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Chapter 1

Introduction

Over the last century, quantum theory has lead to many technological advances and
physical discoveries which have promoted an ever growing interest for both research
and industries. Among them, the field of quantum information has become a noticeable
center of attention. In particular, it includes topics such as quantum computing [1],
quantum sensing [2, 3], quantum communication [4, 5] and cryptography [6]. In these
fields, fundamental quantum mechanical effects such as superposition or entanglement
are considered to be key resources to gain advantage over classical systems in terms of
efficiency, computing power, or security of communication.

Exchange of information is at the heart of our current society and thus, it is especially
relevant to make possible confidential communication, where any undesired party has
no access to communicated messages. Classically, information can be encrypted and
exchanged in a perfectly secure manner using classical algorithms such as the well-
known one-time pad [7]. The main issue with the latter algorithm is that the data is
encrypted using a key, i.e., a string of numbers, which is required to be as long as
the data itself. This already limits the usage of the one-time pad for communication
involving large amounts of data. Modern communication security algorithms, such
as RSA [8] and its derivatives, are based on a different approach which relies on
asymmetrically difficult mathematical problems. These problems are easy to solve in a
direct way, such as multiplication of two large prime numbers, but difficult to reverse on
a classical computer - i.e., to find the prime number multipliers of a single large number
(factorization problem). In other words, the limitations on our current computing power
is the main factor which guaranties secrecy in modern communications. However this
picture has been changed with the arrival of quantum algorithms which make use of
quantum effects. Noticeably, the now very well-known Shor algorithm [9] in principle
allows for a much more efficient factorization of large numbers in comparison with the
classical algorithms. This jeopardizes the security of the widely used cryptographic
schemes.

For these and other reasons, the field of quantum cryptography has seen a tremendous
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development over the past decades. This field investigates the secrecy of possible
communication protocols using physical properties of quantum states. A particular
sub-field dealing with secure distribution of keys is the field of quantum key distribution
(QKD) [10]. There, the goal is to exchange a key between two parties while an external
eavesdropper tries to gain information about the key. Very interestingly, such schemes
can achieve unconditional security meaning an absolute security of the key, no matter
how much of computational power is available to the eavesdropper [11]. One of
the fundamental reasons for this security comes from the no-cloning theorem [12]
which prohibits ideal copying of quantum states, meaning that the eavesdropper would
necessarily have to interfere with the communicated quantum states, rendering this
interaction detectable and quantifiable.

In general, QKD protocols can be experimentally implemented with any carrier
of information such as electrons or molecules. However, historically, QKD protocols
have been invented and extensively studied in the optical regime with optical photons
[13, 11, 14]. One of the central advantages to use optical photons is a possibility for a
straightforward long-distance quantum communication. However, nowadays all compu-
tational and communication hardware operates at microwave frequencies of few GHz.
This is also true for most advanced up-to-date superconducting quantum computers
[15]. This makes it extremely important to study QKD protocols in the aforementioned
microwave range. Here, we focus on continuous variable QKD (CV-QKD) where
information is stored in quantum states with a continuous spectrum of eigenstates [16].
In our experimental setups, such quantum states manifest as propagating quantum
microwaves, which are generated by superconducting circuits. Among these quantum
states, squeezed and displaced states [16] are particularly useful resources for CV-QKD
protocols.

In our work, squeezed microwave states are generated by a flux-driven Joseph-
son parametric amplifier (JPA) [17] composed of a superconducting resonator short-
circuited to ground by a direct-current superconducting quantum interference device
(dc-SQUID). The dc-SQUID is a nonlinear flux-sensitive device which can be exploited
for parametric amplification of microwave signals incoming to the resonator. Further-
more, parametric amplification can be extended into the phase-sensitive regime which
allows one to achieve deamplification, or squeezing, below the fundamental threshold
of vacuum noise, thus, generating squeezed microwave states [18]. By coupling the
JPA to the transmission lines, the squeezed states may leak out and propagate along a
low-loss superconducting cables without losing their quantum properties. In our work,
we focus on a specific CV-QKD protocol [19] implemented in the microwave regime.
In this protocol, we start by generating the previously introduced squeezed states which
are afterwards displaced using a highly asymmetric directional coupler [20]. The key is
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encoded within the displacements of the squeezed states.
The thesis is structured as follows. In chapter 2, we present a theoretical description

of propagating quantum microwaves and introduce important Gaussian states. Addi-
tionally, we discuss the physics of Josephson parametric amplifiers as well as their
working principle. Furthermore, the generation of squeezed states from flux-driven
JPAs is discussed. In Chapter 3, we explain the basics of quantum key distribution and
discuss a specific protocol based on displaced squeezed states. In Chapter 4, we present
experimental techniques including cryogenic measurement setups which are used to
experimentally implement the microwave QKD protocol. Next, in Chapter 5, we study
secret key measurements and discuss various aspects limitations of our experiments.
Finally, Chapter 6 gives a summary of the thesis and a brief outlook.
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Chapter 2

Theory of quantum microwaves

In this chapter, we present theoretical elements necessary for our work. First, we
introduce a theory basis to describe propagating quantum microwaves and characterize
them. For this purpose, we present a quasi-probability distribution known as the Wigner
function. We discuss certain important states which are vacuum, thermal, coherent,
and squeezed states. Then, we introduce Josephson parametric amplifiers (JPAs). We
discuss the elements which compose them, namely, a coplanar waveguide (CPW) and
a direct current superconducting quantum interference device (dc-SQUID). To this
end, we briefly present the theory of Josephson junctions and their relevant properties.
Then, we discuss about how JPA can perform parametric amplification and squeezing
of microwave signals.

2.1 Propagating quantum microwaves

In this section, we discuss the theory of propagating microwaves. In a first step, a
general quantum mechanical representation of propagating microwaves is introduced. In
particular, a focus is given to Wigner functions, a class of quasiprobability distributions.
These are used to highlight differences with classical representations. In a second
step, we present general Gaussian states and explain in more details vacuum, thermal,
coherent, and squeezed states. Especially, the mean and the covariance matrix of each
individual state are shown.

2.1.1 Representation of quantum microwaves

In this work, we study electromagnetic signals in the frequency range of 4-6 GHz
which propagate along coaxial cables or coplanar waveguides. Such signals A(t) can be
described classically by two components, I(t) and Q(t), the in-phase quadrature and
out-of-phase quadrature, respectively. In this way, we can express a propagating signal
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A(t) at a frequency f = ω/2π using the following expression

A(r,t) = I(t) cos (ωt − k · r) + Q(t) sin (ωt − k · r) , (2.1)

where k is the wave vector of the propagating waves and r denotes the position of
interest in space. From Eq. 2.1, we see that the quadratures allow us to fully describe
signals at a given time t and position r if we know the frequency f and the wave
vector k. By introducing a quantization of the electromagnetic field, one arrives to an
equivalent quantum description of the signal which encompasses the effects imposed
by quantum mechanics. The amplitude operator for a one-dimensional, single-mode
electrical field reads [21]

Â(r,t) = C
[
âei(ωt−k·r) + â†e−i(ωt−k·r)

]
= 2C

[
q̂ cos (ωt − k · r) + p̂ sin (ωt − k · r)

]
.

(2.2)
where C is a normalization constant. Here, we have introduced the annihilation and
creation operators of a bosonic mode, â and â†, respectively. They obey the bosonic
commutation relation [â,â†] = 1 and are related to the quadrature components

q̂ =

(
â + â†

)
2

, p̂ =

(
â − â†

)
2i

. (2.3)

The latter obey the commutation relation [q̂,p̂] = i/2 and are the quantum counterparts
of the classical quadratures I and Q. Due to the non-zero commutation relation between
the quadratures, the corresponding Heisenberg uncertainty implies that

∆q · ∆p ≥
1
4

, (2.4)

where the standard deviation ∆O of an observable Ô is defined as (∆O)2 =
〈
(∆Ô)2

〉
≡〈

Ô2
〉
−
〈
Ô
〉2

. In other words, it is not possible to measure simultaneously both quadra-
tures with absolute precision. This represents a radical difference to the classical
description where it is possible to assign a precise value to both I and Q. Thus, a propa-
gating quantum wave needs to be described in a way which includes the appropriate
Heisenberg uncertainty relation.
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Density matrix

A general way of describing a quantum system is to use the density matrix formalism.
A arbitrary density matrix ρ̂ can be written as

ρ̂ =

N∑
i

pi |ψi〉 〈ψi| , (2.5)

where pi represents the probability that the system is in the state |ψi〉 and N is the
dimension of the Hilbert space describing the system. If the space is infite dimentional
then the summation goes to infinity. It satisfies the property

Tr
(
ρ̂2
)

= 1 ⇐⇒ ρ̂ is pure,

Tr
(
ρ̂2
)
< 1 ⇐⇒ ρ̂ is mixed.

(2.6)

Furthermore, it is a positive operator normalized as

Tr (ρ̂) = 1. (2.7)

Although a density matrix gives the full information on a state, it is more suited
for Hilbert space of small or finite dimensions. For infinite dimensions, the state
is mathematically more complex to handle since the summation goes to infinity. In
particular, the propagating electromagnetic fields are described by infinite-dimensional
Hilbert spaces. For this reason, we use a different formalism for the description of
such states using quasi-probability distribution, known as the Wigner function. It gives
an equivalent description to the density matrix but is easier and more intuitive for
infinite-dimensional bosonic quantum states.

Wigner functions

Wigner functions have been introduced by Eugene Wigner [22] as a way to link
density matrix of states to real phase-space functions. For the propagating waves,
we can assign a probability distribution to each individual quadrature. However, we
need a full quasiprobability distribution of the system in order to describe both of
the quadratures simultaneously due to the Heisenberg uncertainty. In our case, this
quasiprobability distribution is given by the Wigner function. It corresponds to an
extension of classical probability distributions to quantum systems. In general, the

7
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Wigner function of a state with the density matrix ρ̂ is defined as [22, 23]

W(q,p) =
1
π~

∫
〈q − y| ρ̂ |q + y〉 e2ipy/~dy. (2.8)

Wigner functions are real-value functions and their marginal distributions give the
probability distribution for each quadrature:∫ +∞

−∞

W(q,p)dp = 〈q| ρ̂ |q〉 ,∫ +∞

−∞

W(q,p)dq = 〈p| ρ̂ |p〉 .
(2.9)

In addition, if the Wigner function of a state is a Gaussian function, the state is referred
to as a Gaussian state. A Gaussian function is a function f which can be expressed as

f (x) = a exp
(
−

(x − b)2

2c2

)
, (2.10)

where a, b are real constants and c is a real non-zero constant. Gaussian Wigner
functions allow for a simplified description of propagating waves while preserving
the majority of respective quantum properties. This stems from the fact that a general
quantum state can be fully characterized by its signal moments

〈
(â†)mân

〉
with m,

n ∈ N0 [24]. The complete set of these moments provide the same information as the
density matrix. For a Gaussian state, it is sufficient to obtain the signal moments up to
the second order, m + n ≤ 2, as higher order can be built from them [25]. Therefore,
the Wigner function of a Gaussian state can be written as [25, 26]

W(q,p) =
1

π
√

(ν + 1/2)2 − |µ|2

× exp

[
−

(ν + 1/2)|ζ − 〈â〉|2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ −
〈
â†
〉
)2

(ν + 1/2)2 − |µ|2

]
,

(2.11)

where ζ = q + ip, µ =
〈
â2
〉
− 〈â〉2 , and ν =

〈
â†â
〉
− |〈â〉|2.

Statistical moments

From the signal moments, it is possible to define statistical moments of the quadra-
tures. It is a suitable description for experiments and we will use this formalism
throughout this work to characterise our states. For a general N-mode Gaussian state,
we define a vector

r̂ = (q̂1, p̂1, . . . ,q̂N , p̂N ,), (2.12)

8
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containing all quadratures of each mode. Quadratures of different modes commute
with each others. The first-order statistical moment is then the mean r̄ = 〈r̂〉. The
second-order statistical moments are the covariances

Vi j =

〈
r̂i r̂ j + r̂ j r̂i

〉
2

− 〈r̂i〉〈r̂ j〉 . (2.13)

The second-order moments form the covariance matrix V = (Vi j) ∈ R2N×2N . From the
previous subsection, we know that the knowledge of the statistical moments up to the
second order, which is equivalent to the knowledge of the mean values and covariance
matrix, gives full information about an arbitrary quantum Gaussian state [27]. The
corresponding Wigner function can be written as

W(x) =
exp

[
−1

2 (x − r̄)V−1(x − r̄)T
]

(2π)N
√

detV
, (2.14)

where x = (q,p) is a vector in the phase-space.

Average states

Throughout this work, we have to consider density matrices that are defined as the
average of other density matrices. A general average density matrix ρ̂avg is expressed as

ρ̂avg =

M∑
i=1

pi · ρ̂i, (2.15)

where M is the number of state in the sum and pi is a probability associated with
a state ρ̂i. The set of discrete probabilities {pi}i ∈ [1,M] can correspond to any discrete
probability distribution. The set of density matrices {ρ̂i}i ∈ [1,M] can correspond to any
density matrices. In particular, for such average density matrices, we have a very useful
property for signal moments

〈
(â†)mân

〉
avg = Tr

(
(â†)mân ρ̂avg

)
=

M∑
i=1

pi · Tr
(
(â†)mân ρ̂i

)
=

M∑
i=1

pi ·
〈
(â†)mân

〉
i ,

(2.16)
where m, n ∈ N0,

〈
(â†)mân

〉
avg corresponds to a signal moment for the average state

ρ̂avg, and
〈
(â†)mân

〉
i corresponds to the same signal moment for the individual state ρ̂i.

9
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Importantly, using Eq. 2.16, one can show that

(∆q)2
avg ≡

〈
q̂2
〉

avg − 〈q̂〉
2
avg =

M∑
i=1

pi ·
〈
q̂2
〉

i −

(
M∑

i=1

pi · 〈q̂〉i

)2

,

M∑
i=1

pi ·
(〈

q̂2
〉

i − 〈q̂〉
2
i

)
,

(2.17)

where 〈q̂n〉avg is the n-th moments of the operator q̂n for the average state p̂avg and 〈q̂n〉i

is the n-th moments of the operator q̂n for the individual state p̂i More generally, this
means that one cannot add up the covariance matrices to get the covariance matrix of
the average state

Vavg ,

M∑
i

pi · Vi, (2.18)

where Vavg correspond to the covariance matrix of the state ρ̂avg and Vi corresponds to
the covariance matrix of the state ρ̂i. Instead, one needs to compute the average signal
moments of the average state from Eq. 2.16. Then, one can compute the covariance
matrix Vavg from the average moments.

Purity Gaussian states

We define purity µ of an N-mode Gaussian state as

µ =
1

4N
√

detV
, (2.19)

where V is the covariance matrix of the N-mode Gaussian state introduced in Eq. 2.13.
Purity is unity for any pure state. For single-mode states (N = 1), it corresponds to
states that saturate the Heisenberg uncertainty relation given in Eq. 2.4. For mixed
states, purity is below 1.

2.1.2 Gaussian states

In this subsection, we introduce all generic Gaussian states as well as their relevant
properties. Additionally, we present their statistical moments and Wigner function
description.

10
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Vacuum and thermal states

The first Gaussian state of interest corresponds to the lowest energy state. It saturates
the single-mode Heisenberg uncertainty relation (∆q)2 = (∆p)2 = 1/4. This means
that even for the lowest energy state, both quadratures present fluctuations. Since it
corresponds to the lowest energy, the equilibrium temperature T = 0 is assigned to it.
For this reason, this state is known as the vacuum state and denoted by |0〉, representing
a ground state of a bosonic mode. In reality, temperatures are always non-zero however
we can approximate the lowest energy state in our experiment as the vacuum state as
long as kBT � h f . This approximation is fulfilled for our frequency range (around 5
GHz) and our temperature range (around 40 mK).

For an equilibrium temperature T > 0, if the previously mentioned approximation
is not used or is not valid, one has to consider so-called thermal states. They are
characterised by their mean photon number nth. The latter follows the Bose-Einstein
statistics [28]

nth =
1

exp
(

h f
kBT

)
− 1

. (2.20)

The density matrix of the corresponding state is given by [21]

ρ̂th =
∑

n

〈n̂〉n

(1 + 〈n̂〉)n+1 |n〉 〈n| , (2.21)

where 〈n̂〉 =
〈
â†â
〉

From quantum theory, we can find nth = Tr (n̂ ρ̂th.) . The mean and
the covariance matrix are given by

r̄th = 0 and Vth = (1 + 2nth)
I
4

, (2.22)

where I is the identity matrix. Fig. 2.1 represents the Wigner functions of a vacuum
state and thermal state with nth = 3.

Coherent states

The third class of states of interest is represented by a coherent, or displaced, state
|α〉. It is defined as an eigenstate of the annihilation operator, â |α〉 = α |α〉. Coherent
states are theoretically obtained by applying the displacement operator

D̂ (α) = exp
(
αâ† − α∗â

)
, (2.23)

11
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Figure 2.1: (a) Wigner function of a vacuum state. (b) Wigner function of a thermal state with
nth = 3.

to the vacuum state |α〉 = D̂ (α) |0〉. The corresponding mean and variance matrix are
then given by

r̄coh = (Re(α), Im(α)) and Vcoh =
I
4

, (2.24)

where α = |α|eiθ is the complex displacement amplitude. This means that the coherent
states Wigner function corresponds to the one of the vacuum with its center displaced
in the phase space to coordinates (Re(α), Im(α)). Coherent states also saturate the
Heisenberg uncertainty relation as the vacuum state. To characterise the displacement,
we use the complex the displacement amplitude α with magnitude |α| and displacement
angle Θ = π/2 − θ as it can be seen in Fig. 2.2. They are often considered as the most
classical of all Gaussian quantum states [16].

To implement the displacement operator in our experiments, we use a directional
coupler acting as highly asymmetric beam splitter in the microwave regime [20]. An
incoming signal âin is sent to a port of the directional coupler with transmissivity τ
while a strong coherent state |αcoh〉 is sent to a weakly-coupled port of the directional
coupler. In such case, the output signal âout is expressed as [29]

âout =
√
τâin +

√
1 − τ âcoh. (2.25)

In the limit of τ → 1 and for a strong coherent signal |αcoh| � 1 sqtisfzing the
condition

√
1 − τ|αcoh| = α, one can show that the directional coupler implements the

12
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Figure 2.2: Wigner function of a coherent state. Here, |α| = 3 and θ = π/4, resulting in
Θ = π/4.

transformation

âout ≈ âin + α1̂, (2.26)

where 1̂ is the identity operator. The output state is a displaced state.

Squeezed state

The last class of Gaussian states of interest is the squeezed state |ξ〉. It can be
described by applying the squeeze operator

Ŝ (ξ) = exp
(

1
2
ξ∗â2 −

1
2
ξ
(
â†
)2
)

, (2.27)

to the vacuum state |ξ〉 = Ŝ (ξ) |0〉. Here, we parametrise squeezing with the squeeze
parameter ξ = reiϕ, where r is the squeezing factor and ϕ is the squeezing angle.
Furthermore, we define γ = −ϕ/2 as the angle between the antisqueezed quadrature
and the p-axis as shown in Fig. 2.3. The mean and the covariance matrix are given by

r̄sq = 0 and Vsq =
1
4

(
e−2r cos2 ϕ

2 + e2r sin2 ϕ
2 sinϕ

(
e−2r − e2r

)
/2

sinϕ
(
e−2r − e2r

)
/2 e2r cos2 ϕ

2 + e−2r sin2 ϕ
2

)
. (2.28)

The Wigner function of squeezed states has an ellipsoidal form. The amount of
squeezing and antisqueezing is characterized by the squeezed variance σ2

S = e−2r/4
and the anti-squeezed variance σ2

A = e2r/4, respectively. In our experiments, we also

13
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Figure 2.3: (a) Wigner function of a squeezed state. Here, γ = π/2 and r = 0.7, corresponding
to the squeezing level of S = 6.1 dB. (b) Wigner function of a displaced squeezed
thermal state for γ = π/2, r = 0.7, |α| = 3, and Θ = 0. Here, nth = 1.

use the squeezing level S and antisqueezing level A as quantifiers

S = −10 log10

(
σ2

S

0.25

)
and A = 10 log10

(
σ2

A

0.25

)
, (2.29)

where 0.25 in both S and A refers to the quadrature variance of the vacuum state. There-
fore, positive values of S corresponds to a squeezing of vacuum fluctuations below the
vacuum level. For a pure squeezed state, we get S = 20r log10 (e). Experimentally, we
generate squeezed microwave states with the help of Josephson parametric amplifiers
(see Sec. 2.2 below).

Displaced squeezed thermal states

It is important to note that all states presented in the previous sections can be
combined together. For this, one can consider displaced squeezed thermal states. They
can be described by applying the squeeze operator Ŝ (ξ), then the displacement operator
D̂ (α) to a thermal state ρ̂th

ρ̂DS = D̂ (α) Ŝ (ξ) ρ̂thŜ (ξ)† D̂ (α)† , (2.30)

where ρ̂DS is the density matrix of the displaced squeezed thermal state with ξ = reiϕ,
and α = |α|eiθ. We stress that the order of the operators is important since the squeeze
and displacement operators generally do not commute [30]. With the order presented
here (squeeze before displacement), the squeezing of the final state is solely character-
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ized by the squeeze factor r and squeeze angle ϕ as for Sec. 2.1.2. The displacement
of the final state is independent of the squeeze parameter r and angle ϕ and depends
only on α as in Sec. 2.1.2. We refer the reader to Ref.[21] for a theoretical description
of squeezed displaced states and to Ref. [18] for an experimental implementation in
the microwave regime. The mean and the covariance matrix of a displaced squeezed
thermal state are given by

r̄DS = (Re(α), Im(α)) ,

VDS =
(1 + 2nth)

4

(
e−2r cos2 ϕ

2 + e2r sin2 ϕ
2 sinϕ

(
e−2r − e2r

)
/2

sinϕ
(
e−2r − e2r

)
/2 e2r cos2 ϕ

2 + e−2r sin2 ϕ
2

)
,

(2.31)

where nth is the mean photon number of the thermal state ρ̂th. An example of the
displaced squeezed thermal state is presented in Fig. 2.3.

