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Abstract

This thesis presents detailed c-axis magnetotransport measurements performed on a set of
single crystals of the electron-doped 214 high temperature superconductor Nd2−xCexCuO4

in steady (up to 28T) and pulsed (up to 65T) high magnetic fields. For the first time
angle-dependent magenetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH)
quantum oscillations have been observed in an electron-doped cuprate system. These
results demonstrate a very high quality of the crystals grown in the Walther-Meissner-
Institute and prove the existence of a well-defined Fermi surface in the bulk of the crystals,
covering a large part of the phase diagram ranging from x = 0.15 (optimal doping) to 0.17
(strong overdoping). The AMRO observed in overdoped samples with x = 0.16 and
x = 0.17 are qualitatively similar to AMRO reported for hole-overdoped Tl2Ba2CuO6+δ.
For the doping level x = 0.17 high frequency SdH oscillations, originating from a large
coherent Fermi surface cross-section, were found, which could not be seen in samples with
lower doping levels. Instead, the sample with x = 0.16 exhibited SdH oscillations of
low frequency. The latter originate from a small FS pocket, thus revealing a significant
reconstruction of electron orbits, as compared to the x = 0.17 composition. Similar slow
oscillations of a slightly higher frequency are found in measurements for an optimally
doped crystal, with x = 0.15. The results obtained from the analysis are discussed in
terms of a two-band model, related to an antiferromagnetic ordering and compared to the
hole-doped cuprates.

Zusammenfassung

Die vorliegende Arbeit behandelt detaillierte c-Achsen-Transportmessungen, welche an
einer Probenreihe von Einkristallen des Elektron-dotierten Hoch-Temperatur-Supraleiters
Nd2−xCexCuO4 in konstanten bis zu 28T hohen Magnetfeldern sowie in gepulsten bis
65T hohen Magnetfeldern durchgeführt wurden. Zum ersten Mal konnten winkelab-
hängige Magnetowiderstands-Oszillationen (AMRO) und Shubnikov-de Haas (SdH) Quan-
tenoszillationen in Elektron-dotierten Kupratverbindungen gemessen werden. Diese Resul-
tate bestätigen die außerodentlich hohe Qualität der im Walther-Meissner-Institut mittels
Fließzonen-Verfahrens gewachsenen Kristalle. Und sie erbringen den endgültigen Beweis
für die Existenz einer wohldefinierten Fermifläche im Kristall, wobei ein breiter Bere-
ich des Phasendiagramms von optimal dotiert x = 0.15 bis hin zu stark überdotiert
x = 0.17 abgedeckt wird. Die in überdotierten Proben mit x = 0.16 und x = 0.17
beobachteten AMRO’s zeigen große Übereinstimmungen mit AMRO Daten, gemessen in
Loch-überdotiertem Tl2Ba2CuO6+δ, auf. Für die Dotierung x = 0.17 wurden hochfre-
quente SdH Oszillationen gefunden, die auf eine große zusammenhängende Fermifläche
schliessen lassen, für geringere Dotierungen aber nicht beobachtet werden konnten. Statt-
dessen zeigen sich für die Probe mit x = 0.16 niederfrequente SdH Oszillationen. Im
Vergleich zu x = 0.17 ist diese Frequenz auf eine sehr kleine zusammenhängende Fer-
mifläche zurück zu führen, was eine signifikante Rekonstruktion der Elektronenbahnen
andeutet. Die gleichen langsamen Oszillationen, mit etwas größerer Frequenz, zeigten sich
in Messungen für eine Probe mit otimaler Dotierung x = 0.15. Die von der Auswer-
tung erhaltenen Daten werden hinsichtlich eines Zwei-Band-Modells in Verbindung mit
antiferromagnetischer Ordnung diskutiert und mit Loch-dotierten Kupraten verglichen.
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1 Introduction and motivation

1.1 High-temperature superconductors

During the last two decades enormous effort has been put into the investigation of the ori-
gin of high-temperature superconductivity (HTSC) in cuprate compounds. The principal
question of how the pairing mechanism can be explained fundamentally had led to a large
diversity of different experimental methods that have been applied or newly developed to
examine this material group. Nevertheless the origin of HTSC could not yet be clarified
satisfactorily.
It should be pointed out that the cuprates aside from superconductivity (SC) do reveal
some interesting physics depending on doping that are covered within this material class.
Thus, the major task is to distinguish between the properties that are coming from sample
specific properties (like cleanness or homogeneity) and the one that are intrinsic to the
cuprate superconductors in general.
It is well known that the cuprates have a layered crystal structure. Basically the num-
ber of copper-oxide-layers in the crystallographic elementary cell depends on the chemical
composition. Thus, one divides the cuprates into families, see Table 1.1, where some ex-
amples for hole-doped cuprate compounds and their critical temperatures Tc are given.
The very first found cuprate superconductors La2−xBaxCuO4 and La2−xSrxCuO4 belong
to the Rare earth-214-compounds [1].

family example abbreviation Tc [K]
Rare earth-based La2−xSrxCuO4 (La214) 38
Yttrium-based YBa2Cu3O7−δ (Y123) 92
Bismuth-based Bi2Sr2CuO6−δ (Bi221) 10

Bi2Sr2CaCu2O8−δ (Bi2212) 93
Bi2Sr2CaCu2O8−δ (Bi2223) 110

Thallium-based Tl2Ba2Ca2Cu3O8−δ (Tl2223) 125
Mercury-based HgBa2Ca2Cu3O8−δ (Hg223) 133

Table 1.1: Hole-doped cuprate families with critical temperature Tc for optimal doping level x

So far the dramatic variation in critical temperature from one family to another is not
understood completely. The superconducting state in cuprates strongly depends on the
carrier concentration that is the doping level x. Here one distinguishes hole doping on the
one hand and electron doping on the other hand. The undoped parent compounds are
electrical Mott insulators, which show antiferromagnetic (AFM) ordering of the Cu-ions
within the CuO2-layers. The correlations between critical temperature Tc and doping level
are conflated in the schematic cuprate phase diagram (see Fig.1.1). It is constructed on
the basic results of many different experiments applied to the various compounds. Still
many features of this phase diagram are discussed controversally.
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2 1 Introduction and motivation

The Mott insulating state at x = 0 can be explained best by the Hubbard model, where a
strong on-site Coulomb repulsion U is responsible for the splitting of the conduction band
into a fully filled lower and an empty upper Hubbard band [2, 3]. Therefore, at x = 0
the Fermi energy lies in between the bands and an energy gap exists, which causes the
insulating state.
SC sets in not until the electron concentration in the conducting planes is lowered by hole

Figure 1.1: Schematic phase diagram based on data for the hole-doped La2−xSrxCuO4 and the
electron-doped Nd2−xCexCuO4, dashed lines indicate transition into an ordering regime, the so-
called pseudogap state, which is discussed controversially. For example, if this ordering coexists
with SC up to a quantum critical point or even throughout the whole superconducting range is
not yet clear (indicated by the split line for the hole-doped side). For the electron-doped side it is
reported to exist up to optimal doping level

doping. Thus, in terms of the Hubbard model, the Fermi level enters the lower Hubbard
band. For example in YBa2Cu3O7−δ doping is controlled by appropriate oxygenation. For
this compound the oxygen content can be controlled with high accuracy. [4,5]. On the hole-
doped side, it is generally accepted that SC arises for doping levels within 0.05 ≤ x ≤ 0.27,
with a maximum critical temperature at optimal doping x = 0.16.
The situation on the electron-doped side of the phase diagram is by far not as well un-
derstood. However, it is also possible to achieve SC in cuprate systems by increasing the
electron concentration, which corresponds in terms of the Hubbard model, to a doping
into the upper Hubbard band. The range 0.12 ≤ x ≤ 0.18 in doping, where SC sets in, on
the electron-doped side is more narrow compared to the hole-doped side and the highest
critical temperature of Tc = 25K at optimal doping, x = 0.15, is comparably smaller. The
214 cuprate family of Ln2−xCexCuO4, with the Lantanoides Ln=Nd, Pr, Sm as acceptor
atoms, represents the electron-doped side. For as-grown crystals SC does not occur until
they are annealed to high temperatures in low oxygen partial pressure, where the apical
oxygen, located at sites between the CuO2-layers is reduced to improve structural order.
Recent studies show that this apex-oxygen rather affects the order of the crystal structure,
which suppresses SC as well, than contributes to the doping [6].
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The main problem of experiments has been the preparation of a set of high quality samples
covering the full spectrum of the phase diagram. Thus, in earlier works the results de-
pended strongly on sample quality and have not been very reliable. Due to a large progress
in crystal growth and the sample quality of hole-doped crystals, this side of the phase di-
agram is now well examined. For the electron-doped cuprates a strong improvement in
the sample quality has been achieved during the last years by using the traveling solvent
floating zone (TSFZ) method for the crystal growth [6]. This opens new opportunities for
investigations on the electron-doped side of the phase diagram.
Despite all efforts the underlying pairing mechanism of high-temperature SC in cuprates
is still controversially discussed.

1.2 Experimental state of the art

At present, for both sides of the phase diagram, hole- and electron-doped, the main target
of experimental activities has been to investigate the evolution of the electronic state from
an AFM Mott insulator to a high temperature superconductor. One interesting effect,
common for both sides, is in general the so-called pseudogap. This phenomenon can be
understood as the appearance of an anisotropic suppression of electronic states near the
Fermi energy level, originating from a not yet clearly understood ordering process. It is
still unclear whether the pseudogap is related to SC being a precursor like performed pairs
or whether it is not related to SC at all.
To investigate the electronic structure of cuprates, during the last five years several ex-
periments in high magnetic fields on hole-doped compounds have found evidence for the
existence of a well established Fermi surface (FS) in the normal state at different doping
levels. In 2003 the effect of angle-dependent magnetoresistance oscillations was observed
by Hussey et al. [7]. They studied electrical c-axis magnetotransport (current applied per-
pendicular to the copper oxide layers) in an overdoped Tl2Ba2CuO6+δ (Tl2201) compound
in steady magnetic field up to 45T. Fig.1.2a exhibits the data of this experiment, where
they measured the inter-layer resistivity with respect to the field direction, which is deter-
mined by the polar angle θ and the azimuthal angle φ, as shown in the insert of Fig.1.2a.
Their approach to simulate these data [8] was based on the existence of a large coherent
quasi-two-dimensional FS, with a weak inter-layer coupling, enclosing about 2/3 of the
first Brillouin zone, as shown in Fig.1.2b. Its overall shape and size were in agreement
with band structure calculations and Hall measurements [9, 10].
In 2007 the first observation of Shubnikov-de Haas (SdH) quantum oscillations in under-

doped YBa2Cu3O6.5 (Y123-II) in 62T pulsed magnetic fields [12] brought evidence for a
well established FS with small pockets, in contrast to the overdoped topology, and initial-
ized a discussion, whether such pockets are compound specific or generic for hole-doped
high-Tc superconductors. Before, angle-resolved photoemission spectroscopy (ARPES) as
well as scanning tunneling microscopy measurements [11], like shown in Fig.1.2c for un-
derdoped La2−xBaxCuO4, found signs of a fragmented FS in the underdoped regime, with
fragments located at four narrow nodal positions. These methods do not see small pockets.
Further works on Y123 [13] and Y124 [14] measured quantum oscillations, coming from FS
pockets, supported the scenario of pockets being a generic property for hole-underdoped
cuprates. Recently done torque measurements on underdoped Y123 even revealed two de
Haas-van Alphen (dHvA) frequencies resulting from two different kinds of pockets at very
low temperatures [15]. The latest publication reports the observation of a high frequency
SdH oscillation in strongly overdoped Tl2201 (with x = 0.30) [16], giving evidence for the
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Figure 1.2: (a) AMRO data observed by Hussey et al. [7] showing the c-axis resistivity of hole-
overdoped Tl2201 during turns from field parallel to the CuO-layers (θ = ±90◦) to perpendicular
(θ = 0◦) for different azimuthal angles φ. (b) shows the suggested large coherent FS and (c)
presents the energy gap mapping from scanning tunneling microscopy on La2−xBaxCuO4 [11],
where the color black marks energy gap equal to zero

existence of a coherent large FS like suggested from the above mentioned AMRO in similar
compounds.
On the electron-doped side the Fermi topology is not yet explored well. In past, the main
problem has been a lack of high quality single crystals. In literature one finds a few publi-
cations about ARPES measurements on single crystals (grown with the TSFZ technique)
from the far underdoped regime up to optimally doping level, x = 0.15 [17–21]. These mea-
surements see a zone-diagonal spectral weight in the first Brillouin zone at ( π2a ,

π
2a) arising

for doping levels above x = 0.10. One attributes it to a FS centered around S = (πa ,
π
a ), like

it is shown in Fig.1.2 for x = 0.13, which has small fragments on the diagonal positions.
Kusko et al. [22] succeeded in simulating this fragmented FS by the use of a two-band
model, which was adopted by Millis et al. to explain there Hall data [23] . Recently done
ARPES-studies [21] on a series of Nd2−xCexCuO4 with x = 0.13; 0.15; 0.16; 0.17, observe
a unusual change of the FS topology towards a closed FS orbit by increasing the doping
level, see Fig.1.3.
As ARPES only can be applied on smooth surfaces, samples must be cleaved or well pol-

ished. In easily cleaved materials like for example hole-doped Bi2Sr2CaCu2O8−δ ARPES
studies revealed similar FS fragments, looking like disconnected arcs [24]. At the same
time, for underdoped yttrium-based compounds SdH and dHvA oscillations found clear
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Figure 1.3: ARPES studies of the doping-dependent FS evolution on a series of electron-doped
Nd2−xCexCuO4 single crystals by Matsui et al. [21]

evidences for the existence of small pockets, which stands in contradiction to the arcs
seen in ARPES. YBa2Cu3O6.5 for example, is reported to have a self-doping of its sur-
face due to polarity [25], which is a problem for ARPES, since it essentially is a surface
and not a bulk sensitive technique. It was recently reported that ARPES results on the
Nd2−xCexCuO4 system depend on the energy of the used photons, hence, on the photon
penetration depth [26]. However, even at the highest energy, the penetration depth does
not exceed two CuO2 layers, which does not guarantee probing bulk properties.
Therefore, a reliable experimental method, revealing bulk properties, is needed, to investi-
gate the electronic structure of electron-like cuprates. Like already shown for hole-doped
cuprates, magnetotransport studies in high magnetic fields can give a deep insight into the
FS properties of the bulk. The recent discovery of magnetic quantum oscillations in those
compounds gave a strong motivation for the high-field investigations of the electron-doped
cuprates presented in this thesis. In the following, c-axis magnetotransport studies on
Nd2−xCexCuO4 single crystals are presented that reveal FS properties in the bulk of this
material for different dopings x and contribute to the discussion above.



