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Abstract

This thesis discusses the impact of charge and spin ordering on electron and lattice

excitations in the rare-earth tritellurides and in MnSi. Using Raman spectroscopy,

anisotropies in the electron dynamics are studied as a function of temperature, mag-

netic field and applied pressure. In the tritellurides band hybridization was identified

as an important factor for charge density wave formation. In MnSi phonons and

conduction electrons respond to both the helimagnetic phase transition and the fluc-

tuations above.

Kurzzusammenfassung

In dieser Arbeit werden die Auswirkungen von Ladungs- und Spinordnung auf Elektro-

nen- und Gitteranregungen in den Seltenerd-Tritelluriden und in MnSi diskutiert. Mit

Raman Spektroskopie wurden Anisotropien in der Elektronendynamik bei tiefen Tem-

peraturen, im Magnetfeld und unter hohem Druck untersucht. In den Tritelluriden

trägt die Bandhybridisierung entscheidend zur Entstehung der Ladungsdichtewellen

bei. In MnSi reagieren Phononen und Leitungselektronen auf den helimagnetischen

Phasenübergang und die Fluktuationen bei höheren Temperaturen.
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Chapter 1

Introduction

A system of atoms, electrons, and spins always tries to find a favourable arrange-

ment that minimizes its free energy in a competition of various interactions such as

Coulomb or exchange interaction and entropy. Upon tuning external parameters such

as temperature, pressure or magnetic field, the balance shifts, and abrupt changes of

structure or dynamics occur upon crossing critical values. A phase transition takes

places. The most familiar example are certainly the phase transitions of water from

ice to liquid and vapour defining the Celsius temperature scale.

An active field of contemporary research is the investigation of ordered phases

in the electronic system such as superconductivity, charge- and spin-density waves,

itinerant magnetism or complex spin textures [1–6]. Their intriguing magnetic and

electronic properties are not only interesting from an academic point of view, but are

used in numerous technological applications such as magnetic data storage. In this

thesis, charge and spin order in metallic materials and the related interactions with

the crystal lattice are studied.

Charge density waves (CDW) are periodic modulations of the electron density in

real space. In low dimensional materials, the transition into the CDW phase can be

driven by the electronic system showing a divergent response to an external pertur-

bation. The divergence is related to the topology of the Fermi surface, particularly

to the presence of parallel surface sheets that can be mapped onto each other by

a single vector in momentum space, referred to as nesting [5]. As a consequence,

a finite electron-phonon coupling leads to periodic distortion of the lattice. Quite

surprisingly, it has been shown theoretically that, in the quasi one-dimensional case,

an unconventional CDW can also be triggered purely by phonons [7], i.e. the lattice.

Unconventional, in this context, means that the CDW energy gap is anisotropic due
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Chapter 1 Introduction

to anisotropic electron-phonon coupling. Of course, in real materials combinations

of electronic instabilities and anisotropic electron-lattice interactions drive the CDW

phase transition, and several recent studies raise the question as to whether nest-

ing alone is sufficient to explain the observed CDW ordering vector, particularly in

dimensions higher than one [8–12].

Johannes and Mazin [12] argue that only a tiny fraction of the observed charge

ordering phase transitions, if any at all, is due to nesting alone, since electronic insta-

bilities are easily destroyed even by small deviations from perfect nesting conditions.

Rather, a concerted action of the electronic and ionic subsystem drives the phase tran-

sition [12]. Therefore, several mechanisms beyond purely electronic ones are discussed

including orthorhombicity, the tendency towards phase separation and nematicity via

the Coulomb interaction [10,13–15]. Strongly momentum dependent electron-phonon

interaction was identified to play an important role as well as competing instabilities,

such as magnetism or superconductivity [2, 11, 12,16].

Can the conditions for the various types of CDW formation and orientation be

accessed experimentally? Already early analyses of the Ginzburg-Landau functional

showed that the electron-phonon coupling strength determines the energy of the am-

plitude fluctuations of the CDW order parameter, where the order parameter can be

associated with the CDW condensate density [5]. The amplitude fluctuations can be

directly observed in a Raman experiment and are usually referred to as amplitude

modes (AM). Then the electron-phonon coupling constant can be derived as soon as

the energy of the CDW phonon is known from either theory or other sources [5, 17].

In addition, the excitation gap in the electronic spectrum can be studied by light

scattering providing information on the energy gain in the CDW state. In many

cases, the transition temperatures were found to be much lower than expected from

the energy gaps as a result of fluctuations [18]. Therefore, one may wonder whether

the related fluctuations can be observed directly. It will in fact be one of the results

to be presented below, that the fluctuations can be observed directly in the Raman

experiment if the samples are sufficiently clean [19]. As another side effect of clean

samples, the amplitude mode can be scrutinized in the entire CDW phase including

a range of approximately one degree below the transition temperature thus substan-

tially augmenting earlier work [20, 21]. In this context, the rare-earth tritellurides

turned out to be ideally suited samples and the Raman technique has the capability

to provide a host of useful new information on CDW formation.
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Similar advantages apply in the case of spin order. Here, the focus is on itinerant

magnetism contributing crucially to, e.g., the magnetism in iron, cobalt and nickel.

Major achievements in understanding the mechanism were obtained in the 1970s and

1980s in the framework of spin fluctuation theory [22, 23]. In this context, MnSi is

one of the most interesting compounds due to its well defined hierarchy of energy

scales [24]. The ferromagnetic exchange is the strongest scale and leads to a parallel

alignment of the spins. The Dzyaloshinskii-Moriya interaction is weaker than the

exchange energy. It is proportional to the cross product of spins and hence favours a

perpendicular alignment of neighbouring magnetic moments [25–27]. Finally on the

weakest scale, crystal electric field effects pin the spin arrangement in the crystal [28].

The complex interplay of these competing interactions results in a rich phase diagram

as a function of temperature, magnetic field [29], doping [30] and pressure [31].

The interest in MnSi revived in recent years, when an unusual non-Fermi liq-

uid (NFL) behaviour was observed in high pressure experiments [32]. The low-

temperature resistivity of MnSi switches from the Fermi liquid like T 2 behaviour

below a critical pressure pc to a T 3/2 temperature dependence above pc [33]. It was

found that the phase transition at pc is of first order rather than being continuous,

and that the NFL behaviour is accompanied by partial magnetic order on short time

scales in a small pressure and temperature range [31, 34, 35]. In the regime of the

NFL resistivity, Ritz et al. observed an additional contribution to the Hall signal

suggesting that spin correlations with non-trivial topology may be responsible for the

breakdown of Fermi liquid theory [36]. A candidate for these spin correlations are

topologically protected spin whirls, referred to as skyrmions, showing a similar topo-

logical Hall signal [37,38]. Skyrmions were first observed in MnSi at ambient pressure

and with applied magnetic field via small angle neutron scattering (SANS) [39]. The

discovery of the skyrmion lattice [39], representing a new type of magnetic order, fur-

ther boosted the scientific interest in itinerant helical magnets. Topological protection

in combination with a low power consumption for modifying the spin arrangement

makes these materials interesting for future applications in ultra-dense data storage,

spintronics, or for magnetic structures on the nanoscale [38,40–43].

In the phase diagram of MnSi, the skyrmion pocket is enclosed by the helimagnetic,

the conical and the fluctuation disordered state. Similar to the CDW transition

discussed above, fluctuations play also an important role in spin systems. Initially,

the phase transition from paramagnetism to helimagnetism was considered to be
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Chapter 1 Introduction

second order as expected from mean field theory and compatible with most of the

experiments [32, 44, 45]. However, these findings were questioned in early electron

spin resonance (ESR) experiments [46] and it was found recently that the transition

is indeed first order [47,48]. In a scenario, first considered by Brazovskii [49], isotropic

chiral fluctuations inhibit the phase transition until it becomes first order at a reduced

transition temperature TC [48]. The intensity of the critical fluctuations is distributed

almost uniformly on a sphere in momentum space, meaning that the length of the

ordering vector, corresponding to the pitch of the helix, is already fixed above TC while

the ordering direction is not. In a magnetic field, the fluctuations are quenched and

the phase transition reverts to conventional second order at a field-induced tricritical

point [50].

The onset of helimagnetic order has of course a broad impact on the physical prop-

erties. For instance, the optical conductivity and the effective mass of the charge

carriers were studied as a function of frequency and temperature via infrared spec-

troscopy [51]. Mena et al. find that the optical conductivity cannot be described

by the standard Drude formalism in the helical phase below TC. Rather, the mea-

surements are compatible with a phenomenological approach developed for materi-

als having a strongly anisotropic scattering rate or showing non-Fermi liquid (NFL)

behaviour [52]. Conventional transport, however, rules out NFL behaviour without

applied pressure [32]. Indeed, anisotropic electron scattering can be expected in MnSi

where multiple bands form a complex multi-sheeted Fermi surface [53,54]. In contrast,

a momentum independent carrier lifetime is assumed in the theoretical description of

the topological Hall effect present in the skyrmion phase [37,55,56].

An experimental probe that provides some momentum resolution could overcome

the limitations of conventional and optical transport measurements and thus can be

extremely useful to address the type of questions raised above. Raman spectroscopy

can meet these requirements. Via the Raman selection rules, excitations of different

symmetries can be detected independently, and separate regions of the Brillouin zone

can be probed [57]. The impact of phase transitions on optical phonons can be

studied as well as the anisotropy of charge- [19,58] or spin-fluctuations [59]. Moreover,

electronic properties [57] such as the k-dependence of the carrier relaxation rates or

the CDW energy gap can be investigated.

However, the low scattering cross section in MnSi hampered inelastic light scatter-

ing below room temperature up until now. In a major effort during this dissertation,
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the optical setup for Raman scattering measurements was augmented facilitating ex-

periments at low temperature, in magnetic fields and at high pressure.

The thesis is organized as follows: Chapter 2 compiles the relevant concepts of

electronic Raman scattering, before detailing the Raman and high pressure facilities

largely built up during this work. In Chapter 3, an introduction to CDWs and the

material class of rare-earth tritellurides is given. Specifically, the Raman results on

collective excitations of the CDW amplitude, charge fluctuations above the phase

transition and the anisotropy of the CDW energy gap are discussed. Chapter 4

briefly introduces the magnetic phases and the crystal structure of MnSi. A short

review of optical conductivity results precedes the discussion of the Raman results

which include the temperature dependence of the phonons, signatures of fluctuations

above TC and the temperature and symmetry dependence of electronic excitations.

Chapter 5 summarizes the results.
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Chapter 2

Experiment

2.1 Theoretical concepts

This section is intended to be a brief compilation of concepts used later in this the-

sis but not a pedagogical introduction to Raman scattering. It covers only Raman

scattering from electrons including symmetry arguments and selection rules. As an

exception, the effective mass approximation for Raman scattering is described in

some detail. The theoretical description is adopted mainly from the review article by

Devereaux and Hackl [57] where a more detailed description can be found.

2.1.1 Electronic Raman scattering

Electronic Raman scattering measures the cross section for scattering of photons off

electrons in a solid. Typically one is interested in the scattering from conduction

electrons close to the Fermi surface. The number of scattered photons per second

Ṅ(ω, T ) is proportional to the differential cross section [57,60,61]

Ṅ(ω, T ) ∝ ∂2σ

∂Ω ∂ωs
= ~r2

0

ωs
ωi
R (2.1)

which is determined by the probability that an incident photon of frequency ωi is

scattered into a solid angle interval between Ω and Ω + dΩ and a frequency window

between ωs and ωs + dωs. Here, r0 = e2/4πε0mc
2 is the Thompson radius of an

electron, and R the transition rate determined via the Fermi golden rule,

R =
1

Z
∑
I,F

exp−βEI |MF,I |2 δ(EF − EI − ~ω). (2.2)

7



Chapter 2 Experiment

Here, Z is the partition function and β = 1/kBT . MF,I = 〈F |M |I〉 is the matrix

element for the transition from the initial to the final state due to the effective light

scattering operator M that contains the photon-electron interaction; the transferred

energy ~ω = ~ωi − ~ωs is referred to as Raman shift. For a general discussion of

the matrix element MF,I the reader is referred to Ref. [57]. At this point, symmetry

arguments and simplifying assumptions have to be applied to arrive at treatable

solutions.

2.1.2 Symmetry and light polarizations

The charge-density fluctuations induced by the light scattering process, basically,

have the symmetry imposed by the polarization direction of incident and scattered

photons. Thus, the light polarizations êi,s are the key to access the symmetry proper-

ties of excitations in the sample. Methods of group theory are applied to classify the

polarization dependence of the Raman response. It has been shown that the matrix

element MF,I can be decomposed into basis functions of the irreducible point group

of the crystal [60], meaning that the contributions to MF,I can be decomposed into

different symmetries which can be accessed with appropriate light polarizations [57].

In case of cubic symmetry (point group O) the decomposition1 can be written as

MF,I = OA1(exi e
x
s + eyi e

y
s + ezi e

z
s)

+O(1)
E (2ezi e

z
s − exi exs − e

y
i e
y
s) + O(2)

E (exi e
x
s − e

y
i e
y
s)

+O(1)
T1(exi e

y
s − e

y
i e
x
s) + O(2)

T1(eyi e
z
s − ezi eys) + O(3)

T1(ezi e
x
s − exi ezs)

+O(1)
T2(exi e

y
s + eyi e

x
s) + O(2)

T2(eyi e
z
s + ezi e

y
s) + O(3)

T2(ezi e
x
s + exi e

z
s).

(2.3)

Thereby, the light polarizations ex,y,zi,s are connected with the symmetry contribu-

tions to the matrix element. The projected operator Oµ for the symmetry µ describes

the light-matter interaction and also includes normalization factors.

The pure symmetries cannot be accessed individually by a single set of polariza-

1Point group O was used for the symmetry decomposition in MnSi, although its space group
P213 corresponds to the point group T (23) [62]. However, T (23) contains only the three
irreducible representations A, E, and T implying that, e.g., x′y′ + xy − rl ≡ 0. In Experiment,
this holds true only for the phonons (cf. Ref. [63]) but not for the continua having a strong
antisymmetric component xy+x′y′−rl = 2T1 [see Fig. 4.10]. A distinction between the symmetric
T2 and antisymmetric T1 contributions is only possible in the next higher point group O with
the replacements A→ A1, E → E, and T → T2 [64].
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2.1 Theoretical concepts

tions, but only in sums of at least two irreducible representations (i.e. symmetries).

For the six polarization combinations used in the following, this reads [65]:

xx = A1 + 4
3
E xy = T1 + T2

x′x′ = A1 + 1
3
E + T2 x′y′ = E + T1

rr = A1 + 1
3
E + T1 rl = E + T2

(2.4)

To simplify the notation, the measurement configuration is given in Porto nota-

tion, e.g. exi e
x
s is abbreviated as xx. Here, x and y label polarizations aligned with

the crystal axes of the cubic unit cell, x′ and y′ are rotated by 45◦ with respect to

these axes, and r, l denote right and left circularly polarized light, respectively. If

two spectra of each line in Eq. (2.4) are added up, the entire response is obtained.

Consequently, the three sums should return the same result and therefore can be used

to check the consistency of the measurements (Figs. 3.15, 3.16 and 4.10).

Via linear combinations of measured spectra the response of an individual symme-

try can be obtained

A1 = 1
3
[(xx+ x′x′ + rr)− (x′y′ + rl)]

E = 1
3
[(xx+ x′y′ + rl)− 1

2
(xy + x′x′ + rr)]

T1 = 1
3
[(xy + x′y′ + rr)− 1

2
(xx+ x′x′ + rl)]

T2 = 1
3
[(xy + x′x′ + rl)− 1

2
(xx+ x′y′ + rr)].

(2.5)

The system of equations is over-determined, and already a subset of four measured

spectra is sufficient to calculate the pure symmetries, e.g. E = (x′y′ + rl− xy)/2. In

practice, however, it was useful to compare the symmetry decompositions obtained

from different combinations of orientations to ensure the consistency of the results.

The pure symmetries provide information on, e.g., phonon symmetry, collective modes

or spin excitations. In the case of electron-hole excitations, different parts of the

Brillouin zone can be accessed separately, thus facilitating a finite k-resolution [57,66].

9



Chapter 2 Experiment

2.1.3 The effective mass approximation

For quantitative predictions it is necessary to simplify the expression for the Raman

scattering cross section [Eqs. (2.1) and (2.2)]. To this end, only single-particle ex-

citations in weakly interacting systems are considered. Accounting only for Bloch

electrons, indexed by momentum quantum numbers, the Raman transition rate R
[cf. Eq. (2.2)] simplifies to the Raman density-density correlation function S̃ connected

to the effective Raman susceptibility χ̃ via the fluctuation dissipation theorem [67,68],

S̃(q, ω) = − 1

π
[1 + n(ω, T )] χ̃′′(q, ω) (2.6)

with n(ω, T ) being the Bose-Einstein distribution, and

χ̃(q, ω) = 〈〈 [ρ̃(q), ρ̃(−q)] 〉〉ω. (2.7)

Here, 〈〈 〉〉 denotes a thermodynamic average [57]. The Raman density ρ̃ reads

ρ̃(q) =
∑
k,σ

γ(k,q) c†k+q,σ ck,σ. (2.8)

The scattering amplitude γ is determined from the Raman matrix elements γα,β

(Raman vertex) and the polarizations of incident and scattered photons,

γ(k,q) =
∑
α,β

γα,β(k,q) eαi e
β
s , (2.9)

with

γα,β(k,q) = δα,β +
1

m

∑
kν

(
〈k + q| pβs |kν〉〈kν | pαi |k〉

Ek − Ekν + ~ωi

+
〈k + q| pαi |kν〉〈kν | pβs |k〉

Ek+q − Ekν − ~ωs
),

(2.10)

pαi,s = pα exp(±iqi,s · r) the momentum density, and α, β = x, y, z. The δα,β term

arises from two-photon scattering in first order perturbation theory. It vanishes if

the polarizations of incoming and scattered light are orthogonal and thus does not

probe electron dynamics in which the charge density relaxes in a direction orthogonal

to the incident polarisation direction [57]. The other terms arise from single photon

scattering via intermediate states kν in second order perturbation theory. These terms

10



2.1 Theoretical concepts

involve different time orderings of photon absorption and emission which plays a role

for anti-symmetric contributions to the Raman response as discussed in Sec. 2.1.4.

In the limit of small momentum transfer q → 0 and assuming that the photon

energies ωi,s are small in comparison to the separation of the intermediate states kν

from the conduction band (initial state), ωi,s � |Ekν−Ek|, the Raman vertex further

simplifies to the well known effective mass approximation:

γαβ(k,q→ 0) =
1

~2

∂2Ek

∂kα ∂kβ
(2.11)

In this approach, the Raman vertex depends on the second derivatives of the conduc-

tion band Ek projected by the polarization vectors of incoming and scattered light.

Here, kα and kβ are the momenta along the crystal axes a and b. Thus the curvature

of the bands and the orientations of the light polarizations determine which carriers

are involved in the scattering off electrons in different bands in the Brillouin zone.

The effective mass approximation provides a powerful tool to study properties of the

band structure, yet it is limited to small ~ωi,s and ω � ωi,s. At higher energy trans-

fers the approximations becomes increasingly unjustified and resonance effects may

appear as discussed in Sec. 2.1.4. In all Raman experiments described below, Rχ′′

is plotted as a function of the energy shift ω, where R is a constant that absorbs

experimental factors and takes care of the units.

2.1.4 Antisymmetric contributions to the Raman response

In general, the Raman response i.e. the Raman tensor has both symmetric and an-

tisymmetric contributions which can, in principle, be separated. The antisymmetric

contributions are negligible in many cases such as phonons or nearly free conduction

electrons, but necessary for the analysis of anisotropic electron dynamics in strongly

correlated systems [57, 69]. In magnetic crystals without inversion symmetry, the

Dzyaloshinskii-Moriya interaction, i.e. the antisymmetric part of the spin-spin inter-

action [27], is different from zero. As a result, canted spin arrangements like helical

magnetic order occur in many cases [28, 70]. Excitations of such chiral objects are

expected to appear in the antisymmetric part of the electronic Raman response [57].

Thereby, new insights into itinerant electron magnets like MnSi can be obtained.

However, chiral excitations are not the only origin of light detected in the antisym-

metric channel. Contributions in the antisymmetric channel may also arise, if there
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Chapter 2 Experiment

is either (i) a parasitic background from light sources other than the sample, or (ii)

if ~ωi,s is close to resonances, or (iii) if the angular momenta of the initial and the

excited state are different. In the following these cases will be discussed.

(i) There are various possibilities for external light sources other than Raman scatter-

ing from the sample, such as fluorescence in the optical elements or residual light in

the laboratory or a background signal of the CCD. However, a background problem

can be excluded experimentally as described in Sec. 2.2.2.

(ii) Away from resonances when the photon frequencies ωi,s can be neglected with

respect to the gaps between the electron bands around the Fermi energy, the effective

mass approximation [cf. Eq. (2.11)] applies. In the effective mass approximation no

antisymmetric response [T1 terms2 in Eq. (2.3)] can be obtained [71] as the order

of the partial derivatives of the conduction band is irrelevant, i.e. γab = γba. In a

more general form of the Raman vertex including resonance effects [Eq. (2.10)], it

does make a difference if incoming and scattered photons, ωi and ωs, are exchanged,

particularly close to a resonance. As a result, the matrix elements are different, if the

time order of photon absorption and emission is reversed and a finite intensity in the

T1 channel is expected. The T1 contribution is only different from zero, if γαβ 6= γβα,

where α, β = x, y, z. Large intensity may occur close to a narrow resonance.

(iii) If the angular momenta of the initial and the final states are different, an anti-

symmetric response can occur, for example in the case of crystal field excitations [65]

as shown in Sec. 3.4.1. In 1990 Shastry and Shraiman [69] derived the magnetic Ra-

man response for a Mott-Hubbard system and found that the spin chirality operator

Si · (Sj × Sk) couples to the light in linear order and has antisymmetric matrix ele-

ments3. Later Michaud, Vernay and Mila showed that this is not the case due to can-

cellation effects [72]. Nevertheless, scattering from chiral spin excitations is likely

to be observed experimentally at least in Heisenberg magnets [73] and may come

from higher order excitations or strong resonance enhancement. On the basis of the

existing data these questions cannot be settled satisfactorily for any of the systems

studied so far.

In summary, while contributions from residual light in the laboratory and from

fluorescence can safely be excluded experimentally (cf. Sec. 2.2.2), it is not trivial

to clearly distinguish if an antisymmetric Raman response originates from resonance

2In tetragonal systems A2g is the antisymmetric channel.
3The spin chirality operator resembles the mathematical form of the Dzyaloshinskii-Moriya inter-

action.
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effects or chiral excitations as will be discussed in Sec. 4.5.2.

2.2 Experimental setup and data analysis

The challenge of Raman scattering in metallic or even superconducting samples is

the low scattering cross section due to the small light-matter interaction volume

(penetration depth) in combination with the limited optical access to the sample

located in the center of a superconducting magnet and, optionally, inside a diamond

anvil pressure cell (cf. Sec. 2.3). A considerable part of this thesis was to set up an

experiment capable of measuring weak Raman signals under these extreme conditions.

In this section, the Raman experiment is described, the key components of the new

setup are particularly emphasized, and details on the data analysis procedure are

provided.

2.2.1 Light path

A schematic drawing of the experiment is shown in Fig. 2.1. As a light source either

a Krypton ion laser (Coherent Innova 400, 14 discrete wavelengths between 406.7

and 799.3 nm are available) or a Nd-YAG diode-pumped solid state laser (Klastech

Scherzo, λ = 532 nm) can be selected4 via a removable mirror (RM). A pinhole system

(PH1), consisting of a microscope objective lens, a circular aperture (20 µm) and an

achromat, spatially filters the laser beam and expands the beam diameter. A prism

monochromator (PM), designed and built during this dissertation, disperses the laser

light. In combination with a slit, only monochromatic light of a selected wavelength

can pass. In the range of green light, the device suppresses [74] all plasma lines that

differ by more than about 0.9 nm (30 cm−1) from the main laser line. In this way,

radiative transitions in the Kr-plasma other than the lasing transition can be sup-

pressed and do not appear as peaks in the spectrum superimposed to the Raman

signal. A λ/2-plate together with a polarizer (P1) is used to reduce the power of

the pre-polarized laser light. The final polarization state of the incoming photons is

selected by polarizer P2 and a Soleil-Babinet compensator5 which facilitates an inde-

pendent access to polarization and phase of the incoming photons. As the incoming

4For economic reasons, mainly the solid state laser was used in the range of green light.
5The compensator consists of wedge-shaped birefringent crystals that can be rotated and shifted

against each other in order to adjust the optical properties.
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Figure 2.1: Schematic drawing of the Raman experiment. For details and description see
text.

light is focussed on the sample surface at an angle of 30◦, the absorption coefficients

for light polarized parallel and perpendicular to the plane of incidence are different.

