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The gods had condemned Sisyphus to ceaselessly rolling a rock to the top of a mountain,
whence the stone would fall back of its own weight. They had thought with some reason

that there is no more dreadful punishment than futile and hopeless labor.
- Albert Camus, The Myth of the Sisyphus -

Choose a job you love, and you will never have to work a day in your life.
- Anonymous -



Abstract
Superconducting circuit quantum electrodynamics (QED) has developed into a powerful
platform for studying the interaction between matter and different states of light. In this
context, superconducting quantum bits (qubits) act as artificial atoms interacting with
quantized modes of the electromagnetic field. The field can be trapped in superconducting
microwave resonators or propagating in transmission lines. In this thesis, we particularly
study circuit QED systems where microwave fields are coupled with superconducting flux
and transmon qubits. We optimize the coherence properties of the resonators, by analyzing
loss mechanisms at excitation powers of approximately one photon on average. We find
that two-level fluctuators associated with oxide layers at substrate and metal surfaces and
metal-metal interfaces represent the predominant loss channel. Furthermore, we show how
broadband thermal photon fields influence the relaxation and dephasing properties of a
superconducting transmon qubit. To this end, we study several second-order loss channels
of the transmon qubit and find that the broadband fields introduce a larger decay rate than
expected from the Purcell filter defined by the resonator. Additionally, we show that qubit
dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can
be enhanced by thermal fields. Finally, we study how artificial atoms react to changes
in inherent properties of the light fields. We perform a detailed analysis of the photon
statistics of thermal fields using their relation to the qubits coherence properties. We
quantitatively recover the expected n2 +n-law for the photon number variance and confirm
this result by direct correlation measurements. We then show a novel technique for the
in-situ conversion of the interaction parity in light-matter interaction. To this end, we
couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

Kurzfassung
Das Gebiet der Quanten-Elektrodynamik von supraleitenden Schaltkreisen hat sich zu
einer vielversprechenden Plattform zur Studie von Licht-Materie Wechselwirkung etabliert.
In diesem Feld spielen supraleitende Quantenbits die Rolle von künstlichen Atomen, die
mit propagierenden oder stationären Mikrowellenfeldern gefangen in einem Resonanzkör-
per interagieren. Wir untersuchen die Wechselwirkung zwischen Mikrowellenfeldern und
supraleitenden Fluss und Transmon Quantenbits. Zur Probenoptimierung analysieren wir
Verlustmechanismen in supraleitenden Resonatoren. Wir finden, dass Metall-Metall Grenz-
flächen und Metallschichten auf der Rückseite von Substraten zu Mikrowellenverlusten
führen. Des Weiteren zeigen wir, dass breitbandige thermische Felder die Kohärenzeigen-
schaften eines supraleitenden Transmon Quantenbits beeinflussen. Anhand zweiter-Ordnung
Verlustmechanismen zeigen wir, dass diese Felder stärkere Dissipation verursachen, als
durch einen Purcell Filter zu erwarten wäre. Zusätzlich analysieren wir den Zusammen-
hang zwischen thermischen Feldern und zweiter-Ordnung Effekten bezüglich Dephasierung
und niederfrequenten Qubitparameterfluktuationen. Schlussendlich behandeln wir den
Zusammenhang zwischen intrinsischen Lichteigenschaften und der Wechselwirkung mit
künstlichen Atomen. Wir überprüfen die Photonenstatistik von thermischen Feldern mittels
Kohärenzeigenschaften des Transmon Quantenbits und können das erwartete n2 +n-Gesetz
reproduzieren. Wir vergleichen unsere Ergebnisse mit direkten Korrelationsmessungen
des Mikrowellenfeldes. Weiterhin entwickeln wir eine Technik zur Kontrolle der Parität
eines Wechselwirkungsoperators. Zu diesem Zweck untersuchen wir Auswahlregeln für ein
Zweiniveausystem mit zwei Freiheitsgraden.
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1 Chapter

Introduction
The manifold interplay between electromagnetic radiation (light) and matter has fascinated
human beings from time immemorial. One particular reason are the everyday experiments
on light-matter interaction that people can do with their bare eyes. For example, the thrill
of thunderbolts, the admiration of rainbows, or the play of underwater colors reminds
us of the fascinating properties of light. In fact, underwater vision is possible because
the vanishing absorption spectrum of water coincides with the visible spectrum of human
beings [1]. Hence, our eyes limit the frequency range to the visible spectrum of humans in
these everyday experiments. Nevertheless, electromagnetic radiation covers the complete
frequency spectrum ranging from γ-rays with picometer wavelengths [2] to extremely low
radio frequencies with wavelengths of 108 m [3]. Using the skin as a detector, we can sense
parts of this large spectrum as thermal radiation for example when feeling the sunlight.
Apparently, the degradation of our skin is enhanced under the exposure of strong thermal
radiation [4]. From a conceptual point of view, some of the experiments in this thesis
are very similar to this sunburn scenario of human skin. The difference is that we use
superconducting quantum circuits as detectors and black-body radiators with temperatures
below 1.5 K instead of 5800 K of the sun as emitters. Furthermore, we operate at very low
radiation levels down to the attowatt regime corresponding to the radiation of the sun
absorbed by an area of only 10−21 m2 [5].
All phenomena discussed above are completely classical, meaning that no quantization
paradigm is required for their explanation. Moving beyond classical experiments, the
quantum nature of light [6, 7] together with the quantized level structure of atoms builds
the fascinating field of quantum electrodynamics (QED) [8, 9]. Prominent experiments in
this field address the quantumness of the famous double-split experiments [10], quantum-
teleportation [11, 12], or quantum computing algorithms [13, 14]. However, experiments
studying the interaction between single atoms and freely propagating photons are very
demanding due to the small scattering cross-section of atoms. Therefore, high quality factor
optical cavities [15] are used as photon boxes to confine the light field to a small mode
volume. This is the essence of the successful field of optical cavity QED, which is the state-of-
the-art technique for experiments on a single quantum level. A powerful and complementary
platform in the microwave regime are integrated superconducting circuits opening the
field of circuit QED [16, 17]. In circuit QED experiments, superconducting qubits [18]
act as artificial atoms, while high quality coplanar resonators [19] or three-dimensional
cavities [20] provide suitable boxes for the quantized light field. The flexibility to engineer
and scale these quantum circuits makes them promising for future applications in quantum
computing [21–23]. Despite that, superconducting circuits allow for a strong [16, 24, 25],
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Chapter 1. Introduction

ultrastrong [26–28], or even controllable [29–32] coupling to light and to other circuit
elements. This flexibility together with the possibility to use off-the-shelf measurement
electronics, allows one to study the interplay between superconducting quantum circuits
and fundamental properties of microwave light with convenient circuit QED elements.
In this thesis, we characterize inherent properties of superconducting quantum circuits and
microwave fields using state-of-the-art circuit QED setups. We give a basic introduction
into the fundamentals of circuit QED setups in chapter 2. We then turn to the fabrication of
circuit QED samples in chapter 3. Borrowing techniques from the standardized production
of integrated circuits in semiconductors, we fabricate all samples using metallic thin films
and multilayers. In particular, we use the superconductors niobium (Nb), aluminum
(Al), and combinations thereof deposited on off-the-shelf silicon substrates. The typical
level splitting observed in these superconducting quantum circuits is approximately 5 GHz
corresponding to a temperature of approximately 250 mK. To observe quantum effects
in these circuits, we therefore cool down the samples to very low temperatures. To this
end, we have constructed a dilution refrigerator that reaches a base temperature of 25 mK
suited for circuit QED experiments. For these experiments, we equipped the cryostat and
a newly opened laboratory with advanced microwave electronics to prepare and read out
quantum states in the circuits. We present the new refrigerator and all experimental details
in chapter 4.
Because the performance of solid state quantum systems is typically limited by short
coherence times of a few microseconds [20, 33–37], we perform a systematic study of loss
mechanisms in superconducting resonators [38]. As presented in Sec. 5.1, we find that
Nb/Al interfaces in the metallic thin film heterostructures and also metallic structures
underneath the samples contribute significantly to microwave loss. We then turn to the
interplay between superconducting circuits and microwave fields. We first probe second-
order loss mechanisms due to thermal microwave fields in Sec. 5.2. We show [39] that the
broadband character of thermal fields destroys the quantum coherence of a superconducting
transmon qubit [40], even if it is protected by a cavity filter. We probe second-order noise
in the low-frequency regime and demonstrate the expected T 3 temperature dependence
of the qubit dephasing rate. Finally, we show that qubit parameter fluctuations due to
two-level states are enhanced under the influence of thermal microwave states. In particular,
we experimentally confirm the T 2-dependence of the fluctuation spectrum expected for
noninteracting two-level states.
In chapter 6, we study fundamental properties of microwave light. We first analyze field
correlations in Sec. 6.1 by measuring the photon number variance of thermal fields [41].
This variance is linked to the photon statistics and carries unique information on the
intrinsic nature of the propagating light. Using the transmon qubit as photon detector, we
find the well-known n2 +n-law for thermal fields. In addition to thermal fields, coherent
states as for example generated from a laser are of special interest in QED experiments. In
circuit QED experiments, coherent fields typically induce level transitions through dipole
interaction with the qubits. These level transitions can be allowed or forbidden due to
parity conservation [42]. In Sec. 6.2, we probe this fundamental physical principle for qubits
using a tunable gradiometric flux qubit which has two degrees of freedom. To this end, we
develop a technique to change the symmetry of an on-chip microwave field in the near field
of two antenna lines. With this setup, we can directly observe parity changes of interaction
operators using either dipolar or quadrupolar selection rules. Finally, in chapter 7, we
conclude this thesis and give a short outlook towards future experiments.
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2 Chapter

Superconducting quantum circuits

In this chapter, we introduce the superconducting quantum systems that we use throughout
this thesis. We present superconducting qubits and coplanar waveguide structures in
Sec. 2.1 and Sec. 2.2, respectively. When coupling these systems to each other, one obtains
the textbook problem of light-matter interaction, which can be described in the framework
of circuit QED as presented in Sec. 2.3. Finally, we discuss decoherence processes in
superconducting quantum circuits in Sec. 2.4.

2.1 Superconducting qubits

Superconducting qubits are one particular realization of quantum two-level systems next
to a large series of other physical implementations [11, 13, 43–49]. We begin this section
with a general description of quantum bits in Sec. 2.1.1 by introducing the physics of
quantum two-level systems. For the superconducting version of qubits, we integrate
concepts of superconductivity, fluxoid quantization, and Josephson junctions (see Sec. 2.1.2
and Sec. 2.1.3). The two workhorses of these circuits are a transmon qubit and a tunable
gradiometric flux qubit, which are introduced in Secs. 2.1.4 – 2.1.6.

2.1.1 Quantum bits

A quantum bit (qubit) [50] is the quantum mechanical equivalent of a classical bit (basic
unit of information). A classical bit resides either in the state 0 or in the state 1 so
that we can imagine it as a pointer with only two possible positions [see Fig. 2.1 (a) and
(b)]. In contrast, a qubit can be in a superposition state |Ψ〉 = pg |g〉 + pe |e〉, where pg
and pe define the probabilities to find the qubit in the ground state |g〉 or the excited
state |e〉, respectively. Consequently, they obey |pg|

2 + |pe|
2 = 1 [51]. The two qubit

eigenstates are separated by the energy ~ωq, where ωq/2π is the qubit transition frequency
and ~= 1.05× 10−34 J s is the reduced Planck constant. To visualize the qubit state, we
describe it as vector pointing to a certain position on a three-dimensional sphere with
radius 0≤ r≤ 1, called the Bloch sphere. Points on this sphere are represented by the Bloch
vector with coordinates r = (r sin θ cosϕ,r sin θ sinϕ,r cos θ) with 0≤ θ≤π and 0≤ϕ≤ 2π
as illustrated in Fig. 2.1 (c). The vector components denote the projections of the qubit
state

|Ψ〉 = cos θ2 |g〉+ eıϕ sin θ2 |e〉 =
(

cos θ2
eıϕ sin θ

2

)
(2.1.1)

3
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(a) (b) (c)

bit in state 0 bit in state 1
qubit in
super-
position

σy

σz

f

θ

r

σx

free
evolution

Figure 2.1: (a) and (b) Representation of the two possible states of a classical bit. (c) Representation
of a qubit state vector on the Bloch sphere.

onto the intrinsic qubit axes σx, σy and σz. Projections onto these axes are equivalent to
the expectation values of the Pauli operators 〈σ̂x〉, 〈σ̂y〉, and 〈σ̂z〉 [51]. In particular, we can
express the operator 〈σ̂z〉 by the natural qubit eigenstates |g〉 and |e〉 as 〈σ̂z〉= |pg|

2− |pe|
2.

We use the quantization axis along σz to define the pure qubit Hamiltonian

Hq =
ωq
2 σ̂z . (2.1.2)

In the Bloch picture, points on the sphere surface (|r|= 1) correspond to pure qubit states.
Pure states are completely coherent, resulting in a well-defined phase relation between
the basis states. Points inside the sphere (|r|< 1) correspond to mixed states, which have
partially lost their coherence properties due to decoherence processes. The transition
from a pure state to a mixed state can be conveniently described by Lindblad master
equation [52]. For the rest of this section, we stick to pure states and describe the influence
of decoherence in Sec. 2.4.

Qubit dynamics - resonant case In the absence of decoherence, we describe the qubit
dynamics by a time evolution |Ψ〉 (t) of the Bloch vector. This allows us to define qubit
operations as rotations with certain angles carried out on the qubit state. To control
the rotation angle, we use pulses of electromagnetic radiation with a certain length τ
and frequency ωd. We first consider the case of resonant driving, i.e., ωd =ωq. Then,
the rotation frequency of the state vector, i.e., the Rabi frequency ΩR depends solely
on the drive amplitude Ωd [53] and we can adjust the rotation angle by the energy ΩRτ
irradiated to the qubit. We treat the irradiation classically by describing it with the
Hamiltonian Hd = ~Ωd cos (ωdt) σ̂x. The general driven-qubit Hamiltonian reads

Hd,q = ~
2
[
ωqσ̂z + 2Ωd cos (ωdt) σ̂x

]
(2.1.3)

which can be transformed into H′d =~ΩRσ̂x via a unitary transformation for the resonant
case. Hence, we can rotate the state vector about the σx-axis in this way. We can apply
rotations about the σy-axis by introducing a finite phase to the drive. In the following, we
discuss the effect of a finite qubit-drive detuning.
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Figure 2.2: (a) Effective Rabi frequency Ω?R plotted versus detuning δd for ΩR = 10 MHz. (b) Excited
state probability in the absence of decoherence plotted versus detuning δd and pulse duration τ .

Non-resonant driving For a non-resonant drive with detuning δd =ωq−ωd, we trans-
form Eq. (2.1.3) into a frame rotating with the drive frequency ωd. That way, the time-
independent interaction Hamiltonian in a rotating wave approximation can be expressed
as [54] H′d = ~[δdσ̂z + Ωdσ̂x]/2. This Hamiltonian shows that the rotation frequency changes
to Ω?

R =
√

Ω2
R + δ2

d [cf. Fig. 2.2 (a)]. Setting the global phase of the drive to zero, we obtain
the rotation matrix [55]

R =


cos

(
Ω?

Rτ
)

+
(

ΩR
Ω?

R

)2
C − δd

Ω?
R

sin
(
Ω?

Rτ
) (

δdΩR
Ω?

R

2
) [

1− cos
(
Ω?

Rτ
)]

− δd
Ω?

R
sin
(
Ω?

Rτ
)

cos
(
Ω?

Rτ
)

−ΩR
Ω?

R
sin
(
Ω?

Rτ
)(

δdΩR
Ω?

R

2
) [

1− cos
(
Ω?

Rτ
)]
−ΩR

Ω?
R

sin
(
Ω?

Rτ
)

cos
(
Ω?

Rτ
)

+
(
δd
Ω?

R

)2
C

 , (2.1.4)

using C= [1− cos (ΩRτ)]. Equation (2.1.4) shows that we can rotate the qubit state vector
about all three axes of the Hilbert space. Rotations about the σz axis are induced by
the free evolution of the qubit state vector [see Fig. 2.1 (c)]. The angular rotation with
frequency δd is in analogy to the Lamor precession of a free spin [56]. Because the qubit
exchanges no energy with the environment during the free evolution, the σz component of
Ψ stays constant. However, the σz component starts oscillating, when applying a coherent
(near) resonant drive. Under the condition δd<Ωd, we calculate the angular dependence
of the excited state probability

pe = | 〈e|Ψ (τ)〉 |2 = ΩR
Ω?

R
sin2 (Ω?

Rτ
)
, (2.1.5)

as illustrated in Fig. 2.2 (b).

2.1.2 Superconductivity and fluxoid quantization

Quantum bits can conveniently be realized as superconducting circuits that show quantum
behavior [16, 57, 58]. Due to fabrication reasons, we use the superconductors niobium
(Nb) and aluminum (Al) in this thesis, which have transition temperatures Tc in the kelvin
range [59, 60]. To observe quantum behavior in these circuits, the qubit energy ~ωq must
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be below kBTc, where kB = 1.38× 10−23 J/K is the Boltzmann constant. Furthermore, the
thermal energy Eth = kBT must be sufficiently below ~ωq. Hence, we need to perform
experiments in the millikelvin regime to reduce intrinsic dissipation and observe quantum
effects.1 Next to the advantage of low dissipation, we make use of the superconducting
energy gap ∆0 which is much larger than the energy separation ~ωq of the superconducting
qubits. Hence, we can explicitly address single energy levels of the quantum systems
within this gap. Additionally, closed superconducting structures obey fluxoid quantization
providing necessary boundary conditions for the operation of superconducting qubits.

Description of superconductors In a superconductor, all free electrons form a super-
conducting condensate [61], which we describe by a single coherent wave function [62]
ψ(r,t) =

√
ns(r,t) exp[ıθ(r,t)]. Here, θ(r,t) and ns(r,t) are the space- and time-dependent

macroscopic phase and the density of Cooper pairs defining the superconducting condensate.
Following the theory of Bardeen, Cooper, and Schrieffer (BCS theory) [63, 64], Cooper
pairs are electron pairs, which are bound in most cases by attractive electron-phonon
interaction. For zero temperature, the Cooper pair density approaches ns =ntot/2, where
ntot is the total electron density. For the case of finite temperature however, there is always
a finite quasiparticle density [65]

nqp = D(EF)
V

√
2πkBT∆0 exp

(
− ∆0
kBT

)
, (2.1.6)

where D(EF) describes the two-spin density of states at the Fermi energy and V is the
volume of the superconductor. If there is a strong background noise with a power spectral
density S(∆0) at the energy gap of the superconductor, the quasiparticle density additionally
grows with [65]

√
S(∆0) as shown in Fig. 2.3 (a). One example for a strong S(∆0) is thermal

4.2 K radiation, which has a maximum near the energy gap of Al. Due to the simultaneous
existence of superconducting and normal conducting electrons, superconductivity can be
described in the most simple way by a two-fluid model [61]. In this model, we describe the
current density of the superconducting fluid by the supercurrent density js and that of the
normal conducting fluid by jn [66].

Surface resistance in the two-fluid model For superconductors, the surface resis-
tance Rs has contributions of both normal conducting and superconducting electrons.
While Rs scales linearly with frequency for a normal conductor at room temperature, it
scales with ω2 for a superconductor [67]. This Rs∝ω

2 dependence of superconductors
arises from the BCS penetration depth λBCS characterizing the typical decay length of
electromagnetic fields inside the superconductor. This penetration depth accounts for the
BCS coherence length ξ0, the London penetration depth λL, and the mean free path λ` of
the superconducting electrons.2 At finite temperatures, the penetration depth is modified
due the generation of normal conducting electrons with skin depth λn [69]. In the dirty
limit, we can combine the penetration depth and the skin depth to

λs =
(

1
λ2

BCS
+ 2ı
λ2

n

)−1/2

. (2.1.7)

1 A detailed description of dissipative effects in superconductors is given in Sec. 2.4.
2 In addition to these dependencies, the surface resistance also strongly depends on the conductor

geometry [68].
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Figure 2.3: (a) Normalized quasiparticle density nqp plotted versus noise at the energy gap S(∆0)
and temperature. At low temperatures and low noise, we achieve nqp' 0 and can address single qubit
levels. For T >Tc, there is a continuum of possible excitations. (b) A thin superconducting loop with
cross section smaller than the penetration depth provides fluxoid quantization partly via self-induced
flux Φind and partly via a phase drop φk in the condensate.

Because of thermal generation of quasiparticles described by Eq. (2.1.6), λs is temperature-
dependent as predicted by BCS theory. It can be shown, however, that in the temperature
regime between T = 0 and T =Tc/2 the surface resistance simplifies to [70]

Rs ' Aλ
3
BCS

ω2

T
exp

(
− ∆0
kBT

)
. (2.1.8)

Here, the exponential term is a Boltzmann factor resulting from quasiparticle generation
and the prefactor A accounts for geometry and thickness effects [71, 72].
For sufficiently low temperatures and high frequencies, the mean free path of the normal
conducting electrons can be larger than their skin depth. In this case, the local relationship
between field and current (Ohms law) breaks down and there is a non-local relationship
between electric field and current. This anomalous skin effect [73, 74] results in a surface
resistance that scales with ω2/3 [75, 76]. The interplay between this ω2/3 relation and the ω2

relation for superconductors highly depends on the specific properties of the superconductor.
When the mean free path is, however, small compared to the coherence length (λ`� ξ0),
the superconductor is in the dirty limit [77] and Eq. (2.1.8) is valid.3

Fluxoid quantization Fluxoid quantization is a fundamental effect in multiply con-
nected superconductors describing quantization phenomena linked to the phase of the
superconducting condensate [78]. An integral of the fluxoid along the path Γ in a closed
superconducting loop, i.e., ∮

Γ
µ0λ

2
Ljs(r,t) ds+ Φ`︸ ︷︷ ︸

fluxoid

= N` · Φ0 , (2.1.9)

always yields an integer amount of flux quanta N` ∈Z. In Eq. (2.1.9), µ0 = 4π× 10−7 N/A2

is the vacuum permeability, Φ0 = (h/2e)' 2 fV s is the flux quantum, and Φ` is the magnetic
3 The thin film superconductors made of Nb and Al in this work can be treated in the dirty limit.
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flux penetrating the loop. For superconductors with a cross section Aw much larger than
the penetration depth, we can always find an integration path Γ where js = 0. In this case,
we obtain the limit of flux quantization [79, 80], where Φ` =N`Φ0 and (possible) external
flux Φext is purely compensated by self-induced flux Φind =LgI`. Here, Lg is the geometric
part of the loop inductance and I` =

∫
Aw

js dA is the current circulating in the loop. For
the thin-film structures used in this work, however, the cross section of the loops is on
the order of the penetration depth and the quantized value is the fluxoid because js is
finite in the complete cross section of the superconductor. In this case, it is convenient
to use the reduced magnetic flux φg = 2πΦind/Φ0 and φext = 2πΦext/Φ0, as well as the
phase difference φk =

∮
Γ µ0λ

2
LI` · ds [81] as depicted in Fig. 2.3 (b). The phase difference

is attributed to a kinetic inductance Lk =µ0λ
2
Ls`/Aw, where s` is the total loop length.

Consequently, fluxoid quantization in the ring obeys

φk︷ ︸︸ ︷
2πLkI`

Φ0
+

φext︷ ︸︸ ︷
2πΦext

Φ0
+

φg︷ ︸︸ ︷
2π
LgI`
Φ0

= 2πN` . (2.1.10)

Alternatively, we can apply the magnetic field during the transition of the ring into
its superconducting state, which is a convenient method to flux-bias superconducting
circuits [82, 83]. For an external loop frustration fext = Φext/Φ0, there is an inductive
energy

E` = 1
2(Lg + Lk)I2

` = Φ2
0

2(Lk + Lg)(fext −N`)2 . (2.1.11)

stored in the loop, which can be used for flux trapping as follows. Applying an integer
amount of j flux quanta to the ring (fext =Nj) in the normal state and cooling it down
to the superconducting state, the ring will prefer to stay in this Nj energy state. Due to
Faradays law ∂B/∂t=∇×E = 0 (E = 0 for superconductors), the magnetic flux cannot
change. Hence, the ground state N` = 0 cannot be reached and the ring remains frozen in
the N` =Nj state. The energy required for an unintended phase slip is approximately given
by [84–86] E∆N ≈

√
6I`,cΦ0/2π, where I`,c is the critical current of the loop. Assuming the

critical current to be of the order of 1 mA the energy required for a phase slip corresponds
to a temperature Tslip> 104 K meaning that phase slipping processes are very unlikely.

2.1.3 Josephson junctions

oxide

superconductor

Figure 2.4: Sketch of a Josephson junction.

Josephson junctions serve as non-linear circuit
elements based on tunneling effects between
two superconducting electrodes as depicted in
Fig. 2.4. We use these elements to build elec-
trical circuits with non-uniformly distributed
level spacing. The non-linearity arises from the
non-linear current-phase relation of Josephson
junctions also known as Josephson effect. The
Josephson effect describes the coherent tun-
neling of Cooper pairs through an insulating
barrier as predicted by Brian D. Josephson [87]. After its first observation in 1963 [88] the
Josephson effect was honored with the Nobel Prize in 1973.
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Figure 2.5: (a) Sketch of a DC SQUID, consisting of a superconducting loop intersected by two
Josephson junctions. The maximum SQUID current Ic depends on the external magnetic flux Φ`

threading the loop. For vanishing screening parameter β`, we have Φ`'Φext. (b) Modulation of the
Josephson energy plotted versus external magnetic flux for a negligible screening parameter β`.

The physics of a Josephson junction is highly dependent on the geometry of the junction. If
the tunnel barrier is thin enough, the wave functions ψ1 and ψ2 of the two superconducting
electrodes overlap, resulting in a finite supercurrent Is across the insulating barrier [89]. A
junction with area AJ can carry a maximum critical tunnel current Ic = jcAJ, which is
limited by a critical current density jc. This critical current density depends exponentially
on the barrier height and thickness [90].

Josephson equations and energy quantization The physics of Josephson junc-
tions is defined by the two Josephson equations. The first Josephson equation describes
the relation between the phase difference φJ across the junction and the supercurrent
as Is = Ic sin(φJ). The second Josephson equation defines the time-dependent phase evolu-
tion ∂φJ/∂t= 2πV/Φ0, where V denotes the voltage drop across the junction. Taking the
time derivative of the first Josephson equation shows that the junction has a non-linear
inductance [90]

LJ = Φ0
2πIc cosφJ

= Lc
1

cosφJ
. (2.1.12)

The cosine term in the denominator leads to an adjustable Josephson inductance, which
even can take negative values.
In the following, we discuss energy quantization in a Josephson junction. A Josephson
junction is characterized by two characteristic energies, the Josephson coupling energy EJ
and the charging energy Ec. In the zero voltage state, the potential energy of the junction

EJ = Φ0Ic
2π (1− cosφJ) = EJ0(1− cosφJ) (2.1.13)

is analog to the binding energy in molecules originating from the finite overlap of the
wave functions of different electrons. The charging energy Ec = e2/2CJ is defined by the
capacitance CJ of the junction, which can be approximated as a parallel plate capacitor [90].
Usually, a junction is in the regime EJ0>Ec such that the charging energy defines the
level splitting inside the junction potential. In the simplest case, the potential can be
approximated by a parabola resulting in equidistant energy levels separated by the plasma
energy ~ωp =

√
8EJEc [91]. Consequently, quantization of energy levels becomes relevant

if EJ0>Ec� kBT . In this case, we can describe the junction dynamics by a phase particle
in the lowest energy level oscillating with the plasma frequency ωp.
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Figure 2.6: (a) Sketch of a transmon qubit that can be realized as a split Josephson junction
(DC SQUID) shunted by two capacitors. (b) Potential energy of a transmon qubit at Φext = 0 plotted
versus phase difference across the split junction. Due to a finite anharmonicity compared to a parabolic
potential (dashed line), we can separate the first two energy levels.

DC SQUID The DC superconducting quantum interference device (DC SQUID) consists
of two Josephson junctions connected in parallel [92] in a loop with inductance Lsq as
depicted in Fig. 2.5 (a). The two parallel junctions act analogously to a single (split)
junction with an adjustable critical current Isq(fext). For a negligible screening parameter
β` = 2IcLsq/Φ0� 1, the Josephson energy depends directly on the external magnetic
frustration fext = Φext/Φ0 of the SQUID loop. This external frustration modulates the
total supercurrent across the SQUID resulting in a coupling energy

EJ(fext) = 2Φ0Ic
2π |cos (πfext)| (2.1.14)

of the SQUID as shown in Fig. 2.5 (b). In this thesis, we use DC SQUIDs to tune the
Josephson energy EJ0 of qubit junctions in order to vary the qubit transition frequency.

2.1.4 Transmon qubit

A transmission-line shunted plasma oscillation (transmon) qubit [40] belongs to the family
of superconducting qubits [18] and is based on the energy level quantization in a Josephson
junction. As derived above, the energy splitting of the levels is determined by the plasma
frequency ωp. To isolate the two lowest energy levels of a transmon qubit, the Josephson
junction is shunted by a large capacitance Csh. Furthermore, for the frequency tunable
version of a transmon qubit, the single junction is replaced by a DC SQUID as illustrated
in Fig. 2.6 (a). Then, the Hamiltonian of a transmon qubit reads

Hq = 1
2CΣ

(Φ0
2π

)2 ∂φJ
∂t

2
+ EJ(fext)[1− cos(φJ)] , (2.1.15)

where EJ(fext) is given by Eq. (2.1.14) and CΣ =CJ +Csh is the modified junction capaci-
tance. To act as a qubit (two-level approximation), the level spacing must be sufficiently
non-uniform what can be conveniently achieved by choosing a small ratio EJ/Ec [40]. On
the other hand, large values for EJ/Ec are desirable because they lower the sensitivity to
charge noise. As a trade-off, transmon qubits typically exhibit a ratio EJ/Ec' 50 [93]. In
this case, for calculating the lowest energy levels the cosine potential in Eq. (2.1.15) can be
well approximated by the lowest terms of a Taylor expansion

Hq = 1
2CΣ

(Φ0
2π

)2 ∂φJ
∂t

2
+ 1

2EJ0φ
2
J − EJ0

φ4
J

24 +O(φ6
J) , (2.1.16)
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which is equivalent to the Hamiltonian of a non-linear (Duffing) oscillator [94]. The first
two terms in Eq. (2.1.16) describe a harmonic oscillator Hamiltonian, while the third term
constitutes a small nonlinear perturbation resulting in an anharmonic potential shown in
Fig. 2.6 (b). Considering only the harmonic terms in Eq. (2.1.16), we find that the qubit
transition frequency [40]

ωq = ωp = ~−1
√

8EcEJ0 |cos (πfext)| , (2.1.17)

is given by the plasma frequency, which is adjustable via the external magnetic frustra-
tion fext. The perturbation term in Eq. (2.1.16) is responsible for the qubit anharmonic-
ity [40] α≡E12−E01≈−Ec between the qubit states. Here, Eij is the transition energy
from level i to level j.

2.1.5 Flux qubit

a

+-Ip

Figure 2.7: Sketch of a three
junction flux qubit and the superpo-
sition of current states.

For convenience, we first introduce the working principle
of the standard three junction version of a flux [95–97]
qubit depicted in Fig. 2.7 before discussing the gradio-
metric and tunable version in the next section. In con-
trast to the transmon qubit, the flux qubit operates in
the regime EJ0�Ec such that magnetic flux is the good
quantum variable. For flux qubits, the two qubit states cor-
respond to a superposition of circulating currents flowing
clockwise and counterclockwise around a superconducting
loop intersected by three Josephson junctions [96]. Two
of the junctions have equal Josephson energies EJ0 and
the energy of the third junction is lowered by a factor α with 1/2<α< 1. For a negligible
loop inductance, the flux qubit potential can be written as the sum of the energies of three
single Josephson junctions [55]. Due to fluxoid quantization, this potential reduces to [see
Fig. 2.8 (a)]

Uq = EJ0 [2 + α− cos(φ1)− cos(φ2)− α cos (φext + φ1 − φ2)] . (2.1.18)
Here, φext = 2πΦext/Φ0 is the reduced magnetic flux threading the qubit loop and φ1, φ2
are the phase differences across the two identical junctions. The third phase difference is
eliminated due to the boundary condition imposed by fluxoid quantization. For α> 1/2, a
cut in the qubit potential along the line φ2 =−φ1 has the form of a double-well potential.
As shown in Fig. 2.8 (b), this potential is symmetric for fext =N + 1/2. The two minima can
be identified with the two states of the persistent current Ip =±Ic

√
1−(2α)−2 flowing in

opposite directions around the qubit loop. For fext = 1/2, there is an energy degeneracy of
the pure current states. A finite tunnel coupling through the potential leads to the formation
of a symmetric and antisymmetric superposition state thereby lifting the degeneracy. For
suitable qubit parameters, the tunneling rate ∆ between the potential well is large enough
to separate two qubit states. The tunneling rate [83]

∆(α) = 1
~

√√√√4EJEc(4α2 − 1)
α(1 + 2α) exp

(
−a(α)

√
4α(1 + 2α)EJ

Ec

)
, (2.1.19)

depends on a(α) =
√

1−(2α)−2− [arccos(1/2α)/2α] as depicted in Fig. 2.8 (c). In addition
to the tunneling energy ~∆, there is a magnetic energy bias ~ε= 2IpΦ0(fext− 1/2) due to
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Figure 2.8: (a) Two-dimensional potential energy landscape of a flux qubit plotted versus phase
difference across the two identical qubit junctions at fext = 0. Due to the symmetry of two junctions,
the qubit is restricted to the case where φ1 =−φ2 indicated by the dashed line. (b) Qubit potential
along the dashed line in panel (a). The two qubit eigenstates located in the two minima are energy
degenerated, which is lifted by the tunneling matrix element ∆. (c) Qubit gap ∆ plotted versus the
ratio α.

an applied magnetic flux. This flux modifies the qubit energy for flux bias points away
from the degeneracy point, i.e., fext 6=N + 1/2. Consequently, the effective Hamiltonian [95]

Hq = ~∆
2 σ̂x + ~ε

2 σ̂z = ~
2

(
ε ∆
∆ −ε

)
(2.1.20)

has two degrees of freedom. Diagonalizing the Hamiltonian in Eq. (2.1.20) yields the
eigenvalues ±1/2~(ε2 + ∆2)1/2 defining the flux-dependent energy difference [95]

~ωq(fext,α) = ~
√
ε2 + ∆2 =

√√√√4I2
c Φ2

0

(
1−

( 1
2α

)2
)(

fext −
1
2

)2
+ ∆(α)2 . (2.1.21)

This equation defines the well-known qubit hyperbola of a flux qubit. As apparent from
Eq. (2.1.21), we can tune the qubit transition frequency by changing the magnetic energy
bias ~ε of the qubit. This method, however, drastically deteriorates the coherence properties
of the qubit [33] because one leaves the flux sweet spot where ∂ωq/∂Φ = 0. Alternatively,
we can tune the qubit gap ∆ by replacing the α-junction by a DC SQUID. That way, we
can always operate the qubit at the degeneracy point but are able to tune the transition
frequency by varying an external parameter [83, 98]. At the degeneracy point, a finite
flux Φα through the α-SQUID changes the α-value according to α=α0| cos(πΦα/Φ0)|.
Here, α0 is the ratio between the total coupling energy of the α-SQUID and that of one
of the two identical qubit junctions. The qubit gap reacts to α(Φα) as described by
Eq. (2.1.19).

2.1.6 Tunable-gap gradiometric flux qubit

The tunable-gap gradiometric flux qubit [83, 98], which we call gradio qubit, is a special
version of the three junction flux qubit presented above. It comprises a gradiometric design
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Figure 2.9: (a) Sketch of a gradio qubit penetrated by a homogeneous magnetic field H0. This field
results in a finite frustration fα of the SQUID loop, whereas the frustration fgr1 and fgr2 of the two
gradiometer loops cancel each other. The qubit potential is defined by the phase difference between the
two points p1 and p2 on the outer trap loop. (b) As in panel (a) but for a field gradient that has the
qubits center line as symmetry axis. That way, there is no net frustration fα of the SQUID loop, but a
finite frustration difference δfgr = fgr1− fgr2 between the two gradiometer loops.

and a tunable α-junction. The gradiometric design consists of two equally sized loops with
one shared line on the symmetry axis resulting in an eight-shaped geometry [99, 100]. In
the following, we call the two equally sized loops the gradiometer loops, the larger outer loop
the trap loop, and the loop of the α-SQUID the SQUID loop. The shared line of the two
gradiometer loops can be interrupted by three Josephson junctions to form a flux qubit. We
replace the center (α) junction by a DC SQUID to achieve tunability, which results in the
design shown in Fig. 2.9. For a pedagogical description of the gradio qubit, we will separate
external magnetic fields Hext = H0 +∇H into a constant contribution H0≡ (0, 0, H0) and
an ideal field gradient ∇H. For convenience, we construct this field gradient to have only a
y-dependent z-component, i.e., ∇H≡ (0,0,∂Hz(y)/∂y) from now on. That way, H0 couples
symmetrically into the two gradiometer loops and ∇H antisymmetrically. In a simplified
picture, one can then say that ∇H takes the role of fext in Eq. (2.1.18) and is therefore used
to control εσ̂z (it tilts the potential). The homogeneous field contribution is an additional
control knob to tune ∆σ̂x.

Persistent current flow and qubit states The structure of a tunable-gap gradiomet-
ric flux qubit consists of four loops, which each have to obey fluxoid quantization (trap
loop, two gradiometer loops, SQUID loop). In the following, we discuss how the persistent
currents flow in these loops and how the qubit states are defined. For pedagogical reasons,
we assume the simplest relevant situation that one flux quantum was trapped during the
cooldown of the sample (N` = 1) and that we apply zero magnetic field (H0 = 0) and also no
field gradient (∇H = 0). This situation is depicted in Fig. 2.10 (a). The resulting circulating
loop current I` = Φ0/(Lg +Lk) provides the dominating energy E` defined in Eq. (2.1.11).
For a typical loop inductance Lg +Lk' 200 pH, this energy is on the order of h× 100 THz.
We now discuss the current flow that results from the parabolic loop potential and from
fluxoid quantization in all four loops.

– SQUID reaction – For simplicity, we assume an ideal α-SQUID that is perfectly symmetric
and has identical junctions. For N` 6= 0, there is a finite flux Φα applied to the SQUID loop
due to the circulating current I`, which generates the SQUID frustration fα. To satisfy
fluxoid quantization in the SQUID loop, φ1−φ2 + 2πfα = 2πN , where φ1 and φ2 are the

13



Chapter 2. Superconducting quantum circuits

p1

p2

fα

(a)

fgr1 = ½ fgr2 = ½

Isq

Iℓ = Φ0 / (Lk + Lg)
Nℓ = 1

Nℓ = 1

Nℓ = 1

Nℓ = 0

Nℓ = 2

pe
rs

is
te

nt
 c

ur
re

nt
 s

ta
te

s
lo

op
 e

xc
ita

tio
ns

p1

p2

Iℓ + Ip /2

fgr1 = 1 fgr2 = 0

Iℓ  - Ip /2

p1

p2

Iℓ - Iℓ

fgr1 = 0 fgr2 = 0

Iℓ  - Iℓ

 I = 0

 +Ip

(b)

(d)

p1

p2

Iℓ - Ip /2

fgr1 = 0 fgr2 = 1

Iℓ  + Ip /2

 -Ip

(c)

p1

p2

Iℓ  + Iℓ

fgr1 = 1 fgr2 = 1

Iℓ  + Iℓ

 I = 0

(e)

H0 = 0
VH = 0

(degeneracy point)

U
q

φ-

E
ℓ

Nℓ

Figure 2.10: (a) Sketch of a tunable-gap gradiometric flux qubit and the currents I` around the trap
loop and Isq around the α-SQUID. Fluxoid quantization leads to formation of the two qubit states |ggq〉
in panel (b) and |egq〉 in panel (c) due to the the persistent current Ip on the cneter line. Panel (d)
and panel (e) show excitations of the trap loop, i.e., a change δN` =± 1. This change can be induced if
the qubit current Ip is on the order of I` and the current in both gradiometer loops is flowing in-phase.
This situation is, however, very unlikely because E`� ~ωq.

phase differences across the SQUD junctions, there is a finite variation δφ=φ1−φ2 = 2πfα
between the phase difference across the SQUID junctions. This variation δφ results in a
circulating supercurrent Isq around the SQUID loop [see Fig. 2.10 (a)]. Because the SQUID
is symmetric, the circulating current induces an equal amount of magnetic flux in the two
gradiometer loops. We discuss SQUID imbalances in the following paragraph in terms of a
multipole expansion. We also give a detailed description of the amount of induced flux
accounting for screening effects further below.

– Qubit states – Fluxoid quantization and the symmetry of the trap loop result in a phase
difference of 2π(N`− 1/2) between the points p1 and p2 of the trap loop. For the specific
case of N` = 1 this means that there must be a phase difference of π across the three
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Figure 2.11: (a) - (c) Sketch of the current flow for a tunable-gap gradiometric flux qubit using a
frustration difference δfgr = fgr1− fgr2 = 1/2 as discussed in text.

Josephson junctions in the center line. This phase difference of π together with the phase
difference of π resulting from the frustration fgr1 = fgr2 = 1/2 in the two gradiometer loops
guarantees fluxoid quantization in both gradiometer loops. In the following, we characterize
the gradiometer configuration by the state vector |i, j〉 ≡ |fgr1, fgr2〉, i.e., |1/2, 1/2〉 for the
situation discussed above and shown in Fig. 2.10 (a). When compensating for the π phase
shift due to the half-integer flux quanta, the two configurations with lowest energies are
depicted in Fig. 2.10 (b) and Fig. 2.10 (c). Due to the Josephson potential on the center
line defined in Eq. (2.1.18), the enforced current along this line can be identified with the
persistent current Ip of a regular flux qubit. This current creates an additional π phase
shift corresponding to the frustration fgrj = +1/2 when flowing clockwise and fgrj =−1/2
when flowing counterclockwise (j= 1, 2). The resulting configurations |1, 0〉 in Fig. 2.10 (b)
and |0, 1〉 in Fig. 2.10 (c) are the analog to the classical persistent current states ±Ip in
the untilted double-well potential of the flux qubit. Hence, at ∇H = 0 they form equal
superposition states and the expectation value Iq = Ip〈σ̂z〉 vanishes. Because the wave
function of the lower energy state in the untilted double-well potential is symmetric [95],
we define the ground and the excited state

|ggq〉 = |1, 0〉+ |0, 1〉√
2

and |egq〉 = |1, 0〉 − |0, 1〉√
2

,

respectively. Just as for a regular flux qubit, these states are energy separated by the
tunneling rate ∆.

– Loop excitations – The two situations discussed above are not the only current config-
urations that are compatible with fluxoid quantization in all loops. Additionally, there
can be loop excitations as depicted in Fig. 2.10 (d) and Fig. 2.10 (e), which are, however,
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very unlikely as discussed below. The first two excitations are characterized as |0, 0〉 and
|1, 1〉. These states could occur either if the energy barrier [84–86] E∆N ≈

√
6I`,cΦ0/2π is

overcome or if the inductive energy is very small and on the order of the qubit energy,
i.e., E`' ~ωq. Assuming a realistic qubit transition frequency ωq = 5 GHz, this implies a
very large loop inductance of approximately 1 µH as used for example in phase-slip flux
qubits [85]. The requirement E`' ~ωq could also be satisfied for very large qubit energies.
These transition frequencies, however, would exceed the energy gap ∆0 by far and are there-
fore not feasible. Hence, for circuits presented in this work, loop excitations are not relevant.

– Finite field gradient – For a gradiometric qubit design, the control parameter for the
magnetic energy bias ~ε is the difference in frustration δfgr≡ fgr1− fgr2 which can be created
by a field gradient∇H. A field gradient creates the situation |1/2+δfgr/2, 1/2−δfgr/2〉 shown
in Fig. 2.11 (a) for the specific case δfgr = 1/2. This configuration creates a finite current flow
Iq = Ipδfgr over the Josephson junctions to ensure the states |1, 0〉 [Fig. 2.11 (b)] and |0, 1〉
[Fig. 2.11 (c)]. These states are separated by the additional magnetic energy ~ε= 2IpδfgrΦ0.
Even though the two qubit eigenstates |ggq〉 and |egq〉 are still superposition states of |1, 0〉
and |0, 1〉, for ε�∆ they can be approximated by |ggq〉 ≈ |1, 0〉 and |egq〉 ≈ |0, 1〉.

Screening and flux trapping So far, we have discussed the gradio qubit without apply-
ing a homogeneous field H0 and without considering screening effects of the superconducting
loops. For an ideal gradiometer, H0 couples equally into both gradiometer loops as depicted
in Fig. 2.9 (a). Hence, this field does not affect the frustration difference δfgr. It changes,
however, the field penetrating the SQUID loop used to tune the tunneling energy ~∆ and
therefore couples to the σ̂x degree of freedom. Due to fluxoid quantization, the external
field is screened proportional to the ratio of geometric to kinetic inductance β = Lg/Lk
of the trap loop [83, 101]. The factor β represents the ability of the loop to preserve its
magnetic frustration ftr. In other words, for β� 1, the loop always keeps its frustration
even if the externally applied field is changed. On the other hand, for β� 1, the frustration
directly follows the external field. A similar argument holds for a field H` =N`Φ0/(µ0A`)
that is generated by a finite amount of flux quanta N` trapped in the loop during the
cooldown. For simplicity, we assume a homogeneous field generated inside the trap loop
with area A`. The total field strength inside the loop therefore reads as

H0 = Hext
1 + β

+ β

1 + β

N`Φ0
µ0A`

, (2.1.22)

where Hext is the field strength generated by the control circuitry. From Eq. (2.1.22)
it follows that we can adjust H0 either continuously with an external magnetic field or
stepwise via the number N` of trapped fluxoids. Please note that fluxoid quantization
imposes a phase change of 2πN` around the trap loop, resulting in a phase difference
φq =πN` between points p1 and p2 by symmetry reasons. This circumstance shows that
an odd number of trapped flux results in an equivalent half-integer flux bias of the gradio
qubit. For an ideal qubit, these flux quanta result in a phase difference θ= 2πN` between
the two points p1 and p2 on the trap loop. Hence, the phase difference φq between these
points is always πN` if an odd amount of fluxoid quanta is trapped.
The screening effect of the trap loop also screens the qubit against noise. Furthermore, a
gradiometric qubit has the advantage of a reduced sensitivity to external flux noise [99, 102].
The reason is that flux noise emitted from a faraway object couples equally into the two
loops and therefore introduce no fluctuations of the ε bias. Due to the quadrupolar structure
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described below, the qubit is less sensitive to local fields that couple asymmetrically into the
two loops because the quadrupolar coupling shows a 1/r3 dependence. This is in contrast
to the standard flux qubit design, which interacts as a dipole that couples with 1/r2 to
flux noise [103].

(a)

H

(b)

H

s
Figure 2.12: (a) Sketch of a
dipole magnetic field H generated
by a closed loop as for example
the SQUID-loop. (b) Sketch of a
quadrupolar magnetic field gener-
ated by an eight-shaped loop.

Multipole expansion for the gradio qubit The ide-
alized, perfectly symmetric realization of a gradio qubit
is hard to implement in reality due to imperfections in
the fabrication process [83]. One convenient method to
account for imperfections is a multipole expansion of the
magnetic moment of the qubit as derived in detail in
Sec. 2.1.7. The geometry of the gradio qubit results in a
magnetic dipole moment µ and in a quadrupole moment
Q. For an ideal gradio qubit, the dipole coupling reads
µ·H0σ̂x and the quadrupole coupling Q·∇Hσ̂z. Imperfec-
tions in the geometry and in the Josephson junctions can
be modeled by cross-coupling terms which have the form
µim·H0σ̂z and Qim·∇Hσ̂x.
For our discussion, we assume that the qubit is placed
in the plane perpendicular to the ez-direction and that
the origin of the coordinate system is in the center of the
SQUID loop. Furthermore, we assume that the total cur-
rent I flowing in a superconductor is uniformly distributed.
That way, the general expression for the dipole moment
µ= I

∫
A dA′ calculates to µ= I A ez. The gradio qubit has two substructures that can

generate such a dipole moment. First, the SQUID loop with area Asq has a dipole moment
µsq = IsqAsqez for a finite current Isq circulating around the SQUID loop. This dipole
moment generates a dipolar magnetic field as depicted in Fig. 2.12 (a) and couples to the σ̂x
degree of freedom. Second, the trap loop has a large dipole moment µ`. In the ideal case,
this dipole moment does not couple to the qubit phase ϕq and is thus irrelevant for the qubit.
However, a possible imbalance between the gradiometer loops introduces a dipole moment
µim = I`δAεez. Here, δAε is the effective area difference between the gradiometer loops
accounting for all possible imbalance sources such as difference in inductances, difference
in the SQUID junctions, etc. In contrast to µsq, this dipole moment couples to the σ̂z
degree of freedom. In other words, for a finite µim, we can increase the magnetic energy
bias ~ε also with homogeneous magnetics fields which is expressed in a finite quality of the
gradiometer. With suitable control lines, however, we can compensate for this ε bias and
operate the qubit again at its degeneracy point.
Similar to the dipole moment, the gradio qubit comprises a finite quadrupole moment Q,
which generates a quadrupolar magnetic field as depicted in Fig. 2.12 (b). In particular
for the gradiometric design, we find the relevant component Qyz = 4/3sIpA` [see Sec. 2.1.7
for details]. This quadrupole moment component couples to the σ̂z degree of freedom.
Imperfections Qim in the quadrupole moment that couple to σ̂x are generated if a finite
qubit current Iq changes the frustration of the SQUID. This could be due to differences in
the mutual inductance between the gradiometer loops and the SQUID or due to differences
in the SQUID junctions. The result of such an imperfection would be an asymmetric
qubit hyperbola, because the qubit gap changes with δfgr. Considering all four magnetic
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moments, we obtain the total gradio qubit Hamiltonian

Htot/µ0 =([µsq ·H0] + µ0∆)σ̂x + [Qyz · ∇H]σ̂z + [µim ·H0]σ̂z + [Qim · ∇H]σ̂x , (2.1.23)
1/2~∆σ̂x + 1/2~εσ̂z︸ ︷︷ ︸

Hq

where the flux qubit Hamiltonian Hq is defined in Eq. (2.1.20). Please note that we have
added the zero-field splitting ∆ of the qubit and have linearized the dependence ∆(α) in
Eq. (2.1.19) to µsq ·H0 and Qim · ∇H, respectively.

2.1.7 Multipole expansion for superconducting circuits

In this section, we show how the multipole expansion for electromagnetic fields [104],
typically utilized in light-matter interaction, can be mapped to superconducting circuits. For
convenience, we first show the direct analogy between multiple point charges and transmon
qubits. We then adapt this picture to flux qubits, where the magnetic moment of current-
carrying loops takes the role of electrical charges and external magnetic fields correspond
to electric fields in electrically induced state transitions of atoms. For these transitions,
the interaction Hamiltonian between the atom and an electric field Ed(t) = Eeıωdt can be
expanded to [105]

Hint =p ·E(t) + [Q∇] ·E(t) +O(∇2)
=pxEx + pyEy + pzEz+
Qxx∂xEx +Qxy∂yEx +Qxz∂zEx+
Qyx∂xEy +Qyy∂yEy +Qyz∂zEy+
Qzx∂xEz +Qzy∂yEz +Qzz∂zEz +O(∇2) . (2.1.24)

Here, p =
∫
V d3r · ρ(r)r is the dipole moment of the electric charge distribution ρ(r) of the

atom and the rank-two tensor Q is the atoms electric quadrupole moment with components
Qij =

∫
V d3r · ρ(r)[3rirj − |r|2δij ]. In general, Q is symmetric (Qij =Qji) and traceless

(Qxx +Qyy +Qzz = 0). Furthermore, in Eq. (2.1.24) ∂iEj ≡ ∂Ej/∂i is the spatial derivative
of the electric field component Ej . To simplify the situation, it is often useful to replace
the charge distribution ρ(r) by point-like charges at distinct positions rk. For k discrete
charges qk, one obtains p = ∑

k qkrk and Qij = ∑
k qk[3rikrjk− |rk|

2δij ].
Using the discrete charge model, we can calculate the dipole and quadrupole moment for the
two simple cases shown in Fig. 2.13 (a) and Fig. 2.13 (b), which we subsequently translate
to superconducting qubits. For two oppositely charged particles, separated by a distance d
in z-direction, we obtain a finite dipole moment p = (0,0,qd) but a vanishing quadrupole
moment Qij = 0 ∀ i,j ∈{x,y,z} [see Fig. 2.13 (a)]. For the situation of four alternating
charged particles shown in Fig. 2.13 (b), the situation is opposite to two particles. In this
quadrupole configuration the dipole moment p = (0,0,0) vanishes, but there is a finite
component Qyz = 3qd2 of the quadrupole moment. Hence, the interaction Hamiltonian for
the two situations in Fig. 2.13 (a) and Fig. 2.13 (b) reads Hp

int = qdEz and HQ
int = 6qd2∂yEz,

respectively.

Multipolar transmon qubits We now apply the concept of point-like charges to
superconducting qubits, where we model the distributed nature of the circuits by effective
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Figure 2.13: (a) Two point-like charges separated by a distance d create a finite electrical dipole
moment p but zero quadrupole moment Q. (b) Four alternating charges in a squared configuration
create no dipole moment but have a finite quadrupole moment. (c) The two capacitor plates shunting
the Josephson junction (cross) of a transmon qubit create an effective dipole moment peff . This dipole
moment couples to the z-component of the external drive field Ez (color code). (d) As in panel (c) but
for a gradient field which has a node at half the capacitor length, Ez(L/2) = 0. (e) Gradiometric version
of a transmon qubit exposed to a constant drive field. (f) As in panel (e) but for a gradient field.

dipole and quadrupole moments. As shown in Fig. 2.13 (c) and Fig. 2.13 (d), the two
capacitors of a transmon qubit, shunting a Josephson junction, correspond to the situation
of two oppositely charged particles in Fig. 2.13 (a). Hence, the transmon qubit has an
effective dipole moment peff = (0,0,peff

z ). In this case, the z-component of the external
drive is responsible for the finite interaction Hint = peff

z E
eff
z σ̂x when the qubit is expressed

in the σ̂z-basis. Here, we use the effective field component Eeff
z =L−1 ∫ L/2

−L/2Ez(x)dx,
where L is the capacitor length in x-direction. One immediately sees, that Eeff

z = 0 if
the transmon qubit is exposed to a field gradient ∂yEz = const with Ez(L/2) = 0 [see
Fig. 2.13 (d)]. In this case, positive and negative Ez contributions cancel each other leading
to a vanishing interaction Hamiltonian Hint = 0. Similar to the situation depicted in
Fig. 2.13 (b), it is possible to design transmon qubits with an effective quadrupole moment
Qeff by splitting the two capacitors in an alternating geometry as shown in Fig. 2.13 (e)
and Fig. 2.13 (f). In this case, we obtain a quadrupolar interaction for effective field
gradients (∂yEz)eff =L−1 ∫ L

0 ∂yEz(x)dx and the interaction strength vanishes for constant
fields Eeff

z = const. The quadrupolar interaction is described by HQ
int =Qeff

yz (∂yEz)eff σ̂x.

Multipolar flux qubits The analogy between electrically induced state transitions in
atoms described by Eq. (2.1.24) and in transmon qubits works well because both couple to
the electric field. This is different for flux qubits, coupling to the external magnetic field
Bd(t) = Beıωdt. Because also flux qubits act as artificial atoms, state transitions in these
devices follow electric selection rules [42, 106]. Therefore, the interaction described by
Eq. (2.1.24) is still valid when replacing p↔µ, Q↔M, and E↔B. Here, µ is the magnetic
dipole moment and M is the magnetic quadrupole moment of the qubit. For a quasi-
planar loop with area A carrying a circular current I, the magnetic dipole moment [104]
µ= (1/2)

∫
V d3r r× j can be simplified to µ= (I/2)

∫
∂A r× dr = (0,0,IA) [see Fig. 2.14 (a)].

For the components of the magnetic quadrupole moment we obtainMij = (2I/3)∑k µk,irk,j ,
where µk is the kth dipole positioned at rk. For a single loop (k= 1) and r1 = (0,0,0), all
components of M are zero. For the quadrupolar case shown in Fig. 2.14 (b), the dipole
moment is zero and M has the finite component Myz = 4IAd/3.
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Figure 2.14: (a) A closed current-carrying loop with area A creates a finite magnetic dipole moment
µ but zero quadrupole moment M. (b) Two loops carrying clockwise and counter clockwise currents
±I create no dipole moment but have a finite quadrupole moment. (c) Integrating three Josephson
junctions into a superconducting loop forms a flux qubit with dipole moment µq. This dipole moment
couples to the z-component of the external magnetic drive field Bz (color code). (d) As in panel (c) but
for a gradient field which has a node at half the qubit length, Bz(L/2) = 0. (e) Gradiometric version of
a flux qubit exposed to a constant drive field. (f) As in panel (e) but for a gradient field.

Integrating three Josephson junctions with suitable parameters into a superconducting
loop forms a flux qubit with persistent current Ip and area Aq. In the bare qubit basis,
the dipolar interaction Hamiltonian between qubit and an oscillating magnetic field reads
Hµ

int =Beff
z µ

q
z σ̂z. Here, µ

q
z = IpAq is the relevant dipole component of the qubit and

Beff
z =A−1

q
∫
Aq
Bz(r)d2r is the effective magnetic field penetrating the qubit loop, which is

finite for homogeneous magnetic fields [see Fig. 2.14 (c)]. When exposing the qubit to a
constant field gradient in x-direction with Bz(L/2) = 0, the interaction strength vanishes
as depicted in Fig. 2.14 (d). For quadrupolar coupling, the interaction Hamiltonian reads
HM

int =M eff
yz (∂yBz)eff σ̂z, where (∂yBz)eff =A−1

q
∫
Aq
∂yBz(r)d2r is the effective magnetic field

gradient penetrating the qubit loop. Here, we restrict the situation two currents that
flow in opposite direction in the two gradiometer loops. For structures with large loop
inductance [107], also two in-phase currents are possible, generating a finite dipole moment
for the structure shown in Fig. 2.14 (e).

2.2 Electromagnetic fields on coplanar waveguide
transmission lines

Electromagnetic fields propagating on coplanar waveguide (CPW) transmission line struc-
tures are important to control and readout quantum states in superconducting circuits. In
Sec. 2.2.1, we discuss basic concepts of transmission lines serving as one major building
block in our experiments. Introducing boundary conditions into these lines can be used to
generate resonant structures described in Sec. 2.2.2. Finally, we describe the most relevant
states of light for this thesis in Sec. 2.2.3 and their correlation functions in Sec. 2.2.4.