6 1 Introduction and motivation

This work is constructed as follows:

The second chapter introduces the reader to the theoretical background of the high mag-
netic field effects studied in this thesis.

In third chapter the main properties and characteristics of the investigated compounds
are presented.

The fourth chapter describes the particular experimental setups, which have been used
during this work.

In the fifth chapter all data and the main results are exhibited, described and analyzed in
detail.

The sixth chapter discusses the yielded data and compares them to the state of the art.

In the Conclusion the main results are summarized and a brief outlook is given.



2 Theoretical basics

2.1 Semiclassical electrons in magnetic fields

In the semiclassical model, an electron moving in a magnetic field B is subject to the
Lorentz force bfFL. The rate of change in the momentum of the electron ~k̇ is equal to
the Lorentz force

~k̇ = bfFL = −e (v ×B) , (2.1)

where, −e is the electronic charge and v the electron velocity, B is the magnetic Field.
The velocity of an electron is related to energy εk over

v(k) =
1
~
∇kεk, (2.2)

where ~ is the reduced Planck constant, and stays always perpendicular to the Lorentz
force. One immediately can see from Eq.(2.1)that only the component of the electron wave
vector normal to the magnetic field is changing with time. Consequently, the electron
moves in k-space along an orbit of constant energy perpendicular to the field. Here, only
the situation of closed orbits will be discussed, but it must be mentioned that these orbits
also can be open. In real space v has a component parallel as well as perpendicular to
the field, thus the electron moves along a helical trajectory. The angular frequency with
which the electron traces the orbit is called cyclotron frequency ωc. From Eqs.(2.1) and
(2.2) it follows that the time dt to traverse an element dk along the orbit in k-space is

dt =
~2dk

e∇kεk ×B
=

~2

eB

dk∆k⊥
∆εk

, (2.3)

where ∆k⊥ is the change of wave component normal to k orbit in the plane perpendicular
to B, corresponding to a change ∆ε of energy. Taking the area element ds = dkk⊥ gives

dt =
~2

eB

∆ (ds)
∆εk

(2.4)

Integration over one complete orbit yields the time period of circulation, T = 2π/ωc and,
hence, the cyclotron frequency

ωc =
2πeB

~2
/

(
∂s

∂εk

)
k‖

=
eB

mc
, (2.5)

where the component k‖ parallel to B is constant and

mc =
~2

2π

(
∂s

∂εk

)
k‖

(2.6)

is called the cyclotron mass. For a gas of free electrons of mass me it follows

εk =
~2k2

2me
, (2.7)

7



8 2 Theoretical basics

where the constant energy surfaces are spheres with radius k. Because of the nature of the
Fermi distribution only the energies close to the Fermi level are important and, thus, for
a certain Fermi vector kF this gives the Fermi energy ε(kF ). Here the cyclotron frequency
is simply

ωc =
eB

~me
, (2.8)

where me is the electron mass.

2.1.1 Magnetoresistance in conventional metals

From Eq.(2.1) it is clear that the Lorentz force does not change the electron energy, since
it is always perpendicular to the electron velocity. At low fields the electron momentum
k does not change significantly during the scattering time τ , thus, the trajectory is only
slightly curved. In this case, the radius of the curvature, called Larmor radius, rL =
~kF /(eB) is much larger than the mean free path l. Hence, when rL >> l, it is shown in
literature [27] for the relative change in resistivity

ρ(B)− ρ(0)
ρ(0)

≡ ∆ρ(B)
ρ(0)

∝
(
l

rL

)2

∝ B2 (2.9)

At fields, at which the Lamor radius becomes smaller than the mean free path (rL ≤ l),
the momentum of each individual electron will considerably change within the time τ .
Therefore, the velocity vk = ∂ε(k)

∂k will vary depending on the momentum. To calculate the
conductivity one has to solve the Boltzmann kinetic equation in the presence of electric and
magnetic fields. Using the semiclassical τ approximation one obtains for the conductivity
tensor:

σαβ = − 2e2τ
(2π~)3

∫
df0

dε
vα(k)v̄β(k)dk, (2.10)

where α, β are the x,y,z-components and df0
dε is the equilibrium Fermi distribution function.

v̄β(k) is the velocity averaged over the scattering time:

v̄β(k) =
1
τ

∫ 0

−∞
vβ(k, t)et/τdt (2.11)

Consequently, the conductivity is determined by the averaged velocity, which strongly
depends on magnetic field. In the high field limit, ωτ >> 1 (or rL/l << 1), the electron
completes many turns around the closed Fermi surface and therefore the time averaged
velocity tends to zero.

2.2 Landau quantization

The origin of de Haas-van Alphen oscillations is the quantization of the electron motion,
which restricts the permitted states. We start from the Bohr-Sommerfeld quantization of
a periodic motion ∮

p · dq = (n+ γ) 2π~ ; n = 0, 1, 2... , (2.12)

where p and q are the canonical conjugated momentum and position variables. γ is the
phase variable which is exactly 1/2 for a parabolic band (case of free electrons) but in
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general depending on energy and field it is slightly different. For an electron in magnetic
field

p = ~k− eA ; q = r⊥, (2.13)

where A is the vector potential of B and r⊥ the vector in the plane of the electron orbit.∮
(~k− eA) dr⊥ = (n+ γ) 2π~ (2.14)

Integrating Eq.(2.1) with respect to time, so one can transform the first part of the integral.
For the second part, Stoke’s theorem is used, taking into account that the curl of the vector
potential is the magnetic field. Therefore the integral is transformed into

B ·
∮

(r× dr⊥)−
∫
S⊥

B · dS⊥ = (n+ γ)2π~/e, (2.15)

where dS⊥ is the vector element of the area enclosed by r⊥ in real space. r can be replaced
with r⊥, because of the vector product any part of r parallel to B will give no contribution.
This results in B

∮
(r⊥ × dr⊥) for the first part, which is 2BS⊥ and the second part gives

−BS⊥. Thus (2.13) results in:

Φ = BS⊥ = (n+ γ)2π~/e, (2.16)

which is nothing else but the magnetic flux Φ through the area (⊥B) enclosed by the
electron orbit quantized in terms of the universal flux quantum

Φ0 =
h

2e
(2.17)

From Eq.(2.1) follows that

dr⊥ =
~
eB

dk (2.18)

Hence, one easily gets the connection between the area of the orbit in real space s⊥ to the
one in the k-space S⊥

s⊥ =
(

~
eB

)2

S⊥ (2.19)

and consequently
S⊥,n

(
εk, k||

)
= (n+ γ) 2πeB~, (2.20)

where the area S⊥ depends on the constant energy of the considered orbit and the value
k|| parallel to the field, marking the point at which the cross section is regarded. This is
the Onsager relation (1952), which was derived independently by I. M. Lifshitz at about
the same time but published two years later (Lifshitz and Kosevich 1954).
If k|| is varied for a constant field B the orbits of constant energy will form a cylinder
parallel to the field, the so-called Landau cylinder. Then the Onsager relation can be
understood in the way that it restricts the allowed states in k-space to lie on the Landau
cylinders. Applied to the free electron gas, described by the parabolic dispersion Eq.(2.7)
the Onsager relation yields:

~2

2m0

(
k2
x + k2

y

)
= (n+ 1/2)

e~
me

B (2.21)

in coordinates of the plane perpendicular to the field. This is the simple case of co-axial
circular cylinders for free electrons (shown in Fig.2.1), which, in general, are not parallel to
the field or even cylindrical. In zero field, the number of electronic states per unit volume
of k-space is 2V

2π3 .
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Figure 2.1: Co-axial Landau
tubes parallel to the applied
magnetic field in the case of
free electrons

By switching on the field the allowed states are restricted to
the Landau cylinders and, therefore, with

∆S = Sn+1 − Sn =
2πe
~
B, (2.22)

the area in between two adjacent cylinders, one can estimate
the number of states D lying on a Landau cylinder surfaces
for a certain height to

D =
∆S∆k||V

4π3
=
eV∆k||
2π2~

B (2.23)

For experimentalists it is of interest at what rate, with in-
creasing magnetic field, subsequent Landau cylinders leave
the Fermi surface. From the Onsager relation Eq.2.20 fol-
lows:

(1/Bn+1 − 1/Bn) =
2πe
~

1
Sextr

, (2.24)

where Sextr is the cross section of the Fermi surface perpen-
dicular to the field. Due to this fact physical quantities, depending on the density of states
near the Fermi energy, show oscillations periodic in 1/B, with the frequency

F =
1

∆( 1
B )

=
~

2πe
Sextr (2.25)

2.3 De Haas-van Alphen (dHvA) oscillations

In 1930 W.J. de Haas and P.M. van Alphen discovered oscillations in measuring the field
dependence of the magnetization of bismuth at around 14.2K the evaporation temperature
of hydrogen.
To understand this effect, one usually starts the magnetic field dependence of the thermo-
dynamical potential Ω. The derivative of Ω with respect to field is

M = − (∇BΩ)ξ , (2.26)

where the chemical potential ξ is kept constant. For a system of conduction electrons
obeying the Fermi-Dirac statistics, the thermodynamical potential Ω is given by the sum
over all possible states ε

Ω = −kBT
∑
ε

ln
(

1 + exp
(
ξ − ε
kBT

))
, (2.27)

where kB is the Boltzmann constant. After including the degeneracy and energy eigenval-
ues En of the nth Landau levels this becomes

Ω = −kBT
∫ ∞
−∞

dk||

(
eHV

2π2~

)∑
n

ln
(

1 + exp
(
ξ − En
kBT

))
(2.28)

where the integral is taken over all the orbits defined by k||. The solution of the integral
above is done by using the Poisson summation formulas or the Euler-MacLaurin formulas.
As a result one receives an oscillatory component of Ω:

Ω̃ =
(

e5

8π7~S′′

)1/2
V B5/2

mc

∞∑
p=1

1
p5/2

cos [2πp (F/B − 1/2)± π/4] , (2.29)
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where only slices in the vicinity of extremal areas add up constructively and

S′′ =

∣∣∣∣∣∂2Sextr
∂k2
||

∣∣∣∣∣
extr

, (2.30)

The components of M parallel to B are derived from the thermodynamical potential as
followed:

M|| = −
(
∂Ω
∂B

)
EF

(2.31)

Thus,

M̃|| = −
(

e5B

2π5~A′′

) 1
2 V F

mc

∞∑
p=1

1
p3/2

sin
[
2πp

(
F

B
− 1

2

)
± π

4

]
(2.32)

Until this point one can only model an idealized situation pretty far away from experi-
mental conditions in reality. It becomes necessary to regard effects of finite temperature,
finite relaxation time τ due to electron scattering and sample inhomogeneity, and effects of
electron spin. All these effects give contribution in a form of reduction factors RT , RD, RS
(which have to be included in Eq.(2.32), leading to the Lifshitz-Kosevich formula for a
three-dimensional electronic system with one extremal orbit.

M̃|| = −
(

e5B

2π5~A′′

) 1
2 V F

mc

∞∑
p=1

RDRTRS
1
p3/2

sin
[
2πp

(
F

B
− 1

2

)
± π

4

]
(2.33)

2.4 Damping factors

2.4.1 The effect of finite temperature

Due to the fact that absolute zero is never reached the Fermi distribution is smeared

f(ε) =
1

1 + exp
(
ε−ξ
kBT

) (2.34)

This considered system at finite temperature T can be treated as a superposition of hypo-
thetical metals at T = 0 with different Fermi energies distributed in the range of ∆ε ∼ kBT .
Each of them contributes with a slightly different frequency which leads to a phase smear-
ing and, hence, to a damping of the oscillation amplitude by

RT (p) =
2π2pkBT/ (~ωc)

sinh [2π2pkBT/ (~ωc)]
=

KpµT/B

sinh (KpµT/B)
, (2.35)

where p is the index of the harmonics and

µ =
mc

me
(2.36)

is the cyclotron mass in dimensions of free electron mass and K = 2π2kBme/(~e) ≈
14.69T/K. Experimentally, one can extract the effective cyclotron mass directly out of
the temperature dependence of the oscillation amplitude.
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2.4.2 The effect of finite relaxation time

From the uncertainty principle ∆ε ≈ ~
τ < ~ωc it is known that a finite relaxation time

τ leads to a broadening of quantized Landau levels. So, compared to the temperature
damping the damping, due to finite τ is expressed through the so-called Dingle reduction
factor :

RD = exp

(
− πp

ωcτ

)
= exp (−KpµTD/B) , (2.37)

where

TD =
~

2πkBτ
(2.38)

is the Dingle temperature out of which one gets the information about the scattering rate
and thus about the mean free path of the sample.

