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Abstract

This thesis comprises a systematic study on the doping, temperature and momen-

tum dependent electron dynamics in iron-based superconductors using inelastic light

scattering. The observation of Bardasis-Schrieffer modes in the excitation spec-

trum of superconducting Ba0.6K0.4Fe2As2 is reported and the energy and symmetry

dependence of the modes is analyzed. The analysis yields the identification of a

strong subdominant component of the interaction potential V (k,k′) in this mate-

rial. Strong nematic fluctuations are investigated in Ba(Fe1−xCox)2As2. The vari-

ation of the fluctuation contribution to the Raman susceptibility with temperature

and polarization geometry is investigated and a theory is presented which accounts

for the observations. The nature of the fluctuations and the origin of nematicity in

Ba(Fe1−xCox)2As2 are identified.

Kurzzusammenfassung

Diese Arbeit enthält eine systematische Studie der Ladungsträgerdynamik in Eisen-

basierten Supraleitern mittels inelastischer Lichtstreuung unter Veränderung von

Dotierung, Temperatur und Polarisationsgeometrie. Die experimentelle Methodik

erlaubt dabei die Untersuchung impulsabhängiger Eigenschaften des Elektronen-

systems. Im Anregungsspektrum von Ba0.6K0.4Fe2As2 werden Bardasis-Schrieffer

Moden beobachtet und deren Energie- und Symmetrieeigenschaften werden analy-

siert. Die Untersuchung zeigt, dass die Paarwechselwirkung V (k,k′) eine starke

subdominante Komponente aufweist. In Ba(Fe1−xCox)2As2 werden dagegen starke

nematische Fluktuationen beobachtet. Die Abhängigkeiten dieser Fluktuationen

von Temperatur und Polarisationsgeometrie werden studiert und eine Theorie wird

vorgestellt, welche diese erklärt. Sowohl die Natur der Fluktuationen als auch der

Ursprung der nematischen Phase in diesem Material können aufgeklärt werden.
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Chapter 1

Introduction

Superconductivity, the resistance-free flow of electrical charges, is one of the most

thoroughly studied phenomena in solid-state physics. Even though the phenomenon

was discovered more than a century ago [1], many questions remain unanswered, in

particular those concerning the physics of superconductivity in the 100 K range.

The celebrated BCS (Bardeen-Cooper-Schrieffer) theory [2, 3] gave a microscopic

explanation of the phenomenon in terms of a condensate of paired electrons (Cooper-

pairs) being responsible for the formation of the superconducting state. The theory

requires an attractive effective interaction between the electrons which is provided

by the exchange of phonons. However, the upper limit for the critical transition

temperature Tc in the case of phonon exchange is believed to be of order 40 K [4].

Consequently, the discovery of the cuprates in 1986 by Bednorz and Müller [5] with

transition temperatures that were quickly pushed beyond the temperature of liquid

nitrogen [6] challenged the conventional BCS theory. The highest Tc was discovered

in 1993 in mercury-based cuprates and reaches 135 K under ambient conditions and

approximately 160 K with applied pressure [7]. The following 15 years brought little

progress towards a further increase of Tc, and no new high-Tc materials were found.

In 2008, however, superconductivity with Tc = 26 K was found in the iron-based

layered superconductor La(O1−xFx)FeAs in the group of Hideo Hosono [8]. The

discovery, arguably the most important breakthrough in this field for almost two

decades, triggered a wave of research into this “pnictide” family of superconductors

that quickly pushed the transition temperature to 56 K [9]. Even if Tc could not be

boosted anywhere near to the one of the cuprates, it is hoped that the iron-based

superconductors (FeSCs) will be instrumental in deciphering the 29-year-old mystery

behind high-Tc superconductivity. Questions of vital importance are referring to the

nature of the pairing mechanism and the puzzling normal-state properties which

1



2 1. Introduction

are observed in both the cuprates and FeSCs. These two important issues will be

scrutinized here for the FeSCs.

To this end the interaction potential V (k,k′) of FeSCs needs to be analyzed

since any type of interaction between the electrons such as phonons, spin fluctua-

tions, Coulomb and exchange interaction leave imprints on V (k,k′). In conventional

superconductors with an isotropic gap ∆, the interaction potential V (k,k′) can be

derived by and large from the spectrum of lattice excitations ~ωq [10]. These excita-

tions appear as prominent structures in many spectroscopies at ~ωq + ∆. However,

this access is hampered in systems with the gap ∆k varying strongly with the elec-

tronic momentum ~k.

In the case of anisotropic gaps the FeSCs [8,11] open up new vistas. They have

quasi-2-dimensional Fermi surfaces with hole- and electron-like pockets which can

be tuned by substitution. Therefore, they are considered model systems for studying

the pairing interaction in anisotropic multi-band systems [12–14]. Yet, the question

about the nature of the pairing interaction is still not settled. Repulsive spin [15] and

attractive orbital [16] fluctuations were suggested to provide appreciable interaction

potentials V (k,k′). In the spin channel, the interactions between either the central

hole-like and the peripheral electron-like Fermi surfaces Vs [15] or the electron bands

alone Vd are nearly degenerate [13, 17] and entail a sign change of the energy gap

∆k.

Raman scattering offers an opportunity to scrutinize competing superconduct-

ing instabilities and derive essential properties of V (k,k′). The electronic response

provides direct access to the energy gap and its momentum dependence [18, 19] re-

flecting the dominant channel responsible for Cooper-pairing. In addition, residual

interactions resulting from anisotropies of the pairing potential V (k,k′) may lead

the formation of bound states of the two electrons of a broken Cooper-pair [17,20–23]

similar to electron-hole excitons in semiconductors. In a Raman spectrum the

bound-states appear as sharp modes below the gap-edge in superconductors having

nodeless gaps or they may be damped considerably due to the existence of quasi-

particles below the gap-maximum in the presence of gap nodes [24]. The energy and

the symmetry properties of the bound-states provide insight into the momentum

dependence of V (k,k′) or decompositions thereof in terms of orthonormal functions

φi such as V (k,k′) = φ2
sVs + φ2

dVd + . . . and, consequently, the type of interaction.

Ba0.6K0.4Fe2As2 turns out to be an ideal system for these studies since the nearly

isotropic and nodeless gaps [25–28] facilitate the search for dominant and subdomi-

nant pairing channels and address the question as to the type of interaction between
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electrons.

The analysis of the superconducting state here and various other studies show

that fluctuations of the charge or spin degrees of freedom play a similarly impor-

tant role in the FeSCs as the phonons in conventional systems. This raises the

question as to whether or nor the related fluctuations can be visualized directly.

This question can in fact be addressed in the underdoped range between the spin

density wave (SDW) parent state and composition exhibiting the highest Tc. This

range is characterized by a decreasing transition temperature into the SDW state

and eventually coexisting magnetism and superconductivity [29]. In addition, a new

type of nematic order and the related fluctuations are observed [30]. In the nematic

phase, the rotational symmetry (C4) of the underlying lattice is spontaneously bro-

ken while the translational symmetry is preserved. It is characterized by a large

nematic susceptibility, that is, the electronic ground state has a strong tendency

to deform in response to a small symmetry-breaking perturbation. Observations of

a nematic state have been reported for many iron-based [31–35] and copper-oxide

high-temperature superconductors [36–39]. Whether nematicity plays an equally

important role in these two systems is highly controversial. Similarly as magnetism,

it is regularly found in close proximity to superconductivity in these compounds and

it might support or hamper the formation of the superconducting state [30].