2.2.1 Transmission line theory

Electromagnetic waves with gigahertz frequencies propagate freely in all directions of open
space [108]. For technical applications, however, it is important to guide information
encoded in these waves from a well-defined source to a particular destination. This task can

20



2.2. Electromagnetic fields on coplanar waveguide transmission lines

dl

Rl Ll I

V Gl

Cl

E
E l

(a) (b)

su
bs

tra
te

ground planecenter
conductor

Figure 2.15: (a) Sketch of a piece of a CPW transmission line, which carries an electromagnetic wave
that generates the electric field E. (b) Equivalent lumped-element circuit for a piece of transmission
line with infinitesimal length d`.

be achieved using waveguides such as two-dimensional CPWs [109], which can be thought
of as a cut through a coaxial cable. In this thesis, we use thin Nb or Al films deposited on a
silicon substrate for this purpose. A schematic of such a structure is shown in Fig. 2.15 (a)
and the fabrication process is explained in detail in Sec. 3.2.

Wave propagation The wavelength of microwaves is on the same order as the lateral
dimensions of the CPW structures which they live on. Therefore, we cannot apply the
concept of lumped-element circuits where one assumes that the wavelength is substantially
larger than the circuit itself. Instead, we describe voltage and current as propagating waves
which travel over a certain length ` [110]. Nevertheless, we can model each individual point
of a transmission line as a lumped-element circuit of infinitesimal length d`. In Fig. 2.15 (b),
we show the equivalent lumped-element circuit for a transmission line structure with series
inductance L`, series resistance R`, and shunt capacitance and conductance C` and G`,
each per unit length. From Kirchhoff’s laws [111] in the limit d`→ 0, one can derive
the well-known telegrapher’s equations [110]. Solving these equations for a sinusoidal
steady-state condition, we obtain wave equations for the voltage V (`,t) =V (`) eıωt and the
current I(`,t) = I(`) eı(ωt+π/2) with ω/2π being the wave frequency. In these expressions,
we have defined the time-independent amplitudes

V (`) = V +
0 e−γ` + V −0 eγ` , (2.2.1)

I(`) = I+
0 e−γ` + I−0 eγ` , (2.2.2)

where e±γ` describes the spatial wave propagation in both directions of the line, while V ±0
and I±0 define the amplitude at `= 0. The complex propagation constant

γ = γ< + ıγ= =
√

(R` + ıωL`)(G` + ıωC`) (2.2.3)

is in general frequency-dependent and defines the amplitude decrease after the wave
has travelled a certain distance. The real part γ< characterizes the attenuation of the
signal, whereas the imaginary part γ= describes the propagation properties of the line.
To characterize these properties, we compare the amplitude at a certain point 1 to the
amplitude at a point 2. Such a scenario is modeled as a two-port network, that we describe
by a scattering matrix [110] (

V −1
V −2

)
=
(
S11 S12
S21 S22

)(
V +

1
V +

2

)
, (2.2.4)
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where each element Sij describes a scattering parameter of the network. For most of the
measurements presented in this thesis, we analyze the transmission magnitude T ≡ |S21|

2

of a network structure.

Line impedance When designing CPW structures, one has a large freedom to choose
different dimensions of and distances between adjacent structures. Changing the relative
size of the waveguide structures has an impact on the relative dielectric constant εr and on
the line impedance [109]. The line impedance is a typical figure of merit for a transmission
line defined as [112]

Z0 = V +
0

I+
0

=
√
R` + ıωL`
G` + ıωC`

. (2.2.5)

For superconducting CPW transmission lines, the surface resistance (cf. Sec. 2.1.2) of the
thin films is the main contribution to R`, which is negligible for frequencies below 10 GHz.
Furthermore, for low temperatures and insulating substrates, also G` can be neglected.
Hence, we obtain γ<' 0 and Eq. (2.2.5) simplifies to Z0 =

√
L`/C`. Since most of the

commercially available microwave equipment has a 50Ω impedance, we also design our
transmission line structures with a 50Ω impedance to avoid reflections. This is achieved
by using a 12 µm wide center conductor and a gap between center conductor and ground
plane of 20 µm (for more details see Sec. 3.2).

Quantization of the electromagnetic field For very low excitation energies and very
low temperatures, quantization of the electromagnetic fields on a transmission line becomes
relevant. Starting from classical electrodynamics, we can use Maxwell’s equations [113]
to derive the quantization of electromagnetic field [7, 114]. We start from a vector
potential A(x,t), satisfying the wave equation c2∇2A = ∂2A/∂t2 in a given volume V,
where c is the speed of light. We can describe the vector potential as a sum of vector
mode functions uk(x) corresponding to a certain frequency ωk for the kth mode. Then,
the electric field

E(x,t) = −∂A
∂t

= ı
∑
k

(~ωk
2ε0

)1/2 [
akuk(x)e−ıωkt − a†ku

?
k(x)eıωkt

]
(2.2.6)

is defined by the sum of all vector mode functions weighted by certain amplitudes ak
and a†k. Using the relation B =∇ ×A, we can find a similar relation for the magnetic
field B(x,t). Field quantization can be accomplished by defining a†k and ak as mutually
adjoint operators â†k and âk. These bosonic creation and annihilation operators follow the
boson commutation relations [âk ,âk′ ] = [â†k ,â

†
k
′ ] = 0 and [âk ,â†k′ ] = δkk′ [7]. The Hamiltonian

of the system

Hem = 1
2

∫
V

d3x

(
ε0E2 + B2

µ0

)
=
∑
k

~ωk
(
â†kâk + 1

2

)
. (2.2.7)

comprises the sum of electric and magnetic energy. Here, the average occupation number
of each mode is nk = 〈â†kâk〉. The term ~ωk/2 in Eq. (2.2.7) is the omnipresent energy offset
due to the vacuum fluctuations. Although we restrict ourselves to a finite volume in this
derivation, field quantization also results from an open space approach [114].
A special case of field quantization occurs when only a single mode is allowed on the
transmission line, i.e., in the case of a single mode resonator. Even though on a transmission
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line there are always higher harmonics, we can restrict ourselves to a single mode if all
higher harmonics are sufficiently far frequency shifted. In this case, the single mode
Hamiltonian reads

Hr = ~ωr

(
â†â+ 1

2

)
. (2.2.8)

This Hamiltonian plays an important role in the game of (circuit) quantum electrodynamics
studied in detail in Sec. 2.3.

2.2.2 Superconducting transmission line resonators

Superconducting microwave transmission line resonators are widely used in circuit quantum
electrodynamics (QED) to study light-matter interaction [26, 115], as quantum bus [116,
117] or photon storage devices [118]. In this section, we introduce the main concepts
of resonant transmission line structures. In contrast to waves that propagate freely on
transmission lines, in the following we force the electromagnetic field to standing waves
with discrete frequencies by introducing boundary conditions. This frequency selection has
several advantages for the application of microwave circuits. It allows for example to use
resonators as strong filters [119], sensitive readout devices [24], or efficient memories [118].
The most convenient method to introduce boundary conditions into a transmission line
structure is to generate either a short to ground or an open-circuit, i.e., a cut in the
center conductor. While a short to ground forces the voltage at this position to zero, an
open-circuit structure results in a vanishing current.

Half- and quarter-wavelength resonators We realize half-wavelength resonators by
integrating two open-circuits into the transmission line, separated by a distance `r [see
Fig. 2.16 (a)]. This setup causes the electromagnetic field to interfere constructively if its
wavelength is equal to λn = 2 `r/k, k∈N. For all other wavelengths, the field interferes
destructively, which strongly suppresses these modes inside the resonator. The frequency

ωr,k = 1√
L`C`

k

2`r
= c
√
εeff

k

2`r
(2.2.9)

of the standing waves depends on the characteristic transmission line parameters εeff , L`,
and C`. If we apply a sinusoidal readout signal across the resonator, we have the textbook
problem of a driven damped harmonic oscillator [120]. The transmission through a half-
wavelength resonator is characterized by magnitude and phase

T (ω) = L0
1/4κ2

tot

(ω − ωr,k)2 + 1/4κ2
tot

, (2.2.10)

φ(ω) =
[
tan−1

(
ωκtot

ω2 − ω2
r,k

)
modπ

]
− π

2 , (2.2.11)

Here, L0 and κtot are the insertion loss and the bandwidth (full width at half maximum)
of the resonator leading to the Lorentzian line shape displayed in Fig. 2.16 (b) and the
phase respective shown in Fig. 2.16 (c). Along the distributed circuit, the electromagnetic
field is enveloped by the spatial functions u(x)∝ cos(kπx/`r) and j(x)∝ sin(kπx/`r). This
spatial envelope defines the capacitive and inductive coupling strength to other electrical
circuits on the chip. We can use the position inside the resonator at which we place the
additional circuit to control the ratio between inductive and capacitive coupling.
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Figure 2.16: (a) Sketch of a half-wavelength resonator coupled to a CPW transmission line. The
magnetic field B follows the spatial current distribution j. (b) Transmission magnitude of a half-
wavelength resonator plotted versus readout frequency. (c) Phase response of a half-wavelength
resonator plotted versus readout frequency.

In contrast to the half-wavelength resonator discussed above, for a quarter-wavelength
resonator we replace one of the open-circuits by a short to ground. That way, we save one
halve of the resonator allowing for smaller sample sizes. In addition, a quarter-wavelength
resonator is typically read out in reflection, providing the complex reflection coefficient [121]

Γ =
(ω − ωr,k)2 + ıκi(ω − ωr,k) + (κ2

i − κ
2
x)/4

ω − ωr,k + ı(κi − κx)/2 . (2.2.12)

Here, κi and κx are the internal and external loss rates of the resonator as introduced in
the following section.

Quality factor The resonance frequency of transmission line resonators can vary over a
wide frequency range. To compare the performance of resonators with different frequencies,
we can use their respective quality factor [110]

Q = 2πaverage energy stored
energy loss/cycle = ωr

κtot
.

The resonator line width κtot comprises all dissipative loss channels of the device and the
intended coupling to the external transmission lines. Consequently, the inverse loaded
quality factor

1
Q`

= 1
Qi

+ 1
Qx

= κi + κx
ωr

(2.2.13)

is defined by the sum of the internal loss rate κi and external coupling rate κx. For
simplicity, we model the transmission line resonator as a lumped element LCR circuit as
shown in Fig. 2.17 (a). This lumped element model can be linked to the distributed element
model of a transmission line via the definitions L≡ 2L``r(kπ)−2 and C ≡ 1/2C``r [112].
In the following, we show the independence of different loss mechanisms that lower
the internal quality factor of a superconducting resonator. We assume low loss in the
transmission lines such that the complex propagation constant defined in Sec. 2.2.1 can be
approximated as [110]

γ ' ıω
√
L`C`

[
1− ı

2

(
R`
ωL`

+ G`
ωC`

)]
. (2.2.14)
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Figure 2.17: (a) Equivalent lumped-element LCR circuit diagram of a half-wavelength resonator
coupled to two Z0 = 50Ω-matched feedlines with coupling capacitance Cκ. (b) Norton equivalent of
the coupling capacitor that can be described as a parallel RC-circuit with coupling capacitance Cκ.
(c) Loaded quality factor plotted versus coupling capacitance. In the undercoupled regime, the quality
factor approaches the internal quality factor Qi.

The internal resistance Ri = Z0(γ<`r)−1 of the LCR-circuit model displayed in Fig. 2.17 (a)
is defined by the real part γ< of the propagation constant and the internal quality factor
reads [112] Qi =ωr,nRiC =π[2`rγ<]−1. The attenuation constant itself is a sum of differ-
ent influences such as surface resistance [122, 123], loss from two-level-states [124, 125],
quasiparticle generation in the superconducting material from stray infrared light [65] or
thermal activation [126] (see Sec. 2.4.2 for details). Since all loss mechanisms add a finite
resistance, we can write

γ< =
∑
j

γ<,j ⇐⇒ 1
Qi

=
∑
j

1
Qi,j

.

Due to the independence of loss mechanisms, we can investigate a single loss channel
by selectively tuning a particular experimental parameter while leaving the remaining
experimental environment untouched.

External coupling rate We couple the resonators to external feedlines for readout
purposes. Even though the coupling mechanism is capacitive, we can model it with an
effective parallel RC-circuit [112] shown in Fig. 2.17 (b). The Norton equivalent of each
coupling capacitor yields an effective resistance and capacitance

R?x =
1 + (ωr,kCκZ0)2

(ωr,kCκ)2Z0
, C?κ = Cκ

1 + (ωr,kCκZ0)2 ,

respectively, when assuming Ri = 0. For typical CPW resonators C�Cκ holds and the
external quality factor is well approximated by [112]

Qx =
ωr,kR

?
xC

2 =
ωr,kC

2

[
1 + (ωr,kCκZ0)2

(ωr,kCκ)2Z0

]
. (2.2.15)

This equation shows that we can control the external quality factor by adjusting the
coupling capacitance Cκ as depicted in Fig. 2.17 (c). For very large external quality factors,
however, we cannot neglect internal loss rates anymore. In this regime, the internal quality
factor limits the total quality of the resonator. Hence, we can distinguish two regions
in the dependence of Q` on Cκ, which are the undercoupled regime (Qi<Qx) and the
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overcoupled regime (Qi>Qx). The resonator’s critical coupling point, Qi =Qx, separates
the two regimes and we can approximate their limits as

Q` ≈
{
Qi ' const. Qx � Qi (undercoupled)
Qx ∝ C

−2
κ Qx � Qi (overcoupled) .

From these conditions, we directly recognize the importance of optimizing the internal
quality factor when aiming for high quality resonators.

2.2.3 States of electromagnetic radiation

States of electromagnetic radiation such as thermal or coherent states can conveniently
be described in a phase space representation of light [127]. In classical mechanics, we can
characterize a physical system by a point in phase space, e.g., with its position x and
momentum p. That is, a single point in phase space defines the state of the system at
a particular moment in time. On the contrary, in quantum mechanics the Heisenberg
uncertainty [128, 129] ∆x∆p≥ 1/4 introduces an omnipresent uncertainty between the
two conjugate variables. This uncertainty smears out the single point in phase space
prohibiting a simultaneous measurement of conjugate variables. Nevertheless, we can use
the Wigner quasi-probability distribution [130] W (x,p) to find the system in state (x,p).
This concept can be translated to any pair of conjugate variables that behave equivalently
to position and momentum [131]. For the case of an electromagnetic field, we can express
two conjugate operators using â and â†, which leads to [7]

x̂ = (â+ â†)/2 and p̂ = (â− â†)/(2ı) .

The eigenstates |x〉 and |p〉 of x̂ and p̂ define the density matrix ρ̂ of the system. Because ρ̂
completely describes the physical system, also the Wigner function [127, 130, 132]

W (x,p) ≡ 1
2π

∫ +∞

−∞
dξ
〈
x− ξ

2

∣∣∣∣ ρ̂ ∣∣∣∣x+ ξ

2

〉
e(ıpξ) , (2.2.16)

completely describes the physical system. In Eq. (2.2.16), ξ is a real-valued integration
variable such that the definition of the Wigner function is well-defined and normalized
to
∫ ∫

W (x,p) = 1 [129].

Figure 2.18: Wigner function of a Fock
state |1〉. Picture taken from Ref. 133.

Having full knowledge of the density operator or
the Wigner function is equivalent to the knowledge
on all moments 〈(â†)mân〉 with m,n∈N0 [134–136].
Theoretically, an infinite number of moments must
be known to fully reconstruct a quantum state but
in many scenarios the reconstruction of a state is
possible from a finite number of moments [135–137].
In particular, the most relevant class of Gaussian
states are completely described by moments up to
the second order (m+n≤ 2) [138–140]. Since the
Wigner function is a quasi-probability distribution, it
can become negative and indicate the quantumness
of a state [141]. To reconstruct a (partially) nega-
tive Wigner function of a quantum state requires
at least the knowledge of moments up to the fourth
order [129, 142].
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2.2. Electromagnetic fields on coplanar waveguide transmission lines

Figure 2.19: (a) Wigner function of a vacuum state |0〉. (b) Wigner function of a thermal state
with nth = 0.2 photons on average. This photon number corresponds to 135 mK when operating at
5 GHz. Pictures taken from Ref. 133.

Fock States From a conceptual point of view, Fock or number states are important
because they can be used as an orthonormal basis for the Hilbert-space in quantum
mechanics [7]. Hence, we can describe any state of light by a superposition of Fock
states. Furthermore, these non-classical states are the basis for many quantum computing
protocols [117, 143, 144] and serve as toolbox for a series of quantum mechanical oper-
ations [50, 51]. Fock states |n〉 are the eigenstates of the number operator n̂= â†â and
obey [145] n̂ |n〉 =n |n〉. We obtain different Fock states by applying the creation and
annihilation operators to an initial Fock state

â |n〉 =
√
n |n− 1〉 , â† |n〉 =

√
n+ 1 |n+ 1〉 .

In contrast to the Poissonian distribution expected for a harmonic oscillator, these equations
show that Fock states belong to a discrete number of excitations in a single mode. A Fock
state can for example be reached by relaxing an excitation from a resonant two-level-state
into a single mode resonator [118]. We show the exemplary Wigner function for the Fock
state |1〉 in Fig. 2.18. The fact that the Wigner function becomes negative towards the
origin of the phase space clearly reveals the quantumness of Fock states.

Vacuum state The vacuum state |0〉 of a certain mode ωk is the lowest order Fock
state for which any excitations, e.g., thermal or coherent excitations, are absent. In a
classical picture, such a state would contain zero photons, i.e., zero energy, and would
be physically irrelevant. However, from the field theory described by Eq. (2.2.7) we
see that vacuum fluctuations are always present [146] due to Heisenberg’s uncertainty
principle [128]. In Fig. 2.19 (a), we show the Gaussian envelope of the Wigner func-
tion W (x,p) = exp(−x2− p2)/π corresponding to vacuum fluctuations around the origin.
The 1/e contour of the Wigner function has the radius 1/4 meaning that the vacuum state
fulfills the Heisenberg principle with a minimum uncertainty. Since the vacuum state repre-
sents the T = 0 case, it cannot be realized in an experiment. However, if the experimental
settings fulfill the condition kBT � ~ω, we can well approximate the thermal state as a
vacuum state [129]. Nevertheless, also the vacuum state has physical consequences and
measurable effects, such as the Casimir effect [147].
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Figure 2.20: (a) Wigner function of a coherent state |α〉 with x0 = p0 = 1.5. (b) Wigner function of
a squeezed state with σx = 1.5 and σp = 0.5. Pictures taken from Ref. 133.

Thermal states As stated above, for a finite temperature we always expect a certain
number of photons on average to be present. Hence, each state that we detect is superim-
posed by a thermal state [148]. Thermal states are emitted from black-body radiators of
finite temperature T [129, 139] and have only negligible coherence [149–151]. They follow
the Bose-Einstein distribution [145] defining the mean photon number

nth = 1
exp(~ω/kBT )− 1 (2.2.17)

at a certain frequency ω. From Eq. (2.2.17) we see that nth becomes zero for T = 0
and asymptotically follows a linear trend with T for ~ω� kBT . The Gaussian Wigner
function W (x,p) = exp[−x2− p2/(nth + 1/2)]/π(nth + 1/2) broadens with increasing tem-
perature, as shown in Fig. 2.19 (b). Because of this broadening, thermal states do not
belong to the class of minimum uncertainty states.

Coherent states In addition to thermal states consisting of incoherent photons as
described above, coherent states have a well-defined frequency and phase. In practice,
we generate these Gaussian states by phase-matched microwave sources, which operate
analogously to a laser in optics. Coherent states are eigenstates of the annihilation
operator, thus obeying [7] â |α〉 =α |α〉. The complex eigenvalue α=x0 + ıp0 describes the
amplitude A=

√
x2

0 + p2
0 and the phase ϕ= arctan(p0/q0) of a sinusoidal electromagnetic

wave. We can define a coherent state

|α〉 = D̂(α) |0〉 = exp(αâ† − α∗â) |0〉 (2.2.18)

by applying the displacement operator D̂(α)≡ exp(αâ†−α∗â) to the vacuum state |0〉.
Mathematically, the displacement α=x+ ıp is a complex number describing the point (x,p)
in phase space to which D̂(α) displaces. This fact also manifests itself in the Wigner
function W (x,p) = exp[− (x−x0)2− (p− p0)2]/π of a coherent state shown in Fig. 2.20 (a).
A coherent state fulfills the Heisenberg principle with a minimum uncertainty.

28



2.2. Electromagnetic fields on coplanar waveguide transmission lines

Squeezed states Squeezed states also belong to the class of Gaussian states with
minimum uncertainty [114, 127, 129]. Their name relates to the fact that their Wigner
function can be squeezed below the radius of the vacuum state in one direction of the
phase space [139, 152]. We cannot, however, beat the Heisenberg limit with a squeezed
state since the unsqueezed quadrature grows in a way that the area underneath the Wigner
function W (x,p) = exp(−x2/σ2

x − p
2/σ2

p)/σxσp obeys ∆x∆p≥ 1/4 [cf. Fig. 2.20 (b)]. Here,
σx, σp are the squeezing factors in x and p direction, respectively. Consequently, the Wigner
function of a squeezed state is not rotationally symmetric but has an elliptical shape. A
squeezed vacuum state

|ξ〉 = Ŝ(ξ) |0〉 = exp
(1

2ξ
∗â2 − 1

2ξ(â
†)2
)
|0〉 (2.2.19)

can be generated by applying the squeeze operator [7] Ŝ(ξ) to the vacuum (or any other
input state). Here, the squeezing parameter ξ is a complex number defining the direction
and the amount of squeezing.

Photon statistics The statistical nature of photons emitted from a light source, usually
referred to as photon statistics, is described by a probability distribution either in terms
of the number states or in terms of moments. For the latter, the variance Var(〈â†â〉) of
the mean photon number 〈â†â〉 is closely linked to the photon statistics [7]. The photon
number variance can be measured in photon counting experiments similar to the famous
experiment of Hanbury Brown and Twiss (HBT) [153]. In photon counting experiments,
one measures the probability P (n) to count n photons for an expected value 〈n〉≡ 〈â†â〉.
In particular, one finds a Poisson distribution for coherent states [7] and the Bose-Einstein
distribution [154] for thermal states. For equal expectation values 〈n〉, these distributions
are clearly distinguishable as shown in Fig. 2.21 (a) and expressed in

P (n) =


〈n〉n

n! e−〈n〉 coherent state (2.2.20a)

1
〈n〉+ 1

( 〈n〉
〈n〉+ 1

)n
thermal state . (2.2.20b)

The Poissonian distribution is a threshold to separate between super-Poissonian, i.e., clas-
sical emitters and sub-Poissonian, i.e., quantum emitters. Classical fields can be generated
from thermal emitters [41, 155–158], while quantum emitters are typical single photon
sources [159–161] or generators of squeezed light [159, 162]. Since a direct measurement of
P (n) is experimentally challenging, typically the second-order correlation function

g(2)(τ) ≡ 〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉
〈â†(t+ τ)â(t+ τ)〉〈â†(t)â(t)〉

, (2.2.21)

τ 7→ 0 & stationary field : g(2)(0) = Var(â†â)− 〈â†â〉
〈â†â〉2

+ 1 (2.2.22)

is measured in an HBT configuration [155, 156, 158]. For a coherent field, the variance
is given as Var(â†â) = |α|2 and also the expectation value is 〈a†a〉= |α|2. Hence, from
Eq. (2.2.22), we obtain g(2)(0) = 1. For a pure thermal field, we find Var(nth) =n2

th +nth
from the Bose-Einstein distribution in Eq. (2.2.17), and 〈a†a〉=nth. Hence, from Eq. (2.2.22),
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Figure 2.21: (a) Probability P (n) to find n photons in a counting experiment for an expectation
value 〈n〉= 6 photons. (b) Second-order correlation function g(2)(0) plotted versus photon number.
The dotted and the dashed line are calculations for coherent states which also have a finite thermal
contribution nth.

we obtain g(2)(0) = 2 which is independent of the photon number as it is also the case for the
coherent state [see Fig. 2.21 (b)]. For high photon numbers, we consider the thermal field to
be classical. In this regime the variance n2

th +nth can be approximated as n2
th. The photon

number expectation value is again 〈n〉=nth. Hence, we obtain g(2)(0) = (n2
th−nth)n−2

th + 1.
This behavior approaches g(2)(0) = 2 for large photon numbers.
Real coherent fields always have a finite thermal contribution meaning that for |α|2<nth
there must be a transition from g(2)(0) = 1 to g(2)(0) = 2. For a quantitative analysis, we
have to calculate the corresponding variance and expectation values of the combined fields.
In the following, we describe the thermal field by the operators ξ̂†ξ̂ and the coherent drive
by the expression ĉ†c. The combined field is given as â†â= ξ̂†ξ̂+ ĉ†c and we assume that
the two fields are uncorrelated. Hence, variance and expectation value are given as

Var(â†â) = Var(ξ̂†ξ̂) + Var(ĉ†c) = (n2
th +nth) + |α|2 , (2.2.23)

〈â†â〉 = 〈ξ̂†ξ̂〉+ 〈ĉ†ĉ〉 = nth + |α|2 . (2.2.24)

If we use these expression in Eq. (2.2.22), we obtain

g(2)(0) = n2
th

(nth + |α|2)2 + 1 (2.2.25)

shown in Fig. 2.21 (b). As expected, there is a smooth transition from g(2)(0) = 1 to
g(2)(0) = 2 that depends on the background thermal field.

2.2.4 Correlation functions of broadband microwave states

For typical circuit QED experiments, microwave fields are generated at room temperature
and subsequently attenuated inside a cryostat to reach photon numbers on the order of
unity [41]. In this section, we calculate the variance of the corresponding states based on
a beam splitter model depicted in Fig. 2.22 (a). Additionally, we calculate the variance
of an amplified thermal fields [see Fig. 2.22 (b)], which is relevant for reconstruction
setups [121, 139, 163] using parametric amplifiers as preamplifiers as discussed in Sec. 6.1.
For convenience, we first calculate the correlation function Cth(t) for thermal fields without
employing the beam splitter model, which is analogously to the way presented in Ref. 17.
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For pure thermal fields, we find the correlation function

Cth(t) = 〈[â†(t)â(t)− 〈â†â〉][â†(0)â(0)− 〈â†â〉]〉
= [〈â†ââ†â〉︸ ︷︷ ︸

2n2
th+nth

−〈〈â†â〉â†â〉︸ ︷︷ ︸
n

2
th

−〈â†â〈â†â〉〉︸ ︷︷ ︸
n

2
th

+ 〈â†â〉2︸ ︷︷ ︸
n

2
th

]FC(t) = (n2
th + nth)FC(t) , (2.2.26)

which yields the n2
th +nth variance of thermal fields. Here, FC(t) is the characteristic

decay function of the environment discussed in the following paragraph. Furthermore, in
Eq. (2.2.26), we use the moments [121, 164] 〈(â†)kâ`〉th = `!n`thδk` of a thermal state.

Correlator for incoherently driven resonators To derive the photon number cor-
relator C(τ) inside the resonator for shot-noise, thermal, and coherent states, we use
input-output theory for a single mode â of the resonator described by the Hamiltonian
Hr = ~ωrâ

†â. We start with deriving the correlator for broadband white noise, which could
be thermal (i.e. super-Poissonian) or shot noise (i.e. Poissonian). The noise field occupies
incoming modes b̂in(ω,t) of an open transmission line, which is coupled to the resonator via
a coupling capacitor with strength g̃(ω). Using the resonator density of states D(ω), the
amplitude-damping of the resonator is given as κx/2 =πD(ωr)|g̃(ωr)|2. The transmission
line modes describe a force [165] F (t) = ı

∑
ω g̃(ω)b̂in(ω,0)e−ıωt acting on the resonator

such that the equation of motion becomes [166] ∂â/∂t=−[ıωr +κx/2]â(t)−F (t). In the
Markov approximation, this equation solves in the Heisenberg picture to

â(τ) = e−(ıωr+κx/2)τ
[
â(0)−

∫ τ

0
dt e−(ıωr+κx/2)τF (t)

]
. (2.2.27)

Using this equation, we calculate the photon-photon time correlator

C(τ) ≡ 〈δnr(0)δnr(τ)〉 = 〈â†(0)â(0)â†(τ)â(τ)〉 − 〈â†(0)â(0)〉2

= 〈â†(0)â(0)â†(0)â(0)〉e−κxτ − 〈â†â〉2

− e−κxτ
∫ τ

0
dt 〈â†(0)â(0)F †(t)â(0)〉e(−ıωr+κx/2)t (i)

+ e−κxτ
∫ τ

0
dt 〈â†(0)â(0)â†(0)F (t)〉e(ıωr+κx/2)t (ii)

+ e−κxτ
∫ τ

0

∫ τ

0
dtdt′ 〈â†(0)â(0)F †(t)F (t′)〉e−ıωr(t−t′)eκx/2(t+t′) (iii) . (2.2.28)

Since external force and resonator are uncorrelated at t= 0, we write the two terms (i) and
(ii) in Eq. (2.2.28) as [166]

(i) = −ı
∑
ω

g̃(ω)e−κxτ
∫ τ

0
dt 〈â†(0)â(0)â(0)〉 〈b̂†in(ω,0)〉eıωte(−ıωr+κx/2)t

(ii) = +ı
∑
ω

g̃(ω)e−κxτ
∫ τ

0
dt 〈â†(0)â(0)â†(0)〉 〈b̂in(ω,0)〉e−ıωte(ıωr+κx/2)t .

Here, one immediately sees that these expressions become zero for uncorrelated signals
with zero mean (noise), characterized by 〈b̂†in〉= 0 = 〈b̂in〉. Hence, the relevant part for
C(τ) is determined by the last part (iii) in Eq. (2.2.28). Assuming that both thermal
and shot noise have a white frequency distribution over the resonator bandwidth, i.e.,
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〈F †(t)F (t′)〉=κx〈b̂
†
in(ω,0)b̂in(ω,0)〉δ(t− t′), on resonance, part (iii) simplifies to

(iii) = κx〈b̂
†
in(ωr,0)b̂in(ωr,0)〉〈â†(0)â(0)〉e−κxτ

∫ τ

0

∫ τ

0
dtdt′ δ(t− t′)e−ıωr(t−t′)eκx(t+t′)/2

= κx〈b̂
†
in(ωr,0)b̂in(ωr,0)〉〈â†(0)â(0)〉e−κxτ

∫ τ

0
dt eκxt

= 〈b̂†in(ωr,0)b̂in(ωr,0)〉〈â†(0)â(0)〉[1− e−κxτ ] . (2.2.29)

Using this expression, and equilibrium states, 〈b̂†in(ωr,0)b̂in(ωr,0)〉= 〈â†â〉≡nr, Eq. (2.2.28)
simplifies to C(τ) = [〈â†ââ†â〉− 〈â†â〉2] exp(−κxτ) = Var(nr) exp(−κxτ). Hence, the cor-
relator for white noise is given as the photon number variance which decays at the
energy decay rate κx. Because we did not make any assumptions on the distribution of
the noise (Poissonian, super-Poissonian, etc.), this statement holds for shot noise with
Var(nr) =nr and Csh(τ) =nr exp(−κxτ) as well as for thermal noise with Var(nr) =n2

r +nr
and Cth(τ) = (n2

r +nr) exp(−κxτ).

Attenuated thermal fields To calculate the photon number variance of an attenuated
thermal field, we use the beam splitter model depicted in Fig. 2.22 (a). Here, we assume a
thermal state generated at a higher temperature stage, which is subsequently attenuated
inside the cryostat with attenuation η≤ 1. We describe the thermal state at high tempera-
ture with the bosonic operators b̂† and b̂ and model the cryogenic attenuator as a beam
splitter which mixes a weak thermal state described by ĉ† and ĉ to the incoming state.
That way, we obtain the mixed state described with the operator â(t) =Bb̂(t) +Cĉ(t),
where B=√η and C =

√
1− η. We define the photon numbers nb = 〈b̂†b̂〉, nc = 〈ĉ†ĉ〉 and

the total photon number ntot = 〈â†â〉=B2nb +C2nc. Then, the photon number variance
is defined by the correlator

Cth(t) = 〈[â†(t)â(t)− 〈â†â〉][â†(0)â(0)− 〈â†â〉]〉
= 〈[{Bb̂†(t) + Cĉ†(t)}{Bb̂(t) + Cĉ(t)} − ntot]×

[{Bb̂†(0) + Cĉ†(0)}{Bb̂(0) + Cĉ(0)} − ntot]〉
= 〈[B2b̂†(t)b̂(t) +BCb̂†(t)ĉ(t) +BCĉ†(t)b̂(t) + C2ĉ†(t)ĉ(t)− ntot]×

[B2b̂†(0)b̂(0) +BCb̂†(0)ĉ(0) +BCĉ†(0)b̂(0) + C2ĉ†(0)ĉ(0)− ntot]〉 . (2.2.30)

Multiplying all terms yields

Cth(t) = [ B4〈b̂†b̂b̂†b̂〉︸ ︷︷ ︸
=B4(2n2

b+nb)

+B3C〈b̂†b̂b̂†ĉ〉︸ ︷︷ ︸
=0

+B3C〈b̂†b̂ĉ†b̂〉︸ ︷︷ ︸
=0

+B2C2〈b̂†b̂ĉ†ĉ〉︸ ︷︷ ︸
=B2

C
2
nbnc

−B2ntot〈b
†b̂〉︸ ︷︷ ︸

=B2
ntotnb

+B3C〈b̂†ĉb̂†b̂〉︸ ︷︷ ︸
=0

+B2C2〈b̂†ĉb̂†ĉ〉︸ ︷︷ ︸
=0

+ B2C2〈b̂†ĉĉ†b̂〉︸ ︷︷ ︸
=B2

C
2
nb(nc+1)

+BC3〈b̂†ĉĉ†ĉ〉︸ ︷︷ ︸
=0

−BCntot〈b̂
†ĉ〉︸ ︷︷ ︸

=0

+B3C〈ĉ†b̂b̂†b̂〉︸ ︷︷ ︸
=0

+ B2C2〈ĉ†b̂b̂†ĉ〉︸ ︷︷ ︸
=B2

C
2
nc(nb+1)

+B2C2〈ĉ†b̂ĉ†b̂〉︸ ︷︷ ︸
=0

+BC3〈ĉ†b̂ĉ†ĉ〉︸ ︷︷ ︸
=0

−BCntot〈ĉ
†b̂〉︸ ︷︷ ︸

=0

+B2C2〈ĉ†ĉb̂†b̂〉︸ ︷︷ ︸
=B2

C
2
nbnc

+BC3〈ĉ†ĉb̂†ĉ〉︸ ︷︷ ︸
=0

+BC3〈ĉ†ĉĉ†b̂〉︸ ︷︷ ︸
=0

+ C4〈ĉ†ĉĉ†ĉ〉︸ ︷︷ ︸
=C4(2n2

c+nc)

−C2ntot〈ĉ
†ĉ〉︸ ︷︷ ︸

=C2
ntotnc

−B2ntot〈b̂
†b̂〉︸ ︷︷ ︸

=B2
ntotnb

−BCntot〈b̂
†ĉ〉︸ ︷︷ ︸

=0

−BCntot〈ĉ
†b̂〉︸ ︷︷ ︸

=0

−C2ntot〈ĉ
†ĉ〉︸ ︷︷ ︸

=C2
ntotnc

+n2
tot]FC(t) . (2.2.31)
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Here, we neglect all terms that are proportional to b̂ and proportional to ĉ because the
first moment of thermal noise is zero. Also, we can neglect the fast rotating terms b̂b̂ and
ĉĉ. That way, we obtain

Cth(t) = [η2n2
b + ηnb + 2η(1− η)nbnc

+ (1− η)2n2
c + (1− η)nc]FC(t) , (2.2.32)

This equation shows that the beam splitter model predicts the thermal photon statistics of
the incoming field nb for η 7→ 1 (no attenuation) and the thermal photon statistics of the
cold attenuator for η 7→ 0 (strong attenuation).

Correlator for coherently driven resonators For coherently driven resonators, it is
convenient to describe the transmission line modes as b̂in(ω,t) = eıωt[b̄in + ξ̂(t)]. Here, b̄(?)in
describes a classical coherent drive with frequency ω=ωr− δr. For a coherent input field,
we assume that ξ̂(†)(t) are just vacuum fluctuations [17, 165, 167]. In a frame rotating at
ω, the field inside the cavity is given as â(τ) = ā+ d̂(τ), where [167]

ā = −
√
κ

ıδr + κ/2 b̄in , (2.2.33)

d̂(τ) = −
√
κ

∫ τ

−∞
dt e−(ıδr+κ/2)(τ−t)ξ̂(t) . (2.2.34)

We can use this expression to calculate the correlator Ccoh(τ) =nr〈d̂(0)d̂†(τ)〉, which decays
at the amplitude decay rate κx/2 since [17, 167] 〈d̂†(0)d̂(t)〉= exp(−ıδrt−κx|τ |/2). Hence,
on resonance, the correlator for a coherent state Ccoh(τ) =nr exp(−κx|τ |/2) decays twice
as slow as the correlator for white noise.

Attenuated coherent fields To calculate the photon number variance of an attenuated
coherent field, we use the field operator b̂=α(t) + d̂(t), which describes a vacuum (d̂†d̂= 0)
which is displaced by |α|2 =nb. A coherently driven resonator has the decay function
FC(t) = exp(−κxt/2) [17, 168]. In the same manner as above, we define the total photon
number ntot = 〈â†â〉=B2nb +C2nc. We want to note that the calculations below are also
valid for shot noise, which has a Poisson statistics. In this case however, one has to use
the characteristic decay function FC(t) = exp(−κxt) [17, 166]. That way, we calculate the
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correlator

Ccoh(t) = 〈[â†(t)â(t)− 〈â†â〉][â†(0)â(0)− 〈â†â〉]〉
= 〈[{B(α?(t) + d̂†(t)) + Cĉ†(t)}{B(α(t) + d̂(t)) + Cĉ(t)} − ntot]×

[{B(α?(0) + d̂†(0)) + Cĉ†(0)}{B(α(0) + d̂(0)) + Cĉ(0)} − ntot]〉
= 〈[B2|α(t)|2 +B2α?(t)d̂(t) +BCα?(t)ĉ(t)

+B2d̂†(t)α(t) +B2d̂†(t)d̂(t) +BCd̂†(t)ĉ(t)
+BCĉ†(t)α(t) +BCĉ†(t)d̂(t) + C2ĉ†(t)ĉ(t)− ntot]×

[B2|α(0)|2 +B2α?(0)d̂(0) +BCα?(0)ĉ(0)
+B2d̂†(0)α(0) +B2d̂†(0)d̂(0) +BCd̂†(0)ĉ(0)
+BCĉ†(0)α(0) +BCĉ†(0)d̂(0) + C2ĉ†(0)ĉ(0)− ntot]〉 . (2.2.35)

Again multiplying all terms yields the non-vanishing terms

Ccoh(t) = [B4|α|4︸ ︷︷ ︸
=B4

n
2
b

+B2C2|α|2〈ĉ†ĉ〉︸ ︷︷ ︸
=B2

C
2
nbnc

−B2|α|2ntot︸ ︷︷ ︸
=B2

nbntot

+B4〈α?d̂d̂†α〉︸ ︷︷ ︸
=B4

nb

+ B2C2〈α?ĉĉ†α〉︸ ︷︷ ︸
=B2

C
2(nbnc+nb)

+B2C2〈ĉ†αα?ĉ〉︸ ︷︷ ︸
=B2

C
2(nbnc+nc)

+B2C2〈ĉ†d̂d̂†ĉ〉︸ ︷︷ ︸
=B2

C
2
nc

+B2C2|α|2〈ĉ†ĉ〉︸ ︷︷ ︸
=B2

C
2
nbnc

+ C4〈ĉ†ĉĉ†ĉ〉︸ ︷︷ ︸
=C4(2n2

c+nc)

−C2ntot〈ĉ
†ĉ〉︸ ︷︷ ︸

=C2
ncntot

−B2|α|2〈ntot〉︸ ︷︷ ︸
=B2

nbntot

−C2ntot〈ĉ
†ĉ〉︸ ︷︷ ︸

=C22ncntot

+n2
tot]FC(t). (2.2.36)

After simplifying Eq. (2.2.36), we obtain the correlation function

Ccoh(t) = [ηnb + 2η(1− η)nbnc + (1− η)2n2
c + (1− η)nc]FC(t) , (2.2.37)

which approaches the variance of a coherent state for η 7→ 1 (no attenuation) and the
thermal photon statistics of the cold attenuator for η 7→ 0 (strong attenuation).

Amplified thermal fields In reconstruction setups for propagating microwaves [121,
139, 152, 169] often Josephson parametric amplifiers are used as preamplifiers, which amplify
the signal with a power gain G. Similar to the calculations of attenuated propagating
microwaves, we calculate the variance of an amplified thermal field using a beam splitter
model as depicted in Fig. 2.22 (b). In this model, we describe the amplified field by the
operator [169, 170] â(t) =Bb̂+Cĉ†, where B=

√
G and C =

√
G− 1. That way, we obtain

the total photon number ntot =Gnb + (G−1)nc + (G−1) and the correlator

Cjpa(τ) = 〈[â†(τ)â(τ)− 〈â†â〉][â†(0)â(0)− 〈â†â〉]〉
= 〈[{Bb̂†(τ) + Cĉ(τ)}{Bb̂(τ) + Cĉ†(τ)} − ntot]×

[{Bb̂†(0) + Cĉ(0)}{Bb̂(0) + Cĉ†(0)} − ntot]〉
= 〈[B2b̂†(τ)b̂(τ) +BCb̂†(τ)ĉ†(τ) +BCĉ(τ)b̂(τ) + C2ĉ(τ)ĉ†(τ)− ntot]×

[B2b̂†(0)b̂(0) +BCb̂†(0)ĉ†(0) +BCĉ(0)b̂(0) + C2ĉ(0)ĉ†(0)− ntot]〉 . (2.2.38)
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Multiplying all terms yields the non vanishing terms

Cjpa(τ) =[B4〈b̂†b̂b̂†b̂〉︸ ︷︷ ︸
B

4(2n2
b+nb)

+B2C2〈b̂†b̂ĉĉ†〉︸ ︷︷ ︸
B

2
C

2(nbnc+nb)

− B2ntot〈b̂
†b̂〉︸ ︷︷ ︸

B
4
n

2
b+B2

C
2
nbnc+B2

C
2
nb

+B2C2〈b̂†ĉ†ĉb̂〉︸ ︷︷ ︸
B

2
C

2
nbnc

+ B2C2〈ĉb̂b̂†ĉ†〉︸ ︷︷ ︸
B

2
C

2(nbnc+nb+nc+1)

+B2C2〈ĉĉ†b̂†b̂〉︸ ︷︷ ︸
B

2
C

2(nbnc+nb)

+ C4〈ĉĉ†ĉĉ†〉︸ ︷︷ ︸
C

4(2n2
c+3nc+1)

− C2ntot〈ĉĉ
†〉︸ ︷︷ ︸

B2C2(nbnc + nb)
+C4(n2

c + 2nc + 1)

− B2ntot〈b̂
†b̂〉︸ ︷︷ ︸

B4n2
b +B2C2nbnc
+B2C2nb

− C2ntot〈ĉĉ
†〉︸ ︷︷ ︸

B2C2(nbnc + nb)
+C4(n2

c + 2nc + 1)

+n2
tot]FC(t).

(2.2.39)

After simplifying Eq. (2.2.39), we obtain the correlation function

Cjpa(t) = [G2n2
b +G2nb +G(G− 1)nb + 2G(G− 1)nbnc

+ (G− 1)2n2
c + (G− 1)2nc +G(G− 1)nc +G(G− 1)]FC(t) , (2.2.40)

which approaches the variance n2
b +nb of a thermal state for G 7→ 1 (no amplification). For

strong amplification (G� 1), we obtain

Cjpa(t) = G2[nb + nc + 1]2FC(t) . (2.2.41)

2.3 Circuit QED
While in cavity quantum electrodynamics (QED) real atoms are used to study light-matter
interaction [7] as depicted in Fig. 2.23 (a), electrical circuits are used in circuit QED
experiments [16, 17, 26] as depicted in Fig. 2.23 (b). In these experiments, superconducting
qubits play the role of artificial atoms while a superconducting resonator provides the
quantized modes of the electromagnetic field with typical frequencies in the microwave
regime. In this section, we introduce a general framework for light-matter interaction in
Sec. 2.3.1. In Sec. 2.3.2, we derive the dipole and quadrupole coupling between quantized
field modes and superconducting qubits. Finally, we discuss selection rules and the
appearance of sidebands in Sec. 2.3.3.

2.3.1 Interaction between light and a two-level system

In a general context, the interaction between light and a two-level system can be de-
scribed within the quantum Rabi model [171]. In this model, a quantum two-level system,
represented by the Hamiltonian in Eq. (2.1.2), couples to a quantized resonator mode,
represented by the Hamiltonian in Eq. (2.2.8). In the absence of loss terms, the quantum
Rabi Hamiltonian [172]

HQR =
~ωq

2 σ̂z + ~ωr

(
â†â+ 1

2

)
+ ~g (σ̂+ + σ̂−)

(
â+ â†

)
︸ ︷︷ ︸

Hint

(2.3.1)

describes a coherent coupling between the two entities. The corresponding interaction
Hamiltonian Hint is based on the qubit raising and lowering operators σ̂+ and σ̂−, respec-
tively. In Eq. (2.3.1), the coupling rate g describes the interaction strength between the
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Figure 2.23: (a) Typical cavity QED setup, where a real atom is placed inside an optical cavity.
(b) Typical setup for a circuit QED experiment, where an artificial atom (qubit) is placed inside a
superconducting resonator. This setup is well-suited to reach the strong coupling limit, where qubit
decay rate γq and resonator loss κtot are smaller than the mutual coupling g.

quantized field and the qubit. In the strong coupling regime, where the coupling rate is
larger than all loss rates of the system but significantly lower than all eigenfrequencies,
the quantum Rabi model can conveniently be approximated by the Jaynes-Cummings
model [173] with corresponding Hamiltonian

HJC =
~ωq

2 σ̂z + ~ωr

(
â†â+ 1

2

)
+ ~g(σ̂+â+ σ̂−â

†)︸ ︷︷ ︸
Hint

. (2.3.2)

In the Jaynes-Cummings Hamiltonian, we can either excite the qubit by absorbing a
photon (σ̂+â) or take one excitation from the qubit and generate a photon (σ̂−â†). In
the basis of the uncoupled qubit and resonator eigenstates |e,nr〉 and |g,nr + 1〉 using the
resonator photon number nr, the system Hamiltonian [17]

HJC,n = ~
2

(
2nrωr + ωq g

√
nr + 1

g
√
nr + 1 (nr + 1)ωr − ωq

)
. (2.3.3)

yields the eigenfrequencies ω±,n = (nr + 1/2)ωr± 1/2
√
δ2 + 4g2(nr + 1) and the ground state

is ω−,0 =− δ/2. Here, δ≡ωq−ωr is the detuning between the bare qubit and the resonator
eigenfrequency. The eigenfrequencies of Eq. (2.3.3) show that there is a finite coupling
between the eigenstates of the uncoupled system depending strongly on the detuning δ as
depicted in Fig. 2.24. The new dressed eigenstates of the system are the superposition states
|+,nr〉 = cos Θnr

|e,nr〉 + sin Θnr
|g,nr〉 and |−,nr〉 = cos Θnr

|g,nr + 1〉 − sin Θnr
|e,nr〉.

Here, the mixing angle Θn = tan−1(2g
√
nr + 1/δ)/2 is a measure for the degree of entan-

glement between qubit and resonator states.

Resonant regime When qubit and light mode are on resonance, i.e., δ' 0, the mixing
angle Θn =π/4 is maximum and consequently there is strong entanglement. In this regime,
a coherent exchange of excitations between qubit and resonator occurs with the vacuum
Rabi frequency 2g. This interaction lifts the degeneracy of the corresponding eigenenergies
by 2g

√
nr + 1 to the new doublet eigenstates shown in Fig. 2.24 (a).

Dispersive regime In the dispersive regime, the detuning between qubit and resonator
frequency is much larger than the coupling, i.e., δ� g. In this regime, there is no exchange of
excitations anymore but virtual photons mediate a dispersive interaction between qubit and
light field. This interaction leads to frequency shifts of the qubit and resonator eigenfrequen-
cies. The dressed states are either more photon-like or more atom-like. For the atom-like
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Figure 2.24: (a) Jaynes-Cummings ladder in the resonant regime where ωr'ωq and thus δ' 0.
The strong coupling between the qubit and resonator states results in symmetric and antisymmetric
superposition states (dressed states) with eigenenergies separated by 2g

√
nr + 1 thereby lifting the

degeneracy of the uncoupled states. (b) Jaynes-Cummings ladder in the dispersive regime for the specific
case ωq >ωr, i.e., a positive detuning δ. Then, the resonator states experience a downward shift when
the qubit is in |g〉 and an upward shift when the qubit is in |e〉 by ± (2n+1) g2/δ.

states, we use the unitary transformation UHJCU
† with U = exp

[
(g/δ)

(
âσ̂+ − â

†σ̂−
)]

to
calculate the dispersive Jaynes-Cummings Hamiltonian [17]

Hdisp ≈ ~ωr
(
â†â+ 1/2

)
+ ~/2

(
ωq + 2χâ†â+ χ

)
σ̂z . (2.3.4)

As apparent from Eq. (2.3.4), the qubit transition frequency ωq has a constant Lamb
shift χ≡ g2/δ and further depends on the photon-number defined by the ac-Stark shift 2χ〈â†â〉
[cf. Fig. 2.24 (b)]. In the photon-like case, we obtain the effective Hamiltonian [6]

Hdisp,r ≈ ~ωqσ̂z/2 + ~ (ωr + χσ̂z)
(
â†â+ 1/2

)
, (2.3.5)

kx

qubit

res.

g ~ Cg

Cr
C
S

Figure 2.25: Equivalent cir-
cuit diagram of a transmon
qubit coupled capacitively to a
resonator, which itself is cou-
pled to a readout line.

describing the qubit state-dependent resonator frequency,
which we use for readout purposes. Because a transmon qubit
is no true two-level system and has only a small anharmonic-
ity α, the dispersive shift becomes [40] χ≡ [g2/δ][α/(δ+α)]
because higher qubit levels have a significant influence.

Coupling between transmon qubit and resonator
Due to its large shunt capacitors, a transmon qubit has a
dominating electric dipole moment that couples to the oscil-
lating electric field of the resonator. When calculating the
coupling strength, it is convenient to return to a circuit repre-
sentation of the system such as the one given in Fig. 2.25. The
transmon qubit couples to the oscillating gate voltage [174]
Vg =Vvac(â†+ â) of the resonator. Here, Vvac = (~ωr/2Cr)

1/2
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is the vacuum rms voltage of the resonator, which has a capacitance Cr. The coupling
is mediated via the effective gate capacitance Cg between qubit and resonator. This
capacitance results in the vacuum coupling strength [40]

~g =
√

2
Cg
CΣ

(
EJ
8Ec

)1/4

eVvac , (2.3.6)

where CΣ is the total capacitance of the qubit.

2.3.2 Coupling between gradio qubit and resonator

So far, we have encountered light-matter interaction by assuming a point-like dipole
coupling µ ·Hr between the qubit dipole moment µ and the resonator generating an
oscillating field with amplitude Hr.4 In this context, point-like means that the wavelength
of the oscillating field is much larger than the qubit size. Further, dipole coupling means
that the oscillating field is described in the far field approximation. In this approximation, a
plane wave with constant amplitude represents the oscillating field. For a micrometer-sized
qubit, the dipole approximation is justified and we can straightforwardly derive the dipole
coupling. To this end, we apply a quantum model of the electric dipole coupling by using
the quantum mechanical equivalents µ 7→ 〈e|µ|g〉 (σ̂+ + σ̂−) and Hr 7→Hvacez(â+ â†) [174].
Here, we use the vacuum magnetic field strength Hvac as well as the vector ez along
the quantization axis of the qubit. Restating the dipole interaction in the quantum
mechanical formalism reproduces the interaction Hamiltonian Hint = ~g(σ̂+ + σ̂−)(â+ â†)
[see Eq. (2.3.1)] with single photon dipole coupling constant g= 〈e|µ|g〉Hvacez/~.
Generally, the coupling accounts also for higher magnetic moments of the qubit, such as the
quadrupole moment Q introduced in Sec. 2.1.6. Furthermore, the oscillating field generated
by the resonator can have a field gradient ∇Hr across the qubit area. The two most
symmetric coupling schemes between a gradio qubit and a CPW resonator are sketched in
Fig. 2.26 (a) and Fig. 2.26 (b). While in Fig. 2.26 (a), the oscillating current creates a field
gradient coupling to σ̂z (transverse), in Fig. 2.26 (b) the magnetic field couples only into
the SQUID loop resulting in a longitudinal σ̂x coupling. In the following, we focus on the
transverse coupling scheme but we account for imbalances of the magnetic moments of the
qubit (see Sec. 2.1.6 for details). The interaction Hamiltonian obtained from a standard
multipole expansion [175, 176] can thus be written as

Hint/µ0 =
(i): gt︷ ︸︸ ︷

[Q · ∇Hr]σ̂z +
(ii): g`︷ ︸︸ ︷

[Qim · ∇Hr]σ̂x + [µsq ·Hr]σ̂x +

(iii): ≈ 0︷ ︸︸ ︷
[µim ·Hr]σ̂z +O(∇2 ·Hr) .

(2.3.7)
In the following, we discuss the three contributions (i) - (iii) highlighted in Eq. (2.3.7).

Transverse coupling The first contribution (i) in Eq. (2.3.7) is related to the transverse
coupling strength gt, which is the intended coupling in the scheme depicted in Fig. 2.26 (a).
Hence, this coupling strength is dominating while the contributions from (ii) and (iii) are
perturbative corrections. The transverse coupling to the σ̂z degree of freedom is provided
by the field gradient ∇Hr generated by the resonator current, which changes the qubit
phase ϕq defined between the two points p1 and p2. For the transverse coupling scheme, the

4 Even though we are discussing the coupling between an electric dipole moment d and an electric field
E so far, it can be shown [106] that this mechanism is equivalent to an magnetic dipole coupling µ ·Hr.
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Figure 2.26: (a) Transverse coupling scheme and resulting current flow for a gradio qubit coupled
to a resonator. (b) As in panel (a) but for longitudinal coupling. (c) Transverse coupling scheme
between a gradient drive field and a gradio qubit. (d) As in panel (c) but for longitudinal coupling to a
homogeneous drive field.

total resonator current Ir = Ivac(â+ â†) splits up into the three currents Ir = Ir1 + Ir2 + Iα.
As depicted in Fig. 2.26 (a) each of these currents contributes to the total field gradient.
We can calculate the individual currents Irj = IrLtot/(Lkj +Lgj), where j= 1, 2, α. Here,

Ltot=
[

1
Lk1 + Lg1

+ 1
Lk2 + Lg2

+ 1
Lkα + Lgα +∑

junctions LJ

]−1

(2.3.8)

is the total inductance. Because the sum of the Josephson junction inductance dominates
the loop inductance of the two gradiometer loops, the value of Iα is negligible. Furthermore,
we assume equal values Ir1 = Ir2 = Ir/2 and equal inductance values Lk1 +Lg1 =Lk2 +Lg2.
Therefore, the resonator current induces a flux difference δΦgr = (Lk1 +Lg1)(Ivac/2)(â+ â†)
and the field gradient reads µ0∇Hr = δΦgr/(A`s), where A`s is the geometry factor defined
in Sec. 2.1.6. Deviations from these assumptions generate an effective homogeneous field Hr,
which introduces a longitudinal coupling as discussed below. Together with the quadrupole
moment Q =A`s(Ip/2) defined in the same section, the transverse interaction Hamiltonian

39



Chapter 2. Superconducting quantum circuits

in the bare basis reads as

Hint,t = (Lk1 +Lg1)Ivac
2
Ip
2 (â+ â†)σ̂z ≡ ~gt(â+ â†)σ̂z . (2.3.9)

This interaction Hamiltonian has the same form as the interaction Hamiltonian for a regular
flux qubit coupled to a resonator [26].

Longitudinal coupling The second part (ii) in Eq. (2.3.7) describes a longitudinal
coupling between qubit and resonator. Both terms, Qim · ∇Hr and µsq ·Hr, are strongly
suppressed compared to the transverse coupling strength gt. The gradient term is suppressed
because it couples only to the qubit imbalance and the dipolar term is suppressed because
the resonator does not create a homogeneous field to first order.
However, a real gradiometer has imbalances between the two loops due to fabrication
imperfections [83, 177, 178] resulting in a homogeneous field Hr. This field induces a net
frustration δfα,gr = δMα,grIvac(â+ â†)/Φ0 due to the dipole moment µsq of the α-SQUID.
Here, δMα,gr is the difference between the mutual inductance Mα1−Mα2 between the
SQUID and each gradiometer loop. This difference can be made as small as 0.2 % [83] by
standard fabrication processes resulting in a negligible cross coupling. We expect a stronger
effect of longitudinal coupling if a finite current Iα (∝ ∇Hr) splits asymmetrically into the
SQUID arms because of different inductance values of the two SQUID junctions. This effect
results in a finite quadrupole imbalance Qim, which converts a field gradient into additional
flux through the SQUID loop. We assume that the current Iα across the SQUID splits
proportional to the asymmetry factor δLJα = |LJα1−LJα2| and the longitudinal interaction
reads

Hint,` = δLJαIαIvac(â+ â†)σ̂x ≡ ~g`(â+ â†)σ̂x . (2.3.10)

For realistic parameters δLJα = 100 pH, Ivac = 20 nA, Iα = 1 nA, we obtain a longitudinal
coupling strength g`/2π' 3 MHz. At the degeneracy point (ε= 0), a qubit-resonator system
with purely longitudinal coupling in the bare basis is described as

Hsys,b = ~∆
2 σ̂x + ~ωrâ

†â+ ~g`(â+ â†)σ̂x . (2.3.11)

For this Hamiltonian, we cannot perform the usual transformation into the dispersive
Jaynes-Cummings Hamiltonian. Instead, we rotate into the qubit eigenbasis and perform a
polaron transformation [179–182] H̃sys,q =UHsys,bU

† using U = exp
[
σ̂z(â†− â)g`/ωr

]
. This

transformation exactly diagonalizes the system Hamiltonian defined in Eq. (2.3.11) to the
energy eigenbasis [183, 184]

H̃sys,q = ~∆
2 σ̂z + ~ωrâ

†â− g2
`

ωr
1 . (2.3.12)

This Hamiltonian exhibits no qubit-state-dependent ac-Stark shift but a constant frequency
shift g2

` /ωr.
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System Hamiltonian The last therm (iii) in Eq. (2.3.7) is negligible because it is a
product of two second-order contributions. First, the resonator does not generate a strong
homogeneous fiel Hr, and second the imbalance dipole element µim is small. Therefore,
the system Hamiltonian in the bare basis reads as

Hsys,b =Hq +Hr +Hint,t +Hint,`

=~∆
2 σ̂x + ~ε

2 σ̂z + ~ωrâ
†â+ ~gt(â+ â†)σ̂z + ~g`(â+ â†)σ̂x . (2.3.13)

Because the transverse coupling dominates over the longitudinal coupling gt� g`, we use
the standard Jaynes-Cummings notation and transfer Eq. (2.3.13) to the eigenbasis of the
qubit

Hsys,q =
~ωq

2 σ̂z + ~ωrâ
†â

+ ~gt cos θ(â+ â†)σ̂z − ~gt sin θ(â+ â†)σ̂x

+ ~g` cos θ(â+ â†)σ̂x + ~g` sin θ(â+ â†)σ̂z , (2.3.14)

where we use the Bloch angle θ= tan−1(∆/ε) and ωq =
√

∆2 + ε2. At the degeneracy
point, we find θ=π/2 and {cos θ, sin θ}= {0, 1}.