2.4.3 The effect of electron spin

It was explained above that the Fermi edge smearing can be considered as a splitting in
different levels which causes an extra damping RT . Because of electrons having spin up
and spin down in magnetic field, the Zeeman splitting lifts the spin degeneracy of the
energy levels. Thus, each level splits in two Ek ± 1

2∆E with a difference in energy of
∆E = gµBB , where µB = e~

2me
is the Bohr magneton and g the Landé factor (for free

electrons g = 2.0023). The resulting reduction of the oscillation amplitude is expressed
through

RS = cos
(π

2
pgµ

)
(2.39)

2.5 Shubnikov-de Haas (SdH) oscillations

The SdH effect basically originates from deviations of the τ approximation, taking into
account different scattering processes, and is, therefore, more complex and more difficult
to explain, see [28]. That’s why we will not go too deep into the theory in this section.
The SdH effect can be satisfactorily described by starting with Pippard‘s idea [29] that
the scattering probability and, consequently, the resistivity are directly proportional to
the density of states near the Fermi energy level D(εF ). It can be shown ,see [30], that
D(εF ) is proportional to the field derivative of the magnetization. Thus the oscillatory
part of the resistivity is given by:

σ̃

σ0
=
∞∑
p=1

1
p1/2

ap cos
[
2π
(
F

B
− 1

2

)
± π

4

]
, (2.40)

where

ap =
mcB

S
′′1/2
extr

RTRDRS

is the oscillation amplitude and σ0 is the background conductivity. Due to the direct
relation to the dHvA effect, the same considerations for the damping factors, are valid in
the case of SdH quantum oscillations.
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2.6 Angle-dependent magnetoresistance oscillations (AMRO)

Due to several works in the field of organic superconductors during the 90s, the AMRO
effect established as a powerful method to explore the Fermi surface geometry by using
inter-layer magnetotransport, see Kartsovnik et al. [31]. In this section we consider a
layered metal with a cylindrical Fermi surface. From Eq.(2.10) we know that the inter-

B

q

f

kz

Figure 2.2: Corrugated cylindrical Fermi surface, θ is the polar angle with respect to the direction
of the magnetic field, for a certain θ the cross-sections (grey) perpendicular to B have the same
area (red) independent of kz, see [32]

plane conductivity and, hence, the resistivity in metals with a cylindrical Fermi surface
depend on the averaged electron velocity. From this, one would expect clear changes in the
behavior of the resistivity by turning the magnetic field from the direction parallel to the
conducting layers to perpendicular. Beside an obvious change from a regime with closed
FS cross-sections to open orbits, along which the electrons traverse, a new effect has been
observed for several layered compounds [31]. At certain polar angles θ the resistivity is
enhanced. The first calculation for the polar angle positions, at which an AMRO maximum
should appear for a cylindrical Fermi surface, was done by Yamaji [32]. He considered a
simplified energy dispersion for a slightly corrugated cylindrical Fermi surface:

ε(k) =
~2

2m
(k2
x + k2

y)− 2t⊥ cos(kzd) (2.41)

where t⊥ << εF is the interlayer overlap integral and d the interlayer spacing constant.
He showed that for certain polar angles the cross-sectional orbit area (perpendicular to
the magnetic field B becomes independent of the position in kz-direction, see Fig.2.2. In
the ideal case, all the cross-sections have the same area when

|tan θ| = π

kFd
(n− 1/4) ; n = 1, 2... (2.42)

Eq.(2.42) is called “Yamaji’s condition”. AMRO are a semiclassical effect, that is why they
can even be observed at conditions, where quantum oscillations are suppressed completely.
Later on, it was Yagi et al. [33], who simulated AMRO by numerical integration of
Eq.(2.10) and using the energy dispersion from Eq.(2.41). The physical nature of AMRO’s
is understood in the following. One can see from Eqs.(2.10),(2.11) that the conductivity
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σzz depends on the velocity in kz-direction averaged over one period of the motion on the
cross-section perpendicular to the field. With Eqs.(2.2) and (2.5) for an electron traversing
such an orbit, the mean velocity is

vz =
1
~
∂ε/∂kz = −∂S(kz)/∂kz

~∂S/∂εkz

= −∂S(kz)/∂kz
2π~mc

(2.43)

From this consideration it becomes clear that, if the orbit area becomes independent of
the kz-position, the velocity amounts to zero and, consequently, the conductivity shows a
minimum. In real systems, the basal plane has typically a lower symmetry than circular
and, additionally, the vector h = (ux, uy, hz) of the interlayer hopping has an in-plane
component u. Thus Yamaji’s condition Eq.(2.42) for maximums in the resistivity then
has to be modified to [34]

|tan θ| = [π(n− 1/4)± (kmax⊥ ·u)]/kmax‖ d, (2.44)

where positive and negative polar angles θ are included with plus and minus, respectively.
The vector kmax‖ lies within the plane perpendicular to B and kmax‖ is defined as its
projection in the direction of the field with maximum value. By applying this condition to
field rotations in different planes (set by the azimuthal angle φ) perpendicular to the layers,
one can derive the shape of the Fermi surface, in a non-circular case. This procedure is
also called caliper measurement [35] because of its method of shape determination.

2.7 Magnetic breakdown

The topology of the Fermi surface is determined by the band structure properties of the
material. As long as the cyclotron energy ~ωc is much smaller than the relevant band
energy around the Fermi energy εF , the electrons traverse along well established paths,
like the above mentioned orbits. For high enough fields, electrons can tunnel, with a
certain probability, from one band to another, if ∆g, the gap between them, is sufficiently
small. This effect is called magnetic breakdown [36] and the probability P of electrons to
tunnel between the bands increases exponentially with increasing magnetic field:

P = exp (−BMB/B) , (2.45)

where BMB is the breakdown field which can be estimated as

BMB ≈
mc∆2

g

e~εF
(2.46)

In other words, magnetic breakdown can be expected for conditions, where ´

~ωc & ∆2
g/εF . (2.47)



3 The 214 high-temperature superconductor
Nd2−xCexCuO4

The rare earth copper-oxides Re2CuO4 are AFM Mott-insulators, composed of two di-
mensional CuO2 planes. This AFM correlations weaken by doping either holes or elec-
trons into the conducting layers. This can be achieved by partly substitution of the rare
earth by either higher or lower valent atoms. Restricting ourself to the electron-doped
compounds like Re2−xCexCuO4, with the Re=Pr, Nd, Sm. These compounds become
superconducting upon doping with the 4-valent Ce atom. For this thesis a set of different
doped high quality single crystals has been prepared, covering the whole superconducting
range x = [0.13− 0.17] on the electron-doped side of the phase diagram. In the following
the crystal structure of Nd2−xCexCuO4, its difference to the hole-doped cuprates and the
process of growing crystals with high quality is presented.

3.1 Crystal structure

Figure 3.1: T’ and T structure of electron- and hole-doped 214 cuprates, respectively

All electron-doped cuprates are based on the body centered (bc) tetragonal T’-Nd2CuO4

structure (with space group I4 = mmm), which is closely related to the T-La2CuO4

structure, typically for the hole-doped side. Both, T and T’ structure can be regarded as
an intergrowth of infinite, flat CuO2−

2 layers containing Cu in square planar coordination
alternating with Re2O2+

2 layers. The conducting properties are governed by the CuO2

layers, which are shifted by (1/2,1/2) to each other, resulting in a unit cell of double size.
The rare earth oxide layers act as charge carrier reservoir and spacer for the CuO2 layers.
Thus, the single crystals are characterized by a strong in-plane to out-of-plane anisotropy

15
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in electronic transport.
In the T-La2CuO4 structure the La2CuO−2

2 layers have the rock salt structure, that is
why La has a total oxygen coordination number of 9. Therefore oxygen is located at the
apical positions above and below Cu in the CuO2−

2 layers. In the center of the unit cell
the, typical for cuprates, tetragonally distorted octahedral Cu-O coordination sphere is
received, see Fig.3.1. Generally, this structure is called the perovskite structure, which
most of the cuprates are based on. In contrast in the T’-Nd2CuO4 structure the Nd2O2+

2

layers have a fluorite structure with an oxygen coordination number of 8 for the rare earth
atom, leaving vacant the apex oxygen position directly below and above the Cu ions, see
Fig.3.1.

3.2 Crystal growth

Here, a brief introduction to the basics of the growing process of high quality Nd2−xCexCuO4

single crystals is given. For further details about crystal growth and techniques see lit-
erature [37] The 214 compounds are incongruently melting solid solutions. They do not

Figure 3.2: Left: 214 compositional phase diagram and the principle composition of a fed rod [6];
Right: A local vertical solvent zone of composition x is hold by surface tension between the seed and
feed rod (“floating zone”). The 214 phase from the polycrystalline feed rod is dissolved continuously
into the melt on the upper solid-liquid interface and crystallized on the lower liquid-solid interface.
In equilibrium state the solvent traverses the polycrystalline feed rod (“traveling solvent”) and on
its bottom side the 214 single crystal is grown.

melt uniformly at a certain temperature, but decompose at the peritectic point P into a
Ln2O3 phase and a liquid, rich in copper-oxide. In general, the formation of a peritectic
phase takes place in systems with big differences in the melting points of the component
phases. For the Ln2O3 - CuO system the melting points are reported at temperatures of
T > 2300◦C [38] and 1100◦C [39], respectively. To grow the 214 phase, which is stable
at room temperature, special methods have to be applied. Looking into the compositinal
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phase diagram in Fig.3.2, where the temperature and related phase boundaries are plot-
ted versus the concentration, only the system (LnCe)2CuO4 - CuO is of importance. The
liquidus line (blue line in Fig.3.2) between the peritectic point P and the eutectic point E
marks the temperature and concentration range, where the 214 phase can be grown. At
the eutectic point E two parameters are of interest. The lowest melting temperature in this
phase diagram TE and the eutectic concentration xE , at which all components melt and
crystallize simultaneously. The first reported single crystals, by Hidaka et al.(1989) [40]
have been grown in crucibles. All commonly used crucible materials like refractory ceram-
ics or noble metals are known to react with the aggressive melts and solutions of the copper
oxide superconductors [41], introducing impurity atoms from the container material into
the crystals. Another disadvantage of crucible growth for these solid solution systems is
a inhomogeneous doping with Cerium. resulting from the fact that the distribution co-
efficient differs from unity. This, intrinsically, leads to a doping gradient in the crystals,
grown from crucibles [42,43].
The improvement in crystal quality is closely connected with the solution of these two
main problems. Therefore, for our crystals the traveling solvent floating zone (TSFZ)
technique was used. The functional principle of this technique is shown in Fig.3.2. The
system consists of a feed and seed rod and a local solvent zone in-between. This vertical
floating zone is only held by surface tension and has a composition x between E and P
in the steady state growth process of the 214 phase. During growth polycrystalline feed
material is dissolved continuously at the solid-liquid interface on the top and the material
is transported within the solvent by diffusion and convection to the second solid-liquid
interface at the bottom side, where the crystallization occurs. The molten solvent zone is
traversed to the top of the feed rod by moving four parabolic mirrors, which act as the
heat source, vertically to the top. As a result the solvent traverses slowly the feed rod,
leaving behind a single crystalline rod. When using a flux pellet of composition x between
P and E, steady state growth conditions can be reached from the beginning of the growth
process. Otherwise, when starting with the 214 phase, (LnCe)2O3 is grown at first and
simultaneously the solvent composition becomes richer of copper oxide, moving from x′

via x′′ to xP , indicated by the green arrow in Fig.3.2, where the crystallization of the 214
phase sets in.
From the discussion above it is obvious that the modern TSFZ method has many advan-
tages compared to flux growth methods using a crucible. The purity of the crystals is
only affected by the purity of the starting materials and the contamination problems due
to crucible corrosion are avoided. In addition, by using suitable growth conditions (oxy-
gen partial pressure, flux composition, temperature, growth velocity) one can overcome
the problem of an inhomogeneous Ce doping and large crystals of several centimeters in
length can be grown under exactly the same conditions. This is the basic requirement for
homogeneous crystals.

Annealing after the growth

This step is crucial for the superconducting properties of the 214 cuprates. To reduce ten-
sions and disorder in the crystal structure the as-grown samples have to be annealed to tem-
peratures close to the point of decomposition. For hole-doped crystals like YBa2Cu3O7−δ
the oxygen content and the doping, respectively, can be adjusted continuously within
0 ≤ δ ≤ 1 depending on the annealing parameters [4, 5].In the 214 crystals only a tiny
amount of oxygen within 0.02 ≤ δ ≤ 0.06 can be removed/added without decomposi-
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tion [44–47]. Nevertheless, this small amount of oxygen strongly affects the Nèel temper-
ature as well as the transition temperature in the superconducting state [44,45], although
the doping is primarily governed by the Ce substitution. The general consensus of all these
studies is that bulk superconductivity and sharp transition curves are only obtained by a
severe reduction treatment very close to the stability limit of the compounds.

3.3 Advantages of electron-doped single crystals

One advantage of the electron-doped over the hole-doped compounds, with respect to
our magnetotransport measurements, is their much lower upper critical field Bc2. Con-
sequently, superconducting effects are expected to be less influential than in hole-doped
cuprates with their high Tc and Bc2 values [48]. For the preliminary characterization of
our samples the available magnetic fields up to 15T perpendicular to layers are already
high enough to access the normal state for all available doping levels at T = 1.4K, as the
highest value of Bc2,⊥ derived from resistivity measurements [49] is stated to be at 10T
for the optimally doped Nd2−xCexCuO4 in fields perpendicular to the conducting layers.
Another advantage is that the carrier concentration can be directly derived from the Ce
content, which is precisely controllable during the synthesis. Finally, our compound offers
the possibility to cover the whole SC range by only a small change in doping. This is par-
ticularly important for understanding hoe the electronic properties develop with doping
within one system.