As a result, circularly polarized light, e.g., assumes an elliptical polarization inside

the sample. The compensator takes care of this problem as the light can be polarized

elliptically outside the sample such that the absorbed light is circularly polarized in-

side. In this procedure, it is essential to know the complex index of refraction n̂ which

has to be determined experimentally for every sample and excitation wavelength. For

a detailed description of the method, the reader is referred to Prestel et al. [75]. The

next optical element in the light path is again a pinhole system (PH2) that spatially

filters the beam and adjusts its diameter to the following optical components. Via a

mirror (M4) the incoming beam is directed into the 41 mm warm bore of a solenoid

superconducting magnet6 providing fields up to 8 T. The light propagates in the ring-

6The specifications of magnet and cryostat are described in Ref. [76].
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(a) (b)A P

S

th obj

m

Figure 2.2: Drawing (a) and photograph (b) of the optics focussing the laser on the sample
and the objective (obj) collecting the scattered light. The position of the achromat
(A) and the prism (P) can be adjusted via threaded rods (th) pushing against springs
(S). A metal strip (m) is positioned on top of the objective lens to block the laser light
that is elastically reflected from the cryostat windows. All of it is located in the 41 mm
bore of the magnet cryostat. Adapted from Ref. [77].

shaped gap between the bore and the objective lens and reaches a prism (P) and an

achromat (A) directing and, respectively, focusing the photons on the sample. The

optical components located in the bore of the magnet are depicted in Fig. 2.2. The

photons reflected (R) from the sample surface cannot enter the collection optics, as

their angle incidence is larger than the aperture angle of the objective lens (obj).

To block the reflections from the cryostat windows (W), a thin black metal strip (m

in Fig. 2.2) was placed on top of the objective lens (obj). Thereby, the amount of

elastically scattered light reaching the detector is further reduced. The Raman light

is collected by a custom-made objective lens7 (obj) having a numerical aperture of

NA = 0.34 (19.5◦) which corresponds to a covered solid angle of 0.36 sr. For maxi-

mum throughput and best imaging properties, the lens corrects optical aberrations

introduced by the cryostat windows (W) and the diamonds of the pressure cell de-

scribed in Sec. 2.3. The spatial filter (PH3) in the path of the scattered light is one of

the key components to suppress light that is not coming from the illuminated spot on

the sample (cf. Sec. 2.2.2). A cylindrical lens (C) reduces the astigmatic aberration

which is introduced by the gratings inside the spectrometer. Before the scattered

photons are focussed on the entrance slit of the spectrometer the desired polarization

states are selected with a quarter wave plate (λ/4) and an analyzer (P3). A λ/2-

plate rotates the light polarization into the vertical direction where the spectrometer

is most sensitive.

A triple-stage spectrometer (Jobin-Yvon T64000) in combination with a liquid ni-

7Designed and built by Bernhard Halle Nachfl. Optische Werkstätten GmbH, Berlin.
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trogen cooled charge coupled device (CCD) is used to spectrally analyze the scattered

light. The 2400 gr/mm gratings in the spectrometer have a dispersion of 0.5 nm/mm

for light of 500 nm wavelength corresponding to roughly 0.5 cm−1 per pixel (25 µm) of

the CCD detector. The spectrograph was calibrated using the lines of a neon calibra-

tion lamp. To this end, the entrance slit is set to 50 µm, and each single pixel column

is read out separately referred to as binning one. As the entrance slit is imaged 1 : 1

on the CCD chip, there are two measured points (pixel columns) within the optical

resolution being 1 cm−1 in this case. Rechecking the calibration several times per

day, we find changes of less than 0.04 cm−1 which underscores that the instrument is

practically stable. For the MnSi measurements, the focus of the scattered light has

a size of roughly 150 µm on the entrance slit defining the minimum size of the slit

in order to prevent a loss of signal. Consequently, the optical resolution is roughly

3 cm−1. The binning is set to 4, which corresponds to one measured point every

2 cm−1 in the spectrum. The main error source in the frequency determination is the

position of the light focus on the entrance slit. A deviation of 40 µm from a perfectly

centered position results in a frequency shift about 0.2 cm−1, defining the error bars

of the measurements.

Observation optics

In addition to the efficiency of the collection optics, also the observation optics [76] was

improved and adapted to the requirements of the new optical setup. Particularly in

high pressure experiments (cf. Sec. 2.3) where the sample has a diameter of typically

100 µm, a high-resolution optical image is essential to select an appropriate spot for

the laser focus on the sample surface. With a removable beam splitter, the experiment

can be switched from measurement (Fig. 2.1) to observation mode (Fig. 2.3). Like

in high quality optical microscopes, a Köhler illumination technique [78] is used to

guarantee an evenly bright and high contrast image of the sample. To this end,

two plano-convex lenses (L1) collect the light and image the filament (F′) of a lamp

to the plane of aperture AP1. A second lens (L2) projects a magnified image (F′′)

of the filament on the back-focal plane of the objective lens (obj). The image can

be considered as an extended light source and from each point of it a bundle of

rays emerges. For example, this is sketched for one point in Fig. 2.3. Through the

objective lens (obj) the image of the filament is perfectly defocussed. As the image

of the filament fills the whole back-focal plane of the objective lens, the sample is
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Figure 2.3: Optical setup to illuminate and observe small samples. For details see text.

illuminated with parallel light from many different angles. The apertures AP1 and

AP2 control the maximum light angle, limited by the numerical aperture of the

objective lens, and the illuminated area on the sample surface, respectively.

2.2.2 Background contributions versus Raman continuum

The optical setup described above is optimized for low scattering intensities and for

suppressing light sources other than the sample like elastic reflections or fluorescence

of optical components. The key components [79] are the bespoke objective lens (obj)

in combination with the separate light paths for incoming and scattered photons and

the spatial filter (PH3). In the following, the impact of the single components is

briefly quantified. More details can be found in the in the diploma thesis of Peter

Jaschke [77] associated to this work.

Fig. 2.4 (a) shows spectra of the Si phonon at 520 cm−1 measured with a commer-

cial achromat (black) and with the new objective lens (red). The objective produced
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Figure 2.4: Comparison of different optical configurations. (a) With the B. Halle objective
lens a factor of three in Intensity can be gained in comparison to a standard achromat.
(b) Spectra obtained via different light paths are plotted together. The combination
of prism and pinhole system yields the biggest suppression of undesirable background
contributions.

by B. Halle collects about a factor of three more scattered photons than the standard

achromat (f = 60 mm, ∅ 30 mm) used before. Panel (b) illustrates the suppres-

sion of stray-light and fluorescence, on the example of MnSi spectra. The response

from the sample for x′x′ polarized light consists of A1, 1/3E and T2 contributions

(cf. Sec. 2.1.2) with E phonons at ∼ 194 cm−1 and ∼ 319 cm−1 and T2 phonons at

∼196 cm−1 and ∼314 cm−1 (cf. Sec. 4.4.1). If the sample is not illuminated via prism

and achromat (cf. Fig. 2.1), but through a 10 : 90 beam splitter instead of mirror

M5, the background contributions outshine the Raman light from the sample (blue

spectrum). This is because the B. Halle objective lens is not only used to collect the

scattered light, but also to focus the incoming laser on the sample. In this configura-

tion, the incoming laser beam creates stray light in the objective lens. In addition, the

elastic reflex from the sample passes through the optical components in the scattered

light path and gives rise to fluorescence before it enters the spectrometer. The main

background contributions, however, originate from the beam splitter and the calcite

polarizer (P3 in Fig. 2.1) that is responsible for the strong peaks at 90 and 135 cm−1.

If the sample is excited via the light path through prism (P) and achromat (A) but

without pin hole PH3 (cf. Fig. 2.1), the green spectrum in Fig. 2.4 (b) is recorded. As

xx polarization projects A1 and 4/3E symmetry, the E phonons are more prominent

in comparison to the x′x′ spectrum. The background is reduced by at least a factor

of two, but still remains stronger than the signal from the sample. A spatial filter
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(PH3 in Fig. 2.1) in the path of the scattered light further reduces the background.

The continuous part of the spectrum drops by 80% from 1.1± 0.2 to 0.2± 0.05, while

the phonon intensity is reduced by a factor of two (orange spectrum).
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Figure 2.5: CCD background. The contributions
are indicated and described in the text. Note
that the spectra are not normalized to the
absorbed laser power.

Another frequency dependent con-

tribution to the background origi-

nates from the CCD detector. It was

determined by measurements with

closed shutter and the same expo-

sure time as the experiment. If the

Raman signal from the sample is be-

low one count per second, such as in

MnSi, the CCD background is not

negligible, particularly at low fre-

quencies. As the CCD background

was stable, a smoothed mean value

was subtracted from each measured

MnSi spectrum. From the differ-

ence, the Raman response Rχ′′ is ob-

tained by dividing through the thermal Bose factor as shown in Fig. 2.5 [57].

As a crosscheck for the new setup, we compared the spectra measured in the magnet

cryostat close to back scattering conditions with those obtained in pseudo-Brewster

geometry (described in Ref. [80] and references therein), where no laser light reaches

the collection optics, and found good agreement. Altogether, the background issues

can be considered under control and it is possible to distinguish an electronic Raman

signal of about 0.1 inelastically scattered photons per second and milliwatt from

parasitic background. For a typical integration time of 6 times 300 s and an absorbed

laser power of 4 mW, this corresponds to about 700 photons reaching the detector in

a frequency interval of 2 cm−1.

2.2.3 Fit procedure

In a next step, the electronic continuum is separated from phononic contributions. To

this end, the phonons were fitted by standard Lorentzians for rare-earth tritellurides

and by Voigt fits for MnSi. If the phonon width is comparable to the spectral reso-

lution of the instrument, such as as in MnSi, the Lorentz response of the phonon is
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Figure 2.6: Demonstration of the data fitting for a MnSi xx spectrum at 17 K. Panel (a)
shows the measured data (green) together with the fit function (orange) consisting of
a 5th order polynomial and four Voigt shaped peaks. (b) shows the difference (blue)
between measurement and fit. A smoothed curve (red) points out how much and
at which frequencies the measurement and the fit differ beyond the noise level. To
separate the phononic part from the electronic continuum, only the fits to the phonons
are subtracted from the spectra.

convoluted with a gaussian profile due to the optical imaging inside the spectrometer.

In the Voigt fit, the Gaussian width was fixed at the resolution being 2 cm−1. The

width, position, and spectral weight of the Lorentzians are the fitting parameters and

contain the physical information from the sample.

Fig. 2.6 shows a typical example. The Raman response Rχ′′ of a MnSi xx spectrum

(green) was fitted using Voigt profiles for the four phonons and a polynomial baseline

(orange). The 5th order polynomial is anchored at 30 points which are distributed

over the full energy range except for the vicinity of the phonon lines. Subtracting

this polynomial puts the phonon peaks on a horizontal basis for the Voigt fit. In this

example, the fit yields a position (Lorentzian width) of 196.8 cm−1 (2.4 cm−1) and

323.3 (3.7 cm−1) for the two strongest phonons, respectively. Panel (b) shows that

the difference (blue) between the data and the fit is less than 0.005 counts (s ·mW)−1

for most points. The smoothed red line is a guide to the eye. On the one hand, the

fit is used to determine the phonon frequencies (Lorentzian widths) with a precision

of ±0.2 cm−1 (±0.3 cm−1) for the large peaks and about ±0.5 cm−1 (±0.6 cm−1) for
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the low intensity phonons8. On the other hand, subtracting the phonons from the

spectrum yields the electronic continuum of the Raman response which is used to

obtain carrier properties [81] (cf. Sec. 4.5.2).

2.2.4 Temperature determination

The physical properties depend crucially on the temperature in the illuminated spot

Ts. The absorbed light heats the sample locally and results in a difference ∆T be-

tween the holder temperature Th and Ts, particularly at low temperatures. A precise

temperature determination is essential, if the spectra of the studied sample strongly

change in small temperature intervals which particularly may be the case close to a

phase transition.

One common method to determine the amount of heating is to compare Stokes

and anti-Stokes intensity, i.e. energy gain and energy loss spectra. They differ by

an exponential factor due to thermal occupation which can, in principle, be used to

calculate the temperature. However, this method is not always reliable, in particular

at temperatures below 100 K and in materials with low scattering intensities, such as

MnSi. As an alternative, strongly temperature dependent features in the spectra can

be analyzed using combinations of various laser powers Pabs and holder temperatures

Th. Ideally, Pabs and Th are selected in a way that the spectral features assume the

same shape for at least two combinations. Then, if ∆T is moderate, one can expect

that the spot temperatures are equal.

A third method uses the complex index of refraction n̂ and thermal conductivity

data to estimate the laser heating. It was developed for V3Si [82, 83] where the

strong temperature dependence of the gap mode in the superconducting state was

used to determine the amount of laser heating. Knowing the amount of the absorbed

light power and the thermal conductivity λ(T ) the complete temperature range of a

material becomes accessible. It was shown that the method can be extrapolated to

other materials, such as Nb3Sn [83], having an isotropic heat conductivity. As MnSi is

an isotropic metal, but has a low scattering intensity and no sufficiently temperature

dependent features, the latter method is applied as described in the following [64].

Starting point is the equation for thermal conductivity in a semi-spherical geometry.

The laser power Pabs is deposited within the illuminated spot with radius r0. It

is assumed that the complete energy is transferred to the sample holder via heat

8The size of the error bars and the stability of the experimental setup is addressed in Sec. 2.2.1.
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Figure 2.7: Thermal conductivity and laser heating in MnSi. (a) thermal conductivity
measurement [64]; (b) integrated thermal conductivity. According to Eq. (2.13), the
integral

∫
λdT =: α from Th to Th + ∆T is constant as long as the laser power and the

focus size are not changed. For the experimental setup used here, α is 6.4 W/m for an
absorbed laser power of 4 mW. The inset of (b) illustrates how ∆T can be obtained from
α and the integrated conductivity. (c) the laser heating ∆T in the entire temperature
range. Points are obtained from the integrated thermal conductivity as described in
(b). An exponential fit was used to obtain ∆T in the full temperature range.

conduction in the sample. This is an excellent approximation for metals in both

vacuum and gas atmosphere. In the case of transport in the metal, the heat flow

through a shell with area 2πr2 and thickness dr is given by

Pabs = −λ(T ) · 2πr2dT

dr
, (2.12)

where dT is the temperature drop across the radial increment dr. If the sample is

large compared to r0, integration yields [83,84]

α(Pabs, r0) :=
Pabs

2π r0

=

∫ Th+∆T

Th

λ(T )dT. (2.13)

∆T = Ts − Th is the average laser-induced heating. α depends only on r0 and Pabs

but not on any strongly temperature dependent property of the sample. Hence the

knowledge in one sample, such as V3Si, is sufficient for deriving ∆T in other isotropic

compounds. The main non-trivial sample dependence comes from λ(T ) which has to

be known in detail. Then ∆T can be determined for any Th if the integral over λ(T )

is known (cf. Fig. 2.7).

In V3Si, αV3Si = 0.96 W/m was derived experimentally for an absorbed laser power
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of 1 mW. For MnSi we used Pabs = 4.0 mW for all light polarizations. Differences in

the optical setup of both experiments change the focus size by a factor of 0.6. Scaling

αV3Si with these changed experimental parameters results in αMnSi = 6.4 W/m. As

an example the graphical solution of Eq. (2.13) for the MnSi sample is shown in

Fig. 2.7 (b). The experimental quantity αMnSi = 6.4 W/m for Pabs = 4 mW is added to

the integrated thermal conductivity at the holder temperature Th. Then, a horizontal

line intersects the integral
∫
λdT at the spot temperature Ts. The length of this line

is ∆T . In the example shown in the inset of Fig. 2.7 (b), Th = 30 K, Ts = 31.3 K and

∆T = 1.3 K.

In the same way, the laser heating was determined for several holder temperatures

between 2 and 300 K. These temperatures are indicated as points in Fig. 2.7 (c). At

selected holder temperatures Th = 2, 30, and 300 K, ∆T is 2.9, 1.3, and 0.4 K, respec-

tively (Pabs = 4 mW). An exponential fit yields ∆T for all temperatures in between

and was used to correct for the laser heating in all MnSi spectra presented in this

thesis. In the following, Ts is referred to as T for simplicity.

2.3 High pressure technique

Pressure is an important parameter for tuning material properties making high pres-

sure techniques powerful tools. By applying pressure, the unit cell volume of a crystal

can be reversibly tuned affecting the physical properties. With the distance between

atoms also the overlap of atomic orbitals is changed. Phase transitions can be induced

or prevented by pressure, such as superconductivity in the cuprates [85,86] or charge

density wave order in the rare-earth tritellurides (cf. Sec. 3.4.2).

In the course of this thesis the diamond anvil cell designed and built by Leonardo

Tassini [87], was carried over from the test phase to standard operation in the lab-

oratory. A second pressure cell and gas handling system with improved operability

was built. The new cell also allows susceptibility measurements at high pressure as

described in Ref. [88]. Also, improved techniques for preparing the gasket and load-

ing the cell were developed. In this section the new equipment and the principle of

operation is briefly described. Finally, pressure determination and hydrostaticity in

the cell are discussed.
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2.3.1 The diamond anvil cell

Diamond anvil cells (DAC) are perfectly compatible with Raman scattering, as small

sample sizes are sufficient and the diamonds are transparent in the spectral range

of visible light. The operating principle of a DAC is sketched in Fig. 2.8. A pair of

diamond anvils squeeze a metal gasket. The sample and a piece of ruby, as a pressure

gauge, are placed in a hole in the gasket filled up with a (hydrostatic) pressure

medium. By applying force on the diamonds pressure is generated.

diamond
force

sample,
ruby,
pressure
medium

gasket

Figure 2.8: Working principle of
diamond anvil cells. Drawing
adapted from [89].

The DAC actually used is illustrated in Fig. 2.9.

Here, the force is generated via a stainless steel

membrane that bends when it is filled with pres-

surized He gas through a capillary. The flex-

ible part of the membrane has a diameter of

2.5 cm and thus applies a force of roughly 50 N per

1 bar He pressure to the piston, assuming that it

touches the piston on its whole area. The culet,

i.e. the flattened tip of the diamond anvil, has

a diameter of 600 µm. Due to the ratio of the

two areas, the pressure is enhanced by a factor

of about 1700. The maximum He gas pressure in

the membrane is 130 bar and hence corresponds to an applied force of 6500 N which

is translated into a pressure of roughly 23 GPa at the culet. Since only a part of

the membrane touches the piston, the maximum pressure reached in experiment was

18 GPa with a He pressure of 125 bar in the membrane. For the huge force, the

diamonds have to be supported by tungsten carbide anvils, since otherwise the sup-

porting CuBe of the pressure cell may be indented. The bottom anvil is a flat disc

that can be shifted laterally, the top one is hemispherical and can be tilted. Together

they are used to align the diamond culets laterally up to a precision of about 10 µm

and parallel up to a few angle-minutes. The angle between the two touching culets

was determined by the interference pattern of light reflected from these two diamond

surfaces. When the diamonds are pressed against each other, the movement is guided

by four hardened copper beryllium aligning pins. The accuracy of the alignment is

limited by the tolerance of the alligning pins9 which is of order 10 µm. To avoid

9To reduce the friction on the aligning pins, they were lubricated with molycote microsize powder
(MoS2).
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Figure 2.9: Schematic drawing of the diamond anvil cell. Courtesy of Leonardo Tassini.

a blocking of the DAC at low temperatures due to thermal expansion effects, it is

important to use the same material for the pins as for the rest of the cell. The tem-

perature is measured by a Cernox CX-1050-MT-1.4L metal oxide resistor, calibrated

in the range from 1.4 to 325 K with an accuracy between ±5 and ±40 mK. It can also

be used in magnetic fields, as the magneto-resistive effect ∆T (B)/T is smaller than

0.4% for 4.2 < T < 300 K in a magnetic field of 8 T. The Cernox resistor is located

roughly 3.5 cm above the sample which leads to a temperature gradient10 of less than

1 K between sensor and sample, if temperature is changed at a rate of ∼1 K/min [88].

In DAC experiments, the gasket plays an important role. It is a ”soft” buffer

layer that prevents the diamonds from touching, but the material has to be strong

enough to maintain a sufficiently thick final layer between the diamonds at the highest

pressures [90]. The gasket guides the diamonds, provides a ring anchor around the

diamond culets and reduces the strain in the culets [91]. Most importantly, it con-

fines the pressure transmission medium (here, helium was used exclusively) and thus

facilitates measurements in hydrostatic conditions. All experiments in the following

10The temperature gradient in the pressure cell was determined from the shift of the superconducting
transition in YBa2Cu3O7−x as a function of increasing and decreasing temperature [88].
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1 cm

(a)

(d)

(c)

(b)

Figure 2.10: Photographs of the high pressure equipment built up during this dissertation.
(a) dip stick with pressure cell, (b) open pressure cell, and (c, d) the gas handling
system (front- and back-view) to adjust the applied pressure.
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Figure 2.11: Volume under pressure. (a) section through the DAC (side view). (b) view
through the bottom diamond into the cell using the observation optics. 1 diamond;
2 gasket; 3 pressure transmission medium (helium); 4 sample (LaTe3); 5 ruby [not
resolved in (b)]. (c) ruby spheres.

were performed with stainless steel gaskets as it has suitable mechanical properties

and a high electrical resistivity that reduces eddy currents upon changing the exter-

nal magnetic field. This property becomes particularly important, if ac susceptibility

measurements are intended to be performed [88]. In addition, it is important that the

material remains non-magnetic and non-superconducting down to low temperature.

The gaskets were cut from a 250 µm thick foil, mounted in the DAC and pre-

indented to a thickness of roughly 50 µm. In the center of the 600 µm wide indent, a

300 µm hole was machined using spark erosion technique. The indented region has to

be free of micro-cracks to confine the helium in the volume under pressure, and the

hole should be perfectly circular and exactly centered to within a precision of 10 µm

in order to distribute the pressure load uniformly. To this end, an improved setup for

electrical discharge machining was built up during this dissertation. For details, the

reader is referred to the bachelor thesis of Georg Haunschild [92].

The pressure cell can be operated in the magnet cryostat of the Raman setup

described above. In fact, the optics was adapted to the requirements of high pressure

experiments. The accessible parameter range is 0 – 20 GPa in pressure, 0 – 8 T in

magnetic field, and 2 – 310 K in temperature. The cryostat is also used to load the

cell with helium serving as the pressure transmission medium. To this end, gasket,

sample, and ruby are placed on the diamonds, and the cell is closed almost completely

except for a gap of roughly 50 µm between the top diamond and the gasket. In the

cryostat the DAC is submerged in superfluid helium that enters the sample space

through the gap. Via the gas handling system and the stainless steel membrane,

a force is applied to the top diamond, and the cell is closed trapping ruby, sample
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and the superfluid helium inside. With the cell, also the membrane is submerged

in superfluid helium and the He gas inside liquifies as well. More gas has to be fed

through the capillary to keep the pressure up. The big volume change associated

with gas-liquid phase transition in the membrane was buffered by a much larger

helium gas volume at room temperature. Besides improving the operability, the

buffer volume also helps to avoid pressure shocks that may result in breaking the

diamonds. Additional safety measures in the gas handling system are a burst disc

that limits the pressure to 197 ± 10 bar and an electronically controlled safety valve

that is triggered by a pressure sensor at 150 bar, but would close again below 145 bar

to avoid bigger shocks to the diamonds. Typically, the cell was closed with a force

of 3500 N (70 bar in the membrane) in supercooled, superfluid helium between 3.5

and 4.0 K. At 70 bar and below ∼ 2.8 K [93], the helium in the membrane becomes

solid blocking the capillary and preventing further pressure changes. Apart from this

limitation, the pressure in the cell can be changed in situ via the gas handling system

even at low temperatures11.

2.3.2 Pressure determination

The most direct way to determine pressure is via its definition, force per area. How-

ever, in the GPa range practical difficulties arise due to friction, strain, non-elastic

deformation and thermal expansion; in addition, the gasket absorbs an unknown frac-

tion of the load [94]. Thus, more sophisticated methods to determine high pressures

were developed in the past decades [90]. Given that an optical access is available,

ruby fluorescence is the most straightforward method [95].

First, the origin of the fluorescence spectrum will be discussed. Ruby, i.e. Al2O3

doped with 0.05% Cr3+ ions, has two strong absorption bands which can be optically

pumped. The excited meta-stable states rapidly decay non-radiatively and populate

the 2T1 and 2E states12 [90,96]. The ruby R lines (red), that are used for the pressure

determination, arise from the radiative transition to the ground state; 2E → 4A2.

The two-fold degeneracy of the 2E-level is lifted by spin-orbit coupling, resulting in

a pair of levels E3/2 and E1/2 corresponding to the R1 and R2 lines at 694.2 nm and,

respectively, 692.7 nm at room temperature and atmospheric pressure. An increase

11For safety reasons, the pressure was typically not changed below a temperature of 30 K in exper-
iment.