2.2 Josephson parametric amplifier (JPA)

Josephson parametric amplifiers (JPAs) represent the central building blocks in
our experiments with propagating squeezed microwaves [31, 32, 33]. In the current
work, we exclusively employ flux-driven JPAs [17]. A flux-driven JPA consists of a
superconducting microwave resonator fabricated in a coplanar waveguide (CPW) ge-
ometry. By short-circuiting the resonator to ground via a direct current superconducting
quantum interference device (dc-SQUID), one can tune the resonant frequency of the
resonator with an external magnetic flux through the dc-SQUID loop. Additionally,
the flux-driven JPA employs an on-chip pump antenna inductively coupled to the
dc-SQUID loop. By applying a strong coherent pump tone via this antenna, we can
achieve parametric amplification of signal incident to the JPA. Notably, this can be
used to generate squeezed vacuum states.

2.2.1 Josephson junctions and dc-SQUID

Both the JPA resonator and dc-SQUID consist of superconducting materials such as
niobium or aluminum. Superconductors allows one to achieve low losses at cryogenic
temperatures which is particularly important in order to preserve quantum properties of
squeezed microwave states. In combination with low losses, superconductors provide
another useful effect, the Josephson effect [34] which is used to enable the dc-SQUIDs.
This effect appears when two superconductors are weakly coupled to each other (for
instance, via an insulating layer). In order to describe the Josephson effect, we assign a
macroscopic wavefunction Ψk (r,t) =

√
nk (r,t)eiθk(r,t) to each superconductor, where
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k = 1,2 for superconductor 1 or 2. Here, nk (r,t) refers to the Cooper pairs density
in the superconductors and θk (r,t) to the phase of the macroscopic wavefunction of
Cooper pairs. A representation is given in Fig. 2.4 (a). Furthermore, we introduce a
gauge-invariant phase difference expressed as [35]

ϕ (r,t) = θ2 (r,t) − θ1 (r,t) −
2π
Φ0

∫ 2

1
A (r,t) · dl, (2.32)

which will be used to describe the Josephson effect. Here, Φ0 = h/2e is the magnetic
flux quantum and A is the vector potential. The integral path from 1 to 2 refers to a path
from superconductor 1 to superconductor 2 across the tunnel barrier. In our experiments,
we consider lumped Josephson junctions where we neglect spatial variations of the
Cooper pairs. Furthermore, two equations are used to describe the Josephson effect.
These are known as the first Josephson equation and the second Josephson equations,
respectively [35]

Is (ϕ) = Ic sin (ϕ) and
∂ϕ

∂t
=

2π
Φ0

V (t) , (2.33)

where Is is the Josephson supercurrent, Ic is the Josephson critical current, and V is
the voltage across the Josephson junction. It can be seen from the Josephson equations
that a constant voltage across the junction will induce a sinusoidal supercurrent. In
addition, by using the definition of inductance as V = L dI/dt, one can obtain a nonlinear
inductance of the Josephson junction

Ls = Lc
1

cos (ϕ)
, (2.34)

where Lc = Φ0/ (2πIc). This nonlinear inductance is in the central element of the
absolute majority of quantum superconducting circuits.

Moreover, Josephon junctions can be used to build more complex devices. In partic-
ular, dc-SQUIDs are also based on lumped element Josepshon junctions. In general, a
dc-SQUID consists of two Josephson junctions in a superconducting loop as shown
in Fig. 2.4 (b). In the following, we assume for simplicity that critical currents of the
Josephson junctions are identical. To describe dynamics of the dc-SQUID, we want
to look at the gauge invariant phase difference. The first important dc-SQUID relation
can be obtained by considering the total phase change over a closed contour C around
the dc-SQUID. Due to nature of the phase, we have to demand

∮
C∇θ · dr = 2πn with

n ∈ N0. One can see that the phase θk in each superconductor is defined in an interval
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Figure 2.4: (a) Schematic of a Josephson junction. Superconductors 1 and 2 are represented by
gray color while the insulating layer between them is depicted by yellow color. (b)
Schematic of a dc-SQUID. The total current is given by Itot = I1 + I2. Circulating
current is defined as Icir = I1 − I2. The broken line represents the closed contour C.

of 2π. One can also express the phase gradient as [35]

∇θ =
2π
Φ0

(ΛJ s + A) , (2.35)

where Λ is the London parameter, J s is the supercurrent density, and A is the vector
potential. If we integrate Eq. 2.35 along a path inside the superconductor where the
supercurrent density J s is close to zero, we obtain

ϕ2 − ϕ1 =
2πΦ

Φ0
+ 2πn. (2.36)

This expression connects the phase difference ϕ2−ϕ1 between the dc-SQUID Josephson
junctions to the total magnetic flux through the loop. The latter can be decomposed
written as Φ = Φext + LloopIcir. The second contribution comes from a geometric
inductance of the superconducting loop and a non-zero circulating current. The latter is
Icir = (I1 − I2) /2. Using the previous expression for the total magnetic flux and Eq.
2.36, one can then write

Φ

Φ0
=

Φext

Φ0
−
βL

2
cos
(ϕ1 + ϕ2

2

)
sin
(ϕ1 − ϕ2

2

)
, (2.37)

where we have introduced the screening parameter βL = 2LloopIc/Φ0 [36]. Here, we
can distinguish two characteristic regimes of the dc-SQUIDs. If we consider βL ≈ 0,
the screening effect is small. In this case, we can neglect the self-induced flux and
assume that Φ ≈ Φext. In this case, the dc-SQUID can be regarded as a single Josephson
junction whose maximal supercurrent is modulated by the external applied flux. One
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can then define a nonlinear flux-dependent inductance of the dc-SQUID [37]

Ls (Φext) =
Φ0

4πIc

∣∣∣cos
(
πΦext

Φ0

)∣∣∣ . (2.38)

The dc-SQUID becomes a nonlinear element in superconducting circuits which can
be tuned by the external flux. If we consider βL > 1, the self inductance of the loop
contribution is not negligible anymore. Analytical expression cannot be derived in this
case and one needs to use the expression in Eq. 2.37 for a numerical simulation of the
system.

2.2.2 CPW resonator short-circuited by a dc-SQUID

Another important element of the JPAs is a coplanar waveguide (CPW) resonator
made of superconducting materials. To describe such the CPW resonator, we first
consider a CPW acting as a quasi one-dimensional transmission line. The lateral
dimension of our CPW is in the order of few millimetres, corresponding to resonant
frequencies on the order of few GHz. For a more detailed description, we adopt a
distributed element model where the waves propagating through the CPW are described
by the telegrapher’s equations [38]. A representation is given in Fig. 2.5. Since our
CPW is made of superconducting materials, we can approximate it with a lossless
transmission line. These assumptions allow us to write the characteristic impedance of
the CPW as [38]

Z =

√
L0

C0
, (2.39)

where L0 and C0 are respectively, the inductance and capacitance per unit length of
the transmission line (see Fig. 2.5). In order to estimate a resonant frequency of this
system, we apply a set of boundary conditions to the propagating microwaves on the
transmission line. To this end, an input line is capacitively coupled at one end of the
CPW via a capacitance Cc, while the other end of the CPW is short-circuited to ground
so that the electric length of the CPW is equal to d. This creates a reflection type
resonator. The frequency of the fundamental resonant mode is then given by [39]

fres =
1

4d
√

L0C0
=

1
4
√

LresCres
, (2.40)

where Lres = d L0 and Cres = d C0 are the total inductance and capacitance of the
resonator, respectively. The wavelength of this fundamental resonant mode λ is linked
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Figure 2.5: Distributed element model of a CPW resonator. Here, L0 and C0 are the inductance
and capacitance per unit length, respectively. On the top left, Cc is the coupling
capacitance. It describes the coupling of an incoming signal âin to the resonator.
The resonator is short-circuited to ground with a dc-SQUID. An external magnetic
flux Φdc is inductively coupled to the dc-SQUID. Additionally, an oscillating flux
Φrf can applied via an external pump tone sent to the pump line represented on the
right hand side. Inductance coupling between the pump line and the dc-SQUID is
shown via the mutual coupling coefficient LM.

to the size of the resonator d as λ = 4d. For this reason, this type of resonator is called
quarter-wavelength λ/4 resonator. From Eq. 2.40 , we see that changing the inductance
of the resonator due to the additional flux-dependent dc-SQUID inductance will induce
a change in the resonant frequency. It can be shown that the dependency of the resonant
frequency f0 on the external flux is given by [40, 41, 42](

π f0

2 fres

)
tan
(
π f0

2 fres

)
= 2

(2π)2

Φ2
0

LresEs (Φext) −
2Cs

Cres

(
π f0

2 fres

)2

, (2.41)

where Lres, Cres and fres are the total inductance, capacitance, and resonant frequency of
the bare resonator. Additionally, Cs corresponds to the capacitance of a single Josephson
junction. Here, Es (Φext) represents the flux-dependent energy of the dc-SQUID [43].
From Eq. 2.41, one can see how the resonant frequency depends on the introduced
dc-SQUID. For a zero dc-SQUID energy, f0 → 0 and one obtains an open transmission
line. Conversely, for an infinite dc-SQUID energy, f0 → fres. In that case, one obtains
the previously introduced λ/4 resonator.

2.2.3 Generation of squeezed states with flux driven JPAs

JPAs are parametric amplifiers that have been experimentally used many times in
literature for various purposes [44, 18, 45]. In this work, we work with a flux-driven JPA
[17] in order to generate squeezed states. Flux-driven JPAs consist of a λ/4 resonator
acting as an oscillator whose resonant frequency is tuned by a dc-SQUID via an external
flux. The pump line allows to induce an additional alternating flux Φrf through the dc-
SQUID loop (see Fig. 2.5), enabling oscillations of the resonant frequency. Parametric
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amplification is achieved when the pump frequency is set to fpump = 2 f0. To this extent,
one first needs to tune the resonant frequency to a desired frequency f0 by applying a
dc flux Φdc to the dc-SQUID. The power of the pump tone modulates the magnitude
of the amplification. The whole parametric amplification process can be described
as a non-linear interaction between three modes, a pump mode at frequency fpump, a
signal mode at frequency fsignal, and an idler mode at frequency fidler. More precisely,
in the case of the flux-driven JPA, one has to consider the three-wave mixing process,
characterized by the condition [31]

fpump = fsignal + fidler. (2.42)

If fpump , 2 fsignal, one talks about phase-insensitive or non-degenerate amplification.
If fpump = 2 fsignal, one talks about phase-sensitive or degenerate amplification. The
amplification process can be described by the power gain G for each quadrature
component. For both type of amplification regimes (non-degenerate or degenerate), it
is important to consider is the noise performance, that is, the number of noise photons
added to amplified signals. For a phase-insensitive amplifier, C.Caves [46] showed
that this number of added noise photons ηamp has a fundamental lower bound. If we
consider ηamp as the noise photon number referred to the input of the amplifier, we can
express this lower bound as

ηamp ≥
1
2

∣∣∣1 −Gs

∣∣∣ , (2.43)

where Gs refers to the signal mode power gain. So even in the limit of very large gain
Gs, a minimal amount of 1/2 noise photons is added to the signal.

For a phase-sensitive amplifier, the situation is different. For this type of amplifiers,
one quadrature is amplified, while another one is deamplified. For each quadrature
(i = {1, 2}), we can assign an individual gain Gi and a respective number of added noise
photons ηi. According to Caves [46], these quantities are related as

η1η2 ≥
1

16

∣∣∣∣1 − 1
√

G1G2

∣∣∣∣2, (2.44)

The interesting outcome of Eq. 2.44 is that under condition G1G2 = 1 a noiseless
amplification can be achieved. In other words, in this regime, one quadrature of the
signal can be amplified with gain G1 without adding additional noise, while the con-
jugate quadrature will be deamplified with gain G2. This process corresponds to the
squeezing operation. More precisely, using a flux driven JPA in the phase-sensitive
regime where fpump = 2 fsignal, we can generate a squeezed state using a vacuum state
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as an input. In fact, it is possible to show that the JPA Hamiltonian in the interaction
picture corresponds to the squeeze operator. Following Ref. [16], one can indeed derive
that the unitary evolution of the system is described by

Û (t) = exp
[
−

i
~

Ĥintt
]

= exp
(

1
2
ξ∗â2 −

1
2
ξ
(
â†
)2
)

, (2.45)

where ξ = reiϕ and Ĥint is the JPA Hamiltonian in the interaction picture. Here, we
define r = λt with λ the effective frequency modulation and ϕ is related to the pump
tone phase. We invite the reader to Ref. [43] for a more detailed derivation. In other
words, the unitary transformation in the JPA under the parametric degenerate drive
coincides with the squeezing operator defined in Eq. 2.27. Furthermore, Yamamoto et
al. [47] used an input-output formalism to investigate the gain in the phase-sensitive
and phase-insensitive regime. It can be shown that in the phase-sensitive regime, one
obtains the following signal gain [48]

Gd (θ) =

(
κ2

ext−κ
2
int

4 − 4δ2ω2
0

)2
+ 4δ2κ2

extω
2
0 − 4δκextω0

(
κ2

ext−κ
2
int

4 − 4δ2ω2
0

)
sin (2θ)(

(κext+κint)2

4 − 4δ2ω2
0

)2 ,

(2.46)

where θ is the phase difference between the signal mode and pump tone, δ is the
pump tone amplitude and ω0 = 2π f0 is the resonance angular frequency. Furthermore,
we define κint = ω0/Qint and κext = ω0/Qext as the internal and external loss rates,
respectively. Now, one can obtain from this expression values for the minimal and
maximal gains describing the amplification and deamplification in the flux-driven JPA

Gmin
d =

(
2δω0 − (κext − κint) /2
2δω0 + (κext + κint) /2

)2

, for θ ≡
π

4
(mod π) ,

Gmax
d =

(
2δω0 + (κext − κint) /2
2δω0 − (κext + κint) /2

)2

, for θ ≡
3π
4

(mod π) ,

(2.47)

where we assume κext > κint. Remarkably, we obtain the condition Gmin
d Gmax

d = 1 (i.e.,
potentially noiseless phase-sensitive amplification) under the condition κint = 0.

Additionally, it is important to note that our JPA does not produce pure squeezed
states. More precisely, for an ideal JPA operating in the phase-sensitive regime, sending
the vacuum as an input state can produce a pure squeezed state. However, experimen-
tally, additional noise is added by our JPAs to both quadratures even in the degenerate
regime. This happens due to various imperfections of practical JPAs, finite ambient
temperatures, photon noise uncertainty in the pump tones, among other reasons. In the
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end, the output JPA states can be effectively modelled as a squeezed thermal states.
Using a similar approach as in Sec. 2.1.2, we can describe these squeezed thermal states
ρ̂J as

ρ̂J = Ŝ (ξ) ρ̂thŜ † (ξ) , (2.48)

where ρ̂th describes a thermal state with a fixed mean photon number nth. The latter is
directly related to the added noise photon number of the JPA.

22



Chapter 3

Quantum Key Distribution

In this chapter, we present concepts of quantum key distribution (QKD) which are
used throughout this work. First, we introduce a general framework of QKD. We focus
on a possible way to generate a common key, which usually can be represented by
a string of numbers, between two parties. In order to investigate the security of such
protocols, we present a model used to describe an external eavesdropper attack whose
purpose would be to gain information on the key. Second, we explain possible ways to
quantify information in classical approaches and quantum. For this, we consider differ-
ent notions of entropy to quantitatively describe information content and correlations
between the different parties at stake. Additionally, we introduce the notion of security
in QKD protocols. In the end of this chapter, we focus on a specific QKD protocol
based on displaced squeezed states. We investigate a secret key of this protocol based
on numerical simulations under the direct and reverse reconciliation.

3.1 QKD Concepts

In this section, we discuss general concepts of QKD protocols in addition to a
description of eavesdropping attacks we consider in this work.

3.1.1 QKD principle and general framework

Quantum Key Distribution (QKD) is a method used to exchange secretly a key
between two parties, which are often denoted as Alice and Bob. More specifically,
we consider a key made of several numbers which we call key elements. A general
QKD protocol can be split into two main steps. The first step corresponds to a quantum
communication between Alice and Bob and the second step corresponds to the secret
key distillation from the information exchanged during the first part. This last step
is itself decomposed into two main parts, known as information reconciliation (error
correction) and privacy amplification. For the quantum communication step, the purpose
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is to encode a classical key into quantum states and to send those to the receiver.
A general representation is given in Fig. 3.1. To do so, Alice and Bob agree on a
communication protocol. Alice encodes each key element into a quantum state which
propagates through a quantum channel. On the other end of the channel, Bob receives
the state and measures it, obtaining an estimation of the key element. They repeat
the procedure until every key element has been encoded and communicated. Alice
and Bob also have access to a generally insecure classical channel. This channel is
needed to implement classical algorithms to distil the secret key. In order to prevent
any man-in-the-middle attack on this classical channel, the messages are authenticated.
This means that the messages can be eavesdropped but not changed by an external
attacker [49]. Since this classical procedure already requires a shared secret key between
Alice and Bob, QKD falls more into the key-growing category. During the quantum
communication step, a third party, often denoted as Eve, is assumed to eavesdrop
the communication (both the authenticated classical and quantum channel) and gain
information on the key. The security of the protocol depends on what information Eve
gains. As we mentioned before, QKD can theoretically achieve unconditional security.
This implies that in the most general framework, Eve is considered to be limited in her
actions over the communicated quantum state only by the laws of quantum physics.
In particular, when the QKD protocol relies on non-orthogonal states, the no-cloning
theorem [12] forbids Eve from creating perfect copies of the state. Only imperfect
cloners exist [50] which can only produce noisy copies of arbitrary quantum states.
More generally, it is important that Eve disturbs the quantum states as this makes
her interaction detectable. One can then estimate from this disturbance the amount of
information gained by Eve on the communicated key.

One of a possible eavesdropping attacks is the intercept-resend attack. Here, Eve
intercepts each quantum state sent by Alice and measures it in a way she chooses.
Then, she prepares a quantum state based on her measurements and sends this state to
Bob. Once again, if Alice and Bob chose to use non-orthogonal states, the no-cloning
theorem again assures that Eve is not able to gain information without disturbing the
states. Let us now explain how a general quantum communication protocol is built
to force Eve to interact with and disturb the states sent by Alice. A general quantum
communication protocol consists in Alice randomly choosing, for each key element ki,
a quantum state from an ensemble Em. This ensemble is itself randomly chosen among
L possible ensemble of states [51]. Such ensemble Em is defined as

Em =
{

pi,m,
∣∣ψi,m

〉 〈
ψi,m

∣∣} , (3.1)

where pi,m is the probability of sending the state
∣∣ψi,m

〉 〈
ψi,m

∣∣ when the ensemble Em
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Alice Bob

classical channel

Eve

encode

Figure 3.1: Scheme a general QKD protocol. Alice starts by getting a random number ki which
she encodes in a state ρ̂A,i. The latter state propagates through a quantum channel
N . There, in order to get information on ki, Eve probes the quantum communication
channel with a state ρ̂E,i. The second communication party, Bob, receives the state
ρ̂B,i. He performs a measurement of the received state which results into a number
k
′

i . The number represents an estimation of ki. Eve also obtains a state ρ̂
′

E,i which
may contain finite information on ki. Finally, Alice and Bob can communicate
classically over an authenticated classical channel which Eve can only listen to.

has been chosen. In order to protect information encoded in the sent quantum states,
we need that the states in the different ensembles are non-orthogonal. It is sufficient to
impose that

∣∣ψi,m
〉 〈
ψi,m

∣∣ and
∣∣ψi,m′

〉 〈
ψi,m′

∣∣ are non-orthogonal states for all i and for
m , m′. Additionally, we require that

∀m :
∑

i

pi,m

∣∣ψi,m
〉 〈
ψi,m

∣∣ = ρ̂avg, (3.2)

where ρ̂avg is an average density matrix that depends on the QKD protocol chosen. Since
ρ̂avg is the same for every ensemble Em, Eve cannot deduce from her measurement
which ensemble was chosen. This way, the optimal strategy for Eve is to interact with
the states sent by Alice. This interaction will then disturb the states which is detectable
and quantifiable by Alice and Bob. The knowledge on the amount of information
extracted by Eve determines whether or not the communication is secure.

From this general description, two groups of QKD protocols are of particular interest.
The first group is represented by discrete-variable (DV) QKD protocols. The informa-
tion here is encoded in discrete bases. One of the most famous protocols in DV-QKD
is the BB84 protocol. For this protocol, two discrete bases are used. The first basis is
the computational basis {|0〉 , |1〉} where each state has an equal probability p = 0.5 to
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be chosen. The second discrete basis is
{
|+〉 = (|0〉 + |1〉) /

√
2, |−〉 = (|0〉 − |1〉) /

√
2
}

where each state also has an equal probability p = 0.5 to be chosen. With the formalism
presented in Eq. 3.2 and denoting the identity operator as 1̂, we have

1
2
|0〉 〈0| +

1
2
|1〉 〈1| =

1
2
|+〉 〈+| +

1
2
|−〉 〈−| =

1
2

1̂ = ρ̂avg. (3.3)

The second group is represented by continuous variable (CV) QKD protocols where a
continuous basis is used to encode the key elements. The most common choice of the
basis here is the one using coherent states and squeezed states introduced in Sec. 2.1.2.
Here the information is carried by the two conjugate field quadratures. The results
of measurements of these quadratures are continuous values. Finally, CV protocols
which use exclusively Gaussian states, such as coherent states or squeezed states, are
known as Gaussian CV-QKD protocols. They are frequently employed in literature and
experiments as the analysis of security of these protocols is much more accessible than
for general states.