3.4 Doping dependent evolution of the Fermi surface for
electron-doped cuprates

The conventional description of the motion of electrons in solids is in terms of electrons,
propagating with a dispersion defined by a band structure calculation and modified by a
self-energy function expressing the effects of interactions not included in the band calcu-
lation. Fig.3.3 shows the principle shape of the in-plane Fermi surface (FS), suggested for
optimal electron-doping, x = 0.15. It is well fitted by the following band dispersion [50]:

ε (k) = −2t1(cx + cy) + 4t2cxcy − 4t3(c2x + c2y − 1) + α, (3.1)

where ci = cos kia, a is the in-plane lattice constant and t1 = 0.38 eV, t2 = 0.32 · t1 and
t3 = 0.5 · t2 are the doping independent nearest neighbor transfer integrals. This dispersion
is solved for: ε(k) − α = 0, which corresponds, in the case of α = 0, to optimal doping.
Therefore, the doping dependence is adjusted over the parameter α. The parameters t1,
t2 and t3 have been obtained from band theory calculations for a class of hole-doped
compounds by a “down-folding” procedure [51] and the band dispersion was derived from
band structure calculations in YBa2Cu3O7−δ by Andersen et al. [50]. The nearest neighbor
integral values vary depending on the cuprate material family. Further evidence that these
parameters provide a reasonable representation of the basic dispersion of the electron-
doped materials comes from comparison to ARPES data , see Millis et.al [22,23].
The FS is centered around S = (πa ,

π
a ) in the Brillouin zone. Due to the antiferromagnetism

(AFM), existing in all underdoped cuprates, so-called hot spots become important in the
Brillouin zone, see Fig.3.3. These are the crossing points of the AFM Brillouin zone
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boundary and the FS, where the electrons undergo strong coherent backscattering with
vector Q = (πa ,

π
a ). AFM arises due to the underlying spin-density-wave background from

a certain AFM ordering of the copper spins in the conducting layers. For hole-doped
compounds, spins order at relatively high temperatures (T ≤ 300K) in a simple AFM
colinear structure [52, 53], that doubles the crystallographic unit cell in the CuO2 layers.
Although the parent compounds of electron-doped copper oxides, such as Nd2CuO4, also
have AFM spin structures, doubling the CuO2 unit cell, the Cu2+ moments order to
several phases with different AFM noncollinear spin structures depending on temperature
and field [52–59]. These noncollinear spin structures appear in Nd2CuO4 because of the
presence of magnetic exchange interaction between Cu2+ and Nd3+.
In this regions the FS is gapped as long as AFM correlations are strong enough. Because
of this FS fragmentation at the hot spot regions, the treatment of the electron-doped
compounds within a two-band model is more appropriate than a single band description.
Due to the strong backscattering of the charge carriers, the first Brillouin zone is folded and
the levels are split by the energy gap 2∆ at the degeneracy points. This gap is proportional
to the strength of AFM correlations, which obviously depend on the Ce content x. The
new two-band dispersion is given by:

E±k =
1
2

[
εk + εk+Q ±

√
(εk − εk+Q)2 + 4∆2

]
, (3.2)

where ∆ represents a certain energy gap, which is due to the newly introduced ordering,
where the electrons become subject to coherent backscattering with vector Q = (πa ,

π
a ). εk

corresponds to the original large FS, which exists for ∆ = 0 and εk+Q is the FS shifted
due to the interaction with the AFM sublattice.
After lifting the degeneracy at the hot spots by 2∆, a hole-like pocket centered the each
quadrant of the first BZ as well as an electron-like pocket centered at (±π

a , 0) and (0,±π
a )

are formed. The doping dependent evolution of ∆ and, hence, the evolution of the upper
(+) and lower band (-) has been simulated by Kusko et al. [22] and has been compared to
ARPES data. For the undoped parent compound in the Mott insulating state the Fermi
energy lies within the band gap. Hence, the lower band is fully occupied corresponding to
one electron per Cu ion. With increasing doping, the band gap is closing gradually. The
upper band is crossing the Fermi energy, at first, at low doping levels and consequently
small electron-like pockets appear. With further doping the electron pockets increase and
change their shape from circular to square-like.



20 3 The 214 high-temperature superconductor Nd2−xCexCuO4

G

S
Hotspots

X
Q

k  [p/a]x

k
 [
p
/

a
]

y

0 . 0 0 . 5 1 . 00 . 0

0 . 5

1 . 0

 X  
2 D

 k x  [ p / a ]
 

k y [p
/a]

 e ( k )
 e ( k + Q )
 E -

k
 E +

k2 D

 G  

 S  

Figure 3.3: Left: The diamond shaped AFM in-plane Brillouin zone enclosing half of the first
BZ. The red points indicate the hotspots, where electrons undergo backscattering with Q. Right:
Example FS derived from two band model with an existing gap ∆ within the first quadrant of the
Brillouin zone, showing electron-like pockets around X and hole-like around ( π2a ,

π
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4 Experimental chapter

4.1 Sample preparation

Since the as-grown crystals, grown by the Traveling-Solvent-Floating-Zone technique, do
not show SC in their as-grown state 1, all crystals, which were used in the experiments
reported in this thesis, have been annealed under the same conditions to reduce the apical
oxygen content. Fig.4.1left shows an as-grown single crystal rod, where the copper oxide
layers are oriented parallel to the long side of the rod and the c-axis grows out sidewards.
Therefore the dimension in c-direction of the samples is limited by the thickness of the
rod. Within this thickness usually more than one grain is present. These are macroscopic
regions of different growth direction, which have to be separated manually. Grain bound-
aries can be detected by a polarization microscope and samples were cut out of the rods in
a way that they consisted only of one grain. With the help of a Laue camera the orienta-
tion of the c-axis (see Fig.4.1 right) and a-axis were determined within a precision of less
than 0.5◦. By gradually grinding of the a, b-surfaces an uniform thickness in c-direction
is realized. In the last step four cuts perpendicular to each other, parallel to the a, c or
b, c-plane, respectively, are set, yielding samples dimensions of (a × b) = (0.5 × 1.0)mm2

for the surfaces and a thickness (c = 0.1 − 0.4)mm2, depending on the grain size. These
crystals receive a standard reduction treatment in an argon gas flow at 960◦C for 20h to
achieve sharp transitions in the zero field temperature curves followed by moderate cooling
(50− 100K/h) to room temperature.

residual flux

grown crystalneckseed

plycrystaline

Figure 4.1: Left: a 6mm thick polycrystalline feed rod with neck indicating the starting point of
the growth process, the grown single crystal rod with its shiny surface and the eutectically solidified
residual flux on the top; Right: Detected Laue back scattering shows the orientation of the c-axis
[001] grown out sidewards

Contacting and fixing the samples

Contacts with low ohmic contact resistances are crucial to get sufficiently low-noise signals
with a small phase component. For the electrical contacts the silver paste Dupont 4929
was used. In order to get an adequate consistency, the paste is diluted with butyl acetate

1As-grown, optimally doped Nd1.85Ce00.15CuO4 crystals are already superconducting with a broad tran-
sition with Tc < 10K, when grown in an atmosphere of low oxygen partial pressure.
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before contacting. Under an optical microscope Platinum wires of 20µm diameter are
attached to the sample surface manually by using silver paste. The contact resistances
achieved by simply drying under ambient conditions are in the range of several hundred
up to kilo ohms. Therefore, the contacted crystals, including the wires, were cured by
a heat treatment at 400◦C for at least 1h in air, which leads to contact resistances of
10− 50Ω. Note that this short heat treatment does not affect notably the oxygen content
of the sample, since the oxygen mobility at this temperatures is very small in cuprates,
see Erb et al. [60,61].

It turned out that the samples feel a strong torque which is strongest for the super-

Figure 4.2: Contacted and mounted Nd1.85Ce0.15CuO4 crystal (1 × 0.5 × 0.15)mm3 under the
optical microscope

conducting current perpendicular to the magnetic field. Therefore, we used Stycast 2850
FT as glue, prepared with Catalyst 24 LV, to fix the samples on a sapphire plate. Sap-
phire is chosen because of its perfect electrical insulating and good thermal conducting
properties. Stycast 2850 FT is characterized by a high thermal conductivity, small ther-
mal expansion and a low viscous consistency, before it hardens. Fig.4.2 shows a mounted
Nd1.85Ce0.15CuO4 sample.

4.2 High magnetic fields

Three different magnet sites have been used for the experiments of this thesis. In the
following a brief overview is given of how high magnetic fields are produced. Usual magnets
are coils of certain geometries which concentrate a homogeneous field in their center.

Superconducting magnets

To apply a steady magnetic field up to 17T, a superconducting magnet from Cryogenics was
used in the Walther-Meissner-Institute. Two coils of different superconducting materials
(Nb3Sn for the inner and NbTi for the outer coil) are mounted co-axially on a common
base and coupled in series. Cooling is realized by a bath of liquid 4He surrounding the
coils completely. To induce and adjust the field the coils are connected to an external
current source (0→ 120A). For experiments at constant fields the coils can be brought in
the persistent mode. For that reason, the coil system is equipped with a superconducting
shunt. During the charging of the coil this shunt has to be heated to become normal
conducting, i.e. resistive. When the desired field is reached the shunt heating can be
stopped and the external power supply disconnected. Thus very stable fields are achieved
and the noise level is small, since the power supply is decoupled. The limiting factors for
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superconducting magnets are the finite critical currents and fields of the coil materials.
Today fields up to ≈ 21T can be achieved with superconducting magnets.

Resistive magnets

Figure 4.3: 28T Magnet with bore diameter: 52mm, homogeneity: 700×10−6cm−3, power: 24MW,
max current: 31kA, cooling water rate: up to 280L/s

At present, magnetic fields above 21T can only be produced by resistive magnets. The need
of large cooling systems and power supplies for the operation of such systems, however,
makes the use of these kind of magnets expensive.
To keep the resistance as low as possible, the coils usually consist of copper or highly
conducting copper alloys. In Grenoble a power of 24MW is needed for the current and
the water cooling system to produce a field of 28T. Here the Joule heat produced in
the coil by the electrical power is drawn off by deionized water, which flows under high
pressure through gaps between the conducting material. This causes strong vibrations in
the system, which result in a higher noise for the measurements. At such fields the coils
must be constructed very robust to withstand the enormous Lorentz forces.

There are two kinds of resistive Magnets:

Bitter magnets

A Bitter coil is a stack of copper discs which are electrically isolated from each other, apart
from a small segment of about 20◦. Through drill holes, located parallel to the coil axis,
deionized water is pumped with high pressure for the cooling. A problem of these Bitter
coils is the radial distribution of the current, which cannot be influenced, but is inversely
proportional to the distance from the coil axis.
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Polyhelix magnets

A polyhelix coil consists of several copper coils fitted coaxially into each other. The
advantage in comparison to the Bitter magnet is, that the current density can be optimized
radial to the field. Fig.4.3 shows th 28T magnet system used in Grenoble, which consists
of a combination of a polyhelix surrounded by two Bitter coils. Since the power, necessary
for the cooling and magnet operation, is proportional to the squared field value, highest
fields with resistive magnets are limited due to technical and financial reasons. Hybrid
magnets, a combination of a resistive coil surrounded by a superconducting magnet can
even produce higher fields, above 40T. The American National High Magnetic Field
Laboratory is running such a hybrid magnet, with an at the moment unique maximum
field of 45T. Fields above 50T can only be achieved by pulsed field techniques, where one
can apply much higher currents for only short pulses in the range of few milliseconds to a
second.

Pulsed field magnets

In principle, the coils used in pulsed fields (see Fig.4.4a) consist of several hundred windings
of copper-niobium wire and ten to twenty layers with high electrical isolating material in
between. For the necessary high currents in the coils one needs a power source, which
can produce high currents for a short time scale. In the High Field Laboratory Dresden
a high energy capacitor bank, keeping up to 50MJ, is used. The maximum voltage of
24kV is then transferred over thyristor switches into the coil, what results in up to 400kA
discharge currents. The high thermal power of up to 5GW to the coils follows from the
extreme energy input Q =

∫ tpulse

0 R(T (t))I(t)2dt, where tpulse is the pulse duration and I
the discharge current. Since for such short time scales no efficient permanent cooling can
be provided, the energy must be absorbed completely by the coil system. Hence, the coil
is immersed completely in a nitrogen reservoir and kept at 77K.

Figure 4.4: Left: 67T pulsed field coil; Right: pulsed field profiles for three different coils available
in Dresden, Magnet B was the one used in our experiments (up to B = 65T)
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4.3 Measurement systems

For the measurement of the inter-layer resistance the standard a.c. four probe method is
used. Four contacts are attached to the sample, two on each side parallel to the a, b-plane.
One pair of opposite contacts is used to apply the current and the other to measure the
induced voltage, see Fig.4.5. This method makes it possible to measure the pure interlayer
resistance without the contributions of the contact resistances. Due to the layered crystal
structure our cuprate compound shows a large anisotropy in the conductivity for current
within or perpendicular to the conducting CuO-layers. The anisotropy ratio is [6]

ρc
ρab
≈ 104

with the inter-layer resistivity ρc = U/I · (ab)/c this would correspond to an isotropic
system with similar ab-surface area of (0.5 × 1.0)mm2 but a thickness of c ≈ 1 − 4m.
Taking this into account, in our case the current can be regarded as uniformly distributed
over the whole bulk.

For the current supply a high ohmic resistor R2 was set in series to the internal a.c. voltage
generator of the Lock-In amplifier2. Hence, the a.c. current can be set by adjusting the
output voltage from the Lock-In. The reference resistor R1 of 10 or 100Ω is connected
in series to the sample. Thus, the a.c. current can be precisely adjusted and one can
be checked if there is any out-of-phase component, showing capacitive contributions. To
provide equal conditions, during the measurements in Garching and Grenoble the applied
current was always set to 0.1mA with a frequency of f ≈ 300Hz. Because of the large
resistance value of R2 compared the sample resistances at room temperature, the change
to zero resistance in the superconducting state affects the current by less than 1%, and
therefore guaranties a stable current during the whole experiments.

For the pulsed field experiments in Dresden a similar set-up was used with the difference
that during the short time-window of tpulse ≈ 0.2s for one pulse, see Fig.4.4b, the raw
a.c. voltage signal from the sample has been recorded by an oscilloscope with a sampling
rate of 1µs. The signal is than processed by laboratory self-developed programs using the
same technique like the lock-in does. The main advantage is that one can play with the
raw data, trying to optimize the signal after the pulse, whereas with the Lock-In one has
to make many pulses, playing “try and error”, in order to optimize the signal. It should
be noted here that the cooling of the coil after a pulse to highest field takes at least four
hours, and thus “try and error” would be very time-consuming.
As we were looking for oscillations, we applied higher a.c. currents of 0.5 − 1A and a
frequency of 67kHz. This increased the local heating of the contacts on the sample slightly.
The temperature in the sample was than evaluated by comparing the critical field, at which
superconductivity was suppressed with former measurements at known temperature.

