To meet these requirements, a special sample holder and
packaging has been designed throughout this thesis. In this section, we describe this
sample box, and packaging of the samples.

(b)(a)

(c)
50 mm

Figure 3.8: (a) Sample box with details: (b) Mode confinement for CPW-lines on
PCB. (c) Surface mount connectors.

Printed circuit board, sample box, & microwave connectors

To overcome the problem of limited space for components as connectors to connect
the microwave cables to the on-chip sample feedlines, we use a printed circuit board
(PCB) as an interconnection. The PCB is connected to the micrometer sized on-chip
feedlines using wire bonds [see Fig. 3.9(c)].

To generate a clean electromagnetic environment for our quantum circuits, we
use a Cu-box confining the microwave field. This minimizes the possible influence
of other experiments residing in the same cryostat on our device under test. The
sample box is shown in Fig. 3.8 and Fig. 3.9(a,c).
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Figure 3.9: (a) PCB with surface mount connectors and CPW-lines. (b) Box with
connectors directly mounted on sample chip with silver glue. (c) Close-up on the
transition from the PCB to the sample chip. Center conductors and ground planes
are connected by wire bonds.

As we use a PCB to interconnect the microwave-cabling to the on-chip feedlines,
we need to establish a stable electrical connection guiding our microwave signals
from the cables through the PCB and finally onto the sample chip. The microwave
cables with sub-miniature push-on (SMP) connectors are connected to the PCB
by off-the-shelf surface mount connectors [see Fig. 3.8(a)]. Guiding the microwave
signals from the chip to the PCB allows for placing the surface mount connectors
such that a lot of input, control and output- lines can be used, as there is enough
area on the board to position the connectors on it. The last connection is the one
between the PCB and the chip. Here, we decided to go for a well-established solution
using wire bonds. In this way, we do not need to position the chip very accurately,
because the wire bonds can be adjusted in length and position to overcome the gap
between sample and PCB. Compared to using silver-glue [see Fig. 3.9(b)], which
was done in earlier experiments at WMI, this technique is superior, because the
results are reproducible and the connection does not age. Figure 3.9(c) shows the
wire bonds at the PCB to chip transition in detail.

3.3.2 Magnetic shielding

To avoid the influence of the earth magnetic field or magnetic fields generated by
devices in our lab, we place the sample box inside two cylindrical shields. The
outer on is made of cryoperm, the inner one of Al. Cryoperm is a high-permeability
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magnetic shielding metal with µ ≈ 160 000 − 250 000, in a temperature range from
room temperature down to cryogenic temperatures. The effect of this shield is to
have low or none magnetic field inside the probe volume during cooldown. The
inner tube is made from Al, which turns superconducting below 1.2K and thus will
freeze the remaining magnetic field. As the magnetic field is negligible during the
cooldown process and the inner tube becomes superconducting at base temperature,
it prevents fields from entering the probe volume. Thus, we avoid uncontrolled
external magnetic fields at our sample chip during the experiments. The result is a
very stable working point of the transmon qubit.

(a) (b)

Figure 3.10: (a) The sample box is connected to the microwave lines via SMP
connectors. (b) Cryoperm shield. Inner Al-shield and sample box are not visible in
(b).
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3.4 Measurement techniques

For our experiments, we rely on spectroscopic measurements with a VNA. We mea-
sure the microwave transmission from one port to the other ports of our sample
chips, thus we determine the scattering- or S-parameters [23] of the system (see
Sec. 2.1). The characterization of samples without a transmon qubit can be done at
higher powers and samples do not consist of tunable circuitry, thus sufficient aver-
aging is done to obtain clear measurement results. No sophisticated data analysis
is needed in those cases. In contrast to this, in the following, we want to focus on
the measurement of the sample chip, which is composed of an interferometer and a
tunable transmon qubit in one of its arms (see Sec. 3.2.3). This sample is measured
at very low powers at the level of one photon on average. As explained in Sec. 2.3,
the transmon qubit is treated as a scattering potential acting on the incident mi-
crowaves. Thus it causes a feature in the transmission spectrum near the frequency
ωqb, the qubit working point. The transition frequency of the transmon qubit can
be tuned by changing the coil current through the superconducting coil in our setup
(see Fig. 3.7), thus setting a transition frequency or working point for the qubit is
the same as setting the coil current. In practice, two different data sets are recorded:

• A reference spectrum (without effects caused by the qubit).

• Individual spectra for different qubit working points.

We scan a frequency window of ωqb/(2π)± 200MHz at different qubit working fre-
quencies ωqb,i, where a calibration is conducted for each frequency window with the
qubit working frequency set to ωqb-cal,i [see Fig. 3.11(b)]. In each of these frequency
windows, for several working points of the transmon qubit, transmission magnitude
and phase have to be recorded for straight and cross transmission from each input
port to the two output ports [see Fig. 3.11(a)].

Calibration

To be able to retrieve clean measurement data we perform a specific calibration pro-
cedure. We assume that the transmon qubit only affects the transmission spectrum
in a small range near its working frequency (see Chapter 2). To measure the spec-
trum for a qubit working frequency ωqb,i, we tune the qubit working frequency to
ωqb-cal,i, outside the actual measured frequency window by changing the coil current.
Then we do a reference measurement for calibration [see Fig. 3.11(b)]. This refer-
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Figure 3.11: (a) Measurement paths for an interferometer (b) We scan a frequency
window of ωqb/(2π) ± 100MHz at different qubit working frequencies ωqb,i. A
calibration is conducted for each scan, with the qubit frequency set to ωqb-cal,i.

ence can be used for all transmon frequencies we whish to investigate within this
particular 200MHz-window. This reference spectrum we assume to be the spectrum
of a bare interferometer for this frequency window.

Detecting weak signals

Our measurements are conducted using a VNA at powers of P ≈ 10 aW at frequen-
cies f = 4 − 8GHz, thus on very low power at microwave frequencies. Even though
we use HEMT amplifiers with low noise figures (typically 10-20 noise photons are
added to the signal at 5GHz [65]), a single shot measurement is not feasible at this
power level. To overcome this we do our measurements at a low IF bandwidth setting
of 1Hz of the VNA and do average 10 of these single measurements. This means that
the frequency spectrum we look at, usually ±100MHz around the working frequency
of the transmon qubit, in a single measurement is scanned for 1 s at every captured
frequency. For frequencies in the range of 4− 8GHz this means that 4×109 − 8×109

full periods of the probe signal are captured. We conduct such a measurement at
every full Megahertz in range ωqb ± 100MHz (201 data points). In this way, we av-
erage out most of the statistical errors. The time needed for measuring the spectral
vicinity of a single working frequency is tmeas = 10 × 201/(1Hz) = 2010 s. Adding
an initialization time tinit ≈ 90 s, we end up at about half an hour for measuring the
200MHz-vicinity for each coil current setting, which is fast compared to time scales
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of drifts in the system. Such drifts are expected to happen on the order of several
hours.