3.1.2 Information reconciliation and privacy amplification

Once Alice and Bob finish their quantum communication step, they must proceed
to the distillation of a common key from the information they exchanged. This step
can be classified as classical information postprecessing. Among various possible
classical information postprocessing procedures, the most common one is the one-way
postprocessing. It consists of a one-way classical communication between Alice and
Bob through a public classical channel. Here, a distinction must be introduced. If during
the procedure, the reference of information is the same as the the sender of quantum
states during the quantum communication step (i.e., Alice in our case), we speak of
direct reconciliation (DR). If the reference is the receiver of the quantum states (i.e.,
Bob in our case), we speak of reverse reconciliation (RR). Depending on the QKD
protocol used, Alice and Bob may need first to discard parts of their respective data.
This step is called sifting. One-way postprocessing is split into two steps: first an error
correction step, also called information reconciliation, and a privacy amplification step.

We first focus on the information reconciliation step. This process takes two partially
correlated list of symbols, key elements, of length n and generates an output a perfectly
correlated list of length l ≤ n shared by Alice and Bob. Shannon [52] proved that the
number of perfectly correlated symbols that can be extracted is theoretically limited by
mutual information between Alice and Bob (see Sec. 3.2.2). For practical implementa-
tions, low-density parity-check (LDPC) codes are typically employed [53, 10]. Practical
codes do not reach the bound derived by Shannon and are less efficient. The efficiency
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of reconciliation algorithms in general is characterised by an efficiency parameter β.
For a given reconciliation algorithm, it quantifies how close the information in the
correlated symbols at the output of the algorithm to the Shannon limit. The efficiency
of the codes depends generally on the problem and the available devices. A trade-off

between performance/complexity also needs to be respected. Practical efficiencies
achieved are usually above β = 80 %. Furthermore, the codes used generally work
integer entries. This means that depending on the type of quantum communication step
implemented, digitization of the data may be needed, which may decrease the available
information. A more detailed analysis is done by Lodewyck et al. in Ref.[53]. Remark-
ably, they reported an efficiency of β = 0.898 for their experimental implementation of
a CV-QKD protocol in the optics regime.

We now focus on the privacy amplification step. After Alice and Bob performed
information reconciliation, they share a common key. However, since Eve is assumed
to be able to freely eavesdrop the classical communication channel, she still has
correlated information this new key. Privacy amplification algorithms have to get rid
of the compromised key elements which Eve possesses at the cost of further reducing
the length of the key. This procedure is often implemented by using two-universal
symmetric hash functions [11]. For these functions, one defines a security parameter
corresponding to the number of bits used for the implementation of the algorithm [11].
If this security parameter is large enough, Eve does not have any knowledge on the final
key with high probability. The amount of information Eve has determines how large
the security parameter needs to be. Therefore, the choice between direct reconciliation
or reverse reconciliation is also essential for that step as Eve’s information can vary
significantly depending on which reconciliation was chosen.

3.1.3 Eavesdropping attacks and implementation

Another important aspect of QKD deals with how to describe and quantify Eve’s
possible attacks. This is necessary to be able to quantify the amount of information
Eve extracted from the quantum communication step and is a crucial number for the
security of the protocols. For a general description, Eve is free to interact with the
states sent by Alice as she wants. As a consequence, it is a complex task to model an
attack by Eve. To this extent, we first start by introducing three classes of attacks which
classify Eve’s possible attacks from the weakest to the strongest. In a general setup,
Eve is assumed to have an ancilla, which can be simply the environment, which she
uses to interfere with the quantum communication between Alice and Bob.
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Figure 3.2: Schematic of a general individual attack. On her side, Alice encodes each of her N
key elements into a quantum state ρ̂A,i. These states propagate through the quantum
channelN , assumed to be under Eve’s control. Eve interacts individually with each
of Alice’s states. Each interaction is the same and does not depend on ρ̂A,i. At the
output of the quantum channel, Bob receives a state ρ̂B,i for each state sent by Alice.
He performs individual measurement on his received states. Finally, Eve receives a
state ρ̂

′

E,i for each state sent by Alice. She also measures them individually.

Individual attacks

Individual attacks (see Fig. 3.2) is a family of attacks described as the most con-
strained one [10]. They are defined by two properties. The first one states that Eve is
assumed to interact with the incoming states from Alice individually and independently
using the same approach and strategy. The second property is that Eve measures her
ancilla before Alice and Bob proceed to classical information postprocessing, i.e., to in-
formation reconciliation and privacy amplification steps. Therefore, at this stage, Alice,
Bob, and Eve both share classical elements. The previously introduced intercept-resend
attack falls into this category, as Eve interacts individually and independently with each
signal using this strategy. For a general protocol, an upper bound of Eve’s information
is found by performing an optimization over all possible measurements which Eve can
implement. The resulting upper bound of Eve’s information depends on the type of
protocol used.
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Figure 3.3: Schematic of a general collective attack. On her side, Alice encodes each of her N
key elements into a quantum state ρ̂A,i. These states propagate through the quantum
channel N , assumed to be under Eve’s control. Eve interacts individually with
each of Alice’s states. Each interaction is the same and does not depend on ρ̂A,i.
At the output of the quantum channel, Bob receives a state ρ̂B,i for each state sent
by Alice. He performs individual measurement on his received states. Finally, Eve
receives a state ρ̂

′

E,i for each state sent by Alice. Contrary to individual attacks, Eve
is free to perform an optimal collective measurement by applying a unitary ÛM to
her ensemble of states.

Collective attacks

Collective attacks (see Fig. 3.3) is another family of attacks [10]. As for individual
attacks, they are defined by two properties. First, Eve is assumed again to interact
individually and independently with each incoming states from Alice using the same
strategy. Second, Eve can now store her ancilla into a quantum memory until the end of
the classical information postporcessing step. Then, she performs an optimal collective
measurement on her ancilla. For instance, she can apply a joint unitary ÛM to her entire
ancilla and measures each state individually.
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Figure 3.4: Schematic of a general coherent attack. On her side, Alice encodes each of her
N key elements into a quantum state ρ̂A,i. These states propagate through the
quantum channel N , assumed to be under Eve’s control. This time, Eve is free
to prepare her ensemble in any possible manner by applying a unitary ÛP to her
ensemble. Each mode of her newly formed ensemble interacts, through the quantum
channelN , with the states ρ̂A,i sent by Alice. At the output of the quantum channel,
Bob receives a state ρ̂B,i for each state sent by Alice. He performs individual
measurement on his received states. Finally, Eve receives a state ρ̂

′

E,i for each state
sent by Alice. Once again, Eve is free to perform a optimal collective measurement
by applying a unitary ÛM to her ensemble of states.

Coherent attacks

Coherent attacks (see Fig. 3.4) describe Eve’s most general and powerful attack
[10]. By definition, it is not limited by any technical restrictions. This means that
Eve is able to interact freely and in any possible way allowed by the laws of physics
with the states sent by Alice. Finding the optimal coherent attack is very challenging
to implement as coherent attacks cannot be precisely parametrized. However, some
simplifications can be achieved. The central argument is provided by the de Finetti
theorem [54]. Thanks to this theorem, coherent attacks can be reduced to collective
attacks [55, 54]. In other words, the theorem is used to argue that collective attacks can
be as powerful as coherent attacks. This statement relies on the assumption that the
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classical postprocessing step is symmetric. This proof only works when we consider the
so-called asymptotic case, or in the asymptotic scenario, where the number of exchange
key elements goes to infinity. If one consider a realistic scenario where this number
is finite, the claim does not hold. However, one can argue that in a realistic scenario,
a large number of states is typically communicated which brings us very close to the
asymptotic case. For these reasons, we limit our analysis in this thesis to the asymptotic
case and collective attacks.

Two-mode squeezed vacuum state

In Sec. 3.1.3 to Sec. 3.1.3, we introduced different categories of possible attacks. We
now focus on the implementation of Eve’s attack. To this extent, we briefly describe
another state that is needed to describe this attack. Until now, the Gaussian states
introduced in Chapter 2 were single-mode states which are local to one party. In the
context of CV-QKD, the two-mode squeezed vacuum (TMSV) state is a non-local state
which possesses finite quantum entanglement and is related to the Einstein-Podolsky-
Rosen (EPR) state [56]. A TMSV state is obtained by applying to the vacuum state a
two-mode squeeze operator [57]

Ŝ 1,2 = exp
(
ξ∗â1â2 − ξâ

†

1â†2
)

, (3.4)

where âi is the annihilation operator of the i-th mode. Similarly to a single-mode
squeezed state, we define ξ = reiϕ where r corresponds to the amount of squeezing and
determines, with the phase ϕ, the correlations between quadratures of each mode. For
ϕ = 0, we can express the mean r̄TM and covariance matrix VTM as [16]

r̄TM = 0 and VTM =
1
4


cosh (2r) 0 sinh (2r) 0

0 cosh (2r) 0 − sinh (2r)
sinh (2r) 0 cosh (2r) 0

0 − sinh (2r) 0 cosh (2r)

 . (3.5)

Remarkably, we can see from Eq. 3.5 and Eq. 2.22 that locally each mode looks like
thermal states with a noise photon nth such that cosh (2r) = (1 + 2nth).

Eve’s attack implementation

Since we would like to consider collective attacks, we need to optimize Eve’s attack
over possible physical attacks to maximize information she obtains. It is possible to
simplify this approach. This stems from the fact that Gaussian attacks are proven to be
optimal attacks among collective attacks [58]. This optimality of the Gaussian attacks
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refers to the security of the protocol. In other words, if a protocols is proven secure for
this type of attack, then it is secure from any general collective attack. Therefore, we
can restrict ourselves to considering Gaussian collective attacks for Eve. A Gaussian
attack is implemented via a one-mode Gaussian quantum channel which is used to
interact with the states sent by Alice. Such quantum channel is defined as a completely
positive map acting on a single bosonic mode and preserves Gaussian statistics of
the channel input states. So, if the input states are Gaussian states, a Gaussian attack
produces also Gaussian states. Furthermore, this thesis investigates a CV-QKD protocol
using Gaussian states. Therefore, we consider from now on, that the input states sent
by Alice are Gaussian states.

The following is a description of a general Gaussian collective attack and based on
[59]. As mentioned above, such an attack is modelled as a Gaussian channel acting on
single modes. For a Gaussian state with mean r̄ and covariance matrix V, as defined
in Eq. 2.12 and Eq. 2.13, a Gaussian channel G outputs another Gaussian state with
mean r̄′ and covariance matrix V′ given by

r̄′ = Tr̄ + d,

V′ = TVTT + N.
(3.6)

where d ∈ R2 and T,N ∈ R2×2. These two matrices parametrize any physical map
acting on the input Gaussian states. In particular, T =

√
τI where I is the identity matrix

represents physically the action of a beamsplitter of transmissivity τ. This can be used
to represent adding losses on a physical system. Additionally, N = nI represents adding
n photons to the input Gaussian states. This is can be used to represent adding noise
on a physical system. We can use this formalism to describe a lossy noise quantum
channel. The interesting point is that G can be further decomposed as G = UB ◦C ◦UA.
Here, UB, UA, and C are individually physical maps and ◦ indicates that there are
composed one after another (i.e., they are applied one after the other). Additionally,
UA,UB are called Gaussian unitaries and C is called the canonical form. A Gaussian
unitary is defined in Ref.[59] as a unitary Û acting on a Gaussian state ρ̂ with mean
r̄ and covariance matrix V. This unitary action can be characterized by the following
transformations

ρ̂′ = Ûρ̂Û†,

r̄′ = Sr̄ + d, and V′ = SVST .
(3.7)

where S is a symplectic matrix meaning that

forΩ =

(
0 1
−1 0

)
, SΩST = Ω. (3.8)
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The canonical form C is a Gaussian channel G for which d = 0 and T = TC,N = NC

are diagonal. For Eve’s Gaussian collective attack implementation, it is modelled as Eve
replacing Alice and Bob quantum channel by her own quantum channel. The latter is
then described as a lossy noise channel. This means that Eve’s quantum channel induces
losses and couples noise to an input state. This encompasses all losses to the states sent
by Alice such as losses from cables or coming from Eve’s devices. This also includes
any noise coupled to the states sent by Alice such as thermal noise, noise coming
from Eve’s devices, or noise added due to Eve specific attack. We parametrize Eve’s
Gaussian collective attack with two parameters, the transmissivity τ of the channel and
the noise η. The transmissivity τ ranges from 0 to 1 and the noise η corresponds to a
photon number which is always positive.

Now, we describe a specific practical implementation. We start by splitting the attack
into two parts, the action of the attack on the states and the collective measurement
performed by Eve.

Regarding the action of the attack, we have to implement the transformation de-
scribed by Eq. 3.6. Thanks to Stinespring’s dilution theorem [60], every Gaussian
channel can be seen as a unitary operation coupling the input state to the environment.
This representation is unique up to isometries. In our case, the environment is under
control of Eve. As explained in [59], we look first at the canonical form C of the
Gaussian channel and apply again Stinespring’s dilution theorem. One obtains that the
canonical form can be uniquely represented by a symplectic transformation L up to
an isometry. This symplectic transformation L acts on the input states sent by Alice.
It couples them with a TMSV state (see Sec. 3.1.3) with a variance parametrized by a
squeezing factor r as given by Eq. 3.5 and such that cosh (2r) = (1 + 2nEve). Therefore,
Eve’s ancilla can be considered to be a TMSV state. There are eight possible different
transformations which depend on how the coupling with the TMSV state is done. For a
complete characterization of each possible transformations, we refer the reader to the
table presented in [59]. This concludes the description of the canonical form C. Then,
in order to describe the full quantum channel, one needs to consider additionally the
two Gaussian unitaries, UA and UB.

Regarding the collective measurement, one normally has to consider the optimal
collective measurement that Eve could apply. Nevertheless, it is possible to also cir-
cumvent this task by using upper bounds on Eve’s information. Such bounds allowed
us to disregard the precise collective measurement Eve performs. Out of the available
bounds, we used the so-called Holevo bound, which we explain further in Sec. 3.2.2.
This bound is invariant under isometric operation. This means that the environment
unitary can be disregarded as well. We briefly explain what we consider an isometric
operation. An operation on a quantum state with a density matrix ρ̂ is called isometric

33



Chapter 3 Quantum Key Distribution

transformation if there an isometry V̂ such that ρ̂ is transformed as

ρ̂→ V̂ ρ̂V̂†. (3.9)

For our description of Eve’s attack, we consider only losses and coupled noise.
It turns out that this can be fully described by the canonical form of the Gaussian
channel. Fig. 3.5 illustrates the implementation of Eve’s attack. More specifically, for
0 ≤ τ < 1, we get

UA = UB = 1̂,

TC =
√
τI, NC =

1
4

(1 − τ) (1 + 2nEve) I,
(3.10)

where 1̂ is the identity operator and I is the identity matrix. We keep these two last
notations for the remaining of this section. The canonical form corresponds physically
to a beam splitter with transmissivity τ [16] coupling one mode of the TMSV state. This
mode locally looks like a thermal state with a thermal noise photon nEve. Considering
an input Gaussian state ρ̂ with mean r̄ and covariance matrix V, we obtain the following
transformation

r̄′ =
√
τ r̄,

V′ = τV +
1
4

(1 − τ) (1 + 2nEve) I,
(3.11)

where we see that the transmissivity τ and the input noise nEve are coupled together. In
order to have two separate parameters, we parametrize the coupled noise as

(1 − τ) (1 + 2nEve) = η′ + (1 − τ) . (3.12)

Inserting Eq. 3.12 in Eq. 3.11, we then get

r̄′ =
√
τr̄ and V′ = τV + ηI +

1
4

(1 − τ) I, (3.13)

where we defined η = η′/4. Now τ and η are two independent parameters and corre-
spond exactly to the losses and noise of Eve’s quantum channel that we defined above.
This specific attack is known as the entangling cloner attack [61]. Unfortunately, for
τ = 1 and η , 0, this model cannot be strictly implemented. Indeed, in this case, we
have

UA = UB = 1̂ , TC = I, NC = ηI,

r̄′ = r̄ and V′ = V + ηI.
(3.14)

Instead, one can view this case as the asymmetric limit of the entangling cloner attack

34



3.2 Gaussian quantum information and security
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Figure 3.5: Schematic of Eve’s entangling cloner attack. Alice encodes each key element ki
into a quantum state ρ̂A,i. Individually, each of these states are coupled through a
beamsplitter of transmissivity τ to one mode of Eve’s TMSV which locally looks
like a thermal state. This is represented by the red Wigner function. One output of
the beamsplitter is kept by Eve while another is sent to Bob.

where τ → 1 as seen from Eq. 3.13. The attack in itself is known as the universal
Gaussian cloner attack [62].

3.2 Gaussian quantum information and security

In this section, we investigate different notions of entropy and the security of QKD
protocols. First, we look at different entropy quantities which are useful to characterise
information exchanged in our QKD protocol. We focus in particular on the differential
entropy to characterize classical correlations. The Von Neumann entropy allows us
to evaluate general quantum information content. In the second step, we introduce
important mutual information and Holevo quantities. The former is used to quantify
general correlations between Alice and Bob and the latter is used to obtain an upper
bound on Eve’s information. Using these quantities, we define two central quantifiers
of CV-QKD, the secret key K and the secret key rate R. The positivity of the secret key
determines whether the communication between Alice and Bob is secure or not.

3.2.1 Entropy of quantum states

In this section, we focus on entropy quantities for classical and quantum systems. To
this end, we present the well-known Shannon entropy for DV systems before presenting
the differential entropy for CV systems. Then, we consider at the Von Neumann entropy
which is the equivalent entropy for quantum systems. Furthermore, we present the
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so-called mutual information which is used to characterize the information shared
between Alice and Bob at the end of the QKD protocol. One finds an upper bound on
Eve’s information by introducing the Holevo quantity which is defined using the Von
Neumann entropy. This useful upper bound simplifies the analysis of possible Eve’s
attacks. From it, we define the secret key K and secret key rate R.

Shannon entropy

In classical information theory, the Shannon entropy is an important tool to quantify
information content of a system. Considering a discrete random variable X which takes
its values in the set {x1, . . . ,xN}, its Shannon entropy H is defined by

H (X) = −

N∑
i

pi logb (pi) , (3.15)

where pi is the probability of X being xi. The logarithm used here is in base b. The
common bases are b = 2 and b = e which in term of units correspond to bits and nats,
respectively. The Shannon entropy H can be interpreted in different ways. On the one
hand, it can be seen as the amount of uncertainty about X. For a classical system, one
can view it as the information required to describe such system. This comes from the
Shannon’s source coding theorem [52] used in data compression. In this context, one
obtain from the theorem that the Shannon entropy gives the minimum number of bits
required to describe the full information about the system.

Differential entropy

The previously introduced Shannon entropy deals with classical discrete random
variables. In this work, we are interested in continuous random variables. To measure
the entropy of such random variables, we have to introduce another quantity called the
differential entropy h. For a continuous random variable X with probability density
function f , we define

h (X) = −

∫
D

f (x) logb ( f (x)) dx. (3.16)

whereD is the domain of definition of f . This quantity intuitively seems to correspond
to the continuous extension of the Shannon entropy but it is not exactly the case. First,
the limit of the Shannon entropy when n→ +∞ does not coincide with the differential
entropy [63]. Second, the differential entropy can take negative values for certain
variables. Lastly, it is only defined up to an arbitrary constant. For instance, if one
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defines Y = aX, one can show that

h (Y) = h (X) + logb |a|. (3.17)

Nevertheless, it remains a useful quantity which is used throughout this work because
we are interested in difference between differential entropies where the problems
mentioned just above disappear.

Von Neumann entropy

To measure the entropy of quantum states, we need to use a quantum version of
entropy which is the Von Neumann entropy S . For an arbitrary quantum state described
by a density matrix ρ̂, the Von Neumann entropy is defined as

S (ρ̂) = −Tr
(
ρ̂ log (ρ̂)

)
, (3.18)

where log is the natural matrix logarithm. One can rewrite the Von Neumann entropy
of a density matrix ρ̂ using the eigenvalues λi of ρ̂ as

S (ρ̂) = −
∑

i

λi log (λi) , (3.19)

where log is the natural logarithm. If we want to express the Von Neumann in terms of
bits, we replace log in Eq. 3.19 by log2. This equation also draws a parallel with the
Shannon entropy. For Gaussian states, the calculation simplifies as the Von Neumann
entropy can be calculated from the covariance matrix of the state. In particular, for
single-mode Gaussian states (N = 1), one obtains that [27]

S (ρ̂) = g
(√

det V
)

, (3.20)

where

g (x) =

(
2x +

1
2

)
log
(

2x +
1
2

)
−

(
2x −

1
2

)
log
(

2x −
1
2

)
. (3.21)

For two-mode Gaussian states (N = 2), one first needs to rewrite the covariance matrix
in the form

V =

(
A C
CT B

)
, (3.22)
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where A ∈ R2×2 locally describes one mode, B ∈ R2×2 locally describes the other mode,
and C ∈ R2×2 describes the correlation between the modes. One can define

∆ = det A + det B + 2 det C, (3.23)

to obtain that [64]
S (ρ̂) = g (ν+) + g (ν−) , (3.24)

where

ν± =

√
∆ ±
√

∆2 − 4det V
2

(3.25)

are symplectic eigenvalues of V, with ∆ defined as in Eq. 3.23. Lastly, the Von Neumann
entropy is invariant under isometric operations. In other words, for any density matrix
ρ̂ and any isometric operator V̂ , we have

S
(
V̂ ρ̂V̂†

)
= S (ρ̂) . (3.26)

3.2.2 Mutual information and Holevo quantity

Another important aspect we need for our analysis is the way to describe correlations
between two parties. To this extent, we introduce two crucial quantities which are the
mutual information and the Holevo quantity. Their description relies on the previously
introduced entropies.