4.4 Two axis rotator

For the angle-dependent resistance measurements a two axis rotation insert is available,
which fits to the VTI used in Garching and to the one designed for Grenoble as well.
Fig.4.6a exhibits the lower part of the insert dismantled in its components. The rotation
is provided via two worm gear units, an outer and an inner part. The sample holder is

2In our case we used the Stanford Research devices SR850 and SR830
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Figure 4.5: (top) Block-diagram of the measuring set-up with a variable reference resistor R1 =
10, 100Ω and excitation resistor R2 = 1, 10, 100kΩ. The sample voltage is measured by using a
Lock-In SR 850 / Sr830; (bottom) Illustration of a contacted sample glued with Stycast 2850
FT (blue) on a sapphire plate, 20µm thick Platinum wires are attached by using the silver paste
Dupont 4929 to the ab-surfaces
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Figure 4.6: a) Explosion drawing of the two axis rotator for angle-dependent measurements;
b)Photo of the two axis rotator with introduced rotation angles; c) Sample holder with two samples
mounted with the CuO-layers parallel to the rotator platform

fixed inside the inner worm wheel, see Fig.4.6c. Therefore the azimuthal angle φ of the
cylindrical sample holder is adjusted by the inner rotation. The whole inner part is rotated
by the outer worm gear, setting the polar angle θ between the axis of the platform and
the magnetic field direction. Thus, one can align a sample in any possible position with
respect to the magnetic field. While the outer worm axis is always directly connected
to the top of the insert the inner gear must be disconnected during a θ-scan. Thus, if
one wants to change the azimuthal position of the sample within the inner rotation unit,
the inner worm axis has to be put to the vertical direction (by changing the angle θ)
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and a screwdriver, that can be pushed down, has to “catch” the slit on top of the inner
worm drive. To turn our samples from the field perpendicular to the field parallel to the
conducting layers position, they have been mounted with the c-axis directed perpendicular
to the rotation unit. The metal to metal friction on the suspension points is avoided by
the use of additional teflon cups placed in between. All the other components in Fig.4.7
are made out of brass. Both angles can be set to an accuracy of ≤ 0.05◦. A piezo-electric
motor, stable against the stray field of the magnets, drives the θ rotation axis. Due to
a limited speed range of the latter an additional mechanical gear is placed on the top of
the insert. The sweeping rate of the sample rotation can thus be continuously changed in
a range of [0.003 − 10]◦/s. The angle rotating axis is coupled by a V-belt to a variable
multi-turn resistor, hence, the measured resistance is proportional to the polar angle and
is digitized to plot immediately the resistance versus the angle θ.

4.5 Low temperatures, measurement and controlling

For each experiment the method of temperature control and stabilization had to be ad-
justed to the given dimensions of each magnet site. Here a brief overview is given of the
used systems.

Figure 4.7: Principle of
a VTI, Impedance

In the Walther-Meissner-Institute (WMI), a cryostat from Cryo-
genics has been available, where the 17T superconducting magnet
is immersed completely in a reservoir of liquid 4He. To allow a
continuous control of the temperature from 1.4K to 300K a vari-
able temperature insert (VTI) was used, see Fig.4.7. It consists
of a long tube fixed into a bigger one, where the space in between
them can be evacuated or filled with an exchange gas. This as-
sures that the space of the inner tube, where the sample is placed,
is thermally decoupled from the environment (in our case the 4He
bath). The only connection to the environment, after the dipstick
including the sample is put inside the cryostat, is a long, very thin
CuNi-capillary (Φi = 0.65mm), wound to a spiral at the bottom.
As it is filled with a smaller manganese wire (Φ = 0.44mm) in-
side, it builds a capillary impedance, which results in a constant
weak helium flow, when the VTI is submerged into the helium
bath. While the inner tube is continuously pumped, a 60Ω resis-
tor, placed next to the sample, is used to adjust a certain tem-
perature over the heating power. The heater control and temper-
ature monitoring is performed with the help of a Lake Shore 340
temperature controller, measuring the resistance of a calibrated
Cernox resistor, with a precision of a few mK. For low temper-
atures between 4.2 − 1.4K the heater is kept off and due to the
continuous pumping the sample space becomes filled with liquid.
Temperatures simply are set by adjusting the pressure. Stable

temperatures up to 80K are controlled by the heater power in presence of constant helium
gas flow. Here temperature sweeps with a ramp speed of [0.3−3]K/min can be performed.
To reach 300K the VTI must be taken out of the helium bath to stop the helium flow.

A similar VTI has been built in the the work shop of the WMI, fitting to our two-axis
rotator and to the dimensions of the cryostat in Grenoble, where the 52mm bore hole of
the magnet restricts the size of the cryostat and namely of the VTI, too. Thus it was
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possible to do angle-dependent resistance measurements in 28T for stable temperatures
between [1.4 − 50K]. To guarantee as stable temperatures as possible, during the field
sweeps in Grenoble a capacitance sensor was used, because the Cernox shows a weak field
dependence. For a sweep to 28T at [1.4 − 4.2]K the resistance of the Cernox resistor is
found to increase to a value corresponding to a temperature increase of ≤ 0.5K. Whereas
in this temperature range no heater is necessary and the uncertainty, originating from the
Cernox resistor, does not affect the measurements, because temperature is stabilized by
setting the pressure in the sample space, for field sweeps above 4K the capacitance sensor
was chosen as reference.

4.5.1 Temperature control in pulsed fields

During the pulsed field experiments a VTI was used, too. However, this time the helium
flow could be controlled by a variable needle valve.
There are two possible modes to set the lowest temperature. In the continuous flow mode
the needle valve is kept open, the gas flow is set to a constant low value and the sample
space is pumped to the lowest temperature. Here the sample is surrounded by gas. In the
single shot mode the sample space is filled with liquid at 4.2K, by keeping the pumping
rate high for a while with the needle valve fully open, until the sample is immersed in
liquid helium completely. Right before the pulse the needle valve is closed and due to
constant weak pumping the temperature slowly decreases. When it reaches 1.4K, the
pulse is initialized immediately. The main difference of the two modes is the coupling of
the sample to the environment. When the sample is immersed in liquid helium a heating,
induced by eddy currents or magnetization, during the pulse can be transfered easier than
by an exchange gas. On the other hand a liquid transmits vibrations (producing noise)
from the coil better than an exchange gas.
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5 Experimental data and analysis

In this chapter, the most important data, obtained in the present work, are presented.
First, the main characteristics, such as transition temperatures and critical fields, are
shown to justify the quality of the samples. Of high importance for the following high field
experiments are parameters like conductivity, homogeneity and doping. Comparing them
to the properties of hole-doped cuprates, studied in the experiments described in chapter
1.2, helped to evaluate the chances for the observation of similar effects and features in
our Nd2−xCexCuO4 samples.
The second part shows the results of angle dependent resistivity measurements for different
doping levels in steady magnetic fields up to 28T in the Grenoble High Magnetic Field
Laboratory. Each data sets are described and analyzed in detail. The third part exhibits,
what was done in pulsed magnetic fields up to 65T in the Dresden High Magnetic Field
Laboratory and gives a detailed description of the data and applied analysis.

31
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5.1 Preliminary characterization of samples

In this section a short overview is given about characteristic properties of the examined
samples in c-axis magnetotransport measurements in magnetic fields up to 15T. Because
of the recent new results in very high fields, presented in the further sections, here the
discussion of the preliminary data is kept very short and only some important issues
are highlighted. In Fig.5.1 one can find the temperature-dependence of the interlayer
resistivity and its evolution at different magnetic fields for each regarded doping level.
The transitions temperatures Tc are resolved in the insets.
The zero field resistivity (black curves) shows for all four doping levels a gradual transition
from linear (at high temperatures) to an almost quadratic shape (at low temperatures).
For x = 0.13 the slope changes sign at 50K. This turning point shifts down to below
20K for optimal doping and below 10K for x = 0.16 and is not visible any more for the
composition x = 0.17, which, therefore, seems to be most metal-like. A broad transition
would indicate significant doping variations, but all the transitions are within a narrow
range of about 2 − 3K. For x = 0.13, SC can be suppressed completely by applying
magnetic fields of 10T perpendicular to CuO2 layers. This critical field tends to drop
down rapidly by increasing doping. For x = 0.15 it is already below 6T, for x = 0.16
below 5T and in the sample with 17% doping level SC is already suppresed at a field of
0.5T.
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Figure 5.1: c-axis resistivity versus temperature for four different doping levels (black curves);
Inset: transition curves for each doping level at different constant fields perpendicular to the layers
(colored curves)
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Fig.5.2 shows the critical fields depending on temperature for each examined doping level.
At temperatures above 25K there is no trace of SC in c-axis magnetotransport any more.
At x = 0.15 for lowest temperatures an upturn with its maximum at 13.5T shows up,
which seems to be shifted to 5T for x = 0.16 at 1.4K. Also for x = 0.13 right after the
transition a weak upturn is discernible. For x = 0.17 the slope is positive in the entire
field range. These transitions, recorded in the R(B) sweeps up to 15T, were later used for
estimating the actual temperature during the pulseed field measurements in Dresden.

0 5 1 0 1 50 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

 

ρ c [Ω
 cm

]

B  [ T ]

         T
  1 . 4 K
  5 . 0 K
  8 . 0 K
   1 2 K
   2 0 K
   3 0 K

x = 0 . 1 3

0 5 1 0 1 50 . 0

0 . 5

1 . 0

 

        T
  1 . 4 K
  5 . 0 K
   1 2 K
   2 2 K
   2 5 K

ρ c [Ω
 cm

]
B  [ T ]

x = 0 . 1 5

0 5 1 0 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

ρ c [Ω
 cm

]

B  [ T ]

        T
   2 5 K
   2 0 K
   1 2 K
  8 . 0 K
  5 . 0 K
  1 . 4 K

x = 0 . 1 6

0 5 1 0 1 50 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 

 

        T
  1 . 4  K
  5  K
  8  K
  1 5  K
  2 2  K  

 ρ c[Ω 
cm

]

B  [ T ]

x = 0 . 1 7

Figure 5.2: c-axis resistivity versus magnetic field (applied perpendicular to the layers) for four
different doping levels at different temperatures

Fig.5.3 exhibits two θ-scans at T = 1.4K and B = 15T for two different φ of overdoped
Nd1.83Ce0.17CuO4. The rotation was performed by employing the two-axis rotator, de-
scribed in the Section 4.4. Due to the design of the rotator, φ can only be changed for
fixed θ with the rotator platform in vertical position. Therefore, φ is fixed during one
whole θ-scan. By turning from θ = −90◦, what corresponds to B ‖ a,b-plane, the resis-
tivity increases rapidly, up to 3% of ρc(θ = 0◦), at θ = −75◦, where it starts to decrease
again. This maximum is strongly φ-dependent and shows a periodicity in 45◦. It enhances
up to 2.5% at φ = 0◦ compared to φ = 45◦. At θ = 0◦ a second maximum arises with 9%
lower resistivity than at θ = −70◦ and is independent of φ. The inset shows how this hump
evolves with field at T = 1.4K, here the curves are shifted more near to each other and
the function value is, therefore, given in arbitrary units. At fields below 10T no maximum
can be seen at this angle. Comparing the shape of the resistivity, plotted versus the polar
angle θ, we find many similarities to the AMRO data on Tl2201, already shown in Fig.1.2
of the introduction.
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Figure 5.3: Resistivity versus θ at B = 15T and T = 1.4K; Inset: the field dependence of the
hump at θ = 0◦, in arbitrary units, because the curves are shifted close to each other by hand for
a better illustration

5.2 Steady magnetic fields up to 28 T

5.2.1 AMRO for strongly overdoped samples, x = 0.17

Characteristic angles and axes

So far, for cuprates, angle-dependent magnetoresistance oscillations (AMRO) only have
been observed for hole-overdoped Tl 2201 compounds, see Fig.1.2a [7]. Because of promis-
ing preliminary characterization data in fields up to 15T (Fig.5.3) in Garching, we chose the
doping level x = 0.17 for our first θ-scans in a steady high magnetic field of 28T. This is the
maximum possible level in electron-overdoping for liquid solution grown Nd2−xCexCuO4

high quality single crystals. Due to the construction of the rotator’s sample holder, two
samples could be measured simultaneously. So, we measured two samples of the same
doping level and were able to check immediately, that the features we see are specific to
the sample and not due to noise.
In Fig.5.4 the θ-scans for one sample with 17% doping level for different φ-positions in a
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Figure 5.4: x = 0.17, Resistivity plotted versus the polar angle θ for different φ-settings at lowest
possible T = 1.3K and highest field B = 28T; The arrows mark the positions of the new feature.

magnetic field of 28T are shown. The simultaneously measured second sample reproduces
all observed features, but the noise was too strong, so that only plots of sample 1 are used
for the discussions below. The general shape of the angular dependence in a magnetic
field of 28T is similar to that obtained from scans in fields up to 15T, shown in Fig.5.3.
Still, the dip in the resistivity curve at B ‖ a, b-plane, which we relate to remanence of
superconductivity, shows up. With increasing magnetic field, obviously the hump becomes
more pronounced as compared to the sweeps in 15T. At changing φ, the resistivity curves
above θ = 20◦ and below θ = −20◦, respectively, deviate from each other. At θ = ±90◦

for φ = 0◦ the resistivity is enhanced by up to 5% compared to φ = 45◦. Additionally, for
φ set to 45◦ a new feature becomes clearly visible arround θ = 53◦. Actually, this feature,
although less pronounced, exists also at other φs but at different polar angles θ.
Next to check was how the features depend on temperature and magnetic field and to find
out, if they might be related to the AMRO effect, coming from the Fermi surface topology,
or to some different origin. In Fig.5.5 one can see that the dip at θ = 0◦ slowly loses its
deepness by increasing the magnetic field. At present there are still discussions about Bc2
in electron-doped cuprates. Newest experiments [62], using quasiparticle tunneling across
La2−xCexCuO4 grain boundary junctions to probe the superconducting state and its dis-
appearance with increasing temperature and magnetic field, do not even rule out traces of
SC to persist up to 25T. Indeed, for our compound we find traces of superconductivity for
fields up to 28T, applied perpendicular to the layers. The hump becomes more obvious,
as the resistivity around θ = 30◦ grows slower with increasing field. It has already been
shown, see Fig.5.3, that the hump around θ = 0◦ turns into a minimum for fields below
10T at the lowest temperature. The feature at θ = 53◦ becomes visible above 18T for
T = 1.3K and vanishes at temperatures above 20K, see Fig.5.6.

As far as we see from Fig.5.5 and 5.6, the 53◦ feature, indicated by vertical dashed lines,
does not change noticeably its position by changing magnetic field or temperature. This
indicates its origin in the Fermi surface geometry. Indeed, the overall angle dependence



36 5 Experimental data and analysis

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0 . 4 0

0 . 4 5

0 . 5 0

����

 

ρ c [Ω
 cm

]

θ�
	

����

����

����

x = 0 . 1 7

Figure 5.5: x = 0.17, θ-scans for different magnetic fields with φ set to 45◦ and T = 1.3K
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Figure 5.6: x = 0.17, θ-scans for different temperatures with φ set to 45◦ and B = 28T

and the features look very similar to those observed by Hussey [7] in the hole-overdoped
Tl2201 compound. We, therefore, suggest our feature originates from the real AMRO
effect. Namely, it corresponds to an AMRO maximum satisfying the conditions - see
Eq.(2.44) - presented in the AMRO section of the theory chapter. The origin of the hump
at θ = 0◦ we do not yet relate to AMRO, see discussions.

