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Abstract

Superconducting coplanar waveguide chips were designed and microfabri-
cated using optical lithography. The fabricated chips were used to perform
millikelvin measurements on the rare earth ion 167-erbium doped in a Yt-
trium Orthosilicate crystal. The goal of the measurements is to obtain in-
sight into the possibility of phonon-mediated energy transfer between spa-
tially separated spin ensembles. In addition, numerical simulations were
performed to study the thermodynamic behaviour of spin ensembles inter-
acting with a phonon bath.
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Die Schöheit ist das Durhcleuchten des ewigen Glanzes des Einen,
durch die materielle Erscheinung.
Werner Heisenberg
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Chapter 1
Introduction

1.1 Motivation of Research Effort

1.1.1 Physical production of Quantum Memory

The main goal of quantum memory research is to develop a platform and
operating protocol that allows for the storage of quantum information. These
protocols will be operated side-by-side with quantum computing architec-
ture, a so-called hybrid architecture. The memory should be able to store
the state of the involved qubits over timescales longer than the coherence
time of the computing hardware would normally permit. One of the most
promising quantum computing platforms is coplanar superconducting cir-
cuits containing waveguides and combinations of harmonic and anharmonic
resonators.[1] Due to the nature of the latter, these circuits are usually oper-
ated at radio or microwave frequencies. To directly couple superconducting
qubits to a memory interface, with only on-chip components (e.g. no lasers),
requires that the memory interface operates in this frequency regime as well.

Optical storage of quantum information in rare earth (RE) solid state spin
ensembles has proven very successful. To be specific, in these optical mem-
ory protocols microwave states were stored using the combination of an
atomic transition and a nuclear spin transition[2][3][4], using a combina-
tion of optical and electron spin resonance (ESR) techniques. The former
matches optical frequencies, while the latter allows for long coherence times,
sometimes on the order of days.[5][6] The same platform shows promise
for the low microwave regime by solely applying ESR techniques on the
RE electron spin.[7] Circuit quantum electrodynamics experiments have al-
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6 Introduction

ready been performed in this context. In these experiments, a RE-doped
crystal is placed directly on top of a coplanar microwave resonator. Usually,
continuous wave (CW) spectroscopy is performed by sweeping the strength
of an external magnetic field, while applying very low power to the res-
onator. The latter implies that the resonator is in the quantum regime, host-
ing an energy on the order of single microwave photons. The characteristic
hybridisation of the resonator level structure with that of the spin ensemble
is observed. Some of these experiments made use of a superconducting res-
onator, which can be fabricated with the same methods commonly used for
superconducting quantum circuits. More recently also pulsed ESR exper-
iments were done with such a setup, showing that solid state RE dopants
could provide a microwave quantum memory platform.[8][9]

1.1.2 Questions Concerning Coherence

One of the most promising multimode quantum memory protocols is that
of the Atomic Frequency Comb (AFC), first introduced in 2008.[2] The main
idea is to burn a frequency comb of narrow spectral holes into an inho-
mogeneously broadened absorption line.[10][11] A photon whose linewidth
spans several of the spectral holes will be collectively absorbed. Analogous
to Hahn echo [12], the absorbing spectral holes will coherently refocus and
reemit the photon. Why this is in fact a multimode memory is explained
below. What makes AFC more attractive than other RE quantum memory
protocols is that for the latter their efficiency depends on the optical depth of
the medium.[4] Other protocols such as Electromagnetically Induced Trans-
parency (EIT) [13][14] or Controlled Reversible Inhomogeneous Broadening
(CRIB)[15] for example, theoretically requires materials with quite large op-
tical depths. Considering this fact, it is natural that there has come to be
a research focus on implementing AFC memories in RE platforms and im-
proving their fundamental ingredient: spectral hole burning in inhomoge-
neous lineprofiles.

Informally, if the frequency comb profile contains a number of peaks N,
with peak frequency spacing ∆ and peak width γ into a two-level system
with a ground and excited state |↑⟩ resp. |↓⟩, the stored phonon state will
take the form[16][17]:

|ψ(t)⟩ = 1√
N

N

∑
j=1

cje2πi∆jt |↑1 ... ↓j ... ↑N⟩

As long as this state stays coherent, each component of the superposition
will be in-phase at integer multiples of t = 1/∆. At these points in time
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1.1 Motivation of Research Effort 7

the system will remit the photon state a spin echo. To turn this into an on-
demand process a transition to a metastable state can be additionally driven.
It must be however clear that the efficiency, i.e. the amount of signal that can
be retrieved with this protocol is limited by the smallest coherence time T2
in the system. The decoherence-limited efficiency then goes as:

η ∼ e−
1

∆T2

This technique can be extended to temporal multimode storage by ensuring
that the original phonon is a pulse contained within a temporal width T
that is smaller than 1/∆.[18] The number of such photons that theoretically
could be stored is then given by:

Np =
1

∆T
Microwave frequency multiplexing is principle not impossible, but this would
require the AFC to be applied to several inhomogeneously broadened tran-
sitions. As mentioned above the protocol is implemented with resonators
applying pulsed ESR techniques. Resonators of course only operate within
a small band, and overtones of that band. Recent work has shown that CW
ESR spectroscopy can be performed using a broadband coplanar waveguide
(CPW) instead of a coplanar resonator.[19][20]. In the future, this might al-
low for broadband pulsed ESR implementation of AFC memory. This is one
of the research focuses of the microwave RE systems group in which the
work presented here was done.

As mentioned above, the effectiveness of AFC will depend on the coherence
time of the spin ensemble. This is true for most quantum memory protocols.
Within the study of quantum hardware platforms, it is well known that this
limit can be greatly extended by cooling down the system to temperatures
on the order of 10 millikelvin. This requires samples to be placed at the
lowest temperature stage of a helium dilution refrigerator. There are several
reasons for this. One of them is simply that the energy of the quantum
level splitting ∼ h̄ω must be smaller than the average energy of thermal
fluctuations ∼ kBT, for the system to be in a coherent quantum state at all.
The second reason is that decoherence and relaxation in their most basic
description are governed by processes that depend on the interaction of a
spin with a thermal bath. Lowering the temperature of this bath means
diminishing its occupation, which leads to longer coherence times.

This however relates to an open question that has existed since the golden
days of ESR, and relates specifically to the spin relaxation due to lattice vi-
brations. It has become standard knowledge that spin-lattice interaction is
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8 Introduction

the mechanism behind the T1-relaxation of solid-state spin systems. [21].
In the theoretical formalism on which this knowledge is based, the solid
state crystal lattice is treated as one of the environmental thermal baths. It
will be explained in section 2.2, that this assumption touches upon some
fundamental questions. Driving a millikelvin thermal bath within a small
frequency band makes the use of a thermodynamic quantity ’temperature’
problematic. Within a certain frequency regime the transfer of energy from
the spins to the lattice phonons, will lift a spectral band of lattice out of
thermal equilibrium. This is known as phonon bottleneck, because the res-
onant non-equilibrium phonons that come into being, will reduce the effi-
ciency by which the spins can relax away their energy.[22] The many-body
non-equilibrium dynamics that govern this process are very complex. An
illustration is given in figure 1.1. If the issue of spectral non-equilibrium
is ignored, one can still perform a very reasonable correction to the relax-
ation description.[23][24]. In essence, one assumes there to be two thermal
baths. One indeed being the crystal lattice, the other being the thermostat
that cools the millikelvin stage holding the samples. One is able to find
an adjusted T1 by assuming that both the lattice and the spin system must
relax to the thermal equilibrium set by the mixing chamber. If the temper-
ature and field dependence characteristic of this reduced T1 have been ob-
served, it is seen as an indicator of a phonon bottleneck presence. A recent
study presented such kind of evidence that indicate a phonon bottleneck
in a prominent candidate platform for quantum memory, namely Erbium
doped Y2SiO5.[25]

The approach of two thermal baths however does not address the problem
of non-equilibrium within the lattice itself, caused by spins relaxing most
strongly into phonons in resonance with the level splitting. The complex
decoherence behaviour observed in photon echo experiments [26], indi-
cate that still some finer details concerning the bottleneck could be interest-
ing to investigate. While microscopic treatments of the phonon bottleneck
have been attempted[27], the connection between microscopic interactions
and the thermodynamic behaviour has not fully been described yet. The
nonequilibrium of the phonon bath might have a different effect, depend-
ing on which part of the ESR spectrum is being observed, and therefore
might influence the efficiency of quantum memory protocols in unforeseen
ways.

Keeping in line with the general goal of a broadband cavity-free quantum
memory platform, CW ESR measurements were performed on a spin en-
semble using broadband superconducting coplanar waveguides, fabricated
on-chip.
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Figure 1.1: Diagram showing the different interactions that come into play in the
phonon bottleneck. The external field excites spin, which relax their energy into
phonons. The phonons then relax either by frequency downconversion or through
contact with the thermostat. In the case of a bottleneck, the resonant phonon bath
moves out of thermal equilibrium with the thermostat and starts reexciting spins.
Things become more complicated if spin-spin interactions with non-resonant spins
are taken into account[28], which in turn couple to non-resonant phonons.
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10 Introduction

The goal of the measurements was to clarify some aspects of the phonon bot-
tleneck. The spin species in question were those of Erbium-167 in Y2SiO5,
for which experimental evidence suggests the existence of a phonon bottle-
neck. For this purpose, a unique on-chip coplanar set-up was used, namely
a chip consisting of two patterned waveguides. The host RE-doped crystal
covers both. The goal of this layout is that one waveguide is used to do CW
spectroscopy, while the other is used to provide strong driving at a single
frequency, which we refer to as pumping. The lines should be far enough
apart that the field induced by one is not felt by the other. In that case, any
effect from the pump on the measured spectrum must theoretically be trans-
ferred by means of non-equilibrium heat transfer. The design of the device
and the performed measurements are discussed in chapter 3. In figure 1.2
pictures of the device and sample are displayed.

In parallel to the experimental investigation, a simple model was developed
based on an older (somewhat obscure) formalism that allows for the appli-
cation of the quantum mechanical equation of motions in a non-equilibrium
thermodynamic context. This is presented in chapter 2. Computational re-
sults from this model gave a correct qualitative indication of what was to
be expected in the pump-probe measurements. In the combination of mod-
eling and measuring an effort was made towards a new method that could
potentially characterize some of the thermodynamic aspects of the phonon
bottleneck, based on the phonon-mediated energy transfer between spa-
tially separated spin ensembles.

1.2 Electron spins of Er:YSO

1.2.1 Crystal Structure of YSO

Yttrium Orthosilicate (Y2SiO5) is part of the large orthosilicate (X2SiO5) class
of optical materials and has proven to be a suitable host for RE-based quan-
tum information processing.[29] It combines a large optical depth with good
coherence properties in both optical and microwave regimes.[30] The latter
has to do with the magnetic environment in YSO, which allows for very
narrow homogeneous linewidths, which are inversely proportional to the
echo decay time. This is mostly because the abundant Silicon and Oxygen
isotopes are nonmagnetic. Only the Yttrium nuclear spins contribute to this
magnetic environment, in which the magnetic moment is only 0.137µB. Sig-
nificant progress in quantum memory has been made using YSO as host.

YSO has the symmetry of the space group C2/c, and the doping sites of
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1.2 Electron spins of Er:YSO 11

(a) Sampleholder plate with PCBs and the Er:Y2SiO5 sample on top of
the superconducting chip.

(b) Sampleholder plate with PCBs and superconducting chip before
wirebonding. The two waveguides are distinguishable on the chip sur-
face.

Figure 1.2: Colour pictures of the used device and sample.
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12 Introduction

the point group C1.[31] Both undoped and doped YSO can be grown using
the Czochralski method and seems specifically well suited to host Erbium.
RE ions can be implanted into undoped YSO with a focused ion beam (FIB)
system.[32] The Er3+ dopants replace Y3+ in the lattice at two magnetically
inequivalent lattice sites. Erbium and Yttrium ions have the same charge
and similar ionic radii, which allows for doping without causing significant
strain or a large number of lattice defects. Both Erbium-doped as-grown
crystals and Erbium implanted crystals show good prospects for quantum
computing.

1.2.2 Rare Earth Ions

When rare earth is mentioned as a platform for quantum information sci-
ence, one usually is referring to doped dielectric crystals, with the dopants
being ions from the upper row of the f -block in the periodic system. Start-
ing at Z = 57, the orbital structure is filled from [Xe]5d16s2 up. By virtue of
the Aufbau principle, the next orbital that is occupied from Z > 56 onward is
4 f . This results in all of the REs having either a [Xe]4 f n6s2 or [Xe]4 f n5d16s2

configuration.[23] Due to the preference for empty, half-filled, or filled or-
bitals, the above structure leads to nearly all species having valence 3. This
gives them almost identical chemical properties, which justifies naming the
collective of RE elements after their first member[33]: ‘lanthanide series’
or simply ‘lanthanides’. The 4 f orbitals have a smaller radius than the 6s
and 5p orbitals, which somewhat shield the 4 f electrons from the crystalline
environment.[34] This can be observed in their improved coherence and in
the fact that orbital angular momentum behaves more like that of a free
atom. Compare this to the quenching of orbital angular moment that occurs
for d electrons, due to the orbital moments precessing in the static crystal
field, and consequently their expectation values averaging out to zero. For
rare earths L is barely quenched, implying that the spin-orbit coupling dom-
inates over the crystal field potential in the Hamiltonian.[35] We will spend
most attention on Erbium, which played a role in experiments.

Spectral Structure of 167Er

The fact that the electronic orbital angular momentum is only weakly af-
fected by the crystal field has significant effects on the spectroscopic prop-
erties of RE atoms.

12



1.2 Electron spins of Er:YSO 13
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Figure 1.3: Diagram illustrating the splitting of the 4f spectrum in 167-Er:YSO.

The fact that 4 f electrons retain their orbital angular momentum causes
strong spin-orbit coupling, and consequent hybridisation into total angu-
lar momentum states:

J = L ⊕ S = L + S, L + S − 1, ..., |L − S|

In a host crystal, the local electrostatic field will further split the J states into
different mJ states (Stark splitting). Additionally, the atomic level structure
of the species with an odd number of electrons has Kramers degeneracy. The
crystal field will not split the Kramer’s doublets, since electrostatic fields
do not break time-reversal symmetry, i.e. does not distinguish between up
or down spin. The Kramers degeneracy is broken either by the Zeeman
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14 Introduction

effect or hyperfine coupling.[36] For 167-erbium it is the latter. All of these
splittings are summarised in figure 1.3.

The general Hamiltonian of an electron bound to a dopant is given by [35]:

H =
1

2m
(p − q

c
A)2 + λL · S + 2µBB · S + Vec + Vnc + Vc f

The first term is simply the long momentum of the electronic motion. Here
λL · S is the Russel-Saunders spin-orbit coupling, 2µBH · S is the electronic
Zeeman interaction, Vnc is the nuclear Coulomb potential, Vec the Coulomb
potential generated by the other bound electrons, while Vc f is the crystal
field potential. In the gauge A = 1

2 B × r, the long momentum can be rewrit-
ten to give:

H =
p2

2m
+λL ·S+µBB ·L+ 2µBB ·S+Vec +Vnc +Vc f +weak diagmagnetism

(1.1)

The strongest interaction term is the electronic Coulomb potential Vec, which
splits the spectrum into separate L states. As mentioned above, the spin-
orbit coupling dominates over the Zeeman and crystal field terms, it quan-
tises the spectrum further into eigenstates of the total angular momentum
J = L + S. In general, the state J is λJ above the J − 1 state in energy. The
combined effect of the Coulomb and spin-orbit interaction is that all of J, L, S
must be considered when describing the eigenstates of RE atoms.

