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Abstract

Quantum mechanics with the associated applications and development over the past decades
hold the promise of pushing the boundaries of modern technologies. Along quantum computing
and quantum sensing, the field of quantum communication has seen tremendous progress, ap-
pearing as one of the most mature quantum technology. In quantum communication, quantum
properties and quantum laws are harnessed to provide security thresholds that outperform clas-
sical bounds. In particular, a great interest has emerged with the concept of quantum computers
and its potential associated threat to established classical security algorithms. Among the va-
riety of competing hardware platforms that have flourished, superconducting quantum circuits
presents itself as a prime candidate for the advent of a fault-tolerant quantum computer. As
a result, the need to further develop quantum computation operated at microwave frequencies
has been motivated. In this thesis, we focus on the quantum key distribution (QKD), a type
of communication protocol aiming at exchanging information between remote parties with the
potential to demonstrate unconditional security. Here, theoretical investigations and practical
experiments are so far lacking. As the first central result of this work, we present a theoretical
study of the feasibility of QKD in the microwave regime and relying on continuous-variable
(CV) states. We focus on a realistic experimental implementation with cryogenic systems,
making use of the decades of demonstrated expertise at the Walther-Meissner-Institut in low
temperature physics. We find that microwave CV-QKD should be experimentally possible and
predict open-air communication distances over hundred of meters in ideal conditions. There,
we unravel many experimental limitations, ranging from state preparation to state detection.
Additionally, we highlight a robustness of microwave CV-QKD to weather imperfections, in
strong contrast to conventional CV-QKD operated at optical frequencies. As the second main
result of this thesis, we demonstrate the first microwave CV-QKD proof-of-principle implemen-
tation. The chosen protocol relies on displaced squeezed states which we obtain using notably
Josephson parametric amplifiers (JPAs) combined with cryogenic directional couplers. In this
experiment, we explain how JPAs can realize single-shot single quadrature measurements, an
analog process to conventional homodyne detection for optical signals. Relying on state-of-
the-art security proofs, we demonstrate an achievable unconditional security in the asymptotic
regime. Additionally, we investigate finite-size effects, arising from limitations in practical ex-
periments, that are found to be successfully mitigated at the cost of more demanding, but
feasible, experimental requirements. Based on the presented results, we extrapolate long-range
communication over a kilometer as well as open-air communication for dozens of meters. Lastly,
as the third main result of this work, we present experiments of coupling microwave signals to
a spin ensemble. Specifically, we investigate its coupling to propagating squeezed microwave
states, which we treat as a quantum memory for quantum communication applications. Our
analysis reveals a partial storage, even at the single photon regime, of incoming microwave
signals to the spin ensemble, where we find the efficiency of the coupling to be determined by
the system cooperativity. The novel insights based on these investigations allows for successful
experiments aiming at demonstrating the retrieval of the stored states.
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Chapter 1

Introduction

Due to its accurate theoretical formulation and successful experimental verification, quantum
mechanics is firmly established as a fundamental concept of modern physics. Many concepts in
quantum physics challenge the classical view of reality. In particular, they lead to non-trivial,
exotic properties, such as quantum entanglement and state superposition [1, 2] 3]. The latter
play a crucial role in quantum algorithms, offering powerful tools to achieve a quantum advan-
tage of quantum systems over their classical counterparts. Notably, the concept of quantum
entanglement and its implications of nonlocality have been extensively investigated over the
past few decades, providing a more complete understanding of modern physics [4, 5]. These
properties can also be harnessed to advance quantum technology, with particular interest in the
field of information science [0} [7]. There, harnessing quantum properties has led to the emer-
gence of the fields of quantum information theory and quantum communication. Interestingly,
the laws of quantum physics can allow for a variety of improvements over classical systems, such
as in efficiency and security of communication protocols [§]. Quantum algorithms also allow
certain computational problems to be solved several orders of magnitude more efficiently than
by their best-known classical counterparts. Recently, quantum supremacy has been demon-
strated in quantum computing [9]. These advancements in quantum information processing
have driven the development of various competing hardware platforms, such as systems based
on trapped ions [10], spin systems [I1], neutral atoms [12], nitrogen-vacancy centers [13], and
superconducting circuits [14].

In this thesis, we focus on superconducting circuits, particularly in the context of signal
amplification. Superconducting circuits are considered one of the most promising candidates
for developing quantum processors, with the long-term goal of creating the world’s first prac-
tical quantum computers. Recently, significant breakthroughs have been achieved using this
hardware platform by, for example, demonstrating the aforementioned quantum supremacy and
achieving quantum error correction beyond the break-even point [15]. Although some of these
results are still debated [16, [17], they represent important steps towards fault-tolerant quantum
computers, i.e., systems capable of operating correctly even in the presence of substantial or
non-negligible errors in quantum operations [I8]. In this context, it is particularly relevant
to investigate the exchange of information between different communicating parties, aiming at
enabling efficient, secure, and superconducting-circuit-based communication protocols.

At the moment, among various applications of quantum information processing, quantum
communication stands out as one of the fields that is most advanced. Traditionally, the ex-
change of information between two parties is established by securely encrypting data before
transmission, ensuring that a third party attempting to intercept the communication can-
not decrypt and recover the original information. In part, security systems commonly rely
on computationally hard-to-solve asymmetrical problems. A well-known example is the RSA
encryption protocol [19], which exploits the fact that prime factorization of large integers is
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computationally exponentially demanding. For a product of large prime numbers (modern RSA
often uses encryption private keys, for the purpose of data encoding, that are of 2048 bits or
more), the factorization task is effectively impossible within a reasonable period of time, lim-
ited by the present efficiency of classical prime factorization algorithms and power of available
classical computing systems. This picture has been changed with the development of quantum
algorithms designed to run on quantum computers, most notably Shor’s algorithm [20]. Using
a sufficiently powerful quantum computer, this algorithm reduces the unfavorable exponential
complexity of prime number factorization to a polynomial one [21], 22], thus challenging the
security of RSA-based algorithms. This particular example illustrates that upcoming quantum
computational methods may drastically change modern secure communication protocols.

One potential solution to the aforementioned problem is to perform communication using
quantum states. This allows to achieve efficient and secure communication between remote
parties where security would be guaranteed by the laws of quantum physics. In particular,
quantum resources such as entanglement can be used to provide security in nonclassical methods
and perform nonclassical operations. In this context, quantum teleportation is one of the most
fundamental protocols in quantum communication [23, [24], demonstrating the ability to transfer
information encoded into a quantum state from one place to another [25]. Since its introduction,
quantum teleportation has been studied across various platforms, with continuous-variable
(CV) quantum communication being a particularly active area of research. Here, numerous
experiments have shown advantages of using quantum correlations for communication [8), 24,
20, 27]. Alongside quantum teleportation, several other quantum communication protocols
have been studied and experimentally implemented, including dense coding [28] and remote
state preparation [27, 29].

In the context of secure quantum communication, the field of quantum cryptography has
made significant advances over the past few decades, particularly in the development of quantum
key distribution (QKD) protocols. These protocols enable secure information exchange between
two remote parties, ensuring that a potential eavesdropper cannot gain information about the
transmitted data. The key distinction that provides the security of QKD protocols, as compared
to classical encryption, is based on the no-cloning theorem of quantum physics [30, BT]. This
fundamental theorem states that it is impossible to create two perfect copies of an unknown
given quantum state through a unitary transformation applied to the original state and any
additional ancilla states. As a result, quantum information cannot be perfectly duplicated and
requires interactions with quantum systems. A malicious eavesdropper, attempting to intercept
the communication, would inevitably disturb the transmission in a detectable way. By analyzing
the impact of this disturbance, it is possible to estimate the amount of information that may
leak during the communication. This principle is the basis of QKD protocols, which take
advantage of these effects to offer the promise of reaching unconditionally secure communication.
The latter indicates that even the availability of unlimited computational power of a third
party, including quantum computing, can compromise the security of such communication.
However, practical implementations are more complex and contain various imperfections, such
as (un)trusted preparation and measurement devices [32], B3], which could compromise their
security. Despite these challenges, many QKD protocols have been experimentally implemented
in various scenarios [§]. The ongoing development in this field focuses on security proofs for
increasingly complex and relevant communication cases [34) [35] [36], 37].

The first quantum key distribution (QKD) protocol was proposed by Bennett and Bras-
sard in 1984 [38]. Tt relies on using different polarizations of single photons to encode and
communicate classical bits of information. Security proofs have since been extended to meet
modern security requirements [39, 40]. This particular QKD protocol is often classified as a
discrete-variable (DV) protocol, which involves description in finite-dimensional Hilbert spaces
[8, 36, 41]. DV-QKD has been implemented successfully with a variety of quantum states,

2
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particularly using left/right circular polarized light [8]. Reliable and fast information rates
over long distances have been demonstrated using DV-QKD protocols as well as compatibility
with modern communication platforms [42, [43]. Alternatively, CV protocols imply an infinite-
dimensional Hilbert space and represent a conjugate approach to the DV one. Among important
advantages of CV protocols are less stringent experimental requirements and potentially sig-
nificantly higher communication rates. Additionally, CV systems can also be easily integrated
into existing classical communication platforms, taking advantage of direct technological com-
patibility [§].

Historically, QKD protocols have been studied and implemented in the optical regime. In
the context of the rapid development of modern superconducting quantum circuits operated at
GHz frequencies as mentioned previously, it becomes crucial to study avenues of QKD in the
microwave regime, corresponding to the frequency range of 1-10 GHz. Unfortunately, the large
energy difference between microwave and optical photons, on the order of 10°, makes it very
difficult to achieve an efficient conversion between these two frequency regimes. Best currently-
available optical-to-microwave transducers achieve single-photon efficiencies of ~ 107> for single
photons [44, [45][46]. As a result, converting microwave quantum signals into optical photons for
communication purposes is experimentally very challenging and still an unsolved task. There-
fore, in our approach, we rely on direct implementations with microwave carrier frequencies.
This implementation possesses both certain fundamental drawbacks and useful benefits. Due to
their low energy scale, thermal microwave noise is significant with quantum microwave exper-
iments requiring cryogenic cooling to millikelvin temperatures in order to suppress undesired
thermal photons [47]. Here, we build on the longstanding expertise of the Walther-Meifiner-
Institut in cryo-engineering, which has led to the implementation of many milestone quantum
microwave experiments, including microwave Planck spectroscopy [48], dual-path Wigner to-
mography of microwave signals [49], the realization of displacement and squeezing operations
[50, 51], and the demonstration of path entanglement [52].

In this thesis, we study and, for the first time, realize a CV-QKD protocol in the microwave
regime. We demonstrate its potential for unconditionally secure communication, based on
state-of-the-art security proofs [53]. The primary resource in our experiments is the Josephson
parametric amplifier (JPA) [54, 55]. JPAs can be operated as both phase-sensitive and phase-
insensitive amplifiers with noise properties approaching the standard quantum limit [56]. JPAs
are widely used in various microwave quantum experiments, ranging from single-shot qubit
readout to enhancing spin-echo experiments [57, 58, [59]. In our work, we experimentally show
that JPAs can be utilized to perform single-shot quadrature measurements. Using this detection
method, we experimentally realize a particular CV-QKD protocol with propagating squeezed
displaced microwaves [53]. From the analysis of the received key, we extract a nonzero secret key
rate and confirm the reachability of unconditionally secure communication. As an extension of
this work, we derive that microwave CV-QKD should be feasible under open-air conditions with
experimentally accessible parameters [60]. Our analysis further reveals that microwave signals
could be particularly suitable for short-range communication, compatible with existing 5G and
future 6G mobile communication standards, offering strong resilience to weather imperfections.
Finally, we discuss how to couple and store microwave quantum states in a spin ensemble. We
present our experimental progress in this direction by demonstrating squeezed states coupling
to the spin ensemble. These results represent an important step towards the integration of long-
lived quantum memories in secure quantum communication protocols such as the investigated
CV-QKD one, which is an important milestone for using microwave CV states in quantum
information processing.

This thesis is structured as follows. In chapter [2| we introduce a fundamental theoretical
description of JPAs and general quantum states. In particular, we focus on Gaussian states,
quasi-probability Wigner functions, entanglement properties, and Gaussian quantum chan-
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nels. We develop a theoretical description of squeezing and displacement operations, which
are needed for CV-QKD. Based on this formalism, we discuss QKD fundamentals in the next
chapter 3| with general notions of QKD. There, we compare DV- and CV-QKD protocols and
show that the latter are better suited for the microwave regime. Due to their sensitivity to
the presence of thermal noise in the communication, we show the relevance and advantage of
squeezed-state-based protocols over coherent-state-based ones for microwave signals, represent-
ing a striking contrast to CV-QKD implementations in the optical domain. In chapter [ we
present the experimental setup implementing the chosen displaced squeezed CV-QKD protocol
with Gaussian modulation. There, we detail calibration measurements that are essential to
support our findings and comment on various technical aspects of our experiments. Addition-
ally, we introduce a novel analysis for determining the Gaussianity of measured states based
on their experimentally reconstructed moments up to the fourth order. As the culminating
point of this work, in chapter [5] we demonstrate a successful experimental proof-of-principle
realization of the studied CV-QKD protocol. There, we prove the Gaussianity of our measured
states and use state-of-the-art security proofs to demonstrate the accessibility of unconditional
security of our experimental quantum communication. We also incorporate finite-size effects in
our analysis and highlight the robustness of the implemented CV-QKD protocol under more
realistic conditions. This allows us to extrapolate a faithful upper bound on secure communica-
tion rates that can be achieved in the microwave regime. Lastly, our investigation of microwave
CV-QKD is extended in chapter [6] to include quantum memories in the form of a spin ensemble
coupled to a superconducting resonator. In our experiments, we succeeded in coupling and
storing microwave squeezed states to the spin ensemble. Chapter [7| concludes this thesis with
a summary and outlook of the presented results.



Chapter 2

Quantum information with microwave
states

In this chapter, we introduce the theoretical foundations required to describe the experiments
performed in this work. Our theoretical description is based on textbook knowledge where we
provide corresponding relevant sources. First, section is dedicated to theory and circuit
models of Josephson parametric amplifiers (JPAs), which serve as fundamental building blocks
in our experiments. There, we derive the JPA Hamiltonian and the necessary assumptions
to operate JPAs in a linear amplification regime. Then, section.[2.2] presents the properties of
Gaussian quantum states and their associated representations. There, we detail the transfer of
Gaussian states through Gaussian quantum channels and their associated physical interpreta-
tion. We conclude with a measurement theory based approach to link squeezed states to single
quadrature measurements.

2.1 Josephson parametric amplifier

In this section, we focus on the general theory of JPAs and parametric amplification. In
Sec.[2.1.1) we describe Josephson junctions and direct current superconducting quantum in-
terference devices. In Sec.2.1.2] we first describe the derivation of the JPA Hamiltonian.
In Sec.2.1.3] we then introduce the input-output formalism of an undriven JPA. Finally, in
Sec.[2.1.4] we present the mechanism of parametric amplification obtained by applying a mag-
netic flux drive to the JPA and comment on the related amplification efficiency.

2.1.1 Josephson junctions and dc-SQUIDs

One of the most significant properties of superconductors is the Meiiner-Ochsenfeld effect,
describing the expulsion of magnetic flux from the interior of a superconductor below its critical
temperature. This property is valid only up to a material-dependent critical magnetic field.
Whereas for type I superconductors there is only a single critical field marking the boundary
to the normal state, there is a lower and upper critical field for type II superconductors. In the
phase diagram of type II superconductors, the Meifiner state is present below the lower and the
normal state above the upper critical field, whereas a mixed state with partial flux penetration
is established in between the two critical fields.

Within the macroscopic quantum model of superconductivity, the whole entity of super-
conducting electrons is described by a macroscopic wave function W(r,t) = \/nsexp(:f(r,1)).
Its amplitude is given by the Cooper pair density ,/ns and 6(r,t) represents its phase [61].
By weakly coupling two bulk superconductors, described by the macroscopic wave functions
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(a)

superconductor 1

~h

superconductor 2

insulator

Figure 2.1: Schematics of a Josephson junction and a de-SQUID. As depicted in panel (a), a Josephson
junction is formed by two superconductors shown in grey separated by an insulator, shown in red,
acting as a tunnel barrier. Each superconductor is characterized by its macroscopic wave function
W;. The line represents the integration path used to define the gauge-invariant phase difference. Two
Josephson junctions can be assembled in a superconducting loop to form a dc-SQUID, as shown in
panel (b). There, a bias current I splits into the two arms, I; and Is, leading to a circulating current
Icire- An external magnetic field, Beyt, is threading through the dc-SQUID loop. The dashed line
represents the contour line used to obtain Eq. and is displayed purposely with a slight offset for
visibility.

Uy (7, t) and Wy(r,t), using a thin layer of non-superconducting material such as an insula-
tor one obtains a structure known as a Josephson junction. A schematic representation of a
Josephson junction is shown in Fig.[2.1] Due to the finite coupling between the two supercon-
ductors, the phases 6; and 6y of the coupled wave functions are no longer independent. The
phase difference between the two junction electrodes is given by the gauge-invariant expression

m 2
or 1) = Os(r, 1) — Oy (. 1) — (2}%/1 Alr ), 2.1)

where A is the magnetic vector potential, ®; the flux quantum, and the integral is along a path
from superconductor 1 to superconductor 2 across the junction barrier. The Josephson current
density accross the junction is related to the phase difference by the first Josephson equation,
also known as the current-phase relation [61]

JS(’T‘,t) = JC(T) Sin(gp(r,t)), (2'2)

where J. is the junction critical current density. Eq. also implies that the current density
is a nonlinear function of the phase. In the following, we only consider spatially homoge-
neous junctions (J.(r) = const.) and junctions with spatial dimensions much smaller than the
Josephson penetration depth so that ¢(r) = const. In this case, we can replace Eq. by

L(t) = I sin(p(1)). (2.3)

For a single Josephson junction, the phase difference ¢ is related to the voltage across the
junction via the second Josephson equation as [61]

op 27
— = —V(t). 2.4
=V (24)
By using the definition of an inductance
dl
L—=V(t), 2.5
() (2.5
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one can define the Josephson inductance Lg of a Josephson junction as

Do

Lo=—0
211, cos(p)

(2.6)

This result is remarkable, as it means that a Josephson junction corresponds to a nonlinear
inductor which can be changed by a bias current. The nonlinear tunable properties of the
Josephson junction make it a central element for superconducting quantum circuits such as
superconducting qubits, parametric amplifiers, or magnetic sensors [61], [62].

Based on the first and second Josephson equation, one can estimate the binding energy, Ej,
associated with a Josephson junction as

Do

Ej(p) = /o LV (t)dt = glc(l —cos(p)) = Ej0(1 — cos(p)). (2.7)

Obviously, this coupling energy depends only on the phase difference .

One can draw an analogy with a mechanical system by associating ¢ with the coordinate x
of a particle inside a potential landscape described by Ej. As for a mechanical system, one can
define the Lagrangian of the Josephson junction as the difference between the kinetic term, 7,
and a potential term, E,.. Without damping components, the Josephson junction Lagrangian
takes the form F2g2

¥
~ 4Ec

where E¢ = (2¢)?/2C is the charging energy associated with the charge 2e of a Cooper pair
stored on the junction capacitance C'. The classical dynamics can be derived using the FEuler-
Lagrange equation

L(p, ) = T(P) = Epar () — Ejo(1 = cos(y)), (2.8)

d oL oL
— = h) — = 5) = 0. 2.
dt agb(@a ®) 8@(90790) 0 (2.9)

To provide a quantum mechanical description of the Josephson junction, one has to replace
the classical variables by their quantum-mechanical operator counterparts. Additionally, in
this work, devices are operated in the deep phase regime, where the Josephson energy is much
larger than the charging energy (Fj/Ec ~ 10%) [54]. Consequently, the phase, or the magnetic
flux, is a good quantum number for the description of Josephson dynamics.

Using two Josephson junctions, one can build another important superconducting device -
a direct current superconducting quantum interference device (de-SQUID). The two Josephson
junctions must be arranged in a loop, as shown in Fig.(b). For simplicity, we assume
junctions with identical critical current. Other devices using Josephson junctions designed
with different critical currents exist, such as SNAILs [63] or asymmetric SQUIDs. Applying
an external magnetic field, By, perpendicular to the SQUID loop results in the magnetic flux
Pyt = Ajoop - Bext through the SQUID loop. Here, Ajop is the loop area of the de-SQUID.
Within the macroscopic quantum model of superconductivity, one can derive the following
expression for the gauge-invariant phase gradient in a bulk superconductor [61]:

Vo = ZL(AJ, + A). (2.10)

Here, A is the London coefficient [61] and Jg is the supercurrent density. By integrating along
a closed contour line C, as shown in Fig.(b), the phase differences ¢, and ¢, across the two
junctions can be related to the total magnetic flux ® threading the loop by

o
2= 1 = 2M (2.11)
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Here, we have used the fact that the total phase change accumulated along the closed contour
path C is given by 27n with n being an integer (fluxoid quantization). We also assumed
thick superconducting electrodes, what allows us to choose an integration path deep inside the
superconductor where Jg = 0.

The total magnetic flux ® is composed of two components, namely the flux &.,; generated
by the applied magnetic field and the self-generated flux ®1, = Lisopleire due to a current
circulating in the SQUID loop of geometric inductance Lijyop. Then, the total flux can be
written as ® = Peyy + Ligopleire- The circulating current Ig,. can be expressed using the first
Josephson equation applied to each junction, resulting in the expression

L -1 —
Live = ——2 = I, cos (#) sin <¥) = —1I.cos (p4)sin(p_), (2.12)

2

where I; is the current in the branch ¢ of the de-SQUID. Here, one defines two new phase
variables

P2 — ¥

Yy = w and p_ = 5 (2.13)

in order to simplify Eq. (2.12)) to a similar structure as Eq. (2.3). Using these definitions, we
obtain [64]

(% = q;:zt — % cos (py)sin(p_) with [ = ﬂjg—?)p[c.
From Eq. , we observe that the total magnetic flux threading a de-SQUID shows a hysteric
behavior which is quantified using the dimensionless parameter i, referred to as the screening
parameter. This parameter relates the maximally self-induced magnetic flux ®1, = Ligop/eirc
to half of a flux quantum, ®y/2. As a result, a large screening parameter indicates a strong
hysteretic behavior of the de-SQUID. In this case, the magnetic flux cannot be explicitly de-
termined analytically. Instead, one extracts it by numerically solving the system of equations
given by Eq. and the total current I; + Iy = 21.sin(py) cos(p_). In the limit of negligi-
ble loop inductance, the self-induced field becomes negligible as compared to the applied field,
corresponding to a screening parameter [, close to 0. Here, the total magnetic flux is given
by the external magnetic flux, ® ~ ®.. Consequently, one can obtain explicit expressions for
maximal supercurrent and inductance of the de-SQUID [65]
P

cos (7T Pext )
®0 q)ext
cos (s

From Eq. (2.15), it can be seen that the dc-SQUID behaves similarly to a single Josephson
junction. In general, the maximum supercurrent and inductance of the de-SQUID are related
to the external magnetic flux as

(2.14)

I =21, and  Lg(Peyxy) = (2.15)

4rl,

P
I =21 jc(Pex d Lg(Pext) = ——————. 2.16
I = 2i(Pe) o L) = e (2.16)
Following our previous discussion on Lagrangian mechanics, one can derive the general La-

grangian for the de-SQUID with a given screening parameter, i, as [60]

_ P +¢?)

L
2E¢

. 2E)0 Pesi \*

—2E50(1 — cos(p4) cos(p-) — jups) — o —7 . (217)
0L P
where ji, = (I + I5)/(21.). We note that this Lagrangian does not incorporate any dissipative
terms. It is also important to remind that the Lagrangian of the de-SQUID given in Eq. (2.17)
can be used to derived the general dynamics of a phase particle with coordinates (¢4, ¢_) in
the de-SQUID potential however one must also account for the fluxoid quantization defined by
Eq. (2.11]) to obtain the full dynamics of a de-SQUID [67].

8
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2.1.2 Josephson parametric amplifier

We consider a flux-driven Josephson parametric amplifier which consists of a coplanar waveguide
(CPW) and is shorted to ground via the de-SQUID as illustrated in Fig.2.2] In this work,
we consider the CPW as a one-dimensional microwave transmission line that is made of a
superconducting Nb thin film. In order to analytically describe the CPW, we use a distributed
element model of a chain of LC resonators. An electromagnetic wave propagating in such a
medium is described using Telegrapher’s equations [68]. For an ideal lossless transmission line,
the characteristic impedance is given by Z = /Lo /Cy with Ly and Cy being the inductance and
capacitance per unit length of the transmission line, respectively. In order to create a CPW
resonator, one imposes specific boundary conditions. On one CPW end, we use a coupling
capacitor with the value, C, which serves as an input port to the resonator. The opposite
boundary condition corresponds to a galvanic short to the ground plane through the de-SQUID.
The CPW resonator length d, is designed to be a quarter of the wavelength A, of the fundamental

mode of a targeted frequency [69]
Wy 1

21 4d/LoCy

The CPW resonator Lagrangian is written using a distributed element model consisting of
a series of N LC resonators as shown in Fig.[2.2(a). We account for the de-SQUID at the
boundary of the resonator and rewrite the magnetic flux at a position i as ®; = (Po/27)p;,
using a phase variable ;. The resulting CPW resonator Lagrangian takes the form

N-1 2 . 9 2 2 -2 2
_ P Cipi (¢iv1 — i) Po Cnyn (pn+1— n)
L = Z <27r) ( 2 2L, * 2m 2 2Ly o (219)

i=1

(2.18)

where the phase ¢n11 at the end position ¢ = N + 1 is related to the gauge invariant phase
differences of the de-SQUID. Using values of capacitance and inductance per unit length of the
CPW resonator, we write C; = CyAz, L; = LoAx, with Ax the space between two consecutive
LC circuits. We obtain in the limit of Az — 0

d 2 ) 2
A Cop 1 (9p
L, = — - — (== dz, 2.20
/0 (27T) ( 2 2L, \ oz v (220)
where we introduce a phase variable . From the Euler-Lagrange equation shown in Eq. (2.9)),
we obtain the equation of motion for the phase

PP P
9z~ 092

— 0, (2.21)

with the phase velocity vy = 1/v/LoCp. A fundamental solution to this wave equation is given
by
o(x,t) = o sin(kvot) cos(kz), (2.22)

where the phase velocity v is related to the wavevector k£ via the linear dispersion relation
kvy = wp, and g is a constant phase amplitude. Assuming g, < 1, the de-SQUID can be
described as an effective single Josephson junction using Eq. . Using Eqs. and ,
in the limiting case of a fixed external dc magnetic flux, one derives the de-SQUID Lagrangian
[70]

Do\’ Cop? -
Lsquip = (2—;> 290 + E3(®) cos(ps), (2.23)

where Ej(®) = 2E; cos(2r®/®,) and C; is the capacitance of each branch of the de-SQUID.
We denote the phase variable ps = ¢, to illustrate that the de-SQUID behaves more like a

9
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(a) dc flux bias (b)
T
ext I S g
I > 4
% . —1.=1pA
b > —_— =
CLout Lloop s | =2 pA
| J_ :: — ;=4 pA
= dosqup - & L. 1. . . . .1,
k/4 resonator p mp 0 0 05
u .
X=0 = d CPW normalized flux ®_ /D

Figure 2.2: Schematic of a JPA circuit and its associated flux-dependent frequency response. (a) JPA
circuit consisting of a A\/4 resonator modelled with a distributed element circuit, characterized by a
capacitance per unit length, Cy, and inductance per unit length, Ly. The resonator is coupled to input
modes @i, via a coupling capacitor with the coupling rate kext. A de-SQUID with an inductance Ligp
short-circuits the resonator to ground. An external dc-bias magnetic flux is applied using an external
magnetic coil while an ac magnetic flux is induced via an inductively coupled pump line. The bottom
axis indicates the spatial coordinate along the circuit. (b) Flux-dependent JPA frequency response
for different values of the dc-SQUID critical current. These plots are made using Eq. for the
particular value of resonator inductance L, = 2nH and loop inductance Ljoo, = 50 pH.

single junction. We note that this Lagrangian is effectively describing only the boundary of the
JPA circuit at the position z = d, such that ¢(d,,t) = s(t). To account for the de-SQUID
effect, we write the total circuit Lagrangian Lo = £, + Lsquip and minimize the action S over
a time interval T’

S = /T »Ctot(t)dt. (2.24)

The condition 0S = 0 results in a new equation of motion for the CPW resonator with the
dc-SQUID, using the principle of least action, i.e., dp(z,0) = dp(z, T) = 0 at any position x in
the resonator. This equation of motion reads as

O \* 1 dp, () Pes A -
(g) T o +<§> Cogz — Ea(®@)p. = 0. (2.25)

Using the solution from Eq. , one obtains a transcendental equation relating the JPA
resonance frequency, wjy, and the bare resonator frequency, w,. Denoting the effective resonator
capacitance C; = d,Cy and resonator inductance L, = d,Lg, the transcendental equation can
be analytically written as 70}, [71]

T Wy Wy or\? - Cs (mw;y ?
(Go)en(52) = (&) wo g (52) (220

A general solution of Eq. requires numerical calculations. However, in some particular
cases, analytical solutions can be computed. In the limit of wy ~ w, [70], i.e., for a small
modulation of the JPA resonance frequency, a Taylor expansion of the tangent term in Eq.
near wj/w, = 1 leads to the simplified expression

Lr
(@) = wr (Lr F Ly(®) + Lioop /4> ! (2:27)

10
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where we account for the loop inductance. The flux-dependent JPA resonance frequency ac-
cording to Eq. is shown in Fig.[2.2(b).

In the following, we derive the JPA Hamiltonian which enables parametric amplification
effects. In order to treat the JPA circuit from a quantum mechanical point of view, we first
consider the fundamental mode solution written in the form (®q/27)p(x,t) = ¢(t) cos(kx).
Next, we quantize the flux variable ¢ by replacing it with an operator gE, and similarly, ¢
is switched to the operator ¢. Next, we introduce the Hamiltonian of the system based on
the Legendre transformation by setting the potential term V = —E} cos(ps). We obtain the
Hamiltonian

d 72 2 2 ~2
. r v d ) k= - ) Csd ~ .
H :/0 (cos(kx)270d—f —|—sm(k::z:)2—2L0¢2)da: + (2—72> T_d(f (dy,t) — Ey(Pext) cos(@(dy, t)).
(2.28)

For the purpose of parametric amplification, we consider a small phase modulation correspond-
ing to a small current flowing through the Josephson junctions. Therefore, we expand the cosine
potential term in Eq. outside of the integral term and keep the first term proportional to
©?. This approach leads to the simplified Hamiltonian

d 72 2 2 ~9 ~
) : Cy do ' k2 . Oy \ " Csdy Ey(Pext) .
H = k) —— P — ) == (d —— "2 5(dy, )
/0 (cos(kx) 5 df + sin(kx) 2L0¢ )dz + (27r) 5 dqr (dp,t) + 5 P(dy,t)
(2.29)

We note that the structure of the simplified Hamiltonian is that of a harmonic oscillator with an
additional nonlinear term coming from the de-SQUID. In other words, the Hamiltonian of the
JPA has in first order the structure of a harmonic oscillator with a flux-tunable frequency. As a
result, the system dynamics could be described similarly to that of a pendulum with a paramet-
rically modulated fundamental frequency. This parametric modulation leads to a parametric
amplification process. To unravel this underlying structure of the simplified Hamiltonian, we
introduce an effective capacitance and inductance of the circuit as

d 2 pd 2
" 1k g 2 ~
C= Co/ cos(kx)?dz + Cycos(kd,)?, — = —/ sin(kz)?dx + il B3 (®eyi ) cos(kdy)?,
0 L Lo Jo P
) (2.30)
which, based on the definition of ¢ and ¢, allows to write the simplified Hamiltonian in the

form of a harmonic oscillator
cdd\’ s\
H=E;|—— Ep [ — 2.31
(£%) + () 21

with the charging energy Ec = (2¢)?/(2C) and the inductive energy Ey, = ®2/(2L). Since we
consider a flux-induced parametric amplification, we additionally take into account that the
magnetic flux is composed of two components, a fixed dc flux bias and an alternating ac flux,
e, Poxi(t) = Pge + Pac(t). As mentioned earlier, we consider the case of small ac excitation
®,. < ®y. Under this assumption, we perform a Taylor expansion of E; for the ac flux term
around the dc flux bias, truncating the expansion to the first term since the JPA nonlinearity
is relatively small [72], and obtain

EJ((I)ext) = EJ((I)dc) + q)ac %

ext Pext=Pqc

(2.32)

Lastly, based on the law of induction, ¢ = —Cd¢/dt, we introduce the charge operator Q
which fulfils the commutation relation [¢, Q)] = ih. Using this definition in combination with

11
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Egs. and [2.32) we derive the flux-modulated Hamiltonian of the JPA [73]

N\ 2 AN 2 -
5 Q b om\ > ,Poc OE; -,
H=FE:|— B | — — kd, ) 2.33
© <2e TEe g, ) TG, ) costhd) 5 55 ¢ (2:33)
where we define L* = L(®Peyq = Pgc). Finally, we introduce the annihilation and creation
operators as
C o\ L \* C o\ L \*
i = h+i ), = h—i y 2.34
¢ (471%*) i (4h20> © a (4h2L*> ¢ <4h20> @ (2:34)
which we use in combination with Eq. (2.33]) to obtain the final Hamiltonian of the JPA
~ ) an
H = hwy (®g.) |a'a = a4 ah)?| . 2.35
! d){”Uma@m(““)} (23

We consider the case that a pump signal s, induces the ac flux term ®,. via a mutual inductance
between the de-SQUID and the additional pump line antenna in the JPA circuit, located next to
the de-SQUID. We assume that the pump tone takes the form s,(t) = so cos(aw;(Pqc)t), where
sg is the pump amplitude and « is a proportionality constant relating the pump frequency to
the JPA resonance frequency, w, = aw;(®q.). Thus, we reformulate the Hamiltonian of the

JPA as [74]
Hipa = hwy (®a0) |ata + € cos(aws (Pac)t) (@ + a*)?} , (2.36)

where the parameter € contains the pump amplitude and relevant geometric parameters. We
note that € depends on the JPA resonance frequency and can be tuned depending on the dc flux
bias. Additionally, the modulation depends on the slope of the frequency vs. flux dependence
of the JPA at the dc flux bias point as seen from Eq. . This implies that for practical
implementations, it is preferable to operate JPAs at relatively small slopes in order to reduce
the sensitivity of the JPA resonance frequency to random variation of the applied magnetic flux.
However, the smaller the slope, the larger the required amplitude of the pump tone to achieve
the desired parametric amplification effects, implying that both effects must be balanced. We
note that the Hamiltonian in Eq. is only valid up to a certain pump tone amplitude,
beyond which previously neglected higher-order terms must be taken into account [73].

2.1.3 Input-output formalism

The input-output formalism of the JPA is derived by considering the coupling of the previously
described system to input signals. To this end, we we assume that the JPA is coupled to an
input transmission line with the coupling rate ke and to a bosonic thermal bath with the
coupling rate ki, [75]. Both the input line and thermal bath are described as a continuum of

bosonic modes [74]
ﬁext = h/ [wklA)LlA)k +1 % <[A)};CAL — Bde> d/{?,
V 27

- (2.37)
Ho = h / [wkégék gy | Dhltine (aga— @kaT) dk,

2T

where k is the wavevector of the mode k with a linear dispersion, kv, = wy. Here, wy and Vg
are the corresponding frequency and phase velocity, respectively. The annihilation operator by
(¢x) corresponds to the external (internal) bath mode k and follows the bosonic commutation

12
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relation [by, by] = 8(k — k') ([ér, éw] = 6(k — K')). The external coupling rate, k., depends
on the coupling capacitance, C., and on the JPA frequency. The internal coupling rate, x;, is
related to internal loss mechanisms. In the case of an undriven JPA, the total Hamiltonian of
the system, ]:Itot =H gpale =0)+ ﬁext + I—:Tint, corresponds to the following equations of motion:

da o 1 PR o N VRext 7 VUKing ~
i [a,Htot} = —iw;a + 4/ 5 /bkdk + 4/ o /ckdkz,
dbe i o4 1 .+ [Vkexs

E = _ﬁ [bk, Htoti| = —Zkak — o Qa.

Here, we assume frequency-independent phase velocities, v, = v. Furthermore, we denote the
JPA resonance frequency as wy = wy(Pq.). We also do not explicitly state the equation for the
modes ¢;. However, we note that any result obtained for the modes b can be directly applied
to the modes ¢, by substituting ke with k. First, we solve the equation of motion for ZA)k

and obtain .
b = ety (0) — o | ot / e~ =g ()t | (2.39)
2 Jo

where we set the time reference for the system to ¢ = 0. Using Eq. (2.39), one typically defines
an input mode by, describing a signal incoming at the JPA input as [74]

(2.38)

(1) = / e~ (0)dlk, (2.40)

oo

which can be linked to an output mode by describing an outgoing signal from the JPA input.
This results in the JPA input-out relation [74]

Dout (t) = bin(t) — /“f;xta(w. (2.41)

We note that the relations are suited for any single-port lossy harmonic oscillator. Inserting
Eqgs.[2.39 and into Eq. (2.38)), we obtain the final equation of motion for the JPA intra-

resonator mode

j—‘; = —itogit — Sl1) + TFbnlt) + v Tiin(1), (2.42)
where kK = Kext + Kint 1S the total coupling rate. The structure of Eq. shows that
corresponds to an overall loss rate of the JPA mode a. Although classically valid, on their own,
these losses of the JPA mode a are insufficient from a quantum point of view, as the mode a
satisfying Eq. would no longer fulfil the bosonic commutation relation. Modes bin and
Cin are required to allow the bosonic commutation relation to be fulfilled at any time ¢. The
steady-state solution of Eq. can be obtained by transforming it into the frequency domain
via Fourier transformation. Using the resulting equation with the input-output relation from
Eq. , we can derive the magnitude and phase of a reflected signal using the scattering
matrix formalism. For the scattering parameter, S1; = (60ut> / (Z;in>, we obtain for a given signal
frequency w, such that A = w — wjy

4Kext"fint
Su(A)P=1- —_
[S1(4)] A? 4 252 (2.43)
arg(S11(A)) = atan2(—4Akext, 4A% 4+ K2 — 2kt k).
Here, we use the 2-argument arctangent function atan2. Furthermore, we define an external

quality factor, Qex, an internal quality factor, Qi., and a loaded quality factor, ¢);. These
quality factors determine the ratio between the total energy stored in the JPA and energy lost
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Figure 2.3: Frequency dependence of the scattering parameter S1; of an undriven JPA. The magnitude
of the scattering parameter, |S |§1, is shown in panel (a) while the phase of the scattering parameter
arg(S11), is plotted in panel (b). The data are obtained with Eq. for a fixed quality factor
Qext = 300. The green, red, and blue curves correspond to the overcoupled, critically coupled, and
undercoupled regimes, respectively.

per oscillation of the signal inside the JPA to the respective loss channel. As such, a large
quality factor is equivalent to small losses relative to the stored energy. From this perspective,
a practical fabrication of JPA would aim at having an internal quality factor as high as possible.
The quality factors are related to the respective coupling rates as follows:

wj
Qext = T Qint - .

ext Rint

Wy

cand Q=2 (2.44)
K

The magnitude and the phase of the scattering parameters according to Eq[2.43 are plotted
versus frequency in Fig.[2.3] We see that the quality factors play a significant role in the JPA
response. Typically, one defines three corresponding regime, overcoupled (Qexy > Qing, Q1 ~
Qext ), undercoupled (Qext < Qing, Q1 =~ Qint), and critically coupled regime (Qext =~ Qing, Q1 =~
2Qext)- As illustrated in Fig.[2.3(a), the frequency dependence of the magnitude is quite similar
in the overcoupled and undercoupled regimes. For this reason, it is favorable to use the phase
response to distinguish between these two regimes, as shown in Fig.[2.3(b). In contrast, in the
critically coupled regime a strong amplitude response is observed while the phase response is
close to that of the undercoupled regime.

Lastly, we consider the case of the flux-driven JPA with ¢ # 0. The total Hamiltonian
reads [:[tot - H gpa(€) + lflext + If[int and the equations of motion remain the same as previously
described, except for an added drive term o cos(awpt)(a + a')? as seen in Eq. (2.36). The flux
modulation is obtained by setting the pump frequency to twice the JPA resonance frequency,
wp = 2wy, as illustrated in Fig.[2.4(a). In this case, we expand the cosine term cos(awpt) in its
exponential form according to Euler’s formula and apply a rotating wave approximation to the
term cos(awpt)(a + a')?, keeping only expressions proportional to e**1'a? 4 e=2*3t(¢1)2. This
transformation leads to the new equation of motion

da

= —iwyi— g&(t) —dewye MGt 4 SoRabin(t) + /U Cin (1). (2.45)

Here, we apply the stiff pump approximation, which assumes no energy depletion in the pump
mode [76].
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2.1.4 JPA amplification and standard quantum limit

In our experiments, JPAs are operated in a steady-state regime where they are driven with a
pump tone at twice the JPA resonance frequency with a fixed amplitude, implying € = const.
From Eq. , we determine the steady-state regime of the JPA by shifting to a frame rotating
at the frequency wjy. In this frame, we denote the rotated operators with corresponding capital
letters, e.g., A = ¢™1tq, resulting in the equation

Cm

AR A0 — iewsdt = B(), (2.46)

(o

t

(\]

where we define the operator F = \/v/{exth + w/v/fth'm We find a transient solution of

Eq. (2.46 - ) by using the ansatz Ahom( ) = e’\hoth'hom, where Chom is a bosonic operator. This
leads to the solutions .
)\hom,:I: = —§ + €EWj. (247)

In particular, we observe that A,om + becomes positive for € > €. = x/(2wy), meaning that
convergence to a steady-state regime is possible only for € < e. for this ansatz. Above that
critical threshold, the JPA enters a parametric oscillating behavior [77] and is no longer suited
for linear parametric amplification. In the rest of this thesis, we only consider the case € < e,
and obtain a steady-state solution using the Fourier transform applied to both Eq. and
its complex conjugate. Similarly, we perform the Fourier transform of Eq. in the frame
rotating with the frequency wj, resulting in the equation

Bow(0w) = B (6w) — 1/ 2= A(bw), (2.48)

(Y

where w is the signal frequency and dw = w—wj is the frequency detuning. Combining Eq. ([2.46)
with Eq. (2.48)), we derive the final input-output relation in the frequency domain

Bout (0w) = Miy (0w) Bin(6w) + Lin(0w) Bl (—0w) + My (6w)Cin (0w) 4 Ly (6w)Cf (—dw), (2.49)
with the scalar amplitudes of the corresponding bosonic modes

K/2 — 10w L€RextW)
(dw + ik /2)% + Ew?’ (0w + ik /2)% + w3’

2—id - ext vin
My (0w) = /KextKint rf2— idw La(0w) = — 1€y/FextRintW)

(bw +iK/2)% + Ew?’ (dw + iKk/2)? + Ew?

Min(0w) = 1 4 Kexs Lin(dw) = —

(2.50)

The structure of Eq. (2.49)) shows that the final output signal leaking out of the JPA consists of
the input signal scaled by a factor M,,, an additional noise term M C’m + L, C’T corresponding
to the internal losses, and the term LmBm, presenting a negative frequency detuning. As a
result, the parametric amplification process of an input signal at a given frequency, w = w,
necessarily involves an additional mode, commonly referred to as the idler mode, at a frequency
w; = 2wy —ws. This result can be understood in the framework of a three-wave mixing where the
amplification of an input signal at frequency ws = wj + dw involves an idler signal at frequency
w; = wy — dw as illustrated in Fig.|2.4{(c) Intuitively, it corresponds to the frequency conversion
process wp, = Ws 4 wj, where wy, is the frequency of the applied pump signal. In the case of finite
detuning dw # 0, we compute the signal and idler gain values using G = \Min]2 and G = \Linlz,
respectively. For small detuning, dw < wjy, we find

Gulbw) =14 4e?elw] 2622w /(€ + €2) (2.51)
s(dw) = ~ : :
(@ P 7 28+ D - G T (g
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Figure 2.4: Priciple of parametric amplification principle and gain response of a flux-driven JPA. (a)
Working principle of a flux-driven JPA. The JPA resonance frequency wj(®Pgq.) is adjusted by changing
the dc magnetic flux bias while a parametric amplification is induced using an ac flux drive ®,. by
applying a pump signal at the frequency w, = 2w;. (b) Signal and idler gain of the flux-driven JPA
operated in the nondegenerate regime. This plot is obtained using Eq. for the quality factors
Qext = 250 and Qiny = 2500 at the resonance frequency of wy = 5.5 GHz and different pump strengths
€. (c) Scheme of the nondegenerate parametric amplification, characterized by a nonzero detuning
dw # 0, signal frequency ws = wp/2 + dw, and idler frequency wj = wy/2 — dw. (d) Scheme of the
degenerate parametric amplification obtained in the case of dw = 0. In this case, the amplification
gain depends on the signal phase. In the panel, we illustrate the case of maximal amplification gain.

We note that Eq. implies gain values necessarily greater than or equal to one, meaning
that the amplitude of the input signal is unchanged or amplified. The signal and idler gain values
are shown in Fig.2.4(b). From Eq. (2.51]), we note that the gain profile presents a Lorentzian
shape with a full width half maximum 'y = (€2 — €)w;//2(e2 + €2) and a corresponding
maximal gain G, = 4e2e?/(e2 — €?)?. We compute a gain-bandwidth product (GBP) 75 of the

JPA given by [50]
n = VaT, = &2 (1 ; —) o (—) . (2.52)

Here, we see that the GBP approaches a constant value of /2 as the pump power gets closer
to the critical pump value, €.. This result implies that the amplification gain is inversely pro-
portional to the amplification bandwidth. In this work, we operate the JPA in the overcoupled
regime where Kexy > King, resulting in a GBP of 75 = Key /2. In the case of no detuning, dw = 0,
the signal and idler mode are degenerate in frequency and can coherently interfere with each
other [78]. We refer to this regime as degenerate amplification as shown in Fig.ﬂ(d). Contrary
to the nondegenerate amplification regime, the degenerate amplification gain is sensitive to the
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phase 65 of the input signal. The degenerate gain is given by [74]

2

Gs(0s) = |Min(0)e™ + Ly, (0)e ™

2 2 2 2
Fext —Rint 2,,2)2 2 2,2 Kaxt —Ring 2 92\ ..
(Z=g7 4 €w))” A K € W) — 2hextw) (—e* T+ e wJ> sin(26;) (2.53)

K2 2,2 2
(5 —et)

Here, it is possible to reach a regime where G5 < 1 for a certain input signal phase, resulting in a
deamplification of the input signal. In particular, we obtain the maximal gain for 65 = 37w /4+z7
for z € Z and the minimal gain for s = 7/4 + zmw. The corresponding maximal and minimal
gains are given by

2 2
G B €Wy — chtgnlnt G B €wWj + cht;'ﬁnt 2 54
$,max Kext TKint ) S7min - Kext+Kint ‘ ( . )

€wy + 5 €Wy — 2

In the limit of a strongly overcoupled JPA, Kexi > Kint, We find that G max Gsmin = 1, mean-
ing that for a certain phase the input signal is maximally amplified, while it is maximally
deamplified for the input phase value changed by 90°. As explained later in Sec.2.2.1] the
phase-sensitive amplification is closely related to the squeezing operation that can be imple-
mented with overcoupled JPAs.

Standard quantum limit. In the following, we briefly comment on the quantum mechan-
ical description of linear amplification. The fundamental difference to a classical treatment
is the necessity that all involved quantum bosonic modes obey the bosonic commutation re-
lation. This has crucial implications for the noise properties of the amplification process. In
particular, the Haus-Caves |79, [80] theorem states that it is not possible to perform a noiseless
linear phase-preserving amplification. Therefore, to ensure that both the input mode a and
its corresponding output mode a’ after phase-preserving amplification are bosonic modes, the
input-output relation must take the form [81]

i’ = /Gsa + /Gy — 1h1, (2.55)

where Gy is the phase-preserving amplification gain and h is a bosonic noise operator reflecting
that the input modes are coupled to a thermal bath [81]. It can be straightforwardly verified
that the output mode operator fulfills the bosonic commutation relation. A total, average
number of photons N in the amplified mode can be computed as

<iziﬂ - iﬂﬁ>
2 )

S1eaNt L (AT ar ot At
N:<a(a)+(a)a>:Gs<a& +a'a)

5 5 + (Gs—1)

(2.56)
where we use that the signal and noise operators commute. The last equation indicates that
the output power is composed of both amplified input photons and added noise photons. From
Eq. (2.56]), the average added noise in units of photons, A,,;,, referred to the input the amplifier
is calculated as [80]

it + hih
(Gs—1) <hh + > (Go—1) (/5305 1\ _ 1 1
= = ) > (1-=). .
ey 2 c. (th) +3 e (2.57)

The last inequality is obtained by noticing that <iﬁz) is the average noise photon number and
is bounded from below by 0. The inequality in Eq. (2.57)) is commonly known as the standard
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quantum limit (SQL) of linear amplification [80, 82]. This fundamental limit implies that
any nondegenerate amplification process adds at least the vacuum variance to output signal
variances. This result is rooted in the Heisenberg uncertainty relation. The added noise can
be evaluated using the quantum efficiency n [73], defined as the ratio between the input and
output signal-to-noise ratios. The corresponding expression can be simplified to

1

T T 240,

(2.58)
According to the SQL, the quantum efficiency of any degenerate linear amplifier is at most
1/2. Conversely, in the degenerate amplification regime, the SQL can be violated. As shown in
Eq. , noiseless amplification is allowed in this regime, as expected from the Heisenberg un-
certainty. This fundamental difference can be illustrated in the input-output relation obtained
in Eq. by replacing the mode h by the signal mode, a', representing the interference with
the idler mode. The resulting transformation can also be described as a squeezing operation,
as explained later in Sec.[2.2.2] Furthermore, one can derive a more general expression for the
SQL using the Haus-Caves theorem. With respective gain values GG; and G5, the average noise
A; and A, in units of photons added to orthogonal signal quadratures, follows the inequality

80, 81

2

L (2.59)

VGG

Here, we observe that under the condition G1G5 = 1, noiseless, phase-sensitive amplification is
possible. Lastly, we can define a quadrature-dependent quantum efficiency, 7y, similarly to the
nondegenerate amplification case [73]

1
> — 1] —
A1A2 = ]_6'1

1

= 2.
1+ 24, (2:60)

o
where Ay is the average noise in units of photons added to the signal quadrature defined
by the signal phase #. In this thesis, we refer to the quadrature quantum efficiency as nx,

where X stands for either the ¢- or the p-quadrature. Since a degenerate amplification can be
fundamentally noiseless, the quadrature-dependent quantum efficiency is limited to 1.

