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Abstract

This thesis aims at the investigation of magnetization dynamics in coupled mag-
netic systems using broadband ferromagnetic resonance and Brillouin light scat-
tering techniques. We observe and characterize the coupling and relaxation
mechanisms between magnons and electrons in semiconductors, magnons and
magnons in magnetic heterostructures, and magnons and photons in photonic
resonators. Our findings will help to utilize the electron spin degree of freedom in
novel spintronic devices.
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Kurzfassung

Diese Dissertation beschäftigt sich mit der Untersuchung der Magnetisierungsdy-
namik in gekoppelten magnetischen Systemen unter Verwendung breitbandiger
ferromagnetischer Resonanz und Brillouin-Lichtstreutechniken. Wir beobachten
und charakterisieren die Kopplungs- und Relaxationsmechanismen zwischen
Magnonen und Elektronen in Halbleitern, Magnonen und Magnonen in magnetis-
chen Heterostrukturen und Magnonen und Photonen in photonischen Resonatoren.
Unsere Ergebnisse werden dabei helfen, den Spin-Freiheitsgrad des Elektrons in
neuen spintronischen Bauteilen zu nutzen.
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1Introduction

Our everyday life is strongly influenced by a big stream of data. Mobile applica-
tions, the internet of things and cloud computation not only allow for a fast data
communication between all clients, they all require electrical energy, mass storage
and the ability to process data.

The modern information technology which is based on complementary met-
al-oxide semiconductors (CMOS), is facing new challenges, which are not only
relevant to technical enthusiasts, but for the big data society. According to Moore’s
law an exponential increase of the processing speed was predicted in the late
1960’s [1]. However, only thirty years later the clock speed of CMOS based
processors started to stagnate. The solution to this problem was to increase the
number of transistors per chip, which goes along with a downscaling of the
transistors. However, this process is bound by physical limitations. For example,
the Shannon-von Neumann-Landauer entropy [2] predicts a minimal switching
energy at room temperature, which limits the transistor size to about 1.5 nm, due
to the Heisenberg uncertainty principle [3]. In addition, solving this problem
would not remove the linear calculation limitations, which come into play for
exponential problems, like finding the shortest path between several destinations,
for transportation of cargo (travelling salesman problem) or public transport
with shared autonomous cars. For this, we require the application of quantum
technology [4, 5].

On the other hand, mass storage faces similar problems. The feature size of
the bits needs to be reduced in order to keep the device size small. This is indeed
a macroscopic problem in the world of big data centers, where a doubling of the
storage density results in a data center, which needs about half the space. However,
with the realization of a single atom data storage [6] the end of the downscaling
process seems to be within reach.

In the field of modern information technology, we thus require an alternative to
CMOS technology, at some point in the future. One candidate to overcome several
limitations of the CMOS technology is the field of spintronics, which sparked
a lot of attention and research after the awarding of the Nobel-Prize to Albert
Fert and Peter Grünberg in 2007 for the discovery for the giant magnetoresistance
effect (GMR) [7–10]. In spintronics, we utilize the spin degree of freedom, not
only the charge freedom of the electron. This leads for example to the change of
the electric resistance of a magnetic bilayer, in dependence on the relative bilayer
magnetization direction (GMR). In the field of magnonics the pure spin-degree
of freedom is utilized in the framework of spin waves, which allow for a parallel
processing of data, with high clock speeds and a feature size limitation, which is
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in the order of the lattice constant of the magnet. In this field, the ferrimagnetic
insulator yttrium iron garnet (YIG) has numerous applications due to its low
intrinsic Gilbert damping and large spin-wave propagation length [11]. It is used
as prototypical material in various experiments [12–16] and is indispensable for
microwave technology. We therefore mainly focus on this material in this thesis.

However, spintronic devices are not likely to replace all of the devices based
on CMOS technology in the near future. Nevertheless, a combination of spintronics
and CMOS is an exciting challenge as the application of the GMR effect in hard
disk drives has shown. This thesis therefore aims at the investigation of coupling
mechanisms between magnons and electrons in semiconductors, magnons and
magnons in magnetic heterostructures, and magnons to photonic resonators. With
these effects, it is possible to combine the best of two worlds, as they can be
understood as read- and write operations between different data systems.

The thesis is organized as follows. In Chapter 2, we give the theoretical back-
ground, which includes the description of the ferromagnetic resonance using the
Landau-Lifshitz-Gilbert equation and the dissipation processes in ferromagnetic
materials. We furthermore present the FMR technique, and a generic experimental
FMR measurement setup. Finally, we discuss the origin of our measurement
signals, and show that we have direct access to the ac magnetic susceptibility
through FMR experiments.

In Chapter 3, we report on the spin pumping mechanism in a generic ferro-
magnet/semiconductor system, here, permalloy/doped silicon samples. We in-
troduce the theory of the spin pumping mechanism with which we can describe
the transport of angular momentum from the magnetic spin system into silicon
semiconductors. We present the FMR experiments, and investigate the efficiency
of the spin injection into silicon in dependence on the silicon doping and the
permalloy thickness.

In Chapter 4, we investigate the Gilbert damping of an yttrium iron garnet
sphere. First, we derive the magnetostatic mode spectrum of the ferromagnetic
insulator, and discuss the implications of a mode pattern on two-magnon scat-
tering processes. Second, we present the experimental results where we find a
record low Gilbert damping parameter for all magnetostatic modes, but different
two-magnon scattering contributions. Third, theoretical calculations reveal the
dominant influence of the two-magnon scattering at the interface of the sphere.

In Chapter 5, we investigate the dynamic magnetization coupling of two
ferromagnets using spin currents and exchange coupling. In the first section,
we extend the spin pumping theory from Chap. 3 to a ferromagnet 1/normal
metal/ferromagnet 2 system, here yttrium iron garnet/copper/cobalt. We derive
an expression for the dynamic susceptibility, together with a simplified macro spin
model. The latter is used to discuss the influence of the different torques on the
yttrium iron garnet and cobalt mode dispersions. In the experimental section, we
find the excitation of spin waves with wavelength down less than 100 nanometers,
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which is a first step towards exchange magnonics. We model and discuss our
observations in the framework of our modified spin pumping theory.

In Chapter 6, we present our results on the strong coupling between magnons
and photons in YIG/cavity hybrid systems. This effect can be employed for the
up- and down-conversion of quantum signals between microwave and optical
frequencies. We first introduce the magnon-photon coupling mechanism, and
subsequently present the used split-ring resonator and the Brillouin light scattering
measurement setup. In our experiments, we find the formation of a magnon-
photon hybrid when the dispersions of the YIG and the SRR coincide.

Finally, we summarize the obtained experimental results in Chap. 7, and give
an outlook to further exciting experiments.

3





2Broadband Ferromagnetic
Resonance

In 1946, Griffiths discovered an anomalous high-frequency resistance of ferro-
magnetic metals, when he studied the permeability of ferromagnetic films with
microwaves with wavelengths between 1 cm to 3 cm as a function of the applied
magnetic field [17]. It turned out that the features in the resistance curves shift
with the used resonator wavelength, where the shift is in the order of the gyromag-
netic ratio. As an explanation for this observation, Griffiths suggested a resonant
absorption of the microwave field by the magnetic dipoles. As we know today,
this indeed is the correct picture and marks the discovery of the ferromagnetic
resonance absorption.

The resonant absorption of microwave energy in ferromagnets (or more gener-
ally in exchange-coupled systems) is known as ferromagnetic resonance (FMR),
similar to electron spin resonance of paramagnetic electron spins, or nuclear mag-
netic resonance (NMR) which is successfully applied in a broad field of natural
and medical sciences. The FMR plays a key-role in the field of spintronics and
magnonics, as the dynamic properties of a ferromagnetic material determine im-
portant parameters such as magnetization switching timescales in hard disks or
spin-torque random access memory and the propagation behavior of spin waves
for microwave signal processing [18].

The theory of ferromagnetic resonance is of great importance for this thesis,
as all presented results are based on dynamic magnetic excitations. In this chapter
we thus review the underlying theory of ferromagnetic resonance absorption, and
put the different chapters into the context our experiments.

In the first part of this chapter, we introduce the concept of the effective field,
and the equation of motion of the magnetization, called the Landau-Lifshitz-Gilbert
equation (LLG). We furthermore introduce the Gilbert damping mechanism and
the understanding of inhomogeneous line broadenings. In the second part of this
chapter, we present experimental realizations of broadband ferromagnetic reso-
nance spectroscopy using a lock-in amplifier and a vector network analyzer (VNA),
including quantitative expressions for the signal strength. In the third part of
this chapter, we discuss experimentally induced damping mechanisms, such as
radiative and eddy-current damping.
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2.1 Theoretical Background

2.1.1 The Effective Field
To determine the properties of a dynamic magnetization precession in a

ferromagnet, we need to summarize all energy contributions, which influence the
orientation of the magnetization in an external magnetic field. The total magnetic
energy Etot normalized to the volume V and the saturation magnetization Ms is
called the the total energy density εtot = Etot/ (VMs) and reads [19]:

εtot = εstat + εdyn + εex + εd + ..., (2.1)

where εstat is the normalized energy density of the magnetization in a static
magnetic field H , εdyn is the normalized energy density contribution from a time
dependent magnetic field dyn, εex is the normalized exchange energy density and
εd is the normalized demagnetization energy density. The latter two are discussed
in some more detail below. We define the effective magnetic field as [19]:

µ0Heff = −∇M εeff, (2.2)

where

∇M =

(
∂

∂mx
,

∂

∂my
,

∂

∂mz

)
(2.3)

is the gradient along the magnetization unit vector M = (mx, my, mz). In the
following, we discuss the most important contributions to the effective magnetic
field.

2.1.1.1 Exchange Field

The exchange field originates from the exchange energy in the magnet, which
arises from spin-spin-interactions and the Pauli principle - it can thus only be
understood based on quantum mechanics [20]. The exchange energy in the
magnet scales with the so-called exchange integral J, which is the overlap of the
electron wave functions, and thus decreases rapidly with increasing spatial spin
separation [21]. The exchange energy of two spins reads [21]:

Eex,ij = −2JSi ·Sj. (2.4)

For J > 0 a parallel alignment of the spins is favored, whereas for J < 0 an an-
tiparallel alignment of the spins is preferred (ferromagnetic and antiferromagnetic
coupling, respectively). Although the exchange integral gives a very clear picture
of the origin of the exchange interaction, there are various other types of indirect
exchange, where the electron wave functions do not overlap directly. In the case of
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superexchange an oxygen atom couples the spin orientations of adjacent electrones
via its atomic orbital, whereas in the case of RKKY interaction conduction electrons
in standing electron waves mediate the exchange [20]. However, most importantly
we study the direct exchange in this thesis, as this is the dominant mechanism in
our experiments.

When the angle ϕij between the spins is small, we can express the exchange
energy as [22]:

Eex,ij = −2JSiSj cos
(

ϕij
)
= −2JSiSj

(
1−

ϕ2
ij

2
+O

(
ϕ3))

= JSiSj ϕ
2
ij − 2JSiSj

(
1 +O

(
ϕ3))︸ ︷︷ ︸

constant

.
(2.5)

Here we have first used the definition of the scalar product SiSj = SiSj cos(ϕij)

with a subsequent Taylor expansion of the cos-function for small angles ϕij between
the spins. Equation (2.5) consists of a constant term, which is the source of a
spontaneous magnetic order in the solid state, and a term which depends on the
angle ϕ2

ij. The latter shows the influences of spin textures on the exchange energy,
such as domain walls or spin waves. In a ferromagnetic system, every pair of spins,
which is not aligned in parallel, increases the exchange energy of the system. As
we are only interested in this part for the discussion of magnetization dynamics,
we neglect the constant term below.

Next, we want to derive an expression for ϕij an follow Ref. [19]. From the
scalar product and the Taylor expansion, we already know:

ϕ2
ij = 2

(
1−

Si ·Sj

SiSj

)
= 2(1− ui · uj), (2.6)

where ui and uj are the unit vectors of the spins. In the approximation the angles
ϕij are very small, and thus only change slightly between the lattice sites ri and rj.
We approximate uj with a Taylor expansion in the coordinates of the lattice [19]:

uj = ui +
∂ui

∂x
xj +

∂ui

∂y
yj +

∂ui

∂z
zj

+
1
2

(
∂2ui

∂x2 x2
j +

∂2ui

∂y2 y2
j +

∂2ui

∂z2 z2
j

)
+ ...

(2.7)
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Here, we have shifted the reference frame into the spin at ri, with which we can
rewrite Eq. (2.5). As the exchange interaction requires the spin wave functions to
overlap, we restrict our sum to the nearest neighbor terms [19]:

Eex,i =JS2 ∑
j∈nn

2(1− ui · uj)

=− JS2 ∑
j∈nn

(
ui

∂2ui

∂x2 x2
j + ui

∂2ui

∂y2 y2
j + ui

∂2ui

∂z2 z2
j

)
.

(2.8)

Here, we used that all terms which are linear in xj, yj and zj sum up to zero. E.g.,
for every spin at xj there is an opposite energy contribution from the spin at −xj.
Note that the constant terms u2

i = 1 vanish as well. Furthermore, we have assumed
a distribution of equal spins in the lattice Si = Sj = S To simplify Eq. (2.8), we
assume a cubic crystal structure with a lattice constant a. In such a structure we
find [19]:

∑
j∈nn

x2
j = ∑

j∈nn
y2

j = ∑
j∈nn

z2
j = 2a2, (2.9)

which allows us to write:

Eex,i = −2JS2a2ui∆ui, (2.10)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator. Hence, the sum of
Eq. (2.8) over the number of atomic pairs in a unit cell n yields the expression for
the exchange density:

εex =
1

2V

n

∑
i=1

Eex,i = −Aexui∆ui. (2.11)

Here, Aex = JnS2a2/2V is the exchange constant, which is for yttrium iron garnet
(YIG) in the order of 3.7 × 10−12 pJ/m [23]. As we want to use the units of
magnetization, we replace the unit vector of the spin moment by the magnetization
u→M :

εex = −AexM∆M = DMsM∆M/2. (2.12)

Here, D = 2Aex/Ms is the exchange stiffness constant, which is for YIG in the
order of 5.25× 10−17 Tm2 [23].
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2.1.1.2 Demagnetization field

The demagnetization field Hd arises from dipole-dipole interactions in the
magnet, and thus couples the orientations of the magnetic moments over macro-
scopic distances. As all magnetic moments contribute to the dipolar energy, we
find a vanishing dipolar interaction for infinite and homogeneous magnetized
samples. However, for finite or inhomogeneous magnetized samples the dipolar
interaction plays a major role, as shown below.

The dipole-dipole interaction between two magnetic moments µi and µj at
the positions ri and rj with the distance r = ri − rj reads [24]:

Ed = −µ0

(
3 (r ·µi)

(
r ·µj

)
r5 −

µi ·µj

r3

)
. (2.13)

It is practically impossible to sum Eq. (2.13) over all combinations of i and j to
obtain an expression for the dipolar energy in the magnetic sample. We thus
use the Maxwell equations in the magnetostatic approximation to derive the
demagnetization field directly [25]:

∇×Hd = 0, (2.14)

∇ ·B = ∇ · (µ0Hd + µ0MsM ) = 0. (2.15)

As the rotation of Hd vanishes, we can introduce a magnetic potential which
satisfies [25]:

Hd = −∇ψ. (2.16)

Together with the second Maxwell equation, we obtain the Poisson equation of
magnetostatics [25]:

∆ψ = ∇ ·MsM ≡ −ρ. (2.17)

Here, ρ = −∇ · MsM is the effective magnetic charge density which creates
the demagnetization field. The solution of the Poisson equation is a Poisson
integral [25]:

ψ = − 1
4π

∫ ∇′ ·MsM (r′)

|r− r′| d3r′ (2.18)

which can be separated into two contributions for the case of a finite sample
volume [25]:

ψ = − 1
4π

∫
V

ρ

|r− r′|d
3r′ +

1
4π

∫
∂V

σ

|r− r′|d
2r′. (2.19)

2.1 Theoretical Background 9



The first term denotes the magnetic volume charge, which is created by inhomoge-
neities of the sample magnetization, e.g. domain walls. The second term denotes
the magnetic surface charge, which arises if the magnetization is not parallel to
the surface of the sample σ = n ·MsM , where n is the surface normal. In the case
of a homogeneous magnetized sample, only magnetic surface charges create the
demagnetization field.

The energy density of the demagnetization field is defined as [20]:

εd = −1
2

µ0MsM ·Hd =
1
2

µ0H
2
d. (2.20)

It is easy to see that a demagnetization field always increases the energy density of
the system. In order to reach the magnetic ground state, it is necessary to decrease
the demagnetization energy by means of a closed magnetic flux. This leads to the
formation of magnetic domains [20].

We can express the demagnetization field in an arbitrarily shaped sample
using a demagnetization tensor [26]:

Hd = −Ñ ·MsM , (2.21)

where

Ñ =

Nx′x′ Nx′y′ Nx′z′

Ny′x′ Ny′y′ Ny′z′

Nz′x′ Nz′y′ Nz′z′

 . (2.22)

For general ellipsoids [27] the demagnetization tensor only consists of diagonal
elements Nij = 0 with Nx′x′ +Ny′y′ +Nz′z′ = 1. The latter means, that the sum of
the longitudinal demagnetization fields along the direction ofM has the amplitude
of the saturation magnetization [28].

In Tab. 2.1 the diagonal elements of the demagnetization tensor are shown
for three sample shapes. Note that we express the demagnetization factors in a
coordinate system, which is oriented along the symmetry axes of the ellipsoids. For
a thin film which has the film normal parallel to the z′-axis, the only non-vanishing
demagnetization component lies along the z′-direction (cf. Fig. 2.1) and has a
magnitude µ0Hd = −µ0Ms. Hence, we must apply a magnetic field strength of
µ0H = µ0Ms parallel to the film normal in order to overcome the demagnetization
field and to turn the sample’s magnetization out of the film plane. Without an
external magnetic field, the sample’s magnetization will align in the film plane to
reduce the stray field energy in Eq. (2.20). In a spherical sample in contrast the
demagnetization field is isotropic Hd = −Ms/3 in all directions.

10 Chapter 2 Broadband Ferromagnetic Resonance



Shape Nx′x′ Ny′y′ Nz′z′

sphere 1/3 1/3 1/3

film (film normal parallel to z′-axis) 0 0 1

cylinder (long axis along z′-axis) 1/2 1/2 0

Tab. 2.1. – Diagonal elements of the demagnetization tensor for various sample shapes,
adapted from Ref. [29]

Furthermore, we can express the demagnetization energy density in terms of
the demagnetization tensor using Eq. (2.20) and Eq. (2.21):

εd =
1
2

Msµ0M · Ñ ·M , (2.23)

which simplifies the expressions for the demagnetization field tremendously.

2.1.2 Magnetization Dynamics - Macrospin Model
The magnetization dynamics in the solid state is a collective phenomenon,

where the magnetic moments precess with a certain phase relation around the
direction of the effective field. The case of a uniform precession phase is referred
to as ferromagnetic resonance. The case where we have a non-uniform precession
with a finite phase shift between adjacent spins is called a spin wave. In the
following, we motivate the undamped Landau-Lifshitz equation, which describes
this precessional motion. We then introduce the Landau-Lifshitz-Gilbert equation,
which adds a phenomenological, viscous damping to the equation of motion. From
the latter case, we also derive the expressions for the ferromagnetic resonance
frequencies for arbitrary sample orientation.

2.1.2.1 Landau-Lifshitz-Gilbert Equation

The energy of a magnetic moment µm in an effective field is given by [20]:

E = −µmµ0Heff, (2.24)

where Heff is the effective magnetic field, introduced in Chap. 2.1.1. In the static
case, the magnetic moment aligns parallel to the direction of the external field [20].
However, for deviations from the equilibrium position a torque D arises [29]:

D = −µm ×Heff. (2.25)
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Fig. 2.1. – Coordinate system of a ferromagnetic film. The film normal is parallel to the
z′-axis of the reference frame. However, if we apply a magnetic field under a certain angle
(ϑ0, ϕ0) to the z′-axis, we have to rotate the demagnetization tensor accordingly. Inset: The
magnetization precesses around the direction of the effective field.

The magnetic moment starts to precess around the direction of the effective field
with a certain frequency ω, which is calculated below. The magnetic moment is
connected to the total angular momentum J [29]:

µm = −γJ , (2.26)

where γ = gµB/h̄ is the gyromagnetic ratio. From this we derive the equation of
motion:

D =
∂J

∂t
=

1
γ

∂µm

∂t
= −µm × µ0Heff, (2.27)

where we have used that the torque equals the time derivative of the angular mo-
mentum. For the observation of an ensemble of magnetic moments, we summarize
over the magnetic moments per unit volume, which leads to the Landau-Lifshitz
equation [29–31]:

∂M

∂t
= −γM × µ0Heff. (2.28)

The Landau-Lifshitz equation describes the precessional motion of the magneti-
zation around the effective magnetic field, which is shown in the inset of Fig. 2.1.
The cone angle of the precession is constant, as no dissipation term is included
in Eq. (2.28). The energy dissipation can be included using a phenomenological
damping term, which leads to the Landau-Lifshitz-Gilbert equation [31, 32]:

∂M

∂t
= −γM × µ0Heff + αM × ∂M

∂t
. (2.29)

Here, α is the Gilbert damping parameter [32]. As the damping term is proportional
to ∂M/∂t, we speak about a viscous damping.
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2.1.2.2 Ferromagnetic Resonance

A solution of the linearized LLG yields the fundamental ferromagnetic reso-
nance frequencies and linewidths for an arbitrarily shaped sample [29–31, 33]. For
this we take the total magnetic free energy density normalized by the saturation
magnetization, which reads:

εtot = −µ0(H +Hdyn) ·M +
1
2

µ0MsM · Ñ ·M −
D
2
M∆M , (2.30)

where we have already added a dynamic magnetic field Hdyn, which produces
small time-dependent perturbations from the magnetization’s equilibrium position.
The external magnetic field is applied in an arbitrary direction, with respect to
the x′, y′, z′-laboratory frame. The aforementioned relation is only valid in the
primed-system, as the demagnetization tensor is written in this system. Note that
in a real system we need to take also the dipolar interaction between the spins into
account [34]. However, we can neglect this interaction here, as this thesis mainly
deals with the k = 0 FMR mode where the dipolar energy vanishes.

We can apply magnetic fields in any orientation with respect to the primed
sample system. Without loss of generality, we introduce a new coordinate system,
where the static part of the magnetization points along the y-direction, and the
dynamic parts of the magnetization can be found in the mx, mz-components. In this
coordinate system, the dynamic and static parts of the magnetization decouple [30]:

M =

mx(t)
0

mz(t)

+

 0
my

0

 . (2.31)

The demagnetization field of an ellipsoid depends on the angles between the
magnetization and its symmetry axes. If we rotate the sample in the magnetic
field around ϑ0 and ϕ0 (such as the in-plane and out-of-plane directions of a
magnetic film), this can be mathematically accomplished by a rotation of the
demagnetization tensor, as the entries Nii are bound to the fixed sample shape.

To build our rotation matrix we use the Euler angles [35]. For this we first
rotate our primed-system around the angle ϕ0 around the z′-axis:

Ũ z′ =

 cos(ϕ0) sin(ϕ0) 0
− sin(ϕ0) cos(ϕ0) 0

0 0 1

 , (2.32)
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and second, we rotate the primed-system around the angle ϑ0 around the x′-axis:

Ũ x′ =

1 0 0
0 cos(ϑ0) sin(ϑ0)

0 − sin(ϑ0) cos(ϑ0)

 . (2.33)

A rotation of a vector in our primed-system r′ of the samples ellipsoid into the
system of our magnetization r is obtained using:

r = Ũ · r′ (2.34)

with

Ũ = Ũ x′ · Ũ z′

=

 cos(ϕ0) sin(ϕ0) 0
− cos(ϑ0) sin(ϕ0) cos(ϑ0) cos(ϕ0) sin(ϑ0)

sin(ϑ0) sin(ϕ0) − cos(ϕ0) sin(ϑ0) cos(ϑ0)

 .
(2.35)

Using this transformation matrix, the mx-component is always in the x′-y′-plane,
whereas the mz-component is either in the x′-y′-plane or perpendicular to it,
depending on the angle ϑ0.

The free energy density of a sample with an anisotropic demagnetization
tensor in an arbitrarily oriented magnetic field then reads:

εtot =− µ0(H(ϑ0, ϕ0) +Hdyn(ϑ0, ϕ0)) ·M

+
1
2

µ0M · Ñ (ϑ0, ϕ0) ·M −
D
2
M∆M ,

(2.36)

where Ñ (ϑ0, ϕ0) = Ũ−1 · Ñ · Ũ , and Hdyn(ϑ0, ϕ0) = Ũ ·Hdyn. Note that our
dynamic magnetic field can always be described in the same coordinate system as
the sample, as we do not rotate our samples relative to the excitation field. By using
Eq. (2.36) in Eq. (2.2) we obtain the effective field, which we put into the Landau-
Lifshitz-Gilbert equation (2.29). We linearize the Landau-Lifshitz-Gilbert equation
around mx = mz = 0 as we only treat small magnetization perturbations and sort
the remaining expressions in terms of the dynamic magnetization components.
We furthermore assume that the deviations from the equilibrium orientation are
small so that my ≈ 1 and mx, mz � my and we identify H as the applied magnetic
static field strength. This yields for the dynamic magnetization:

Ms

(
mx

mz

)
= χ̃

(
hx

hz

)
(2.37)
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where

χ̃ =
µ0Ms

χ−1
xx χ−1

zz − χ−1
xz χ−1

zx

(
χ−1

zz −χ−1
xz

−χ−1
zx χ−1

xx

)
(2.38)

is the Polder susceptibility tensor with the entries:

χ−1
zz =− Dsk2

z − µ0H − 1
2

µ0Ms(Ny′y′ + Nz′z′) +
iαω

γ

+ µ0Ms
(

Ny′y′ cos2(ϑ0) + Nz′z′ sin2(ϑ0)
)

cos2(ϕ0) (2.39)

+ µ0Ms

(
Nx′x′ sin2(ϕ0) +

1
2
(Ny′y′ − Nz′z′) cos(2ϑ0)

)
χ−1

xz =µ0Ms(Nz′z′ − Ny′y′) cos(ϑ0) sin(ϑ0) sin(ϕ0)−
iω
γ

(2.40)

χ−1
zx =µ0Ms(Nz′z′ − Ny′y′) cos(ϑ0) sin(ϑ0) sin(ϕ0) +

iω
γ

(2.41)

χ−1
xx =− Dsk2

z − µ0H +
iαω

γ

+ µ0Ms(−Nx′x′ +
1
2

Ny′y′ +
1
2

Nz′z′) cos(2ϕ0) (2.42)

+
1
2

µ0Ms(Ny′y′ − Nz′z′) cos(2ϑ0) cos(2ϕ0)

In Fig. 2.2 (a) we plot the real and imaginary part of χxx for an out-of-plane
magnetized film as a function of the applied microwave frequency for a fixed
magnetic field. From the signal χxx we obtain a resonant behavior, which is
associated with a certain resonance frequency and linewidth. We can easily
determine the resonance frequency ωres, and the full-width at half-maximum ∆ω

from the plot. However, it is also possible to calculate the resonance frequencies
and linewidths. For this we set the determinant of the inverse susceptibility to
zero:

det
(
χ̃−1

)
|ω=ωres = χ−1

xx χ−1
zz − χ−1

zx χ−1
xz |ω=ωres = 0. (2.43)

Hereby, the real part of the solution gives the resonance frequency, whereas the
imaginary part gives the linewidth, which is determined by the Gilbert damping
parameter. In the following, we want to investigate the ferromagnetic resonance
conditions of two important sample shapes, which are used in this thesis.
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Fig. 2.2. – (a) Real and imaginary part of χxx calculated for µ0Ms = 1 T, γ = 28 GHz/T,
and a fixed magnetic field of µ0H = 2 T for an out-of-plane magnetized film. (b) Resonance
conditions for different sample shapes and magnetization orientations.

2.1.2.3 Ferromagnetic Slabs

To calculate the ferromagnetic resonance frequencies of a film with the de-
magnetization factors given in Tab. (2.1), we assume an in-plane rotation of ϕ0 = 0,
hence the magnetic field can be applied in- and out-of-the film plane by a variation
of ϑ0. By using Eq. (2.43) we then obtain:

ωres =
1
2

γ

[
4D2

s k4
z + 2Dsk2

zµ0(4H −Ms)

+ µ0Ms
(
cos(2ϑ0)

(
6Dsk2

z + 6µ0H − 2µ0Ms
)
+ µ0Ms cos(4ϑ0)

)
+ µ2

0
(
4H2 − 2HMs + M2

s
)]1/2

(2.44)

We obtain the so-called Kittel equation for in-plane magnetized films for ϑ0 =

0 [23, 29]:

ω
ip
res = γ

√
(µ0H + Dsk2) (µ0H + Dsk2 + µ0Ms), (2.45)

whereas we find the well-known case for out-of-plane magnetized films for
ϑ0 = π/2 [23, 29]:

ω
oop
res = γ

(
µ0H + Dsk2 − µ0Ms

)
. (2.46)

Both cases are shown in Fig. 2.2 (b) as blue and orange lines for k = 0. The
resonance frequencies of the in-plane case are always higher than for the out-
of-plane case, as the demagnetization field increases the effective field in the
in-plane case, whereas it decreases the effective field for the out-of-plane case. We
furthermore restrict the plot of the out-of-plane magnetized case to the part of
Eq. (2.46) where H > Ms. For H < Ms the magnetization is not aligned parallel
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to the applied magnetic field due to demagnetization effects, which requires a
numeric treatment of Eq. (2.43) in this intermediate regime.

2.1.2.4 Ferromagnetic Spheres

A ferromagnetic sphere with the demagnetization factors given in Tab. (2.1)
has the resonance frequencies [29]:

ωres = γ
(
µ0H + Dsk2) . (2.47)

This resonance condition is independent of any demagnetization effects and
any angle of the external static field. If we neglect the exchange interaction,
the ferromagnetic resonance frequency only depends on the gyromagnetic ratio
of the material, which allows to determine this parameter with a very high
accuracy [36, 37]. The resonance condition is shown in Fig. 2.2 (b) as a green
line.

2.2 Spin Waves
In ferromagnetic resonance all spins precess in phase. However, there are also

excitations, where adjacent spins have a non-vanishing phase relation, so called
spin waves. In this case again all spins precess with the same frequency, but the
phase difference between adjacent spin determines a wavelength. The quanta of
a spin wave is the magnon, which carries a spin of h̄ and is thus a bosonic quasi
particle. The finite wavelength (and thus the finite wavevector) together with a
non-vanishing group velocity allow for information transport using spin waves [18].
This can be achieved by encoding information in the spin-wave phase [13, 38–41],
or in the spin-wave amplitude [12, 14, 18, 42].

As for a spin wave not all spins precess in phase, we get locally different
effective fields, which are due to dynamic demagnetization and exchange fields.
Taking these effects into account, leads to a complex spin-wave manifold, where
the spin-wave dispersion depends on the angle between the wave vector and the
magnetization, the magnetic field, and material parameters. The complex spin-
wave manifold delivers also the opportunity for k = 0 ferromagnetic resonances to
scatter into excitations with k 6= 0, which makes it an important variable when we
discuss the damping effects, e.g. in Chap. 4.

