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Abstract

The field of cavity quantum electrodynamics (QED) studies the interaction between light
and matter on a fundamental level. In typical experiments individual natural atoms
are interacting with individual photons trapped in three-dimensional cavities. Within
the last decade the prospering new field of circuit QED has been developed. Here,
the natural atoms are replaced by artificial solid state quantum circuits offering large
dipole moments which are coupled to quasi-onedimensional cavities providing a small
mode volume and hence a large vacuum field strength. In our experiments Josephson
junction based superconducting quantum bits are coupled to superconducting microwave
resonators. In circuit QED the number of parameters that can be varied is increased
and regimes that are not accessible using natural atoms can be entered and investigated.
Apart from design flexibility and tunability of system parameters a particular advantage
of circuit QED is the scalability to larger system size enabled by well developed micro- and
nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled
circuits, the rapidly increasing number of interacting subsystems requires an active control
and directed transmission of quantum signals. This can, for example, be achieved by
implementing switchable coupling between two microwave resonators. To this end, a
superconducting flux qubit is used to realize a suitable coupling between two microwave
resonators, all working in the Gigahertz regime. The resulting device is called quantum
switch. The flux qubit mediates a second order tunable and switchable coupling between
the resonators. Depending on the qubit state, this coupling can compensate for the
direct geometric coupling of the two resonators. As the qubit may also be in a quantum
superposition state, the switch itself can be ”quantum”: it can be a superposition of ”on”
and ”off”.

This work presents the theoretical background, the fabrication techniques and spec-
troscopy measurements on a quantum switch device. In particular, the quantum switch
is realized using a flux qubit galvanically coupled to two microwave resonators. Despite
the fact that this design requires a further theoretical investigation beyond the original
model, the switching behavior is demonstrated.
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Chapter 1

Introduction

In the late 1920s, Paul Dirac formulated the theory of interaction between light and
matter [1] and described the quantized electromagnetic field as an ensemble of harmonic
oscillators interacting with charged particles. Based on the quantization of light, the area
of optics expanded by what is known today as quantum optics. The invention of the laser
in 1958 [2] and the related technical developments in the following years [3] laid the basis
for modern quantum optics [4, 5].

These days, simulations of complex physical systems require fast and powerful comput-
ers. Already in 1982, Richard Feynman pointed out that devices operating according to
the laws of quantum mechanics would be much more efficient for simulations of quantum
systems [6]. For the realization of such a device, different quantum mechanical systems
are investigated regarding their usage in quantum simulation. Here, quantum bits, or
qubits are the fundamental information unit in a digital quantum processor and equiv-
alent to bits in a classical processor. A qubit is a quantum mechanical two-level system
with transition-frequency ωQ. The qubit state, which in general is a superposition of
the ground state |g〉 and the excited state |e〉, can be manipulated by external control
parameters and determined by a suitable readout process. There is a large and steadily
increasing number of possible qubit realizations. To this end, the field of quantum optics
has been particularly successful. Neutral atoms [7–14] or ions [15–20] as qubits coupled
to electromagnetic quantized fields provide promising systems for quantum simulation
processes. However, after the demonstration of quantum coherent behavior of solid state
systems about a decade ago, solid state based quantum systems are attracting increasing
research effort.

From cavity QED to circuit QED

In 2012, the experimental demonstration of direct, non-demolition observation of indi-
vidual quantum particles earned Serge Haroche and David Wineland the Nobel Price in
Physics. Both work in the field of quantum optics and study the fundamental interaction
between light and matter. While Wineland used photons to detect the states of trapped
ions [21, 22], Haroche explored the light-matter interaction by coupling ”trapped light”
and ”flying atoms”. His observation of an enhanced spontaneous emission of single atom
in a cavity [23] laid the basis for a new research field in quantum optics, the field of cavity
quantum electrodynamics (QED) [24]. Moreover, by detecting the state of atoms moving
through a cavity and interacting with the quantized cavity modes he was able to detect
the state of the photons in the cavity in a non-demolition manner [25, 26].

An important condition to investigate the coherent atom-photon interaction is the
coupling of the two systems being much larger than the photon loss rate of the cavity
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2 Chapter 1 Introduction

and the atom decay rate into modes other than the cavity mode. The atom-photon
coupling strength is in general given by the product of the dipole moment and the zero-
point electromagnetic field strength of the cavity mode which decreases with increasing
mode-volume. In case of a single Rydberg atom in a Fabry-Pérot cavity, the coupling
of the two systems is relatively large due the large atomic radius of the Rydberg atom
which results in a large dipole moment.

Replacing the Rydberg atom by an artificial atom with an even larger size and hence
larger dipole moment and reducing the dimensionality of the cavity, thereby reducing the
mode volume, leads to even higher coupling rates. This idea is followed in the research
area of superconducting circuit QED. Here, the atom is replaced by a superconducting
circuit with a discrete energy spectrum and the three-dimensional cavity by a quasi-one-
dimensional microwave resonator with very strongly reduced mode volume. This idea was
presented in Ref. [27] and experimentally implemented in 2004 [28]. On the one hand, by
reduction of the of the mode volume the electrical field per photon could be increased by
a factor of ∼ 103. On the other hand, the electric dipole moment of the artificial atom
could be increased to a value exceeding the one of Rydberg atoms by a factor of 102 to
103. An important advantage of circuit QED systems is their high design flexibility and
wide tunability of system parameters such as the resonator frequency, the resonator loss
rate, the qubits transition frequency and the coupling constant. In this way circuit QED
allows to study light-matter interaction with an unprecedented level of control.

Regarding future applications of qubits such as their usage for analogue or digital
quantum simulation a few fundamental techniques have to be established. To this end,
time-domain [29] and frequency-domain [30] measurements were realized by entering the
dispersive limit, where qubit and cavity are detuned. Moreover, the interaction of the
resonator-qubit system was investigated in detail [31–33].

Future digital quantum simulators most likely consist of a large number of subsys-
tems interacting with each other. Dealing with an increased number of subsystems, one
has to deal with the problem of directing and storing of quantum signals. Addressing
these problems, the coupling of qubits via a cavity bus was realized [34, 35] as well as
coupling two qubits via a third one [36]. In the same breath the controllable coupling be-
tween different qubits needs to be mentioned [37, 38] which culminated in a controllable
entanglement of even three qubit states [39] or resonators [40].

So far, the coupling of two individual components, e. g., a qubit and a resonator,
is performed in the resonant regime. To avoid decoherence effects due to the qubit a
dispersively coupled qubit is favorable. One idea is to use the resonators as the memory
unit while the qubit only serves as a coupling unit, providing the transfer of the state
between the detuned resonators [41, 42]. In a second ansatz, the qubit is working in
the dispersive limit. Here, it only controls the coupling between the two resonators. An
extraordinary large qubit decoherence time is not necessary. A device, fulfilling these
requirements was first introduced by M. Mariantoni [43] and was called quantum switch.
Later, decoherence channels of the system were investigated explicitly [44].

The quantum switch consists of two resonators coupled directly and via a qubit. In
the dispersive regime, the qubit mediates a dynamic second order interaction with its
sign depending on the qubit state. The parameters of the qubit can be tuned externally
such that the magnitude of the dynamic coupling is equal to the first order geometric
coupling of the two resonators. Hence, depending on the qubit state, the interaction of
the resonators is off or on. Here, in the off state the geometric and dynamic coupling
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compensate each other.
Using a quantum system as mediator provides the luxury of using the qubit for fur-

ther experiments such as the creation of a superposition state between the resonators
(|1〉A|0〉B + |0〉A|1〉B)/

√
2 or tripartite entangled Greenberg-Horne-Zeilinger (GHZ) states

(|g〉|1〉A|0〉B + |e〉|0〉A|1〉B)/
√

2 [45]. Here, |n〉A(B) denotes n Fock states in resonator A
(B). Although the qubit is used to create these states, the resonators and the qubit are
off resonant and the quantum switch is working in the dispersive limit. Ideas for fasci-
nating experiments which can be performed using the quantum switch will be presented
in chapter 6.

This work presents the first realization of a quantum switch consisting of two mi-
crowave resonators with resonance frequencies in the GHz-regime coupled to one flux
qubit. Using different fabrication techniques, the resonators and the qubit are fabricated
at the Walther-Meißner-Institut. Since the qubit is working off-resonantly, decoherence
effects play a minor role. Nevertheless, the requirements regarding the key parameters
of the quantum switch and the fabrication of its single components are demanding. Fur-
thermore, the characterization of the device requires a complex cryogenic setup including
high stability of the applied magnetic flux and temperature. To meet these requirements,
an existing dilution refrigerator had to be rebuilt within this thesis.

Outline of the thesis

The thesis is structured as follows. For a fundamental understanding of the quantum
switch, the single components must be well understood. Starting with a brief overview of
the physics of Josephson junctions in section 2.1, superconducting quantum interference
devices (SQUIDs) and qubits are discussed in the following sections. Two different qubit
layouts are used within this work, a flux qubit with three Josephson junctions and a flux
qubit with four Josephson junctions. Starting with the three-Josephson-junction case,
the advantage of the four-Josephson-junction design is illustrated in subsection 2.4.2.
Experimentally, the four-Josephson-junction qubit is well known, nevertheless a theo-
retical overview is useful. As the fabrication of a four-Josephson-junction qubit is less
reproducible than the fabrication of the three-Josephson-junction qubit, the quantum
switch is realized using a three-Josephson-junction flux qubit. However, the dc-SQUID
measurements shown in section 4.3 are performed with four-Josephson-junction qubits.

Chapter 3 gives an introduction to circuit QED and two-resonator circuit QED. The
latter is introduced by a detailed derivation of the quantum switch and a discussion of
its critical parameters.

A major part of the experimental work was focused on the optimization and fabrication
of the measured devices. Therefore, chapter 4 gives an overview of the experimental
techniques such as fabrication processes, see section 4.1, and measurements setups, see
sections 4.2 and 4.4. Important for future works is the characterization of the four-
Josephson-junction qubit in chapter 4.3. Some ideas improving the quantum switch
using four-Josephson-junction qubits will be shown in chapter 6.

For measurements on the quantum switch, an existing 30 mK dilution unit had to be
upgraded. A rough overview of the used setup and about some critical components is
given in 4.4. Since only small parts of the modified setup is used for measurements on
the quantum switch, in addition an overview on the complete systems is presented in
appendix D.1.
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The results of the quantum switch measurements are presented in chapter 5. After a
short overview of the characterization of a two-resonator sample, the qubit parameters
and the coupling strengths are presented in subsection 5.3.2. These values are used
to determine the theoretical prediction of the quantum switch and section 5.4 shows
good agreement between prediction and experimental data. The quality of the switch is
presented and discussed in subsection 5.4.3.

After a short summery about the results, some ideas of interesting experiments using
this device will be given in the outlook in chapter 6.



Chapter 2

Superconducting Circuits for Quantum
Information Processing

This chapter gives the theoretical background for the elemental building blocks of the
quantum switch, namely Josephson-junction-based devices and microwave resonators.
The Josephson junctions explained in section 2.1 are the basic elements for the dc-SQUID,
the three-Josephson-junction, and the four-Josephson-junction qubit discussed in the
subsequent sections.

2.1 Josephson junctions

In 1962, Brian D. Josephson published an article [46] which provided the basis for the
most important component in circuit-QED, the Josephson junction [47]. A Josephson
junction consists of two weakly coupled superconductors, e.g., two superconductors sepa-
rated by a thin insulating barrier, see Fig. 2.1. The Cooper pairs of each superconductor
condensed into the same quantum state can be described by the macroscopic wave func-
tion |ψL/R| exp(iφL/R). The tunneling current of the Cooper pairs through the thin barrier
is

Is = Ic sin(φ) (first Josephson relation), (2.1)

where φ is defined as the phase difference φL − φR and the critical current Ic is the
maximum supercurrent flowing through the junction. The wavefunctions |ΨL〉 and |ΨR〉
are coupled via the tunneling of Cooper pairs through the barrier. The related coupling
energy is the Josephson energy EJ = IcΦ0/(2π). Here, the magnetic flux quantum
is defined as Φ0 = h/(2e) [48, 49]. Applying a voltage across the junction, the time

superconductor superconductorinsulator
|| exp(i)LL || exp(i)RR

I

C
I

R

c

(a) (b)

S SI

I

J

n

Figure 2.1: (a) A Josephson junction consists of two superconductors separated by a thin in-
sulating layer (red). (b) RCSJ-model of a current biased Josephson junction where
the junction is represented by the capacitance CJ, the critical current Ic, and the
normal resistance Rn.

5



6 Chapter 2 Superconducting Circuits for Quantum Information Processing

derivative of the phase is given as

dφ

dt
=

2π

Φ0

V (second Josephson relation). (2.2)

From the definition of an inductance L = V/(dI/dt), one finds the inductance of a
Josephson junction to be LJ = Φ0/(2πIc cos(φ)). This Josephson inductance is non-
linear and can even become negative. It is the basis for the nonlinear quantum systems
discussed later.

A real Josephson junction can be modeled with an equivalent circuit, containing the
self-capacitance CJ, a resistance Rn and an ideal Josephson junction, see Fig. 2.1(b).
By applying Kirchhof’s law and using the second Josephson equation, one obtains an
equation of motion of the phase difference φ,

Φ0

2π
CJφ̈+

Φ0

2π

1

Rn

φ̇ = I − Ic sin(φ) = −2π

Φ0

∂UJ

∂φ
, (2.3)

with the tilted washboard potential

UJ = EJ

(
1− cos(φ)− I

Ic

φ

)
.

More details on the washboard potential and the RCSJ model can be found in Ref. [50].
It is important to note that in the treatment given above the phase difference φ is

considered a classical variable and the equation of motion (2.3) corresponds to that of a
classical particle in the tilted washboard potential. The reason is that in most Josephson
junctions the Josephson coupling energy EJ (can be view as the potential energy) is much
bigger than the charging energy EC = e2/(2CJ) of an elementary charge on the junction
capacitance (can be viewed as the kinetic energy). However, this is no longer the case
when going to junctions with small junction area A. Here, the coupling energy EJ, which
scales proportional to AJJ, becomes small, while the charging energy EC, which scales
proportional to 1/A becomes big. In this case we have to do a full quantum treatment
including the effect of the small junction capacitance (cf. section 2.3).

2.2 Dc-SQUID

In this section, basic theoretical aspects about the direct-current superconducting quantum
interference device (dc-SQUID) [51] are introduced. Today, SQUIDs are well-known de-
vices which are discussed in detail in Refs. [47, 50, 52]. The dc-SQUID is not the primary
subject of this thesis but used to characterize the qubits. Therefore, the introduction will
be focused on the main parameters used later.

A dc-SQUID consists of two, here assumed to be identical, Josephson junctions inter-
secting a superconducting loop of inductance L where each junction has a critical current
Ic. The loop can be biased with a current Isq, see Figs. 2.2(a) and (b). In the absence of
an external magnetic field the maximum applied zero-voltage current Im is 2Ic.

When the applied bias current is increased to Isq > Im, the SQUID switches into the
voltage state and a finite voltage Vsq is observed. A typical current-voltage characteristic
is sketched in Fig. 2.2(c). The gap voltage Vg = 2∆s/e (2∆s denotes the superconduct-
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Figure 2.2: dc SQUID: (a) Schematic of a current biased dc-SQUID. The Josephson junctions
(green) are symbolized with boxed crosses. By biasing the SQUID with a bias
current Isq the voltage Vsq is measured. (b) False-colored scanning electron mi-
crograph of a sample. The dc-SQUID is colored blue and the Josephson junctions
are highlighted with green boxes. (c) Schematic current-voltage characteristics for
a SQUID. For Isq < 2Ic the voltage across the SQUID is zero. At Isq = 2Ic the
voltage drops to the a finite value, Vg. With increasing bias current, the current-
voltage characteristics follows the normal resistance Rn slope. (d) Two calculated,
typical Im(Φext) characteristics for different values of βL.

ing energy gap), and the critical current itself are related by the Ambegaokar-Baratoff
relation [53]

2Ic =
π

4

Vg

Rn

.

The normal resistance Rn appearing for Isq > 2Ic is modeled as an ohmic resistor in the
RCSJ model. The hysteresis in Fig. 2.2(c) strongly depends on the junction capacitance
CJ where the Steward-McCumber parameter [54, 55]

βc = 2πIcR
2
nCJ/Φ0

relates the quantities Ic, Rn and CJ.
A magnetic flux Φext,sq can be induced into the SQUID loop and influences Im. For

small SQUID loops with negligible loop inductances Im reads

Im(Φext,sq) = 2Ic| sin(πΦext,sq/Φ0)|, (2.4)

see Fig. 2.2(d). The reason for the periodicity in Φ0 lies in the fluxiod quantization of the
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flux penetrating a superconducting loop [48, 49]. Equation (2.4) only holds if the loop
inductance in negligible or

βL = 2LIc/Φ0 � 1.

Otherwise the modulation depth ∆Im/(2Ic) with ∆Im = 2Ic − Im(Φext,sq = Φ0/2) is
reduced. For βL = 1 the modulation depth is approximately 0.5 and increases with
decreasing βL.

The oscillating critical current Im(Φext,sq) is a useful observable to detect flux changes
in the loop in the submilli-Φ0 range. Therefore, the dc-SQUID is used to detect the
magnetic field induced by a qubit as discussed in section 4.3.

2.3 Quantum mechanical treatment of charge and flux

In the discussion in section 2.2, the phase φ or equivalently the flux Φ = (Φ0/2π)φ have
been treated as classical variable. The charging energy was neglected. For small area
Josephson junctions as used in qubits this is no longer possible and we have to do a
full quantum treatment including the charge degree of freedom. Following the concept
of canonical quantization we replace the classical variables flux Φ and charge Q by the
respective operators Φ̂ and Q̂. From the quantum mechanical point of view, Φ̂ and Q̂ are
conjugate observables fulfilling the commutation relation

[Q̂,Φ̂] = i~.

As in general in quantum mechanics the operators are represented in their conjugate
relations as

Q̂ = −i~ ∂

∂φ
and Φ̂ = i~

∂

∂Q
.

The uncertainty relation of their eigenvalues reads as

∆Q∆Φ ≥ ~
2
.

2.4 Superconducting persistent current qubits

A superconducting Josephson qubit can be understood as a nonlinear resonator formed
by the Josephson inductance and its junction capacitance. The nonlinearity is crucial
to obtain an anharmonicity in the system. An effective two state system can be consid-
ered only if the transition frequency between the two lowest states, ωQ = (E|e〉 −E|g〉)/~
strongly differs from the transition frequency between the excited state |e〉 and the third
level |f〉. Depending on the design and area of the Josephson junctions, different su-
perconducting qubits can be distinguished. The phase drop at the Josephson junction
φ̂ and the charge Q̂ on the capacitor are the canonically conjugated variables. If one or
more Josephson junctions are implemented in a superconducting ring, the phase is often
substituted by the total flux Φ̂ penetrating the loop. In general, one of the variables (flux
or charge) is what is called a good quantum number. Depending the ratio of the qubit
energy scales EJ/EC either charge or flux is well defined while, fulfilling the uncertainty
principle, the other variable is diffused. A large zoo of superconducting qubits based
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on Josephson junctions is known today. The most prominent representatives are shortly
pointed out in the following.
Cooper-pair box: A Cooper-pair box can be considered as a superconducting island

connected to a much larger reservoir of Cooper pairs via in general two Josephson junc-
tions [56–58]. A capacitively coupled gate voltage controls the number of Cooper pairs
on that island while an external flux bias controls the qubit transition frequency. An odd
or even number of Cooper pairs on the island represents the ground and excited state of
the qubit. If EJ/EC � 1 the Cooper-pair box is called charge qubit as its eigenstates are
very close to being charge states.
Transmon qubits: A transmon qubit [59] consists of a superconducting island con-

nected to a reservoir of Cooper pairs. An additional shunting capacitor is placed in
parallel to the Josephson junctions to suppress charge noise. Hence, EJ/EC increases
and the anharmonicity is decreased and the third qubit level |f〉 has to be considered,
see, e. g., Ref. [60]. The eigenstates of a transmon are superpositions of many charge
states. EJ dominates the properties of the qubit. It has been shown that with increasing
EJ/EC from ≈ 10 to ≈ 30, charge dispersion is decreased from 74 MHz to 0.8 MHz [61].
Today the transmon qubit is one of the most used superconducting qubits due to its
robustness against fabrication parameters.
Flux qubits: In general, a flux qubit consists of a superconducting loop and three

or more Josephson junctions [62, 63]. To obtain a two level system, the balancing of
EJ and EC is a fundamental fabrication issue. The quantum variable is the magnetic
flux threading the loop. The two eigenstates correspond to the clockwise or counter-
clockwise screening current flowing in the loop which is caused by the magnetic field.
In the following sections the layouts of the three-Josephson-junction qubit and the four-
Josephson-junction qubit will be discussed in detail.
Phase qubits: In contrast to the charge qubit, the Josephson junction of the phase

qubit is relatively large. A bias current is necessary to produce the required nonlinearity.
The quantum variable is the phase difference across the junction [64–66].

A detailed overview of the different superconducting qubits can be found in review
articles as in Ref. [67, 68].

2.4.1 Three-Josephson-junction flux qubit

The fundamental component of the quantum switch is the superconducting flux qubit or
persistent current qubit [62, 63]. It consists of a macroscopic superconducting ring inter-
rupted by three or more Josephson junctions, see Fig. 2.3(a). Since the loop inductance
LL is designed to be small compared to the Josephson inductance LJ of the junctions, LL

is neglected. Therefore, only the two energy scales EJ and EC determine the quantum
mechanical behavior. In the flux limit EJ > EC, the good quantum variable is the phase
while the charge is fluctuating. The Josephson energy of two of the three junctions is
equal. It is reduced by a factor of α for the third Josephson junction. Due to fluxoid
quantization, the sum of the phase-drops across the three junctions and the phase shift
caused by the external flux Φext = fΦ0 penetrating the loop must be an integer multiple
of 2π. Here f ist the so-called frustration. According to the Josephson relation a finite
phase drop across the junctions is related to a finite supercurrent circulating in the ring.
This current is called persistent current. That is why the qubit is called persistent flux
qubit. Depending on the external flux the persistent current is flowing clock- or coun-
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Figure 2.3: (a) Sketch of a three-Josephson-junction qubit. The current can flow clockwise or
counter-clockwise, depending on the magnetic field penetrating the loop. (b) False-
color image of the qubit (red) implemented between two resonator lines (green).
This configuration will be used later for the quantum switch.

terclockwise. The direction defines the states |L〉 and |R〉. At Φext = Φ0/2 the energies
of the states degenerate, resulting in the notation degeneracy point for this flux bias.
However, the degeneracy is lifted by a finite tunnel coupling between the states |L〉 and
|R〉, resulting in a symmetric and anti-symmetric superposition state |g〉 and |e〉. At the
degeneracy point these two states are separated by the tunnel coupling δQ.