Analysis

We record spectra for more than 100 working points of the transmon qubit and
use the transfer matrix formalism described in Sec. 2.4 to fit the measured data.
Thus, determine the relaxation rate Γ1 and the pure dephasing rate Γφ by nu-
merical fitting of the measured transmission data. Fitting four spectra [two times
cross- and two times straight- transmission, see Fig. 3.11(a)], each for magnitude and
phase needs serious computational efforts. We handle this by self-written Matlab©-
routines, based on the usage of parallel computing methods already implemented
by internal fitting procedures. For the fitting routines it is important to mention,
that we use a two step approach.
First the interferometer parameters center frequency ωIF and arm length l are varied
to fit the data. This is done based on the combined reference data collected at all
different qubit working frequencies. In this way we obtained a dataset for the bare
interferometer over a broad frequency range of approximately 4 − 8GHz.
Second, the parameters qubit frequency ωqb, relaxation rate Γ1 and the pure de-
phasing rate Γφ are fitted for each individual spectrum associated to a certain qubit
working point. Figure 3.12 shows typical transport measurement data and a fit-
ted theory curve. In addition, theory curves with altered parameters are shown to
demonstrate the influence of the fitting parameters on the fitted curve.
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Chapter 4

Quantum probe of a broadband
on-chip interferometer

This chapter discusses the experimental results obtained throughout this thesis.
First, we cover the component tests for the beam splitter, the microwave interfer-
ometer, and the transmon qubit, which are the fundamental building blocks of the
composite sample used to do the central measurements in this thesis. Finally, we
present and interpret data obtained from measurements of the composite sample.
These are measurements of the relaxation rate Γ1 and the pure dephasing rate Γφ,
which are used to give insight on the properties of the environment of the transmon
placed in one of the arms of the microwave interferometer on our sample chip.

4.1 Fundamental building blocks
To learn about the individual components of our final sample design (see Sec. 3.2.3),
we first fabricate and test them individually. Thus, in the following, we show charac-
terization measurements for the beam splitter, interferometer, and transmon qubit.

83
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Beam splitter

(a) (b)
Port 1 Port 3

Port 2Port 4

S12 S32

S42

12
 m

m

Figure 4.1: (a) Schematic for the beam splitter ports and measured scattering pa-
rameters. Red - cross transmission S12, blue - straight transmission S32 , and green
- isolation S42. (b) Cartoon of sample chip. The CPWs intersect the ground plane
and create a floating island in the middle of the chip (red).

Preliminary measurements of beam splitters have been published in the diploma
thesis of Ferdinand Loacker [66], showing that we can realize an on-chip beam splitter
in the spirit of Ku et al [67]. Even though the design can be implemented straight-
forwardly, some aspects have to be considered.
First, the quadrature hybrid ring design shown in Fig. 4.1(b) contains a conducting
island in the middle of the chip. As this island is not electrically connected to the
ground plane, it allows for uncontrolled modes. Fig. 4.2 shows simulations of the
transmission spectrum of a chip with and without this island being connected to
the ground plane. From these simulations, it can be clearly seen that bringing the
island to the potential of the ground plane leads to a spectrum much closer to the
theoretically expected one. For the actual sample chip the island is connected to
the ground plane by on-chip wire bonds to avoid any effects caused by the floating
island.
Second, simulations and design studies performed by Michael Fischer and Christian
Schneider1 have revealed that also microwave resonance modes in the Si-substrate
of the chip allow for unintended modes and thus have to be considered.

Figure 4.1 shows a schematic and a cartoon of the beam splitter measured as a
reference device for the design of our final sample chip. The transmission spec-
trum of the fabricated on-chip beam splitter has been measured and is depicted in

1Data used with kind permission of the authors [25, 68]. Analysis reevaluated for this thesis.
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Figure 4.2: Effect of “floating island” in the middle of the beam splitter chip. Solid
black lines represent the transmission magnitude (Tr. Mag.) of an ideal beam splitter
spectrum, dashed colored lines simulated data with an island of undefined potential
and solid colored lines simulation data for the island connected to the outer CPW
ground planes (a) Red - Cross transmission S12, (b) Blue - Straight transmission
S32, and (c) Green - Isolation transmission S42. The horizontal dashed line marks
the 50 percent signal attenuation, the vertical dashed line the beam splitter design
frequency ωBS.

Fig. 4.3. It shows almost perfect 50-50 splitting for a coherent input signal. In the
frequency spectrum, we observe a cross-transmission (S12) magnitude of −3 dB in a
broad region around the design frequency of (ωBS±∆ω)/(2π) = 5 − 6.5GHz, which
is the theoretically expected behavior for a beam splitter (see Sec. 2.3.3). At other
frequencies, the spectrum qualitatively follows the theory expectations (see Fig. 4.3),
with slight deviations for frequencies far from the designed working frequency.
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Figure 4.3: The measured spectrum of the beam splitter is close to theory in the
frequency range marked green around the working frequency and qualitatively follows
the expected behavior for other frequencies.
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Interferometer
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Figure 4.4: (a) Schematic of the interferometer with ports and S-parameters. Cross
transmission (S12 and S34) and straight transmission (S14 and S32). (b) Cartoon
of sample. We can identify three islands not connected to the other ground planes
(red).

Based on the work of Loacker [66], Schneider [25] and Fischer [68] designed a
Mach-Zehnder type microwave domain interferometer. In simulations and measure-
ments, the influence of deviations in key parameters such as characteristic impedance
was investigated. For example, the length of the transmission lines (joints) connect-
ing the two beam splitters constituting the interferometer has been investigated.
Figure 4.5 shows the theory curves for joints slightly shorter and longer than quar-
ter of a wavelength λ/4. It can be seen that the length of these joints mainly
influences the straight transmission in a region where it is highly suppressed. Thus,
it can be assumed that imperfections in the joint length will not have negative in-
fluence on the performance of an interferometer. From the findings in Refs. [25, 66,
68], an optimized design has been derived, a sample chip has been fabricated and
its spectrum has been measured in the frequency range from 2.5 − 9GHz at liquid
helium temperature (for S-Parameter configuration see Fig. 4.4). Additionally, it
has been simulated with CST MICROWAVE STUDIO ®. Theory (lines), simula-
tion (dots) and measurement data (crosses) are compiled in Fig. 4.6. As expected
from the behavior of the beam splitter design, in a broad region around the center
frequency ωIF/(2π) = 5 − 6.5GHz the measured interferometer data, qualitatively
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Figure 4.5: Comparison of interferometers with transmission lines of different length
l in between the two constituting beam splitters. Transmission magnitude is shown
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follows the expected behavior of perfect transmission in a calibrated measurement.
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90 4. Quantum probe of a broadband on-chip interferometer

Transmon qubit

To characterize the transmon qubit, the design from Sec. 3.2.3 has been realized
inside a λ/4 resonator2. We use single- and two-tone measurements, depending
on the measurement regime [49], to do transmission measurements. In order to
tune the qubit transition frequency, a superconducting coil is generating magnetic
flux threading the SQUID loop of the transmon qubit. Figure 4.9 shows the qubit
transition frequency as a function of the coil current. Here, the data near the
anticrossing is measured using single-tone spectroscopy, while, for frequencies far
off the bare resonator frequency ωres/(2π) = 6.54GHz, two-tone spectroscopy is
used. The inset in Fig. 4.9 gives a detailed view on the anticrossing, showing more
measurements than the main plot. We observe a full period in modulation of the
qubit frequency with flux for a change in current of about 1mA. This allows for
a relation between the coil current and the flux threading the SQUID loop of the
transmon qubit with 1Φ0 ↔ 995.4 µA.

Port 1 Port 2
S21

(a) (b)

Figure 4.7: (a) Schematic of the transmon qubit in a resonator. Transmission is
measured via the S21-parameter. (b) Photograph of sample in a box with SMA-
connectors.

From the data, we fit the characteristic parameters of the transmon qubit. The
Josephson energy is found to be EJ/h = 20.0GHz, the charging energy EC/h =

592.4MHz and the coupling to the λ/4 resonator g/(2π) = 71.3MHz. These pa-
rameters3 are summarized in Tab. 4.1.