To extract the evolution of the AMRO feature with respect to different φ, the second
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Figure 5.7: x = 0.17, The second derivative (green curve), revealing the AMRO position by a local
minimum, for T = 1.3K, B = 28T, φ = 45◦ is given as an example.

derivative d2ρc

dθ2
, which gives a minimum at maximum curvatures, was calculated. An illus-

tration is given in Fig.5.7, where the second derivative was calculated for polynomial fits
of the original curve at angles between θ = 30◦ to 80◦ and θ = −30◦ to −80◦, respectively.
θ-scans for seven different azimuthal positions φ(0◦, 13.5◦, 27◦, 40.5◦, 45◦, 54◦, 67.5◦) have
been performed and analyzed. For angles of φ = 0◦ and 13.5◦ the AMRO feature is very
smooth, see Fig.5.1, and therefore hard to locate by applying the second derivative. Thus,
the coordinates for these angles could only be estimated tentatively by eye and need to be
determined more precisely in higher fields. Fig.5.8 shows the obtained coordinates.

5.2.2 AMRO for moderately overdoped samples, x = 0.16

How do changes in doping level affect the newly observed AMRO feature? To answer this
question a set of two samples with a doping level of 16% was measured next.

The following results are completely taken from one and the same sample, the second
sample showed the same curves and features, but will not be mentioned further on. Fig.5.9
exhibits the data of θ-scans at four different φs. The overall shape of the resistivity curve
is similar to the one for x = 0.17 (shown in Fig.5.4), except that the sample remains
superconducting up to 28T for polar angles in the interval ±10◦ around the field direction
parallel to the a, b-plane. We observe again the feature similar to that, attributed to AMRO
effect, in 17% doped samples. It becomes most pronounced for φ = 45◦ at θ ≈ 50◦ and
moves up to θ ≈ 63◦ for φ = 0◦. Unfortunately, it is not as pronounced as in the samples
with 17% doping level. Thus, the AMRO positions can only be estimated tentatively.
This time the AMRO feature becomes visible not before 23T, see Fig.5.10, and whether
its position changes, depending on field, could not be clarified.
The next similarity to x = 0.17 is that for −90 ≤ θ ≤ −20◦ and +20◦ ≤ θ ≤ 90◦ the
resistivity enhances by changing φ from 45◦ to 0◦,too (see Fig.5.9). At the maximum
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Figure 5.8: x = 0.17, Positions of the AMRO feature for different φs for the in Fig.5.4 exhibited
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Figure 5.9: x = 0.16, θ-scans for different φ settings at T = 1.3K and B = 28T; Arrows mark the
AMRO feature positions

resistivity, that is the point around θ = 70◦ right before SC sets in, the enhancement is
about 6% for φ = 0◦ compared to φ = 45◦.
At increasing temperature, the φ dependence of the resistivity weakens and almost vanishes
at around 23K, as one can see in Fig.5.11. There the temperature-dependence for two
φ settings is shown and the position of the AMRO feature does not show changes for
different T , as indicated by dotted gray lines. Here, one important finding is that at
higher temperatures, the φ-dependent background, which makes it difficult to determine
the position of the AMRO correctly, seems to flatten out faster than the AMRO-feature.
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So, for example at 10K, it is possible to determine the position of the AMRO feature for
φ = 0◦ easier. This fact we have not realized during the measurements, thus for future
experiments this offers a chance to obtain more detailed information about the evolution
of the AMRO positions over the full φ-range.
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Figure 5.10: x = 0.16, θ-scans for different fields with T = 1.3K at φ = 0◦ (dashed lines) and 45◦
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Figure 5.11: x = 0.16, θ-scans for different temperatures with B = 28T at φ = 0◦ (dashed lines)
and 45◦ (solid lines)
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5.2.3 Angle-dependent magnetoresistance for optimally and underdoped
samples, x = 0.15 and x = 0.13

In the third part of the experiment, one sample with 15% and another one with 13%
doping level were mounted and measured. Neither of these samples shows AMRO-like
features. Except that for x = 0.15, see Fig.5.12, at the lowest temperature and highest
field a φ-independent hump at θ = 0◦, similar to that for higher doping levels, shows
up. The effect of resistivity enhancement, due to changing φ from 45◦ to 0◦, reaches at
maximum about 1.2% (at the point right before the superconductivity onset) and is five
times smaller compared to x = 0.16.
Furthermore, as shown in Fig.5.13, by lowering the magnetic field to 23T, the wings with
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Figure 5.12: x=0.15, θ-scans for two different φ settings at T = 1.3K and B = 28T

positive slope dρc

d|θ| diminish and then, at lower fields, transform into a dome-like shape
for −40◦ ≤ θ ≤ +40◦. Since highest Tc is reached for optimal doping, his change might
be related to the superconductivity onset which, of course, moves towards θ = 0◦ by
decreasing field. To check that, the field component B⊥ perpendicular to the a, b-plane,
which is necessary to suppress SC in 28T, is calculated to B⊥(B, θ) = B cos θ. Having
B⊥(28T, 62◦) ≈ 14T one can estimate the angles at which SC should set in for lower fields
to the values given in Table 5.1.

If one compares these positions with Fig.5.13, it becomes clear that the above described
diminishing of the wings and the change in the slope of ρc(θ) is due to a rapid increase of
the normal-state resistivity and not to the onset of superconductivity.

The dome-like shape of the ρ(θ) dependence becomes even more pronounced for lower
doping level x = 0.13. In Fig.5.14 one sees clearly that the influence of SC is weaker,
because the critical field is much lower: for B = 28T and T = 1.3K it sets in at θ ≥ 70◦.
We, therefore, conclude that the dome-like shape of the ρc(θ) dependence is an intrinsic
feature of the normal-state magnetoresistance.
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B[T] θonset[◦]
28 62
23 52.5
20 45.5
18 38.9
15 21

Table 5.1: x = 0.15, Estimated angles at which SC should set in for smaller fields, based on the
onset positions measured in the θ-scan at 28T
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Figure 5.13: x = 0.15, θ-scans in different magnetic fields for φ set to 0◦ and 45◦ at T = 1.25K

There is a new effect showing up, which should be mentioned here. A hysteresis-like
behavior shows up in θ-scans for the x = 0.13 sample at φ = 45◦. The resistivity for
sweeping up, that is turning from θ = −90◦ to 0◦, is about 0.7% shifted, compared to
the down sweep, until it rapidly changes at −15◦ ≤ θ ≤ +15◦ around the B ‖ c-axis
position, and both, up and down sweep, coincide. This behaviour is likely related to spin
ordering effects like those observed recently in magnetotransport of electron-underdoped
cuprates [63–65]. This is, however, a topic for separate studies and will not be discussed
in the present thesis.

5.2.4 Traces of Shubnikov-de Haas oscillations in fields up to 28T

Incidentally, field sweeps up to the 28T were done at different θ positions and analyzed
if one can find any traces of oscillations. For the samples with x = 0.16 only few data
of sweeps with the field direction oriented parallel to the c-axis were available. But, as
one can see in Fig.5.15, both simultaneously measured samples at 1.3K showed similar
oscillations within the field range of 21− 28T, where the peak-to-peak amplitude is about
0.05% of the background. The three observed maximums, obtained after subtracting the
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Figure 5.14: x = 0.13, θ-scans for different φ settings at T = 1.25K and B = 28T

slowly varying background resistivity from the ρ(B) curves, are located at 21.8, 23.5 and
25.5T. This would correspond to a SdH oscillation frequency of F = 300T.

Finally for this section, Fig.5.16 shows oscillations, obtained from one field sweep 23−28T
for the sample with 15% doping level at T = 1.3K and field parallel to the c-axis. After
subtracting the resistivity background, we also observed two maximums, appearing at 24
and 26.3T, which yield a frequency of 275T

At that time we could not state whether these are real quantum oscillations, since the
amplitude is close to the noise level and only one field sweep, useful for evaluation, was
made for the x = 0.15 sample and the experiment was rather more focused on examining
the discovered AMRO features than on searching for quantum oscillations. However,
the data presented in Fig.5.15 and 5.16 encouraged our endeavor to search for magnetic
quantum oscillations in higher magnetic fields, where one expects the amplitude of real
oscillations to increase.
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Figure 5.15: x= 0.16, Background subtracted resistivity vs. magnetic field applied perpendicular
to the a, b-plane at T = 1.3K; green and red curves are obtained by smoothing the data from
sample 1 and sample 2, respectively
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Figure 5.16: x= 0.15, Background subtracted resistivity vs. magnetic field perpendicular to the
a, b-plane at T = 1.3K
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5.3 Pulsed magnetic fields up to 65T

The observation of the angle-dependent magnetoresistance oscillations in steady fields
up to B = 28T, as presented in the section above, demonstrates that the field strength
parameter ωcτ is sufficiently high to reveal properties of the Fermi surface through mag-
netotransport in experimentally accessible magnetic fields. It is, therefore, tempting to
search for Shubnikov-de Haas (SdH) oscillations in the field-dependent magnetoresistance.
Indeed, a very weak slow oscillation was observed in the magnetoresitance in fields above
22T for x = 0.15 and x = 0.16, as it is shown in Fig.5.15 and 5.16. In order to verify
whether this oscillations are due to the SdH effect or just noise and to search for this effect
in samples with other doping levels, a series of measurements was performed in pulsed
magnetic fields up to 65T in the Dresden High Magnetic Field Laboratory (DHFL).

Taking into account the high layer-type electronic anisotropy of our system, the field
direction perpendicular to the layers was chosen for the experiments, as the most favorable
direction for observation of magnetic quantum oscillations.
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Figure 5.17: Resistivity versus magnetic field, applied perpendicular to the conducting layers for
four different doping levels: x = 0.13, 0.15, 0.16, 0.17 at T ≈ 3K; NOTE: For x = 0.15 (red curve)
slow oscillations are visible by eye.

Fig.5.17 shows the resistivity as a function of magnetic field B for four different doping
levels. All measured samples were set with the a, b-plane perpendicular to the magnetic
field.
The sample with 13% doping level shows a broader transition than the others, which is
consistent with our data presented in Section 5.1. For this sample we measured three
further pulses: two of them up to 63.5T and one with 60T at maximum, each at lowest
possible temperature. No oscillatory features have been observed.
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5.3.1 Fast SdH oscillations for x = 0.17
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Figure 5.18: x = 0.17, Resistivity versus inverse magnetic field for three different pulses at T = 3K
in the range of 60.5 − 64.5T, the curves are shifted vertically with an offset of n · 0.1Ωcm, n =
0, 1, 2, 3, 4 for clarity, n = 0 for pulse 3

In Fig.5.19 the high field part of the magnetoresistance recorded during three pulses is
plotted in the inverse field scale. Labels “up” and “down” mark the fast increasing and
the slower decreasing side of the pulse, respectively (see pulse profile in Fig.4.4b). All the
curves exhibit oscillatory behavior periodic in 1/B. Their periodicity is visualized by a
grid with interval steps of 10700T. This is verified through a Fast Fourier Transformation
in Fig.5.20. The peak-to-peak amplitude

A = 2 ·
ρc − ρbg
ρbg

,

where ρbg denotes the nonoscillating background resistivity, is for each pulse slightly differ-
ent. In pulses 2 and 3 it becomes most pronounced and reaches at maximum about 2% of
the background. Here, the problems of temperature control and mechanical noise during
the pulse, mentioned in the experimental section, made it impossible to extract quanti-
tative information about the temperature- and field-dependent damping. This needs to
be studied in more detail on samples with the same doping level, with possibly smaller
contact resistances and under improved temperature conditions. Nevertheless, what we
can definitely state at present is that there are high frequency quantum oscillations, due
to the fact that they are periodic in 1/B, become suppressed at higher temperatures and
reproduce in several pulses at lowest T .

From Eq.(2.25) we know that the SdH frequency is directly related to the area of the
extremal cross-section of the FS perpendicular to the applied magnetic field. With the
observed frequency F0.17 = (10700± 400)T, for x = 0.17, and Eq.(2.25) an area of

S0.17
extr = (102± 4)nm−2
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Figure 5.19: x = 0.17, Positions of the oscillation maximums versus reciprocal field
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Figure 5.20: x= 0.17, Fast Fourier Transformation of the field-dependent resistivity at 3K within
a field window of 60− 63.5T

is calculated. This corresponds to (40.5 ± 1.5)% of the Brillouin zone, taking a = 3.95Å
as the lattice parameter from X-ray diffractometer measurements [6]. There is, to our
knowledge, no reported temperature dependent change of the lattice parameters and,
comparing our measured a and c parameters with literature, [66–68] they all state similar
values within less than 1% deviation. Therefore, this error is negligible for calculations of
the orbit area.
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5.3.2 Slow SdH oscillations for x = 0.16

At lower doping levels no fast oscillations have been observed. But already by looking at
the original ρ(B) curves in Fig.5.17, a very low frequency oscillation can be resolved for
x = 0.15 and, although less pronounced, for x = 0.16 too.

For further analysis, the underlying nonoscillating resistivity background was fitted by
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Figure 5.21: x = 0.16, Background subtracted resistivity versus inverse magnetic field for a pulse
with Bmax = 63.6T atT = 3.2K

a polynom and subtracted from the original curves. Fig.5.21 exhibits the background-
subtracted low frequency oscillations, observed in the sample with 16% doping level at
3.2K plotted versus the inverse field. They are definitely periodic in 1/B and the peak-to-
peak amplitude A is about 1% at maximum with respect to the nonoscillating background
resistivity.
Several pulses have been done for this sample at different temperatures, which show all
these oscillations with the same period and confirm the result. Like in the case with the
x = 0.17 sample, temperature control and the signal-to-noise ratio were not good enough
to extract clear data about the temperature- or field-dependence of the oscillation ampli-
tude. However, the most important quantity, the oscillation frequency, could be reliably
determined as (280± 25)T from plotting the maximum positions versus the inverse field,
shown in Fig.5.22 and confirmed by the Fast Fourier transformation, given in Fig.5.23.
As it is explained in Section 2.4.1, the SdH effect is suppressed at increasing temperature.
To check that, one pulse was done at T = 20K and, as one can see in Fig.5.24, there are
no oscillations discernible that show the characteristic frequency of 280T.