For these studies Ba(Fe1−xCox)2As2 is preferable as it shows strong nematicity

and enables the investigation of the doping dependence of the phase transition lines

which border the nematic phase. This region of the phase diagram is located above

the critical temperature Tm where magnetic long-range order vanishes, but below

the temperature Ts where the system’s crystal structure changes from tetragonal to

orthorhombic. As doping increases, the Ts line tracks the Tm line across the phase

diagram, approaching the superconducting dome (see Fig. 2.6). The term “strong

nematicity” means that while the a and b lattice constants in this regime differ by

only a few tenths of a per cent, the anisotropies in several electronic properties are

found to be much larger. For instance the difference in the resistivities measured in

two directions can be as large as 30% [34].

An important question is whether the phase transition at Ts is a regular structural

transition driven by phonons [40], or whether electronic degrees of freedom play the

key role [41–43]. Currently, experimental evidence strongly points to an electronic

mechanism of nematicity [30,44]. In case of a regular structural phase transition, the

crystal structure above Ts is tetragonal, and there should be no symmetry-breaking

field to drive a nematic response. Nevertheless, high-temperature persistence of
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symmetry breaking of the electronic structure and the measurement of a nematic

response that ranges up to temperatures twice as high as Ts have been reported

[32, 45–47]. These findings suggest that the structural phase transition at Ts is

triggered by electronic degrees of freedom rather than lattice vibrations.

If electrons drive nematicity, it still has to be clarified which of their collective

degrees of freedom are most relevant. Both spin [30, 48, 49] and charge/orbital [50]

fluctuations have been considered candidates. Yet, this fundamental question could

not be settled as some results argue in favor of a spin character of the nematic fluc-

tuations [45, 51] whereas others support a charge/orbital driven fluctuation mecha-

nism [52]. Answering this question might prove crucial for uncovering the origin of

superconductivity in the iron-based systems, as charge/orbital fluctuations favor a

sign-preserving s-wave state (s++) whereas spin fluctuations favor a sign-changing

s-wave (s±) or a d-wave state [30].

The thesis is organized as follows: It starts with an overview of the basic prop-

erties such as the crystal and electronic structure of FeSCs in Ch. 2. In addition,

the pairing symmetry and the nematic phase in FeSCs receive special attention. In

Ch. 3 the theoretical aspects of electronic Raman scattering (ERS) are summarized,

including scattering from collective excitations. Ch. 4 is devoted to the descrip-

tion of the Raman setup. The main body of the thesis in Chs. 5 and 6, comprises

experimental results and discussions.



Chapter 2

The iron-based superconductors

In terms of transition temperature, the iron-based superconductors (FeSCs) [8, 11]

with bulk Tc up to 55 K in SmFeAsO1−xFx hold the second place behind the cuprates

[5]. Both families share many properties, but also show prominent differences.

Cuprates and FeSCs have 2D lattices of 3d transition metal ions as building blocks

and in both cases orthorhombic distortions can be present at small doping. The

phase diagrams of cuprates and many FeSCs are also quite similar. Superconduc-

tivity emerges as a result of doping an antiferromagnetic parent compound. The

parent compound, however, is a Mott-insulator in case of the cuprates, while super-

conductivity in the Fe-based systems emerges from a metallic state showing itinerant

antiferromagnetism. Moreover, cuprates are effective one-band systems while FeSCs

exhibit multiple bands which cross the Fermi level. Nevertheless, it is considered

possible that the ultimate source of the pairing interaction in both systems is fun-

damentally similar, although essential details such as pairing symmetry and gap

structure in FeSCs depend on the topology of the Fermi surface (FS) and the or-

bital character of the bands [12]. Now the properties essential for the thesis will be

summarized.

2.1 Basic properties

In the following, crystal, magnetic and electronic structure of FeSCs are briefly

reviewed. Subsequently, the phase diagram is discussed.

5



6 2. The iron-based superconductors

(a1) (b)

(c)

FeSe
(11)

LiFeAs
(111)

BaFe2As2
(122)

LaFeAsO/
SrFeAsF

(1111)

Sr3Sc2O5Fe2As2

(a2) (a3) (a4) (a5)

vacancy

cell cell

Figure 2.1: Crystallographic and magnetic structures of the iron-based superconductors.
(a) Tetragonal structures (D4h symmetry) known to support superconductivity. (b) Active
planar iron layer common to all iron-based compounds, with iron ions shown in red and
pnictogen/chalcogen anions shown in gold. (c) Alkali metal iron selenide structure with
iron vacancies (view parallel to the crystallographic c axis). Adopted from Refs. [53]
and [54].

2.1.1 Crystal structure

The family of Fe-based materials comprises over 50 different compounds, identified

within just two years after the discovery of LaFeAsO (Tc =26 K) in 2008 [8]. Early

on, five unique crystallographic structures were shown to support superconductivity.

As depicted in Fig. 2.1 (a), these structures all have tetragonal (D4h) symmetry at

room temperature, while their composition ranges from the simplest α-PbO-type

binary element structure to more complicated quinternary structures composed of

elements that span the entire periodic table [53].

The key ingredient is a quasi-two-dimensional layer consisting of iron atoms with

tedrahedrally coordinated bonds to either P, As, Se or Te anions that are located

above and below the iron lattice to form a checkerboard pattern that doubles the

unit-cell size, as shown in Fig. 2.1 (b). These layers are either stacked together, as in

FeSe, or are separated by spacer layers using alkali (e.g., Li) alkaline-earth (e.g., Ba),

rare-earth oxide/fluoride (e.g., LaO or SrF) or more complicated perovskite-type

combinations (e.g., Sr3Sc2O5). These so-called blocking layers provide a quasi-two-

dimensional character to the crystal because they form atomic bonds of more ionic
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character with the FeAs layer, whereas the FeAs-type layer itself is held together by

a combination of covalent (Fe-As) and metallic (Fe-Fe) bonds [53].

In 2010, the “alkali metal iron selenides” with the generic chemical formula

AxFe2−ySe2 (A = alkali element) joined the FeSCs family [55]. Here, the alkali ele-

ments serve as separating elements between the FeSe layers. One of the motivations

for the use of alkali-elements as spacers derives from the observation that the Tc of

the FeSCs appears to be controlled by the “anion height”, i.e., the distance of the

anion above the iron square-planes. Then Tc could be further enhanced via chemical

substitution since that process can possibly optimize the local structure. This new

family of compounds shows superconductivity at temperatures comparable to those

of the pnictides [56].

Nominally, alkali metal iron selenides have A0.8Fe1.6Se2 stoichiometry. They are

characterized by a
√

5×
√

5 order of Fe vacancies which assigns the crystal nominally

to the lower C4h symmetry class [Fig. 2.1 (c)]. Nevertheless, scanning tunneling

microscopy experiments have shown that these compounds show microscopic phase

separation into an insulating phase with well defined vacancy order and a supercon-

ducting AFe2Se2 phase (122 stoichiometry) without vacancies [57].

The experimental results presented in this thesis were acquired through the in-

vestigation of either cobalt or potassium doped BaFe2As2 crystals which belong to

the 122 family of FeSCs [Fig. 2.1 (a3)] or Rb0.8Fe1.6Se2 [Fig. 2.1 (c)], which belongs

to the family of alkali metal iron selenides.

2.1.2 Electronic structure

The band structure of FeSCs was calculated using first-principles DFT, showing

good general agreement with experimental measurements [15, 60]. The calculations

showed that the electronic properties are dominated by five bands close to the Fermi

level which are composed of Fe d-orbitals. Angular resolved photoemission spectra

of the BaFe2As2 band dispersion close to the Fermi level are shown in Fig. 2.2 (d).