2.3.3 Selection rules

A selection rule constrains the possible transition between two qubit states induced by
an external drive due to the conservation of several quantum numbers such as angular
momentum or parity [51]. Originating from quantum optics, these rules are also valid for
circuit QED experiments [42, 106, 185, 186]. For electromagnetically induced transitions,
the parity Π̂ of initial and final state separates between forbidden and allowed transitions.
For flux qubits, the ground state |g〉 has even parity, while the excited state |e〉 has odd
parity [95]. In the same way as for Π̂, we define an even operator Â+ if it commutes
with |g〉 and vice versa. Even operators cannot induce transitions between states of different
parities, which is expressed in the vanishing matrix element

〈e|Â+|g〉 = 0 . (2.3.15)

On the other hand, an odd operator Â− can induce transitions between |g〉 and |e〉, i.e.,

〈e|Â−|g〉 6= 0 . (2.3.16)

In the following, we analyze transitions between the qubit ground and excited states based
on the parity of the drive field. We describe this field quantum mechanically with the odd
parity dipole operator (d̂†+ d̂). Consequently, transitions between different qubit states
can be treated as electric-dipole transitions in natural atoms [106]. This means, according
to Eq. (2.3.15) and Eq. (2.3.16), one-photon assisted transitions are allowed for dipolar
qubits as shown in Fig. 2.27 (a). If the qubit is not at its degeneracy point, the parity of the
Jaynes-Cummings Hamiltonian is not well-defined and one- and multi-photon transitions
are allowed [cf. Fig. 2.27 (b)].
For the tunable gradiometric flux qubit, these selection rules do no longer follow this
simple picture because the qubit has a dipole moment coupling to σ̂x and a quadrupole

41



Chapter 2. Superconducting quantum circuits

(a)
dipole qubit quadrupole qubit

(b)

@ deg. point

g

w
q

e

w
q/2 w

r
w

q-w
r

w
q/2

g

w
q

e

w
q/2

w
r

w
q-w

r

w
q/2

g

w
q

e

w
q/2 w

r
w

q-w
r

w
q/2

g

w
q

e

w
q/2 w

r
w

q-w
r

w
q/2

not @ deg. point

symmetric fieldantisymmetric field @ 

g

w
q

e

w
q/2

w
r

w
q-w

r

w
q/2

(c) (d) (e)

(odd parity) (even parity)
@ deg. point @ deg. point

far field approximation

Figure 2.27: Selection rules for one- and multi-photon transitions for a dipole qubit [(a),(b)] and a
quadrupole qubit [(c)-(e)]. Solid lines indicate allowed transitions while dashed lines represent forbidden
transitions.

moment coupling to σ̂z. At the qubit degeneracy point, state transitions are excited by an
antisymmetric field ∇Hd depicted in Fig. 2.26 (c), while a (weak) symmetric drive depicted
in Fig. 2.26 (d) has no effect. As shown in Fig. 2.27 (c) and Fig. 2.27 (d), two-photon assisted
transitions are neither allowed for antisymmetric nor for symmetric drives. In the following,
we derive a quantitative description of the transition matrix elements. In particular, we
find a certain operating point θ? away from the degeneracy point, where dipolar and
quadrupolar drive cancel each other [see Fig. 2.27 (e)].

One-photon transitions under a mixed drive For the gradio qubit placed between
two antennas as depicted in Fig. 2.26 (c) and (d), we can drive the σ̂x term in Eq. (2.3.13)
with a symmetric, in the ideal case spatially homogeneous, microwave drive (Hd) = (0,0,Hz).
Furthermore, we can drive the σ̂z term with an antisymmetric, i.e., purely gradient
microwave drive (∇Hd) = (0,0,H̃zy). We describe the two drives in terms of their creation
and annihilation operators ˆ̀†,ˆ̀ (longitudinal drive) and t̂†,t̂ (transversal drive), respectively.
Hence, the operator ˆ̀creates a symmetric field distribution, while t̂ creates an antisymmetric
field distribution. The respective interaction can be expressed as

Hint,` = ~g`,de
ıωdt(ˆ̀†+ ˆ̀)σ̂x

c.l.≈ ~
Ω`

2 cos(ωdt)σ̂x , (2.3.17)

Hint,t = ~gt,de
ıωdt(t̂†+ t̂)σ̂z

c.l.≈ ~
Ωt
2 cos(ωdt)σ̂z . (2.3.18)

Here, g`,d and gt,d denote the longitudinal and transversal vacuum coupling strength
between the microwave drive and the qubit, respectively. In the classical limit (c.l.) on
the right hand side, the drive is expressed as a coherent state |β`,t〉, where ˆ̀|β`〉 =β` |β`〉
and t̂ |βt〉 =βt |βt〉. That way, the drives with frequency ωd are characterized by their
amplitudes Ω` = 4~g`,dβ` and Ωt = 4~gt,dβt, respectively. Then, applied to the eigenstates
|ggq〉 and |egq〉 defined in Sec. 2.1.6, one finds that Ω̂` has even parity and Ω̂t has odd
parity at the degeneracy point of the gradio qubit. For a superposition of both drives and
away from the degeneracy point, however, the parity is not well-defined and transitions
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can occur as discussed below.
In the following calculations, we derive transition matrix elements for qubit transitions
under a mixed (Ω` + Ωt) drive. We find that the selection rules known for circuit QED
setups [185] must be modified taking the longitudinal drive into account. We start our
calculations by adding the two drives to the system Hamiltonian defined in Eq. (2.3.13),
which results in the bare basis to

Hsys,b = ~∆
2 σ̂x + ~ε

2 σ̂z + ~ωrâ
†â+ ~gt(â+ â†)σ̂z + ~g`(â+ â†)σ̂x

+ ~Ωt
2 cos(ωdt)σ̂z + ~Ω`

2 cos(ωdt)σ̂x . (2.3.19)

Because we want to analyze qubit transitions, we restate the latter Hamiltonian in the
energy eigenbasis of the qubit, i.e.,

Hsys,q =
~ωq

2 σ̂z + ~ωrâ
†â

+ ~gt cos θ(â+ â†)σ̂z − ~gt sin θ(â+ â†)σ̂x

+ ~g` cos θ(â+ â†)σ̂x + ~g` sin θ(â+ â†)σ̂z

+ ~Ωt
2 cos θ cos(ωdt)σ̂z −

~Ωt
2 sin θ cos(ωdt)σ̂x

+ ~Ω`

2 cos θ cos(ωdt)σ̂x + ~Ω`

2 sin θ cos(ωdt)σ̂z . (2.3.20)

Next, we cancel the time-dependent terms 1/2Ωt cos θ cos(ωdt)σ̂z and 1/2Ω` sin θ cos(ωdt)σ̂z
by moving to a nonuniformly rotating frame, where Hrot =UHsys,qU

†− ı~∂U∂U†/∂t, and
we chose

U = exp
[
ı

2 σ̂z sin(ωdt)
(Ωt
ω

cos θ + Ω`

ω
sin θ

)]
. (2.3.21)

That way, the effective Hamiltonian reads

Hrot =
~ωq

2 σ̂z + ~ωrâ
†â+ ~gt cos θ(â+ â†)σ̂z + ~g` sin θ(â+ â†)σ̂z

+ ~
[
g` cos θ(â+ â†)− gt sin θ(â+ â†) + Ω`

2 cos θ cos(ωdt)−
Ωt
2 sin θ cos(ωdt)

]
×
[
σ̂+e

−ıφ + σ̂−e
+ıφ
]
, (2.3.22)

where φ=− sin(ωdt)(Ωt cos θ+ Ω` sin θ)/ωd. We now move to the interaction picture with
respect to qubit and resonator, which yields in rotating wave approximation

Heff = ~
[
g` cos θ(âe−ıωrt + â†e+ıωrt)− gt sin θ(âe−ıωrt + e+ıωrtâ†)

+Ω`

2 cos θ cos(ωdt)−
Ωt
2 sin θ cos(ωdt)

]
×
[
σ̂+e

+ıωqte−ıφ + σ̂−e
−ıωqte+ıφ

]
.

We can split this interaction Hamiltonian into a qubit-resonator term Heff,r and into a
qubit-driving term Heff,q given as

Heff,r = ~
[
g` cos θ(âe−ıωrt + â†e+ıωrt)− gt sin θ(âe−ıωrt + e+ıωrtâ†)

]
×
[
σ̂+e

+ıωqte−ıφ + σ̂−e
−ıωqte+ıφ

]
(2.3.23)

Heff,q = ~
[Ω`

2 cos θ − Ωt
2 sin θ

]
cos(ωdt)

[
σ̂+e

+ıωqte−ıφ + σ̂−e
−ıωqte+ıφ

]
. (2.3.24)
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Figure 2.28: Top row from (a) to (d): Color encoded excitation spectra for the direct one-photon
transition of a quadrupolar qubit plotted versus Bloch angle θ and drive frequency. From panel (a)
to panel (e) we increase the ratio Ω`/Ωt. To model the qubit linewidth, we superimpose the qubit
hyperbola [Eq. (2.1.21)], with a Lorentzian lineshape. In panel (c), the ratio Ω`/Ωt provides the situation
that there is an angle θ? at which longitudinal and transverse drive cancel each other. Bottom row from
(e) to (h): Color encoded excitation spectra for the two-photon process (α), the red sideband (β), and
the two-photon process of the blue sideband (γ) for a resonator frequency ωr = 4 GHz.

For low power (one-photon) driving, the transition Hamiltonian can be approximated using
Bessel functions, which results in

Htrans,1 = ~
2

[Ω`

2 cos θ − Ωt
2 sin θ

]
[J0(λ) + J2(λ)]σ̂x ≈

~
2

[Ω`

2 cos θ − Ωt
2 sin θ

]
σ̂x .

(2.3.25)
Here, Jk is the kth Bessel function of the first kind and λ= (Ωt cos θ+ Ω` sin θ)/ωd. Equation
(2.3.25) means that we can drive one-photon transitions at the degeneracy point via an
antisymmetric magnetic field due to the sin θ term. This effect becomes weaker when we
move away from the degeneracy point. However, in this case the longitudinal drive starts
to activate transitions via the cos θ-term. Additionally, there is a certain angle θ?, for
which both drives cancel each other. In Figs. 2.28 (a) – (d), we show numerical calculations
of the one-photon transition using Eq. (2.3.25) (with Bessel functions). Moving from (a)
to (d), we increase the impact of the longitudinal drive, while staying in the low power
(one-photon) limit, where Ω`,Ωt�ωr. As apparent, the coupling at the degeneracy point
becomes weaker when increasing the ratio between longitudinal and transversal drive,
implementing a controllable selection rule.

Multi-photon transitions For increasing drive power, we can activate multi-photon
transitions by shining electromagnetic fields of frequency ωq/n. In the case n= 2, the
two photons have frequency ωd =ωq/2 and a combined even parity. Therefore, according
to Eq. (2.3.15), two-photon processes are forbidden at the qubit degeneracy point for
transverse and for longitudinal drives. For the general n-photon case, we can express the
parity as (Π̂Â−Π̂)n = (−1)nÂn− [185]. If we move away from the qubit degeneracy point,
we can derive the effective Hamiltonian via a Schrieffer-Wolff transformation [42, 55]. For
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possible two-photon transitions in the bare basis, i.e., ωd = ∆/ sin θ, we find

Htrans,2 = ~
2

[Ω`

2 cos θ − Ωt
2 sin θ

]
[−J1(λ)− J3(λ)]σ̂x

≈ ~
2

[Ω`

2 cos θ − Ωt
2 sin θ

] [
− Ωt

2ωd
cos θ − Ω`

2ωd
sin θ

]
σ̂x

= ~
8
[(

Ω2
t − Ω2

`

)
sin2 θ cos θ + Ω`Ωt

(
sin3 θ − cos2 θ sin θ

)]
σ̂x . (2.3.26)

This Hamiltonian consists of two parts. First, a part proportional to sin2 θ cos θ, which
is well-known from circuit QED experiments studying symmetry breaking of two-photon
processes [42, 185]. For a mixed drive, this term is modified by a mixed Ω`Ωt, which also
depends strongly on the Bloch angle as shown in Figs. 2.28 (e) – (h).

Sidebands In the one-photon case, the red sideband transition (ωq−ωr) and the blue
sideband transition (ωq +ωr) are forbidden for a transversal σ̂x-like drive. However, due to
the even parity of the σ̂z operator, sideband transitions are allowed for σ̂z drives [187]. To
calculate the transition matrix element, we chose a unitary transformation via

U = exp
[
−ı∆

′t

2 σ̂z − ı(ωrt)â†â
]
, (2.3.27)

where ∆′= ∆ + (γ+ + γ−)/2 with γ±= gt/(∆±ωr). In this frame, within a RWA, the
sideband Hamiltonians read [184]

Hred = ~gt(γ+ + γ−)σ̂zâ
†â− ~

2

[Ω`

2 sin θ − Ωt
2 cos θ

]
2γ−[â†σ̂− + âσ̂+] , (2.3.28)

Hblue = ~gt(γ+ + γ−)σ̂zâ
†â− ~

2

[Ω`

2 sin θ − Ωt
2 cos θ

]
2γ+[â†σ̂+ + âσ̂−] . (2.3.29)

As shown in Figs. 2.28 (e) - (h), the transition probability for sideband transitions is opposite
compared to the one-photon transition depicted in Figs. 2.28 (a) - (f).

Strong longitudinal drives A quantum two-level system described by the Hamiltonian
in Hq = ~∆σ̂z/2 + ~εσ̂x/2 is subjected to a longitudinal coupling to external drives when it
is operated away from the degeneracy point. The reason is the finite value of the cos θ term
when transforming Hq into the eigenbasis of the qubit. For the gradio qubit, there can be
longitudinal coupling even at the degeneracy point due to the σ̂z of the SQUID loop. In
this case, one has to perform the Polaron transformation described in Eq. (2.3.11) for the
qubit-drive Hamiltonian. Such a transformation yields the effective Hamiltonian [188]

Heff =~ε
2 σ̂z + ~ωrâ

†â+ ~Ω`

2 σ̂z cos(ωdt) + ~∆
2

{
σ̂+ exp

[2g`
ωr

(â† − â)
]

+ H.c.
}
. (2.3.30)

Applying another time-dependent unitary transformation U = exp[−ıΩ`σ̂z sin(ωdt)/2ωd]
yields the Hamiltonian

Heff′ =~ε
2 σ̂z + ~ωrâ

†â+ ~∆
2

∞∑
k=−∞

{Jk(xd)σ̂+Bk(t) + H.c.} , (2.3.31)
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where Jk(xd) is the kth Bessel function of the first kind, xd = Ω`/ωd is the normalized drive
amplitude, and Bk(t) = exp

[
2g`/ωr(â†− â) +ıkωdt

]
. We can expand Eq. (2.3.31) into the

interaction picture, which yields

Hint =~∆
2

∑
k,m,n

{
Jm,nk (t)σ̂+â

†mân + H.c.
}
, (2.3.32)

with

Jm,nk (t) = (−1)nJk(xd)
m!n!

(2g`
ωr

)m+n
exp

[
−1

2

(2g`
ωr

)2
]
×

exp[ı(kωdt+ (m− n)ωrt+ εt)] . (2.3.33)

Equation (2.3.32) shows that depending on the order of n and m as well as depending
on the drive amplitude, the resonance condition can be fulfilled for more than one drive
frequency expressed in the Bessel functions Jk(xd).

2.4 Decoherence in superconducting circuits
Decoherence describes fundamental processes in physics that tend to destroy information
on a certain (superposition) state in form of dephasing and depolarization [189–193].
While depolarization, i.e., energy decay, is an irreversible and dissipative loss mechanism
into a bosonic heat bath [194–196], dephasing describes the loss of ordering information
between the phase of two states forming a quantum superposition [197]. Decoherence
addresses many fundamental questions in quantum mechanics such as the measurement
problem [198, 199], the arrow of time [200–202], or whether and how the classical world may
emerge from a quantum world [203, 204]. Technically speaking, decoherence arises from
the intended [205, 206] or unintended [207, 208] interaction of the quantum system with its
environment. In particular for solid state systems, decoherence is a limiting factor due to
the dense environment [209–211] compared to atoms in ultra-high vacuum traps [212]. In
the rest of this section, we will first introduce a general formalism to describe decoherence
of a quantum bit in Sec. 2.4.1 and introduce main noise sources in Sec. 2.4.2. Finally, we
describe loss mechanisms of superconducting resonators in Sec. 2.4.3.

2.4.1 Decoherence in quantum two-level systems

The dynamics of quantum two-level systems or qubits can conveniently be described within
the Bloch-Redfield theory [213–215] introducing the longitudinal relaxation (depolariza-
tion) rate γ1/2π=T−1

1 and the transverse relaxation (dephasing) rate γ2/2π=T−1
2 . The

dephasing process itself is a combination of energy decay and pure dephasing (homogeneous
broadening), which obey

γ2 = γ1
2 + γϕ (2.4.1)

characterized by the pure dephasing rate γϕ. The origin for decay and dephasing are
fluctuations in the environment that couple incoherently to the qubit. There is a large
number of possible sources for fluctuations such as flux noise [33, 216–219], charge noise [40,
93, 220–223], or noise from quasiparticles [36, 65, 224–227]. Each of these noise sources
can be described as a quantum emitter generating temporal fluctuations δλ(t) [211],
where λ is a normalized amplitude, e.g., Φ/Φ0. The emitter is characterized by its
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Figure 2.29: (a) Power spectral density for different noise sources and a Purcell filter plotted versus
frequency. Additionally, we show the Lorentzian line shape of the qubit. (b) Level diagram of a qubit.
A finite power spectral density S(ωq) at the qubit frequency introduces depolarization, while pure
dephasing is caused by a spectral density S(ω 7→ 0) in the low-frequency limit.

autocorrelation function Cλ = 〈δλ(0)δλ(t)〉. One prominent example is white noise, where
the autocorrelation function is a δ-function meaning there is no coherence at all within
the noise. Generally, the frequency distribution of the noise is characterized by the power
spectral density S(ω) = ~(2π)−1 ∫ dt Cλe−ıωt.
Please note that here and in the following, we use the power spectral density S(ω) that
has units W/Hz.
For colored noise, important examples are 1/f noise [228] with S(ω)∝ω−1 on the hand,
and thermal noise [229] with S(ω)∝ ~ω coth(~ω/kBT ) on the other hand [see Fig. 2.29 (a)].
In our description, we assume that the noise is weak [S(ω)� ~ω], is Gaussian distributed,
and has a short ranged autocorrelation function, i.e., it is Markovian [190, 230]. This
Markovian approximation provides the foundation for the Bloch-Redfield theory but has
to be modified if the qubit is coupled too strong to the heat bath [231–233].
To study the effect of environmental fluctuations, we model the qubit-bath system via the
Hamiltonian Hsys = (~/2)[∆σ̂x + εσ̂z] +Hbath, where the bath Hamiltonian Hbath provides
the fluctuations δλ. At the qubit sweet spot, fluctuations acting on ε vanish to first-order,
but second-order contributions can have a significant influence [234, 235]. Hence, we expand
Hsys to second-order in δλ which yields in the eigenbasis of the qubit [211]

Hsys ≈
~
2
[
ωqσ̂z + δωzσ̂z + δωxσ̂x

]
+O(δλ3) . (2.4.2)

Here, δωz =Dλ,zδλ+D(2)
λ,zδλ

2/2 and δωx =Dλ,xδλ+D(2)
λ,xδλ

2/2 are transverse and longitu-
dinal energy fluctuations, where we have used the coupling strengths Dλ = ∂Hsys/∂δλ and
D(2)
λ = ∂2Hsys/∂δλ

2 for first- and second-order noise, respectively. If the fluctuations δλ
have just contributions along σz, they are diagonal in the energy eigenbasis of the qubit
and only modulate the qubit eigenvalues but not its eigenstates. Hence, such perturbations
introduce pure dephasing but do not cause depolarization. Generally, fluctuations can also
have contributions along the σx direction, which is perpendicular to the quantization axis,
meaning they introduce both dephasing and depolarization. In the following, we describe
depolarization, caused by a finite power spectral density S(ωq) at the qubit frequency and
pure dephasing caused by the spectral density S(ω 7→ 0) in the low-frequency limit as
depicted in Fig. 2.29 (b).
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Depolarization Depolarization is induced by noise sources (fluctuations) that are reso-
nant with the qubit and thus have a significant power spectral density S(|ωq|). On the
one hand, these fluctuations increase the radiative decay, i.e., the relaxation rate γ↓ due
to stimulated emission (compared to the spontaneous emission rate [236] due to vacuum
fluctuations). On the other hand, the fluctuations can excite the qubit with a certain rate
γ↑. These two processes add up to the depolarization rate γ1 = γ↓+ γ↑. Using a golden
rule approach [237, 238], we find the two transition rates [167, 229, 239]

γ↑ = 1
2

[
Dλ,x
~ωq

]2 S(−ωq)
~

≡ 1
2
κλ
ωq

S(−ωq)
~

, (2.4.3)

γ↓ = 1
2

[
Dλ,x
~ωq

]2 S(+ωq)
~

≡ 1
2
κλ
ωq

S(+ωq)
~

, (2.4.4)

where we have introduced the effective coupling κλ between the fluctuations and the
qubit. These equations show that the qubit reacts with excitation to negative frequen-
cies and with relaxation to positive frequencies. From a purely classical consideration,
one expects a symmetric power spectral density [239], i.e., S(+ωq) =S(−ωq). This sym-
metric case would result in equal rates γ↑= γ↓ meaning that the qubit stays totally
unpolarized. Due to the detailed balance of a qubit in thermal equilibrium, however, the
transition rates obey [167] γ↑/γ↓= exp(−kBT/~ωq) which in turn forces the asymmetric
case S(−ωq) = exp(−kBT/~ωq)S(+ωq). Hence, we find the total decay rate

γ1 = γ↓ + γ↑ = 1
2
κλ
ωq

S(ωq)
~

[
1 + exp

(
kBT

~ωq

)]
, (2.4.5)

which leads to a decay function g(t) = exp(−γ1t/2π). At low temperatures T � ~ωq/kB,
the excitation rate γ↑ is exponentially suppressed and γ1' γ↓. Because qubit experiments
are typically performed at kBT � ~ωq, we use the expression relaxation rate also for γ1
processes. The direct proportionality between decay rate and power spectral density has
been used in a large variety of experiments to measure the frequency dependence of the
environmental background noise [35, 119, 219, 221, 240–243].

Purcell effect The above derivation for relaxation assumes that the qubit is exposed to
the complete ohmic frequency spectrum of the environment. If we place the qubit inside a
resonator, the spectral density can be strongly reduced due to the Purcell effect [240, 244–
247]. The reason for the reduced density of states is the resonator filter, which only allows
states within its Lorentzian frequency distribution [7]

FL(ω) = κtot/2
(ω − ωr)2 + (κtot/2)2 (2.4.6)

that has to be multiplied to the qubit’s linewidth [cf. Fig. 2.29 (a)]. If qubit and resonator
are close to resonance, the spontaneous emission rate is enhanced by the resonators quality
factor, i.e., larger than in the case of a free space environment. For a large qubit-resonator
detuning δ, however, the low density of states suppresses the radiative decay. We can
express the Purcell filtered relaxation rate of the qubit as [247]

γP (δ) = κx
2 −

√
2

2

√
−A+

√
A2 + (κδ)2 ≈ κxg

2

δ2 (2.4.7)

with A= δ2 + 4g2−κ2
x/4.
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Pure dephasing Pure dephasing of superposition states in qubits is introduced by
a power spectral density S(ω 7→ 0). These adiabatic fluctuations of the environmental
bath modify the qubit transition frequency, which subsequently leads to dephasing of the
superposition state. For noise with a sufficiently smooth distribution around ω= 0, we can
again use a golden rule approach and find [211] γϕ =πD2

λ,zS(ω= 0)/~. In particular, for
thermal noise on ohmic microwave lines we find [210] γϕ =αkBT/~, where the dimensionless
dissipation parameter α= limω 7→0 S(ω)/[~ω] characterizes the coupling strength to the
environment. We have to perform a more elaborate analysis for noise that diverges at zero
frequency, e.g., 1/f noise. For an arbitrary spectral density, the qubit coherence 〈σ̂−(t)〉
decays as [235]

|〈σ̂−(t)〉| = exp
[
−1

2

∫ dω
2π S(ω)sin2(ωt/2)

(ω/2)2

]
. (2.4.8)

For 1/f noise and linear coupling ∝ δλ, the decay is proportional to exp[(δλt)2 ln(ωirt/2π)],
where the infrared cut-off frequency ωir is set by experimental details (see Sec. 4.4.1). For
solid-state based qubits, 1/f noise is typically a dominant source for decoherence. To
decrease this effect, one can tune the qubit to its sweet spot. At the sweet spot the linear
coupling to noise is suppressed to first-order, meaning the terms proportional to Dλ,z and
to Dλ,x in Eq. (2.4.2) vanish. Nevertheless, even at the flux sweet spot, dephasing can
be strong due to second-order coupling. In the following, we only discuss fluctuations
δλ2 coupling to the longitudinal part of the qubit Hamiltonian in Eq. (2.4.2), i.e., to D(2)

λ,z.
As above, we discuss the two relevant cases of thermal noise and of 1/f noise. Due to
its singularity at zero frequency, 1/f noise typically dominates at the qubit sweet spot.
Here, we find the quadratic power spectral density S

λ
2 = (4/π)δλ2 ln |ω/ωir|/|ω| leading

to a decay proportional to exp(−δλ2 ln |ωirt/π|
2) [234]. For thermal noise, the quadratic

contribution to the power spectral density yields a dephasing rate proportional to T 3 [234]
so that cooling has a stronger effect than in the case of linear coupling where γϕ∝T .

Qubit parameter fluctuations Next to relaxation and dephasing discussed above,
there can be variations of intrinsic qubit parameters such as the qubit level splitting
or the qubit decay rate over a long timescale on the order of hours [20, 248]. Even
though fluctuations of the qubit parameters do not directly introduce decoherence, they
can hamper the performance of larger scale systems needed for quantum computation
algorithms. The slow-frequency fluctuations can originate from interacting two-level states
in the vicinity of the qubit resulting in a 1/f distribution [248–250] and also from thermal
states [41]. Assuming that the environmental fluctuations couple directly and linearly
to the qubit parameters, i.e., γ1(t)∝S(ωq,t), we can measure the frequency spectrum
of the fluctuations via repeating measurements of the relaxation rate [41, 248]. When
recording time traces of the relaxation rate, only environmental fluctuations that are slower
than the inverse measurement time 1/tmeas of one decay trace contribute to recordable
fluctuations of the decay rate. When recording many decay traces, the autocorrelation
function 〈γ1(t)γ1(0)〉 characterizes the fluctuations. Hence, from the autocorrelation
function we can extract the power spectral density by computing the Fourier transform
S(ω) = ~/2π

∫
dt 〈γ1(t)γ1(0)〉e−ıωt as discussed above.
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2.4.2 Noise sources for superconducting qubits

Solid-state based qubits are susceptible to noise from various sources in their direct
microscopic environment but also to fluctuations in the electromagnetic background from
emitters situated in the far field. In the following, we discuss thermal noise, charge noise,
flux noise, and photon shot noise, which are the most relevant noise sources for this thesis.
A further important noise source that is not discussed here is noise from quasiparticle
tunneling [65, 223, 225, 251–253].

Thermal noise of the environment Thermal noise is always present at finite temper-
atures because there is a certain occupation of uncorrelated thermal photons nth defined
by Eq. (2.2.17). We describe these photons by a bosonic bath obeying the Hamiltonian
Hbath = ∑

k ~ωk b̂
†
k b̂k. The individual field modes with frequency ωk are described by the

respective field operators b̂†k, b̂k. The field modes are coupled to the qubit via the interac-
tion Hamiltonian Hint =−ı~∑k[κkσ̂+b̂k +κ?k b̂

†
kσ̂−], where κk and κ?k denote the coupling

between bath and qubit excitation and decay, respectively. For convenience, we split up
the transmission-line modes into a classical part b̄k originating from a (possible) coherent
drive, and into a quantum part ξ̂k, such that b̂k(t) = e−ıωktb̄k + ξ̂k(t) [165]. The quantum
part describes voltage fluctuations emitted from all nearby lines and will be the focus
of the following discussion. The lines induce a voltage V (t) =Vvac[ξ̂k(t) + ξ̂†k(t)], which is
fluctuating in time and has a Gaussian amplitude distribution. Here, Vvac is the vacuum
amplitude of the corresponding mode. For a finite temperature, the correlation function for
the voltage fluctuations reads [149] CV (t) = [3V 2

vac/π
2]
[
ζ
(
2,1− ıtkBT

~

)
+ ζ

(
2,1 + ıtkBT

~

)]
,

where ζ(s,a) = ∑∞
j=0[j+ a]−s is the Hurwitz function [cf. Fig. 2.30 (a)]. For temperatures

in the kelvin range, this description yields a sub-nanosecond, i.e., negligible coherence time
of thermal fields defined by the width of the Hurwitz function [149, 150, 254]. The power
spectral density of thermal fields can be obtained by a Fourier transform [229, 255]

S(ωk) = ξ̂†kξ̂k
2πZ0

∫
dt CV (t)e−ıωt = 2~ωk coth

( ~ωk
2kBT

)
= 4~ωk(nth + 1/2) , (2.4.9)

which is shown in Fig. 2.30 (b) and Fig. 2.30 (c). The non-vanishing spectral density at zero
temperature arises from vacuum fluctuations responsible for the term +1/2 in Eq. (2.4.9).

Thermal background radiation Next to thermal noise from the direct qubit en-
vironment, black-body emitters irradiate thermal fields that generate non-equilibrium
quasiparticles in the superconductors [256, 257]. This noise is generated as stray infrared
light at higher temperature stages inside the cryostat and enters the sample box via small
lids and also via the coaxial cables [65, 252]. Due to the broadband radiation that also
follows Eq. (2.4.9), there are two major origins for decoherence from stray infrared light.
First, stray light that is on resonance with the qubit can directly induce relaxation as
discussed for the golden rule approach above. In this case, thermal photons arriving at the
qubit enhance the decay. It has been shown [252], however, that this effect alone cannot
explain relaxation rates measured in superconducting qubits. The second decoherence
channel arises from high energy photons with energy ~ω'∆0 on the order of the supercon-
ducting energy gap ∆0. For Al, the energy gap is approximately 80 GHz [60] corresponding
to black-body radiation of a 4 K emitter. Since the whole cryostat inset is precooled by a
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Figure 2.30: (a) Hurwitz correlation function applicable for thermal states. (b) Power spectral density
for a thermal state plotted versus temperature. (c) Temperature-dependent power spectral density for
thermal states plotted versus frequency.

liquid helium bath at 4.2 K, we expect a significant influence of this radiation [256, 258] if
the sample is not efficiently shielded [65, 251].

Charge noise from two-level states Charge noise is one of the main sources for
decoherence in Josephson junction based systems [40, 220–222, 248, 259, 260] since it
couples directly to the two electrodes of a Josephson junction. The most prominent source
for charge noise are two-level states (TLSs) [261–263] hopping between two bistable spatial
configurations. These TLSs can be present either in the thin oxide layer of the junction
itself [264–266] or in the dielectric environment of the qubit [267]. We describe each
individual TLS with the double well Hamiltonian defined in Eq. (2.1.20), where each well
corresponds to one spatial configuration of the TLS. From this description, we can derive
the power spectral density via the coupling operator 〈σ̂z〉= tanh(ωtls/2kBT ), where ωtls
describes the level splitting of the TLS. In this framework, neglecting excitation of the
qubit from the TLS, one finds the spectral density from a single TLS [248]

S(ω) = cos2 θ[1− 〈σ̂z〉
2]

2γ1,tls

γ2
1,tls + ω2 + sin2 θ

[1 + 〈σ̂z〉
2

] 2γϕ,tls
γ2
ϕ,tls + (ω − ωtls)2 , (2.4.10)

which we show in Fig. 2.31 (a). In Eq. (2.4.10), θ= tan−1(∆/ε) describes the TLS’ mixing
angle and γ1,tls and γϕ,tls are the TLS’ relaxation and dephasing rate, respectively. The
first term in Eq. (2.4.10) describes the low-frequency noise generated by a single TLS.
The well-known 1/f spectral density of TLS noise in the low-frequency regime arises
from the assumption that, due to the large number of TLSs, they are equally distributed
across all frequencies (Dutta-Horn model) [228, 249, 268, 269]. The interaction between
individual TLS depicted in Fig. 2.31 (b) also causes low-frequency fluctuations of qubit
parameters [41, 248–250]. Additionally, the power spectrum is peaked around the Lorentzian
line with center frequency ωtls defined by the second term in Eq. (2.4.10). Due to the large
number of TLSs adding up their power spectral density, one can assume a white frequency
distribution over the complete qubit line width causing relaxation [260].

Flux noise Microscopic 1/f flux noise is one major source for superconducting circuits
that include loops with Josephson junctions [33, 216–219, 270–272]. Analogously to charge
noise, it has been shown that also flux noise has a microscopic origin [33]. For flux noise,
unpaired electrons with a certain spin direction create a fluctuating magnetic moment [216].
As the fluctuations can be thermally activated, uncorrelated changes of spin directions again
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Schematics of decoherence due to photon shot noise. A fluctuating photon number nr(t) results in
fluctuations of the qubit frequency leading to dephasing.

yield a 1/f noise spectrum [273]. Hence, we can describe the power spectral density [33]
S(ω) =AΦ/|ω|, where AΦ describes the noise amplitude. Since, in a typical configuration,
the spin fluctuations couple via a dipole interaction to a superconducting loop, flux noise
can be suppressed using a gradiometric design [99]. Due to the broad frequency spectrum
of the thermally activated spin fluctuations, flux noise can also resonantly couple to the
qubit, causing relaxation [33, 216, 274].

Photon shot noise Photon shot noise becomes relevant in coupled qubit-resonator
systems, where the ac-Stark shift translates temporal photon-number fluctuations in the
resonator directly into fluctuations of the qubit frequency proportional to χ≡ g2/δ [see
Fig.2.31 (c)]. The additional dephasing occurs because the qubit exhibits a phase shift
δϕq(τ) from the fluctuations in nr. This phase shift enters the correlation function [168]
〈σ̂−(τ)σ̂+(0)〉≈ exp[−γ2τ−2χ2 ∫ τ

0 dτ ′Cnr
(τ ′)] of the qubit raising and lowering operators

characterizing decoherence. One finds [17, 24] Ccoh
nr

(τ) =nr exp(−κxτ/2) for coherent states
inside a resonator and the super-Poissonian correlator [166] Cth

nr
(τ) = (n2

r +nr) exp(−κxτ)
for thermal fields. From these correlation functions, we find the photon-number-dependent
qubit dephasing rates [168, 275]

γcoh
ϕn (nr) = 2nrκxθ

2
0 (2.4.11)

γth
ϕn(nr) = (n2

r + nr)κxθ
2
0. (2.4.12)

for a coherent and a thermal state, respectively. Here, [168] θ0 = tan−1(2χ/κx) is the
accumulated phase of the injected photons due to the interaction with the qubit.

2.4.3 Microwave loss in superconducting resonators

Superconducting resonators have versatile applications in circuit QED experiments [26, 115–
118]. For many of those applications, the coherence time limited by internal loss channels
of the resonator should be as long as possible. In the single photon limit, TLSs located
at the metal/substrate, metal/air, and substrate/air interfaces are considered to be the
main contributors to microwave loss [124, 125]. In order to reduce these loss channels,
much effort has been put into material development focusing on different metallization
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compounds [276, 277] or substrate materials [278, 279]. Also, quasiparticle generation in
the superconducting material from stray infrared light [65] or thermal activation [126]
generates loss in these resonators. In addition to material choice and screening quality,
the sample design itself can have a large influence on the internal quality factor of the
resonator [280, 281]. This influence can arise from impedance mismatches at the coupling
ports resulting in Fano resonances [19, 282], from parasitic modes in the substrate [283],
or from additional resistive loss channels [284]. For efficiently shielded and well-designed
setups based on optimized materials, internal quality factors above one million have been
reached [19].
In the following, we introduce different microwave loss contributions that are relevant for
our experiments. Dissipation on a quantum mechanical level can be introduced within the
Caldeira-Leggett model [195]. In this model, one particular harmonic oscillator, which is the
resonator in our case, couples to a bath of additional harmonic oscillators (noise). As above,
we consider the coupling to be weak and we apply the Born-Markov approximation [285].
That way, we can describe the coupled resonator-bath system by the Hamiltonian [120]

HCL = ~ωrâ
†â+

∑
k

~ωk b̂
†
k b̂k+~

∑
k

[κkâ†b̂k +κ?k b̂
†
kâ]+~

∑
k

1
ωk

[κkâ†b̂k +κ?k b̂
†
kâ]2 . (2.4.13)

Here, the second term describes the harmonic bath modes, the third term describes the short
ranged coupling responsible for dissipation, and the last term is included to compensate for
an energy shift of the bare resonator Hamiltonian [286]. In this formalism, dissipation is
treated as a frictional force with a spectral density S(ω) = (~π/2)∑k δ(ω−ωk)κ2

k/ωk [195,
287]. For typical configurations, the bath is ohmic [243], i.e., S(ω)∝ω. While Eq. (2.4.13)
describes dissipative processes, in general there is also dephasing of a harmonic oscilla-
tor [120]. Dephasing is enhanced by temporal fluctuations δλ(t), which couple to the
electromagnetic field of the resonator as described within the fluctuation-dissipation the-
orem [288]. The linear coupling of these fluctuations to the resonator frequency results
in the perturbed resonator Hamiltonian [120] Hres = ~[ωr + gλδλ(t)]â†â where gλ describes
the coupling between the electromagnetic field and the TLS. For superconducting CPW
resonators used in this work, however, dephasing plays a negligible role. In the following,
we describe the most relevant dissipative loss mechanisms of superconducting resonators.

Loss due to two-level states Loss due to two-level states (TLSs) is one of the most
prominent sources for decoherence in superconducting thin film resonators [38, 276]. The
TLSs arise from the unavoidable necessity to place the superconducting circuit on some
kind of substrate. These substrates suffer from dielectric loss characterized by their loss
tangent tan κi. The dielectric loss in turn originates from TLSs, e.g., defects or impurities,
that can be excited with energies within the superconducting energy gap ∆0. Each TLS
absorbs photons from the electromagnetic field of the resonator and dissipates them back
into the heat bath [289]. The total loss contribution of TLSs κtls = ∑

k pkκtls,k consequently
is a sum of many TLSs, contributing via their participation ratio pk. The participation
ratio depends on the one hand on the dipole moment of the TLS and, on the other hand,
on the relative position inside the resonator. TLSs located at a voltage antinode of the
resonator field contribute significantly stronger to TLS loss than TLSs located at a voltage
node. Furthermore, TLSs that are already thermally excited cannot absorb photons of the
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resonator anymore. Hence, the TLS loss rate

κtls(Pr,T ) = κ0
tls

tanh (~ωr/2kBT )√
1 + (Pr/Pc)β/2

(2.4.14)

depicted in Fig. 2.32 (a) is strongest at very low temperatures and low excitation power. In
Eq. (2.4.14), Pr =PQ2

`/nπQx is the power circulating inside the resonator [276] for the nth

mode and P is the power resonantly applied to the input of the resonator. The exponent β in
Eq. (2.4.14) is known to be design-dependent [34] and Pc is a characteristic power depending
on the TLS properties [261, 279]. In the low temperature and low power limit, the internal
loss rate approaches κ0

tls defined by the unsaturated TLSs. The characteristic power Pc
defined in Eq. (2.4.14) is proportional to γ̄1,tlsγ̄ϕ,tls, where γ̄1,tls and γ̄ϕ,tls represent the
average relaxation and dephasing rate of the TLS ensemble, respectively. In the spin-boson
model, the temperature dependence of γ̄1,tls follows a coth(~ω/2kBT ) dependence [287, 290]
that is proportional to T for kBT � ~ω. Due to phonon-mediated interaction between the
TLSs we expect

γ̄ϕ,tls∝ γacT +
γop

[exp(~ω/kBT )−1] , (2.4.15)

where γac and γop describe the TLS coupling rate to acoustic and optical phonons, respec-
tively [291, 292]. For low temperatures, kBT � ~ω, the interaction is predominantly medi-
ated by the term accounting for acoustic phonons γacT . However, in the regime ~ω' kBT
that is relevant for our experiments, a power law ∝Tα has been found for both, γ̄1,tls
and γ̄ϕ,tls [261–263, 266, 290–293]. Therefore, the temperature dependence of the charac-
teristic power can be approximated as [261]

Pc(T ) =
3~2εγacγ̄1,tls

2d2 coth
( ~ωr

2kBT

)
Tα , (2.4.16)

where ε= ε0εr is the absolute permittivity of the dielectric and d is the effective dipole
moment of the TLSs.

Loss due to thermal quasiparticles In the following, we focus on thermally induced
quasiparticle loss described by the loss rate κqp(T ). Whereas dielectric loss dominates
at very low temperatures, loss related to the superconducting material typically becomes
dominant when the sample temperature exceeds approximately 10 % of the critical tem-
perature Tc of the superconductor [279]. In the temperature range of our experiments,
we expect a considerable quasiparticle contribution only for samples containing Al, while
Nb samples are better protected against this loss mechanism [294]. Assuming that the
superconducting material is in the dirty or local limit, the quasiparticle contribution can
be described with the Matthis-Bardeen theory [73, 126],

κqp(T )
ωr

= 2K
π

e−ζ sinh(ξ)K0(ξ)
1− e−ζ

(√
2π/ζ − 2e−ξJ0(ξ)

) . (2.4.17)

Here, K is the ratio of kinetic inductance to total inductance of the conductor, ζ = ∆0/kBT
with the superconducting energy gap ∆0, ξ= ~ωr/2kBT , and J0 ,K0 are the modified Bessel
function of the first and second kind, respectively.
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low temperature regime kBT < ~ω. Right axis: Surface resistance calculated for a 100 nm thick Nb film
plotted versus temperature (solid pink line). For the solid pink line, we use the complete Matthis-Bardeen
integrals [68], while the dashed pink line is a calculation based on Eq. (2.1.8).

Eddy current loss at the superconductor surface In addition to the various sources
of microwave loss mentioned above, there can be loss due to eddy currents in the surface
of the superconducting material [38]. This loss arises from the oscillating magnetic
field H exp(ıωrt), generated by the resonator current. Due to the finite penetration
depth λs of the superconductor defined in Eq. (2.1.7), there is also a magnetic field Hs
inside the superconducting material. For microwave frequencies, the field decays within
the penetration depth, thus Hs = H0 exp(−|z|/λs), where H0≡H(z=0) denotes the field
strength at the surface of the superconductor. Using Maxwell’s equation ∇×E∝−∂Hs/∂t,
the magnetic field induces eddy currents proportional to Ohms law j =σ0E [111].5 Here, σ0
is the conductivity at T = 0 in the Drude model [90]. In the two-fluid model described in
Sec. 2.1.2, the eddy currents have a superconducting and a normal conducting contribution,
which leads to the total current density [295]

jtot = js + jn = σ0

[
nqp −

ı

ωrτ
ns

]
E , (2.4.18)

where τ describes the mean free time of the electrons. The dissipated power in a volume V
inside the superconductor [295]

Ps = 1
2

∫
dV <(jtot ·E) = 1

2RsH
2
0 (2.4.19)

is directly connected to the surface resistance Rs defined in Eq. (2.1.8). In Eq. (2.4.19), the
magnetic field component H0≡Hy(z=0) points along the surface of the superconductor
perpendicular to the current flow in x-direction [see Fig. 2.34 for details]. The specific
temperature dependence Rs(T ) shown in Fig. 2.32 (b) translates directly into the temper-
ature dependence of eddy current loss 1/Qi =Ps/Pr. Because the field intensity H2

0 is
5 A correct treatment of the field-current relation must account for the anomalous skin effect and requires

the application of Boltzmann’s transport equation [90]. For simplicity, we assume a local interaction
between field and current here.
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directly proportional to the readout power Pr, we expect that the eddy current loss rate
κs/ωr =Ps/Pr∝Rs is power-independent.

Eddy current loss in the substrate material In the remainder of this chapter, we
show that there can also be eddy current loss in the conductive material used to fix the
samples in a sample box. This loss originates from a residual magnetic field Hh≡H(z= −h)
on the backside of the substrate with height h as shown in Fig. 2.33 (a). Therefore, we
also find a finite field Hs in the volume of the silver glue used to fix our samples in the
sample box. Inside the silver glue volume, the field decays exponentially in z-direction
for microwave frequencies within the skin depth λs, thus Hs = Hh exp(−|z − h|/λn). The
dissipated power due to eddy currents reads [296] Ps = (1/2σr)

∫
(∇×Hs)2 dV, where σr is

the electrical conductivity at the resonator frequency and V is the volume of the conductive
material on the backside of the substrate. In the following, we first calculate the field
distribution generated from the CPW and finally use this expression to derive the resulting
loss rate.
We calculate the components of a magnetic field H(y,z), which is induced by an oscillating
current I =

√
2Ir cos(ωrt) flowing in the center conductor of the resonator. For simplicity,

we neglect the time dependence of this current and assume that the field is created
by the effective amplitude Ir. Furthermore, we neglect the vanishing x-component of
the resonator field. We divide the magnetic field components into a field amplitude
Hh =

√
(1 + εr)PrZ0/2(Zvacw)−1 [297] and a spatial distribution k(y,z). Here, w is the

center conductor width and Zvac' 377Ω is the vacuum impedance. Then, the magnetic
field H(y,z) =Hhk(y,z) is symmetric with respect to y= 0 but depends on the dielectric
material and on the boundary conditions given by the sample box. At the vacuum side of
the CPW, the two relevant field components read

kvac
y =

∞∑
j>0

2
Fj

[sin(jπξ/2)
jπξ/2 sin(jπξ̃/2)

]
cos(jπy/b)e−γj |z|, (2.4.20)

kvac
z =

∞∑
j>0

2
Fj

[sin(jπξ/2)
jπξ/2 sin(jπξ̃/2)

]
sin(jπy/b)

︸ ︷︷ ︸
≈b/w for y�b

e−γj |z|. (2.4.21)

Here, ξ=w/b and ξ̃= (s+w)/b are geometry parameters defined in Fig. 2.34. Further,
Fj = bγj/jπ with γj = jπ

√
1 + (2bv/jλvac)2/b, v=

√
(λvac/λcpw)2−1. The two wavelengths

λcpw = 2πc/ωr
√

(1 + εr)/2 and λvac = 2πc/ωr are defined by the speed of light c on the CPW
and in free space, respectively. We calculate the field inside the substrate by introducing
suitable boundary conditions, i.e., an electric wall at the backside of the substrate (see
Fig. 2.34). The electric wall forces the z-component of H to vanish at z=−h by multiplying
it with sin(πz/h). Consequently, we find the components of the field distribution inside
the substrate

ksub
y = −

∞∑
j>0

2
Fj1

[sin(jπξ/2)
jπξ/2 sin(jπξ̃/2)

]
cos(jπy/b)

×
{[

F 2
j1 coth(qj)− εr(2b/jλvac)2 tanh(rj)

1 + (2b/jλcpw)2

]
cosh(γj1z)− sinh(γj1z)

}
, (2.4.22)
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Figure 2.33: (a) Magnetic field intensity H2(y,z) along a yz-cut through a CPW sample with
substrate thickness h= 200 µm for Ir = 4.5 mA and εr = 11.9. Depicted in red is the Nb resonator
at z= 0 with its center conductor at y= 0. Underneath the sample, we use silver glue to attach the
substrate to the sample box. (b) Substrate thickness dependence of K(h)2.

ksub
z =

∞∑
j>0

2
Fj1

[sin(jπξ/2)
jπξ/2 sin(jπξ̃/2)

]
sin(jπy/b)

×
{
cosh(γj1z)− coth(qj) sinh(γj1z)

}
sin(πz/h). (2.4.23)

In these equations, we use the terms γj1 = jπ
√

1− (2bvu/jλvac)2/b, u=
√
εr − (λvac/λcpw)2,

Fj1 = bγj1/jπ, rj = γj1h+ tanh−1(Fj1/εrFj) and qj = γj1h+ cotanh−1(Fj/Fj1).
Because Eqs. (2.4.20) - (2.4.23) are numerical approximations, we have to find suitable
computation parameters. These parameters are the distance b at which we place the
magnetic walls, the maximum number of iterations jmax, and the area in the yz-plane in
which we perform the computations. As shown in Fig. 2.33 (a), we restrict the calculations
to the area between y0 = 500 µm and z0 =±h. For reproducible results, we place the
magnetic walls at (y= 0) and at b= ± 2πh. For a convenient numerical result we typically
sum up to a maximum iteration step jmax = 1000.
So far, we have calculated the magnetic field at one slice in x-direction of the resonator.
We now calculate the total integrated field over the length `r of the resonator. Assuming
a sinusoidal current distribution between the two coupling capacitors, we find the field
|Hh(x,y)|=Hhk(y,h) sin (πx/`r) on the backside of the substrate. Assuming that this field
generates the field Hs inside the lossy conductor, we calculate the dissipated power

Ps(h) =
∫ `r

0
dx
∫ ∞
−∞

dy
∫ −∞

0
dz (∇×Hs)2

2σr
=
∫ dV

2σr

(
∇× êy

Hhk(y,h) sin (πx/`r)
exp(|z|/λs)

)2

=
∫ dV

2σr

H2
hk(y,h)2

exp(2|z|/λs)

êz
π cos

(
πx
`r

)
`r

− êx
sin
(
πx
`r

)
λs

2

`r�λs≈ H2
h

2λ2
sσr

∫ `r

0
dx sin2

(
πx

`r

)∫ ∞
−∞

dy · k(y,h)2
∫ ∞

0
dz exp(−2|z|/λs)

= (1 + εr)PrZ0

4λ2
sσr(Zvacw)2

`r
2 K(h)2λs

4 = (1 + εr)PrZ0`r

32λsσr(Zvacw)2K(h)2 =
√
ωrµ

2σr

(1 + εr)PrZ0`r

32(Zvacw)2 K(h)2.

(2.4.24)
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Figure 2.34: Sketch of a piece CPW transmission line to illustrate the relevant directions and length
scales used for the calculation of the electromagnetic field distribution. For the metal structures, we use
a fixed center strip width w= 20 µm and a distance to the ground planes s= 12 µm. In our simulations,
we place magnetic walls at the positions y= {−b,0,b} as well as an electric wall at the sample backside
to provide suitable boundary conditions for the electromagnetic field.

In the above expression, we use
∫

dV =
∫ `r

0 dx
∫∞
−∞ dy

∫−∞
0 dz,6 the absolute permeabil-

ity of the conductive µ'µ0 material, and λ=
√

2/ωrµσr [298]. To evaluate the total
field intensity that enters the silver glue volume underneath the sample, we integrate7

K(h)2 =
∫ y0
−y0

dy[ksub
y (y)]2 at z=−h along the y-direction. The resulting thickness depen-

dence of K(h)2 shown in Fig. 2.33 (b) has the expected increase for thinner substrates.
Finally, we obtain the substrate-thickness-dependent loss rate κs(h) defined as Ps/Pr, the
ratio of the power dissipated in the system to stored power. From our calculations, we find

κs(h)
ωr

=
√
ωrµ

2σr

(1 + εr)Z0K(h)2`r

32(Zvacw)2 , (2.4.25)

which is independent of the power circulating inside the resonator.

6 Please note that our calculations are independent of the mode number k because∫ `r
0 dx sin(kπx/`r)2 = 1/2, ∀k∈N.

7 We integrate our data numerically using the trapz function in MATLAB
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Figure 3.1:
Main fabrication
steps for Al
based Josephson
junctions.

In this chapter, we introduce all relevant fabrication steps and detailed
fabrication parameters for our samples. The most important development
concerning sample fabrication within this thesis is the transition from
Nb/Al two-layer samples to samples fabricated in an all-Al process.1 That
way, we significantly increase the coherence times of our samples and
simultaneously reduce the number of fabrication steps.
In Sec. 3.1 of this chapter, we describe the fabrication of Josephson
junctions, which is based on electron beam lithography and double-angle
shadow-evaporation. In Sec. 3.2, we introduce the fabrication process for
thin film CPW structures based on optical lithography. Details on all
samples investigated in thesis are provided in Sec. 3.3.

3.1 Fabrication of Josephson junctions
In this section, we outline the different fabrication steps necessary for the
fabrication of Al-based Josephson junctions depicted in Fig. 3.1. Because
the actual junction size and shape strongly defines the physical properties
of the junction in later experiments, it is important to have good control
over the resist system. To improve the quality of the junction fabrication
process at the WMI, we investigate the spin-coating process and the
necessary baking steps in Sec. 3.1.1, which is based on the work presented
in Ref. 299. The Josephson junctions are patterned using electron beam
lithography (EBL). During this work, we have been strongly engaged
in the exchange of the electron beam facility and in the adaption of all
fabrication steps presented in Sec. 3.1.2.2 In this context, we modify
the established patterning processes developed in Ref. 299 to a large
extend. The modification includes the introduction of ghost layers and a
temperature controlled development process.3 Finally, we introduce the Al
evaporation, which is based on double-angle shadow evaporation [302, 303],
and oxidation steps in Sec. 3.1.3.

1 We develop the all-Al process in close collaboration with M. Haeberlein.
2 In the course of this thesis we have replaced a 30 keV FEI XL30sFEG by a 100 keV NanoBeam Limited nB5

electron beam lithography system.
3 These fabrication processes are largely developed in Ref. 300 and Ref. 301.
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Chapter 3. Sample fabrication

3.1.1 Resist system - spin coating and baking

In the following, we introduce the resist system used for the fabrication of Josephson
junctions as well as the different steps to generate a spatially homogeneous resist film on
top of a substrate.

Resist system The resist system used to transfer nm-sized patterns to the evaporated Al
thin films consists of a double-layer structure. We use two types of polymethylmethacrylate
(PMMA), which is a well-established resist system for electron sensitive applications [304–
306]. The first resist layer has a stronger sensitivity to electron radiation and is used to
form a suitable undercut, which is crucial for the shadow evaporation technique. This
resist is a PMMA copolymerized with methyl methacrylate-methacrylic acid (MA) that
is dissolved in 1-methoxy-2-propanole in a ratio PMMA/MA= 33 %.4 For the top layer,
we use a resist with a high resolution allowing for nanometer accuracy for the junction
process.5 We use a spin coating process as described below to apply a thin, pattern-defining
layer and a thicker bottom layer of approximately 70 nm and 700 nm, respectively.

Spin coating A common method to apply thin resist films onto a substrate is spin
coating [307] as depicted in Fig. 3.2. Since the actual film thickness and the homogeneity
of the resulting resist is crucial for the reliable fabrication of Josephson junctions, we
describe the spatial and temporal development of the surface height distribution of the
resist h(r,t) in the following. We assume a cylindrical system such that the local resist
thickness only depends on the radial component r as shown in Fig. 3.2 (a). In a first step,
the liquid resist is pipetted to a substrate rotating with frequency ωrot which is typically
some hundred hertz. This rotation instantaneously centrifugalizes most of the resist off
the substrate. The resulting outflow dominates during the start of the process until the
substrate is completely covered with resist [cf. Fig. 3.2 (b)]. Only accounting for flow
dominated processes already yields a reasonable theory to model h(r,t) [308]. However,
to account for the different concentration of solids in different resists, one has to include
the evaporation of the solvent [309]. In the following we introduce a formula for h(r,t)
including evaporation by a mass transfer equation for the solution [310, 311]. A detailed
description of the fluid dynamics has been collected during the work presented in Ref. 299.
Evaporation starts immediately after the deposition of the resist and takes place throughout
the entire process of spin coating. The evaporation of the solvent can be modeled by the
mass transfer equation ∂m/∂t= k(x0

A−x
∞
A ) with k being the mass transfer coefficient.

Here, x0
A is the initial concentration of the solvent and x∞A is the mass fraction of the

solvent that would be in equilibrium with the mass fraction of the solvent in the bulk
vapor [310]. In this model, we obtain the final film thickness [299]

hf = (1− x0
A)
[
k̃(x0

A − x
∞
A )
] 1

3 1
√
ωrot

, (3.1.1)

where k̃ is a modified mass transfer coefficient. Equation (3.1.1) provides a deterministic
description of the spin coating process where the final resist thickness is inversely propor-
tional to the square root of the rotational frequency. This dependence is experimentally
confirmed [309, 310, 312] but does not hold in general. Restrictions occur from the solvent

4 We use Allresist PMMA/MA = 33 % AR-P 617.08 resist for our process
5 We use Allresist PMMA 950k AR-P 679.02 resist for our process.
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Figure 3.2: (a) Cross-sectional view of a substrate covered with liquid resist on a spin coater rotating
with frequency ωrot. We assume a rotational system symmetry such that the resist height h depends
only on the radial distance r and the time t. (b) For short times after resist dripping, the resist height
is flow dominated. (c) When the complete substrate is covered with resist, the surface dynamics is
strongly determined by evaporation processes. Drawings taken from Ref. 299.

type, the solid content, and the viscosity of the resist. Furthermore, the usage of rectangular
substrates with finite lateral dimensions and the application of a double-layer resist system
introduce variations from Eq. (3.1.1).

Resist surface To evaluate the spin coating process, we measure the spatial distribution
h(r) of the resist surface [299]. In Fig. 3.3 (a), we show h(r) of a Si substrate covered with
the double-layer resist system. In contrast to circular wafers with 1 inch in diameter used
in previous works [177] (see also Fig. 3.6), the rectangular 6× 10 mm2 substrates show
thickness variations over the entire substrate. From a quantitative analysis,6 we find that
the average resist thickness fits nicely to the expected values of 700 nm and 770 nm for
single-layer and double-layer systems, respectively [cf. Fig. 3.3 (b) and (c)]. There are,
however, deviations in the resist thickness with peak-to-peak variations of approximately
25 %. In particular, we observe a significant influence of the rectangular substrate shape
resulting in a significantly higher film thickness at the edges of the substrate (edge beads).
Edge beads primarily originate from a larger surface tension at the edges of the substrate
and from resist wave reflections [313]. Additionally, air friction enhances the evaporation
process and supports the formation of edge beads in the case of non-rotational symmetric
substrates. Since the edge bead formation is a complex process that is hard to control, the
most promising solution to avoid them is the usage of large enough and circular substrates.

