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Abstract

In this thesis, we discuss proof of principle experiments for the read-out and transfer

of information via spin currents in a ferrimagnetic insulator (FMI). First, we focus on

the read-out of magnetic states, i.e. the sublattice magnetic moment configuration in a

FMI. To this end, we exploit the spin Hall magnetoresistance (SMR) in heterostructures

consisting of a FMI and a platinum (Pt) layer. We expand the well established macrospin-

based SMR picture to a microscopic model based on the orientation of the individual

sublattice magnetic moments. The latter can straightforwardly be applied to a variety

of non-collinear magnetically ordered systems and even antiferromagnets. We verify our

theoretical predictions experimentally in the canted magnetic phase of the FMI gadolinium

iron garnet (GdIG) and find that for a non-collinear magnetic configuration the SMR

response cannot be described by the net magnetization, but is indeed determined by

the orientation of the individual magnetic moments, in agreement with our theoretical

model. These results show that SMR measurements allow for an all-electrical mapping of

magnetic phases in insulators and give important details on their magnetic structure and

sublattice configurations.

We then turn to the transfer of information via spin wave excitations (magnons) which

can propagate in a FMI. In particular, we study the magnon mediated magnetoresistance

(MMR) effect, i.e. the transport of non-equilibrium magnons, which are injected and

detected electrically using two parallel Pt strips deposited on top of the ferrimagnet. A

systematic study of the MMR in yttrium iron garnet (YIG) as a function of the injector-

detector distance, temperature and magnetic field gives first important insights into the

microscopic origin of the MMR. Based on these results, we present a proof-of-principle

device performing logic operations via the incoherent superposition of non-equilibrium

magnons. We also study the thermal injection of magnons, which gives rise to an additional

voltage at the detector via the non-local spin Seebeck effect (SSE). Our experimental

results suggest that the non-local SSE depends on a complex interplay of both interfacial

transparency and magnon transport properties. Finally, we investigate the MMR effect

in the collinear magnetic phase of GdIG and find a distinct temperature and magnetic

field dependence of the MMR signal, that is qualitatively different from the one observed

in YIG/Pt. This complex behavior can partially be attributed to the magnetic field

dependence of the magnon transport properties in GdIG.

This thesis gives new insights into fundamental properties of insulating, magnetically

ordered materials, such as their magnetic structure and magnon transport properties.
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Furthermore, our results are of interest for future spintronics applications, namely for

magnetic sensing and read-out, as well as for information transfer and processing.



Zusammenfassung

In dieser Dissertation werden Grundlagenexperimente für das Auslesen und die Übertra-

gung von Informationen mithilfe von Spinströmen in ferrimagnetischen Isolatoren (FMI)

durchgeführt. Zunächst behandeln wir das Auslesen der magnetischen Untergitterkon-

figuration in einem FMI. Hierzu wird der Spin Hall Magnetwiderstandseffekt (SMR) in

Heterostrukturen aus einem FMI und einer Platinschicht (Pt) untersucht. Wir erweitern

das etablierte, Makrospin-basierte SMR Modell und schlagen ein neues mikroskopisches

Modell vor, das auf der Orientierung der einzelnen magnetischen Untergittermomente

basiert. Letzteres kann ohne Weiteres auf eine Vielzahl von magnetisch geordneten,

nicht-kollinearen und sogar antiferromagnetischen Systemen angewandt werden. Die

theoretischen Vorhersagen werden experimentell in der magnetisch verkanteten Phase des

FMI Gadolinium-Eisen-Granat (GdIG) überprüft. Unsere Messungen bestätigen, dass

der SMR Effekt dann nicht mehr durch die Nettomagnetisierung gegeben ist, sondern

- im Einklang mit dem vorgeschlagenen Modell - durch die Orientierung der einzelnen

magnetischen Momente bestimmt wird. Diese Ergebnisse zeigen, dass SMR-Messungen

eine rein elektrische Charakterisierung von magnetischen Phasen in Isolatoren ermöglichen

und Aufschluss über deren magnetische Struktur und Untergitterkonfigurationen geben

können.

Im zweiten Teil dieser Arbeit wird die Übertragung von Informationen in Form von

Spinwellen (Magnonen), die durch einen FMI propagieren, behandelt. Insbesondere wird

der Transport von Nichtgleichgewichtsmagnonen untersucht, die mithilfe von zwei auf dem

FMI aufgebrachten Pt Streifen elektrisch injiziert und detektiert werden. Eine systemati-

sche Untersuchung dieses sogenannten magnonenvermittelten Magnetwiderstandseffektes

(MMR) in Yttrium-Eisen-Granat (YIG) als Funktion des Injektor-Detektor Abstandes, der

Temperatur und des Magnetfeldes, gibt Aufschluss über den mikroskopischen Ursprung

des MMR. Basierend auf diesen Erkenntnissen wird ein Bauelement implementiert, das

Logikoperationen mittels inkohärenter Superposition von Nichtgleichgewichtsmagnonen

ausführt. Des Weiteren wird der Transport von thermisch injizierten Magnonen in YIG/Pt

untersucht, die eine zusätzliche Spannung am Detektor verursachen. Der beobachtete

Effekt wird als nichtlokaler Spin Seebeck Effekt (SSE) bezeichnet. Die experimentellen

Daten deuten darauf hin, dass der nichtlokale SSE von einem komplexen Zwischenspiel der

Grenzflächentransparenz und der Magnonentransporteigenschaften abhängt. Abschließend

wird der MMR Effekt in der kollinearen Phase von GdIG untersucht. Die gemessene

Temperatur- und Magnetfeldabhängigkeit des MMR Effektes in GdIG unterscheidet sich
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qualitativ von den Beobachtungen in YIG. Dieses komplexe Verhalten kann zum Teil

auf eine starke Magnetfeldabhängigkeit der Magnonentransporteigenschaften in GdIG

zurückgeführt werden.

Diese Dissertation gibt neue Einblicke in fundamentale Eigenschaften von isolierenden,

magnetisch geordneten Materialien, z.B. deren magnetische Struktur und Magnonentrans-

porteigenschaften. Zudem sind die Erkenntnisse von Interesse für zukünftige Spinelektronik-

anwendungen, insbesondere für magnetische Sensoren und zur Informationsübertragung

und -verarbeitung.
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Chapter 1

Introduction

“Those of us who have come later will never be able to experience [...] the enormous and

enthusiastic astonishment at the fact that [a] small, hardly detectable electrical spark [...]

has suddenly acquired the demonic power to leap across countries, mountains, and entire

continents.”

These words were written by the Austrian author Stefan Zweig in his work ”Decisive

moments in history” [1], where he describes the great technical accomplishment of laying

a telegraphic cable across the Atlantic ocean in the 1860s, reducing the (one-way) commu-

nication time between America and Europe from two or three weeks (for a letter carried

by steamship) to several minutes for a short message. While at that time successfully

developing and handling a 4000 km long undersea cable to enable transatlantic messaging

was considered a groundbreaking achievement, nowadays the main focus in communication

technology lies in making microscopic electronic devices faster and more energy efficient.

The general approach of encoding a message in what Zweig called a “hardly detectable

electrical spark” is still applicable today, as information is usually carried by the charge

of electrons. However, beside their charge, electrons also exhibit a spin. This additional

degree of freedom has gained much interest in recent years, giving rise to the research field

of spintronics, which in more general terms comprises different concepts of information

transfer via angular momentum currents. These can be for instance electrical spin (polar-

ized) currents in ferromagnetic metals or spin-wave excitations in magnetically ordered

insulators. While the spin diffusion length in a ferromagnetic metal is typically very

short of the order of nm [2], spin waves in ferromagnetic insulators (FMI) can propagate

over much larger distances on the ➭m scale. In this context, a new effect called magnon

mediated magnetoresistance (MMR) was recently observed in bilayers consisting of the

FMI yttrium iron garnet (Y3Fe5O12, YIG) and two parallel, electrically isolated Pt strips

deposited on top of the YIG [3, 4]. Driving an electrical charge current through one of the

strips (injector), gives rise to a transverse electrical spin current via the spin Hall effect

(SHE) [5, 6]. Since the electron spin current cannot cross the Pt/FMI interface, a spin

accumulation builds up there. The latter is converted into non-equilibrium magnons, the

quanta of spin-wave excitations, which diffuse across the insulator away from the injector.

1



2 Chapter 1 Introduction

The non-equilibrium magnons are detected via the inverse effect in the second Pt strip,

giving rise to a non-local voltage which can be measured in open-circuit conditions. This

combination of electron spin and magnon currents in a FMI/Pt bilayer represents an

important step towards transferring information over several 10➭m through a magnetic

insulator. In order to exploit this effect for applications, i.e. information transfer and

processing within a magnonic system, a more thorough understanding of the microscopic

origin of the MMR is required, which is one of the main aims of this thesis.

In addition to investigating the transfer of information through a magnetic insulator, we

address another important aspect of spintronics, i.e. magnetic data storage. In particular,

we focus on the associated read-out processes. The concept of magnetic recording was

already proposed in 1888 by O. Smith [7] followed by the first magnetic tape recorders in

the 1930s. Although technology has greatly evolved in the meantime, the basic approach

of encoding logical bits as a magnetic state which can be read out afterwards is still similar

today. In general, a common strategy for the read-out of magnetic states is to make use

of magnetoresistive effects, i.e. the dependence of a materials electrical resistivity on the

magnetization orientation. One well established magnetoresistive effect in metals, which is

currently used for sensor applications (linear or angular position sensors), is the anisotropic

magnetoresistance (AMR) [8, 9]. A similar effect called spin Hall magnetoresistance (SMR)

[10–12] was recently discovered in FMI/normal metal (NM) bilayers. The SMR is mediated

by a spin current flow across the FMI/NM interface, leading to a resistivity change in the

NM depending on the magnetization orientation in the insulating ferrimagnet.

Promising materials for next generation data storage technologies are antiferromag-

nets, where the net magnetization is compensated due to the antiparallel alignment of

neighboring magnetic moments. Antiferromagnets therefore exhibit no magnetic stray

fields, eliminating disruptive cross-talk between adjacent bits and allowing for high density

storage devices. Furthermore, the lack of net magnetization makes antiferromagnets

robust against external magnetic fields, preventing accidental switching and memory loss.

However, this property also makes the read-out of the antiferromagnetic states challenging.

Recent measurements in antiferromagnetic metals give evidence that the AMR is not

sensitive to the net magnetization but probes the sublattice specific moment orientation,

allowing to determine the encoded magnetic state [13, 14]. The question arises whether

the same applies for magnetoresistive measurements in FMI/NM bilayers. In this thesis

we therefore investigate the sensitivity of the SMR effect to the orientation of individual

sublattice magnetic moments in an insulating magnet. Since the manipulation of the

magnetic state of an antiferromagnet via an external magnetic field can be challenging,

we choose the three-sublattice ferrimagnet gadolinium iron garnet (Gd3Fe5O12, GdIG)

which has a net magnetization at finite external magnetic field. In addition to a collinear

ferrimagnetic phase, GdIG exhibits a canted magnetic phase, where the sublattice mo-

ments are non-collinear and the corresponding canting angles with respect to the applied

field depend on the temperature and magnetic field magnitude. SMR measurements as
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a function of temperature and magnetic field in GdIG/Pt bilayers therefore allow for a

systematic study of the SMR response as a function of the sublattice magnetic moment

orientation.

This thesis is organized in two main parts: in Part I we expand the current macrospin-

based SMR model to a microscopic description based on the orientation of individual

magnetic moments residing on different sublattices (Chap. 2). Chapter 3 introduces

the material systems investigated in this thesis and gives a short overview over the

experimental methods. We verify our theoretical predictions experimentally in Chap. 4

and present the first SMR measurements conducted in the non-collinear magnetic phase

of the insulator GdIG using Pt as the normal metal. Our experimental results give strong

evidence that indeed the SMR is not determined by the net magnetization of the FMI

but rather depends on the orientation of the individual magnetic moments. We conclude

that the SMR is a promising candidate for the all-electrical read-out of magnetic states

in antiferromagnetic insulators and more generally can be used to probe non-collinear

magnetic structures in insulators, such as conical or frustrated magnetic states.

In Part II we turn to the transport of non-equilibrium magnons in a non-local FMI/Pt

nanostructure. Chapter 5 gives an overview over the current theoretical understanding of

magnon injection and transport in a ferrimagnetic insulator. In Chap. 6, we study the MMR

effect, i.e. the diffusion of electrically injected magnons through the ferrimagnetic insulator

YIG as a function of temperature, magnetic field and injector-detector distance. These

measurements allow for a better understanding of the dominating magnon contributions

and the microscopic origin of the MMR. Following these results, we present the first

proof-of-principle device implementing a magnon-majority gate based on the incoherent

superposition of magnons in the YIG film (Chap. 7). Potential switching frequencies

of a few GHz and straightforward downscaling make this device promising for future

spintronics applications. In addition to the electrical injection of magnons, the latter can

also be excited thermally at the injector, giving rise to the non-local spin Seebeck effect

(SSE), which can also be detected in the second Pt strip. Our temperature dependent

investigation of the non-local SSE in YIG/Pt presented in Chap. 8 indicates that the

latter is governed by a complex interplay of interface and transport properties. After an

extensive study of the magnon transport in YIG/Pt, we turn to the diffusion of electrically

injected magnons in a GdIG/Pt non-local nanostructure in Chap. 9. In contrast to YIG,

where only the fundamental magnon mode is thermally populated at room temperature

and expected to contribute to the MMR, GdIG has a more complex magnon spectrum

with an additional thermally populated high energy mode. By comparing the experimental

results to calculations of the GdIG magnon spectrum we can therefore study the influence

of multiple magnon modes on the MMR effect. The key findings on magnon injection and

transport in ferrimagnetic insulators are compiled in Chap. 10.

Finally, the most important results obtained within this thesis are summarized in

Chap. 11. We furthermore propose future experiments which may allow to resolve some
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of the open questions concerning both the spin Hall magnetoresistance in non-collinear

magnetic structures as well as magnon transport in a non-local configuration.



Part I

Spin Hall magnetoresistance in FMI/Pt

bilayers

5





7

Magnetically ordered materials are often characterized in terms of their net magneti-

zation, a quantity which can be experimentally determined using a magnetometer. In

the simplest case, this is achieved by moving the sample through a pick up coil and

measuring the induced voltage. For a theoretical description of the magnetic properties, a

macrospin approximation can be applied using the net magnetization vector M = nµi,

where n is the number of magnetic moments per volume. This macrospin model is based

on the assumption that all individual atomic magnetic moments µi are aligned along

the same direction. While this assumption is valid in collinear magnets, many material

systems with long-range magnetic order have a more complex magnetic structure, forming

e.g. canted, spiral or topological [15, 16] phases, such that the macrospin approximation

can no longer be applied straightforwardly. Some materials furthermore exhibit rich

magnetic phase diagrams such as the one found for example in Cu2OSeO3 (CSO) [17–19],

depicted in Fig. 1.1 (Figure taken from Ref. [17]). Here, both collinear (ferrimagnetic)

and non-collinear (conical, skyrmionic) phases are observed, such that CSO cannot be

described in a macrospin model throughout the whole phase diagram. On a similar note,

a large number of magnetically ordered materials are antiferromagnetic (AFM) and can

also not be described in terms of a macrospin. This is due to the fact that all atomic

magnetic moments compensate each other and the net magnetization of the AFM is zero.

Antiferromagnets are steadily gaining interest for future applications since their long

range magnetic order can be used for data storage [13, 14, 20–22], while the magnetic

structure is mostly unaffected by external magnetic fields. Considering this large variety

of magnetically ordered phases, a simple characterization method for the microscopic

magnetic structure of different materials is of great importance.

In general, the presence of different magnetic phases, and in particular also of phase

transitions, can be deduced from magnetization and susceptibility measurements - e.g.

superconducting quantum interference device (SQUID) magnetometry - as a function

of magnetic field magnitude, magnetic field orientation and temperature (see Fig. 1.1).

However, since conventional magnetometry is sensitive only to the total (net) magnetic

moment, such experiments do not allow for a direct mapping of the microscopic magnetic

structure in non-collinear or antiferromagnetic phases. The experimental investigation

of the latter therefore usually requires more complex methods, such as x-ray magnetic

circular dichroism (XMCD), spin polarized neutron scattering or Lorentz transmission

electron microscopy. In conductive materials, magnetoresistance measurements can be

exploited for the electrical detection of the magnetic properties. It was recently shown that

the anisotropic magnetoresistance (AMR) effect allows to determine the orientation of the

sublattice moments in an antiferromagnet [13, 14]. In the case of magnetically ordered

insulators on the other hand, the magnetic properties can be probed by placing a normal

metal layer on top and investigating spin torques at the magnet/metal interface [23–25].

More specifically, in a bilayer consisting of a (collinear) ferrimagnetic insulator and a

normal metal with strong spin orbit coupling such as Pt, the resistance of the normal
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Figure 1.1: Magnetic phase diagram of a Cu2OSeO3 (CSO) bulk sample determined via magnetization

(red dots), electric polarization (green triangles) and ac susceptibility (orange) measurements.

Below the ordering temperature Tc ≈ 60 K, the magnetic moments in CSO arrange in

non-collinear conical or skyrmionic configurations or exhibit a collinear ferrimagnetic order,

depending on the applied magnetic field magnitude. Figure taken from Ref. [17].

metal depends on the orientation of the (net) magnetization in the ferrimagnet. This effect

is called spin Hall magnetoresistance (SMR) [10–12, 26, 27] and is based on spin torque,

i.e. a flow of angular momentum across the magnet/metal interface. The latter is well

established for collinear magnets, which can be described by a macrospin approximation

[28, 29]. However, the spin torques acting on non-collinear magnetic structures are still

subject to current investigations.

In the first part of this thesis, we therefore propose a microscopic theoretical description

of the SMR effect in complex magnetic structures, taking into account the orientation of

all individual magnetic moments. We verify the proposed model experimentally in the

insulating ferrimagnet gadolinium iron garnet (Gd3Fe5O12, GdIG), which can assume a

collinear as well as a canted magnetic phase and can easily be manipulated by an external

magnetic field. Our experimental results show that indeed the SMR effect in GdIG/Pt is

sensitive to the orientation of magnetic moments residing on different magnetic sublattices

and is not simply determined by the orientation of the net magnetization M (as described

in the macrospin approximation). In particular, we observe a 90➦ shift of the SMR angular

dependence (also parametrized as a SMR sign inversion) in the magnetic canting phase

compared to the collinear phase. This observation can be rationalized within the proposed

microscopic model and is further confirmed by XMCD measurements and atomistic spin

simulations. The spin Hall magnetoresistance therefore represents a powerful tool for the

electrical mapping of magnetic structures in insulators.

Part I of this thesis is structured as follows: in Chap. 2, we start with a compact

overview of the relevant theoretical concepts including the generation and detection of
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spin currents as well as the theory of SMR in the macrospin approximation. We then

expand the latter to a microscopic description of the SMR in canted ferrimagnets based

on the assumption that each magnetic moment contributes individually to the SMR. The

two material systems investigated in this part, i.e. the collinear ferrimagnet yttrium iron

garnet (Y3Fe5O12, YIG) and the compensated ferrimagnet GdIG, are both introduced in

Chap. 3, followed by a description of the experimental setup. In Chap. 4, we present our

experimental SMR results in YIG/Pt and GdIG/Pt. The latter were published in Phys.

Rev. B 94, 094401 (2016) [30].





Chapter 2

Spin Hall magnetoresistance:

theoretical overview and modeling

2.1 Spin current generation and detection

In addition to their charge, electrons also carry angular momentum or spin. In metallic

systems, two independent transport channels are typically considered for spin up and

down electrons, based on the two current model proposed by Mott [31]. The total electron

charge current density is then given by

Jc = (J↑ + J↓) (2.1)

where J↑,↓ is the current density of spin up and spin down electrons, respectively. Here,

we use the technical current direction for the electron charge current density, i.e. Jc has

units of A/m2. The corresponding spin (polarized) current density is defined as

Js =
~

−2e
(J↑ − J↓) (2.2)

with −e < 0 the electron charge. A spin current is a flow of angular momentum and

therefore has a flow direction Js and a polarization direction (the spin orientation). The

factor ~

−2e
accounts for the different dimensionalities of the charge and spin currents, as

Js is an angular momentum (particle) current in units of J/m2. Note that in the following

discussions, we are mainly interested in the current directions and therefore often denote

J as a current (instead of current density) for simplification.

In order to exploit spin currents for applications, a conversion process from electron

charge to spin current and vice versa is required. A well established concept for this

conversion is using a metal without long-range magnetic order, typically called “normal

metal” (NM) in literature, which exhibits large spin orbit coupling: driving a charge

current through the NM gives rise to a transverse electron spin current via the so-called

spin Hall effect (SHE) [5, 6]. The origin of the SHE is an asymmetric scattering of spin

up and down electrons, due to either intrinsic (Berry curvature [32, 33]) or extrinsic (skew

11
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scattering [34–36], side jump scattering [37]) mechanisms. The generated spin current is

given by [38]

JSHE
s = ΘSH

~

2e
Jc × σ (2.3)

where σ is the electron spin polarization in the metal and ΘSH the spin Hall angle, i.e. the

conversion efficiency between charge and spin current. The inverse spin Hall effect (ISHE)

described by [38]

JISHE
c = ΘSH

2e

~
Js × σ (2.4)

in turn can be used for the electrical detection of a spin current. The spin Hall angle can

be positive (Pt, Au, Ag) or negative (Ta, W) and its amplitude depends on the strength

of the spin orbit coupling and is therefore material specific [39]. In the present work

we use Pt as the NM, due to its comparatively large spin Hall angle, making it a good

candidate for charge-transport based (electrical) spin current generation and detection.

More specifically, values in the range ΘSH = 3% − 12% were experimentally extracted

by different groups [10, 26, 27, 40, 41]. These differences are typically attributed to the

sensitivity of ΘSH to the deposition method (electron beam evaporation or sputtering)

and to the concentration and type of impurities in the Pt [42].

2.2 Spin Hall magnetoresistance in the macrospin model

In the first part of this thesis, we study the spin Hall magnetoresistance (SMR) [10–12] in

bilayers consisting of a ferrimagnetic insulator (FMI) and the normal metal Pt. The SMR

effect corresponds to a modulation of the Pt resistance as a function of the magnetization

orientation in the FMI and is mediated by a spin current, i.e. a flow of angular momentum,

across the Pt/FMI interface. This process is sketched in Fig. 2.1 (Figure adapted from

Ref. [30]): a charge current Jc ‖ j driven through the Pt induces an electron spin current

in the metal with flow direction Js ‖ −n and polarization σ ‖ −t due to the SHE

according to Eq. (2.3). The SMR is usually described in a macrospin model in terms

of a magnetization M = µ/V =
∑

µi/V , where µ is the total magnetic moment and

µi are all the individual atomic moments in the volume V . When σ is perpendicular

to the magnetization direction m = M/M in the FMI (see Fig. 2.1 (a)), a spin transfer

torque can be exerted on the magnetization [10, 12, 43]. The ability to exert a torque

can be identified as an absorption of Js which in turn manifests itself as an additional

dissipation channel for charge transport in the Pt layer, such that the metal resistivity ρ

increases. However, for σ ‖ m, no torque can be exerted and the spins accumulate at the

Pt/FMI interface. This leads to a back flow of the spin current (Js,back) away from the

interface which (partly) counteracts the original spin current (see Fig. 2.1 (b)). Js,back is

converted back into a charge current and in this configuration the Pt resistivity reaches

a minimum. In Part II of this thesis, the spin accumulation at the Pt/FMI interface
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Figure 2.1: Spin Hall magnetoresistance response of a FMI/Pt bilayer. (a) A charge current Jc applied

to the Pt layer generates a transverse spin current Js via the SHE. When the electron spin

polarization σ is perpendicular to the magnetization direction M in the FMI, a torque can be

exerted on the magnetization, such that the spin current is partly absorbed by the ferrimagnet

and the resistivity ρ of the metal is increased. (b) When M ‖ σ, Js cannot cross the interface

and spins accumulate there, giving rise to a spin back flow Js,back. The latter is converted

back into a spin current via the ISHE, leading to a smaller Pt resistivity ρ. Figure adapted

from Ref. [30].

obtained for σ ‖ m will be discussed in more detail, since the electron spin accumulation

can be converted into a magnon accumulation in the FMI. This effect however is usually

neglected in the description of the SMR and will not be taken into account here.

Quantitatively, the longitudinal resistivity of the Pt follows [12]

ρlong = ρ + ρ′ + ρ1

(

1 − m2
t

)

= ρ + ρ′ + ρ1

(

1 − (m · t)2
)

(2.5)

where mt is the projection of the magnetization unit vector m onto the transverse direction

t ‖ σ and ρ is the intrinsic electric resistivity of the bulk normal metal. ρ′ and ρ1 are

defined as [12]
ρ′

ρ
= −Θ2

SH

2λ

dNM

tanh

(

dNM

2λ

)

(2.6)

ρ1

ρ
= Θ2

SH

λ

dNM

Re
2λG↑↓tanh2

(

dNM

2λ

)

σNM + 2λG↑↓coth
(

dNM

λ

) ≈ Θ2
SH

λ

dNM

2λGrtanh2
(

dNM

2λ

)

σNM + 2λGrcoth
(

dNM

λ

) (2.7)

with ΘSH the spin Hall angle (see Sect. 2.1), λ the spin diffusion length in the NM, dNM the

thickness of the NM layer and σNM the electrical conductivity of the NM. G↑↓ = Gr + iGi

is the complex spin mixing interface conductance per unit area [44] and gives a measure

for the efficiency of the angular momentum transfer across the interface. As customary

in literature, we assume that the imaginary part Gi of the spin mixing conductance is

smaller than the real part Gr [45], such that we can neglect Gi and can simplify Eq. (2.7).
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Figure 2.2: Typical SMR measurement configuration in a FMI/Pt Hall bar structure, where the external

magnetic field is rotated (a) in the j-t-plane (ip), (b) in the n-t-plane (oopj) and (c) in

the n-j-plane (oopt). The wiring for a 4 point resistance measurements is shown in black.

The expected modulation of the resistivity ρ as a function of the external magnetic field

orientation H for all three rotation planes is displayed in panels (d)-(f). For the ip (oopj)

rotation a cos2(αH) (cos2(βH)) dependence on the magnetic field orientation is expected,

with ρ0 the resistivity for σ ‖ M and ρ1 > 0 the amplitude of the resistivity modulation.

During the oopt rotation, M is always perpendicular to σ, such that a constant resistivity

ρ0 + ρ1 is expected.

In the experiments presented in Chap. 4, the Pt resistivity ρ is measured as a function

of the magnetization orientation for a fixed magnetic field magnitude (see Fig. 2.2 (a)).

We therefore focus on the angle dependent resistivity modulation with amplitude ρ1 and

describe the SMR response in a simplified form as

ρlong = ρ0 + ρ1

(

1 − (m · t)2
)

(2.8)

where ρ0 = ρ+ρ′ corresponds to a constant offset which is independent of the magnetization

orientation. Assuming that the magnetization of the FMI is always parallel to the external

magnetic field1, when the latter is rotated in the sample plane (see Fig. 2.2 (a)) the

resistivity reads

ρlong = ρ0 + ρ1cos2 (αH) (2.9)

1This assumption is valid for a magnetic field large enough to overcome all anisotropy and demagnetization
fields, and as long as the ferrimagnet is in a collinear magnetic state.
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with αH the in-plane angle between the external magnetic field direction H and the charge

current direction j. The expected angular dependence of the Pt resistivity for an in-plane

magnetic field rotation is depicted in Fig. 2.2 (d). The SMR ratio is defined as [10]

SMR =
ρ1

ρ0

. (2.10)

Based on Eq. (2.8), we can also discuss the SMR response for an out of plane rotation

of the external magnetic field. When the magnetization is rotated in the n-t-plane, i.e.

with respect to the j-axis (oopj rotation) as sketched in Fig. 2.2 (b), the projection mt of

the magnetization on the t-direction depends on the magnetic field orientation and the

resistivity therefore follows

ρlong = ρ0 + ρ1cos2 (βH) (2.11)

where βH is the angle between the external field and the n-axis. The expected cos2 (βH)

resistivity angular dependence for an oopj rotation is shown in Fig. 2.2 (e) [10]. In contrast,

for a magnetic field rotation with respect to the t-direction (oopt rotation), i.e. in the

j-n-plane in Fig. 2.2 (c), the projection mt is constant and independent of the angle γH

between H and n. No resistivity modulation is therefore expected for the oopt rotation,

as sketched in Fig. 2.2 (f). The characteristic SMR angular dependencies sketched in

Fig. 2.2 are indeed consistent with experimental observations in FMI/Pt bilayers [10].

We would like to emphasize that the angular dependence of the SMR in the oop rotation

planes is qualitatively different from the one observed for the anisotropic magnetoresistance

(AMR) in electrically conductive ferromagnets, where the resistivity depends on the relative

orientation of the magnetization m with respect to the charge current direction j [9].

The metal resistivity ρ is therefore determined by the projection mj, such that a finite

modulation of ρ is observed for an oopt rotation, while ρ is constant in the oopj rotation

plane [10]. For an in-plane magnetic field rotation both AMR and SMR effect give rise to

a resistivity modulation, such that in general both contributions should be considered.

However, in a FMI/Pt bilayer we expect no AMR contribution [10], since the FMI is not

conductive and the Pt has no long range magnetic order. While a SMR model including

a possible AMR contribution from induced magnetic moments in the Pt layer was also

proposed [46], x-ray magnetic circular dichroism (XMCD) measurements demonstrated

that AMR contributions from the latter can be neglected in our typical FMI/Pt samples

(fabricated as described in Sect. 3.2) [47]. In Chap. 4, we therefore focus on magnetoresis-

tance measurements conducted as a function of the in-plane magnetic field orientation

and attribute the experimentally observed resistivity modulation to the SMR effect.

After discussing the characteristic SMR signature, we now give a short overview of

the parameters which influence the amplitude of the SMR effect as described in the

macrospin model. Most SMR measurements have been conducted in FMI/Pt bilayers

with yttrium iron garnet (YIG, see Sect. 3.1.1) as the ferrimagnetic insulator and typical
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SMR amplitudes of the order of ρ1/ρ0 ≈ 10−4 − 10−3 were found [10, 11, 27, 40, 48].

According to Eq. (2.7), the amplitude of the resistivity modulation ρ1 depends on the spin

diffusion length λ in the NM, the spin Hall angle ΘSH and the real part of the spin mixing

conductance Gr, i.e. parameters related to the normal metal layer and the interface. In

particular, ρ1 reaches a maximum for dNM = 2λ. In Pt λ ≈ 1.5 nm, such that a maximum

SMR ratio is observed for a Pt thickness dNM = 3 nm [10]. While λ and Gr are mostly

temperature independent, ΘSH was found to decrease with decreasing temperature leading

to a smaller SMR effect at low temperatures [40] (see Sect. 4.1).

Furthermore, the method used for the fabrication of the FMI/NM bilayer has a strong

impact on the interface properties and spin Hall angle and consequently on the amplitude

of the SMR effect. In particular, when the NM film is not deposited in-situ (without

breaking the vacuum) onto the FMI, but on top of a FMI previously exposed to the

environment (air, humidity, dirt, etc.), the interface quality can be affected. In order to

ensure satisfying interface properties, the FMI surface can be treated for instance via

chemical etching and/or laser annealing. A systematic study of the influence of the surface

treatment for ex-situ NM layers on the SMR effect can be found in Ref. [48].

We now turn to the impact of the FMI properties on the SMR effect amplitude. In

particular, first measurements of the SMR as a function of the FMI thickness in YIG/Pt

bilayers were conducted recently [43]. The observed SMR ratio is independent of the YIG

thickness, consistent with the theoretical model (Eq. (2.8)) where only the orientation of

the magnetization is relevant for the SMR, but the magnetic volume or total magnetic

moment in the FMI do not enter the model. Only for a YIG thickness of the order of one

monolayer (≈ 1−2 nm depending on the crystalline orientation) or less the SMR amplitude

decreases [43]. In order to understand this behavior, a more detailed investigation of

ultra-thin YIG films, in particular their magnetic properties, is required. However, these

observations indicate that the SMR is not dominated by bulk effects and underline the

importance of the topmost FMI layer (close to the interface) for spin transfer torque.

Another example highlighting the relevance of the surface FMI layer will be discussed in

Sect. 9.2.

In addition to measurements in YIG/Pt, the SMR effect has also been studied in

other FMI/Pt bilayers with collinear ferrimagnets, such as Fe3O4/Pt, NiFe2O4/Pt, [10],

CoFe2O4/Pt [49], exhibiting similar SMR amplitudes of the order of ρ1/ρ0 ≈ 10−4. Note

however, that a detailed quantitative comparison of the SMR amplitude in different

material systems requires a systematic study of samples with similar properties (Pt

thickness, fabrication method, etc.).
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2.3 Microscopic modeling of the spin Hall

magnetoresistance

2.3.1 Multi-sublattice ferrimagnet

As discussed in the previous section, the SMR was up to now mostly investigated in

bilayers consisting of a collinear ferrimagnet, which can in general be described in a

macrospin model [12]. However, the influence of different sublattices and non-collinear

magnetic structures has not been studied in detail up to now. According to Eq. (2.7), the

SMR amplitude depends on the spin mixing conductance, which is affected by the local

magnetic moments in the FMI at the interface [45]. In this section, we therefore expand

the current macrospin description to a microscopic model and assert that the SMR should

be described in terms of individual contributions from magnetic moments residing on

different sublattices. In particular, we no longer describe the resistivity modulation based

on the orientation of the net magnetization m = M/M as stated in Eq. (2.8) [12], but put

forward a more general expression which takes into account the orientation of individual

magnetic sublattice moments

ρ = ρ0 +
∑

X

ρ1,X

(

1 − 〈(mX,i · t)2〉i

)

. (2.12)

Here, ρ1,X is the sublattice specific SMR amplitude and mX,i = µX,i/|µX,i| is the orienta-

tion of the individual magnetic moment µX,i. 〈· · · 〉i denotes the average over all moments

i on sublattice X and allows to include non-collinear magnetic moment configurations or

orientation fluctuations within one sublattice.

For simplicity we start our discussion based on a ferrimagnet consisting of two magnetic

sublattices A and B with magnetic moments µA and µB tilted by the angles ξA and ξB

with respect to the external magnetic field (see Fig. 2.3). This can be for example an

antiferromagnet (or ferrimagnet) at high magnetic fields (spin flop phase) or a compensated

ferrimagnet close to the compensation temperature Tcomp (see Sect. 3.1.2 and 4.2). We

first focus on the limit of a 2D system, in which the magnetic moments are confined to the

j-t plane. The extension to three dimensions will be discussed in Sect. 2.3.4. Furthermore,

we assume that all individual magnetic moments i within one sublattice X are collinear.

Equation (2.12) then reads

ρ = ρ0 +
∑

X

ρ1,X

(

1 − (mX · t)2
)

. (2.13)

When the sublattice moments are all collinear, Eq. (2.13) is equivalent to Eq. (2.8) for

ρ1 =
∑

X ρ1,X , i.e. both macrospin and microscopic model yield the same SMR response.

In particular, there is no easy way to distinguish ferromagnetic (single sublattice) and

ferrimagnetic (multiple sublattice) collinear order in SMR experiments. This is due to
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the fact that the SMR is 180➦ symmetric and does not differentiate between parallel or

antiparallel sublattice magnetization orientation with respect to the external field. For

magnets with a non-collinear spin structure however, the microscopic and macrospin-based

models yield qualitatively different SMR responses, as we will see in the following.

We discuss Eq. (2.13) based on the sublattice configuration depicted in Fig. 2.3. For

comparison, the SMR response expected from a macrospin model, where the angular

dependence of the resistivity ρ is given by the orientation of the net magnetic moment µ

(Eq. (2.8)), is displayed in Fig. 2.3 (a) and follows a cos2(αH) dependence. The individual

resistivity response for sublattices A and B, however, is plotted in Fig. 2.3 (b) and (c)

for ξA = 30➦ and ξB = −56➦, respectively2. For each sublattice, the resistivity follows a

cos2(αH) dependence shifted by the sublattice moment canting angle, i.e. cos2(αH + ξA,B).

Using Eq. (2.13) and assuming for now that both sublattices contribute equally to the

SMR, i.e. ρ1,A = ρ1,B = ρ1, the total resistivity reads (see Appendix B for details on the

calculations)

ρ = ρ0 + ρ1,A

(

1 − (mA · t)2
)

+ ρ1,B

(

1 − (mB · t)2
)

= ρ0 + ρ1,Acos2(αH + ξA) + ρ1,Bcos2(αH + ξB)

= ρ0 + ρ1(1 − cos(ξA − ξB) + 2cos(ξA − ξB) · cos2(αH + (ξA + ξB)/2)). (2.14)

This corresponds to a cos2(αH) dependence shifted by an angle (ξA + ξB)/2 = (30➦ −
56➦)/2 = −13➦, as indicated by the green dotted line in Fig. 2.3 (d). In the following,

we therefore refer to this as a finite phase shift of the SMR angular dependence. The

SMR response obtained by summing up contributions of individual magnetic sublattices

according to Eq. (2.13) is therefore qualitatively different from the resistivity modulation

expected in the macrospin model (see Fig. 2.3 (a)). Note that at this point, the focus

lies on the angular dependence of the resistivity and not on the quantitative extraction

of the SMR amplitude, since the latter crucially depends on the normalization chosen in

different models. However, according to Eq. (2.14) the modulation amplitude and the

constant offset of the resistivity also depend on the canting angle.

In addition to the canting angle, the relative contributions ρ1,A,B of the two sublat-

tices also qualitatively impact the shift of the angular dependence (as well as the SMR

amplitude). It is important to stress again that in the current theoretical model, the

SMR contributions of different sublattices do not depend on the magnitude of the (bulk)

sublattice magnetization vector |MX |, i.e. we assume that the SMR is not affected by

the temperature dependence of the sublattice magnetization and is independent of the

FMI thickness (see Sect. 2.2). This is also reflected in the microscopic description of

the SMR, since only the projection of the normalized magnetization vector mX enters

Eq. (2.13). However, as discussed in Sect. 2.2 and 4.1, there are indications that the

2In Fig. 2.3 only angles in the range −90➦ to 270➦ are considered. Note that a positive (negative) canting
angle shifts the cos2(αH) function to the left (right).
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Figure 2.3: Expected SMR response in a two-sublattice FMI/Pt bilayer, where the magnetic moments

µA and µB of sublattices A and B are tilted by angles ξA and ξB with respect to the external

magnetic field H. (a) Angular dependence of the Pt resistivity ρ in the macrospin model:

the SMR is governed by the orientation of the net magnetic moment µ which is aligned with

the external magnetic field. The resistivity follows a cos2(αH) dependence where αH is the

angle between the applied magnetic field and the current direction j. (b) and (c) Expected

angular dependence of ρ assuming that only sublattice A or B contribute to the SMR. The

cos2(αH) dependence is shifted by the respective canting angle ξA,B . (d) Total SMR response

for equal contributions of both sublattices according to the microscopic model (Eq. (2.14))

with ρ1,A = ρ1,B = ρ1. The angular dependence is shifted by a finite angle (ξA + ξB)/2

compared to the expectations of the macrospin model in panel (a).

magnetic moments at the interface are crucial for the amplitude of the SMR effect. In

this context the surface termination, in particular the density of magnetic moments at the

interface, may affect the SMR amplitude [49]. Such an effect is covered by our theoretical

model, since the corresponding sublattice specific weighing factor can be included in

ρ1,A,B. This is already relevant for a collinear multi-sublattice ferrimagnet such as yttrium

iron garnet (YIG, see Sect. 3.1.1 for details on the magnetic properties): YIG has two

antiferromagnetically coupled Fe sublattices (denoted FeA and FeD), which are always

antiparallel in experimentally available magnetic fields [50]. The angular dependence of the

FeA and FeD sublattice contributions is therefore identical. However, the corresponding

ρ1,FeA and ρ1,FeD may not be equal due to their different magnetic moment density (2:3,

see Sect. 3.1.1). Using YIG/Pt bilayers with different crystal orientations and interface

cuts allows to vary the magnetic moment density at the interface [51] and hereby enables

a study of the impact of the latter on the SMR amplitude. Furthermore, the sublattice

magnetization and more importantly the moment density at the interface can be system-

atically changed by doping the material with non-magnetic ions [50, 52] (see Sect. 11.2).