2.2 Continuous-variable quantum information

In this section, we focus on continuous-variable quantum states and their associated physical
properties. In Sec.[2.2.1] we present a general formalism for quantum states which is particularly
suited to describe Gaussian states. In Sec.[2.2.2] we introduce such Gaussian states as well as
Gaussian channels which are used in communication protocols. In Sec.[2.2.3] general expressions
for quantum entanglement and the entropy of quantum states are presented.

2.2.1 Representation of quantum microwave signals

In this work, we measure microwave signals with carrier frequencies in the range of 4-6 GHz.
Classically, a signal mode is described using a mode at angular frequency wy with an associated
electric field at the position r as

Ex(r,t) = I(t) cos(wkt — 1 - k + bef) + Q(t) sin(wyt — 1 - k + bref), (2.61)

where k is the corresponding wave vector and I (@) is the in-phase (out-of-phase) quadrature
component of the field. Additionally, 6. is the phase reference. Similarly, one defines the
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quantized electric field using bosonic annihilation and creation operators, a, and dL, as [20]
Ek(r7 t) e Eo(dkei(wktfr'k+9ref) _|_ dLeii(wktfr'k‘i'aref))

iy o (2.62)
= 2E,(g " cos(wit — v - k + brer) + P sin(wit — 1 - k + Orer)),

where we have introduced the rotated quadratures cjle;ef and ﬁi”f which are the quantum coun-

terpart of the in-phase and out-of-phase classical quadratures I and ). Additionally, Fy defines
the field amplitude. The rotated quadratures are defined as

dke_iercf + dLeiercf &ke_iercf _ dLeiercf

Aere ”\Gre
q S 2 and pk f — 22 (263)
The reference phase is conventionally set to zero which leads to g = ¢p and py = p) with
the commutation relation [gx,px] = 1/2i. The quadratures fulfil the Heisenberg uncertainty
relation ) .
. . . . . . a2
(AQk)Q(Apk)Q = (<CJ12<> - <Qk>2)(<pi> - <pk>2) > —’<[Qk,pk]>| (2.64)

16
The relation in Eq. is at the core of this work and represents the basis for protocols
presented in later sections. Remarkably, the quadrature operators form a continuum of observ-
ables and, as a result, have a continuous spectrum of eigenvalues and corresponding eigenvectors
living in a Hilbert space of infinite dimension. Therefore, one commonly speaks of continuous-
variable states. Here, these quantum states can be described using a density matrix in the

form
p=>_ (Wlpli) i) (| = sz’|¢i><¢i\» (2.65)

(2

where p; is the probability of the state to be measured in the state i for a given basis {|¢;)}.
The coeflicients p; are positive real numbers which are normalized by > ,p; = 1, meaning
Tr(p) = 1. Here, a commonly used basis is the Fock state basis {|n)}necp,+o0 corresponding
to eigenvectors of the photon number operator, 7 := afa. The expectation value of a given
operator A can be computed using the Born rule, <121> = Tr(,é/l). In particular, the purity of
a state is computed as Tr(p?) and is either one or less than one. A purity of one implies that
the quantum state is pure meaning that it is possible to find a certain ket [¢)*) such that the
associated density matrix p* = |¢*)(¢*|. Conversely, when a state cannot be described using
only a single ket, it is referred to as a mized state with a purity strictly less than one. A general
structure of a mixed state is given by Eq. .

In the framework of continuous variable states, it is convenient to introduce a mapping from
the space of density matrices to complex-valued multidimensional functions. Such a mapping
allows for an easier and more intuitive representation of quantum states. A particular mapping
approach is provided by the Wigner function formalism, although we note that other approaches
exist, such as P or Q-functions [83, 84]. All these mappings are equivalent to each another. For
a given single mode associated with a density matrix p, the Wigner function is defined as [85]

+o0

W(q,p) = % / " (q — ylplg + y)dy. (2.66)
The classical variables, ¢ and p, are associated with the ¢ and p quadrature operators, respec-
tively. Here, we explicitly highlight the dependence of W on p, which is useful for further
derivations in this chapter. This definition can also be straightforwardly extended to N modes.
The Wigner function possesses properties similar to a classical probability distribution. It is
normalized to unity and can be used to obtain marginal distribution probabilities, meaning
that

+o00o +oo

—+o00 —+o0
/ Wj(q,p)dgdp = 1, W;(q, p)dp = (qlpla), W;(q,p)dg = (p|plp). (2.67)

—0o0 —00
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We note, however, that the Wigner function lacks the positivity property. This implies that
it can become negative locally and, therefore, is commonly denoted as a quasi-probability
distribution. Remarkably, the Wigner function can be used to compute an expectation value
of a given operator /l,

+o0o +o0o ~
(A) = Tr(p / W(q,p)A(g, p)dgdp, (2.68)
where the function A is related to the operator A via the Weyl transformation [26] 86

. too o T
Alg,p) = / e (q —y|Alq + y)dy = §WA(Q7P)- (2.69)

—00

Using Eq. (2.69) and the integral identity [ e*®dp = (7/2)d(y), the following relation is ob-
tained for the operators Aand B

AA JFOO +OO ~
r(AB) / / A(q,p)B(q, p)dqdp. (2.70)

Using Eq. (2.68)), one further can derive for integers m,n € N the important expression [26]

+0o0 +00
Te(pS(G™5")) = / W(a, p)a™ " dqdp, (2.71)

where S denotes the symmetrization superoperator, e.g., S(¢*p) = (¢*p+q¢pg+pg®)/3 [87]. This
expression is particularly relevant for computing moments of averaged density matrices, since
the Wigner function is a linear mapping. Additionally, we define the characteristic function
(CF), x, of the normally ordered moments ((a")™a"), with (m,n) € N?, where we consider a
single mode leading to

x(z,y) = (exp(zal) exp(—ya)). (2.72)

This definition can also be straightforwardly extended to N modes. From Eq. one derives
that
R ) 8n+m

(@) = (g s S| (2.73)
Computation of the CF for a given density matrix p provides a direct analytical expression
of normally ordered moments to any order and is particularly relevant to compare high order
moments measured in experiments to theoretical expressions. Lastly, for a given N-mode
quantum state, it is useful to introduce two quantities that describe the underlying statistics
of this quantum state. First, we introduce a vector of quadratures & = (¢, p1, ..., qn,Pn) and
define the associated displacement vector, d = (&), containing the expectation values of all
individual quadratures. Then, we introduce the covariance matrix, V, of the quantum state
which components are defined as

_ # — (#;)(#;) for (i,4) € [L, N]. (2.74)

Note that for any N-mode quantum state, the resulting covariance matrix is a square 2N x 2N
matrix.
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2.2.2 Gaussian states and Gaussian channels

In this section, we focus on a subset of quantum states called Gaussian states. This category
of quantum states is beneficial for many quantum communication protocols [6, 24] 88| 89].
Gaussian states are fully described by their displacement vector d and covariance matrix V.
The Wigner function of a Gaussian state is a multidimensional Gaussian function, written in
the form [0]

1 1
WH(X) = ex ——X—dv—1X—dT>, 2.75
X) = e (X V(X - 275)
where N is the number of modes in the state and X = (¢, p1, - - -, qn, pN) is a vector of variables

each corresponding to one pair of quadrature operators. Using Eq. (2.70) and Eq. -, we
derive the expression of the purity, u := Tr(p?), for Gaussian states

1

e /W dX_4N\/det(V)

From Eqs,[2.64 and we obtain that a pure state, for which u = 1, saturates the Heisenberg
inequality, as in that case y/det(V) = 47", Conversely, a maximally mixed state is obtained
for ;1 — 0 when det(V) — +oc.

The most fundamental Gaussian state is the vacuum state, which is defined as the ground
state of a quantum harmonic oscillator satisfying the Heisenberg uncertainty relation. As such,
we can ascribe the temperature 7' = 0 to the vacuum state. This state is associated with a
finite amount of fluctuations corresponding to the energy of half a photon at the chosen mode
frequency. These fluctuations correspond to quadrature variances of (Ag§)? = (Ap)? = 1/4. The
corresponding Wigner function plot is shown in Fig.[2.5(a). For a finite temperature 7' > 0,
there will be a nonzero number of thermal noise photons in the mode, which gives rise to a
thermal state. Its density matrix can be computed using the canonical partition sum [90]

(2.76)

+00 _
N Z n?h _ A ata 1
= —_—mm y ’T = T = . 277

The thermal state displacement vector d is equal to zero, while its covariance matrix can be
written as V = (1 + 2n,)I2/4, where Iy is the identity matrix of dimension N. In Fig.[2.5(b),
we plot the Wigner function of the thermal state with the photon number ng, = 2. The Wigner
function of a thermal state and its purity reads

2 2(¢° +p%) 1
W, - = -t 7 d = 2.78
(2,P) (1 4 2ny,) P < 1+ 204, and - fith 1+ 204 ( )

From Eq. we note that the Wigner function of a thermal state is invariant under rotation
around the origin of the Wigner space, meaning that thermal noise is distributed equally among
quadratures. The purity coincides with the definition of the quantum efficiency and is a good
measure of the average number of thermal photons.

The next type of a Gaussian state is a coherent state, |a), where o = ¢ + ip is a com-
plex amplitude. A coherent state is defined as an eigenvector of the annihilation operator,
ala) = ala). An intuitive picture of coherent states can be obtained by considering the fact
that the displacement operator D applied to the vacuum state results in D(a)|0) = |a) [51].
The corresponding Wigner function and is shown in Fig.[2.6(a). From the definition of the
displacement operator [91]

A

D(a) = exp(aa’ — a*a), (2.79)
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Figure 2.5: Wigner function and time evolution of its associated electric field amplitude for the vacuum
state (panels (a) and (b)) and a thermal state (panels (¢) and (d)) with the photon number 74, = 2. The
points shown in orange are 3000 random samplings of the multivariate Gaussian distribution describing
the ¢- and p-quadratures associated with the Gaussian state. The dashed line corresponds to the mean
field amplitude, while the solid line represents the 1o confidence interval of field fluctuations.

one can derive the important property, DT(a)dﬁ = a + «. This means that any coherent state
can be obtained by displacing the vacuum state in phase space, corresponding to a displace-
ment vector d = |a|? (cos(0,), sin(f,)) with 6, = arg(a). At the same time, the displacement
operation leaves the covariance matrix of the vacuum state unchanged. As the displacement
operator is unitary, this also implies that coherent states are pure states.

Finally, we consider squeezed vacuum state. There are another kind of minimum-uncertainty
states, with a corresponding purity p = 1, obtained by reducing the variance of one quadra-
ture below vacuum fluctuations, while the conjugate quadrature variance is correspondingly
increased. In this case, one commonly says that one quadrature is squeezed while its corre-
sponding conjugate quadrature is antisqueezed. More precisely, the induced unitary transform
is modelled using the squeezing operator [92]

S(€) = exp Bf*eﬂ - %f(d*)g] : (2.80)

where £ = re® parametrizes the properties of the squeezing operator, namely the squeezing
factor r = |£| and phase ¢ = arg(£). Squeezed states are obtained by applying the squeezing
operator to the vacuum state, |¢) = S(£)0).

The Wigner function of a squeezed state is shown in Fig.[2.6{c). The squeezing factor r
defines an amplitude of variance squeezing while the phase ¢ determines the orientation of the
squeezed state in phase space [93]. Commonly, the squeezing direction is parametrized via the
squeezing angle, v = —¢/2, which can be understood as the angle between the antisqueezed
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Figure 2.6: Wigner function of a coherent state (a) and a squeezed state (c) together with the time
traces [(b) and (d)] of the associated electric fields. For the coherent state (panels (a) and (b)) we
assumed a complex displacement amplitude o = 2 + 2i (corresponding to the displacement angle 6,,).
For the squeezed state (panels (c¢) and (d)) we assumed a squeezing angle v = 7/4 and squeezing factor
r = 1.15, resulting in a squeezing level of S = 10dB below vacuum. The points in orange represent
3000 random samplings of the multivariate Gaussian distribution describing the ¢- and p-quadratures
associated with the Gaussian state. The dashed line corresponds to the mean field amplitude, while
the solid line represents the 1o confidence interval of field fluctuations.

quadrature and the p-axis of phase space. The squeezing operator induces the following trans-
formation of the annihilation operator

StaS = cosh(r)a — e sinh(r)al. (2.81)

We note that Eq. (2.81)) is structurally similar to Eq. (2.55) with the difference that no additional
mode h appears. Interestingly, any squeezed state can be decomposed in the Fock basis as [92]

9 = Y (-1 Yoo e o, (2.52)

meaning that a pure squeezed state only contains an even number of photons, corresponding
to the signal and idler modes. This fact hints at the possibility of using squeezed states for
generating quantum entanglement. The displacement vector of a squeezed vacuum state is
dy, = 0 and its corresponding covariance matrix can be written as

V. — 1 e~ cos?(7) + e sin?(v) — sinh(2r) cos(27) (2.83)
90| @) cos2y) e eosi(y) + e sind(a) ) ~

From a practical point of view, it is convenient to define a squeezing (antisqueezing) level, S

(AS), comparing the variance o2 (02,) of the squeezed (antisqueezed) quadrature to that of the

23



Chapter 2 — Quantum information with microwave states

vacuum state, yielding [50]

0'2 0'2

Using Eq. (2.84)), we can reformulate the Heisenberg uncertainty relation as AS — S > 0.
Using the previously introduced states, we can describe an arbitrary Gaussian state. More
precisely, according to the Williamson theorem, any Gaussian state can be written as [94]

p=D(a)S(§)pwS (&) D(). (2.85)

This implies that any Gaussian state can be viewed as a displaced squeezed thermal state,
which is entirely characterized by the complex numbers &, «, and thermal population 7.
Additionally, although the displacement and squeezing operators do not commute, the general
decomposition of a Gaussian state can also be performed with the sequence of these operators
reversed. This means that the same density matrix as in Eq. can be written as

p = S(€)D()puD(a) S1(E), (2.86)
where £ = re®® is chosen such that
o = cosh(r)a’ — e sinh(r)(a’)*. (2.87)

The last state of interest is the two-mode squeezed (TMS) state, which is commonly regarded
as the continuous-variable equivalent to Bell states [95]. The TMS state is generated using two
modes, a; and a9, by applying the two-mode squeezing operator S'TMS = exp(&*ayas — 5&1&;)
to the two-mode vacuum, |0)15 = |0)1|0)2. Here, the complex number £ = re’¥ has a similar
decomposition as for squeezed states. The resulting decomposition of the TMS state in the
Fock basis is comparable to that of a squeezed state given in Eq. [92]

+oo

ras) = Y- (2.58)

implying that also pairs of photons are created, albeit in the different modes. The TMS vaccum
state has a zero displacement vector and its covariance matrix can be written as

Vorre — 1 cosh(2r)I; sinh(2r)(o, cos(p) 4+ o sin(y)) (2.89)
S = 4\ sinh(2r) (0, cos(p) 4 o sin(e)) cosh(2r)Is. ' '
where o, (o) is the z (x) Pauli matrix. For simplicity, the phase ¢ is often assumed to be
zero. Defining the nonlocal quadratures as ¢i. = (¢ £¢2)/v/2 and py == (p1 £p2)/V/2, one can
use a compact form for the TMS Wigner function [92) 96]

4 20 +p%)  2(¢% +p3)

WTMS(q-i-) Q—)p—i-ap—) - F exp [ — o2r - e—2r

(2.90)

The corresponding TMS Wigner function is shown in Fig.2.7 In the limit of r — +oo,
Eq. implies that Wrys o< d(¢_)d(py), indicating that the pairs of quadratures (qq,go)
and (p1, p2) become perfectly correlated (anticorrelated), similarly to the property of ideal Bell
states [3]. Interestingly, the local Wigner function of an ideal TMS state always resembles
the thermal state with average thermal photon number 7y, = sinh?(r). However, the nonlocal
quadrature correlations in the TMS states represent an extremely useful resource for quantum
information processing tasks, including quantum communication and sensing.
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Figure 2.7: Marginal distributions of the Wigner function of a TMS state. The local marginal Wigner
functions are shown in panels (a) and (b), resembling local thermal states. The nonlocal marginal
Wigner functions are shown in panels (c) - (f). They resemble either a thermal state or a squeezed
state. Here, the TMS state is obtained from Eq. for the squeezed factor r = 1 and phase ¢ = 0,
resulting in a correlated quadrature pair (g1, g2) and anticorrelated quadrature pair (p1,p2).

Gaussian channels. A quantum channel is said to be Gaussian if it maps Gaussian states to
Gaussian states [97]. By this definition, a composition of Gaussian channels is again a Gaussian
channel. A general channel G acting on a Gaussian state pg transforms its corresponding
displacement vector d and covariance matrix V as [98]

d—Td+r and V- TVT? +N, (2.91)

where T and N are two real matrices describing a physical transformation implemented by the
channel. We refer to the matrix N as the noise matrix. The vector r represents an induced
displacement. The channel itself can be further decomposed into [98]

Q(T, N, I') = Z/[Q o C(Tc, Nc) o Lll, (292)

where U (2) is a unitary mapping and Tc and N¢ are two real diagonal matrices. Here, the sym-
bol o denotes a composition of two mappings, meaning that one is applied after the other. The
Gaussian channel C is referred to as a canonical map and always has a zero induced displace-
ment. In the case of the noise matrix being zero, a Gaussian mapping becomes unitary. This
unitary mapping describes a displacement or squeezing operation and the matrix T becomes a
symplectic matrix, meaning that

Tor"—q, o= Y ) (2.93)
i

25



Chapter 2 — Quantum information with microwave states

where M is the dimension of the covariance matrix V. A displacement map of a single-
mode Gaussian state corresponds to the transformation in Eq. with T =1, and r =
(| cos(8),]a|sin(8)) for a = |a|e?. Similarly, a squeezing map is obtained from the transfor-
mation in Eq. with the parameters r = 0 and

T <C§>S(90/2) sin<¢/2>> (exp<—r> 0 ) | (294

sin(p/2) cos(p/2) 0 exp(r)
where re’? = ¢ parametrizes the squeezing operation. There exist 7 physically possible canonical
maps denoted with the letters A to D, each letter having two subscripts 1,2 for the letters A
to C [98]. Here, we focus on classes By, By, C;, and Cy. Canonical maps are parametrized
using a generalized transmission coefficient 7 € [—00, +00] and a noise photon number n. We
focus on some of these classes for single-mode Gaussian states that are of particular interest for

quantum communication. The extension to multimode Gaussian states is done by repeating
the transformation induced by the matrices T¢ and N¢ to each mode.

Noise channels. Classes B; and B, both represent additive noise channels, implying that
the displacement vectors of input Gaussian states are left unchanged by these channels. The
channel B; represents adding vacuum fluctuations to only the p- quadrature and is characterized

by the matrices
1 12 — Oy
Tc=1 Ng=-——= 2.95
C 2, C 4 9 ) ( )
where o is the z-Pauli matrix. Conversely, the second channel Bs represents addition of noise

to both quadratures and is modelled using the matrices

To=I,, No= %IQ. (2.96)
These channels can be used to model the average total number of noise photons added during
amplification of signals. In particular, we can use this type of channel to describe the number
of noise photons added during phase-sensitive amplification.

Attenuation channel. Channel C] represents an attenuation channel which has the effect
of decreasing the amplitude of the displacement vector of an input Gaussian state by the
transmission coefficient, 7, with 7 € (0,1). In order to fulfil the Heisenberg uncertainty, the
canonical map takes the form [92]

1+2n

TC = \/F:[Q, NC = (]‘ - T) 4

L. (2.97)

From Eq. , we observe that an attenuation channel corresponds physically to coupling an
input Gaussian state to a thermal background with a mean photon number n. This coupling is
described as a beam splitter type of interaction, which involves two modes a; and ay coupled
together via the beam splitter operator

Buia(6) = exp [wb(a{@ +aal)]. (2.98)

Here, 6, is a free parameter that determines the balancing between two modes, i.e., we construct
7 such that /7 = cos(,) and /1 — 7 = sin(6,). Additionally, we note that the attenuation
channel can also be implemented by coupling of an input Gaussian state to one local mode of a
TMS state with cosh(r) = 14 2n. This result implies that it is impossible to locally distinguish
coupling an input state to either a thermal background or to a TMS state. One needs to exploit
nonlocal measurements for this task.
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Amplification channel. Channel C; is an amplification channel which has the effect of
increasing the amplitude of the displacement vector of an input Gaussian state by the trans-
mission coefficient, 7, with 7 > 1. This channel represents the physical amplification of a
Gaussian state corresponding to the process of nondegenerate amplification, due to the fact
that the channel adds at least half a noise photon to input states. Similarly to the described
channel (', this transformation is characterized via

1+2n
4

Tc=VGI,, N¢=(G-1) I, (2.99)
where we set G = 7 for convenience to illustrate the amplification process. This transformation
corresponds to the input-output formalism introduced in Eq. and involves the coupling of
an input state to a thermal background with a mean photon number n. As a result, an amplifier
(such as the JPA) operated in the nondegenerate regime implements a Gaussian amplification
channel. It is interesting to note that the two previously mentioned channels can be used to
implement the noise channel B,;. It can be observed that in the limit of 7 — 1 the single
attenuation channel C results in the noise channel By for which the added mean noise photon
number 7y = (1 — 7)(1 + 271). Here, ny(2) is the mean noise photon number of the channel
C1 (Bz). However, this description implies that for a fixed mean noise photon number 75, the
noise photon number 7n; diverges. A more physically realistic description is to obtain the Bs
channel as the composition of the amplification channel C; and the attenuation channel Cj.
Then one obtains the noise channel By using the following matrices

1—|—2'f_l1 1+27_l2

TS = 1/GL,, TS =VGI,, N&' = (1-1/G)

IZa

(2.100)
where we choose G = 1. From Eq. (2.100), we compute that the total added noise is described
by the matrix

I,, and N& = (G—1)

1
Nt = 5(G = DL+ (1 + )Ly := iy, (2.101)

From Eq. (2.101]), any noise photon number 7 € [0, 400) can be obtained by choosing a suitable
values for G, ny, and ny. We note that in experiments one commonly has only partial control
of the mean noise photon numbers 71 and 75 (in particular, one often is not able to set them
to exactly zero), but a more complete control of gain values in the range of G > 1.

2.2.3 Quantum entanglement and quantum entropy

Entanglement is a purely quantum phenomenon that emerges from a specific types of quantum
correlations and expresses the nonseparability of multipartite quantum systems. For the bipar-
tite case with subsystems A and B, the joint system is described using a joint density matrix
pap. The bipartite system is said to be separable if there exists two ensembles of {p; o }; and
{piB}i such that the density matrix of the state can be written as

PAB = ZPiﬁz’,A ® pi,B, (2.102)

where {p;}; are probabilities. As illustrated in Fig.[2.§/(a), each local subsystem A and B can
be fully described using the ensemble sets, {p;a}; and {p;p}i, respectively. Equation
indicates that the separable joint system can be represented by its respective individual parts.
In general, quantifying separability in a multipartite quantum system is not a straightforward
task and, often, relies on so-called witness functions, which may, fully or partially, capture
the presence of nonseparability of systems. For bipartite systems, there exists a deterministic
witness function relying on the positive partial transpose (PPT) criterion [99]. In general, an
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Figure 2.8: Representation of entangled states. (a) Illustration of a separable bipartite system where
we consider for simplicity that the subsystem A (B) is fully described using one density matrix, pa
(pB). Conversely, an entangled state cannot be decomposed into such tensor product of local states.
(b) An entanglement witness is capable of distinguishing between some entangled states and separable
states. Every separable states lead to a positive outcome, Tr(Wﬁ) > (0 while an entangled state results
in Tr(W[)) < 0. However, there can be entangled states that are not detected by the chosen witness.
In the case of two-mode systems, one can construct a witness based on the PPT criterion which detects
all entangled cases.

entanglement witness is a Hermitian operator W for which Tr(VV/B) is positive for a separable
state p, and negative if the state is entangled as shown in Fig.[2.8/(b). In the context of
Gaussian states, a suitable monotonic witness function can be obtained using the so-called
negativity Neg. The latter is a monotonic measure of quantum entanglement, implying that
the more a given state pap is entangled, the larger the negativity is. For a two-mode Gaussian
state, the negativity relies on the state’s symplectic eigenvalues. These eigenvalues are defined
as the eigenvalues of 12V, where (2 is the symplectic matrix defined in Eq. and V is the
covariance matrix of the two-mode Gaussian state. The corresponding covariance matrix is

A C
V= (CT B), (2.103)

where submatrix A (B) is the covariance matrix of the subsystem A (B) while submatrix
C determines the nonlocal correlations between A and B. Using Eq. (2.103]), one defines the

symplectic invariants of the covariance matrix [6]
I =detA, I,=detB, I;=detC, I, =detD. (2.104)

These invariants do not change under symplectic transformations, i.e., according to Sec.2.2.2|
under a local unitary Gaussian transformation in the form of squeezing or displacement op-
erations. With the four symplectic invariants, one can derive the corresponding symplectic

eigenvalues to [100]
\/ A+ /A2 — 4],
2 )

vy = (2.105)

where A = I, + I, 4+ 215. Similarly, one can compute the symplectic eigenvalues of the partially
transposed density matrix. The resulting symplectic eigenvalues v, are the same symplectic
eigenvalues as in Eq. (2.105) m but with A replaced by A = I, + I, — 2I5. Then, the negativity
for a two-mode state reads as

1— 4
Neg = 0, ——— |, 2.106
= (0,11 (2.106)

which is greater or equal to zero. It can be shown that a positive negativity value indicates that
the state is entangled in agreement with the PPT criterion. The state is maximally entangled
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Figure 2.9: Entropy of states. (a) Visualization of the differential entropy h of a continuous function
representing a PDF associated with a classical random variable. The entropy is defined up to an
arbitrary offset constant. Gaussian probability density functions (PDFs) maximize the differential
entropy as compared to any other PDF with a given mean value p and variance 2. (b) Kullback-
Leibler (KL) divergence between two Gaussian PDFs with the same mean value but different variances.
We observe that the KL divergence measures the closeness of the two distributions and is minimal
for z = 02 /0% = 1. As such, the differential entropy is relevant to evaluate the relative information
between two distributions.

in the limit of Noz — +o00. Computing the negativity for the TMS state defined in Sec.|2.2.2]
results in the value

1
Neg,rms = max (0, 5 (e¥ — 1)) : (2.107)

As a consequence, the vacuum TMS state is entangled for any squeeze factor r > 0, and becomes
maximally entangled in the limit of r — 4o00.

Entropy of quantum states. The entropy of a quantum state measures the statistical
ordering of a physical system. For the case of classical systems where the system state would be
described by a classical random variable X, which takes values x; with associated probabilities
pi, the entropy can be measured using the Shannon entropy H(X) = — ). p;logp; [101].
The Shannon entropy estimates the minimal number of classical bits required to describe the
system’s information content. The Shannon entropy is defined for discrete variables, but can
be extended to continuous-variables using the differential entropy

h(X) = — /X fx () log(fx (2))dz, (2.108)

for the continuous random variable X with a density probability function fx that is defined
over a domain X. The differential entropy can be defined for conditional variables as

h(X|Y) = —/X/ny(?J)fXY(l"a?/) log(fX\Y($ay))d$dy

(2.109)
_ . o f(X,Y) (1’7 Z/) -
_ /X /y Foury(@,9)1 g(—fy(y) )d dy,

where XY is a continuous random variable expressing values of the continuous random variable
X conditioned on the values taken by the continuous random variable Y. The function fy
defined over a domain ) is the density probability function of the random variable Y, while
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f(x,yy is the joint probability density function (PDF) of X and Y. It is tempting to consider
the differential entropy as the continuous limit of the Shannon entropy. However, this is not the
case as the differential entropy is ill-defined, since it is not invariant under a linear invertible
map A

h(AX) = h(X) + log(|det(A)|) (2.110)

for a random variable vector X = (X7, ..., X,,). The differential entropy of a random vector is
computed using the conditional differential entropy

h(X) = ih(mxb s X)), (2.111)

As a consequence of Eq. (2.110)), the differential entropy is not invariant under a change of
variables. It can also take negative values depending on the basis of the logarithm and the
probability distribution chosen. Nevertheless, the differential entropy is a useful tool to com-
pute information-related quantities for random variables. Most importantly, as illustrated in
Fig.[2.9(a), for a random variable vector X of dimension n with a classical covariance matrix
V, one can show that [102]

h(X) < %log [(2me)" det(V)] (2.112)

where the right hand side of Eq. corresponds to a Gaussian random variable vector with
the same covariance matrix V. This result implies that the differential entropy of a Gaussian
random variable can be analytically computed and that Gaussian random variables maximize
the differential entropy. One can construct a statistical distance between probability density
functions called the Kullback-Leibler (KL) divergence. For two PDFs f and g, associated with
a continuous random variable X and Y, respectively, and defined on a common domain X, the
KL divergence reads

DaXII¥) = [ 1@ <log (%))dxz—h(f)— [ r@ogtoenas, @y

The KL divergence circumvents many issues of the differential entropy as it is always positive
and invariant under a change of variable from z to another y(x). These properties suggest that
it is more relevant to evaluate the difference between differential entropies rather than only
differential entropies themselves. For the KL divergence, a nonzero value can be interpreted
as a measure of the closeness between PDFs. As an example, the KL divergence between two
Gaussian distributions with zero mean value but different variances gives

1 o? o2 1 _
D, (X|[Y) = 5 log (U—;> + U_g —1] =3 (log(z) + 27" — 1), (2.114)
2 1

where we define z = ¢f/02. In Fig.(b), we show the resulting KL divergence and observe
that it is zero for z = 1, reflecting that the two PDFs are identical at this point.

Lastly, in analogy to the Shannon entropy, one can define a measure of the entropy of
quantum states, known as the von Neumann entropy. For a general density matrix, p, the von
Neumann entropy is defined as the Shannon entropy of the set of eigenvalues {\; }icj1,a of the
density matrix [6]

Su(p) = - Z Ailog(Ai), (2.115)
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where similarly to the Shannon entropy and the differential entropy, the logarithm can use
different bases. For the case of an M-mode Gaussian state, the von Neumann entropy can be
directly computed using the symplectic eigenvalues {v; }icj1,a1 [26]

[(4z 4+ 1)log(4z 4+ 1) — (42 — 1) log(4z — 1) — 21log(2)] .

N | —

Sulp) =Y gn),  g(a) =

(2.116)
For the case of M = 2, the von Neumann entropy simplifies to Sa(p) = g(v4) + g(v—), where
vy are the symplectic eigenvalues defined in Eq. (2.105]).

2.3 Gaussian single-shot measurement formalism

In a quantum system, physical quantities are measured as eigenvalues of certain operators,
which are defined as observables. These measurements can be described in a general framework
using positive operator valued measure (POVM) operators, acting on a Hilbert space H that
describes the physical system under study. The POVM consists of a set of positive semi-definite
Hermitian operators {EAi}iE[L ~] having the properties

N
E; = B, (¢|Ei|¢) > 0, for any state [¢), » E;j=1, (2.117)

i=1

where 1 is the identity operator. This property guarantees that the POVM operators form a
complete set of measurements, i.e., are able to describe all possible values for measurable physi-
cal quantities in experiments. In other words, this property implies that probabilities describing
the measurement results can be associated with the set of operators. The construction of such
probabilities relies on the aforementioned properties of the POVM operators. In general, these
operators are not orthogonal to each other. As such, a measurement with an outcome ¢ can be
associated to a POVM element E; with a probability given by the Born rule as

P@i) = Tr(pE;), (2.118)

where the density matrix p describes the physical system. A particular set of POVM operators
are called projection-valued measure (PVM) operators. These operators have an added property
of being projectors meaning that these operators are pairwise orthogonal to each other and, for
a PVM {I_L}Z-G[L 1, the operators fulfil the relation

~

fIQ = Hz and ﬂzﬂ] = 6ijﬂ7 for Z,] € []-,N], (2119)

7

where ¢;; the Kronecker delta symbol. More generally, any POVM can be associated with
another PVM operator using Naimark’s dilation theorem [I03]. This theorem indicates that any
POVM in a Hilbert space H can be linked to a PVM in a different higher-dimensional Hilbert
space ‘H' via an isometry transformation. This result implies that any POVM in experiments
can be performed by finding suited PVMs in a larger Hilbert space. A famous example is
the problem of unambiguous quantum state discrimination, i.e., the task of distinguishing two
possible given states of a quantum system from measurements with the highest probability
[T04]. We note that from Eq. a measurement described by PVMs projects an input
system into a unique subsystem perfectly distinguishable from other possible outcomes. As a
results, one can write the resulting density matrix after a PVM measurement as

= HLIAL (2.120)

Te(p1,)
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The orthogonality property of PVMs ensures that the resulting state in Eq. remains in
the projected subspace.

The PVM operator can be built by choosing a set of eigenvectors |¢;) which are suited to
describe a physical system under study. PVM operators can be obtained as II; = |1;) (1], where
the operators I1; are projectors since 12[112[] = 0;5. For instance, in the case of photon counting, a
well-suited set of eigenvectors is the Fock basis, meaning that IT,, = |n)(n|, with n € [0, +oc]. In
the context of continuous variables, the states of interest are the eigenvectors of the quadrature
operators of the electric field introduced in Eq. . Based on our experimental measurement
setup described in Chap. [4] measurements in our experiments can be described using these
states. Here, an appropriate set of PVMs is given by the set of coherent states {|a)}aec.
Additionally, one can use the set of eigenvectors of the quadrature operators, ¢ and p, namely
{lg) }4er and {|p)}per, respectively. For the last two sets, one can use Eq. to compute
the Wigner function of a given projector flq* = |¢*){(¢*| and flp* = |p*)(p*|

Wy . (¢,p) =d(q¢—¢") and Wy (¢,p) =d(p —p"). (2.121)

Here, ¢*,p* € R and ¢ is the delta-Dirac function. Using the definitions in Eq. (2.118]) and
Eq. (2.121]), for a single-mode Gaussian state we obtain the probability of measuring an outcome
q* as

1 (¢* —q)°
dgdp = —— _M 4
,- (¢ p)dadp T [ 207
(2.122)

Here, the displacement vector of the Gaussian state is d = (g, p), while 03 is the variance
of the ¢-quadrature. We note that the same result can be derived for the p-quadrature by
interchanging the roles of ¢ and p, while replacing ¢* with p*. The result in Eq. indicates
that the outcome of a PVM measurement is described by the underlying Gaussian distribution
of the quadratures, as it would be intuitively expected. In general, PVM measurements based
on the quadrature operators are well-suited for Gaussian states. However, in experimental
implementations, we must additionally account for noise, arising from multiple sources, e.g.,
measurement devices or thermal fluctuations. Following the same formalism as above, we
account for the noise in PVM measurements by modifying the projectors

R “+00 1 (y _ q*)2
I = _ a d 2.123
g / - ot exp[ 202 ly) (yl|dy, ( )
2

where o7 = n is the added variance due to the noise in the measurement, n being a positive
real number. The previous operator is an integral of the PVM operators, |y)(y|, weighted by a
Gaussian envelope with a mean value of ¢* and variance 0. One can derive that

R +oo +o0
P(¢) = Te(ll,.) = = / Wi(q, )W,

1 ¢—q)
Wﬁg* (¢,p) = 902 exp [—%1 ) (2.124)

n

resulting in the final outcome probability

1 (¢ —a)*
P(g) = ———exp |- L 9| 2.125
)= o [ 2%, (2:129)

with o2, = 02 + 02. Remarkably, Eq. (2.125) means that a noisy PVM measurement gives
the same result as a noiseless PVM measurement but with the noise variance added to the
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quadrature variance. In particular, the final probability is still Gaussian with only an enlarged
variance. From a practical perspective, these results motivate an implementation of the PVM
measurements with the quadrature operators while simultaneously minimizing the induced
measurement noise. An insight into possible implementations of such measurements can be
obtained by considering the following quantum state

lq*,r) = ﬁ(q*)g(remm)m). (2.126)

This state corresponds to a g-squeezed state (with the associated squeezing factor r) displaced
along the ¢g-quadrature by an amplitude ¢*. Here, D and S are respectively the displacement
operator and squeezing operator introduced in Eq. - 2.79)) and Eq. - We compute the action
of the operator ¢ on this state

e *| x —rl Y ANA i
dlg",r) = q'la"r) + e S D(g)S(re™)[1). (2.127)

From the previous equation, it can be shown that |¢*,7) — |¢*) for r — +o00 [86]. Therefore,
the PVM measurements with the quadrature operators can be potentially implemented with
the squeezing operation and, by extension, with phase-sensitive amplifiers, such as JPAs.
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Chapter 3

Continuous-variable quantum key
distribution with microwaves

Historically, the first QKD protocols have been implemented in the optical regime with signal
wavelengths around A = 860 nm and A = 1550 nm. In these experiments, the unconditional se-
curity of a variety of discrete-variable (DV) protocols has been demonstrated with a particular
focus on coherent state protocols due to their practical simplicity. As a brief introduction, we
present the basics of DV-QKD protocols in Sec.[3.1]and then focus on CV-QKD protocols, most
relevant for our experiments. The latter offers a less cumbersome experimental implementation
with direct compatibility to existing classical communication platforms. Here, it becomes rele-
vant to investigate the potential of propagating quantum microwave signals as an alternative to
optical signals due to their frequency compatibility with superconducting circuits. In particular,
in Sec.[3.2) we emphasize the fact that squeezed state CV-QKD protocols represent a more rel-
evant choice for experimental implementations of CV-QKD protocols in the microwave domain
than coherent states. To demonstrate the potential of CV-QKD protocols for unconditionally
secure communication, we present a security analysis in Sec.[3.4] Furthermore, in Sec.[3.5 the
advantages of a microwave CV-QKD open-air communication are discussed, especially in com-
parison with optical counterparts operated at the telecom wavelength of A = 1550 nm. We show
that microwave signals can potentially offer larger secret key rates (SKRs) in combination with
a remarkable resilience to weather imperfections in strong contrast with the telecom signals.
These results have been published in Ref.[60. Figures and text have been adapted from this
publication.

3.1 From discrete-variable to continuous-variable quan-
tum key distribution

QKD protocols exist in a variety of forms that can be classified into two large families, depending
on the type of states used as a resource to encode information. One refers to the DV-QKD
protocols when the corresponding quantum states can be described by a Hilbert space of finite
dimension. Historically, this type of protocol was first implemented in practice. However, DV-
QKD protocols rely on technically demanding resources such as Fock states that are challenging
to generate and control in a scalable manner. Alternatively, CV-QKD has been developed,
making use of the compatibility with already existing classical communication platforms. In
Sec.[3.1.1] we introduce generic notions of QKD protocols in order to discuss DV-QKD in
Sec.[3.1.2] There, secure communication and security threshold can be intuitively derived,
where we give some associated experimental performances. Then, in Sec.[3.1.3] we shift to CV-
QKD and point out potential advantages of this type of protocol over DV-QKD. Depending
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Figure 3.1: General concept of quantum key distribution. (a) A transmitter named Alice sends a
classical key KCp = {ai}ie[l, N], encoded into quantum states, over an untrusted quantum channel,
which is assumed to be under the control of an external eavesdropper Eve. The latter induces an
information leak in the communication by interfering with Alice’s key. A disturbed key signal is
received by Bob. Upon measuring these signals, Bob obtains a distorted version of Alice’s key and
forms a corresponding ensemble Kg = {B8};c1,n). Alice and Bob also have a classical channel at
their disposal, which allows them, after authentication, to classically communicate in order to perform
various tasks related to information reconciliation and privacy amplification. (b) An impossible cloning
machine illustrating the no-cloning theorem. The latter implies that no unitary transformation, U,
exists that could generate a perfect copy of an input state [1).

on the level of security, the former can be classified into three subtypes, which we present in

Sec.B.1.4]

3.1.1 General notions of QKD protocols

QKD aims at exchanging classical information (a key) in a secure manner between two remote
parties. A generic QKD scheme is presented in Fig.|3.1{(a). The sender side is commonly re-
ferred to as Alice, while the receiver side is denoted Bob. In this context, a key is an ensemble
of numbers or digits that typically have been generated randomly according to a random dis-
tribution that varies depending on the chosen QKD protocol. Security of this key exchange
is addressed by assuming the presence of a malicious eavesdropper, Eve, who interferes with
the communication between Alice and Bob. Eve’s goal is to maximize the amount of informa-
tion that can be extracted from her interactions alone about the key. In this work, we focus
on “preparing and measuring” CV-QKD protocols, meaning that the communication between
Alice and Bob consists of Alice preparing quantum states, encoding the key, and sending it
through a quantum channel to Bob. On his side, Bob performs quantum measurements of
the incoming states. Considering an ensemble of N real numbers {ai}ie[l, N], we write Alice’s
key as a collection of numbers Iy = {ai}ie[l, ~] and refer to each number as a symbol. Each
of these individual symbols, «;, is encoded in a quantum state and sent through a quantum
channel. The state at the output of the channel is measured by Bob, resulting in a correspond-
ing measured symbol ;. After repeating this procedure for each symbol of Alice, Bob has a
measured key g = {;}icp,n)- In practical implementations, one commonly considers that the
quantum channel induces losses and adds noise to the incoming signals. One cannot differenti-
ate whether observed nonidealities in the data exchanged between Alice and Bob are induced
by uncorrelated independent sources (e.g., due to the presence of background noise), in which
case the information is lost, or whether these disturbances originate from Eve interfering with
the quantum states propagating through the channel. To certify unconditional security, one
considers a worst-case scenario where all imperfections in communication between Alice and
Bob are attributed to Eve. As a result, Eve is assumed to have full control over the quantum
channel.
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One important restriction on Eve is imposed by the no-cloning theorem [30]. This theo-
rem forbids Eve from producing perfect copies of unknown quantum states, as illustrated in
Fig.[3.1(b). This feature represents a striking difference between quantum and classical states,
where the latter can be perfectly copied without any disturbance of the original data. Addition-
ally, Alice’s key is encoded into a certain state basis, which is selected to provide orthogonality
of the corresponding quantum states. The encoding basis is constructed to prevent any possibil-
ity of distinguishing which basis is used to encode a given symbol. Under these conditions, one
can certify that Eve can only get partial information about the original key while necessarily
disturbing the quantum states sent by Alice [105]. These induced disturbances of Alice’s states
represent the main difference between QKD protocols and classical key distribution protocols.
No matter which strategy Eve uses, one can estimate the maximal effect of her actions on
the key information content and derive a security threshold that separates the unconditional
security regime and insecure one.

3.1.2 Discrete-variable quantum key distribution.

Before introducing the CV-QKD protocols, we briefly discuss certain DV-QKD protocols in
a general context, irrespective of the particular frequency regime. These types of protocols
also correspond to the first experimental realizations of QKD protocols as well as the earliest
proposed QKD protocols. They rely on quantum states living in a Hilbert space of finite
dimension. Commonly, these protocols use qubits (or qubit-like states) that can be implemented
in a variety of physical systems. Here, we mention that in the optical domain, a common
choice are the polarization states of electromagnetic fields. They provide a natural encoding
basis using linearly polarized light or left/right circularly polarized light [8]. For comparison,
in the microwave domain, many different types of superconducting qubits, e.g., transmon,
fluxonium, cat-qubits, have been successfully realized [14]. For DV-QKD protocols, a common
encoding basis is the computational basis {|0),|1)} (the Z-basis) with associated states |4+) =
(]0) £ [1))/+/2 (X-basis), leading to a an indistinguishability condition between both bases

0)(0] + [1)(1] = 1 = [-+){+| + |[-){-], (3.1)

where 1 is the identity operator. This implies that, on average, measurements in one basis
or another yield the same ensemble of results. In other words, it is not possible, on average,
to deduce which encoding basis has been used from measurements performed randomly in the
Z-basis or the X-basis.

The most well-known DV-QKD protocol is the BB84 protocol [106, 107, T08]. In this
protocol, as shown in Fig.[3.2(a), Alice assigns a logical bit 0 to the two non-orthogonal states,
|0) and |+), and a logical bit 1 the two non-orthogonal states, |1) and |—). Since the states
assigned to each logical bit are nonorthogonal with each other, perfect copies of them cannot
be made by Eve according to the no-cloning theorem. It follows that Eve needs to interact with
Alice’s states to obtain information, rendering her presence detectable by Alice and Bob. The
protocol relies on Bob performing measurements, switching randomly between the Z-basis or
the X-basis. If Bob’s measurement basis coincides with the encoding basis, ideally, Bob obtains
the same logical bit as Alice. In case the bases do not coincide, Bob obtains a random result,
corresponding to 0 in 50% of cases and 1 in the other 50%. The procedure of the protocol is to
disclose, after Alice’s entire key has been sent through the quantum channel, which encoding
and measurement bases have been used, and to discard measurements for which the bases do
not agree. This part of the protocol is commonly known as sifting. In an ideal scenario, Bob’s
sifted key would exactly coincide with Alice’s sifted key. In a nonideal case, the presence of
Eve would necessarily imply that some measured data of Bob does not match Alice’s data even
after sifting. This deviation can be quantified by Alice and Bob using a part of their data
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Figure 3.2: General concept of the BB84 protocol. (a) First, Alice chooses an encoding basis, either
the X-basis or the Z-basis. Each basis contains two states to which Alice can assign a logical bit as
described in the main text. These states encode a bit of information and are sent through a quantum
channel to Bob. Eve obtains some information about Alice’s key by interfering with the propagating
quantum states. The resulting states at the quantum channel outputs are received by Bob, who
performs a measurement in a random basis. (b) The secret key K from Eq. of the BB84 protocol
as a function of the QBER, Q. A security threshold, defined as K = 0, corresponds to a maximal
QBER of 11%.

and computing an average error between their respective keys. Here, the maximal security
assumption implies that any non-idealities in measurements resulting in errors for Bob are
attributed to Eve. The figure of merit associated to this error is the quantum bit error rate
(QBER), defined as

() = Prob(mismtach between Alice’s and Bob’s key)
number of mismatch between Alice’s and Bob’s bits- (32)

total number of bits

Using the above definition, the protocol security simplifies to determining the maximum toler-
able QBER in the considered communication. Different security proofs have been established
[8] with the possibility to map the protocol to an entanglement-based version, in which Alice
and Bob would perform the communication of the key using entangled states. Using quantum
error correction codes, Shor and Preskill [I06] have demonstrated a lower bound on the rate at
which a key can be securely generated. This lower bound is given in bits per symbol by

K=1- HQ(EZ) - HQ(EX), (33)

where Hj is the binary entropy function, i.e. Hy(z) = —zlog(x) — (1 — z)log(1 — z). Here,
€, is the bit-flip error rate (errors in the Z-basis) and e, is the phase-flip error rate (errors
in the X-basis). Based on our previous discussion, one can qualify the communication to be
unconditionally secure in the case of K > 0, as this implies that in a worst-case scenario, Eve
does not possess enough information to prevent Alice and Bob from sharing a finite number
of secret bits. One can show, as shown in F ig.(b), that K remains positive for a QBER,
Q < 11%, such that ¢, = ¢, = @ [100], providing a threshold QBER value number for practical
implementations. Although the experimental realization of such protocols can be challenging
due to stringent requirements on state preparation and measurements, variations of the BB84
protocol have been demonstrated. First demonstrations of this protocol have been performed
with SKRs of about ~ 10bits/s by using polarized laser light with wavelengths of A = 850 nm
and A = 1550 nm [109, 110]. It is noteworthy to mention that a simplified version of the BB84
protocol has been used to demonstrate secure communication over 421 km [43], highlighting the
potential of QKD protocols for long-distance secure communication.
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3.1.3 Continuous-variable quantum key distribution

During the last decades, a different type of QKD protocols based on CVs has been proposed as
an alternative to DV-QKD protocols. The large interest in CV-QKD protocols stems from the
possibility of increasing secure key rates (originally, by taking advantage of fast communication
rates in existing optical fibres) [IT1, 112]. At the same time, CV-QKD protocols rely on
quantum states, which are easier to use in experiments as compared to DV-QKD), while being
compatible with standard telecommunication techniques and platforms. These aspects greatly
simplify the implementation of practical QKD. Instead of (ideal) single-photon detection for
signal readout in DV-QKD, CV-QKD encodes information in quadratures of the quantized
electromagnetic field. As discussed in Sec.[2.2] quadrature operators are described by an infinite-
dimensional Hilbert space with associated continuous eigenvalue spectra. Readout of such field
quadratures can be performed with reliable and efficient methods based on /@) demodulation
in the microwave regime and, equivalently, using homodyne or heterodyne detection in the
optical regime [I13]. These readout methods circumvent the complexity of implementing single-
photon detectors and are able to achieve high detection efficiency in both optical and microwave
regimes [114, 115, 116]. On the other hand, local conjugate field quadrature measurements are
fundamentally limited by the SQL. To some extent, one can avoid this limitation by measuring
only one of the field quadratures and considering relevant CV-QKD schemes.