12Note that in this subsection 2T1, 2E, 4A2, E3/2, and E1/2 do not refer to crystal symmetries, but
label spectroscopical term schemata of the Cr3+ ion.
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Figure 2.12: Ruby fluorescence at various pressures. (a) ruby spheres, (b) ruby fragments.
The pressure can be calculated from the frequency of the R1 line and the temperature.
Hydrostaticity can be judged from the peak widths and the separation of the two
strong ruby lines ∆R = R1 −R2.

in pressure changes the local crystal field environment of the Cr3+-ion which leads to

a lowering of the transition energies and shifts both the R1 and the R2 line to larger

wavelengths [90]. However, the separation of the two lines of ∆R = R1−R2 = 1.5 nm

(≈ 30 cm−1) remains almost constant, if the pressure conditions are hydrostatic [97].

Spectra of (a) fragments of a synthetic ruby and (b) commercial ruby spheres provided

by easylab Technologies Ltd. are plotted in Fig. 2.12.

The ruby as a pressure gauge was calibrated via x-ray measurements of the lattice

constant of NaCl [98], Co, Mo, Pd und Ag [99] where the pressures are determined

from an equation of state. This yields an empirical fit for pressures up to 80 GPa [100],

p(λR1) =
1904

7.665

[(
λ(p, T )−∆λ(T )

λ0

)7.665

− 1

]
GPa. (2.14)

Here, λ0 is the position of the R1-line at ambient pressure and room temperature.

The shift λ(p, T ) is the observed ruby wavelength which depends both on pressure

and temperature. To include the temperature dependence, the ∆λ(T ) term was

introduced. It is constant below 50 K and can be approximated by a polynomial at

higher temperatures [101]:
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(a) (b)

Figure 2.13: Comparison of different pressure transmission media from literature [102].
Both the width of the R1-line (a) and the wavelength difference ∆R = R1−R2 strongly
increase, if the transmission medium becomes anisotropic with increasing pressure.
Solid lines are guides to the eye.

∆λ(T < 50 K) = − 0.877 nm (2.15)

∆λ(50 K < T < 296 K) = 6.64 · 10−3 nm/K ·∆T + 6.76 · 10−6 nm/K2 ·∆T 2

− 2.33 · 10−8 nm/K3 ·∆T 3 (2.16)

Here, ∆T = T−296 K. This temperature dependence leads to an overestimation of

the pressure, if the ruby would be considerably heated by the excitation via the laser

beam. However, the ruby in the cell is thermally well connected to the diamonds via

the pressure transmission medium. Hence, for laser powers in the range of few mW,

the heating does not induce measurable line shifts.

The ruby spectrum reacts sensitively to uniaxial components in the pressure. The

deviations from hydrostatic conditions can be estimated from the spectral width

of the R lines and and changes in ∆R = R1 − R2 [97, 103, 104]. Previous to the

discussion on the ruby measurements in our diamond anvil cell, an example of truly

non-hydrostatic pressure conditions can provide a feeling for the size of the related

effects. Fig. 2.13 shows a recent study on the width of the R1 line and the line

separation ∆R with increasing pressure in different transition media [102]. Both

quantities stay rather constant in the hydrostatic regime but increase dramatically

at high pressure values when the conditions become non-hydrostatic; using argon the

pressure remains hydrostatic at least up to 30 GPa.
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Figure 2.14: Check of the hydrostatic conditions in the helium loaded DAC. Width and

separation of the R1 and R2 ruby lines shown in Fig. 2.12 are plotted as a function
of pressure. The scale is comparable to that in Fig. 2.13. Dashed lines are guides
to the eye. (a) The FWHM of both lines stays almost constant and well below the
widths plotted in Fig. 2.13. The ruby spheres yield sharper fluorescence lines than the
ruby fragments. (b) The separation ∆R = R1 −R2 stays constant for pressures up to
15.8 GPa. Together, this indicates hydrostatic pressure conditions.

In our DAC, helium was used as the pressure transmission medium which is su-

perior to argon concerning hydrostaticity, particularly at low temperatures [90, 105].

Fig. 2.14 shows the R1-, R2-linewidths and the line separation ∆R as obtained from

the ruby spectra plotted in Fig. 2.12. All three quantities stay almost constant in the

pressure range from 0 to 15.8 GPa indicating hydrostatic conditions inside the cell.

The commercial ruby spheres have sharper fluorescence lines due to their superior

crystal quality after annealing. The line separation ∆R, which may be the more re-

liable indication for a hydrostatic environment [97], is unaffected by the width of the

two lines and stays pinned at a constant value of 1.4 nm. We do not find increases

in linewidth or ∆R comparable to what is observed in non-hydrostatic conditions.

Thus, it is safe to conclude that the conditions in the DAC used here are hydrostatic

at least up to 15.8 GPa.
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Chapter 3

Charge density waves in the

rare-earth tritellurides

Rare-earth tritellurides (RTe3) turn out to be textbook examples and a laboratory for

studying charge density wave systems. The are outstandingly clean, can be cleaved

very easily and are tunable by chemical and applied pressure. The light scattering re-

sults add a variety of novel insights to collective excitations, charge order fluctuations

and mechanisms beyond Fermi surface nesting contributing to the charge density

wave (CDW) formation.

Figure 3.1: Bilayer of tellurium atoms
distorted by a periodic modulation
of the charge density (yellow). The
complex interplay of the electrons
with the lattice can be studied
by inelastic light scattering (green,
red) revealing an alternative mech-
anism for CDW formation.

3.1 Charge density waves - A brief introduction

This section provides a short introduction to CDW formation, since these general

concepts will be used in the discussion. For a more detailed review, the reader is
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Figure 3.2: The Peierls transition. A one dimensional metal with a half filled electron
band and a spatially uniform charge density distribution ρ(r) (a) switches over to the
CDW state (b); an energy gap 2∆ opens; the charge density is distributed in a wave
like pattern which results in a periodic distortion of the linear chain of atoms. Adapted
from [5].

referred to the textbook ”Density Waves in Solids” by George Grüner [5].

Already in 1955, Rudolf Peierls pointed out that a one-dimensional metal at low

temperatures is unstable against a periodic static lattice distortion together with a

periodically varying charge distribution. Due to this new superstructure an energy

gap opens at the Fermi surface turning the material into an insulator [5, 106]. Basi-

cally, the new broken symmetry ground state originates from a competition between

elastic and electronic energy as a consequence of electron-phonon coupling. The peri-

odicity of the CDW modulation is determined by the Fermi wave vector kF and thus

depends on the band filling.

Fig. 3.2 illustrates the Peierls transition in a linear one-dimensional metal with a

half filled energy band. In the normal state (a), the charge density ρ(r) is constant

and the atoms of the chain are evenly spaced with a lattice constant of a. When

electron-phonon coupling is switched on, the CDW phase becomes the energetically

favourable ground state. Opening up a gap 2∆ lowers the energy of the electrons close

to the Fermi surface at the cost of a higher Coulomb repulsion in the ionic subsystem.

In case of half filling, the ordering vector is Q = 2kF = π/a and the periodicity1 of

the distorted lattice is 2a. As Q depends on the band filling, the CDW modulation

1Due to the CDW superstructure, the Brillouin zone is reduced. This results in a backfolding of
energy bands that can be detected by Raman scattering, e.g. additional phonon modes appear
at q ≈ 0 and finite energy.
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is usually incommensurate, i.e. does not match the lattice periodicity.

Further, we consider how the low dimensional electron gas responds to a perturba-

tion induced by a time independent potential

φ(r) =

∫
q

φ(q) eiq · r dq. (3.1)

Within the framework of linear response theory, the induced rearrangement of the

charge density

ρind(r) =

∫
q

ρ(q) eiq · r dq (3.2)

reads

ρind(q) = χL(q)φ(q). (3.3)

Here, χL(q) is the (real part of) the Lindhard function in d = 1, 2, 3 dimensions

χL(q) =

∫
dk

(2π)d
f(εk)− f(εk+q)

εk − εk+q

, (3.4)

with f(εk) the Fermi function. Fig. 3.3 shows the Lindhard response as a function

of q in case of a one-, two-, and three-dimensional free electron gas. In the 1D case,

the response is dramatically different. Assuming a linear dispersion around EF, χL(q)

has a logarithmic divergence at q = 2kF,

χ1D
L (q) = −e2 n(EF) ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣ , (3.5)

where n(EF) is the density of states at the Fermi level. It is remarkable, that in

the 1D case, an external perturbation φ(q) leads to a divergent charge redistribution

according to Eqs. 3.3 and 3.5. This implies that the electron gas itself is unstable, even

without a finite electron-phonon coupling. However, this divergence is very fragile

and there are reasonable doubts, if this is the only relevant mechanism for CDW

formation in real materials [12]. This issue will be a central part in the discussion

below.

Already in the 2D case, only a step-like feature remains at Q = 2kF, but the

divergence is absent. The main contributions to the integral in Eq. 3.4 come from

pairs of states (one full, one empty) having the same energy, but differ by 2kF in

momentum. It is obvious from Fig. 3.4, that in dimensions higher than one, the
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Figure 3.3: The Lindhard response function as a function of momentum transfer q plotted
for a one, two and three dimensional free electron gas at T = 0. The divergence due
to nesting is most prominent at low dimensionality. From [5].

number of such states is significantly reduced. Thus, the divergence in χL(q) is

connected to the topology of the Fermi surface, particularly to the presence of parallel

surface sheets that can be mapped onto each other by a single vector Q, referred to

as nesting. In a one dimensional electron gas, the Fermi surface only consists of two

points for a single chain, or two parallel sheets for an extremely anisotropic metallic

array as shown in Fig. 3.4 (a) [5]. A single nesting vector Q perfectly connects the

two sheets. For a 2D Fermi cylinder, Fig. 3.4 (b), this is not possible, but Q at best

connects two lines. Panel (c) shows a quasi one-dimensional Fermi surface, obtained

by including a dispersion perpendicular to the 1D chain. In this topology a nesting

vector Q can be found that connects large parts of the Fermi surface. A similar

situation will be discussed for the rare-earth tritellurides in Sec. 3.2.2.

To describe the CDW phase transition, electron-phonon coupling and the tempera-

ture dependence of the Lindhard susceptibility have to be taken into account. Already

above the transition temperature, the CDW formation is preceded by the softening

of the particular phonon mode, corresponding to the CDW lattice distortion2. With

decreasing temperature, the distortion becomes static at T = TCDW, defining the

transition temperature. The phonon renormalization ω̃q, driven by the electronic

2As the CDW phonon is at Q = 2kF, it is not observable via Raman scattering.
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Q(a) Q(b) (c)
Q

Figure 3.4: Nesting in different Fermi surface topologies. The arrows indicate pairs of
states, one full and one empty, connected by a nesting vector Q. In (a), the one dimen-
sional case, perfect nesting is realized. This is not possible for (b), a two dimensional
Fermi sphere. In (c), the quasi one dimensional case, there are nesting vectors Q which
connect parts of the Fermi surface. Adapted from [5].

susceptibility χL(q, T ) and the electron-phonon coupling strength g, is known as the

Kohn anomaly [107]. In mean field approximation, it reads [5]

ω̃2
q = ω2

q +
2g2ωq

~
χL(q, T ), (3.6)

with ωq being the unrenormalized phonon frequency. At TCDW, the lattice distortion

”freezes-in” as ω̃q → 0. As the divergence in the electronic response disappears in

dimensions higher than one, the renormalization of the phonon frequencies gets less

significant. If ω̃q remains finite even at T = 0, no phase transition occurs.

Properties of the CDW state can be probed by studying excitations of the charge

density condensate. Via light scattering, not only phonons and the excitation of

electron hole pairs across the energy gap can be studied, but also collective excitations

of the electrons. In general, it is possible to excite the phase or the amplitude of the

electron density wave. In the example of the linear chain of atoms, phason and

amplitudon are depicted for the limit q = 0 in Fig. 3.5. Phase excitations lead to

a displacement of the electron density ρ(r) with respect to the lattice resulting in a

(b) amplitudon(a) phason

Figure 3.5: Phase (a) and amplitude (b) mode excitation of the CDW (solid line) in a 1D
metal in the limit q = 0. In the chain of lattice atoms (red spheres), the displacements
in response to the electronic excitation (dashes) are indicated by arrows.
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change of the dipole moment. Consequently the phase mode is optically active, i.e.

can be probed via infrared spectroscopy. In contrast, the fluctuation of the amplitude

of the charge density wave changes the polarizability and thus is Raman active. Via

the amplitude mode (AM), the temperature dependence of the CDW condensate

density can be studied as will be discussed in Sec. 3.4.3.

3.2 Properties of the rare-earth tritellurides

3.2.1 Composition and structure

Rare-earth tritellurides (RTe3) are quasi two-dimensional layered systems, consisting

of stacked rare-earth-tellurium and tellurium layers that mainly determine the phys-

ical properties [109]. The crystal is pseudo-tetragonal and belongs to space group

Cmcm (No. 63); all atoms are in Wyckoff 4(c) positions and the unit cell contains

four formula units [109]. The orthorhombic distortion of the crystal is small and

shrinks from 0.3% in LaTe3 having a = 4.405 Å and c = 4.42 Å to 0.05% in DyTe3

having a = 4.302 Å and c = 4.304 Å [110]; the respective long axes are b = 26.267 Å

Te

R

Figure 3.6: Crystal structure of the rare-earth tritellurides (RTe3). The 3D crystallo-
graphic unit cell is indicated in gray. The structure consists of nearly square planar Te
double layers separated by two corrugated R-Te layers. The space group symmetry is
orthorhombic. Note that b is the long axis here (crystal structure created with Balls
& Sticks [108]).
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and b = 25.405 Å, respectively [111]. The space group has a glide plane between the

tellurium bilayer in the middle of the unit cell. If the upper half of the unit cell is

translated by c/2, a reflection on the glide plane maps it onto the lower half of the

unit cell. This symmetry occurs only in the c but not in the a direction and thus

makes the two directions inequivalent and the structure orthorhombic (see Fig. 3.6).

The single crystalline samples were grown in the group of Ian Fisher at Stanford

University via a self-flux technique and slow cooling of the binary melt as described

in Refs. [111–113].

3.2.2 Electronic properties

In the Te layers, the atoms are arranged in a planar, almost quadratic unit cell,

indicated by the black square in Fig. 3.7 (a) with x, z being the lattice parameters of

the Te cell. These layers mainly determine the electronic properties of the rare-earth

tritellurides [109], as only the Te 5px and 5pz orbitals contribute to the bands that

cross the Fermi energy [114]. The Fermi surface as determined by angle-resolved

photo-emission (ARPES) measurements is shown in Fig. 3.7 (b) and (c) [115–117].

For describing the electronic properties, it is convenient to use the Te square cell

in addition to the crystallographic one. It is rotated by 45◦ with respect to the

crystallographic cell and encloses only half the area. The 5px and 5pz orbitals of

neighbouring Te atoms overlap, forming linear chains perpendicular to each other as

depicted in Fig. 3.7 (a). In reciprocal space, the electronic unit cell is spanned by kx

and kz and encloses twice the area of the Brillouin zone (BZ) of the crystallographic

unit cell (red dashed rectangle) that is confined by a∗ = 2π/a and c∗ = 2π/c. At

100 K, deep in the CDW state, larger parts of the Fermi surface (FS) are gapped

out than at 300 K, as the CDW energy gap further opens at surface sheets connected

by the nesting vector QCDW ‖ c∗ (TCDW(TbTe3) = 336 K). The gap is anisotropic in

momentum space and breaks the 4-fold rotational symmetry (C4).

The electronic structure can be modeled by a tight-binding scheme [10,114,116,118].

The predicted Fermi surface [black dashed lines in Fig. 3.7 (b) and (c)] consists of px

and pz bands (inner dashed lines) which show a high intensity in the ARPES mea-

surement at 300 K and bands that show low intensity (outer dashed lines) and result

from back-folding due to the crystallographic BZ boundaries (dashed red lines) [119].

The weak intensity of the folded bands reflects the small 3D couplings and, conse-

quently, the nearly 2D character of these compounds [114]. Band folding due to the
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Figure 3.7: Orbital structure of the Te plane and TbTe3 Fermi surface. (a) In a Te plane,
the atoms (violet spheres) are connected via Te 5px (green) and 5pz (orange) orbitals.
Various hopping matrix elements are indicated. The bonds define an electronic unit
cell (full black square) which is rotated by 45◦ with respect to the crystallographic
unit cell (dashed red). (b, c) Fermi surface of TbTe3 as determined by ARPES mea-
surements [117]. (b) Deep in the CDW phase large parts of the Fermi surface are
gapped at the corners connected by the nesting vector QCDW. (c) Fermi surface at
300 K where the CDW gap is almost closed [TCDW(TbTe3) = 335 K]. The Brillouin
zone of the crystallographic unit cell (dashed red), spanned by a∗ and c∗, encloses half
the area of the Te unit cell (black), spanned by kx and kz, and is rotated by 45◦.

periodic lattice distortion in the CDW state will be neglected here, as the resulting

shadow bands, observed and discussed in Refs. [114] and [119], are weak. Bilayer

splitting effects due to interactions between two adjacent Te layers split the bands

[dotted black lines in Fig. 3.7 (b, c)] at the Fermi surface by 0.01−0.03 c∗ [114]. They

are neglected in the tight-binding model, but play a role in behaviour of the CDW

amplitude mode discussed in Sec. 3.4.3.

Tight binding model

The tight binding (TB) model used in this thesis, largely follows that described in

Refs. [10] and [114]. However, next nearest neighbour interactions are included here,

in particular those between the px and pz bands [19]. As already mentioned by Brouet

et al. [114], this reconciles the experimental FS and the TB fit as the interaction lifts

the degeneracy at the band crossing points3 and creates two independent FS sheets:

a small electron pocket around Γ and outer hole-like pieces. First, the full model is

described as developed by our collaborators E. A. Nowadnick, A. F. Kemper and T. P.

Devereaux [19], then band structure and nesting conditions are briefly discussed.

3The behaviour resembles the general concept of anti-crossing in two-level systems [120].
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The real space Hamiltonian can be expressed as

H = −Vpσ
∑
m,n

[
c†m,n+1(px)cm,n(px)+c

†
m+1,n(pz)cm,n(pz)

]
− Vpπ

∑
m,n

[
c†m+1,n(px)cm,n(px)+c

†
m,n+1(pz)cm,n(pz)

]
− Vxx

∑
m,n,α

[
c†m+1,n+1(α)cm,n(α)+c

†
m−1,n+1(α)cm,n(α)

]
− Vxz

∑
m,n

[
c†m+1,n+1(px)cm,n(pz)+c

†
m+1,n+1(pz)cm,n(px)

]
+ Vxz

∑
m,n

[
c†m−1,n+1(px)cm,n(pz)+c

†
m−1,n+1(px)cm,n(pz)

]
− µ

∑
m,n,α

c†m,n(α)cm,n(α) + h.c. (3.7)

where c†m,n(α) creates an electron at site (m,n) in orbital α = px, pz [19]. It includes

both nearest and next-nearest neighbor hopping matrix elements within one tellurium

plane, as denoted in Fig. 3.7 (a). Fourier transforming Eq. (3.7) leads to the two bands

ε
(ν=±)
k , where ν = + and ν = − label the electron and the hole band, respectively,

ε±k =
1

2

[
h11
k + h22

k ±
√

(h11
k − h22

k )2 + 4(h12
k )2

]
. (3.8)

With the Te-Te distance set unity, the energies hijk read

h11
k = −2Vpπ cos kz−2Vpσ cos kx−4Vxx cos kz cos kx−µ,

h22
k = −2Vpπ cos kx−2Vpσ cos kz−4Vxx cos kz cos kx−µ,

h12
k = −4Vxz sin kz sin kx. (3.9)

The resulting energy bands are plotted in Fig. 3.8. Using the experimental dis-

tances between the rare-earth and the Te ions of 4.34 and 4.34/
√

2 Å, respectively,

the hopping matrix elements are Vpσ = 2.99, Vpπ = −1 eV. Parameters are adjusted

to achieve the best match to the ARPES-derived Fermi surfaces from Ref. [119]. If

also the next nearest neighbour interactions Vxx = 0.09, Vxz = 0.12 eV are included,

the match to experiment is further improved. The chemical potential is set to yield a

filling of 1.6 electrons/band. Zero energy separates the occupied from the unoccupied
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Figure 3.8: Band structure of ErTe3. In a tight binding model, the hopping parameters
were adjusted as to match the experimental FS. Panels (a) and (b) separately show
the electron and hole band, respectively, using Vxx = 0.09 eV and a hybridization of
Vxz = 0.12 eV. Both the 2D band structure and the constant energy contours are
plotted. Panel (c) shows the dispersion along the line Γ −M − X − Γ, as indicated
in the inset, before (dashed lines) and after (full lines) the hybridization Vxz has been
turned on.

states in the figure (black horizontal line). Panel (a) and (b) show the electron and

hole band, respectively. Contours of constant energy are projected on the ground

plane of the cube defined by the axes. The 2D Fermi surface is distinguished by a

thicker line. Panel (c) shows the dispersion along the line Γ−M −X − Γ; the inset

illustrates the corresponding path in the BZ.

The two dominant hopping parameters are Vpσ and Vpπ along and, respectively,

perpendicular to the overlapping px or pz orbitals. Vpσ alone would describe perfect

1D chains perpendicular to each other and result in a FS that consists of two sets

of exactly straight lines, exhibiting perfect nesting. The coupling Vpπ between two

parallel chains, either px or pz, introduces a deviation from one-dimensionality and

a curvature of the FS proportional to Vpπ/Vpσ [114]. Together, Vpσ and Vpπ lead to

slightly warped Fermi surface lines as depicted in Fig. 3.9 (a), but only Vxz couples

px with pz orbitals and thus models the interaction between perpendicular chains.

Hence, Vxz 6= 0 corresponds to a hybridization of the energy bands lifting the band

degeneracy along the Γ−M Brillouin zone cut. Due to their interaction, the px and pz
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Figure 3.9: Fermi surface and nesting vectors derived from a tight binding model. The
hopping matrix elements are optimized for ErTe3. (a) Bands for Vpσ = 2.99, Vpπ = −1
and Vxx = 0.09 eV. The px and pz bands cross, if there is no interaction between them,
i.e. Vxz = 0. There are two energetically possible orientations for CDW ordering,
Q1 and Q?, where Q? is the wave vector predicted by nesting. (b) Theoretical Fermi
surface for Vxz = 0.12 eV best reproducing the experimental findings [114]. Also shown
are the two experimentally observed orthogonal ordering vectors Q1 and Q2 parallel to
the crystallographic c and a axes, respectively, corresponding to the CDW transitions
at TCDW1 and TCDW2. Due to the small orthorhombicity of the crystal the first CDW
Q1 always aligns along the c direction.

bands do not cross any further, but form sharp corners close to the lifted degeneracy

points. This is shown in Fig. 3.8 and Fig. 3.9 (b).

Of course FS warping also affects the the nesting conditions. There is a competition

between Q? which perfectly nests one of the FS chains (px in Fig. 3.9) but does not fit

to the perpendicular one (pz), and Q1 which nests both bands moderately good but

none perfect. The competition between these different wave vectors has been studied

by Yao et al. [10]. Via a calculation of the Lindhard function (c.f. Sec. 3.1) they find,

that Q? is favoured, if the transition temperature TCDW is lower than approximately

300 K and the dimensionless q-independent electron-phonon coupling strength λ is

between 0.093 and 0.103, while Q1 is favoured for higher transition temperatures and

coupling constants (note the different nomenclature in Ref. [10]). The latter case is

observed in the tritellurides.

In contrast, Johannes and Mazin [12] find that in metals electronic instabilities

driven by nesting alone are so fragile that the correct nesting vector cannot be pre-

dicted in real systems. The Lindhard susceptibility has peaks of comparable size at

the nesting vector Q? predicted from the band structure and at the CDW ordering

vector Q1 determined experimentally in RTe3 [110]. Thus, nesting alone is unlikely

to determine the CDW ordering. Rather a concerted action of electronic and ionic
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Chapter 3 Charge density waves in the rare-earth tritellurides

subsystems, i.e. a q-dependent electron-phonon coupling plays an indispensable role

in density wave formation and the selection of the ordering vector in real systems [12].

This will be one of the major points in the results presented below.

3.2.3 The rare-earth series

Single crystals of RTe3 exist for almost all rare earth elements [111], because of

their remarkably similar chemical properties [121]. Nevertheless, the magnetic state

has a substantial influence on the spectroscopic properties such as crystal field ex-

citations and on the possible formation of superconductivity if the CDW is sup-

pressed [122,123].