As long as the exact distribution of the dopants on the magnetic sublattices is known [53],
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magnetoresistance measurements in this type of sample could allow for a more quantitative

understanding of the SMR amplitude and the individual sublattice contributions ρ1,X .

Further information on the element specific contributions from magnetic moments residing

on different sublattices may be gained from the quantitative analysis of the SMR in

different material systems.

Coming back to the starting point of our discussion, we conclude that according to

Eq. (2.14) a continuous phase shift of the SMR angular dependence is expected when

the magnetic sublattice moments are canted with respect to the external magnetic field.

The shift of the overall SMR signal depends on the canting angle and on the relative

contributions or SMR efficiencies of the magnetic sublattices. From an experimental

point of view, the canting angles can be measured directly by XMCD (see Sect. 4.2).

However, this method requires beam time at a synchrotron facility and is inconvenient for

a systematic study in many different material systems. A quantitative study of the element

specific contributions to the SMR is also not straightforward and requires a thorough

investigation in samples of comparable quality made of different magnetic materials. In

other terms, quantitatively disentangling a SMR phase shift caused by a difference in

canting angles from a phase shift originating from different SMR efficiencies ρ1,A,B of the

magnetic sublattices is challenging in experiments and further investigations are necessary

in the future.

2.3.2 Magnetic sublattice configurations in the canting phase (two

dimensional limit)

So far we have tacitly assumed that the orientation of each sublattice is unique, i.e.,

there are no “sublattice domains”. In this spirit, Fig. 2.3 displays a specific sublattice

magnetization configuration with µA and µB tilted to the left and right, respectively.

However, the orientation of the magnetic moments is determined by the minima of the

free energy of the system, including contributions from external magnetic fields, exchange

fields and anisotropies [54]. For (canted) sublattice magnetizations lying in the j-t plane,

there are in general two energetically equivalent configurations mirrored with respect to

the external magnetic field (see also Ref. [55]). This is exemplarily sketched in Fig. 2.4

(b) and (c) for sublattice A (orange and purple boxes, respectively). Unless one of

the configurations is preferred (e.g. due to crystalline anisotropy), these two magnetic

sublattice moment configurations are energetically equivalent. In the following we label

the two orientations l (r) with moments µA,l (µA,r) tilted by an angle ξA to the left (−ξA

to the right) with respect to the external magnetic field. The actual distribution of l and

r configurations in the ferrimagnet will be discussed in more detail in Sect. 2.3.4. For

now we only assume that two different orientations for magnetic moments residing on one

specific sublattice are randomly distributed throughout the sample (see sketch in Fig. 2.5).
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Figure 2.4: Expected angular dependence of the resistivity ρ assuming that only the magnetic moments

in sublattice A contribute to the SMR. (a) SMR response based on the macrospin model

where the net magnetic moment orientation µ dominates the SMR. ρ follows a cos2(αH)

dependence with αH the angle between the applied magnetic field H and the current direction

j. (b) and (c) SMR response for sublattice magnetic moments µA,l and µA,r tilted with

respect to H by the angle ξA and −ξA, respectively. The ρ(αH) angular dependence is shifted

in opposite directions for the two configurations. (d) Total resistivity modulation assuming

that both configurations r and l contribute equally, i.e. equal numbers of magnetic moments

on sublattice A are tilted by ±ξA. The extrema of the resulting angular dependence are at

the same position as for the macrospin model, but the modulation amplitude is smaller.

In order to understand the influence of the distribution of the magnetic configurations

on the SMR response, we focus on the magnetic moments residing on sublattice A (the

same line of argument applies to sublattice B)3. In analogy to the two-sublattice model

discussed in Sect. 2.3.1, two different SMR contributions shifted by ξA and −ξA are

expected from the two configurations as plotted in Fig. 2.4 (b) and (c). Assuming that

both orientations are equally likely, the resistivity is given by a superposition of SMR

responses according to Eq. (2.13) and reads

ρ(αH) = ρ0 + ρ1,A,l cos2(αH + ξA) + ρ1,A,r cos2(αH − ξA) (2.15)

= ρ0 +
1

2
ρ1,A cos2(αH + ξA) +

1

2
ρ1,A cos2(αH − ξA) (2.16)

= ρ0 +
1

2
ρ1,A(1 − cos(2ξA) + 2cos(2ξA) · cos2(αH)) (2.17)

= ρ0 + ρ1,A(sin2(ξA) + cos(2ξA) · cos2(αH)) (2.18)

3The presence of sublattice B in Fig. 2.4 is necessary to ensure the canting of the antiferromagnetically
coupled sublattice moments.
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where ρ1,A,l = ρ1,A,r = 1
2
ρ1,A. Note that in Eq. (2.18), the weighing factors ρ1,X are

proportional to the number of magnetic moments oriented along ±ξA and are normalized

such that ρ1,A,l + ρ1,A,r = ρ1,A. This allows for a quantitative comparison of the SMR

response for different canting angles and magnetic sublattice moment configurations.

The total resistivity response, i.e. the sum of the contributions stemming from both

configurations, is plotted in Fig. 2.4 (d). Clearly, there is no more shift of the angular

dependence and the extrema of the resistivity are at the same position as for the macrospin

model depicted in Fig. 2.4 (a). This behavior is to be expected from Eq. (2.18), where a

simple cos2(αH) is obtained regardless of the tilting angle ξA. However, we find that the

modulation amplitude of the resistivity

∆ρ = ρ(αH = 0➦) − ρ(αH = 90➦) (2.19)

in Fig. 2.4 (d) is smaller compared to a scenario where ξA = 0 (equivalent to a collinear

ferrimagnet in the macrospin model, see Fig. 2.4 (a)) or when all moments in sublattice A

are aligned and tilted by ξA (Fig. 2.4 (b)). Indeed, according to Eq. (2.18), the amplitude

of the resistivity modulation is

∆ρ = ρ1,Acos(2ξA) (2.20)

and thus depends on the canting angle. Note that for a collinear system (ξA = 0➦, 180➦)

∆ρ = ρ1,A, i.e. the resistivity modulation amplitude is given by the sublattice specific

SMR efficiency.

To clarify the impact of the magnetic configurations on the phase shift and the modula-

tion amplitude, the l and r configuration specific resistivity response for different canting

angles ξA = 10➦, 40➦ and 55➦ is exemplarily plotted in Fig. 2.5 (a) and (b). Similar to

Fig. 2.4 (d), the corresponding total SMR response with equal contributions from both

configurations according to Eq. (2.18) is displayed in Fig. 2.5 (c) for the different values

of ξA. While no continuous phase shift is observed, the amplitude changes for different

canting angles and the SMR response is even inverted for ξA = 55➦ (dotted red line in

Fig. 2.5 (c)). Figure 2.5 (d) depicts the normalized amplitude of the resistivity modulation

∆ρ/ρ1,A = cos(2ξA) as a function of the canting angle ξA given by Eq. (2.20). The three

angles used in panels (a)-(c) are marked by the orange continuous, dashed and dotted

lines in Fig. 2.5 (d). ∆ρ decreases with increasing canting angle until reaching zero for

ξA = 45➦. When further increasing the canting angle, ∆ρ changes sign, following the

cos(2ξA) dependence obtained from Eq. (2.20). The phase shift of the SMR angular

dependence, i.e. the position of the cos2(αH) extrema, is plotted in Fig. 2.5 (e) and is

zero independent of the canting angle. Note that the sign change of the SMR amplitude

can also be interpreted as an abrupt phase change by 90➦ at ξA = 45➦, while keeping

the modulation amplitude positive. In this context, the maximum negative modulation
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Figure 2.5: (a) and (b) Expected SMR response stemming from magnetic moments µA,l and µA,r

oriented along ±ξA for different canting angles ξA = 10➦, 40➦ and 55➦. (c) Total SMR response

assuming an equal number of moments in l and r configuration for different canting angles.

(d) Amplitude of the normalized resistivity modulation ∆ρ/ρ1,A as a function of the canting

angle ξA according to Eq. (2.20). The amplitude decreases with increasing canting angle

and goes through zero at ξA = 45➦, leading to a sign change of ∆ρ. (e) Phase shift of the

resistivity angular dependence as a function of ξA. As expected from Eq. (2.18), no phase

shift is observed.

amplitude obtained for ξA = 90➦ in Fig. 2.5 (d) can also be understood intuitively: for a

collinear system where all sublattice moments are aligned with the external magnetic field

(ξA = 0➦), mA,t(αH = 0➦) = 0 and mA,t(αH = 90➦) = 1. When the sublattice magnetic

moments are perpendicular to the external magnetic field (ξA = 90➦), the magnetic field

orientations corresponding to the maximum and minimum of mA,t are inverted (or shifted

by 90➦). Consequently, the SMR angular dependence is shifted by 90➦, or in other words

the modulation amplitude ∆ρ calculated according to Eq. (2.20) changes sign compared

to the collinear configuration.

For a ferrimagnet where both sublattices A and B contribute to the SMR (see Sect. 2.3.1),

the same line of argument can be applied to sublattice B. As long as the moments residing

on sublattice B are also equally distributed between l and r configurations, the individual

sublattice responses and consequently the total resistivity yield no phase shift.

We will see later on in Sect. 4.2 that the behavior predicted in this model based on

multiple energetically equivalent magnetic moment configurations is indeed observed

experimentally in the magnetic canting phase of the compensated garnet (In,Y) doped

GdIG (InYGdIG). In particular, an inversion of the SMR amplitude but no continuous

phase shift is observed when crossing the canting phase, i.e. changing the sublattice canting

angles4.

4The corresponding data was published in Ref. [30]. A similar behavior is observed in pure GdIG and
dysprosium iron garnet (DyIG) [55].
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Figure 2.6: (a) and (b) Expected SMR response stemming from configurations l and r for different

canting angles ξA = 10➦, 40➦ and 55➦. (c) Corresponding total SMR response assuming

30% and 70% of the magnetic moments in l and r type configurations, respectively. (d)

Amplitude ∆ρ = ρmax − ρmin of the resistivity modulation as a function of the canting angle

ξA according to Eq. (2.21). The amplitude oscillates when changing the canting angle. (e)

Phase shift, i.e. position of the resistivity maximum, as a function of ξA. The phase shift

increases continuously with increasing canting angle.

2.3.3 Origin of a continuous SMR phase shift

We now turn to a scenario where the number of magnetic moments oriented along ±ξA

are no longer equal, such that one orientation dominates, as sketched in Fig. 2.6. For

this discussion we choose a distribution ratio of 30 : 70 for l and r configurations. The

expected angular dependence for a configuration where all moments point along ξA (l) and

−ξA (r) is depicted in Fig. 2.6 (a) and (b), respectively, for ξA = 10➦, 40➦ and 55➦. Based

on Eq. (2.13), the total resistivity for an unequal magnetic configuration distribution

becomes (see Appendix B)

ρ(αH) = ρ0 + ρ1,A,l cos2(αH + ξA) + ρ1,A,r cos2(αH − ξA)

= ρ0 +
ρ1,A,l + ρ1,A,r

2
+

ρ1,A,l + ρ1,A,r

2
cos (2ξA)

(

2cos2 (αH) − 1
)

− ρ1,A,l − ρ1,A,r

2
sin (2ξA)

(

2cos2 (αH − 45➦) − 1
)

. (2.21)

For the exemplary 30:70 ratio with ρ1,A,l = 3/10 · ρ1,A and ρ1,A,r = 7/10 · ρ1,A such that

ρ1,A,l + ρ1,A,r = ρ1,A, the result is plotted in Fig. 2.6 (c) for the different canting angles.

Similar to our previous results, the total SMR response also follows a cos2 (αH) type

angular dependence. However, in contrast to the equally distributed moment configuration

in Fig. 2.5, the position of the total resistivity extrema is no longer independent of the

canting angle. This phase shift, i.e. the position of the resistivity maximum extracted
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from Fig. 2.6 (c), is plotted in Fig. 2.6 (e) as a function of the canting angle ξA. The

phase shift continuously increases from 0➦ to 180➦ when ξA increases. This behavior is

reflected in Eq. (2.21), as the total resistivity is the sum of a cos2 (αH) and cos2 (αH − 45➦)

function. The obtained phase shift depends on the respective prefactors which are linked

to the canting angle via cos(2ξA) and sin(2ξA). Furthermore, the modulation amplitude

∆ρ = ρmax − ρmin also oscillates as a function of the canting angle, as shown in Fig. 2.6

(d). In particular, the resistivity reaches a maximum when the sublattice moments are

collinear (ξA = 0➦ or 180➦) or exactly perpendicular (ξA = 90➦) to the applied magnetic

field.

The microscopic model presented here can therefore also give rise to a continuous phase

shift in the SMR response, assuming an unequal distribution of the l and r oriented

magnetic moments within one sublattice. This kind of phase shift was indeed qualitatively

observed in SMR experiments conducted in erbium iron garnet (ErIG)/Pt bilayers [56, 57],

although the experimental results are not fully understood to date. This raises the

question what the origin of such an asymmetric configuration is. A preferred direction

for the sublattice magnetic moments, such that the r and l configurations are no longer

energetically equivalent, can be obtained by introducing hard and easy magnetic axes,

e.g. a crystalline magnetic anisotropy which was neglected up to now. A similar effect

can be induced by strain and magnetoelastic effects [58], for instance due to a lattice

mismatch of the ferrimagnetic thin film and the substrate.

Note that when taking into account anisotropic effects, the resulting magnetic config-

uration becomes even more complex, since the orientation of the magnetic moments is

determined by minimizing the total free energy. The latter includes the Zeeman energy

provided by the external field H, the anisotropy energy and the exchange energy between

different sublattices. In addition to an unequal distribution of r and l configurations with

opposite canting angles ±ξA, anisotropies can therefore also lead to configurations with

different canting angles within one sublattice. This is depicted in Fig. 2.7 in a simplified

sketch: panel (a) represents the magnetic moment configuration in an isotropic magnet

for αH = 40➦, where all sublattice A moments are canted by ±ξA with respect to the

applied field, corresponding to the two orientations of minimum energy. By introducing

for example a uniaxial anisotropy, i.e. an easy axis along the blue line in Fig. 2.7 (b),

the purple moments tilt closer to the easy axis in order to minimize the free energy. In

this specific configuration, two different canting angles for moments residing on the same

sublattice are obtained. We can then apply the multi-sublattice picture discussed in

Sect. 2.3.1 (see Fig. 2.3) with canting angles ξA,l , ξA,r, also leading to a phase shift of the

SMR angular dependence. We would like to emphasize here, that due to the anisotropic

nature of the energy landscape, the canting angles can also vary during an in-plane rotation

of the applied magnetic field. Figure 2.7 (c) depicts the scenario where the applied field is

exactly perpendicular to the easy axis, such that the magnetic system is again symmetric

with respect to the external field and we find |ξA,l(αH = 90➦)| = |ξA,r(αH = 90➦)|, i.e.
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Figure 2.7: Configuration of the magnetic moments residing on sublattice A. (a) For an isotropic system,

there are two energetically equivalent orientations with respect to the external field H,

i.e. ±ξA, as sketched in Fig. 2.4. (b) When introducing a uniaxial anisotropy with an easy

axis along the blue line, there can be two energetically equivalent configurations exhibiting

different canting angles ξA,l , ξA,r with respect to the external magnetic field. (c) The

canting angle may furthermore depend on the orientation of the magnetic field with respect

to the easy axis. For αH = 90➦, the system is symmetric with respect to the applied field

such that the absolute value of the canting angles in both l and r configurations is the same.

the absolute value of the canting angles within sublattice A are the same. In a system

with strong anisotropies, the angular dependence can therefore deviate from a simple

cos2(αH) dependence (with or without phase shift) as we will see in Sect. 9.2. In general,

the magnetic configuration depends on the relative strengths and orientations of the

contributions to the effective magnetic field which acts on the sublattice moments.

Based on our theoretical model, we conclude that a phase shift in the SMR angular

dependence can originate from different canting angles of moments within one sublattice,

or to an unequal distribution of moments tilted to the left and right with respect to

the magnetic field. In both scenarios, the phase shift of the SMR response reflects a

symmetry breaking in the magnetic system, or in more general terms, an anisotropic

energy landscape.

2.3.4 Magnetic sublattice configurations in the canting phase (three

dimensions)

So far, the discussion of sublattice magnetic moment configurations was limited to the

sample plane, with two energetically equivalent magnetic moment orientations, which we

labeled l and r configurations (see Fig. 2.4). In experiments however, this description

is not sufficient since the magnetic moments can also exhibit out of plane components

such that 3D modeling is required. Accordingly, in an isotropic three dimensional system

there are no longer only two energetically equivalent in-plane moment configurations with

canting angles ±ξA. Rather, the magnetic moments are distributed on a cone with opening

angle ξA around the magnetic field axis as sketched in Fig. 2.8 (a). In an infinite 3D bulk
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Figure 2.8: (a) Sketch of a cone representing all energetically equivalent orientations of the sublattice

moment µA in the canting phase. The opening angle of the cone corresponds to the canting

angle ξA with respect to the external magnetic field. (b) Representation of the unit magnetic

moment vector mA = µA/|µA| in spherical coordinates with r = 1, ϕ = ξA the canting angle

and 0 < θ < 2π the position on the cone. The magnetic field is rotated in the sample plane

j-t by an angle αH.

system without anisotropy the energy landscape is radially symmetric with respect to

the applied magnetic field, such that no preferred orientation on this cone is imposed

onto the sublattice moments (see also Appendix B). The concept of a finite number of

possible orientations as depicted in Fig. 2.5 and 2.6, where regions with different magnetic

configurations are clearly delimited, is then no longer applicable. A continuous distribution

on the cone is more realistic, since the magnetic sublattice moments can assume any of

the energetically equivalent orientations with canting angle ξA
5.

In experiments, i.e. at finite temperature, the orientation of the sublattice moments is

also affected by thermal fluctuations, which lead to additional fluctuations of the canting

angle around the equilibrium position. However, in the following we focus on a simplified

model where the thermal fluctuations of the canting angle are neglected and we consider

a constant (average) ξA (for a magnetically isotropic system).

In order to take into account the continuous distribution of the magnetic moments on

the cone, we apply Eq. (2.12) and calculate the average contribution from all orientations

on the cone to the resistivity response. In spherical coordinates the orientation of the

magnetic moment unit vector is mA = µA/|µA| = (r, ϕ, θ), where r = 1 is the radial

component, ϕ = ξA is the canting angle or cone opening angle and 0 < θ < 2π describes

the position on the cone. This is sketched in Fig. 2.8 (b) for a magnetic field H applied in

the sample plane along j. In cartesian coordinates mA reads

5Note that the ferromagnetic exchange coupling between magnetic moments residing on the same
sublattice tends to align these moments. This may also affect the spatial distribution of the moment
orientations, as neighboring magnetic moments prefer a collinear configuration (see Appendix B).



28 Chapter 2 Spin Hall magnetoresistance: theoretical overview and modeling









mA,j

mA,t

mA,n









=









cos(ξA)

sin(ξA) sin(θ)

sin(ξA) cos(θ)









(2.22)

Due to the geometry of the SMR effect [10], the out of plane magnetization component

does not contribute to the longitudinal resistivity modulation for an in-plane magnetic

field rotation as measured in Sect. 4.2. It is therefore sufficient to discuss the projection

mA,t of the magnetic moments onto the t direction. In the coordinate system chosen

in Fig. 2.8 (b) mA,t(θ = 0) = 0 and the out of plane component mA,n(θ = 0) reaches a

maximum.

We now discuss the dependence of the projection mA,t on the in-plane magnetic field

orientation for a rotation in the j-t plane. This is achieved by applying the rotation matrix

Rn about the n direction to the magnetic moment orientation mA

RnmA =









cos(αH) − sin(αH) 0

sin(αH) cos(αH) 0

0 0 1

















cos(ξA)

sin(ξA) sin(θ)

sin(ξA) cos(θ)









(2.23)

Here, αH is the angle between the magnetic field H and the j direction, as sketched in

Fig. 2.8 (b). We obtain

mA,t(αH, θ) = sin(αH) cos(ξA) + cos(αH) sin(ξA) sin(θ). (2.24)

Assuming equally distributed moment orientations on the cone, the average 〈m2
A,t〉 is

given by the integral over θ from 0 to 2π normalized to 2π, such that Eq. (2.12) yields6:

ρ(αH) = ρ0 + ρ1,A

(

1 − 〈(mA,t(αH, θ))2〉
)

= ρ0 + ρ1,A

(

1 −
∫ 2π

0
dθ

1

2π
(sin(αH) cos(ξA) + cos(αH) sin(ξA) sin(θ))2

)

= ρ0 + ρ1,A

(

1 +
1

8
(−3 − cos(2ξA) + cos(2αH)(1 + 3 cos(2ξA)))

)

. (2.25)

In analogy to the 2D limit, we obtain a cos(2αH) dependence (which can easily be

rewritten as a cos2(αH) dependence using Eq. (B.1)) where the phase of the overall

angular dependence is constant and independent of the canting angle. This can be

understood intuitively since the individual phase shifts of the resistivity contributions

stemming from moments mirrored with respect to the applied field cancel out. The

amplitude of the resistivity modulation

∆ρ = ρ(αH = 0➦) − ρ(αH = 90➦) =
1

4
ρ1,A(1 + 3 cos(2ξA)) (2.26)

6Calculated using Wolfram Mathematica.
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Figure 2.9: (a) Amplitude of the resistivity modulation ∆ρ/ρ1,A in the 2D limit according to Eq. (2.20)

as a function of the canting angle ξA. Here, |∆ρ| is identical for ξA = 0➦ (collinear phase)

and ξA = 90➦ (perpendicular configuration). (b) Amplitude of the resistivity modulation

for the 3D cone model calculated according to Eq. (2.26). |∆ρ| for ξA = 90➦ is smaller in

the 3D scenario compared to the 2D limit. (c) and (d) Sketch of the magnetic moment

orientations residing on sublattice A for a canting angle of ξA = 90➦ and in-plane magnetic

field orientations αH = 0➦ and 90➦, respectively. In the 2D limit the moments represented by

green arrows are confined to the j-t plane. (e) and (f) Sketch of the energetically equivalent

orientations in 3D for moments on sublattice A with a canting angle ξA = 90➦. In an isotropic

system the moments can assume any orientation within the green plane perpendicular to the

applied field and exhibit a finite out of plane component.

however depends on the canting angle and is plotted in Fig. 2.9 (b). Interestingly, the

dependence of the modulation amplitude on the canting angle obtained in Eq. (2.26) is

different from the one calculated in the 2D model (Eq. (2.20)) which is displayed in Fig. 2.9

(a) for comparison. While the overall dependence on ξA looks very similar, exhibiting a

sign change in both scenarios, in the 3D model ∆ρ changes sign only for ξA ≈ 54➦ > 45➦

and furthermore |∆ρ(ξA = 0➦)| > |∆ρ(ξA = 90➦)|.
In order to understand this behavior, we sketch the magnetic moment configurations

of sublattice A for an in-plane magnetic field in the extreme case of ξA = 90➦ (Fig. 2.9).

In the two dimensional limit, there are only two possible orientations (green arrows in

Fig. 2.9 (c) and (d)), such that for αH = 0➦ the moments orient along the ±t direction
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and m2
A,t(αH = 0➦) = 1, while for αH = 90➦ all moments point along the ±j direction and

m2
A,t(αH = 90➦) = 0. Therefore, the modulation amplitude for a canting angle ξA = 90➦ is

∆ρ = −ρ1,A (see Fig. 2.9 (a)).

In three dimensions however, for a canting angle of ξA = 90➦ the moments on the cone

lie in the plane perpendicular to the magnetic field direction as indicated by the arrows

in the green plane in Fig. 2.9 (e) and (f). In particular, for αH = 0➦, all moments reside

in the t-n plane (Fig. 2.9 (e)). While the moments oriented exactly along t still give

rise to a maximum m2
A,t = 1, all moments with an out of plane component along n yield

m2
A,t < 1. On average, 〈m2

A,t(αH = 0➦)〉 < 1 for the 3D cone is therefore smaller than

in the 2D limit, where 〈m2
A,t(αH = 0➦)〉 = 1. For αH = 90➦, all moments reside in the

j-n plane, such that m2
A,t is always zero (Fig. 2.9 (f)). The amplitude of the resistivity

modulation for the 3D scenario obtained from Eq. (2.26) then yields ∆ρ = −1/2ρ1,A (see

Fig. 2.9 (b)). Note that in the collinear phase, i.e. for ξA = 0, all magnetic moments

point along the magnetic field in both 2D and 3D. Thus, for ξA = 0 the amplitude of the

resistivity modulation ∆ρ = ρ1,A is equal for both scenarios (see Fig. 2.9 (a) and (b)). In

this context, we would like to emphasize once more that we are interested in the relative

change of the modulation amplitude as a function of the canting angle. All sublattice

specific SMR parameters (element and magnetic moment density dependent factors) can

be included in ρ1,A.

From this simple model where the magnetic sublattice moments lie on a three dimensional

cone, we conclude that no phase shift in the SMR response is expected as long as each

orientation has equal probability. In this regard, the 2D and 3D models therefore yield

similar results. Comparing ∆ρ in the collinear phase (ξA = 0➦) and for ξA = 90➦ can

furthermore indicate whether the magnetic moments are confined to the sample plane (2D)

or have additional out of plane components suggesting a conical moment distribution7.

Good candidates for an experimental verification of this prediction are conical/helical

magnets. First SMR measurements in the conical spiral phase of Cu2OSeO3 (CSO) [59]

have indeed recently been put forward. In CSO the axis of the magnetic spiral orients

along the external magnetic field, such that for H applied in the sample plane the SMR

probes the different magnetic moment orientations on a cone. In Ref. [59], no phase shift

is observed in the SMR, indicating that the magnetic moment orientations are equally

distributed on the conical spiral. Furthermore the sign of the SMR amplitude changes

from negative to positive when the magnetic field is increased, i.e. when the cone angle

is decreased from close to 90➦ until reaching a collinear configuration. These results are

consistent with the theoretical model presented here. We can therefore also apply this

generalized microscopic SMR model to conical magnets in order to gain insight into the

magnetic moment orientations in 3 dimensions8.

7A more general discussion of the difference between these two scenarios in terms of their free energy
landscape will be presented later on (see also Appendix B).

8The SMR amplitude for large cone angles (close to 90➦) predicted by the theoretical model in CSO
in Ref. [59] is smaller than the amplitude observed in experiments. Since their model is based on
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On a more general note, whether a system requires a description in 2D or 3D depends

on the free energy landscape. The latter can be deformed by an anisotropy leading to

hard and easy magnetic axes or planes. Instead of the conical distribution sketched in

Fig. 2.8 (a), i.e. a radially symmetric energy minimum with respect to the applied field,

an easy plane (e.g. the j-t plane) gives rise to local minima on the cone, corresponding

to the energetically most favorable orientations. A 2D description may therefore become

relevant for thin magnetic films where the demagnetization field leads to a preferred

in-plane orientation of the moments. In order to give an intuitive picture of this effect, the

influence of a uniaxial anisotropy on the magnetic moment configurations is qualitatively

discussed in Appendix B. As discussed in Sect. 2.3.2, as long as there is no additional

anisotropy, no SMR phase shift is expected for an in-plane magnetic field rotation in the

2D limit.

However, similar to the asymmetry described in the 2D limit in Sect. 2.3.3, additional,

more complex anisotropies can lead to an unequal distribution of the magnetic moment

orientations on the three dimensional cone. Depending on the magnetic field orientation

with respect to an anisotropy axis, the cone may also be deformed, giving rise to different

canting angles within one sublattice, similar to the scenario depicted in Fig. 2.7. If the

deformation of the cone corresponds to a symmetry breaking with respect to the magnetic

field, this can give rise to a phase shift of the SMR response in analogy to the 2D limit. We

would like to emphasize that a detailed description of the magnetic moment configuration

in a real three dimensional system can be very complex, in particular since the SMR is

mostly sensitive to the orientation of magnetic moments at the interface, where additional

effects such as surface roughness and defects come into play.

In summary, we have discussed the expected spin Hall magnetoresistance response

of a model ferrimagnet with two canted magnetic sublattices in a microscopic model,

assuming that all magnetic moments contribute individually to the SMR. In general, the

resistivity response of each sublattice magnetic moment depends on the orientation of

the magnetic field H with respect to the current direction j and follows a A cos2(αH + φ)

dependence. The amplitude A and phase φ of these cos2 functions are determined by both

the sublattice specific SMR efficiency (usually parametrized as ρ1,X) and the sublattice

canting angles. The total resistivity of the FMI/Pt bilayer is given by the sum of all

sublattice contributions and therefore also follows a cos2 type dependence. In particular,

the model proposed here includes the possibility of multiple energetically equivalent

magnetic moment orientations within one sublattice, which we discussed in the 2D limit

as well as in 3 dimensions. The orientation of the individual magnetic moments and

consequently the amplitude and phase shift of the SMR angular dependence is affected by

a 3D distribution of the moments on the cone, the larger experimental amplitude may indicate a
confinement (possibly due to surface effects) of the moments to the sample plane as discussed in this
section. However, as CSO exhibits a multi-domain state in the helical phase (ξ = 90➦) the verification
of this hypothesis requires further study.
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anisotropy contributions or in more general terms by the symmetry of the magnetic system.

By comparison with experimental results the model proposed here can give insights into

the magnetic moment configurations in real systems, as we will see in Sect. 4.2, and

is therefore of key importance for the future study of the SMR effect in systems with

complex magnetic structures.



Chapter 3

Sample properties and experimental

details

3.1 Material systems

In Chap. 4 we will present experimental results from SMR measurements conducted in

two different FMI/NM bilayers. As discussed in Sect. 2.1, we choose Pt as the NM,

since Pt exhibits strong spin orbit coupling and allows for an efficient electron charge

to spin current conversion (and vice versa) via the SHE (ISHE). For the FMI layers we

use yttrium iron garnet (YIG) and gadolinium iron garnet (GdIG). The crystalline and

magnetic properties of these two material systems will be introduced in detail in the

following.

3.1.1 Collinear ferrimagnet yttrium iron garnet

As previously mentioned in Sect. 2.2, most SMR experiments to date have been performed

on bilayers containing the ferrimagnetic insulator yttrium iron garnet (Y3Fe5O12, YIG),

which has a bandgap of 2.8 eV [60, 61]. YIG has a body-centered-cubic (bcc) crystal

structure. The conventional unit cell has a lattice constant a = 1.24 nm [52, 62] and

contains 8 times the formula unit (see Ref. [63]). The middle-layer of the YIG unit cell is

depicted in Fig. 3.1 (a), where the O2− ions are represented in dark blue. The dodecahe-

drally coordinated Y3+ (light blue in Fig. 3.1 (a)) has a noble gas electron configuration

and therefore carries no magnetic moment. The magnetic properties of YIG originate

from two octahedrally coordinated Fe3+ moments (FeA, green in Fig. 3.1 (a)) and three

tetrahedrally coordinated Fe3+ moments (FeD, orange) per formula unit, each ion carrying

spin S = 5/2. The FeA and FeD moments within one sublattice are ferromagnetically

coupled by exchange energies JAA = 0.92 × 10−21J and JDD = 3.24 × 10−21J, respectively

[64]. Furthermore, the two Fe sublattices are strongly antiferromagnetically coupled by

JAD = −9.6 × 10−21J [64]. YIG therefore is a collinear two-sublattice ferrimagnet and the

total magnetization M is given by the net Fe magnetization MFe,net. The latter can be

calculated at T = 0 K as

33
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Figure 3.1: (a) Middle layer of the unit cell of the ferrimagnetic insulator yttrium iron garnet (YIG)

with two magnetic sublattices FeA and FeD (courtesy of S. Geprägs, WMI). (b) Typical

SQUID magnetometry measurement of a YIG thin film as a function of temperature for a

fixed external magnetic field µ0H = 0.5 T. Since the two Fe sublattices are antiparallel in

the whole temperature range, YIG can be described as a single sublattice ferromagnet with a

net Fe magnetization MFe,net.

M0
Fe,net = M0

FeD − M0
FeA =

NFeD − NFeA

V
gFeSµB = 194.5 kA/m (3.1)

where NX is the number of magnetic ions per unit cell on sublattice X, V = a3 is the

volume of the unit cell, µB is the Bohr magneton and we use gFe = 2.01 [65] as the g factor

of YIG. This magnetization value is indeed observed experimentally at low temperatures

for bulk YIG crystals [65, 66]. Figure 3.1 (b) displays a typical temperature dependent

SQUID magnetometry measurement of a YIG thin film grown via pulsed laser deposition

(PLD)1 (see Sect. 3.2), similar to the one studied in Sect. 4.1. The net magnetization of the

thin film measured at low temperatures is lower than the bulk literature value and the one

expected from calculations. This deviation can be attributed to oxygen vacancies in the

YIG thin film. We furthermore observe a monotonic decrease of the YIG magnetization

with increasing temperature. This is consistent with theoretical expectations as the YIG

magnetization follows a Brillouin function (see Ref. [68, 69] for details) and decreases

monotonically with temperature until reaching the ferrimagnetic ordering temperature

(Curie temperature) TC = 559 K [70].

YIG exhibits a crystalline cubic anisotropy [71], determining easy and hard axes for the

magnetization orientation. The anisotropy field extracted via ferromagnetic resonance

measurements (FMR) in a YIG sphere is of the order of a few mT [65]. An additional

shape anisotropy field (determined by the net magnetization magnitude) needs to be

1The sample fabrication and the SQUID magnetometry measurement were done by S. Altmannshofer
during his master’s thesis at WMI [67].
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considered in thin films when tilting the magnetization out of the sample plane. In our

experiments, we typically rotate a magnetic field µ0H ≥ 0.5 T in the sample plane such

that the net magnetization, and in particular the Fe sublattice moments, are always

aligned (anti-)parallel to the external field. Note that for magnetic fields larger than

µ0Hc1 ≈ 250 T, the FeA and FeD magnetic moments start to cant with respect to the

applied magnetic field [15, 50, 72, 73]. However, these magnetic field magnitudes are

not available in typical experimental setups, such that we consider YIG to be a collinear

ferrimagnet.

YIG is one of the most frequently used magnetic insulators in the field of spintronics.

This is mostly due to the comparatively small Gilbert damping coefficient reaching values

of α = 4 × 10−5 for bulk YIG [65, 74, 75]. In thin films, larger values of the order of

α ≈ 10−4 are found, since surface defects become more important and affect the damping

properties [74, 76, 77]. The small Gilbert damping allows for long distance transport of

spin wave excitations within the insulator, which is desirable for information transport in

future spintronics applications. Indeed, propagation lengths of the order of a few mm have

been observed in YIG for coherently excited spin waves (using microwave excitations)

[78]. For comparison, larger Gilbert damping constants have been reported for other

ferrimagnetic insulators, such as gadolinium iron garnet (GdIG) (α ≈ 10−3 [79]), and for

metallic ferromagnets (α > 10−3 [80]).

3.1.2 Compensated ferrimagnet gadolinium iron garnet

2In addition to the collinear ferrimagnet YIG, we study the SMR in gadolinium iron garnet

(Gd3Fe5O12, GdIG). GdIG is also insulating and has the same crystalline structure as YIG,

but the non-magnetic Y3+ on the C sublattice is replaced by Gd3+, which carries a magnetic

moment. More specifically, the electron configuration of Gd3+ is [Xe]4f 7, i.e. the 4f shell is

half full, such that the Gd3+ ions carry spin 7/2 but no orbital angular momentum. Similar

to the two Fe sublattices in YIG, the FeA and FeD magnetic sublattices in GdIG are

strongly antiferromagnetically coupled [81] and can therefore be considered as antiparallel

for typical magnetic fields 0 T ≤ µ0H ≤ 29 T and temperatures 2 K ≤ T ≤ 300 K used

in our experiments (see Sect. 3.3). The Gd sublattice moments are ferromagnetically

coupled to the FeA moments and antiferromagnetically coupled to the FeD moments.

However, the intra-sublattice exchange coupling of the Gd moments is weak and typically

neglected (JCC = 0) [82]. The Gd sublattice exhibits a paramagnetic behavior (also

referred to as “exchange-enhanced paramagnetism” in literature [81]), leading to a strong

increase of the magnetic moment µGdC at low temperatures. The temperature dependence

2This section contains calculations of the magnetic phase diagram of GdIG conducted by J. Barker,
which were published in Ref. [30] together with the experimental data presented in Chap. 4. Parts of
the text and figures in this section were adapted from Ref. [30].
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of the sublattice magnetic moments in GdIG was calculated in Ref. [83] by J. Barker3

using a classical atomistic Heisenberg model (see Ref. [83] for details on the model). The

system size used by J. Barker is 16 × 16 × 16 unit cells (131072 spins) with periodic

boundary conditions. The sublattice (µFeA, µFeD, µGdC) and net magnetic moment

(µ = µFeA + µFeD + µGdC) calculated as a function of temperature for zero magnetic field

are displayed in Fig. 3.2 (a) (Figure adapted from the supplement of Ref. [83]). The sign

of the magnetic moments corresponds to the relative orientation (parallel or antiparallel)

of the sublattices. Due to the temperature dependence and the relative orientation

of the sublattice magnetic moments, the net (remanent) magnetic moment (purple in

Fig. 3.2 (a)) at zero external magnetic field changes sign at the magnetic compensation

temperature T sim
comp = 320 K. Note that in pure bulk GdIG compensation temperatures

between Tcomp = 286 K and 295 K were reported from experiments [15, 84, 85].

Since the two Fe sublattices can be considered as antiparallel in experimentally available

magnetic fields, the three-sublattice ferrimagnet GdIG is typically described as a two

sublattice system with a net Fe magnetic moment µFe,net = µFeD+µFeA and a Gd magnetic

moment µGdC. When a finite external magnetic field is applied, the net magnetization

always points along the external field (neglecting anisotropies). In this case, the measured

µ does not change sign at Tcomp and is always positive. The orientations of the sublattice

and net magnetic moments with respect to the external magnetic field are sketched as

arrows in Fig. 3.2 (b): above Tcomp the net Fe magnetic moment (brown arrow) dominates

the net magnetic moment and points along the external field, while for T < Tcomp the Gd

magnetization (blue) starts to dominate. Since µ = µFe,net + µGdC (purple) always points

along H, all sublattice magnetizations switch direction at T = Tcomp.

For temperatures far away from the compensation point, GdIG is in a collinear phase,

i.e. all sublattice moments are either parallel or antiparallel to the external magnetic

field. However, close to Tcomp a magnetic canting phase can be induced with fields

available in our experimental setup, where the net Fe and the Gd moments are no

longer collinear [30, 72, 73]. Such a configuration is exemplarily sketched in Fig. 3.2 (b),

with the net magnetic moment µ (purple arrow) still oriented along H. The magnetic

structure of GdIG was also modeled by J. Barker based on the same atomistic simulations

as described above [30, 83]. A Metropolis Monte Carlo algorithm with a combination

of different moves to avoid trapping in metastable minima [86], was used to calculate

the equilibrium magnetic configuration as a function of applied field and temperature,

disregarding the small crystalline anisotropy [30]. Figure 3.2 (c) and (d) show the magnetic

phase diagram of GdIG, i.e. the (average) canting angles ξFeA and ξGdC of the FeA and

GdC sublattice moments with respect to the applied magnetic field direction (Figure

adapted from Ref. [30]). The red and blue colors correspond to a parallel (ξ = 0➦) and

antiparallel (ξ = 180➦) alignment with respect to the external field. As discussed above,

ξFeD = ξFeA + 180➦ and the orientation of the FeD moments is therefore not displayed here.