Mutual information

For a pair of discrete random variables (X,Y) defined over a domain of definition
DX × DY (DX being the domain of definition for X and DY being the domain of
definition for Y) with a joint probability distribution p(X,Y), we can define their mutual
information as

I (X:Y) =
∑

(x,y)∈DX×DY

p(X,Y) logb
p(X,Y) (x,y)

pX (x) pY (y)
. (3.27)

where pX and pY are the probability distribution of X and Y , respectively. This quantifies
the amount of correlation between the two variables X and Y . A useful representation
can be obtained by introducing the the conditional entropy H (Y |X). It can be seen as
the Shannon entropy of Y conditioned by the values taken by X. The latter is defined as

H (Y |X) = −
∑
x∈DX

∑
y∈DY

p(X,Y) (x,y) logb

(
pY|X (y|x)

)
, (3.28)
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where pY|X is the probability density of the random variable Y conditioned on {X = x}.
Then we can rewrite the mutual information as

I (X:Y) = H (Y) − H (Y |X) . (3.29)

This way, we can see the mutual information as the reduce in uncertainty on Y know-
ing X. From Eq. 3.28 and Eq. 3.16, we see that for independent variables, we have
H (Y |X) = H (Y) so I (X:Y) = 0.

Interestingly, this definition can be extended to continuous random variables. We
can indeed define the conditional differential entropy

h (Y |X) = −

∫
DX

∫
DY

f(X,Y) (x,y) logb

(
fY|X (y|x)

)
dx, (3.30)

where f(X,Y) is joint probability density function of (X,Y), fY|X is joint probability
density function of Y conditioned on {X = x}. It is the continuous counterpart to the
discrete conditional entropy defined above. One can then define a corresponding mutual
information

I (X:Y) = h (Y) − h (Y |X) . (3.31)

Regarding the discussion on the differential entropy in Sec. 3.2.1, the problem that the
differential entropy is defined up to a constant vanishes, since the mutual information
is defined as a difference. In Fig. 3.6, we give a visual representation of the quantities
introduced. Remarkably, for continuous random variables with Gaussian distributions,
which we refer as Gaussian random variables in the remaining, the mutual information
can be expressed in a simple form. To show this, we use some intermediate results.
First, the differential entropy of a Gaussian random variable X with variance σ2

X reads
[51]

h (X) =
1
2

logb

[
(2πe)σ2

X

]
+ C, (3.32)

where C is a reference constant. Then, for a given pair of random variables (X,Y), we
define the following classical covariance matrix

ΣXY =

(
σ2

X Cov (X,Y)
Cov (X,Y) σ2

Y

)
, (3.33)

where σ2
Y is the variance of Y and Cov (X,Y) is the covariance of X and Y . The condi-
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(a) (b)

Figure 3.6: (a) Representation of different entropies for a pair of random variables (X,Y) and the
relation between them. The blue circle represents the entropy of X while the yellow
represents the entropy of Y . The overlap of the two circles represents I (X:Y) while
the remaining none overlapping parts of the circles are the conditional entropies.
(b) Representation of mutual information, denoted as I which is bounded from
above by the Holevo quantity, denoted as χ.

tional differential entropy in Eq. 3.28 becomes [51]

h (Y |X) =
1
2

logb

[
(2πe)σ2

Y |X

]
+ C, (3.34)

where C is the same as in Eq. 3.32 and σ2
Y |X is the variance of Y knowing X, defined as

σ2
Y |X =

det (ΣXY)
σ2

X
= σ2

Y −
Cov (X,Y)2

σ2
X

. (3.35)

From this results, one can express the mutual information as

I (X:Y) =
1
2

logb

[
σ2

Y

σ2
Y |X

]
=

1
2

logb

[
σ2

Y σ
2
X

σ2
Y σ

2
X − Cov (X,Y)2

]
. (3.36)

The last expression is particularly useful as it can be calculated directly from experi-
ments.

Accessible information and Holevo bound

During the quantum communication step, we consider that Alice communicates to
Bob encoded key elements. Each key element is encoded in a state randomly taken
from the ensemble of states Ek (see Sec. 3.1.1 and Eq. 3.1). The ensemble of states
communicated by Alice and received by Bob can be formulated as

EB =
{

pki , ρ̂B,ki

}
, (3.37)
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where pki is the probability that Bob receives the state ρ̂B,ki which encodes a key
element ki. The length of the ensemble EB is the number of states measured by Bob.
The amount of classical information on what Alice communicated that Bob gets from
his measurements on this ensemble EB is given by their mutual information I (A:B).
Here, A stands for the set of key elements of Alice and B for the set of key elements of
Bob. This quantity depends on the measurement performed by Bob. To address this
point, a useful quantity is the accessible information Iacc. For a given ensemble EB,
it represents the maximum value of the mutual information I (A:B) over all possible
measurements performed by Bob. It is defined as

Iacc (EB) = max
MB

I (A:B) . (3.38)

where MB corresponds to Bob’s measurements. This quantity gives the maximum
obtainable correlations between Alice and Bob. However, it turns out that it is very
challenging to calculate in practice due to a very large variety of implementable
measurements for Bob. Fortunately, there exist an upper bound for Iacc such as the
Holevo bound.

For a given ensemble EB =
{

pki , ρ̂B,ki

}
, the Holevo bound χ, also called the Holevo

quantity, is defined as

χ (EB) = S
(∑

pki ρ̂B,ki

)
−
∑

pkiS
(
ρ̂B,ki

)
, (3.39)

where S is the Von Neumann entropy defined in Eq. 3.18. Due to the concavity of the
Von Neumann entropy, it is always a positive quantity. Furthermore, it has the following
crucial property [65]

Iacc (EB) ≤ χ (EB) . (3.40)

Since I (A:B) ≤ Iacc (EB), the mutual information is bounded from above by the Holevo
quantity as visualized in Fig. 3.6. As we can see, the Holevo quantity does not depend
on the type of measurements but only on the states used for the communication.

Similarly, if we consider Eve, her ensemble of states obtained individually at the
output of her attack can be written as

EE =
{

pki , ρ̂E,ki

}
, (3.41)

where pki is the probability that Eve receives the state ρ̂E,ki at the output of her attack,
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which encodes a key element ki. We can write also that

Iacc (EE) ≤ χ (EE) . (3.42)

This allows us to bound the information obtained by Eve without having to consider
what measurements she would implement.

3.2.3 Security of QKD protocol

In this section, we look into the security of QKD protocols, focused on CV-QKD.
The security analysis for QKD protcols is a complex topic which is an active research
field nowadays. Furthermore, we recall that the notion of "unconditionally secure"
previously mentioned refers to no limitations being put on Eve’s devices.

To investigate the security, it is very useful to look at the number of secure bits
exchanged between Alice and Bob during the protocol. If N states are sent by Alice to
Bob, the communicating parties have at their disposal a list of n ≤ N key elements after
the sifting step. Once they finish the classical postprocessing step, they are left with a
fully secure key with the length l ≤ n. The word "secure" in this context refers to the
fact that Eve does not hold any information about the final key with high probability.
It is meaningful to define a quantity which we call in this work the secret key K′. It
quantifies the amount of secret bits per usage of the channel. This number refers to the
number of secure bits obtained at the end of the QKD protocol, so at the end of the
classical postprocessing in our case. As mentioned in Sec. 3.1.3, when N → ∞, we are
in the aymptotic case and we therefore speak of asymptotic secret key. If one consider
classical postprocessing with information reconciliation and privacy amplification, the
asymptotic secret key can be expressed as[51, 11]

K′ = β · I (A:B) − IE, (3.43)

where β is the efficiency of the information reconciliation, I (A:B) is the mutual infor-
mation between Alice and Bob at the quantum communication step and IE represents
the information Eve has at the end of the information reconciliation step.

The secret key is expressed in bits per use of quantum channel. From this, we can
define another quantity which we call the secret key rate R. It can be defined as

R = fr
(
1 − Dsifting

)
K′, (3.44)

where fr is called the repetition rate and is expressed in the number of states sent
(i.e., the number of channel usage) per second and

(
1 − Dsifting

)
∈ [0,1] represents the
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3.3 QKD protocol with squeezed states and simulations of secret key

fraction of bits which are not discarded during the sifting step. Therefore, the secret
key rate has the unit of bits per second and quantities the speed of the QKD protocol.
These quantities (secret key and its rate) can be modified to encompass additional
effects, called finite size effects, when N is finite. This adds terms to K′ which are
decreasing functions of N. In other words, these effects vanish when N → ∞. However,
it is a complex task to describe these effects. Some analysis have been done [66, 67].
The available analysis suggests that these effects reduce significantly the secret key
rates. Moreover, a different description for security has been formulated when the
exchanged keys have a finite number of key elements. The purpose is to parametrize
the deviation of final key shared by Alice and Bob from a so-called perfect key, which
is a uniformly distributed bit string on which Eve has no information [68]. However
this analysis is again quite involved and complex. Details for different protocols can be
found in Ref.[14]. Analysis in the asymptotic case is still useful as it allows to study
the behaviour of the protocol against losses and noise. Furthermore, as emphasized in
3.1.3, one can consider that in realistic QKD protocols, N will be large enough so that
we can be in the asymptotic case. For these reasons, we limit our security analysis to
the asymptotic case. For CV-QKD with collective attacks, the secret key is bounded
from below by [69]

K′ ≥ K = βI (A:B) − χE, (3.45)

where χE is the Holevo quantity of Eve which represents an upper bound of her
information content on the transmitted key. It depends on the information reconciliation
step, whether direct reconciliation or reverse reconciliation is considered. Additionally,
using the optimality of Gaussian states, we can further find an upper bound χE by
assuming that all the states used for the protocol are Gaussian states. With these
elements, a CV-QKD protocol is deemed secure against collective attacks if, and only
if,

K ≥ 0. (3.46)

If K ≤ 0 then the protocol is insecure and secure communication between Alice and
Bob is impossible.

3.3 QKD protocol with squeezed states and

simulations of secret key

Here, we focus now on a specific QKD protocol implementation. We investigate
the secret key of such a protocol by simulating the direct reconciliation and reverse
reconciliation cases. The effects of the squeezing level as well as the transmissivity τ
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Figure 3.7: Schematic of our QKD protocol. Alice starts by generating two random numbers:
a continuous number ki from a Gaussian distribution and a number c from a binary
distribution. The first one corresponds to Alice’s key element and the second one
corresponds to a choice of basis. If c = 0, Alice squeezes the q quadrature and
displaces the squeezed state along the q quadrature. The displacement amplitude is
given by ki. If c = 1, Alice squeezes the p quadrature and displaces the squeezed
state along the p quadrature. The displacement amplitude is given again by ki. Then,
the generated displaced squeezed state is sent through the quantum channel N ,
which is assumed to be under control of Eve. There, Eve implements her attack.
At the output of the channel, Bob receives a state which he measures in order to
obtain a number k

′

i . This number is an estimation of ki. The whole procedure is
then repeated N times.

and noise η on the secret key are studied for this protocol.

3.3.1 QKD with displaced squeezed microwave states

In this work, we investigate a CV-QKD protocol proposed by Cerf et al. in Ref.[19]
for the optical regime. We translate this protocol to the microwave range and focus on
the communication part. It is based on displaced squeezed states and can be viewed
as the continuous-variable extension of the BB84 protocol. An ideal extension would
require states infinitely squeezed states which are not physical. In this thesis, we
consider squeezed states with a finite squeezing level S . These squeezed states are
produced experimentally by using JPAs as explained in Sec. 2.2.3. Since these JPAs are
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3.3 QKD protocol with squeezed states and simulations of secret key

noisy, we adapt the protocol proposed by Cerf et al. by encompassing the noise nJPA of
the JPAs. The quantum communication part consists in the following steps (also see
Fig. 3.7):

1. Alice decides on a squeezing level S = (1 + 2nJPA) e−2r/4.

2. Alice generates a random number ki taken from a Gaussian distribution of a
variable A with a zero mean and variance σ2

A = (1 + 2nJPA) sinh (2r) /2. She also
generates a random bit c which can be 0 or 1 with the same probability.

3. If c = 0, Alice produces a displaced squeezed state (q quadrature squeezed) of
squeezing level S as fixed in step 1 and mean r̄ = (ki,0). If c = 1, she instead
produces a displaced squeezed state (p quadrature squeezed) of mean r̄ = (0,ki)
with the same squeezing level S .

4. Alice sends the prepared state to Bob through a quantum channel controlled by
Eve. Bob upon receiving the state randomly measures either the q or p quadrature
with the same probability.

5. They repeat step 2 to 4 N times. The communicated key is then K = {k1, . . . , kN}.

6. At the end of the communication, Alice tells to Bob through the authenticated
classical channel which basis she chose to encode each key element. Eve is
assumed to listen to this communication. Bob then discards the elements where
he measured in the wrong basis. This ends the sifting step.

With the formalism introduced in Sec. 3.1.1, the previous quantum communication
procedure makes Alice choose with same probability between two ensembles of states
E1 and E2 corresponding to squeezed states (q quadrature squeezed) displaced along
the q quadrature and to squeezed states (p quadrature squeezed) displaced along the p
quadrature, respectively. We use the results of Sec. 2.1.1 and Eq. 3.2 for E1 to compute
the average state ρ̂avg,1. It is another Gaussian state with mean r̄avg,1 and covariance
matrix Vavg,1 given by

r̄avg,1 = 0 and Vavg,1 =
1
4

(
(1 + 2nJPA) e−2r + 4σ2

A 0
0 (1 + 2nJPA) e2r

)
. (3.47)

For E2, we similarly get an average Gaussian state ρ̂avg,2 whose mean r̄avg,2 and covari-
ance matrix Vavg,2 are given by

r̄avg,2 = 0 and Vavg,2 =
1
4

(
(1 + 2nJPA) e2r 0

0 (1 + 2nJPA) e−2r + 4σ2
A

)
. (3.48)
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The indistinguishable condition from Eq. 3.2 requires that ρ̂avg,1 = ρ̂avg,2 which gives
the final condition

1
4

(1 + 2nJPA) e−2r + σ2
A =

1
4

(1 + 2nJPA) e2r. (3.49)

This explains the choice made for the squeezing level. Thus, the ensemble of states
sent by Alice on average looks like a thermal state with a photon number nth such that
(1 + 2nth) = (1 + 2nJPA) e2r. After the quantum communication part, Alice and Bob
proceeds to the classical postprocessing with information reconciliation and privacy
amplification. Nonetheless, it is important to note that usual algorithms require discrete
data as inputs. In contrast, the measured key elements by Bob and the generated key
elements by Alice are drawn from continuous variables and needs for this reason to be
discretized. A possible procedure is proposed in Ref.[70].

3.3.2 Simulation of secret key in direct reconciliation case

We are now interested in the secret key of the protocol. We investigate the direct
reconciliation case where Alice is used as a reference. The reverse reconciliation case is
studied in Sec. 3.3.3. From Eq. 3.45, we have to investigate two quantities which are the
mutual information between Alice and Bob I (A:B) and Eve’s Holevo quantity χE,DR.
We recall that we consider Gaussian collective attacks for Eve which are practically
implemented with an entangling cloner attack.

Full model

The calculations for this section are based on Ref. [27, 71, 13]. For each key element
ki, Alice produces a displaced squeezed state either in the q or p quadrature as explained
in the step 2 and 3 of Sec. 3.3.1. For Eve’s attack, we consider the Gaussian collective
attack that we implement as an entangling cloner attack following the description
made in Sec. 3.1.3. For the entangling cloner attack, Eve starts with a TMSV state of
variance cosh (2r) = (1 + 2nEve). She couples one mode to the state sent by Alice with
a beamsplitter of transmissivity τ where one output is sent to Bob and the other is kept
by her. After the beamsplitter transformation, Bob receives a Gaussian state with mean
r̄ki

B and covariance matrix Vki
B. Using Eq. 3.11 and Eq. 3.13, we can show that if c = 0

(q quadrature squeezed)
r̄ki

B = (ki,0) ,

Vki
B =

(
Vki

B,q1
0

0 Vki
B,p1

)
,

(3.50)
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where Vki
B,q1

= τ (1 + 2nJPA) e−2r/4 + η + (1 − τ) /4 and Vki
B,p1

= τ (1 + 2nJPA) e2r/4 + η +

(1 − τ) /4. If c = 1 (p quadrature squeezed)

r̄ki
B = (0,ki) ,

Vki
B =

(
Vki

B,q1
0

0 Vki
B,p1

)
,

(3.51)

where Vki
B,q1

= τ (1 + 2nJPA) e2r/4 + η + (1 − τ) /4 and Vki
B,p1

= τ (1 + 2nJPA) e−2r/4 +

η + (1 − τ) /4. For Eve, we can show that her two-modes Gaussian state ρ̂ki
E has the

following covariance matrix if c = 0

Vki
E =


Vki

E,q1
0 1

4

√
τ∆η 0

0 Vki
E,p1

0 −1
4

√
τ∆η

1
4

√
τ∆η 0 η 0
0 −1

4

√
τ∆η 0 η

 , (3.52)

where Vki
E,q1

= (1 − τ) (1 + 2nJPA) e−2r/4 + η + τ/4, Vki
E,p1

= (1 − τ) (1 + 2nJPA) e2r/4 +

η + τ/4 and ∆η =
√

(4η)2
− 1. If c = 1, we get the same expression but with Vki

E,q1
and

Vki
E,p1

swapped. The next step is to compute the average state of Eve. Since Alice’s key
elements are obtained from a continuous variable, we have to adapt the definition from
Eq. 3.2 to encompass probability density functions. In our case, the average state reads

ρ̂avg,E =
∑
c=0,1

1
2

∫ ∞
−∞

fA (ki) ρ̂
ki
E dki. (3.53)

where the summation represents the choice for c, 1/2 corresponds to the probability
of getting c = 0 or 1, and fA is the Gaussian probability density function of Alice’s
random variable. With the notation introduced, we have

fA (x) =
1√

2πσ2
A

exp
(
−

x2

2σ2
A

)
. (3.54)

Similarly as for Eq. 3.47 and Eq. 3.48, by using Sec. 2.1.1, we can show that the
covariance matrix of Eve’s average state is given by

Vavg,E =


Vavg,E,q1 0 1

4

√
τ∆η 0

0 Vavg,E,p1 0 −1
4

√
τ∆η

1
4

√
τ∆η 0 η 0
0 −1

4

√
τ∆η 0 η

 . (3.55)
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where Vavg,E,q1 = Vavg,E,p1 = (1 − τ) (1 + 2nJPA) e2r/4 + η + τ/4 corresponds to Eve’s
one-mode at the output of the beamsplitter and ∆η =

√
(4η)2

− 1.

Mutual information and Holevo quantity

We use the previous expressions to compute the mutual information between Alice
and Bob and Eve’s Holevo quantity. Following the quantum communication step, we
assume that Bob performs a projective measurement, either |q〉 〈q| or |p〉 〈p|. Different
measurement bases have the same probability p = 1/2 to be chosen. We can further
consider that Bob measures only in the basis of squeezed quadratures, since measure-
ments in the basis of antisqueezed quadratures are discarded during the sifting step.
Using Eq. 3.50 as well as 3.51, we can describe Bob’s measurement by a Gaussian
classical conditional random variable B|A. It is conditioned on Alice’s key element ki.
Furthermore, its mean is given by

√
τ ki and its variance by

σ2
B|A =

1
4
τ (1 + 2nJPA) e−2r + η +

1
4

(1 − τ) . (3.56)

Then, Bob’s overall measurement probability density function fB is given by

fB (y) =

∫ ∞
−∞

fB|A (y|x) fA (x) dx, (3.57)

where fB|A is the probability density function of the random conditional variable
B|A introduced above. This gives that Bob’s overall measurement is described by a
conditioned Gaussian classical random variable B of mean 0 and variance

σ2
B =

1
4
τ (1 + 2nJPA) e−2r + τσ2

A +
1
4

(1 − τ) + η

=
1
4
τ (1 + 2nJPA) e2r +

1
4

(1 − τ) + η.
(3.58)

where we use Eq. 3.49. Using the first equation in Eq. 3.36, we can calculate that the
mutual information between Alice and Bob expressed in bits is given by

I (A:B) =
1
2

log2

(
τ (1 + 2nJPA) e2r + 4η + (1 − τ)
τ (1 + 2nJPA) e−2r + 4η + (1 − τ)

)
. (3.59)

One can verify that this expression coincides with the second equation in Eq. 3.36. Here,
we derive another very useful result for this mutual information. If we use Eq. 3.58 in
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combination with Eq. 3.59, we can write that

I (A:B) =
1
2

log2

(
τ (1 + 2nJPA) e2r + 4η + (1 − τ)
τ (1 + 2nJPA) e−2r + 4η + (1 − τ)

)
=

1
2

log2

(
τ (1 + 2nJPA) e−2r + 4τσ2

A + (1 − τ) + 4η
τ (1 + 2nJPA) e−2r + 4η + (1 − τ)

)
=

1
2

log2

(
1 +

4τσ2
A

τ (1 + 2nJPA) e−2r + 4η + (1 − τ)

)
=

1
2

log2 (1 + SNR) .