In CV processes, many algorithms can be implemented using solely Gaussian states, a spe-
cific subclass of CV states introduced in Sec.2.2] In the optical domain, multiple protocols
and experiments have been demonstrated. The first successful implementation of a CV-QKD
has been performed by Grosshans et al. [I17] using a protocol relying only on coherent states
generated with a laser diode at the wavelength of 780nm. There, the resulting SKRs, includ-
ing data post-processing, have reached 75 kbits/s, demonstrating the potential of CV-QKD for
secure communication with high data rates. Remarkably, large rates up to 25 Mbit/s [118] and
30 Mbits/s [119] have been achieved with more advanced post-processing methods. Based on
the aforementioned advantages of CV-QKD and with the recent advent of the field of supercon-
ducting circuits operated at microwave frequencies, it is interesting to investigate the potential
of microwave signals for secure quantum communication. To this end, we strongly benefit from
the frequency and technology compatibility with existing classical communication platforms,
such as WiFi, Bluetooth, or 5G technologies.

3.1.4 CV-QKD protocols classification

Due to the large variety of existing CV-QKD protocols, we start by discussing some general
aspects and, in particular, the classification of potential attacks by an eavesdropper. In this
context, it is essential to distinguish between the two cases of discrete and continuous mod-
ulation. The former means that Alice’s symbols are mapped onto a discrete codebook in a
finite-dimensional Hilbert space. Nonetheless, the communication itself is performed with CV
states and this mapping is only used during post-processing. As such, this type of proto-
col retains the advantages of CV-QKD. The main challenge for practical implementations of
this particular scheme is related to the existing but limited security analysis, which is not as
advanced as for other types [120, 12I]. Alternatively, one can use a continuous modulation
where symbols of Alice are represented as points in the phase space associated with the field
quadrature ¢ and p as defined in Sec.[2.2] For instance, in coherent state-based protocols the
displacement vectors of encoding states generally can point along any axis in phase space,
whereas in squeezed state-based protocols, the displacement vectors are commonly restricted
to be along a few axes. For the both coherent and squeezed states, the security analysis is
mostly complete with many experimental limitations taken into account, such as the finite
number of communicated symbols [122], parameter estimation of the quantum channel [123],
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Figure 3.3: Classification of attacks performed by the eavesdropper Eve. (a) Individual attacks. Alice
sends individual states A; one after the other through a quantum channel, which are received by Bob,
who then performs individual measurements, corresponding to the outcomes B;. Eve individually
probes states, E1, to the channels and retrieves outcomes E/ that are stored in a quantum memory.
Finally, Eve performs individual measurements on her stored states. (b) Collective attacks. Similarly
to individual attacks, Eve interacts with each incoming state of Alice, stores the outcomes in a quantum
memory, but performs a joint measurement over the entire ensemble of outcomes. (c) Coherent attacks.

Similarly to collective attacks, Eve performs a joint measurement. However, in this case, Eve’s probe
state is a fully entangled multimode state.

measurement device independence [124], and composable security [125]. The main drawback
of continuous modulation is related to the necessity of data post-processing. Since symbols
can take continuous values, digitization of Alice’s and Bob’s keys (which is necessary for final
key generation as shown later in Sec. requires a potentially large number of symbols de-
pending on the chosen precision during discretization. This aspect can severely limit achievable

practical SKRs [126].

The attack of an eavesdropper, Eve, can be classified into three different categories as
illustrated in Fig.|3.3] The simplest form of attacks is referred to as individual attacks. There,
Eve couples an ancillary state to each individual incoming state from Alice and stores the
resulting outcome state in a quantum memory, waiting for Bob to perform the corresponding
individual measurement. Eve is assumed to have perfect quantum memories where information
can be ideally stored and retrieved from. A generalisation of this type of attack is referred
to as collective attacks. There, Eve performs the same individual interaction as for individual
attacks. However, she proceeds with an optimal joint measurement on the entire ensemble
of states stored in her quantum memories to maximise the amount of information on Alice’s
and Bob’s keys. Finally, the most powerful type of attack is called coherent attacks. There,
Eve uses a multimode entangled state that is coupled to all incoming states from Alice and
stores the resulting multimode state in a corresponding quantum memory. Once Bob has
performed all individual measurements, Eve implements an optimal joint measurement on the
quantum memories. Coherent attacks are more difficult to implement in practical settings
due to their experimental requirements as compared to collective attacks. However, it can
be shown that optimal coherent attacks do not yield more information to Eve than optimal
collective attacks based on the de Finetti theorem applied to infinite-dimensional systems [127].
Moreover, the security against coherent attacks can be restricted to security against collective
Gaussian attacks, where Eve is restricted to Gaussian channels (see Sec.[2.2.2)) [128, [129]. The
remarkable optimality of Gaussian attacks allows for a direct computation of SKRs [98] [130].
This allows for further limiting Eve’s quantum channel to a noisy attenuation channel that
can be fully parametrized by an amount of losses ¢, or equivalently a transmissivity 7, and a
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coupled mean noise photon number 7.

Importantly, security proofs are often performed under the assumption that Alice sends an
infinite amount of states, a regime referred to as the asymptotic limit. In practice, only a finite
number of states can be communicated, implying that further security analysis is required to
account for this additional limitation. Corresponding effects on the secret keys are discussed
in Sec.3.5.2] Lastly, at the end of their communication using the quantum channel, Alice
and Bob need to post-process their data to obtain an exactly identical common secret key.
In particular, during an error correction step, or reconciliation, a classical algorithm is used in
order to generate a common key based on Alice’s initial key and the corresponding key measured
by Bob. This algorithm requires a key to be used as a reference, meaning that two options
are possible. Either Alice’s key is used as a reference and Bob’s key is corrected accordingly,
or the opposite is done and Bob’s key is used as a reference. The former case is called the
direct reconciliation (DR) case, while the latter is the reverse reconciliation (RR) case. The
choice of reconciliation greatly influences the sensitivity of secret keys to the parameters of
the quantum channel. More precisely, the specific choice of the quantum channel that Eve
controls has a large influence on the performance of the CV-QKD protocol, independent of
whether it is operated in the DR or RR case. We also mention that protocols considered in
this work are classified as one-way quantum communication, meaning that Alice sends her
states to Bob and there is no return quantum communication by Bob. However, there exists
two-way communication protocols where Bob initially sends reference states to Alice through
the quantum channel. Then, Alice applies a unitary transformation to generate new states to
be sent back to Bob. Due to the necessity of Eve to attack both the forward and backward
signals, this mode of communication can possess improved robustness to the presence of noise
in the quantum channel. Thus, two-way CV-QKD can be particularly relevant for microwave
CV-QKD. Nevertheless, both its experimental implementations and security analysis are more
complex than for one-way communication. Proofs have been derived for the asymptotic limit,
where protocols with Gaussian states are shown to tolerate more noise in the quantum channel
as compared to their one-way implementation counterpart [98| [131]. This branch of CV-QKD
protocols is beyond the scope of this thesis, where we focus on the potential of one-way CV-QKD
and its experimental implementation in the microwave regime.

3.2 Coherent and squeezed state based protocols

Following the discussion in the previous section, we consider CV-QKD protocols that can be im-
plemented using Gaussian states as a resource. The majority of these protocols rely on coherent
and squeezed states, although it is also possible to use thermal coherent states as information
carriers [132]. This possibility extends the application of CV-QKD to communication in a noisy
environment while offering potentially simpler state preparation. Thermal states can also be
used in the context of open-air or satellite communication [133]. In particular, Garcia-Patrén
et al. studied in Ref.[134] the impact of noise on the preparation and detection side for the
DR and RR case. It is shown that noise is not necessarily detrimental to the security of the
communication between Alice and Bob. In the RR case, an added trusted (i.e., not under Eve’s
control) noise on the detection side improves the protocol performance in terms of tolerable
losses and noise in the quantum channel. One way of understanding this effect is to consider
the RR case, where Bob is used as a reference. Here, the presence of an additional trusted noise
on Bob’s side only deteriorates the correlations between Eve and Bob since Eve’s joint measure-
ments are based on Bob’s results. The additional trusted noise on Bob’s side degrades Eve’s
information, as the latter measurements also become noisier. Conversely, a symmetric situation
is also possible, where the trusted preparation noise is added on Alice’s side in the DR case.
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Figure 3.4: Overview of coherent state protocols in comparison to squeezed state protocols. (a) Generic
coherent state protocol. Symbols of Alice’s key are encoded in step (i) within coherent states whose
displacement in phase space is given by two symbols (one for each quadrature axis). In step (ii), the
prepared signals from Alice are sent through the quantum channel, where they can be distorted by
losses and coupled noise. In step (iii), Bob performs quadrature measurements to obtain his key. (b)
Generic squeezed state protocol. In step (i), similar to coherent state protocols, Alice encodes one
symbol in a displaced squeezed state before sending them through the quantum channel in step (ii).
In step (iii), Bob performs single quadrature measurements to obtain his key. In comparison with
coherent state protocols, here, one only encodes one symbol at a time.

As a result, one can use the added trusted noise to increase the maximum tolerable amount
of noise that can be present in the quantum channel as demonstrated in Refs.[134], 135 We
note that the mutual information (MI) between Alice and Bob decreases when adding trusted
noise. However, Eve’s information decreases faster than the mutual information, resulting in a
net gain in terms of security.

At optical frequencies, coherent states as encoding states are commonly preferred in experi-
ments over squeezed states. Here, we investigate the potential of displaced and squeezed states
using the secret key as an indicator in the microwave regime. In the DR case, it is a well-
known fact that CV-QKD is limited to a maximum tolerable amount of losses of 3dB [§]. This
fundamental limit can intuitively be understood as Eve is obtaining more than 50% of Alice’s
input signals and thereby effectively replacing Bob in the communication. This implies that
no security between Alice and Bob is possible. For this reason, it is in general more favourable
to use DR for noisy rather than lossy quantum channels [135]. Additionally, one needs to
consider limitations arising from realistic experimental conditions (e.g., limited experimental
signal-to-noise ratios, imperfect post-processing). As a remedy to the limit on losses, RR has
been introduced in Ref.[136. RR has the remarkable property of having no limit in tolerable
losses in the quantum channel, i.e., secure communication can be potentially established for
any amount of losses. Interestingly, the squeezed state protocols can outperform the coherent
state protocols for tolerable losses and noise in the quantum channel for ideal and practical
conditions. However, coherent state protocols can exhibit higher SKRs and are a prime choice
for CV-QKD in the optical regime where the main limitations stem from losses due to large
communication distance over several kilometres [8, 137, [I38]. One can also compare coherent
states and squeezed states by extending the analysis to satellite-based communication [139],
restricting protocols to using only one phase-space quadrature [140], or relying on entangled
states [I41]. In all of these applications, squeezed states can offer an advantage over coherent
states in terms of tolerable coupled noise in the quantum channel. In certain cases, squeezed
states are shown to offer an advantage in terms of maximal communication distances, increasing
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them by one order of magnitude [141]. As such, it appears that no clear preference can be made
between coherent and squeezed states in a general sense and must rather be studied depending
on properties of a particular protocol, frequency regime, and other experimental limitations.
In Fig.[3.4) we present a general overview of coherent and squeezed state protocols. Squeezed
states are not often used in optical CV-QKD mainly due to extra difficulties in generating
squeezed light in this frequency domain in comparison to coherent states. Optical squeezing
requires a nonlinear medium, such as a PPTK crystal with a dedicated setup for precise control
[142]. Coherent states can be generated and controlled using commercial, off-the-shelf, modern
lasers. However, in the microwave regime, one can routinely use nonlinear parametric ampli-
fiers such as JPAs, which are straightforward to fabricate and control, for the generation of
microwave squeezed signals. Nowadays, various JPA devices can also be purchased from many
start-up companies. In contrast to optics, the readout of microwave states is mainly limited
by amplification noise originating from cryogenic detection chains. For this reason, coherent
states, where classical information is encoded in two field quadratures, perform significantly
worse than squeezed states, where only one quadrature needs to be measured at a time. This
implies that there will be twice more noise in the protocols with microwave coherent states
as with the squeezed ones (see Sec.. This extra noise degrades the performance of the
coherent state protocols and makes the squeezed state ones a more attractive choice in the
microwave regime.

3.3 Protocols implementation and key distribution

We focus on a CV-QKD protocol with microwave squeezed states. We use a particular scheme
originally proposed by Cerf et al. [105] with a Gaussian modulation. A schematic diagram of
this protocol is shown in Fig.[3.5

1. Alice initially generates a random key using a zero-mean Gaussian distribution with a
fixed variance 0%, representing the codebook variance in the protocol. The key consists
of a string of numbers, K, = {a;},. (1,...1> randomly chosen according to the zero-mean
Gaussian distribution. The codebook variance is chosen such that the ensemble statistics
is indistinguishable between the ¢-quadrature and the p-quadrature. For the squeezed
states with a squeezed variance o2 and antisqueezing variance o2, the indistinguishability

as’
condition is
2

02, = 0x + 02 = o3 = sinh(2r)?/2, (3.4)

where r is the squeezing factor of Alice’s squeezed states.

2. For each symbol «;, Alice randomly chooses an encoding basis by selecting the squeezing
and displacement operation along either the g- or the p-direction in phase space.

3. For each symbol «;, Alice generates a squeezed state along the chosen quadrature. The
squeezed state is displaced along the same quadrature with a displacement amplitude
given by the complex amplitude «;.

4. Alice sends each displaced squeezed state through the quantum channel, which is assumed
to be under Eve’s control. The quantum channel is a noisy loss channel, characterized by
its transmissivity 7 and a coupled noise photon number n. Bob receives corresponding
distorted states at the output of the quantum channel.

5. For each incoming displaced squeezed state, Bob decides on a measurement basis by
randomly choosing either to measure along the ¢- or the p-quadrature. Each quadrature
is chosen with equal probability.
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Figure 3.5: Schematic diagram of a CV-QKD protocol with squeezed microwave states. Each step
is labelled with its corresponding task which are implemented in a chronological order. Alice’s steps
are indicated by a blue arrow, and those of Bob are indicated by a green arrow. For the sake of
completeness, error correction and privacy amplification, post-processing steps are shown. However,
they are not implemented in this work.

6. For each incoming displaced squeezed state, Bob implements a single-shot quadrature
measurement according to the measurement basis chosen in the previous step. This
operation results in the measured displacement amplitude, ;, for each state. The whole
ensemble of measured amplitudes forms a measured key.

7. Once Bob has obtained the measured key Ky = {fi},c(; ;. Alice discloses the original

encoding basis and Bob discards the measured symbols, where his measurement basis
does not agree with Alice’s encoding basis, representing the sifting step. This step results
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in Alice’s prepared key KCp = {O‘i}ie{l,...,N} and Bob’s measured key K = {ﬁi}ie{le}.
Security analysis is performed based on these two keys.

8. Alice and Bob characterize the correlations between their keys using the MI, I(A: B).
Based on the channel parameters, Alice and Bob compute an upper bound on the infor-
mation leaked to Eve using the Holevo quantity, xg, [143] and define the asymptotic raw
secret key as

K =1I(A: B) — xg. (3.5)

9. Since only a finite number of symbols can be communicated, Alice and Bob do not have
exact knowledge of the parameters of the quantum channel and must instead estimate
those values. To do so, Alice and Bob use N — n,. of their symbols to calculate worst-case
estimators for the transmissivity 7 and coupled noise photon number 7 of the quantum
channel. Using these parameters, they compute a finite-size secret key (see Sec.. It
this secret key is lower than zero (insecure), they abort the communication. In the limit
of an infinite number of exchanged symbols, the estimators converge to the exact value of
the channel parameters, and the finite-size secret key converges to the asymptotic secret
key.

10. If the asymptotic secret key or the finite-size secret key is nonzero, Alice and Bob continue
with further post-processing of their data. They implement a classical error correction
algorithm to obtain a common key. The length of this key is less than that of the initial
key. During this step, Alice’s key can be used as a reference (DR case) or Bob’s key
can be used as a reference (RR case). The data of Alice and Bob is discretized, since
their key has been obtained from continuous-variable measurements. The efficiency of
the error correction algorithm is commonly denoted as 0 < § < 1. Experimental works
demonstrate that this coefficient can be made close to unity [144], [145]. There, low-density
parity check codes are very helpful, capable of handling communication with a rather low
SNR around 1 or below [146], 147, 148]. For the computation of the finite-size secret key,
one can show that the optimal information of Eve is related to the smoothed min-entropy
[149]. The Holevo quantity can also be used, but at a certain bit cost that depends
notably on the success probability of the error correction algorithm [149] [150].

11. Finally, Alice and Bob implement an additional classical algorithm to remove the remain-
ing information that Eve possesses on their common key [8, [I51]. This step is commonly
referred to as privacy amplification. It can be performed using random hash functions
that map Alice’s and Bob’s data to a dataset of fixed values. Remarkably, this procedure
works even if Eve has access to a perfect quantum memory [I52]. One can show that
using the random hash functions, Alice and Bob can generate a common string of bits
for which each bit is independent of Eve’s acquired information. In other words, Eve
cannot do better than guessing the value of these bits, thus resulting in a secure key
between Alice and Bob. This method relies on the generation of random seeds, where
the specific choice of a seed and a random process does not influence the final security
[152]. Additionally, note that this procedure typically produces a secret key of reduced
size compared to the initial size of Alice’s and Bob’s common key at the end of the error
correction step.

3.4 Security analysis

This section is dedicated to a theoretical security analysis of CV-QKD protocols with a Gaussian
modulation. For a detailed analysis of our experimental implementation, we refer to Chap.[5|
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Here, we provide useful tools to prove the unconditional security of the protocol introduced
in previous Sec.[3.3] In Sec.[3.4.1] we start with the description of the MI, which captures
the correlations between Alice’s and Bob’s keys. Following this step, we introduce the Holevo
quantity as a bound on Eve’s accessible information in Sec.[3.4.2l We analyze the secret key in
the context of DR and RR for different channel parameters in Sec.[3.4.3] Based on these results,
Sec.[3.4.4] shows that squeezed state protocols are inherently more promising for microwave
signals, as compared to coherent state protocols due to limitations imposed by detection noise.
Sec.|3.4.5| concludes this section with a short introduction to non-Gaussian operations, as a
possible additional step to improve the performance of CV-QKD protocols.

3.4.1 Mutual information between Alice and Bob

Correlations between Alice’s and Bob’s key can be measured using entropy quantities, the
precise choice of which depends on whether a DV or CV protocol is considered. In the case of
CV-QKD, the entropy of continuous variables can be measured using the differential entropy
introduced in Sec.[2.2.3] In this section, we denote by A Alice’s classical random variable
representing a prepared key KCp. Similarly, we denote by B Bob’s classical random variable
describing a measured key Kp. Note that even though Bob’s key is described classically, it
is obtained via measurements performed on quantum states. In this context, the MI between
Alice and Bob is defined as the difference

. famp (o, B)
I(A: B) = h(A) — h(A|B) = //fAB ( 2 )dadﬁ, (3.6)

with fap) being the joint probability density function of A and B, and fa and fg, with
respective domain of definition A and B, are the marginal probability density functions of
A and B, respectively. In Eq. , h is the differential entropy defined by Eq. of
Sec.2.2.3| and h(:|-) is the conditional differential entropy defined in Eq. (2.109). Since the
MI is defined as a difference, the problem with absolute values of the differential entropy is
circumvented, similarly to the KL divergence in Sec.2.2.3] Additionally, by definition, the MI
is symmetric I(A: B) = I(B: A), as expected for a measure of correlations between Alice and
Bob. Furthermore, using Jensen’s inequality [153], we find

fa(B) _
I(A: B) > log <//f(AB fAB( B)dadﬁ> =0, (3.7)

The equality holds if, and only if, fap) = fa fg, meaning that A and B are completely
uncorrelated. This property allows to interpret the MI as a measure of reduction in uncertainty
on Alice’s information given Bob’s information. If their datasets are uncorrelated, revealing
Bob’s information provides no knowledge of Alice’s information, and their MI is zero. For
continuous variables, there is no upper bound on the MI, and the latter can diverge. For CV-
QKD protocols, the random variable A is a Gaussian random variable centred on zero with a
fixed codebook variance 0. Once again, the quantum channel under Eve’s control is a noisy
loss channel with a transmissivity 7 and an average coupled noise photon number 7. We note
that in literature it is common to quantify the channel noise as excess noise, € := n/7. However,
this definition is less suited for our experiments in the microwave regime and, in the remainder
of this thesis, we instead use the coupled noise photon number, n. The states measured by
Bob at the output of the quantum channel are modelled using an attenuation channel C; (see
Eq. (2.97)) with a transmissivity 7 followed by a noise channel By (see Eq. (2.96)) with the same
added noise photon number n. For our chosen protocol of Ref. 105 Alice relies on displaced
squeezed states as the information carrier. For a given symbol «; of Alice and a corresponding
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Figure 3.6: Representation of entropy quantities. (a) MI between Alice and Bob. Schematically,
it corresponds to the intersection between Alice’s differential entropy, h(A), and Bob’s differential
entropy, h(B). The remaining entropies are conditional entropies, h(A|B) and h(B|A), respectively.
(b) Eve performs an attack through the quantum channel, resulting in the ensemble of states described
by a random variable E. Eve’s MI, I(E: X), with Alice’s random variable X = A (DR case) or
Bob’s random variable X = B (RR case) is bounded from above by her accessible information,
Lieo(E: X). The latter is bounded from above by Eve’s Holevo quantity, xg, computed directly using
Eve’s ensemble of states.

measured symbol 3; by Bob, the classical random variable, B, is a Gaussian random variable
centered on «o; with a variance

)
4

Opja = TO. + + 7. (3.8)
The probability density function of the random variable B can be derived using Eq. (3.8]) com-
bined with the indistinguishability condition from Eq. (3.4). For protocols, where symbols are
modulated according to a Gaussian distribution f,, the resulting ensemble state of Bob is also
described by a Gaussian random variable with the probability density function

+o0o 132 -7
08 = [ fanea(8) fala)da = - exp <—ﬁ2>7<f%=m§s+(1 ) h 39)

NS 270R 205 4

Using Eq. (2.112]) to compute the differential entropy of a Gaussian random variable, we find
the MI between Alice and Bob from the definition in Eq. (3.8) and based on Eqs. resulting

n

I(A: B) = h(B)—h(BJA) =

N | —

1 To%
[log2(27re) 10%2(27“)03\4 = 510g2 L+ ro? 1+ U= a )

b 3.10)
Note that in the previous equation, we choose the unit of bits and express accordingly the MI
in the log, basis. The argument of the logarithm in the last expression in Eq. can be
interpreted as 1+ SNR, where SNR is the signal-to-noise ratio at Bob. A visual representation
of the MI is given in Fig.|3.6/(a). We observe that the noise in the SNR depends on the coupled
noise n from the quantum channel, a parameter not under Alice’s and Bob’s control, but also
on the squeezed variance o2, a parameter that can be reduced to zero (or closed to zero) in
theory. Therefore, SNRs in squeezed state protocols can be improved by directly reducing the

noise floor of the communication, a striking difference to coherent state protocols.
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3.4.2 Holevo quantity of Eve

Thanks to her attacks during Alice and Bob’s communication via the quantum channel, Eve
obtains states that are partially correlated to their shared information. In general, the precise
amount of information depends on the exact measurement performed by Eve. One can define
the accessible information as the maximum information that Eve can extract from a given
measurement. The possible physical measurements to consider depend on the type of attack
Eve implements. In the context of a collective attack, we write the accessible information of
Eve as

Leo(A: E) = max{I(A: E)| Mg}, (3.11)

where My is any physically possible measurement performed by Eve. Given that Alice’s code-
book is described by the probability density function fa, the accessible information can be
bounded from above by the Holevo quantity [143]

XE = Su ( /,4 fA(a)ﬁE|ada> - /,4 fa(@)Su (Prja) da > Loeo(A: E), (3.12)

where Sy is the von Neumann entropy of a M-mode state with the integration performed over
a codebook ensemble A. The hierarchy between different entropy quantities is illustrated in
Fig.|3.6/(b). The states of Eve, conditioned on a chosen symbol a from Alice, are denoted as
pE|o- Note that the Holevo quantity in Eq. is shown for the DR case. In the RR case, the
same results can be obtained by interchanging Alice with Bob, and correspondingly, o must be
replaced by 8. We note that the Holevo quantity is independent of any specific measurements
performed by Eve. According to Eq. , one needs to compute Eve’s ensemble state

ﬁE,ens ::/fA<a)pAEada7 (313)
A

in order to obtain the Holevo quantity. Using the linearity of the trace operator and Eq. (3.13]),
the statistical moments of Eve’s ensemble state can be expressed as

(T g = Tt ("™ Prsens) = / Fa(e) (@5™) da (3.14)
A

for integers (n, m) € N?. For instance, we can derive

()~ U= [ I2(0) () d - ( [ @0 da>2. (3.15)

Based on our general description of Gaussian channels in Sec.[2.2.2] a general Gaussian noisy
loss channel can be formulated as a local interaction with one mode of a TMS state combined
with an additional unitary transformation applied before and after the interaction [98]. Since
the von Neumann entropy is invariant under any unitary transformation, only the canonical
form of the Gaussian channel introduced in Eq. is relevant for the computation of the
Holevo quantity. It means that the assumed collective attack of Eve can be restricted to an
entangling cloner attack [I54]. Here, for each incoming state of Alice, Eve starts with a TMS
state and couples any one mode of its state to that of Alice. The local variance of Eve’s TMS
state is chosen as cosh(2rrys) = (1 + 2ng), for a mean photon number ng. The value of the
latter is defined by the condition

(1—-7)(1+2ng)=4n+ (1 —1), (3.16)
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with 7 and 7 the corresponding quantum channel parameters. Considering that Alice starts with
a displaced squeezed state, with displacement along the ¢- or p-quadrature, Eve’s individual
state pg|q after her interaction through the quantum channel has the following covariance matrix

Ven 0 /T sinh(2rrvs) 0
_ 1 0 VE,22 0 —+/T sinh(2rrus)
VE|a N Z \/FSiIlh(zT’TMs) 0 COSh<2TTMs) 0 ’ (317)
0 —T Sinh(QTTMs) 0 COSh(27’TMs)

where Vg 11 = 7cosh(2rmys) + (1 — 7) exp(—2r) and Vg oo = 7cosh(2rpys) + (1 — 7) exp(2r).
This expression is valid for the case of Alice sending displaced squeezed states along the ¢-
quadrature. For the p-quadrature, the same expression is obtained for Vg 1; being interchanged
with Vg 2. Using the definition of moments of Eve’s ensemble state in Eq. , we compute
the covariance matrix of Eve’s ensemble state

VE,ens 0 \/FSiIlh(Q’I“TMs) 0
v 1 0 VE.ens 0 —+/7T sinh(2rrys)
Bens = g | /7 sinh(2rpys) 0 cosh(2rys) 0 ’
0 —VT Sil’lh(27’TMs) 0 COSh(QTTMs)

(3.18)
where Vg ens = 7cosh(2rmys) + (1 — 7) exp(2r). Note that this derivation is based on the
indistinguishability condition from Eq. (3.4). In the RR case, the roles of Alice and Bob are
reversed. This means that Eve’s ensemble state is unchanged, but her individual states now
depend on the results of Bob’s measurements. To compute the covariance matrix of Eve’s
individual state conditioned by Bob’s measured symbols, we use the conditional covariance
matrix formalism for Gaussian variables. This formalism can be viewed as the inverse mapping
of the integration operation introduced in Eq. . To this extent, we consider Bob’s ensemble
state given by

ﬁB,enS ::/fA(a)ﬁBadaa (319)
A

where pg| is an originally displaced squeezed state sent by Alice (corresponding to a sym-
bol «) after interaction with Eve through the quantum channel. Based on the derivation in
Eq. , we write its covariance matrix as Vp s = diag(og,op). The covariance matrix of
Eve’s individual state conditioned on a measurement of Bob is given by [154]

1
VEs = Viens — — DIID”, (3.20)
o

B
where II represents a quadrature projection depending on the measured quadrature by Bob, i.e.,
IT = diag(1,0) for a measured g-quadrature and IT = diag(0, 1) for a measured p-quadrature.
Here, the matrix D represents correlations between Eve’s ensemble state and Bob’s ensemble
state. It can be derived using a beam splitter operation between Eve’s TMS coupled mode
and Bob’s states. To show this result, we derive a fully analytical model and we express the
displacement vector of Bob’s mode (Eve’s modes) dp (dg), as well as the covariance matrix of

Bob’s mode (Eve’s modes) Vg (Vg), as

(dp, dg)’ =X - (0, dE,in)T + g - (da, (_)E,in)Ta

Vg Cgg (3.21)
(CEE Vg ) =% (Vo® Vi) - T,
with
Sp=B(m)®,3s =R (@/2) “Sgq (1) @1, and ¥ = X - 3y (3.22)
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Here, I, is the identity matrix of dimension n. Note that the dot symbol - represents a matrix
multiplication and 0 (V) corresponds to the mean displacement vector (covariance matrix) of
the vacuum state. Furthermore, da represents Alice’s mean displacement vector, and dg ;, rep-
resents Eve’s initial mean displacement vector of her TMS state. Additionally, ¢ corresponds
to the squeezing angle of Alice’s squeezed states. Correlations between Bob’s and Eve’s indi-
vidual states are described by the submatrix Cgg. The matrix B represents the beam splitter
operation and can be expressed as

B(7) = <_/_\{F_I 71, \/?17212> ' 529

Finally, R corresponds to a 2D rotation matrix while Sy, is a 2x2 matrix
R (/2) - Suq (1) = cos (¢/2)  sin (¢/2) [exp (=) 0 (3.24)
v - —sin (¢/2) cos (¢/2) 0 exp(r) |- '

Using Eq. (3.21]) and the definition of the quantum channel parameter in Eq. (3.16)), we retrieve
the expression of the variance of Bob established in Eq. (3.8])

VB = TEVA -+ (1 — TE)

A

1
(1 -+ QTLE) L, =mVa+ |:Z (1 — TE) —+ T_l:| L. (325)

Here, V represents Alice’s state variance, corresponding for our studied protocol to the
squeezed variance of Alice’s squeezed states. Based on the multimode covariance matrix derived
in Eq. (3.21)), we can straightforwardly express the correlation matrix D as

Dy 0

O D22 1 A A~ A A A~ A
D31 0 2

0 —Dy

where XEl corresponds to the ith element in {¢g 1, Pr1,dr2, Pr2} and XB,J- corresponds to the
jth element in {Gg, pp}. Note that in the previous expressions, we have dropped the subscript
“ens” for compactness. Moreover, the subscript “1” indicates the coupled mode of Eve’s TMS
state, while the subscript ‘2” refers to the idler uncoupled mode. After calculations, we find

DH = D22 = —\/F\/ 1-— T(ezr — COSh(QTTMs))/4 > D31 = D42 =\ 1-— TSiDh(Q’/’TMs)/4. (327)

One way to physically interpret Eqs.[3.20] and is to consider that after Eve’s attack, we
have correlated three-mode states. A local measurement of Bob on his subsystem projects the
idler subsystem onto a new state. This new state is determined by the correlations between
Bob’s and Eve’s modes, which are described by the correlation matrix D. The resulting state
after measuring of the ¢- or p-quadrature is a Gaussian state with a covariance matrix given

by Eq. (3.20).

3.4.3 Secret key

From a practical point of view, it is required to evaluate the security of CV-QKD protocols. This
security is quantified by the secret key Kexp, which represents the amount of secure information
per communicated symbol through the quantum channel. The secret key is bounded from below
by

Kep > K = [ 1(A:B) — xk. (3.28)
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Here, in contrast to the naive original expression given by Eq. , we include the error cor-
rection efficiency 5. As previously mentioned, experimental values § > 0.9 can be achieved
with current classical post-processing error correction algorithms [37]. Therefore, within a first
analysis step, we can omit this term to estimate the performance of our CV-QKD protocol.
We recall that a positive value of K indicates a secure communication, as Alice and Bob share
more information than Eve can in principle obtain. In order to take into account the finite size
of the communicated key between Alice and Bob, the secret key expression must be modified
as [150]

Kexp Z KN _ ne;\fec (K (%*,ﬁ*) —_ A (nec)> , (329)

where n.. < N denotes a number of symbols needed to be kept for the reconciliation algorithm,
leaving m = N — ne. symbols to be used for the parameter estimation. Additionally, the error
correction step is assumed to succeed with a probability of p... The additional term A (ne.)
corresponds to a correction term due to the finite key size. As explained in Sec.|3.3], it represents
the cost of using the Holevo quantity instead of Eve’s smoothed min-entropy. Lastly, 75 (i)
is a worst-case scenario statistical estimator of the channel parameter 75 (7). It can be built
using Alice and Bob data block of length m, where one computes a square root transmissivity
estimator using the following construction

Dt (O‘i ~ A) (51' - B)

T — — — ’ (3.30)
Zizl (ai B A)
with the statistical average of Alice and Bob individual data defined as
A=>"a; and B=) B (3.31)
i=1 i=1

From this estimator, one defines 7 := 7?2, which satisfies by construction that () = 7. To
derive a noise estimator, one starts by building a total noise photon number estimator [I50]

Bros = %i (@- - \/;ozi)Q, (3.32)

which has the property <ﬁtot> = Mgt = 702+ (1 —7) /4 + n. Given a statistical confidence
parameter w, worst-case scenario unbiased estimators can be built by underestimating the
transmissivity and overestimating the amount of coupled noise leading to the definitions

(3.33)
=2

n n

Nify = Tigor + W \/Var (Tigor) 2 Moy + W bt

2m

An important note based on the previous equation is that the worst-case scenario estimators
converge slowly, as 1/4/m, to the value of the actual quantum channel parameters. This aspect
implies that keys of large length are necessarily required from any protocol for the error of
estimators to become tolerable. In the case of random variables with a normal distribution, the
confidence parameter w reduces to

w=2erf (1 - 2e..), (3.34)
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Figure 3.7: Secret key K of the CV-QKD protocol plotted as a function of the squeezing level S
(measured in dB below the vacuum limit), transmissivity 7 and average noise photon number n for
ideal reconciliation efficiency § = 1, according to Eq. . Panels (a) and (b) show the cases of DR
and RR, respectively. Grey areas represent the regions of negative keys, i.e., insecure communication.

with .. defined as an error probability, i.e., the confidence interval that is considered for the
worst-case estimators. For practical applications, CV-QKD protocols are commonly imple-
mented with error probabilities around 10719, resulting from Eq. in w ~ 6.34. From
the previous total noise estimator, a coupled noise photon number unbiased estimator can be
naturally defined as

n*=nl, — ——> — 702 (3.35)

In Fig.[3.7, we show results of a numerical evaluation of the secret key as a function of
the transmissivity 7 and noise photon number n in the quantum channel. Remarkably, in
the DR case a secure communication cannot exist when 7 exceeds a threshold value of 0.5,
which illustrates the well-known result that secure CV-QKD communication in DR schemes is
limited by 3dB of losses [130], I55]. As discussed previously, the reason for this fact is that
communication with DR cannot be secure when Eve receives more than 50% of Alice’s signal.
In this scenario, Eve effectively replaces Bob as the communication partner. As illustrated
in Fig.[3.7, this limit can be entirely circumvented by using the RR scheme, where Bob is
used as a reference. For RR, if we imagine that Eve only induces losses during the quantum
communication, Alice always has more information than Eve on Bob’s measured key. This is
because Eve is assumed to cause losses on Alice’s signals modeled by a beam splitter operation.
As a result, Eve can only obtain a fraction of Alice’s information. Furthermore, in the case of
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very large losses (g — 0), Bob receives only a tiny fraction of the signal coming from Alice,
meaning that the original signal is largely uncorrelated with Eve’s eavesdropped information.
As a consequence, Eve’s information reveals very little about Bob’s measured key, making the
communication secure. If Eve couples noise photons in addition to the losses, the correlations
between the key sent by Alice and that measured by Bob decrease. At the same time, Eve gains
more information on the key measured by Bob. In particular, the communication is secure
up to a coupled noise photon threshold value n of 0.183 for both reconciliation cases. This
result is consistent with the well-known Pirandola-Laurenza-Ottaviani-Banchi (PLOB) upper
bounds for Gaussian channels [I56]. The PLOB noise threshold corresponds to the crossover
of a quantum channel capacity from finite values to zero. It is also important to note that
these noise numbers do not account for noise photons, which can be added by Bob during the
measurements. Finally, we observe that an increase in the squeezing level results in an increase
in the secret key. This increase can be understood as a decrease of the displacement uncertainty
encoding the symbols, while also allowing for higher displacement amplitudes according to the
indistinguishability condition imposed in Eq. (3.4).

3.4.4 Coherent vs squeezed states comparison

As discussed in Sec.[3.2] CV-QKD protocols in the optical domain often rely on coherent states.
These coherent states can be readily generated with modern lasers and are well-suited for CV-
QKD at optical frequencies. Additionally, efficient homodyne (heterodyne) detection setups
[157, 158] allow for direct single (double) quadrature measurements required by these proto-
cols. For these reasons, CV-QKD in this frequency regime is mainly limited by losses in the
quantum channel, for instance, originating from fiber optic losses or atmospheric absorption
losses. As a result, one could initially consider coherent states as a first candidate for CV-
QKD protocol implementation in the microwave regime. However, protocols in this regime are
primarily limited by coupled communication and detection-induced noise photons. To demon-
strate this aspect, we consider the same communication scenario between Alice and Bob, as
previously explained in Sec.[3.3] where we now account for additional noise induced by Bob’s
measurements. As presented in Sec.[2.2.2] the total added noise is quantified using the quadra-
ture quantum efficiency, since Bob is required to measure single quadratures. Here, we only
consider cases where a single quadrature is amplified. This requirement results in Bob having
an additional noise contribution Age = 0.5(nx 1 1) in the variance of the individual conditional
random variable B|A, which is transposed to the variance of the random variable B represent-
ing the measured ensemble. Interestingly, this additional detection noise does not affect Eve
in the DR case, since Eve’s information depends solely on Alice’s states here. As a result, we
expect a strict decrease of the maximum tolerable coupled noise photon number, n. In our
work, superconducting JPA devices possess quadrature quantum efficiencies on the order of
60% to 70%, meaning that in experiments, one expects around 0.26 to 0.33 detection noise
photons for every measured quadrature value. This additional amplification noise changes the
variance of Bob’s individual states to

UI%IA =102 + }1(1 —7T) + 7+ Adets (3.36)
where o2, is the variance of Alice’s input states. According to our discussion in Sec. this
photon number depends strongly on whether a single or both quadratures are measured. For
both DR and RR, the MI between Alice and Bob’s is decreased, which results in a degradation
of the security of the protocol. For the RR case, we must consider the added noise contribution
in Bob’s variance 03, as Eve’s Holevo quantity is affected by the detection noise. The covariance
matrix of Eve’s state after Bob performs his noisy readout can be computed using Eqgs.|3.20
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(@) | (b) | (c)

Figure 3.8: Symbol modulation for coherent and squeezed state protocols. (a) For a generic co-
herent state protocol, multiple coherent states are prepared, with displacement complex amplitudes
distributed according to a Gaussian distribution in phase space. For illustration, we show an example
of 9 randomly chosen states with their corresponding Wigner function. The circular dashed line marks
the threshold of p < 99%. (b) Same illustration as in panel (a) using displaced squeezed states with
squeezing along either the ¢- or p-quadrature. (c¢) The Wigner function of the average ensemble of
states for the CV-QKD protocol with Gaussian modulation. This ensemble is constructed to coincide
with a thermal state in both cases, erasing information about chosen encoding bases.

and [3.26]
1
of = (0 +0R) + (1= 7) + 7+ Adr, (3.37)

Next, we perform secret key computations, assuming that Alice relies only on coherent
states. To compare this protocol to its squeezed state-based counterpart, we consider that the
codebook size of both protocols is the same, meaning that o3 ., = 03, Note that for the
coherent state protocol, the information of each symbol is encoded into two quadratures instead
of one for the squeezed state. This effectively implies that the symbol rate is doubled compared
to the squeezed state protocol. Furthermore, if no restrictions are imposed on displacement
angles, we choose displacement complex amplitudes such that any quadrature is statistically
indistinguishable from another, similarly to the squeezed state protocol, as illustrated in Fig.[3.8

Two main properties distinguish coherent state protocols from squeezed state ones. Firstly,
the doubling of symbol rate, using two quadratures instead of only one, results in an increase
by a factor of two in the MI between Alice and Bob. Secondly, the amplification noise is
significantly larger for coherent state protocols because measurements of both quadratures
are limited by the SQL. Therefore, detection noise in this case amounts to at least half a
photon. In the optical domain, such a measurement scheme is commonly performed using
heterodyne detection. There, incoming signals are split using a 50/50 beam splitter before
performing a single quadrature measurement in each output mode of the beam splitter. In the
microwave domain, a similar procedure can be considered with a cryogenic hybrid ring serving
as a microwave 50/50 beam splitter. Then, a single conjugate quadrature can be measured
using an amplifier operated in the degenerate regime of amplification. One can note that a
nondegenerate amplification can also be used to measure both quadratures simultaneously. To
compare both approaches, we consider an experimental setup consisting of an ideal cryogenic
hybrid ring and perform a degenerate amplification at each of its outputs. The variance of these
output states can be estimated using a beam splitter channel with the transmissivity qg = 0.5
and adding a noise contribution of A; (As) to the measured quadrature at the first (second)
output port of the hybrid ring. Assuming A, = A, i.e., the degenerate amplification efficiency
does not depend on the specific measured quadrature. In this case we obtain the quantum
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Figure 3.9: Comparison between coherent and squeezed state CV-QKD protocols. (a) Difference AK
between the DR secret key obtained with squeezed states and coherent states. For the latter, the MI
is computed using Eq. . The region of AK < 0, corresponding to a worse QKD performance
for squeezed states compared to coherent states, is highlighted in grey. The quadrature quantum
efficiency of nx = 65% and an equivalent quantum efficiency n = 24% are used in these estimations.
(b) Same scenario as in panel (a) but for the case of RR with the Holevo quantity based on Eq. (3.39).
Here, as for the DR case, we observe a small region of negative AK for low coupled noise photon
numbers, 7 < 0.017, and for large squeezing levels, S 2 10dB.

efficiency by measuring both quadratures as

1
< 50%. 3.3
T oAy (3.38)

For an exemplary quadrature quantum efficiency of nx = 65%, or equivalently A; = 0.27, we
obtain n = 24%. Comparatively, when relying on JPAs, we commonly observe the quantum
efficiency values for non-degenerate amplification in excess of n = 25% [82]. Therefore, these
two measurement approaches are physically equivalent and only differ in their experimental
implementation. Under these considerations, we compute the covariance matrices of Eve’s
individual states. Accounting for the measurement of two quadratures and using Eq. ,

one can show that [I54]
1

R
where o3 is given by Eq. (3.37). Similarly, the MI between Alice and Bob from Eq. (3.10)

becomes

VEW = VE,enS - DDT, (339)

1 TO'i coh
I(A: B) = h(B) — h(BJA) = 2 x - log, (14 ——— el , (3.40)
2 TZ+T+TL+Z—|—2A1

In Fig. we plot the difference between the secret key of the squeezed and the coherent
state protocol as a function of the quantum channel parameters for the realistic quadrature
quantum efficiency of ny = 65% and the quantum efficiency of n = 24%. Except for a very
small noise photon number n < 0.08, we observe that squeezed states outperform coherent
states. This is explained by the influence of the detection noise. Even though the MI is
seemingly doubled for the coherent state protocol, at the same time the measurement SNR
is degraded. Additionally, due to compression effects in our JPAs, the protocol codebook
variance in our experimental microwave CV-QKD implementations must follow o3 < 4. This
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limits experimentally feasible squeezing levels to S < 10dB, where coherent states perform
worse than squeezed states, as shown in Fig.[3.9 Remarkably, in the RR case, this discussion
remains valid. It is important to note that for both protocols in RR, the tolerable coupled
noise is enlarged for reduced quantum efficiencies as compared to the same protocols in RR
but with a perfect quantum efficiency. This effect illustrates the benefit of adding trust on the
receiver side in RR [134) [I35]. In the microwave regime, this improved performance in terms of
tolerable noise is very important, since photon noise originating from the quantum channel is
the main limiting factor for a secure microwave communication. This analysis explains a larger
potential of squeezed state CV-QKD protocols over coherent ones under realistic experimental
parameters.

3.4.5 Non-Gaussian operations

Section highlights the sensitivity of CV-QKD protocols to coupled noise in the quantum
channel, which strongly limits performances in terms of secure bit rates, communication dis-
tances, and feasibility of practical implementations. A possible alternative, also allowing for
an increase in the tolerance to coupled noise in the quantum channel, is to use non-Gaussian
operations. Among them, there exists a subclass of non-Gaussian channels relying on photon
counting operations. Such operations are known to potentially improve quantum properties of
Gaussian states [159, [160]. As a result, it should be possible to use such operations as part of
the post-processing of CV-QKD protocols, in order to increase secure communication distances
or SKRs. In particular, we can consider non-Gaussian operations on Alice’s preparation side or
on Bob’s receiving side. Here, either Alice’s states (preparation side) or Bob’s states (receiving
side) are sent to one input of a beam splitter, parametrized by the transmissivity mvg. We
consider that a Fock state |m) is sent to the other beam splitter input. The mode at the first
output of the beam splitter is used in post-processing steps to generate a secret key. In paral-
lel, the second output mode is measured using an ideal photon counter, providing a detected
photon number n associated with the Fock state |n). Three different cases are considered, as

shown in Fig.

1. The detected photon number n is such that n < m. In this case, the number of photons
in the initial Fock state |m) is reduced, and the number of photons in the other input
state is increased. This operation is commonly referred to as photon addition, and the
resulting state is non-Gaussian.

2. The detected photon number n is such that n > m. In this case, the number of photons
in the initial Fock state |m) is increased, implying that the photon number of the other
input state is reduced. This operation is called photon subtraction. Again, the resulting
state is non-Gaussian.

3. The detected photon number n is the same as the initial number m. This case is referred
to as photon catalysis [I61]. Even if photon numbers are unchanged in the output states,
one can view the operation as a virtual exchange of photons between output states. As a
result, this case also leads to non-Gaussian states.

Each operation is associated with a success probability that depends on the transmissivity 7ng.
This parameter can be optimized for a required operation given a chosen input state, i.e., given
a chosen CV-QKD protocol. We note that this model can be relaxed to include single-photon
detection, where the measurement would be described by the set of operators {|0)(0], 1—[0){0|}.

In Fig.[3.11] we show a summary of a possible implementations of non-Gaussian operations.
Complete and exact computations of the secret keys after usage of non-Gaussian operations is
in general a complex task. In the following, we restrict our discussion to only giving sufficient
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Figure 3.10: Non-Gaussian operation for a given input state, coming from either Alice or Bob. The
operation is modelled using a beam splitter, where an input ancilla state |m)(m| is sent to one input
port. At the output, a corresponding Fock state |n)(n| is measured using a photon counter. Depending
on the value of n, as compared to m, one out of three non-Gaussian operations is implemented. In all
cases, the initial Gaussian input state is transformed into a non-Gaussian output state.

elements for the estimation of a lower bound on secret keys. First, one uses the optimality
of Gaussian states to simplify the analysis. This implies that we can consider a worst-case
scenario where Eve’s attack is modeled with a Gaussian channel. [129, 162]. Additionally,
for a given protocol and quantum channel with any corresponding system state p, an exper-
imentally measurable secret key K(p) is bounded from below by K(pg), where the Gaussian
state pg has the same first and second order quadrature moments as the state p. Therefore,
the main task is to compute the covariance matrix of Eve’s individual and ensemble states
from the corresponding attack in the DR and RR cases. Similarly, one needs to estimate the
correlations between Alice and Bob after the non-Gaussian operations. A powerful tool that
can be used in this case is to consider that Alice and Bob possess an input TMS state, instead
of single-mode states considered earlier (prepare and measure protocols). Then, one part of
the TMS entangled state is sent through the quantum channel, after which Alice and Bob
perform local measurements on their local mode. This version of CV-QKD protocols is com-
monly referred to as entanglement-based protocols. It can be shown (see also Appendix A) that
entanglement-based protocols are equivalent to prepare and measure protocols, meaning that
the corresponding security analyses are interchangeable [I54]. This way, either for Alice and
Bob, or for Eve, one needs to compute quadrature moments from a two-mode state and apply
transformations induced by the quantum channel and by the selected non-Gaussian operations.
A powerful resource for these computations is the characteristic function (CF), y, defined in
Eq. from which quadrature moments can be derived. The CF of a TMS state reads

— cosh(2r) sinh(2r)

2 2
ol 18 +

vavs(a 8) = exp @3] (B
where o = ¢y +ip; is a complex amplitude associated with the quadrature variable pair (gq, p1)
of the first local TMS mode, while § = ¢, + ip, is associated with the quadrature variable pair
(g2, p2) of the second local TMS mode. The quantum channel is considered again as a noisy
loss channel, which is modelled as a beam splitter operation coupled to one mode of Eve’s TMS
state, mimicking a thermal environment. The effect of coupling one mode of a TMS state is
described using the input-output relation as [163]

2ng + 1

onlar 8) = exp (-2 EL 0 = DB ) e v78), (3.42)

where 7 and ng are the noisy loss channel parameters, defined in Eq. (3.16)). Additionally, xiy,
is the CF of the two-mode state at the input of the quantum channel, while Yoy is the CF of
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Figure 3.11: Implementation of non-Gaussian operations. (a) During the communication between
Alice and Bob, a non-Gaussian operation is performed on the preparation side before sending the
resulting non-Gaussian state to Bob through the quantum channel. As opposed to the situation
depicted in the top part, the non-Gaussian operation can also be implemented on the receiving side,
before Bob performs measurements, as shown in the bottom part. (b) Under ideal conditions, non-
Gaussian operations are realized using a photon counter to accurately determine a measured state
|n)(n|. This condition can be relaxed in a more realistic case with single-photon detection, where the
detector can capture only individual photons at a time.
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the two-mode state at the output. Here, we consider that the second mode propagates through
the quantum channel. Note that using this formalism, one can compute both the transformed
CF of Eve’s TMS state for prepare and measure protocols as well as the transformed CF of
Alice and Bob’s TMS for entanglement-based protocols.