Mathematically spoken, the Josephson energy of each junction is EJ,n(1 − cosφn).
Together with the fluxoid quantization, see Fig. 2.3(a), the potential energy of a three-
Josephson-junction flux qubit is given by only two free variables can be expressed

U = EJ[2 + α− cosφ1 − cosφ2 − α cos(2πf + φ1 − φ2)]. (2.5)

Due to its periodicity unit cells are defined by connecting the maxima of the potential.
Figure. 2.4(a) shows the potential energy at the degeneracy point. The red dashed box
defines a unit cell. Two possible saddle point connections can be established between
the minima Lij and Rij. An intracell connection is symbolized by the yellow solid line
(tunneling between L00 and R00) and an intercell tunneling is symbolized by the yellow
dashed line (tunneling between R01 and L00). The set of all L minima is represented
by the qubit state |L〉 and the set of all R minima to |R〉. While the barrier in the
intercell coupling is too high, the intracell tunneling results in a coupling of states |L〉
and |R〉, see Fig. 2.4(b).The finite tunnel coupling of the states |L〉 and |R〉, which are
degenerate for f = 1/2, causes a lifting of the degeneracy and an anti-crossing of the
levels. The resulting symmetric and anti-symmetric superposition states are separated
by the tunneling coupling δQ at the degeneracy point f = 1/2 and form the ground
state |g〉 and the excited state |e〉. The height of the barrier of the double well potential
depends on α. For α < 0.5, the barrier, and hence, the double well potential vanishes.
For α > 0.75, the barrier becomes too high and the tunnel coupling is reduced to too
small values δQ < kBT . The optimal value for α in case is a three-Josephson-junction
qubit is 0.7.
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Figure 2.4: (a) Two-dimensional potential of a three-Josephson-junction flux qubit at f =
0.5. A unit cell, red dashed box, includes two minima (here L00, and R00) and
one maximum. A cross-section along the dashed white line is shown in (b). The
typical double well potential is clearly visible. (c) Qubit’s energy spectrum versus
frustration Φext/Φ0. Depending on the external flux, a left or a right circulating
current corresponds to the ground or excited state. Near the degeneracy point,
the states couple and an anticrossing results in the two levels of the flux qubit.
The shape of the double well is illustrated in the sketch of the potential energy
(along the dashed line) above the diagram. (d) Shows the quantum mechanical
expectation value of the qubit current IQ = 〈Ipσ̂z〉 = ∂Ei/∂Φext in the loop.

Near the degeneracy point, the Hamiltonian of a flux qubit reflects the coupling of the
states |L〉 and |R〉 via a tunneling matrix element proportional to δQ as

ˆ̄HQ = T + U =
ε

2
ˆ̄σz +

δQ

2
ˆ̄σx, (2.6)

where ˆ̄σx,z are Pauli operators for a spin 1/2 system in the diabatic basis consisting of
the persistent-current eigenstates |L〉 and |R〉. These eigenstates of εˆ̄σz/2 are coupled
via the coupling strength δQ. While the gap energy δQ is a design parameter and flux
independent, the energy bias ε is given by the relation:

ε = ε(Φext) = 2

(
Φext −

2n− 1

2
Φ0

)
∂U

∂Φext

∣∣∣∣
φ1=−φ2

= 2Ip

(
Φext −

2n− 1

2
Φ0

)
(n ∈ N).

(2.7)
As a direct consequence of the derivative of Eq. (2.5), the persistent current Ip is defined
as

Ip = Ic

√
1−

(
1

2α

)2

. (2.8)
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For the optimal value of α = 0.7, the persistent current is approximately 0.7Ic or approx-
imately αIc

Figure 2.4(c) shows the two energy levels of the Hamiltonian (2.6) and the related po-
tential shape close to the degeneracy point (f = 0.5). The anticrossing at the degeneracy
point results in a splitting of the energy levels by the gap energy δQ. The new eigenstates
|g〉 and |e〉 are symmetric and antisymmetric superpositions of |L〉 and |R〉. Rotating the
Hamiltonian (2.6) into the qubits eigenbasis by the mixing angle θ = arctan(δQ/ε), gives
the flux dependent energy difference of the eigenstates

EQ = ~ωQ =
√
δ2

Q + ε(Φext)2 (2.9)

and the Hamiltonian reads

ĤQ =
~ωQ

2
σ̂z. (2.10)

ωQ is called the qubit transition frequency and has a hyperbolic dependence on the
external applied flux Φext. Depending on the qubit state |g〉 or |e〉 at a given flux value,
the persistent current is circulating clock- or counter-clockwise. Figure 2.4(d) shows
the qubit current IQ as a function of the external applied flux. For Φext < 0.5Φ0, the
ground state is represented by a counterclockwise current which is reduced to zero at
the degeneracy point. With further increasing external flux Φext the ground state is now
represented by a clockwise circulating current. As a consequence, by sweeping the flux
adiabatically the change of the magnetic field caused by the change of the direction of
the persistent current can be detected using a dc-SQUID, see chapter 4.3.

2.4.2 Four-Josephson-junction flux qubit

A persistent current qubit can also be realized using four Josephson junctions. Ex-
perimentally, this configuration shows better coherence times than the three-Josephson-
junction configuration [69–71]. The reason for this lies in the nature of a Josephson
junction and on the fact that it is impossible to fabricate a real three-Josephson junction
flux qubit because of topological limitations. The latter will become clear in subsec-
tion 4.1.3 where also the differences of the two designs will be depicted. At this point
it should only be mentioned that a three-Josephson-junction qubit has an even number
of junctions. Despite the three well defined junctions the others are relatively large in
size which comes along with a large critical current. The large critical current leads to
a small junction inductance and results in a small and negligible phase drop over the
junction. Thus, they can be neglected in theory. Despite the fact that the origin of de-
coherence is rather complicated and not yet completely understood, one of the dominant
sources seems to be related to defects in the oxide layer forming the tunnel barrier of the
Josephson junctions. By decreasing the fourth Josephson junction the amount of defects
is reduced which results in better coherence.

The four-Josephson-junction flux qubit consists also of a superconducting loop with
four Josephson junctions. Three junctions have the same size and again the size of one
junction is reduced by a factor of α. As in the three-junction case, the total potential
energy is the sum of the single junctions’ potential energies. Taking into account the flux
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Figure 2.5: (a) Sketch of a four-Josephson-junction qubit. Three junctions have the same size
while the fourth junction is reduced by a factor of α = 0.5 (b) False-color scanning
electron micrograph of the qubit (red). (c) Enlargement of the area marked by the
blue box in (b)

quantization condition, it can be written as

U = EJ[3 + α− cosφ1 − cosφ2 − cosφ3 − α cos(2πf + φ1 − φ2 − φ3)]. (2.11)

Due to the three degrees of freedom it is hard to visualize the potential. Three-dimensional
contour plots are shown for U = 0.95EJ, U = 1.03EJ and U = 1.5EJ in Fig. 2.6. The
contours at low energy show only two tiny spheres which are growing to a bone-like shape
along the φ1 = −φ2 = −φ3 axis. A cross-section along the φ1 = −φ2 = −φ3 axis shows a
similar double well potential as in the three-Josephson-junction case, see Fig. 2.6(d). Us-
ing this knowledge, the four-Josephson-junction qubit can be treated exactly such as the
three junction qubit. As the double well barrier of a three-Josephson-junction qubit, the
barrier of the double well of a four-Josephson-junction qubit depends on α. For α < 0.3,
the barrier of the double well potential is reduced to zero and for α > 0.8 the barrier
becomes to high and an effizient coupling between the clockwise and counterclockwise
circulating current states is suppressed. The optimal value for the reduced Josephson
junction is α = 0.5.

The potential (2.11) results in a sightly different expression for the persistent current
Ip. Using relation (2.7) at φ1 = −φ2 = −φ3, the persistent current is

Ip = Icα

(
3

2

(
3α− 1

α

)1/2

− 1

2

(
3α− 1

α

)3/2
)
. (2.12)

Although this relation seems to differ from Eq. (2.8) for α = 0.5 the persistent current is
Ip = 0.5Ic = αIc.

2.5 Two coupled resonators

Apart from the qubit with its anharmonic level structure, the other components of the
quantum switch are two coupled resonators and can be described as two coupled quantum
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Figure 2.7: (a) Model of a transmission line. Each element of length ∆z is modeled by a resis-
tance per unit length Rl and an inductance per unit length Ll. The connection to
ground is substituted by a conductance per unit length Gl and a shunt capacitance
per unit length Cl. Sketch of a coplanar waveguide (b) and coplanar stripline (c).
The layout parameters as the width of the signal line w, the gap between line and
groundplane gg and the thicknesses of the conducting material t and the substrate h
influence the microwave properties such as the phase velocity vPh or the impedance
Z0.

harmonic oscillators. They are well known and studied in detail in textbooks, e. g.,
Ref [72]. This section will give an overview of the most important parameters. For
a detailed description of microwave resonators, the author refers to Refs. [73–75]. A
short excursion to transmission line theory will help to understand the technical point of
designing two microwave resonators on a chip.

2.5.1 Transmission line theory in a nutshell

Harmonic oscillators can be realized using different kind of physical systems. Transmis-
sion line theory describes the wave propagation in waveguides such as microwave tubes,
preferable for low frequencies, hollow-pipe waveguides for higher frequencies and surface
waveguides. Various geometries of surface waveguides are well established such as mi-
crostrip transmission lines, coplanar waveguide (CPW) lines and coplanar stripline (CSL)
designs. The two resonators are designed in a CSL layout and the feedlines in a CPW
design [sketched in Figs. 2.7(b) and (c)]. Details about waveguides and waveguide designs
are discussed in various textbooks as in Refs. [74–76].

In general, a transmission line can be modeled as an ideal signal line with a resistance
per unit length Rl and an inductance per unit length Ll. A shunt conductance per unit
length Gl and a shunt capacitance per unit length Cl connect the signal line with the
ground, as sketched in Fig. 2.7(a). When using superconducting materials, Gl and Rl

can be neglected and will not be considered in the following. Ll and Cl are defined by
the layout of the network.

The phase velocity vPh = 1/
√
LlCl = c/

√
εeff in a transmission line is the speed of

light c reduced by the square root of the effective permittivity εeff [76]. The effective
permittivity depends on the dielectric substrate and the geometry of the transmission
line. Although vPh and εeff are defined by the geometric design, this design is chosen to
fulfill another very important relation, namely reducing mismatches of the characteristic
impedance between different parts of the network. The characteristic impedance of a
transmission line Z0 is given as Z0 =

√
Ll/Cl. Microwave equipment is created with a

characteristic impedance of 50 Ω. To reduce reflections, the feed lines are realized in a
50 Ω matched coplanar waveguide design with a centerstrip and lateral groundplanes on
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each side. The resonators themselves are in a coplanar stripline design. Reasons for this
will be given later in subsection 5.1.1 where the layout of the chip will be discussed.

2.5.2 Coplanar stripline resonator

At the fundamental mode, the resonance frequency f0 of a resonator with length l is
given as f0 = vPh/(2l). The wavelength λ0 of the fundamental mode is 2l. The general
expression of the resonance frequency for the nth mode is

fn =
ωn
2π

=
nc

2l
√
εeff

.

The spectrum of each mode has a Lorentzian line shape where the full width at half max-
imum (FWHM) can be expressed by the cavity decay rate κn = 2π ·FWHM. With these
parameters, the quality factor QL is defined by QL = f0/FWHM = ωR/κ. Analyzing the
measured Lorenzian gives only the loaded quality factor. It is a parallel combination of
the internal and external quality factors [74]

1

QL

=
1

Qint

+
1

Qext

. (2.13)

Qint = ωnRC and Qext = ωnR
∗C/2 [73] are the expressions of the individual parts, re-

spectively. C is the total capacitance of the resonator, the contribution of the coupling
capacitor is neglected as Cκ � C. R is the ohmic resistance and the resistance R∗ is deter-
mined by the resistive load RL and the coupling capacitor Cκ as R∗ = 1/(ω2

nC
2
κRL) +RL.

This expression represents an internal impedance which is non-zero also in superconduct-
ing setups because of the presence of the 50 Ω resistive load and the comparably small
coupling capacitance of a few fF. The capacity C is given by the layout and the used
materials of the resonator. Formulas to calculate this value are given in Ref [76].

The quantum harmonic oscillator

In a first analysis, a distributed resonator can be modeled as a parallel lumped element
circuit as described above. The classical Hamiltonian of such a system is

HLC =
Q2

2C
+

Φ2

2L
=

1

2
LI2 +

1

2
CV 2. (2.14)

By using L = 1/(ω2
RC) and replacing the classical quantities, Q and Φ by the quantum

mechanical operators Q̂ and Φ̂, the quantum mechanical version of Eq. (2.14) reads

ĤLC =
Q̂2

2C
+

1

2
ω2

RCΦ̂2. (2.15)

By replacing these observables with the standard annihilation and creation operators

â =
1√

2C~ωR

(
Q̂+ iCωRΦ̂

)
, â† =

1√
2C~ωR

(
Q̂− iCωRΦ̂

)
(2.16)
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Figure 2.8: Schematic of the used two resonator design. In the center of the resonators at l/2
the otherwise well separated resonator lines are brought close together. This design
only supports coupling of the fields where both resonators are close together. As
the total length of the resonator l is much larger than the coupling length L one
speaks of a point-like coupling.

Eq. (2.15) results in the standard one-dimensional quantum mechanical harmonic oscil-
lator Hamiltonian

ĤLC = ~ωR

(
â†â+

1

2

)
. (2.17)

For the sake of completeness, the commutation relation [â,â†] = 1 and the number oper-
ator N̂ = â†â should be mentioned [77].

2.5.3 Two LC resonators

By adding a second resonator with the same eigenfrequency interacting with the first
one, the system changes fundamentally. The Hamiltonian (2.17) is extended by a second
harmonic oscillator and a coupling part. For coupling strength gAB � ωR the Hamiltonian
reads

ĤA,B = ~ωR

(
â†â+

1

2

)
+ ~ωR

(
b̂†b̂+

1

2

)
+ ~gAB

(
âb̂† + â†b̂

)
. (2.18)

Here, â (b̂) and â† (b̂†) are the annihilation and creation operators for resonator A (B).
gAB is the coupling rate that characterizes the coupling between the two resonators and
depends, in the case of two CSL resonators on a single chip, on the geometry. The
coupling coefficient of two resonators can be separated in a magnetic and a capacitive
part gAB = |gAB,m − gAB,c| [78]. As the geometry realized in this thesis only supports
coupling of the fields at l/2, the coupling for every odd mode (λ/2, 3λ/2, ...) is caused by
a magnetic field coupling whereas the coupling of the even modes (λ, 2λ, ...) results from
a capacitive coupling. These two coupling constants are in general not equal and labeled
as gAB,m and gAB,c for an inductive and capacitive coupling, respectively. A schematic of
the used design is depicted in Fig. 2.8.

Equation (2.18) can be diagonalized using the operators

ĉ± =
1√
2

(
â± b̂

)
, ĉ†± =

1√
2

(
â† ± b̂†

)
(2.19)
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Figure 2.9: (a) Sketch of a calculated, normalized transmission spectrum of two coupled res-
onators for the fundamental and the two first harmonic modes. Close to the eigen-
frequency ωR the spectrum shows two peaks, one at ω− = ωR − gAB,m and one at
ω+ = ωR + gAB,m. Similar splitting occurs for higher harmonics. As (b) and (c)
show, the current distribution for the λ/2 (fundamental at ωR) and 3λ/2 (second
harmonic at 3ωR) is maximal at the center of the resonators. The current distribu-
tion of the λ mode is zero at l/2. The geometry of the sample investigated in this
thesis only supports a coupling of the fields at l/2. Thus, a magnetic coupling of
the λ/2 and 3λ/2 and a capacitive coupling of the λ modes can be observed. The
splitted eigenmodes oscillate in-phase at ω− and out-of-phase at ω+, respectively.

resulting in

ĤA,B = ~(ωR + gAB)

(
ĉ†+ĉ+ +

1

2

)
+ ~(ωR − gAB)

(
ĉ†−ĉ− +

1

2

)
. (2.20)

The result shows an oscillator-like behavior with two new eigenfrequencies. For the
fundamental mode the capacitive coupling is neglected and the frequencies are ω− =
ωR − gAB,m and ω+ = ωR + gAB,m which can be verified in transmission measurements.
The lower eigenmode at the frequency ω− is when the current distribution of both ”single”
resonators oscillate in phase [Fig. 2.9(b) and Fig. 2.10(a)] and the higher eigenmode at
ω+ shows an out-of-phase oscillation of the currents in the ”single” resonators [Fig. 2.9(c)
and Fig. 2.10(b)]. The out-of-phase oscillation causes a magnetic field gradient between
the two lines. This field is not generated in the in-phase oscillating case, see Fig. 2.10.

Similar splittings occur at the higher harmonics. As the coupling of every even mode
(λ/2, 3λ/2, ...) is caused by a magnetic field due to the current antinode at l/2 the
coupling constants for these higher harmonics are gAB,2n+1 = (2n + 1)gAB,m for n ∈ N.
The coupling of the odd modes (λ, 2λ, ...) is caused by the electric field wich has an
antinode at l/2. The coupling constants are here gAB,2n = 2ngAB,c for n ∈ N.
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A

B

in phase oscillation at 

A

B

out of phase oscillation at 

(a) (b)

negligible magnetic field eff

Figure 2.10: Schematic of the modes and their magnetic field. (a) The in-phase oscillating
currents cause a negligible magnetic field between the two resonators at the center
as the field generated by resonator A compensates the field generated by resonator
B (b) The out-of-phase oscillating currents generate an effective magnetic field Φeff

between the lines of the two resonators.





Chapter 3

Two-resonator circuit quantum
electrodynamics

In the preceding chapter the components for the quantum switch - transmission line res-
onators and flux qubits - were introduced. In this chapter, the foundations of circuit
quantum electrodynamics (circuit QED) are discussed briefly. In analogy to quantum
optical cavity QED one resonator (”quantized light”) is coupled to a Josephson-junction
qubit (”matter”). Then, this scenario is extended to two-resonator circuit QED by tak-
ing the example of a flux mediating switchable coupling between two superconducting
transmission line resonators.

3.1 Circuit quantum electrodynamics

The prototype system for studying light-matter interaction is a two-level atom interact-
ing via a dipolar coupling with quantized electromagnetic modes of a cavity. Cavity
QED systems often use Rydberg atoms or ions and couple these with three dimensional
optical cavities. Systems in circuit QED consist of artificial atoms coupled to quasi-one-
dimensional microwave transmission line resonators. In general, the artificial atoms are
Josephson-junction based superconducting qubits. Recently, the term had been expanded
to a semiconductor based system [79]. The general Hamiltonian of a qubit-resonator sys-
tem, as it is depicted in Fig. 3.1, is given by

Ĥ = ~ωR

(
â†â+

1

2

)
+
ε

2
ˆ̄σz +

δQ

2
ˆ̄σx + ~g ˆ̄σz

(
â† + â

)
+ Ĥγ + Ĥκ. (3.1)

The first term represents the energy of the quantized electromagnetic field stored in a
resonator with the resonance frequency ωR and the second and third term represent the
qubit. The forth term describes the interaction between the resonator field and the two
level system mediated by the coupling strength g. The two last terms represents the
loss terms of the qubit and the resonator with the rates γ and κ, respectively. Here γ
describes the decay of the qubit into modes other than the cavity mode and κ the escape
rate of photons from the cavity. In circuit QED, the qubit-resonator coupling is designed
to fulfill g � γ, κ and the loss terms Ĥγ and Ĥκ in Hamiltonian (3.1) can be neglected
in first approximation. Rotating the qubit into its eigenbasis and performing a rotat-
ing wave approximation (RWA) reduces the Hamitonian (3.1) to the Jaynes-Cummings

21
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



g

Figure 3.1: A two-level atom (red) interacting coherently with the field in a cavity at the rate
g. Apart from the coherent process, relaxation processes of the qubit at a dacay
rate γ and of the photon at a decay rate κ are depicted.

Hamiltonian [4, 80]

ĤJC = ~ωR

(
â†â+

1

2

)
+ ~

ωQ

2
σ̂z + ~g sin θ

(
â†σ̂− + âσ̂+

)
(3.2)

that describes the coherent behavior of the qubit and the microwave resonator. Here σ+

and σ− are the qubit raising and lowering operators. As in eq. 3.1 the first term is the
resonator Hamiltonian. The second term represents the atom as a spin-1/2 system with
transition energy ~ωQ, the qubit. The third term describes the interaction where the
atom (qubit) absorbs or emits a photon at the rate g sin θ, θ = arctan(δQ/ε), while at the
same time a photon is created or annihilated, respectively. The interaction term is the
result of a rotating wave approximation of the more general dipole term ~g sin θ(â†+ â)σ̂z
from Eq. (3.1). This approximation is valid if ωQ + ωR � g, ∆, with the detuning
∆ = |ωQ − ωR|. The breakdown of this approximation was shown in Ref. [81] where the
ultra-strong coupling regime has been accessed for the first time.

In addition to the coherent processes between a qubit and a cavity described by
ĤJC (3.2) also incoherent phenomena are observable. In circuit QED coupled system
fulfilling g < γ, κ can be very well modeled. Then, the last two terms of Eq. (3.1) can
no longer be neglected and decoherence effects of the qubit at a rate γ and photon decay
at a rate κ define the limits for coherent interaction processes and thus the limits of the
strong coupling regime. To this effect, circuit QED is well suitable for studying quantum
measurements and open systems. Although, this physics opens a wide field interesting
experiments, it will not be discussed in detail. Within this work the strong coupling limit
g � γ, κ is fulfilled. Hence, loss processes are small and usually can be neglected.

The eigenstates of the Jaynes-Cummings Hamiltonian HJC are neither qubit states (|g〉
or |e〉) nor photon number states |n〉 of the cavity, see Fig. 3.2. Good approximations of
the resulting eigenstates can be provided in two regimes, the resonant and the dispersive
regime.