However, for ESR spectroscopy, an effective Hamiltonian in S is more de-
sired. Therefore we take a step back and treat the L dependent terms of
the Hamiltonian as a perturbation to spin states. Take the following generic
state, given L, mL and some spin state |s⟩ which is not specified any further.

|ψs(r)⟩ = f (r) |L, mL⟩ |s⟩

Peturbation theory then predicts the correction to |ψ(r)⟩ from the orbital
Zeeman term to be:

|ψs(r)⟩ = f (r)

(
|L, mL⟩+ ∑

i
∑

m̃L ̸=mL

⟨L, m̃L|Li|L, mL⟩
EmL − Em̃L

µBBi |L, m̃L⟩
)
|s⟩

The matrix elements of the spin-orbit interaction w.r.t. these peturbed states

14



1.2 Electron spins of Er:YSO 15

are:

⟨ψs′(r)|λL · S|ψs(r)⟩

= 2λµB| f (r)|2 ∑
ij

∑
m̃L ̸=mL

⟨L, m̃L|Li|L, mL⟩ ⟨L, mL|Lj|L, m̃L⟩
EmL − Em̃L

⟨s′|Si|s⟩ Bj

The effective coupling between the external field and the electron spin can
now be written in the bilinear form:

HZ = µBB · g · S

where g is the gyromagnetic tensor, that has the components:

gij = 2δij + 2λ| f (r)|2 ∑
m̃L ̸=mL

⟨L, m̃L|Li|L, mL⟩ ⟨L, mL|Lj|L, m̃L⟩
EmL − Em̃L

for a transition between spin states attached to an orbital state f (r) |L, mL⟩,
which have broken degeneracy, as was explained above.

The crystal field potential can naturally be applied to these eigenstates due
to a construction by Stevens.[37] The potential Vc f is decomposed into spher-
ical harmonics.

Vc f = ∑
ℓm

CℓmrℓYℓm

The coefficients Cℓm depend on the possible electronic configuration of the
ion and on the nature of the crystalline environment. Specifically, the point
symmetry of the ion is encoded in these coefficients. Within a highly sym-
metric crystal field, most of them are zero. The spherical harmonics then
act on the L states by rewriting the spherical harmonics in Cartesian coordi-
nates, and replacing (x, y, z) by (Lx, Ly, Lz), for example:

r1Y1
1 ∼ x + iy −→ Lx + iLy

From this, it can be seen that the general effect of Vc f , when coupling be-
tween states with the same J, is to break the degeneracy in mJ . The given
example crystal field potential can be effectively written as Jx + i Jy.

Let us now consider Erbium in detail, which is in the configuration [Xe]4 f 126s2.
Ionic Erbium has charge +3, the two outer 6s and a single 4 f have been re-
moved. The ion has 65 electrons, so it has Kramers degeneracy. The ground
state w.r.t. the nuclear and electronic Coulomb potential is 2s+1LJ =

4 I15/2,
which will be split into 8 spin degenerate levels by the crystal field. The

15



16 Introduction

crystal field splitting is on the order of THz, which causes sharp optical
transitions.[29] The Zeeman splitting is on the order of GHz, and at cryo-
genic temperatures only the lowest Kramer doublet is occupied. [29]

As was mentioned above, the Erbium will dope the host at two inequivalent
crystal sites. This means that we consider our paramagnetic system, not as
one but two effective S = 1

2 systems, with different transition frequencies.
Both sites have the point symmetry of the group C1. This is the trivial group,
meaning that there is no real symmetry to speak of.

In contrast to the other isotopes, the 167Er isotope has a net nuclear spin
of I = 7

2 . The hyperfine interaction between the electron and nuclear spin
would be added to the total Hamiltonian of eq. 1.1 in the form of a magnetic
dipole interaction.[38] This form is bilinear in S and I, and can be written in
simple form using tensor A:

Hh f = S · A · I

The hyperfine coupling between the nucleus and electrons will split each
Kramer doublet into 16 hyperfine levels.

Effective Spin Hamiltonian

Before we construct the ESR Hamiltonian there is one more relevant inter-
action that needs to be discussed, namely the quadruple coupling between
the Er167 nuclear spin and the crystal field.[39] Any nucleus with spin I > 1

2
will have an ellipsoid charge distribution, which does not have spherical
symmetry. The measure of how prolate or oblate the shape of the charge
distribution is, which is referred to as the nuclear quadruple moment, which
couples to external electrostatic fields. This means that there will be an ener-
getically favourable orientation of the nucleus within the crystal field, which
is not necessarily aligned with any of the crystal symmetry axes.

Taking all of the above into account, the general spin S = 1
2 Hamiltonian is

written as:

H = µe
BB · g · S + I · A · S + I · Q · I − µn

BgnB · I (1.2)

Here g, A, Q are resp.the gyromagnetic, hyperfine, and quadruple tensor.
These quantities have to be represented as rank(2) tensors since the coor-
dinate frames of the magnet, electron spin, nuclear spin, and crystal will
in general not be aligned. B is the external magnetic field. µe

B,µn
B, are the

electron resp. nuclear Bohr magneton, and gn is the nuclear g-factor.

16



1.2 Electron spins of Er:YSO 17

Precise ESR spectroscopy of Er:YSO was performed by Guillet-Noël et al.
(2006).[40] Based on their results, the field-dependent ESR spectra have been
simulated using Easyspin.[41] The orientation of the crystal was chosen to
correspond with that of the experiments. More details on this are given in
chapter 3.

17



18 Introduction

(a) Spectrum of first crystal site 1

(b) Spectrum of second crystal site 2

Figure 1.4: Field swept spectra of 167-Er:YSO simulated with Easyspin.
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Chapter 2
Theory

2.1 Phenomenological Characterisation of Relax-
ation

2.1.1 Magnetisation Dynamics

When analysing data from a magnetic resonance experiment the underly-
ing assumption is almost always that the Bloch equations model the be-
haviour of the spin that is affected by the complicated Hamiltonian given
in eq. 1.2.[42] The idea behind this is that the measurement is done on a
system containing many spins, with a large ratio of those being affected by
the external magnetic field. Assuming ergodicity, the ensemble expectation
value of the different spin components, which is the measured magnetisa-
tion, may be taken as a good indication of the expected behaviour of the
individual quantum spin. If this were not true there would be no clear rela-
tion between the spin Hamiltonian and measured net magnetisation of the
sample.

Bloch equations

The Bloch equations describe the coupling of the magnetic field to the mag-
netic moment of a paramagnetic body. We will describe their behaviour
since it reflects the basic framework that is used to interpret magnetic reso-
nance experiments. In its most simple form it is given by:

ṁ(t) = γm(t)× B(t) (2.1)

19



20 Theory

We assume that a strong constant field defines the z-axis of the spin system.
This field is either an actual external field applied in the lab or the effec-
tive field of the hyperfine coupling. γ is the gyromagnetic ratio. We add to
this model our phenomenological knowledge of how the magnetisation is
affected by its environment; relaxation of the longitudinal (z) and longitudi-
nal (x, y) components of the magnetisation characterised by T1 and T2 resp.
Expanding the outer product:

dmx

dt
= γ(myBz − mzBy)−

mx

T2
(2.2)

dmy

dt
= γ(mzBx − mxBz)−

my

T2
(2.3)

dmx

dt
= γ(mxBy − myBx)−

mz − m0

T1
(2.4)

The longitudinal component relaxes to an equilibrium, whose value de-
pends on system properties and the strength of the constant field. The
transverse components relax to zero. T2 is also known as the dephasing or
spin-spin relaxing time. Depending on the type of interaction being consid-
ered, spin-spin interaction can cause dephasing [30], spectral diffusion [43]
[44] [45] or inhomogeneous broadening.[46] The latter case could be mod-
elled into the Bloch equations by taking B0 to be drawn from a probability
distribution.[46] This is however not done here.

Now take the driving microwave field to be linearly polarised in the x di-
rection. The total external field is:

B(t) = B0ez + 2Bmw cos ωtex

The main characteristics of solutions of the equation become more pronounced
if we analyse the system in the frame rotating along with the microwave
field. This means we apply a rotation around the z-axis over an angle ωt. In
this rotating frame: mi(t) 7→ m̃(t) and B(t) 7→ B̃. We rewrite:

˙̃m(t) = γm̃(t)× B̃ − m̃(t)× ω = γm̃(t)× B̃e f f

Here the term with ω = (0, 0, ω)T comes from the time dependence that
the basis vectors obtain in the rotating frame. The Bloch equations for m̃(t)
have the same form as equations 2.1, but with an effective field given by:

B(t) 7→ B̃ = (B0 −
ω

γ
)ez + 2Bmw

(
cos2 ωtex + sin ωt cos ωtey

)
≈ (B0 −

ω

γ
)ez + Bmwex

20



2.1 Phenomenological Characterisation of Relaxation 21

Here the secular approximation is made, implying that fast oscillating terms
are assumed to not contribute meaningfully to the dynamics being studied.
Note that this requires B0 >> Bmw. Defining ω0 = γB0, one obtains:

dm̃x

dt
= −(ω − ω0)m̃y −

m̃x

T2
(2.5)

dm̃y

dt
= γBmwm̃z + (ω − ω0)m̃x −

m̃y

T2
(2.6)

dm̃z

dt
= −γBmwm̃y −

m̃z − m0

T1
(2.7)

Steady state solution

We obtain the steady state solutions by assuming that ṁ −→ 0 as t −→
∞. These would describe the result of a CW spectroscopy experiment, in
essence when the driving frequency is varied slowly enough such that the
steady state is obtained at each measurement. In this case one can easily find
an analytical solution by solving the linear system Am̃ + m0

T1
e3 = 0 with:

A =

 − 1
T2

−(ω − ω0) 0
(ω − ω0) − 1

T2
γBmw

0 −γBmw − 1
T1


One finds:

m̃x(ss) =
(ω0 − ω)T2

2 γBmwm0

1 + T2
2 (ω − ω0)2 + T1T2(γBmw)2

(2.8)

m̃y(ss) =
T2γBmwm0

1 + T2
2 (ω − ω0)2 + T1T2(γBmw)2

(2.9)

m̃z(ss) =
(1 + T2

2 (ω − ω0)
2)m0

1 + T2
2 (ω − ω0)2 + T1T2(γBmw)2

(2.10)

2.1.2 Measurement Techniques

Linear Response

In the previous subsection, the steady state and transient responses of a
magnetic moment to AC driving were established. These results were de-
rived in the frame of the microwave frequency. We can relate these results
back to the lab frame by:

mx(t) = m̃x(t) cos ωt + m̃y sin ωt

21



22 Theory

From this expression, it becomes clear that m̃x(t) and m̃y are the in-phase
resp. quadrature component of the transverse magnetisation response to
the driving. Consider now the case of weak driving, entering the regime of
linear response theory. If we neglect terms of the order O(B2

mw), and define
m0 = χ0ω0/2γ in eq. 2.10 we obtain the linear susceptibility χ = χ′ − iχ′′,
with

χ′ =
χ0

2
ω0T2

(ω0 − ω)T2

1 + (ω − ω0)2T2
2

χ′′ =
χ0

2
ω0T2

1
1 + (ω − ω0)2T2

2

These are defined as:

mx(t) =
(
χ′ cos ωt + χ′′ sin ωt

)
Bmw = ℜ[χeiωt]Bmw

By increasing the strength of Bmw one should observe the breakdown of
linear response. The observed linewidth will become more shallow and
broader, except if the homogeneous linewidth is much smaller than the in-
homogeneous linewidth.[46]

In traditional ESR, magnetisation is detected by the inductor that is also
used to generate the microwave field.[35] In our experiments the transmis-
sion line serves as this inductor. We introduce now the filling factor q, which
is the ratio of alternating field integrated over the sample volume to the inte-
gration of the field over the total volume it extends.[47] If the inductance of
the circuit without sample was L0, by adding the sample with susceptibility,
this will change by:

L = L0(1 + 4πqχ(ω))

The complex impedance of the inductive element obtains a real part:

Z = iωL = iωL0(1 + 4πqχ′) + 4πωqL0χ′′

The complex part of χ acts as a change in the dissipation of the induc-
tor, which presents itself in spectroscopy as an absorption dip. From the
impedance, the response of the measurement device to the presence of a
paramagnetic sample can be calculated.

Signal Strength

We consider measurements done with a transmission line in the linear re-
sponse regime. The Q-factor associated with transmission lines is generally
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Figure 2.1: Distributed elements model of a transmission line. After Steer [49]

very low [48], and relatively strong powers are used to drive the lines, mean-
ing that enough energy is present in the superconducting circuit to justify a
classical treatment.

The distributed elements model of a general transmission line is given in
figure 2.1. Using the complex impedance of each element and Kirchoff’s
laws, it can be shown that the voltage drop and corresponding current over
each of the distributed circuits are given in the Fourier domain by [49]:

V(z + ∆z, ω) = V(z, ω)− R∆zI(z, ω)− iω∆zLI(z, ω)

I(z + ∆z, ω) = I(z)− ∆zGV(z, ω)− iω∆zCV(z, ω)

In the continuous limit, we can rewrite this into a differential Helmholtz
equation:

dV(z, ω)

dz
= −(iωL + R)I(z, ω)

dI(z, ω)

dz
= −(iωC + G)V(z, ω)

Equivalently:

d2V(z, ω)

dz2 = (iωL + R)(iωC + G)V(z, ω)

d2 I(z, ω)

dz2 = (iωL + R)(iωC + G)I(z, ω)

From this, we see that the decay constant and phase associated with the
wave propagation through the waveguide are given by the real resp. com-
plex part of:

γ = α + iβ =
√
(iωL + R)(iωC + G)
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To see that this is in fact a wave equation, one would simply need to trans-
form back to time domain, the result of which is known as the telegraph
equation. The solution is a linear combination of forward and backward
traveling waves. In frequency domain:

V(z, ω) = V+
0 e−γz + V−

0 eγz

Here V±
0 denotes the voltage associated with forward resp. backward prop-

agating waves at the input of the line. For the current:

I(z, ω) = I+0 e−γz + I−0 eγz

=
−1

iωL + R
dV(z, ω)

dz
=

γ

iωL + R
(
V+

0 e−γz − V−
0 eγz)

the characteristic impedance Z0 of the waveguide is now read off as:

Z0 =
V+

0

I+0
= −

V−
0

I−0
=

√
iωL + R
iωC + G

For a coplanar waveguide, the capacitance and inductance can be calcu-
lated from geometric parameters.[50][51] We neglect the presence of kinetic
inductance in the superconducting niobium.[52]

C = 4ϵ0ϵe f f
K(k)
K(k′)

L = µ0
K(k′)
4K(k)

ϵe f f = 1 +
ϵr − 1

2
K(k′)K(k1)

K(k)K(k′)

With K(k)
K(k′) the elliptical integral, which originates from the conformal theory.[53]

K(k)
K(k′)

=

 1
π ln

(
2+2

√
k′

1−
√

k′

)−1
0 ≤ k ≤ 0.7

1
π ln

(
2+2

√
k

1−
√

k

)
0.7 ≤ k ≤ 1.0

And k = S
S+2W , k′ =

√
1 − k2, where S,W are the signal, resp. signal-to-

ground gap width of the CPW as defined in figure 2.2. ϵr is the relative
dielectric constant of the substrate. For silicon, it is ∼ 11.4 at very low tem-
peratures.
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W WS

εr

t

h

Figure 2.2: Cross section of the CPW geometry. The bottom (blue) part is the di-
electric substrate, while the top is the conductor. The central conductor carries the
signal, while the lateral conductors serve as ground. Ideally, the ground extends to
infinity to the left and right, and that the metal thickness is t << h.