3Institute of Materials Research, Tohoku University, Sendai, Japan.
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Figure 3.2: (a) Sublattice and net magnetic moment of GdIG calculated in an atomistic Heisenberg model

by J. Barker as a function of temperature at zero external magnetic field. The calculated

magnetic compensation temperature T sim
comp = 320 K is marked by the black arrow, where

the net magnetic moment µ (purple line) changes sign. Panel (a) was adapted from the

Supplement of Ref. [83]. (b) Sketch of the magnetic sublattice orientations in the collinear

magnetic phase for T < Tcomp (left) and T > Tcomp (right). For a finite magnetic field, the

net magnetic moment µ (purple arrow) is always aligned with H, such that the orientation

of the sublattice moments is inverted when crossing the compensation temperature. An

exemplary sublattice moment configuration within the magnetic canting phase close to Tcomp

is sketched below. (c) and (d) Magnetic phase diagram of GdIG calculated via atomistic

simulations by J. Barker. The color code represents the average canting angle ξX with respect

to the external magnetic field direction for magnetic moments residing on the FeA sublattice

(panel (c)) and the GdC sublattice (panel (d)), respectively. The red (blue) color corresponds

to a parallel (antiparallel) alignment with respect to the external magnetic field direction.

The black solid lines represent the critical magnetic fields which delimit the different magnetic

phases (see main text for details). Panels (c) and (d) are adapted from Ref. [30].
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Figure 3.3: (a) Middle layer of the unit cell of In, Y doped gadolinium iron garnet (InYGdIG) (courtesy

of S. Geprägs, WMI). (b) SQUID magnetometry measurement of an InYGdIG thin film as a

function of temperature for an external magnetic field µ0H = 1 T. The non-magnetic dopants

dilute the magnetic sublattices and reduce the compensation temperature to Tcomp = 86 K.

For better visibility, the orientation of the sublattice moments is exemplarily sketched

as arrows for different magnetic fields and temperatures within the phase diagram. In

agreement with literature, Fig. 3.2 (c) and (d) reveal a canting of the Fe and Gd magnetic

moments already for small magnetic fields of the order of a few tesla (or less) in the

vicinity of the magnetic compensation point T sim
comp. The canting phase is delimited by the

critical fields µ0Hc1 and µ0Hc2, as indicated by the black lines in Fig. 3.2 (c) and (d). In

particular, when crossing the canting phase, either by increasing the magnetic field or

the temperature, the FeA magnetic moments continuously rotate from a parallel to an

antiparallel alignment with respect to the magnetic field. The white coloring in the center

of the canting phase corresponds to ξFeA = 90➦, i.e. the Fe moments are perpendicular to H.

Above T sim
comp, an additional critical field µ0Hc0 is defined based on the orientation of the

Gd magnetic moments: for H < Hc0 the Gd moments are antiparallel to the external field.

With increasing field the weakly coupled Gd moments are depolarized and are eventually

repolarized along the external magnetic field for H > Hc0, as depicted in Fig. 3.2 (d).

As mentioned above, the literature value for Tcomp in GdIG is close to room temperature,

such that no measurements can be performed far above the compensation temperature in

our standard cryostats, which enable magnetotransport measurements in the temperature

range 2 K ≤ T ≤ 300 K (see Sect. 3.3). However, Tcomp and the critical fields can be

reduced by alloying non-magnetic ions into GdIG [82, 87–89], which dilute the magnetic

sublattices. Thereby, a large part of the magnetic canting phase is accessible in our

setup. In Sect. 4.2, we therefore study a GdIG sample doped with indium (In) and

yttrium (Y): Figure 3.3 (a) depicts the corresponding unit cell, where the magnetic ions

on the C and A sublattices are partly substituted with non-magnetic Y3+ and In3+,

respectively, corresponding to a chemical composition (Gd2Y1)(Fe4In1)O12 (InYGdIG).
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From the SQUID magnetometry measurement in such an InYGdIG thin film4 (Fig. 3.3

(b)), we can extract Tcomp = 86 K, where the net magnetization nearly vanishes. Note

that this measurement was conducted for a finite external magnetic field µ0H = 1 T, such

that the measured net magnetization is always positive. Due to its comparatively low

compensation temperature, InYGdIG is a good candidate for measurements sufficiently

far above and below Tcomp in our standard magnet cryostat system.

3.2 Sample fabrication

In the following, we discuss spin Hall magnetoresistance experiments in one YIG/Pt and

one InYGdIG/Pt bilayer (see sample list in Appendix A). Both FMI layers were epitaxially

grown onto single crystalline, [111]-oriented yttrium aluminum garnet (Y3Al5O12, YAG)

substrates via pulsed laser deposition (PLD). The yttrium iron garnet (Y3Fe5O12, YIG)

film was grown by S. Meyer (WMI) using a substrate temperature of 500 ◦C, an oxygen

atmosphere of 2.5 · 10−2 mbar, and an energy fluence of the KrF excimer laser of 2.0 J/cm2

at the target surface (see Ref. [67] for details). The 40 nm thick YIG film was covered

in-situ (i.e. without breaking the vacuum) with t = 4 nm of Pt deposited via electron

beam evaporation.

The same growth parameters were used for the indium and yttrium doped gadolinium

iron garnet ((Y1Gd2)(Fe4In1)O12, InYGdIG) film (grown by F. Della Coletta [90, 91]),

which has a thickness of 61.5 nm and was covered with t = 3.6 nm of Pt. The InYGdIG

sample features a magnetization compensation temperature Tcomp = 86 K obtained from

the SQUID magnetometry measurement plotted in Fig. 3.3 (b).

For the magnetoresistance experiments, the InYGdIG/Pt and YIG/Pt bilayers were

patterned into Hall bars with width w = 80 ➭m and length l = 600➭m (for a schematic

see Fig. 2.2 (a)) using optical lithography followed by Ar ion beam milling.

3.3 Experimental setup

3.3.1 Superconducting magnet cryostat

After fabrication, the samples are glued onto a chip carrier [92], wire bonded in a 4 point

configuration (see Fig. 2.2) and mounted on a dipstick equipped with dc measuring wires, as

well as a temperature sensor and heater. The dipstick is placed in the variable temperature

insert (VTI) of a superconducting split-coil magnet cryostat (2 K ≤ T ≤ 300 K) at the

Walther-Meissner-Institut (WMI), enabling magnetotransport measurements at magnetic

fields up to µ0H = 7 T. Additional measurements up to µ0H = 29 T were conducted

using a resistive magnet setup with a variable temperature insert at the high-field magnet

4The sample fabrication and SQUID magnetometry measurement were done by F. Della Coletta during
his master’s thesis at WMI [90].
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laboratory (LNCMI) in Grenoble. In both setups, a dc charge current of 0.2 mA was

applied along the Hall bar using a Keithley 2400 sourcemeter. We carried out angle-

dependent magnetoresistance (ADMR) measurements [10] by rotating the sample with

respect to the external magnetic field of fixed magnitude µ0H ≤ 29 T applied in the

sample plane. The longitudinal voltage drop V along the direction of charge current was

recorded as a function of the angle αH between the current direction Jc and the external

magnetic field H using a Keithley 2182 nanovoltmeter.

3.3.2 Sensitive transport experiments via the current switching

method

The charge current applied for the 4 point measurement gives rise to Joule heating in the

Pt, leading to additional thermal voltages, e.g. due to the spin Seebeck effect [93–95] (see

Sect. 5.4). In order to disentangle the resistive (Vres) and thermal voltage response (Vtherm)

we use a current switching method (or “delta method”), i.e. we apply a positive and

negative dc driving current in an alternating sequence [95]. This enables the separation

of contributions which depend on the current direction (resistive or higher order effects

which are uneven in Jc)

Vres =
V (+Jc) − V (−Jc)

2
(3.2)

from the ones which are proportional to quadratic (or higher order even) terms in Jc

Vtherm =
V (+Jc) + V (−Jc)

2
. (3.3)

In addition to disentangling resistive and thermal contributions, the current switching

method also allows to reach higher sensitivity in resistivity measurements. In order to

improve the signal to noise ratio in the ADMR measurements described in Sect. 3.3.1,

we apply the current switching Nswitch = 5 times for each magnetic field orientation (or

magnitude) and calculate the average of Vres and Vtherm separately. Hereby, thermal drifts

can be corrected which arise on the time scale of the order of seconds, e.g. related to

thermal fluctuations during the rotation of the dipstick in the He exchange gas of the

cryostat. For reference, the relative fluctuations of the 5 values of Vres taken for one

magnetic field orientation or magnitude are typically of the order of about 10−6 to 10−5

(using standard Keithley 2182 settings: repeating filter 10 counts, 1 power line cycle).

Overall, the resulting sensitivity of the current switching method is therefore sufficient for

our SMR measurements, where resistivity modulation amplitudes of the order of 10−4 to

10−3 are expected (see Sect. 2.2). Note that the sensitivity can further be increased by

changing the filter settings of the nanovoltmeter (see Sect. 6.2) or increasing the number

of switching cycles Nswitch.
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Spin Hall magnetoresistance

experiments

In this chapter, we turn to the experimental investigation of the spin Hall magnetoresistance

in two different FMI/Pt bilayers, i.e. with the collinear ferrimagnet YIG (Sect. 4.1) and the

compensated ferrimagnet GdIG (Sect. 4.2) as the two FMI, and compare the experimental

observations to the microscopic model introduced in Sect. 2.3. This chapter contains

results which were published in Phys. Rev. B 94, 094401 (2016) [30] and reuses part of

the text and figures from this publication.

4.1 Spin Hall magnetoresistance in a YIG/Pt bilayer

We first study the spin Hall magnetoresistance in the YIG/Pt bilayer (see Sect. 3.2 for

details on the sample fabrication) as a function of the angle αH between the in-plane

magnetic field orientation H and the current direction j (see Fig. 2.2 (a)). Figure 4.1

(a)-(c) shows a typical set of ADMR measurements, where the angular dependence of the

Pt resistivity
ρ(αH) − ρ0

ρ0

(4.1)

is plotted as a function of the magnetic field orientation. ρ0 is the constant offset resistivity

for αH = 90➦ (see Fig. 2.2 (d)). The data displayed here is taken at fixed temperatures

of T = 10 K, 85 K, 300 K and fixed external magnetic field magnitude of µ0H = 7 T. The

magnetoresistance behavior is fully consistent with the cos2(αH) dependence expected for

a collinear ferrimagnet, where the macrospin model according to Eq. (2.9) can be applied

[10, 40]. We extract the SMR ratio (see Eq. (2.10) and (2.19))

SMR =
∆ρ

ρ0

=
ρ(0➦) − ρ0

ρ0

(4.2)

from a series of ADMR measurements in the temperature range from 10 K ≤ T ≤ 300 K.

The data is compiled in Fig. 4.1 (d) for an external magnetic field magnitude µ0H = 1 T

(green) and 7 T (black). The SMR ratio decreases towards lower temperatures by about a

41
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Figure 4.1: (a)-(c) Resistivity measurements in a YIG/Pt bilayer as a function of the angle αH between

the in-plane magnetic field orientation H and the current direction j. We observe the

cos2(αH) dependence expected for a collinear ferrimagnet with a maximum resistivity for

H ‖ j. The measurements were conducted at a fixed magnetic field µ0H = 7 T for T =

10 K, 85 K, 300 K. (d) SMR ratio (ρ(0➦) − ρ0) /ρ0 extracted from ADMR measurements as a

function of temperature for µ0H = 1 T and 7 T. Figure adapted from Ref. [30].

factor of 2 and we obtain a qualitatively similar temperature dependence as in previous

SMR measurements in YIG/Pt [40]. This behavior was attributed to a decrease of the

spin Hall angle towards low temperatures [40], i.e. a property of the Pt film. While the

SMR effect increases slightly with magnetic field, the qualitative temperature dependence

is the same for µ0H = 1 T and 7 T.

We would like to emphasize here that we expect no temperature dependence of the

SMR due to a change of the net magnetization amplitude. Although the latter increases

towards low temperatures (see Fig. 3.1 (b)), the SMR effect in YIG is currently described

in a macrospin model which only depends on the direction of the net magnetization vector

m (see Sect. 2.2). This also implies that once the magnetization of the ferrimagnet is

saturated, i.e. in a single domain state oriented along the external magnetic field, no

dependence of the SMR amplitude on the magnetic field strength is expected. Since the

coercive field of YIG is usually of the order of a few Oe [96], the field dependence between

1 T and 7 T observed in Fig. 4.1 (d) is rather surprising. We therefore systematically study

the field dependence of the SMR ratio extracted from ADMR measurements up to 7 T for

10 K ≤ T ≤ 300 K. The result is plotted in Fig. 4.2 (a), the lines are guides to the eye.
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Figure 4.2: (a) SMR ratio extracted from ADMR measurements as a function of the magnetic field

magnitude up to 7 T in the temperature range 10 K ≤ T ≤ 300 K measured at the WMI. (b)

SMR ratio for magnetic fields up to 29 T for temperatures between 78 K and 98 K measured

in the high magnetic field laboratory in Grenoble (LNCMI). The solid lines represent linear

fits to the data. The slope extracted from the linear fit is plotted in the inset as a function of

temperature with the standard deviation as error bars. For comparison the SMR amplitude

between 0.5 T and 7 T at 100 K from panel (a) is also included. Note that the two data sets

were taken in different cryostat systems, such that small deviations in the measured sample

temperature are possible.

We find a comparatively strong increase of the SMR magnitude between 0.5 T and 1 T

and a weaker increase up to 7 T. In order to confirm this behavior, we measured the SMR

amplitude in the high field laboratory in Grenoble (LNCMI) up to 29 T for temperatures

78 K ≤ T ≤ 98 K1 as plotted in Fig. 4.2 (b). The lines in Fig. 4.2 (b) represent linear fits

to the high field data. The slope is extracted as a function of temperature and plotted

in the inset where the error bars correspond to the standard deviation from the linear

fit. While the slope is of the order of 10−6/T and therefore close to our measurement

resolution, the data suggests that the SMR saturates only at fields much higher than the

coercive field of YIG. The SMR amplitude taken at the WMI at 100 K for low magnetic

fields between 0.5 T and 7 T is also included in Fig. 4.2 (b) for a comparison of the slope

of the magnetic field dependence. Note that the low and high field data sets were taken

in different magnet cryostat setups (WMI and LNCMI Grenoble, respectively), possibly

leading to small deviations of the measured sample temperature2.

Although we expect no magnetic field dependence of the SMR amplitude once the bulk

magnetization is saturated, the observed increase of the SMR with magnetic field may

1This corresponds to a temperature range which can be easily stabilized in the high field setup.
2The temperature sensor in the dipstick used at WMI is in direct thermal contact with the sample (via
a Cu plate). On the dipstick used at LNCMI the temperature sensor is placed within the exchange
He gas, such that the measured temperature can deviate from the actual sample temperature. A
calibration of the sample temperature based on the Pt resistivity was challenging due to a deterioration
of the Pt film over time. Since the studied temperature range close to 100 K corresponds to a region
where the SMR amplitude has a comparatively strong temperature dependence (see Fig. 4.1), small
differences in the sample temperature can lead to visible deviations of the SMR amplitudes.
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be related to specific magnetic thin film properties. The thin film sample used for the

measurements displayed in Fig. 4.1 and 4.2 was grown onto a YAG substrate. The latter is

500➭m thick and the corresponding volume is therefore several orders of magnitude larger

than the volume of the FMI thin film. At high magnetic fields, the SQUID magnetometry

measurement is therefore dominated by the diamagnetic contribution of the YAG substrate,

giving rise to a negative slope in the magnetic moment vs applied magnetic field curve. It

is therefore currently challenging to relate the field dependence of the SMR amplitude to

the YIG magnetization in this particular sample. We can however assume that changes in

the overall YIG magnetization for fields of several tesla are not sufficient to explain the

observed field dependence of the SMR. One can speculate that there is a thin layer at the

YIG/Pt interface where the magnetic structure is different due to the interface roughness,

such that a higher magnetic field is necessary to saturate the magnetic moments at the

interface. There is indeed evidence that the interface properties, e.g. ex-situ vs in-situ

fabrication [48] or Ar ion etching prior to the Pt deposition [97], affect the SMR amplitude

as well as its temperature and magnetic field dependence [98]. Furthermore, as discussed

in Sect. 2.2 and 9.2, there are indications that the SMR is mostly sensitive to the top

FMI layers instead of the integral magnetic volume in the sample. It is therefore possible

that the field dependence observed in Fig. 4.2 is related to particular interface properties.

However, further experimental investigations are required to test this hypothesis.

Another possible explanation is that the magnetic field affects the SHE or the spin

accumulation in the Pt. Recent studies of the SMR effect in YIG/Pt at magnetic fields up

to 9 T were put forward, where an increase of the SMR amplitude with increasing magnetic

field was observed [99]. The authors attribute this effect to an additional contribution

from the so-called Hanle magnetoresistance: the spin accumulation at the Pt interface

is suppressed by the applied magnetic field via the Hanle effect [99–101], leading to an

additional resistivity modulation which has the same symmetry as the SMR. However, for

a better understanding of different contributions to the observed magnetic field dependence

of the resistivity in YIG/Pt, a more detailed study is required in the future.

In summary, we have studied the temperature and magnetic field dependence of the

SMR effect in a YIG/Pt bilayer. The observed increase of the SMR amplitude by a factor

of 2 from low temperature to room temperature is consistent with previous measurements

in similar YIG/Pt samples. We furthermore observe a slight increase of the SMR amplitude

with magnetic field magnitude, the origin of which is still under investigation. However,

for all temperatures and magnetic fields studied here, the overall angular dependence of

the resistivity is consistent with the expectations from the macrospin (and microscopic)

model for a collinear ferrimagnet, i.e. we observe a cos2(αH) dependence with positive

amplitude ∆ρ.
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4.2 Spin Hall magnetoresistance in a GdIG/Pt bilayer

The SMR measurements in YIG/Pt presented in Sect. 4.1 are consistent with theoretical

predictions based on a macrospin model, where only the orientation of the net magnetic

moment µ in the FMI is relevant, while the magnitude of the bulk magnetization is not

important. In a system where all sublattice moments and the net magnetic moment are

collinear, using the sublattice moment orientation or the net magnetization orientation to

model the SMR effect yields the same SMR angular dependence as discussed in Sect. 2.3.1.

This is due to the fact that the SMR is 180➦ symmetric. However, for a non-collinear

magnetic structure it is no longer a priori obvious to describe the SMR response in terms

of the net magnetic moment orientation. In Sect. 2.3, we therefore discussed the SMR in

a microscopic model based on the SMR contributions of individual sublattice moment

orientations. We found that for a non-collinear, canted magnetic system the macrospin

and microscopic models yield qualitatively different SMR angular dependencies. Since the

magnet/metal exchange coupling in the SMR theory is formulated in terms of the spin

mixing conductance (see Sect. 2.2), which is determined by the local magnetic moments at

the interface [45], we assert that for a non-collinear magnetic structure the SMR requires

a microscopic modeling.

In the following we will therefore verify this hypothesis by studying a bilayer consisting

of Pt and the compensated ferrimagnetic insulator GdIG. The latter has three magnetic

sublattices (FeA, FeD and Gd, see Sect. 3.1.2) which adopt a canted configuration in the

vicinity of the compensation temperature Tcomp when a finite external magnetic field is

applied (see magnetic phase diagram in Fig. 3.2). As discussed in Sect. 3.1.2, the canting

angle of the individual sublattice moments depends on the temperature and external

magnetic field magnitude (see Fig. 3.2 (c) and (d)). GdIG therefore allows for a systematic

study of the SMR as a function of the microscopic magnetic structure. The results and

part of the figures presented in this section were published in Phys. Rev. B 94, 094401

(2016) [30] and are adapted here for the format of this thesis.

As mentioned in Sect. 3.1.2, the compensation temperature Tcomp of GdIG shifts to

lower temperatures when the material is doped with In and Y. Consequently, in InYGdIG

a large portion of the canted phase becomes accessible using standard magnet cryostats

in the temperature range 2 K ≤ T ≤ 300 K (see Sect. 3.3) and we therefore use InYGdIG

instead of pure GdIG for the SMR experiments. We assume the magnetic phase diagram of

InYGdIG to be qualitatively similar to the one calculated by J. Barker for pure GdIG (see

Fig. 3.2) [30]. In order to verify this experimentally, we investigate the magnetic properties

of the InYGdIG sample - in particular the orientation of the individual magnetic sublattices

close to Tcomp - via element specific x-ray magnetic circular dichroism (XMCD) [102–104]

measurements performed at the European Synchrotron Radiation Facility (ESRF) at

the beam line ID12 [104]. The XMCD experiments are based on element specific x-ray

absorption: as shown in Fig. 4.3 (a) (adapted from Ref. [103]) for a transition metal,
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the x-ray photons excite core electrons from the lower s or p shells into the partially

filled d shell. The energy of the incoming photons is tuned to the absorption edge of the

investigated element and we measure the x-ray absorption near edge spectra (XANES)

(see Fig. 4.3 (c) for the Fe K edge in InYGdIG). Depending on the helicity ±Λ (±~)
of the circularly polarized incoming photons, the excited photoelectrons have different

spin. In a magnetic material which exhibits an imbalance of the available spin up and

down states at the Fermi edge, this leads to different absorption probabilities for left and

right polarized photons. For instance in the scenario depicted in Fig. 4.3 (a), right (left)

polarized photons mainly induce transitions into the spin down (up) empty states [103].

At the beam line ID12, the XANES is measured via total fluorescence yield (TFY) [104],

i.e. the excited electrons relax back to the equilibrium state and emit photons which can

be detected. The XMCD signal is defined as the difference of the XANES measured for

the two helicities: XMCD = XANES(+Λ, +H) − XANES(−Λ, +H). Here, the magnetic

field is applied parallel to the k vector of the incoming x-ray beam. Instead of inverting

the photon polarization, one can also invert the magnetic field direction while keeping

the polarization fixed, such that XMCD = XANES(+Λ, +H) − XANES(+Λ, −H). The

obtained XMCD signal is proportional to the scalar product between the magnetic moment

µX and k, i.e. the projection of the magnetic moment onto k. Therefore, a rotation of

the sublattice magnetic moments with respect to the external field from a parallel to an

antiparallel configuration, as expected in a compensated ferrimagnet close to Tcomp (see

phase diagram in Fig. 3.2), will manifest itself as a sign change of the XMCD signal. In

particular for µX ⊥ k, the XMCD signal goes to zero.

For the experiments presented in this section, the InYGdIG sample was glued onto a

wedge such that the x-ray beam has a grazing incidence angle of 10➦ with respect to the

sample plane, as depicted schematically in Fig. 4.3 (b). In order to conduct temperature

and magnetic field dependent XMCD measurements, the wedge was mounted on a cold

finger cryostat (2.1 K ≤ T ≤ 300 K) and inserted into the bore of a superconducting

magnet allowing for magnetic fields up to 17 T (for a more detailed description of the

measurement setup see Ref. [104]). In this configuration the incident x-ray beam is

therefore parallel to the applied magnetic field. XANES were recorded at the Fe K edge

[105] with right and left circularly polarized light, as well as positive and negative in-plane

magnetic fields. One XANES taken at 17 T and 50 K is exemplarily plotted in Fig. 4.3

(c) as a black line. The pre-edge at 7114 eV marked by a black arrow arises mainly from

the tetrahedrally ordered FeD sublattice [106]. Since the FeA moments are antiparallel to

the FeD moments for the magnetic field magnitudes accessible in our experiments as also

shown in the atomistic simulations, it is sufficient to analyze the pre-edge. Several XANES

were recorded to improve the signal-to-noise ratio and normalized to an edge jump of

unity. The XMCD signal was calculated as the direct difference between consecutive

normalized XANES recorded either with right and left circularly polarized light or while
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Figure 4.3: (a) Sketch of the electron configuration for a transition metal with an imbalance of spin up

and down electrons at the Fermi level EF. Incoming x-ray photons excite core electrons into

the partially filled d shells. Due to the different density of states at the Fermi edge different

transition probabilities are expected for right and left circularly polarized photons. Figure

adapted from Ref. [103]. (b) Sketch of the XMCD measurement configuration: the sample is

mounted on a wedge to ensure a grazing angle of 10➦ for the incident x-ray beam with respect

to the sample plane. The wedge is mounted on a coldfinger cryostat and placed in the coil of

a superconducting magnet (not shown here) with magnetic field H along the k-vector of the

incident x-ray beam. (c) Normalized XANES recorded at the Fe K edge in the InYGdIG/Pt

sample at 50 K and 17 T. The pre-edge marked by a black arrow arises mainly from the

tetrahedrally ordered FeD moments. The blue curve represents the corresponding XMCD

signal, which is dominated by the signal at the pre-edge. (d) XMCD amplitude, i.e. the

projection of the FeD moments onto the external field axis, measured as a function of field

strength at various temperatures around Tcomp. Figure adapted from Ref. [30].

applying positive and negative magnetic fields. The resulting XMCD spectrum at the Fe

K edge for 17 T and 50 K is also depicted in Fig. 4.3 (c) in blue.

In order to map out the canted phase in InYGdIG, the XMCD signal at the Fe K pre-edge

was measured as a function of magnetic field for temperatures between 70 K and 100 K. For

a quantitative evaluation of the XMCD signal, the peak to peak amplitude of the pre-edge

XMCD signal was calculated as the difference between the extrema at 7115 eV and 7114 eV

[107]. As shown in Fig. 4.3 (d), the XMCD amplitude is positive and independent of field
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strength for T = 100 K and 90 K > Tcomp, indicating that the FeD moments are saturated

and parallel to the external field. For T = 80 K, however, the XMCD amplitude changes

sign as a function of magnetic field strength, with positive amplitude at high magnetic

fields and negative amplitude at low magnetic fields. Finally, for T = 70 K, the XMCD

amplitude is negative for all fields studied. This sign change of the XMCD amplitude

as a function of temperature and magnetic field strength provides clear evidence for the

reorientation of the FeD sublattice moments close to the compensation temperature, which

was determined to Tcomp = 86 K using SQUID magnetometry measurements in this sample

(see Fig. 3.3). The zero-crossings of the XMCD amplitude correspond to a perpendicular

orientation of the FeD sublattice with respect to the external field, i.e. to the white region

in the Fe phase diagram in Fig. 3.2 (c). The XMCD measurements in particular confirm

that the InYGdIG sample studied here features all the characteristic magnetic properties

of a compensated ferrimagnet, i.e. a compensation temperature and a magnetic canting

phase similar to the one calculated for pure GdIG. We can therefore qualitatively compare

the experimental results to the calculated phase diagram of GdIG. Note also that we take

the spin configuration at the surface - which mainly determines the SMR response - to be

similar to that of the bulk as obtained from these calculations.

After confirming the magnetic canting phase via a direct measurement method, we

now turn to the magnetoresistance measurements in InYGdIG/Pt: Figure 4.4 (a)-(c)

show a set of ADMR curves for T = 10 K, 85 K and 300 K measured for a fixed in-plane

magnetic field magnitude µ0H = 7 T. The measurements at T = 10 K and T = 300 K

(panels (a) and (c)) show the same positive SMR as for YIG/Pt (see Fig. 4.1). However, at

T = 85 K ≈ Tcomp (panel (b)), the SMR amplitude determined via Eq. (4.2) has negative

sign. In other words, the magnetic field orientations for minimum and maximum resistivity

are inverted (shifted by 90➦). This observation cannot be accounted for by the standard

macrospin SMR theory as expressed by Eq. (2.8) [12, 108], where the SMR amplitude is

always positive. However, the microscopic model proposed in Sect. 2.3 predicts a sign

change of the SMR amplitude when the sublattice magnetic moments are canted by an

angle ξ > 45➦ (in the 2D limit, see Sect. 2.3.2) with respect to the external field.

To substantiate the observation of a SMR sign change, systematic ADMR measurements

were conducted at 7 T as a function of temperature from T = 10 K to T = 300 K and

the SMR amplitude extracted according to Eq. (4.2) is compiled in Fig. 4.4 (d)3. The

overall temperature dependence looks similar to our observations in YIG, where the SMR

amplitude decreases by a factor 2 at low temperatures compared to room temperature

(see Fig. 4.1 (d)). However, in InYGdIG the SMR ratio suddenly drops and changes sign

in a narrow temperature window between 79 K and 91 K, i.e. in a small temperature

range around Tcomp(InYGdIG) = 86 K, where a canting of the Fe sublattice moments is

observed in the XMCD measurements (Fig. 4.3 (d)). The observed sign change of the

3The temperature dependent SMR measurements at 7 T shown here were conducted by R. Schlitz in
the course of his master’s thesis at WMI [55].



4.2 Spin Hall magnetoresistance in a GdIG/Pt bilayer 49

0 100 200 300

-0.0005

0.0000

0.0005

0.0010

M1

L1

-90 0 90 180 270

-1.00

0.00

1.00

-90 0 90 180 270

-1.00

0.00

1.00

-90 0 90 180 270

-1.00

0.00

1.00

0
-0.5

µ
0
H=7T

SM
R

 (x
1

0
-3

)

0

0.5

1

100 200 300
Temperature (K)

(d)

0° 90° 180° 270°
Angle α

H
 

-90°

µ
0
H = 7T

0

-1

1

(ρ
(α

H
)-

ρ
0
)/

ρ
0

 (x
1

0
-3

)

270°0° 90° 180°
Angle α

H
 

0° 90° 180° 270°
Angle α

H
 

T
comp

 = 86K

(a) (b) (c)T = 85K T = 300KT =10K

Figure 4.4: Measured evolution of the SMR in GdIG/Pt. (a)-(c) The data were recorded at T = 10 K, 85 K

and 300 K as a function of the angle αH between the current direction Jc and the orientation

of the external, in-plane magnetic field µ0H = 7 T. The SMR amplitude in InYGdIG/Pt

changes sign for T = 85 K close to the magnetization compensation temperature Tcomp = 86 K

(panel (b)), but the extrema stay at the same αH orientation for all temperatures. (d) SMR

amplitude extracted from ADMR measurements as a function of temperature at fixed magnetic

field µ0H = 7 T. The SMR sign change is clearly evident between 79 K and 91 K. Figure

adapted from Ref. [30].

SMR in the magnetic canting phase is consistent with the predictions of the microscopic

model proposed in Sect. 2.3 and gives first experimental evidence that the SMR is not

governed by the orientation of the net magnetization, but by the orientation of individual

sublattice magnetic moments.

The XMCD measurements displayed in Fig. 4.3 (d) confirm that the Fe sublattice

magnetic moments rotate continuously with respect to the external magnetic field when

the temperature is swept across the canting phase. However, for all temperatures in the

investigated range, the extrema of the measured resistivity angular dependence occur

at 0➦ and 90➦, i.e. no continuous phase shift of the SMR is observed. According to the

theoretical model discussed in Sect. 2.3.2, this indicates that equal numbers of magnetic

moments within one sublattice are canted by an angle ±ξ (in the 2D limit, assuming all

magnetic moments lie in the sample plane), or that the magnetic moments are equally

distributed on a cone with opening angle ξ if the magnetic moments also have out of plane

components (three dimensional distribution, see Sect. 2.3.4). In both cases, the overall
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phase shift of the resistivity ρ vanishes on average. For such a scenario the microscopic

model predicts a sign change of the SMR amplitude for canting angles ξ > 45➦ in the two

dimensional limit (see Fig. 2.5 (d)), or ξ > 54➦ in 3D (see Fig. 2.9 (b)).

Note that the XMCD measurements presented in Fig. 4.3 only probe the projection of

the sublattice magnetic moment onto the x-ray k vector, which (in the used measurement

setup) is parallel to the applied magnetic field. In other words, only the magnetic moment

component parallel to the applied field can be determined. However, in order to distinguish

between different magnetic moment orientations on a cone with opening angle ξ, additional

measurements of the magnetic moment components perpendicular to the external field are

required. A direct measurement of the different orientations of magnetic moments within

one sublattice, e.g. via spatially resolved XMCD experiments probing both the magnetic

moment components parallel and perpendicular to the applied magnetic field, should

therefore be conducted in the future to further confirm the theoretical model proposed in

Sect. 2.3.

In a second set of experiments we study the evolution of the SMR amplitude with

magnetic field strength and temperature in order to map out the magnetic canting phase

in the InYGdIG/Pt sample. Figure 4.5 (a) shows the corresponding data obtained for

µ0H ≤ 7 T in the superconducting magnet cryostat at WMI, as well as µ0H ≤ 29 T

at the high field magnet laboratory in Grenoble, in a false color plot. In the collinear

state at high temperatures T ≈ 150 K, the SMR measurements up to 29 T displayed

in Fig. 4.5 show no indication of a pronounced field dependence. This is consistent

with the SMR description based on spin transfer torque [12] and the high field SMR

measurements in YIG/Pt presented in Sect. 4.1. The SMR sign change on the other

hand is clearly evident as a red pocket around Tcomp(InYGdIG) = 86 K. With increasing

magnetic field (up to µ0H ≈ 15 T), the temperature range in which the SMR sign change

takes place broadens. This is consistent with the magnetic canting phase calculated

for GdIG (Fig. 3.2). Since the exchange parameters of InYGdIG are not well known,

we first compare the experimental SMR data obtained in InYGdIG/Pt with the SMR

calculated for GdIG/Pt. As no continuous phase shift of the resistivity angular dependence

is observed in experiments, the modulation amplitude can be calculated according to

Eq. (2.19): ∆ρ = ρ(αH = 0➦)−ρ(αH = 90➦). For simplicity, we start by assuming that only

the Fe sublattice moments contribute to the SMR in InYGdIG and that equal numbers

of magnetic moments are tilted by ±ξ in the sample plane (2D limit, see Sect. 2.3.2).

Since the FeA and FeD moments are always antiparallel, we use the FeA canting angles

calculated in Fig. 3.2 (c). The resistivity modulation amplitude can be rewritten based

on Eq. (2.15) and we obtain4

4This expression is equivalent to Eq. (2.20).
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Figure 4.5: (a) SMR amplitude obtained from Eq. (4.2) as a function of temperature and magnetic

field measured in the InYGdIG/Pt sample. In the blue regions the SMR is positive, i.e.

has the same sign and αH-dependence as for the collinear ferrimagnet YIG (see Sect. 4.1).

The red regions indicate negative SMR (as in Fig. 4.4 (b)). No data has been taken in the

regions shaded in gray. (b) Amplitude of the resistivity modulation ∆ρ(FeA) calculated using

Eq. (4.3) for the FeA moments in GdIG. The calculations are based on the canting angles

ξFeA displayed in Fig. 3.2 (c) and ∆ρ is normalized to the sublattice specific SMR efficiency

ρ1,FeA. Figure adapted from Ref. [30]
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= cos2(ξFeA) − sin2(ξFeA). (4.3)

Note that here ∆ρ is normalized to the SMR efficiency ρ1,FeA of the FeA sublattice. Since

we are only interested in a qualitative study of the SMR in the canting phase, the exact

amplitude of the resistivity modulation is not relevant here. ∆ρ/ρ1,FeA was therefore

calculated by J. Barker based on Eq. (4.3) using the canting angle ξFeA calculated for

GdIG (Fig. 3.2 (c)). The results for temperatures 225 K ≤ T ≤ 375 K and magnetic

fields up to µ0H = 50 T are compiled in Fig. 4.5 (b). The red and blue color again

corresponds to a positive and negative ∆ρ, respectively. The calculated amplitude of

the resistivity modulation indeed reveals a sign change close to T sim
comp similar to the

experimental observations. Interestingly, a reasonable agreement between model and

experiment is obtained already upon taking into account only the Fe moments.

In the canting phase at high magnetic fields µ0H ≈ 20 T however, the absolute value of

the measured SMR amplitude in Fig. 4.5 decreases and yields a small positive value (blue
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color) for µ0H ≥ 25 T. This is no longer consistent with the calculations based on the

FeA sublattice contribution (Fig. 4.5 (b)). While the plot of the ∆ρ amplitude in Fig. 4.5

(b) is cut off at 50 T and below 225 K, the SMR behavior at much higher magnetic fields

and low temperatures can be extrapolated from the complete phase diagram in Fig. 3.2

(c). According to the latter, the red pocket in Fig. 4.5 (b) - where the FeA moments are

perpendicular to the applied field and the SMR ratio is negative - should still be observed

at high fields and low temperatures in GdIG. The same applies for InYGdIG, although the

critical fields for the canting phase are expected to be lower, as discussed in Sect. 3.1.2.

We further illustrate this point based on additional calculations of the SMR effect

in a mean field model which were conducted by R. Schlitz during his master’s thesis

at WMI [55] (see Fig. 4.6). The calculations are based on a simplified two-sublattice

system with a net Fe and a Gd magnetic sublattice. Since the exchange constants of

this model ferrimagnet are unknown, they were chosen such that the compensation and

Curie temperatures in the calculations are close to the ones measured for the InYGdIG

sample studied in this section. Details about the calculations and assumptions introduced

in this model can be found in Ref. [55]. In a first step, the canting angles ξX for the

net Fe and the Gd magnetic moments were calculated as a function of temperature and

magnetic field (not shown here). Based on these results, the expected temperature and

magnetic field dependence of the Fe and Gd sublattice contributions to the total resistivity

modulation (normalized to the sublattice specific SMR efficiency) were calculated as

∆ρ(X)/ρ1,X = cos2(ξX) − sin2(ξX) (in analogy to Eq. (4.3)) and are displayed in Fig. 4.6.

The red and blue color represents regions of negative and positive ∆ρ, respectively. Note

that the magnetic field axis only goes up to 60 T, which is much lower compared to the

magnetic field range used for the calculations of the phase diagram in GdIG (Fig. 3.2).

However, the doping of the magnetic sublattices also leads to lower critical fields for the

calculated canting in InYGdIG, consistent with expectations, such that the whole canting

phase is covered in Fig. 4.6. The resistivity response calculated from the orientation of

the Fe sublattice moments is compiled in Fig. 4.6 (a). The results are in good agreement

with the atomistic calculations displayed in Fig. 4.5 (b), only with lower critical fields.

We therefore expect a negative ∆ρ(Fe) response within the canting phase also for low

temperatures and in a specific magnetic field range.

However, no SMR sign change occurs at low temperatures in the experiments in Fig. 4.5

and the red pocket seems limited to µ0H ≈ 25 T. This may indicate that the model based

only on the orientation of the Fe sublattice magnetic moments is not sufficient to describe

the low temperature SMR response of (doped) GdIG at high magnetic fields.

We therefore discuss a possible additional contribution of the Gd sublattice moments.

The expected ∆ρ(GdC) is depicted in Fig. 4.6 (b) and we find a qualitatively different

form of the sign change region (red pocket) compared to the results for the Fe sublattice.

As already indicated in Fig. 3.2 (d), the Gd moments are only canted in a small region

around the compensation temperature. For large magnetic fields, the Gd moments are
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Figure 4.6: Calculation of the expected SMR response in a simplified two sublattice system with a net Fe

and a Gd sublattice magnetization. The magnetic properties of this model system are similar

to the ones of the InYGdIG sample studied here. The calculations are based on a mean field

model and were conducted by R. Schlitz in the course of his master’s thesis at WMI [55].

The sublattice specific (normalized) resistivity modulation amplitude ∆ρ calculated from the

orientation of the sublattice magnetizations ξX is depicted as a function of magnetic field

and temperature for the net Fe sublattice moments (a) and the Gd moments (b). The red

and blue color represent negative and positive ∆ρ, respectively.

mostly aligned with the external field, giving rise to a positive SMR ratio. Assuming that

both the Gd and Fe sublattice moments contribute to the SMR, the sum of ∆ρ(Fe) and

∆ρ(Gd) obtained from Fig. 4.6, can qualitatively reproduce the experimental observation

in Fig. 4.5, i.e. no sign change at high fields and low temperatures. The size of the red

pocket where the SMR sign change occurs then depends on the relative contributions

of the two sublattices5. One could interpret this as indications that both the Fe and

Gd moments contribute to the SMR. Once again, we would like to emphasize that the

simulations discussed here only give a qualitative idea of the SMR response considering

both the Fe and Gd moments. A quantitative analysis of the relative sublattice specific

contributions is not straightforward as discussed in more detail in Sect. 2.3.2 and requires

further investigations in the future.