Three out of five bands are observed, where two of them appear as almost parabolic

hole bands crossing the Fermi level at the Γ point and an electron band centered

around the X point. The hole-band, carrying the majority of the spectral weight,

does never cross the Fermi level at the X point, irrespective of the amount of dop-

ing [58]. The quasi-two-dimensional character of the crystal structure results in

the quasi-two-dimensional topology of the FS, depicted in Fig. 2.2 (b). The 1 Fe

Brillouin-zone (BZ) is shown along with the hole-pockets encircling the Γ point,

whereas the electron pockets are centered at the X and Y points. The 1 Fe BZ cor-
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As (Se) 
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E

F
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(d1) (e)

kx

ky

kz

Y

(d2)

Figure 2.2: Crystallographic and electronic structure of FeSCs. (a) 2D FeAs (FeSe) lattice
indicating As (Se) above and below the Fe plane. Green and dashed black squares indicate
1- and 2 Fe unit cells, respectively. The blue square indicates the magnetic unit cell, which
is relevant in the magnetically ordered state, see Sec. 2.1.3. (b) Schematic 2D FS in the
1 Fe BZ whose boundaries are indicated by a green solid square. The arrow indicates
folding wave vector (π, π). (c) Fermi sheets in the folded BZ whose boundaries are now
shown by a dashed black square. (d1) Angular resolved photoemission spectra and (d2)
second derivative image of the BaFe2As2 band dispersion along Γ-X close to the Fermi
level, as adopted from [58]. The electron band at the X point is hardly visible due to the
choice of the polarization geometry in the experiment. (e) FS based on a tight-binding
band structure of BaFe2As2 in three dimensions, from [59]. Hole bands at the corners are
not shown for simplicity.

responds to the 1 Fe unit cell of the crystal, which requires some explanation: The

basic crystallographic element of all FeSCs is the FeAs (FeSe) plane [Fig. 2.2 (a)]

with an a×a square plane of Fe atoms that are coordinated tetrahedrally with As

(Se) ions above and below the Fe plane. The minimal unit cell of the entire FeAs

plane is thus ã× ã where ã= a
√

2, includes two formula units and is hence called

the 2 Fe unit cell. In most cases the low-energy part of the electronic structure can

be unfolded into a BZ which is twice as large, corresponding to the a×a unit cell

which contains only one Fe-ion. This is possible in most cases, because the bands

which cross the Fermi level are composed of Fe d-orbitals and therefore the unfold-

ing does not alter the low-energy physics [12]. Therefore, regarding the symmetry

assignment, the 1 Fe unit cell will be used as reference throughout this thesis.
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Figure 2.3: Fermi sheets of a five-band
model of 1111 FeSCs in the unfolded BZ
for a filling of n = 6.03. Shown is a quar-
ter of the unfolded BZ. β1 and β2, indicat-
ing the (π, 0) and (0, π) electron pocket, re-
spectively, are not composed from the same
Fe-orbitals. The majority orbital charac-
ter is as indicated by the colors (red=dxz,
green=dyz, blue=dxy). Taken from [12].

However, if the hopping of the Fe d electrons via the As is taken into account, the

2 Fe cell is used, which introduces a backfolding of the band structure by a vector

(π, π) [see Fig. 2.2 (b)], thus electron pockets encircling the X point are folded on

top of the electron pockets enclosing Y and vice versa. The result of the effect is

shown in Fig. 2.2 (c). While the backfolding via (π, π) has in general only small

impact on the low-energy physics of most FeSCs, it can cause the hybridization of

the electron pockets. Depending on the hybridization strength, this may lead to

portions of the FS exhibiting strong curvature. These regions, called “hot spots”,

are strongly highlighted in the Raman response and thus need sometimes to be

considered in the interpretation of Raman spectra [61].

Fig. 2.2 (e) shows the FSs based on a tight-binding band structure of BaFe2As2 in

three dimensions, revealing that the term “quasi-two-dimensional” has to be treated

with care when used in the context of Fe-based materials. Hole and electron sheets

are not purely cylindrical but show a weak kz dispersion. The two-dimensionality

of the FS varies within the whole material class. It is more pronounced in the 1111-

compounds than in the 122-family [60, 62]. Finally, it has been found theoretically

[62, 63] and verified experimentally [64–68] that the main effect of doping on the

FS topology is a change in size of the electron and hole pockets. Upon hole doping

(for instance by the substitution of Ba by K in BaFe2As2), electron pockets shrink

and hole pockets grow in size, while electron doping (achieved, for instance, by the

substitution of Fe by Co in BaFe2As2)1 causes the inverse development.

According to models in which the band structure of FeSCs close to Fermi level is

1Despite the expansion of electron pockets and the shrinking of hole pockets as observed in
angular resolved photoemission experiments [69], it is still being debated if Co-doping really adds
electrons to the FeAs plane because the extra d electron of the Co is thought of being located
within the muffin-tin sphere of the substituted site. Then, the main effect of Co doping is to add
impurities to the FeAs plane [70,71].
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composed of all five Fe d-orbitals [72, 73], the electron sheets residing at (π, 0) and

(0, π) are not composed from the same Fe-orbitals. As illustrated in Fig. 2.3, the β1

electron pocket has predominantly dxy and dyz character, while the β2 sheet is com-

posed of dxy and dxz orbitals. The orbital character of the bands is supposed to play

an important role in the formation of nodes in the superconducting order param-

eter [12], as well as the phenomenon of orbital ordering observed at the structural

phase transition which will be discussed in Sec. 2.3.

Fig. 2.2 (b) reveals that hole- and electron-pockets are nested via the vector

(π, 0). As a consequence, many FeSCs exhibit a SDW ground state, as discussed in

the following.

2.1.3 Magnetic structure

The nature of magnetism in FeSCs is still being debated. Antiferromagnetic (AFM)

order in all FeAs based systems is found to have a wave vector (π, 0) in the tetrag-

onal (1 Fe) unit cell with a real-space spin arrangement consisting of AFM stripes.

Fig. 2.4 (a) shows a projection of the FeAs square lattice with the magnetically or-

dered Fe sublattice having the spins ferromagnetically arranged along one chain of

nearest neighbors within the iron plane, and antiferromagnetically arranged along

the other direction. The magnitude of the ordered moment is typically smaller

than 1µB (Bohr magneton) [74,75], which is much smaller than that of metallic Fe.

Early on, theoretical calculations found these materials as being close to a Stoner in-

stability [76], suggesting itinerant magnetism, potentially explaining the consistent

overestimates of the ordered moment size by local-moment models. From this view-

point the most prominent scenario is a SDW instability of the FS, arising from the

nesting of two FS pockets by a large Q=(π, 0) vector that is commensurate with the

structure. Strong support for (π, 0) nesting across the whole material class comes

from angular resolved photoemission spectroscopy (ARPES) [64,66,77,78], quantum

oscillation [79, 80] and neutron scattering experiments [81]. Moreover, the nesting

vector corresponds to the magnetic ordering vector measured throughout the FeAs

parent compounds as well as to that of magnetic fluctuations in the superconducting

compounds [74,75].

