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Abstract

The distribution of remote entanglement within small- and large-scale quantum networks is

becoming a fundamental task as quantum computing and quantum communication mature

into more advanced fields. Once entanglement has been remotely prepared and distributed,

each node in the quantum network can generate, process, and store quantum information

locally. However, due to the intrinsic decoherence of qubits over time, the protocols

must operate faster than the system’s decoherence rate. Therefore, identifying efficient

entanglement distribution strategies that are fast, parallelizable, and require minimal

external control is a crucial open challenge for the scalability of quantum technologies.

This thesis investigates autonomous entanglement distribution protocols between two

and multiple physically separated qubits. The general idea behind these protocols is to use

a nondegenerate parametric amplifier to generate Gaussian-entangled pairs of photons. By

driving the qubits with the output of the parametric amplifier, the photons’ correlations

are mapped onto the qubits, generating a stationary entangled state. This work presents

an in-depth theoretical analysis of such quantum networks, performing both analytical

and numerical calculations, and investigates how much entanglement can be extracted in a

realistic system. We also study the protocol’s robustness by considering the most relevant

experimental imperfections and provide concrete predictions for upcoming experimental

realizations of our protocol with superconducting circuits. We then consider a larger

network with an increasing number of qubits located along two separate waveguides. We

demonstrate how to generate programmable entangled states by adjusting each qubit’s

detuning. With this approach, we can not only generate multiple bipartite entangled states

on demand but also distribute genuine multipartite entangled states across the entire

network. We provide a detailed estimate of the number of qubit pairs that can be achieved,

assuming state-of-the-art experimental parameters. Finally, based on our analysis of

finite-bandwidth effects in the photon source, we identify a completely novel mechanism

for generating remote entanglement, which relies solely on a thermal photon source. This

is particularly surprising since, for two qubits driven by a Markovian thermal source,

remote qubit entanglement is generally not possible. However, we observe that as the

bandwidth of the thermal source is reduced, the qubits gradually become more entangled.

This protocol demonstrates how non-Markovian effects of otherwise highly incoherent

photons can be exploited. As a potential application, we show that this mechanism can

be used to generate highly entangled states in superconducting or phononic quantum

networks by driving them with room-temperature thermal noise.

The protocols presented in this thesis provide an intriguing new approach for distributing

large amounts of entanglement in a robust manner and with limited classical control.
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The theoretical insights gained regarding their scalability and performance under realistic

conditions serve as a guideline for initial experiments in this direction and highlight their

significant potential for realizing large-scale quantum networks in the future.



Kurzzusammenfassung

Die Verteilung von Verschränkung in kleinen und großen Quanten-Netzwerken wird zu

einer zentralen Aufgabe für die Skalierung von Quantencomputing- und Quantenkom-

munikationanwendungen. Sobald Verschränkung erzeugt und verteilt wurde, kann jeder

Knoten im Quantennetzwerk quantenmechanische Informationen lokal weiterverarbeiten

und speichern. Aufgrund der intrinsischen Dekohärenz von Qubits im Laufe der Zeit

müssen die Protokolle jedoch schneller sein als die Dekohärenzrate des Systems. Daher

ist die Identifizierung effizienter Verschränkungsverteilungsstrategien, die schnell, par-

allelisierbar und mit minimaler externer Kontrolle umsetzbar sind, eine zentrale offene

Herausforderung für die Skalierbarkeit quantentechnologischer Systeme.

Diese Dissertation untersucht autonome Protokolle zur Verteilung von Verschränkung

zwischen zwei und mehreren physikalisch getrennten Qubits. Die Grundidee dieser Proto-

kolle besteht darin, einen parametrischen Verstärker zu nutzen, um gaußsche verschränkte

Photonenzustände zu erzeugen. Durch das Treiben der Qubits mit dem Ausgangssignal des

parametrischen Verstärkers werden die Korrelationen der Photonen auf die Qubits über-

tragen, wodurch ein stationärer verschränkter Zustand entsteht. Diese Arbeit präsentiert

eine detaillierte theoretische Analyse solcher Quantennetzwerke, führt sowohl analytische

als auch numerische Berechnungen durch und untersucht, wie viel Verschränkung in einem

realistischen System auf diese Weise generiert werden kann. Zudem wird die Robustheit des

Protokolls unter Berücksichtigung der relevantesten experimentellen Unvollkommenheiten

untersucht, und es werden konkrete Vorhersagen für zukünftige experimentelle Realisierun-

gen unseres Protokolls mit supraleitenden Schaltkreisen gemacht. Anschließend betrachten

wir ein größeres Netzwerk mit einer wachsenden Anzahl von Qubits, die entlang zweier ge-

trennter Wellenleiter angeordnet sind. Wir zeigen, wie sich programmierbare verschränkte

Zustände erzeugen lassen, indem die Detuning jedes Qubits angepasst wird. Mit diesem

Ansatz können nicht nur mehrere bipartite verschränkte Zustände nach Bedarf generiert,

sondern auch echte multipartite verschränkte Zustände über das gesamte Netzwerk verteilt

werden. Wir geben eine detaillierte Schätzung der Anzahl der erreichbaren Qubit-Paare

unter der Annahme realistischer experimenteller Parameter. Schließlich identifizieren wir,

basierend auf unserer Analyse der Endlich-Bandbreiten-Effekte in der Photonenquelle,

einen völlig neuartigen Mechanismus zur Erzeugung von Fernverschränkung, der aus-

schließlich auf einer thermischen Photonenquelle beruht. Dies ist besonders überraschend,

da für zwei Qubits, die von einer Markovschen thermischen Quelle angetrieben werden,

eine Fernverschränkung in der Regel nicht möglich ist. Wir beobachten jedoch, dass die

Qubits mit abnehmender Bandbreite der thermischen Quelle zunehmend verschränkt

werden. Dieses Protokoll demonstriert, wie nicht-Markovsche Effekte von ansonsten stark
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inkohärenten Photonen genutzt werden können. Als mögliche Anwendung zeigen wir, dass

dieser Mechanismus dazu verwendet werden kann, hochverschränkte Zustände in supralei-

tenden oder phononischen Quantennetzwerken zu erzeugen, indem diese mit thermischem

Rauschen bei Raumtemperatur angetrieben werden.

Die in dieser Dissertation vorgestellten Protokolle bieten einen vielversprechenden neuen

Ansatz zur robusten Verteilung großer Mengen an Verschränkung mit begrenzter klassi-

scher Kontrolle. Die gewonnenen theoretischen Erkenntnisse über ihre Skalierbarkeit und

Leistungsfähigkeit unter realistischen Bedingungen dienen als Leitfaden für erste Experi-

mente in diesem Bereich und unterstreichen ihr enormes Potenzial für die Realisierung

großflächiger Quantennetzwerke in der Zukunft.
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Chapter 1

Introduction

The year 2025 has been declared the International Year of Quantum Science and Tech-

nology [1], marking a century since the establishment of the foundational principles of

quantum mechanics. This milestone recognizes the first quantum revolution initiated

by Werner Heisenberg [2], who introduced a novel framework to describe the behaviour

of microscopic systems. The 20th century also witnessed the second quantum revolu-

tion, marking the transition from a theoretical understanding of quantum mechanics to

a stage where quantum principles are applied to develop practical quantum technolo-

gies [3–7]. Today, quantum mechanics is the foundation for various fields, including

quantum information and computation [8–17], quantum communication [18–25] and cryp-

tography [26–28], quantum sensors and metrology [29–31], among others. Among these

technologies, quantum computation has seen remarkable progress thanks to technological

advances [32–39]. However, as quantum computing systems with an increasing number

of coherently integrated components scale up, it is becoming evident that they will rely

on quantum networks that distribute entanglement among many physically separated

quantum processors [5, 40–48].

The availability of many highly entangled qubit pairs, shared among different nodes, is

thus a universal and, in practice, one of the most essential resources for quantum network

applications. Once established, entanglement can be locally purified [49–54] and used for

quantum teleportation and remote gate operation protocols that then require classical

communication only [14, 18].

The primary challenges in realizing a large-scale quantum network lie in transmitting

quantum states over long distances, preserving quantum coherence, and scalability of the

network infrastructure. It is then envisioned that, in future quantum devices, entanglement

must be generated and interchanged among thousands of qubits within a limited coherence

time. Given this challenge, there is a strong motivation to go beyond a serial application

of existing protocols and search for more efficient quantum communication strategies that

are fast, parallelizable, and, ideally, require minimal classical control. Existing protocols

for distributing remote entanglement in realistic systems are primarily based on one of

the following two strategies [42, 46]:

The first strategy relies on the excitation of a qubit and the entanglement generated

1



2 Chapter 1 Introduction

between the qubit and the emitted photon [55–59]. Then, when two photons emitted from

different qubits interfere on a balanced beamsplitter, the detection of the output modes

of the beamsplitter heralds the creation of an entangled state between the physically

separated qubits [55, 60–72]. The first successful demonstration of this protocol was

achieved with two ensembles of atoms [73, 74], surprisingly as they constitute macroscopic

objects. This approach has the advantage of requiring very little local control and is

intrinsically robust with respect to photon losses. It is, however, only probabilistic and for

many implementations [62, 66–68], the scalability of this approach is limited by the low

probability of detecting a photon, which also decreases exponentially with the number of

qubit pairs that must be entangled simultaneously in this way [46].

The second strategy, which does not rely on the probabilistic nature of heralding, is

to generate a pair of entangled qubits locally and then transfer one of the states to the

distant node, for example, through a controlled emission and reabsorption of optical or

microwave photons [41, 75–81]. This protocol is entirely deterministic. Still, it requires a

sufficiently high level of control on both network nodes.

A third and complementary idea to the deterministic entanglement protocol is to use

correlated light sources to create a correlation between different qubits by driving them

into a highly entangled state [82–98]. Contrary to the deterministic transfer protocol, here

the photon source is continuously driving the qubits. In the simplest case, entangled beams

of optical and/or microwave fields can be generated in a parametric down-conversion

process [99], which produces a propagating two-mode squeezed state as an output. This

process only requires a weak intrinsic nonlinearity as it occurs, for example, in nonlinear

optical crystals [100, 101] or in driven Josephson junctions in the microwave regime [24, 25,

102–108]. In general, parametric down-conversion is currently the most common method

to generate entangled pairs of optical photons [109, 110], however, usually in a probabilistic

and postselected manner [20, 111]. In contrast, here we are interested in the regime where

the parametric amplifier is strongly pumped, resulting in output fields with a high average

photon number. The entanglement produced by the parametric amplifier can then be

mapped onto an entangled qubit state. This scheme has the obvious benefit that it only

relies on an externally pumped χ(2)-nonlinearity for generating the entanglement, which

is typically much easier to realize than strong few-photon interactions or high-fidelity

qubit-qubit gates. At the same time, this approach does not rely on postselection and can

be used to distribute entanglement deterministically.

1.1 Objectives of the thesis

The first objective of this thesis is an in-depth analysis of the above-mentioned protocol

for generating remote entanglement by driving distant qubits with the output of a

nondegenerate parametric amplifier. This setting represents a minimal model of a quantum

network. We then provide a detailed analysis of the parametric amplifier and how it
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couples to the qubits. This model allows us to perform both analytical and numerical

calculations, and we can study the amount of entanglement one can create. Furthermore,

we investigate the protocol’s robustness with respect to the most common experimental

imperfections, such as coupling imperfections between the parametric amplifier and the

qubits or qubit dephasing. Considering all the relevant imperfections in any experimental

implementation of the protocol, we then study how much entanglement can be achieved,

and we also discuss possible ways to detect it.

The second main result of the thesis is the proposal and analysis of a scalable and fully

autonomous scheme for preparing spatially distributed, multi-qubit entangled states in

a dual-rail waveguide QED setup. In this approach, arrays of qubits located along two

separated waveguides are illuminated by correlated photons from the output of a non-

degenerate parametric amplifier. These photons drive the qubits into different classes of

pure entangled steady states, for which the chosen pattern of local qubit-photon detunings

can be used to adjust the degree of multipartite entanglement conveniently. Numerical

simulations for moderate-sized networks show that the preparation time for these complex

multi-qubit states increases at most linearly with the system size and that one may benefit

from an additional speedup in the limit of a large amplifier bandwidth. Therefore, this

scheme offers an intriguing new route for distributing ready-to-use multipartite entangled

states across large quantum networks without requiring precise pulse control and relying

only on a single Gaussian entanglement source.

This thesis’s third and last result is a novel protocol for generating remote entanglement

using a thermal photon source. While driving two qubits by a Markovian thermal

reservoir would thermalize both qubits, resulting in a state which does not have quantum

correlations, we show that by reducing the bandwidth of the thermal source, a finite

amount of entanglement emerges. In this regime, the two qubits are driven by a non-

Markovian photon source. The observed emergence of such a thermally driven, delocalized,

entangled state is interesting from a conceptual and practical point of view. First of all,

this effect shows how the degree of non-Markovianty of a reservoir can change not only

the quantitative but also the qualitative properties of a system coupled to it [112–114].

This is different, for example, for locally coupled quantum systems, where Markovian

thermal noise can already pump the system into at least a weakly entangled state [115].

Secondly, while the current protocol does not avoid the requirement to cool most of the

networks, it provides a completely passive entanglement distribution scheme, which does

not require coherent control fields. As illustrative examples, we describe two scenarios

with qubits driven by filtered noise from a room temperature source: the entanglement of

two distant superconducting qubits connected by a cryogenic quantum link and a network

of SiV centers in a phononic network.
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1.2 Outline of the thesis

The structure of this thesis is outlined as follows:

Chapter 2 introduces the fundamental concepts and theoretical techniques necessary for

a comprehensible understanding of the thesis’s primary results. The chapter provides a

description of quantum states as well as light-matter interaction, which is necessary for

the modeling of quantum networks.

Chapter 3 presents the first new results of the thesis, where we analyse the creation of

remote qubit-qubit entanglement using correlated photons. Specifically, in this analysis,

we go beyond the usual assumption of a broadband parametric amplifier and consider

finite-bandwith effects, time-delays and other experimental imperfections.

Chapter 4 investigates an extension of this protocol, namely, how the entanglement is

distributed if we increase the number of qubits in each waveguide. Using techniques similar

to those used before, we study its robustness and scalability under realistic conditions.

Chapter 5 covers an alternative protocol to generate remote entanglement. Instead of

using correlated photons, here we propose to use a filtered thermal cavity for the task.

The chapter presents a detailed theoretical description of the protocol as well as two

possible experimental implementations.

Chapter 6 summarizes the most relevant results of this thesis and presents an outlook

towards future research directions.



Chapter 2

Theoretical foundations of quantum

networks

At the core of a quantum network is the ability to entangle qubits across spatially

separated locations, creating a shared quantum state that can be manipulated and

measured collectively, even at a distance. This chapter introduces fundamental concepts

and theoretical techniques necessary to properly understand the thesis’s main results:

the creation of a qubit quantum network. We describe our qubit quantum networks in

Sec. 2.1, focusing on the fundamentals of quantum states and entanglement. In Sec. 2.2,

we introduce some of the relevant properties of Gaussian states. Next, in Sec. 2.3, we focus

on a waveguide-based quantum network and derive an effective description of the system.

We give examples of continuous-variable systems coupled to waveguides in Sec. 2.4. In

Sec. 2.5, we offer a complementary description in terms of the phase space representation

of the bosonic fields, which allows for an alternative way to solve hybrid systems formed

by bosonic modes and qubits. To end this chapter, we present an overview of well-known

remote entanglement protocols in Sec. 2.6.

2.1 Qubit quantum networks

A quantum network is a network infrastructure that uses the principles of quantum

mechanics to its advantage to transmit, process, manipulate, and store quantum informa-

tion [5]. At the core of such a quantum network, the quantum nodes are responsible for

generating, processing and storing quantum information locally. We consider the quantum

nodes to be described by two-level systems, also called quantum bits or qubits for short.

We model each qubit by a ground state |0⟩ and an excited state |1⟩. The principle of

superposition allows us to define the state of a single qubit as [3]

|ψ⟩ = α|0⟩+ β|1⟩, (2.1)

where α and β are called probability amplitude and are normalized complex coefficients

α, β ∈ C satisfying |α|2 + |β|2 = 1. The single qubit state |ψ⟩ belongs to a complex

5
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vector space defined by a two-dimensional Hilbert space H. Given the state in Eq. (2.1),

quantum mechanics tell us that the state is in the ground state |0⟩ with probability |α|2

and in the excited state |1⟩ with probability |β|2. The concept of superposition is best

seen when we have a balanced superposition α = β = 1/
√

2. In this case, one would

measure either the ground or the excited state with the same probability |α|2 = |β|2 = 1/2.
This superposition of states becomes more interesting when we consider a state formed by

many qubits.

Consider now a system formed of Nq qubits. The state of these Nq qubits is a vector

in the combined Hilbert space H = H1 ⊗H2 ⊗ . . . ⊗HNq . A general pure state of the

multi-qubit network can thus be described by

|ψ0⟩ =
2Nq∑
s=1

cs|s⟩, (2.2)

where cs ∈ C are normalized probability amplitudes and s = (s1, s2, ..., sNq) with binary

representation si ∈ (0, 1). Here, we use a compact notation to describe the tensor product

of the different subsystems |s⟩ ≡ |s1, · · · , sNq⟩ ≡ |s1⟩ ⊗ · · · ⊗ |sNq⟩. The basis in which we

write this state is called the computational basis, and the state |ψ0⟩ is determined by 2Nq

probability amplitudes. The dimension of the state grows exponentially with the number

of qubits in the network. If this network were composed of Nq = 500 qubits, this number

would be larger than the estimated number of atoms in the universe [3]. In this thesis, we

will be dealing mostly with Nq = 2 in Chapter 3 and Chapter 5. In Chapter 4, we will

obtain a way to characterize states for arbitrary Nq without having to write them down

explicitly.

Due to the state’s interaction with its environment or because of some uncertainty

about it, most quantum systems are represented by a statistical mixture of pure states.

These mixed states are formally expressed in terms of the density matrix ρ defined as the

weighted statistical sum of different pure states

ρ =
∑
i=0

pi|ψi⟩⟨ψi|, (2.3)

where 0 ≤ pi ≤ 1 is the probability of observing the state |ψi⟩ and
∑

i pi = 1. A quantum

system whose state |ψ0⟩ is exactly known is called a pure state, and it is represented by

the density matrix ρ = |ψ0⟩⟨ψ0|. Otherwise, the state ρ is called a mixed state, which is

said to be a mixture of different pure states in an ensemble. Mathematically, this can

be described by a quantity called the purity of the state µ, which is obtained by taking

the trace of ρ2, µ = Tr{ρ2}. We obtain µ = 1 for a pure state, while a mixed state is

characterized by µ < 1. Generally, the purity is bounded by 1
d
≤ µ ≤ 1, where d is the

dimension of the Hilbert space where the state is defined. The concept of purity µ and

pure states |ψ0⟩ will appear repetitively throughout the thesis.
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Figure 2.1: Schematic representation of a qubit quantum network. The qubit state is given by |ψ0⟩.

Alternatively, one can express the density matrix in terms of the Pauli operators. Those

are given by

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, (2.4)

as well as the raising and lowering operator, σ̂+ = |1⟩⟨0| and σ̂− = |0⟩⟨1|, respectively.
Those can be expressed in terms of the Pauli matrices using σ̂± = (σ̂x ± iσ̂y)/2. For

completeness, we define σ̂0 = 12 as the 2× 2 identity matrix. This allows us to express

the general density matrix in Eq. (2.3) as

ρ = 1
2Nq

∑
k1,··· ,kNq

⟨σ̂k1
1 ⊗ · · · ⊗ σ̂

kNq
Nq ⟩σ̂

k1
1 ⊗ · · · ⊗ σ̂

kNq
Nq . (2.5)

Here, k1, · · · , kNq represents all possible combinations of {0, x, y, z} for the Pauli matrices

for each qubit. This is a convenient way to express the state, which is commonly used for

experimental reconstruction. This process is called state tomography and requires the

measurements of 4Nq-1 observables.

We defined a pure multi-qubit state in Eq. (2.2). However, this is not the whole story

for a quantum network, where we want the pure state to be entangled.

2.1.1 Entanglement

Consider a general multi-qubit state described by ρ in Eq. (2.3). The state is called

separable if it can be written as [116]

ρ =
∑

i

piρ
(i)
1 ⊗ ρ

(i)
2 ⊗ · · · ⊗ ρ

(i)
Nq , (2.6)

with
∑

i pi = 1 and pi ≥ 0. Here, ρ(i)
j characterizes the state of the j-th subsystem. If the

state cannot be written as Eq. (2.6), the state is called entangled. The above expression
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has a clear physical meaning: The state ρ can be prepared by each subsystem by means

of local operators (unitary operators, measurements, etc.) and classical communication

(LOCC). In general, given a state ρ, it is a nontrivial task to decompose it according to

Eq. (2.6).

The minimal working quantum network is obtained when two nodes are connected.

This elementary quantum link needs two qubits Nq = 2, and using Eq. (2.2) a pure state

could be written as

|ψ0⟩ = c1|00⟩+ c2|01⟩+ c3|10⟩+ c4|11⟩, (2.7)

for ci complex normalized coefficients. In this scenario, there is a family of states which

turns out to be maximally entangled. Those states are called the Bell states and are given

by

|Ψ+⟩ = |01⟩+ |01⟩√
2

, (2.8a)

|Ψ−⟩ = |01⟩ − |01⟩√
2

, (2.8b)

|Φ+⟩ = |00⟩+ |11⟩√
2

, (2.8c)

|Φ−⟩ = |00⟩ − |11⟩√
2

. (2.8d)

Those states cannot be expressed as Eq. (2.6). That is, given ρ = |Ψ+⟩⟨Ψ+|, it is not

possible to find a decomposition as Eq. (2.6). We can define the reduced density matrix

as ρ1 = Tr2{ρ}. This reduced density matrix ρ1 is the state describing the subsystem,

comprised of a single qubit, after tracing out all the information about the second qubit.

In this case, we obtain ρ1 = 1/2, with purity µ = 1/2. This is a completely mixed state.

While the state describing the two qubits was pure, that is, it was known for certainly,

the state of the first qubits turns out to be completely mixed. This property is one of the

ways to benchmark if a pure quantum state is in an entangled state, and it lets us define

a way to quantify entanglement using the Von Neumann entanglement entropy [117]

S(ρ) = −Tr{ρ log ρ}. (2.9)

The entanglement entropy for our reduced qubit state S(ρ1) = S(ρ2) = log 2. The

entanglement entropy measures the uncertainty associated with a quantum state. A pure

state’s entanglement entropy is zero S(|ψ0⟩⟨ψ0|) = 0. This is because, in this case, we

know for sure which state we were in. The entanglement entropy is not limited to two

qubits; rather, it can be used for any bipartition in the network. For example, for a Nq

qubit network, one can take the n-th bipartition by considering two subsystems, one

consisting of n qubits and the other of Nq − n qubits.

Back to our two-qubit state, many different ways exist to quantify entanglement. A
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common measure for entanglement is the concurrence [118–120]

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4), (2.10)

where λi ≥ 0 are the eigenvalues in descending order of R =
√√

ρρ̃
√
ρ and ρ̃ =

(σy ⊗ σy)ρ∗(σy ⊗ σy) is the spin-flipped state with ∗ indicating the conjugate. The

concurrence is zero for any separable state C(ρsep) = 0 and is maximal for any of the Bell

states C(ρBell) = 1. Some closed expressions for the concurrence can be found depending

on the two-qubit density matrix ρ structure. For example, assume that our density matrix

is

ρ =


ρ11 0 0 ρ00,11

0 ρ10 ρ01,10 0
0 ρ∗

01,10 ρ01 0
ρ∗

00,11 0 0 ρ00

 . (2.11)

In this case, the concurrence takes the form

C(ρ) = 2 max (0, |ρ00,11| −
√
ρ01ρ10, |ρ01,10| −

√
ρ00ρ11). (2.12)

This expression highlights the two main mechanisms behind the entanglement between

two qubits: the appearance of antidiagonal terms in the density matrix ρ00,11 and ρ01,10.

Those terms are called coherences and, as the name indicates, create a coherence between

the other elements in the density matrix. In particular, they establish coherence between

the diagonal terms ρii, known as populations. For example, the term ρ00,11 is a coherence

between the population at the ground state ρ00 and the population of the state ρ11, which

indicates the two qubits being in an excited state. Notice how the presence of those terms

is not enough to create entanglement. As we see in Eq. (2.12), some populations are

detrimental to entanglement. In Chapter 3 and Chapter 4, we will present a physical

situation in which the entanglement is governed by ρ00,11. Later in Chapter 5, we will

consider the other scenario, where ρ01,10 is the main contributor to the entanglement.

Alternatively, we can also define the entanglement of formation EF(ρ) [118], a more

general measure of the amount of entanglement in a quantum state. For a two-qubit

system, the entanglement of formation is closely related to the concurrence

EF(ρ) = h

1 +
√

1− C(ρ)2

2

 , (2.13)

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the Shannon entropy function. The

entanglement of formation quantifies how much entanglement (in units of ebits) is necessary,

on average, to prepare such a state. It coincides with the entanglement entropy of the

reduced density matrix S(ρ1) if the original state was pure ρ = |ψ0⟩⟨ψ0|.
Throughout most of the thesis, we will deal with two-qubit systems, allowing us to use
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the concurrence to quantify their entanglement. Alternatively, one can quantify it using

the fidelity with respect to any of the Bell states defined in Eq. (2.8),

F(ρ) = ⟨Bell|ρ|Bell⟩. (2.14)

This measures how close we are to a maximally entangled state rather than quantifying

the amount of entanglement present in the qubit system itself. The threshold F(ρ) > 1/2
is used to confirm that the state is indeed a Bell state. If the state is pure, ρ = |ψ0⟩⟨ψ0|,
the state fidelity reduces to F(|ψ0⟩⟨ψ0|) = |⟨ψ0|Bell⟩|2.
For systems with Nq ≥ 3, quantifying entanglement becomes more difficult [121]. In

such a case, one can rely on the entanglement entropy for bipartite entangled states or use

entanglement witnesses for multipartite entangled states [122]. Not only that, but Bell

states are not ideal resources when considering larger systems. This is because when two

qubits are maximally entangled, a third qubit cannot be entangled with any of them. This

phenomenon is known as the monogamy of entanglement [123] and restricts the amount of

entanglement that can be shared between more than two nodes of a network. One strategy

to achieve more connectivity in the network is not to use maximally entangled states. In

this case of finite but not maximal entanglement, one can share the entanglement to a

larger number of qubits.
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2.2 Continuous-variable Gaussian states

In the previous section, we considered a quantum network described by a qubit multipartite

state |ψ0⟩, formed of physically separated qubits. However, by describing only the quantum

nodes, our quantum network remains incomplete. This is because the isolated qubits

cannot create a pure multipartite state. To create entangled states between the qubits,

they must first exchange information.

We consider a system of n non-interacting bosons. Such a scenario describes a continuous-

variable system characterized by an infinite-dimensional Hilbert space H = H1 ⊗H2 ⊗
. . .⊗Hn. Here, Hk refers to the infinite-dimensional Hilbert space of the k-th mode [124,

125]. Each k-th mode can be described as a quantum harmonic oscillator [124] with

bosonic annihilation âk and creation â†
k operator, which fulfill the bosonic commutator

relations [âk, â
†
k′ ] = δkk′ and [âk, âk′ ] = [â†

k, â
†
k′ ] = 0. They allow us to define the Fock, or

number, basis, which is composed of the eigenstates of the number operator n̂k = â†
kâk,

i.e. n̂k|nk⟩ = nk|nk⟩. The Fock basis allows us to gain further insight into the annihilation

âk and creation â†
k operators. The action of the annihilation operator on the Fock state

is given by âk|nk⟩ = √nk|nk − 1⟩. Thus, its action of the Fock basis is to annihilate an

excitation or photon. On the other hand, the action of the creation operator on the Fock

state is â†
k|nk⟩ =

√
nk + 1|nk + 1⟩, effectively creating a new excitation at the k-th mode.

The annihilation operator allows us to define a state for which we cannot annihilate more

excitations. This is the vacuum state, defined as âk|0⟩ = 0.
Similar to Eq. (2.2), a general pure state |Ψ⟩ describing the n modes can be written in

the Fock basis as

|Ψ⟩ =
∑
n

cn|n⟩. (2.15)

Here, similar to Eq. (2.2), we have defined n = (n1, · · · , nn) and written the basis on a

compact form. Contrary to Eq. (2.2), here nk labels the number of particles one can find

in the k-mode.

Throughout this thesis, we can associate this bosonic excitation with excitations of

the electromagnetic field, i.e. photons. It is not, however, the only bosonic field that

can be quantized. For example, one can quantize the vibrations of atoms or molecules

in a solid material. Such collective vibrations in the atomic lattice are called phonons

and behave in the same way as photons [126]. In Chapter 5, we propose implementing a

remote entanglement protocol using phonons.

Alternatively to the creation and annihilation operator, the k-bosonic mode can be

described by the quadrature field operators, defined as

x̂k = âk + â†
k√

2
, (2.16a)

p̂k = −i âk − â†
k√

2
. (2.16b)
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These operators, in contrast to the discrete spectra of the creation and annihilation

operator, are described by a continuous eigenspectrum, x̂k|xk⟩ = xk|xk⟩ and p̂k|pk⟩ =
pk|pk⟩. These quadrature field operators satisfy the canonical commutation relation

[x̂k, p̂k′ ] = iℏδk,k′ . The noncommuting nature of the quadrature fields imposes a bound on

their uncertainty. This can be seen from the Heisenberg uncertainty principle, which states

that given two arbitrary noncommuting observables Â and B̂ for an arbitrary state, the

product of their variance is given by ⟨(∆Â)2⟩⟨(∆B̂)2⟩ ≥ |⟨[Â, B̂]⟩|2/4, where the variance

for a generic operator is given by

⟨(∆Â)2⟩ = ⟨Â2⟩ − ⟨Â⟩2. (2.17)

For the quadrature fields, we obtain ⟨(∆x̂k)2⟩⟨(∆p̂k)2⟩ ≥ |⟨[x̂k, p̂k]⟩|2/4 = 1/4. As we will

see later, this imposes a bound on the product of variances, but some states allow the

reduction of one variance at the expense of the other.

All physical information about the n-mode bosonic system is contained in the state

described by Eq. (2.15), or the density matrix ρ. Equivalently, one can completely

characterize any state by all possible moments of its quadrature operators ⟨x̂n
k p̂

m
l ⟩ for

any n,m ∈ N. In general, such a complete description of a multi-mode bosonic system

requires an infinite amount of moments to compute due to the infinite dimensions of the

Hilbert space.

However, there is a family of bosonic states, called Gaussian states, that are fully

characterized by their first µ and second order V moments. It is convenient to group all

the quadratures into a single vector [127]

ŝ = (x̂1, p̂1, . . . , x̂n, p̂n)T. (2.18)

This convention allows us to rewrite the canonical commutator relations in a more compact

form

[ŝk, ŝl] = iΩkl, (2.19)

where Ωkl are the matrix elements of the symplectic matrix Ω defined as

Ω =
n⊕

k=1
ω, ω =

(
0 1
−1 0

)
. (2.20)

The first moments are then obtained by taking the expectation value of the vector ŝ

µ = ⟨ŝ⟩, (2.21)

and the second moments are

V = 1
2⟨{ŝ, ŝ

T}⟩ − ⟨ŝ⟩⟨ŝ⟩T, (2.22)
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where we have defined the anticommutator {A,B} = AB +BA. This defines a 2n× 2n
symmetric covariance matrix. The uncertainty relations among the canonical operators

impose a constraint on the covariance matrix,

V + iΩ ≥ 0. (2.23)

Using this definition of the covariance matrix, the purity of a n-mode Gaussian state,

defined as µ = Tr{ρ2}, is easily computed as [128]

µ = 1
2n
√

detV
. (2.24)

Here, the purity ranges between 0 < µ ≤ 1, as expected for a system with an infinite-

dimensional Hilbert space.

2.2.1 Thermal state

Consider a bosonic system in thermal equilibrium at temperature T > 0. For simplicity,

we focus on a single-mode â with frequency ωc. This state is represented by an incoherent

mixture of Fock states [126]

ρth =
∑

n

nn
th

(nth + 1)n+1 |n⟩⟨n|, (2.25)

where nth follows the Planck distribution nth = (eℏωc/kBT − 1)−1, with kB = 1.38 ×
10−23 J K−1 the Boltzmann constant. Given the density matrix, we can compute the

photon mean number and its variance. We obtain ⟨n̂⟩ = nth and (∆n̂)2 = nth(nth + 1).
In general, any normally-ordered moment is given by ⟨(â†)pâq⟩ = q!nq

thδp,q.

Alternatively, we can use the moments of the quadrature operators. For this thermal

state, we obtain

µ̂ = 0, V̂ = 1
2

(
1 + 2nth 0

0 1 + 2nth

)
. (2.26)

From this covariance matrix, one can compute the purity of the thermal state

µ = 1
1 + 2nth

. (2.27)

From this expression, we conclude that at T > 0, a thermal state is always mixed.

Notice how the pure state is only possible when T → 0. In this limit, the mean thermal

occupation also vanishes nth → 0 and the density matrix reduces to ρth = |0⟩⟨0|. This is
the previously defined vacuum state defined by â|0⟩ = 0.
We can also obtain the variances of the quadrature from the covariance matrix. In this

case, we obtain (∆x)2 = (∆p)2 = (1 + 2nth)/2 as well as (∆x)2(∆p)2 = (1 + 2nth)2/4.
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2.2.2 Two-mode squeezed state

Let us now consider a two-mode continuous variable system, described by the bosonic

operators âA and âB. We define the two-mode squeezed (TMS) state |ΨTMS⟩ as the state

produced by the action of the two-mode squeezing operator onto the two-mode vacuum

state |ΨTMS⟩ ≡ S(ξ)|0, 0⟩. Here, we define the two-mode squeezing operator as

Ŝ(ξ) = eχâ†
Aâ†

B−χ∗âAâB , (2.28)

where we have defined ξ = reiϕ, with r as the squeezing strength and ϕ as the squeezing

angle. Note that in the literature, the squeezing operator is sometimes defined with

an opposite sign in the exponents [124, 127]. We recover the same results by changing

χ→ −χ.
Applying the two-mode squeezing operator produces a state that is a superposition of

pairs of Fock states.

|ΨTMS⟩ = 1
cosh (r)

∞∑
n=0

(
eiϕ tanh (r)

)n
|n, n⟩. (2.29)

For small squeezing strength, r ≪ 1, this state can be approximated

|ΨTMS⟩ = |0, 0⟩+ reiϕ|1, 1⟩+O(r2), (2.30)

which contains mostly the vacuum state and a pair of photons in each mode. This

photon-pair source has long been the basis of fiber- and satellite-based quantum commu-

nication [111, 129].

One can assume the phase ϕ of the TMS state to be fixed at a reference value of ϕ = 0,
such that the state is fully characterized by its squeezing strength r. Then, we find that

its first and second moments are given by

µ = 0, V =
(

α γ

γT β

)
. (2.31)

where it is convenient to express the covariance matrix as

α = β = 1
2

(
cosh (2r) 0

0 cosh (2r)

)
, γ = 1

2

(
− sinh (2r) 0

0 sinh (2r)

)
. (2.32)

The purity of the state can be computed from this covariance matrix. As expected, we

obtain µ = 1, since the TMS state is pure by definition. This covariance matrix also gives

us relevant information about the variance of the quadrature operators. In this case, we

obtain

(∆x̂A)2 = (∆p̂A)2 = (∆x̂B)2 = (∆p̂B)2 = (1 + 2nth)/2, (2.33)
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where we have defined an effective thermal population nth = sinh2 (r) and used that

cosh (2r) = 1 + 2 sinh2 (r). The definition of this effective thermal occupation number is

motivated by the fact that the reduced state of each of the modes is actually a thermal

state with that occupation number. To see this, one can look at the TMS state after

tracing out one of the modes. Specifically, if we trace out mode âB and focus on mode âA,

ρA = TrB {|ΨTMS⟩⟨ΨTMS|} ,we obtain

ρA =
∑

n

tanh2n (r)
cosh2 (r)

|n⟩⟨n| =
∑

n

sinh2n (r)
(sinh2 (r) + 1)n+1 |n⟩⟨n|, (2.34)

which is the exact thermal distribution as in Eq. (2.25) with an effective thermal population

nth = sinh2 (r).
The properties of the two-mode squeezed state are best revealed through non-local

observables rather than local ones. We define the non-local quadrature operators as

x̂± = (x̂A±x̂B)/
√

2 and p̂± = (p̂A±p̂B)/
√

2. The variances of those non-local quadratures
are [124]

(∆x̂+)2 = (∆p̂−)2 = e2r/2, (2.35)

(∆x̂−)2 = (∆p̂+)2 = e−2r/2. (2.36)

As we increase the squeezing amplitude, two of the quadratures are amplified, while the

other two are reduced below the uncertainty of the vacuum state. In the strong squeezing

regime, r →∞, the TMS state is the continuous-variable equivalent to the EPR state.