Lastly, the non-Gaussian operation results in the following transformation of the CF of the
input two-mode state [163]

+o0o +oo 1 )
Xout (€ / / Xin (€, 7) Xm (71) Xn (72) ———=d7, (3.43)
(1 —17)

where 71 = 8/V/1—7 —yy/7/(1 —7) and v = 7/v1 —71 — B+/7/(1 — 7). Furthermore, xx
corresponds to the CF of the Fock state |k) [163]

Xe(z) = exp(—3 #f*) s (2P, (3.44)

where Ly, is the kth Laguerre polynomial with the complex number z. By extension of Eq. (2.73)
for single-mode states, one computes the quadrature moments of a general two-mode state based
on the following equations

an+m+k+l

~m an sk Al m—+k
< > ( ) Oq 8p &] aka(m » D1,y Q2>P2) —=p1=gpa0’

41 P192P2

(3.45)

with m,n, k,l being integer numbers. To compute Eve’s Holevo quantity in the DR case,
Eq. (3.42)))3.43} and [3.45| provide a direct access to the quadrature moments of Eve’s individual
states which, after integration over a chosen protocol codebook, result in the quadrature mo-
ments of Eve’s ensemble state. The Holevo quantity under the worst-case scenario Gaussian
attack is given by Eq. . For the RR case, one can use the Gaussian conditional covariance
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matrix calculation of Gaussian states, depending on whether one quadrature is measured (see
Eq. ) or two quadratures are measured by Bob (see Eq. ) The computation the MI
between Alice and Bob can be done using the entanglement-based protocol formalism. Starting
with Alice’s and Bob’s ensemble state, the same transformation as for Eve’s TMS state can be
applied to calculate their ensemble and conditional states after the non-Gaussian operations.
Depending on the considered protocols, full analytical formulas can be derived [164].

Out of the three non-Gaussian operations presented in this section, photon catalysis has
been reported as the most promising one, capable of extending tolerable excess noise as well as
maximal secure communication distances for CV-QKD protocols. In Ref.[165 photon cataly-
sis allows for a more than doubling of communication distances for a lossy quantum channel.
This property is related to the ability of photon catalysis to undo effects of photon loss on
entangled states [166]. As Alice, Bob, and Eve can all be viewed as having a TMS state in
a generic CV-QKD protocol thanks to the equivalence between the entanglement-based and
prepare-and-measure protocols, this property can be directly applied to the security analysis of
CV-QKD. Remarkably, photon catalysis can also be extended to CV-QKD protocols relying on
two-mode squeezed coherent states, i.e., the displaced TMS states, a class of Gaussian states
relevant for measurement device-independent CV-QKD [167]. The latter aims at relaxing as-
sumptions made to prove the security of CV-QKD by deriving a security analysis that does not
depend on whether the measurement devices, used for state preparation and measurement, are
trusted or not. As an alternative approach, photon subtraction is also known to increase secure
communication distances, although to a lesser extent than photon catalysis. However, for mi-
crowave signals, such operations need to be performed on the Bob side, as non-Gaussian states
are more sensitive to effects of noise in the quantum channel, as compared to Gaussian states
[168]. Moreover, we note that the non-Gaussian operation performance is strongly affected by
nonidealities in the photon number measurement methods used to implement them. Switching
from photon counting to single-photon detection can lead to a severe reduction in communi-
cation distances. The success probability, as well as the efficiency of photon counting, needs
to be optimized depending on the implemented CV-QKD protocol, where nontrivial optimal
values of these parameters appear [168]. Interestingly, one can also implement classical data
post-processing to achieve similar results. For instance, non-Gaussian functions can be used to
postselect parts of Alice’s and Bob’s keys, implementing a virtual photon subtraction. One can
optimize the reconciliation schemes to account for such non-Gaussian features and improve the
performance of the CV-QKD protocols [169, [170].

3.5 Perspective of microwave quantum key distribution
in open-air

In this section, we investigate the potential of microwave CV-QKD for open-air quantum com-
munication and compare it to CV-QKD implementations at the telecom frequencies. The
presented results are adapted from our published work [60]. Central components to realize
such an open-air microwave quantum communication are introduced in Sec.[3.5.1] We analyze
the generation and detection of propagating squeezed states at millikelvin temperatures. De-
tection is modelled by a homodyne quadrature measurement with the quantum efficiency 7.
Coupling of microwave squeezed states to the open-air environment (atmosphere) is modelled
with two antennae with corresponding gain coefficients. The environment is assumed to be at
ambient room temperature, 7' = 300 K, and is described by frequency-dependent absorption
losses. The resulting secure communication distances are presented in Sec.[3.5.2] where we high-
light the impact of a finite number of exchanged states in the CV-QKD protocol. In Sec.[3.5.3]
we extrapolate that the microwave-based squeezed QKD protocol can potentially outperform
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the telecom counterpart. This advantage becomes much more significant in the presence of
weather imperfections, highlighting the resilience of microwaves to fog and rain, as discussed

in Sec.3.5.4

3.5.1 Experimental scheme

Central components to realize an open-air microwave quantum communication are presented in
an associated generic scheme in Fig.[3.12] We consider an experimental realization of the CV-
QKD protocol from Sec.[3.3] which relies on propagating displaced squeezed states. In the mi-
crowave regime, flux-driven Josephson parametric amplifiers (JPAs) provide a well-established
tool to generate squeezed states with tunable squeezing levels and angles [50], 4] as discussed
in Sec.[4.2.2] Furthermore, at least one additional linear phase-sensitive amplifier is necessary
on the detection side to perform single quadrature measurements. We recall that according to
Cave’s theory of noise in linear amplifiers [8()], phase-insensitive bosonic amplifiers are quantum-
limited, meaning that at least half a photon is added to amplified signals, as shown in Sec.[2.1.4]
In contrast, a phase-sensitive amplifier can, in principle, achieve noiseless amplification. The
JPAs operating in the GHz regime can reach noise levels well below the quantum limit, corre-
sponding to 0.1 added noise photons in the phase-sensitive regime [24] 50, [82]. Presently, the
noise performance of JPAs is known to be limited by fabrication imperfections, pump-induced
noise [24], 82], and higher-order nonlinearities [73]. Lastly, the displacement operation required
by our CV-QKD protocol can be experimentally realized by applying strong coherent drive
tones to cryogenic directional couplers [51] (also see Sec.[4.3.4). Ultimately, the combination
of the JPAs with the subsequent directional couplers allows one to generate the microwave
displaced squeezed states with any desired displacement amplitude a.

Microwave antennae and amplification noise. In order to couple propagating microwave
states, generated at millikelvin temperatures, to the open-air quantum channel one requires a
microwave interface such as a microwave antenna between the corresponding cryogenic envi-
ronment and the open-air medium. This antenna may be modelled by a transmission line of
spatially varying impedance connecting the 50 {2-matched cryogenic circuits to open-air chan-
nels with the characteristic impedance of 377 €2. Here, a central figure of merit of the transmitter
and receiver antennae is their passive antenna gain, G,,. In general, for microwave antennae,
the gain reads [6§]

Gant = Trad D, (346)

where 0 < g < 1 is the radiation efficiency and accounts for the antenna losses, while D
represents the antenna directivity. The latter expresses the ability of the antenna to focus the
emitted power into a specific direction and strongly depends on the antenna geometry. An
antenna with a well-defined physical aperture area, A, has the directivity [6§]

D= 4:—214 €A, (347)
where ) is the signal wavelength, and e, is the aperture efficiency, defined as ratio between
the effective and physical aperture areas. A realistic value of aperture efficiency is ey, = 0.67.
Cryogenic to open-air transmission of microwave signals is a current technological challenge,
but first proposals already exist [I71]. For communication distances of approximately 50 m, an
open-air geometric attenuation of signals, also known as the path loss, is around 80dB at the
frequency of 5 GHz. In general, the path loss can be compensated by using transmitter and
receiver antennae with sufficient gain values. For instance, a parabolic transmitter and receiver
antenna with a diameter of around D,,; = 2m could compensate for the aforementioned path
loss. Discussions about the impact of an uncompensated path loss can be found in more detail
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Figure 3.12: Schematic of main components for an open-air microwave quantum communication.
Source denotes a squeezing generator, implemented with a JPA in a cryogenic environment. Trans-
mitter and receiver represent corresponding microwave antennae with gains Gy and Gy, respectively.
These antennae belong to different communication parties, Alice and Bob, and are separated by a
distance d. Atmospheric absorption losses are quantified using transmissivity 7, which couples the
quantum communication channel to the open-air environment with the thermal noise photon number
nyn. Readout is modelled as a homodyne detector with an overall quantum efficiency 7.

in Refs.[126] 172 These works highlight the importance of geometric losses on open-air com-
munication for microwave signals, potentially limiting secure communication distances. Here,
we assume that the antenna gains fully compensate for the path loss and focus on unavoid-
able physical effects of atmospheric absorption losses as the main source of communication
imperfections. As such, the SKRs derived in this section should be treated as upper bounds.

Additionally, the quantum efficiency of the detection chain represents a main limiting factor
for optimizing the implementation of the prepare-and-measure CV-QKD protocol [82]. There,
state-of-the-art travelling wave parametric amplifiers (TWPAs) allow for phase-insensitive am-
plification with high gain values (~20dB) and broad bandwidths (~ 3 GHz) at cryogenic tem-
peratures. These TWPAs are also potentially able to approach the quantum-limited regime
characterized by namp = 0.5 for the phase-insensitive mode of operation [80]. Conversely, phase-
sensitive linear amplifiers allow for (potentially noiseless) amplification of single quadratures,
at the cost of deamplifying the conjugate quadrature. Such a detection scheme can be used
to implement a microwave homodyne detection [I73]. In cryogenic microwave experiments,
one typically uses serially connected quantum-limited amplifiers followed by cryogenic high-
electron-mobility transistor (HEMT) amplifiers. In this case, we can use the Friis formula
[174] to estimate the total amplification noise n,m,, of the detection chain. This total noise
Namp depends mainly on the noise properties of the first amplifier. As a comparison, for homo-
dyne detectors at telecom wavelengths, the quantum efficiency is usually modeled by additional
losses, introduced by a nonunity transmissivity with the beam splitter model. For the case of
a purely lossy optical detector, both approaches are known to be equivalent, as described in
Ref.[73l However, we emphasize that our definition of the quantum efficiency is well-suited for
the study of microwave quantum communication, as the efficiency of signal readout is primarily
limited by amplification noise in this case.

Losses and noise budget. We conclude this section with a brief analysis of losses and noise
in open-air communication channels, where losses scale with the communication distance. We
distinguish between two categories of losses: (i) the aforementioned path loss which represents
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a geometric attenuation of propagating signals and (ii) absorption losses due to coupling to
the environment, such as atmospheric absorption losses or weather-induced losses. For signals
transmitted and received via a microwave antenna, the path loss L, describing the fraction of
the initial signal power lost during the communication, is commonly described using the Friis

transmission formula [68]
A 2
Lp =10 IOglo (GtGr <m> > . (348)

Here, Gy (G,) is the transmitter (receiver) antenna gain, A the wavelength of the communication
signals, and d the propagation distance. The dependence of L, oc 1/d?* indicates a strong
attenuation of the signal power due to isotropic emission of the signal in open air. This aspect
makes the usage of the microwave antennae with very high directivity an absolute necessity for
efficient communication. Note that in practice, high directivity microwave antennae exist and
are commercially available EL although optimized for classical communication. We model the
absorption and scattering power losses via a single effective beam splitter with transmissivity
T given by

T = 1077410, (3.49)

where + is the total specific attenuation (dB/km) given by the sum of each specific attenuation
v; associated with a respective loss mechanism. Note that this model is equivalent to a more
accurate description where the whole power losses are expressed as a chain of beam splitters
coupled to local bath modes, which would describe a continuous loss of input signal power [175].
The equivalence holds if the chain of beam splitters is coupled to the same thermal bath, which
is true for our analysis. In this case, we attribute the signal losses to atmospheric absorption
and weather imperfections such as rain or haze. Empirical models show that for microwave
frequencies around wy,, /(27) ~ 5 GHz, these propagation losses mainly arise due to molecular
oxygen absorption [I76]. For the ideal case of dry weather, we estimate the corresponding
specific attenuation to be around ~y, =6.3 x 1073dB/km [176]. To describe the coupling
of the propagating quantum bosonic signal a to the noisy environmental modes, we use the
input-output formalism. An output signal mode a’ after interaction with the open-air thermal
background can be expressed as

d =VTa+ VI —71how, (3.50)

where Aoy corresponds to the environmental thermal mode. The latter may be a vacuum or
thermal state, depending on the carrier frequency and the environmental temperature. For a
thermal background, the average thermal noise photon number 7y, per mode is given by the

Planck distribution as .
hw
Nih = [exp (/{,‘B_T) — 1] N (351)

where £ is the reduced Planck constant, kg the Boltzmann constant, w/(27) the signal fre-
quency, and 7" the background temperature in the open-air environment. From Eq. (3.50)), the
relation between the photon number ny, and the coupled noise photon number 7 is expressed
as

n=—(1—-7) nu, (3.52)

1
2
following the same model as introduced in Sec.|3.4.2 For comparison, we briefly describe the
open-air losses at telecom wavelengths. In the optical frequency domain, Gy and G, corre-

spond to the effective passive gain of optical lenses used to focus and collect optical beams

1See for instance high directivity, high gain antennae available for purchase here (gain of 39 dBi for frequencies
in [5.15 GHz, 5.875 GHz] with an antenna diameter of 1.5m).
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Figure 3.13: Secret key K of the CV-QKD protocol as a function of its communication distance d
and squeezing level S. Left (right) plot corresponds to the DR (RR) cases, respectively. The dashed
lines represent K = 0 for different values of 8 in panel (a) and different values of N in panel (b)
according to Eq. . Squeezing is given in dB below the vacuum level. We assume the average
environmental noise photon number 7y, = 1250 and transmission losses Ymw ~ 6.3 x 1073 dB /km.
Grey areas represent the regions of negative keys, i.e., insecure communication.

instead of the propagating microwave signals. Typical telecom wavelengths (780 —850 nm and
1520 —1600nm) are chosen to benefit from windows of low atmospheric absorption losses or
minimize the attenuation losses of optical fibres. At the telecom wavelength of 1550 nm, optical
fibre losses of less than 1.0 x 1072dB/km can be reached [I77]. For this frequency, open-air
attenuation is mainly caused by scattering losses, such as the Rayleigh or Mie scattering [177].
The corresponding open-air specific attenuation is vy = 2.02 x 107 dB/km. We discuss the
additional attenuation due to rain and haze in more detail in Sec.[3.5.4

3.5.2 Communication distance

First, we investigate maximal communication distances d that could be achieved with the mi-
crowave CV-QKD protocol, for both DR and RR. To this end, we use Eq. in combination
with the specific attenuation given in Sec.[3.5.1] to convert communication distances d into the
corresponding quantum channel transmissivity 7 using Eq. . We additionally consider
the effects of imperfect reconciliation and finite-size effects, as mentioned in Sec.[3.4.3] The
secret keys are computed using the MI in Eq. and the Holevo quantity in Sec. (see
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Eq. (3.20) for DR and Eq. (3.39) for RR). The corresponding secret keys are shown in Fig.|3.13]
Remarkably, we observe positive secret key values over communication distances of up to 200 m,

in both DR and RR. These results suggest the experimental feasibility of microwave QKD in
open-air conditions. No major distinction in communication distances is observed between the
reconciliation cases, although one could intuitively expect RR to yield larger maximal secure
distances. In fact, the RR case has been historically introduced to extend secure communica-
tion over the 50% loss limit of the DR case [136]. The similar behavior between DR and RR
with respect to maximally achievable communication distances originates from the presence
of a bright microwave thermal background, which couples to propagating states during the
communication. Consequently, the effects of coupled noise largely outweigh the effects of losses
and make the RR and DR cases reach similar maximal secure distances, a striking contrast
to CV-QKD protocols operated at optical frequencies. Moreover, as shown in Fig.(a), we
observe that an imperfect reconciliation with 0.9 < § < 1 leads only to a slight decrease of
the maximal secure communication distance with positive secret key values still up to 176 m
(167m) for 5 =0.95 (8 = 0.9). However, we note that finite-size effects have a more significant
impact on the secret key values as presented in Fig.(b). Here, the total length N of the
key critically determines the secure communication distance, which is in agreement with the
finite-size effects for other CV-QKD implementations [§]. For instance, a practical key length
of N = 105 decreases the secure communication distance to 122m (154m) in the DR (RR) case.
These effects can be overcome by extending the key length to larger values. A realistic but more
demanding key length of N = 10° extends the secure communication distance to 172m (183 m)
in the DR (RR) case. We note that in a practical QKD realization, a very large key length is
desirable to completely overcome any finite-size limitations, where key lengths of N ~ 10° can
be necessary [178].

Finally, we comment on the Gaussian modulation in our protocol, as compared to the dis-
crete modulation regime. We consider the discrete modulation homodyne detection quadrature
phase shift keying CV-QKD protocol [I79, 180], which is similar to the one we analyze in
this section. Here, instead of a continuous modulation of the key, symbols are generated by
assigning quadrants of the quadrature phase space to bits, effectively discretizing any applied
continuous displacement operations. Our preliminary analysis indicates that the CV-QKD pro-
tocol with such discrete modulation [I80] could be realized in the microwave regime and, under
ideal conditions, could achieve notably by a factor of 3 larger secure communication distances
than for the protocols with Gaussian modulation. However, under more realistic conditions
with noisy detectors, the discrete modulation protocols appear to quickly lose their advantage
as a function of the detection noise, as compared to the Gaussian modulation protocols. We
emphasize that this preliminary analysis requires further detailed investigations going beyond
the scope of this section.

3.5.3 Comparison of telecom with microwave carriers

For a practical evaluation of the CV-QKD protocol, one additionally uses a SKR, Ry. The latter
evaluates the amount of secure bits per second that can be obtained from the communication
protocol. In the asymptotic case, one can express the SKR, Ry, in bits per second using the
secret key as

Ry =i K, (3.53)
where f, represents the effective repetition rate (in symbols per second). This rate encompasses

all information post-processing steps, such as sifting, parameter estimations [154] [I81], and
experimental bandwidths of the involved devices. We use an upper bound on the SKRs, R,
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derived from the Shannon-Hartley theorem and the Nyquist rate [90]

A
Ry<R= 7“ K, (3.54)

where Aw /27 denotes the experimental detection bandwidth. This upper bound becomes es-
pecially useful when comparing different physical QKD platforms. We compare the microwave
CV-QKD performance to that at telecom frequencies. For this purpose, we define and numeri-
cally compute a communication crossover distance d., i.e., the maximal distance for which the
microwave SKR is larger than the telecom SKR, expressed as

d. = max{d| Ry > R}, (3.55)

where d corresponds to communication distance, while R, and R are the SKRs for the mi-
crowave and telecom carrier frequencies, respectively. Secret keys are computed in the asymp-
totic regime using Eq. (3.28). According to Eq. (3.54), it is relevant to optimize the detection
bandwidth to achieve high SKRs. To this end, we assume an experimental broadband squeezing
generation and detection at 1550 nm wavelength over a bandwidth of Awie /27 = 1.2 GHz with
a quantum efficiency of 7 = 0.53, as shown in [182]. In this experiment, the authors also report
a measured squeezing level of 3dB, which we will use as a reference level of vacuum squeezing
for both the microwave and telecom regimes. We compute the corresponding crossover distance
as a function of the microwave detection bandwidth Awy,,/27. Here, we additionally account
for a nonunity quadrature quantum efficiency 7, as explained in Sec.[3.4.4] and modelled in
Eqs.[3.36]3.37

The corresponding results are shown in Fig.[3.14] for both DR and RR. Interestingly, we
observe that the microwave CV-QKD protocol can outperform the telecom counterpart for
realistic values of Awy,, /27 and Ny,. A clear distinction can be seen between the two rec-
onciliation cases. For the DR case, it is beneficial to aim at a quantum efficiency close to
unity and large detection bandwidths. The situation is noticeably different in RR. For the
latter, we observe that above a certain detection bandwidth the optimal quantum efficiency is
no longer unity. Instead, there exists an optimal detection noise added by Bob, which maxi-
mizes the SKR depending on the detection bandwidth. The existence of an optimal quantum
efficiency is a remarkable feature of RR, which arises when Bob couples additional (trusted)
noise during his measurements [134], as discussed in Sec.[3.2] To illustrate the influence of
the quantum efficiency and the detection bandwidth, we envision two different microwave ho-
modyne detection cases implemented by a phase-sensitive amplifier. First, we choose a high
detection bandwidth Awy,,, /27 = 3 GHz with the quantum efficiency of 7y, = 0.345. This
case is motivated by the existing state-of-the-art superconducting TWPA devices operated in
the phase-insensitive regime [I83] [I84]. The second case considers the detection bandwidth of
AWy /2m = 1.2 GHz = Awye /27, and the quantum efficiency of 7, = 0.695, such that both
cases yield the same DR crossover distance. These parameters originate from recent results on
broadband squeezing in the microwave regime [I85] [I86]. By using this set of already experi-
mentally feasible parameters, we can reach the crossover distance of d. = 16 m for both cases.
For RR, we observe that the crossover distance can be increased to d. = 25m. The reason
is that RR benefits from quantum efficiencies below unity as stated before. Remarkably, high
SKRs, R, of a few Gbits per second can be reached for all of the previously mentioned sets
of parameters. However, we stress that the computed SKRs R are merely upper bounds for
realistically achievable rates. Existing telecom QKD implementations reach secure key rates up
to a few Mbits per second [I87, [188] [189]. Aside from finite quantum detection efficiencies and
bandwidths, practical SKRs are also limited by various factors, such as actual experimental rep-
etition rates [I54], device-induced noise [I8§], finite-size effects [149], or post-processing [190].
Nevertheless, microwave quantum communication looks clearly relevant for short-distance clas-
sical communication situations compatible with the Wifi 802.11 standard (communication range
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Figure 3.14: Crossover distance d. between microwave and telecom CV-QKD. Panels (a) and (b)
illustrate the DR and RR cases, respectively. SKRs are computed according to Eq. combined
into Eq. . For the telecom and microwave wavelengths, we assume transmission losses e =~
2.02 x 1071 dB/km, and Yy ~ 6.3 x 1072 dB/km, respectively. For both DR and RR, the SKRs, R,
of both detection cases are shown on the right column as a function of the communication distance
d. The top blue (bottom green) inset represents a comparison between microwave and telecom SKRs
for the quantum efficiency 7w = 0.695 (Nmw = 0.345) and detection bandwidth Awpy /27 = 1.2 GHz
(Awmy /27 = 3.0 GHz).

~ 70 m), Bluetooth 5.0 ( ~ 240 m), or more recent technologies, such as 5G (~ 300 m) because
of their matching frequency ranges, distances, and technological infrastructure.

3.5.4 Weather induced loss effects

So far, we have investigated open-air CV-QKD under ideal weather conditions. We extend our
analysis by investigating the effects of weather conditions on secure open-air quantum commu-
nication. It is well-known that realistic, non-optimal weather conditions may drastically affect
absorption losses for propagating signals. Such effects are especially prominent in the telecom
frequency range. In fact, both telecom and microwave classical communication approaches are
known to suffer differently from weather imperfections such as rain or haze, whereas microwave
signals are more resilient to such perturbations as compared to telecom signals. Here, we focus
on how these properties translate to the quantum regime.
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losses (dB/km) . - :
frequency ideal rain light /heavy light haze/ haze
microwave 6.3-107% | 7-107%/1.22-107% | 6.4-1073/6.7- 1073
telecom 2.02- 10" 1.91/4.17 1.55-10°2/17

Table 3.1: Absorption losses for microwave and telecom signals under different weather conditions.
For ideal conditions, we assume a visibility of 23km, for light (heavy) rain a rain rate of 7mm/h
(2mm/h), and for light haze (haze) a visibility of 1km (4km).

Non-optimal weather conditions.

We focus on two non-ideal weather scenarios: rain and

haze. In the context of microwave communication, the International Telecommunication Union
(ITU)-R P.838-3 [191] and ITU-R P. 840-6 [192] recommendations provide empirical prediction
models for the induced attenuation on propagating microwave signals due to rainfall and haze,
respectively. More precisely, the specific attenuation 7y, due to rain along a horizontal path
can be expressed as [193]

where K ((dB/km) / (g/cm?)) is the linear attenuation that depends on the considered mi-
crowave frequency w/2m and water temperature 7" in the atmosphere. The liquid water concen-

Vmw,r = k (w> R?(w)7

where k and « are coefficients which depend on the communication microwave frequency w/2m,
while R, (mm/h) is the rain rate. The haze specific attenuation v, can be obtained from the
liquid water concentration M (g/cm?) using a linear relationship as [194]

Ymw,h = Kl (w, T) M7

(3.56)

(3.57)

tration can be related to a physically more intuitive quantity, the so-called visibility V' (km).

The latter represents the distance at which the light intensity from an object drops to 2% of its
initial value [177]. For a non-polluted environment, one can link two aforementioned quantities

as [195]

where a = —log (0.02) /99 and b = 0.927!. For the telecom frequencies, rain causes a wavelength

(3.58)

independent attenuation. The specific attenuation 71, can be expressed for a horizontal path

as [177]

where R, is the rain rate, £k = 1.076, and a = 0.67. The haze-specific attenuation is empir-

VYtelr = k R?a

(3.59)

ically derived similarly to the microwave case. Once again, visibility determines the specific
attenuation e ,. Empirical models for the Mie scattering show that [177, [196]

_¢
TAh = v

A
550

) —p(V)

(3.60)

where C' = 39.1 log (e), A (nm) corresponds to the selected telecom wavelength, and p is a

scattering coefficient that depends on the considered visibility range and varies from 0 to 1.6

[177, [196].

Effects of weather conditions.

In order to study the effect of non-optimal weather con-
ditions on the CV-QKD secure key rates, we consider following specific situations: (i) light

(heavy) rain with the rain rate R, = 2mm/h (R, = 7mm/h) and (ii) light haze (haze) with
a visibility V' = 4km (V' = 1km). We compare the telecom and microwave SKRs in Fig.|3.15|

For the detection bandwidth and quantum efficiency, we stick to the previously analyzed set
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Figure 3.15: SKRs of the CV-QKD protocol for various weather conditions. Telecom (brown lines)
and microwave (blue lines) SKRs, R, are computed for DR in panel (a) and for RR in panel (b) as a
function of the communication distance d for the squeezing levels of Siq = Smw = 3dB. The insets
correspond to a zoom for the telecom SKRs. Three different weather conditions are considered: ideal
weather conditions (visibility of 23 km), light rain (heavy rain) with a rain rate of 2mm/h (7 mm/h),
and light haze (haze) with a visibility of 4km (1km). The choice of quantum efficiency and detection
bandwidth is the same as for the ideal weather conditions.

of parameters (Awye/2m = 1.2 GHz, e = 0.53 and Awy,y /27 = 3GHz, Ny = 0.345). For
completeness, we show in Tab.[3.1] the specific attenuations for microwave and telecom signals
depending on the considered weather conditions. We find that short-distance microwave QKD
for our parameter choices could potentially yield higher SKRs than the telecom case. The rea-
son is that microwave QKD benefits primarily from higher experimental bandwidths, further
enhanced by lower losses at imperfect weather. We note that telecom QKD allows for secure
communication over much larger distances, up to d ~ 140 km using RR. This result is expected
as optical CV-QKD is known to reach kilometre-long secure communication [I37, 144]. These
distances are significantly reduced when the effects of rain and haze are taken into account.
For these weather conditions, the maximum secure telecom communication distances is strongly
reduced to ~ 300m (7km) and ~ 70m (1.7km), for DR (RR), respectively. Conversely, for mi-
crowave frequencies, the maximum secure communication distance is almost unchanged in both
reconciliation cases compared to that obtained for the optimal weather conditions, highlight-
ing the robustness of microwave CV-QKD to weather effects. The most significant difference
arises when considering the effect of light haze. Remarkably, haze induces little-to-no extra mi-
crowave losses. Even strong haze and fog only weakly disturb microwave signals by causing a
small additional attenuation of around 1 x 1073 dB/km. The latter holds even when visibility is
reduced to less than 500 m. In contrast, reducing the visibility below 1 km would generate large
losses (more than ~ 20dB/km) for the telecom signal frequencies, preventing any possibility
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of a long-distance secure quantum communication with a meaningful SKR. These results indi-
cate that an ideal quantum open-air communication network could consist of a combination of
microwave-based channels for short distances (d < 200m) and telecom-based channels for long
distances (d > 200m). It would also be important to develop microwave open-air CV-QKD
for short-range applications, such as building-to-building communication, where the microwave
signals are mostly undisturbed by any change in weather conditions.

3.5.5 Summary on open-air CV-QKD in the microwave regime

In conclusion, we have performed a comprehensive analysis of microwave CV-QKD and demon-
strated its potential for applications in open-air conditions. We have shown that quantum
microwaves can yield positive SKRs for short-distance communication for both the DR and
RR cases. Our calculations rely on empirical models for microwave and telecom atmospheric
absorption losses. We have estimated the related microwave and telecom-specific attenuation
values for optimal weather conditions to be 6.3 x 1072 dB/km and 2.02 x 10~ dB/km, respec-
tively. In our analysis, we have assumed microwave homodyne detection based on state-of-the-
art TWPAs. Our model for the CV-QKD protocol predicts positive SKRs for the microwave
regime over distances of around 200m. We have extended our analysis to include imperfect
reconciliation and finite-size effects. Here, we have found that an imperfect reconciliation only
marginally limits the communication distance and that finite-size effects can be overcome using
a key length of N > 10°. We have employed this model to compare the microwave and telecom
cases for different detection quantum efficiencies and bandwidths. Our results show that, based
on parameters of state-of-the-art technology, the microwave CV-QKD can potentially outper-
form the telecom implementations for short distances of around 30m in terms of the SKRs.
From our analysis, it appears that both reconciliation scenarios are relevant. In particular, DR
is favored for high quantum efficiencies and offers a better robustness to coupled noise from the
quantum channel compared to RR, while the latter allows for applications with rather lower
detection quantum efficiencies 7. The RR case also exhibits a nontrivial dependence of the
SKR, R, on 7, which can be explained by the positive impact of detection noise on the protocol
security.

Finally, we have considered the open-air CV-QKD protocol under nonideal weather con-
ditions of rain and haze. We have found that these nonidealities strongly reduce the secure
communication distance for the telecom regime, from 140 km to several hundred meters. Re-
markably, the microwave open-air CV-QKD protocol appears to be largely immune to these
weather imperfections, with its secure communication distances staying mostly unchanged.
These results encourage first prototypes of secure microwave quantum local area networks and
lay the foundations for hybrid networks, where short-distance secure communication is carried
out by microwave quantum signals. Such a hybrid quantum network offers the advantage of pro-
viding potential high SKRs and robustness to weather imperfections, while relying on telecom
setups for long-distance communication. Short-distance microwave quantum communication se-
cure platforms could also complement current classical microwave communication technologies,
such as Wifi, Bluetooth, and 5G due to the intrinsic frequency and range compatibilities.
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Chapter 4

Experimental techniques

Experimental implementation of quantum communication at gigahertz frequencies requires
cryogenic systems with associated room-temperature electronics allowing for precise control
and measurement of microwave signals. In Sec.[4.I] we introduce the main cryogenic system
used in this thesis with a corresponding room-temperature detection chain. In our experiments,
we perform Wigner function tomography based on measured, digitized, and filtered signals. Our
analysis relies on a reference state reconstruction method from which we extract signal moments
up to the fourth order. In the case of ideal Gaussian states, the knowledge of moments up to the
second order is sufficient. In Sec.[d.2], we present the JPA chip packaging with additional char-
acterization measurements to determine experimentally relevant properties. Finally, in Sec.{4.3]
we discuss calibration measurements which provide all necessary experimental parameters for
our CV-QKD protocol. These calibrations are based on an advanced 2D Planck spectroscopy
[197], serving as a novel and precise technique to extract the amount of losses present at the
sample stage of our cryogenic setup.

4.1 Experimental setup

In this section, we focus on our experimental setup, which includes both the cryogenic sys-
tem and the associated room-temperature signal detection chain. First, Sec.[4.1.1] introduces
a 3He/*He cryogenic dilution refrigerator unit. The dilution fridge houses experimental com-
ponents required for our CV-QKD protocol implementation. All relevant room temperature
devices used in our measurements are presented in Sec.[4.1.2] where we discuss signal processing
steps including digital filtering of measured signals, followed by a digital /@ demodulation.
This signal processing relies on measurements of microwave signals outgoing from our cryogenic
system using a field programmable gate array (FPGA). The corresponding FPGA detection
setup processes the aforementioned signals, performing both filtering and down-converting them
to the intermediate frequency of 11 MHz. Details about this setup are shown in Sec.[.1.3
Lastly, in Sec.[.1.4] we explain the reference state tomography method and computation of
signal moments up to the fourth order.

4.1.1 Cryogenic setup

Our experiments are based on superconducting microwave circuits, which allow for the engi-
neering of quantum states necessary for the CV-QKD protocol implementation. The quantum
properties of these circuits are extremely susceptible to the presence of noise photons. For
instance, quantum entanglement degrades rapidly as a function of noise and completely disap-
pears at 1 coupled noise photon, a process known as the sudden death of entanglement [198].
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Figure 4.1: Photograph of the dilution cryostat with labelled temperature stages, and selected mi-
crowave components. The aluminium boxes contain the JPA samples used in our experiments.
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Similarly, squeezing is strongly sensitive to the presence of noise [27]. More generally, super-
conducting devices require the use of cryogenic techniques to cool them well below the liquid
helium temperature of 4.2 K. At the same time, in the microwave regime, the energy scale of
microwave photons at a frequency around 5 GHz is about 5 orders of magnitude smaller than
for optical photons at frequencies around 190 THz. As a result, it is important to ensure a low
mean noise photon number, 7 < 1, in experiments. As a results of working with commonly low
power signals, one must additionally strongly amplify these signals for them to be detected and
measured. A conventional method of amplification of microwave signals in cryogenic setups
relies on the use of cryogenic high-electron-mobility transistors (HEMTSs) with typical gain val-
ues of Gy ~ 40dB. These amplifiers also add around 10 noise photons referred to their input
during the amplification, which represents a major limitation for measurements of microwave
quantum signals [I73]. Based on Sec., HEMT'Ss are limited by the SQL and necessarily add
at least half a noise photon per quadrature (see Sec.. This added noise implies that many
essential quantum correlations, such as entanglement or vacuum squeezing, are lost after the
HEMT amplification. However, the original quantum information arising from these quantum
properties is contained within in the amplified signals.

The cryostat system used in the experiments presented in Chap.[j]is a commercial Triton
system from Oxford Instruments [I99]. We use this cryogenic unit to cool down our experimen-
tal components to the base cryogenic temperature of 7' ~ 15 mK. The refrigerator is composed
of several temperature stages, highlighted in Fig.[{.1] The different temperature stages are
precooled using a small part of a 3He / He mixture, extracted from a 810 mbar mixture tank,
representing a few millibar of pressure loss in the tank. The precooling is achieved notably via
a two-stage pulse tube refrigerator (PTR). During this step, the small amount of mixture is
pumped and circulates inside the precooling circuits, allowing for precooling of the cryostat.
This small amount of mixture is pressurized to roughly 2.5 bar at a compressor provided with
the Triton system. The first two temperature stages, labelled “PT1” and “PT2” respectively,
are designed to be eventually cooled to working temperatures of 7'~ 50 K and 7' ~ 4 K. Three
additional temperature stages are present, labelled in order “still”, “cold plate”, and “mixing
chamber” (MC). Once the still and MC stages reach temperatures below 10 K, the precooling
mixture is evacuated back into the mixture tank using a turbo-molecular pump (TMP) with a
scroll backing pump. Then, a full condensation of the entire mixture is started. The coldest
temperature of the refrigerator is obtained at the MC, with a minimum temperature as low as
T ~ 15mK in our experiments. At this temperature, there are two phases of the *He / ‘He
mixture in equilibrium, namely a concentrated phase (nearly 100%) of *He and a dilute phase
(about 6.6% of 3He and 93.4% of *He). These two phases are separated by a phase boundary
with the lighter concentrated phase sitting on top of the heavier dilute phase. By pumping on
the dilute phase, mostly *He is removed from this phase and has to be continuously transferred
from the concentrated to the dilute phase across the phase boundary to keep the minimum 3He
concentration in the dilute phase. The enthalpy of *He in the dilute phase is higher than in the
concentrated phase and additional energy is required to allow >He to cross the phase boundary.
This energy is extracted in the form of heat from the environment thus making the dilution an
endothermic process [200, 201]. As a result, the flow rate of *He directly determines the cooling
power. In the dilute phase, 3He is pulled by an osmotic pressure gradient to the still. On its
way up, the cold dilute *He additionally cools, through heat exchangers, the 3He circulating
downward towards the MC. Considering there is a finite pumping power in the system, heat
is supplied at the still stage to increase the vapor pressure of 3He, higher than the one of *He,
in order to maintain a steady *He flow. However, the still cannot be excessively heated be-
cause ‘He would start to evaporate significantly. Therefore, we commonly operate with a still
temperature of T" ~ 800 mK to compromise for both effects. For more technical details about
cryogenic dilution refrigerators, we invite the reader to consult Ref. [202].
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Figure 4.2: Experimental scheme of our CV-QKD implementation with propagating microwave states.
The superconducting magnetic solenoids are located on top of the JPAs. All microwave signal sources
are modulated using an AWG, and all devices are referenced to a 10 MHz clock signal. The noise
generator is an AFG 81160A from Keysight, and the AWG is a HDAWG from Zurich Instruments.
The current sources are 6241A sources from ADCMT.
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In the cryogenic system, input radio-frequency (RF) lines are installed through all temper-
ature stages using stainless steel (SS) cables. These cables are mechanically stable and robust
at cryogenic temperatures, possessing low thermal conductivity as desired for efficient thermal
decoupling of the cryostat stages [201]. However, these cables are characterized by significant
losses of several dB/m at gigahertz frequencies. This property is not a critical limitation for the
input lines, as long as the cooling power of the dilution cryostat at each temperature stage is
sufficient to sustain the heat load induced by signal dissipation. Additionally, we attenuate the
input lines using microwave attenuators in order to suppress incoming thermal noise, bringing
it into equilibrium with millikelvin temperatures [203]. We commonly use attenuation of 20 dB
for the first PTR stage (PT1, see above), 10dB for the second PTR (PT2) and still stages,
and 6dB for the cold plate and MC stage. For the input lines which we use for sending the
pump signals to our JPA samples, we use lower attenuation values, as we require strong, on
the order of —50dBm, signals in order to enable desirable parametric amplifications. At the
sample stage, we use NbTi superconducting cables with low microwave losses at cryogenic tem-
peratures of 5 x 1072 dB/m [204]. These low losses are important in our experiment to preserve
the quantum properties of propagating microwave quantum states before amplification. The
inner and outer conductors of our superconducting coaxial cables are made of NbTi and are
manufactured by CoaxCo (Japan). These cables are terminated at each end with crimped SMA
connectors. We ensure that all microwave connectors have a low impedance mismatch from
the desired target of Z = 50€2. We determine this impedance mismatch using a time domain
reflectometer (TDR) and target mismatch values around 2 (). At the sample stage, cables and
microwave components of our experimental setup are thermally and mechanically anchored to
a silver rod, which is itself connected directly to the MC stage. To ensure good thermalization,
we use additional silver ribbons attached to each component and the silver rod. After bending
these ribbons in a desired shape, we anneal them at 900°C for one hour in vacuum, in order to
improve their thermal conductivity. To provide electric currents to flux-bias JPAs, we rely on
dc looms running through the cryostat. The looms are connected to several pin connectors that
house twisted pairs of thin superconducting wires. These wires connect to various experimental
components such as thermometers, heaters, or superconducting coils. We mention that further
technical details about the cryostat can be found in Ref. [205].

4.1.2 Experimental setup

In this section, we discuss the experimental setup used in this work, as shown in Fig.[4.2] The
setup is composed of two JPAs connected in series with two cryogenic directional couplers
in between. Both JPAs are pumped individually with microwave signals generated by room
temperature microwave sources (SGS 100A from Rohde & Schwarz). During measurements with
one of the single JPA, the other JPA is detuned far from resonance in order to avoid unwanted
interferences. Typically, this detuning is around several tens of megahertz and is implemented
by changing the magnetic flux controlled by individual JPA magnetic coils. Additionally, each
JPA is encapsulated in an aluminium box to prevent magnetic flux crosstalk between them and
shield them from stray fields. The first directional coupler is used to perform the displacement
operation of quantum states and is connected to another microwave source (SGS 100A from
Rohde & Schwarz). The second directional coupler is used to controllably couple Gaussian noise
to prepared quantum states. The noise coupled to the second directional coupler is generated by
an arbitrary function generator (AFG 81160A from Keysight) acting as a quasi-Gaussian noise
source with a crest factor of 7, meaning that the noise signal is limited by a +7¢ window, with o
being the standard deviation of the corresponding Gaussian distribution. This Gaussian noise
has a spectral bandwidth of 200 MHz and is up-converted to carrier frequencies around 5 GHz
using a mixer driven by an additional microwave source (SGS 100A from Rohde & Schwarz).
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Figure 4.3: Photograph of the room temperature down-conversion setup. A signal from our cryostat
is amplified by an RF amplifier before down-conversion in the image-rejection mixer, driven by the
external LO, to the intermediate frequency range. An additional RF and IF amplifiers are used to
further amplify signals.

The output signal after the HEMT (LNF-LNC4_8F from Low Noise Factory) is amplified by
a room-temperature RF amplifier (AMT-A0033 from Agile MwT). We use a vector network
analyzer (VNA) for spectroscopic measurements of both JPAs in order to characterise their
flux-dependent frequency response. Amplified signals are filtered around a center frequency
using a bandpass filter before being down-converted to the IF frequency of 12.5 MHz with the
image rejection mixer driven by a local oscillator (LO) signal originating from an additional
SGS source.

The data processing, resulting in I/ sampled data points, consists of a digital down-
conversion (DDC) and a filtering using a digital finite-impulse response (FIR) filter with a
full measurement bandwidth of 400 kHz. We compute the quadrature moments <I "’Ql> for
k+1 <4 ((n,m)eN?) from 2.475 x 10® filtered I/Q points. Using the reference state
reconstruction method (Sec. below), we experimentally extract the phase of measured
signals and adjust the corresponding phase of the signal generators in order to stabilize the
aforementioned angles around desired target values during hours-long measurements. The angle
drift in our experiments is typically on the order of 1°/h and varies depending on the used room
temperature sources, stability of magnetic fields, and other imperfections. For state tomography
measurements, the angles are continuously adjusted. For single-shot measurements, where
no data averaging is performed, we restrict the data analysis to single I/Q points and do
not continuously adjust the phase of the signal sources. Knowing the signal phase drift, we
adapt measurement times such that all signal phases remain stable within less than 1 degree
from their corresponding desired values. For state tomography measurements, we switch on
measurement, devices only during specific time windows. This is achieved using an arbitrary
waveform generator (AWG) (HDAWG from Zurich Instruments), which generates square pulse
trains to trigger measurement devices for a specific, tailored time window. For calibration
measurements, we split this time window into N identical intervals, where N is the number of
involved quantum states, which depends on the specific calibration measurement (see Sec.
for details).

We note that for state tomography purposes, one of these intervals necessarily corresponds
to a measurement with all signal generator devices switched off. The HDAWG additionally
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Figure 4.4: Down-conversion principle. An input signal at the frequency wgrp is down-converted to
the intermediate frequency wip within a full measurement bandwidth B = 400kHz using an image
rejection mixer with a LO at the frequency wrpo = wrr + wir. Such a mixer strongly attenuates the
blue sideband signal at a frequency w,s + 2wir, which would otherwise be down-converted to the IF
frequency as well, inducing additional noise that could limit detected squeezing levels.

provides a 1.6 V rectangular trigger signal for the FPGA card to start signal recording and for
a proper synchronization of the data acquisition as well as of the devices. The VNA, HDAWG,
FPGA, and LO are synchronized by a 10 MHz reference signal from a S725 rubidium frequency
standard from Stanford Research Systems. The microwave signal sources are daisy-chained to
the LO using the 1 GHz reference signal for better phase stability.

4.1.3 Heterodyne detection setup

Our measurement setup is based on a heterodyne detection setup with the purpose of com-
puting /@) quadratures of signals coming from our cryostat. These quadratures can be used
for the computation of their statistical moments and Wigner tomography. Radio frequency
(RF) signals at the output of our cryostat are amplified by a room-temperature RF amplifier
(AMT-003 from Agile MwT) with a gain of 28 dB. Signals are processed through the down-
conversion setup shown in Fig.[4.3] There, a first bandpass filter has a bandwidth from 4.9 GHz
to 6.2 GHz (VPFZ-5500-S+ from Mini-Circuits) before an image rejection mixer (IRM4080B
from Polyphase). The latter down-converts RF signals at a frequency, wy¢, to a desired interme-
diate frequency (IF), wir, using a microwave source (SGS 100A from Rohde & Schwarz) that
acts as a LO. The frequency of the LO signal is chosen according to wio = wrr + wir. Note
that the use of an image rejection mixer is critical to avoid the presence of down-converted
signals from a mirror frequency wrr + 2wir. The IF frequency is chosen to be commensurable
with the signal sampling frequency of ws = 125 MHz and is set to wr = 12.5 MHz.

The overall down-conversion principle is illustrated in Fig.[4.4. This IF frequency is also
advantageous, because it is sufficiently detuned from the clock reference frequency of 10 MHz.
This clock signal (provided by the S725 rubidium frequency standard) also allows for a proper
phase synchronization of all experimental devices. Down-converted signals are strongly ampli-
fied by an IF amplifier (AU-1447-R amplifiers from Miteq) with a gain of 58 dB. We note that
this process introduces additional noise in the amplified signals. However, the noise properties
are primarily determined by the first amplifier in our amplification chain and are not limited
by this noise. Resulting signals are guided to the FPGA device, where analog signals are digi-
tized and processed. The digitization is performed based on the National Instruments NI-5782
transceiver module with an analog-to-digital converter (ADC) with a 14-bit resolution, while
the connected National Instruments PXIe-7972R FPGA processes the recorded data in parallel.
The FPGA sampling frequency of ws = 125 MHz is seemingly doubled in our experiment as two
recording channels of the FPGA are used in parallel and combined in data analysis. Recorded
data points {A(t;) }icp,n are used to perform a digital //@) demodulation of a measured signal
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Figure 4.5: Schematic for the data acquisition and processing of our FPGA. An input signal is digitized
by an ADC and subsequently digitally demodulated, resulting in pairs of I/Q points. They are
digitally filtered using a FIR with 90 coefficients from which I/@Q moments up to the fourth order
are computed. The data is then sent to a measurement PC for further post-processing. There, using
a photon number calibration factor, I /() moments are converted into signal moments from which
experimental parameters are extracted. The moments are calculated over M measured traces before
being sent to the measurement PC. The overall process is repeated L times.

A as . .
I(t) = wIr / o A(T) cos(wrpT)dT =~ adL ZA(ti) cos(wirt;),
o o 4.1
w 27 w N ( : )
wIF . .
Q(t) = %/t A(7) sin(wrpT)dT =~ chF ;A(ti) sin(wirt;),

where the digitization times are chosen as t; = tg + 2mi/ws and N corresponds to an integer
such that the integration time corresponds to exactly one IF period. It is computed as N =
st/wIFJ = 10, with [-] being the floor function. The initial time, to, corresponds to the
beginning of the measurement while the index 7 is such that the time ¢ fits in the interval
[ti,ti11]. For completeness, we mention that each I/Q at a time ¢ is obtained from the average
of both recording channels. In order to reduce the detection noise after demodulation, we
use a digital finite impulse response (FIR) filter which sets the measurement bandwidth to a
single-sideband value of B = 200 kHz.

The digital filtering operation is implemented using a sequence of coefficients h,,, referred
to as an impulse response sequence, within a window of NV points. A filtered point at a time
t,, as defined in Eq. with the convention ¢, = 0, is denoted y, = y(t,) and computed
according to

N N
Yn = Z hp x(t, — ty) = Z Ry Ty to- (4.2)
k=0 k=0

Here, z,_; denotes an input signal digitized at a time ¢, — t;. In our experiments, we use
N = 90 points to compute the filtered signal points, y,. For each subsequent computation, this
window of points is shifted by one input data point to the right. For instance, the ensemble
of input data points {x,_n11,...,Z,} is used to compute the filtered data point y,, while the
ensemble {z, ni2,...,Z,41} 18 used to compute the data point y,,1. To guarantee a finite re-
sponse time and design a desired frequency response of the filter, the impulse response sequence
is multiplied by a weighting window sequence, w,,. These weighting coefficients are chosen ac-
cording to a Hamming window centred around the IF frequency wir with the cutoff frequency
of 200 kHz. The filter coefficients are obtained using the Filter Designer interface of MATLAB,
provided by its DSP system toolbox. We note that smaller filtering bandwidths below 200 kHz
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are possible but more computationally demanding, limited in practice by the available mem-
ory in the FPGA. We refer to Ref.200] for technical details about this signal data processing
and associated FPGA implementation. Subsequently, filtered /@ points are used to compute
I/Q moments (I*Q'), with (k,1) € N2, such that k + [ < 4. Using a calibration measurement
as explained in Sec. we convert the computed I/() moments into corresponding signal
moments ((a')*a!). The data acquisition chain is shown in Fig.[4.5| Processed I/Q moments
are recorded within the first-in-first-out memory, which transfers the data to a host PC. Both
the FPGA image programming and data processing measurement code on the host PC are
implemented in the LABVIEW 2019 programming language. The host PC establishes a trans-
mission control protocol (TCP) channel with the FPGA, where data can be communicated in a
synchronized manner. Considering the previously mentioned aspects, each measurement cycle
is structured as follows. First, we record 1650 digitized and filtered I/Q) points, using 96.4% of
the available 16.02 Mbit block memory (BRAM) of the FPGA, at the digitization frequency of
ws = 125 MHz. Each filtered I/Q point corresponds to 10 x 1/(125x 10%) = 80 ns of signal trace,
implying a total time trace of 1650 x 80ns = 132 ps. Each time trace is repeated M times for
each measurement, with the final recorded I/() moments averaged over these M traces. Note
that the described implementation implies that filtered I/ points are completely statistically
independent from each other in time windows separated by 90 input digitized points z,,, result-
ing in a time separation of 90 x 80 ns = 7.2 ps. This aspect of our data processing is relevant for
the later data analysis of CV-QKD measurements, where processed data points, corresponding
to filtered /@ points, are required to be independent samplings.