Resist defects In addition to edge beads, there is a series of other defects that can occur
during a spin coating process [314–316]. Two prominent examples are striations [317, 318]
and comets [319]. Comets are discontinuities in the resist that appear because the liquid
outflow is disturbed by dirt particles on the substrate [see Fig. 3.3 (d)]. These particles
are either already stuck on the substrate before resist is pipetted or are brought to the
substrate via the resist. To avoid the formation of comets, we clean the substrates with

6 We acknowledge the thickness measurements, which have been performed by the Sentech company.
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Figure 3.3: (a) Photograph of a 6× 10 mm2 sized Si substrate covered with a double-layer resist
system. (b) Resist height h plotted for a single-layer resist system. (c) Resist height h plotted for a
double-layer resist system. (d) Photograph of a comet. (e) Photograph of striations.

an O2 plasma before spin coating. Striations are quasi-periodic modulations of the resist
thickness with sub-millimeter period as shown in Fig. 3.3 (e). Even though the physical
reason for striations is not completely understood, one prominent model [320–323] assumes
local evaporation leading to surface tension variations. Due to the Marangoni effect [324],
more resist flows to regions with higher surface tension and increases the thickness at
these points. This effect is enhanced by less volatile solvents meaning that PMMA/MA
33% with its low viscosity suffers strongly from striations. From a measurement with a
DEKTAK profilometer, we find that the thickness variations are on the order of 20 nm,
which is consistent with other measurements found in literature [318]. During the the work
presented in Ref. 299, we show several methods to prevent striations, e.g., increase the
rotation frequency or change the atmosphere above the substrate. These experiments have
triggered the decision to install a new spin coater in the clean room facilities of the WMI
that has a closed atmosphere.7 Additionally, this spin coater suffers less from vibrations
providing resist films without a significant amount of striations.

Resist baking After spin coating, the resist is heated above its glass temperature Tg
on a hot plate to remove residual solvent in the resist layer and to changes the chemical
properties of the polymers [299]. Tg is a resist-specific property and depends on the
concentration of the remaining solvent and on the film thickness [325]. For PMMA, Tg
is approximately 150 ◦C. In Fig. 3.4, we illustrate the chemical process during the baking
step. The higher mobility of the resist constituents supports the diffusion of the solvents.
Hence, the total length of the baking step is crucial for a complete removal of the solvents.
A complete removal is limited by the resist thickness and by the molecular weight of
the polymer [326]. In addition to solvent diffusion discussed above, there is a chemical
transition of the PMMA during the baking step. The solvent dilution triggers this transition
and leads to ring formation of new copolymers, which are bound by anhydride weak links.
These copolymers have a significantly increased sensitivity to electron bombardment [327].

7 We use a Laurell WS-650-23B spin coater.
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Figure 3.4: (a) Copolymer chains consisting of PMMA and MA that enclose residuals of the solvent
at room temperature. (b) During the baking step, the residual solvents diffuse through the resist surface
and there is a formation of anhydride links in-between the copolymer chains.

3.1.2 Electron beam lithography

Electron beam lithography (EBL) in combination with lift-off or reactive ion etching
processes is a commonly used technique for fabricating nanometer-sized thin film struc-
tures [328]. In EBL processes, the high-energy beam electrons break up the long copolymer-
chains in a suitable resist, which subsequently are washed away in a development step.
That way, we form a well-defined pattern in the resist, serving as a mask in the subsequent
thin film evaporation process for the Josephson junctions. The EBL process provides a
spatial resolution that is well-suited for the fabrication of nm-sized junctions. Theoretically,
the EBL resolution is limited by the de-Broglie wavelength [329] of the electrons, which
is in the picometer range for keV electrons. This limit, however, is not achieved due to
lens aberrations in the electron optics but also due the interaction of electrons within
the electron beam [330] and with the resist/substrate materials. This electron-matter
interaction results in a resolution for typical resist systems on the order of a few tens
of nanometers [328, 331, 332]. In the following, we describe the relevant mechanisms of
electron-matter interaction.

Elastic scattering We describe electron-matter interaction in the framework of scat-
tering processes, where we differentiate between elastic and inelastic processes. Elastic
scattering happens when the electrons feel the Coulomb potential of the resist- and sub-
strate nuclei but when there is no energy transfer. Hence, elastic scattering does not
break up the copolymer-chains but broadens the electron beam and consequently reduces
the resolution. The elastic scattering of electrons can be well-described with a screened
Rutherford cross-section σtot accounting for the screening βN of the nucleus potential by
the shell electrons. The screened Rutherford differential elastic cross-section [333]

dσtot
dΩ = Z2e4

4E2
e
−(1− cos θ + 2βN)2 (3.1.2)

depends on the incident electron energy E
e
− , on the atomic number Z, and on the polar

scattering angle θ. Even though Eq. (3.1.2) must be modified for heavy elements [333] and
holds only for high-energy electrons in the keV-range, it gives a reasonable intuition into
the scattering process. A more advanced description of elastic scattering includes spin-orbit
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Figure 3.5: (a) Sketch of an electron beam irradiated to resist and substrate. The complex scattering
paths of electrons inside resist and substrate are simulated using a Monte-Carlo method [299]. The
inset shows the spatial distribution of the beam current density jb. Next to the Gaussian profile, there
is a tail of electrons broadening the beam profile. (b) Energy distribution of the total cross-section for
electron matter interaction assuming a beam energy of E

e
− = 80 keV.

coupling and leads to the well-known Mott cross-section [334]. The main conclusion derived
from Eq. (3.1.2) is the proportionality dσtot/ dΩ∝E−2

e
− , meaning that low-energy electrons

have a much larger cross-section than high-energy electrons. Consequently, low-energy
electrons more likely undergo small-angle elastic scattering events, which subsequently
broadens the beam as depicted in Fig. 3.5 (a). Moreover, the probability for large-angle
scattering (back-scattering) is increased for low-energy electrons. These back-scattered
electrons (BSEs) may re-emerge into the resist at some distance from where the beam
entered. The beam broadening and the reemerging electrons lead to the proximity effect.
Proximity effect means that the exposed pattern is wider than the scanned pattern [335–
339]. Therefore, it is advantageous to use a high acceleration voltage for the writing process.
The latter argument is one reason, to operate the nanobeam nB5 system installed during
this thesis at 80 keV compared to the maximum 30 keV of the previous FEI system.

Inelastic scattering Even though elastic scattering events have a large influence on
the actual shape of the electron beam inside the resist, inelastic scattering processes
provide the energy that is necessary to break up the copolymer-chains. Since this energy
is approximately 100 eV [340], most pair-breaking processes are induced by low-energy
electrons. The most prominent inelastic scattering process is inner-shell ionization providing
secondary electrons (SEs). Here, an incident electron transfers its energy to a bound inner-
shell electron of a target atom and ejects the target electron to the vacuum level. The excess
energy from the electron of a higher shell, occupying the vacancy, is then emitted either
by X-ray photons or by Auger-electrons [341]. As shown in Fig. 3.5 (b), these processes
occur for energies in the range of 100 eV to a few keV, which makes them the main source
for pair-breaking in the PMMA/MA polymers. Further inelastic scattering processes
include bremsstrahlung, cathodoluminescence, plasmon excitations, and electron-phonon
interaction [see Ref. 341 for details]. The complex energy distribution of the scattering
processes depicted in Fig. 3.5 (b) is simplified in a mean energy loss model, characterized
by the stopping power [334, 342]

P = ∂E

∂s
∝ Z
E
e
−

ln
(

1.166E
e
−

d1Z
+ d2

)
, (3.1.3)
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3.1. Fabrication of Josephson junctions

which has the form of a modified Bethe equation. Here, d1 and d2 are material specific
constants [343]. This loss model, which is frequently used for the simulation of electron-
matter interaction [333, 344–349], assumes a constant energy loss per traveling distance
∂E/∂s of the electrons. The simulations based on this model use a Monte-Carlo method
to describe the formation of secondary electrons as individual events occurring after a
mean free path [344, 350]. During the work presented in Ref. 299, we perform a series of
simulations of electron interaction in the double-layer resist system as the one shown in
Fig. 3.5 (a). From these simulations, we gain detailed insight into the proximity effect in our
system. This insight was an important achievement since the proximity effect provides the
highly desirable undercut in the lower resist layer. Furthermore, the simulations provide the
spatial distribution of the energy deposition of the electron beam defining the sensitivity
of a resist as described in the following paragraph.

Sensitivity and contrast The energy-dependent break-up of copolymer chains as
described above defines how sensitive a specific resist is to electron irradiation. The resist
sensitivity accounts for the number of electrons at a given beam energy (dose) that is
required to break up all copolymer chains in a certain area. This number of electrons
scales inversely with the beam energy [cf. Eq. (3.1.3)]. Additionally, it depends on the resist
thickness, on the particular developer [332], and on the monomer (MA) content in the
resist [351]. Because the resist is very sensitive to low-energy electrons as described above,
it is susceptible to SEs that re-emerge at a position away from the primary electron incident
point. This fact lowers the contrast, i.e., the remaining film thickness as a function of the
exposure dose. Ideally, the contrast is given by a step-function. For real EBL processes,
however, this function has a finite slope and the contrast of the resist can be expressed
as [328] cres = log(D2/D1)−1. Here, D1 is the highest dose leaving the resist unaffected and
D2 is the dose where the entire resist is broken up. Since these doses are highly dependent
on the particular fabrication process, we systematically measure the contrast of the two
resist systems in Ref. 299. We find that the clearing dose of the approximately 700 nm thick
PMMA/MA bottom layer is only slightly lower than for the double-layer resist system.
This fact requires a careful dose-analysis when the shape or the size of an actual pattern is
changed in order not to break the upper resist at adverse positions. In addition to SEs,
the resist is sensitive to the tail of electrons next to the Gaussian beam profile shown in
the inset of Fig. 3.5 (a). This tail originates from imperfect electron optics and noise in the
magnetic focusing coils. Compared to the previously used FEI system, the nB5 system
has a strongly reduced noise contribution resulting in a clear Gaussian beam profile. This
beam profile provides a high reproducibility of the patterning process, when the beam is
accurately focused to the substrate.

Beam focusing Optimizing the contrast during the EBL process not only requires an
optimized dose selection but also a well-focused beam. During the work presented in
Ref. 299, we establish a focusing method based on gold nanoparticles.8 The nanometer
diameter of these particles makes them well-suited to focus the electron beam on the
resist surface as outlined in the following. Before transferring the sample to the electron
beam system, we apply small droplets of gold nanoparticles onto the spin coated resist as
shown in Fig. 3.6 (a). These droplets form large accumulations of circular crystals that

8 We use Sigma-Aldrich 753637 nano particles, which are dissolved in a stabilized suspension in 0.1 mmol
phosphate buffered saline and have a spherical shape with 40 nm diameter.
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Figure 3.6: (a) Photograph of a circular Si substrate, where single droplets of a gold nanoparticle
solution are applied to the spin-coated resist. (b) and (c) Scanning electron microscope image of the
gold nanoparticles. Pictures taken from Ref. 299. (d) Schematic drawing of the pattern that is scanned
for defining the resist pattern for the Josephson junction fabrication (junction layer). To generate the
required undercut, we additionally irradiate a ghost layer with lower dose.

can be resolved with a scanning electron microscope [cf. Fig. 3.6 (b)]. We optimize the
beam focus by zooming in on these crystals until single gold particles are resolvable [see
Fig. 3.6 (c)]. Using this focusing procedure has strongly improved the reproducibility during
the fabrication of Josephson junctions.

Ghost layer The well-focused beam with its clean Gaussian profile is a perfect resource
to write patterns with nm accuracy. It has turned out, however, that the undercut required
for shadow evaporation is no longer present because of the lack of the proximity effect. To
reintroduce a sufficient undercut, we make two modifications to the established fabrication
process presented in Ref. 299. First, we write an additional ghost layer in addition to
the actual junction pattern [301] as depicted in Fig. 3.6 (d). For this layer, we use a
substantially reduced dose compared to the junction layer (Dghost/Djunc.' 0.15) such that
the resist in the ghost layer area is only partly activated. The second modification is a
temperature-controlled development step [300] as described in the following paragraph.

Resist development Before we evaporate the Al thin films for the Josephson junctions,
we remove the exposed resist areas in a two-stage development process. In a first step, a
developer washes away all broken-up polymer chains, while the non-activated chains stick
to the substrate. In a second step, we generate the required undercut using temperature
controlled isopropanol (IPA). For the first step, we dip the sample completely into a
developer, which we keep at ambient temperature. We use a developer for PMMA that
is selective to the molecular weight of the broken-up polymers.9 This step washes away
only the part of the resist that is written as the junction layer [cf. Fig. 3.6 (d)]. The
subsequent development step forms an undercut as shown in Fig. 3.7 (a). To this end, we
use the fact that IPA itself works as weak developer for PMMA [352–354] and that the
sensitivity to IPA of PMMA/MA (bottom layer) is enhanced compared to PMMA 950k (top
layer) [299]. Furthermore, the sensitivity of the top layer strongly decreases for decreasing
temperature [300]. While the first development step is performed at room-temperature, for
the second development step we stabilize the IPA temperature at (4.0± 0.2) ◦C. That way,
we achieve a selective development of only the lower resist layer.

9 We use Allresist AR-600-56 developer for the process. This particular developer is methyl-isobutyl-
ketone (MIBK) diluted in IPA with an IPA :MIBK ratio of 3 : 1.
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Figure 3.7: Different fabrication steps for Josephson junctions including both resist layers in the top
row. These layers are omitted in the bottom row to show the resulting Al films. (a) First evaporation
step at angle +θ. (b) Oxidation of the evaporated Al-film. (c) Second evaporation step at angle −θ.
The overlap of the two Al films is determined by the evaporation angles, the width of the resits bridge,
and the thickness of the lower resist layer. Drawings taken from Ref. 299.

3.1.3 Evaporation and oxidation of Al thin films

The electrical circuits for the Josephson junctions consist of thin Al films, which we
evaporate on a dielectric substrate. We fabricate Al/AlOx/Al structures by integrating an
oxidation step between two steps of Al evaporation (see Fig. 3.7). The two Al films have
a thickness of 40 nm and 70 nm, respectively. By evaporating from two different angles
θ=±17°, we generate an overlap between the upper and the lower Al film. This overlap is
intersected by the oxide layer and thus forms the Josephson junction.

Al evaporation We use a thin film deposition system for thermal evaporation of Al [355].
To avoid contaminations of the Al films, the evaporator is placed inside an ultra-high
vacuum chamber typically operating at 10−8 mbar. Furthermore, we use very pure Al
with a purity of 99.999 % in the two evaporation steps. Before we deposit the Al onto
the substrate, we evaporate a certain amount of Al onto a shutter to get rid of possible
contamination in the Al crucible. Then, we open the shutter and record the mass change of
a quartz crystal to monitor the film thickness of the evaporated Al. We use a growth rate of
12Å/s to achieve a precise film thickness. We evaluate the film thickness using atomic force
microscopy (AFM) images as the one shown in Fig. 3.8 (a). With our deposition system,
we achieve a thickness accuracy of approximately ±5 nm for the individual Al films [300].
The root-mean-square surface roughness of the Al films is approximately 0.8 nm. For our
process, the surface roughness is lowest for high evaporation rates [300], which is in contrast
to other studies in this field [356].
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Al oxidation The most crucial part in Josephson junction fabrication is the definition of
the insulating tunneling barrier formed by the thin oxide layer. There are two main reasons
for the importance of the oxidation step. The first reason is the exponential dependence of
the junction critical current on the oxide thickness [357]. In particular flux qubits demand
high critical current densities requiring thin oxides of only a few atomic layers. In such
thin layers, inhomogeneous oxidation may easily lead to electrical shorts rendering the
junction unusable. The junction’s critical current density strongly depends on the duration
and the oxygen pressure of the oxidation process. We again use the quartz crystal [300] to
monitor the progress of the oxidation process. The process starts with an Al2O3 monolayer
formation during the first seconds for typical pressures in the µbar regime [358]. This
formation is followed by oxidation via tunneling of oxygen atoms characterized by a much
lower oxidation rate. Since tunneling is a statistical process, which depends on many
parameters (pressure, temperature, surface-roughness, etc.), the exact critical current
density is hard to predict for thin oxide layers.

Junction parameters We perform DC SQUID measurements [177] to characterize the
physical properties of the junctions from their current-voltage characteristics (IVCs). The
purity of the Al is characterized by the zero-field voltage Vg' 360 µV found for our Al
films [177, 178]. This value is close to the theory value V BCS

g = 2× 1.764kBTc' 365 µV [66],
using Tc = 1.2 K for Al. Hence, we have only negligible influence of impurities in the Al. In
addition, the junction capacitance [359] and critical current density determining the junction
inductance can be extracted from IVC measurements. Since capacitance and inductance
determine the characteristic energies EJ and Ec of the junctions, these values are crucial
for the fabrication of different superconducting qubit types. For our junctions, typical
values of the specific capacitance are on the order of several hundred fF/µm2 [177, 178].
Depending on the oxidiation process, we find current densities of approximately 0.5 kA/cm2

to 4 kA/cm2 for flux qubit junctions and 100 A/cm2 for transmon qubits.

3.2 Fabrication of CPW structures
In this section, we describe basic fabrication steps used for thin film CPW structures made
from Nb using optical lithography. Because optical lithography is a well-established process
at the WMI [68, 360, 361], we only describe the main concept in Sec. 3.2.1 and focus on
various methods to clean the substrate in Sec. 3.2.2.

3.2.1 Optical lithography

Optical lithography works in close analogy to EBL described above. The two main
differences are that we activate the resist with ultraviolet light instead of accelerated
electrons, and that we use a negative patterning process.10 The negative fabrication
process comprises the following five steps. (i) We first deposit a 100 nm thick Nb film using
sputter deposition. (ii) We spin coat a negative resist onto the substrate. (iii) We activate
the relevant parts of the resist with ultraviolet light using a photomask that contains
the CPW structure. (iv) We develop the resist. (v) We finally remove the metal in the
activated areas using an etching process.

10 A negative process means that we remove the not-activated resist, compared to the positive EBL
process described above.
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Figure 3.8: (a) Atomic force microscope image of a typical Josephson junction consisting of two Al
layers with 40 nm and 70 nm height. (b) Scanning electron microscope image of a resonator sample
which is broken into pieces to investigate the profile of the metal film. (c) Profile of a 100 nm thick
RIE-etched Nb film fabricated with a negative process. (d) Profile of a 110 nm thick evaporated Al film
fabricated with a positive process.

Negative process The reason to use a negative process is the high melting temperature
and reactivity of Nb which prohibits an evaporation process. Therefore, sputtering is the
suitable method to deposit thin Nb films. Sputtering in turn, is not compatible with a
positive process for two reasons. First, sputtering is an isotropic deposition process, which
covers the vertical edges of a resist in a positive process. These covered edges are hard to
remove in a lift-off process. Second, sputtering on top of a resist results in edge defects and
sharp Nb tips because the resist suffers from the strong electron and Nb bombardment.
The resulting edge defects in turn lower the sample quality [122, 123, 125, 362, 363] because
of the enhanced electromagnetic field strength at these positions. Hence, we use a negative
process by etching the spare Nb away, which results in very clean edges as shown in
Fig. 3.8 (c).

Reactive ion etching Our standard etching method is reactive ion etching (RIE),11

where a chemical-reactive Ar/SF6 plasma is used to remove the Nb from the substrate
surface. We use an inductively coupled plasma (ICP), which is generated by a magnetic
field at low pressure. Additionally, there is an RF bias to create directional electric fields
near the substrate to accelerate the ions. This setup allows one to vary the plasma density
independently from the energy of the ions. Hence, we can adjust the ratio between the
chemical and the physical etching rates. We use this possibility because the acceleration
power can effect the quality of superconducting resonators [124]. The reason is that a
reduced RF power reduces the kinetic energy of the ions hitting the sample providing
a reduced surface roughness. During the work presented in Ref. 364, we fabricate and
characterize resonators with RF powers between 100 W and 30 W. For our samples, however,
there is no significant influence of the RIE power on the sample quality. Hence, the sample
quality of the resonators presented in this thesis is not limited by the etching process.

11 We use a Oxford Plasmalab 80 Plus device with ICP plasma source for our process.
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3.2.2 Substrate cleaning

As described in Sec. 2.4.2, superconducting resonators can suffer from significant loss due
to two-level states (TLSs) at the substrate surface. Standard cleaning procedures based
on acetone and IPA in an ultrasonic bath only superficially remove dirt on the substrate
surface. They do not remove, however, TLSs embedded in the upper atomic layers of the
substrate. We remove these TLSs from the sample by physically removing the substrate
surface. We investigate two common methods for the latter type of surface cleaning during
the work presented in Ref. 364 and Ref. 68. The first method is based on wet-etching the
surface by dipping the sample into hydrofluoric acid (HF-dip) [364] and the second method
is an ion-gun cleaning step before metallization [68].

HF-dip Except for some samples fabricated on sapphire, we use thermally oxidized Si as
substrate material. To remove contaminations residing in the oxidized surface, one can
use an HF-dip [124, 365]. After etching in a HF:H2O solution, there is a pure Si surface
leading to the formation of dangling bonds [366]. These dangling bonds get passivated by
hydrogen atoms [367, 368], which protect the surface from contamination. This protection
lasts for approximately half an hour [369, 370] limiting the time to transfer the sample
into an evacuated environment, i.e., the load lock of the sputtering chamber. A successful
HF-dip completely removes the Si oxide but does not etch away too much of the pure Si
to keep the surface smooth. Hence, we use a suitable combination of the etch time and
of the strength of the HF:H2O solution. Finding such a combination is supported by the
fact that the etch rate of HF is much higher for SiO2 than for Si [371]. We find that for
a ratio HF:H2O=1:10, an etch time of three minutes is a good trade-off to remove the
50 nm thermal oxide [364]. The complete removal of the SiO2 surface can be controlled
by the hydrophilic-to-hydrophobic transition of the sample. After the wet etch, we place
the samples in deionized water to completely remove HF residuals. To benefit from the
hydrogen passivated surface, we mount the samples in the load lock of our sputtering
chamber within ten minutes after the HF-dip.

Ion gun treatment As an alternative to the etching process described above, we use ion-
gun bombardment of the surface to remove contaminations [19, 372, 373]. One advantage
of ion-gun cleaning compared to the HF-dip is that the ion-gun is located in the same
vacuum cluster as the sputtering magnetron. Hence, the cleaned surface is hardly exposed
to contaminations between the cleaning- and the metallization step. In our setup, the
background pressure on the order of 10−9 mbar minimizes the contamination process.
During the cleaning process, electrons are accelerated towards an argon-filled chamber with
a pressure of 4× 10−6 mbar. In this chamber, the electrons ionize the argon atoms that are
subsequently accelerated towards the substrate. The voltage used to accelerate the ions
towards the substrate is one crucial parameter during the cleaning process because the
final velocity of the ions strongly determines the surface roughness of the substrate [374].
The surface roughness in turn has a strong effect on the quality of superconducting
resonators [19, 296]. A second parameter affecting the surface roughness is the duration of
the cleaning process. On the one hand, this time should be as short as possible to minimize
the surface roughness. On the other hand, the cleaning time must be sufficient to remove
the surface contamination completely. During the work presented in Ref. 68, we perform
a systematic study of acceleration voltage and cleaning time to optimize the quality of
superconducting resonators.
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3.3 Fabricated samples
In this section, we present relevant fabrication parameters and the layout for the different
samples analyzed during this thesis. Our samples can be divided into three groups as
shown in Fig. 3.9. The first group (Sec. 3.3.1) comprises all transmission line and resonator
samples without qubits. These samples all have the same geometry for the CPW structure
except for one microstrip sample. We adapt the basic CPW structure for the gradio qubit
sample presented in Sec. 3.3.2. Finally, in Sec. 3.3.3, we introduce the transmon qubit
sample used to study second-order noise processes and photon statistics of thermal fields.

3.3.1 Resonator and transmission line samples

resonator and
transmission line

samples

transmon qubit
sample

gradio qubit
sample

Figure 3.9: Dif-
ferent sample types
fabricated during this
work.

Fabrication parameters We first give a detailed summary of the
fabrication parameters used for all resonator and open transmission
line samples used in Sec. 4.3 and in Sec. 5.1. The resonators are half-
wavelength resonators with a design as shown in Fig. 3.10. For the Nb
CPW structures, we always use a fixed center strip width w= 20 µm, a
distance to the ground planes s= 12 µm, and a film thickness of 100 nm
(see Fig. 2.34 for details). The resonator length is `r' 15.25 mm result-
ing in a resonance frequency of approximately 4 GHz. We summarize
the fabricated resonators in Tab. 3.1.12 The samples are fabricated
either on a SiO2-covered SI, HF treated Si/SiO2, or a sapphire sub-
strate.13 The 50 nm oxide on the Si substrates is thermally grown
and the Si itself is undoped with a specific resistance larger than
1 kΩ cm. All substrates have lateral dimensions of 6 mm× 10 mm and
are cleaned by a series of isopropanol and acetone dips in an ultrasonic
bath. We sputter deposit the 100 nm thick Nb films with a deposition
rate of 0.33 nm/s at an argon pressure of 275 µbar with an argon flow
of 10 sccm. We spin the optical resist with 1000 rpm onto the Nb
coated substrate.14 We perform mask exposure to ultraviolet light
after baking for 70 s at 110 ◦C. For reactive ion etching we use an
Ar/SF6 plasma with a flow of 10 sccm for Ar and 20 sccm for SF6. We
etch for 70 s at a pressure of 20 mbar using 50 W for the ICP plasma.
The patterned samples are fixed with silver glue inside a gold-plated
copper box as shown in Fig. 3.10 (b). To save sample space, we connect
the feed lines directly to the coaxial cables using a transmission line to
coaxial (CPW/SMA) adapter.15 We use 10 µm gap capacitors as shown
in Fig. 3.10 (c) resulting in an external coupling rate κx/2π' 15 kHz
(cf. Sec. 4.3.2).

Modifications from the standard process We now list the modifications of the above
described fabrication steps for the individual samples presented in Tab. 3.1.

12 Most of the resonator samples summarized in Tab. 3.1 are fabricated during the work presented in
Ref. 364

13 We purchase all our wafers from CrysTec GmbH.
14 We use MicroChemicals AZ 5214 E resist for our process.
15 We use Rosenberger 32K724-600S5 panel jack stripline adapters for that purpose.
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Figure 3.10: (a) Microscope image of a Nb resonator. This basic design with resonance fre-
quency ωr/2π' 4 GHz is used for all samples except for the transmon qubit sample. The dark
surrounding of the chip is the silver glue used to ground the superconducting ground plane. (b) Photo-
graph of a resonator inside a sample box which is connected to an SMA connector via an CPW/SMA
adapter. (c) Zoom into the area where one of the coupling capacitors is placed. The 10 µm wide gap
yields an external quality factor of approximately 3× 105.

• Sample III is patterned with an EBL process instead of optical lithography. To this
end, we only use a single layer of the PMMA/MA resist spin-coated with 2000 rpm for
one minute. Even though the etch resistance of PMMA is significantly lower compared
to standard photo resists [351], the approximately 1 µm thick resist withstands the
RIE process. For the large CPW structures, we use an electron beam with a beam
current of 14.5 nA and apply a dose of 400 µC/cm2. We focus the beam using gold
nanoparticles as described in Sec. 3.1.2 and align the write-fields at the corners of the
rectangular substrate.

• For sample IV, we remove the SiO2 layer on top of the Si substrate. To this end,
we wet-etch for three minutes with a ratio HF:H2O=1:10. Afterwards, we rinse the
sample with deionized water before placing it in the sputtering chamber within five
minutes after the wet etch.

Table 3.1: Overview of the relevant resonators fabricated during this work. Sample IX has a
superconducting ground plane on the backside of the substrate.

ID Symbol in graphs Substrate thickness Cleaning Options
I Si/SiO2 250 µm standard –
II Si/SiO2 525 µm standard –
III Si/SiO2 525 µm standard EBL
IV Si 250 µm HF-dip –
V Sapphire 200 µm ion-gun –
VI Si/SiO2 525 µm standard gridded ground plane
VII Si/SiO2 250 µm ion-gun Al bridge
VIII Si/SiO2 250 µm standard Al bridge
IX Si/SiO2 250 µm standard microstrip
X Si/SiO2 525 µm standard all-Al, gradio qubit
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• Sample V has been fabricated during the work presented in Ref. 68 on a 200 µm thick
sapphire substrate. The substrate is in-situ cleaned by Ar ion beam etching before
Nb sputter deposition. The sapphire is orientated in (0001) direction and polished
on both sides. We operate the ion-gun at an operating pressure of 4× 10−6 mbar, a
filament current of 2.7 A, and an emission current of 30 mA. The duration of ion-gun
bombardment is 60 s with an acceleration voltage of 100 V.

• Sample VI has a gridded ground plane as one is shown in Fig. 3.11 (b). The square
holes of sample VI have a width of 8 µm and are separated by 12 µm.

• Al evaporation for the center conductor part of sample VII and sample VIII is done
at 2× 10−7 mbar with 8 kV and a filament current of 400 mA providing an Al rate of
12Å/s. To clean the Nb surface of sample VII, we use an Ar ion milling process for
60 s with an Ar flow of 0.5 sccm, an emission current of 20 mA, an extraction voltage
of 600 V, and an acceleration voltage of 2.4 kV.

• Sample IX is a microstrip resonator, which has a conductor width of 200 µm and a
100 nm thick Nb layer on the backside of the substrate serving as ground.16

• Sample X is the resonator used to read-out the gradio qubit described in Sec. 3.3.2.
Hence, it has a different coupling capacitor [cf. Fig. 3.11 (c)] and also the qubit and the
antenna structures. Nevertheless, we use quality factor measurements to benchmark
the performance of an Al/ALOx/Al sample.

3.3.2 Gradio qubit sample

In the following, we introduce the gradio qubit sample used to characterize the selection
rules for quadrupolar fields in Sec. 6.2. In Fig. 3.11 (a), we show the complete sample
mounted in a sample box. To connect the sample to coaxial cables, we use CPW/SMA
adapters and silver glue as described above.

Sample layout The heart of the sample is a tunable-gap gradiometric flux qubit that can
be controlled by two on-chip antennas as shown in Fig. 3.11 (b). Each of the gradiometer
loops has a size of 20 µm× 20 µm and the SQUID loop has a 5 µm× 12 µm area. All
qubit lines are 500 nm wide. The two larger junctions have areas of 250 nm× 200 nm
[cf. Fig. 3.11 (c)] and the SQUID junctions have areas of 150 nm× 200 nm. The resonator
has the same geometry as the samples introduced in Sec. 3.2 but with two modified coupling
capacitors as shown in Fig. 3.11 (d). Additionally, we use rectangular 8 µm wide holes in
the ground plane to trap possible magnetic flux vortices.

Spin coating parameters Before the spin coating, we clean the 525 µm thick Si/SiO2
substrate with an oxygen plasma for five minutes to remove residual particles on the surface.
We then place it for 10 min on a hotplate at 160 ◦C to evaporate possible humidity at the
substrate surface. For spin coating of the lower, 680 nm thick, layer of PMMA/MA33 %
resist, we use a rotation rate of 2000 rpm. We bake the resist at 160 ◦C for 10 min. In a
second step, we coat the sample with 70 nm of PMMA950K resist spinning at a rate of
4000 rpm. Afterwards, we again bake out the resist at 160 ◦C for 10 min.

16 We acknowledge sample fabrication by Marta Krawczyk in the context of her Master thesis [375].
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Figure 3.11: (a) Photograph of the sample box for the gradio qubit sample including four SMA
connectors for the RF-lines and the actual sample in the center. At the corners of the substrate,
the silver-glue is visible and from bottom to top, the resonator meanders across the substrate. (b)
Microscope image of the area where the gradio qubit is located. The resonator center conductor runs
from left to right and is galvanically coupled to the qubit. There are two antenna lines approaching
from the bottom and from the top to shape the driving field. Arrows indicate the positions where
Josephson junctions are located. (c) Scanning electron microscope image showing one of the two
larger Josephson junctions. (d) Microscope image of one of the coupling capacitors confining the
half-wavelength resonator.

EBL parameters The gradio qubit sample is fabricated in one fabrication step from an
Al/AlOx/Al sandwich structure, i.e., there is no Nb for the CPW structure. That way, we
omit the lossy Al/Nb interface to increase the sample coherence times (cf. Sec. 5.1). To
pattern the structure in an EBL process, we use two independent electron beam exposures
at an acceleration voltage of 80 kV. In the first step, we pattern the large CPW structures
and in the second step, we pattern the qubit and the Josephson junctions. For both steps,
we use the auto conjugate function of the nB5 device and focus on gold nanoparticles. For
the ground plane structures, we use a beam current of 14.5 nA and a dose of 400 µC/cm2,
while the center conductor and the antenna lines are written with a dose of 480 µC/cm2.
Furthermore, we scale the main-fields with a factor 1.001 to avoid stitching errors. The
qubit is written with a beam current of 2.6 nA and a dose of 800 µC/cm2. We develop the
sample in two steps. First, we wash away the activated structures in both resist layers
using an AR600-56 developer for 45 s. Then, we immerse the sample in isopropanol at 4 ◦C
for 120 s to selectively develop only the lower resist layer.

Evaporation parameters For metallization, we evaporate a 40 nm thick Al with 17°
angle onto the previously patterned sample. This layer forms the bottom electrode of the
Josephson junctions but also covers the complete CPW structure. We then oxidize the

74



3.3. Fabricated samples

(b)
6 mm

200 µm

(d)

(c) 100 µm(a)

resonator

antenna

PCB

SMP
connectors

qubit

1 cm

Figure 3.12: (a) Photograph of the sample box for the transmon qubit sample including a printed
circuit board (PCB) with surface mount SMP connectors and the actual sample in the center. (b)
Drawing of the sample including two identical qubit-resonator systems and on-chip antennas. For
our experiments, we characterize only one of the two systems. (c) Coupling capacitor of the quarter-
wavelength resonator. (d) Photograph of the transmon qubit (white) placed close to the center conductor
of the resonator and coupled to an on-chip antenna approaching the qubit from the bottom.

sample for 3000 s at an oxygen pressure of 3.3× 10−4 mbar aiming at a current density of
approximately 500 A/cm2. The oxygen flow is set to 3 sccm with a valve position of 45°.
In a subsequent step, a second layer of Al of thickness 70 nm is evaporated onto the sample
at angle θ=−17°, creating the second electrode of the junction. To oxidize all surfaces
without contamination from air, we oxidize the sample once more inside the evaporation
chamber. We use the above mentioned oxidation parameters but with an oxygen flow of
8 sccm to build a clean oxide on all Al surfaces.

3.3.3 Transmon qubit sample

We now present the sample box, the layout, and the fabrication parameters of the transmon
qubit sample used to characterize photon fields in Sec. 5.2 and Sec. 6.1.17

Sample holder The sample holder used for the transmon qubit measurements consist
of two parts as shown in Fig. 3.12 (a). The first part is a 6 cm× 6 cm gold-plated copper
box, which can be closed with a lid. The lid is designed in a way to provide only a small
mode volume above the PCB to reduce the number of parasitic modes. Second, there is a
printed circuit board (PCB) inside the box, which is equipped with coaxial SMP straight
plug PCB connectors. These connectors are used for RF coaxial cables, which enter the
box through small holes in the lid. The PCB is a 635 µm thick plate of Rogers 3010, a
dielectric material with a dielectric constant εr' 11. The dielectric is coated on both
sides with a 35 µm thick layer of copper structured with CPW transmission lines leading
from the chip to surrounding surface mount PCB connectors.18. The PCB ground plane
contains copper-coated vias to suppress slotline modes in the transmission lines and wave
propagation between top and bottom ground plane.

17 We acknowledge sample fabrication by Javier Puertas Martínez in the context of his Master thesis [376].
18 We use Rosenberger 19S102-40ML5 connectors for that purpose.
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Sample layout The transmon qubit sample consists of two equally designed parts, each
containing a quarter-wavelength resonator, an on-chip antenna, and a transmon qubit as
shown in Fig. 3.12 (b). The resonator is capacitively coupled to a feed line on the one end
and shorted to ground on the other end [cf. Fig. 3.12 (c)]. The feed line ends in a contact
pad of larger dimension to provide enough space for the Al bonds used to connect the feed
line with the PCB. We use approximately five bonds to connect the center conductor on
the chip and the center conductor on the PCB for optimum impedance matching [377],
while the ground plane is connected by approximately 100 bonds. We place the transmon
qubit in the gap of the CPW resonator as shown in Fig. 3.12 (d). It is located at a position
close to the input capacitor, meaning at a voltage antinode. In addition to resonator and
qubit, an on-chip antenna line runs from a second contact pad to a position next to the
qubit, where it is grounded.

Fabrication parameters The sample is fabricated on a 12 mm× 12 mm× 525 µm large
Si/SiO2 substrate with 50 nm thermally grown oxide. While resonator and antenna are made
from Nb using optical lithography, the qubit is patterned with electron beam lithography
and metallized using Al evaporation as described above. Compared to the gradio qubit
sample we use slightly different oxidation parameters. We oxidize the sample for 40 min
at 7.3 µbar and 45° valve position aiming for a critical current density of approximately
100 A/cm2.
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Figure 4.1: Poster welcoming visitors and researchers in the
CIRQUS lab.

From a technological point of view,
the main achievement of this thesis
is a significant contribution to the
setup of a laboratory suitable for
sensitive microwave experiments
on superconducting quantum cir-
cuits and qubits (CIRQUS lab, see
Fig. 4.1).1 The heart of the lab-
oratory is a dilution refrigerator
designed and fabricated at WMI
(see Fig. 4.2), which we wire up
in a way to perform time-resolved
measurements on superconduct-
ing quantum circuits at millikelvin
temperatures. Apart from the nor-
mal effort of turning an empty
room into the productive labora-
tory shown in Fig. 4.3, one partic-
ular challenge was the identifica-
tion and removal of a leakage of
suprafluid helium between the dis-
tillation chamber and the inner iso-
lation vacuum.
We introduce the dilution refrig-
erator and its main components
in Sec. 4.1. The time-domain mea-
surement setup2 with all its mi-
crowave components is discussed
in detail in Sec. 4.2. Finally, in
Sec. 4.3 and Sec. 4.4, we present
preparatory measurements for the gradio qubit sample and the transmon qubit sample.

1 The setup of the CIRQUS lab has been achieved in close collaboration with F. Wulschner [378],
M. J. Schwarz [178], F. Deppe, and the cryogenics experts C. Probst, K. Neumeier, and J. Höss.

2 We acknowledge a close collaboration with M. Häberlein on the time-domain setup.
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4.1 Cryostat for experiments with quantum circuits

Circuit QED experiments work at millikelvin temperatures to avoid thermal excitation of
the conducting quantum circuit. To reach such low temperatures, usually 3He/4He dilution
refrigerators are used because they provide sufficient cooling power for all the required
microwave equipment under continuous operation. The working principle of a dilution
refrigerator is shown in Fig. 4.2. It is based on the fact that a liquid 3He/4He mixture
separates into two coexisting phases with different 3He concentration when precooled to
temperatures below 870 mK [379, 380]. In practice, the 3He concentrated phase floats on
top of the 3He dilute phase containing more 4He. When pumping 3He out of the dilute
phase, 3He has to diffuse over the phase boundary to restore equilibrium. In this process,
the heat required for the dilution provides the cooling power of the refrigerator. Since the
vapor pressure of 3He becomes unreasonably small at millikelvin temperatures, the pump
acts on the liquid surface at a higher temperature in the distillation chamber (still).
In Fig. 4.3 (a), we show a schematics of the laboratory including all components of the
cryostat in the CIRQUS lab. On the one hand, there are several pumps and a gas handling
system used for cooldown and the continuous operation of the cryostat. On the other
hand, there is sophisticated measurement equipment installed in two racks and controlled
by three computers. The refrigerator reaches a base temperature of 25 mK, is equipped
with 24 coaxial and 48 twisted pair cables and has a cylindrical sample space of 12 cm
diameter and 30 cm height. In the following, we describe the dilution insert, the cryogenic
measurement components, and the shielding and filtering setup.
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trap for
mixture
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Figure 4.2: Schematics of the dilution refrigerator in the CIRQUS lab.

78



4.1. Cryostat for experiments with quantum circuits

CIRQUS lab

dewar

gas
handling
system

He
recovery

lines

(b)

3He/4He
storage

liquid nitrogen
cold trap

am
plifiers

AVS & rf-

op
tic

al
 fi

br
e

racks

(a)

pu

mp

m
ole

cular

tur
bo

pu
m

p
ba

ck
in

g

by
pa

ss

ga
s 

ha
nd

lin
g 

sy
st

em

pump
membrane

pump

1K-pot

dewar
with

insert
H

e recovery
RF-lines

DC-lines

PCs
3 He/4 He

pipes

(c)
in

se
rt

Figure 4.3: (a) Schematics of the CIRQUS lab. (b) Photograph of the closed cryostat under operation.
We can lower the dewar into a 3 m deep hole to uncover the cryogenic insert shown in panel (c).

79



Chapter 4. Experimental techniques

4.1.1 Dilution refrigerator

Liquid helium dewar and cryogenic insert Our dilution refrigerator comprises a
commercially obtained dewar3 shown in Fig. 4.3 (b) and a custom-made insert (designed and
fabricated at WMI) shown in Fig. 4.3 (c). The dewar is suspended on a vibration-isolation
system to suppress mechanical motion induced by the building. We can precool the insert
with liquid nitrogen and liquid helium using a membrane pump as depicted in Fig. 4.3 (a).
Under normal operation, the time between two refills exceeds seven days for a dewar
volume of 89 liter of liquid 4He and 87 liter of liquid nitrogen. The insert into the liquid
He dewar has a cylindrical shape with a diameter of 16 cm and a height of 1.2 m. At the
bottom resides a cylindrical brass vacuum can. This inner vacuum chamber (IVC) has a
diameter of 16 cm and a height of 65 cm. The IVC contains the dilution unit as well as
space for experimental installations at various temperature stages. Notably, the dilution
unit is mechanically decoupled from the experimental space. Several stainless steel tubes
extend from the room temperature (RT) flange to or into the IVC. Two of these tubes are
used to circulate the 3He/4He mixture, one to operate the 1K-pot, and one to evacuate
the IVC. This evacuation tube as well as two other tubes are used to feed the microwave
cables into the IVC. Furthermore, two tubes guide most of the twisted pair cables into
the IVC via compact, homemade cold feedthroughs. These feedthroughs are 1.8× 0.5 mm
CuNi capillaries soldered into a copper lid and sealed with black Stycast 2850GT. The DC
cables for the cold amplifiers and the cold microwave switches lead through the 4He bath
and also enter the IVC through such feedthroughs. Inside and outside the stainless-steel
tubes, copper baffles considerably reduce the effect of heat radiation from higher onto lower
temperature stages.

1K-pot operation Before entering the actual dilution unit, the 3He/4He mixture is
liquefied by means of evaporation cooling. To this end, 4He from the bath is fed via
a controlled impedance into a copper cylinder inside the IVC. This 1K-pot, shown in
Fig. 4.4 (a), operates at a temperature of 1.2 K and a pressure of 0.5 mbar provided by a
mechanical pump with a throughput of 110 m3/h.4 We design the 1K-pot with a large
RT impedance Z1K' 6.6× 1011 cm−3 to reduce helium consumption. To characterize the
1K-pot performance, we measure its temperature as a function of dissipated power in a
1 kΩ resistor attached to the vessel surface. We find a 1K cooling power P1K' 20 mW
[cf. Fig. 4.4 (b)], which is sufficient to condense the circulating 3He/4He mixture at a
condenser pressure of approximately 120 mbar. In order to avoid blockages of the impedance
capillary, the 4He from the bath is filtered using a combination of sintered metal powder
and moose leather that has been soaked in a solution of toluol and alcohol to isolate a
clean keratin structure.

Dilution unit The dilution unit provides the required cooling power at millikelvin
temperatures that is necessary to cool the experimental installations. Important components
of the dilution unit shown in Fig. 4.4 (a) are heat exchangers used to precool the condensed
3He/4He mixture after it has been precooled in the 1K-pot. The first two precooling
steps are provided by winded capillaries exposed to the cold exhaust gas of the distillation
chamber (still) and to the liquid mixture inside the still. The second capillary has a
large RT impedance Zstill = 3.5× 1011 cm−3 to decelerate the throughput of the superfluid
3 We use a Cryogenic Limited stainless steel dewar.
4 We use a Leybold SC 110 mechanical pump for that purpose.
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Figure 4.4: (a) Photograph of the dilution unit and its main components. (b) Cooling power of
the 1K-pot as a function of vessel temperature. (c) Cooling power of the still as a function of its
temperature. (d) Cooling power of the mixing chamber as a function of its temperature for a constant
3He throughput ṅ3 = 175 µmol/s. (e) Cooling power of the mixing chamber as a function of the 3He
throughput measured at a mixing chamber temperature Tmc = 100 mK. The solid line is a linear fit.

mixture. We adjust the throughput by heating a 1 kΩ resistor screwed to the still vessel
and find a maximum cooling power of the still Pstill' 7 mW at 675 mK [cf. Fig. 4.4 (c)].
For further precooling, the mixture enters a coil heat exchanger where a thin capillary
wound into a long coil is put into a thicker capillary wound into a coil, too. While the coil
exchanger has a large cross-section, we dimension the step exchanger placed below in a
compact way to minimize the amount of 3He for economic reasons. The two tubes of the
horseshoe-shaped step exchanger are filled with a sintered copper powder to increase the
effective surface area. With this design, the cryostat operates with a 3He/4He ratio of only
18 % and a total amount of 4 liter of 3He gas. We determine the (unintended) 4He flow of
the cryostat to approximately 15 % at Tstill' 675 mK determined by a gas analysis using a
leak detector. We take this 4He flow into account when calculating the 3He throughput
from the pressure-dependent pumping power of our pumps. During operation, the phase
boundary is located below all heat exchangers inside the mixing chamber, which contains
silver pistils and is filled with a sintered silver powder.5 The sinter is annealed at 100 ◦C
5 We use MaTeck 009388 powder with a grain size of approximately (1.0± 0.2) µm and a purity of 99.9 %

inside the mixing chamber.
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in a hydrogen atmosphere of 10 mbar for 4 h. In a subsequent step, the sinter is pressed
between the silver pistils of the mixing chamber with a pressure of 6.3 kbar and annealed
at 200 ◦C in a hydrogen atmosphere of 10 mbar for 4 h.

Cooling power We systematically analyze the mixing chamber performance, i.e., the
temperature-dependent cooling power Pmc(T ), for varying 3He/4He throughput. During
the first cooldowns of the cryostat without experimental installations, the cooling power at
100 mK has reached 80 µW and the base temperature fell below 14 mK [see Fig. 4.4 (d)]. We
significantly improve this cooling power by installing a bypass between the exhaust of the
turbo molecular pump6 and the mechanical backing pump7 as depicted in Fig. 4.3 (a). That
way, we avoid pumping through the gas handling system with its large flow resistance. This
impedance decrease causes a reduced vapor pressure inside the still allowing for a larger
throughput due to the reduced still temperature. With this concept, the cooling power of
the mixing chamber at 100 mK has improved to 140 µW. Even for this large still throughput,
the linear dependence between cooling power and throughput remains unchanged. Hence,
the cooling power is limited by the finite 3He throughput ṅ3 = 175 µmol/s of the mechanical
backing pump. Theoretically, the cooling power [381–383] Pmc = 82T 2

mcṅ3 depends on the
temperature Tmc of the mixture entering the mixing chamber as well as on the throughput
ṅ3. For our setup, we find Pmc' 60T 2

mcṅ3 measured at a mixing chamber temperature
Tmc = 100 mK [cf. Fig. 4.4 (e)]. The slightly decreased cooling power is expected [384]
because of the finite heat capacity of helium. We want to note that the minimum base
temperature shown in Fig. 4.4 (d) has increased to 24 mK for the measurements including
the bypass. The reason are the additional experimental installations, which are already
mounted during these measurements. In particular the 24 coaxial cables add a significant
heat leak to the mixing chamber causing the temperature increase.

4.1.2 Measurement equipment of the cryostat

48 twisted pair cables The twisted pair cabling of the cryostat is on the one hand
used for thermometry, and on the other hand for power supply, i.e., heating purposes and
the generation of static magnetic fields. A schematics of the twisted pair cabling is given
in Fig. 4.5 (a). To avoid crosstalk, we physically separate the thermometer cables and the
cables from heater, power supply, and coil current as much as possible by feeding them
through different tubes. To supply the cryogenic amplifiers, we use 100 µm thick copper
wires entering the cryostat through the He-exhaust tube [see Fig. 4.5 (c)].
Inside the IVC, the wires are thermalized at the 1K-stage by specially designed DC anchors
as shown in Fig. 4.4 (a). Below the 1K-stage, we change the twisted pairs to superconducting
Nb/Ti monofilament wires embedded in a phosphorous bronze matrix.8 We thermalize the
superconducting cables at different temperature stages by glueing them onto copper sheets
as shown in Fig. 4.6 (d).9

DC filters and current supply Except for the power supply cables for the cryogenic
amplifiers, we low-pass filter all twisted pair cables at the RT-flange to reduce the amount

6 We use a Pfeiffer TMU 521 DN160 turbo molecular pump with a sucking capacity of approximately
1200 m3

/h for 4He.
7 We use a Leybold Trivac D40B mechanical pump with a sucking capacity of 65 m3

/h.
8 We purchase the superconducting wires from Supercon Inc.
9 We use Stycast 2850 FT Blue epoxy for that purpose.
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of high-frequency noise entering the cryostat. To this end, we use homemade filters in
shielded filter boxes right on top of the fridge as shown in Fig. 4.5. These LRC filters are
realized as surface-mount devices (SMD) placed on a printed circuit board and have a
cutoff frequency of approximately 100 kHz [385]. To reduce Johnson-Nyquist noise, the
inductance coils in these filters have a low resistance of approximately 50Ω. The 200 pF
capacitance is a compromise between a large capacitance to achieve a low cutoff frequency
and the incompatibility of the homemade current source with large capacitors [385]. These
homemade current sources shown in Fig. 4.5 (d) are voltage controlled and have a maximum
output current of 100 mA.10 The ±1 V input range of the current sources results in a
precision of 1.5 nA when operating the current source in the finest (1 µA) range with a 16-bit
DA-converter.11 To reduce crosstalk between high frequency noise of the DA-converters
and the cryostat, we place commercial low-pass filters directly at the output of the current
sources.12

Thermometry and temperature stabilization We use two independently controlled
resistance (AVS) bridges to measure and stabilize different temperature stages of the
cryostat.13 At millikelvin temperatures, we measure the temperature by recording the
resistance of certain materials such as carbon composites [386] or RuO2 [387, 388]. In
our cryostat, we use homemade thermometers that have been fabricated and calibrated
in house. To avoid self-heating effects when measuring the resistance, we use very low
excitation voltages in the µV regime and heavy filtering as explained above. The low-pass
cutoff frequency of the SMD filters is sufficiently above the 13.7 Hz operating frequency of
the AVS bridges but allows environmental noise with lower frequency to enter the cryostat.
To minimize this effect, we mount the preamplifiers of our resistance bridges directly on top
of the filter boxes sitting immediately at the cryostat as shown in Fig. 4.5 (c). In addition
to the strong filtering, the cryostat is galvanically isolated from the power-grid. Specifically,
we use an isolating transformer for electrical power and an independent ground connection
for the cryostat.
Both AVS bridges are equipped with a multiplexing unit to read out the temperature of
eight thermometers, which allows us to monitor the temperatures of up to four sample
boxes in addition to all relevant components inside the cryostat. Alternatively, each bridge
can stabilize the temperature of one thermometer via PID-controlled heating of a resistor.
To stabilize the temperature of the sample stage or the sample boxes, we use 100Ω thin-film
resistors glued to a silver foil.14 With optimized PID parameters, we reach a temperature
precision of approximately 100 µK at 30 mK.
In addition to the cryogenic thermometers, we record and stabilize the temperature of
several room-temperature components. Specifically, we stabilize the temperature of the
microwave amplifiers to (18.0± 0.1) ◦C using a Peltier element [364].15 This temperature
stabilization is important to avoid amplitude and phase drifts of the coherent microwave
signals. Furthermore, we record the temperature of the microwave amplifiers placed
inside the shielding box presented in Sec. 4.2.2. Since the amplifiers are located inside the

10 We thank U. Guggenberger to provide the four current sources for the CIRQUS lab.
11 We use a National Instruments PCIe-6353 DA converter for that purpose.
12 We use MiniCircuits BLP-1.9 filters with a cutoff frequency of 1.9 MHz for that purpose.
13 We use Picowatt AVS-47B resistance bridges shown in Fig. 4.10 for thermometry and Picowatt TS-530A

PID controllers for temperature stabilization.
14 We use Vishay/Beyschlag MCT 0603 resistors here.
15 We use a Laird Techn. DA-075-12-02 Peltier element for that purpose.
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copper box, which thermally isolates them from the environment, we couple the amplifiers
to the box with a copper braid. That way, they operate at a constant temperature of
approximately (60± 1) ◦C, which is sufficient for our purposes.

RF input lines In the following, we describe the coaxial cabling used for the input
lines of the cryostat. There are 24 semi-rigid coaxial cables entering the cryostat via RT
feedthroughs to the inner isolation vacuum.16 16 of these cables are stainless steel cables
with low heat conductivity but significant loss and are therefore used as input lines.17

Below the 4K-flange, we use cables with a reduced diameter and a superconducting center
conductor18 to minimize thermal conductivity and, at the same time, strongly reduce
microwave loss. We thermalize the cables with attenuators19 at different temperature
stages as shown in Fig. 4.6 (a).

RF output lines and cryogenic amplifiers For the output lines of the cryostat, it is
important to minimize loss but also to achieve a sufficient thermalization of the cables.
From RT to the 4K-flange, we use eight silver-coated seamless copper-clad steel cables
(Cobras),20 which have low loss (1 dB/m at 5 GHz) at cryogenic temperatures. For the
cables connecting the 4K-stage with the sample stage, we use phosphor bronze cables with
a superconducting Nb center conductor.21 To thermalize the center conductors, we use
several cryogenic circulators anchored to the still plate22 and to the sample stage.23

We amplify the microwave signals with high electron mobility transistor (HEMT) amplifiers
that are anchored to the 4K-flange. We use four amplifiers operating from 3 GHz to 8 GHz
with a gain of 40 dB and one broadband amplifier with a gain of 35 dB between 4 GHz
and 20 GHz.24 The five amplifiers are stacked on top of each other as shown in Fig. 4.6 (c).
The tight packing of the amplifiers results in a temperature increase of these devices
to approximately 9 K due to the power consumption of 4 mW each. At this operating
temperature, the amplifiers have a noise temperature of approximately 2 K as characterized
in Sec. 4.4.3.

RF filters The performance of superconducting quantum circuits is typically limited by
their short coherence times due to the noisy environment of the circuits. As derived in
Sec. 2.4.2 and Sec. 2.4.3, one main noise channel are the microwave cables leading to the
circuits. To protect the quantum circuits from this noise channel, we filter the broadband
noise spectrum at low temperatures. To achieve sufficient filtering, we use different filter
types shown in Fig. 4.7, which we characterize at cryogenic temperatures [364]. Depending
on the experimental requirements, we use either band-pass filters with an insertion loss of
more than 30 dB below 2.5 GHz and above 5.5 GHz25 [see Fig. 4.7 (a)] or tubular low-pass
16 We use Rosenberger 02K641-KH0S3 feedthroughs for that purpose.
17 We use UT-85 Coax Co. Ltd SC-219-SS-SS semi rigid cables for that purpose.
18 We use UT-47 Coax Co. Ltd SC-119-Nb-CN cables for that purpose
19 We use Rosenberger 32AS102-K10S3 attenuators for that purpose.
20 We use Astrolab Cobra Flex 31086S semi rigid cables for that purpose.
21 We use UT-85 Coax Co. Ltd SC-219-Nb-PBC semi rigid cables for that purpose.
22 We use Raditek RADI-4.0-8.0-Cryo-S3-1WR circulators with 18 dB isolation for that purpose.
23 We use double-shielded Quinstar CTH1 184-KS18 with 20 dB isolation for that purpose.
24 We use LowNoiseFactory LNC4_8A and LNC6_20B amplifiers for that purpose.
25 We use MiniCircuits VBFZ 4000 band-pass filters for that purpose. Please note that for the transmon

qubit sample, we use a resonator with ωr/2π' 6 GHz and a MiniCircuits VBFZ 5500 filter with a
slightly higher pass band.
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filters shown in Fig. 4.7 (b) containing capacitively coupled dielectric spacers and a high
precision surface topography.26 These filters have a 3 dB cutoff frequency of 12 GHz and a
typical insertion loss of 70 dB for frequencies up to 30 GHz [cf. Fig. 4.7 (e)]. For even higher
frequencies the filters become transparent and are therefore not suited to block infrared
radiation.