(3.60)

where we defined the so-called signal-to-noise ratio (SNR) as

SNR =
τσ2

A
1
4τ (1 + 2nJPA) e−2r + η + 1

4 (1 − τ)
. (3.61)

This is a very practical result as it means that we can compute an experimental SNR
from the mutual information when this QKD protocol is implemented experimentally.
This is a crucial point in Chapter. 5.

The derivation of χE,DR is more straightforward. From the definition of the Holevo
quantity from Eq. 3.39 adapted to encompass continuous variables and by using
Eq. 3.53, we can write

χE,DR = S
(
ρ̂avg,E

)
−
∑
c=0,1

1
2

∫ ∞
−∞

fA (ki) S
(
ρ̂ki

E

)
dki. (3.62)

where S is the von Neumann entropy which is computed using Eq. 3.24. To this extent,
we use the covariance matrix of Eve’s states formulated in Eq. 3.52 and Eq. 3.55.

Simulation secret key

We numerically calculate the secret key in the optimal reconciliation case where
β = 1 from the definition in Eq. 3.45. We investigate effects of the losses and noise
individually. As seen in Fig. 3.8, the secret key versus is plotted against the transmissiv-
ity τ (corresponding to losses 1 − τ) and squeezing level of the JPA. Here, we set the
noise η = 0. For the noise photon of the JPA, we assigned a typical value of nJPA = 0.1.
We observe that the secret key increases with the squeezing level. On the contrary, it
decreases with the losses. Interestingly, we see that no matter the squeezing level, the
secret key becomes negative when τ ≤ 0.5. This limit has an important implication
physically since the wires and cables have increased losses with their length. Therefore,
it ultimately limits the distance over which the communication is possible. Furthermore,
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Figure 3.8: (a) Secret key in DR case versus squeezing level S and transmissivity τ with
nJPA = 0.1 and η = 0. The secret key is negative in the purple area and positive
otherwise. (b) Secret key in DR case versus squeezing level S and noise η with
nJPA = 0.1 and τ → 1. The secret key is negative in the purple area and positive
otherwise.The secret key is negative in the purple area and positive otherwise.

in the current direct reconciliation, Eve and Bob have a similar weight in the communi-
cation. If Eve takes more than 50% of the signal coming from Alice, she effectively
replaces Bob and the communication becomes insecure.

In Fig. 3.8, the secret key is also plotted versus the noise η and squeezing level of
the JPA. We set τ close to 1 and keep the same noise photon for the JPA. We observe
similarly that the secret key increases with the squeezing level and decreases with
the noise. We further note that a threshold for the noise appears as well at roughly
ηthresh = 0.184. This implies that no matter the squeezing level, the communication
becomes insecure above a certain noise value. Therefore, one can view this threshold
as the maximal tolerable noise over the quantum channel such that the communication
can still be secure. This also means that no matter Eve’s actions, she is not allowed
to introduce more noise than ηthresh. Otherwise, as we mentioned, the communication
is inevitably insecure and is simply aborted by Alice and Bob, preventing Eve from
gaining any information. This implies that Alice and Bob can detect this excess noise
η. In optics QKD, this corresponds to the step called parameter estimation of the
quantum channel [13, 11]. In our microwave implementation, we obtain the noise η
from calibration measurements (see Sec. 5.1.1). Additionally, this noise threshold limits
the noise coming from Eve’s devices or the attack she implements. This physically
limits for instance the universal Gaussian cloner attack [62] as this attacks produces
noisy clones.
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3.3.3 Simulation of secret key in reverse reconciliation case

In this section, we consider the secret key of the protocol in the reverse reconciliation
case. We keep the same considerations as for the direct reconciliation case, only that
now Bob is the reference. We investigate again the mutual information now between
Bob and Alice, I (B:A), and Eve’s new Holevo quantity χE,RR. Fortunately, since the
mutual information is symmetric, I (B:A) is the same as I (A:B). Our analysis can be
restrained to the Holevo quantity.

Full Model

The analysis done in this part is notably based on Ref.[51, 71, 13]. The main dif-
ference with the direct reconciliation case is that Eve’s Holevo quantity χE,RR is now
conditioned on Bob’s measurement. This means that we need to consider the effect
of Bob’s measurement and what individual state Eve possesses after it. Fortunately,
the average state of Eve stays the same as in the direct reconciliation case. Its covari-
ance matrix is given by Eq. 3.55. This reduces the analysis to Eve’s individual states.
We denote as k′i a result of Bob’s individual measurement. First, we note that Eve’s
individual state conditioned on Bob’s measurement result k′i is still a Gaussian state.
Second, adopting a similar method as in to [71], its covariance matrix Vk′i

E is calculated
individually as

Vk′i
E = Vavg,E −

1
σ2

B
DΠDT , (3.63)

where
σ2

B =
1
4
τ (1 + 2nJPA) e2r +

1
4

(1 − τ) + η,

Π =

(
1 0
0 0

)
if Bob measured the q quadrature,

Π =

(
0 0
0 1

)
if Bob measured the p quadrature,

(3.64)

Here, D ∈ R4×2 is a matrix representing the quantum correlations Eve’s average state
and Bob’s average state. The whole derivation is rather lengthy. Here, we merely
gives the main elements useful to compute such matrix D. First, we note that Eve’s
average state has already been calculated in Sec. 3.3.2. We recall that it corresponds to
a Gaussian state whose covariance matrix is given by Eq. 3.55. For later purpose, we
simply re-write the covariance matrix from Eq. 3.55 as

Vavg,E =

(
Eavg,1 CE

CE Eavg,2

)
. (3.65)
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where Eavg,1 is the covariance matrix of the average first mode of Eve’s average state,
Eavg,2 is the covariance matrix of the average first mode of Eve’s average state, and CE

describes the correlation between these two modes. To calculate Bob’s average state,
we use the same approach as for the calculation of Eve’s average state. Therefore, we
obtain that Bob’s average state reads

ρ̂avg,B =
∑
c=0,1

1
2

∫ ∞
−∞

fA (ki) ρ̂
ki
Bdki, (3.66)

where the summation represents the choice for c, 1/2 corresponds to the probability of
getting c = 0 or 1, and fA is again given by Eq. 3.54. Furthermore, ρ̂ki

B corresponds to
the Gaussian state given by Eq. 3.50 if the q quadrature is squeezed (c = 0) and to the
Gaussian state given by Eq. 3.51 if the p quadrature is squeezed (c = 1). Using Eq. 3.66
and results from Sec. 2.1.1, one can then show that Bob’s average state is a Gaussian
state whose covariance matrix is given by

Vavg,B =

(
σ2

B 0
0 σ2

B

)
, (3.67)

where σ2
B = 1

4τ (1 + 2nJPA) e2r + 1
4 (1 − τ)+η. From these results, we can finally calculate

that D is given by

D =
1
4


D1 0
0 D2

D3 0
0 −D4

 , (3.68)

where

D1 =
1
2
〈
q̂avg,Bq̂E,1 + q̂E,1q̂avg,B

〉
−
〈
q̂avg,B

〉 〈
q̂E,1
〉

,

D2 =
1
2
〈

p̂avg,B p̂E,1 + p̂E,1 p̂avg,B
〉
−
〈

p̂avg,B
〉 〈

p̂E,1
〉

,

D3 =
1
2
〈
q̂avg,Bq̂E,2 + q̂E,2q̂avg,B

〉
−
〈
q̂avg,B

〉 〈
q̂E,2
〉

,

D4 =
1
2
〈

p̂avg,Bq̂E,2 + p̂E,2 p̂avg,B
〉
−
〈

p̂avg,B
〉 〈

p̂E,2
〉

,

.

(3.69)

Let us clarify the notation used. Here, q̂avg,B represents the q quadrature of Bob’s
average state and p̂avg,B represents the p quadrature of Bob’s average state. Similarly,
we use the same notations for Eve’s average state. Only we have to consider her two
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average modes individually. For this purpose, we denote with a subscript ’1’ the average
first mode whose covariance matrix is given by Eavg,1. The two quadratures of this
average mode are then denoted as q̂E,1 and p̂E,1. Likewise, we denote with a subscript
’2’, the second average mode whose covariance matrix is given by Eavg,2. The two
quadratures of this mode are then denoted as q̂E,2 and p̂E,2. After calculations, one can
derive that

D1 = D2 = −
√
τ
√

1 − τ
[

(1 + 2nJPA) e2r −

(
4η

1 − τ
+ 1
)]

,

D3 = D4 =
√

1 − τ

√(
4η

1 − τ
+ 1
)2

− 1.

(3.70)

To physically interpret those equations, a possible point of view to adopt is that at the
output of the beamsplitter implemented by Eve, the two modes held by Eve and the
single mode held by Bob form together a three modes system. In such case, a local
measurement on one mode will project the system into a new state depending on the
result of the measurement. Furthermore, the new state of the system depends on the
correlation between the single mode onto which the measurement is performed and the
remaining modes. Therefore, Bob’s measurement on his single mode will affect the
modes held by Eve since they are correlated after the beamsplitter implemented by Eve.
In case of Gaussian states, the covariance matrix of the new state after measurement is
then described by the set of equations given above.

Mutual information and Holevo quantity

As previously explained, the mutual information is a symmetric function and there-
fore, the expression in Eq. 3.59 is still valid in this case. For the Holevo quantity, we
use, similarly to the direct reconciliation case, the expression given in Eq. 3.62. The
only difference is that we need to use the new state for Eve which now depends on
Bob’s measurement. To this extent, the von Neumann entropy S

(
ρ̂ki

E

)
in Eq. 3.62 is

now replaced by S
(
ρ̂

k′i
E

)
. This last expression is calculated using the covariance matrix

in equation Eq. 3.63 which corresponds to Eve’s new individual state.

Simulation secret key

We numerically calculate the secret key again in the optimal reconciliation case
β = 1. We investigate effects of losses and noise individually. We also keep the same
value for the noise photon of the JPA to nJPA = 0.1. In Fig. 3.9, the secret key is plotted
against the transmissivity τ of Eve’s beamsplitter (corresponding to losses 1 − τ) and
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Figure 3.9: (a) Secret key in RR case versus squeezing level S and transmissivity τ with
nJPA = 0.1 and η = 0. The secret key is negative in the purple area and positive
otherwise. (b) Secret key in RR case versus squeezing level S and noise η with
nJPA = 0.1 and τ → 1. The secret key is negative in the purple area and positive
otherwise.

for no noise η = 0. We observe again that the secret key increases as a function of the
squeezing level and decreases as a function of losses. However, it is very interesting to
note that no threshold appears in this case. In other words, a lossy but noiseless channel
will always produce a positive secret key, no matter what the losses are. In particular,
this case is not limited by the distance alone, if we consider that the increase in distance
only increases the losses. In realistic implementations, nonzero noise is present as
well which limits the protocol to a finite distance. However, the communication is
much more resilient to losses compared to the direct reconciliation case which limits
the communication to 3 dB losses. This precise result of beating the 3 dB losses has
been underlined in literature [53, 72, 71] and makes reverse reconciliation schemes
particularly appealing.

On the other hand, Fig. 3.9 shows the effect of the noise η on the secret key with no
losses τ = 1. Similarly to the direct reconciliation case, the secret key increases with
the squeezing level and decreases with the noise. Additionally, a secret key threshold
also appears for the noise. It means that above a certain value of noise, the secret key is
negative no matter the squeezing level. Numerically, we get a threshold noise value
ηthresh of approximately ηthresh = 0.181. Similarly to the DR case (see Sec. 3.3.2), this
noise threshold can be physically viewed as the maximal tolerable noise. In other words,
no matter what Eve does, she is not allowed to add more than ηthresh noise photon. This
includes her devices and whatever attack she chooses to implement. However, we can
also remark that the secret key is less resilient to the noise compared to the direct
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reconciliation case. More precisely, for a given and same squeezing level, the secret
key can stay positive for higher noise values in the direct reconciliation case compared
to the reverse reconciliation case. This means that a compromise need to be chosen
between losses and noise if one wants to physically implement such QKD protocol.
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Chapter 4

Experimental techniques

In this chapter, we are interested in experimental techniques used throughout this
work to generate and detect weak quantum microwave states. More precisely, we
focus on generation of relevant quantum states for the QKD protocol considered
in this thesis.We start by describing a cryogenic experimental setup. The we focus
on a microwave tomography setup. In the last sections, we present how important
experimental parameters are chosen and controlled. In addition, we explain some
important calibration measurements. These measurements are required to properly
characterize the quantum states in the QKD protocol.

4.1 Cryogenic setup

In this section, we focus on an experimental implementation of the QKD protocol
studied in this work. Very low temperatures are necessary to produce the desired
quantum microwave states. To this extent, we present relevant experimental devices.
In particular, a dilution cryostat is required to achieve low temperatures at which our
quantum states are generated. Additionally, we describe our input and output lines.
They are used to control and measure the quantum states we use throughout this work.

4.1.1 Cryostat

The quantum states used in this work require low temperatures to be generated. To
this extent, we use a homemade cryostat which was designed and constructed at the
Walther-Meißner-Institut. It is a 3He/4He wet dilution refrigerator which can reach
temperatures around 40 mK. At these temperatures, the thermal population in the
frequency range 4 to 6 GHz becomes roughly 10−5 to roughly 10−3. This number
depends on the used frequency and reached temperature. The cryostat is enclosed in
a metallic dewar which is filled with liquid N2 (77K) and liquid He (4.2K), isolated
by vacuum layers. The cryostat contains five temperature stages to perform a gradual
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cooling. The first stage is the 4K stage (temperature around 4.2 K) which is achieved by
direct cooling with liquid He. The next temperature stage is the 1K stage (temperature
around 1.3 K) enabled by evaporation cooling of 4He in the 1K pot. The latter is
connected to a Helium reservoir via a capillar. The last three temperature stages are
the still (temperature around 700 mK), heat exchanger, and mixing chamber combined
with the sample stage. The temperature reached at these two last stages is about 40
mK. To obtain such temperature, we use a 3He/4He mixture, composed of a 3He rich
phase (nearly 100 %) and a 3He poor phase (6.4 % 3He) that are in equilibrium and
separated by a phase boundary. By removing 3He from the diluted phase, 3He from
the concentrated phase crosses the phase boundary, going from the the concentrated
phase to the diluted one. As this process is endothermic, heat is removed from the
mixing chamber environment. For a detailed description of each temperature stages of
the cryostat, we refer the reader to Ref.[73].

4.1.2 Experimental cryogenic implementation

In this section, we focus on the experimental microwave implementation of the
QKD protocol introduced in Sec.3.3.1. Here, we implement a simplified version of this
protocol. We do not implement straightforwardly the entangling cloner attack for Eve
but rather emulate the effects of such attack. Therefore, we consider that Alice sends
displaced squeezed states and measure the received states by Bob. However, we do
not generate physically a TMSV state for Eve. A simplified experimental schematic is
presented in Fig. 4.1.

We want to communicate a randomly generated key from Alice to Bob. The key is
made of key elements that are randomly drawn from a fixed Gaussian distribution. This
is done with a Matlab random number generator. For each key element, we need to
produce a displaced squeezed state. As indicated in step 1 in Fig. 4.1, we use a flux-
driven JPA (see Sec.2.2) for generation of squeezed states as explained in Sec.2.2.3.
At the sample stage, input states in the form of weak thermal states are squeezed by
our JPA, which produces the output states. These incoming input states are separated
from the output by a circulator. The resonant frequency of the JPA is controlled by
a magnetic flux going through the dc-SQUID loop of the JPA. This magnetic flux
is defined by a dc current, generated by an external current source, going through a
magnetic coil mounted on top of the JPA. The squeezing level S and squeezing angle γ
of the produced squeezed states are controlled by an external pump tone. Furthermore,
we recall that our JPA also adds noise nJPA to the outgoing squeezed states. Then, the
squeezed states are sent through the first directional coupler implementing displacement
as shown in Fig. 4.1. The directional coupler acts as a highly asymmetric beamsplitter.
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Figure 4.1: Schematic of the experimental cryogenic setup. The protocol is split into four steps
indicated in the figure. In step 1, a JPA applies the squeeze operation Ŝ to an input
vacuum resulting in a squeezed vacuum state, parametrized by the squeezing level
S , the squeezing angle γ, and added noise nJPA. These parameters are controlled
by an external pump. In step 2, the displacement operator D̂ (α) is applied via the
directional coupler 1 to the squeezed state resulting in a displaced squeezed state.
The applied displacement is parametrized by a complex displacement amplitude α
defined by the coherent tone. In step 3,external quasi-thermal noise η is coupled to
the displaced squeezed state. This simulates the effects of Eve’s attack. In step 4,
Bob receives a noisy displaced squeezed state which is measured using a FPGA
setup. Wigner functions of the generated states at each step are in colored insets.
The reproduction of the JPA sketch from Ref.[43] is authorized by the author.

It applies the displacement operator by using a strong coherent signal incident at the
coupled port [20]. The amplitude and phase of this coherent signal controls the complex
displacement amplitude.

Like mentioned above, we only want to emulate Eve’s attack effects which means
that we want to add losses and noise to the states. While it is technically more difficult
to vary losses, noise can be easily controlled in our experimental environment. Indeed,
we can use Eq. 2.25 and replace the coupled strong coherent state by a thermal state
with a mean photon number nth. Then in the limit of τ→ 1, we get that

âout =
√
τâin +

√
1 − τV̂th, (4.1)

where âin corresponds to input states, âout describes output states, and V̂th describes
thermal states. Depending on nth, this effectively couples noise

η =
1
4

(1 − τ) (1 + 2nth) (4.2)

to input states. This noise refers to the output of the directional coupler. Therefore, we
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Figure 4.2: (a) Photograph of the experimental cryogenic setup presented in Sec. 4.1.2. (b)
Photograph of the sample box of our JPA on which lies the magnetic coil. (c)
Close-up of the JPA sample holder. Our JPA sits in the middle. (d) Photograph of
our JPA chip.

use the second directional coupler directly connected to the first one to controllably
inject noise into the communication channel. The thermal states V̂th are produced by an
arbitrary function generator (AFG) in the form of a quasi-Gaussian white noise. The
signal corresponding to the output of this second directional coupler is then detected
and measured. This step represents Bob in our protocol.

4.1.3 Sample stage

The overall experimental setup is presented in Fig. 4.3. In this section, we focus
on the sample stage (T = 40 mK) shown at the bottom of the figure. For generation
of squeezed states, we use a JPA chip fabricated at NEC Smart Energy Research
Laboratories Japan and RIKEN, Japan. The chip sits in a sample box on top of which
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lies a magnetic coil used to tune the flux going through the dc-SQUID loop of the JPA.
In Fig. 4.2 (b), we show a photograph of our sample box with the JPA on top. Fig. 4.2
(c) and Fig. 4.2 (d) show a close-up of the JPA chip and the JPA sample box. The JPA
is connected to the first directional coupler from Sirius Microwave (SN E16944) which
is itself directly connected to the second directional coupler from Miteq (SN 15876). A
photograph of the cryogenic setup is shown in Fig. 4.2 (a). Each directional coupler has
an output of the coupling line port terminated by a 50 Ω load. An input line (input 2 in
Fig. 4.3) is used for calibration purposes of the JPA as discussed in Sec.4.2.4. It contains
a 30 dB INMET input attenuator connected to the signal port (labelled as S) of the JPA.
We use a circulator (LNF-CIC4-8A from Low Noise Factory) to separate weak thermal
states going inside the JPA from the outgoing squeezed states. Additionally, all the
connections to this circulator are implemented by superconducting cables (SC-219/50-
NbTi-NbTi) manufactured by Coax Co., Ltd with an outer conductor diameter of 2.19
mm. These cables have an inner conductor and outer conductor made of niobium
titanium while the dielectric layer is made of polytetrafluoroethylene (PTFE). Such
cables have low microwave losses at cryogenic temperatures due to the superconducting
properties of NbTi alloy with the critical temperature T = 9.8 K. In order to ensure
thermal connection of the cryogenic microwave components, we connect the directional
couplers to the cryostat with a solid copper frame. The 50 Ω loads, the 30 dB attenuator,
the superconducting cables, and the JPA sample box are additionally thermalized by
using silver wires between these components and the mixing chamber. These wires are
bent into suitable shapes and annealed at 900°C to reduce the defects in their crystal
structure and improve their heat conductivity.

4.1.4 Input and output lines

Input lines

As shown in Fig. 4.3, we have four input lines in the setup. Up to the 4K stage, we
use astrocobra-flex 31086S cables (from HUBER+SUHNER) for their flexibility and
low losses. More precisely, the used cables present losses of 1.59 dB/m and 2.47 dB/m
at 5 GHz and 10 GHz at room temperature, respectively. In our setup, this amounts
to losses of 2.3 dB for input 1 and 1.4 dB for the other inputs for 90 cm long cables.
Then, for the different temperature stages, we use thin coaxial cables manufactured by
Coax Co., Ltd with outer conductor diameter of 1.19 mm. These cables have PTFE as a
dielectric layer. The inner and outer conductors are made of, respectively, either silver-
plated copper and oxygen-free copper (SC-119/50-SC) or niobium and cupronickel
(SC-119/50-Nb-CN). The latter are partially superconducting due to the niobium used
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Figure 4.3: Full experimental setup for the microwave QKD protocol. All devices are refer-
enced to a rubidium frequency standard (not shown). A magnetic coil sets on top of
the JPA. It is connected to a dc line (not shown). The pulsing scheme is generated
by the AFG (shown in the center). A vector network analyzer (VNA) is used for
calibration purposes. During the quantum state reconstruction of microwave sig-
nals, the latter are first downconverted using a local oscillator to the IF frequency
fIF = 11 MHz and then digitized by the FPGA card.
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as the inner conductor. The copper/copper cables are used over short lengths so that the
losses are small (less than 1 dB). Furthermore, from the 100 mK stage to the mixing
chamber stage, we use minibend flexible cables (from HUBER+SUHNER). They have
low losses of about 1 dB at 5 GHz. The only exception is the input to the heatable
attenuator which is made with a fully stainless steel coaxial cable with PTFE as a
dielectric layer from Coax Co., Ltd. At the sample stage, we use the Nb-Ti cables
mentioned in Sec.4.1.3. We need to attenuate thermal radiation coming from the room
temperature stages that destroy quantum effects. For this purpose, we use attenuators
at the different temperature stages. If done correctly, this allows to suppress thermal
photon population to approximately 10−3 at frequencies around 5 GHz, as limited by
the temperature 40 mK of the mixing chamber. The choice of attenuation at each stage
depends notably on the cooling power available and the temperature of each stage [74].
We note that the pump line of the JPA has less attenuation compared to the other lines.
Here, we have sacrifice noise properties of our signals in order to reach high dynamic
range of pump signals required to reach high squeezing levels in our JPAs. Lastly, the
attenuators help to thermalize the inner conductors of the input cables.