The common ionization state of the rare-earth atom is R3+ which leaves the

4f shell the only partially filled one, while all other shells are completely filled or

empty. The 4f -electrons are strongly localized and have a higher probability to be

close to the nucleus compared to the 5s2 and 5p6 shells [124]. Hence, they can be

considered local magnetic moments that depend on the 4f -filling. The moments

range from zero in non-magnetic La3+ to a maximum effective magnetic moment

µeff = gL

√
J(J + 1)µB = 10.65µB per ion in Dy3+ [125]. Here, µB is the Bohr

magneton, J the total angular momentum and gJ the Landé g-factor

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (3.10)

The values of the total quantum numbers S (spin), L =
∑
ml (total orbital an-

gular momentum) and J (total angular momentum) are determined via Hund’s rules

and L-S (Russell-Saunders) coupling. In Table 3.1 they are listed for all rare-earth

elements. Also listed are the theoretical effective magnetic moments p = µeff/µB =

gJ [J(J + 1)]1/2 and the de Gennes factors (gJ − 1)2J(J + 1). Of course the mag-

netic properties influence the phase diagram of rare-earth compounds. In case of the

rare-earth tritellurides, this will be covered in the following section.

Another property of the rare-earths is referred to as lanthanide contraction. As the

nuclear charge increases for heavier R elements, the electrons feel a stronger Coulomb

attraction. Mainly the 4f -electrons are affected as they are well embedded within the

atom and shielded by the 5s and 5p states from the outside world. The incomplete

screening of the increasing nuclear charge along the rare earth series causes a decrease

in the ionic and atomic radii [121]. Consequently the lattice parameters of the RTe3
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ion shell S L J gJ p de Gennes factor

La3+ 4f 0 0 0 0 − 0 −

Ce3+ 4f 1 1
2

3 5
2

6
7

2.54 0.18

Pr3+ 4f 2 1 5 4 4
5

3.58 0.80

Nd3+ 4f 3 3
2

6 9
2

72
99

3.62 1.84

Pm3+ 4f 4 2 6 4 3
5

2.68 3.20

Sm3+ 4f 5 5
2

5 5
2

2
7

0.85 4.46

Eu3+ 4f 6 3 3 0 − 0.0 −

Gd3+ 4f 7 7
2

0 7
2

2 7.94 15.75

Tb3+ 4f 8 3 3 6 3
2

9.72 10.50

Dy3+ 4f 9 5
2

5 15
2

4
3

10.63 7.08

Ho3+ 4f 10 2 6 8 5
4

10.60 4.50

Er3+ 4f 11 3
2

6 15
2

6
5

9.59 2.55

Tm3+ 4f 12 1 5 6 7
6

7.57 1.17

Yb3+ 4f 13 1
2

3 7
2

8
7

4.53 0.32

Lu3+ 4f 14 0 0 0 − 0 −

Table 3.1: Magnetic ground states for 4f ions (rare-earths). For each ion, the shell config-
uration and the the ground state values of S, L and J predicted by Hund’s rules are
listed. Also shown is the effective magnetic moment p = µeff/µB = gJ [J(J+1)]1/2 and
the de Gennes factor (gJ − 1)2J(J + 1) calculated from the Hund’s rule predictions.
From [125].

crystals decrease as mentioned already in Sec. 3.2.1. As there is a similarity with

applied pressure, the rare-earth substitution is referred to as chemical pressure in

literature [110,118].

3.2.4 Phase diagram

The properties of the rare-earth tritellurides are represented and summarized by the

phase diagram shown in Fig. 3.10. The main features are two CDW states having

perpendicular ordering vectors Q1 and Q2 oriented along the the c and a direction

of the crystal, respectively. The first study on the effects of chemical pressure in
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Q1 and Q2

Q1

Figure 3.10: RTe3 phase diagram. Plotted are the transition temperatures as a function
of the lattice parameter a for the heavy rare-earth members of the series. The phases
of the first CDW, with ordering vector Q1 and the second CDW, ordered along Q2,
are coloured in light and dark blue respectively. There is also a regime where the CDW
coexists with long-range magnetic order (LRMO, hatched). From [126].

RTe3 was reported by DiMasi et al. [118]. The phase diagram is adapted from Ru et

al. [110,111].

Depicted is the ordering temperature as a function of the lattice parameter a so

as to highlight the equivalence of chemical substitution and pressure. The first and

second CDW phase is visualized by light blue and dark blue shaded areas, respec-

tively. With decreasing atomic number and thus increasing radius of the R atom,

the lattice parameters get larger (cf. Sec 3.2.3). This goes along with a monotonic

increase of the CDW transition temperature TCDW1 from 244 K in TmTe3 to 377 K in

GdTe3 [110, 111]. An extrapolation of the TCDW1 curve to the lattice parameters of

the lighter RTe3 compounds (R = La, Ce, Pr, Nd) yields transition temperatures in

excess of 450 K [111].

The increase of TCDW1 with decreasing (chemical) pressure results from subtle

changes on the Fermi surface which improve the nesting conditions and enhance

the density of states N(EF), while minimal changes in the topology of the Fermi

surface are expected [114]. When the lattice expands, both Vpπ and Vpσ decrease,

but the curvature of the FS is only mildly affected as it depends on the ratio of the

hopping parameters Vpπ/Vpσ as mentioned in Sec. 3.2.2. The bandwidth, however, is

directly proportional to Vpσ [114]. An expansion of the lattice decreases the band-
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RTe3 YTe3 SmTe3 GdTe3 TbTe3 DyTe3 HoTe3 ErTe3 TmTe3

TCDW1 334(3) 416(3) 377(3) 336(3) 306(3) 284(4) 267(3) 244(3)

TCDW2 – – – – 49(5) 126(6) 159(5) 186(5)

Table 3.2: CDW transition temperatures TCDW1 and TCDW2. Based on the trend in TCDW1,
the transition temperatures for the compounds of R = La,Ce,Pr,Nd are anticipated
to be greater than 450 K. From [111].

width and, as a result, N(EF) increases almost linearly [110]. The variation in the

density of states likely plays the dominant role as the mean-field transition tempera-

ture depends exponentially on N(EF) [5]. Further details can be found in Refs. [110]

and [111].

The second transition to a bidirectional CDW phase only occurs for Dy and heavier

members of the rare-earth series [110]. This may be due to the larger energy gap

associated with the higher transition temperatures in the lighter RTe3 compounds.

As a result, only small parts of the FS remain intact below TCDW1, as seen by ARPES

measurements [114]. Moving to heavier RTe3, progressively more of the FS becomes

available for the second CDW transition at lower temperatures explaining the opposite

trends of TCDW1 and TCDW2 in the phase diagram [110].

The transition temperatures TCDW1 and TCDW2 as obtained from resistivity mea-

surements [110,113] are compiled for various RTe3 compounds in Table 3.2. The phase

transitions were corroborated by specific heat and x-ray diffraction experiments [110]

that also returned the lattice parameters and the CDW ordering vectors Q1 and Q2.

CDW order was also observed in real space via STM measurements [127].

In some compounds, the CDW coexists with long range antiferromagnetic order

(LRMO) at the lowest temperatures [126], as first reported by Iyeiri et al. [128].

From HoTe3 to GdTe3 the Néel temperature increases as does the de Gennes factor

(cf. Table 3.1). Deviations from the expected linear behaviour [125] can be attributed

to the effects of crystal electric fields on the Hund’s rule multiplet [126]. In CeTe3 even

more complicated types of magnetic order like helimagnetism or an incommensurate

magnetic order are conjectured to occur [128]. The interplay between magnetic order

and the CDW is another subject of research in this material class [126]. It was

reported, that at high pressure also superconductivity joins the competition for the

FS in TbTe3 [122]. This issue will be picked up in Sec. 3.4.2.
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3.3 Results

Across the rare-earth tritelluride family, LaTe3, DyTe3, HoTe3 and ErTe3 samples

were available covering most of the range of rare earths and, in particular, of the

range of transition temperatures. At low energies, we studied phonons and amplitude

modes (AM) of the CDW condensate as a function of temperature. High pressure

experiments were performed in LaTe3 and, particularly, in ErTe3 to compare the

effect of chemical and applied pressure and to obtain the pressure-temperature phase

diagram. At high energies, signatures of the CDW energy gap were detected in LaTe3,

DyTe3 and ErTe3 and the gap anisotropies were studied.

3.3.1 Amplitude modes and low energy excitations

In this section the Raman scattering results on LaTe3 at an applied pressure of 6 GPa,

and on DyTe3, HoTe3 and ErTe3 at ambient pressure are presented. The pressure was

generated by means of the diamond anvil cell described in Sec. 2.3.1. At 6 GPa the

lattice constants of LaTe3 are similar to DyTe3 and comparable to those of HoTe3 and

ErTe3 [89,129,130]. The temperature dependences of electronic and lattice excitations

were studied in all these compounds in the range 8 < T < 290 K with a spectral

resolution of about 3 cm−1. In Fig. 3.11, the Raman response Rχ′′(ω, T ) is plotted as a

function of the frequency shift ω. For clarity spectra at higher temperatures are offset.

All four compounds show a qualitatively similar behaviour: The response at high

temperatures, above the CDW transition, is flat and almost featureless as expected

for a metal with an almost constant resistivity [110]. With decreasing temperature,

several new modes appear in the CDW phase. This is due to the reduced crystal

symmetry in the CDW state (band folding). As the CDW is incommensurate [118],

also inversion symmetry is lifted which further increases the number of Raman active

excitations as the strict mutual exclusion between Raman and infrared active phonons

vanishes [131].

In the following, the attention is directed to the modes labeled A, B and C. Just

below TCDW1, the intensity at low frequency increases until a new mode A can be

resolved. This peak further gains intensity and moves to higher energy. Due to the

characteristic onset temperature, it is identified as the amplitude mode (defined in

Sec. 3.1) associated with the first CDW transition. In addition, a second new peak

(B) appears just below the phonon (C) of the high temperature phase. Phonon C
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Figure 3.11: Temperature dependence of the low-energy Raman spectra of (a) LaTe3 at
6 GPa and (b) DyTe3, (c) HoTe3 and (d) ErTe3 at ambient pressure in c′c′ polarization.
The spectra have been shifted for clarity. In all compounds a similar temperature
dependence of the modes is observed. The AM appears below TCDW at low energies,
then sharpens and moves to higher energies with further cooling. In its course, the
AM interacts with some of the phonons, nearby in energy. For the analysis, the peaks
were fitted by single oscillators as indicated by dashed lines in panel (b). The modes
labeled A, B and C were studied in detail.
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Figure 3.12: Temperature dependence of the second amplitude mode (AM2) in ErTe3. In
rl polarization (sketched in the inset) only excitations having B1g or B2g symmetry
are projected out. A beat mode Ωδ of AM1 and AM2 appears at 18 cm−1. The other
peaks are attributed to phonons or originate from crystal electric field level splitting.

stays at the same frequency throughout the whole temperature range, while peak

B hardens and also gains intensity until A and B equally share the spectral weight.

Upon cooling down further, the spectral weight is more and more transferred from

peak A to B. Obviously, the two modes never appear in the same position suggesting

that they repel each other (anti-crossing) as noted already by Yusupov et al. [21].

The Raman experiment is sensitive enough for resolving an additional change in the

CDW ordering at T ≈ 2TCDW1/3 as will be discussed in detail in Sec. 3.4.3.

Figure 3.12 further scrutinizes the low energy part using additional polarization

combinations. With crossed circular polarizations (rl) the measurement is equally

sensitive to excitations in B1g and B2g symmetry [57], while A1g symmetry, and with

it the intense modes A and B, is suppressed by more than one order of magnitude.

Only remnants of peak A and B can be seen close to 50 and 60 cm−1, e.g. in the 160 K

spectrum. Note, that the two modes at 80 and 90 cm−1 do not correspond to the two

strongest peaks at the lowest temperatures in Fig. 3.11. On cooling down below TCDW2

= 155 K, the spectral weight increases at low energies, and an additional peak appears,

sharpens and moves to higher energies, until it reaches 37 cm−1. This excitation is

attributed to the AM of the second CDW transition as it appears just below TCDW2

and has the same characteristic temperature dependence as AM1 [19, 132, 133]. At
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the lowest temperatures, a resolution-limited peak Ωδ appears at 18 cm−1 which is

exactly half the difference of the two AM frequencies. Hence, Ωδ is attributed to the

beat mode [19]. The peaks between 40 and 90 cm−1 may originate either from crystal

electric field (CEF) splitting of the 4I15/2 ground state multiplet of the rare-earth f -

electrons (cf. Sec. 3.4.1) or are due to the lowered symmetry in the crystal distorted

by the second CDW [110].

3.3.2 Electronic response in the charge density wave phase

At larger energy transfers, electronic excitations across the CDW energy gap can be

observed. Fig. 3.13 shows Raman measurements of LaTe3, DyTe3 and ErTe3 which

cover energy shifts up to 8000 cm−1 (≈ 1 eV) with a resolution of 20 cm−1. Due to the

lower resolution, the low energy excitations discussed in the previous section are not

resolved any further, but appear as a large peak below 500 cm−1.

In DyTe3 [Fig. 3.13 (b)], an additional sharp peak appears at 3490 cm−1 at low tem-

peratures. It is not connected to the CDW order, but can be attributed to electronic

transitions between rare-earth f -electron levels which will be discussed in Sec. 3.4.1.
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Figure 3.13: CDW energy gaps. A suppression of spectral weight below the gap energy
is detected in (a) LaTe3, (b) DyTe3 and (c) ErTe3. The gap edge 2∆CDW1 (vertical
line) is identified as the energy where the spectra change slope; the error is indicated
by dashed vertical lines. In LaTe3 with TCDW1 > 450 K, the sample never reaches the
metallic state. Thus the change in slope is present up to the highest temperatures
measured. The signatures of the gap are most pronounced in ErTe3, as aa polarization
is more sensitive in the gapped areas of the Brillouin zone than a′c′. The CEF peak
close to the gap edge in DyTe3 [panel (b)] will be discussed in Sec. 3.4.1.
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Figure 3.14: Polarization and temperature dependence of the high energy Raman spectra
in ErTe3. (a) At 262 K there is no difference in the electronic excitations at high
energy for both polarizations. The insets sketch the incoming and scattered photon
polarizations with respect to the Te planes. (b) At 164 K the anisotropy between the
two polarizations is already well resolved. (c) In the limit T → 0 the electronic gaps
with edges at 820 and 2800 cm−1 (vertical lines) for both CDWs are fully developed.
The upper left and lower right insets show the temperature dependences of both CDW
gaps, using the same colour-code as Fig. 3.13 (c). Note that the signatures of the CDW
transition at TCDW1 with Q1 ‖ c∗ are observed with incoming and scattered light
polarizations parallel to the direction of a. The opposite is true for the transition at
TCDW2.

The main feature in Fig. 3.13 is the CDW energy gap. In LaTe3 (a) the sample is

deep in the CDW state up to the highest measured temperatures as TCDW1(LaTe3) >

450 K [111]. However, with decreasing temperature, the spectral weight decreases

mainly between 2000 and about 6400 cm−1. As the gap edge we identify the energy

where the Raman continuum changes from a finite slope to constant. At the lowest

temperatures the gap reaches its maximum value 2∆CDW1 = 6400±500 cm−1 (vertical

line). The errors are indicated by dashed vertical lines. The signature of the gap

is not very pronounced in the Raman spectra of LaTe3, but it is well resolved in

the spectra of DyTe3 [Fig. 3.13 (b)] and ErTe3 [Fig. 3.13 (c)]. In the metallic state,

above the transition temperature of TCDW1 = 307 K, the scattering intensity rises

almost linearly for energies ranging from 1000 up to 5500 cm−1. Below TCDW1, there

is a suppression of spectral weight inside the gap and a change of the slope of the

electronic continuum at the gap edge. Both features become more pronounced at

lower temperature. Again, the gap edge is identified as the energy where the spectra
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change slope at 2∆CDW1 = 3500± 300 cm−1.

It turns out that the a′c′ polarization is not the best one for detecting the CDW

gap, as will be discussed in Sec. 3.4.6. Rather, the aa and cc polarizations are most

sensitive for observing the gap associated with the first (Q1 ‖ c) and second (Q2

‖ a) CDW, respectively. The polarization selectivity is pointed out in Fig. 3.14. The

electronic Raman response of ErTe3 at 262 K, just below TCDW1, is still isotropic.

The spectra rise almost linearly between 800 and 3500 cm−1 and finally become flat

in both aa and cc polarization. Upon lowering the temperature there is a transfer of

spectral weight in the aa spectrum from low to high energies [Fig. 3.14 (b) and (c)],

and an anisotropy develops. At the lowest temperatures, there is a relatively weak

new structure in the cc spectrum in the range 500-1200 cm−1 which is attributed to

the second CDW gap. The insets in panel (c) highlight the temperature dependences

[same colour code as in Fig. 3.13 (c)] of the aa and cc polarized spectra right above and

below TCDW1 and TCDW2, respectively. In either case, spectral weight is progressively

suppressed below the gap edges and piles up above. The full anisotropy without any

leakage between the two orthogonal aa and cc directions, indicates that the crystal

is single domain in the probed spot4. The maximum gap energies of the first and

the second CDW are 2∆CDW1 = 2800 ± 250cm−1 and 2∆CDW2 = 820 ± 100cm−1,

respectively.

3.4 Discussion

First, the results on crystal field excitations are analyzed. Subsequently, the am-

plitude modes (AMs) of the CDW condensate are used as a probe for the phase

transition in high pressure experiments. Below the phase transition, the AMs show a

characteristic temperature dependence resembling that of the BCS order parameter in

superconductors, but challenging textbook CDW theory. Above the CDW transition,

there is evidence for charge fluctuations. Further, the gap magnitude and anisotropy

as detected in the electronic Raman response is discussed. Finally, the momentum

dependence of the Raman vertex allows the study of the k-dependence of the electron-

phonon interaction resulting in a proposal for an alternative route to charge density

wave formation. Parts of the work have been published in Refs. [19,132–135].

4Single domain areas were already observed in an earlier ARPES experiment on an ErTe3 sample
of the same source [119].
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3.4.1 Electronic transitions in the 4f shell

In DyTe3 and CeTe3 pronounced peaks were detected at 3490 cm−1 [cf. Fig. 3.13 (b)]

and around 2300 cm−1 (cf. Fig. 3.15). As these frequencies are well above the De-

bye frequency of about 125 cm−1 [111]; a phononic origin of the peaks can be ex-

cluded. Additionally, it turns out that some of the modes appear in A2g symmetry

(cf. Figs. 3.15 and 3.16) which is forbidden for vibrational Raman scattering in the

non-resonant case [136]. However, the frequencies of the modes are compatible with

the level splitting of the rare-earth f -electron orbitals due to spin orbit (SO) cou-

pling and crystal electric fields (CEFs) [137]. As to the symmetry, Mortensen et al.

showed theoretically that an antisymmetric response (here A2g) can be present and

even dominate the electronic response for trivalent rare-earth ions in crystals [138].

In the following, the electronic configuration and possible splitting effects in Ce3+ and

Dy3+ are discussed and compared with the observations5 in CeTe3 and DyTe3.

The electronic configuration of Ce3+ is [Xe] 4f 1 which corresponds to the total

quantum numbers S = 1/2, L = 3 and J = 5/2 according to Hund’s rules (cf.

Table 3.1 in Sec. 3.2.3). The electronic states are typically labeled by spectroscopic

terms of the form 2S+1LJ where L = 0, 1, 2, 3, ... is encoded as S, P,D, F, ... . In the

case of Ce3+ this yields 2F5/2 for the ground state. The first excited state 2F7/2 is

split off due to spin-orbit coupling and has an energy of 2253 cm−1 [139]. Close to this

energy, a multiplet of four peaks (marked by arrows in Fig. 3.15) is observed in the

Raman spectra of CeTe3. The (2J + 1) = 8 fold degeneracy of the 2F7/2 level is lifted

by CEF effects [137]. However, a minimum degeneracy of two remains, as an electric

field cannot break time reversal symmetry, i.e. the spin degeneracy6. This is referred

to as the Kramers theorem [140]. Consequently, a maximum of four different energy

levels can result from CEF splitting in Ce3+, in agreement with the Raman results.

Fig. 3.15 (a) demonstrates the consistency of the measurements (cf. Sec. 2.1.2), and

panel (b) shows the symmetry analysis. As every atom in the RTe3 crystal is in the

same pseudo-tetragonal local environment (cf. Sec. 3.2.1), the symmetry analysis is

based on the D4h point group as described in Ref. [57]. Only the peak at 2110 cm−1

appears in pure A1g symmetry, while the other peaks at 2185, 2335, and 2400 cm−1

are present in more than one channel. All four peaks are in an energy range of

some 100 cm−1 showing that the crystal fields of neighbouring atoms lead to a much

5In LaTe3 and ErTe3 all f -electron transitions are outside of the measured energy range [139].
6In a magnetic field, the degeneracy could be lifted completely.
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Figure 3.15: Crystal field splitting in CeTe3. (a) Consistency check of the polarization

analysis. (b) Due to crystal electric fields, the 2F7/2 state of CeTe3 (4f orbitals) splits
in energy. Four main peaks are observed at 2110, 2185, 2335, and 2400 cm−1 (marked
by arrows). Possible origins of the smaller splittings observed around 2185 cm−1 are
discussed in the text.

smaller energy splitting than spin-orbit coupling (2253 cm−1), because the 4f orbitals

(radius ∼0.3 Å) are efficiently shielded by the 5s and 5p orbitals (radius ∼1 Å) [141].

In DyTe3 the transition from the 6H15/2 ground state to 6H13/2 requires an energy

of 3460 cm−1 [139]. Again, these states of different total angular momentum are split

due to spin-orbit coupling. The excited state is 14-fold degenerate (2J+1). Again, the

Kramers degeneracy cannot be lifted by the crystal electric field, and not more than

7 different energy levels can appear. Experimentally, a peak is observed at 3490 cm−1

in the DyTe3 crystal7. Fig. 3.16 (a) shows that the measurements are consistent. The

symmetry analysis in panel (b) reveals that the peak consists of a B1g and an A2g

contribution at 3490 and 3495 cm−1, respectively. Indeed, a double peak is observed

in c′a′ polarization which probes both A2g and B1g symmetry [panel (c)]. However,

the energy difference of about 5 cm−1 seems to be too small to be explained in terms of

crystal electric field splitting which is typically on the order of 100 cm−1 in rare-earth

atoms [137, 142, 143] (cf. Fig. 3.15). However, the double peak can be explained in

terms of Davydov splitting [144,145], meaning that an exchange interaction between

the weakly bound upper and lower part of the RTe3 unit cell leads to a two-fold level

splitting.

7It is mere coincidence that the peak is close to the CDW gap edge in DyTe3. In CeTe3 all observed
f -electron transitions are well below the gap energy.
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Figure 3.16: Crystal field splitting in DyTe3. (a) Consistency check of the polarization
analysis. (b) The excitation into the 6H13/2 level consists of a B1g and an A1g con-
tribution at 3490 cm−1 and 3495 cm−1, respectively. (c) At T = 6 K, two independent
measurements in c′a′ polarization, probing B1g and A2g symmetry, were recorded to
confirm the small splitting; indeed, a double peak structure is observed.

Still, it remains puzzling that the number of observable energy levels in DyTe3 is

smaller than in the iso-structural CeTe3, despite the higher degeneracy. Either the

lower scattering intensity in DyTe3 prevents the observation of other levels, or the

CEF splitting in the two compounds is sufficiently different due to the very different

occupation of the f -orbitals (cf. Table 3.1). Further progress in assigning all specific

peaks, including their symmetry, could be be achieved via detailed calculations of all

involved f -orbitals, the excited states and their particular distortion inside the crystal.

In an alternative more speculative explanation, the CDW is at the origin of the

observed splitting. The CDW introduces a periodic distortion of the lattice which in

turn periodically modulates the crystal electric fields. A fit to resonant x-ray mea-

surements indeed yields a splitting of about 2 meV (16 cm−1) in DyTe3, and 20 meV

(160 cm−1) in CeTe3 [146]. In both materials this effect would be compatible with

the Raman measurements shown in Figs. 3.15 and 3.16. However, it is unclear if

the incommensurate CDW in the rare-earth tritellurides can give rise to discrete line

positions. A decision could be made in a high pressure experiment: In one case, by

applying pressure it should be possible to switch on and off the level splitting along

with the CDW (cf. Sec. 3.4.2) and the concomitant periodic distortion. In the other

case, the splitting would appear irrespective of the presence of the CDW or may even

increase with pressure.
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3.4.2 High pressure phase diagram of ErTe3

In ErTe3 the CDW order can not only be suppressed by increasing temperature, as

shown in Fig. 3.11, but also by increasing pressure. In contrast to chemical pressure

(cf. the phase diagram in Fig. 3.10), applied pressure can be used to gradually sup-

press the phase transition down to zero temperature in a single sample. The AM can

be used as a probe for the CDW phase transition and, accordingly, to map out the

pressure-temperature phase diagram [133,134].