The magnetic unit cell corresponds to the blue square in Fig. 2.2 (a). The mag-

netic superstructure leads to a folding of the electron pockets at X on top of the hole

pockets encircling the Γ point. Considering this within the 2 Fe unit cell [Fig. 2.2 (c)]

leads to a very large number of bands close to the Fermi level, making the theo-

retical treatment of the system very challenging. Therefore, backfolding via the
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Figure 2.4: (a) Ordered spin arrangement for FeAs-based materials indicated by blue
arrows. The blue square indicates the magnetic unit cell. (b) Direct (π, 0) folding of the
paramagnetic (1 Fe) BZ into the SDW BZ. (c) The best match (LDA with M = 0.5µB)
overlaid on the band dispersion along the Γ-X cut, with different renormalization for bands
residing at the Γ point (c1) and the X point (c2). Adopted from Refs. [53, 58].

SDW vector is often considered only within the 1 Fe unit cell [Fig. 2.2 (b)], which,

in principle, should be justified by the Fe 3d character of the bands near the Fermi

level [12]. The effect on the band structure is shown in Fig. 2.4 (b). The ARPES

spectra measured at 10 K show considerable reconstruction in the SDW phase [58].

A simple folding scenario, meaning a shift of the LDA band structure (red) by (π, 0)

as indicated in Fig. 2.4 (b2) cannot reproduce the measurement. To get a better

match between theory and experiment, one has to consider the 2 Fe cell and artifi-

cially suppress the ordered magnetic moment in the LDA calculation, that otherwise

overestimates its magnitude. The best result, achieved for 0.5µB and slightly dif-

ferent renormalization for bands encircling Γ and X, is depicted in Fig 2.4 (c1) and

(c2).

The magnetic structure is shown in Fig. 2.4 (a). The small orthorhombic dis-

tortion preceding or coinciding with the magnetic order is too small to be visible.

In the orthorhombic state, the distance between iron atoms with ferromagnetically

aligned nearest-neighbor spins shortens by approximately 1% with respect to the
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Figure 2.5: Twin formation in underdoped FeAs superconductors. (a) Optical images of
a single crystal of BaFe2As2 above (a1) and below (a2) the coupled structural/magnetic
transition at Ts/m =135 K, as adopted from [82]. aT denotes the crystallographic a axis of
the crystal. (b) Illustration of the FeAs plane in the orthorhombic state, with the crystal
axes labeled. The structural phase transition corresponds to a stretching/contraction of
the Fe-Fe distance along the orthorhombic a and b axes, respectively. Twin boundaries
separate regions for which the a and b crystal axes are interchanged. The actual difference
in the a and b lattice parameters is much less than illustrated in the diagram [83].

perpendicular direction [53]. The structural transition leads to twin formation, cor-

responding to an alternation of the orthorhombic a and b axes [82], as shown in

Fig. 2.5. Even more importantly, large anisotropies in the in-plane electronic prop-

erties of FeSCs are found to develop at the same temperature, which cannot be

explained by the structural distortion alone [83]. Measurements of the electronic

anisotropy are hampered by twin formation. For probes which cannot distinguish

the a and b orthorhombic directions, this effect obscures any in-plane anisotropy

measured on length scales greater than the average twin dimension, which can be

as small as a few micrometers. Therefore, several groups detwinned single crystals

in situ, which was achieved by the application of uniaxial stress [32, 34, 35, 84–86]

or an in-plane magnetic field [87,88] while cooling through the structural transition

temperature Ts.

2.1.4 Phase diagram

The generic phase diagram of the 122 family of FeSCs is depicted in Fig. 2.6. As

in the cuprates, there is a region of magnetic ordering near zero doping, and su-

perconductivity emerges on charge doping with either holes or electrons, while at

the same time the magnetism is suppressed. Doping, in this respect, is achieved via

the replacement of, for instance, Ba by K in BaFe2As2. The neutral Ba atom has

the electronic configuration [Xe]6s2 while the neutral K atom has [Ar]4s1 configura-

tion. Hence, one hole is added to the unit cell by replacing Ba with K. Replacing
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Figure 2.6: Schematic phase diagram of FeSCs, along with the doping induced change of
the FS. Shown is also the nematic phase (indicated with dark-purple color), a regime with
broken fourfold rotational symmetry but preserved translational and time-reversal sym-
metry, and the region showing strong (fourfold symmetric) nematic fluctuations. Adapted
from [12] and [30].

Fe ([Ar]3d64s2) by Co ([Ar]3d74s2), on the other hand, nominally adds one elec-

tron per unit cell (see, however, [70]). The maximal critical temperatures Tc up to

which superconductivity occurs were found to be 39 K upon hole-doping and 26 K

via electron-doping.

The doping-induced change of the FS, namely the shrinking of hole- and grow-

ing of electron-pockets upon electron doping (and vice versa) is indicated in the

Fig. 2.62. It is evident that doping also alters the nesting conditions between hole-

and electron-like sheets. While these conditions are optimal at zero doping, nesting

worsens when going away from this composition. Consequently, the SDW order

is destabilized. This happens simultaneously with the emergence of the supercon-

ducting phase, suggesting an intimate relation between superconductivity and mag-

netism. Therefore, the pairing via the exchange of spin-fluctuations was anticipated

early on after the discovery of this material class [15].

A more careful examination of the phase diagram reveals that there is another

non-superconducting ordered state besides magnetism. At a certain temperature

2The circular hole and elliptical electron FSs are an abstraction. Hopping of electrons between
Fe via the As atoms leads to the hybridization of the electron pockets. While some groups find the
effect to be weak [89, 90], others observe considerable reconstruction resulting in “propeller-like”
FSs [91].
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Tnem = Ts, the system spontaneously breaks the symmetry between x and y direc-

tions in the Fe-plane, reducing the rotational point group symmetry of the lattice

from tetragonal to orthorhombic, while time reversal symmetry is preserved. Only

upon further cooling time-reversal symmetry is finally broken when entering the

magnetically ordered state. This phase, located between the structural and mag-

netic transition, is referred to as the nematic phase. In some materials, such as hole-

doped Ba1−xKxFe2As2, the tetragonal-to-orthorhombic and magnetic transitions are

simultaneous and first order (Ts =Tm), whereas in electron-doped Ba(Fe1−xCox)2As2

they are split (Ts>Tm) and, with the exception of very small Co concentration, sec-

ond order [30]. As doping increases, the Ts line tracks the Tm line across the phase

diagram, approaching the superconducting dome. The nematic phase has received

a lot of attention from the theoretical, as well as the experimental side, as it is not

clear whether this order supports or counteracts superconductivity [30]. As it also

plays the key role in Ch. 6, the nematic phase is discussed in more detail in Sec. 2.3.

2.2 Pairing symmetry

In Ch. 5, sharp modes in the B1g spectrum of superconducting Ba0.6K0.4Fe2As2 are

interpreted as the signature of bound pairs which are formed by anisotropies of

the BCS interaction potential V (k,k′). It is the purpose of this section to give an

overview of the theoretical concepts which are needed to understand the formation

of bound pairs in the excitation spectrum of superconductors. For a start the BCS

interaction potential V (k,k′) is introduced and the term “residual interactions” is

explained. For a classification of the symmetry properties V (k,k′) is expanded into

the set of crystal harmonics of the D4h point group (Sec. 2.2.1). In Sec. 2.2.2 a

summary of the currently available experimental results on possible gap symmetries

of the FeSCs is given, followed by a discussion about which coefficients in the crystal

harmonics expansion must be eliminated in order to avoid inconsistencies with the

experimental findings. The remaining orthogonal pairing-channels are in agreement

with either a conventional pairing mechanism, a pairing mechanism based on orbital

fluctuations or with a mechanism that requires a sign change of the order parameter

between the FS sheets of the paired electrons. The latter requirement is compatible

with pairing via magnetic interactions, which is briefly addressed in Sec. 2.2.3. Fi-

nally, in Sec. 2.2.4, the formation of bound pairs of quasiparticles as a consequence

of residual interactions in V (k,k′) is discussed.
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2.2.1 The BCS interaction potential