It is a convention to define the squeezing level S to quantify the reduction in uncertainty

relative to the vacuum state

S = −10 log10

[
(∆x̂−)2

(∆x̂−)2
vac

]
= −10 log10

[
e−2r

]
= 20 r

log (10) ≈ 8.67r, (2.37)

Thus, S quantifies the suppression of the minimum quadrature variance in decibels (dB).

2.2.3 Continuous-variable entanglement

We have described the TMS state |ΨTMS⟩ as a state which exhibits a suppression of the

joint or nonlocal quadrature operators. This feature is linked to another feature of the

state, namely the entanglement between the two modes âA and âB.

The entanglement between a bipartite system can be quantified by checking the pos-

itivity of the partially transposed state [121, 130], sometimes called the PPT criterion.

It is a necessary and sufficient condition for the separability of two-mode Gaussian

states [131]. In the case of a two-mode Gaussian state, entanglement can be quantified by

the negativity [132]

N (ρ) = ||ρ̃||1 − 1
2 , (2.38)
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where ρ̃ = ρΓA stands for the partially transposed density matrix with respect to subsystem

A and ||ρ||1 = Tr{
√
ρρ†} is the trace norm of the state.

Our system, which describes a bipartite Gaussian state, can be written in terms of its

covariance matrix V given by Eq. (2.31). In this case, the negativity simplifies to [133,

134]

N (V) = max
[
0, 1− 2ν

4ν

]
, (2.39)

where ν =
√

∆−
√

∆2−4detV
2 and ∆ = detα + detβ− 2detγ. For a pure two-mode squeezed

state, it further reduces to ν = e−2r/2, which leads to the simplified expression for the

negativity

N (V) = er sinh (r). (2.40)

This quantity is unbounded and diverges when r →∞. In practice, the squeezing strength

is always finite, which limits the achievable amount of entanglement.

2.2.4 Hybrid entanglement

There are scenarios where one needs to characterize bipartite (but not limited to two

qubits) mixed states ρ. Unfortunately, most of the methods mentioned until now have

something in common: They either apply only to pure states or they can be evaluated only

for qubit systems or Gaussian states. A more general approach to verifying entanglement

by directly measurable quantities is based on so-called entanglement witnesses. An

observable Ŵ is called an entanglement witness if

W(ρ) = Tr{Ŵρ} < 0←→ ρent., (2.41)

W(ρ) = Tr{Ŵρ} ≥ 0←→ ρsep.. (2.42)

It boils down to finding the appropriate witness Ŵ that detects the entanglement, as for

each entangled state ρ there exists always an entanglement witness to detect it [121].

There are many ways to build such a witness [120]. Motivated by experimental

constraints [see Sec. 3.8.2], we construct the witness using local uncertainty relations [135].

Assume we have a set of n noncommuting observables {Âi}n
i=1 and {B̂i}n

i=1 for subsystem

A and B, respectively. Then, the sum of the variance of those observables is always

bounded from below for any state ρ:

n∑
i=1

(∆Âi)2 ≥ UA;
n∑

i=1
(∆B̂i)2 ≥ UB, (2.43)

where UA,B > 0. We now define a joint measurement between subsystems A and B, that
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is M̂i = Âi ⊗ I + I ⊗ B̂i. The inequality

n∑
i=1

(∆M̂i)2 ≥ UA + UB, (2.44)

holds for any separable state. A violation of this inequality implies entanglement. Therefore,

we can construct a set of entanglement witnesses

W(ρ) =
n∑

i=1
(∆M̂i)2 − UA − UB. (2.45)
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2.3 Waveguide QED

In the previous section, we introduced the Gaussian states of light that carry information

between our quantum nodes. Here, we further discuss how this light propagates and couples

between different nodes. For that, we assume that the electromagnetic field is confined in

a 1D structure. The field of quantum emitters coupled to a confined electromagnetic field

is then called waveguide QED, and it has gained recent popularity due to the experimental

progress in different platforms as well as novel theoretical predictions. [136–139]. Contrary

to photons in free space, the confinement of light in such a structure allows to achieve

higher qubit-photon coupling strengths as well as travelling modes which allow for the

distribution of excitations along the waveguide.

The waveguide can be described by a collection of quantum harmonic oscillators, given

by the following bare Hamiltonian [124]

Ĥph =
n∑

k=1
ℏωk

(
â†

kâk + 1/2
)
. (2.46)

Here, ωk indicates the angular frequency associated with the k-th mode. We assume a

waveguide of length Lz along the z direction and transversal area A along the xy plane.

Then, the electric field inside the waveguide is given by

Ê(z, t) = −i
∑

k

√
ℏωk

2ϵ0

(
u∗

k(z) â†
k(t)− uk(z) âk(t)

)
. (2.47)

Here, uk(z) are the mode eigenfunctions, which form a normalized and orthogonal set of

basis functions [137]. The mode function can be expressed in terms of traveling waves

uk(z) = e
1√
V
eikz, (2.48)

where e the polarization vector with |e| = 1 and we defined the mode volume V = LzA.

Due to the periodic boundary condition we impose on the waveguide, each mode is given

by k ≡ kn = 2π
Lz
n, with n = ±1,±2, ....

We are interested in a regime where the light is strongly confined in the 1D plane. In this

regime, we obtain a linear relation between the angular frequency ωk and the wavenumber

k, ωk ≃ v|k|, where v is the phase velocity of the electromagnetic wave. Other regimes of

light propagation can be studied with a waveguide, such as slow-light [140] and photonic

gaps [141].

To model the waveguide, we assume it extends infinitely along the z direction, Lz →∞.

In this limit, the distance between modes decreases as ∆kn = kn−kn+1 = 2π
Lz
→ 0. We can
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take the continuum limit of our discrete model by replacing sums by integrals according to

∑
n

f(kn)→ 1
∆k

∫
dkf(k) = Lz

2π

∫
dkf(k). (2.49)

Here, it is important to emphasize that real waveguides confine light only in a certain

frequency range |k| ∈ [k0 −∆k, k0 + ∆k]. Therefore, the integrals are always performed

over a finite bandwidth ∆k. Moreover, for a consistent description of our system, it is

also important that we transform our modes of the electromagnetic field

âk →
√

∆kâ(k) =
√
Lz/(2π)â(k). (2.50)

2.3.1 Light-matter interactions

We have now introduced all the relevant ingredients for a quantum network: the nodes that

store the quantum state and photons, which can carry quantum states along waveguides.

However, we must still discuss the interaction between the stationary nodes and the

propagating photons.

Consider a quantum network of Nq qubits, as described in Sec. 2.1. Each qubit in the

network is a two-level system with transition frequency ωq,j. The bare energy of the qubit

system is then given by

Ĥq = ℏ
Nq∑
j=1

ωq,j

2 σ̂z
j . (2.51)

We can assume that the waveguides’s central wavelength λ0 = 2π/k0 is much larger than

the size of the qubits. In this regime, one can perform the so-called long wave-length

approximation [142] in which the electromagnetic field is evaluated at the exact position of

the emitter Ê(z) ≈ Ê(zi), where zi is the position of the i-qubit. In this approximation,

the coupling between the qubits and the electromagnetic field is given by

Ĥint = −
Nq∑
j

d̂jÊ(zj), (2.52)

where the dipole operator d̂j of the j-qubit is given by d̂j = d(σ̂j + σ̂+
j ). Evaluating this

expression using the electric field from the waveguide in Eq. (2.47) we obtain

Ĥint = i
∑
n,j

√
ℏωn

2ϵ0
dj ·

(
u∗

n(zj)â†
nĉj − h.c.

)
= iℏ

∑
k,j

gk,i

(
â†

ke
−iωkzj/v ĉj − âkĉ

†
je

iωkzj/v
)
.

(2.53)

To obtain this expression, we have performed the rotating wave approximation (RWA),

justified when the system’s natural frequencies ωj are much larger than other time scales.
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We have also defined the qubit-photon couplings

gk,i =
√

ωk

2ℏϵ0
|di · ϵ|. (2.54)

In general, we can assume that the coupling strength is approximately around the central

wavenumber of the waveguide and in the following, we set gi ≈ gi,k0 .

A 1D waveguide presents the versatility we need to distribute photons between different

notes of our quantum network. Still, a simple waveguide presents different scenarios in

which photons can propagate. When a qubit emits an excitation into the waveguide, it

can travel to the left or the right. Recent experiments have shown how to engineer a

waveguide in which the excitations in one direction are more favourable than in the other.

These waveguides are called chiral waveguides [143, 144], and they are characterized by

an asymmetric coupling between the left- and right-propagating modes given by gj,L and

gj, R, respectively for the j-th qubit. Taking this into consideration, we get the final

Hamiltonian

Ĥ = Ĥsys + ℏ
∑

d=L,R

∫
B

dω ωâ†
d(ω)âd(ω) + iℏ

∑
d=L,R

∑
j

∫
B

dω gj,d

(
â†

d(ω)ĉje
−iωzj/vd − h.c

)
,

(2.55)

where we have defined a bandwidth interval B ∈ [ω0−∆B, ω0 +∆B] and assumed a generic

Hamiltonian for the nodes of the network Ĥsys and two independent sets of modes âR(ω)
and âL(ω) for the right and left propagating fields, respectively. To model the directionality

of the modes, we take the convention that the phase velocity is vR = −vL ≡ v > 0.

2.3.2 Chiral master equation

The Hamiltonian given by Eq. (2.55) is a complex object. It involves infinite modes from

the waveguide and Nq quantum emitters coupled to it. Solving this Hamiltonian exactly

would require solving the Schrödinger equation. This can be done in specific instances, for

example, if we limit ourselves to a single excitation. In general, this is intractable both

numerically and analytically. However, if one is interested in only the system’s dynamics,

one can obtain an effective description of this system of interest, the network, in terms of

a master equation for the reduced state of the qubits only.

Our goal is to obtain an effective description of the dynamics of the quantum emitters by

tracing out the waveguide. To keep the derivation general, we assume that the waveguide

is coupled to general quantum emitters rather than qubits. As represented in Fig. 2.2,

those quantum emitters are labelled j = 0, 1, · · · , Nq for later convenience, and their

coupling into the waveguide is described by the operators ĉj and ĉ†
j.

We start with the Heisenberg equations of motion for an arbitrary operator Ô of the

whole system, which is given by
˙̂
O = i[Ĥ, Ô] (ℏ = 1). The equation of motion of a mode
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Figure 2.2: Schematic of a chiral waveguide coupled to Nq quantum emitters. The j-th emitter is placed

at position zj and has a left and right mode with decay rates γj,L and γj,R, respectively.

The field operator F̂ (z, t) describes the state of the waveguide. The quantum emitters are

taken as general quantum objects that could represent qubits or resonators. We adopt the

convention that z0 < z1 < · · · < zl < zj < · · · < zNq

at fixed frequency is

˙̂ad(ω, t) = i[Ĥ, âd(ω, t)] = −iωâd(ω, t) +
∑

j

gj,d ĉj(t)e−iωzj/vd . (2.56)

This differential equation can be formally integrated to

âd(ω, t) = âd(ω, 0)e−iωt +
∑

j

gj,d

∫ t

0
dτ ĉj(τ)e−iω(t−τ)e−iωzj/vd . (2.57)

The field operator F̂d(z, t) for the d-th propagating mode is given by

F̂d(z, t) = 1√
2π

∫
B

dω âd(ω, t)eiωz/vd

= f̂in,d(t− z/vd) +
∑

j

gj,d√
2π

∫
B

dω
∫ t

0
dτ eiωz/vde−iω(t−τ)e−iωzj/vd ĉj(τ).

(2.58)

Here, we have defined an input field as

f̂in,d(t) = 1√
2π

∫
B

dω âd(ω, 0)e−iωt. (2.59)

The same equations of motion can be derived for any operator belonging to the system

under consideration Ôs

˙̂
Os(t) = i[Ĥsys, Ôs(t)]−

∑
d=L,R

∑
j

∫
B

dω gj,d

(
â†

d(ω, t)[ĉj, Ôs]e−iωzj/vd − h.c.
)
. (2.60)

This operator differential equation can now be expressed in terms of the field operator
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previously defined

˙̂
Os = −i[Ôs, Ĥsys] +

∑
d=L,R

∑
j

√
2πgj,d

(
F̂ †

d (zj, t)[Ôs, ĉj]− h.c.
)
. (2.61)

This equation tells us that the dynamics of the j-th quantum emitter is governed by its

bare dynamics Ĥsys and is coupled to the others l , j objects in the waveguide mediated

by the field operator F̂ (zl, t). This equation of motion is exact, but it is not very useful

right now. To proceed, we must assume the waveguide has a broad bandwidth ∆B ≫ 1.
This approximation is called the Markov approximation, and it allows us to express the

field operators in terms of delta-correlated functions.

∫ ω0+∆B

ω0−∆B

dω e−iω(t−τ) = 2∆Bsinc(∆B(t− τ))e−iω0(t−τ) ≃ 2πδ(t− τ)e−iω0(t−τ). (2.62)

Under this approximation, the field operators are given by [145]

F̂d(z, t) = f̂in,d(t− z/vd) +
∑

j

√
γj,d Θ(z/vd − zj/vd)ĉj(t− z/vd + zj/vd), (2.63)

where we have introduced the Heaviside step function Θ(t) to take into account the

integral limits, and we have defined gj,d =
√
γj,d/(2π). We can now reintroduce this

expression for the field operator back into our equation of motion for the system operator

˙̂
Os =− i[Ôs, Ĥsys] +

∑
d=L,R

∑
j

√
γj,d

(
f̂ †

in,d(t− zj/vd)[Ôs, ĉj]− h.c.
)

+
∑

d=L,R

∑
j,l

√
γj,dγl,d

(
Θ(zj/vd − zl/vd)ĉ†

l [Ôs, ĉj]eiω0(zl/vd−zj/vd) − h.c.
)
.

(2.64)

where to be consistent with the Markov approximation, we have assumed that the

fast dynamics of the relevant system operators is given by ĉj(t) ≃ e−iω0(t−τ)ĉj(τ). We

can now take the expectation value of such an operator differential equation using

⟨Ôs(t)⟩ = Tr{Ôs(t)ρ}. Here, we assume the waveguide to be sufficiently cold so that we

can neglect thermal excitations, or in other words, we assume the waveguide to be in a

vacuum state ρwg = |0⟩⟨0|. Defining the total state of the system as ρfull = ρsys ⊗ ρwg, we

find f̂in,d(t)ρfull = ρfullf̂
†
in,d(t) = 0. The differential equation for the expectation value of

any system operator is then

⟨ ˙̂
Os⟩ =− i[⟨Ôs⟩, Ĥsys]

+
∑

d=L,R

∑
j,l

√
γj,dγl,d

(
Θ(zj/vd − zl/vd)⟨ĉ†

l [Ôs, ĉj]⟩eiω0(zl/vd−zj/vd) − h.c.
)
.

(2.65)

This equation for the expectation value of any system operator should be the same in

the Heisenberg picture and in the Schrödinger picture, that is ⟨Ôs(t)⟩ = Tr{Ôs(t)ρ} =
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Tr{Ôsρ(t)}. We then obtain an equation of motion for the density matrix ρ(t)

ρ̇(t) =− i[Ĥsys, ρ(t)]
+

∑
d=L,R

∑
j,l

√
γj,dγl,d

(
Θ(zj/vd − zl/vd)[ĉj, ρ(t)ĉ†

l ]eiω0(zl/vd−zj/vd) − h.c.
)
. (2.66)

This is the most general master equation for left and right propagating modes under the

Born-Markovian approximation. We can further simplify this by explicitly evaluating the

left and right modes. In doing so, one must use Θ(0) = 1/2 and we assume zj > zl for

j > l. Then Θ(zj/vd−zl/vd) = 1 for the right-propagating modes and Θ(−zj/v+zl/v) = 1
for the left-propagating (because vL < 0). Taking this into consideration, we obtain a

more compact form for our chiral master equation

ρ̇(t) = −i[Ĥsys + ĤL + ĤR, ρ(t)] +D[L̂L]ρ(t) +D[L̂R]ρ(t). (2.67)

Here, where we have defined D[ĉ]ρ = ĉρĉ†−(ĉ†ĉρ+ρĉ†ĉ)/2. Due to the waveguide-mediated

interactions, this chiral master equation is governed by two collective jump operators

L̂R = ∑
j
√
γj,Re

−ikzj ĉj and L̂L = ∑
j
√
γj,Le

ikzj ĉj and a coherent dipole-dipole interaction

ĤL = i

2
∑
j<l

√
γj,Lγl,L

(
e−ik|zj−zl|ĉ†

l ĉj − h.c
)
, (2.68)

ĤR = i

2
∑
j>l

√
γj,Rγl,R

(
e−ik|zj−zl|ĉ†

l ĉj − h.c
)
. (2.69)

This master equation and its variations will be the main starting point throughout the

thesis. While we have chosen a more physically motivated approach to derive it using the

Heisenberg equations of motion, such master equations can also be derived from a general

state in the Schrödinger picture. We refer the reader to [146] for these derivations.

In Eq. (2.67), we have not yet made any assumption about the coupling strength of

each emitter to the left and right propagating modes. This allows us to study two distinct

regimes.

Bidirectional waveguide Assume the quantum emitters couple at the same rate to the

left- and right-propagating modes, γj,L = γj,R ≡ γj for the j-emitter along the waveguide.

In this case, the coherent dipole-dipole interaction exchange cancels out ĤL + ĤR = 0
and we are left only with the dissipative dynamics. We then obtain a bidirectional master

equation

ρ̇ = −i
[
Ĥsys +

∑
j,l

Jj,lĉ
†
j ĉl, ρ

]
+
∑
j,l

Γj,lD[ĉj, ĉl]ρ, (2.70)

where introduce the notation D[ĉj, ĉl]ρ = ĉlρĉ
†
j− (ĉ†

j ĉlρ+ρĉ†
j ĉl)/2 and defined a decay rate

Γj,l = 2√γjγl cos (k|zj − zl|) and a coupling strength Jj,l = √γlγj sin (k|zj − zl|). This
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bidirectional master equation is also called the Dicke master equation [147] and has been

used to study the phenomena of sub- and superradiant collective decay [148].

Cascaded waveguide Consider the highly asymmetric case when the coupling to the

left-propagating mode is completely negligible γL,j = 0 ∀j such that all the light emitted

into the waveguide only couples to the right-propagating mode γR,j = γj . In this scenario,

the previous master equation reduces to

ρ̇(t) = −i[Ĥsys + ĤR, ρ(t)] +D[L̂R]ρ(t). (2.71)

To be consistent with the usual conventions, we relabel the collective jump operators as

L̂R ≡ L̂ and the coherent interaction as ĤR ≡ Ĥcasc. As we will see in the other chapters,

in the cascaded setting, the propagating phase is unimportant and only amounts to a

local rotation.

More insight can be gained into this cascaded master equation if we rewrite this equation

as

ρ̇(t) = −i[Ĥsys, ρ(t)] +
∑

j

γj D[ĉj]ρ(t)︸        ︷︷        ︸
local decay

+
∑
j>l

√
γjγl

(
[ĉj, ρ(t)ĉ†

l ]− [ĉ†
j, ĉlρ(t)]︸                            ︷︷                            ︸

cascaded interaction

)
. (2.72)

As an explicit example for the cascaded interaction, consider two harmonic oscillators âA

and âB described by Eq. (2.72), such that âA is on the left of âB. The two oscillators

are described by its individual frequency ωA and ωB, such that the system Hamiltonian

is Ĥsys = ωAâ
†
AâA + ωBâ

†
BâB, and decay into the waveguide at rate κA and κB. From

our cascaded master equation, we can find the equation of motion for the first moments

⟨ân(t)⟩ = Tr{ânρ(t)} for n = A,B. In this case, we obtain

d
dt

(
⟨âA⟩
⟨âB⟩

)
=
(
−iωA − κA/2 0
−√κAκB −iωB − κB/2

)(
⟨âA⟩
⟨âB⟩

)
. (2.73)

Observe how the dynamics of the first harmonic oscillator is unaffected by the presence of

the second one. On the other hand, the second oscillator couples to the first, and any

excitation will be transferred.

Throughout this thesis, most of the analysis considers a unidirectional waveguide, which

allows us to use the cascaded master equation in Eq. (2.72). This assumption os two-fold:

On the one hand, it simplifies the theoretical analysis, as previously done in [149–151],

and on the other hand, such conditions can be realized by using circulators [152–157],

chiral waveguides [143], or other schemes for directional coupling [79, 144, 158–161].
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Remark on many waveguides The theoretical description of many independent linear

waveguides can be done by considering now n independent waveguides. Its interaction

Hamiltonian Eq. (2.55) is then extended to accommodate n independent modes b̂d,n(ω)
with [b̂d,n(ω), b̂†

d′,n′(ω′)] = δd,d′δn,n′δ(ω − ω′)). Equivalently, we define n independent field

operators F̂n(z, t) to which any system operator can couple via

˙̂
Os = −i[Ôs, Ĥsys] +

∑
n

∑
d=L,R

∑
j

√
2πgn,j,d

(
F̂ †

n,d(zj, t)[Ôs, ĉj]− h.c.
)
. (2.74)

One then finds similar results as Eq. (2.67) for a chiral master equation, considering other

equivalent dissipation processes for the n independent decay channels.

2.3.3 Semi-infinite waveguide

A 1D waveguide is characterized by its travelling modes along the z direction. However,

this is only the case when open boundary conditions are present. If the boundary conditions

are changed, the 1D waveguide also changes its mode structure. One case would be if

we put a mirror on the edge of the waveguide. In this case, travelling modes would

not be possible anymore, and the mode functions would be similar to a 1D cavity with

standing waves. Another case, which we motivate physically in Chapter 5, is the case of a

phononic waveguide. In this case, the phononic excitations are maximal on the edge of

the waveguide, also allowing for standing waves as mode functions. Specifically, in a 1D

phononic waveguide, the mode functions are

uk(z) = ϵ

√
2
V

cos (kz), (2.75)

where V = AL and kn = πn
L
, with n = 0, 1, 2, 3... for a closed boundary conditions.

Assume the waveguide has a linear dispersion relation ωk = v|k|. The electric field then

reads as

Ê(z) = −iϵ
∑

n

√
ℏωn

ϵ0V
cos (knz)(â†

n − h.c.). (2.76)

Going to a continuum model of the waveguide, its interaction with a set of quantum

emitters is then given by [162]

Ĥint = iℏ
∑

j

∫
B
[a†(ω)ĉj(gj,Re

−iωzj/v + gj,Le
iωzj/v)− h.c.], (2.77)

where we have assumed asymmetric couplings into the waveguide, γL , γR. The main

difference between an infinite bidirectional waveguide and a semi-infinite waveguide is

that now we only have a single stationary mode a(ω), rather than two modes aL(ω) and

aR(ω).
As before, we find the Heisenberg equations of motion for the field â(ω, t) and for any
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system operator Ôs. We obtain a similar equation as in Eq. (2.61) but this time with a

different field operator

F̂ (z, t) = f̂in(t− z/v) +
∑

j,d=L,R

[√
γj,dΘ(z/v − zj/vd)ĉj(t− z/v + zj/vd)

]
. (2.78)

Notice the extra term, which was not present in the bidirectional waveguide. As we can

see, this term accounts for the boundary conditions and the reflection of the left mode.

˙̂
Os = −i[Ôs, Ĥsys] +

∑
j

[(√
γj,RF̂

†(zj, t) + √γj,LF̂
†(−zj, t)

)
[Ôs, ĉj]− h.c.

]
. (2.79)

To proceed and simplify our results, we assume the semi-infinite waveguide behaves as a

bidirectional waveguide γj,R = γj,L ≡ γj. Then, following a similar derivation as in the

case of the chiral master equation, we obtain

ρ̇ = −i
[
Ĥsys +

∑
j,l

Jj,lĉ
†
j ĉl, ρ

]
+
∑
j,l

Γj,lD[ĉj, ĉl]ρ. (2.80)

Notice the similar structure as to the bidirectional master equation Eq. (2.70), but now

with slightly different decay rates Γj,l = 2√γjγl[cos (k(zj + zl)) + cos (k|zj − zl|)] and
coupling stregth Jj,l = √

γjγl[sin (k(zj + zl)) + sin (k|zj − zl|)]. Notice that the main

difference between a bidirectional waveguide and this semi-infinite waveguide comes from

our position-dependent decay rates. Similar position-dependent setups with mirrors have

been studied recently [163].

In the specific case when we place the emitters at distances commensurate with the

waveguide wavelength such that k|zj ± zl| = 2πn (for n ∈ Z), the master equation

describing a semi-infinite waveguide reduces to

ρ̇ = −i[Ĥsys, ρ] + 4D[L̂]ρ. (2.81)

where L̂ = ∑
i
√
γiĉ

†
i . An interesting remark is that even in this symmetric limit, we

do not recover the same master equation as for the symmetric bidirectional waveguide;

instead, we obtain twice the coupling into the waveguide.
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2.4 Photon sources

The effective description of our quantum network in terms of a master equation is given

by Eq. (2.67) for a chiral master equation. This allows us to model a set of quantum

emitters that interact via waveguide-mediated interactions. For convenience, we express it

in terms of general system operators ĉ and ĉ†. The reason for this is that Eq. (2.67) can

be used to model not only qubits but also resonators or cavities, as demonstrated in the

specific example of two harmonic oscillators coupled using Eq. (2.72). However, we have

assumed the waveguide to be in a vacuum state, so currently, there are no photons in

the system that can carry information between the qubits. While we could introduce the

photons by locally driving each qubit [149, 150], here we take a different approach. We

consider some of the emitters in our network to be not qubits but rather resonators. We

then obtain a system that has both the continuous-variable and discrete-variable degrees

of freedom. We then use the photon emitted by these resonators to drive the qubits along

the waveguide. It is the interaction with these photons that creates our qubit quantum

network. Specifically for the main parts in Chapter 3, Chapter 4, and Chapter 5, we are

interested in two types of photonic fields: a thermal state and a two-mode squeezing state.

2.4.1 Thermal cavity

The first source of photons is a thermal cavity. This would be a physical realization of

Eq. (2.25) for a single-mode resonator in a hot environment represented by Fig. 2.3. This

scenario can be modeled using the theory described in Sec. 2.3, with the modification

that the waveguide is no longer cold; rather, we have thermal excitations nth. The master

equation of this resonator in a hot environment reads

ρ̇ = −i[ωcâ
†â, ρ] + (nth + 1)κD[â]ρ+ nthκD[â†]ρ, (2.82)

where we have assumed a coupling rate κ between the resonator and the waveguide. The

steady state of Eq. (2.82) is the thermal distribution given in Eq. (2.25).

We can use Eq. (2.82) to derive the equation of motion for the expectation values of

the field ⟨â⟩ and the photon number ⟨n̂⟩ = ⟨â†â⟩ [126]

d
dt⟨â⟩ = −iωc⟨â⟩ −

κ

2 ⟨â⟩, (2.83a)

d
dt⟨n̂⟩ = κ⟨n̂⟩+ κnth. (2.83b)

The stationary solution is given by ⟨â⟩ss = 0 and ⟨n̂⟩ss = nth, confirming the results

from Sec. 2.2.1. We can use the equations of motion previously derived to find the

equation of motion for the two-time correlations. For that, we use the quantum regression

theorem [126]. Assume a set of operator expectation values ⟨Ĝi⟩ which evolve according
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Figure 2.3: Schematic of a cavity of frequency ω coupled to a hot waveguide at temperature T > 0 at

rate κ. The state of the cavity ρth is given by Eq. (2.25).

to the general expression
d
dt⟨Ĝi⟩ =

∑
j

Mi,j⟨Ĝj⟩. (2.84)

Then, the stationary two-time correlation function obeys the same equation

d
dt⟨Ĝi(t)Ĝk(0)⟩ =

∑
j

Mi,j⟨Ĝj(t)Ĝk(0)⟩. (2.85)

with initial conditions given by the expectation values ⟨Ĝj(0)Ĝk(0)⟩. For a thermal cavity,

the stationary two-time correlation function is given by

⟨â†(τ)â(0)⟩ = nthe
(iωc−κ/2)|τ |. (2.86)

Observe how when τ = 0, we recover ⟨n̂⟩ = nth. Moreover, the imaginary component

vanishes in a rotating frame with respect to the mode â at ωc. Given the two-time

correlation, we can define the output spectrum of the field as

Iâ†â(ω) = κ
∫ ∞

0
dτ⟨â†(τ)â(0)⟩e−iωτ . (2.87)

We obtain

Iâ†â(ω) = 2κnth

κ+ 2i(ω − ωc)
= 2κ2nth

κ2 + 4(ω − ωc)2 − i
4κnth(ω − ωc)
κ2 + 4(ω − ωc)2 , (2.88)

where we have decomposed the expression into real and imaginary parts. The spectrum

is governed by a Lorentzian function centered around ωc and width κ. Similar to the

two-time correlation function, at ω = ωc, the spectrum is governed by the real part only.
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In Chapter 5, we take an extension of such a master equation for a two-sided cavity,

with one side coupled to this hot waveguide and the other connected to a cold waveguide

in its vacuum state. We will see how to tune the coupling rates to the waveguides to

generate non-trivial states.

2.4.2 Nondegenerate parametric amplifier

In Eq. (2.28), we have discussed the generation of a two-mode squeezed state via unitary

dynamics. In practice, the two-mode squeezed Hamiltonian appears naturally when

putting energy into a nonlinear medium. Such a process relies on a χ(2)-type process

between three bosonic modes [99],

Ĥχ = iχ(â†
Aâ

†
Bâ0 − âAâBâ

†
0), (2.89)

where the nonlinearity χ is small, but one of the modes, â0, is strongly pumped. This

process is called three-wave mixing, and while there are other processes, such as four-wave

mixing, they produce similar dynamics. Under the strong pump assumption, the pumped

mode can be treated as a classical field, ⟨â0⟩ → α0 ∈ C, and Ĥχ reduces to a two-mode

squeezing interaction. This process becomes most effective when the resonance condition

ωA +ωB ≈ ω0 between the three modes is fulfilled (see Fig. 2.4) and is frequently employed

in nonlinear optical crystals to produce entangled photon pairs. Similar interactions

also occur in superconducting circuits, where driven Josephson junctions, specifically

nondegenerate parametric amplifiers, generate two-mode squeezed microwave beams and

many other devices. An alternative way to generate a two-mode squeezed state is to

consider two single-mode squeezed states with opposite phases and combine them on a

balanced beam splitter [164].

One can compare a parametric amplifier and a laser [99]. Both systems exhibit threshold

behavior, adjusted by the input energy, the pump, of the system, as well as to compensate

for decay processes. Below the threshold, both systems exhibit a fluctuating field with

zero mean amplitude, while above the threshold, both systems have a nonzero mean

amplitude. There is, however, a crucial difference which makes the parametric amplifier

interesting for us: its fluctuations are correlated, both below and above the threshold,

exhibiting nonclassical behavior, as we have described in Eq. (2.35). We are primarily

interested in the regime below threshold, as described by Eq. (2.28). We can model this

physical process by assuming two 1D waveguides accommodating the emitted photons.

In this case, the parametrically generated pairs of photons in modes âA and âB decay

into the waveguides with rates κA and κB, respectively. Using the formalism derived in

Sec. 2.3, its dynamics are described by the master equation

ρ̇ = −i
[
ĤTMS, ρ

]
+

∑
n=A,B

κnD[ân]ρ, (2.90)
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Figure 2.4: Schematic of a nondegenerate parametric amplifier coupled to two waveguides. The nonlinear

medium emits photons of mode âA and âB at rate κA and κB , respectively.

where

ĤTMS = i

√
κAκBϵ

2
(
â†

Aâ
†
B − âAâB

)
, (2.91)

and ϵ ∼ χ|α0| is the dimensionless pump parameter, which we can assume to be real. The

value of ϵ = 1 marks the onset of the parametric instability, beyond which our linearized

description of the amplifier is no longer valid. Therefore, we restrict the pumping parameter

to ϵ ∈ [0, 1).
Here, to understand the nondegenerate parametric amplifier, we need to solve the

dynamics of the two modes using its quantum Langevin equations [145, 165]. These

equations read

˙̂aA = −
(
κA

2

)
âA +

√
κAκBϵ

2 â†
B −
√
κAf̂in,A, (2.92)

˙̂aB = −
(
κB

2

)
âB +

√
κAκBϵ

2 â†
A −
√
κB f̂in,B, (2.93)

where f̂in,n are independent white noise operators satisfying [f̂in,n(t), f̂ †
in,n′(t′)] = δnn′δ(t−t′).

By defining the vector with operators v̂ = (âA, â
†
B, âB, â

†
A)⊤ and the white noise operator

vector f̂ = (√κAf̂in,A,
√
κB f̂

†
in,B,
√
κB f̂in,B,

√
κAf̂

†
in,A)⊤, these equations can be written

in a compact form as
d
dt v̂ =Mv̂ − f̂ , (2.94)

where the matrixM is given by

M =


−κA

2
ϵ

√
κAκB

2 0 0
ϵ

√
κAκB

2 −κB

2 0 0
0 0 −κB

2
ϵ

√
κAκB

2
0 0 ϵ

√
κAκB

2 −κA

2

 . (2.95)
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For long times, t→∞, the formal solution of Eq. (2.94) is

v̂(t) = −
∫ t

−∞
dτ eM(t−τ)f̂(τ). (2.96)

From this result, we obtain the full covariance matrix in steady state, V0 = ⟨v̂v̂†⟩(t→∞),
as

V0 =
∫ ∞

0
ds eMsReM†s, (2.97)

where R = diag(κA, 0, κB, 0) is a diagonal matrix. Since M is block-diagonal, the

individual entries of the covariance matrix can be solved analytically. We obtain

nph,n = ⟨â†
nân⟩ = (κ̄− κn)ϵ2

(1− ϵ2)κ̄ , (2.98)

mph = ⟨âAâB⟩ =
√
κAκBϵ

(1− ϵ2)κ̄ , (2.99)

where κ̄ = κA + κB. All other expectation values vanish, i.e., ⟨â†
AâB⟩ = ⟨â2

n⟩ = 0. Similar

to the thermal cavity, we can now use the expectation value together with the quantum

regression theorem to evaluate the two-time correlation functions. Assuming symmetric

decay rates into the waveguides κA = κB ≡ κ, they are given by

⟨â†
n(τ)ân(0)⟩ = ϵe−κ/2τ (ϵ cosh (ϵκτ/2) + sinh (ϵκτ/2))

2(1− ϵ2) , (2.100a)

⟨âA(τ)âB(0)⟩ = ϵe−κ/2τ (cosh (ϵκτ/2) + ϵ sinh (ϵκτ/2))
2(1− ϵ2) . (2.100b)

As before, we can use those expressions to evaluate the output spectrum for the photon

occupation number Iâ†
nân

(ω) and for the photon correlations IâAâB
(ω). They are given by

Iâ†
nân

(ω) = κ
2ϵ2(κ+ iω)

(ϵ2 − 1)(κ2(ϵ2 − 1)− 4iκω + 4ω2) , (2.101a)

IâAâB
(ω) = κ

ϵ(κ+ ϵ2κ+ 2iω)
(ϵ2 − 1)(κ2(ϵ2 − 1)− 4iκω + 4ω2) . (2.101b)

In general, we observe that the real part of those spectrum is given by

2Re{Iâ†
nân

(ω)} = ϵ [Γ−(ω)− Γ+(ω)] , (2.102)

and

IâAâB
(ω) + IâB âA

(−ω) = ϵ [Γ−(ω) + Γ+(ω)] , (2.103)
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where

Γ±(ω) = κ2

κ2(1± ϵ)2 + 4ω2 (2.104)

are Lorentzian functions. While the expressions for the output spectrum are complex

to analyze, we observe that when ω = 0, we can relate those with the intracavity field

occupation number nph,n and photon correlation mph. Specifically, we find that

Iâ†
nân

(0) = 4nph(1 + 2nph), (2.105a)

IâAâB
(0) = 2mph

√
1 + (4mph)2, (2.105b)

where for the symmetric case nph ≡ nph,n = ϵ2

2(1−ϵ2) and mph = ϵ
2(1−ϵ2) .

In Sec. 2.2.2, we defined the squeezing level S, which quantifies the uncertainty reduction

with respect to the vacuum state. First, we can express the squeezing strength r defined

in Eq. (2.28) in terms of the intracavity fields as [166]

r = 1 + 2(nph −mph) = 1
1 + ϵ

. (2.106)

In the asymptotic limit when ϵ→ 1, the intracavity squeezing strength is limited to r →
1/2. This gives us the well-known bound for the intracavity squeezing of S ≈ 3 dB [124].