To this end, Raman spectra were measured at various applied hydrostatic pressure

values in a home made diamond anvil cell (DAC) (cf. Sec. 2.3). The experiment is

most sensitive to the first CDW, if the polarizations of both incoming and scattered

light are set along the crystallographic a direction with the first CDW being oriented

along the c direction. The orientation of the polarizations with respect to the Te

plane is sketched in the inset of Fig. 3.17. The main part of the figure shows the

evolution of the AM measured with a high resolution of 3 cm−1. Panel (a) displays

the temperature dependence of the Raman response at 1 GPa as a function of T . At

150 K the two main features are a phonon at 95 cm−1 and the AM below 50 cm−1. The

phonon (a) stays almost at the same frequency, when the temperature is changed, but

(b) hardens considerably with increasing pressure. The AM loses spectral weight with

increasing temperature and moves to lower energy until it disappears between 170 K

and 180 K. Thus 175 K is identified as TCDW1 at 1 GPa. Above 175 K the sample

is in the metallic state where the spectra depend only weakly on temperature. In a

second set of measurements [panel (b)] the pressure is changed while the temperature

is fixed at 80 K. Increasing pressure has a similar effect on the AM as increasing

temperature: The AM is more and more suppressed and finally disappears completely.

In the 2.3 GPa spectrum there might still be a broad low energy peak present. But

in the range between 2.3 GPa and 2.8 GPa, the AM certainly vanishes; thus pCDW1 =

2.5 ± 0.3 GPa. Similar sets of measurements were taken at isobaric or isothermal

conditions to obtain the phase diagram shown in Fig. 3.18. Up to 2 GPa, TCDW1

decreases linearly with increasing pressure. At higher pressures the phase separation

line is expected to bend down for thermodynamical reasons as TCDW1 approaches

zero [1].

ErTe3 is a promising candidate to show a quantum critical point or to become

superconducting close to pc = 2.5 GPa, as the de Gennes factor of Er is only 2.55

in contrast to 10.50 in Tb (cf. Table 3.1). In TbTe3 superconductivity was found
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Figure 3.17: Raman spectra of ErTe3 undergoing a CDW phase transition at (a) constant
pressure and (b) constant temperature. The polarization of incoming and scattered
light (represented by arrows) are both set along the a axis within the tellurium ac
plane (dashed lines). In this configuration the AM of the first CDW with QCDW1 ‖ c
can be detected. The evolution of the amplitude mode excitation below 50 cm−1 is
used as a probe for the phase transition.

above 2.3 GPa at temperatures below ≈ 3 K [122] despite the stronger competition

with magnetism. Thus, susceptibility measurements inside the pressure cell were set

up as described in Ref. [88]. However, there was no evidence for superconductivity

in ErTe3. Regarding its magnetic properties (cf. Sec. 3.2.3), LaTe3 is the most

promising candidate to look for superconductivity. However, the CDW order was

still not suppressed at 14.5 GPa (TCDW (14.5 GPa)≈ 70 K) and the sample did not

survive a further increase of pressure.

A possible explanation for superconductivity in the rare-earth tritellurides is a

competition for the Fermi surface. When the CDW is suppressed and the related

energy gap closes, this part of the Fermi surface may then become available to Cooper

pairing [122,147]. It is still under debate, if superconductivity in TbTe3 is connected

to the fact that TbTe3 has only one CDW and thus parts of the Fermi surface, which

are not gapped by the first CDW transition, remain present [117, 119] at the lowest

temperatures. This hypothesis can, in principle, be investigated in ErTe3. Depending
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Figure 3.18: Phase diagram of ErTe3. CDW phase transitions are indicated by blue squares
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pressure (solid red line), while at higher pressure values the phase separation line is
expected to bend down (dashes). Above 2.8 GPa, CDW order is completely suppressed
down to a temperature of 2 K. The orange triangle marks the transition into the second
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on the applied pressure, the gap related to the second CDW can be opened and closed

tuning the amount of electrons available to Cooper pairing. However, the second AM,

i.e. the probe for the phase transition, could not be detected in the high pressure

experiment. Thus, the critical pressure pc(CDW2) ≈ 1.5 GPa was estimated from the

ratio of the transition temperatures TCDW2/TCDW1 = 0.6. Below 1.5 GPa we did not

find evidence for superconductivity down to approximately 1.5 K. Below 0.85 GPa we

lost the pressure transmission medium in the DAC.

3.4.3 Amplitude mode excitations

So far the AM was used as a probe for the phase transition. However, the exceptional

purity of the tritellurides, in particular of ErTe3, affords a window into a variety of

properties that were considered to be theoretically solved such as the temperature

dependence of AMs or their interaction with phonons. Rather, the current under-

standing needs to be augmented.

Spectra displaying the temperature dependence of the amplitude mode (AM) were

shown in Fig. 3.11. More detailed measurements on DyTe3 are plotted in Fig. 3.19.

Panel (a) shows the high temperature behaviour. Above TCDW1 = 306 K, only a single

phonon peak (C) is present in the plotted energy range. It survives the transition,
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without displaying any temperature dependence. Just below TCDW1, the amplitude

mode A appears at about 23 cm−1, gets progressively sharper, gains intensity and

moves to higher energies. In parallel, phonon mode B gets strongly enhanced, but

hardly moves in position. These trends are visualized by dashed arrows. Temperature

Ttr = 172 K is, by definition, where mode A and B have the same spectral weight

[thick grey lines in Fig. 3.19 (a) and (b)]. At this crossover temperature, there is a

qualitative change. Below Ttr [panel (b)], mode B starts behaving like an amplitude

mode in that it gets stronger, sharpens and moves to considerably higher frequencies.

In contrast, mode A hardens only slightly and loses spectral weight. Obviously, both

modes have changed their character.

Below TCDW2, an additional mode D appears at around 23 cm−1 [Fig. 3.19 (c)]. This

is the same low frequency limit as the one of mode A just below TCDW1 [132] and

may be interpreted in terms of a sample specific impurity scattering rate [148]. In

ErTe3, the cleanest compound, mode A could be followed down to 8 cm−1. Mode D

moves to higher frequencies with further cooling and gains intensity. It thus can be
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associated with the AM of the second CDW transition.

Peak A, B and C were fitted with Lorentzian profiles to study the temperature

dependence of the peak frequencies and spectral weights. In addition to the results

on DyTe3, Fig. 3.20 also contains the data on LaTe3 at 6 GPa, HoTe3 and ErTe3. In

all compounds, the frequencies of modes A and B approach each other with decreasing

temperature. At Ttr, A and B do not cross but repel each other as they have the

same symmetry. This behaviour is referred to as anti-crossing in the following. The

interaction strengths (off-diagonal matrix elements) used in the fits range from 4 to

6 cm−1. For T → 0 the frequencies of both modes saturate. Phonon C is unaffected

by the CDW transition. It stays constant in the whole temperature range and thus

will be not discussed any further.

In addition to the peak positions, Fig. 3.20 also shows the spectral weight of the

modes as a function of temperature. In order to compare the results obtained from

different samples in different experimental setups (e.g. inside the pressure cell), the

intensity was normalized to the total area below both peaks A and B. With decreasing

temperature, the intensity of the A mode increases similarly as the BCS order pa-

rameter ∆BCS(T ) in conventional superconductors (dashed lines) [5]. At intermediate

temperatures we find a transfer of spectral weight from mode A to mode B, defining

Ttr. At the lowest temperatures, mode B looses spectral weight in DyTe3, HoTe3 and

ErTe3 which may be related to the second CDW transition and the amplitude mode

associated with it.

Qualitatively, the same anti-crossing behaviour was observed in all rare-earth tritel-

lurides studied so far. Differences in the mode frequencies and temperature depen-

dences result from differences in TCDW1, the lattice constants and the masses of the

R atoms. A similar description of mode anti-crossing in RTe3 was reported previ-

ously by Yusupov et al. [21] using a Ginzburg-Landau model. They found crossing

temperatures Ttr of 190 K in DyTe3 and 150 K in HoTe3, in fair agreement with our

results. As a coupling constant, 3.5± 0.5 cm−1 was used for all RTe3 compounds. A

weakness of the approach is the use of a Ginzburg-Landau model in the whole tem-

perature range, although it is only valid in the vicinity of the transition temperature.

Approaching TCDW1 from below, the T dependence can be fitted almost in the limit

of mean field theory, ωAM ∝ (1− T/TCDW1)β, with β = 0.3 instead of 0.25.

Quantitatively, ωAM(T ) in the whole temperature range is determined by the CDW

condensate density. Mean field CDW theory predicts that the resonance frequency
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Figure 3.20: Temperature dependences of frequencies and normalized intensities for the

low energy modes in DyTe3, LaTe3 at 6 GPa, HoTe3 and ErTe3. A is an amplitude
mode (AM) between TCDW1 and Ttr and a phonon below while the opposite holds true
for the B mode. C is a phonon unaffected by the CDW transitions; D is the AM
associated with TCDW2. Details are described in the text. In ErTe3 charge fluctuations
F above TCDW1 were observed [panel (f)]. They are discussed in Sec. 3.4.4.
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of the amplitude mode ω
(MF)
AM (T ) is proportional to the square root of the condensate

density fd(T ) in the dynamic limit (ω � vFq) [5]

ω
(MF)
AM =

√
λω2kF

√
fd(T ). (3.11)

Here, ω2kF is the frequency of the unrenormalized CDW phonon mode at q = 2kF

(cf. Sec. 3.1, Eq. (3.6)). The condensate density can be approximated numerically

by the BCS gap function fd(T ) ∝ [∆BCS(T )]4/5 [149]. In the T = 0 limit, fd = 1

and thus ωAM =
√
λω2kF . Then, the electron-phonon coupling constant λ can be

estimated using the unrenormalized phonon frequency ω2kF (LaTe3) = 110± 20 cm−1

from literature [130] and the T = 0 extrapolation of ωAM from the Raman experiment.

In the case of LaTe3 at 6 GPa this yields λ(LaTe3) = 0.45 ± 0.1 indicating strong

coupling.

However, the observed temperature dependence of the AM is not in agreement with

the mean field prediction, particularly not for T . TCDW1. On cooling down below

TCDW1, the mean field temperature dependence, ω
(MF)
AM (T ) ∝

√
fd(T ) ∝ [∆BCS(T )]2/5,

does not match the Raman data but turns out to be an upper limit for the observed

behaviour. In fact, the AM frequency increases at a lower rate, meaning that ωAM(T )

is shifted to lower frequencies which can be interpreted qualitatively in terms of

damping. Possible damping mechanisms are quasi-particle excitations, the excitation

of phase modes (see Sec. 3.1), or scattering from randomly distributed impurities.

The latter is supported by the low frequency limit of the AM observed close to TCDW1

(23 cm−1 in DyTe3, 8 cm−1 in ErTe3). Phenomenologically, the observed temperature

dependence can be described with ωAM(T ) ∝ fd(T ) ∝ [∆BCS(T )]4/5 (red and blue

dashed lines in Fig. 3.20) for all studied compounds. A theoretical model to support

this observation is so far missing.

In the intermediate temperature range, we find also discrepancies to the expected

behaviour. In fact, it is not possible to explain the Raman experiment with a single

amplitude mode and anti-crossing with a phonon. Rather, a two-fold transition [132]

at TCDW1 and at Ttr (solid red and blue lines) is compatible with the data presented

in Fig. 3.20. This model is supported by calculations of the phonon dispersion in

the CDW state of the rare-earth tritellurides. Due to the Te bi-layers, there are two

unstable phonon branches at almost the same k-vector8 [130]. As the temperature is

8The momentum difference of the two branches here is much smaller than the difference between
the two possible nesting vectors Q1 and Q? introduced in Sec. 3.2.2.

63



Chapter 3 Charge density waves in the rare-earth tritellurides

lowered, the CDW ordering vector Q1 shrinks by few percents [110] until it is ener-

getically more favourable for the system to settle into the other predicted soft mode

(red dashed line in Fig. 3.20) [132]. This view is also supported by x-ray diffraction

measurements [110]. Ru et al. observed in TbTe3 that Q1 in the (11Q1) superlattice

peak decreases linearly from 0.297 at TCDW1 = 336 K to 0.292 at 180 K and then

saturates at an almost constant value at a temperature close to Ttr [110]. The minute

change in Q1 involved in this step, does not measurably alter the size of the gapped

area on the Fermi surface and, consequently, it is unlikely to be seen in the electrical

resistivity [110,132], particularly, in comparison to the drastic modification of the FS

occurring at TCDW1 and TCDW2. Recently, the two-fold transitions observed here for

LaTe3 at 6 GPa, DyTe3, HoTe3 and ErTe3 were corroborated by optical conductivity

and ultrafast pump-probe experiments in TbTe3 [150]. The additional transition in

TbTe3 occurs at Ttr ≈ 165 K [150] fitting to the trend observed by Raman scattering

for the RTe3 family. Ttr roughly scales with TCDW1 and thus increases from about

115 → 150 → 160 → 170 for ErTe3, HoTe3, LaTe3 at 6 GPa and DyTe3, respectively

(cf. Fig. 3.20).

The behaviour close to zero temperature is also explained by a two-fold transition.

The higher limiting frequency of mode B at T = 0 fits to the theoretical prediction,

that the energy of the second renormalized phonon branch, connected with the shorter

low temperature Q1 vector, is higher than the one of the other branch [130]. In the

example of DyTe3 [see Fig. 3.20 (a)], the high frequency limit of the first and second

branch is 60 cm−1 and 69 cm−1, respectively, corresponding to an energy difference of

about 1 meV between the two unstable phonon branches. Altogether, we arrive at

a consistent picture for the evolution of the collective excitations in RTe3 over the

whole range of existence of the CDW.

3.4.4 Fluctuations above TCDW1

Charge fluctuations considerably suppress the mean-field transition temperature in

low dimensional systems like the tritellurides [5, 68]. To illustrate the size of the

effect, the transition temperature is calculated from BCS mean-field theory using

2∆/kBTc = 3.52. From the experimental CDW gap sizes, ∆CDW1 between 180 and

400 meV [19, 114], one would expect transition temperatures TCDW1 between 1200

and 2600 K, i.e. well above the melting temperature of the crystals9. In contrast,

9In the rare-earth tritellurides, 2∆CDW1/kBTCDW1 ∼ 15 [19].
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Figure 3.21: Normal state Raman scattering response and fluctuation contribution in
ErTe3 at low energies. (a) and (b) display the presence of a fluctuation-induced
response in aa and cc polarization for a temperature range of about 30 K above
TCDW1. (c) and (d) show the fits according to Ref. [58] for the fluctuation contri-
bution ∆Rχ′′ = Rχ′′(ω, T )−Rχ′′(ω, 302 K). The masses attributed to the fluctuations
depend linearly on temperature (insets).

the experimental CDW transition temperatures range from 240 to about 500 K [111]

implying that the CDW ordered state emerges from a fluctuation regime. Signatures

of CDW precursor effects were observed by x-ray diffraction [110] and by optical (IR)

spectroscopy [151, 152]. Only electronic Raman scattering shows the fluctuations

directly and further provides information on their symmetry properties.

In experiment there is direct evidence for the charge fluctuations in aa and cc

polarization as shown in Fig. 3.21. Instead of the essentially temperature independent

continuum that is expected for a metal with an almost constant resistivity [110,153],

strongly T dependent shoulders at low energy are observed for TCDW1 < T < 300 K.

As no additional intensity is detected in the spectrum at 302 K, it was subtracted from

those at lower temperatures to highlight the fluctuation contribution to the Raman

response. Panels (c) and (d) show the remaining temperature dependent contribution.

Approaching TCDW1 from higher temperatures, the fluctuation peak softens and gets

stronger. This behaviour is exactly opposite to what is observed for the amplitude
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Chapter 3 Charge density waves in the rare-earth tritellurides

mode [cf. Fig. 3.20 (f)].

The fluctuation peak closely follows the prediction of Caprara et al. [58] for the

exchange of charge fluctuations [solid lines in Fig. 3.21 (c) and (d)]. From the the-

ory [58] a mass m can be assigned to the fluctuations. In the framework of Raman

scattering, it is convenient to express m in units of wavenumbers, i.e. energy. m

can be interpreted in terms of an inverse charge ordering (CO) correlation length ξCO

that diverges at the phase transition, m ∝ ξ−2
CO ∝ (T − TCO) [58]. The temperature

dependence of m, plotted in the insets of Fig. 3.21, follows the predicted linear be-

haviour, but extrapolates to a charge ordering temperature TCO smaller than TCDW1

for m→ 0, i.e. ξCO →∞.

As the Raman response is similar in aa and cc polarization, the symmetry of

the fluctuation peaks is compatible with A1g, which indicates the survival of the

C4 rotational symmetry of the pseudo-tetragonal phase. This is compatible with a

”stripe liquid” phase that does not break the any of the lattice symmetries [10]. A

charge stripe liquid has been seen in the nickelates, albeit detected indirectly via

the damping of magnetic fluctuations in La1.725Sr0.275NiO4 [154]. In contrast, the

presence of precursor effects due to nematic order that was intensively debated in the

cuprates [2,155] and in the iron arsenides [156], can be excluded here since the excess

intensity would appear in B1g symmetry.

3.4.5 CDW gap size

The energy gap is one of the key features of a CDW system, as it corresponds to

the energy the system gains through the phase transition. In the rare-earth tritel-

lurides the energy gap is large and reaches values up to ∆ ' 400 meV in CeTe3 and

LaTe3 [116]. In addition to the gap size, Raman spectroscopy also provides informa-

tion on the gap anisotropy (cf. Fig. 3.14) and facilitates detecting the first and second

CDW gap separately.

To begin with, Fig. 3.22 compiles the results of Raman, ARPES and IR measure-

ments as a function of the lattice parameter a, i.e. chemical pressure. Between

ARPES and Raman the gap energies agree to within the experimental error, as both

methods are capable to detect the maximum gap due to their momentum resolution.

IR systematically underestimates the gap as it provides an average over the entire

Fermi surface which contains gapped and also ungapped regions [cf. Fig. 3.7 (b) and

(c)]. The averaged (IR) gap drops faster than the maximum gap (ARPES, Raman)
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Figure 3.22: CDW gap as determined by different experimental methods. Plotted are
the maximum gap values from ARPES [114, 119] and Raman scattering (this work)
together with the momentum-averaged gap as derived from IR spectroscopy [89, 157]
versus the lattice parameter a.

with decreasing lattice parameter (cf. Fig. 3.22). This can be explained by a broader

distribution of gap values that causes the average to drop faster than the maximum

gap with increasing (chemical) pressure [89].

3.4.6 Gap anisotropy and Raman vertex

The anisotropy of both CDW gaps is illustrated in Fig. 3.23 for the example of ErTe3.

At 54 K both CDWs are present in the sample. There is a clear signature of the large

gap associated with the first CDW transition in aa polarization and of the small gap

of the second transition in cc polarization. The gap edges are marked by vertical

dashed lines. In the crossed polarization ac neither of the gaps is detected. The

gaps are observed completely separately in the different polarizations; there is no

polarization leakage requiring that the sample is single domain in the probed spot.

Now, the Raman selection rules based on the electronic unit cell are derived, ac-

cording to the band structure model presented in Sec. 3.2.2, and the effective mass

approximation [57] detailed in Sec. 2.1. Then, the Raman vertex is given by the sec-

ond derivative, i.e. the curvature, of the energy bands plotted in Fig. 3.8. Both the

Raman vertex and the energy bands at the Fermi surface are shown in Fig. 3.24. In

the panels of the first column, the kx and kz bands intersect each other (grey lines), i.e.

there is no band hybridization (Vxz = 0). In this case the Raman vertices, visualized
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Figure 3.23: CDW gap signatures in the electronic Raman response of ErTe3. The inset
sketches the incoming and outgoing photon polarizations for the ac configuration. At
T = 54 K both CDWs are present in the sample but the large gap associated with the
first CDW is only detected in aa polarization, while the second gap is observed in cc.
The spectrum in ac polarization shows no signature of any gap. Gap edges are marked
by dashed vertical lines.

in false color representation, stay between 0 (black) and 1 (red) in the entire Brillouin

zone for aa, cc and ac polarization; no particular regions are strongly highlighted. In

the second and third column, the band degeneracies are lifted (Vxz = 0.12 eV ). As

a result, strong band curvatures are introduced close to the lifted degeneracies and

the Raman vertices for parallel polarizations are enhanced by more than two orders

of magnitude (yellow-white) along the diagonals of the Brillouin zone. This focusing

enhances the light scattering precisely in those regions of the Fermi surface that are

connected by the CDW ordering wavevectors. Panels (d)–(f) and (g)–(i) show the

calculations for the electron pocket around the Γ-point (green) and the hole bands at

the corners of the Brillouin zone (blue), respectively. For crossed light polarizations

(bottom row of Fig. 3.24), there is no strong enhancement of γ2
ac.

The electronic Raman response can be directly derived from the Raman vertices

and the momentum dependences of the CDW gaps using the formalism of Ványlos and

Virosztek [158]. The spectra calculated by our collaborators are shown in panels (j)–

(l). For the calculation it is assumed that at T < TCDW2 the two perpendicular CDWs

with ordering vectors Q1 and Q2 have fully developed gaps ∆1 and ∆2, respectively.

Q1 and Q2 connect the corners of the electron pocket encircling the Γ point with

the corners of the hole pockets. In agreement with experiment, the two gaps appear

individually in the two parallel polarizations and no mixing can be observed [panels

(j) and (k)]. In ac configuration both gaps are in principle visible [panel (l)], but the
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Figure 3.24: Theoretical prediction for the Raman vertices and spectra of ErTe3 as derived
from a tight binding band structure (a)-(c) The first row shows the vertices without 2D
coupling (Vxz = 0) and the corresponding Fermi surfaces. (d)-(f) Raman vertices for
the bands corresponding to the central part of the Fermi surface (green) and (g)-(i) to
the outer part (light blue). The focussing effect due to the lifted degeneracy enhances
the vertices by more than two orders of magnitude as indicated by the colour code.
The ordering vectors are displayed in the third row. (j)-(l) All spectra are calculated at
T < TCDW2 and include both CDWs. (j), (k) For parallel polarizations one observes
only the CDW with ordering vector perpendicular to the light polarizations. The
response of the respective orthogonal CDW is too weak to be visible. (l) For ac
polarization both gaps can be resolved but the overall intensity is more than three
orders of magnitude lower than that in the two other configurations. This is well
below the detection limit, and, in fact, no signatures of the gaps can be observed
experimentally in ac polarization (see Fig. 3.23).
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expected intensity is three orders of magnitude smaller than in aa and cc and thus

cannot be detected in the experiment (see Figs. 3.23). The only scattering mechanism

included in the theory is the creation of electron-hole pairs where the CDW mixes

particles with wavevectors k and k +Q1,2. Consequently, the light scattering cross

section is enhanced where energy is gained due to the CDW gap opening at the

Fermi surface. In the spectra, this results in a peak at the gap edge 2∆CDW1,2 and a

suppression of spectral weight below. In the real spectra, Fig. 3.23, this gap signature

is superposed on the phonon response and the electron-hole continuum arising from

ungapped parts of the Fermi surface. Hence, the scattering intensity in experiment

does not drop to zero inside the gap and in the high-frequency limit [57].

Summarizing, the lifting of band degeneracies dramatically affects the Raman se-

lection rules by locally enhancing the Raman vertex which is proportional to the band

curvature. The sensitivity of the experiment focusses exactly on those parts of the

FS which are relevant for the CDW.

3.4.7 Electronic susceptibility and CDW ordering vector

From this more technical aspect of Raman scattering we now make the connection to

how the band hybridization can effect the CDW ordering vector. Above we described

an enhancement of electron-photon (Raman) scattering close to the lifted band de-

generacies. Now we make use of an analogy to electron-phonon scattering, where

the electrons scatter from a phonon rather than a photon and the electron-phonon

coupling vertex replaces the Raman vertex [148]. In particular for the case of stress

phonons, the electron-phonon coupling vertex is given by the electronic part of the

elastic constants, which describes how easy it is to deform an electron gas. The elec-

trons react to a perturbation which is either the Raman photon or the displacement

of ions in the lattice (phonons). Then, the coupling constant is the Raman vertex or

the electronic stress tensor and both of them are proportional to the inverse effective

mass tensor [69,159–161]. As a result for the system studied here, the electron-phonon

coupling vertex is as anisotropic in momentum space as the Raman vertex. In par-

ticular, the coupling is enhanced close to the lifted degeneracies. In these regions in

momentum space, the electronic system is much more susceptible to a deformation,

i.e. CDW formation. Due to this analogy we can probe the CDW very efficiently

with Raman scattering [19].