From the observed frequency one can again calculate the area of the extremal FS cross-
section perpendicular to the magnetic field direction. Hence, with F0.16 = (280± 25)T an
area of

S0.16
extr = 2.67± 0.3nm−2 (5.1)

is obtained, corresponding to (1.06± 0.1)% of the first Brillouin zone.
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Figure 5.22: x = 0.16, Positions of the minimums (blue triangles) and maximums (black squares)
plotted versus 1/B; The slope of the fit gives a SdH frequency of F = (280± 25)T
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Figure 5.23: x = 0.16, Fast Fourier Transformation within a field window 26− 63.6T for the slow
oscillation at T = 3.2K in Fig.5.21
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Figure 5.24: x = 0.16, Background subtracted resistivity plotted versus the 1/B for a pulse with
Bmax = 63.5T at T = 20K, Note: There are no oscillations with F = 280T discernible

5.3.3 Slow SdH oscillations for x = 0.15
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Figure 5.25: x = 0.15, Background subtracted resistivity versus inverse magnetic field for four
different temperatures

The most detailed studies were done for a sample with 15% doping. Due to the experi-
ence, gained during the previous pulses, and very low-ohmic contacts for this sample, at
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the very end of the experiment we achieved more reliable temperature conditions and a
better signal-to-noise ratio. For the following analysis only pulses are chosen, where the
temperatures (evaluated from comparison of the transition for each pulse to the prelimi-
nary data, as explained in Section 5.1) in up and down sweeps, deviate from each other
within 1K. Therefore, the analysis of the temperature and field dependence of the oscilla-
tion amplitude becomes possible. Fig.5.25 shows the measured oscillations in the inverse
field scale for four different temperatures, after the background resistivity was subtracted.
They are periodic with the frequency of (290± 25)T and show a maximum peak-to-peak
amplitude of ' 2% of the background. Compared to the x = 0.16 sample, here the am-
plitude is two times higher. So for x= 0.15 we observe a slightly higher slow frequency
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Figure 5.26: x = 0.15, Positions of the minimums (blue triangles) and maximums (black squares)
plotted versus 1/B; The slope of the fit gives a SdH frequency of F = (290± 25)T

F0.15 = (290 ± 25)T, compared to x = 0.16, which corresponds to a slightly larger FS
cross-section area of

S0.15
extr = (2.77± 0.3)nm−2 (5.2)

Hence, compared to the in-plane Brillouin zone area, this FS covers (1.09± 0.1)%, taking
a= 3.95Å as the lattice parameter.
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Figure 5.27: x = 0.15, Fast Fourier Transformation within field window 30 − 63.6T for the slow
oscillation at 4K in Fig.5.25

5.3.4 Effective cyclotron mass evaluated from the T -dependence of the
oscillation amplitude for x = 0.15
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Figure 5.28: The T = 4K oscillation from Fig.5.25 (grey) is smoothed by averaging over 800 points
(red) to determine the peak to peak amplitude at different field values (arrows)
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Because of the, within 1K, stable temperatures during the four pulses shown in Fig.5.25, it
is reasonable to fit their temperature-dependence, using Eq.(2.35). Here the peak-to-peak
amplitudes at different fields were taken by hand. Fig.5.28 illustrates the procedure:
The background subtracted resistivity is plotted versus magnetic field, see the grey curve
in Fig.5.28, and smoothed by averaging over 800 points. Than hand-drawn curves (green),
connecting, respectively, subsequent maximums and minimums, are used to determine
the peak-to-peak amplitude at different fields. These data are listed in Table 5.2. By

PPPPPPPPPT [K]
B [T]

54.5 50.5 46 42.5

4 0.00825 0.0066 0.0051 0.0032
6 0.0075 0.0062 0.0045 0.0025
11 0.006 0.0041 0.0033 0.0022
15 0.0037 0.0024 0.00145 0.0009

Table 5.2: Peak-to-peak amplitude A at different fields and temperatures, extracted from the plots
in Fig.5.25

fitting Eq.(2.35) to these, see Fig.5.29, one obtains a relative effective cyclotron mass (see
Eq.(2.36)), of µ = 0.6± 0.03.
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Figure 5.29: x = 0.15, Effective mass plot for the in Table 5.1 given data, using Eq.(2.35) for fitting
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5.3.5 Dingle temperature evaluated from the field dependence of the
oscillation amplitude for x = 0.15

The next step, after having determined the effective cyclotron mass µ, is to examine the
scattering-induced damping effect from the field-dependence of the oscillation amplitude,
see Section 2.4.2, regarding µ as given. In Fig.5.30 the quantity ln(AB1/2/RT ) is plotted
versus 1/B. Here A is the oscillation peak-to-peak amplitude given in Table 5.1. The
resulting slope α of the linear fit gives the Dingle temperature TD = −α/Kµ with K =
14.69T/K, see Eq.(2.37). For such a plot one expects the data to be aligned along one
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Figure 5.30: x = 0.15, Dingle plot

straight line. Unfortunately, in our case the scattering of the data points is very strong. It is
strongest for small field values and high temperatures, but the main trend is recognizable.
We, therefore, present here a preliminary evaluation of the Dingle temperature, which
should be revisited after further experiments with more stable temperature conditions. In
Fig.5.30, separate fits to the data for each temperature are shown in different colors and
the cyan dashed line corresponds to the average fit over all points concatenated. From this
we conclude that the Dingle temperature can be set to (17± 2)K and by using Eq.(2.38)
the scattering rate τ is calculated to:

τ =
~

2πkBTD
= 7.2 · 10−14s (5.3)

For a rough estimation of the mean free path l one can use the averaged Fermi wave vector
kav
F = (S0.15

extr/π)1/2 = 0.94nm−1 from the calculated small cross-section area, see Eq.(5.3).
This corresponds to l = τvF ' τ~kav

F /mc

l(x = 0.15) ≈ 13nm

with an effective cyclotron mass µ = 0.6.
Fig.5.31 shows simulated Shubnikov-de Haas oscillations at 4K. Here the results for µ and
TD, which we obtained from the preceding analysis, are put into Eq.(2.40). It confirms that
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our evaluations of the effective cyclotron mass and Dingle temperature are very reasonable.
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Figure 5.31: x = 0.15, Simulation of SdH-oscillations at 4K by using µ and TD from the analysis
above and Eq.(2.40)



6 Discussion

6.1 Angle-dependent magnetoresistance oscillations (AMRO)

Starting from the point, that we state that the observed features in the angle-dependent
magnetoresistance are related to the AMRO phenomenon, there are two possible scenarios
for the interpretation of our data. On the one hand, one can analyze the data by using the
standard analytical AMRO theory with Yamaji’s condition, see Section 2.6. On the other
hand, there is the interpretation for observed similar AMRO in hole-overdoped Tl2201
compounds by Hussey et. al [7]. They performed numerical simulations of the interlayer
magnetoresistance at moderately high magnetic fields (ωcτ . 1) and associated their
AMRO with a large Fermi surface (FS) with a weak warping along the kc-axis having a
certain higher-order symmetry.

In the following both approaches will be discussed and compared.

From the AMRO theory, e.g. in organic SC [34], it is known that the evolution of the
AMRO polar angle positions θ with respect to different azimuthal angles φ directly gives
information about the size and shape of the probed FS cross-section. By considering
Eq.(2.44), the plot tan θ versus φ should give the circumference of an envelope function,
which is, therefore, directly related to the shape of the FS cross-section.

In Fig.6.1, the tangent of the obtained positions is plotted in polar coordinates and fitted
to the envelope function resulting from an elliptical orbit [34] corresponding to:

kmax‖ = [k2
a cos2 φ+ k2

b sin2 φ]1/2, (6.1)

where kmax‖ is the maximum projection of the in-plane Fermi wave vector component on
the direction of the field and ka, kb are the characteristic ellipse axes.

The elliptical fit gives a minimum at φ = 45◦, which would correspond to the long axis of
ka = 3.1nm−1. Here we assume the AMRO feature to be the first maximum and n = 1.
Due to the fact that the hump at θ = 0◦ does not vanish for higher temperatures, see
Section 5.2.1, we cannot relate it to the usual AMRO effect. For the short axis of the
ellipse the fit gives kb = 1.3nm−1. This would yield an elliptical orbit enclosing an area of
4.8% of the Brillouin zone area ABZ = 4π2/a2. From this result at this point one would
not state to have a large FS cross-section area and rather assume the scenario of a small
FS pocket, which contributes to the normal state conductivity.

Hussey et. al [7] claim that their AMRO data, similar to ours, only can arise from a
large coherent quasi-two-dimensional FS with a significant in-plane anisotropy of warping.
To express the φ-dependent evolution in z-direction (perpendicular to the layers) of their
suggested FS they used the relation given in [69] for a body-centered-tetragonal crystal
structure as it is present in Tl2201 and, by the way, also in our Nd2−xCexCuO4

kF (φ, κ) =
∑

m,n=0
n even

kmn cosnκ
{

cosmφ (m mod 4 = 0)
sinmφ (m mod 4 = 2) ,

, (6.2)
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Figure 6.1: x = 0.17, Polar plot for AMRO positions tan θ versus φ, the fit (dashed line) corresponds
to an ellipse-shaped FS with its short axis ka at 45◦
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Figure 6.2: The suggested coherent FS centered around S = (πa ,
π
a ) for hole-overdoped Tl2201 by

Hussey et al. [7] with a higher order in-plane symmetry for the warping in kz-direction

where κ = kzd and d is the interlayer spacing (in our case d = c/2 = 6.04Å). Here n
gives the periodicity of the warping perpendicular to the layers and m the one within the
planes, depending on the azimuthal angle φ.

Finally Hussey et al. succeeded in simulating their data by expanding kF , taking into
account the body-centered tetragonal symmetries for kF and hopping between adjacent
layers. It resulted in a large cylindrical FS, centered at the corner of the Brillouin zone
S(πa ,

π
a ), with nodes in its warping in z-direction for certain φs, as illustrated in Fig.6.2.

From their fits they extracted a rather small ωτ = 0.45, as compared to the analytical
AMRO theory where the strong-field limit, ωcτ >> 1, is assumed. Our AMRO data is
qualitatively similar to that for hole-doped Tl2201 and, therefore, it might be possible
to fit it in a similar way, considering a large, hole-like FS. This analysis is currently in
progress and, therefore, not included in this thesis.

At the present stage, we can compare qualitatively our data for Nd2−xCexCuO4 to that
measured in hole-overdoped Tl2201 and point out some apparent differences.

In our case we see two features: a φ-independent hump at θ = 0◦ and a φ-dependent
feature evolving between 50◦ ≤ θ ≤ 72◦. They are mostly pronounced at the lowest
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Figure 6.3: Variation of AMRO in Tl2201 with temperature (left) and field strength (right), see
Hussey et. al. [7]

temperature T = 1.4K and maximum magnetic field 28T. The hump at θ = 0◦ is enhanced
at increasing the field but it does not vanish for higher temperatures, as already mentioned
above. In the case of Tl2201, Hussey et al. observed similar features behaving equally with
respect to variation of T and B, except that the hump at θ = 0◦ vanished at slightly higher
temperatures and fields, as compared to the φ-dependent feature, see Fig.6.3. At fields
below 30T, the AMRO features are hardly discernible in Tl2201 (see Fig.6.3), whereas in
our crystals they were clearly observed at fields of 23−28T. This implies that our samples
are as good or even of better crystal quality than the Tl2201 crystals used in Hussey’s
experiment. The evolution of the φ-dependent feature in Tl2201 - where θ is minimal for
φ = 45◦ and maximal for φ = 0◦ - is the same for our AMRO. But the positions with
25◦ ≤ θ ≤ 45◦ are situated nearer to the hump at θ = 0◦ compared to ours. In the usual
picture for AMRO (simply using Yamaji’s conditions) the data on Tl2201 would also fit
to an elliptical FS cross-section with an area of about 47% of the Brillouin zone (taking
a = 3.6Å, c/2 = 1.16nm for this system, and n = 1). This would mean that the usual
AMRO considerations already result in a large orbit but not as big as 2/3 of the Brillouin
zone, which would follow from the assumed hole-doping level of x ≈ 0.24.
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6.2 Shubnikov-de Haas oscillations

Since the upper critical fields of the hole-doped cuprates are of the order of 50-100 T, even
for the underdoped compounds, such as YBa2Cu3O6.5 and YBa2Cu4O8, the observations
of quantum oscillations in these compounds [12, 14] have been largely restricted to the
superconducting (mixed state) part of the phase diagram so far. This raises a question:
are the oscillations really due to the SdH effect? In particular, an alternative mechanism
associated with quantum interference in the system of Abrikosov vortices have been pro-
posed recently [70]. By contrast, the Nd2−xCexCuO4 system has an order of magnitude
lower Bc2,⊥, as mentioned in Section 3.3. Therefore, the oscillations observed in fields
30 to 60 T are definitely related to the normal-state SdH effect. Hence, the oscillatory
magnetoresistance behavior presented in Section 5.2 is an unambiguous evidence of a well
defined Fermi surface in the bulk of the electron-doped superconducting cuprates in the
range from optimal doping up to the highest achieved overdoping.

As a matter of fact, the present oscillations are one of the first observations of Shubnikov-
de Haas effect in a nonstoichiometric cuprate compound. By the beginning of this thesis
no quantum oscillations in a nonstoichiometric hole-overdoped cuprate had been reported.
Just right at the time of our pulsed-field experiment the first report [16] on the observation
of quantum oscillations with a frequency F = 18 kT in a hole-overdoped Tl2201 was
published. Those authors measured several high quality samples and only few of them
showed the oscillations. Thus, the fact that we were able to detect quantum oscillations in a
series of samples with different doping levels, in particular, those with a high frequency, for
x = 0.17, clearly proves the very high quality of the electron-doped cuprate single crystals
grown in our institute. In particular, the oscillation frequency for x = 0.17 corresponds
to a large FS and, consequently, to a very large Larmor radius, rL = ~kF /eB ≈ 60 nm
at B = 60 T. This suggests a very large mean free path, ` ∼ rL, indicating a high crystal
quality.