Kalinikos and Slavin have calculated the general spin-wave dispersion rela-
tions to be [34]:

ω(k) = γ
√
(µ0H + Dsk2)(µ0H + Dsk2 + µ0MsFnn(k‖, φ, d)). (2.48)

Here, ω is the resonance frequency, k is the wavevector, H is the applied magnetic
field, Ds is the exchange stiffness, d is the thickness of the magnetic film, φ is the
angle between the magnetization and the wavevector. The in-plane wavevector is
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volume (orange) waves.

given by k2
‖ = (nπ/d)2 − k2, where the term including the mode number n gives

the wavevector of the standing spin wave over the film thickness. The factor Fnn is
the matrix element which contains the dipole-dipole interaction of the dynamic
magnetization of the n-th standing spin wave, which dominantly influences the
dispersion relations. For the important case of n = 0 and hence k‖ = k, the
dipole-dipole element is given by [34]:

F00(k, φ, d) = 1 + P00(k)(1− P00)

(
µ0Ms

µ0HDsk2

)
sin(φ)2 − P00 cos(φ)2, (2.49)

with

P00(k) = 1− 1− e−kd

kd
. (2.50)

We can now discuss the dispersion relations for three important cases [30, 34].

2.2.1 Backward Volume Waves
For in-plane magnetized films, where the wavevector is parallel to the magne-

tization direction, we are in the case of so called backward volume waves, where
the wave propagates in the volume of the film [11]. The dynamic magnetization
configuration for a point in time is shown in Fig. 2.3 (a) as red arrows. The dynamic
magnetization produces a magnetic stray field, shown as blue arrows, when it
points parallel to the film normal n. When the spin-wave wavelength decreases,
the stray fields become smaller, as the opposing dynamic magnetizations get closer
to each other, which reduces the magnetic flux.

18 Chapter 2 Broadband Ferromagnetic Resonance



The dispersion relation is given by [11, 30, 34]:

ω = γ

√
(Dsk2 + µ0H)

(
Dsk2 + µ0H + µ0Ms

1− e−dk

dk

)
, (2.51)

which is plotted as green line in Fig. 2.3 (c) for µ0H = 0.2 T, µ0Ms = 0.175 T
and Ds = 5.3× 10−17 Tm2. We find indeed, that the frequency decreases with
increasing wavevector, as predicted by the above picture. This is the reason we
speak of backward volume waves, as the group velocity vg = ∂ω/∂k < 0.

However, for large wavevectors the frequency increases rapidly with increasing
wavevectors, due to exchange interactions.

2.2.2 Magnetostatic Surface Waves
For in-plane magnetized films, where the wavevector is perpendicular to the

magnetization direction, we are in the case of magnetostatic surface waves. For
magnetostatic surface waves the dynamic magnetization components are shown
for a point in time in Fig. 2.3 (b). As known from the backward volume waves,
a decrease of the wavelength reduces the dynamic stray fields. However, two
adjacent dynamic magnetization vectors point antiparallel to each other (e.g. arrow
2 and 4), which increases the energy of the system [43]. The latter effect counteracts
the reduction of the magnetic stray fields. We furthermore find, that the dynamic
stray fields are parallel to the dynamic magnetization on the top side of the film,
whereas the dynamic magnetization and the dynamic stray fields are antiparallel
on the bottom side of the film. This illustrates, that the surface spin waves have a
larger amplitude at one side of the film.

The dispersion relation for these waves is given by [11, 30, 34]:

ω = γ

√
(Dsk2 + µ0H)(Dsk2 + µ0H + µ0Ms) +

µ2
0M2

s

4
(1− e−2dk), (2.52)

which is plotted as blue line in Fig. 2.3 (c). As the slope of the dispersion is positive
for all wavevectors, all group velocities are positive as well.

At this point we want to emphasize that the spin-wave dispersion is obviously
highly anisotropic, as we get different dispersion relations for different angles of
wave propagation. This can lead to various scattering effects, when the propagation
direction of the spin wave is changed [38]. However, it was successfully shown
that the spin waves can effectively be steered by utilizing Snell’s law for spin-wave
dispersions [44], or by the application of thermal gradients [45].
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2.2.3 Forward Volume Waves
When the magnetic film is magnetized parallel to the film normal and the

wavevector lies in the film plane, the dynamic magnetization does not produce
any magnetic stray field. In this case the spin-wave dispersion is isotropic (as all
in plane wavevectors are perpendicular to the magnetization). The advantage of
isotropic spin waves is that they can easily be guided around curves and bends,
and that scattering effects into other modes are not possible [13].

The dispersion relation of these waves is given by [11, 30, 34]:

ω = γ

√
(Dsk2 + µ0H)

(
Dsk2 + µ0H + µ0Ms

(
1− 1− e−dk

dk

))
, (2.53)

which is plotted as orange line in Fig. 2.3 (c).

2.2.4 Exchange Waves
As motivated above an isotropic dispersion relation is favored for the ap-

plication of spin waves in devices, as it easily allows for the utilization of spin
waves in two dimensional structures, as they are not influenced by scattering
effects. However, it is not always possible to tilt the magnetization out of the film
plane, when only a limited external magnetic field exists which is smaller than
the saturation magnetization. In this case one has to overcome the limitations of
the dipole-dipole interaction in Eq. (2.48), which is the case for large wavevectors:
Dsk � µ0MsFpp(k‖, φ, d)). This limit can be found also in Fig. 2.3 (c), when the
exchange interaction starts to dominate the different dispersion relations above
k > 107 m−1. In this limit the dispersion relation reduces to:

ω(k) = γ(µ0H + Dsk2), (2.54)

which is independent of the in-plane propagation angle φ. The dispersion increases
quadratically with the wavevector, which leads to a group velocity vg ∝ k. Hence
the information transport is faster for smaller wavelengths (larger k).

2.3 Damping Models
We here introduce the Gilbert damping mechanism, which is important for

all experiments conducted in this thesis. We additionally include a discussion
of the inhomogeneous line broadening which is an indicator for the sample
quality (homogeneity and roughness), which is of great importance for Chap. 4.
Furthermore, we introduce extrinsic damping contributions, which stem from the
coupling between the samples and the experimental setup, which is required for
Chap. 3.
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2.3.1 Gilbert Damping
The Gilbert damping describes a viscous relaxation of the ferromagnetic reso-

nance. By a measurement of the Gilbert damping parameter we gain information
about the spin-wave lifetime. Different intrinsic damping mechanisms result-
ing in Gilbert damping have been proposed, such as the scattering of magnons
with phonons [37, 46–48], where the magnon loses energy to the lattice. This
phenomenon can ultimately be traced back to the spin-orbit interaction [49]. Fur-
thermore, magnons can lead to inter- and intraband excitations by magnon-electron
scattering [50]. Last but not least magnons can scatter with other magnons which
leads to a manifold of multi-magnon scattering processes [36, 46, 51–59]. Another
Gilbert-like damping mechanism is the creation of eddy currents in metallic fer-
romagnets or conducting substrates. Such eddy current damping is not present
in ferromagnetic insulators. An eddy current can also be created in the metallic
coplanar waveguide or the microwave cavity, which excites the ferromagnetic
resonance. In this case, one speaks about radiative damping. Both phenomena
are discussed in detail in Chap. 2.5. Furthermore, Gilbert-like damping can arise
due to the creation of spin currents, known as the spin pumping mechanism. This
damping requires an additional metallic layer adjacent to the ferromagnet. The
spin current, which is created by the ferromagnetic resonance, is then absorbed in
the metal. A detailed discussion can be found in Chap. 3.1.

In the following we show the connection of the Gilbert damping to the
spin-wave lifetime, and derive an import expression for the resulting resonance
linewidth. As can be seen from the Landau-Lifshitz-Gilbert equation (2.29), a
transition from the undamped LLG to the damped LLG is achieved by using the
transition:

ω → ω− iαω (2.55)

in the susceptibility tensor. Hence, the damping is always given by Im [ωres] as
stated before in Chap. 2.1.2.2. Using the transition to complex frequencies leads to
an exponential decay of the magnetization precession, e.g.:

mx → mxe−iωte−αωt, (2.56)

where we can connect a relaxation rate 1/te of the magnetic excitation with the
Gilbert damping, where te is the time in which the spin-wave amplitude drops
to 1/e:

1/te = αωres = ∆ω/2. (2.57)
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In the last step, we have used a Fourier transformation that connects the relax-
ation time with the full width at half maximum ∆ω in the frequency space. We
furthermore obtain the important relation:

∆ω = 2αωres, (2.58)

which describes a linear dependence of the resonance linewidth on the resonance
frequency. However, in many experiments the linewidth of the FMR resonance is
only available in the magnetic field space. In this case the linewidth is given by
Im [Hres], from which we obtain [60]:

µ0∆H =
2ωα

γ
. (2.59)

A conversion between the resonance linewidth in field and frequency space is
given by using the following relation for small linewidths:

∆ω

∆H
→ ∂ω

∂H

∣∣∣∣
ω=ωres

. (2.60)

Equation (2.58) and Eq. (2.59) are the so called Gilbert damping relations.

2.3.2 Inhomogeneous Line Broadening
The Gilbert damping mechanism is not the only mechanism that increases the

linewidth of the resonance. Experimentally, one often finds an extrapolated non-
zero linewidth ∆H0 for vanishing frequency, which is called the inhomogeneous
line broadening:

µ0∆H =
2ωα

γ
+ µ0∆H0. (2.61)

As the inhomogeneous line broadening varies with the sample quality, like grain
size and surface roughness [48, 61] this process is considered to be an extrinsic
damping. An important mechanism for the inhomogeneous line broadening are
two-magnon scattering processes. In general, a two-magnon scattering process
is described by the scattering of an incident magnon with wavevector k into a
magnon state k′:

k′ = k+ q. (2.62)

The conservation of energy requires that the incident and scattered magnon
oscillate with the same frequency [62]:

ω(k) = ω(k′). (2.63)
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Fig. 2.4. – (a) Linewidth contributions as a function of excitation frequency. (b) Spin wave
frequency as a function of the in-plane wavevector for different geometries.

Hereby the scattering is mediated by the magnetic potential of the inhomoge-
neities [55], which depends on the uniaxial anisotropy energy, and the spatial
dimensions and shape of the inhomogeneities.

For the case of an in-plane magnetized magnetic film the linewidth due to
two-magnon scattering processes is approximately given by [54, 63]:

µ0∆H2M = µ0Γ arcsin

√√
ω2 + (ωM/2)2 −ωM/2√
ω2 + (ωM/2)2 + ωM/2

, (2.64)

where ωM = γµ0Ms. Figure 2.4 (a) shows the linewidth evolution from Eq. (2.64)
as a function of the microwave frequency due to the two-magnon scattering for
µ0Ms = 0.175 T and µ0Γ = 1 mT (blue, dash-dotted line). We find a steep increase
of the linewidth for small frequencies, but a fast saturation above ω/2π = 5 GHz
towards the saturation value:

µ0∆H∞
2M = lim

ω→∞
µ0∆H2M =

πµ0Γ

2
. (2.65)

Above the saturation frequency, the two-magnon scattering contribution looks
almost frequency-independent. The pure Gilbert-like part from Eq. (2.58) is
shown as a green, dotted line for α = 0.01, and denoted as 2αω/γ. It is a linear
function of the microwave frequency. We further include a constant frequency
offset of µ0∆H0

0 = 1 mT, which includes all other frequency independent linewidth
contributions. The sum of all linewidth contributions is shown as orange, solid
line:

µ0∆Htot =
2αω

γ
+ µ0∆H2M + µ0∆H0

0 . (2.66)

We find for frequencies below ω/2π = 5 GHz a steep increase which stems from
the two-magnon scattering effects. For frequencies above ω/2π = 5 GHz we
observe a linear increase as known from the Gilbert damping. The experimentally
observed linewidth evolution is thus a superposition of two different damping

2.3 Damping Models 23



effects. However, if we fit a linear function to the linewidth evolution, the slope
is given by the Gilbert damping parameter in good approximation, whereas the
offset is given by ∆H0 = ∆H2M +∆H0

0 . We will refer to ∆H0
0 as the inhomogeneous

line broadening in the following.
However, we can switch off the two-magnon scattering effects by magnetizing

the film parallel to the surface normal. In Fig. 2.4 (b) we show the spin-wave
dispersions for different magnetization angles and propagation directions. The
dispersions from Chap. 2.2 are plotted for µ0Ms = 0.175 T, Ds = 5.3× 10−17 Tm2

and d = 1 µm, which are typical values for YIG [23]. For an in-plane excited
magnon at ω

ip
res and k = 0 a scattering event is possible into a k 6= 0 magnon

at the same frequency. The reason for this is the complex spin-wave dispersion
relation which depends on the demagnetization fields created by the dynamic
magnetization [34]. However, for an out-of-plane excited magnon at ω

oop
res and k =

0, such a scattering effect is not possible. The dynamic magnetization components
lie in the film plane and do not create any dynamic demagnetization fields. Thus,
the spin-wave dispersion is isotropic, when the film is magnetized out-of-plane, and
thus the two-magnon scattering effects are switched off. If an in-plane linewidth
which exceeds the out-of-plane linewidth is observed experimentally, two-magnon
scattering effects are likely the origin of this observation [64].

Note that in magnetic spheres we always create magnetic stray fields, as the
demagnetization tensor is isotropic. Hence, we always find a wave vector in which
we can scatter under the conservation of energy, cf. Fig. 4.3(a). Here, the two
magnon scattering effects can only be reduced by improving the sample quality.

2.4 Experimental Methods
In this section, we present our lock-in broadband ferromagnetic resonance

setup, and we discuss the origin of the measurement signal. A discussion of the
vector network analyzer-based setup is given below in Chap. 2.4.3.

A sketch of a generic room-temperature broadband ferromagnetic resonance
setup is shown in Fig. 2.5 (a). It consists of a three parts, firstly, the electro-
magnet, secondly, the coplanar waveguide for the creation of dynamic magnetic
field, thirdly, the measurement group, for the excitation and detection of the
ferromagnetic resonance.

For this thesis we used an water-cooled electromagnet consisting of an iron
yoke and a pair of pole shoes. The electromagnet is operated using a bipolar
Danfysik 9100 power supply, which is limited to a output voltage of Vout = 60 V,
which results in a maximum current through the coils of the electromagnet of about
Imax = 70 A. The pole shoes of the electromagnet are designed in a Helmholtz-like
configuration in order to guarantee for a homogeneous static magnetic field in
which the samples are placed. We use two pairs of pole shoes with different
diameters in this thesis. With a pole shoe diameter of a = 3 cm we have a field
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Fig. 2.5. – (a) Experimental setup for the broadband FMR measurement using the lock-
in method. The samples are place face down onto the coplanar waveguide, where
the microwave field of the CPW excites the ferromagnetic resonance. The out-of-plane
magnetization angle is ϑ0 = π/2. Note that due to the in-plane rotation angle of ϕ0 = 0
the x-axis and the x′-axis of the sample and the CPW coincide. (b) Sketch of the Lock-in
method.

limitation of about |µ0H| ≤ 2.9 T, whereas we reach a maximum field of about
|µ0H| ≤ 2.25 T with a pole shoe diameter of a = 5 cm.

The samples were placed face down on the conductor of a coplanar waveguide
(CPW), which was located between the pole shoes of the electromagnet. A CPW is
an antenna structure which consists of a center conductor strip with a width w and
adjacent ground electrodes in distance g to the center conductor [65]. The center
conductor and the ground electrodes consist of a special silver alloy, which is
deposited and patterned on a dielectric substrate. In order to enable a microwave
transmission in a broad frequency range between ω/2π = 0 GHz and ω/2π =

43.5 GHz, the coplanar waveguide is impedance matched to a standard microwave
circuit impedance of Z0 = 50 Ω. In this thesis we use a coplanar waveguide with
w = 300 µm. The details of the CPW can be found in Ref. [66].

If a microwave current is injected into the CPW, an oscillating magnetic
field will emerge around the center conductor due to Ampere’s law. When the
microwave frequency matches the resonance condition given by Eq. (2.43) for a
certain applied magnetic field (or vice versa) this results in an oscillating torque on
the samples magnetization and hence the excitation of the ferromagnetic resonance.
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2.4.1 Principle of Reciprocity
We now address the FMR detection scheme [60, 67]. The precession of the

magnetization in resonance above the CPW creates an oscillating magnetic flux
in the center conductor, which leads to an inductive voltage due to Faraday’s law.
This inductive voltage is the signal used to detect FMR. To obtain an expression for
the inductive voltage of the sample in the CPW, we use the principle of reciprocity,
which says that we can replace the magnetization of the sample by a current
loop, which generates the same flux [68]. The flux Φ generated by the transverse
magnetization in the CPW is then given by [68, 69]:

Φ =
µ0

I

∫
Vsample

H ′MsM
′dV, (2.67)

where H ′ and M is the dynamic magnetic field and the dynamic magnetization
in the coordinate system of the CPW. In this coordinate system we can express
the magnetic driving field distribution by the Karlqvist equations [70] using
H ′ = (hx′ , 0, hz′). Note that we have here assumed, that the microwave current in
the CPW flows along the y′ direction. The field strength can be calculated using
the Karlqvist equations [70]:

hx′(x′, z′) = −h0

π

(
arctan

(
w/2 + x′

z′

)
+ arctan

(
w/2− x′

z′

))
(2.68)

hz′(x′, z′) =
h0

2π
log

(
z′2 + (w/2 + x′)2

z′2 + (w/2− x′)2

)
, (2.69)

where h0 = I/2w, I =
√

P/Z0 and P is the applied microwave power. The
magnetic driving fields can be approximated for samples, which are much thinner
than the width of the center conductor (for z� w) [68]:

hx′(x′, z′) = h0
(
Θ
(

x′ + w/2
)
−Θ

(
x′ − w/2

))
(2.70)

hz′(x′, z′) =
h0

2π
log

(
(w/2 + x′)2

(w/2− x′)2

)
, (2.71)
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Here Θ is the Heaviside step function. Note that the hz′ vanishes, if we are in the
center of the center conductor x′ = 0. We now assume a uniform mode profile of
the dynamic magnetization over the sample thickness, and the flux becomes [71]:

Φ =
µ0Ms

I

∫
Vsample

H ′M ′(t)dV

=
µ0Ms

I

∫
Vsample

H ′ ·
(
U−1M

)
dV

=
µ0Ms

I

∫
Vsample

(hx′mx′ + hz′mz′) dV

=
µ0Ms

2
dlmx′ .

(2.72)

Note that we have used in the second line, that the dynamic magnetization points
only along the x- and y- axis, which leads to mx′ = mx cos(ϕ0) +mz sin(ϑ0) sin(ϕ0),
my′ = mx sin(ϕ0)−mz sin(ϑ0) cos(ϕ0) and mz′ = mz cos(ϑ0)). In the fourth line we
have neglected the hz′ field as stated above and performed the integration, where
d and l are the thickness and the length of the sample, respectively.

For the sample fixed coordinate system we now obtain the inductive voltage,
which is created by the magnetization precession:

Vind = −∂Φ

∂t
= iω

µ0Ms

2
dlmx′(t) ∝ χx′x′hx′ . (2.73)

We find, that the inductive voltage depends on the geometry of the sample above
the center conductor and the saturation magnetization. The inductive voltage
furthermore increases with increasing microwave frequency, but most importantly
inductive voltage depends on the x′−component of the magnetization. This comes
from the principle of reciprocity, as we have only a sensitivity for the x′-component
due to our assumptions. We hence have direct access to the dynamic susceptibility
via the inductive voltage of the ferromagnetic resonance.

To gain more information about the dynamic magnetization process we rewrite
the expression above in the coordinate system of the magnetization:

Vind = iω
µ0Ms

2
dlmx(cos(ϕ0) + η sin(ϑ0) sin(ϕ0)) ∝ χxx, (2.74)

where we have introduced the ellipticity factor η = mz/mx, where the magneti-
zation components have a phase shift of π/2. Note that we obtain a vanishing
inductive voltage for an in-plane rotated sample (ϑ = 0), where the center con-
ductor is aligned perpendicular to the external field (ϕ = π/2). This is in full
agreement with our experimental experiences.
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2.4.2 Lock-In Amplifier Measurements
In our measurement setup in Fig. 2.5 (b) we employ a lock-in technique

to investigate the ferromagnetic resonance. Our excitation group consists of
a Rhode & Schwartz SMF100A microwave source, which is connected to the
CPW. The detection group consists of a microwave diode, which rectifies the
microwave currents, and a Zurich Instruments MFLI lock-in amplifier. In our
lock-in experiments, we keep the microwave frequency fixed, and we sweep the
external field. In the section below, we want to quantify the measurement signal.

The lock-in detection is a heterodyne detection method, where the signal is
periodically modulated with a certain amplitude. The lock-in amplifier recognizes
the modulation frequency and records the change of a voltage signal at that
frequency. This results in a low-noise detection, as the bandwidth using this
homodyning technique is only several Hertz wide, as shown below.

2.4.2.1 Frequency Modulation

In most of the experiments performed in this thesis, we use a frequency-
modulation method, where we change the microwave excitation frequency period-
ically:

ω′ = ω + ω∗ sin
(
Ωt + ϕsig

)
. (2.75)

Here, ω is the center frequency, ω∗ is the frequency modulation depth, and 1/Ω

is the period of the frequency modulation. It is convenient to introduce here
the phase ϕsig, which allows to compensate the phase accumulation due to the
electrical length of the microwave cables from the output of the microwave source
to the input of the lock-in amplifier. We assume that the modulation depth is small
in comparison to the linewidth of the resonance, and Ω � ω, so that we expect
a linear response of the susceptibility to the periodic modulation. We can then
expand the susceptibility of our measurement signal, where we in the following
neglect the index of χx′x′ :

χ(ω′) = χ(ω′)
∣∣
ω′=ω

+
∂χ

∂ω′

∣∣∣∣
ω′=ω

(
ω′ −ω

)
= χ(ω′)

∣∣
ω′=ω

+
∂χ

∂ω′

∣∣∣∣
ω′=ω

ω∗ sin
(
Ωt + ϕsig

)
.

(2.76)
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2.4.2.2 Square-Law Detection

The measurement signal after the CPW is rectified with a microwave diode.
The microwave diode is a square-law detector where the rectified output voltage is
proportional to the square of the input voltage:

VD ∝ V2
in = (VBG + Vind)

2 = V2
BG + 2VBGVind + V2

ind. (2.77)

Here, we have used that the voltage input of the square-law detector is the sum of
a background voltage and the inductive voltage. Note that the square-law detector
includes a low-pass filter, so that the high-frequency component of the excitation
frequency ω vanishes. The background voltage VBG is proportional to the slope of
the frequency transmission characteristic of the CPW. As Vind � VBG we only have
to take the linear terms of Vind into account.

2.4.2.3 Homodyning Technique

The voltage signal of the diode is multiplied in the lock-in amplifier [72] using
a reference voltage Vref = Vref,0 sin (Ω′t + ϕref). Here, Vref,0 is the amplitude of the
reference signal, 1/Ω′ is the period of the reference signal, and ϕref is the internal
reference phase of the lock-in amplifier. This reference voltage either stems from
the lock-in itself, or is delivered from the microwave source, however, in each case
it is useful to use the same reference clock for both instruments. We obtain:

VDVref ≈(V2
BG + 2VBGVind)Vref,0 sin

(
Ω′t + ϕref

)
∝(V2

BG + 2VBGχ(ω′))Vref,0 sin
(
Ω′t + ϕref

)
=
(
V2

BGVref,0 + 2VBG χ(ω′)
∣∣
ω′=ω

)
Vref,0 sin

(
Ω′t + ϕref

)
+ VBGVref,0

∂χ

∂ω′

∣∣∣∣
ω′=ω

ω∗ cos
(
(Ω−Ω′)t + ϕsig − ϕref

)
+ VBGVref,0

∂χ

∂ω′

∣∣∣∣
ω′=ω

ω∗ cos
(
(Ω + Ω′)t + ϕsig + ϕref

)
.

(2.78)

In the second step we used the inductive voltage from Eq. (2.73), whereas we
used the developed susceptibility from Eq. (2.76) in the third step. We find two
fast oscillating terms with Ω′ and Ω + Ω′, and a slowly oscillating term Ω−Ω′.
In the experiment we have used the same frequency for the modulation and
the reference signal Ω = Ω′, which results in a dc-component of the multiplied
signal which contains all the measurement information. To increase the signal
we have to phase-match the reference and signal phase ϕsig = ϕref, which can be
accomplished automatically by the lock-in amplifier. Note that the lock-in contains
two phase-sensitive inputs, which are shifted by π/2, so that we are able to record
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a signal even if ϕsig− ϕref = π/2. After a low-pass filtering of the multiplied signal
we obtain:

Vdc ∝ eiϕχ

∣∣∣∣ ∂χ

∂ω′

∣∣∣∣
ω′=ω

. (2.79)

Here, we have introduced the phase of the resonance ϕχ, which is given by
tan ϕχ = Im[∂ω′χ]/Re[∂ω′χ]. As we measure only the real part of our Vdc, we can
fit the ferromagnetic resonances using:

Vfit
dc = A + Bµ0H + Z cos(ϕ + ϕχ)

∣∣∣∣∂χx′x′

∂ω′

∣∣∣∣
ω′=ω

, (2.80)

where we have to use the appropriate susceptibility functions. We furthermore
replaced the proportionality with a small linear field dependent background, based
on the real scaling parameters A, B and Z, and a fitting phase φ.

In summary, we can use a lock-in amplifier to measure the frequency-deriv-
ative of the dynamic magnetic susceptibility. We can then fit Eq. (2.80) to our
homodyned measurement signal and extract the resonance field and the resonance
linewidth of the measured resonance.

2.4.3 Vector Network Analyzer Measurements
In addition to our lock-in amplifier-based setup, we also use an Agilent

N5242A PNA-X vector network analyzer-based setup for the detection of the FMR.
The vector network analyzer setup consists of three devices, as shown in Fig. 2.6 (a).
The electromagnet and the CPW which were already introduced. The vector net-
work analyzer (VNA) is discussed in this section, as VNA measurements are used
and discussed in Chap. 4 and Chap. 5. The VNA combines the aforementioned
excitation and detection group in one device.
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The VNA is used to characterize a device under test (DUT, in our case the
CPW with the sample) by using scattering parameters:

Sij =
V−i
V+

j

∣∣∣∣∣
V+

k =0 for k 6=j

=
|V−i |
|V+

j |
eiϕ. (2.81)

The scatter S-parameters are defined as the voltage wave ratio of the reflected
voltage wave V−i from port i to the incident voltage wave V+

j from port i. In the
second step we introduced the phase ϕ of the signal. In Fig. 2.6 (b) we sketch
the operation principle of the VNA. In a first step, the microwave signal from
an internal microwave source is switched towards port 1 or port 2. Without loss
of generality, we only discuss the signal path through port 1, as it is similar for
port 2. The microwave signal is split and directed towards a reference receiver (ref.
receiver I) and a directional coupler (d. c.). The directional coupler again splits the
signal path and the microwave travels towards a test receiver I but also towards the
device under test, where we induce an inductive voltage with the ferromagnetic
resonance as shown previously. Behind the DUT, the modified rf signal is guided
towards the test receiver II by a directional coupler. The modified signal at the
test receiver II is now compared in a processor to the undisturbed signal at the
reference receiver I using a reference oscillator, which is the same for all receivers.
From the relative amplitudes and phases one can now calculate the transmission
and the reflection coefficients.

In general, the change of the transmitted signal with applied microwave
frequency between the port 1 and port 2 is given by [71]:

∆S21 =
S21 − S0

21

S0
21

, (2.82)

where S21 is the measured scattering parameter, and S0
21 is the background signal,

which contains all losses in the system, e.g. from the microwave cables or reflection
losses. If we assume that we have a Z0 = 50 Ω impedance matched rf circuit,
including the DUT, then the change of the transmission is given by [71]:

∆S21 =
1
2

(
−iωL0

Z0 + iωL0

)
≈ −iωL0

2Z0
. (2.83)

For this we have assumed a simple voltage divider model, where the inductance of
the sample L0 is in parallel with the impedance Z0 of the rf circuit. The inductance
is given using the flux from Eq. (2.72) [71]:

L0 =
Φ

I
=

µ0Ms

4wh0
dlm′x(t) (2.84)

Note that this expression is completely equivalent to the equations given in Ref. [71]
for a uniform magnetization precession and a uniform dynamic magnetic field.
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We can further simplify this expression for a CPW orientation along ϕ0 = 0. In this
case, the normal of the CPW is parallel to the external static magnetic field in the
out-of-plane orientation, whereas the center conductor is parallel to the external
field in the in-plane orientation. The inductance then reads [71]:

L0 =
µ0Ms

4w
dlχx′x′ , (2.85)

and the measurement signal is given by [71]:

S21 = ∆S21S0
21 + S0

21 = S0
21 − S0

21
iω

2Z0
L0 = S0

21 − iCeiϕχx′x′ . (2.86)

The VNA measurements performed in this thesis were all conducted using fre-
quency sweeps at fixed field. The VNA traces then contains the fingerprint of the
magnetic resonance. As stated above the parameter S0

21 contains a background
signal from the CPW and the microwave cables. As these losses are frequency
dependent, we have to model a frequency dependent microwave background
S0

21 = A + Bω, where A and B are complex scaling parameters.
We can now perform a fit of Eq. (2.86) to our measured scatter parame-

ters. From the fits we can then extract the magnetic susceptibility, the resonance
frequency, and the linewidth of the resonance.

2.5 Experimentally Induced Damping
The precessing magnetization above the CPW induces an ac voltage in the

center conductor due to Faraday’s law, as shown in the previous sections. However,
for the magnetization this is accompanied with a loss of energy, and thus a
broadening of the linewidth. As the inductive voltage increases with increasing
microwave frequency, we expect a Gilbert-like damping contribution to the total
linewidth. This process is called radiative damping and should be present in all
measurements.

Furthermore, we can also induce eddy-currents in metallic ferromagnetic
samples and conducting substrates due to the time-varying magnetic flux. This
process is independent from the excitation method, but vanishes in insulating
ferromagnets and substrates. In the following we want to give quantitative ex-
pressions for both damping mechanisms, which is of crucial importance for the
discussion of our results of Chap. 3.1.
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2.5.1 Radiative Damping
As we have seen in Chap. 2.4.1 the magnetization precession is accompanied

with an inductive voltage Vind. This leads to an average radiative power dissipation:

Prad = Vind Iind =
V2

ind
Z0

= −ω2

Z0
µ2

0d2l2〈mx′(t)2〉 (2.87)

As shown in Ref. [67] we can use this expression to obtain the radiative damping
contribution for a uniform precession [67]:

αrad =
1
16

ηγMsµ2
0dl

Z0w
= Cradd. (2.88)

Here, η is a correction factor for non-uniform modes. Equation (2.88) shows that
the radiative damping depends on the sample and waveguide dimensions. In
the second step we have absorbed all parameters into the prefactor Crad. Hence,
radiative damping is always present in our FMR measurements. We especially
have to take radiative damping into account when we investigate the damping of
a sample set, where the thickness is varied.

2.5.2 Eddy Current Damping
For the derivation of the eddy current damping, we take the total flux passing

through the metallic film [67]:

∂Φ

∂t
=

µ0Ms

2
dl

∂mx′(t)
t

. (2.89)

where ld is basically the area which is permeated by the flux. Again, we obtain
from Ref. [67] the eddy-current damping contribution:

αEC =
C
16

γµ2
0Msd2

ρ
= CECd2, (2.90)

where C is a phenomenological parameter which accounts for non-uniform eddy-
currents in the layer and ρ the resistivity of the film. In the second step we have
absorbed all parameters into the prefactor CEC. In total, we expect an enhancement
of the Gilbert parameter for thick films and small substrate resistivities owing to
Eddy currents.
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3Spin Pumping in
Permalloy/Silicon
Heterostructures

Spin injection into semiconductors was intensively studied in recent years in the
hope to utilize the long spin relaxation time of single spins in semiconductors [73]
for spin-based (quantum) information processing. Moreover, the gate tunability
of carrier density, and thus of spin in semiconductors could allow to realize
spin metal-oxide-semiconductor field-effect-transistors (MOSFETs). Finally yet
importantly, the coupling of spin angular momentum to semiconductor properties
opens a wide range of possible applications where spintronic and magnonic
functionality can be integrated with CMOS technology.