It is important to point out that the magnetic properties of (doped) GdIG can also be

described based on the Néel vector orientation N/N = (MFe,net − MGd)/|MFe,net − MGd|
[55]. Assuming that the SMR is sensitive to the Néel vector orientation, the resistivity

should obey ρ = ρ0 + ρ1(1 − (N
N

· t)2). In this description, the magnitudes of the sublattice

magnetizations enter the SMR response: due to the strong magnetic field and temperature

dependence of the Gd sublattice magnetization, the Néel vector is dominated by the Gd

moments at low temperatures and high magnetic fields, whereas at high temperatures and

low magnetic fields where the Gd is disordered, N ≈ MFe,net. This is very different from

5Note that the Gd contribution alone already seems to reproduce the SMR response in InYGdIG.
However, neglecting the contribution of the Fe sublattice is unrealistic, as SMR measurements in YIG
demonstrate that the Fe moments give rise to an SMR effect.
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our model based on the individual contributions of the sublattice moments according to

Eq. (2.12) where the lengths of the magnetization vectors are not relevant. Furthermore,

the question arises whether the Gd moments need to be ferromagnetically ordered to

contribute to the SMR. In other words: is a long range magnetic order required for spin

transfer torque, or can the SMR effect also be measured in a bilayer consisting of a NM

and a paramagnetic insulator? There is up to now no clear evidence of a SMR effect in

a paramagnetic system, however, this specific issue requires further investigation [109].

While a SMR effect based on the Néel vector cannot unambiguously be excluded at this

point, the SMR theory based on individual sublattice moments appears to be at least

qualitatively consistent with the measured SMR response in the collinear and canted

phase. We therefore adhere to this model in the following. In particular, domain formation

in the canted phase could play an important role for the quantitative SMR amplitudes

(see Sect. 2.3), which can be easily integrated in the microscopic model (Eq. (2.12)).

Furthermore, this model allows for a more general description of systems where no Néel

vector is defined (e.g. chiral magnets).

We would also like to emphasize that the SMR sign changes discussed here are qualita-

tively different from those observed in spin Seebeck effect (SSE) experiments in GdIG/Pt

heterostructures [83]. While the sign change of the SMR is found only in the canting phase,

Geprägs et al. report a second sign change of the SSE at low temperatures attributed to

the contribution of multiple magnon branches [83] (see Sect. 5.2.2). These observations are

consistent with our physical picture that the SMR reflects the orientation of the sublattice

magnetic moments and is therefore independent of magnon modes.

To summarize the discussion above, in the collinear magnetic phase of InYGdIG (far

away from the compensation temperature), the same SMR signature with a positive

modulation amplitude as in YIG/Pt is observed. However, around Tcomp we find a sign

inversion of the SMR amplitude. We therefore attribute this behavior to the non-collinear

reorientation of the sublattice moments in the spin canting phase, as corroborated by

complementary XMCD measurements. We show that the experimental data can be

understood based on the microscopic model proposed in Sect. 2.3, assuming that the

magnetic moments residing on different sublattices contribute independently to the SMR.

In particular, for sufficiently large canting angles (ξ > 45➦, assuming all moments lie in the

sample plane) a shift of the SMR angular dependence by 90➦ is observed, corresponding to

an inversion of the SMR amplitude. The experimental data therefore clearly rule out that

the SMR effect in a non-collinear magnet is governed by the net magnetization orientation.

Additional SMR measurements in FMI/Pt bilayers with different PLD-grown rare-earth

iron garnet thin film as the FMI layer (pure Gd3Fe5O12 and Dy3Fe5O12 [55]) reveal a

similar sign change of the SMR amplitude close to the respective magnetic compensation

temperature, confirming the reproducibility of our observation. These results therefore

demonstrate that simple transport experiments can identify non-collinear magnetic phases
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in highly resistive magnets contacted by heavy metals. This is also confirmed by recent

reports on SMR measurements conducted in Cu2OSeO3, where a sign change of the SMR

amplitude was observed for a transition from the helical to the conical magnetic phase

[59].

4.3 Summary: spin Hall magnetoresistance in FMI/Pt

bilayers

In this chapter we discussed the spin Hall magnetoresistance (SMR) in bilayers consisting

of a ferrimagnetic insulator (FMI) and the normal metal Pt. In a heterostructure where

the FMI is a collinear ferrimagnet, the Pt resistivity simply depends on the orientation of

the net magnetization in the FMI. This macrospin model is well established for YIG, where

the two antiferromagnetically coupled Fe sublattice magnetizations are always collinear

for magnetic fields available in experiments (see Sect. 4.1). In a non-collinear magnet

however, the macrospin model is no longer applicable and we assert that the SMR is

governed by the orientation of the individual magnetic moments (see Sect. 2.3) [30]. This

is experimentally confirmed by SMR measurements in the compensated ferrimagnet In, Y

doped GdIG which exhibits a collinear as well as a canted magnetic phase (see Sect. 4.2).

While the signature of the SMR response in the collinear phase of InYGdIG is the same

as in YIG, a sign change of the SMR amplitude (phase shift by 90➦) is observed in the

canted magnetic phase. We attribute this sign change to a reorientation of the magnetic

sublattice moments away from the applied magnetic field, even reaching a perpendicular

alignment at specific temperatures and magnetic fields. These results were published

in Phys. Rev. B 94, 094401 (2016) [30] and represent the first observation of the SMR

effect in a canted magnetic phase, demonstrating that in a non-collinear magnet the SMR

cannot be described in terms of the net magnetization orientation. This is an important

insight since the SMR probes the orientation of the sublattice moments and therefore

opens the path for SMR measurements in antiferromagnetic insulators (AFMI), which

do not exhibit a net magnetization. Resistivity measurements in a AFMI/Pt bilayer can

for example be used to read out information encoded in the magnetic system, similar

to the read out of magnetic states via the anisotropic magnetoresistance in conductive

antiferromagnets [13].

In addition to a mapping of the magnetic phase diagram in GdIG, i.e. differentiating

between collinear and canted configurations, a more detailed analysis of the SMR angular

dependence can give further insights into the microscopic magnetic structure. In Sect. 2.3,

we proposed a generalized SMR model based on the assumption that each magnetic

moment gives rise to an individual SMR contribution. In particular, we find that the

amplitude and phase shift of the overall resistivity modulation depends on the canting

angle of each moment and on the symmetry of the system. In an isotropic magnet,
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we expect multiple energetically equivalent magnetic moment orientations within one

sublattice, which are all occupied with equal probability. In such a scenario, only the

amplitude of the resistivity is affected by the canting angle and changes sign, while the

phase of the angular dependence stays constant. This is indeed observed in the canting

phase of InYGdIG in Sect. 4.2. On the other hand, the finite phase shift observed in other

compensated garnets such as ErIG [56, 57] can also qualitatively be reproduced by our

theoretical model, e.g. by including anisotropies leading to different canting angles within

one sublattice and/or an unequal distribution of magnetic moment orientations between

energetically equivalent states. We can furthermore extend this picture to describe three

dimensional magnetic structures, i.e. magnetic moments with out of plane components,

conical magnets [59, 109] or even more complex magnetic structures. While a detailed

understanding of the impact of the latter on the resistivity response still requires further

investigation, the SMR effect might prove a powerful tool not only to map out magnetic

phase transitions, but also to gain insights into the microscopic magnetic structure by

simple magnetotransport measurements.
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Non-local magnon transport in FMI/Pt

bilayers
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In Part I of this thesis, we have shown that spin Hall magnetoresistance (SMR) mea-

surements in a ferrimagnetic insulator (FMI)/Pt heterostructure allow for the electrical

mapping of magnetic phase transitions and give information on the (sublattice) magneti-

zation orientation. For the description of the SMR only the ability to torque the magnetic

moments in the FMI is relevant. The SMR thus depends on the orientation of the sublat-

tice magnetic moments, while magnetic excitations in the form of spin waves/magnons

are currently not included (or required) in the theoretical model in good approximation.

However, in addition to the read-out of static magnetic states or configurations via mag-

netoresistive effects, the investigation of magnetic excitations is also of great relevance

in the field of spintronics. In particular, different concepts have been put forward for

information transfer and processing based on propagating spin waves. Several building

blocks for magnon based logic have been implemented using coherently excited spin waves,

including a magnon transistor [110], a magnon multiplexer [111] and first concepts on

how to direct spin waves around the curvature of a wave guide [112].

Recent experiments have furthermore shown that information can also be transported

in the ferrimagnetic insulator yttrium iron garnet (YIG) via non-equilibrium magnons

which are excited and detected electrically using two parallel Pt strips deposited on top

of the YIG [3, 4]. By applying a dc charge current to the injector Pt strip, an electron

spin accumulation is generated at the Pt/YIG interface via the spin Hall effect (SHE,

see Sect. 2.1). This spin accumulation is converted into a magnon accumulation in the

ferrimagnetic insulator and the excited magnons diffuse through the magnetic material,

away from the injector [113, 114]. If the second, electrically isolated Pt (detector) strip is

placed within the magnon diffusion length, the magnons are converted back to an electron

spin accumulation in the detector Pt strip. This gives rise to a charge current due to the

inverse spin Hall effect (ISHE, see Sect. 2.1) in the Pt, which is detected as a non-local

voltage in open circuit conditions. The amplitude of the detected non-local voltage is

modulated by the magnetization orientation following a sin2(αH) dependence, where αH

is the angle between magnetization and charge current direction, and we therefore label

this effect magnon mediated magnetoresistance (MMR) [4].

In addition to the electrical magnon injection, non-equilibrium magnons can also be

generated thermally by locally heating the YIG via the Pt injector strip [3, 115–117].

Similar to the MMR, the diffusing magnons can be detected in the second Pt strip and

we call this the non-local spin Seebeck effect, in analogy to its well established local

counterpart the (longitudinal) spin Seebeck effect [93–95, 118–122].

In this part we therefore study the non-local magnon transport in FMI/Pt heterostruc-

tures. In Chap. 5, we start by presenting the current theoretical model for the electrical

and thermal magnon injection and transport. We then turn to the experimental study of

the MMR effect, i.e. the electrical injection of non-equilibrium magnons, in YIG/Pt in

Chap. 6. Our measurements as a function of temperature, magnetic field and injector-

detector distance give first insights into the microscopic processes involved in the MMR.
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Based on our findings, we present a proof-of-principle device in Chap. 7, which per-

forms logic operations within the magnonic system. These results were published in

Appl. Phys. Lett. 109, 022405 (2016) [123]. In Chap. 8, we address the non-local SSE in

YIG/Pt, i.e. the transport of thermally excited magnons in a non-local geometry, as a

function of temperature, magnetic field and injector-detector distance. The corresponding

results were published in AIP Adv. 7 085102 (2017). Chapter 9 is dedicated to the

MMR effect in gadolinium iron garnet (GdIG)/Pt, i.e. a system which exhibits both

collinear and canted magnetic phases (see Sect. 3.1.2 and 4.2), as well as a more complex

magnon spectrum including multiple thermally populated magnon modes with opposite

precession direction (polarization) at room temperature. The temperature and magnetic

field dependent measurements of the non-local MMR signal in GdIG/Pt therefore allow

for the investigation of magnon transport in a canted magnetic phase and give further

insight into the injection and transport properties in the presence of multiple thermally

populated magnon modes. Finally, Chap. 10 gives a short summary of our most important

findings on magnon transport in a non-local geometry.



Chapter 5

Magnon transport in a non-local

geometry: theoretical overview

In this chapter, we give a theoretical overview on the transport of non-equilibrium magnons

in a heterostructure consisting of a ferrimagnetic insulator and two parallel, electrically

isolated Pt strips deposited on top of the FMI. The non-equilibrium magnons can be

injected electrically or thermally, leading to the magnon-mediated magnetoresistance

(MMR) and the non-local spin Seebeck effect (SSE), respectively. Both effects will be

shortly introduced in the following. For the electrical magnon injection, a dc charge

current is applied to the first Pt strip (injector), inducing a spin accumulation at the

Pt/FMI interface via the spin Hall effect (SHE) (see Sect. 2.1). This spin accumulation is

converted into a non-equilibrium magnon population in the ferrimagnet, which diffuses

through the FMI and is converted back into an electron spin accumulation in the second Pt

strip (detector). The ensuing spin current in the detector induces a non-local voltage due

to the ISHE. The combined action of the charge current in the injector strip and non-local

voltage in the detector strip corresponds to the MMR effect. In general, we therefore

distinguish two main physical processes in the MMR effect, namely the injection/detection

of non-equilibrium magnons via the Pt strips and the magnon diffusion through the FMI.

The electrical injection and detection processes are based on the transfer of magnetic

moment across the Pt/FMI interface and will be discussed in Sect. 5.1. In Sect. 5.2, we

look into the spin-wave spectra of the two material systems under investigation, i.e. YIG

and GdIG (see Sect. 3.1), and discuss the thermal magnon population of different magnon

modes. The magnon diffusion process in the FMI is addressed in Sect. 5.3 and finally the

thermal magnon injection and ensuing non-local SSE are introduced in Sect. 5.4.

5.1 Magnetic moment transfer at the Pt/FMI interface

In order to understand the electrical magnon injection and detection, we first focus on the

transfer of angular momentum from the Pt, where it is carried by electrons, to the FMI

where the angular momentum is carried by magnons. A theoretical model for the electron

spin to magnon conversion (injection) and vice versa (detection) has been put forward by

61
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Zhang and Zhang [113, 114] based on previous calculations by Takahashi et al. [124]. In

this model, an s-d type interaction −Jsdσ · Si is assumed at the Pt/FMI interface, with

σ the electron spin in the Pt and Si the local spin in the FMI layer [113, 125]. The total

angular momentum is conserved. Following Zhang and Zhang, we thus can write down

the following boundary condition at the Pt/FMI interface for the electron spin current

density Js(0
−) in the Pt and the magnon current density Jm(0+) in the FMI

Js(0
−) = Jm(0+). (5.1)

The total angular momentum current across the interface is given by [114]

Jt(0) = Gemδms(0
−) − Gmeδmm(0+) (5.2)

where Gem (Gme) denotes the interface spin conductance for the conversion of the elec-

tron spin (magnon) accumulation δms(0
−) (δmm(0+)) to the magnon (electron spin)

accumulation.

The spin convertances in Eq. (5.2) were calculated by Zhang and Zhang [114] based on

the magnon and electron spin distribution functions as well as the corresponding densities

of states. Assuming simple parabolic bands for electrons and magnons, they obtain the

dominant temperature dependencies of Gem ∼ (T/Tc)
3/2 and Gme ∼ (T/TF ), i.e. at low

temperatures the injection and detection become inefficient such that the measured MMR

effect (the non-local voltage in the detector Pt strip) vanishes.

Before addressing this temperature dependence in more detail, we first introduce a

simplified picture for the transfer of angular momentum across the interface, as sketched

in Fig. 5.1. In the following, we consistently use the electron spin magnetic moment

ms = −gsµBσ/~ in the Pt and the magnetic moment mm carried by the magnons, which

is antiparallel to the net magnetization M in the FMI. The directions of the spin magnetic

moment current JSHE
s and charge current JISHE

c induced in the Pt layer by the SHE and

ISHE, respectively, (see Sect. 2.1) are then defined as1 [38]

JSHE
s = ΘSH

~

2e
Jc × σ ∝ −ΘSHJc × ms (5.3)

JISHE
c = ΘSH

2e

~
Js × σ ∝ −ΘSHJs × ms. (5.4)

According to Eq. (5.3), a charge current Jc applied to the Pt injector along the −x-

direction gives rise to an electron spin magnetic moment accumulation δms along y

at the Pt/YIG interface (red arrows in Fig. 5.1) due to the SHE2. By flipping one of

1We only focus on the direction of the induced currents, not on a quantitative analysis of the current
amplitude.

2The magnetic moment current Js in the Pt is not shown here for clarity.
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Figure 5.1: Sketch of the electron spin magnetic moment to magnon conversion at a YIG/Pt interface

for (a) M antiparallel to the electron spin magnetic moment ms and (b) M parallel to ms.

The semi-transparent magnons (wiggly lines with arrows, for more details see main text)

correspond to equilibrium thermal magnons. Depending on the magnetization direction a

magnon is either generated or annihilated when an electron flips its spin in the Pt, leading

to a magnon accumulation or depletion beneath the injector. Both processes give rise to a

magnetic moment current Jt across the detector interface with opposite flow and polarization

direction, leading to the same effective current JISHE
c . Note that the color of the thermally

excited magnons corresponds to the orientation of the carried magnetic moment with respect

to the coordinate system and therefore changes upon inversion of M.

these electrons from right to left (red to blue), the spare magnetic moment ∆ms = gsµB

generates a magnetic excitation in the FMI called magnon (red wiggly arrow in Fig. 5.1

(a)). The transfer of spin magnetic moment across the interface can be described as a flow

of magnetic moment Jt in positive z-direction from the Pt to the FMI. An accumulation

of non-equilibrium magnons δmm ‖ y is subsequently generated in the ferrimagnet in

addition to the equilibrium thermal magnon population (semi-transparent red wiggly

arrows). Here, the wiggly arrows represent the direction of the carried magnetic moment,

not the magnon propagation direction. The non-equilibrium magnons diffuse through

the FMI3 (see Sect. 5.3) and are detected in the second Pt strip via the inverse process:

the flow of magnetic moment flips electron spins at the Pt/FMI interface, such that the

3The direction of the diffusion current Jdiff in the FMI is sketched as a dashed arrow in Fig. 5.1. In
general, we expect magnons to diffuse in both + and −y-direction away from the injector (see Chap. 7).
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electrons which are originally in equilibrium become polarized. The ensuing spin magnetic

moment current Js in the Pt induces a charge current JISHE
c due to the ISHE according

to Eq. (5.4). Note that Jc and JISHE
c in injector and detector both flow along the same

direction.

We now discuss the dependence of the MMR on the magnetization orientation. Ne-

glecting magnetic anisotropy, we assume that the net magnetization points along the

external magnetic field. In Fig. 5.1 (a), M is oriented along the −y-direction and therefore

antiparallel to the electron spin magnetic moment ms at the Pt/FMI interface. As

discussed above, the excess moment from the electron spin flip therefore reduces the

total magnetization in the FMI, corresponding to the generation of a magnon (red wiggly

arrow in Fig. 5.1 (a)). In the scenario depicted in Fig. 5.1 (b), however, the external

magnetic field is inverted and the net magnetization points along the +y-direction. The

corresponding thermally excited magnons (blue, semi-transparent, wiggly arrows in Fig. 5.1

(b)) still reduce the net magnetization and the magnetic moment they carry now points

along the -y-direction4. The excess magnetic moment from the electron spin flip in the

Pt is now parallel to M and increases the total magnetization of the FMI, corresponding

to the annihilation or absorption of one already thermally excited magnon. Note that in

both cases the (net) flow of magnetic moment across the injector interface is identical,

since both the current and polarization direction are inverted (a current of “left” polarized

(blue) moments flowing along −z is effectively the same as a current of “right” polarized

(red) moments flowing along +z). In Fig. 5.1 (b), the magnon population underneath

the injector is thus depleted, such that the magnon diffusion current Jdiff changes sign

and magnons flow from the detector towards the injector. The ensuing magnetic moment

current across the detector interface has once more opposite current and polarization

direction compared to Fig. 5.1 (a). The detected ISHE current in the second Pt strip

is therefore the same for both scenarios depicted in Fig. 5.1. At finite temperatures,

assuming that the magnon excitation and absorption is equally efficient, we expect a 180➦

symmetric MMR effect.

In experiments, the non-local MMR voltage is extracted using the current switching

method (see Sect. 3.3.2 and 6.2), and a modulation of the MMR effect amplitude, following

a sin2(αH) dependence on the in-plane magnetic field orientation αH with respect to the

current direction Jc, is found (with the same angle definition as in Fig. 2.2) [3, 4]. As

discussed later on in Sect. 6.3.1, the non-local voltage goes to zero for M ‖ Jc (αH = 0➦).

We note that in the context of SMR theory, the configuration M ‖ Jc, i.e. M ⊥ σ,

corresponds to a maximum spin transfer torque, such that the interface spin current is

However, in the scenario depicted here, only the diffusion current which can be detected in the second
Pt strip is represented.

4Note that the red and blue color in Fig. 5.1 represents the direction of magnetic moment with respect to
the fixed coordinate system, not the magnon polarization with respect to the magnetization direction
M as discussed later on in Sect. 5.2.



5.2 Relevance of the thermal magnon population 65

absorbed by the FMI macrospin (see Sect. 2.2). The fact that no magnons are detected

non-locally for αH = 0➦, suggests that either the interfacial scattering process described

in Fig. 5.1 is suppressed or that the transverse magnetic excitations for M ⊥ σ have

comparatively short lifetime [126]. In the following we therefore define the maximum

non-local signal measured for αH = 90➦ as the MMR amplitude.

5.2 Relevance of the thermal magnon population

As discussed in the previous section, the MMR amplitude is expected to vanish at low

temperatures [114]. This is indeed confirmed by experiments, as shown in Sect. 6.3.2

[4]. Furthermore, a suppression of the MMR effect in YIG/Pt with increasing external

magnetic field is observed in experiments (see Sect. 6.3.3) [127]. These findings suggest

that the thermal magnon population (which is suppressed by low temperatures and high

magnetic fields) is of importance for a qualitative understanding of the temperature

and magnetic field dependence of the MMR amplitude. In the following, we discuss the

transfer of magnetic moment across the Pt/YIG interface and focus on the injection

efficiency. In the theoretical description proposed by Zhang and Zhang [114, 124], the

relevant parameters are the non-equilibrium electron distribution function, i.e. the electron

spin magnetic moment accumulation at the interface arising from the spin Hall effect,

and the equilibrium magnon distribution function in the FMI, i.e. the thermal magnon

population [114, 124]. Discussing the magnon spectrum of the FMI is therefore of great

relevance for the MMR.

5.2.1 YIG magnon spectrum

We start with the spin-wave spectrum of YIG calculated from atomistic spin dynamics

by Barker and Bauer [64] which is displayed in Fig. 5.2 for different temperatures 1 K ≤
T ≤ 300 K (Figure taken from Ref. [64]). The red and blue color corresponds to a

counterclockwise and clockwise precession of the magnon mode with respect to the

external magnetic field, which we label “+” and “−” polarization in the following. While

the spectrum consists of multiple magnon branches due to the complex unit cell of YIG,

for temperatures up to about 300 K mainly the FMR-like fundamental mode is thermally

populated as indicated by the black dashed line in Fig. 5.2, which corresponds to the

thermal energy kBT [64]. In YIG we therefore only consider the lowest energy magnon

branch for the discussion of the magnon injection in the MMR effect. Note that the

fundamental mode has positive polarization and counterclockwise precession direction as

expected for the FMR mode in YIG.

Figure 5.2 then gives a qualitative explanation for the MMR power law dependence, as

calculated in Ref. [114]: only magnons with energy ~ω ≤ kBT are thermally populated,

leading to a vanishing equilibrium magnon population at low temperatures. According to
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Figure 5.2: Spin-wave spectrum of YIG calculated for different temperatures. The black dashed line

represents the thermal energy kBT and the red and blue color corresponds to positive and

negative magnon polarization/precession direction, respectively. Figure taken from Ref. [64].

Refs. [114, 124] the injection efficiency is proportional to the thermal magnon population

and therefore becomes inefficient at low temperatures, such that the MMR vanishes.

A similar line of argument can be applied to the magnetic field dependence of the

MMR. In the presence of an external magnetic field the fundamental mode shifts to higher

frequencies due to the opening of the Zeeman gap. This is intuitive as the magnons of

the FMR-like branch reduce the net magnetization in the ferrimagnet. When a large

magnetic field is applied, the magnon excitation is energetically more costly, such that low

energy/frequency magnons are suppressed, leading to a reduction of the overall thermal

magnon population. In particular, when the Zeeman gap is larger than the thermal energy

kBT , magnons are frozen out. This effect has already been observed in the context of spin

Seebeck effect and magnon heat conductivity measurements in YIG/Pt [119, 120, 128].

Indeed the experimental MMR measurements in YIG/Pt summarized in Chap. 6 reveal

a vanishing MMR at low temperatures and a suppression of the signal with increasing

magnetic field, indicating that the thermal magnon population already allows for a

qualitative understanding of the MMR behavior in YIG/Pt bilayers.

5.2.2 GdIG magnon spectrum

5We now turn to the three-sublattice ferrimagnet GdIG (introduced in Sect. 3.1.2), which

exhibits several magnon branches in the low THz regime, such that multiple magnon modes

are thermally populated even below room temperature. Figure 5.3 displays the GdIG

magnon spectrum also obtained from atomistic simulations conducted by J. Barker [129].

At low temperatures, the spectrum looks very similar to YIG since only the fundamental

mode with positive polarization (red) is populated. This suggests that at low temperatures

5This section contains calculations of the GdIG magnon spectrum conducted by J. Barker which are
being prepared for publication together with our experimental data shown in Sect. 9.1 [129]. Parts of
the text and figures from Ref. [129] are adapted here for the format of this thesis.
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Figure 5.3: Spin-wave spectrum of GdIG calculated by J. Barker for different temperatures. The

compensation temperature obtained in the simulation is T sim
comp ≈ 320 K. The red and blue

color corresponds to positive and negative magnon polarization, respectively. We label the

dispersive mode α and the high energy parabolic mode β. Figure adapted from Ref. [129].

when only the FMR-like mode is relevant, GdIG behaves similar to YIG. Only at higher

temperatures T & 100 K a second gapped mode with negative polarization (blue mode in

Fig. 5.3 (a)) shifts down below kBT . For simplicity we label the magnon modes according

to their type of dispersion relation: the low energy dispersive mode α and the high energy

parabolic mode β (red and blue modes in Fig. 5.3 (a), respectively). The frequency gap of

the β-mode depends on the exchange energy between the Fe and Gd moments [83]. With

increasing temperature, the Gd loses order, leading to a decrease of the exchange gap

and a red-shift of the gapped mode. For high temperatures around T = 300 K (Fig. 5.3

(c)), both the α- and β-mode lie at similar frequencies. At the magnetic compensation

temperature (T sim
comp ≈ 320 K), the two modes eventually exchange roles and polarization

due to the reorientation of the Fe and Gd sublattice magnetizations (see Sect. 3.1.2),

such that the α mode now has “−” (blue) and the β mode “+” polarization (red). In the

following we assume that these two modes dominate the magnon transport in GdIG. The

additional flat bands around f = 1 THz are neglected since they are expected to be nearly

dispersionless and have large line width (and thus short magnon lifetime). This assumption,

together with the dominance of the α- and β-mode, has already proven reasonable for the

description of the spin Seebeck effect in GdIG/Pt bilayers [83], where the contributions

from different magnon modes have been studied extensively. In particular, it was found

that upon thermal excitation the two dominating modes yield different signs in the detected

SSE signal, depending on their polarization. We can understand this behavior intuitively,

as magnons with opposite polarization carry opposite magnetic moment. The excitation of

FMR-like magnons with positive polarization (red modes) reduces the net magnetization.

On the other hand, the magnon modes at higher frequencies originate from the precession

of magnetic sublattice moments in an effective field, which includes the external field and

the exchange fields provided by the other sublattices (similar to the excitations in an

antiferromagnet) [130–132]. Magnons with negative polarization (blue modes) correspond
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Figure 5.4: Sketch of the electron spin magnetic moment to magnon conversion at a GdIG/Pt interface.

The α- and β magnon modes are both thermally populated (semi-transparent red and blue

wiggly arrows). Due to the SHE in the Pt injector, there is an accumulation of right polarized

(red) electrons at the interface. When an electron flips its spin, either (a) a “+” polarized

(red) magnon is generated or (b) a “−” polarized (blue) magnon is absorbed (b). In both

scenarios, the net flow of magnetic moment across the injector (detector) interface is the

same, such that the ensuing ISHE current JISHE
c in the detector is identical.

to the precession of sublattice moments aligned antiparallel to the external field and

their excitation therefore increases the net magnetization. When the magnetic moment is

transferred across the GdIG/Pt interface, the sign of the ensuing ISHE current depends

on the polarization of the dominating magnon mode. Comparing the SSE sign in YIG/Pt

and GdIG/Pt confirms that at low temperatures only the positively polarized fundamental

α mode contributes. With increasing temperature, when the β-mode in GdIG red-shifts

sufficiently to gain a relevant thermal population, the SSE signal changes sign, indicating

that the high energy mode dominates the SSE. A second sign change is then observed at

Tcomp, where the magnon modes switch polarization [83, 133].

As discussed in Sect. 5.1, the MMR also originates from the transfer of angular mo-

mentum across the FMI/Pt interface. It is therefore crucial to investigate the impact of

differently polarized magnon modes on the MMR effect. However, the different physical

origins of SSE and MMR need to be taken into account: in the SSE, magnons from
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both modes are thermally excited in the FMI, leading to an excess of magnons for both

polarizations. The sign of the ensuing ISHE current is then determined by the domi-

nating magnon polarization. In the MMR effect however, the injection is not thermal

but originates from scattering processes at the injector Pt/FMI interface. In this case

the injected magnetic moment is determined by the SHE induced spin accumulation at

the Pt/FMI interface. In Fig. 5.4, the scattering processes in YIG (single magnon mode,

see Fig. 5.1) are extended to GdIG (two dominating magnon modes). The red and blue

magnons in Fig. 5.4 correspond to “+” and “−” polarized magnons, i.e. excitations which

reduce or increase the net magnetization, respectively. We describe the three sublattice

ferrimagnet in terms of a net Fe and a Gd magnetization, or in a more general way as

two magnetizations M1 and M2 (see Sect. 3.1.2) and focus on the collinear magnetic

phase, where all sublattice moments are aligned (anti)-parallel to the applied magnetic

field. Based on Fig. 5.4, we discuss the configuration where the charge current is applied

along +x and the net magnetization M points along the −y-direction. In analogy to

the scenario described in Fig. 5.1 (a), an electron polarized along y flips its spin and

generates one “+” polarized (red) magnon, reducing the net magnetization. However, the

same electron moment flip can occur when a “−” polarized (blue) magnon is absorbed,

also leading to a reduction of the total magnetization (Fig. 5.4 (b)). For a given spin

polarization, “+” polarized (red) magnons accumulate underneath the injector and diffuse

towards the detector, while “−” polarized (blue) magnons are depleted at the injector,

leading to a diffusion of “−” polarized magnons towards the latter. For both processes,

the effective magnetic moment current across the GdIG/Pt interface is therefore the same.

In this picture, the electrically injected magnetic moment can be carried by either of the

two magnon modes with opposite polarization, but always induces the same sign of the

MMR signal at the detector. In contrast to the SSE, we therefore expect no sign change

of the MMR signal as a function of temperature in GdIG/Pt.

While both magnon modes contribute with the same sign to the detected MMR signal,

the injection/absorption efficiency for the α and β modes can be different. In order to

quantitatively determine the contributions of the two modes, one needs to calculate the

probability of the different scattering processes shown in Fig. 5.4. This probability depends

on the availability of initial and final states for the injection and detection, i.e. on the

electron and magnon distribution functions and densities of states, which should be subject

to future theoretical work. However, the magnon modes shift in frequency as a function of

temperature and magnetic field, changing the thermal magnon population. Since this is

expected to affect the detected MMR signal [114, 124], first insights into the contributions

from different magnon modes may be gained by studying the temperature and magnetic

field dependence of the MMR in GdIG/Pt and comparing it to the calculations of the

magnon spectra. The corresponding experimental results will be discussed in Chap. 9.

The injection (absorption) efficiency of the different magnons discussed up to now is

independent of the distance between injector and detector. In the next section, we turn to
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the second important aspect in the description of the MMR, i.e. the transport properties

of the magnons in the FMI.

5.3 Diffusion process

The magnon transport was studied in a 1D model, i.e. a trilayer consisting of Pt/FMI/Pt,

by Zhang and Zhang in the frame of a general Boltzmann equation [113, 114]

vz
∂Nm

∂z
+ vz

∂Nm

∂T

dT

dz
+ vz

∂Nm

∂H

dH

dz
= −

(

∂Nm

∂t

)

scatt.

(5.5)

where Nm(z, T (z), H(z)) is the magnon distribution and vz = 1
~

∂ǫk

∂kz
is the z component

of the magnon velocity. The first term describes the magnon diffusion due to a spatial

gradient in the magnon accumulation. The second and third term represent transport

driven by a spatial temperature or magnetic field gradient. The right hand side of Eq. (5.5)

is the scattering term obtained from relaxation time approximation

(

∂Nm

∂t

)

scatt.

=
Nm − N̄m

τm

+
Nm − N0

m

τth

(5.6)

where N̄m(z) =
∫

dkNm(z,k)/
∫

dk is the momentum averaged magnon distribution and

N0
m(z,k) =

[

eǫk/kBT (z) − 1
]−1

is the local equilibrium magnon distribution. Note that the

theoretical model put forward by Zhang and Zhang is based on a single magnon band

with parabolic dispersion relation ǫk = Dk2 + ∆g, where D is the spin wave stiffness and

∆g the spin wave gap. The relaxation processes are separated into magnon conserving

and non-conserving relaxation processes (first and second term in Eq. (5.6), respectively).

This can be understood intuitively as the first term relaxes to the momentum averaged

distribution, e.g. the magnon momentum can change from k to k′ due to a scattering

event keeping the number of magnons constant, while the second term relaxes back to the

equilibrium thermal distribution, i.e. a state of lower excitation number.

For the simplest case of uniform temperature and magnetic field, the authors obtain

the diffusion equation for non-equilibrium magnons [113]

d2

dz2
δmm(z) =

δmm(z)

λ2
m

(5.7)

with the magnon accumulation δmm(z) = 1
(2π)3

∫

dk [Nm(k, z) − N0
m(k)] and the magnon

diffusion length λm ∝ √
τthτm. The solution of Eq. (5.7) is of the form δmm(z) =
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a exp(−z/λm) + b exp(z/λm). Assuming the detector is a perfect spin sink, i.e. δmm(0) =

m0 and δmm(d) = 0 [3], this leads to a magnon current density jm = −D(∂mm/∂z)

jm(d) = −2D
m0

λm

exp(d/λm)

1 − exp(2d/λm)
. (5.8)

If the detector absorbs practically no spin and the magnon accumulation relaxes only

far away from the detector, we expect [55]

jm(d) = D
m0

λm

exp(−d/λm). (5.9)

In both cases the diffusion process leads to a decay of the MMR signal as a function of

the distance between injector and detector. This is confirmed by experimental observations

as discussed in Sect. 6.3.4.

Note that the diffusion model described here is valid for a 1D diffusion process, i.e. in a

trilayer consisting of Pt/FMI/Pt [113, 114]. While this configuration has also been studied

experimentally [134, 135], the measurements presented in this thesis are conducted in a

2D configuration (two Pt strips on top of the FMI), such that the theoretical model might

need to be adapted. However, the 1D transport model reproduces the data sufficiently

well and can be applied in good approximation [3].

As mentioned above, this theoretical model only includes a single magnon branch with

parabolic dispersion relation. A more detailed description of the magnon diffusion in

GdIG requires taking into account multiple magnon branches with different dispersion

relations (see Fig. 5.3). In particular, the magnon group velocity is determined by the

dispersion relation and varies for different magnon branches and k vectors. It is therefore

likely that in GdIG the two dominating magnon modes of opposite polarization have

very different transport properties and contribute differently to the detected non-local

signal, depending on the injector-detector distance. Furthermore, while magnon-magnon

scattering is included in some of the current theoretical descriptions [126], interactions

between magnon modes have not been considered yet. The latter are particularly relevant

for the scenarios depicted in Fig. 5.3 (c) and (d) where the two magnon branches in GdIG

with opposite polarization cross. Changes in the damping of the magnon modes, especially

close to the compensation temperature [79, 84, 132, 136], may also become relevant for a

detailed description of magnon transport properties in GdIG, as discussed in Sect. 9.1.

5.4 Thermal excitation of non-equilibrium magnons

We have up to now only discussed magnon injection via transfer of magnetic moment from

the electron to the magnon system (see Sect. 5.1). However, non-equilibrium magnons

can also be generated thermally by locally heating one Pt strip. This is also the origin of



72 Chapter 5 Magnon transport in a non-local geometry: theoretical overview

YIG

Pt

H, M

J
ISHE

(a)

J
t

mT

hot

cold

∆

J
ISHE

J
t

m

H, M

J
ISHE

J
t

m

J
ISHE

J
t

m

(b)

-µ
m

+µ
m

d
0

z

x y

Injector Detector 1 Detector 2

YIG

Pt

Figure 5.5: (a) Schematic representation of the local (longitudinal) SSE in YIG/Pt. A temperature

gradient ∇T applied across the YIG/Pt interface generates a current Jt of magnetic moment

m along the temperature gradient into the YIG. The ensuing ISHE current JISHE can be
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where the blue and red color corresponds to a magnon accumulation and depletion (compared

to thermal equilibrium), respectively. The sign change of the magnon accumulation occurs at

d0 (black dashed line) and leads to an inversion of the interfacial magnetic moment current

Jt for d > d0. Consequently, the measured ISHE voltage is opposite in detector 1 and 2. The

white region on the right edge of the YIG film corresponds to thermal equilibrium, where the

thermally excited magnon accumulation is relaxed.

the well established spin Seebeck effect [93–95, 118, 137], where a temperature gradient

∇T applied across the YIG/Pt interface induces a current of magnetic moment which

flows along ∇T from the Pt into the YIG (see Fig. 5.5 (a)). The electron spin magnetic

moment current in the Pt is converted into a charge current via the ISHE (Eq. (5.4)),

which can be detected as a voltage in open circuit conditions. While the SSE has been

studied as a function of YIG thickness in order to investigate the relevant length scales

[121, 122], the (longitudinal) SSE is usually described in a 1D geometry, where only the

dimensions in the z direction are relevant [137]. The non-local MMR measurements,

however, show that non-equilibrium magnons also diffuse laterally (see Chap. 6). It is

therefore of great interest to study the lateral transport of the thermally excited magnons

in the same non-local geometry as for the MMR. First experimental confirmation of a

non-local voltage of thermal origin has been given by Cornelissen et al. [3], and we call

this effect non-local spin Seebeck effect in analogy to its local counterpart. In particular,

both local and non-local SSE follow a sin(αH) dependence on the angle αH between the

external in-plane magnetic field and the direction x in which the voltage drop is measured

(see Fig. 5.5).

In our typical two strip nanostructure (see Fig. 6.1), the local heating required for

the excitation of non-equilibrium magnons is a byproduct of the MMR measurement:

by driving a charge current through the Pt injector strip, energy is dissipated via Joule

heating, leading to a temperature gradient across the Pt/YIG interface. This method



5.4 Thermal excitation of non-equilibrium magnons 73

is already successfully used for local SSE measurements [95]. In order to distinguish

the thermal contribution from the electrical magnon injection (MMR) contribution (see

Sect. 5.1), we use the current switching method described in Sect. 3.3.2 and extract the

signal which originates from Joule heating and is therefore independent of the current

direction. Alternatively, the same effect can also be achieved with laser heating as

demonstrated for the local SSE [94] and recently for the non-local SSE [115]. However,

the current heating method presents the advantage of measuring MMR and non-local SSE

simultaneously in the same structure and is therefore applied in this thesis.