The high frequency SdH oscillations - with F = (10700 ± 400)T - for samples with 17%
electron doping reveals a large orbit, occupying (40.5 ± 1.5)% of the first Brillouin zone
(BZ). This is consistent with the sample’s stoichiometry, which, according to the Luttinger
rule, implies a FS covering 41.5% of the 1st BZ for this doping level.

The frequency of the oscillations found on samples with x = 0.15 and 0.16 is much smaller,
and is associated with a small Fermi pocket occupying only 1.1% of the Brillouin zone. This
dramatic transformation can be explained by assuming a superstructure, which emerges
at x < 0.17 and doubles the unit cell in the a, b-plane. Such a superstructure is known
to exist in undoped and underdoped Nd2−xCexCuO4 due to the antiferromagnetic (AFM)
ordering [52–59]. Moreover, several authors suggested that it persists up to x = 0.17, in
order to explain the behaviour of the inplane magnetoresistance and Hall coefficient [6,23].

Fig.6.2a shows a two-dimensional view of the reconstruction of the original large FS for x =
0.15 due to a superstructure with the wave vectors Q± = (πa ,±

π
a ) [22,23]. Suggesting that

the slow SdH oscillations originate from the small hole-like pockets centered at (± π
2a ,±

π
2a)

their size was fitted to 1.1% of the original Brillouin zone area, using the gap ∆ in Eq.(3.2)
as a fitting parameter. The fitting yielded ∆ = 64 meV. The same procedure applied to
the x = 0.16 gives ∆ = 35.6 meV.
Another possibility is to suggest a larger gap which would completely close the hole-like
pockets of the FS and ascribe the oscillations to remnant small electron-like pockets, as
shown in Fig.6.2b. This would imply a large superstructure gap, ∆ = 0.64 eV which
is comparable to that evaluated for the undoped mother compound based on ARPES



6.2 Shubnikov-de Haas oscillations 59

data [21]. It is unlikely that the AFM ordering in the optimally doped compound is
as strong as in the undoped one. Therefore, the reconstruction shown in Fig.6.2a looks
more realistic. Note that this scenario, if true, implies the magnetoresistance behavior
to be dominated by the minority hole-like carriers, while the electron-like pockets remain
”invisible” in our experiment. The same conclusion, regarding the dominant role of the
hole-like carriers, has been made from the Hall measurements [6, 23]. The gap values
estimated by those authors are considerably higher than ours. We believe that our data
is more realistic, since our derivation is more straightforward and involves only one fitting
parameter, ∆.
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Figure 6.4: Two possibilities for a Fermi surface cross-section with Sextr = 0.011SfirstBZ : a )
hole-like pockets at( π2a ,
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2a ) and b ) electron-like pockets at
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Nevertheless, we note that our conclusions qualitatively confirm those based on the in-
plane magnetotransport [6, 23].

Comparing our results to those, obtained on the hole-doped yttrium-barium cuprates, one
can notice an interesting “antisymmetry”: in these compounds the quantum oscillations
and magnetotransport are also dominated by the minority carriers, but in that case they
are electron-like. Another important difference with respect to the hole-doped cuprates is
that the small FS is found for optimally doped and even for overdoped compositions of
Nd2−xCexCuO4. This implies that the superstructure originating, most likely, from AFM
ordering persists in the overdoped side of the phase diagram. On the other hand, electron
correlations in these compounds are considerably weaker than in the hole-underdoped
YBa2Cu3O6.5 and YBa2Cu4O8. The effective cyclotron mass evaluated in Sect.5.3, mc ≈
0.6me, is 3 to 5 times lower than for the latter compounds [12–14], indicating smaller
effects of many-body renormalization.

The striking difference between the SdH frequencies for the compositions x = 0.15 and
0.16 on one hand, and for x = 0.17 on the other implies that the superstructure gap is
either strongly suppressed or absent at x = 0.17.
The complete suppression of the gap and corresponding transformation of the FS would
be consistent with suggestions of quantum phase transition at a doping level between 0.16
and 0.17, see, e.g., [63, 71].
However, taking into account the AMRO data in Section 5.2, it seems more likely that a
small gap still exists even in the x = 0.17 sample. Indeed, the AMRO features are very
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similar for x = 0.17 and 0.16, suggesting the same cyclotron orbits contributing to the
magnetoresistance at both doping levels, at least, in magnetic fields below 30 T. Assuming
the gap is absent at x = 0.17, the AMRO should be associated with large orbits on the
unreconstructed FS, for both dopings. In the case of x = 0.16, such orbit can only emerge
at a sufficiently high field as a result of magnetic breakdown. The characteristic breakdown
field can be estimated roughly from Eq.(2.46), using the cyclotron mass and Fermi energy
(i.e. the energy between the Fermi level and the top of the hole-like band) corresponding
to the large, unreconstructed FS. Approximating the cross-section of the unreconstructed
FS by a circle, assuming the Fermi velocity to be isotropic in the a, b-plane, and using
semiclassical equations of motion (2.1), one can obtain the cyclotron mass on the large
orbit:

mc,large =
Llarge

Lsmall
mc,small ≈ 4.0me , (6.3)

where mc,small ≈ 0.6me is the cyclotron mass corresponding to the small elliptic orbit
determined from the SdH oscillations, see Section 5.3, and Llarge

Lsmall
≈ 6.7 is the circumference

ratio between the large and small orbits depicted in Fig.6.4a (dashed black and solid red
lines, respectively). Incidentally, this value is comfortably similar to mc = 4.1me directly
evaluated for the hole-overdoped cuprate Tl2201 from the fast SdH oscillations [13]. The
Fermi energy can be estimated as:

εF =
~2k2

F

2mc,large
' ~2S0.17

extr

2πmc,large
= 0.32eV, (6.4)

where the cross-sectional area of the unreconstructed FS, S0.17
extr = 105 nm−2, is taken from

the frequency of the fast SdH oscillations (see Section 5.3). Now, substituting the cyclotron
mass, the Fermi energy, and the superstructure gap, ∆ = 35.6 meV obtained above for
x = 0.16 into Eq.(2.46) one estimates the magnetic breakdown field as: BMB ' 540 T.
This value is much too high for the large orbit to be realized at fields 25-28 T, at which
the AMRO is observed in the x = 0.16 sample. Thus, one can conclude that the AMRO
is unlikely to be associated with the large FS orbit.

An alternative scenario, associating the AMRO with a small elliptic FS, was proposed
in Section 6.1. It would be natural to suggest the small FS being the common origin
for the AMRO and slow SdH oscillations observed on the x = 0.16 sample. However,
the cross-sectional area of the FS obtained from the AMRO, 4.8% of the Brilloin zone,
is 4 times larger than the area corresponding to the slow SdH oscillations. To resolve
this discrepancy, we suggest to take into account the three-dimensional character of AFM
ordering in the Nd2−xCexCuO4 system. As established for underdoped compounds, there
is a correlation between spins ordered in adjacent CuO2 planes [59, 64], which makes the
nearest neighboring Cu-sites in adjacent layers non-equivalent. One could, then, expect a
superstructure potential to exist not only in the a, b-plane but also along c. This would lead
to an effective doubling of the unit cell in the c-direction and reduction of the Brillouin zone
size along kc from 2π/d = 4π/c to 2π/c (remember that d = c/2 is the distance between
adjacent CuO2 layers). If the same is valid for overdoped compounds, one should replace
d by c in the AMRO condition, see Eqs.(2.42), (2.44). This would lead to a decrease of
the Fermi wave vector derived from the AMRO by a factor of two. As a result, the area
of the reconstructed FS is reduced from 4.8% to 1.2% of the original Brillouin zone area,
in excellent agreement with the value obtained from the SdH oscillations.

If the above scenario is true, the AMRO observed in the x = 0.17 sample are also related to
a small FS pocket in the reduced Brillouin zone and, thus, indicate a finite superstructure
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gap. The gap should, however, be considerably smaller than for x = 0.16: the absence
of slow and presence of the fast SdH oscillations indicates a relatively high magnetic
breakdown probability at fields & 30 T. Setting the breakdown field BMB in the range 30-
50 T, one can evaluate the relevant energy gap as: ∆ = 8− 11 meV. Thus, a comparison
between the AMRO and SdH data suggests that a superstructure gap of about 10 meV
exists even at the highest doping level studied.

Of course, the considerations presented above concerning the origin of the AMRO are, to a
high degree, speculative and need to be verified by further detailed experiments. However,
regardless of this uncertainty, the observation of slow SdH oscillations in our experiments
is a solid evidence for the superstructure gap persisting up to a doping level of, at least,
16%.

This result seems to contradict recent inelastic neutron scattering experiments [72], which
revealed very short range AFM correlations but no long range order in optimally doped
Nd2−xCexCuO4. The observation of slow oscillations for x = 0.15 and 0.16 crystals im-
plies a periodic superstructure potential existing on the range of, at least, the mean free
path evaluated from the SdH oscillations, ` ∼ 13 nm. This is an order of magnitude
larger than the spin-correlation length, evaluated from the inelastic neutron scattering
on optimally doped Nd2−xCexCuO4 [72]. On the other hand, a number of other authors
have reported some indications of AFM ordering extending into the overdoped part of the
phase diagram of Nd2−xCexCuO4 and related Pr2−xCexCuO4 compounds [63, 65, 72–74].
A similar superstructure was suggested to exist in hole-underdoped YBa2Cu3O6.5 and
YBa2Cu4O8 [12–14], where a long-range AFM order was also not found so far. For those
compounds an AFM order was proposed to be induced by a high magnetic field [75].
There was, however, an argument put forward against this scenario [76]. Further studies
are necessary to clarify this apparent discrepancy.
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7 Conclusion and outlook

Inter-layer magnetotransport studies on a set of Nd2−xCexCuO4, [x = 0.13; 0.15; 0.16;
0.17] single crystals, covering the superconducting part of the phase diagram of electron-
doped cuprates, have been performed in high magnetic fields. For the first time angle-
dependent magnetoresistance oscillations and Shubnikov-de Haas oscillations were ob-
served for electron-doped cuprates (at different dopings x). Since these effects can be
related directly to the Fermi surface (FS) topology in the bulk of the crystals, our obser-
vations reveal the existence of a well defined FS in this system and provide quantitative
information on the FS properties.

The main results of this work are summarized in the following:

Rotation of samples with x = 0.17 in a fixed magnetic field of B = 15T (superconducting
coil at the WMI) has shown a significant effect of the magnetic field orientation on the
resistivity. The overall angular dependence of the resistivity resembles that, found on the
hole-overdoped Tl2201 compound.
However, the field of 15T appears to be too low to reveal unambiguously magnetoresistance
features related to the FS geometry.
It was only when the same measurements were performed at fields 20-28T (Grenoble
High Magnetic Field Laboratory) that AMRO could be observed, evidencing an existing
FS. The usual AMRO theory applied to this data, yields a small ellipse-like FS with
an area corresponding to 4.8% of the first Brillouin zone. This picture alters from the
interpretation of AMRO data in Tl2201, where the effect has been attributed to a large
coherent cylindrical FS with an anisotropic warping in out-of-plane direction. Additionally,
AMRO, similar to those for a carrier concentration of x = 0.17, were observed in less
overdoped samples, with x = 0.16. Already field sweeps to 28T in optimally and slightly
overdoped samples with x = 0.15 and x = 0.16, respectively, indicated signs of SdH
oscillations.
But having found two maximums of amplitude close to the noise level was not convincing
enough at that time. Therefore, for samples of the same doping levels the resistivity was
measured in pulsed magnetic fields up to 65T. These experiments proved the existence of
a small FS pocket manifested in slow SdH oscillations of frequency F = 290T and 280T
for the optimally doped, x = 0.15, and slightly overdoped, x = 0.16, samples, respectively.
The calculated area of the relevant FS cross-section, 2.7− 2.8nm−2, corresponds to 1.1%
of the Brillouin zone. From a series of pulses at different temperatures, for the x = 0.15
sample, the cyclotron mass was estimated to be 0.6me. By analyzing the field dependence
of the oscillation amplitude, the Dingle temperature could be calculated as (17 ± 2)K,
giving the scattering time τ ≈ 7.2 × 10−14s, which corresponds to a mean free path of
l ' 13nm.
For the 17% overdoped sample no slow oscillations were seen; instead, at fields above
60T oscillations of a high frequency, F = 10700T, were found, revealing a large cyclotron
orbit, enclosing 41% of the Brillouin zone. The size of the corresponding FS is consistent,
within the experimental error of about 1%, with the carrier concentration expected for
this stoichiometry.
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The small FS pockets, found for x = 0.15 and 0.16, can be understood as a result of a su-
perstructure with the wave vector Q = (±π/a,±π/a), originating, most likely, from AFM
ordering. The analysis of the slow SdH oscillations in terms of the two band model yields
an evaluation of the energy gap opening in the conduction band due to this superstructure:
∆ ≈ 64 and 36meV for the optimally doped and moderately overdoped compositions, re-
spectively.
The ordering is strongly weakened for the far overdoped composition, x = 0.17, which
leads to the restoration of the original large FS. Nevertheless, the comparison of the SdH
data with the AMRO suggests the superstructure, with a small, . 20meV, gap to persist
even in this case.
The present work brings a new insight into the normal state properties of the electron-
doped cuprate Nd2−xCexCuO4. It is also expected to have a significant impact on the
understanding of superconductivity in this type of materials, in particular, concerning the
interplay of superconductivity and magnetism.
Our results demonstrate the power of out-of-plane transport studies for the purpose of ex-
plorations of FS topologies, and show the necessity of further experiments to this subject.
In pulsed fields, further studies are necessary with an improved temperature control and
signal-to-noise ratio to get more detailed data on the temperature, field and, probably, the
orientation dependence of the SdH oscillations for overdoped compositions.
It is very tempting to perform the AMRO and SdH oscillation studies in the highest steady
magnetic fields, up to 45 T, available at the National High Magnetic Field Laboratory,
Tallahassee, USA. Such experiment should give a more precise information on the AMRO
parameters for overdoped samples and, probably, reveal AMRO in the optimally doped and
underdoped samples. Finally, it is important to explore other samples with intermediate
doping levels, such as x = 0.14 and x = 0.165, as well as some other cuprate compounds
which can be grown with a high crystal quality by the TSFZ technique available at the
WMI.
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