2Data used with kind permission of Javier Puertas[49]. Analysis reevaluated for this thesis.
3Small deviations compared to the thesis are not relevant, as the fabricated sample is used

for the proof of principle and to know the parameter regimes. The actual sample is not used to
produce the main results of this thesis.
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Figure 4.8: Reevaluated from Ref. [49]: (a) Qubit anharmonicity (b) Josephson
energy EJ and asymmetry parameter d (see Sec. 2.4.3). (c) Avoided crossing (d)
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Figure 4.9: Flux dependence of the transmon qubit transition frequency measured
by a resonator using two-tone spectroscopy [49]. Diamonds: data. Lines: fits (see
Qubit-resonator coupling in Sec. 2.4.3). Inset: Region around the avoided crossing
with more data points using single-tone spectroscopy.
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Parameter Value Error
Josephson energy EJ/h 18.8GHz 10.6GHz

Charging energy EC/h 557.6MHz 1.5MHz

Coupling to resonator g/(2π) 73.0MHz ±0.7MHz

Asymmetry parameter d 0.2 n.a.

Table 4.1: Parameters of the transmon qubit, based on a reevaluation of the data
obtained by Javier Puertas [49].
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4.2 Transmon qubit in interferometer

In this section, we discuss the main objective of this thesis: the measurements on a
transmon qubit in one arm of an interferometer. The individual components have
been analyzed in the previous sections, but now we want to see the interplay of the
transmon qubit with the broadband engineered environment of an interferometer.
We clearly expect the qubit to only have an influence in a small frequency range near
its working frequency, while the spectrum of the sample at other frequencies should
be determined by the interferometer structure. Indeed, compared to the spectrum
of a bare interferometer, we find a distortion in the frequency response which is
shifting when we adjust the coil current.

Using the setup explained in Sec. 3.3, we measure the frequency dependence of
different S-parameters S12, S32, S14, S34 of our sample (see Fig. 4.10). Figure 4.11
shows exemplary transmission measurements.

12 m
m

(b)

100 μm

(a) Port 1 Port 3

Port 2Port 4

S12S34

S32S14

Figure 4.10: (a) Schematic for the interferometer with a transmon qubit in one arm,
ports and measured S-parameters. (b) Sample mask with zoom on transmon qubit
circuit (blue...Nb structures, green...Al structures, white...substrate). Red rectangles
show the positions of the JJs.

Interferometer and Transmon qubit parameters

The measurements of the individual components (see Sec.4.1) give us the confidence
to understand how these behave and which are the parameter ranges to expect.
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Nevertheless, the interferometer center frequency ωIF and the main transmon qubit
parameters such as maximum Josephson energy EJ , charging energy EC, and asym-
metry parameter d have to be evaluated for the combined sample. All parameters
are evaluated by fitting transmission magnitude and phase obtained via the proce-
dure explained in Sec. 3.4 for straight and cross transmission [see S-Parameters in
Fig. 4.10(a)]. Figure 4.11(a) shows typical data measured in the vicinity of a spe-
cific qubit working frequency. Also, the theory line resulting from fitting the model
to the data is depicted. In this way, 109 qubit working points are analyzed. To
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Figure 4.11: (a) Data and fit of magnitude (in linear units) and phase for a cross
transmission measurement for ωqb/(2π) ≈ 6.735GHz. (b) The spectrum of the
bare interferometer can be obtained by combining the information of all calibration
measurements (not all data points are shown in this plot).

gain information on the interferometer center frequency ωIF, we combine the cali-
bration data from all frequency segments (see Fig. 3.11) to compile a transmission
measurement for the bare interferometer. The result is shown in Fig. 4.11(b). We
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find the interferometer center frequency to be ωIF/(2π) = 5.75GHz. Next, the
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Figure 4.12: Autler townes splitting. (a) Bare states vs. dressed states resulting
from strong driving of the first qubit transistion. (b) The frequency of the second
qubit transition ωef is obtained by measuring the Autler Townes splitting.

intrinsic parameters of the transmon qubit are determined. These are charging en-
ergy EC , maximum Josephson energy EJ , and asymmetry parameter d. We start
with the charging energy EC , which is equal to the negative qubit anharmonicity
α, given by the difference of first (ωge) and second (ωef) qubit transition frequency
α = 2(ωef−ωge) = −EC and Pge = 1111 dBm. We determine it from a mollow triplet
experiment similar to the one described in Ref. [69]. We apply a drive tone with a
large strength Pge at the frequency of the first qubit transition ωge. The strong driv-
ing causes a splitting of the qubit levels by 2Ω ∝ Pge (data not shown) [70]. To find
the frequency of the second qubit transition, we use an additional, weaker probe tone.
The frequency of the second excited level is then given by ωef = (ωef,+ + ωef,−)/2,
where ωef,+/− are the shifted second excited qubit levels [see Fig. 4.12(a)]. Knowing
the first qubit transition frequency ωge from resonance fluorescence spectroscopy, we
can easily find the anharmonicity α and thus the charging energy. Figure 4.12(b)
shows this for a qubit working frequency ωqb/(2π) = ωge/(2π) = 5.5GHz. The
charging energy is the same for all qubit working frequencies, as it depends on the
geometry of the qubit structure only, not on the flux in the SQUID loop. We find
the charging energy to be EC/ℏ = 573MHz± 4MHz(2π)/ℏ.

Finally, maximum Josephson energy EJ0/h = 17.9GHz ± 190MHz and asym-
metry parameter d = 14% ± 0.7% are extracted from the dependency of the qubit
working frequency on the coil current, thus on the flux threading the SQUID loop
of the transmon qubit (see Fig. 4.13).
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Figure 4.13: Resonance fluorescence spectroscopy: Cross transmission magnitude as
a function of frequency and coil current. The black line is a fit to the deviations in
the calibrated spectrum of the DUT caused by the transmon qubit using Eq. (2.86).

Qualitative analysis - frequency regimes

Analyzing the transmission measurements, near the qubit frequency for various coil
currents, we identify three different regimes showing different structures in the fre-
quency domain (see Fig. 4.11 for a typical measurement). These deviations from
the calibrated interferometer spectrum, which would show unity transmission for all
frequencies, are known as fano-features [71] resulting from the constructive or de-
structive interference of the signals scattered off the qubit and recombined at the sec-
ond beam-splitter of the interferometer circuit. In cross-transmission (S12 and S34)
measurements, for working frequencies of the transmon qubit ωqb/(2π) < 5GHz,
we find peak-dip in magnitude and dip-peak structures in phase, while for work-
ing frequencies ωqb/(2π) ≈ ωIF/(2π) = 5.75GHz, thus near the center frequency of
the interferometer, we just observe a dip in magnitude and dip-peak in phase, and
for frequencies ωqb/(2π) > 6.5GHz we again observe peak-dip in magnitude and
dip-peak structures in phase.

For the ideal interferometer, in straight-transmission (S14 and S32) measure-
ments, the transmission is zero near the center frequency. This leads to inaccuracies
with calibration, and thus, to poor data and fit quality in the region where the trans-
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mitted signal is strongly suppressed. Nevertheless, some data and fits are shown in
Fig. 4.14(c). The role of peak and dip is interchanged for magnitude and phase
in the regime near the working frequency of the interferometer ωIF. For frequen-
cies ωqb/(2π) < 5GHz and ωqb/(2π) > 6.5GHz, we once more observe peak-dip in
magnitude and dip-peak structures in phase.

Near the design frequency of the interferometer, we expect the transmon qubit
in the interferometer to behave similarly to a qubit in a simple transmission line [9,
16, 40]. The interferometer spectral response in this frequency range is similar to
an open transmission line. Signals are not reflected at the beam splitters. This
is exactly what is observed for 5GHz < ωqb/(2π) < 6.5GHz. As we move the
working frequency of the transmon qubit away from the design frequency of the
interferometer, the beam splitters start to have finite reflections. The two beam
splitters in this regime act as a Fabry–Pérot interferometer [72]. This leads to the
Fano-features in Fig. 4.14.