3.1.1 The resonant regime

When the detuning ∆ between the qubit transition frequency ωQ and the resonator
frequency ωR is smaller than the coupling rate g one speaks of the resonant regime. In
the absence of decoherence, an excitation placed in the system oscillates between a qubit
excitation and a photon in the cavity. For such vacuum Rabi oscillations, the frequency
is given by the coupling rate g. In the strong coupling limit, many oscillations can be
completed before quantum coherence is lost.
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Figure 3.2: Schematic energy level diagram of the Jaynes-Cummings Hamiltonian. The dashed
lines represent the eigenstates of the uncoupled systems. The states on the left side
(green) are the states where the qubit is in the ground state, on the right side is
the qubit is excited. |n〉 corresponds to the photon number states inside the cavity.
(a) Resonant regime (∆ < g sin θ); the coupled states split by 2g sin θ

√
n. (b)

Dispersive limit (∆� g sin θ); the resonator’s frequency is shifted by ±g2 sin2 θ/∆
depending on the qubit state while the qubit transition frequency is shifted by
±(2n+ 1)g2 sin2 θ/∆. n is the photon number populating the cavity.

At ∆ = 0, the coupling rate g of the two systems leads to symmetric and antisymmet-
ric superposition states having a splitting of 2g sin θ

√
n, see Fig. 3.2(a). The resulting

eigenstates, so called dressed states, are

| − ,n〉 = cos θ|g,n〉 − sin θ|e,n− 1〉

|+ ,n〉 = sin θ|g,n〉+ cos θ|e,n− 1〉.

Although in the strong coupling limit the interaction can be observed, the relaxation
cannot be neglected. Decay opens ways for new experiments such as atomic cooling using
the Purcell effect [82]. Since excitations are equally shared between the qubit and the
cavity the decay rate is Γ = (γ + κ)/2. By designing κ � γ the cavity allows faster
energy extraction. In this manner the qubit can be cooled to its ground state.

3.1.2 The dispersive limit

The dispersive limit (|ωQ − ωR| � g sin θ) opens possibilities for qubit detection which
are also used within this thesis. Here, no atomic transitions occur but virtual photons
mediate dispersive interactions. These lead to a level shift proportional to (g sin θ)2/∆.
The total Hamiltonian can be approximated as [83]

Ĥ ≈ ~(ωR + 2χσ̂z)(â
†â+ 1/2) + ~ωQσ̂z/2. (3.3)
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Figure 3.3: (a) Schematic of the quantum switch. (b) First order coupling channels (orange
arrows). (c) From the analysis of the effective coupling Hamiltonian, one finds an
effective coupling between the two resonators. It consists of a dynamic coupling
mediated by the qubit (red arrow) and a geometric coupling defined mainly by the
layout of the resonators (blue arrows).

Depending on the qubit state the resonator frequency is shifted by

χ =
(g sin θ)2

∆
,

with the numbers of photons n inside the cavity, see Fig. 3.2(b). The relation between
the resonator mode that is probed and the qubit state is presented in Ref. [84] and is
used for qubit detection in a two-tone setup, see subsection 4.4.4.

Rearranging the terms of Eq. (3.3) yields

Ĥ ≈ ~ω(â†â+ 1/2) + ~[ωQ + 2χ(â†â+ 1/2)]σ̂z/2.

The qubit transition frequency is shifted by the photon number dependent AC-Zeeman
shift 2n(g sin θ)2/∆ and the constant Lamb-shift (g sin θ)2/∆. The former can be used to
perform a quantum non-demolition measurement of the photon number inside the cavity
and thus to calibrate the power in the system.

3.2 The quantum switch

After introducing into the basic concept of circuit QED, the system is extended to two-
resonator circuit QED. This thesis concentrates on one specific device consisting of two
on-chip microwave resonators and one flux qubit. The first part of this chapter analyzes
the theory of the quantum switch by deriving and interpreting its Hamiltonian. Some
simulations for different parameters are shown at the end of this section. They point out
the criticality of the fabrication parameters of such a device.

3.2.1 Derivation of the quantum switch Hamiltonian

In this section a systematic formalism of two-resonator circuit QED is introduced. The
qubit can function as a quantum switch between the two originally coupled resonators.
The author refers to Ref. [43] where this device was proposed.

A schematic of the device is depicted in Fig. 3.3(a). The Hamiltonian of this three-
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component system consists of the single components and the interaction terms

ˆ̄H =
ε

2
ˆ̄σz +

δQ

2
ˆ̄σx + ~ωA

(
â†â+

1

2

)
+ ~ωB

(
b̂†b̂+

1

2

)
+ ~gA ˆ̄σz

(
â† + â

)
+ ~gB ˆ̄σz

(
b̂† + b̂

)
+ ~gAB

(
â† + â

) (
b̂† + b̂

)
.

(3.4)

The interaction channels are depicted in Fig. 3.3(b). Here, â (b̂) and â† (b̂†) are the
annihilation and creation operators for photons in resonator A (B). ωA and ωB ar the res-
onance frequencies of resonators A and B and gA and gB the first order coupling between
between the qubit and the resonators A and B, respectively. For a flux qubit, the coupling
between the qubit and the resonators is of inductive nature, meaning ~gA = IpIA0MQA

(~gB = IpIB0MQB) where MQA (MQB) is the mutual inductance between resonator A (B)
and the qubit. The vacuum (zero point) fluctuations of the current of resonators A (B)
is given by the expression IA0 =

√
~ωA/2LA (IB0 =

√
~ωB/2LB) and LA (LB) is the self

inductance of resonator A (B).
Neglecting global energy offsets, assuming equal resonance frequencies (ωA = ωB = ωR)

and couplings (gA = gB = g) and rotating the Hamiltonian of Eq. (3.4) into the qubit
energy eigenbasis {|g〉, |e〉}, one gets

Ĥ ′ =
~ωQ

2
σ̂z + ~ωR

(
â†â+ b̂†b̂

)
+ ~g cos θσ̂z

[(
â† + â

)
+
(
b̂† + b̂

)]
− ~g sin θσ̂x

[(
â† + â

)
+
(
b̂† + b̂

)]
+ ~gAB

(
â† + â

) (
b̂† + b̂

)
.

(3.5)

Here ωQ =
√
δ2

q + ε2 is the qubit transition frequency and θ = arctan(δQ/ε) the Bloch-
or mixing angle.

In the dispersive limit (∆ = ωQ − ωR � gAB, g) a Schrieffer-Wolff transformation [85]
leads to an effective interaction Hamiltonian. Reference [44] compares two ways of cal-
culating this effective Hamiltonian, within and beyond the rotating-wave approximation
(RWA). Although, performing a Schrieffer-Wolff transformation after a RWA, the calcu-
lation becomes more clear, the result will deviate from a numerical simulation. Therefore,
the more general calculation, beyond the RWA is sketched here.

The unitary transformation used to diagonalize the Hamiltonian of Eq. (3.5) up to
second order is

Û = exp (−λ∆D − λΣS − λΩW)) .

The parameters read

λ∆ =
g sin θ

∆
, ∆ = |ωQ − ωR|

λΣ =
g sin θ

Σ
, Σ = ωQ + ωR

λΩ =
g cos θ

ωR
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and
D = −σ̂+â+ σ̂−â

† − σ̂+b̂+ σ̂−b̂
†

S = σ̂−â− σ̂+â
† + σ̂−b̂− σ̂+b̂

†

W = σ̂z
(
â− â†

)
+ σ̂z

(
b̂− b̂†

)
.

Please note that in the dispersive limit the relation λΣ, λΩ < λ∆ � 1 holds. These
inequalities allow to neglect terms of higher order than λ2

∆,Σ,Ω. Thus, the effective second
order Hamiltonian becomes

Ĥeff = Û †Ĥ ′Û =~
ωQ

2
σ̂z + ~ωR

(
â†â+ b̂†b̂

)
+ ~σ̂zgdyn

(
â†â+ b̂†b̂

)
+ ~ (gAB + gdynσ̂z)

(
â†b̂+ âb̂†

) (3.6)

with

gdyn =
(g sin θ)2

∆
+

(g sin θ)2

Σ
. (3.7)

This is the quantum switch Hamiltonian. The first two terms describe the qubit and the
resonators, the third term represents the AC-Zeeman shift of the resonator modes due to
the qubit. The last term describes the interaction between resonators A and B with an
effective coupling coefficient. This coefficient consists of a geometric contribution gAB due
to the layout of the resonators on the chip, and a dynamic contribution (g2 sin2 θ/∆ +
g2 sin2 θ/Σ)σ̂z, see Fig. 3.3(c). Notably, the latter not only depends on the external
applied magnetic field (due to the flux dependence of θ, ∆ and Σ) but also on the qubit
state. Consequently, depending on the qubit eigenstate, the effective coupling coefficient
is

g|g〉sw = gAB −
(

(g sin θ)2

∆
+

(g sin θ)2

Σ

)
g|e〉sw = gAB +

(
(g sin θ)2

∆
+

(g sin θ)2

Σ

)
for |g〉 and |e〉, respectively. Since one part of the coupling is dynamic, the flux can be
tuned such that

(g sin θ)2

∆
+

(g sin θ)2

Σ
= gAB. (3.8)

This condition is called switch setting condition and represents the fundamental charac-
teristic of the quantum switch. Depending on the qubit state, the resulting coupling is
finite or vanishes. Hence, the two resonators are coupled and a normal mode splitting
can be observed or they are completely decoupled and a signal entering one resonator
cannot be transferred to the second resonator. Since a qubit is mediating the coupling
between the two resonators, it may also be used to bring the switch into a superposition
between ”on” and ”off”. Interesting ideas for later measurement protocols will be given
in chapter 6.

When performing a RWA in the Hamiltonian given by Eq. (3.5) prior to the second-
order transformation, the contribution (g sin θ)2/Σ to gdyn cannot be found. For realistic
parameters one expects g2 sin2 θ/∆ = 10 − 100 MHz and g2 sin2 θ/Σ = 0.1 − 10 MHz.
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Although the results differ only in the percent range, the (g sin θ)2/Σ contribution shall
not be neglected.

Finally, insight into the physics beneath Eq. (3.5) can also be gained by analyzing the
eigenmodes of the coupled resonators system. To this end, the operators

ĉ± =
1√
2

(
â± b̂

)
, ĉ†± =

1√
2

(
â† ± b̂†

)
(3.9)

are introduced. Then, the Hamiltonian (3.5) can be expressed as

Ĥeff =~
ωQ

2
σ̂z + ~(ωR + gAB)ĉ†+ĉ+ + ~(ωR − gAB)ĉ†−ĉ−

+
√

2~g cos θσ̂z

(
ĉ†+ + ĉ+

)
−
√

2~g sin θσ̂x

(
ĉ†+ + ĉ+

)
.

(3.10)

By performing a rotating wave approximation, the resulting Hamiltonian is

ĤRWA
eff =~

ωQ

2
σ̂z + ~(ωR + gAB)ĉ†+ĉ+ + ~(ωR − gAB)ĉ†−ĉ−

−
√

2~g sin θ
(
σ̂−ĉ

†
+ + σ̂+ĉ+

) (3.11)

The first term of this Hamiltonian describes the qubit and the two following terms two
uncoupled resonator modes with different eigenfrequencies. The last term is an interaction
term between the qubit and the higher ĉ†+ mode mediated by a coupling constant g+ =√

2g. As Fig. 2.10(a) shows, the ĉ†− mode does not induce an effective magnetic field
between the two resonator lines and thus cannot couple with the qubit. By comparing
Ĥeff in Eq. (3.11) with HJC in Eq. (3.2), it becomes clear that the terms concerning the
qubit and the ĉ†+ mode form a Jaynes-Cummings Hamiltonian.

3.2.2 Numerical simulation

For a better understanding of the system, the full Hamiltonian [Eq. (3.4)]

ˆ̄H =
ε

2
ˆ̄σz +

δQ

2
ˆ̄σx + ~ωA(â†â+

1

2
) + ~ωB(b̂†b̂+

1

2
)

+ ~gA ˆ̄σz(â
† + â) + ~gB ˆ̄σz(b̂

† + b̂)

+ ~gAB(â† + â)(b̂† + b̂)

is diagonalized numerically. It is important to note, that although the effective coupling
Hamiltonian of Eq. (3.6) only holds in the dispersive regime where ∆ � gAB, g, the full
Hamiltonian describes the dispersive and the resonant regimes.

The qubit and resonator parameters used in the simulation shown in Fig. 3.4 are chosen
to be similar to the experimentally determined values. They are summarized in Tab. 3.1.
In Fig. 3.4 the differences between the first three excited energy levels and the groundstate
level are plotted versus the external magnetic flux Φext. This spectrum is expected in a
spectroscopy measurement. In the close-up [Fig. 3.4(b)] the switch setting condition is
clearly visible in the form of a crossing of the two lowest transitions. At this flux value,
the qubit is far detuned. This guarantees the quantum switch operation regime being in
the dispersive limit. Thus, the decoherence time of the detuned qubit does not limit the
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Figure 3.4: (a) Numerical simulation of energy eigenstates of the quantum switch as a function
of Φext. (b) Close-up of the area indicated by a dashed box in (a). The qubit
(green) is far detuned from the resonator modes. The switch setting condition is
in the dispersive limit. Close up in orange box: The crossing of the two resonator
modes, indicating the switch setting condition is clearly visible.

decoherence of the quantum switch.

3.2.3 Critical parameters of the quantum switch

The simulation presented in the previous section is performed using the parameters listed
in Tab. 3.1 which are also used in the experiment. Variations of the parameters may lead
to a disappearance of the quantum switch behavior. Examples are also given in Tab. 3.1

Parameters ωR/(2π) gAB/(2π) LR δQ/h Ip g/(2π)

Sample (Fig. 3.4) 4.8957 GHz 8.5 MHz 4.8813 nH 3.9 GHz 490 nA 112 MHz

S 2 [Fig. 3.5(a)] 4.8957 GHz 8.5 MHz 4.8813 nH 4.3 GHz 540 nA 20 MHz

S 3 [Fig. 3.5(b-c)] 4.8957 GHz 8.5 MHz 4.8813 nH 5.9 GHz 540 nA 87 MHz

Table 3.1: Quantum switch parameters used for the simulation shown in Fig. 3.4 and Fig. 3.5.
First parameter line gives the actual values realized in the experiment. Line two
and three show variations of the qubit gap δQ and the coupling constant g.

where either the coupling g between the qubit and each resonator is reduced or the qubit
gap is increased to 5.9 GHz.

Both scenarios are not unlikely. Experimentally, a sufficient coupling of g ≈ 100 MHz
is achieved by coupling the qubit galvanically to the resonator design. Thus, the qubit
shares a line with each resonator as depicted in Fig. 2.3(b). A non-galvanically coupled
qubit leads to coupling constants of only 10 − 30 MHz [81]. Figure 3.5(a) shows that,
although in this case the characteristic crossing of the energy levels is observable, the
qubit is only detuned by a few MHz. As a consequence, some of the protocols suggested
in Ref. [43] are more difficult to realize as their performance will suffer from the rather
short coherence time of the qubit. The second scenario, a δQ-variation, to a larger gap
energy, leads to a complete absence of the switch setting condiction. Here, the sum of
the AC-Zeeman shift 2ng2 sin2 θ/∆ [33, 86] and the Lamb shift g2 sin2 θ/∆ [87] is less
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Figure 3.5: Spectra of devices with non-optimal parameters. For a better visibility the black
lines in the figure show the undisturbed resonator and qubit energies. (a) Using
parameters of S 2 (Tab. 3.1). The coupling g is too small, thus the switch setting
condition is at a non-dispersive flux point. (b) and (c) Using parameters of S 3
(Tab. 3.1). The qubit gap δQ is increased to 5.9 GHz. AC-Zeeman and Lamb shift
do not shift the higher mode such that a crossing is observable (c).

than 2gAB and a crossing is not observable. Similarly, one finds a qubit gap of less than
2.5 GHz to be unsuitable for the realization of a switch. Deviations of δQ are very likely
since the gap energy is highly sensitive to fabrication parameters such as the Josephson
junction size or the quality of the insulating oxidation layer.

The above examples illustrate that particular care has to be taken to fabricate a qubit
with suitable parameters. A large portion of the next chapter is dedicated to this sensitive
and critical fabrication process.





Chapter 4

Experimental Techniques

A well controlled fabrication process is of fundamental importance to realize operating
devices. In this chapter, the experimental techniques to produce and measure a quantum
switch sample are introduced. To this end, first the fabrication process of resonators and
flux qubits are outlined. The exact fabrication parameters can be found in appendix B.
Next, the fundamental cryogenic setups for qubit and resonator characterization are
presented. These measurements are used to optimize the design parameters and the
qubit fabrication process to obtain reproducible results. The 50 mK dilution unit that is
used to characterize qubits is presented using the example of a four-Josephson-junction
flux qubit. Here, a dc-SQUID is used to detect the magnetic field that is induced by
the qubit. Finally, the setup and protocols for the quantum switch measurements are
discussed.

4.1 Fabrication

A robust technique for the fabrication of thin layer structures with lateral dimensions in
the µm-range, optical lithography with dry etching technology, is used for manufacturing
the resonators. Another variant is the use of a lift-off process which is applied for the
gold leads used for the dc-SQUID measurements. A lift-off process guarantees a smooth
substrate surface after the first fabrication step which is useful for a good SQUID and
qubit fabrication. Unfortunately, in the quantum switch experiment such a technique
could not be implemented due to technical reasons. Tests of using a lift-off process to
fabricate the two-resonator sample did not show the desired result. The resonators are
made of 100 nm thick sputtered niobium which accumulates isotropic on the sample. As
discussed in section 4.1.2 the lift-off process requires a well-defined undercut profile of the
resist. As a result of the undercut and the isotropic distributed metal, the actual design
is smeared a bit which has no significant impact on the gold leads but on the properties
of the coupling capacitors of the resonators and thus directly on the quality factor of the
resonators. A second risk factor lays in the thickness of the niobium. In the sputtering
process the metal does not only sediment on top of the resist but also in the undercut
profile. While the thin gold layer (20-30 nm) of the lead structures becomes very thin at
the resist walls and leave a lot of pin holes that allow the lift-off process, the niobium
layer is too thick and the absence of pin holes leaves no possibility for the lift-off step.

Since the fabrication process is complex and one might loose the overview, the outline
for the fabrication is as follows: For the dc-SQUID detection of a qubit, first the dc-bias
lines are fabricated using optical lithography and a lift-off process. Here, 36 samples are
fabricated at once on a one-inch waver. In a second fabrication process, the qubit and
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after sputtering
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Figure 4.1: Schematic of the fabrication process: (a) Sputtering of 100 nm niobium on a silicon
substrate; (b) Resist deposition: A 1.14µm thick layer of AZ 5214 resist; (c) Ex-
posure with UV-light though a chromium mask symbolized by the black line; (d)
After developing the resist is an one-to-one image of the layout; (e) reactive ion
etching removes metal; (f) Sample after final resist removal.

SQUID are placed onto the chips. In the end the waver is divided into 36 chips each with
one sample. The fabrication of the quantum switch is similar. First the resonators are
fabricated using a dry etching process and in a second process the qubit is placed onto
the chip in between the resonators.

The three procedures, optical lithography with dry etching, optical lithography with
lift-off and e-beam lithography are explained in the following.

4.1.1 Niobium resonators

The resonators are made of 100 nm sputtered niobium on a silicon substrate of 10 ×
6 mm2. The 250µm thick silicon substrates are commercially available with a 50 nm
thin, thermally grown oxide layer1. Optical lithography is used to define the geometric
layout in the resist layer. The spatial resolution of the optical lithography is limited by
the wavelength of the used UV-light, here 365 nm. This is suffizient to expose 2µm small
structures which are the smallest dimensions used in the resonator design. The niobium
resonators are patterned using reactive ion etching (RIE).

A proper cleaning of a new substrate is an important step for a successful process.
The commercially acquired substrates are covered with a layer of resist to protect the
surface. This resist is removed in 70 ◦C warm acetone for at least 10 min. Afterwards,
each substrate is cleaned by sonicating, twice in acetone and once in isopropanol. The
substrate is dried with nitrogen and directly transferred into a high vacuum chamber for
the deposition of 100 nm niobium, see Fig. 4.1(a). This is sputtered using a dc-magnetron.
Here, a voltage of 500 V creates an Ar-plasma and accelerates the ions onto the niobium
target. Niobium is emitted from the target and accumulates on the substrate. It is
important to note that the sputtering process is an isotropic and not a directed process.
The thickness of the resulting film was determined by X-ray diffraction and the quality by

1Crystec GmbH

http://www.crystec.de/silizium-d.html
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measuring the residual resistance [88]. Using niobium instead of aluminum, which is used
for the qubits, allows to characterize the resonators at 4.2 K as the critical temperature
of niobium is 9.2 K.

Patterning the niobium film is achieved with optical lithography. An image reversal
resist, AZ 52142 is spun onto the chip to a thickness of approximately 1.14µm. A soft bake
at 110◦C for 70 s finishes the deposition step and the sample is ready for the exposure.
The structures are copied from an optical mask by exposing the sample to UV-light
trough the mask with a MJB3 Photomask Aligner from Süss MicroTech, see Fig. 4.1(c).

The exposed AZ 5214 is developed using an AZ 726 MIF Developer3 which consists
of 2.38 % tetramethylammoniumhydroxide (TMAH) in water. This developer is quite
sensitive to exposed resist so that the developing time, typically between 55 s and 70 s,
is not very critical. After that step, the structure of the resist is a one-to-one copy of
the structure on the mask. Next, the uncovered niobium is removed in a RIE process.
In general, two kinds of etching processes can be realized in a RIE system, chemical
and physical etching. The first one implies a reactive SF6 plasma and comparably low
forward power in contrast to physical etching where the material is removed by an argon
ion plasma and larger forward power. In this work, a mixture of both techniques is
used, implying argon ions and moderate powers. This kind of etching ensures a good
removal of the niobium whereas the resist layer is not affected dramatically. After the
etching step, the niobium structure shows the layout of the resonators. After a last
cleaning step, the sample can be either mounted into a sample box for measurements,
see subsection 4.2.1, or used for quantum switch experiments which requires further
fabrication steps to implement the qubit, see subsection 4.1.3.

4.1.2 Dc-bias lines

In the following, the layout and fabrication of the gold dc-bias lines will be shown. As
mentioned before, 36 samples are fabricated at once on a one-inch waver, see Fig. 4.2.
After the dc-bias lines are fabricated, 36 SQUIDs and qubits are implemented using a
separate fabrication process before the waver is manually broken up into the 36 chips
using a waver cutter.

Design of dc-bias lines

The on-chip dc lines made of gold are required to read out the SQUID. Two different
designs of the bias lines are used in this thesis. The first one depicted in Fig. 4.2(a) is
very robust against fabrication inaccuracies. In the blow-up one can see that although
eight bias lines are designed for one chip, the layout provides enough space for different
SQUID and qubit designs.