As we will see in Sec. 3.3, the output fields of the parametric amplifier, contrary to the

intracavity fields, are not bounded, and we can achieve perfect squeezing [165].
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2.5 Phase space representations

Through the first sections of this chapter, we have developed a formalism to obtain an

adequate description for quantum emitters coupled to a waveguide in terms of a Lindblad

master equation, for example, Eq. (2.70) or Eq. (2.71). We consider only systems described

by a continuous variable, as we did in Sec. 2.4, such as harmonic or anharmonic oscillators,

degenerate and nondegenerate parametric amplifiers, among others, such that they are

described by a set of bosonic operators ân that fulfil the usual commutation relation

[ân, â
†
m] = δn,m. Such a system can be described by a Lindblad master equation

ρ̇(t) = Lphρ(t). (2.107)

While it is not generally possible to solve for ρ(t), we have seen in Sec. 2.2 that if the

continuous variables belong to the set of Gaussian states, they are fully characterized by

their first µ and second moments V . For more general states, one can derive the equations

of motion for the populations and coherences by expressing the density matrix in a Fock

basis. For simplicity, we consider a single mode â and write the density matrix as

ρ(t) =
∞∑

n,m=0
ρn,m(t)|n⟩⟨m|, (2.108)

with ρn,m(t) ≡ ⟨n|ρ(t)|m⟩. Even for this single-mode example, solving the equations of

motion might not be easy. It is, therefore, necessary to introduce an alternative way of

solving this master equation and obtaining operator averages and correlation functions [126,

167].

2.5.1 P representation

We note that the Fock basis is not the only way to represent our density matrix. Alterna-

tively, we introduce the Glauber-Sudarshan P representation [168, 169], which is diagonal

expansion in terms of coherent states

ρ(t) =
∫

d2αP (α, α∗, t)|α⟩⟨α|. (2.109)

By expressing the density matrix in this new basis, we can express any state with a

quasi-probability distribution P (α, α∗, t). This way, we obtain a classical description of

the density matrix, which we can use to obtain some operator expectation values from our

system. Assume a normally ordered operator of the form (a†)nam. From a density matrix

ρ(t), the operator expectation value is ⟨(a†)nam⟩(t) = Tr{(a†)namρ(t)}. Equivalently, our
P representation allows us to find ⟨(a†)nam⟩(t) =

∫
d2α (α∗)nαmP (α, α∗, t). Then, the P

representation allows us to obtain the expectation values of normally ordered operators in

terms of integrals over the complex amplitude α.
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Back to our master equation Eq. (2.107), in this new basis, we can find that the action

of an operator acting on this density matrix is mapped to [126, 170]

âρ −→ αP (α, α∗, t), (2.110a)

â†ρ −→
[
α∗ − ∂

∂α

]
P (α, α∗, t), (2.110b)

ρâ −→
[
α− ∂

∂α∗

]
P (α, α∗, t), (2.110c)

ρâ† −→ α∗ P (α, α∗, t). (2.110d)

Under this correspondence, any operator master equation transforms into a partially

differential equation for a quasi-probability distribution P (α, α∗, t) which represents ρ(t)

ρ̇(t) = Lphρ(t) −→ Ṗ (α, α∗, t) = L(α, α∗)P (α, α∗, t). (2.111)

This mapping is exact and completely reproduces the dynamics of the density matrix.

It can, however, lead to very complicated nonlinear partial differential equations when

the original Lindblad has nonlinear operators. This is because, in this case, the operator

mapping would produce higher-order partial differential equations such as ∂3/(∂α3) among

others. Neglecting those higher-order contributions is the basis of the discrete truncated

Wigner approximation [171], which has shown to be an accurate approximation when

the system’s size is large [172]. When this partial differential equation doesn’t produce

higher-order terms, or because we can neglect them as an approximation, the partial

differential equation takes the form of a Fokker-Planck equation [173]

∂P (x, t)
∂t

=

−
2∑

i=1

∂

∂xi

Ai(x) + 1
2

2∑
i,j=1

∂2

∂xi∂xj

Dij(x)
︸                                                   ︷︷                                                   ︸

L(α,α∗)

P (x, t), (2.112)

with initial conditions P (x0, 0) and where we have defined x = (α, α∗). The first term

of the equation is called the drift term, and it governs the evolution for the expectation

value of an observable
d
dt⟨xi⟩ = ⟨Ai(x)⟩. (2.113)

The second term is called the diffusion term, and it governs the equation of motion for

the second-order moments

d
dt⟨xixj⟩ = ⟨xiAj(x)⟩+ ⟨xjAi(x)⟩+ 1

2⟨Dij +Dji⟩. (2.114)

Extending this formalism to ân modes is trivial and only implies the extension of the
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dimension of the phase-space representation. For this, the summation limits in Eq. (2.112)

extend to 2n, and we define a vector containing all possible modes x = (α1, α
∗
1, · · · , αn, α

∗
n).

Stochastic differential equations The Fokker-Planck equation describes the dynamics

of a quasi-probability distribution in phase space. In the case where D(x) is positive, this

probability distribution can be numerically sampled by a set of Itô stochastic differential

equations [170, 174].

dx = A(x)dt+ B(x)dW (t), (2.115)

where again we use the vector x = (α1, α
∗
1, · · · , αn, α

∗
n) and we have defined the ma-

trix B(xt) as the square root of the diffusion matrix D(x) = B(x)B(x)T. We have

defined A(x) is a column vector of the drifts A(x) = (A1(x), · · · , A2n(x))T. Lastly,

we have defined a vector of independent infinitesimal Wiener increments dW (t) =
(dW1(t), · · · , dW2n(t))T. Each Wiener increment is given by

dW (t) ≡ W (t+ dt)−W (t) = dtξ(t), (2.116)

where ξ(t) is a rapidly varying random process, sometimes referred to as white noise. This

random process is a Gaussian process characterized by the two moments

⟨ξ(t)⟩ = 0, (2.117a)

⟨ξ(t)ξ(t′)⟩ = δ(t− t′). (2.117b)

Consequently, this translates to the the Wiener increment, which is also a stochastic

process with zero ⟨dWj(t)⟩ = 0 and variance ⟨dWi(t)dWj(t)⟩ = dtδi,j.

Harmonic oscillator in a thermal environment Here, we solve a specific example,

motivated in Chapter 5, of a single a single-mode harmonic oscillator with natural

frequency ωc in contact with an environment at temperature T > 0 and decay rate κ.

The Lindblad master equation describing such a process is governed by Eq. (2.82). The

corresponding Fokker-Planck equation is then described by

L(α, α∗) =
[
∂

∂α

(
iωc + κ

2

)
α + ∂

∂α∗

(
−iωc + κ

2

)
α∗ + κnth

∂2

∂α∂α∗

]
. (2.118)

The steady-state solution of such a Fokker-Planck equation can be obtained by solving for

Ṗ (α, α∗) = 0, which in this case gives

Pss(α, α∗) = 1
πnth

e−|α|2/nth . (2.119)



36 Chapter 2 Theoretical foundations of quantum networks

This steady-state distribution of the P representation can be used to calculate the steady-

state expectation value of any normally ordered function f(â, â†)

⟨f(â, â†)⟩ = 1
πnth

∫
d2αf(α, α∗)e−|α|2/nth . (2.120)

Alternatively, this oscillator in contact with a thermal field can be described by a complex-

valued Itô stochastic differential equation [126]

dα = −κ2αdt+ √κnthdW (t), (2.121)

with complex Wiener increment dW (t) = dW1(t)+idW2(t)√
2 , where dWi(t) for j = 1, 2 are two

independent, real-valued Wiener increments. This stochastic differential equation is also

known as the complex-valued Ornstein-Uhlenbeck process. To obtain expectation values

from Eq. (2.121), we formally integrate it to obtain

α(t) = α0e
−κ/2t + √κnth

∫ t

0
dτe−κ(t−τ)/2ξ(τ). (2.122)

Here, we have defined a constant initial condition α0 = α(t = 0) and used dW (t)
dt

= ξ(t), as
defined in Eq. (2.116). This expression allows us to, for example, obtain the expectation

value of its first moment

⟨α(t)⟩ = α0e
−κ/2t. (2.123)

Observe how first-order moments are entirely governed by the initial conditions and

that, as time goes on, they eventually decay to zero ⟨α(t→∞)⟩ → 0. We can also use

Eq. (2.122) to calculate the two-time correlation function. In our case, it reads as

⟨α∗(t1)α(t2)⟩ =|α0|2e−κ(t1+t2)/2

+ κnth

∫ t1

0
dt′1

∫ t2

0
dt′2e−κ/2(t1−t′

1)e−κ/2(t2−t′
2)⟨ξ(t′1)ξ(t′2)⟩.

(2.124)

We can then look at this expression evaluated at the steady state t1,2 → ∞. Defining

τ = t1 − t2, it reduces to
⟨α∗(τ)α(0)⟩ = nthe

−κ|τ |/2. (2.125)

Observe how this correlation function matches the expression given by Eq. (2.86). This

emphasizes that the P representation of the field allows us to find any normally ordered

expectation value that we would normally compute using the quantum regression theorem.

Our expansion in Eq. (2.109) in terms of coherent states is not unique. There are other

representations, such as the Huisimi Q-distribution [175], which is defined in terms of

the anti-normal ordering of the operators, and the Wigner representation [176], which is

defined in terms of the symmetric, or Weyl, order of the operators. Here, our focus on the

P representation of the field is two-fold: On one hand, we will see later that the application
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of the P representation on our systems will produce an exact Fokker-Planck equation (by

that, we mean without any higher-order partial derivative terms), thus allowing us to

obtain an exact mapping. On the other hand, in quantum optics, the P representation

has been used to classify the states: the P representation makes it natural to highlight

the differences between classical and nonclassical fields. This is because more classical

fields, like a coherent or a thermal state, admit a stochastic description governed by the

quasi-probability P (α, α∗), while nonclassical fields such as Fock or squeezed states do not

admit such a description, as in this case the quasi-probability P (α, α∗) becomes negative.

In these cases, the Fokker-Planck equation does not possess a positive semifinite diffusion

matrix D(x).

2.5.2 Positive-P representation

To deal with such a problem, Drummond and Gardiner [177] introduced the positive-P

representation

ρ =
∫

dα2
∫

dβ2 |α⟩⟨β∗|
⟨β∗|α⟩

P (α, β), (2.126)

with α and β denote two independent complex variables. This representation of the field

can always be shown to be positive, defining a probability distribution rather than a

quasi-probability distribution, such as in the case of the P representation. This comes

at the expense of doubling the degrees of freedom; now, for each single-mode ân, we

have associated two independent phase-space variables (four real dimensions). The

complex-conjugate relation is only fulfilled at the level of averages ⟨β⟩ = ⟨α⟩∗.
The phase-space dynamics in this representation are still represented by the Fokker-

Planck equation Eq. (2.112), considering the extended dimensions. As with the P rep-

resentation, when the positive-P representation doesn’t involve higher-order terms, the

master equation Eq. (2.107) can be mapped into a Fokker-Planck equation similar to

Eq. (2.112), with the corresponding extended phase-space. If we consider a system of ân

modes, in our positive-P representation, the Fokker-Planck equation describes a dynamical

equation for x = (α1, β1, · · · , αn, βn).
As the positivity of the positive-P representation is guaranteed, this allows us to find

a Fokker-Planck equation as Eq. (2.112), and its corresponding stochastic differential

equation, Eq. (2.115), to even entangled states. One could, in general, even use the

positive-P to represent states for which the P representation would be enough, such as the

thermal states. However, the positive-P representation also comes with drawbacks. By

introducing a new independent variable β and expanding our phase space, the trajectories

can now explore new unphysical areas. In many cases, this is then translated into

spikes [178] or divergences for the trajectories. This has been seen in highly nonlinear

systems and two-photon damping processes [99].
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Two-mode squeezed state For a specific example of the positive-P representation, we

focus on generating two-mode squeezed states, described in Sec. 2.2.2 and motivated by

Chapter 4, where we will use these results. Starting from Eq. (2.90), we map the two

modes âA and âB into positive-P distribution P(αA, βA, αB, βB), governed by Eq. (2.112),

with a drift matrix given by

A = 1
2


−κA 0 0 √

κAκBϵ

0 −κB
√
κAκBϵ 0

0 √
κAκBϵ −κA 0

√
κAκBϵ 0 0 −κB

 , (2.127)

and the diffusion matrix is given by

D =
√
κAκBϵ

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (2.128)

We can then map this Fokker-Planck equation into a set of stochastic differential equations

following Eq. (2.115) by decomposing the diffusion matrix as D = BBT. In our case, we

find this matrix is given by

B =

√√
κAκBϵ/2

2


1 + i 1− i 0 0
1− i 1 + i 0 0

0 0 1 + i 1− i
0 0 1− i 1 + i

 . (2.129)

We then obtain a set of coupled stochastic differential equations. For the symmetric case

κA = κB = κ, they are given by

dαA = [−αA + ϵβB]κ/2dt+
√
ϵκ/2(1 + i)dWαA

(t) + (1− i)dWβA
(t)

2 , (2.130a)

dβA = [−βA + ϵαB]κ/2dt+
√
ϵκ/2(1− i)dWαA

(t) + (1 + i)dWβA
(t)

2 , (2.130b)

dαB = [−αB + ϵβA]κ/2dt+
√
ϵκ/2(1 + i)dWαB

(t) + (1− i)dWβB
(t)

2 , (2.130c)

dβB = [−βB + ϵαA]κ/2dt+
√
ϵκ/2(1− i)dWαB

(t) + (1 + i)dWβB
(t)

2 , (2.130d)

where the Wigner increments fulfil ⟨dWi(t)dWj(t)⟩ = dtδij, for i, j ∈ (αA, βA, αB, αB).
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2.5.3 Stochastic master equation

At the beginning of this section, we focus only on the continuous-variable systems, allowing

us to derive an equivalent of the Fokker-Planck formalism for the master equation. In

a more general setting, our system is described by a hybrid master equation, where we

combine both continuous-variable and discrete-variable systems. This scenario constantly

arises throughout the rest of the thesis, such as in Eq. (3.1), Eq. (4.1), and Eq. (5.1).

They all have the following structure

ρ̇ = (L0 + Lint) ρ = (Lph + Lq + Lint) ρ, (2.131)

with a cascaded interaction between the continuous and the discrete systems

Lintρ =
∑

n

√
κnγn

(
[ânρ, σ̂

+
n ] + [σ̂−

n , ρâ
†
n]
)
, (2.132)

with initial conditions ρ(0) = ρph(0)⊗ρq(0). We can now map this master master equation

into an equivalent Fokker-Planck equation. We start by noting that the initial state can

be written as [179]

ρ(0) =
∫

d2αP (α, α∗, 0)|α⟩⟨α| ⊗ ρq(0), (2.133)

where we have assumed a single-mode scenario with a mode â for simplicity. From

Eq. (2.132), we can see that, due to the cascaded coupling between continuous-variable

and discrete-variable, we always have â acting on the left of ρ while â† acting on the right

of ρ. This means that the discrete-variable system along the waveguide does not affect

their dynamics. Therefore, their dynamics remain Gaussian and can be simulated with

the Fokker-Planck equation given by Eq. (2.112) or its equivalent stochastic differential

equations Eq. (2.115). That is, with the initial representation Eq. (2.133), the operators

{â, â†} can be replaced with complex number {α, α∗}. This result is a crucial aspect of the

derivation and something only possible with cascaded systems. The full system density

operator then can be expressed as

ρ(t) =
∫

d2αP (α, α∗, t)|α⟩⟨α| ⊗ ρq(α, α∗, t). (2.134)

One can then obtain the reduced density operator ρq(t) by tracing out the bosonic degrees

of freedom,

ρq(t) =
∫

d2αP (α, α∗, t)ρq(α, α∗, t). (2.135)

When we sample the P distribution in terms of stochastic trajectories α, the integral in

Eq. (2.135) is instead replaced over an average over a large but finite number of trajectories.
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For a given trajectory, the density matrix ρq is updated according to

ρ̇q(α,α∗, t) =
(
Lq +

∑
n

Ln[αn, α
∗
n]
)
ρq(α,α∗, t), (2.136)

where we have already generalized to ân modes and defined α = (α1, · · · , αn). Here, we
have also defined Ln[αn, α

∗
n], which is given by the cascaded coupling Eq. (2.132) after

replacing ân and â†
n by αn and α∗

n, respectively. The reduced qubit state is then obtained

by solving Eq. (2.136), which is coupled to Eq. (2.115), and taking the statistical average.

Remark for the positive-P representation Notice that, in writing Eq. (2.133), we have

taken the P-representation of the bosonic field for granted. Assuming a single mode,

this can be extended to the positive-P representation by extending the complex-variable

representation to α and β

ρ(t) =
∫

d2α
∫

d2β P (α, β, t) |α⟩⟨β
∗|

⟨β∗|α⟩
⊗ ρq(α, β, t). (2.137)

Correspondingly, the operators {â, â†} map to the complex numbers {α, β}. For a given

trajectory, similar to the P representation, the density matrix ρq, generalized to n modes,

evolves as

ρ̇q(α,β, t) =
(
Lq +

∑
n

Ln[αn, βn]
)
ρq(α,β, t). (2.138)

This stochastic description of the bosonic field offers another advantage. In general,

Eq. (2.138) describes a large stochastic master equation for nNq qubits in total. However,

the solution of Eq. (2.138) for a single mode n is ρq,n(αn, βn, t), which is a density matrix

involving Nq qubits. We recover the global density matrix using

ρq(α,β, t) =
⊗

n

ρq,n(αn, βn, t). (2.139)

This form allows us to decouple the master equation, solving for each stochastic process.

This way, Eq. (2.138) offers a simple way to parallelize the computation. Instead of

solving the equation for nNq qubits, we can solve this equation for n independent modes,

effectively solving n decoupled equations for Nq qubits. The reduced qubit density matrix

is then obtained by tracing out the bosonic degrees of freedom

ρq(t) =
∫

d2α
∫

d2β P (α,β, t)
⊗

n

ρq,n(αn, βn, t). (2.140)
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2.6 Remote entanglement protocols

There are several approaches to generating a pure entangled state |ψ0⟩ within a quantum

network. The protocol should be efficient and scalable for large-scale networks and, ideally,

require minimal external control [46, 63]. Since quantum systems naturally experience

decoherence over time, the protocol must operate faster than the system’s decoherence rate.

In the context of large quantum networks, it is also essential that the protocol is easily

implementable on a large scale, preferably in a parallelizable manner. By ”minimal control”,

we refer to protocols that can run autonomously, as relying on external manipulation of

the qubits would impose an unnecessary burden on the quantum system.

Depending on the strategy used to generate remote entanglement, we distinguish

between probabilistic and deterministic protocols. For simplicity, we focus mostly on

two-qubit systems Nq = 2, which forms the minimal network possible, a quantum link. A

completed overview of the experimental literature can be found in Ref. [75].

Probabilistic protocols To generate remote entanglement between two nodes, we consider

a single-photon protocol [55, 180]. The initial state is a tensor product of two decoupled

qubits |ψ0⟩ = |ψ1⟩|ψ2⟩, each qubit being in a superposition similar to Eq. (2.1), given by

|ψi⟩ = α|0i⟩ + β|1i⟩. We distinguish between two regimes: weakly driven |β|2 ≪ 1 and

strongly driven |β|2 ≃ 1.
For weakly driven qubits, the qubits remain mostly in the ground state and, when

excited, rapidly decay back to the ground state. This decay is accompanied by the emission

of a photon, entangling the qubit with the emitted photon [46]. This photon travels a

distance xi to a beam splitter. For the i-th qubit, the state is then as follows

|ψi⟩ ∼ α|0i, ni = 0⟩+ βeikxi|1i, ni = 1⟩, (2.141)

where the notation |xi, ni = x⟩ indicates the number of photons ni emitted from the i-th

qubit. Following this protocol, the emitted photons from the qubit pair interfere at the

beam splitter. The detection of a photon heralds the following qubit-qubit state [181]

|ψ0⟩ ∼
|01⟩ ± eik(xi−xj)|10⟩√

2
. (2.142)

This state corresponds to one of the maximally entangled states defined in Eq. (2.8),

where the relative sign ± depends on which of the two photodetectors clicked. The success

probability associated with creating this state is pdet ∝ |β|2ν, proportional to the excited

state probability |β|2 and the detection efficiency ν, which includes any propagation losses.

As the state is weakly excited, the probability detection will be small, usually around

pdet ≃ 10−4 [181].

One must take into account that, given the detection of one photon, the conditional
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probability that the other qubit is also in |1⟩ but the photon was lost is given by p = |β|2
(in the limit that the photon detection efficiency is small ν ≪ 1). This degrades the

heralded state from a maximally entangled Bell state to

ρ = |α|2|ψ0⟩⟨ψ0|+ |β|2|11⟩⟨11|. (2.143)

This protocol yields a fidelity of F = |α|2 with probability pdet ∝ |β|2ν. As the state

is normalized |α|2 + |β|2 = 1, one obtains a trade-off between the state fidelity and the

detection probability.

In the other scenario, the strongly driven regime, each qubit is excited with near unity

probability, |β|2 ∼ 1, and the single photon carries its qubit through two distinguishable

internal photonic states (usually via polarization H or V of the emitted photon). For

example, the state of the system containing both communication and photonic qubits is

written in

|ψi⟩ = |0i, Hi⟩+ eikxi |1i, Vi⟩√
2

. (2.144)

Here, similar to Eq. (2.141), we use the notation |xi, Xi = V,H⟩ to indicate the polarization
of the emitter photon by the i-th qubit. As before, the two photons interfere at a balanced

beam splitter, and coincident detection of orthogonally polarized photons heralds a

state similar to Eq. (2.143) [65]. Here, however, the probability of success is given by

pdet ∝ (|β|2ν)2. Even if the state is strongly excited |β|2 ∼ 1, due to the small photon

detection efficiency ν ≪ 1, the probability of success of this protocol is usually lower

than operating in a weakly driven regime. Experimentally, however, this protocol is less

sensible to path fluctuations. This is because the stability depends on the wavelength λ of

the emitted photons, typically at the centimetres scale for this photon, which is emitted

from hyperfine levels of the qubits [46].

Deterministic protocols The protocols to generate remote entanglement between two

nodes that don’t require heralding are called deterministic remote entanglement protocols.

Originally proposed in [41], it consists of applying a coherent drive to one of the qubits to

create a qubit-photon entangled state

|ψ0⟩ = |01, n = 1⟩+ |11, n = 0⟩√
2

⊗ |02⟩. (2.145)

Here, we use the notation |x1, n, x2⟩ to indicate the state of the first qubit, the state of

the photon, and the state of the second qubit, respectively. The photon then decays into

a unidirectional waveguide, propagating until the second qubit absorbs it. For a perfect

photon absorption by the second qubit, the photon shape must be time-symmetric [41].

This can be achieved by a modulation of the couplings into the waveguide of the emitter

and receiver qubits [75, 182, 183]. One then obtains a travelling photon that has a
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time-symmetric envelope, for example, given by ϕ(t) = 1
2
√
κeff sech (κefft/2) [75], being

κeff the bandwidth of the photon. Upon perfect ideal absorption of the photon by the

second qubit, the two qubits remain in a maximally entangled state |Ψ+⟩.
To model the photon loss along the transmission in the waveguide, we assume a beam

splitter interaction with a fictitious environmental mode [184, 185]

|n = 1⟩ −→
√
ν|n = 1⟩ ⊗ |n = 0⟩E +

√
1− ν|0⟩ ⊗ |1⟩E. (2.146)

This model allows us to obtain the reduced qubit state in case of imperfection transmission.

After tracing out the environmental modes, the reduced two-qubit density matrix is

ρ = 1
2


0 0 0 0
0 1

√
ν 0

0
√
ν ν 0

0 0 0 1− ν

 . (2.147)

This density matrix allows us to estimate how close we are to the Bell state |Ψ+⟩ using
the fidelity defined in Eq. (2.14). We obtain

F(ρ) = ⟨Ψ+|ρ|Ψ+⟩ = 1
4(1 +

√
ν)2. (2.148)

For the same state, one can use the concurrence defined in Eq. (2.12) to obtain

C(ρ) =
√
ν. (2.149)

Surprisingly, the entanglement persists despite losses and only vanishes at the limit ν → 0.
However, the state fidelity is bounded for F(ρ) = 1/2 at ν = (

√
2 − 1)2 ≃ 0.17. In

Chapter 3, we compare this expression to the effect of losses on our implementation.





Chapter 3

Qubit-qubit entanglement distribution

using squeezed light

In this chapter, we analyse the creation of the smallest possible quantum network, a

quantum link, by driving two qubits with the ouput of a nondegenerate parametric amplifier.

As we described in Sec. 2.6, theoretical protocols to generate remote entanglement between

physically separated qubits have been extensively studied in deterministic and probabilistic

cases. Here, we extend the work of [82], in which the authors propose an alternative way

to create highly entangled qubit-qubit states based on continuous-variable entanglement

transfer to the qubits. We start with Sec. 3.1, where we introduce the theoretical model of

our system. Then, in Sec. 3.2 we obtain an effective description for the qubits alone, under

the assumption that the parametric amplifier is broadband. This effective description

enables us, in Sec. 3.3, to map our qubit state into an effective squeezing reservoir, which

provides new insight into the dynamics of the qubits. With these tools in hand, in Sec. 3.4,

we focus on the steady state of the two qubits and show how the entanglement emerges.

In Sec. 3.5, we solve the qubit state again for a more general scenario and introduce

the filtered mode approximation, which allows us to consider the finite bandwidth of

the source of photons. This allows us to obtain optimal parameters to maximize the

entanglement in the presence of imperfections. In Sec. 3.6, we study the time evolution of

the entanglement. In realistic networks, the photons that propagate from one node to

another are always delayed. We investigate these delay effects in Sec. 3.7. We conclude

this chapter with Sec. 3.8, where we provide theoretical predictions for two ongoing

experimental collaborations.

3.1 Setup and master equation

Our protocol to generate deterministic qubit-qubit entanglement consists of two unidirec-

tional waveguides, which we label by n = A,B, two physically separated qubits, and a

nondegenerate parametric amplifier which emits photons into the waveguides. The setup is

sketched in Fig. 3.1. Specifically, we consider the two qubits with resonant frequencies ωA,1

and ωB,1, respectively. The parametric amplifier consists of two distinct bosonic modes

45
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Figure 3.1: Schematic of the protocol for generating a qubit-qubit entangled state, where a pair of

physically separated qubits are coupled to two unidirectional waveguides and driven by the

correlated output of a nondegenerate parametric amplifier.

with frequencies ωA and ωB and annihilation operators âA and âB, respectively. These

modes are driven into a correlated two-mode squeezed state via an externally pumped

χ(2)-process and decay into the respective waveguides with rate κA and κB, respectively.

The unidirectional waveguide then connects the emitted photons to each qubit at a rate

γA and γB for each qubit, respectively.

The following analysis is kept deliberately general and applies to implementations

in the optical and microwave domain, as well as mixed scenarios, where, for example,

correlated pairs of optical and microwave photons are generated via the electro-optical

effect [108, 186]. However, throughout our analysis, we will assume that all network parts

are sufficiently cold such that thermal excitations can be neglected [187].

In Sec. 2.3, we derived a master equation for the reduced system by tracing out the

waveguide dynamics. There, we derived a cascaded master equation for a set of Nq

quantum emitters coupled to a single waveguide. Here, where two waveguides are present,

we identify the quantum emitters for the n-th waveguide as ĉ0,n ≡ ân with decay rate

γ0,n ≡ κn, and ĉ1,n ≡ σ̂−
n with decay rate γ1,n ≡ γn.

By moving into a rotating frame with respect to the photon frequencies ωA and ωB and

with the identification we just mentioned, Eq. (2.72) describes the dynamics of the system

under consideration, which reads

ρ̇ = (Lph + Lq + Lint) ρ. (3.1)

This master equation consists of three distinct terms. A term describing the dynamics of

the parametric amplifier Lph, which produces the continuous-variable Gaussian states. As

introduced in Sec. 2.4.2, a nondegenerate parametric amplifier coupled into an environment
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(the two waveguides in this case) is modelled as

Lphρ = −i
[
ĤTMS, ρ

]
+

∑
n=A,B

κnD[ân]ρ, (3.2)

with nonlinear interaction

ĤTMS = i

√
κAκBϵ

2
(
â†

Aâ
†
B − âAâB

)
, (3.3)

with adimensional pump parameter ϵ ∈ [0, 1). In our protocol, although the modes âA

and âB decay into independent waveguides, they are not independent; they are strongly

correlated. Therefore, we are sending strongly correlated light into two independent

waveguides.

The second term of the master equation Lq describes the qubit system. As already

described in Sec. 2.2, in the rotated frame with respect to the frequencies of the bosonic

modes, the bare dynamics of the qubit system are given by

Lqρ =
∑

n

(
−iδn,1

2 [σ̂z
n, ρ] + γnD[σ̂−

n ]ρ+ γϕn

2 D[σ̂z
n]ρ
)
, (3.4)

where we have defined the detunings δn,1 = ωn,1 − ωn. We have assumed that each qubit

decays into the waveguide with rates γn and undergoes dephasing with rate γϕn .

The last term of the master equation Lint describes the waveguide-mediated interaction

between two otherwise disconnected systems. Here, we assume both waveguides are

completely cascaded such that γL = 0. In such a setting, all the photons emitted by the

parametric amplifier drive the qubits located further along the waveguides, while the

light scattering of those qubits does not return to the parametric amplifier. The cascaded

interaction takes the form of

Lintρ =
∑

n

√
κnγnνn

(
[ânρ, σ̂

+
n ] + [σ̂−

n , ρâ
†
n]
)
. (3.5)

Additionally, in our master equation, we have included the additional parameter νn ∈ [0, 1]
to model linear losses in the system. This models the probability that a photon propagating

at the n-th waveguide is transmitted. Or, in other words, |1−νn| gives you the probability

that a photon is lost. In this way, the |νn| can be adjusted to model not only linear

absorption losses but also parasitic loss channels for the qubits. We have also absorbed

all propagation phases e±ikn|zn,0−zn,1| into a redefinition of the qubit operators, ensuring

that, up to local phase rotations, all results presented in this work remain independent of

the precise location of the qubits. This differs from entanglement schemes in bidirectional

channels, which typically require specific arrangements [96–98]. It is also important to

note that the validity of Eq. (3.1) relies on the assumption that propagation times between

the nodes are negligible compared to the relevant timescales of the system dynamics.
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This is usually a valid assumption for small on-chip networks, but propagation delays

can become very relevant when discussing entanglement distribution in larger networks,

in particular when the distance between the two qubits is distinct. This issue will be

addressed in Sec. 3.7.

3.2 Qubit master equation

To derive the effective master equation described in Eq. (3.1), we performed an adiabatic

elimination of the waveguide, allowing us to describe the waveguide-mediated photon

interactions using collective jump operators. The resulting master equation describes

both the nondegenerate parametric amplifier and the qubits, resulting in a hybrid master

equation that governs both continuous and discrete variables. Our main goal in this

section is to study the time dynamics and stationary states of the reduced qubit state,

ρq(t) = Trph{ρ(t)}. While this generally relies on solving Eq. (3.1) numerically, in the

limit κn →∞, the dynamics of the parametric amplifier modes can again be adiabatically

eliminated to derive an effective master equation for the reduced qubit state. As detailed

in Appendix A, the reduced master equation for the qubit system is

ρ̇q =Lqρq +
∑

n=A,B

γnNn

(
D[σ̂−

n ]ρq +D[σ̂+
n ]ρq

)
+√γAγB

(
M∗[σ̂A, [σ̂B, ρq]] +M [σ̂+

A , [σ̂+
B , ρq]]

)
.

(3.6)

Two parameters govern the master equation for the reduced qubit dynamics: the photon

occupation number Nn = 2Re{Iâ†
nân

(0)} and the photon correlation M = [IâAâB
(0) +

IâB âA
(0)]. They are determined by the steady-state correlation spectra of the parametric

amplifier modes, which we derived in Sec. 2.4.2. In the symmetric case κn = κ and νn = ν,

these parameters are given by the following simple expressions

N = νϵ

[
1

(1− ϵ)2 −
1

(1 + ϵ)2

]
, (3.7a)

M = νϵ

[
1

(1− ϵ)2 + 1
(1 + ϵ)2

]
. (3.7b)

3.3 Effective squeezing and purity

To gain further intuition, and motivated by the effective master equation for the qubits,

we now consider an alternative description of the qubit system. We map the qubits driven

by the output of the parametric amplifier into a system in which the qubits are in a

general two-mode squeezed reservoir.

We focus on the symmetric configuration κn = κ and we reinterpret the output

correlation parameters Nn and M as the photon number and photon correlation N =
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⟨â†
nân⟩ρeff and M = ⟨âAâB⟩ρeff , of an effective two-mode squeezed thermal state

ρeff = Ŝ(reff)ρth(neff)Ŝ†(reff). (3.8)

Here, ρth(neff) = ρA
th(neff)ρB

th(neff) is a two-mode thermal state, with each thermal state

ρn
th(neff) defined in Eq. (2.25). Since we assume a symmetric configuration, we take an

identical occupation number neff for both modes. For the squeezing operator Ŝ(reff),
previously defined in Eq. (2.28), we assume a parametrization in terms of a real parameter

reff .

We use the state given by Eq. (3.8) to model a general two-mode reservoir for the qubits.

The photon occupation number N and the photon correlation M of this environment are

given by [146]

N = (cosh2 (reff) + sinh2 (reff))neff + sinh2 (reff), (3.9a)

M = cosh (reff) sinh (reff)(2neff + 1). (3.9b)

We can now derive a covariance matrix for this Gaussian state, analogous to Eq. (2.31),

but expressed in terms of N and M . It reads as

V =


N + 1/2 0 −M 0

0 N + 1/2 0 M

−M 0 N + 1/2 0
0 M 0 N + 1/2

 . (3.10)

When neff = 0, Eq. (2.31) is recovered. The purity of this general state is obtained from

V using Eq. (2.24). We obtain

µeff = 1
(1 + 2N)2 − 4|M |2 , (3.11)

from which we recover µeff = 1 when neff = 0. We can use Eq. (3.9a) and Eq. (3.9b) to

solve for the effective squeezing strength reff . We obtain

reff = 1
2 tanh−1

[
2|M |

2N + 1

]
. (3.12)

Going back to our effective master equation in Eq. (3.6), we can now use the parameters

N , given by Eq. (3.7a), and M , in Eq. (3.7b) to evaluate our effective bath parameters.

First, we realize that |M |2 = N(N + ν) and therefore µeff = 1 for a lossless channel ν = 1.
This implies that in the infinite-bandwidth limit, Eq. (3.6) describes two qubits that are

coupled to a two-mode squeezed zero-temperature reservoir with a squeezing parameter

reff = 2 tanh−1(ϵ), (3.13)
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which becomes arbitrarily large when ϵ → 1. As discussed in Sec. 2.2.2, the squeezing

level S is bounded to 3 dB for the intracavity fields. Here, the two qubits are driven by

the output fields, from which we observe that the squeezing level becomes unbounded.

However, this is a consequence of the Markov approximation, which assumes that the

environment is probed only at a single frequency. We will show that this result no longer

holds when a finite ratio κ/γ is considered. In this case, considering a nonzero frequency

window ∆ω , 0 [see Fig. 3.3] leads to an impure effective state with reduced squeezing.

The same is true in the Markovian limit in the presence of transmission losses, ν < 1.

3.4 Steady-state entanglement in ideal squeezed

reservoirs

Our master equation in Eq. (3.6) describes two qubits in an effective two-mode thermal

squeezed reservoir. However, in the ideal case of no losses and broad bandwidth, the

parameters fulfil |M |2 = N(N + 1). Under this condition, the system is only parametrized

by the squeezing strength reff , and we can rewrite Eq. (3.6) as

ρ̇q = −i[Ĥq, ρq] +
∑

n=A,B

γD[Ĵn]ρq, (3.14)

for the reduced qubit density operator ρq. Here, γ denotes the decay rate of each individual

qubit, and we have also assumed negligible dephasing noise γϕ = 0. In Eq. (3.14), the

dynamics are now governed by a purely coherent term describing the qubits detuning

Ĥq =
∑

n

δn,1

2 σ̂z
n, (3.15)

and purely dissipative processes with collective jump operators

ĴA = cosh(reff)σ̂−
A − sinh(reff)σ̂+

B , (3.16a)

ĴB = cosh(reff)σ̂−
B − sinh(reff)σ̂+

A . (3.16b)

While the individual qubits are well separated and noninteracting, nontrivial correlations

between qubits can emerge once the TMS source is switched on. Such a correlation arises

between qubits in waveguide A and waveguide B mediated by the nonlocal jump operators

described in Eq. (3.16), which are an effect of the adiabatically-eliminated correlated

photon pairs.