The non-local SSE has been investigated as a function of distance d between the injector

(heater) strip and the detector in a YIG/Pt bilayer by Cornelissen et al. [3, 138] in order

to extract the magnon diffusion length. While part of these results suggests that the

diffusion length of thermally and electrically injected magnons are very similar (of the

order of 10➭m), it is not straightforward to extract a length scale from all measurements,

as a sign change arises in the non-local thermal signal at a characteristic distance d0 [3]:

for short distances d < d0, local and non-local SSE have the same sign, whereas for larger

distances d > d0 the sign of the non-local signal is inverted. Additional measurements as

a function of the YIG thickness tYIG [117, 139] show that d0 increases linearly with tYIG.

The authors of Ref. [139] propose a theoretical model for the non-local SSE based on

the profile of the non-equilibrium magnon accumulation in YIG, which can qualitatively

reproduce the experimental observations. We retrace this line of argument in the following.

First, we shortly discuss the possible origins of a magnon current (of thermal origin)

flowing from the injector to the detector strip. Magnon currents carry magnetic moment

(jm) as well as heat (jQ,m) [126, 139] according to the following equation

(

2e
~
jm

jQ,m

)

= −
(

σm
L
T

~L
2e

κm

)(

∇µm

∇Tm

)

. (5.10)

The source of these magnon currents is either a gradient in the magnon accumulation

∇µm or temperature ∇Tm. Here, σm is the magnon spin conductivity, L is the bulk spin

Seebeck coefficient and κm is the magnon heat conductivity. The magnon current induced

in the local SSE is connected to the temperature gradient via the spin Seebeck coefficient

L and more precisely originates from a difference ∆Tme between the magnon temperature

Tm in the YIG and the electron temperature Te in the Pt [137]. In the metal, the electron

and phonon temperatures are approximately the same and the phonon temperature

Tp is continuous at the YIG/Pt interface. The magnons however cannot cross the

interface, giving rise to a finite temperature difference ∆Tmp between phonon and magnon

temperature (as well as a finite ∆Tme) as depicted in Fig. 5.6 (Figure taken from [126]).

Microscopically the magnon and phonon systems thermalize by exchanging energy via

scattering processes. These scattering processes conserve the magnon number, i.e. magnetic

moment, and do not change the magnon accumulation µm in first approximation. It was

shown that the magnon and phonon temperatures equilibrate on a length scale of a few
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insulator (FMI) interface, illustrating the theoretical model proposed by Cornelissen et al.

[126]. The magnon-phonon thermalization length λmp is much shorter than the relaxation

length of the magnon accumulation λm. Figure taken from Ref. [126].

nm in lateral direction [137] and can therefore not drive a lateral magnon current over

several ➭m as observed in the non-local SSE experiments. The magnon accumulation µm

however, is related to the number of non-equilibrium magnons and is therefore sensitive

to scattering processes which do not conserve magnons. The scattering times for the

latter are longer (∼ 1 ns) than for magnon conserving processes (∼ 1 ps) [126], leading

to different decay lengths λm and λmp for µm and ∆Tmp, respectively. Since the magnon

accumulation changes on the length scale of the diffusion process, it is reasonable to assume

that the gradient of the magnon accumulation is the dominating origin of the non-local

SSE: according to the model presented in Ref. [139], magnons which are thermally excited

in the ferrimagnet due to Joule heating in the injector strip diffuse vertically towards the

GGG/YIG interface as well as laterally to the sample edges. This leads to a depletion of

magnons (µm < 0, red in Fig. 5.5 (b)) compared to the thermal equilibrium population

beneath the injector. On the other hand, diffusing magnons accumulate further away from

the injector, giving rise to µm > 0 (blue in Fig. 5.5 (b)). The dashed black line corresponds

to d0, i.e. the transition from magnon depletion to accumulation. The interfacial spin

current Jt at the detector flows along the +z-direction for a magnon depletion, i.e. µm < 0,

beneath the detector strip and in opposite direction (along −z) when there is a magnon

accumulation µm > 0. This leads to opposite ISHE current in detector 1 (d < d0) and 2

(d > d0) for the scenario depicted in Fig. 5.5 (b). Note that for distances larger than the

magnon relaxation length, the magnon accumulation decreases (white region on the right

edge of the sketch in Fig. 5.5 (b)), since the magnon population relaxes towards thermal

equilibrium.
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Based on the assumption that the magnon accumulation profile has radial symmetry

with respect to the heated strip6 as shown in Fig. 5.5 (b), this model also qualitatively

explains the increase of d0 with increasing YIG thickness tYIG observed by Shan et al.

[139]. The non-equilibrium magnons accumulate at the YIG/GGG interface since they

cannot cross into the GGG substrate. When decreasing the YIG thickness, the sign change

of the magnon accumulation shifts closer to the Pt/YIG interface and the observed d0

decreases.

In order to gain further insight into the microscopic origin of the non-local SSE in

YIG/Pt, experimental results on the temperature and magnetic field dependence of the

latter will be discussed in Chap. 8.

6The d0 extracted from experiments is measured in lateral x direction. However the boundary conditions
used for the calculations in Ref. [139] are only valid for a 1D model in z direction. It is likely that for
thin films the transition from µm < 0 to µm > 0 is no longer isotropic, i.e. d0 along x is larger than
along z. A 2D modeling might therefore be necessary to fully understand the position of the sign
change.





Chapter 6

Magnon mediated magnetoresistance in

YIG/Pt

In this chapter, we study the transport of electrically injected magnons through the

ferrimagnetic insulator YIG, using two parallel Pt strips as injector and detector. These

experiments are referred to as magnon mediated magnetoresistance (MMR) measurements,

as introduced in Chap. 5. We start with a description of the sample preparation (Sect. 6.1)

and experimental setup (Sect. 6.2). These techniques are also relevant for the next chapters.

The experimental MMR results in YIG/Pt as a function of temperature, magnetic field

and injector-detector distance are discussed in Sect. 6.3.

6.1 Sample preparation

In the following, we study the MMR effect in YIG/Pt heterostructures fabricated starting

from commercially available YIG films1. The latter are grown onto a (111) oriented

Gd3Ga5O12 substrate via liquid phase epitaxy (LPE) and are typically a few ➭m thick.

In contrast to the PLD grown thin films fabricated at the Walther-Meissner-Institute

(see Sect. 3.2), an in-situ Pt deposition is not possible on the LPE films, since these

are shipped via mail from the company/lab where the LPE growth took place. The

samples therefore need to be carefully cleaned and prepared before the deposition of a Pt

layer in order to guarantee a good quality interface [48]. The films are first cleaned in

acetone and isopropanol in an ultrasonic bath, followed by chemical Piranha etching (3

volumes H2SO4 mixed with 1 volume H2O2) for 2-5 min. Immediately afterwards, the

sample is rinsed in DI water and inserted into the load-lock of the UHV cluster at the

Walther-Meissner-Institute. After annealing in 75➭bar O2 atmosphere at 500 ◦C for 40

min, a Pt film of a few nm thickness is deposited via electron beam evaporation. A list of

all the samples used throughout this thesis is compiled in Appendix A.

For the non-local measurements, we use nanostructures consisting of two parallel Pt

strips of width w = 500 nm, edge-to-edge separation 20 nm ≤ d ≤ 10 ➭m and strip length

1The YIG LPE films used in this section were provided by Matesy (Magnetic Technology and Sytems).
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Figure 6.1: (a) Sketch of the two parallel Pt strips with width w, edge-to-edge separation d and length

L used for the non-local measurements. (b) Optical micrograph of a non-local YIG/Pt

nanostructure with w = 500 nm, d = 400 nm and L = 100➭m. The black and grey color

corresponds to YIG and Pt, respectively. The blue shaded areas are proximity pads made

of Pt as well. The electric wiring is depicted in black with the corresponding voltage and

current polarities.

L = 100➭m as depicted schematically in Fig. 6.1 (a). An optical micrograph of one of

the nanostructures taken on a YIG/Pt sample is displayed in Fig. 6.1 (b). The black

and grey color corresponds to YIG and Pt, respectively. The areas shaded in blue are

proximity pads (Pt) helpful for the electron beam lithography fabrication process but

are not relevant for the functionality of the device. Note that electron beam lithography

is used for the fabrication of the non-local structures in order to reach the necessary

resolution down to a few 10 nm.

After a cleaning step using acetone and isopropanol, the FMI/Pt bilayer is preheated at

200 ◦C to remove excess water and allow for a better spreading of the resist. The sample

is then covered with CSAR 62 resist (Allresist AR-P 6200) via spin coating at 2000 rpm

for 60 s and baked at 150 ◦C for 60 s [55]. Subsequently, gold nanoparticles are applied

to the edges of the sample as a reference for focusing the electron beam. The sample is

then loaded into the NanoBeam nB5 electron beam lithography system and the pattern is

written with a dose of 0.8 C m−2. After the lithography process the resist is developed in

Allresist AR 600-549 for 60 s and rinsed twice in isopropanol. The sample is subsequently

etched for 60 to 120 s via argon ion beam milling to define the final Pt structure.

6.2 Experimental setup

After fabrication, the sample is glued onto a chip carrier and bonded with Al-wires. The

left “injector” Pt strip is typically used for local measurements, where a charge current Jc



6.3 Experimental results in YIG/Pt 79

Option Setting
Digits 7.5

Number of power line cycles (NPLC) 2
Filter type repeating
Filter count 30

Table 6.1: Keithley 2182 nanovoltmeter filter settings used for non-local measurements.

is applied using a Keithley 2400 sourcemeter and the corresponding local voltage Vloc is

measured in a 4-point geometry using a Keithley 2182 nanovoltmeter. Simultaneously

the non-local voltage drop Vnl at the right “detector” Pt strip is measured in open circuit

conditions using an additional Keithley 2182 nanovoltmeter. The wiring scheme is depicted

in Fig. 6.1 (b). In order to disentangle resistive from thermal voltage contributions the

current switching method described in Sect. 3.3.2 is applied. For a typical non-local

measurement in this setup we use the Keithley 2182 settings listed in Tab. 6.1.

For temperature and magnetic field dependent measurements the sample is placed on

a dipstick which is inserted into a superconducting magnet cryostat reaching magnetic

fields µ0H ≤ 7 T and temperatures 2 K ≤ T ≤ 300 K as described in Sect. 3.3. Additional

measurements were conducted in a superconducting solenoid magnet cryostat allowing

for magnetic fields µ0H ≤ 15 T in the same temperature range. For the latter, a new

rotator dipstick was designed in the course of this thesis enabling angle dependent

magnetoresistance measurements in this particular setup. The dipstick was mostly

assembled by C. De Rose during his bachelor’s thesis at WMI, which I supervised. Details

on the design and wiring of the dipstick can be found in Ref. [140].

Combining the settings in Tab. 6.1 with the current switching method (average over 5

switching cycles), a resolution of 5 nV can be reached for the non-local resistive signal, as

long as the dipstick temperature is stable.

6.3 Experimental results in YIG/Pt

In this section we discuss the experimental results on magnon mediated magnetoresistance

in YIG/Pt nanostructures. The sample used in the following was fabricated from a 2➭m

thick YIG LPE film covered ex-situ with 10 nm of Pt (see Sect. 6.1). The experimental

data presented in this section were obtained together with T. Wimmer, who I supervised

during his master’s thesis at WMI [141]. The measurements were conducted in the

temperature range 5 K ≤ T ≤ 300 K with an external magnetic field 1 T ≤ µ0H ≤ 15 T.

The charge current applied to the Pt injector strip is 100 ➭A throughout all measurements

in this section and we apply Eq. (3.2) to extract the MMR contribution2, i.e. the non-local

2The contributions of thermal origin are also extracted from this set of data according to Eq. (3.3) and
will be discussed in Chap. 8.
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Figure 6.2: Non-local resistive voltage V res
nl in a YIG/Pt bilayer measured at T = 300 K for (a) the

in-plane, (b) out of plane rotation with respect to j and (c) out of plane rotation with respect

to t for a fixed magnetic field amplitude µ0H = 1 T. The two Pt strips are separated by an

edge-to-edge distance d = 50 nm. The non-local voltage goes to zero when the magnetization

direction M is perpendicular to the electron spin polarization σ ‖ t (αH = 0➦, 180➦), otherwise

a finite negative voltage is observed.

voltage originating from electrical magnon injection. In the following, we discuss the

experimental results and most important findings concerning the non-local resistive signal

in YIG/Pt as a function of temperature, magnetic field and injector-detector distance.

6.3.1 Angular dependence

We start with the study of the angular dependence of the MMR effect by rotating the

sample in a fixed external magnetic field magnitude µ0H = 1 T at T = 300 K. The

measured non-local resistive voltage V res
nl is depicted in Fig. 6.2 for all three rotation

planes, i.e. in-plane (ip), out of plane with respect to the current axis j (oopj) and out of

plane with respect to the transverse direction t (oopt). As discussed in Sect. 5.1 [3, 4], a

finite MMR signal is expected when the magnetic field is applied perpendicular to the

charge current direction Jc ‖ j in the Pt, such that σ ‖ M, while no non-local signal is

detected for σ ⊥ M. Here, σ ‖ t is the electron spin polarization induced by the SHE

at the Pt/YIG interface (see Sect. 2.1). This behavior is confirmed by the experimental

data in Fig. 6.2: in the ip rotation the signal vanishes for αH = 0➦, while a finite negative

voltage is observed for αH = 90➦. The same applies for the oopj rotation. In oopt however,

the MMR is always zero, since the magnetic field/magnetization is always perpendicular

to the electron spin polarization at the Pt/YIG interface.
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Figure 6.3: (a) Non-local resistive voltage V res
nl in a YIG/Pt bilayer measured for T = 10 K, 150 K and

300 K as a function of the in-plane magnetic field orientation αH for µ0H = 1 T. (b) ∆V res
nl

extracted from the ADMR measurements as a function of temperature for all available strip

separations 20 nm ≤ d ≤ 10 ➭m. (c) Double-logarithmic plot of |∆V res
nl |. The solid lines

represent power law fits and the gray shaded area corresponds to the 5 nV noise floor of the

measurement setup. (d) Exponent of the power law fit in panel (c) for the high and low

temperature regime (black and red, respectively) as a function of the strip separation d.

In the following, we focus on the ip magnetic field rotation. V res
nl follows a sin2(αH)

dependence and we can extract the MMR amplitude ∆V res
nl = V res

nl (90➦) − V res
nl (0➦) as

indicated by the purple arrow in Fig. 6.2 (a). Note that ∆V res
nl is negative for the

measurement configuration depicted in Fig. 6.1 (b), which is consistent with previous

observations using the same wiring scheme [4].

6.3.2 Temperature dependence

We now turn to the temperature dependence of the extracted MMR amplitude. Figure

6.3 (a) displays the non-local resistive signal V res
nl as a function of the ip magnetic field

orientation αH for T = 10 K, 150 K and 300 K with µ0H = 1 T. As predicted by theory

[114] (see Sect. 5.1), the MMR vanishes for low temperatures around 10 K [4]. In order to

quantitatively analyze the temperature dependence, we extract the MMR amplitude ∆V res
nl

from sin2(αH) fits to the angle dependent magnetoresistance (ADMR) measurements in

various devices with Pt strip separations 20 nm ≤ d ≤ 10 ➭m. The result is plotted in

Fig. 6.3 (b) in a linear scale and |∆V res
nl | is shown in Fig. 6.3 (c) in a double-logarithmic

scale. The gray shaded region up to 5 nV in Fig. 6.3 (c) represents the noise floor of our
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measurement setup. The double-logarithmic plot reveals a power law dependence in T

for all studied devices. However, the slope varies for different strip separations and we

clearly observe different slopes for the high and low temperature regime. The data is

therefore fitted with functions of the form A · T nlowT for 5 K ≤ T ≤ 100 K and B · T nhighT

for 100 K ≤ T ≤ 300 K for all strip separations (solid lines in Fig. 6.3 (c)). The exponents

nlowT (red) and nhighT (black) obtained from the power law fits are displayed in Fig. 6.3

(d) as a function of the strip separation d. Both nlowT and nhighT are highest for short

distances, but strongly decrease with d and start to saturate around 2➭m. nhighT even

goes to zero for large distances, corresponding to a temperature independent MMR.

For the description of the MMR temperature dependence, contributions from injec-

tion/detection efficiency as well as transport need to be taken into account. Since the

former can be considered independent of distance, the behavior observed for different d

suggests that the transport properties indeed play an important role in the temperature

dependence of the MMR effect. The distance dependence of the MMR amplitude will be

discussed in more detail in Sect. 6.3.4.

Here, we start with the temperature dependence of the injection and detection efficiency,

which was calculated in Ref. [114] (see Sect. 5.1) as Gem ∝ (T/Tc)
3/2 and Gme ∝ (T/TF ),

respectively. The authors calculate that for d much smaller than the magnon diffusion

length, the detector efficiency can be neglected, such that the MMR follows T 3/2. As we

will show in Sect. 6.3.4, the magnon diffusion length λm in this sample is of the order of a

few 100 nm. While the limit of d ≪ λm is therefore not applicable to all studied devices,

λm is an order of magnitude larger than the shortest distances investigated here. The

temperature dependence of the non-local signal observed in the short distance regime at

low temperatures is therefore in good agreement with theoretical predictions of n = 1.5.

For larger d and higher temperatures however, the slope of the temperature dependence

is much weaker.

This behavior underlines that in the short distance regime, the temperature dependence

is dominated by the injection efficiency, while in the long distance regime the diffusive

properties dominate the amplitude of the MMR effect. In order to disentangle the

contributions from transport and injection, a more detailed investigation of the MMR

distance dependence is necessary. However, before addressing the latter in Sect. 6.3.4, we

first turn to the magnetic field dependence of the MMR.

6.3.3 Magnetic field dependence

We have seen in Sect. 5.2 that the thermal magnon population and magnon injection can be

suppressed by a magnetic field due to the opening of the Zeeman gap. We therefore measure

the non-local resistive voltage as a function of the in-plane magnetic field orientation for

µ0H = 1 T, 4 T and 7 T. Figure 6.4 (a) displays the ADMR measurements taken at 300 K

for a device with d = 100 nm and w = 500 nm. Indeed, the MMR amplitude decreases
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Figure 6.4: (a) V res
nl measured in a YIG/Pt bilayer at 300 K for d = 100 nm as a function of the in-plane

magnetic field orientation αH for µ0H = 1 T, 4 T, 7 T. (b) V res
nl as a function of magnetic

field amplitude for 10 K ≤ T ≤ 300 K. The magnetic field was applied perpendicular to

the Pt strip and swept from -15 T to 15 T. (c) Non-local resistive voltage measured in the

d = 100 nm device as a function of temperature for different magnetic fields. (d) Relative

field suppression δ(15 T) of V res
nl calculated from the data in panel (c) according to Eq. (6.1)

for different strip separations. The red dashed line represents the ratio of the Zeeman energy

∆Z(15 T) and the thermal energy kBT and gives an approximation for the expected field

suppression arising from the Zeeman gap in the magnon dispersion relation.

with increasing magnetic field, as expected from a shift of the magnon spectrum and

subsequent suppression of the magnon injection. To further analyze the influence of the

magnon spectrum on the non-local voltage we measure the MMR signal in the d = 100 nm

structure while sweeping the magnetic field from µ0H = −15 T to 15 T. Here, the magnetic

field is applied in the plane and perpendicular to the Pt strip (αH = 90➦). The resulting

V res
nl is shown in Fig. 6.4 (b) for different temperatures in the range 10 K ≤ T ≤ 300 K.

A suppression with increasing field is observed for all studied temperatures. For better

visualization, the same data is plotted as a function of temperature for different magnetic

fields in Fig. 6.4 (c). Since the signal amplitude at low temperatures is generally smaller,

we calculate the relative suppression δ(µ0H) of the MMR effect in %

δ(µ0H) =
V res

nl (0 T) − V res
nl (µ0H)

V res
nl (0 T)

(6.1)
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The resulting relative suppression for µ0H = 15 T is depicted in Fig. 6.4 (d) as a function

of temperature for different strip separations ranging from 20 nm to 500 nm. According

to Eq. (6.1), δ = 100% corresponds to the total suppression of the signal. Note that the

relative suppression cannot be calculated reliably for T < 50 K, where the MMR vanishes.

While the overall temperature dependence for all devices displayed in Fig. 6.4 (d) is

very similar, displaying a strong field suppression at 50 K as well as room temperature, the

amplitude of the suppression varies for different distances. This again suggests that not

only the injection efficiency is field dependent, but also the transport properties come into

play, consistent with previously published results [127]. Here, we focus on a qualitative

discussion of the observed field dependence in the context of the injection/detection

efficiency and the magnon spectrum in YIG. In particular we discuss the field dependence

of the MMR measured in the device with the smallest gap d = 20 nm, which we consider

as the local limit, i.e. in this structure the MMR amplitude is dominated by the magnon

injection efficiency, while the magnon diffusion properties are expected to play a minor

role.

The low temperature field suppression can be understood intuitively from the magnon

spectrum. The Zeeman gap induced in the dispersion relation due the external field is

∆Z(15 T) = gµB15 T = 1.7 meV, where g ≈ 2 is the g-value for YIG [142] and µB the

Bohr magneton. At 50 K, magnons are thermally populated up to kB50 K = 4 meV. The

experimental observation δ(15 T, 50 K) ≈ 39% for the 20 nm structure therefore agrees well

with the ratio ∆Z(15 T)/kB50 K = 40% calculated in a simple approximation3. However,

with increasing temperature the relative suppression ∆Z(15 T)/kBT expected from the

Zeeman gap at 15 T decreases (red dashed line in Fig. 6.4 (d)) and deviates from the

experimental observation.

A similar behavior was observed in the local spin Seebeck effect [119] (see also Sect. 8.2):

a strong field suppression of the SSE is consistently found at low temperature, which

is once more attributed to the opening of the Zeeman gap. The SSE suppression with

magnetic field at room temperature is larger than the expected value obtained from the

shift of the magnon mode and the authors of Ref. [119] therefore argue that low energy

magnons (which are suppressed by magnetic field for all temperatures) provide a dominant

contribution to the SSE. A similar line of argument could be applied to the MMR effect.

However, the MMR suppression δ(15 T, 300 K) ≈ 50% in Fig. 6.4 (d) is much higher

than for local SSE measurements conducted in the same sample, where a suppression of

δSSE(15 T, 300 K) ≈ 10% (discussed in Sect. 8.2, see Fig. 8.3 (d)) was obtained. These

results suggest that the model used for the local SSE in YIG/Pt is not sufficient to

reproduce the relative field suppression of the MMR effect at room temperature. Our

observations may be related to the different physical origins of the MMR and local SSE,

i.e. to the type of magnons (in terms of energy and k-vector) that contribute to each effect.

3The energy dependence of the density of states and distribution function, i.e. the number of magnons
at a given energy, is not taken into account here.
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However, for a quantitative model of the MMR temperature and magnetic field dependence

in the small distance limit, a better understanding of the frequency distribution of the

electrically injected magnons is necessary.

We furthermore point out, that according to the calculated YIG magnon spectrum

displayed in Fig. 5.2 [64], a second high energy magnon mode becomes thermally populated

around 300 K. As discussed in Sect. 5.2.2, the additional exchange mode may also

contribute to transport if the mode is thermally populated. However, the influence of this

second mode on the MMR effect in YIG is not well known up to now and requires further

investigation in the future, in particular at temperatures above 300 K and large magnetic

fields, where the high energy mode is more strongly occupied.

6.3.4 Distance dependence

In the temperature as well as in the magnetic field dependence of the MMR we have

found strong evidence that the magnon injection/detection and the magnon diffusion

processes both affect the detected non-local signal. We therefore now address the distance

dependence of the MMR effect. We start with ADMR measurements of the non-local

resistive signal as a function of the ip magnetic field orientation αH displayed in Fig. 6.5

(a) for d = 50 nm, 500 nm and 1➭m at T = 300 K and µ0H = 1 T. As expected from a

diffusive magnon transport, the non-local signal decreases for increasing injector-detector

distance d. To get further insight into the length scales relevant for the MMR, |∆V res
nl | is

extracted from ADMR measurements for all available strip separations. The results are

shown in Fig. 6.5 (b) for different temperatures, where the gray shaded area corresponds

to the noise floor of 5 nV in our setup. The solid lines represent fits to the data using a

simple exponential decay function [139]

|∆V res
nl | = V res

nl,0exp

(

− d

λm

)

(6.2)

where λm is the magnon diffusion length. Since the non-local signal is expected to vanish

for infinitely large d, the offset of the fit function is set to zero. This function allows to

disentangle the contributions from injection efficiency and magnon diffusion by extracting

V res
nl,0 in the local limit of d = 0 and λm separately. We find that the fit function reproduces

the experimental data in Fig. 6.5 (b) well in the short distance limit, but deviates for

larger distances. Note that Cornelissen et al. use Eq. (5.8) to analyze their data [3].

However, this function does not fit our data well either. This may be attributed to the fact

that we study a different distance regime than the authors of Ref. [3], where a diffusion

length of about 10➭m is obtained by fitting Eq. (5.8) to data up to 30➭m4. In contrast,

the signal in Fig. 6.5 (b) drops beneath the noise floor around d = 5 to 10➭m. In the

4It is also important to point out that Eq. (5.8) is obtained for specific boundary conditions, i.e. assuming
that the detector is a perfect spin sink. As we will discuss in Chap. 7, an additional detector strip
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Figure 6.5: (a) V res
nl as a function of the ip magnetic field orientation αH for d = 50 nm, 500 nm and

1 ➭m at T = 300 K and µ0H = 1 T. (b) V res
nl extracted from the ADMR measurements as a

function of the strip separation d for different temperatures. The solid lines are fits to the

data using Eq. (6.2). (c) V res
nl,0 - the non-local voltage in the local limit (d = 0) - obtained

from the fits in panel (b) as a function of temperature. The solid lines represent power law

fits of the form A · T n. (d) Magnon diffusion length λm extracted from the exponential decay

in panel (b) as a function of temperature.

short distance limit d ≪ λm Eq. (5.8) can be approximated by a 1/d dependence which

reproduces the experimental data in Ref. [3] well, but yields no satisfying fit for the data

displayed in Fig. 6.5.

For now, we therefore focus on the short distance regime up to 5➭m using Eq. (6.2)

to fit the data as shown in Fig. 6.5 (b). The fit parameters V res
nl,0 and λm are plotted in

Fig. 6.5 (c) and (d), respectively. In analogy to the analysis of the data in Fig. 6.3 (c),

V res
nl,0 is fitted with two power law functions A · T n0,low and B · T n0,high for 30 K ≤ T ≤ 100 K

and 100 K ≤ T ≤ 300 K, respectively. We find n0,low = 1.7 and n0,high = 1.1, which is

consistent with the values obtained in Fig. 6.3 (c) for the shortest distance d = 20 nm.

The temperature dependence of the injection efficiency in the local limit, especially at

high temperatures, therefore slightly deviates from the theoretical prediction by Zhang

and Zhang [114] who calculated n = 1.5. However, the temperature dependence of the

magnon spectrum, in particular the dispersion relation was not taken into account in

within the diffusion path of the magnons does not visibly affect the non-local signal [141], suggesting
that a Pt strip is in general not a perfect spin sink and making the use of Eq. (5.8) questionable.
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those calculations. The authors assume a quadratic dispersion relation, which is a good

approximation for small k vectors, but is no longer true for larger k. The calculations of

the YIG spectrum [64] displayed in Fig. 5.2 show that the magnon dispersion changes

from quadratic to linear and becomes flat towards the edge of the Brillouin zone. This

change in the slope of the dispersion relation occurs around energies corresponding to

100 K [143], i.e. the temperature where the power law dependence in Fig. 6.5 (c) changes

slope. We therefore qualitatively discuss the influence of the dispersion relation on the

density of states of the magnon system and the total number of magnon excitations.

For a general quadratic dispersion relation

ω(k) =
JASa2

~2
k2 (6.3)

where JA is the exchange constant, S the spin-wave stiffness and a the lattice constant,

the density of states can be calculated as [54]

D(ω) =
V

4π2

(

~
2

JASa2

)3/2 √
ω. (6.4)

The total number of magnon excitations is

∑

k

nk =
V

4π2

(

~

JASa2

)3/2 ∫ ∞

0
dω

√
ω

e~ω/kBT − 1

=
V

4π2

(

kBT

JASa2

)3/2
∫ ∞

0
dx

√
x

ex − 1
≈ 2.31

V

4π2

(

kBT

JASa2

)3/2

. (6.5)

In the case of a linear dispersion

ω(k) =
JASa2

~2
k (6.6)

the density of states becomes

D(ω) =
V

4π2

(

~
2

JASa2

)3

ω2 (6.7)

and the total number of magnon excitations

∑

k

nk =
V

4π2

(

~

JASa2

)3 ∫ ∞

0
dω

ω2

e~ω/kBT − 1

=
V

4π2

(

kBT

JASa2

)3
∫ ∞

0
dx

x2

ex − 1
≈ 2.4

V

4π2

(

kBT

JASa2

)3

(6.8)
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increases more strongly with a T 3 dependence instead of the T 3/2 expected in the quadratic

case. This means that the number of available magnon states for the injection increases

when the dispersion becomes flatter, which should lead to a stronger increase of the

MMR with temperature starting around T = 100 K. This is however not consistent with

the experimental observations, where the slope of the T n dependence decreases in the

temperature regime where the dispersion becomes linear.

The change in slope of the temperature dependence in Fig. 6.5 (c) can therefore not be

rationalized easily, even including a deviation from the quadratic dispersion relation in

the theory by Zhang and Zhang [114]. This model however applies to the 1D geometry

of a Pt/YIG/Pt trilayer instead of the bilayer with two Pt strips that was used in our

experiments. Furthermore, it is unclear how (and if) the detection efficiency affects the

MMR, since up to here only the injection was discussed. The authors of Ref. [114] obtain

a different temperature dependence of the injection (n = 3/2) and detection (n = 1)

efficiency. Since in our experiments only the combination of injection and detection is

measured, the two contributions cannot be disentangled in a straightforward way and

further investigations are required.

We now turn to the temperature dependence of the transport properties, i.e. the magnon

diffusion length λm plotted in Fig. 6.5 (d). λm extracted from fits to the short distance limit

decreases with increasing temperature and reaches about 300 nm at room temperature.

This is very different from observations by Cornelissen et al. who extracted a constant

magnon diffusion length of the order of a few ➭m over the whole temperature range from

25 K to 300 K [138]. As discussed above, these deviations can be attributed to different

distance regimes and the applied fit function.

In order to understand the temperature dependence of the magnon diffusion length,

it is important to keep in mind that magnons with different k vectors contribute to the

transport. In particular, the group velocity vk = 1
~

∂ǫ
∂k

as well as the scattering times τk
strongly depend on the k vector. The diffusion length extracted from the exponential decay

fits in Fig. 6.5 (d) is therefore an average over the contributions from all non-equilibrium

magnons

λm =
1

Nmag

∫ ∞

0
dkλkZ(k)fBE(k, T ) (6.9)

where Nmag =
∫∞

0 dkZ(k)fBE(k, T ) is the total number of magnons, Z(k) the density of

states in k space, λk = vkτk the diffusion length for a specific k vector and fBE(k, T ) the

Bose-Einstein-distribution function.

The magnon group velocity can be obtained from the dispersion of the YIG fundamental

mode in Fig. 5.2: vk is always positive but decreases for large k when the mode flattens.

High k magnons are therefore expected to contribute less to the MMR, in particular at

large distances. Furthermore, the scattering times τ ∝ 1
k

α , where α depends on the type

of relaxation process, decrease for large k vectors [143, 144]. This effect, in combination

with the k dependence of the group velocity suggests that the magnon transport is
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Figure 6.6: Non-local voltage in the local limit V res
nl,0 (a) and magnon diffusion length λm (b) obtained

from fits to the V res
nl data measured as a function of injector-detector distance using Eq. (6.2).

The values are extracted as a function of external magnetic field for temperatures between

50 K and 300 K.

dominated by the low k magnons which have the largest diffusion length. With this we

can qualitatively rationalize the temperature dependence of the overall diffusion length

λm: at high temperatures more magnons with high energies and high k but small λk

are thermally populated. This reduces the average diffusion length λm calculated from

Eq. (6.9) with increasing temperature.

We now turn to the magnetic field dependence of the magnon diffusion length. As men-

tioned in Sect. 6.3.3, the thermal magnon population (and therefore the non-equilibrium

magnons which contribute to the MMR) is affected by a magnetic field, since low frequency

magnons are suppressed. At the same time, magnons with large k right around kBT

are suppressed when the dispersion relation is shifted to higher energies. Following a

similar line of argument as for the temperature dependence of λm discussed above, we

therefore expect a change of the diffusion length since the frequencies and k-vectors of

the contributing magnons are modified by the applied magnetic field [141]. However, at

high temperatures corresponding to energies kBT much larger than the Zeeman energy,

the magnon population is large and this effect should be rather small. On the other hand,

theoretical calculations predict that the magnon-phonon scattering of subthermal (low k)

magnons, which contribute considerably to the long range magnon transport, increases

with magnetic field [145]. This leads to a shorter diffusion length for these magnons and

should affect the overall diffusion length observed in experiments.

In analogy to the analysis of the temperature dependence of the diffusion length, we

therefore extract λm and the non-local voltage in the local limit V res
nl,0 as a function of

magnetic field for different temperatures. To this end, we fit the MMR amplitude V res
nl

obtained from the magnetic field sweeps (exemplarily shown in Fig. 6.4 (b) for d = 100 nm)

as a function of the injector-detector distance using the exponential fit given by Eq. (6.2).

The extracted values for V res
nl,0 and λm are plotted in Fig. 6.6 (a) and (b), respectively,
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where the error bars represent the standard deviation. The amplitude of the non-local

voltage V res
nl,0 displayed in Fig. 6.6 (a) is suppressed by magnetic field, consistent with the

results discussed in Sect. 6.3.3.

For the diffusion length λm displayed in Fig. 6.6 (b), a slight decrease with increasing

magnetic field is observed for all temperatures. This is qualitatively consistent with

previous measurements conducted in YIG/Pt by Cornelissen et al. at room temperature,

who observe a decrease of the magnon diffusion length λm from approximately 9.6 ➭m

for µ0H = 10 mT to 4.2 ➭m for 3.5 T [127]. However, the values we extracted for λm

are prone to large errors and scatter, in particular at temperatures below 100 K (mostly

related to the difficulty to fit the experimental data as discussed above). Based on the

current data, it is therefore not possible to quantitatively analyze the origin of the small

change in diffusion length with magnetic field.

In summary, we have studied the magnon mediated magnetoresistance effect (MMR)

originating from the diffusion of electrically injected non-equilibrium magnons through

the ferrimagnetic insulator YIG. The MMR was investigated systematically as a function

of temperature, magnetic field and injector-detector separation. We distinguish between

distance independent contributions to the MMR, i.e. magnon injection and detection

efficiency, and the diffusive properties in the YIG film. In experiments, we observe

a suppression of the injection efficiency at low temperatures and high magnetic fields,

indicating that the magnon injection depends strongly on the thermal magnon population.

This is consistent with the theoretical MMR model proposed by Zhang and Zhang [114].

From the temperature and magnetic field dependence of the MMR amplitude we also

conclude that non-equilibrium magnons with different energies and k-vectors contribute

to transport. In particular, the magnon diffusion length extracted from experiments

corresponds to the average diffusion length obtained for all non-equilibrium magnons.

Consequently, a decrease of the diffusion length is observed at high temperatures, where

more magnons with large k and comparatively small diffusion length contribute, reducing

the average diffusion length. In a similar way, the diffusion length can be affected by the

change in thermal magnon population when a magnetic field is applied. Additionally,

the magnetic field is expected to influence the lifetime of specific magnons [145]. In

order to understand the diffusive properties as a function of temperature and magnetic

field, changes in the type of non-equilibrium magnons as well as their specific transport

properties need to be considered.



Chapter 7

Magnon based logic

Based on the results discussed in Sect. 6.3, we extend the two strip YIG/Pt structure

displayed in Fig. 6.1 to a four strip device, enabling the implementation of a magnon

majority gate performing several logic operations in one and the same device. The study of

this proof-of-principle device has been published in Appl. Phys. Lett. 109, 022405 (2016)

[123] and the corresponding text and figures are reused and adapted in the following.

The measurements presented in this chapter were conducted together with T. Wimmer

during his master’s thesis at WMI [141], which I supervised. Further characterization

measurements have been conducted in a three strip device, confirming that the non-local

signal is not affected by the presence of an additional Pt strip placed in-between the

injector and detector strips. Details on these measurements can be found in Ref. [141].

In recent years, different propositions for the implementation of magnonic logic elements

and their integration into the present electronic circuits have been made [110, 146–149],

using e.g. the phase or the amplitude of magnon modes to encode a logical bit. One

important step towards magnonic logic is the implementation of a majority gate [148],

with three inputs and one output. The output of the majority gate assumes the same

logical state (“0” or “1”) as the majority of the input signals. Additionally, one of the input

channels can be used as a control channel to switch between “OR” and “AND” operations

(see Tab. 7.1), allowing for multiple types of logic operations in a single structure. Recently,

a design for an all magnonic majority gate based on single magnon mode operations has

been proposed theoretically [150, 151] and implemented experimentally [152], using the

phase of coherent spin waves (magnons) to encode the logical “1” and “0”. However, in

order to realize this magnonic majority gate, phase sensitive generation and detection

of the spin waves is required. Furthermore, the selected magnon modes and therefore

the functionality of the logic gate depend crucially on the waveguide geometry, making

down-scaling challenging.

In this chapter, we present a proof-of-principle device implementing a multi-terminal

magnonic majority gate based on the incoherent superposition of magnons, requiring

neither microwave excitation nor phase sensitive detection of the spin waves. For the

implementation, we exploit the magnon mediated magnetoresistance (MMR) previously

studied in Chap. 6 in a heterostructure consisting of two parallel Pt strips deposited on

91
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Control C Injector 1 Injector 3 Detector 2
1 1 1 1
1 0 1 1
1 1 0 1
1 0 0 0
0 1 1 1
0 0 1 0
0 1 0 0
0 0 0 0

Ic I1 I3 V2

+ + + −
+ − + −
+ + − −
+ − − +
− + + −
− − + +
− + − +
− − − +

Table 7.1: Truth table of a majority gate [150]. The bottom half of the table shows the sign of the bias

currents for the input channels as well as the sign of the resulting non-local voltage V2 in a

MMR based majority gate. Positive and negative bias currents in the injectors are defined as

logical “1” and “0” respectively. Since a positive bias current in the injector yields a negative

non-local voltage V2 (see Ref. [4]), we define V2 < 0 as “1” and V2 > 0 as “0”. Table taken

from Ref. [123].

top of a YIG film. As discussed in Sect. 5.1, driving a charge current through one of

the Pt strips induces an electron spin polarization at the Pt/YIG interface via the SHE.

When the polarization of the electron spin magnetic moment accumulation in the Pt is

antiparallel (parallel) to the YIG magnetization, magnons are generated (annihilated) in

the YIG, creating a magnon accumulation (magnon deficiency) beneath the injector strip

via scattering processes at the interface [113, 114] (see Fig. 5.1). This leads to magnon

diffusion currents polarized antiparallelly to the magnetization, which flow away from

(towards) the injector strip. In more general terms, the magnetic moment accumulation

determined by the SHE in the Pt is carried by magnons through the YIG to the detector.

By inverting the charge current direction, the magnetic moment direction is also inverted

due to the geometry of the SHE (Eq. (5.3)).