Quantitative analysis

The characteristic shape of the fano-resonances is determined by the relaxation rate
Γ1 and dephasing rate Γϕ of the transmon qubit (see Sec. 2.4.3) in one of the in-
terferometer arms. These parameters are obtained by fitting a theory model [see
Eq. (2.107)] to the measured transmission spectra at each individual transmon qubit
working frequency. This approach allows for a quantitative analysis of the depen-
dency of Γ1 and Γϕ on the transmon qubit working frequency. We find that the
qubit relaxation rate Γ1 is dominated by high frequency noise near the qubit transi-
tion rate, while the qubit dephasing rate Γϕ is governed by noise at low frequencies,
below 10 kHz.

The qualitative discussion of the transmission spectra in Sec. 4.2 shows that
the very same qubit produces different spectra for different working frequencies
depending on the position in frequency space relative to the center frequency of
the interferometer ωIF. Thus, a quantitative analysis must take into account all
scattering and interference effects on the sample chip (see Sec. 3.2.3 for details on
the design). To describe this situation, we choose the transfer matrix approach [73]
(see Sec. 2.4.4), where the transmon qubit is treated as a scatterer of the incident
signal [40]. The relaxation rates of the qubit are modeled within the framework of
the SBM, while the dephasing rates are treated in an Ornstein-Uhlenbeck approach
(see Sec. 2.5.2). We expect the qubit relaxation rate to have a linear dependence
on the qubit working frequency, Γ1 = αωqb [16]. The linear scaling (Ohmic bath,
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Figure 4.14: (a) Cross (red) and straight (light blue) transmission magnitude (Tr.
mag.) in linear units as a function of the probe frequency for the bare interferometer
in theory. (b) Measured cross transmission magnitude (Tr. mag.) in linear units and
phase in rad as a function of the probe frequency at three different qubit transition
frequencies ωqb/(2π) = 4.556GHz, 5.826GHz, and 7.288GHz. The solid lines
show the results of a fits of our transfer matrix model (see Eq. 2.107) to the data.
The fits are in good agreement with the experiment. (c) Measured straight trans-
mission magnitude and phase at the same qubit transition frequencies. Evidently
the dip and peak structure near ωIF/(2π) = 5.75GHz is inverted.
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see Sec. 2.5.1) is due to the fact that, assuming a high-frequency cutoff ωc, Ohmic
dissipation causes an effective bath spectral density linear in frequency, J(ω) = αω,
where α corresponds to a friction constant. Note that the dimensionless parameter
α reflects the strength of dissipation, which in a physical system depends on the
amplitude of the noise and its coupling strength.

Analyzing the measured transmission spectra by the transfer matrix model, we
can derive the important qubit parameters relaxation rate Γ1 and dephasing rate
Γϕ in a quantitative way. From a numerical fit of our model to the measured cross-
transmission data S34 and S12 [see Fig. 4.14(b)], we extract the qubit transition
frequency as well as the relaxation and dephasing rates. As mentioned above, the
straight transmission is expected to have poor data quality [see Fig. 4.14(c)]. Thus,
we discard S14 and S32 and use S34 and S12 for our analysis.

Within a 95%−confidence interval, the statistical error of the extracted qubit
transition frequency is below 2%. For Γ1 and Γφ, we typically observe statisti-
cal errors below 33%. Thus, we obtain a reliable set of data for the decoherence
properties of the transmon qubit over a wide range of qubit transition frequencies
(4 − 8.5GHz). The excellent fit quality of the individual spectra for most qubit
transition frequencies and the reproduction of the regimes seen in Fig. 4.14, provide
strong evidence for the validity of the applied model. Additionally, as expected by
design, our measurements confirm that the interferometer predominantly dictates
the transmission spectrum of the system, except for a small region of approximately
100MHz near the qubit transition frequency.

Decoherence analysis

In order to gain information about the local electromagnetic environment of the
qubit, we use the transmon qubit as a sensitive broadband spectrometer in this
section. The measurement is broadband, as we capture the transmission spectrum of
the qubit at several working points in a frequency range of 4 − 9GHz. It is sensitive
as the transmon qubit is probed at and reacts to the energy of single microwave
photon, where E = ℏω. In the relevant frequency range this corresponds to an
energy of E = ℏω = 0.42 − 0.95 yJ or 2.63 − 5.92 µeV. In comparison, the energy
of photons of visible light E = h(c/λ) are in the range E = 1.65 − 2.95 eV, is higher
by a factor of 2× 106. From the individual qubit spectra, we extract the relaxation
rate Γ1 and the pure dephasing rate ΓΦ at each qubit frequency ωqb. Analyzing
these by fitting model parameters of the SBM and the Ornstein-Uhlenbeck model
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to the obtained data points, we are able to deduct the nature of the environment
of the qubit. On top of that, deviations from the expected functional dependencies
of Γ1 and ΓΦ on the qubit frequency indicate possible errors in microwave design or
fabrication.

Qubit relaxation Γ1 - high frequency noise
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Figure 4.15: Fitted relaxation rate for different qubit working points. The red line
shows a fit to an Ohmic line. A Lorentzian accounts for the observed rise in Γ1

above 8GHz.

Following a Golden rule argument, the relaxation rate Γ1 is proportional to the
noise power spectral density at the qubit transition frequency S(ωqb). Hence, the
measurement of Γ1 as a function of qubit transition frequency allows us to obtain
information on S(ω). Therefore, we use the Γ1 values extracted for working frequen-
cies of the transmon qubit between 4 and 8.5GHz to derive valuable information on
the interaction of the qubit with its electromagnetic environment.

Figure 4.15 shows that our Γ1 data follows a linear trend for frequencies up to
about 7 GHz, as expected for an ohmic environment (see Sec. 2.5.1). This clearly
supports our initial assumption that the transmission line coupled to the qubit
provides an Ohmic bath. Interestingly, deviations from the Ohmic environment are
rather small in the range between 4GHz and 7GHz although the coupling strength
is low in comparison to other experiments [17]. For frequencies above 8GHz, we
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Figure 4.16: Single tone measurements for transmon qubit in resonator.

observe a pronounced rise in Γ1 which provides a hint to the presence of an additional
on-chip mode coupling to the qubit. In a first-order approximation, we model this
mode by an additional Lorentzian (center frequency ωL0/2π = 8.3GHz, full width
half maximum Γ/2π = 1.5GHz) on top of the linear Ohmic background. By fitting
the data, we find α = (1.7± 0.3) · 10−4, corresponding to d̃ = (6.9± 2.7) · 10−21 As.
In order to find a more quantitative evidence for the transmission line to be the
dominant bath for qubit relaxation, we also determine αres = π(gres/ωres)

2 = (3.6±
0.04)·10−4 in the qubit-resonator system described in Sec. 3.2.3. The good agreement
between α and αres clearly confirms the validity of the SBM-based data analysis.

Qubit dephasing Γϕ - low frequency noise

Here, we characterize the noise causing pure dephasing of the transmon qubit inside
the interferometer circuit. For the subsequent analysis, we only consider Γφ-values
with less than 33% statistical error in the fitting to the transmission spectrum data.
It is well established that flux noise through the dc SQUID loop is a dominant
source for the fluctuation of the transmon qubit transition frequency ωqb, leading to
dephasing [42, 74–76]. As a consequence, we expect a strong dependence of Γφ(ωqb)

on the first derivative of ωqb with respect to flux Φ [74]. Indeed, our data is well fitted
with the ansatz Γφ ∝ (∂ωqb/∂Φ)

η, as shown in Fig. 4.16. Interestingly, the exponent
η ≃ 1.64± 0.21 suggests that the observed flux noise may be appreciably correlated
rather than simple white noise, for which an exponent of 2 is expected [74]. To
further characterize the properties of the observed flux noise, we fit a theory model
based on an Ornstein-Uhlenbeck process to the Γφ(ωqb). The model assumes the
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autocorrelation function for random flux fluctuations to be ⟨δΦ(0)δΦ(τ)⟩ = σ2e−κ|τ |

[see Eq. (2.130)]. It smoothly interpolates between its limiting cases of white noise
and low-frequency correlated, colored Gaussian noise (see Sec.2.5.3). The latter is
similar to the ubiquitous 1/f -noise. From the fit we extract σ = (79± 9)µΦ0 with
Φ0 being the flux quantum. We further find that κ/(2π) vanishes within a statistical
uncertainty of 52 kHz. Hence, this noise speed is negligible with respect to the noise
strength |∂ωqb/∂Φ|(σ/2π), which is on the order of a few megahertz. We conclude
that the noise in our device is well described by colored Gaussian noise in the quasi-
static limit. This is also consistent with our previous assessment based on η ̸= 2

and with a noise spectrum diverging at ω → 0. A possible source for such noise
can, e.g., be TLS ensembles produced by surface defects in dielectric materials [77,
78]. We can directly relate the quantity σ to the strength of the 1/f -noise typically
produced by such ensembles [42, 74–76]. The standard treatment [42] provides us
with an upper bound of approximately 100µΦ0, which is well compatible with the
values on the order of a few µΦ0 found in many other works [42, 74, 79, 80].