4.1.4 State tomography

In this section, we describe a state reconstruction method for data analysis. We rely on the
reference state reconstruction [52, 207]. Its main idea is to use a known state as a reference to
calibrate the photon statistics of the amplification chain. Assuming that these properties remain
constant during measurements, this calibration allows the extraction of statistical moments of
cryogenic quantum signals from measured noisy data at room temperature. In the microwave
cryogenic experiments, the HEMT noise dominates the noise figure of the amplification chain.
According to the Friis formula [I74], the added noise photon number from the amplification
chain, referred to its input, can be expressed as

N

Mot = — _“ R 4.
Mot ZH“G mr e e T (43)

i=1

where each subsequent amplifier gain is denoted as G; with its associated noise n;. If the HEMT
is the first amplifier in the chain, we see from Eq. that the following noise contributions
can be neglected, owing to the large HEMT gain values of around 40 dB. For instance, typical
commercial room-temperature amplifiers add a mean noise photon number on the order of
n < 10 for microwave signals with a frequency between 4 to 8 GHz. As such, we can consider
that our amplification is limited by the HEMT noise.

The principle of the reference state tomography method is shown in Fig.[4.6] A general signal
envelope S mode at the output of our amplification chain, and normalized by the amplification
chain gain G, can be written using the amplification Gaussian channel from Eq.

N 1 ~ ~
= ﬁ(\@d +VG—1h}) =a+h', (4.4)

where modes hy and h = /1 — 1/G hy are noise (bosonic) modes. Note that with this conven-
tion, A is only a bosonic mode in the limit G > 1. Here, the mode a represents a quantum state
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Figure 4.6: Principle of the reference state tomography. (a) A known reference state, a,, a weak
thermal state, is used to determine the properties of our amplification chain, characterized by a noise
operator h. (b) An unknown input state a is deduced from our measurement, assuming that the
amplification chain properties remain similar to those during the measurement of the reference state.
In our experiments, these two steps are typically measured back to back over a few dozen microseconds.

before amplification. From Eq. (4.4)), we can express any signal envelope moments ( S K (5' ),
with integers (4, j), such that i + j < 4, as a function of the signal moments ((a')’ (a)’) and
noise moments ((h) (h)’). For instance, one can derive

() = (a) + (hTY,  (STS) = (afa) + (ATh) + 1 + 2Re((a) (A1), (4.5)

where we use the fact that the modes é and h commute, as they are uncorrelated. Accounting
for the fact that the noise mode, ﬁ, is assumed to be a thermal state, equations for signal
envelope moments can be further simplified. As shown in Eq. , equations of second-order
signal envelope moments involve first-order signal and noise moments. In general, the equation
of signal envelope moments of order m uses signal and noise moments of order [ < m. In the
reference state reconstruction method, we first measure signal envelope moments ((ST)? (S,)7)
based on Eq. assuming a known input mode & = a,, serving as a reference. In our
measurements, this reference state is a weak thermal state obtained by switching off all signal
generator devices. The temperature of this thermal mode can be extrapolated to be the cryostat
measured (photonic) temperature, which is about 7' = 68 mK in the experiments discussed in
this chapter and Chap.. Having knowledge of the photon number conversion factor (PNCF),
%, and reference signal moment values, we extract noise moment values ((h?) (h)7). Here, we
additionally treat these noise moments as constant within a given reference state measurement.
After measurements using the reference mode a,, we repeat the same signal envelope moment
measurements with an unknown, to-be-reconstructed signal mode a. More precisely, we solve for
unknown signal moments ((a)’ (a)7) in signal envelope moment equations such as in Eq. (4.5)).
A full set of general solutions can be found in Ref.208. In our experiments, signal envelope
moments are extracted from measured quadrature moments (I*Q%), with {(k,1)|k +1 < 4}
where I/@Q) coincides with the in-phase and out-of-phase quadratures introduced in Sec..
These moments are related as

F4i0  oearan (1 +iQHI ~iQ))
\/E 7<S(S)>_ (\/E)k"'l )

where x is the PNCF, which is introduced in Sec.[4.3.1,. Based on this technique, any moments
of an unknown signal mode a can be computed. However, this method is not suited for the

)S\Y:

(4.6)
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reconstruction of an arbitrary quantum state. This originates from the fact that the full tomog-
raphy of an arbitrary quantum state requires knowledge of order signal moments up to infinity
[209], whereas experiments are limited to measurements of a finite number of moments [24], 210].
However, this limitation can be circumvented for the case of Gaussian states as mentioned in
Sec.[2.2.2] where the information about first and second moments is necessary and sufficient
to fully reconstruct any unknown Gaussian state. Additionally, to verify the Gaussianity of
our states, we compute moments up to the fourth order in our experiments. As explained in
Sec.[4.3.2] moments up to the fourth order are enough to estimate when reconstructed quantum
states are no longer Gaussian. For a given Gaussian state, we write its Wigner function, giving
all information about the Gaussian state, using Eq. as a function of first and second order
signal moments

Wia.n) = o~ (04 12— @7 - 2Relir/aie - @P) ). @

where & = ¢ +ip, p = (a®) — (a)?, v = (a'a) —‘(d)‘z, and M? = (v+1/2)2 —|u|>.

We note that there exist other tomography techniques for microwave quantum states. An
alternative is the dual-path reconstruction method [49], which uses two signal paths and their
corresponding correlations to extract signal moments. It presents the advantage of not relying
on a reference state. However, its implementation necessitates an additional 50 : 50 hybrid ring
and two output channels (instead of one with the reference state method). Alternatively, one
can employ a qubit-based Wigner tomography of an arbitrary quantum state. This method has
been extensively used in many experiments, representing an efficient and robust method for
state reconstruction [211], 212] 213]. The main drawback of this method is its complexity and
requirement to have an efficiently coupled qubit system, which is not always possible. Lastly, we
comment that there is the possibility to perform state tomography of quantum states based on
histogram measurements using a parametric amplifier such as a JPA. This method is discussed
in more detail in Chap[5|

4.2 JPA characterization

In this section, we present information on the JPA sample packaging, flux tunability, gain char-
acteristics, and characteristic measurements. Section details the JPA sample preparation
and shows a typical JPA chip in our experiments. In Sec.[d.2.2] we focus on characteristic
measurements to determine the frequency range of measured devices. Additionally, we mea-
sure amplification gains of JPAs in the cases of both nondegenerate and degenerate regime of
parametric amplification.

4.2.1 Sample preparation

In our experiments, we use JPA chips fabricated in the Institute of Physical and Chemical
Research (RIKEN) in Japan. Each JPA chip consists of a A/4 microwave resonator in the
coplanar waveguide (CPW) geometry. The resonator is short-circuited to ground via a dc-
SQUID. The dc-SQUID is made using a shadow evaporation technique to produce Aluminium
superconducting electrodes with a thickness of 50 nm. The resonator and pump CPW lines are
fabricated using a sputtering technique and consist of a 50 nm thick layer of niobium [50} 54]. In
Fig.[4.7] we show a microscope image of the JPA chip. Each chip is packaged into a customized
sample box, shown in Fig.[4.§/(a). These boxes are made from an oxygen-free high thermal
conductivity (OFHC) copper and are gold-plated. The chip is glued in the center of the box
using a GE varnish glue. The signal and pump JPA inputs are interfaced using K-connectors
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Figure 4.7: Optical micrograph of a JPA sample. An overview of the chip is given in panel (a) with
aluminium (black) bonding wires. The signal port corresponds to the left CPW, while the pump port
designates the right CPW. The coupling capacitance is highlighted in the red box and is shown in
panel (b). The de-SQUID that provides flux tunability to the JPA resonance frequency is indicated
by the green box. A close-up of the de-SQUID area is shown in panel (c).

(K102F-R connectors from Anritsu), which are soldered to glass beads (K-100 glass beads from
Anritsu) located inside the copper housing. The connection between the glass beads and the
JPA chip is mediated through a custom printed circuit board (PCB) with a 50 2 matched CPW.
Aluminium bonds are used to connect ground planes and CPW lines of the JPA and PCBs.
To ensure better grounding of the PCBs, we add small quantities of silver glue between the
sample holder walls and the PCB edges. The resulting boxes typically have +3 €2 characteristic
impedance mismatches from the desired target of 50 {2 impedance. In order to avoid parasitic
magnetic crosstalks between different JPAs and protect those from stray magnetic fields, each
sample box is installed inside a custom-made aluminium box, which is superconducting below
the critical temperature of 7' = 1.2K. On top of each sample box, we mount a custom-
made superconducting coil. The coil holder is made of gold-plated OFHC copper where a
superconducting NbTi-wire is wound around, resulting in a magnetic field typically on the
order of a few pT. We fix the superconducting wire to the copper matrix using GE varnish
glue, which ensures reliable usage of the coils over many cryogenic cool-downs. A final assembly
of the sample box with the mounted coil is shown in Fig.|4.8|(b). Here, proper thermalization
of all components of the sample holder is important at millikelvin temperatures. To this end,
we add two thermally annealed silver ribbons, one positioned between the JPA box and the coil
and another between the JPA sample box and the aluminium box. The pump sample holder
output is connected to a flexible microwave cable (Minibend cables from Huber+Suhner) since
the JPA operation requires high pump powers, where extra microwave losses are not critical.

On the other hand, propagating squeezed states are very sensitive to even to small microwave
losses. To this end, we use a low-loss NbTi superconducting cable [204] to guide signals in and
out of the JPA sample holders. As our JPAs are measured in reflection, we use circulators
(CTH1184-KS18 from Quinstar) to separate incoming from outcoming signals. These circu-
lators generate stray magnetic fields and must be spatially separated from the JPAs to avoid
trapping magnetic flux before the aluminium magnetic shieldings become superconducting.
Additionally, magnetic shields are provided with the circulators which greatly reduce the mag-
netic field seen by other surrounding components. In order to minimize the pump crosstalk
between different JPAs, we use broadband circulators, with effective bandwidth of 4 — 12 GHz.
Additionally, we mount the circulators such that their main magnetic field component aligns
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Figure 4.8: JPA sample box. (a) Photograph of the JPA sample box with a JPA chip at the center.
The signal and pump ports are connected via a K-connector. The latter leads to a glass bead soldered
to a PCB. Aluminium bonds are used to connect both PCBs and the chip. (b) Photograph of an
assembled JPA sample box with a superconducting coil mounted on top of it. Silver stripes are used
to ensure good thermalization of the sample box and the coil. The box is fixed with brass screws to
the aluminium shielding box with an additional silver stripe placed in-between them.

in parallel to de-SQUID loops of JPAs.

4.2.2 JPA characterization measurements

JPA flux response. As a first step, we measure the frequency response of our JPAs as a
function of applied magnetic flux through the de-SQUID loop. To this end, we use a vector
network analyzer (VNA) to obtain the frequency response of one of our JPAs, during which
we set the magnetic flux of the other JPA to zero. The scheme of the measurement is shown
in Fig.l4.9/(a). We sweep the magnetic field by varying the coil current generated using a dc
current source (6241A source from ADCMT). In our measurements, we commonly use currents
in the range of £300pA. In Fig.[4.9|(b), we show a measurement of the phase response of the
scattering parameter Sg; as a function of the applied magnetic flux (proportional to the current
through the coil). This parameter is defined as the ratio between input and output voltages at
the ports of the VNA. The magnitude and phase response of the JPA reflection can be fitted
using Eq. for each measured flux point. The JPAs are designed to be in the overcoupled
regime, with the target external quality factor of Qe = 200. As a result, the JPA has a weak
magnitude response and strong phase one. The latter is shown in Fig.4.9[(b). An accurate
fitting of internal quality factors from the JPA response according to Sec.2.1.3]is difficult due
to a potential Fano interference, leading to large uncertainty for overcoupled resonators [214].
We note that for the used JPA circuit design, the presence of a separate pump port is known to
be a limiting element for the internal quality factor, as input signals can leak via the inductively
coupled pump line. Additional filtering of the pump line can partially prevent such a leakage
[215]. Lastly, we observe that our model prediction in Eq. is in agreement with the
measured JPA resonance frequency shown in Fig.[4.9]

Nondegenerate gain. The amplification properties of the JPA are of crucial importance
in this work. We measure nondegenerate gain profiles of our JPAs using the VNA, using
the identical experimental setup as for the flux-dependence JPA response measurements. The
VNA input and output ports are connected to the cryogenic system and used to measure
microwave reflection from the JPA input. Using the VNA, we perform a frequency sweep
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Figure 4.9: JPA characterization measurements. (a) General scheme for JPA characterization with
the VNA. A circulator separates incoming from outgoing signals at the JPA. A current source controls
the magnetic flux threading the JPA. (b) Phase ¢ of the complex scattering parameter So; plotted as
a function of the applied magnetic flux and probe frequency. We observe a periodic modulation of the
JPA resonance frequency in agreement with the model in Sec.2.1.4] The magnetic flux is generated
using a home-made superconducting coil mounted on top of the JPA. (c) Exemplary measurement of
the nondegenerate gain G as a function of the JPA pumping power. Lorentzian gain profiles, G(w)
(vertical cuts), are observed in agreement with the theory model presented in Sec.m

around a selected JPA resonance frequency. This frequency choice depends on the frequency-
dependent properties of all other microwave devices involved in the CV-QKD implementation,
where a frequency compatibility must be ensured. For this reason, the JPAs are designed with
nominally identical target frequencies around 5.7 GHz. Additionally, we choose to work close to
the JPA maximal resonance frequency. This approach is primarily motivated by the sensitivity
of the JPA to magnetic flux, which rapidly increases when detuning the JPA closer to ®,/2 and
results in extra noise. At the same time, frequencies in the close vicinity of the zero magnetic
flux JPA resonance frequency present low sensitivity to applied magnetic flux. As shown in
Eq. , parametric amplification effects are proportional to the derivative, Ow;y/0®ey, of the
JPA resonance frequency as a function of the applied external magnetic flux. For resonance
frequencies close to the zero flux resonance frequency, this derivative is comparatively small. As
a result, higher pump powers are required to obtain the same amplification gain as compared to
resonance frequencies with a corresponding larger sensitivity to magnetic flux. For higher pump
powers, we also introduce larger pump-induced noise, which degrades the JPA performance.
Additionally, a higher pump power implies a larger heat load on the MC of the cryostat,
leading potentially to elevated equilibrium temperatures in our experiments. For these reasons,
a good compromise between these two extremes must be preserved, which typically corresponds
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Figure 4.10: Degenerate gain measurements. (a) Degenerate gain measurements of the JPA 2 pumped
at the frequency wy, = 2wjy. The gain is determined as the ratio between an input coherent tone and the
corresponding amplified coherent tone power. The gain is measured as a function of the input coherent
tone phase and for different pump powers. (b) Exemplary 1—dB compression point measurements.
Degenerate gains are shown as a function of the input coherent tone power for different pump powers.
The 1—dB compression is determined as the input power for which the measured gain is 1dB below
its maximal, low-power value.

to the JPA working frequencies detuned on the order of ~ 100 MHz from the JPA zero flux
resonance frequency. In Fig.[4.9|(c), we show an exemplary nondegenerate measurement of the
measurement JPA| labelled JPA 2 in Fig.[4.2] In this measurement, we choose the resonance
frequency to be wy/2m = 5.52 GHz and apply the pump tone at the frequency w,, = 2w;. Using
the VNA, we send a probe signal at a frequency ws = w,/2 + dw, with dw a frequency offset,
and measure a corresponding scattering parameter magnitude, |521\(2)n. Switching off the pump
tone, we additionally repeat the measurement of the scattering parameter magnitude and use
the corresponding measured value, | So; |§ﬁ, as a reference. The nondegenerate amplification gain
at a given signal frequency is defined as G = |521|C2m / |521|C2)H. We obtain a large amplification
gain with a maximal value of 25dB, which is a good gain value for our experiments. The
observed Lorentzian gain profile is also in good agreement with the formalism presented in

Sec.2.1.41

Degenerate gain. Another crucial property of the JPA is its degenerate gain. As explained
in Sec.[2.1.4] this gain regime is achieved by pumping the JPA at twice its resonance frequency
and measuring the gain at the JPA resonance frequency. As amplification is phase-sensitive in
this regime, we send a coherent tone with a well-defined phase to the input of the measured
JPA and vary the phase of the coherent tone. We perform two measurements where the pump
tone is first switched off, providing a reference power, computed as Pt = ({I)%s + (Q)2s)/Zo,
with Zy being the characteristic 502 impedance in our circuits. A second measurement is
performed with the pump turned on, resulting in degenerate amplification. Here, we compute
the amplified signal power by using the second-order moments P, = ((I)2, + (Q)2,)/Zo.
According to Sec.2.1.4] we expect the gain value to vary as a function of the coherent tone
phase, 6.

In Fig.@(a), we display exemplary measurements of the degenerate gain for the measure-
ment JPA 2 at the frequency of w;/27m = 5.48 GHz. We observe a change in the gain from a
maximal value for a phase at # = 0 and # = 7, with a minimal value for a phase at = /2.
We note that the maximal and minimal gain values are separated by the phase difference of
Af = /2, as predicted by our theory in Sec.[2.1.4] For the phase of § = 7/2, we note that gain
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values are negative, meaning that the input signal is attenuated. This aspect is closely related
to the generation of squeezed states, where the precise nomenclature depends on whether the
output variance of the state for the deamplified quadrature is below the vacuum limit or not. In
the case where this variance is above that of vacuum fluctuations, one speaks about squashed
states. We measure degenerate gain values up to 20dB, as shown in Fig.(b). We note
that larger degenerate gain values can still be obtained with our devices by further increasing
the pump power. Large degenerate gain values are particularly important to enable efficient
single-shot quadrature measurements as detailed in Chap.[5} Using the same measurement ap-
proach, we can investigate the 1-dB compression point of the JPA. This quantity is a common
figure of merit for linear amplifiers, where the output power of an amplifier saturates for large
enough input signal powers. In our JPAs, compression effects set on due to effects of pump
depletion and higher-order nonlinearities [73]. The 1-dB compression point is defined as the
characteristic input signal power for which the amplifier gain is 1 dB below its maximal value.
Therefore, we can obtain this quantity by varying the power of the coherent tone at fixed pump
power values. For each coherent tone power, we extract a corresponding maximal degenerate
gain by sweeping the phase of the coherent tone from 0 to w. Our results for the JPA 2 are
shown in Fig.(b). We observe that for gain values above 20 dB, the 1-dB compression point
strongly decreases, limiting the applicability of JPAs in actual protocols. Based on the noise
properties of our JPAs (see Sec.[4.3.3)) and compression effects, a good gain optimum, typically,
lies around 20 dB for our type of JPA devices.

4.3 Calibration measurements

In this section, we present calibration measurements that are required for the experimental
implementation and subsequent data analysis of our CV-QKD protocol. In Sec.[.3.1] we discuss
our photon number calibration based on the 2D Planck spectroscopy [197], serving as a novel
loss calibration method. Section is dedicated to the verification of the Gaussianity of
measured quantum states. There, we introduce a novel approach to determine non-Gaussian
features in measured microwave signals based on the analysis of signal moments up to the fourth
order. Quantum efficiency, a quantity defining the noise properties of all JPAs of paramount
importance for the CV-QKD protocol, is discussed in Sec.[.3.3] In Sec.[d.3.4) we focus on
squeezed states measurements and their characteristic quantities, such as purity, cumulants, and
squeezing level. In this same section, we discuss about calibration of displacement operations,
the latter representing an essential resource for practical realizations of the CV-QKD protocol.
We conclude by discussing the calibration of induced Gaussian noise in Sec.[4.3.5] which is the
key for emulating CV-QKD performance under realistic conditions, simulating the presence of
a bright thermal background.

4.3.1 Two-dimensional Planck spectroscopy

As explained in Sec.[4.1.3] our heterodyne detection setup allows for the computation of quadra-
ture moments (I*Q'). These moments are converted into normally ordered signal moments
((a")a?) using a PNCF, k. The latter is obtained using the two-dimensional (2D) Planck
spectroscopy [197], which is an extension of the conventional Planck spectroscopy, commonly
used in previous experiments [24] 27, 216, 217]. To distinguish these two methods, we refer
to the conventional Planck spectroscopy as one-dimensional Planck spectroscopy. During this
measurement, both JPAs are far detuned from a chosen frequency mode to prevent any inter-
ference effects. To implement a one-dimensional Planck spectroscopy, we use a heatable 30 dB
attenuator at the input of our cryogenic setup, as shown in Fig.[4.2] This attenuator serves as
a self-calibrated thermal photon reference source, which can be viewed as a quasi-black body
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Figure 4.11: Temperature stability measurements. (a) Relative change in measured power after in-
creasing the temperature of the heatable input attenuator from the base temperature of 68 mK to the
target temperature of 500 mK. The reference time, ¢ = 0, on the z-axis is defined as the moment the
attenuator reaches the target temperature on the AVS temperature bridge, with the measured power
at t = 0 treated as the reference for the computation of relative power change. (b) Measured rela-
tive power variations after the heatable input attenuator, first heated up to the target temperature
of 400mK, is stabilized to the target temperature of 300 mK. These measurements are performed
immediately following the ones in panel (a). For both panels, we show a smoothed rolling mean over
7 consecutive points as a guide to the eye.

radiator, controllably stabilized at a desired temperature, T,. This is achieved using a small
heater, made from a thin silver stripe, that is clamped to the heatable attenuator. This atten-
uator is weakly thermally anchored to the MC stage of our dilution refrigerator using a long,
thin silver stripe.

The idea of the 2D Planck spectroscopy is to consider that the sample stage is thermally
coupled to the MC stage thermal bath via the total losses present in the experimental setup. As
a result, we can estimate these losses by varying the MC temperature T},,., using a proportional-
integral-derivative (PID) controller, provided by Oxford Instruments. For such measurements,
it is important to account for a thermalization time after the MC stage has been heated.
We typically wait a time of ¢ = 30mins to ensure that a thermal equilibrium is reached.
For each MC temperature, Ty,., we sweep the temperature of our heatable attenuator in a
range varying from the base temperature, slightly above T}, to the final temperature, T,y =
440 mK. Additionally, to estimate the time needed to wait at each attenuator temperature for
the setup to reach a thermal equilibrium, we perform another set of measurements. For these,
we start by heating the heatable attenuator to T,y = 500 mK. This temperature is subsequently
lowered by steps of 100 mK, while we record the total emitted power from the hot radiator at
a selected frequency as P = (I* + Q?)/Zy. The power is recorded once the target temperature
is reached. The measurement of the temperature of the heatable attenuator is performed using
a temperature bridge (AVS-48 from Picowatt), which offers a PID controller to stabilize the
temperature during Planck spectroscopy measurements. Ideally, one would expect no power
fluctuations. However, due to the thermal inertia of the different components in our setup,
a waiting time is required before reaching a final thermal equilibrium. Two exemplary power
variations are shown in Fig.[4.11] where we observe slow power changes before converging to
a steady regime, indicating that the thermal equilibrium has been reached. Note that even
though the displayed relative power changes appear small, there are comparable to power
variations measured during PNCF measurements. From these measurements, we extrapolate
that the additional average waiting time of ¢ >~ 8 mins guarantees power fluctuations of less
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Figure 4.12: Photon number calibration. (a) Scheme of repartition of losses. The losses, eop, between
the attenuator (black square box) and the HEMT can be decomposed into two components before and
after JPA1, denoted €y and e, respectively. (b) Experimental 2D Planck spectroscopy as a function
of the attenuator temperature Tnt. Symbols depict experimental data for different mixing chamber
temperature T, and solid lines are corresponding fits according to Eq. .

than 0.1% for a given attenuator temperature. For all subsequent Planck spectroscopies, we
use this waiting time in the measurements.

The 2D Planck spectroscopy allows for a precise extraction of the cryogenic losses, esp,
between the heatable attenuator and the input of the HEMT. According to Ref.[197 and using
the transmissivity 7op = —101log,;y(£2p), the measured power P at the end of our detection
chain reads

P=_—
Zo

ToD hw 1—mp hew
2 coth th A | 48
2 <2kBTatt> T @ (%BTmc) e 49

where k (PNCF) relates the powers measured at the room temperature detector to correspond-
ing photon numbers at the input of the HEMT. Here, A, is the total noise (in units of
photons) added by our amplification chain, with a HEMT being the first amplifier in the chain.
Additionally, Zj is the characteristic 50 {2 impedance of our microwave waveguides. As shown
in F ig., we fit all individual Planck curves using Eq. with 7op, K, and Aan,, as fitting
parameters. We extract the parameters eo;p = 10770/10 = 3.06dB, k = 4.7 x 10~7 V2 /photon,
and Aump = 12.11. We emphasize that in these measurements, the reference point is at the
input of the HEMT, meaning that photon numbers obtained from x are referred to the input
of the HEMT. To shift this reconstruction point to a different position, an estimation of the
losses between the input of the HEMT and the reconstruction point of interest is required. This
estimation can be made based on the datasheet values of different setup components and corre-
sponding time domain reflectometry (TDR) measurements. However, both these measurements
are performed in different conditions, namely at room temperatures and ambient pressures, as
compared to cryogenic experiments. This uncertainty represents the main source of error for
estimation of losses and influences final values of reconstructed signal moments. In our analysis,
we need to consider losses in our setup from the first JPA to the input of the HEMT, 4. As
illustrated in Fig.}[4.12|(a), we carefully estimate the losses between the heatable attenuator and
the first JPA 1, g9, from which we compute €, = €9p — €, resulting in &y, = 0.87dB.
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4.3.2 Gaussianity test

Our experiments rely on the assumption that reconstructed quantum states are Gaussian. Since
we restrain our operations to Gaussian channels (see Sec.[2.2.2)), we expect all states involved
in our measurements to be Gaussian. We verify the Gaussianity of our states by computing
cumulants from signal moments as [218, 219]

o 8” > 2Fy
mmn , 4.9
Fmn = 5 m ay ZZ k'l' . (4.9)
k=0 1=0 a=y
giving, for instance, k;; = <aTa> — <aT> (a). In theory, the cumulants of a Gaussian state

are strictly zero for any order m + n > 2. However, in real experiments, this is not the
case, as due to imperfections the experimental higher-order cumulants always have a residual
nonzero value. A challenge here is to determine a threshold value for which cumulants with
an order higher than two are considered significant or not. One possibility is to normalize the
cumulants by the photon number value <dTa>(m+n) /2 This mathematical operation is not ideal,
as it does not provide a clear distinction between the Gaussian and non-Gaussian regimes.
However, it allows to qualitatively estimate for which system parameters measured quantum
states deviate from a Gaussian statistic. Alternatively, one can compare the values of the
cumulants of lower orders (less than or equal to two) with those of higher orders (more than
two). Assuming a smooth monotonic transition between the two regimes, a simple criterion to
distinguish the Gaussian from non-Gaussian regime is to use experimental parameters for which
the corresponding lower order cumulants are larger or comparable to higher order ones. In this
context we note that we are limited by the FPGA memory in the calculation of cumulants up
to the fourth order. Another method for Gaussianity detection, which is based on characteristic
functions, is discussed in Sec.[4.3.6]

Physicality checks. Depending on the particular measurements, some reconstructed states
can appear as unphysical, meaning that they violate one or several laws of quantum mechanics.
This effect may originate from multiple sources, such as measurement instabilities, erroneous
data discretization. Most often, it is related to an insufficient number of averages, resulting in
statistical errors that can produce unphysical estimators, particularly for states containing a
low number of photons. For our Gaussian states, an efficient physicality check is to verify that
the measured states fulfil the Heisenberg uncertainty. Based on Eq. (2.64), we classify a state
as physical if its measured covariance matrix, V, satisfies the condition

det(V) > 1éd , with d = dlmT(V)
States that do not fulfil this are treated as unphysical and are removed from the data analysis.
For states with low photon numbers, close to or less than one, one can observe that deviations
from the inequality in Eq. are not uncommon. This behavior is related to the insufficient
SNR values while measuring these states and can be circumvented by increasing the number
of sample averages at the cost of additional measurement time. As a result, one could consider
including states that weakly violate the Heisenberg inequality, as those individual violations
may still provide useful information about the original states. However, in our experiments, we
disregard all reconstructed states which violate Eq. for safety.

(4.10)

4.3.3 Quantum efficiency

A crucial figure of merit in our experiments is the noise added by amplifiers. In particular, CV-
QKD protocols can only tolerate a finite amount of detection noise before losing unconditional
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security. More precisely, any amount of detection noise significantly degrades the performance of
QKD protocols, and as such, it is necessary to minimize the overall noise of our detection chain.
In the context of quadrature measurements, we focus on the measurement of the quadrature-
dependent quantum efficiency, nx, of our amplification chain, as defined in Eq. . The
latter is measured with all setup devices active, except for the noise source, which is turned off
during this measurement, and with both JPAs tuned in resonance. We observe that measured
quantum efficiencies are different depending on whether a single or both JPAs are tuned in
resonance. This is attributed to potential cross-interactions between the JPAs [205]. To measure
the quantum efficiency, we generate displaced squeezed states that are subsequently phase-
sensitively amplified by the measurement JPA 2. In Fig.[£.13] we plot the measured quantum
efficiency 7x as a function of the JPA 2 degenerate amplification gain, Gy. In this experiment,
we choose to amplify the ¢g-quadrature and record the measured power, P, for the amplified
quadrature from first order signal moment

K.
Pamp - 7<Q>2a (411)
0
where x is the measured PNCF according to Sec.[£.3.1] As a power reference, we use the
measured power, P, obtained by performing the same measurement without sending a pump
tone to JPA 2. This provides an in situ degenerate gain calibration
P,
Gy= =" (4.12
Pref )
At the same time, we extract from this measurement a value for the added noise variance, Ay,
where this noise, originating primarily from our HEMT amplifier, is added to the amplified
quadrature variance. This photon number is measured during specific measurement windows,
where no devices are active (labelled with the index “off”) of the reference state reconstruc-
tion method. The recorded base power during these measurement windows provides a direct
computation of the average HEMT noise per quadrature as

<]2 + Q2>oﬂ“'

Ay —
H 2K

(4.13)
Note that the moments (7?) and (Q?) are expressed in unit of voltage squared and Ay is a noise
variance, expressed in unit of number of photons. From these measurements, we find the noise
variance of Ag = 6.05. Setting the reference point of our tomography method at the input of
the HEMT, we reconstruct the variance of the amplified quadrature as

o2 =Gy [Ttotasz + (1 — Tiot) (1 + 24 ) /4 + NX] ,
ny  An (4.14)
Nx =m— 4+ —,
X =T G,

where T is the total transmissivity between the heatable input attenuator and the input of
the HEMT, as obtained in Sec.4.3.1| from the 2D Planck spectroscopy and related as 7oy =
—101logyo(etot). Similarly, 74 is the transmissivity between the measurement JPA 2 and the
input of the HEMT. The quantity o2 is the squeezed variance of the displaced squeezed state
and nj is the added noise by the measurement JPA 2, referred to its input. The noise variance
defines the quadrature quantum efficiency

1

e e 4.15
14+ 2Nx ( )

X

The JPA noise depends on the JPA degenerate gain according to a polynomial function
dependence [82]. As a result, increasing the JPA 2 gain also adds noise to the amplified states.
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Figure 4.13: Experimental quantum efficiency accounting for the noise of the measurement JPA 2 and
the HEMT noise. (a) The quantum efficiency is plotted as a function of the degenerate amplification
gain Gy of the measurement JPA 2. The measurement is performed for displaced squeezed states as
input states to JPA 2. The blue symbols correspond to measured data, where the blue dashed line
serves as a guide to the eye. The orange solid line is obtained from a model fit according to Eqs.[£.15]
and (b) Zoom-out version of panel (a), where the vertical scale is extended above the value
nx = 1, marked in red to illustrate its absolute limit.

At the same time, a larger degenerate gain results in a smaller contribution of the HEMT noise,
as seen in Eq. . For this reason, there always exists a sweet spot in the degenerate gain,
for which the total amplification noise is minimized. This optimal gain value depends on the
JPA properties, the experimental setup, and the HEMT properties. We find that the JPA noise
can be expressed as [82]

ny == (Gy —1)=, (4.16)

with two phenomenological fitting parameters, =Z; and =,. We fit the measured quadrature
quantum efficiency according to Eqs.[d.14) and [£.16], showing corresponding results in Fig.[4.13]
The fit is performed by minimizing the difference between the measured quantum efficiencies
and their corresponding model predictions using a nonlinear solver under constraints of the
Optimization Toolbox of MATLAB. The resulting fit values are =; = 0.049(2) and =, = 0.42(1).

4.3.4 Squeezing and displacement calibration

Squeezing measurements. As discussed in Sec.[2.1], we generate squeezed states using JPAs
by driving them with the pump at a frequency twice the JPA resonance frequency. To charac-
terize the microwave squeezed states, we follow a procedure similar to that for the degenerate
amplification gain measurements. Here, we amplify weak thermal fluctuations originating from
the heatable attenuator. We reconstruct the signal moments, ((a")"a™), using the reference
state reconstruction method. During these measurements, other devices, except for the JPA 1
pump, are not active. The pump tone is generated using a microwave source (SGS 100A from
Rohde & Schwarz). We reconstruct a squeezing angle, v, from the computed signal moments

_ Arg(—{a) + (@)?)
i ,

(4.17)

where we use the signal moment (a?) to account for a potential displacement of the measured
squeezed state and arg is the argument of the complex function. We rotate the measured
signal quadratures into a new frame with a rotation angle given by the squeezing angle. Signal
quadratures are then rotated into a new frame with a rotation angle given by the previously
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Figure 4.14: Characterization of squeezed states. (a) Measured squeezing level as a function of the
JPA 1 pump power. The squeezing level is defined in Eq. , where positive values S > 0 indicate
squeezing below vacuum. The dashed line at S = 0 serves as a reference. (b) Measured purity as a
function of the JPA 1 pump power. (c) Experimental squeezing angle according to Eq. for the
target squeezing angle ¢ = 45° as a function of the JPA 1 pump power. The dashed line represents the
target value. (d) Experimental values of cumulants computed from signal moments as a function of
the JPA 1 pump power. Cumulants are computed following Eq. . In all plots, error bars represent
the standard deviation of the measured data.

computed squeezing angle. In this frame, we compute variances of the rotated ¢- and p-
quadratures

@ (@) 2y [ @ (@) 2 @

o, = —

q 4 4 )
2 (4.18)
@) (@) regatay 1 [ @7+ (@) —20a) @
7= 1 * 4

2

From these equations, we obtain the squeezed quadrature variance as o2 = min(o2,02). The

q’7p
anti-squeezed quadrature variance is similarly computed as o2, = max(ag,ai) The squeez-
ing level S and anti- squeezing level AS are computed from these two variances according to
Eq. - In Fig.4 we display an exemplary squeezing measurement of JPA 1 at the

frequency wy = 5.48 GHZ. In addition to the squeezing level, we measure the purity of our
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Figure 4.15: Characterization of coherent states. (a) Measurement of the photon number ngis, gen-
erated by the coupling of a coherent tone to the first directional coupler with a weak thermal state
at its input. The photon number is shown as a function of the coherent tone power and is fitted
according to Eq. . (b) Corresponding purity of the displaced thermal states as a function of
the coupled coherent tone power. (c) Reconstructed displacement angle 6 following Eq. for the
target displacement angle 6; = 45°. (d) Exemplary codebook variance o4 = o2, — o2 following the
squeezing measurement (as shown in Fig. as a function of the JPA 1 pump power. We observe
a decrease in the slope of the codebook variance for the pump powers above —30 dBm due to higher-
order nonlinearities, resulting in non-Gaussian states. In all plots, error bars represent the standard
deviation of the measured data.

squeezed state defined as p = 1/41/det(V), where V is the corresponding reconstructed covari-
ance matrix. The purity is a direct measure of noise present in measured states. In Fig.|4.14|(a),
we observe a monotonic increase in the squeezing level up until the pump power of —31 dBm.
Above this point, the squeezing level decreases, as higher-order nonlinearity effects [73] set in,
implying that the measured states become more and more non-Gaussian. The purity contin-

uously decreases, indicating an increase in the noise of the squeezed states at the output of
JPA 1.

Similarly to the measurement of JPA 2, this noise originates from fluctuations in the pump
signal amplitude [82]. Based on the phase-locked loop, the squeezing angle is stabilized by
adjusting the phase of the pump microwave source according to 26y = 2(y — ), for a target
squeezing angle value ;. In the CV-QKD experiments presented in Chap.[5], we keep a constant
squeezing level S = 3.6 dB corresponding to 02 = 0.11. Simultaneously, the codebook variance,
as defined in Sec., is extracted according to o2 + 0%, = o2

as”
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values
statistic slope m offset p
linear fit value (photon/W) | 3.07-107 | 2.3-107%

error linear fit (photon/W) | 2.65-107* | <1071

Table 4.1: Summary table of the linear fit values, for induced displacements that are used in the CV-
QKD protocol implementation. The linear fit values are shown with their associated error according

to Eq. ([£.21).

Displacement measurement. Displacement of input states is performed using a cryogenic
directional coupler acting as a highly asymmetric beam splitter. A strong coherent tone is
sent to the coupling port of the directional coupler, resulting in displacement of an input mode
a. In our experiments, we use cryogenic directional couplers from Sirius Microwave with the
coupling coefficient of C' = 19.4dB at the working frequency of 5.48 GHz. Based on Eq. (2.97),
we write the associated transmissivity 7 = 1 — 107910 with V1 —7 = « /@con- The action of
the directional coupler can be written as

d =Ta+V1—1b~a+a, (4.19)

where we use the approximation of the strong coherent tone, b~ Qleoh, 1n the limit of 7 — 1.
From Eq. , we observe that the directional coupler implements the displacement operation
described in Eq. . The coherent tones are generated by a room temperature microwave
source (SGS100A from Rohde & Schwarz). We vary the coherent tone power P, and recon-
struct a displacement mean photon number, figis, = (a'a), at the output of the first directional
coupler using the reference state reconstruction method for each power value. During mea-
surements at a fixed coherent tone power, the displacement angle 6 is reconstructed from the
measured moments via

0 = Arg((a)). (4.20)

This angle is used in the phase-locked loop, where we periodically adjust the phase of the
coherent tone source by 60 = 6 — 6, where 6; is a target displacement angle value. This proce-
dure allows for a stable displacement angle within +1°. In Fig.[4.15] we show the displacement
photon calibration, with the corresponding displacement angle, that we use in this work. For
completeness, we additionally display the measured purity, similarly to the squeezed state mea-
surements. We observe high purities, u > 96%, indicating that little-to-no noise is present in
the measured displaced states. The displacement photon number can be fitted as

ﬁdisp =m Pcoh +p, (421)

where m and p are two fit parameters. As shown in Fig.[4.15](a), we observe a very good agree-
ment between the measurement and the theory with a statistical coefficient of determination,
R? > 99.999%, indicating an excellent matching of our model in Eq. to the measured
data. The latter is a measure of the quality of a linear data fit with R € [0, 1] [220]. The result
of the fit with the associated errors is shown in Tab.[d.1 From this fit, we can reliably convert
any desired symbol, «;, of Alice’s key into a corresponding power P; to set for the coherent
tone according to

_ |CY¢|2 - D
-

P, (4.22)

Lastly, the values of displacement chosen in our experiments are dependent on the codebook
variance of Alice, which is related to the squeezed level chosen for our protocol implementation.
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Figure 4.16: Experimental calibration of the coupled mean noise photon number 7. (a) Ilustration of
frequency up-conversion of noise. Artificially generated Gaussian noise, resembling a thermal state,
is sent to a mixer driven by a LO. (b) Up-conversion of the 160 MHz noise bandwidth results in a
red and blue sideband around the LO for noise. The latter is detuned by 20 MHz from the LO used
during down-conversion of RF signals. Schematic not to scale. (c¢) Measured photon number 7, as
a function of the square of the noise peak-to-peak voltage generated by the AFG. The data is fitted
according to the linear fit in Eq. . (d) Cumulants computed from the measured signal moments
up to the fourth order as a function of the square of the peak-to-peak voltage of the AFG. Cumulants

are computed as in Eq. (4.9)).

4.3.5 Calibration of coupled noise

We generate a quasi-Gaussian noise using an AFG source (81160A from Keysight) in a band-
width of 0 — 160 MHz. The noise signal is up-converted to a desired gigahertz frequency using a
harmonic microwave mixer (M2-0218 from Marki microwave) driven by a strong tone, serving
as a LO, from an additional SMB microwave source (SMB100A from Rohde&Schwarz), illus-
trated in Fig.[4.16|(a). The mixing process results in two sidebands according to w; + wy with
wy being the LO microwave signal and ws a noise frequency in the noise bandwidth. We use the
blue sideband, while the red sideband is filtered out by the down-conversion chain as shown in
Fig.|4.16|(b). During noise calibration, all other devices are turned off. Both JPAs are detuned
by more than 100 MHz, far from the chosen RF frequency point. The up-converted noise signal
is sent to the coupling port of the second cryogenic directional coupler (see Fig.|4.2])). The
corresponding operation is identical to the displacement operation

a =vra+V1—r1f, (4.23)

where f is a noise mode, corresponding to the coupled noise within our measurement bandwidth.
The transmissivity is given by the coupling of the directional coupler, 7 = 1 —10~¢/10 = 0.9885.
We reconstruct a mean noise photon number using the reference state reconstruction method.
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values ) /
statistic slope m offset p
linear fit value (photon/W) | 3.27-107% | 1.21-1072

error linear fit (photon/W) | 7.43-107 | <1074

Table 4.2: Summary of the parameters obtained from the linear fit according to Eq. (4.28)) of the
coupled noise used in the CV-QKD protocol implementation. The linear fit values are shown with
their associated errors.

We relate the reconstructed photon number, n, = <&Td>, at the input of the HEMT to the
noise photon number, ng, at the input of the coupling port of the second directional coupler.
Assuming that the final measured state corresponds to a thermal state, we derive the relation

(Tamsme + 1 — 1374) (1 4 204 ) + m37uer (1 + 20g) = (1 + 27,) , (4.24)

where 7; with ¢ € {F, 3,4} describes transmissivity of the directional coupler, the path between
the measurement JPA 2 and the directional coupler, and the path between the measurement
JPA 2 and the HEMT, respectively. This equation can be reformulated to separate the losses
and the noise contribution as

1— 14 2n 1+ 2n,
(7‘47‘37’}3 + 7'37'4) ( -+ Tlth) + T3THER + 7_37_4ﬁ _ ( + 2n )’ (425)
4 4
where we have defined the coupled noise photon number
7= BB (4.26)
2
As a result, we can extract the following relation for the coupled noise photon number:
A — 1_ _
I (T473TE + T4T3) oy (4.27)

2T4T3

To determine n, we experimentally vary the total reconstructed photon number n, by sweeping
the power of the AFG source P,. In Fig.[4.16|(c), we show the noise calibration used for our
CV-QKD protocol implementations. The measured values can be linearly fitted according to

nn=m'P,+p. (4.28)

Here, m’ and p’ are two fit parameters, similar to the displacement photon number calibration.

From Eqs.}4.27] and 4.28, we can reliably convert a desired photon number 7 into a cor-
responding power P,. The resulting fitting parameters with their associated error are shown
in Tab.[t.2l We obtain the fit with a statistical coefficient of determination R? > 99.99%,
indicating that the data can be perfectly described by Eq. (4.28)). Lastly, we show computed
cumulants in Fig.[4.16)(d). Following our analysis in Sec.[1.3.2] we conclude that the generated
noise follows Gaussian statistics.

4.3.6 Gaussianity verification based on characteristic functions

In this subsection, we propose an alternative approach to determine a threshold of Gaussianity
in measured states. We use the characteristic function defined in Eq. and consider a
measurement for which only one experimental parameter is changed (typically the pump power).
In the context of our experiments, we consider that there exist two regimes, one where the states
are Gaussian and another where they deviate from the Gaussian statistics. We assume that
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these two regimes are separated by a clear threshold across the chosen system parameter, such
as pump power. For instance, in squeezing level measurements, the parameter is the pump
power sent to the JPA. In the case of Gaussian states, one derives the general characteristic
function of an arbitrary displaced squeezed thermal state as [221]

cosh(r) sinh(Qr) coth(k/2) (=52 +e%y?) L 30" —ya,

(4.29)
where r is the squeezing factor with the associated squeezing angle, v = —p/2. The displace-
ment complex amplitude is given by «, and k = hw/(kgT) with the temperature T of the

thermal state and its frequency w. The function f is the Planck distribution,

X(z,y) = —wy(sinh(r)* coth(k/2)+ f (k) -

F(k) = —

= e (4.30)

All these parameters can be extracted from reconstructed signal moments based on the as-
sumption that the measured state is a Gaussian displaced squeezed thermal state. Note that
according to Eq. , any Gaussian state can be described in this form. We find that
r— Lt ("—) o= Arg((@)? — (@), igpp = 2TuB =L g [szIn (1+ ! )] ,
g JpPA

(4.31)
where the squeezing variance og and the anti-squeezing variance o, are defined by Eq. .
Similarly, the displacement complex amplitude is computed as o = (a).

Based on these parameters, we compute the theoretical predictions of the signal moments
from Eq. . Naturally, there is a good agreement between theory and measurements for
moments of order two or less, since these are used to extract the system parameters. However,
there is additional information that can be extracted from the moments of order three and four.
In the case of the measured state being genuinely Gaussian, we expect a good agreement with
theory, with a significant deviation once the states become non-Gaussian. The main difference
with the cumulant measurements is that we use the theoretical prediction as a reference for
comparison. Following this idea, we define a relative error as

0. MY

theo

Mtiljl'eo - Mgip .- .
err =|max{ ——————= for (i, )i +j <47/, (4.32)

where Mfﬁeo is the signal moment <(dT)i&j > given by our theory prediction and Mg){p is the
corresponding measured moment. We note that from this definition of the error, a large uncer-
tainty can be obtained for the case of moments with near-zero or zero predicted values. When
these cases appear, these moments are discarded in our analysis. Each measurement of the
moments MY is repeated M times, which are used to build a histogram of the relative error
as a function of the system parameter. Assuming that the error is distributed according to
a Gaussian distribution for large data sets, we aim at comparing the different errors between
them in order to find outliers. Ideally, we compare all errors to a reference error, which would
be measured in ideal conditions. Taking into account that each error histogram has a finite
sample size and that each individual measurement presents statistical fluctuations and errors,
it is typically challenging to assign one specific measurement as a reference. To circumvent
this problem, we compare each error distribution to each other by considering each error con-
secutively as the reference. For measurements using JPAs, where we vary pump power, we
impose the additional restriction that a measurement A can be considered as a reference for

another measurement B if and only if the pump power in measurement A is strictly smaller
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Figure 4.17: Exemplary Gaussianity verification. (a) Extracted cumulants for a squeezing measure-
ment of JPA 1 as a function of the JPA pump power according to Eq. . (b) Measured maximal
degenerate gain as a function of the JPA pump power. (¢) Mean value and standard deviation of the
relative error defined in Eq. as a function of the JPA pump power. (d) Average probability that
the observed statistics deviates from Gaussian statistics according to Eq. as a function of the
JPA pump power. The probability is computed for a 3-o threshold with tr = p1 4+ 307 and for a 1-o
threshold with tr = p; + o73.

than the one in measurement B. For instance, a squeezing measurement at a given pump power
is used as a reference only for squeezing measurements with strictly higher pump powers. This
restriction relies on the assumption that non-Gaussian features arise in a monotonic manner,
meaning that, as we sweep the experimental parameter above a certain threshold value, the
state becomes and remains non-Gaussian for higher pump powers.

In Fig.[4.17|(c), we show the relative error associated with a squeezing level measurement of
JPA 1 at the frequency of wy = 5.5 GHz. Initially, we observe a decrease in the error as a function
of the JPA pump power. This can be primarily understood as a relative increase in SNRs, as the
signal amplitude increases with the pump power, reflected by the exponential dependency of the
mean and standard deviation of the error. However, we note that above the pump power value,
P = —36.5dBm, the mean error starts to increase while the standard deviation continues to
decrease. This behavior can be interpreted as an indication of non-Gaussian features emerging
in the measured states, shifting from a squeezed state to a non-Gaussian one.

In order to compare the error distributions, we use a worst-case scenario, where we compute
a probability p that a tested distribution P, deviates strongly from a reference distribution P;.
Here, we are only interested in the cases of the mean value, us, of the distribution P, being
larger than the mean value, iy, of the reference distribution P;. The opposite case indicates
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that the error of the distribution P is centered around a value smaller than for the reference
Py, and as such, the distribution P, cannot originate from non-Gaussian features. We take a
one-sided 3-o deviation, which covers 99.88 % values of a Gaussian distributed random variable.
The detection probability is defined as

tr 2 \/50'2

Here, p11(2) and 0y(2) are the expectation value and standard deviation of the distribution Pi(2).
Using different references P, we compute a matrix of probabilities p; ;, where the index 7 indi-
cates the distribution chosen as the reference and the index j refers to the tested distribution.
To account for all the different individual probabilities p; ;, we compute an ensemble probability
for which each probability is weighed by a weight w; ; such that Zz;ll w; ; = 1 for a given j. A
naive approach is to consider all distributions to have an equal chance of being representative
of the error distribution for a Gaussian state. As such, we use a uniform distribution to assign
the weights w; ; = 1/(j —1). We note that this approach is not optimal, since the mean error in
Fig.(c) presents a minimum value at a non-trivial pump power. Given these considerations
and for a given tested distribution P; (except P;), we compute the average detection probability
as

oo 1 tr — pio
p( P far from Py) = / Pyx)de =-[1- erf( ) , tr=py + 30;. (4.33)

In Fig.(d), we display the average detection probability associated with the relative error
shown in Fig.[4.17)(c). We observe a clear threshold behavior between two regimes: the first,
where the average probability is negligible (p; < 1%), and the second, showing a sudden
increase for pump powers above —36 dBm. For comparison, we also choose a 1-o deviation,
which allows for a more refined distinction of the distributions, but only covers 79% of random
outcomes. Remarkably, we find almost the same threshold as for the 3-0 deviation, indicating
robustness of the presented method. As the next step, one could potentially compute the
propagated error of measurements above the threshold pump power under the (erroneous)
assumption that the measured state is still Gaussian. For instance, one could estimate the
propagated error on state fidelities [222].