To provide the possibility of an on-chipRC-low pass filter, in a second layout [Fig. 4.2(b)]
the ohmic resistance of the gold line on the chip is enhanced by increasing the line length
and decreasing the line cross section. This layout is equivalent to the layouts presented
in Refs. [81, 89]. The current lines are approximate 20 cm long and 5µm wide, the volt-
age line are approximate 3 cm long. To double the thin meandered lines for voltage and
current is reasonable since 30% of the lines, especially the long current lines, are broken.

2Microchemicals GmbH, AZ 5214
3Microchemicals GmbH, AZ 726 MIF

http://www.microchemicals.eu/photoresist/photoresist_az_5214_e_eng.htm
http://www.microchemicals.eu/developer/developers.html
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Figure 4.2: Two designs for the dc bias lines. (a) Photograph of a wafer with 9× 4 chips in a
first design. Blow-up: The on-chip resistance of the gold lines is low but the lines
are robust against fabrication inaccuracies. The space in the middle guarantees the
possibility of fabricating qubits and SQUIDS of various designs. (b) Photograph
of a wafer with 36 chips. Magnified view of one chip (false color): The actual chip
design with the meandered gold lines includes on-chip ohmic resistors. Since the
thin meandering lines are very sensitive, two current (red) and two voltage (blue)
lines were placed on the chip to connect I+ and U+ respectively. The ground (green)
is used for the second current and the voltage connection, I− and U−.

For a four point measurement, only one meandered current (voltage) line is chosen to
connect I+ (U+). I− and U− are connected to ground. The four additional pads on the
chip are used for tunable flux qubits and are not relevant for this work.

Fabrication of gold bias lines

In contrast to the dry etching technique that is used in the two-resonator fabrication
process, the on-chip bias lines for the dc-SQUID readout are made with a lift-off technique.
This technique ensures a smooth surface of the silicon substrate after sample fabrication
which is preferred for further qubit fabrication. The 525µm thick silicon substrate is
covered with a 50 nm thin thermally oxidized silicon layer, as the substrates for the two-
resonator sample. Although, the substrate thickness varies in both cases, the thickness
of the oxide layer is the same and the fabrication process of the qubit can easily be
transferred.

The presented process is optimized to ensure a large undercut of the resist layer. Thus,
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Figure 4.3: Schematic of the fabrication process used for the gold leads: (a) deposition of
AZ 5214 followed by a soft bake; (b) UV flood exposure and followed by a reversal
bake; (c) UV exposure using a chromium mask; (d) development for approximately
20 min; (e) in-situ sputtering of 5 nm chromium and 20 nm gold; (f) removal of
remaining resist and metal in the lift-off step.

the sputtered gold structure shows a smooth edge profile in the end. Later in the SQUID
fabrication, the aluminium leads of the SQUID must be connected galvanically with the
gold lines, therefore sharp edges of the gold structure should be avoided. Gold is used
as conductor due to two reasons: it shows a finite resistivity at low temperatures and it
does not significantly oxidize at room temperature and atmospheric pressure.

Since the qubit is fabricated after the gold leads, the first cleaning step of the substrate
is essential. In addition to the cleaning by sonicating, the plain substrate is ashed using
an pure O2 atmosphere in the RIE system. The following process steps are depicted in
Fig. 4.3. For the optical lithography, the same resist4 is used as for the etching process of
the two resonators. By applying a flood exposure where the whole wafer is exposed briefly
with UV-light, see Fig. 4.3(b), the resist at the surface is exposed with a higher dose than
the resist close to the substrate. The following reversal bake leads to a hardening effect
of the resist’s surface. Later, these two steps will result in a well defined undercut.

The desired pattern is defined in the second UV exposure using a chromium mask
and a MJB3 Photomask Aligner as in the fabrication process of the two resonators,
see Fig. 4.3(c). The following development leaves the structure in the resist with a
comparably large undercut. With the extra reversal bake, the developing time increases
compared to the developing time of the etching process up to 20 min. The sample is now
ready for the deposition of the metal as depicted in Fig. 4.3(d)

The principle of the gold-sputtering process does not differ from the principle of the
niobium-sputtering process. Nevertheless, the table-top sputtering chamber used in this
step allows for the sputtering of different materials in-situ. This is necessary since gold
adheres very badly to the silicon substrate. Therefore, a 5 nm thin chromium adhesion
layer is used before sputtering 25-30 nm gold, see Fig. 4.3(e). To remove the remaining
resist and the additional metal the wafer is cleaned in warm acetone. This procedure is
the so-called lift-off process, see Fig. 4.3(f). The result is a silicon substrate covered by

4AZ 5214E from Microchemicals GmbH

http://www.microchemicals.eu/developer/developers.html
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the golden bias lines which are used to connect a dc-SQUID.

4.1.3 Qubits and SQUIDs

The dimensions of the Josephson junctions of SQUID and qubit are in the submicrom-
eter regime. Therefore, the patterning with an optical UV-light source is not possible.
This section presents the fabrication of Josephson junctions using electron-beam lithog-
raphy and shadow evaporation. The design of both qubits, the four-Josephson-junction
qubit discussed in section 4.3 and the three-Josephson junction qubit implemented in the
quantum switch, are shown and their differences are discussed.

Qubit designs

The qubit layout is adapted to the environment. The four-Josephson-junction qubit
which is read out with a SQUID has a loop size of 20.5× 8.5µm2. The design is depicted
in the lower part of Fig. 4.4(a). The exact design parameters were optimized within the
diploma thesis of F. Bilger [90] and are listet in Tab. A.1 in appendix A. The areas of
three of the Josephson junctions are 0.047µm2 while the fourth Josephson junction is
reduced by a factor α = 0.65. The final result depends on various parameters such as
temperature, humidity and age of the used resist and the structure of the nearby envi-
ronment. By writing proximity bars close to the Josephson junctions, see Fig. 4.4(c), the
resist is exposed strongly at the junctions and proximity effects due to other structures
or the other effects are almost negligible. With this functional element of the Josephson
junctions, a transfer to other qubit layouts such as different qubit sizes is easy to perform.
The Josephson junctions are created by overlaying two layers of aluminum with an alu-
minum oxide layer in between. Compared to former flux qubits designed and fabricated
at the Walther-Meißner-Institut, Refs. [81, 89], these qubits are relatively large. The
reason lies within the possible implementation of the qubits into the quantum switch.
Although the design of the four-Josephson-junction qubit is not combined with the two-
resonator sample within the scope of this thesis, the qubit is already designed to be easily
implemented into the two resonators in the future.

The design of the Josephson junctions used in the SQUID and the three-Josephson-
junction qubit differs completely. The layout parameters for this kind of Josephson
junctions were already investigated by T. Niemczyk [81, 91]. As depicted in Fig. 4.4(d),
proximity bars are also used to minimize inaccuracies. The areas of the Josephson junc-
tions are 0.03µm2. The α-value is approximately 0.7. Apart from the Josephson junc-
tions, also the design of the four-Josephson-junction qubit differs from the design of the
three-Josephson-junction qubit, see Fig. 4.4(a). The latter is directly connected to the
resonator. The gap in the niobium resonator line is closed by an aluminum line when
fabricating the qubit. The interface between niobium and aluminum is critical since nio-
bium builds a very hard oxide at ambient pressure and room temperature which cannot
be avoided. Therefore, the overlap is chosen to be comparably large.

Electron-beam lithography

The Josephson junction is realized using shadow evaporation which requires a controlled
undercut and a very hard top layer of the resist. The usage of a two layer resist combina-
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Figure 4.4: Scanning electron micrographs and e-beam layout of a four-Josephson-junction
(red) and the read-out SQUID (blue) (a),(c) and a three-Josephson-junction (red)
qubit embedded between the two resonator lines (green) (b), (d). (a) False color
SEM picture of the qubit (red) and the SQUID (blue) and CAD design of the fab-
ricated sample. (c) The magnified view of the Josephson junctions of the qubit
clearly shows the proximity bars that are needed to guarantee a reproducible un-
dercut. (b), (d) Analogous for the three-Josephson-junction qubit. The gap of
the resonators are closed by a connection of aluminum (green). The qubit (red) is
galvanically coupled to the two resonators.
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Figure 4.5: Electron-beam exposure of the resist for the qubit and SQUID pattern. (a) A two
layer resist system consisting of PMMA/MA 33% and PMMA/950K is spun onto
the wafer. (b) An electron beam is used to write the submicrometer structure into
the resist. (c) After the development, the lower resist layer forms a well defined
undercut.
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Figure 4.6: Slanted view from above on a free standing resist bridge. The already evaporated
double layer structure can be seen (blue and red)

tion is a well established method at the WMI [81, 92, 93] and is depicted in Fig. 4.5(a).
The bottom layer consists of PMMA/MA 33%5 with a thickness of 680 nm. The resist
of the top layer, PMMA/950k6 is only 70 nm thin and less sensitive to high power elec-
trons. The structure is written with an 30 kV electron beam onto the resist. The less
sensitive top layer is only exposed at the exact position of the beam and thus defines the
structure. The sensitivity to electrons of the lower layer results in the needed undercut,
see Fig. 4.5(c). The proximity bars in the layout help to increase the undercut while the
top layer of the resist is negligibly affected.

A critical part of a working qubit is the exact definition of the α-junction, the junction
reduced by a factor of α compared to the other two (three) junctions. Since the dimensions
of the fabricated structures are not exactly the designed dimensions of the layout, the
manufacturer must know the exact e-beam behavior and readjust the designed sizes of
the junctions. A deviation of the ideal size of the different Josephson junctions within
one qubit of more than 10% leads, in general, to a non-working qubit as the gap energy
δQ depends exponentially on α. The two Josephson junctions of the SQUID used in
the readout of the four-Josephson-junction qubit are less sensitive than the Josephson
junctions of the qubit.

After writing the layout into the resist and developing it, the layout is structured in the

5Allresist GmbH, PMMA/MA
6Allresist GmbH, PMMA/950k

http://www.allresist.de/wMedia/pdf/wEnglish/produkte_ebeamresist/AR_P617.pdf
http://www.allresist.de/wMedia/pdf/wDeutsch/produkte_ebeamresist/AR_P631_679.pdf
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Figure 4.7: Schematic of shadow evaporation and oxidation (a) Aluminum evaporation under
an angle of α = 16◦. (b) Oxidation for approximately 21-26 min. (c) Second
evaporation using α = −16◦.
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Figure 4.8: Schematic of the origin of extended Josephson junctions. (a) Since the current in
all Josephson junctions goes from top (green) to bottom (blue) layer, it has to be
transferred from top to bottom layer. This large Josephson junction is not taken
into account as a qubit Josephson junction in theory. Nevertheless, it influences
decoherence and dephasing times. (b) In the four-Josephson-junction design these
extended Josephson junctions are avoided by using all layer transitions as well
defined Josephson junctions.

top resist layer with a well defined undercut, see Fig. 4.5(c). This leads to free-standing
bridges, as the SEM image of Fig. 4.6 shows.

Shadow evaporation and oxidation

For the shadow evaporation process, the wafer is mounted onto a sample holder and
installed into the ultra high vacuum chamber used for this process. The system for the
aluminium evaporation was installed by T. Brenninger [94]. In contrast to sputtering,
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Figure 4.9: (a) shows the schematic of a Josephson junction after the lift-off process in the junc-
tion design of the four-Josephson junction qubit. (b) and (c) show scanning electron
micrographs of typical Josephson junctions from a three-Josephson-junction qubit
and a four-Josephson-junction qubit. The two layers of aluminum of the shadow
evaporation can be easily seen.

electron-evaporation is a directed process. For the fabrication of the Josephson junctions,
the sample holder can be tilted up to ±90◦. In this case, the first aluminum layer is
deposited under an angle of 16◦ and with a thickness of 40 nm, see Fig. 4.7(a). The next
step is one of the most crucial steps in the fabrication process of Josephson junctions, the
oxidation. The 1-2 nm thin oxide layer is fabricated by thermal oxidation in a dioxygen
atmosphere at pO2 = 2 × 10−4 mbar for 21-26 min. Since the critical current depends
exponentially on the thickness of the oxide layer, small deviations of oxidation times
and pressures easily leads to changes of the critical currents by a factor of two. Critical
currents densities of 15µA/µm2 for the three-Josephson-junction qubit and 20µA/µm2

in the case of the four-Josephson-junction qubit are preferable but not compulsory. By
evacuating the chamber again the oxidation process is stopped immediately. For the
second evaporation, the sample holder is tilted by −16◦ and the second aluminum layer
is evaporated. To ensure a smooth connection over the edges from the first evaporation,
the thickness of the second layer is 70 nm. So the total thickness of the qubit is around
110 nm and thus 10 nm thicker than the resonator thickness. That ensures a smooth
coating at the resonator-qubit interface and the edges.

The shadow evaporation in combination with the design of the three-Josephson-junction
qubit shows how the so-called large-area Josephson junctions are created. As the current
in the Josephson junctions always flows from one to the other aluminum layer and the
number of the layer transitions has to be even, a fourth large-area junction has to be
included. Fig. 4.8 sketches how in the case of the three-Josephson-junction qubit the
current has to be transferred back to the top layer. This large-area ”Josephson junction”
is around 50 times larger than the qubit Josephson junctions. The increased area of
this junction leads to an enormous critical current and thus to a negligible phase drop.
Therefore, this junction can be neglected in the theory of the qubit. Nevertheless, defects
and impurities in the oxide layer influence the dephasing and thus the decoherence time
of the qubit. The usage of four Josephson junctions allows to use all layer transitions as
well-defined Josephson junctions. So the large-area Josephson junctions can be avoided.
Although time-domain measurements were not realized within the scope of this thesis,
the four-Josephson-junction qubit is already designed in view of optimizing decoherence
times.

The fabrication of the qubit ends with removing the resist mask. This is again realized
by a lift-off process in 70◦C warm acetone. A sketch and a scanning electron micrograph
of a Josephson junction is depicted in Fig. 4.9.
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Figure 4.10: Setup to characterize the coupled resonators at 4 K. (a) Chip mounted in measure-
ment box. The contacts between the niobium center strip and the box connectors
is realized with silver glue (b). (c) Measurement scheme: a VNA HP 8722D is
used to measure the transmission through two of the four ports. The remaining
ports are terminated with 50 Ω RF-resistors.

4.2 Measurement setups for characterization

This section gives an overview on the measurement setups used for characterization: a
4He bath cryostat used for measuring the two-resonators at 4.2 K in subsection 4.2.1 and a
3He/4He dilution unit used for the dc-SQUID measurements at 50 mK in subsection 4.2.2.
Performing a transmission measurement on the coupled resonators is straight forward
and does not need further explanation, in contrast to the dc-SQUID detection scheme.
Therefore, the principle of the second setup is demonstrated in section 4.3 using a four-
Josephson-junction qubit.

4.2.1 4He bath cryostat for transmission measurements

Compared with dilution cryostats and 3He refrigerators, the 4He bath unit is based only
on 4He which limits the cooling temperature to 1.5 K. The sample is cooled using liquid
helium which is transferred from a transport vessel via an double-wall tube into the
cryostat. The temperature can be decreased from 4.2 K to 1.5 K by pumping at the gas
volume above the liquid 4He. Although the cooling technique of this measurement is
comparably plain, some issues have to be considered.
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To characterize the sample at 4.2 K, the separated ground planes on the chip have to be
connected via bonding wires. This step is very crucial to define a good common ground
and thus to avoid groundplane modes. By mounting the chip into a gold plated copper
box, see Fig. 4.10(a), and connecting the upper ground plane with silver glue at the sides
of the chip with the box, the ground plane on top of the sample is well contacted with
the box and thus also with the ground on the bottom of the chip. Silver glue is also used
to contact the niobium center strip on the chip and the connectors in the box as shown
in Fig. 4.10(b).

The sample box, see Fig. 4.10(a) is designed to avoid any spurious resonances below
8 GHz. Therefore, the inner dimensions are as small as possible and printed circuit
boards (PCBs) are avoided. The dimensions of the two-resonator chips are 6 × 10 mm2

that defines also the inner dimensions of the measurement box. As the room diagonal
inside the box is approximate 11.5 mm and the effective permittivity of liquid is 1.05, the
frequency of a λ mode inside the box is approximately 12.5 GHz. To place two 10-15 mm
long resonators on the 6 × 10 mm2 chip the resonator lines are meandered. The gold
surface of the box suppresses the oxidation of the surface and ensures a good electric
connection between the box and the ground planes on the chip. The CAD layout of the
box is depicted in appendix C.

The setup for the first characterization of the two-resonator sample at 4.2 K is sketched
in Fig. 4.10. A vector network analyzer (VNA)7 measures the transmission through two
of the four ports of the device. The device is mounted in the liquid helium dewar and the
two measurement ports of the device are connected via stainless steel coaxial cables. The
remaining ports are terminated with 50 Ω RF-resistors. This setup allows an easy and
fast access to temperatures at which niobium is superconducting. For comparison, while
in this setup cooling, measuring and warming up the sample can be performed within
one day, it takes at least two days to cool the 50 mK cryostat.

4.2.2 50 mK setup for dc-SQUID measurements

To observe quantum phenomena such as characterizing the two lowest energy levels of a
qubit, quasiparticle excitation in the superconductor has to be avoided and low temper-
atures are required (2∆s � ~ωQ � kBT ). The superconducting energy gap of aluminum
2∆s = 0.36 meV [47] corresponds to 87 GHz, a value that is confirmed in various SQUID
measurements at the Walther-Meißner-Institut. With the qubit operating at approxi-
mately 5 GHz, 2∆s � ~ωQ is easily fulfilled. Using a 3He-4He dilution cryostat that
works at 50 mK, also the second requirement (~ωQ � kBT ) is fulfilled.

The unit presented here is used to cool four chips at once. These are glued onto a silver
sample holder and aluminum bonds are connecting the sample with the bronze bonding
pads which are connected with the twisted-pair wiring of the cryostat. Figure 4.11(a)
shows the bottom part of the dipstick where the sample holder with four samples is
mounted. The 50 mK unit is a home-made dilution unit that was created for microwave
spectroscopy on Josephson junction based devices. For this purpose a microwave antenna
is included that allows signals up to 20 GHz. A simplified scheme of the measurement
setup is shown in Fig. 4.11(b), a more detailed description of this dilution unit is given
in Refs. [81, 90].

7Agilent, HP 8722D

http://www.home.agilent.com/agilent/product.jspx?cc=DE&lc=ger&ckey=1000002264:epsg:pro&nid=-536902656.536881281.00&id=1000002264:epsg:pro&pselect=SR.GENERAL
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Figure 4.11: (a) Dipstick with sample holder of the 50 mK dilution cryostat. The coil for an
external magnetic field is mounted below the sample holder. The copper pow-
der filters are implemented in the dc lines and reduce rf-noise (cut-off frequency
ωc/(2π) = 2 GHz, [81]). (b) Simplified schematic of the detection mode. The volt-
age of the SQUID is measured versus the applied bais current Isq. A current Icoil

in the coil generates an external magnetic field and a microwave antenna is used
for exciting the qubit. (c) Signal sequence of a switching current measurement.

The detection of the switching current is sketched in Fig. 4.11(c). A linearly increasing
current Isq biases the dc-SQUID until it switches to the voltage state. The current value
Isw at which a voltage is detected by a threshold detector is recorded using a sample-
and-hold circuit. The current Isq decreases and the sequence is restarted. To get a
good signal-to-noise ratio, the sequence has to be repeated for approximately 10-500
times. Apart from a time delay between the voltage drop and its detection the switching
current Isw is equal to Im = 2Ic| cos(πΦext,sq/Φ0)|, see section 2.2. The deviation lays in
the percent regime.

Sweeping the applied field through the degeneracy point of the qubit, the current
representing the qubit state is first reduced to zero, changes its direction, and increases
again to the maximum value Ip. This results in a step-like structure on the Isw(Φext)
pattern, see Fig. 4.12(a). The positions of these steps within the | cos(πΦext/Φ0)| like
pattern depend on the area ratio Asq/AQ of the SQUID area Asq and the qubit area AQ.
By subtracting the SQUID pattern, the step becomes clearly visible and can be analyzed,
see Fig. 4.12(b).

It is important to note that the step depicted here is the mean value of a large number
of measurements and thus only shows the mean value of the current IQ. Thus, the
presence of the step is not a proof for a quantum mechanical behavior of the qubit. To
distinguish between a ”classical” qubit step where only values of IQ = ±Ip are detected,
see Fig. 4.12(c), and a ”quantum mechanical” qubit step where also superpositions of the
currents are possible, see Fig. 4.12(d), all measured current points have to be plottet in
a histogram diagram. The absence of superposition states in Fig. 4.12(c) is caused by
the fact that the tunnel barrier between the minima in the qubit’s double well potential
is too high. Thus, tunneling is not possible and the crossing of the energy levels |R〉 and
|L〉 is not avoided (δQ = 0).

An implemented microwave antenna close to the sample can be used to excite the
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Figure 4.12: (a) Typical qubit in a Isw(Φext) pattern of a SQUID. The deviation between the
detected switching current Isw and the theoretical Im lays in the percent regime.
The insert shows the location of the step in the | cos(πΦext,sq/Φ0)|-pattern. (b) By
subtracting the SQUID modulation curve, the step gets clearly visible. Plotting
the single switching events allows the differentiation between a classical step (c) or
a quantum mechanical step (d) (Color code: red: high number of switching events,
white: no switching events). (c) At a qubit with a vanishing gap energy δQ, the
current values can be either +Ip or −Ip. (d) The quantum mechanical qubit
allows also superposition states. (e) and (f) Principle of a microwave spectroscopy
detection. If ωs ≈ ωQ a dip and peak structure is observable at the corresponding
flux position. The maximum peak or dip height is IQ.

qubit. One induces a 50/50 occupation probability of the two qubitstates resulting in
IQ = 0. The transition from the ground state to the excited state at a give flux value
is represented by a change of IQ. This causes a dip and peak structure symmetrically
to 0.5 Φ0 as depicted in Fig. 4.12(e). The maximum peak or dip height is IQ. The flux
position of the response depends on the microwave frequency ωs and the pair (Φext, ωs)
are points on the qubit hyperbola. Repeating this measurement with different microwave
frequencies ωs, the transition frequency ωQ and thus the gap energy δQ which is the
minimum, and the persistent current Ip can be estimated.

The usage of this setup will be demonstrated in the next section using a four-Josephson-
junction qubit.

4.3 Characterization of a four-Josephson-junction flux
qubit

The setup described in the preceding section is used to characterize qubits and thus to
optimize fabrication parameters bevor implementing a qubit into a circuit QED experi-
ment. In the following this process will be demonstrated using a four-Josephson-junction
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for further microwave spectroscopy.

qubit.