Chapter 5

Summary and outlook

In this thesis, we have characterized the properties of the broadband on-chip envi-
ronment of a superconducting transmon qubit via spectrally resolved transmission
measurements. The environment is formed by a Mach-Zehnder-type onchip inter-
ferometer. To this end, we have developed a theoretical description of the designed
sample and have performed a comprehensive analysis of the decoherence properties
of the qubit over a broad frequency range.
We have used a transfer matrix description of our circuitry. To construct the trans-
fer matrix, we have built on lumped element circuit theory for superconducting
microwave circuits. We have extended the theory to support quasi 1D circuits and
adapted it to take into account the quantum nature of Josephson junctions of the
transmon qubit.
All measurements have been conducted at cryogenic temperatures of 40mK. During
this thesis, the measurement apparatuses have been improved, completed and mod-
ified to carry out and optimize our measurements. To improve the quality of the
measurements, we have changed the experimental setup with respect to the parts
holding the sample and connecting it to the measurement apparatus:

• We have designed and fabricated a new sample holder for better shielding
against parasitic microwave radiation.

• We have improved the chip packaging via PCBs to overcome geometrical lim-
itations.

• We have eliminated unreliable connections between PCB and sample chip.

Furthermore, the fundamental microwave components defining the on-chip envi-
ronment of the qubit, such as microwave beam splitters and Mach-Zehnder-type
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microwave interferometers, have been designed, simulated and fabricated. Based
on simulation and measurement of these components, we have developed an opti-
mized chip layout of a microwave interferometer with the transmon qubit in one
of its arms. Finally, transmission measurements have been performed. Here, the
transmon qubit has been used as a probe by tuning its working frequency over a
broad range. Fitting the transfer matrix model to the data obtained in transmission
measurements, we extract the relaxation rates Γ1 and the pure dephasing rates ΓΦ

of the qubit at the different working points.
The functional dependence of the relaxation rate on the frequency of the qubit

allows for an assessment of the nature of the qubit environment at high frequencies,
while the functional dependence of the pure dephasing rate allows to conclude on
the properties of the noise at low frequencies. In the frequency range of 4 − 7GHz,
the relaxation rate increases linearly with the qubit frequency. This finding confirms
our expectation that the transmission line acts as an Ohmic bath. We have further
analyzed the qubit dephasing using a model based on the Ornstein-Uhlenbeck pro-
cess. We find that our circuit QED open quantum system is dominated by slow,
colored Gaussian noise. The sources for such noise cannot be explained by the circuit
design. They are most likely caused by the used materials and fabrication processes.

There are several opportunities to follow up on what has been done in this thesis.
Here, we want to focus on two application-oriented approaches:

Transmon qubit as spectrometer

Using a qubit as a spectrometer could help to test microwave designs developed for
general quantum technologies in a broad range of applications from sensing, over
communications to quantum computing. E.g., in the sample investigated in this
thesis, an unexpected resonance was obtained from the Γ1 behavior at frequencies
near 8.5GHz. It provides a hint to the presence of an unintended on-chip mode
coupling to the qubit, which, in a first-order approximation, was modeled by an
additional Lorentzian.

Quantum computing platform

Our work can also serve as a novel platform for quantum computing. Using the
techniques and designs of the microwave interferometer described in this thesis,
one can implement the ideas stated in all optical quantum computing (AOQC, [81])
in the microwave regime with superconducting circuits. Such an approach could
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overcome the biggest challenge in optical quantum computing, namely the lack of
a strongly nonlinear element. The concept of dual-rail encoding can be realized
with microwave photons instead of visible light. Then, the design realized within
this thesis is perfectly suited to implement a c-phase gate (see Fig. 5.1). A crucial
property here is that the phase induced by the qubits placed in the interferometer
arms has to depend on the photon number in a nonlinear fashion.

φ(n)

φ(n)

C-phase
gate

DRE
qubit

Figure 5.1: Sketch of a possible C-phase gate implementation for quantum com-
puting with propagating microwaves in the spirit of all-optical quantum computing.
Black lines indicate waveguides, gray boxes beam splitters and black boxes with φ(n)
inside represent phase shifters. One dual-rail encoded (DRE) qubit and the gate are
highlighted by yellow boxes.
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Appendix A

Details on cryogenic setups

Here, we present the different types of cryostats used within this thesis. Precharac-
terization experiments are done in helium bath cryostats at 4K, while epxeriments
involving Josephson jucntions are done at millikelvin temperatures in dilution re-
frigerators.

A.1 Helium bath cryostat
This type of cryostat provides a base temperature of T ≃ 4.2K . The DUT is
mounted on a stick and directly subjected to a bath of liquid helium. This type of

VNA

Dewar

Liquid helium

DUT in sample box

Coaxial cables

(a) (b)

Figure A.1: (a) Setup for measurements in a Helium bath cryostat. (b) Photograph
of sample stick with a sample box mounted at the bottom (Pictures with kind
permission of Christian Schneider).
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122 A. Details on cryogenic setups

cryostat has been used in Refs. [25, 66, 68] to precharacterize the beam splitter and
interferometer design.

A.2 Wet dilution refrigerator
The working principle of a dilution refrigerator is to exploit the tendency of nature
to restore the equilibrium of 3He concentration in a liquid 3He/4He-mixture. Such a
mixture separates into two phases with different 3He-concentrations at temperatures
below 870mK. Pumping on the side of the phase with higher 3He-concentration
forces 3He to diffuse over the phase boundary. This process consumes heat from the
environment, giving rise to cooling. Due to a closed-cycle operation, temperatures
on the order of 20mK can be obtained over timescales of weeks or months. Besides
this central physical working principle a lot of technical effort has to be taken to
implement such devices [51]. Figure A.2 shows a schematic of the dilution refrigerator
used in the Cirqus-Lab at WMI. This specific cryostat relies on 4He for precooling.
The liquid Helium has to be refilled roughly once a week. This cryostat has been

3He dilute phase

3He concentrated phase

4He
filter

He cold
trap for
mixture

liquid nitrogen
cold trap

step heat
exchanger
(40 mK)

coil heat
exchanger
(300 mK)

distillation
(700 mK)

mixing
chamber
(25 mK)

1K-pot
1.2 K

liquid helium
4.2 K

He
recovery
1K-pot
pump

turbo molecular pump

radiation shield at 77K

outer isolation vacuum

gas
handling
system

backing pump

liquid nitrogen reservoir

IVC

gas handling

dewar

ap
pr

ox
 1

.5
 m

DUT

Figure A.2: Schematic overview of a wet dilution refridgerator at WMI (Pictures
with kind permission of Jan Goetz).
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used in Ref. [49] to precharacterize the transmon qubit design in a λ/4-resonator.
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A.3 Dry dilution refrigerator
A dry or cryogen-free 3He/4He dilution refrigerator does not involve cryoliquids for
precooling during operation. The relevant working principle for reaching the base
temperature is the same as for all dilution refrigerators, but precooling is done by a
pulse tube cryocooler (PTC) [82, 83]. The main advantages are easy handling and
low helium consumption. An improved version of a dry dilution refrigerator with
a lot of space for experiments has been built at WMI and is used for experiments
since 2014 [84, 85]. A photograph of the closed fridge can be found in Fig. A.3. This

ap
pr

ox
.  

