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Chapter 1

Introduction and Motivation

The concept of quantum simulation was first introduced by Richard Feynman [1] in 1982.

He said, that quantum systems are difficult to simulate on classical computers, as they

are, by nature, more complex than classical systems. To achieve a fast, reliant and in

some cases even a possible simulation, one has to use quantum mechanical simulators in

order to model quantum mechanical systems. This requirement stems from the Hilbert

space of a quantum mechanical system, which grows exponentially with its particle

number. A quantum simulation therefore uses a well defined and otherwise experimentally

easier accessible quantum mechanical system to emulate the physics of an experimentally

inaccessible quantum system [2].

Platforms for analog quantum simulation

The search for the best simulators for this task is still ongoing after more than 30 years [3].

Advocates for different available platforms are quick to tell you what the advantages of

their system of choice are and why it is the only possible solution to all problems. In

reality, the Swiss army knife of simulation platforms has not been found yet. Although

the currently proposed and used simulators all have their distinct advantages, they also

come with a set of disadvantages. Here, we want to give a small overview of the platforms

that are most commonly used in quantum simulation experiments. First, there are atoms

in optical lattices, also called cold atoms [4]. Atoms are also used in cavity quantum

electrodynamics, where atoms are confined in, e.g., optical cavities [5, 6]. Similarly, one

can also use ions trapped with electric fields [7]. Another platform are superconducting

quantum circuits [8–10], which are often referred to as circuit quantum electrodynamics

(cQED). Here, superconducting resonators [11] serve as the equivalent of an optical

cavity. Non-linear elements made from Josephson junctions substitute atoms [12–16].

Signals are guided with the help of superconducting waveguides [17]. CQED systems

have several important strengths. For one, they offer a high design flexibility, as one can

use many different building blocks already invented by the community, such as different

quantum bit (qubit) types [10, 18, 19], which can be useful for different types of problems.

The different building blocks can then be combined in the circuit design and fabricated
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2 Chapter 1 Introduction and Motivation

in a scalable way using established thin-film deposition and micro-/nanostructuring

techniques [20, 21]. In addition, measurements are typically performed in the microwave

regime, where one can borrow highly developed measurement devices and techniques from

classical telecommunication applications. Although the design process creates a very well

defined experimental system, cQED also allows for in-situ controllability of some design

parameters with the help of local electromagnetic fields. For example, one can use a

waveguide antenna to control the transition frequency of a qubit with a current source

and simultaneously excite this qubit through another waveguide [22–24]. Waveguides and

resonators are also able to mediate couplings over longer distances on a sample [25]. It is

therefore, in principle, also possible to couple non-neighboring sites. Scalability prospects

are promising given the fabrication techniques mentioned above. In practice, however, it

has proofed to be quite challenging to actually scale up superconducting circuits, because

the increasing cross-talk tends to rapidly destroy the fragile quantum states. Nevertheless,

very recently, Martinis et. al were now able to build a chip with 54 qubits [26], proving

once and for all that scalability is in fact an advantage of cQED. Superconducting circuits

naturally offer low photon loss rates inside a resonator [27, 28] and recent experiments

have shown that by using 3D cavities made from aluminum even higher coherence times

can be reached [29, 30]. When simulating a many-body system with superconducting

circuits, one can use photons to model the particles of the system, which allows to control

the number of particles by adjusting a microwave drive power [31]. A steady-state where

driving and losses level each other out and the total number of particles is fixed at the

chosen value can then be created. This so called driven-dissipative regime is difficult or

even impossible to reach in other simulation platforms. The main challenge is the relatively

low coupling strength between resonators and non-linear elements and low coherence times

of the non-linear elements. But with the help of high fidelity resonators [32] progress is

also being made in this direction. Overall cQED is a promising candidate to become the

preferred platform for quantum simulation and quantum computing.

Quantum simulations of many-body systems

As already mentioned, the complexity of the Hilbert space of a quantum mechanical

system grows exponentially with the number of particles in the system. This is especially

critical when discussing many-body physics [33]. Many-body systems are therefore a

prime candidate for quantum simulations [34–36]. First simulations in this field have been

performed with ultra-cold atoms. After a first simulation of a Bose-Hubbard system [37],

multiple more quantum simulations of many-body systems followed and are still being

performed [38]. Also other platforms such as trapped ions [39, 40] and cavity QED [41]

show interesting experimental results. In the area of cQED, there have also been a number

of experimental realization of many-body quantum simulations [42–45]. Here, we want to

specifically go into the details of quantum simulations of the Bose-Hubbard model.
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Quantum simulation of the Bose-Hubbard model

In the 1980s, the Bose-Hubbard model gained prominence and it describes the interaction

of bosons that are confined in a network with next neighbour interactions. The simplest

case is a chain of confinement sites. Due to quantum fluctuations a quantum state

transition from a superfluid to a mott-insulator phase can occur in such a system, if,

e.g., the lattice depth changes. Bosons then switch from being delocalized across the

whole lattice to being confined in a single lattice site. The Heisenberg uncertainty relation

predicts a stable coherent phase of all particles in the delocalized state and a fluctuating

incoherent one in the localized state. Trapped ions proofed to be a good fit to perform

quantum simulations of such a system, but it has also been shown, that superconducting

circuits offer the capability to simulate Bose-Hubbard physics. In contrast to cold atoms,

where interacting bosons are being used, cQED naturally offers non-interacting Bosons,

i.e. photons, as the particle of choice. We therefore have to create an environment in

which the photons can interact with each other. This is achieved by introducing a Kerr

nonlinearity into the lattice formed by superconducting resonators. With this, it has

been shown, that we can map the Bose-Hubbard system on a lattice of superconducting

non-linear resonators [46–49] and first experimental results have been achieved [50, 51].

Important steps towards experimental quantum simulations

In order to perform large scale quantum simulations using superconducting quantum

circuits, careful preparations of the circuit and theory have to be made. In this thesis, we

present a system of two nonlinear tunable resonators, suitable for quantum simulation of

the Bose-Hubbard model and perform important steps towards its usage as a simulator.

As a first step, one has to ensure that the sample emulates the correct physics. We show,

that the Hamiltonian of the circuit is equivalent to the one of the Bose-Hubbard model.

We also perform classical simulations of the behavior of the system which can later be

compared to measurements of the system. This is obviously only possible, as long as the

complexity of the system is still low enough. Using the results of these simulations, we

design and fabricate a superconducting circuit with the same parameters as the classical

simulation. For further experiments, it is vital to fully and fundamentally characterize the

sample, including its response to magnetic fields, which tune the resonator parameters.

Especially, we need to be able to measure and experimentally control the parameters such

as the nonlinearity of the resonators. Additionally, we set up an experimental setup that

can be used to measure the quantum effects of the simulator. Taking these steps, we are

able to verify the possible usage of our sample in quantum simulation experiments.
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Content

This thesis is structured as following. First, in Sec. 2, we give an overview of the theoretical

description both of the superconducting circuit we investigate and of the Bose-Hubbard

system in general. We also show, that the physics of the circuit are equivalent to the one

of the Bose-Hubbard model. In Sec. 3, we show our results of a classical simulation of

the Bose-Hubbard model for a two site lattice. Although the phase shift predicted by the

Bose-Hubbard model cannot be observed in a two site lattice such as the device presented

here, the photon states in each resonator hold interesting quantum mechanical physics.

We show, that the theory predicts second order correlation functions both above and below

1 for the photon field inside each resonator and similar results for the cross correlation

functions between each resonator. Afterwards, we present our experimental setup and

the sample fabrication of the nonlinear two-resonator circuit (Sec. 4). In this part, we

also present characterization measurements of the sample, which allows us to understand

and control the superconducting circuit within the chosen design space. In Sec. 5, we

present further experimental findings of our sample. Most importantly, we extract the

nonlinearity of the resonators using two different techniques. First, we model the circuit

using a simple circuit model expanded with a parasitic path. From the parameters of this

model, we can calculate the nonlinearity. Second, we perform a direct measurement of the

nonlinearity from the power dependence of the resonators. With this , we are able to show,

that the circuit is suitable for a quantum simulation of the Bose-Hubbard model. Lastly,

in Sec. 6, we give a summary of the thesis and a brief outlook towards future projects.



Chapter 2

Theory

2.1 General cQED

In analogy to cavity quantum electrodynamics (QED), circuit quantum electrodynamics

(cQED) uses a set of fundamental building blocks such as resonators (similar to cavities)

and qubits (similar to atoms) in order to create circuits that allow us to study and use

the impact of quantum mechanical effects on the interaction of light and matter. In the

following parts, we want to motivate and explain the different building blocks that are

important for the experiments in this thesis. Furthermore, we go into the details of the

circuits we create and on how to characterize them.

2.1.1 Transmission line

In order to have propagating electromagnetic signals, we use transmission lines. Trans-

mission lines consist of at least two conductors which are separated from each other.

Using an ac voltage source, we can create a time varying potential difference between

the two conductors which then propagates along the transmission line. We can model

a transmission line as a series of lumped element equivalent circuits, that each feature

a conductance Ggap and capacitance Cgap between the conductors and a resistance Rl

and inductance Ll along the line in propagation direction. The conductance stems from

the dielectric loss of the separating material, the inductance is the self inductance of the

conductors and the capacitance stems from the proximity of the two. Using Kirchhoff’s

laws, we can derive the so called telegrapher equations [52] in the limit of a vanishing

length of the lumped element circuits.

For sinusoidal signals I(l,t) = I(l)ei(ωt+π/2) and V (l,t) = V (l)ei(ωt) with an angular

wave frequency of ω, a travelling wave in the form of

V (l) = V +
0 e

−γl + V −
0 e

γl, (2.1)

I(l) = I+
0 e

−γl + I−
0 e

γl (2.2)

is a solution of the telegrapher equation. Here, γ is the complex propagation function,

5



6 Chapter 2 Theory

CgapGgap

Rl Ll

Figure 2.1: Circuit diagram of a lumped element equivalent circuit part of a transmission line.

given as

γ = α + iβ =
√

(Rl + iωLl)(Ggap + iωCgap. (2.3)

e−γl (eγl) describes the propagation in positive (negative) l direction with amplitudes V +
0

(V −
0 ) and I+

0 (I−
0 ). Note that α, the real part of γ, describes the damping of the travelling

wave, and the imaginary part β its propagation properties.

We can derive a relation between the voltage and current for a given direction as

V +
0
I+

0
= Z0, (2.4)

with

Z0 =
√

Rl + iωLl

Ggap + iωCgap

. (2.5)

At low temperatures, we can estimate Rl to be very close to 0, as the conductors

are superconducting. Similarly, also the conductance Ggap can be neglected, as we use

high-resistivity silicon as dielectric material separating the conductors. Therefore Eq. (2.5)

simplifies to

Z0 =
√
L

C
. (2.6)

Z0, the characteristic impedance of the transmission line, plays an especially important

role, if we combine multiple elements, e.g. two transmission lines. At the transition from

a transmission line with impedance Z0,1 to one with impedance Z0,2, part of the signal

will be reflected. The reflection coefficient of such a connection is given by

r = Z0,1 − Z0,2

Z0,1 + Z0,2
. (2.7)
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For a non-matched connection, r , 0, one obtains reflections, which can lead to interference

effects. Hence, it is advised to keep impedance mismatches as small as possible. We

therefore match all our circuits to the industrial standard for devices and cables of

Z0 = 50 Ω. In this simplified case, we can also easily calculate the phase velocity of the

propagating wave to be

vp = ω

β
= 1√

LC
. (2.8)

2.1.2 Scattering matrix

In order to describe the effect an arbitrary system has on a traveling wave described by

Eq. (2.1), we define the scattering matrix for a two-port system by the voltage amplitudes

entering (V −) and exiting (V +) the system

[
V +

1
V +

2

]
=
[
S11 S12

S21 S22

] [
V −

1
V −

2

]
. (2.9)

Here, each element of the scattering matrix can be calculated or measured by the relation

Sij = V −
i

V −
j

∣∣∣∣∣
V +

k
= 0, for k,i

. (2.10)

In this thesis, we refer to transmission or reflection measurements meaning a measure-

ment of the transmission coefficient or magnitude T = |Sij|2 for i , j or the reflection

coefficient or magnitude R = 1 − T = |Sii|2.
For a better visualization of the features in our measurements, we typically plot the

scattering parameters in dB

Sij(dB) = 20 log(Sij). (2.11)

In some measurements, we also show the phase ϕ of the scattering parameter, which can

be calculated via

ϕ = arg(Sij) = arctan2 (ℑ(Sij),ℜ(Sij)) . (2.12)

2.1.3 Resonators

The previously discussed transmission line can hold a continuum of modes for a broad

frequency range. In vast contrast to this, a microwave resonator can only support

excitations in a small frequency band. To understand its behavior, we can model a
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microwave resonator as a parallel RLC circuit. Such a circuit has an input impedance of

Zin =
( 1
R

+ 1
iωL

+ jωC
)−1

. (2.13)

Resonance occurs, when the average energy stored in the inductanceWind = 1
4 |V |2 1

ω2L
and

capacitance Wcap = 1
4 |V |2 C are equal. From this we can calculate a resonant frequency of

ω0 = 1√
LC

. (2.14)

At this frequency, a standing wave forms inside the resonator. For a λ/2 resonator, we can

calculate and therefore design the resonant frequency using the length l of the resonator

l = πvp
ω0

= πc

nω0
. (2.15)

The phase velocity vp = c
n
depends only on the speed of light c and the refractive index

n. As the field of the wave lives both in the chip substrate silicon (n ≈ 4) and the air

above the chip (n ≈ 1), the actual refractive index is a combination of the two and can be

estimated to be n =
√

(1 + ϵr)/2 where ϵr is the relative permittivity of silicon.

Q Factor

A signal entering a resonator can oscillate there many times, so that even small losses can

add up and drastically change the behavior of the system. To account for these losses, we

introduce the Q factor (quality factor) of a resonator as

Q = ω
average energy stored

energy loss/second
= ω

Wm +We

Ploss

. (2.16)

For the resonant case of a parallel circuit, we get an unloaded or internal quality factor

of Qint = ω0RC. The unloaded quality factor only takes internal losses into account.

Additional loss channels to the outside, which are introduced, e.g., by coupling to an

external transmission line, are being taken into account in the loaded quality factor

1
Ql

= 1
Qext

+ 1
Qint

(2.17)

We can also show that the full width at half maximum κtot of the resonance is related to

the loaded quality factor of a λ/2 resonator in a transmission experiment

Ql = ω0

κtot
. (2.18)
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Figure 2.2: Magnitude and phase of the transmission through a λ/2 resonator. The magnitude exhibits a

peak at the resonance frequency with a width that is related to the loss rate of the resonator.

The phase shifts by π.

Transmission through a resonator

We can use an input output formalism [53] to model a single-resonator system and calculate

transmission and reflection of the resonator. We assume the resonator to be capacitively

coupled to a transmission line at both ends. The boundary conditions can then be written

as

aIN − aOUT =
√
κext
2 a

−bIN + bOUT =
√
κext
2 a.

(2.19)

aIN and aOUT (bIN and bOUT) are the signals flowing in and out of the left (right) side of

the resonator. Left flowing signals are negative by convention. κext is the coupling rate

of the resonator to the transmission lines excluding internal losses in the resonator. For

simplicity reasons we assume that the coupling rates to both sides are equal. We neglect

internal losses of the resonator. The field inside the resonator can then be written as a
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aIN

aOUT

bright

bleft

cOUT

cIN

Figure 2.3: Sketch of the signal flow in a two resonator system.

function of the input signals,

a =

√
κext

2 aIN −
√

κext

2 bIN
κext

2 − i(ω − ω0)
. (2.20)

Combining these equations, we obtain the output field aOUT as a function of the input

fields,

aOUT =
i(ω − ω0)aIN − κext

2 bIN
κext

2 − i(ω − ω0)
. (2.21)

Equivalently, we can derive an expression for bOUT. In Fig. 2.2, we plot the magnitude

(top panel) and phase (bottom panel) of the output field for aIN = 0 and bIN = 1. We

observe a resonance peak with amplitude 1 at the resonance frequency ω0, meaning that

all power is transmitted through the resonator. The FWHM is equal to the loss rate κext.

Looking at the phase, we can see a clear phase shift of π that occurs on the scale of the

bandwidth of the resonance.

Transmission through a two-resonator system

Going towards more complex structures, we next look at a system of coupled resonators.

Similarly to the previous calculation, we look at system where the resonators are capaci-

tively coupled the transmission line as input and output ports. The two resonators are

additionally capacitively coupled to each other. A sketch of this can be seen in Fig. 2.3.

We expand the calculations of the input and output formalism shown previously to model

not only the resonators as individual devices, but also the coupling between them. The

signals flowing into, out and inside of the system can be calculated from the fields a and c

inside the resonators

aIN − aOUT = √
κexta

−bleft + bright = √
κca

−bleft + bright = √
κcc

−cIN + cOUT = √
κextc.

(2.22)
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Figure 2.4: Transmission magnitude and phase of a two resonator system with κext = 10 MHz, κc =
40 MHz and ω0 = 7.0 GHz. We observe two distinct peaks in the magnitude that are separated

by the coupling rate.

The definition of signals can be seen in Fig. 2.3. aIN and aOUT (cIN and cOUT) are the

signals flowing in and out of the left (right) resonator. Note that all signals flowing to the

right have a plus sign while the ones flowing to the left have a minus sign. The signals

bleft and bright couple the resonators via a capacitor with coupling rate κc. The resonators

are coupled to the external transmission lines with κext. We neglect internal losses of the

system.

On the other hand, we can describe the fields inside the resonators as a function of the

input signals:

a =
√
κextaIN − √

κcbleft
κext+κc

2 − i(ω − ω0)
(2.23)

c =
√
κcbright − √

κextcIN
κext+κc

2 − i(ω − ω0)
. (2.24)

If we use these expressions for the fields in Eq. (2.22), we find the coupled equations



12 Chapter 2 Theory

bright =
√
κextκcaIN +

(
κext−κc

2 − i (ω − ω0)
)
bleft

κext+κc

2 − i (ω − ω0)
(2.25)

bleft =
√
κextκccIN +

(
κext−κc

2 − i (ω − ω0)
)
bright

κext+κc

2 − i (ω − ω0)
, (2.26)

and a function for the output signals in a reflection measurement where aIN or cIN are 0

respectively,

cOUT =
√
κextκcbright +

(
κc−κext

2 − i (ω − ω0)
)
cIN

κext+κc

2 − i (ω − ω0)
(2.27)

aOUT =
√
κextκcbleft +

(
κc−κext

2 − i (ω − ω0)
)
aIN

κext+κc

2 − i (ω − ω0)
(2.28)

To get an expression for cOUT we solve Eqs. (2.25) and (2.26) for bright and plug it into

equation (2.28).

In Fig. 2.4, we plot the magnitude and phase of the output field cOUT for aIN = 1 and

cIN = 0. In magnitude, we observe a splitting of the resonance peak by the coupling

strength κc = 40 MHz. The bare resonance frequencies of the two resonators are chosen

to be equal. The coupling lifts the degeneracy of the resonance modes, which differ in

frequency. Note that the linewidth of the two resonators is not influenced by the coupling

and is still determined by the external coupling rates κext. The two-resonator system is

analogous to two pendula which are coupled with a spring. At the resonance with a lower

frequency, the resonators oscillate in phase, at the resonance with a higher frequency, they

oscillate out of phase.

The phase of transmission undergoes a jump at each effective resonance frequency.

2.1.4 Josephson junctions as nonlinear elements

So far we only looked at linear circuits, but superconducting circuits also offer easy access

to nonlinear elements. The most prominent one is the Josephson junction (JJ) which

makes use of the Josephson effect. In this section, we give a brief introduction to JJs

before introducing a so called DC superconducting interference device (SQUID) as a

particularly relevant example of a superconducting nonlinear circuit.