4.3.1 SQUID characterization

Before the qubit is characterized, knowledge about the SQUID is necessary. Parameters
such as the critical current density Jc and the gap voltage Vg give information about the
persistent current and the quality of the aluminum.

The current voltage measurement, Fig 4.13(a), yields 2Ic = 0.51µA. The normal
resistance Rn is extracted from the measurement to be 333 Ω. As the measured sizes of the
SQUID junctions is AJJ,sq = 0.026µm2 the critical current density is Jc = 0.95 kA/cm2.
The same current density is assumed for the qubit. Using Eq. (2.12) the persistent current
is calculated as Ip = 272 nA. The red dashed line indicates a gap voltage of 340µV. This
is a typical value for aluminum and also verified by Ref. [81].

In addition to the current voltage characteristics, the dependence of the SQUID critical
current on an applied field and the qubit steps have to be measured and located. Thus,
it is necessary to know the area ratio of the SQUID and the qubit. According to the
layout, this is Asq/AQ = 1.625. The ratio of the applied magnetic field BQ that is
required to couple a single flux quantum Φ0 into the qubit loop, and the applied magnetic
field Bsq that is required to couple a single flux quantum into the SQUID loop holds
Bsq/BQ = Asq/AQ. The colored boxes in Fig. 4.13(b) show the step positions within the
SQUID modulation curve. They are well separated by 1.52± 0.06Φ0. Thus, the designed
area ratio of SQUID and qubit is approximately 6 % larger than the realized one.

The modulation depth indicates a small βL parameter and thus a negligible loop induc-
tance L. Microwave spectroscopy measurements shown in the following subsection are
performed at the qubit step at Φext,sq = 5.805 Φ0. This step position is chosen because
of the high signal-to-noise ratio of the detected critical current and because of the nearly
linear SQUID modulation background.
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4.3.2 Qubit microwave spectroscopy

In this section, continuous-wave (cw) microwave spectroscopy is used to determine the
qubit transition frequency ωQ = EQ/~ and the qubit gap energy δQ. The qubit step
is measured in an interval of ±20 mΦ0 around the degeneracy point while a cw spec-
troscopy tone with a fixed microwave frequency ωs is applied. By subtracting the linear
contribution of the SQUID the qubit step can be analyzed in more detail. Close to the
maximum of the SQUID modulation, the linearization of the background breaks down
and a decreasing slope can be observed in the SQUID pattern, see Fig. 4.14. At flux values
fulfilling ωs ≈ nωQ(Φext), the qubit is excited. The change of the current IQ = Ip〈σz〉 of
the qubit is recorded in a dip or peak. The visibility of the dip and the peak of each mea-
surement depends on the detailed structure of the electromagnetic environment. Since
the latter is only partially controlled in our experiment, only single photon transitions
are reliably detectable. Multi photon transitions can be recorded in some measurements,
see Fig. 4.14(a), but their signal is typically small. For this reason, they are not used for
subsequent analysis.

Peak and dip positions of the one-photon transition extracted from the qubit step
as shown in Fig. 4.14(a) are plotted for various values of ωs in Fig. 4.14(b). Clearly,
a hyperbolic shaped trend can be recognized. Numerical fitting of these points using
Eq. (2.9) and Eq. (2.7) gives δQ/h = 3.2 GHz and Ip = 303 nA. The latter agrees well with
the estimation presented in section 4.3.1. In conclusion, the extracted parameters provide
a good foundation for further experiments based on four-Josephson-junction qubits.

4.4 Quantum switch setup

Apart from the setups used for characterizing the single components the main setup
consists of a 30 mK dilution unit with larger sample space. An important part of this
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Figure 4.15: Schematic of the measurement setup of the 30 mK dilution refrigerator used for
the quantum switch measurements. The input signals are attenuated by at least
-53 dB distributed on 5 attenuators at the different temperature stages. The power
of the outcoming signal is generally on the level of a single microwave photon and
has to be amplified for detection. Due to noise minimization, this is done in two
steps, using a HEMT amplifier at 4 K and a JS2 amplifier at room temperature.
The signal is detected by a ZVA 24 VNA. The actual dimensions of the setup can
be seen in the picture.

thesis is the preparation of this fridge for circuit QED measurements. In cooperation with
three other PhD students, seven microwave input lines, four output chains equipped with
high electron mobility transistors (HEMT amplifiers) and 64 twisted-pair dc wires are
mounted. In this way, up to four circuit QED samples can be cooled down simultaneously,
allowing for efficient usage of ”fridge time”.

In the following, an overview about the whole detection scheme is given and some
crucial steps of the assembly process, where the author has undertaken a major part, is
explained in detail. A schematic of the whole setup is shown in the appendix D.

4.4.1 Overview of the measurement setup

It is important to note that only two rf-cables were available to connect the four-port
quantum switch, see Fig. 4.15. Thus, only two ports namely the two ports of one res-
onator are accessible in the measurement. Additional switches could not be implemented.
The remaining ports are terminated with 50 Ω resistances. This configuration allows for
transmission measurements through one resonator and spectroscopy of the qubit. A two
port configuration is chosen as the remaining cables in the cryostat are used for different
samples. Unfortunately, of the three quantum switch samples with varying design only
the one with a galvanically coupled qubit and all three Josephson junctions on one qubit
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One can also see the connection pins for the 96 dc-lines used for heaters and
thermometers. (b) Three samples mounted at the sample stage. The sample of
interest is the closest one to the sample rod.

branch shows satisfying results. As the flux qubit parameters are very sensitive8 against
cooling cycles, the sample is not remounted before the spectroscopy measurements has
been finished.

The high-frequency measurement signals are generated at power ranges between−40 dBm
and 0 dBm (10−7 W - 10−3 W) at room temperature using a VNA9 and a signal genera-
tor10. They need to be attenuated and after interacting with the sample, amplified and
routed back to the data analysis circuit at room temperature, see Fig. 4.15. The following
subsection gives details about the used input wires and amplification chain.

4.4.2 rf-wiring

The whole setup is optimized to minimize the amount of thermally populated photons
and Johnson & Nyquist noise that reach the sample. This requires careful thermalization
of all in- and output lines. To decrease any signal-losses and thermal conductivity, the
used coaxial wires at temperatures below 4 K are made of superconducting niobium (in-
ner conductor) and cupro-nickel (outer conductor) (UT47: SC-119/50-Nb-CN as input
lines and UT85: SC-219/50-Nb-CN as output lines). The length of cables are adapted
individually. To check the performance of the cables each cable and each connector is
characterized using a time domain reflectometer (TDR) measurement. A mismatch of
less than 5 Ω is acceptable.

To thermalize the input chain each used attenuator is thermally coupled to the corre-
sponding temperature stage, see Fig. 4.16(a). In total, input signals generated at room
temperature are attenuated by -103 dB. The cable loss is frequency dependent. At 5 GHZ
the overall cable loss can be approximated by -10 dB. A power splitter (not shown in the

8E. g., from the first to the second cooling cycle the gap energy δQ shifted by 10%.
9R&S, ZVA 24

10R&S, SMF 100A

http://www2.rohde-schwarz.com/product/ZVA.html
http://www2.rohde-schwarz.com/product/smf100a.html
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schematic of Fig. 4.15 but in the complete setup in Fig. D.1) with -3 dB loss have to be
considered, too. Thus, an overall attenuation of −116 dB is a good approximation for
the attenuation of the input chain at 5 GHz. The chosen attenuation configuration leads
to 0.025 thermally populated photons at the sample input port, a number that can be
neglected during the measurements.

The sample itself is mounted into the gold-plated copper box which is also used in the
characterization measurements at 4 K shown in section 5.1.2. The box is mounted on
a sample-stage made of silver. Silver is chosen due to its high thermal conductivity at
millikelvin temperatures. In Fig. 4.16(b), the position of the sample box is right next to
the coil which creates the magnetic field.

In general, the emitted signal from the resonators has a power between −130 dBm and
−110 dBm (10−17 W and 10−15 W). A larger cross-section of the coaxial cables helps to
avoid losses in the lines. Thus, UT 85 with an outer diameter of 2.2 mm are used for the
output chain. The output chain includes two 4-8 GHz circulators from Pamtech. They
are needed to reduce back-action of the amplifier noise on the sample and to thermalize
the output lines, see Fig. 4.15. The signal is amplified in two steps, once at 4 K using
a commercially available HEMT amplifier working in the 4-8 GHz regime and at room
temperature using a Miteq JS2 amplifier.

4.4.3 dc-lines for thermometry

Apart from the sample measurement, the control and knowledge of the temperature
is fundamental in low temperature experiments. Therefore, several thermometers at
different stages adjusted to the used temperature range are installed as well as a heater
close to the sample to control the sample temperature. 64 twisted-pair cables for the dc
wiring are fed into the vacuum chamber from room temperature via the pumping port.
The layout and CAD drawings of the used components, such as the connection box for
example are shown in appendix D.2. A crucial issue here is the quality of the connector
assembly, since the quality of the vacuum must not be affected.

Between room temperature and 1 K, the dc-lines consists of 0.15 mm thick manganin
wires which ensures a good electrical conductivity paired with a relatively low thermal
conductivity. Thermal conductivity has to be even more suppressed for lower tempera-
tures. Therefore, between 1 K and lower temperature stages superconducting niobium-
titanium wires, either in a bronze or cupro-nickel matrix, are used. The connection-pins
at 1 K can be seen in Fig. 4.16(a).

At each temperature stage at least one thermometer is mounted. At the sample stage
several thermometers are mounted to check for temperature gradients on the approx-
imately 50 cm × 15 cm large stage. This is necessary since a heater, see Fig. 4.16(b),
is located at the sample rod. Small temperature deviations of a few millikelvin on the
sample rod require thermometers close to the samples.

This setup allows sufficient control of the temperature of the single stages of the cryostat
and a precise knowledge of the sample temperature. The heater is used to stabilize the
sample at a constant temperature. The temperature can be stabilized to values between
30 - 100 mK. The presented measurements are taken at 50 ± 0.1 mK. Although this is
almost twice the base temperature of the cryostat, it is well sufficient to measure at this
high temperature. In this way, the system is more stable against external vibrations and
low frequency noise on the thermometry lines.
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4.4.4 Spectroscopy protocols

The 30 mK-setup is used to perform transmission measurements through the two-resonator
sample and two-tone spectroscopy to characterize the qubit. In the following both mea-
surement schemes are discussed.

The transmission measurements described here are similar to the transmission mea-
surements of the two-resonator sample at 4 K. As Fig. 4.17 shows a vector network an-
alyzer, here the ZVA 2411, is used for generating and detecting high frequency signals.
The generated signal power at the output of the ZVA is between Prf = −30 dBm and
Prf = −10 dBm. Including all attenuators, loss of the coaxial lines and the splitter, the
power at the input of the resonator is between −146 dBm and −126 dBm at 5 GHz. To
take a concrete example, a power of −140 dBm inside the cavity is equivalent to that of a
single photon at 5 GHz. This power inside the cavity is generated using Prf = −6 dBm at
room temperature. For a fixed flux value, the frequency ωrf of the signal is swept and the
transmitted response through the quantum switch is detected. An external coil is used to
generate a magnetic field that tunes the qubit transition frequency. The measurements
show how the resonator modes change with respect to the external flux.

The second measurement scheme is two-tone spectroscopy. In the following, the pro-
tocol for this measurement technique is described. As Eq. (3.11) suggests only the inter-
acting mode of the quantum switch at ω+ and the qubit will be considered. The mode
at ω− which does not interact with the qubit does not affect the measurement scheme
and can be neglected. Since Eq. (3.11) implies a Jaynes-Cummings like behavior of the
higher mode, the treatment described in subsection 3.1.2 can be applied. In the disper-
sive regime (|∆+| = |ω+ − ωQ| � g+) the total Hamiltonian can be approximated as in
Eq. (3.3) by

Ĥ ≈ ~(ω+ + 2χσ̂z)(â
†â+ 1/2) + ~ωQσ̂z/2 (4.1)

with χ = g2
+ sin2 θ/∆+. The shift 2nχ (n is the number of photon insider the cavity) of

the resonator frequency is depicted in Fig. 4.18.
The shift can be detected using two signal sources, see Fig. 4.19. Here, the ZVA is used

in the continuous mode at the frequency of the qubit-dependent mode (ωrf = 4.901 GHz).

11R&S, ZVA 24

http://www2.rohde-schwarz.com/product/ZVA.html


4.4 Quantum switch setup 51

-2 -1 0 1 2

n
o

rm
. t

ra
n

sm
is

si
o

n



0

0.5

1

 

 



 

 







0

-2 -1 0 1 2



(a) (b)

tr
an

sm
it

te
d

 p
h

as
e

detection frequency   rf
detection frequency   rf

Figure 4.18: Schematic of the dispersive qubit readout: State dependent transmission ampli-
tude (a) and phase (b) of the resonator. Comparing to the eigenfrequency of the
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Figure 4.19: Schematic of transmission measurement setup used for two-tone spectroscopy. The
frequency ωrf is here at a constant value (ωrf = 4.901 GHz) and a second tone with
frequency ωs and power Ps is applied to the system.

This signal is called probe or driving tone since it drives the cavity and is close to the
maximum transmission of the qubit dependent mode. The SMF, is used to generate the
spectroscopy tone which excites and saturates the qubit if ωs ≈ ωQ and the amplitude
of the spectroscopy tone is sufficiently large. Eq. 4.1 shows that a qubit excitation leads
to a frequency shift of 2nχ which implies a change in the transmission amplitude and
the phase of the probe tone as depicted in Fig. 4.18. Summarizing, at a given flux value
the resonator response is measured continuously at a given frequency ωrf . By tuning the
spectroscopy tone, the qubit is excited if ωs ≈ ωQ and the resonator response (amplitude
and phase) changes. Using the coil to tune the external magnetic field, the change of
the transmission amplitude can be plotted versus the spectroscopy frequency ωrf and the
external flux Φext.

Since the AC-Zeeman shift distorts the result of a two-tone spectroscopy by δωQ = 2nχ
the measurements have to be performed below the one-photon limit. The one photon
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limit is determined in a power calibration of the system. The rearranged Hamiltonian

Ĥ ≈ ~ω+(â†â+ 1/2) + ~[ωQ + 2χ(â†â+ 1/2)]σ̂z/2

shows how the shifts can be interpreted as shift of the qubit transition frequency due
to the presence of the driven cavity. By performing a two-tone spectroscopy at a fixed
flux value with varying probe tone power, the photon-number dependent shift is used to
calibrate the power of the probe tone.

It is important to note that a two-tone measurement can only be performed in the
dispersive regime. As the spectroscopy tone is off-resonant with the cavity, the power
has to be 103 - 104 times higher than for the resonant probe tone. Therefore, a 30 times
smaller attenuation at room temperature, see Fig. 4.15, is chosen.



Chapter 5

Experimental Results on the Quantum
Switch

After discussing the theoretical background of the quantum switch and discribing the
fabrication and the experimental setup, this chapter shows the experimental results. In
the first section, the layout of the two-resonator sample without a qubit is specified
and spectroscopy measurements performed at 4.2 K give an idea of the spectrum of two
coupled resonators. Next, the qubit implemented in the quantum switch is discussed
in detail based on two-tone spectroscopy measurements at 50 mK. Finally, transmission
measurements through the resonators allow for a detailed description of the quantum
switch behavior and the switch setting condition. This is analyzed in section 5.4.

5.1 Two Coupled Resonators

The quantum switch consists of three components; two resonators and one qubit. The
direct coupling between the resonators is determined by the sample geometry and con-
stitutes a crucial parameter for the quantum switch. These resonators are realized as
superconducting on-chip transmission lines where frequencies up to 10 GHz or higher can
easily be achieved.

5.1.1 Design

In this work, the resonators are designed using a coplanar stripline (CSL) geometry,
see schematic in Fig. 5.1. In this geometry, a thin metallic line runs along a lateral
groundplane. In contrast to coplanar waveguides (CPWs) where a lateral groundplane
is on each side of the center strip, the CSL design helps to decrease the direct coupling
of the two resonators since a shared groundplane is avoided, see Fig. 5.2. To minimize
reflections at the transitions from the sample box connectors to the chip, the feed lines are
chosen to be of CPW geometry. The center conductor is interrupted by two gaps. These
coupling capacitors mark the beginning and the end of the resonator and act similarly to
semi-transparent mirrors in optics - they reflect parts of the signal. Since the coupling
capacitors do not match the 50 Ω impedance of all commercial components, the design
transition from CPW to CSL at this point is not critical.

The characteristic impedance Z0 of CSL and CPW lines depends mainly on the geom-
etry of the center strip and the groundplane. Only minor contributions come from the
used substrate. The geometric layout is optimized towards an eigenfrequency ωR/(2π) ≈
5 GHz for each resonator and a coupling of gAB/(2π) ≈ 5−10 MHz. The width w = 7µm
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Figure 5.1: (a) Schematic of two CSL resonators (green) on one chip. Both resonators have the
same layout (linewidth w, gap between line and groundplane gg and length l). They
are separated by a gap G. The feedlines (orange) are of CPW design (linewidth wa

and gap ga). The thickness of the niobium structure is t and the thickness of the
silicon substrate is h. The groundplane is depicted in blue.
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Figure 5.2: (a) False-color micrograph of a chip with two CSL resonators (green lines) and
feedlines (orange lines). The blue areas are the ground planes. (b) Zoom of the
coupling region. The lines of the resonators (green) are visible in this resolution.
They are separated by a gap G and run parallel for a length L. (c) Zoom of one
coupling capacitor with gap 3µm and fingerlength 100µm, Cκ = 6.2 fF.

of the center strip and the gap gg = 10µm between center strip and ground plane re-
sult in a characteristic impedance Z0 = 80 Ω [76]. This mismatch with respect to the
50 Ω-matched feed lines results in a reflection coefficient of 23% [95] at each coupling
capacitor.

Comparing the gap width between center strip and groundplane of several micrometers
with the length of the resonator (10 − 20 mm), the reason to call the resonator a quasi-
one-dimensional device becomes clear. As a result the mode volume Vm is comparably
small and, consequently, the electromagnetic field strength E ∝ 1/Vm becomes large.
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The geometric design of the two-resonator sample is depicted as a false-color picture in
Fig. 5.2. Both resonators come closely together at the center of the sample, the so called
coupling region, see Fig. 5.2(b).

The resonators are fabricated with eigenfrequencies f0 = ωR/(2π) in the range of 3.5-
6.5 GHz and coupling constants gAB/2π of 10-20 MHz. The range of eigenfrequencies
results from the length of the resonator varying between 10.86 mm and 15.44 mm. The
different capacitors are of finger [see Fig. 5.2(c)] or gap design and cover capacitance
values in the range of Cκ = 0.67− 6.3 fF1.

The coupling region is one of the most crucial parts of the two-resonator sample. It
defines the geometric coupling between the two resonators and the dimensions of the qubit
that will be incorporated. In the coupling region, the two resonators approach each other
up to a distance G on a coupling length L. Outside this region, the resonator-resonator
coupling is negligible. Although the design values G = 100µm and L = 400µm result in
the desired coupling constant of g ≈ 10 MHz, the qubit dimensions would exceed feasible
values. A narrower gap and a decreased length, G = 30µm and L = 100µm, result in
similar coupling constants but allow for realistic qubit dimensions. The position of the
coupling region at a current antinode and voltage node of the fundamental mode ensures
an inductive coupling.

The last characteristic property of the used resonators is their material - niobium.
Niobium is a superconductor with a critical temperature Tc = 9.2 K. This results in
negligible ohmic dissipation [96] already at liquid helium temperature (4.2 K). A char-
acterization at this temperature can be performed with fast turnaround times and thus
allows one to refine the layout of the two-resonator chip to guarantee the optimal design
of the quantum switch.

5.1.2 Spectroscopy measurements at 4 K

With the setup shown in section 4.2.1 transmission measurements of the two-resonator
sample can easily be performed.

Equation (2.20) in section 2.5.3 shows that the transmission spectrum of the two-
resonator sample without coupling due to a qubit has two Lorenzian peaks at the fre-
quencies ω− = ωR − gAB and ω+ = ωR + gAB [81]:

Plin(ω+,ω−) =
A+(κ/2)2

(ω − ω+)2 + (κ/2)2
+

A−(κ/2)2

(ω − ω−)2 + (κ/2)2
. (5.1)

In general, the transmitted power Plin is plotted on a logarithmic scale PdB = 10 log(Plin)
and called magnitude. The position of the peaks does not depend on the configuration of
the measured and terminated ports as Fig. 5.3 shows. The difference of the amplitude of
the measured peaks and the additional dip in two of the spectra may result from classical
interference effects or from uncontrolled mismatch at the connectors. This artefact is
of minor interest and has no influence on the properties of the quantum switch. The
averaged insertion loss of the two-resonator modes at 4 K is approximately −10 dB. The
insertion loss depends mainly on two parameters, namely the coupling capacitors and
the impedance mismatch between the feedlines and the resonator. While the mismatch
simply reduces the transmission through the resonator by 23%, the effect of the coupling

1simulated by Sonet Suites TM

http://www.sonnetsoftware.com/products/sonnet-suites/
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Figure 5.3: Typical transmission spectra of two coupled resonators at T = 4.2 K. The logarith-
mic scaled transmitted power P (denoted as magnitude) is plotted as a function of
the frequency. Four measurements show that the center frequency ω0 and the cou-
pling g is independent of the measured port configuration. The design parameters
are w = 7µm, gg = 10µm, G = 30µm, L = 100µm, and l = 11.55 mm.

capacitor on the insertion loss is more complicated. In the limit of Qint � Qext the
insertion loss due to the coupling capacitors can be neglected whereas in the limit Qint �
Qext the insertion loss increases with decreasing coupling capacitance [73]. For Qint �
Qext Figure 5.4 shows how the insertion loss of the measured samples depends on the
used coupling capacity. For later experiments, a high signal-to-noise ratio is preferable.
Unfortunately, the capacitors with a 2µm gap are less reproducible than the ones with
a 3µm gap. Therefore, the capacitor design of 100µm long finger capacitors with a gap
of 3µm is used for the quantum switch, as depicted in Fig. 5.2(c).

5.2 Design of the quantum switch

Based on the design of the two coupled resonators, see section 5.1.1, the actual design
for the quantum switch is chosen as follows. The linewidth of the resonators is w = 7µm
and the gap to the ground planes gg = 10µm. The resonator length l = 11.55 mm
results in ωR/(2π) = 4.9 GHz. The coupling capacitor is chosen to contain a gap of 3µm
and a finger length of 100µm. The corresponding capacitance is Cκ = 6.3 fF. As the
coupling constant is desired to be in the range of 10 MHz, the coupling region is defined
by G = 30µm and L = 100µm.
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measurement point marks the design used for the quantum switch.