In Chapter 2, we introduced our qubit quantum network and its requirements. There,

we not only emphasized that we are interested in a pure state |ψ0⟩ but also that it requires

minimal external control. Ideally, a protocol in which we just need to switch on the

parametric amplifier and the qubit state would converge to an entangled state. Here, we
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show that if we let our system evolve for a long enough time, ρss = ρq(t→∞), the steady
state of this system is a pure state

ρss = |ψ0⟩⟨ψ0|. (3.17)

To identify the condition under which this pure state emerges as a solution of Eq. (3.14),

it is enough to find a qubit state that satisfies [188]

(I) Ĵn|ψ0⟩ = 0, (3.18a)

(II) Ĥq|ψ0⟩ = constant ≡ 0. (3.18b)

Condition (I) implies that |ψ0⟩ is a so-called dark state of the collective dissipation

processes, i.e., it decouples from the collective TMS environment. In addition, condition

(II) ensures that |ψ0⟩ is also unaffected by the Hamiltonian dynamics and remains in a

dark state for all times. In Ref. [149], the constraints in Eq. (3.18a) and Eq. (3.18b) have

been used to construct nontrivial entangled states for an ensemble of qubits in a single

waveguide, driven by a classical field. We will again use this strategy in Chapter 4 to

find even more complex entangled states in a dual-waveguide setting, where, in particular,

entanglement between the otherwise decoupled qubits sets arises from initial correlations

in the photonic driving fields.

Back to our case, the dark state condition Ĵn|ψ0⟩ = 0 is satisfied by the unique state

|ψ0⟩ = |Φ+
1,1⟩, where

|Φ+
1,1⟩ = cosh (reff)|0101⟩+ sinh (reff)|1111⟩√

cosh (2reff)
. (3.19)

Here, we follow the notation that the first(second) subindex references the qubit in the

waveguide A(B). In cases where no confusion can arise, we simply write |x1, x1⟩ = |xx⟩.
It is then also straightforward to show that this state is an eigenstate of the Hamiltonian

Ĥq if the detunings satisfy

δA,1 + δB,1 = 0. (3.20)

This means that the two qubits must either be in resonance with the amplifier modes or

detuned by the exact opposite amount. The state given by Eq. (3.19) was first discussed

in Ref. [82], and there it was shown how it approaches a maximally entangled Bell state,

as defined in Eq. (2.8), for reff ≫ 1.
Before we proceed, let us provide some additional insights about the emergence of such

a pure entangled steady state by considering the coupling of two qubits to two isolated
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modes âA and âB via a Jaynes-Cummings interaction of the form

Ĥint ∼ i
(
σ̂−

A â
†
A − σ̂+

A âA + σ̂−
B â

†
B − σ̂+

B âB

)
. (3.21)

An ideal two-mode squeezed state of those two modes, following Eq. (2.29), can be written

as

|ΨTMS⟩ =
√

1− x2
∞∑

n=0
xn|n⟩A|n⟩B, (3.22)

where we can set x = tanh (reff). This expression shows that the number of photons in

the two modes are perfectly correlated, suggesting that the qubits are only excited and

de-excited pairwise. However, this argument is too näıve, since, for example, the action

of Ĥint on the state |00⟩|ΨTMS⟩ would also generate single-excited states ∼ |10⟩, |01⟩. To
explain the existence of the steady state given in Eq. (3.19) it is thus important to take

into account the coherence between the |n⟩A|n⟩B components, which leads to the following

relations

âA|ΨTMS⟩ = xâ†
B|ΨTMS⟩, (3.23a)

âB|ΨTMS⟩ = xâ†
A|ΨTMS⟩. (3.23b)

Equivalently, there exists a unique dark state of the interaction,

Ĥint(|00⟩+ x|11⟩)|ΨTMS⟩ = 0. (3.24)

Therefore, once the system reaches the state |ψ0⟩ in Eq. (3.19), the emission of a photon by

one qubit interferes destructively with the absorption of a photon in the other mode. When

applied to the original setting, this argument shows that the absence of any components

∼ |01⟩ or ∼ |10⟩ in |ψ0⟩ is a consequence of a nonlocal interference effect between two

separated but correlated parts of the network. As we will see now, in deviations from the

Markovian regime, this interference effect is no longer ideal, and the single-excited states

will be populated.

3.5 Realistic networks

Let us now address a more realistic scenario where finite waveguide losses, decoherence of

the qubits, and, in particular, the finite bandwidth of the parametric amplifier are taken

into account. In this last case, it is, in general, no longer possible to eliminate the photon

modes, and the full system Eq. (3.1) must be solved numerically. Given the large Hilbert

space required to represent the two-mode squeezed state, these simulations become very

demanding when approaching the parametric instability at ϵ = 1. Thus, when numerically

solving Eq. (3.1), we restrict our simulation to values of ϵ ≤ 0.8, where the convergence of

the results can still be ensured by truncating the Hilbert space of each photon mode.
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We can still use the Markovian approximation to investigate the performance of this

entanglement distribution scheme also under realistic conditions, for example, when

|M |2 < N(N + 1) or when a reduced master equation for ρq is not available. We can

solve Eq. (3.6) for the steady state. Then, by defining ρij,kl = ⟨i, j|ρss|k, l⟩ and the short

notation ρij = ⟨i, j|ρss|i, j⟩, we obtain the following nonvanishing matrix elements,

Λρ00 = (1 +N)2(2Γϕ + 1 + 2N)− |M |2(3 + 2N), (3.25a)

Λρ10 = 2ΓϕN(N + 1) + (2N + 1)(N(N + 1)− |M |2), (3.25b)

Λρ11 = N2(1 + 2Γϕ + 2N) + |M |2(1− 2N), (3.25c)

Λρ11,00 = M, (3.25d)

and ρ01,01 = ρ10,10 and ρ00,11 = (ρ11,00)∗. Here, we introduced the normalization constant

Λ = (1 + 2N)[1 + 2Γϕ + 4(N(N + 1 + Γϕ)− |M |2))] and the normalized dephasing rate

Γϕ = γϕ/γ. As we have discussed before, in the Markovian limit and ideal conditions

γϕ = 0 and ν = 1, we recover the pure state from Eq. (3.19) and the single-excitation

populations disappear ρ10,10 = ρ01,01 = 0.
From our steady state, we can now find how close we are to the maximally entangled

state |Φ+⟩ = (|00⟩+ |11⟩) /
√

2 using the previously defined fidelity F(ρq) = ⟨Φ+|ρq|Φ+⟩.
By expressing our state ρq in terms of the effective parameters reff and µeff , given by

Eq. (3.12) and Eq. (3.11), the fidelity is given by

F(ρss) =
1 + µeff + Γϕ

√
µeff(1 + 2µeff + cosh (4reff)) sech (2reff) + 2µeff tanh (2reff)

4 + 8Γϕ
√
µeff cosh (2reff) .

(3.26)

While this expression encompasses all the system’s parameters we care about, it is still

difficult to gain some intuition. Considering the simple case where the dephasing noise is

negligible γϕ = 0 , it simplifies to

F(ρss) = 1
4 [1 + µeff(1 + 2 tanh (2reff))] . (3.27)

In addition, we can use the concurrence of the reduced state, C(ρss), for a more direct

way to quantify the amount of qubit-qubit entanglement. As our density matrix has the

same form as Eq. (2.11), we can obtain an analytical expression for the concurrence using

Eq. (2.12). In terms of the effective parameters reff and µeff , it has the following simple

form

C(ρss) = max (0, µeff tanh (2reff)− (1− µeff)/2) . (3.28)

For the ideal Markovian limit, µeff = 1, the fidelity takes the simpler form of F(ρss) =
(1 + tanh (2reff)) /2, which shows that even for moderate squeezing strengths of reff ≃ 1
(Seff = 8.68 dB) fidelities of about F(ρss) ≈ 0.99 can be reached. More realistic squeezing

experiments [22, 24, 164] with reff = 0.35 (Seff = 3 dB), would achieve a fidelity of
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Figure 3.2: (a) Contour plot of the steady state fidelity F(ρss) as a function of the effective squeezing

parameter reff and the effective purity µeff . The solid lines indicate the path in this parameter

space that one obtains by increasing ϵ from 0 to 1 for different values of β = κ/γ and Γϕ = 0
and ν = 1 [see discussion in Sec. 3.5.1]. The dashed line marks the boundary of vanishing

concurrence C(ρss) = 0, above which the reduced qubit state is entangled. (b) Dependence of

the effective squeezing parameter and the effective purity on the driving strength within the

FMA. The different curves are evaluated for different values of β and assuming ν = 1 and

symmetric conditions, κn = κ and γn = γ. On the right axis, we plot the squeezing factor

Seff as defined in Eq. (2.37). Note that reff →∞ and µeff → 0 when ϵ→ 1 for all values of β.

F(ρss) ≃ 0.8. In Fig. 3.2(a) we show a plot of the steady state fidelity F(ρss) for the

steady state of master equation (3.6), under the assumption that Γϕ = 0, but allowing
for arbitrary values of Nn = N and |M |2 ≤ N(N + 1). For later convenience, these

parameters are, in turn, expressed in terms of the effective squeezing parameter reff and

the effective purity µeff , as defined in Eq. (3.12) and Eq. (3.11). We see that for µeff ≃ 1,
the fidelity approaches unity as the squeezing parameter is increased, consistent with the

bound stated in Eq. (3.27). For values of reff ≳ 1, the fidelity becomes almost independent

of the squeezing parameter but decreases as F(ρss) ≃ 1
4(1 + 3µeff) for impure reservoirs.

Entanglement is present as long as F(ρss) > 0.5, which corresponds to a minimal purity

of about µeff ≃ 1/3 ≃ 0.33. This result shows that improving the purity of the effective

photonic bath will be most relevant for this entanglement distribution scheme.

3.5.1 Filtered mode approximation (FMA)

When we derived an effective master equation for the qubits assuming a Markovian limit,

we took the limit where the parametric amplifier bandwidth goes to infinity κn →∞. In

this limit, the characteristic bath parameters Nn and M are independent of κn and are

determined by the output fields of the amplifier at a single frequency, ω = 0. As sketched
in Fig. 3.3(a), in the Markovian limit, the qubit bandwidth only ’sees’ the spectrum of the

parametric amplifier at ω = 0. To go beyond this approximation and take into account
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Figure 3.3: Sketch of the spectrum I(ω) of the parametric amplifier, given by κ compared to the qubit,

given by γ, in (a) the Markovian regime β ≫ 1, (b) for finite bandwidth β ≳ 1.

the finite bandwidth of the parametric amplifier κ, we must take into account that the

qubits will be affected by photons within a finite region of the spectrum Iâ†
nân

(ω) and

IâAâB
(ω) that cannot be associated with a pure squeezed state [see Fig. 3.3(b)]. The

relevant bandwidth of frequencies will be determined by the qubit dynamics and will be

roughly given by the decay rates γn. Based on this intuition, we introduce the two filtered

modes

âf,n(t) =
√
γnκnνn

∫ t

−∞
ds e−γn(t−s)/2ân(s− τn), (3.29)

where, for a later generalization, we have already included the propagation delays τn.

These modes represent the output of the two-mode amplifier but are delayed by τn and

filtered by the response of the qubits. We can now use these filtered modes to define an

adjusted set of parameters for the qubit master equation in Eq. (3.6),

Nn = ⟨â†
f,nâf,n⟩, M = ⟨T âf,Aâf,B⟩, (3.30)

where T denotes the time-ordering operator applied to the amplifier modes âf,A and âf,B.

These parameters include the characteristic timescales of the qubits and of the photons

on an equal footing. Specifically, we obtain

Nn = 2γnν
n
∫ ∞

−∞

dω
2π

Iâ†
nân

(ω)
γ2

n/4 + ω2 , (3.31)

for the occupation numbers and

M =
√
γAγBνAνB

∫ ∞

−∞

dω
2π

[IâAâB
(ω) + IâB âA

(−ω)] eiω(τB−τA)

(γA/2 + iω)(γB/2− iω) , (3.32)

for the correlation parameter. These expressions explicitly show how the effective photonic

reservoir seen by the qubits depends on the amplifier correlations within finite frequency
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windows set by the decay rates γn. The Markovian limit discussed in Sec. 3.2 is recovered

in the limit γn → 0 and τn → 0.
Before we proceed, we motivate such filtered mode approximation the following way.

From the Heisenberg equations of motion Eq. (2.61), we can readily derive expectation

values of qubit observables in the weak excitation limit, ϵ ≪ 1. In this limit we can

approximate σ̂z
n(t) ≃ −1 and obtain

˙̂σ−
n (t) ≃ −γn

2 σ̂
−
n (t)−

√
γnνnf̂out,n(t− τn)−

√
γn(1− νn)f̂ ′

in,n(t). (3.33)

Here f̂out,n(t) ≡ F̂out,n(z = 0, t), where F̂out,n(z, t) = F̂in,n(z, t) + √κnân(t − z/vn), and
f̂ ′

in,n(t) is an independent noise operator, which we have included to account for waveguide

losses. Formal integration gives us

σ̂−
n (t) = −

√
γnνn

∫ t

−∞
ds e−γn(t−s)/2f̂out,n(s− τn), (3.34)

where contributions from f̂ ′
in,n(t), which always act on the vacuum state, have already been

omitted. For the evaluation of the steady-state expectation value ⟨σ̂+
n σ̂

−
n ⟩(t→∞) = Nn

we use

⟨f̂ †
out,n(t)f̂out,n(t′)⟩ = κn⟨â†

n(t)ân(t′)⟩ (3.35)

and after some manipulations we obtain the result for Nn given in Eq. (3.31). For the

evaluation of the correlations, ⟨σ̂−
A σ̂

−
B⟩(t → ∞) = M , we must take into account that

f̂in,A(t) and âB(t′) do not commute in general, as discussed in Ref. [189]

⟨f̂out,A(t)f̂out,B(t′)⟩ = √κAκB⟨T âA(t)âB(t′)⟩, (3.36)

where T denotes the time-ordering operator. Again, the resulting expression for M

matches Eq. (3.32). Therefore, this comparison shows that the results obtained within

the FMA for the steady state of the qubits becomes exact in the weak driving limit,

Nn, |M | ≪ 1.

3.5.2 Effective squeezing parameters for non-ideal amplifiers

While the derivation of a master equation in terms of the filtered modes is only an

approximation, it becomes exact in the regime of low qubit excitations, i.e. for small

values of ϵ. Even for moderate and large driving strengths, it still significantly improves

over the conventional Markovian master equation discussed in Sec. 3.2. In particular, the

FMA allows us to account for the effects of a finite amplifier bandwidth. For example, by
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setting κn = κ, γn = γ and assuming τn = 0 for now, we obtain

N = 2ϵ2β(1 + 2β)ν
[(β + 1)2 − β2ϵ2](1− ϵ2) , (3.37)

M = 2ϵβ(ϵ2β + β + 1)ν
[(β + 1)2 − β2ϵ2](1− ϵ2) , (3.38)

where β = κ/γ is the ratio between the amplifier bandwidth and the qubit decay.

As discussed in Sec. 3.3 and shown explicitly in Fig. 3.2(b), these parameters can be

reexpressed in terms of an effective squeezing parameter reff and an effective purity µeff .

In this way, the fidelity of the resulting steady state can be read off directly from the

general plot in Fig. 3.2(a).

We also use the analytic expressions for N and M from above to evaluate the first-order

corrections in 1/β for these quantities

reff ≃ 2 tanh−1(ϵ)− 1
β

2ϵ
(1− ϵ2)2 , (3.39)

µeff ≃ 1− 1
β

8ϵ2

(1− ϵ2)2 , (3.40)

which is valid for β(1 − ϵ)2 ≫ 1 and ν = 1. We see that finite-bandwidth corrections

get strongly amplified as one approaches the parametric instability. In particular, the

purity of the effective squeezed reservoir, which plays a crucial role in determining the

entanglement of the reduced qubit state, decreases significantly. Thus, even for β ≫ 1, it
is impossible to assess the achievable amount of entanglement using a purely Markovian

description.

3.5.3 Optimal fidelities

In Fig. 3.4, we summarize the performance of the entanglement distribution scheme in

realistic settings. First of all, Fig. 3.4(a) shows the dependence of the fidelity F(ρss)
on the driving strength ϵ for different ratios β = κ/γ. Here, we compare the results

from a simulation of the full master equation with the predictions obtained from the

FMA. In both cases, we find the expected maximum for intermediate values of ϵ, which

results from an increase in squeezing on the one hand and from the loss of purity on the

other hand. While for moderate and large driving strengths, we observe a deviation of

the approximate results from exact numerics, the qualitative trends are still accurately

captured. Importantly, across all investigated parameter regimes, the FMA either agrees

with or underestimates the exact fidelity, making it a reliable tool for predicting lower

bounds on the achievable entanglement. In the limit of low pump values, the FMA
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Figure 3.4: (a) Plot of the Bell-state fidelity F(ρss) as a function of the driving strength ϵ and for

different amplifier bandwidths, β = κ/γ. The solid lines represent the results obtained from

the numerical solution of the full cascaded master equation, Eq. (3.1), which are compared

with the predictions under the FMA (dashed lines), assuming Γϕ = 0 and ν = 1. (b) Plot of
the optimal fidelity Fopt and the corresponding optimal driving strength ϵopt (inset) under

the same conditions. The dotted line shows the analytic approximation in Eq. (3.43). For all

plots in this figure we have set κn = κ and γn = γ.

becomes exact, and we obtain a simple analytic expression for the fidelity,

F(ϵ≪ 1) ≃ 1
2 + 2βν

(1 + β)(1 + 2Γϕ)ϵ. (3.41)

Therefore, the fidelity increases linearly with the pump strength [see Fig. 3.4(a)], with a

slope that depends on all sources of imperfections. To estimate the maximally achievable

fidelities, we assume that this maximum is reached for a pumping strength ϵ ≈ 1 and

expand F to lowest order in (1− ϵ), 1/β, Γϕ and (1− ν),

F(ϵ ≈ 1) ≃ 1− (1− ϵ)4

16 − 3
(1− ϵ)2

[
1

2β + Γϕ + (1− ν)
]
. (3.42)

By optimizing this result with respect to the driving strength we obtain an optical pump

strength ϵopt = 1−
√

2 31/6[ 1
2β

+ Γϕ + (1− ν)]1/6, which translates to an optimal fidelity

of

Fapp
opt ≃ 1− 3 3√9

4

[
1

2β + Γϕ + (1− ν)
] 2

3

. (3.43)

Although the result in Eq. (3.43) is based on various crude approximations, it still gives a

good estimate for the overall scaling of the maximal fidelity achievable with this scheme

in the presence of imperfections. In particular, as shown in Fig. 3.4 (b), for the parameter

regimes of interest, Fopt > Fapp
opt , where Fopt is the exact optimized fidelity evaluated

numerically. In Fig. 3.5, Fopt is also shown for different non-ideal settings.



3.6 Entanglement rates 59

Figure 3.5: (a) Plot of the optimal fidelity as a function of the qubit dephasing Γϕ for ν = 1 and (b) as

a function of the channel transmissivity ν for Γϕ = 0. In both plots, we assume a value of

β = 102 for the upper curves and β = 1 for the lower curves, where the dashed lines represent

the respective FMA results. For all plots in this figure we have set κn = κ and γn = γ.

Alternatively, for a more direct measure of the entanglement present in the system, we

can use the FMA with the concurrence in Eq. (3.28) in the weak-excitation limit ϵ≪ 1.
Assuming a finite dephasing rate Γϕ, it is given by

C(ϵ≪ 1) ≃ 4βϵν
(1 + β)(1 + 2Γϕ) . (3.44)

In Sec. 2.6, we saw that the direct entanglement protocol proposed by [41] scales as

Cdirect ≃
√
ν for a lossy waveguide. As 0 ≤ ν ≤ 1, Cdirect gives a better performance

that the one estimated here. This difference in scaling originates from the number of

bosonic modes required for the protocol. While for the direct entanglement protocol, the

entanglement is transferred by a single bosonic mode along the waveguide, here we need

two modes to transfer the TMS, which then scales the photon losses.

3.6 Entanglement rates

In the previous sections, we have focused on the amount of entanglement that can be

reached under stationary driving conditions. However, for practical applications, it is

equally important to determine how quickly this entangled state can be achieved. In

particular, given the possibility of distilling a highly entangled state from many copies

of a state with a low amount of entanglement [49–54], it may be more favourable to

optimize the generation rate rather than the fidelity. These considerations are specifically

relevant for the current entanglement distribution scheme since, close to the parametric

instability, where the correlations are maximized, the relaxation time of the parametric

amplifier diverges. Therefore, even for an ideal broadband amplifier, operating close to
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Figure 3.6: (a) Plot of the entanglement distribution rate R as a function of the pulse length γT for

different pump strengths ϵ at fixed β = 100, Γϕ = 0, and ν = 1. (b) Dependence of the

maximally achievable entanglement rate Rmax on the driving strength ϵ for different values

of β.

the threshold might not be the optimal choice [190].

The optimal trade-off between entanglement generation speed and achievable fidelity

depends on various factors, particularly the local resources available for entanglement

purification protocols. We consider here only the following rudimentary scenario: The

two-mode squeezing source runs continuously while the qubits in each node are initialized

in state |0⟩. At time t = 0, the coupling between the qubits and the photonic channels is

switched on for a duration T , after which the qubits are decoupled and stored in a local

register. This process is then repeated with a fresh pair of qubits and so on, such that an

entangled two-qubit state ρq(T ) is distributed between the two nodes every time interval

T . We introduce the normalized entanglement distribution rate

R = EF (T )
γT

. (3.45)

Here EF (T ) ≡ EF (ρq(T )) is the entanglement of formation, as defined in Eq. (2.13). It

quantifies the number of pure singlet states that are needed on average to generate the

state ρq(T ) through LOCC operations only. This more intuitive interpretation, while still

being easily computable, makes EF well suited for a comparative study of entanglement

rates. Note, however, that EF is only an upper bound [120] on the number of singlet

states that can be extracted from multiple copies of ρq(T ), which depends on the available

purification protocols and many other details that go beyond the scope of this analysis. In

Fig. 3.6(a), we show the entanglement rate R for various pump strengths ϵ. We observe

high rates that can be reached for moderate pump strength ϵ ≲ 0.5. For larger values,

the initial peak and later decrease of the rate can be traced back to the appearance of

Rabi oscillations between the states |00⟩ and |11⟩. In Fig. 3.6(b), we show the maximal
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rate Rmax = maxT{R(T )} as a function of ϵ for different amplifier bandwidths β. We

see that the rate is maximized at ϵ ≈ 0.3− 0.4. For a large bandwidth ratio of β ≃ 100,
we can use our Markovian approximations to estimate the optimal squeezing strength.

For that, using Eq. (3.13), the entanglement rate is maximized at reff ≈ 0.6− 0.8, which
would correspond to a squeezing level of Seff ≈ 2.6− 3.5 dB.

3.7 Quantum networks with propagation delays

In the setup we have considered, at the n-th waveguide, the photons with phase velocity

vn take the time τn = dn/vn to propagate the distance dn between the parametric amplifier

and the qubit. In a strict sense, the validity of Eq. (3.1) assumes that this time is

negligible compared to the typical timescale of the system evolution. This is not a crucial

assumption in situations where the qubits are located approximately equally far away

from the amplifier, as the photons simply take τA ≈ τB to propagate to the qubits, and

this small difference is irrelevant for steady-state correlations. However, in situations

where τA , τB, the qubits are driven by photons that have been emitted at two different

times. When the time lag |τB − τA| is too long, correlations between these photons are

lost [164]. Such situations can occur, for example, when the amplifier and one qubit are

located in the same laboratory while the other photons are sent via an optical fibre to the

other qubit at a remote location.

3.7.1 Effective environment with delay

To take into account the effect the delays have on the qubits, we can use the effective

parameters derived within the filtered mode approximation. For that, in Eq. (3.31) and

Eq. (3.32) we introduced the modes with a finite delay τn. As a result, the effective two-

mode squeezed reservoir is modified accordingly. To achieve this, we can use Eq. (3.12) and

Eq. (3.11), together with the delayed modes, to evaluate the delayed squeezing strength

reff(τ) and the delayed purity µeff(τ), respectively. We evaluate them numerically and in

Fig. 3.7, we plot them as a function of finite delay τ = τB − τA for different values of the

bandwidth β and pump strength ϵ.

Within the filtered mode approximation, we find that in the limit of β ≫ 1, the photon

correlations can be approximated to

M(τ) ≃ 2ϵ(1 + ϵ2)
(1− ϵ2)2 e

−γτ/2. (3.46)

This shows that in this limit, the correlations decay on the timescale set by γ, and not

by the relaxation rates of the amplifier, κ± = κ(1 ± ϵ). Therefore, a finite amount of

squeezing persists up to delay times of about τ ≈ γ−1 for all driving strengths. In contrast,

the behaviour of the effective purity µeff(τ) depends more strongly on the driving strength.



62 Chapter 3 Qubit-qubit entanglement distribution using squeezed light

Figure 3.7: Time-delayed effective parameters (a) reff(τ) and (b) µeff(τ) for ϵ = 0.4 (solid) and ϵ = 0.2
(dashed) and for different amplifier bandwidths β = 1 and β = 103.

This is because a larger value of M(τ = 0) implies a larger absolute change of M(τ).
The timescale that determines the decay of the purity, and therefore the entanglement,

can become considerably shorter than γ−1 for high driving strengths. This conclusion is

consistent with the entanglement decay in delayed two-mode squeezed states reported

in Ref. [164]. In the opposite regime β ∼ 1, the squeezing and purity parameters are

initially smaller, but they are more robust and decay only after a delay τ > γ−1, roughly

independently of ϵ. This means that to keep the purity as high as possible, the qubits

can be separated from the source by arbitrarily large distances provided that, the relative

propagation times satisfy

γ|τA − τB| ≪ 1. (3.47)

3.7.2 Entanglement distribution with delays

For larger networks with non-negligible propagation delays, different choices for the defini-

tion of entanglement and correlations can be considered. For quantum key distribution

schemes or similar applications, where the quantum states are only used once, one is typi-

cally interested in correlations between measurements that are delayed by the respective

propagation times of the transmitting photons. However, for other applications, where

quantum states are redistributed within the network multiple times, the more relevant

question is how much entanglement exists between different nodes at a given time. In the

following, we are interested in this second type of scenario, where signal delays become

relevant.

To derive an expression for the steady-state correlations when delays are present, we

use Eq. (2.74) to form a set of quantum Langevin equations for the Heisenberg operators.

First, to handle finite propagation delays in a more general manner, we introduce a set of
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shifted Heisenberg operators

σ̂′ k
n (t) = σ̂k

n(t+ τn), â′
n(t) = ân(t+ τε). (3.48)

Here, τε is a small time delay, which is negligible on the timescale of the system dynamics

but must be kept finite when evaluating commutation relations with the waveguide fields.

The shifted Heisenberg operators obey

˙̂a′
n(t) = i[Ĥ ′

ph(t), â′
n(t)]− κn

2 â
′
n(t)− √κnf̂in,n(t+ τε), (3.49)

˙̂σ′ −
n (t) =− γn

2 σ̂
′ −
n (t) + √γnκnσ̂

′ z
n (t)â′

n(t) + √γnσ̂
′ z
n (t)f̂in,n(t), (3.50)

˙̂σ′ z
n (t) =− 2γnσ̂

′ +
n (t)σ̂′ −

n (t)− 2√γnκn

[
σ̂′ +

n (t)ân(t) + â†
n(t)σ̂′ −

n (t)
]

− 2√γn

[
σ̂′ +

n (t)f̂in,n(t) + f̂ †
in,n(t)σ̂′ −

n (t)
]
. (3.51)

Since in these equations, all f̂in,n(t) operators appear to the right and all f̂ †
in,n(t) operators

to the left, we can perform the expectation value with respect to the initial vacuum

state ρ0
full and take the limit τϵ → 0 afterwards. As a result, the expectation values for

⟨ ˙̂σ′ k
n (t)⟩ and ⟨ ˙̂a′

n(t)⟩ do not explicitly depend on the delay times τn anymore and their

expressions are identical to the ones obtained for ⟨ ˙̂σk
n(t)⟩ and ⟨ ˙̂ai(t)⟩ from the cascaded

master equation given in Eq. (3.1).

As a next step, we show that the same is true for arbitrary operator products

Ŝ ′
A(t)Ŝ ′

B(t)Â′(t), where Ŝ ′
n(t) are Pauli operators and Â′(t) is an arbitrary product of

operators â′
A,B(t) and â′ †

A,B(t). To evaluate the time derivative of this product, we ap-

ply the product rule and use the time derivatives for the individual operators given in

Eqs. (3.49)-(3.51). This results in terms of the form

d
dt Ŝ

′
A(t)Ŝ ′

B(t)Â′(t) =− √γA[Ŝ ′
A(t), σ̂′ +

A (t)]F̂A(dA, t+ τA)Ŝ ′
B(t)Â′(t)

− √γBŜ
′
A(t)F̂ †

B(dB, t+ τB)[σ̂′ −
B (t), Ŝ ′

B(t)]Â′(t)
−
√
κAŜ

′
A(t)Ŝ ′

B(t)F̂ †
A(0, t+ τϵ)[â′

A(t), Â′(t)]
+ · · ·

(3.52)

Before we can take the expectation value with respect to ρ0
full, all f̂in,n(t) operators must

be commuted to the right and all f̂ †
in,n(t) operators to the left. To do so, we write, for

example,

F̂A(dA, t+ τA) =
√
γA

2 σ̂′ −
A (t) + F̂out,A(0, t), (3.53)

and use F̂out,A(0, t) = F̂A(vτϵ, t + τϵ) to show that [F̂out,A(0, t), Â′(t)] = 0. Further, we

write Ŝ ′
B(t) = ŜB(t) + ∆ŜB(t), where ∆ŜB(t) depends on the field F̂out,B(dB, t

′) for times

t′ ∈ [t, t + τB] only. Equivalently, it depends on the field F̂B(z, t) located in the region
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z ∈ (0, dB] and the operator

F̂out,B(0, t) = F̂B(0, t) +
√
κB

2 âB(t). (3.54)

This implies that also [ŜB(t), F̂out,A(0, t)] = 0 and F̂out,A(0, t) = f̂in,A(t) + √κAâA(t) in

the second line of Eq. (3.52) can be commuted all the way to the right. Similar arguments

can also be made for all the other terms to achieve the desired operator ordering.

In summary, from this derivation we obtain a set of coupled equations of motion

for the expectation values of arbitrary operator products ⟨Ŝ ′
A(t)Ŝ ′

B(t)Â′(t)⟩, which are

independent of the delay times τn and have the same structure as the corresponding

equations of motion derived from the time-local cascaded master equation. After taking

again the limit τϵ → 0, this result implies that

⟨ŜA(t+ τA)ŜB(t+ τB)Â(t)⟩ = ⟨Ŝ1Ŝ2Â⟩(t)
∣∣∣∣
loc
, (3.55)

assuming appropriately matched initial conditions. This equation implies that a non-equal

correlation function can be evaluated using the time-local master equation given by

Eq. (3.1).

We are interested in steady-state equal-time expectation values limt→∞⟨ŜA(t)ŜB(t)⟩, for
which Eq. (3.55) cannot be directly applied. Instead we repeat the whole derivation for

the operators Ŝ ′
A(t+ t0) and take the average with respect to the state ŜB(t0 + τB)ρfull(t0).

Since ŜB(t0 + τB) depends on f̂in,n(t) for t ≤ t0 only, it commutes with the relevant noise

terms ∼ f̂in,n(t + t0) and we can still make use of f̂in,n(t + t0)ŜB(t0 + τB)ρfull(t0) = 0.
Therefore, this approach provides us with the relation

⟨ŜA(t+ τA + t0)ŜB(t0 + τB)⟩ = ⟨ŜA(t+ t0)ŜB(t0)⟩
∣∣∣∣
loc
, (3.56)

which extends the result from above to more general correlations. By assuming that t0 is

long enough such that the system has reached a steady state, we can redefine t0 → t0− τB

and set t = τB − τA. This result allows us to use the master equation in Eq. (3.1) to

evaluate non-equal time correlation functions, which can be related to the steady state

expectation values of the actual network with time delays. More precisely, given an

arbitrary product of two-qubit operators Ôn and Ôn′ , its steady state expectation value

can be computed as

⟨ÔnÔn′⟩ss = ⟨Ôn(τn − τn′)Ôn′⟩
∣∣∣∣
loc
, (3.57)

assuming that τn > τn′ . Based on this relation and with the help of expressing the reduced
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Figure 3.8: (a) Steady state concurrence of a network with time delays C(ρτ ) for ϵ = 0.5 and different

values of β. The solid lines represent the results of a full numerical simulation based on

Eq. (3.58), while the dashed lines indicate the FMA predictions. (b) Plot of the entanglement

time τent, i.e., the smallest delay time beyond which the entanglement vanishes, C(ρτent) = 0.
In all plots, ν = 1, Γϕ = 0.

steady state of the two qubits as Eq. (2.5), the time-local steady state with delays then is

ρτ = 1
4

3∑
µ,ν=0,x,y,z

⟨σ̂µ
A(τ)σ̂ν

B⟩
∣∣∣∣
loc
σ̂µ

Aσ̂
ν
B, (3.58)

We can employ Eq. (3.57) to evaluate the full two-qubit density matrix of a time-delay

network through numerical simulations of the time-local master equation given in Eq. (3.1).

In addition, we can again use the FMA to derive a time-local master equation for ρq

only. In this approach, all the propagation delays are already included in the parameters

Nn and M from Eq. (3.31) and Eq. (3.32), respectively. This is the main result of the

section, where we see that in the presence of delays, the correlation functions can be

evaluated as non-equal time correlation functions using the time-local master equation in

Eq. (3.1). Equivalently, in the broadband limit, we can use the reduced master equation

from Eq. (3.6) with the new time-delayed coefficients. In Fig. 3.8(a), we evaluate the

actual steady state concurrence of this system using Eq. (3.58) for a moderate driving

strength of ϵ = 0.5. We see that the dependence of C(ρτ ) captures the overall trend

inferred from µeff(τ) from Fig. 3.7(b). However, the exact simulations not only predict

consistently higher values for C(ρτ=0), they also show that the entanglement of the qubits

is considerably more robust with respect to time delays than the entanglement of the

filtered modes. In Fig. 3.8(b), we define the delay time τent as the maximal delay time for

which a finite amount of steady-state entanglement can still be distributed. This timescale

is roughly given by τent ∼ γ−1, but can be significantly reduced for very large driving

strengths.
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3.8 Outlook: Experimental implementations

This last section is motivated by two ongoing experimental collaborations for which we

provide accurate predictions. Throughout this chapter, we presented a detailed study of

a remote entanglement protocol and showed how to create entanglement between two

physically separated qubits using a nondegenerate parametric amplifier. While we did

include some experimental imperfections to study the protocol robustness in previous

sections, it is still unclear whether the qubit-qubit entanglement would survive under

actual experimental conditions when all imperfections are present.

3.8.1 Qubit-qubit entanglement

This experimental collaboration is being done with the group of Quantum Integrated

Devices led by Prof. Dr. Johannes Fink at ISTA. The setup consists of two qubits, two

waveguides and a nondegenerate parametric amplifier, as proposed in Fig. 3.1. Based

on approximated experimental data, we assume the following parameters: The coupling

into the waveguide is γA/(2π) = 800 kHz and γB/(2π) = 482 kHz for each qubit. We have

non-negligible dephasing noise, given by γϕ,A/(2π) = 265 kHz and γϕ,B/(2π) = 217 kHz.
The nondegenerate parametric amplifier has a bandwidth of κn/(2π) ≈ 30 MHz for both

modes, which gives us a bandwidth ratio of βA ≈ 37.5 and βB ≈ 62.25.
Contrary to our model in Eq. (3.28) where we assumed symmetric qubits, the reality

is that this is rarely the case, confirmed by the experimental parameters we have. Still,

our model allows us to predict an expression for the concurrence for this asymmetric case.

While it is not as simple as Eq. (3.28), it reads as C(ρss) = max(0, Casym.) where Casym. is

Casym. =
2µ tanh (2r)γ+

√
γ2

+ − γ2
−

2γ2
+ + γ2

−(cosh (4r)− 1) + 4γ+Γ+
√
µ cosh (2r) −

1
4×[2γ2

− cosh (4r)− 2(γ2
− + 2γ2

+(µ− 1)) + 4γ+Γ+
√
µ(1− 2µ+ cosh (4r)) sech (2r)

2γ2
+ + γ2

−(cosh (4r)− 1) + 4γ+Γ+
√
µ cosh (2r)

]
,

(3.59)

where we have defined γ± = (γA ± γB)/
√

2 and Γ± = (γϕ,A ± γϕ,B)/
√

2. To avoid

overwriting this already large expression, we have not written down the effective subindex

at reff and µeff . Notice how Eq. (3.59) is independent of Γ−, indicating that any dephasing

noise always contributes, in this case, detrimentally. In Eq. (3.59), we cannot use the

filtered mode approximation derived in Sec. 3.5 for the effective parameters reff and µeff ,

as it was derived under symmetric conditions. We then must use the Markovian bath

parameters given by Eq. (3.13) and µeff = 1.
In Fig. 3.9(a), we then plot Eq. (3.59) in function of the pump strength ϵ for different

insertion losses ν and compare it to the concurrence obtained from the full model using

Eq. (3.1) assuming the same experimental values.