Infrared radiation filters As pointed out in Sec. 2.4.2, infrared radiation entering
the sample box is a significant noise source that has to be filtered properly. Infrared
radiation couples to the samples through the coaxial cables connected to the sample box.
These cables use polytetrafluoroethylene (Teflon) as a dielectric, which shows a very good
transmittance for infrared frequencies [389, 390]. Infrared frequencies are above the cutoff
frequency of the transverse magnetic (TM) and the transverse electric (TE) modes in
the coaxial cables [109, 391]. Therefore, infrared radiation can propagate in these modes,
which distribute around the circumference of the cables. Technically, we cannot attenuate
the TM and the TE modes with the microwave filters described above because they have
spurious transmission resonances at these high frequencies [392]. Nevertheless, dissipative
filters consisting of a metallic wire embedded in a metal powder [393] suppress these high-
frequency modes [394–397]. Dissipation occurs because the ac noise induces dissipative
eddy-currents in the powder, which damps these currents proportional to their frequency.
Typical dissipative filters with stainless steel powder have an insertion loss of more than
20 dB at 5 GHz [see Fig. 4.7 (e)], which is not suited to operate circuits in the gigahertz
range. Therefore, we use materials for the dielectric that do not suffer from eddy currents
but that absorb infrared radiation. These materials can be Eccosorb CR-110 [398], black
Stycast 2850GT [399, 400], or different carbide types [65]. We fabricate several pipe-type
coaxial filters with different filling materials [364]. The copper tubules used for these filters
fit on the two SMA coaxial panel mount connectors as shown in Fig. 4.7 (c).27 We design
the length of the filter in such a way that the two pins inside the tubule touch and can be
26 We use K&L 6L-250-12000 low-pass filters for that purpose.
27 We use H+S 22SMA-50-0-15 connectors for that purpose.
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soldered through a small hole in the outer shell. After inserting the filling material, we close
the hole by soldering a copper lid on it. As filling material, we compare air (no powder),
boron carbide (B4C) with a grain size of 250 µm and 400 µm, stainless steel with a grain
size of 400 µm, and Stycast 2850GT. In the optical frequency range, all these materials are
opaque meaning that terahertz radiation is suppressed strongly. In the infrared frequency
range, the absorption of B4C [401–403] and Stycast [399, 400] has been analyzed in several
studies. When comparing the performance of the different fillings in the gigahertz range
in Fig. 4.7 (e), we find that stainless steel has the strongest attenuation in the gigahertz
regime as expected due to eddy-current loss. Also the 400 µm B4C grains significantly
absorb microwaves below 10 GHz, which is known for microwave sintering of ceramics [404].
The 250 µm B4C grains, however, show a smooth frequency spectrum with negligible loss
up to 20 GHz. Also the black Stycast is transparent up to 12 GHz. Hence, the latter two
materials are well-suited for cryogenic infrared filters. From time-domain-reflectometry
(TDR) measurements, we find a typical filter impedance of 55Ω up to 60Ω.

4.1.3 Radiation and magnetic flux shielding

To generate a clean electromagnetic environment inside the cryostat, we shield thermal
radiation as well as magnetic noise. To this end, we use a combination of multi-stage
shielding and absorbing coatings as described in the following paragraphs.

Radiation shielding We cascade different types of shielding around the sample space
as depicted in Fig. 4.8 (a) to block thermal radiation. To protect the cryostat insert from
300 K-radiation, the dewar has an Al shield that is thermally anchored to the 77 K liquid
nitrogen reservoir. The oxide surface of the high-purity Al is chemically cleaned to improve
emissivity. To reduce radiation onto the Al shield, it is covered with a superinsulation
blanket consisting of alternating layers of reflective aluminized mylar and nylon netting.
The next shielding stage is at liquid helium temperature, where the helium reservoir made
of stainless steel and the IVC made of brass reflect thermal radiation [cf. Fig. 4.8 (b)]. We
protect the dilution unit and all measurement components anchored to it with a radiation
shield made of copper that is thermally anchored to the still plate as shown in Fig. 4.8 (c).
Additionally, we use the Al shield shown in Fig. 4.8 (d) anchored to the mixing chamber
plate to protect our samples from radiation. Finally, the sample boxes themselves protect
the superconducting circuits from external radiation.

Magnetic flux shielding To reduce magnetic flux noise, we place the dewar inside three
µ-metal cans reaching almost up to the RT-flange.28 To restore the alloy’s metallurgical
structure providing the intended magnetic properties, the shields are annealed for 4 h at
1150 ◦C. The heat treatment removes all impurities, e.g. carbides, sulfides, or nitrides,
without adding oxidation. In addition, it increases the grain size and fixes the crystal
structure of the alloy. With this treatment, the shields have a coercivity of 1.5 A/m
and an approximate DC shielding of 5 dB each. Inside the helium reservoir the vacuum
can is covered with a cryoperm shield with a 50 Hz permeability of 7× 104 at cryogenic
temperatures.29 The shield has a thermal expansion of 1.3× 10−5 K−1, a coercivity of

28 We purchase these 1 mm-thick shields with a maximum permeability of 2.5× 105 consisting of an
76.6 % Ni, 4.5 % Cu, 3.3 % Mo, 14.7 % Fe from Meca Magnetic.

29 We purchase this shield consisting of an 77 % Ni, 4.5 % Cu, 2.5 % Mo, 15.1 % Fe alloy from
Meca Magnetic.
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Figure 4.8: (a) Schematic drawing of the different shielding stages inside the cryostat.(b) Photograph
of the inner vacuum can which is enclosed by a cryoperm µ-metal shield. (c) Photograph of the dewar
insert with the still shield made from copper mounted to the still plate. (d) Photograph of the mixing
chamber, which is covered with an absorbing coating.

2 A/m and an approximate DC shielding of 15 dB. Additionally, we make use of the
superconducting properties of the mixing chamber shield, which sustains a constant
magnetic flux inside. The shield is made of a 99.5 % pure Al alloy (AlMgSi), which becomes
superconducting at 1.1 K [405]. To enable a homogeneous thermalization of the shield,
we coat it with black Stycast 2850 Gt, which has a heat conductivity of approximately
0.01 W/(m K) at these low temperatures [406–409]. Additionally, the epoxy glue serves as
an adherent layer for the absorbing coating described in the following paragraph.

Absorbing coating To absorb infrared radiation at the sample stage, we establish a
technique to apply an absorbing coating to radiation shields during the work presented in
Ref. 364. The coating has a rough surface as shown in Fig. 4.8 (d) to increase the total
absorption rate by generating multiple reflections. For the coatings, we adapt a technique
developed for the diffuse reflectors of the Herschel space platform [400], which has been
shown to reduce loss in microwave circuits [65]. The coating consists of a mixture of SiC
grains and Stycast 2850GT,30 where the SiC grains roughen the coating surface. The
SiC itself has no absorption band in the sub-millimeter wavelength [400]. The absorption
coefficient of Stycast 2850, however, increases from 8 cm−1 at 333 GHz to 19 cm−1 at
2.5 THz. We test the absorption properties of the coating in an experimental setup as
shown in Fig. 4.9 (a) [364]. In this setup, we probe the transmission between two antennas
in a closed copper can, which is prepared with the absorbing coating. We compare Stycast
coating without grains and three different grain sizes to an uncoated reference can by
measuring the transmission between the antennas at cryogenic temperatures. As shown in
Fig. 4.9 (b), the pure Stycast coating does not significantly reduce the transmission between

30 We use the GT version of the Stycast 2850 instead of the FT version used in Ref. 400. The Sty-
cast 2850GT is optimized to the thermal expansion of brass instead of copper and brass has an
expansion coefficient close to that of Al.
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Figure 4.9: (a) Photograph of a closed copper can with two SMA feedthroughs. Inside the can, there
are two antennas realized as semi-rigid coaxial cables where we remove the outer conductor and the
isolation material for approximately 1 cm. To avoid direct crosstalk, we use a radiation shield between
the two antennas. We coat the inside of the cans with different materials. (b) Normalized transmission
magnitude from one antenna to the other plotted versus frequency for different coatings. We normalize
our measurements to the transmission of an uncoated copper can.

the antennas. Hence, the Stycast coating with a smooth surface is not sufficient to absorb in
the frequency range below 40 GHz. When roughening the surface with small (F30 0.6 mm)
grains or with medium sized (F20 1 mm) grains, the absorption factor is approximately
20 dB between 15 GHz and 40 GHz. For even larger (F12 1.7 mm) grains, the absorption
is reduced to almost 40 dB for frequencies higher than 10 GHz. For lower frequencies, we
observe an increased transmission for all types of coatings. These frequency components
must be screened by tight sample boxes and filters in the circuit. For terahertz radiation, we
show the absorption of the absorbing coating in a similar experiment presented in Ref. 364.
In these experiments, we measure the heating of a thermally isolated thermometer due to a
nearby heater acting as a black-body radiator. We find that the thermometer heats up to
a smaller extent in a coated surrounding for heater temperatures between 4.2 K and 12 K.

4.2 Time-resolved measurement setup

In addition to the cryogenic setup described in the previous section, we equip the CIRQUS
lab with a measurement setup to perform time-resolved measurements (a photograph of
the measurement equipment is shown in Fig. 4.10). The time-domain measurement setup
resolves amplitude and phase variations of gigahertz signals on a nanosecond timescale [54].
This time-resolved measurement technique is crucial to detect the dynamics of supercon-
ducting quantum circuits [410] and for the characterization of microwave states of light [129].
The measurement setup presented here differs from other well-established setups [129, 410]
in the chronology of averaging and homodyning. In our setup, the averaging step comes
before the homodyne step as depicted in the operation principle of the time-domain setup
in Fig. 4.11. The interchanged order of these steps is possible because we record coher-
ent signals with a well-defined sinusoidal evolution rather than statistically distributed
thermal states. Assuming that the detected signals follow well-defined amplitude and
phase relations, we use an optimization protocol that dynamically adapts to variations and
drifts in the carrier signal. That way, we omit any reference measurements to characterize
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Figure 4.10: Photograph of the front side of the two racks containing most of the measurement
equipment for the time domain setup described in the text.
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the detection path in our cryostat. For the specific case of a resonator used to read out
a qubit in the strong coupling regime [see Eq. (2.3.2)], the protocol is as follows. First,
we manipulate the qubit state by a series of drive pulses at or near the qubit transition
frequency ωq. To detect the qubit state, we read out the resonator with a second pulse at
the resonator frequency ωr. In the dispersive regime [see Eq. (2.3.5)], the ac-Stark shift
changes the resonator eigenfrequency proportional to the σz-component of the qubit state.
Due to the bandwidth of our analog-to-digital converters (ADCs), we convert the amplified
gigahertz pulse (RF) to an intermediate (IF) frequency in the megahertz regime. To this
end, we use IQ-mixers supplying us with the in-phase and quadrature components I
and Q, respectively. After further amplification and low-pass filtering, we digitize the
megahertz signals with ADCs. This procedure is repeated approximately 106 times and
the single traces are averaged using a software code programmed in C++, which we call
snap-tool. This strong averaging is necessary because the HEMT amplifiers add 10-20
noise photons to the readout signal, which typically contains one photon on average. In
order to gain access to the quasi-DC envelopes of the megahertz signals, we perform a
digital homodyning step and calculate amplitude and phase from I and Q.
The rest of this section is structured as follows: We first present the pulse generation setup
for drive- and readout pulses in Sec. 4.2.1. Second, in Sec. 4.2.2, we present the analog
down-conversion setup. Averaging and digital homodyning is performed as described in
Sec. 4.2.3.

4.2.1 Pulse generation and synchronization

The generation of pulsed sequences of gigahertz signals in a synchronized way is one main
task for the time-resolved detection of quantum states in the microwave regime. In the
following two paragraphs, we first discuss the technical implementation of such pulse
sequences and subsequently address synchronization issues.

Pulse generation The technical realization of microwave pulse generation in the CIRQUS
lab is depicted schematically in Fig. 4.12. We use two arbitrary function generators (AFGs),
to generate the quasi-DC rectangular pulse envelopes.31 To keep the flexibility of shaping
31 We use Agilent 81160A Pulse Function Arbitrary Noise Generator for that purpose.
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Figure 4.12: Time domain measurement setup. Pink and dark blue lines belong to the pulse generation
and state detection setup, while dashed lines are synchronization lines. The down-conversion box is
introduced in detail in Sec. 4.2.2.

more complex envelopes in the future, we digitally synthesize the waveforms loaded into the
AFGs in our measurement software programmed as a LabView code. The code dynamically
adapts the number of waveform points to the cycle length to keep a temporal precision
of 1 ns. Hence, a waveform consists of 104 points for a typical cycle time of 10 µs. In
Fig. 4.13 (a), we show the time evolution of a rectangular pulse used for triggering purposes.
The finite rise time of 2 ns fits well to the 500 MHz bandwidth of of the AFG. For qubit
state control and for a pulsed readout, we modulate the amplitudes of a sinusoidal giga-
hertz signal with the envelope pulses as shown in Fig. 4.13 (b).32 To this end, we feed the
continuous microwave signal from a microwave source as well as the rectangular pulse to
the local oscillator (LO) and IF inputs of a double balanced harmonic mixer, respectively.33

The mixers have an on/off ratio of approximately 20 dB and an insertion loss of 7 dB. To
improve the on/off ratio, we use two mixers in series and split the rectangular pulse with a
resistive power splitter.34

Synchronization A precise synchronization of all devices in the measurement setup is
crucial for time-resolved measurements. In our setup, synchronization serves two tasks.
First, each device must have exactly the same frequency standard and second, all pulses
must arrive at the digitizer card precisely at the time when the card starts recording.

32 For the qubit drive tone at frequency ωq, we use a Rohde &Schwarz SMF100A microwave source, while
an Agilent PSG E8267D source produces the readout tone at frequency ωr.

33 We use Marki M1-0218LA mixers for that purpose.
34 We use MiniCircuits ZFRSC-42 power splitters for that purpose.
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Furthermore, because we average before the down-conversion, we must ensure that all
recorded pulses always enter the digitizer card with an identical phase to avoid destructive
interference. Each repetition of a 10 µs measurement cycle is triggered by one channel of an
AFG as shown in Fig. 4.12. The TTL synchronization output of this channel triggers the
output of the readout pulse and of the qubit drive pulse. To account for the propagation
time of these pulses through the setup, we delay the actual pulse generated from that
channel via the synthesized waveform. A typical time delay in our system for the trigger
pulse is on the order of 150 ns. The common frequency standard is generated by an
atomic clock based on rubidum-87 atoms.35 This clock supplies a precise 10 MHz frequency
reference that is connected to the synchronization input of all pulse generating devices
and microwave sources [cf. Fig. 4.12]. The figures of merit for the synchronization are the
phase-drift and the phase jitter between the different pulses. For a typical length of one
measurement (10 µs× 106 = 10 s), we observe no measurable phase drifts. Apart from phase
drifts over this long timescale, however, the phase of the combined signals are subject to
random jitter. To characterize this jitter, we record 106 traces with a fast oscilloscope and
analyze deviations in the first rising edge of the pulses [54].36 Calculating the standard
deviation of the detected edge using the statistics function of the device, we find a rise time
of 1.7 ns [cf. Fig. 4.13 (a)] and a jitter of 17 ps. For drive and readout pulse, we measure a
jitter of 50 ps at the intermediate frequency ωIF = 62.5 MHz after down-conversion. This
phase jitter corresponds to a phase noise of approximately 1°.

4.2.2 Analog down-conversion setup

We now describe the analog down-conversion step from the gigahertz frequencies used
for readout to megahertz frequencies that our ADCs can resolve. We amplify the signal
emerging from the cryostat at room temperature using an amplifier with a gain of 25 dB
and a noise temperature below 60 K,37 which is significantly below the broadband noise
amplified by the HEMT amplifiers. This broadband noise also covers the carrier signal

sout(t) = 1√
2

[A(t) cos (ωrt+ ϕ(t))︸ ︷︷ ︸
Irf(t)

+A(t) sin (ωrt+ ϕ(t))︸ ︷︷ ︸
Qrf(t)

] , (4.2.1)

35 We use a Stanford Research FS725 rubidium clock for that purpose.
36 We use a LeCroy Wavemaster 8600 oscilloscope for that purpose.
37 We use an Agile Microwave Technology Inc. AMT-A0019 amplifier for that purpose.
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used for readout, which consists of the two components Irf andQrf . In Eq. (4.2.1), A(t) and
ϕ(t) are amplitude and phase of the carrier signal. This signal is physically down-converted
using a double-balanced IQ-mixer.38 By modulation with a continuous local oscillator
(LO) signal with frequency ωlo,39 this mixer splits the carrier signal into high-frequency
components I+(t) andQ+(t) and low-frequency components Iif(t) andQif(t) as shown in
Fig. 4.14 (a). The frequency of the two resulting signals is given by the sum ω+ =ωr +ωlo
and by the difference ωif =ωr−ωlo of the two input frequencies. We use low-pass filters to
suppress the undesired frequency contribution ω+ and obtain

Iif(t) = A(t) cos(ωift+ ϕ(t)) , (4.2.2)
Qif(t) = A(t) sin(ωift+ ϕ(t)) . (4.2.3)

Here, we assume a perfect mixer providing exactly 90° phase offset between Iif andQif
and equal amplitudes at the two outputs. Deviations from this assumption are discussed
in Sec. 4.2.3. Technically, we could down-convert sout to zero frequency (homodyne) in
order to save the additional step of digital homodyning and the need of a local oscillator.
To avoid electronic 1/f noise and due to the ac-coupled ADCs, however, we chose an
intermediate frequency ωif = 62.5 MHz in our experiments.
To optimize the performance of the down-conversion setup, the IQ-mixer is placed together
with additional microwave components inside a shielding box shown in Fig. 4.14 (b). This
box is made of copper and isolates the microwave components inside from electromagnetic
noise in the lab. The inner walls of the box are coated with an absorptive foil of rough
surface to reduce the number of supported modes.40 To make the lid of the box RF-tight,
we place a conductive shielding gasket with a shielding efficiency of 80 dB at 100 MHz
between cover and box.41 To avoid that electromagnetic noise from the lab enters into the
box through the measurement cables, we place an isolator at the input of the shielding
box. The subsequent band-pass filter is used to reduce the bandwidth of incoming noise.42

Without this filter, the noise bandwidth emitted from the cryostat is primarily determined
by the amplification bandwidth of the HEMT amplifiers ranging from 3.5 GHz to 9 GHz.
This large noise floor drives the IF amplifiers into compression if no band-pass filter is
applied. To further reduce the noise spectrum, the down-converted signals Iif andQif
pass a 90 MHz low-pass filter before and after the IF amplifiers.43 That way, we keep a
frequency window of 90 MHz open for the direct observation of coherent qubit oscillations,
which are typically in the megahertz regime. Also in this respect, our setup differs from the
narrow-band reconstruction method of microwave states discussed in Ref. 129. To make
full use of the dynamic range of our ADCs, we use IF amplifiers with a typical gain of 65 dB
and a noise temperature of 92 K.44 To remove DC offsets and 1/f noise contributions from
the amplified signals, they pass an additional high-pass filter with a cutoff frequency of
120 kHz.45 The LO signal passes a 1.6 GHz high-pass filter and a circulator in order to
avoid 10 MHz sidebands in the down-converted carrier signal.46

38 We use a Marki IQ-4509 mixer for that purpose.
39 We use a Rohde & Schwarz SMB 100A microwave source for that purpose.
40 We use Kemet EFA(003)-240X240T0800 Fex Suppressor foil for that purpose.
41 We use a Wurth Elektronik 3021005 Abschirmung Gasket for that purpose.
42 We use an MiniCircuits VBFZ 5500 isolator for that purpose.
43 We use MiniCircuits SLP-90+ low-pass filters for that purpose.
44 We use MITEQ-AU-1525 amplifiers here.
45 We use MiniCircuits ZFHP-0R12 high-pass filters here.
46 We use MiniCircuits VHP16 high-pass filters for that purpose.
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signal generator.

To characterize the measurement setup, we measure the noise spectrum of a 50Ω termi-
nation screwed to the input of the shielding box. We record 106 averages of a 2.048 µs
time trace with 4 ns steps and perform a Fourier transform into frequency space. When
the lid of the shielding box is open, we measure a strong noise contribution at 10 MHz as
shown in Fig. 4.14 (c). We benchmark the shielding efficiency of the box by repeating the
noise measurement described above when the lid is closed. With the shielded setup, we
significantly reduce the noise contribution at 10 MHz below the noise floor of the amplifiers
[cf. Fig. 4.14 (c)]. The reduced noise level for frequencies higher than 100 MHz comes from
the 90 MHz low-pass filters in the analog down-conversion setup.

4.2.3 Averaging and digital homodyning

We now describe the digital part of our setup where we average over single measurement
traces and perform digital homodyning to a quasi-DC signal. Averaging is necessary since
the carrier signal in a single readout trace is completely covered by noise. Nevertheless,
since the noise is uncorrelated and has a zero arithmetic mean, we retrieve the in-phase
and quadrature components of the carrier signal after strong averaging. While averaging
is done in real using the snap-tool, digital homodyning is performed using a LabView
code. The main advantage of our homodyne scheme compared to the schemes presented in
Ref. 410 andRef. 129 is the ability to dynamically adapt to frequency-dependent imbalances
between the two amplification chains. That way, we are able to perform parameter sweeps
without recalibrating offsets in the two components Iif andQif .

Digitizing and averaging For digital data-processing, we digitize the two components
Iif(t) andQif(t) with 250 MHz sampling rate and 14-bit resolution of the ±0.75 V input
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range of the ADCs.47 To reduce DC noise at the ADC inputs, the card is ac-coupled and has
negligible input loss between 1 MHz and 250 MHz as shown in Fig. 4.14 (c). Even though
our measurement card is equipped with an on-board FPGA,48 we directly stream the data
to a computer without using this FPGA functionality. The modular implementation of the
measurement, however, allows for the integration of any real-time FPGA calculations in
the future. A typical measurement trace consists of 512 points (2.048 µs) and is embedded
into the 100 kHz (10 µs) cycling of the pulse generation setup. The data stream from
the ADCs to the computer contains a header with channel information as well as the
digitized data points. This data bundle is sent to the control computer via a single-lane
PCIe 2.0 connection where it is post-processed within the 10 kHz repetition rate. In this
configuration, we generate a streaming rate of 211 MByte/s, i.e., approximately half the
maximum rate for a single-lane PCIe connection. Each trace of the data stream is received
by the snap-tool, which subsequently averages the data by adding up the digitized traces in
a memory buffer. When the maximum number of iterations Nmax is reached, we calculate
the mean value of each point in time by dividing the accumulated value by Nmax. We
program the snap-tool in a way, that – in addition to averaging – any other computation
with the digitized data can be performed. That way, we retain the flexibility for more
advanced measurement routines. The averaged values Iif andQif are further processed in a
LabView code as described in the following paragraph. To pass the data to the LabView
code, the snap-tool provides a TCP/IP-based server.

Digital homodyning The digitized and averaged signals Iif andQif pass a homodyne
routine programmed in LabView to remove the modulation with the IFcarrier frequency. To
this end, we use a dynamic method that resolves the time dependency point by point using
the optimization protocol depicted in Fig. 4.15. That way, we do not require additional
calibration measurements.
In order to understand how the optimization protocol works, we first review the digital
homodyning process itself. The final goal of this process is to get access to the time-
dependent amplitude A(t) and phase ϕ(t). In our discussion, it is more convenient to
represent the IF signal as a trace in the phase space spanned by its field quadratures
Iif(t) andQif(t). For an ideal signal defined by Eq. (4.2.2) and Eq. (4.2.3), this trace has the
shape of a circle centered at the origin. Then, one can easily move to a rotating frame where
the IF frequency is stationary using the rotation [410] [Idc(t), Qdc(t)] =Rif [Iif(t), Qif(t)]
with

Rif =
(

cos(ωift) sin(ωift)
− sin(ωift) cos(ωift)

)
. (4.2.4)

With this rotation, the time-dependent quadrature amplitudes Idc(t) andQdc(t) translate
directly into A(t) and ϕ(t). Due to the two individual amplification and filtering chains
for Iif andQif , however, there can be phase and amplitude deviations between the two
channels resulting in the modified carrier signals

Iif(t) = AI(t) cos(ωift+ ϕ(t)) + δIif (4.2.5)
Qif(t) = AQ(t) sin(ωift+ ϕ(t) + δϕ) + δQif . (4.2.6)

As shown in Fig. 4.15, these equations do not describe a circular trace anymore, but rather
a twisted ellipse displaced from the origin by the amount [δIif , δQif ]. In Eq. (4.2.5) and
47 We use Linear Technology LTC2157-14-Dual 14-Bit 250Msps ADCs for that purpose.
48 We use an Innovative Integration X6-250M board.
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Figure 4.15: Sketch of the optimization process used for digital down-conversion. The insets of the
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Eq. (4.2.6), imperfections in the IQ-mixer as well as in the two amplification chains result in
different amplitudes AI(t) and AQ(t), respectively. Furthermore, the IQ-mixer introduces
a small phase offset δϕ between Iif(t) andQif(t), which typically depends on the frequency
of both the carrier and the LO signal. Finally, the ADCs add the DC offsets δIif and δQif
to the digitized signals. When rotating Eq. (4.2.5) and Eq. (4.2.6) with Rif , the terms
δIif and δQif will rotate at the frequency ωif . Furthermore, the amplitude ratio AI/AQ 6= 1
and also the phase offset δϕ result in spectral components at 2ωif . To correct for these
artificial modulations, we use the optimization process described in the following. This
optimization process consists of two important steps. In step (i) depicted in Fig. 4.15, we
eliminate the DC offsets in the signals by subtracting the constant values δIif and δQif . We
find the exact DC offsets by iteratively calculating the Fourier transforms of (Iif(t)− δIif)
and (Qif(t)− δQif) for varying values of δIif and δQif until a minimum at S(ω=0) is
reached.49 After this step, we can assume δIif = δQif = 0 in Eq. (4.2.5) andEq. (4.2.6) and
49 For the optimization process programmed in LabView we use the Constrained Nonlinear Curve

Fit.vi, which is based on the Levenberg-Marquardt algorithm to find a set of parameters that best fit
the theoretical model.
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continue with step (ii) of the optimization process. Step (ii) depicted in Fig. 4.15 contains
three parallel tasks. The first task removes the phase offset between Iif(t) andQif(t), i.e.,
δϕ 7→ 0. The second task equalizes the amplitudes meaning that AI 7→AQ. If these tasks
are performed precisely, we can finally homodyne the signal using the rotation matrix
defined in Eq. (4.2.4). The optimization is based on calculations of amplitude and phase

A(t) = 1√
2

[
αIIif(t)

cos(ωift+ ϕ(t)) + αQQif(t)
sin(ωift+ ϕ(t) + δϕ)

]1/2
, (4.2.7)

ϕ(t) = arctan

 αQQif(t)
αIIif(t)

− sin(δϕ)
cos(δϕ)

− ωift− δϕ , (4.2.8)

where αI andαQ are linear scaling factors. These scaling factors, as well as the phase
offset δϕ are the free parameters, which are varied in the optimization process. In this
process, we use the Levenberg-Marquardt algorithm to determine the set of parameters that
best fit the spectral assumptions A(ωif ,2ωif)' 0 and ϕ(ωif ,2ωif)' 0. In Fig. 4.16, we show
the bare IF Iif(t) andQif(t) and the resulting amplitude and phase after demodulation.
From a Fourier analysis of the demodulated signals, we find a typical signal/noise ratio of
40 dB for measurements using roughly one readout photon on average. With the dynamic
optimization setup described above, we dynamically adapt the phase and DC offsets for
each averaged measurement trace. That way, we omit any reference measurements to find
calibration values for AI ,AQ, and δϕ.
The homodyne detection process described above works reliably for coherent signals with
a larger amplitude than the averaged noise amplitude of the amplifiers. For the detection
of thermal states without defined phase, however, the optimization process cannot be
applied. Furthermore, the optimization is time-efficient only for weak measurements of
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qubit states, where the averaging time is typically at least on the order of seconds and
the additional computation time for the optimization process is negligible. When aiming
for single shot measurements of superconducting qubits with a typical repetition rate of
100 kHz, the computing time of our protocol can strongly exceed the cycling time and
limit the measurement efficiency. In this case, one could use one averaged calibration
measurement, which is preceded to the actual single shot measurements.

4.3 Preparatory measurements for the gradio qubit
experiments

In this section, we present preparatory measurements for the gradio qubit sample used
in chapter 6. To this end, we first perform a systematic study of the circuit geometries.
As shown in Fig. 4.17, all these characterization experiments are based on the same
superconducting coplanar waveguide (CPW) transmission line structure patterned on a
6× 10 mm2 dielectric substrate.50 In some cases, we add a pair of coupling capacitors into
the center conductor of this basic structure to create a linear resonant circuit. In other
cases, we add a pair of on-chip high-frequency antennas, to control a superconducting
tunable-gap gradiometric flux qubit. In Sec. 4.3.1, we first characterize parasitic modes and
properties of the fundamental transmission line structure. We then investigate the coupling
capacitors used for our resonators and the loss induced by on-chip antennas (see Sec.4.3.2).
Using these on-chip antennas, we show the formation of symmetric or antisymmetric RF
fields in Sec. 4.3.3. This technique is essential to control a gradiometric-tunable flux qubit,
which we integrate into the well characterized CPW structure as described in Sec. 4.3.4.

4.3.1 Characterization the transmission line structure

Because we use a He-bath cryostat operating between 1.8 K and 4.2 K51 to characterize
the transmission line structure, we use Nb thin films with Tc' 9 K instead of Al. The
samples are open transmission lines or resonator structures fabricated on silicon substrates
as described in detail in Sec. 3.3.1. As depicted in Fig. 4.18 (a), we measure the transmission
magnitude T (ω) of these structures with a vector network analyzer (VNA).52

Parasitic modes of the transmission line sample A careful analysis of the trans-
mission line characteristics is important to identify parasitic modes appearing as peaks or
dips in a transmission spectrum. The transmission line geometry in Fig. 4.17 has a nearly
constant transmission T (ω)' 1 up to 10 GHz as shown in Fig. 4.18 (a). For frequencies
above 10 GHz, we observe pronounced dips in the transmission spectrum. We attribute
these dips to reflections and resonances in the sample box as well as in the substrate. Be-
cause all superconducting circuits presented in this thesis operate well below 10 GHz, these
parasitic modes have no consequences in our experiments. Consequently, the transmission
line structure presented here is well-suited to probe quantum effects in superconducting
circuits.

50 The transmon qubit, fabricated by J. Puertas Martínez [376], was initially planned by E. P. Menzel to
serve as a single photon source and therefore has a different CPW structure.

51 The cryostat is described in detail in Ref. 377.
52 We use a Hewlett-Packard 8722 D network analyzer for that purpose.
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Figure 4.17: (a) Fundamental CPW structure used for most experiments in this work which has
20 µm wide center conductor separated by 12 µm from the ground plane. We can integrate coupling
capacitors (zoom area marked by black dashed rectangle) or flux qubits (zoom area marked by red
rectangle) into the center conductor. To control the qubit we can add a pair of antennas marked by the
blue rectangle. We add either capacitively or inductively coupled antennas, which can have an L-design
or a T-design. Furthermore, we can use a gridded ground plane to prevent flux vortices from moving
across the sample frozen in the ground plane during cool-down.

Mean free path and penetration depth of Nb thin films More information about
our superconducting Nb films is obtained by inserting two coupling capacitors into the
center conductor of the transmission line and, in this way, creating a half-wavelength
resonator. From the observed loss at 1.8 K and 4.2 K, we determine the mean free path
λ` and the effective penetration depth λBCS defined in Sec. 2.1.2 of the Nb films. These
important material parameters determine the surface resistance, and thus an important
loss channel, of the Nb thin films. For our analysis, we measure the linewidth of a resonant
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Figure 4.18: (a) Measurement setup for characterization measurements of transmission line structures
using a vector network analyzer (VNA). The samples are mounted in a sample-box and cooled down in
a He-bath cryostat. We can use a mechanical pump to reduce the vapor pressure and therefore the
temperature of the liquid helium. (b) Transmission magnitude T (ω) through an open transmission line
sample plotted versus frequency. This measurement has been performed during the work presented
in Ref. 361. (c) Transmission magnitude T (ω) of an overcoupled resonator plotted versus frequency
measured during the work presented in Ref. 68.

Nb structure defined by two coupling capacitors in the transmission line. The external
coupling rate κx/2π' 15 kHz of these capacitors is described in detail in Sec. 4.3.2. The
two capacitors lead to standing waves with eigenfrequencies ωr,k defined in Eq. (2.2.9)
and shown in Fig. 4.18 (b). Away from these resonance frequencies, the transmission
through the resonator is strongly suppressed due to the Lorentzian filter function. The
bandwidth of the resonance peaks is determined by the total resonator loss κtot =κx +κi
shown in Fig. 4.19 (a). At 4.2 K, we measure a resonator width κtot/2π' 2.2 MHz for
the fundamental mode ωr,1. Because the sample temperature of 4.2 K reaches almost
50 % of the critical temperature of Nb, we expect that a significant contribution to κtot
comes from quasiparticle losses [279]. Consequently, we can reduce the resonator loss to
κtot/2π' 0.9 MHz by cooling the He bath cryostat from 4.2 K to 1.8 K.53 In addition to the
change in κtot, one expects a frequency shift of the resonance peak due to the change of the
kinetic inductance [126]. A detailed analysis of this frequency shift and of the microwave
loss allows one to derive the effective penetration depth and the mean free path of the
Nb films. During the work presented in Ref. 68, we perform such an analysis and find a
mean free path λ`' 17 nm as well as the penetration depth λBCS' 74 nm. These values
are comparable to those found in literature [411]. From these values, we estimate the loss
rate due to surface resistance at mK temperatures to be significantly less than 1 kHz.

Current-induced quasiparticles In the previous paragraph, we analyze quasiparticle
losses originating from thermally excited quasiparticles at relatively high temperatures
(T/Tc> 0.1). We now switch to the discussion of loss due to large oscillating currents inside

53 To operate the helium-bath cryostat presented in Ref. 377 at 1.8 K, we reduce the vapor pressure to
approximately 1 mbar using a mechanical pump.
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Figure 4.19: (a) Transmission magnitude of the fundamental mode of a superconducting Nb resonator
measured at 4.2 K and 1.8 K sample temperature. Solid lines are Lorentzian fits. (b) Micrograph of
the gridded ground plane used for the sample with holes. (c) Excess loss due to quasiparticles plotted
versus field amplitude expressed as √nr. The solid lines are numerical fits as explained in text.

the resonator. From the loss model presented in Sec. 2.4.3, we expect no power dependence
of the surface resistance loss. The loss model implies that the surface resistance itself
shows no power dependence because the oscillating current does not generate additional
quasiparticles. For very large readout power, however, the oscillating supercurrent may
exceed the critical current at the sample edges thereby generating quasiparticles which
contribute to the total loss rate of the resonator. These losses arise due to dissipative
RF currents carried by quasiparticles. There are two possible candidates for quasiparticle
induced losses. On the one hand, currents above the critical depinning current density
could depin flux vortices, which subsequently dissipate power during their acceleration
in the RF field. On the other hand, the local current density could exceed the critical
depairing current density and generate normal conducting electrons.
The generation of loss due to flux vortices is as follows. Because Nb is a type-II super-
conductor, it enters the Shubnikov phase if the local magnetic field exceeds the critical
field Bc1' 200 mT [412]. For a superconducting thin film, however, the value of Bc1 is
strongly reduced due to demagnetization effects and can be as low as the earth magnetic
field. The local magnetic field can be provided either from an external source or from
the resonator itself. Based on the field calculations in Sec. 2.4.3, we expect, that vortex
generation starts to form above approximately 106 photons. This number is based on
the maximum calculated field strength Hmax

y ' 5× 10−4 A/m at the surface of the CPW
structure generated from a single photon (nr = 1). This field strength corresponds to a
magnetic field Bmax

y ' 6.3× 10−7 mT. For a large enough oscillating current, especially the
field components directly at the surface of the superconductor can exceed Bc1 and generate
vortices. Due to the resonator current density jr, the vortices experience the force per
vortex length [90] FΦ = jr× eΦΦ0, where eΦ points in the direction of the magnetic flux in
the vortex. Because superconductivity is suppressed in the core of a vortex, the resulting
motion of the vortices leads to dissipation [413–415]. Their effect becomes manifest in the
photon-number-dependent resonator loss κtot(nr) =κx +κ0 +κΦ(nr), where κ0 accounts
for all power-independent internal loss channels.
The generation of normal conducting electrons begins at positions where the local current
density is enhanced due to geometry effects. Then, the current density can exceed the critical
current density jc' 106 A/cm2 [416]. To identify which of the two processes is relevant
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for our Nb thin films, we compare the power-dependent loss rates of two undercoupled
Nb resonators. Both samples are fabricated on identical 525 µm thick Si/SiO2 substrates
using optical lithography. The relevant difference between them is that one sample has a
continuous ground plane while the other one has a gridded ground plane. The square holes
in the grid have a width of 8 µm and are separated by 12 µm as shown in Fig. 4.19 (b). The
idea behind the grid is to provide a potential landscape where holes in the superconductor
are potential minima for the vortices. Once a vortex is trapped in such a minimum it stays
there until the trapping energy is again provided from an external source, e.g., thermal
excitations. Hence, we would expect a smaller power dependence for the sample with
gridded ground plane if flux motion is the source for the additional dissipation.
In Fig. 4.19 (c), we show the photon number dependence of the loss rate κΦ for the two
resonators characterized at 1.8 K. Because we reach very high photon numbers (nr> 105),
we can clearly observe additional loss due to crossing the critical current density. The
additional loss rate increases stronger for the sample with gridded ground plane than
for the sample with continuous ground plane. Hence, the additional loss is dominated
by the generation of normal conducting electrons. The reason is the increased number
of edges for the sample with gridded ground planes. At these edges, the quasiparticle
generation is enhanced due to field elevation [417]. For the photon regime above nr' 1500,
we extract the excess loss per photon κ̃Φ by fitting a power law κΦ = κ̃Φ · n

β
r . In particular,

we find κ̃Φ,grid' 125 kHz/√nr and β' 1.22 for the sample with gridded ground plane and
κ̃Φ,cont' 430 kHz/√nr and β' 0.43 for the sample with continuous ground plane.

4.3.2 Coupling between transmission lines

In this section, we characterize coupling capacitors in half-wavelength CPW resonators
and coupling coefficients of broadband on-chip antennas [418].

Coupling capacitors - point-like coupling We first evaluate the capacitance of the
coupling capacitors used for the resonator structures throughout this work. The typical
dimensions of these capacitors are small compared to the wavelength of the readout tone.
Hence, we apply a lumped-element model imitating a point-like coupling. In general, this
coupling between two structures A andB can be capacitively via their mutual capacitance
Cκ or inductively via their mutual inductance Mκ. In both cases, Faraday’s law describes
the induced current and voltage

IB = −Cκ
∂Va
∂t

= −ıωCκVa exp(ıωt) , (4.3.1)

VB = −Mκ
∂Ia
∂t

= −ıωMκIa exp(ıωt+ ıπ/2) . (4.3.2)

Here, we assume that the signal oscillating at frequency ω in structure A is defined by the
voltage amplitude Va and the current amplitude Ia, respectively. In the case of coupling
capacitors, the mutual capacitance determines the external quality factor of the resonator
with total capacitance C (cf. Sec. 2.2.2). Since different experiments require different
external quality factors, it is important to have well-founded knowledge of the mutual
capacitance between two transmission lines. In addition to finite-element simulations, we
extract the coupling capacity with two experimental methods. The first method is based
on the frequency shift [112]

δωr = ωr(C + Cκ)− ωr(C)
ωr(C) ≈ −Cκ

C
(4.3.3)
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induced from the additional capacitance at the coupling ports. The second method is
to determine Cκ by measuring the resonator quality factor and apply Eq. (2.2.15). For
this method, however, we have to make an assumption on the internal quality factor of
our samples. During the work presented in Ref. 68, we perform a systematic study on
the capacitance values for different capacitor geometries using both methods. From that
study, we find the capacitor geometry used for the undercoupled resonators in Sec. 5.1
and the capacitor geometry used for the overcoupled resonators in Secs. 5.2 - 6.2. For the
undercoupled resonators, we use gap-capacitors with a 10 µm wide gap and a capacitance
Cκ' 1.1 fF resulting in a coupling strength κx' 15 kHz. This coupling corresponds to an
external quality factor Qx' 3× 105 at ωr ' 4 GHz. For the experiments presented in
Secs. 5.2 - 6.2, we use finger capacitors as shown in Fig. 3.12 (c) and in Fig. 3.11 (d). These
capacitors result in a coupling strength κx' 8.5 MHz for the quarter-wavelength resonator
used in Sec. 6.1 and κx' 2.5 MHz for the half-wavelength resonator used in Sec. 6.2.

Antenna coupling - distributed-coupling Even though we consider a purely capac-
itive and point-like coupling in the previous paragraph, generally the coupling has also
inductive components and must be described in a distributed coupling model [419–422].
This model differs from the lumped-element model because voltage and current are dis-
tributed along the transmission lines meaning that there are regions where they coexist.
In the distributed coupling model, we assume a spatial distribution M̃κ(x) and C̃κ(x) of
the mutual inductance and capacitance per length, respectively (we consider the structure
as quasi-one-dimensional). In addition to the spatial dependence of mutual capacitance
and inductance, the amplitudes of current and voltage vary on the transmission lines
due to interference and damping effects. We consider these effects using the space- and
frequency-dependent envelopes u(x,ω)∈{0,1} and j(x,ω)∈{0,1}. These envelopes account
for several mechanisms that influence the spatial amplitude distribution. First, there is
damping of the lines, i.e., jd(x,ω) = 1/(1 +αd

√
xω) with damping constant αd.54 Second,

microwave attenuators placed in the input lines introduce a frequency-independent attenu-
ation ja = 1/αa. Finally, there can be standing waves on resonant circuits, which enhance
the envelope functions. Hence, we calculate the mutual inductance and capacitance as

Mκ(ω) =
∫ `c

0
M̃κ(x)ja(x,ω)jB(x,ω) dx and Cκ(ω) =

∫ `c

0
C̃κ(x)ua(x,ω)uB(x,ω) dx ,

where, `c is the length of the coupling region. After computing Mκ(ω) and Cκ(ω), we treat
the coupling region again as an effective point scatterer with impedance

Zκ(ω) = 1
1/R+ 2ıωCκ + 1/(ıωMκ) , (4.3.4)

where R is the resistance of a (possible) galvanic connection between A and B. The
transmission coefficient 2Zκ(ω)/[Z0 +Zκ(ω)] of this scatterer depends strongly on the ratio
Zκ(ω)/Z0. Taking into account the frequency-dependent damping, we find the transmission
magnitude between A and B as

T (ω) =
∣∣∣∣ 1
αa(1 +αd

√
xω)

2Zκ(ω)
[Z0 +Zκ(ω)]

∣∣∣∣2 . (4.3.5)

54 The same dependence holds, of course, also for the voltage envelope.
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Figure 4.20: (a) Micrograph of a sample comprising two L-shaped antennas coupled to a transmission
line (B). The antenna approaching from the top (Aind) is inductively-coupled to an open transmission
line, while the antenna approaching from the bottom (Acap) is capacitively-coupled. (b) Experimental
setup as shown in panel (a) but for two T-shaped antennas. (c) Calibrated transmission magnitude
between the transmission line and the two antennas shown in panel (a) plotted versus frequency. (d)
Calibrated transmission magnitude between the transmission line and the two antennas shown in panel
(b) plotted versus frequency. Dashed lines are calculations based on Eq. (4.3.5).

To experimentally characterize the frequency-dependent transmission T (ω) between dif-
ferent antenna structures and the central transmission line, we fabricate samples with
several antenna designs. These designs are either inductively or capacitively coupled to an
open transmission line (probe line) as shown in Fig. 4.20 (a) and (b). Here, the inductively
coupled antennas are shorted to ground in the coupling region, while the capacitively
coupled antennas have an open-circuit at this position. In Fig. 4.20 (c) and (d), we show
T (ω) between the antennas and the probe line measured at 4.2 K. The transmission
magnitude shows large variations of more than 40 dB for both antenna designs and both
coupling mechanisms. We observe several peak and dip structures arising from interference
effects, i.e., standing waves on the chip. These peaks and dips are superimposed on a
general trend described by Eq. (4.3.5). We show this trend for the inductively coupled
antennas as dashed lines in Fig. 4.20 (c) and (d). Here, we set 1/R= 0 because the antennas
have no direct galvanic connection to the probe line and the silicon substrate is insulating
at low temperatures. The calculations fit best to the data points if we set Mκ = 1.5 nH
and Cκ = 1.3 pF for the L-design and Mκ = 0.55 nH and Cκ = 0.2 pF for the T-design. In
both cases, the inductive contribution dominates the transmission, which is expected for
the inductively coupled antenna. There is a reasonable quantitative agreement between
the calculations and data for frequencies up to 5 GHz. For higher frequencies, however,
interference effects dominate. For the capacitively coipled antennas, we observe a strongly
reduced transmission for frequencies below 5 GHz compared to the inductively coupled
antennas. Nevertheless, the measurements presented here are important to quantify the
control pulses used for experiments with superconducting qubits.

106



4.3. Preparatory measurements for the gradio qubit experiments

dwr  / 2π (MHz)
-5 0-10 5 10

-10

-40

-20

-30T(
w

) (
dB

)

(c)
T-design
L-design(a) (b)

re
so

na
to

r

re
so

na
to

r

L-design
T-design

Figure 4.21: (a) Sketch of a CPW resonator coupled to two L-design antennas approaching the
resonator from left and right, respectively. (b) Same as in panel (a) but for the T-design. (c)
Transmission magnitude for resonators coupled to two antennas plotted versus detuning δωr =ω−ωr.

Resonator loss into antenna lines For many circuit QED experiments, qubits are
coupled to CPW resonators. To control these qubits in a broadband frequency range, we
use on-chip antennas as described above. However, the advantage of a broadband coupling
to the qubit comes with the disadvantage that the coupling is also present at the resonator
frequency. Especially, if inductively coupled antennas are placed at a current maximum
of the resonator, photons can easily escape through the antenna lines. Consequently, the
resonator quality decreases for strongly coupled antennas. Therefore, we must find a
compromise between a small enough coupling to maintain the high resonator quality on
the one hand, and a strong enough coupling for qubit control on the other hand. Here,
strong enough means that we can induce enough signal into the superconducting circuits
without heating the cryostat due to dissipating currents.
In the following, we compare the two antenna designs described above concerning the loss
from the resonator into the antenna lines. The half-wavelength resonators depicted in
Fig. 4.21 (a) and (b) have 10 µm gap capacitors resulting in an external coupling κx' 15 kHz.
Since we perform the measurements at 1.8 K where internal loss rates are small, we
approximate the loss rate κa into the antenna lines with the total loss rate κtot of the
resonator, i.e., κa≈κtot. Just as in the experiments presented in Sec. 6.2, we place one
antenna on either side of the resonator. The first design (L-design) is shown in Fig. 4.21 (a).
There, the antenna has a 50Ω-matched CPW geometry until it is grounded in the close
vicinity of the resonator. That way, we keep the overall structure size and consequently the
crosstalk to the resonator small. For this design, we measure a loss rate into the antenna
κa/2π' 400 kHz corresponding to a loaded quality factor Q`' 104 [see Fig. 4.21 (c)]. The
second antenna design (T-design) contravenes the 50Ω-matching when approaching the
resonator and widens up as shown in Fig. 4.21 (b). This geometry is larger and therefore
shows more crosstalk to the resonator. Consequently, we measure an increased loss into the
antenna κa/2π' 2.6 MHz (Q`' 1600). Because this loss rate is approximately one order
of magnitude higher than the loss rate of the L-design, we prefer the L-design for further
experiments.

4.3.3 Formation of symmetric and antisymmetric microwave fields

For the control of quadrupolar artificial atoms, the spatial amplitude distribution of the
electromagnetic field penetrating the circuits is important. In this thesis, we implement
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quadrupolar artificial atoms as tunable-gap gradiometric flux qubits, which react to
symmetric fields H0 and to antisymmetric fields ∇H as introduced in Sec. 2.1.6 and
Sec. 2.3.3. To control the amplitude distribution of the magnetic field penetrating the
qubit, we place it between two symmetric antennas as shown in Fig. 4.22. That way, we
generate a symmetric field with respect to the symmetry axis of the qubit as shown in
Fig. 4.22 (a). This field configuration provides the symmetric magnetic field H0 required
for RF control of the flux through the SQUID loop. On the other hand, an antisymmetric
field as in Fig. 4.22 (b) provides the field gradient ∇H in y-direction, which couples to the
gradiometer part of the qubit. In the following, we show a way to generate RF fields with
a spatial amplitude distribution that is either symmetric across the qubit area or RF fields
that are antisymmetric. To calculate the amplitude distribution, we use a simple model
based on Biot-Savarts law [423]. Our model does not include any boundary conditions
from nearby ground planes, etc., but treats the undisturbed fields of current-carrying wires.
We model each antenna as a single, thin wire of infinite length in x-direction. The wire is
placed perpendicular to the yz-plane, crossing the plane at the coordinates r1 = (0, y1, 0).
The magnetic field generated from this wire at a point r0 = (x0, y0, z0) in space reads
H1 = Id,1/(2π|r0− r1|)eφ [423]. Here, Id,1 is the current flowing through the wire and eφ
is the unit vector in φ-direction when using a cylindrical coordinate system. This constant
1/|r|-dependence of a single antenna is not suited to manipulate the amplitude distribution.
Thus, we sandwich the qubit in the near-field between two antennas, where the second
antenna is placed at r2 = (0,−y1, 0). That way, the current Id,2 enables either constructive
or destructive interference of the two antenna fields. Since the qubit couples only to the
z-component of the resulting field, we investigate the value

Hz(r0) =
Id,1
2π

y0 − y1

(y0 − y1)2 + z2
0

+
Id,2
2π

y0 + y1

(y0 + y1)2 + z2
0

(4.3.6)

in the following. In Fig. 4.22 (c) and (d), we show Hz(r0) for the two cases Id,2 = Id,1
(symmetric field) and Id,2 =− Id,1 (antisymmetric field) along the y-direction. Even though
we have discussed only static solutions of the magnetic field so far, the line of argument
also holds for oscillating currents if they have equal frequencies ωd. We describe the
oscillating currents as coherent drives Id,1(t) = I1 exp(ıωdt) and Id,2(t) = I2 exp(ıωdt+ ıϕrel),
respectively. We use the mean values 〈Id,1〉= I1/

√
2 and 〈Id,2〉= I2 cos(ϕrel)/

√
2 to calculate

a quasistatic solution of the magnetic field using Eq. (4.3.6). Hence, we control the
interference field with the amplitude ratio I1/I2 and with the relative phase ϕrel between
the drives. In this formalism, the two scenarios in Fig. 4.22 (c) and (d) correspond to the
situation where I1 = I2 and ϕrel = 0 (symmetric field) and ϕrel =π (antisymmetric field).
To probe the amplitude shaping of microwave fields, we study on-chip interference effects of
transmission line structures in much detail during the work presented in Ref. 361. We place
a transmission line sample in an experimental setup as shown in Fig. 4.23 (a). The sample
consists of a probe line, which runs symmetrically between the two on-chip antennas. We
feed the antennas with a coherent drive generated from a VNA. We apply a phase shift in
one of the arms using a motorized phase shifter.55 Furthermore, we adjust the amplitudes
I1 and I2 of the oscillating currents using attenuators in one of the lines. To probe the exact
amplitude distribution of the field generated from the antennas, however, a sophisticated
setup including SQUIDs or the like is required. Here, we use a simplified approach and
measure the power Pt transmitted to the probe line. Since the probe line sits symmetrically
55 We use a motorized phase shifter constructed during the Diploma thesis of P. Eder [424].
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Figure 4.22: (a) Arrangement for the generation of symmetric magnetic fields penetrating a tunable-
gap gradiometric flux qubit using two nearby antenna lines. The field is generated by the two oscillating
currents Id,1 and Id,2. For the qubit, only the z-component Hz of the field depicted as the two
circular arrows is relevant. (b) Same as in panel (a) but for an antisymmetric field. (c) Color-encoded
z-component Hz of the magnetic field plotted versus position y (perpendicular to the qubit symmetry
axes) and z for a symmetric magnetic field. The blue rectangles denote the position of the antenna
lines. (d) Same as in panel (c) but for an antisymmetric field. (e) Magnetic field component Hz at the
relevant height z= 0 indicated by the dashed line in panel (c) and panel (d). (f) Same as in panel (e)
but for an antisymmetric field.

between the antennas, an antisymmetric field has an amplitude node at this position and
no power is transmitted. A symmetric field, however, has a finite amplitude at the probe
line position and the transmitted power has a maximum. In general, the power transmitted
from the antennas to the probe line reads

Pt(ωd,ϕrel) = Z0T (ωd)
[
I2

d,1 + I2
d,2 + 2Id,1Id,2 cosϕrel

]
. (4.3.7)

Here, we assume that the coupling T (ωd) defined in Eq. (4.3.5) between antenna and
probe line, is equal for both antennas. When operating at a single drive frequency, we
compensate for inequalities in T (ωd) by varying the attenuation in the lines. When sweeping
the frequency, however, the situation becomes more complex as shown in Fig. 4.23 (b).
Here, we observe an oscillatory behavior of the transmitted power versus frequency. This
behavior arises from the phase shift ϕrel that increases linearly with frequency if the two
arms have not the exact same electrical length. In this case, the phase evolution reads
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Figure 4.23: (a) Experimental setup to test the amplitude distribution of microwave fields. (b)
Color-encoded power Pt transmitted from the two antennas to the probe line plotted versus drive
frequency ωd and phase shifter (p.s.) turns. Solid lines indicate where the traces shown in panel
(c) and (d) are measured. (c) Power Pt transmitted from the two antennas to the probe line plotted
versus drive frequency at 3 phase shifter turns. (d) Power Pt transmitted from the two antennas to
the probe line plotted versus phase difference recorded at 6.06 GHz. In panel (c) and (d) solid lines are
sinusoidal fits.

ϕrel(δ`) =ωdδ`/ceff , where δ` is the length difference between the arms and ceff is the
effective speed of light in the measurement lines. As shown in Fig. 4.23 (c), this model
explains the data in a reasonable way as indicated by the sinusoidal fit. A more controlled
way to change the phase difference is to use the motorized phase shifter. That way, we
achieve a clear sinusoidal behavior of the transmitted power as shown in Fig. 4.23 (d). As
expected, we measure high transmission for ϕrel = 0 and a strongly reduced transmission
for ϕrel =π resulting in an on/off ratio of 55 dB. From this large on/off ratio, we conclude
that we can efficiently control the amplitude distribution in the region between the two
antenna lines. Consequently, we use this method to control the gradio qubit as presented
in the next section.

4.3.4 Characterization of the gradio qubit

In this section, we introduce the measurement setup and characterization measurements
for the sample used to study selection rules for quadrupolar qubits presented in Sec. 6.2.

Cryogenic sample setup We use a tunable gradiometric flux (gradio) qubit [83, 98]
coupled to a half-wavelength CPW resonator as depicted in Fig. 4.24 (a). We place the qubit
at the current antinode of the resonators fundamental mode and add a pair of inductively
coupled on-chip antennas as described in Sec. 4.3.3. Qubit and resonator are made in one
fabrication step from an Al/AlOx/Al thin film as explained in detail in Sec. 3.3.2. That
way, we remove loss due to Nb/Al transitions introduced in Sec. 2.4.3. For our experiments,
we fix the sample with silver glue inside a gold-plated copper box [see Fig. 4.24 (b)] and
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Figure 4.24: (a) Sketch of a gradio qubit galvanically coupled to a readout resonator and inductively
coupled to two on-chip antennas. (b) Photograph of the cryogenic measurement setup. (c) Detailed
measurement setup including microwave and DC components.

cool it to the base temperature of the cold-stage of our dilution refrigerator, i.e., 25 mK.
Our low temperature setup has a sophisticated shielding against magnetic flux noise as
described in Sec. 4.1.3. Additionally, we use a gridded ground plane for the CPW resonator
to prevent the motion of flux vortices. The combination of strong shielding and a gridded
ground plane yields a very high flux stability of the setup. This flux stability is a big
advantage compared to earlier experiments [178, 425] with flux qubits that suffered from
spatially unstable flux vortices.

Measurement setup The sample is connected to several RF and DC control lines, which
we describe in detail in Sec. 4.1.2. We give a schematic overview of the cryogenic setup in
Fig. 4.24 (c). We perform measurements either with a vector network analyzer (VNA)56 or
with the time domain setup described in Sec. 4.2. We filter input and output lines with
Minicircuit VBFZ 4000 band-pass filters at room temperature and at the sample stage to
protect the qubit from noise. That way, we observe a very clean noise-floor for frequencies
outside the band-pass region shown in Fig. 4.25 (a). We control the qubit using the two

56 We use a Rohde &Schwarz ZVA 24 network analyzer for that purpose. For a typical measurement, we
use a bandwidth from 10 Hz to 100 Hz and average approximately 10 times.
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Figure 4.25: (a) Transmission magnitude measured through the resonator plotted versus readout
frequency. (b) Power Pt transmitted from the two antennas to the resonator plotted versus phase
difference recorded at 3.99 GHz. The solid line is a sinusoidal fit and the insert depicts the experiment.

on-chip antennas, which are connected to bias tees 57 to allow for DC and RF control
signals. These bias tees are specified to work between 2 GHz and 18 GHz for the RF input
and have a 200 MHz bandwidth of the DC port. Hence, the DC cables are additionally
low-pass filtered from the bias tees at cryogenic temperatures. Using the DC port of these
bias tees, we generate on-chip static magnetic fields with a controlled spatial amplitude
distribution. Additionally, we use the on-chip antennas to generate an RF field with varying
spatial distribution. As described in the previous section, we use a room temperature phase
shifter to control the phase difference ϕrel between the two antenna lines. In Fig. 4.25 (b),
we show the precise control of the RF magnetic field, which is not affected by the usage of
additional microwave components such as mixers, bias tees or filters. Quantitatively, we
achieve an on/off ratio of 30 dB for 14 dB of additional attenuation in one of the antenna
lines.

Resonator characterization In the following paragraphs, we characterize the sample
using spectroscopic and time-resolved measurements. Spectroscopic measurements of
qubit-resonator systems are a convenient method to access to the system’s excitation
spectrum [24, 26]. With our sample architecture, we can either populate the resonator
with readout photons through the input line or excite the qubit through the antenna lines.
We first characterize the resonator with a single tone transmission experiment to extract
the resonator frequency ωr/2π= 3.88 GHz and the total loss rate κtot/2π= 2.5 MHz. This
loss rate is obtained from a Lorentzian fit to the resonator transmission spectrum and
corresponds to a loaded quality factor Q`' 1500. The resonator is limited by its external
loss rate κx/2π= 2.43 MHz and has an internal loss rate κi/2π' 70 kHz (see Sec. 5.1.3 for
details).

Magnetic flux control of the qubit Even though we shield the sample against external
flux noise, we generate a static magnetic field using a superconducting coil attached to the
sample holder to flux-bias the qubit. For the homemade coil with 1200 windings, we use
100 µm thick NbTi wire embedded in a phosphor bronze matrix. Because the coil dimensions
are much larger than the qubit area, the generated field is spatially homogeneous across the
qubit area. Hence, one expects the transition frequency of the gradio qubit to only depend
on the magnetic flux through the α-SQUID. Due to a finite gradiometer quality described

57 We use BT-S000-HS bias tees for that purpose.
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Figure 4.26: (a) Phase of the readout tone plotted versus readout frequency and magnetic field
generated by the coil current. The arrows indicate anticrossings between qubit and resonator. (b)
Resonator frequency plotted versus coil current for different numbers of flux quanta trapped. The dashed
lines are parabolic fits as described in text. (c) Shift Itr of the fitted parabolas plotted versus number
of trapped flux quanta.

below, however, there is also a flux difference between the two gradiometer loops. This flux
difference between the gradiometer loops arises mostly from the current circulating in the
α-SQUID, which converts the homogeneous field to an effective field gradient (see Ref. 178
for details). To characterize the flux-dependent transition frequency of the qubit, we vary
the magnetic field with a well-defined coil current in order to identify qubit-resonator
anticrossings as shown in Fig. 4.26 (a). The anticrossings are located at δΦε =NΦ0, where
δΦε = Φε1−Φε2 is the flux difference in the two gradiometer loops. From the spacing of the
anticrossings, we calculate an effective mutual inductance Mε' 0.625 Φ0/mA= 1.25 pH,
which describes the field difference between the two gradiometer loops induced by the
external coil.