The qubit is directly implemented between the two resonators. Therefore, the niobium
resonator lines have a gap in the coupling region, see Fig 5.5(a). The lines are closed by
aluminum connections fabricated in the same step as the qubit, see Fig. 5.5(b). The finite
width of the connection is chosen to be 7µm, adapted to the width of the niobium lines
of the resonators. Reducing the width of the connection and forming a constriction would
increases the coupling constant g between each resonator and the qubit but reduces the
fabrication yield.

The overlap between niobium and aluminum [hatched area in Fig. 5.5(b)] has an area
of approximately 560µm2. Due to the hard natural oxide which covers the niobium
surface, such a large overlap area is necessary. To avoid open circuits at the niobium
edges, the two evaporated aluminum layers are altogether 110 nm thick, which is about
10 nm thicker than the niobium layer.

The qubit loop encloses an area of 20×30µm2, see Fig. 5.5(c). This is about a factor of
two larger compared to former qubit designs at the Walther-Meißner-Institut [81]. This
does not affect the qubit in principal but increases the demands on flux stability and
might be a source of dephasing due to flux noise.

For two Josephson junctions [Fig. 5.5(d)] the areas are approximately AJJ = 0.027µm2

and the third junction is reduced by a factor of α = 0.70. The sizes are estimated from
SEM pictures taken from comparable qubits. With the measured persistent current,
Ip = (490± 5) nA = αIc, see chapter 5.3.2, the estimated ratio of the energies results in
EJ/EC = 97.

5.3 Characterization of the components and the system

Before discussing the quantum switch functionality, the exact parameters of the individual
components must be well known. A transmission measurement of the quantum switch
at a given flux value gives details on the resonators centerfrequency ωR, their coupling
gAB and the bandwidths of the individual modes. The qubit of the quantum switch is
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Figure 5.5: (a) CAD layout of the niobium structure of the quantum switch resonators (green)
with the gap in the center. (b) Implementation of the qubit (red) between the
two resonators. The transition (hatched area) between the niobium part of the
resonators (light green) and the aluminum part (dark green) is large to guarantee a
good electrical connection. (c) Close up of the qubit. The three Josephson junctions
are on one side, the other line closes the loop. (d) Close up of the Josephson
junctions.

analyzed in detail using two-tone spectroscopy measurements.

5.3.1 The coupled resonators

A transmission measurement of the coupled resonators at a given flux value Φext far away
from the qubit’s degeneracy point, see Fig. 5.6, shows the quantum switch modes. The
linear power transmission amplitude versus the frequency is fitted using two Lorenzians
[see Eq. (5.1)]. Note that the linear amplitude and the logarithmic magnitude that
is often shown Eq. (5.1) can be expressed by PdB = 10 log (Pout/Pin) = 10 log(Plin).
PdB is also called magnitude. The fitted frequencies are ω−/(2π) = 4.8872 GHz and
ω+/(2π) = 4.9042 GHz. Thus, the centerfrequency is ωR/(2π) = 4.8957 GHz and the
geometric coupling gAB/(2π) = 8.510 MHz. The full widths at half maximum are fitted
as κ−/(2π) = 2.66 MHz and κ+/(2π) = 2.68 MHz for the symmetric and antisymmetric
mode, respectively. The different amplitudes of the two peaks lead to a lower signal-to-
noise ratio concerning ω+.

An external coil is used to apply an external field perpendicular to the quantum switch.
As described in Eq. (3.11), the qubit between the two resonators couples to the ω+ mode.
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Figure 5.6: Transmission magnitude plotted versus frequency ωrf of the two coupled resonators
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κ−/(2π) = 2.66 MHz and κ+/(2π) = 2.68 MHz. (a) Measured transmission through
the quantum switch sample far away from the degeneracy point. The data is taken
at T = 50 mK, Prf = −20 dBm. (b) Two-Lorenzian fit using Eq. (5.1).

This mode is shifted to lower frequencies at Φext ≈ (n+ 1/2)Φ0. This flux periodicity is
used to calibrate the applied flux.

5.3.2 Two-tone spectroscopy of the qubit

In the dispersive limit, two-tone spectroscopy is used to investigate the qubit properties.
It is important that for a first qubit characterization the qubit frequency is not affected by
the AC-Zeeman shift. Therefore, the probe power ωrf for measuring the cavity transmis-
sion must be below the single photon limit. The power corresponding to a single photon
on average inside the ω+ mode is P1 ph = ~ω+κ+/2π = 8.71 × 10−15 mW = −140 dBm.
Due to the presence of insertion loss, P1 ph constitutes an upper bound for the allowed
power incident at a quantum switch input port such that the population of the ω+ mode
does not exceed the single-photon level. Based on the calibration procedure in subsec-
tion 5.3.3, the insertion loss is estimated to be approximately -20 dBm.

In the following, a two-tone spectroscopy, taken in the low-power range, is used to
extract the qubit properties and the interaction parameters between the qubit and the
cavity mode. A simple fit considering only one cavity mode can be used as Eq. (3.11) in
subsection 3.2.1 implies only an interaction of the qubit and the higher quantum switch
mode ω+.

Measurement data

With a probe tone power of Prf = −20 dBm and ωrf = 4.901 GHz the population inside
the cavity is approximately 0.091 photons on average. A thorough power calibration is
discussed in section 5.3.3. Two data sets are presented in Fig. 5.7(a) and Fig. 5.7(b).
The spectroscopy power is Ps = −5 dBm in (a) which is enough to excite the qubit.
Figure 5.7(b) shows a blowup around the cavity frequency. Here a lower power of Ps =
−17 dBm is chosen. In order to achieve optimal plotting results, the data is normalized
as follows. The mean amplitude of the measurements at each measured flux value is
subtracted from each measurement at the given flux. In the figure, this procedure is
denoted as ”deviation of magnitude”. The result is a rich spectrum which partly resembles
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Figure 5.7: Two-tone spectroscopy data in the low-power limit (T = 50 mK, Prf = −20 dBm,
ωrf = 4.901 GHz) white areas denote resonant regions. (a) wide range (Ps =
−5 dBm) (b) close-up near the resonator ground mode (Ps = −17 dBm)
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Figure 5.8: (a) Transmission spectroscopy of the additional mode (T = 50 mK, Prf = −20 dBm)
(b) Transmission (T = 50 mK, Prf = −20 dBm) on a larger flux range. The red line
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the expected spectrum determined using the quantum switch Hamiltonian Eq. (3.4), see
Fig. 3.4.

When discussing the features of this spectrum, one has to keep in mind that two-
tone spectroscopy is a dispersive measurement technique. With a coupling constant
g ≈ 112 MHz the frequency range of 4.7 − 5.2 GHz should not be taken into account.
Furthermore, only the ω+ mode can be used as probing mode because higher harmonics
do not fall within the frequency range of 4− 8 GHz of the detection chain.

Additional mode

In the two-tone spectroscopy measurements of Fig. 5.7, an additional mode which is
clearly distinguishable from the quantum switch modes described by Eq. (3.5), appears
at ωa/(2π) = 4.505 GHz. The existence of this mode is confirmed by transmission spec-
troscopy, see Fig. 5.8. Its origin lies in the geometry of the sample, namely the galvanic
coupling of the qubit to the resonators.

Figure 5.9 depicts a schematic overview of the individual modes. Fig. 5.9(a) and
Fig. 5.9(b) are equivalent to the modes discussed in section 2.5.3 (Fig. 2.10). These two
modes are the original quantum switch modes that are fully described by the Hamil-
tonian (3.5). The two additional modes [Fig. 5.9(c) and Fig. 5.9(d)] occur due to the
presence of the galvanically coupled qubit. The flux, which is mediated by currents of the
out-of-phase oscillating mode, cancels inside at the qubit loop. This mode is equivalent
to the mode shown in Fig. 5.9(b) and requires no further investigation. In the case of
the in-phase oscillating mode, a finite current is transmitted via the qubit. A detailed
analysis of the data shown in Fig 5.8 indicates that this mode cannot be explained by an
rf-SQUID-like structure modulating the resonance frequency ωR as a function of the ex-
ternal flux. Instead, the data is consistent with a flux-independent mode, whose frequency
is reduced by a Josephson inductance LαJ of the qubit α-junction and which interacts
with the qubit at a coupling strength ga. Based on this phenomenological model, the
system parameters are derived in the following.

To confirm the model for the modes at ωa it is assumed that the three Josephson
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Figure 5.9: Schematic of the quantum switch modes with a galvanically coupled qubit. (a)
and (b) are the same modes depicted in Fig. 2.10. In-phase oscillating currents
on the resonators lines cause a negligible effective magnetic field between the two
resonators as the field generated by resonator A compensates the field generated by
resonator B. (b) Out-of-phase oscillating currents on the resonator lines generate
an effective magnetic field Φeff between the lines of the two resonators. (c) In-
phase oscillating currents transmitted via the flux qubit. The frequency of this
mode is modified by the additional inductance of the qubit resulting in the new
eigenfrequency ωa. (d) Out-of-phase oscillating currents flowing over the qubit. The
effective transmitted current at the qubit is zero. A modification of the frequency
due to the qubit inductance is not necessary. This mode is equivalent to the mode
depicted in (b).
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junctions add an effective Josephson inductance to the self inductance Ltot = Lres+Leff,JJ.
Here, Lres is the self inductance of the transmission line parts [see Fig. 5.9(c)], which
coincides with the self-inductance of a single resonator. Using

ωa =
ωR

Ltot/Lres

,

in analogy to Ref. [97] and Ref. [98], the inductance ratio of Ltot/Lres = 1.08 can be
derived. Using further Lres = 7.9 nH estimated from the resonator design, the effective
Josephson inductance is Leff,JJ = 0.65 nH. Considering that the Josephson inductance
of the α-junction is LαJ = Φ0/(2παIc) = 649 pH where α = 0.7 and Ic = 700 nA is
found from the slope of the qubit hyperbola shown in Fig. 5.7, Leff,JJ = LαJ is found as
expected. This is remarkable because it implies that an internal degree of freedom of the
three-Josephson-junction arrangement, the qubit, couples to an external one mediating
a coupling to the resonator mode ωa. As one will see later, this results indeed in an
ultra-strong coupling scenario similar to the one posted in Ref. [81] and Ref. [99].

Due to the geometry of the additional mode, a coupling between this mode and the
qubit is expected and the Hamiltonian has to be extended. The resulting Hamiltonian
reads

Ĥeff =
ε

2
ˆ̄σz +

δQ

2
ˆ̄σx + ~ω−ĉ†−ĉ−

+ ~ω+ĉ
†
+ĉ+ +

√
2~g ˆ̄σz

(
ĉ†+ + ĉ+

)
+ ~ωad̂

†d̂+ ~ga ˆ̄σz

(
d̂† + d̂

)
+ 2 more modes coupled to the qubit,

(5.2)

where ω± = ωR ± gAB. Rotating the Hamiltonian (5.2) into the qubit eigenbasis leads to

Ĥeff =~
ωQ

2
σ̂z + ~ω−ĉ†−ĉ−

+ ~ω+ĉ
†
+ĉ+ +

√
2~g cos θσ̂z

(
ĉ†+ + ĉ+

)
−
√

2~g sin θσ̂x

(
ĉ†+ + ĉ+

)
+ ~ωad̂

†d̂+ ~ga cos θσ̂z

(
d̂† + d̂

)
− ~ga sin θσ̂x

(
d̂† + d̂

)
+ 2 more modes coupled to the qubit.

(5.3)

Here d̂† and d̂ are the creation and annihilation operator of the additional mode, respec-
tively. To obtain useful results, it is important not to perform a RWA in first order.

In order to explain the details of Fig. 5.7 at higher spectroscopy frequencies, two more
additional modes are added to the Hamiltonian (5.3). Their resonance frequencies ω2a and
ω3a are near two times and three times ωa, respectively. The spectrum of the Hamiltonian
is shown in Fig. 5.10(a) and Fig. 5.10(c). To show the clear difference between the original
and the modified Hamiltonian, the spectrum of Eq. (3.10) is plotted in Fig. 5.10(b) and
Fig. 5.10(d). Both simulations show a switch setting condition, but at different flux
values. While the difference between the two Hamiltonians is not very obvious near
the fundamental mode, they differ fundamentally in the range of 8− 10 GHz and above
13 GHz. High-power measurements in subsection 5.3.4 show that most of the individual
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Figure 5.10: Comparison between Hamiltonian (3.10) and Hamiltonian (5.3). Left panel: Mode
spectrum of the modified Hamiltonian (5.3) considering the additional mode and
two higher harmonics with frequencies ω2a and ω3a. Right panel: Original quan-
tum switch Hamiltonian (3.10) derived in subsection 3.2.1. Lower row: close up of
the switching condition. Both models show a crossing of the two resonator modes.
Only the exact flux point and the slope show the difference.

features predicted by the extended Hamiltonian of Eq. (5.3) are actually observed. The
corresponding frequencies of the individual modes are depicted in Fig. 5.11(a). One sees
that the coupling between the qubit and a two photon excitation of the fundamental ω−
mode (labeled as 2ω−) the qubit and the first harmonic of the ω− mode (labeled as ω2−)
vanishes. So does the coupling between the first harmonic of the ω+ mode (labeled as
ω2a) and the qubit. The coupling between the two photon excitation of the ω+ mode
and the qubit is small but finite. The coupling between the qubit and the first harmonic
of the additional mode (ω2a) or between the qubit and the two photon excitation of the
additional mode (2ωa) is still present Fig. 5.11(c). Although also for higher modes the
switch setting conditions appears, the signals in the actual experiment are typically weak
there.

Fitting procedure

Here, the procedure to fit the spectra of Hamiltonian (5.3) to the data shown in Fig. 5.7 is
discussed. As two-tone spectroscopy provides no information about the ω+ cavity mode,
which is essential for a proper fit, this lack of information is filled using transmission
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Figure 5.11: (a) As Fig. 5.10(a) but with the transition frequencies indicated. Multiple labels
mean that the lines cannot be distinguished due to the limited resolution of the
plot. The subscripts + and − denote the splitting of degenerate modes due to the
coupling gAB. The different colors (red, blue, violet) denote the different natures
of the modes (”−”, ”+”, ”a”). Red box / (b): small coupling between the qubit
and the original quantum switch modes. Green box / (c): larger coupling between
the qubit and the additional ω2a mode and large coupling between the qubit and
the higher excitation of the ωa mode (labeled as 2ωa).

spectroscopy data which will be discussed in section 5.4. To reduce inaccuracies, the
additional mode is fitted using the transmission spectroscopy data shown in Fig. 5.8.
The lower quantum switch mode at ω−, which does not couple to the qubit, can be
neglected in the fitting procedure. This reduces the size of the Hilbert space and the
fitting becomes more efficient.

Figure 5.12 shows the data points used for the fitting procedure (open circles) and the
fit. The measurement from Fig. 5.7 is depicted as background. The fitting parameters
are summarized in Tab. 5.1. The resulting qubit parameters are Ip = (490 ± 5) nA
and δ/h = (3.9 ± 0.1) GHz. The fitted coupling g+/(2π) = (159 ± 10) MHz of the ω+

mode with the qubit gives the coupling between a single resonator and the qubit as
g/(2π) = (112± 7) MHz.
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Figure 5.12: Fit (blue lines) of the spectrum of Hamiltonian (5.3) to the data from Fig. 5.7
(T = 50 mK, Prf = −20 dBm, ωrf = 4.901 GHz, Ps = −5 dBm [Fig. 5.7(a)] and
Ps = −17 dBm [Fig. 5.7(b)]) (white circles) and Fig. 5.8 (T = 50 mK, Prf =
−20 dBm) (yellow circles). Transmission data on the ω+-mode is indicated by
green open circles (T = 50 mK, Prf = −20 dBm).



5.3 Characterization of the components and the system 67

Parameters Fitted value Comment

ωR/(2π) 4.8957 GHz

gAB/(2π) 8.5 MHz

δQ/h 3.87 GHz

ε/h 3.075(Φext − 0.5Φ0)GHz ⇒ Ip = 490 nA

g+/(2π) 159 MHz ⇒ g/(2π) = 112 MHz

ωa/(2π) 4.5 GHz

ga/(2π) 670 MHz

ω2a/(2π) 8.66 GHz

g2a/(2π) 100− 600 MHz Not reliable

ω3a/(2π) 13 GHz

g3a/(2π) 1.1− 1.2 GHz Not reliable

Table 5.1: Characteristic parameters of the quantum switch. The parameters are found using
the described fitting procedure with three different datasets.

The coupling of the additional mode turns out to be ga = 670 MHz which implies
ga/ωa = 0.15. According to Ref. [81], this corresponds to the ultrastrong coupling regime
where the rotating wave approximation (RWA) breaks down. This is not unreasonable
because, as in Ref. [81], the qubit-mode coupling is mediated by a Josephson inductance.
However, a check for unambiguous spectroscopy features providing the RWA violation
cannot be performed. The used amplification chain does not allow for transmission
spectroscopy of higher modes. The values for the coupling strength between qubit and
higher modes are not reliable, as only a few points are found in the measurements which
are used for fitting. Especially the coupling between the qubit and the ω2a mode cannot be
fitted reliably. Nevertheless, these values are stated as order-of-magnitude estimations.
Although the current distribution of ω2a-mode is expected to be zero at the center of
the resonators, the coupling is not negligible but finite. The nature of this coupling is
presently not understood yet.

The coupling of the second harmonic of the additional mode is of the same nature as
the coupling of the fundamental one. Thus, this mode is identified with the higher mode
of ωa and the coupling constant g3a can be determined as

g3a =

√
ω3a

ωa

ga.

The result of 1.14 GHz agrees very well with the coupling constant found in the fit (see
Tab. 5.1).
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Figure 5.13: Qubit AC-Zeeman shift: (a) Spectroscopy tone versus probe tone power Prf

(T = 50 mK, ωrf = 4.901 GHz, Ps = 8 dBm). The qubit response is at con-
stant frequency values for Prf < Pone photon in cavity. (b) Shifted frequency ω̃Q as
a function of the photon number inside the cavity. Red line: Fit of the linearly
increased frequency shift. Close-up: The orange arrow marks the power Prf of
Fig. 5.7.

5.3.3 Power calibration

For the exact interpretation of the following measurements, knowledge on the probe power
is essential. Unfortunately, a power calibration is not performed during the cooldown
where the spectroscopy data has been measured. One of the main reasons for the missed
measurement is the absence of flux stability. During a second cooldown approximately
30 datasets are measured and averaged. The attenuation of the rf-signal lines and the
insertion loss of the resonators can be assumed to be nearly unchanged between the
cooldowns. The attenuator configuration is well known in both cooldowns. Hence, this
calibration measurement can be used to identify the population of the readout mode for
the data from the first cooldown with sufficient accuracy.

Using the setup of a two-tone measurement, the qubit frequency is detected while the
power of the probe mode is tuned. According to Ref. [84], the ac-Zeeman shift of the
qubit mode does not only depend on the qubit state but also on the number of photons
n inside the cavity, see Eq. (3.3),

ω̃Q = ωQ + (2n+ 1)χ,

where χ = (g+ sin θ)2/∆+, ∆+ denotes the detuning between the qubit and the ω+ mode
and g+ the coupling between the qubit and this mode. The approximation holds at low
photon numbers as long as n < ∆2

+/(4g
2
+ sin2 θ).

The qubit AC-Zeeman shift is measured at Φext = 498.12 mΦ0, see Fig. 5.13. In
general, it is useful to perform this measurement at the qubit degeneracy point since
there flux noise is minimal. However, the visibility of the qubit at this flux point is
suppressed, possibly due to the existence of the additional mode. The AC-Zeeman shift at
Φext = 498.12 mΦ0 for one photon is found to be 2χ = 3.41 MHz. Using the data presented
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Figure 5.14: Wide range two-tone spectroscopy in the high power regime. Using a probe power
of Prf = −2 dBm, the cavity is populated with 5.7 photons on average. The spec-
troscopy power is chosen to be Ps = −9 dBm (T = 50 mK, ωrf = 4.901 GHz). The
colored boxes mark the flux and frequency rage that is chosen for the measure-
ments depicted in Fig. 5.16.

in Fig. 5.13 and fitting the linear part, the frequency shift corresponding to the power of
n photons is given by the relation 2nχ = ξPrf , where ξ = 31 MHz/mW denotes the slope
of the linear increase. Using this relation, the power required to populate the cavity with
one photon is Prf = 0.11 mW. This power value is equivalent to Prf = −9.6 dBm. The
used probe tone power of Fig. 5.7, which is Prf = −20 dBm, is marked by an orange arrow
in Fig 5.13(b). This power populates the cavity with approximately 0.091 photons. This
shows that the AC-Zeeman shift during the calculation of χ can be neglected and does
not affect the qubit or the cavity frequency ωQ or ω+.

5.3.4 Entering the high power regime

By increasing the power of the probe tone, the AC-Zeeman shift can no longer be ne-
glected. Despite sideband transitions a few other aspects make measurements in the high
power regime attractive. The signal-to-noise ratio is increased so that some low visibility
features can be resolved more precisely. In the following, these features will be discussed
and compared with the theory.

Sidebands

Based on the resonator frequencies, the additional mode frequency and the qubit tran-
sition frequency, sideband transitions can be allocated. Figure 5.14 shows a complete
spectrum in a wide flux and frequency range. The probe power Prf here is chosen as
Prf = −2 dBm; the cavity is populated by 5.7 photons on average. The spectroscopy
power is Ps = −9 dBm.

The qubit hyperbola can be identified with the blue sideband transitions for the
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Figure 5.15: Sideband transitions. Not only the qubit transition |g〉 → |e〉 occurs in two-tone
spectroscopy. Also sideband transitions as blue sideband transitions |g,nωa = 0〉 →
|e,nωa = 1〉 (a) and |g,nω+ = 0〉 → |e,nω+ = 1〉 (b) and red sideband transitions
|g,nωa = 1〉 → |e,nωa = 0〉 (a) and |g,nω+ = 1〉 → |e,nω+ = 0〉 (b) are activated.

frequencies ω+ + ωQ [|g,nω+ = 0〉 → |e,nω+ = 1〉, see Fig. 5.15(b)] and ωa + ωQ

[|g,nωa = 0〉 → |e,nωa = 1〉, see Fig. 5.15(a)]. This sideband can also be verified in low
power measurements as a pre-excitation of the qubit or the resonators is not necessary.