Standard CDW theory only includes a momentum independent electron-phonon
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Figure 3.25: Comparison of the susceptibilities as a function of momentum transfer q.
(a) 3D plot of the real part χ′L of the Lindhard susceptibility. There is little structure
around the rim. There are two orthogonal but equivalent ordering directions Q? as
indicated by a blue and a green arrow. (b) 2D superposition of the real parts of the
Lindhard susceptibility (χ′L, yellow-red) and the projected susceptibility for interband
scattering transitions (χ′P , green). For clarity, only one ordering direction is shown.
It is the focusing effect of the stress tensor which selects the experimentally observed
ordering wave vector Q1.

coupling. In this case CDW formation can be explained in terms of the complex

Lindhard susceptibility,

χL(q,Ω) = 2
∑
kαβ

f(εαk+q)− f(εβk)

Ω + iδ + εαk+q − ε
β
k

. (3.12)

Here, q is the difference of the momenta k and k′ of a scattered electron, Ω is the

associated energy transfer, and α, β label the bands. The Fermi functions f in the

numerator describe the transition from an occupied to an empty state. In the static

limit, Ω + iδ → 0, one obtains the real part of the susceptibility (introduced in

Sec. 3.1) which must diverge in order to trigger the static electronic CDW [12]. In

the general case, Ω + iδ 6= 0, the susceptibility also depends on the frequency of the

external perturbation.

For the tritellurides the normal charge susceptibility χL has been studied by sev-

eral authors [10, 12]. Fig. 3.25 (a) shows the real part of the Lindhard susceptibility

within the first Brillouin zone calculated from the ErTe3 band structure described in

Sec. 3.2.2. Note that χL is not a function of momentum k, but of momentum transfer

q. Within this picture, the selection of the ordering vector is not pronounced; the

maxima in the susceptibility are almost equally high for a manifold of ordering vec-

tors. In contradiction to experiment, the highest maxima are obtained for the ordering
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vector Q? [blue arrow in Fig. 3.25 (a)] which raised the question as to whether there

is another mechanism responsible for finally selecting the experimentally observed

ordering vector Q1.

In the following, we show how the strongly enhanced coupling between electrons and

stress phonons in regions of strong band curvature close to the lifted band degeneracies

can select the ordering along Q1. We consider only interband contributions which

are generally accentuated by nesting as shown in Fig. 3.9. The momentum dependent

electron-phonon coupling vertex gives a contribution to the electronic susceptibility

that projects out inter-band scattering transitions [162]

χP (q,Ω) = 2
∑
k

γ+
k γ
−
k

f(ε+k+q)− f(ε−k )

Ω + iδ + ε+k+q − ε
−
k

. (3.13)

Here, ε±k are the two bands defined in Eq. (3.8). Formally, χP is similar to the

Lindhard susceptibility, but it is weighted by the effective mass vertices γ±k = γ±aa+γ±cc

derived from the bands as described and depicted in the previous section (Fig. 3.24)10.

Fig. 3.25 (b) illustrates the importance of including the electron-phonon coupling

vertex, by plotting the real parts, χ′L (yellow) and χ′P (green), of both susceptibilities.

Whereas the Lindhard susceptibility χ′L has maxima of comparable height for several

different ordering vectors [Fig. 3.25 (a)] and therefore does not lead to an unambiguous

selection of one of them, χ′P contributes to the instability at the proper location in q

space. Finally, both susceptibilities overlap at the experimentally observed ordering

vector Q1 [Fig. 3.25 (b)]. Furthermore, as noted by Yao et al. [10], any enhancement

of the averaged electron-phonon coupling strength (cf. Sec. 3.1) will drive the system

further towards the observed order along Q1. These two effects conspire to minimize

the dependence on model details.

To support these findings, it can be shown theoretically that even χP alone, in

principle, can give rise to a phonon renormalization in a similar way as nesting does.

The phonon energy is lowered at the q values where the susceptibility is large (cf.

Eq. (3.6) in Sec. 3.1), as shown in Fig. 3.26. In the calculation, the bare phonon

frequency ωq was assumed to be independent of momentum, as any mild momentum

dependence will not affect the general behaviour near the experimental nesting vector

Q1. In panel (a), the colour code represents the the renormalized phonon frequency

10Note that χP is only C4 symmetric in the larger momentum range qx(z) = (0, 4π) and vanishes
for Vxz = 0.
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Figure 3.26: Renormalized phonon dispersion relation. (a) Renormalized phonon fre-
quency (ω̃q/ωq)2 with electron-phonon coupling λq=0 = 0.5 and diagonal hopping
terms set for clarity to 10 times smaller values than those used in Figs. 3.8, 3.9 (b) and
3.24. The arrow represents the ordering wavevector Q1 as determined experimentally.
(b)-(d) Cuts along the line qx = qz [dashed line in panel (a)] for various values of the
electron-phonon coupling starting at λ = 0.01 (top curve) and then ranging between
λ = 0.05 and λ = 0.65 (bottom curve) with incremental steps of 0.1. Each panel is
for a different value of the hybridization parameters: (b) Vxx/10, Vxz/10; (c) Vxx/4,
Vxz/4; and (d) Vxx, Vxz.

(ω̃q/ωq)2 in q-space. In the calculation, the dimensionless electron-phonon coupling

constant11 (for q = 0) is λ = 0.5 [19]. To emphasize the effect, the diagonal hopping

terms Vxx and Vxz are set to 10 times smaller values than those used in Figs. 3.8,

3.9 (b) and 3.24. To get a feeling for the relevant parameters, panels (b)–(d) further

display the phonon softening along the (0, 0)− (π, π) Brillouin zone cut [dashed line

in panel (a)] for Vxz/10, Vxz/4 and Vxz and λ in the range from 0.05 to 0.65. For a

large coupling, λ = 0.65, and small interaction Vxz/10, even χP alone can bring the

CDW phonon frequency down to zero energy at the wavevector Q1 and thus induce

11The electron-phonon coupling can be estimated from the T = 0 limit of the amplitude mode
frequency as described in Sec. 3.4.3; λ = 0.4± 0.1

73



Chapter 3 Charge density waves in the rare-earth tritellurides

the static lattice distortion that goes along with the CDW. This predicted phonon

renormalization remains to be experimentally confirmed by neutron or inelastic x-ray

scattering (RIXS), since Raman scattering is limited to small momentum transfer

q � Q1. The focusing effect of the large curvature of the energy bands given by

the mass tensor is very sensitive to the hybridization parameter Vxz [Fig. 3.26 (b)–

(d)]. In the case of ErTe3 the main mechanism driving the CDW transition is still

the standard Lindhard theory, while the additional contributions presented here are

corrections for selecting the ordering direction.

As an outlook, it seems interesting to which extent this novel scenario can be

of more general relevance for driving phase transitions into other broken symme-

try ground states, for instance in the proximity of superconductivity competing or

coexisting with CDW order.
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Magnetic phase transitions in

manganese silicide

MnSi is one of the most intensively studied itinerant magnets showing a variety of

indications for non-trivial spin-charge and spin-lattice effects. Since Raman scatter-

ing provides access to anisotropic electron and lattice dynamics one can expect new

insight and crucial tests of theoretical ideas. Below, the results obtained as a func-

tion of temperature, polarization and magnetic field are summarized and discussed,

after briefly outlining basic material properties. Most of the results presented in this

chapter have been published in Ref. [64].

4.1 MnSi phase diagram and chiral magnetic order

To set the stage for the following sections, the phase diagram of MnSi and the differ-

ent types of magnetic order are briefly reviewed. The phase diagram of MnSi [29] is

determined by a competition of three well separated energy and length scales [24,31].

The strongest one is ferromagnetic exchange between itinerant electrons that favours

a parallel alignment of spins on length scales of a few lattice constants. On an interme-

diate scale, the Dzyaloshinsky-Moriya (DM) interaction favours a canted arrangement

of neighbouring spins [25–27]. It is an anisotropic super-exchange interaction result-

ing from the missing inversion symmetry and spin orbit coupling. Together with the

ferromagnetism the spins arrange in a helix along q that extends over many lattice

constants and has a pitch of about 2π/q = 180 Å (Fig. 4.2). The weakest energy scale

is due to the crystal electric field which locks the propagation direction of the helix to

the [111] directions of the crystal. A typical size of magnetic domains is 104 Å [164].
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Figure 4.1: Magnetic phase diagram of MnSi. The external field is oriented along the
[100] direction of the crystal. The interplay of magnetism, temperature and crystal
symmetry results in differently ordered phases denoted as PM (paramagnetic), FM
(field polarized ferromagnetic), IM (intermediate), helical, conical and the A-phase
(skyrmion lattice) as described in the text. From [163].

The phase diagram is shown in Fig. 4.1 [163]. Above the ordering temperature TC ≈
29 K MnSi is paramagnetic, but magnetic fluctuations are present up to 10TC [166].

Roessli et al. find that the fluctuations are chiral and incommensurate with the

underlying lattice [167]. Right above TC (region labeled as IM (intermediate) in

Fig. 4.1), several different experimental techniques find anomalies, e.g. in suscepti-

bility, specific heat, ultrasound attenuation and neutron scattering [48,163,168,169].

First attempts to explain the observations in this regime were proposed recently by

Janoschek et al. in terms isotropic fluctuations that drive the phase transition first

order [48] in agreement with a Brazovskii type scenario [49].

Figure 4.2: Spin arrangement in the helical phase. The magnetization winds around the
propagation direction q. From [165].
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Figure 4.3: Spin arrangement in the conical phase. The spins tilt to the direction of the
magnetic field B, while the pitch of the helix remains unchanged. With increasing field,
the angle of the cone decreases. The ordering vector q orients along B. From [165].

If an external magnetic field B is applied in the ordered state, the spin helix depins

from the [111] directions and orients along the external field, q ‖ B. The crystal gets

magnetized by tilting the spins into the direction of B as shown in Fig. 4.3; the pitch

of the helix remains unaffected [170], since it is determined by the ferromagnetic

exchange and the Dzyaloshinskii-Moriya interaction strength. The magnetization

increases linearly as the angle of the cone closes. In MnSi, it saturates in the field

polarized state having 0.4µB per Mn atom at 0.62 T and 1.4 K which is smaller than

the value of 1.4µB which is obtained in the paramagnetic region [171].

Yet there is another tiny phase pocket between the helical, the conical and the

paramagnetic state which was identified as the skyrmion phase [39]. The concept of

skyrmions was first proposed in particle physics by Tony Skyrme [172]. In the case

of solid state magnetism it is a topologically stable field configuration with particle-

like properties. This new type of magnetic order, depicted in Fig. 4.4, consists of

spin vortices which are arranged in a triangular lattice. The skyrmion lattice orients

perpendicular to the external field B but is independent of the crystal orientation [39].

Figure 4.4: The Skyrmion lattice. A topologically stable spin configuration consisting of
magnetic vortices. The triangular skyrmion lattice is oriented perpendicular to the
external field B. From [165].
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4.2 Crystal structure of MnSi

MnSi crystallizes in the non-centrosymmetric cubic B20 structure [173, 174] with a

lattice constant of a = 4.558 Å [166]. It can be assigned to space group P213 (No. 198)

and the unit cell contains four Mn and four Si atoms at the Wyckoff 4a positions. This

corresponds to atoms located at (u, u, u), (1/2 + u, 1/2− u,−u), (−u, 1/2 + u, 1/2−
u), (1/2− u,−u, 1/2 + u) [174]. The positional parameters u in the case of MnSi are

uMn = 0.138 and uSi = 0.845 [166]. Allowed symmetry operations are four three-fold

rotation axes around the [111] directions and three screw axes that combine a two-fold

rotation around the [100] directions followed by a displacement of (a/2, 0, 0).

To visualize the B20 structure, it can be thought of as a distorted fcc rock salt

structure where the Mn and Si atoms approach each other as they are displaced

in different [111] directions [175]. For comparison, the positional parameters for a

rocksalt structure would be uMn = 0.25 and uSi = 0.75. The distortions lower the

symmetry in comparison to rock salt [53, 175] and result in an unusual local co-

ordination of the atoms [174]. Each Mn atom is surrounded by seven Si atoms; one

at a distance of 2.305 Å in a [111] direction, three at 2.701 Å, and another three at

2.836 Å. The six nearest neighbour atoms of the same type are at the equidistance of

2.795 Å.

In an ideal B20 structure the atoms would be placed at uideal = 1/(4τ) = 0.1545

and 1−uideal = 0.8455, with the golden ratio τ = (1 +
√

5)/2. The nearest neighbour

coordination would be seven atoms of the other kind, each of them at the same

distance of a
√

3/(2τ) being 2.440 Å in case of MnSi. However, the distortion from the

(a) (b)

x

z
z

yx

Figure 4.5: Crystallographic unit cell of MnSi. Depicted is a view on a (100) surface (a)
and a perspective view (b). The unit cell consists of four manganese (yellow) and four
silicon atoms (blue); it has cubic symmetry but lacks a center of inversion. (crystal
structure pictured using Balls & Sticks [108])

78



4.3 Infrared conductivity vs. conventional transport

ideal structure is essential for the stability of the structure [176] and occurs in every

real B20 crystal [177]. From this point of view, the B20 structure can be considered

the crystalline approximation of a face centered icosahedral quasicrystal1 [177].

The high-quality single crystals used in this work were prepared in an ultra-high

vacuum compatible image furnace [179]. With optimized parameters the residual

resistivity ratio (RRR) of the single-crystals grown can be as high as 300. Further

details about the preparation and the characterization can be found in Ref. [30]. The

sample used for the Raman experiments had a RRR of approximately 100.

4.3 Infrared conductivity vs. conventional transport

Transport and Hall conductivity experiments revealed a plethora of unusual electron

properties [34,36,37,56]. Unconventional electron dynamics was also observed by op-

tical transport and interpreted in terms of anisotropic scattering rates Γ = 1/τ [51].

Here the advantages of Raman scattering become apparent immediately, though sev-

eral conclusions derived from the Fermi-surface integrated infrared (IR) response

shed light on various anomalies already earlier. To prepare for the discussion on

anisotropies of the carrier relaxation rates (Sec. 4.5.2), it is briefly summarized what

is already known from conductivity experiments that do not provide any resolution

in momentum space in cubic crystals.

IR spectroscopy is a standard procedure to derive transport lifetimes τ(ω, T ) or

scattering rates Γ = 1/τ as well as the optical mass m∗/mb = 1 + λ(ω, T ) from the

reflectivity [180,181] or from ellipsometry data; here, mb is the band mass, and λ(ω, T )

the mass enhancement. In MnSi, Mena et al. measured the optical conductivity and

compared it with longitudinal transport [51] as shown in Fig. 4.6 (a). On cooling

down, the optical conductivity increases as expected for a metal. To fit the data, an

extended Drude model [180] is applied,

σ(ω) =
ω2

P

4π

1

1/τ(ω)− i ω m?(ω)/m
. (4.1)

With ωP = 18700 cm−1 the plasma frequency, one obtains the frequency dependence

of the effective mass m∗ and the scattering rate Γ = 1/τ as shown in Fig. 4.7.

Two features are particularly remarkable. First, m∗ assumes negative values at

1The Nobel price in Chemistry 2011 was awarded to Dan Shechtman ”for the discovery of qua-
sicrystals”. He observed an icosahedral point group symmetry in a metallic solid [178].
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Chapter 4 Magnetic phase transitions in manganese silicide

Figure 4.6: Optical conductivity (a) and DC transport (b) in MnSi. The DC resistivity
obtained from transport measurements is compared with the DC resistivity derived
from the optical conductivity via a Drude fit (stars, Eq. (4.1)) and a phenomenological
fit (open circles, Eq. (4.2)). The fit parameters are presented in the insets. From [51].

300 K and frequencies below about 180 cm−1 which was not commented by Mena et

al. but will be picked up in Sec. 4.5.2. At low temperature there is a strong increase

of the optical masses towards low frequency [Fig. 4.7 (a)]. Second, the scattering

rate Γ = 1/τ(ω) [Fig. 4.7 (b)] changes its frequency dependence from constant at

300 K, which is the expected Drude behaviour, to linearly increasing between 30 and

300 cm−1 for all the lower temperatures shown. With decreasing temperature it stays

linear in energy and gets steeper. In contrast, a ω2 dependence is expected from

Fermi liquid theory at low frequencies. In the ω → 0 limit, shown in Fig. 4.6, the

Drude scattering rates (stars) deviate from the Fermi liquid behaviour observed in

transport measurements (solid line) in the helical phase.

Since the conventional Drude fit fails to reproduce the DC resistivity ρDC at low

temperature, the authors propose a phenomenological non-Drude model [51] which

was originally proposed for the cuprates having strongly momentum-dependent single

particle scattering rates [52],

σ(ω) =
ω2

P

4π

i

(ω + iΓ)1−2η (ω + iΩ)2η
. (4.2)
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4.3 Infrared conductivity vs. conventional transport

(a)

(b)

Figure 4.7: Dynamical carrier properties of MnSi obtained from optical spectroscopy [51].
(a) Effective mass and (b) frequency-dependent scattering rate as obtained from the op-
tical conductivity at different temperatures. Insets: Same quantities below 200 cm−1.
Symbols represent the experimental data and thick lines the calculation from a non-
Drude fit (Eq. (4.2)). In the inset of panel (b) the DC extrapolation values (solid dots)
correspond to the derived DC resistivity (open circles) shown in Fig. 4.6(b). In addi-
tion, the frequency dependences expected from Fermi-liquid theory (dashed line) and
spin fluctuations (dotted line) are plotted for 10 K. From [51].

Using the fitting parameters shown in the inset of Fig. 4.6, more weight is given

to ρDC. Then, the DC optical conductivity can be matched with ρDC requiring a

minimal set of adjustable parameters [51]. The corresponding ω → 0 extrapolation is

shown in the insets of Fig. 4.7. In the case of 20 and 10 K, the non-Fermi liquid fit has

a negative curvature below 50 cm−1 yielding the reduced DC relaxation rates plotted

as open circles in Fig. 4.6 (b). The Fermi liquid behaviour in transport measurements

in the helical phase of MnSi, is well established [32, 51, 182], however, it remains an

open question whether the carrier relaxation depends on the momentum k [54, 56],

calling for measurements providing some k resolution such as Raman scattering.
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Chapter 4 Magnetic phase transitions in manganese silicide

4.4 Results

Raman spectra on MnSi were recorded in the temperature range 1.8 < T < 310 K

for different light polarizations. As an example, Fig. 4.8 shows the Raman response

Rχ′′i,s at 288 and 17 K, with a full set of polarization combinations of (i) incoming

and (s) scattered light. The spectra are offset by 0.7 counts (s ·mW)−1 each. Along

with the measurements the linear combination of symmetry components contributing

to the spectra are given. All spectra consist of sharp peaks, originating from lattice

excitations, and a very weak continuum arising from electron-hole or other excita-

tions having a broad spectrum. In the following sections results on phonons and the

electronic continuum are presented separately. The main emphasis is placed on the

temperature range below 50 K close to the helimagnetic transition at TC = 29 K. In

addition to temperature, also a magnetic field of 4 T was used as a control parameter

to suppress the helimagnetic modulation.

4.4.1 Phonons

In the raw data shown in Fig. 4.8 a number of phonons are present. To give an

overview, for all symmetries the phonon frequencies measured at 17 and 288 K are

listed in Table 4.1. Also listed, for comparison, are the results published by Tite

et al. [183] who measured well above room temperature using various high laser

powers. According to our model for the laser heating (cf. Sec. 2.2.4) their laser

power and focus size yield temperatures up to 650 K in the probed spot. The huge

heating ∆T implies an inhomogeneous broadening of the phonon lines explaining the

different line widths reported in Ref. [183] and in the results presented here. Tite et

al. assume a linear temperature dependence of the phonon frequency ωph(T ) above

room temperature and extrapolate ωph(T ) down to 295 K in satisfactory agreement

with the data presented here (cf. Table 4.1). But in this work, most importantly,

the temperature range was extended down to 4 K, including the helimagnetic phase

transition.

The energies of the two strongest T2 lines are only slightly different from those of

the E phonons. Therefore, the E and T2 modes in the x′x′ and rl spectra appear as

double peak structures as these polarization configurations contain both symmetry

contributions. Fig. 4.9 provides a closer look on the double peak structure around

320 cm−1 at 17 K. In x′x′ polarization [panel (a)], comprising contributions from
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Figure 4.8: Raman spectra of MnSi at (a, b) 288 and (c, d) 17 K. Plotted is the Ra-
man susceptibility Rχ′′i,s(ω, T ) as a function of the frequency shift ω. The spectra are
measured with different sets of light polarizations with respect to the crystallographic
axes. For each polarization combination the symmetry components are indicated. To
point out the small frequency differences between E and T2 phonons, the positions of
the two E phonons are marked by dashed lines. Whenever both E and T2 excitations
contribute to a spectrum, double peak structures appear. Upon lowering the temper-
ature, all phonons harden. The black horizontal arrows indicate these frequency shifts
for the E phonons. Panels (a) and (c) show a full set of six polarization combinations,
consecutively offset by 0.7 counts (s ·mW)−1. Panels (b) and (d) only show xy, x′x′

and rr spectra offset by 0.35 and on an expanded intensity scale to point out the weak
A1 (diamonds) and T2 (crosses) phonons.
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Phonon frequency ωph [cm−1]

T ≈ 295 K T = 288 K T = 17 K

(Ref. [183]) (this work) (this work)

A1 268 268 271

A1 398 396 402

E 193 193.5 196.9

E 319 318.5 323.4

T2 194 196.3 200.9

T2 236 239 244

T2 316 313.9 318.6

T2 – – 332

T2 448 447 452

Table 4.1: Energies of the Raman active phonon modes in MnSi. At low temperatures
all nine predicted peaks are resolved. There are no phonons in T1 symmetry. Room
temperature measurements are shown together with the phonon positions derived in
Ref. [183]. The frequency values of the four intense phonons can be determined with
an accuracy of about ±0.2 cm−1 using Voigt fits (bold face). The other phonons are
determined with a precision of ωph ± 1 cm−1.

A1, E and T2 symmetry, a double peak is present originating from the E phonon

at 323.6 cm−1 and the T2 phonon at 328.6 cm−1. In x′y′ polarization the E phonon

peak can be observed individually at 323.4 cm−1 [panel (b)]. The T2 phonons can be

observed independently in xy polarization (Fig. 4.8). Details as to the derivation of

the line positions and widths can be found in Sec. 2.2.3.

The less intense phonons are hardly visible on the scale of Fig. 4.8 (a) and (c). On

the expanded scale of panels (b) and (d) they are clearly observable. There are two

weak A1 and three weak T2 phonon lines, marked by diamonds (♦) and crosses (+)

in Fig. 4.8, respectively. For the weak phonons the frequency error is approximately

±1 cm−1. In the temperature range above 40 K, spectra were recorded with steps of

approximately 50 K. Around the transition at TC = 29 K, we measured spectra at

temperatures spaced by not more than 1 K. With decreasing temperature all phonons

shift to higher energies. At the transition this trend is reversed, and the phonons
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Figure 4.9: Voigt fits of phonons in MnSi. (a) in x′x′ polarization the Raman spectrum
contains contributions from A1, E and T2 symmetry. Two phonons of different sym-
metry result in a double peak. In x′y′ polarization the E phonon peak can be observed
individually, but its position and width differ by 0.26 and 0.74 cm−1, respectively, from
those found in x′x′. The differences are in the order of the experimental accuracy of
frequency (±0.2 cm−1) and width (±0.3 cm−1). As the fit of a single peak requires
less free parameters, x′y′ spectra are used to determine the positions and widths of E
phonons (cf. Table 4.1 and Figs. 4.12).

soften by typically half a percent. The results for the temperature dependence of the

position and line width of the four strong phonons will be discussed in Sec. 4.5.1.