Flux trapping and gradiometer quality We characterize the gradiometer quality by
comparing the total mutual inductance Mtr between external coil and trap loop to Mε.
That way, we extract the ratio between the actually applied field and the portion of the
(homogeneous) field that is transformed into a flux difference δΦε. Hence, we measure
the quality factor Qtr =Mtr/Mε of the gradiometer. We measure Mtr by trapping certain
amounts N` of flux quanta in the trap loop and evaluate how the resonance frequency
is shifted with N` [see Fig. 4.26 (b)]. To trap the flux quanta, we apply a magnetic field
during the transition to the superconducting state after we have heated the sample above
Tc. We heat the sample using the DC cables to the antenna lines, which serve as local
heat sources because of the finite resistance in the silver glue connectors. By applying
a short current pulse of 10 mA, we locally heat the qubit above the critical temperature
of Al in less than 1 s. Due to the short pulse duration, the total heat transferred to the
sample stage is low and the temperature increase of the sample stage is approximately
50 mK. The flux-dependent frequency decrease for increasing Icoil shown in Fig. 4.26 (b)
results from an parasitic inductance from circulating currents in the trap loop, which adds
to the resonator inductance. We model this flux dependence using a parabolic function
ωr(Icoil) =ωr,0−K(Icoil − Itr)2, where ωr,0 is the maximum resonator frequency, Itr is the
current offset due to trapped flux quanta, and K is a conversion factor. Using the parabolic
dependence in a numerical fit, we obtain the equidistant spacing for Itr shown in Fig. 4.26 (c).
The linear dependence yields a mutual inductanceMtr' 1.391 Φ0/mA= 2.78 pH. Hence, we

113



Chapter 4. Experimental techniques

w
d /

 2
π 

(G
H

z)

8

10

12 (b)

0 40−40
I
e
 (mA)

f
 (deg)

-10

0
(b)

3.92

3.88

3.84

w
  / 

2π
 (G

H
z)

I
e
 (µA)

-25 0-50 25 50

T(w
) (dB

)

-100

-60

20-20

(a)

Figure 4.27: (a) Transmission magnitude of the readout tone plotted versus readout frequency and a
gradient magnetic field generated by the on-chip ε-current flowing in one of the antenna lines. The
dashed lines indicate the eigenfrequency of the qubit. (b) Phase of the readout tone plotted versus
ε-current and frequency of a second drive tone.

achieve a gradiometer quality Qtr' 2.3. This relatively low gradiometer quality is smaller by
a factor 4 compared to previously characterized gradio qubits in a CPW architecture [178].
This quality degradation can be explained with the fact that we use a larger trap loop and
place the qubit close to the ground plane of the resonator.

Qubit transition frequency For a suitable coil current, we observe a clear anticrossing
between qubit and resonator frequency as shown in Fig. 4.27 (a). Here, we use the effective
current value Iε = Iε2− Iε1 flowing through the on-chip antennas to control the flux differ-
ence δΦε between the two gradiometer loops. In particular, we feed a current through both
antennas with a ratio Iε1/Iε2 =−1 to generate an antisymmetric DC field. The anticrossing
measured that way provides the transverse coupling strength gt/2π' 40 MHz. We discuss
the detailed mechanism of transverse coupling between the gradio qubit and the resonator
in Sec. 2.3.2. The 40 MHz coupling strength exceeds the resonator loss κtot/2π and also the
qubit coherence rate γq/2π' 10 MHz measured below. Hence, the qubit-resonator system
is in the strong coupling regime.
To further characterize the qubit, we perform qubit spectroscopy by applying an additional
RF tone with frequency ωd in a two-tone experiment as shown in Fig. 4.27 (b). For sim-
plicity, we use only one of the antenna lines for the RF drive tone for all measurements
presented in this section. We give a detailed discussion of effects using both antenna lines in
Sec. 6.2. In the two-tone experiment, we utilize the qubit-state-dependent ac-Stark shift in
the dispersive regime (g2

t /δ
2' 10−4) [cf. Eq. (2.3.5)], where δ≡ωq−ωr. To control the oper-

ating point, we use a DC flux-bias generated by the external coil as well as a local magnetic
field generated by the on-chip antenna lines. The on-chip control is particularly important
to adjust the magnetic energy bias ~ε of the qubit [cf. Eq. (2.1.20)]. By tuning this energy
bias to zero, we determine the qubit gap ∆ from the center frequency of a Lorentzian
fit as shown in Fig. 4.28 (a). In additional qubit spectroscopy measurements at different
operating points, we observe qubit gap frequencies up to a maximum ∆max/2π= 10.5 GHz.

Readout photons Due to uncertainties in the transmission properties of both our
measurement lines and the insertion loss of the resonator itself, we require an in-situ
calibration of the resonator population. To this end, we determine the readout photon
number nr = 〈â†â〉, using the photon number dependence of the qubit frequency defined in
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Figure 4.28: (a) Phase of the readout tone plotted versus frequency of the drive tone applied to
the qubit in a two-tone experiment. The dashed line is a Lorentzian fit used to determine the qubit
transition frequency and linewidth. (b) Shift of the qubit frequency δωq plotted versus source power
of the coherent readout tone. The solid line is a linear fit modelling the photon-number-dependent
ac-Stark shift. (c) Measurement induced dephasing rate γcoh

ϕn plotted versus the number of readout
photons. Solid lines are linear fits in the double logarithmic plot.

Eq. (2.3.4). We control nr by varying the output power Pr of the VNA and measure the
frequency shift δωq = 2nrg

2/δ relative to the bare qubit transition frequency ωq,0 as shown
in Fig. 4.28 (b). From the linear fit, we calculate a resonator population of 331 photons/mW
power emitted from the VNA. A detailed description of the conversion between source
power and photon number can be found in Ref. 133. All measurements presented in the
following and in Sec. 6.2 are performed with 33 photons on average. This value is still well
below the critical photon number [52] ncrit≡ δ

2/(2g)2' 1900 above which the dispersive
limit breaks down. The finite number of readout photons can, however, increase the qubit
dephasing rate according to Eq. (2.4.11) as discussed in the following paragraph.

Qubit linewidth and relaxation We determine the intrinsic (unbroadened) qubit
linewidth γ2 and the measurement induced dephasing rate γcoh

ϕn by varying the number
of readout photons nr. That way, we generate photon shot noise proportional to nr
[cf. Eq. (2.4.11)], which we can extrapolate to nr 7→ 0 in order to find γ2. By measuring the
total qubit linewidth γq(nr) = γ2 + γcoh

ϕn (nr), we extract γ2/2π' 9.7 MHz and the measure-
ment induced dephasing rate γcoh

ϕn (nr) shown in Fig. 4.28 (c). In addition to the linear trend
for low readout power, we observe a transition to a square root dependence γcoh

ϕn ∝
√
nr.

The reason is that for large readout power, the measurement rate exceeds κx leading to
an inhomogeneously broadened Gaussian line [24]. This behavior is precisely displayed
by the two fits γcoh

ϕn (nr) =βnr in Fig. 4.28 (c), which yield the slopes β= 0.99± 0.06 and
β= 0.51± 0.01, respectively.
The intrinsic linewidth γ2 is generated partly by the pure dephasing rate γ0

ϕ and partly by
the relaxation rate γ1. Using the time-resolved measurement setup introduced in Sec. 4.2,
we characterize the qubit relaxation rate at different operating points. At all points, we bias
the qubit at its degeneracy point to reduce the influence of flux noise. We find a maximum
relaxation time T1' 2.6 µs corresponding to γ1/2π' 385 kHz as shown in Fig. 4.29 (a).
From measurements at different operating points, we find a scatter of the relaxation rate
from 385 kHz to 665 kHz. In other words, the qubit is clearly dephasing-limited.
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Figure 4.29: (a) Resonator phase plotted versus delay time τ in a T1 measurement sequence as
depicted in the insert. The solid line is an exponential fit. (b) Qubit linewidth plotted versus source
power of the continuously applied drive tone. The solid line is a numerical fit of Eq. (4.3.8).

Qubit spectroscopy photons Finally, we calibrate the number of drive photons nd
that arrive at the qubit for a given source power Pd used for the drive tone. Similar to the
ac-Stark calibration used to calibrate nr, we calibrate the drive photons by detecting the
power broadening [24, 215]

γq =
√
γ2

2 + nd(2g)2γ2
γ1

(4.3.8)

of the qubit. We can extract the photon number by assuming a linear power-to-photon
conversion αd, i.e., nd =αdPs. Using γ2/2π= 9.7 MHz and γ1/2π= 385 kHz measured
above, we obtain αd' 0.16 photons/mW [see Fig. 4.29 (b)].

4.4 Preparatory measurements for the transmon qubit
experiments

In this section, we characterize the setup for all measurements concerning the transmon
qubit sample. First, in Sec. 4.4.1, we discuss the transmon qubit and the resonator itself. We
then introduce the heatable attenuators depicted in the measurement setup in Fig. 4.30 (b),
which we use to generate broadband thermal microwave fields (see Sec. 4.4.3). Finally, in
Sec. 4.4.4, we describe the dual-path reconstruction scheme used to measure the correlation
functions of thermal fields presented in Sec. 6.1.

4.4.1 Characterization of the transmon qubit

The transmon qubit sample consists of a transmon qubit capacitively coupled to the voltage
antinode of a quarter-wavelength resonator and to an on-chip antenna as depicted in
Fig. 4.30 (a). The sample is fabricated and mounted into a sample box as described in
detail in Sec. 3.3.3. We couple the sample box to the base temperature stage of the dilution
refrigerator introduced in Sec. 4.1.

Resonator characterization We characterize the quarter-wavelength CPW resonator
using reflection measurements with a VNA [see Fig. 4.30 (b)]. The 50Ω-matched resonator
has a resonance frequency ωr/2π' 6.07 GHz. The resonator is further characterized by
the external loss rate κx/2π' 8.5 MHz and the internal loss rate κi/2π' 50 kHz extracted
from the fit shown in Fig. 4.31 (a). These loss rates correspond to quality factors Qx' 714
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Figure 4.30: (a) Drawing of the transmon qubit sample. The frequency-tunable transmon qubit is
capacitively coupled with coupling strength g to a readout resonator, which itself is coupled with κx to a
readout-line. Further, the qubit is coupled with κa,q to a 50Ω-matched on-chip antenna. (b) Schematic
of the experimental setup. We inject thermal states into antenna and resonator by controlling the
temperature Tx and Ta of heatable attenuators. We change the filters in the readout and the antenna
line between two individual cooldowns.

and Qi' 105, respectively. The relatively high internal quality factor benefits from the fact
that the transmon qubit has no galvanic connection to the resonator. In addition to the
loss rates κx and κi, the resonator can decay with κa,r/2π' 30 kHz to an on-chip antenna
(see Sec. 5.2 for details). Because we stabilize the sample temperature to Ti = 35 mK, there
is only a small thermal occupation ni' 2.5× 10−4 inside the resonator. We can change
the thermal occupation using heatable attenuators or broadband shot noise from a room
temperature AFG as depicted in Fig. 4.30 (b). A detailed description of the noise generation
is given in Sec. 4.4.3.

Qubit characterization Because the qubit is flux tunable, we can extract the qubit-
resonator coupling strength g/2π' 67 MHz from the anticrossings shown in Fig. 4.31 (b).
The magnetic flux Φ in the SQUID loop is induced via a superconducting coil outside
the sample holder. For RF control of the qubit, we use the on-chip antenna shown in
Fig. 4.30 (a). The RF signals induce state transitions of the transmon qubit due to a finite
capacitive coupling between the antenna and the transmon capacitors. In Sec. 5.2, we
determine the coupling rate κa,q/2π' 820 kHz between antenna and qubit at the maximum
qubit transition frequency ωq,0/2π' 6.92 GHz. We obtain this transition frequency from a
two-tone experiment shown in Fig. 4.31 (c) and fitting a Lorentzian function to the dip in
the transmission spectrum. Furthermore, the antenna can fine-tune the DC magnetic flux
through the SQUID loop via the mutual inductance Ma' 1.3 pH.
We perform two cooldowns with different filter configurations used for the input and the
antenna line, which result in different values for ωq,0. When using a pair of tubular low-pass
filters introduced in Sec. 4.1.2 in antenna and readout line [see Fig. 4.30 (b)], we measure
the maximum transition frequency ωq,0/2π' 6.92 GHz. Without these filters, we find that
the transition frequency decreases by approximately 200 MHz [54, 376]. These results
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Figure 4.31: (a) Phase response of the resonator when the qubit is far detuned plotted versus frequency.
The solid line is a fit using Eq. (2.2.12). (b) Color-encoded transmission magnitude T when probing the
resonance frequency of the resonator as a function of magnetic flux in a single-tone experiment. Solid
lines are calculations of the uncoupled qubit and resonator frequencies. (c) Transmission magnitude
when probing the resonator in a two-tone experiment. The solid line is a Lorentzian fit to the dip in the
transmission induced by the transmon qubit. (d) Transmission magnitude (color code) when probing at
the resonator frequency and driving the qubit as a function of magnetic flux in a two-tone experiment.

show that efficient filtering of high frequencies are important to protect the junctions
from noise at their plasma frequency and to protect noise at the transition frequency of
the superconducting Al (ωc,Al/2π' 80 GHz). Using the low-pass filtered setup, we find a
maximum Josephson coupling energy EJ/~' 2π× 19.995 GHz calculated from Eq. (2.1.17)
using the qubit anharmonicity α=−Ec/~' 2π× 315 MHz. We measure α with two-tone
experiments at high drive power, where transitions to higher levels of the transmon circuit
are visible [54, 376].

Weak quantum measurements The mapping of a qubit state onto the resonance
frequency of the resonator constitutes a weak measurement [167, 426] as long as the qubit
state is not completely projected to the σz axis. This projection occurs due to the back-action
of the measurement apparatus on the quantum system, which drives the quantum state
towards an eigenstate of the measurement operator [168]. Weak measurements cause only
small back-action meaning they do not fully collapse the system’s quantum superposition
state [427]. In circuit QED, weak measurements are performed in the dispersive regime,
where the back-action of the resonator is reduced by g/δ. Then, the measurement disturbs
the qubit only marginally through measurement induced dephasing [52, 168]. From the
experimentalists perspective, a weak measurement means to have only incomplete knowledge
on the quantum state after a single measurement. In other words, the dispersively shifted
Lorentzian lines of the resonator frequency must have a finite overlap to not be completely
distinguishable.
In the dispersive limit, |χ| ≡ |[g2/δ][α/(δ+α)]| ' 2π× 3.11 MHz� g, we use the system
Hamiltonian Htot =HJC +Hd where Hd = ~Ωd cos(ωdt)σ̂x represents an external drive (see
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(a). The amplitude peaks follow the effective Rabi frequency Ω?R.

Sec. 2.1.1) and HJC is the dispersive Jaynes-Cummings Hamiltonian defined in Eq. (2.3.2).
The dispersive Hamiltonian leads to a shifted qubit frequency ωd

q =ωq + 2χnr and the
shifted resonator frequency ωd

r =ωr +χσ̂z, which we use to detect the qubit state. Because
χ<κtot, the requirement of a finite overlap of the two Lorentzian resonator lines is fulfilled
for the transmon qubit sample. In a suitable rotating frame presented in Ref. 52, the
effective qubit master equation in the dispersive limit is

∂ρ̂d
q

∂t
= −ı

ωd
q

2 [σ̂z,ρ̂
d
q] +

γeff
ϕ

2 D(σ̂z)ρ̂d
q + γ1D(σ̂−)ρ̂d

q . (4.4.1)

Here, D(L̂) = [2L̂ρ̂d
qL̂
†− L̂†L̂ρ̂d

q − ρ̂
d
qL̂
†L̂]/2 is the Lindblad operator [428] and ρ̂d

q = Tr(ρ̂d
q) is

the reduced density matrix of the qubit in the dispersive limit. The effective dephasing rate
γeff = γϕ + γcoh

ϕn (nr) depends on the pure dephasing rate γϕ and on the measurement induced
dephasing γcoh

ϕn (nr) [see Eq. (2.4.11)]. For the transmon qubit sample, we expect additional
measurement induced dephasing γcoh

ϕn ' 9.3 MHz/photon. To observe coherent oscillations
of the qubit state, we have to ensure that the total qubit decoherence rate is much smaller
than the Nyquist-Shannon limit [429, 430] ωNS/2π= 125 MHz of our ADCs. Hence, we
have to use a small photon number nr�ωNS/γ

coh
ϕn ' 13. For the measurements presented

in the following, we use a mean photon number nr' 0.1 and operate at qubit-resonator
detuning δ/2π' 850 MHz. That way, we clearly observe driven Rabi oscillations of the
qubit state shown in Fig. 4.32 (a). The fact that the coherent oscillations of the qubit are
not destroyed by the continuous readout tone shows that we apply only small back-action
to the qubit without completely projecting the quantum state. We want to emphasize
that the results presented here are no single-shot measurements, but averaged over 5× 105

traces. Due to the averaging, we evaluate the amplitude expectation value 〈A〉. For a
quantitative analysis of the oscillations in 〈A〉, we perform a Fourier transform of each time
trace into the frequency domain as shown in Fig. 4.32 (b). In the Fourier spectrum appears
a clear signature of the the Rabi frequency Ω?

R [cf. Eq. (2.1.5)]. In particular, the minimum
Rabi frequency ΩR = 12.3 MHz coincides precisely with the Rabi frequency obtained from
a sinusoidal fit to the time trace at the qubit transition frequency in Fig. 4.32 (a). This fit
also yields the Rabi decay rate γ2,Rabi/2π= 3.1 MHz. This decoherence rate coincides with
the Lorentzian line width of the Fourier spectra in Fig. 4.32 (b).
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Figure 4.33: (a) Pulse sequences used to characterize the coherence properties of superconducting
qubits. We typically perform a series of π and/or π/2 pulses, followed by a readout (RO) pulse. The
control parameter to determine the qubit decay time the waiting time τ between the pulse or the pulse
duration τd for the driven Rabi sequence. (b) Filter function of the Ramsey and the spin-echo sequence
as well as the power spectral density for 1/f and white noise (kBT ) plotted versus frequency in units of
inverse pulse duration.

Pulsed qubit measurements The idea behind controlling a qubit with pulsed mi-
crowave signals is to rotate the qubit state about the σx-axis of the Bloch sphere. In such
a scenario, the rotation angle depends in a linear way on the energy E=

∫ τd
0 Ad(t) dt

stored in the pulse. Here, τd is the pulse duration and Ad(t) is the time-dependent pulse
amplitude. In the simplest approach, Ad(t) is a square envelope that lasts from t= 0 to
t= τd and can be expressed as a window function

Ad(t) =
{
A0 if 0 < t < τd

0 else .
(4.4.2)

That way, the rotation angle depends on both, the steady-state amplitude A0, and the
length τd of the pulse. For qubit control and for the readout of a resonator, we modulate the
pulse envelope Ad(t) with the microwave frequencies ωd and ωr to follow Ad(t) cos(ωd,rt),
respectively. Even though there are more advanced pulse forms to optimize the qubit
behavior [431–433], a rectangular envelope described by Eq. (4.4.2) already yields sufficient
results for our purposes. In practice, we cannot reach a perfect rectangular envelope with
infinitely steep edges due to the limited bandwidth of the AFGs. Instead, there is a finite
rise time of the pulse, i.e., a ring-up until the pulse amplitude reaches its steady-state
value. Mathematically, the ring-up of the rectangular pulse follows the decomposition of
Ad(t) into its spectral components [434] ∑kmax

k=1
1
k sin(πkt/τd). Here, the maximum number

of iterations kmax is given by the 500 MHz bandwidth of the AFGs. Because the qubit
transition frequency is several gigahertz, direct transitions induced from the spectral
components are very unlikely. There can be, however, a finite leakage to higher levels of
the transmon circuit [431, 435] because the qubit anharmonicity is only 315 MHz.
For the pulse sequences described in the following, we use rectangular RF pulses to control
the qubit state and an additional RF readout pulse, which starts when all drive pulses
are finished. A pulsed readout has the advantage that the photons in the resonator do
not disturb the qubit evolution. The undisturbed qubit can then be manipulated via the
different pulse sequences as shown Fig. 4.33 (a). The relaxation sequence is suited for noise
spectroscopy in the high-frequency regime (ω'ωq) providing the qubit relaxation rate
γ1∝S(ωq) [cf. Eq. (2.4.5)]. With the relaxation sequence, we measure the projection to
the σz axis after exciting the qubit with a π pulse.
In order to probe noise in the low-frequency limit (ω�ωq) we use either a Ramsey or a
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Figure 4.34: (a) Transmission amplitude (color code) plotted versus time and pulse duration in a
pulsed driven Rabi experiment. For the analysis of the excited state probability, we take only data points
from the area highlighted by the red dashed rectangle into account. (b) Excited state probability plotted
versus pulse duration for the data shown in (a). (c) Zoom into the blue dashed rectangle in panel (b)
to illustrate the π/2 and the π time.

spin-echo sequence, which provide the qubit decay rates γ2,R and γ2,se, respectively. With
the Ramsey sequence, the qubit is first excited with a π/2 pulse to a superposition of
ground and excited state. After a certain waiting time τ , a second π/2 pulse is applied and
the qubit state is measured. During the waiting time, the qubit accumulates the random
phase [211] δϕq =Dλ,z

∫ τ
0 dtδλ(t) due to fluctuations δλ(t) coupling with the effective

strength Dλ,z as discussed in detail in Sec. 2.4.1. Furthermore, when averaging over several
measurements, the fluctuations with frequencies down to the inverse of the total signal
acquisition time τav contribute to the phase randomization [235]. Then, the decay function
gRam(t) measured in a pulsed experiment is calculated by ensemble averaging [436]

gRam(τ) = exp
[
−τ2D2

λ,z

∫ ωc

ωir

dω FRam(ω,τ)S(ω)/~
]

= exp
[
−
γ2,Rτ

2π

]
, (4.4.3)

where FRam(ω,τ) = sin2(ωτ/2)/[ωτ/2]2 is a filter function that accounts for the pulse
sequence [211, 436] and ωir, ωc are cutoff frequencies discussed below. The decay function
gse(τ) for the spin-echo sequence can be obtained in the same way, when replacing FRam(ω,τ)
in Eq. (4.4.3) by the spin-echo filter function Fse(ω,τ) = sin4(ωτ/4)/[ωτ/4]2. As shown
in Fig. 4.33 (b), the spin-echo sequence filters noise at ω 7→ 0, which is achieved by the
additional π pulse that introduces a time reversal for the qubit evolution. Hence, for
typically dominating 1/f noise, the spin-echo sequence yields a smaller dephasing rate
than the Ramsey sequence [436], i.e., γ2,se<γ2,R.
The frequency range of the noise that is detected with the two sequences is between the lower
(infrared) cutoff frequency ωir and the upper (ultraviolet) cutoff ωc. The infrared cutoff
ωir/2π= 1/τav is set by the total duration of the measurement including averaging [437].
For our measurements with typical averaging times of 10 s, we therefore detect noise
down to frequencies of 100 mHz. To characterize noise at even lower frequencies, we use
correlation measurements as presented in Sec. 5.2. The limits for the ultraviolet cutoff is

121



Chapter 4. Experimental techniques

not well understood so far [436], but the noise power depends only on a logarithmic scale
on ωc.
We obtain the π and π/2 times for a certain drive amplitude by performing a pulsed driven
Rabi measurement as shown in Fig. 4.34 (a). To this end, we record the readout signal after
applying a drive pulse of duration τd to the qubit. To evaluate the excited state probability
pe, we integrate the signal from t= 0 to t= 500 ns [cf. Fig. 4.34 (a)] to obtain an average
value 〈Aint(τd)〉. We calculate the excited state probability by applying an exponentially
decaying sinusoidal fit Afit(τd) =A0 cos(Ω?

Rτd) +A1 to 〈Aint(τd)〉.58 From the resulting
fit parameters A0 and A1, we calculate pe =−(〈Aint〉(τd−A0)/2A1 + 1/2. This analysis
typically results in a clear oscillatory behavior of the calculated excited state probability
pe shown in Fig. 4.34 (b). From this data, we find the π time as the first minimum and the
π/2 time as the first crossing between pe = 1/2 and the data as shown in Fig. 4.34 (c).
We perform a detailed analysis, of relaxation, Ramsey, and spin-echo measurements during
the work presented in Ref. 54. Furthermore, we use the pulsed measurement technique
for the results presented in Sec. 5.2 and Sec. 6.1. At the flux sweet spot, the Ramsey
rates γ2,R/2π' (2.1± 0.3) MHz are obtained for typical qubit-drive detunings between
1 MHz and 20 MHz. In order to cut off noise in the DC limit, we perform spin-echo
measurements. The spin-echo decay rate γ2,se/2π' (1.9± 0.3) MHz is very close to the
Ramsey decay rate, which means that the coherence of the transmon qubit is not limited by
1/f noise. This result is confirmed by the qubit relaxation rate γ1/2π=' (3.9± 0.5) MHz,
which is approximately 2γ2,R. Hence, the transmon qubit is clearly T1 limited because
T2' 2T1. We want to note that the qubit is not Purcell limited because the rate [244,
247] γP =κxg

2/δ2' 2π× 53 kHz is far below γ1.

4.4.2 Photon-number-dependent qubit dephasing rate

To derive the photon-number-dependent dephasing rate in the dispersive regime, we
start with the system Hamiltonian Htot =HJC +Hd comprising the Jaynes-Cummings
Hamiltonian HJC =Hr +Hq +Hg and a driving part Hd. Here, Hq = ~ωqσ̂z/2 is the
bare qubit Hamiltonian, Hg =−~g(â†σ̂−+ âσ̂+) describes the qubit-resonator coupling
using the Pauli operators σ̂i and the resonator mode â with mean occupation nr = 〈â†â〉.
The external drive with amplitude εj(t) reads Hd = ∑

j ~εj(t)(â
†e−ıωjt + âe+ıωjt). We

use two different coherent drives, one to read out the resonator (j= r) and one to drive
the qubit (j= d). Furthermore, the noise field b̂in(ω) can be treated as an incoherent
external drive (j= in) such that εin(t)e−ıωjt 7→π−1κxe

−ıωt ∫ dωD(ω)b̂†in(ω,t)b̂in(ω,t). We
assume that this drive is weak and δ-correlated in time, i.e., 〈ε?in(t)εin(t′)〉∝ δ(t− t′). The
dynamics of the qubit-resonator system can conveniently be described using the master
equation [52, 168, 438]

~∂ρ̂/∂t = −ı[Htot,ρ̂] + κxD(â)ρ̂+ γtot
1 D(σ̂−)ρ̂+ γtot

φ D(σ̂z)ρ̂/2 . (4.4.4)

Here, ρ̂= Tr(ρ̂) is the system density matrix and D(L̂) = [2L̂ρ̂L̂†− L̂†L̂ρ̂− ρ̂L̂†L̂]/2 is the
Lindblad damping operator [428], which describes effects of the bath in the Markov
approximation. The qubit is characterized by the total energy decay rate γtot

1 and the total
dephasing rate γtot

φ . To study the effect of photon number fluctuations, we transform Htot

58 An equivalent result is obtained when performing this analysis using data for the averaged phase
〈ϕ(τd)〉.
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into the dispersive regime, which yields

Heff = Hr +Hq + ~
2(χ+ 2χâ†â)σ̂z +

∑
j

~εj(t)(â†e−ıωjt + âe+ıωjt)

+
∑
j

~εj(t)
δ

(σ̂+e
−ıωjt + σ̂−e

+ıωjt) . (4.4.5)

After this transformation and tracing out the resonator yields the laboratory frame master
equation [Eq. (4.4.1)] for the qubit in the dispersive regime. In this regime, the total qubit
decay rate γtot

1 and dephasing rate γtot
φ are dependent on the photon number nr in the

resonator [52]. While the change of the qubit decay rate is due to dressing of states and
due to frequency components at ωq, the change of the dephasing rate is due to photon
number fluctuations characterized by C(τ). For a small cavity pull (|χ/κx|� 1), we can
make a Gaussian approximation for the dephasing rate γϕn(nr) as discussed in the following
paragraph. For our sample, we find |χ/κx| ' 0.35, which leads to small corrections because
the effective resonator frequency is different if the qubit is in the ground or the excited
state. We discuss the corresponding corrections for broadband fields in the last paragraph
of this section.

Qubit dephasing under the Gaussian approximation If we assume the resonator
pull on the qubit to be weak (|χ/κx|� 1), we can assume that after a time τ , the random
phase accumulated [17] δϕ(τ) = 2χ

∫ τ
0 dt δn(t) is Gaussian distributed. In this case, the

cumulant expansion is exact and one obtains [168]

〈σ̂−(τ)σ̂+(0)〉 = exp
[
−γ2τ −

〈δϕ2〉
2

]
= exp

[
−γ2τ − 2χ2

∫ τ

0
dt C(t)

]
, (4.4.6)

where γ2 = γtot
1 /2 + γϕ0. Equation (4.4.6) leads to the qubit dephasing rates defined in

Eq. (2.4.11) and Eq. (2.4.12) defined above. To calibrate the mean photon number nr, we
measure the photon number dependent shift of the qubit frequency as a function of noise
power in a steady state configuration. The externally applied broadband input field b̂in
is linked via Eq. (2.2.27), to the intra-resonator mode â. Because we measure in a steady
state, 〈b̂in〉= 0 and 〈b̂†inb̂in〉 has a constant mean. Further, because we assume white noise,
b̂in also has no frequency dependence in the relevant frequency regime. Within these limits
and for negligible internal resonator losses, the broadband noise covering the resonator
density of states D(ω) yields [39]

δωq = 2χσ̂z
〈b̂†inb̂in〉
π

∫
dωD(ω) = 2χσ̂z〈â

†â〉 ≡ 2χσ̂znr . (4.4.7)

The above calibration method can also be obtained using a Wigner function approach[439]
for the qubit off-diagonal elements in the small pull limit |χ|/κx� 1. For larger pulls,
this approach predicts a deviation from the linear trend predicted by Eq. (4.4.7). How-
ever, since we do not observe any non-linear trend in our Stark shift measurements, we
conclude that our sample can be still treated in the small pull limit. Within this ap-
proximation, we do not separate between the two cases when the qubit is in the ground
or the excited state such that D(ω) is simply given by the Lorentzian filter function
F(ω) = (κx/2)/[(κx/2)2 + δ2

r ], where δr =ωr−ω is the detuning to the resonator frequency
[see Fig. 4.35 (a)]. The broadband noise induces dephasing relative to photon number
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Figure 4.35: (a) Normalized resonator density of states D(ω)κx/2. (b) Photon fluctuations δn2
r (ω)

calculated for the parameters used in panel (a).

fluctuations δn2
r (ω) = (κx/2)2F(ω)2[〈b̂†inb̂inb̂

†
inb̂in〉− 〈b̂

†
inb̂in〉

2] shown in Fig. 4.35 (b). Hence,
the effective dephasing rate reads

γeff
ϕn = θ2

0
4
π

∫
dω δn2

r (ω) = Var(nr)κxθ
2
0 . (4.4.8)

Because the assumption of a Lorentzian line shape D(ω) =F(ω) is only approximately true
for our experimental parameters (|χ/κx| ' 0.35. 1), we evaluate corrections to Eq. (4.4.8)
in the following paragraph. These corrections are due to the fact that the resonator has a
different frequency when the qubit is in its ground or excited state.

Qubit dephasing using the full master equation For increasing cavity pull |χ/κx|,
the effective resonator frequency is different if the qubit is in its ground or excited
state. We account for this circumstance using the two different steady state fields [168]
〈â±(ω)〉=−ı〈b̂in(ω)〉κx/(κx± ı2χ+ 2δr) if the qubit is in the excited (+) or ground (−)
state, respectively. The two situations can be modelled by the resonator density of states

D±(ω) = κx/2
κ2

x/4 + (δr ± χ)2 (4.4.9)

shown in Fig. 4.35 (a). From D±(ω), we calculate the mean photon numbers n+ and n−
via Eq. (4.4.7) and calibrate the effective resonator occupation ncal as follows. Because
wo use a steady-state drive when calibrating the photon number, the qubit is in an equal
superposition state leading to ncal = (n+ +n−)/2. In this case and for constant noise power
〈b̂†inb̂in〉, we obtain ncal≈nr to a very good approximation as indicated by the black and
the green lines in Fig. 4.35 (a). Accounting for the frequency dependence of â±, we find for
the photon number fluctuations [see Fig. 4.35 (b)]

δn2
r (ω) = κ2

x
4

[D+(ω) +D−(ω)]
κ2

x/4 + δ2
r + χ2 [〈b̂†inb̂inb̂

†
inb̂in〉 − 〈b̂

†
inb̂in〉

2] . (4.4.10)

With this expression, we calculate the dephasing rate γm
ϕn = (2|χ|/κx)2(π/4)

∫
dω δn2

r (ω).
For the experimtal parameters stated above, we find the relative error (γeff

ϕn− γ
m
ϕn)/γeff

ϕn' 0.04.
Hence, the Gaussian approximation made in the article is well justified.
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4.4.3 Generation and detection of thermal fields

Thermal fields have a very smooth and well-defined power spectral density S(ω) defined
in Eq. (2.4.9). Therefore, they are well-suited for power calibration at cryogenic tempera-
tures [139, 440] but can also serve as a known noise source [39, 41] as discussed in detail
in Sec. 5.2. In the following, we discuss the generation and the detection of broadband
thermal fields emitted from a heatable attenuator at cryogenic temperatures.

Generation of thermal fields To generate thermal states on the readout and on the
antenna-line, we use heatable 30 dB attenuators59 integrated into the feedlines as depicted
in Fig. 4.30 (b). A photograph of the cryogenic setup is shown in Fig. 4.36 (a). Depending
on its temperature, the attenuator emits voltage fluctuations into the coaxial cables,
which are connected to the sample. For the thermal coupling between attenuator and the
sample stage, we have to consider two requirements. On the one hand, the attenuator
must thermalize well below 100 mK to reach the regime of negligible thermal fluctuations
to uncover quantum fluctuations. On the other hand, we must heat up the attenuator
above 1 K to reach considerable thermal photon numbers nth> 1 [cf. Eq. (2.2.17)] without
affecting the sample temperature. Hence, we must ensure weak thermal coupling to the
sample box but a moderate thermal coupling to the base temperature stage. We achieve
this compromise using a brass stripe for thermalization, which is 20 cm long and has a
5 mm× 75 µm cross section.
For the coaxial cables connecting the attenuator to the sample box, we use 20 cm of Nb/CuNi
UT47 cables. The temperatures Tx and Ta of the heatable attenuators used to vary the
thermal photon number are controlled between (0.050± 0.001) K and (1.50± 0.01) K using
an analog PID controller to heat a 100Ω resistor. In addition to real thermal noise radiated
from the attenuators, we can add noise generated from an AFG, which we up-convert to
the desired noise frequency ωn by mixing with a coherent microwave drive (see Fig. 4.30).
For upconversion, we also enable amplitude-modulated moise at the microwave source
to minimize the coherent portion in the signal. The AFG digitially generates shot noise
with a 500 MHz bandwidth and a constant variance of 1 V into 50Ω. The noise has a
Gaussian amplitude distribution with a crest factor 3.1 and a Poissonian statistics. We
additionally filter this noise before the up-conversion to the carrier frequency ωn by two
100 MHz low-pass filters. That way, the noise has a bandwidth of 200 MHz and an on/off
ratio of 35 dB.

Noise temperature of the amplification chain The well-defined power emitted from
a heatable attenuator can be used to calibrate the gain G and the noise temperature Tnoise
of the amplification chain used to measure the small microwave signals. In such a calibration
measurement, we sweep the attenuator temperature and measure the power [129]

Pdet(Tx) = 〈I
2
dc(t)〉+ 〈Q2

dc(t)〉
Z0

= G×B
[~ω

2 coth
( ~ω

2kBTx

)
+ kBTnoise

]
(4.4.11)

using the time-domain setup introduced in Sec. 4.2. Equation (4.4.11) can be derived from
the Bose-Einstein distribution defined in Eq. (2.2.17) using the bandwidth B' 100 MHz,
which is defined by low-pass filters placed at the inputs of the ADCs. Compared to
the setup in Sec. 4.2, for the power calibration the snap-tool additionally computes the

59 We use Rosenberger 32AS102-K10S3 attenuators for that purpose.
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Figure 4.36: (a) Photograph of the experimental setup for the generation of thermal states. (b)
Detected power plotted versus temperature of the heatable attenuator [133]. The solid line is a fit using
Eq. (4.4.11).

correlation moments I2
if(t), Q2

if(t), and Iif(t)Qif(t). These moments are instantaneously
averaged to 〈I2

if(t)〉, 〈Q2
if(t)〉, and 〈Iif(t)Qif(t)〉. These averaged values are then digitally

down-converted to 〈I2
dc(t)〉, 〈Q2

dc(t)〉, and 〈Idc(t)Qdc(t)〉 using the algorithms presented
in Ref. 133. This approach differs from other well-established reconstruction protocols at
the WMI [121, 129, 441] in the order of down-conversion and averaging. The permutation
of these tasks is motivated by the question whether this approach is suitable for the
reconstruction of microwave states with a relatively large bandwidth B' 100 MHz. For
a realistic test, the snap-tool also computes the average of the correlation moments
〈Ikif(t)Q`if(t)〉 up to the fourth order, i.e., k+ `≤ 4 for k,`∈N0. We find that the repetition
rate during measurements with these additional computations is limited by the data transfer
rather than by the computational power of the snap-tool. The reason is the increased
(36 · 512) points long buffer of integers, which has to be transferred within the 100 kHz
repetition rate to the main board of the computer.

We perform the calibration measurements in an extra cooldown where the thermal states
can bypass the sample using a cryogenic microwave switch [133]. In Fig. 4.36 (b), we show
the detected power at ω/2π= 6.972 GHz for a typical temperature sweep together with a
fit of Eq. (4.4.11). We observe the expected Pdet(Tx) dependence, which yields a power
offset of approximately 91 µW. From a numerical fit, we obtain the noise temperature
Tnoise' 2.4 K meaning that the amplifiers add nnoise = kBTnoise/~ω' 7 noise photons on
average. Additionally, we find a total gain G' 98 dB, which agrees with the experimentally
determined amplification values of our amplifiers [133]. Due to the 40 dB amplification
of the HEMT amplifier, the 70 K noise temperature of the room temperature amplifiers
can be neglected in our setup. From the experimental values for G and Tnoise we convert
the detected power to a certain number of photons by subtracting the noise power offset
and subsequently dividing by G. Hence, we calculate the photon number conversion
factor [129] PNCF=G×B~ω in order to relate the detected power at the digitizer card to
the number of photons in the open transmission line. For our specific setup, we obtain
PNCF= 12.13 µW per photon, which corresponds to nth = 0.08 photons per µW detected
power.
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Figure 4.37: (a) Wigner function for a thermal microwave state of 206 mK and 6.972 GHz. (b)
Wigner function for a coherent microwave state of approximately 30 photons at 6.972 GHz.

State reconstruction We now discuss the Wigner function reconstruction for a thermal
and a coherent state using the photon number calibration of the previous paragraph. Even
though these are just proof of principle experiments that have already been performed
at the WMI with high accuracy [129, 139], we find important insight concerning the
permutation of averaging and down-conversion. For state reconstruction, we first extract
the relevant microwave power from the total detected power by subtracting the amplifier
noise. For simplicity, we omit a check of the Gaussian criterion based on the cumulants up
to the fourth order [138–140]. Second, we use the PNCF to convert the remaining power to
a number of photons. This allows us to reconstruct the Wigner function for both, thermal
and coherent, states following a standard reconstruction algorithm [129]. In Fig. 4.37 (a),
we show the reconstructed Wigner function of a thermal state at ω/2π= 6.972 GHz and
Tx = 206 mK corresponding to approximately 0.25 photons above the vacuum. Even though
the reconstruction works qualitatively for the thermal states, a quantitative analysis of
the expected broadening is not possible. The reason is that the in-situ calibration of the
detection setup described in Sec. 4.2.3 is optimized for coherent states with a well-defined
amplitude and phase. Hence, state reconstruction works sufficient for coherent states as
shown in Fig. 4.37 (b).

4.4.4 Setup for correlation measurements with thermal fields

Due to the limitations in the detection of thermal states of the time-domain setup introduced
in Sec. 4.2, we use a different setup60 for the g(2)(τ) correlation measurements presented in
Sec. 6.1. This setup belongs to a dry dilution refrigerator in the BATMAN laboratory of
the WMI, which is described in detail in Ref. 121. The BATMAN cryostat is equipped
with heatable attenuators similar to the ones presented above. Furthermore, the cryostat
is equipped with a dual-path setup which is well-suited for the analysis of propagating
microwave states [163].
Using the dual-path setup in the BATMAN laboratory, we digitize the in-phase and

60 We gratefully acknowledge the support by K.G. Fedorov and S. Pogorzalek who provide the data for
the g(2)(τ) measurements.
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Figure 4.38: Schematics of the dual-path setup.

quadrature components I1,2 and Q1,2 of path 1 and path 2, respectively. From these
components, we calculate the correlation moments 〈Ii1Ij2Q

k
1Q

`
2〉 up to the fourth order,

i.e., i+j+k+`≤ 4 for i,j,k,`∈N0. This allows us to retrieve all the moments of the
annihilation and creation operators, â and â†, of the field modes by using beam splitter
relations [169] and the independence of the noise contributions between the two detection
paths. For uncorrelated input signals, i.e., vacuum and thermal states, the beam splitter
does not affect the photon statistics of incident fields [442]. From the expectation value
of the bosonic operators, we can calculate the second-order correlation function g(2)(τ)
defined in Eq. (2.2.22). Because this function is not well-suited for very low photon
numbers due to the division by 〈â†â〉2, we calculate the unnormalized correlation function
g̃(2)(τ) = g(2)(τ)〈â†â〉2. Even though the dual-path setup provides the g(2)(τ) function for
variable time delays τ , we only analyze data for zero time delay, i.e., g(2)(τ = 0).

JPA sample For the measurements based on the dual-path setup, we use the experimen-
tal setup presented in detail Ref. 121. Both Josephson parametric amplifier (JPA) samples
were designed and fabricated at NEC Smart Energy Research Laboratories, Japan and
RIKEN, Japan. The dual-path setup comprises a flux-driven JPA with gain G consisting
of a quarter-wavelength transmission line resonator, which is short-circuited to ground
by a DC SQUID (see Fig. 4.38). We couple an on-chip antenna inductively to the DC
SQUID loop to apply a strong coherent pump tone ωp at approximately twice the resonant
frequency ωjpa of the JPA. In this phase-insensitive mode, the two JPAs have a bandwidth
of approximately 3 MHz, which we determine in a characterization measurement using a
VNA [see Fig. 4.39 (a) and (b)]. Further specific parameters of the JPAs are summarized
in Tab. 4.1.
In our photon statistics experiments, we use a cryogenic hybrid ring as beam splitter to
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Figure 4.39: (a) JPA gain for a coherent drive measured in linear units versus frequency for JPA 1.
The solid line is a Lorentzian fit used to determine the JPA bandwidth Bjpa' 3.2 MHz. (b) As in panel
(a) but for JPA 2 which has a bandwidth of 2.6 MHz. (c) Photon number 〈â†â〉 at the input of the
beam splitter measured in a Planck spectroscopy experiment versus temperature of the thermal emitter.
The solid lines is a fit of Eq. (4.4.12), which we use to determine the noise temperature and the gain
of the amplification chain. (d) As in panel (c) but for the case that the JPA is turned on. By fitting
Eq. (4.4.12) to the data points below 200 mK, we obtain the gain and the noise photons added by the
JPA. We also use this fit to determine the 1 dB compression point indicated by the dashed line for
JPA 2b.

divide the signal into two amplification paths (dual-path method [443]). After strong but
independent amplification in the two paths, the signal is downconverted to an intermediate
frequency ωif =ωlo−ωjpa = 2π× 11 MHz and enters an analog-to-digital conversion (ADC)
card. The particular digitizing procedure to calculate all correction moments is described
in detail in Ref. 163. From these calculations, we extract the signal moments 〈(â†)nâm〉.
Thermal states are generated as described in detail in the previous subsection.

Photon number calibration To calibrate the photon number 〈â†â〉 at the input of the
hybrid ring, we first perform a Planck spectroscopy experiment with the JPA turned off to
relate the detected power Pdet and photon number 〈â†â〉= exp (~ω/kBT − 1)−1 via [440]

Pdet = Gchain ×B × ~ω
[
〈â†â〉+ 1

2 + kBTchain

]
. (4.4.12)

Table 4.1: Overview of the JPA samples. We perform one measurement with JPA 1 and two individual
measurements using JPA2 with different detuning δjpa =ωjpa−ωp/2 between JPA frequency ωjpa and
pump frequency ωp. The measurement bandwidth for all measurements is ωjpa± 200 kHz. ? We can
only estimate the 1 dB compression point for JPA 1.
device run gain G Bjpa nn ρ ξ g̃(2)

n (0) δjpa/2π ωjpa/2π T1dB P1dB κx κi
JPA1 – 14.3 dB 3.2 MHz 1.47 2.24 8.14 7.1 100 kHz 5.4 GHz 700 mK? -127 dBm? 18.7 MHz 5.4 MHz
JPA2 a 15.8 dB 2.6 MHz 0.66 2.23 3.29 1.1 100 kHz 5.4 GHz 590 mK -129 dBm 14.9 MHz 0.2 MHz
JPA2 b 15.2 dB 2.6 MHz 0.97 2.21 3.29 1.8 500 kHz 5.3 GHz 440 mK -130 dBm 14.6 MHz 0.2 MHz
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Here, Gchain is the total amplification of the setup, B= 400 kHz is the measurement band-
width, and Tchain is the effective noise temperature of the amplification chain. As shown in
Fig. 4.39 (c), the data nicely follows Eq. (4.4.12) if the JPA is turned off. From this mea-
surement, we obtain the noise temperature of the cryogenic amplifiers Themt≈Tchain' 3 K
and the gain Gchain' 145 dB. In order to characterize the JPA properties, we perform a
temperature sweep when the JPA is turned on. As apperent from Fig. 4.39 (d), there is a
constant photon number offset due to the noise photons nn added by the devices. Further-
more, the JPAs run into compression when the field temperature exceeds approximately
400 mK. From the field temperature T1dB at the 1 dB compression point (cf. Tab. 4.1),
we calculate 1 dB values P1dB =κx(2π)−1kBT1dB'−130 dBm. Here, κx is the external
coupling rate of the resonator, which strongly exceeds the internal loss rate κi. The values
obtained for P1dB fit well to the 1 dB compression points measured for a coherent input
state. For all measurements presented in this work, we use modest pump powers, such that
we do not expect any non-linear effects [444] of the JPAs.

Variance of individual field quadratures We use Eq. (2.2.40) to describe the photon
number variance of broadband amplified signals. When comparing the predicted values of
ξ= 4nn + 4 and g̃(2)

n (0) = 2(nn + 1)2, we observe that for both cases, the measured values
are smaller than the expected values. To exclude that this effect is due to squeezing of the
field quadratures, we analyze the variance of the individual quadrature components Var(p̂)
and Var(q̂). Here, we define p̂= ı(â†− â)/2 and q̂= (â†+ â)/2. Then, at the input of the
hybrid ring, one expects

Var(p̂)
G

= Var(q̂)
G

= 〈â
†â〉
2 + 1

4 (4.4.13)

for unsqueezed thermal states. As shown in Fig. 4.40 (a), we observe the expected linear
trend which fits very well to the expected behavior described in Eq. (4.4.13). Hence, we
do not observe any squeezing effects in the field quadratures of the amplified thermal
fields. This circumstance is also expressed in the circular Wigner functions shown in
Figs. 4.40 (b) - (d).
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5 Chapter

Loss mechanisms in
superconducting quantum circuits

In this chapter, we present a detailed characterization of decoherence mechanisms in
superconducting quantum circuits. We start with a systematic study of loss mechanisms
in superconducting thin film microwave resonators in Sec. 5.1, which is based on Ref. 38.
Section 5.2, which is based on Ref. 39, treats second-order decoherence mechanisms of a
transmon qubit.

5.1 Loss mechanisms in superconducting thin film
microwave resonators

This section is based on Ref. 38. The study of loss mechanisms in superconducting microwave
resonators is a convenient method to evaluate loss channels affecting superconducting
quantum circuits in general [19, 126, 276–281, 284]. In this section, we analyze a broad
variety of microwave loss mechanisms which are relevant for the quantum circuits presented
in Secs. 5.2 - 6.2. An overview of these contributions is given in Fig. 5.1. Our analysis is
based on the nine samples summarized in Tab. 5.1. We describe the fabrication process
of these samples in detail in Sec. 3.3.1. We focus on loss mechanisms which are relevant
during experiments in the quantum regime, i.e., at low excitation numbers. Therefore, we
cool down the resonators to millikelvin temperatures in the CIRQUS cryostat introduced in
Sec. 4.1 and use readout signals down to approximately one photon on average. In Sec. 5.1.1,
we compare TLS losses in different substrates and different metallic thin films. We find
the well-known power and temperature dependence of TLS loss in CPW resonators [276].
Additionally, we observe a temperature dependence in the characteristic saturation power
of the TLSs in agreement with TLS theory [263, 287]. From a material perspective, Nb
and Al are the workhorse materials in circuit QED experiments. For this reason, it is
particularly important to probe and quantify the different loss channels in these materials
and combinations thereof (see Sec. 5.1.2). Because in circuit QED experiments, often Al
based Josephson junctions are integrated into Nb CPW resonators [26, 31, 445], we focus
on the influence of Nb/Al interfaces. Next to the fact that Josephson junctions itself can
contribute to microwave loss [446], also the Nb/Al interfaces are possible loss channels.
We find that these interfaces can be a dominant source for TLS loss. Due to our study of
loss in Nb/Al interfaces, we change the fabrication process to an all-Al process resulting
in an increased quality of the resonators (cf. Sec. 5.1.3). Nevertheless, above 200 mK Al
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Figure 5.1: Microwave loss contributions in superconducting resonators. In this section, we discuss all
loss contributions displayed as violet boxes.

based samples suffer from quasiparticle loss as discussed in Sec. 5.1.4. Galvanically coupled
Josephson circuits are typically controlled via an external magnetic field, which can be a
source for undesirable flux vortices in large superconducting structures [227]. Additionally,
superconducting enclosures often interfere with the need of applying magnetic control
fields. To solve these issues, one can use a normal conducting layer on the sample backside.
To benchmark this solution, we analyze loss introduced by eddy currents in a conductive
(silver glue) material on the sample backside in Sec. 5.1.5. Our analysis provides additional
flexibility in the choice of sample package and fabrication process because we show that
eddy currents can be avoided easily by means of a thick enough substrate.

Please note that in this section, we express all loss rates κ in terms of the corresponding
dimensionless inverse quality factor Q−1 =κ/ωr.

Table 5.1: Overview of the samples analyzed in this section. The values of κ0
tls, κc, β and Pc are

obtained by fitting Eq. (5.1.1) to a power sweep of each individual sample as shown in Fig. 5.2. We
also list confidence intervals generated by the fits. We obtain α by fitting Eq. (2.4.16) to the values of
Pc(T ). Sample IX has a superconducting ground plane on the backside of the substrate.

ID Purpose κ0
tls/10−5 κc/10−5 β Pc (dBm) α

I reference 0.71 2.08 0.76 −97 2.3
II thick substrate 0.89 1.04 1.25 −93 2.8
III patterned with EBL 0.34 0.33 1.06 −99 –
IV HF-dip 0.09 3.03 0.92 −83 2.0
V thin substrate 0.16 3.84 1.26 −83 2.8
VI gridded ground plane 1.19 0.99 1.2 −109 –
VII Al bridge: Ion gun 0.86 1.75 1.28 −94 2.6
VIII Al bridge 19.02 2.78 1.04 −124 2.4
VIII Al bridge second harm. 0.69 1.69 0.88 −98 2.7
IX microstrip 25.12 1.14 2.96 −110 –
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5.1.1 Loss due to two-level states

Microwave loss due to two-level states (TLSs) is one of the most prominent source for
decoherence in solid-state-based quantum systems [38, 267, 276]. They arise from the
requirement to embed solids-state quantum systems into another solid-state environment,
i.e., to place the superconducting circuit on some kind of substrate. These substrates suffer
from dielectric loss characterized by their loss tangent tan κi. The dielectric loss is caused
by defects, typically modeled by TLSs, which can be excited within the superconducting
energy gap. This mechanism absorbs photons from the electromagnetic field of the resonator
which are then dissipated into the environment [289]. The TLSs can be located inside the
dielectric or at the dielectric/metal interfaces near the resonator. Each TLS contributes
to the total TLS loss κtls = ∑

k pkκtls,k with its participation ratio pk. This ratio depends
on the one hand on the dipole moment of the TLS and, on the other hand, on its relative
position inside the resonator. Due to the distributed-element nature of the CPW resonator,
TLS saturation does not occur uniformly across the sample but starts at voltage antinodes
of the probed mode. Additionally, it depends on the center conductor width s as well as
on the gap w between center conductor and ground plane. These geometry parameters
determine the electric field strength [276, 447]. For our analysis, we split the internal loss
rate into a power-independent term κc and a power- and temperature-dependent TLS
contribution κtls(Pr,T ). Hence, the internal loss rate is described as

κi(Pr,T ) = κtls(Pr,T ) + κc . (5.1.1)

Here, Pr =Pωrκx/(kκ2
tot) is the power circulating inside the resonator [276] for the kth mode

and P is the power resonantly applied to the input of the resonator. In Eq. (5.1.1), κtls(Pr,T )
depends strongly on readout power and sample temperature as defined in Eq. (2.4.14). In
the low temperature and low power limit, the internal loss rate approaches κ0

tls which is
defined by the unsaturated TLSs.
In the following, we present experimental results starting with a comparison of TLS related
loss. First, we discuss the TLS loss rates for samples I –VI (pure Nb resonators). We
compare samples with different substrate thicknesses and surface treatments to our standard
process for Nb on a 250 µm thick silicon substrate covered with 50 nm SiO2 on both sides
(cf. sample I in Tab. 5.1). As a surface treatment, we remove the SiO2 layer on top of
the silicon substrate for sample IV using hydrofluric acid (HF) as described in detail in
Sec. 3.2.2. Fitting Eq. (5.1.1) to the power dependence of κi, we extract κ0

tls, β and Pc
(see Fig. 5.2). The results are summarized in Table 5.1. For sample I, which serves as a
reference sample, we find a TLS contribution κ0

tls' 7.1× 10−6. We can study the influence
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Figure 5.3: Relative change ∆Pc of
the characteristic power plotted versus
temperature for different samples. Solid
lines are fits of Eq. (2.4.16) to the data.
For the first harmonic mode of sam-
ple VIII, we observe a strong increase
for temperatures above 440 mK. For this
dataset we fit only to data points below
440 mK. For better visibility, there is an
offset of 6 dB between each dataset.
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of TLSs near the surface using sample IV, where we have cleaned the surface with an
HF-dip before metallization. For this sample, we measure κ0

tls' 9× 10−7, which is one
order of magnitude lower than for sample I. Hence, we conclude that most of the TLS loss
is introduced by the bulk SiO2 layer, the SiO2/metal, and SiO2/air interfaces. In contrast,
loss rates at the metal/air interface are significantly smaller (≤ 9× 10−7). For sample VI
(gridded ground plane) the TLS loss rates are comparable to those of a resonator with
continuous ground plane.
The characteristic power Pc defined in Eq. (2.4.14) is proportional to γ̄1,tls·γ̄ϕ,tls, where γ̄1,tls
and γ̄ϕ,tls represent the average relaxation and dephasing rate of the TLS ensemble [261].
In the spin-boson model, the temperature dependence of γ̄1,tls follows a coth(~ω/2kBT )
dependence [287, 290] which can be approximated by a linear dependence on T for kBT � ~ω.
Due to the phonon-mediated interaction between the TLSs, one expects the decoherence
rate to scale with T for low temperatures as described in Eq. (2.4.15). However, in
the regime ~ω' kBT which is relevant for our experiments, a power law ∝Tα has been
found [261–263, 266, 290–293] and the power dependence of Pc is expected to scale
as Tα. To obtain further insight into the nature of the TLSs, we analyze the relative
change ∆Pc =Pc(T )−Pc(0), which is linked to TLS properties via Eq. (2.4.14). For each
individual sample, we observe an increase in ∆Pc for increasing temperature due to the
temperature-dependent lifetime of the TLSs as shown in Fig. 5.3. From a fit based on
Eq. (2.4.16), we find α' 2.5 ± 0.3 (average over samples I –VIII). This value deviates
from α= 1 expected from the spin-boson model [287, 290] but is comparable to values
reported for TLSs in glasses [261, 263] and phase qubits [266, 293]. This deviation can
be attributed to the fact that our experiments are not in the low temperature limit, but
rather in the intermediate regime ~ω' kBT .