Output lines

As shown in Fig. 4.3, the setup has only one output line. Since signals generated
at the output of the microwave QKD protocol consist of very few photons, we use
several amplifiers to amplify them. Up to the first amplifier stage, we want to minimize
the losses. For this reason, we use the superconducting Nb-Ti coaxial cables. Theses
cables are thermalized as well using silver wires which are annealed at 900°C. After
our second directional coupler, we use two circulators in series (LNF-CIC4-8A from
Low Noise Factory and CTH1368-K18-A from PAMTECH).

To this extent, one port of these circulators is terminated by a 50 Ω load which is
itself thermalized to the corresponding temperature stages. In this way, signals can
propagate from the low temperature stages to the upper ones while signals propagating
in the opposite direction are suppressed by 42 dB (isolation due to the both circulators).
After them, the first amplifier stage consists of a high-electron-mobility transistor
(HEMT) amplifier (LNF-LNC4 8A from Low Noise Factory). It works in a bandwidth
of 4 GHz (4-8 GHz). It has a specified amplification gain of 37 dB at our working
frequencies and noise temperature 2.5 K when operating at a temperature of 8 K. At
the 4K stage, the connections are assured by copper coaxial cables and astrocobra-flex
31086S cables similarly as for the input lines.
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Figure 4.4: Photograph of part of the room temperature setup used to acquire signals coming
from the cryostat. The photography corresponds to the right hand side of Fig. 4.3.

4.2 Data acquisition

In this section, we present the procedure used to perform tomography of microwave
quantum states. First, we present our room temperature setup with the devices used to
generate our quantum states as well as as devices used to detect them. To this end, we
use a field programmable gate array (FPGA) setup to acquire and process measured
data. Then, we present the reference state reconstruction method which is used in
this work to reconstruct quantum states from measurements. Lastly, we introduce the
notion of photon number conversion factor (PNCF) measurements. This measurement
is essential as it allows us to convert measured voltages into photon numbers which is
a key element for quantum states reconstruction.

4.2.1 Room temperature setup

As shown in Fig. 4.3, each of the four inputs lines of the setup are connected to
a specific device. The pump line (input 1) is connected to a signal generator (SMF
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100A from Rohde&Schwarz) that generates the pump signals for the JPA. Coherent
signals for displacement are generated by a vector microwave signal generator SGS
from Rohde&Schwarz (input 3). For the second directional coupler, we use an AFG
generating a quasi-Gaussian noise as mentioned previously in Sec.4.1.2. We use an
AFG fron Agilent Technologies (81160A). Such AFG can only generate noise in the
maximum bandwidth of 500 MHz. For this reason, we up-convert the noise signal
using a a harmonic mixer to the frequency of the squeezed signal f ' 5 GHz. The
exact frequency targeted during the up-conversion depends on the chosen frequency
for the squeezed states. Additionally, signals are filtered via a band pass filter. Finally,
the input line of the JPA is also connected to a vector network analyzer (VNA) for
calibration purposes.

The previously discussed devices allow us to generate the desired states (i.e.,displaced
noisy squeezed states) inside the cryostat. In order to detect the outgoing signals, we
use the setup presented in Fig. 4.3. A photograph is shown in Fig. 4.4. It consists of
several steps. First, we amplify microwave signals coming from the cryostat by using
the second amplifier (AFS5 from Miteq). This amplifier has a gain of 41.5 dB at our
working frequencies. It is followed by an isolator (ECI04-5 from EPX microwave)
and a bandpass filter (VBFZ-5500 from Mini-Circuits). This filter has a bandwidth
of 1.4 GHz centred at 5.5 Ghz. It filters out the incoming signals around the relevant
frequency fRF which lies between 4-6 GHz. The next step consists in downconverting
the signals to an intermediate frequency fIF in the megahertz regime. This is done
to match the sampling rate of the FPGA (see Sec.4.2.2) which we use to detect our
signals. To perform the downconvertion, a strong signal at the frequency fRF + fIF

from a local oscillator (LO) is mixed to the incoming signals via an image rejection
mixer (IRM4080B from Polyphase microwave). This mixer is necessary as otherwise
an undesired signal at frequency fRF + 2 fIF which would also be down-converted at
the frequency fIF. After the downconversion, the signal can be attenuated by a step
attenuator (ESA2-1-10/8-SFSF from EPX microwave) which is used to avoid com-
pression effects. After going through a bandpass filter centred around fIF, the signal
is again amplified with an amplifier of gain 58.7 dB (AU 1447 from Miteq). The step
attenuator is then used to regulate the amplitude of the signals measured at the FPGA
after amplification. Finally, signals go through a lowpass filter and a DC block before
being acquired by the FPGA. All the devices are referenced to a 10 MHz reference
signal coming from a rubidium frequency standard. To avoid undesired interference
with this 10 MHz reference, the IF frequency is fixed at fIF = 11 MHz.
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4.2.2 FPGA data acquisition and processing

To digitize input signals, we use the NI 5782 transceiver adapter module operating
at the sampling frequency fS = 250 MHz which has a 14-bit analog input resolution.
We use three channels on the front panel, one single-ended analog input channel (AI 0),
a trigger input channel (TRIG), and a single-ended external reference input channel
(CLK IN). This last channel is connected to an external reference clock, which is in our
case another device of the room temperature setup. This way, the FPGA is synchronized
with the other devices. The trigger input channel is used to trigger the measurement
and is controlled via an applied pulse repeated at a fixed frequency fTRIG.

IQ-Demodulation

As presented in Sec.2.1.1, our microwave propagating signals can be described by
their I and Q quadratures. In order to measure them, input signals after digitization
are mixed with a digital local oscillator operating at frequency fd. In doing so, a
down-converted input microwave signals A at frequency fIF is demodulated into two
components of frequency fd ± fIF. These components are then used to perform a
numerical integration over one period TIF = 1/ fIF which, after normalization, gives the
quadratures values. By setting fd = fIF, the quadratures are obtained as

I = 2 fIF

N∑
i=1

cos (2π fIFti) A (ti) ∆t,

Q = 2 fIF

N∑
i=1

sin (2π fIFti) A (ti) ∆t,

(4.3)

where A (ti) is the signal at the time ti, ∆t = 1/ fS is the discret time step, fS is the
sampling frequency, and N is the number of points in the integration. The latter is
defined as

N =

⌊
fS

fIF

⌋
. (4.4)

In our case, fIF = 11 MHz and fS = 250 MHz, so we get N = 22. For each trigger
signal, 1650 quadrature values are acquired which corresponds to a time trace with the
duration 145.2 µs. Each trace is repeated a fixed number of times Navg, which is also
fixed for each measurement. Additionally, in order to guarantee no phase shift between
the digital local oscillator and the digitized input signals over time, the intermediate
frequency fIF needs to be a multiple of the trigger frequency fTRIG. In our experiments,
fTRIG is set to 5 kHz. Afterwards, we implement a digital finite impulse response (FIR)
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Figure 4.5: Experimental pulsing scheme. The FPGA trigger is shown in blue. It has an
amplitude of 1.6 V. The pulse shown in orange is used to control the pump of the
JPA. It has an amplitude of 800 mV. The pulse shown in black is used to control the
SGS microwave source. It has an amplitude of 875 mV. Finally, the pulse shown in
green is used to control the AFG 81160A. It has an amplitude of 1.13 V. For clarity,
pulses are purposely depicted with a small offset of ∆V = 0.1 V and ∆t = 10 µs.
The trigger pulse has a width of ∆T1 = 8 ns. All the other pulses have the same
width of ∆T2 = 61.5 µs.

filter acting as a low pass filter with a single-sideband cutoff frequency fc of 200
kHz. Finally, the quadrature moments 〈In Qm〉 with n + m ≤ 4 and n,m ∈ N0 are then
calculated and averaged over the Navg times repeated measurements.

Timing

For the experiments and measurements, several pulses are needed in order to control
when the different devices are operating. First, the trigger input channel of the FPGA
is used to trigger the acquisition of input signals. A trigger pulse is generated by
another AFG from Tektronix. The trigger pulse needs to have an amplitude of at least
1.6 V with a time width TTRIG of a least 1/ fs, which corresponds for the setup used
to TTRIG ≥ 8 ns. Furthermore, for cryogenic experiments, pulse schemes are used
to trigger devices at specific timing. To this extent, we generate trigger pulses with
the same AFG in the form of square signals whose width and amplitude depend on
the experiments and devices used. In Fig. 4.5, we present experimentally used pulse
schemes. A representation of these pulses is also shown in Fig. 4.3.
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4.2.3 Reference state reconstruction

Several methods are available to reconstruct quantum microwave states. In optics,
homodyne and heterodyne direct detection methods are routinely used to detect and
measure quantum signals [75, 51]. Such methods are efficient in optics because mean
thermal photon numbers corresponding to room temperatures at optical frequencies
is extremely small [76]. This means that ambient thermal noise does not influence
optical quantum signals. In the microwave regime the situation is different. Due to the
lack single-photon detectors for the microwave range, a common detection method
is to use linear amplifiers to amplify the signals and, then, detect them at room tem-
peratures. In particular, phase-sensitive linear amplifiers can be used to amplify only
one quadrature of quantum states. The advantage is that such amplification can be
theoretically noiseless as discussed in Sec.2.2.3 at the cost of loosing information about
another (deamplified) quadrature. On the other hand, phase-insensitive linear amplifiers
can be used to amplify both quadratures of quantum states but, due to the Heisenberg
inequality, such amplification adds at least half a noise photon. Best among currently
available linear amplifiers add around 10 to 15 noise photons making our quantum
signals covered in noise. In this work, we use a method called the reference state
reconstruction to reconstruct our quantum states from these noisy signals measured at
room temperatures [77, 78].

In the reference state reconstruction method, a known signal is used as reference state.
In our experiments, such reference state corresponds to a weak thermal state located in
the cryostat at the mixing chamber stage. Considering the low temperatures of about
T = 40 mk reached experimentally and the working frequency regime (around 5 GHz),
these weak thermal states have a low photon number of about 0.01 photons which is
experimentally taken into account for more precise measurements. The purpose of
the method is to ultimately reconstruct the signal moments

〈
(â†)mân

〉
, with m + n ≤ 4

of our propagating quantum states. From Sec.2.1.1, signal moments up to the second
order are enough to reconstruct Gaussian states. The higher orders are used to control
that the measured states are Gaussian. To calculate these signal moments, we use the
complex envelope function ξ̂ defined as

ξ̂ =
Î + iQ̂
√
κ

, (4.5)

where we introduced κ, the so-called photon number conversion factor relating the volt-
age measurements of the quadratures to photon numbers (see Sec.4.2.4). Additionally,
Î and Q̂ correspond to measured quadratures as explain in Sec. 4.2.2. From Eq. 4.5, the
complex envelope function moments

〈
(ξ̂†)mξ̂n

〉
can be computed from the quadrature
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moments
〈
ÎmQ̂n

〉
. The latter are calculated from the measured quadratures Î and Q̂.

For our quantum states, the complex envelope function is written in the following form

ξ̂s =
√

G
(
â + V̂

)
, (4.6)

where â is the annihilation operator describing the quantum signal in the detection path,
G is the amplification gain of the detection path, and V̂ is the operator describing the
noise in the detection path. For the reference state, the complex envelope function reads

ξ̂ref =
√

G
(
v̂ + V̂

)
, (4.7)

where now v̂ describes the weak thermal state used as a reference. The first step is to use
Eq. 4.7 to calculate the noise moments

〈
(V̂†)mV̂n

〉
from the reference state moments〈

(v̂†)mv̂n
〉

and the complex envelope moments
〈
(ξ̂†ref)

mξ̂n
ref

〉
. Then, using Eq. 4.6, we can

similarly compute the signal moments
〈
(â†)mân

〉
from the complex envelope function〈

(ξ̂†s )mξ̂n
s

〉
and from the noise moments

〈
(V̂†)mV̂n

〉
, with m + n ≤ 4. Additionally, we

invite the reader to Ref.[44] for more details on the method.

4.2.4 PNCF calibration and temperature control

Photon number conversion factor

As explained in Sec.4.2.3, we need to calibrate the amplification chain to be able
to convert the voltages measured during the experiment into photon numbers. This is
done by using a photon source which emits a known photon number. To this extent, we
use a 30 dB attenuator which behaves as a black body emitting thermal radiations with
a power determined by the temperature of the attenuator [79]. The attenuator is placed
in the input line of the JPA. We heat up the attenuator with a heater fixed to it while
a thermometer monitors the temperature. We probe a temperature range of 40 mK to
600 mK. Additionally, a stainless steel cable is used as an input cable for the attenuator
and a superconducting cable Nb-CN is used as an output cable in order to thermally
decouple the attenuator from the cryostat. Since the thermal conductivity of the cables
is low, we further weakly couple the attenuator to the mixing chamber stage via a thin
silver ribbon. This is done so that the attenuator can be cooled down to low temperature
(around 40 mK) while still being able to be heated up to higher temperatures (around
600 mK). Moreover, the superconducting cable is necessary to transmit the thermal
radiations from the attenuator to the next components with as little losses as possible.
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Figure 4.6: Measured
〈
I2
〉

versus the attenuator temperature. The markers represent measured
data while the red line correpond to a data fit from Eq. 4.8. Qualitatively similar
results are obtained for

〈
Q2
〉
. (a) Fit obtained for the working point f0 = 5.35 GHz.

(b) Fit obtained for the working point f0 = 5.353 GHz.

The detected power P of the amplification chain at the FPGA is given by [44, 79]

P =

〈
I2
〉

+
〈
Q2
〉

R
=
κG
R

[
1
2

coth
(

h f0

2kBTatt

)
+ n
]

, (4.8)

where
〈
I2
〉

and
〈
Q2
〉

are the quadrature second order moments. Additionally, R =

50 Ω, h is the Planck constant, kB is the Boltzmann constant, and f0 is the center of
the detection bandwidth. Lastly, G and n denote the amplification and noise of the
amplification chain, respectively. The photon number conversion factor (PNCF) is
defined as κ = R · BW · h f0 with BW being the detection bandwidth. It is used to
convert the measured voltages into photon numbers. Based on Eq. 4.8, we can vary
the temperature of the 30 dB attenuator and measure the corresponding the power
in order to extract the product κG and the noise n by fitting the data. We note that
from Eq. 4.5 and Eq. 4.6, this product κG can be directly used in the reference state
reconstruction method and it is not required to compute κ and G separately. Moreover,
we experimentally treat both quadrature moments

〈
Î2
〉

and
〈
Q̂2
〉

separately. In Fig. 4.6,
we display the fits of PNCF measurement made for the two working points ( f0 = 5.35
GHz and f0 = 5.353 GHz). The results of the fits are shown in Tab. 4.1. As we can see
from these results and Fig. 4.6, the parameters fitted present a quite large relative error.
From measurements, we observe that a change in working frequency could lead to an
improvement of the parameter fits. This behaviour is attributed to frequency-dependent
interferences in the output microwave line that may lead to a degradation of the final
signal-to-noise ratio. This explains the choice made for the second working point as the
measured data points and the fit curved are more aligned than for the first working point.
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Moments κG
[
V2/photon

]
n
[
photon

]〈
I2
〉

( f0 = 5.350 GHz) 1.40 ·10−6 ± 2.83·10−7 24.22 ± 5.16〈
Q2
〉

( f0 = 5.350 GHz) 1.40·10−6 ± 2.83·10−7 24.26 ± 5.18〈
I2
〉

( f0 = 5.353 GHz) 1.30·10−6 ± 3.27·10−7 27.86 ± 7.30〈
Q2
〉

( f0 = 5.353 GHz) 1.31·10−6 ± 3.27·10−7 27.63 ± 7.19

Table 4.1: PNCF parameters values obtained from the fits for the two working points.

However, the errors on the fit parameters remain significant. After experimental tests,
we attribute those errors to a faulty cryogenic thermalization of the 30 dB attenuator
emulating the black body in our experiment. More precisely, if the attenuator is not
properly mechanically connected to its support or to its silver ribbon, fluctuations in
its temperature will occur. This problem could be easily solvable in future by a more
careful re-building of the thermalization wires.

Change of reconstruction point

During PNCF calibration measurements, it is important to take into account effects
of losses. If no losses were present, quantum states would be reconstructed as always
appearing at the output of the 30 dB attenuator. However, cables and components
physically add losses to input signals. Since we want to reconstruct quantum states
at different position in the setup, we carefully estimate the losses introduced by all
components from the 30 dB attenuator to the reconstruction point of interest. We denote
by L the total losses between the 30 dB attenuator (ATT) to the new reconstruction
point (R). Then, the amplification chain gain GATT, referenced at the attenuator, is
related to the gain GR at the reconstruction point by

GATT = GR · 10−L/10, (4.9)

where L > 0 represents losses from ATT to R. Additionally, during shifts in reconstruc-
tion points, the gradient of temperature between the two points considered is taken into
account during the data fitting.

4.3 Working point determination

In this section, we investigate measurements useful to determine working points of
the setup. For the rest of this thesis, we define a working point of the setup as a selected
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resonant frequency f0 for our JPA. To this extent, we first look at the magnetic flux
dependency of the JPA. This allows us to verify that the JPA used works properly in
addition to determining a working frequency range. As the second step, once a working
frequency has been chosen, we also investigate the nondegenerate gain of the JPA. This
measurement helps to verify that the JPA behaves as expected. It also provides insights
on achievable squeezing levels at the particular working frequency. It indicates the
required pump power that we need to apply to the JPA.

4.3.1 Flux dependent JPA resonance frequency measurement

As discussed in the Sec.2.2, it is possible to tune the resonance frequency of a flux-
driven JPA by generating a dc magnetic flux Φdc through the dc-SQUID loop. This is
performed experimentally by applying an external magnetic field with a magnetic coil.
This magnetic coil is mounted on top of the JPA as specified in Sec. 4.1.2. We use an
external dc current source to send a specified electric current through the coil, and thus,
control the dc magnetic acting on the JPA. Then, at a given JPA resonance frequency
f0, we obtain a parametric amplification effect by generating, via a microwave pump
tone, an oscillating magnetic field at the frequency the 2 f0, which induces an oscillating
magnetic flux Φrf. Experimentally the parametric amplification is controlled by the
frequency, power, and phase of the microwave pump tone. The JPA characteristics also
influence the amplification performance. In order to operate the JPA as a squeezer at a
desired work point,first, we need to perform calibration measurements to determine a
working frequency and a characteristic range of pump powers.

The magnetic flux dependency of the JPA resonance frequency f0 is described by
Eq. 2.41. To determine it experimentally, we use the setup presented in Fig. 4.7. We
probe the JPA with coherent input microwave signals and measure the output signals
via a VNA. The input signals are sent from channel 2 of the VNA and the output signals
are received at the channel 1. In this way, we measure the JPA reflection response
as the S12 scattering parameter of the VNA. For these measurements, we sweep both
the frequency of input signals as well as the coil current value Icoil. Changing the
latter induces changes in the JPA resonance frequency. The frequency span ∆ f of
the frequency sweep is set to ∆ f = 1 GHz and the coil current span ∆I is set to
∆I = 200 µA. Depending on the frequency and coil current probed, output signals have
a different amplitude and phase from the input signals. These last two quantities are
obtained from the measured signals with the VNA. From these results, a reference is
chosen where no amplitude or phase changes are observed. In our case, we choose as a
reference the measurements performed for Icoil = 84.5 µA. Measured values for this
reference are then averaged and subtracted from the rest of measured data. Additionally,
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JPA
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CH2CH1

amp. RT

S12 parameter measured

Figure 4.7: Schematic of the measurement setup for characterization of the JPA. Total attenua-
tion numbers are represented by X dB and X’ dB. This magnetic flux is controlled
via a current source which sends a dc current through the magnetic coil.
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Figure 4.8: Magnetic flux dependence of the JPA microwave reflection. (a) Magnitude response
of the reflected tone. (b) Phase response of the reflected tone.

the VNA records an unwrapped phase resulting in a linear phase increase with the
frequency. This linear slope is subtracted from the data as well. The resulting plots are
shown in Fig. 4.8. The plot of the phase shows an typical behaviour. Indeed, the phase
of the measured signal is expected to undergo a 360° phase shift when crossing the JPA
resonance frequency. Since the phase is plotted in a range of -180° to +180°, we obtain
a dip in the phase response. In the magnitude response, we can observe an expected dip
in the amplitude of the measured signals due to internal losses of the JPA. For some
frequencies, small gain of about 1 dB are observed. We consider this behaviour to be
an artefact of the calibration subtraction explained above. In the end, Fig. 4.7 provides
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Figure 4.9: JPA nondegenerate gain measurements as a function of the pump power. (a) Mag-
nitude response at the working point f0 = 5.35 GHz. (b) Magnitude response for
the working point f0 = 5.353 GHz. Pump powers are referenced to the pump port
of the JPA sample holder.

a calibration measurement for choosing a desired working frequency of the JPA by
tuning the coil current to a respective value.