In contrast to the blue sideband transition, the red sideband is only visible in high
power spectroscopy data. Figure 5.14 shows the red sideband transition |g,nω+ = 1〉 →
|e,nω+ = 0〉.

Better resolution of individual features

Using a high power probe tone and therefore a good signal-to-noise ratio, the resolution of
the measurements can be increased. Figure 5.16 provides insight into transitions between
the states. As the data is detected using a high power probe tone, the actual datapoints
may differ from the theoretical prediction. The overview in Fig. 5.14 helps to find the
different close ups in the spectrum. The different energy modes are labeled in the form
of their excitations as |Q, nω+, nω2+, nω3+, nωa, nω2a, nω3a〉. Q marks the excitation of
the qubit as |g〉 or |e〉 followed by the excitations of the three lowest quantum switch
modes. The excitations of the flux independent ω− mode is not taken into account as it
is not detectable using two-tone spectroscopy. The last three numbers correspond to the
excitation of the three additional modes.

In a high resolution measurement, the low-frequency range [Fig. 5.16(e) and Fig. 5.16(f)]
shows exactly the flux response of the additional mode. Again, the resonant regime
should not be taken into account as two-tone spectroscopy is a dispersive measure-
ment technique. Despite blue sideband transitions |g,nω+ = 0〉 → |e,nω+ = 1〉 and
|g,nωa = 0〉 → |e,nωa = 1〉 which are detectable for low spectroscopy power, the red
sideband transition |g,nω+ = 1〉 → |e,nω+ = 0〉 is visible only in the high-power regime.

At approximately 9−10 GHz the ω2a mode interacts with the qubit, see Fig. 5.16(c) and
Fig. 5.16(d). As the magnetic field for this mode is zero at the center of the resonators,
it is not plausible to identify this mode with the first harmonic of the additional mode
as the frequency range would suggest. Therefore, the exact nature of this mode remains
unclear. The qubit transition frequency and two blue sideband transitions can also be
observed.

Above 13 GHz, the non-linear frequency spacing of the additional mode starts to play



5.3 Characterization of the components and the system 71

497 498 499 500 501
2

3

4

5




(G

H
z)

s

 (m  )ext

497 498 499 500 501
2

3

4

5

|g, 0, 0, 0, 1, 0, 0

|e, 0, 0, 0, 0, 0, 0
|g, 1, 0, 0, 0, 0, 0

red sideband




(G

H
z)

s

 (m  )ext

496.5 497 497.5 498 498.5 499
7

8

9

10

11




(G

H
z)

s

 (m  )ext

496.5 497 497.5 498 498.5 499
7

8

9

10

11




(G

H
z)

s

 (m  )ext

|g, 0, 0, 0, 0, 1, 0

|e, 0, 0, 0, 0, 0, 0

|g, 1, 0, 0, 1, 0, 0
|g, 0, 0, 0, 2, 0, 0

|g, 2, 0, 0, 0, 0, 0
|g, 0, 1, 0, 0, 0, 0




(G

H
z)

s

 (m  )ext

501.5 502 502.5 503 503.5 504
12

12.5

13

13.5

14

14.5




(G

H
z)

s

 (m  )ext

501.5 502 502.5 503 503.5 504
12

12.5

13

13.5

14

14.5

|g, 0, 0, 0, 0, 0, 1

|g, 1, 0, 0, 2, 0, 0

|g, 2, 0, 0, 1, 0, 0 |g, 0, 1, 0, 1, 0, 0

|e, 0, 0, 0, 0, 0, 0

|g, 0, 0, 0, 3, 0, 0|g, 

blue 
sidebands

(e)

(d)

(f )

(a) (b)

(c)

Figure 5.16: High resolution data of individual transitions taken at T = 50 mK, ωrf =
4.901 GHz, (a) Ps = −16 dBm, Prf = −10 dBm (0.91 photons inside the cavity),
(c) Ps = −7 dBm, Prf = 0 dBm (9.1 photons inside the cavity), (e) Ps = −7 dBm,
Prf = 0 dBm (9.1 photons inside the cavity). The colored boxes in the overview in
Fig. 5.14 depicts where the individual plots are located in the flux frequency plane.
The corresponding states are labeled as |Q,nω+, nω2+, nω3+, nωa, nω2a, nω3a〉. Left
panel: measured data (color coded) and simulation. The dots are depicting the
data taken in the low power limit. Right panel: Uncoupled levels of the qubit,
the resonator modes and their higher harmonics. Blue lines in (b) are the blue
sideband transitions |g,nω+ = 0〉 → |e,nω+ = 1〉 and |g,nωa = 0〉 → |e,nωa = 1〉.
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an important role. The spectrum becomes very feature rich. As the theoretical prediction
of the Hamiltonian (5.3) follows qualitatively the measurements, and the mode spectrum
at 13− 14 GHz does not significantly influence the quantum switch parameters near the
fundamental modes, further investigations on the nature of the additional mode are of
minor interest for this work.

Summarizing, the high power measurements confirm, despite small shifts induced by
the drive itself, the spectrum of the Hamiltonian in Eq. (5.3).

5.4 Resonator transmission of the quantum switch

After discussing the resonator and the qubit in the previous section, in this section the
transmission of the quantum switch and its properties are analyzed.

5.4.1 Transmission through the quantum switch

The transmission through the device is for technical reasons always measured between
port one and two of the same resonator, whereas port three and four are 50 Ω-terminated,
see Fig 4.15. Away from the qubit degeneracy point, the transmission spectroscopy shows
a double peak spectrum with ωR/(2π) = 4.8957 GHz and gAB/(2π) = 8.510 MHz.

In the following transmission measurements, the spectroscopy tone was chosen to be
in the low power regime at Prf = −20 dBm to ensure the qubit being in the ground state.
This is necessary since the switch setting condition g2 sin2 θ/∆ + g2 sin2 θ/Σ = gAB can
only be fulfilled when the qubit is in its ground state |g〉 and the ω+-mode is negligibly
populated.

The result of the transmission measurements versus applied flux is shown in Fig. 5.17.
Tuning the external flux through the degeneracy point of the qubit, the frequency of
the ω+ mode starts to decrease, and crosses the ω− mode, see Fig. 5.17(a). This cross-
ing appears twice, symmetrically with respect to the degeneracy point at 498.9 mΦ0 and
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Figure 5.17: Transmission spectroscopy of the quantum switch versus the applied flux at T =
50 mK and Prf = −20 dBm. (a) Flux range from 497 mΦ0 to 512 mΦ0; White line:
theory prediction based on the full Hamiltonian (5.3) (b) Close-up on the switch
setting condition. Due to the absence of an anti-crossing, the two resonators can
be assumed to be decoupled.
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501.1 mΦ0. These points fulfill the switch setting conditions. The high resolution mea-
surement in Fig. 5.17(b) shows with the resolution set by κ+ and κ−, a clear crossing and
not an anti-crossing of the two modes at this point.

Using the relation of the switch setting condition derived from the original model
(see chapter 3.2) the comparison with the measurements holds some surprises. Here,
∆ = 240 MHz, Σ = 10.05 GHz and g sin θ = 84 MHz gives g2 sin2 θ/∆ + g2 sin2 θ/Σ =
30.3 MHz. This number differs by a factor of approximately 3.5 from gab = 8.5 MHz.
The deviation between the measurement, where the switch setting condition is obviously
fulfilled, and the theoretical prediction from chapter 3.2 shows that the geometry and
thus, the existence of the additional mode has to be included into the model. Theory
prediction [see Fig. 5.17(a)] using the full Hamiltonian agrees quite well with the measured
mode. This is another indication that the Hamiltonian (5.3) describes the quantum switch
properly.

5.4.2 Fitting procedure of the transmission spectrum

Further analysis concerning the mode splitting requires consolidated knowledge about
the parameters of the cavity Lorentzians. Using Eq. (5.1)

Plin(ω+,ω−) =
A+(κ/2)2

(ω − ω+)2 + (κ/2)2
+

A−(κ/2)2

(ω − ω−)2 + (κ/2)2
,

each spectrum at a given flux value is fitted independently. It is important to note that
the Lorentzian double peak spectrum of Eq. (5.1) defines the magnitude of the linear
power. The data depicted in Fig. 5.17 is shown in a logarithmic scale. Close to the
switch setting condition, the distance of the Lorentzians is smaller than their full width
at half maximum κ/(2π). To perform a fit also in this region, the procedure is divided into
two steps. First the flux-independent mode at ω− = 4.887 GHz is fitted and an averaged
mode of the undisturbed ω− peak is calculated using the fitting results away from the
switch setting condition. This averaged mode is subtracted from the complete spectrum
and only the fingerprint of the flux dependent ω+ mode is left, see Fig. 5.18(b). This
procedure ensures that influence of the ω+ mode close to the switch setting condition is
conserved. Then, in a second fitting step, the ω+ mode is fitted. The starting parameters
of the fitting procedure are essential to get good results.

The fitted data, depicted in Fig. 5.18, shows good agreement with the measured spec-
troscopy. In Figs. 5.18(d)-(f) exemplary fit results are presented for flux values where
the fitting procedure is comparably difficult. Although the magnitude of one peak is one
order higher than the lower one [Fig. 5.18(e)] or the bandwidths of the two Lorentzians
are on the order of the frequency splitting [Fig. 5.18(d)], the fitted curves match the
measurement data.

5.4.3 Analyzing the coupling constant g
|g〉
sw

The fitted mode splitting |ω+ − ω−| from Fig. 5.18(b) is used to calculate the coupling

constant g
|g〉
sw = |ω+ − ω−|/2, see Fig. 5.19(a). The dependence of the experimentally

determined coupling strength on the applied flux follows the theoretical prediction as
expected.
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Figure 5.18: (a) Transmission spectroscopy measurement (T = 50 mK, Prf = 136 dBm) of the
quantum switch in comparison to a data fit (c). Beside minor deviations the
fitted spectrum matches the measured one. Close to the switch setting conditions,
three flux points are chosen to compare the data with the fitted curve (d)-(f). (b)
Modified measurement data, the averaged ω− mode is subtracted from the original
spectroscopy data shown in (a).

Theory predicts gsw = 0 at the switch setting condition. The data plotted in Fig. 5.19(b)
shows that the two measurement points close to 498.9 mΦ0 and 501.1 mΦ0 are close to
zero, to be accurate (41.6 ± 21.4) kHz and (166 ± 20.0) kHz. The corresponding on-off-

ratios [10 log(g
|g〉
sw/gAB)] are −23 dB and −17 dB, respectively. It is mainly limited by

the measurement resolution, flux stability, and the fitting procedure. Nevertheless, the
observed values are sufficient for practical applications.
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Figure 5.19: (a) g
|g〉
sw versus applied field. The frequency difference g

|g〉
sw = |ω+ − ω−|/2 of the

fitted Lorentzians (red dots) is in agreement with the simulations (blue line). Error
bars are calculated from the statistical errors of ω− and ω+ using Gaussian error
progressing. (b) Two measurements close to the switch setting condition show
coupling strengths close to zero.
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Figure 5.20: (a) Transmission measurement configuration. Port three and port four are not
directly accessible. (b) Magnitude of the ω− mode versus the external flux. Insert:
Full transmission spectrum. The blue line indicates the cross section shown in the
main graph.

5.4.4 Transmission at the switch setting condition

Despite the fact that for technical reasons, only the transmission through one of the
resonators can be detected in the presented setup [see Fig. 5.20(a)], it is possible to
analyze the beam splitting behavior of the quantum switch device. The latter expected
to act as a near 50:50 beam splitter using input-and-output-formalism [100, 101] and
the decay of the resonator wave function. More precisely, 51 % of the input signal at
resonator A should be transmitted to resonator B and therefore port 1 and port 2 should
emit 24.5 % and port 3 and port 4 should emit 25.5 % of the signal. A detailed calculation
can be found in App. E.

Figure 5.20(b) depicts the flux dependent transmission at ω− = 4.8872 GHz. While
the spectrum is almost constant for most flux values, the magnitude at 498.9 mΦ0 and
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Figure 5.21: The investigation of gmixed
sw is performed with a transmission spectroscopy mea-

surement. A second, high power signal using the SMF 100A is fed into the two-
resonator sample at ωs = 4.8875 GHz and Ps = −10 dBm to excite the qubit into
a dressed state.

501.1 mΦ0 is sharply increased by approximately 3.6 dB. Thus, slightly more than twice
the power is transmitted through one resonator and not transferred to the second one.
This increase in transmission is in good agreement with the value of 3.1 dB expected from
the calculated splitting ratio. The small deviation is attributed to the not well-controlled
reflection caused by the silver-glue-based connector-chip transitions at the sample box.

Later measurements, namely the second cooldown that has been used for the power
calibration in subsection 5.3.3, provide access to both resonators. Indeed, in these mea-
surements it is observed that at the switch setting condition the transmission to the other
resonator is decreased.

In summary, the increased power transmission of 3.6 dB is a good indicator for the
decoupling of the two resonators at the switch setting condition.

5.4.5 Switching the quantum switch by changing the qubit state

Here, the reader is reminded that the two resonators can also be decoupled at the switch
setting condition by changing the qubit state from |g〉 to |e〉. To excite the qubit, a high
power signal is inserted at ωs = 4.8875 GHz using the SMF signal source as sketched in
Fig. 5.21. At this frequency, the signal is on resonance with the ω−-mode. The high power
(Ps = −10 dBm) creates approximate 103 photons inside the cavity which is sufficient to
excite the qubit despite the detuned drive.

The outcome shown in Fig. 5.22(b), are two coupled resonators. Compared to the
transmission shown in Fig. 5.22(a) where the qubit is in the ground state, the data in
Fig. 5.22(b) indicates neither a crossing between the two modes nor a significant variation
of ω+. The cross sections of the spectra at the switch setting conditions are plotted in
the lower panel. While Fig. 5.22(c) only shows one peak, Fig. 5.22(d) clearly exhibits a
double peak spectrum.

The transmission behavior can be explained with the following model. The used ex-
citation signal is not a π-pulse but a coherent continuous wave signal. Hence, the qubit
is not excited into |e〉 but into a mixed state between |g〉 and |e〉, pg|g〉〈g| + pe|e〉〈e|.
The resulting coupling constant is not g

|e〉
sw but gmixed

sw . For a strong drive pe = pg = 1/2
for ground and excited state can be safely assumed. Considering the original Hamilto-
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Figure 5.22: Transmission measurement of the quantum switch versus the applied magnetic flux
for two different qubit states: (a) qubit in ground state, (b) qubit in mixed state.
(c), (d) show the spectroscopy measurement at 498.93 mΦ0, the exact position of
the switch setting condition that in indicated by the blue lines in (a) and (b).
(c) Only one peak is detectable, thus, the two resonators are decoupled. (d) the
modes are clearly separated, thus, the two resonators are coupled.
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the range of 7− 9.5 MHz. Both resonators are always coupled.

nian (3.6) of the quantum switch where the additional mode is neglected, the interaction
between the two resonators in the dispersive limit is described by

Ĥeff
int = ~ (gAB + gdynσ̂z)

(
â†b̂+ âb̂†

)
+ ~σ̂zgdyn

(
â†â+ b̂†b̂

)
see section 3.2.1. For the two qubit eigenstates |g〉 and |e〉 the expected transmission
spectroscopy is that of the reduced Hamiltonians

〈g|Ĥeff
int|g〉 = ~ (gAB − gdyn)

(
â†b̂+ âb̂†

)
− ~gdyn

(
â†â+ b̂†b̂

)
= −~gdyn

(
â†â+ b̂†b̂

)
and

〈e|Ĥeff
int|e〉 = ~ (gAB + gdyn)

(
â†b̂+ âb̂†

)
+ ~gdyn

(
â†â+ b̂†b̂

)
= 2~gAB

(
â†b̂+ âb̂†

)
+ ~gdyn

(
â†â+ b̂†b̂

)
.

Here, the brackets can be interpreted as tracing out the qubit degrees of freedom from
Ĥeff

int. For an incoherent classical mixture, the reduced Hamiltonian is

pg〈g|Ĥeff
int|g〉+ pe〈e|Ĥeff

int|e〉 = ~gAB

(
â†b̂+ âb̂†

)
.

The interaction strength in the dispersive limit is given by gAB for all flux values (see
Fig. 5.23)

The two resonators are always coupled. The small deviations of the ω+-mode in the
flux are found for flux values where the dispersive assumption for Ĥeff

int is violated.



Chapter 6

Summary and Outlook

The interaction between light and matter is one of the fundamental processes in physics.
In the research field of cavity quantum electrodynamics (QED) this process is investigated
by coupling single atoms to single photons that are trapped in three-dimensional optical
cavities. An important prerequisite to investigate the coherent atom-photon interaction
is that the coupling of the two systems is much larger than the photon loss rate of the
cavity and the atom decay rate into modes other than the cavity mode. To this end, in the
research field of circuit QED, the light matter interaction is studied using superconducting
circuits, acting as two-level systems, so called qubits, and microwave resonators, acting
as one-dimensional cavities. These systems provide various design parameters, and thus,
various ways to couple the qubit to microwave resonators. During the last decade, the
number subsystems interacting with each other and thus, the number if signal on a chip
has increased. This trend asks for controlled directing of quantum signals between the
different subsystems in the network. Consequently, a quantum switch is needed to take
the part of a classical switch in classical networks. For this purpose, a quantum switch,
consisting of two superconducting microwave resonators with equal eigenfrequencies ωR

and one flux qubit, is introduced within this work. Here, in the dispersive limit the
qubit mediates a second-order coupling between the two resonators. Apart from the
possibility of switching the coupling between the two resonators, the device itself can be
used to create an entangled superposition state between the resonators. This is especially
interesting as the qubit, working off-resonant, makes only minor contributions to the
dephasing of the resulting states.

In this thesis a quantum switch is fabricated, measured and analyzed. The theoretical
description of the device requires knowledge about the individual components which are
shortly described in chapter 2. Here, two different designs of a flux qubit are introduced,
a three-Josephson-junction flux qubit and a four-Josephson-junction one. Although the
four-Josephson-junction qubit is not implemented into the quantum switch, dc-SQUID
measurements indicate that the chosen design of the Josephson junctions allows for fur-
ther applications using a four-Josephson-junction qubit.

A short overview about circuit QED helps to understand the complexity of the quantum
switch and the later measurement scheme. The effective Hamiltonian of the system
describes the individual components (qubit and two resonators), an ac-Zeeman shift of
the cavity modes, and an interaction term between the two resonators mediated by a non-
constant coupling strength gAB + gdynσz. While gAB is the constant geometric coupling
between resonator A and resonator B, gdyn denotes a qubit dependent and thus flux
dependent quantity. Depending on the qubit state, the total coupling strength between
the two resonators is the sum or the difference between the geometric and dynamic
parts. At the switch setting condition, the external flux is tuned to fulfill gAB = gdyn

79
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which results in a decoupled system for the qubit being in the ground state. To get a
sufficiently strong coupling between the resonators and the qubit, which is required to
compensate the geometric coupling, the qubit is galvanically contacted to the lines of the
two resonators. The fabricated quantum switch works as expected.

Although the Hamiltonian of the system considers the individual components and their
interaction terms, the measurements show that the fabricated quantum switch does not
only consist of two resonator modes and a qubit. Due to the geometry, an additional
mode, can be observed at frequency ωa. This additional mode is identified as a cur-
rent mode flowing through the qubit. The additional inductance due to the Josephson
junctions leads to a reduced frequency ωa compared to ωR. As the current of this mode
is flowing through the qubit, the coupling between the qubit and the additional mode
is of ultra-strong nature (ga/ωa > 1, the Hamiltonian describing the system cannot be
simplified using a rotating-wave approximation). Consequently, higher ”harmonics” of
this additional mode behave non-harmonically (ωna 6= nωa) [81]. In summary, the Hamil-
tonian describing the system consists of the Hamiltonians of the individual components,
the interaction terms between these components, and the Hamiltonian of the additional
mode interacting with the qubit. A comparison at the switch setting condition between
the original model withour and the new model including the additional modes shows a
difference of gdyn by a factor of two. Hence, the original model does not describe the
galvanically coupled system quanitatively.

Despite the additional mode, the quantum switch modes show the expected properties
as spectroscopy measurements indicate. At the switch setting condition, a mode-crossing
of the degenerate two-resonator modes (quantum switch modes) and thus a decoupling
of the two resonators is observable for the qubit being in the ground state. A detailed
analysis of the transmission through one resonator shows how the coupling decreases
when the applied flux approaches the switch setting condition. The measured coupling
constant reaches values of (41.6± 21.4) kHz and (166± 20.0) kHz at the flux values close
to the switch setting condition. These numbers are bound due to the measurement
resolution and fitting inaccuracies as the fit of two Lorentzians separated by less than
their width is not precise enough.

At the switch setting condition, the transmission through one of the resonators in-
creases by more than a factor of two. This doubling of the transmitted signal and the
existence of a mode crossing at the expected flux values are clear indications for a working
quantum switch.

The coupling between the two resonators can be switched on and off by changing the
qubit state at the switch setting condition. To this end, the qubit is excited into a
mixed state using a high power cw-signal to populate the cavities with approximately
103 photons. As theory predicts, the coupling between the two resonators is non-zero
independent of the applied flux. The two resonators remain coupled also at the switch
setting condition. This measurement result shows the predicted difference of the coupling
strengths depending on the qubit state.

The measured parameters of the qubit and the coupling constants between the indi-
vidual components indicate that the switch setting condition and thus the decoupled
resonator modes are in the dispersive limit with respect to the qubit transition frequency
ωQ. This is a good initial situation for further experiments with the quantum switch.
Some ideas will be presented in the following.

A straight forward continuation is a transmission measurement using two ports as
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input and two ports as output ports. Simultaneous measurements of the transmission on
all output ports answers the question how the transmission through one resonator and
the transmission from one to the other resonator behave with respect to the mediated
coupling strength. First measurements using all four ports indicate a behavior following
the expectations from theory. A π-pulse can be used to excite the qubit into the state
|e〉. The ratio of the transmitted signals at the different ports for different qubit states
is a fingerprint of the performance and the on-off ratio of the quantum switch.

Apart from spectroscopy measurements, entering the time domain is important. Rabi
oscillations between the qubit and the coupled resonator mode ω+ can be used to calculate
the relaxation rate of the qubit. Although, the qubit relaxation and dephasing rates
are not essential for a working quantum switch they are important quantities for other
qubit applications at the Walther-Meissner-Institut. Efforts towards that direction are
currently made and first results are expected soon.

After characterizing the individual components and the complete quantum switch, the
next step is the application of the device for quantum experiments. Some examples
of how the quantum switch architecture can be exploited to create nonclassical states
or entanglement between the two resonators are pointed out in the following. Detailed
explanations are presented in Ref. [43].