A central problem for spin injection from FM metals into semiconductors is
the conductance mismatch [74, 75] between the metals (used for the spin injection)
and the semiconductors. In simple terms, the spin injection efficiency into the
semiconductor depends on the ratio σSC/σFM, where σSC and σFM are the conduc-
tivity of the semiconductor and the ferromagnet, respectively. As the conductivity
of the ferromagnet is typically orders of magnitude larger than the conductivity
of the semiconductor, the spin injection is very inefficient [76]. However, this
limitation can be overcome by FM/TMR/SC stacks [75, 77, 78], where the TMR
tunnel barrier acts as a spin-dependent resistance. Another very attractive option
is the spin pumping mechanism [79, 80], where angular momentum is transferred
from a magnetic excitation to an adjacent layer. As spin pumping does not require
the application of an electric current across the ferromagnet/semiconductor inter-
face, it is not harnessed by conductance mismatch problems. Subsequently, spin
injection via spin pumping into semiconductors was achieved independent on the
conductivity mismatch between the layers of the heterostructures [81–85]. While
the method was initially used in metallic multilayer systems, it was later imple-
mented to inject spin currents into semiconductors [81, 86], normal metals [87]
and nowadays topological insulators [88–91] and ferromagnetic insulators [92], (cf.
Chap. 5). Recently, we have utilized this method to achieve spin injection even into
a two dimensional electron gas, which emerges between a 5 nm thick LaAlO3 layer
and a SrTiO3 substrate [93]. However, to date there was no systematic study of the
spin pumping based spin injection as a function of the resistivity of the underlying
semiconductor channel.

In this chapter, we study the Gilbert damping parameter in permalloy/silicon
heterostructures using broadband ferromagnetic resonance spectroscopy, which
is a measure for the spin pumping efficiency. In the first part of the chapter we
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present a short introduction to the theory of spin pumping. In the subsequent
experimental section, we present the used FMR setup, and determine the Gilbert
damping parameter of the Py as a function of the Si doping concentration, hence the
Si resistivity. We observe an increase of the Gilbert damping in the Py (considering
Py films with the same thickness) with increasing Si resistivity. In the second
part of the experiments, we measure the Gilbert damping as a function of the Py
thickness, whereas the Si resistivity is fixed. We observe a strong increase of the
Gilbert damping with decreasing Py thickness, which evidences the interfacial
nature of the spin pumping process and thus is an important confirmation of our
interpretation. Furthermore, we do not find any increased Gilbert damping Py/Si
samples with an insulating interlayer between the metal and the semiconductor.
Our observations can be consistently explained with an enhanced spin pumping
efficiency into Si with a low resistivity.

Some of the figures and parts of the text in this chapter have been published
in R. Ohshima, S. Klingler, S. Dushenko, Y. Ando, M. Weiler, H. Huebl, T. Shinjo,
S.T.B. Goennenwein, M. Shiraishi, Spin injection into silicon detected by broadband
ferromagnetic resonance spectroscopy, Applied Physics Letters 110, 182402 (2017).

3.1 Spin Pumping in a FM/NM System
According to Refs. [95, 96] the spin pumping mechanism can be thought of as

an analogy to an Archimedes’ screw pump. The screw pump rotates mechanically
and transports a certain amount of a fluid per revolution from one reservoir to the
other. The spin pump, in analogy, can be though of as the magnetization precession,
which transports angular momentum from one reservoir, the ferromagnet, to the
other, the normal metal. As no net charge current but only a spin current is
required to transport angular momentum, the spin pump is also operational in
ferromagnetic insulators, such as YIG.

In a ferromagnetic resonance experiment, we feed angular momentum to
the ferromagnet, as we excite a FMR mode, see Chap. 2.1.2.2. This results in an
accumulation of (non-equilibrium) spin angular momentum in the ferromagnet.
If we now bring a normal metal close to the ferromagnet, the spin accumulation
can flow and relax into the normal metal via a spin current, which transports
the spins away from the interface. Hence, the spin pumping mechanism is a loss
of angular momentum of the ferromagnet. The creation of spin currents into an
adjacent normal metal is accompanied with an increase of the Gilbert damping
parameter of the ferromagnet [94, 97–100], see Chap. 2.3. This makes broadband
ferromagnetic resonance a suitable tool to detect the spin pumping effect. Another
method to measure this relaxation mechanism is the electrically detected spin
pumping [101–107]. For this a normal metal is required on top of the ferromagnet,
which converts the spin current into a charge current via the inverse spin Hall
effect, which can then be measured with a voltmeter.
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In the following, we want to give a quantitative description of the spin
pumping mechanism. The spin current which is pumped by a metallic ferromagnet
is given by [79, 108, 109]:

Is =
h̄

4π

(
Ar

(
M × ∂M

∂t

)
− Ai

∂M

∂t

)
, (3.1)

where Ar, Ai are interfacial scattering parameters given by [108]:

Ar =
1
2 ∑

mn
|r↑mn − r↓mn|2 + |t↑mn − t↓mn|2, (3.2)

Ai = Im

[
∑
mn

(
r↑mnr↓∗mn + t↑mnt↓∗mn

)]
, (3.3)

where rmn and tmn are the reflection and transmission coefficients for spin-up (↑)
and spin-down (↓) electrons and m, n are labels of the electron modes at the Fermi
energy. The sum of Eq. (3.2) and Eq. (3.3) yields:

Ar + iAi = ∑
mn

(
δmn − r↑mnr↓∗mn

)
−∑

mn
t↑mnt↓∗mn = G↑↓ − T↑↓, (3.4)

where δnm is the Kronecker delta, G↑↓ = ∑mn

(
δmn − r↑mnr↓∗mn

)
is the complex inter-

facial spin mixing conductance and T↑↓ = ∑mn t↑mnt↓∗mn is the complex transmission
matrix [79]. If the ferromagnetic film is thicker than the transverse spin-coherence
length d > π/(k↑F − k↓F), where k↑↓F are the spin-dependent Fermi wavevectors,
the transmission matrix T↑↓ vanishes as the spins dephase before they reach the
interface [108]. Hence, the spin transport typically is governed by the reflection
coefficients: Ar = Re

[
G↑↓

]
and Ai = iIm

[
G↑↓

]
. This spin current across the

FM/NM interface can thus be written as [79]:

Is =
h̄

4π

(
Re
[

G↑↓
]
M × ∂M

∂t
− Im

[
G↑↓

] ∂M

∂t

)
. (3.5)

As detailed in literature, in many of the systems the imaginary part of the spin
mixing conductance is either much smaller that the real part, or vanishes com-
pletely [79]. Thus, we neglect Im

[
G↑↓

]
in the following. However, in Chap. 5

we will find a mechanism in magnetic heterostructures where this simplification
seems not to be adequate.

Note that the model of the spin mixing conductance above is only valid
for conducting magnets, as the g↑↓ depends on the transmission and reflection
coefficients of the conduction electrons at the ferromagnetic metal/normal metal
interface. For a ferromagnetic insulator (FI)/normal metal (NM) heterostructures
the situation is different, as no conduction electrons are present in the FI to
transport spin angular momentum. However, the basic description of a spin
current in Eq. (3.5) still holds, and a conversion of magnetic excitations into a
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spin current in adjacent normal metal layers can be observed, see for example
Refs. [97, 110, 111]. The spin mixing conductance is in this case related to a
magnon current-spin current conversion at the interface [112], where the spin
torque is mediated via the localized ion moments in the ferromagnetic insulator
via local-moment exchange fields [112, 113]. Qualitatively one can understand this
conversion as an annihilation of an excited magnon with angular momentum h̄
in the FI at the FI/NM interface. The magnon transfers its angular momentum
by a spin flip of a conduction electron in the NM (or vice versa). This creates
a non-equilibrium spin accumulation which diffuses in the normal metal, and
hence creates a spin current [112]. Surprisingly, the amplitude of the spin mixing
conductance is in insulating yttrium iron garnet/normal metal/platinum of the
same order of magnitude (g↑↓ ≈ 1019 m−2) as in ferromagnetic metal/platinum
heterostructures (g↑↓ ≈ 5× 1019 m−2) [103, 114].

As already briefly mentioned above, the dissipation of a spin current into a
normal metal shows up as a Gilbert-like damping of the ferromagnetic resonance.
To derive the spin pumping damping, we take the pumped spin current as the
total spin angular momentum, which dissipates [43, 62]:

∂S

∂t
= −Is (3.6)

where the total spin momentum is related to the total magnetic moment Mtot via
γS = −MtotM [62]. Using Mtot = MsV we obtain a useful expression for the spin
pumping damping:

∂M

∂t
=

γ

Mtot
Is =

γ

Msd
h̄

4π
Re
[

g↑↓
]
M × ∂M

∂t
. (3.7)

Here, V = Ad is the volume of the magnet, A is the interface area, d denotes the
thickness and g↑↓ = G↑↓/A is the normalized interfacial spin mixing conductance.
We find from Eq. (3.7) that a magnet with a small total magnetization is more
sensitive to a loss of angular momentum due to spin pumping, as a thin ferro-
magnet has less magnetic moments than a thick ferromagnet of the same material.
Equation (3.7) is a torque equation, which has the same symmetry as the Gilbert
damping, see Chap. 2.3. It is thus clear that the spin pumping mechanism can be
detected by a change of the Gilbert damping parameter. For the case when all
spins are absorbed in the adjacent metal we can write the increase of the Gilbert
damping parameter as:

αsp =
γ

Msd
h̄

4π
Re
[

g↑↓
]

. (3.8)

In general a material might not absorb all of the spin current, but would
emit it back to the pumping ferromagnet. This phenomenon is know as spin
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Fig. 3.1. – In ferromagnetic resonance, the magnetization M pumps a spin current Is (red
arrow) with a certain spin polarization (orange arrow) from the Py into the adjacent Si
layer. For a long spin diffusion length λs the spin current is reflected back (shown as blue
arrow), where the spin polarization is conserved (this is not the case for interfaces with
spin-flip scattering). In total, the ferromagnet does not lose any angular momentum, when
the spin current enters the ferromagnet again. In this case the Gilbert damping is not
increased. However, for a short spin diffusion length, the spin current relaxes in the Si
layer, which is a loss of angular momentum for the ferromagnet. In this case the Gilbert
damping parameter is increased.

backflow [108], which can be considered in terms of an effective spin mixing
conductance [114–116]:

g↑↓eff = ηg↑↓, (3.9)

where

η =

(
1 + 2g↑↓ρλs

e2

h
coth

dc

λs

)−1

. (3.10)

Here, dc the thickness of the conductor (metal) and λs the spin-diffusion length in
the conductor and ρ is the resistivity of the normal metal.

In summary, the spin pumping process can be observed in ferromagnetic
resonance experiments of FM/NM heterostructures. As the ferromagnet pumps
angular momentum to the adjacent metal by the magnetization precession, we find
an increase of the Gilbert damping parameter. As spin pumping is an interfacial
process, thin ferromagnetic films are strongly affected by the loss of angular
momentum, which make them suitable for such experiments.

We now come back to the spin pumping mechanism in semiconductors, where
the following conditions, sketched in Fig. 3.1, should be fulfilled in order to achieve
a large spin injection efficiency from the FM to the semiconductor: (i) trivially,
mobile charge carriers should be present adjacent to the ferromagnet (where we
here now take the semiconductor as the metal). In Fig. 3.1 the mobile charge
carriers are depicted as electrons, shown in green. In our case, we vary the
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conductivity of the Si layer by doping. (ii) The spin diffusion length should be
small in comparison to the thickness of the conductor, so that an efficient relaxation
of the spin current in the semiconductor is achieved. If the adjacent semiconductor
has a long spin diffusion length, this would lead to a large spin accumulation close
to the interface, which generates a large diffusive spin backflow in the direction
opposite to the spin pumping current [109]. This spin backflow effectively cancels
out the spin pumping current in systems with a long spin relaxation time, such
that the spin pumping contribution to the Gilbert damping parameter becomes
small of even vanishes if λs is large.

3.2 Experimental Methods

3.2.1 Sample Preparation
To investigate the spin pumping mechanism from ferromagnetic Py samples

into Si three different sets of samples were prepared by R. Ohshima in the group
of M. Shiraishi, Osaka, Japan. A first set of samples is produced to check the
dependence of the Gilbert damping on the doping concentration and thus the
resistivity of the Si samples. For this 7 nm-thick Py films are deposited by electron
beam evaporation on top of various Si substrates. The sample size is 1× 1 cm2

throughout, but the resistivities of the substrates change in a range from 10−3 Ωcm
to 103 Ωcm owing to doping with phosphor atoms. The oxidized surface of the Si
substrates is removed using 10 % hydrofluoric acid (HF) prior to the Py evaporation.
This results in a direct contact of the Py with the doped substrates, without the
influence of an insulating interlayer. The list of the used samples can be found in
Tab. 3.1.

A second set of samples is prepared in order to investigate the dependence
of the Gilbert damping parameter on the Py thickness. For this a P-doped SOI
substrate is used with a fixed resistivity, for which we found the largest value
for the Gilbert damping parameter in our experiments, see Tab. 3.1. SOI is the
abbreviation for silicon-on-insulator, and describes a technique where a thin silicon
layer is separated from the bulk silicon substrate by an oxide interlayer.

In a third set of samples, we intentionally decided to insert an insulating
interlayer between the 7 nm-thick Py films and various substrates. The task of these
control samples is to check whether there is an influence of eddy current damping
from the substrates, that could jeopardize our interpretations. As eddy current
damping changes the Gilbert damping parameters very similar to spin pumping,
it is a problematic experimental artifact. Since, the spin pumping mechanism
should be suppressed upon the introduction of insulating non-magnetic interlayers
of sufficient thickness [92, 117, 118], this set of samples should only exhibit eddy
current damping effects in addition to the intrinsic Py damping. The interlayers
are prepared by evaporation of 2 nm of Ti and 3 nm of Al on the non-treated
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substrates, with a subsequent oxidation for one day at ambient conditions. For the
Al layer the process was repeated three times (3× 1 nm), as Al is self-passivating
for a surface thickness of about 2 nm [119]. After the oxidation step the Py films
are evaporated on top of the insulating layers. The list of the used control samples
is also shown in Tab. 3.1.

3.2.2 Lock-In FMR Measurements
The lock-in amplifier FMR measurements were already introduced together

with the used FMR setup (cf. Chap. 2.4.2 and Fig. 2.5). The samples are placed face
down on the center conductor of a coplanar waveguide (CPW), which is located
between the pole shoes of the electromagnet. Here, were use the pole show pair
with a = 3 cm, which allows to apply external magnetic field of almost 3 T, where
the saturation magnetization of Permalloy is in the order of µ0Ms = 1 T. In this
way we have a theoretical frequency limitation (cf. Eq. (2.46)) of about 50 GHz,
which is already higher than the available frequency range of the microwave
source (ω/2π < 40 GHz). The static magnetic field is applied perpendicular to
the surface (ϑ0 = π/2, ϕ0 = 0), as this prevents additional two-magnon scattering
processes [120] (cf. Chap. 2.3.2). Note that in this configuration the y-axis is parallel
to the z′-axis of the magnetic film, see Fig. 2.1.

In our measurement configuration, the resonance condition is given by the
out-of-plane Kittel equation (2.46), where we neglect any exchange fields Hex = 0:

ω
oop
res = γµ0 (H −Meff) . (3.11)

The latter assumption is justified, as we do not observe any standing spin-wave
modes in our samples, i.e. k = 0. Note, that we have introduced an effective
magnetization Meff = Ms− Hia, where Hia ∝ 1/d is the interfacial anisotropy field,
which is inversely proportional to the thickness of the magnetic field [121, 122].

We use the Gilbert damping model, which phenomenologically models the
viscous damping of the magnetic resonance. As detailed in Chap. 2.3, one then
obtains a linear relation between the full width at half maximum ∆H of the reso-
nance and the applied microwave frequency ω/2π, the so-called Gilbert damping
equation (2.66) [123]:

µ0∆H = µ0∆H0 +
2αω

γ
(3.12)

Here, µ0∆H0 corresponds to the inhomogeneous line broadening as discussed in
Chap. 2.3.2. The Gilbert damping parameters α consists of the intrinsic damping α0,
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the radiative damping αrad, the eddy-current damping αEC from Eq. (2.90), and the
spin pumping damping αsp from Eq. (3.8):

α = α0 + αsp + α0rad + αEC = α0 +
γ

Msd
h̄

4π
Re
[

g↑↓
]
+ Cradd + CECd2 (3.13)

When we use the material parameters of Py (η = 1 (uniform precession), γ/2π =

28 GHz/T, µ0Ms = 1 T, Z0 = 50 Ω, w = 300 µm, d ≈ 10 nm and l=10 mm) we
obtain from Eq. (2.88) that αrad ≈ 0.1× 10−3, which is small compared to the
intrinsic Py Gilbert damping parameter of permalloy α0 ≈ 6.5× 10−3 [67]. We can
thus neglect the influence of radiative damping processes here.

3.3 Experimental Results

3.3.1 Silicon-Resistivity Dependence
Figure 3.2 (a) shows a typical lock-in FMR measurement of the 7 nm-thick Py

on P-doped SOI sample (symbols). The microwave frequency is ω/2π = 30 GHz
and the field is swept over the resonance field Hres. A single FMR line was
observed here, but for frequencies below ω/2π = 10 GHz several modes were
found in the resonances. This can be explained with a non-parallel alignment
of the magnetization to the external field, and the formation of domains (not
shown). The black line shows a fit of Eq. (2.80) to the data. More specifically, we
use the susceptibility of a ferromagnetic film Eq. (2.38) with ϑ0 = π/2, ϕ0 = 0 and
Nx′x′ = Ny′y′ = 0 and Nz′z′ = 1 and thus fit:

Vfit
dc = A + Bµ0H + Z cos(ϕ + ϕχ)

∣∣∣∣ ∂χ

∂ω′

∣∣∣∣
ω′=ω

, (3.14)
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with

∂χ

∂ω′

∣∣∣∣
ω′=ω

=
1
2

γµ0Ms

(
1− iα

(−iαω− γµ0(Ms − H) + ω)2

− 1 + iα
(iαω + γµ0(Ms − H) + ω)2

)
.

(3.15)

to the data. In order to obtain values for the linewidth ∆H and the resonance
field Hres, we make the transitions: µ0Ms → µ0Hres −ω/γ and α→ µ0∆Hγ/(2ω),
according to the Kittel- and Gilbert damping- equations.

3.3.1.1 Gilbert Damping

Figure 3.2 (b) shows the extracted resonance fields as a function of the applied
microwave frequency for the Py/P-doped SOI, Py/SOI and Py/SiO2 samples,
where the Py thickness is 7 nm throughout. We fit the Kittel equation (3.11) to
the data, from which we extract the g-factor and Meff. Using γ = gµB/h̄, the
extracted g-factors were estimated to be 2.049(1), 2.051(1), and 2.038(1) for the
Py/P-doped SOI, Py/SOI and Py/SiO2 samples, respectively. These values fit very
good to previously reported values for Py films between g = 2.0 and g = 2.17,
see Ref. [121] and references therein. The extracted effective magnetizations were
estimated to be 0.732 T, 0.724 T and 0.935 T for the Py/P-doped SOI, Py/SOI and
Py/SiO2 samples, respectively. The reason for the discrepancy of Meff to the bulk
magnetization of Py (µ0Ms = 1 T, [67, 121]) is the shape anisotropy, which will be
discussed below. We find that the effective magnetization of the Py/SiO2 sample
is increased in comparison to the other samples. This is attributed to the an
inter-diffusion/inter-mixing of the Fe and Ni from the permalloy with the Si of
the substrate [124, 125]. This is also the reason for a slightly different g-factor.

Figure 3.2 (c) shows the extracted linewidths as a function of the applied
microwave frequency for the Py/P-doped SOI, Py/SOI and Py/SiO2 samples.
We find that the linewidth of all samples follow a linear function, as expected
for Gilbert-like damping mechanisms. However, we also find that the slope of
the Py/P-doped SOI sample is increased in comparison to the other samples. A
fit of the Gilbert damping relation Eq. (3.12) to the data sets allows to extract
the Gilbert damping parameters and the inhomogeneous line broadenings. The
Gilbert damping parameters were estimated to be 10.7× 10−3, 9.0× 10−3 and
8.5× 10−3 for the Py/P-doped SOI, Py/SOI and Py/SiO2 samples, respectively,
where the accuracy of the Gilbert damping parameter is limited by the scattering
of the data points. The Gilbert damping parameter of the 7 nm-thick Py films is
determined in a similar fashion as above from Py/SiO2 and Py/Quartz samples, as
no spin pumping contributions are expected for these insulating samples (α = α0).
We find as Gilbert damping parameters α0 = 8.5× 10−3 and α0 = 8.6× 10−3,
for the Py/SiO2 and Py/Quartz samples respectively, which fits nicely into the
range of previously reported damping parameters of Py films between 7× 10−3
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Fig. 3.3. – (a) Gilbert damping parameter as a function of the substrate resistivity. We
observe a decrease of the Gilbert damping with increasing resistivity. (b) Effective spin
mixing conductance as a function of the substrate resistivity. The blue line is a fit of
Eq. (3.9) to the data.

and 9× 10−3 for various thicknesses [67, 126]. When we compare the damping
parameters of the samples with the conducting Si substrates with those for the
insulating Si substrates, we find a decrease of the Gilbert damping with resistivity.
We take this as a first hint that the spin pumping efficiency is suppressed with
increasing substrate resistivity. However, in order to draw a robust conclusion, we
must first address the impact of radiative and eddy current damping contributions.

3.3.1.2 Influence of Radiative Damping

Although, we have discussed that the influence of the radiative damping
should be negligibly small, we now use our experimental data to verify this
assumption. In order to determine the influence of a radiative damping into the Si
substrate, we measure the linewidth evolution of Py/AlOx/Si and Py/TiOx/Si
samples for various Si substrate resistivities. In those samples the insulating
interlayer between the Py and the Si substrate should block any spin current,
such that the Gilbert damping contribution from spin pumping vanishes (αsp =

0). However, the radiative damping process should persist in those samples.
The eddy current damping process is the same for those samples due to the
same Py thickness. We find Gilbert damping parameters of α = 8.8 × 10−3

and α = 7.5× 10−3 for the Py/AlOx/Si and Py/TiOx/Si samples, respectively,
independent of the Si resistivity. These damping parameters are in agreement
with the extracted damping parameters for the Py/SiO2 (α0 = 8.5× 10−3) and the
Py/Quartz (α0 = 8.6× 10−3) samples. We can thus exclude any radiative damping
into the Si substrate as origin of the decreasing Gilbert damping with increasing
resistivity.

3.3 Experimental Results 45



3.3.1.3 Variation of the Spin-Mixing Conductance

Figure 3.3 summarizes the experimental findings of various material param-
eters as a function of the substrate resistivity. Figure 3.3 (a) shows the Gilbert
damping as a function of the substrate resistivity for various sample stacks. We
find approximately a logarithmic decrease of the Gilbert damping with the sub-
strate resistivity (blue symbols). This result is in agreement with the notion that
the spin pumping requires the presence of free charge carriers in the system, which
dissipate the angular momentum. Hence, the spin pumping is more efficient in the
substrates with a small substrate resistivity. This goes along with to observation
that the electron spin resonance linewidth increases with increasing substrate
resistivity due to impurity spin-orbit interaction [127]. Hence, the samples with
a large doping concentration lead to a shorter spin relaxation time and hence a
shorter spin diffusion length (cf. Tab. 3.1). As a short spin diffusion length allows
for an efficient dissipation of angular momentum, we expect an increased spin
pumping efficiency for the samples with high doping concentration and small
resistivity. The dashed lines in Fig. 3.3 (a) show the average values of the Gilbert
damping of the Py/AlOx/Si and Py/TiOx/Si samples (green and red symbols,
respectively), whereas the average Gilbert damping of the Py/SiO2 and Py/Quartz
samples is shown as blue, dashed line. Note that all measured samples without
any insulating barrier show an increased Gilbert damping parameter, we attribute
this observation to an enhanced spin pumping efficiency.

In order to quantify the influences of the resistivity on the damping, we
calculate the spin mixing conductance using Eq. (3.8), as shown in Fig. 3.3 (b).
For this we denote the spin pumping damping as αsp = α− α0, where we use
α0 = 8.5× 10−3 from the Py/SiO2 sample. The effective spin mixing conductance
follows Eq. (3.9), where we take g↑↓ and λs as free fit parameters. Unfortunately
the relaxation mechanism of the spin current in the p-doped SOI is unclear and
there are basically two mechanisms: (i) Elliot-Yaffet (EY) scattering [128,129] which
is a spin-flip scattering process, where the spin-diffusion length in proportional to
the conductivity of the semiconductor [130]. We can thus introduce a resistance:
ρEY = AEY/ρ, where AEY is a scaling factor. (ii) D’yakonov-Perel (DP) scattering,
which is a associated with a dephasation process of the conduction electron in
effective magnetic fields during propagation. For the DP process the spin-diffusion
length is independent on the conductivity [130]. Hence the DP resistance reads
ρDP = ADP, where ADP is a scaling factor. We use Matthiessen’s rule [131] to
determine the total resistance due to both scattering mechanisms, which reads
ρtot = ρEY + ρDP. We now use that the scattering time τ ∝ 1/ρtot, where the
scattering time is connected to a scattering length via a constant A, which has the
units of a velocity. We can thus write the spin-diffusion length as:

λs =
A

ρtot
=

1
A∗DP + A∗EY/ρ

, (3.16)
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parameter of the Py/P-doped SOI samples with various Py thicknesses. A decrease of the
Gilbert damping is observed with increasing Py layer thickness in quantitative agreement
with the spin pumping theory.

where we have absorbed the total scaling factor A into A∗DP = A/
DP A and A∗EY =

A/
EY A. A fit of Eq. (3.9) is shown as solid line in Fig. 3.3 (b). We find a good

agreement between the theoretical model and our experimental values, although
the theoretical spin mixing conductance should decrease faster with increasing sub-
strate resistivity. From the fit we find g↑↓ = 5.27× 1019 m−2, which is of comparable
magnitude to FI/NM and FM/NM samples [103, 114]. We furthermore find that
A∗DP = 3.5× 1012 m−1, whereas we find for 2× 10−4 m−1 < A∗EY/ρ < 2.5× 102 m−1,
which might indicate a dominant D’yakonov-Perel scattering process. How-
ever, with the aforementioned values we find a constant spin-diffusion length
of λs = 2.8× 10−13 m, which is unphysically small. We note that we use three
free parameters for four data points in our fitting model, which might cause
dramatic errors. Nevertheless, we draw the conclusion that the used model of
the spin mixing conductance and the spin backflow at least describe qualitatively
the behavior of the effective spin mixing conductance and the Gilbert damping of
permalloy films of semiconductor substrates.

3.3.2 Permalloy-Thickness Dependence
To draw robust conclusion about the spin pumping and eddy current damping,

we vary the permalloy thickness, as both damping processes are affected by this
important sample property. We thus now address the dependence of the Gilbert
damping parameter on the Py thickness. Figure 3.4 (a) shows the Py thickness
dependence of the Gilbert damping parameter for the Py/P-doped SOI samples.
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We find a fast decrease of the Gilbert damping with increasing Py thickness. The
dataset is fitted using Eq. (3.12) and Eq. (3.13):

α = α0 +
γ

Msd
h̄

4π
Re
[

g↑↓
]
+ Cradd + CECd2, (3.17)

which is shown by the blue line. For this we use Crad = 0, α0 and CEC are
free parameters, as well as the spin mixing conductance g↑↓. All other material
parameters were extracted above from the fit of the Kittel equation. We, again, find
an excellent agreement between theory and experimental observations. We extract
an intrinsic damping parameter of α0 = 6.1× 10−3, a spin mixing conductance
g↑↓ = 1.2× 1019 m−2 and CEC = 2.9× 1011 m−2. The intrinsic damping parameter
extracted does not contain any eddy current damping contribution and is thus
directly comparable to the intrinsic Gilbert damping parameter given in [67],
α0 = 6.5× 10−3. In comparison to the chapter above, we find a slightly decreased
spin-mixing conductance. As can be seen from Tab. 3.1, we find also a smaller
Gilbert damping for the 7 nm-thick permalloy film in this sample set. We thus
argue that the different growth conditions lead to slightly different spin-mixing
conductances. However, also the value extracted here is in the scatter of previously
reported values for g↑↓, see Ref. [114]. The red line shows the spin pumping
contribution to the total damping. As expected from αsp ∝ 1/d the spin pumping
is dominant for small Py thicknesses. In contrast, the eddy current damping
contribution (shown as green line) scales as αEC ∝ d2 for large Py thicknesses.
As evident from Fig. 3.4, eddy current damping is negligible for d < 20 nm. In
particular, for Py films with a thickness of d = 7 nm, spin pumping damping
dominates. We conclude that the eddy current damping in our samples, especially
at d = 7 nm, is negligibly small. Hence, we can attribute the damping dependence
on resistivity and Py thickness observed in the 7 nm-thick Py film samples entirely
to the spin pumping effect.

Figure 3.4 (b) shows the thickness-dependence of the extracted saturation
magnetization. We find a linear decrease of the magnetization with 1/d, which is
due to a small interfacial anisotropy [121, 122, 132]. From the y-intercept we find
the bulk magnetization to be µ0Mbulk

s = 1.03 T which fits very well to previously
reported values (µ0Ms = 1.02 T) [121].

48 Chapter 3 Spin Pumping in Permalloy/Silicon Heterostructures



Si

Si

input waveguides

combiner
region

nanocontact

output waveguide

phase shifters

Vin,1

Vin,2

Vin,3

Vout

Fig. 3.5. – CMOS compatible magnon majority gate. The permalloy majority gate is placed
on a silicon substrate. Spin waves are excited in the input waveguides using spin torque
nanooscillators and the phase of the waves is modified with phase shifters. The spin waves
propagate and interfere in the combiner region, where only the majority phase enters the
output waveguide. In the output waveguide the spin-wave excitation is converted back to
a voltage signal in the silicon due to spin pumping and inverse spin Hall effect. Figure
adapted from Ref. [13]

3.4 Conclusion
In conclusion, we study the Gilbert damping in Py/Si heterostructures for

different substrate resistivities. On the one hand, we find that the Gilbert damp-
ing parameter of the Py films decreases with increasing substrate resistivity. We
attribute this effect to the decreasing density of charge carriers, which are respon-
sible for the dissipation of angular momentum. This can be understood at least
qualitatively in the spin pumping picture. On the other hand, we observe an
increase of the Py damping for decreasing Py film thickness for a fixed substrate
resistivity. This dependence is expected for the spin pumping effect, since spin
pumping in an interface process.

The results presented in this chapter show that spin angular momentum can
be transferred to semiconductors by means of spin pumping. This in in agreement
with previous studies of spin pumping into Si [83, 86], GaAs [81, 84, 133, 134]
and Ge [85] substrates. However, the presented study shows the first systematic
variation of the spin pumping efficiency with the substrate resistivity. Furthermore,
we take additional radiation and eddy-current damping effects into account, which
have to be considered in real applications.