4.3.2 Nondegenerate gain measurement

To investigate the amplification of the JPA, we perform nondegenerate gain measure-
ments, where the JPA acts as a phase insensitive parametric amplifier. Measurements
are performed with the VNA as depicted in Fig. 4.7.

The slope of the JPA resonance frequency versus the coil current is an important fac-
tor. A working point where the slope is flat, or nearly flat, is not suitable for parametric
amplification, as it makes the resonance frequency vary only weakly with magnetic flux.
Thus, only a small amplification gain is obtained at these working points. On contrary,
a working point with the steep slope makes the resonance frequency too sensitive to
flux noise resulting in excessive noise during amplification or squeezing operations.
Therefore, working points must be chosen to avoid both extreme situations. Once a
frequency f0 is determined, a corresponding coil current Icoil is selected. Afterwards, a
pump tone of frequency 2 f0 is applied to the JPA while input signals generated by the
VNA are sent to the JPA. Measurements are performed with a sweep of the pump tone
power and a sweep in frequency for the input signals. These frequencies are centred
at f = f0 with the frequency span of ∆ f = 80 MHz. We choose two working points
at f0 = 5.350 GHz and f0 = 5.353 GHz for the coil currents −70.9 µA and −69.9 µA,
respectively. The results of the respective gain measurement are shown in Fig. 4.9. We
observe that the gain increases with the pump tone frequency up to a certain point.
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The displayed pump power is referred to the input of the JPA. When the pump power
becomes too high, around -42 dBm, higher order nonlinear effects [80, 81] starts to
appear and reduces the amplification gain. We note that for input signals at exactly f0 ,
the JPA acts as phase-sensitive amplifier. However, for the current measurements, these
points are discarded. Furthermore, we want to be in a working regime where the gain
profile in Fig. 4.9 is symmetric in frequency with respect to f0 as this corresponds to
the expected behaviour for a nondegenerate gain.

4.4 Calibration measurement

In this section, we present calibration measurements of different parts of the setup.
Throughout this work, we use mainly two working different working points and focus on
the results obtained for them. We present different calibration measurements necessary
for us to produce quantum states in a controlled manner. To this extent, we investigate
the production of squeezed states, displaced states, and noise in the form of thermal
states.

4.4.1 Squeezing calibration measurement

In order to produce squeezed states in a controlled manner, we perform a squeezing
calibration measurement. To this extent, we generate squeezed states at the JPA which
propagates along microwaves cables and are acquired by the FPGA setup. After fixing
a working point frequency f0 and a corresponding coil current Icoil, we apply a pump
tone at the frequency 2 f0 to operate the JPA in the phase-sensitive regime. No input
signals are sent to this JPA now. Instead, we use weak thermal states at the mixing
chamber stage, whose temperature determines their thermal photon number. From the
measured signals, we apply the reference state reconstruction method (see Sec.4.2.3)
to reconstruct the quantum states. To this end, we apply two pulse schemes where the
measurement time trace of 145.2 µs is split in half. This is represented in Fig. 4.5 by
the orange pulse. During the first half, the microwave pump is inactive and this part of
the trace produces the reference signal for state reconstruction. During the second half,
we apply a pulse trigger to a microwave generator (SMF) in order to pump the JPA
and squeeze the input signal. During the whole squeezing calibration measurement, we
sweep the pump power. For each pump tone power, we repeat the pulsed measurement
procedure presented above.

Several important quantities are then computed using the reconstructed moments
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Figure 4.10: Squeezing calibration measurement for the second working point f0 = 5.353 GHz.
Pump powers are referenced to the pump port of the JPA sample holder. Markers
represent measured data. If not shown, the error bars are smaller than the size
of the markers. (a) Squeezing level versus the pump power. (b) Purity versus the
pump power. (c) Squeezing angle versus the pump power.

from these measurements. First, we extract the squeezing level calculated here as

S = −10 log10

(
σ2

S

0.25

)
, (4.10)

where 0.25 represents vacuum fluctuations and σ2
S is the reconstructed squeezed vari-

ance from measurements. In Fig. 4.10 (a), we show the squeezing level versus the pump
power for the working point f0 = 5.353 GHz. The other working point demonstrates
similar results. We observe that the squeezing level increases with the pump power up
to a certain threshold value. Above this value, the squeezing level starts to plummet
which again is a sign of higher-order nonlinear effects [80, 81]. This defines the useful
range of pump powers for generating of squeezed states. Second, we investigate the
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purity µ (see Sec.2.1.1) of the reconstructed states. We reconstruct the purity of the
measured quantum states under the assumption that these states are Gaussian, and
display the results in Fig. 4.10 (b). We note that the purity is monotonously decreasing
with the pump power. This behaviour can be explained by the JPA added noise. This
added noise monotonously increases with the pump power leading to a decreasing
purity with the pump power. Lastly, we also demonstrate control the squeezing angle
γ of the states. In order to do so, we repeat each measurement two times for a given
pump power. The first iteration of the measurement is used by a home made LabVIEW
code to reconstruct a squeezing angle γexp and correct its deviation from a squeezing
angle setpoint fixed γtarget at the beginning of the measurement. The correction is imple-
mented by adjusting the phase of the applied pump signals. More precisely, we adjust
the phase of the microwave pump by 2δγ = 2

(
γexp − γtarget

)
. The second iteration of

the measurement is then used to compute the quantities presented before. In Fig. 4.10
(c), we see that we can stabilize the squeezing phase to the setpoint phase of 45° with
an error of roughly ±1.5◦.

4.4.2 Displacement calibration measurement

In order to produce displaced states in a controlled manner, we perform displacement
calibration measurement. As explained in Sec.2.1.2, we use a directional coupler acting
as a highly asymmetric beamsplitter. A strong coherent signal is sent to a coupling
port of the directional coupler. The states displaced are again weak thermal states
coming from the mixing chamber stage to the input of the directional coupler. The
power and phase of the coherent signal determines the amplitude of the displacement
and the phase of the displacement, respectively. Similarly for squeezing calibration
measurements, we apply a two pulse schemes where the measurement time trace of
145.2 µs is split in half. This is represented in Fig. 4.5 by the pulse in black. During
the first half, no trigger pulse is applied to the SGS microwave source, so that no
displacement is applied. During the second half, a trigger pulse is sent to the SGS
which delivers a strong coherent signal to the coupling port of the directional coupler.
The range of power for these signals is made large in order to cover small to large
displacements of the states.

To calibrate the displacement, we plot the displacement photon number nd = |〈â〉|2

obtained from the reconstructed signal moments versus the power of the coherent
signals. In Fig. 4.11 (a), we show the results for the working frequency f0 = 5.353 GHz.
The other working point has similar results. From the behaviour of the curves shown in
the plots, we perform a linear regression fit of the curves, expressing the total photon
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Figure 4.11: Displacement calibration measurement for the second working point f0 = 5.353
GHz. Displacement power is referenced to the coupling port of the first directional
coupler. Markers represent measured data. If not shown, the error bars are smaller
than the size of the markers. (a) Displacement photon number versus displacement
power. The blue markers correspond to measured data. The red line is a linear fit
according to Eq. 4.11. (b) Purity versus displacement power. (c) Displacement
angle versus displacement power.

Coefficient Value fit
[
W/photon

]
Error fit

[
W/photon

]
md 1.22·10−9 6.76·10−13

pd 7.31·10−12 <10−14

Table 4.2: Linear fit results for the displacement photon versus the displacement power ex-
pressed in watts.

number as
nd = md Pcoh + pd (4.11)

where Pcoh is the power in watts of the applied coherent signal and (md, pd) are fitting
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parameters representing the slope and the offset in the linear regression fit, respectively.
They are used to power of the applied coherent signals into displacement photon
numbers. In Tab. 4.2, the fitting parameters as well as the error for each parameters are
displayed. The relative precision obtained is in the order of 10−3. In Fig. 4.11 (b), we
show the reconstructed purity µ. We observe that starting for higher powers (around
-122 dBm) the purity begins to decrease. We attribute this behaviour to displacement
phase fluctuations during the measurements as well as misestimations of the PNCF as
discussed in Ref.[82]. Similarly to squeezing angles, we stabilize displacement angles
θ by performing each measurement twice. The first iteration of each measurement
permits to stabilize the reconstructed displacement angle θ to the displacement angle
setpoint while the second iteration is used to reconstruct reconstruct quantum states.The
results are shown in Fig. 4.11 (c).

4.4.3 Noise measurement calibration

In order to couple noise in a controlled manner, we use the setup discussed in
Sec.4.2.1. A two pulses scheme is used again, where no trigger pulse is sent during the
first half of the measurement time trace. Weak thermal states from the mixing chamber
stage are used as a reference. During the second half of the measurement time trace,
we trigger the noise generation from our AFG (81160A, Agilent Technologies). The
measurement time trace is 145.2 µs long. This is represented in Fig. 4.5 by the pulse in
green. The amplitude of the noise generated is related to the voltage peak-to-peak of
the noise source. The generated noise is coupled via the second directional coupler to
input signals. Voltage values of the AFG are swept in a broad range.

To calibrate the coupled noise, we plot the noise photon number nn =
〈
â†â
〉

obtained
from the reconstructed moments versus the voltage. From the observed behaviour of
the curves in the plot, we perform a linear regression fit to express the total photon
number as

nn = mn V2
pp + pn, (4.12)

where Vpp is the voltage peak-to-peak of the noise source and (mn,pn) are fitting
parameters. They are used to convert the voltage peak-to-peak of the noise source into
photon number. In Tab. 4.3, the fitting parameters as well as their error are shown. The
relative precision obtained is in the order of 10−3. Errors are of statistical nature, in
particular for the offset pn which is expected to be greater than or equal to 0.

Flux-dependent JPA resonance frequency measurements, as well as the nondegener-
ate gain measurement allow us to quantify the behaviour of our JPA. More precisely,
from these measurements, we can determine a specific resonance frequency of our
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Figure 4.12: Noise calibration measurement for the second working point f0 = 5.353 GHz.
Markers represent measured data. If not shown, the error bars are smaller than the
size of the markers. The blue markers correspond to measured data. The red line
is a linear fit according to Eq. 4.12.

Coefficient Value fit
[
photon/V2

]
Error fit

[
photon/V2

]
mn 1.689 0.002

pn -0.015 0.006

Table 4.3: Linear fit results for the noise photon versus the voltage square. The voltage is
expressed in peak-to-peak values.

JPA. Then, based on the calibration measurements, we are able to controllably generate
noisy displaced squeezed states which are necessary for the implementation of our
QKD protocol.
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Chapter 5

Experimental results

In this chapter, we discuss an experimental implmenetation of the CV-QKD protocol.
To this extent, we perform measurements at two working frequencies, f0 = 5.350 GHz
and f0 = 5.353 GHz. These frequencies correspond to certain working points of our JPA
(see Sec. 4.1.2). For both of these frequencies, we estimate an experimental secret key
rate under various assumptions. For the first working point, we work at a fixed squeezing
level S = 3.7 dB. From the measured data at this frequency, we investigate how to
extract the mutual information and Eve’s Holevo quantity. To complete the analysis,
we study how the squeezing level influences the latter quantities by implementing the
protocol for three different squeezing level (S = 3.1 dB, S = 4.2 dB, and S = 5.1 dB)
for the second working point ( f0 = 5.353 GHz). In both cases, we analyze the effect of
coupled noise η emulating Eve’s Gaussian collective attack.

5.1 Protocol with fixed squeezing level

In this section, we discuss the quantum communication step of our protocol (see
Sec. 3.3.1) applied for the first working point f0 = 5.350 GHz. As mentioned above,
this frequency corresponds to the resonance frequency of our JPA. First, we present
measurements of the squeezing level S , squeezing angle γ, and purity µ. We discuss
how retrieve the variance of Alice’s random variable (see Sec. 3.3.1). In the second step,
we calculate the secret key for the direct reconciliation case from our measured data.
We assume that Eve’s attack is a Gaussian collective attack in the asymptotic limit (see
Sec. 3.1.3) emulated by the variable amount of noise coupled to the quantum channel.
We present experimental results of the secret key rate dependence on this noise

5.1.1 Experimental realization and calibration of the protocol

For our measurements, we use all the pulses shown in Fig. 4.5 to trigger all of our
devices synchronously. The idea remains the same as for calibrations measurements.
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Figure 5.1: Wigner function plots of the propagating microwave state during our QKD protocol.
First, at Alice’s side, a JPA applies the squeeze operator Ŝ to an input vacuum
generating a squeezed state. This is shown in step 1. Then in step 2, the first
directional coupler implements displacement operator D̂ to the squeezed state,
using an input coherent state. Finally, using the second directional coupler, an
external noise η is coupled to the displaced squeezed state. This represents the
action of Eve’s attack on the system. Finally, in step 3, the noisy displaced squeezed
is received and measured by Bob.

In other words, we use weak thermal states as the reference states in the state recon-
struction method (see Sec. 4.2.3). We remind that Alice is considered to be our JPA in
combination with the first directional coupler. Eve’s quantum channel is the second
directional coupler. Finally, Bob is defined by a specific reference point at the output of
the second directional coupler.

In order to implement the quantum communication part of our QKD protocol, we
follow the steps explained in Sec. 3.3.1. However, we do not randomly change the
squeezing angle of the generated squeezed states but rather work with a fixed squeezing
angle throughout the experiment. This is done for two reasons. First, we reconstruct
quantum states in our measurements with the reference state reconstruction method.
This means in particular that we reconstruct the displacement angle and displacement
photon number for each quantum states chosen by Alice. Second, if we experimentally
fulfill the condition of indistinguishability indicated in Eq. 3.49, sending a key by
randomly squeezing the q or p quadrature for each quantum states is equivalent to
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Figure 5.2: (a) Alice’s average variance σ2
A reconstructed at the input of the second directional

coupler versus the noise photon number η. The red line represents the mean value
of the variance. (b) Average squeezing level reconstructed at the input of second
directional coupler versus the noise photon number η. The red line represents the
mean squeezing level. (c) Purity of output states reconstructed at the output of the
second directional coupler versus the noise photon number η. (d) Average squeezing
angle of output states reconstructed at the output of second directional coupler
versus the noise photon number η. The red line represents the mean reconstructed
squeezing angle. For all the plots, markers correspond to experimental data. If not
shown, error bars are smaller than the size of the markers.

sending a key where the squeezed quadrature is fixed up to the fraction of discarded
measurements during the sifting step. In other words, this equivalence holds if we
account for the sifting fraction

(
1 − Dsifting

)
in the secret key rate R. In our case, this

involves adding a factor 1/2 to our secret key rate since
(
1 − Dsifting

)
= 1/2 for our

QKD protocol in the asymptotic case.
For this implementation of our QKD protocol, we choose the working point f0 =

5.350 GHz and the corresponding coil current Icoil = −69.9 µA. Additionally, we fix
a squeezing level S = 3.9 dB ± 0.1 dB throughout the measurement by using the
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corresponding pump power = -50.5 dBm. This squeezing level refers to the input of
the second directional coupler (see Sec. 4.1.2). As discussed in the previous paragraph,
we also fix the squeezing angle for all the quantum states and generated quantum state
squeezed only in the q quadrature. Experimentally, we can rewrite the condition of
indistinguishability as

σ2
AnSq = σ2

A + σ2
Sq, (5.1)

where σ2
AnSq corresponds to the reconstructed antisqueezed variance, σ2

Sq corresponds
to the reconstructed squeezed variance, and σ2

A is the variance of Alice’s Gaussian
classical random variable that generates her key elements. This value σ2

A is obtained
using the squeezing calibration measurements performed at the frequency f0 = 5.35
GHz in addition to Eq. 5.1. This variance is calculated at the input of the second
directional coupler (see Sec. 4.1.2). For the squeezing level chosen, we experimentally
get σ2

A = 1.020 ± 0.013 for the variance of Alice’s Gaussian classical random variable.
As mentioned above, we want to investigate the effects of coupled noise on the secret

key. To this end, we start by generating N = 150 random key elements using a Matlab
script. They are individually drawn from a Gaussian distribution with zero mean and
variance fixed to σ2

A. This assures that the condition of indistinguishability is satisfied.
We recall that for each key element, we generate a displaced squeezed using the JPA
and the first directional coupler. This is represented by steps 1 and 2 in Fig. 5.1.

Noise is coupled to these displaced squeezed states through the second directional
coupler. We use ten different values of coupled noise η. This is represented by the step
3 in Fig. 5.1. It ranges from η = 0.0017 corresponding to the lowest measured noise we
can generate up to η = 0.194 noise photon. These photon numbers refer to the output of
the second directional coupler (i.e., to Bob’s states). For each coupled noise η, we use
a key composed of N = 150 different key elements. This number N is a compromise
between the asymptotic case N → ∞ and the duration of these measurements. In
Fig. 5.2, we display useful reconstructed quantities from measurements. In Fig. 5.2(a),
we observe the experimental variance σ2

A calculated from Eq. 5.1. We note that the
mean value σ2

A = 1.035 is in good agreement with the σ2
A indicated above. Furthermore,

it only varies on average as ± 0.01 from its mean value and those fluctuations are not
correlated with the coupled noise η. In Fig. 5.2(b), we observe a similar behaviour for
the squeezing level, which should ideally stay constant throughout the measurements.
Here, we note a mean squeezing level of 3.7 dB. Furthermore, we also observe that
the observed fluctuations seems not to be correlated with the coupled noise. We rather
attribute them to statistical errors. In Fig. 5.2(c), we can see the effect of the coupled
noise on the purity of quantum states. The decrease in purity is caused by the increased
of the coupled noise which is an expected behaviour. Lastly in Fig. 5.2(d), we show
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5.1 Protocol with fixed squeezing level

the reconstructed squeezing angle at the output of the second directional coupler
versus the coupled noise. We observe a mean squeezing angle of 0.03° with a mean
standard deviation of 0.043° which is in good agreement with our squeezing calibration
measurements.

5.1.2 Mutual information and holevo quantity

In this section, we focus on the extraction of the mutual information and Eve’s
Holevo quantity from the measurements.

We start by considering Eve’s Holevo quantity. To this extent, we use the results
obtained in Sec. 3.3.2. In particular, we compute the different covariance matrices Vki

E

describing the individual states of Eve for each key element ki sent by Alice. For this,
we use Eq. 3.52. From this equation, we can see that we need the covariance matrix
describing Eve’s mode of her TMSV state that interacted with incoming states of Alice.
For a given noise nEve at the input of the second directional coupler and key element ki,
the covariance matrices of Alice’s individual states Vki

A are transformed as

Vki
B = τVki

A + (1 − τ) (1 + 2nEve)
I
4

, (5.2)

where I is the identity matrix, τ is the transmissivity of the second directional coupler,
and Vki

B corresponds to the covariance matrix of Bob’s state at the output of the second
directional coupler. We see that we can get Vki

A from Eq. 5.2 considering that τ is known
and nEve can be obtained from the noise calibration measurement. From there, we can
calculate the covariance matrix of Eve’s individual state as

Vki
E = (1 − τ) Vki

A + τ (1 + 2nEve)
I
4

. (5.3)

Let us describe the connection between nEve and the noise calibration measurement.
During this measurement, we effectively reconstruct thermal states whose thermal
population depends on the input coupled noise nEve. We denote by nth the thermal
photon number of these thermal states. We can then write for this noise calibration
measurement that

τ
(
1 + 2nstage

) I
4

+ (1 − τ) (1 + 2nEve)
I
4

= (1 + 2nth)
I
4

, (5.4)

where nstage is the thermal photon number corresponding to a weak thermal state at the
mixing chamber stage and τ is still the transmissivity of the second directional coupler.
Using this result and Eq. 3.12, we can additionally connect the coupled noise η of Eve’s
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Figure 5.3: Eve’s holevo quantity χEve,DR obtained from the state tomography for each value
of η in the DR case. Full circles correspond to the experimental data, dashed line is
guide for eyes.

attack and the reconstructed photon number nth as

4η = 2
(
nth − τ nstage

)
. (5.5)

From Eq. 5.3 and Eq. 5.5, we experimentally compute Eve’s covariance matrix of her
individual states as described in Eq. 3.52. Then, we calculate the average state ρ̂E,avg of
Eve as

ρ̂E,avg =

N=150∑
i=1

1
150
· ρ̂ki

E , (5.6)

where ρ̂ki
E corresponds to Eve’s individual states whose covariance matrix is given by

Vki
E . These matrices are exactly given by the procedure explained above. We recall

that N corresponds to the number of key elements sent by Alice. The experimental
results are displayed in Fig. 5.3. The observed behaviour of the curve is similar to one
obtained from theory. In particular, Eve’s Holevo quantity increases with the coupled
noise photon number η.