Josephson junctions

Josephson junctions consist of two superconducting electrodes separated by a thin layer of

nonsuperconducting material. Due to the small separation of the two electrodes, the two

superconducting wave functions overlap and allow for a superconducting current flowing
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Figure 2.5: Sketch of a Josephson junction (left) and a DC-SQUID (right). Metal parts are shown in

silver, the insulating layer is shown in red. Although not visible, the insulating layer expands

through the whole width of the junction, completely separating the two electrodes from each

other. The structure in the metal parts stems from fabrication (Sec. 4.1.2).

across the junction. This current is carried by tunneling Cooper pairs. Here, we focus on

superconductor-insulator-superconductor (SIS) junctions, where, as the name suggests,

the two superconductors are separated by an insulating layer. Josephson showed that

both the superconducting tunnel current Is through the junction and the voltage drop V

between the two superconductors depend on the phase difference φ of the corresponding

macroscopic wave functions in each electrode. The first Josephson equation is

Is = Ic sinφ. (2.29)

The supercurrent Is cannot exceed the material- and dimension-dependent critical current

Ic and depends on the sine of the phase difference between the macroscopic wavefunctions

of the Cooper pairs at each side of the junction. A change of this phase difference in

time relates to a voltage drop across the junction, as can be seen in the second Josephson

equation

φ̇ = 2π
Φ0
U, (2.30)

with the magnetic flux quantum Φ0 = h/2e, where h is the Planck constant and e the

elementary charge. When integrating the second Josephson equation and combining it

with the first one, we find, that the super current through the junction is oscillating in

time with a frequency of 2πV/Φ0 if we apply a DC voltage V .

The nonlinearity of the junction also shows when we calculate its inductance from the

Josephson equations

Lj = U

dIs/dt
= Φ0

2πIc cos(φ) . (2.31)

The important energy scales of a JJ are its Josephson energy Ej and its charging energy

EC. Ej describes the energy that is stored in the junction for no applied current and can
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Figure 2.6: Critical current as a function of the external flux for different asymmetry parameters. The

critical current is tuned from its maximum to its minimum and back by applying Φ0. The

minimal value increases with increasing asymmetry parameter d.

be calculated via

Ej =
∫ φ

0
(IsU)dφ̃ = Φ0Ic

2π (1 − cosφ) = EJ0(1 − cosφ). (2.32)

The charging energy EC = e2/2Cj describes the energy stored inside the capacitance Cj

of the junction.

DC-SQUIDs

A DC-SQUID is a parallel circuit with two Josephson junctions [54] in its arms. It inherits

many of the properties of a single junction, such as the critical current flowing through

the SQUID, which is the sum of the critical currents of the individual junctions

Ic,tot = Ic1 + Ic2. (2.33)

Due to interference effects in the SQUID loop, this total critical current can be modulated

by applying an external flux Φext through the loop

Ic(Φ) = Ic,tot(0)
∣∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣∣ . (2.34)

This formula holds only true if the screening parameter βL = 2LIc,tot
Φ0

≪ 1 and if Ic1 = Ic2.

For larger screening parameters, the loop inductance L plays a larger role and the critical

current will not reduce to 0. Note that Eq. (2.34) allows us to directly control the nonlinear

inductance of the junction (see Eq. (2.31)). By applying an external flux to the SQUID

loop, we decrease the critical current below its maximum value and, in turn, increase the

inductance of the junction. In practice, the fabrication accuracy is not high enough to

ensure equal critical currents for both junctions. A difference in the two currents changes
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the behavior of Eq. (2.34) in the following way

Ic(Φ) = Ic,tot(0)
∣∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣∣
√√√√1 + d2 tan2

(
π

Φext

Φ0

)
, (2.35)

with the asymmetry parameter d = (Ic1 − Ic2)/Ic,tot. As it can be seen in Fig. 2.6, an

increase in asymmetry also increases the minimal critical current we can reach. This effect

reduces the maximal nonlinearity of the junction. On the plus side, the junction becomes

less susceptible to flux noise as the flux derivative flattens. For this reason, we design our

SQUIDs to be asymmetric. For more details see Sec. 4.1.

2.1.5 Nonlinear resonators

We now look at more complex circuits, that can be build by combining the previously

introduced devices. By galvanically coupling a DC-SQUID to a resonator, we can use its

nonlinearity to change the excitation spectrum of the resonator. In order to understand

the behavior of this coupled system, we first look at the field inside the resonator and

how it is changed by the presence of the SQUID.

Mode function of a resonator

We can write the field Ψ(x,t) =
∫ t

−∞ V (x,t)dt inside the resonator as a sum over combina-

tions of time-dependent ψm(t) and dimensionless spatial modes um(x)

Ψ(x,t) =
∑
m

ψm(t)um(x). (2.36)

The Lagrangian of a λ/2-resonator with length l is then given by

L =
∫ l/2

−l/2

[
C0(x)

2 Ψ̇2(x,t) − [∂xΨ(x,t)]2

2L0(x)

]
dx, (2.37)

with the capacitance per unit length C0 and inductance per unit length L0. We can write

the Lagrangian for the capacitances as

Linput = Cio

2 [Ψ̇(−L/2,t) − Vinput(t)]2 (2.38)

Loutput = Cio

2 [Ψ̇(L/2,t) − Voutput(t)]2, (2.39)

with Vinput/output being the input and output voltages at the ends of the resonator which

are coupled to transmission lines with a capacitance of Cio. Lastly, the Lagrangian of the
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SQUID is given by

Lj = Cj

2 δ̇2 + Ej cos
(

2πδ
Φ0

)
. (2.40)

Expanding the cosine allows us to separate the full description of the resonator into a

linearized part and a fully nonlinear part.

L = L′
r + Linput + Loutput − UNL(δ). (2.41)

Coupling the system via output capacitors to transmission lines places boundary conditions

on the voltage of the field, which depend on the bias voltage at the capacitances. In

addition to this, the currents flowing on the left and right side of the junction have to be

equal, which leads to the relation

1
L0
∂xΨ(x,t) = Cj δ̈ + δ

Lj

(2.42)

Both of these conditions can be fulfilled with a sinusoidal envelope function

um(x) =
{
Al sin[km(x+ l/2) − φl

m]
Ar sin[km(x− l/2) − φr

m] . (2.43)

For equal impedance, capacitance per unit length and inductance per unit length, we find

two possible constrains on Al,r where either Ar = Al (even modes) or Ar = −Al (odd

modes).

If we plug this ansatz into Eq. (2.42), we obtain a transcendental equation for the wave

vector km

koddm tan
(
koddm

l

2

)
= −Z0

ν
Cj

(
ω2
p − (koddm ν)2

)
, (2.44)

with the plasma frequency of the Josephson junction ωp = 1/
√
CjLj and the phase

velocity ν = 1/
√
C0L0. Equivalently, we can also get an equation for the wave vectors of

the even modes. Numerically solving these equation gives us possible wave vectors for

different values of ωp, which depends on the external flux bias via Lj . Using Eq. (2.43), we

can then calculate the spatial mode function of the fields inside the resonator at resonance

frequency dependent on the external flux (see Fig. 2.7). We can see that even modes

are not effected by the presence of the SQUID. Odd modes experience a jump in the

spatial mode function at the SQUID location. This stems from the fact that even modes

have vanishing current at the SQUID location. The jump ∆u in the odd modes can be

directly calculated as the difference between the mode on the left (position x−
j ) and right

(position x+
j ) side of the junction, ∆u = u(x−

j ) − u(x+
j ). This quantity is a direct measure
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Figure 2.7: First three modes of the spatial mode function of the field inside a resonator with a SQUID

in the center for different values of external flux. The top picture shows the modes for an

external flux Φext = 0, the bottom one for Φext = Φ0.

for the strength of the nonlinearity (see Sec. 2.1.6) of the system. We can also see that ∆u
depends on the externally applied flux. At Φext = 0, the nonlinearity is minimal, leading

to the smallest jump in the mode (Fig. 2.7, top panel). At Φext = Φ0/2, the nonlinearity

is at its maximum and therefore the jump is at its maximum. If we look at a symmetric

SQUID (d = 0), the jump would be equal to 1, but in our system it is reduced due to the

finite asymmetry (d = 0.13).
Looking at the wave form of the resonator, we can see that the SQUID elongates

the wavelength of the resonance. This leads to a decrease of the resonance frequency

ωr/(2π) = kν dependent on the height of the jump at the SQUID. Therefore, the resonator

exhibits its maximum resonance frequency at zero flux bias and its minimum resonance

frequency at Φext = Φ0/2 (see Fig. 2.8). At this point, in the case of a symmetric SQUID,

the wavelength would reach infinity, leading to a resonance frequency of zero. Due to

the asymmetry of our SQUID, the resonance frequency does not modulate to zero (see

Fig. 2.6).
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Figure 2.8: Resonance frequency of the first mode of a resonator with a SQUID in the center, as a

function of the external flux bias Φext. The parameters for this calculation have been taken

from Tab. 4.2.

I1 I2 I3Vx Cio CioCc

C1L1R1 C2L2R2

Vd Vout
Z0

Z0

Figure 2.9: Circuit diagram of a two-resonator (blue) system coupled to a transmission line and to each

other via lumped-element capacitors (red and yellow).

Circuit model of a two-resonator system

In order to better understand our system, we create a circuit description of a serially

connected, capacitively coupled two-resonator system. From this we can extract scattering

parameters and various interesting parameters such as the coupling capacitances, the

resonator capacitance and inductance and the resonance frequencies of the coupled system.

In this first calculation, we include the dependency of the spatial mode function on the

SQUID inductance, but ignore its nonlinear effects that arise if we heavily drive the system.

The previously given Langrangian for the output capacitances of the single resonator
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system change to

Linput = Cio

2 [Ψ̇1(−L/2,t) − Vinput(t)]2 (2.45)

Loutput = Cio

2 [Ψ̇2(L/2,t) − Voutput(t)]2. (2.46)

The fields Ψn(x,t) are here the fields of resonators n= 1,2, with x being the position inside

each resonator. The coupling capacitance adds an additional equation,

Lc = Cc

2 [Ψ̇1(L/2,t) − Ψ̇2(−L/2,t)]2. (2.47)

A circuit diagram can be seen in Fig. 2.9. We use the Norton approach, where we model

the resonator as a distributed parallel circuit. For the driving voltage (Vd) and output

voltage (Vout) we find

Vd = Z0I1 + Vx (2.48)

Vout = Z0I3, (2.49)

with I1 (I3) being the current flowing into (out of) the two resonator system. Vx is the

voltage drop across the impedance Z0 of the input cable.

We can describe the currents Ii flowing in our system using the amplitude of the voltage

mode Vj at the in- and output capacitors (capacitance Cio) and the coupling capacitor

(capacitance Cc). The index i of Ii denotes the capacitor starting from driving side, the

index j of Vj the resonator number.

I1 = (Vx − V1)iωdCio (2.50)

I2 = (−V1 − V2)iωdCc (2.51)

I3 = (−V2 − Vout)iωdCio. (2.52)

As we are looking at odd voltage modes, the signs of V1 and V2 change at their second

appearance. In each resonator the in- and outflowing currents have to be the same,

I1 = (iωdC1 + 1
R1

+ 1
iωdL1

)V1 − I2, (2.53)

I2 = (iωdC2 + 1
R2

+ 1
iωdL2

)V2 − I3. (2.54)

Here, Cn, Ln and Rn are the capacitance, inductance and resistance of resonator n = 1,2.
To include the tunability of the circuit introduced by the DC-SQUIDs, we calculate Ci

and Li as functions of the external flux Φext penetrating the SQUID loops, using the

standard ansatz for the spatial mode functions ui(x) introduced in Sec. 2.1.5:
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Ci = Cj∆um (k,Φext)2 + C0

∫ +L/2

−L/2
um (x, k,Φext)2 dx, (2.55)

Li =
(

1
L0

∫ +L/2

−L/2

(
δxum (x,k,Φext)2

)
dx

+ 1
Lj (Φext)

∆um (k,Φext)2
)−1

.

(2.56)

The S-Parameters calculated with this circuit model are used in Sec. 5.1.

2.1.6 Hamiltonian of the two-resonator system

The total Lagrangian of the system, including two resonators (i = 1, 2), the coupling

between them and the two DC-SQUIDS, can be written as

Ltot =
N=2∑
i=1

[Lr,i + LJ,i] + Linput + Loutput + Lc. (2.57)

We perform a Legendre transformation and quantize the field [48] with ladder operators,

leaving us with the full Hamiltonian of

Ĥ = ℏ
2∑

i=1
ωr,in̂i + ℏCc

√
ωr,1ωr,2

C ′
1C

′
2

(
â†

1â2 + â†
2â1
)

− e2

2ℏLJ

2∑
i=1

L′
i

C ′
i

(∆ui)4
(
â†

i â
†
i âiâi

)
. (2.58)

For ωr,1 = ωr,2 and C ′
1 = C ′

2, we can define the coupling constant between the two

resonators as

J = −ωr
Cc

C ′ (2.59)

and a purely nonlinear term

U = − e2

2ℏ
L′

C ′
(∆u)4

LJ
. (2.60)

We will show in Sec. 2.2 that this Hamiltonian is equivalent to the one of a Bose-Hubbard

system.

2.1.7 Circuit model with addition of a parasitic path

In our measurements, we cannot view our system as an isolated instance without any

influences from its environment, but have to take possible interactions with background

fields into account. This includes, e.g., standing waves inside a not optimally impedance

matched cable or a box mode inside the sample box. When the input signal couples to a

mode in the sample box, this interaction opens up new paths that the signal can take to

reach the output port without exciting the resonator system. In the following, we call
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Figure 2.10: Circuit model of the two resonator system. Resonators are shown in blue along with their

coupling (yellow) and input/output (red) capacitors. The parasitic path is shown in green

and input and output lines in black. The path is capacitively coupled to the input and

output lines and inductively coupled to the resonators with the strength quantified by

the coupling constants kL,i. Microwave drive and measurement signal are denoted by Vd

and Vout, respectively. Here, the contribution of the SQUIDs is included in the effective

capacitance Ci and inductance Li of the resonators.

such an additional path a parasitic path.

In Fig. 2.10, we introduce such a parasitic path into the circuit model, that couples

both capacitively to the input and output lines of the resonators and inductively to the

inductance of each resonator. With the addition of this path, some equations we derived

in Sec. 2.1.5 change to include terms that take the additional components into account.

For the driving voltage (Vd) and output voltage (Vout) we now include the additional

current Ip flowing through the parasitic path.

Vd = Z0(I1 + Ip) + Vx (2.61)

Vout = Z0(I3 + Ip). (2.62)

In the equations for the currents inside the resonators, we also have to take the current in

the parasitic path into account as it can induce a current in the resonator.

I1 = (iωdC1 + 1
R1

+ 1
iωdL1

)V1 − kL,1

√
L1Lp

L1
Ip − I2 (2.63)

I2 = (iωdC2 + 1
R2

+ 1
iωdL2

)V2 − kL,2

√
L2Lp

L2
Ip − I3. (2.64)

Here, kn is the inductive coupling strength of resonator n = 1,2 to the parasitic path.

Lp, Cp and Rp are the inductance, capacitance and resistance of the parasitic path. An
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Figure 2.11: Unnormalized transmission magnitude through a resonator with a lorentzian (blue) or fano

(red and green) line shape. While the lorentzian shape is perfectly symmetric, the fano

resonance shows a strong asymmetry.

additional equation describes the voltage drops inside the parasitic path:

1
iωdCp

Ip−iωdkL,1
√
L1Lp

V1

iωdL1
+ iωdkL,2

√
L2Lp

V2

iωdL2

+iωdLpIp +RpIp + 1
iωdCp

Ip = Vx − Vout.
(2.65)

The S-parameters calculated with the parasitic-path model can also be used in Sec. 5.1.

In general, the simulations of the model show that the additional path in our system

creates a broad resonance mode which is far detuned from the drive frequency ωd and acts

as a continuum at the resonance frequencies of the two resonators. This behavior can also

be described by a Fano resonance, which we will discuss in the next part in more detail.

2.1.8 Fano resonances

If a singular resonance mode is coupled to a continuum of modes, the line shape of the

resonance can be changed [55]. This change occurs due to an interference effect, as near

the resonance of the single mode, the phase of the resonance signal quickly changes (see

Sec. 2.1.3) while the phase of the continuum stays constant. This situation gives rise to

asymmetric peaks, which are commonly known as Fano resonances. In contrast to a single
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mode resonance, which can be modelled with a lorentzian line shape

L =
(κ

2 )2

(f0 − f)2 + (κ
2 )2 , (2.66)

a Fano resonance is modeled by

F =
((f0 − f) + q κ

2 )2

(f0 − f)2 + (κ
2 )2 . (2.67)

Here, q is the fano parameter which indicates the participation ratio of the single mode

versus the continuum. Vanishing participation of the continuum (q → ∞) transforms

Eq. (2.67) into Eq.(2.66). In Fig. 2.11 we plot the two different models. We can see

that the Lorentzian (blue) gives a symmetric peak as shown in Sec. 2.1.3. For the Fano

resonance, we observe a finite field while the signal is far detuned from the resonance,

due to the continuum background. Otherwise, the line shape drastically depends on

q. For q ≥ 1, we observe a clear peak-dip structure, where the peak increases in size

with increasing participation of the single resonance (increasing q). For q < 1, the peak

decreases in size compared to the dip. At q = 0.3, the peak is almost invisible. For q = 0,
the asymmetry vanishes and one obtains a symmetric dip.

The take home message here is that, depending on the nature of the background field,

the shape of a resonance can vary from a dip to a peak or a peak-dip feature. This is

especially important, if a background field is not constant in frequency and the resonance

frequency can be tuned, like in the case of a resonator that is intersected by a DC-SQUID.

When tuning the resonance through the background field, the line shape of the resonance

can change in addition to the resonance frequency.

2.1.9 Nonlinearity

So far, we have neglected the nonlinear terms in our calculations of the circuit. We can

take them into account by looking again at the full Lagrangian of one resonator,

L = Lr + Lj. (2.68)

Using the Euler-Lagrange equation and expanding the cosine term in Lj , we can calculate

the equation of motion of the nonlinear resonator and end up with a Duffing equation,

describing a harmonic oscillator with a cubic restoring force,

Ψ
L′ + C ′Ψ̈ + Ψ̇

R
+ βΨ3 = 0. (2.69)

Here β is the prefactor of the next higher order terms in the Lagrangian of the Josephson

junction. β is therefore a direct measure for the nonlinearity of the system and can be
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written as

β = 1
24

(2π
Φ0

)2 ∆u4

Lj

. (2.70)

As we typically work with driven systems, we finally add a driving term with a frequency

ωd and obtain

Ψ
L′ + C ′Ψ̈ + Ψ̇

R
+ βΨ3 = F0e

iωdt. (2.71)

Frequency response equation

In order to calculate the behavior of a Duffing system, and especially the amplitude

a = |Ψ|, we use an ansatz for small driving strength and small deviations around the

resonance frequency [56],

Ψ(t) = Aeiω0t + A∗e−iω0t, with (2.72)

A = 1
2ae

ib. (2.73)

We then find an implicit function for a, which depends on the driving strength and the

nonlinearity of the system, 1
4R2 +

(
(ω − ω0)C ′ − 3

8
β

ω0
a2
)2
 a2 =

(
F0

2ω0C ′

)2
. (2.74)

This function is called the frequency response equation. We can plot its behavior in a

frequency response curve by solving the equation either for a or for ω − ω0. The second

approach leads to an expression for frequency detunings as a function of the amplitude a,

ω − ω0 = 3
8

α

ω0C ′a
2 ±

[(
F0

2ω0C ′a

)2
− 1

4R2C ′2

]−1/2

. (2.75)

A plot can be seen in Fig. 2.12. Comparing this response to one of a linear resonator

(Fig. 2.2), we can see that the line shapes are similar for low driving strengths. For higher

driving powers, we can see that the maximal amplitude of the resonator increases and

the frequency of maximal amplitude decreases. We will discuss this point of maximal

amplitude in the next section. Higher driving strength also create regions with three

possible amplitude solutions per drive frequency. Note that, while the upper and lower

branches of these regions are stable, the intermediate solution is unstable and cannot be

observed in experiments. Performing frequency sweeps on a system like this will lead

to a hysteretic behavior. Starting from frequencies lower than the resonance frequency

leads to the system staying in the lower amplitude branch until the end of the bistability

region, where it will jump to the higher amplitude branch. Similarly, starting from higher
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Figure 2.12: Frequency response curve of a Duffing oscillator calculated with Eq. (2.74). Driving the

oscillator with higher power F0 shifts the resonance frequency to lower values. The points

of maximum frequency form a parabola (gray dashed line).

frequencies will lead to the system staying in the higher amplitude branch. Here, the

jump to the lower branch occurs at the point of maximal amplitude.