The transmission and reflection of the signal input to microwave and RF cir-
cuits are usually characterised by S-parameters. They are defined as the ra-
tio of incoming to outgoing wave amplitudes and can be measured directly
by a vector network analyser (VNA). A transmission line is an example of a
symmetric 2-port network. In that case the relevant S parameters are [55]:

S12 = S21 =
Vout

2

Vin
1

S22 = S11 =
Vout

1

Vin
1

The transmission can be calculated as:

S21 =
(1 − Γ2)γ

1 − γ2Γ2

Γ =
Z0 − ZL

Z0 + ZL

γ = exp (−ℓ
√
(R + iωL)(G + iωC))

Here ZL is the reference load, thatis usually taken to be 50 Ω. Using these
equations one can simulate the theoretical magnetic resonance response of
a coplanar transmission line coupled to a spin ensemble. This is shown in
figure 2.3. What should be conveyed from differences between S21 for finite
and zero resistance is that presence of losses might also cause a distortion of
the characteristic absorption profile.
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Figure 2.3: Theoretical linear susceptibility and CPW transmission with the follow-
ing parameters: S = 20µm, W = 12µm, ϵr = 11.4, h = 1 mm, ℓ = 5cm, T1 = 1s,
T2 = 0.1µs, ω0 = 6 GHz χ0 = 5 · 10−6, G = 50 µS/m and R is indicated for two
different cases. These parameters will give: C = 16 nF/m and L = 0.6 µH/m
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2.2 Spin Description

2.2.1 Ensemble Treatment

In section 1.2 a treatment of the spin Hamiltonian was given. This Hamilto-
nian can in principle be deduced from the atomic properties of the paramag-
netic ion and the host crystal. It tells us at which frequencies transitions will
occur, but not their linewidths. In the previous section the Bloch equations
were covered, describing the interaction of classical magnetic moments with
an external field. This required ad hoc terms describing the transverse and
longitudinal relaxation. In this section the longitudinal relaxation time is de-
rived. The measurements presented in chapter 3 were not performed on a
single spin, but on a thermodynamic ensemble of spins. Therefore a natural
pathway to describing this ensemble is given by the density matrix formal-
ism, which allows for the representation of statistical ensembles as mixed
states.[56]

The fact that we are dealing with an ensemble is taken into account by in-
troducing a density matrix that appropriately models the statistics of this
ensemble. For example, a spin ensemble in thermal equilibrium can be mod-

eled by ρ =
⊗

ℓ ρℓ, with the single spin thermal density matrix: ρℓ = e−
H

kBT .

In the presence of interactions such a tensor product state will get entan-
gled over time, but in the standard literature this entanglement is usually
neglected. [23] Within this simplification, the derivations can be based upon
the dynamics of a single spin coupled to a bath, which can be solved analyt-
ically in relatively many cases. Part of this research work is seeking how to
improve upon this simplification. The results obtained by this bath model
are however reproduced here, to clarify exactly where doubtful assump-
tions are made and to give an introduction to therelevant formalism.

While the results reproduced below are to be found in most classic magnetic
resonance literature, the way they are derived is not. Usually, an approach
based on Fermi’s golden rule is taken. This is not done here because it is the
author’s conviction that this leaves many of the non-trivial mathematical
assumptions hidden. To provide a strategic view of the luscious valleys
below, altitude must be gained by making a detour.

We note here that we will work with the convention h̄ = 1, and introduce
our notation for the spin operators Sx

ℓ , Sy
ℓ , Sz

ℓ for a spin ℓ, that obey the rela-
tion [Si

ℓ, Sj
ℓ′ ] = ϵijkδℓℓ′Sk

ℓ.
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28 Theory

Also important are the spin excitation and relaxation operators S±
ℓ = Sx

ℓ ±
iSy

ℓ , that obey [S±
ℓ , Sz

ℓ′ ] = ±δℓℓ′S±
ℓ and [S−

ℓ , S+
ℓ′ ] = δℓℓ′Sz

ℓ.

Redfield Equation

The evolution of the density matrix is given by the quantum Liouville theo-
rem:

dρ

dt
= −i[H, ρ(t)] (2.11)

We assume that the Hamiltonian is of the form H = HS + HB + HI , where
HS and HB act exclusively on the Hilbert space of the spin or bath respec-
tively.

With the unitary U(t) = exp i(HS + HB)t we transform the Hamiltonian to
a rotating frame, applying the well-known relation:

H 7→ H(t) = U(t)HU†(t) + i
dU(t)

dt
U†(t)

In general this will be of the form H(t) = HI(t) = U(t)HIU†(t). By ap-
plying the Leibniz rule, one finds that the evolution of the density matrix

ρrot(t) = U(t)ρlab(t)U†(t) redef.
= ρ(t) in this frame is given by:

dρ(t)
dt

= −i[HI(t), ρ(t)]

It has the formal solution:

ρ(t) = ρ(0)− i
∫ t

0
[HI(τ), ρ(τ)]dτ

From this, we obtain an equation of motion for the spin density matrix by
taking the derivative again and tracing out the bath.

dρS(t)
dt

= −
∫ t

0
tr
B

(
[HI(t), [HI(τ), ρ(τ)]]

)
dτ (2.12)

Continuing onward, non-trivial assumptions about the nature of the envi-
ronment have to be made. Namely, we will assume that while the spin is
being affected by the bath, the spin does not cause a change in the dynamics
of the bath. Mathematically speaking, the state of the bath is stationary, i.e.
time-independent and it does not become entangled with the spin. Physi-
cally speaking, it implies that the bath contains significantly more degrees of
freedom than the spin system, such that the statistical behaviour of the bath
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overshadows the entanglement of its individual subsystems, to the degree
that it becomes unobservable. This is known as the Born approximation [57]
and changes eq 2.12 into:

dρS(t)
dt

= −
∫ t

0
tr
B

(
[HI(t), [HI(τ), ρS(τ)⊗ ρB(0)]]

)
dτ

We also introduce the Markov approximation for the dynamics of the spin.
A process is called Markovian if it obeys the Kolmogorov criterion. Mathe-
matically this is expressed as follows. If P(x, t) denotes the probability for
an observable to be measured having the value x at time t, then for these
probabilities it holds that:

P(x, t′′|z, t) = ∑
y

P(x, t′′|y, t′)P(y, t′|z, t) for t < t′ < t′′

The implication is that the spin-bath interaction is practically memoryless,
and the future state of the spin is fully determined by its current one. We
can then approximate ρS(τ) ≈ ρS(t) in the integrand and take the upper
limit of the integral to go to infinity, obtaining:

dρS(t)
dt

= −
∫ ∞

0
tr
B

(
[HI(t), [HI(τ), ρS(t)⊗ ρB(0)]]

)
dτ (2.13)

This result (eq. 2.13) is known as the Redfield equation, and it will be used
here to derive the standard expression for the relaxation time T1.

2.2.2 Spin-Lattice Relaxation

The term spin-lattice relaxation is an appropriate synonym for longitudi-
nal relaxation, since in contrast to electronic transitions, there can be no
relaxation of a Kramers doublet by direct coupling to the electromagnetic
field.[23] Even for non-Kramers transitions the direct coupling to photons is
too weak to explain the relaxation times observed in experiments. Instead,
it is now generally accepted that the relaxation instead occurs through in-
teraction with lattice vibrations, mediated by the crystal field. Initially, it
was suggested this happens via a direct magnetic interaction between the
spin and the magnetic component of the oscillating crystal field.[58] It was
shown later that would result in relaxation times too long to comply with
experimental results. Instead. the electrostatic interaction between the elec-
tron and the field is more dominant, which can affect the spin degree of
freedom through spin-orbit coupling.[59][60]
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Using the methods of second quantisation the lattice vibrations of the strain
field can be represented as a thermal bath of quantised modes. This is the
well-known Debije model. [62] The quasiparticles connected to this modes k
are called phonons, and are mathematically described using creation a†

k and
annihilation ak operators, that obey the Weyl-Heisenberg algebra [ak, a†

k ] =
1.

The Hamiltonian is taken here to describe the coupling between a single
spin of frequency ω0 and the phonon bath is given by [27]:

H = −ω0Sz + ∑
k

ωka†
k ak + ∑

k

(
ḡkakS+ + gka†

kS−) (2.14)

The coupling constants gk relate to the energy spectral density of acoustic
phonons as ∑k |gk|2 =

∫
J(ω)dω.[61] In the isotropic Debije model the latter

is given by [62][63]:

J(ω) = α
3V

2π2v3
s

ω3θ(ωD − ω)

Here vs is the material speed of sound and α is a coupling constant. In re-
ality, vs is not isotropic and also is different for longitudinal and transverse
phonons. This would change the prefactor in J(ω), while the proportional-
ity stays the same. In the following calculations, these subtleties are ignored.

This Hamiltonian corresponds to the so-called direct process, where the in-
teraction involves only a single resonant phonon. Other relaxation mecha-
nisms are the non-resonant Raman and Orbach processes, involving multi-
ple of phonons. Both are strongly suppressed at millikelvin temperatures.[44]

The interaction part of the Hamiltonian in the rotating frame takes the form:

HI(t) = ∑
k

(
ḡke−i(ωk−ω0)takS+ + gkei(ωk−ω0)ta†

kS−)
The innermost commutator in eq. 2.13 will give:

[H(τ), ρ(t)] = ∑
k

gkei(ωk−ω0)t
(
(S−ρS(t))(a†

kρB)− (ρS(t)S−)(ρBa†
k)
)

+ḡke−i(ωk−ω0)t
(
(S+ρS(t))(akρB)− (ρS(t)S+)(ρBak)

)
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When calculating the second commutator the exponential time dependence
of the operators will give you terms of two kinds, namely e±i(ωk−ω0)(t−τ)

and e±i(ωk−ω0)(t+τ). The latter corresponds to terms containing ⟨(a†
k)

2⟩, ⟨a2
k⟩,

which are zero since the thermal density matrix is diagonal in the Fock basis.

We also drop terms that mix different phonon modes, since we expect their
expectation values, tr

B
(a†

k aℓρB) = ⟨a†
k aℓ⟩, etc. to be zero. We use the cyclic

property of the trace to sort Weyl resp. non-Weyl ordered phononic terms
together.

dρS(t)
dt

= −
∫ ∞

0
dτ ∑

k
|gk|2

×tr
B

(
e−i(ωk−ω0)(t−τ)

(
(S+S−ρS(t)− S−ρS(t)S+)aka†

kρB

+(ρS(t)S−S+ − S+ρS(t)S−)a†
k akρB

)
+ei(ωk−ω0)(t−τ)

(
(ρS(t)S+S− − S−ρS(t)S+)aka†

kρB

+(S−S+ρS(t)− S+ρS(t)S−)a†
k akρB

))
Applying the commutator [ak, a†

k ] = 1 results in:

dρS(t)
dt

= −
∫ ∞

0
dτ ∑

k
|gk|2

×tr
B

(
e−i(ωk−ω0)(t−τ)

(
(S+S−ρS(t)− S−ρS(t)S+)

+(S+S−ρS(t)− S−ρS(t)S+ + ρS(t)S−S+ − S+ρS(t)S−)a†
k akρB

)
+ei(ωk−ω0)(t−τ)

(
(ρS(t)S+S− − S−ρS(t)S+)

+(ρS(t)S+S− − S−ρS(t)S+ + S−S+ρS(t)− S+ρS(t)S−)a†
k akρB

))

For a two-level system, the density matrix can be represented as a vector
on the Bloch sphere. Specifically for a spin 1

2 transition, the components of
this vector correspond exactly to those of the expectation value of the spin
vector. Mathematically this is expressed in the ordered basis {|↑⟩ , |↓⟩} as:

ρS(t) =
( 1

2 + ⟨Sz⟩ (t) ⟨Sx⟩ (t)− i ⟨Sy⟩ (t)
⟨Sx⟩ (t) + i ⟨Sy⟩ (t) 1

2 − ⟨Sz⟩ (t)

)
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Using the matrix representations S− = |↑⟩ ⟨↓|, S+ = |↓⟩ ⟨↑|, one finds after
a tedious calculation:

dρS

dt
= −

∫ ∞

0
dτ ∑

k
|gk|2(2 ⟨nk⟩+ 1)

×
(

2 ⟨Sz⟩ cos (ωk − ω)(τ − t) e−i(ωk−ω0)(t−τ)(⟨Sx⟩ − i ⟨Sy⟩)
ei(ωk−ω0)(t−τ)(⟨Sx⟩+ i ⟨Sy⟩) −2 ⟨Sz⟩ cos (ωk − ω)(τ − t)

)
+|gk|2

(
− cos (ωk − ω0)(τ − t) 0

0 cos (ωk − ω0)(τ − t)

)
We take care of the time integral by applying the Fourier relation:∫ ∞

0
dτe±i(ωk−ω0)τ = δ(ωk − ω0)

We take the continuum limit in k, and transform the sum over coupling
terms to an integral over the energy spectral density:

∑
k
|gk|2

(
2 ⟨nk⟩+ 1

)
δ(ωk − ω0) =

∫ ∞

0
J(ω)

(
2n(ω) + 1

)
δ(ω − ω0)dω

In the Debije model the phonon distribution function is given by:

n(ω) =
1

eω/kBT − 1

such that 2n(ω) + 1 = coth
(

ω
2kBT

)
. What remains is:

dρS

dt
= J(ω0) coth

(
ω0

2kBT

)
×
(

−2 ⟨Sz⟩ (⟨Sx⟩ − i ⟨Sy⟩)
(⟨Sx⟩+ i ⟨Sy⟩) 2 ⟨Sz⟩

)
+J(ω0)

(
1 0
0 −1

)
From the differential equation for ρs, one can read off the differential equa-
tions for the individual spin components:

d
dt

⟨Sx⟩ = −J(ω0) coth
(

ω0

2kBT

)
⟨Sx⟩

d
dt

⟨Sy⟩ = −J(ω0) coth
(

ω0

2kBT

)
⟨Sy⟩

d
dt

⟨Sz⟩ = −2J(ω0) coth
(

ω0

2kBT

)(
⟨Sz⟩ − 1

2
)
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Now one can calculate or read-off the characteristic relaxation time to be
1
T1

= 2J(ω0) coth ω
2kBT , which goes as:

1
T1

∼ ω3 coth
ω

2kBT

This is the correct result for non-Kramers ions. In case the relevant states
of the two-level system are spin degenerate a correction must be applied,
to obtain the result measured in experiments.[21] [24] The main idea of the
correction is sketched below.

Before spin degeneracy is broken, the level structure of the Kramers ion is
determined by the splitting of the free atom states by the crystal field. Take
the two lowest crystal field levels to correspond to basis states |0⟩ and |1⟩,
that the crystal fields splits by an energy ∆. Kramers degeneracy means
that a magnetic field would split these states further into |0 ↑⟩ , |0 ↓⟩ and
|1 ↑⟩ , |1 ↓⟩. Let this smaller splitting be equal to 2µBBe f f = h̄ω, where Be f f
comes from either B · g or I · A, or both. The crystal field does not break
time-reversal symmetry, so at first glance we expect ⟨0 ↑ |Vc f |0 ↓⟩ = 0 and
⟨1 ↑ |Vc f |1 ↓⟩ = 0. This seems contradictory since the entire relaxation the-
ory above was based upon lattice vibrations interacting with the spin degree
of freedom through the crystal field.