Via linear combinations of the spectra measured at different polarizations, the pure

symmetries can be extracted as explained for tetragonal systems in Ref. [57] and for

cubic MnSi in Sec. 2.1.2. Then, one spectrum comprises all excitations having the

same symmetry as shown in Fig. 4.10. However, by adding and subtracting the spec-

tra, artifacts (marked by stars) may be introduced originating from tiny frequency

shifts of the intense phonons. A Factor group analysis predicts nine optical phonons:

Two in E, five in T2, and two in A1 symmetry [63]. As expected, no phonons are

present in T1 symmetry where vibrational Raman transitions are forbidden in gen-

eral [138]. We find all nine predicted phonons (marked by vertical arrows), including

the so far missing T2 phonon at 332 cm−1, which can be resolved in the high energy

shoulder of the strong T2 peak at 318.6 cm−1. A comparison with the phonon positions

in the iso-structural compound FeSi [63] supports this finding. The inset of Fig. 4.10

(a) shows all symmetries containing weak phonons on an expanded scale. Panel (b)

demonstrates that the six spectra shown in Fig. 4.8 (c) are consistent. This holds

true for both the phonons and the continuum. While the symmetry resolved spectra
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Chapter 4 Magnetic phase transitions in manganese silicide

are less precise in determining the phonon positions and linewidths for the artifacts

mentioned above, they are essential in the discussion of the electronic continuum,

where narrow artifacts can be disregarded.
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Figure 4.10: Symmetry resolved spectra of MnSi at 17 K. (a) Pure symmetries can

be obtained via linear combinations of Raman spectra measured with different po-
larization settings according to Eq. (2.5). For clarity the spectra are offset by
0.35 counts (s ·mW)−1. All Raman active phonons (2E + 5T2 + 2A1) predicted by
factor group analysis [63] are observed (marked by arrows). In the A1 and T1 spectra,
there are additional peaks due to polarization leakage (marked by stars). The inset
shows the weaker phonons of T2 and A1 symmetry on an expanded intensity scale
(spectra offset by 0.1 counts (s ·mW)−1). The T1 spectrum contains the chiral excita-
tions. It is featureless except for polarization leakage (stars), but the intensity of the
continuum is in the same order of magnitude as the other symmetries. (b) Consistency
check. Two measurements with the same incoming polarization and orthogonally po-
larized scattered photons cover the full response of the sample, thus their sums must
be invariant.
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4.4.2 Electronic continuum

The electronic continua observed in the pure symmetries are plotted in Fig. 4.11 for

various temperatures in the range 13 ≤ T ≤ 288 K. The continua were obtained by

subtracting the individually fitted phonons from the spectra (see Sec. 2.2.3). Although

the fits were reproducible and stable there are occasionally remainders of phonons

after the subtraction, particularly in the low temperature spectra having phonon line

widths comparable to the spectral resolution. The data are relatively noisy in general

since the scattering cross sections are low, and the spectra in pure symmetries are

the result of subtraction procedures (cf. Sec. 2.1.2). Note that the intensities are

lower than 0.05 counts (s ·mW)−1. This corresponds to 1 Raman photon per milli-

watt laser power and frequency interval of 2 cm−1 arriving at the CCD detector every

20 seconds.

In all symmetries, the spectra exhibit a substantial temperature dependence at

low energies. The E, T1 and T2 spectra are also temperature dependent at higher

energies. At 13 K, the A1, E, and T1 spectra are too steep below 50 cm−1 to allow

the extrapolation to zero at ω → 0 to be observed. In fact, χ′′(−ω) = −χ′′(ω) is
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Figure 4.11: Temperature and symmetry dependence of the electronic continua in all pure
symmetries µ = A1, E, T1, T2. The response is obtained via linear combinations of
xy, x′y′, rr and rl spectra. Phonons were fitted with Voigt profiles and subtracted.
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expected since, for causality reasons, the response is antisymmetric. Only the T2

spectra show the expected linear energy dependence at all temperatures and extra-

polate approximately to zero. The variation with temperature implies a substantial

increase of the initial slope of the response. Note that also the T1 component of the

response shows a distinct temperature dependence. Particularly, it is different from

zero at all temperatures as shown in Fig. 4.11. Possible mechanisms will be discussed

in Sec. 4.5.2.

As discussed in detail by Opel and coworkers [81], the inverse initial slope,

(∂χ′′(ω)/∂ω)−1 corresponds to a Raman resistivity and is therefore a useful quan-

tity to be compared with transport measurements. It can be extracted from the

Raman response in a similar fashion as the conductivity from optical spectra (IR).

In the Raman case, the requirements as to the known spectral range are much more

relaxed than in optical spectroscopy since the Kramers-Kronig transform converges

rapidly [81]. The results of this analysis, in particular those in the zero-frequency

limit, will be shown and discussed in the following.

4.5 Discussion

The results on lattice and carrier properties show rather conventional behaviour at

high temperatures while anomalies are present close to TC and in the magnetically

ordered state below. First, the phonons will be discussed, followed by the electronic

response. In each case, we start with the behaviour above the helimagnetic transition

at TC followed by a detailed study close to TC. The argumentation largely follows

Ref. [64].

4.5.1 Temperature dependence of the phonons

For a detailed analysis we selected the four phonons with the highest intensities which

are both E phonons and two of the five T2 phonons. Their positions and linewidths

were derived from Voigt fits as explained in Sec. 2.2.3 and shown exemplarily in

Fig. 4.9. The temperature dependences of the frequencies and linewidths are plotted

in Figs. 4.12 and 4.13. From room temperature down to 35 K, the typical blue shift and

line narrowing is observed. Right above TC, in the range between 35 and 29 K, there is

a dip in all phonon frequencies. Below the transition the phonons anomalously soften

by approximately 0.5 cm−1 as can be seen more clearly in panels (c) and (d). Except
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Figure 4.12: Temperature dependence of the E phonons. Plotted are the frequencies (left
scales) and linewidths (right scales) of the two strongest lines (labeled by E(318) and
E(194) according to their room temperature positions) with representative error bars.
(a) and (b) show the analysis for the full temperature range, (c) and (d) zoom in on low
temperatures. For both phonons, E(318) and E(194), the linewidth can be described by
the model of anharmonic decay [184] [black lines, Eq. (4.4)]. The main contribution to
the frequency change is due to thermal expansion and can be described by a constant
Grüneisen parameter γi = 2.5 above 35 K [orange line, Eq. (4.9)]. Right above TC

(dashed vertical line) in the fluctuation disordered regime [50] (shaded) there is a dip
in the phonon frequency. If the helical order is suppressed by a magnetic field of 4 T
(triangles and circles), the anomalies in the phonon frequencies disappear.

for the high-energy T2 mode all lines harden again below approximately 1/2TC. The

T2 mode at 201 cm−1 [Fig. 4.13 (d)] reaches the same energy as found at TC whereas

the E lines (Fig. 4.12) even exceed the low-temperature extrapolation value expected

from the range T > TC.

All anomalies in the temperature dependence2 of the phonon energies vanish com-

pletely in a magnetic field of 4 T (see Fig. 4.12), being well above the upper critical

field of the helimagnetic modulation at 0.6 T. Magnetization measurements indi-

cate that a crossover temperature Tcr, that separates the regimes governed by either

magnetism or temperature, continues to exist above the critical field. For MnSi at

B = 4 T, the crossover from field polarized ferromagnetism to paramagnetism is ap-

proximately at Tcr = 40 K [185]. However, no anomalies in the phonon positions and

widths are detected at this crossover suggesting that the phonon anomalies originate

2Temperature is measured with a Cernox resistor having a vanishingly small magneto-resistance of
less than 0.2% for magnetic fields up to 4 T.
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Figure 4.13: Temperature dependence of T2 phonons. Shown are the frequencies (left

scales) and linewidths (right scales) of the two strongest lines (labeled by T
(314)
2 and

T
(197)
2 according to their room temperature positions) with representative error bars.

(a) and (b) show data for the full temperature range, (c) and (d) zoom in on low tem-
peratures. The phonon width deviates from the predictions of the Klemens model [184]

[black lines, Eq. (4.4)] only for the T
(197)
2 phonon below TC (dashed vertical line). Above

35 K the frequency change of both phonons can be explained in terms of a thermal

expansion shift ∆
(1)
i (T ) [orange lines, Eq. (4.9)] assuming a constant γi = 2.5 for all

phonon modes i. There is a dip in the phonon frequency right above TC in the fluc-
tuation disordered region [48,50] (shaded). The dip can be reproduced qualitatively if
the macroscopic Grüneisen parameter γmacro(T ) is inserted into Eq. (4.9) as described
in the text (dashed magenta line). In the helimagnetic phase the phonon frequencies
are lower than those predicted by the thermal expansion.

from chiral order, but not from ferromagnetism.

Previous to the discussion of the phonon temperature dependences some theoretical

concepts are introduced. In the harmonic approximation of lattice dynamics, the

phonon frequencies are not temperature dependent, and the phonon lifetime is infinite.

To describe real systems, anharmonic contributions to the lattice potential have to

be taken into account. Because of the anharmonicity, an optical mode can exchange

energy with other lattice modes [184]. Collisions between phonons take place and

result in a finite phonon lifetime and a renormalized resonance frequency. Frequency

shift and broadening can be described in terms of the real and imaginary part of the

self energy [186]

Σi(T ) = ∆i(T ) + iΓi(T ) (4.3)
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corresponding to the position and width of phonon i, respectively. The anharmonic

effects can be treated with perturbation theory and were extensively studied by several

authors [184,186–188].

Here we limit the discussion to optical phonons in the center of the Brillouin zone,

because only these can be observed by Raman scattering. In the presence of an-

harmonic interactions and assuming energy and momentum conservation, an opti-

cal phonon with q = 0 decays into two acoustic phonons of opposite wave vectors

ω1(q, j1) + ω2(−q, j2) = ωph. The indices j1 and j2 label acoustic phonon dispersion

branches. In the commonly used Klemens model [184] it is assumed that the most

relevant decay channels are symmetric, ω1(q, j1) = ω2(−q, j1) = ωph/2, and within

the same acoustic phonon branch, e.g. j1. Then the temperature dependence of the

linewidth of phonons reads

Γph, i(T ) = Γi(0)

[
1 +

2 ·λp−p,i
exp(~ωi(0)

2kBT
)− 1

]
. (4.4)

The width Γi(0) and position ωi(0) of the i-th Raman line for T → 0 can be obtained

by extrapolating Γph, i(T ) to zero temperature from the range above TC before the

anomalies set in. As temperature rises, the linewidth increases by two times the

Bose factor at ωi(0)/2 in the symmetric decay channel. λp−p,i was introduced as the

only fitting parameter and is interpreted as phonon-phonon coupling strength. More

general calculations including asymmetric decay channels result in a better agreement

with experiment in some semiconductors [186, 189]. In MnSi, however, asymmetric

phonon decays as well as four phonon processes turn out to be negligible, and the

Klemens model provides a reasonable fit to the linewidth of all phonons studied,

except T
(197)
2 at low temperatures.

The frequency shift of the peaks is described by the real part ∆i(T ) of the self

energy in Eq. (4.3). The temperature dependence of phonon i reads

ωph,i(T ) = ωi(0) + ∆i(T ). (4.5)

Here, only the two lowest-order contributions, ∆i(T ) = ∆
(1)
i (T ) + ∆

(2)
i (T ), will be

discussed. A more detailed description including higher order terms can be found in

Refs. [186] and [189]. The leading term, ∆
(1)
i (T ), originates from the thermal lattice

expansion. Note that the lattice expansion results from the phonon amplitude, hence
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Figure 4.14: First and second order contributions to the phonon frequency shift. (a) The

first order contribution to the phonon width ∆
(1)
i (T ) is due to thermal expansion while

(b) the second order contribution ∆
(2)
i (T ) results from anharmonic decay. ∆

(2)
i (T ) is

about two orders of magnitude smaller than ∆
(1)
i (T ) and thus negligible.

the occupation number, and not from the decay of optical phonons. The second term,

∆
(2)
i (T ), describes the frequency shift due to phonon decay. Before we derive ∆

(1)
i (T )

we show that ∆
(2)
i (T ) is small for the phonon energies and the temperature range

studied here.

The second-order contribution ∆
(2)
i (T ) results from the anharmonic decay of pho-

nons. In analogy to a harmonic oscillator the resonance frequency drops when damp-

ing is included. The approximate relationship between the linewidth Γi (Eq. (4.4)),

the eigen-frequency ωi(0), and the resonance frequency ωph,i (peak maximum),

ωph,i =
√
ωi(0)2 − Γ2

i , of a damped harmonic oscillator yields a shift

∆
(2)
i (T ) = −Ci

[
1 +

4 ·λp−p,i
exp ~ω0

2kBT
− 1

]
, (4.6)

with Ci = Γi(0)2/2ωi(0) and all other parameters as defined above. The additional

factor 2 in the numerator as compared to Eq. (4.4) is due to the damped harmonic

oscillator approximation. For the phonon-phonon coupling λp−p,i, the values obtained

from Eq. (4.4) are used again. It turns out that λp−p,i is stronger for E than for T2

phonons and also stronger for the high frequency modes (cf. Table 4.2). For the

phonons considered here, the frequency ωi(0) is high in comparison to the width

Γi(0) (cf. Table 4.2). Consequently, the coefficient Ci is small and the contribution of

∆
(2)
i to the phonon shift (Fig 4.14) is at least two orders of magnitude smaller than
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Fit parameter

E(194) E(318) T
(197)
2 T

(314)
2

ωi(0) [cm−1] 197.5 324.1 201.2 319.2

Γi(0) [cm−1] 2.3 3.5 4.4 7.2

Ci = Γi(0)2/2ωi(0) [cm−1] 0.013 0.019 0.048 0.081

λp−p,i 0.15 0.2 0.07 0.14

Table 4.2: Parameters used to calculate the temperature dependence of phonon positions
and widths. According to their symmetry and room temperature frequency, the pho-

nons i are labeled E(194), E(318), T
(197)
2 , and T

(314)
2 . ωi(0), Γi(0) are experimentally

determined constants. The phonon-phonon coupling strength λp−p,i results from the
fit of the phonon width according to Eq. (4.4) and was used again in Eq. (4.6).

the thermal expansion shift ∆
(1)
i and therefore negligible.

∆
(2)
i gives significant contributions only for broad phonons with low frequencies,

or temperatures in excess of the Debye temperature ΘDebye being as high as 600 K

here [188, 190, 191]. Obviously, the dominating contributions to the widths and the

frequency shifts of the phonons result from different mechanisms and thus are not

directly interrelated. This explains why the anomalies in the phonon frequencies do

not have a direct correspondence in the linewidths.

The first order term ∆
(1)
i depends on the unit cell volume. In general, a smaller unit

cell volume results in higher phonon resonance frequencies since the forces between

the atoms increase with decreasing distance3. The frequency shift can be quantified

via the microscopic Grüneisen parameter γi of mode i being defined as the negative

logarithmic derivative of a normal-mode frequency ωi with respect to the volume

V [192],

γi = −∂(lnωi)/∂(lnV ). (4.7)

The related thermodynamic quantity is the macroscopic Grüneisen parameter γmacro(T )

which is a weighted average of all contributions including lattice, charges and mag-

netism [193]. For the phonon part it can be shown that the relative weight is given

3The phonon width is, in first order, not affected by a decreasing unit cell, as it depends on the
anharmonicity of the lattice potential rather than its strength. This can be seen in Fig. 3.17,
where, with increasing applied pressure, a phonon is shown to shift in frequency but does not
measurably change its width.
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by their individual contributions to the specific heat [192]. While γmacro(T ) is ap-

proximately constant in conventional insulators, it may vary considerably with tem-

perature in complex metallic systems whenever different contributions determine the

thermodynamic properties [193, 194]. γmacro(T ) can be determined from experimen-

tally accessible thermodynamic properties alone [194],

γmacro(T ) =
3 ·α(T ) ·K(T ) ·V mol(T )

Cmol
p (T )

. (4.8)

For the calculation of γmacro(T ), published data of the coefficient of thermal expansion

α(T ), the bulk modulus K(T ), the molar volume V mol(T ), and the molar heat capac-

ity Cmol
p (T ) were available up to 100 K [50, 168, 169, 174]. The resulting temperature

dependence of γmacro is shown in Fig. 4.15.

Each of the contributing quantities is temperature dependent having strong anoma-

lies close to TC. The dominating contribution to γmacro (T ) is that of the coefficient

of thermal expansion α(T ). It is close to zero and varies by about one order of

magnitude in the temperature range between 0 and 30 K.4

If the phase transition is suppressed by a magnetic field, thermal expansion and

heat capacity do not show distinct anomalies around 30 K and vary only mildly. As

a result, also the anomalies in γmacro (T ) should vanish. However, the published

4The temperature dependence of α is in reasonable agreement in different sources of litera-
ture [44,169,195].
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thermodynamical data in the field polarized state are incomplete and the Grüneisen

parameter could not be calculated quantitatively for a comparison with the zero field

model.

Upon approaching TC from low temperatures, Eq. (4.8) yields large negative values

of approximately -15. Slightly above the transition there is a pronounced dip-hump

structure with the minimum at 30 K, the maximum at 35 K and a sign change in be-

tween. Upon further increasing the temperature, γmacro(T ) asymptotically approaches

the constant value of 2.5 from above. Therefore, γmacro was set to 2.5 above 100 K,

because not all quantities entering Eq. (4.8) were available up to room temperature.

In MnSi magnetostrictive effects contribute to the anomalies of γmacro(T ) around

TC, and relatively large values even at elevated temperatures are to be expected. For

instance, the magnetic contributions to α(T ) play an important role up to at least

200 K and are of the same order of magnitude as the non-magnetic ones [195]. At

low temperatures magnetic order drives α(T ) even negative, i.e. the lattice expands

upon cooling, and leads to the strong dip of γmacro(T ) around TC [168,169,195].

It is not the purpose of this study to systematically disentangle the various con-

tributions to γmacro(T ) or to determine their respective weight. Rather, we wish

to find out to which extent ∆
(1)
i (T ) can be understood in terms of bulk properties

and where microscopic effects can be pinned down. We first calculate ∆
(1)
i (T ) using

Eq. (4.7). For constant γi, Eq. (4.7) can be integrated [187] yielding an expression for

the frequency shift ∆
(1)
i (T ) of phonon i,

∆
(1)
i (T ) = ωi(0)

{
exp

[
−3γi

∫ T

0

α(T ′)dT ′
]
− 1

}
. (4.9)

The phonon frequency ωi(0) is the only free parameter which can be determined for

each branch i by a fit to the high-temperature data. The temperature dependences

of ωph,i(T ) according to Eq. (4.9) are plotted as orange lines in Figs. 4.12 and 4.13.

At temperatures above 100 K the frequency changes of the Raman phonons are well

described by ∆
(1)
i (T ) with a constant Grüneisen parameter γi = 2.5 in good agreement

with the asymptotic limit of γmacro(T ). At lower temperatures, γmacro is not constant

any further. Approaching the phase transition from above, the phonon frequencies

may increase slightly as does γmacro(T ) (cf. Fig. 4.15). Similarly, the experimentally

observed dip at 30 K>TC has a corresponding anomaly in γmacro(T ). At TC all phonon

frequencies jump back to the value at T > 30 K and then soften again. The phonon
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anomaly at TC is unparalleled in any of the macroscopic quantities. While the T
(314)
2

phonon seems to stay at lower frequency, the other phonons reach frequencies above

ωi(0). The prediction according to Eq. (4.9) shows only a tiny kink which originates

from α(T ) (since all other quantities in Eq. (4.9) are constant). For T → 0, ∆
(1)
i (T )

vanishes as
∫
α dT ′ in the exponent goes to zero.

To summarize this part, we find that the widths of the four strongest phonons can

be well understood in terms of symmetric anharmonic decay in the entire temper-

ature range studied. The phonon energies are compatible with the thermodynamic

properties in the temperature range above 50–100 K. More specifically, constant and

mode-independent Grüneisen parameters γi which, additionally, coincide here with

γmacro are sufficient. Below 50–70 K, γmacro increases towards a maximum at 35 K (see

Fig. 4.15). A similar maximum may be present for the T
(197)
2 phonon [Fig. 4.13 (d)].

As to the other three lines the experimental accuracy is insufficient to resolve devi-

ations from the simple expectation on the basis of constant γi parameters. While

the anomaly at 30 K right above TC is still clearly visibly in the temperature depen-

dence of both γmacro and the phonon frequencies we find phonon anomalies without

a corresponding anomaly in the bulk right at TC in contrast to what is found in insu-

lating magnets [196–198]. The results with applied field demonstrate that there are

no phonon anomalies without short or long ranged chiral order.

In order to disentangle thermodynamic and microscopic properties we insert γmacro

in Eq. (4.9) and recalculate ∆
(1)
i (T ). This is motivated by the proximity of the anoma-

lies in the phonon energies ωph,i(T ) and of γmacro(T ) but cannot be justified mathe-

matically since Eq. (4.7) yields Eq. (4.9) only for a constant γi. As shown in Fig. 4.13

the shift obtained in this way (dashed magenta lines) is identical to that for γi = 2.5

(orange lines) down to approximately 50 K but deviates below. The anomaly of

ωph,i(T ) observed right above TC has now a correspondence in the prediction while

that at TC cannot be reproduced. Similar results are found for E symmetry but are

not plotted to avoid overloading Fig. 4.12.

The interrelation of microscopic and thermodynamic properties can also be vi-

sualized by looking at the difference between the experimental frequencies ωph,i(T )

and those calculated on the basis of Eq. (4.9) using γmacro(T ). As demonstrated in

Fig. 4.16, the anomaly above TC vanishes almost completely (with small phonon-

specific variations) while that at TC is rather pronounced. Although the use of

γmacro(T ) in Eq. (4.9) is sloppy, it is safe to conclude that the anomaly in the fluc-
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Figure 4.16: Difference of the experimental phonon energies ωph(T ) and those calculated
via Eq. (4.5) and (4.9) using γmacro(T ). Note the logarithmic temperature scale. The
anomalies above TC vanish almost completely while those at TC have no correspondence
in the thermodynamical properties.

tuation disordered regime has a correspondence in the macroscopic properties while

that at TC is of microscopic origin. In this way the temperature dependence indicates

that the phonons and γmacro(T ) react differently to the formation of helimagnetic

order whereas the thermodynamic properties and the phonons are similarly affected

by the fluctuations. The discrepancies between microscopic and macroscopic prop-

erties are largest at TC (Fig. 4.16). However, they are significant also below. We

recall that the Grüneisen parameter turns negative right above TC meaning that the

phonon frequencies anomalously increase along with the volume. In the case of MnSi

this anomaly in γmacro can be traced back to the thermal expansion [182, 195]. The

strong discrepancies between microscopic and macroscopic properties highlight that

the global volume changes observed around TC are insufficient to explain the phonon

anomalies. Rather, there are interactions that leave a much stronger imprint on

the phonons studied here than on the overall bulk properties. In fact, Fawcett et

al. [44,199] found large magnetic contributions in studies of the specific heat and the

elastic properties below TC which they interpreted in terms of a magnetic Grüneisen

parameter γmag. The authors found a γmag as large as -45 and constant in a temper-

ature range from 14 to 32 K except for significant deviations very near to TC. Also

Pfleiderer and coworkers argue that there is a sizable anomalous contribution to the

thermal expansion beyond the conventional T 2 variation [182].
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In contrast to the itinerant helimagnet MnSi studied here the understanding of the

spin-phonon interaction in insulating magnets is much more advanced as shown in

various publications [196–198]. There, the temperature dependence of the phonon

energies can be readily described by the mean-field-like variation of the macroscopic

magnetization. A similar proportionality may be compatible with the data of the

T
(314)
2 line [Fig. 4.13 (c)] below TC but not for any of the other lines. The anomalies

found in the fluctuation range (TC < T < 32 K) cannot be explained in this scenario.

Similarly, the non-monotonic variation of the phonons E(194), T
(197)
2 , and E(318) need

further attention in the low-temperature limit. We conclude that the four phonon

lines studied here exhibit unexpected features in the fluctuation range right above

TC at the phase transition and in the ordered state below TC which do not have a

correspondence in Heisenberg-type magnets.

4.5.2 Carrier properties

For the normal state, Opel and coworkers demonstrated that the relaxation or memory

function approach proposed by Götze and Wölfle theoretically [200] and worked out

for IR spectroscopy by Allen and Mikkelsen [180] can be adapted to facilitate the

derivation of lifetimes τγγ(ω, T ) or scattering rates Γγγ = 1/τγγ and mass enhancement

factors 1 + λγγ(ω, T ) = m∗γγ(ω, T )/mb from the electronic Raman continuum (see

Fig. 4.11) [81]. Here, mb is the band mass, and m∗γγ the effective mass as derived from

Raman scattering. Opel et al. showed in particular that absolute numbers for all

quantities can be obtained. In the context here, γ is short hand for γ(k) and represents

the Raman vertex which projects out symmetry dependent parts of the Brillouin zone.

For simplicity and in order to avoid confusion with the Grüneisen parameters, we label

the derived quantities by the symmetry projection µ = A1, E, T1, T2 rather than the

vertex γ.

For the analysis of the electronic part we use symmetry-resolved spectra such as

those shown in Fig. 4.11. There, one realizes that the continuum in µ = T1 symmetry

is approximately as strong as those in the other symmetries. This is unusual, since

in the non-resonant Raman response, T1 contributions are expected to be absent in

non-magnetic metallic systems and are usually found to be weak [201]. Excitations of

T1 symmetry (similarly as A2g excitations in tetragonal systems) correspond to anti-

symmetric off-diagonal elements in the Raman tensor α which occur whenever the

off-diagonal elements are not equal, αi,j 6= αj,i. Here, the origin of the T1 continuum
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Figure 4.17: Temperature and symmetry dependence of the relaxation rates Γµ(ω, T ). The
rates were obtained from the electronic continua as shown in Fig. 4.11. To calculate
Γµ(ω, T ) the procedure described by Opel and coworkers [81] was used. The smooth
lines are phenomenological fits to the data according to Eq. (4.11).

cannot be identified unambiguously as discussed in Sec. 2.1.4. Nonetheless, we show

the results of the memory function analysis, that remains valid for all energy depen-

dent relaxational processes, we can discuss possible implications of the T1 response

only on a preliminary level.