Estimating the nonlinearity of the system

For the Duffing-like equation of motion from Eq. (2.71), we can show that the maximum

amplitude of the resonance peak is proportional to the inverse nonlinearity,

|Ψ|2 = a2 = 8
3
ω0C

′

β
(ω − ω0) . (2.76)

In an experiment, we measure the voltage Vext emitted from the resonator into its microwave

feedline. Therefore, we use Ψ =
∫
V dt = V/(iω) to rewrite this equation as

V 2

ω2 = 8
3
ω0C

′

β
(ω − ω0) . (2.77)
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Here, V is the voltage of the internal mode. It is related to the measured voltage via the

external quality factor

Qext = ω
Wm +We

Ploss

= ω
|Vint|2 /(2Lω2)

|Vext|2 /Z0
. (2.78)

We use that, on resonance, the energy stored in the capacitor is equal to the one stored in

the inductance, Wm = We. Furthermore, the power of an electrical signal in our waveguide

can be written as P = V 2/Z0. We therefore obtain

V 2
int

ω2 = 2V 2
outQextL

Z0ω
. (2.79)

As a consequence the experimentally accessible voltage Vout exhibits a similar dependence

as for the internal flux field, but with an additional scaling factor:

V 2
out = 8

3
ω0C

′

β
(ω0 − ω) Z0ω

2QextL
G. (2.80)

In this equation, G is the power gain in our experiment (see experimental setup in

Sec. 4.2.2).

2.2 Bosonic quantum manybody systems

The platform of superconducting quantum circuit allows us to experimentally investigate

the solutions for interacting manybody systems. In the Bose-Hubbard system, the

interacting particles are bosons. They experience a periodic potential, where they can

hop between lattice sites and interact with each other. The competition between hopping

and on-site interaction gives rise to interesting phenomena such as a Mott insulator state

and superfluid phase. In this section, we motivate the derivation of the Bose-Hubbard

Hamiltonian and explain its properties for some special cases. Furthermore, we discuss

the implementation of Bose-Hubbard physics with superconducting circuits.

2.2.1 The Bose-Hubbard Hamiltonian

For the derivation of the Bose-Hubbard Hamiltonian, we assume a periodic potential V (x)
with distance r between each potential well of the form of,

V (x) = η sin2(kx), (2.81)
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with k being the wave vector of the periodicity and η the depth of the lattice. This

potential can be estimated to be parabolic near the position xi of lattice site i,

V (x ≈ xi) = 1
2mω

2
r(x− ir)2. (2.82)

Solutions for particles in such a periodic lattice are Wannier functions

w(x− xi)(n) = 1√
N

∑
k

u
(n)
k (x− ir)eik(x−xi). (2.83)

Here, N is the number of lattice sites and uk(x) is a periodic function showing the same

periodicity as the underlying potential V . Wannier functions are localized at the lattice

sites and decay exponentially away from them. The deeper the potential, the quicker the

functions decay. Assuming a deep potential, we can apply the tight binding model, where,

due to the the fast exponential decay, interactions beyond the nearest neighbor can be

neglected. We also assume that all particles stay in the lowest band solution n = 1 of the

Wannier functions. This is valid, as we operate our experiments at very low temperatures.

The thermal energy of our particles is therefore much lower than the excitation energy to

a higher Wannier mode.

We can then write the field operator of the bosons inside our lattice as a sum of Wannier

functions over all lattice sites,

ΨB =
∑

i

âiw(x− ir). (2.84)

Here, ai denotes the bosonic annihilation operator and w(x) is the Wannier function for

n = 1. Using this operator, we can then easily derive its Hamiltonian as

Ĥ =
∫

dz Ψ†
B(z)

[
− ℏ2

2mB

∆ + V (z)
]

ΨB(z). (2.85)

Using the Wannier ansatz (Eq. 2.84), we find

Ĥpotential =
∑

i

â†
i âi

∫
dz w∗(z)

[
− ℏ2

2mB

∆ + V (z)
]
w(z)

+
∑
⟨i,j⟩

(â†
i âj + â†

j âi)
∫
dz w∗(z + r)

[
− ℏ2

2mB

∆ + V (z)
]
w(z),

(2.86)

where ⟨i,j⟩ denote all pairs neighboring lattice sites. The first term is equal to the

Hamiltonian of a harmonic oscillator with the excitation energy

ℏωr =
∫

dz w∗(z)
[
− ℏ2

2mB

∆ + V (z)
]
w(z). (2.87)
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The second term describes hopping between neighboring lattice sites with the coupling

rate

ℏJ = −
∫

dz w∗(z + r)
[
− ℏ2

2mB

∆ + V (z)
]
w(z). (2.88)

So far, we only discussed the Hamiltonian based on the the structure of the underlying

lattice, and neglected any forms of interaction between the particles. We assume a localized

interaction of the form of V (x− x′) = gδ(x− x′).
The Hamiltonian of this interaction can be written as

Ĥinteraction = g

2

∫
Ψ†

B(z)Ψ†
B(z)ΨB(z)ΨB(z)

= g

2
∑

i

â†
i â

†
i âiâi

∫
dz w∗(z)w∗(z)w(z)w(z).

(2.89)

Here we define the on-site nonlinearity as

ℏU = g
∫

dz w∗(z)w∗(z)w(z)w(z). (2.90)

The total Hamiltonian of the system is then given by

ĤBH = ℏωrâ
†
i âi − ℏJ

∑
⟨i,j⟩

(â†
i âj + â†

j âi) + ℏU2
∑

i

â†
i â

†
i âiâi, (2.91)

which is known as the Bose-Hubbard Hamiltonian.

2.2.2 Phases of a Bose-Hubbard system

The physics in a Bose-Hubbard system are governed by two drastically different phases.

The phases arise from the competition between the hopping term J and the on-site

nonlinearity U . If U ≫ J , adding an additional particle to one site requires the energy

given by the nonlinearity. Therefore the number of particles in the system is constant and

the ground state is given by a state with the same number of particles in each lattice side

|ΨMI⟩ ∼
∑

i

(
â†

i

)n
|0⟩ . (2.92)

This state is called a Mott insulator. Hopping between lattice sites does not occur, as

the energy cost of adding a (n+1)th particle on lattice site i (∼ (2n + 1)U/2) is larger
than the energy gain of removing the nth particle on lattice site i±1 (∼ (−2n+ 1)U/2),
leading to an energy difference of U compared to the ground state shown above.

If, on the other hand, the coupling is the dominating energy scale in the system (J ≫ U),

the behavior changes drastically towards a superfluid phase. Here, the state can be written
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as

|ΨSF⟩ ∼
(∑

i

â†
i

)n

|0⟩ . (2.93)

Here there is no energy difference created by hopping between sites, meaning that particles

can move freely through the lattice.

2.2.3 Particle numbers and driving

In the theoretical description of the Bose-Hubbard system, the number of particles in the

system is of great interest and depends on the chemical potential

µ = ∂E

∂N
. (2.94)

In cold atom experiments, the particle number is typically fixed by the number of atoms

during initialization of the system. Working with superconducting circuits allows us to

quickly change and adjust the number of particles using microwave drives. We can model

the drive by adding the additional term

Ĥdriving =
∑

i

(Ωie
−iωdtâ†

i + Ω∗
i e

iωdtâ†
i ) (2.95)

to the Hamiltonian of the undriven system [Eq. (2.91)]. Here, we drive lattice site i with

frequency ωd and amplitude or Rabi frequency Ωi.

The behavior of this driven system does not directly depend on absolute frequencies, but

rather on the detuning between them. This effect is best illustrated by moving into a frame

rotating with the drive frequency ωd. Mathematically, this transformation corresponds to

the unitary operator

Ûrot = eiωdt
∑

i
â†

i âi . (2.96)

The unitary transformation of the time-dependent driving Hamiltonian Ĥdriving is given by

Ĥ ′
driving = ÛĤdrivingÛ

† + iℏ
˙̂
UÛ †. (2.97)

Note that this transformation does not change parts of the Hamiltonian with higher order

dependence on â, such as the coupling term Ĥcoupling ∼ â†â. The transformation of Ĥdriving

to

Ĥ ′
driving =

∑
i

(Ωiâ
†
i + Ω∗

i â
†
i ) − ℏωd

∑
i

â†
i âi (2.98)

We can combine the second part of the driving Hamiltonian with the harmonic oscillator
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Hamiltonian, which leaves us with the driven Bose-Hubbard Hamiltonian

ĤBH = ℏ∆
∑

i

â†
i âi − ℏJ

∑
⟨i,j⟩

(â†
i âj + â†

j âi)

+ ℏU2
∑

i

â†
i â

†
i âiâi +

∑
i

(Ωiâ
†
i + Ω∗

i â
†
i ).

(2.99)

Here, ∆ = ωr − ωd is the detuning between the drive tone and the resonator frequency.

If we compare Eq. (2.99) to Eq. (2.58), we see that they model the same physics.

The difference between the two is the missing driving in Eq. (2.58), which can be easily

realized by adding microwave drive tones at the resonator inputs. The potential of the

Bose Hubbard system is here given by the superconducting resonators. The photons

exciting the resonator are the bosons that populate the potential. The hopping between

the potential well with amplitude J is realized by the capacitive coupling between single

resonators. The on-site interaction U is created by the addition of the DC-SQUID, that

is galvanically coupled to the middle of the resonator.

2.2.4 Lindblad master equation

When studying the driven Hamiltonian, we also have to include losses. In the case of a

superconducting circuit, these losses stem from either the coupling capacitors (external)

or from coupling to other environments (internal, see also Sec. 2.1.3). Typical internal

losses are, e.g., losses to the dielectric material. We include the effect of these losses using

a Lindblad master equation approach [57],

d

dt
ρ̂(t) = Lρ̂(t). (2.100)

This equation is valid as long as a loss process is described as a Markov process. In the

quantum description discussed here, the classical probability distribution pt(x) is replaced

by the density matrix ρ̂(t). Its solution are defined by a linear map L, which can be

written according to Lindblad [58] as

Lρ̂(t) = − i

ℏ

[
Ĥ,ρ̂

]
+
∑

i

γi

2
(
2âiρ̂â

†
i − âiâ

†
i ρ̂− â†

i âiρ̂
)
. (2.101)

Here, γi is the loss rate of a specific process at the lattice site i. L is often referred to as a

superoperator, i.e. an operator acting on operators.
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2.2.5 States and operators of the Bose-Hubbard system

We assume that the bosonic states on each lattice site can be written as a linear combination

of d Fock states,

|Ψ⟩ =
d∑

n = 1

cn |n⟩ . (2.102)

The finite dimension d is introduced in order to reduce processing time in calculations.

This approximation is valid if the driving strengths are low compared to the loss rates.

For high drive powers, higher Fock states are also populated. It is therefore necessary to

investigate the population of different Fock states during simulations in order to check

the validity of the approximation.

For pure quantum states, we can then formulate the density matrix as

ρ̂ =
d∑

n,m=1
ρnm |n⟩ ⟨m⟩ , (2.103)

with ρnm = ⟨n| ρ̂ |m⟩ [59]. Additionally, we can write the Fock state |n⟩ with the photon

number limited to n < d as a d-dimensional vector with only zeros except a 1 at position

n. Using this vector form, we can also find an easy representation of the annihilation and

creation operators â† and â. The two fulfill the following equations:

â |n⟩ =
√
n |n − 1⟩

â† |n⟩ =
√
n + 1 |n + 1⟩ .

(2.104)

Hence, the matrix representation of these operators is

â =



0 1
0

√
2 00

√
3
. . . . . .

0 0
√
d

0


(2.105)

â† =



0
1 0 0√

2 0√
3 0

0
. . . . . .√

d 0


(2.106)

If we adjust the density matrix for a system with two lattice sites which can each hold a

superposition of Fock states, we end up with a d2 × d2 dimensional density matrix that
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represents the whole Hilbert space of the two lattice system.

To find the expectation value of an operator for a system state ρ, we use〈
Ô
〉

= tr(Ôρ̂) (2.107)

2.2.6 Steady-state solutions

In a system with competing driving and losses, one expects to find nontrivial steady-state

solutions. The steady state is defined by a density matrix which is constant in time,

d

dt
ρ̂(t) = 0, (2.108)

leading to

− i

ℏ

[
Ĥ,ρ̂

]
+
∑

i

γi

2
(
2âiρ̂â

†
i − âiâ

†
i ρ̂− â†

i âiρ̂
)

= 0, (2.109)

with the commutator
[
Ĥ,ρ̂

]
= Ĥρ̂− ρ̂Ĥ. One can show [59], that this equation can be

written as[
−i
(
Ĥ ⊗ Î − Î ⊗ ĤT

)
+
∑

i

γ

2
(
2â⊗ â∗ − â†â⊗ Î − Î ⊗ âT â∗

)]
ρ̂ = 0 (2.110)

with Î being the d2 × d2 identity matrix and ⊗ the tensor product of two matrices. All

operators are in a superspace of the two Hilbert spaces of the two resonators. The resulting

linear equation can then be solved by standard means.

2.3 Correlation functions

In the simulations of the Bose-Hubbard system, we take special interest in the density-

density or second-order correlation functions g(2) of the fields inside the resonators. This

correlation describes the likelihood of measuring two photons at the same time. Values

larger than 1 signify a higher likelihood than in a coherent field, values smaller than 1

signify a lower one. The second-order correlation function for the field at lattice site i is

given by [60]

g
(2)
i (0) =

〈
â†

i â
†
i âiâi

〉
〈
â†

i âi

〉2 . (2.111)

g(2) is a good measure for the quantum mechanical nature of a field, as all classical fields

exhibit only g(2)(0) values larger than or equal to 1. A coherent field, for example, has

g(2)(0) = 1, while chaotic fields [60] have g(2)(0) = 2. A correlation function of 0 is reached

for a single photon. This can easily be seen, if we express g(2) in terms of the photon



2.3 Correlation functions 33

number n̂i = â†
i âi

g
(2)
i (0) = ⟨n̂i(n̂i − 1)⟩

⟨n̂i⟩
. (2.112)

We can also look at correlations between the fields at two different lattice sites. These

describe then the likelihood of finding an excitations at both lattice sites at the same time.

This cross correlation is given as [61]

g(2X)(0) =

〈
â†
1â

†
2â2â1

〉
〈
â†
1â1
〉 〈
â†
2â2
〉 . (2.113)





Chapter 3

Classical simulations of the

Bose-Hubbard model

For few lattice sites and low excitations of the system, it is still possible to perform

classical simulations of the Bose-Hubbard model, within a reasonable time span. These

simulations allow one to get a deeper understanding of the physics of the system, find a

set of parameters, that one wants to look at in an experiment and finally validate results

of a possible quantum simulation experiment. Here, we present results of calculations of a

Bose-Hubbard system that corresponds in its size (two lattice sites) and the parameter

space to the experimental setup we investigate in chapter 5. We take a special interest

in the second-order correlation function g(2)(0) of the field inside the resonators and the

cross-correlation function g(2X)(0) between the two resonators.

3.1 Implementation

We investigate the behavior of the Bose-Hubbard Hamiltonian for a lattice with two sites.

This means that, for calculation purposes, all sums over the lattice sites contract to two

summands. In order to perform steady-state calculations, we express Eq. (2.99) in the

matrix form presented in Sec. 2.2.5. Note that â and â† take slightly more complex forms

in order to take all possible states of the two lattice site system into account. The ones

given in the previous section, are only valid for the subspace of a single site. Translating

them into the combined Hilbert space gives

â1,d2×d2 = Îd ⊗ âd×d ⊗ Î1,

â2,d2×d2 = Î1 ⊗ âd×d ⊗ Îd.
(3.1)

We solve Eq. (2.110), taking the normalization of the density operator tr(ρ̂) = 1 into

account. We then use the solution for the density matrix to calculate the expectation

values of operators by means of Eq. (2.107). For example, the expectation value for â is

given by

⟨â⟩ = tr(ρ̂â). (3.2)

35
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Figure 3.1: Level spectrum of a system of two nonlinear resonators. Levels of the uncoupled system are

shown in blue, excited levels of the coupled one in red. Dashed levels are not populated by

our protocol. Due to the nonlinearity, higher levels are detuned from the |0⟩ − |1⟩ transition.

State descriptions are given without the normalization factor.

This method can be used to calculate the expectation value of the polariton number
〈
â†â

〉
on each lattice site and also to calculate correlation functions.

In our calculations, we truncate the Fock basis at d = 8. In this way, we significantly

reduce the calculation time, but introduce an approximation into the calculation. In

order to determine an acceptable compromise between these two competing interests, we

perform a detailed study of the Hilbert space truncation on the calculation time and the

severity of the approximation [62].

In the simulations, we focus on a parameter space similar to the one of the sample

chip studied in chapter 5. We set the coupling rate J = 7.62 MHz, which corresponds

to a value well within the range of the experiment. We vary the nonlinearity from 0 to

10 MHz and the driving strength from 0 to 15 MHz. As we calculate the steady-states of

the driven system, the loss rate of the system has to be taken into account as well. We

set κ = 1 MHz.
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Figure 3.2: Second-order on-site (top) and cross (right) correlation function of a nonlinear two resonator

system with fixed nonlinearity U/2π = 0.75 MHz and driving strength Ω = 1 MHz as a

function of the detuning ∆ of the drive frequency from the unperturbed single resonator

frequency. Red dashed lines show expected drive frequencies for transitions from the ground

state to energy levels of the coupled system (see Fig. 3.1).
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3.2 Second-order correlation functions

Using the method and parameters described in the previous section, we simulate the

second-order correlation functions of the resonators. In Fig. 3.2, we show the results of the

correlation functions for a fixed nonlinearity U/2π = 0.75 MHz and a fixed driving strength

Ω = 1 MHz. By varying the detuning of the driving signal from the unperturbed frequency

of the resonators, and evaluating the correlation functions, we find different regimes for

our system. A level scheme can be seen in Fig. 3.1. In summary, we observe that, far away

from any transitions, the on-site second order correlation function is governed by the drive

and therefore corresponds to the one of a classical driving field g
(0)
2 (0) = 1 while g

(0)
2 (0) is

smaller than 1 near single polariton transitions. On the other hand, near two-polariton

transitions, g
(0)
2 (0) is larger than 1 as it is unlikely to observe single excitations in these

regions. Similarly, the second-order cross correlation function g(2X)(0) is close to 1 if the

system is detuned from any transition. Near transitions that allow excitations in both

resonators, g(2X)(0) is larger than 1, while it is smaller than 1 near transitions that only

allow excitations in one of the two resonators.