It is important to emphasize that one thing is to create a remote entangled state, and
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Figure 3.9: (a) Evaluation of the concurrence C(ρss) using Eq. (3.1) as a function of the pump strength ϵ

for different insertion losses ν. The dashed line corresponds to Eq. (3.59). (b) Expectation

value for the required correlations necessary to verify our entangled state as a function of a

rotation angle ϕ by which we rotate our second qubit cos (ϕ)σ̂x
2 +sin (ϕ)σ̂y

2 . We have assumed

finite losses ν = 0.8 and set the pump strength at ϵ = 0.2. The values in the main text set

all the other parameters.

another thing is to verify that, indeed, the state is there and that it is entangled. For

that task, one must reconstruct the two-qubit density matrix ρ as in Eq. (3.25). Given

the structure of our density matrix, the entanglement is given by Eq. (2.10), where only

three elements of the density matrix are relevant: ρ00,11, ρ10, and ρ01. Experimentally,

one can reconstruct these elements using the tomography of the density matrix defined in

Eq. (2.5). By expressing the density matrix in terms of the Pauli operators, the matrix

element can be obtained by measuring the following observables

ρ00,11 = ⟨σ̂
x
1 σ̂

x
2 ⟩ − i⟨σ̂x

1 σ̂
y
2⟩ − i⟨σ̂

y
1 σ̂

x
2 ⟩ − ⟨σ̂

y
1 σ̂

y
2⟩

4 , (3.60)

ρ10 = 1− ⟨σ̂z
2⟩+ ⟨σ̂z

1⟩ − ⟨σ̂z
1σ̂

z
2⟩

4 , (3.61)

ρ01 = 1 + ⟨σ̂z
2⟩ − ⟨σ̂z

1⟩ − ⟨σ̂z
1σ̂

z
2⟩

4 . (3.62)

In the idealized case that the parametric amplifier is broadband, there are no photon

losses, and the qubit’s dephasing is negligible, we have seen in Sec. 3.2 that ρ10 = ρ01 = 0
and therefore, all the information about the entanglement would be encoded in the cross-

correlations σ̂x
1 σ̂

x
2 and σ̂y

1 σ̂
y
2 correlations. In Fig. 3.9(b), we show those correlations for the

experimental values described before using Eq. (3.1). As we are far from the idealized

conditions, we predict non-negligible populations on ρ10 , ρ01 , 0. Still, for the parameters

we have selected, Fig. 3.9(a) already shows that a finite amount of entanglement is present

in the system. We observe this in the right-top plot of Fig. 3.9(b), where we predict the

behaviour of the cross-correlations. An experimental observation of such correlations
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would then verify that the two qubits are entangled. Moreover, an experimental fit of the

concurrence in Eq. (3.59) would also provide us information about the effective parameters

of the bath µeff and reff . This would provide an indirect way to probe the parametric

amplifier and extract its relevant parameters.

3.8.2 Hybrid entanglement

These results are motivated by the experimental collaboration at the Walther-Meißner-

Institute with the group of Quantum Systems led by Prof. Dr. Rudolf Gross and Dr. Ha-

bil. Kirill Fedorov. The setup is sketched in Fig. 3.10(a). Similar to our proposal, we have

a nondegenerate parametric amplifier which emits correlated photons into two separated

waveguides. However, there is a small difference: only a single qubit is present in the

system, coupled to mode âA, while the other mode âB does not interact and propagates

along the waveguide. This scenario can be considered a natural previous step before

the qubit-qubit entanglement in which one studies the correlations between the trav-

elling mode âB and the qubit. This sort of entanglement, called hybrid entanglement,

between continuous- and discrete-variable systems has been studied before in the optical

regime [191], but to our knowledge, it has never been shown in the microwave regime.

Our model described by Eq. (3.1) needs to be modified to incorporate a few changes:

First, due to experimental constraints, our qubit doesn’t couple directly to the waveg-

uide, but rather, it is mediated by a single-mode cavity described by mode âc with

resonant frequency ωc. The cavity and the qubit interact via the usual Jaynes-Cummings

Hamiltonian [142]

ĤJC = ig(âcσ̂
+
A − â†

cσ̂
−
A). (3.63)

Moreover, we assume the coupling between the waveguide and the cavity is given by γA,

while the qubit doesn’t have individual decay.

The second modification in Eq. (3.1) is more subtle: We need to assume that the other

mode âB is coupled, via the waveguide, to a virtual single-mode cavity described by the

mode âf with resonant frequency ωf . The reason we use this virtual cavity is because

the mode âB corresponds to the intracavity field of the parametric amplifier, not the

output field. In this scenario, the virtual cavity acts as the output field [192]. We assume

the qubit and the cavity to which is couples to be resonant at ω0/(2π) ≡ ωA,1/(2π) =
ωc/(2π) = 5.54 GHz, with coupling strength g/(2π) = 50 MHz. Both cavities have

identical bandwidth γA/(2π) = γf/(2π) = 1 MHz and also assume identical bandwidth

for the nondegenerate parametric amplifier modes κA/(2π) = κB/(2π) = 50 MHz. In

Fig. 3.10(b), we plot the negativity N (ρ) of our reduced hybrid state, formed by our

qubit and the virtual mode of the cavity, as a function of the frequency of the modes of

parametric amplifier ω ≡ ωA = ωB. As we scan the frequency, we observe two resonances

rather than a single resonance at ω0. The reason is that due to the Jaynes-Cummings

interaction, our qubit and cavity cannot be thought of as individual objects; rather, they
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Figure 3.10: (a) Schematic of the setup to generate hybrid entanglement between a qubit and a continuous

mode. (b) Entanglement witness W(ρ) (in cian) and negativity N (ρ) (in red) between the

qubit and the virtual mode âf as a function of the frequency of the parametric amplifier

ω ≡ ωA = ωB . Vertical lines correspond to the frequencies of the dressed states ω± given by

Eq. (3.64). We assume the frequency of the virtual cavity to be resonant with the parametric

amplifier ωf = ωA.

form a joint system described by its dressed states and dressed energies [142]. In our case,

the dress energies are given by

ω± = ω0 ± g, (3.64)

which match the resonances seen in Fig. 3.10(b). The negativity N (ρ) indicates entangle-

ment between the qubit and the virtual mode. To verify it experimentally would require

us to perform tomography on the continuous- and discrete-variable system to obtain the

state ρ. Alternatively, we can use an alternative witness as described in Sec. 2.2.3. In our

system, the observables we can measure are

{Â} = {x̂,−p̂}, {B̂} = {σ̂y, σ̂z}, → {M̂} = {σ̂y + x̂, σ̂z − p̂}. (3.65)

The lower bounds for our observables can be computed exactly. For the qubit system, the

bound is

n∑
i=1

(∆B̂i)2 = (∆σ̂y)2 + (∆σ̂z)2 = 2− ⟨σ̂y⟩2 − ⟨σ̂z⟩2 ≥ 1 + ⟨σ̂x⟩2 ≥ 1→ UB = 1, (3.66)

where we have used that the norm of the Bloch sphere is ⟨σ̂z⟩2 + ⟨σ̂y⟩2 + ⟨σ̂x⟩2 ≤ 1. For
the continuous system

n∑
i=1

(∆Âi)2 = (∆x̂)2 + (∆p̂)2 = (∆x̂)2 + 1
4(∆x̂)2 ≥ 1→ UA = 1 (3.67)

where we have used the Heisenberg uncertainty relation (∆x̂)2(∆p̂)2 ≥ |⟨[x̂, p̂]⟩|2/4 and

then used that the function f(X) = X+ 1
4X

has a minima for X = 1/2. This all translates
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to the following entanglement witness

W(ρ) = (∆(σ̂y + x̂))2 + (∆(σ̂z − p̂))2 − 2 (3.68)

which must fulfilW(ρ) < 0 to show the state ρ is entangled. We plot entanglement witness

in Fig. 3.10(b) superimposed with the negativity N (ρ). We observe that we can achieve

W(ρ) < 0, and therefore detect entanglement, for one of the dressed frequencies ω−, while

at ω+, even if there is entanglement, our witness is not able to detect it. Surprisingly, the

entanglement at ω+ can be detected, at the expense of not detecting it at ω−, by changing

our witness to {M̂} = {σ̂y − x̂, σ̂z + p̂}.



Chapter 4

Multi-qubit entanglement distribution

The creation of robust entanglement between two qubits, allowing for the creation of

the smallest possible network, opens the question as to whether those results extend to

a larger network of qubits. In this chapter, we consider such a multi-qubit extension

of the entanglement distribution protocol discussed in Chapter 3. We start in Sec. 4.1

with the theoretical model of the setup, which consists of an extension of the previous

system taking into account more qubits. Next, in Sec. 4.2, we derive a reduced qubit

master equation and obtain its dark states. This allows us to start to gain insight into the

entanglement structure of the system. We use these analytical tools to parametrize any

general state in terms of only a few parameters, such as the detunings and the squeezing

strength. Increasing the number of qubits in the system would also, in principle, lengthen

the time required to generate the desired states. In Sec. 4.3, we show how one can

parallelize this process to obtain an advantage with respect to serially using this protocol.

Considering the finite bandwidth of the nondegenerate parametric amplifier, we analyze

the scalability of our protocol in Sec. 4.4. In Sec. 4.5, we transform our master equation

into a stochastic master equation, which allows us to simulate finite-bandwidth effects

for large occupation numbers. We finish this chapter by making a theoretical prediction

about the maximal number of qubit pairs that we can produce with our protocol with

state-of-the-art experimental parameters.

4.1 Quantum network master equation

Our extended protocol to generate multi-qubit entangled states consists, as previously, of

two unidirectional waveguides, labelled n = A,B, a nondegenerate parametric amplifier

which sends correlated photons into the waveguides, and a set of qubits. We label the

qubits by index jn = 1, . . . , Nq along the direction of the waveguide, from left to right.

Here, we assume both waveguides have the same number of qubits. The index jn = 0
corresponds to the parametric amplifier, as in the previous chapter. The setup is sketched

in Fig. 4.1. To connect with the original waveguide system in Sec. 2.3.2 where we model

Nq emitters with decay rates γj, we again identify ĉ0 = ân and γ0 = κn for waveguide

n, and ĉj>0 with σ̂−
j>0. Now, we relabel the index j to j = 1, . . . , Nq. Imposing the

71
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Figure 4.1: Schematic of a dual-rail quantum network, where qubits along two separated waveguides are

driven by the correlated output of a non-degenerate parametric amplifier and relax into a

pure steady state |ψ0(r, δ⃗A, P )⟩. As shown in the inset, the qubits in waveguide A (B) are

detuned from the central photon frequency ωA (ωB) by δA,i (δB,i) and the qubit-waveguide

coupling is assumed to be fully directional.

same waveguide conditions as in Chapter 3, i.e. broadband and linear dispersion relation,

and going to a rotating frame with respect to ωA and ωB, we arrive at a similar master

equation for the whole setup

ρ̇ =
(
Lph + L0

q + Lint
)
ρ. (4.1)

Here, the Liouvillian of the parametric amplifier Lph is the same as in Eq. (3.2), while the

qubit description now takes into account all Nq qubits per waveguide

L0
qρ =

∑
n,j

(
−iδn,j

2 [σ̂z
n,j, ρ] + γn,jD[σ̂−

n,j]ρ+
γϕj

2 D[σ̂z
n,j]ρ

)
, (4.2)

where δn,j = ωn,j − ωn is the detuning of the qubit frequency ωn,j from the central photon

frequency ωn.

Considering the cascaded interaction in Eq. (4.1), we must account for not only the

photons emitted by the parametric amplifier but also those scattered by each qubit, which

influence subsequent qubits along the waveguide. Therefore, in the interaction mediated

by the waveguide, we also need to consider cascaded qubit-qubit interactions

Lintρ =
∑
n,i

√
κnγn,iνn

0,i

(
[ânρ, σ̂

+
n,i] + [σ̂−

n,i, ρâ
†
n]
)

+
∑

n,j>i

√
γn,iγn,jνn

i,j

(
[σ̂−

n,iρ, σ̂
+
n,j] + [σ̂−

n,j, ρσ̂
+
n,i]
)
.

(4.3)



4.1 Quantum network master equation 73

Here, we have included the additional parameters νn
i,j ∈ [0, 1] to model losses in the system.

In general, |νn
i,j| is the loss probability for a photon propagating at waveguide n between

node i and node j, where the index i = 0 refers to the parametric amplifier. In this way,

the νn
i,j can be adjusted to model not only linear absorption losses but also parasitic loss

channels for the qubits. Notice that by setting Nq = 1, we recover the initial model from

the previous chapter. As before, in Eq. (4.1) we have absorbed all propagation phases

into a redefinition of the qubit operators. This means that up to local phase rotations, all

results presented in this work are independent of the precise location of the qubits.

4.1.1 Qubit master equation

We first focus on the limit of a broadband amplifier, κn →∞, in which case the dynamics

of the photons can be adiabatically eliminated to obtain an effective master equation for

the reduced density operator ρq = Trph{ρ} of the qubits only. To do so, first, we rewrite

the full master equation as

ρ̇ = (Lph + Lq + Lph−q) ρ, (4.4)

where

Lqρ = L0
qρ+

∑
n,j>i

√
γn,iγn,jνn

i,j

(
[σ̂−

n,iρ, σ̂
+
n,j] + [σ̂−

n,j, ρσ̂
+
n,i]
)
, (4.5)

now includes all waveguide-mediated interactions among the qubits, while

Lph−qρ =
∑

n=A,B

√
κ
(
[ânρ, L̂

†
n] + [L̂n, ρâ

†
n]
)
. (4.6)

Here, we have introduced the collective operators

L̂n =
∑

j

√
γn,j νn

0,j σ̂
−
n,j. (4.7)

In this form, the master equation in Eq. (4.4) is identical to the master equation Eq. (3.1)

considered in the previous chapter, but with the collective operators L̂n, instead of σ̂−
n ,

appearing in the photon qubit interaction in Eq. (4.6). Therefore, following Appendix A,

we obtain

ρ̇q = Lqρq+
∑

n=A,B

Nn

(
D[L̂n]ρq +D[L̂†

n]ρq
)
+
(
M∗[L̂A, [L̂B, ρq]] +M [L̂†

A, [L̂
†
B, ρq]]

)
, (4.8)

where Nn and M are given, respectively, by Eq. (3.9a) and Eq. (3.9b) for neff = 0, as we
assume a Markovian reservoir. In the limit of negligible losses, νn

i,j = 1, the Markovian
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parameter relation allows us to write the effective master equation as

ρ̇q = − i[Ĥq, ρq] + γ
∑

n

D[Ĵn]ρq. (4.9)

In this equation, we have assumed identical decay rates for all emitters γn,j = γ and

negligible dephasing γϕj
= 0. Moreover, we have already rewritten the underlying

directional qubit-qubit interactions in terms of a coherent Hamiltonian evolution with

Ĥq =
∑
n,i

δn,i

2 σ̂z
n,i + i

γ

2
∑

n,j>i

(
σ̂+

n,iσ̂
−
n,j − h.c.

)
, (4.10)

and purely dissipative processes with collective jump operators

ĴA = cosh(r)L̂A − sinh(r)L̂†
B, (4.11)

ĴB = cosh(r)L̂B − sinh(r)L̂†
A, (4.12)

where L̂n = ∑
j σ̂

−
n,j . This master equation has been derived in the broadband limit, similar

to Eq. (3.6). In this case, the system is fully determined by the squeezing parameter r,

characterizing the degree of two-mode squeezing of the photon source, and the two sets of

qubit detunings, δ⃗n=A,B = (δn,1, δn,2, . . . , δn,Nq).

4.2 Steady states and entanglement

Equation (4.9) describes an open quantum many-body system with competing coherent

and dissipative processes, which in general drive the qubits into a highly mixed steady

state. However, in the following, we show that there exist specific conditions under which

the steady state of the network, ρss = |ψ0⟩⟨ψ0|, is not only pure but also exhibits different

degrees of multipartite entanglement that can be controlled by the local detunings δn,i.

Here, we employ the same strategy as in Sec. 3.4 to find its dark states. The main different

is that now the jump operators Ĵn involve a collective qubit operator L̂n and that the

Hamiltonian Ĥq involves the detuning contribution as well as a new term which includes

the dipole-dipole term, due to the cascaded interaction among the qubits. To make this

derivation simple, we proceed step by step, starting from smaller networks Nq = 1 and

Nq = 2, to larger networks with a general Nq.
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4.2.1 Small quantum network

The most trivial example here is when Nq = 1, as we recover the results from the Eq. (3.19)

from Chapter 3. Specifically, there we showed that the dark state is given by

|ψ0⟩ = |Φ+
1,1⟩ = cosh (r)|0A,1, 0B,1⟩+ sinh (r)|1A,1, 1B,1⟩√

cosh (2r)
, (4.13)

which approaches a Bell state when r →∞.

The first non-trivial case starts with Nq = 2. In this case, a dark state satisfying Ĵn|ψ0⟩
can be obtained by simply arranging the qubits pairwise in a state of the form given in

Eq. (4.13). However, since the collective jump operators Ĵn are insensitive to the order of

qubits, the whole subspace of dark states is spanned by states of the form

|ψ0⟩ = α|Φ+
1,1⟩|Φ+

2,2⟩+ β|Φ+
1,2⟩|Φ+

2,1⟩. (4.14)

From the second condition, Ĥq|ψ0⟩ = 0, we then obtain the additional constraint

∑
n,i

δn,i = 0, (4.15)

on the sum of all detunings together with

β(δA,1 − δB,1 − δA,2 + δB,2) = 0, (4.16)

2γβ = i(δA,1 + δB,1 − δA,2 − δB,2)α. (4.17)

These conditions on the detunings can only be fulfilled when either (i) δA,1 + δB,1 = 0 and

δA,2 + δB,2 = 0 or when (ii) δA,1 + δB,2 = 0 and δA,2 + δB,1 = 0. This means that for a pure

steady state to exist, the detunings of the qubits in subsystem B must be of opposite sign

but the same in magnitude as the detunings in A.

In case (i) we have β = 0 and resulting dark state |ψ0⟩ = |Φ+
1,1⟩|Φ+

2,2⟩ is simply a product

of the entangled pairs given in Eq. (3.19). In case (ii), where the detunings are finite and

opposite along the diagonals, we obtain instead the state

|ψ0⟩ =
γ|Φ+

1,1⟩|Φ+
2,2⟩+ i∆|Φ+

1,2⟩|Φ+
2,1⟩√

γ2 + ∆2 , (4.18)

where ∆ = δA,1 − δA,2.

In Fig. 4.2(a) and (b), we visualize the entanglement structure of this state in terms of

the steady-state concurrences Cij ≡ C(ρA,i|B,j), as defined in Eq. (2.10), of the reduced

bipartite qubit states, ρA,i|B,j. For ∆ = 0, we find that for parallel pairs Cii ≃ 1 already

for moderate values of r ≳ 1, consistent with the state |Φ∥⟩. We see that, as |∆| ≫ γ,

the situation is reversed, and only the diagonal qubit pairs become entangled. For
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Figure 4.2: Bipartite entanglement expressed in terms of the concurrences Cij for the four-qubit state in

Eq. (4.18) (a) as a function of r and (b) as a function of ∆ for r = 1.

the same value of squeezing, we obtain C12 = C21 ≃ 1. For any intermediate regime,

the entanglement is distributed among the four qubits. Specifically, when ∆ = γ, the

four-qubit steady state takes a simplified form and can be written as

|ψ0⟩ = 1
cosh(2r)

{
cosh2(r)|0000⟩+ sinh2(r)|1111⟩

+ cosh(r) sinh(r)
((1 + i)

2 (|1100⟩+ |0011⟩) + (1− i)
2 (|1001⟩+ |0110⟩)

)}
.

(4.19)

We see that this state only contains components with an even number of excitations,

which can be attributed to the emission of correlated photon pairs by the TMS source.

In the limit r →∞, the concurrence saturates at C∞ = 0.25 for all four bipartite states.

However, in Fig. 4.2(a), we observe the maximum of the two-quit concurrence is reached

at a finite value of r⋆. This can be understood by explicitly evaluating the concurrence

for this case,

C1,1 =
1− cosh(4r) +

√
2(4 cosh(4r) + cosh(8r)− 5)
8 cosh2(2r)

. (4.20)

This expression reaches a maximal value of C⋆ = 0.3090 at a squeezing parameter of

r⋆ = 0.479, which exceeds the asymptotic value of C∞ = 0.25. We attribute this higher

concurrence to the multipartite nature of the state, as for any finite ∆, the state is a

genuine four-partite entangled state [122] and belongs to the set of locally maximally

entanglable states [193] for r ≫ 1.

4.2.2 Large quantum network

While identifying the dark states for Nq = 1 and Nq = 2 can be done analytically, it

becomes a tedious task for a general Nq state. We would like to systemically identify

more complex multi-qubit steady states for any Nq.
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We follow a two-step procedure: First, we set δ⃗B = −δ⃗A. In this scenario, from

Nq = 2, we showed that the two Bell states decouple, and the steady-state is given by

|ψ0⟩ = |Φ+
1,1⟩|Φ+

2,2⟩. For a general Nq, qubits with the same index decouple pairwise from

the photonic reservoir. The network then relaxes into the pure steady state |ψ0⟩ = |Φ∥⟩,
where

|Φ∥⟩ =
Nq⊗
i=1
|Φ+

i,i⟩ (4.21)

is the product of Nq consecutive Bell pairs of the type given in Eq. (3.19). Interestingly,

this result is independent of the total number of qubit pairs, similar to what has been

found for coupled spin chains [94] or discrete cavity arrays [93]. Notice that these results

show that, under the ideal conditions we assumed, in principle, we can create an infinite

amount of Bell pairs along the waveguide. As we will see in Sec. 4.4, this is an artifact of

the idealized infinite-bandwidth parametric amplifier, and taking a finite bandwidth into

account limits the number of entangled pairs we can generate.

In the second step, we would like to include the scenario where the detuning is included.

For this, we make use of the form-invariance of the cascaded master equation in Eq. (4.9)

under unitary transformations of the type [149]

Ûi,i+1 = eiθi,i+1(s⃗B,i+s⃗B,i+1)2
, (4.22)

where s⃗µ = (σ̂x
µ, σ̂

y
µ, σ̂

z
µ)/2 and the mixing angle satisfies tan(θi,i+1) = (δB,i−δB,i+1)/γ. Un-

der these transformations, one finds that the collective jump operators Ĵn and Hamiltonian

Ĥq are given by

Ûi,i+1ĴnÛ
†
i,i+1 = Ĵn, (4.23a)

Ûi,i+1Ĥq(δ⃗A, δ⃗B)Û †
i,i+1 = Ĥq(δ⃗A, Pi,i+1δ⃗B). (4.23b)

Here, we have introduced the permutation Pi,i+1, which exchanges δB,i and δB,i+1. Observe

how the collective jump operators are invariant under this unitary transformation, but the

Hamiltonian term changes. In other words, given a pure steady state |ψ0⟩ for a certain

detuning pattern δ⃗B, the state |ψ′
0⟩ = Ûi,i+1|ψ0⟩ is a pure steady state of the same network

with a permuted pattern of detunings, δ⃗′
B = Pi,i+1δ⃗B.

This form-invariance now allows us to construct a large family of multipartite entangled

steady states, which are parametrized by (i) the squeezing parameter r, (ii) the set of

detunings δ⃗A for qubits in waveguide A and (iii) a permutation P that fixes the detunings

in waveguide B to be δ⃗B = −P δ⃗A. By decomposing P = ∏
σ Piσ ,iσ+1 into a product of

nearest-neighbor transpositions, we can start with the state in Eq. (4.21) and then use

the relation below Eq. (4.23) to derive an explicit expression for the corresponding steady

state,

|ψ0(r, δ⃗A, P )⟩ =
∏
σ

Ûiσ ,iσ+1|Φ∥⟩. (4.24)
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A graphical illustration of Eq. (4.24) is presented in Fig. 4.3.

Figure 4.3: Graphical illustration of Eq. (4.24). Starting from δ⃗B = −δ⃗A, the detunings in waveguide B

are reordered as δ⃗B = −P δ⃗A through nearest-neighbor transpositions, following the coloured

lines as a guide to the eye. Each transposition maps into one of the unitary operations Ûi,i+1

that determine the final steady state.

We can now use Eq. (4.24) to generate any quantum network. In this scenario, using

concurrence might not be the most efficient way to quantify the amount of entanglement

present in the network. For this task, we use the entanglement entropy defined in

Eq. (2.9), S(ρr) = −Tr{ρr ln ρr} for a reduced state ρr to study the entanglement between

different bipartitions of the network. First of all, as sketched in Fig. 4.4(a), if we take

a local bipartition which takes into account a local waveguide, this analysis shows that

SA ≡ S(ρA) = −Nq ln
[
xx(1− x)(1−x)

]
, where x = cosh2(r)/ cosh(2r), only depends on

the squeezing parameter r. This can be understood from the fact that the unitaries

Ûi,i+1 only act within subsystem B. Thus, with respect to this partition, the states

in Eq. (4.24) can be understood as generalized ‘rainbow states’ [94, 194, 195] with a

volume-law entanglement S(ρA) ≃ Nq ln 2 for r ≳ 1. In contrast, for partitions along

the chain, the entanglement entropy Sn = S(ρ[1,...,n]) depends not only on the chosen

permutation P , but also on the pattern of detunings δ⃗A. This is illustrated in Fig. 4.2(a)

and (b), where we consider as an example the detunings δA,i = (i− 1)∆ and the reversed

order, δB,i = −PrevδA,i = −δA,Nq+1−i, in waveguide B.

We can gain new insight into the steady-state entanglement distribution of the state in

Eq. (4.24) by understanding the unitary transformation Ûi,i+1 in each case. When ∆≫ γ,

the mixing angle is given by θi,i+1 ≈ π/2, for which the unitary transformation is just

equivalent to a SWAP gate between neighboring sites [3]. In this regime, the entanglement

entropy is then given by Sn ≃ 2n ln 2.
The other regime, when ∆ ≲ γ, the mixing angle is then θi,i+1 ≈ π/4. In this case,

the entangling unitaries are equivalent to Ûi,i+1 ≈
√

SWAP, which perform a half-swap

between neighboring sites. This allows for generating more multipartite entanglement
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Figure 4.4: (a) Schematic of the detuning pattern for the family of multipartite states described in the

text and different partitions for evaluating the entanglement entropy. (b) Entanglement

entropy Sn as a function of n, for different detunings ∆ and r = 1.

across the whole chain, which reduces the block-entanglement Sn correspondingly. In

general, different choices for δ⃗A and P can be used to define certain blocks of qubits that

are entangled among each other, independently of their physical location.

4.2.3 Uniqueness of the steady state

While we have had an extensive discussion of the steady state, we have not checked

something important about our states: the uniqueness of the steady state. While for time-

dependent protocols such as state transfer or qubit states this is not a crucial matter, we

focus on ensuring that the steady state of our network is known and therefore controllable.

If the steady state were not unique, the actual steady state of an ideal network would

then depend on the precise initial condition, while in practice residual imperfections

would create an uncontrolled mixture of multiple possible steady states. This would be

detrimental to entanglement generation. In Appendix B, we prove that Eq. (4.24) is

indeed the unique steady state of Eq. (4.9), and therefore the unique steady state of the

quantum network.

4.3 Time dynamics

So far, we have shown that a single two-mode squeezing source is, in principle, enough

to entangle an arbitrary number of qubits. However, for practical applications, we must

still evaluate the time Tprep that it takes to prepare this state. In Sec. 3.6, we computed

the entanglement rate R for a single qubit pair, Nq = 1, and concluded that working

with large squeezing strength r ≫ 1 is not the optimal strategy. Here, we fix r = 1 and

study the relaxation dynamics towards the steady state |ψ0⟩ for a larger network. For

that, we consider the ideal qubit master equation Eq. (4.9), which assumes the parametric

amplifier is already in the steady state. Then, similar to Sec. 3.6 at t = 0, all qubits are
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Figure 4.5: (a) Relaxation into a bipartite entangled state for δ⃗A = 0 and (b) into a multipartite entangled

state for δ⃗B = −Prevδ⃗A and ∆ = γ/5. In both cases Nq = 5. (c) Scaling of the preparation

time Tprep for different ratios ∆/γ, where δA,i = ∆(i− 1) and δ⃗B = −δ⃗A. For the examples

in (a) and (b), Tprep is indicated by the dashed vertical line. In all plots, r = 1.

initialized in state |0⟩. We consider a larger network formed of Nq = 5 qubit pairs, and

we are interested in the required time to reach the steady state, Tprep. We define Tprep via

the condition (1−µ(Tprep))/Nq = 0.001, where µ = Tr{ρ2
q} is the purity of the total state.

This condition comes from the knowledge that in the steady state, our state is pure, and

it is given by Eq. (4.24).

In Fig. 4.5(a), we show the time evolution of this state when all the qubits are on

resonance δ⃗A = 0. We know that with this detuning pattern, the steady state is given by

Eq. (4.21), which is a product state of five Bell-like pairs. We observe how the entanglement

builds over time as it reaches a steady state. As expected from the unidirectional waveguide,

the first qubit pair is the first to reach the steady state. Observe that the second and

consecutive qubit pairs do not need the first qubit pair to reach the steady state, and thus

become a dark state, before they begin to create entanglement themselves.

Additionally, we consider a multipartite entangled state in Fig. 4.5(b). In this case, the

detuning configuration is the same we used for the steady-state multipartite entangled

state in Fig. 4.4. Here, instead of the concurrence, we use the entanglement entropy Sn

as used in the previous section. We observe how even in this multipartite configuration,

the steady state also builds up from left to right due to the cascaded interaction. As

in that case, the concurrence is not a good metric to quantify the entanglement, so we

show the time evolution of the entanglement entropy Sn(t)/ ln 2. We observe how, for this

multipartite case, the state preparation Tprep is faster than the previous case. Notice how

the steady-state entanglement entropy S1 and S4, as well as S2 and S3, coincide at the

steady state, as expected, but not through its time dynamics. As with the resonant case,
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this is because entanglement starts to build up from the left to the right.

Consider the protocol from Chapter 3, where only a single qubit pair Nq = 1 is driven

to create a Bell-like state. A sequential preparation of Nq independent qubit pairs would

require a total time which scales linearly with the number of qubit pairs one wants to

create, Tprep ∼ Nq. In Fig. 4.5(c), we show the total preparation time as a function of

Nq. The dotted line represents the sequential preparation of the protocol, which scales

linearly with Nq. We then compare it with the total preparation time from Fig. 4.4(a),

which is given by ∆ = 0. As mentioned before, the entanglement along the waveguides

starts to build up even before the first qubit reaches the steady state. This gives us a

faster preparation time with respect to the sequential preparation of Nq individual qubit

pairs, i.e., Tprep(Nq) < NqTprep(Nq = 1).
Due to the dark state conditions, the same steady state is reached either on resonance

δ⃗A = 0 or with opposite detunings δ⃗A = −δB. We can then assume the opposite detuning

pattern and take the magnitude of each detuning as δA,i = ∆(i−1). By that, we mean that

the first qubit pair is on resonance δA,1 = 0, the second qubit pair is detuned by δA,2 = ∆,

and so on. This new detuning configuration, which does not alter the steady state, does

alter the time evolution of the state. We plot this also in Fig. 4.4(c), where we observe

that the preparation time starts to decrease to even reach Tprep(Nq) ≃ Tprep(Nq = 1) for

∆ ≳ γ, i.e., all pairs are prepared in parallel. The reason for that is that in this case,

where the qubits are all detuned from each other, the parametric amplifier is driving them

independently. It is then, in this regime, where we can achieve perfect parallelization of

the protocol.

For multipartite entangled states, where the detuning differences |δA,i − δA,j| are nec-

essarily small, a full parallelization is not possible, but even in this case we obtain an

intrinsic advantage compared to a sequential distribution of entanglement, followed by

local gates.

4.4 Scalability in realistic networks

All the results so far have been derived within the infinite-bandwidth approximation,

which underlies Eq. (4.9) and assumes that correlated photons are available at arbitrary

detunings. This assumption must break down when δmax = max{|δA,i|} ≳ κ, but even for

δA,i = 0 it has been shown in the previous chapter that any finite κ limits the transferable

entanglement. Therefore, to provide physically meaningful predictions about the scalability

of the current scheme, it is necessary to go beyond the assumption of a Markovian squeezed

reservoir and take finite-bandwidth effects into account, as we did in the previous chapter.

To do so, we now simulate the dynamics of the state of the full network, ρ, as described

by the quantum master equation Eq. (4.4).

Let’s focus on the entanglement propagation along the waveguide. In the infinite-

bandwidth limit, it seems as if one could, in principle, create an infinite amount of
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Figure 4.6: Steady-state entanglement (a) for different bandwidth β = κ/γ as a function of the length of

the waveguide, (b) for Nq = 2 in the limit when the bandwidth of the parametric amplifier

becomes extremely narrow β < 1. In both plots, r = 1 and resonant condition δ⃗A = 0.

entangled pairs. Considering the finite-amplifier bandwidth, we observe a more realistic

situation. In Fig. 4.6(a) we plot the steady-state concurrences Cii for the resonant case

δ⃗A = 0 and different bandwidth ratios β = κ/γ. We observe that the finite bandwidth

of the parametric amplifier not only reduces the maximum entanglement of the first

pair, as shown in Chapter 3, but also causes a gradual decay of entanglement along

the chain. Thus, unlike the idealized infinite-bandwidth scenario, where, in principle,

an infinite number of qubit pairs could emerge, the parametric amplifier’s bandwidth

imposes a realistic limitation on the number of entangled pairs. The finite-bandwidth

case also allows us to explore the opposite regime, when β ≪ 1. In Fig. 4.6(b), this is

what we observe if we focus only on the parallel pairs C11 and C22. Surprisingly, this is

not the only effect observed. At around β ≤ 1, a new entanglement structure emerges,

creating correlations between both diagonal and consecutive qubits. One might consider

the diagonal correlations to result from the two-mode squeezer correlations, as we see

similar effects when the qubits have finite but opposite detunings, as seen in Fig. 4.2.

However, this is not the case, as they vanish when increasing the amplifier bandwidth.

This observation cannot be fully explained here. However, in Chapter 5, we will analyze a

simpler yet equivalent system where the same entanglement structure arises. There, we

will be able to explain these quantum correlations as a non-Markovian effect from the

parametric amplifier.

4.4.1 Maximal number of entangled pairs

By using a linear extrapolation, Nent = C11/(C11 − C22), we can use these finite-size

simulations to extract the maximal number of pairs that can be entangled for more

realistic scenarios, for example with finite bandwidth β and dephasing rate γϕ. These

results are summarized in Fig. 4.7. We see that for otherwise ideal conditions, rather

large numbers of Nent ∼ 10− 100 can be entangled for moderate β, while the presence of
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Figure 4.7: Maximal number of entangled pairs, Nent, as a function of (a) β = κ/γ for different dephasing

rates γϕ at fixed squeezing strength r = 1.0 and (b) as a function of the squeezing strength r

for the same dephasing rates γϕ at fixed β = 30. For both plots, we have assumed δ⃗A=0.

dephasing or other imperfections sets additional limits on Nent. Note that these results

are for δ⃗A = 0, where the formation of the steady state is the slowest [see Fig. 4.5(c)].

Thus, these results represent approximate upper bounds for Nent and also for all other

classes of multipartite entangled states. For a more complete and detailed analysis of the

protocol, we provide some additional numerical results on the dependence of Nent on the

squeezing strength and on the influence of waveguide losses and imperfect chiral couplings.

In Fig. 4.7 (a), we plot Nent as a function of β = κ/γ for a small squeezing parameter

of r = 1.0. In Fig. 4.7 (b) we fix the value of β = 30 and plot Nent as a function of r.

The decay of entanglement along the chain for smaller r is much slower and also more

robust with respect to qubit dephasing. Even for negligible dephasing, we observe how

the number of possible entangled pairs decrease as we increase the squeezing strength r,

indicating how fragile the states become as we increase its entanglement. On the other

hand, working in a weak squeezing environment, while it would allow the creation of

larger networks in close-to-ideal situations, one must take in mind that also the amount of

entanglement present would be weak. In this scenario, where one is distributing a small

amount of entanglement along a large network, one could think of purification protocols

to increase the amount of entanglement on the smallest section. In general, this plot

shows the expected trade-off between a high degree of entanglement and the number of

entangled pairs.