A solution to the problem can be found by using a more refined form of
perturbation theory, developed in for example Heitler (1944) [64]. The ma-
trix elements of Vc f between e.g. |0 ↑⟩ and |0 ↓⟩ vanish, but these states can
still interact through Vc f by means of an intermediate state. For |0 ↑⟩, |0 ↓⟩
these would be the |1 ↑⟩ , |1 ↓⟩ states, since ⟨0|Vc f |1⟩ do not vanish. In lead-
ing order, the effective matrix is given by summing over intermediate states
|ϕ⟩:

⟨0 ↑ |Vc f | ↓⟩e f f = ∑
ϕ

⟨0 ↑ |Vc f |ϕ⟩ ⟨ϕ|Vc f |0 ↓⟩
E0↓ − En

=
⟨0 ↑ |Vc f |1 ↓⟩ ⟨1 ↓ |Vc f |0 ↓⟩

∆
−

⟨0 ↑ |Vc f |1 ↑⟩ ⟨1 ↑ |Vc f |0 ↓⟩
∆ − 1

2 h̄ω

The change in sign from the second term comes from the subtleties in how
⟨1 ↑ |Vc f |0 ↓⟩ from its Hermitian conjugate. Depending if the transition be-
tween |0⟩ and |1⟩ occurs (mathematically speaking) before or after the spin-
flip, determines if the spin-orbit Hamiltonian is applied before or after the
orbit-lattice Hamiltonian. It can be shown that the difference between the
two cases causes a change in sign.[65]
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Taking h̄ω to be much smaller than ∆, the interaction strength will scale as:

⟨0 ↑ |Vc f | ↓⟩e f f ∼
h̄ω

∆
⟨0 ↑ |Ve f f | ↓⟩

To take this into account, the coupling terms must be rescaled as: |gk|2 7→
ω2

∆2 |gk|2. One obtains for Kramers ions:

1
T1

∼ ω5

∆2 coth
ω

2kBT

2.2.3 Phonon Bottleneck

In the previous section, the resonant energy transfer from the spin ensemble
into lattice vibrations was extensively discussed. Briefly mentioned were
the different mechanisms of non-resonant spin-lattice relaxation and it was
argued that there are not relevant at experiments done in a dilution refriger-
ator. In deriving the rate for the more relevant direct process the follow-
ing assumptions were made to justify certain necessary approximations,
namely:

• The phonon bath contains significantly more degrees of freedom than
the spin system, such that the Born approximation can be made.

• The phonon bath is memoryless, such that the Markov approximation
can be made.

The first assumption is usually wrong.[22] To understand how this will af-
fect the ensemble energy transfer we must also consider the heat capacities
of the respective systems. For spin 1/2 and phonon systems with frequency
ω in thermal equilibrium with a temperature T these are given by resp.:

Cspin = kB

(
h̄ω

kBT

)2

sech2 h̄ω

2kBT
(2.15)

Cphonon = kB

(
h̄ω

kBT

)2

cosech2 h̄ω

2kBT
(2.16)

In the limit h̄ω >> kBT, the heat capacities equalise. Vis à Vis the ratio of
spin to phonon mode density, this result implies that at cryogenic temper-
atures the relaxation of excited spins will cause a net heating of the reso-
nant band of the phonon bath, and induce a non-equilibrium in the phonon
mode occupation density. The heating of the phonon bath limits the rate T1
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by which the spins can relax. This limitation on T1 induced by the phonon
bath dynamics is the phonon bottleneck that was mentioned in the intro-
duction. The introduction of a scaled T1, with the scaling depending on
the ratio of the heat capacities.[66] But strictly speaking, the heat capacities
given in eq. 2.16 assume a thermal distribution. It is not immediately clear
if this approach is justified in describing the pump-probe measurements of
this work for example. This issue is considered in more depth in section 2.3.

Another interesting aspect in the standard description of the bottleneck is
the origin of the phonon relaxation time Tph, which is usually added ad hoc
to the theory. There exist several potential relaxation mechanisms that could
determine the actual value of Tph Below the two possible mechanisms for
the relaxation of acoustic phonons are mentioned. Before going into those, it
is mentioned here that defect scattering does not contribute to the relaxation
rate since it is mostly elastic, and only causes the momentum distribution to
become more anisotropic.[67]

Spontaneous Relaxation

What is referred to as spontaneous relaxation are the general 3 and 4 phonon
scattering interactions that transfer energy from one mode q1 or two modes
q1 + q2 into two other modes q3 + q4, under the restriction of momentum
and energy conservation. The up-scattering of phonons into higher fre-
quency modes with h̄ω > kBT is suppressed.[68][69][70] Consider the case
of 3 phonon decay:

ω(q1) −→ ω(q2) + ω(q3) (2.17)

Energy conservation implies.

ω(q1) = ω(q2) + ω(q3) (2.18)

The most occurring case is that the three momenta are not colinear. The
triangle inequality then states that ||q1|| ≤ ||q2||+ ||q3||. Acoustic phonons
obey a linear dispersion relation, which implies that.

ω(q1)

v1
≤ ω(q2)

v2
+

ω(q3)

v3
(2.19)

To obey all of the equations 2.17,2.18,2.19, the velocity v1 must be greater
than both of v2 and v3. A fact that was mentioned but neglected in sub-
section 2.2. is that longitudinal and transverse phonons have a different
sound velocity, with vℓ > vt. This leads to the conclusion that only longi-
tudinal phonons can relax through a 3-phonon decay. Transverse phonons
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can only decay in a 4-phonon process, or by undergoing a 3-phonon exci-
tation process into a longitudinal phonon mode of higher energy. Both of
these processes have much slower rates than the 3-phonon decay, 6 orders
of magnitude slower some estimates show. [71][67]

In literature the rate of the 3 phonon decay is estimated from Fermi’s golden
rule to go as:

1
τ3ph

= γωD

(
ω

ωD

)5

(2.20)

with γ ≈ 0.2. [75]

The Debije frequency of a crystal is related to the average sound velocity
and its melting point. For YSO it is νD ≈ 12 THz.[63] So for a longitudinal
phonon in the ESR regime of ν = 10 GHz, this would mean: τ3ph ≈ 1 hour.
For a ν = 1 GHz longitudinal phonon it will be on the order of 10 years.

As was mentioned before, T1 of some RE dopants in YSO has been shown to
be on the order of days in some experiments.[5] Therefore, if spontaneous
decay can realistically be the mechanism that limits the phonon-lattice relax-
ation might highly depend on the dopant being used, and on the transition
frequency that is being measured. It is still unclear what role the transverse
phonons would play in that case. Even if the longitudinal phonons decay
faster than 1/T1, the bottleneck might still be caused by the accumulation
of transverse phonons.[72] That is unless such transverse phonon heating
somehow enhances the phonon-spin scattering rate. To make more precise
predictions the actual scattering mechanism by which phonons and spins
interact should be studied in more detail, as was done by for example in
the works of Chudnovsky and others.[76][77][78][79][80] All in all, if these
estimations hold any merit it seems unlikely that spontaneous decay is the
mechanism by which the resonant phonon bath relaxes. However, if they
do, it should be visible by a general downward movement in the saturation
of the ESR spectrum, due to phonons cross-relaxing into lower bands.

Relaxation through Thermal Contact

When mentioning the concept of a bath temperature this was done in a ther-
modynamic sense. The quantum mechanical system under study should be
in good thermal contact with a classical system that serves as a thermostat.
This thermostat presently being a dilution refrigerator and the thermal con-
tact is provided by the interface between the crystal and the silicon chip, the
latter being kept at a constant temperature by the cooling power of the dilu-
tion refrigerator. This is the concept of Kapitza boundary resistance, where
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the heat flux is related to the temperature difference.[81]. It can be moti-
vated from a microscopic viewpoint by viewing the heat flux as a net rate of
phonons scattering across the interface as acoustic waves. In this view, the
heat flux across the interface between materials 1 and 2 is given by:

dQ
dt

=
1
2

Avs1Γ
∫
(n1(ω)− n2(ω))

dω

2π

Where vs1 is the speed of sound in material 1, A is the interface cross-section,
and ni(ν) is the frequency-dependent phonon density per unit volume. Γ is
given by integrating the Fresnel reflection coefficient over all incoming and
outgoing scattering angles. For YSO it can be estimated to be Γ = 0.3.[82]
Now consider there to only be a finite difference in the distributions ni(ω) at
a single frequency ω = ω0. For a YSO crystal of dimensions 1 × 1 × 1 mm3,
where one face is in thermal contact with silicon, this leads to the following
rate equation for the number of phonons at ω0 that traverse the boundary:

dN(ω)

dt
≈ 0.14sec−1 · (N1(ω)− N2(ω))

This rough estimate implies that if nonequillibrium phonons are generated
by the spin ensemble at a rate 1/T1, these phonons will decay out of the
crystal at a rate 1/Tph that is roughly 10 times slower.

From these estimations, it seems more likely that relaxation through the
thermal contact limits the value of Tph, instead of spontaneous decay mech-
anisms. For the specific case of a YSO-Silicon interface this opens up the
possibility of a bottleneck effect, although not a very significant one. In this
context, it must be noted that recent and not-so-recent experiments have
shown that the acoustic scattering approach overestimates the interface scat-
tering rate, sometimes significantly.[83][84] In addition, the thin supercon-
ductor covering the Silicon will also slow down the process. So the above
calculations might only be sufficient to point out if a phonon bottleneck is
possible at all, and by which mechanism. It should not be used to estimate
how strong the effect will be.
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2.3 Thermodynamic Model

2.3.1 Nonequillibrium Statistical Operator

In the previous subsection it was argued that the standard models for the
relaxation do not cover all of the magnetisation behaviour that is observed
in experiments at low temperatures. In this section a different model is in-
troduced that might relate better to modern experiments. It makes use of
the concept of a nonequillibrium statistical operator (NSO), first introduced
by Zubarev.[85][86] An application of the NSO to the problem of spin relax-
ation has already been attempted before by Buishvili and
others.[87][88][89][90][91][92]. Experimental verification of these older mod-
els is however lacking. There are other aspects that make them unusable
for the describing the experiments done for this thesis. Namely as will be
described below, there are two ways of applying the NSO method. The
first method, used by all of the literature cited above, is to derive equations
for thermodynamic quantities, such as for example spin temperature. The
problem with this approach is that the resulting system of equations only
becomes somewhat analysable when the high-temperature approximation
is invoked. It was shown that if the same method is applied without this
approximation some more fundamental problems appear[93]. In addition,
it does not allow for a straightforward treatment of decoherence processes.
Therefore, the method applied in this work is that of deriving kinetic equa-
tions for quantum mechanical operators, whose expectation values are with
respect to quasi-thermal states. Below the general idea behind the NSO
method is explained first, and afterward the kinetic equations for the spin-
lattice system are derived.

First some words on the exact purpose of the theorising done below. A true
quantum theoretical underpinning of thermodynamics is still controversial,
and the author does not hold the pretense to clarify these issues anyhow
here.[94] Instead, our aim in primis et ante omnia is to find a correction to the
Bloch equations. The correction might be informed by quantum mechanics
but only serves to slightly tune what we expect to measure in experiments
vis à vis the phonon bottleneck.

Relevant Entropy

To explain the essence of the NSO, we start by considering the thermal equi-
librium solutions to the Liouville equation already presented in section 2.2.

dρ

dt
= −i[H, ρ(t)]
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In the density matrix formalism, the entropy is defined as:

S[ρ] = −kBtr
(
ρ ln (ρ)

)
The thermal equilibrium solution ρeq to the Liouville equation should satisfy
the following constraints:

S[ρeq] = max
ρ

S[ρ]

⟨Cn⟩th = tr(ρeqCn)

tr(ρeq) = 1

Here {Cn} is the set of integrals of motion. The functional form of ρeq
is found from the variational principle by applying Lagrange’s method of
multipliers given these constraints. For example, the temperature λn = T
is the multiplier ensuring conservation of energy ⟨Cn⟩ eq = E. The solution
ρeq will then be given by the Gibbs distribution:

ρeq =
1
Z

e−∑n λnCn

where the partition sum Z = tr
(
exp (−∑n λnCn)

)
ensuring normalisation.

This is all textbook material.

In regular quantum theory the expectation of an observable A should at any
time t be given by:

⟨A⟩ (t) =
{

tr
(
ρ(t)A

)
Schrödinger picture

tr
(
ρA(t)

)
Heisenberg picture

It seems natural to demand that if the initial state of system is not the ther-
mal equilibrium, the Liouville equation would describe the relaxation to
equilibrium. According to the second law of thermodynamics, the expec-
tation value of the entropy S(t) = ⟨ln ρ(t)⟩ should be a monotonically in-
creasing function of time. However using the standard formalism, one can
easily show that Ṡ(t) = 0 for all t if ρ obeys the Liouville equation.

In unaltered form, the density matrix formalism is unable to describe the
relaxation to equilibrium of a closed system. Solving this discrepancy is
the goal of the NSO.[85] The main idea is to extent the constraints on ρeq
to not only include the conserved observables {Cn}, but an extended set of
relevant observables {Rn}. Some ⟨Bn⟩ (t) may increase in time, as well as
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their Lagrange multipliers λn(t). The solution is an extended Gibbs distri-
bution, which is called the relevant statistical operator:

ρrel =
1

Z(t)
e−∑n λn(t)Rn

Defining the relevant entropy Srel(t) analogous to the thermodynamic en-
tropy and using the solution for ρrel(t) given above, one can show that:

dSrel(t)
dt

= ∑
n

λn(t) ⟨Ṙn⟩ (t) = i ∑
n

λn(t) ⟨[H, Rn]⟩ (t)

This derivative can be finite as long as some of ⟨Ṙn⟩ (t) are, in contrast to the
thermodynamic entropy. ρrel does not obey the Liouville equation. It was
the insight of Zubarev that ρrel should be added to the Liouville equation as
initial condition.[95]

Zubarev Initial Conditions

Generally, the evolution of the density matrix is given by:

ρ(t) = U(t; t0)ρ(t0)U†(t; t0)

With the unitary generator defined as U(t; t0) = Tτ exp
(
−i
∫ t

t0
H(τ)dτ

)
. We

now assume that at some initial time t0, the state of the system was given
by ρrel(t0). The following objections appear:

• Is there any physical reality to this construction of ρrel? If so which Rn
to choose?

• Does the assumed initial condition for ρ(t) reproduce realistic dynam-
ics?

The argument that justifies the steps taken above goes back to Bogoliubov.[96][97]
In his monograph on statistical dynamics, he introduces the following con-
cepts:

• Within the system evolution to equilibrium there exists a hierarchy of
relaxation times.

• During the evolution of a thermodynamic system, a weakening of cor-
relations occurs.

The hierarchy of relaxation times implies that even before the system reaches
a macroscopically define equilibrium state, defined by thermodynamic quan-
tities, the system will already reach a state where single-particle distribution
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functions can be defined. The distribution functions properly start describ-
ing the kinetics of the particle ensemble or subensemble, while a bulk sys-
tem temperature is not yet definable. For our specific problem, it allows us
to state that each phononic mode k can be treated as a subsystem with its
own ensemble energy ⟨Hk⟩ (t) and temperature Tk(t), which are well de-
fined since ρk is a thermal distribution. Because equilibrium has not been
reached yet Tk ̸= Tk, so these quantities are allowed to change in time until
Tk = Tk = T. The mode temperatures and analogous quantities defined us-
ing the Gibbs distribution for relevant parameters seem physical since they
obey thermodynamic relations and tend to expected equilibrium values as
t → ∞. There exists however no thermometer that can measure Tk.