Details of the on-site correlation functions

We take a closer look at the second-order correlation function of the field in one resonator

shown in the top panel of Fig. 3.2. Starting from a detuning of −15 MHz, the correlation

function is close to 1, which corresponds to a classical system. If we increase the signal

frequency, we approach the transition from the 0 polariton state to the |2,0⟩ + |0,2⟩ − |1,1⟩
state. This transition is detuned by J/2π − U/2π from the single resonator energy level

with two polaritons. As it is a two-polariton energy level and as there is no single polariton

energy level at this frequency, the signal inside the resonator has a correlation function

larger than 1. As we can see, the actual peak of the correlation function is below the

frequency of the actual transition and at the point of the transition, the correlation

function is actually smaller than 1. The reason for this is mainly the power dependence

of the resonators. As discussed in Sec. 2.1.9, the resonator frequency is shifted to lower

frequencies. In addition, energy levels with higher polariton numbers are even further

detuned from the coupled resonance frequency (e.g., the three polariton energy level is

detuned by 3U , the four polariton one by 12U). Decreasing the detuning further, tunes

the signal out of resonance with the |2,0⟩ + |0,2⟩ − |1,1⟩ transition and in resonance with

the |1,0⟩ − |0,1⟩ transition. As this energy level is a single polariton one, the correlation

function falls below 0, reaching a minimum directly on resonance with the mentioned

transition.

This behavior is repeated for two additional drive frequencies, where we can also see a

transition from a high correlation function to one below 1. Due to its strong similarity to

the previously discussed feature, we will continue with the explanation of the feature that

occurs at the highest frequency. The energy spectrum around this frequency contains the
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upper energy levels of the coupled resonator states |1,0⟩+ |0,1⟩ for a single polariton energy

level and |2,0⟩ + |0,2⟩ + |1,1⟩ for a two-polariton energy level. The two-polariton energy

level is shifted towards lower frequencies, by the nonlinearity, detuning this transition

from two times the single polariton energy level. If we therefore set the drive signal at

a frequency detuning of J/2π, we are only in resonance with the |1,0⟩ + |0,1⟩, leading
to g

(0)
2 (0) < 1. Setting the detuning to a frequency lower than this transition, the drive

comes into resonance with two-polariton excitation of the |2,0⟩ + |0,2⟩ + |1,1⟩ transition,

leading to a larger correlation function g
(0)
2 (0) > 1. Again, the actual peak is shifted

downwards due to the non-zero driving strength.

The third feature, which appears around zero detuning, can also be explained by using

the energy level structure of the system. In contrast to the two previous features, the

population of the states, that are dominating the physics in this frequency range, is heavily

suppressed. This makes it especially difficult to measure the correlation function inside

a resonator as almost no signal is leaking out of it. Nevertheless, the simulations show

that the correlation functions show a behavior similar to the other features. We observe

a correlation function of below 1 for a signal of ∆ = 0. Here, the signal is on resonance

with both the signal polariton energy level of one resonator and the two-polariton energy

level with one polariton in each resonator. Both of these transitions allow only for one

polariton in each resonator, which explains the small correlation function. Decreasing

the signal frequency, tunes the signal into resonance with the uncoupled two-polariton

transition which is shifted by (U/2π). As this transition enforces a polariton number

n > 1, the correlation function is larger than 1.

Details of the cross-correlation functions

In addition to the correlation function describing the polariton statistics inside each

resonator, we can also investigate cross-correlations between the polariton fields of the two

resonators via the second-order cross-correlation function g(2X)(0). The cross-correlation

describes the likelihood of find an excitation in the second resonator if there is an excitation

in the first one. Looking at the calculations of this correlation (Fig. 3.2 , bottom panel),

we can see, that the Bose-Hubbard system features cross-correlation functions that lie both

below and above 1, which indicates a lower or higher probability of finding an excitation

in both resonators at the same time compared to a classical coherent field, respectively.

Similar to the on-site correlation, we observe three clear features, that correspond to

different energies in the excitation spectrum of the coupled system. In comparison with

the on-site correlation function we discussed in the previous section, these features in the

cross-correlation lie at roughly the same drive frequency, indicating that the underlying

effects are related. Similarly, we will now discuss now discuss these in detail. We start

again at a detuning of −15 MHz, where the correlation function is at 1, and increase the

drive frequency. As the drive is in resonance with the |2,0⟩ + |0,2⟩ − |1,1⟩ transition that is

shifted downwards by the nonlinearity, we observe a peak in the cross-correlation function
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Figure 3.3: On-site (left) and cross (right) correlation function of a nonlinear two-resonator system with

fixed driving strength Ω = 1 MHz at one resonator as a function of the detuning ∆ of the

drive frequency from the unperturbed single resonator frequency and the nonlinearity U . We

limit the color scale of the correlation functions to 2, as the values can get quite large, which

makes the effects to be less visible as we are mostly interested in whether the correlation

functions are below or above 1.

clearly above 1, that created by the contribution of the |1,1⟩ state. Again, the peak is

shifted from the actual transition energy, as we apply a non-zero drive tone. Increasing the

frequency further tunes the system into resonance with the |1,0⟩ − |0,1⟩ transition, which

is unaffected by the nonlinearity of the resonators. Here, the cross-correlation function

falls below 1, as the |1,0⟩ − |0,1⟩ state enforced exactly one polariton in only one of the

resonators. The second feature, which can be seen near ∆ = 0, is flipped in comparison

to all previously discussed features. At negative detuning, the system is in resonance with

the |2,0⟩ − |0,2⟩ transition, which also only allows polaritons in one of the two resonators.

Therefore, the cross-correlation function is below 1 in this region. Tuning the drive into

resonance with the unperturbed resonance frequency, we then observe the effect of the

|1,1⟩ state, which leads to a cross-correlation function above 1 as it allows only excitations

with one polariton in each resonator. The third feature is then analogous to the first one,

where the drive is first in resonance with |2,0⟩ + |0,2⟩ + |1,1⟩ which leads to a g(2X)(0) > 1.
At slightly higher frequencies it is in resonance with |1,0⟩ − |0,1⟩, leading to g(2X)(0) < 1.

3.2.1 Correlation functions and nonlinearity

In our experiment, we have the possibility to tune the nonlinearity U in situ. In the

previously discussed calculations, a constant nonlinearity of 0.75 MHz has been used. This

nonlinearity has a big impact on the correlation functions, as it modifies the energy level

structure of the coupled system. In this section, we therefore investigate the effect of the

nonlinearity on both the on-site and the cross-correlation function. The results of this
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calculation for the fixed driving strength Ω = 1 MHz can be seen in Fig. 3.3. First, we can

see that for vanishing nonlinearity, both correlation functions are 1 for all drive frequencies.

This shows us that the change in the correlation functions is a purely nonlinear effect. For

U = 0, energy levels are equidistant and we obtain a coherent behaviour. The case of a

small, but nonzero nonliearity has been discussed in the previous sections. If we increase

the nonlinearity further, the parts of the on-site correlation function which show g2(0) > 1
move towards lower frequencies and broaden. As the involved modes are shifted by ℏU ,

the shift is directly affected by the nonlinearity. The broadening can be explained by the

Duffing-like behaviour of the resonators. As explained in Sec. 2.1.9, increasing nonlinearity

leads to a broader resonance frequency in systems governed by a Duffing-like behaviour.

For the two features around the coupled modes, the transition to the region of low on-site

correlation functions at ∆ = ±15 MHz is not changed by the increase in nonlinearity,

as the responsible one polariton excitations are unaffected by its change. We can also

observe that the larger the nonlinearity, the lower is the value of the correlation function

in these regions. Also, the value of the correlation function gets bigger with increasing

nonlinearity in regions with g(2)(0) > 1. The dependence of the cross-correlation function

on the nonlinearity is similar to that of the on-site-correlation function as the underlying

transitions behave in the same way.

3.2.2 Correlation functions and driving strength

Another parameter that we investigate numerically is the strength of the drive signal. In

an experimental setup, this is easily controlled by increasing the power of the microwave

drive. We set the nonlinearity again to 0.75 MHz and calculate the correlation functions

for varying driving strength from 1 to 15 MHz. The result of this calculation can be seen

in Fig. 3.4. As we have discussed in Sec. 2.1.9, an increase in power leads to a shift of

the effective resonance frequency. We can observe this behaviour very clearly both in the

on-site and cross-correlation function. In both cases, the features near the two coupled

modes are clearly shifted towards lower frequencies with increasing drive power. The

feature around zero detuning seems to be unaffected by the driving strength. Naively,

we would expect that also this feature is shifted, as the |2,0⟩ − |0,2⟩ state should also be

affected by it. In our calculations, this is not visible because the transition is forbidden

and therefore the state is not populated due to the coupling of the resonators. As a

result, the corresponding transition frequency stays unchanged up to until approximately

12 MHz, where we observe a small trend towards lower frequencies. For higher driving

strength, we observe additional resonances that show correlation functions larger than

1. Due to the higher driving, these resonances which are higher-order excitations of the

system can be reached and therefore contribute to the overall behaviour of the system. As

can be seen in the Hamiltonian, these higher-order excitations are shifted by multiples of

the nonlinearity and therefore appear at frequencies just below the one and two-polariton
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Figure 3.4: On-site (left) and cross (right) correlation function of a nonlinear two resonator system with

fixed nonlinearity U/2π = 0.75 MHz as a function of the detuning ∆ of the drive frequency

from the unperturbed single resonator frequency and the driving strength Ω.

transitions we previously discussed.

3.2.3 Comparing on-site and cross-correlation functions

If we compare the results for the on-site and cross-correlation functions, we find that there

are parameter regions, where the two almost coincide and regions, where they clearly differ

from each other. Especially if we compare the two functions to the value of a coherent field,

we can distinguish four different regimes. In Fig. 3.5, we plot both correlation functions

and mark the four regimes with different background colors. The orange background

indicates that both functions have values above 1. The highest values can be observed at

the resonance frequency of the coupled resonators, where the two are heavily excited and

transmission through the system is possible. Green indicates correlation functions below

1, meaning that if an excitation occurs it is less likely than in a coherent field to find

additional excitations either in the same resonators or the adjacent one. In the regime

colored with red, the on site correlation is larger than 1 but the cross-correlation is below

1. This means, we are likely to find multiple excitations in one resonator, while the second

one is not excited. Lastly, we find a regime, colored in blue, where this relation is turned

around. Here, the cross-correlation is larger than 1 and the on-site one is lower. We can

visualize this as a state where it is likely to find excitations in both resonators at the same

time, but unlikely to find multiple excitations in a single resonator. For a larger lattice

this can be viewed as a form of a polariton crystal, where we find a polariton at each

lattice site due to the high cross-correlation. For the last three regimes (green, red and

blue), the transmission through the system is low as it is suppressed by either correlation

function being below 1.

Experimentally, it is therefore vital to build a very sensitive correlation function
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Figure 3.5: On-site (red) and cross (blue) correlation function of a nonlinear two resonator system with

fixed nonlinearity U/2π = 0.75 MHz and fixed driving strength Ω = 1 MHz as a function of

the detuning ∆. The colored background indicates regions where both correlation functions

are larger than 1 (orange), smaller than 1 (green) or where g(2X)(0) < 1 and g(2)(0) > 1 (red)

and vice versa (blue).

measurement setup. In the following, we present a measurement setup which allows us to

measure the correlation functions of such weak signals.





Chapter 4

Sample fabrication and measurement

setup

In this section, we focus on the experimental setup. The first part (Sec. 4) shows the

sample design of the superconducting circuit we use for the experiments. In the second

part (Sec 4.2), we present the different measurement setups used for the experiments done

in the scope of this thesis.

4.1 Sample

Here, we show the sample and its fabrication procedure. In Sec. 4.1, the circuit design in

general and its design parameters are discussed. Section 4.1.2 describes the fabrication of

the sample.

4.1.1 Sample design

The sample is a 525 µm thick silicon chip with superconducting aluminum circuits on

top of it. The Josephson junctions are fabricated using double-angle shadow evaporation.

The total thickness of the aluminum structure is 140 nm (see sec. 4.1.2). A sketch of the

sample and micrographs of different important parts of it can be seen in Fig. 4.1. The

circuit consists of two superconducting, serially-connected resonators, which are each

intersected by a DC-SQUID.

Resonators

The main part of the superconducting circuit is formed by two capacitively coupled

resonators. They are fabricated in the coplanar waveguide (CPW) design. The width

of the inner conductor is 13.2 µm and the two gaps between inner and outer conductor

are 8 µm each. This results in an impedance of 50 Ω, which is also the impedance of the

used cables and electronics. Matching the impedance between all components is helpful to

avoid losses and reflections that would occur at impedance mismatches. The resonators

45
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are confined by finger capacitors to form a resonator length of 7420µm. This length of

the resonator sets the unperturbed resonator frequency. The DC-SQUID only tunes the

resonance towards lower frequencies, so that the unperturbed frequency sets a theoretical

upper limit, that cannot be reached due to the finite Josephson inductance of the SQUID.

As we are limited to a measurement window between 4 GHz to 8 GHz by cryogenic

circulators, we want to set the resonator length in a way that the maximum resonator

frequency is around 8 GHz. From the resonator length, we calculate fres = 8.043 GHz.
Including the SQUID, which tunes the resonance frequency down, the real maximum

resonance frequency will lie inside the measurement window.

Coupling capacitor

The resonators are coupled via a finger capacitor (see Fig. 4.1) with a finger length of

20µm. Finger capacitors can achieve a higher capacitance and with this higher coupling

strength between the resonators as compared to, e.g., gap capacitors. Since we aim for an

intermediate capacitance, we only use a single finger. Additional fingers would further

increase the size of the capacitor and with this the capacitance. We aim for a coupling

strength of J
2π

= 10 MHz. To be able to predict the coupling strength of different capacitor

designs, we investigate different samples with different capacitor designs [63]. We find

that a finger length of 20µm leads to a frequency splitting of the two resonances in a

transmission measurement of 21.1 MHz. The coupling can be calculated from the splitting

with J
2π

=
√

(δf)2−∆2

2 , where J is the couling strength, δf is the frequency splitting and ∆
is the detuning of the bare resonator frequencies. We can see, that with a finite detuning

of the resonators, the coupling strength is always lower than half the frequency splitting.

Due to inaccuracies in fabrication, building resonators with the exact same frequency is

almost impossible and detunings of a few MHz are not unusual. With this in mind, we

choose the finger length of 20µm and expect to get a coupling strength of around 10 MHz.

In- and output capacitors

On either side of the resonator dimer, the resonators are capacitively coupled to external

feedlines with additional finger capacitors (see Fig. 4.1). There are two main constrains on

the design parameters. Firstly, the strength of the signal leaking out of the resonator. For

a high-power experiment, where the resonator is populated by thousands of photons, the

signal will be easily detectable even with low output coupling. But for measurements with

low power, where the average population of the resonator is in the order of one or even less

than one photon, it is critical to have high enough output coupling to be able to measure

the field inside the resonators. Secondly, we want to get access to the driven dissipative

regime, where a driving tone and the losses of the resonator compensate each other to

build a steady state. In our theoretical simulations, we find steady state solutions for a loss

rate κ = 0.5 MHz. In this simulation with a driving strength of 0 MHz ⩽ Ω ⩽ 20 MHz, we
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find an average population of our system of 0.1 ⩽ n ⩽ 3 in interesting regions. A thorough

estimation of the signal strength that we can resolve in our system is very challenging, as

we would need to know the exact amplification rates and noise numbers and our exact

measurement bandwidth, but as most of the experimental setup was newly set up after the

sample design, the best estimation that we can do is to compare it to similar setups. In

house, we can achieve resolutions of signal down to n ⩽ 1. We conclude, that a bandwidth

of 0.5 MHz should satisfy both our design goals. Similar to the coupling capacitor, we use

a set of resonators with different output capacitors to obtain the right finger length for

our design goals. We choose a finger length of 40µm which leads to the desired loss rate.

DC-SQUIDs

We place a DC-SQUID near the current maximum of each resonator. The area of the

SQUID loop is ASQUID = 10.5 µm × 24.5 µm. This area determines how strong the

magnetic field has to be at the SQUID, in order to get a specific amount of flux in the

loop. Loop size is always trade off between being able to tune the critical current of

the SQUID with little current flowing through the antennas and noise sensitivity of the

SQUID. If the SQUID loop is too large, flux noise can easily couple to the SQUID and

lead to an unstable or broadened frequency of the resonator. Previous work done at

the Walther-Meissner-Institute shows that, with a similar SQUID and antenna design,

one can achieve good tunability through on-chip antennas [64]. As we can also tune the

resonator frequency via an external coil, which allows for larger magnetic field sweeps,

tunability of the flux via the antennas by less then a flux quantum are enough to ensure

full control of our resonators. The inner conductor of the resonator shrinks to 750 nm
starting at a distance of 19.5 µm from the SQUID. The width of the conductor in the

SQUID loop is 550 nm. This loop is interrupted by two Josephson junctions with slightly

different dimensions. Junction 1 has an area AJJ1 = 101.0 · 103 nm2 and junction 2 an

area AJJ2 = 54.4 · 103 nm2. This leads to an asymmetric SQUID, which is described in

Sec. 2.1.4. An asymmetric SQUID is advantageous for us, as we are limited to a window

between 4 GHz to 8 GHz, and therefore don’t have access to low frequency ranges. In

addition, a flatter dependence of the frequency on the applied magnetic flux leads to

less sensitivity to flux noise. The estimated overlap from the design is 150 nm for both

junctions although the actual overlap varies because the fabrication is not one hundred

percent exact (see Sec. 4.1.2). With an estimated critical current density Jc = 150 A/cm2

this gives design values for the critical current of the two junctions of Ic,1 = 151.5 nA and

Ic,2 = 81.6 nA and a total critical current of the SQUID Ic = 233.1 nA.

Antennas

The on-chip antennas are shorted CPWs [see Fig. 4.1 (e)]. The current flowing through

the shorting strips then causes a magnetic field at the SQUID position. These types of
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Figure 4.1: (a) Sketch of the two-resonator sample chip (black lines: resonators, feed lines and antennas)

mounted into a photograph of the sample holder. The ground planes on both sides of the

CPW structures are connected to each other using aluminum bonds. Colored rectangles

indicate zoom-in views. (b) 40 µm long finger capacitor to couple the resonator to the external

feedline. The width of the inner conductor of the waveguide is 13.2 µm and gaps between

inner and outer conductor are 8 µm each. (c) 20 µm finger capacitor connecting the two

coplanar waveguide resonators. (d) Zoom-in view showing one of the Josephson junctions of

the (e) dc SQUIDs (false color micrograph). The SQUIDs are galvanically coupled to the

inner conductor of each resonator at the current antinode. The structure on the left of the

SQUID loop is one of the on-chip antennas.
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Table 4.1: Brief overview of the fabrication recipe.

Step Details

Cleaning Acetone and Isopropanol
Apply Resist AR-P 617.08 and ARP 679.02
Apply gold particles Used to focus on the chip with EBL
Writing in EBL Write whole chip, but specific parts with different doses
Developing Developer AR-600-56 and Isopropanol
Two angle shadow
evaporation

Full chip aluminum evaporation with intermediate oxidation

Cleaning Remove all resist and aluminum on top of the resist with
acetone

antennas create an antisymmetric field distribution, which leads to zero flux inside the

loop, if the center of antenna and loop align. Therefore, we place the antenna 12µm
off center. The inner conductor at the end of the antenna is 4 µm long and the strips

are 28µm long and 1 µm wide. The CPW structure used to connect the antennas to the

outside has the same dimensions as the resonators.

In- and output lines

The lines connecting the resonators to the external feed lines are also CPWs. They have

the same dimensions as the resonators and antennas, only at the edge of the chip, they

are broadened with tapers. Here, the width of the inner conductor is 127µm and the

gap is 101µm wide. The tapering is done over a length of 750 µm, so that the changes in

impedance are as smooth as possible. The increase in width is important, as the chip is

connected with wire bonds to the surrounding printed circuit board (see Sec. 4.2.1).

4.1.2 Fabrication

In this section, we report on the process we used to fabricate the sample measured in

the scope of this thesis. We use an all-aluminum process and fabricate everything in the

facilities of the WMI. In the following, we present our recipe and also dive into details on

fabrication parameters and important steps that lead to a working sample.