2 
m

Figure A.3: Photograph of a dry dilution refridgerator at WMI (Used with kind
permission by Achim Marx).

cryostat has been used to do the main measurements described in this thesis.



Appendix B

Derivation of Hamiltonians

Here, we want to show in detail how to derive the system Hamiltonian for a (quan-
tum) circuit.

B.1 LC resonator
We start by investigating one of the most basic circuits, a lumped element parallel
LC resonator. We will proceed strictly by the recipe presented in Sec. 2.2.

circuit
diagram

descriptive
variables

system of
equations

Lagrangian
Hamiltonian

Operators
Commutation

LC resonator

An LC resonator consists of an inductor Lr and a capacitor Cr in parallel (see
Fig. B.1). In order to allow for a drive, we couple it to a voltage source via a cou-

o
Vext

a b

Cr

Cg

Lr

Figure B.1: Equivalent circuit for an LC-resonator.

pling capacitor Cg. First thing to do is to identify the circuit nodes in the equivalent
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circuit and select a root node 0 (usually ground is used for this one).

descriptive
variables

circuit
diagram

system of
equations

Lagrangian
Hamiltonian

Operators
Commutation

LC resonator

Now, we define the descriptive node variables as ϕi, Qi for flux and charge at every
node i, and we define descriptive variables for each component. This procedure cor-
responds to defining descriptive variables for each branch, as each branch contains
exactly one component. We decide to use charge Q and flux Φ for the nodes and
current I and voltage V for components, because it is more intuitive. From a formal
point of view, it might be more convenient to express all variables in Q and Φ.

# descriptive variables

o Φo = 0, Qo = 0

a Φa, Qa

b Φb, Qb

# start end variables

1 0 a V1, I1

2 0 a V2, I2

3 a b V3, I3

4 b 0 V4, I4

Table B.1: Circuit nodes and branches of circuit shown in Fig. B.1. The symbol ”#”
stands for node label, which can be o, a or b or branch number, which can be 1, 2, 3,
or 4.

o

V1

I1

V3

I3

V2

I2
V4 I4

a
Фa,Qa

b
Фb,Qb

Figure B.2: All nodes in this equivalent circuit are marked in red. Ground is marked
with o, without loss of generality we set Φo = 0, Qo = 0.

Figure B.2 shows the labeled circuit diagram. Table B.1 shows the nodes, branches
and connected descriptive variables.
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descriptive
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circuit
diagram

system of
equations

Lagrangian
Hamiltonian

Operators
Commutation

LC resonator

In this step, we extract a system of equations describing the circuit using the nodes
variables defined above. This takes two sources for relations between the descriptive
variables:

• Topology: Use node voltages (KVL) and KCL to make use of the circuit
topology.

• Component properties: Use physical properties of components expressed in
BCEs.

In Fig. B.2 we can see that the node voltage Va = (Φ̇a− Φ̇o) = (Φ̇a−0) = Φ̇a is equal
to the voltage V1, V2 dropping at branch 1, 2, respectively. The corresponding KVL
implies that the voltages in a loop sum up to zero, V1 − V2 = 0. Here, we account
for the opposite direction of V1 and V2 by multiplication the latter with (−1).
To complete the information that can be gained from the circuit topology, we use
KCL to investigate the currents in each node. We start with node a (see Fig. B.3).
We see three currents flowing out of this nodes, I1, I2, and I3. According to KCL,

I1

I2

I3

V2

V1

V3

V4 I4

a
Фa,Qa

b
Фb,Qb

Figure B.3: KCL: The sum of the currents flowing out a node equals the sum of
incoming currents (I1 + I2 + I3=0).

they have to add up to the sum of the incoming currents, which is zero in this case.
Finally, we use the branch constitutive equations to exploit the physical properties
of the circuit component to obtain the complete system of equations. Based on the
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# branch voltage
a Va = (Φ̇a − Φ̇o) = (Φ̇a − 0) = Φ̇a

a Va = Φ̇a = V1

a Va = Φ̇a = V2

b Vb = Φ̇b = V4 = Vext

# component BCE
1 Inductor I1 =

Φa

Lr

2 Capacitor I2 = CrΦ̈a

3 Capacitor I3 = Cg(Φ̈b − Φ̈a)

4 V-source V4 = Φ̇b = Vext

# KCL
a I1 + I2 + I3 = 0

b I4 = I3

Table B.2: Relations between descriptive variables gained from circuit topology and
branch BCEs. The symbol ”#” stands for node label, which can be a or b or branch
number, which can be 1, 2, 3, or 4.

KCL for node a, we can combine the equations in Tab. B.2 to a single equation:

Φa

Lr
+ CrΦ̈a = Cg

(
V̇ext − Φ̈a

)
. (B.1)

By defining CΣ = Cr + Cg as the total capacitance, we can rearrange Eq. (B.1) to:

CΣ

(
Φ̈a −

Cg

CΣ

V̇ext

)
= −Φa

Lr
. (B.2)
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Next, we construct the Lagrangian L = T − U of the system, contributing the ca-
pacitive terms (CΦ̇2/2 ) to kinetic energy, and inductive terms (Φ̇2/(2L) ), as well
as the voltage source (CgV

2
ext/2), for potential energy.

L(Φa, Φ̇a) =
Cr

2
Φ̇2

a +
Cg

2

(
Vext − Φ̇a

)2
︸ ︷︷ ︸

T

−
(

Φ2
a

2Lr
+
CgV

2
ext

2

)
︸ ︷︷ ︸

U

. (B.3)

We use the Euler-Lagrange equation d
dt

∂L
∂Φ̇i

= ∂L
∂Φi

to obtain the equations of
motion, Eq. (B.2), from L, and thus confirm that Eq. (B.3) is a system Lagrangian.
Subsequently, we derive the conjugate momenta Qi = (∂L)

(
∂Φ̇i

)
. For the simple

resonator circuit, we we have only one momentum with index i = a:

Qa =
∂L
∂Φ̇a

= (Cr + Cg)Φ̇a − CgVext = CΣΦ̇a − CgVext (B.4)

Applying the Legendre transformation H = QΦ̇−L, we get the system Hamiltonian:

H(Φa, Φ̇a) = QΦ̇a − L (B.5)

=
(
(Cr + Cg) Φ̇a − CgVext

)
Φ̇a− (B.6)[

CrΦ̇
2
a

2
+
Cg

2

(
Φ̇a − Vext

)2
− Φa

2Lr
− CgV

2
ext

2

]

=
CΣ

2
Φ̇2

a +
Φ2

a

2Lr
. (B.7)

Using CΣ, Eq.(B.4), and defining Qg = −CgV as the externally induced charge, we
arrive at the Hamiltonian of a capacitively coupled, driven LC-resonator:

HLC(Qa,Φa) =
1

2CΣ

(Qa −Qg)
2 +

Φ2
a

2Lr
(B.8)
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This last step is necessary only for the description of circuits within the framework
of quantum mechanics. In this case, we need to promote the conjugate variables to
operators, thus:

Qa −→ Q̂a, Φa −→ Φ̂a

For the system Hamiltonian, we get

ĤLC(Q̂a, Φ̂a) =
1

2CΣ

(
Q̂a −Qg

)2
+

Φ̂2
a

2Lr
, (B.9)

where we have to note,that Qg still is a classical variable. For the conjugate momenta
we introduce a commutation relations.