In 1956 Bardeen, Cooper and Schrieffer (BCS) showed that as a consequence of

an attractive interaction the Fermi gas of conduction electrons shows an instability

towards the condensation of paired electrons (Cooper-pairs) into a coherent boson-

like ground state [2,3], giving a microscopic explanation for superconductivity. The

attractive interaction between two electrons which is necessary to form the Cooper-

pair can be described by virtual exchange-bosons with momentum q being emitted

by one electron and reabsorbed by an other one within the time-uncertainty ∆t =

1/ωq. Due to momentum conservation and the fact that the exchange bosons have

relatively small energy compared to the Fermi energy, the phase space for such

scattering processes diminishes rapidly for electron-pairs other than those having

wave vectors −k and k. This leads to the correlation of electrons at (k,−k) as for

them the attractive interaction becomes optimal [see Fig. 2.7 (a)]. In the new ground

state, quasiparticles at k reduce their energy by the value ∆k(T ) with respect to

the Fermi level. ∆k(T ) is given by the BCS gap equation [92]

∆k(T ) = −
∑
k′

Vk,k′∆k′
tanh(Ek′/kBT )

2Ek′
(2.1)

where 2∆k(T ) is the minimal energy that must be invested for quasiparticles to be

excited from ground state. Vk,k′ = V (k,k′) denotes the BCS interaction potential

which describes the interaction between two electrons at (k,−k) that is effective over

the whole FS. Bardeen, Cooper and Schrieffer considered quantized lattice vibrations

(phonons) as mediators of the attractive interaction but in principle other bosonic

particles like polarons, plasmons or magnetic excitations are also candidates in the

framework of the BCS theory.

The macroscopic coherent wave function which describes the pair-condensate

has the same symmetry as the gap and can be identified with the Ginzburg-Landau

order parameter of the superconductor. It is a two-fermion wave function and thus

must obey fermion anticommutation relations. As a consequence, for singlet pairing

(S=0, antisymmetric spin component), the spatial part of the wave function must

be symmetric (L=0, 2, . . . ). For triplet pairing (S=1, symmetric spin component)

the spatial part must be antisymmetric (L= 1, 3, . . . ). The related pairing state is

then called an s−, d−, g−, . . . and p−, f−, h−, . . . wave state, respectively. In order

to solve the BCS gap equation Bardeen, Cooper and Schrieffer made the approxi-

mation of an isotropic interaction potential V (k,k′)=−V0 (V0>0) for quasiparticle
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Figure 2.7: The pair-scattering process. (a) Conventional scattering process that leads
to Cooper-pair formation of electrons with momenta −k and k. (b) Scattering process
from an interaction which requires a sign change of the order parameter. This process is
orthogonal to the process in (a).

energies ξk ≤ ω0 and 0 otherwise3 [3]. Therefore, the order parameter of this “con-

ventional” mechanism is a singlet s-wave. However, in principle, V (k,k′) depends

on momentum, hence can be anisotropic and may even be positive (repulsive4) for

all or some wave vectors k.

Superconductivity can be characterized as “unconventional” if the superconduct-

ing ground state has a symmetry different from the usual BCS ground state [93].

Since superconductivity is an instability of the “Fermi sea”, the symmetry of the

FS is considered as a reference. In a crystal, the FS will be unchanged under all of

the point group symmetry operations of the crystal, hence one can define supercon-

ductivity as conventional if ∆R̂k = ∆k, where R̂ is any symmetry operation in the

point group. In contrast superconductivity will be defined to be unconventional if

∆R̂k 6=∆k for at least one symmetry operation R̂. Thus, for a given crystal structure,

the irreducible representations classify the distinct possible pairing states. For this

purpose, it is convenient to expand the interaction potential V (k,k′) into a complete

set of orthonormal functions, for instance crystal harmonics Φµ
n(k) [19, 94]:

Vk,k′ =
∞∑
n=0

M∑
µ=1

Φµ
n(k′)V µ

n Φµ
n(k)∗. (2.2)

The outer sum runs over n counting higher order terms, the inner sum is over the

irreducible representations of the given crystal symmetry. In Eq. (2.2) the interaction

is assumed to be diagonal. V µ
n is the (constant) potential in a given channel which

is proportional to the BCS-type coupling constant via λµn = NFV
µ
n with NF the

density of states. Within the expansion, the leading term reflects the ground state

3For electron-phonon coupling ω0 is approximately the Debye frequency.
4Repulsive interactions originate from the bare Coulomb repulsion between two electrons or

from magnetic interactions (see Sec. 2.2.3).
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of the system since, at zero temperature, all Cooper-pairs will condense in this

pairing-channel as this yields the highest energy reduction. The other terms reflect

subdominant components of the interaction potential which do not contribute to

Cooper-pair formation.

If we consider a system of conduction electrons having a nearly spherical FS, it is

convenient to use spherical harmonics for the expansion in Eq. (2.2). Let the system

be close to a magnetic instability, then magnetic fluctuations may play the role of

exchange bosons that mediate the pairing. However, we will see in Sec. 2.2.3 that this

interaction is repulsive and therefore requires a sign change of the order parameter

between the paired electrons. If the pairing mediated by magnetic fluctuations yields

overall less condensation energy than the conventional mechanism (phonons), the

result is that the superconducting ground state of the system has s-wave symmetry

[Fig. 2.7 (a)]. Nevertheless, there is a subdominant (residual) pairing channel due

to magnetic interactions which is, because of the required sign-change of the order

parameter [Fig. 2.7 (b)], orthogonal to the dominant pairing channel (it has d-wave

symmetry). The superconductivity is conventional, because the ground state has

s-wave symmetry, which stays unchanged under all symmetry operations R̂ of the

point group of the spherical FS. This is not the case for the d-wave state (it has,

for instance, only 2-fold rotational symmetry). Thus a d-wave ground state would

be an unconventional superconducting state according to the definition introduced

above.

2.2.2 Gap structure in the FeSCs

After the introduction of some general concepts of the interaction potential it is

appropriate to discuss the specific case of FeSCs. For these materials a number

of coefficients in the expansion (2.2) can be eliminated using information provided

by experiments. We start with an experiment which can differentiate between spin-

singlet and triplet pairing. A triplet Cooper-pair with Sz=±1 can screen an external

magnetic field. The spin-orbit interaction can prevent this for some directions, but

not for others. A way to probe the latter is via the Knight shift measurement

which has been performed on several FeSCs [25, 95–101] and it was found that the

Knight shift decreases in all crystallographic directions, practically excluding triplet

symmetries [12]. Regarding the symmetry of the spatial part of the wave function,

this leaves only the even irreducible representations of the D4h point group. The

lowest order approximations are (cf. [102]): A1g [1], A2g [xy(x2− y2)], B1g [x2− y2],

B2g [xy], and Eg [xz,yz] [103]. The even representations of the D4h point group are
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Figure 2.8: (D4h) crystal harmonics. Displayed are the even irreducible representations
of the (D4h) point group: (a)-(m) A1g, A2g, B1g, B2g (up to the 3rd order); (n)-(o) only
the 1st order of the 2D-basis of the Eg representation is shown. (p) To determine which
basis function requires nodes of the order parameter on the FS one overlaps it with the
2D FS of FeSCs. This is done here for the 1st order A1g basis function. The positions of
nodes are marked with red dots.

displayed in Fig. 2.8 (a)-(o), up to third order.