Recipe overview

Here we give an overview over the fabrication recipe. A very brief overview can be seen in

Tab. 4.1 and a visualization of the most important steps of the junction fabrication in

Fig. 4.2. We start our process with pre-cut high-resistivity (R > 3 kΩ) silicon wafers with

a thickness of 525 µm. They are not artificially oxidized and therefore only have a thin

layer of naturally formed SiOx on them. The dimensions of the chips are 6 mm × 10 mm.



50 Chapter 4 Sample fabrication and measurement setup

(a) (b) (c)

(d) (e) (f )

Figure 4.2: Sketch of the sample fabrication. Josephson junctions are fabricated with double-angled

shadow evaporation. First, two resist layers are applied to the sample (b), exposed and

developed (c). Next, two layers of aluminum are evaporated with an aluminum oxide layer in

between (d,e). Finally the resist including the unwanted aluminum is removed (f).

The sample is then cleaned with a standard cleaning process using acetone and isopropanol.

This step removes dirt on the chips, a layer of protective varnish and the glue that kept

the chip attached to a foil after cutting and during transportation. The chips are put into

70 °C warm acetone for 30 s. Afterwards, the chips are cleaned three times in an ultrasonic

bath for 2 min using, in that order, technical acetone, high purity acetone and high purity

isopropanol. During these steps, we make sure the chips are never exposed to air. Then,

the chips are dried with pressurized nitrogen. In the next step, we apply two resist layers

onto the sample [Fig. 4.2(c)]. The bottom resist layer is made from AR-P 617.08 e-beam

resist1. We start by baking the chip for 5 min at 200 °C on a hotplate. Afterwards, the

chip is spin-coated in a nitrogen atmosphere. We use 2000 rpm for 2 min, leading to a layer

thickness of approximately 680 nm. Afterwards, the chip is baked at 160 °C for 10 min.
We then repeat the spin coating process with the top layer resist PMMA/950K/AR-P

679.021. The layer thickness of this resist when spin coating with 2000 rpm is 100 nm. In

order to easily set the focus in the electron beam lithography (EBL) machine, we apply

gold particles to the edges of the sample. These particles can be easily found under the

microscope of the EBL machine as bright dots. Then, we write the structure of our sample

using EBL. We write the whole chip in one step, but vary the dose applied in different

parts. We relate all used doses to the highest used dose, which is 7. We use this dose

for the metallized parts of the SQUID loop and the conductor leading to the loop. The

ground plane and the inner conductors far from the SQUID are written with a dose of

1Made by Allresist GmbH
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0.66 times the base dose, to reduce the time it takes to write the sample. The edges of the

CPW are written with a dose of 0.82 times the base dose to increase sharpness and, on the

other hand, to reduce the proximity effect of the big ground planes. Around the junctions,

we create an undercut by applying only very little dose (0.2 times the base dose). This

amount is too little to fully expose the top resist layer, which means that, after developing,

a free-standing bridge of the top resist still remains. This bridge is required to perform

shadow evaporation to create the Josephson junctions. Developing is done by putting our

samples in the developer AR-600-561 for 45 s and afterwards in 4 °C cold isopropanol for

2 min. Doing the second step in cold isopropanol as opposed to room temperature proved

to increase the sharpness of the fabricated structures. During development, we constantly

move the sample inside the beakers to ensure that fresh developer reaches the resist. To

terminate the development process, we wash the chips with clean water twice.

We then perform double-angle shadow evaporation using aluminum. We tilt the sample

by ±17° and evaporate 40 nm of aluminum in the first step and 70 nm in the second

step [see Fig. 4.2(d) and (e)]. In between, we expose the sample to a controlled oxygen

environment for 9000 s. From previously fabricated samples, we estimate the critical

current density to be Jc = 150 A/cm2 for the oxygen layer that is formed in this time

span. After evaporating, we perform a lift-off process, where the remaining resist and

with it the aluminum on top of it is cleaned away. We do this by putting the samples in a

beaker with 70 °C hot acetone for one hour. Every 15 min, we use a pipette to create a

strong flow around the sample that helps loosen the resist and aluminum from the sample.

To fully remove all unwanted material, we place the sample inside an ultrasonic bath on

low power for 1 min. During this whole lift-off process, we never expose the sample to air,

as this would lead to particles sticking to the surface.

4.2 Measurement setup

In this part, we describe the measurement setup, used for our experiments. This description

includes how we connect our sample in the sample box (see Sec. 4.2.1), the cryogenic

setup (see Sec. 4.2.2) and the room temperature setup for different measurements (see

Sec. 4.2.3 and Sec. 4.2.4).

4.2.1 Sample box

To connect our sample to the external feed lines, we place it in a gold plated copper box

with four ports. The connectors are 2.92 mm (K) connectors. We fabricate the box in

our in-house workshop and also solder the connectors ourselves. Inside the box are four

printed circuit boards that we use as a link between chip and connectors. They are made

of alumina with a gold layer on top. Each PCB has a straight CPW leading from the

1Made by Allresist GmbH
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chip to the connector. On the connector side, we solder the inner conductor of the PCB

to the center pin of the connector. In addition, we use silver glue to connect the outer

conductors to the sample holder metal. In this way, we increase the impedance matching

between connector and board drastically. On the other side, the chip is connected to

the PCBs with aluminum wire bonds. We place five bonds on each inner conductor and

around 200 bonds on the outer conductors. In addition, we use bonds to avoid potential

differences between the ground planes on the sample. We bond approximately 40 times

over the CPW structures in regular intervals. The lid of the sample features four pillar

like structures, that should increase the frequency of possible box modes, so that they

don’t interact with our resonators.

4.2.2 Cryogenic setup

We perform our experiments in a home-made 3He/4He dilution refrigerator with a base

temperature of 27 mK. In the following, we briefly outline the working principles of such

a cryostat and present the experimental setup inside the fridge.

Thermalization

In Fig. 4.3, one can see a schematic of the experimental components inside the cryostat.

From top to bottom, all input and output lines, as well as the DC-wires, pass through the

different temperature stages of the refrigerator. At each stage, the wires are thermalized.

The temperature stages each feature metal plates, to which cabling can be connected

in order to thermalize them. The input lines are each thermalized through attenuators

which are fixed to the stages with metal clamps. As attenuators cannot be used in output

lines, as they would decrease the already low signal strength, we directly clamp the outer

conductor of the output cables to parts of the temperature stage all along the output

lines. For this, we use gold-platted copper clamps and annealed silver wire. In addition,

the output lines are thermalized at the 30 mK stage and the 600 mK stages through

cryogenic circulators, which are directly connected with the plate due to their fixture. The

DC-wiring is thermalized by glueing the wire bundles to different parts of the temperature

stages for a few centimeters. In addition, the wires are connected to small anchors, where

the cables coming from the top are each soldered to a small metal pin and the cables

going further down into the cryostat are soldered to the other sides of the metal pins. The

anchor itself is directly placed onto the plate of the temperature state.

Microwave input lines

For microwave signals, we use coaxial cables. Starting at room temperature, where the

signal generator is connected to the fridge with flexible cables, the input lines feature

attenuation at each temperature stage. The attenuation is needed in order to protect the
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Figure 4.3: Cryogenic setup. We apply a probe signal with a VNA (port a or d) through heavily attenuated

input lines. The attenuation is distributed over multiple temperature stages of the cryostat to

decrease the heat load on the system and to shield the sample from high-temperature noise.

All output lines are made from superconducting niobium-titanium coaxial cables (red). In

the output path, cryogenic circulators isolate the sample from high-temperature noise. The

output signal is amplified with cryogenic and room temperature high-frequency amplifiers

and then detected by the VNA (port b or c). The on-chip antennas and the external coil

(yellow) are connected to current sources via twisted-pair wires. We label the feed line of the

sample reached by input port a ’1’ and the opposing side ’2’.
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sample from room temperature noise. Ideally, we would like to place all of the attenuation

at the lowest temperature stage, because the output noise of each attenuator depends on

its temperature. But since the cooling power of the cryostat is limited, especially at low

temperature stages, it is important to divide the attenuation between different stages.

With this, the heat created by the attenuators can be easily cooled and doesn’t heat

up the cryostat, even if we apply a high input power. In total we attenuate the signal

strength by 100 dB, most of which we apply at room temperature (40 dB) and 30 mK
(30 dB). The rest is divided into three 10 dB attenuators at each stage. Input lines are

made from stainless steel, which also contributes to the attenuation. The input signal

is then filtered around the frequency of the resonator. We choose a broad filter2 with a

passband between 4 GHz and 8 GHz as the resonators are tunable. After the attenuator

at 30 mK, the cabling is made from the superconductor Niobium-Titanium. The input

and output signals connected at the sample are separated by a cryogenic circulator.

Microwave output lines

The microwave output signals from the sample to the detector are guided through coaxial

cables. A second circulator at 30 mK shields the sample from noise signals from higher-

temperature stages. Via the 50 Ω load of this circulator, the inner conductor is thermalized

to this temperature stage. Another circulator is placed at the still stage. As we are dealing

with very low signal strength during our experiments, we add multiple amplification stages.

The noise temperature of the amplification chain is limited by a high-electron-mobility-

transistor (HEMT) at 4 K. At the operation frequency of the sample, the HEMT amplifies

the signal by roughly 35 dB. Between sample and HEMT amplifier, all cabling in the

output line is done with UT85 superconducting niobium-titanium coaxial cabling in order

to minimize losses. After this stage, losses are not as critical, as the signal is already

heavily amplified. The overall noise temperature of the amplification chain is given by the

Friis formula

Ttotal = T1 + T2

G1
+ T3

G1G2
+ ... (4.1)

Here, Ti is the noise temperature of the i-th component in the chain and Gi is its power

gain in ratios. One easily sees, that losses (i.e., gain values lower than one) before the

first amplification step can strongly increase the noise temperature. In addition the

contribution of an amplifier to the total noise temperature is reduced by the gain of

previous stages. As a consequence, after the HEMT, stainless steel cables can be used

up to room temperature. Outside of the fridge, we add a fourth circulator in order to

prevent any backwards reflection into the HEMT amplifiers from the second amplifier

stage. Here, we use a JS2 amplifier, with a gain of approximately 23 dB. The outputs of

this room temperature amplifier is then connected to either the vector network analyzer

(see Sec. 4.2.3) or an intermediate frequency (IF) downconversion box (see Sec. 4.2.4). In

2VHF-3500+ made by Mini-Circuits
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the second case, we use an additional JS2 amplifier, which is directly connected to the

first one.

On-chip antennas and superconducting coil

We connect both on-chip antennas and a superconducting coil with DC-wires to external

current sources. In addition, the antennas are also connected to microwave cables, but

these are not used during the experiments presented here. This connection is done by

using a bias-T which combines microwave and DC wiring. The current sources that apply

the current Iant1 and Iant2 for the DC flux through the antennas are home-made current

sources with a range of up to 10 mA. We find that, when we apply a current of 1.5 mA,

the sample slowly heats up. At currents above 2 mA the sample often heats up above the

critical temperature of aluminum and and superconductivity breaks down. We therefore

operate the antennas at a maximum of 2 mA. The superconducting coil is equipped with

a persistent current switch. When setting the current through the coil Icoil, this switch

heats a superconducting shunt so that the current through the coil can be changed. We

operate the switch at 60 mA. The current itself is controlled by a Keithley 6430 current

source. We find that the magnetic field created by the coil has a hysteretic dependence

on the applied current. We therefore take care to set the current through the coil always

in the same way, starting at 0 mA and increasing it slowly to its set value. The current

ramp rate also influences the reproducibility of the set point. We operate the antennas at

10µA/s and the coil at 0.1 mA/s, which allows us to reproducibly set the magnetic fields

created by the coil and antennas to the correct value.

4.2.3 Spectroscopic measurement setup

For spectroscopic measurements, we connect the microwave input and output lines to a

VNA (PNA 5222A), which has a frequency range of 10 MHz to 26.5 GHz. For a typical

measurement, we excite the system at one of the two input ports and measure both

reflection of and transmission through the sample (see Fig. 4.3). For a full set of S-

parameters, we have to perform two separate measurements. In addition, we can sweep

the magnetic flux through the SQUID loop by tuning the current through the external

coil or the on-chip antennas and perform a VNA measurement at each sweep point. This

allows us to directly see the dependence of the frequency response as a function of the

applied magnetic flux.

4.2.4 Correlation function measurement setup

In order to measure correlation functions and to perform photon number calibrations,

we attach our cryogenic setup to a homemade copper downconversion box containing a

set of mixers, filters and IF amplifiers. The output of the box is connected to a FPGA-
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enhanced analog-to-digital (ADC) converter card. Inside the copper box, we convert the

measurement signal from its frequency between 4 GHz and 8 GHz, to an intermediate

frequency of 11 MHz. This signal is sampled by the ADC card with a sampling frequency

of 175 MHz, filtered, digitally downconverted to DC, and split into its in-phase and

quadrature (IQ) components. The analog downconversion step brings the signal into a

frequency range which can conveniently be recorded by commercial ADC cards. With

an analog down conversion to 11 MHz, a sample rate of 44 MHz would be sufficient. The

digital downconversion step is implemented in the FPGA logic of the ADC card. It is

used to avoid 1/f -noise, which is omnipresent in the measurement electronics. In the

following, we present more details about the downconversion box and the FPGA logic.

Downconversion box

We place all devices used for the analog down conversion inside a copper shielding

box. A sketch of it is shown as part of the room temperature setup for the correlation

measurements in Fig. 4.4. The box features two identical paths, which allow us to detect

two signals simultaneously. This is necessary in future experiments in order to measure

cross-correlation functions between the two resonator fields. In each path, the signal first

passes through an isolator. Afterwards a first pass band filter with a passband of 5.6 GHz
to 7.0 GHz cuts off the signal around the frequency range of the sample. Then, the signal

enters an IQ-mixer. The outputs of this mixer are two output signals, one, where the

signal is multiplied by a sine with the frequency of a local oscillator (LO) and one where

the signal is multiplied by a cosine with the frequency of the LO. The output signals I

and Q are given by

I = S · sin(2π · fLO · t) (4.2)

Q = S · cos(2π · fLO · t), (4.3)

where S is the signal incoming to the rf port and fLO is the frequency of the local oscillator.

The local oscillator signal is created by an additional signal source and wired into the box.

I and Q are then filtered with a bandpass filter and split with a beam splitter. An isolator

at the entrance of the IQ-mixer prevents any back scatter and especially any signal flow

between the two paths. We detune the local oscillator frequency fLO by 11 MHz from the

signal frequency fsignal. I and Q each consist of two signals with a frequency of fsignal ±fLO.

With a set of four filters, we heavily filter around the lower frequency fsignal − fLO, so

we can omit the part of the signal with higher frequency. After downconversion to the

IF frequency, we use a third room temperature amplifier to further increase the signal

strength. This amplifier adds an additional amplification of 56 dB in a frequency range

between 0.001 MHz and 400 MHz. At the output of the downconversion box, a DC-Block

with a cutoff frequency of 7 kHz additionally filters out any DC signal. The output of the
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Figure 4.4: Room temperature setup for the correlation function measurements. The microwave output

lines of the cryostat are fed into an analog downconversion box (orange) and after down

conversion and filtering are digitized and processed by an FPGA-enhanced ADC card.

Components are either directly connected to each other (black connection) or connected with

a SMA adapter (green connection) or short cable (blue connection).
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box consists of two pairs of ports, each composed of an I and Q signal part. These four

signals are then wired to the FPGA-enhanced ADC card, where they are digitized and

processed further.

FPGA-enhanced ADC card

In the following, we explain in details the working principle of the ADc card and its FPGA

logic. We use a x6-250M card from Innovative Integration, which features eight 16-bit

ADCs. Our logic only uses four of these inputs. The output ports of the mixer box are

connected to these input ports of the card.

Any sinusoidal signal can be described as a sum of an in phase and quadrature compo-

nent.

S = I cos (2π · fsignal · t) +Q sin (2π · fsignal · t) (4.4)

The RF output signal of the sample is converted in the downconversion box to their

in-phase and quadrature components oscillating at the IF frequency,

IIF = 1
2(I cos(ωIFt) +Q sin(ωIFt)) (4.5)

QIF = 1
2(−I sin(ωIFt) +Q cos(ωIFt)). (4.6)

An exemplary signal can be seen in the middle panel of Fig. 4.5. After data acquisition by

the ADCs with a sample rate of 175 MHz, the signal is digitally processed by the FPGA

logic. In the following we will discuss the different steps taken by the card. In the first

step, the card performs a digital down conversion (DDC), similar to the down conversion

of the IF-mixer box. For this, the sine and cosine components of a digital local oscillator

signal with frequency ωIF are multiplied with the digitized IF signal

IDC = IIF cos(ω−t) −QIF sin(ω−t) = 1
2 · I (4.7)

QDC = IIF sin(ω−t) +QIF cos(ω−t) = 1
2 ·Q. (4.8)

For signals near the frequency ωrf, the resulting signals IDC and QDC are quasistatic

components in the sense that they only reflect modulations of the original signal on

timescales corresponding to the effective filter bandwidth resulting from analog filtering,

digital filtering and averaging (see Fig. 4.5).

From a technical point of view, we have to consider that Eq. (4.7) and Eq. (4.8) also

upconvert spurious low-frequency signals, creating unwanted terms oscillating at 2ωIF.
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Figure 4.5: Working principle of the logic on the FPGA card. The input signal is digitally downconverted

and filtered and all moments of the in-phase and quadrature component up to forth order are

calculated. In order to give specific numbers, we have assumed a realistic signal frequency of

7 GHz in this sketch.
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We therefore use a set of two digital filters. The first filter is a cascaded integrator-comb

(CIC) filter. CIC filters combine integrator stages of the form

y[n] = y[n− 1] + x[n], (4.9)

where y[n] (x[n]) is the n-th sample after (before) filtering, and comb stages of the form

y[n] = x[n] − x[n− 1]. (4.10)

A typical CIC filter consists of multiple integrator steps and multiple comb steps with a

change of sampling rate in between. Integrator steps are run with the original sampling

rate. Afterwards, the sampling rate is reduced in order to improve the efficiency of the

filter and to reduce complexity of the filter architecture. After this filter step, we account

for the filter gain by dividing the signal by the gain in order to stay in our computational

data size. The main purpose of the CIC filter is to keep the computational complexity of

the subsequent second filtering stage to a level which can still be handled by the FPGA

resources. The second filter stage is a finite impulse response (FIR) filter. Here, the filter

function is given by

y[n] =
N∑

i=0
(ci · x[n− i]), (4.11)

where ci is a set of filter coefficients, and N is the order of the filter. The filter coefficients

define the shape of the filter function and its cut-off frequency. In the last step of the on-

board data processing, all multiples of I and Q up to the fourth order are calculated(In ·Qm

withm+n ≤ 4). From these values we compute an average of the signal moments ⟨In ·Qm⟩
with m+ n ≤ 4. At this point, the data is transferred to a measurement computer, where

it can be further processed or saved. The key purpose of the FPGA logic is to perform

digital downconversion, digital filtering and moment calculation close to real time. This

performance is possible, because we only have to send one strongly averaged data trace

including all computed moments to the measurement computer in time intervals on the

order of minutes. Otherwise the data transfer of each measured trace before the calculation

and averaging, as well as the processing time on a standard computer, would dominate

the measurement time.

Data format and parameters

The ADCs for data acquisition have a 16 bit resolution and operate at a sampling rate of

175 MHz. The logic is programmed to continuously measure traces with 8192 points after

a trigger event until a set number of averages is reached. With a CIC down sampling

factor of 16, we end up with traces with a length of 512 points or, equivalently, 46.8 µs.
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Figure 4.6: Measurement of the signal power Psignal in a temperature sweep of the heatable attenuator

(blue symbols) while the resonators are far detuned from the signal frequency probed by the

correlation measurement setup. The red line is a fit to the data using Eq. (4.12).