This technique opens a new way to exploit magnetization dynamics and
generate pure spin currents in semiconductor devices. For example our findings
could be used in CMOS compatible magnonic structures and network. This would
allow to process information in, e.g., spin-wave based majority gates [13, 14, 38],
which could lead to a downscaling of the actual logic architecture in a CMOS
chip. In Fig. 3.5 the setup of such an majority gate is sketched. It consists
of three input waveguides, where spin waves are launched using spin torque
nanooscillators [135, 136]. For this the dc-current from the surrounding CMOS
architecture is used through Si contacts. The spin waves are phase shifted by
phase shifters [137–139], where the logical bit is encoded in the waves phase. In
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the combiner region the three input waveguides are merged together where the
waves interfere. The output spin wave in the output waveguide propagates with
the majority phase of the input waves. The signal is then converted into an voltage
signal using the inverse spin Hall effect. This can be accomplished either using a
Pt interlayer [114, 140, 141] between the Py output waveguide and the Si substrate,
or using the inverse spin Hall effect of silicon itself [82].
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4Gilbert Damping in an Yttrium
Iron Garnet Sphere

In the previous chapter we have introduced the standard FMR procedure for the
characterization of magnetic samples. We furthermore have seen that we can use
spin currents to couple the magnetic excitation to an extrinsic bath, to transport and
utilize the (non-equilibrium) angular momentum. The Gilbert damping parameter
α hereby reflects the strength of magnetization damping. Detailed knowledge
about the magnitude of α in different materials is very important, as magnetization
damping limits the life time of the magnetic excitations (magnons or spin waves).
A material which became famous for its low intrinsic damping is the ferrimagnetic
insulator yttrium iron garnet (YIG), which exhibits the smallest Gilbert damping
value at room temperature reported so far (results discussed in this chapter). This
makes YIG spheres the prototypical material for the fabrication of microwave
filters and oscillators [142, 143]. In absolute numbers, in YIG the linewidths of
1 MHz at 10 GHz excitation frequency can be achieved, which refers to a spin-wave
lifetime in the order of micro-seconds. In order to achieve a high applicability
of ferromagnetic materials, spherical samples are used, as the ferromagnetic
resonance frequencies are independent of the magnetization direction and the
shape and size of the sphere.

The crystalline structure of YIG is shown [144–146] in Fig. 4.1. The Fe3+-ions
are located either in an octahedral site or a tetrahedral site, whereas the yttrium
ions Y3+ are sitting in sites with dodecahedral symmetry. On the corners of the
different sites we find oxygen O2−-ions which couple the magnetic moments of
the Fe3+-ions by super exchange, which leads to an antiferromagnetic alignment
of the iron moments. YIG has a cubic crystal structure with unit cell size of
1.25 nm, and contains twenty Fe3+-ions (8 octahedral and 12 tetrahedral), in two
antiferromagnetically coupled sublattices [11]. However, the different net magnetic
moment of the different sublattices causes YIG to be a ferrimagnet, but not an
antiferromagnet. The Curie temperature of YIG is about 550 K [147], it has a room
temperature saturation magnetization of µ0Ms = 0.18 T [147,148] and an exchange
stiffness of Ds = 5.25× 10−17 Tm2 [23].

Although YIG emerged to be an omnipresent material in magnetization
dynamics research and microwave applications, there is no systematic broadband
study of the magnetic excitations and the magnetization damping in YIG spheres.
One type of magnetic excitations in YIG spheres are magnetostatic modes (MSMs)
which resemble standing spin-wave patterns within the sphere. However, for the
MSMs we can neglect any exchange field contributions, as their occurrence can be
fully described by dipolar interaction. This is in general not the case for standing
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Fig. 4.1. – Crystalline structure of yttrium iron garnet. The iron ions in the octahedral and
tetrahedral sites are coupled antiferromagnetically via super exchange via the oxygen ions.
Figure adapted from Ref. [144].

spin waves, as discussed in Chap. 5. The linewidth of MSMs in YIG spheres
has been studied at a few fixed frequencies in the past [48, 57, 149], however, the
respective contributions of intrinsic Gilbert damping and inhomogeneous line
broadening to the total linewidth in YIG spheres was missing. In particular, it
is not evident from the literature, whether different MSMs feature one and the
same or different (and mode dependent) Gilbert damping [30, 150]. In this chapter,
we report on a systematic broadband FMR measurement multiple magneto static
modes [151–153] for a 300 µm diameter YIG sphere.

The chapter is organized as follows: In the first part of this chapter, we
introduce the magneto-static mode spectrum of a ferromagnetic sphere. For this
we solve the Maxwell equations in the sphere and find various modes which
fulfill the boundary conditions. Second, we sketch the physical background of the
two-magnon scattering mechanism of the different magnetostatic modes in the
sphere. Third we present the used experimental setup and the data evaluation
which is required for a smart background reduction. Finally, we describe and
discuss the experimental observations. We identify the individual MSMs via
their characteristic dispersion relations and the corresponding mode number
tuples (nmr) are assigned. The linewidth analysis shows that all MSMs share the
same Gilbert damping parameter α = 2.7(5) × 10−5 irrespective of their mode
index. However, the inhomogeneous line broadening markedly differs between
the observed MSMs. This finding can be described with two-magnon scattering
processes of the MSMs into the spin-wave manifold, mediated by surface and
volume defects.

Some of the figures and parts of the text in this chapter have been published
in S. Klingler, H. Maier-Flaig, C. Dubs, O. Surzhenko, R. Gross, H. Huebl, S.T.B.
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Goennenwein, M. Weiler, Gilbert damping of magnetostatic modes in a yttrium iron
garnet sphere, Applied Physics Letters 110, 092409 (2017).

4.1 Magnetostatic Modes in Spheres
In the following, we derive an expression for the mode profiles of standing

spin waves in a magnetic sphere, called magnetostatic modes (MSMs). This section
follows the description of Ref. [152]. We use the magnetostatic approximation,
where we neglect all retardation effects regarding the long spin-wave wavelength
limit. In the magnetostatic limit and without exchange coupling the Maxwell
equations read:

∇×H = 0, (4.1)

∇ ·B = ∇ · µ0 (H + MsM ) = 0. (4.2)

Note, that Ms is the saturation magnetization, whereas M is the magnetization
unit vector. As the rotation of the magnetic field vanishes, we can introduce a
magnetic potential ψ for which we find:

H = ∇ψ. (4.3)

We use analogously to Chap. 2.1.1.2 the definition of the magnetostatic potential;

∇2ψ +∇ ·MsM = 0, (4.4)

which describes the behavior of the magnetic field and the magnetization according
to the Maxwell equations. Furthermore, we take the magnetization to obey the
Landau-Lifshitz-Gilbert equation, see Chap. 2.1.2.1. For simplicity’s sake, we here
neglect the magnetic Gilbert damping, as it only has a minor influence on the
magnetic mode shape and the resonance frequencies. More specifically, we take
αω � ω:

∂M

∂t
= γµ0 (M ×Heff) . (4.5)

A solution of the LLG of a spherical ferromagnet is given by Eq. (2.38), for
Nx′x′ = Ny′y′ = Nz′z′ = 1/3 which we rewrite here in Cartesian coordinates as:

Ms

(
mx

mz

)
=

(
χxx χxz

χzx χzz

)(
hx

hz

)
=

(
κ −iν
iν κ

)(
∂ψ
∂x
∂ψ
∂z

)
, (4.6)

where we have used:

κ = ΩH/
(
Ω2

H −Ω2), (4.7)

ν = Ω/
(
Ω2

H −Ω2), (4.8)
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ΩH = µ0Heff/µ0Ms, (4.9)

Ω = ω/γµ0Ms, (4.10)

together with the definition of the scalar potential from Eq. (4.3). The effective
field is given by Heff = H−Ms/3 + Hani, where Hani is the anisotropy field.1 Note
that solving Ω2

H −Ω2 = 0 yields the fundamental resonance frequency given in
Eq. (2.47). With Eq. (4.6) the expression for the magnetostatic potential Eq. (4.4)
reads:

(1 + κ)

(
∂2ψ

∂x2 +
∂2ψ

∂y2

)
+

∂2ψ

∂z2 = 0, (4.11)

which is also called the Walker equation [151]. The solutions of the Walker equation
are called magnetostatic modes.

To solve Eq. (4.11) we have to consider two boundary conditions at the
interface. Firstly, we find that the Walker equation reduces to Laplace’s equation
∇2ψ = 0 outside of the sphere as M = 0 and thus κ = 0. In this case Eq. (4.11) is
solved by using spherical coordinates (r, ϑ, ϕ), which yields:

ψout =rnPm
n (cos(ϑ)) [Am

n cos(mϕ) + iBm
n sin(mϕ)]

+
1

rn+1 Pm
n (cos(ϑ)) [Dm

n cos(mϕ) + iFm
n sin(mϕ)] ,

(4.12)

where Pm
n (cos(ϑ)) are Legendre polynomials, r is the distance to the spheres center

and Am
n , Bm

n , Cm
n and Dm

n are complex coefficients which are given in explicitly in
Ref. [152]. The angles ϑ and ϕ are given in spherical coordinates by:

x = r sin(ϑ) sin(ϕ),

y = r sin(ϑ) sin(ϕ),

z = r cos(ϑ)

(4.13)

The general solution inside the sphere is more complicated, as the magnetiza-
tion does not vanish. According to Ref. [152] we use elliptical coordinates (ζ, η, φ)

the solution reads:

ψint = Pm
n (ξ)Pm

n (cos(η)) [Gm
n cos(mφ) + iHm

n sin(mφ)] , (4.14)

where Gm
n and Hm

n are unknown complex coefficients, and η and ξ are implicitly
given by the relations:

x = R0
√
−κ
√

1− ξ2 sin(η) cos(φ),

1 We have assumed here, that the anisotropy field is parallel to the demagnetization field. In
a more general theory the anisotropy field can have a certain direction with spatial symme-
tries, which can be expressed by an anisotropy tensor, similar to the demagnetization tensor
introduced in Chap. 2.1.1.2.
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y = R0
√
−κ
√

1− ξ2 sin(η) sin(φ), (4.15)

z = R0

√
κ

1 + κ
ξ cos(η).

Here, R0 is the radius of the sphere. By comparison of Eqs. (4.13) and (4.15) one
finds at the interface r = R0 the relations:

ϑ0 = η0,

ξ2
0 =

1
κ
+ 1.

(4.16)

From Eqs. (4.1) and (4.2) it follows that the normal component of the magnetic
induction and the tangential component of the magnetic field have to be continuous
at the sphere’s interface. The first boundary condition reads in terms of ψ [154]:

∂ψout

∂r

∣∣∣∣
r=R0

=
[
1 + κ sin2(ϑ)

] ∂ψint

∂r

∣∣∣∣
r=R0

+
κ

a
sin(ϑ) cos(ϑ)

∂ψint

∂ϑ

∣∣∣∣
r=R0

− iν
a

∂ψint

∂φ

∣∣∣∣
r=R0

.
(4.17)

The second boundary condition reads then:

ψint|r=R0
= ψout|r=R0

(4.18)

Eq. (4.17) and Eq. (4.18) can be solved in terms of the variables Am
n , Bm

n , Dm
n ,

Fm
n , Gm

n and Hm
n [152].We find that the magnetostatic potential and the dynamic

magnetization become extremal for a certain field and frequency combination. The
resonance frequencies Ω of the MSMs are obtained by solving the characteristic
equation [151–153]:

n + 1 + ξ0
dPm

n (ξ0)/dξ0

Pm
n (ξ0)

±mν = 0, (4.19)

Note, that ξ0 and ν are functions of Ω. For example we calculate the dispersion

of the n = 1, m = 1 mode. For this mode we find P1
1 (ξ0) = −

√
1− ξ2

0, and the
characteristic equation reads:

0 = 2 +
ξ2

0

−1 + ξ2
0
± ν = 3 + κ ± ν = 3 +

ΩH ±Ω(
Ω2

H −Ω2
)

= 3 +
1

(ΩH ∓Ω)
,

(4.20)

where we have used the definitions from Eq. (4.16), and Eqs. (4.7)-(4.10). The
characteristic equation is solved then solved by:

Ω =
1
3
+ ΩH ⇔ ω110

res = γµ0(H + Hani), (4.21)
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Fig. 4.2. – (a, b) Uniform magnetostatic mode profile of the mx component of the (110)-
mode. (c, d) Magnetostatic mode profile of the mx component of the (210)-mode. The
dynamic magnetization vanishes for z = 0. (e, f) Magnetostatic mode profile of the mx
component of the (440)-mode. The dynamic magnetization shows a quadrupolar behavior
in the z = 0.5a-plane, with a vanishing of all dynamic magnetization components at
x = y = 0.

where we have neglected the negative solutions for Ω. The equation above
is the well known Kittel equation for spheres with an anisotropy field, see
Chap. 2.1.2.1. For the (210)-mode we can use the same method, and find us-

ing P1
2 (ξ0) = −3ξ0

√
1− ξ2

0:

ω
(210)
res = γµ0

(
H + Hani −

2
15

Ms

)
, (4.22)

The mode profiles of the MSMs have the form of associated Legendre poly-
nomials Pm

n , where the localization of the MSMs at the surface is related to the
mode index n ∈N [57]. The index |m| ≤ n corresponds to an angular-momentum
quantum number of the MSM [155], where the bar above the mode index m is used
for indices m < 0. The index r ≥ 0 enumerates the solutions of the characteristic
equation (4.19) for given n and m for increasing frequencies [152, 156]. In total,
each MSM is uniquely identified by the index tuple (nmr). For more information,
the review of Ref. [153] is recommended.

Figure 4.2 shows the relative amplitude of the dynamic mx-component of
some magnetostatic modes for a fixed point in time, obtained from Eq. (4.6) using
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the internal magnetic potential Eq. (4.14) and the definitions from Eq. (4.16) for
µ0H = 0.5 T, µ0Ms = 0.18 T, γ/2π = 28 GHz/T and ω/2π = 10 GHz. For this we
use Gm

n = Hm
n = 1, where the first equal sign is used for a circular precession, and

the second equal sign to plot a normalized magnetization distribution. We can
then write for the mx component (and analogously the my component):

Msmx =

(
κ

∂

∂x
− iν

∂

∂z

)
Pm

n (ξ0) Pm
n (cos(η0)) [cos(mφ) + i sin(mφ)] , (4.23)

cos(mφ) = Re

[
(x + iz)m

(x2 + z2)m/2

]
, (4.24)

sin(mφ) = Im

[
(x + iz)m

(x2 + z2)m/2

]
, (4.25)

cos(η0) =
z
a

, (4.26)

where we have used a coordinate transformation from spherical to Cartesian
coordinates. We then plot the real part of Eq. (4.23) along the x-axis, and the
imaginary part along the z-axis. Note that similar plots are obtained from the
dynamic mz-component.

Figure 4.2 (a) shows the mode profile of the (110)-mode in the x, z-plane, where
the length of the arrows is normalized to Gm

n . We find a uniform arrow-length and
hence a uniform precession. The same is true for Fig. 4.2 (b), where we calculate
the mode profile at z = 0.5R0 (The position is shown as dashed line in Fig. 4.2 (a)).
The situation changes for the (210)-mode shown in Fig. 4.2 (c), where we clearly
see a change of the magnetization orientation at z = 0 in the z-direction. However,
in Fig. 4.2 (d) we find at z = 0.5R0 a uniform precession for the (210)-mode.
The total magnetization profile is thus a superposition of both, with a vanishing
dynamic magnetization in the z = 0 plane. In Fig. 4.2 (e) the situation is shown
for the (440)-mode in the x, z-plane. We find that the magnetization changes its
orientation at x = 0 in the x-direction. The dynamic magnetization profile for
z = 0.5R0 is shown in Fig. 4.2 (f), where we find a quadrupolar behavior of the
dynamic magnetization. In this perspective it becomes clear, that the dynamic
Mx-component does not vanish in the x = 0 plane, it rather rotates towards the
y-direction. Only for x = y = 0 we find that the dynamic magnetization vanishes.
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4.2 Two-Magnon Scattering in Spheres
In order to discuss the spin-wave manifold in the sphere, we follow Ref. [30]

and assume that a plane wave solves the Walker equation, such that we can write
ψ ∝ exp(−ikr) for the magnetic potential. The Walker equation then reads:

(1 + κ)(k2
x + k2

z) + k2
y = 0. (4.27)

We furthermore assume that the y-axis is the direction of the external static field.
As our system is rotationally symmetrical and we neglect any magneto-crystalline
anisotropies here, we only have to have to consider the angle between the wave
vector and the y-axis. It is justified to neglect a specific anisotropy field, as it
mathematically is an offset to the applied magnetic field. We find for the wave
vectors:

k2
x + k2

z = k2 sin2 ϑ, (4.28)

k2
y = k2 cos2 ϑ (4.29)

with which we rewrite the Walker equation into:

κ sin2 ϑ = −1. (4.30)

The resonance condition now reads: ω = γµ0

√
H(H + Ms sin2 ϑ). Obviously, the

spin-wave manifold is much more complex than suggested by the simple expres-
sion from Eq. (2.47). The reason for this that we now use a more general boundary
condition. We additionally introduce the exchange field of the propagating waves
by using the transition µ0H → µ0H + Dsk2 and obtain [30]:

ω = γ

√
(µ0H + Dsk2)(µ0H + Dsk2 + µ0Ms sin2 ϑ) (4.31)

In Fig. 4.3 (a) we plot the spin-wave dispersions for µ0H = 0.5 T, Ds = 5.3×
10−17 Tm2 [23], between ϑ0 = 0 and ϑ0 = π/2 as a function of the wave vector k.
We have chosen an external field of 0.5 T, as this field value is easily achievable
in our experiments. We find that in both branches the spin-wave frequency is
approximately constant until at about k = 107 m−1 the exchange interaction starts
to dominate the dipolar interaction. For higher k-vectors both branches will become
degenerate. We then speak of exchange spin waves which are fully isotropic.

As shown in Fig. 4.2, different magnetostatic modes have a different mode
profile with a specific dynamic magnetization amplitude at the surface. We
thus expect a mode-dependent influence of the two-magnon scattering processes
introduced in Chap. 2.3.2 on the inhomogeneous line broadening of the MSMs.
The physical reason can be found in the structure of the magnetic sample. Where
the YIG sphere has a very homogeneous crystalline structure in its center, it has
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Fig. 4.3. – (a) Spin wave dispersion in a YIG sphere at a field of µ0H = 0.5 T for two
different angles. (b) Inhomogeneous line broadening as a function of the applied magnetic
field, after Ref. [57]. The calculations are performed using Eq. (4.36) for a sphere with a
radius R0 = 300µm for different pit sizes R. The dashed lines mark the top and bottom of
the spin-wave spectrum.

pits, scratches, and influences from polishing procedures at the surface. If a
magnetic excitation has a large mode amplitude in the spheres center, it is not
likely to scatter. However, if the mode has a large amplitude at the surface, it
is influenced by the material inhomogeneities, which can lead to two-magnon
scattering processes. According to Ref. [157] an imperfection in a volume material
can be interpreted as a small spherical cavity in an infinite medium, which creates
a scattering potential Escatt:

Escatt = −µ0
1
2

∫
Hc MsMdr. (4.32)

The scattering potential of the uniform mode into a mode with k 6= 0 is given by:

Escatt = F(k, R)(a0a†
k + a†

0ak), (4.33)

where the prefactor is given by:

F(k, R) = 16π2R3(gµB/2Ms/V)(3 cos2 ϑk − 1)j1(kR)/kR, (4.34)

where R is the radius of the defect, V is the volume of the sphere, and j1 is
a spherical Bessel function. The operators a0, ak are the creation and a†

0, a†
k the

annihilation operators of the magnons.2 The line broadening of a uniform magnetic
excitation, which is scattered by surface defects, reads:

∆ω2M =
2π
h̄

∫ km

0
|F(k, R)|2 ρkdk, (4.35)

2 The creation and annihilation operators were introduced by a Holstein-Primakoff transforma-
tion, which is beyond the scope of this thesis.
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where ρk is the density of magnon states at the wave vector k. The final result is
given in Ref. [57]:

∆ω2M =γ
3
4

R
R0

(µ0Ms)
2 ·

∫ 1

umin

du
ΩR

(
3u2 − 1

)2

Dsk
(

4Ω2 + (1− u2)2
)1/2 (j1 (kR))2

(4.36)

with,

u = cos (ϑ) , (4.37)

umin =


(

ΩH(ΩH+1)−Ω
ΩH

)1/2
, for Ω2 ≥ ΩH (ΩH + 1)

0, for Ω2 < ΩH (ΩH + 1)
, (4.38)

k =


(

4Ω2 +
(
1− u2)2

)1/2
−
(
2ΩH +

(
1− u2))

2Ds/µ0Ms


1/2

. (4.39)

In Fig. 4.3 (b) we plot the inhomogeneous line broadening ∆ω2M as a function
of the applied magnetic field H normalized by the saturation magnetization for
various defect sizes. A first important observation is that the inhomogeneous
broadening increases with increasing defect size. For a pit radius of 100 nm we
find an almost constant linewidth contribution, whereas we find two maxima in the
linewidth contribution for larger defect size. This goes along with the notion that
a rough sphere surface is likely to increase the two-magnon scattering efficiency.
We furthermore find the maxima approximately at the bottom and the top of the
spin-wave spectrum. For each MSM at a certain resonance frequency and field (e.g.
dashed line), we can read the line broadening from Fig. 4.3 (b).

However, we have found above that the spatial mode distribution is different
for modes with different mode indices (nmr). The spatial dependence is not
included in the scattering theory, and Eq. (4.36) needs to be modified accordingly.
We introduce the factor F(nmr), which represents the ratio of the linewidth of a
particular MSM with respect to the uniform precessing (110)-mode [57,149,158,159]:

F(nmr) = 〈|mt|2〉surface/〈|m3
t |2〉volume, (4.40)

where |mt|2 = |mx|2 + |mz|2 is the square of the transverse magnetization com-
ponents, and 〈〉 denote the surface and volume average. In most cases F(nmr) =
(2n + 1)/3 and independent of r [57].

The total inhomogeneous line broadening then reads [57]:

∆ω
(nmr)
0 = ∆ω2MF(nmr) + ∆ω0

0. (4.41)
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Fig. 4.4. – (a) The CPW with the YIG sphere and the DPPH is positioned in the homoge-
neous field of an electromagnet. The CPW is connected to port 1 (P1) and port 2 (P2) of a
vector network analyzer (VNA). The YIG sphere is placed on top of the center conductor
of the CPW with its [111]-axis parallel to the applied magnetic field H0 in z′-direction.
(b) Typical normalized transmission spectrum of the (530)-mode at µ0H0 = 0.8 T (symbols)
including a fit to Eq. (4.44) (lines).

The two-magnon scattering processes can be suppressed if a perfectly polished
YIG sphere is used, due to the vanishing ability of the system to transfer linear
and angular momentum from and to the lattice [57]. The term ∆ω0

0 represents a
constant contribution to the linewidth in which all other frequency-independent
broadening effects are absorbed. A complete discussion of the scattering theory
used in this thesis is presented in Ref. [57, 157].

If we now assume a dominant Gilbert-like damping for all MSM modes, the
linewidth ∆ω(nmr) of a MSM resonance line at a frequency ω

(nmr)
res is given by [60],

cf. Eq. (2.66):

∆ω(nmr) = 2α(nmr)ω
(nmr)
res + ∆ω

(nmr)
0 . (4.42)

4.3 Experimental Methods
The YIG crystal used in this chapter is grown in a high temperature solution

using the slow cooling method [160] by C. Dubs from Innovent e.V., Jena. The
purity of yttrium oxide was 99.9999 % related to the whole rare earth oxides
content. The sphere is prepared by grinding and polishing a YIG cube to a
diameter of 2R0 = 300± 10 µm with an asphericity smaller than 1 % and without
microscopically detected roughness. A subsequent 4 h annealing process at 950

◦C
removes strain induced by crystal growth and the rounding-off processes.

Figure 4.4 (a) shows a sketch of the measurement setup. The YIG sphere with
a diameter of 2R0 = 300 µm is placed in a disk shaped Vespel sample holder
(diameter 6 mm, not shown), which has a centered hole with a diameter of 350 µm.
The sphere in the sample holder is exposed to a static magnetic field in order to
align the easy [111]-direction of the YIG crystal [57] parallel to the field direction.
The sphere is subsequently fixed in the sample holder using photoresist and the
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alignment is confirmed by Laue diffraction, as shown and discussed in more detail
in Ref. [66]. Taken together, the Vespel sample holder thus on the one hand simply
mechanically holds the small YIG sphere in place. On the other hand, owing to
the magnetic field induced alignment, the crystalline orientation of the YIG crystal
is now fixed to the sample holder.

The oriented YIG sphere is placed in the middle of the w = 300 µm wide
center conductor, with the YIG [110]-axis aligned parallel to the long axis of the
center conductor of the CPW. However, as stated above, the linewidth of the YIG
sphere is very small (1 MHz which is about 35 µT). For this reason we need a special
magnetic field measurement with a very high resolution at the position of the YIG
sphere. As a standard Hall probe has a limited field resolution, we additionally
glue a pressed crumb of Diphenylpicrylhydrazyl (DPPH) on the center conductor,
in distance between the YIG sphere and the DPPH of l ≈ 1 cm. We use the DPPH
as a spin marker as it has a well known g-factor [161] of gDPPH = 2.0036(3). The
measurement of its paramagnetic resonance frequency:

ωDPPH = gDPPH
µB

h̄
µ0HDPPH (4.43)

can thus be used as an independent magnetic field reference at the sample position,
in addition to Hall probe measurements. The static magnetic field calculated from
the DPPH resonance frequency is denoted as HDPPH. The stray field originating
from the YIG sphere at the location of the DPPH creates a systematic measurement
error of δµ0Hstray ≤ 40 µT, as estimated from considering the YIG sphere as a
magnetic dipole. Using this value, we can calculate the YIG g-factor with a very
high precision.

We place the CPW between the pole shoes of the electromagnet and use
pole shoes with a = 6 cm to ensure a homogeneous applied magnetic field. The
measured radial field inhomogeneity in our magnet system creates a systematic
field measurement error of δµ0Hdisp = 0.3 mT for l = 1 cm displacement from the
center axis.

For the VNA FMR experiments, already presented in Chap. 2.4.3, we measure
the complex scattering parameter S21in a frequency range of ω/2π ≤ 26.5 GHz as
a function of the applied magnetic field strength. The applied microwave power
is P = −20 dBm to avoid non-linear effects causing additional line broadening.
We can estimate the driving fields from the Karlqvist equations Eq. (2.68),(2.69),
where the field amplitude is given by µ0h0 = µ0 I/2w. Using w = 300 µm, I =√

P/Z0, P = −20 dBm = 10 µW, we obtain µ0h0 = 1 µT, which corresponds to
a linewidth of γµ0h0/2π = 26 kHz, which is much smaller than the detected
resonance linewidth.

In order to eliminate the effect of the frequency dependent background trans-
mission of the CPW, we apply the following measurement protocol: First, we
measure S21 a fixed field H in a frequency range ωDPPH/2π± 1 GHz. Second, we
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measure S21 for the same frequency range but at a slightly larger magnetic field
H + ∆H, with µ0∆H0 = 100 mT. Since for this field no YIG and DPPH resonances
are present in the observed frequency range, the latter measurement contains the
pure background transmission. Third, we calculate the normalized transmission
spectra using ∆S?

21 = S21(H)/S21(H + ∆H), which corrects the magnitude and
the phase of the signal. Note that this measurement is equivalent to a common
background normalization, where the background is recorded at a certain field
value. However, as the field steps in our measurement were very small, the mea-
surement took multiple hours, and the recording of a background spectrum for
every field step increased the data quality tremendously, as also slow thermal drifts
in the measurement setup were corrected. The background-correction procedure
is repeated for all applied magnetic fields. The transmitted magnitude around the
resonance can be expressed using Eq. (2.82):

∆S21(ω) = ∆S?
21− 1 =

S21 − S0
21

S0
21

=
S0

21 − iCeiφχx′x′ − S0
21

S0
21

=
−iCeiφχx′x′

S0
21

. (4.44)

From this we obtain using Eq. (2.86) and Eq. (2.38) the fitting function of our signal:

∆S21 = A + Bω +
Z(

ω
(nmr)
res

)2
− iω2 − iω∆ω(nmr)

(4.45)

Here, we have additionally introduced A, which is a complex offset parameter,
B, which is the slope of a complex linear background and Z, which is a com-
plex scaling parameter that includes all amplitude information from the general
susceptibility. Note furthermore, that in our coordinate system χxx = χx′x′ , cf.
Fig. 2.1. Figure 6.3 (b) exemplary shows the real and imaginary part of ∆S21 for
the (530)-mode at µ0H = 0.8 T. In addition, a fit of Eq. (4.44) to the data is shown,
which adequately models the shape of the resonances.

4.4 Experimental Results

4.4.1 Magnetostatic Mode Dispersions
Figure 4.5 (a) shows the normalized transmitted magnitude |∆S21| as a func-

tion of H and ω − ωDPPH on a linear color-coded scale. The frequency axis is
chosen relative to the DPPH resonance frequency, so that all modes with a linear
dispersion ω

(nmr)
res ∝ H appear as straight lines, whereas modes with a non-linear

dispersion are curved. Note that the field values displayed on the y-axis represent
the magnetic field strength measured with the Hall probe, as this is the raw mea-
surement data. The different modes appearing in the color plot in Fig. 4.5 (a) can
be identified in a straightforward manner.
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Fig. 4.5. – (a) Normalized transmission magnitude |∆S21| plotted versus applied magnetic
field µ0H0 and microwave frequency ω/2π relative to the DPPH resonance ωDPPH/2π.
The contrast between the dashed lines is stretched for better visibility. (b) Calculated and
measured dispersions of various MSMs (lines and open circles, respectively), (c) Deviation
of the calculated magnetic field from the DPPH resonance to the measured field as a
function of the measured field.

At first, all visible resonances are fitted using Eq. (4.44) in order to extract
ω

(nmr)
res and ∆ω(nmr). Furthermore, the DPPH resonance line is identified as straight

line at ω−ωDPPH = 0 MHz and the resonance fields HDPPH are calculated using
Eq. (4.43). From our calculation we indeed find an increasing systematic deviation
of 1 mT between the measured field and the calculated field from the DPPH
resonance, as shown in Fig. 4.5 (c). As the deviation is not constant, the measured
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field would cause an error during the YIG g-factor determination. For this reason
we will use the calculated DPPH field in the following.

Second, the straight line at about (ω−ωDPPH)/2π ≈ −60 MHz is identified
as the (110)-mode, as this mode has a linear dispersion:

ω
(110)
res =

gYIGµB

h̄
µ0 (H + Hani) (4.46)

and a very small frequency offset to the DPPH resonance. Furthermore, we know
the dispersion relation for the (210)-mode from Eq. (4.22):

ω
(210)
res =

gYIGµB

h̄
µ0

(
H + Hani −

2
15

Ms

)
, (4.47)

which increases linearly with the applied magnetic field. The frequency offset
between the (110)- and the (210)-mode only depends on rather well known material
parameters:

ω
(210)
res −ω

(110)
res

2π
= − gYIGµB

2πh̄
2
15

µ0Ms ≈ −650 MHz. (4.48)

We thus can identify the resonance at (ω − ωDPPH)/2π ≈ −740 MHz as the
(210)-mode. A simultaneous fit of the mode dispersions Eq. (4.46) and Eq. (4.47)
to the measured values of ω

(110)
res , ω

(210)
res and µ0HDPPH yields gYIG = 2.0054(3),

µ0Ms = 176.0(4)mT and µ0Hani = −2.5(4)mT. The error of gYIG is given by the
systematic error introduced by the field normalization using gDPPH. The errors
in µ0Hani and µ0Ms are given by δµ0Hdisp + δµ0Hstray. All values are in good
agreement with previously reported material parameters [147, 148, 162–164] for
YIG (gYIG = 2.005(2), µ0Hani = −5.7 mT and µ0Ms = 180 mT) and, hence, justify
the (110)- and (210)-mode assignments.