Deriving a consistent picture of the gap symmetry in the FeSCs constitutes a

challenge, in particular when all families of iron-pnictides and -chalcogenides are

included. This is due to the wide diversity of experimental results for the gap struc-

ture, which vary between isotropic to very anisotropic or even nodal gaps for the

different compounds, see Appendix 8.A. However, it is convenient to start with opti-

mally doped Ba1−xKxFe2As2. Slightly anisotropic but clean gaps have been reported

for this composition by bulk-sensitive experiments [25–28]. This is compatible with

a conventional s-wave order parameter [Fig. 2.8 (a)] or with a so-called extended

s-wave order-parameter, which is equivalent to the 2nd order A1g basis function,

displayed in Fig. 2.8 (c). As will be pointed out in the next section such an order

parameter is in agreement with pairing via magnetic interactions. All other symme-

tries give rise to nodal gaps, which have not been observed at optimal hole-doping

and can therefore be excluded.

This shall be discussed in detail using Fig. 2.8. To determine which order pa-
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rameter symmetry requires nodes on the FS the related basis function is overlapped

with the FS of FeSCs. An example is given in Fig. 2.8 (p). B2g symmetry of the gap

would imply gap nodes on the electron- and hole-pockets at the principle axes of

the 1 Fe BZ. Even more nodes occur if higher order terms of the B2g symmetry are

considered. The same argument holds for the case of the A2g symmetry. Already

the lowest order implies nodes on the principal axes of the 1 Fe BZ on all pockets

and four additional nodes at the 1 Fe BZ diagonals on the hole pocket. Higher A2g

orders imply even larger numbers of nodes. The Eg symmetry can also be excluded

since for the quasi-2D FS centered around the ΓZ-line of the three dimensional 1 Fe

BZ, nodes would appear on all FSs in the z-direction at the (kx, ky, kz = 0) plane.

The 1st order of the A1g symmetry implies gap nodes on the electron sheets as

indicated in panel Fig. 2.8 (p). The 3rd order implies gap nodes on all pockets, if

the pockets are big enough, or is equivalent to the case of the conventional s-wave

gap for sufficiently small FSs5. Finally, the B1g symmetry implies nodes on the

hole-pocket at the 1 Fe BZ diagonals and can therefore also be excluded. This leaves

the possibilities of a conventional s-wave or an extended s-wave order parameter for

optimally doped Ba1−xKxFe2As2.

An alternative explanation of the superconducting pairing mechanism is in agree-

ment with the conventional s-wave (in the context of FeSCs also often referred to

as s++). It is based on orbital fluctuations, that is, for instance, the fluctuating

unequal occupation of the iron dxz and dyz orbitals, playing the role of the virtual

exchange particles [16, 104, 105] (see Sec. 2.3.3). On the other hand, the extended

s-wave order parameter (in the context of FeSCs also often referred to as s±) is in

agreement with a scenario relying on magnetic interactions. A model in which anti-

ferromagnetic spin-fluctuations mediate the attractive interaction between electrons

is also in agreement with the majority of (bulk-) experiments [12]. Therefore, a few

remarks on spin-fluctuation mediated pairing follow in the next section.

2.2.3 Pairing via magnetic interactions

The electron-phonon mechanism is not strong enough to explain the observed crit-

ical temperatures in FeSCs [107]. Therefore, electronic pairing mechanisms were

discussed to be responsible for the attractive interaction between the electrons in

these materials. While there are many candidates for electronic pairing, magnetic in-

5Some authors predicted the appearance of a small hole-like γ-pocket located at (π, π) for hole
doping [12]. If this pocket is involved in Cooper-pair formation, the 3rd order of the A1g symmetry
is not equivalent to the conventional s-wave case and may not be neglected.
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Figure 2.9: Illustration of the spin-spin QP interaction in a metal. Panel (a) depicts
the spin-spin interaction potential versus distance r produced by a test spin at rest in a
material on the border of long-range antiferromagnetic order. The interaction potential
shown oscillates between attractive and repulsive regions in space (spin-singlet state).
Panel (b) shows a graphical representation of the static magnetic interaction potential in
real space of a system on the border of antiferromagnetism as seen by a QP moving on
a square crystal lattice. The other QP is at the origin (denoted by a cross). The dashed
lines show the regions where the d-wave Cooper-pair state has vanishing amplitude. This
is the state that best matches the oscillations of the potential, in that a QP has minimal
probability of being on lattice sites when the potential induced by the QP at the origin
is repulsive. The size of the circle on each lattice site is a representation of the absolute
magnitude of the potential. Adapted from [106].

teractions were proposed early on [15], because, like in the cuprates or heavy-fermion

systems, the superconducting phase is found in close proximity to a magnetically

ordered phase. Magnetic interactions are operative in the superfluid phases of 3He

that has been identified to form a neutral spin-triplet p-wave condensate [108] and

they are discussed to be relevant for some heavy-fermion compounds [109] and the

cuprates [110].

The spin-spin quasiparticle interaction potential of a system close to an antifer-

romagnetic instability is illustrated in Fig. 2.9 (a). It has both attractive as well as

repulsive regions in space, but is, integrated over r, repulsive. The issue is whether

a Cooper-pair wavefunction can be constructed that has a large amplitude in the

regions where the interaction is attractive and a small amplitude elsewhere. The

spin-spin interaction potential oscillates between attractive and repulsive regions

with a period comparable to the lattice spacing, see Fig. 2.9 (b). The dashed lines

in Fig. 2.9 (b) show the regions where the d-wave Cooper-pair state has vanishing

amplitude. This state matches the oscillations of the potential, in that a QP has

smaller probability of being on lattice sites where the potential is repulsive. How-

ever, since available states for pairing are restricted to close proximity of the FS,

the pair-wave function must oscillate in space with the wavevector that connects the
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Figure 2.10: Pairing channels in FeSCs. (a) FS topology of the FeSCs with nesting vectors.
In this multiband superconductor one has to distinguish between intraband and interband
scattering processes. Of the latter, two scattering processes are special, because their
scattering vectors connect nested FSs. The nesting leads to a peaked spin susceptibility
[as indicated in the panels (b) and (c)], and thus to a pairing potential which is peaked at
the same positions. Therefore, the scattering processes with qs and qd are more effective
than the other ones and the system develops an order parameter which enables either the
interaction (d) [s±] or (e) [dx2−y2 ] to be attractive.

FSs associated with the paired QP [106].

The fact that, in the singlet channel6, spin fluctuation exchange can realize

only superconducting states having a sign-changing order parameter can also be

understood by looking at the form of the singlet interaction for AFM spin fluctua-

tions [12, 110]:

V (k,k′) =
3

2
Ū2χ(q)

RPA
=

3

2
Ū2 χ0(q)

1− Ūχ0(q)
(2.3)

where Ū is the screened Hubbard repulsion (Ū > 0), χ the spin susceptibility and

χ0(q) is the noninteracting susceptibility of the (continuum) Fermi gas, i.e. the

Lindhard function. Suppose that the susceptibility is strongly peaked near some

wave vector Q (for instance due to FS-nesting). This implies that V (Q) is also

peaked at this wave vector, but is always positive (repulsive). However, examination

of the BCS gap equation (2.1) shows that for this interaction an isotropic gap cannot

be a solution, but if the state changes sign,

∆k = −∆k+Q (2.4)

a solution will be allowed [12].