Here, we extend the basic two Pt strip structure to a device with three magnon injectors

and one detector as shown schematically in Fig. 7.1 (a). The YIG/Pt four-strip device is

fabricated as described in Sect. 6.1, using a 2 ➭m thick LPE-YIG film with 10 nm of Pt

deposited on top (see sample list in Appendix A). For the magnon injection and detection,

we pattern four Pt strips with a width of w = 500 nm and a edge-to-edge separation of
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Figure 7.1: (a) Schematic of the YIG/Pt nanostructure consisting of four Pt strips with width w and

edge-to-edge separation d. We label the strips as C (control), 1 (injector), 2 (detector) and 3

(injector) from left to right. (b) Optical micrograph of the YIG/Pt device: the bright strips

are the Pt strips, the dark parts the YIG. Current sources are attached to the injector strips

1 and 3 as well as to the control strip. The ensuing non-local voltage drop V2 is recorded at

strip 2. Figure adapted from Ref. [123].

d = 500 nm. An optical micrograph of the final device is shown in Fig. 7.1 (b). The two

center strips (strip 1 and 2 in Fig. 7.1 (b)) have a length of l = 162➭m and the outer

strips (strip C on the left and strip 3 on the right) are 148 ➭m long. The wiring scheme

for the measurements is also sketched in Fig. 7.1 (b). All experiments are performed

at T = 275 K with an external magnetic field µ0H = 1 T applied in the thin film plane

perpendicular to the strips. Note that the external field is applied in order to saturate the

ferrimagnet. Since the coercive field of YIG is usually of the order of a few Oe [96], much

smaller magnetic fields could be used for these experiments if necessary.

In the first part of the experiments we demonstrate the incoherent superposition of

magnons in the simple three-strip device with strips 1, 2, and 3 (black wiring in Fig. 7.1

(b)): for the generation of the magnon spin accumulation beneath strip 1 and 3 we drive

the charge currents I1 and I3 through the respective strips. As the number of magnons

generated beneath one Pt strip is proportional to the electron spin accumulation at the

interface, which in turn scales with the charge current I flowing in the strip times the area

A of the YIG/Pt interface [114], the different lengths of injector strips 1 and 3 need to

be taken into account for quantitative analysis. In order to detect the spin accumulation

beneath strip 2, we therefore measure the open-circuit voltage V2(I1A1, I3A3). To increase

the measurement precision and exclude additional thermal contributions originating from

Joule heating, we use the current switching method described in Sect. 3.3.2.

Firstly, we focus on measuring the voltage response V2(I1A1, I3A3) while applying a

current bias only to strip 1 (I1 , 0, I3 = 0) or to strip 3 (I1 = 0, I3 , 0), in order to

compare the injection efficiency of both strips. The results are shown in Fig. 7.2 (a). As
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Figure 7.2: (a) The non-local voltage V2(I1A1,0) while current-biasing only along strip 1, and V2(0,I3A3)

while driving strip 3 are measured as a function of the applied current and are represented

by blue open squares and orange open circles, respectively. The blue and orange lines

represent linear fits to the data. Note that we quote I · A as the relevant bias, since the spin

Hall current across the entire interface area A contributes to the MMR. (b) V2(I1A1,I3A3)

measured while current-biasing strips 1 and 3 with the same current magnitude and polarity

is represented by the purple open squares. The purple line is a linear fit. (c) The green

open squares represent V2 measured when biasing strips 1 and 3 with currents of opposite

polarity. In this configuration, the non-local voltage goes to 0 within experimental error.

(d) Test measurement of the four-strip majority gate. The detected non-local voltage V2 is

depicted for different input signals (Ic I1 I3), where the logical bit of the control channel is

marked in red. The magnitudes of the injector currents I1 and I3 are kept constant, and V2 is

measured for control current magnitudes Ic = 150 and 100 ➭A (black and blue symbols). The

experimental data faithfully reproduce all the properties of a majority gate. Figure adapted

from Ref. [123].

expected, V2 scales linearly with I1 and I3, respectively, since the non-local voltage is

proportional to the number of non-equilibrium magnons accumulating beneath strip 2

[113, 114]. Since at zero bias current no magnons are injected, V2(0, 0) = 0. For positive

driving currents along the +x-direction in Fig. 7.1 (a), the accumulation of electron spin

magnetic moment in the Pt is polarized along the −y-direction (see Fig. 5.1) and thus

the diffusing magnons carry magnetic moment pointing along −y towards the detector

(strip 2). There, the magnetic moment is transferred to the Pt and a negative voltage

V2 is induced via the inverse spin Hall effect, consistent with previous measurements

using the same configuration [4] (see Chap. 6). By inverting the driving charge current in
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the injector, the net magnetic moment carried by the diffusing magnons is inverted and

consequently a positive non-local voltage is recorded. In general, depending on the charge

current direction, either a magnon accumulation or depletion is generated beneath the

injector. The ensuing magnon diffusion currents flow in opposite directions, such that

effectively the opposite magnetic moment is transferred to the detector when the charge

current direction is inverted. Taking these properties together, our detection method is

therefore sensitive to the number of non-equilibrium magnons reaching the detector as

well as to the direction of the carried magnetic moment. Note also that the magnons

diffuse isotropically, i.e. to the left as well as to the right in Fig. 7.1 (a). Therefore, it

does not matter for the sign of the detected voltage whether the injector strip is on the

right or left side of the detector strip. This is to be expected, as the sign of the detected

voltage is determined by the orientation of the transferred (net) magnetic moment across

the YIG/Pt interface, and not by the actual diffusion direction.

Within the experimental uncertainty of 5 nV of our setup (limited by the nanovoltmeter

noise and/or thermal stability of the setup), V2(I1A1, 0) = V2(0, I3A3) for I1A1 = I3A3,

showing that the magnon generation efficiency of both strips is identical. To quantify this

in more detail, we fit V2(I1A1, 0) = α1 · I1A1 and V2(0, I3A3) = α3 · I3A3 to the data. We

find α1 = −3.77 × 107V A−1 m−2 and α3 = −3.72 × 107V A−1 m−2, showing that α1,3 are

identical within less that 2%.

Next, we investigate the non-local voltage V2(I1A1, I3A3) while simultaneously biasing

strips 1 and 3. For identical current polarity (I1A1 = I3A3) equal numbers of magnons

carrying identical magnetic moment are generated beneath both strips. The results are

shown in Fig. 7.2 (b) as purple open squares. The purple line represents a linear fit to the

data with a slope of α1+3 = −7.53×107V A−1 m−2. Assuming an incoherent superposition

of the magnons created beneath strip 1 and strip 3 we expect α1+3 = α1 + α3, which is in

good agreement with the experimental data. This result is further corroborated by the V2

values obtained for opposite current directions in strip 1 and strip 3, i.e. I1A1 = −I3A3,

shown in Fig. 7.2 (c). A linear fit to the data reveals a slope of 0.05 × 107V A−1 m−2

and therefore α3−1 = α3 − α1. Additional measurements were conducted using different

driving current amplitudes and polarities for strips 1 and 3 (not shown here). From these

data, we consistently find V2(I1A1, I3A3) = α1 · I1A1 + α3 · I3A3.

Taken together, we observe incoherent superposition of non-equilibrium magnons,

injected independently by the different injector Pt strips.

We now show that a magnon-based majority gate can be implemented in the four-strip

nanostructure, with three input and one output channel as shown in Fig. 7.1 (a). A

majority gate returns true if more than half the inputs are true, otherwise it returns false,

as shown in Tab. 7.1. The third input can be used as a so-called control channel (wire

“C” in Fig. 7.1 (a)), which allows for switching between “AND” and “OR” operations. We

define positive and negative currents in the injectors as the logical “1” and “0” respectively.

Since for positive bias currents a negative non-local voltage is detected, for the output
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signal V2 < 0 is defined as “1” and V2 > 0 as “0”. The bias currents for input 1 and 3 are

chosen such that |I1A1| = |I3A3| = 0.81 × 10−14A m2 and V2(I1A1, I3A3) is subsequently

measured for fixed values of Ic = ±150 ➭A. The resulting voltage is shown as black open

squares in Fig. 7.2 (d) for different input combinations (Ic I1 I3). For convenience, we do

not quote the real charge current values, but rather the corresponding bit values (“0” or

“1”), with the control bit marked in red. For example, if all three injectors are biased with

a positive current, corresponding to the input (111), a negative voltage is detected at the

output, corresponding to a logical “1”. The experimental data successfully reproduces the

truth table (Tab. 7.1): by changing the control bit from “1” to “0”, one can switch from an

“OR” to an “AND” operation (left and right side of the graph respectively). The majority

function is furthermore visible in the sign of the output signal (green and orange area in

Fig. 7.2 (d)), as the output mirrors the majority of the input signals.

Since the control channel is further away from the detector, due to the exponential

decay of the magnon accumulation with distance (see Sect. 6.3.4) [3, 4], the number of

magnons from the control channel reaching the detector is smaller by about a factor 5

compared to the other injectors. However, the actual amplitude of the control signal Ic is

not crucial for the functionality of the majority gate and can be further reduced without

affecting the majority function as shown in Fig. 7.2 (d) for Ic = 100➭A (blue triangles).

We can therefore choose any amplitude for Ic as long as the induced ISHE voltage is

detectable. This allows for a high flexibility in the device operation. In this context,

another advantage of this magnon based logic gate is the possibility to reprogram the

device by simply interchanging the injector, detector and control channels. To guarantee

the functionality of the majority gate, the input bias currents only need to be adapted to

the geometry of the device, in particular to the distance between the injector and detector

strips.

Note that logic operations are already feasible in a three strip device with two injectors

and one detector. In this case the threshold chosen for the detector determines whether

the gate performs “AND” or “OR” operations. However, the four strip device allows for

the same functions, without requiring a redefinition of the output threshold.

Apart from flexibility, an important aspect for the application of spintronic logic is the

clocking frequency. The relevant time scale for a MMR based majority gate is dominated

by two processes: the generation of a spin/magnon accumulation beneath the injector and

the diffusion of the incoherent magnons. It has been shown experimentally that the spin

Hall effect induced spin accumulation persists up to frequencies of at least a few GHz [153],

corresponding to spin accumulation build up times well below a nanosecond. Concerning

the propagation of the spin waves, the average group velocity of magnons in YIG is of

the order of 1➭m ns−1 [110]. In the device shown in Fig. 7.1, the magnons therefore have

a lower limit of about 2 ns for their travel time from the control to the detector strip,

resulting in a maximum switching frequency f = 1/T of about 500 MHz. This can be

further improved by changing the design of the four-strip device. For example reducing



97

both the width of the Pt strips and their edge-to-edge separation to 50 nm already leads to

a factor 10 increase of the switching frequency, to several GHz. This value is comparable

to clocking frequencies in current devices and to those expected in other spintronic based

logic gates [154]. Down-scaling not only leads to faster switching, but also decreases the

device footprint, and increases the energy efficiency of the logic gate: for smaller distances

between strips, the output signal increases exponentially [3], such that the required bias

currents are lower. Since the logical bit is encoded in the magnetic moment carried by the

magnons and not in the frequency, phase or amplitude of the spin waves, down-scaling

does not perturb the functionality of the logic gate. Note that in the short distance limit,

assuming ballistic magnon transport and neglecting interface losses, the non-local voltage

is limited by the bias voltage times Θ2
SH, where ΘSH is the spin Hall angle in the normal

metal (see Sect. 2.1). This corresponds to the conversion efficiency from charge to spin

and back to a charge current in the Pt layer. Using a material with a larger spin Hall

angle than Pt (e.g. Bi2Se3 [155]) will therefore significantly increase the detected non-local

voltage, making this device more suitable for applications.

In summary, we have measured the non-local voltage (the magnon mediated magne-

toresistance) in a YIG/Pt device with multiple magnon injectors and observe incoherent

superposition of the non-equilibrium magnon populations. The measurements show that

the detected non-local voltage is sensitive to the number of magnons reaching the detector

and to the direction of the magnetic moment transferred across the detector interface.

Based on the incoherent superposition of spin waves, we implemented a fully functional

four-strip majority gate. The logical bit in this device is encoded in the magnetic moment

carried by the magnons that are injected using a dc charge current. The output can be

read out as a dc non-local voltage, enabling a simple integration into an electronic circuit.

Clocking frequencies of the order of several GHz and straightforward down-scaling make

the device promising for applications.





Chapter 8

Non-local spin Seebeck effect in

YIG/Pt

In Chap. 6 and 7 we focused on the transport of electrically injected magnons through

the ferrimagnetic insulator YIG. Using the same measurement geometry as in Chap. 6,

we now investigate the transport of thermally excited magnons in a non-local YIG/Pt

structure, i.e. the non-local spin Seebeck effect (SSE). First, we study the non-local SSE

as a function of temperature and injector-detector distance, in order to gain a better

understanding of the relevant length scales and physical origin of the non-local SSE. The

experimental results and discussion have been published in AIP Adv. 7, 085102 (2017)

[116] and the corresponding text and figures are extensively reused in Sect. 8.1. We then

turn to our measurements of the non-local SSE response as a function of the applied

magnetic field magnitude in Sect. 8.2, giving first insights into the type of magnons that

contribute dominantly to the non-local SSE.

8.1 Distance and temperature dependence

We investigate the non-local spin Seebeck effect in two LPE-YIG films with thickness

tYIG = 2 ➭m and 5➭m grown onto (111) oriented Gd3Ga5O12 (GGG). Both YIG samples

are covered with 10 nm of Pt. A series of nanostructures consisting of 2 parallel Pt

strips with length l = 100➭m, width w = 500 nm and an edge-to-edge separation of

20 nm ≤ d ≤ 10 ➭m is patterned into the Pt using electron beam lithography followed by

Ar ion etching (see Sect. 6.1 for details on the sample fabrication). Note that the 2➭m

thick YIG film discussed in this chapter is the same sample as the one used in Sect. 6.3

(see sample list in Appendix A). The MMR and non-local SSE results from this sample

are obtained from the same set of data: the resistive (Sect. 6.3) and thermal contributions

(this chapter) are disentangled using the current switching method described in Sect. 3.3.2.

The experimental data was obtained together with T. Wimmer, who I supervised during

his master’s thesis at WMI [141].

The samples are mounted in the variable temperature insert of a superconducting

magnet cryostat (5 K ≤ T ≤ 300 K) and an external magnetic field µ0H = 1 T is rotated

99
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in the thin film plane. We measure the local longitudinal spin Seebeck effect in one

single strip (injector strip in Fig. 8.1 (a)), using the current heating method described in

Ref. [95]: a charge current of 100 ➭A is applied to the Pt strip along the x direction using

a Keithley 2400 sourcemeter, inducing Joule heating in the normal metal. The ensuing

temperature gradient across the Pt/YIG interface gives rise to the spin Seebeck effect and

generates a magnetic moment current Jt flowing across the interface, with polarization m

aligned antiparallel to the magnetization M in YIG, as shown in Fig. 8.1 (a) (see also

Sect. 5.4). In the Pt, the corresponding spin current is accompanied by a charge current

JISHE flowing along the x-direction in the Pt. The voltage drop Vloc, which includes the

local SSE and the resistive response of the injector strip is recorded using a Keithley

2182 nanovoltmeter. Since the spin Seebeck effect is of thermal origin, the SSE voltage

is proportional to the Joule heating power in the Pt and therefore independent of the

heating current direction. Using the current switching scheme of Ref. [95] (see Sect. 3.3.2),

we extract V therm
loc = (Vloc(+Jc) + Vloc(−Jc))/2 (which corresponds to quadratic and other

even terms in Jc), and thereby eliminate additional resistive effects such as the spin Hall

magnetoresistance (as well as other terms that are uneven in Jc).

Figure 8.1 (b) shows V therm
loc measured as a function of the magnetic field orientation αH

with respect to the x-axis at T = 50 K for a two-strip device on the YIG/Pt bilayer with

tYIG = 2 ➭m. We observe the characteristic SSE dependence V therm
loc ∝ sin(αH) yielding a

positive amplitude ASSE,loc = V therm
loc (90➦) − V therm

loc (270➦) of the local SSE, as expected in

YIG/Pt heterostructures for this measurement configuration [156].

Using an additional nanovoltmeter, we simultaneously measure the voltage drop Vnl

arising along the unbiased and electrically isolated second Pt strip. In analogy to the

local thermal signal, the non-local thermal voltage is extracted as V therm
nl = (Vnl(+Jc) +

Vnl(−Jc))/2 in order to distinguish it from resistive non-local effects such as the magnon

mediated magnetoresistance (see Chap. 6) [4]. V therm
nl as a function of the external

magnetic field orientation at 50 K is depicted in Fig. 8.1 (c) and (d) for strip separations

of d = 200 nm and 2 ➭m on the YIG/Pt bilayer with tYIG = 2 ➭m. In both devices, we

observe a sin(αH) dependence, with an amplitude ASSE,nl about one order of magnitude

smaller than for the local SSE. While the signal amplitude ASSE,nl is positive for the

d = 200 nm device, a negative ASSE,nl is observed in the device with a larger injector-

detector separation of d = 2 ➭m. In order to confirm this sign change, we extract the

amplitude of the non-local SSE measured at 50 K in different two-strip devices on the 2➭m

thick YIG sample, with strip separations ranging from 20 nm to 10 ➭m. The resulting

data is shown in Fig. 8.1 (e) as green symbols. Indeed, a sign change is observed at a strip

separation d0 ≈ 560 nm. Repeating these measurements as a function of temperature

in the range between 10 K and 300 K yields the data compiled in Fig. 8.1 (e). For all

temperatures, a sign change in ASSE,nl is observed as a function of the strip separation.

Invariably, for small gaps the local and non-local SSE are both positive, but for large gaps

the non-local SSE becomes negative. The experimental data in Fig. 8.1 (e) show that the
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Figure 8.1: (a) Sketch of the YIG/Pt heterostructure: a dc charge current Jc (not shown here) is applied

to the injector strip (left) and the spin Seebeck signal V therm
loc is detected locally via the ISHE.

The corresponding non-local thermal signal V therm
nl is measured along the detector strips

for different strip separations. The color coding gives a qualitative profile of the magnon

accumulation µm in the YIG film, where red corresponds to µm < 0 (magnon depletion)

and blue to a positive µm (magnon accumulation). In the short distance regime (detector

1), µm < 0 at the injector and detector, such that the same sign is expected for local and

non-local SSE. With increasing distance from the injector (detector 2), µm and consequently

the spin current across the interface as well as the detected ISHE voltage change sign. (b)

Local spin Seebeck voltage in a tYIG = 2➭m thick YIG film detected at the injector strip at

50 K as a function of the in-plane magnetic field orientation αH with respect to the x axis.

(c), (d) Non-local thermal voltage measured at T = 50 K at the detector strip for a device

with a strip separation of d = 200 nm and 2 ➭m, respectively. (e) Non-local SSE amplitude

ASSE,nl extracted from in-plane field rotations at temperatures between 10 K and 300 K as a

function of the injector-detector separation d. Figure adapted from Ref. [116].
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Figure 8.2: Temperature dependence of the critical strip separation d0 at which the non-local SSE changes

sign for the two LPE-YIG films with tYIG = 5➭m (red dots) and 2 ➭m (green triangles).

Figure adapted from Ref. [116].

critical strip separation d0, which is defined by ASSE,nl = 0, shifts to larger values as the

temperature increases. The values d0 extracted from Fig. 8.1 for different temperatures

are shown in Fig. 8.2 as green symbols for the 2➭m thick YIG film. With increasing

temperature, d0 increases monotonically and seems to saturate around T = 200 K.

The same experiments as a function of temperature and strip separation were performed

on the 5➭m thick YIG sample and the resulting d0 is included in Fig. 8.2 as red dots. The

overall value of d0 obtained for the tYIG = 5 ➭m sample is larger than for the 2➭m thick

YIG film but could only be extracted at low temperatures since the largest investigated

strip separation was d = 5 ➭m and the corresponding V therm
nl signal is close to zero.

The characteristic sign change in the non-local SSE in YIG/Pt heterostructures above

a particular separation d0 has been previously observed by Shan et al. [139] at room

temperature and was attributed to the spatial profile of the non-equilibrium magnon

accumulation µm in the YIG film, as discussed in Sect. 5.4. The magnon accumulation

profile expected according to this picture is schematically depicted in Fig. 8.1 (a), where

the red and blue color represents the magnon depletion (µm < 0) and accumulation

(µm > 0), respectively. As shown in Fig. 8.1 (a), the sign of µm determines the direction

of the interfacial spin current Jt at the detector, i.e. towards (away from) the YIG for

negative (positive) µm at detector 1 (detector 2), and consequently governs the sign of

the measured non-local ISHE voltage. Non-local SSE measurements as a function of the

strip separation therefore allow us to map out the non-equilibrium magnon distribution

(of thermal origin) in the YIG film. In particular, the characteristic length d0 for the sign

change of µm can be determined.

In order to rationalize the measured temperature dependence of d0, the parameters

governing the angular momentum transfer across the YIG/Pt interface as well as the

magnon diffusion process need to be analyzed. It has been shown by Shan et al. that

the transparency of the YIG/Pt interface, described by the effective spin-mixing conduc-
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tance gs, influences the magnon accumulation and hence the sign-reversal distance d0

[139]. For a fully opaque interface (obtained using an Al2O3 interlayer), that suppresses

angular momentum backflow from the injector into the YIG and therefore preserves a

strong magnon depletion, an increase of the sign-reversal distance d0 was observed [139].

Previous measurements of the MMR effect in a YIG/Pt heterostructure as a function of

temperature have shown that the MMR signal decreases with decreasing temperature [4]

(see Sect. 6.3.2), consistent with gs ∝ T 3/2 as predicted by theory [114, 126]. However,

this temperature dependence corresponds to a decreasing transparency of the YIG/Pt

interface with decreasing temperature, leading to an increase of d0 at low temperatures

according to the model presented in Ref. [139]. Since this is not consistent with our

experimental observations depicted in Fig. 8.2, the interface properties alone (parametrized

by an effective spin mixing conductance) are not sufficient to describe the temperature

dependence of the non-local SSE.

In addition to the interfacial transparency, the magnon diffusion length λm and the

magnon spin conductivity σm determine the spatial distribution of the non-equilibrium

magnons in YIG [126]. We extracted the magnon diffusion length from temperature

dependent MMR measurements conducted in the sample with tYIG = 2 ➭m and found

an increase of λm with decreasing temperature by about a factor of 3 between 300 K

and 50 K (see Sect. 6.3.4). This is different from the temperature independent diffusion

length reported by Cornelissen et al. [138], who extracted λm(T ) = const. together with a

magnon spin conductivity σm vanishing at low temperatures. While the detailed evolution

of λm and σm with T thus must be studied more systematically in future work, it is clear

that these quantities depend on temperature. This implies that they can qualitatively

impact the magnon diffusion process and consequently the non-local SSE. Indeed, the

strong dependence of d0 on the relative amplitudes of gs, λm and σm at a fixed temperature

has been demonstrated by Shan et al. using a one-dimensional analytical model for the

spin Seebeck effect [139].

In addition to the temperature dependence, we also find an increase of d0 with increasing

YIG thickness as shown in Fig. 8.2, similar to what has previously been observed by Shan

et al. [139]. This behavior can also be explained based on the magnon accumulation profile:

in contrast to phonons, the magnons cannot cross the YIG/GGG interface and accumulate

there. For thinner films, the sign change of µm is pushed towards the YIG/Pt interface,

resulting in a smaller d0. However, in the 2 ➭m thick YIG film the high temperature value

of d0 = 3.4 ➭m is larger than tYIG. Note that this is also consistent with measurements

by Shan et al., who found a dependence d0 ≈ 1.6tYIG [139]. These observations indicate

that either (i) the profile of the magnon accumulation is not radially symmetric with

respect to the injector, i.e. d0,y is larger than d0,z, or (ii) for d0 ≫ tYIG there is no magnon

accumulation at the YIG/GGG interface for y = 0 (right below the injector), i.e. the

magnons reaching the GGG interface diffuse to both sides. A more systematic study

of d0 as a function of the temperature and YIG thickness is therefore necessary. In



104 Chapter 8 Non-local spin Seebeck effect in YIG/Pt

particular large distances need to be investigated in order to measure a sign change at

high temperatures in the thicker YIG films. The profile of the magnon accumulation can

furthermore be investigated in Pt/YIG/Pt trilayers, where the top Pt layer is structured

into strips, such that d0,y and d0,z can be extracted separately by systematically varying

the strip separation and the YIG thickness.

8.2 Magnetic field dependence

We now turn to the magnetic field dependence of the non-local SSE effect in the YIG/Pt

sample with tYIG = 2 ➭m. Figure 8.3 (a) depicts the non-local thermal voltage V therm
nl

obtained from magnetic field sweeps from -15 T to 15 T with µ0H applied perpendicular

to the Pt strips, i.e. along the y-direction in Fig. 8.1 (a). The results for a strip separation

d = 200 nm are shown for all measured temperatures in the range 10 K ≤ T ≤ 300 K. The

non-local SSE amplitude ASSE,nl = V therm
nl (µ0H) − V therm

nl (−µ0H) extracted from the field

sweeps is displayed in Fig. 8.3 (b). The sign change of ASSE,nl between 15 K and 30 K is

also observed in the field sweeps, consistent with the results obtained from rotations at

fixed magnetic field in Fig. 8.1 (e). For positive as well as negative amplitude the non-local

SSE is suppressed by the external magnetic field. The same data is plotted in Fig. 8.3

(c) as a function of temperature for different magnetic fields. We find a maximum of the

signal around T = 100 K, which is consistent with other observations in non-local SSE

measurements [117]. A similar behavior was observed in the local SSE and was attributed

to the temperature dependence of the phonon heat conductivity [157, 158]. Additionally,

the temperature dependence of the magnon diffusion length is expected to influence the

local SSE amplitude [122]: for decreasing temperatures, λm increases such that more

magnons can reach the detector. At very low temperatures this is counteracted by the

freeze out of magnons such that the signal decreases again. However, applying the model

proposed for the local SSE to non-local measurements is not straightforward, in particular

since a sign change is observed in the latter around 30 K.

We find that the sign change of the non-local SSE amplitude in Fig. 8.3 (c) seems

to be mostly independent of the magnetic field strength. As this sign change is related

to the position where the magnon accumulation µm changes sign, we conclude that the

latter is also not significantly affected by the applied magnetic field, although the overall

number of magnons in the system is expected to change with magnetic field, due to the

suppression of low energy magnons in the Zeeman gap. This behavior is consistent with

the current non-local SSE model where the magnon accumulation profile is determined by

the boundary conditions (Pt/YIG and YIG/GGG interface) which are independent of

magnetic field, and by the magnon spin conductivity and diffusion length [139]. From

MMR measurements in the same sample we found that the magnon diffusion length has

only a weak field dependence (see Sect. 6.3.4). These observations are consistent with the
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Figure 8.3: (a) Non-local thermal voltage obtained from field sweeps in a YIG/Pt non-local structure

with strip separation d = 200 nm for different temperatures. (b) Non-local SSE amplitude

ASSE,nl extracted from the magnetic field sweeps in panel (a). (c) ASSE,nl as a function of

temperature for different magnetic fields up to 15 T. (d) Relative suppression δ(µ0H) of the

non-local SSE for µ0H = 15 T as a function of temperature for different strip separations

20 nm ≤ d ≤ 1 ➭m (open symbols). The full gray symbols represent the field suppression of

the local SSE amplitude in the same sample.

fact that the position of the non-local SSE sign change is mostly independent of magnetic

field.

We now analyze the magnetic field suppression of the non-local SSE amplitude, which

is very pronounced at high temperatures in Fig. 8.3 (c). Since the overall signal amplitude

decreases towards low temperatures, we calculate the relative suppression δ(µ0H) in %

according to

δ(µ0H) =
V therm

nl (0.25 T) − V therm
nl (µ0H)

V therm
nl (0.25 T)

. (8.1)

The resulting suppression for the maximum field δ(15 T) is displayed in Fig. 8.3 (d) as

open symbols for different Pt strip separations ranging from 20 nm ≤ d ≤ 1 ➭m. The gray

full symbols correspond to the field suppression of local SSE measurements on the same

sample1. The temperature dependence of the local SSE field suppression has been reported

previously [119] and was already discussed in the context of the MMR measurements in

Sect. 6.3.3: at low temperatures δ(µ0H) is largest since the thermal magnon population

1The raw data is not shown here, but can be found in Ref. [141].
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can be easily suppressed by an external field due to the opening of the Zeeman gap. At

high temperatures, the suppression is much lower but still finite, indicating that low

energy magnons contribute strongly to the SSE [119].

The magnetic field suppression of the non-local SSE amplitude also increases strongly at

low temperatures for all strip separations and we attribute this once more to the opening

of the Zeeman gap leading to an efficient suppression of the thermal magnon population.

Around 50 K to 100 K, δ(µ0H) reaches a minimum since the overall magnon population

increases and the relative suppression decreases. At high temperatures however, δ(15 T)

reaches around 85% for d = 1 ➭m, which is very different from the behavior of the local

SSE amplitude (gray full symbols in Fig. 8.3 (d)). We observed a similar increase of the

suppression at high temperatures for the MMR effect as shown in Fig. 6.4 (d). While

it seems likely that the high temperature field suppression in the MMR and non-local

SSE are related to similar effects, the origin of this behavior in the MMR is not yet fully

understood, as discussed in Sect. 6.3.3.

For the non-local SSE, an additional effect related to the YIG magnon spectrum needs

to be considered: as shown in the calculated YIG magnon spectrum in Fig. 5.2, around

300 K an additional high energy exchange magnon mode with negative polarization (blue

colored mode) starts to become thermally populated in addition to the positively polarized

fundamental mode. In order to discuss the influence of this high energy mode on the

non-local SSE, a sketch of the two relevant magnon modes for different temperatures at

zero and finite magnetic field is depicted in Fig. 8.4 (not to scale). The red and blue color

represents the polarization, i.e. counter-clockwise and clockwise precession with respect

to the external magnetic field. We only consider the dominant fundamental mode (“+”

polarized, red) and the lowest energy exchange mode (“−” polarized, blue), since all other

modes become very broad at high temperatures and can no longer be interpreted in terms

of coherent spin waves [64] (see Fig. 5.2). Intuitively, the “−” polarized (blue) mode can

be attributed to one Fe sublattice magnetization oriented antiparallel to the external

field and precessing in an effective field dominated by the exchange field of the second

Fe sublattice. By increasing the external magnetic field, the effective field is therefore

reduced and the precession frequency decreases. Therefore the “−” polarized (blue) mode

is expected to shift to lower frequencies when an external magnetic field is applied. As

long as the exchange mode is far above kBT , the thermal population is not affected by

such a shift (see Fig. 8.4 (a)-(d)). However, around 300 K, when the exchange mode is

thermally populated, its occupancy increases with increasing magnetic field, as depicted

in Fig. 8.4 (e) and (f).

It was shown recently that magnon modes with opposite polarization give rise to

opposite signs of the local SSE in GdIG/Pt [83, 159] (see Sect. 5.2.2). Following this line

of argument, an increase of the“−”polarized magnon population around room temperature

should lead to a suppression of the non-local SSE with magnetic field, consistent with

experimental observations (Fig. 8.3 (d)). The strong suppression of the non-local SSE
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Figure 8.4: Sketch of the two dominating modes in the YIG magnon spectrum as calculated in Ref. [64]

(see Fig. 5.2). The red and blue color corresponds to the polarization/precession direction of

the two modes, i.e. counter-clockwise for the FMR-like fundamental mode (“+” polarized, red)

and clockwise for the first (lowest energy) exchange mode (“−” polarized, blue). The panels

on the left and right hand side correspond to zero and finite magnetic field, respectively. The

spectra are sketched for three temperatures representative of different temperature regimes.

(a)-(b) In the low temperature regime only low energy magnons of the fundamental (“+”

polarized) mode are thermally populated and can be significantly suppressed by an external

magnetic field. (c)-(d) In the intermediate temperature range, the thermal population of the

fundamental mode (“+” polarized, red) becomes larger with increasing temperature, such that

the relative suppression with magnetic field is smaller. (e)-(f) Close to room temperature,

the exchange mode (“−” polarized, blue) is thermally populated and shifts down when an

external field is applied. Assuming the exchange mode gives rise to an opposite sign in the

non-local voltage of thermal origin, this leads to a stronger field suppression of the non-local

SSE amplitude.

close to room temperature may therefore be partially attributed to the contribution of a

second high energy magnon mode carrying opposite magnetic moment.

The increase of the field suppression δ(µ0H) with increasing strip separation observed

in Fig. 8.3 (d) could also indicate that the “−” and “+” polarized magnons have different

diffusion lengths. In order to verify this hypothesis and determine the contribution of

the high energy magnon modes, further measurements at high temperatures and large
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magnetic fields are required: once the population of the exchange mode (“−” polarized,

blue) mode in Fig. 5.2 (d) becomes large enough to compensate the magnons of the

fundamental mode (“+” polarized, red), a sign change of the nl-SSE is expected, similar

to the temperature dependent SSE sign change observed in GdIG/Pt [83].

We also note that the suppression observed for d = 20 nm at 300 K in Fig. 8.3 (d) is

much larger than for the local SSE. This is unintuitive since d = 20 nm is very close to

the local limit. It has been shown that magnons generated over the whole thickness of

the YIG film contribute to the local SSE [121]. Since the strip separation is several orders

of magnitude smaller than tYIG = 2 ➭m, it is reasonable to assume that the magnons

generated in the bulk cover the same distance to reach the local and non-local Pt strip

and therefore contribute equally in both local and non-local SSE. We furthermore assume

that the detection efficiency of the local and non-local strip is independent of the external

field, since the only difference is that one strip is heated by current and the other one is

not. In order to explain the discrepancy in the field dependence an additional effect which

vanishes on the length scale of about 20 nm in lateral direction is therefore required. In

this context, it was calculated that the lateral temperature difference of the magnon and

phonon subsystems in YIG - which is at the origin of the local SSE - goes to zero within

a few nm [137]. As discussed in Sect. 5.4, a magnon current can originate from both

the magnon-phonon temperature difference and a gradient in the magnon accumulation.

Assuming that the former is less affected/suppressed by the applied magnetic field than

the latter, this could explain the weak field suppression in the local signal compared to the

strong effect on the non-local SSE in the d = 20 nm structure. However, more experimental

proof is required to confirm this hypothesis. It is also possible that in addition to the

quadratic Joule heating term, the non-local thermal signal extracted using the current

switching method (see Eq. (3.3)) contains other higher order terms which are even in

current. A more systematic study of the non-local SSE, e.g. measuring IV-curves, may

give further insight into the origin of the non-local thermal effect and its field dependence.

Furthermore, a different heating method can be used, for example a Au strip instead of Pt,

in order to exclude any contributions from spin currents and the SHE in the Pt injector.

In summary, we have measured the non-local spin Seebeck effect (SSE) in YIG/Pt

nanostructures as a function of the Pt strip separation, temperature and magnetic field.

The amplitude of the non-local SSE changes sign at a characteristic distance d0 which

depends strongly on the temperature and YIG thickness. The experimental results can

be qualitatively explained based on the non-equilibrium magnon accumulation profile in

the YIG film, as proposed in Ref. [139]. The non-local SSE therefore originates from a

gradient of the magnon accumulation and in contrast to the local SSE is not dominated

by the temperature difference of the magnon and phonon subsystems right at the injector

interface. We have furthermore studied the field dependence of the non-local SSE and

observe a strong suppression with increasing field at low temperatures where low energy

magnons are efficiently suppressed by the Zeeman gap. The strong signal suppression



8.2 Magnetic field dependence 109

at high temperatures observed only in the non-local signal needs to be studied in more

detail, but may partially be attributed to a contribution from an additional high energy

exchange magnon mode. The latter becomes more strongly populated with increasing

temperature and magnetic field and is expected to give rise to an opposite sign in ISHE

voltage for the non-local SSE.





Chapter 9

Magnon mediated magnetoresistance in

GdIG/Pt

In this chapter, we study the transport of electrically injected magnons through the

compensated ferrimagnet gadolinium iron garnet (Gd3Fe5O12, GdIG). The magnetic

properties of GdIG were introduced in detail in Sect. 3.1.2: due to the temperature

dependence and relative orientations of the sublattice magnetizations, the remanent

magnetization of GdIG goes to zero at a characteristic magnetization compensation

temperature Tcomp [15]. As shown in the magnetic phase diagram depicted in Fig. 3.2, for

temperatures far above and below Tcomp, GdIG is in a collinear phase, i.e. the sublattice

magnetizations are all aligned (anti)parallel to the applied magnetic field. However, in

the vicinity of Tcomp, a magnetic canting phase can be reached already for magnetic field

magnitudes available in experiments, such that the magnetic moments residing on the

different sublattices are no longer collinear to the applied field [15, 30, 72, 73]. In Sect. 4.2,

we demonstrated that in a GdIG/Pt bilayer the magnetization texture at the interface

can be probed electrically via the spin Hall magnetoresistance effect [10–12, 27] (SMR),

since the latter is determined by the orientation of the individual sublattice magnetic

moments relative to the polarization of the spin accumulation at the Pt/GdIG interface

[30, 59]. However, magnon transport or spin diffusion through a non-collinear magnetic

structure has not been investigated to date and will be discussed in this chapter based

on MMR measurements in GdIG. In addition to the complex magnetic phase diagram,

GdIG also exhibits a rich spin wave spectrum featuring several magnon modes in the

low THz regime, which are thermally populated at room temperature (see Sect. 5.2).

This can be attributed to the additional magnetic Gd sublattice. GdIG therefore also

allows to study the influence of multiple magnon modes and their transport properties

on the MMR effect. In Sect. 9.1, we first focus on the MMR response in the collinear

phase in GdIG. The experimental results and theoretical discussion are being prepared

for publication [129] and the corresponding text and figures are reused in the following

and adapted to the format of this thesis. We then turn to the MMR response close to the

compensation temperature of GdIG, i.e. in the canting phase, and discuss the influence of

the (sublattice) moment orientations on the MMR angular dependence (see Sect. 9.2).

111
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Figure 9.1: (a) Schematic representation of a GdIG (green)/Pt (gray) nanostructure with two parallel Pt

strips. The wiring for the measurements is sketched in black. (b) Local voltage V res
loc as a

function of the angle αH between the charge current Jc and the external magnetic field H

at 290 K for µ0H = 1 T and 7 T. (c) Non-local voltage V res
nl as a function of αH at 290 K for

1 T ≤ µ0H ≤ 7 T. Figure adapted from Ref. [129].

9.1 Collinear magnetic phase of GdIG

For the magnon mediated magnetoresistance measurements, i.e. electrical injection and

non-local detection of magnons, we study a 2.6➭m thick GdIG film grown on top of a

(111)-oriented Gd3Ga5O12 substrate via liquid phase epitaxy (LPE)1 with an ex-situ 10 nm

thick Pt layer deposited at WMI (see Sect. 6.1 for details on the fabrication). Two Pt

strips with edge-to-edge separation d = 200 nm and strip width w = 500 nm (see Fig. 9.1

(a), not to scale) are defined by electron beam lithography followed by Ar ion etching.

The electric wiring scheme used for the following measurements is depicted in Fig. 9.1 (a):

a charge current of 100 ➭A is applied to the injector strip (left) and the corresponding

local voltage Vloc and non-local signal Vnl are measured simultaneously at the two strips

(see Sect. 6.2). To eliminate thermal signals due to Joule heating in the local strip (e.g.

spin Seebeck effect [95]) and to increase the signal-to-noise ratio, we use the current

switching method described in Sect. 3.3.2 and extract V res
loc and V res

nl . The SMR and MMR

amplitudes are obtained from angle dependent magnetoresistance (ADMR) measurements.

Most of the measurements on the LPE-grown GdIG sample presented in this section were

conducted by T. Wimmer during his master’s thesis at WMI [141], which I supervised.

The local response V res
loc measured at 290 K as a function of the angle αH between Jc

and H is shown in Fig. 9.1 (b) for µ0H = 1 T (gray) and 7 T (green). From these ADMR

measurements, the SMR amplitude ∆V res
loc /V res

loc,min = (V res
loc (0➦) − V res

loc (90➦)) /V res
loc (90➦) is

extracted (see Eq. (4.2)) and plotted as a function of temperature for magnetic field

strengths µ0H = 1 T, 3 T, 5 T and 7 T in Fig. 9.2 (a). Towards low temperatures, the

1The GdIG LPE-film was provided by Z. Qiu and E. Saitoh, Tohoku University (see Appendix Tab. A.1).
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Figure 9.2: (a) Temperature dependent SMR ratio (V res
loc (0➦) − V res

loc (90➦)) /V res
loc (90➦) extracted from the

local voltage amplitude for magnetic fields of 1 T ≤ µ0H ≤ 7 T. (b) Close-up of the

SMR amplitude around the compensation temperature Tcomp = 268 K (red vertical line).