5.1.2 Loss at Nb/Al interfaces

For resonators made from a single metal layer, the TLSs couple mainly to the electric
field Er generated by the CPW structure. This situation changes for resonators including
metal/metal interfaces, e.g., Nb/Al interfaces. In the case of a Nb/Al interface with an oxide
layer of finite thickness hox, the interface forms a Josephson junction and the TLSs also
couple to the electric field |ENb/Al|=VJ/hox inside this junction [267]. Here, VJ =LJ∂I/∂t
is the voltage drop across the junction induced by the resonator current I = Ir cos(ωrt).
Here, the Josephson inductance LJ is defined in Eq. (2.1.12). Assuming the junction as a
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Figure 5.4: (a) Microscope image of the area where part of the Nb center conductor is replaced by an
Al strip. (b) Transmission magnitude plotted versus δωr≡ω−ωr for the first and second harmonic mode
of sample VIII at Pr'−45 dBm. For the first harmonic mode, the resonance shows a nonlinear behavior
due to the presence of the Nb/Al interface forming a Josephson junction. We use the characteristic
frequency ωcrit to determine the junctions critical current. The second harmonic mode does not couple
to the the junction and therefore exhibits a Lorentzian peak.

parallel plate capacitor, the root mean square electric field inside the junction reads

Erms
Nb/Al = ~ωr

2ehox cosϕ
Ir√
2Ic

. (5.1.2)

This equation shows that a finite resonator current amplitude Ir leads to an electric field
across the junction which can couple to TLSs in the junction. Therefore, we can apply
Eq. (2.4.14) to describe the loss generated by TLSs inside a Josephson junction which is
formed by an oxidized metal/metal interface incorporated into the center conductor of a
CPW resonator.
We use sample VII and sample VIII, where an Al strip is placed at the current antinode
of the fundamental mode, to study the influence of Nb/Al interfaces introduced into the
center conductor of CPW resonators. Even though these interfaces are known to introduce
loss in galvanically coupled Josephson junction based circuits[445, 446], the TLS effect on
the internal quality factor of superconducting resonators has not yet been quantified. For
this purpose, we replace a 150 µm long piece of the Nb center conductor by an Al strip of
identical width and thickness as shown in Fig. 5.4 (a). The Al strip shares an 100 µm long
overlap with the Nb center conductor and is evaporated in an extra fabrication step. For
sample VII, we additionally clean the Nb surface by means of in-situ Ar-ion milling before
the Al evaporation to remove oxides and resist residues from the Nb surface. More details
on the fabrication process are given in Sec. 3.3. The transmission of the first harmonic mode
of the resonator without ion gun treatment shows a deviation from the Lorentzian lineshape
for large probe power [see Fig. 5.4 (b)]. As this behavior is typical for resonators including
Josephson junctions [446, 448], we treat the Nb/Al interfaces as large-area Josephson
junctions. As expected, the second harmonic mode, which has a current node at the
interface position, shows a Lorentzian behavior. Due to the presence of the interfaces,
we also observe a non-equidistant mode spacing, which is again typical for resonators
including Josephson junctions [26]. Specifically, we find ωr,2/ωr,1' 1.93, where ωr,k is the
resonance frequency of the kth mode. In contrast, all samples without Nb/Al interface
(samples I–VI) show an equidistant mode spacing, ωr,k/ωr,1 = k for k∈ 1,2,3. The presence
of the oxidized interfaces results in a large TLS loss rate. For the first harmonic mode
of sample VIII, we observe an increase of more than one order of magnitude in κ0

TLS as
compared to sample I (pure Nb) or sample VII (cleaned Nb/Al interface). Hence, we draw
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Figure 5.5: Internal loss rate plotted
versus the circulating microwave power
for the first two harmonic modes of sam-
ple VIII (no Ar ion cleaning) at tempera-
tures between 50 mK and 600 mK. Solid
lines are fits of Eq. (5.1.1) to the data.
Arrows indicate the regions relevant for
the analysis of TLS and quasiparticle loss. Pr (dBm)
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two important conclusions. First, without cleaning step, the Nb oxides present at the
interfaces are strong TLS sources. Second, these TLSs can cause significant loss. This
behavior is not immediately obvious, because the Nb/Al interfaces are located at a voltage
node of the first harmonic mode. Consequently, the TLSs associated with the Nb oxides at
these interfaces are not expected to couple to the resonator electric field. Nevertheless, due
to the electric field ENb/Al between the Nb and the Al layer in the overlap area, we observe
a pronounced power and temperature dependence of κi [see Fig. 5.5]. Actually, according
to Eq. (5.1.2), Erms

Nb/Al is proportional to the resonator current and therefore maximum if
the Nb/Al interface is placed at the current antinode (voltage node) of the resonator field.
In the following, we discuss why the TLSs in the interfaces are not yet saturated by Erms

Nb/Al

for a probe power corresponding to the vacuum current Iωr,1
= (~ω2

r /2π2Z0)1/2' 21 nA,
which is necessary to observe the power dependence shown in Fig. 5.5. From the critical
frequency ωcrit(Pr) as indicated in Fig. 5.4, we can derive the critical current [448]

Ic =
√

3(Z0Φ0Pr)1/3

2πκ`Lr(8ωcrit)2/3 ' 19.2 µA , (5.1.3)

of the large Josephson junction. Here, Lr' 6 nH is the total resonator inductance. With
a junction area of approximately 2000 µm2, we obtain a current density Jc' 0.96 A/cm2.
This very low critical current density is expected, as the Nb was exposed to air for two
days [357]. Nevertheless, we obtain Ic� Iωr,1

and can use the approximation cosϕ= 1 in
Eq. (5.1.2). Assuming an oxide thickness on the order of 1 nm, we obtain Erms

Nb/Al' 6 V/m
from Eq. (5.1.2). On the one hand, this field strength is large enough to mediate a
coupling between the TLSs and the resonator. On the other hand, it is small compared
to the experimentally observed saturation field |Ec

Nb/Al|= 44 V/m given by the resonator
current Ir' (140± 40) nA for Pc'−124 dBm.
In the next step, we confirm our model of TLS loss in the interfaces by analyzing the second
harmonic mode of sample VIII, which has a voltage antinode at the interface position. As
shown in Fig. 5.5, this mode shows a significantly smaller internal loss rate compared to
the first harmonic mode. We measure κ0

tls=7× 10−6 and κc=1.7× 10−5, that is, values
comparable to those of the first harmonic mode of the pure Nb resonator (sample I). This
observation is unexpected for loss based on a model considering only uniformly distributed
loss mechanisms [112]. Instead, the effect can be explained by TLSs localized in the Nb/Al
interfaces. Since for the second harmonic mode the interfaces are placed at the current
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Figure 5.6: Internal loss rate plotted
versus microwave power circulating inside
an all-Al resonator. The solid line is a
numerical fit based on Eq. (5.1.1).

node, Iωr,2
' 0, the corresponding electric field Erms

Nb/Al is vanishingly small. Therefore, only
the TLSs outside the interface, which couple to the resonator electric field, introduce loss
rates comparable to those of sample I (pure Nb). We note that also the power-independent
contribution κc is smaller for the second harmonic mode than for the first harmonic mode.
This behavior indicates that the interfaces are not only strong sources for TLS loss but
also for local resistive loss.
Finally, we find that local loss induced by the interfaces can be significantly reduced by
in-situ ion gun treatment of the Nb surface before Al evaporation. In particular, we measure
the loss rate κ0

tls' 9× 10−6 of the fundamental mode of sample VII (ion gun treatment),
which is one order of magnitude larger than for sample VIII (no ion gun treatment). As
expected, we find that κ0

tls of sample VII is similar to κ0
tls of both the second harmonic

mode of sample VIII and the fundamental mode of sample I (pure Nb).

5.1.3 Loss in all-Al structures

The detailed discussion of loss in Nb/Al interfaces in Sec. 5.1.2 has triggered the effort
to fabricate resonator samples consisting completely of an Al/AlOx/Al structure. This
techniques allows one to include Josephson junction based circuits without additional
metal/metal or metal/oxide interfaces. The experimental challenge using this technique is
the combination of a nanometer precision of the electron beam for Josephson junctions
and the millimeter wide illumination for the CPW structures. As described in detail in
Sec. 3.3.2, we achieve this by patterning the sample with two different parameter sets for
the EBL process. Using the EBL process instead of optical lithography to pattern the
resonators, we achieve very smooth edges of the Al thin films as shown in Fig. 3.8 (d).
To study the quality of resonators made from pure Al films, we use the sample containing
the tunable gradiometric flux qubit, which we fabricate with an all-Al process. From a
readout power sweep at 25 mK, we find a low-power loss κtls' 6.4× 10−5, corresponding
to Qtls' 6× 104 (see Fig. 5.6). This quality factor is more than one magnitude higher than
quality factors found for comparable samples with Nb/Al interface [178]. Furthermore, this
quality factor exceeds typical external quality factors used in circuit QED experiments by
two orders of magnitude (assuming Qx' 600). Hence, the internal loss rate of the all-Al
resonator is negligible. Nevertheless, further improvements can be achieved by an advanced
cleaning method of the substrate or by switching to intrinsic silicon (without thermal oxide
layer) or sapphire substrates. These substrates have a smaller loss tangent resulting in
even less internal loss [19]. To conclude, our results show that the careful analysis of Nb/Al
interfaces and the experimental consequence to omit these interfaces, has really pushed the
sample quality of integrated Josephson junction based circuits at the WMI.
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Figure 5.7: Normalized loss
rate κc(T )/(κs +κ0) of sample VIII
plotted versus sample temperature. Blue
triangles correspond to the first and
red triangles to the second harmonic
mode. The solid line is a fit of κc(T )
using Eq. (5.1.4) based on calculations
of κqp(T ). The inset shows the time
dependence of κc(T )/(κs +κ0) at
50 mK.
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5.1.4 Loss due to thermal quasiparticles

In the following, we focus on the high power regime where the internal losses are limited by

κc(T,h) = κqp(T ) + κs(h) + κ0 . (5.1.4)

Here, κqp(T ) describes thermally induced quasiparticle loss and κs(h) describes eddy current
loss on the backside of the substrate. The term κ0 comprises all other loss processes such
as radiation [362], the finite surface resistance of superconductors [74], and non-thermal
quasiparticles generated by stray infrared light [65, 126]. Quasiparticle loss rates are defined
in Eq. (2.4.17) and become relevant when the temperature exceeds approximately 10% of
the critical temperature of the superconductor.
We first analyze the temperature dependence ∆Pc(T ) for both samples including a Nb/Al
interface (sample VII and sample VIII). As shown in Fig. 5.3, the exponent α is in the
same range as for all other samples (see Sec. 5.1.1). Specifically, we extract α' 2.6
(sample VII), α= 2.4 (sample VIII, first harmonic), and α= 2.7 (sample VIII, second
harmonic). When extracting α for the first harmonic of sample VIII, we only take data
points below 440 mK into account. We attribute the increased slope of Pc(T ) above this
temperature to self-heating processes [251, 449–451] inside the interfaces. This effect is not
present in the second harmonic of sample VIII which has a current node at the interface
position.
Next, we study the influence of the Nb/Al interfaces on κc, i.e., in the high power regime.
For pure Nb resonators, we observe no significant change of κc in the temperature range be-
tween 50 mK and 600 mK. This behavior is expected because the number of quasiparticles is
negligible for our experiments due to the critical temperature Tc' 9 K of the Nb films. How-
ever, the situation is different for samples including an Al strip, which has a lower Tc' 1.2 K.
In Fig. 5.7, we show the temperature dependence of κc for the first two modes of sample VIII.
For the first harmonic mode, we observe a quasiparticle induced increase of κc, which
becomes relevant for temperatures above 200 mK. Using κs +κ0 = 2.8× 10−5 obtained
from a power sweep at 50 mK where quasiparticles are negligible, we fit Eq. (5.1.4) to the
data and find a kinetic inductance fraction of K' 3.5× 10−4. This value is two orders
of magnitude smaller than values reported in literature [126]. We explain this difference
by the fact that the length of the Al strip is only 1/100 of the total length of the center
conductor. In contrast to the first harmonic mode, κc of the second harmonic mode shows
no temperature dependence because the current distribution of the resonator has a node
at the Al position in this case. Hence, quasiparticles in the Al do not carry a significant
amount of the current circulating inside the resonator. Therefore, we conclude that also
with respect to quasiparticle loss it is advantageous to place such interfaces at current nodes.
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Due to the reduced superconducting energy gap of Al compared to Nb, nonequilibrium
quasiparticles generated by stray infrared light can be trapped in the Al layer [452, 453],
which reduces the number of quasiparticles in the Nb part of the center conductor. This
effect helps to decrease quasiparticle loss for resonator modes that have a current node at
the position of the Al strip. Indeed, we measure κc' 1.65× 10−5 for the second harmonic
mode of both samples including Al layers, which is smaller than κc' 2.2× 10−5 measured
for the second harmonic mode of sample I (pure Nb resonator). Due to variations in
the experimental environment, loss rates can vary as a function of time on a minutes
timescale [248, 249]. In the inset of Fig. 5.7 we show the fluctuations of κc over a 100
minute time interval. From the statistics we evaluate a relatively small standard deviation
3.8× 10−3. Also over a period of several days, we do not observe any significant change in
the resonator loss rate.

5.1.5 Eddy current loss

In addition to the various sources of microwave loss mechanisms mentioned above, we show
that there can be eddy current loss in the conductive material used to fix our samples in
the sample box. To this end, we rewrite κc from Eq. (5.1.4) for a constant temperature as
the sum of a thickness-independent term κc,1 and a term κs(h) depending on the substrate
thickness h. That way, we obtain

κc(h) = κc,1 + κs(h) . (5.1.5)

The thickness dependence arises from a residual magnetic field H0≡H(z=0) on the back-
side of the substrate. Therefore, we also find a finite field Hs in the volume of the silver glue
used to fix our samples in the sample box. The thickness dependence of the eddy current
loss rate is defined in Eq. (2.4.25). In the following, we experimentally analyze loss rates
due to eddy currents. For this analysis, we compare all CPW samples fabricated by optical
lithography. We observe that κc shows a significant dependence on the substrate thickness as
displayed in Fig. 5.8. Assuming a negligible quasiparticle contribution κqp(50 mK)� 10−6,
a numerical fit based on Eq. (5.1.4) and Eq. (2.4.25) yields κ0' 8× 10−6 and a sheet
conductivity σr' 7× 107 S/m. This conductivity is approximately hundred times larger
than the room temperature conductivity of our silver glue [454] and comparable to the
room temperature conductivity of copper [298, 455]. Since our experiments are carried
out at low temperatures where the conductivity of metals typically increases by a factor
of 100 [456, 457], we can quantitatively explain the loss behavior shown in Fig. 5.8 by ohmic
dissipation in the silver glue. The influence of eddy current loss depends on the material
present underneath the sample. Compared to pure metals, silver glue has a relatively low
conductivity and therefore larger loss rates. For samples with a substrate thickness of
525 µm, the loss rate is already enhanced by 13 % compared to κ0 in the high power regime.
Samples fabricated on 200 µm thick substrates show a loss increase by a factor of four
compared to κ0. The slight scatter in κc for h= 250 µm is attributed to our assumption of
a universal κ0. This assumption is, of course, only a rough estimation because the samples
are fabricated with different cleaning methods.
In summary, we can quantitatively explain loss due to eddy currents using numerical
calculations of the H-field distribution in conductor backed CPW structures. The electro-
dynamical model suggests that it is advantageous to either use thick substrates or materials
with high conductivity on the backside of the substrate. Therefore, enhanced loss rates
caused by eddy currents can be avoided by using superconducting materials at this position.
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Figure 5.8: Power-independent loss
rate κc measured at 50 mK plotted as a
function of the substrate thickness. The
solid line is a fit based on Eq. (5.1.4) and
Eq. (2.4.25) not accounting for sample IX
(MS), which has a superconducting layer
at the sample backside. h (µm)
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This conclusion is supported by our measurements on the MS resonator (sample IX), which
is fabricated on a 250 µm thick substrate and employs a superconducting ground plane.
For this sample, we measure κc' 1× 10−5, which is reduced compared to the values of the
other samples fabricated on a 250 µm thick substrate by a factor of two, despite the fact
that the field at the bottom surface of the substrate is one order of magnitude larger as
compared to the CPW samples.
In contrast to other groups [37], we observe a decrease of the power-independent loss rate κc
by a factor of three for the sample fabricated with EBL (sample III) compared to sample II,
which is fabricated with OL. There are two likely reasons for this observation. First, the
Nb edges are smoother for the EBL sample than for the OL samples, resulting in a reduced
field elevation at these positions. Second, compared to our OL process, the PMMA resist
used for EBL may leave less resist residuals on the sample. Such resist residuals are known
to introduce loss [37].

5.2 Second-order decoherence mechanisms of a transmon
qubit

This section is based on Ref. 39. Solid-state based quantum circuits are attractive for quan-
tum information systems due to their design flexibility and the possibility to engineer and
tune interactions. This is particularly true for superconducting quantum circuits which are
widely used for quantum computing [144] and quantum simulation [458], or the generation
of quantum entanglement [163]. One advantage of superconducting circuits is that they
provide strong [16, 459] or even ultrastrong [26–28] and well controllable [31, 32, 460–462]
interaction. However, while strong interaction enables simple and fast manipulation of
quantum circuits, it also goes along with strong coupling to environmental fluctuations
(noise), thereby limiting the coherence properties. For superconducting quantum circuits,
the impact of environmental noise has been widely studied both in theory and experiment.
In particular, noise sources that couple coherently to qubits [264–266], as well as Marko-
vian [35, 119, 241–243], or non-Markovian (1/f) noise sources [33, 216, 219, 221, 222, 463]
have been analyzed. To optimize the coherence properties, several strategies to decouple
a qubit from the environmental noise have been developed. In the first place, the most
convenient way to suppress noise over a broad frequency range is to place the qubit inside
a superconducting resonator [240]. This concept is efficient, when the qubit transition
frequency is far detuned from the resonator frequency by an amount δ much larger than
their coupling strength g. Nevertheless, even in this case, noise still couples to the qubit
in second-order with strength g2/δ. In the second place, fluctuations that modify the
qubit transition frequency ωq can be noticeably suppressed by tuning the qubit to an
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operation point where the derivative of ωq with respect to the fluctuating quantity van-
ishes [33, 40, 57, 219, 222]. Again, even at such a sweet spot, second-order coupling of
environmental fluctuations can be a source for decoherence [234, 235, 464]. In addition
to these decoherence processes, intrinsic qubit parameters such as its relaxation rate can
be fluctuating in time [20, 248, 465, 466]. One prominent source for these fluctuations are
interacting two-level states (TLSs) mediating low-frequency noise to the qubit.

The three second-order decoherence mechanisms mentioned above can be reliably studied
with propagating thermal fields because their power spectral density S(ω) can be adjusted
with a high accuracy by controlling the temperature of a black-body radiator [139, 440, 443].
Furthermore, S(ω) is white for low frequencies and sufficiently smooth at the qubit transition
frequency, which allows for a quantitative analysis of second-order decoherence mechanisms.
Besides the fact that thermal fields are an accurate control knob to study second-order effects
of noise, their omnipresence in superconducting circuits [36, 38, 246, 252, 275, 276, 467]
naturally results in a strong demand to investigate their second-order influence on the
coherence properties of superconducting quantum circuits.

In this section, we systematically study the effect of the second-order coupling between
thermal fields generated by a black-body radiator and a superconducting transmon qubit [40]
placed in a superconducting resonator. We analyze the three individual decoherence
mechanisms depicted in Fig. 5.9 (a). The novel aspect of our experiments is that we can
irradiate the qubit either directly or via the resonator filter function with thermal noise
of controllable power spectral density while keeping the qubit at the base temperature of
a dilution refrigerator. This allows us to quantify the impact of thermal noise without
suffering from parasitic effects such as quasiparticle generation in the superconducting
circuits. We first derive basic concepts of this broadband coupling as well as experimental
methods in Sec. 5.2.1. We analyze the first decoherence mechanism, which is relaxation
of the qubit due to dispersively coupled thermal noise (see Sec. 5.2.2). In the dispersive
Jaynes-Cummings regime, noise at the resonator frequency couples in second-order. In our
experiments, we find a coupling to broadband fields which is enhanced as compared to that
expected from the Purcell filter effect of the resonator. Furthermore, using coherent states
and narrowband shot noise, we demonstrate the counter-intuitive effect that the qubit
relaxation rate can be lowered for increasing field strengths. In Sec. 5.2.3, we discuss the
situation when the thermal noise field is directly irradiated on the qubit via a near-field
antenna without the cavity filter. At the flux sweet spot, this direct irradiation reveals
the influence of second-order-coupled noise on the qubit dephasing rate. In particular, we
observe the expected [235, 464] T 3 temperature dependence of the qubit dephasing rate.
Finally, in Sec. 5.2.4, we show that low-frequency fluctuations of the qubit relaxation rate
are related to the temperature of the black-body radiator if the field is not Purcell filtered.
We can explain this effect by the presence of two-level fluctuators in the spatial vicinity of
the qubit, which change the effective noise spectral density.

Our work establishes thermal fields as an important tool to probe the coherence properties
of superconducting quantum circuits. In this way, we gain important insight into second-
order decoherence mechanisms of superconducting qubits. Futhermore, our quantitative
analysis of the decoherence rates is crucial to optimize the performance of superconducting
qubits, which is necessary for many quantum computation and communication protocols.
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Figure 5.9: (a) Sketch of the experimental idea. We characterize the second-order coupling between
a thermal noise source (black-body radiator of variable temperature) and a superconducting qubit by
measuring the qubit decay and dephasing rate. The second-order coupling to the thermal noise field
becomes relevant in the following situations: (i) When the qubit is dispersively coupled to a resonator
acting as a filter for the noise field with spectral density S(ω). (ii) When the qubit is directly irradiated
by a noise field using a near-field antenna, but operated at a sweet spot making the second-order spectral
density S(2)(ω) the leading contribution. (iii) When one or multiple two-level fluctuators change the
noise spectral density in the sub-Hz regime. (b) Power spectral density of thermal fields, coherent states,
and shot noise plotted versus frequency. All fields can be filtered by the Lorentzian filter function of a
resonator. The dashed line shows the transition frequency of the qubit.

5.2.1 Specific theoretical and experimental foundations

Setup for second-order loss measurements using thermal states The experimen-
tal setup to study the effect of thermal noise on a superconducting transmon qubit is
sketched in Fig. 5.9 (a). In two different cooldowns, we couple a thermal noise source
either directly through a near-field antenna or indirectly via a superconducting resonator
to a transmon qubit. In our experiments, we measure the qubit coherence properties
as a function of the power spectral density of the noise source, which defines the av-
erage number of thermal photons. We generate the propagating thermal fields at low
temperatures using a 50Ω-matched 30 dB attenuator (see Sec. 4.4.3 for details). The
attenuator is thermally decoupled from the sample box and only weakly coupled to the
base temperature stage of a dilution refrigerator. The qubit is located inside a sample
box as discussed in Sec. 3.3.3. We mount the sample to the base temperature stage of the
CIRQUS cryostat (see Sec. 4.4.1) and stabilize it to Ti = 35 mK. Heating the attenuator
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up to 1.5 K results in the emission of black-body radiation with a power spectral density
controlled by the attenuator temperature. The average number of emitted thermal noise
photons nth(ω,T ) = [exp(~ω/kBT )− 1)]−1 at frequency ω is given by the Bose-Einstein
distribution [154] of a black-body radiator. The power spectral density of the propagating
thermal fields emitted by a 50Ω-matched attenuator into a 50Ω-matched line reads [440]

S(ω,T ) = ~ω(nth + 1/2) = 1
2~ω coth

( ~ω
2kBT

)
. (5.2.1)

A physical understanding of this expression is obtained by writing the units as W/Hz. In
this way, one immediately sees that S(ω,T ) describes the noise power per Hz of bandwidth.
In Eq. (5.2.1), S(ω,T ) is reduced by a factor of four compared to the well-known [229, 255]
Johnson-Nyquist noise 4kBT because we model the attenuator as a 50Ω-matched noise
source [110, 440]. We probe indicrectly coupled thermal fields by operating the qubit in the
dispersive regime [case (i) in Fig. 5.9 (a)], where the detuning δ≡ωq,0−ωr fulfills g/δ� 1.
Here, g/2π' 67 MHz is the qubit-resonator coupling strength, ωr/2π' 6.07 GHz is the
resonator frequency, and ωq,0/2π' 6.92 GHz is the qubit transition frequency at the flux
sweet spot. For a transmon qubit, which is not a perfect two-level system, the dispersive shift
of the qubit transition frequency [40] χ≡−g2Ec/(δ2− δEc)'−2π× 3.11 MHz depends on
the transmon charging energy Ec'h × 315 MHz. To probe dispersively coupled noise,
we send the thermal fields through the coupling capacitor of the resonator. To analyze
second-order contributions of thermal fields [case (ii) in Fig. 5.9 (a)], we use the on-chip
antenna to directly irradiate the qubit with the thermal noise field without any cavity
filtering. Since the antenna represents a short circuit of a 50Ω line, the thermal noise
field generates a thermal noise current, coupling thermal flux noise to the SQUID loop
of the transmon qubit. Note that at the flux sweet spot, the second-order power spectral
density [235, 464] (units to be read as W2/Hz)

S(2)(ω) = ω

[
~2ω2 + 4π2k2

BT
2

12π

]
coth

( ~ω
2kBT

)
(5.2.2)

of thermal fields is relevant because first-order fluctuations are strongly suppressed at the
sweet spot. The second-order power spectral density, however, still couples intensity fluctu-
ations to the qubit. Finally, we probe the influence of thermal fields on the low-frequency
fluctuations of qubit parameters [case (iii) in Fig. 5.9 (a)] by repeatedly measuring the qubit
relaxation rate on a timescale of three hours such that the lowest detectable switching
frequency of the fluctuators is approximately 0.1 mHz. We perform these measurements
for dispersively coupled noise and for noise, which couples directly through the antenna.

Thermal fields entering a resonator Based on the setup introduced above, we now
derive how propagating voltage fluctuations on the feed lines influence the resonator
population. Since we generate the thermal states outside the resonator, the mean pho-
ton population nr inside the resonator can be calculated as a cavity field which is cou-
pled to several bosonic baths each described by a Hamiltonian Hbath = ∑

k ~ωk b̂
†
k,j b̂k,j .

Here, the respective field operators b̂†k, (b̂k) create (annihilate) the individual field modes
with frequencies ωk. In our setup the three bosonic reservoirs (j ∈{i,x,a}) couple to
the resonator modes described by the operators â, â† via the interaction Hamiltonian
Hint =−ı~∑k[κk,j â

†b̂k,j −κk,j b̂
†
k,j â]. For convenience, we split up the transmission line

modes into a classical part b̄k originating from a coherent drive, and into a quantum part ξ̂k,
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such that b̂k(t) = e−ıωktb̄k + ξ̂k(t) [165]. The quantum part describes voltage fluctuations
emitted from the heatable attenuators and will be the focus of the following discussion. The
attenuators emit a voltage V (t) =Vvac[ξ̂k(t) + ξ̂†k(t)], which is fluctuating in time and has a
Gaussian amplitude distribution. Here, Vvac is the vacuum amplitude of the corresponding
mode. For a finite temperature, the correlation function for the voltage fluctuations
reads [149]

CV (t) = 3V 2
vac

π2

[
ζ

(
2,1− ıtkBT

~

)
+ ζ

(
2,1 + ıt

kBT

~

)]
, (5.2.3)

where ζ(s,a) = ∑∞
j=0[j+ a]−s is the Hurwitz function. In Fig. 2.30 (a), we show the temporal

correlation for a thermal excitation generated at two distinct temperatures. The width
of the correlation function becomes smaller in time for higher temperatures, approaching
a delta function, i.e., white noise, for very high temperatures. The coherence time τrad
of thermal radiation can be defined as the full-width-half-maximum (FWHM) of the
temporal correlation function. For temperatures in the kelvin range, this description yields
a sub-nanosecond, i.e., negligible, coherence time of thermal fields defined by the width of
the Hurwitz function [149, 150, 254]. The power spectral density of thermal fields S(ω)
in Eq. (5.2.1), which is shown in Fig. 2.30 (b) and Fig. 2.30 (c), can then be obtained by a
Fourier transform [229, 255]. We now discuss how thermal fields described by S(ω) enter
the resonator. It can be shown that the power spectrum inside the resonator is the product
of the resonator modes and the modes entering from outside [468]. Consequently, the
relation between the field operator â inside the resonator and the input field reads [7]

â(ωr) =
∑

j=i,x,ant

∑
k

√
κk,j b̂k,j(ωk)

κtot/2−ı[ωk−ωr]
. (5.2.4)

Due to the high density of modes, we take the continuum limit (∑k 7→
∫

dωk) and obtain the
expression nr(ω,T )≈FL(ω)∑j κjnj(ω,T ). For a large qubit-resonator detuning δ� g,κtot,
we can neglect the influence of qubit excitations entering the resonator. In this case, the
Markovian master equation

∂ρ̂r
∂t

=− ı[ωrâ
†â,ρ̂r] +

{
niκi + nxκx + naκa,r

}
D(â†)ρ̂r

+
{
(ni + 1)κi + (nx + 1)κx + (na + 1)κa,r

}
D(â)ρ̂r , (5.2.5)

describes the resonator, where ρ̂r is the density matrix of the undisturbed resonator
and D(L̂) is the Lindblad operator. In the steady state limit, Eq. (5.2.5) becomes

nr =
niκi + nxκx + naκa,r

κi + κx + κa,r
. (5.2.6)

This equation shows that we can precisely control the power inside the resonator using
thermal photons emitted from the heatable attenuators. Concerning power, the nature of
the photons inside the resonator (e.g., thermal or coherent) makes no difference.

Photon number calibration We use the derivation for the resonator population in
Eq. (5.2.6), to calibrate the photon number nr and the coupling rate κa,r. The coupling
rates κx' 8.5 MHz and κi' 50 kHz are discussed in Sec. 4.4.1. Because of the low sample
temperature, we neglect thermal photons coupling via κi. Then, on resonance, the steady
state limit of the Markovian master equation [Eq. (5.2.5)] describing the resonator yields
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Figure 5.10: ac-Stark shift
of the qubit transition fre-
quency plotted versus temper-
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while the inset depicts the ex-
perimental configuration.

nr(ωr,Tx,Ta) = [αxκxnx(ωr,Tx) +αaκa,rna(ωr,Ta)]/κtot. Here, the factors αx and αa account
for losses in the microwave lines between attenuator and sample. Because we use the very
same combination of attenuator and coaxial cables for the two cool-downs, we assume
αx =αa≡α in the following. In the dispersive regime, we calibrate this factor by measuring
the ac-Stark shift [24] of the qubit

δωq,x(Tx) = 2χακx nx(Tx)/κtot + δωq,a(50 mK) , (5.2.7)
δωq,a(Ta) = 2χακa,rna(Ta)/κtot + δωq,x(50 mK) . (5.2.8)

From sweeping the temperature Tx of the feedline attenuator, we obtain α' 4.1 dB using
a numerical fit of Eq. (5.2.7) as shown in Fig. 5.10. From sweeping the antenna line
attenuator, we extract the negligibly small coupling rate κa,r/2π' 30 kHz. We note that
we also use coherent states and shot noise with the spectral density shown in Fig. 5.9 (b)
in our experiments. These fields are generated at room temperature with state-of-the-art
microwave equipment as discussed in Sec. 4.4.3. We calibrate the photon number of these
fields with ac-Stark shift measurements similar to the ones discussed above.

Fundamental coherence properties of the transmon qubit In the absence of
external microwave fields and at the flux sweet spot, the qubit is relaxation-limited with
average coherence times of approximately 500 ns. In particular, we find typical values of the
Ramsey decay rate γ2,R/2π' 2.1 MHz, the spin-echo decay rate γ2,se/2π' 1.9 MHz, and
the energy decay (relaxation) rate γ1/2π' 3.9 MHz [cf. Fig. 5.11 (a) – (c)]. This relaxation
rate is a factor of ten larger than the expected Purcell rate and most likely dominated
by loss into the Si/SiO2 substrate and into the on-chip antenna. The above numbers
imply a pure dephasing rate γϕ =γ2,R− γ1/2' 2π× 150 kHz. In general, we find that the
irradiation of thermal states onto the qubit increases the decoherence rates, which is
discussed in detail in Sec. 5.2.2 – Sec. 5.2.4.
We measure the coupling κa,q between antenna and qubit by irradiating the qubit with
thermal noise (first-order coupling) through the antenna line. Thermal noise is Gaussian
and weak [S(ω)� ~ω] for average photon numbers na≈ 1. Hence, we can apply the spin-
boson model and Fermi’s golden rule as in Sec. 2.4.1 to obtain γ1 =S(ωq)/2~. This relation
has been widely used to measure the frequency dependence S(ω) of different noise sources
by tuning the qubit transition frequency [35, 119, 219, 220, 240–243]. Here, we use a
complementary approach and vary the magnitude of S(ωq = const.) in a controlled way
by varying the temperature of the black-body radiator (antenna line attenuator). The
resulting qubit decay rate

γ1,a(Ta) = γ1 + κa,qna(ωq,Ta)/2 ≡ γ1 + δγ1,a(Ta) , (5.2.9)
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Figure 5.11: (a) Probabil-
ity pe to find the qubit in the
excited state as a function of
the free evolution time for the
Ramsey pulse sequence (in-
set). Red envelopes indicate
qubit control pulses, blue en-
velopes the readout pulse to
the resonator. The solid lines
are fits to the data points (cir-
cles). (b) As in panel (a), but
for the spin-echo sequence.
(c) As in panel (a), but for
the relaxation sequence. Tx
indicates the temperature of
the readout line attenuator.
(d) Qubit relaxation rate plot-
ted versus the number of ther-
mal photons emitted from the
antenna line attenuator. The
solid line is a linear fit and the
inset depicts a sketch of the
experimental setup.
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is enhanced by δγ1,a compared to the intrinsic decay rate γ1. We expect γ1,a to increase
linearly with S(ωq) which is proportional to the average photon number na generated in the
resonator by the thermal noise applied by the antenna. This is in very good agreement with
the experimental data shown in Fig. 5.11 (d). From a linear fit of Eq. (5.2.9) to the data, we
obtain the antenna qubit coupling rate κa,q = 820 kHz, which means that approximately 1/5
of the total qubit relaxation can be attributed to decay into the antenna. The accuracy of
the qubit acting as noise spectrometer is limited by the standard deviation σ/2π' 215 kHz
of the data obtained from the fit. This scatter can be attributed to additional low-frequency
fluctuations of the relaxation rate discussed in detail in Sec. 5.2.4. We want to emphasize
that changing the temperature of the thermal noise source has no effect on quasiparticle
loss [224, 225] since the sample itself is kept at a constant temperature. Furthermore,
radiation that directly generates quasiparticles, i.e., radiation with the gap frequency
∆0/h' 80 GHz of Al is strongly suppressed in the coaxial cables.
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5.2. Second-order decoherence mechanisms of a transmon qubit

5.2.2 Thermal fields in the dispersive Jaynes-Cummings regime

In contrast to the direct irradiation of the qubit by thermal noise as discussed above, in
this section we study the effect of thermal noise, which we apply to the transmon qubit
through a superconducting resonator. Then, the resonator acts as a narrow filter for the
broadband thermal noise. Since the qubit is far detuned from the resonator frequency
(|χ|� g), noise couples only in second-order to the qubit, which can be described within
the dispersive limit of the Jaynes-Cummings model. There, the power spectral density
S(ωq) at the qubit frequency is strongly reduced due to the Lorentzian filter function
of the resonator. Hence, we obtain the reduced vacuum Purcell decay rate [244, 247]
γP =κxg

2/δ2' 2π× 53 kHz. Nevertheless, also the thermal noise spectral density S(ωr)
at the resonator frequency couples dispersively to the qubit with the coupling rate χ
in second-order approximation [17]. In an elaborate treatment, the broadband nature
of thermal fields requires an exact transformation of the dispersive Jaynes-Cummings
Hamiltonian, which takes sideband decay into account [52]. This transformation yields the
total relaxation rate in the dispersive regime

γd
1 = γ1

[
1− |χ|

δ
[2nr + 1]

]
+ γP[2nq + 1]

+ 4 |χ|
δ

S(δ)
~
× [2nr + 1] , (5.2.10)

where the effective photon number at the qubit frequency is defined as nq≡αnth(ωq,Tx).
The first term in Eq. (5.2.10) is the main contribution to the total relaxation rate γd

1 . The
second term describes the Purcell decay rate due to the noise power S(ωq) at the qubit
frequency. The last term accounts for a sideband decay resulting from the combined action
of resonator photons at ωr and thermal noise photons at δ≡ωq−ωr' 850 MHz as shown
in Fig. 5.12 (a). Interestingly, a reduction of the decay rate can be obtained with increasing
resonator photon number nr if γ1> 4S(δ)/~ due to the mixing of qubit and resonator
states [52].

Sideband spectral density and reduced qubit decay For a finite spectral density
S(δ), there can be sideband decay of the qubit as depicted in Fig. 5.12 (a). We calibrate
the strength of the spectral density S(δ) by selectively driving at the resonator frequency,
which changes nr while leaving nq and S(δ) in Eq. (5.2.10) constant. To this end, we use a
coherent drive at the resonator frequency, and measure the change of the relaxation rate

δγ1,r(nr) = 2nr
|χ|
δ

[4S(δ)
~
− γ1

]
, (5.2.11)

which is obtained by keeping only the nr-dependent terms on the right hand side of
Eq. (5.2.10). Equation (5.2.11) directly shows that for 4S(δ)/~<γ1, we can reduce the qubit
relaxation rate. As shown in Fig. 5.12 (b), we observe this decrease of the qubit relaxation
rate for a coherent state that changes the resonator population in a controlled way. Using
a numerical fit based on Eq. (5.2.11), we find a spectral density S(δ)' 1.32× 10−28 W/Hz.
We obtain the same result when irradiating the resonator with shot noise that has a spectral
density as shown in Fig. 5.9 (b). We note that the overall qubit decoherence rate given by
γ2 = γϕ + γ1/2 is nevertheless increasing due to the additional dephasing from photon shot
noise as discussed in detail in Sec. 6.1.
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Figure 5.12: (a) Schematic drawing of sideband decay due to a finite noise power spectral density
S(δ) at the detuning frequency δ=ωq−ωr. (b) Qubit relaxation rate for microwave fields coupling to
the qubit through the resonator (see inset for setup sketch) plotted versus the average photon number nr.
The solid line is a numerical fit using Eq. (5.2.11). The dotted line is a calculation based on Eq. (5.2.10)
modeling the expected increase due to thermal fields. For the dashed line we use a numerical fit of
Eq. (5.2.10), where the enhanced relaxation rate is modeled by nq(Tx) as a free parameter.

Broadband dispersive coupling When we apply broadband thermal fields through
the resonator input, we experimentally verify the three competing mechanisms present
in Eq. (5.2.11). First, the increasing noise power spectral density S(ωr) at the resonator
frequency is reducing qubit relaxation due to the mixing of qubit and resonator states as
discussed already above. Second, the increasing noise power spectral density at the qubit
transition frequency attenuated by the Purcell filtering of the resonator, S(ωq)FL(ωq),
causes additional relaxation. Third, the increasing noise power spectral density at the
detuning frequency δ attenuated by the Purcell filtering effect, S(δ)FL(δ), causes additional
relaxation. This mechanism can be viewed as a sideband decay. Hence, the overall
relaxation rate increases with increasing number of thermal photons stored inside the
resonator as shown in Fig. 5.12 (b). When comparing the measured total relaxation rate
γd

1 with a calculation according to Eq. (5.2.10) [dotted line in Fig. 5.12 (b)], we find that
the measured decay rate is significantly larger than expected. Hence, we fit Eq. (5.2.10) to
the data and use nq(Tx) as a free parameter [dashed line in Fig. 5.12 (b)]. We find that the
coupling of the thermal noise fields to the qubit is enhanced by a factor of 10. Because
the qubit is galvanically decoupled from the resonator and the sample is stabilized at
35 mK, this additional coupling is most likely mediated by parasitic modes of the sample
box [240, 469]. Among others, such modes can be slotline, parallel plane, and surface wave
modes with resonance frequencies close to the qubit transition frequency. Our results show
that this mechanism originating from the broadband nature of the noise fields can dominate
over the Purcell rate originating from the finite bandwidth of the resonator. Therefore,
great care must be taken in the microwave design of sample holders and chip layout in
order to minimize losses from broadband fields.
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5.2. Second-order decoherence mechanisms of a transmon qubit

5.2.3 Dephasing from thermal fields

In addition to the relaxation processes discussed above, the qubit can suffer from dephasing
due to propagating thermal fields, even if the resonator filters them. The main contribution
in this context is photon shot noise [24, 275, 467], which introduces dephasing by modulating
the qubit frequency via the ac-Stark shift. We analyze the effect of photon shot noise due
to thermal fields on the readout line for our sample in detail in Sec. 6.1. Here, we focus on
dephasing caused by second-order intensity fluctuations of the thermal fields emitted from
the heatable attenuator in the antenna line. The thermal noise fields themselves as current
fluctuations on the short-circuited on-chip antenna, which couple magnetic flux noise into
the SQUID loop of the transmon qubit [see Fig. 5.13]. Far away from the flux sweet spot,
the qubit dephasing is dominated by the first-order noise power spectral density S(ω 7→0)
defined in Eq. (5.2.1) due to the finite first-order transfer function. At the flux sweet spot,
however, the first-order transfer function vanishes while second-order fluctuations can
still introduce dephasing. These fluctuations are characterized by the second-order power
spectral density S(2)(ω) defined in Eq. (5.2.2).

Coupling of thermally induced flux fluctuations First-order coupling between flux
fluctuations δλ≡ δΦ/Φ0 and the qubit follow the Hamiltonian Hsys = [~/2][ωqσ̂z + δωqσ̂z].
Here, δωq = δλD(1)

λ,z describes fluctuations of the qubit transition frequency leading to
dephasing characterized by the first-order transfer function

D(1)
λ,z(λ

?) ≡ 1
~
∂Hq(λ)
∂λ

∣∣∣∣∣
λ

?

= −
πωq,0

2
sin (πλ)√
cos (πλ)

∣∣∣∣∣
λ

?

. (5.2.12)

shown in Fig. 5.14 (a). Equation (5.2.12) is defined at flux operating points λ? ∈ [−1/2, 1/2]
using the transmon qubit Hamiltonian Hq = ~ωq,0

√
| cos(πλ)|. To analyze the fluctuations

δωq, we first derive how voltage fluctuations δV on the antenna line are converted into
flux fluctuations δλ in the SQUID loop. Because the antenna is short-circuited near the
qubit by a finite inductance La as depicted in Fig. 5.13, we describe it as a first-order
low-pass LR filter, i.e., Za(ω)≈ω2L2

a/Z0 (similar to the way presented in Ref. 210). The
finite inductance La of the short-circuit converts voltage fluctuations δV emitted from
the attenuator into current fluctuations δI = δV (ıωLa)−1. Via the mutual inductance
Ma between antenna and SQUID loop, these current fluctuations cause flux fluctuations
δλ=MaδI/Φ0. Using the transfer function in Eq. (5.2.12), we calculate the resulting change
in transition frequency to

δωq(λ?) = D(1)
λ,z(λ

?)× δλ = D(1)
λ,z(λ

?)Ma
Φ0

δV

ıωLa
. (5.2.13)

This equation shows that thermally induced voltage fluctuations indeed lead to fluctuations
δωq of the qubit transition frequency. To calculate the resulting dephasing rate we use the
spectral function

〈δωq(t)δωq(0)〉ω =

D(1)
λ,z(λ

?)Ma

ωLaΦ0

2

〈δV (t)δV (0)〉ω

=

D(1)
λ,z(λ

?)Ma

ωLaΦ0

2

Re{Za(ω)}S(ω) =
[
D(1)
λ,z(λ

?)Ma
Φ0

]2 S(ω)
Z0

(5.2.14)
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Figure 5.13: Sketch of the short-
circuited antenna line, which converts
voltage fluctuations δV into flux fluctu-
ations δΦ inside the SQUID loop of the
transmon. The region forming the short-
circuit has an inductance La and a mu-
tual inductance Ma to the SQUID loop.
The propagating thermal fields are guided
through a coaxial cable to the sample
and are thus only located on the antenna
structure.
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Ma
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of these fluctuations. Here, we use the well-known fluctuation dissipation theorem [429, 470]
〈δV (t)δV (0)〉ω = Re{Za(ω)}S(ω) to relate the voltage fluctuations to their power spectral
density. The expression 〈δV (t)δV (0)〉ω displays the spectral weight of the fluctuations
with units V2/Hz. The fluctuations of the qubit transition frequency defined in Eq. (5.2.14)
lead to random fluctuations δϕ(t) =

∫ t
0 dt′δωq(t′) of the qubit phase relative to its mean

phase ϕ̄ in a rotating frame. Assuming thermal states to be Gaussian [235, 464] and 1/f
contributions to be negligible, the phase fluctuations in turn lead to a single exponential
decay function [168]

〈σ̂−(t)σ̂+(0)〉 ≈ exp
[
−γ2t−〈δϕ

2〉/2
]

= exp
[
−γ2t−

1
2

∫ ∫ t

0
dt1 dt2〈δωq(t1)δωq(t2)〉

]
= exp

[
−γ2t−

1
2

[
D(1)
λ,z(λ

?)Ma
Φ0

]2 S(ω)
Z0

t

]
. (5.2.15)

Here, we make use of the fact that the correlation function 〈δωq(t1)δωq(t2)〉 is a δ-function
at low frequencies (see Sec. 2.4.2). The additional decoherence due to thermal states on
the antenna line is therefore given as

γ(1)
ϕ,a =

[
D(1)
λ,z(λ

?)Ma
Φ0

]2 S(ω)
2Z0

≈
[
D(1)
λ,z(λ

?)Ma
Φ0

]2 kBTa
Z0

. (5.2.16)

The approximation on the right-hand side of Eq. (5.2.16) reflects the low-frequency limit
by setting S(ω 7→0) = kBTa, which shows that dephasing due to propagating thermal fields
is expected to increase linearly with the temperature Ta of the black-body radiator.
The above derivation of the qubit dephasing rate is equivalent to the result derived from
the spin-boson model, where the dephasing is defined as [210] γ(1)

ϕ,a = 2παS(ω 7→0)/~. Here,
the dimensionless dissipation parameter α is defined as [464]

α =
Rq
Z0

[
~D(1)

λ,z(λ
?) ∂λ
∂Φ

Ma
Φ0

]2
= ~

2πZ0

[
D(1)
λ,z(λ

?)Ma
Φ0

]2
(5.2.17)

and Rq≡h/4e2 is the quantum resistance for Cooper pairs. We note that the spin-boson
model can be applied to calculate the dephasing rate because the antenna creates an ohmic
environment if modeled as an LR-filter and because thermal noise has no 1/f contribution.
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Figure 5.14: (a) First-order transfer function plotted versus the normalized control parameter
λ= Φ/Φ0. (b) Second-order transfer function plotted versus the control parameter λ.

Coupling of thermally induced intensity fluctuations When the transmon qubit
is operated at the flux sweet spot, dephasing can be dominated from intensity fluctuations
coupling in second-order to the qubit. These second-order fluctuations

δλ2 ≡ δΦ2

Φ2
0

= M (2)
a δI2

~ωq,0
= M2

a
L`

δI2

~ωq,0
(5.2.18)

are normalized to the relevant energy scale ~ωq,0 of the qubit and scale with the second-order
mutual inductance M (2)

a =M2
a /L` due to the inductive energy E` = Φ2

0/2L` of the SQUID
loop with inductance L`. The intensity fluctuations induce fluctuations δωq =D(2)

λ,zδλ
2/2 of

the qubit transition frequency leading to dephasing based on the system Hamiltonian Hsys
defined in the previous paragraph. The frequency fluctuations are characterized by the
second-order derivative of the qubit transition frequency

D(2)
λ,z(λ

?) ≡ 1
~
∂2Hq(λ)
∂λ2

∣∣∣∣∣
λ=λ?

= −
π2ωq,0

2

√
cos(πλ)−

π2ωq,0
4

sin2(πλ)
cos3/2(πλ)

∣∣∣∣∣
λ=λ?

(5.2.19)

shown in Fig. 5.14 (b). Using this transfer function as well as δV 2 = (ωLa)2δI2, we can
characterize fluctuations in the qubit transition frequency similar to Eq. (5.2.14) as

〈δωq(t)δωq(0)〉ω =

D(2)
λ,z(λ

?)
2

2

〈δλ2(t)δλ2(0)〉ω

=

D(2)
λ,z(λ

?)
2

M2
a

L`

1
ω2L2

a

2
〈δV 2(t)δV 2(0)〉ω

(~ωq,0)2

=

D(2)
λ,z(λ

?)
2

M2
a

L`

1
ω2L2

a

2

Re{Za(ω)}2 S
(2)(ω)

(~ωq,0)2

=

D(2)
λ,z(λ

?)
2

M2
a

L`

2
S(2)(ω)

(~ωq,0)2Z2
0
. (5.2.20)

where S(2)(ω) is the second-order spectral density defined in Eq. (5.2.2). To derive the
dephasing rate using Eq. (5.2.20), we have to consider the statistical properties of S(2)(ω).
Because the intensity fluctuations are not Gaussian distributed [464], applying an approach
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Figure 5.15: Thermally induced qubit
dephasing rate γ(2)

ϕ,a(Ta) measured as a
function of the temperature Ta of the
black-body radiator as depicted in the
inset. To isolate second-order effects, we
operate the qubit at the flux sweet spot
of the transmon qubit. The solid line is
a numerical fit using Eq. (5.2.22).
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similar to the one in Eq. (5.2.15) to calculate the dephasing rate from second-order thermal
fields is not valid in general. Performing only first-order pertubative analysis, we can,
however, assume that the second-order fluctuations are Gaussian distributed with a width
that is defined by S(2)(ω). Then, we find the additional dephasing rate due to second-order
noise

γ(2)
ϕ,a =

D(2)
λ,z(λ

?)
2

M2
a

L`

2
S(2)(ω)

(~ωq,0)2Z2
0
≈

D(2)
λ,z(λ

?)
2
√

3
M2

a
L`Z0

2

︸ ︷︷ ︸
α

(2)

[
kBTa
~ωq,0

]2

︸ ︷︷ ︸
r

2πkBTa
~

, (5.2.21)

taking the low-frequency limit S(2)(ω 7→0)≈ 2πk3
BT

3
a /3~ obtained from Eq. (5.2.2). Just as

the first-order dephasing rate, the second-order dephasing rate is equivalent to an approach
based on the spin-boson model when using the second-order dissipation factor α(2). When
comparing Eq. (5.2.21) to Eq. (5.2.16), we see that second-order thermal noise is suppressed
by the factor r if the thermal energy is lower than the qubit energy. Hence, we have to use
temperatures Ta > ~ωq,0/kB or work at the flux sweet spot to observe the T 3 law.

Dephasing from second-order noise We discuss dephasing from second-order noise
based on decoherence measurements at the flux sweet spot, i.e., λ?' 0 where the qubit
is insensitive to first-order flux noise. At this operating point, the second-order transfer
function D(2)

λ,z =π2ωq,0/2 is relevant and we find the thermally induced qubit dephasing
rate [cf. Eq. (5.2.21)]

γ(2)
ϕ,a(Ta) = 2π

[
π2

4
√

3
M2

a
L`Z0

]2 [
kBTa
~

]3
, (5.2.22)

which follows a T 3
a dependence. Here, Ma describes the mutual inductance between qubit

and antenna, L` is the inductance of the SQUID loop, and Z0 is the line impedance. In
Fig. 5.15, we plot the qubit dephasing rate γ(2)

ϕ,a(Ta) = γ2,R(Ta)− γ2,R(Ta 7→0)− δγ1,a(Ta)/2
caused by the intensity fluctuations of the thermal noise field at the flux sweet spot of the
transmon qubit. The temperature independent decay rate γ2,R(Ta 7→0) and the thermally
induced relaxation rate δγ1,a(Ta) are discussed in Sec. 5.2.1 [see Fig. 6.2 (a) and Fig. 6.2 (d),
respectively]. The additional dephasing rate follows the expected T 3

a dependence with a
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scatter that is dominated by additional low-frequency fluctuations of the decay rate discussed
in Sec. 5.2.4. Fitting Eq. (5.2.22) to the data, we find a loop inductance L`' 50 pH which is
in reasonable agreement with the value of 100 pH estimated from the loop geometry. Here,
we have used the mutual inductance Ma = 1.3 pH obtained from measuring the induced
flux shift of the qubit when applying a DC current through the antenna line. Our results
show that second-order flux noise can induce residual dephasing in a transmon qubit, even
if it is operated at the flux sweet spot. For typical temperatures (Ta < 50 mK) used in
circuit QED experiments, however, we find that additional intensity fluctuations introduce
only negligible dephasing of approximately 100 Hz because of the quadratic suppression
(kBTa/~ωq,0)2 [cf. Eq. (5.2.21)]. Nevertheless, dephasing is not only determined by the
relatively weak thermal contribution but also by stronger 1/f noise [33, 219]. Because 1/f
noise also has a second-order contribution [235], our results show that this noise can be a
possible source for the residual dephasing found for transmon qubits.

5.2.4 Fluctuating qubit parameters in the presence of thermal fields

In the following, we study the effect of thermal fields on the frequency spectrum of
fluctuating qubit parameters. In particular, we analyze low-frequency variations of the
relaxation rate of a transmon qubit. This phenomenon was also observed for flux qubits [465,
466], for transmon qubits in a 3D cavity and phase qubits [248], as well as for the resonance
frequency of superconducting resonators [249]. One particular mechanism that can generate
low-frequency fluctuations are TLSs [248, 250] in the spatial vicinity of the qubit. The
fluctuation rate of the TLSs is influenced by the thermal field as depicted in Fig. 5.16.
Each individual TLS provides a Lorentzian shaped noise spectral density, which is centered
around its excitation frequency ωtls =

√
ε2 + ∆2. Here, ε is the asymmetry energy and ∆

is the tunnel splitting (see Sec. 2.4.2 for details). Because the TLSs are coupled to each
other via dipole or strain-mediated interaction [471], each TLS eigenfrequency depends
on the state of the other TLSs. The low-frequency variations of the TLS configuration
results in low-frequency fluctuations of the noise power spectral density S(ωq,t) generated
by the TLSs. Consequently, the qubit relaxation rate γ1(t) =S(ωq,t)/2~ starts fluctuating.
Since qubit parameter fluctuations are typically recorded in the sub-Hz regime where
~ω� kBT , we assume a white spectrum proportional to kBT for the contribution of the
environmental heat bath. For a distribution P (ε,∆) dε d∆∝ εx∆−1 dε d∆ of TLSs, we
expect a T 2+x-dependence to be the dominant contribution to the spectrum of γ1 [248].
This contribution arises from those TLSs, which are detuned by δω≡ |ωq−ωtls|� γ2,R.
The exponent x≥ 0 is nonzero only for a finite interaction between the TLSs [248].
We experimentally characterize the fluctuations of the noise power spectral density by
measuring fluctuations of the qubit relaxation rate γ1(t). To this end, we perform systematic
long-time measurements of the relaxation rate as a function of the temperatures Tx and

TLS

S
g
(w«wq) ∝ T 

2

S(wq,t) ∝ g1(t)T
w = 2π / t «wq

S(w,T)

Figure 5.16: TLS-
mediated relaxation rate
fluctuations. The thermal
field influences the TLS
fluctuation rate causing
fluctuations of the noise
power spectral density
S(ωq,t).
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Figure 5.17: (a) Qubit
relaxation rate recorded as
a function of time recorded
over a period of 200 min at
Ta = 1.5 K. (b) Noise power
spectral density for the data
shown in panel (a). We
obtain β from a fit to the
data with frequencies below ωc
and µ as the mean value for
points above ωc. (c) Expo-
nent β measured for ω<ωc
versus temperature when ap-
plying thermal fields through
the antenna or the resonator.
Solid lines are guides to the
eyes and error bars represent
confidence intervals generated
by the ω−β fits. (d) Mean
value µ of the white-noise con-
tribution of thermal fields en-
tering via the antenna or the
resonator to Sγ . The solid line
is a fit as explained in text and
error bars are the standard er-
ror of the mean.
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of Ta ranging from 50 mK to 1500 mK. Each measurement is comprised of individual
measurement traces taken at a repetition rate of 100 kHz, where the resonator is probed with
2 µs long traces with 250 MHz sampling rate. We average 4× 105 of these measurements
to extract the decay rate at a particular moment and then wait for 6 s such that individual
data points are recorded at a rate of approximately 0.1 Hz. A typical series of relaxation
measurements at Ta = 1500 mK over 200 min is shown in Fig. 5.17 (a). Here, we observe
a standard deviation σ/2π' 320 kHz from the mean relaxation rate 〈γ1〉/2π' 6.25 MHz.
Even though the absolute value of σ seems large compared to other works [248], the
relative scatter σ/〈γ1〉' 0.05 is comparable. In our experiments, we observe no systematic
influence of the temperature on σ for sweeps of Ta or Tx. To obtain more insight into
the nature of the fluctuations, we investigate their spectral distribution. To this end, we
calculate the Fourier transform Sγ(ω) = ~/2π

∫
dt 〈γ1(t)γ1(0)〉e−ıωt of the autocorrelation

function 〈γ1(t)γ1(0)〉 as shown in Fig. 5.17 (b). For low frequencies, the data follows a ω−β-
dependence, and crosses over into a frequency-independent tail for frequencies larger than a
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5.2. Second-order decoherence mechanisms of a transmon qubit

characteristic frequency ωc' 1 mHz. As shown in Fig. 5.17 (c), we find that βa' 0.91± 0.24
and βx' 0.96± 0.19 are approximately constant for thermal fields applied through antenna
or resonator, respectively. This result is an extension of recent findings presented in
Ref. 465, where 1/f fluctuations were analyzed up to a maximum temperature of 200 mK.
Let us now turn to the white-noise contribution µa above the characteristic frequency ωc
exemplarily shown in Fig. 5.17 (c) and sytematically plotted as a function of the antenna
line attenuator in Fig. 5.17 (d). We observe an increase of µa with the temperature Ta. From
a numerical fit based on the function µa =µa0 + aT 2+x

a , we find µa0 = 0.81× 10−24 W/Hz,
a= 1.1× 10−25 W/(Hz K2), and x=−0.01± 0.13. Hence, our results support the model
presented in Ref. 248 where a bath of TLSs acts as a source for the fluctuations in the
qubit relaxation rate. In particular, the negligible value of x' 0 indicates that the TLSs
relevant for our experiments are noninteracting. In contrast to µa, the white noise level
µx is approximately independent of the thermal field [see Fig. 5.17 (d)]. In this case, the
resonator filters the thermal fields and protects the TLSs from the external noise. Hence,
from this model, a small resonator bandwidth and well-filtered feedlines are necessary in
order to suppress externally activated switching of two-level fluctuators.

In summary, we have characterized the influence of propagating thermal microwaves onto
second-order decoherence mechanisms of a transmon qubit in a resonator. Because we
spatially and thermally separate the thermal emitter from the circuit QED sample, we are
able to separate the influence of the thermal noise from the remaining loss channels of the
qubit. This allows us to quantify three different second-order decoherence mechanisms.
First, for the dispersive regime we find that the additional relaxation rate due to thermal
fields applied via the resonator is larger than expected from Purcell filtering. This is
a strong hint to the relevance of additional coupling channels such as parasitic on-chip
modes. Second, we observe the expected T 3 dependence for the additional dephasing
due to second-order noise at the flux sweet spot. This finding may explain the residual
dephasing rates found for superconducting qubits with long coherence times. Finally, we
investigate the influence of thermal fields on the low-frequency spectrum of qubit parameter
fluctuations. We find that thermal fields enhance the white contribution of the noise power
spectral density if applied broadband via an on-chip antenna. Our data confirms a model
of thermally activated TLSs interacting with the qubit. The resonator, however, can filter
this effect efficiently.
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6 Chapter

Fundamental properties of
microwave light

In this chapter, we study fundamental properties of propagating microwave states of
light. First, in Sec. 6.1, we measure the photon statistics of weak thermal fields using two
independent approaches. While the first method is based on a circuit QED architecture,
the second method is a direct measurement of field correlations. Second, in Sec. 6.2, we
explore the parity of interaction operators using shapeable microwave states. We achieve
this by probing the manifold selection rules for a quadrupolar two-level system.