[Φ̂a, Q̂a] = iℏ, (B.10)

or, equivalently, a quantummechanical uncertainty relation

∆Φa∆Qa ≥ 1

2
ℏ. (B.11)
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B.2 Cooper pair box
The very same procedure as above can be conducted to obtain the Hamiltonian of
the basic charge qubit, a Cooper pair box (CPB). The circuit has a formal similarity
with that of the LC resonator. This property is not very suprisung, because, as we
already mention in the main text, the potential of a transmon qubit (also a charge
qubit) can be treated as a perturbation to the harmonic potential of a resonator.
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The circuit diagram of a CPB is shown in Fig. B.4. The qualitative difference be-
tween the circuits is that the CPB involves a nonlinear inductance introduced by
the Josephson junction. Quantitatively also the capacitance Cr is replaced by the
capacitance of the Josephson junction CJ .

o
Vext

a b

CJ

Cg

LJ

Figure B.4: Equivalent circuit for a Cooper pair box (CPB). Compared to the lumped
element resonator circuit, in the CPB circuit, we replace the linear inductance (Lr

in Fig. B.1) by the nonlinear Josephson inductance LJ .
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This step is exactly the same as for the LC resonator, because the topology is iden-
tical.
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In this step, the only difference to the linear resonator is that the BCE of the in-
ductor is replaced by the BCE of a Josephson junction (JJ). As before, we start by
applying KVL and KCL on the voltages and currents shown in Fig. B.5. Finally, we

I1

I2

I3

V2

V1

V3

V4 I4

a
Фa,Qa

b
Фb,Qb

Figure B.5: KCL: The sum of the currents flowing out a node equals the sum of
incoming currents (I1 + I2 + I3=0).

again use the branch constitutive equations to exploit the physical properties of the
circuit component to obtain the complete system of equations.

# branch voltage
a Va = Φ̇a − Φ̇o = Φ̇a − 0 = Φ̇a

a Va = Φ̇a = V1

a Va = Φ̇a = V2

b Vb = Φ̇b = V4 = Vext

# component BCE
1 JJ I1 = Ic sin(φSC)

2 Capacitor I2 = CrΦ̈a

3 Capacitor I3 = Cg(Φ̈b − Φ̈a)

4 V-source V4 = Φ̇b = Vext

# KCL
a I1 + I2 + I3 = 0

b I4 = I3

Table B.3: Relations between descriptive variables gained from circuit topology and
branch BCEs. The symbol ”#” stands for node label, which can be a or b or branch
number, which can be 1, 2, 3, or 4.
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In the end, the system condenses to a single equation:

Ic sin(φSC) + CJΦ̈a = Cg

(
V̇ − Φ̈a

)
. (B.12)

By defining CΣ = CJ +Cg as the total capacitance, we can rearrange Eq. (B.12) to:

CΣ

(
Φ̈a −

Cg

CΣ

V̇

)
= −Ic sin(φSC). (B.13)

Remark: Equation (B.13) is valid for the CPB. To describe the transmon qubit
circuit (see Fig. B.6), we assume the SQUID loop to act as a single tunable junction
with LJ(fext) and CJ . Additionally, we extend the definition of the total capacitance
to CTM = Csh +CJ +Cg, to account for the shunt capacitor of the circuit. Thus, we
get

CTM

(
Φ̈a −

Cg

CTM
V̇

)
= −Ic(fext) sin(φSC). (B.14)

o
Vext

a b
CJ

Csh

Cg

LJ

Figure B.6: Equivalent circuit for a transmon qubit. Compared to the Cooper pair
box, in this circuit, we add a shunt capacitor Csh.
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Here, the Lagrangian of the system the equation of motion, Eq. (B.13), we find the
Lagrangian of the system.

L(Φa, Φ̇a) =
Cr

2
Φ̇2

a +
Cg

2

(
Vext − Φ̇a

)2
︸ ︷︷ ︸

T

−
(
EJ cos(φSC) +

CgV
2

ext
2

)
︸ ︷︷ ︸

U

. (B.15)

Applying the Legendre transformation, also here, the equation of motion is found
to have been derived before in Eq. (B.13).
We derive the conjugate momentum

Qa =
∂L
∂Φ̇a

= CΣΦ̇a − CgV (B.16)

Applying the Legendre transformation H = QΦ̇−L, we get the system Hamiltonian:

HCPB(Qa,Φa) =
1

2CΣ

(Qa −Qg)
2 − EJ cos(φSC), (B.17)

where Qg = −CgV is the externally induced charge.

For the transmon qubit, we find

HTM(Qa,Φa) =
1

2CTM
(Qa −Qg)

2 − EJ(fext) cos(φSC) (B.18)
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Also for the QPB, we need to promote the conjugate variables to operators, thus:

Qa −→ Q̂a, Φa −→ Φ̂a

Using φSC = Φ(2π)/Φ0 (see Appendix C.2), for the system Hamiltonian, we get:

ĤCPB(Q̂a, Φ̂a) =
1

2CΣ

(
Q̂a −Qg

)2
− EJ cos(φ̂SC) (B.19)

and
ĤTM(Q̂a, Φ̂a) =

1

2CTM

(
Q̂a −Qg

)2
− EJ(fext) cos(φ̂SC). (B.20)

Conjugate momenta and quantum mechanical uncertainty relation read

[Φ̂a, Q̂a] = iℏ (B.21)

∆Φ∆Q ≥ 1

2
ℏ (B.22)
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Appendix C

Cooper pair box and transmon as
qubit

To derive the Hamiltonian of a Cooper pair box (CPB) and a transmon qubit, we
use a three-step procedure:

1. Derive a Hamiltonian for the LC resonator.

2. Replace the inductance of the resonator by the Josephson inductance.

3. Restrict to two energy levels and use Pauli operators.

C.1 Harmonic oscillator
The Hamiltonian of the harmonic oscillator (see Tab. 2.1) is

HHO =
Q̂2

2C
+

Φ̂2

2L
(C.1)

or, equivalently,

HHO =
C ˆ̇Φ2

2
+

Φ̂2

2L
(C.2)

A summary of the quantities and relation required to obtain Eq. (C.2) from Eq. (C.1)
can be found in Tab. C.1.

C.2 Introduce nonlinear inductance
To make the LC-resonator nonlinear, we replace the inductor by a Josephson junc-
tion [see Eq. 2.81 for the Josephson inductance] to create a Cooper pair box (CPB,

137
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Capacitor
1. Constitutive equation V (t) = 1

C
(
∫
I(t)) I(t) = CV̇ (t)

2. Energy E =
∫
I(t′)V (t′)dt′ E =

∫
I(t′)V (t′)dt′

3. Substitute Ecap(I) =
1
C

∫
I(t′)

(∫
I(t′)

)
dt′ Ecap(V ) = C

∫
V (t′)V̇ (t′)dt′

4. Integration by parts and Q =
(∫

I
)

4. Result in I and V Ecap(I) =
1
2C

(∫
I
)2

Ecap(V ) = C
2
V 2

4. Result in Q and ϕ Ecap(Q) =
1
2C
Q2 Ecap(ϕ) =

C
2
ϕ̇2

Inductor
1. Constitutive equation V (t) = Lİ(t) I(t) = 1

L
(
∫
V (t))

2. Energy E =
∫
I(t′)V (t′)dt′ E =

∫
I(t′)V (t′)dt′

3. Substitute Eind(I) = L
∫
I(t′)İ(t′)dt′ Eind(V ) = 1

L

∫
(
∫
V (t′))V (t′)dt′

4. Integration by parts and ϕ =
(∫

V
)

4. Result in I and V Eind(I) =
L
2
I2 Eind(V ) = 1

2L
(
∫
V )2

4. Result in Q and ϕ Eind(Q) =
L
2
Q̇2 Eind(ϕ) =

1
2L
ϕ2

Table C.1: Energy of capacitor and inductor

see Fig. B.4) or by a capacitively shunted dc SQUID loop to design a transmon qubit
(see Fig. B.6). In the latter case, the dc SQUID loop is treated as a single Josephson
junction with tunable Josephson energy EJ.