It is insightful to compare the presented approach to the corresponding cumulants, com-
puted from the same measured signal moments, as displayed in Fig.(a). We observe a
good agreement in terms of the assigned threshold pump power, where for the cumulants we
use the criterion that cumulants of lower orders must be larger than cumulants of higher orders.
Interestingly, we can compare this JPA pump power threshold with degenerate gain measure-
ments. In Fig.[1.17)(b), we show the degenerate gain measurements of the same JPA, measured
following the procedure in Sec.[d.2l Based on our analysis and with the deviation tolerance of
p; < 5%, we estimate that the measured states deviate significantly from a Gaussian distribu-
tion for pump powers above —34.8 dBm, implying that the measured JPA behaves as a linear
amplifier in very good approximation for degenerate gain values of Gy < 26 dB.

4.4 Summary

In conclusion, we have presented the cryogenic setup with its associated room temperature
down-conversion scheme and signal processing chain. We have explained the different steps
involved in the measurement of the signal moments, including signal digitization, filtering,
and I/ demodulation. Based on the novel technique of 2D Planck spectroscopy, we have
detailed a precise method to experimentally reconstruct signal moments. From these moments,
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the Wigner function of reconstructed states is obtained, giving full information about the
associated quantum states. There, we have commented on Gaussianity tests based on the
computation of cumulants up to the fourth order, which are enough to capture the presence
of non-Gaussian features in measured signals. We have shown calibration measurements for
squeezing, displacement, noise, and quantum efficiency in the experimental setup. Lastly, we
have introduced a novel method for the Gaussianity test based on characteristic functions, where
experimentally extracted signal moments can be compared to theoretical reference values. Using
squeezing measurements, we have shown that clear thresholds can be decided to distinguish the
transition from Gaussian to non-Gaussian regimes. Having presented these different elements,
we can investigate the experimental implementation of the CV-QKD protocol and associated
measurement results.
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Chapter 5

Single-shot microwave quantum key
distribution

In this chapter, we present experimental results of our implementation of the CV-QKD protocol
in the microwave regime with squeezed states. First, in Sec.[5.1| we discuss the experimen-
tal implementation of single-shot single quadrature measurements in the microwave domain.
Section presents the experimental setup and associated quadrature measurement model.
Then, in Sec.[p.2] we show corresponding measurement results, where we discuss details of
our CV-QKD experiment, with associated experimental parameters and extracted information
quantities, such as mutual information, Holevo quantity, and secret keys.

5.1 Single-shot measurements

Here, we focus on the experimental implementation of single-shot single quadrature measure-
ments in the microwave domain. Section[5.1.1]presents possible considerations and experimental
setups for the quadrature measurements. There, we show the usage of a single JPA to achieve
the desired quadrature measurements. In Sec.[5.1.2] we explain that the statistics of measured
quadratures are fully included in the measurements of /@) points and their corresponding
moments, even when reaching the single-shot regime.

5.1.1 Quadrature measurements using parametric amplifiers

In quantum teleportation implemented in experiments based on continuous-variable states [24],
90], it has been established that phase-sensitive amplifiers combined with a directional coupler
can be used to implement quadrature projectors in phase space. More precisely, we consider the
case of an analog Bell-state measurement, as depicted in Fig.(a). A detailed discussion on
this topic can be found in Ref 205, There, the setup consists of two phase-sensitive amplifiers
placed between two 50:50 beam splitters. An input signal is sent to one input of the first beam
splitter. The output signal coming from the second beam splitter is sent to an asymmetric
beam splitter. For continuous-variable states in the microwave regime, we use JPAs to perform
phase-sensitive amplification. We note that the resulting setup of two JPAs and two hybrid
rings can be used as a Josephson nonlinear interferometer, particularly relevant for quantum
sensing or quantum radar applications [89 217]. Lastly, the asymmetric beam splitter can be
implemented using a directional coupler [51]. The phase-sensitive amplification of the JPAs is
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described by the matrices

I, 0, O

1/VG 0 VG 0

J= 02 Jq 02 s Jq = < ) 3 and Jp = < > . (51)
0, 0y J, 0 VG 0 1/VG

\V}

Here, 0,, is a quadratic matrix with zero entries and dimension n, and G is the amplification
gain of the JPAs. The directional coupler and hybrid rings are described by a beam splitter
operator with 7 = 1— § and 7 = 1/2, respectively, with 5 € [0, 1]. The Bell-state measurement
can be modelled using the Gaussian channel formalism in Sec.[2.2.2] following Eq. with
[205]

(o TTBL VBE, -3, VB, T,) _
T=_| 2Bl vI—B(3,-J,) vI—BJ,+Jd,)| . r=0 andN=05  (5.2)
2 0 ~3,- 7, 3,47,

The zero displacement vector is denoted as 0. In the projective limit, one can define a constant
k such that

B —0, G— 4oo,and k= % = const. (5.3)

In the case of k = 1, one can show that the renormalized operators, v/3J, and v/3J,, converge
to quadrature projection operators as v/3J, — 211, and v/3J, — 2IL,. Here, the matrices II,
and II, are quadrature projectors in phase space for the ¢- and p-quadrature, respectively. The
PVM measurement requirement is additionally fulfilled as Hg(p) = Il,). As such, one could
consider the JPAs acting as quadrature projectors in each branch of the setup. However, one
derives that the final output state after the directional coupler is related to an input state at
the first hybrid ring as

o, 1
dout = dina Vout = HVinHT and II= (12 20- 52) 3 (54)

where Vi, is a 6x6 matrix describing the three modes involved in the Bell-state measurement,
including the input mode. It can be shown that in the projective limit of £ = 1 when using a
TMS state as an input, one can recover Vo, = Vi,. The resulting states at the output of the
directional coupler can ideally have no extra noise as compared to the initial state. However, the
displacement vector is also left unchanged according to Eq. . This result is not surprising,
as this setup is designed to perform quantum teleportation of an input state.

Nevertheless, a possible way to implement PVM measurements for quadrature operators
is to consider only a single path of the previous setup, as shown in Fig.(b). In this case,
only a single mode is necessary to describe the overall transformation. The latter effectively
consists of a unitary squeezing channel with exp(r) = VG according to Eq. followed by
an attenuation channel C; with 7 = . Using the formalism presented in Sec.[2.2.2] we derive
that this new setup results in a Gaussian channel with the following parameters:

T:\/B<1/5/5 \/Oa> r=0and N=7(1+20)L (5.5)

One can take a similar projection limit by setting kg = G = 1 with f — 0 and G — +o0,
then we recover the same projector limit \/3J, — II,. However, according to the Gaussian
channel formalism, an additional noise photon number, 7, is added to the input signal following
Eq. (5.5)). Since in the setup in Fig.[5.1](b) one signal path containing one JPA has been removed
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Figure 5.1: Schematic representation of quadrature measurements. The Bell-state measurement setup
in panel (a) consists of two JPAs operated in the phase-sensitive regime and two hybrid rings acting as
50:50 beam splitters. The output (out) state is obtained at the output of a directional coupler (DC)
for a corresponding input state (in) sent to one input of the first hybrid ring. A simplified setup is
presented in panel (b), which consists of one JPA and a directional coupler. The noise coupled to the
JPA is represented by its associated Wigner function. The last setup in panel (c¢) represents a strong
phase-sensitive amplification performed by a single JPA. An exemplary amplified state is represented
by its associated Wigner function. The overall transformations, according to Eqs.[5.2][5.5][5.6] of each
measurement acting as a quantum channel G is shown in panel (d) where each transformation is
indicated by a corresponding index. Here, (i) is for panel (a), (ii) for panel (b), and (iii) for panel (c).

as compared to that in Fig.[5.1/(a), an additional bath mode has to be introduced so that the
final modes fulfil the bosonic relation. In other words, it is possible to construct a Gaussian
channel that implements a quadrature projection at the cost of unavoidably adding noise to
the input signal. Note that according to Eq. , at least vacuum fluctuations are added
to the input signal. A possibility to achieve a reduction in noise as compared to the previous
measurement techniques is to drop the directional coupler and to limit the measurement to only
a single JPA operated in the phase-sensitive regime as shown in Fig.m(c). Ideally, a phase-
sensitive amplification can be noiseless meaning that the PVM measurement would simply to
a pure squeezing operation with a corresponding quantum channel that can be described using

_ (VG 0
T‘(o VG

Using the squeezing operator, one obtains the interesting result that the amplified quadrature
statistics can be retrieved while the deamplified quadrature eventually becomes inaccessible
due to the inevitable presence of a noise floor in practical measurements. More precisely, a
measurement of both quadratures, adding a finite noise photon number n to both quadratures,
results in a final covariance matrix after the squeezing operation given by

Vi1 1+2n V.
=t 12
V G 4 _
out — < ‘r21 g‘ r22 122”) . (57)
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Here, the entries of the initial Gaussian state are denoted {Vi;} jeq122. Using Eq. (5.7), we
straightforwardly obtain that the matrix entry V22, upon rescaling by the gain G, converges
to Vi in the projective limit of G — 4o00. Conversely, in this limit, noise only appears in the
deamplified quadrature, reflected by the entry Vo, 11. As a result, only the information about
one quadrature remains accessible, coinciding with a projective measurement. However, this
approach presents some limitations. First, one can note in Eq. that off-diagonal terms
are left unchanged as opposed to the case of a quadrature projection operator. This is not
necessarily true in experiments. For a large enough amplification gain, the deamplified quadra-
ture becomes extremely noisy (with a corresponding signal-to-noise ratio far less than 1). The
measurement precision limits the achievable resolution of the measured deamplified quadrature,
leading to a partial or total loss of original off-diagonal elements. As such, one JPA alone does
not converge to a projection operator but provides similar results. Secondly, no rescaling is
implemented, as it was previously the case using a directional coupler. Therefore, amplified
signals acquire a large amplitude during experiments, which limits the range of experimental
parameters that can be used, due to the limited saturation powers of other devices used in
the experiment. Lastly, based on the formalism of Gaussian channels in Eq. , the initial
displacement vector is also scaled by the matrix T. This implies that measured displacements
must be rescaled. This leads to an increased uncertainty originating from the uncertainty and
instability in the amplification gain. In light of the previous discussion, we conclude that phase-
sensitive amplification enables single-quadrature measurements to be made with a minimum of
added noise, reaching a noiseless regime under ideal conditions.

5.1.2 Histogram based measurement and tomography

In Sec.[d.1] we have explained that our experiments utilize a heterodyne detection setup to
measure both quadratures after amplification of the to-be-measured incoming signals. Based on
the previous section, an ideal phase-sensitive amplification, resulting in a squeezing operation,
allows the full information about a given amplified quadrature to be accessed with minimal
disturbance at the cost of a corresponding deamplified quadrature. Therefore, by using a phase-
sensitive preamplifier in the amplification chain, our experimental heterodyne detection setup
effectively allows us to extract information about one quadrature, providing a measurement
setup equivalent to a homodyne detection in the optical domain. To illustrate this aspect
further, we focus on the procedure implemented during our heterodyne measurement. We recall
that a given incoming signal, with a phase reference set to zero for convenience, is decomposed
into two quadrature components

A(t) = I(t) cos(wirt) + Q(t) sin(wirt), (5.8)

with an intermediate frequency wip. For continuous variable signals, the quadratures are defined
as

2m 2m

() = /t " cos(wrm) AT and - Q() = /t " sin(wr)A(T)dr.  (5.9)

™

In Sec. we have explained that an RF signal at the output of our cryogenic setup is down-
converted to an IF frequency with a narrow bandwidth determined by the FIR filters, typically
of 400kHz in our experiments. As a consequence, we approximate the associated quantum
electric field as a single-mode field

E(t) = 2Ey(G cos(wpt) + psin(wipt)), (5.10)

where Fj is the amplitude of the field and the operators ¢ and p are the quadrature operators
of the associated quantum state. We consider that in a final step, the electric field is, at the
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latest, projected onto some random eigenvectors |« = g+ ip) at times ¢ after amplification by a
HEMT in our experiments. This means that we obtain some random value ¢ for the quadrature
¢ and some random value p for the quadrature p. Following the laws of quantum mechanics, this
random process is described by the underlying probability distribution of the measured quantum
state. In addition, in the limit of a large amplification gain of the HEMT, at least vacuum
fluctuations are added to the measured signal. The amplified signal is treated as a classical
signal afterwards. Subsequent losses and added measurement noise can be straightforwardly
accounted for by an additional amplification gain y/Gamp and a noise signal n,,. Under these
considerations, we express the signal A as

A(t) = /Gamp (| E(t)| ) 4 2Egnm(t)) = v/Camp(q cos(wipt) + psin(wipt) + nm(t)).  (5.11)

Here, we define ¢ = (a + o*)/2 and p = (o — a*)/2i. The constant \/Camp = 2E0Gamp 18
an overall scaling factor relating the amplitude of the signals at the output of the cryogenic
setup to the signals measured at room temperature devices. The noise signal is assumed to be
white Gaussian noise. The magnitude of this noise depends on the measurement bandwidth.
Here, we decompose the noise signal picked up for the IF frequency as ny,(t) = & cos(wirt) +
& sin(wipt) [223]. The classical random variables &; and & are two independent zero-mean
Gaussian variables with equal variance 0%y /2. Based on this result and with the definition of
the quadrature operators, we compute the //Q) quadrature expectation values as

27
WIF

(1) = 2 cos(wreT)(A(T))dt

™

\/—mp/ P ) o (5.12)

cos(wipT)((q cos(wipT) + psin(wirT) + N (7)))dT
=V Camp<Q>

Here, we have used that (¢) = (¢) and (p) = (p). Similarly, we can derive that (Q(t)) =
/Camp(P). We identify the scaling coefficient to be the PNCF in our measurements, i.e.,
Camp = k. Additionally, using the linearity of the covariance, we can calculate the variance of
the 1/Q) quadratures as

of = cov(I(t), ] )
WIF ‘*’IF t+W2T7;?
= ( ) / / cos(wipT) cos(wipT’)cov(A(T), A(r'))drdr’

t4 27
= Camp (WL) / / " cos(wipT) cos(wipT’) (AG* cos(wipT) cos(wpT )+ (5.13)

Ap? sin(wipT) sin(wret’) + ((G5) — (§)(p)) cos(wipT) sin(wpT’)+
((pG) — (p)(q)) sin(wipT) cos(wirT’) + cov(n,(7), nw(7')))drdr’
= Conp (DG + 0% /2).

Using a similar derivation, we can show that 03 = Clmp(ApP* + 0y /2), and in general we find
that (I()*Q(t)") = CEE UG + (nun (£)Fnum ()1 /204072 for (k,1) € N2. In other words,
the moments of the demodulated I/Q points coincide exactly with those of their quantum
operator counterpart, only scaled up by some coefficient Cynp, and with an additional noise
contribution. This property guarantees that each individual demodulated I/@Q point can be
considered as a noisy sampling of the underlying probability distribution of the measured signal.
Since the measured data points can always be rescaled by a properly determined PNCF, «, the
contribution of the amplification chain to the data statistics is the total amplification noise.
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Figure 5.2: Time evolution and histogram of an exemplary coherent state with complex displacement
amplitude o = 2 + 2, amplified using a JPA in the phase-sensitive regime. Panel (a) shows the time
evolution of the associated electric field with mean value and standard deviation of the field. The
corresponding Gaussian distribution of the I/@Q-quadratures is shown in panel (b). The distributions
are sampled with 3000 symbols. Histograms are shown with semitransparent colors to allow both
distributions to be seen. Using a JPA, one quadrature of the initial coherent state is amplified, while
the other quadrature is deamplified. The resulting electric field is shown in panel (c). Here, we
assume that the p-quadrature is amplified with a gain of 10dB. The resulting histogram of the I/Q-
quadratures is shown in panel (d). The I-quadrature presents a narrower distribution with a reduced
mean value, while the histogram of the Q)-quadrature is broadened and has an enhanced mean value.

Each single I /@ point extracted using the presented procedure can be referred to as a single-shot
measurement, ideally, in noiseless conditions.

In light of our previous discussion, we consider a Gaussian state for which we aim to mea-
sure a single quadrature and obtain its corresponding statistics. Based on the setup introduced
in Sec.5.1.1} we use a JPA as a preamplifier in our amplification chain to strongly phase-
sensitively amplify the to-be-measured quadrature, while the other quadrature is deamplified.
An exemplary result is shown in Fig.[5.2] where the p-quadrature is strongly amplified. The
corresponding histogram of the I/@Q quadratures illustrates the measurement principle. The
statistics of amplified quadrature can be easily accessed from measurements, while the deam-
plified quadrature becomes much narrower and has a reduced mean value. From the previously
introduced formalism, the corresponding measured I/@Q) quadrature in the I/Q plane presents
exactly the same statistics up to an additional noise contribution and some scaling factor. For
instance, if the g-quadrature is to be measured, we employ a preamplifier JPA to strongly am-
plify this quadrature. Based on Eqs.[5.7] and [5.13] we can express the measured [-quadrature
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variance as

2 2 | OGN 2 | Ot
of =K GJUq+T = kG aq—l—ﬁ . (5.14)
J

Eq. implies that in the limit of large amplification gain G, the measured I-quadrature
variance o} converges exactly to the quadrature variance 03 without any additional noise, only
rescaled by a constant kG that can be derived from calibration measurements. We note that
in our experiments, we are limited by measurement-induced noise, e.g., a pump-induced noise
of the preamplifier JPA, preventing an ideal noiseless single-shot measurement.

Lastly, we note that it is possible to reconstruct a Wigner function of an input quantum state
from the introduced JPA-based quadrature measurement. Based on the description presented
above, performing multiple quadrature measurements using a preamplifier JPA for a given
quadrature gy for 6 € [0, 27) results in the measurement of the underlying probability density
function associated with the measured quadrature. From Eq,[2.67] this function f is related to
the Wigner function of the measured quantum state p as [224]

+oo
f(ge) = Tr(pge) = W5(q9, po)dpe. (5.15)

In other words, each quadrature measurement with an angle 6 provides a marginal distribution
of the corresponding quadrature gy. This process can be viewed as performing a 2D cut at
a given angle 0 in the phase space of the Wigner function [224]. Repeating this procedure
for § € [0,27) allows one to reconstruct the Wigner function, using for instance the Radon
transform [225]. One can obtain the associated original density matrix via the Weyl transform
[226], which corresponds to the inverse map of the Wigner function

p= (%)2 /_:o /_:o /_:O _:o W(q,p) exp [i(a(Go — ) + B(po — p))] dadBdgdp. (5.16)

In our experiments, this process is limited by the rate of number of points that can be measured
for a given quadrature gy, the efficiency of quadrature measurements, and the rate at which
the angle 6 can be changed and stabilized. Additionally, we note that the derivations made
above rely on the assumption that a given measured quantum state is stable throughout the
measurements.

5.2 Continuous-variable quantum key distribution ex-
perimental implementation

In this section, we focus on the experimental implementation of the CV-QKD protocol. Sec.[5.2.1]
presents the main components of the experimental setup as well as the experimental steps of the
protocol implementation. In particular, we highlight practical considerations and limitations
such as key sifting. In Sec.[5.2.2] we introduce a full quadrature measurement model that serves
as the basis of all our data analysis of the protocol.

5.2.1 Protocol steps

Here, we consider the CV-QKD protocol with displaced squeezed states, following the protocol
of Cerf et al. [105] explained in Sec.[3.3] Our CV-QKD protocol implementation relies on the
generation of displaced squeezed microwave states to encode a key from Alice. Each squeezed
state is generated by implementing a squeezing operation along the ¢- or p-quadrature, randomly
chosen by Alice. These states are to be displaced in phase space to encode Alice’s key. In
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Figure 5.3: General concept of a prepare-and-measure CV-QKD protocol based on displaced squeezed
states and its experimental implementation in the microwave regime. (a) In the CV-QKD protocol,
Alice encodes her key in an ensemble of ¢- or p-displaced squeezed states. These states propagate
as microwave signals through a quantum channel, which is assumed to be under Eve’s control and
is parametrized by power losses ex and an added noise photon number 7. Bob performs quadrature
measurements to extract the displacement amplitude of each incoming state. (b) Experimental scheme
of the microwave CV-QKD protocol with superconducting JPAs in the cryogenic environment. For
each symbol, Alice generates a ¢- or p-squeezed state, which is subsequently displaced using a direc-
tional coupler coupled to a strong coherent signal. The resulting state propagates through a quantum
channel consisting of a second directional coupler. This coupler is used to inject a variable number
of noise photons nn. On Bob’s side, a strong phase-sensitive amplification is performed using a second
JPA. Color plots in boxes depict Wigner functions of quantum states in the quadrature phase space
(q,p). (c) Legend for various experimental components in panel (b).

Fig.|5.3] we illustrate its concept and present the scheme of our experimental implementation
in the microwave regime.

We use a superconducting flux-driven JPA as presented in Sec.[2.1] for the generation of
squeezed microwave states, which are characterized by a squeezing level S below vacuum [51],[52].
Throughout this work, we refer to this JPA as the squeezer JPA. In this experiment, the JPAs
and all other components are operated at the fixed frequency wy/27 = 5.48 GHz. We recall
that a flux-driven JPA consists of a coplanar waveguide /4 resonator short-circuited to ground
by a de-SQUID (see Sec.. The de-SQUID provides a flux-tunable inductance resulting in
a flux-tunable JPA resonance frequency. For the generation of squeezed states, our JPAs are
operated in the phase-sensitive regime by pumping them at twice their resonance frequencies,
wp = 2w. The squeezed states are subsequently displaced in quadrature phase space using a
cryogenic directional coupler [51]. Each displacement operation encodes a symbol «; drawn
from a codebook following a Gaussian distribution with the fixed variance o%. These symbols
constitute Alice’s key KCa = {0}, (1,..N}- Displacement operations are performed either along
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the ¢- or p-quadrature in phase space, chosen randomly for each symbol but always along the
same direction as for the squeezing operations. In order to improve the efficiency and duty
cycle of our experiment, we chose to implement the squeezing operation solely along the ¢-
quadrature. This restriction is without loss of generality as the quadratures are made to be
indistinguishable, i.e., the measured key statistics does not depend on which quadrature is used
for squeezing operations.

The indistinguishability of both quadratures ensures a maximal security in our protocol
and is obtained by imposing the condition 02 + 03 = o2, where (02) o2 denotes the (anti-
)squeezed quadrature variances. This condition ensures that Eve is prevented from extracting
information on the encoding basis by averaging over the ensemble of Alice’s states, forcing
Eve to interact with each incoming individual state from Alice. Each displaced squeezed state
propagates through the quantum channel under Eve’s control, implemented in our experiment
with a second cryogenic directional coupler, as illustrated in Fig.[5.3] This directional coupler
adds a fixed amount of losses g to incoming states and a tunable number of coupled noise
photons n. The tunability of the coupled noise is provided by the arbitrary waveform generator
(AWG) capable of generating Gaussian noise in a 160 GHz bandwidth as explained in Sec.[4.3]
This artificially generated noise is up-converted to the desired gigahertz frequency.

For signal readout, Bob uses a second JPA to perform single quadrature measurements
according to the discussion in Sec.[5.1.1] In this work, we refer to this JPA as the measurement
JPA. The quantum efficiency of the quadrature measurement depends primarily on the added
JPA noise, as our JPA is a non-ideal device. This noise is related to intrinsic losses, pump-
induced noise [24, 82], and higher-order nonlinearities [73]. Single-shot measurements, ideally
implemented with quantum efficiency close to unity, are obtained with a quantum efficiency well
above 50 % and without any averaging of measured signals. A single quadrature measurement
is performed for each symbol encoded by Alice and results in a measured key for Bob Kg =
{Bi}ie{l,...,N}‘

In practical implementations, a CV-QKD protocol includes additional post-processing as
mentioned in Sec.[3.3] In particular, Bob does not know the encoding basis chosen by Alice.
Therefore, Alice and Bob proceed to an additional step, commonly referred to as sifting. In this
step, Alice discloses which basis she chose once Bob performed all his quadrature measurements,
resulting in half the data being discarded. In this work, we assume that Alice’s and Bob’s bases
are always agreeing, which means that Alice squeezes states along the g-quadrature and Bob
amplifies incoming states along the same quadrature. We account for the sifting using an
additional factor 50% in the final secret key rates, a prefactor which is ideally achieved in the
asymptotic limit or for a large number of symbols, N > 10%. After the sifting step, Alice and
Bob implement a classical error correction algorithm that uses either Alice’s or Bob’s keys as
a reference to provide them with a common key. Here, we consider the direct reconciliation
(DR) regime, where Alice’s key is used as a reference, known to offer a better resilience to
the coupled noise n as compared to reverse reconciliation, where Bob’s key is taken as the
reference [117, 227].

5.2.2 Quadrature measurement model

In this section, we provide a model describing a single-shot quadrature measurement (SQM)
based on the experimental setup introduced in the previous section. This model is of paramount
importance for the interpretation of our experiment and serves as the basis of the subsequent
data analysis. The general scheme of our CV-QKD implementation setup is shown in Fig.[5.4]
and represents a schematic representation of the experimental setup in Fig.[5.3] It consists of one
main signal path and two additional paths to account for the signals sent to the two directional
couplers. We divide our setup into multiple segments. For each segment, we introduce an
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Figure 5.4: Schematic representation of the theoretical model used for describing the experimental
implementation of the CV-QKD. For modelling, the experimental setup is split into several segments
and consists of three paths. Each segment has either an operation on path signal (SA, S with
associated squeezing level S, amplification noise nJ, and ampllﬁcatlon gain G J) between path 51gnals
(C’A with associated induced displacement «;, CE) path loss (Ll, Lg, L3, L4 with associated losses
g;) or added noise (H with associated amplification noise Ny). The second directional coupler is
characterized by the loss eg and coupled noise photon number 7. For our model, the output state is
effectively reconstructed at the input of the HEMT (while accounting for the HEMT noise), indicated
by a green dot. Here, we do not show the modes corresponding to a path loss and HEMT noise.

operator acting on the signal modes, denoted a;. The modes for the main signal path are
denoted a;, and the two other paths are denoted as as and as, respectively. We consider a weak
thermal background environment in each segment at a temperature T and we model it as a
bosonic mode with an average noise photon number

1

Mgp = ——————.
" () — 1

(5.17)

The squeezing operation 1mplemented by the ﬁrst JPA, corresponding to Alice, is described
by the squeeze operator Sy = exp[(€*a? — £(a})?)/2]. This operator is parametrized by a
squeezing factor ry = |£| and an angle p) = arg({) (with a corresponding squeezing angle
Ya = —pa/2), which determines the amplitude and the direction of the squeezing operation.
The action of the squeeze operator on a signal mode results in the transformation

S1a1S5 = ay cosh(ry) — al sinh(ry)e 24, (5.18)

Alice performs this squeezing operation along the g-quadrature with ¢, = 0 while a squeezing
along the p-quadrature would correspond to ps = 7. For a given symbol «;, each squeezed
state is displaced in quadrature phase space by applying the displacement operator D («;) =

exp <aid1 — 04:&1> resulting in the transformation of an input signal mode a; as
iy = D' (a;) &1 D (o) = a1 + a;. (5.19)

This displacement operation is realized by the first cryogenic directional coupler, acting as a
highly asymmetric beam splitter with a power transmissivity 74, described as

At ar\ - [ VTaar+ V1 —TaG
CA (TA> <d2> OA (TA) = (_mdl 4 \/ﬁdz . (520)

The coupling of 7 noise photons to Alice’s signals is performed using the second cryogenic
directional coupler which we model with a beam splitter of power transmissivity 7z = 1 — ¢,

resulting in
At dl A . \/1—€ECAL1—|—\/5ECAL2
Cy (€E) <&2> Cr () = (_@dl /I —egas ] (5.21)
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A path loss in each section of the setup is modelled using a beam splitter model

LlaL; = \/T—¢jar + /e by, (5.22)

with 7 € {1,2,3,4}. The bosonic modes fzj model the thermal environment with a mean thermal
photon number 7¢,. Lastly, we describe the phase-sensitive amplification of the measurement
JPA (second JPA) using a noisy squeezing operator to account for the amplification noise added
by the JPA itself. We introduce a classical complex random variable ¢ to model the added noise
such that

(Sg)fa155 = (ay + ¢) cosh(rg) — (al + ¢*) sinh(rg)e 25, (5.23)

where ¢ satisfies (¢|*) = 7y, the added JPA noise. We assume an even splitting of the noise
between the ¢- and p-quadrature, (Re (¢)*) = (Im (¢)*) = 71y/2, and that ¢ has a zero-mean
Gaussian distribution [27]. The noise of the JPA depends on the JPA gain G; as

iy (Gy) = 21 (Gy — 1), (5.24)

where =; and =, are phenomenological constants characterizing the noise properties of the JPA
[82]. Since we are considering single-shot measurements, we account for the phase-insensitive
amplification performed by the HEMT, which we describe as

HlayH = \/Gu iy + /Gu — 1 hl,. (5.25)

Here, hy is a thermal mode describing the added HEMT noise and Gy is the HEMT ampli-
fication gain. We note that accounting for this gain would imply that signal moments are
reconstructed at the output of the HEMT. In the measurements, we ultimately shift this recon-
struction point to its input by rescaling the measured data with the amplification gain. The
full protocol implementation is expressed by the operator T as

T = HL4SgLsCpLyCyly S, (5.26)
We write the overall input state of our experimental setup as
Pin = P1 & P2 @ ps, (5.27)

where the states p; describe the signal in path ¢, with i € {1,2,3}. Here, the symbol ® denotes
a tensor product of density matrices. The input signal in path 1 is modelled as a weak thermal
state with a thermal population ny,. The input signal in the path 2 is described as a strongly
displaced thermal state to account for the induced displacement at the first directional coupler.
Lastly, the input signal in path 3 corresponds to a strong Gaussian noise with an averaged
photon number ng, which couples to the second directional coupler. We note that a more
complete description of our system would lead to

Pin = P1 ® Pa ® p3 @ Pt @ p, (5.28)

where py, is a thermal state with an average thermal population 7y, associated with the path
loss operators ﬁj with j € {1,2,3,4}. The term [)f?f denotes the tensor product of 4 copies of
the density matrix py,. Additionally, py is a thermal state associated with the HEMT operator
H. In the following expressions for displacement vectors and covariance matrices, we implicitly
do not consider these additional modes in our quantum model in order to keep the dimension
of the system small. We emphasize that the results of our model remain entirely unchanged by
this truncation. Therefore, we use Eq. to describe our system.

The final output state after the HEMT can be expressed as
Pout = TP T (5.29)
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The moments of the output signals b, (signals at the output of our device chain) can be calcu-
lated as

(6o Tr((a])" @ pout)
(@b | = | Tr((@d) a5 pow) | - (5.30)
<(b:§)nb?> Tr((dg)n&?ﬁout)

Experimentally, we restrict our measurements to the fourth order, i.e., m+n < 4 with (m,n) €
N2. With the complementary quadrature operators
Y =)

= . D= — 5.31

Gi 5 b= (5.31)

we define a vector = = ((jl,ﬁl,ch,ﬁg,(jg,ﬁg)T. Considering that we use Gaussian states, we
fully describe them using their displacement vector d and covariance matrix V. According to
Eqgs.[p.27[5.31] for the input state corresponding to pi,, we obtain

di, = (O, 0, v/ g cos(¢a), v/1a sin(pq), 0, O)T ,

1 (1 + Qﬁth)lz 02 02 (5.32)
Vin — Z 02 (]. + Qﬁth)IQ 02
02 02 (1 + ZﬁE)IQ

Here, ng is the displacement photon number and ¢4 the corresponding displacement angle. For
a given symbol of Alice, «;, we have ng = ]ailz /(1 —75) and @q = 0 due to Alice choosing to
encode the displacement along the g-quadrature. The squeezing operation for Alice’s JPA is
modelled by

e™ 0 0000 cos(ya) sin(ya) 0 0 0 O
0O €~ 0000 —sin(ya) cos(ya) 0 0 0 O
B Te | O 0 1000 B 0 0 1000
Ja=RaSaRuSa=1 o ¢ g 10 o Ba™ 0 0 0100
0 0 00 10 0 0 0010
0 0 00 01 0 0 00 01

(5.33)

The beam splitter operations are expressed as

1/7—A]:2 \/1_7—AI2 02 \/1—€EIQ 02 1/€E]:2
Ca=|-vVI—7al, yal 0], Cg= 0, L 0 . (5.34)
02 02 12 —+\/€E 12 02 V 1— R 12

The losses are described using two matrices

1/1 —&j IQ 02 02 1 5]']:2 02 02
Lj - 02 12 02 ; Nj - Z (]. + QT_lth) 02 12 02 . (535)
02 02 12 02 02 12

Lastly, the phase-sensitive amplification of the measurement JPA is described by

& 0 0000 cos(ys)  sin(ys) 0 0 0 0
0 VGy 00 00 —sin(yg) cos(yg) 0 0 0 O
_ Te | 0O 0 1000 B 0 0 1000
Jo=ReSeRs Se=1 o (1o Be7 0 0 0100]|°
0 0 0010 0 0 0010
0 0 0001 0 0 0001
(5.36)
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with the JPA added noise

7 12 02 02
NJZEJ 0, 0y 0. (5.37)
0; 02 O

The phase-insensitive amplification performed by the HEMT is modelled as

\/GHIQ 02 02

H= 0, I, 09, (5.38)
02 02 12
with the HEMT added noise
I, 0, 0O,
Ng=Ng [0, 02 0y ]. (5.39)
02 0, O
By defining the sequence
T = HL,JgL3;CgLyCaLyJ 4, (5.40)

the displacement vector and covariance matrix of the final state, pous, can be expressed as
douwt = Tdiy, Vour = TV TT 4+ Ny (5.41)

Here, the matrix Ny, represents the total noise of the protocol implementation and can be
calculated by chaining the different losses and amplification noise contributions. We find the
expressions

Now = H(Ng + N OHT + My (N; + N3)M; + M3N,M; + M,N;M;,
M, = HL,J5L;CgL,Ca,

M3 = HL,JpL3C,

M, = HL,J3.

(5.42)

Based on our model in Eq. (5.41]), we can describe the result of individual SQMs performed by
Bob by computing the mean value and variance of the quadrature amplified by phase-sensitive
amplification. This quadrature can be readily extracted from the first two diagonal elements of
Vout- For a symbol «; of Alice, we obtain from our model that Bob’s individual SQM, resulting
in a measured symbol 3;, can be described by a Gaussian random variable with mean ppa and
variance 0123| A- In order to write their expression in a compact analytical form, we introduce
the notations

;i =1—¢; for j€{1,2,3,4}, and o = «;/\/T1 Ta. (5.43)
Using Eqs. and [5.43] we obtain

LA =V GuvV GivTiod, = \/Gu/ Gy B;, 0123|A = Gy [GJ (o2 + NX)] : (5.44)

where we have defined

1 1
0'121 = Ttotaf -+ —Tth (]. —+ Zﬁth> + T3T4 | —€E +n s
4 4 (5.45)
’/_LJ NH &TE’/_LE ’

Nx = 747 + R Ttot = TITAT2TET3T4, Teh = T3TaTE (1 — T1TAT2) + T4e3, and 1 = 5
J

We note that during measurements, the value of 8; = |/Tior &, can be computed by rescaling
the measured symbols by /Gu+/Gjy. The individual values of Gy and Gy are obtained from
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calibration measurements explained in Sec.[4.3] To compute the overall statistics of Bob’s key,
we write that the indistinguishability between the two quadratures imposes the condition

T1 TAaf + ai =7 TAU; <~ 052 + Ji, = crgs. (5.46)
The mean and variance of the distribution of Bob’s key can be viewed as a convolution between

the Gaussian modulation of Alice’s symbols and the Gaussian quadrature distribution of Bob’s
individual states. As such, we compute Bob’s key probability density function fg as

fs (B) = / " o (Bila) fa () d(ew), (5.47)

where fg|a is the the conditional probability density function of Bob’s individual SQMs and fa
is the probability density function of Alice’s Gaussian distribution. As a result, Bob’s measured
key has also a Gaussian distribution with a mean ug and a variance o3 given by

1 1
U = 0, 0‘]23 = GH GJ (Ttotags + ZLTth (1 + 2ﬁth) + T3Ty (ZlgE + n) =+ NX) . (548)

We emphasize that the experimentally measured values are rescaled by the gain values Gy and
(G during data analysis of Bob’s keys.

5.3 Single-shot measurements and correlations

In this section, we present measurement results of our implementation of the squeezed-state CV-
QKD protocol in the microwave domain. In Sec.[5.3.1], we show extracted mutual information
from our communicated keys between Alice and Bob with their associated Holevo quantity,
which we detail in Sec.[5.3.3] Sec.]5.3.2] additionally presents statistical tests performed to
verify the Gaussianity of our measured data. The corresponding secret keys and the analysis of
finite-size effects are presented in Sec.[5.3.4] Based on our measurement results, we investigate
in Sec.[5.3.5] the maximal communication distance that could be achieved in a future practical
implementations, making use of commercially available microwave technology for cryogenic and
classical systems. In a second step, we discuss potential improvements and limitations of our
protocol implementation in Sec.[5.3.6 Lastly, we mention two additional experiments of the
CV-QKD protocol based on the same experimental setup. First, we investigate in Sec.[5.3.7]
the relation between the mutual information and the signal-to-noise ratio and show that our
experimental results agree well with our theoretical prediction. Second, in Sec.[5.3.8 we present
a time multiplexing method that can significantly improve experimental secret key rates.

5.3.1 Mutual information measurement

In this section, we present our results regarding the mutual information (MI) extracted from our
experiments. These results have been published in ref.53. We use the SQM model presented
in the previous section to describe the strong phase-sensitive amplification measurements per-
formed by Bob. We expect a measured quadrature in the I/@ phase space and a corresponding
amplified quadrature in the ¢/p phase space to be related via the total amplification gain with
additional amplification noise. According to the formalism presented in Sec.[5.1.1} in the case of
a JPA amplification gain GGy > 1, the information about the deamplified quadrature becomes
inaccessible from SQMs as opposed to the amplified quadrature. Experimentally, we charac-
terize the quadrature amplification noise N, using the quadrature quantum efficiency defined

114



Chapter 5 — Single-shot microwave quantum key distribution

arameters
run Us2 O-gs 0123; 77(%) €0 €1 €2 €3 €4 TA
1% run 3671 1.3 65 0.147 | 0.109 | 0.055 | 0.069 | 0.245 | 0.989
ond yun 3.6 76| 1.36 68 0.147 | 0.109 | 0.055 | 0.069 | 0.245 | 0.989

Table 5.1: Summary of the different experimental parameters used in both measurement runs. The
values of the variances are given in dB, and the quantum efficiency is given in percent. The listed
parameters are used in the SQM model in Eqgs.|5.48[l5.53

as = 1/(1+ 2Ny) [13]. We operate the measurement JPA in the phase-sensitive regime with
an amplification gain Gy = 19.1(4) dB and quadrature quantum efficiency n = 65(2) %. For
each encoded symbol of Alice «;, we select from our measured time trace a single filtered and
demodulated I; quadrature point. This data point is related to the extracted symbol of Bob as
Bi = k(I; + n;) with x the PNCF and n; a total measurement noise, according to our analysis
in Sec.5.1.2

It is important to note that our digital FIR filters use a window of 90 1/ points to perform
the digital filtering as mentioned in Sec.[d.1.3] This implies that completely statistically inde-
pendent //Q) points can be selected every 7.2 ps. All measured data points {3; };cp,n) form Bob’s
measured key. In Fig.(b), we show an exemplary histogram of single-shot measurements
of Bob’s symbols, normalized to correspond to a probability density function. Superimposed
to the histogram, we plot the quadrature distribution obtained from the model according to
Eq. . We observe a good agreement between our model and the measured data. In order
to precisely quantify the matching, we note, as explained in the previous section, that Bob’s key
is described with a zero mean Gaussian distribution which depends on the quantum channel
losses €, and coupled noise photons n. However, additional experimental parameters play a role
in the final measured variance o, namely the squeezing (anti-squeezing) variance o2 (02), the
setup losses, and the amplification noise Nx. These quantities are extracted from calibration
measurements according to Sec.[d.3] and are assumed to be known quantities in the remaining
of our analysis. In Tab.[p.I} we provide a summary of the extracted parameters. Here, we
also show the experimental parameters used for a 2"! run where we have improved the mutual
information and associated security. We detail the changes from the 1% run in Sec.[5.3.4]

We perform our measurements for the constant squeezing level of S = 3.6 dB corresponding
to the squeezing variance of o2 = 0.11. For the setup losses, we perform a 2D Planck spec-
troscopy [197](see Sec.[t.3.1)) and extract the experimental value of total losses eop = 3.06 dB.
In parallel, we carefully estimate the losses of our experimental setup, resulting in the loss
estimation of ¢ = 2.29dB. The observed discrepancy between our loss estimation and the
extracted total losses is attributed to additional losses from our JPA sample box. Assuming a
symmetric loss between the boxes, we consider an additional loss contribution of ey,,, = 0.39 dB.
The total estimated loss values are shown in Tab.[5.1] We note that during our measurements,
we make sure that the measurement JPA does not enter compression for an interval of the
Gaussian distribution of Alice of 304, covering 99.73% of Alice’s symbols. Additionally, the
power corresponding to the outliers above this 30, interval is primarily only slightly above
the compression threshold of the measurement JPA. As a result, the fraction of symbols that
results in a non-Gaussian state and statistics after amplification by the measurement JPA are
not statistically significant. In addition, in Fig.(a) we show an exemplary evolution of the
Wigner function of a quantum state at different steps of our protocol. We observe that an
initially displaced squeezed state generated on Alice’s side is enlarged by the noise induced
via the second directional coupler, representing Eve’s quantum channel. Finally, the Wigner
function is strongly amplified in the phase-sensitive regime, resulting in an elongated Wigner
function along the g-quadrature. Note that the initial displacement, encoding a symbol «; of
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Figure 5.5: Tomography and single-shot measurement histograms of displaced squeezed microwave
states. (a) Exemplary evolution of the reconstructed Wigner function of a quantum key symbol, start-
ing from its preparation at Alice, followed by propagation through the quantum channel while being
exposed to losses and noise (Eve’s attack), finishing at Bob with a strong phase-sensitive amplification.
The inset of the left Wigner function plot shows the 1/e contours for an ideal vacuum (red circle)
and experimental squeezed state (blue ellipsoid), indicating squeezing below the level of vacuum fluc-
tuations. (b) Exemplary measured histograms for Alice’s and Bob’s key symbols. For comparison
with the measured probability distribution P, (Xg), we plot the result of our quadrature model (solid
lines). The latter results in a zero-mean Gaussian probability distribution Py, (Xg), whose variances
are obtained from the calibration measurements presented in Sec.

Alice, is strongly scaled by a factor v/G5. This factor is removed during data analysis to rescale
Bob’s symbols.

Following these measurements, Bob possesses a set of symbols correlated to the initial
set sent by Alice. Remarkably, the sifting step of the protocol leaves the measured mutual
information and calculated Holevo quantity unchanged [154]. We characterize Alice’s and Bob’s
correlations by computing the MI between Alice’s encoded key s and the corresponding key
Kg measured by Bob. For continuous-variable states, the mutual information between Alice’s
and Bob’s keys can be written using the differential entropy defined in Eq. as

I(Ka: Kg) = h(Kg) —h (Kg|Ka), (5.49)

where h is the differential entropy and h (ICB|ICA) expresses the differential entropy of Bob’s key
conditioned on the values taken by Alice’s key. Importantly, a zero MI indicates no correlations
between the two keys K, and Kg. For a continuous variable system, the MI is unbounded
in theory, but it is limited in practice by experimental parameters and the efficiency of our
amplification chain. From Eq. 7 the differential entropy of a Gaussian variable X, in the
units of bits, simplifies to

1
h(X)= 3 log, (2meo%), (5.50)

116



Chapter 5 — Single-shot microwave quantum key distribution

(a) (b)
~ 1.2r —~ 1.2 S
S 1 E i -7
2 2 ot
‘.\(L) 0 8 1 E 08- /A/ ——
s . 153 |
o 04 AA/X — X (model) — Y, (model) o 04 A,f — X (model) — Y (model)
L X (exp.) & Yy(exp.) &I/ EX,(exp.) =Y, (exp.)
Ko 0 -+ Holevo quantity (O 1 -+ Holevo quantity
E2e-3} £ 2e-3f
N S ) R [ S
0 0.04 0.08 0.12 016 0.20 0 0.04 0.08 0.12 016 0.20
noise photon number n noise photon number n

Figure 5.6: Single-shot measurements of the MI with associated Holevo quantity. The MI between
Alice’s and Bob’s keys for the amplified (deamplified) quadrature Xp (Yp) as a function of the
coupled noise photon number 7 is shown in panel (a) for the 15 run and in panel (b) the 2°¢ run.
We additionally show the MI computed from our model according to Eq. using the measured
experimental parameters. Lastly, we show the corresponding Holevo quantity for both. The shaded
green (red) area on the left (right) represents the region where the MI is larger (smaller) than the
Holevo quantity, resulting in a unconditionally secure (insecure) communication. The error bars
represent the standard deviation of the measurements. Lastly, we show the corresponding Holevo
quantity.

where 0% is the variance of the random variable X. Based on the formalism of conditional
Gaussian variables [154], the variance of Bob’s key conditioned on the values of Alice’s key can

be expressed as
,  cov(Ka, Kp)?

0123|A =o0p — (5.51)

Y

2
OaA
where cov(Ka, Kp) is the classical covariance between Alice’s key Kx and Bob’s key Kg. This

results in an expression for the mutual information purely based on the statistics between Alice
and Bob’s key

1 o3 ok 1 cov(Ka, Kp)?
I(Ka: Kp) = =1 A_DB =-1 1 ’
(Ka: Kg) 5 0gs < 2 ) 5 082 < + o2 02 — cov(Ka, Kp)?

0% 0% — cov(Ka, Kp)? 2

(5.52)
Here, we define the signal-to-noise ratio as SNR = cov(Ka, Kg)?/ (03 08 — cov(Ka, Kg)?), rep-
resenting the ratio between a signal variance and a noise variance. The last result offers a direct
practical implementation as it provides a direct computation of the MI from our measured keys.
We compute the classical variances and covariances between Alice’s prepared keys and the cor-
responding keys measured by Bob. Using Egs.[5.44] and [5.48, we obtain the corresponding
mutual information from our quadrature distribution model

1 o3
I(ICAI ICB) = 510g2 <0_2—B)

BJA

(5.53)

Ttoto-i
= —log, | 1+ — — — )
2 TtotO'SQ + Tth (1 + 2nth) /4 + T3T4 (€E/4 + n) + T4nJ/2 + NH/GJ

In Fig.[5.6] we plot the resulting MI extracted from measurements of the amplified quadra-
ture. Additionally, we extract a MI for the deamplified quadrature. We note that the MI is
insensitive to any linear rescaling of either Alice’s or Bob’s keys and, therefore, captures core
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Figure 5.7: Illustration of the Bhattacharyya coefficient and experimentally computed Hellinger dis-
tances. Comparisons of exemplary Gaussian distributions are shown. In panel (a), a Gaussian distri-
bution (blue) is used as a reference and is compared to a second similar distribution (orange), resulting
in a large overlap depicted by the shaded area. In panel (b), the second distribution (orange) is less
similar to the reference distribution (blue), resulting in a smaller shaded area. (c) Hellinger distance
according to Eqs. and as a function of ratios A and x. The average values for the 15 run
and 2" run are shown by the star symbols. (d) Magnified view of the plot in panel (c). The yellow
star corresponds to the 15 run with A = 0.003(5) and 2 = 0.94(1). The green star corresponds to the
284 run with A = —0.005(6) and = = 0.84(1). The optimal point is shown with a white semicircle.

correlations between their datasets. More precisely, we write the SNR using Eq. and
imagine Alice would rescale her prepared key ensemble s by a constant Cx and Bob would
rescale his measured key ensemble K by a constant Cy. By linearity of the covariance, it
follows that the rescaled SNR is given by

C2C% cov(Ka, Kp)? B cov(Ka, Kg)?

SNR/ = -
C3iC% 0% 08 — CAC% cov(Ka,Kp)? 0% 08 — cov(Ka, Kp)?

— SNR. (5.54)

This result implies that computed SNR, and, in turn, the mutual information calculated from
the measured symbols are independent of the constants Cx and Cg. In particular, they are
insensitive to any rescaling of the measured I/Q points by a specific value of the PNCF, k. The
latter is the largest source of uncertainty in our measurements. For the measured SNRs, the
main uncertainty originates from statistical uncertainty (due to the finite number of symbols)
and the stability of experimental devices. For the amplified quadrature, we observe a clearly
nonzero MI, indicating strong correlations between Alice’s and Bob’s keys, in agreement with
our quadrature model. Conversely, we observe a nearly zero MI for the deamplified quadra-
ture, demonstrating an almost complete loss of information, as expected from the Heisenberg
principle for conjugate variables. We note that from the SQM model, we expect a near-zero
MI for the deamplified quadrature, as only noise can be measured for this quadrature.

The accuracy of our model is quantified using the Bhattacharyya coefficient, B, [228], which
evaluates the matching between measured quadrature distributions and our model predictions.