Third, the complete MSM manifold is computed using the extracted material
parameters. The mode numbers of the remaining modes are determined from the
characteristic dispersions. Figure 4.5 (b) shows the dispersions of the identified
modes as function of ω

(nmr)
res − ωDPPH and HDPPH, with very good agreement

of theory (lines) and experiment (circles). We might attribute slight deviations
between model predictions and data to a non-perfect spherical shape of the sample,
which would change the boundary conditions for the magnetization dynamics in
the YIG spheroid, and thus the dispersion relations.
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Fig. 4.6. – (a) Linewidth vs. resonance frequency of the measured MSMs. The Gilbert
damping of all MSMs is α = 2.7(5)× 10−5 as evident from the same slope of all curves.
The inhomogeneous line broadening is different for each MSM. Note that the data points
are plotted with an offset proportional to the inhomogeneous line broadening. (b) Inho-
mogeneous line broadening as a function of ω−ωDPPH.

4.4.2 Linewidth Analysis

In Fig. 4.6 (a) the linewidth ∆ω(nmr) of each MSM is plotted versus its resonance
frequency ω

(nmr)
res . We expect a linear relationship between the linewidth and the

resonance frequency for a Gilbert-like damping process. The offset ∆ω
(nmr)
0 is

magnified by a factor of 5 to emphasize the differences in the inhomogeneous line
broadening. Individual fits of all ∆ω(nmr) to Eq. (4.42) yield identical slopes for
all modes within a small scatter, which is also evident from the linewidth data
in Fig. 4.6 (a). Hence, the Gilbert damping parameter and inhomogeneous line
broadening are obtained from a simultaneous fit of Eq. (4.42) to the extracted data
points. Here, α(nmr) is a shared fit parameter for all MSMs, but the inhomogeneous
line broadening ∆ω

(nmr)
0 is fitted separately for each mode. To avoid fitting errors,

the linewidth data are disregarded when a mode anti-crossing is observed, since
this results in a pronounced change in linewidth [165]. Note that this behavior is a
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signature of hybridized excitations as shown and used in Chap. 5. As evident from
the solid fit curves in Fig. 4.6 (a) the evolution of the linewidth with resonance
frequency of all measured MSMs can be well described with a shared Gilbert
damping parameter of α(nmr) = α = 2.7(5) × 10−5, independent of the mode
number and the mode intensity. The latter is a strong hint that the radiative
damping process has negligible influence on our damping measurement. The
error in α is given by the scatter of α from the independent fits. Other groups
report Gilbert damping parameters for YIG films [97, 100, 110, 166–169] larger than
α = 6.15× 10−5, whereas for bulk YIG [61, 164, 169] values of around α = 4× 10−5

are found. Hence, the Gilbert damping parameter obtained here is the smallest
experimental value at room temperature reported so far. As the intrinsic damping
shown in literature is larger than our reported values, this is a support of our
assumption of negligible radiative damping in our experiments. Furthermore, our
results are in agreement with the notion that the Gilbert damping parameter is a
bulk property, which only depends on intrinsic damping effects.

The question arises, why we observe a linear increase of the linewidth with
the resonance frequency, i.e. what the microscopic mechanism behind the viscous
damping observed could be. One important relaxation mechanism is the two-
magnon-one-phonon scattering process, proposed by Kasuya and LeCraw [46].
In this process the magnon of the ferromagnetic resonance (km,1 = 0) scatters
under absorption of a phonon (kq 6= 0) into a secondary magnon (km,2 6= 0). For
temperatures T between 100 K and 350 K, we obtain ∆ f ∝ T f over the bosonic
occupation numbers of the magnon and phonon states [165]. Hence this process
is considered to be the physical origin of the phenomenological Gilbert damping
in a YIG sphere [37]. Note that we were able to show the Gilbert damping to
vary linearly with temperature in a broad temperature range using the same YIG
sphere. This observation confirms the assumption of a dominant Kasuya-LeCraw
process. The temperature-dependent broadband FMR results have been published
in H. Maier-Flaig, S. Klingler, C. Dubs, O. Surzhenko, R. Gross, M. Weiler, H. Huebl,
S.T.B. Goennenwein, Temperature-dependent magnetic damping of yttrium iron garnet
spheres, Physical Review B 95, 214423 (2017).

However, the inhomogeneous line broadening is indeed different for the
various MSMs. Figure 4.6 (b) shows the extracted values for the inhomogeneous
line broadening (filled dots) as a function of ω

(nmr)
res −ωDPPH. The error bars indicate

the variation of the inhomogeneous line broadening between global and individual
fits. In order to show the approximate position of the modes in comparison to
Fig. 4.5, the x-scale is calculated for a magnetic field strength of µ0H = 0.5 T.
Additionally, the inhomogeneous line broadenings ∆ω

(nmr)
0 for all modes are

calculated using Eq. (4.41). For the calculations of the line broadenings, a pit
radius R = 350 nm and a constant linewidth contribution of ∆ω0

0/2π = 0.3 MHz
were assumed. Since the calculated ∆ω2M are slightly frequency dependent, the
average linewidth values for the measured field and frequency range are used and
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the standard deviation is indicated by the error bars of the open symbols. For most
MSMs the variation is smaller than 10 kHz. Nevertheless, the (440)-mode should
show a prominent peak in the linewidth measurement [57] at about ω

(440)
res /2π =

10 GHz in Fig. 4.6 (a), which is however not observed in the experimental data.
Additionally, the (110)-MSM shows a much larger linewidth than expected from
the calculations. In a perfect sphere the (110)-mode is degenerate with the (430)-
mode [152], but in a real sphere this degeneracy might be lifted. If the difference
of the (110)- and (430)-mode frequencies is smaller than the linewidth of the
measured resonance, an additional inhomogeneous line broadening is expected.
Indeed, a careful analysis of the (110)-MSM line shape reveals a second resonance
line in very close vicinity to the (110)-mode, yielding an artificial inhomogeneous
line broadening of this mode. Besides these two MSMs, an excellent quantitative
agreement between the two-magnon scattering model and experiment is found.

4.5 Conclusion
In conclusion, we perform broadband ferromagnetic resonance experiments

on magnetostatic modes in a YIG sphere and we identified various magnetostatic
modes. The exceptional data quality allows for an detailed study of the different
damping mechanisms in the YIG sphere, namely intrinsic Gilbert damping, and
extrinsic damping, which shows up as an inhomogeneous line broadening. A
record low Gilbert damping parameter of α = 2.7(5)× 10−5 is found for all MSMs,
independent of their mode indices. This is in agreement with the notion that
the Gilbert damping is a global material parameter. Due to the high volume of
the sphere (in comparison to films) and the low Gilbert damping parameter, YIG
spheres are interesting candidates for the application in coupling experiments,
similar to those shown in Chap. 6. Furthermore, the inhomogeneous line broad-
ening differs between the various magnetostatic modes, in agreement with the
expectations due to two-magnon scattering processes of the magnetostatic modes
into the spin-wave manifold. From this we gain important information about the
spatial distribution of the magnetic excitations in the sphere, which can be used in
quantum coupling experiments, where certain modes should be populated.

However, one could also use these experiments to improve for example the
bandwidth of YIG tuned microwave filters [142], where the exact knowledge of
the mode dispersions is required and the linewidth is the limiting factor of the
filter quality. The inhomogeneous linebroadening of the MSMs can then be used
as quality indicator in the production process.
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5Spin Torques in Coupled YIG/Co
Heterostructures

As stated in the introduction, the aim of modern spin-wave technology is to
encode and transport information using the electron spin-angular momentum
[12, 14, 38–41, 170]. To rebuild logic gates the spin waves have to interfere, which
requires an effective steering and guiding of the spin waves in the magnetic
medium. Spin waves can be guided for example in magnonic waveguides [100] and
in domain walls [171], as well as in rather complex two dimensional structures, such
as magnonic multiplexer [172,173] or thermal landscapes [45,174], where the latter
require an exact knowledge of the spin-wave dispersion to manipulate the spin-
waves appropriately. For the steering and guiding of spin waves in complex multi-
dimensional structures, magnonics based on exchange spin waves is particularly
appealing. The spin-wave frequency is dominated for large wave vectors by the
isotropic exchange energy term, which leads to an isotropic dispersion relation
ω ∝ γDk2. The isotropic dispersion relation of these so called exchange spin waves
allows for a uncomplicated guiding of spin waves in multi-dimensional structures,
which are necessary for spin-wave signal processing. Recently, we have shown the
positive effects of isotropic spin-wave dispersions on the transmission of signals in
two dimensional structures [13]. Furthermore, the small wavelength and the large
group velocities vgr = ∂ω/∂k ∝ k promise a fast data transfer and high processing
speed.

Unfortunately the excitation of these small wavelength spin waves is chal-
lenging. To excite non-uniform magnetization dynamics and propagating spin
waves, either the excitation mechanism or the magnetization or both must be
non-uniform. Hence, for the excitation of exchange dominated spin waves in a
homogeneous magnetized medium, the excitation fields need to be nonuniform on
a sub-100 nm length scale. The most common method to excite spin waves is the
exploitation of dynamic microwave-frequency magnetic fields, around a antenna,
such as an metallic stripline or a coplanar waveguide [141, 175]. The dynamic
magnetic fields modulate the magnetization dominantly below the antenna struc-
ture, see Chap. 2.4.1. In this case the maximum achievable wave vector of the spin
wave is limited by the spatial periodicity of the antenna structure and its dynamic
magnetic field. Furthermore, standard striplines have poor efficiency due to high
Ohmic losses and impedance mismatch when it comes to downscaling and minia-
turization. One can overcome those limitations by using magnon transducers [176],
where the generation of an artificial magnetic lattice under the antenna structure
leads to an additional k-momentum. In the case of parallel pumping [177, 178], an
rf-field with twice the resonance frequency is applied parallel to the magnetization.
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In this geometry the microwave photons counteract the magnetic damping and
can excite propagating spin waves above a critical threshold power. There are also
excitation schemes based on Schlömann resonances, which use the non-uniformity
of the demagnetization tensor in a finite sample [179, 180]. This allows to mod-
ulate the magnetization in distinct regions of the sample, with global oscillating
magnetic fields. In spin-torque oscillator driven devices, spin currents are used to
excite a spin-torque nanooscillator [135, 181], where the local dynamic magnetic
field can then be coupled into a waveguide system [136]. There are further more
exotic spin-wave excitation mechanisms, such as laser-based schemes using pulse
trains which exploit local heating and a change of the local anisotropy field [182]
or the modulation of the magnetization using the inverse Faraday effect [183] in
the laser spot region. Recently, also a generation of spin waves with wave lengths
in the 100 nm regime using precessing magnetic vortices was reported [184].

In this chapter we present a new excitation mechanism of exchange spin waves
based on exchange and spin torques at the interface of yttrium iron garnet/cobalt
(Co) heterostructures. We investigate the heterostructures using a broadband
ferromagnetic resonance setup with a coplanar waveguide center conductor width
of w = 300 µm. We observe an efficient excitation of up to forty perpendicular
standing spin waves (PSSWs) with wavelengths down to λPSSW ≈ 50 nm in the YIG
layer, together with a hybridization of the YIG PSSWs and the Co FMR line, when
the respective resonance frequencies coincide. The hybridization is indicated by
avoided crossings of the YIG PSSW and the Co FMR line, which are also observed
when a copper (Cu) layer separates the YIG and the Co films. However, the
insertion of an insulating AlOx interlayer completely suppresses the excitation of
YIG PSSWs. This allows us to exclude dipolar coupling as the origin of the PSSW
excitation.

We show that excitation of these exchange spin waves and the hybridization
of the YIG and Co resonances is caused by interfacial spin torques in the YIG/Co
system. These spin torques couple the YIG and Co magnetization dynamics by
microwave frequency spin currents and direct exchange interaction.

Our data are well described by a modified Landau-Lifshitz-Gilbert equation for
the Co layer, which includes direct exchange torques and field-like and damping-
like torques from mutual spin pumping at the YIG/Co interface. Simulations
of our coupled systems reveal the respective influence of the spin toques on the
coupling of the different layers. In contrast to the previously observed purely
damping-like spin-torques in all-metallic multilayers [185], we find a dominant
influence of the field-like torques to the coupling of the YIG and Co.

In the first part of this chapter, we describe the experimental setup, and
present and analyze our measurement results. We subsequently introduce a simple
macrospin model, based on interfacial exchange interaction and mutual spin
pumping, which already contains all salient features of the coupled magnetic
system. The full extended theory, which also considers the influence of the non-
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uniform magnetization dynamics of the perpendicular standing spin waves is
presented in Appendix A. Finally, we use the full theory to simulate the Co
susceptibility in the different heterostructures, and discuss the amplitude and
signs of the different torques.

Some of the figures and parts of the text in this chapter have been published
in S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn, H. Maier-Flaig, M. Althammer,
H. Huebl, R. Gross, R.D. McMichael, M.D. Stiles, S.T.B. Goennenwein, M. Weiler,
Spin-torque excitation of perpendicular standing spin waves in coupled YIG/Co heterostruc-
tures, Physical Review Letters 120 (2018).

5.1 Experimental Methods

5.1.1 Sample Preparation
For our investigations we prepared set of four YIG/Co samples, based on

commercially available YIG films. The YIG films are grown by liquid-phase
epitaxy on a (111)-oriented gallium gadolinium garnet substrate to a YIG thickness
of d2 = 1 µm. Each sample is cut to lateral dimensions of 6 × 5 mm2 and is
cleaned with Piranha etch and subsequently annealed in oxygen at 500

◦C for
40 minutes [186]. For the first set of samples a thin Co film is deposited onto the
YIG film in-situ via electron beam evaporation without breaking the vacuum. These
samples have thicknesses of d1 = 35 nm and d1 = 50 nm (samples YIG/Co(35)
and YIG/Co(50), respectively). For a second set of samples a Cu layer with a
thickness of ds = 5 nm is evaporated on the YIG before a Co film with a thickness
of d1 = 50 nm is grown on top of it (YIG/Cu(5)/Co(50)). Finally, a control sample
is prepared, where a ds = 1.5 nm thick aluminum (Al) film is sputtered on the
YIG with subsequent oxidation. As the aluminum layer thickness is smaller than
the average native oxide layer thickness of about 2 nm in aluminum [119], we
obtain a fully insulating interlayer. A Co film with a thickness of d1 = 50 nm is
subsequently deposited on top of the AlOx layer via electron beam evaporation
(YIG/AlOx(1.5)/Co(50)). All samples are capped with a 2.5 nm thick layer of AlOx
to prevent oxidation of the Co layer.

5.1.2 Experimental Setup
We measure the dynamic magnetization properties of the YIG/Co samples

using the VNA-based broadband ferromagnetic resonance setup at room temper-
ature, presented in Chap. 2.4.3. Figure 5.1 shows a sketch of the measurement
setup. The YIG/Co samples are placed on a coplanar waveguide (CPW) with the
Co side down. The center conductor of the CPW has a width of w = 300 µm. We
position the CPW between the a = 5 cm pole shoes of the electromagnet. The
CPW is connected to port 1 and port 2 (P1 and P2, respectively) of the VNA and
the complex-valued transmission of a microwave current S21 is measured in a
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Fig. 5.1. – Sketch of the measurement setup. We place the YIG/Co samples with the
Co-side down onto the center conductor of the CPW.

frequency range between ω/2π = 1 GHz and ω/2π = 26.5 GHz as a function of
the magnetic field. When the applied frequency ω matches the resonance condition
for a given external magnetic field, microwave power is absorbed, which results in
a precession of the magnetization of the sample.

As the transmission signal of the CPW is strongly frequency dependent, we
do not show any raw frequency spectra, but the field-derivative of S21 [187]. In our
measurements, the transmitted microwave signal of the vector network analyzer
reads, cf. Chap. 2.4.3:

S21(H) = ∆S21(H)S0
21 + S0

21 (5.1)

Here, S0
21 is the field-independent background transmission. Note that a perfect

background transmission is achieved for S0
21 = 1. The background-corrected field

derivative of our measurement signal is now given by [187]:

∂DS21/∂H =
1

S21(H)

S21(H + δH)− S21(H − δH)

δH
, (5.2)

where δH is a constant field step in our measurement of about 0.5 mT. Note that
the differential quotient is rescaled by the central value S21(H) which eliminates
background drift.

Below, we simulate χ = χ1,xx, with:

χ1,xx =
χ−1

1,zz

χ−1
1,zzχ−1

1,xx − χ−1
1,zxχ−1

1,xz
, (5.3)
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from which we calculate ∆S21 with Eq. (2.83). To compare the simulation results
to experimental data, we use Eq. (5.1) with S0

21 = 1 and then calculate ∂DS21/∂H
using the inductance from Eq. (2.85), which yields:

∂DS21/∂H =
∆S21(H + δH)− ∆S21(H − δH)

(∆S21(H) + 1)δH

=
dtotlµ0ω(χ1,xx(δH + H)− χ1,xx(H − δH))

δH(dtotlµ0ωχ1,xx(H) + 8iwZ0)
.

(5.4)

5.2 Experimental Results

5.2.1 VNA Measurements
Figure 5.2 (a) shows the background-corrected field-derivative [187] of the

VNA transmission spectra |∂DS21/∂H| for the YIG/Co(50) sample as a function
of H and ω. We clearly observe two major modes in the color map. The low-
frequency mode corresponds to the YIG FMR line, whereas the high-frequency
mode corresponds to the Co FMR line. Within the broad Co FMR line, we find
several narrow resonances, of which the dispersion is parallel to the YIG FMR.
These lines are attributed to the excitation and detection of YIG PSSWs with
wavelengths down to 50 nm, as shown in Fig. 5.4. We find avoided crossings
between these YIG PSSWs and the Co FMR line (inset), where the splitting is
geff/2π ≤ 200 MHz. This is a clear indication that the YIG and Co systems are
coupled to each other. Furthermore, an additional low-frequency mode with a
lower intensity is observed. This line is attributed to an exchange mode of the
coupled YIG/Co system, as supported by simulations in Fig. 5.9. Note that our
observation is in agreement with previous observations of exchange modes in
coupled systems [188–190], although these studies only considered macrospin
dynamics for each layer. For all investigated samples with d1 = 50 nm we observe
the first Co PSSW at around 22 GHz and µ0H = 0.1 T.

Figure 5.2 (b) shows the background-corrected field derivative of the trans-
mission spectra for the YIG/Co(35) heterostructure. Again, we observe the high
and the low frequency mode, which correspond to the Co and YIG FMR lines,
respectively, together with the exchange mode. The YIG PSSWs form avoided
crossings with the Co FMR line as shown in magnification (inset). The frequency
splitting has about the same size as found from the YIG/Co(50) heterostructure.

Figure 5.2 (c) shows |∂DS21/∂H| for the YIG/Cu(5)/Co(50) sample as a func-
tion of H and ω. Again, we observe the YIG FMR, YIG PSSWs and the Co FMR
lines. However, the frequency splitting between the modes is much smaller than
for the YIG/Co(50), geff ≤ 40 MHz. This strongly indicates that the coupling
efficiency is reduced in comparison to Fig. 5.2 (a,b). We attribute this mainly to the
suppression of the static exchange coupling by insertion of the Cu layer. This is
also in agreement with the vanishing of the exchange mode.

5.2 Experimental Results 73



YIG/Cu(5 nm)/Co(50 nm)

YIG/Co(50 nm)

YIG/AlOx(1.5 nm)/Co(50 nm)

5 10 15 20 25

0.1

0

0.2

0.3

0.4

1

0.5

0

µ
0
H

 (T
)

ω/2π (GHz)

(d)(c)

(a)

|∂
D

S
2

1
/∂

H
| (

ar
b

.u
.)

YIG Co

Co P
SSW

exchange 
mode

YIG/Co(35)

µ
0
H

 (T
)

0.1

0

0.2

0.3

0.4

(b)

5 10 15 20 25
ω/2π (GHz)

Fig. 5.2. – Field-derivative of the VNA transmission spectra for three different samples as
a function of magnetic field and frequency. All samples show two modes corresponding to
the YIG (low-frequency mode) and Co (high-frequency mode) FMR lines. We normalized
the color scale individually to arbitrary values to allow for direct comparison between
the samples. (a) The YIG/Co(50 nm) sample additionally reveals YIG PSSWs and pro-
nounced avoided crossings of the modes for small frequencies. (b) The YIG/Co(35 nm)
sample also reveals YIG PSSWs and pronounced avoided crossings of the modes for small
frequencies. (c) The YIG/Cu(5 nm)/Co(50 nm) sample also shows the YIG PSSWs, but
the frequency splittings of the avoided crossings are much smaller than in (a). (d) The
YIG/AlOx(1.5 nm)/Co(50 nm) sample does not show any PSSWs in the Co FMR line, as
expected in the YIG and CO are magnetically uncoupled.

Figure 5.2 (d) displays |∂DS21/∂H| for the YIG/AlOx(1.5)/Co(50) sample as a
function of H and ω. No YIG PSSWs are observed within the Co FMR line (inset
Fig. 5.2 (d)). This provides strong evidence that the insertion of the AlOx layer
suppressed the coupling between the YIG and Co magnetization dynamics. An
analysis of the Co FMR linewidth (see Chap. 5.2.4) also demonstrates that the
insertion of the AlOx layer completely suppresses any coupling between the YIG
and Co layers.

From Fig. 5.2, we conclude that any magneto-dynamic coupling is suppressed
by insertion of an insulator between the two magnetic layers. This provides strong
evidence against a magnetostatic coupling by stray fields, and is in agreement with
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a dynamic coupling mediated by spin currents, which can pass through the Cu
layer, but are blocked by the AlOx barrier.

5.2.2 SQUID Magnetometry Measurements
Figure 5.3 shows the magnetic hysteresis loops of the YIG/Co samples

recorded by Superconducting Quantum Interference Device (SQUID) magnetome-
try. The hysteresis loop of the YIG/Co(50) sample (shown as solid line in Fig. 5.3)
exhibits a sharp switching at the YIG coercive field of about 0.1 mT. However, no
sharp switching of the Co layer is visible but a smooth increase of the measured
magnetic moment until the bilayer magnetization is saturated. This can be ex-
plained by a direct, static exchange coupling between YIG and Co magnetizations
(inset), as known from exchange springs [191, 192]. The form of the hysteresis loop
suggests an antiferromagnetic coupling, as comparably large magnetic fields are
required to force a parallel alignment of the layers. However, without a detailed
examination of the remnant state, we cannot rule out any ferromagnetic coupling.
Note that the hysteresis curve of the YIG/Co(35) looks similar but is not shown for
a better clarity in Fig. 5.3. By inserting a Cu or AlOx layer between the YIG and
the Co (dash-dotted and dashed lines in Fig. 5.3) we find a sharp switching at the
Co coercive field µ0Hc ≈ 1 mT. This in agreement with the behavior expected for
statically uncoupled magnetic layers [193]. However, we still observe a dynamic
coupling in Fig. 5.2 (b) in the YIG/Cu(5)/Co(50) sample. Since we find no static
exchange coupling between Co and YIG in this sample, the observation of the
dynamic coupling requires a different mechanism as the origin of the excitation of
the YIG PSSWs.

5.2 Experimental Results 75



5.2.3 Determination of the Material Parameters
In Fig. 5.4 (a), an example frequency spectrum is shown for the YIG/Co(50)

sample for a fixed field of µ0H = 0.02 T. Plotted is |∂DS21/∂H| versus applied mi-
crowave frequency, and the plot corresponds to a cut along the x-axis in Fig. 5.2 (a).
The peak in |∂DS21/∂H| at 2 GHz is attributed to the YIG FMR frequency. At
about 6 GHz we find a broad excitation of the Co FMR. Furthermore, we resolve
about 40 YIG PSSW resonances. Some of the YIG PSSWs are labeled to guide the
reader. In comparison to Ref. [23] we find a drastically increased sensitivity for
the YIG PSSWs. Additionally, all PSSWs are equally visible, not only the modes
with an odd mode number. We expect this for driving fields, which are strongly
inhomogeneous. Such inhomogeneous driving fields cannot stem from the used
coplanar waveguide, as the center conductor width is w = 300 µm, which provides
homogeneous driving field over the sample thickness of about 1 µm.3

Figure 5.4 (b) shows the extracted resonance fields as a function of the fre-
quency for the YIG/Co(35) sample using a fit of up to five superimposed Lorent-
zian resonances. Our algorithm tries to initialize five Lorentzian absorption lines;
however, often fewer resonances are sufficient to model our data. We disregard any
fits where the relative fitting error in the linewidth is larger than 5 % or the relative
error in the resonance fields is larger than 1.5 %. The inset shows a magnification
of the field and frequency range marked with the dashed box, and we observe
multiple avoided crossings. The frequency splitting geff is determined using a fit
of the coupled harmonic oscillator model of the avoided crossing, see Eq. (6.2).

To obtain the material parameters of the Co layer, we fit the pure Co FMR
line which we get by deleting all data points of avoided crossings and YIG PSSWs
from the data set, as shown in Fig. 5.4 (c). For the fit, we use the in-plane Kittel
equation (2.45):

ωres,2 = γµ0

√
H + Dsk2 (H + Dsk2 + Ms) (5.5)

with k = 0 for the FMR mode, which yields γ1/2π = 28.7(1)GHz/T and µ0Ms,1 =

1.91(2)T, where the number in brackets denotes the error of the last digit. The fit
is shown as black line.

To obtain the material parameters of the YIG film, we fit the pure YIG PSSWs
using the in-plane Kittel equation (2.45), as shown in Fig. 5.4 (d). For this we
assume a fixed saturation magnetization of µ0Ms,2 = 0.18 T [147], as we otherwise
get a mutual dependence of Ms,2 and Dsk2 = Hex,2 during the fit [23]. A global fit,
where γ2 is a shared fit parameter and Hex,2 is fitted for each PSSW individually,
yields γ2/2π = 27.07(1)GHz/T. The fits are shown as black lines.

3 This can also be seen by Eq. (2.71), where the driving fiels is independent of the z′-component
for z′ � w.
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From the extracted resonance fields of each YIG mode, we are able to deter-
mine the exchange fields. In Fig. 5.4 (e), the extracted exchange fields are shown
as a function of the mode number n. We use the method proposed in Ref. [23] to
determine the mode numbering. Having this, we see a quadratic curvature (black)
of the exchange field, which is fitted using:

µ0Hex,2 = Ds,2

(
nπ
d2

)2

. (5.6)

From the fit a value of Ds,2 = 5.25(2)× 10−17 Tm2 is obtained. Using the relation
Ai = Ds,i Ms,i/2 we yield A2 = A = 3.76 pJ/m. Furthermore, the quadratic
increase of the exchange fields with the mode number n and the extracted value
of Ds,i confirm our assumption that we indeed observe standing spin-wave modes
in the YIG film. Note that we only expect minor interfacial corrections to for
Hex,2(k) for mixed boundary conditions. If we assume total pinning of the YIG
magnetization at both interfaces, we obtain a small deviation of 4 % to the extracted
value of Ds,2.

The fit values of the YIG and the Co film agree very well with the literature
values γ1/2π = 29.7 GHz/T, µ0Ms1 = 1.79 T γ2/2π = 28.06 GHz/T, Ds = 5.3×
10−17 Tm2 [23, 36, 194, 195] and they are thus taken to be constant throughout for
the data analysis.

5.2.4 Damping Analysis
In this section we analyze the linewidth evolution of the YIG/AlOx/Co(50)

sample and compare it to the YIG/Co(50) sample. The idea is that a coupling
of the YIG and the Co magnetizations should be visible in the linewidth of the
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Co and the YIG magnetization, as even a weak coupling opens an additional
relaxation channel to the subsystems [102, 196]. This is reflected in the lifetime of
the spin-wave resonances and hence the linewidth evolution of the subsystems. In
Fig. 5.5 the linewidth evolution of the YIG/Co(50) sample is shown as a function
of the excitation frequency (blue symbols). We find for ω/2π < 14 GHz a strong
modulation of the linewidth. This modulation goes along with the observation
of avoided crossings in Fig. 5.2. However, in Fig. 5.5 also the Co linewidth from
the YIG/AlOx(1.5)/Co(50) sample (orange symbols) is shown as a function of
the excitation frequency. For small frequencies we see a fast increase of the
linewidth which flattens out above ω/2π = 10 GHz. The shape of this linewidth
evolution can be understood with Gilbert damping and two-magnon scattering
processes, which are expected for an in-plane measurement geometry [51, 59, 197–
201], cf. Chap. 2.3.2. There are no additional features that indicate any coupling
of the YIG and the Co in the YIG/AlOx(1.5)/Co(50) heterostructure. Hence,
we can rule out dynamic stray fields as the origin of the coupling. From the
YIG/AlOx(1.5)/Co(50) sample we extract a Gilbert damping parameter α1 of the
Co layer using the Gilbert damping equation [60]:

µ0∆Hi = µ0∆H0,i +
2ωαi

γi
, (5.7)

where ∆H1 is the Co linewidth and ∆H0,1 the inhomogeneous line broadening of
the Co film. The fit is shown as the dashed line in Fig. 5.5 and we obtain an intrinsic
Gilbert damping α1 = 7.7(1)× 10−3 and µ0∆H0,1 = 8(1)mT, where the Gilbert
damping agrees well with previous reported values of between α1 = 5.2× 10−3

and α1 = 7.5× 10−3 [202]. Hence, approximately half of the linewidth of the Co
resonance is due to the frequency independent inhomogeneous line broadening.
The YIG damping can be estimated in a similar way from the coupled YIG/Co(50)
sample, where we take the lower part of the enveloping curve of the blue data
points as the YIG linewidth. The fit shown as dotted line in Fig. 5.5 yields
α2 = 7.2(3)× 10−4, which is larger than the damping values from previous reports
for 300 µm-thick LPE YIG films α2 = 0.5× 10−4 [169]. This is denoted to the fact,
that we only observe the YIG PSSWs due to the coupling to the Co FMR, which
leads to an additional line broadening as shown below. Note furthermore, that
the fitted linewidth data stems from about twenty different PSSWs with different
wave vectors, which could also lead to an influence of a wave number dependent
damping mechanism [177].
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5.3 The Simplified Macrospin Model

5.3.1 Derivation of the Macrospin Model
In this chapter we want to introduce a phenomenological model for the

observed coupling mechanisms. As the mode profile at the interface of the YIG/Co
heterostructures is quite complex, we restrict our model here to the a macrospin
model, which only considers a uniform precession of the magnetization in both the
YIG and the Co films. This leads to a simplified model with an easy-to-understand
susceptibility matrix, which allows us to discuss the influences of the dynamic
torques on the coupled system. While the model described below cannot be used
for a quantitative analysis of the presented experiments, it can be applied for
coupled ferromagnetic heterostructures with film thicknesses in the nanometer
range.

In Chap. A.1 and A.2 we derive the full model which contains interfacial
torques which lead to mixed boundary conditions at the YIG interfaces. We will
find there, that the proposed model here can be reproduced when we neglect any
boundary conditions.

We start with the Landau-Lifshitz-Gilbert equation for a homogeneous mag-
netization precession, introduced in Chap. 2.1.2.1. We furthermore assume that the
film lies in the x, y-plane and is magnetized along the ŷ-direction. The dynamic
components of the magnetization are small compared to the saturation magne-
tization, thus we only consider the linearized part of the LLG. This translates
mathematically into Mi × Ṁi → ŷ × Ṁi, and the linearized LLG for every layer
reads:

Ṁi = −γiŷ ×
(

µ0Heff,iMi −
αi

γi
Ṁi

)
(5.8)

where we use the effective field:

Heff,i = H + Hex,i + Hdyn −Ms,iMi,zẑ. (5.9)

Note that the exchange field here is included phenomenologically to shift the
different FMR curves, in order to simulate the PSSW resonance position. The last
term on the right hand side of the equation is the demagnetization field.