There remains the question of choosing proper Rn for ρrel(t0). The principle
of weakening initial correlations states that any correlation important for
ρ(t), but not implemented in ρrel(t0) will anyway be produced by the dy-
namical evolution of the system. Crucial is only that {Cn} ⊂ {Rn}, but the
dynamics of any unconserved observables will occur in the theory correctly
due to ergodicity. The more complete the set {Rn} is, the faster the physical
behaviour for ρ(t) is reproduced, but to ensure that the choice of Rn does
not influence ρ(t) the proper form of the NSO is found by taking the limit
t0 → −∞. Then according to a theorem due to Abel[98], this is equivalent
to stating:

ρNSO(t) = lim
ϵ→0

ρϵ(t) = lim
ϵ→0

ϵ
∫ t

−∞
eϵ(τ−t)U(t; τ)ρrel(τ)U†(t; τ)dτ (2.21)

In this formulation ρrel(t0) can be taken as initial condition on ρNSO(t) for
any −∞ < t0 < t. Taking the time derivative of ρϵ leads to adjusted form of
the Liouville equation:

dρϵ(t)
dt

= −i[H, ρϵ(t)]− ϵ(ρϵ(t)− ρrel(t))

One sees that as thr source term appears on the right-hand side. Analo-
gous to the role of a Lindblad operator, the source term breaks the time
reversibility of the quantum evolution to allow for a thermal equilibrium to
appear.[99][100]

2.3.2 Application to the Spin-Lattice Interaction

Now that there has been argued for the existence of a NSO, it can be used to
derive a kinetic theory for the relevant observables Rn. In this, we follow the
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approach taken by Pokrovskii [101]. The equations are derived in appendix
A, and are given by:

⟨Ṙk⟩ = i ∑
m

ckm ⟨Rm⟩+ i ⟨[HI , Rk]⟩rel

−lim
ϵ→0

∫ 0

−∞
dτeϵτ

(
⟨[HI(τ), [HI , Rk]]⟩rel

+i ∑
mℓ

∂ ⟨[HI , Rk]⟩rel
∂ ⟨Rm⟩

∂ ⟨Rm⟩
∂λn

∂λn

∂ ⟨Rℓ⟩
⟨[HI(τ), Rℓ]⟩rel

)
+O(H3

I )

The derived kinetic operator equation will be applied to the system already
treated in section 2.2 using Redfield theory. We start from a Hamiltonian
similar to that of eq. 2.14, but now explicitly incorporating the ensemble of
many spins.

H = −∑
i

ωiSz
i + ∑

k
ωka†

k ak + ∑
ik

(
ḡkakS+

i + gka†S−
i
)

We assume that each spin Sz
i is part of an inhomogeneously broadened

lineprofile. We calculate equations of motion for the expectation values of
{Sz

i , S−
i , S+

i }, {a†
k ak}. Many of the steps in the calculation will be concep-

tually similar to those taken in section 2.2. Note that we do not take into
account the spatial diffusion of phonons, even while this was a crucial part
of the experiments. An attempt to do this was made by Solov’ev.[102]

Longitudinal Spin Equation

Starting with Sz
i we obtain:

[H0, Sz
i ] = 0, [HI , Sz

i ] = ∑
k

(
ḡkakS+

i − gka†
kS−

i
)

For the double commutator, we drop double phonon and phonon mixing
terms a2

k, a†
k aℓ, etc. Analogous to the argument of section 2.2, we assume that

once the expectation value with respect to ρrel is taken, all these terms will
disappear, since ρrel will be diagonal in the phonon Fock basis. Moreover,
we will also drop spin mixing and quadratic terms (S−

i )
2, S+

i S−
j etc., because

their time correlations are assumed to be non-secular. Concluding:

⟨[HI(τ), [HI , Sz
i ]]⟩rel ∼ ⟨∑

k
|gk|2

(
a†

k ak(τ)S−
i S+

i (τ)− ak(τ)a†
kS+

i (τ)S
−
i

+a†
k(τ)akS−

i (τ)S
+
i − aka†

k(τ)S
+
i S−

i (τ)
)
⟩rel
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Due to the occurrence of individual terms ak, also ⟨[HI , Sz
i ]⟩rel = 0, and

therefore we can also ignore the other second order term proportional to
∂

∂⟨Rm⟩ ⟨[HI , Sz
i ]⟩rel.

To obtain equations that are actually useful, some assumptions on the ex-
plicit form of the correlation functions must be made. First of all, it assumed
that in leading order the spins and phonons are uncorrelated, for example:

⟨a†
k(τ)akS−

i (τ)S
+
i ⟩rel ≈ ⟨a†

k(τ)ak⟩rel ⟨S
−
i (τ)S

+
i ⟩rel

We take
⟨S+

i (τ)S
−
i ⟩rel = f (τ)eiωiτ ⟨S+

i S−
i ⟩rel

where f (τ) is related to the normalised homogeneous linewidth f (ω − ωi)
by the Fourier transform, as is stated by the Wiener-Khinchin theorem. For
the phonons we simply take their correlation to be that of free particles:

⟨a†
k(τ)ak⟩rel = eiωkτ ⟨a†

k ak⟩rel

Using these relations, ⟨a†
k ak⟩rel = nk, ⟨S+

i S−
i ⟩rel =

1
2 −⟨Sz

i ⟩rel =
1
2 −⟨Sz

i ⟩, and
also the standard commutations/anticommutations, the double commuta-
tor can be simplified to:

⟨[HI(τ), [HI , Sz
i ]]⟩rel = 2 ∑

k
|gk|2 f (τ) cos

(
(ωk − ωi)τ

) (
(2nk + 1) ⟨Sz

i ⟩ −
1
2

)

The τ dependence enters the equation for ⟨Ṡz
i ⟩rel as:

lim
ϵ→0

∫ 0

−∞
dτeϵτ f (τ) cos

(
(ωk − ωi)τ

)
Assuming now that f (ω−ωi) is a Cauchy-Lorentz distribution with linewidth
Γ, then f (τ) = e−Γ|τ|. This integral can then be rewritten as Fourier cosine
transform:

lim
ϵ→0

∫ ∞

0
dτe−(ϵ+Γ)τ cos

(
(ωk − ωi)τ

)
= Fc[e−(ϵ+Γ)τ]

= lim
ϵ→0

(Γ + ϵ)/π

(ωk − ωi)2 + (Γ + ϵ)2 =
Γ/π

(ωk − ωi)2 + Γ2
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We also reparametrise zk =
nk−n0

k
n0

k+
1
2

, where n0
k is the phonon thermal equillib-

rium distribution. Compare Faughan and Strandberg [66]. In that case:

(2nk + 1) ⟨Sz
i ⟩ −

1
2
= (2n0

k + 1)
(
(zk + 1) ⟨Sz

i ⟩ −
1/2

n0 +
1
2

)
def
= (2n0

k + 1)(
(
(zk + 1) ⟨Sz

i ⟩ − ⟨Sz
i ⟩eq
)

We obtain:
d
dt

⟨Sz
i ⟩ = −2 ∑

k
|gk|2 f (ωk − ωi)(2n0

k + 1)
(
(zk + 1) ⟨Sz

i ⟩ − ⟨Sz
i ⟩eq
)

The continuum limit is taken, and it is assumed that the spectral density
and phonon distribution, vary much slower in the Fourier domain than the
linewidth, such that we can rewrite:

∑
k
|gk0 |

2(2n0
k + 1) f (ωk − ω0) −→

∫
J(ω)(2n0

ω + 1) f (ω − ωi)

≈ J(ω0)(2n0
ω0

+ 1)
∫

dω f (ω − ωi)

d
dt

⟨Sz
i ⟩ = − 1

T1

∫
dω f (ω − ωi)

(
(zω + 1) ⟨Sz

i ⟩ − ⟨Sz
i ⟩eq
)

Here we identified the expression for T1 we found in section 2.2.

Transverse Spin and Phonon Equations

The derivation of the transverse spin and phonon equation of motions pro-
ceed in a similar manner. They are calculated explicitly for only one member
of the Hermitian conjugated pair S−

i = (S+
i )

†.

[H0, S−
i ] = −ωiS−

i , [HI , S−
i ] = −∑

k
ḡkakSz

i

[H0, a†
k ak] = 0, [HI , a†

k ak] = ∑
i

ḡkakS+
i − gka†

kS−
i

As before the expectation values of the single commutators are zero. For the
spin double commutators we obtain, under the same assumptions as above:

⟨[HI(τ), [HI , S−
i ]]⟩rel

= −∑
k
|gk|eiωkτ(nk(⟨Sz

i S−
i (τ)⟩rel − ⟨S−

i (τ)S
z
i ⟩rel) +

1
2
⟨Sz

i S−
i (τ)⟩rel
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For the correlation functions the following estimation is made:

⟨Sz
i S−

i (τ)⟩rel

=
1
2
⟨(S−

i S+
i − S+

i S−
i )S

−
i (τ)⟩rel ≈

1
2
⟨S−

i ⟩ ⟨S
+
i S−

i (τ)⟩rel =
1
2

f (τ)e−iωiτ ⟨S−
i ⟩

Which implies:

⟨[HI(τ), [HI , S−
i ]]⟩rel = −∑

k
|gk|ei(ωk−ωi)τ(2n0

k + 1)(zk + 1) ⟨S−
i ⟩

Such that we obtain in the continuous limit:

d
dt

⟨S−
i ⟩ = iωi ⟨S−

i ⟩ −
1

2T1

∫
dω f (ω − ωi)(zω + 1) ⟨S−

i ⟩

The double commutator on the phonon number operator gives:

lim
ϵ→0

∫ 0

−∞
dτeϵτ ⟨[HI(τ), [HI , a†

k ak]]⟩rel

= −2 ∑
i
|gk|2 f (ωk − ωi)(2n0

k + 1)
(
(zk + 1) ⟨Sz

i ⟩ − ⟨Sz
i ⟩eq
)

We now desire the continuum limit for the spins as well. In that case, we
approximate:

∑
i
−→ N

∫
dω̃g(ω̃ − ω0)

Here N is the total number of spins, and g(ω̃ − ω0) is the normalised inho-
mogeneous lineshape centered around ω0. We now define a Bottleneck fac-
tor, that models the ratio of inflow to the outflow of energy into the phonon
bath, given by:

b(ω) =
Ng(ω − ω0)

J(ω0)

Using:
dnk
dt

= (n0
k +

1
2
)

dzk
dt

We obtain

dzω

dt
=

1
T1

∫
dω̃b(ω̃) f (ω − ω̃)

(
(zω + 1) ⟨Sz

i ⟩ − ⟨Sz
i ⟩eq
)
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System of Equations

We found the evolution of the spin ensemble and resonant phonon bath un-
der influence of HI . Now more terms will be added ad hoc to these equations
to make them more realistic. This can be seen as an educated guess of what
the effect of a more realistic interaction Hamiltonian would be.

• First of all, to the equation for ⟨S−
ω̃ ⟩ we add a term that reflects the

transverse relaxation by spin-spin interactions. It is defined by a timescale
Tφ

• To the equation for zω we add a term that reflects the relaxation of the
phonons through the thermal contact. Defined by a timescale Tph

• We add driving terms to equations for ⟨Sz
ω̃⟩ and ⟨S−

ω̃ ⟩. What they
should be can be read-off directly from the Bloch equations 2.1, or al-
ternatively can be calculated by taking:

H0 7→ H0 + 2γBmw cos (Ωt)∑
i

f (Ω − ωi)Sx
i

The additional factor f (Ω − ωi) is added to ensure that only spins
within the homogeneous linewidth subject to the driving respond to
it. This approach was also taken by for example by Grinberg [103] and
Al’tshuler [104].

The system of equations becomes:

d
dt

⟨Sz
ω̃⟩ =− 1

T1

∫
dω f (ω − ω̃)

(
(zω + 1) ⟨Sz

ω̃⟩ − ⟨Sz
ω̃⟩eq

)
− 2γBmw cos (Ωt) f (Ω − ω̃)ℜ[⟨S−

ω̃ ⟩]
d
dt

⟨S−
ω̃ ⟩ =− iω̃ ⟨S−

ω̃ ⟩ −
1

2T1

∫
dω f (ω − ω̃)(zω + 1) ⟨S−

ω̃ ⟩

− 1
Tφ

⟨S−
ω̃ ⟩+ 2iγBmw cos (Ωt) f (Ω − ω̃) ⟨Sz

ω̃⟩

d
dt

zω =
1
T1

∫
dω̃b(ω̃) f (ω − ω̃)

(
(zω + 1) ⟨Sz

ω̃⟩ − ⟨Sz
ω̃⟩eq

)
− zω

Tph

Analogous to section 2.1, we perform simulations of both the steady-state
and transient response of the magnetisation.

To make the analysis of the steady response simpler, we transform the spin
operators to a rotating frame, with a unitary transformation generated by
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U =
⊗

ω Uω =
⊗

ω̃ Uω̃ =
⊗

ω̃ exp iΩSz
ω̃. In that case:

Sz
ω̃ 7→ S̃z

ω̃ = U†
ω̃Sz

ω̃Uω̃ = Sz
ω̃

S−
ω̃ 7→ S̃−

ω̃ = U†
ω̃S−Uω̃ = e−iΩtS−

ω̃

Using that S−
ω̃ = Sx

ω̃ + iSy
ω̃, the driving term in the ⟨Sz

ω̃⟩ equation can be
rewritten in the secular approximation as:

γBmw cos (Ωt)ℜ[⟨S̃−
ω̃ ⟩] = γBmwℜ[cos (Ωt)e−iΩt ⟨S−

ω̃ ⟩] ≈ γBmw ⟨Sx
ω̃⟩

While the ⟨S̃−⟩ equation becomes:

d
dt

⟨S̃−
ω̃ ⟩ =

d
dt

⟨e−iΩtS−
ω̃ ⟩ = eiΩt d

dt
⟨S−

ω̃ ⟩+ iΩeiωt ⟨S−
ω̃ ⟩

= iω̃ ⟨S−
ω̃ ⟩+ ... + 2iγBmw f (Ω − ω̃) cos Ωt ⟨Sz

ω̃⟩

=⇒ d
dt

⟨S−
ω̃ ⟩ ≈ i(ω̃ − Ω) ⟨S−⟩+ ... + iγBmw f (Ω − ω̃) ⟨Sz⟩

Decomposing the spin quadrature operators back into x and y operators,
one obtains the following simplified system in the rotating frame:

d
dt

⟨Sz
ω̃⟩ =− 1

T1

∫
dω f (ω − ω̃)

(
(zω + 1) ⟨Sz

ω̃⟩ − ⟨Sz
ω̃⟩eq

)
− γBmw f (Ω − ω̃)ℜ[⟨S−

ω̃ ⟩]
d
dt

⟨S−
ω̃ ⟩ =i(ω̃ − Ω) ⟨S−

ω̃ ⟩ −
1

2T1

∫
dω f (ω − ω̃)(zω + 1) ⟨S−

ω̃ ⟩

− 1
Tφ

⟨S−
ω̃ ⟩+ iγBmw f (Ω − ω̃) ⟨Sz

ω̃⟩

d
dt

zω =
1
T1

∫
dω̃b(ω̃) f (ω − ω̃)

(
(zω + 1) ⟨Sz

ω̃⟩ − ⟨Sz
ω̃⟩eq

)
− zω

Tph

The rotating frame and lab frame equations were simulated. It must be
noted beforehand that the chosen parameters were not the most realistic,
but were motivated by making the simulations run fast and smoothly. Fig-
ures show steady-state results in the rotating frame 2.4 and 2.5, while figure
2.6 shows a transient response in the lab frame. The difference between fig-
ures 2.4a and 2.4b the simulations should reflect the situation at the probe
and pump line respectively. With steady-state is meant that the simulations
lasted until all parameters became stable under driving. The plotted spectra
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are simply the latest values of a time domain simulation. For the pump sim-
ulation, the rotating frame equations were used as they are, but for the probe
line b was set to zero, and instead a phonon source term Dh(ω) was added
to the equation of motion for zω. Here the distribution h(ω) was the phonon
distribution obtained from the pump simulations for b = 10−4. The point
of this source term was to see the effect on the lineshape ⟨S+S−⟩ (ω) when
a steady stream of phonons was being generated by an external source. In
both simulations, the lineshape showed saturation effects due to the pres-
ence of a non-equilibrium distribution of phonons. The CW spectroscopy
measurements can be considered in the light of these simulations to get an
indication on the accuracy of this model. Unfortunately, time limitations
prevented more extensive exploration of simulations.