Due to digital filter ringup, we have to discard a number of points. The ringup time

depends on the number of FIR filter coefficients. Using just the CIC filter drastically

reduces ringup time. After filtering and moment calculation, we perform the averaging

using 128 bit numbers. In this way, we are able to perform averaging up to millions of

averaged traces without running into overflow problems.

Photon number calibration factor

As we cannot directly measure the gain of our amplification chain while the cryostat is cold,

we perform Planck spectroscopy [65, 66] as a photon number calibration measurement.

To this end, we use a heatable attenuator, that emits black body radiation towards the

input of the sample. With the resonators far detuned, the signal is reflected into our

amplification chain, and we can measure the resulting power with a digitizer card at

room temperature. Before digitizing the signal, we convert the signal to an intermediate

frequency of 11 MHz with an analog mixer setup. After digitizing, the data is digitally

downconverted to DC. As a result, we get the in-phase (I) and quadrature (Q) components

of the measured signal as a DC value. We can then write the power of the signal as a
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function of the temperature of the attenuator

Psignal = I2 +Q2

R
= κGcal

R

[
1
2 coth

(
hf0

2kBTatt

)
+ nnoise

]
, (4.12)

with the Boltzmann constant kB, κ = 2R·BW ·hf0, BW the bandwidth of the measurement

and Gcal the total gain of the amplification chain. We perform a temperature sweep

of the heatable attenuator and measure the resulting output quadrature components,

which we can fit to the formula for the black body radiation. The result of this fit is

the product κGcal, which relates the number of photons at the sample to the measured

voltages and the photon number nnoise of the noise of the amplification chain. In our

setup, this photon number is dominated by the noise number from the cryogenic amplifier

in the chain. In Fig. 4.6, we show a temperature sweep from 50 mK to 800 mK. From

the fit, we get κGcal = 8.1 (mV)2/photon and a noise number nnoise = 142. The high

noise number can be explained by aging effects in our HEMT amplifiers. Using the

measurement bandwidth of BW = 2 MHz, we can calculate the gain of the chain and find

Gcal = 109.8 dB. As we perform this calibration measurement with a slightly different

setup (including an additional downconversion box, containing an intermediate frequency

amplifier with significant gain), we cannot directly use this gain measurement for the

interpretation in the experiments performed with a VNA.

In order to estimate the gain of the VNA setup, we measure the gain of the additional

room temperature components used in the determination of Gcal. We measure the gain of

the downconversion box, Gbox = 47.3 dB, and the gain of an additional rf room temperature

amplifier Grf-amp = 24.6 dB. If we subtract these two values from the determined total

gain Gcal, we get a value of the gain of the VNA setup G = 38 ± 4 dB, which we use in the

main text of this paper. The uncertainties stem mainly from the frequency dependency of

the gain as the measurement of the gain and of the nonlinearity have been performed at

different frequencies (3 dB) and the different cables used in the two measurements, which

cannot be reliably accounted for in our estimation (1 dB). The uncertainty in the gain is

the main contribution to the uncertainty of the nonlinearity.

4.3 Characterization of the superconducting circuit

In this section, we present characterization measurements of our circuit. We show, that

we are able to model the dependency of the resonance frequency on the flux created by

the external coil as well as on the flux created by the on-chip antennas. Using these

tuning knobs, we are able to tune the resonators in and out of resonance at any arbitrary

frequency point within the bounds of the single resonator tunability.
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Figure 4.7: Measurement of the phase of the scattering parameter S11. The resonance frequency of

resonator 1 is clearly visible and performs a full oscillation within the current region shown

in this figure. A theoretical calculation [Eq. (4.13)] (bottom panel, red dashed line), allows

us to extract important system parameters (see Tab. 4.2).
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Table 4.2: Resonator parameters

Ic(µA) ∆Φ(Φ0) ∆Φ/∆Icoil(Φ0µA−1) d
Res 1 1.40 -0.18 0.077 0.147
Res 2 1.80 0.50 0.213 0.147

4.3.1 Influence of the external coil

First, we look at the individual response of each resonator. For this, we measure the

scattering parameters S11 and S22, which show the reflection of the system. If the

resonators are detuned from each other, the signal enters the first resonator if it is on

resonance, but cannot enter the second. The signal is therefore reflected, but obtains a

phase shift. We extract the resonance frequency of an individual resonator by looking at

the phase of the reflection measurement

Reflection measurements of resonator 1

A measurement of S11 for different current values Icoil through the external coil is shown

in Fig. 4.7. We sweep the VNA input frequency from 5.2 GHz to 7.2 GHz and measure

the signal at the output port. The resonance frequency is visible as a phase peak. We

tune the resonance frequency of resonator 1 from 5.24 GHz to 7.07 GHz by changing the

coil current by ∆Icoil = 6.58 µA. We can model this change in resonance frequency using

equations 2.55 and 2.56 as

fres,i = 1
2π
√
Li (Φext,i) · Ci (Φext,i)

, (4.13)

where i denotes the resonator. The result of this calculation for resonator 1 is overlayed

onto the measurement in the bottom panel of Fig. 4.7. The maximal resonance frequency

of each resonator is determined by the maximal critical current of the two DC-SQUIDS

which lets us directly extract this important parameter from the model. The minima

of the dependence on the other hand are a result of the asymmetry parameter d of the

junctions of each DC-SQUID. We introduce a parameter that relates the coil current

Icoil to the effective external flux Φext,i, which is given in units of Φ0/µA and one, that

determines the amount of flux ∆Φ that is applied to the SQUID loops for Icoil = 0. We

determine the parameters of the model by matching the measured behavior. We find

a parameter set (see Tab. 4.2), that recreates the dependency of the resonator on the

external flux.

Reflection measurements of resonator 2

We perform a similar measurement in order to extract the parameters for resonator 2. We

apply the input signal directly to resonator 2 and measure S22. The measurement is shown
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in Fig. 4.8. We find, that we can tune resonator 2 from 5.59 GHz to 7.17 GHz by changing

the coil current by ∆Icoil = 2.78 µA. Parallel to the treatment of resonator 1 the resonance

frequency of resonator 2 can be modeled by equation 4.13, and we can extract the model

parameters (see table 4.2). We notice, that although the two resonators are equal by

design, they differ both in critical current and in their dependence on the current through

the external coil. The obtained critical currents for the two SQUIDs are Ic,1 = 1.40 and

Ic,2 = 1.80. This difference stems from inaccuracies in the junction fabrication, where a

spread of the critical current of up to 20 % is not unusual for homemade junctions [67].

To get a better understanding of the origin of these inaccuracies, we can also take a

look at the asymmetry parameter d. We find, that for both SQUIDs the asymmetry is

the same d1 = d2 = 0.147. This shows us, that the ratio of the critical currents of the

Josephson junctions in each SQUID has to be the same for the two SQUIDs. Therefore it

is likely, that the difference stems from variations in fabrication, that occur on a large scale,

compared to the SQUID size. These variations can be created by a slight misalignment of

the sample in z direction by e.g. residual resists below the chip. The focus of the beam

is then different for different regions of the sample and can create sharper or less sharp

junctions or even junctions of different size, which can both lead to a difference in critical

current. It is also possible, that the oxidation process occurred with a different speed at the

two SQUID sites, which would create different critical current densities, also affecting the

critical current. In the next section, where we show transmission measurements through

the whole system, we also discuss the differences in the dependence on the external coil

current in more detail.

Transmission through both resonators

We measure transmission through the two resonator system and show the influence the

external coil has on the combined system. Fig. 4.9 is a VNA measurement of the scattering

parameter S21 as a function of the current through the external coil Icoil and the frequency

applied by the VNA. In a transmission measurement, one can see the resonance frequencies

of each resonator as peaks in transmission. As already shown in the previous sections,

both resonance frequencies are shifted by the external coil. In the displayed coil current

window from 10µA to 30µA the resonance frequencies both undergo more than a full

oscillation. We observe a maximal resonance frequency of 7.14 GHz for resonator 1 and

a maximum of 7.20 GHz for resonator 2. Again, this difference in maximal frequency of

0.06 GHz is a direct indication for a difference in critical current of the SQUIDs, which

is also evident from the calculated paramters (Tab. 4.3) using Eq. (4.13). Note that,

as the reflection measurements and the transmission measurements we show here, were

performed in different cooldowns, the maximal resonance frequency and therefore the

critical currents of the SQUIDs differ between the measurements. Changes in critical

current of Josephson junctions due to degrading effects and mechanical stress during

warmup and cooldown procedures, is a well known and typical occurrence. The difference
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Figure 4.8: Measurement of the phase of the scattering parameter S22. The resonance frequency of

resonator 2 is clearly visible and performs a full oscillation within the current region shown in

this figure. A theoretical calculation of the measured dependency (bottom panel, red dashed

line), allows us to extract important system parameters.
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Table 4.3: Parameters of the two resonators

Ic(µA) ∆Φ(Φ0) ∆Φ/∆Icoil(Φ0µA−1) d
Res 1 1.65 -0.39 0.076 0.147
Res 2 1.93 0.08 0.199 0.147

in maximal resonance frequency is well below 0.1 GHz for both resonators. The calculated

resonance frequencies for both resonators overlayed on the data can be seen in Fig. 4.10.

While resonator 1 is visible over the whole measurement span, the resonance frequency

of resonator 2 vanishes while it is far detuned from resonator 1. We can explain this

behavior by the influence of the environment of the sample. For a detailed description, see

section 5.1. We also notice that for smaller coil currents Icoil ≤ 14 µA, the expected and

measured resonance frequency deviate by up to 0.1 GHz, which stems from a nonlinear

dependency of the external flux applied at the SQUID loop on the coil current. For low

coil currents (0 µA to around 6 µA, not depicted in the measurement here), we find a

strongly hysteretic behavior of this dependency. As the coil is a larger coil with many

windings, this hysteresis likely comes from charging effects of the coil. For higher coil

currents we also observe a deviation from the expected linear behavior. Here we find that

the external flux changes faster for higher coil currents. For a further discussion of this

behavior, that we can also observe in measurements where we apply flux through the

on-chip antennas, can be found in chapter 4.3.2.

In addition to the different maximal resonance frequencies, resonator 2 has a larger

mutual inductance with the external coil than resonator 1. The main influence on the

conversion from the coil current to the actual flux through the SQUID loops should be

the position of the SQUID in relation to the coil and the size of the SQUID loop. As both

the sample design and the position of the coil are chosen to be symmetric, the reaction of

the two resonators to the external coil should be the same. We suspect that the reason

for the observed difference stems from additional superconducting loops that are created

by the bond wires. As they are not placed perfectly symmetrical on the sample, induced

on-chip current flow can differ between the two SQUIDs.

We are able to tune the resonators in and out of resonance using the external coil. In

the bottom panel of Fig. 4.9, we show cuts of the sample’s frequency response at two

coil currents. For Icoil = 18.5 µA the two resonators are far detuned and we can observe

the single resonator response of resonator 1. For Icoil = 21.5 µA, the degeneracy point is

reached and the resonance frequencies exhibit an avoided crossing.

As the measurement does not show the lowest possible resonance frequencies, we

individually show the calculated frequencies in Fig. 4.11. The frequency range, where

both resonators can be brought into resonance, is defined by the maximum of resonator 1

and the minimum of resonator 2. This gives us a range from 5.67 GHz to 7.14 GHz, which
is a span of 1.47 GHz.
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Figure 4.9: Transmission magnitude S21 through both resonators in dependence of the coil current and

the applied frequency. We can see the two resonators tuning in and out of resonance multiple

times of the span of 20 µA. The bottom panel shows cuts at 18.5µA (red, resonators detuned)

and 21.5 µA (yellow, resonators in resonance).

4.3.2 Antenna sweeps and full control

In this chapter, we show, that in addition to the external coil, we can also use two on-chip

antennas in order to tune and control the resonance frequencies of our system. On-chip

systems offer fast tuning, but are prone to crosstalk and can therefore negatively affect

the actual circuit. For our system they are necessary, as we cannot address each resonator

individually with the external coil, but if we want to tune the two into resonance at

any possible frequency point, it is vital that we are able to do so. On-chip antennas

are designed to create a local magnetic field near the end of its antenna line, so that

only the close vicinity of the antenna is affected. In theory, we can use this in order to

individually tune the external flux through one SQUID loop in order to control each

resonator independently. Our sample features two antennas, each located near one of the

two SQUIDs (see Sec. 4.1).
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Figure 4.10: Measured transmission through the resonator system with the calculated resonance frequency

of resonator 1 (yellow) and resonator 2 (red) overlayed. We see, that between 14 and 28 µA
the theoretical descriptions models the data well.
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Figure 4.11: Calculated resonance frequency of resonator 1 (yellow) and resonator 2 (red) in their full

frequency range.
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Table 4.4: Parameters of the two resonators

∆Φ(Φ0) ∆Φ/∆IA1(Φ0mA−1) ∆Φ/∆IA2(Φ0mA−1)
Res 1 -0.25 0.58 1.1
Res 2 0.05 0.075 0.59

Heating effects of the on-chip antennas

When we apply a current through the antennas, we observe heating effects across the

whole chip structure. In order to quantify these effects, we look at the temperature of the

sample box with a thermometer that is fixed on the outside of the box. Up until roughly

1500µA, the sample temperature rises on the order of tens of mK. For currents larger

than this, the temperature increased drastically in some experiments even exceeding the

critical temperature Tc of aluminum. This rise occurs on a short time scale, at a time,

where the full sample stage was still at temperatures far below Tc. We therefore suspect,

that the current flow locally heats small parts of the sample above Tc, which leads to

a high resistance in this part, which in turn accelerates the heating process. The most

likely candidates where this heating takes place is either the small conductor that forms

the antenna itself, or the aluminum bonds, that are used to connect the sample to the

PCB. The latter are likely, as they do not offer a perfect connection. Mechanical stress,

corrosion or oxidation can weaken the electrical connection and lead to a finite resistance

in the bond or the bond connection. We account for this heating effect, by limiting the

current through the antennas. In the following sections, where we show the influence of

the antennas on the two measurements, we show a measurement, where the mentioned

drastic increase in temperature does not happen, and we are able to present data up to

2000µA.

Flux tuning and crosstalk using antenna 1

In our measurements, we observe a strong crosstalk between the two on-chip antennas.

We therefore investigate both the effect each antenna has on the resonator that is close

by, and the resonator that should be unaffected by the antenna. In Fig. 4.12, we show

a reflection measurement (S11) of resonator 1, where we increase the current through

antenna 1. For better visibility, we show the phase of the scattering parameter. We

can clearly see, that in the range of 2000µA, we can change the resonance frequency of

resonator 1 from the minimal frequency of our frequency range 6.90 GHz to the resonators

maximal frequency of 7.14 GHz and back. Similar to the treatment of the coil sweeps, we

can use the theoretically expected dependence to calculate the conversion between the

current through the on-chip antenna and the created flux through the SQUID loop. We

find, that with antenna 1 we can create one flux quantum in the loop of resonator 1 over

the span of 1724µA, giving us a tuning rate of 0.58 Φ0mA−1.

The cross talk between the current applied to the antenna of resonator 1 and resonator
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Figure 4.12: Measurement of the phase of S11 while sweeping the current of antenna 1. We can clearly

observe the expected dependency of the resonance frequency of resonator 1 on the applied

current. We create an external flux of Φext = 0.58Φ0 in the SQUID loop by applying

Iant1 = 1 mA.

2 can be seen in the scattering parameter S22 shown in Fig. 4.13. Due to the coupling

of resonator 1 to the parasitic path, we can still see its resonance in this reflection

measurement, although it is less visible. In addition, we can also see the resonance of

resonator 2, which is close to its maximal value at Iant1 = 0. We observe a slight tuning

of said mode, indicating a finite crosstalk between the magnetic field of antenna 1 and the

SQUID loop of resonator 2. To better visualize the mode and this tuning, we overlay the

theoretical model [Eq. (4.13)] onto the measurement. The tuning of resonator 2 is almost

an order of magnitude smaller than the one for resonator 1. We find, that to create one

Φ0 of external flux in SQUID loop 2, we have to apply a current of Iant1 = 13.3 mA.

Flux tuning and crosstalk using antenna 2

Next, we investigate the flux tuning of resonator 2 with antenna 2 and the resulting

crosstalk on resonator 1. Fig. 4.14 shows the phase of the reflection measurement S22.

In this measurement, similar to the previous measurement, we observe both the desired

control of resonator 2 and a crosstalk to resonator 1. A visual indication for the behavior

of resonator 2 can be seen in the bottom panel. As expected from the symmetric design,

the tuning rate for resonator 2, 0.59 Φ0mA−1, is similar to the one observed between

antenna 1 and resonator 1 in the previous section. To tune the resonator by a full period,

we therefore have to apply 1695 µA.

Surprisingly, the crosstalk between antenna 2 and resonator 1 is drastically different

from the one between antenna 1 and resonator 2. As can be seen in the reflection
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Figure 4.13: Measurement of the phase of S22 while sweeping the current of antenna 1. We find that we

create an external flux of Φext = 0.075Φ0 in the SQUID loop of resonator 2 by applying

Iant1 = 1 mA. The dashed line in the is the calculated resonance frequency using Eq. (4.13).

In order to increase visibility, it is displayed in a separate panel.
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Figure 4.14: Measurement of the phase of S22 while sweeping the current of antenna 2. Similar to the

measurement where we sweep Iant1, we can see both the resonance frequency of resonator 1

and the one of resonator 2 being affected by antenna 1. We find that we create an external

flux of Φext = 0.59Φ0 in the SQUID loop of resonator 2 by applying Iant2 = 1 mA. In order

to increase visibility, it is displayed in a separate panel.
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Figure 4.15: Measurement of the phase of S11 while sweeping the current of antenna 2. We can clearly

observe the expected dependency of the resonance frequency of resonator 1 on the applied

current. We create an external flux of Φext = 1.1Φ0 in the SQUID loop by applying

Iant1 = 1 mA.

measurement S11 shown in Fig. 4.15, antenna 2 creates an even larger flux in the SQUID

loop of resonator 1, than in resonator 2. We find, that a current of 909µA is sufficient

to create one flux quantum inside this SQUID loop. This result indicates that small

deviations in the circuit symmetry, e.g., due to the wire bonds on the chip, can cause

strongly asymmetric current flows and unexpected crosstalk. While such an effect may be

difficult for future scaling, it can be easily compensated in our two-resonator sample.

Full control of the two-resonator system

The precise control of the resonators via the flux through their dc SQUID is of great

importance for the two-resonator system. The flux through the SQUID defines the critical

current and, in turn, both the resonance frequency and the nonlinearity of each resonator.

As we have seen in the previous sections, individual control of both resonators requires

the consideration of the effect of both on-chip antennas on both SQUID loops. In the

experiment, we use a combination of on-chip antennas and the external coil to effectively

control each resonator individually. We use Eq. (4.13) in order to calculate the resonance

frequency of each resonator as a function of the external flux through each SQUID loop .
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The two fluxes induced by the three currents we can apply are

ϕ1(Iant1, Iant2, Icoil) = Mant1, 1 · Iant1 +Mant2, 1 · Iant2
+Mcoil, 1 · Icoil + ∆ϕ1

(4.14)

ϕ2(Iant1, Iant2, Icoil) = Mant1, 2 · Iant1 +Mant2, 2 · Iant2
+Mcoil, 2 · Icoil + ∆ϕ2.

(4.15)

Here, Mant i/coil, j is the mutual inductance between antenna i / coil and SQUID loop j.

The parameters extracted from our data can be found in tables 4.4 and 4.2. Based on

these tables we are able to calculate the possible currents we have to apply in order to set

each resonator to a specific frequency. As the three currents are only determined by two

independent equations, we are able to choose one current independently. In this way, we

can overcome the issue of non ideal SQUID characteristics (see Fig. 4.10 and Fig. 4.14).