As the flux qubit of the quantum switch is placed in the center of the resonators to
couple via the magnetic field a second qubit, e.g., a transmon [59], which couples via
the electrical field to one of the resonators, e.g., resonator A, can be placed close to
one of the coupling capacitors. This ancilla-qubit can be used to create a Fock state in
the resonator [102]. Both resonators should be decoupled, meaning, the quantum switch
qubit is in its ground state and the switch setting condition is fulfilled. The state |1〉A
stays in resonator A while cavity B remains is the vacuum state |0〉B. The quantum
switch is now turned on, either by exciting the qubit or using an adiabatic shift. If the
resonators are coupled for a time t the state evolves as

|Ψ〉 = cos(gon
swt)|1〉A|0〉B + exp(iπ/2) sin(gon

swt)|0〉A|1〉B.

Depending on t the Fock state can be completely transferred from resonator A to res-
onator B (t = π/(2gon

sw)) or maximal entanglement between both cavities can be achieved
(t = π/(4gon

sw)).
The quantum mechanical nature of the qubit is essential in the following idea. Res-

onator A is again prepared in Fock state |1〉A. The qubit is in the ground state |g〉 and
the switch setting condition is fulfilled. Applying a π/2-pulse excites the qubit into a
symmetric superposition state (|g〉+ |e〉)/

√
2. As the time evolution of the Hamiltonian

acts only on the excited state of the qubit, the state of the quantum switch evolves as

1√
2

(|g〉|1〉A|0〉B + cos(gon
swt)|e〉|1〉A|0〉B + exp(iπ/2) sin(gon

swt)|e〉|0〉A|1〉B) .

By waiting for time t = π/(2gon
sw) the part |e〉|1〉A|0〉B of the initial state is transferred to

|e〉|0〉A|1〉B and the result is

1√
2

(|g〉|1〉A|0〉B + exp(iπ/2)|e〉|0〉A|1〉B) .
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This state represents maximal entanglement of three systems, here two Fock states and
one qubit. The generation of tripartite entangled states is the precondition for the inves-
tigation of these states. As the two resonators are prepared in a Fock state configuration
and thus, the resonators act as photonic qubits, additional qubits are not needed. As
only one quantum switch qubit has to be fabricated, the system and the assumptions on
the fabrication technology are eased dramatically. The same idea can be used to create
entanglement between coherent states. Instead of preparing resonator A with a Fock
state it is populated by a coherent state |α〉A. The same principle as mentioned before
results in the tripartite entangled state

1√
2

(|g〉|α〉A|0〉B + exp(iφ)|e〉|0〉A|α〉B) .

For a simple transformation of states between the two resonators the qubit is de-
tuned from the cavities and decoherence of the qubit plays a minor role to the cavity
states. Nevertheless, long relaxation and dephasing times are desired. Therefore, an
implementation of a four-Josephson-junction qubit into further samples is recommended.
The layout of such a qubit can be adapted from the design shown in subsection 4.1.3.
The microwave spectroscopy data of such a four-Josephson-junction qubit, presented in
section 4.3, indicates suitable performance.



Appendix A

Design Parameters of the Qubits

This section provides the exact layout parameters that were used to fabricate the four-
Josephson-junction qubit shown in chapter 4.3 and the three-Josephson-junction qubit
implemented in the quantum switch. The dose factor used in electron beam lithography
within the GDS II file varies for the single components. For the three-Josephson-junction
qubit implemented in the quantum switch, the internal dose factor of the bars is 1.2, the
dose factor of the junction’s nose, see Fig.A.1(d), is increased to 1.1 compared to the
qubit line. The overall dose was ≈ 600µC/cm2. The dose of the resonator connection
is reduced by 60 % to approximately 400µC/cm2. For the four-Josephson junction case,
an internal dose adjustment was not necessary but the dose for the SQUID and qubit
structure was with 500 − 600µC/cm2 a bit lower. In general these numbers differ for
each fabricated sample.
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Figure A.1: GDS II layout used for the qubits (a) and (b) shows the overall layout. (c) and (d)
depict details of the Josephson-junction layout.
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three-Josephson-junction qubit four-Josephson-junction qubit
Parameter Value (nm) Parameter Value (nm)

xQ 20500 xQ 20000

yQ 8500 yQ 30000

xsq 23030

ysq 12500 wJJ,α 160

w 180 wJJ 200

wline 279 w 506

g 305 gJJ 600

gα 158 lJJ 302

s 1190 g 2000

lB 6600 l 2700

gB 2520

Table A.1: Layout parameters of the GDS II design of the three-Josephson-junction qubit (left)
and the four-Josephson-junction qubit (right).



Appendix B

Fabrication Parameters

The following chapter gives information on the exact parameters for the fabrication of
the different devices. Beginning with some general information (appendix B.1), the fab-
rication process of niobium resonators (appendix B.2), dc-bias lines (appendix B.3) and
superconducting qubits (appendix B.4) are presented.

B.1 General information

One of the most critical steps which is always underestimated is the first cleaning of
the blank substrate. Every bit of dust and dirt which sticks to the substrate during the
first fabrication step is going to disturb the following process steps and may lead to an
imperfect result. The cleaning procedure is as follows:

Process step Parameters Comments

First wafer
cleaning

Acetone bath t = 10 min
and T = 70◦

Protection resist is removed.

Acetone bath in ultrasonic,
t = 2 min, power 9

Before switching to the next bath,
the wafer has to be splattered
with fresh acetone

Acetone bath in ultrasonic,
t = 2 min, power 9

Before switching to the next bath,
the wafer has to be splattered
with isopropanol

Isopropanol bath in ultra-
sonic, t = 2 min, power 9

The wafer should be flooded with
fresh isopropanol before drying

Dry with N2

General wafer
cleaning

Acetone bath in ultrasonic,
t = 2 min

Before switching to the next bath,
the wafer has to be splattered
with fresh acetone

Acetone bath in ultrasonic,
t = 2 min

Before switching to the next bath,
the wafer has to be splattered
with isopropanol

Isopropanol bath in ultra-
sonic, t = 2 min

The wafer should be flooded with
fresh isopropanol before drying

Dry with N2
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B.2 Niobium resonators

The niobium resonators are fabricated using dc-magnetron sputtering and pattern trans-
fer via a dry-etching technique. Thus, the niobium material is sputtered on an unstruc-
tured wafer and the layout is etched into the material using a SF6 and Ar plasma. The
following parameters were used for fabrication.

Process step Parameters Comments

Wafer cleaning See appendix B.1 With power 9

Sputtering Position of the sample
holder in front of Nb-
magnetron

The pressure before the
sputtering process is started
should be less than 5 · 10−9 mbar

process pressure :
2.73 · 10−3 mbar
Ar flow: 10 sccm The actual sputtering time t has

to be adjusted to the desired
niobium thickness and to the
actual sputtering ratio.

Power: 200 W
Ramp: 5 s
Pre-sputtering: t = 5 min

Wafer cleaning See appendix B.1 With power 9

Spin coating Resist: AZ 5214E The wafer has to be placed onto
the desired chuck. The vacuum
ensures the stability during the
coating.

t = 55 s at 8000 rpm It is important to use a clean new
pipette

Softbake Wafer on hotplate: t = 70 s,
T = 110◦C

Edgewall remov-
ing

t ≈ 15− 25 s For this exposure, a mask with a
150 − 200 nm transparent border
is designed. Thus, only the bor-
der is exposed and developed in
the next step.

Developing AZ 726 MIF developer from
Microchemicals, t = 30 s

During development the basin
should be moved.

H2O basin, t = 1 min H2O is a stopper concerning the
AZ 726 MIF developerH2O basin, t = 1 min

Mask exposure t ≈ 4− 10 s The energy dose to obtain the
exposure time is 36 mJ/cm2 at
365 nm

To be continued on next page
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Process step Parameters Comments

Development AZ 726 MIF developer from
Microchemicals, t = 70 −
90 s

During development, the basin
should be moved.

H2O basin, t = 1 min H2O is a stopper concerning the
AZ 726 MIF developerH2O basin, t = 1 min

Optical Check The layout of the resonator has to be a one-to-one image of
the layout on the mask. The gaps between the signal lines
and the ground planes must be completely clean. The cou-
pling capacitors and the alignment structures for later e-beam
process must be well defined.

RIE physical
etching

O2 flow: 0 sccm
Ar flow: 10 sccm
SF6 flow: 20 sccm
RF power: 100 W
ICP power: 50 W
He backing: 10 sccm
Chamber pressure:
15 mTorr
Strike pressure: 30 mTorr
Ramp rate: 5 mTorr/s

O2 plasma
ashing

O2 flow: 50 sccm
Ar flow: 0 sccm
SF6 flow: 0 sccm
RF power: 100 W
ICP power: 0 W
He backing: 10 sccm
Champer pressure: 5 mTorr
Strike pressure: 50 mTorr
Ramp rate: 5 mTorr/s

Lift off Acetone bath T = 70◦ for
up to one hour
Acetone bath in ultrasonic,
t = 2 min, power 2
Isopropanol bath in ultra-
sonic, t = 2 min, power 2
Dry with N2 The sample should now be

checked for any inaccuracies.
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B.3 Dc-bias lines of gold

Like the niobium for the resonators, the gold is sputtered onto the wafer. In contrast
to the dry-etching technique, a lift-off process requires a structured wafer before the
sputtering step. The excessed material is removed in an acetone bath.

Process step Parameters Comments

Wafer cleaning See appendix B.1 Use power 9

Spin coating Resist: AZ 5214E The wafer is placed centered onto
the corresponding chuck.

t = 1 min at 4000 rpm A new clean pipette is necessary
to receive good results

Softbake Wafer on hotplate: t = 70 s,
T = 110◦C

Flood exposure t = 0.1− 0.2 s The wafer is exposed using UV-
light without any photomask

Reversal bake Wafer on hotplate: t =
120 s, T = 130◦C

Mask exposure t ≈ 4− 10 s The energy dose to optain the
exposure time is 36 mJ/cm2 at
365 nm

Developing AZ 726 MIF developer from
Microchemicals, t = 20 −
35 min

The status of the development
process has to be checked ap-
proximately every 2 minutes after
20 min. With increasing time the
status has to be checked more fre-
quently.

H2O basin, t = 1 min
To stop the developing process

H2O basin, t = 1 min

To be continued on next page
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Process step Parameters Comments

Sputtering Sputtering of 3 − 5 nm
chromium: Isp = 120 mA,
t = 30 s, pAr = 5 · 10−2 mbar

The chromium layer is necessary
as an adhesive layer for the gold.

Sputtering of 25 nm gold:
Isp = 15 mA, t = 135 s,
pAr = 5 · 10−2 mbar

Lift off Acetone bath T = 70◦ for
up to one hour

If the gold has not vanished
completely, the sample has to be
placed into a new acetone basin;
the lift off has to be repeated.

Acetone bath in ultrasonic,
t = 2 min, power 2
Isopropanol bath in ultra-
sonic, t = 2 min, power 2

After drying removing any left
gold material gets hard. There-
fore, it has to be checked that ev-
erything is removed as expected.

Dry with N2 The sample should now be
checked for any inaccuracies.
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B.4 Qubits

The fabrication of the qubits requires good control of each fabrication parameter. The
shadow evaporation of the aluminum does not allow any etching technique. The excess
aluminum is removed using a lift-off step where the lift-off time may easily exceed one
hour. The following parameters were used to fabricate three- and four-Josephson junction
qubits.

Process step Parameters Comments

Wafer cleaning See appendix B.1 Using power 2

Spin coating Resist: PMMA/MA 30 % The wafer is placed centered onto
the corresponding chuck.

t = 2 min at 2000 rpm A new clean pipette is necessary
to receive good results.

First baking Wafer on hotplate:
t = 10 min, T = 160◦C

The hotplate needs to be hot at
the beginning of the baking pro-
cess. In general, it should be
started to heat at least 20 min be-
fore the spin coating step.

Spin coating Resist: PMMA 950k The wafer is placed centered onto
the corresponding chuck.

t = 2 min at 4000 rpm A new clean pipette is necessary
to receive good results.

Second baking Wafer on hotplate:
t = 10 min, T = 160◦C

Chip mounting The sample has to be mounted onto the desired sample holder.
The contact between the sample and the holder has to be as
tight as possible to ensure good electrical conductivity. In
the case of a 6× 10 mm2 chip a special sticking pad was used
to ensure this contact. The sample holder is placed into the
vacuum chamber of e-beam writer which is then evacuated.

To be continued on next page
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Process step Parameters Comments

E-Beam
exposure
parameters

Aligning the sample using three desired points on the layout.
The alignment includes x and y position as well as the working
distance and the optical properties of the beam, such as gun
tild and astigmatism.
Gun voltage: 30 kV, pot
size 1
Beam current: ≈ 27 pA The beam current has to be

checked every time before the
writing process.

Lead lines: 400 −
500µC/cm2

SQUID and Qubit: 500 −
600µC/cm2

Qubit with resonator line:
≈ 600µC/cm2

Resonator line: ≈
400µC/cm2

Step size: 5.5 nm
Area mode: meander
Settling time: 0.1 ms

Development

Developer: AllResist
AR− P 600− 56
t = 2 : 20 min
Isopropanol basin, t = 45 s

To stop the developing process
Isopropanol basin, t = 45 s

Optical check An optical check after the e-beam writing and development is
useful. Obvious errors can be seen with an optical microscope
and the resist can be removed in an lift off. The wafer can be
reused in a new run.

Aluminum
evaporation

First angle: ±16◦

pstart: ≈ 5 · 10−9 mbar
Beam current: ≈ 350 −
450 nA
pprocess: ≈ 2 · 10−7 mbar
Beam voltage : 8 kV
Emission current: 380 -
450 mA
Thickness: 40 nm

To be continued on next page
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Process step Parameters Comments

Oxidation
pprocess: 2.0 · 10−4 mbar The time is the critical

parameter during the oxidation
step.

t = 21− 26 min

Aluminum
evaporation

Second angle: ∓16◦

pstart: ≈ 5 · 10−9 mbar
Beam current: ≈ 350 −
450 nA
pprocess: ≈ 2 · 10−7 mbar
Beam voltage : 8 kV
Emission current: 380 -
450 mA
Thickness: 70 nm

Lift off

Acetone bath T = 70◦ for
up to one hour
Acetone bath in ultrasonic,
t = 2 min, power 2

If the aluminum has not vanished
completely, the sample has to be
placed into a new acetone basin
and the lift off has to be repeated.

Isopropanol bath in ultra-
sonic, t = 2 min, power 2

After drying, it is not easy to re-
move any left material anymore.
Therefore, it has to be checked
that everything is removed as ex-
pected.

Dry with N2 The sample should now be
checked concerning any inaccura-
cies.
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Measurement Box

To perform the measurements the 6× 10 mm2 small silicon substrates are mounted into
an appropriate measurement box. This box has to fulfill some requirements. First, the
material must exhibit a good thermal and electrical conductivity at temperatures below
4 K. The chosen material oxygen-free high thermal conductivity (OFHC) copper has an
electrical conductivity comparable to the conductivity of ordinary copper whereas the
thermal conductivity is increased by a factor of 10 for temperatures below 2 K compared
to standard copper. To avoid any surface oxidation, the boxes are galvanically covered
with a thin gold layer. The second aspect considers the geometry of the box. Any box
modes in the regime of less than 8 GHz should be avoided. The dimensions of the inner
volume are therefore chosen to be as small as possible. The first measurement boxes
(CPW and MS) have an inner volume of 11 × 11 × 3.25 mm3. Printed circuit boards
(PCBs) are used to connect the V-connectors with the sample, see Fig. C.1.

PCB

sample

V-connector

gold plated OFHC copper box
holes to mount the glas-beeds
(used for the V-connectors)

PCB - sample connection done 
via aluminum bonds

Figure C.1: MS measurement box with sample and PCBs.

Although the first box design was planned very well, the difficult connection between
V-connector and PCB and between PCB and sample necessitated a new, simpler box.
The second design (measurement box) has a smaller inner volume 10 × 6 × 5 mm3 and
includes the usage of SMA-connectors. Their assembly is easier and less sensitive.

The CAD layouts of all three box designs are printed on the following pages.
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Measurement Box
MS
V-connectors
front side
material: OFHC copper
Hoffmann

Figure C.2: CAD design of MS measurement box front side
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Measurement Box
MS
V-connectors
back side
material: OFHC copper
Hoffmann

Figure C.3: CAD design of MS measurement box back side
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Measurement Box
CPW
V-connectors
material: OFHC copper
front side
Hoffmann

Figure C.4: CAD design of CPW measurement box front side
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Measurement Box
CPW
V-connectors
material: OFHC copper
back side
Hoffmann

A: round for 
milling tool
(3mm)

Figure C.5: CAD design of CPW measurement box back side
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Cover of measurement Box
CPW and MS
V-connectors
material: OFHC copper
Hoffmann

Figure C.6: CAD design of cover
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Measurement Box
SMA-connectors
front side
material: OFHC copper
Hoffmann

Figure C.7: CAD design of second measurement box





Appendix D

Setup of the 30 mK dilution unit

As mentioned in chapter 4.4, the used 30 mK setup was rebuilt during this work. In the
following an overall scheme and the layouts of the components designed by the author
are shown.

D.1 Complete Setup

The cryostat offers seven input channels which are all attenuated and thermalized at the
required temperature stages, independently. Each of the four output channels implies at
least two circulators at base temperature and at 700 mK and one cryogenic amplifier.

Figure D.1 depicts a sketch of the RF-cable connections inside the cryostat. The blue
line represents the chain which was used to perform the presented measurements on the
quantum switch sample.
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D.2 dc-wiring

Apart from well defined RF-connections, thermal control and dc-drive of the used switches
and amplifier is absolutely important. For this purpose, 96 dc-cables are implemented to
transfer signals to the desired components. The complexity here lies in the channel which
was used to implement the cables, namely the inner vacuum pumping line. Therefore, the
connection box at room temperature and the used Lemo-connectors have to be vacuum
tight and show a leaking rate of less than 1 · 10−7 l ·mbar/s at the 4He detection. As
the box is fabricated using single components that are screwed and glued using silicone
a smaller rate is not assumed. The individual components are not soldered as the option
of re-soldering the Lemo-connectors is left open. The back side of the Lemo-connectors
is shown in the close up in Fig. D.2.

As the cables are transferred from room temperature to 4 K a thermalization in between
is obligatory. Therefore, the dc-cables are glued using GE varnish into small capillaries
that are soldered into the copper baffels. The baffels are big enough to contact the inner
wall of the vacuum tube. To ensure the quality of the pumping the baffels are only half-
sided and always two of them are mounted to built a pair. They are made of copper to
ensure a good thermal conductivity. The three lowerst baffels have to be a bit smaller,
as the pumping line tube is bend in this region and reduced in radius.

The following figure presents an assembly overview of the single components and their
CAD designs, respectively.
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Figure D.2: Installation scheme of 96 dc-wires in the 30 mK cryostat
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Appendix E

Estimation of the balance

In this chapter, the time evolution of the populated resonators is estimated analogously
to Ref. [101]. In case of coupled resonators and neglecting any decay rates κ to the
environment, the input-output relations for a time t are

âout = Û âinÛ
† and b̂out = Û b̂inÛ

†

with Û = exp[igABt(â
†
inb̂in + âinb̂

†
in)]. This leads to

âout(t) = cos(gABt)âin + i sin(gABt)b̂in

and
b̂out(t) = cos(gABt)b̂in + i sin(gABt)âin.

Using only one input signal at resonator A at an input rate γ and the decay into the
environment with exp(−κt) the number of photons in the resonators reads

〈â†out(t)âout(t)〉 =
(
γt cos(gABt)e

−κt)2

and for resonator B
〈b̂†out(t)b̂out(t)〉 =

(
γt sin(gABt)e

−κt)2
.

To calculate the balance between the two resonators, the integral over the hole time has
to be normalized by the overall population. Thus, the balance is∫∞

0
〈â†out(t)âout(t)〉 dt∫∞

0
〈â†out(t)âout(t)〉 dt+

∫∞
0
〈b̂†out(t)b̂out(t)〉 dt

:

∫∞
0
〈b̂†out(t)b̂out(t)〉 dt∫∞

0
〈â†out(t)âout(t)〉 dt+

∫∞
0
〈b̂†out(t)b̂out(t)〉 dt

With gAB = 8.5 MHz and the mean value of κ = 2.67 MHz, the balance is estimated to
be 49 : 51.

It is important to note that with decreasing decay rate κ, the two resonators becomes
more and more a 50 : 50 beam-splitter. As the decay rate of a single resonator cannot be
measured in the presented setup, taking the mean value of κ− and κ+ gives only an upper
limit on κ. Although the estimated unbalanced beam-splitter is a worst-case scenario,
the quantum switch is comparably close to the ideal case.
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Review Letters 85, 2208 (2000).

[10] D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeu-
tel, and D. Meschede, Physical Review Letters 93, 150501 (2004).

[11] M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V.
Porto, Nature 448, 452 (2007).

[12] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, Nature Physics
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[35] S. Filipp, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, L. Steffen, and A. Wallraff,
Physical Review A 83, 063827 (2011).

http://dx.doi.org/ 10.1038/nphys1453
http://dx.doi.org/ 10.1103/PhysRevLett.105.090502
http://dx.doi.org/ 10.1103/PhysRevLett.105.090502
http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/wineland-lecture.html
http://dx.doi.org/doi:10.1063/1.37322
http://dx.doi.org/ 10.1103/PhysRevLett.50.1903
http://dx.doi.org/ 10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/haroche-lecture.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/haroche-lecture.html
http://dx.doi.org/10.1038/22275
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/ 10.1103/PhysRevLett.95.060501
http://dx.doi.org/ 10.1103/PhysRevLett.94.123602
http://dx.doi.org/ 10.1038/nature06141
http://dx.doi.org/ 10.1038/nphys1016
http://dx.doi.org/ 10.1038/nphys1016
http://dx.doi.org/ 10.1103/PhysRevB.78.180502
http://dx.doi.org/ 10.1103/PhysRevB.78.180502
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/ 10.1103/PhysRevA.83.063827


Bibliography 113
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”zugearbeitet” haben. Das wären Thomas Weissl (Diplomarbeit 2009), Felix Bilger
(Diplomarbeit 2011), Maurice Hermwille (Werkstudent 2009), Marta Krawczyk (Werk-
studentin 2010) und Norbert Kalb (Werkstudent 2012). Ohne ihre Fragen hätte ich mir
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Meinen Eltern möchte ich für all die Hilfestellungen im Leben danken, die man als
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