6Like the FeSCs, cuprates and heavy-fermion compounds are spin-singlet superconductors [12].
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In the case of a single FS, superconductivity driven by spin-fluctuations will

necessarily be nodal. This situation is probably realized in the cuprates, and possibly

in hole-overdoped KFe2As2. However, the majority of FeSCs are multiband systems

and a nodeless though sign-changing gap structure may be realized. As pointed out

in Sec. 2.1.2, the FS of the FeSCs is characterized by small concentric hole pockets

around the Γ point and slightly elliptical electron pockets around the M points.

Modeling these pockets in the simplest possible way, allowing for one hole and one

electron pocket, leads to a very simple generalization of the “standard” argument

for d-wave pairing in the cuprates [12,15].

In a weak-coupling picture, the nearly nested electron and hole pockets lead to

a spin susceptibility peaked strongly near qs = (π, 0) in the 1 Fe zone [Fig. 2.10 (b)

and (d)]. The gap equation (2.1) then admits a solution with the property (2.4) if

there is a sign change of ∆k between electron and hole pockets. However, there is

also a competing pairing channel because of the nesting vector qd= (π, π) between

the electron-pockets [Fig. 2.10 (c) and (e)]. In this case, the sign change of ∆k

occurs between the electron pockets. The lowest order symmetry associated with the

nesting vector qs=(π, 0), is the so-called s± symmetry, the lowest order symmetry

associated with the nesting vector qd=(π, π), is the dx2−y2 symmetry [cf. Fig. 2.8 (c)

and (h)]. It apparently depends on the nesting conditions, and thus on details of

the FS, which of the two pairing states can provide more condensation energy and

consequently is the ground state of the system. Theoretical studies [59, 111, 112]

find that s±-wave (A1g) and dx2−y2-wave (B1g) superconductivity both can occur in

multiband models of the pnictides, with the pairing strength or Tc of the s±-wave

state typically being larger.

2.2.4 Residual interactions and collective modes

The most rigorous description of collective excitations of the pair-condensate was

given by Bardasis and Schrieffer [20], using the RPA arguments of Anderson [113–

115]. Two types of collective excitations are involved in the theory: a bound pair of

QPs whose center-of-mass [(r1+r2)/2] propagates with momentum ~q deriving from

interactions between particles in states −k and k′ 6=k, and bound-pairs of QPs which

are formed by orthogonal components of the interaction potential V (k,k′). The for-

mer excitation has a symmetry such that it couples to the long range Coulomb forces

which shift its energy to the plasma frequency. Rickayzen [116] showed that this

collective excitation plays a crucial role for the gauge-invariance of the Meissner ef-
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Figure 2.11: Typical spectrum of Ra-
man scattering in a BCS supercon-
ductor with (solid line) and without
(dashed line) final-state interaction.
The square-root singularity is removed
by the attractive interaction between
the two excited single QPs and the
spectral weight is transferred into the
δ-like peak that signals the formation
of an L 6=0 pair (from [22]).

fect7. The second type of collective excitation is interpreted as an exciton-like bound

pair of QPs, which has a symmetry orthogonal to the symmetry of the Cooper-pairs

of the ground state and an energy which lies inside of the superconducting gap.

When a Cooper-pair is broken, this gives rise to two QPs which are excited from

the (initial) pair state to above the gap edge (final state) and are affected by those

parts of the interaction which are orthogonal to the ground state. Hence the residual

interaction is also referred to as final-state interaction (FSI). Bardasis and Schrieffer

expanded the interaction potential V (k,k′) into spherical harmonics and character-

ized the bound pairs in terms of the quantum numbers L and M involved in the

potential expansion. They showed that for a bound L-state (corresponding to the

p, d, f, . . . excitons) to exist, the L-wave part of the interaction potential V (k,k′)

must be non-zero on the FS. If the L-wave potential is repulsive, particle-hole pairs

are formed, as opposed to particle-particle pairs in case of an attractive L-wave

potential [20].

A detailed study of how the FSI modifies the Raman response of isotropic su-

perconductors was presented by Monien and Zawadovski [22]. Without the FSI, the

Raman spectrum exhibits a square-root singularity at ω=2∆, due to pair-breaking.

This square-root singularity is removed by FSI, and spectral weight is transferred

7This excitation is known as Anderson-Bogoliubov sound mode.
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Figure 2.12: Mech-
anism for Bardasis-
Schrieffer excitonic
modes. For details
and description see
text. µ
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into the δ-like peak that signals the breaking of an L=0 Cooper-pair and its recom-

bination in an L 6= 0 exciton (Fig. 2.11). The energy difference between the δ-like

peak and the gap edge reflects the relative strength of the residual interaction with

respect to the binding energy of the ground state. Moreover, it was shown that the

relative weights of the various L 6=0 channels in the Raman spectra are determined

by the polarization dependent selection rules. The effect of impurity scattering on

the excitons has been studied [117–120], and it has been shown that the presence

of impurities decreases the energy of the bound states causing them to move closer

to the gap edge. Additionally it was shown that the strength of the L 6= 0 excitons

diminishes rapidly with disorder [120].

The light scattering mechanism is shown schematically for an isotropic gap in

Fig. 2.12. Photons (hν) scatter from both unpaired electrons in the Bogoliubov QP

bands (left) and Cooper-pairs at the chemical potential µ (right) [121]. In either

case an energy of at least 2∆ must be invested, and an electron-hole pair and two

unpaired electrons are created, respectively. The two electrons, separated by 2∆,

which remain within a volume characterized by the coherence length ξ0 are affected

by the components of the interaction potential V (k,k′) which are orthogonal to

the pairing channel and form a bound state of energy Eb inside the gap. The δ-like

modes appear at Ωb = 2∆−Eb below the gap edge with Eb being the binding energy

of the BS exciton [21,22]. Eb is related to the coupling strength in the subdominant

channel via Eb/2∆ ≈ (Vd/Vs)
2.

Since theories that rely on spin-fluctuation pairing find that s-wave and d-wave

superconductivity are two competing instabilities in multiband models of the iron-

pnictides, with the s-wave instability winning the competition for the majority of

parameter sets, this raises the possibility that there could be an excitonic collective

mode formed by the subdominant d-wave pairing channel. It was pointed out that

such a mode with angular momentum L = 2 could be excited from an s-wave su-
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perconducting state by Raman scattering [13] and that the observation of the mode

would provide evidence that there is a pairing interaction in both the A1g and B1g

pairing channels, with the A1g interaction being stronger. This issue was addressed

theoretically by Scalapino et al., who calculated the Raman spectrum of a two-band

model of iron-based superconductors, considering the residual B1g pairing channel

and found a collective d-wave exciton mode that appears in B1g symmetry [17].

2.3 Nematic phase

FeSCs are investigated not only because of superconductivity but also for their

peculiar normal-state properties. Of particular interest is the so-called nematic

phase, a region of the phase diagram where the C4 symmetry is broken but the

O(3) spin-rotational symmetry is preserved. The interest in the nematic phase

derives from the assumption that the microscopic mechanisms behind nematicity

and pairing in FeSCs are intimately connected [30, 122]. In Ch. 6, inelastic light

scattering results on fluctuations of the nematic order in Ba(Fe1−xCox)2As2 will be

presented which allow for the determination of the microscopic origin of the nematic

phase in this compound. Therefore, this section contains a discussion of the nematic

state in FeSCs. After a brief introduction of the basic concept (Sec. 2.3.1), two

microscopic models for the origin of nematicity will be introduced in Secs. 2.3.2 and

2.3.3.