4.4.2 Waveguide losses

To scale our protocol, we have begun considering finite bandwidth effects and non-negligible

dephasing noise. In Fig. 4.8, we analyze a chain of Nq = 4 qubit pairs and simulate

the effect of waveguide losses. Although superconducting cryogenic links experience no

losses due to their superconducting state, various components, such as circulators, do

incur photon losses. To model this, we assume νn
i,j = ν(i− j), meaning that a fixed loss
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Figure 4.8: (a) Effect of finite propagation losses ν > 0 on the steady-state entanglement for Nq = 4 for

(a) squeezing strength r = 1 and on resonance ∆ = 0, (b) for r = 1 and parallel configuration

with detuning ∆ = 2γ. For all plots, νn
i,j = ν|i− j| and β →∞ have been assumed.

probability |ν| exists between successive nodes of the network. In Fig. 4.8, we observe the

detrimental effect of the losses. For small values of ν, this plot predicts an approximately

linear decay of the entanglement along the waveguide. For larger values, the first qubit

pair has already lost half of its entanglement due to source losses, and this decay becomes

faster than linear along the chain.

4.4.3 Nonideal chiral coupling

Throughout this chapter, we have considered the waveguide to be completely directional;

that is, all the photons propagate along the same direction. While this allows us to get

analytical results, realizing such directional interactions will only be possible with a certain

fidelity. Here, we present additional numerical results for waveguides; the qubits along the

waveguides can decay into left-propagating modes with rate γL and into right-propagating

modes with rate γR. The main results are then recovered when γL = 0 and γR = γ. To

extend our model to a bidirectional waveguide, we include the effect of an additional

left-propagating channel into our effective qubit master equation (see, e.g., Ref. [150]).

We obtain

ρ̇q = −i[Ĥchiral, ρq] +
∑

n=A,B

γRD[Ĵn]ρq +
∑

n=A,B

γLD[L̂n]ρq. (4.25)

The new modes contribute to both the coherent and incoherent interaction. The coherent

interaction now depends on the difference between left- and right-modes and vanishes at

a completely bidirectional waveguide,

Ĥchiral = i(γR − γL)
2

∑
n=A,B

∑
j>i

(σ̂+
n,iσ̂

−
n,j − h.c). (4.26)
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Figure 4.9: Plot of the bipartite concurrence of the steady state of the master equation in Eq. (4.25),

which includes a decay into left-propagating waveguide modes with rate γL. The plots in (a)

and (d) assume parallel detunings with δ⃗B = −δ⃗A and δA,i = ∆(i− 1), while the plots in (b),

(c), (e) and (f) assume a reversed detuning pattern δ⃗B = −Prevδ⃗A. In all plots r = 1.

For the incoherent term, we have assumed that the left-propagating modes decay into

vacuum modes with a collective jump operator L̂n = ∑Nq
i=1 σ̂n,i. Therefore, only the right-

propagating modes are squeezed and correlated. Note that this form also assumes that

the qubits are spaced by multiples of the central wavelength, such that all propagation

phases cancel.

In Fig. 4.9, we numerically solve this master equation for different degrees of chirality,

γL/γR. We observe that the effect of a finite γL on the resulting steady state depends a

lot on the type of entanglement, which in turn is determined by the detunings. While

multipartite entangled states are strongly affected by a finite bidirectional coupling,

bipartite entangled states are more robust, and in the far-detuned regime, a finite amount

of entanglement survives up to γL/γR = 1.

4.4.4 Far-detuned qubits protocol

In Sec. 4.3, we observed a time speedup for far-detuned qubits. We now consider the

effects of a finite-bandwidth amplifier. In Fig. 4.10(a), we first investigate the dependence

of C11 on the detuning δA,1 = ∆/κ. As expected, this plot shows a significant decay of the

entanglement for ∆/κ > 1, from which we also deduce that δmax < κ must be satisfied in

the multi-qubit case. Since, for a parallel preparation with Tprep(N) ∼ const., we require

δmax ≈ γNq, we conclude that the number of pairs that can be entangled in parallel,

N∥ ≈ Nent, is comparable to the total number of entangled pairs for δ⃗A = 0. As a minimal

illustration of this behaviour, we consider in Fig. 4.10(b) the example of Nq = 4 pairs with
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Figure 4.10: a) Dependence of the concurrence of a single qubit pair on the detuning ∆, where δA,1 =
−δB,1 = ∆ and different values of β have been assumed. (b) Plot of the concurrence C44 in

a chain of Nq = 4 qubit pairs with δA,i = (i− 1)∆ = −δB,i and a finite dephasing rate. In

all plots, r = 1.

δA,i = ∆(i− 1). We plot the concurrence of the last pair, C44, for a fixed dephasing rate

γϕ and increasing detuning ∆. Up to ∆ ∼ κ, entanglement increases due to a reduced

preparation time, while for larger detunings finite-bandwidth effects set in and degrade

the entanglement again. We observe that the initial gain from a parallel preparation when

∆ > 0, while the entanglement decreases again when δmax = (Nq − 1)∆ ≈ κ, due to finite

bandwidth effects. Note that for a parametric amplifier with asymmetric decay rates,

κA , κB, the structure of the ideal qubit master equation in Eq. (4.1) remains the same,

but finite-bandwidth effects are determined by the minimal rate κmin = min{κA, κB}.

4.4.5 Entanglement purification

As we have seen throughout the previous section, entanglement distribution is fragile.

As we increase the squeezing strength to stabilize a highly entangled state, it becomes

more susceptible to imperfections, such as coupling inefficiencies or dephasing noise. In

view of this, it might be more favorable to create a larger network of wealy entangled

states and sacrifice some of them to boost the entanglement at the remaining qubit pairs.

Here, we describe the application of an entanglement purification protocol, the DEJMPS

protocol [50], to distill highly entangled states.

First, we give a general introduction to the protocol. For that, consider two identical

qubit pairs Nq = 2, given by the joint state ρ = ρ1 ⊗ ρ2. To make a connection to our

setup, each ρi=1,2 is a two-qubit state between waveguide A and waveguide B. We then

assume each qubit state has the following decomposition

ρi=1,2 = A|Φ+⟩⟨Φ+|+B|Φ−⟩⟨Φ−|+ C|Ψ+⟩⟨Ψ+|+D|Ψ−⟩⟨Ψ−|, (4.27)

where A+B+C +D = 1 and A > B ≥ C ≥ D. The DEJMPS protocol works as follows:

1) Select one of the qubit pairs, ρ1, for which to distill entanglement.
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2) Perform Rx(π/2) rotations both qubits at waveguide A, and Rx(−π/2) on both

qubits at waveguide B.

3) We perform two CNOT gates, one at each waveguide, between each qubit. We

decided to keep ρ1, so ρ1 forms the control qubits, while ρ2 are the target qubits.

4) The target qubits on both waveguides are measured, and their measurement results

are exchanged.

5) If both measurements coincide, the protocol is successful, and the first qubit pair ρ1

has been distilled. If their measurements are different, the protocol has failed, and both

qubit pairs are discarded.

The successful purification probability for this protocol is given by

psucc. = (A+D)2 + (B + C)2, (4.28)

and after the successful purification, the state after the protocol has a fidelity given by

Fsucc. = A2 +D2

psucc.

, (4.29)

which is higher than the initial fidelity F0 = A. Our protocol then offers the perfect

scenario for the application of this purification protocol. Assume we are on resonance

δ⃗A = 0. In this case, our steady state is given by Eq. (4.21), which is a sequence of

independent Bell-like states. Specifically for Nq = 2, the state is

|ψ0⟩ =
2⊗
i

(cosh (r)|00⟩i,i + sinh (r)|11⟩i,i)i

(cosh (2r))i/2 , (4.30)

with occupation number N = sinh2 (r). Given our initial state, the density matrix

decomposition given by Eq. (4.27) is

A = |⟨Φ+|ψ0⟩i|2 = 1
2 (1 + tanh (2r)) , (4.31a)

B = |⟨Φ−|ψ0⟩i|2 = 1
2 (1− tanh (2r)) , (4.31b)

C = |⟨Ψ+|ψ0⟩i|2 = 0, (4.31c)

D = |⟨Ψ−|ψ0⟩i|2 = 0. (4.31d)

As required, they fulfill A+B + C +D = 1. Evaluating Eq. (4.28) with our coefficients,

we obtain

psucc. = 1− sech2 (2r)
2 . (4.32)

Then, if the protocol is successful, the remaining state’s fidelity is boosted to

Fsucc. = 1
2 (1 + tanh (4r)) . (4.33)
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Observe how when r = 0, A = psucc. = Fsucc. = 1/2. However, for r > 0, this protocol
always gives a higher entangled state. Starting from relatively high squeezing strength

r = 1, the initial fidelity is already right, A = 0.982, for which the purified state would

reach a fidelity of Fsucc. = 0.999 with probability psucc. = 0.964. Considering a more

realistic squeezing of r = 0.35 (S = 3 dB), the initial fidelity is A = 0.80, from which we

can distill Fsucc. = 0.94 with probability psucc. = 0.68.

4.5 Stochastic master equation

Investigating multi-qubit quantum networks for the case of a finite-bandwidth parametric

amplifier places a huge burden on the numerical simulations, as in solving Eq. (4.4), the

Hilbert space now also needs to take into account n = 2 bosonic modes. To mitigate

this scaling problem, we take advantage of the stochastic master equation described in

Sec. 2.5.3. First, we map the bosonic modes from the parametric amplifier âA and âB

to complex-valued stochastic variables using the positive-P representation described in

Sec. 2.5.2. Thus, our parametric amplifier is characterized by 4 complex-valued variables

{αA, βA, αB, βB}, which are governed by Eq. (2.130), and are used to drive the qubits

along the waveguide, as show in Fig. 4.11(a).

Therefore, we can map our original master equation to a stochastic master equation for

the qubit system that looks like

ρ̇q(α,β, t) = (Lq + Ls(α,β)) ρq(α,β, t), (4.34)

with a stochastic term given by

Ls(α,β)ρq =
∑

n=A,B

√
κγ
(
[βn(t)L̂n − αn(t)L̂†

n, ρq]
)
. (4.35)

Here, we have defined α = (αA, αB), β = (βA, βB), and we have L̂n = ∑
i σ̂

−
n,i. The

dynamics of the reduced qubit master equation are recovered by taking the statistical

average of this equation ρq(t) = ⟨ρq(α,β, t)⟩ over a finite amount of trajectories Mtraj. In

Fig. 4.11(b), we plot the time evolution of the concurrence Cij for a system formed by

Nq = 2 and compare it with the solution from Eq. (4.4). We observe a perfect agreement

between both models due to the large averaging of the stochastic master equation.

In general, this stochastic master equation provides the advantage of mapping an

infinite Hilbert space into complex-valued variables at the expense of stochastic averaging.

This allows us to explore the parameter regime of strongly driven qubits. In this case,

the noise fluctuations also grow, which requires further averaging. We found that, in

general, the positive-P representation needs much more averaging trajectories than the P

representation we employ in Chapter 5.
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Figure 4.11: (a) Schematic of 4 qubits driven by a classical correlated field. (b) Comparison of the

time evolution of the concurrence Cij for Nq = 2 using the stochastic master equation in

Eq. (4.34) (dashed) and the original master equation in Eq. (4.4)(faded solid). We have

assumed the following parameters: δA = δB = 0, ϵ = 0.1, κ = 10, γ = 1, and the stochastic

averaging is over Mtraj = 50000 with dt = 0.05.

4.6 Microwave quantum networks

To illustrate the performance of this protocol in a realistic setup, where all types of

imperfections are taken into account, we consider in this subsection the example of

superconducting qubits connected via microwave transmission lines.

As a starting point, we use the parameters from a recent work by Joshi et al. [161], which

describes the realization of a chiral coupling of a superconducting qubit to a microwave

waveguide. From this reference, we deduce a qubit dephasing rate of γϕ/2π = 50 kHz (in

accordance with other state-of-the-art experiments [160]), a directional emission rate of

γR/2π ≃ 1 MHz and an unwanted decay into the opposite direction with rate γL/γR ≃ 0.01.
In addition, in this experiment, there is a residual decay into non-guided modes with a

rate γ′/2π = 364 kHz. In our numerical simulations, we include this process by adding

a new term γ′∑
n,iD[σ̂−

n,i]ρ to our master equation. For these parameters, ∆ = 0 and

assuming an ideal two-mode squeezing source with r = 1, we obtain Nent ≃ 1 and the

concurrence of the first pair is C11 ≃ 0.1. Obviously, this poor result is mainly related to

the large residual decay rate γ′. By assuming that this decay channel can be eliminated

in future setups, γ′ → 0 [196], the result improves to Nent ≃ 2 and C11 ≃ 0.53, now being

primarily limited by decoherence with rate γϕ/γ ≃ 0.05.
Let us now consider the same parameters, but assume the finite detunings δA = (i−1)∆

with ∆ = γR. Consistent with Fig. 4.10(b), we find that while keeping C11 ≃ 0.53, this
modification would already boost the total number of entangled pairs to about Nent ≃ 20
(assuming γ′ = 0). Further, by improving the ratio γϕ/γR by a factor of ten (which is

well within the range of typical qubit coherence times) would boost this number to about

Nent ≃ 120 (with ∆ = γR) and Nent ≃ 6 (with ∆ = 0) and with C11 ≃ 0.85. At this stage,
the effects of a finite rate γL become relevant.

Let us now address the effect of a finite amplifier bandwidth. In the microwave regime,
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two-mode squeezing sources are usually realized with Josephson parametric amplifiers

(JPAs) or travelling wave parametric amplifiers (TWPAs). Typical bandwidths for these

devices are κJPA ≃ 2π× 10 MHz [22] and κTWPA ≃ 2π× 1 GHz [197, 198]. Combining the

parameters from above with the JPA, the relevant ratio between the amplifier bandwidth

and the qubit decay rate is βJPA = κJPA/γR ≃ 10. In this case, the finite bandwidth does

not change the conclusion from above for ∆ = 0, and we obtain Nent ≃ 2 with C11 = 0.45
for γ′ = 0. For ∆ = γR our extrapolation predicts Nent ≈ 50, but since we must limit the

maximum detuning to δmax < κ, the limit in this example is set by Nent ≈ β ≃ 10.
To go beyond this limit, we can use a TWPA. In this case, the bandwidth ratio can

reach values up to βTWPA = κTWPA/γR ≃ 103 and all the results for Nent and C11 reduce

to the infinite-bandwidth results from above. Note, however, that this assumes an ideal

amplifier without any added noise.

In summary, these estimates show that while the preparation of highly entangled multi-

qubit states naturally requires sophisticated experimental setups, existing experimental

techniques in the field of superconducting circuits are, in principle, already enough to

demonstrate the simultaneous entanglement of Nq ≈ 2 − 10 qubit pairs or generate

multipartite entanglement among ∼ 4− 8 separated qubits.



Chapter 5

Thermal entanglement distribution

In this chapter, we continue the investigation of a small effect that we only briefly pointed

out in Sec. 4.4. There, in Fig. 4.6(b), we observed that below a certain bandwidth of

the correlated photon source, entanglement was emerging between consecutive qubits

along the same waveguide, in addition to the diagonal quantum correlations that appear

in the diagonal-detuning configuration. To understand the emergence of these quantum

correlations, in this chapter, we investigate a simpler but equivalent system in which

we show that they are a direct consequence of the non-Markovianity of the photonic

source. We start by introducing our system in Sec. 5.1 as well as the main theoretical

techniques necessary to solve it. We apply those techniques in Sec. 5.2 and show both

numerically and analytically the emergence of the quantum correlations. In Sec. 5.3, we

develop an effective model to predict how much entanglement can be generated by our

qubits, considering the bandwidth of the photon source. To get a better understanding

of the photon source, in Sec. 5.4, we offer a detailed analysis in terms of the phase or

amplitude of the photons. We end this chapter with Sec. 5.5 by offering two experimental

implementations which can take advantage of the generation of entanglement with a

source at room temperature.

5.1 A thermally driven quantum link

Consider a small quantum network as depicted in Fig. 5.1, where two spatially separated

two-level systems (qubits) are coupled to a common bosonic quantum channel, for example,

a photonic or phononic waveguide. At the beginning of the waveguide, we place a cavity,

which we call the thermal/filter cavity. Each qubit has frequency ωq,i, and the cavity has

a resonant frequency of ωc ∼ ωq,i. Assuming the waveguide is cascaded, we can use the

results from Sec. 2.3.2 to derive an effective master equation for the system formed by

the thermal cavity and the two qubits. As in the previous chapters, we assume that the

waveguide is sufficiently cold, T0 ≪ ℏωq,i/kB, to be in a vacuum state and has a linear

dispersion relation. We then proceed with the simple identification between our system

and Eq. (2.72) by assigning the first element as a cavity with bosonic mode â, that is

ĉ0 ≡ â with decay rate γ0 = κ. The two qubits’s notation remains identical as in the

91
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Figure 5.1: Schematic of the setup considered for the analysis in Chapter 5. Here, the source emits

incoherent radiation at a high temperature T , which is successively filtered, and drives two

or multiple qubits along the waveguide.

original derivation assigning the operator ĉ1,2 = σ̂−
1,2.

To generate excitations along the system, we connect the filter cavity to a thermal

source. This can be implemented, for example, if our filter cavity is a two-sided filter

cavity which separates a region of high temperature T ≫ T0 from the low-temperature

quantum channel. To model this, we can assume that the filter cavity is coupled to

another waveguide, or just any reservoir, at temperature T > 0 with decay rate κhot. For

simplicity, we assume a symmetric two-sided cavity, with identical decay to the hot and

the cold waveguides κhot = κ. In this case symmetric case, the qubits are driven with an

average photon flux Φ = κnth/2, where nth = (eℏωc/(kBT ) − 1)−1.

Therefore, we obtain a master equation for the density operator ρ, which describes the

state of the qubits and the thermal source. This master equation is then of the form

ρ̇ = (Lth + Lq + Lint)ρ, (5.1)

where the individual terms describe the dynamics of the thermal source, the bare evolution

of the individual qubits and the waveguide-mediated interactions, respectively.

The thermal cavity, described in Sec. 2.2.1, needs to be modified to account for the

two reservoirs. By changing into a frame rotating with frequency ωc, the dynamics of the

thermal cavity is purely incoherent and described by the Liouville operator

Lthρ = κ(nth + 1)D[â]ρ+ κnthD[â†]ρ︸                                      ︷︷                                      ︸
T >0

+κD[â]ρ︸     ︷︷     ︸
T =0

.
(5.2)
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In the same frame, the bare dynamics of the qubits is given by

Lqρ = −i[Ĥq, ρ] +
∑

i

γiD[σ̂−
i ]ρ, (5.3)

where Ĥq = δ1σ̂
z
1/2 + δ2σ̂

z
2/2, and δi = ωq,i − ωc denote the detunings of the qubits from

the cavity frequency. Finally, the unidirectional waveguide mediates a cascaded interaction

between the cavity and the two qubits, which can be modelled as

Lintρ =
∑

i

√
ν0,iγiκ

(
[âρ, σ̂+

i ] + [σ̂−
i , ρâ

†]
)

+ √ν1,2γ1γ2
(
[σ̂−

1 ρ, σ̂
+
2 ] + [σ̂−

2 , ρσ̂
+
1 ]
)
. (5.4)

Here, as with our previous analysis in Chapter 3 and Chapter 4, we have included a

coupling constant νi,j such that |1− νi,j| is the probability that a photon emitted by i is

lost before reaches j. In our initial theoretical analysis, we assume νi,j = 1. In Sec. 5.5,

when we investigate the protocol’s performance under experimental conditions, we will

again take the coupling inefficiencies into consideration.

In our analysis below, we are primarily interested in the case γ1 ≃ γ2 = γ, where it is

more convenient to regroup the cascaded interaction in Eq. (5.4) in terms of a collective

dissipation term with jump operator L̂ = σ̂−
1 + σ̂−

2 and a purely coherent term with

Hamiltonian

Ĥcasc = iγ

2 (σ̂+
1 σ̂

−
2 − σ̂−

1 σ̂
+
2 ). (5.5)

In this way, the full master equation in Eq. (5.1) can be rewritten in the form

ρ̇ = (Lth + Lsys + Lint)ρ, (5.6)

where

Lsysρ = −i[Ĥq + Ĥcasc, ρ] + γD[L̂]ρ, (5.7)

describes the dissipative dynamics of the qubit system, while

Lintρ = √γκ
(
[âρ, L̂†] + [L̂, ρâ†]

)
, (5.8)

accounts for the effect of the thermal driving field.

In this configuration, the two qubits can be best represented in a triplet-singlet basis,

as depicted in Fig. 5.2(a). Here the triplet state |T ⟩ = (|01⟩ + |10⟩)/
√

2 and the fully

excited state |11⟩ decay via a collective emission into the waveguide, while the singlet

state |S⟩ = (|01⟩ − |10⟩)/
√

2 is a dark state of the collective jump operator, L̂|S⟩ = 0.
However, the singlet is coupled to the triplet state via the Hamiltonian Ĥcasc and eventually

decays, which reflects that in a unidirectionally coupled system, there is no complete

destructive interference. The thermal source, which also drives the qubits symmetrically,

induces transitions between the ground state |00⟩ and the states |T ⟩ and |11⟩, while again
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Figure 5.2: a) Schematic representation of the symmetric coupling basis. b) Entanglement between the

two-qubis measured using the steady-state concurrence of the reduced qubit state C(ρss)
evaluating Eq. (5.6) numerically for different values of κ/γ and nth.

the singlet state remains decoupled. Observe how those states are also the Bell states

introduced in Eq. (2.8) with the identification |S⟩ = |Ψ+⟩ and |T ⟩ = |Ψ−⟩. Therefore,

stabilising our state into the singlet or the triplet is a stabilization into a highly entangled

state.

5.1.1 Markovian master equation

In the derivation of the network master equation in Eq. (5.1), we have assumed that the

waveguide connecting the source and the qubits is sufficiently broadband, and we used

a Markov approximation to eliminate its dynamics. However, in this approach, we still

retain the exact dynamics of the source, which evolves on a timescale set by κ−1. By

making the additional assumption κ ≫ γ, we can also treat the thermal cavity as an

effective Markovian reservoir and derive a master equation for the reduced two-qubit state

ρq(t) = Trth{ρ(t)} [see Appendix A for more details]. This master equation reads

ρ̇q = −i[Ĥq + Ĥcasc, ρq] + γ(nth + 1)D[L̂]ρq + γnthD[L̂†]ρq, (5.9)

and describes the case of two qubits coupled to a (unidirectional) thermal quantum

channel.
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5.1.2 Stochastic master equation

While for moderate temperatures with nth ∼ O(10) the dynamics and steady states of

Eq. (5.6) can still be evaluated numerically in a straightforward manner, this is no longer

possible for much larger thermal occupation numbers, where a representation of the cavity

state in terms of number states becomes very inefficient. To treat this high-temperature

limit, it is more convenient to switch to a phase-space representation as we described

in Sec. 2.5. In particular, we derived the Fokker-Planck equation in Eq. (2.118) and its

associated stochastic differential equation in Eq. (2.121). Here, to take into account that

our resonator is two-sided and that we are on resonance, we modify the Fokker-Planck

equation to

L(α, α∗) = κ

[
∂

∂α
α + ∂

∂α∗α
∗ + nth

∂2

∂α∂α∗

]
, (5.10)

as well as its associated differential equation

dα = −καdt+ √κnthdW (t), (5.11)

where to take into account the two-sided cavity, we change the drift term κ→ 2κ. This
also modifies the steady-state distribution to

Pss(α, α∗) = 1
πnth

e−|α|2/nth . (5.12)

After these changes, we can now transform our original master equation in Eq. (5.6) into

a stochastic master equation as we did in Sec. (2.5.3). In our case, the resulting state

ρ(α, α∗, t) obeys the (stochastic) master equation

ρ̇q(α, α∗, t) = L(α, α∗)ρq(α, α∗, t). (5.13)

Here, we have introduced a new stochastic Liouvillian

L(α, α∗)ρq = −i[Ĥ(α, α∗), ρq] + γD[L̂]ρq, (5.14)

which is governed by a stochastic Hamiltonian

Ĥ(α, α∗) = Ĥq + Ĥcasc + i
√
κγ
(
α∗L̂− αL̂†

)
. (5.15)

Alternatively, we can express our stochastic master equation as

ρ̇q(α, α∗, t) = (L0 + αL+ + α∗L−) ρq(α, α∗, t), (5.16)

where we split the Liouvillian into two contributions: a deterministic term L0ρ and two

stochastic terms given by L+ρ = −√κγ[L̂†, ρ] and L−ρ = √
κγ[L̂, ρ]. The stochastic
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nature of this master equation comes from α, as it appears as a fluctuating classical

driving field. The actual qubit density operator can then be obtained by averaging over

sufficiently many trajectories ρq(t) = ⟨ρq(α, α∗, t)⟩. This representation now only offers

us the numerical advantage of solving the system at large thermal occupation numbers.

As we will see in the next section, it also offers an intuitive understanding of the steady

state in the slow-noise regime.

5.1.3 Continued fraction method

As mentioned, the reduced qubit state is obtained after the stochastic averaging after many

trajectories. While this already offers an advantage with respect to the original master

equation, the stochastic master equation also presents its disadvantages, namely that we

still have to simulate a time-dependent stochastic differential equation for each parameter,

which also requires an increasing number of samples as we increase the fluctuation strength

nth.

Therefore, it would be more favorable to obtain an equation of motion for the determin-

istic reduced qubit state ρq(t) = ⟨ρq(α, α∗, t)⟩. In general, to find deterministic master

equations from stochastic master equations is a challenging task [199]. However, since

α(t) is described by a Fokker-Planck equation, given by Eq. (5.10), the averaged density

matrix ρq(t) can be found by solving [200](
d
dt + L(α, α∗)

)
ρq(α, α∗, t) = L(α, α∗)ρq(α, α∗, t), (5.17)

and then taking the average of the solution

ρq(t) = ⟨ρq(α, α∗, t)⟩ =
∫

dα2ρq(α, α∗, t). (5.18)

The solution to Eq. (5.17) is obtained by expanding the solutions ρ(α, α∗, t) in a complete

biorthogonal set of eigenfunctions of L(α, α∗) [201, 202]:

L(α, α∗)Pm,n(α, α∗) = Λm,nPm,n(α, α∗), (5.19)

L†(α, α∗)ϕm,n(α, α∗) = Λ∗
m,nϕm,n(α, α∗), (5.20)

for n = 0, 1, 2, ... and m = 0,±1,±2, ... The eigenvalues are Λm,n = κ(2n+ |m|) and the

eigenfunction can be written as

Pm,n(α, α∗) = Pss(α, α∗)ϕm,n(α, α∗), (5.21)
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where Pss(α, α∗) is the steady-state distribution in Eq. (5.12) and

ϕm,n(α, α∗) =
√

n!
(n+ |m|)!

|α||m|

(nth/2)|m|/2

(
α∗

α

)m/2
L|m|

n [x], (5.22)

where Lm
n [x], with x = |α|2/(nth/2), are the generalized Laguerre polynomials. Using the

orthogonality relation for this biorthogonal set [145]∫
dα2ϕ∗

m,n(α, α∗)Pm′,n′(α, α∗) = δn,n′δm,m′ , (5.23)

we can express our original state in this new basis as

ρq(α, α∗, t) =
∑
m,n

Pm,n(α, α∗)ρm,n(t), (5.24)

where the coefficients are given by

ρm,n(t) =
∫

dα2ϕ∗
m,n(α, α∗)ρq(α, α∗, t) = ⟨ϕ∗

m,n(α, α∗)ρq(α, α∗, t)⟩. (5.25)

From this coefficients, we observe that our averaged state ρq(t) is given by ρ0,0(t) =
⟨ϕ∗

0,0(α, α∗)ρq(α, α∗, t)⟩ = ⟨ρq(α, α∗, t)⟩, as ϕ∗
0,0(α, α∗) = 1.

The task is then to solve the equation of motion for ρ0,0(t). It turns out, however, that
this leads to an infinite hierarchy of equations of motion for all the other coefficients ρm,n(t).
In Appendix C, we show that for our system under consideration, for the steady state,

can truncate this hierarchy of equations of motion and reduce it to a matrix recursion

Anσ
n +Bnσ

n−1 + Cnσ
n+1 = 0, (5.26)

for n = 0, 1, 2, ... Here, we have defined σn = (ρ0,n, ρ1,n, ρ−1,n)T
and the matrices An, Bn,

and Cn are defined in Eq. (C.12), Eq. (C.13), and Eq. (C.14) respectively. This matrix

recursion can be solved in terms of a matrix continued fraction[
A0 +K

]
σ0 = 0, (5.27)

where the matrix continued fraction is given by

K = C0
I

−A1 − C1
I

−A2 − C2
I

−A3 − ...
B3

B2

B1. (5.28)

We can numerically solve this matrix continued fraction to obtain σn, from which we can

obtain ρ0,0, our physical state.

This method involves an infinite number of coupled equations. For numerical analysis,
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we truncate the expansion at niter.. In Fig. C.1, we show the convergence of the continued

fraction method for different parameters, which we use to simulate it numerically without

truncation errors.

The continued fraction method has previously been used to study the finite-bandwidth

effect of a thermal source [203] and a single-mode parametric amplifier [179] in the context

of a two-level system. In most cases, this method is employed for numerical solutions.

Analytical results can be obtained by truncating the continued fraction expansion at first

order, niter. = 0. As shown in Appendix C, this approximation is valid when fluctuations

are either weak, nth ≪ 1, and/or fast, κ ≫ 1. Our focus, however, is on the opposite

parameter regime: strong and slow fluctuations. Nevertheless, we use the continued

fraction method to numerically solve the qubit dynamics, and as we will see in Sec. 5.3, it

also serves as the basis for an effective model.

5.2 Steady-State Entanglement

In the following, we are primarily interested in the stationary two-qubit state ρss =
Trth{ρ(t → ∞)}. For this state, we quantify the amount of entanglement by the con-

currence, as defined previously in Eq. (2.10). In Fig. 5.2(b) we use, first of all, exact

numerical simulations of Eq. (5.6) to evaluate the steady-state entanglement, C(ρss), for
different ratios of κ/γ and moderate thermal occupation numbers nth. We clearly see the

absence of entanglement in the Markovian regime, κ ≳ γ, while finite entanglement in

the steady state can be observed in the non-Markovian regime, where the bandwidth of

the thermal source is much smaller than the qubit decay rate κ < γ. Surprisingly, the

maximal amount of entanglement increases with the temperature of the source nth.

We can now offer a partial connection to the phenomena observed in Fig. 4.6(b) from

the last chapter. There, we observed the emergence of entanglement between consecutive

and diagonal qubits below a certain bandwidth of the parametric amplifier, as we do here.

While the system described in Chapter 4 and here might look different overall, this is

no longer true if we trace out one of the waveguides. Indeed, as described in Sec. 2.2,

tracing out one of the modes of the parametric amplifier gives an effective thermal state.

So, effectively, if we look at one of the waveguides, what we have is a narrow bandwidth

thermal state driving two qubits, which is precisely the same system considered here.

Therefore, understanding the origin of the entanglement generated by a narrowband

thermal source will allow us to understand the origin of the emergent entanglement from

Fig. 4.6(b). There is, however, something we cannot answer fully here. That is, the

emergence of entanglement between diagonal qubits. The reason is that our simple model

here does not take into account two waveguides, so we can only study the serial generation

of entanglement along the same waveguide.
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5.2.1 Markovian regime

We start by obtaining an analytical confirmation that entanglement cannot emerge when

the two qubits are driven by a Markovian thermal cavity. In this case, from Eq. (5.9) we can

derive a closed set of equations for the steady-state matrix elements ρij,kl = ⟨i, j|ρss|k, l⟩.
We find that the only non-zero matrix elements are

ρ00 = (nth + 1)2/(1 + 2nth)2,

ρT =ρS = nth(nth + 1)/(1 + 2nth)2,

ρ11 = n2
th/(1 + 2nth)2,

(5.29)

where we have defined the singlet and triplet populations ρS/T = ⟨S/T |ρq|S/T ⟩ and
the simpler notation ρii ≡ ρii,ii for the populations. We see that these matrix elements

correspond to the separable state ρss = ρth⊗ρth, where ρth corresponds to a qubit thermal

state, which is equivalent to the one defined in Eq. (2.25) with the Hilbert space limited to

d = dim(Hq) = 2. This state describes two qubits in a thermal reservoir with no coherent

interactions between them. One can calculate the amount of entanglement between the

two qubits using the concurrence Eq. (2.10). Expectedly, one finds that C(ρss) = 0 for

∀nth.

5.2.2 Quasi-adiabatic regime

To go beyond the Markovian regime, it is more convenient to switch to the phase-space

representation introduced in Eq. (5.14). In this picture, the qubits are driven by a classical

field α(t), which fluctuates on a timescale set by κ−1. Therefore, in the limit κ→ 0 (while

keeping κnth finite) we can assume that this field is approximately constant and evaluate

the steady state of the qubit for a fixed amplitude α(t) ≈ α0. For this problem it is known

that for δi = 0 the steady state is a pure state, ρss(α0) = |Ψ(α0)⟩⟨Ψ(α0)| [149, 150], where

|Ψ(α0)⟩ =
√
γ|00⟩+ 2

√
2κα0|S⟩√

γ + 8κ|α0|2
. (5.30)

This coherent superposition is a dark state of the collective jump operator, i.e. L̂|Ψ(α0)⟩ =
0, while transitions to the triplet state |T ⟩ are cancelled by destructive inference between

the driving term and the coupling induced by Ĥcasc. To obtain the actual two-qubit steady

state, the result from above must be averaged over a thermal distribution of amplitudes

α0:

ρss = 2
πnth

∫
d2α0|Ψ(α0)⟩⟨Ψ(α0)|e− 2|α0|2

nth . (5.31)
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By reintroducing the flux parameter previously defined Φ = κnth/2, we obtain

ρss = Υ(Φ/γ)ρ00 + [1−Υ(Φ/γ)] ρS, (5.32)

where Υ(x) = e1/(8x)Γ[0, 1/(8x)]/(8x) and Γ[0, x] is the upper incomplete gamma function.

These analytic results obtained in the quasi-adiabatic limit clearly illustrate the main

ingredients that lead to the emergence of entanglement out of a thermal reservoir. First

of all, when the bandwidth of the source is sufficiently small, the thermal field can be

considered static, and therefore coherent, over the time that it takes for the qubits to

relax into a steady state. This facilitates interference effects, which, in the present setting,

are responsible for the suppression of the triplet state. However, while being quasi-static

it is important to keep in mind that the amplitude α0 has an undetermined phase and

magnitude. Therefore, a second crucial feature of the state in Eq. (5.32) is that its degree

of entanglement only depends on the population of the singlet state and not on the relative

phase between |00⟩ and |S⟩.
Under the conditions considered here (symmetric coupling and no other imperfections),

and due to averaging of the fluctuations, the concurrence C(ρss) has the following simplified

form

C(ρss) = 1−Υ(Φ/γ). (5.33)

This shows that, even after averaging over the thermal distribution, the entanglement

is finite and grows as C(ρss) ≃ 8Φ/γ for small photon flux and it reaches a value of

C(ρss) ≃ 1− γ/(8Φ) for a strong thermal source.

5.3 Beyond the static limit

The analytic approximations in the previous section explain the appearance of entanglement

in the limit where the thermal driving field can be treated as a random but static field.

There, the resulting amount of entanglement scales with Φ = κnth/2, but this result

has been derived in the fully adiabatic limit κ → 0. To understand the validity of this

prediction, it is necessary to understand the non-static corrections that arise at a small,

but finite value of κ.

To address this question, we extend, first of all, our numerical calculations to the

high-temperature regime with thermal occupation numbers up to nth = 106, using the

continued fraction simulation method outlined in Sec. 5.1.3. The resulting dependence

of the steady-state entanglement on nth is shown in Fig. 5.3(a) for different values of

κ/γ = 10−2, 10−3, 10−4 and compared to the analytic prediction of Eq. (5.32). We see

indeed that for moderate values of nth, the concurrence follows the prediction of the static

limit, but eventually, it deviates from this result and decreases again for very high thermal

occupation numbers. The noise level at which the entanglement peaks and starts to

reverse, n⋆
th, depends on κ. The following section presents an analytical model to estimate
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Figure 5.3: (a) Steady-state concurrence C(ρss) for different bandwidths κ/γ as function of the thermal

fluctuations strength nth. (b) The population of the two-qubit state for κ/γ = 10−3 as a

function of the thermal fluctuations strength nth. In both plots, the dashed lines always

correspond to the static regime results from Eq. (5.32) and the vertical dotted line is the

analytical expression for n⋆
th in Eq. (5.44). In all these plots, niter. = 50000.

this parameter, shown as a vertical dotted line in Fig. 5.3.