6.1 Photon statistics of weak thermal propagating
microwaves

In this section, which is based on Ref. 41, we experimentally confirm the theoretically
expected photon number variance Var(n) of thermal microwave fields for 0.05.n. 1.5 using
two fundamentally distinct experimental setups. To this end, we first use a superconducting
transmon qubit [40] interacting with the propagating fields via a dispersively coupled
microwave resonator. Differently to approaches relying on the coherent dynamics [472–474],
where decoherence is detrimental, the additional qubit dephasing rate induced by the field
directly reflects the photon number variance in our experiments. We furthermore get access
to finite time correlations for Poissonian noise fields due to the different decay constant of
the photon-photon correlator. In particular, we find the expected factor of two between
the dephasing rates caused by coherent states and shot noise. With the second setup, we
extract the super-Poissonian photon statistics of propagating thermal microwaves from
direct correlation measurements and from measurements using a near-quantum-limited
Josephson parametric amplifier (JPA) [152, 475] as preamplifier. The results show that
the noise added by the JPA inevitably alters the photon statistics of the amplified field.
Our results provide a quantitative picture of propagating thermal microwaves, which
is especially relevant for the characterization of more advanced quantum states in the
presence of unavoidable thermal background fields. With respect to superconducting qubits,
we gain systematic insight into a dephasing mechanism which may become relevant for
state-of-the-art devices with long coherence times [246, 466].
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6.1. Photon statistics of weak thermal propagating microwaves

6.1.1 Experimental idea

As propagating electromagnetic fields in general [11, 12, 14], propagating microwaves with
photon numbers on the order of unity are essential for quantum computation [476, 477],
communication [478], and illumination [479–482] protocols. Because of their omnipresence
in experimental setups, the characterization of thermal states is especially relevant for many
applications [483–486]. Specifically in the microwave regime, sophisticated experimental
techniques for their generation at cryogenic temperatures, their manipulation, and detection
have been developed in recent years. In this context, an important aspect is the generation of
propagating thermal microwaves using thermal emitters [157, 440, 443]. These emitters can
be spatially separated from the setup components used for manipulation and detection [139,
163], which allows one to individually control the emitter and the setup temperature. Due
to the low energy of microwave photons, the detection of these fields typically requires
the use of near-quantum-limited amplifiers [152, 487–489], cross-correlation detectors [139,
443, 489, 490], or superconducting qubits [39, 467, 491].
The unique nature of propagating fields is reflected in their photon statistics, which
is described by a probability distribution either in terms of the number states or in
terms of cumulants. The former were studied by coupling the field to an atom or qubit
and measuring the coherent dynamics [472–474] or by spectroscopic analysis [492]. The
cumulant-based approach, in practice, requires knowledge on the average photon number
n and its variance Var(n) to distinguish many states of interest. To this end, the second-
order correlation function g(2)(τ) has been measured to analyze the photon statistics of
thermal [155, 156, 158] or quantum [159–161] emitters ever since the ground-breaking
experiments of Hanbury Brown and Twiss [153, 493]. While these experiments use the
time delay τ as control parameter, at microwave frequencies the photon number n can
be controlled conveniently [24, 157, 492, 494, 495]. In the specific case of a thermal field
at frequency ω, the Bose-Einstein distribution yields n(T ) = [exp(~ω/kBT )− 1]−1 and
Var(n) =n2 +n, which can be controlled by the temperature T of the emitter. In practice,
one wants to distinguish this relation from both the classical limit Var(n) =n2 and the
Poissonian behavior Var(n) =n characteristic for coherent states [24] or shot noise [467, 496].
Hence, as shown in Fig. 6.1, the most relevant regime for experiments is 0.05.n. 1, which
translates into temperatures between 100 mK and 1 K at approximately 6 GHz for the
thermal emitter [39].
In our experiments, we generate the thermal fields using a temperature-controllable,
50Ω-matched attenuator acting as a black-body emitter (see Sec. 4.4.3 for details). This
emitter is thermally only weakly coupled to the 35 mK base temperature stage of a dilution
refrigerator. Heating the attenuator up to 1.5 K results in the emission of thermal microwave
radiation, which we guide to our detection setups. Experimentally, we achieve a high
photon number stability δn/n. 0.01 due to the precise temperature stabilization of the
emitter. In addition, we investigate coherent states emitted from a microwave source
and white electronic shot noise. The latter is generated by upconverting the 200 MHz
wide noise of an arbitrary function generator (AFG) to a center frequency of 6 GHz (see
Ref. 4.4.3 for experimental details). Finally, we note an important correspondence of the
results presented here to those discussed in Sec. 5.2. There, we have used the temperature
of thermal microwave states as a novel control parameter to investigate the quantum
coherence of superconducting circuits. Here, we apply the complementary approach: we use
the coherence properties of superconducting circuits to extract information from thermal
microwave fields.
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Chapter 6. Fundamental properties of microwave light

Figure 6.1: (a) Pho-
ton number correlations.
Var(n)1/2 plotted versus
photon number for thermal
fields (black), their classical
limit (red), and coherent
states (blue). The inset
shows the regime that we
capture in our experiments.
(b) Sketch of setup A: Here,
we measure the photon
number variance Var(n) of
microwave fields encoded
in the photon correlator Cn
by detecting the dephasing
rate γφ of a superconducting
qubit. (c) Sketch of setup B,
which is used to directly
probe field correlations
between two amplification
chains behind a cryogenic
microwave beam splitter.
We can switch on and off
the JPA.
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Qubit setup We measure the photon number variance of propagating fields with the
qubit setup depicted in Fig. 6.1 (b). To this end, we use a frequency-tunable transmon qubit
operated at its maximum transition frequency ωq/2π= 6.92 GHz (see Sec. 4.4 for experi-
mental details). The qubit is coupled with strength g/2π' 67 MHz to a quarter-wavelength
coplanar waveguide resonator with resonance frequency ωr/2π= 6.07 GHz and external
coupling rate κx/2π= 8.5 MHz. Hence, the system is in the dispersive regime, where
the detuning δ≡ωq−ωr fulfills |χ|� g. Here, [40] χ≡ [g2/δ][α/(δ+α)]'−2π× 3.11 MHz
and α/2π'−315 MHz is the transmon anharmonicity. In the dispersive regime, the
qubit couples to the photon number nr in the resonator via the interaction Hamilto-
nian Hint = ~χ[nr + 1/2]σ̂z. We calibrate the photon number using the ac-Stark shift
as presented in Sec. 5.2.1. Because the coupling is mediated by the Pauli operator σ̂z,
temporal fluctuations nr(τ) introduce qubit dephasing [17]. More precisely, the fluctua-
tions are characterized by the correlator C(τ) = 〈nr(0)nr(τ)〉 and generate a shift δϕ(τ)
of the qubit phase. While the first moment of this phase shift has a vanishing arith-
metic mean, the second moment [168] 〈δϕ2〉= 4χ2 ∫ τ

0 dτ ′C(τ ′) enters into the Ramsey
decay envelope exp[−γ1(nr)τ/2− γϕ0τ −〈δϕ

2〉/2]. Here, γ1(nr) is the total qubit relax-
ation rate and γϕ0 is the qubit dephasing rate due to all other noise sources except for
those described by C(τ). Because noise photons are stored in the field intensity, the
super-Poissonian correlator Cth(τ) =(n2

r +nr) exp(−κxτ) for thermal fields and the Pois-
sonian correlator Csh(τ) =nr exp(−κxτ) for shot noise decay at the energy decay rate κx
[see Sec. 2.2.4 for details]. On contrast, coherent states have a finite mean amplitude
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6.1. Photon statistics of weak thermal propagating microwaves

such that Ccoh(τ) =nr exp(−κxτ/2) decays at the amplitude decay rate κx/2. For all
three states one obtains 〈δϕ2〉/2 = γϕn(nr)τ , i.e., an exponential decay envelope. The
photon-number-dependent dephasing rates are then defined by [24, 166, 168, 246, 275]

γth
ϕn(nr) = κxθ

2
0(n2

r + nr) ≡ sth
0 (n2

r + nr) , (6.1.1)
γcoh
ϕn (nr) = 2κxθ

2
0nr ≡ scoh

0 nr , (6.1.2)
γsh
ϕn(nr) = κxθ

2
0nr ≡ ssh

0 nr . (6.1.3)

Here, [168] θ0 = tan−1(2χ/κx) is the accumulated phase of the resonator photons due to the
interaction with the qubit, resulting in κxθ

2
0/2π= 3.4 MHz. Remarkably, the factor of two

between γcoh
ϕn and γsh

ϕn is due to the fact that the photon-photon correlator decays faster for
white noise than for coherent states. For thermal states, we control nr via the temperature of
the emitter, nr∝n(T ). For coherent states and shot noise, we vary the microwave power P
fed into the cryostat such that nr∝P . We calibrate nr via the Stark-shifted qubit frequency.
The exact calibration procedure is presented in Sec. 5.2.1. As a consequence of Eqs. (6.1.1) -
(6.1.3), measurements of the Ramsey decay rate γ2(nr) = γ1(nr)/2 + γϕ0 + γϕn(nr) allow
us to extract the photon number variance as a function of nr. We obtain γ1(nr) from
the relaxation measurements in Sec. 5.2.1. Furthermore, we emphasize that during our
sweeps of the attenuator temperature, the sample box is stabilized at 35 mK. Also, all
low-frequency components of the thermal field, usually responsible for dephasing, are
strongly suppressed by the filter function of the resonator. Therefore, γϕ0 can be taken as
a constant and we can extract γϕn from a numerical fit to the decay envelope of a Ramsey
time trace.

Dual-path setup With the dual-path setup depicted in Fig. 6.1 (c), we directly probe1

field correlations using a reconstruction setup for microwaves [139, 169, 440, 443]. There,
a cryogenic beam splitter equally divides the signal into two components, which are
subsequently amplified independently. From the averaged auto- and cross-correlations, we
retrieve all signal moments 〈(â†)nâm〉 up to fourth order (0≤n+m≤ 4 with n,m∈N0) in
terms of the annihilation and creation operators, â and â†. To calibrate the photon number
nbs = 〈â†â〉∝n(T ) at the input of the beam splitter, we perform a Planck spectroscopy
experiment [440]. The dual-path setup also includes a near quantum-limited Josephson
parametric amplifier (JPA), which can amplify the thermal field before it enters the beam
splitter. The JPA consists of a quarter-wavelength transmission line resonator, which is
short-circuited to the ground by a DC SQUID. This SQUID allows for the modulation of the
resonator by applying an external magnetic flux. We couple an on-chip antenna inductively
to the DC SQUID loop to apply a strong coherent pump tone ωp at approximately twice
the resonant frequency ωjpa of the JPA. This pump scheme amplifies the incoming signal
due to parametric effects [129, 152]. To calibrate the photon number nbs at the input of
the beam splitter, we perform a Planck spectroscopy experiment as described in the next
paragraph.

Input loss calibration Both setups share the same technique for the generation of
thermal fields. We use a cryogenic 50Ω-matched 30 dB attenuator, which is thermally only
weakly coupled to the 35 mK base temperature stage of a dilution refrigerator as discussed
1 We greatfully acknowledge the experimental effort from S. Pogorzalek and K.G. Fedorov who conducted

the correlation measurements presented in this section.
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Chapter 6. Fundamental properties of microwave light

Figure 6.2: (a) Qubit ex-
cited state probability pe for
a Ramsey experiment plot-
ted versus waiting time τ be-
tween two π/2 pulses. The
solid lines are exponentially
decaying sinusoidal fits. The
inset shows the Ramsey pulse
sequence followed by a read-
out (RO) pulse. (b) Qubit
dephasing rates γϕn of pro-
totypical input fields plotted
versus the average resonator
population nr. The super-
Poissonian n2

r +nr statistics
of thermal fields is fitted us-
ing Eq. (6.1.1). The blue
and the grey line are fits of
Eq. (6.1.2) and Eq. (6.1.3) to
the data for coherent states
and shot noise, respectively.
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in Sec. 4.4.3. We achieve a high temperature stabilization δT/T ' 0.01 of the attenuator
resulting in a comparable accuracy for nth. In our experiments, we measure the variance
of these thermal photons, which is characterized by the temporal fluctuations of the mean
photon number. Because the reference point for these fluctuations, i.e., the resonator in
setup A and the cryogenic beam splitter in setup B, is separated from the attenuator by
coaxial cables, we carefully determine the loss αa,b in these cables in the following. With
the qubit setup, we directly calibrate the loss of αb using the photon-number-dependent
ac-Stark shift as discussed in Sec. 5.2.1. With the dual-path setup, we perform a Planck
spectroscopy experiment [440] for photon number calibration. To this end, we use the
heatable attenuator as a black-body emitter. From these sweeps, we extract the cable loss
αb' 1.1 dB.

6.1.2 Photon statistics detected with the transmon qubit

In the absence of external microwave fields, the transmon qubit is relaxation-limited
with the rates γ1(nr' 0)/2π' 4 MHz and γ2(nr' 0)/2π' 2 MHz. In Fig. 6.2 (a), we show
the Ramsey time traces for the attenuator temperatures T = 50 mK and T = 1 K. As
expected, the latter shows a significantly increased Ramsey decay rate. A systematic
temperature sweep reveals γth

ϕn(nr)∝n2
r +nr as displayed in Fig. 6.2 (b). For small photon

numbers nr . 0.5, we observe that the dephasing rate approaches a linear trend with
slope sth

0 ≡ ∂γ
th
ϕn/∂nr|nr = 0. This finite slope clearly allows us to rule out the validity of

the classical limit Var(nr) =n2
r in this regime. From a fit of Eq. (6.1.1) to the data, we

find sth
0 /2π= 3.9 MHz, which is marginally enhanced compared to the expected value

κxθ
2
0/2π. We can quantitatively explain the slight enhancement by accounting for the

constant thermal field emitted from attenuators at higher temperature stages leading to
an enhanced Fano factor F [157, 489, 497]. Applying a beam splitter model to calculate
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6.1. Photon statistics of weak thermal propagating microwaves

Var(nr +nth
c ), we extract the reasonable contribution of nth

c = 0.15 corresponding to an
effective mode temperature of approximately 140 mK.
As a cross-check for our setup, we confirm the well-explored [24, 168, 467] linear variance
of fields with Poissonian photon statistics. To this end, we first expose the resonator to
shot noise emitted by the AFG [498]. As shown in Fig. 6.2 (b), we indeed find a constant
slope ssh≡ ∂γsh

ϕn/∂nr' 2π× 4.6 MHz. Also this value is slightly enhanced compared to
κxθ

2
0. Again, we can understand this result by modeling the attenuation between the

emitter inside the AFG and the qubit with a beam splitter adding a weak thermal state
to the input field. A quantitative analysis using the beam splitter model yields the
additional population nsh

c = 0.19, which coincides with nth
c . In the next step, we investigate

measurement-induced dephasing caused by coherent states as displayed in Fig. 6.2 (b). We
again find a linear slope scoh≡ ∂γcoh

ϕn /∂nr = 2π× 9.3 MHz' 2ssh. The excellent quantitative
agreement with the shot noise result is also reflected in ncoh

c =nsh
c , i.e., identical Fano factors

F = 〈δn2
r 〉/〈nr〉' 1.1. The enhancement of scoh/ssh = 2 shows that the qubit dephasing

rate reliably reflects the temporal dependence of photon-photon correlators.

6.1.3 Photon statistics detected with the dual-path setup

In order to complement our studies of thermal microwaves with the qubit setup, we directly
probe field correlations with the dual-path state reconstruction setup depicted in Fig. 6.1 (c).
Notwithstanding the very different experimental requirements in the microwave regime,
direct correlation measurements on propagating light fields are inspired from quantum
optics. For this reason, we characterize the photon number variance of the thermal
microwave fields via the unnormalized correlation function

g̃(2)(0) = n2
bsg

(2)(0) = Var(nbs)−nbs +n2
bs , (6.1.4)

which is 2n2
bs for a thermal state. As shown in Fig. 6.3 (a), the correlation function g̃(2)(0)

of the thermal source follows the expected quadratic behavior. A numerical fit of the
polynomial function g̃(2)(0) = ρn2

bs using ρ as a free parameter yields ρ= 2.07. This result
coincides nicely with g̃(2)(0) = 2n2

bs predicted for thermal states by Eq. (6.1.4). In the
same way as with the qubit setup, we are therefore able to reliably map out the n2 +n
dependence and not only the classical n2 limit experimentally found in earlier work [157].
To lower the statistical scatter of the data points in Fig. 6.3 (a), we repeat the correlation
measurement using a JPA operated in the phase insensitive mode. In this mode, the
JPA works as a near-quantum-limited, phase-preserving amplifier [152] with power gain
G� 1. At the input of the beam splitter, one then obtains nbs≈G(njpa +nn + 1). Here,

Table 6.1: Overview of the JPA samples. We perform one measurement with JPA 1 and two individual
measurements using JPA2 with different detunings δjpa =ωjpa−ωp/2 between JPA frequency ωjpa and
pump frequency ωp. The measurement bandwidth for all measurements is ωjpa± 200 kHz.

device run input loss α gain Gjpa njpa ρ ξ g̃
(2)
jpa(0) δjpa/2π ωjpa/2π

JPA1 – -1.07 dB 14.3 dB 1.71 2.24 8.14 7.1 100 kHz 5.4 GHz
JPA2 a -0.98 dB 15.8 dB 0.66 2.23 3.29 1.1 100 kHz 5.4 GHz
JPA2 b -0.98 dB 15.2 dB 0.97 2.21 3.29 1.8 500 kHz 5.3 GHz

161



Chapter 6. Fundamental properties of microwave light

Figure 6.3: (a) Unnor-
malized second-order corre-
lation function g̃(2)(0) plot-
ted versus photon number
nbs at the beam splitter in-
put without using the JPA.
The solid line is a fit to
the data using the function
g̃(2)(0) = ρn2

bs. (b) Unnor-
malized second-order corre-
lation function g̃(2)(0) cor-
rected for the constant offset
g̃(2)

n (0) and plotted versus the
photon number njpa at the
JPA input. For the measure-
ments of JPA 2a and JPA2b
we use slightly different oper-
ating points as summarized in
Tab. 6.1. (c)Wigner function
reconstruction referred back
to the input of the JPA for an
amplified thermal state.
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njpa∝n(T ) are the signal photons and nn are the noise photons added by the JPA, which
we again obtain from a Planck spectroscopy experiment [440]. We compare measurements
using two different JPAs (JPA1 and JPA2) based on frequency-tunable quarter wavelength
resonators with operating frequencies ωjpa/2π' 5.35 GHz and typical gains G' 15 dB
(specific parameters are summarized in Tab. 6.1). To characterize the noise referred to the
input of the JPA, we analyze the modified correlation function

g̃(2)(0) = 2(njpa +nn + 1)2 , (6.1.5)

which can be derived from an input-output model for the JPA presented in Sec. 2.2.4. In
Eq. (6.1.5), there is an njpa-independent offset g̃(2)

n (0) = 2n2
n + 4nn + 2 due to the JPA gain

and noise. In our model, we assume that the JPA noise is thermal, i.e., Var(nn) =n2
n +nn.

In Fig. 6.3 (b) we plot the experimentally obtained correlations g̃(2)(0)− g̃(2)
n (0) versus the

photon number njpa at the JPA input. From fits to the formula ρn2
jpa + ξnjpa, we find

ρ' 2.2 in all three data sets in agreement with the expected value of ρ= 2. Therefore,
also the JPA assisted measurements confirm a super-Poissonian statistics of the thermal
fields. From the fits, we also find that the values ξ is reduced by a factor of approximately
2 compared to the expected value 4 + 4nn. This observation is confirmed by the values
extracted for g̃(2)

n (0), which deviate to a similar extent. The reduced experimental values
suggest that the amplified noise contains a significant contribution Var(nn) =n2

n, an effect
known for amplified thermal fields [157]. This classical contribution is power independent
and also constant when the JPAs exceed their 1 dB compression point P1dB'−130 dBm
[see Fig. 6.3(b)]. We stress that the amplified fields are still Gaussian and show no squeezing
effects between the two quadratures p̂= ı(â†− â)/2 and q̂= (â†+ â)/2 [see Fig. 6.3(c)]. As
shown in Sec. 4.4.4, we find Var(p̂) = Var(q̂) for the complete temperature regime.
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6.1. Parity-engineering with quantum circuits

6.1.4 Comparison of the different measurement setups

Finally, we compare the performance of the qubit and the dual-path setup. Although
we operate on and below the single photon level, the qubit and the dual-path setup
(without JPA) systematically reproduce the n2 +n law with a high accuracy. Currently,
the statistical spread for the qubit setup is one order of magnitude lower than the one for
the dual-path setup. The accuracy of the qubit setup is limited by the Fano factor F ' 1.1
of the setup and by the low-frequency variations of the qubit relaxation rate described in
Sec. 5.2.4. Their standard deviation of 5% well explains the spread of the experimental
data points in Fig. 6.2 (b). Assuming that these variations decrease proportionally to
the qubit decoherence rate, we estimate that for the best performing superconducting
qubits [246], the accuracy can be improved by at least two orders of magnitude. The
dual-path setup (without the JPA) is limited by the data processing rate of our digitizer
card and by the noise temperature Tn' 3 K of the cryogenic amplifiers. When the JPA is
on, the noise temperature of these amplifiers is insignificant. Concerning adaptability, the
dual-path setup in principle gives access to all signal moments, whereas the qubit is limited
to amplitude and power correlations. While our measurements including a JPA decrease
the statistical spread by two orders of magnitude, they also indicate that the statistics of
the JPA noise can influence the statistics of the amplified field.
In conclusion, we have quantitatively characterized the photon number variance of propa-
gating thermal microwaves using two fundamentally different approaches: indirect measure-
ments with a superconducting qubit-resonator system and direct ones, with a dual-path
detector. With both setups, we are able to quantitatively recover the n2 +n photon number
variance of thermal fields in the single photon regime with a high resolution in comparison
with existing experimental achievements [157]. In particular, we analyze the resolution
limits and find that they can be improved by several orders of magnitude in both setups.
For our current dual-path setup, we make the remarkable observation that noise added by
the JPAs has a significant contribution with Var(n) =n2. Our results demonstrate that
the three types of propagating microwaves we investigate can be reliably distinguished
below the single photon level in an experiment by their photon statistics. Therefore,
both setups are promising candidates to explore decoherence mechanisms possibly limiting
high-performance superconducting qubits [246, 466] and the properties of more advanced
quantum microwave states.

6.2 Engineering the parity of light-matter interaction with
superconducting circuits

In physics, parity describes intrinsic symmetries of quantum states and operators, which
has manifold applications in the standard model [499, 500], quantum information [501]
and field [502, 503] theory. The latter includes quantum electrodynamics, where the
parity of interaction operators defines selection rules for atomic state transitions [504–506].
Superconducting qubits are well-suited for systematic studies of selection rules, because the
underlying symmetries can be tuned in-situ by external control parameters. For dipolar
interactions such selection rules have been demonstrated experimentally [27, 42, 185].
We present a novel technique for the in-situ control of the interaction operator parity in
superconducting quantum circuits. Using a tunable-gap gradiometric flux qubit, which
exhibits both a dipole and a quadrupole moment, we precisely engineer the interaction parity
with spatially shaped microwave fields. With our highly symmetric sample architecture,
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Figure 6.4: (a) At its de-
generacy point, the symmet-
ric double well potential of a
flux qubit allows two states
(ψg and ψe) with opposite
parity. The interaction parity
can be even, odd, or without
specific symmetry controlled
by a phase ϕ. For even in-
teraction parity, quadrupo-
lar selection rules apply and
for odd interaction opera-
tors dipolar selection rules
are valid. (b) Energy level
diagram for ground and first
three excited states for a
potassium atom (left) and
the qubit-resonator system
(right).
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we move from the U(1) symmetry of Jaynes-Cummings interaction to the Z2 symmetry of
the quantum Rabi Hamiltonian and even find longitudinal coupling-induced transparency
reflecting the symmetry of the biased quantum Rabi model. In a second step, we couple
the qubit to a resonator and, in this way, activate quadrupolar transitions in an artificial
potassium-like atom. Our work paves the way towards parity based quantum simulation and
physical applications relying on longitudinal interactions such as quantum annealers [507].

6.2.1 Experimental idea

Except for the weak interaction [499, 508], all physical interactions between elementary
particles obey parity conservation. This concept is essential for promising technology, e.g.,
quantum computation based on the surface code [509–512] or for the seminal quantum
Rabi model [171, 186, 513, 514] describing light-matter interaction. In both cases, however,
parity is primarily used in a passive way, either as a direct observable or as a restricting
quantity for rigorous selection rules between quantum states. These multifarious rules for
atoms reduce to pure parity arguments for quasi-one-dimensional artificial atoms (qubits)
made from superconducting circuits. For flux qubits, the two eigenstates |ψg〉 and |ψe〉 of
their double-well potential have opposite parity and correspond to 1s and 2p orbitals in
hydrogen-like atoms [see Fig. 6.4 (a)]. Therefore, selection rules are simply characterized by
the parity product Π̂tot = Π̂ |ψg〉 Π̂(Hint)Π̂ |ψe〉, where Hint is the interaction Hamiltonian.
Parity conservation requires that Π̂tot is even for allowed transitions. This requirement leads
to electric dipolar selection rules if Hint is odd and anticommutes with Π̂, {Hint,Π̂}= 0, and
to electric quadrupolar selection rules if Hint is even and commutes with Π̂, [Hint,Π̂] = 0
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6.2. Parity-engineered selection rules

(see Sec. 2.3.3 for details). While Π̂ |ψg〉 and Π̂ |ψe〉 are fixed for bare qubits, in principle one
can vary Π̂(Hint) to engineer selection rules. Since this task is experimentally challenging
for atoms, where the amplitude distribution of an incident light beam has to be inverted
within a few ångström, its realization in qubits is highly desirable.
Due to their design flexibility, superconducting circuits can be conveniently designed to
have a finite quadrupole moment, which has been used to enable quantum gates [100],
reduce flux noise [102] or radiative loss [515], and to study quantum transitions [516].
Placing a quadrupolar flux qubit in the nearfield of on-chip antennas makes the interaction
parity a convenient control knob in quantum circuits. This powerful but yet unexplored
tuning method allows us to engineer either dipolar or quadrupolar selection rules for one
and the same qubit. Even more flexibility in our qubit provides its possible longitudinal
coupling (via the Pauli operator σ̂z) to electromagnetic fields, which is the unconventional
alternative to the well-known transverse coupling via σ̂x. We design our sample such that
symmetric fields couple in a longitudinal fashion to the qubit and antisymmetric fields
couple to the transverse degree of freedom. That way, we can for the first time probe
selection rules for a quantum two-level system with two orthogonal degrees of freedom.
In particular, we find distinctively unique selection rules apart the sweet spot, where the
symmetry of the drive is broken in exactly the same way as the qubit potential.

With pure two-level systems, it is hard to simulate the multi-level structure of atoms. To
overcome this issue, we introduce an additional degree of freedom provided by the photon
number n in a microwave resonator coupled to the qubit. Because the Schrödinger equation
for the resonator is solved by the Hermite polynomials, subsequent number states |n〉 of the
resonator have opposite parity, Π̂r = eıπn. That way, the resonator acts as an effective orbital
momentum ` in atoms where Π̂a = eıπ`. Our quantum system is equivalent to a potassium
atom with electron configuration [Ar]4s1 [see Fig. 6.4 (b)]. Probing sideband transitions
with ∆n=±1, we can activate the dipolar forbidden transitions to the 5s and 3d orbitals.
These findings strongly extend the flexibility of qubits in possible quantum chemistry
simulations of more complex molecules. Additionally, we implement truly longitudinal
coupling mechanisms, which is useful for quantum state engineering [188, 517–520] or for
simulations of relativistic physics. Finally, the parity of quantum microwave states is a
promising encoding technique for error-correction-based quantum computing [512].

Our experimental setup contains three basic elements (qubit, resonator, antennas) as
depicted in Fig. 6.5 (a) and introduced in detail in Sec. 4.3.4. We place a gap-tunable
gradiometric flux qubit symmetrically between two on-chip antennas generating a magnetic
field H, which oscillates at the drive frequency ωd. Our flux qubit has two degrees of
freedom described by the Hamiltonian Hq = ~(∆σ̂x + εσ̂z)/2 because we replace one of the
Josephson junctions by a SQUID. Due to the elaborate qubit geometry, the tunnel coupling
∆ and the magnetic energy bias ε couple to different terms in a multipole expansion for
the interaction Hamiltonian Hint =µ0µHσ̂x +µ0Q∇Hσ̂z +O(∇2H). Here, the SQUID
dipole moment µ defines the longitudinal coupling strength Ω` =µ0µ·H/~ while the qubit
quadrupole moment Q defines the transversal coupling strength Ωt =µ0Q∇·H. Because our
two antennas generate strong field gradients, we can shape the amplitude distribution of H
across the qubit area by introducing a phase shift ϕrel in one of the two paths [see Sec. 4.3.3
for details]. We obtain symmetric fields (Ωt = 0) for ϕrel ∈{0,2π,...} and antisymmetric
fields (Ω` = 0) for ϕrel ∈{π,3π,...} [see Fig. 6.5 (b)]. For arbitrary ϕrel, the total field is
a superposition of both contributions. In the qubit eigenbasis where H′q = ~ωqσ̂z/2 and
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Figure 6.5: (a) Experimental architecture of chip layout and detection setup. The enlargement shows
a micrograph of the relevant chip area with qubit, resonator and antennas. Crosses denote Josephson
junctions as one is shown in the atomic force micrograph. (b) z-component Hz of the magnetic field
generated by the two antennes for the symmetric and the antisymmetric case. (c) Phase response of
the resonator plotted versus relative phase of the two microwave drives and versus drive frequency. Even
multiples of π correspond to a symmetric RF drive while odd multiples of π correspond to antisymmetric
RF fields. (d) Phase response φ(ωd) of the resonator plotted versus drive frequency at operating points
corresponding to symmetric and antisymmetric RF fields indicated by the vertical lines in (c). (e) Qubit
excited state probability plotted versus relative phase at ωd = 8.218 GHz. The solid line is sinusoidal fit.

ωq =
√

∆2 + ε2/~, the qubit-drive interaction Hamiltonian reads

H′int = ~eıωdt[(Ω` cos θ − Ωt sin θ)σ̂x

+(Ωt cos θ + Ω` sin θ)σ̂z]/2 . (6.2.1)

We can tune the Bloch angle θ= tan−1(∆/ε) by symmetric and antisymmetric DC fields
applied through the two antennas. Equation (6.2.1) extends the QR model by the lon-
gitudinal coupling terms which are present in Hsys even at the qubit degeneracy point
θ=π/2, where {cos θ, sin θ}= {0,1}. Therefore, the Z2 symmetry (parity conservation),
usually present in the Rabi model [171], is broken due to the terms ∝ σ̂z. We can, however,
restore the Z2 symmetry of Hsys by turning off the longitudinal coupling, i.e., Ω` = cos θ= 0.
Then, transitions to the excited state are induced because the interaction is mediated via
the odd parity operator σ̂x (Fig. 2.13d). For pure longitudinal coupling (Ωt = cos θ= 0),
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the conserved quantity of Hsys is the qubit component σ̂z resulting in a nontrivial U(1)
symmetry. In that case, only the qubit gap ∆ is modulated but no mixing of states is gen-
erated. For arbitrary drive symmetries (Ωt 6= 0 6= Ω`), the excited state probability follows
a sin(ϕ/2)2-dependence. In the first part of this work, we use the resonator operating at
ωr' 3.9 GHz only to detect the qubit excited state probability pe in a dispersive readout
(n= const).

6.2.2 One-photon assisted transitions

Interaction parity We use one-photon assisted transitions to show that selection rules
for quadrupolar atoms depend on the parity of the interaction operator. For one-photon-
assisted qubit state transitions, the symmetry of H′int is characterized by the parity operator
Π̂int =−σ̂z. Therefore, only transitions via Ωtσ̂x are allowed at the qubit degeneracy point
while pe(Ω`σ̂z)' 0. For convenience, we first operate the qubit at its sweet spot, where
ωq = ∆ and consequently the Jaynes-Cummings Hamiltonian defined in Eq. (2.3.2) has a well-
defined parity. Hence, the probability to excite the qubit simplifies to pe∝Ω2

t ∝ sin2(ϕrel/2).
When probing the qubit in a two-tone experiment, we clearly observe an oscillatory
appearance of the qubit dip as shown in Fig. 6.5 (c). By analyzing the sweeps at ϕrel = 3π
and ϕrel = 4π, we extract an on/off ratio of more than 10 dB [see Fig. 6.5 (d)]. Hence,
the qubit can be excited with a field of odd parity but not with even parity fields. To
systematically analyze the qubit susceptibility to the parity of a microwave drive, we
evaluate pe(ϕrel). To increase the signal to noise ratio, we integrate the phase response
φtot =

∫
φ(ωd) dω over the FWHM of the qubit dip. The result shown in Fig. 6.5 (e) clearly

follows a sin2(ϕrel/2) dependence, which supports our model prediction given by Eq. (6.2.1).
We note that the total power Ptrans =

∫
[Ω` + Ωt]2 dAq transmitted to the qubit area Aq is

approximately constant. We observe a small residual excitation probability at ϕrel =π, 3π
in Fig. 6.5 (e). We attribute this to field imperfections due the superconducting ground
planes and qubit lines as well as to a finite crosstalk between SQUID and gradiometer
loop [178]. Despite that, the excellent agreement between data and theory shows that the
gradiometric qubit is a well-suited circuit to study the parity of interaction operators.

Selection rules for a finite energy bias To emphasize that the oscillatory dependence
in Fig. 6.5 (e) is truly related to the parity of H′int, we investigate the symmetry properties
(θ-dependence) of Eq. (6.2.1) in the following. Therefore, we analyze the selection rules for
a quadrupolar qubit for finite magnetic energy bias ~ε, i.e., away from the qubit degeneracy
point. This energy bias changes the qubit transition frequency and consequently also the
Bloch angle θ in Eq. (6.2.2). Hence, the simple sin2(ϕrel/2) dependence shown in Fig. 6.5 (e)
breaks down because we leave the operating point where sin θ= 1 and cos θ= 0. For purely
antisymmetric fields (Ω` = 0), Eq. (6.2.1) describes the well-known σ̂x interaction for flux
qubits (left column in Fig. 6.6). At the qubit degeneracy point (symmetric potential), σ̂x
anticommutes with Π̂int resulting in dipolar selection rules. Apart the degeneracy point,
the interaction parity is not well defined and the transition probability fades out due to
the sin θ term. In Fig. 6.6 (b), we also show numerical calculations of the qubit excited
state probability.
For symmetric fields (Ωt = 0), the interaction is purely mediated via σ̂z, which commutes
with Π̂int such that the transition probability vanishes at the degeneracy point (center
column in Fig. 6.6). For increasing magnetic energy bias, however, the cos θ-term becomes
finite and state transitions occur. In the intermediate regime (Ω` 6= 0 6= Ωt), there is an
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Figure 6.6: (a) Sym-
metry of the drive field
and the qubit potential for
three experimental contribu-
tions (Ω` = 0,Ωt = 0) and
Ω`/Ωt = ∆/ε. (b) Expected
(top row) and measured
(bottom row) excited state
probability pe plotted versus
Bloch angle θ and drive fre-
quency ωd. For the cal-
culations in the top row,
we use Eq. (6.2.2) in the
low power (one-photon) limit
Ω`,Ωt�ωq. The operating
point defined by θ? defines
the situation where the drive
has the same symmetry as
the qubit potential.
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operating point θ? where the drive symmetry is broken in exactly the same way as the
symmetry of the qubit potential (right column in Fig. 6.6). We can understand the
vanishing transition matrix element at θ? by moving to a nonuniformly rotating frame
where the effective interaction Hamiltonian becomes

Heff
int = ~

[Ω`

4 cos θ − Ωt
4 sin θ

]
[J0(λ) + J2(λ)]σ̂x . (6.2.2)

Here, Jk is the kth Bessel function of the first kind and λ= (Ωt cos θ+ Ω` sin θ)/ωd. From
Eq. (6.2.2), one immediately sees that Heff

int = 0 if Ω`/Ωt≡ tan θ? = ∆/ε. In this case, we
can rotate into a frame where drive and qubit potential have even parity such that the
interaction is meditated via Ωtσ̂z/ cos θ? (quadrupolar selection rules). The appearance of
this effect in our data is a clear evidence for parity induced selection rules applicable to
qubits with two degrees of freedom.

6.2.3 Transitions in a potassium-like atom

So far, we have demonstrated tunable selection rules between two states of opposite parity,
which corresponds to the 1s 7→ 2p transition in hydrogen-like atoms. We now include the
resonator into the interaction mechanism to generalize the concept of parity inversion. For
the dressed levels of our artificial potassium atom, the parity Π̂res

int =−σ̂ze
ıπn is the product

of the two subsystems [see Fig. 6.8 (a)]. The red and blue sidebands connect states of equal
parity, |g,n〉 7→ |e,n±1〉 [see Fig. 6.8 (b)], corresponding to the dipolar forbidden transitions
4s 7→ 5s and 4s 7→ 3d. For the sideband transitions, the interaction parity is even because
the qubit-resonator coupling is mediated by σ̂x (odd) and also the drive photon couples
typically via σ̂x such that the parity product is even. With our parity inversion technique
it is possible to activate the sideband transitions by changing from antisymmetric (Ω` = 0)
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to symmetric (Ωt = 0) drives. We show this based on the red sideband transition and based
on the two-photon processes of the blue sideband and direct transition.
We activate sideband transitions by irradiating strong electromagnetic fields of frequency
(ωq−ωr)/n and (ωq +ωr)/n for the n-photon red and blue sideband, respectively (see
Fig. 6.7). Furthermore, multi-photon transitions of the direct process occur when irradiating
strong electromagnetic fields of frequency ωq/n. In the case n= 2, the qubit absorbs two
photons of half the frequency.

Sideband transitions The red sideband transition can be seen as a two-photon process
where one photon at frequency ωq−ωr is taken from the drive and the second photon
is taken from the resonator, |g,n+1〉 7→ |e,n〉. As derived in detail in Sec. 2.3.3, this
circumstance is expressed in the interaction Hamiltonian

Hint = g

ωq − ωr

[Ω`

∆ sin θ − Ωt
∆ cos θ

]
(â+ â†)σ̂x . (6.2.3)

which yields a excited state probability pe∝H
2
int. We see that the probability to drive red

sideband transitions is reduced by [g/(ωq−ωr)]2'−40 dB compared to the one-photon
assisted transition. In Fig. 6.7 we show that the transition appears for drive powers 30 dB
above the minimum drive power required to observe the one-photon transition. The
flux dependence of this transition is directly opposite to that of one-photon transitions
(sin θ 7→ cos θ). For Ω` = 0, photons from the drive perform a parity swap and also photons
from the resonator change the parity due to the (â†+ â)σ̂x interaction. Hence, at the
degeneracy point, transitions are forbidden. Due to a finite mixing angle θ, transitions can
be induced when moving away from the degeneracy point. For the other extreme, Ωt = 0,
the drive photon is emitted from a symmetric drive field, coupling to σ̂z. Nevertheless, the
resonator photon still performs a parity swap via the σ̂x interaction and the transition is
allowed. Hence, the red sideband can be activated by changing the interaction operator for
the drive photon from σ̂x to σ̂z. This circumstance is expressed by the appearance of the
red sideband at frequency δ=ωq−ωr' 4.4 GHz [case (i) in Fig. 6.8 (c)]. On contrast, when
using two photons to drive a sideband, the interaction parity is always even. Consequently,
the two-photon process of the blue sideband at frequency (ωq +ωr)/2 is allowed for
antisymmetric and symmetric fields [case (ii) in Fig. 6.8 (c)]. The opposite is true for
two-photon drives connecting states of opposite parity. In this case, the even interaction of
the two-photon assisted transition |g,n〉 7→ |e,n〉 is always forbidden [case (i) in Fig. 6.8 (c)].
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Figure 6.8: (a) Parity of
qubit, resonator, and com-
posite qubit-resonator states
as well as of the interac-
tion operator for one- and
two-photon transitions. (b)
Level scheme and corre-
sponding parity of compos-
ite qubit-resonator states
for multi-photon transitions
|g,n〉 7→ |e,n±1〉. Crossed
out arrows denote forbidden
transitions. (c) Expected
(top row) and measured (bot-
tom row) excited state proba-
bility pe plotted versus Bloch
angle θ and drive frequency
ωd. The circled areas show
the red sideband (i), the two-
photon transition (ii), and
the two-photon transition of
the blue sideband (iii), at the
sweet spot (symmetric poten-
tial).
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Two-photon transition In analogy to Eq. (2.3.26), we find the excited state probability
for the direct two-photon process

H′′int = ~
8
[(

Ω2
t − Ω2

`

)
sin2 θ cos θ + Ω`Ωt

(
sin3 θ − cos2 θ sin θ

)]
σ̂x , (6.2.4)

which can be derived from the two-photon driven Jaynes-Cummings Hamiltonian as derived
in Eq. (2.3.26). Please note that Eq. (6.2.4) predicts the expected sin2 θ cos θ dependence
for the two-photon process of dipolar coupling for Ω` = 0. This process is suppressed by
(2g/ωq)2'−40 dB compared to the one-photon process, which fits to the data shown in
Fig. 6.7. Again, an intuitive picture of the excited state probability can be obtained when
discussing the limits of symmetric and antisymmetric drive fields. At the degeneracy point
and for Ω` = 0, two-photon transitions are forbidden due to the combined even parity, which
is expressed by the cos θ term [case (iii) in Fig. 6.8 (c)]. In contrast to the red sideband
process, two-photon processes are also forbidden for Ωt = 0 at the degeneracy point for
parity reasons. Away from that point, two-photon transitions appear as expected from
theory.
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In conclusion we demonstrate a novel technique for the in-situ parity inversion to transform
selection rules from dipolar to quadrupolar in superconducting circuits. By precisely
shaping the amplitude distribution of microwave fields across the area of a quadrupolar
flux qubit, we generate either longitudinal or transverse interaction mechanisms. That way,
we can continuously tune transitions from allowed to forbidden at the qubit degeneracy
point. Hence, we engineer either electric dipolar or electric quadrupolar selection rules for
our qubit. When we break the symmetry of the qubit potential in exactly the same way
as the symmetry of the microwave drive, we find new quadrupolar selection rules for a
qubit with two degrees of freedom. Finally, we show that including a resonator into the
interaction creates an artificial potassium. In this case, we activate quadrupolar interaction
corresponding to the dipolar forbidden transitions 4s 7→ 5s and 4s 7→ 3d. Our comprehensive
study of parity tuning strongly enhances the understanding of coupling mechanisms in
artificial atoms. The physics, however, is not restricted to these particular fields but
applies generally to a quadrupolar two-level system exposed to a harmonic drive. This
fact makes our study valuable for the various situations using two-level systems, reaching
from optics [105], over trapped ions [521] and spin systems [522–524] to superconducting
circuits [27, 100, 102, 515, 516]. Furthermore, we have not made any restrictions on the
interaction mechanisms which also allows to apply our model to different coupling mediated
for example by phonons [525] or magnons [526, 527]. Our study shows that quadrupolar
interaction can be precisely engineered which leads towards more advanced studies such as
phase transitions in Fermi gases [528].
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7 Chapter

Conclusions and outlook

We sum up the key results of this thesis in Sec. 7.1 and give an outlook towards future
experiments in Sec. 7.2. In the outlook, we focus on the possibility to squeeze a resonator
mode using the tunable gradiometric flux qubit presented throughout this thesis.

7.1 Summary

In this thesis, we characterize inherent properties of superconducting quantum circuits and
of electromagnetic radiation present in these circuits. To this end, we develop and improve
comprehensive experimental techniques used for the characterization of quantum circuits.

Regarding the fabrication of superconducting quantum circuits, we have established a
routine for qubit-resonator samples fabricated in an all-Al process. This task was triggered
by a careful analysis of the loss mechanisms in CPW resonators based on a Nb/Al bilayer
technology [38]. In our detailed study, we find that a significant loss contribution arises due
to TLSs located in the thin oxide layer between the two metal structures. Consequently, we
get rid of these interfaces by using all-Al resonators. This important step has pushed the
quality of the qubit-resonator systems by one order of magnitude. The technical challenge
to establish an all-Al fabrication of resonators with integrated Josephson junction-based
circuits has benefit from a new EBL facility, which was purchased during this thesis. Based
on this new device, we optimize our fabrication process mainly by using gold nanoparticles
as focusing material. Using this technique together with an improved spin-coating process,
sample fabrication has become a reliable resource for new experiments.

Throughout this thesis, we have put experimental effort into the construction of a new
laboratory for quantum measurements (CIRQUS lab). In this new lab, we characterize su-
perconducting quantum circuits at millikelvin temperature. Therefore, we have constructed
a custom-built dilution refrigerator operating at 25 mK with a cooling power of 140 µW at
100 mK. To sustain large experimental flexibility, there are 24 coaxial lines mounted in the
cryostat, which allow for larger scale circuit QED experiments in the future. Furthermore,
we establish a measurement routine for time resolved measurements of qubit states. To
this end, we use a heterodyne down-conversion setup and perform digital homodyning,
which enables a broadband detection of quantum oscillations. Measurements performed
with these setups build the heart of the experimental results presented in this thesis.

In order to systematically improve the performance of the superconducting quantum circuits
studied in this thesis, we investigate geometry aspects and power dependencies of open
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tranmission lines, resonators, and antenna structures. We find that resonators characterized
in a helium bath cryostat significantly suffer from surface resistance loss, which is enhanced
when using gridded groundplanes. When reducing power and temperature to the single
photon regime, we show that the finite substrate thickness of 250 µm is a limiting factor in
our experiments. We can quantitatively explain this fact with dissipative eddy currents
in the conductive material on the backside of the substrate. Consequently, we adapt our
fabrication process to 525 µm thick substrates. In addition to this eddy current loss, we
show that quasiparticle loss in Al can be strong when heating the sample above 200 mK.
Because this loss channel is also present in superconducting qubits, heating the sample is
no option for a reliable study of the interaction between the thermal contribution of a noise
field and a qubit. Therefore, we adapt a technique from state reconstruction setups [139]
in order to generate propagating thermal microwave states. We use heatable attenuators
in the feedlines, which are thermally only weakly coupled to the qubit and are therefore a
well-defined control knob to tune the noise spectral density S(ω). Using a transmon qubit,
we find that the maximum coherence time of approximately 500 ns is strongly reduced
when irradiating the qubit with propagating thermal fields [39]. In particular, utilizing
a resonator as a Purcell filter for the qubit, we find that the qubit relaxation rate is
enhanced by 13 dB compared to the value expected from the filter function of the resonator.
When we send broadband thermal fields through an on-chip antenna, we find the expected
T 3 law for dephasing due to second-order coupling at the qubit sweet spot. Finally, we
investigate the influence of thermal fields on the low-frequency spectrum of qubit parameter
fluctuations. We find that thermal fields enhance the white contribution of the noise power
spectral density if applied broadband via an on-chip antenna. Our data confirms a model
of thermally activated TLSs interacting with the qubit. The resonator, however, can filter
this effect efficiently.

We use the transmon-resonator system discussed above to characterize the photon statistics
of different propagating microwave fields. By varying the power of a coherent microwave
drive, we quantitatively confirm the Poissonian statistics of coherent microwave fields.
Furthermore, we show that a qubit-resonator system can be used to distinguish between
the Poissonian statistics of coherent fields and the Poissonian statistics of shot noise. The
reason is that the characteristic decay constant of the resonator is different for coherent
and incoherent input fields. Finally, we use the qubit-resonator setup to quantify the super-
Poissonian n2 +n law for thermal fields with high accuracy below one photon on average.
We find that the accuracy of the qubit setup is limited by low-frequency fluctuations of
the qubit relaxation rate. To test the efficiency of the qubit as a microwave detector, we
compare our results to direct correlation measurements performened with a dual-path
reconstruction setup. While also this setup quantitatively recovers the n2 +n statistics of
thermal fields, there is a higher statistical error in these measurements when using only
off-the-shelf components in the setup. Nevertheless, using a near-quantum-limited amplifier
as preamplifier lowers the statistical error by two orders of magnitude. The preamplifier,
however, introduces a finite systematical error due to the statistics of the amplifier noise.
Our results provide fundamental insight into the nature of propagating thermal microwaves,
which is especially relevant for the characterization of more advanced quantum states in
the presence of unavoidable thermal background fields. With respect to superconducting
qubits, we gain systematic insight into a dephasing mechanism which may become relevant
for state-of-the-art, high-coherence devices.

Finally, we present a comprehensive study of selection rules for quadrupolar qubits based
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on a parity concept for the interaction operator. To this end, we derive the transition
probability for single- and multi-photon processes based on a drive with controllable
amplitude distribution. For symmetric field configurations, the drive couples to the even σ̂z
operator and for antisymmetric fields it couples to the odd σ̂x operator. We implement the
parity inversion technique using a tunable gradiometric flux qubit, which is located in the
near-field of two on-chip antennas. The well-defined amplitude distribution of these fields
directly translates into the parity of the respective interaction operator. Our results show
that the symmetry of the irradiated field is a convenient control knob for the interaction
parity in circuit QED experiments. Because our study is generally valid for any quadrupolar
two-level system coupled to a bosonic field, it provides important insight for a wide variety
of physical applications.

7.2 Outlook: Squeezing with a gradio qubit

Within the last years, two research areas dealing with superconducting quantum circuits
have emerged in parallel at the WMI. The first area is the study of light-matter interaction
based on superconducting qubits [26, 28, 31, 39, 41, 83, 185, 243, 303] and the second area is
the reconstruction and entangling of propagating microwave states [139, 152, 163, 440, 443].
However, as already presented in our study on photon statistics [41], there is a strong
connection between the two fields. Moreover, it is straightforward to combine these
two fields because they use the same microwave techniques at cryogenic and at room
temperature. In the following, we present an experiment based on the gradio qubit, which
has the ability to generate squeezed fields inside a resonator [517]. These fields can, on the
one-hand, be detected with the dual-path setups developed at the WMI and, on the other
hand, serve for entanglement processes that are required for quantum teleportation and
illumination protocols based on propagating microwaves.

The idea of the experiment described in the following is to cool a particular mode ωr of
a superconducting transmission line resonator into a squeezed vacuum as presented in
Ref. 517. To this end, we couple a tunable gradiometric flux (gradio) qubit galvanically to
the resonator and use two antennas in exactly the way presented in Sec. 6.2. Squeezing
occurs when driving red and blue sideband transitions simultaneously with controlled
relative amplitudes η1 and η2 as depicted in Fig. 7.1 (a). Hence, the control parameter for
the squeezing level will be the relative drive amplitude η1/η2 of the two coherent drives.
Due to the two drives, we generate a superposition of sideband cooling and of sideband
heating using the interaction of a qubit with a light field. If the decay rate γq of the qubit
is large compared to the coupling rate g, the qubit continuously absorbs photons from
but also emit photons to the resonator field and subsequently decays to the environment.
This process performs a change of basis from the standard Jaynes-Cummings interaction
Hint = ~g(â+ â†)(σ̂+ + σ̂−) to a new base b̂=uâ+ vâ† with |u|2− |v|2 = 1. The resonator
field is now a two-photon coherent state [529], which obeys [b̂,b̂†] = 1. This means a unitary
operator Ŝ can perform a transformation b̂= ŜâŜ†. In this formalism we obtain the state
|β〉 = D̂(β)Ŝ |0〉 by applying the displacement operator D̂(β) on the vacuum state |0〉. This
operation is similar to the standard form of squeezing if we identify the operator Ŝ with
the squeezing operator Ŝ(z) [7]. Here, z= reıφ is the complex squeezing parameter where
the phase φ determines the direction and the squeeze factor r the amount of squeezing.
The difference to the usual definition of squeezing |α,z〉 = Ŝ(z)D̂(α) |0〉 is the permutation
of Ŝ and D̂. Anyhow, both procedures yield the same state if the displacement parameters
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Figure 7.1: (a) Relevant drive frequencies to degenerate squeezing. (b) Color encoded squeezing
level S of one resonator mode plotted versus relative amplitude of the two drives. The experimental
parameters are ωr/2π= 4 GHz, ∆/2π= 10 GHz, g/2π= 100 MHz, γq/2π= 100 MHz, Q` = 104. (c)
Sequeezing and second order cumulants ââ, â†â plotted versus time using an exact calculation (red line)
and the effective master equation (black line). We acknowledge the discussions with D. Poras who
provided the results shown in panel (b) and panel (c).

α and β obey α=uβ− vβ? which is the case for our notation. Engineering a coupling in
the b̂-basis, the qubit-field interaction is given as

Hint,sq = g(b̂σ̂+ + b̂†σ̂−) = g[(
√

1 + v2â+ vâ†)σ̂+ + (
√

1 + v2â† + vâ)σ̂−] . (7.2.1)

meaning that the qubit can be excited by absorbing a photon with probability
√

1 + v2

and simultaneously creating a photon with probability v. Therefore, this type of coupling
combined with a fast qubit decay cools the field mode to a squeezed vacuum |0〉b, determined
by the condition b̂ |0〉b = 0. In the following, we show how we can implement this kind of
coupling by driving the red and blue sideband simultaneously.
To induce sidebands we selectively drive the qubit gap ∆ of the gradio qubit using a
symmetric field configuration. The drive with frequency ωd can be expressed as

Hd(t) = −η2ωd
(
e−ıωdt + eıωdt

)
σ̂z . (7.2.2)

We assume that the drive modulates the coupling between qubit and resonator in the form

G(t) = g
[
1− η

(
e−ıωdt + eıωdt

)]
. (7.2.3)

A scheme to implement this time-dependent coupling follows further below. As our driving
explicitly introduces a time dependency, the drive rotates against qubit, resonator and
interaction. The total system Hamiltonian is therefore given as Ht =H0 +Hd(t) +Hi(t).
Moving to the rotating frame with respect to H0 +Hd(t) we apply the unitary transfor-
mation U = exp (−ı [H0 +Hd(t)]). This transformation yields a Hamiltonian which has a
time-dependent modulation of the coupling. If we chose the drive frequency ωd,1 = ∆−ωr
and introduce a second drive at ωd,2 = ∆ +ωr, the resulting Hamiltonian in the interaction
picture reads
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Hi.p. = gσ̂+
(
η1â+ η2â

†
)

+ H.c.

− gσ̂+
(
η1âe

ı2∆t + η2â
†eı2∆t

)
+ H.c.

+ gσ̂+
(
âeıωd,1t − η1â

†ei2ωd,1t
)

+ H.c.

+ gσ̂+
(
âeıωd,2t − η2â

†ei2ωd,2t
)

+ H.c.

+ gσ̂+
(
η2âe

i2ωrt + η1â
†ei2ωrt

)
+ H.c. . (7.2.4)

With respect to the first line all terms in Eq. (7.2.4) are rotating fast and can be neglected
in a rotating wave approximation. Due to normalization, a rotating wave approximation of
Eq. (7.2.4) can be transferred to the form of the squeezing interaction defined in Eq. (7.2.1)
as follows:

Hi.p. = gσ̂+
(
η1â+ η2â

†
)

+ H.c.

= g
√
η2

1 − η
2
2σ̂+

 η1g

g
√
η2

1 − η
2
2

â+ η2g

g
√
η2

1 − η
2
2

â†

+ H.c.

= ḡσ̂+
(
uâ+ vâ†

)
+ H.c. , (7.2.5)

using ḡ= g
√
η2

1 − η
2
2 and u,v= η1,2g/ḡ. To obtain the interaction Hamiltonian in Eq. (7.2.5)

we have to implement the time-dependent coupling of Eq. (7.2.3). This can be achieved
by the driving explained above which creates a net magnetic flux at the α−SQUID. The
sinusoidal flux variation induces a modulation of qubit’s α-value. The modulation transfers
to the persistent current of the qubit, which reads

Ip(α) = Ic

√
1−

( 1
2α

)2
= Ic

√√√√√1−

 1
2
∣∣∣cos

(
πΦs+Φd(t)

Φ0

)∣∣∣
2

. (7.2.6)

Here, we assume that the flux in the α-SQUID is composed of a static part Φs and an
oscillating part Φd(t). For simplicity the following calculations are performed for a single
drive frequency ωd but can easily be extended to two ore more frequencies. As we have
inductively coupled antennas the induced flux has the form Φd(t) =MdId cos(ωdt) where
Md is the mutual inductance between antenna and α-SQUID, and Id is the current flowing
through the antenna lines. If the amplitude of Φd(t) is small compared to Φ0 we can Taylor
expand Eq. (7.2.6) which yields

Ip(t) = Ip(α0) +
∂Ip
∂α α=α0

∂α

∂ΦΦ=Φs
MdId︸ ︷︷ ︸

η

cos(ωdt) +O(η2)

= Ip(α0)

1− 1
Ip(α0)

Ic√
16α6

0 − 4α4
0

π

Φ0
sin
(
π

Φs
Φ0

)
Φd(t)

+O(η2) .

(7.2.7)
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Hence, we obtain a static persistent current Ip(α0) modulated by an effective amplitude η.
The static value α0 is connected to Φs by Eq. (7.2.6) and we obtain

η = 1√
1−

(
1

2α0

)2

π√
16α6

0 − 4α4
0

MdId
Φ0

sin
(
cos−1(α0)

)

= −π
α0 − 4α3

0
sin
(
cos−1(α0)

)MdId
Φ0

. (7.2.8)

This result shows that the modulation amplitude η depends on the one hand on α0, i.e.,
on the static bias Φs and on the other hand on the induced RF field MdId and thus on
Φd. In summary we have a persistent current that is modulated with frequency ωd/2π and
amplitude η. Considering that g depends on the persistent qubit current, also the coupling
strength is modulated in this way. Therefore, we achieve the desired time-dependent
coupling G(t) = g[1− η cos(ωdt)] +O(η2) as required from Eq. (7.2.3).

Ende gut, alles gut
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ten, die mit mir zusammen gearbeitet haben, an diversen Stellen dieser Arbeit wiederfinden.
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mir eine Promotion am WMI schmackhaft gemacht hätten. An erster Stelle möchte ich hier
Manuel Schwarz und Tomasz Niemczyk nennen. Dank euch hatte ich bereits eine super Zeit
als Diplomand, die mir gezeigt hat, welche Möglichkeiten es am WMI gibt. Die rotierende
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Zeit in Salzburg, möchte ich mich bei Peter aber für seine Gesellschaft bei hektoliterweisem
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seid! Ich bin dankbar, mit tollen Eltern, Großeltern, Geschwistern, Schwagern, Neffen und
Nichten gesegnet zu sein, die mir eine große Sicherheit geben.
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