We have seen from Eq. (3.7) that the spin current which is pumped out of the
ferromagnet from layer i to layer j can be written as:

τloss,i =
γi

Ms,idi

h̄
4π

(
Re
[

g↑↓
]
Mi × Ṁi − Im

[
g↑↓
]
Ṁi

)
. (5.10)
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However, layer i gains also a torque due to the spin current which is pumped from
layer j to layer i. In contrast to the losses, we decrease the damping of the layer i.
We can hence write:

τgain,i = −
γi

Ms,idi

h̄
4π

(
Re
[

g↑↓
]
Mj × Ṁj − Im

[
g↑↓
]
Ṁj

)
. (5.11)

Note that the gained torque from layer j scales with the saturation magnetization,
gyromagnetic ratio and thickness of the layer i. To calculate the total torque, we
now use that Mi and Mj are both macrospins which point along the ŷ-direction.
The total torque τ for layer i now reads:

τi = τloss,i + τgain,i

=
γi

Ms,idi

(
τDŷ ×

(
Ṁi − Ṁj

)
+ τF

(
Ṁj − Ṁi

))
= − γi

Ms,idi
(τF − τDŷ×)

(
Ṁi − Ṁj

)
,

(5.12)

where we have introduced the field-like torque strength τF = h̄
4π Im

[
g↑↓
]
, as the

torque associated with the imaginary part of the spin mixing conductance has
the symmetry of a torque from an external magnetic field, and the damping-like
torque strength τD = h̄

4πRe
[
g↑↓
]
, as the torque associated with the real part of the

spin mixing conductance has the symmetry of a damping term, such as the Gilbert
damping. The meaning of Eq. (5.12) is that the magnetization layer i is torqued
by an effective spin current, which is the difference between the outgoing and the
incident spin current.

Now we turn to the interfacial exchange interaction. The exchange energy of
the spin system is given by Eq. (2.4). We now use a similar ansatz to describe the
exchange between the magnetic films and we write:

εex = −JMiMj, (5.13)

which translates to an effective field for the magnetization Mi of:

µ0Hex,i = −∇Mi(−JMiMj) = JMj. (5.14)

The torque becomes now:

τex,i = −γiMi × µ0Hex,i = −γi JMi ×Mj (5.15)

and we find that the magnetization in layer i starts to precess around the magneti-
zation direction of the layer j. The exchange torque thus has the same symmetry
as a field-like torque, which is a first hint that the signature of both torques in the
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FMR spectrum will look similar. If we linearize the above exchange torque and
normalize to the magnetic film thickness and saturation magnetization, we find:

τex,i =
γJ

di Ms,i
ŷ ×

(
Mi −Mj

)
. (5.16)

In the linearized version of the torque we find that the torque is proportional to
the difference of the magnetization orientation.

To obtain the full modified macrospin LLG for the coupled system, we now
have to introduce the torques from Eq. (5.12) and Eq. (5.16) to the LLG Eq. (5.8):

Ṁi =− γiŷ×
(
− µ0 (H + Hex,i)Mi + µ0Hdyn − µ0Ms,iMi,zẑ

− αi

γi
Ṁi −

J
Ms,idi

(
Mi −Mj

))
− γi

Ms,idi
(τF − τDŷ×)

(
Ṁi − Ṁj

)
.

(5.17)

The solution of Eq. (5.17) yields the resonance field (frequency) and the res-
onance linewidth of each magnetic layer for fixed frequency (field). When all
torques vanish (τD = τF = J = 0), we obtain the classical picture of two indepen-
dently precessing macrospins around the direction of their effective fields [29]. For
non-vanishing torques, however, the dispersions of the magnetic layers couple. In
the following chapter we will discuss the influence of the different torques on the
coupling.

5.3.2 Solution of the Macrospin Model
We now solve a set of two LLGs Eq. (5.17) for the Co and the YIG layer using

the ansatz:

Mi = ŷ + (mi,x, 0, mi,z) exp (−iωt), (5.18)

for every magnetic layer. As shown in Chap. 2.1.2.2, we can easily sort the
components in Eq. (5.17) according to the dynamic magnetization components.
We then obtain a simple matrix expression of the coupled system:

χ̃−1 ·m =Hdyn, (5.19)

where χ̃−1 is the inverse susceptibility tensor of the coupled system, m =

(m1,x, m1,z, m2,x, m2,z) and Hdyn = (hx, hz, hx, hz). We can identify the different
contributions of the torques to the coupled system. When we neglect the exchange
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field of the Co layer Hex,1 = 0, and set τF = τD = J = 0, we find the inverse
susceptibilities of the uncoupled layers:

χ̃−1
∣∣∣
τF=τD=J=0

=

(
χ̃−1

1 0
0 χ̃−1

2

)
, (5.20)

with

χ̃−1
1 =

(
−γ1µ0(H + Ms,1) + iα1ω −iω

iω −Hγ1µ0 + iα1ω

)
(5.21)

and

χ̃−1
2 =

(
−γ2µ0(H + Hex,2 + Ms,2) + iα2ω −iω

iω −γ2µ0(H + Hex,2) + iα2ω

)
. (5.22)

To extract the inverse susceptibility entries due to the mutual spin pumping,
we have to set all terms to zero, which are not connected to either τF or τD. We the
obtain:

χ̃−1
∣∣∣

Heff,i=αi=J=0
=


iγ1τDω
d1 Ms,1

− iγ1τFω
d1 Ms,1

− iγ1τDω
d1 Ms,1

iγ1τFω
d1 Ms,1

iγ1τFω
d1 Ms,1

iγ1τDω
d1 Ms,1

− iγ1τFω
d1 Ms,1

− iγ1τDω
d1 Ms,1

− iγ2τDω
d2 Ms,2

iγ2τFω
d2 Ms,2

iγ2τDω
d2 Ms,2

− iγ2τFω
d2 Ms,2

− iγ2τFω
d2 Ms,2

− iγ2τDω
d2 Ms,2

iγ2τFω
d2 Ms,2

iγ2τDω
d2 Ms,2

 . (5.23)

To extract the inverse susceptibility entries which stem from the direct exchange
coupling, we have to set all terms to zero, which are not connected to J:

χ̃−1
∣∣∣

Heff,i=αi=τF=τD=0
=


− Jγ1

d1 Ms,1
0 Jγ1

d1 Ms,1
0

0 − Jγ1
d1 Ms,1

0 Jγ1
d1 Ms,1

Jγ2
d2 Ms,2

0 − Jγ2
d2 Ms,2

0

0 Jγ2
d2 Ms,2

0 − Jγ2
d2 Ms,2

 . (5.24)

The resonance fields H∗res of the coupled system at a fixed excitation frequency
ω are obtained for a vanishing determinant of χ̃−1:

0 = detχ̃−1|H0=H∗res
. (5.25)

Note that H∗res is complex, and Re [H∗res] ≡ Hres contains the resonance fields and
Im [H∗res] ≡ ∆H contains the linewidth of the resonance.
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Fig. 5.6. – Influence of the torques on the coupled mode resonance fields and linewidths.
(a, b) Dispersions and linewidths for a damping-like torque −15 As/m2 < τD < 15As/m2.
(c, d) Dispersions and linewidths for a field-like torque −75 As/m2 < τF < 75 As/m2.
(e, f) Dispersions and linewidths for a exchange torque −1 mJ/m2 < τF < 1 mJ/m2. The
gray dashed lines show the uncoupled cases. The opacity shows the strength of the torques.
The low frequency solution of det χ̃−1 = 0 for a fixed field of Eq. (5.25) is plotted in red,
whereas the high frequency solution is plotted in blue.

5.3.3 Influence of the Spin Torques on the Mode Dispersions
To discuss the properties of the coupled system, we plot the dispersions

Hres(ω) and the linewidths ∆H(ω) for α1 = 1× 10−2, α2 = 1× 10−3, µ0Ms,1 =

1.9 T, µ0Ms,2 = 0.18 T, µ0Hex = 0.2 T, which would refer to the 20th PSSW in the
YIG, γ1/2π = 29 GHz/T, γ2/2π = 28 GHz/T in Fig. 5.6.

In Fig. 5.6 (a), the calculated resonance field is plotted as a function of the
excitation frequency. The influence of τD on the dispersions of the coupled system
is shown, where the strength of the torque is encoded in the color and opacity of the
curves. The opacity gives the absolute value of the torque, whereas we have blue
curves for negative torques and red curves for positive torques. As the damping-
like torques only have a weak effect on the dispersions for the plotted torque
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strengths, all curves lie upon each other. The dashed lines show the uncoupled
case. For small frequencies, the YIG and the Co dispersions are uncoupled. As
both dispersions enter the coupling regime, the influence of the damping-like
torque is rather small and the dispersions remain almost unchanged. However, for
large damping-like torques we observe a locking of the mode dispersions. Note
that such a frequency locking was observed in all-metallic trilayers [185].

In Fig. 5.6 (b), the influence of the damping-like torque τD on the calculated
linewidth is shown as a function of the excitation frequency. The background
slope is given by the Gilbert damping parameter αi of each layer (dashed lines),
which is modified by mutual spin-pumping when τD is changed. When both
dispersions enter the coupling regime, the linewidth of the Co increases, while
the linewidth of the YIG decreases. This effect becomes stronger with increasing
damping-like torque strength in the system (increasingly opaque curves). When
the strength of the damping-like torque roughly equals the Gilbert damping of
the YIG, we observe a negative linewidth in the simulation. We understand this as
a mechanism, which transfers more energy from the Co to the YIG as necessary
to compensate the YIG damping, which would result in auto-oscillations in the
macrospin model (dotted lines).

In Fig. 5.6 (c), the calculated resonance field is shown as a function of the
excitation frequency for various field-like torques τF. For vanishing field-like
torques, we do not see any effect on the dispersions. However, if τF increases the
dispersions begin to split up and form an avoided crossing in the coupling region.
This effect is known from coupled harmonic oscillators, when a coupled system
exchanges energy with a coupling rate geff, which is the minimal size of the mode
splitting, cf. Chap. 6. Figure 5.6 (d) displays again the linewidth as a function of the
excitation frequency for various field-like torques. For a vanishing field-like torque,
the linewidth remains unchanged, and we observe the pure Gilbert damping
behavior for both subsystems (dashed lines). If a small field-like torque occurs,
the Co linewidth exhibits a small dip and the YIG linewidth a small peak. For
increasing torque strength, the linewidths of both subsystems become equal in
the coupling regime. Both resonances have the same linewidth as they practically
behave like one hybridized excitation. We furthermore observe a broadening of
the transition regime for increasing field-like torques, as we achieve a stronger
hybridization of the modes. Furthermore, we reduce the crossing frequency with
increasing field-like torque strength.

In Fig. 5.6 (e), the calculated resonance field is shown as a function of the
excitation frequency and direct torque strength J. For a vanishing direct coupling
(dashed lines), the dispersions remain unchanged. However, for increasing direct
coupling we find two effects on the dispersions. Firstly, an avoided crossing of the
dispersions as known from the field-like torques, and secondly, a shift of the center
of the avoided crossing to higher magnetic fields. Figure 5.6 (f) shows the linewidth
evolution as a function of excitation frequency for various direct torque strengths.
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Fig. 5.7. – (a, b) Imaginary and real part of the S21 parameter, for a fixed frequency of
9.5 GHz from the YIG/Co(50) sample measurement (symbols). The solid curve is a fit
using the sum of complex Lorentz resonances. The dashed lines and arrows indicate
the resonance fields and linewidths, which are used in (c, d). The grey data points refer
to different avoided crossings. (c, d) Resonance fields and full-width at half-maximum
linewidths versus frequency obtained from the YIG/Co(50) sample. The solid lines are fits
of the model described by Eq. (5.17).

We obtain the same qualitative behavior as known from the field-like torques.
However, the excitation frequency where the linewidths of both subsystems is
equal does not change.

The similar look of the direct exchange torques and the field-like torques can
be explained using the matrices from Eq. (5.23) and Eq. (5.24). A close look at
these matrices reveals, that the entries of the direct exchange torques coincide with
entries of the damping-like torques. However, all entries of the spin pumping
spin torques contain a factor of i, which leads to a phase shift of π/2 between the
driving field and the magnetization precession. In this case the response of the
magnetization to a field-like torque is similar to the response of a direct exchange
torque. Note furthermore that the influence of the field-like torques scales linearly
with the frequency, whereas the influence of the direct torques is constant.

5.3.4 Fit of the Macrospin Model
Figure 5.7 (a, b) shows the real and imaginary part of S21(H) for the YIG/Co(50)

sample for ω/2π = 9.5 GHz (closed symbols), together with the obtained fitting
curves of the previously mentioned Lorentzian fits (black line), from which we
take the resonance fields and linewidths (dashed lines and arrows).

In Fig. 5.7 (c) we plot the obtained resonance fields of the selected resonances
of the YIG/Co(50) sample as a function of the frequency for the avoided crossing
around 9.5 GHz. We clearly see an avoided crossing of the two dispersions. The Co
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FMR mode transitions into a YIG PSSW mode with increasing frequency (closed
symbols) and vice versa (open symbols). The dotted arrow also indicates this
transformation. In Fig. 5.7 (d), the linewidth is plotted as a function of frequency
for the same sample. The closed symbols start in the Co FMR mode with a large
linewidth, but in the coupling regime, the linewidth decreases towards that of
the YIG PSSW mode. Again, the open symbols follow the reversed behavior.
The data from Fig. 5.7 (a, b) are fitted using our model Eq. (5.17). For the fits,
we keep µ0Ms,2 = 0.18 T, γ2/2π = 27.07(1)GHz/T, γ1/2π = 28.7(1)GHz/T and
µ0Ms,1 = 1.91(2)T constant, cf. Chap. 5.2.3. τF, τD, J, k, α1,2 and Hex are free
parameters. We fit both the linewidth and the resonance fields simultaneously in a
single model. The resulting fits are shown as solid lines Figs. 5.7 (c, d), and we find
a very good agreement between our macrospin model and the experimental data.
This demonstrates that the coupling can indeed be modeled as stemming from the
combined effects of spin torque and exchange coupling. However, the resulting
values for τF, τD and J are not accurate because the dynamic YIG magnetization
is obviously non-uniform. To take the spin-wave character of the YIG excitations
into account (and thus obtain accurate results), we now employ the full model
discussed in Chap. A.1.

5.4 Simulation Results

5.4.1 Interfacial Spin Torque Model
In this section we want to sketch the full theory model, which includes a

finite mode coupling between the YIG and the Co magnetizations at the YIG/Co
interface at z = 0. The full theory was mainly developed in cooperation with V.
Amin, M. D. Stiles, and R. McMichael from the NIST in Gaithersburg, USA, an can
be found in its full beauty in Chap. A. We still model the Co magnetization M1 as
a macrospin along the y-direction, as in the previous sections. However, the YIG
magnetization M2(z) now depends on the distance z from the YIG/Co interface.
We furthermore only calculate the susceptibility of the Co layer to the spin torques,
as this already contains all important features of the coupled system. Using this
modification, the LLG Eq. (5.17) reads:

Ṁ1 =− γ1ŷ ×
[
− µ0HM1 −

α1

γ1
Ṁ1 − µ0Ms,1M1,zẑ

− J
d1Ms,1

(M1 −M2(0))− µ0Hdyn

]
− γ1

d1Ms,1

[
(τF − τDŷ×)(Ṁ1 − Ṁ2(0))

]
.

(5.26)

In our model, Hdyn is assumed to be spatially uniform, to reflect the experimental
situation where the CPW center conductor width is much larger than either the
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YIG or Co thickness, cf. Chap. 2.4.1. The YIG magnetization direction at the
YIG/Co interface is given by M2(0). The YIG magnetization obeys two boundary
conditions [203–205]. First, the total torque on the YIG/Co interface at z = 0 has
to vanish, as the interface has zero volume and hence carries no spin angular
momentum:

0 =2Aŷ × ∂zM2(z)|z=0 − Jŷ × (M1 −M2(0))

+ (τF − τDŷ×)
(
Ṁ1 − Ṁ2(0)

)
.

(5.27)

Here, A is the exchange constant of YIG. Second, we assume an uncoupled
boundary condition at the YIG/substrate interface:

0 = 2Aŷ × ∂zM2(z)|z=d2 , (5.28)

where the torque vanishes as well. The Co susceptibility χ̃1 is then derived using
the ansatz for the transverse YIG magnetization: m2(z, t) = (m2,x(z, t), m2,z(z, t)):

m2(z, t) = Re
[
c+m2+ cos(k+z) exp(−iωt)+

c−m2− cos(k−z) exp(−iωt)
]
.

(5.29)

Here, m2± are the complex eigenvectors of the uncoupled transverse YIG mag-
netization, discussed in detail in Chap. A.2.1, c± are complex but yet unknown
coefficients, k± are complex wavevectors of the undisturbed YIG films. We find
that Eq. (5.29) is a superposition of a propagating wave with a wavevector k+ and
an evanescent wave with an imaginary wavevector k−. For the latter wave it is
clear, that the influence is dominant at the YIG/Co interface at d = 0, where the
magnetization is coupled. In this way we have introduced an interfacial coupling
to our system.

The transverse Co magnetization follows a simple elliptical precession:

m1 = Re [m1,0 exp(−iωt)] (5.30)

where m1 = (m1,x, m1,z), and m1,0 ≈ (m1,0,x, m1,0,z) is a complex precession ampli-
tude. In Chap. A we use the transverse YIG and Co magnetizations in the boundary
conditions to find the complex coefficients c±. Afterwards these coefficients can
be used in the YIG magnetization Eq. (5.29) to determine M2(0), as shown in
Chap. A.2.2. The Co susceptibility χ̃1 can be obtained from LLG Eq. (5.26) and is
given by Eq. (A.44).
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Fig. 5.8. – Calculated |∂DS21/∂H| of the simulated transmission spectra. (a) Simulation of
the YIG/Co(50) sample. (b) Simulation of the YIG/Co(35) sample. (c) Simulation of the
YIG/Cu(5)/Co(50) sample. (d) Simulation of the YIG/AlOx(1.5)/Co(50) sample.

5.4.2 Comparison to the Experimental Data
Figure 5.8 shows the simulated microwave signal, where we use the full Co

susceptibility (Eq. A.44) in the derivative divide formalism |∂DS21/∂H| given in
Eq. (5.4). In other words the simulations only show the Co FMR signal including
all modifications due to the YIG mode coupling. For all simulations we take
the same material parameters, namely d1 = 50 nm, µ0Ms,1 = 1.91 T, α1 = 0.0077,
γ1 = 28.7 GHz/T and d2 = 1 µm, µ0Ms,2 = 0.18 T, Aex = 3.76 pJ/m, α2 = 0.00072,
γ2 = 27.07 GHz/T, as extracted in Chap. 5.2.3, and Chap. 5.2.4. In Fig. 5.8 (a) we
show the simulations for the YIG/Co(50) sample using τF = 30 As/m2, τD =

15 As/m2 and J = −400 µJ/m2. The interfacial exchange constant J < 0 mod-
els an antiferromagnetic coupling as suggested by the SQUID measurements.
We also find that the exchange coupling fields, which can be calculated to be
J/Ms,1d1 = −5.2 mT and J/Ms,2d2 = −2.8 mT, fit very good to the external mag-
netic field, which is necessary to align the YIG and Co magnetizations parallel
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(µ0H = 4 mT). The sign of the damping-like torque is required to be positive, as
it depends on the real part of the spin mixing conductance of the interface. The
simulation reproduces all salient features observed in the experiment, in particular
the appearance of the YIG PSSWs and their avoided crossing with the Co FMR
line. Note that the simulations do not reproduce the YIG FMR line, as we only
simulate the Co susceptibility.

Figure 5.8 (b) shows the simulation for the YIG/Co(35) heterostructure using
a negative field-like torque and a ferromagnetic coupling, in contrast to Fig. 5.8 (a),
but we obtain a similar color map. However, the intensity asymmetry of the
avoided crossings is only reproduced by the aforementioned parameters. The
combination of exchange torques with the field-like torques at the FM1

∣∣FM2

interface complicates the analysis of the total coupling because both torques affect
the coupling in very similar ways. Hence, the signs of the field-like torque and the
exchange torque cannot be determined unambiguously for the YIG/Co samples
without an interlayer. For more details, see Chap. 5.4.3.

In Fig. 5.8 (c) we show the simulations for the YIG/Cu(5)/Co(50) sample.
Here, τF and τd are unchanged compared to the values used for the YIG/Co(50)
sample from Fig. 5.8 (a), but we set J = 0, as no exchange coupling was observed
in the YIG/Cu(5)/Co(50) sample in the SQUID measurements. The simulation is
in excellent agreement with the corresponding measurement shown in Fig. 5.2 (c).
The elimination of the static exchange coupling results in a strong reduction of
the coupling between the YIG and Co magnetization dynamics. However, the Cu
layer is transparent to spin currents mediating the field-like and damping-like
torques, as the spin-diffusion length of Cu is much larger than its thickness [206].
We emphasize that a finite field-like torque is necessary to observe the excitation of
the PSSWs for vanishing exchange coupling J. Furthermore, the field-like torque is
required to be positive to model the intensity asymmetry in the mode branches of
the YIG/Cu(5)/Co(50) sample. This becomes evident when comparing Fig. 5.8 (c)
with Fig. 5.9 (c).

In Fig. 5.8 (d) we use τF = τD = J = 0, which reproduces the experimental
observation for the YIG/AlOx/Co(50) sample. Importantly, we do not observe
any YIG PSSWs in either the experiment or the simulation for this case. In sum-
mary, the simulations are in excellent qualitative agreement with the experimental
observation of spin dynamics in the coupled YIG/Co heterostructures.

We attribute small quantitative discrepancies between the simulation and the
experiment to the fact that we do not take any inhomogeneous linewidth and
two-magnon scattering into account. However, the Co linewidth analysis (see 5.2.4)
clearly reveals the presence of inhomogeneous broadening and possible contribu-
tions from two-magnon scattering to the experimentally observed linewidth. This
results in an underestimated linewidth of the Co FMR line, in particular for small
frequencies. As |∂DS21/∂H| is inversely proportional to the linewidths, this results
in small quantitative deviations of the simulations and the experimental data.
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Fig. 5.9. – (a) An exchange coupling can reproduce the exchange mode in the experiment.
(b) A dominant damping-like torque results in a mode locking of the YIG and Co reso-
nances. (c) The sing of the field-like torques determines the asymmetry of the color code.
We require a positive field-like torque to simulate the YIG/Cu(5)/Co(50) experiments,
cf. 5.8 (b). (d) A dominant antiferromagnetic exchange torque produces symmetric avoided
crossings.

Furthermore, the exchange modes in Fig. 5.2 (a) are not found in the simulations.
We attribute this to the fact that the simulations only represent the Co susceptibility.
However, as shown in Fig. 5.9, similar exchange modes can also be found in the
Co susceptibility from our simulations.

5.4.3 Simulation of the Exchange Mode
In this section we give some more examples to demonstrate the different

effects of the torques on the transmission spectra. Figure 5.9 (a) shows the color
map for a pure antiferromagnetic exchange coupling between the YIG and Co
layers. We find an exchange mode at higher frequencies than the Co resonance
and symmetric avoided crossings.
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In Fig. 5.9 (b) we show the color map for a field-like torque which is sub-
stantially smaller than the damping-like torque. We observe a dominant mode
locking of the YIG and Co resonances. In metallic systems [185] we expect that the
torques are primarily damping-like, as the real part of the spin mixing conductance
exceeds the imaginary part. However, for insulating interfaces the amplitudes
of the toques is less clear. Here, we cannot reproduce our experiments with a
dominant damping-like torque.

In Fig. 5.9 (c) we plot the color map for τF = −30 As/m2, τD = 15 As/m2 and
J = 0. Note that this configuration refers to the situation of the YIG/Cu(5)/Co(50)
sample from Fig. 5.2 (b, e) with an inverted field-like toque. We find that the
intensity symmetry of the avoided crossings is now also inverted compared to the
experimental data (inset). Therefore, we know the sign of the field-like torque is
positive for the YIG/Cu(5)/Co(50) samples.

In Fig. 5.9 (d) we show the color map for the YIG/Co(50) sample for a positive
field-like torque and a strong antiferromagnetic coupling. The avoided crossings
are symmetric, as the influence of the field-like torque is much smaller than the
exchange torque. When we compare Fig. 5.8 (a, b), and Fig. 5.9 (d), we find that all
used parameter combinations produce avoided crossings, with slightly different
intensity modifications in the dispersion branches of the coupled systems. Due to
the similar effects of the exchange torques and field-like torques, it is challenging to
determine the signs of these torques for the YIG/Co samples without an interlayer.

However, taking the interlayer data into account, we can draw the following
conclusions: (i) To model the avoided crossings, the field-like torques have to ex-
ceed the damping-like torques in both the YIG/Co(50) and the YIG/Cu(5)/Co(50)
samples, which is in contrast to the observations in metallic systems metallic sys-
tems [185]. (ii) To model the intensity asymmetry in the YIG/Cu(5)/Co(50) sample,
the field-like torque needs to be positive. (iii) As the spin diffusion length of Cu
is much larger than its thickness, we expect a similar influence of the field-like
and damping-like torques in the YIG/Co(50) without any interlayer. (iv) The
SQUID magnetometry measurements speak for an interlayer exchange coupling
in the order of 4 mT which translates into |J| ≈ 400 µJ. Using this value in our
numerical simulations allow to model the avoided crossings in the YIG/Co(50)
sample. We thus have a consistent picture of our sample set with only three
different parameters.
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5.5 Conclusion
In conclusion, we investigate the dynamic magnetization coupling in YIG/Co

heterostructures using broadband ferromagnetic resonance spectroscopy. We find
exchange dominated PSSWs in the YIG, excited by spin currents from the Co
layer, and static interfacial exchange coupling of YIG and Co magnetizations. An
efficient excitation of YIG PSSWs, even with a homogeneous external magnetic
driving field, occurs in YIG/Co(35), YIG/Co(50) and YIG/Cu(5)/Co(50) samples,
but is suppressed completely in YIG/AlOx(1.5)/Co(50) samples. We model our
observations with a modified Landau-Lifshitz-Gilbert equation, which takes field-
like and damping-like torques as well as direct exchange coupling into account.

Our findings pave the way for magnonic devices which operate in the exchange
spin-wave regime. This allows utilizing the isotropic spin-wave dispersion relations
in 2D magnonic structures. An excitation of short-wavelength spin waves by an
interfacial spin torque does not require any micro structuring of excitation antennas
but is in operation in simple magnetic bilayers. The coupling shown in this chapter
might even be enhanced using spin conductance matching [207], through a careful
variation of the Cu and Co resistivities. Remarkably, this spin torque scheme
allows for the coupling of spin dynamics in a ferrimagnetic insulator to that in a
ferromagnetic metal, although the magnetization is carried by itinerant electrons in
the insulator and by conduction electrons in the ferromagnetic metal. The coupling
is qualitatively different to that found for all-metallic heterostructures [185], where
only damping-like torques have been observed.

Furthermore, the excitation of magnetization dynamics by interfacial torques
should allow for efficient manipulation of microscopic magnetic textures, such
as magnetic Skyrmions. Our findings are also relevant for studying macroscopic
quantum phenomena (such as Bose-Einstein condensates [208] and magnon super-
currents [209]) in YIG, where we can use the spin torques to realize a coupling to
an adjacent ferromagnet.
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6Optical Investigation of
Magnon-Photon Coupling

The interaction between light and magnetic matter is of long-standing and fun-
damental interest. In recent years, the coupling of elementary excitations of the
light field (photons) to those of the spin system (magnons) regained is intensively
studied due to potential applications in quantum information processing [210–212].
For example, hybrid quantum systems are discussed as potential candidates for the
up- and down-conversion of quantum signals from the optical to the microwave
domain and vice versa. One possible hybrid quantum system consists of spin
ensembles coupled to microwave resonators [102, 213–216]. The prerequisite for
information transfer on the quantum level is to realize a large coupling strength
exceeding the loss rates of the resonators [213, 216, 217], viz. here, the microwave
resonator and the spin ensemble. However, the single spin coupling rate is only
in the order of 0.1 Hz to 10 Hz [102, 213] which makes it hard to overcome the
resonator loss rates which are in the order of 1 MHz. In ferromagnets the coupling
rate is proportional to the square root of the number of participating spins [213,218],
hence, ferromagnets with a high spin density are ideal for the creation of strongly
coupled, hybridized magnon-photon modes [218, 219].

Magnon-photon coupling has been investigated in several experiments where
a microwave cavity was loaded with yttrium iron garnet (YIG) and the microwave
transmission and/or reflection was measured as a function of the applied magnetic
field [213–216]. Furthermore, spin pumping in combination with the dc inverse
spin Hall effect has been employed as a detection scheme for sensing the magnonic
part of magnon-photon polaritons in magnetic thin film heterostructures [102, 215].
which is effectively a down-conversion of the coupling to dc. Recently, Hisatomi et
al. detected the GHz-frequency Faraday rotation of light polarization in a hybrid
system consisting of a YIG sphere and a 3D cavity [220]. Osada et al. investigated
the coupling of optical whispering gallery modes to the magnetic resonance mode
of a YIG sphere [221].

Here, we report on the optical observation of strong coupling of microwave
photons in a micro patterned split-ring resonator [222, 223] (SRR) and magnons
in a 1 µm-thick LPE YIG film. We simultaneously use Brillouin light scatter-
ing (BLS) spectroscopy and microwave absorption (MA) measurements to probe
both magnonic and photonic excitations in the SRR/YIG film system. We find
a clear avoided mode crossing indicating a hybridization of the magnon and
microwave photon modes in the strong coupling regime with a coupling strength
of geff/2π = 63 MHz. Our findings represent an up-conversion of the hybridized
mode frequencies to optical frequencies by inelastic optical photon-magnon scatter-
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ing. The combined BLS and MA data allows us to study the continuous transition
of the hybridized modes from a purely magnonic to a purely photonic mode
by varying the applied magnetic field and microwave frequency. Furthermore,
light-polarization dependent measurements give insight into the nature of inelastic
scattering of optical-frequency photons by the hybridized microwave frequency
photon-magnon mode.

Some of the figures and parts of the text in this chapter have been published
in S. Klingler, H. Maier-Flaig, R. Gross, C.M. Hu, H. Huebl, S.T.B. Goennenwein,
M. Weiler, Combined Brillouin light scattering and microwave absorption study of magnon-
photon coupling in a split-ring resonator/YIG film system, Applied Physics Letters 109,
072402 (2016).

6.1 Magnon-Photon Coupling
The narrow resonances of a resonator system can be used for short-term

storage of information. Hereby the maximum storage time is inversely proportional
to the linewidth of the resonance, see Eq. (2.57). By exciting an eigenmode (eigen-
resonance) of a resonator A we can thus store information in the resonance. If
resonator A is coupled to a resonator B, this information can be transferred into
resonator B, and vice versa. A prototypical example for this type of effect are
two classical pendulums which are coupled by a spring. When we excite the
first pendulum (resonator A) it starts to oscillate, but the spring transfers its
energy to the second pendulum (resonator B), until the first stops moving and
the second pendulum oscillates. Afterwards, the energy transfer goes into the
opposite direction. The rate of energy transfer from one pendulum to the other
is given by the coupling rate geff, which is inversely proportional to the time the
energy transfer needs to take place.

However, all real resonators have a certain decay rate, which is due to energy
dissipation processes. To observe the coupling effect mentioned above, the energy
transfer between the resonators has to be faster than the energy dissipation of each
resonator. If the coupling rate exceeds the decay rates of both resonators we are in
the regime of strong coupling, where the resonators are not independent anymore.
We can thus exchange information between both resonators before loosing it due
to dissipation and dephasing.