In Fig. 5.3(b), we choose κ/γ = 10−3 and plot the dependence of the two-qubit state

populations as a function of nth. For moderate nth only ρ00 and ρS are significantly

different from zero and follow the prediction of Eq. (5.32). After some threshold, n⋆
th, the

noise fluctuations are strong enough to kick us out of the quasi-static subspace. In this

case, we start to populate the other states as ρT and ρ11. The static limit derived before

does not capture this behaviour [see dashed line in Fig. 5.3(b)]. While this is reminiscent

of the Markovian approximation (i.e. all populations are highly populated), we need to

emphasise that we are in a completely different parameter regime, highly non-Markovian

κ≪ γ. We will dedicate the following section to studying this behaviour and to estimating

the strength nth where this happens.

5.3.1 Weak-noise approximation

We begin the analysis by considering the noise fluctuations to be weak, or equivalently, to

work in a low flux regime Φ≪ 1. This regime allows us to perform perturbation theory

on Eq. (5.14) to derive a deterministic master equation.

Starting from our stochastic master equation from Eq. (5.16), we would like to solve for

the averaged density matrix ρq(t) = ⟨ρq(α, α∗, t)⟩. To do that, we formally integrate this

differential equation, iterate and take the average, obtaining [204]

ρq(t) = eL0tρq(0) +
∑
r=±

∫ t

0
dt′eL0(t−t′)Lr⟨α(r)(t′)

∫ t′

0
dt′′eL0(t′−t′′)Lrα

(r)(t′′)ρq(α, α∗, t
′′)⟩,

(5.34)
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where we have already used that ⟨α(t)⟩ = 0 and used the compact notation α(+)(t) = α(t)
and α(−)(t) = α∗(t). We then differentiate Eq. (5.34) to obtain

d
dtρq(t) = L0ρq(t) +

∑
r=±

∫ t

0
dt′Lre

L0(t−t′)L−r⟨α(t)α∗(t′)⟩ρq(t′). (5.35)

Here, we have used the decorrelation, or Bourret, approximation

⟨α(t)α∗(t′)ρq(α, α∗, t′)⟩ ≃ ⟨α(t)α∗(t′)⟩⟨ρq(α, α∗, t′)⟩ = ⟨α(t)α∗(t′)⟩ρq(t′). (5.36)

The validity of this approximation requires either fast fluctuations κ≫ 1, i.e. to be in a

Markovian-like reservoir, and/or small noise strength nth ≪ 1. Specifically, the expansion

parameter is 1
κ
nth/2 = ϕ/κ2 ≪ 1, or, equivalently Φ≪ κ2.

Back to Eq. (5.35), notice that we have used that for the thermal noise, we have zero two-

time correlations for ⟨α(t)α(t′)⟩ = ⟨α∗(t)α∗(t′)⟩ = 0 and that ⟨α∗(t)α(t′)⟩ = ⟨α(t)α∗(t′)⟩∗.
Using the two-time correlation derived in Eq. (2.86), which in this case reads, ⟨α∗(t)α(t′)⟩ =
nth/2e−κ|t−t′|, we can now solve Eq. (5.35) using the Laplace transform method, for which

our differential equation is converted to

sρq(s)− ρq(0) = L0ρq(s) + nth

2
∑
r=±
L−r[(s+ κ)I − L0]−1Lrρq(s). (5.37)

This is a matrix algebraic equation which can be solved for ρq(s). Solving for the steady-

state, in the Laplace transformed equation, is equivalent to taking the limit lims→0 [sρq(s)].
Then, the steady-state populations under the decorrelation approximation are

Λρ11 = 64κΦ2(γ + κ), (5.38a)

ΛρT = 8κΦ(9γ2 + 4κ(κ+ 2Φ) + 4γ(3κ+ 2Φ)), (5.38b)

ΛρS = 8Φ(9γ3 + 8κγ(2κΦ) + 4κ2(κ+ 2Φ) + γ2(21κ+ 8Φ)), (5.38c)

Λρ00 = 9γ4 + 8γ3(6κ+ Φ) + 16κ2(κ+ 2Φ)2 + 8γ2κ(11κ+ 6Φ)
+ 32γκ(2κ2 + 3κΦ + 2Φ2), (5.38d)

where the normalization is Λ = (γ + 2κ)(γ + 2κ+ 8Φ)((3γ + 2κ)2 + 8Φ(γ + 2κ)) and we

have reintroduced the photon flux Φ = κnth/2. While those results are approximate, we

can still extract the relevant scaling factors. Specifically, we observe that to lowest order,

both the triplet ρT and the double excited ρ11 state scale as ∼ O(κ), vanishing at the

complete static limit κ→ 0.
Due to the validity of the approximation, Φ ≪ κ2, the Bourret approximation fails

to reproduce one of the main effects seen in Fig. 5.3, i.e. that beyond the critical

thermal population n⋆
th, the concurrence decreases. To see this, we can use Eq. (5.38) to

obtain the concurrence given in Eq. (2.12). Expanding around κ = 0, the concurrence is
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approximately given by

C(ρss) ≈
8Φ

γ + 8Φ −
8Φ
√
κ

(γ + 8Φ)
√

9γ + 8Φ
− 32κ(Φ(3γ + 8Φ)2)
γ(γ + 8Φ)2(9γ + 8Φ) +O(κ3/2). (5.39)

When increasing the photon flux Φ, equivalent to increasing nth for fixed κ, the concurrence

saturates to C(ρss)→ 1−4κ/γ. While we see a correction of the order of κ, this expression

does not capture the peak observed in Fig. 5.3(a). This is, of course, a consequence of the

decorrelation approximation, which is only valid for weak fluctuations. The peak occurs

in a regime of strong fluctuations, beyond the approximation’s validity. Notice that from

Eq. (5.39), we do not recover the results from the quasistatic limit, in Eq. (5.33), when

κ = 0 and finite Φ > 0. The reason is that Eq. (5.39) is only valid for weak driving, while

in Eq. (5.33), we performed an average over the full range of noise strengths.

5.3.2 Continued fraction effective model

To go beyond the decoupling approximation, we can use the matrix continued fraction

technique described in Sec. 5.1.3 to derive an effective model which provides us with

analytical estimates of the populations as well as the critical thermal strength n⋆
th. For

that, we rely on a series of approximations which will allow us to simplify the problem

considerably. We start by neglecting the population to the double excited state ρ11. This

is justified in Fig. 5.4(a), where the population ρ11 is the smallest of the system for κ≪ 1.
As shown in Appendix C, we then solve for the equations of motion and the coherences of

the remaining system. There, we demonstrate how these equations can be reformulated as

an equivalent, solvable recurrence relation. By solving the recurrence relation via ordinary

continued fraction theory, we derive an effective population for the system near the static

limit κ≪ 1. Specifically, the effective singlet population is given by

ρS = 1−
[
Υ(Φeff/γ)

(
1 + 3κ

γ

)
− 3κ

γ

] (
1 + 16κΦ

γ2

)
, (5.40)

while the effective triplet population is

ρT = 8κΦ
γ2 [Υ(Φeff/γ)(1 + 3κ/γ)− 3κ/γ]. (5.41)

We have defined an effective photon flux Φeff = Φγ2

γ2+24κΦ . When Φ → ∞, this effective

parameter saturates at Φeff = γ2

24κ
. From these effective populations, we observe that in

the limit when κ→ 0, while keeping Φ finite, we recover static limit populations.

We now use these analytical expressions to estimate the two-qubit steady-state concur-

rence C(ρss). Due to the 3-level approximation we have here, we cannot use Eq. (2.12),
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Figure 5.4: Comparison of the populations between a 4-level system (faded solid) and the 3-level system

approximation (dashed) as a function of nth for κ/γ = 10−3. (b) Comparison between the

exact concurrence C(ρss) (solid line), the partial concurrence C̃(ρss) (faded solid) with the

exact populations ρS and ρT , and the effective partial concurrence C̃eff(ρss) (dashed line) with

the effective populations from Eq. 5.40 and Eq. 5.41 for different values of κ/γ. Continued

fraction is truncated at niter.=50000.

which depends on ρ11. Therefore, here we define a partial concurrence

C̃(ρss) = max{0, ρS − ρT}, (5.42)

which is valid when ρ11ρ00 ≪ 1. Using our effective population, we get

C̃eff(ρss) = 1− Υ(Φeff/γ)(γ + 3κ)− 3κ
γ

(
1 + 24κΦ

γ2

)
. (5.43)

Taking the limit κ → 0, but keeping Φ finite, we recover the static limit results from

Eq. (5.33). In Fig. 5.4(b) we compare the entanglement as a function of nth for different

κ/γ. Specifically, we compare the exact concurrence C(ρss) to our partial concurrence

C̃(ρss) taking still the exact populations, with the partial concurrence taking our effective

populations C̃eff(ρss). Observe how C(ρss) and C̃(ρss) behave similarly except for a shift,

which comes from the contribution from ρ00ρ11. The effective partial concurrence C̃eff(ρss)
describes perfectly the curve of C̃(ρss) up to the point where it starts to deviate. Still, we

observe that all the entanglement measures we define here peak approximately at the same

n⋆
th. We can then estimate the critical value of n⋆

th at which the concurrence reaches its

maximum by solving ∂C̃eff(ρss)
∂nth

= 0. Solving this equation leads to a transcendental equation

due to the incomplete gamma function Γ[0, f(nth)]. Still, it can be solved approximately

to

n⋆
th = γ2 + 3γκ

12κ2 . (5.44)

We can now obtain an approximate expression for the maximum effective concurrence,
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given by

C̃⋆
eff(ρss) = 1−

6κ
(
2e

6κ
γ (γ + 3κ)Γ[0, 6κ

γ
]− γ

)
γ2 . (5.45)

In Fig. 5.3(d), we plot the critical thermal fluctuations and see how they match the peak

of the achieved entanglement for the exact model. The critical thermal population scales

as 1/κ2, diverging at the static limit κ→ 0.

5.4 Amplitude vs phase fluctuations

According to the phase-space representation introduced in Sec. 2.5, the thermal field is

described by a fluctuating complex variable α(t). Alternatively, we can express this field

in terms of polar coordinates as

α(t) = r(t)eiθ(t), (5.46)

where the radius r(t) and the phase θ(t) obey the coupled (Itô) stochastic equations [126]

dr(t) =
(
−κr(t) + κnth

4r(t)

)
dt+

√
κnth

2 dWr(t), (5.47)

dθ(t) =
√
κnth

2
dWθ(t)
r(t) , (5.48)

with two independent Wiener increments dWr(t) and dWθ(t).
In contrast to the complex-valued Ornstein-Uhlenbeck process, these stochastic differ-

ential equations in polar form cannot be solved exactly but serve as a starting point for

further approximations. In particular, we can ask ourselves the role of each variable and

whether the breakdown of the static approximation comes from fluctuations in the phase

θ(t) or in the amplitude r(t).
Consider the amplitude to be fixed r(t) = r0 and let the phase be governed by Eq. (5.48).

In this case, our system then transforms into a phase-diffusion model. While exact

deterministic (averaged) master equations have been derived using the Zwanzig-Nakajima

projector operator technique for simple systems [205], this remains challenging for more

general systems. Here, we solve our problem by going into a rotating basis [206], which

makes our problem solvable. Our original stochastic master equation Eq. (5.16) is written

as

ρ̇q(θ, t) = (L0 + eiθr0L+ + e−iθr0L−)ρq(θ, t). (5.49)

By defining ρ̃q(θ, t) = e−iθL̂z/2ρq(θ, t)eiθL̂z/2 with L̂z = σ̂z
1 + σ̂z

2 , the equation of motion of

the new rotated state is

˙̃ρq(θ, t) = −i θ̇2[L̂z, ρ̃q(θ, t)] + e−iθL̂z/2ρ̇q(θ, t)eiθL̂z/2. (5.50)



106 Chapter 5 Thermal entanglement distribution

The (rotated) stochastic master equation reads

˙̃ρq(θ, t) = L0ρ̃q(θ, t) + r0 (L+ + L−) ρ̃q(θ, t)− i θ̇2[L̂z, ρ̃q(θ, t)]. (5.51)

This is a (Stratonovich) stochastic master equation for our phase-diffused model. As the

noise process θ̇ is a Wiener process, we can obtain an Itô stochastic differential equation

by adding the Itô correction

˙̃ρq(θ, t) =L0ρ̃q(θ, t) + r0 (L+ + L−) ρ̃q(θ, t)

− i

2

√
κnth

2
Wθ(t)
r0

[L̂z, ρ̃q(θ, t)]− 1
2
κnth

8r2
0

[L̂z, [L̂z, ρ̃q(θ, t)]].
(5.52)

We can now take the stochastic average of this Itô differential equation since dWθ(t) is
statistically independent of ρq(θ, t). This leads to

˙̃ρq(t) = L0ρ̃q(t) + r0 (L+ + L−) ρ̃q(t) + κnth

8r2
0
D[L̂z]ρ̃q(t). (5.53)

It is important to keep in mind that this is a rotated basis ρ̃. However, the system’s

populations remain invariant in this new basis. This can be seen from the action of this

rotation on our basis

e−iθ/2L̂z |11⟩ = eiθ|11⟩, (5.54)

e−iθ/2L̂z |00⟩ = e−iθ|00⟩, (5.55)

e−iθ/2L̂z |01⟩ = |01⟩, (5.56)

e−iθ/2L̂z |10⟩ = |10⟩. (5.57)

From these relations, we can derive that the rotated basis does not mix the singlet and the

triplet, ρ̃S = ρS and ρ̃T = ρT . Observe how Eq. (5.53) is identical to the master equation

one would get under coherent driving [149] with Rabi strength Ω = r0
√
κγ and collective

dephasing noise of strength γϕ/2 = κnth
8r2

0
. This dephasing noise can then be interpreted as

a system under Markovian noise.

The phase-diffusion model alone does not account for the observations in Fig. 5.3.

The reason is that as we increase nth, in Fig. 5.3(a), we observe how the entanglement

degrades. It is, however, not what Eq. (5.53) predicts. This is because the dephasing

process, which would in other situations be the main detrimental term to the entanglement,

in this case, does not scale with the thermal occupation number. To see this, observe

that the dephasing process is proportional to nth/r
2
0. As r0 ∝

√
nth, the terms becomes

temperature-independent. We conclude that amplitude fluctuations are the main cause of

the breakdown of the quantum correlations.



5.5 Implementations 107

Figure 5.5: Time evolution of the concurrence C(t) ≡ C(ρq(t)) for (a) different thermal occupation

number nth and (b) for different dephasing times Tϕ at fix nth = 1220, which corresponds to

room-temperature noise. We assume κ/(2π) = 10 kHz, γi/(2π) = 10 MHz, and δi = 0.

5.5 Implementations

Here, we propose two possible experimental realizations of the protocol we have described

and evaluate the achievable amount of entanglement under realistic experimental conditions.

Until now, we have kept our discussion general, and our proposal can be implemented

with optical or microwave photons. As long as the bandwidth of the filter κ is smaller

than the bandwidth of the qubits γ, as seen from Fig. (5.2)(b), entanglement between

the qubits emerges as we increase nth. This raises the following question: How much

entanglement can be generated and under which conditions if the photon source is at

room temperature T = 293 K?

5.5.1 Superconducting qubits thermal network

A direct implementation of our system, described by Fig. 5.1, uses a cryogenic link with

superconducting qubits [207]. Here, photons are propagated along the waveguide as

microwaves. To suppress thermal noise, they usually operate at low temperatures, on

the order of T0 ∼ 10 mK. Entanglement protocols in superconducting waveguides have

been recently demonstrated [80, 208]. Here, we simulate our protocol under realistic

experimental conditions. We assume an identical coupling rate from the qubits to the

waveguide γ/(2π) = 10 MHz, motivated by previous experimental work [80], which gives

a limit of the thermal cavity bandwidth κ to be of the order of MHz or smaller. Here,

we turn on the photon source and let it reach a steady state. Then, at t = 0, we switch

on the interaction between the cavity and the qubits. In Fig. 5.5(a), we show how the

entanglement builds up for different temperatures of the source (given by nth) and show

how at room temperature T = 297 K, for which the amount of photons at microwave

frequency ωc/(2π) = 5.0 GHz is around nth ≃ 1220, we can still extract a finite amount

of entanglement. In Fig. 5.5(b), we consider the room-temperature case nth = 1220 and
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Figure 5.6: Steady-state concurrence C(ρss) at nth = 1220 (a) as function of γ2 and detunings δ1 = δ2 = δ

for fixed κ/(2π) = 10 kHz, γ1/(2π) = 10 MHz, and (b) as a function of linear loses ν for

different bandwidths κ at nth = 1220 for fixed γi/(2π) = 10 MHz and δi = 0. For both plots,

niter.=5000.

additionally consider a dephasing processes γϕ, also given in terms of dephasing time

γϕ = 1/Tϕ. To model dephasing, we simulate the stochastic master equation in Eq. (5.14)

and add an additional Markovian dephasing term for each qubit,
ϕϕ

2
∑2

i D[σ̂z
i ]ρ.

The time needed to reach the steady state, ts.s., should approximately scale with the

inverse of the Liouvillian gap λ for our system, as ts.s. ∝ −1/λ. In the static limit, we find

the gap to be λ ≈ −3γ
2 . This is approximately what we see in Fig. 5.5, where for a fixed

γ, all the time evolutions peak approximately simultaneously. We also observe a second

time scale, much slower, for which the state reaches the steady state. Our expression for

the gap does not capture this because it is obtained in the static limit, where the value of

nth does not change over time. Still, the highest possible entanglement can be achieved in

timescales of the order of 1/γ.
Having shown how the protocol can achieve steady-state entanglement within a realistic

time for superconducting technologies, we now consider imperfections in the system. Using

the continued fraction method, in Fig. 5.6(a), we show the entanglement as a function of

the most common imperfection in those systems: a mismatch between the qubit coupling

strength into the waveguide, γ1 , γ2, and a mismatch between the resonant frequency

between both qubits, δ1 = δ2 = δ , 0. It is important to point out that any mismatch

between the resonant frequency and the thermal cavity can be compensated by moving

the cavity resonant frequency to ωc = (ωq,1 + ωq,2) /2.
Lastly, our protocol, as discussed so far, relies on both a chiral interaction between

the source and the qubits and the qubits themselves. This can be achieved by using

circulators for long distances. To take into account insertion losses due to the circulators,

we now take the insertion losses from Eq. (5.4). We see the effect on photon losses in

Fig. 5.6(b), where we consider the losses to be only between qubits, i.e. ν ≡ ν1,2. The

reason for this is that insertion losses from the thermal cavity to each qubit ν0,i results
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just in a renormalization of the photon numbers the qubits see, ñth = ν0,inth. Assuming

that both qubits have the same insertion losses ν0,1 = ν0,2, we can consider the qubits

being driven by ñth. We observe that the qubit entanglement is more robust the smaller

the bandwidth of the filter cavity, allowing up to 15% photon losses along the waveguide.

5.5.2 Phononic thermal network

Here, we focus on a complementary implementation of our protocol: a phonon quantum

network, where emitters such as silicon-vacancy (SiV) centers are coupled to a 1D diamond

waveguide [209–213]. Then, in this implementation, the carriers of information are no

longer photons, but rather phonons. As depicted in Fig. 5.7, the waveguide is coupled

to a mechanical resonator of bandwidth κ, which is, in turn, in contact with a phononic

reservoir at temperature T > 0. The resonator couples to the waveguide at z0, and we

place Nq=2 qubits at positions z1 and z2 such that z0 < z1 < z2. Contrary to the previous

implementation, here the waveguide cannot be modeled as a chiral waveguide, but rather

as a semi-infinite waveguide, as we described in Sec. 2.3.3. We assume a 1D phononic

crystal structure for which the quantized phononic mode is given by [214]

û(z) = −i
∑

n

√
ℏωn

2ρc

(ζ∗
n(z)b̂†

n − h.c.), (5.58)

being here ρc the density of the crystal and ζn(z) its mode function. The phonon operators

fulfil the usual commutation relations [b̂n, b̂
†
m] = δn,m. We can then apply the derivation of

Sec. 2.3.3 to obtain a master equation for the semi-infinite waveguide. As at the beginning

of the chapter, with the chiral waveguide, we follow the convention that the index i = 0
corresponds to the thermal source, i.e. ĉ0 = â and γ0 = k, while j ≥ 1 is the qubit

index ĉj = σ̂−
j . Notice that we place the filter resonator at the edge of the semi-infinite

waveguide, z0 = 0, where the field is maximal. Also, to consider the coupling between the

thermal reservoir and our phononic waveguide, the mechanical resonator couples to a hot

reservoir at decay rate κhot ≡ κ. The resulting master equation is then given by

ρ̇ =κ(nth + 1)D[â]ρ+ κnthD[â†]ρ

− i
[
Ĥsys +

∑
j,l

Jj,lĉ
†
j ĉl, ρ

]
+
∑
j,l

Γj,lD[ĉj, ĉl]ρ,
(5.59)

with decay rates Γj,l = 2√γjγl[cos (k(zj + zl)) + cos (k|zj − zl|)] and coupling strength

Jj,l = √γjγl[sin (k(zj + zl)) + sin (k|zj − zl|)]. Due to the semi-infinite waveguide, the

coupling and decay rates are rescaled by a factor of four compared with the cascaded

setting from Sec. 5.1. Here, to make an accurate comparison between the two scenarios,

we rescale the couplings such that κ→ κ/4 and γ → γ/4 in the semi-infinite waveguide.

We start our analysis with some trivial examples, for example, when the emitters are at
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Figure 5.7: Schematic of the setup considered for the phononic thermal network implementation. Here, a

source of incoherent phonons at temperature T > 0 is in contact with a 1D waveguide by a

mechanical resonator of bandwidth κ and resonant frequency ωc. A semi-infinite waveguide

is in contact with the mechanical resonator at z0, and we place the qubits at z1 and z2 such

that z0 < z1 < z2.

kzn = 2πn, or equivalently, zn = λ0n, for n = 0, 1, 2, ... In this scenario, Eq. (5.59) reduces

to

ρ̇ = −i[Ĥsys, ρ] + κ(nth + 1)D[â]ρ+ κnthD[â†]ρ︸                                      ︷︷                                      ︸
thermal source

+D[
√
κâ+ √γσ̂−

1 + √γσ̂−
2 ]ρ︸                                    ︷︷                                    ︸

phonon waveguide

. (5.60)

This master equation represents a dissipative and bidirectional coupling between the

resonator and the qubits. This dissipative coupling by itself is not enough to create

entanglement. We need to break the singlet-triplet symmetry, which can be achieved

by imposing finite but opposing, detunings on the qubits δ1 = −δ2 = δ such that

Ĥsys = δ(σ̂z
1 − σ̂z

2)/2, similar to [149, 150]. Assuming the case when zn = λ0n and with

finite detuning, in Fig. 5.8(a), we plot the entanglement of the reduced qubit state in terms

of the concurrence C(ρss) as a function of the temperature nth for differents κ/γ. For small

thermal occupation nth, we can use Eq. (5.59) [black dashed lines in Fig. 5.8(a)]. As with

the unidirectional case, the entanglement is created by populating the singlet state |S⟩.
Notice that with this configuration, we no longer need the qubits to be resonant with the

cavity field, nor do we need them to be identical. Given two distinct qubits with natural

frequency ωq,1 and ωq,2, respectively, having the cavity at frequency ωc = (ωq,1 + ωq,2)/2
would give us the previous detuning configurations. Similarly, if we place the qubits at

kzn = πn, this will create the same amount of entanglement as with kzn = nλ0 case, now

the mechanism is different: the qubit-qubit entanglement is created by populating the

triplet state |T ⟩.
However, as seen in Fig. 5.8(b), in between π < kzn < 2π, the qubit dynamics is

non-trivial. This is because the terms mediated by Ji,j in Eq. (5.59) allow for dipole-dipole

interactions between all the emitters in the waveguide, as well as some energy shifts. This
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is clearly seen when we explicitly evaluate this term for our case

4
∑
j,l

Jj,lĉ
†
j ĉl =κ sin (2kz0)â†â+ γ sin (2kz1)σ̂+

1 σ̂
−
1 + γ sin (2kz2)σ̂+

2 σ̂
−
2

+ √κγ[sin (k|z1 + z0|) + sin (k|z1 − z0|)]
(
â†σ̂−

1 + âσ̂+
1

)
+ √κγ[sin (k|z2 + z0|) + sin (k|z2 − z0|)]

(
â†σ̂−

2 + âσ̂+
2

)
+ γ[sin (k|z2 + z1|) + sin (k|z2 − z1|)]

(
σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2

)
.

(5.61)

As we fix the resonator at z0 = 0, it does not experience any frequency shift. While

this term vanishes if we fix the qubit positions described before, one must consider small

deviations from such fixed points. In this case, the dipole-dipole interaction starts to be

relevant, and Eq. (5.59) describes a complex interacting system.

New insight can be found if we express Eq. (5.59) as a stochastic master equation,

similar to what we did for Eq. (5.14). To do that, we express the coherent term of the

master equation as

−i
[
Ĥsys +

∑
j,l

Jj,lĉ
†
j ĉl, ρ

]
=− i

[
Ĥsys +

∑
j=1

Jj,jσ̂
+
j σ̂

−
j + J1,2

(
σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2

)
, ρ
]

− i
[∑

j=1
J0,j

(
â†σ̂−

j + âσ̂+
j

)
, ρ
]
,

(5.62)

where the first line of the right-hand side of the equation expresses the qubits energy

shift and dipole interaction between them, and the second line describes the two qubits

interacting with the resonator. We can now apply the P representation mapping from

Eq. (2.110) to this equation, transforming Eq. (5.62) to

−i
[
Ĥsys +

∑
j,l

Jj,lĉ
†
j ĉl, ρ

]
→ −i[Ĥq(t), ρq] + i

∑
j=1

J0,j

(
∂

∂α
σ̂−

j ρq −
∂

∂α∗ρqσ̂
+
j

)
. (5.63)

Here, we have defined a new effective coherent interaction

Ĥq(t) = Ĥsys +
∑
j=1

Jj,jσ̂
+
j σ̂

−
j + J1,2(σ̂+

1 σ̂
−
2 + σ̂+

2 σ̂
−
1 ) +

∑
j=1

J0,j(α(t)σ̂−
j + α∗(t)σ̂+

j ). (5.64)

Similarly, the dissipative term of Eq. (5.59) transforms to

2
∑
j,l

Γj,lD[ĉj, ĉl]ρ = 2
∑
j,l,0

Γj,lD[σ̂−
j , σ̂

−
l ]ρq

+
∑
j=1

Γ0,j[(α∗(t)σ̂−
j − α(t)σ̂+

j ), ρq] +
∑
j=1

Γ0,j

(
∂

∂α
σ̂−

j ρq + ∂

∂α∗ρqσ̂
+
j

)
.

(5.65)
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Figure 5.8: Steady-state entanglement between the two qubits using the concurrence C(ρss) (a) as a

function of the temperature for different bandwidths ratio κ/γ and fixed qubits kz1 = 2π and

kz2 = 4π, (b) as a function of the position of the first qubit kz1 for different photon numbers

nth at fixed κ/γ = 0.01. In both plots, the solid lines are obtained using the approximated

P representation, which allows us to use the continued fraction method. In (a), the black

dashed line represents exact simulations using Eq. (5.59). For both plots, the detuning is

δ = γ/2 = 0.5, and niter. = 5000.

Therefore, the whole qubit master equation can be written in the following compact form

ρ̇q = −i[Ĥeff(t), ρq] + γD[L̂cos]ρq

+
∑

j

(Γ0,j + iJ0,j)
∂

∂α
σ̂−

j ρq +
∑

j

(Γ0,j − iJ0,j)
∂

∂α∗ρqσ̂
+
j ,

(5.66)

with a collective dissipator term which involves only the qubits L̂cos = ∑
j cos(kzj)σ̂−

j and

a time-dependent Hamiltonian

Ĥeff(t) = Ĥsys +
∑
j=1

Jj,jσ̂
+
j σ̂

−
j + J1,2(σ̂+

1 σ̂
−
2 + σ̂+

2 σ̂
−
1 )

+
∑
j=1

[
(J0,j − iΓ0,j)α(t)σ̂+

j + (J0,j + iΓ0,j)α∗(t)σ̂−
j

]
.

(5.67)

The initial master equation Eq. (5.59) is not unidirectional. This gives rise to terms which

involve field derivatives ∂/(∂α) and ∂/(∂α∗). This term would vanish for a cascaded

setting, meaning that the physical interpretation of this term is the action of the reflected

photons back on the resonator. While it is not possible to find positions such that

Γ0,j ± iJ0,j = 0 and they vanish naturally (this would also make the driving term vanish),

we can neglect these terms and assume we have a cascaded interaction. While this is

not exact, we see from Fig. 5.8(a) that for κ/γ small, this effective model captures the

positions which are necessary to generate entanglement. The deviations caused by this

approximation are more relevant the larger κ/γ. Fortunately for us, this is not the regime
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in which we are interested.

We can further rearrange our master equation such that it can be written in a similar

structure as Eq. (5.14)

ρ̇q(α, α∗, t) = −i[Ĥphon.(α, α∗), ρq(α, α∗, t)] + γD[L̂cos]ρq(α, α∗, t), (5.68)

with an effective (stochastic) phonon-mediated Hamiltonian

Ĥphon.(α, α∗) = Ĥ ′
sys + Ĥ ′

casc +
i
√
κγ

2 [α∗(t)L̂phon. − α(t)L̂†
phon.], (5.69)

where we have now defined a position-dependent collective spin operator L̂phon. = e−ikz1σ̂1+
e−ikz2σ̂2, a position-dependent energy shift for the qubits

Ĥ ′
sys = Ĥsys +

∑
j

Jj,jσ̂
+
j σ̂

−
j , (5.70)

and a position-dependent dipole interaction between the qubits

Ĥ ′
casc = γ

2 sin kz1 cos kz2(σ̂+
1 σ̂

−
2 + σ̂+

2 σ̂
−
1 ). (5.71)

Expressing the stochastic master equation like this allows us now to use the continued

fraction method we derived in Sec. 5.1.3. In Fig. 5.8, the solid lines are obtained using this

method, which agrees with exact simulations for small occupation number and κ/γ small.

Observe that the stochastic master equation for the semi-infinite waveguide also presents

some other differences compared to Eq. (5.14). Specifically, neglecting the position-

dependent offset, we have two crucial distinctions between this system and our previous

case: a new dipole terms, which vanish at kz1 = 2πn, which contributes when kz1 , 2πn
and a position-dependent driving. The dipolar term resembles, with the collective decay

channel, a cascaded interaction. Looking at Fig. 5.8(b), the maximum seems to be

around kz1 ∼ π(3/4 + n). At this point, the generated entanglement seems to contribute

from both the driving term and the dipole interaction. We can further justify this by

observing that as we increase nth, the qubit dipolar contribution becomes small compared

with the driving term. In this case, the driving term should dominate and peak around

kz1 ∼ πn. To complete the implementation, we also discuss the possibility of achieving

entanglement by a phononic source at room temperature. If we consider the SiV centers

to form a two-level system of frequency ωq,i/(2π) ≈ 3 GHz [214], at this frequency we

would have around nth ≈ 2000 phonons at room temperature. In Fig. 5.8, we observe that

highly entangled states can be achieved by properly positioning the qubits and using a

narrowband resonator.





Chapter 6

Conclusion and outlook

6.1 Conclusion

In this thesis, we developed an in-depth theoretical analysis of the remote entanglement

distribution for small- and large-scale quantum networks by driving qubits with photons.

We derived a master equation for the nondegenerate parametric amplifier, which

generates continuous variable Gaussian states, and its interaction with spatially separated

qubits. Assuming a broadband amplifier, we formulated an effective master equation that

describes the qubits as a two-mode squeezed reservoir, offering insight into their dynamics.

Under ideal conditions, the steady state is a pure, entangled state that converges to a Bell

state as the amplifier power increases. We analyzed the fidelity of this state and found

that entanglement emerges only if the environment’s purity satisfies µeff ≥ 1/3. Recent
experiments have demonstrated purities above this threshold in microwaves [24] and hybrid

microwave-optics [25], even reaching values up to µeff ≈ 0.9 [215]. We demonstrated

that, considering a finite bandwidth of the parametric amplifier, the qubit no longer

converts to a maximally entangled state when we increase the power. In this scenario, we

show how we can still obtain a large amount of entanglement and find the optimal pump

strength as well as the optimal fidelity. We also examined its robustness with respect

to coupling inefficiencies and dephasing noise. In superconducting circuits, circulators

typically introduce photon losses of 15% [75], (ν = 0.85), and we compared our scheme to

other deterministic protocols, showing that our approach is more sensitive to losses due to

its dependence on two bosonic modes. Finally, we evaluated the entanglement distribution

rate, which remains high, R ∼ γ−1, and avoids the limitations of probabilistic schemes.

We concluded this part with predictions for two upcoming experiments: one validating

entanglement extraction in a qubit-qubit system and another providing a theoretical

framework and entanglement witnesses for a hybrid protocol.

We then explored the creation of a larger network by increasing the number of qubits

in each waveguide while still using a similar parametric amplifier to generate correlated

photons. Using similar theoretical techniques as before, we showed that the steady state

exhibits varying degrees of bi- and multipartite entanglement, which can be controlled

by adjusting the squeezing strength and local qubit detunings. We then proposed a
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detuning configuration that parallelizes the protocol, allowing the network to scale linearly

with the number of qubit pairs. We investigated the performance of this scheme under

realistic experimental conditions, taking into account finite amplifier bandwidth, waveguide

losses, and propagation delays. This analysis shows that while achieving extremely high

fidelities of the entangled state still requires near-ideal conditions, the scheme remains

highly efficient in distributing non-ideal entangled states and is rather robust against

common experimental imperfections. Our quantum network provides an ideal setting for

entanglement purification protocols. We investigate such a protocol and demonstrate how

one can distill states with a larger amount of entanglement with high success probability.

The finite-bandwidth parametric amplifier revealed a surprising phenomenon: the

emergence of quantum correlations when the bandwidth of the source is smaller than that

of the qubits. This effect motivated the final chapter of the thesis. Here, we presented an

equivalent but simpler scenario in which qubits are driven by a thermal cavity. We showed

that under Markovian conditions, entanglement between qubits cannot be generated.

However, we numerically observed that as we gradually decreased the bandwidth of the

thermal cavity, entanglement emerged among the qubits. We provided several numerical

and analytical techniques to understand this phenomenon. Finally, we proposed two

experimental implementations of the protocol based on either superconducting qubits

in a cryogenic link or SiV centers in a diamond phononic waveguide. In both cases, we

show that it is possible to drive the qubits with an incoherent thermal source at room

temperature to create highly entangled states.

6.2 Outlook

The work done within this thesis paves the way to the realization of large-scale quantum

networks. As we have described in Chapter 3 and Chapter 4, the creation of small- and

large-scale networks relies on the generation of correlated photons by a nondegenerate

parametric amplifier. While such sources are available in microwave and optical domains,

generating such states in phononic platforms remains challenging. Therefore, it is a crucial

task to look for alternatives that generate correlated phonons. To achieve this, one can

rely on the well-known Mollow triplet [216], where by continuously driving a two-level

system, the sidebands of the emitted spectrum are correlated, similar to the nondegenerate

parametric amplifier. Additionally, recent experiments with superconducting qubits have

demonstrated entangled correlated photons [217]. In this implementation, the parametric

amplifier would be substituted by a driven two-level system, whose output is coupled into

a single waveguide. The correlated photons would then continuously drive two two-level

systems, as in our protocols. An initial exploration of this protocol has led to positive

results. It requires, however, putting cavities around the qubits to filter out the unwanted

modes. Still, the achievable amount of entanglement is an open question.

This thesis also opens another completely new direction of research. That is, instead of
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relying on a two-mode squeezing interaction to produce two-mode squeezes states, one

could explore more exotic Hamiltonians with richer and more intricate structures. Both

general Gaussian and non-Gaussian states of light can be considered. For the general

Gaussian states, exploring the output of a generic quadratic Hamiltonian and using it

to drive individual qubits can lead to the formation of complex qubit networks. We

performed initial research along those lines, where we drive multiple qubits by the output

of a bosonic Kitaev chain [218], and we observed how the correlations from the bosonic

system mapped onto the qubit networks. However, initial work showed that this qubit

state is not pure. It remains an open question how one could either purify those states

or make use of the entanglement present in such a mixed state. For that, the size of the

bosonic system plays a crucial role. It is still an open question to what degree we can use

the phase-space representations from Sec. 2.5 to obtain stochastic master equations for

the qubits, as well as the use of the continued fraction method from Sec. 5.1.3.

The final chapter revealed a completely different effect. Namely, the generation of

possible entanglement as a byproduct of the non-Markovianity of the photon source. While

outside the scope of remote entanglement distribution, this effect can be used to explore

other areas, such as many-body effects. By considering a large and complex system in

contact with such a non-Markovian reservoir, one could explore how the phase transition

of such a many-body system changes.