The region where the SMR amplitude goes to zero broadens when the magnetic field is

increased, indicating that the magnetic canting phase is at the origin of the vanishing SMR.

(c) Temperature dependence of the MMR amplitude −∆V res
nl = V res

nl (0➦) − V res
nl (90➦) obtained

from ADMR measurements for magnetic fields up to 15 T. (d) Relative magnetic field

dependence δ(7 T) (green) and δ(15 T) (purple) of the MMR effect defined by Eq. (9.1). A

negative (positive) value corresponds to a suppression (enhancement) with increasing field.

The gray shaded region indicates the temperature range around Tcomp where the MMR

becomes very small, impeding a reliable quantification of δ(µ0H). Figure adapted from

Ref. [129].

SMR amplitude decreases by a factor 2 compared to room temperature, consistent with

measurements in YIG/Pt [40] and (In, Y) doped GdIG/Pt bilayers [30] (see Chap. 4).

In a narrow temperature range around the compensation temperature (Tcomp = 268 K

determined via SQUID magnetometry), the SMR decreases to zero. We observed a

similar behavior in (In, Y) doped GdIG (see Sect. 4.2) [30] and attributed this to the

formation of the canting phase in GdIG close to the compensation temperature, where the

sublattice magnetizations are no longer collinear. According to our discussion of the SMR

in Sect. 2.3, a sign change of the (sublattice specific) SMR arises when the (sublattice)

canting angle with respect to the external field is larger than 54➦ (see Fig. 2.9). The lack of

a sign change in the present data may therefore originate from a constant canting angle of

approximately 54➦ in the narrow region around Tcomp. However, it seems coincidental that

the SMR amplitude goes exactly to zero at the compensation temperature, independent

of the magnetic field strength up to 7 T. We therefore rather attribute the vanishing SMR
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amplitude to the formation of magnetic domains, i.e. regions in the sample with different

sublattice orientations and canting angles due to inhomogeneities in the ferrimagnet,

such that the overall magnetoresistive modulation vanishes on average. The qualitatively

different SMR responses observed in Fig. 9.2 and Fig. 4.5 may thus be related to the

sample fabrication method and/or the ensuing interface properties, i.e. LPE growth with

ex-situ Pt evaporation versus PLD growth followed by in-situ Pt evaporation. In order to

clarify this point, the influence of different growth methods will be discussed in more detail

in Sect. 9.2. It is nevertheless reasonable to attribute the vanishing SMR around Tcomp

to the magnetic canting phase, as the region where the SMR goes to zero broadens with

increasing magnetic field. This is clearly visible in the close-up of the compensation region

displayed in Fig. 9.2 (b). The observed broadening is in good agreement with previous

results discussed in Sect. 4.2 [30] and is expected for the magnetic canting phase in GdIG

[72]. As stated in Sect. 4.1 and 4.2, in the collinear phase the SMR hardly depends on

the applied magnetic field (see Fig. 9.2 (a)), since mainly the orientation of the sublattice

moments is relevant.

We now turn to the angular dependence of the non-local response V res
nl at 290 K shown

in Fig. 9.1 (c) for different magnetic field strengths. The non-local voltage signature has

the same dependence on the external magnetic field orientation as in previous MMR

measurements in YIG/Pt nanostructures for the same wiring scheme (see Sect. 6.3.1) [4],

i.e. V res
nl (90➦) < 0 and V res

nl (0➦) = 0. For convenience, we plot a positive MMR amplitude

−∆V res
nl = V res

nl (0➦) − V res
nl (90➦) > 0 as a function of temperature in Fig. 9.2 (c), first for

fields up to 7 T. In contrast to the local SMR, where no substantial field dependence

is observed in the collinear phase, the non-local MMR signal displays a more complex

magnetic field and temperature dependence. To confirm this behavior, additional non-local

data was taken in magnetic fields up to 15 T for temperatures between 150 K and 300 K,

as shown in Fig. 9.2 (c), which will be discussed later on. We first focus on the MMR

temperature dependence and analyze the data taken at 1 T (gray open squares in Fig. 9.2

(c)). At low temperatures, ∆V res
nl vanishes, similar to our observations in YIG/Pt (see

Sect. 6.3.2) [4, 134, 138] where a temperature power law dependence of ∆V res
nl was observed.

This temperature dependence in YIG is in agreement with theoretical expectations based

on the magnon density of states and distribution function [113, 114, 126], i.e. general

properties of the magnonic system. At low temperatures, we therefore expect GdIG to

behave very similar to YIG.

With increasing temperature, the non-local signal measured at 1 T increases up to

150 nV just below the compensation temperature. The MMR then vanishes at Tcomp and

recovers a finite value above Tcomp, similar to what is observed in the local SMR (see

Fig. 9.2 (a)). We attribute the vanishing MMR signal at Tcomp to the change of the

magnetic structure of GdIG into the canted phase. A vanishing non-local signal in the

canted phase suggests two possible scenarios, either (i) the magnon injection/detection

becomes inefficient due to the non-collinear alignment of the magnetic sublattice moments
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and/or (ii) the damping close to the compensation point is enhanced, leading to shorter

magnon lifetimes as suggested by the previously observed increase of the ferromagnetic

resonance line width at the magnetization compensation temperature in GdIG [79, 84, 136].

Additional magnon scattering effects may arise due to magnetic domain formation in the

canting phase as discussed above, which further suppresses magnon transport. For now

we focus on the discussion of the MMR effect in the collinear phase and will discuss MMR

measurements in the canted phase of GdIG in more detail in Sect. 9.2.

We now turn to the magnetic field dependence of the MMR effect in the collinear

magnetic phase. The relative field dependence δ(µ0H) is defined as

δ(µ0H) =
∆V res

nl (µ0H) − ∆V res
nl (1 T)

∆V res
nl (1 T)

(9.1)

and plotted as a function of temperature in Fig. 9.2 (d) for µ0H = 7 T (green triangles).

Note that here, a negative value corresponds to a suppression of the signal, while a positive

value represents an increase of the MMR with increasing magnetic field. We distinguish

three temperature regimes: (i) for 0 < T < Tcross ≈ 210 K, the MMR is suppressed with

applied magnetic field µ0H = 7 T by about 25%, (ii) in the range Tcross < T < Tcomp an

enhancement with field is observed, while (iii) for Tcomp < T the MMR is suppressed by

up to 50 %. The MMR suppression in the canted phase (gray shaded area in Fig. 9.2

(d)) appears to be very large, but since the MMR amplitude is close to zero, the relative

field effect is prone to large errors. Additional measurements of δ(µ0H) up to µ0H = 15 T

between T = 150 K and 300 K (purple hexagons in Fig. 9.2 (d)) qualitatively confirm the

low field data, displaying a more pronounced suppression and enhancement of the MMR.

In particular, the non-local signal can be almost completely suppressed above Tcomp by a

magnetic field of 15 T.

In YIG/Pt, a magnetic field induced reduction of the MMR was observed for the entire

investigated temperature range from 50 K to 300 K, reaching up to δ(7 T) ≈ −25% as

discussed in Sect. 6.3.3 (see Fig. 6.4). This behavior was partially attributed to the field

dependence of the thermal magnon population. Additionally, a small suppression of the

magnon diffusion length with increasing magnetic field was found in YIG/Pt [127].

While the low temperature field suppression of the MMR in GdIG/Pt is similar to

that of YIG/Pt, the field suppression above Tcomp is much stronger. Furthermore, the

enhancement of the MMR with magnetic field in the temperature range 200 K to 250 K

as shown in Fig. 9.2 (c) and (d) is not observed in YIG/Pt.

As previously discussed in Chap. 5, contributions from both magnon injection (i.e.

thermal magnon population) as well as transport properties need to be taken into account

for a description of the MMR. For the injection efficiency, we first focus on the magnetic

field and temperature dependence of the thermal magnon population in GdIG. To this

end, we discuss the characteristic changes in the GdIG spin wave spectrum as a function

of temperature and magnetic field calculated by J. Barker using atomic spin dynamics
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Figure 9.3: Magnon spectrum of GdIG obtained from atomistic simulations, calculated (a)-(b) at T =

75 K, (c)-(d) just below T sim
comp = 320 K and (e)-(f) above the compensation point. The red

and blue color indicates counterclockwise and clockwise precession directions relative to the

external magnetic field direction, i.e. positive and negative polarization, respectively. The

spectra are calculated for µ0H = 1 T and 7 T revealing the effect of the Zeeman shift of

the “+” polarized mode (red). The black dashed line corresponds to the thermal energy

kBT . (g) Temperature and magnetic field dependence of the frequency of the k = 0 magnons

for the α and β modes. The red and blue colored symbols mark the positive and negative

polarization of the magnon branches. The orientation of the sublattice and net magnetization

with respect to the external field is depicted by arrows for temperatures above and below the

compensation point T sim
comp. The calculations were conducted by J. Barker and the figures are

adapted from Ref. [129].

simulations [129] (see Sect. 5.2). The calculations are based on a classical Heisenberg

model where the Landau-Lifshitz-Gilbert equation is used to solve the spin dynamics and

a Langevin thermostat introduces temperature. The spin wave spectrum is calculated

from the space-time Fourier transform of the spin fluctuations. Details of the model

including the parameters used for GdIG can be found in Refs. [30, 83, 129]. Figure 9.3

(a)-(f) displays the spin wave spectra calculated by J. Barker at T = 75 K, 300 K and

350 K for magnetic fields µ0H = 1 T and 7 T (left and right panels, respectively). The

polarization (“+”/“−”) of the spin wave modes, which describes the precession direction

with respect to an applied magnetic field [64], i.e. counterclockwise/clockwise, is encoded

by a red/blue coloring in the figures (see Sect. 5.2.2). We use the same terminology as in

Sect. 5.2.2 and label the modes according to their dispersion, i.e. α - the lowest frequency

dispersive mode at 75 K and β - the parabolic exchange mode with opposite polarization
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(Fig. 9.3 (a)). The modes move in frequency space with temperature and magnetic field

and change polarization across the compensation point at T sim
comp = 320 K, but we retain

the same α, β designations throughout. The flat, broadened bands around 1 THz do

not contribute significantly to transport because of their small group velocity and large

damping (linewidth). As detailed in Sect. 5.2, it was recently shown that the temperature

dependence of the spin Seebeck effect in GdIG/Pt bilayers [83] can easily be rationalized

based on the calculated spin wave spectra: the SSE in GdIG reveals two sign changes

as a function of temperature, which can be understood considering that the transport

of thermal magnons in GdIG is dominated by the α and β magnon modes which carry

opposite magnetic moment [83].

For the MMR however, the orientation of the transferred magnetic moment is given by

the spin accumulation arising from the SHE in the Pt (see Sect. 5.2.2). In the scenario

sketched in Fig. 5.4, the electrical injection of a given magnetic moment can either excite

a “+” polarized magnon (red) or absorb a “−” polarized (blue) magnon beneath the

injector Pt strip. The direction of the corresponding diffusion currents between injector

and detector is therefore also opposite, such that the effective magnetic moment detected

in the second Pt strip is the same, whether it is carried by “+” or “−” polarized magnons.

This is consistent with the fact that in contrast to the SSE [83], no temperature dependent

sign change is observed in the MMR amplitude in Fig. 9.2 (c).

Since theory predicts that the MMR amplitude is proportional to the number of thermally

populated magnons [114], an increase (decrease) in the overall magnon population of both

modes should lead to an increase (decrease) of the MMR amplitude. We therefore study

the influence of temperature and applied magnetic field on the magnon population. The

frequency values at k = 0 for the α and β modes from Fig. 9.3 (a)-(f) are compiled in

Fig. 9.3 (g) for temperatures between 220 K and 380 K. The orientation of the sublattice

magnetizations with respect to the external field H above and below the compensation

point is indicated by arrows. Similar to the FMR-like mode in YIG, the “+” polarized

fundamental mode (red in Fig. 9.3) shifts up in frequency proportional to the applied

field as the Zeeman gap opens, but has a very weak temperature dependence (red

squares in Fig. 9.3 (g)). The “−” polarized exchange mode (blue) has a much stronger

temperature dependence (blue dots in Fig. 9.3 (g)) caused by the increasing disorder of

the Gd sublattice towards high temperatures which alters the effective exchange fields,

as discussed in Sect. 5.2.2 [83]. We would like to emphasize once more that the labels α

and β denote the type of dispersion relation and do not refer to the polarization of the

magnon modes. In particular, the α and β modes change polarization at the compensation

temperature. The frequency shift obtained from the calculations in Fig. 9.3 (g) is not

related to the type of dispersion (α or β), but to the polarization “+” (red) or “−” (blue).

At low temperatures (Fig. 9.3 (a) and (b)), the β-mode (“−” polarized, blue) is not

populated and does not contribute to spin transport. The applied magnetic field freezes

out the α-magnons (“+” polarized, red), thereby reducing the MMR signal (see Fig. 9.2 (c)
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and (d)), similar to what is observed in YIG. With increasing temperature, the exchange

gap of the β-mode decreases (see Fig. 9.3 (c) and (g)) due to the thermally induced

disorder in the Gd system [83]. Naively, at fixed magnetic field amplitude, this should

lead to an increase of the non-local signal with increasing temperature as the thermal

population of the exchange mode increases. However, the increase of the MMR amplitude

with temperature in Fig. 9.2 (c) looks very similar to the one observed in YIG/Pt (see

Fig. 6.3) and can therefore not be attributed unambiguously to the contribution of the

additional exchange magnon mode.

We now discuss the magnetic field dependence of the exchange mode for a fixed

temperature. As shown in Fig. 9.3 (g), below Tcomp, the k = 0 frequency of the “−”

polarized (blue) β-mode slightly increases when a magnetic field is applied. This is due to

the fact that the magnetic field increases the Gd order and thereby increases the β-mode

frequencies again. However, according to simulations, the shift is very small compared

to the Zeeman shift of the “+” polarized (red) fundamental mode. Furthermore, both

modes shift to higher frequencies, leading to a reduction of the overall thermal magnon

population. Based on these calculations, the enhancement of the MMR amplitude with

magnetic field right below Tcomp can therefore not be modeled by considering only the

thermal magnon population of the α- and β-modes.

In order to understand the complex field dependence of the MMR in GdIG, we therefore

turn to the second important factor for the MMR effect, i.e. magnon transport properties.

While the calculated magnon spectra in Fig. 9.3 can give a qualitative idea of for instance

the group velocity of different magnons, a detailed description including damping or

scattering effects requires further experimental studies and theoretical calculations. We

can however discuss the experimental observations in an intuitive model: as mentioned

above, the Gd moments are only weakly exchange coupled and the Gd sublattice is therefore

strongly disordered at high temperatures (above ≈ 70 − 100 K) [81]. This disorder may

lead to enhanced scattering for all magnon modes that contribute to transport. However,

for T < Tcomp, this trend is partially reverted by an external magnetic field since the latter

increases the order within the Gd sublattice. It is therefore possible that a magnetic field

improves the transport properties by polarizing the Gd moments and reducing scattering,

giving rise to an enhancement of the detected non-local MMR signal. On the other

hand, above the compensation temperature the Gd is aligned antiparallel to the external

field. Upon increasing the latter, the Gd is therefore further depolarized, leading to a

deterioration of the transport properties and a strong suppression of the MMR amplitude.

While this simple model can reproduce the asymmetric magnetic field dependence of

the MMR around Tcomp, i.e. an enhancement (suppression) with increasing magnetic field

for T < Tcomp (T > Tcomp), a more thorough investigation of the transport properties is

required to confirm this hypothesis. Looking at the magnetic phase diagram of GdIG

(Fig. 3.2 (d)), above Tcomp when a large enough magnetic field (H > Hc ≈ 30 T − 40 T,

depending on temperature) is applied, the Gd is eventually repolarized along the applied
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field. According to the model proposed above, we therefore expect an improvement of

the transport properties (i.e. increase of the MMR amplitude) above this critical field,

where the Gd moments become increasingly ordered. However, the required magnetic

field magnitudes will also lead to changes in the thermal magnon spectrum and thermal

population, which have to be taken into account.

Another approach to critically test our model picture is to determine the damping

properties of GdIG based on ferromagnetic resonance (FMR) spectroscopy: for tem-

peratures close to Tcomp, the fundamental mode as well as the lowest energy exchange

mode with opposite polarization are at very similar frequencies and can be studied at

typical FMR frequencies in the low GHz regime [79]. FMR measurements in GdIG should

therefore enable a study of the damping properties of the two magnon modes. While

these measurements allow to investigate mainly the k = 0 mode, the results should give

first important insights, that may be extrapolated to larger k-vectors. Furthermore, it

is interesting to study the influence of a crossing (or anti-crossing) of the two magnon

modes as a function of the applied magnetic field (see Fig. 9.3 (g)). In the simulations

provided by J. Barker (displayed in Fig. 9.3) no anti-crossing is observed. However, dipolar

interactions were not included in these calculations. Taking dipolar interactions into

account may lead to an anti-crossing of magnon modes in a ferrimagnet such as GdIG, as

recently predicted in Ref. [160]. An interaction between magnons from different modes

can considerably alter the transport properties as well as the observed MMR response.

In summary, we measured the non-local magnon mediated magnetoresistance effect

(MMR) in the collinear as well as in the canted phase of the compensated ferrimagnet

GdIG [129]. The data taken close to the compensation temperature suggest that the MMR

is suppressed in the canted phase, possibly due to inefficient magnon injection or magnetic

domain formation, which will be discussed in more detail in Sect. 9.2. In the collinear

magnetic phase, the MMR signal is suppressed by magnetic field at low temperatures and

above Tcomp, but is enhanced just below the compensation point. The enhancement of

the MMR amplitude with magnetic field is surprising and was not observed in YIG/Pt

or other materials up to now. In order to determine possible influences of the thermal

magnon population of different magnon modes, we compared our experimental data to

calculations of the magnon spectra in GdIG. However, the temperature and magnetic field

dependence of the MMR amplitude cannot straightforwardly be attributed to changes in

the thermal magnon population. We therefore proposed a phenomenological model based

on transport properties and damping related to the magnetic order of the Gd sublattice,

which can qualitatively reproduce the experimental observations close to the compensation

temperature. However, this model requires further verification and numerous factors

(mode occupancy, magnon group velocity, damping, interactions between magnon modes

etc.) need to be taken into account for a detailed understanding of the transport behavior

in GdIG, making this an interesting topic for future investigations.
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Figure 9.4: Expected dependence of the non-local resistive voltage V res
nl on the angle αH between the

applied magnetic field H and the current direction j. (a) For a collinear two-sublattice

ferrimagnet the magnon injection and detection are most efficient when the sublattice

magnetizations MX are perpendicular to the applied charge current, i.e. αH = 90➦. This

configuration corresponds to MX collinear to the spin accumulation ms ⊥ j originating from

the spin Hall effect. (b) In the magnetic canting phase the sublattice magnetizations are

no longer aligned with the external magnetic field. For canting angles |ξA| = |ξB | = 90➦, a

maximum MMR amplitude is therefore expected for αH = 0➦.

9.2 Magnetic canting phase of GdIG

In the previous section we focused on the MMR effect in the collinear phase of GdIG.

However, GdIG also exhibits a magnetic canting phase around the compensation temper-

ature Tcomp, where the sublattice magnetizations are no longer collinear to the external

magnetic field. In Sect. 4.2, we have shown that the local SMR effect is sensitive to

the orientation of individual magnetic moments residing on different sublattices, such

that a canting of the sublattice magnetizations leads to a phase shift of up to 90➦ of

the SMR angular dependence. While the non-local MMR is based on magnon transport

and is therefore strongly affected by the spin wave spectrum and transport properties,

the magnon injection (and detection) efficiency also depends on the orientation of the

magnetization in the ferrimagnet with respect to the direction of charge current j in the

adjacent Pt (see Sect. 5.1). More specifically, the charge current along j induces an electron

spin accumulation with magnetic moment ms ‖ t (red arrow in Fig. 9.4) due to the spin

Hall effect (see Sect. 2.1). We can then describe the magnon injection as a scattering

process at the Pt/FMI interface, i.e. one of the accumulated electron spins flips in the Pt

and generates or absorbs a magnon in the collinear ferrimagnet, i.e. decreases or increases

the net magnetization (see Sect. 5.1 for details). Experimental observations [3, 4] suggest

that the transfer of magnetic moment is most efficient when the FMI magnetization is

(anti)-parallel to the electron magnetic moment ms.
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In order to discuss the MMR in a canted magnetic structure, we consider a model

ferrimagnet with two antiferromagnetically coupled sublattices A and B. In the collinear

phase, both magnetizations MA and MB are aligned (anti)-parallel to the external

magnetic field and the MMR amplitude therefore reaches a maximum absolute value for

H ⊥ j (αH = 90➦), i.e. MA,B ‖ ms. On the other hand, no non-local signal is detected

for αH = 0➦, i.e. when H ‖ j. The corresponding sin2(αH) angular dependence is depicted

in Fig. 9.4 (a)2. In the canted phase however, the sublattice magnetic moments are no

longer collinear to the applied magnetic field. We consider a perpendicular alignment

of both sublattice magnetizations MA and MB with respect to the external magnetic

field as sketched in Fig. 9.4 (b), i.e. a canting angle of ξA,B = ±90➦. Assuming that the

spin wave spectrum and overall magnon excitation efficiency for a canting angle of 90➦

is qualitatively similar to the collinear phase, the MMR amplitude is also finite for the

perpendicular moment configuration. However, we now expect a 90➦ shift of the MMR

angular dependence (similar to what is observed in the local SMR signal in Sect. 4.2), as

represented in Fig. 9.4 (b): for αH = 90➦, the sublattice magnetizations MX are oriented

along j, such that the MMR amplitude vanishes, while a finite absolute signal is expected

for αH = 0➦. It is important to point out that magnetic excitations in a real canting

phase, where the sublattice magnetizations are tilted by different angles and are no longer

collinear, are much more complex. The scenario sketched here corresponds to an extreme

case, based on which we can motivate the importance of studying the influence of the

sublattice magnetization orientation on the non-local response. For a better understanding

of the MMR effect in a non-collinear magnetic configuration, atomistic calculations of

the GdIG magnon spectra in the canted phase (similar to those displayed in Fig. 9.3 for

the collinear phase) are of great interest. However, such calculations are challenging and

currently not available.

First insights into the MMR response in a magnetic canted phase, in particular the

angular dependence, can however be gained from experiments. The sample studied in

Sect. 9.1 is unfortunately not suited for such an investigation, since both the SMR and

MMR amplitude vanish around Tcomp and therefore the angular dependence could not

be analyzed. While the presence of a SMR sign change (and/or phase shift) has been

observed consistently in different PLD-grown compensated garnet/Pt heterostructures

[30, 55], the origin of the vanishing SMR amplitude at the compensation point in the

LPE-grown GdIG film investigated in Sect. 9.1 is not well understood to this point. The

lack of a sign change may be attributed to the formation of magnetic domains in the

ferrimagnet, e.g. regions exhibiting different canting angles, such that the SMR modulation

vanishes on average. Possible causes for such a domain formation are inhomogeneities in

the ferrimagnet either due to the LPE growth process or to the surface treatment used

for the preparation of a high quality ex-situ interface (see Sect. 6.1) [48]. A systematic

2The negative sign of the non-local voltage shown here is consistent with experimental observations in
the measurement configuration used throughout this thesis.
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study of the SMR in samples obtained via different fabrication methods is therefore of

interest to understand the observed behavior in the canting phase.

Since our PLD-grown samples typically have a thickness of 100 nm at the most, the

nanofabrication described in Sect. 6.1 needs to be adapted to thinner FMI films, in order

to conduct MMR experiments in PLD-grown thin films. In particular, the etching time

must be optimized such that the Pt layer can be structured, without etching too far

into the FMI thin film and thereby suppressing the magnon transport channel. As first

attempts in fabricating a functional non-local device based on a PLD-grown FMI/Pt

heterostructure were unsuccessful, further optimization of the nanostructuring method is

necessary in the future.

We can however study a GdIG sample grown via a third method, namely a single

crystalline bulk sample with a thickness of several 100 ➭m grown via traveling solvent

floating zone (TSFZ) [161] (see Ref. [48] for details on the growth method). The crystal is

covered with an 8 nm thick ex-situ Pt layer deposited via electron beam evaporation3 (see

Sect. 6.1). The compensation temperature is determined via SQUID magnetometry and we

find Tcomp = 289 K, which is consistent with the literature value [15]. We measure the local

and non-local voltage signal in a nanostructure identical to the one studied in Sect. 9.1,

i.e. two parallel Pt strips with edge-to-edge separation d = 200 nm and strip width

w = 500 nm, for temperatures 10 K ≤ T ≤ 300 K and magnetic fields 1 T ≤ µ0H ≤ 7 T.

We first compare the SMR and MMR response of the bulk GdIG sample in the collinear

magnetic phase, i.e. far away from the compensation temperature, to our previous results.

Figure 9.5 displays the corresponding ADMR measurements for V res
loc and V res

nl at different

temperatures T = 70 K < Tcross, Tcross < T = 270 K < Tcomp and Tcomp < T = 298 K. The

local SMR response V res
loc (panels (a), (c) and (e) in Fig. 9.5) follows the expected cos2(αH)

dependence4, similar to the results obtained in Fig. 9.1 (b). The SMR ratio calculated

according to Eq. (4.2) is plotted in Fig. 9.6 (a) as a function of temperature for all studied

magnetic fields. The overall SMR temperature dependence looks very similar to the one

observed in the PLD and LPE-grown GdIG samples (see Fig. 4.1 and 9.2, respectively),

with a decrease of the SMR ratio towards low temperatures. We also note that only few

data points are available in the vicinity of Tcomp = 289 K (marked by a red vertical line in

Fig. 9.6 (a) and (b)), where the magnetic canting phase is expected (see phase diagram

Fig. 3.2). The lack of data points is due to the fact that in this temperature range the

SMR data can no longer be fitted with a cos2(αH) function as we will discuss later on in

this section (see Fig. 9.7).

For now, we first turn to the non-local MMR measurements in the collinear phase

of GdIG. The ADMR measurements conducted on the non-local strip for the different

temperature ranges are displayed in Fig. 9.5 (b), (d) and (f): V res
nl follows the same angular

3Sample grown by Nynke Vlietstra and Andreas Erb, WMI.
4The small deviations from a perfect cos2(αH) behavior (linear drift and jumps at certain angles) are
attributed to temperature instabilities while rotating the sample in the VTI of the cryostat.
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Figure 9.5: ADMR measurements of the local and non-local voltage conducted in a bulk GdIG/Pt

sample with two Pt strips with an edge-to-edge separation d = 200 nm and strip width

w = 500 nm. The measurements were conducted for magnetic fields 1 T ≤ µ0H ≤ 7 T

at different temperatures T = 70 K < Tcross (a)-(b), Tcross < 270 K < Tcomp (c)-(d) and

Tcomp < 298 K (e)-(f). The black dashed lines in panels (b), (d) and (f) mark the finite

negative offset of the non-local signal and the red arrows represent the extracted MMR

amplitude ∆V res
nl .

dependence as in previous non-local measurements, i.e. a maximum absolute value is

obtained when the magnetization (in the collinear phase) is perpendicular to the Pt

strip for αH = 90➦. However, V res
nl (αH = 0➦) does not vanish as expected from previous

experiments (see Sect. 6.3.1 and 9.1 [4]), but exhibits a finite negative offset marked by the

dashed black horizontal line in Fig. 9.5. We attribute this offset to a small leakage current

between the two Pt strips, stemming from a residual conductivity either in the FMI or

at the sample surface. The amplitude of the non-local MMR signal ∆V res
nl is therefore

extracted as the modulation amplitude V res
nl (90➦) − V res

nl (0➦) represented by the red arrows

in Fig. 9.5. In analogy to Sect. 9.1, we plot −∆V res
nl as a function of temperature in

Fig. 9.6 (c) for different magnetic fields 1 T ≤ µ0H ≤ 7 T. The temperature and magnetic

field dependence of the MMR amplitude confirms the observations presented in Sect. 9.1,

revealing a field suppression at low temperatures, an enhancement with field between Tcross

and Tcomp, and a stronger suppression above the compensation temperature. In order to

clarify this point we extract the relative field dependence δ(7 T) according to Eq. (9.1) as

a function of temperature and plot the result in Fig. 9.6 (e). The gray shaded area around

the compensation temperature (red vertical line) corresponds to the magnetic canting

phase, where the MMR amplitude and field dependence cannot be calculated in a reliable
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Figure 9.6: (a) SMR amplitude extracted from cos2(αH) fits to the ADMR measurements in Fig. 9.5 as a

function of temperature for magnetic fields 1 T ≤ µ0H ≤ 7 T. The compensation temperature

is marked by the red vertical line. (b) Close-up of the SMR amplitude in the compensation

region. The missing points correspond to temperatures, where no clear cos2(αH) dependence

could be fitted (see Fig. 9.7). (c) Negative non-local voltage amplitude −∆V res
nl extracted

from ADMR measurements as a function of temperature for different magnetic fields. The

temperature Tcross, where the field dependence changes from suppression to enhancement

is marked by a black arrow. (d) Close-up of the non-local signal amplitude around Tcomp:

the temperature range in which the MMR effect goes to zero broadens with increasing

magnetic field, consistent with the shape of the expected canting phase. (e) Relative field

dependence δ(7 T) of the MMR amplitude ∆V res
nl calculated according to Eq. (9.1). δ < 0

(> 0) corresponds to a suppression (enhancement) of the signal with magnetic field. The

gray shaded area around Tcomp marks the canting region, where the suppression cannot be

calculated in a reliable way, as the non-local signal amplitude goes to zero.
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way, as we will discuss in more detail in the following. This independent confirmation

of the characteristic temperature and magnetic field dependence of the MMR amplitude

in the collinear phase of a bulk GdIG sample further supports the results presented in

Sect. 9.1.

We now turn to the SMR and MMR measurements in the temperature range close

to Tcomp, where we expect a magnetic canting phase as shown in the calculated GdIG

phase diagram displayed in Fig. 3.2. The ADMR measurements of V res
loc and V res

nl recorded

at T = 284 K and 288 K for different magnetic fields are depicted in Fig. 9.7. At these

temperatures, which are close to the magnetic compensation temperature Tcomp = 289 K,

the local as well as non-local voltage no longer follow a perfect cos2(αH) dependence.

Figure 9.7 (a) displays the local signal V res
loc at T = 284 K. For better visibility, the curves

recorded at different magnetic fields are offset by a constant value in vertical direction. At

µ0H = 1 T and 3 T (gray and light blue symbols in Fig. 9.7 (a)), V res
loc still follows a 180➦

symmetric angular dependence even though deviations from a simple cos2(αH) function

are observed, e.g. abrupt jumps in the angular dependence at µ0H = 3 T. A possible

origin for such a behavior is an increase of the anisotropy field close to the compensation

point [162]: this can be understood intuitively since around Tcomp the net magnetization

M decreases and the crystalline anisotropy field of the general form Hani ∝ K/M , where

K is the anisotropy constant, may become comparable to the external magnetic field. The

simultaneously recorded non-local signal plotted in Fig. 9.7 (b), follows a qualitatively

similar behavior, mostly reproducing the features observed in the local response. These

results already suggest that similar to the SMR, the MMR is indeed sensitive to the

magnetic structure and anisotropy in the FMI.

At higher magnetic fields of µ0H = 5 T and 7 T however, the local magnetoresistive

response is no longer SMR-like and the angular dependence reveals several jumps, which

cannot be related straightforwardly to a crystalline anisotropy5. This behavior indicates

that the magnetic system does not follow the magnetic field in a coherent way, as one would

expect for a single domain state. In this context, we use the term “domain” to describe

regions with similar magnetic configuration and canting angle with respect to the external

field. A multi-domain state on the other hand exhibits regions with different canting angles

of the sublattice magnetic moments. This can for example be caused by inhomogeneities

(varying Tcomp throughout the crystal) or impurities in the ferrimagnet [164]. Furthermore,

the phase diagram and subsequently the magnetic moment configuration and canting

angles at fixed field and temperature may depend on the orientation of the magnetic

field with respect to the crystallographic axes. This was already observed experimentally

in dysprosium iron garnet [165]. In particular, when rotating the magnetic field in the

sample plane, some domains can grow at the expense of others, such that the domain

5In the simplest model, we expect a contribution from cubic crystalline anisotropy in GdIG (and other
iron garnets) [71], leading to a 60➦ symmetry of the in-plane angular dependence for the (111) oriented
crystal studied here [163]. The angular dependence observed in Fig. 9.7 however is much more complex.
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Figure 9.7: Local ADMR measurement at T = 284 K (a) and 288 K (c) for different magnetic fields. V res
loc

no longer follows the typical SMR cos2(αH) dependence, but reveals anisotropic behavior and

abrupt jumps when rotating the magnetic field in the sample plane. For better visibility, the

curves are offset by a constant value in vertical direction. (b) and (d) Non-local voltage V res
nl

measured in the detector strip: at low magnetic fields the non-local voltage reproduces the

same features as the local signal. With increasing field, when no clear angular dependence

is discernible in the SMR response, the non-local MMR is constant. This behavior is most

likely related to domain formation or anisotropies in the FMI. The remaining negative offset

of V res
nl may be attributed to an electrical cross-talk between the injector and detector strip.

distribution is no longer constant during one ADMR measurement, leading to abrupt

jumps and hysteretic behavior.

Interestingly, for µ0H = 5 T and 7 T, the MMR does not reproduce the features observed

in the local signal, but stays constant within the noise level. Note that the curves shown

in Fig. 9.7 (b) correspond to the raw data and are not shifted in vertical direction. The

constant non-local signal observed at high fields therefore coincides with the value V res
nl

measured at αH = 0➦, where a vanishing MMR is expected for a collinear magnetic system.

This strongly suggests that the MMR indeed vanishes at 5 T and 7 T and is simply offset

by a finite value stemming from a cross-talk from the injector strip, similar to the one

observed in Fig. 9.5. A vanishing non-local modulation amplitude implies that either

the magnon injection becomes inefficient when the magnetic system is in a canted or

multi-domain state or that the magnon transport is suppressed by the domain formation,

for example due to additional scattering processes at the domain walls.

The second set of ADMR measurements at T = 288 K ≈ Tcomp displayed in Fig. 9.7 (c)

and (d) confirms these observations: for the lowest magnetic field of 1 T the SMR and

MMR response reveal similar angular dependencies featuring four peaks in the voltage

modulation. For fields above 3 T, virtually no angular dependence is visible in the SMR
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response and the MMR amplitude goes to zero (with a finite offset again attributed to

cross-talk).

Since the SMR response at high magnetic fields in Fig. 9.7 cannot be fitted with a

cos2(αH) function, no SMR amplitude can be extracted close to the compensation point.

This is reflected in the lack of data points in the close-up of the SMR temperature

dependence around Tcomp in Fig. 9.6 (b). For the MMR however, we extract ∆V res
nl = 0

when the non-local voltage is constant as a function of the magnetic field orientation

(see close-up of the MMR temperature dependence in Fig. 9.6 (d)). The temperature

range where the MMR amplitude goes to zero broadens with increasing magnetic field,

confirming that the vanishing MMR effect is related to the canting phase. The results

presented here are therefore consistent with our previous hypothesis that the vanishing

MMR signal in the LPE GdIG/Pt sample in the vicinity of Tcomp (Sect. 9.1) can be

attributed to inhomogeneities or magnetic domains in the FMI within the magnetic

canting phase, which also affect the local SMR response.

Up to now we assumed that the MMR non-local voltage always vanishes at a certain

magnetic field orientation. In a collinear magnet this is reasonable since in YIG/Pt no

MMR is detected when the magnetization is parallel to the current direction (Sect. 6.3.1).

However, it is conceivable that in a canted ferrimagnet, magnons can be injected for all

magnetic field orientations if the configuration MX ‖ j, i.e. all sublattice moments are

oriented along j, no longer occurs. In this case, a finite non-local voltage is expected for all

angles αH. The modulation of the non-local amplitude then reflects the different injection

efficiencies which depend on the magnetic field orientation. The observed negative MMR

offset in the canting phase may therefore be related to both magnon injection and an

electric cross-talk from the injector. While the former should only occur in the canting

phase, i.e. in a specific temperature range, the latter also exhibits a non-monotonous

temperature dependence (see dashed line in Fig. 9.5). Since both depend on temperature

in a non-trivial way, the two contributions cannot be disentangled easily. Determining an

offset caused by angle independent magnon injection requires MMR measurements in a

sample where no offset is observed in the collinear phase above and below Tcomp. Such

measurements are subject to future investigations.

Similar to the LPE-grown GdIG film studied in Sect. 9.1, the single crystalline bulk

sample does not reveal a phase shift or sign change of the SMR in the canting phase.

Since the latter was only observed in PLD-grown GdIG thin films with an in-situ Pt layer

on top (see Sect. 4.2, and Ref. [55]), we fabricate another GdIG/Pt sample: we use an

additional GdIG bulk sample cut from the same crystal as in the measurements discussed

above and deposit a 65 nm thick GdIG film on top via PLD. Subsequently, a 5 nm Pt film

is deposited in-situ on top of the PLD GdIG film (see Sect. 3 for details). The sample
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Figure 9.8: (a) Heterostructure consisting of a GdIG thin film grown via PLD onto a single crystalline

bulk GdIG substrate and covered in-situ with 5 nm of Pt. The Pt layer is structured into

two parallel strips as described in Sect. 6.1. (b) SMR amplitude extracted from ADMR

measurements in the depicted sample as a function of temperature close to the compensation

region. For magnetic fields above 4 T, a sign change of the SMR amplitude is clearly visible

around T = 267 K, which we relate to a canted configuration in the PLD grown thin film.

The compensation point Tcomp,bulk−GdIG = 289 K of the bulk GdIG does not match the SMR

sign change, confirming the notion that the SMR is sensitive to the GdIG layer directly at

the interface, as asserted in Sect. 2.2 and 4.1.

is then nanopatterned as described in Sect. 6.1 and a sketch of the finished structure is

depicted in Fig. 9.8 (a)6.

Figure 9.8 (b) displays the measured SMR amplitude extracted from ADMR measure-

ments as a function of temperature for different magnetic fields µ0H = 1 T, 4 T and 7 T.

In analogy to the PLD-grown InYGdIG thin film covered with an in-situ Pt layer studied

in Sect. 4.2, we observe a sign change of the SMR around a temperature T = 267 K. Note

that no sign change is observed for µ0H = 1 T, indicating that the transition into the

canting phase in this particular sample occurs between 1 T and 4 T. Interestingly, the

SMR sign change does not coincide with the compensation temperature Tcomp,bulk = 289 K

of the bulk GdIG obtained from SQUID magnetometry (red vertical line in Fig. 9.8 (b)).

We therefore relate the SMR sign change temperature to the compensation point and

canting region of the thin film Tcomp,PLD−GdIG ≈ 267 K (gray shaded region in Fig. 9.8

(b)), which can deviate from the bulk value [90] in PLD films. This observation confirms

our previous assertion that the SMR is not sensitive to the magnetic structure of the

bulk material, but probes the top layer of the FMI, directly at the Pt/FMI interface (see

Sect. 2.2 and 4.1).

While the local SMR measurements in this heterostructure yield reasonable results,

non-local MMR measurements were not possible: we found V res
nl of the order of several

6Sample grown by Nynke Vlietstra and Andreas Erb, WMI.
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10 ➭V (much larger than typical MMR modulation amplitudes of a few 100 nV) suggesting

a SMR type signal due to a finite conductivity between the Pt strips. This behavior may

be attributed to a residual conductivity, similar to the one observed in Fig. 9.5, or to a

metallic short between the Pt strips, where the etching process was not successful.