Figure 2.6 shows the relaxation of ⟨Sx
ω0
⟩ for different combinations of Tph

and b. The first thing it is trying to convey is that the phonon bottleneck
might cause decoherence. Secondly, it seems that if Tph is short enough, the
bottleneck factor b does not affect the spin relaxation at all.
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Figure 2.4: Steady state response of 1 − ⟨S+S−⟩ (ω), at several values of the bot-
tleneck factor b resp. source term D. Other parameters where ω0 = 300 MHz,
T1 = 1 µs, T2 = 0.1 µs, Tph = 10 µs inhomog. broadening with Gaussian
linewidth σ = 15MHz, homog. broadening with Lorentzian linewidth Γ = 5 MHz,
γBmw = 50 MHz and Ω = ω0
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Chapter 3
Experiment

3.1 Measurement Device

As was mentioned in the introduction, the experimental part of the thesis
work was the fabrication of superconducting coplanar waveguides. Sub-
sequently, these circuits were used to perform cryogenic measurements on
spin ensembles in 167-Er:Y2SiO5. The designed chip layout consisted of
two spatially separated waveguides, with the goal of studying rhe thermal
transfer of energy between the spin ensembles coupled at each respective
line.

3.1.1 Design of Coplanar Waveguides

The measurements were done using a device based on the chip design shown
in figure 3.1. The basic idea behind the design is as follows. The chip con-
sists of a 12x12mm silicon substrate of approximately 0.5 mm thickness, cov-
ered by a thin film of the type II superconductor niobium (Tc = 18.3K), of
thickness 150 nm. The superconducting film is patterned into a coplanar
waveguide. The fabrication procedure used to achieve this is treated in the
next section. In figure 3.1 there are two patterned CPWs. They consist of a
meandering CPW line, and at each end a wider section, that serves as bond-
ing pad. From the bonding pad, the chip is contacted to other circuitry using
aluminum wirebonds.
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The following aims motivated the chip design:

• The microwave transmission of each line should be as high as possible,
while reflection and losses should be as small as possible. The latter
aim is achieved by using superconductors for the chip metallisation
and wirebonds. The former two by having the impedance of the CPW
match that of all other microwave circuitry, which is 50 Ω.

• A master student should be able to connect wirebonds to the bonding
pad, for this reason, they were designed with spacious 0.5×0.5 mm
wide bonding pads to allow for comfortable bonding.

• The filling factor of the ESR set-up should be appropriate for the aims
of the experiment. The CPW signal line width partly determines the
induced magnetic field intensity profile, which determines the filling
factor. The shape of the meander naturally also influences the filling
factor. See the PhD dissertation of Clauss for an extensive discussion.
[105] In the end the choice was made based more on the positive expe-
rience with narrower lines of group members that have worked plenty
with these devices, than on a calculation of sorts.

• There should be no direct electromagnetic coupling between the dif-
ferent folds of the CPW meanders. In addition, there should be no
electromagnetic coupling between the different CPWs.

• The chips had to be fabricated in-house, which added additional con-
straints.

The 3D design and electromagnetic simulations were performed with the
finite element simulator CST Studio Suite 2018 developed by Dassault Sys-
tèmes. This software calculates, inter alia, the impedance, transmission, re-
flection and electromagnetic field distributions in time, frequency, and space
for custom 3D models. The 3D geometry is constructed from simple or
user-defined shapes and curves, while specifying the electric parameters
of the material that these shapes should represent. To perform a simulation
a ‘port’ must be specified. The ports indicate the location where signals are
sent in and measured on the model. They have a rectangular shape, which
determines the cross-section across which signals are transmitted for mea-
surement or driving. The superconducting niobium is simulated as perfect
conductor. To obtain accurate simulation results the following things were
taken especially into account:

• The resolution of the meshgrid must be sufficiently fine. The software
comes with an ’adaptive meshing’ option, which would mean that the
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3.1 Measurement Device 53

simulation is run several times, refining the mesh in areas where the
field is dense after each run. This requires many simulation runs, how-
ever. An alternative is to change the meshing manually and judge by
eye if the resolution will be sufficient. For CPW structures, in practice,
this means that the signal line and gap have their own set of mesh
cells, in other words, that gap, ground and signal line nowhere share
a mesh cell. When adaptive meshing was initiated after applying this
rule of thumb the consequent changes in the simulation results were
marginal.

• The ports must be sufficiently large. As a rule of thumb: large enough
that the field intensity orthogonal to the signal propagation direction
fully decays within the area covered by the port. To estimate a lower
bound on the size of the port in unshielded structures such as CPWs,
one could do repeated simulations with increasing port sizes, until
the simulation results become practically independent of the changing
port size. In shielded structures, such as a COAX connection, the port
simply must cover all of the shielded area.

• Choosing proper boundary conditions. The most realistic results have
been obtained with open boundary conditions. While this is in fact
unphysical because silicon chips are finite. More physical would be
to simulate the surrounding vacuum in addition to the actual chip.
This however resulted in unexpected resonances, that are not mea-
sured experimentally. Complementary to this is that none of the port
boundaries should coincide with those of the model.

Considering the geometrical parameters in figure 2.2, the finalised values
that the design process converged upon for the CPW line were:

S = 20 µm
W = 12 µm

The central axes of the two lines were separated by 6 mm. The other relevant
dimensions are shown in figure 3.1c. The scattering parameters of this de-
sign are shown in figure 3.2. The field distributions are shown in figures 3.3
and 3.4. From the field distributions, one can conclude that the microwave
mode is indeed quasi-TEM and quasi-circular polarised. The tapers were
individually simulated as well, and equally desirable results were obtained.

3.1.2 Microfabrication of Measurement Chips

The entire fabrication process is schematically given in figure 3.5.
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(a) Top view of the final design.

(b) Perspective view of the final design. Note that x is defined as the direction parallel to
an imaginary line connecting the bonding pads of a single transmission line.
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(c) Close-up of the taper, showing all relevant dimensions.

Figure 3.1: Finalised Chip Design in CST

The used substrates were cut from a silicon wafer into 12x12 mm chips, and
had a shunting resistance of 2 kΩ·cm. The first fabrication step always is the
cleaning of the substrate. This is done in hot acetone in an ultrasonic bath,
followed by a dip in isopropanol (IPA), because IPA leaves no marks when
it evaporates.

Niobium Sputtering

Sputtering is a form of physical vapour deposition and is used to deposit the
niobium thin film on the silicon substrate. This was done in the machine
known as "Plassys". The procedure takes place in an ultra-high vacuum
(UHV) chamber, pumped down by a turbo pump. The sample attached to a
holder is installed with a load-lock. The solid niobium is in a sort of crucible,
referred to as target. A precise atmosphere of argon ions is then inserted and
maintained using a throttle valve. The target and another separate compo-
nent form a cathode-anode system, and when a bias voltage is applied the
Argon gas will partly ionize. The positively charged Argon ions then are
accelerated towards the target, colliding with niobium atoms. A part of the
niobium atoms will be released from the target and hit the substrate.
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Figure 3.2: Results for the different scattering parameters. Because of symmetry
not all are shown here. Transmission refers to input and output one at each end
of the transmission line (S21 in case of a single transmission line). Reflection refers
to reflection measured with single port a the end of a line (S11 in case of a single
transmission line). For the crosstalk the input and output are diagonally opposite,
both measuring at a different line.

The mechanical displacement of atoms in the substrate due to the collision
will cause a niobium film to stick to the silicon.

Optical Lithography

After metallization, the CPWs must be patterned into the thin film. Pattern-
ing is done by a masked etch of the thin film. The mask is produced on the
thin film by the lithography of a resist layer. The minimum feature size re-
quired for this process is given by the width of the gap between signal and
ground in the CPW, being 12 µm as mentioned in the previous section. This
is still attainable using the resolution of optical lithography. This makes op-
tical lithography preferable over electron beam lithography, because optical
lithography is generally a faster process, and does not require the operation
of a vacuum chamber.
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3.1 Measurement Device 59

In this process, the thin film is spincoated with a photoresist. The used pho-
toresist AZ MiR 701 is a viscous reddish substance consisting of polymers
and solvents, deposited to the thin film surface using a precision pipette.
Immediately after deposition, the sample is spun on a rotating platform at
several rpm.
The platform has a small hole, to which a tube connects to a pump. By
pumping a low vacuum the sample is kept in place on the platform. The
centrifugal force causes the resist to uniformly coat the sample surface, a
process known as spin-coating or Lackschleudigen.

The sample is then baked on a hotplate, evaporating a part of the solvents,
such that the resist solidifies into a thin film with a thickness on the order of
1 µm. The sample is then exposed in the laserwriter to a 405 nm laser, that
writes the mask into the resist. The laserwriter consists of two laser units
attached to a transfer stage, that moves the lasers over a platform. One
laser is used for patterning, the other 650 nm laser is used to measure the
focus and keep the set-up aligned. Analogous to the spin coater, the chip
is kept in place on the platform by a low vacuum. At positions where the
resist is exposed to the laser light, the polymers undergo a chemical reaction,
changing the general solubility. This reaction happens within a certain spot
size around the exposed point. This spot size limits the resolution of the
lithography. In the used setup the minimal spot size was 300 nm. After
exposure, the photoresist is baked again and consequently developed in a
base solution, namely AZ726 MIF. The second baking step is to complete
the photoreaction in the resist. The differential solubility induced by the
laser exposure causes only the exposed pattern dissolves. This results in an
etching mask on top of the thin niobium film.

Reactive Ion Etching

The mask allows for selective etching into the niobium. A dry etching pro-
cess known as Reactive Ion Etching (RIE) was used. The RIE process takes
place in a UHV chamber. A gas is released into the chamber, in the used
Nb etch recipe this was pure SF6. The sample rests on a silicon wafer that is
fixed to a platform. The platform is electrically disconnected from the cham-
ber walls. An RF voltage is applied over the platform-chamber system. The
RF ionises the gas. The resulting positively charged plasma and electron gas
will both be inductively coupled to the RF potential. Because electrons have
the smallest inertia, they tend to the chamber walls more than the plasma,
turning the platform and chamber into an anode resp. cathode.
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(Step 1) Initial Substrate. (Step 2) Substrate with sputtered
thin metal film.

(Step 3) Substrate with film after
spincoating photoresist.

(Step 4) Photoresist is exposed in
laserwriter

(Step 5) Photoresist is developed to
have an etching mask.

(Step 6) Reactive ion etch removes
unmasked metal.

(Step 7) Etch mask is stripped.
Leading to the final patterned result.

Silicon

Niobium

Photoresist

Exposed Photoresist 

Figure 3.5: Diagram illustrating the fabrication process.

The plasma is accelerated onto the sample, where it chemically interacts
with the niobium. At areas where resist was developed, the Niobium is
etched away. RIE is a very rapid process, taking only a few minutes. Impor-
tant is that the UHV chamber is very clean and that the etching procedure
lasts long enough to fully etch through the exposed Nb film, exposing the Si
substrate underneath. Important is that the vacuum of the RIE is very clean,
for the process to be reliable.

Once the etch is complete, the remaining resist is stripped from the sample.
This is done in another base solution, called Technistrip P1331. The sample
is once more cleaned in hot acetone and hot IPA to remove any water that
was not evaporated after the stripping procedure. In figure 3.6 microscope
images of fabricated samples can be seen.
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(a) Image of taper and line section with indicated dimensions. Compare
to figure 3.1c.

(b) Image of the CPW itself, the gap was always the smallest feature size
in the fabrication.
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(c) Image of a short in the CPW. These type of defects were the most
common for fabricated samples to turn out unusable. Most likely they
were caused by bubbles or dirt in the photoresist.

Figure 3.6: Microscope colour pictures of fabrication samples.

3.1.3 Sample Packaging

Printed Circuit Boards

The on-chip superconducting circuit must be connected to microwave lines
that link the sample in the dilution refrigerator to devices at room temper-
ature. A copper plate was designed by the author and fabricated by the
institute’s fine mechanical department, with a central plateau to hold the
chip. Around the plateau, the plate has enough space to hold printed circuit
boards (PCBs). The PCBs were designed by the author and fabricated by
the company Contag AG, based in Berlin.
The final design shown, in figure 3.7, was made using the open-source soft-
ware KiCad, while electromagnetic simulations of these structures were per-
formed in CST Studio Suite. The functional form is that of a simple CPW
that leads from one edge of the board to the other. On one end the PCB is
wirebonded to the superconducting circuit, on the other end it is contacted
by an SMA connector. Two PCBs connect to 4 SMAs. The PCB consists of a
Rogers RO4003C substrate of thickness 1.524 mm, covered on both surfaces
by a 25 µm copper layer. The copper has a direct immersion gold (DIG)
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coating. One of the two copper layers has the CPW patterned into it. Ex-
cept for the appropriate layout, the following considerations went into the
design:

• The conducting CPW must be matched to the standard impedance of
50Ω. This is done by choosing the correct CPW geometry. S = 0.5mm
and W = 0.075mm was chosen.

• The layout demanded that the CPW makes a curve. The radius of
this curve should not be on the order of S + 2W, but at least 2 to 3
times bigger. If this radius is too small it would cause reflections in
the signal.

• The PCB surface should be suitable for wirebonding with aluminum.
This is the case for DIG.

• Along the CPW vias (metallised through-holes) are fabricated for con-
tact between the upper and lower grounds. For circuits in the low
microwave regime, it is best to keep the distance between vias, and
the distance from the vias to the CPW as small as possible.[107] The
via radius should simply not be in resonance with wavelengths used
for measurements.

• All of the materials that make up the PCBs must be non-magnetic. This
is why DIG was chosen instead of a more commonly used electroless
nickel immersion gold coating (ENIG).

• RO4003C maintains good dielectric properties at cryogenic tempera-
tures and the in-plane thermal expansion coefficient is similar to that
of copper and gold.

Sample Holder

As mentioned in the previous paragraph a copper plate was designed to
hold the chip, PCBs, and SMA connectors. The mechanical design was per-
formed in the software Autodesk Inventor. Besides having the correct lay-
out, the only other non-trivial consideration was that screwholes generally
should be through-holes, to allow for the air underneath the screw to escape
when the dilution refrigerator is pumped to vacuum.
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(a) Top view. (b) Bottom view.

Figure 3.7: Layout of the designed PCBs. Images were extracted from the KICAD
software. Visible are coplanar lines, vias, and screwholes for SMA connectors.