118



Chapter 5 — Single-shot microwave quantum key distribution

For continuous variables, the Bhattacharyya coefficient, B, is defined as

B(Pl,Pg) = /D \ P1 (l’) P2 (ZL‘) dI, (555)

where P; and P are two probability density functions and D is a common domain of definition.
In the case of Gaussian random variables where the domain of definition is the set of real
numbers R, the Bhattacharyya coefficient takes the simple form

Va2 +2x_2 P (4(1_fx2)) ’ (5.56)

where p; and ps are the mean values of the Gaussian distributions P, and P, respectively.
Similarly, o1 and o, are the standard deviations of the Gaussian distributions. To illustrate
the behavior of the Bhattacharyya coefficient, we introduce the parameters z = o05/0; and
A = (g — p2)/oy. By definition, we have 0 < B < 1. implying that the coefficient B quantifies
an overlap between the distributions P, and P,. The Bhattacharyya coefficient can be used to
define a proper metric for probability density functions, called the Hellinger distance

B(Pl,P2>:

20109 [ 1 (1 — o)’
5 5 eX =
o]+ 03

o 2 2
4 of+ o3

H(P,P)=+/1-B(P,P), 0<H<I. (5.57)

Since H is a distance, it fulfils the triangular inequality and, in particular, we have the property
H (P, P,) =0 < P, = P5. Tt follows that the smaller the Hellinger distance, the more similar
the probability density functions P; and P, are to each other. Equivalently, the Bhattacharyya
coefficient close to unity indicates that the probability density functions P, and P, are similar.
The principle of the Bhattacharyya coefficient with the associated measured Hellinger dis-
tances is shown in Fig.[5.7] Considering that our measured keys follow Gaussian distributions
since all physical states and quantum channels involved in the experiment being Gaussian, we
evaluate the relevant Bhattacharyya coefficients with the associated Hellinger distances using
Eqs.p.56|and [5.57 In this work, we obtain for the 1" run the coefficient B(P. (Xg) , P (XB)) =
99.98(1) % with an associated H (P, (Xg), Pn (X)) = 0.015(3) for P, (Xp) the probability
distribution of the experimentally measured amplified quadrature Xp and P, (Xg) its corre-
sponding quadrature distribution predicted from our model. For the 2°¢ run, we compute
the coefficients B(P, (Xg), P (XB)) = 99.76(4) % with H(P, (Xg), Pn (X)) = 0.049(4). The
B values close to unity indicate an excellent agreement between our model and experimental
measurements, which can be interpreted as a proof of genuine SQMs in our experiments.

5.3.2 Test normality of measured datasets

Taking advantage of the histogram measurements of Bob’s keys, we can verify the Gaussianity
of the measured keys using classical statistical tests. These tests, alongside the measurements
of cumulants up to the fourth order (see Sec.7 assure that our measured data follows
Gaussian statistics, i.e., the basic assumption made in all derivations in this work. We rely on
well-known normality tests, namely the Shapiro-Wilk (SW) test, the Anderson-Darling (AD)
test, and the Jarque-Bera (JB) test. Each test presents some robustness compared to the
others. They are designed to test the validity of a null hypothesis, Hy, as compared to an
alternative hypothesis (the negation of the null hypothesis most often). For these tests, the
null hypothesis consists of stating that the observed data is normally distributed. For a given
test, a so-called p-value is computed, which indicates the likelihood of the observed data to
have occurred under the null hypothesis. In other words, the p-value represents the probability
that we observe data as extreme as the measured ones given that the null hypothesis is true.
To compute the p-value, a statistical quantity denoted ¢ (which depends on the performed
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test SW test AD test JB test
keys

keys 1% run 0.39£0.22 | 0.434+0.29 | 0.30 £0.16
keys 2°¢ run 0.40£0.21 | 0.53+0.22 | 0.39£0.14

Table 5.2: Average p-value obtained for the various normality tests and for measured keys in the 15¢
and 2" run. All p-values are well above the threshold cippes = 0.05.

test) is calculated for the unknown to-be-tested probability distribution f. The p-value is then
expressed as
p=Pr(f >t|Hy) or p=Pr(f<t|H), (5.58)

where the choice of the inequality depends on the test performed. One defines a confidence
threshold aypres and the null hypothesis Hy can be rejected in the case of p-value < ipres- TO
reject the null hypothesis, the smaller the p-value, the more confident we are in rejecting the
null hypothesis, as the probability of the observed data under the null hypothesis is small.
One commonly considers that a p-value 2 0.1 does not provide statistical evidence against the
null hypothesis. We note, however, that this result does not mean that the null hypothesis is
corrected or that the alternative hypothesis is incorrect, but rather that the null hypothesis is
not in contradiction with the observed data.

The SW test typically presents a high probability of rejecting the null hypothesis given
that the alternative hypothesis is true [229]. It is computed using statistical estimators of
the mean and the variance of the underlying random distribution. When applicable, this
test is found to be efficient at capturing non-Gaussian characteristics of the observed data.
Alternatively, the AD test is a commonly used test to evaluate observed data for any given
probability distributions, not necessarily restricted to normal distributions [229]. It measures a
weighted distance between the observed probability distribution and the assumed to-be-tested
probability distribution. Similarly to the SW test, the AD test can capture non-Gaussian
features efficiently when it is applied to a normal distribution. Lastly, the JB test can be used
to test for normality of observed data by verifying whether or not the skewness and kurtosis
of the data match a normal distribution [229]. The skewness measures the symmetry of the
observed probability distribution and is zero for an ideal Gaussian distribution. The kurtosis is a
statistical quantity that evaluates the significance of the tail of the distribution. For instance, a
Poisson distribution has more outliers than a normal distribution and presents a corresponding
higher kurtosis. Similarly to the SW test, the JB test presents a high probability of rejecting
the null hypothesis under the assumption that the alternative hypothesis is true. The JB test
is more suited than the SW test for a large data set of samples. More precisely, the SW test
is recommended for a data set of less than 5000 samples. Since our sample size does not differ
greatly from this threshold, we include both the SW and JB tests.

All tests are performed using the statistics toolbox of the programming language MATLAB®.
Moreover, all tests are applied for the null hypothesis Hy “The observed data has a Gaussian
distribution”. The computed average p-values of the tests for both measurement runs are listed
in Tab.[5.2] The tests are performed with the common choice of agpres = 0.05 for all tests. We
observe a high computed p-value for all three tests on average and for both measurement runs.
The high standard deviation originates from the large fluctuations in p-values. However, all
p-values are well above 0.1, except for one key for the first measurement run. Here, we obtain
p-values around 0.05, which could indicate that the null hypothesis could be rejected. However,
we recall that no experimental parameters are changed for this key compared to any other mea-
sured keys of the same measurement run. Moreover, none of the keys presents a low p-value
for the second run. This seems to indicate that this particular key with a relatively low p-value
is a statistical outlier and is not sufficient to confidently reject the null hypothesis. Thus, we
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conclude that there is no statistical evidence to reject the null hypothesis and, as a result, we
can assume that our measured keys are distributed according to Gaussian distributions. In
addition, this result is in agreement with the assumption that all contributions of the variance
of Bob presented in Eq. have a Gaussian distribution, which we assume throughout all
derivations in this work. More importantly, the assumption that our measured keys present
a Gaussian distribution is in agreement with the fact that our measurement JPA, which we
expect to perform phase-sensitive amplification, behaves as a linear amplifier throughout the
measurements. In other words, it is in agreement with the assumption that all physical quantum
operations taking place in our experimental setup are Gaussian and that we work exclusively
with Gaussian channels.

5.3.3 Holevo quantity

In order to extract secret information from their datasets, Alice and Bob estimate an upper
bound for the amount of information leaked during the quantum communication using the
Holevo quantity xg. We rely on our calibration measurements to have an estimation of the
channel losses 75 and coupled noise photon number 7. Without loss of generality [129] 230], we
assume that Eve employs a collective Gaussian attack [08] with an optimal joint measurement,
and we restrict her attack to an entangling cloner attack [227]. The entangling cloner attack
consists of Eve coupling one mode of a TMS state to on incoming state of Alice, for each of
Alice’s states. The TMS is chosen such that cosh(r) = 1 + 2ng, for some apparent thermal
photon number ng. It is modelled using a density matrix encompassing the mode of Alice and
the two modes of Eve. These modes are coupled together using a beam splitter model between
Alice’s incoming mode and one mode of Eve’s TMS state. From the perspective of Alice and
Bob, the signal coupled by Eve’s attack appears as a thermal noise signal with ny, = 2n/eg.
To compute the Holevo quantity, we define the ensemble state of Eve by averaging over Alice’s
codebook, which in this work takes the form

P / da f () P (5.59)
A

where A is the codebook domain of Alice meaning the domain from which Alice chooses her
symbols. Here, we consider A = R. Note that a complete description would include a random
change of basis, i.e., randomly switching between squeezing along the ¢- or p-quadrature. In
our experiment, squeezing is restricted to the g-quadrature. The Holevo quantity is then given
by [143]

— ( [ das@ pE) - [ daf @) (pe). (5.60)

where S5 is the von Neumann entropy for a two-mode states. We note that the second term
inside the Holevo quantity represents an average of the von Neumann entropy of Eve’s individual
state. Even though these states individually depend on a given displacement amplitude «;, their
corresponding von Neumann entropy does not. As a result, all individual states of Eve can be
treated equally for the purpose of computing the Holevo quantity. As explained in Sec.[2.2.2],
the von Neumann entropy of a Gaussian state is computed using its symplectic eigenvalues.
The Holevo quantity as a function of experimental parameters is shown in Fig.[5.§ Since Eve
is assumed to implement an entangling cloner attack and Alice uses a Gaussian codebook, all
states involved in the protocol are Gaussian states. Following the derivations in Ref. [I54], we
can write the covariance matrix of an individual TMS state of Eve as

1 W1, VIWZ = 1az>

VE,ind = Z_l (maz WIQ (5.61)
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where oy is the z-Pauli matrix. The quantity W represents the initial local variance of each
mode of Eve’s TMS state. We parametrize it as

4n
W=14—=1+2ng. (5.62)
€E
The interaction between Alice’s and Eve’s mode is modelled with a beam splitter operator B
with a transmissivity 7 = 1 — eg. After the interaction of an individual state of Eve with an
incoming state from Alice, the covariance matrix in Eq becomes

V;E),ind = 1 ( (1 — EE)WI2 ! SEVA \/(1 - EE)\/WQ a 10Z> ’ (563)

4 \/(1_5E)\/W2_1UZ W12

Here, the matrix V /4 is the covariance matrix of the incoming state of Alice at the input of
the quantum channel (i.e., at the input of the second directional coupler in our implementation)
and reads

Va =417man1 Ve + (1 — 7o7am1) (1 + 2024 ) I, (5.64)

with Vg, the covariance matrix describing the squeezed state of Alice, i.e., for a g-squeezed

state
o2 0
Vi = (O Ui) . (5.65)

Using the indistinguishability condition in Eq5.46] we derive the covariance matrix of the
ensemble state of Eve as

Vl — 1 (]- - gE)WIZ + 5E‘~/A,ens:[2) \/(1 - 5E)\/W2 - 1O'Z (5 66)
E.ens 4 \/(1 — €E)\/W2 — 10’z W12 . .
Here, we define )
VA ens = 47—27—A7—10—§S + (1 — 7o7a71) (1 + 274y). (5.67)

Using Eqs.[2.116| and [2.105], we derive the full analytical formula for the Holevo quantity

Xe = g(1n) + g(ra) — glus) — glwa), (5.68)
where
=3 (V (W (1= )W + enVhom)? = 4(1 = ) (W2 = 1) +[en(Vaoms - W)D ’
1 ¥ 2 2 ¥
Vo = g <\/(W + (1 — 5E)W + 5EVA,ens) - 4(]— - €E>(W - 1) - €E(VA,ens B W)’> ’ (569)

1
— 2 _ _ 2 _ 2
n=17 VAR + W2 = 2(1 —ep)(W?2 — 1) + A,

1
— 2 _ _ 2 _ — A2
vy = 4\/5\/AA7SAA@S + W2 = 2(1 — ) (W2 — 1) — AZ,

with the following definitions
Ap = (W2 = ApsApas)? — 41— ep)(W? = 1)(W — Ap ) (W — Apas),
AA,s = (1 — &?E)W + &TE‘N/A’S,
AA,as = (1 - EE)W + 5EVA,aSa (570)
f/A@ = 4TQTA71052 + (1 — moram) (1 + 274p,),

‘N/A@S = drymamio2 + (1 — 7o7am) (1 + 204n).
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Figure 5.8: Holevo quantity xg calculated according to Eq. . (a) Holevo quantity as a function
of the noise photon number 7 and loss eg of the quantum channel. (b) Holevo quantity as a function
of the squeezing factor r4 and input JPA noise fns of the first JPA used by Alice to prepare squeezed
states. Here, we consider yg = 1 — 0.9885 and the lowest coupled noise 72 ~ 2 x 1075,

In our experiment, we use Eq. to compute Eve’s Holevo quantity. In the asymptotic
case, we use the direct expression in Eq. with the experimental parameters given in
Tab.[5.1] The exact values of the channel parameters, eg and 7, are used. In the case of finite-
size effects as mentioned in Sec.[5.3.4 we follow the same procedure to compute the Holevo
quantity, except that the values for the channel parameters are replaced by their worst-case
scenario estimators. The resulting values for the asymptotic case are shown in Fig.[5.5] We
observe a steady logarithm-like increase behavior of the Holevo quantity as a function of the
coupled noise photon. This indicates that Eve gets more information from Alice as the coupled
noise increases. Physically, this can be interpreted as Eve having more strongly correlated
modes as the noise increases. Since one mode is coupled to Alice’s mode, she can use her
nonlocal correlations to extract information from Alice’s symbol. In the limit of infinite noise,
Eve has perfectly correlated modes and can extract exactly the symbol of Alice. Conversely,
any noise on Alice’s states decreases the final correlations measured by Bob. One can consider
that information changes from flowing from Alice to Bob to flowing from Alice to Eve as the
coupled noise increases, a notion that can be linked to quantum discord [216].

5.3.4 Security analysis

Asymptotic key. The security of communication in the asymptotic case is determined by
bounding the number of secure bits communicated per symbol K., with the secret key [181], 231]

K = [(ICAZ ’CB) — XE S Kexp' (571)

A more general formula would additionally include an efficiency coefficient 5 related to the
post-processing of the measured data. Here, we set § = 1 due to the fact that this coefficient
depends on the efficiency of classical algorithms and represents rather a technical limitation.
Instead, we focus on the efficiency of the communication from a quantum mechanical point of
view. In Fig.[5.9] we show the secret key K associated with the MI presented in Fig.[5.6, We
observe a clear positive secret key, which indicates that Alice and Bob share more information
than leaks to Eve. As a result, the communication is said to be unconditional secure in the
asymptotic regime. However, it is important to remember that this statement is based on
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several assumptions. The most important is related to the fact that Alice and Bob share a
classical channel over which they can communicate and authenticate each other (see Sec.[3.1.4).

We observe that the asymptotic secret key remains positive up to 0.062(2) coupled noise
photons. This noise represents the total tolerable noise that can be coupled from a noisy
environment before the communication becomes insecure. Therefore, it is interesting to find
ways of improving the protocol performance. To this end, we can increase the codebook size,
squeezing level, or quantum efficiency of the measurement JPA. However, various limitations,
such as compression effects of the JPAs, JPA noise performance, and experimentally achievable
squeezing levels, must be taken into account. The codebook variance is such that the input
measurement JPA power for Alice’s symbols, in the worst-case scenario for a 30 confidence
interval, is almost reaching the compression level. Similarly, improving the quantum efficiency
would imply using a larger gain, which would reduce the compression level. Lastly, in our
experiments, we find that the squeezer JPA squeezing level reaches a plateau level of S ~ 3.6 dB,
so it cannot be significantly increased.

However, it is possible to increase the codebook variance while keeping the squeezing level
constant if the JPA input noise and squeeze factor increase such that they compensate each
other. In our experiments, we enlarge the codebook variance 0% by allowing for additional
input noise from the first JPA (originating from a pump-induced noise and intrinsic losses)
by increasing the pump tone amplitude of the measurement JPA. The increase in codebook
variance can be explained by rewriting the indistinguishability condition from Eq. (5.46)), taking
into account that the squeezer JPA is actually not ideal but noisy in our experiments, similarly
to the measurement JPA. We denote the noise of the first JPA as na and derive

1 1
o2 +o% =02 & Z(l + 207 exp(—2ra) + 0% = Z<1 + 271p) exp(2ra). (5.72)

Following this result, we can parametrize the squeezing level, S, and displacement (codebook)
variance, o%,, of Alice as

S = —10log;o(02/0.25) = 20rslog;o(e) — 10log,o(1 + 27i4),
) 1 o (5.73)

oy = 5(1 + 2n4) sinh(2ry ).
From Eq. , we see that it is possible to enlarge the displacement variance while keeping
the squeezing level the same if both the squeezing factor and the input JPA noise are increased.
This results in an increase of the anti-squeezing level from 7.1dB to 7.6 dB and, hence due to
the constant squeezing level, in an enhancement of 0% by ~ 14%. As shown in Fig.(b),
this increased codebook variance leads to a higher secret key, extending the noise tolerance to
0.071(2) photons or a relative increase of the coupled noise tolerance by ~ 14%.

During the 2°! measurement run, we also obtain a slightly higher quantum efficiency of n =
68(2) % as compared to the initial n = 65(2) %. For both runs, we compute the expected MI and
Holevo quantity according to Egs.[5.53]and[5.68 As illustrated in Fig.[5.9(b), we observe a good
matching between the prediction of our model and the extracted secret keys. However, based
on our quadrature model, the increased quantum efficiency in the 2°¢ measurement run alone is
insufficient to induce the observed higher secret keys. More precisely, this increase in quantum
efficiency leads to a better SNR that alone would be insufficient to reach the measured SNR.
The increase in secret key values with added preparation noise illustrates a general beneficial
effect of adding trusted noise on the reference side of error correction [134] [135]. Tt is known
from the literature that additional trusted noise on the reference side (Alice in DR and Bob
in RR) results in an improved secret key. Here, the added noise originates from the increased
anti-squeezed quadrature, and we consider this noise trusted, i.e., Eve does not have access
to it. This assumption is a fair assumption in the framework of a lab experiment since the
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Figure 5.9: Secret key of the microwave CV-QKD protocol. (a) Principle of a finite-size estimators.
A fraction of m symbols of the key are used to build statistical estimators of the channel parameters.
Using the remaining N — m symbols, Alice and Bob compute a secret key bound using the statistical
estimators and account for an additional finite-size term A, which further reduces the secret key. (b)
Measured secret key of the CV-QKD protocol for two experimental runs: 15% with squeezing (anti-
squeezing) levels of 3.6 (7.1) dB and 2"¢ with squeezing (anti-squeezing) levels of 3.6 (7.6) dB. The
dashed lines represent the finite-size terms A, which impose upper limits for the noise tolerable for
reaching the unconditional security. The error bars and shaded areas denote the standard deviation
of the experimental data and model, respectively.

setup (or at least the two JPAs) is considered known and trusted. The enlarged codebook is
a consequence of the indistinguishability condition 62 4 0%, = o2 (see Eq. ), leading to
a larger increase in MI than Holevo quantity, and thus, to an increase of the secret key rate.
For the case of the lowest coupled noise, i ~ 2 x 107% (given by the coupling to our sample
stage at T ~ 15mK), we measure a relatively high secret key up to 0.74 bits/symbol and a
corresponding SNR of 2.16, similar to optical implementations in long-distance communication
[232]. We note that this level remains lower than short-distance optical implementations, which
typically work in a regime of SNRs > 10. The key point is that the optical implementation
of CV-QKD protocols commonly relies solely on coherent states instead of squeezed states. In
our work, it is not advantageous to use coherent state protocols in the microwave domain (see
Ref. [233]). Instead, we profit from the straightforward implementation and control of squeezed
states in our microwave setup.

Finite-size effects. Our security analysis can be extended to include limiting effects arising
from the finite size of the transmitted key [I49]. These finite-size effects, inducing a decrease of
the secret key, are reflected by additional finite-size terms A. Equally important, in practical
QKD implementations, Alice and Bob are unaware of the exact quantum channel parameters
and must estimate them using part of the communicated keys. To achieve maximal security, the
channel parameters are obtained from worst-case-scenario statistical estimators e}, and n* for
the channel losses eg and coupled noise 7, respectively. Alice and Bob build these statistically
unbiased estimators from a publicly disclosed fraction of length m = N — n,. of their exchanged
key. The choice of length m depends on the desired quality of the estimators. For practical
implementations, an ideal number m > 10° is suitable. Based on Eq. , we first reformulate
the random variable of Bob (resulting in his measured key) as

B = TimA+ N, (5.74)

with A and N the random variables describing Alice’s key and the total added noise, re-
spectively. Using the disclosed data, a square root transmissivity unbiased estimator can be
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constructed as [126]

7o >ty (o — A) (B — B) _ Cov(A, B)

S (o= A)" e Var(d)

i=1

(5.75)

where we denote A as the average value of Alice’s key K = {aj}je[l ] while B denotes the

average value of Bob’s key Kg = { ﬁj} LN From this estimator, we define a new estimator

Jj€l
Tiot = Tfot which is unbiased since (Tiot) = Tior, as a direct consequence of Eqs. and
5.74  According to Eq. (5.45)), we obtain an unbiased estimator of eg as ég = 1 — 75 = 1 —
Teot/(T1T2TaT3T4). From the previous result, we can construct an unbiased estimator for the

quadrature total noise variance [126]

62— > (@ — Thot ai)2. (5.76)

This estimator converges to the quadrature total noise variance, which we relate to the coupled

noise photon number, 7, using that (6% ) —— 0% = Tiot02+7wh (1 + 20en) /447374 (ep/4 + 1)+
m—0o0

Nx. We compute a worst-case scenario unbiased estimator of the losses considering a confidence

parameter w such that

o2 T
eh =g+ wos, ~ Ep + 2w <—§ + 27 | —————. (5.77)
Oa T1T2TAT3T4 T
For Gaussian random variables, the confidence parameter w reduces to the simple form
w=2erf (1 - 2e.), (5.78)

with .. defined as an error probability, typically set in the range of 107 for CV-QKD proto-
cols [126], giving the common value of w ~ 6.34. In this work, we use a proof-of-principle value
of £ = 1073 giving a corresponding w ~ 3. We note that this limitation is primarily motivated
by the limited number of symbols N = 16665. For a larger N, one can decrease the value of
€ec, improving the security. We can further extend this analysis to obtain a worst-case-scenario
unbiased estimator of the coupled noise photon number n. First, we define an unbiased coupled
noise photon number estimator

*

. . _ €
= (6% — Trot 02 — Ton (1 + 204y,) /4 — T3T4ZE — Nx)/(7374). (5.79)

3p

This results in the worst-case-scenario unbiased estimator for the coupled noise photon number

. N 2~ 2 5-31(
nf=nt+wos~n+wi —=. (5.80)
m

Since a part of the secret key must be used for parameter estimation, Alice and Bob only
preserve a key of finite size n.. = N —m. In this work, we use the entirety of the key m = N to
optimize the precision of our worst-case scenario estimators. We note that this implies that no
key remains for Alice and Bob. Simply, we aim at verifying the presented formalism of worst-
case-scenario estimators. As a result, we use the built estimators and the communicated keys
to gauge the impact of the finite size of the keys. This approach is equivalent to the case where
keys would have been communicated with twice the current length (N symbols for parameter
estimations and /N remaining symbols for the finite-size keys) and is, therefore, valid since we
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are focusing only on statistical quantities in this part. Additionally, we need to account for a
finite-size term to obtain a finite-size secret key bound, which we calculate as [120]

Agq S)
A ex i )
(nex) Nec  Mec
3 P (5.81)
Ag = 4log, (\/E—l— 2) log, <pQ—€4>’ O =1ogy | Pec (1 — gs) + 2log, (\/ﬁsh) .

The inverse square root dependency of the Ag term is the main limitation in the previous
equation, drastically increasing the necessary number of symbols to obtain a negligible finite-
size term A. Note that contrary to the channel parameter estimators, the finite-size term
depends on n.. = N —m. Therefore, a compromise must be found in practical implementations.
Here, the parameter d represents the dimension of Alice’s and Bob’s effective codebooks after
a discretization step during error reconciliation. This discretization is required to transform
their data from a continuous set into a discrete set over which an existing classical optimized
error correction algorithm can be run. We consider a typical value for CV-QKD protocols of
d = 25 for a 5-bit discretization. The overall success of the protocol is limited by the tolerance
error for the security of the protocol, reflected in a smoothing parameter 5 and a hashing
parameter e,. These parameters determine the total error of the privacy amplification step,
which follows the error correction step and depends on the choice of classical algorithm. The
goal of privacy amplification is to remove the remaining information of Eve about Alice’s and
Bob’s error-corrected key. In this work, we choose an illustrative value of e = e, = 1073,
although we note that conservative values of e; = &, = 107!° are typically chosen for CV-QKD
protocols [126]. We emphasize that this point does not change our conclusions regarding the
finite-size terms.

Finite-size key. Based on the previous considerations, we use the aforementioned finite-size
term and parameter estimators to build a new bound on the secrete key in the finite-size case,
which takes the form [120]

r [ﬁ[ (Ka: Kg) — xE (e, 7)) — A (nexp)} < Kexp, (5.82)

where 7 = ne pec /N is a rescaling prefactor with n.. denoting the fraction of the exchanged key
not used for parameter estimation. The efficiency of the error correction protocol is denoted
as before as 3 and its success probability pe., with an achievable 8 > 90 % for an SNR around
unity [I78]. In this work, we set the success probability and efficiency coefficient S to 0.95. As
illustrated in Fig.[5.9|(a), if we account only for the finite-size terms A in Eq. and keep the
exact values of the channel losses and coupled noise, we can observe a region of positive secret
key up to i = 0.004 (7 = 0.009) for the 15 run (2°¢ run). This result shows a drastic decrease
in secret key and coupled noise tolerance due to the finite-size term A, scaling as 1/,/ne. as
in Eq. . This additional term A describes an information cost (in bits), induced by using
the Holevo quantity in the finite case regime. The exact entropy term to use is related to
the so-called min-entropy, a quantity tightly connected to the von Neumann entropy [234].
It expresses the maximal amount of information that Eve can extract under the additional
constraint of being limited to a finite set of states.

Only in the asymptotic case, N — 400, the min-entropy term converges to the Holevo
quantity. This effect can therefore be largely mitigated by extending the key length to a more
demanding but realistic value of N > 10%. In this case, we observe in Fig.(b), that the
secret key would be positive up to i = 0.053 (7 = 0.06) for the 1°' run (2" run), nearly
reaching the asymptotic values of tolerable coupled noise. In a second time, we compute using
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Figure 5.10: Results of the parameter estimation. (a) Secret key for the 15 run using the worst-case
scenario channel estimators of the quantum channel parameters as a function of the exact value of the
coupled noise n. The estimators are built using m = N symbols for maximal accuracy. We observe a
strong reduction of the secret key as compared to the results in Fig.[5.9, The secret key conserves a
comparable shape as depicted by the orange curve, which is extrapolated from the data and serves as
a guide for the eye. We observe, as shown by a green shade in the zoom inset, a remaining region of
positive secret key. (b) Relative error of the noise estimator. This estimator is the major reason for
the reduction in secret key due to the large overestimation of the noise for small noise values. This
result originates from the low absolute values of the noise and the inaccuracy of the estimator from the
limited number of symbols. We note an exponential decrease, ranging from ~ 600% down to ~ 11%,
of the relative error as a function of the true coupled noise 7 due to an increase in the SNR of the
noise estimator.

our whole measured keys the worst-case-scenario unbiased estimator for the losses and noise ¢f,
and n* following Eqgs.[5.77] and As a consequence, we obtain the optimal estimators that
can be built from our measured data. Recalling that we use an error of e, = 1073 and not
accounting for the finite-size terms A, we compute the secret key bound from Eq. and
plot the resulting bound in Fig.m(a). We obtain a positive secret key bound up to roughly
n = 0.012 for the 1°* run (72 = 0.017 for the same analysis in the 2° run). We note a decrease
in the coupled noise tolerance due to the estimators, reduced to a small region as highlighted in
Fig.[5.10[(a). The secret key bound presents some irregularities due to the statistical imprecision
of the parameter estimators. In particular, the main error originates from the estimation error
of the noise as illustrated in Fig.[5.10{(b). The relative error in the noise estimator decreases
as a function of the coupled noise due to lower relative statistical error. In general, the noise
is typically largely overestimated, resulting in a significant decrease in the secret key bound.
However, the general behaviour of the asymptotic secret key is preserved.

We conclude that it is possible to implement and verify experimentally the finite-size ef-
fects, including the finite-size term A and the parameter estimation. The overall effect of the
worst-case scenario estimators is to reduce the tolerable coupled noise of the secret key due
to the scaling of their intentional error, which is amplified by statistical errors. Since we are
operating in a worst-case scenario, any deviation from the true channel parameters is notice-
ably detrimental to the secret key. However, for the same size m of symbols used in finite-size
effects, the reduction in tolerable coupled noise is less than the finite-size term A. In light
of these observations, we conclude that all finite-size effects can be straightforwardly solved
by increasing the key length to N > 10°, where the term A and the error of the parameter
estimators become negligible, with both effects needing to be accounted for equally.
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5.3.5 Secure communication distance investigation

In this section, we estimate the maximal secure communication distances that could be achieved
with the microwave CV-QKD protocol based on the current experimental performance. To this
end, we consider a communication protocol, where Alice and Bob keep the same experimental
parameters as in the 2°¢ run (providing larger secret keys and tolerance to coupled noise), except
that we treat the channel losses cg as a system parameter for a given coupled noise photon
number i = ny,ep/2. Here, we consider the quantum channel as a thermal environment that
couples to the propagating signals provided by Alice. The photon number 7y, is determined by
the temperature of this thermal environment at a given frequency w. For each coupled noise
photon number 7, the maximal tolerable losses are determined as

€E,max = maX{5E| K({‘:E, ’Fl) > O} (583)

In Fig.[p.11)(a), we show the maximally tolerable loss as a function of the photon number
Ny, We observe two regimes for the tolerable loss, where the maximal tolerable loss does not
change significantly until about 7y, ~ 5 x 1072, corresponding to the temperature of T ~
80 K at the frequency of 5 GHz. Afterwards, the maximal tolerable loss shows an exponential
decrease as a function of the thermal background noise. In a fully cryogenic environment
at a temperature 7' ~ 30 mK, we assume the use of commercially available superconducting
cables with characteristic losses of Ly, ~ 1073 dB/m [204] for frequencies around 5 GHz and
parametrize the channel loss as eg = Lg.d, where d is the communication distance. Based
on the previous formalism, we find that an unconditionally secure microwave communication
is feasible up to d = 1190m. This fairly long distance makes microwave CV-QKD relevant
for secure local area quantum networks [235], where one could envision a cryogenic network
of superconducting chips connected via superconducting cables, as depicted in Fig.(b).
In a cryogenic environment, proof-of-principle experiments can be implemented using several
meter-long spools of superconducting cable or alternatively, one can rely on already existing
cryogenic links [199, 236] to verify the CV-QKD microwave protocols over distances up to
several tens of meters. There, it is also possible to employ microwave waveguides, which might
offer even lower attenuation losses [204], as compared to superconducting coaxial cables, while
not as flexible as the latter.

Remarkably, we also find that the unconditionally secure microwave communication could
be feasible up to 84 m in the open-air room temperature environment with 7, ~ 1250 for signals
at w/2m ~ 5 GHz. This finding results from considering the very low microwave atmospheric
absorption losses of 6.3 x 107%dB/m in clear weather conditions [60]. To obtain this result, we
first estimate a path loss for the possible communication distance of d = 84 m of approximately
80dB. A typical parabolic antenna with a diameter of around 2 m provides passive gain around
40dB [60], implying that a pair (as an emitter and a receiver, representing respectively Alice
and Bob) of such antennas would fully compensate the considered path loss. In this context,
the implementation of a low-loss and sufficiently broadband interface between the cryogenic
part and the antennae remains an important technological challenge for the future. Therefore,
we focus on fundamentally unavoidable physical limitations due to absorption losses and treat
the estimated communication distance as an upper bound for unconditionally secure microwave
QKD based on the performance of our existing JPAs. We note that the presence of a finite
uncompensated path loss does not necessarily prevent secure communication but may reduce the
secure communication distances. Nonetheless, we stress that an actual implementation of such
microwave antennas would most likely be limited by technical imperfections, as an ideal antenna
would be challenging to obtain. These imperfections would manifest in the CV-QKD protocol as
additional losses and noise on Alice’s preparation side and Bob’s measurement side. Depending
on their values, the secure communication distance could be greatly affected. Such an open-air
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Figure 5.11: Extrapolated maximally tolerable loss in the quantum channel as a function of the thermal
background photon number. (a) Estimation of maximally tolerable loss (solid line) for positive secret
keys as a function of the photon number due to a thermal background, fg,. This analysis is based on
the experimental data from the 2°4 run. The green shaded area indicates the region of positive secret
keys. We emphasize two particular temperatures on this curve: the cryogenic temperature ~ 30 mK
and room temperature (RT) ~ 300 K. At millikelvin temperatures, we assume characteristic losses in
superconducting cables of v = 1.0 x 1072 dB/m while for the open-air conditions, we restrict ourselves
to atmospheric microwave losses 7 = 6.3 x 107 dB/m due to pure absorption. (b) Schematic of the
communication scenario at the point denoted by the red star symbol in panel (a). Here, a cryogenic
link is considered between two cryostats, both at a temperature of T' ~ 30 mK. The link represents the
quantum channel, assumed in our calculations to be at the same temperature 7" but potentially at a
higher temperature (for higher coupled noise from Eve). (c¢) Schematic of the communication denoted
by a pentagon symbol. Here, the background is assumed to be at room temperature and represents
the quantum channel. The two cryostats send and receive the states via microwave antennae.

microwave system would be relevant for short-distance microwave applications such as WiFi or
Bluetooth technology. Additionally, one can consider the case of short-distance communication
between close buildings via antennas. As such, microwave CV-QKD demonstrates a notable
potential for secure short-range open-air microwave communication, where microwave signals
additionally benefit from a resilience to weather imperfections [60]. The latter are known
to marginally interact with microwave signals, which are particularly impervious to small air
particles (on the scale of ~ 10 pm), for instance in the case of fog or haze.

5.3.6 Potential improvements and outlook

Our experiment reveals that the main limiting factor for the performance of the microwave
CV-QKD protocol is the total noise in the measured keys, which is composed of the coupled
noise n and the amplification noise. Here, the main aspect that can be improved is the quantum
efficiency of the measurement JPA. We find that the measured SNRs and corresponding MIs
are very sensitive to a change in quantum efficiency. Based on Eq. , we can extrapolate
the influence of the change in amplification noise. Raising the quantum efficiency in the 27
run from 68% to 88%, i.e., a relative change of ~ 33%, results in doubling the measured SNRs
and a relative increase in MI by ~ 63%. Therefore, any increase in 1 has a very positive
impact on the secret key. Moreover, a decrease in the amplification noise means that more
coupled noise photons can be tolerated in the communication, since the total noise is decreased,
but the Holevo quantity stays unchanged (in the trusted noise scenario). Using the previous
example, the maximum tolerable coupled noise would be increased to n = 0.13 photons, nearly
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doubling the value obtained in this work. This significant improvement would also largely
improve the maximum tolerable communication distances, independent of a cryogenic or open-
air environment.

We note, however, that increasing the quantum efficiency of present technology amplifiers to
values above n ~ 70% (as measured in Sec. is a technical challenge. This is true also for
flux-driven JPAs due to intrinsic limitations from internal losses. Another improvement of the
MI can be made by further enlarging the codebook size, as is done in this work. We recall that
this can be achieved by adding trusted noise on Alice’s side or by increasing the initial squeezing
level. Once again, the potential increase in MI would be very significant. It is more difficult to
accurately gauge the impact of an increase in the squeezing level due to the increase in input
noise from the squeezer JPA as well. Making the simple (but unrealistic) assumption that the
noise would be unchanged and setting the squeezing level to S = 10dB, we obtain from the
indistinguishability condition in Eq. that the codebook variance could reach o3 =~ 6.24.
This impressive increase in codebook variance would result in a relative increase in MI of ~
150%. An actual implementation would be limited to a smaller value due to the aforementioned
input JPA noise. More predominantly, this approach is limited by compression effects of our
JPAs, which typically set in at input signal powers around —130 dBm, preventing the codebook
variance from exceeding values around 10 photons. Traveling-wave parametric amplifiers [183]
could serve as alternative phase-sensitive amplifiers in future experiments, commonly tolerating
higher input powers with quantum efficiencies comparable to our JPAs. Their broadband
amplification properties also enable the implementation of frequency multiplexing techniques,
which deliver significantly higher secure bit rates. Lastly, the secret key rates could be largely
improved by optimizing the symbol rates of our experimental implementation. Here, the main
limitation is the phase stabilization of our JPAs, which could be minimized in future experiments
by using better frequency filtering in our experimental setup and additional magnetic shielding.
Increasing the measurement bandwidth results in an initial increase of the secret key rate at
the cost of a larger background noise. To remedy this problem, multiplexing approaches, such
as the time multiplexing approach explained in Sec.[5.3.8, can be used. There are also other
multiplexing methods, for instance, frequency or code-division multiplexing.

Lastly, our experiments show that SQMs implemented with phase-sensitive amplifiers can
be considered as a microwave equivalent of optical homodyne detection. More precisely, our
experiment demonstrates the possibility of using these SQMs to unravel properties of quan-
tum states, particularly relevant for quantum state tomography [224], 237]. This approach
can be further extended to non-Gaussian state tomography and complements error correction
codes by offering a single-shot quadrature detection technique [238, 239]. Our demonstrated
results promote the ongoing development of local microwave networks [199] 235] 240], where
short-distance secure microwave quantum communication platforms could complement current
classical microwave communication technologies such as Wifi and Bluetooth due to the intrinsic
frequency and range compatibilities. In this context, we extrapolate in our experiment a secret
key rate of 42 kbit /s for our CV-QKD implementation. By using the Shannon-Hartley theorem
with our measurement bandwidth of 400 kHz, we estimate an upper bound of our raw secret
key rate up to 152 kbit/s for the 2"¢ run, paving the way for secure high bit rate microwave
CV-QKD communication.

5.3.7 Further investigation of mutual information

In this section, we present additional measurements aiming at a more thorough investigation of
the MI. Details about these experiments can be found in the Master thesis of Philipp Kriiger
[241]. For these experiments, the same setup is used as the one presented in Sec.[5.2.1] to
implement the same squeezed state CV-QKD protocol. Two different squeezing levels of S =

131



Chapter 5 — Single-shot microwave quantum key distribution

—
Q
~—
—_~
O
~—"

ol [@ data, S=52ad8]  *
fammy) _ 9100.
8 fi data, S=3.5dB 8
§4_ fit, S=5.2dB ;
@7 |- fi,S=35dB = @ ¢ data, $ =5.2dB
= %10‘1- fi data, S=3.5dB]|;
=2t ~ fit, S=5.2 dB
= = — fit, S=3.5dB
. . . . =] N .
0=70 108 105 10" 700 10 102
number of averages M number of averages M

Figure 5.12: Extracted MI as a function of the number of measurement averages M in the experiment
for both squeezing levels. The solid lines represent fits of the MI according to the expression I =
log,(1 4+ M SNR)/2 and serve as a guide to the eye. The panel (b) is a zoom of the results shown in
panel (a) in the region of low numbers of averages. In particular, we observe a nonzero MI for M =1,
corresponding to no averages of the MI. We note an excellent agreement between our model and the
measured MI for both squeezing levels.

3.5dB and S = 5.2dB are chosen for the squeezer JPA, operated at the frequency of wy/2r =
5.5231 GHz. The resulting squeezed states are produced with the high purity of u = 0.96
and p = 0.95, respectively. This implies that little to no input noise is present on Alice’s
preparation side. Due to the indistinguishability condition 03 = o2 — 02, a direct approach
to increase the codebook variance is to increase the squeezing level. We measure a resulting
codebook variance of 03 = 0.5(S = 3.5dB) and 03 = 1.4(S = 5.2dB). The CV-QKD
protocol is implemented with N = 150 different symbols drawn from a random Gaussian
variable with zero mean and a variance o3 using the random number generation tool of the
programming language MATLAB®. Based on Eq. , one can write the mutual information
as I (ICa: Kp) = logy(1 + SNR)/2. This expression offers the important advantage of being
independent of any rescaling of Alice’s or Bob’s key and captures core correlations between
their datasets as explained in Sec.[5.3.1] Starting by modelling the measured symbols of Bob
{Bi}icp,n as result of a Gaussian random variable B related to the Gaussian random variable
A of Alice, from which she draws her symbols {a; }ici1,n], we write B = /Tyt A + N, Using this
notation, the SNR can be expressed as

_ Cov(A,B) V/Teot Var(A)
SNR = Var(N)  Var(N) (584)

If the measurements of each symbol 3; are repeated M times for a fixed symbol «; and averaged
over these M measurements, the new resulting SNR’ is computed as

SN/ = VT Varld) ViaVarld) _ iaVarlA) g peng - (s.)

Var( S0 Ny 5 o0, Var(Ny) Var(IV)

where each random variable N, represents the noise for a given symbol measurement k €
[1, M]. The main difference between the signal and the noise is that over the M-times repeated
measurements of ;, the corresponding symbol «a; of Alice is unchanged.

We observe that averaging over many measurements leads to a linear increase of the SNR
and, therefore, the computed MI scales logarithmically with the number of averages. In these
measurements, the coupled noise photon number is set to a low photon number n = 0.05. The
MI is computed using the formula in Eq. , and we show the results for both squeezing
levels in Fig.[5.12] In these measurements, the amplifier JPA is not used and detuned from
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the working frequency, implying that a large amplification noise is present. We observe an
excellent agreement between our predicted scaling of the mutual information and the measured
data for both squeezing levels. We distinguish two regimes, a linear regime (in logarithmic
scale) when the number of averages is large enough, which agrees with our model in Eq. ,
and a second regime for a low number of averages. There, we note that for both squeezing
levels we obtain a low but nonzero mutual information of I (Ca: Kg) = 0.035(S = 3.5dB)
and I (Ka: Kg) = 0.095 (S = 5.2dB) for the case M = 1, corresponding to noisy single-shot
measurements.

5.3.8 Time multiplexing method

In this section, we investigate the implementation of a time-multiplexing method to improve the
protocol’s performance. In the previous experiments, during each measurement cycle, only one
symbol was encoded and measured. This limits the rate of symbols that can be communicated
during the measurements, as one full measurement cycle needs to be completed before another
symbol can be sent. One possible approach to circumvent this limitation is to implement a
time-multiplexing method. The idea is to divide the fraction of the time trace dedicated to
the measurement of a given symbol from Alice into multiple ones, effectively encoding several
symbols at once. This procedure allows for an increase in the symbol rate, which in turn allows
for a significant improvement in the secret key rate during experiments. Details about this
experiment can be found in the Master thesis of Valentin Weidemann [233]. The CV-QKD
protocol is experimentally implemented as described in Sec.[5.2.1] The measurement time
previously corresponding to one individual symbol is divided into M sections, each ascribed to
a different symbol. Such an implementation yields M keys of N symbols. The experimental
implementation is illustrated in Fig.[5.13] One can merge all the different keys into one new,
effective key. Combining all keys together provides one key with reduced finite-size effects
originating from the finite number of symbols (see Sec.. The associated secret key rate
is increased correspondingly. Naively, one would expect a linear increase by a factor M in the
secret key rate. However, in practice, a smaller effect is obtained due to experimental constraints
as discussed in this section. In our experiments, M keys are combined into one effective key,
with each key being drawn from a zero-mean Gaussian distribution with a variance o3 ,. The
variance of the combined key reads

| M
ol = i Z ai’k. (5.86)
k=1

In our experiments, during a single measurement cycle of one symbol of Alice, the power of
each device involved in the measurements is set to a constant value. Here, to obtain different
displacements within one cycle, we modulate the power of the microwave source we use to
perform the displacement operations with M different modulation voltages. This results in M
different modulation conversion factors ¢ relating an induced displacement complex amplitude
a to a corresponding measured power Py as P, = ck|oz|2. Initially, a key is randomly generated
on Alice side providing N symbols Ka = {e; }iep,n) with a variance o3. In the experiment, we
set the first conversion factor to be the largest conversion factor. Discarding small negligible
offsets in the calibration, we obtain M new symbols «; ; for each individual symbol «; of Alice
which are defined as

2
’Oz,-’k|2 = ¢, P, = ckmci, for (i,k) € [1,N] x [1, M], (5.87)
1

The previous construction results in M keys Kax = {a;x }iep,n) With & € [1, M]. Each key
is described by a Gaussian random variable with zero mean and variance o3 , = (cx/c1)03.
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Figure 5.13: Schematic representation of the experimental implementation of the time-multiplexing
method. M keys are used in the experiment, each key is encoded using an AWG by modulating in
time the displacement operation f)(ai,j) induced at the first directional coupler using an SGS source,
as depicted in the inset. Each symbol of each key corresponds to a measured I/Q data point. The
symbols are subsequently measured after amplification by the measurement JPA, and the data is
processed with our FPGA setup, resulting in M measured keys.

We note that the definition of the displacement complex amplitudes in Eq. (5.87)) implies a
deterministic ratio between the different keys

2
g
Ak _ Gk (5.88)

OAw

Since by construction, ¢; is larger than the other conversion factors, it results from the definition
of the total variance in Eq. that 0% > o2,..

We experimentally verify the benefit of the modulated displacement approach using the same
setup as presented in Sec.. In this experiment, we use the frequency of wy /27w = 5.856 GHz
and operate the squeezer JPA with a squeezing level of S = 8.0(1) dB. The measurement JPA
is operated with an amplification gain of Gy = 20.7(3) dB and an expected quadrature quantum
efficiency of n = 0.56(4). Additionally, we generate M = 6 different keys using the modulated
displacement approach, for N = 3333 symbols in each key. We extract the SNRs from the
prepared keys of Alice and the measured keys of Bob according to Eq. . Since each
key is generated only with a different modulation voltage from each other, the prime difference
between each key is their codebook variance ‘7/2&,1« According to Eq. , we expect to observe
that

SNRk/ lex,k’ (&% ' '

We note that this relation remains true if the measured SNRs are also averaged over the
coupled noise photon, since additional noise by Eve does not change the codebook variance.
In Fig.[5.14)(a), we show the measured SNR ratios, where all SNRs ratios are referenced to the
largest SNR. We observe a good agreement between our model and the measurement, indicating
the validity of our modulated displacement implementation. We note that these ratios are
insensitive to any rescaling of measured data. Using the different keys with an associated
codebook variance 0/2%71{, we additionally compute a corresponding MI using that 1(Ka x, Kpx) =
log,(1+SNRy,)/2 for three cases: (i) the key with the largest individual codebook variance o3 ;,
(ii) combining keys with the two largest codebook variances, o3 ; and 03 ,, and (iii) combining
all M = 6 keys together resulting in an effective ensemble codebook variance o2 .. We show

ens”
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Figure 5.14: Time-multiplexing results. (a) Measured codebook variance ratios compared to the
values expected according to Eq. (5.89)). (b) Measured MI for the codebook with the largest individual
codebook variance 0'1%71. Additionally, we show the extracted MI obtained by combining together the
keys for the two largest codebooks (Jiyl and aiz), labelled “2 keys”. Lastly, we show the MI obtained
by combining all keys together resulting in an average codebook variance given by o2 . in Eq. ,
which we label as “6 keys”.

the resulting values as a function of the coupled noise photon 7 in Fig.[5.14|(b). We note
that the MIs appear not to depend on the noise photon number due to the presence of a
larger detection noise as compared to the one predicted by our expected quadrature quantum
efficiency, effectively rendering extracted MIs insensitive to the much weaker coupled photon
number n. By then merging all the keys together, we obtain a large key with the same signal
noise as for the individual ones but with a new codebook variance given by o2,.. We obtain
the ensemble MI and MI using the largest individual codebook variance as

M Tagns 1 TO'%
Iens = 7 10g2 (1 + ?> > [1 = 5 10g2 (1 + ?> R (590)

n n

where the factor M = 6 is included to account for the increased symbol rate and o2 is the
noise variance in the measurements. Based on the formalism in Sec.|5.3.3] we compute the
corresponding Holevo quantities for the merged key and individual key with the associated
resulting secret key rates. Based on our measurement bandwidth of 400 kHz, we obtain a
maximal secret key rate upper bound of R = 21kbits/s for the secret key using only the
individual key with the largest codebook variance 0%71 and of R = 54 kbits/s for the ensemble
key, i.e., an increase by a factor ~ 2.6.

In conclusion, the time-multiplexing approach allows for a significant improvement of the
secret key rates in our microwave CV-QKD. The main limitations arise from both the stability of
the devices (e.g., stability of the measurement JPA) and technical limitations (e.g., modulation
voltage implementation).
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Chapter 6

Coupling microwave states to spin
ensembles

In this chapter, we introduce a spin ensemble formed with phosphorus atoms embedded in a
silicon matrix, with gigahertz Zeeman transition frequencies which are probed by coupling the
spin ensemble to a niobium superconducting resonator. Such a hybrid system serves as a good
quantum memory candidate for the storage of propagating microwave signals and in quantum
communication protocols. In this chapter, we demonstrate that propagating microwave signals
can be efficiently coupled to the spin ensemble, allowing for later retrieval of the stored signals.
This part of the work was obtained with the support of Prof. Dr. Hans Huebl and Patricia
Oehrl. We first present a brief modelling of spin ensembles in Sec.[6.1. Subsequently, we
introduce the experimental setup in Sec.[6.2] that we use for characteristic measurements of the
spin-resonator system. Using our room temperature detection setup, we additionally perform
measurements of the squeezing level of quantum states, initially prepared as squeezed states
using a JPA, before and after coupling to the spin-resonator system.