Now, we focus on extraction of the mutual information. We start by considering
that on her side, Alice has a randomly generated key K = {k1, · · · ,kN}, where each
key element ki is generated randomly based on a Gaussian distribution with the fixed
variance as explained in Sec. 3.3.1. We remind that each key element is encoded in
the displacement amplitude of the displaced squeezed states. From the reconstructed
signal moments

〈
ân(â†)m

〉
, we can extract a displacement photon number and angle for
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Figure 5.4: Mutual information I (A:) from the measured data

each states. From this two last values, an estimation of each key element k
′

i is obtained.
This provides Bob’s estimate for the key K

′

=
{

k
′

1, · · · ,k
′

N

}
. These two keys K and K

′

are used to compute the mutual information between Alice and Bob. For a CV-QKD
protocol using Gaussian states, the mutual information can be computed using Eq. 3.36.
Applying this last equation in our case yields

I (A:B) =
1
2

log2

[
σ2

A σ
2
B

σ2
A σ

2
B − Cov (A,B)2

]
. (5.7)

where I (A:B) is the classical mutual information between Alice and Bob, A is Alice’s
key K , and B is Bob’s key K

′

. The measured variance of Alice’s key and Bob’s key is
denoted σ2

A and σ2
B, respectively. Finally, Cov (A,B) is the classical covariance between

the two keys. In order to calculate those variances and covariances, we use statistical
unbiased estimators. More precisely, for a set X = {x1, · · · ,xN} of N elements, the
classical variance σ2

X of the set is defined as

σ2
X =

1
N − 1

N∑
i=1

(xi − µ)2 , (5.8)

where µ is the mean value of the set defined as

µ =
1
N

N∑
i=1

xi. (5.9)
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Figure 5.5: Secret key rate R calculated from the mutual information shown in Fig. 5.4 and
Eve’s Holevo quantity shown in Fig. 5.3 for a repetition rate of fr = 400 kHz and a
sifting rate

(
1 − Dsifting

)
= 1/2. Full circles correspond to the experimental data,

dashed line is guide for eyes.

Additionally, for two sets X = {x1, · · · ,xN} and Y = {y1, · · · ,yN} of N elements each, the
classical covariance Cov (X,Y) of the set is defined as

Cov (X,Y) =
1

N − 1

N∑
i=1

(xi − µX) · (yi − µY) , (5.10)

where µX is the mean value of X and µY is the mean value of Y . In Fig. 5.4, we show
the mutual information I (A:B) calculated from the measured set K and K

′

for each
coupled noise η. From this figure, two important remarks can be made. First, we observe
that the mutual information does not fluctuate significantly with the coupled noise η.
Indeed, it varies by 0.01 around a mean value of 4.35 bits per channel usage. Second,
we note that the calculated mutual information does not decrease significantly with
the coupled noise like we expect from the simulations. To explain those observations,
we have to take into account the number averages used during our reference state
reconstruction method (see Sec. 4.2.2). In particular, each quadrature moment 〈InQm〉

measured are averaged in our case in total Mavg = 2.094 × 108 times. In turn, this
number of averages is included in the calculation of the signal moments

〈
ân(â†)m

〉
.

Therefore, if individually each measured key element has a statistical error of σ, then
each averaged key element of Bob has a statistical error of σ/

√
Mavg. If this statistical

error is attributed to noise during the measurements, the dominant noise contribution
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5.1 Protocol with fixed squeezing level

comes from our first amplifier (HEMT). From our PNCF calibration measurement (see
Sec. 4.2.4), we obtain a noise photon number of nHEMT = 24.24 and nHEMT = 27.74 for
the working point at f0 = 5.350 GHz and f0 = 5.353 GHz, respectively. Therefore,
we get σ/

√
Mavg < 0.01 (i.e., the variance of the mutual information). From this

approach, we can assume that the measured mutual information does not depend on
the coupled noise η. However, it does not explain the variations observed. The latter
are attributed to amplitude fluctuations over time of the coherent tone applied to our
first directional coupler. Such fluctuations induce variations of the displacement of
our generated displaced squeezed states. As a result, we also observe variations in the
measured key elements over time.

Finally, we can use the obtained results for the mutual information and Eve’s Holevo
quantity to calculate the secret key rate R. To this end, we first calculate the secret key K
from Eq. 3.43 where we assume a perfect reconciliation rate β = 1. Then, the secret key
rate R is calculated from Eq. 3.44 and shown in Fig. 5.5. As discussed in Sec. 5.1.1, the
sifting fraction is set to

(
1 − Dsifting

)
= 1/2. Furthermore, we identify the repetition rate

fr with the measurement bandwidth Ω which experimentally limits the rate at which
bits can be communicated. In our experiment, our measurement bandwidth is given by
the bandwidth of the used FIR filters (see Sec. 4.2.2) which results in fr = Ω = 400 kHz.
Since the averages increase the calculated mutual information, we interpret this secret
key rate R as an upper bound of the achievable secret key rate in our experimental
setting.

The fact that our measurements contain many averages represent the main difference
between our implementation of the QKD protocol and the theoretical analysis developed
in Chapter. 3. In this analysis, we indeed consider that Bob only performs only one
projective measurement for each quantum states he receives. In order to compare our
experimental results with the theoretical calculations, we focus on a possible rescaling
of the mutual information to emulate the effect of low number of averages Mavg → 1.
To this extent, we make use of the expression of the mutual information derived from
Eq. 3.60. Interestingly, this equation allows us to rescale our mutual information by
rescaling our signal-to-noise (SNR) ratio. In our case, we can write that our measured
SNRH scales as

SNRH = Mavg · SNR0, (5.11)

where SNR0 corresponds to the SNR obtained for no averages. Re-expressing Eq. 5.11
gives that

SNRH = 22 I(A:B)
− 1. (5.12)

From Eq. 3.60 and Eq. 5.12, we can finally write the rescaled mutual information
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Input signal
phase-sensitive JPA HEMT

GJ, nJ GH, nH

SNR0

Figure 5.6: Modified amplification chain. On the left hand side, input signals have initially a
SNR = SNR0. This SNR is then reduced by the addition of a coupled noise η. This
represents the noise coupled via the second direction coupler (see Fig. 5.1). A JPA
is used as a first stage amplifier. It has a gain GJ and noise nJ referred to the input
of the JPA. The HEMT is now the second stage amplifier. It has a gain GH = 36.5
dB and a noise nH referred to the input of the HEMT.

I (A:B)0 as

I (A:B)0 =
1
2

log2

(
1 +

22 I(A:B) − 1
Mavg

)
. (5.13)

In Fig. 5.4, we display the rescaled mutual information. These values are significantly
lower than the originally computed mutual information. This highlights the role of
averaging in our detection setup. In such a setup, the noise from the first amplifier
(HEMT) significantly affects the measurement SNR. However, this also means that
the measurement SNR can be increased if we suppress the noise coming from our
first amplifier. An interesting way to implement such strategy is to place a phase-
sensitive amplifier before our HEMT amplifier. Experimentally, this can be done by an
additional JPA the phase-sensitive regime. Remarkably, a JPA working in this regime
can theoretically amplify input signals without adding any noise. To this extent, one
quadrature is amplified while the orthogonal quadrature is deamplified. Therefore,
we consider now an amplification chain where a JPA preamplifier operating in the
phase-sensitive regime is placed before our HEMT amplifier. If we denote GJ and nJ

the gain and noise referred to the input of such a JPA, we obtain using the Friis formula
[38]

SNRJ

SNR0
=

SNRJ

SNRH

1
Mavg

=
nH

nJ + nH
GJ

1
Mavg

, (5.14)

where SNRJ is the measurement SNR if the first amplifier is a JPA working in the phase
sensitive regime, SNRH is the measurement SNR if the first amplifier is the previously
HEMT, and nH is the noise of the HEMT referred to the input. Since the measured
SNR does not contain the effect of the coupled noise η as discussed above, it is added
during the rescaling. This is done because the SNR for no averages should contain the
coupled noise η. The final amplification chain we consider is shown in Fig. 5.6. Those
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considerations allows us to write

SNRJ

SNR0
=

nH

nJ + nH
GJ

+ η

1
Mavg

. (5.15)

More generally, if we consider that we allow for M instead of Mavg averages during the
measurements, we can combine Eq. 5.11 and Eq. 5.15 to obtain the general rescaling

SNRJ

SNR0
=

SNRJ

SNRH

1
Mavg

=
nH

nJ + nH
GJ

M
Mavg

, (5.16)

In turn, this gives us a rescaled mutual information

I (A:B)J =
1
2

log2 (1 + SNRJ) . (5.17)

Therefore, by varying the value of nJ and M, one can controllably rescale the mutual
information. Depending on the values chosen, the mutual information can become
greater than Eve’s Holevo quantity. For numerical calculations, we consider a realistic
implemetation of the phase sensitive amplifer by a JPA operating in the phase senstive
regime. Thus, the achievable gain GJ is set to 40 dB which corresponds to a rather
large gain for our JPAs. From Tab. 4.1, the noise photon number from the HEMT nH is
fixed to nH = 24.25. Fig. 5.7 shows parameter thresholds obtained for each squeezing
level. The thresholds correspond to the minimum values of nJ and M required to reach
the regime when the mutual information is equal to the Holevo quantity. According
to Eq. 3.46, this translates into a threshold between positive and negative key rates, or
between secure and insecure communication, respectively. From Fig. 5.7, we observe
that the number of averages M can be significantly reduce. For a low coupled noise
photon number η = 0.0017, we can go down to M ' 17.

5.2 Protocol with different squeezing levels

In this section, we consider the quantum communication step of our protocol (see
Sec. 3.3.1) applied for the second working point f0 = 5.353 GHz. We calculate the
secret key for the direct reconciliation case from the measured data. Additionally, we
assume that Eve’s attack is a Gaussian collective attack in the asymptotic limit (see
Sec. 3.1.3). Furthermore, we experimentally focus on the noise influence by coupling
different amount of noise to Alice’s input states. Finally, we discuss relevant secret key
rates as a function of noise and squeezing.
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Figure 5.7: Thresold values of M and nJ such that the secret key K becomes positive. Each
line corresponds to a different value coupled noise photon number η. For each line,
a coloured arrow indicates that the parameters above the curve correspond to a
positive secret key and secure communication. Only 5 coupled noise η are shown
for clarity purpose.

5.2.1 Experimental realization and calibration of the protocol

Here, we investigate the protocol for different squeezing levels. We use the same
measurement approach as explained in Sec. 5.1. The squeezing angle is fixed, so that
the squeezed quadrature is always the q quadrature. This means that we need again to
multiply our secret key by

(
1 − Dsifting

)
= 1/2 to obtain a secret key rate. For this im-

plementation of our QKD protocol, the second working point f0 = 5.353 GHz and coil
current Icoil = −70.9 µA are chosen. We use three different squeezing levels: S = 3.5
dB, S = 4.5 dB, and S = 5.5 dB. We measure experimentally three corresponding
squeezing levels: S = 3.1 dB, S = 4.2 dB, and S = 5.1 dB with an error of ±0.2
dB. Using Eq. 5.1, we can calculate the variance of Alice’s Gaussian classical random
variable. This is done using the results obtained from the squeezing calibration mea-
surement performed for f0 = 5.353 GHz. Similarly as for the previous section, we
generate a random key composed of N = 150 key elements. Each key element is drawn
from a normal distribution with a mean set to 0 and a variance set to σ2

A. The value
of σ2

A depends on the squeezing level according to Eq. 5.1. For each key element, we
generate a displaced squeezed state using the JPA and the first directional coupler.

Noise is coupled to the displaced squeezed states using the second directional coupler.
For each squeezing level, we use four different values of coupled noise η. It ranges from
η = 0.0017 to η = 0.2192 corresponding to a value above the secure communication
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Figure 5.8: Eve’s Holevo quantity χEve,DR obtained from her reconstructed states for each
coupled noise η in the DR case. Markers correspond to experimental data. Mea-
surements for each squeezing level are shown.

threshold obtained from our numerical calculations (see Sec. 3.3.2). This noise photon
number η is referred to the output of the second directional coupler. Since the procedure
is exactly similar to the one presented in Sec. 5.1, we do not discuss in detail results
measured for Alice’s variance σ2

A, the squeezing level, the squeezing angle and purity.
We merely want to stress that similar precision as in Sec. 5.1 is achieved. This assures
us that the protocol is well-calibrated.

5.2.2 Mutual information and Holevo quantity

We start by reminding that the coupled noise η is extracted from our measurement
using Eq. 5.5, where nth is the reconstructed photon number from the noise calibration
measurement performed at the frequency f0 (see results Sec. 4.3).

First, we consider Eve’s Holevo quantity. We can straightforwardly use the previously
derived expressions in Eq. 5.2 and Eq. 5.3, since we know the coupled noise value η
from Eq. 5.5. The obtained results are displayed in Fig. 5.8. Like for the measurement
with fixed squeezing level, Eve’s Holevo quantity increases with the coupled noise
η. In addition, we observe that Eve’s Holevo quantity increases with the squeezing
level. This is an expected behaviour as increasing the squeezing level increases the
information obtained on the encoded key from Alice. To understand this effect, we
recall that each key element ki of Alice’s key K = {k1, · · · ,kN} is encoded into the
displacement of a displaced squeezed state. More precisely, it is encoded into the mean
value of the squeezed quadrature. When the squeezing level increases, the uncertainty
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Figure 5.9: Mutual information I (A:B) measured for each squeezing level. Full circles corre-
spond to the measured data. Dashed lines are guides for eyes.

on the squeezed quadrature decreases meaning that the mean value of the squeezed
quadrature is measured more precisely which also implies that the encoded key element
ki is measured more precisely.

To compute the mutual information between Alice and Bob, we implement the same
procedure as described in Sec. 5.1.2. In particular, we consider again that Alice has a key
K = {k1, · · · ,kN} coming from her Gaussian random variable and Bob has a measured
key K

′

=
{

k
′

1, · · · ,k
′

N

}
. We start by using Eq. 5.7 where σ2

A and σ2
B are the variance

of Alice’s key and Bob’s key, respectively. Furthermore, Cov (A,B) = Cov
(
K ,K

′
)

is
the classical covariance between the two keys. In Fig. 5.9, the mutual information for
each squeezing level are shown. Once again, the mutual information is not dependent
on the coupled noise. The fluctuations observed are attributed mainly to amplitude
fluctuations over time of the coherent tone applied to the first directional coupler.

From the measured Holevo quantity shown in Fig. 5.8 and the mutual information
shown in Fig. 5.9, we calculate the secret key rate R using Eq. 3.44 for each squeezing
level where we assume a perfect reconciliation rate β = 1. The repetition rate is fixed by
our measurement bandwidth to fr = 400 kHz and the sifting rate is

(
1 − Dsifting

)
= 1/2.

In regard to our previous discussion in Sec. 5.1.2, the calculated mutual information
does not depend on any experimental noise and is significantly increases by the averages
Mavg. Therefore, we interpret the calculated secret key rates R as upper bounds on the
achievable secret key rates for our experimental setup depending on the coupled noise
η and the squeezing level. Remarkably, we observe that the latter increases the secret
rate R which is in good agreement with our simulations in Sec. 3.8
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Figure 5.10: Secret key rate R calculated from the mutual information shown in Fig. 5.9 and
Eve’s Holevo quantity shown in Fig. 5.8 for a repetition rate of fr = 400 kHz and
a sifting rate

(
1 − Dsifting

)
= 1/2 for each squeezing level. Full circles correspond

to the experimental data, dashed line is guide for eyes.

To complete this analysis, we rescale the mutual information using the calculated
SNR. For this purpose, an additional phase-sensitive preamplifier is considered to
be place before our HEMT amplifier. The rescaled SNR is extracted from Eq. 5.16
which is used to compute Eq. 5.17. Therefore, depending on the values of nJ and M,
the mutual information can become greater than Eve’s Holevo quantity. We assume
a JPA preamplifier gain of GJ = 40 dB. From Tab. 4.1, the noise photon number
from the HEMT nH is fixed to nH = 27.74. Fig. 5.11 shows the parameter thresholds
obtained for each squeezing level. We recall that these thresholds correspond to the
minimum values of nJ and M required such that the mutual information is greater than
the Holevo quantiy. From Eq. 3.46, this translates into a positive secret key, and thus, a
secure communication. The required number of averages increases with the coupled
noise as expected. Indeed, an increased coupled noise means that more information
from Alice and Bob is lost to Eve. Very interestingly, we observe that the required
number of averages reach 1 or nearly 1 if we consider low coupled noise η = 0.0017
for each squeezing level. This represents a very promising result as it means that we
can implement our QKD protocol in the single-shot regime. However, all squeezing
levels, the maximal tolerable preamplifier noise nJ in order to have a positive secret
key is quite small, being at most nJ = 0.002 noise photon. Furthermore, we notice
that the required number of averages decreases with the squeezing level. This is an
important effect, as this means that increasing the squeezing level can increase the
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Figure 5.11: (a) Threshold values of M and nJ such that K becomes positive for S = 3.1 dB.
Each line corresponds to a different coupled noise η. (b) Threshold values of M
and nJ such that K becomes positive for S = 4.2 dB. Each line corresponds to a
different coupled noise η. (c) Threshold values of M and nJ such that K becomes
positive for S = 5.1 dB. Each line corresponds to a different coupled noise η.
For each line, a coloured arrow indicates that the parameters above the curve
correspond to a positive secret key and secure communication.

maximal tolerable preamplifer noise nJ. Therefore, we note in total three main ways
to reduce the number of required averages M. First, as we mentioned, increase the
squeezing level can be increased. Second, one can decrease the noise photon number
nJ but Fig. 5.11 shows that this effect is limited and depends again on the squeezing
level. Third, it is possible to increase the gain GJ. Indeed, the noise contribution of the
HEMT enters as nH/GJ = 0.0027 for the case GJ = 40 dB which is comparable to the
coupled noise η.

96



Chapter 6

Conclusions and outlook

In this work, we have investigated, both theoretically and experimentally, a continuous-
variable quantum key distribution (CV-QKD) protocol based on propagating displaced
squeezed microwave states. To quantify security of this protocol, we have numerically
calculated the secret key in the direct reconciliation (DR) and reverse reconciliation
(RR) cases. The behaviour of the secret key rate versus the squeezing level S of the
displaced squeezed states, as well as the transmissivity τ and noise η in the quantum
channel, has been demonstrated. For the DR case, we have found that the communi-
cation is secure up to τ = 0.5 and η = 0.184. This result can be interpreted that the
protocol cannot be secure in the DR case if Eve gets more than 50 % of Alice’s signals,
because Eve substitutes Alice in this scenario. On the other hand, we have found that,
in the RR case, the QKD protocol can remain secure up to infinitely large losses τ = 0
and η = 0.181. This means that the RR case is not limited by losses.

Next, we have implemented and studied a simplified experimental realization of the
aforementioned CV-QKD protocol in the microwave range. We have studied effects of
the noise η in the quantum channel on the final secret key rate. This noise η has been
used to emulate a collective attack from a potential eavesdropper Eve, which, in turn,
allows for a flexible quantum experimental simulation of attacks with different strengths.
Experimentally, propagating squeezed microwave states have been generated using a
flux-driven Josephson parameter amplifiers (JPA), while the displacement, necessary for
encoding of classical information, has been implemented with a cryogenic directional
coupler. We have studied two different working points of our JPA (at the frequencies
f0 = 5.350 GHz and f0 = 5.353 GHz) which have demonstrated similar performance.

Main results of our experimental microwave QKD protocol have relied on the
tomography of the propagating displaced squeezed states. From the corresponding
tomography data, we have extracted both the mutual information between communica-
tion parties (Alice and Bob) in addition to Eve’s Holevo quantity in the DR case. We
have observed that Eve’s Holevo quantity increases with the increasing coupled noise
η, corresponding to a stronger eavesdropping attack and representing the increase of
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information leaking to Eve. Surprisingly, we have observed that the measured mutual
information between Alice and Bob does not depend on the coupled noise η but in-
stead fluctuates around a mean value of 4.35 bits per channel usage. We explain this
behaviour by a large averaging number Mavg = 2.094 · 108. These averages effectively
suppress the noise in our signals, including the coupled noise η. Finally, the difference
between the discussed mutual information and Eve’s Holevo quantity allows us to
estimate an upper bound of the secret key rate achievable in our experimental setting
as a function of the coupled noise and squeezing level. These results are presented in
Fig. 5.10 and provide a very promising perspective of microwave QKD protocols. To
complete this analysis, we have repeated the measurements for the second working
point f0 = 5.353 GHz at different squeezing levels, S = 3.1 dB, S = 4.2 dB, and
S = 5.1 dB. As the result, we have observed that Eve’s Holevo quantity increases with
both the squeezing level and coupled noise η. The respective secret key rate R increases
with the increasing squeezing level S but decreases with the increasing coupled noise
η, which underlines the fact that the mutual information between Alice and Bob grows
with the increasing S than Eve’s Holevo quantity. The same results have been obtained
in theory (see Fig. 3.8 for more details).

In principle, excessive averaging number M � 1 must not be allowed in the QKD
protocol due to its negative impact on the security. The impact of averaging on the
measured Holevo quantity (and the final secret key rate) is not very well understood in
theory at this moment. Therefore, we investigate our experimental setting by rescaling
of the mutual information in order to estimate the protocol performance close to the
single-shot readout regime M ' 1. To this end, we theoretically consider an additional
JPA in the phase-sensitive regime acting as a low-noise preamplifier at Bob’s side.
This approach allows us to reduce the number of averages in our setup assuming large
preamplifier gain GJ and low preamplifier noise nJ. Our results (see Fig. 5.11) shows
that with a gain GJ = 40 dB, we can already reduce the number of averages close to
the single-shot regime M → 1 for a noise nJ less than 0.025 noise photon. For the
squeezing level S = 5.1 dB, we each the single-shot regime for a noise nJ less than
0.002 noise photon. Interestingly, higher squeezing levels alleviate conditions in terms
of GJ and nJ required to reach the single-shot regime.

In the outlook, future experiments could include an additional JPA to perform a
low-noise preamplification to reduce the number of averages M required for the secure
communication. The ultimate goal would be to reduce M to one, while still being able
to measure a positive secret key directly in the experimental setting. Furthermore, the
current data analysis could be extended to the RR case in experiments. This could be
done by applying the results of our current theory chapter. Overall, our experiments
have demonstrated the potential of microwave quantum key distribution protocols and
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will, hopefully, find its rightful place in quantum communication in the upcoming
future.
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