Fig. 4.17 shows the dynamical relaxation rates Γµ(ω, T ) derived from the energy

dependent response Rχ′′µ(ω, T ) (Fig. 4.11) as described by Opel et al. [81]. They

have similar temperature dependences at high energies for all symmetries but exhibit

substantial differences close to zero energy. While ΓT1, and ΓT2 become rather flat at

room temperature, ΓA1 dips down at low energy thus reducing the overall temperature

dependence between 13 and 288 K. In contrast, ΓE(288 K) increases slightly towards

low energy. The rates reflect the variation of the raw data (Fig. 4.11) but, owing to

the derivation procedure [81], show some features in a more pronounced fashion such

as the low-energy variation with temperature.

The dynamical mass renormalization factors 1 + λµ(ω, T ) can be derived from

Rχ′′µ(ω, T ) in the same way. Thus, it is expected that 1+λµ(ω, T ) similarly emphasizes

the variations close to zero energy. In fact, Fig. 4.18 (b) shows an anomaly of 1 +
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Figure 4.18: Temperature and symmetry dependence of the optical masses 1 + λµ(T )
obtained via the same formalism as the relaxation rates. The smooth lines are derived
from the fits to the relaxation rates via Kramers-Kronig transformation, hence obey
causality (see text). They are in reasonable agreement to the data except for a constant
offset.

λE(ω, T ) at 288 K. While all other masses increase monotonically with decreasing

energy (other panels of Fig. 4.18), as typically expected for metals, 1 + λE(ω, 288 K)

is reduced and even becomes negative at low energies. On the high energy side the

renormalized masses saturate between 1 and 2 as expected. For the A1, T1, and

T2 symmetries the masses decay monotonically with increasing frequency. In the

zero-energy limit they reach temperature dependent values between 0.8 (T2) and 5

(A1).

The dynamical carrier properties found here with inelastic light scattering are in

overall agreement with those derived from the IR reflectivity [51] presented in Sec. 4.3.

While the magnitudes and temperature dependences of Γµ(ω, T ) and 1+λµ(ω, T ) are

similar below 100 K for both methods, there are important differences which may lead

to new insights: (i) In contrast to the IR results, the masses found here are above

unity (except for the E symmetry channel below 100 K) indicating the existence

of interactions at all temperatures and energies. (ii) The symmetry dependence is

significant. This is a unique feature of inelastic light scattering and indicates the
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existence of anisotropies in the Brillouin zone which cannot be derived from the

optical conductivity.

While the results in the A1 and T2 symmetries are compatible with metallic be-

haviour at all temperatures the E spectra deviate remarkably from what one expects

for a metal. The deviation is seen best in the dynamics of the mass at 288 K which

varies non-monotonically. At room temperature this observation is paralleled by the

IR results [51] as summarized in Sec. 4.3.

As to the interpretation, the relaxation rates are more intuitive. The increase

towards zero energy indicates either a new relaxation channel or pseudogap-like be-

haviour at higher temperatures. Similar anomalies have in fact been observed in

organic conductors [202] and cuprates [203]. For heavy Fermion systems this type of

temperature dependence can be explained in terms of a Kondo-like interaction [204].

However, it is unusual that the anomaly appears here at high temperature and van-

ishes below 100 K. Obviously, at least parts of the Fermi surface exhibit insulating

behaviour at higher temperature. Whether or not this can be observed in ordinary

transport remains open at the moment since there is no data available at elevated

temperature. In addition, the metallic parts could short circuit the insulating ones in

a similar fashion as in the cuprates [205]. We note that a vanishing or even negative

mass [Fig. 4.18 (b)] can also result from multiband effects which, however, need to be

studied numerically on the basis of a realistic band structure.

Fermi surfaces and Raman selection rules

For a preliminary understanding of the selection rules in MnSi we look at the Fermi

surfaces as derived from band structure calculations [53]. However, as opposed to the

cuprates [57, 66] or the iron-based compounds [201, 206], it is much more difficult in

MnSi to directly map the symmetries on separate bands or regions in the Brillouin

zone since the Fermi surface is more complicated.

Fig. 4.19 shows the results of Jeong and Pickett [53] which were obtained without

spin-orbit coupling5. The spin majority and minority bands cannot be distinguished

by electronic Raman scattering. In addition to the Fermi surfaces around high sym-

metry positions Γ (0, 0, 0) and R (π, π, π), there are four other Fermi surfaces of

similar shapes that resemble three tubes intersecting around the Γ point [53]. From

5Since spin-orbit coupling effects are expected to be small for Mn [53] they are unlikely to have an
effect on the symmetry-based arguments that will be used to interpret the Raman results.
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Figure 4.19: Fermi surfaces in MnSi. Majority (top row) and minority spin (bottom
row) Fermi surfaces for a fixed magnetic moment equal to the experimental value of
0.4µB/Mn. From [53].

the shape of the Fermi surfaces a tentative relationship between momentum space

and the carrier properties can be established. According to the lowest order Brillouin

zone harmonics for cubic crystals [207], carriers on the Fermi surfaces around the

Γ- and R-point may be projected out predominantly in A1 symmetry. In addition,

the lowest order non-trivial A1 vertex γ
(1)
A1 = cos kx + cos ky + cos kz has its nodes

very close to the big tubular Fermi surfaces. Fig. 4.20 shows the surface where the

Raman vertex vanishes, γ
(1)
A1 = 0, and thus the sensitivity of the experiment is zero.

Electrons close to the big tubular Fermi surfaces should not contribute to A1, but

predominantly to the spectra of the orthogonal symmetries E and T2. The E spectra

are dominated by the necks around the X points (π, 0, 0) and the T2 spectra are more

sensitive in the centers of the octants. More detailed information about the projec-

tions may be obtained in the effective mass approximation (cf. Sec. 2.1.3) where the

band curvatures yield the Raman vertex, i.e. the sensitivities, in the non-resonant

case [57, 206]. In MnSi the method is hard to apply, as the band structure is much

more complicated than in the rare-earth tritellurides (cf. Sec. 3.4.6) and the Raman

response is less symmetry selective.
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Figure 4.20: Nodes of the lowest order A1 Raman vertex. Plotted is the hyper-surface in

a cubic Brillouin zone, where the lowest order Raman vertex γ
(1)
A1 vanishes and thus

the Raman experiment is insensitive. Electrons close to this part of the Brillouin zone
are not projected out in the A1 spectra. Note the resemblance to large parts of the
Fermi surfaces shown in Fig. 4.19

Static relaxation rates

We now focus on the static (DC) limit. To reliably extract the zero-energy extrapola-

tion values of Γµ(ω → 0, T ) and 1+λµ(ω → 0, T ) from the relatively noisy Raman data

(Fig. 4.11) we use phenomenological functions having the correct analytical behaviour

in the limits ω → 0 and ω → ∞: (i) Γµ(ω, T ) (as opposed to the imaginary part of

the single particle self energy Σ′′) is a symmetric function, Γµ(−ω, T ) = Γµ(ω, T ),

(ii) λµ(ω → 0, T > 0) is finite and symmetric, and (iii) Γµ(ω, T ) saturates at high

energy. The latter condition is a restriction in the spirit of the Mott-Joffe-Regel

limit [208,209] that applies when the quasi-particle mean free path at high tempera-

ture becomes progressively shorter and finally comparable to the lattice constant. As

phonons are the dominant scatterers in metals at high temperatures, the mean free

path cannot decrease further and the resistivity saturates. In the case of two-particle

response functions there are contributions to the carrier response beyond the mean

free path, and general statements as to the high-energy behaviour become impossi-

ble [210]. Since all of the relaxation rates derived here saturate, the introduction of a

temperature dependent limiting value Γmax
µ (T ) is justified experimentally but is not

well supported theoretically.

On this basis, the minimal model is the parallel-resistor formalism with a quadratic
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energy dependence at ω → 0 [211],

1

Γµ(ω, T )
=

1

Γ∗µ(ω, T )
+

1

Γmax
µ (T )

. (4.10)

where Γ∗µ(ω, T ) = c(T )+a(T )ω2 dominates at low frequencies while Γmax
µ (T ) describes

the high energy part. Inversion yields

Γµ(ω, T ) =
[c(T ) + a(T )ω2] ·Γmax

µ (T )

c(T ) + a(T )ω2 + Γmax
µ (T )

, (4.11)

with the zero frequency limit Γµ(0, T ) given by

Γµ(0, T ) =
c(T )Γmax

µ (T )

c(T ) + Γmax
µ (T )

. (4.12)

The fits to the relaxation rates Γµ(ω, T ) according to Eq. (4.11) are shown in Fig. 4.17.

As expected, the ω → 0 extrapolation [Eq. (4.12)] depends on both the high frequency

limit Γmax
µ (T ) and the offset c(T ). Each point in Fig. 4.21 is obtained from Eq. (4.12)

with the parameters found in the Γµ(ω, T ) fits.

In Fig. 4.21, the static Raman relaxation rates Γµ(0, T ) are compared with con-

ventional transport ρ(T ). In a Drude model, the resistivity is related to the carrier

relaxation rate Γρ(T ) = ~/τ(T ) via the plasma frequency ωpl as Γρ(T ) = ε0 ω
2
pl ρ(T ).

Here, ε0 is the vacuum permeability and ωpl = 2.3 eV [51]. To match the Raman

Γµ(ω = 0, T ) and the resistivity Γρ(T ) above TC (cf. Fig. 4.21), an additional factor

of 0.73 was introduced. A factor smaller than one can be explained by the frequency

cutoff at 400 cm−1 in the relaxation rate analysis (Fig. 4.17). In any case, it cannot be

expected that the relaxation rates obtained from the light scattering experiment and

from transport coincide completely since the higher order corrections to the respective

response are different and in the ten percent range [81, 213]. The experimental error

of about ±30 cm−1 was estimated from the scatter of neighboring points in Fig. 4.21

and the error of the DC extrapolation of Γµ(ω, T ) plotted in Fig. 4.17.

The A1 relaxation rates are significantly smaller than those in the other symmetries

and also below the results from transport, at least for T > TC (Fig. 4.21). This can

either be an effect of screening [57] or, more likely, of the selectivity of the A1 Raman

vertex. As described above, the A1 vertex blacks out the big tubular Fermi surfaces

that, however, seem to be relevant for transport.
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Figure 4.21: Static Raman relaxation rates and transport data. Panel (a) shows the

Raman relaxation rates Γµ(ω = 0, T ) (points, left axis) as a function of symmetry µ
as derived from Γµ(ω, T ) (see text). If the longitudinal DC resistivity ρ(T ) (black line,
right axis) [212] is converted into a relaxation rate Γρ(T ) using a Drude model with
the experimental plasma frequency ωpl = 2.3 eV [51], an extra factor of 0.73 is needed
to match transport and Raman data. Above TC (dashed vertical line) the Raman data
in E, T1 and T2 symmetry agree with ρ(T ), while the data in A1 symmetry do not.
(b)-(e) Zoom in on low temperatures. The phase transition has only a minor effect on
Γµ(ω = 0, T ). Above TC close to the fluctuation disordered regime (shaded), there may
be a dip in A1 and T2 symmetry. Below the phase transition Γµ(ω = 0, T ) decreases
slower than Γρ(T ).

Similar to what is observed in IR experiments (cf. Sec. 4.3), the Raman DC

relaxation rates in the helical state, stay well above the transport data and decrease

at a lower rate for all symmetries (Fig. 4.21). The A1 and T1 Raman relaxation rates

even saturate at a finite value for T → 0, while E and T2 finally approach the values

expected from transport. The observation of this decrease makes it unlikely that the

saturation observed in the A1 and T1 channel and in IR [51] is an artifact resulting

from the rather small relaxation rates, and we conclude that the discrepancies between

IR, transport, and Raman scattering in the ordered state need to be taken seriously.

More specifically, the convex and the concave T 2-like behaviour found in Raman and,

respectively, in ordinary transport seem to be two sides of the same coin which need

to be explained theoretically.

The significance of the observations at low temperature is confirmed by the agree-

ment of all three experimental methods above TC (Figs. 4.6 and 4.21). The Raman

data points of Γµ(0, T ) in µ = E, T1 and T2 symmetry agree with Γρ(T ) in the tem-

perature range from 310 to 30 K. It is remarkable that also the relaxation rates in
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T1 symmetry follow the DC resistivity curve at high temperatures. Provided that

T1 in fact projects chiral excitations one can argue that they continue to be present

above the helimagnetic phase, as the crystal structure lacks inversion symmetry also

in the high temperature phase. Thus, chiral excitations can be created with inelastic

photon scattering even up to room temperature as anticipated in thermal expansion

experiments [195]. However, as discussed in Sec. 2.1.4, a final interpretation of the

T1 data is premature.

Right above TC in the fluctuation disordered regime, the DC relaxation rates dip

down in T2 and maybe in A1 symmetry [Figs. 4.21 (e) and (b)]. Note that this goes

along with the dip in the phonon frequencies (Figs. 4.12 and 4.13). The simultaneous

observation of the anomaly in the phonon energy and in the electronic continuum

at the same temperature makes us confident that the effect is significant. While

the phonon softening is also observed independently in the thermal expansion, the

non-monotonic variation in the carrier relaxation is a new observation underpinning

the impact of the phase transition and the preceding fluctuations on the electrons.

Obviously both effects are not very symmetry selective, meaning that extended parts

of the Fermi surface are involved or, in other words, that the anomalies are not

dominated by a single vector in momentum space. For instance, if the helices would

immediately align along the 〈111〉 direction one would expect a strong effect in T2

symmetry being most sensitive in the center of the octants. The weak symmetry

dependence right above TC, could in fact be a consequence of isotropic fluctuations

and thus supports the Brazovskii scenario proposed by Janoschek et al. [48].

The detailed analysis below 40 K clearly reveals unexpected interactions between

spin, charge, and lattice at the phase transition. Progress in this still speculative

discussion is probably only possible if the data are analyzed with a phenomenological

model and on the basis of a realistic band structure. It remains a future project to

study, i.e. the Raman response of skyrmions which was up to now elusive. In addition,

the momentum dependence of the relaxation rates in connection with anomalous

transport properties such as the topological Hall signal remains to be explored.
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Summary

This thesis reports inelastic light scattering results on the impact of charge and spin

ordering on lattice and carrier excitations in metallic compounds. Phases with com-

plex order, such as incommensurate charge density wave (CDW) order in the rare-

earth tritellurides and itinerant helimagnetism in MnSi, were studied as a function

of temperature, magnetic field and chemical- as well as applied-pressure. In both

cases, the instability in the electronic system is closely related to the lattice proper-

ties motivating a study of their interplay. Using Raman scattering, phonons as well

as electronic excitations, including collective modes and fluctuations, can be probed.

The polarization selection rules facilitate a classification of the symmetry of excita-

tions and provide some momentum resolution for the study of anisotropies in the

electronic system.

A major part of the work was devoted to the setup of the experiment resulting

in a substantially higher sensitivity that finally allowed the study of materials with

low scattering cross section in a diamond anvil pressure cell and in applied magnetic

fields at low temperature. The central part was an optimized high-aperture optical

system collecting the scattered photons. The separation of the paths of incoming and

scattered light in combination with spatial filters enabled the discrimination between

Raman light and parasitic background. These efforts facilitated the detection of

signals as small as 0.05 photon counts per second and milli-watt laser power for a

given spectral resolution of 2 cm−1 under extreme external conditions. The improved

high pressure diamond anvil cell could be loaded with helium as the most isotropic

pressure transmission medium. In addition, the cell was equipped with a coil system

to measure the ac magnetic susceptibility in, for instance, superconducting samples.

In several rare-earth tritellurides RTe3 (R = La, Ce, Dy, Ho, Er), the gap in the
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electronic Raman spectrum, the amplitude modes (AM), and the charge fluctuations

above the charge density wave (CDW) transition were directly observed. The AMs

were used as a probe to map out the phase diagram of ErTe3 as a function of tem-

perature and pressure. The CDW order can be suppressed gradually until it vanishes

down to the lowest temperatures for pressure values in excess of 2.5 GPa. At ambient

pressure, the temperature dependence of the AMs close to the maximal transition

temperature TCDW1 deviates in a systematic yet unexplained fashion from the ex-

pected form in all compounds. In addition, the low temperature saturation value of

the AM frequency exceeds the value expected from the high-temperature part. The

behaviour can be explained by a two-step transition, one at TCDW1 and another one

close to 2/3TCDW1. For both transitions, the AM frequency depends linearly on the

CDW condensate density at variance with the mean field predictions. Below TCDW2,

there is evidence for an AM associated with a second CDW that is oriented orthog-

onally to the first one and present only in the heavier RTe3 compounds. The two

orthogonal AMs interact giving rise to a beat mode.

Fluctuations considerably suppress the CDW phase transition. The Raman results

provide direct evidence for fluctuations with fourfold symmetry that can be described

quantitatively by the the exchange of two charge fluctuations with opposite momenta.

Hence, the rare-earth tritellurides are one of the few examples for a ”stripe liquid”

that may have broader implications also in other materials.

Out of the fluctuation regime, CDW order develops. However, the precise mech-

anism of CDW formation and, in particular, the selection of the ordering vector is

under debate. The Raman results on charge fluctuations and the anisotropies of the

CDW energy gap show, that lifted band degeneracies play a key role in selecting the

ordering vector. Moreover, the Raman vertex efficiently focuses the sensitivity on

these hot-spots. Two cooperating effects were identified: (i) The system is very sus-

ceptible to charge fluctuations close to lifted degeneracies and gains energy by gapping

out these regions of the Fermi surface. (ii) The strong band curvatures in the vicinity

of the lifted degeneracies result in a strongly enhanced electron phonon interaction

making the system more susceptible to a deformation, fostering CDW formation.

For small hybridization and an electron-phonon coupling strength of λ > 0.5, the

combination of these two effects may even exceed the nesting contribution to CDW

formation.

In MnSi, the phase transition from paramagnetism to helimagnetic order and its
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impact on phonons as well as the electronic response were systematically studied. All

optical phonons are detected, showing conventional behaviour above the helimagnetic

transition, but pronounced anomalies close to and below TC. Most remarkably, the

phonon energies clearly dip down already above the phase transition. The minimum of

the phonon frequency in the fluctuation regime is tracked by the Grüneisen parameter

γmacro that connects changes in frequency and volume via macroscopic thermodynamic

properties. The temperature dependence at and below TC has no correspondence in

γmacro and thus indicates that the phonons couple differently to the helical spin order

and to macroscopic thermodynamic properties such as specific heat. However, there

is no microscopic theory yet explaining the spin-phonon coupling in the helical state.

In an applied magnetic field of 4 T, i.e., in the field polarized state, the phonon

anomalies disappear which further supports a connection between the anomalies and

helimagnetism.

With electronic Raman scattering, the frequency and temperature dependence of

electron relaxation rates and the corresponding mass enhancement is studied. The

magnitude and temperature dependence of the dynamical carrier properties are in

overall agreement with those derived from infrared experiments. However, the Ra-

man masses are generally above unity, indicating the existence of interactions at all

temperatures and frequencies. Additionally, there is a significant symmetry depen-

dence that corresponds to probing different regions of the Fermi surfaces. The dc

Raman relaxation rates between room temperature and 50 K are in reasonable agree-

ment with conventional transport and infrared (IR) spectroscopy in E, T2 and also

in T1 symmetry which, in principle, is sensitive to chiral excitations. The relaxation

rates in the A1 channel deviate from those obtained by conventional transport and

IR spectroscopy at all temperatures. This either results from screening effects or

indicates that those parts of the Fermi surface, which are probed by A1 symmetry, do

not determine the temperature dependence of conventional transport. In the range of

2 K above TC, the Raman relaxation rates show a narrow minimum highlighting the

importance of fluctuations for the phase transition. In the helical phase, deviations

from transport measurements are found, but cannot be explained theoretically yet.

It is remarkable that below TC also the IR results, analyzed in a standard Drude

formalism, deviate from transport but agree with the Raman relaxation rates. As the

differences only occur in the ordered state, but not above TC, scattering of electrons

from complex spin structures such as helices may provide an explanation.
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Without Quantum Criticality, Science 316, 1871 (2007).

[35] Y. J. Uemura et al., Phase separation and suppression of critical dynamics at quantum
phase transitions of MnSi and (Sr1−xCax)RuO3, Narture Physics 3, 29 (2007).

[36] R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, and C. Pfleiderer, Formation of
a topological non-Fermi liquid in MnSi, Nature (London) 497, 231 (2013).

[37] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni,
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Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer, Real-Space and Reciprocal-Space
Berry Phases in the Hall Effect of Mn1−xFexSi, Phys. Rev. Lett. 112, 186601 (2014).

[57] T. P. Devereaux and R. Hackl, Inelastic light scattering from correlated electrons, Rev.
Mod. Phys. 79, 175 (2007).

[58] S. Caprara, C. Di Castro, M. Grilli, and D. Suppa, Charge-Fluctuation Contribution
to the Raman Response in Superconducting Cuprates, Phys. Rev. Lett. 95, 117004
(2005).

[59] S. Caprara, C. Di Castro, B. Muschler, W. Prestel, R. Hackl, M. Lambacher, A.
Erb, S. Komiya, Y. Ando, and M. Grilli, Extracting the dynamical effective interac-
tion and competing order from an analysis of Raman spectra of the high-temperature
La2−xSrxCuO4 superconductor, Phys. Rev. B 84, 054508 (2011).

114



Bibliography

[60] M. V. Klein and S. B. Dierker, Theory of Raman scattering in superconductors, Phys.
Rev. B 29, 4976 (1984).

[61] G. Abstreiter, M. Cardona, and A. Pinczuk, in Light Scattering in Solids IV, Vol. 54
of Topics in Applied Physics, edited by M. Cardona and G. Güntherodt (Springer
Berlin Heidelberg, 1984), pp. 5–150.

[62] G. Turrell, Infrared and Raman Spectra of Crystals (Academic Press, London and
New York, 1972).

[63] A.-M. Racu, D. Menzel, J. Schoenes, and K. Doll, Crystallographic disorder and
electron-phonon coupling in Fe1−xCoxSi single crystals: Raman spectroscopy study,
Phys. Rev. B 76, 115103 (2007).

[64] H.-M. Eiter, P. Jaschke, R. Hackl, A. Bauer, M. Gangl, and C. Pfleiderer, Raman study
of the temperature and magnetic field dependence of electronic and lattice properties
in MnSi, Phys. Rev. B 90, 024411 (2014).

[65] W. Hayes and R. Loudon, Scattering of Light by Crystals (John Wiley and Sons,
1978).

[66] T. P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H. Leach, and J. J. Neumeier,
Electronic Raman scattering in high-Tc superconductors: A probe of dx2−y2 pairing,
Phys. Rev. Lett. 72, 396 (1994).

[67] H. B. Callen and T. A. Welton, Irreversibility and Generalized Noise, Phys. Rev. 83,
34 (1951), fluctuation-dissipation theorem.

[68] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Statistical Physics
(Pergamon Press, New York, 1980), Vol. 5.

[69] B. S. Shastry and B. I. Shraiman, Theory of Raman scattering in Mott-Hubbard sys-
tems, Phys. Rev. Lett. 65, 1068 (1990).

[70] S. V. Grigoriev, N. M. Potapova, S.-A. Siegfried, V. A. Dyadkin, E. V. Moskvin,
V. Dmitriev, D. Menzel, C. D. Dewhurst, D. Chernyshov, R. A. Sadykov, L. N.
Fomicheva, and A. V. Tsvyashchenko, Chiral Properties of Structure and Magnetism
in Mn1−xFexGe Compounds: When the Left and the Right are Fighting, Who Wins?,
Phys. Rev. Lett. 110, 207201 (2013).

[71] D. Einzel and R. Hackl, Electronic Raman Scattering in Copper Oxide Superconduc-
tors, Journal of Raman Spectroscopy 27, 307 (1996).

[72] F. Michaud, F. Vernay, and F. Mila, Theory of inelastic light scattering in spin-1
systems: Resonant regimes and detection of quadrupolar order, Phys. Rev. B 84,
184424 (2011).

[73] P. E. Sulewski, P. A. Fleury, K. B. Lyons, and S.-W. Cheong, Observation of chiral
spin fluctuations in insulating planar cuprates, Phys. Rev. Lett. 67, 3864 (1991).

115



Bibliography

[74] R. Philipp, Gap und Pseudogap in Kupratsupraleitern nahe der optimalen Dotierung,
Diplomarbeit, Technische Universität München (1998).

[75] W. Prestel, Ph.d. thesis, Technische Universität München, 2012.

[76] H.-M. Eiter, Untersuchung von Ladungs- und Spinordnung in gering dotierten
Kupraten: Eine Raman-Studie, Diplomarbeit, Technische Universität München
(2008).

[77] P. Jaschke, Untersuchung der Gitter- und Ladungsträgerdynamik von MnSi in der
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