3.2 Measurements

3.2.1 Set-Up

Two of the fabricated chips were tested. All cryogenic spectroscopy mea-
surements were performed with a Rohde Schwarz VNA, while room tem-
perature measurements were performed with a Keysight VNA. Pump mea-
surements additionally made use of an MGX signal generator. For the room
temperature measurements the VNA was directly connected to the in- and
outputs of the sample. The set-up for the cryogenic measurements is given
in figure 3.8. Every sample was placed on the mixing chamber stage, and
connected to both a lower and higher attenuated superconducting current
line, to allow for a bigger difference in diving power between lines. Note
that the incoming signal of the VNA is attenuated 20 dB more than that
of the signal generator. The 10 dB room temperature attenuation was only
used with the signal generator, and not when the VNA was connected to the
low attenuation line. Several samples could be measured using a single out-
put line connected to a switch. The switch is controlled by a custom-made
electronics box. The output is then led through a circulator, that prevents
high-temperature noise from propagating into the mixing chamber stage.
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Figure 3.8: Diagram showing the measurement set-up in the dilution refrigerator.
Indicated are the sample, attenuators, the HEMT amplifier, the signal switch (SW),
a circulator, and the measuring equipment.
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The output signals were amplified by a Low Noise Factory HEMT, with a
documented amplification of roughly 20 dB at 5 K. For the room temper-
ature measurements, no crystal was mounted. During cryogenic measure-
ments, one of the chips hosted a crystal. It was mounted on top of the chip
with a type of gum that can is also removable. The purpose of also measur-
ing a second ’bare’ chip was to obtain an indication of the reproducibility of
the fabrication process.

3.2.2 Spectroscopy

The transmission parameter S21(ω) of each line was measured at 7 mil-
likelvin, as well as at room temperature. In the section below there will be
referred many times to ’cold’ or 7 millikelvin measurements, but one must
note that 7 mK is the lowest temperature that the thermometer of the mixing
chamber stage can register, so the temperature could also have been lower.
Additionally, the switching process caused significant heating, but for the
measurements presented below the temperature was never higher than 12
mK.

The room temperature results are given in figures 3.9. It is notable that
both chips performed very poorly at room temperature. This was not un-
expected, and it was also noticed by Clauss et al [20] that superconducting
circuits that might perform very well when cooled down, are at ambient
conditions mediocre compared to devices based on for example noble met-
als. At cryogenic temperature, the general transmission was significantly
higher. The transmissions measured at 7 millikelvin can be seen in figure
3.10.

In addition to transmission, the crosstalk between lines was measured. What
exactly is meant by this is that the VNA output was connected to the input
of one of the transmission lines. The input of the VNA was then connected
to the output of the other transmission line. The goal of this measurement
was to give an estimate of the strength of the direct electromagnetic cou-
pling between the two CPWs. The results for the two chips are given in
figure 3.11.

We also present here the CW ESR spectroscopy results of four transitions,
performed on the crystal mounted on the sample that was cooled down
to 7 millikelvin. These four transitions were also probed for the study of
thermal effects. The unprocessed power sweep data is given in figure 3.10.
Considering that low attenuation lines have a flat background at -20 dB, that
are attenuated by roughly -30 dB, while the HEMT amplifies maximally 20
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dB. This means that the actual transmission can be estimated to be on the
order of −10 dB.

Some global features can be seen in all four measured samples. Below 2.5
GHz the transmission starts to decrease significantly. From the power de-
pendence, it is clear that the signal below this frequency is mostly noise.
Additionally, there are many strong absorption dips above 5 GHz, the most
prominent being at 6.5 GHz. This attenuation at both ends of the spectrum is
simply the transmission profile of the circulator. The circulators used by the
group were characterised before. The regime wherein the circulators should
provide relatively flat transmission is also observed to have a much flatter
transmission in the measurements. These results should be compared to fig-
ure 3.2, implying that the finite element simulations were generally accurate
in predicting the transmission spectrum of the circuit.

To detect potential absorption by spins one must analyse the power depen-
dence of the amplitude and phase of S21, and look for saturation in features
that look like an absorption profile. As is shown in simulations of figure 2.3,
such a feature can take many shapes due to imperfections in the device. In
addition, unresolved line pairs will also cause a distortion of the absorption
profile. In figure 3.14 the transmission and group delay data of the relevant
part of the spectrum is shown. From the transmission only it would be dif-
ficult to detect spin features, but this becomes easier if the phase or group
delay is also considered, for which the power dependence is usually more
significant. This can also be seen in figure 3.14a. For this work, the phase
and group delay data was used to roughly locate the frequency of power-
dependent features, after which transmission data was analysed to confirm
the presence of saturation. Power-dependent features present also in the
sample without crystal, could of course immediately be excluded from be-
ing spin resonances.

We consider in more detail four suspected spin resonances in the regime
of 2 to 6 GHz. This is the regime where most of the 167-Erbium zero-field
transitions should be found. The peaks are at approximately f = 3.643 GHz,
3.820 GHz, 4.730 GHz, and 4.891 GHz. The first two and last two we refer
to as ’pairs’ in the informal sense of the word. In figures 3.15a and 3.16a the
transmission in the spectral regime concerning each pair is shown, together
with Easyspin simulations of resonance frequencies. In figure ?? and figure
3.16 each resonance feature is shown in more detail, as well as the result after
data processing. The method of data processing is described in detail in
Appendix B. What the processed data shows is the power dependence of the
linearised absorption amplitude with respect to the background absorption.
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Figure 3.9: Unprocessed room temperature data of transmission (a-d) and crosstalk
measurements (e,f).
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Figure 3.10: Cryogenic unprocessed transmission measurements data.

To obtain a better indication that these are actually spin resonances the data
is compared with a zero-field Easyspin energy level and solid state spectrum
simulations using data based on literature data [40], the latter being shown
in figures3.15a and 3.16a. The orientation of the used crystal is given in
figure 3.12. This orientation is defined in terms of the optical extinction
axes.[106] This orientation differed from the x, y, z orientation of the chip
only by straight Euler angles, making conversions between the two frames
straightforward.
As can be seen in figures 3.3 and 3.4, the longitudinal component of the field
induced by the CPW is small compared to the other components. The CPW
hosts a quasi-TEM circularly polarized mode. Considering the orientation
of the crystal on the chip, see figure 3.13, the Easyspin simulations were
performed with the field propagation direction along the b-axis.
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Figure 3.11: Cryogenic unprocessed crosstalk measurement data. Measured from
high attenuation input to low attenuation output.

From the energy level simulations, we could identify to which state transfers
the measured features most likely relate. The result is summarised in tables
3.1 and 3.2, using the convention (mS, mI) 7→ (m′

S, m′
I). For the pump-probe

measurements presented below, we assumed these features were in fact spin
resonance.

3.643 GHz 3.820 GHz
Site 1 (1/2,−5/2) 7→ (−1/2,−7/2) (1/2, 7/2) 7→ (−1/2, 3/2)

(1/2, 1/2) 7→ (−1/2,−1/2)
Site 2 - -

Table 3.1: Potential transitions for features detected at 3.643 GHz and 3.820 GHz.
For the latter, the signal might be a combination of two transitions.

4.730 GHz 4.890 GHz
Site 1 (1/2, 3/2) 7→ (−1/2,−5/2) -

(1/2, 7/2) 7→ (−1/2,−3/2) -
Site 2 - (1/2, 5/2 + 7/2) 7→ (−1/2,−3/2)

Table 3.2: Potential transitions for features detected at 4.730 GHz 4.890 GHz. For
the former, the signal might be a combination of two transitions. For the latter the
ground state is unresolved.
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Figure 3.12: Orientation of the optical extinction axes in the used YSO crystal. Dur-
ing measurements the D1, D2, b axes corresponded with resp. the chip z, x, y axes.

Figure 3.13: Colour photograph of the orientation of the crystal on the chip.
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3.2.3 Pump-Probe

The rest of the presented measurements concern themselves with the effect
of pumping on the second line, while CW spectroscopy is performed with
the first (more attenuated) line. As shown in the previous section two pairs
of transitions were studied, with the members of the pair separated by less
than 1 GHz in the spectrum. The CW spectrum was using always the same
VNA output power, while the power of the signal generator was varied. In
this scheme, three such power sweeps were performed on each pair. Two of
them with the pump frequency being close to the center of one of the two
lineshapes. For the third measurement, the pump frequency was chosen to
correspond to a section of the spectrum where no transitions were observed.
We expect that the pumping leads to a steady state, where phonons are con-
tinuously emitted from the spins at the pumping line. In the presence of a
phonon bottleneck, these phonons should survive long enough to reexcite
other spins. By either continuous absorption-emission or direct diffusion
the phonons will arrive at the spin ensemble coupled to the probe line. This
is then expected to cause a measurable change in the steady state measured
by the VNA. The non-resonant pumping serves as a null measurement.
If the measured effect is indeed caused by a spin-phonon-spin energy trans-
fer, this effect should disappear at non-resonant pumping.

The VNA measurements were processed to derive the change in the linewidth
of transition due to pumping. Additionally, if the pump was in resonance
with the probe, the direct electromagnetic coupling between the pump and
probe line would be visible in the spectrum as a very sharp peak, usually
only slightly sharper than the frequency resolution of the measurement. It
could always be detected and removed from the data easily. The fact that
this occurs should be no surprise. The probing line will act as a pick-up coil
for the pump signal, which can also be seen in figure 3.4. While the field
strengths decay strongly over distance, it will still distort the VNA measure-
ment if the probing power is low and the pumping power is high. Precise
tests were done to see if this peak signal was correlated to any saturation.
It was found that the peak occurred at whichever frequency was pumped,
independent if it coincided with an absorption feature or not. If it did, then
no additional saturation was detectable with respect to the broader satura-
tion of the entire feature, even at 20 dBm pumping power, which was the
highest power at which this was tested. Pumping powers used in actual
measurements presented here never exceeded 10 dBm.
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The details of peak removal and linewidth determination are explained in
Appendix B. It must be said here that the latter was not a trivial procedure,
and it limits how much can be scientifically concluded from these results.

In each of the pumping measurements, the VNA probing power was set at
-10 dBm, while the pump power varied from -20 dBm to 10 dBm. The re-
sults of these measurements are given in figure 3.17. These figures show
the power dependence of each linewidth at the three different pumping fre-
quencies, and also the dependence of linewidth on VNA probing without
pumping, i.e. the initial CW spectroscopy, for comparison. The straight
lines drawn through the data points are a visual tool to show the general
trend. They clearly are not accurate fits derived from a model of sorts, and
therefore should not be taken to quantify anything except for the most basic
nature of the power dependence. The interpretation of these results is given
in section 4.
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(b) unprocessed data of amplitude spectrum.

Figure 3.14: Broadband spectrum used to detect signatures of spin resonances by
their power dependence.

74



3.2 Measurements 75

3.6 3.7 3.8 3.9 4.0
Freq [GHz]

40

38

36

34

32

30

S2
1 

[d
B

]

Site 1
Site 2

40

35

30

25

20

15

10

5

0

5

10

15

(a) Broadband transmission. unprocessed data and
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Figure 3.15: Data of peak pair about 3.7 GHz.
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added peaks indicating resonance frequencies found
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Figure 3.16: Peak pair about 4.8 GHz
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Figure 3.17: Power dependence of each determined linewidth. The 3.643 GHz and
4.890 GHz linewidths were determined by fitting, while those of 3.820 GHz and
4.730 GHz were estimated from the gradient of the data. Also shown is the power
dependence when the probing power of the VNA was swept, without applying
pumping.
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Chapter 4
Conclusion

Simulation and Fabrication

Finite element models were designed and simulated in the software CST
Studio Suit. From this, the optimal geometric parameters of coplanar waveg-
uides suitable for CW ESR spectroscopy were derived. Optimal in the sense
of good broadband transmission, and proper impedance matching. Using
these parameters a chip layout containing two CPWs was designed. This
layout was also simulated and optimised for transmission, impedance, and
small crosstalk between lines. This layout was also adjusted to fulfill the
requirements for in-house fabrication.

Consequently, this layout was fabricated using the optical lithography of a
thin niobium film on a silicon chip. The fabrication process made use of
recipes that have become standard practice at the Walther-Meissner-Institut
for the fabrication of niobium resonators and waveguides, used in for ex-
ample transmon circuits.

The transmission and crosstalk of four waveguides on two different chips
were measured at both room temperature and at 7 millikelvin. The room
temperature measurements showed that the fabricated niobium waveguides
are most likely unusable for room temperature ESR measurements. The
cold measurements showed individual waveguide transmissions very com-
parable with simulations, and broadband behaviour in regimes where the
circulator and amplifier transmission was relatively flat.

All in all, it seems that the fabrication installations at the Walther-Meissner-
Institut, paired with cryogenic microwave measurement set-ups, can be used
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to provide broadband solutions for CW ESR spectroscopy.

Magnetic Resonance Measurements

The transmission at 7 millikelvin of a double waveguide chip with a 167-
Erbium-doped YSO crystal was analysed for the presence of magnetic res-
onance phenomena. Several potential electron spin resonances were iden-
tified by their power saturation behaviour. These candidate resonance fre-
quencies seem reasonable values when compared to the literature. To gain
a better indication of the absence or presence of spin resonance at these fre-
quencies, time-dependent measurements should be done. This would allow
one to quantify their relaxation behaviour and compare it to the background
behaviour. Lack of time prevented such measurements to become part of
this work.

Under the assumption that the mentioned features are in fact spin reso-
nances, a pump-probe measurement scheme was performed. The results
were analysed for the presence of phonon-mediated energy transfer be-
tween the respective spin ensembles coupled to each transmission line. This
was qualified by the dependence of the absorption linewidth on the pump
power. These results will now be interpreted.

The first important trend visible in figure 3.17, is that for all of probed (sus-
pected) transitions the linewidth increased with pump power when the
pump was directly in resonance with the transition. This is in agreement
with the model presented in section 2.3. This is of course in confirmation
with the idea of spin-phonon-spin transfer, but can just as well be caused by
direct coupling of the electromagnetic field of the pump line to spins at the
probe line. There are however several points of interest concerning the data
that were in disagreement with the latter being the possibility.

Making use of the broadband capabilities of transmission line ESR, we can
pump at one resonance, while probing the other. In essence, we want to
check if there is a measurable change probed in a line not in resonance
with the pump. There is no clear dependence between any of the transi-
tion linewidth and the pumps at background frequencies 3.7 GHz resp. 4.8
GHz. This seems to suggest that the linewidths do not change due to the
absorption of microwave power by the dielectric and consequent general
heating of the spin ensemble.

When the pumping is at the other resonance frequencies the response seems
to differ depending on which of the lines was pumped or probed. For
pumping at 4.890 GHz or 3.820 GHz, there seems to be a linewidth depen-
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dence at the lower resonance frequencies 4.730 GHz resp. 3.643 GHz. For
the latter, the response is even stronger than for resonant pumping. When
measurements are performed the other way around, there is a power de-
pendence of the linewidth at 4.89 GHz on pumping at 4.73 GHz. For the
other pair, this is not true, which means that it is unclear how fast the non-
equilibrium population of phonons relaxes back into a thermal distribution.
The answer to this question would shine a light on Bogoliubov’s assump-
tion of a relaxation time hierarchy.

This relates back to questions asked in section 2.2.3 about the dominant
source of phonon relaxation. Given the nature of the measurements, this
question cannot be answered here. It is, however, surprising how much the
linewidth seems to change compared to direct measurement and resonant
pumping for both pairs since the assumed interaction mechanism behind
this is phonon cross-relaxation. In light of this result, it seems that the es-
timates given on phonon cross-relaxation in section 2.2.3 overestimate the
timescale of frequency down-conversion by phonon interaction.