Following Ref. [38], we introduce a relation between the descriptive variable Φ

and the gauge invariant phase difference φSC. Integrating Eq. (2.79) we find∫
∂tφSCdt =

2π

Φ0

∫
V dt. (C.3)

Using the definition of flux Φ =
∫
V dt in Eq. (2.24), we substitute its derivative

V = ∂tΦ and find ∫
∂tφSCdt =

2π

Φ0

∫
∂tΦdt (C.4)

=⇒ ∂tφSC =
2π

Φ0

∂tΦ (C.5)

=⇒ φSC ∝ 2π

Φ0

Φ. (C.6)

Thus, from now on we will use 2π
Φ0
Φ instead of the gauge invariant phase difference
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φSC. Following Ref. [38] and using Eq. (B.17) and Eq. (B.18), we find

ĤCPB(Q̂a, Φ̂a) =
1

2CΣ

(
Q̂a −Qg

)2
− EJ cos(2π

Φ̂a

Φ0

) (C.7)

ĤTM(Q̂a, Φ̂a) =
1

2CΣ

(
Q̂a −Qg

)2
− EJ(fext) cos(2π

Φ̂a

Φ0

) (C.8)

C.3 Restriction to two energy levels

Here, we transform the Hamiltonians derived in Eq. (C.7) and Eq. (C.8) to use num-
ber state operators [38, 86, 87]. Charge and flux can be expressed in terms of number
operators and number states by

Q̂ = −2e
∑
n

n̂|n⟩, n ∈ Z (C.9)

e±iφ̂ =
∑
n

|n⟩⟨n± 1|. (C.10)

Using the equations C.9, C.10, and the trigonometric identity cos(ϕ) = 1/2(exp(iϕ)+

exp(−iϕ)) we come to:

ĤQPB =
∑
n

(
EQ (n− ng)

2 |n⟩⟨n| −
EJ(2π

Φ̂a

Φ0
)

2
(|n+ 1⟩⟨n|+ |n− 1⟩⟨n|)

)
. (C.11)

Now, we limit the possible states of the hilbert space to |0⟩ and |1⟩,

ĤCPB =

(
EQ (0− ng)

2 |0⟩⟨0| −
EJ(2π

Φ̂a

Φ0
)

2
(|1⟩⟨0|)

)
(C.12)

+

(
EQ (1− ng)

2 |1⟩⟨1| −
EJ(2π

Φ̂a

Φ0
)

2
(|0⟩⟨1|)

)
. (C.13)

Subtracting an energy offset EQ

(
n2

g − (1− ng)/2
)
· I, we obtain

ĤCPB = EQ
1− 2ng

2
(|0⟩⟨0| − |1⟩⟨1|) (C.14)

+
EJ(Φ)

2
(|0⟩⟨1|+ |1⟩⟨0|) , (C.15)
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with Ech(ng) = EQ(1 − 2ng), the Pauli operators σz = |0⟩⟨0| − |1⟩⟨1| and σx =

|0⟩⟨1|+ |1⟩⟨0|, and the identity operator I, we finally get

ĤCPB = −Ech(ng)

2
σ̂z +

EJ(2π
Φ̂a

Φ0
)

2
σ̂x (C.16)

Remark: Comparing the Hamiltonian in Eq. (C.16) with Leggett et al [16] we identify
ℏϵ = Ech and ℏ∆0 = EJ.



Appendix D

Coplanar waveguide transmission
line

As mentioned in Sec. 2.3.1 we focus on co-planar waveguides [see Fig. D.1(a)]. One

5
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Figure D.1: (a) 3D model of a piece of a coplanar waveguide (CPW), (b) front
view of CPW, green: superconducting material, grey Si-substrate, t...thickness of
superconducting film, h...height of substrate, g...gap width, w...width of center con-
ductor, (c) Electrical field lines (blue) in a coplanar waveguide (green).

key advantage of these structures is that they can be fabricated using well known
lithographic techniques and that their characteristic impedance Z0 is defined mainly

141
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by the effective dielectric constant ϵeff of substrate and metalization and the geo-
metric dimensions, g (gap width), and w (center conductor width) of the structure
[see Fig. D.1(b)]. For our parameters, t ≈ 100 nm (thickness of superconducting
metalization) and h ≈ 550 µm (substrate height), the relation t≪ h applies. Then,
an analytic expression for Z0 can be derived by conformal mapping techniques [88,
89]:

Z0 =
30π
√
ϵeff

K(k′)

K(k)
, with: k(′) = k(′)(w, g), (D.1)

where K(k′) is the elliptical integral.
In CPWs, we find transverse electromagnetic (TEM) modes[23], whose electric field
distribution is shown in Fig. D.1(c). The electric field in TEM modes is oriented
perpendicular to the direction of propagation. Modeling a transmission line, we have

Qi-1  Фi-1 Qi  Фi Qi+1  Фi+1

Δx

C0

L0

C0

L0

C0

L0

Figure D.2: To model a transmission line, it is cut into pieces and every piece is
modeled as LC-resonator. Letting the length of the pieces go to zero ∆x −→ 0 we
end up with an infinite series of LC-resonators.

to account for its non-negligible size along the propagation direction, compared to
the microwave wavelength. We do this by cutting it into infinitely many small pieces
of length ∆x. Each piece is modeled as a LC-resonator. The equivalent circuit for
a transmission line then becomes an infinite series of LC-resonators (Fig. D.2).

Hamiltonian

To derive the Hamiltonian of a transmission line, we follow the recipe given in Sec. 2.2
and start by finding a Lagrangian. As seen above, we model a transmission line of
length L as an infinite chain of harmonic oscillators. From Eq. (2.33) we know the
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Lagrangian for a single LC-resonator and thus get

L = T − U =
N∑
i=1

LLC,i (D.2)

=
N∑
i=1

(
Q2

i

2C0

)
−

N−1∑
i=1

(
(Φi+1 − Φi)

2

2L0

)
(D.3)

=
N∑
i=1

∆x

2c0

(
Qi

∆x

)2

−
N−1∑
i=1

∆x

2l0

(
(Φi+1 − Φi)

∆x

)2

. (D.4)

In Eq. (D.4), for infinitesimally small pieces of the transmission line of length ∆x =

L/N , the capacitance and inductance of a single infinitesimal small piece are C0 =

c0∆x and L0 = l0∆x, where c0 and l0 are introduced as the capacitance and induc-
tance per unit length. We replace sums by integrals in Eq. (D.4), define the charge
density ρ(xi) = Qi/∆x and flux derivative ∂xϕ(xi) = (Φi+1−Φi)/∆x , and formulate
the Lagrangian as an integral:

L =

∫
dx

{
ρ(x)2

2c0
− (∂xϕ(x))

2

2l0

}
(D.5)

=

∫
dx

{
c0(∂tΦ)

2

2
− (∂xϕ(x))

2

2l0

}
, (D.6)

where we have used the conjugate momentum definition ρ = c0Φ̇. In the same way
as for the Lagrangian in Eq. (D.6), we obtain:

H =

∫
dx

{
ρ(x)2

2c0
+

(∂xϕ(x))
2

2l0

}
, (D.7)

=

∫
dx

{
c0Φ̇

2

2
+

(∂xϕ(x))
2

2l0

}
, (D.8)

Using ∂µ ≡ (∂/(c∂t),∆) we find this to be of the same form as the massless Klein-
Gordon equation and thus having equivalent solutions [55].
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