For more details please refer to [68].

In order to implement this full control in an experiment, we pre-calculate the current

values for the frequency points we want to set and than automatically set the current

values of the coil and both antennas one after another.

4.3.3 Coupling strength J between the two resonators

The coupling strength between the two resonators is, alongside the nonlinearity of the

system, one of the main deciding parameters for the physics of the bosonic excitations in

the lattice. In the Bose-Hubbard model, the ratio between nonlinearity and the coupling

strength define whether the system is in its superfluid or mott-insulating state. For future

applications it is therefore necessary, to be able to design, predict and determine this

parameter J . Here, we present two possibilities to extract J from our measurements.

First, we can directly measure it, as half the smallest distance in frequency between the

two modes at their point of degeneracy. Here, the two separate modes couple and form

two coupled modes, that are shifted by ±J/2π from the uncoupled modes (see section

2.1.3).

In Fig. 4.16, we show a transmission measurement where we tune both resonators into

resonance. As expected, we observe an avoided crossing of the two resonator modes. The

difference between the two modes is given by

∆f =
√

4J2 + ∆2, (4.16)

with ∆ being the detuning of the uncoupled modes. For ∆ = 0 the splitting becomes

minimal, and we can directly extract the coupling from the measurement. We measure

the distance between the two modes at a current of 9.12 µA, which is the current that

creates the smallest splitting. Along with two other cuts at 8.98µA and 9.22µA, this slice

is shown in Fig. 4.17. We find a minimal splitting of ∆f = 17.2 MHz, which gives us a
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coupling strength of J/2π = 8.6 MHz.
Although the coupling capacitor is independent of the flux bias we apply to the SQUID

loops, the actual coupling strength is flux dependent. This is due to the fact, that the

coupling strength depends on the resonance frequency of the resonator and on the ratio

between the coupling capacitance and the effective capacitance of the resonators. As

already presented in previous sections, the latter changes with the applied flux, which

in turn creates a dependency for the coupling strength. As it is very time consuming to

perform a full characterization of J , where we create the degeneracy point at all possible

frequencies, we present a second way in order to estimate the coupling strength. Using

the Lagrangian of the system, we can calculate the coupling strength from the circuit

model, we used for the simulations of the system

J = ωr
Cc

Ci

. (4.17)

As we look at points where the two resonators are in resonance, we can use both the

capacitance Ci of resonator 1 and 2 here. We plot the results for the coupling strength for

the flux dependence of resonator 1 in Fig. 4.18. We get a coupling strength J of 5.02 MHz
to 8.76 MHz. Note that the actual possible minimal coupling is limited by the tunability of

resonator 2, and is therefore only 5.38 MHz. The measured coupling strength of 8.6 MHz
near the maximal frequency of resonator 1 fits well to the theoretically calculated results.

We conclude, that although the coupling strength between the two resonators depends on

the resonance frequency, the actual change of around 40 % is quite low as compared to

the change in nonlinearity. We will discuss this in further detail after we introduced the

measurement and calculation of the nonlinearity in Sec. 5.1.2.
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Figure 4.16: Measurement (left panel) and simulation (right panel) of a transmission measurement near

the degeneracy point of the two resonators. Dashed colored lines show the position of cuts

shown in Fig. 4.17.
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Figure 4.17: Cuts of the measurement (top panel) and simulation (bottom panel) of a transmission

measurement near the degeneracy point of the two resonators. The shown cuts are visible

as lines in the picture of the full measurement in Fig. 4.16. The current values are 8.98 µA
(yellow), 9.12 µA (purple) and 9.22 µA (red). From the purple graph we can extract a

coupling strength of J/2π = 8.6 MHz.
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Figure 4.18: Calculation of the coupling strength J with the flux dependence of resonator 1. We find a

maximal coupling strength of 8.76 MHz and a minimal one of 5.02 MHz



Chapter 5

In situ tunable nonlinearity and

competing signal paths in coupled

superconducting resonators

In Sec. 2.1.7, we discuss how to set up a circuit model for the characterization of a nonlinear

two-resonator system in the presence of a spurious environment whose microscopic origin

does not need to be exactly known. In this section, we show that this environment can be

modeled with a spurious parallel signal path giving rise to Fano-like resonances. In this

way, we gain access to the full parameter space of the coupled systems in a controlled way.

Consequently, we can investigate a key property of our system: the nonlinearity of the

resonators. Specifically, we employ two different characterization techniques including a

direct measurement. We show that the nonlinearity of our resonators can be tuned in

situ from values much smaller to values larger than the resonator-resonator coupling. In

this way, we provide a technique for a controlled access to promising parameter regimes

for future quantum simulations. For additional reading, please also refer to [69]. As

additional preparation for the future quantum simulation experiments, we perform first

tests of our correlation function measurement setup and show that we are able to detect

the second-order correlation function of a coherent signal.

5.1 Nonlinearity from the circuit model

In the scope of a quantum simulation experiment, it is vital to know the full parameter

set of the underlying circuit in order to precisely predict its behavior. For a system of

nonlinear resonators, the nonlinearity is of key interest. We therefore implement two

ways to experimentally determine the nonlinearity of our system. In the following, we

present a circuit model accurately reproducing our data (see Sec. 5.1.1), which allows us

to calculate the nonlinearity (see Sec. 5.1.2). In Sec. 5.2.2, we compare these results to

a direct measurement of the nonlinearity based on the power-dependent response of the

resonators.

79
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superconducting resonators

5.1.1 Circuit model with competing signal path

In the experiment, we measure the transmission Sca or S21 through our two-resonator

system as a function of the current Icoil through the coil and of the frequency ωd/2π of

the applied microwave drive. The result is shown in Fig. 5.1(a). As expected, we observe

periodic modulations of the two resonance frequencies of the coupled resonators. The

maximum resonance frequencies of the two resonators differ by approximately 50 MHz
due to inaccuracies in the junction fabrication.

In order to extract the circuits parameters, we first simulate the response of the sample

with a simple circuit model taking into account only the resonators and coupling capacitors

(see Fig. 2.9). Details of the simulation can be found in Sec. 2.1.7. The simple circuit

model predicts an increased transmission in regions where the resonators are close to

resonance and a strongly suppressed transmission elsewhere [see Fig. 5.1(a, orange line)].

Comparing the experimental data to the results of the simulation, we find good agreement

when the two resonators are close to resonance with each other, but significant differences

otherwise. For example, in the experiment, there is a clear transmission signal of resonator

1 even if resonator 2 is far detuned. The model, on the other hand, predicts a strong

damping of the resonance of resonator 2 in this regime. These observations become even

more apparent when we look at the transmission signal for certain fixed coil currents. As

shown by Fig. 5.2(a, orange line), the simple model can reproduce the measured resonances

qualitatively well, despite the fact that the measurement shows a larger background signal.

In contrast, Fig. 5.2(b, orange line) shows that, when the two resonators are far detuned,

the transmission through the system is predicted to be strongly damped over the whole

frequency range. Even on resonance the measured peak is approximately 15 dB higher

than predicted.

We can account for these deviations by introducing a generic environment in form of a

parasitic signal path (see Fig. 2.9). This parasitic path consists of a series connection of

resistive, inductive, and capacitive elements. They are coupled capacitively to the input

and output lines and also inductively to the resonators. As shown in Fig. 5.1, the model

that includes this parasitic path (see Sec. 2.1.7 for detailed calculations) reproduces the

experimental data very well over the whole frequency range. The reason for this significant

improvement is the fact that the parasitic path opens up additional transmission channels

for the system. First of all, the signal can be directly coupled into the parasitic path

via the input line and then be transmitted to the output line leading to an increased

constant background even if both resonators are far detuned from the input frequency.

Secondly, if the signal is in resonance with resonator 1, it can enter the resonator and

then couple inductively to the parasitic path. This can be seen by the increased signal at

the resonance frequency of resonator 1 even where resonator 2 is detuned.

Turning back to the frequency-dependent transmission at fixed coil current values, we

can clearly distinguish between regions, where the path through the resonator system

dominates, and regions, where the parasitic path plays a crucial role. In Fig. 5.2(a), the
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Figure 5.1: Normalized transmission magnitude (Sca (VNA ports) or S21 (sample ports)) through the

sample as a function of the coil current and the probe frequency. (a) Measurement using

the setup shown in Fig. 4.3 with an input power of Pin = −30 dBm. (b) Simulation only

considering the resonators and coupling capacitors. (c) Simulation taking into account a

parasitic path. Data profiles at working points indicated by the dashed lines are displayed in

Fig. 5.2. Parameters used in the simulations are shown in Tab. 4.2 and Tab. 5.2.



82
Chapter 5 In situ tunable nonlinearity and competing signal paths in coupled

superconducting resonators

- 45

- 25

- 5
(a)

7.00 7.05 7.10 7.15 7.20

- 60

- 40

- 20 (b)

Figure 5.2: Measured transmission magnitude Sca or S21 (blue dots) as a function of the probe frequency

for two fixed coil currents with input power Pin = −30 dBm. (a) Both resonators in resonance,

Icoil = 21.5 µA. solid yellow line: fit based on parasitic path model, solid orange line: fit

based on simple model. (b) Resonator 2 far detuned (ωr,2 = 5.7 GHz), Icoil = 23.0 µA. Solid

yellow line: fit based on parasitic path model, solid orange line: fit based on simple model.

two resonators have similar resonance frequencies and therefore transmit most of the signal

to the output port. Hence, the parasitic path does not contribute to the shape of the

resonances. Away from the resonances, the broadband nature of the parasitic path allows

for an increased transmission background as it is observed in the measurements. When

the two resonators are far detuned, the presence of the parasitic path also changes the

qualitative shape of the resonance, making it Fano-like. While the peaks are symmetric

in the simple model at all times [see Fig. 5.2(b, orange line)], the parasitic path model

matches the peak-dip feature of the measurement [Fig. 5.2(b, yellow line)]. In summary,

based on the parasitic path model, we obtain a realistic set of parameters for each resonator

(see Tab. 4.2 and Tab. 5.2). Additionally, we calculate the capacitance per unit length

C0 = 0.18 nF m−1 and the inductance per unit length L0 = 0.44 µH m−1 of the resonators

from their bare resonance frequency. Our simulations have shown, that both capacitive and

inductive coupling are necessary in order to correctly model the experimental results. For

definitions and further explanations regarding these parameters, please refer to Sec. 2.1.7.

5.1.2 Calculation of the nonlinearity from the circuit model

Using the parameters extracted from the parasitic-path model discussed in the previous

section, we can estimate the nonlinearity U created by the SQUID for a single half-
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Ic(µA) δΦ(Φ0) ∆Φ/∆Icoil(Φ0µA−1) d kL(10−3)
Res 1 1.56 -0.39 0.076 0.13 8
Res 2 1.80 0.30 0.180 0.13 0.75

Table 5.1: Resonator parameters extracted from the circuit model. For each resonator, we show the

total critical current Ic = Ic1 + Ic2 of the SQUID, the zero current offset δΦ of the flux

through the SQUID loop, the flux change ∆Φ per applied coil current ∆Icoil, the SQUID

asymmetry parameter d, and the inductive coupling constant kL to the parasitic path. For

better readability, the index i representing each resonator has been omitted in this table.

Cp(fF) Rp(Ω) Lp(nH)
6.2 8000 133

Table 5.2: Parameters of the parasitic path (see Fig. 2.9). Here, we show the capacitance Cp, resistance

Rp and inductance Lp of the parasitic path.
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Figure 5.3: Dimensionless envelope u of the first spatial voltage mode at Φext = 0 and Φext = Φ0/2 of a

resonator of length l with a SQUID at position x = 0. The difference of the spatial mode

across the SQUID, ∆u, is a direct measure of the nonlinearity of the resonator.
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wavelength coplanar waveguide resonator following Ref. [49] via the relation

U = − e2

2ℏLJ

L∆u4

C
. (5.1)

Here, the parameters C and L are the effective capacitance and inductance of the resonator

including the contribution from the SQUID. We numerically calculate ∆u, which is the

difference of the dimensionless spatial voltage mode envelope u of the first resonator

mode across the point-like SQUID (see Fig. 5.3 for details). For a detailed derivation, see

Sec. 2.1.6.

For our two resonators, the dependence of U as a function of Icoil is shown in Fig. 5.4.

The absolute value of the nonlinearity of resonator 1 (2) can be tuned between a minimum

of 0.1 MHz (0.06 MHz) and a maximum of 8.0 MHz (6.1 MHz). Due to the difference in

the maximal critical currents of the two dc SQUIDs, the tuning ranges for the nonlinearity

differ slightly. Nonetheless, they extend over almost two orders of magnitude. This fact

allows us to set the nonlinearity U in situ between values well below the resonator-resonator

coupling rate J = 8.6 ± 0.3 MHz and values well above J by changing the magnetic bias

fields. J is extracted from the level splitting at the frequency degeneracy point of the two

resonators. For more details, see Sec. 4.3.3. As J is also dependent on the flux through

the SQUIDs, we plot both U and J against the coil current Icoil using the parameters

found in Tab. 5.1. We can clearly observe the two regions where J > U and vice versa.

5.2 Nonlinearity from a direct power-dependent

measurement

In addition to the values extracted from the circuit model in the previous section, we

present a direct measurement of the nonlinearity of resonator 2. Specifically, we exploit

the response of the resonance frequency as a function of the input power. The relevant

parameter to determine U is the actual power circulating inside the resonator. Therefore,

we first have to extract the external coupling strength between resonator and transmission

line to convert the applied power to the field strength inside the resonator.

5.2.1 Quality factor

In order to extract the quality factor of our system, we use an input output formalism [53]

and fit the transmission and reflection of the two resonator chain. For the output signals
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Figure 5.4: The nonlinearity U as a function of the current flowing through the external coil. Solid lines

represent calculations based on parameters extracted from transmission data and parasitic-

path model for resonator 1 (blue) and resonator 2 (yellow). The red dot is the result of a

direct measurement for resonator 2 described in Sec. 5.2.2.
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Figure 5.5: Comparison of the calculated values of the nonlinearity U and the coupling strength J . The

nonlinearity can be tuned by almost two orders of magnitude. There are regions where U > J

and vice versa.
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of resonator 1 (aOUT) and resonator 2 (cOUT) we get

cOUT =
√
κextκcbright +

(
κc−κext

2 − i (ω − ω0)
)
cIN

κext+κc

2 − i (ω − ω0)
(5.2)

aOUT =
√
κextκcbleft +

(
κc−κext

2 − i (ω − ω0)
)
aIN

κext+κc

2 − i (ω − ω0)
, (5.3)

where bleft and bright are the signals flowing over the coupling capacitor. κext is the coupling

rate to the feed lines and κc the coupling rate between the two resonators. Further

information on the derivation of these equations and how we solve them can be found

in section 2.1.3. We use the solution we get for aOUT to fit the theoretically calculated

magnitude of the S-Parameter (Fig. 5.6)

Mag(S11) = A |aOUT|2 + coff, with (5.4)

aIN = 1 and cIN = 0 (5.5)

to our measured data. We use the factor A to account for cable damping and the constant

coff to account for background noise. Note that, we use a calibrated measurement, where

we subtracted the background from a measurement, where the resonators are detuned from

the region of interest. From the fit we extract κext/2π = 1.75 MHz and κc/2π = 15.24 MHz.
We calculate a quality factor Q = 4045.6 and a coupling strength J = 7.62 MHz. The

input output method we use here, allows us only to investigate the points of avoided

crossing, as it assumes that the two resonators are in resonance. In addition to this,

it does not include the influence on the environment and is therefore only useful when

we describe regions, where the signal flow through the resonators dominate over the

background contributions. In order to account for these additional contributions, we can

model the resonances with a Fano like description. We introduced the difference between

a standard Lorentzian line shape and a Fano line shape in section 2.1.8. In this model,

the Fano parameter q is the defining parameter for the shape of the resonance. q is in

turn defined by the participation of the continuum of background modes. We now look at

two different resonance frequencies of resonator 2. The full measurement from where we

extracted the following data can be seen in Fig. 5.1. We choose coil currents of 6.6 µA (Fig.

5.7, left panel) and 8.1 µA (Fig. 5.7, right panel). We can see, that the two line shapes

are very different, the one at a lower resonance frequency being a asymmetric dip feature,

while the one close to maximum resonance frequency of resonator 2 being a dip feature.

We can fit the resonances with the model of a Fano resonance (Eq. 2.67), and are able to

find solutions that fit the line shape well. The Fano parameter q is different for the two

fits, which indicates a different participation ratio of the background. We get qleft = −2.68
and qright = 0.6. In the simulations we perform, the shape of the measured resonances

near the frequency maximum of resonator 2 are not reproduced well. The simulation
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Figure 5.6: A fit calculated from the Input-Output-Formalism (red) to the measured magnitude of a

reflection measurement (blue).
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Figure 5.7: Measurements (blue) of two resonances of resonator 2 at coil currents of 6.6 µA (left panel)

and 8.1 µA(right panel). Fits with a Fano model are shown in red. The fits produce different

Fano parameters q = −2.68 (left) and q = 0.6 (right).
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Figure 5.8: Theoretical calculation of the external quality factor of resonator 2.

predicts a peak feature, while we observe a dip in the measurement. The simulation uses

a single background contribution which leads to an almost flat continuum distribution.

In the measurement, the background actually changes quite drastically over the whole

frequency range, especially showing a large increase towards higher frequencies. This leads

to stronger contribution of said background, which can be seen in the lower Fano parameter

in the fit of this resonance. We extract a loaded quality factor of Qloaded,1 = 2710.8 for

resonator 1 and Qloaded,2 = 4191.6 for resonator 2, each measured near their respective

maximal frequency. The theory predicts an inverse correlation of the quality factor with

resonance frequency as can be seen in Fig. 5.8. Here we used results of the circuit model

to estimate the dependence of the quality factor on the coil current as

Q = ωrC2

2

(
1 + (ωCioZ0)2

(ωrCio)2Z0

)
. (5.6)

The calculation matches both the quality factor we extracted with the Fano fit from

resonator 2 and the one we got from the input output formalism. The lower quality factor

of resonator 1 can not be explained by this model. A possible reason for the result is

the power dependence of the resonator. As the participation ratio of the background is

lower for this resonance point, more power is transmitted to the resonator. Due to the

nonlinearity of the system, a higher input power broadens the resonance shape. This is

reinforced by the fact that the nonlinearity is stronger for lower resonant frequencies. As

the Fano model does not take these effects into account, it determines a lower quality

factor. We therefore have to be careful that for the estimation of the quality factor, we use

only measurements, that are performed with such low input power that the nonlinearity

does not play a significant role.
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External quality factor

In order to extract the external quality factor of our resonators, we use an input-output

formalism [53] and fit the result to the measured reflection signal of the two-resonator

chain. In the limit where resonator 1 is far detuned, we find a dependency of the scattering

parameter S22 on the quality factors of resonator 2,

S22 ≈ 1 − 2Qℓ,2/Qext,2

1 − 2iQℓ,2 (ωr,2 − ωd) . (5.7)

Here, we have used the loaded quality factor Ql,2, the external quality factor Qext,2 and

the resonance frequency ωr,2, each of resonator 2. The parameter ωd denotes the angular

frequency of the driving field. On resonance of the second resonator, ωr,2 − ωd = 0,
Eq. (5.7) further simplifies to

S22 ≈ 1 − 2Qℓ,2

Qext,2

. (5.8)

Further information on the derivation of these equations can be found in App. A. We

first fit the predicted phase dependence, θ = θ0 + 2 arctan(2Qℓ,2(1 − ω/ωr,2)), to the

measured scattering parameter data to extract the loaded quality factor. Then, we fit

Eq. (5.7) to the magnitude and use Eq. (5.8) to determine the external quality factor (see

Fig. 5.9). For resonator 2, we obtain an external quality factor of Qext,2 = 1.35 · 105.