The pump-probe measurements seem to indicate that a phonon bottleneck
effect is present in the studied system at 7 millikelvin, and that this affects
the electron spin linewidth. However, more measurements of the presented
type, in addition to measurements on time dependence are needed to con-
firm the suspicions presented here, providing an interesting potential re-
search direction. All in all, it seems too early to draw any strong conclu-
sions.
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Appendix A
Derivation of Kinetic Equations

The kinetic equations for the expectation values of operators within the NSO
formalism are derived here.

It can be shown that the integral of in equation 2.21 ensures onsistency

lim
ϵ→0

⟨Rn⟩ϵ (t) = ⟨Rn⟩rel (t) = ⟨Rn(t)⟩NSO
def
= ⟨Rn⟩ (t) under the condition

that ρϵ stays normalised.[85][108] It is the definition of the so called
invariant part ρrel. Note that such consistency is not ensured for expectation
values of general quantities, for example, ⟨Ṙn(t)⟩rel ̸= ⟨Ṙn(t)⟩ in general.
We rewrite:

ρϵ(t) = ϵ
∫ t

−∞
eϵ(τ−t)U(t; τ)ρrel(τ)U†(t; τ)dτ

= ϵ
∫ 0

−∞
eϵ(τ)U(t; t + τ)ρrel(t + τ)U†(t; t + τ)dτ = ρrel(t)

Where the latter implies:

ρrel(t) =
1

Z(t)
e−∑n λn(t)Rn

And:

λn(t)Rn = ϵ
∫ 0

−∞
dτeϵτλn(t + τ)Rn(τ)

= λn(t)Rn −
∫ 0

−∞
dτeϵτ

(
λ̇n(t + τ)Rn(τ) + λn(t + τ)Ṙn(τ)

)
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In the last line integration by parts was used. During this procedure, for
the terms Rn(τ) in the integrand a Heisenberg time dependence is implied.
Concluding, the NSO is written as:

ρNSO(t) =
1

Z(t)
exp

(
−∑

n
λn(t)Rn

+lim
ϵ→0

∑
n

∫ 0

−∞
dτeϵτ

(
λ̇n(t + τ)Rn(τ) + λn(t + τ)Ṙn(τ)

))

If we define the entropy as operator S = ln ρ, which is a functional of
λn(t)Rn, we are able to write the variables λn(t) and ⟨Rn⟩ (t) as conjugate
pair of distribution derivatives.

⟨Rn⟩ = − δZ
δλn

⟨λn⟩ =
δS

δ ⟨Rn⟩

Now the kind of systems of interest to us is of the form:

H = H0 + HI

with the interaction HI weak compared to the free particle term H0. Fur-
thermore, it is assumed that the free motion of the relevant operators is of
the form:

[H0, Rn] = ∑
m

cnmRm

such that:
d
dt

Rn = Ṙn = i[H, Rn] = i ∑
m

cnmRm + i[HI , Rn]

On the same note:

dλn(t)
dt

= ∑
ℓ

∂λn(t)
∂ ⟨Rℓ⟩

⟨Ṙℓ⟩ = ∑
ℓ

∂λn(t)
∂ ⟨Rℓ⟩

(
i ∑

m
cℓm ⟨Rm⟩+ i ⟨[HI , Rℓ]⟩

)

Now a less trivial statement is made. As was discussed in the main text,
ρrel(t0) is taken to be the initial condition to the equilibration process de-
scribed by ρNSO(t). In the sense of Bogoliubov’s hierarchy of timescales, at
t0 the system has sufficiently relaxed that we may take ρrel(t0) to be a Gibbs
distribution in the variables λn(t)Rn. During times t > t0 the system will
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relax further into full thermal equilibrium. We now assume that this second
part of the dynamics is fully governed by HI , such that we may take:

∑
nm

λncnmRm = ⟨[H0, ∑
n

λnRn]⟩ = 0

From this is derived:

0 =
∂

∂λk
0 =

∂

∂λk
⟨[H0, ∑

n
λnRn]⟩ = ∑

n
λncnk + ∑

nm

∂λn

∂ ⟨Rk⟩
cnm ⟨Rm⟩

And from the commutativity of derivatives:

∂ ⟨Rℓ⟩
∂λk

= − δ2Z
δλkδλℓ

=
∂ ⟨Rk⟩

λℓ

From the last two equations we can identify:

∑
ℓm

∂λn

∂ ⟨Rℓ⟩
cℓm ⟨Rm⟩ = −∑

k
λkckn

Such that:
dλn(t)

dt
= −i ∑

k
λkckn + i ∑

ℓ

∂λn(t)
∂ ⟨Rℓ⟩

⟨[HI , Rℓ]⟩

We then can can rewrite ρNSO as:

ρNSO(t) =
1

Z(t)
exp

(
−∑

n
λn(t)Rn + lim

ϵ→0
∑
n

∫ 0

−∞
dτeϵτ

×
(
i ∑

ℓ

∂λn(t + τ)

∂ ⟨Rℓ⟩
⟨[HI(t + τ), Rℓ(t + τ)]⟩ Rn(τ) + iλn(t + τ)[HI(τ), Rn(τ)]

))

We now consider the equations of motion of ⟨Rn⟩ (t) in the nonequilibrium
state. The Heisenberg equation gives:

⟨Ṙk⟩ (t) = i ⟨[H, Rk(t)]⟩ = i ∑
m

ckm ⟨Rm⟩ (t) + i ⟨[HI , Rk(t)]⟩

Using the explicit form of what was found for ρNSO(t), the goal is to ex-
pand the equation into powers of the interaction HI , and to truncate this
expansion at appropriate order.
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86 Derivation of Kinetic Equations

The first term in the exponent of ρNSO is −∑n λnRn, which does not contain
HI and is simply the exponent of ρrel. Therefore the zeroth and first order
terms of the expansion are simply:

⟨Ṙk⟩
(0,1)

(t) = i ∑
m

ckm ⟨Rm(t)⟩+ i ⟨[HI , Rk(t)]⟩rel

For the second order term, we approximate the dynamics using the correla-
tion functions of the form Cβ{A, B} =

∫ 1
0 ds ⟨Ae−βs(B − ⟨B⟩rel)e

βs⟩rel, in our
case with β = ∑n λnRn

This results in:

⟨Ṙk⟩
(2)

(t) = lim
ϵ→0

(i)2 ∑
n

∫ 0

−∞
dτeϵτ

(
Cβ{[HI , Rk], [HI(τ), Rn(τ)]}λn(t + τ)

+Cβ{[HI ,R k], Rn(τ)}∑
ℓ

∂λn(t + τ)

∂ ⟨Rℓ⟩
⟨[HI(τ), Rℓ(τ)]⟩rel

The second order will be included in the expansion but is done so within the
Markov approximation, taking λn(t + τ)Rn(τ) ≈ λn(t)Rn in the integrand.
In that case, if we approximate ∂

∂λk
exp

(
−∑n λnRn

)
≈
∫ 1

0 dse−βsRkeβs, it can
be proven, by taking the derivative explicitly, that:

Cβ{[HI , Rk], Rn(τ)} = i
∂ ⟨Ṙk⟩

(1)

∂λn
= i ∑

m

∂ ⟨Ṙk⟩
(1)

∂ ⟨Rm⟩
∂ ⟨Rm⟩

∂λn

It can also be identified that:

∫ 0

−∞
dτeϵτCβ{[HI , Rk], [HI(τ), Rn]}λn(t)

=
∫ 0

−∞
dτeϵτ

∫ 1

0
ds ⟨[HI , Rk]e−βs([HI(τ), λn(t)Rn]− ⟨[HI(τ), λn(t)Rn]⟩rel

)
eβs⟩rel

=
∫ 0

−∞
dτeϵτ

∫ 1

0
ds ⟨[HI , Rk]

d
ds

e−βs(HI(τ)− ⟨HI⟩rel
)
eβs⟩

rel

=
∫ 0

−∞
dτeϵτ ⟨[HI(τ), [HI , Rk]]⟩rel
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The final result is the kinetic equation for ⟨Rk⟩ in second order:

⟨Ṙk⟩ = i ∑
m

ckm ⟨Rm⟩+ i ⟨[HI , Rk]⟩rel

−lim
ϵ→0

∫ 0

−∞
dτeϵτ

(
⟨[HI(τ), [HI , Rk]]⟩rel

+i ∑
mℓ

∂ ⟨[HI , Rk]⟩rel
∂ ⟨Rm⟩

∂ ⟨Rm⟩
∂λn

∂λn

∂ ⟨Rℓ⟩
⟨[HI(τ), Rℓ]⟩rel

)
+O(H3

I )
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Appendix B
Data Analysis

B.1 Linearisation

As was mentioned in section 3.2, power-dependent features were found
in the transmission spectra by looking at both the amplitude and phase of
S21(ω). Once such a feature was identified, the next step was usually to do
another measurement over a more narrow frequency band around the fea-
ture, with better resolution and more averages. This second dataset would
then be processed further. This was done in the following steps.

The potential absorption feature would be sliced out of the dataset with a
sufficient amount of background data. If the direct signature of a pump was
present, this would be removed, see also next section. The next steps are
also illustrated in figure B.1b.

The background at frequencies surrounding the absorption feature was taken
to be (locally) linear. The background was thus extrapolated as a straight
line:

SBG
21 (ω) = a · ω + S21(ω0)

with S21 still in dB and ω0 the lowest frequency of the sliced dataset. If ω1
was the highest frequency of the slices dataset, then a is given by:

a =
S21(ω1)− S21(ω0)

ω1 − ω0

This line was then subtracted from S21, to obtain the logarithmic transmis-
sion with respect to the background, Sn

21(ω).

Sn
21(ω) = S21(ω)− S21BG(ω)
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90 Data Analysis

Note that this ensures Sn
21(ω1) = Sn

21(ω0) = 0 dB. The relation between the
logarithmic and linear transmission is given by:

S21[−] =
V−

2 [Volt]
V+

1 Volt
∼ Vout[Volt]

Vin[Volt]
= 10

S21[dB]
20

This means that:

S21(ω)[dB]− SBG
21 (ω)[dB] = 20log(Vout/Vin)− 20log(VBG

out /Vin)

= 20log(Vout/VBG
out )

So this means that we can convert to a linear scale by:

Vout

VBG
out

= 10Sn
21[dB]

B.2 Pump Removal

For resonant pump data, there would be a sharp peak in the VNA measure-
ment at the frequency coinciding with that of the pump. If this coincided
with the measured absorption feature, it would be removed from the data.
This was done simply by detecting at which frequency bins it occurred and
replacing the measured signal at these points by linear extrapolation from
the surrounding signal. Figure B.2 illustrates the process.

B.3 Linewidth Determination

Linewidths were determined after linearisation using one of two methods,
depending on the shape of the absorption. We distinguish ’nice’ and ’bad’
absorptions. For the data presented, the features at 3.643 GHz and 4.890
GHz are considered nice, while those at 3.820 GHz and 4.730 GHz are ugly.
The nice ones could be fitted by either a Lorentzian or Gaussian distribution
and the linewidth would be determined from the best fit. The author was
not able to find good realistic fits that could consistently fit the ugly trans-
missions. For these profiles, instead of fitting, the gradient with respect to
the frequency axis was calculated, resulting in an asymmetric curve, that
always has a clear global minimum and maximum. The linewidth would
then be taken as the peak-to-peak frequency spacing of the gradient. To
accurately determine the frequencies corresponding to the gradient mini-
mum and maximum, a moving average filter was applied to remove noise.
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(a) unprocessed transmission data from a nice looking, i.e. fittable feature.

4.886 4.888 4.890 4.892 4.894
Freq [GHz]

0.75

0.80

0.85

0.90

0.95

1.00

V/
V B

G

Linear transmission w.r.t. background

(b) Transmission data, normalised with respect to the background and
converted to a linear scale. Note that the background is now at 1.

Figure B.1: Set of plots illustrating background subtraction and linearisation of
unprocessed data.
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(a) unprocessed data from pump measurement. Note the obvious peak,
distinguishable from the global power-dependence.

This method could be applied consistently to all ugly, but also to all the nice
curves. In fact, if a data set contained both ugly and nice absorptions, the
method would first be applied to the nice ones. From this, the appropriate
window size for the moving average filter could be determined, such that
the method resulted in linewidths that most closely matched those of the
best fit. Using this choice of filter the method would be applied to the other
ugly profiles. In figures B.3 and B.4 the method is illustrated for a nice and
ugly absorption respectively.
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(b) unprocessed data from pump measurement, zoomed in to the peak
caused by direct electromagnetic coupling between transmission lines.
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(c) Transmission data, but the peak is removed and replaced by linear
extrapolation of the global lineprofile.

Figure B.2: Plots illustrating the process of removing the direct coupling peak from
some of the pump spectra.
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(a) Example of Lorentzian and Gaussian fit at low VNA power.
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(b) Example of Lorentzian and Gaussian fit at high VNA power.
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(c) Standard deviation of fit with respect to the data for a Gaussian
and Lorentzian fit.
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(d) Power dependence of the linewidth as determined by Gaussian
or Lorentzian fitting and by the described method based on taking
the data gradient. The best fit, Lorentzian, matches well with the
result from the manual method.

Figure B.3: Plots illustrating linewidth determined from optimal fit parameters for
nice peaks.
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(a) unprocessed transmission of ugly feature.
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(b) Linearised transmission with respect to the background of ugly fea-
ture.
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(c) Gradient of linearised transmission feature that has gone through a
moving average filter. Detected peaks are indicated.
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(d) Resulting power dependence of the linewidth determined by taking
the gradient of the processed data.

Figure B.4: Plots illustrating linewidth determined from peak-to-peak width of
derivative for ugly peaks.
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Appendix C
Fabrication Recipe

Initial Substrate Cleaning

• Bathe in 80 °C acetone for 5 minutes.

• In ultrasonic bath with acetone for 2 min at 25 °C bath temperature
and Leistung 9.

• Quick room temperature IPA dip.

• Blow dry with nitrogen gun.

Sputtering in Plassys

• Niobium sputtering with DC power P = 300W , T = 255°C p =3.7mTor
for in total 71

2 minutes, leading to an approximate film thickness of 150
nm.

Optical Lithography

• Spincoating of 40 microliter photoresist AZ MiR 701.

• Prebake for 75s at 90°C.

• Laserwriter settings: 300 nm spot size, 120 mJ dosage. Grid size 100nm,
and adaptive feedforward switched on at 200nm.

• Postbake for 90s at 110°C.

Development

• Stir sample for 70s in AZ726 MIf, then stir in two different water beakers,
for at least 10 seconds each.
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• Blow dry with nitrogen gun.

Reactive Ion Etch

• Etching at SF6 only flow of 20 sccm at 100 W feedforward power and
50 W RF power. Reflected power should be close to 0 W.

• Etching should last 2:50 min.

Resist Stripping

• Place sample in beaker with Technistrip P1331 into ultrasonic bath for
2 min, 25 °C, Leistung 5.

• Heat beaker with sample on hot plate at 80 °C for 2 minutes.

• Stir sample in two water beakers for at least 10 seconds in each.

Final Cleansing

• 2 min ultrasonic bath Leistung 5 in 80 °C aceton, followed by

• 2 min ultrasonic bath Leistung 5 in 80 °C IPA.

• Blow dry with nitrogen gun.

Wire Bonding Unfortunately, no consistently working recipe was found.
General guidelines:

• Make sure that the search height is not too far away from the actual
height of the sample. It is unclear why this should matter, but in the
author’s experience, it does.

• If the wire does not bond, and moves back up with the wedge, increase
US power.

• If the wire bonds, but is pulled loose again by the wedge, decrease US
power.

• If the wire in the wedge does not fold over the wedge slightly towards
you, the bond is very likely to fail.

• If a bond fails, do not try to bond with the same section of wire again.
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