The coupling of the resonators is accompanied by a specific change of the
resonator dispersions, known as avoided crossing, where we find an hybridization
of the modes when the eigenfrequencies coincide. Note that we have already seen
a magnetostatic mode (MSM) hybridization in Fig. 4.5. Furthermore, the mode
hybridization between two different magnonic resonators is discussed extensively
in Chap. 5. In contrast, we will here discuss the coupling of a photonic and a
magnonic system (a photonic and a magnonic resonator), instead of two magnonic
systems.
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Fig. 6.1. – Sketch of the input-output model. We feed microwaves through port 1 to the
cavity (blue), where we excite the cavity mode (green), which is accompanied with the
cavity losses κc. The cavity mode couples to the FMR mode (red), which is accompanied
with the FMR losses κFMR. The recorded output microwave signal through port 2 contains
information about all coupling and loss processes.

To this end, we use a split-ring resonator (SRR) which is loaded with a
magnetic YIG sample. The SRR is a two-dimensional LRC-circuit, as shown below
and its resonance frequency is independent of the applied magnetic field. However,
the magnetic FMR frequency of the YIG sample depends on the applied magnetic
field. Hence, we can tune the magnetic subsystem to be in resonance with the SRR
by tuning the field. At the crossing of dispersions, the subsystems hybridize and
the coupled system exchanges energy between a pure photon and a pure magnon
like excitation.

In quantum mechanics, the physics of a coupled resonator system can be
described by the so-called Tavis-Cummings-Hamiltonian [225, 226]:

HTC = h̄ωcb†b + h̄ωsa†a + h̄geff

(
a†b + ab†

)
, (6.1)

where b† and b are creation and annihilation operators of the resonator excitation
with a resonance frequency ωc. The operators a† and a describe the creation and
annihilation of spin excitations in the spin system, i.e., our magnetic film. The
interaction between the resonator system and the spin system is given by the
terms in the brackets: When a spin excitation is created, a resonator excitation

is annihilated, and vice versa. The prefactor geff =
√

∑N
i gi =

√
Ng0 is the total

coupling strength to which all coupled spins contribute, where we assume an
identical coupling strength of all spins: gi = g0. From the Tavis-Cummings-
Hamiltonian we can find the energy spectrum E = h̄ω± with [226]:

ω± =
1
2

(
ωc + ωFMR ±

√
(ωc −ωFMR)

2 + 4g2
eff

)
. (6.2)

The resonances ω± are the eigenfrequencies of the coupled system. For a van-
ishing coupling strength geff = 0 the eigenfrequencies are those of the uncou-
pled resonators: ω+ = ωc and ω− = ωFMR. In contrast to that, we find a
mutual dependence of the eigenfrequencies for a non-vanishing coupling strength.
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Using ωc = ωFMR in Eq. (6.2) the eigenfrequencies show a finite difference
ω+ − ω− = 2geff. This frequency splitting determines the time scale for energy
transfer between the resonators and shows up as a so called avoided crossing of the
resonator dispersions (see below). Note that the eigenspectrum is completely analo-
gous to the resonance frequencies of two coupled harmonic oscillators [213,215,222].
From the Tavis-Cummings-Hamiltonian it is possible to calculate the transmission
coefficients of a vector network analyzer measurement of the loaded SRR using
the input-output-model, of which we show a sketch in Fig. 6.1. For this we use the
Heisenberg picture to obtain the time evolution of the microwave and magnetic
excitations [225, 227]. The transmission coefficient is given by [225, 227]:

S21 =
κc

i(ω−ωc)− κc − ig2
eff(ω−ωFMR + iκFMR)−1

, (6.3)

whereas the number of magnetic excitations in the resonator is proportional
to [227]:

Nex = a†a ∝

∣∣∣∣∣ 1
(i(ω−ωc)− κc) (i(ω−ωFMR)− κFMR) + g2

eff

∣∣∣∣∣
2

. (6.4)

It is also possible to calculate the transmission coefficient by modeling the resonator
as a cavity consisting of two parallel mirrors using the Maxwell equations [228].
The input and the output ports of the cavity are then modeled using specific
transmission and reflection coefficients, where we require specific electromagnetic
boundary conditions in the resonator and the sample.

In Fig. 6.2 (a) we show the real part of the transmission coefficient S21 calcu-
lated from Eq. (6.3) as a function of the excitation frequency and the magnetic
field. We furthermore use the dispersion of an in-plane magnetized film with
k = 0 from Eq. (2.45) to model the behavior of the spin system. The plot parame-
ters are µ0Ms = 0.18 T, γ/2π = 28 GHz/T, κc/2π = 25 MHz, κFMR/2π = 4 MHz,
ωc = 5 GHz and geff/2π = 100 MHz. For small and large fields we find a strong ab-
sorption of microwave power at the resonator frequency ωc, which is shown by the
small microwave transmission (blue color). However, for a medium field strength
of about µ0H = 0.11 T the resonance frequency of the YIG film is tuned to the
resonator frequency ωc and we find a strong perturbation of the field-independent
resonator mode. In this case, the resonator mode hybridizes with the magnetic
excitation in the magnetic film. Figure 6.2 (b) shows the normalized number of
magnetic excitations in the magnetic film, calculated using Eq. (6.4). In contrast
to Fig. 6.2 (a) we cannot find any magnetic excitations for a large detuning from
the ferromagnetic resonance field and frequency. However, right at the center
of the avoided crossings we see an increased number of magnetic excitations,
which vanishes again for larger detuning. To explain this behavior we plot in
Fig. 6.2 (c) the microwave absorption and in Fig. 6.2 (d) the number of magnetic

98 Chapter 6 Optical Investigation of Magnon-Photon Coupling



4.5

4.7

4.9

5.1

5.3

5.5

 ω
/2

π 
(G

H
z)

0.09 0.10 0.11 0.12 0.13 0.09 0.10 0.11 0.12 0.13
0

1

0.5

(a) (b)

(d)

no
rm

. a
m

pl
itu

de

µ0H (T) µ0H (T)

|S
21

|, 
 N

ex
 (a

rb
.u

.)

(c)

|S21|

Absorption: 1-|S21| (ωth) Nex (ωth)

Nex

ω+

ω-

ω+

ω-

ω+ ω-ω- ω+

0

1

2µ0κc/γ

Fig. 6.2. – (a) The calculated microwave transmission S21 through a loaded cavity. The red
color indicates a low absorption, whereas blue indicates a high absorption. (b) The spin
excitation of a spin ensemble in a loaded cavity. The spin excitations Nex are limited to the
frequency range where the cavity resonance mode exists. The red color indicated a high
spin excitation, whereas blue indicates a small spin excitation. (c) Microwave absorption
in the cavity along ω±. (d) Spin excitations along ω±.

excitations as a function of the coupled resonance frequencies ω±. In the following,
we only discuss the behavior along ω+, but the discussion along ω− is completely
analogous. For small applied magnetic fields mainly the photonic mode of the
cavity is excited which leads to a high absorption of microwave power at the res-
onator frequency, but a vanishing number of magnetic excitations. For increasing
magnetic field, ωFMR approaches ωc and the photon and magnon modes become
increasingly hybridized. This leads to a drop-off of the microwave absorption
and an increasing number of magnetic excitations, as now the magnon modes
can be populated and energy is transferred form the photon to the magnon mode.
At about µ0H = µ0Hres,c = 0.11 T where ωc = ωFMR the photonic and magnonic
character have equal weight, and we find the same number of excitations in the ω+

and ω− branches. Increasing the field further detunes the ferromagnetic resonance
frequency from the cavity resonance, and the modes are not hybridized anymore.
In the case of the transmission parameter we get a perfect transmission for a large
detuning. However, in the picture of the magnetic excitations we find again a
decrease. This decrease is connected to the linewidth of the resonator, as only
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Fig. 6.3. – (a) Experimental setup: A microwave signal with frequency ω is applied to the
feedline which is inductively coupled to the SRR. The YIG film is placed onto the SRR. The
microwave transmission through the feedline is detected with a diode and a voltmeter as
VD. A polarized laser beam which passes a polarizing beam splitter (PBS) and a λ/2-plate
and is focused on the surface of the YIG film by a microscope objective lens (not shown).
The backscattered light passes again the λ/2-plate and the PBS, before it reaches the
Tandem-Fabry-Pérot interferometer (TFP). The polarization of the backscattered light is
determined by changing ϑ. Inset: Sketch of the SRR system. (b) Typical BLS spectrum (100

averages) as a function of the detuning from the laser line, with the reference laser peak at
0 GHz and the anti-Stokes signal at frequency ω.

in this range a excitation of the magnetization can occur. For a resonator with
infinite linewidth (i.e. free space) we do not observe any drop off below and above
µ0(Hres,c ± 2κc/γ). In the next section we introduce our experimental setup which
is able to probe both the shown microwave absorption and the magnetic excitations
simultaneously.

6.2 Experimental Methods
A sketch of the experimental setup is shown in Fig. 6.3 (a). The setup consists

of three parts: (i) the SRR/YIG film system where the coupled magnon-photon
dynamics take place, (ii) the microwave absorption setup to investigate the photonic
excitations, and (iii) the Brillouin light scattering (BLS) setup to analyze the
magnonic excitations. In the following, we present the split-ring resonator in detail,
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as well as the Brillouin light scattering setup. The discussion of the microwave
absorption measurement is analogous to the theory presented in Chap. 2.4.3.

6.2.1 The Split-Ring Resonator System
A split-ring (SRR) resonator is a lithographically designed metallic ring with

a slit in it. The SRR can be described as an LRC-circuit [222,223] which can absorb
energy from an external microwave field with a frequency close to its resonance
frequency. In this case, a current flows in the SRR structure and strongly modifies
its electromagnetic properties, such as the magnetic permeability [229], which can
even be negative in the vicinity of the resonance.

The SRR system used in this chapter is fabricated by optical lithography
on a 508 µm-thick Rogers RT/duroid 5870 substrate with a double-sided 35 µm
copper coating. It consists of a 50 Ω impedance matched feedline with a width of
w = 1.4 mm inductively coupled to the SRR [222,223]. The square SRR has an outer
edge length of a = 6.5 mm while the inner edge length is b = 3.5 mm. The gap
width and distance to the feedline are both g = 0.2 mm. The geometric properties
lead to a resonance frequency of ωc/2π = 4.96 GHz. Note that the resonant
wavelength of the SRR is in the order of 6 cm, whereas the spatial dimensions are in
the order of 6 mm. The reason for this is the small gap which increases the capacity
of the LRC-circuit and thus lowers the resonance frequency [223, 230]. This results
in small microwave losses and high quality factors (lumped element approach)
and make the SRR ideal candidates to investigate magnon-photon coupling. Here,
we employ the rf microwave field in the SRR to excite the magnetization precession
in the YIG film [222].

The YIG/Gadolinium Gallium Garnet (GGG) bilayer has a lateral size of
5×5 mm and a YIG (GGG) thickness of 1 µm (500 µm). The YIG film is grown by
liquid phase epitaxy on a (111)-oriented GGG substrate by a commercial supplier.
We position the unmetallized YIG/GGG heterostructure with the GGG side down
in the center of the SRR. In this way, the YIG film is optically accessible from above
for the BLS measurements. An external magnetic field 40 mT≤ µ0H ≤ 200 mT is
applied in the film plane at an angle ϕ = 20◦ relative to the feedline (y-axis). We
chose this angle to comply with geometrical restrictions of the BLS setup.

The microwave absorption is recorded by connecting port 1 (P1) and port 2 (P2)
of the feedline to a microwave source and a microwave diode, respectively. The
SRR is excited with microwave radiation in the frequency range 4.8 GHz≤ ω/2π ≤
5.2 GHz with a fixed microwave power of Prf = 20 dBm. The diode voltage:

VD ∝ Prf − Pabs, (6.5)

is recorded with a voltmeter and used as a measure for the field- and frequency-
dependent microwave power absorption Pabs in the device.
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same mirror spacing d1. Picture adapted from Ref. [3].

6.2.2 Brillouin Light Scattering Spectroscopy
The BLS optical setup employs a continuous wave single frequency laser with

a wavelength of 532 nm. The laser beam passes a polarizing beam splitter (PBS) and
a λ/2-plate before it is focused onto the surface of the YIG film using a microscope
objective lens with a focal length of 4 mm (not shown in Fig. 6.3 (a)). The focused
laser spot is positioned in the center of the SRR, where CST microwave studio
[231] simulations of the unloaded SRR predict the most homogeneous microwave
magnetic field. This is also confirmed by simulations of the SRR in Ref. [222]. The
incident laser photons are inelastically scattered by the magnonic excitations in the
SRR/YIG film system. Hereby, the frequency of the inelastically scattered light is
shifted by ±ω in anti-Stokes (AS) and Stokes processes, respectively, where ω is the
magnon frequency. The polarization of the inelastically scattered light is rotated
by the scattering event by an angle β with respect to the incident polarization
direction [232]. In contrast, the elastically scattered light retains its incident energy
and polarization [233, 234]. The scattered and collected light passes again the
λ/2-plate before it reaches the PBS. The PBS is then used to selectively direct
the inelastically scattered photons (which underwent a polarization rotation) to
a Tandem-Fabry-Pérot interferometer (TFP). The scattering cross-section of the
magnons, and thus the polarization of the scattered light, is strongly dependent on
the incident light polarization [232, 235]. The λ/2-plate allows to simultaneously
rotate the polarization of the incident and backscattered light by changing the
angle ϑ of its fast optical axis relative to the polarization axis of the incoming
light. In combination with the PBS, it is possible to analyze the polarization of the
backscattered light with respect to the incoming light polarization.
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A sketch of the TFP is shown in Fig. 6.4 (a). The incident light which is
scattered elastically and inelastically from the sample passes through the first
Fabry-Pérot interferometer (FP1) and is subsequently reflected to a second Fabry-
Pérot interferometer (FP2) where it is reflected back. The light can only pass both
FPs if the mirror distances are exactly the same. As the light needs to pass six
times through the interferometer, the contrast and the finesse of the TFP is very
high. A translation stage allows to change the mirror spacing of the FP1 and FP2

simultaneously with high accuracy, which allows to detect the absolute frequency
shift of the scattered light. If the translation stage is moved by ∆d1, the mirror
distance of FP1 is also changed by ∆d1. However, the mirror spacing of the FP2

is changed by ∆d2 = ∆d1 cos α, where α is the angle of the light beam shown in
Fig. 6.4 (a). The different mirror spacings lead to a different free spectral range as
shown in Fig. 6.4 (b). In blue we show the transmission spectra through FP1. At
∆d1 we find the transmission of the p-th transmission order, whereas we find in
green the q-th transmission order of FP2. If now the mirror spacing is changed by
moving the translation stage, the next higher transmission order of both FP do not
overlap. Hence the transmission of the q + 1-maximum of FP2 is blocked by FP1

and vice versa. However, for the p-th and q-th transmission order the transmission
through both FP is possible and we get a net transmission signal through the TFP,
shown in orange. This is also the case for the Brillouin sidebands as they only
have a very small frequency offset from the central maximum. With this we can
detect the absolute frequency shift of the sidebands, as they do not overlap with
other transmission orders of the different interferometers. The frequency shift for
the Stokes processes is denoted as ∆ωS, whereas the frequency shift through the
anti-Stokes processes is denoted as ∆ωAS.

Figure 6.3 (b) shows a typical BLS spectrum of the YIG film as function of the
detuning ω/2π from the laser line. At ω/2π = 0 GHz the photons from the elastic
scattering process are observed while at ω/2π = 4.9 GHz photons inelastically
scattered by magnons in an anti-Stokes process are detected. The total intensity
of the anti-Stokes peak IAS is proportional to the number of magnons present in
the system [236, 237], given by Eq. (6.4) in the case of magnon-photon coupling.
It is obtained by numerical integration of the counts in the region of interest
(ω/2π± 100 MHz), see ROI in Fig. 6.3 (b). The frequency offset of the BLS spectra
is corrected with respect to the microwave source.
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6.3 Experimental Results

6.3.1 Magnon-Photon Up-Conversion
Firstly, the measurements without the λ/2-plate (corresponding to ϑ = 0◦)

are discussed, hence the light polarization is not rotated before reaching the
YIG film. The YIG thin film and the SRR couple electromagnetically with an
effective coupling strength geff. If geff exceeds the intrinsic loss rates of the YIG
and the SRR, an clear avoided crossing of the magnon and photon modes is
expected [210, 211, 213]. To get information about both the photons in the SRR
and the magnons in the YIG, we simultaneously record the microwave absorption
and the BLS signal as function of the applied magnetic field and microwave
frequency. In Fig. 6.5 (a) the microwave absorption from the diode voltage VD, cf.
Eq. (6.5), is plotted versus the applied magnetic field and microwave frequency.
This measurement probes the purely photonic character of the coupled system.
For µ0H ≤ 103 mT and µ0H ≥ 112 mT, a single strong resonance at ωc occurs. This
is the pure microwave eigenmode of the loaded SRR. For magnetic fields around
108 mT, where the detuning between the photon and magnon modes is zero, the
mode coupling results in two hybridized modes with frequencies ω+ and ω−.
Since the effective coupling strength geff is larger than the relevant loss rates, the
mode coupling is observed as a pronounced avoided crossing. It is evident from
Fig. 6.5 (a) that the ω+ and ω− modes approach the purely photon and magnon
modes for large detuning.
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Figure 6.5 (b) shows the simultaneously recorded BLS anti-Stokes signal IAS.
This measurement probes the purely magnonic character of the coupled system.
Here, three different modes are visible: (i) The most prominent mode appears at
a frequency which depends almost linearly on the applied magnetic field. This
mode is attributed to the detection of the ferromagnetic resonance at frequency
ωFMR excited directly by the feedline.4 (ii) The two faint modes at ω+ and ω−

resemble the hybridized modes of the magnon-photon system. Their field and
frequency dependence is identical to that of the hybridized modes detected in the
microwave absorption experiments. The low intensity of these modes in the BLS
measurement indicates a small BLS scattering cross-section. Note that BLS does
not detect the pure photon modes of the SRR.

For a quantitative analysis of the hybridized mode frequencies we use Eq. (6.2).
Here, the SRR resonance frequency ωc is assumed to be independent of the applied
magnetic field. The ferromagnetic resonance frequency ωFMR is modeled by the
in-plane Kittel equation (2.45):

ωFMR = γµ0

√
H (H + Meff). (6.6)

An excellent agreement of ω± with the MA and BLS data is obtained, as can
be seen by the dashed fit curves in Figs. 6.5 (a, b). From the fits geff/2π =

63(1)MHz, µ0Meff = 182(5)mT and gJ = 2.003(4) are obtained. The extracted
values of Meff and gJ agree well to previously reported observations for similar
YIG films [23, 99, 238, 239]. The loss rate of the loaded resonator κc/2π = 25 MHz
is determined from the half width at half maximum (HWHM) of the resonance
at µ0H = 40 mT, where the magnon and photon systems are well decoupled.
The loss rate of the spin system κFMR/2π = 4.1 MHz (HWHM) is obtained from
the BLS measurement, as detailed below. Taken together, both geff/κc > 1 and
geff/κFMR > 1, and thus the system is well in the strong coupling regime [214].

Figure 6.6 (a, b) shows both IAS (full dots) and Pabs ∝ −VD (open squares) of
the coupled system normalized to [0, 1] along ω± in Figs. 6.5 (a, b). Note that IAS

was averaged in a frequency and magnetic field range of ±3 MHz and ±0.25 mT,
respectively, to improve the signal-to-noise ratio of the BLS measurements. The
error bars show the standard deviation. Figure 6.6 (a) shows a decrease of Pabs

along ω+ for increasing H, while IAS simultaneously increases. Along ω−, shown
in Fig. 6.6 (b), both Pabs and IAS show the reversed trend.

In the following, only the behavior along ω+(H) is discussed for simplicity.
The discussion of the ω− mode is completely analogous. For small applied
magnetic field mainly the photonic mode of the SRR is excited which leads to a
high Pabs and vanishing IAS. For increasing magnetic field, ωFMR approaches ωc

and the photon and magnon modes become increasingly hybridized. Since the

4 Depending on the position of the YIG film relative to the feedline, the uncoupled mode can
also be observed in the MW transmission as shown in Ref. [222]
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Fig. 6.6. – Absorbed microwave power Pabs and anti-Stokes intensity IAS from Fig 6.5
along ω+ in (a) and ω− in (b). For ω+ and ω− close to ωFMR, large IAS and small Pabs
is observed. Far away from ωFMR, IAS vanishes and Pabs becomes maximal. The lines
indicate the contribution of the magnonic (orange dashed) and of the uncoupled FMR
(green dotted) to the total BLS signal (blue dash-dotted).

photonic and magnonic character of the hybridized mode decreases and increases
with increasing field, respectively, the same is expected for Pabs and IAS probing
the respective character of the hybridized mode. At about 108 mT (ωFMR = ωc)
the photonic and magnonic character have equal weight and a drop of Pabs to
0.5 as well as an increase of IAS to 0.5 is expected in good agreement with the
experimental data. Increasing the applied field further reduces the photonic
character of the ω+ mode and Pabs is expected to drop to zero for µ0H � 108 mT,
where the ω+ mode is purely magnonic. Again, this is in good agreement with the
experimental data of Fig. 6.5 (c). Accordingly, IAS, which is probing the magnonic
character of the ω+ mode, is expected to increase to unity. Although this also
seems to be in good agreement with the data, the situation is more complicated
here and has to be discussed in more detail. Due to the limited linewidth κ of
the SRR, the amplitude of the excited FMR mode is expected to rapidly decrease
for |ωFMR − ω| > κ and vanish for |ωFMR − ω| � κ as indicated by the dashed
orange line in Fig. 6.5 (c) [227]. The resulting IAS is expected to follow the orange
line since it reflects the amplitude of the magnetic excitations [227, 240]. The fact
that this is not observed in the experiment is attributed to the excitation of the
FMR mode by the microwave field from the feedline. The signal expected from
this uncoupled mode is shown by the dotted green line in Fig. 6.5 (c, d). Evidently,
the dash-dotted blue line representing the sum of both contributions describes the
measured BLS intensity reasonably well.

In summary, the signals from the MA and BLS measurements give com-
plementary pictures of the magnon-photon coupling process. We find in both
measurements the same characteristic avoided-crossing. This is an important
results, as the MA measurement only probes the photonic character of the coupled

106 Chapter 6 Optical Investigation of Magnon-Photon Coupling



4.80 4.85 4.90 4.95 5.00 5.05 5.10
0.01

0.1

1

I A
S (c

ou
nt

s/
s)

ω/2π (GHz)

θ = 5°, µ0H = 109 mT
(a)

0 20 40 60 80 100
θ (°)

(b)
ω+
ω-

A +, A
- / A

FM
R

κ-/2π = 17.4 MHz κ+/2π = 20.1 MHz

κFMR/2π = 4.1 MHz

0
0.2
0.4
0.6
0.8

1
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(b) The ratios A+/AFMR and A−/AFMR are plotted as a function of ϑ. The black dashed
line marks the average ratio of 0.23.

system, whereas the BLS probes the magnonic character. Furthermore, the BLS
intensity is closely connected to the MA absorption, as our qualitative analysis
shows. With the BLS anti-Stokes process an up-conversion from the microwave
SRR signal to the optical BLS signal is possible. Hereby the term up-conversion
emphasizes, that the GHz-signal of the coupled system can be transferred to a
carrier wave with frequencies in the order of 1014 Hz. This allows for a long-range
transport of the coupled signal. On the other hand a down-conversion of the
transported signal can be realized using the BLS Stokes process.

6.3.2 Polarization Dependence
In a further set of experiments, the polarization of the inelastically scattered

light is investigated to gain a deeper understanding of the magnetic coupling
phenomena. For example, we know that a magnetic field can split the degeneracy
of quantum states (Zeeman effect) [21]. The optical transitions between the split
levels of the quantum system can then be probed by light of a specific polarization,
depending on the viewing angle relative to the magnetic field lines [21].

In our experiment, we vary the polarization of the incoming light, and record
the intensity of the Stokes and anti-Stokes signals. For this we insert a λ/2-plate
into the optical path as shown in Fig. 6.3 (a). These measurements correspond to
fixed-field cuts through Fig. 6.5 (b). From the recorded data we can then conclude
if Stokes and anti-Stokes processes are sensitive to the incoming light polarization.
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Figure 6.7 (a) shows IAS vs. ω obtained with ϑ = 5◦ and µ0H = 109 mT. IAS is
fitted with the sum of three Lorentzian curves (solid line) corresponding to the
hybridized modes in Eq. (6.2). For the fit, the resonance frequencies are fixed at
ω−/2π = 4.905 GHz (red dashed), ω+/2π = 5.045 GHz (blue dashed) and the pure
FMR mode at ωFMR/2π = 4.98 GHz (green dashed). The areas A+, A− and AFMR

under the Lorentzian curves, an global offset and the HWHM loss rates are free
parameters. For the loss rates we obtain κ+/2π = 20.1 MHz, κ−/2π = 17.4 MHz
and κFMR/2π = 4.1 MHz. The loss rate of the pure FMR line is smaller than the
loss rates of the coupled resonances, as the pure FMR line in the BLS signal is not
coupled to the SRR.

To investigate the polarization dependence of the BLS signal, we fit all fixed-
field measurements recorded for various rotation angles of the λ/2-plate. To
reduce the number of free parameters in the fit, the loss rates κ+, κ− and κFMR

are fixed to the values discussed above. Figure 6.7 (b) shows the ratios A+/AFMR

and A−/AFMR as a function of ϑ for constant µ0H = 109 mT. The error bars are
calculated from the fitting errors of A+, A− and AFMR and depict the maximum
fitting error. The average value of A+, A−/AFMR is 0.23 as shown by the black
dashed line. Within error bars, A+/AFMR and A−/AFMR are independent of ϑ.
This is consistent with the notion that all photons inelastically scattered off the
hybridized modes and the pure FMR mode undergo the same polarization rotation.
This indicates that only the magnonic part of the hybridized mode is accessible
in the BLS measurement. The photonic part does not change the BLS process,
suggesting a vanishing photon-photon scattering probability.

6.4 Conclusion
In conclusion, the presented microwave absorption and BLS measurements

reveal strong magnon-photon coupling and its up-conversion to optical frequencies
in a system consisting of a micropatterned split-ring resonator and a YIG film.
We find a coupling constant of geff/2π = 63 MHz, which exceeds the loss rates
of both the pure spin system κFMR/2π = 4.1 MHz and the split-ring resonator
κc/2π = 25 MHz. With this the formal criteria of strong coupling is fulfilled.
The combined analysis of the microwave absorption and BLS intensities strongly
indicates a continuous transition from a photonic to a magnonic mode with varying
applied microwave frequency and magnetic field. The measurements show that
the BLS and MA techniques are complimentary by sensing the magnonic and
photonic character of the hybridized excitations, respectively.

In the center of the avoided-crossing the coupled mode oscillates between the
magnonic and the photonic state. Hence, the experiments presented here provide
a powerful platform for the study of time-dependent oscillations of the coupled
system in between the purely magnonic and photonic states during coherent
magnon-photon exchange, as well as limiting decoherence processes. Such Rabi
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oscillations have previously been observed in microwave measurements [214], but
the periodic conversion between magnons and photons have not. The measurement
of such Rabi oscillations would not only open up a way to measure the time-
dependence of coherent conversion processes, but we would also gain insight into
the phase relations between magnons and photons.

Furthermore, the BLS technique opens the path to study macroscopic quantum
phenomena, such as magnon Bose-Einstein condensates (BECs) [208] and magnonic
supercurrents [241] which are coupled to photonic resonators. As the BEC forms
at wavevectors k 6= 0 with vanishing group velocity, a resonator with a matched
periodicity has to be invented to guarantee for an efficient population of the
magnon gas with finite microwave powers. From the electrical measurement of
a coupled BEC we could then achieve an further insight into the spontaneous
coherence of thermal BECs [242, 243]. The BLS measurement on the other hand
would allow for the observation of a possible splitting of the BEC frequency (similar
to the FMR frequency). The coexistence of two BECs with different frequencies
and hence different wavevectors could then result in a net BEC transport in the
YIG film [241].

6.4 Conclusion 109





7Summary

This thesis deals with coupling phenomena in the framework of magnonics and
spintronics, where the spin degree of freedom of the electron is used for informa-
tion processing, instead of its charge. We investigated several coupling mechanisms
which can be used to read, write and transport information, or which are at least a
step towards such applications. This thesis thereby covers a broad range of experi-
ments which can be employed and combined with different modern information
technology approaches: We used spin pumping to transfer spin information from
a ferromagnet to Si-based semiconductors; we discovered a novel spin-torque
approach to couple magnetic layers, which allows for the excitation of isotropic
exchange spin waves; and we presented a procedure to transport and analyze
the pure spin information originating from a hybrid magnon-polariton. For most
of our experiments we used the ferrimagnetic insulator yttrium iron garnet. In
retrospective this material was the ideal choice, as it obeys a saturation magne-
tization and an exchange stiffness, which shift all the observed phenomena to a
frequency range which is suitable for our standard vector network analyzer mea-
surements. Nevertheless, alone the broad spectrum of experiments done with YIG
show its high potential for various novel technology fields. For a clear overview
we structured this thesis into chapters, which successively complete our current
understanding of the reported observations.

In Chap. 2 we summarized the theoretical foundations for this thesis. We in-
troduced the reader to the theory of ferromagnetic resonances and spin waves, and
gave an overview of different relevant damping mechanisms, such as the viscous
Gilbert damping, as well as radiative and eddy-current damping. Additionally,
we described our used experimental setups and derived expressions for the exact
measurement signals of lock-in-based and VNA-based FMR measurements.

In Chap. 3 we used the spin pumping effect in permalloy/silicon heterostruc-
tures to inject spin angular momentum into the silicon layer. To proof this, we
employed various silicon substrates with different resistance, and various permal-
loy thicknesses. The results show an increase of the spin pumping efficiency with
decreasing permalloy thickness and decreasing silicon resistance. Both phenomena
can be understood in the framework of the well known spin pumping theory, put
forward by Tserkovnyak et al. Although the spin pumping effect from ferromagnets
into semiconductors is well known, this work provides the first systematic study
on the doping- and hence the resistivity of the silicon layer. The experiments in
this chapter highlight a link between novel spintronic devices and common silicon-
based CMOS technology. With the published results, one has now the chance to
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optimize spin transport in semiconductors and to realize a fully CMOS-compatible
spin-based technology, which unifies the advantages of both worlds.

In Chap. 4 we used sensitive ferromagnetic resonance spectroscopy to in-
vestigate the complex damping behavior of a YIG sphere. We find a record low
Gilbert damping which is the same for all observed modes in the sphere. In
contrast, we observe that the inhomogeneous line broadening depends strongly
on the mode-specific distribution of the dynamic magnetization in the sphere. The
first finding is explained with the Kasuya-LeCraw processes, where the damping
process is the same for all modes. This result is also in agreement with the notion,
that the Gilbert damping is a global material parameter. However, the second effect
is explained and modeled with two-magnon scattering processes at the surface
of the YIG. The inhomogeneous linebroadening depends strongly on the spatial
distribution of the dynamic magnetization in the YIG sphere, such that we have a
sensitive measure for the surface quality of our spherical sample. The results from
this chapter might be used to improve the bandpass of YIG tuned filters, which
are up to 40 MHz at 2 GHz [142]. The resonances observed here, are in he order
of 2 MHz at a comparable frequencies. However, the more interesting application
of our results would be to populate certain modes for quantum coupling experi-
ments, where the relatively high volume of the sphere should guarantee for a large
coupling parameter.