5.2.2 Nonlinearity from power-dependent resonance amplitude

In order to get a relation between the directly measurable output voltage of our system

and the nonlinearity, we start with the equation of motion for a single resonator driven

with a strength of F0. It can be written in terms of the flux Ψ =
∫
V (x,t)dt, where V (x,t)

is the internal voltage of the resonator,

Ψ
L

+ CΨ̈ + Ψ̇
R

+ βΨ3 = F0e
iωt. (5.9)

Here,

β = − 1
24

(2π
Φ0

)2 ∆u4

LJ

(5.10)

is the prefactor of the nonlinear term due to the tunable Josephson junction formed by

the SQUID. The parameter β depends on the SQUID inductance LJ and the drop ∆u in

the spatial voltage mode across the SQUID (see also Fig. 5.3). Obviously, the prefactor β

is a direct measure for the nonlinearity of the system.

For the Duffing-like equation of motion, we can show that the maximum amplitude a

of the mode is inversely proportional to the nonlinearity for small deviations from the
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Figure 5.9: Fit (red dashed line) to the reflection data Scd or S22 (blue dots) at the maximum frequency

of resonator 2 when resonator 1 is far detuned.
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Figure 5.10: Frequency-dependent transmission measurements Sca or S21 near the maximum frequency

of resonator 2 as a function of the VNA output power. For this experiment resonator 2 is

at 7.1 GHz. (a), (b) Experimental data and (c), (d) simulation using parameters extracted

from the parasitic-path model. Frequency up(down)-sweeps are labelled with ”up” (”down”).

The simulation has been calibrated with the input attenuation and output amplification

measured for our setup (for details, see App. 4.2.4).

unperturbed resonance frequency ω0 [56]

|Ψ|2 = a2 = 8
3
ω0C

β
(ω − ω0) . (5.11)

For the experimental output voltage we derive (Sec. 2.1.9)

V 2
out = 8

3
ω0C

β
(ω0 − ω) Z0ω

2QextL
G, (5.12)

with Z0 = 50 Ω being the characteristic impedance of the circuit and G the gain of the

amplification chain.
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Figure 5.11: Squared output voltage at the resonance frequency ωr as a function of this frequency for

resonator 2 (blue and red dots) and the respective fit (dashed yellow line) of Eq. (5.12) to

data points of low input power (blue dots). If not shown, the error bars are smaller than

the symbol size. We estimate the uncertainty of each frequency point to be ±2 MHz.

In order to obtain information on β, we perform power-dependent measurements of

the transmission through the tunable resonator system near the maximum resonance

frequency of resonator 2. The corresponding data is shown in Fig. 5.10. As expected for a

softening nonlinearity U < 0, the resonance frequency decreases with increasing power.

We adjust the previous circuit model to include the purely nonlinear part of the equation

of motion, βΨ3, and model the power dependence of the system. The current is adjusted

by a nonlinear perturbation of the linear current I

INL = Ii − β

iω3
d

V 3
i . (5.13)

Here, we use Ψ =
∫
V dt = V/(iω) to calculate the perturbation. Comparing the frequency

up-sweep to the down-sweep, both for the measurement and simulation, we can observe

a region of bistability for high input powers (starting at roughly 0 dBm). While the

simulation predicts that the system is in different but stable states during sweeping up

and down, the measurement shows jumps between the high and the low transmission

state for both the up and down sweep. We find a good agreement for the upper and lower

frequency bound of the bistability region between experiment and model (see Fig. 5.10).
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In order to calculate the nonlinearity, we plot the square of the output voltage against the

effective resonance frequency of the resonator, which is given by the maximum amplitude

of the resonator response. As expected for a system with softening nonlinearity, the

output voltage increases with decreasing resonance frequency. For small deviations from

the unperturbed frequency, this increase is expected to be linear [see Eq. (5.12)]. The

experimental data, taken from the transmission measurement shown in Fig. 5.10, indeed

shows this linear increase for low input power (see Fig. 5.11). We use C = C2 and L = L2,

i.e., the effective capacitance and inductance of resonator 2 from the parasitic-path model.

As we look at the nonlinearity of resonator 2 in a transmission measurement, where we

apply a signal at the input of resonator 1 and measure at the output of resonator 2,

the measured output signal can be directly related to the voltage inside resonator 2 via

the external quality factor determined in Sec. 5.2.1. From a photon number calibration

measurement (see App. 4.2.4), we estimate that the gain of our amplification chain

is G = 38 ± 4 dB. The uncertainty of the following results is calculated using error

propagation, where the main contributor is the uncertainty of the gain G. As the main

contribution to the uncertainty of the nonlinearity stem from uncertainties of the gain,

which was estimated in decibel, the error bars are asymmetric in linear units. A numerical

fit of Eq. (5.12) to the squared output voltage as a function of the resonance frequency

in the low power region (Fig. 5.11) yields β = 1.97+3.03
−1.19 × 1036 A V−3 s3, which we can

directly relate to the nonlinearity U via Eq. (5.1) and Eq. (5.10). For resonator 2, we get

Ures2 = 0.10+0.16
−0.06 MHz.

We find that the predictions of our theoretical model for the nonlinearity agree well

with our measurement within its uncertainty (see Fig. 5.4).

5.3 Preliminary results of correlation function

measurements

We perform first second order correlation function measurements [g(2)(0)], using the setup

described in 4.2.4. We use a coherent state that is sent to the sample and reflected by

the far detuned resonators. Our tests confirm that the measurement apparatus works as

expected.

5.3.1 Direct correlation function measurements

The first more direct approach is to calculate the correlation function directly from the

measured moments of I and Q. Using

I = â+ â†

2 and Q = â− â†

2i , (5.14)
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Figure 5.12: Correlation function measurement of a weak coherent signal reflected at the detuned sample

both with with (red) and without (blue) a reference state.

we can calculate

g
(2)
i (0) =

〈
â†
i â

†
i âiâi

〉
〈
â†
i âi
〉2 =

〈
Î4
i

〉
+ 2

〈
Î2
i Q̂

2
i

〉
+
〈
Q̂4

i

〉
(〈
Î2
i

〉
+
〈
Q̂2

i

〉)2 . (5.15)

The averaged moments of the right hand side of the equation are all direct results of the

measurement setup. In Fig. 5.12, where we plot the correlation function that was measured

like this in blue for a coherent signal, that is reflected at the far detuned resonators,

for varying input power. We see that for higher input powers (Pinput ≥ −80 dBm) the

correlation function trends towards 1, which is the expected value for a coherent signal.

Around the mentioned threshold, the difference to 1 is less then 0.1 and gets smaller the

higher the input power. For low input power, the measured correlation function deviates

from 1 and trends towards 2, saturating at around 1.86. In this region, the signal statistics

is dominated by thermal room temperature and amplifier noise.

5.3.2 Correlation function measurements with a reference state

Future measurements on the correlation function of the two-resonator sample will require

the detection of low-power microwave signals emerging from the cryostat. Since these

signals have to be amplified, they are covered with the noise added by the amplification

chain. This noise contribution can be separated from the actual signal by means of

the so-called reference method, where the noise moments of the chain are probed with

a well-known reference state. In order to test our setup, we use a well know state to

calibrate the noise contribution to the measurement shown in the previous section. In

the experiment, we do this by pulsing the input signal. The pulse is performed in a way,
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Figure 5.13: Correlation function measurement with fixed input power and varying averaging number.

For a higher number of averages, the measured correlation function increases slowly, but

stays well below 1 even when taking its standard deviation into account.

so that in the first half of the measured trace the signal is off, meaning that we detect a

vacuum state. The state is still overlayed with noise contribution and can therefore be

used in order to calculate the noise terms that distort our measurement results. It can be

shown that

Îi = îi + V̂ †
i (5.16)

Q̂i = q̂i + V̂ †
i . (5.17)

Here, V̂ †
i is the contribution of the noise and îi (q̂i) is the actual in-phase (quadrature)

component of the input signal without the noise contribution. Îi and Q̂i refer to the

measured components that include the noise. Using the reference state, we can extract

the noise components V̂ †
i from the well known components îi and q̂i of a vacuum state.

For further details on the calculations, we refer the reader to [70].

In the second half of the measurement trace, the coherent signal is on and we measure

the components of the signal overlayed by the noise contribution. Knowing V̂ †
i , we can

then calculate the actual signal components using a equivalent calculation as above. The

correlation function is then calculated in the same way as in the measurement without the

reference state from the calibrated quadrature components. The result of the reference

state method is shown in Fig. 5.12 (red curve). For higher input power we see a similar

behavior as in the previous measurement (blue curve), where the correlation function is

equal to the expected one of a coherent signal. We notice that both measurements do not

fully coincide, as the one measured without the reference state stays just above 1. The one

measured with the reference state on the other hand is almost exactly 1 (g
(2)
i (0) = 0.992

at −80 dBm). Also for lower input power, the measurement with reference state deviates

less from the expected value. Taking e.g. 10 % deviation from 1 as the threshold, we get

a sensitivity increase between 10 dB and 15 decibel for the reference state method.

At Pinput ≤ −90 dBm the correlation function drops well below 1 (down to g
(2)
i (0) = 0.4)
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and quickly increases below Pinput ≤ −100 dBm to values above 2. Not shown here for

visibility reasons is the increase of the correlation function to more than 1000. Although

we have not fully understood why we measure a correlation function below 1 for low input

power in the experiment, we have performed investigations, that let us believe, that this

is in fact a physical property of the input signal and not a effect of the measurement

technique. First, we perform the same measurement as shown for an increased number

of averages in order to exclude a stochastical process. The results for a measurement

performed at Pinput = −95 dBm can be seen in Fig. 5.13. We increase the average number

from 106 to 207 averages and show the average calculated correlation function (circle)

and its standard deviation (error bar). We can see, that for a higher number of averages,

the standard deviation decreases to 0.05. Although the calculated correlation function

increases with higher number of averages, the edges of the standard deviation are clearly

lower than 1 meaning that the observed effect is not of statistical nature.

We can however simulate a different behavior by adding randomly created noise to

a simulated coherent signal. We reproduce the pulse shape of the input signal and the

averaging process. We then use the reference state algorithm to calculate the correlation

function similar to the experiment. Here, we find that the correlation function stays above

1 at all times. The strong increase in correlation function at the lowest input powers

can be observed as well. We can therefore exclude the algorithm itself as the source of

the effect. As a last step, we were also able to reproduce the measurement results in a

different experimental setup, excluding the distinct setup from being the origin.

In order to fully understand this behavior further investigations both on a experimental

and theoretical level have to be made. Nevertheless we conclude that the fact that we

measure a correlation function of below 1 for a weak coherent signal is a physical property

of the coherent signal.
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Summary and Outlook

In this thesis we have presented experimental results of a superconducting circuit that

is suitable for quantum simulation of a Bose-Hubbard system. We also have showed

theoretical calculations of the Bose-Hubbard model that is represented by our circuit.

Dependent on the parameters of the model, the calculated second order correlation function

g(2)(0) inside a lattice site and the cross correlation function g(2X)(0) between two sites

can both be lower, equal or higher than 1, which is the expected value of a coherent field.

The four main parameters, which determine the properties of the field are the on-site

nonlinearity U , the hopping rate J between the lattice sites, the driving frequency and

the driving strength of the external driving field. By tuning these parameters, we can set

the correlation functions of the system to different regimes, where g(2X)(0), g(2)(0) > 1 or

g(2X)(0), g(2)(0) < 1. We can also set the correlations functions so that g(2X)(0) > 1 and

g(2)(0) < 1 and vice versa. These regions exhibit completely different physical properties

and are therefore interesting to investigate further.

In order to do so experimentally, we have designed and fabricated a superconducting

circuit that represents a Bose Hubbard dimer. The circuit consists of two capacitively

coupled microwave waveguide resonators each intercepted by a DC-SQUID. The SQUID

adds a nonlinearity into the otherwise linear system. Additionally, it offers the possibility

to tune the nonlinearity and with it the resonance frequency of the resonators with an

externally or on-chip applied magnetic field. The resonator fields can be driven through

two waveguides that are capacitively coupled to each end of the resonator chain. These

input lines can also be used to read out the resonators. We have showed, that we are

able to control all relevant parameters of the system, i.e. the nonlinearity and the driving

field. The hopping rate is indirectly coupled to the nonlinearity and cannot be controlled

individually. In order to be able to set the nonlinearity of both resonators to the same

arbitrary value, we have calibrated the external coil and the on-chip antennas, so that we

can create the needed magnetic field at each SQUID loop.

We have presented two ways to determine the nonlinearity of the resonators representing

this Bose Hubbard dimer. First, we have estimated the nonlinearity by modeling the

experimental data of a magnetic flux sweep with a circuit model that includes a parasitic

path. We have then calculated the nonlinearity from the extracted parameters of the

97
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theoretical model. We have calculated the absolute value of the nonlinearity of resonator

1 (2) which can be tuned from a minimum of 0.1 MHz (0.06 MHz) to a maximum of

8.0 MHz (6.1 MHz). The nonlinearity can therefore be tuned by almost two orders of

magnitude. We are limited by design as our experimental setup is not suited for larger

tuning of the resonance frequency. When tuning the nonlinearity over its full possible

range, the system is brought into regions where J > U as well as ones where U > J .

Second, we have directly measured the nonlinearity from the power dependence of the

non-linear resonators. An increasing drive power at the entrance of the resonator shifts

the resonance frequency of the resonator to lower frequencies. Fitting this behavior gives

us direct access to the nonlinearity of the resonator. For the nonlinearity of resonator 2

we get Ures2 = 0.10+0.16
−0.06 MHz.

The first steps going forward will be to further improve the measurement technique of the

nonlinearity. For this, the most important part will be to especially improve the calibration

of the input power. Doing so, will allow for a much more precise measurement of the

nonlinearity. Furthermore, we will implement the presented setup for the measurement of

the second order correlation functions. With this, it will be possible to verify the theoretical

calculations presented in this work. Finally, larger scale samples with additional lattice

sites will allow for quantum simulations of the phase transitions of the Bose-Hubbard

model. Both longer chains of resonators or two dimensional setups could be possible.



Appendix A

Calculation of the external quality factor

In Sec. 2.1.9, it is shown that, in order to extract the nonlinearity from a power dependent

measurement, we need to know the external quality factor of the resonators. Here, we

derive equations, that allow us to extract the external quality factor from a reflection

measurement of our two resonator system.

First, we consider a system without intrinsic damping, of which the Hamiltonian

kl krglin

lout

rin

routa b

a b

Figure A.1: Quantum description of the system. The two intra-resonator fields, a and b, are coupled

with a coupling strength g, which are also coupled to two independent baths with strengths

κl and κr, respectively. From the two baths, one can identify the input and output fields as

lin and lout, or rin and rout, depending on the boundary conditions. In addition, we denote

the intrinsic losses of the two cavities as γa and γb, respectively. The hat symbols denoting

quantum operators in the sketch are omitted in the text to simplify the notation.
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reads [71–73]

Hsys = ℏωaa
†a+ ℏωbb

†b+ ℏg
(
a†b+ ab†

)
(A.1)

H = Hsys + ℏ
∫ +∞

−∞
dω

{
ωl† (ω) l (ω) + (A.2)

iκl (ω)
[
l† (ω) a− l (ω) a†

]}
+ ℏ

∫ +∞

−∞
dω

{
ωr† (ω) r (ω) +

iκl (ω)
[
r† (ω) b− r (ω) b†

]}
.

Here, by convention, we define the specific type of coupling between the intra-resonator

fields, a for resonator 1 and b for resonator 2, and the bath, l (ω) and r (ω), respectively,
for the simplicity of derivation. Then, one can derive the following Heisenberg equations

of motion for the field operators

l̇ (ω) = −iωl (ω) + κℓ (ω) a, (A.3)

ȧ = − i

ℏ
[a,Hsys] −

∫ +∞

−∞
dωκℓ (ω) l (ω) , (A.4)

ṙ (ω) = −iωr (ω) + κr (ω) b, (A.5)

ḃ = − i

ℏ
[b,Hsys] −

∫ +∞

−∞
dωκr (ω) r (ω) . (A.6)

We note that the above equations can be split into two groups, namely Eq. (A.3)/(A.4)

and Eq. (A.5)/(A.6), each of which is identical to the input-output formalism of a single

system. Following the same procedure as in Ref. [71], we define the input fields

lin = 1√
2π

∫ +∞

−∞
dωe−iωtl (ω) , (A.7)

rin = 1√
2π

∫ +∞

−∞
dωe−iωtr (ω) . (A.8)

The equations of the intra-resonator fields thus read

ȧ = −iωaa− igb− γℓ + γa

2 a− √
γℓlin(t), (A.9)

ḃ = −iωbb− iga− γr + γb

2 b− √
γrrin(t). (A.10)

Here, we have used the first Markov approximation γℓ = 2πκ2
ℓ (ω), γr = 2πκ2

r (ω) [71]. We

also added the internal loss rates γa γb of resonator 2. The two output fields are

lout = lin + √
γℓa(t), (A.11)

rout = rin + √
γrb(t). (A.12)
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Then, we move to the frame rotating with respect to the reference frequency ωd and

define ∆a = ωa − ωd, ∆b = ωb − ωd, where ωd is the frequency of the driving field. For

steady state solutions, we find

S11 = lout

lin
= 1 −

γℓ

(
i∆b + γr+γb

2

)
(
i∆a + γℓ+γa

2

) (
i∆b + γr+γb

2

)
+ g2

, (A.13)

S21 = rout

lin
=

ig
√
γℓγr(

i∆a + γℓ+γa

2

) (
i∆b + γr+γb

2

)
+ g2

, (A.14)

S12 = lout

rin
=

ig
√
γℓγr(

i∆a + γℓ+γa

2

) (
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S22 = rout

rin
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(
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2

)
(
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) (
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2

)
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. (A.16)

Here, we have used the imaginary unit i, which is related to the imaginary unit in electrical

engineering by i = −j. We find that all the damping coefficients, γa, γb, γℓ, and γr can be

obtained by detuning the two resonators, and measuring the internal and coupling quality

factors from the reflection responses S11 and S22, respectively.

We find that the scattering parameter S22 only depends on the external quality factor

Qext,2 = ωb/γb and the loaded quality factor Qℓ,2 of resonator 2, in the limit where

resonator 1 is far detuned ∆a → ∞:

S22 ≈ 1 − 2Qℓ,2/Qext,2

1 − 2iQℓ,2∆b

. (A.17)

On resonance of the second resonator, ∆b = 0, we then get

S22 ≈ 1 − 2Qℓ,2

Qext,2

. (A.18)

We extract the loaded quality factor from a fit to the phase θ of the scattering parameter

using

θ = θ0 + 2 arctan(2Qℓ,2(1 − ω/ωr,2)). (A.19)

From this we calculate the external quality factor with Eq. (A.18).

In our experiment, we detune the two resonators by approximately 200 MHz and measure

the reflection response S22. To determine the internal and external quality factors from the

scattering coefficients, we follow the recipe described in Ref. [74] which includes different

corrections of the measurement signal. The corresponding fit to the measurement data

is shown in Fig. 5.9. Finally, Tab. A.1 summarizes all determined values. Specifically,

we obtain Qext,2 = 1.35 · 105. Comparing this to the internal loss of 7.8 · 103, we find
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parameter value
ωb 2π × 7.154 GHz
Qℓ,2 7.4 · 103

Qint,2 7.8 · 103

Qext,2 1.35 · 105

γb 2π × 0.91 MHz
γr 2π × 0.05 MHz

Table A.1: Parameters extracted from the quality factor fitting procedure described in App. A near the

maximum resonance frequency of resonator 2. We assume the external quality factor to be

frequency-independent.

that our system is undercoupled. For use in larger quantum simulation experiments, an

investigation into the causes for the high internal loss is needed to enable longer polariton

life times. In order to achieve this, changing the sensitivity of the SQUID both to external

fields and to the fields of the flux lines would be the first thing to try.
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