Appendix A

Effective master equation for the qubit

system

As stated in the thesis, after the adiabatic elimination of the waveguide, we obtain a

master equation describing both the bosonic degrees of freedom and the qubits. In general,

it takes the following form

ρ̇ = (Lph + Lq + Lint) ρ. (A.1)

Here, we have split it into three distinct terms

Lphρ = −i
[∑

n

ωph,nâ
†
nân + Ĥph, ρ

]
+
∑

n

κnD[ân]ρ, (A.2a)

Lqρ = −i
[∑

n

ωn

2 σ̂z
n + Ĥq, ρ

]
+
∑

n

γnD[σ̂−
n ]ρ, (A.2b)

Lintρ =
∑

n

√
νnκnγn

(
[ânρ, σ̂

+
n ] + [σ̂−

n , ρâ
†
n]
)
, (A.2c)

where each of them describes the bosonic subsystem of n-modes, the qubit subsystem,

and its interaction, respectively. Moreover, we have explicitly written down the bare

Hamiltonian with the natural frequencies of each system. The oscillation frequencies are

the largest scales in the system. Specifically, ωph,n ∼ ωn ≫ κn ≫ γn and any parameters

encoded in the remaining Hamiltonians.

To proceed, we need to go to a rotating frame with respect to the bare frequencies of

the bosonic modes ωph,n. In this frame, the bare frequencies of the qubit system ωn are

detuned by δn = ωn − ωph,n. They will be either zero (on resonance) or small with respect

to the decay rate of the photons κn.

After this transformation, the master equation describes a system with two distinct

timescales. On one hand, the photon source is governed by 1/κ. On the other hand,

the qubits are governed by 1/γ. Here, we are interested in the regime where the photon

timescales are much faster than the qubits. This is achieved by setting κ→∞.

Our goal then is to perform another adiabatic elimination, this time of the fast system,

allowing us to obtain an effective description of the slow system alone. For that, we follow
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the adiabatic elimination given in Ref. [99]. Alternatively, the same adiabatic elimination

can be performed using the projector operator approach [219].

We start by taking our initial Lindblad master equation Eq. (A.1) in the rotated

basis and go to an interaction picture with respect to the free evolution, L0, by writing

ρ(t) = eL0tρI(t). In this representation, the master equation reads as ρ̇I(t) = Lint(t)ρI(t)
with time-dependent interaction Lint(t) = e−L0tLinte

L0t.

We then derive a master equation for the qubit subsystem after tracing out the bosonic

degrees of freedom ρq,I = Trph{ρI(t)}. First, we make use of the Born approximation by

replacing the full density operator by the tensor product ρI(t) ≃ ρq,I(t)⊗ ρ0
ph, where ρ

0
ph is

the steady state density matrix of the bosonic subsystem, Lphρ
0
ph = 0. Following standard

second-order perturbation theory, we find

ρ̇q,I(t) =
∫ t

−∞
dt′ Trph{Lint(t)Lint(t′)ρq,I(t′)⊗ ρ0

ph}. (A.3)

By explicitly inserting the expression of Lint(t′), we obtain

ρ̇q,I(t) =
∑
m

√
νmκmγm

∫ t

−∞
dt′ Trph{Lint(t)

×
(
[âm(t′)(ρq,I(t′)⊗ ρ0

ph), σ̂+
m(t′)] + [σ̂−

m(t′), (ρq,I(t′)⊗ ρ0
ph)â†

m(t′)]
)
}.

(A.4)

where each time-dependent operator is given by âm(t′) = e−Lpht′
âme

Lpht′
and σ̂−

m(t′) =
e−Lqt′

σ̂−
me

Lqt′
. By acting with the other superoperator Lint(t′), we now obtain the following

expression

ρ̇q,I(t) =
∑
n,m

∫ t

−∞
dt′×

Trph

{
[ân(t)[âm(t′)ρ(t′), σ̂+

m(t′)], σ̂+
n (t)] + [ân(t)[σ̂−

m(t′), ρ(t′)â†
m(t′)], σ̂+

n (t)]

+ [σ̂−
n (t), [âm(t′)ρ(t′), σ̂+

m(t′)]â†
n(t)] + [σ̂−

n (t), [σ̂−
m(t′), ρ(t′)â†

m(t′)]â†
n(t)]

}
.

(A.5)

Here, we have used the compact state notion ρ(t) ≡ ρq,I(t) ⊗ ρ0
ph and have not written

down the prefactor
√
νmνnκmκnγmγn to avoid overwriting. We can now trace out the

bosonic degrees of freedom

ρ̇q,I(t) =
∑
n,m

∫ t

−∞
dt′
(

Trph

{
ân(t)âm(t′)ρ0

ph

}
[σ̂+

n (t), [σ̂+
m(t′), ρq,I(t′)]]

− Trph

{
â†

m(t′)ân(t)ρ0
ph

}
[σ̂+

n (t), [σ̂−
m(t′), ρq,I(t′)]]

− Trph

{
â†

n(t)âm(t′)ρ0
ph

}
[σ̂−

n (t), [σ̂+
m(t′), ρq,I(t′)]]

+ Trph

{
â†

m(t′)â†
n(t)ρ0

ph

}
[σ̂−

n (t), [σ̂−
m(t′), ρq,I(t′)]]

)
.

(A.6)
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To obtain this expression, we have used the cyclic property of the trace to order the

bosonic operators and used the commutator property [A,B] = −[B,A]. As the bandwidth
κn of the photons is very large, or in other words, the correlation time 1/κn is very short,

we can use the Markov approximation, ρq,I(t′) ≃ ρq,I(t). By defining τ = t− t′, we can

rewrite our equation the following compact form

ρ̇q,I(t) =
∑
n,m

√
νmνnγnγm

∑
s,s′=±

∫ ∞

0
dτ Cs,s′

n,m(τ) ss′[σ−s
n (t), [σ−s′

m (t− τ), ρq,I(t)]]. (A.7)

Here, we have introduced the bosonic correlation functions

Cs,s′

n,m(τ) = √κnκm⟨: âs
n(τ)âs′

m(0) :⟩, (A.8)

where we identified â+
n ≡ â†

n and â−
n ≡ ân and assumed the normal ordering pre-

scription ⟨: âs(τ)â(0) :⟩ = Trph{âseLphτ (âρ0
ph)} = ⟨âs(τ)â(0)⟩, while ⟨: âs(τ)â†(0) :⟩ =

Trph{âseLphτ (ρ0
phâ

†)} = ⟨â†(0)âs(τ)⟩. Finally, consistent with the Markov approximation,

the slow dynamics of the qubits can be neglected. Then, after going back to the Schrödinger

equation, the resulting qubit master equation takes the following form

ρ̇q(t) =Lqρq(t) +
∑
n,m

√
νmνnγnγm

∑
s,s′=±

ss′Is,s′

n,m(0)[σ−s
n , [σ−s′

m , ρq(t)]], (A.9)

where Is,s′
n,m(ω) =

∫∞
0 dτ Cs,s′

n,m(τ)e−iωτ is evaluated at resonance ω = 0. Therefore, the

master equation for the qubits system is governed by the output spectrum of the bosonic

system evaluated at resonance. Depending on the spectrum correlations I(ω) of the

bosonic system, we obtain different master equations. In Sec. 2.4, we derived the spectrum

correlations for the two-mode squeezed state and the thermal state, which we use now to

find the corresponding master equations.

A.1 Nondegenerate parametric amplifier

This case was studied in both Chapter 3 and Chapter 4. For the first case, our master

equation in Eq. (3.1) is completely equivalent to Eq. (A.1) in the rotated frame. For the

second case, we identify the coupling operators as L̂n → σ−
n and L̂†

n → σ+
n . In Sec. 2.4.2,

we derived the general expressions for the spectrum, which we now evaluate at resonance.

First of all, we need to match our notation from this section to Sec. 2.4.2. For that, we

identify Is,s′
n,m(ω) = Iâs

nâs′
m

(ω). Then, we find that for the parametric amplifier, some of

them vanish Is,s
A,A(ω) = Is,s

B,B(ω) = Is,−s
A,B (ω) = Is,−s

B,A (ω) = 0. The non-vanishing spectrum

can be regrouped together with into the final expression for the master equation, which is
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given by

ρ̇q =Lqρq +
∑

n=A,B

γnNn

(
D[σ̂−

n ]ρq +D[σ̂+
n ]ρq

)
+√γAγB

(
M∗[σ̂A, [σ̂B, ρq]] +M [σ̂+

A , [σ̂+
B , ρq]]

)
,

(A.10)

where we have defined the occupation number Nn = 2νRe{I+,−
n,n (0)} and the correlation

number M = ν(I−,−
A,B (0) + I−,−

B,A (0)). Taking the expressions from Eq. (2.101), those

parameters take the simple form of given in Eq. (3.7a) and Eq. (3.7b).

A.2 Thermal cavity

For the specific case of a thermal cavity studied in Chapter 5, from Eq. (5.6) we have a

single mode â and we identify L̂ → σ̂− and L̂† → σ̂+. We also go to a rotating frame

with respect to the thermal cavity at ωc to obtain an equivalent master equation to our

starting equation. Then, in Sec. 2.4.1, we derived the two-time correlation function and

the spectrum for the thermal cavity. The two-sided cavity only adds small corrections to

the expressions evaluated there. Specifically, the two-time correlation function now reads

⟨â†(τ)â(0)⟩ = κ1nth

κ1 + κ2
e−(κ1+κ2)/2|τ |, (A.11)

where κ1 is the decay rate of the hot reservoir and κ2 is the decay rate to the cold

waveguide. Therefore, the output spectrum to the cold reservoir, contrary to Eq. (2.88),

and given by

Iâ†â(ω) = 2κ1κ2nth

(κ1 + κ2)2 + 4ω2 − i
4κ1κ2nthω

(κ1 + κ2)((κ1 + κ2)2 + 4ω2) . (A.12)

According to Eq. (A.9), we evaluate this expression on resonance, which simplifies the

spectrum to

Iâ†â(0) = nth/2, (A.13)

where we have assumed a symmetric two-sided cavity κ1 = κ2 = κ as in Chapter 5. This

allows us to identify the occupation number parameter N = 2νIâ†â(0) = νnth, for which

the master equation for the two qubits is

ρ̇q = Lqρq + νnthγD[L̂]ρq + νnthγD[L̂†]ρq, (A.14)

which is the same result as in Eq. (5.9) when ν = 1.
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Uniqueness of the steady state

In Chapter 3 and Chapter 4, the master equation for Nq qubit pairs in the ideal Markovian

regime is given by

ρ̇q = LNqρq = −i[Ĥq, ρq] +
∑

n=A,B

γD[Ĵn]ρq. (B.1)

It is clear that given a state |ψ0⟩ that satisfies the dark-state conditions Ĵn|ψ0⟩ = 0 and

Ĥq|ψ0⟩ = 0, the density operator ρ0 = |ψ0⟩⟨ψ0| is a pure steady state of this master

equation, i.e. LNqρ0 = 0. However, this condition does not guarantee that ρ0 is the unique

steady state, as there could be other mixed or pure states ρ′
0 with LNqρ

′
0 = 0.

To prove that the state |ψ0(r, δ⃗A, P )⟩ defined in Eq. (4.24) is indeed the unique steady

state of the network for a given detuning pattern δ⃗A and permutation P , we start with

the case Nq = 1 and δA,1 = −δB,1. In this case, we can calculate the eigenvalues of the

Liouvillian LNq=1 analytically and verify that for any finite squeezing strength r there

is only a single eigenvalue λ0 = 0, which corresponds to the state ρ
(Nq=1)
0 = |Φ+

1,1⟩⟨Φ+
1,1|.

We also find that the smallest non-zero eigenvalue is λ1 = γ cosh(2r)/2 for r < r∗ and

λ1 = γ(6 cosh(2r)−
√

18 cosh(4r)− 14)/4 for r > r∗, where r∗ ≃ 0.356. This eigenvalue
determines the gap in the Liouvillian spectrum and, therefore, for any finite r, there is a

finite relaxation rate toward the steady state.

We prove the uniqueness of the steady state by induction. We assume that we already

know that the product state ρ
(Nq)
0 = |Φ∥(Nq)⟩⟨Φ∥(Nq)| defined in Eq. (4.21) is the

unique steady state of LNq for δ⃗A,i = −δ⃗B,i and that it satisfies the dark-state conditions

Ĵn|Φ∥(Nq)⟩ = 0 and Ĥq|Φ∥(Nq)⟩ = 0. We now show that under this assumption, it is also

true that ρ
(Nq+1)
0 is the unique steady state of the network with Nq + 1 qubit pairs.

Let us first verify that |Φ∥(Nq + 1)⟩ is a dark state. The conditions Ĵn|Φ∥(Nq + 1)⟩ = 0
are straightforward to verify since it holds for each qubit pair individually. For the second

condition, Ĥq|Φ∥(Nq + 1)⟩ = 0, we write the Hamiltonian as

Ĥ(N+1)
q = Ĥ(Nq)

q − iγ2
∑

n

(
L̂n(Nq)σ̂+

n,Nq+1 − L̂†
n(Nq)σ̂n,Nq+1

)
, (B.2)

123
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and recall that

|Φ∥(Nq + 1)⟩ ∼ |Φ∥(Nq)⟩⊗ (cosh(r)|0A,Nq+1⟩|0B,Nq+1⟩+ sinh(r)|1A,Nq+1⟩|1B,Nq+1⟩). (B.3)

It follows that

Ĥ(Nq+1)
q |Φ∥(Nq + 1)⟩ ∼

[
cosh(r)LA(Nq)− sinh(r)L†

B(Nq)
]
|Φ∥(Nq)⟩ ⊗ |1A,Nq+1⟩|0B,Nq+1⟩

+
[
cosh(r)LB(Nq)− sinh(r)L†

A(Nq)
]
|Φ∥(Nq)⟩ ⊗ |0A,Nq+1⟩|1B,Nq+1⟩ = 0.

(B.4)

To prove that ρ
(Nq+1)
0 is also the unique steady state, we use the fact that in a fully

directional network the reduced steady state of the first Nq pairs of qubits, ρ
(Nq)
0 =

Tri=Nq+1{ρ(Nq+1)
0 } is unaffected by adding an additional pair. Further, because ρ

(Nq)
0 is pure,

there is no entanglement between the subsystems and we can write ρ
(Nq+1)
0 = ρ

(Nq)
0 ⊗ ρ(x)

0 ,

with a steady state ρ
(x)
0 for the last pair, which still must be determined (to simplify

notation, we use the index x to refer to the extra qubit pair with index i = Nq + 1). To
do so, we write

ρ̇
(Nq+1)
0 = LNqρ

(Nq)
0 ⊗ ρ(x)

0 + ρ
(Nq)
0 ⊗ Lxρ

(x)
0 + LNq−xρ

(Nq+1)
0 . (B.5)

Here Lx=̂LNq=1 is the single-pair Liouville operator acting on the state of the last qubit

pair and

LNq−xρ
(Nq+1)
0 =− γ

2
∑

n=A,B

[
L̂n(Nq)σ̂+

n,x − L̂†
n(Nq)σ̂−

n,x, ρ
(Nq+1)
0

]
− γ

2

{
Ĵ†

A(Nq)
(
cosh(r)σ̂−

A,x − sinh(r)σ̂+
B,x

)
+ Ĵ†

B(Nq)
(
cosh(r)σ̂−

B,x − sinh(r)σ̂+
A,x

)
, ρ

(Nq+1)
0

}
+
,

(B.6)

accounts for the remaining cross terms. Note that here we have already used that

Ĵn(Nq)ρ(Nq+1)
0 = ρ

(Nq+1)
0 Ĵ†

n = 0 due to the dark-state condition for |Φ∥(Nq)⟩. By looking

at all the different contributions in Eq. (B.6) we can collect terms such as[
−L̂A(Nq) + sinh(r)Ĵ†

B(Nq)
]
σ̂+

A,xρ
(Nq+1)
0 =

=
[
−L̂A(Nq) + sinh(r) cosh(r)L̂†

B(Nq)− sinh2(r)L̂A(Nq)
]
σ̂+

A,xρ
(Nq+1)
0

= − cosh(r)
[
cosh(r)L̂A(Nq)− sinh(r)L̂†

B(Nq)
]

︸                                             ︷︷                                             ︸
=ĴA(Nq)

σ̂+
A,xρ

(Nq+1)
0 = 0,

(B.7)

and find that they vanish independently of ρ
(x)
0 . The same is true for other combinations

such that LNq−xρ
(Nq+1)
0 = 0. Therefore, when tracing over the first Nq qubit pairs, the



Appendix B Uniqueness of the steady state 125

steady state ρ
(x)
0 satisfies

ρ
(x)
0 = Lxρ

(x)
0 = 0, (B.8)

which has a unique solution given by ρ
(x)
0 = |Φ+

x ⟩⟨Φ+
x |.

Finally, we consider non-trivial detuning patterns δ⃗B = −P δ⃗A and show that also in this

case the steady state ρ
(Nq)
0 = |ψ0(r, δ⃗A, P )⟩⟨ψ0(r, δ⃗A, P )| is unique. This can be done by

simply assuming that there is another steady state ρ′
0 , ρ

(Nq)
0 of the Liouvillian LNq . Then

we can simply invert the arguments about the form invariance of the master equation

presented in Chapter 4, below Eq. (4.23), and obtain a steady state for the network with

δ⃗B = −δ⃗A,

ρ′
0(δ⃗B = −δ⃗A) = Û †ρ′

0Û , Û =
∏
σ

Ûiσ ,iσ+1. (B.9)

However, since we know that there is only one unique steady state for this detuning pattern,

it means that ρ′
0(δ⃗B = −δ⃗A) = |Φ∥(Nq)⟩⟨Φ∥(Nq)| and ρ′

0 = |ψ0(r, δ⃗A, P )⟩⟨ψ0(r, δ⃗A, P )|.





Appendix C

Continued fraction method

Here, we present the derivation of the continued fraction method described in Sec. 5.1.3,

where we obtain a solution of a stochastic differential matrix equation in terms of an

infinite set of algebraic equations, which we can then express as a matrix continued

fraction. We start with our stochastic master equation from Eq. (5.16)

ρ̇q(α, α∗, t) = (L0 + αL+ + α∗L−) ρq(α, α∗, t), (C.1)

where we explicitly split our Liouvillian into a deterministic term L0 and two stochastic

contributions L±. As the stochastic variable α can be described by the Fokker-Planck

equation in Eq. (5.10), the stochastic master equation takes the form [200](
d
dt + L(α, α∗)

)
ρq(α, α∗, t) = L(α, α∗)ρq(α, α∗, t). (C.2)

From this expression, observe that the averaged solution could be obtained from

ρq(t) = ⟨ρq(α, α∗, t)⟩ =
∫

dα2ρq(α, α∗, t). (C.3)

To solve Eq. (C.2), we use the biorthogonal basis given by Eq. (5.21) and Eq. (5.22). This

new basis allows us to expand our initial state as

ρq(α, α∗, t) =
∑
n,m

Pm,n(α, α∗)ρm,n(t), (C.4)

where the coefficients are given by

ρm,n(t) =
∫

dα2ϕ∗
m,n(α, α∗)ρq(α, α∗, t) = ⟨ϕ∗

m,n(α, α∗)ρq(α, α∗, t)⟩. (C.5)

To obtain this expression, we have used the orthogonal relation given by Eq. (5.23). As

stated in Sec. 5.1.3, the averaged solution is given by ρq(t) = ρ0,0(t). We calculate the

127
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equations of motion for ρm,n(t) by expressing Eq.(C.2) in this new basis, obtaining(
d
dt + Λm,n

)
ρm,n(t) =

∑
m′,n′

∫
d2αϕ∗

m,n(α, α∗)L(α, α∗)Pm′,n′(α, α∗)ρm′,n′(t)

=L0ρ
m,n(t)

+
∑

m′,n′

∫
d2αϕ∗

m,n(α, α∗)αL+Pm′,n′(α, α∗)ρm′,n′(t)

+
∑

m′,n′

∫
d2αϕ∗

m,n(α, α∗)α∗L−Pm′,n′(α, α∗)ρm′,n′(t).

(C.6)

To solve this equation of motion, we need to use the recursion relations for the generalized

Laguerre polynomials [220]

Lm−1
n (x) = Lm

n (x)− Lm
n−1(x), (C.7a)

xLm+1
n (x) = (N +m+ 1)Lm

n (x)− (n+ 1)Lm
n+1(x), (C.7b)

which then allows us to evaluate Eq. (C.6). However, we need to evaluate 3 different cases

depending on the value of m. For m = 0, they reduce to(
d
dt + 2κn

)
ρ0,n(t) = L0ρ

0,n(t)

+
√
nth

2 L+
(√

n+ 1ρ1,n(t)−
√
nρ1,n−1(t)

)
+
√
nth

2 L−
(√

n+ 1ρ−1,n(t)−
√
nρ−1,n−1(t)

)
.

(C.8)

For m > 0, they are(
d
dt + κ(2n+m)

)
ρm,n(t) = L0ρ

m,n(t)

+
√
nth

2 L+
(√

n+m+ 1ρm+1,n(t)−
√
nρm+1,n−1(t)

)
+
√
nth

2 L−
(√

n+mρm−1,n(t)−
√
n+ 1ρm−1,n+1(t)

)
,

(C.9)

and lastly, for m < 0, we obtain(
d
dt + κ(2n+ |m|)

)
ρm,n(t) = L0ρ

m,n(t)

+
√
nth

2 L+

(√
n+ |m|ρm+1,n(t)−

√
n+ 1ρm+1,n+1(t)

)
+
√
nth

2 L−

(√
n+ |m|+ 1ρm−1,n(t)−

√
nρm−1,n−1(t)

)
.

(C.10)
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This is the most general formulation, which gives an infinite set of coupled differential

equations for n = 0, 1, 2... and m = 0,±1,±2, .... Focusing on the steady state, those

differential equations transform into an infinite set of algebraic equations, from which we

want to solve for ρ0,0. Depending on L±, the structure of the set of algebraic equations

simplifies considerably. In our specific system, by explicit evaluation of Eq. (C.8), Eq. (C.9),

and Eq. (C.10), we observe that m = 0 only couples to m = ±1 and m = ±2. Therefore,
our infinite set of algebraic equations reduce to a set of 5 coupled equations ρ0,n, ρ±1,n,

and ρ±2,n for n = 0, 1, 2, .... We can reduce this number further by integrating out ρ±2,n,

which leads to a set of coupled equations which can be cast in vector form. By defining

σn = (ρ0,n, ρ1,n, ρ−1,n)T
, the remaining equations can be written as the following matrix

recursion

Anσ
n +Bnσ

n−1 + Cnσ
n+1 = 0, (C.11)

with matrices

An =


2nκ− L0 −

√
nth(n+1)

2 L+ −
√

nth(n+1)
2 L−

−
√

nth(n+1)
2 L− a+ 0

−
√

nth(n+1)
2 L+ 0 a−

 , (C.12)

Bn =
√
n


0

√
nth
2 L+

√
nth
2 L−

0
√
n+ 1P0

+ 0
0 0

√
n+ 1P0

−

 , (C.13)

Cn =
√
n+ 1


0 0 0√

nth
2 L−

√
n+ 2P2

+ 0√
nth
2 L+ 0

√
n+ 2P2

−

 . (C.14)

Here, we have defined the following matrix elements

a± = κ(2n+ 1)− L0 − (n+ 2)P2
± − nP0

±, (C.15)

and

Px
± = nth

2 L±[κ(2n+ x)− L0]−1L∓. (C.16)

This allows us to build the matrix continued fraction in Eq. (C.11) and solve it as [173][
A0 +K

]
σ0 = 0, (C.17)



130 Appendix C Continued fraction method

Figure C.1: Steady-state concurrence C(ρss) as a function of the number of iterations niter. to solve

Eq. (C.17) for different thermal occupation nth at (a) κ/γ = 10−3 and (b) κ/γ = 10−2.

where the matrix continued fraction is given by

K = C0
I

−A1 − C1
I

−A2 − C2
I

−A3 − ...
B2

B2

B1. (C.18)

Solving this matrix continued fraction numerically involves numerically inverting an

infinite amount of matrices. Therefore, we truncate this continued matrix fraction to

some finite index niter.. After numerically solving the matrix continued fraction, we can

solve for σ0, from which we obtain ρ0,0, our averaged state. In Fig. C.1 we check the

convergence of the continued fraction method by plotting the steady-state concurrence

C(ρss) as a function of the number of iterations niter. for different thermal occupation

nth and bandwidths κ/γ. We observe that for nth ∼ 10, convergence is reached around

niter. ∼ 10. In Chapter 5, the largest occupation number is nth = 106, which converges

at niter. ∼ 104. We then use these references to numerically solve the matrix continued

fraction, ensuring no truncation errors.

By truncating to first order, niter. = 0, Eq. (C.17) reduces to(
L0 + nth

2
[
L+[κI − L0]−1L− + L−[κI − L0]−1L+

])
ρ0,0 = 0. (C.19)

One then recovers the Bourret approximation’s results in Eq. (5.37) for the steady state

as a solution to such an equation. Therefore, keeping the lowest-order contribution is

equivalent to performing the decoupling approximation from Sec. 5.3.1.
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C.1 Effective model in the quasistatic limit

The method outlined before allows us to transform the stochastic master equation from

Eq. (5.14) into an infinite set of algebraic equations (for the steady state), which can be

solved, numerically, using a matrix continued fraction.

Here, we use this method to derive an effective analytical expression for the population

of our qubits around the quasistatic limit described in Sec. 5.2. For that, we rely on a

series of approximations which will allow us to simplify the problem considerably. We

start by neglecting the population to the double excited state ρ11. This is justified in

Fig. 5.4(a), where the population ρ11 is the smallest of the system for κ ≪ 1. In this

case, we explicitly evaluate the equations of motion for the populations and coherences

produced by Eq. (C.11). Under this 3-level approximation, our equations of motion do

not involve terms with m = ±2, which allows us to trace out the terms with m = ±1
to obtain the set of equations only for m = 0. We then use a more convenient notation

ρn ≡ ρ0,n to express them. They read

(2γ + 2κn) ρn
T = γ

2χ
n
S,T −

√
2γΦ

(√
n+ 1χn

0,T −
√
nχn−1

0,T

)
, (C.20a)

2κnρn
S = −γ2χ

n
S,T , (C.20b)

(γ + 2κn)χn
S,T = γ(ρn

S − ρn
T )−

√
2γΦ

(√
n+ 1χn

0,S −
√
nχn−1

0,S

)
, (C.20c)

κ(2n+ 1)χn
0,S = −γ2χ

n
0,T +

√
2γΦ(n+ 1)

(
χn

S,T − χn+1
S,T

)
, (C.20d)

(γ + κ(2n+ 1))χn
0,T = γ

2χ
n
0,S − 2

√
2γΦ(n+ 1)

(
ρn

0,0 − ρn+1
0,0 − ρn

T + ρn+1
T

)
, (C.20e)

where we have reintroduced the photon flux parameter Φ = κnth/2 and defined χn
i,j =

ρn
i,j + ρn

j,i for the coherences. The equation for the remaining population ρn
00, the ground

state, follows from the normalization condition ρn
00 = δn,0 − ρn

S − ρn
T , where δn,0 is the

Kronecker delta.

As a starting point, we recover the result from the static limit. Setting κ = 0 while

Φ > 0, most of the equations of motion vanish. The only non-vanishing equations can be

recast as a three-term continued fraction for the steady-state population of the singlet. It

reads

[γ + 8Φ(2n+ 1)]ρn
S = 8Φ(n+ 1)ρn+1

S + 8Φnρn−1
S + 8Φ(δn,0 − δn−1,0). (C.21)

This three-term ordinary recurrence relation has the general form of

anX
n = bnX

n+1 + cnX
n−1 + Y0(δn,0 − δn−1,0), (C.22)
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which can be solved in terms of a continued fraction as

X0 = I
a0 − c0

I
a1−c1

I
a2−...

b2
b1

(
1− c0

I
a1 − c1

I
a2−...

b2

)
Y0. (C.23)

After some algebra, this gives the same result as in Eq. (5.32). An alternative method to

solve this family of continued fractions as a solution to ordinary differential equations will

be presented in Sec. C.1.1.

The static regime is the starting point of our effective model, as we want corrections

around it. The main idea is that being close to the static regime, some states will be

similar. For example, in the static limit, we found that χn
S,T = 0 ∀n. The term χn

S,T

corresponds to the coherence between the singlet and the triplet state. Therefore, we

assume χn
S,T = 0 ∀n as a starting point. This assumption simplifies the previous equations

of motion, reducing them to two coupled three-term recurrence relations

[
γ − 16Φγ2(n+ 1)

(γ + 2κ(2n+ 1))2 −
16Φγ2n

(γ + 2κ(2n− 1))2

]
ρn

T

−
[
γ + 8Φγ2(n+ 1)

(γ + 2κ(2n+ 1))2 + 8Φγ2n

(γ + 2κ(2n− 1))2

]
ρn

S =

− 8γ2Φ(n+ 1)
(γ + 2κ(2n+ 1))2 (δn,0 − δn+1,0 + ρn+1

S + 2ρn+1
T )

+ 8γ2Φn
(γ + 2κ(2n− 1))2 (δn−1,0 − δn,0 − ρn−1

S − 2ρn−1
T ),

(C.24)

and

2(γ + κn)ρn
T = −16κ(2n+ 1)γΦ(n+ 1)

(γ + 2κ(2n+ 1))2 (δn,0 − δn+1,0 − ρn
S + ρn+1

S − 2ρn
T + 2ρn+1

T )

+ 16κ(2n− 1)γΦn
(γ + 2κ(2n− 1))2 (δn−1,0 − δn,0 − ρn−1

S + ρn
S − 2ρn−1

T + 2ρn
T ).

(C.25)

To make our assumption consistent, we must assume that we are in the κ ≪ 1 regime,

which allows us to expand the previous expressions around κ = 0. Keeping only the

lowest-order terms, we obtain[
γ − 16Φ(2n+ 1)

]
ρn

T −
[
γ + 8Φ(2n+ 1)

]
ρn

S =

− 8Φ(n+ 1)(δn,0 − δn+1,0 + ρn+1
S + 2ρn+1

T )
+ 8Φn(δn−1,0 − δn,0 − ρn−1

S − 2ρn−1
T ),

(C.26)
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and

2γρn
T = −16κΦ(2n+ 1)(n+ 1)

γ
(δn,0 − δn+1,0 − ρn

S + ρn+1
S − 2ρn

T + 2ρn+1
T )

+ 16κΦ(2n− 1)n
γ

(δn−1,0 − δn,0 − ρn−1
S + ρn

S − 2ρn−1
T + 2ρn

T ).
(C.27)

Unfortunately, to our knowledge, this system of equations cannot be solved exactly. We

require an additional approximation in Eq. (C.27). We consider a different and simpler

recurrence relation, which still exhibits the same behaviour. We proceed as follows: First,

numerical analysis shows that the weight of the coefficients follows ρn±1
T < ρn

T , which

allows us to discard those terms. Secondly, we neglect the higher-order coefficients of the

prefactor, retaining only n = 0. The resulting equation is given by

2γρn
T = −16κΦ/γ(δn,0 − δn+1,0 − ρn

S − 2ρn
T ) + 16κΦ/γ(δn−1,0 − δn,0 + ρn

S + 2ρn
T ), (C.28)

where, as we will see from its final form, it captures the expected behaviour. We can

now obtain two uncoupled recurrence relations for the singlet and the triplet. Combing

Eq. (C.28) and Eq. (C.26), the three-term recurrence relation for the singlet is(
γ2 + 8Φ[(2n+ 1)γ + 3κ]

)
ρn

S =8nΦγρn−1
S + 8(n+ 1)Φγρn+1

S

+ 8Φ(γ + κ)δn,0 − 8Φ(γ + 3κ+ 48Φκ2/γ2)δn−1,0,

(C.29)

while the three-term recurrence relation for the triplet is(
γ2 + 8Φ[(2n+ 1)γ + 3κ]

)
ρn

T =8Φnγρn−1
T + 8(n+ 1)Φγρn+1

T

+ 8Φκδn,0 + 3(4Φκ)2

γ2 δn−1,0.
(C.30)

In general, they follow the structure

anXn = bnXn−1 + cnXn+1 + Y0δn,0 + Y1δn−1,0, (C.31)

where the only difference between Eq. (C.29) and Eq. (C.30) are the terms Y0 and Y1.

This general three-term recurrence relation can be solved using an ordinary continued

fraction

X0 =

(
Y0 + c0

a1− c1b2
a2−...

Y1

)
a0 − c0b1

a1−c1
c1b2

a2−...

= F1(Y0 + F2Y1), (C.32)
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where we have defined

F1 = 1

a0 −
c0b1

a1 − c1
c1b2

a2 − ...

, (C.33)

and

F2 = c0

a1 −
c1b2

a2 − ...

. (C.34)

As previously stated, the difference between the singlet and triplet recurrences are in Y0

and Y1, not in F1 and F2.

C.1.1 Theory of continued fractions

Here, we show that ordinary continued fractions can be solved by evaluating their contin-

uants. Assume an ordinary generalized continued fraction F . A closed expression can be

found by [173]

F = b0 + a0

b1 + a1
b2+...

= lim
n→∞

Pn

Qn

, (C.35)

where Pn and Qn are the so-called continuants of the fraction and fulfil

Pn = bnPn−1 + anPn−2,

Qn = bnQn−1 + anQn−2,
(C.36)

for n ≥ 1. Defining Rn = (Pn, Qn), it allows for a more compact form

Rn = bnRn−1 + anRn−2, (C.37)

for n ≥ 1 and initial conditions R0 = (b0, 1) and R−1 = (1, 0). We are left with solving

a three-term recurrence relation for Rn. To solve this three-term recurrence, assume an

ordinary generating function R(z) = ∑
n≥0 Rnz

n [221]. Then, we multiply Eq. (C.37) by∑
n≥2 z

n such that we obtain

∑
n≥2

Rnz
n =

∑
n≥2

bnRn−1z
n +

∑
n≥2

anRn−2z
n. (C.38)

To proceed, one would need to know the coefficients Rn. In general, if Rn is a polynomial

of order n, it produces an ordinary differential equation (ODE) for R(z) of order n. More

insight can be gained later when we work out specific examples.

Once the recurrence relation has been expressed as an ODE, we can solve for R(z).
Then, following Abel’s theorem for the power series [221, 222], which states that the limit
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of a power series R(z) is related to the sum of its coefficients Rn, we get

lim
n→∞

Pn

Qn

= lim
z→z⋆

P (z)
Q(z) , (C.39)

being z⋆ the radius of convergence of R(z), i.e. its singular point if any.
In our case, we have 2 continued fractions: F1 in Eq. (C.33) and F2 in Eq. (C.34). For

the first case F1, the convergents give the following recurrence relation

Rn+2 = an+1Rn+1 − cnbn+1Rn, (C.40)

with n ≥ 0 and initial condition R0 = (0, 1) and R1 = (1, a0). Specifically,

Rn+2 = [γeff + x(2n+ 3)]Rn+1 − x2(n+ 1)2Rn, (C.41)

with x = 8Φγ, γeff = γ2 + 24κΦ and a0 = γeff + x. Define Rn = n!Sn. This transforms

our recurrence relation to

(n+ 2)Sn+2 = [γeff + x(2n+ 3)]Sn+1 − x2(n+ 1)Sn. (C.42)

Assume the following generating function S(z) = ∑
n≥0 Snz

n. This yields the following

first-order ODE,

S ′(z)(1− xz)2z = S(z)[(γeff + x)z − x2z2]− z(γeff + x)S0 + zS1, (C.43)

with initial condition S(0) = S0 = R0. Its solution is

S(z) = e
zγeff
1−xz

x(1− xz)

[
xS0 + e

γeff
x S1

(
Γ[0, γeff/x] + Γ[0, γeff

x(xz − 1)]
) ]
. (C.44)

This solution has a singularity at z = 1/x, which means that

F1 = lim
z→1/x

P (z)
Q(z) =

e
γeff

x Γ[0, γeff
x

]
x

. (C.45)

The other continued fraction F2 fulfils a similar recurrence

Rn+2 = an+2Rn+1 − cn+1bn+2Rn, (C.46)

with initial conditions R0 = (0, 1), R1 = (c0, a1) = (x, γeff + 3x). Define Rn = (n+ 1)!Sn,

then

(n+ 3)Sn+2 = [γeff + x(2n+ 5)]Sn+1 − x2(n+ 2)Sn. (C.47)
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As before, we can find its associated ODE.

S ′(z)(1− xz)2z = S(z)[z(γeff + 3x)− 2x2z2 − 1] + (1− z(γeff + 3x))S0 + 2zS1, (C.48)

with initial condition S(0) = S0. Using the same method as before, we find

F2 = 1 + γeff

x
− e−γeff/x

Γ[0, γeff/x] . (C.49)

These closed expressions of the continued fractions allow us to find the singlet and triplet

populations. Using Eq. (C.32) we obtain Eq. (5.40) and Eq. (5.41) from Chapter 5.
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144. Suárez-Forero, D., Mehrabad, M. J., Vega, C., González-Tudela, A. & Hafezi, M.
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