In Chap. 5 we discovered a spin torque effect at the interface of YIG/Co
heterostructures. These torques still exist if we insert an conducting interlayer
between the YIG and the Co, but they vanish for an insulating interlayer. Sur-
prisingly, these spin torques allow for the excitation of sub-100 nm spin waves,
which are already deep in the exchange dominated wavelength regime. We model
our findings using a theory of mutual spin pumping and exchange torques at
the interface, and we find an excellent agreement between the theory and the
experimental data. Due to the coupled boundary conditions of the ferromagnets
at the interface, the spin torques act as strongly localized excitation fields, which is
the reason for the observed spin-wave wavelength range. It is interesting to see,
that this coupling mechanism works at an insulator/metal interface, although the
magnetization is carried by itinerant electrons in the insulator and by conduction
electrons in the metallic ferromagnet. Even more noteworthy is the occurrence
of large field-like torques, which are connected with the imaginary part of the
spin-mixing conductance. However, the microscopic mechanisms behind this
phenomena are not yet resolved. Our observed interfacial spin torques can be used
to easily excite exchange-dominated spin waves with extended microwave fields,
so that a micro structuring of the excitation antennas is not required. This paves
the way for exchange magnonics, where we can exploit the isotropic spin-wave
dispersions. With the excitation of dozens of spin wave modes, it is possible
to realize a parallel and coherent transfer of information between the coupled
subsystems. For example one could imagine a propagating carrier spin waves with
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several higher order resonances, where each resonance carries a different logic
input value.

In Chap. 6 we used Brillouin light scattering for the upconversion of the spin
information from a magnon-polariton to optical frequencies. For this we employed
a dipolar coupling mechanism between the dynamic magnetization of the YIG
film and the out-of-plane dynamic magnetic field of a split-ring resonator. The
coupling is evidenced by avoided crossings of the resonator and the YIG FMR
mode dispersions in the optical BLS measurements. We simultaneously performed
microwave absorption measurements of the YIG/SRR system. With this we were
able to detect the purely photonic part of the magnon-polariton. In our first
experiments we find that both measurement methods are complementary to each
other, viz. both measurements show the same avoided crossing and coupling
efficiency. The light scattering technique allows us to transfer the magnonic
information processed at a speeds of gigahertz to optical frequencies. In principle
this method can be used to transport the information of the coupled YIG/SRR
system over long distances using laser beams. A next step would be a time-
resolved experiment to observe the Rabi oscillations optically between the coupled
subsystems. This would give a new insight into the coupling mechanism, as we
could gain the phase information between the magnonic and the photonic part
of the coupled YIG/SRR signal. However, also the observation of thermal spin
waves would be interesting, as the detection of these waves is only possible with
Brillouin light scattering.

All in all our findings help to understand the complex behavior of hybrid
systems coupled by magnetic and spin excitations. And in the end we hope that
our experiments and observations encourage the application of spin information
in tomorrow’s information technology.
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ASpin torques in YIG/Co
heterostructures: Theory

In this appendix we present the full theory used in Chap. 5, which explains the
interfacial spin torque coupling of the YIG and the Co layers by mutual spin
pumping and exchange torques. The theoretical work was mainly done by V.
Amin, M. Stiles and R. McMichael from the National Institute for Standards and
Technology in Gaithersburg, USA, and we here try to give an edited compendium
of their ideas and calculations. Some of the figures and parts of the text in this
chapter have been published in S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn,
H. Maier-Flaig, M. Althammer, H. Huebl, R. Gross, R.D. McMichael, M.D. Stiles,
S.T.B. Goennenwein, M. Weiler, Spin-torque excitation of perpendicular standing spin
waves in coupled YIG/Co heterostructures, Physical Review Letters 120 (2018).

As the coupling consists of basically two contributions, we introduce in
Chap. A.1 the mechanism of mutual spin pumping in a FM1/NM/FM2 system.
For this, we derive expressions for the effective spin current which flows between
the coupled layers, and subsequently find expressions for the spin torques. In
Chap. A.2 we then introduce theses mutual spin pumping torques, as well as the
exchange coupling, to the Landau-Lifshitz-Gilbert equation, from which we then
calculate the magnetic susceptibility. The magnetic susceptibility can then be used
to simulate the microwave transmission spectra, as shown in Chap. 5.4, or to derive
the macrospin model used in Chap. 5.3.

A.1 Spin Pumping in a FM1/NM/FM2 System
In Chap. 3.1 we have introduced the spin pumping mechanism, which allows

for the transport of angular momentum across an interface. We have already
shown that the spin pumping mechanism leads to an increase of the Gilbert
damping in an ferromagnet when the high frequency magnetization excitation
is transferred into and absorbed in an adjacent metal. However, in our material
system which consists of two adjacent ferromagnets, the spin current transports
energy and angular momentum across the interface, which can be used to excite a
magnetic resonance. If both magnetic subsystems share the same eigenfrequency
at a given magnetic field, this results in a resonant transport of angular momentum
under energy conservation. The coherent absorption of angular momentum in
one ferromagnetic layer, and the emission of angular momentum from the other
ferromagnetic layer then couples the dynamic magnetizations, similar to the
magnon-photon coupling presented in Chap. 6. We now want to calculate the
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Fig. A.1. – Sketch of the physical problem. The YIG/Co samples are modeled using a
z-dependent dynamic magnetization in the YIG films, whereas we assume a uniform
precession in the Co film. The interface (inset) allows for different coupling mechanisms,
such as a direct exchange coupling and a coupling via mutual spin pumping.

spin torques acting on the different magnetic layers, which is the result of the
absorption of spin currents.

A.1.1 Notation and Units

A.1.1.1 Coordinate System, Approximations and Assumptions

We start by modeling the mutual spin pumping process of two adjacent
ferromagnets. Figure A.1 shows a sketch of the physical problem. We consider a
ferromagnet/normal metal/ferromagnet (FM1/NM/FM2) heterostructure, where
the normal metal layer of thickness ds is thick compared to its mean free path but
thin compared to the spin diffusion length. The first assumption allows us to use
the drift-diffusion approach to treat the transport, instead of the full Boltzmann
transport equation. The second assumption allows us to neglect spin-flip scattering
in the NM spacer layer, in which case the spin accumulation varies linearly across
the spacer layer. We furthermore apply a large applied field in the y′-direction
which aligns the magnetization. The film lies in the x′ − y′-plane, whereas the film
normal points along the z′-direction. Hence, in this chapter the coordinate systems
of the magnetization and the sample-ellipsoid coincide, see Fig. 2.1 for comparison.
We thus drop the prime superscript in the following. We furthermore assume that
the transverse magnetization is small compared to the static magnetization, which
allows us to concentrate on the transverse parts only in the following.
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A.1.1.2 Complex Vector Notation

It is convenient (in retroperspective) to write the equations of motion in terms
of complex numbers made up of the transverse components. Thus we express a
vector f = ( fx, 1, fz) as follows:

f ?⊥ = fz + i fx ↔
(

Re [ f ?⊥]
Im [ f ?⊥]

)
=

(
fz

fx

)
. (A.1)

In this notation, the cross product operation (0, 1, 0)× ( fx, 1, fz) = ( fz, 0,− fx) can
be represented as multiplication with the imaginary unit i:

(ŷ × f )⊥ → − fx + i fz = i( fz + i fx) = i f ?⊥. (A.2)

The definition would include another minus sign if we would have chosen a
different vector definition. In the following we drop the subscript ⊥ from the
complex representation of vectors for simplicity.

A.1.2 Mutual spin pumping
The spin current density which flows across the interface is given by Is from

Eq. (3.5):

Is =
h̄

4π

(
Re
[

G↑↓
]
ŷ × ṁ− Im

[
G↑↓

]
ṁ
)

. (A.3)

Note that the spin mixing conductance in the main text is units of [m−2], whereas
the spin current is in units of [J/m2]. When we multiply the spin current with
(2e/h), we convert the spin current density into a charge current density in units
of [A/m2], as every electron carries an angular momentum of h̄/2. As the flow
of angular momentum is then carried by a flow of electrons, the conversion from
a spin current to a charge current equivalent is justified [244]. We furthermore
rewrite the spin mixing conductance in units of [Ω−1 m−2], which is obtained by
dividing the above equation by the Klitzing constant (e2/2πh̄):

Ic =
2πh̄
e2

2e
h̄
Is =

h̄
e

(
Re
[

G↑↓
]
ŷ × ṁ− Im

[
G↑↓

]
ṁ
)

. (A.4)

In our complex notation we can rewrite the above term into:

I?c =
h̄
e

G?iṁ? (A.5)

where the real part gives the z-component and the imaginary part gives the
x-component.

In the normal metal spacer layer, the spin transport can be described by
magnetoelectric circuit theory [245]. When a spin current is injected from the
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ferromagnet into the normal metal, this results in a spin accumulation µ?(z) =
(µ?
↑ − µ?

↓)/e in units of [V], which is the imbalance of the electrochemical potential
of majority µ?

↑ and minority µ?
↓ electrons. The spin accumulation then relaxes into

the normal metal layer over a spin diffusion length. For copper the spin diffusion
length is in the order of 500 nm, which is much larger than our layer thickness.
We can then write the spin current in the normal metal as the product of the
normal metal conductance D and the spin voltage µ?(z) [245], which looks as a
one-dimensional spin diffusion equation [244]:

I?c (z) = −D∇µ?(z) = −D∇(µ?
0 + µ′?z) = −Dµ′?. (A.6)

Here, D = σNM/2 = σ↑ = σ↓ in units of [Ω−1m−1]), where σNM is the bulk electri-
cal conductivity of the normal metal, which has the same electrical conductivities
for both majority σ↑ and minority σ↓ electrons. Note that we have used a Tay-
lor approximation where µ′? = ∂µ?/∂z in the second step. This is justified, as
the spin relaxation varies linearly over the spacer layer thickness, when the spin
diffusion length is much larger than the layer thickness [246]. We find that the
spatially-constant spin current density is proportional to the gradient of the spin
accumulation.

A.1.2.1 Spin Current Boundary Conditions

We assume the spacer layer has thickness ds, running from z = −ds/2 to
z = ds/2. For the boundary conditions at the first interface (z = −ds/2), we
consider the spin current which penetrates the normal metal to be the sum of a
dc spin current and the pumped spin current Eq. (A.5). The magneto electronic
circuit theory causes that the spin accumulation just within the normal metal layer
leads to a spin current via reflection of carriers at the interface [247]. Hence the dc
spin current is generated by the voltage drop due to the spin accumulation and
the spin mixing constant G?. For this reasons first boundary condition reads [247]:

I?c (−ds/2) = −Dµ′? = −G?
1 µ? +

h̄
4πe

G?
1 iṁ?

1

= −G?
1 (µ

?
0 − µ′?ds/2) +

h̄
4πe

G?
1 iṁ?

1 . (A.7)

Here, G?
1 is the complex spin mixing conductance of the first interface, and

m?
i = (m?

z,i, m?
x,i) is the transverse magnetization.

The boundary condition at the other interface (z = ds/2) is the same except
that the signs change because the direction of the interface normal changes:

I?c (ds/2) = −Dµ′? = G?
2 (µ

?
0 + µ′?ds/2)− h̄

4πe
G?

2 iṁ?
2 . (A.8)
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The boundary conditions then give us four equations in four unknowns (µ0z, µ0x µ′z,
µ′x), or two complex equations Eq. (A.7) and Eq. (A.8) in two complex unknowns
(µ0, µ′).

A.1.2.2 Determination of the Spin Currents

We take the boundary conditions Eq. (A.7) and Eq. (A.8) and solve them for
the two complex unknowns (µ0, µ′). From this we find the spin accumulation in
the normal metal layer, which connects both ferromagnetic layers with each other.
The spin accumulation reads:

µ0 =
ih̄

4πe
2D(G?

1 ṁ?
1 + G?

2 ṁ?
2) + dsG?

1 G?
2 (ṁ

?
1 + ṁ?

2)

2(D(G?
1 + G?

2 ) + dsG?
1 G?

2 )
,

µ′ = − iG?
1 G?

2 h̄(ṁ?
1 − ṁ?

2)

4πe(D(G?
1 + G?

2 ) + dsG?
1 G?

2 )
,

(A.9)

from which we can derive the spin current:

j?(−ds/2) = −i
h̄

4πe
G?(ṁ?

1 − ṁ?
2). (A.10)

Here we have defined an effective mixing conductance that describes the coupled
system:

G? =
G?

1 G?
2

G?
1 + G?

2 + G?
1 G?

2 ds/D
≈ G?

1 G?
2

G?
1 + G?

2
, (A.11)

where we have used the small ds limit in the second step in the denominator, as
the conductance of a thin Cu layer is much greater than either mixing conductance
(the Cu interlayer is much thinner than the spin-diffusion length of Cu). Note that
in this limit the amplitudes of the spin currents persist, when we remove the Cu
layer. However, in this case the exchange coupling starts to play a major role, as
shown in the main text.

A.1.2.3 Calculation of the Spin Torques

The calculated spin currents transport angular momentum. If this angular
momentum is propagated through the normal metal and absorbed in one of the
ferromagnets, it exerts a torque. In the absence of spin-orbit coupling, the spin
torque exerted on one of the ferromagnets equals the difference between the spin
currents at the boundaries of that ferromagnet, as both ferromagnets pump spin
current into each other. The transverse spin current just inside the ferromagnets
vanish due to dephasing [248], on a length-scale of about one nanometer [249–251],
i.e. j?(−ds/2− ε) = 0 and j?(ds/2+ ε) = 0. The physical reason for the dephasing
becomes clear in the view point of the conduction electrons of the normal metal at
the Fermi energy. In the normal metal both spin-up and spin-down electrons have
identical Fermi spheres. In the ferromagnet however, the spin-up and spin down-
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electrons degeneracy is lifted, due to the spin-dependent band structure. When
the electrons in the normal metal penetrate the ferromagnet, the spin-degeneracy
is lifted and the electrons are scattered into different k-vectors at different energies.
Thus we find a pairwise dephasing of the conduction electrons in the ferromagnet,
which leads to a vanishing transverse spin current [244, 245, 248].

The spin torque τ1, also a complex number representing the two transverse
components, at the first interface is given by:

τ?
1 = ∆j? = j?(−ds/2 + ε)− j?(−ds/2− ε) = j?(−ds/2 + ε), (A.12)

where the x and z components are extracted according to the prescription given in
Eq. (A.1):

τ1,z = Re[j?], (A.13)

τ1,x = Im[j?]. (A.14)

Since the interface normal flips between the two interfaces, the torques on the
two magnetizations have the same magnitude but the opposite sign, i.e. τ1 = −τ2.
Note that here, the torques have still the same units as the charge current density.

We now want show how the spin torques are included in the Landau-Lifshitz-
Gilbert equation. Assuming a time dependence of the magnetization:

m?
i = (mi,z, mi,x) exp (−iωt), (A.15)

the spin torque on the first ferromagnet is given by:

τ?
1 = −i

h̄
4πe

G?(−iω)(m?
1 −m?

2) = −ω
h̄

4πe
G?(m?

1 −m?
2), (A.16)

and similarly the spin torque on the second ferromagnet is given by:

τ?
2 = ω

h̄
4πe

G?(m?
1 −m?

2) = −τ?
1 . (A.17)

Hence, the torques depend on the real and imaginary parts of the effective mixing
conductance G?. Unfortunately, extracting the mixing conductances for each
interface is impossible unless one mixing conductance is already known. We use a
complex multiplication to obtain the spin torques from Eq. (A.16) and Eq. (A.17):

τ1,z = Re[τ?
1 ] = −ω

h̄
4πe

(
Re[G?]Re[m?

1 −m?
2 ]− Im[G?]Im[m?

1 −m?
2 ]
)

= −ω
(

τD(m1,z −m2,z)− τF(m1,x −m2,x)
)

(A.18)

τ1,x = Im[τ?
1 ] = −ω

h̄
4πe

(
Im[G?]Re[m?

1 −m?
2 ] + Re[G?]Im[m?

1 −m?
2 ]
)

= −ω
(

τF(m1,z −m2,z) + τD(m1,x −m2,x)
)

, (A.19)
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and analogously:

τ2,z = Re[τ?
2 ] = ω

(
τD(m1,z −m2,z)− τF(m1,x −m2,x)

)
(A.20)

τ2,x = Im[τ?
2 ] = ω

(
τF(m1,z −m2,z) + τD(m1,x −m2,x)

)
, (A.21)

where we have defined the torque strengths, in units of [Asm−2], as:

τD =
h̄

4πe
Re[G?], (A.22)

τF =
h̄

4πe
Im[G?]. (A.23)

Note that multiplying a torque strength (τD/F) by the time derivative of a magne-
tization unit vector gives a torque in units of [Am−2]. The torque on the second
interface (τ2) is obtained in a similar manner. We rewrite the expressions Eq. (A.18)
to Eq. (A.21):

τ1,z

τ1,x

τ2,z

τ2,x

 = −ω


τD −τF −τD τF

τF τD −τF −τD

−τD τF τD −τF

−τF −τD τF τD




m1,z

m1,x

m2,z

m2,x

 . (A.24)

Here the torques still have units of charge current density [Am−2]. To convert the
torque strengths into a form consistent with the LLG equations, where all torques
have the unit of [s−1], we multiply them by [252]:

− h̄γi

edi Ms,i
, (A.25)

where i ∈ [1, 2] denotes the material, γi is the gyromagnetic ratio, Ms,i is the
saturation magnetization, and di is the magnetic film thickness. Note that we use
i = 1 for Co and i = 2 for YIG. The torque term that we add to the LLG is then
given by:

τi = −
h̄γi

edi Ms,i

[
(τF − τDŷ×)(ṁi − ṁj)

]
. (A.26)

Note that the damping-like torque is proportional again to the y× ṁ, whereas the
field-like torque is proportional to ṁ, as already seen in Eq. (3.1).
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A.2 The Interfacial Spin Torque Model
In the previous section we have calculated the torque on the ferromagnets

due to the mutual spin pumping across the normal metal interface. Now, we
calculate the torques due to the direct exchange coupling, if the YIG and the Co is
in direct contact to each other. For this we use a macrospin approximation for the
Co magnetization (M1), as we only consider the first cobalt mode. However, we
assume that the unit vector of YIG magnetization direction (M2(z)) varies spatially.
In Chap. A.1, a real-valued two-vector was represented as a single complex number.
Here, we adopt a notation of using lower case bold letters to indicate the transverse
components. In addition, to capture the phases of the precessing moments, we
allow these vectors to be complex. In this case, we get the physical quantities from
the real part of the vectors. Upper case bold characters indicate three-dimensional
vectors, as in the other chapters of this thesis.

For the transverse magnetization, the energy per unit area5,6 of the coupled
heterostructure reads [33, 247]:

E/A =
∫ d2

0
dz
[

Aex (∂zm2)
2 +

µ0HMs,2

2
m2 ·m2 +

µ0M2
s,2

2
m2

2,z

]
+

µ0HMs,1d1

2
m1 ·m1 +

µ0M2
s,1d1

2
m2

1,z +
1
2

J [m1 −m2(0)]
2 .

(A.27)

Here, the integrand describes the energy contribution of the YIG film and ẑ is the
unit vector in z-direction. The first term of the integrand is the YIG exchange energy
of the PSSWs [19, 33]. The second term is the energy of the YIG magnetization in
the applied external field [33]. The third term is the demagnetization energy of the
YIG [33]. The first term in the second line is the energy of the Co magnetization in
the applied magnetic field [33], and the second term is the demagnetization energy
of the Co [33]. The exchange coupling constant between the YIG and the Co is
given by the exchange integral J [19, 21, 205]. The YIG magnetization direction
at the YIG/Co interface is given by m2(0). We obtain the effective field of the
Co by using the magnetic energy which is normalized by the Co thickness and

5 Note that we have normalized the energy by the area rather than the volume, as in Chap. 2.
The reason is, that we start here from an integral over the complete sample volume. However,
as the area of the YIG and the Co film are the same, we can normalize on the parameter A. This
is also the reason why we find a parameter d1 in the energy terms of the Co film; As the Co
magnetization is a macrospin we can integrate over the full Co volume, including the thickness.
This is not possible for the YIG film, as the z-dependence is not yet resolved. Furthermore, we
note that the direct exchange is a delta function at the interface

∫
dV J[m1 −m2(z)]2δ(z) =

JA[m1−m2(0)]2, hence it is not multiplied with the volume but the area, which is subsequently
normalized out.

6 The energy contributions are chosen in such a way that they directly lead to the linearized form
of the LLG. E.g. the exchange torque τex,1 = γ1ŷ ×∇m1 J[m1 −m2(z)]2/2 = γ1ŷ × J[m1 −
m2(z)]. This expression is similar to the exchange torque which we have found in Eq. (5.16) for
the macrospin model.
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saturation magnetization: µ0Heff,1 = −∇E/(Ms,1d1). We can hence write down
the linearized Landau-Lifshitz-Gilbert equation for the Co film:

ṁ1 =− γ1ŷ ×
[
− µ0Hm1 −

α1

γ1
ṁ1 − µ0Ms,1M1,zẑ

− J
d1Ms,1

(m1 −m2(0)) + µ0h

]
− h̄γ1

ed1Ms,1
[(τF − τDŷ×)(ṁ1 − ṁ2(0))] .

(A.28)

Here we have used that the static magnetization lies in the film plane, parallel to
the external magnetic field along the y-direction. The magnetic driving field from
the CPW is denoted by h. Note that, in the model, h is assumed to be spatially
uniform, to reflect the experimental situation where the CPW center conductor
width is much larger than either YIG or Co thickness, cf. Chap.2.4.1. Analogously,
we derive the equation of motion for the YIG away from the interface:

ṁ2 =− γ2ŷ×
[
− µ0Hm2 −

α2

γ2
ṁ2

− µ0Ms,2m2,zẑ +
2Aex

Ms,2
∂2

zm2 + µ0h

]
,

(A.29)

where the definitions of the variables is analogous to the Co variables, except of
the index 2 instead of 1. The exchange constant of the YIG is given by Aex. We
treat the coupling terms as boundary conditions as shown below.

A.2.1 Determination of the Eigenvectors
To solve the coupled LLG of the Co film, we have to determine the interfacial

value of the YIG magnetization m2(0). For this, we derive the eigenmodes of the
undisturbed YIG film, as we can express every excitation in the YIG as a superpo-
sition of those modes. We use a complex ansatz for the transverse magnetization
components:

m2 = exp(ikz) exp(−iωt)

(
m2,z

m2,x

)
, (A.30)

where k is a complex wavevector. From Eq. (A.29) we obtain a system of equations
including the YIG susceptibility χ̃−1

2 , which describes the response of the transverse
YIG magnetization perpendicular to external magnetic fields:

0 =

(
− 2Aexk2

Ms,2
− µ0H − µ0Ms,2 +

iα2ω
γ2

− iω
γ2

iω
γ2

− 2Aexk2

Ms,2
− µ0H + iα2ω

γ2

)
︸ ︷︷ ︸

χ̃−1
2

(
m2,z

m2,x

)
. (A.31)
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Fig. A.2. – Precessional motion of the different magnetization eigenvectors. m+ pre-
cesses counter-clockwise, whereas m− precesses clockwise. The precession is elliptical
as ωM,2/2π = 4.9 GHz. For a vanishing demagnetization field the precession is circular
(dashed line).

The system of equations is solved for det χ̃−1
2 = 0 by two different wavevectors:

k± =
1
2

√√√√Ms,2

(
2iα2ω− 2γ2µ0H −ωM,2 ±

√
ω2

M,2 + 4ω2
)

Aexγ2
, (A.32)

where we have used ωM,2 = γ2µ2Ms,2. The wavevector k+ describes an harmonic
oscillation of the magnetization along the z-direction. The wavevector k− on the
other side describes an evanescent behavior of the YIG magnetization, with a
decay length in the order of 10 nm. We now use the obtained wavevectors k± in
Eq. (A.31) to derive the eigenvectors of the dynamic YIG magnetization:

k± : 0 =

 1
2

(
−ωM,2 ∓

√
ω2

M,2 + 4ω2
)

−iω

iω 1
2

(
ωM,2 ∓

√
ω2

M,2 + 4ω2
)(m2,z

m2,x

)
,

(A.33)

The system of equation has several solutions, however, we restrict our model
to the zero eigenvalue of both systems, as this refers to our resonance condition
det χ̃−1

2 = 0. We find from the different wavevectors:

k± : m2± =

 i(∓
√

ω2
M,2+4ω2+ωM,2)

2ω

1

 . (A.34)

In Fig. A.2 we sketch the time evolution of the real parts of the magnetization
components for both eigenvectors m2±. For this we calculate Re[m± exp(i(−ω +

iα)t)], with the material parameters of YIG, given in the main text. We find an
elliptical precession, as the demagnetization field increases the magnetostatic
energy along the z-direction. Hence we find a larger precession amplitude in the x-
direction than in the z-direction. For a vanishing demagnetization field, we obtain
a circular precession (dashed lines). Note furthermore that the magnetization
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eigenvectors precess counter-clockwise m+ and clockwise m−. It is obvious that
the eigenvectors are thus linear independent, and span a vector space with which
we can model all possible solutions of the YIG magnetization.

A.2.2 Boundary Conditions and Solution of the Problem
We model the YIG/Co interface as an infinitesimally thin surface layer. While

the magnetization is not pinned at the interface, the infinitesimally thin layer has
no volume, an hence no angular momentum. As a consequence, the total torque
acting on the interface has to vanish [203–205]:

0 =2Aexŷ × ∂zm2(z)|z=0 − Jŷ × (m1 −m2(0))

+ (h̄/e)(τF − τDŷ×) (ṁ1 − ṁ2(0)) .
(A.35)

On the YIG/substrate interface, we assume an uncoupled boundary condition,
where the torques vanish as well:

0 = 2Aexŷ × ∂zm2(z)|z=d2 . (A.36)

As stated previously we model the YIG magnetization as a space-dependent
variable, which is a superposition of the YIG magnetization eigenvectors. The
ansatz for the dynamic YIG magnetization thus reads:

m2 = [c−m2− cos(k−z) + c+m2+ cos(k+z)] exp(−iωt), (A.37)

where c± are complex coefficients. We model the Co magnetization in a macrospin
approximation, without any space dependence:

m1 =

(
mz,1

mx,1

)
exp(−iωt). (A.38)

Here, mx,1, mz,1 are complex coefficients. Note that the real behavior of the dynamic
magnetization can be found in the real parts of Eq. (A.37) and Eq. (A.38).

In a first step we insert the ansatz Eq. (A.37) and Eq. (A.38) into the boundary
condition Eq. (A.35):

0 =+ 2Aex(−c−k−m2− sin(k−z)− c+km2+ sin(k+z))

− (h̄/e)τFŷ × (ic−m2−ω cos(k−z) + ic+m2+ω cos(k+z)− im1,0ω)

+ (h̄/e)τD(ic−m2−ω cos(k−z) + ic+m2+ω cos(k+z)− im1,0ω)

− J(−c−m2− cos(k−z)− c+m2+ cos(k+z) +m1,0)

(A.39)

where we have used ŷ × (ŷ ×mi) = −mi in the first step. In the second step
we have used Eq. (A.37), and the fact that the dynamic YIG magnetization must
obey the boundary conditions for all times t. To solve for the coefficients c±, we
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multiply the above equation with the complex conjugates of the YIG magnetization
eigenvectors m∗2±, which obey the special orthogonality relations m2∓m∗2± = 0.
From the multiplication of m∗2+ we obtain:

0 =m∗2+
[
− 2Aexc+km2+ sin(k+z)

− (h̄/e)τFŷ × (ic−m2−ω cos(k−z) + ic+m2+ω cos(k+z)− im1,0ω)

+ (h̄/e)τD(ic+m2+ω cos(k+z)− im1,0ω)

− J(−c+m2+ cos(k+z) +m1,0)
]
.

(A.40)

From the multiplication of m∗2− we obtain:

0 =m∗2−
[
− 2Aexc−k−m2− sin(k−z)

− (h̄/e)τFŷ × (ic−m2−ω cos(k−z) + ic+m2+ω cos(k+z)− im1,0ω)

+ (h̄/e)τD(ic−m2−ω cos(k−z)− im1,0ω)

− J(−c−m2− cos(k−z) +m1,0)
]
.

(A.41)

We now can solve the system of equations consisting of Eq. (A.40) and Eq. (A.41) to
obtain the complex coefficients c± as a function of the four variables m1(ŷ×m2±)

and m2∓(ŷ ×m2±):

c± =
±1
c

(
+ 2Aexk− sin(dk−)

{
m1,0(ŷ ×m2∓)

− i(h̄/e)ω [m1,0m2∓τF +m1,0(ŷ ×m2∓)τD]
}

+m1,0(ŷ ×m2∓) cos(dk−)
[
(h̄/e)2ω2 (τ2

D + τ2
F
)
+ 2i(h̄/e)JτDω− J2])

(A.42)

where the prefactor c is given by:

c = cos(dk+)
(

2Aexk− sin(dk−)
{

Jm2+(ŷ ×m2−)

+ i(h̄/e)ω [m2−(ŷ ×m2+)τD −m2−m2+τF]
}

+m2+(ŷ ×m2−) cos(dk−)
[
(h̄/e)2ω2 (τ2

D + τ2
F
)
+ 2i(h̄/e)JτDω− J2])

+ 2Aexk sin(dk+)
(
− 2Aexk−m2+(ŷ ×m2−) sin(dk−) + cos(dk−)

{
Jm2+(ŷ ×m2−)

+ i(h̄/e)ω [m2−m2+τF +m2−(ŷ ×m2+)τD]
})

.

(A.43)
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The complex coefficients c± now specify the YIG solution and contain the influence
of the Co layer. Using the eigenvectors Eq. (A.34) together with the wavevectors
Eq. (A.32) and and the complex coefficients Eq. (A.43) and Eq. (A.42) in the ansatz
Eq. (A.37) yields the spatially-dependent YIG magnetization. Using subsequently
the ansatz Eq. (A.37) and Eq. (A.38) in the modified LLG Eq. (A.28) allows to
extract the Co susceptibility χ̃1 by sorting the resulting expression by the transverse
Co magnetization components (m1,z, m1,x). We find:

χ̃−1
1 =

(
χ−1

1,zz χ−1
1,xz

χ−1
1,zx χ−1

1,xx

)

⇐⇒ χ̃1 =
1

χ−1
1,zzχ−1

1,xx − χ−1
1,zxχ−1

1,xz

(
χ−1

1,xx −χ−1
1,zx

−χ−1
1,xz χ−1

1,zz

)
,

(A.44)

where the entries of the inverse susceptibility are:

χ−1
1,zz =

iα1ω

γ1
+m2(0)

−i(h̄/e)τDω + i(h̄/e)τFω + J
d1Ms,1

+
i(h̄/e)τDω− J

d1Ms,1
− µ0(H + Ms,1), (A.45)

χ−1
1,zx =− iω

γ1
+m2(0)

−i(h̄/e)τDω + i(h̄/e)τFω + J
d1Ms,1

− i(h̄/e)τFω

d1Ms,1
, (A.46)

χ−1
1,xz =

iω
γ1

+m2(0)
−i(h̄/e)τDω− i(h̄/e)τFω + J

d1Ms,1
+

i(h̄/e)τFω

d1Ms,1
, (A.47)

χ−1
1,xx =

iα1ω

γ1
+m2(0)

−i(h̄/e)τDω− i(h̄/e)τFω + J
d1Ms,1

+
i(h̄/e)τDω− J

d1Ms,1
− µ0H. (A.48)

While an analytical solution of the resonance condition det χ̃−1
1 = 0 is not possible,

we can use Eq. (A.44) to calculate χ̃1 and plot it as a function of H and ω, as shown
in Chap. 5.4. To discuss the influences of the different torques on the magnetization
we develop a simplified macrospin model in Chap. 5.3, which contains all salient
features of the microscopic solution.
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