6.1 Spin ensemble concept

Over the last decades, spin systems have been intensively studied both in fundamental research
and regarding applications, ranging from defect spectroscopy in semiconductor industries to
biochemical applications [242, 243| 244]. Coupling of spin systems at millikelvin temperatures
to propagating microwave signals has been demonstrated to achieve highly-sensitive, quantum-
limited spectroscopy such as electron spin resonance spectroscopy [57]. There, a common
method to control and read out a spin system is to use a superconducting resonator. However,
individual spins present low coupling rates on the order of 10 Hz. These rates can be significantly
increased using a spin ensemble — a collection of spins embedded into a host matrix [245], 246].
For quantum applications, phosphorus donors in silicon crystals are promising candidates due
to their long spin coherence times, which are particularly relevant in the context of quantum
memory applications. Storage of microwave signals in spin-based hybrid systems has been
demonstrated, where nonlinear amplifiers such as JPAs have been used to improve the efficiency
of spin readout [57, 247]. In this work, we aim to couple a spin ensemble to microwave signals.
This offers the possibility of using spin systems as quantum memories in the microwave-based
CV-QKD protocol presented in Chap.[5

Here, we investigate the coupling of microwave signals to a spin ensemble which consists
of phosphorus donors in a silicon host crystal at a doping concentration of [P] = 10" cm™3.
An extensive study of this system can be found in Ref.248. In this section, we present a
short overview of the system with associated theoretical models. We focus particularly on
phosphorus donors in an isotopically purified 2®Si: P crystal, with reported extremely long
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Figure 6.1: Spin energy levels. (a) Schematic of a phosphorus donor atom replacing a silicon atom in a
silicon crystal lattice and providing one additional electron. (b) Schematic of the spin ensemble on top
of the superconducting Nb resonator. The resonator is fabricated on a silicon substrate. An external
magnetic field is applied in-plane, defining the z-axis of the system. (b) Energy levels from Eq.
for the phosphorus donor spin Hamiltonian in Eq. . At zero field, three levels are degenerate.
(d) Same energy levels as panel (c) for larger magnetic fields. The energy transitions, shown as black
arrows, sit in the gigahertz regime.

coherence times of T} > 10s [245, 246]. There, a phosphorus donor atom substituting a Si
atom offers an additional electron with the associated electron spin, S = 1/2, as well as a
nuclear spin, I = 1/2, from the nuclei of the phosphorus atoms as shown in Fig.[6.1] (a).

In presence of an externally applied magnetic field, By, along the z-axis as shown in Fig.|6.1
(b), the spin Hamiltonian of a single phosphorus donor can be expressed as

Hy = geptpS - Bext — guftnl - Bex + AS - L. (6.1)

The g-factors are given by g, = 1.9985 [249] and ¢, = 2.2632 [250] with with the Bohr mag-
neton pup and the nuclear magneton p,. The first two terms in Eq. represent the Zeeman
interaction of the electron and nuclear spin with the external magnetic field. The hyperfine
interaction between these two spins is described with a constant, A/h = 117.53 MHz [249], with
h the Planck constant. Four eigenvectors can be built for the phosphorus donor spin Hamilto-
nian based on the state “up”, denoted as“1”, and “down”, denoted as “0”, of the electron and
nuclear spins. The corresponding four eigenvalues of the phosphorus donor spin Hamiltonian
are labelled E;;, where the first index is the electron spin and the second is the nuclear spin.

We find
EOO - (A - 2AB)/4, E11 - (A + QAB)/4,

By = (—A —2\/A2 4+ ¥2)/4, Eyg = (A + 2,/ A2 + £2) /4, (6.2)

AB = BextgeNB - Bextgn,un ) Z'B - Bextge,uB + Bextgn,un‘

At low magnetic fields, the eigenstates split into a spin singlet and triplet state, separated by
the hyperfine energy A. For high magnetic fields, By > 10 mT, the degeneracy of the triplet
state is lifted and typical transition frequencies between the different energy levels are in the
gigahertz regime [248], enabling transitions between the levels with input microwave signals.
The transitions of interest are between the energy levels Fy; and FEj; as well as the energy
levels Egy and Ey, as shown in Fig.[6.1] (b,c). These two energy transitions are separated by
the hyperfine interaction term, resulting in a magnetic field spacing of 4.2mT.
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Modelling of the spin ensemble coupled to a microwave resonator. As indicated
above, the spin ensemble is coupled to a superconducting microwave resonator. The coupling
of a single spin 1/2 of a phosphorus donor (two-level system) to the modes of the microwave
resonator can be described by the well-known James-Cumming Hamiltonian [251]. Here, we
use an extension of this model referred to as the Tavis-Cumming Hamiltonian introduced by
Tavis et al., describing the coupling of N non-interacting spins to a resonator [252]

N N
A YO R .
H/h=wa'a+ 3 ]El Wy i, + g Goj (644 —6_jal). (6.3)

J=1

Here, a is the cavity mode at the frequency w;, coupled to the individual spins of the non-
interacting spin ensemble via the coupling rates, go ;. The individual spins at the frequencies
ws,; are described using the Pauli matrices ,; and ladder operators o_ ;. Collective effects,
such as superradiance [253], arise from the fact that the individual spins are linked to each
other by their coupling to the resonator. The collective effects lead to a rich dynamics of the
spin ensemble. Here, we take advantage of these collective effects to enhance the coupling rate
of the spins to the resonator. To investigate the Hamiltonian in Eq. , it is common to
introduce a collective spin operator. Additionally, we make the simplifying assumption that
all individual couplings are equal and frequency independent, i.e., go; = go, and introduce the
notations

N

N 1

Sy = — 6i,‘7 Jeft = (6-4)
VN ; ’

Using the previous definitions, we write the Hamiltonian of the system in the frame rotating
at a given signal frequency w [254]

N
A 1 N N
H/h= Al + 3 > A6+ gen(Spa — S_al). (6.5)

j=1

The terms A, = w, —w and Ay ; = ws ; —w are the detuning of the resonator and the individual
spins, respectively. The dynamics of the system can be derived using equations of motion,
similarly to Sec.2.1.3] We account for the losses of the resonators using internal and external
coupling rates, denoted ki, and Key, respectively. As a result, we modify the Hamiltonian
H to account for bosonic modes, by, and Cin, Tepresenting input signals to the resonator and
internal resonator bath modes, respectively. Additionally, one needs to consider that the spins
are not ideal, in particular, that they experience relaxation and dephasing rates v; and s
with the associated characteristic time constants 77 oc 1/ and Ty o< 1/7,, respectively. For
phosphorus donors in silicon, dephasing effects largely dominate over relaxation mechanisms
by several orders of magnitude. The different contributions can be modelled using quantum
Lindblad superoperators L with collapse operators, ch, such that

. . A . A . U T
di =V K/2G, dor, = /110 21, dogs1 = /V20,,2k4+1, L(di)- = dL dy — 5{, dzdk}- (6.6)

Here, k = Kext + Kint 1 chosen to be the full width at half maximum as in Chap.[2] Furthermore,
the - symbol stands for an input operator, and {-,-} is the anti-commutator between two
operators. The first superoperator describes the physical coupling of the resonator to an outside
bath. The even superoperators describe spin relaxation, and the odd superoperators model
spin dephasing. Adding the operators [)(dk) to the equations of motion, one can derive the full
dynamics for resonator and spin modes. For the operators considered in this section, the full
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equation of motion reads
a0 i al
— = ——[0,H L(d;)O. 6.7
In general, one needs to account for different spin frequencies ws; which may have different
origins. First, according to Eq. (6.1) the energy levels of the spins are sensitive to spatial
variations of the applied magnetic field. Second, we expect spatial variations of coupling rates
and energy levels due to slight variations in the surroundings of the individual spins.
Based on the input-output derivations in Sec.[2.1.3[ and using Eq. (6.7]), we find that the
equations of motion in the frequency domain can be expressed as

—iwa = _iwrd - (H/Z)& - igeff‘é‘f + vV Hexti)in + vV Hintéin,

— o ;= — (72 + iws ;)0 ; — igod,

(6.8)

Based on these equations, we can derive the complex scattering parameter Sy; using the ex-
pectation values of Eq. . We use the input mode Bin as well as the output mode Eout
corresponding to modes at the input and output of the resonator, respectively. These last two
modes are related via Eout = Z;in — /Kext@ . We note that by convention, the dephasing rate,
vo, is defined as the half-width at half maximum. From Eq. we can derive the frequency
dependence of the scattering parameter as

_<Bo_ut>: i Rext Wi W) = al 2g0,j
Sa(w) = (bin) L i+ K)2 + KC (W) /2 th C'(w) ZH(WHASJ(M))' (6.9)

j=1
From Eq. , we expect an avoided crossing between the energy levels of the resonator and
spin ensemble, illustrating a hybridization of the two systems which we confirm in our mea-
surements (see Sec.. The level splitting between the hybridized modes is given by the
effective coupling rate geg. Therefore, the measurement of Sg;(w) provides direct information
on the effective coupling strength of the resonator and the spin ensemble. The coupling rate of
each individual spin to the resonator can then be derived from Eq. by estimating the total
number N of coupled spins. Additionally, for large spin-resonator detuning, A, — Ag; >> Gesr,
the transmission spectrum of Sy, simplifies to that of the resonator alone. As a result, both
the resonator and spin resonances can be seen in the Sy; spectra measured as a function of the
externally applied magnetic field.

6.2 Experimental cryogenic setup

The experiments are performed in an Oxford Triton 400 dilution refrigerator, a similar system
to that presented in Sec.[f.1.1} Details about this system can be found in Ref.248. The main
difference of this cryostat is the presence of a three-axis superconducting vector magnet, which
allows for experiments in the microwave regime with magnetic fields applied in an arbitrary
direction. The magnet offers a maximum field of 6 T along the z-axis. Importantly, additional
coils are used to compensate for the magnetic field, ensuring that the field is primarily confined
to the sample stage where the spin ensemble is located. The samples are mounted such that
they are positioned at the center of the vector magnet, as shown in Fig.(a). Additionally,
thermalization of the sample is provided using silver wires. Thick, long silver wires thermally
anchor the bottom of the sample stage directly to the mixing chamber. To preserve sensitive
quantum properties, all devices at the sample stage are connected via superconducting coaxial
NbTi cables (SC-219/50-NbTi-NbTi from Coax. Co). Attenuators are thermally clamped at
each temperature stage of the cryostat to suppress incoming room temperature noise. The
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Figure 6.2: Experimental cryogenic setup. (a) Photograph of the Oxford Instruments Triton dilution
refrigerator with different highlighted temperature stages. At the sample stage, we mount an alu-
minium box containing a JPA, which is connected to the spin ensemble positioned below it. The spin
ensemble is placed in the center of the magnetic field generated by the 3D superconducting vector
magnet (shifted down to a lower position in the photograph). (b) Schematic drawing of the measure-
ment setup consisting of the JPA coupled to the spin ensemble. At the input line, an input 30dB
attenuator acts as a quasi-black body radiator to perform Planck spectroscopy measurements. The
spin ensemble can be addressed alone via the directional coupler, bypassing the JPA. Green lines
represent superconducting cables.

attenuator configuration used in the measurements is shown in Fig[6.2(b). A circulator with
a 50 load is used to prevent backward propagating thermal noise from higher temperature
stages.

Our experimental setup contains a JPA, which we use to generate squeezed states. This
JPA is fabricated at the Walther-Meifiner-Institut using a similar design as presented in Sec.[4.2]
and with the same working principle. Fabrication details can be found in Ref. [255]. The JPA is
connected to a heatable input attenuator, which we use for Planck spectroscopy measurements,
in a configuration such as presented in Sec.[£.3.1] The JPA is enclosed in an aluminium box to
shield external stray magnetic fields and prevent magnetic field crosstalk with other surrounding
magnetic components. The spin ensemble has the dimensions ~ 800 ym x 800 pm x 20 pm. It
is fixed with a Marabu Fixo gum glue on top of the superconducting niobium resonator. The
resonator is embedded into a sample box, mounted at the bottom of the sample stage. This
sample box is connected to the JPA with a cryogenic directional coupler (CPL2000-18000-30-
C from Sirius Microwave) in between. The latter allows for individual probing of the spin
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Figure 6.3: Avoided level crossing between resonator modes and spin ensemble modes. The avoided
crossing is located at the frequency wg = 5.61724 GHz. (a) VNA measurement of the Sy; scattering
coefficient normalized by performing a background subtraction. The y-axis is the frequency detun-
ing from the avoided crossing frequency, ws. (b) Theoretical prediction of the scattering coefficient
according to Eq. . The model is plotted for the parameters shown in Tab. and is normalized
similarly to the VNA measurement in panel (a)[l

ensemble, bypassing the JPA. At the 3.8 K stage, a cryogenic HEMT (LNC4_8A from LNF) is
used to amply signals with a gain of 39dB and has datasheet noise temperature of 2 K.

6.2.1 Spin ensemble measurements

In order to study the coupling of propagating microwave signals to the spin ensemble, we
experimentally extract the different system parameters introduced in Eq. . To this end,
we use a VNA (ZVAS from Rohde & Schwarz) which we connect to the input and output of
the cryogenic unit and measure the scattering parameter So;, computed as the ratio between
input and output voltages at the ports of the VNA. Based on the theoretical description in
Sec.[6.1], far from the resonance frequency at which the resonator and spin ensemble hybridize,
the input signals from the VNA only probe resonator modes, whereas spins are not excited.
In experiments, we measure at a frequency detuning between the resonator and spin modes
of Ag/2m ~ 20MHz. For the rest of this chapter, the frequency of each individual spins is
assumed to be centered around a single frequency, ws, = 5.617 24 GHz, with a narrow linewidth
of I'/2r <« 1MHz. Using the VNA, we measure the Sy; parameter as a function of signal
frequency. The scattering parameter, when describing the resonator response, can be described
using a complex function given by [250]

o L [)ei®
So1(w) = Spe"me "™ (1 — 7 j%gfj};& — 1>> ; (6.10)
where Sy gives the amplitude of the signal with the measurement induced phase drift ay,. E|
Similarly, the parameter 7, accounts for the electrical delay due to a finite cable length. Overall
impedance mismatch is reflected in the phase ¢. Here, () is the loaded quality factor and Qe
is the external quality factor defined as in Eq. . The measured spectrum, as compared to
the theoretical mode of Eq. , is shown in Fig.. A widespread circle fit routine proposed

2We gratefully thank Patricia Oehrl, who performed this measurement and generated the corresponding
model prediction.
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parameter
value parameter Kext /2T | Kint /27 | 2/27 | 0%/27 | ws/2m | we/27

rates (MHz) / frequencies (GHz) 5.2 0.7 0.5 0.5 | 5.1724 | 5.6169

Table 6.1: Summary of the characteristic parameters of the coupled resonator-spin system. The in-
ternal quality factor of the resonator is obtained by fitting the data with Eq. using an Sa; (w)
measurement far detuned from the spin resonance, typically on the order of 20 MHz. The spin dephas-
ing rate is obtained by fitting the data using an off-resonance response of the spin modes in Fig.[6.3|
with a resonator-spin detuning of 10 MHz. The coupling between the spin ensemble and resonator is
extracted from a fit of Eq. to the measured VNA data in Fig.

by Probst et al. [256] can be used to precisely fit the Sy response according to Eq. (6.10). From
this fit, we extract the resonator frequency with the associated loaded and external quality
factors. We extrapolate the internal quality factor Qiy, using the definition of quality factors
in Eq. .

Based on our analysis in Sec.[6.1], the finite coupling between the resonator and spin-ensemble
modes results in an exchange of excitations between the resonator and the spin modes at an
effective rate g. when these two modes are tuned in resonance by the applied magnetic field.
The resulting hybridized modes appear as an avoided level crossing in the measured Sp;(w)
spectra. At frequencies far off-resonant from the resonator (spin) mode, only the spin-like
(resonator-like) modes are excited as shown in Fig. The average response of the spin-like
modes at constant applied magnetic field (vertical cuts), far away from the resonance field, can
be fitted according to the Lorentzian function

C Vs

L(w) = ;(w o)+ ()

(6.11)

where the half width at half maximum of the Lorentzian, defined by the spin ensemble dephasing
rate, s, is used as a fitting parameter. Additionally, we fit the Lorentzian amplitude with a
fitting parameter C'. The detuning between the resonator frequency w,, and the spin mode
frequency used in the Lorentzian function fit is set to 10 MHz.

Lastly, using the previously determined resonator coupling rates, ke and kiy, as well as
the spin dephasing rate, 79, as fixed parameters, we fit the full Sy;(w, Bey) response given
in Eq. as a function of both signal frequency, w, and applied magnetic field, Bq. The
mapping between applied field and corresponding spin frequency, ws, is given by the transition
from energy level Ey to energy level Fq. This energy transition is computed following Eq. .
From this fit, we extract the collective spin coupling, geg. Additionally, the fitted parameter
values of the measurements described above are shown in Tab.[6.1]

6.2.2 Coupling of squeezed state to spin-ensemble

In this section, we investigate the coupling of propagating microwave squeezed states to the
spin ensemble. We generate squeezed states using the JPA and measure the squeezing level
as a function of applied pump power. Squeezing levels are extracted following the procedure
described in Sec.[4.3.4 In order to enable the coupling of the squeezed states to the resonator-
spin system, we use the external magnetic field, By, to tune the resonator frequency. More
precisely, the superconducting resonator presents a non-negligible kinetic inductance due to the
kinetic energy of superconducting charge carriers. One defines the kinetic inductance using the
London penetration length, A, such that [257]

1 A2
SLil” = "OTI / J2dS, (6.12)
S
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where integration is performed over a cross-section, S, set by the design and dimension of the
superconducting resonator. The associated supercurrent density, Js, leads to a supercurrent
defined as I = |, ¢ JsdS. To perform the integral, one takes into account that the supercurrent
density is non-vanishing only in a penetration depth of characteristic length A;. Importantly,
this kinetic inductance is linked to the screening supercurrent, which is created at the surface
of the superconductor when an external magnetic field is applied. Thus, the superconducting
resonator presents a field-dependent kinetic inductance, which results in a tunable resonator
frequency.

In our measurements, we first detune the resonator and spin ensemble far from the chosen
JPA frequency, wy = 5.616 38 GHz, by setting the applied external magnetic field to By =
0T. The corresponding measured squeezing levels are displayed in Fig.[6.4 We treat these
squeezing levels as a reference for the comparison with subsequently measured squeezing levels.
Remarkably, we observe that for low pump powers, the squeezing levels reach a value of S ~
—0.4dB, indicating measured variances above vacuum fluctuations. This increased variance
is attributed to a finite temperature of 7" = 142 mK of our heatable input attenuator during
this measurement. The finite associated variance due to weak thermal fluctuations explains
the observed negative squeezing level for low pump powers. Then, we tune both the resonator
and the JPA at the common frequency of 5.6169 GHz, corresponding to the magnetic field of
Bexe = 205 mT. There, we repeat the measurement of squeezing levels. We expect a reduction
in the observed squeezing levels due to the enabled coupling between the propagating microwave
signals and the resonator. Note that even though the resonator is coupled to the spin ensemble,
we do not expect, during these measurements, any contribution from the spins. This is due to
the large frequency detuning between the spin ensemble and resonator of Aw/(27) ~ 20 MHz for
the applied magnetic field of Be; = 205 mT. As the last step, the spins, as well as the resonator
and JPA, are tuned in resonance at the joint frequency of 5.617 24 GHz which corresponds to
high-field transition (Eypy and Fjq transition) of the Hamiltonian in Eq. for the applied
external magnetic field of Bey = 203.92mT. The corresponding squeezing levels are shown
in Fig.(b). We note a reduction of squeezing levels as compared to the previous coupling
with only the resonator, reflecting the contribution of the spin ensemble. To more precisely
analyse these results, we construct a model Hamiltonian following the steps in Ref.247. Here,
it becomes crucial to consider additional bath modes f; to which the spin ensemble is coupled.
These modes are associated with the dephasing effects of the spins, the latter being characterised
by the dephasing time 7T5. In general, one needs to additionally account for energy relaxation
effects captured by a finite relaxation time 7. However, in our system, relaxation effects are
largely dominated by the dephasing of the spins, meaning that the decoherence time is in godd
approximation given by the pure dephasing time. We use pulse sequence methods as described
in Ref.248| to extract the values of 77 and T; of the spin ensemble, giving 77 = 22.7(7) s and
Ty = 126(2) ps, thus confirming the predominance of dephasing effects. A description of these
pulse methods goes beyond the scope of this chapter. Instead, we refer to Ref258 for technical
details of the measurement methods.

The final Hamiltonian of the resonator-spin system in the frame rotating at the resonator
frequency, w,, reads

2 N

i, A .
= > {go,j(a,jaT +04,40) + =05 iy 2365 f] — 6L+ Acifl i, (6.13)

J

where go; = ger/V/N is the coupling of a single spin to the resonator mode @, Agj = Wy ; — Wy,
is the detuning of the j-th spin to the resonator frequency and -, is the spin dephasing rate,
modelling spin decoherence with an associated noise mode fj. We write the j-th spin frequency
detuning, A¢ ;. Additionally, we account for internal cavity losses with associated mode ¢;,, and
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Figure 6.4: Coupling of propagating squeezed states to a coupled resonator-spin system. (a) Scheme of
the experimental setup. System parameters are from the Hamiltonian in Eq. , which provides a
detailed model for interactions between the external microwave signals and the resonator-spin system.
For each output signal, we perform a Wigner tomography using the Planck spectroscopy, which is
experimentally realized with the heatable input attenuator. Color plots depict exemplary Wigner
functions. (b) Squeezing level as a function of the JPA pump power for the three different experimental
scenarios, as described in the main text. The solid lines represent model predictions based on Eq.
using the off-resonance squeezing levels as an input.

rate Kin. The resonator-spin system is coupled to input microwave modes, liin, via a coupling
rate Keyx. Modes at the output of the resonator-spin system are labelled byy. Similarly to
Eq. , one derives the full equations of motion for the operators in the frequency domain as

— zwd(w) = —(H/2>d(W) + méin( ) + \/@Bin( ) - igeffg (w),
—iwo_ (@) = (2 + iBury)6_ () — igoit(w) + /22 f(w) (6.14)

~

bout (W) = bin(w) — /Fexd(w).

In Eq. , one can define a g-quadrature operator for each operator O as do = (O + OT) /2.
Following Ref.247, we find a relation between the variance of the different g-quadrature op-
erators. Here, the variance is defined as a?) = (cj%}. In case of large spin-resonator detuning,
Agj > K, 72, as well as in resonance condition, Ay, ; = 0, we obtain a simplified relation between

the input signal variance and output signal variance

o} = Re(r(0))’a; +Re(l(0))*07, +Re(t(0))*0% , (6.15)
with
o . Rext vV RextKint . Y(w)
rw) =1 X(w)’ l(w) = X t(w) = X@)
= 27 K al 292
_ 2 Rext 4o 0
X(w> s H/2 ! I{O( Z sr,] w le K /72 +1 Asr,j - CU)) .

6.16
Here, we consider only operators with zero mean. Additionally, we assume that all (noisi
modes f] are identical, i.e., that all spins couple to the same bath. Physically, Eq. (6.15] -
means that microwave 81gnals at the input of the resonator are coupled to resonator modes
and spin ensemble modes. One can verify that ‘r(w)f + |l(w)‘2 + |t(w)‘2 = 1, ensuring that
the output mode, Eout, fulfils the bosonic commutation relation. Using the model in Eq. ,
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Figure 6.5: Numerical calculation of the coupling efficiency of squeezed microwave states to a spin
ensemble. (a) Numerical computation of the coupling efficiency, Re(t(0))?, as a function of spin
coupling rate, gefr, and external coupling rate, Kext. The coupling efficiency is computed according to
Eq. for kint/2m = 1.5 MHz and ~,/27 = 0.5 MHz. The grey line indicates the maximal value
of coupling efficiency. (b) Cooperativity as a function of geg and kex, according to Eq. , with
same parameter values as for panel (a). The two parameters (geg and Kext) are chosen such that the
coupling efficiency, Re(t(0))?, is maximized.

we investigate the coupling of input ¢-squeezed states to the coupled resonator-spin ensemble
system. The measured final variance in our signals (corresponding to the mode l;out) is expected
to be composed of a remaining squeezing contribution of the initial incoming microwave signals
and contributions from two environmental baths, one from the resonator and another from the
spin ensemble. These two baths are considered to be described by a thermal state [247]. Here,
we assume that these thermal baths are at least at the finite temperature of T' = 142mK,
measured at the input of the experimental chain. We fit our model prediction in Eq. to
measured squeezing levels displayed in Fig.[6.4] using the resonator internal coupling rate, ki,
as the sole fitting parameter and keeping all other system parameters as fixed values given from
our measurements in Sec.[6.2.1] and in Tab.[6.1l We obtain the fitted value for the resonator
internal losses of ki, /2m = 1.5 MHz. This fit value is in good agreement with the value given
in Tab.[6.1 considering the large uncertainty of the circle fit routine in the case Ky < Kext-
We interpret these results as a successful coupling of the incoming squeezed states to the spin-
ensemble. Based on our model, we estimate a coupling efficiency of Re(£(0))? ~ 35% to the spin
ensemble. We note a good agreement between our model and squeezing level measurements as
illustrated in Fig.[6.4|(b). However, for large pump powers above —30 dBm, the model starts to
deviate from measured values. We attribute this deviation to higher-order nonlinearities in the
JPA. To investigate the coupling of the squeezed states to the spin ensemble, we numerically
evaluate Eq. as a function of external coupling rate xey and spin coupling rate g.s. We
focus on the coupling efficiency, Re(#(0))?, and plot the resulting values in Fig.[6.5] (a). We
observe a nontrivial maximum of the coupling efficiency, which reaches up to ~ 95%. However,
we find that the nonzero internal resonator losses prevent the coupling efficiency from increasing
to unity.

It is insightful to numerically compute the values of spin coupling rate, g.g and external
coupling rate, ke that maximise the coupling efficiency, Re(¢(0))?. For each corresponding
pair of parameters, we estimate the corresponding cooperativity, C'(0), defined as

2925
c(0) = ===, 6.17
=7 (6.17)
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Figure 6.6: Saturation measurements of the spin ensemble. (a) Squeezing levels measured off-

resonance, after coupling of the squeezed states to the resonator-spin system, and after saturation

pulses applied for ¢ = 20 ms to the spin system. (b) Extrapolated squeezing levels as in panel (a) after
removal of the squeezed variances of the noise contribution originating from the heatable attenuator.

and show the associated values in Fig.|6.5(b). The cooperativity is a measure of the coherent
exchange of excitations in a coupled spin-cavity system. Here, we observe that the cooperativity,
leading to maximal coupling efficiency, approaches unity for increasing values of both ke and
Jerr- This result indicates that optimal coupling between squeezed states and the spin ensemble
is achieved for the cooperativity C'(0) = 1. Obviously, it is insufficient to increase only the spin
coupling rate, geg, but this increase has to be balanced with increased resonator and spin loss
rates [259, 260, 261]. In the measurements presented in Fig.[6.5, we obtain the cooperativity
C(0) ~ 0.15, which explains the rather low coupling efficiency, Re(¢(0))? ~ 35%.

To confirm the coupling of the squeezed states to the spin ensemble, we repeat the squeezing
level measurements. We start by tuning out of resonance both the resonator and the spin
ensemble, by detuning the frequency from the resonator frequency and setting the external
magnetic field to Beyy = 0'T. In this setting, we measure the squeezing levels as a function of the
applied pump power. Subsequently, we bring both the resonator and spin ensemble in resonance
by setting Bey = 203.92mT and again measure corresponding squeezing levels. Additionally,
we apply a strong, rectangular-shaped saturation pulse to the spin ensemble via the directional
coupler. This pulse consists of a microwave signal with the magnitude of —120dBm at the
resonator, with the duration of ¢ = 20 ms. After this pulse, the spins relax over a measurement
time ¢, during which no pulse is applied. As a first-order approximation, we expect a fraction
of excited spins o exp(—t,/T1). We chose a t,, = 2s, resulting in an expected population of
excited spins of ~ 91.6%. During this time, we measured the squeezing levels at the output
of the resonator-spin ensemble system. The corresponding values are plotted as a function of
applied JPA pump power and are shown in Fig.[6.6l We observe a clear increase in squeezing
levels as compared to the case where the squeezed states are in resonance with the spins or the
values were measured after saturation pulses. We interpret this increase as a confirmation of the
coupling between input squeezed states and the spin ensemble. However, the squeezing levels
do not reach the original values measured off-resonance, due to the presence of the unsaturated
resonator. Possibly, the results could also indicate a nonideal saturation process of the spin
ensemble.

It is insightful to extract the corresponding squeezing levels in all three measurement cases
(off-resonance, in resonance, after saturation pulse) without the parasitic input thermal noise
contribution originating from the hot heatable attenuator. Modelling measured states as ther-
mal squeezed states, we write the squeezed and anti-squeezed variances, denoted o2 and o2

as?
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respectively, as
1 1
o2 (1 + 2n) exp(—2r), o2 = Z<1 + 204, exp(2r). (6.18)

s:Z as

Here, ny, is the average thermal noise photon number present in the thermal squeezed states,
with an associated squeezing factor r. We note that this noise photon number encompasses a
contribution from the JPA itself. Based on Eq. , we see that both the photon number,
N, and squeezing factors, r, can be straightforwardly computed from measured squeezed
and anti-squeezed variances. One obtains squeezed states without the noise contribution from
the heatable attenuator by replacing the noise photon number, 7y, with g, — 7 (T, ws).
Here, ny,(T,ws) is the estimated noise photon number emitted by the heatable attenuator
for the temperature 7' = 142mK and spin frequency, ws. Additionally, we keep the same
squeezing factor, r, and obtain the squeezing levels shown in Fig.(b). We observe that off-
resonance squeezing reaches nearly 6 dB below vacuum fluctuations and drops below 1dB when
in resonance with the spin ensemble, supporting our conclusions from the measurement results
shown in Fig.[6.4 Lastly, the squeezing levels increase, after the saturation pulses, up to 2dB,
representing a significant increase as compared to measured levels without saturation pulse,
which can be seen as a genuine proof of coupling of the squeezed states to the spin ensemble.

6.3 Conclusion

In conclusion, we have investigated a spin ensemble consisting of phosphorus donor atoms
embedded in a silicon crystal, which is coupled to a superconducting Nb microwave resonator.
A theoretical input-output model has been introduced, describing the interaction between the
coupled spin ensemble-resonator system and the input microwave signals. Additionally, we have
presented a cryogenic experimental setup, which enables precise control of the spin ensemble
using microwave signals as well as external magnetic fields provided by a superconducting 3D
vector magnet.

Using VNA measurements, we have demonstrated an avoided level crossing between the
modes of the spin ensemble and the superconducting Nb resonator. This resonator allows
for readout of the spin ensemble while also enabling coupling to external microwave signals.
We have calibrated the resonator-spin system by performing complex scattering parameter
measurements. From these measurements, we obtained the collective spin coupling rate of
gefi/2m = 0.5 MHz, the spin dephasing rate of vo/27 = 0.5MHz, and the total resonator
coupling rate of /27 = 5.9 MHz.

Additionally, we have investigated the coupling of the spin ensemble to propagating squeezed
microwave signals. Based on our theoretical model, we have estimated the coupling efficiency of
squeezed signals to the spin ensemble to be Re(#(0))? ~ 35%. Under ideal conditions, where the
cooperativity reaches C'(0) = 1, this efficiency can be increased to nearly unity, mainly limited
by internal resonator losses. Experimental measurements using saturating microwave pulses
sent to the spin ensemble further confirmed the coupling of microwave squeezed states. These
pulses are rectangular shaped, with the duration of £ = 20 ms and the power of —120dBm at
the spin ensemble.

Following the successful demonstration of squeezed state coupling, future experiments can
aim at implementing spin-echo pulse sequences to retrieve the stored quantum states.
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Conclusion and outlook

In this thesis, we have investigated and developed techniques for the experimental realization
of a microwave quantum key distribution (QKD) protocol. As a foundational step, we have
introduced the concept of Gaussian states, along with their theoretical description. We have
detailed the physical transformations of Gaussian channels that preserve Gaussian properties
of quantum states, a crucial result for our experiments. Additionally, we have presented frame-
works for the generation and manipulation of Gaussian states, with a particular focus on the
Josephson parametric amplifier (JPA), which is employed as a source of propagating microwave
squeezed light.

Historically, QKD protocols have been performed at optical frequencies, with first imple-
mentations relying on discrete-variable states. Over time, continuous-variable states have been
shown to offer a powerful alternative, with more straightforward implementations based on less
experimentally demanding systems. These approaches have blossomed into a modern field of se-
cure quantum communication, based on sophisticated quantum key distribution protocols with
direct practical applications and ever-growing security investigations. In parallel, tremendous
progress in superconducting quantum circuit technologies operated at gigahertz frequencies has
been achieved. Therefore, it has become of paramount importance to also consider the potential
of QKD protocols in the microwave regime. Using the formalism of Gaussian states, we have
analyzed the implementation of a specific QKD protocol using displaced squeezed states. We
have found, in agreement with literature results, that in direct reconciliation (DR), the commu-
nication is secured for a maximum amount of 7 = 50% losses and a maximal tolerable coupled
noise of n = 0.183 photons. While the latter remains true, this 3 dB loss limit can been lifted by
shifting to reverse reconciliation (RR). As an extension of these results, we have modified our
analysis to additionally consider the presence of a detection noise on the receiving side. There,
we have compared the newly found security bounds of the CV-QKD protocol to a hypothetical
implementation, which would rely solely on coherent states. We have observed that coherent
states perform significantly worse than squeezed states. More precisely, we have shown that
coherent states can only produce slightly higher secret key rates than squeezed states for mini-
mal amounts of coupled noise, n < 0.017, and for large squeezing levels, S > 10dB, accounting
for the single quadrature quantum efficiency of nx = 65%. Additionally, we have found these
values to strongly depend on the presence of the detection noise, which quickly degrades the
security performance of the protocols. For these reasons, we have focused on squeezed state
CV-QKD, which also offers a significant advantage in resilience to coupled noise photons while
being straightforwardly implemented in the microwave regime using nonlinear devices such as
the aforementioned JPA. Here, we comment that better noise tolerance can be expected if one
makes use of non-Gaussian operations, with a particular focus on photon catalysis standing as
a promising tool to extend secure communication distances.

As one of the key results of this thesis, we have demonstrated that the CV-QKD protocol,
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from a theoretical point of view, can be implemented in the microwave regime and under open-
air conditions. This analysis relies on parameter values, known to be experimentally achievable
from the expertise at the Walther-Meissner-Institut in cryogenic systems and superconducting
circuits operated at microwave frequencies. We have found that microwave CV-QKD could
provide, in ideal conditions, secure communication over distances up to 200 m, making it rel-
evant for short-distance communication platforms that benefit from already existing classical
technologies such as WiFi, Bluetooth, and 5G. Remarkably, we have observed that microwave
signals could offer an advantage over more conventionally used optical frequencies, such as
telecom signals, for short-range communication. In this context, it has become particularly
interesting to consider the RR case, where added trusted noise, such as detection noise on the
receiving side of the communication, can improve the security of the protocol. Additionally, we
have shown that weather conditions, an important aspect to consider for open-air communica-
tion, only weakly affect microwave signals, as opposed to telecom ones. In fact, we have found
that telecom signals are extremely sensitive to the presence of strong rain or fog, which rapidly
induces large absorption losses, far exceeding 1dB/km, and reducing secure communication
distances by several orders of magnitude as compared to ideal weather conditions.

In the next step, we have presented experimental techniques for the practical implementation
of the CV-QKD protocol in the microwave regime. First, we have introduced characteristic
measurements of JPAs. Additionally, we have presented the room temperature setup used in
our experiments with microwave signals. We have shown our post-processing steps to implement
the reference state reconstruction method, which allows for a precise evaluation of quantum
properties in measured signals. This process relies on a photon calibration which we implement
with a novel two-dimensional Planck spectroscopy. Using these techniques, we have obtained
reliable calibrations for microwave squeezed, displaced, and thermal states. Additionally, we
have presented a new procedure to experimentally investigate the Gaussianity of quantum states
based on signal moments up to the fourth order.

As the main milestone of this thesis, we have experimentally realized the displaced squeezed
state CV-QKD protocol in the microwave regime using JPAs operated in the phase-sensitive
regime. Here, we have demonstrated that unconditional security can be reached in the asymp-
totic limit, and that microwave CV-QKD could achieve secure communication distances of more
than 1km in a fully cryogenic environment as well as up to 84 m in ideal open-air conditions.
This experiment represents the first successful experimental demonstration of microwave CV-
QKD. The setup consists of a first JPA 1, which is used for generating microwave squeezed
light, followed by two cryogenic directional couplers mounted in series. The first one serves
to implement displacement operations on incoming states. The second directional coupler acts
as the quantum channel in the communication, which we use to couple a controlled amount
of noise to incoming signals, emulating both the presence of an eavesdropper and a potential
bright thermal background. As part of our detection chain, we use a second JPA 2 operat-
ing as a strong phase-sensitive linear amplifier. Here, we have explained and modeled single
quadrature measurements implemented by the JPA 2, providing an analogous measurement to
homodyne detection of signals at optical frequencies. The associated quantum efficiency of the
detection chain is shown to be primarily dependent on the noise of the measurement JPA 2,
which has been measured to reach as high as nx = 69%. In our experimental implementation
of the CV-QKD protocol, we have worked with signals at the frequency of w; = 5.48 GHz with
the fixed squeezing level of S = 3.6 dB. The measurement JPA 2 has been operated with an
amplification gain of Gy = 19.1dB and quadrature quantum efficiency of nx = 65%. Using this
setup, we have measured a positive asymptotic secret key for a coupled noise photon number
from the quantum channel up to n = 0.062 in the DR case. The latter has performed better
compared to RR due to the low amount of losses in the quantum channel of 0.05dB, defined
by the weak coupling of noise through the second directional coupler. Interestingly, we have
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observed that adding trusted noise photons on the preparation side, while maintaining a con-
stant squeezing level, leads to larger amounts of tolerable coupled noise photons in the quantum
channel. This counterintuitive feature is a key aspect of CV-QKD protocols, potentially signif-
icantly extending communication distances. Additionally, we have included finite-size effects in
our analysis and shown that a positive finite-size secret key can be achieved. Our results have
proven that key lengths with N > 10° symbols would greatly reduce the impact of the afore-
mentioned effects, ideally reaching 10% or more symbols for practical implementations. Finally,
based on our experimental bandwidth of 400 kHz, we have extracted a raw secure bit rate of
152 kbit/s.

Lastly, we have investigated the coupling of our propagating microwave states to a spin en-
semble, which is coupled to a superconducting resonator. The spin ensemble presents Zeeman
transition frequencies in the gigahertz regime. The interplay with such a hybrid system opens
the possibility of adding quantum memories to our QKD protocol implementations. In collab-
oration with Prof. Dr. Hans Huebl and Patricia Oehrl from the Walther-Meissner-Institut,
we have investigated the storage of squeezed states generated by a JPA, fabricated in-house,
to a spin ensemble consisting of phosphorus donor atoms embedded in isotopically purified sili-
con crystal. Using a cryogenic dilution refrigerator equipped with a superconducting 3D vector
magnet, we have shown that we can precisely tune the resonance frequency of the spin ensemble.
There, we have first measured squeezing levels at the frequency of w; = 5.616 38 GHz, which
we treat as reference levels. Subsequently, we have shown a reduction in reference squeezing
levels by coupling the squeezed states to the superconducting resonator at the frequency of
5.61724 GHz. The amount of squeezing was further decreased by bringing the spin ensemble
into resonance at the frequency of 5.6169 GHz, indicating storage of the squeezed states in the
spin ensemble. Based on a modelling of the system and experimental parameters, we have ex-
tracted a coupling efficiency of ~ 35% of propagating microwave signals to the spin ensemble.
To confirm our analysis, we have implemented saturation pulses on the spin ensemble. There,
we have observed an expected increase in measured squeezing levels after the saturation pulses.
However, we have noted that the squeezing level did not reach the reference values, potentially
indicating a nonideal saturation of the spins during the measurements.

Outlook. The results achieved within this thesis pave the way for the development of QKD
experiments at gigahertz frequencies. In future iterations, one could implement additional
techniques to improve the performance of CV-QKD protocols, such as using non-Gaussian
states and more advanced post-processing methods. Remarkably, having shown the possibility
of long-distance secure cryogenic communication, one could integrate such microwave QKD
systems in upcoming microwave quantum networks. Such networks are particularly relevant in
the context of distributed superconducting quantum computing, where the feasibility of secure
quantum communication could be highly beneficial. Here, an all microwave quantum platform
offers a specific advantage over relying on optical frequencies. More precisely, motivated by
the prospect of increasing communication distances, the development of efficient microwave-to-
optics conversion has been an active field of research. However, best state-of-the-art frequency
transduction techniques cannot yet provide a conversion efficiency of signals sufficient for long-
distance quantum communication experiments.

Additionally, the prospects of theoretically feasible microwave secure communication in
open-air conditions stimulates both a fundamental and technical research effort. There, novel
technologies can be developed such as quantum microwave antennae serving as a medium be-
tween the cryogenic and open-air environments. At the same time, many experiments are to
be conducted to investigate practical performances of CV-QKD protocols in the microwave
regime with a quantum channel in room temperature conditions. Successful demonstrations
of such system would propel the interest for secure microwave communication. Experimental
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setups could be paired with the aforementioned non-Gaussian processes, for instance, relying
on photon counting. Such techniques are expected to improve protocol performances and help
extend communication distances, possibly as a way to combat detrimental effects of unwanted
coupled noise during the communication. Lastly, as demonstrated in this thesis, quantum mem-
ories based on spin ensemble could be integrated in the currently demonstrated experimental
realization. Future investigations would focus on achieving an on-demand retrieval of stored
propagating quantum states, greatly relaxing time constrains in microwave CV-QKD protocols.
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Appendix A

Prepare and measure & entanglement
based protocol equivalence

We comment on the equivalence of prepare and measure (PM) CV-QKD protocols, such as
the one studied in this work, with corresponding entanglement based (EB) CV-QKD protocols.
Here, we focus on the displaced squeezed CV-QKD protocol with single quadrature measure-
ments. Similar derivations can be performed for coherent-state protocols. In general, one finds
that both approaches are equivalent and, thus, can attribute virtual entanglement to a PM
protocol. That is to say, entanglement is not required to be physically generated for CV-QKD
protocols to be secure.

In the studied displaced squeezed state PM protocol, Alice generates quantum states that
are sent through a quantum channel to Bob. A symbol, «;, is drawn for each quantum state from
a Gaussian distribution with a fixed variance o3. Let us first consider that the quantum channel
is a pure identity channel, i.e., no losses and noise are present during the communication. For
a given state sent by Alice, Bob receives the exact same state corresponding to a displaced
squeezed state, with a displacement complex amplitude §; = a;. Without loss of generality,
let us assume that Alice’s states are squeezed only along the g-quadrature. Then, Bob’s states
have the corresponding displacement vector and covariance matrix

/ v 0—52 O
B:(ai,O)T, B:<0 02>‘ (A-l)

where o2 (02) is the (anti)squeezed variance. To build the EB protocol equivalent, let us

consider that Alice and Bob start with sharing a TMS state with a local variance chosen as o2,
and zero displacement vector. For compactness, we denote 402 =V and write the covariance
matrix of the TMS as

4

\Va _1 VIQ \/V2—10'Z _1 VA VC (A2)
S RVATEIT. S Ve Vi) '

Alice performs a local measurement where she measures the g-quadrature of her mode. Her
measurement results in a random value «;. The covariance matrix of Bob’s mode conditioned
on Alice’s measurement is calculated as [154]

v 1 r oo (10
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Taken into account that o202 = 1, we derive

Vo1 (vio10
v :—I——
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-\ 0 o

Therefore, the variance of Bob’s state conditioned on Alice’s measurement coincides with the
variance of Bob’s displaced squeezed states in the PM version of the protocol. Additionally,
one can compute the conditioned displacement vector of Bob’s state as [262]

(A4)

1
dB|A = dB + VVQH((OQ’, O)T — dA)

- (A.5)

— ( %
where we use the fact that Alice and Bob start with a zero mean TMS state, implying that
their local displacement vectors are dy = dg = 0,. From Egs. , , we observe that
Bob’s conditional state is a displaced squeezed state with a displacement that differs from the
PM case by a prefactor A = v/V2 —1/V. As a consequence, we consider additionally that, in
the EB protocol, Alice rescales her data by the coefficient A resulting in the transformation of
her quadrature operators

(078 O)Ta

da —> AGa , DA — APa (A.6)
In that case, one obtains that

A
dpja = dp + 5 VcII((w, 0)" —da)

A2V
1 VV2-1 :
o G (A7)
A Vv
== ((l/i, O)T
Similarly, we can compute the conditional covariance matrix of Bob as
Vv No(V2P-1 0
= I, - -
Ve =5k = oy ( 0 0
(A.8)

I
_Oazs

The results remain valid if we consider the losses, € = 1—7, and coupled noise, 1, induced by the
propagation of Alice’s states through the quantum channel. In the PM case, the displacement
vector and covariance matrix of Bob read

20
dy = (V7a;, 007, Vi =1 <UOS 02) +(1—-7)(1/4+n)L,. (A.9)
In the EB case, if Alice performs her local measurements before sending Bob’s modes through
the quantum channel, then the previous equivalence between the PM and EB protocols remain
valid. If we consider that Bob’s modes are sent through the quantum channel prior to Alice’s
local measurements, we obtain the covariance matrix of Alice’s and Bob’s TMS state as

1( VI, VIVVE 1o, )

Vs (A.10)

T A\ Vi de, TV +(1-1)(1/4+n),

Similar derivations as in Egs. (A.5]),(A.4) leads again to an equivalence between the PM and
EB protocols under the rescaling of Alice’s data by the coefficient A\ in the EB case.
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Dissipative coupling to bath modes

Here, we investigate the (dissipative) coupling of a system to a bath environment. To this end,
we consider a resonator coupled to a dissipative environment modelled as a continuum of modes
with a coupling described by a coupling constant gg. Therefore, we start with the following
Hamiltonian of such a system

- = weala + / wiblbpdk + / (gka*bk + g;ab@ dk, (B.1)

where w, is the resonator frequency and k is the wavevector of the bosonic mode I;k with a
linear dispersion, kv, = w;. Here, mode a is the resonator bosonic mode. The different modes
fulfil the bosonic commutation relation, meaning that [l;k,l;L] = 6(k — k') and [a,a'] = 1.
Additionally, we consider a identical phase velocity for all modes, v, = v, and wavevector-
independent coupling, gr = g5 = go = /7v/m. The dissipative mechanism is described with
the associated rate v (e.g., internal cavity losses, v = Kin, or spin dephasing rate, v = 7;). Note
that with the previous definitions, v is defined as a half width half maximum rate. Considering
that the Hamiltonian has no explicit time-dependent part, the equations of motion for the
involved modes read
0 i .. -

I ;L[H, O], (B.2)

where O stands for either resonator mode & or a continuous mode by,. From Eq. (B.1)), we find

((iijfl —iwra Zgo/i)kdk,

. (B.3)
Bk by — g

a KOk Joa.

The equation on the mode by can be directly solved, resulting in

~

t

bi(t) = e “nt [bk(O) — igo/ eiwde<T>dT] . (B.4)
0

Inserting Eq. (B.4)) in Eq. (B.3) leads to the new equation of motion

da .
dj —iw,a Zg(]/bk(O) Ttk — 90/ / w4 (r)drdk. (B.5)
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The last term in the previous equation can be reformulated as

t
90/ / wk(T=t)g dek:—gO/ dT&(T)/eik”(T_t)dk
0
t

_ g / dra(r)2m0(v(r — 1))

0
2m 5.

= Seaa(t) (5(e) = 3w/ Il and [ £(7)o(r = 0)dr = £(0)/2

= vya(t) (g5 = yv/m).

(B.6)
Therefore, the equation of motion on the resonator mode reads
da’ 7 —iwyt ~ . oA ~ »
e —iwra —igy [ bk(0)e ™ dk — ya = —iw,a — va + R(t). (B.7)

The structure of Eq. (B.7) indicates that the coupling of the resonator to a dissipative medium
(via a dissipative mechanism) results in a coupling term via the rate 7 as expected for this type
of systems. However, one must consider an additional term, R, emerging from the coupling.

As detailed below, this term is necessary to preserve bosonic properties of the different modes.
Solving Eq. (B.7)) leads to

t
a(t) = e~ [@(0) — igo / / e tNT =Ty, (0)dk dT] : (B.8)
0

One can verify that bosonic properties are conserved with the solution in Eq. (B.8]). For instance,
one computes the commutator

t pt
[d(t),dT(t)] et ([d(()), &T(O)] + gg/ / //e(iWr+'Y—iWk)TG(_Z‘L{Jr'i"Y‘f’iw;C)T/ [i)k(O),bL,(O)]deT’dk‘dk’,)
0 JO

_27t (1 +90/ / // (wr+y— zwk)’r (—iwr+y+iw) )T’ (S(k’ ]{?I)deT,dk’dk’>

<1+go/ / / twr(T—7' +'y(T+T)d7_d7_/ kv (7’ Tdk’)
2
(1‘{’90_7]- 277d7’)

0
— 672’% (1 + e?’yt . 1)
=1

(B.9)
ensuring that the mode a remains bosonic at all time. Therefore, two possible approaches can be
use to describe the full physics of this kind of systems, e.g., a resonator coupled to a dissipative
medium. The first approach is to explicitly include bath environment terms in a given system
Hamiltonian as in Eq. leading to an equation of motion as in Eq. . In that case, the
bath term in the Hamiltonian, described by modes Bk, appears in the equation of motion as
the additional term R. The second approach is to include the dissipative coupling by relying
on the formalism of Lindblad superoperators, introducing the collapse operator d = V/7Ya as in

Sec.. Then, one additionally includes a coupling term, Ijlcpl, in the system Hamiltonian

~

Hep = ihgo(art — a'#) with#(t) = i/lA)k(O)e_i“’“tdk. (B.10)
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Note that it is common in literature to include the phase velocity in the bath modes as a
normalization. This can be done by defining a new bath mode f = \/v/27 7, ensuring that

F(t), f1 iRtk (b (0), b (0)|dkd !
F0. 7)) = 5 / [ eeteiin(o), 8(0)
ekt =) L (B.11)
27T
=5(t—t).
As a consequence, the coupling Hamiltonian is written as
Hep = ili/2v(afT —atf). (B.12)
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