While we were not able to measure the MMR effect in a sample which exhibits a SMR

sign change or phase shift, the variety of local and non-local responses in the canting phase

of GdIG samples obtained via different fabrication methods gives important additional

insights into the physics behind the two effects. In the case of the SMR response, we find

that a clear sign change is only observed in GdIG thin films grown via PLD where the

Pt is deposited in-situ. In contrast, in the LPE GdIG film and in the bulk sample the

SMR goes to zero in the canting phase instead of changing sign, or no longer follows a

cos2(αH) angular dependence. Clearly, systematic experiments comparing many samples

fabricated via different routes (PLD, LPE, bulk crystal growth, and combinations thereof)

are required to unambiguously resolve the SMR and MMR behavior in the vicinity of

Tcomp. Such a systematic set of experiments was beyond the scope of this thesis and is

therefore left for future experiments. In particular, we attributed the lack of sign change

in the SMR to the formation of a multi-domain state in the canting phase, such that

the SMR response from different domains vanishes on average. Whether this domain

formation and the observed anisotropy is connected to the crystalline quality, i.e. the

growth process, or to the interface properties (in-situ vs ex-situ) can for instance be

verified in future experiments by measuring the SMR effect in a GdIG thin film grown via

PLD and covered with an ex-situ Pt layer.

The currently available results obtained from the measurements in a bulk-GdIG/Pt

sample, however, already show that the SMR and MMR both reflect the magnetic

structure (anisotropy, domain formation) of the FMI in a very similar way, confirming that

in addition to the thermal magnon spectrum and transport properties, the orientation of

the (sublattice) magnetizations in the FMI is also of key importance for the description of

the MMR effect. The complexity of our findings presented in this section demonstrates that

some aspects of magnon transport in ferrimagnetic insulators are not yet fully understood

and the simultaneous study of SMR and MMR in non-collinear magnets is still of great

interest for future investigations.
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Summary: non-local magnon transport

in FMI/Pt bilayers

In the second main part of this thesis, we studied the diffusive transport of non-equilibrium

magnons through a ferrimagnetic insulator (FMI) using two parallel, electrically isolated

Pt strips deposited on top of the FMI for magnon injection and detection. The non-

equilibrium magnons can be injected electrically (magnon mediated magnetoresistance,

MMR) by driving a dc charge current through the injector strip or thermally (non-local

spin Seebeck effect, SSE) via Joule heating in the injector. In both cases, the magnons

are detected electrically as a non-local voltage in the second Pt strip. In the following, we

give a short summary of the key findings on the transport of non-equilibrium magnons in

two different ferrimagnetic insulators, namely YIG and GdIG.

For the description of the MMR, we distinguish between contributions from the magnon

injection/detection efficiency and the magnon transport properties. In Chap. 6, we

therefore studied the MMR in a YIG/Pt heterostructure as a function of temperature,

external magnetic field and injector-detector distance. In the current theoretical model the

injection efficiency crucially depends on the thermal magnon population. This is indeed

reflected in our experimental observations revealing - for all studied distances - a decrease

of the MMR amplitude with decreasing temperature and increasing magnetic field, i.e.

when thermal magnons are suppressed. From the distance dependent MMR measurements

we furthermore extracted a magnon diffusion length which decreases from λm ≈ 1.7 ➭m

at 30 K to about 300 nm at room temperature. While a quantitative description of the

MMR distance dependence is rather complex and requires further investigation, λm can be

described as the average over the diffusion lengths of all contributing magnons, which again

takes into account the thermal magnon population. This picture allows for a qualitative

modeling of the observed temperature dependence of λm.

Based on our study of the MMR effect in YIG/Pt, we presented a proof-of-principle

device with four Pt strips (three inputs and one output) allowing for the implemen-

tation of a magnon based majority gate in Chap. 7. The results were published in

Appl. Phys. Lett. 109, 022405 (2016) [123]. In this device the logical bit is encoded

in the polarization of the magnon current reaching the detector/output and the logic
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operation is based on the incoherent superposition of magnons. In particular, this allows

for clocking frequencies of the order of GHz and straightforward down-scaling without

perturbing the functionality of the logic operation. This presents an advantage compared

to recently proposed concepts for logic gates based on coherently excited magnons [152],

where the logical bit is encoded in the phase or frequency of the spin waves, since for such

a device, phase sensitive detection is required and down-scaling could strongly affect the

performance of the device.

In addition to the electrical injection of non-equilibrium magnons, we studied the

thermal magnon excitation, giving rise to a non-local spin Seebeck voltage in the detector

strip (see Chap. 8). In contrast to the local SSE which, in a simple picture, is driven

by a temperature difference between the phonon and magnon subsystems in the YIG

film, the non-local SSE is dominated by the profile of the thermally generated magnon

accumulation in the FMI. In other words, the length scale (in lateral direction) on which

the non-local SSE can be detected is determined by scattering processes which do not

conserve the magnon number and can therefore reach several ➭m in our samples. The

local SSE on the other hand vanishes on the length scale where magnons and phonons

thermalize (magnon conserving processes), which was calculated to be a few nm in the

lateral direction [137].

In our experiments, we observe a sign change of the non-local SSE voltage at a

characteristic injector-detector distance d0, confirming recent experimental results by

Shan et al. [139]. This sign change can also be attributed to the profile of the magnon

accumulation in the YIG film. We furthermore find a strong temperature dependence

of d0 which suggests a complex dependence of the magnon accumulation on the YIG/Pt

interface transparency and the magnon transport properties. The experimental non-local

SSE results in YIG/Pt were published in AIP Adv. 7, 085102 [116].

In Chap. 9, we studied the MMR effect in the collinear and canted magnetic phase of the

compensated ferrimagnetic insulator GdIG. In the collinear phase, atomistic calculations

reveal that two dominating magnon branches with opposite polarization are already

thermally populated around T = 100 K, making GdIG an ideal candidate to study the

influence of multiple magnon modes on the MMR effect. While the opposite polarization of

these magnon modes gives rise to two temperature dependent sign changes in the local SSE

in GdIG/Pt [83], no such sign change is observed in our MMR experiments. This suggests

that in the MMR effect, the contributing magnon modes all carry the same effective

magnetic moment, which is determined by the spin Hall electron spin accumulation in the

Pt. However, we observed a qualitatively different magnetic field dependence of the MMR

amplitude compared to previous observations in YIG/Pt. In particular, right below the

magnetic compensation temperature Tcomp in GdIG, we found a surprising enhancement

of the MMR signal with increasing magnetic field. By comparing the experimental results

to simulations of the GdIG magnon spectra, we conclude that this observation cannot
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straightforwardly be attributed to the temperature and magnetic field dependence of

the thermal magnon population. As a possible explanation for this behavior we propose

an additional damping introduced by the weakly ordered Gd moments in GdIG. Below

Tcomp, the Gd order can be increased by applying a magnetic field, thereby reducing the

damping for the non-equilibrium magnons and leading to an increase of the detected

MMR amplitude. While this hypothesis requires further investigation and verification, this

could open the way towards an efficient manipulation of magnon transport via external

magnetic fields. These results are being prepared for publication [129].

As discussed in Chap. 3.1.2, besides the collinear phase in GdIG, a canted magnetic phase

can be induced close to the magnetic compensation temperature Tcomp by magnetic fields

accessible in experiments. While the MMR strongly depends on the magnon spectrum

and the corresponding transport properties, the orientation of the magnetization is also

relevant for the magnon injection efficiency. Since we have shown in Part I of this thesis

that the local SMR is sensitive to the orientation of the sublattice magnetic moments, we

also studied the influence of a non-collinear magnetic structure on the magnon transport,

which has not been investigated up to now. First measurements as a function of the

magnetic field orientation indeed suggest that, similar to the SMR, the MMR is also

sensitive to anisotropy and domain formation in the ferrimagnet. In particular, the

magnon injection and/or transport can apparently be suppressed by magnetic domain

formation in the canting phase. Future MMR measurements in a sample exhibiting a

canted single domain state giving rise a finite MMR amplitude may prove interesting,

thereby providing access to the magnon excitation spectrum in a non-collinear magnetic

phase.
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Summary and Outlook

In this thesis, we investigated spin transport in heterostructures consisting of a ferrimag-

netic insulator (FMI) and the normal metal Pt. Driving a dc charge current Jc through

a Pt strip gives rise to a transverse spin current Js via the spin Hall effect (SHE) and

leads to an electron spin accumulation with polarization σ ⊥ Jc at the Pt/FMI interface.

We showed that this spin accumulation can be used to electrically probe the (static)

magnetic structure of the underlying FMI via the spin Hall magnetoresistance (SMR) or

to generate magnons, i.e. collective spin excitations in the magnetically ordered system.

These magnons diffuse through the FMI and can be detected in a second Pt strip, allowing

for information transfer within the FMI. Here, we give a short summary of the key findings

of this thesis, followed by propositions for future experiments in Sect. 11.2.

11.1 Summary

The first part of this thesis is dedicated to the SMR effect, which appears in FMI/metal

heterostructures. We use Pt as the metal layer in all samples studied here, because it has

large SHE and the fabrication of FMI/Pt bilayers has been optimized at the Walther-

Meissner-Institute in the past years, yielding reproducible results. The SMR effect is

well established in collinear ferrimagnets, such as yttrium iron garnet (YIG), where all

sublattice magnetizations and the net magnetization M of the FMI are collinear to the

applied magnetic field, allowing for a macrospin-based modeling. The SMR then manifests

itself as a modulation of the Pt resistivity depending on the orientation of M with respect

to the electron spin accumulation σ at the Pt/YIG interface. More specifically, the Pt

resistivity follows a cos2(αH) dependence on the angle αH between the charge current

direction Jc and the magnetization direction M ‖ H in the FMI.

The focus of the SMR experiments presented in this thesis is on the investigation of

non-collinear magnetic structures in magnetically ordered insulators. In particular, we

expand the current SMR model (macrospin approximation) to a microscopic picture

including the orientation of individual magnetic moments in the FMI. We demonstrate

that in the more general, non-collinear case, the SMR can no longer be described based

on the net magnetization orientation. Rather, the orientation and sublattice specific SMR
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efficiency of individual magnetic moments must be taken into account. As a prototype

system, we discuss a two-sublattice ferrimagnet, where the magnetic moments exhibit a

finite canting angle with respect to the applied field, and include the possibility of multiple

energetically equivalent orientations for magnetic moments residing on one sublattice. In

the special case of a collinear system such as yttrium iron garnet (YIG), the proposed

model yields identical results to the current (macrospin) theoretical description and to

the experimental results. However, in a canted magnetic phase, based on the microscopic

model we predict a phase shift of the SMR angular dependence as well as a change

of the resistivity modulation amplitude, compared to what is observed in a collinear

configuration. The phase shift can reach up to 90➦ (also parametrized as a sign change

of the SMR amplitude), depending on the canting angle and the microscopic magnetic

structure.

In order to verify our model, we investigate the SMR in the collinear and canted magnetic

phase of the compensated ferrimagnet gadolinium iron garnet (GdIG). We observe a sign

change of the SMR amplitude in the canting phase, which can qualitatively be reproduced

by the microscopic SMR model discussed above. These measurements confirm our

theoretical predictions and represent a first step towards an electrical mapping of magnetic

phase transitions and characterization of complex magnetic structures in insulators. The

experimental results were published in Ref. [30]. Recent SMR measurements in the conical

magnetic phase of Cu2OSeO3 (CSO) [59] and the finite SMR amplitude observed in the

antiferromagnetic insulator NiO [166, 167] can also be qualitatively understood based

on our model, demonstrating that the microscopic description proposed in this thesis is

versatile and can be applied to a variety of magnetically ordered systems.

In Part II of this thesis, we study the diffusive transport of non-equilibrium magnons

through the ferrimagnetic insulators YIG and GdIG. The magnon mediated magnetoresis-

tance (MMR), which is based on electrical magnon injection, is first investigated in YIG

in Chap. 6, using two parallel, electrically isolated Pt strips deposited on top of the FMI

as magnon injector and detector. We distinguish two main contributions to the MMR,

namely the magnon injection (and detection) efficiency and the transport properties. Mi-

croscopically, the injection process corresponds to the conversion of the spin Hall electron

spin accumulation in the Pt to a magnon accumulation in the FMI and can be understood

as follows: an electron spin flip at the injector Pt interface generates or absorbs a magnon

in the adjacent FMI, leading to a non-equilibrium magnon population, which diffuses away

from the injector. In order to gain further insight into the microscopic origin of the MMR,

we measure the latter as a function of temperature, magnetic field and injector-detector

distance. The observed dependence of the MMR amplitude on temperature and magnetic

field magnitude is consistent with current theoretical models, which predict that the

injection efficiency strongly depends on the thermal magnon population. We further assert

that the experimentally extracted magnon diffusion length corresponds to an average

diffusion length of all non-equilibrium magnons. Varying the temperature and applied
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magnetic field magnitude changes the frequency and k-vector of the contributing magnons

as well as their specific transport properties, leading to a complex dependence of the

overall diffusive behavior on temperature and applied magnetic field.

In Chap. 7, we propose a concept for information transfer and processing within a

ferrimagnetic insulator based on our results on the MMR effect in YIG/Pt and implement

a magnon majority gate using a YIG film with three Pt injectors and one detector on

top. The logical bit is encoded in the magnetic excitations, i.e. in the polarization of

the magnon current and the logic operation is performed via incoherent superposition of

magnons in the ferrimagnet. Straightforward down-scaling and switching frequencies of

the order of GHz make this device particularly promising for future spintronic applications.

These results were published in Ref. [123].

In addition to the electrical injection of magnons, non-equilibrium magnons can also

be generated thermally by locally heating the FMI, e.g. via Joule heating in the injector

strip. The thermally excited non-equilibrium magnons also diffuse through the FMI

and are detected electrically in the second Pt strip as a non-local voltage. This effect

called non-local spin Seebeck effect (SSE) is studied in Chap. 8 in a non-local YIG/Pt

structure and the results were published in Ref. [116]. We find that the non-local SSE

voltage changes sign at a characteristic injector-detector distance d0, giving an independent

confirmation of recent experimental observations by Shan et al. [139]. This behavior can

be qualitatively modeled based on the profile of the magnon accumulation, suggesting

different physical origins of the non-local SSE and its local counter-part: it was already

shown that the latter originates from a local difference between the magnon and phonon

temperatures, which equilibrate within a few nm in lateral direction. The non-local SSE

on the other hand is driven by diffusing non-equilibrium magnons and can therefore still

be detected even for injector-detector separations of a few ➭m. We furthermore observe

a strong temperature dependence of the sign change distance d0 and attribute this to a

complex interplay of the interface transparency and magnon transport parameters.

We then turn to a different, more complex material system, and present the first

MMR measurements in GdIG/Pt in Chap. 9. GdIG is of particular interest for magnon

transport studies since it exhibits two dominating magnon modes with opposite polarization

(precession direction) which are thermally populated in the investigated temperature range.

We assert that for a given electron spin flip process at the Pt/GdIG interface, magnons

of one polarization can be excited while magnons of the opposite polarization can be

absorbed. Assuming that both magnon modes contribute to transport, our experimental

results indeed suggest that both modes carry the same effective magnetic moment direction

and give rise to the same sign in the non-local voltage measured at the detector. We

furthermore find a temperature and magnetic field dependence of the MMR amplitude in

GdIG/Pt, that is qualitatively different from the one observed in YIG/Pt and attribute

this to the magnetic field dependence of the magnon transport properties, which may be

related to the additional Gd magnetic sublattice in GdIG. Further MMR measurements
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in the canted magnetic phase of GdIG reveal that - similar to the SMR effect - the MMR

is also sensitive to the magnetic structure, in particular to anisotropies and magnetic

domain formation.

11.2 Outlook

The spin Hall magnetoresistance measurements in the canted phase of a compensated

ferrimagnet discussed in this thesis open the way towards an all electrical characterization

of magnetic structures in different insulating magnetic materials. The SMR should prove

particularly relevant for the characterization of antiferromagnetic insulators, which are

gaining much interest for future applications, due to their lack of magnetic stray fields and

robustness against external magnetic fields. As we have seen, the SMR is not determined

by the net magnetization, but allows for a sublattice specific characterization of the

magnetic structure based on a simple magnetotransport experiment. The SMR can thus

be used to read out information encoded in the sublattice moment configuration of an

antiferromagnetic insulator. Indeed, first SMR experiments in NiO/Pt bilayers have been

put forward very recently [166, 167], underlining the importance of this topic. On a

more general note, the SMR can also be exploited to map magnetic phases in complex

systems, such as Cu2OSeO3 (CSO) [59], which exhibit collinear, helical/conical and

even skyrmionic phases. Detecting these phases usually requires sophisticated methods

such as x-ray circular dichroism (XMCD) or spin polarized neutron scattering. SMR

measurements on the other hand could allow for a quick, purely electric characterization

of materials with rich magnetic phase diagrams, since a distinct change in the angular

dependence is expected at the magnetic phase transitions. A particular advantage of the

SMR effect as an electrical measurement technique is that it can be straightforwardly

scaled to nanometer-size structures, enabling to study canting or other non-collinear

magnetic structures in very small samples or with a spatial resolution determined by the

size of the Pt contact.

In order to quantitatively analyze the SMR response in more complex magnetic struc-

tures, which also exhibit strong anisotropies and/or domain formation, a better under-

standing of the microscopic origin of the SMR is important. In Sect. 2.3, we proposed a

microscopic model including the individual contributions of magnetic moments residing

on different sublattices. Based on this model, we predict that the SMR is also sensitive to

asymmetries and anisotropies in the magnetic system, which either deform the angular

dependence and/or lead to a canting angle dependent phase shift of the SMR response.

In order to verify this hypothesis, SMR measurements can for example be conducted

in samples with well known anisotropies. Uniaxial strain in a specific material can fur-

thermore be induced (and switched off) in a controlled way, e.g. by placing the sample

on top of a piezo-active material, enabling a comparison of the SMR response for the

strained and relaxed state in one and the same sample. In our theoretical model we also
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discussed the possibility of domain formation in the canted phase, e.g. regions where

magnetic moments on the same sublattice can be tilted either to the left or right with

respect to the applied field. The presence of such domains is expected to affect the phase

shift of the SMR angular dependence. In order to confirm this model, a direct reference

measurement of the individual sublattice moment orientations, e.g. via spatially resolved

XMCD measurements, is of great interest.

Up to now, we focused on the influence of the magnetic moment configuration on the

SMR response. However, the sublattice or element-specific SMR amplitude or efficiency

is not well understood to date. While the relevance of the Pt properties, such as spin

diffusion length, spin Hall angle, etc. have been investigated extensively, the dependence

of the SMR on the magnet properties have not been studied quantitatively. We found

strong indications that the SMR mainly probes the topmost layer in the FMI. The exact

length scale relevant for the SMR should be determined in future experiments via a

systematic study of the SMR as a function of the FMI thickness. As the SMR is based on

spin transfer torque, we furthermore predict that the transfer efficiency is proportional

to the density of magnetic moments at the interface. Note that this corresponds to the

number of spin transport channels per unit area and is also included in the spin mixing

conductance [45]. Experimentally, the interface magnetic moment density can be varied by

changing the crystalline termination of the sample [49, 51], or by systematically diluting

the magnetic sublattices with non-magnetic ions. A promising candidate for such an

experiment is YIG, which has two antiferromagnetically coupled Fe sublattices. Diluting

the FeA sublattice (which contains the smaller number of magnetic ions) should decrease

the magnetic moment density at the interface while simultaneously leading to an increase

of the net magnetization. Based on the assumption that the SMR efficiency is indeed

proportional to the magnetic moment density and unaffected by the net magnetization,

we expect a decrease of the SMR amplitude. This experiment would further emphasize

that the amplitude of the net magnetization does not play a dominant role for the SMR

amplitude. While efforts to optimize the SMR amplitude are currently mainly based on

the normal metal properties (spin Hall angle), one can also think about tailoring the

magnetic moment density in order to increase the SMR efficiency. The SMR amplitude

may also be element specific: while the experimental observations in GdIG can already be

modeled qualitatively by taking into account only the Fe magnetic moments, a possible

contribution of the Gd sublattice moments should be further investigated, in particular at

high magnetic fields and low temperatures, where the Gd sublattice can be treated as

exchange-enhanced paramagnetic moments [81].

We now turn to magnon transport experiments in a non-local configuration. In Chap. 9.1,

we assumed that two magnon modes with opposite polarization can carry the same electri-

cally injected magnetic moment, both giving rise to the same MMR sign at the detector.

However, from the current experimental data, it is not possible to distinguish whether

indeed both modes contribute and which one dominates the magnon transport. On
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Figure 11.1: (a) Magnon frequencies in MnF2 at low temperatures: the solid squares represent data

obtained from inelastic neutron scattering and the solid curve is the dispersion relation of

the two (degenerate) magnon modes calculated in Ref. [168] for zero magnetic field. For a

finite field the degeneracy of the two magnon modes with opposite polarization is lifted as

indicated by the red and blue thin curves representing the calculated dispersion relations

at µ0H = 50 kOe. (b) Frequency of the k = 0 magnon mode as a function of the applied

magnetic field µ0H. The two modes with opposite polarization split up with increasing

external field. Figure taken from Ref. [168].

the other hand, contributions from magnon modes with opposite polarizations can be

disentangled in spin Seebeck effect measurements, as recently demonstrated in GdIG/Pt

[83], since they give rise to SSE voltages with opposite sign. Comparing the local SSE and

non-local MMR signal in the same material system could therefore give first insights into

the contributions of different magnon modes. In GdIG however, close to the compensation

temperature, the two oppositely polarized magnon modes overlap and cross, such that

interactions or coupling cannot be excluded. These can affect the overall transport proper-

ties, making a quantitative comparison with SSE measurements challenging. Alternatively,

we propose to conduct MMR experiments in an antiferromagnetic insulator. Recently,

experimental results of SSE measurements in Cr2O3 [169] and MnF2 [170] have been

put forward, accompanied by theoretical work based on the temperature and magnetic

field dependence of the magnon spectra in MnF2 and FeF2 [168], which reproduces the

experimental observations of Ref. [170]. In general, antiferromagnets exhibit two de-

generate magnon modes with opposite polarization, which split up when an external

magnetic field is applied. This is depicted in Fig. 11.1 (a) (Figure taken from Ref. [168]),

where the full symbols represent experimental data taken at zero field. The blue and

red curves are the calculated dispersion relations of the “+” and “−” polarized modes,

respectively, for a finite magnetic field of 50 kOe: the magnon modes which are degenerate

at zero field shift symmetrically towards higher/lower frequencies depending on their

polarization. Figure 11.1 (b) displays the calculated field dependence of the k = 0 magnon

mode frequency: the gap between the two modes increases with increasing magnetic field.

At temperatures and magnetic fields, where the oppositely polarized antiferromagnetic

modes are equally thermally populated, we expect a vanishing SSE signal [133, 168].
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For the MMR however, this kind of compensation should not be observed, since both

modes carry the same effective magnetic moment, such that we expect a finite MMR

signal, even under conditions for which the SSE vanishes. Comparing the temperature

and magnetic field dependence of both SSE and MMR effect in an antiferromagnetic

insulator to the calculated thermal magnon spectrum should therefore allow for a more

quantitative understanding of the electrical magnon injection process and subsequent

diffusion. Furthermore, MMR measurements as a function of injector-detector distance

and local SSE measurements as a function of the thickness of the antiferromagnet should

also be conducted, in order to compare the relevant length scales of different magnon

modes for the local SSE and MMR effect.

Besides the fundamental research point of view, magnon transport in antiferromagnets

is also of great interest for applications, as discussed above. In this context, Bender et al.

recently predicted a divergence of the spin conductance when sweeping the magnetic field

across the spin-flop transition of the antiferromagnet [171]. This should be reflected in an

enhancement of the non-local MMR voltage, which may prove relevant for applications.

In addition to MMR measurements in the collinear phase of antiferromagnetic insulators,

experiments close to the spin-flop phase should therefore be conducted to verify the

theoretical prediction.

In addition to transport properties of electrically injected magnons, we also investigated

the thermal injection of non-equilibrium magnons, i.e. the non-local SSE. As discussed

in Chap. 8, the non-local SSE voltage measured at the detector in a YIG/Pt bilayer

changes sign at a characteristic injector-detector separation d0, which depends on the

magnon accumulation profile [116, 139]. In this model, the influence of phonons is typically

neglected. While the magnetic field dependence of the non-local SSE observed in Sect. 8.2

supports a magnon transport model, additional phonon contributions cannot be excluded

a priori, since heat can also be carried by phonons through the YIG film or the substrate.

We therefore suggest to conduct reference measurements in a YIG/Pt sample, where the

YIG film in-between the Pt strips is etched away, down to the substrate, as sketched in

Fig. 11.2. In such a sample, magnon transport between the strips is suppressed, while

a phonon current Jph can still transport heat through the substrate (dashed arrow in

Fig. 11.2). The heating charge current (not shown in the figure) is driven through the

left Pt strip, such that the temperature TPt,I of the Pt injector is larger than the YIG

temperature TYIG,I underneath, giving rise to a local SSE current JISHE
SSE in the Pt (see

Sect. 5.4). Since the GGG substrate is closer to the heat source than the detector Pt

strip which is not heated, we assume TGGG > TYIG,D > TPt,D on the right hand side. The

corresponding temperature gradient at the detector YIG/Pt interface also gives rise to

a local SSE signal. We would like to emphasize that in this scenario the temperature

gradients at injector and detector are opposite, leading to opposite SSE voltages. It is

therefore possible that the experimentally observed non-local SSE signal in YIG/Pt is

a superposition of a local spin Seebeck effect at the detector (mediated by phonon heat
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Figure 11.2: Sketch of a GGG/YIG/Pt heterostructure, where part of the Pt and YIG layers is etched

away, down to the GGG substrate, leaving two separate YIG/Pt stacks. The left (injector)

Pt strip is used as a heater, such that the Pt injector temperature TPt,I is larger than the

YIG temperature TYIG,I. The induced temperature gradient ∇T at the YIG/Pt injector

interface points along −z and gives rise to a ISHE current JISHE
SSE along x due to the local

SSE. Magnons cannot flow into the GGG substrate, such that a magnon current between

injector and detector is suppressed. However, heat can be carried through the GGG by a

phonon current Jph, such that at the detector the YIG temperature TYIG,D is larger than

the Pt temperature TPt,D. The temperature gradients across the YIG/Pt interface and the

ensuing local SSE voltages are therefore opposite in injector and detector.

transport across the substrate or the YIG film) and the non-local SSE originating from the

magnon accumulation profile. Conducting SSE measurements in the structure depicted in

Fig. 11.2 should allow for an estimation of the phonon contribution to the non-local SSE

signal in typical YIG/Pt samples.

In experiments we furthermore observed a strong temperature dependence of the

characteristic sign change distance d0 [116]. In this context, the question arises which

parameters play a relevant role for the magnon accumulation profile. Since the Pt

resistance R and therefore the Joule heating power Ph = RJ2
c for a fixed current Jc in

the injector strip increases with temperature, it is important to study the dependence

of d0 on Ph. In particular, the number of thermally excited magnons should increase

with the heating power. However, the boundary conditions (position of the Pt/YIG and

YIG/GGG interface) which determine the qualitative profile of the magnon accumulation

remain unchanged. In order to check whether d0 is affected by the heating power, i.e. the

number of non-equilibrium magnons, the non-local SSE should therefore be measured

as a function of the charge current Jc in the injector strip. On a similar note, reference

measurements using a different heating method, e.g. laser heating, or using a metal with a
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Figure 11.3: (a) Sketch of a Pt/YIG bilayer structure with a YIG thickness tYIG: the Pt layer is structured

into two parallel strips separated by a distance d. The left strip is used as a heater for

thermal magnon injection and the corresponding non-local SSE voltage is detected in the

right strip. The red and blue color in the YIG film represent a magnon depletion and

accumulation, respectively, according to the model proposed in Ref. [139]. The black dashed

line represents the characteristic distance d0 where the transition from magnon depletion to

accumulation takes place. This also determines the characteristic strip separation where the

detected non-local SSE voltage changes sign. The white coloring close to the edge of the

YIG film represents the thermal equilibrium, i.e. in this region the non-equilibrium magnons

have relaxed. (b) Sketch of a YIG/Pt structure, where the YIG film was etched away outside

of the injector and detector strips. The diffusing magnons are expected to accumulate at

the right border of the YIG film since the magnons cannot cross this interface. In this case,

we expect an opposite sign of the non-local SSE voltage compared to the unetched film in

panel (a) where d < d0,y.

small spin Hall effect (e.g. Al or Au [39]) as a heating strip, can be conducted to exclude

any additional effects related to the spin accumulation at the Pt interface.

Once the relevant factors determining the profile of the magnon accumulation are

understood, it is possible to manipulate the latter in a more controlled way. This can also

be achieved by defining physical boundaries for the diffusing magnons. In the non-local

YIG/Pt sample studied in this thesis, the lateral size of the sample (several mm) is very

large compared to the strip separation or the film thickness of the order of micrometer,

such that the magnons likely decay before reaching the edge of the sample. This is

exemplarily sketched in Fig. 11.3 (a), where the red and blue color in the YIG film

represent the magnon depletion and accumulation, respectively. The white coloring at the

edge of the YIG film corresponds to the relaxed thermal equilibrium state, where there

are no more non-equilibrium magnons. The characteristic length scale associated with

this white region is given by scattering processes which do not conserve magnons. The

non-local SSE signal is therefore expected to disappear for a detector placed on top of

the white region. In the scenario depicted in Fig. 11.3 (a), the local and non-local SSE

have the same sign, since d < d0,y. By etching away the YIG film outside of the non-local
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structure as shown in Fig. 11.3 (b), one can change the boundary conditions in lateral

directions. The diffusing magnons will accumulate at the end of the YIG film, i.e. just

below the detector. In such a structure where the lateral dimensions are smaller than the

YIG thickness, the magnon accumulation profile is no longer radially symmetric, such

that d0,y < d0,z. We therefore expect a sign change of the non-local SSE even for d < d0,z.

This is an important experiment since it allows for a better understanding of how the

magnon accumulation is affected by physical boundary conditions. Etching structures

into the YIG film is a first step towards tailoring the magnon diffusion path (also for

electrically injected magnons) and may be of interest for future spintronics applications.



Appendix A

List of samples

Sample name Layer (thickness nm) FMI growth FMI Provider Chapter
YY42 YAG/YIG(40)/Pt(4) PLD WMI 4.1

FPGIY001 YAG/InYGdIG(61.5)/Pt(3.6) PLD WMI 4.2

YIGM2-G3 GGG/YIG(2000)/Pt(10) LPE Matesy GmbH 6 and 8
YIGM2-G1 GGG/YIG(2000)/Pt(10) LPE Matesy GmbH 7
GIGQ1 GGG/GdIG(≈ 2600)/Pt(10) LPE Tohoku University 9.1
bGdIG1 GdIG/Pt(8) TSFZ WMI 9.2
bGdIG2 GdIG/GdIG(65)/Pt(5) TSFZ/PLD WMI 9.2

Table A.1: List of samples used for SMR (top) and non-local measurements (bottom). (FMI= ferri-

magnetic insulator, PLD = pulsed laser deposition, LPE = liquid phase epitaxy, TSFZ =

traveling solvent floating zone.)
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SMR in the canted magnetic phase

Trigonometric identities

cos2(x) =
1

2
+

1

2
cos(2x) (B.1)

sin2(x) =
1

2
− 1

2
cos(2x) (B.2)

cos(x) + cos(y) = 2 cos(
x + y

2
) · cos(

x − y

2
) (B.3)

cos(x) − cos(y) = −2 sin(
x + y

2
) · sin(

x − y

2
) (B.4)

Derivation of the resistivity angular dependence in the

canting phase

The general resistivity expression considering SMR contributions from two sublattices A

and B is given by

ρ = ρ0 + ρ1,Acos2(αH + ξA) + ρ1,Bcos2(αH + ξB) (B.5)

Using the identities B.1, B.3 and B.4, we obtain

ρ = ρ0 +
1

2
ρ1,A(1 + cos(2αH + 2ξA)) +

1

2
ρ1,B(1 + cos(2αH + 2ξB)) (B.6)

= ρ0 +
ρ1,A + ρ1,B

2
+

ρ1,A + ρ1,B

4
(cos(2αH + 2ξA) + cos(2αH + 2ξB))

+
ρ1,A − ρ1,B

4
(cos(2αH + 2ξA) − cos(2αH + 2ξB)) (B.7)

= ρ0 +
ρ1,A + ρ1,B

2
+

ρ1,A + ρ1,B

2
cos(2αH + ξA + ξB) · cos(ξA − ξB)

+
ρ1,A − ρ1,B

2
(−sin(2αH + ξA + ξB) · sin(ξA − ξB)) (B.8)
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Assuming equal SMR efficiencies ρ1,A = ρ1,B = ρ1 for both sublattices we obtain

ρ = ρ0 + ρ1 + ρ1cos(ξA − ξB) · cos(2αH + ξA + ξB) (B.9)

= ρ0 + ρ1(1 − cos(ξA − ξB) + 2cos(ξA − ξB) · cos2(αH + (ξA + ξB)/2)) (B.10)

which corresponds to Eq. (2.14).

We now derive Eq. (2.21), i.e. the resistivity angular dependence for sublattice A with

magnetic moments tilted to the left (ξA) and right (−ξA) with respect to the applied

magnetic field (see Sect. 2.3.3). Starting from Eq. (B.8), we obtain

ρ = ρ0 +
ρ1,A,l + ρ1,A,r

2
+

ρ1,A,l + ρ1,A,r

2
cos(2αH)cos(2ξA)

− ρ1,A,l − ρ1,A,r

2
sin(2αH)sin(2ξA) (B.11)

= ρ0 +
ρ1,A,l + ρ1,A,r

2
+

ρ1,A,l + ρ1,A,r

2
cos(2αH)cos(2ξA)

− ρ1,A,l − ρ1,A,r

2
cos(2αH − 90➦)sin(2ξA) (B.12)

= ρ0 +
ρ1,A,l + ρ1,A,r

2
+

ρ1,A,l + ρ1,A,r

2
cos (2ξA)

(

2cos2 (αH) − 1
)

− ρ1,A,l − ρ1,A,r

2
sin (2ξA)

(

2cos2 (αH − 45➦) − 1
)

(B.13)

which corresponds to Eq. (2.21).

Energy landscape for a canted magnetic moment

We consider the canted two-sublattice ferrimagnet described in Sect. 2.3 and focus on the

magnetic moments µA,k residing on sublattice A. Assuming an isotropic system these

magnetic moments are tilted by a canting angle ξA with respect to the applied magnetic

field. As discussed in Sect. 2.3.4 the sublattice moments can assume any orientation on a

cone with opening angle ξA (see Fig. B.1 (a)). This corresponds to a free energy landscape

which is radially symmetric with respect to the applied magnetic field, as sketched in

Fig. B.1 (c), where the color code represents the energy scale ranging from the global

energy minimum (purple) to the maximum (red). Here, the magnetic field is applied

along the z-direction and the magnetic moments have finite mx and my components. In

particular, the global energy minimum corresponds to a circle in the x-y plane with radius

mx = my = sin(ξA).

We now introduce a uniaxial anisotropy in the form of an easy y-z plane. This can

be for example an in-plane anisotropy related to the demagnetization field in a thin film

sample. In the free energy representation, the uniaxial anisotropy leads to two global

minima in the easy plane, corresponding to the two purple wells in Fig. B.1 (d). In terms
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Figure B.1: (a) In the canted magnetic phase of an isotropic system, magnetic moments µA,k tilted

by a canting angle ξA residing on sublattice A can assume any orientation on a cone with

opening angle ξA (see Sect. 2.3.4). (b) When an easy plane anisotropy is introduced, e.g. a

demagnetization field which confines the magnetic moments to y-z plane, the cone is reduced

to two dominating magnetic moment orientations µA,l and µA,r with in-plane canting angles

±ξA. (c) Qualitative representation of the isotropic free energy landscape, which is radially

symmetric with respect to the external magnetic field. The color coding corresponds to the

energy scale, i.e. purple and red for the global energy minima and maxima, respectively. The

magnetic moments are expected to assume an orientation corresponding to a minimum in

the free energy. (d) Free energy landscape with an easy y-z plane, giving rise to two distinct

global minima in ±y direction.

of magnetic moment orientations, there are now two energetically equivalent configurations

l and r in the y-z plane as sketched in Fig. B.1 (b), which is equivalent to the 2D model

discussed in Sect. 2.3.2.

The two global minima are separated by an energy barrier, which is determined by the

anisotropy energy. If the thermal energy is larger than this barrier, the moments can in

principle fluctuate between the two l and r configurations. Assuming that there is no

preferred orientation, one obtains the 50:50 moment distribution discussed in Sect. 2.3.2.

If the energy barrier is too large to be overcome by thermal fluctuations, the magnetic

moments can be pinned in a specific configuration which depends on the magnetic history

of the sample, i.e. previous temperature, magnetic field magnitude or orientation. In
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Figure B.2: Schematic representation of domains in the magnetic canting phase, where neighboring

moments align parallel due to the intra-sublattice ferromagnetic exchange coupling. (a)

A transition from l to r type domains which keeps all moments within the y-z plane is

energetically unfavorable since the red arrow pointing along the external field corresponds to

a global energy maximum in Fig. B.1 (b). (b) The energetically more favorable transition

between l and r type domains is a domain wall consisting of magnetic moments tilted out of

the plane with a component along the x-direction, as indicated by the dashed arrows. The

arrow colors correspond to the color coding in Fig. B.1.

particular, a hysteretic behavior may arise when the magnetic field is swept in different

directions.

Including the ferromagnetic exchange coupling within one magnetic sublattice, neigh-

boring moments tend to align parallel to each other. This can give rise to the formation

of domains, i.e. regions of the sample where all magnetic moments are either tilted to the

left or right with respect to the magnetic field. In analogy to ferromagnetic domains, the

transition region between l and r domains corresponds to a domain wall. The scenario

depicted in Fig. B.2 (a) is based on the assumption that all magnetic moments lie in the

y-z plane: the domain wall contains several magnetic moments (orange and red arrows)

with in-plane canting angles between ±ξA. The color of the arrows corresponds to the

color code of the energy scale in Fig. B.1. Such an in-plane domain wall is energetically

unfavorable in the canting phase as the orientation of the red arrow corresponds to the

local maximum in the center of the energy landscape in Fig. B.1 (d). According to the

latter, it is energetically more favorable for the moments in the domain wall to tilt out of

the y-z plane, as represented by the dashed arrows in Fig. B.2 (b), where the light green

arrow points along the x direction.
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Master’s thesis, Technische Universität München (2006).

[164] S. Geschwind and L. R. Walker, “Exchange Resonances in Gadolinium Iron Garnet

near the Magnetic Compensation Temperature”, J. Appl. Phys. 30, S163 (1959).

[165] M. Lahoubi, A. Bouguerra, A. Kihal, and G. Fillion, “Magnetic phase diagrams of

dysprosium iron garnet (DyIG) in high dc fields”, J. All. Comp. pp. 598–601 (1998).

[166] G. R. Hoogeboom, A. Aqeel, T. Kuschel, T. T. M. Palstra, and B. J. van Wees,

“Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet

NiO”, Appl. Phys. Lett. 111, 052409 (2017).

[167] J. Fischer, O. Gomonay, R. Schlitz, K. Ganzhorn, N. Vlietstra, M. Althammer,

H. Huebl, M. Opel, R. Gross, S. T. B. Goennenwein, and S. Geprägs, “Spin Hall
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Rogalev, M. Opel, M. Althammer, S. Geprägs, H. Huebl, R. Gross, G. E. W. Bauer,

and S. T. B. Goennenwein, “Spin Hall magnetoresistance in a canted ferrimagnet”,

Phys. Rev. B 94, 094401 (2016), doi: 10.1103/PhysRevB.94.094401.
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