2.3.1 Nematicity and its relation to the pairing mechanism

The origin of the behavior of classical complex fluids lies in the microscopic structure

of the molecules, i.e. their anisotropic shapes and interactions. Upon cooling such

a classical liquid, it may enter a so-called nematic phase, a state of matter in which

the rotational invariance of the system gets broken spontaneously and the fluid

exhibits orientational order, without showing any long-range translational order (see

Fig. 2.13). In contrast, quantum versions of liquid crystal phases typically arise in

strongly correlated systems whose constituents are electrons and hence are point

particles. Thus the physical origin of quantum liquid crystal phases is very different

from that of classical ones. Nonetheless, one uses the term electronic nematic to

denote an electron fluid that spontaneously breaks a symmetry of the underlying

Hamiltonian which contains the symmetry of interchanging two axes of the system.

If the electrons exist in a solid, it is thus the point group symmetry of the host crystal
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Figure 2.13: Schematic representation
of a liquid crystal in the nematic
phase (left) and in the isotropic phase
(right). The average orientation is rep-
resented by the nematic order param-
eter (director) n. Taken from [124].

that is spontaneously broken. But still, as a characteristic feature of a nematic phase,

inversion, time-reversal and translational symmetries are conserved [123].

A realization of such a phase can be found in the phase diagram of FeSCs (the

dark purple shaded region in Fig. 2.6). The stripe spin-density wave order at T <Tm

with ordering vectors (0, π) or (π, 0) is often preceded by a phase with broken C4

tetragonal symmetry, signaled by a structural distortion and the development of

large anisotropies in several quantities such as dc resistivity [34,35], optical conduc-

tivity [85,125,126], local density of states [33] or orbital occupancy [32]. At the same

time, long-range magnetic order is still absent, and thus the O(3) spin-rotational

(and time-reversal) symmetry remains unbroken. This is by definition a nematic

phase. The phase transition lines Ts and Tm, which border the nematic phase, track

each other across all the phase diagrams of 1111 and 122 materials [48], even inside

the superconducting dome [127].

Early theoretical proposals suggested that the tetragonal-to-orthorhombic tran-

sition may be driven by electronic rather than structural degrees of freedom, since

the observed electron anisotropies turned out to be much larger than explainable by

a small structural distortion [30]. Two alternative scenarios for the nematic order

have been proposed. One is based on orbital ordering: it induces the structural

transition and triggers the magnetic transition at a lower temperature by renormal-

izing the exchange constants [128–138]. An alternative, magnetic scenario, relies

on anisotropic spin-fluctuations which break the rotational symmetry of the lattice

and, only upon further cooling down, the spin-rotational symmetry [30, 48]. This

leads to an intermediate phase with a broken tetragonal symmetry but no long-range

magnetic order. Orbital order is induced by the anisotropic magnetic fluctuations,

since Fermi pockets at (0, π) and (π, 0) are constituted by different orbitals.

The primary challenge is to distinguish which of the two order parameters that

become both non-zero simultaneously at the structural transition, is the primary

order parameter, that is, its fluctuations drive the nematic instability. The spin-
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nematic order parameter is defined by a static spin susceptibility which is different

along the qx and qy directions. In contrast, the orbital order parameter is defined,

for instance, by the unequal occupation of the dxz and dyz orbitals.

Answering this question might turn out crucial for the understanding of su-

perconductivity in FeSCs. If the transition at Ts is of electronic origin, then it is

probably driven by the same fluctuations that give rise to superconductivity and

magnetic order. The microscopic reasoning for either spin- or orbital fluctuation

mediated pairing as well as magnetic or orbital scenarios for electronic nematicity

follows from two different assumptions about the sign of the effective inter-pocket

interaction Vinter [30]. Repulsive inter pocket interaction, Vinter > 0, enhances spin

fluctuations and gives rise to both magnetism and nematicity. At the same time spin

fluctuations peaked at qx and qy support either unconventional s± superconducti-

vity, in which the gap has a different sign on the hole and on the electron pocket,

or dx2−y2 superconductivity, where the gaps on inequivalent electron pockets have

opposite sign [12,30,139]. On the other hand, an attractive inter-pocket interaction,

Vinter < 0, enhances orbital fluctuations peaked at qx and qy. This supports a su-

perconducting instability towards an s++ state, a conventional pairing state where

the gap function has the same sign on all pockets [30, 139]. Therefore, identifying

the driving force behind nematicity in FeSCs may also pin down the mechanism of

superconducting pairing in these materials, as each scenario for electronic nematicity

entails a particular superconducting pairing state [30, 140].

2.3.2 Spin-driven electronic nematicity

The content of this subsection largely follows the argumentation of two references by

Fernandes et al. [30,48]. Thereby an itinerant model is adopted in which the nature

of the so-called Ising-nematic phase has a clear interpretation in terms of magnetic

fluctuations. This interpretation is motivated by the observation that most Fe-based

superconductors exhibit stripe type magnetic order with ordering vectors qx =(π, 0)

or qy = (0, π), that is spins are parallel to each other along one direction and anti-

parallel along the other [141]. This order breaks not only the O(3) spin-rotational

symmetry, but it also breaks the 90◦ lattice rotational (C4) symmetry to 180◦ (C2) by

selecting the ordering vector to be either qx or qy [30]. The two degenerate magnetic

ground states8 |ψX〉 [Fig. 2.14 (a)] and |ψY〉 [Fig. 2.14 (b)] associated with qx and qy

are described by the magnetic order parameters MX and MY. In terms of these order

8Like in an Ising AFM where spins can point either up or down, hence the name “Ising-nematic”
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Figure 2.14: Spin nematic order in both real and momentum space. The system has two
degenerate stripe magnetic ground states (a) |ψX〉 and (b) |ψY〉 with ordering vectors qx =
(π, 0) and qy =(0, π). (c) Onset of nematic order in the paramagnetic phase in terms of the
magnetic susceptibility χ(q) across the first BZ. At high temperatures T�Ts, fluctuations
near the two stripe magnetic ordering vectors are equally strong, 〈M2

X〉 = 〈M2
Y〉. On

lowering the temperature, at Ts fluctuations associated with one of the stripe states become
stronger (in the figure 〈M2

X〉>〈M2
Y〉, stronger fluctuations around one ordering vector yield

stronger intensity and narrower peaks [48]) and the tetragonal symmetry is broken inside
the unit cell while at the same time spin rotational O(3) symmetry is not broken since this
phase transition occurs already above the magnetic ordering temperature Tm. Adapted
from [30].

parameters, the breaking of the O(3) symmetry implies 〈Mi〉 6= 0, while breaking of

the tetragonal symmetry implies 〈M2
X〉 6=〈M2

Y〉 and thus ϕ=〈M2
X−M2

Y〉 6=0 [30].

In a mean-field approach both O(3) and C4 symmetries are broken simulta-

neously at Tm. The instability towards stripe magnetic order is associated with

the divergence of the static spin susceptibility χmag(q). When the effective inter-

pocket interaction Vinter is positive (repulsive), the spin-susceptibility gets enhanced

as χmag(q) = χ0(q)/[1− Vinterχ0(q)], and at some T =Tm, χmag diverges. However,

including fluctuations of the nematic order parameter ϕ, yields [30]

χnem =

T
∑
q

χ2
mag(q)

1− gT
∑
q

χ2
mag(q)

(2.5)

where T is the temperature, g the nematic coupling constant and χmag is the

magnetic susceptibility.
∑

q χ
2
mag(q) diverges at Tm. Eq. (2.5) then shows that

the nematic susceptibility diverges at higher temperature Ts > Tm, namely when
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Figure 2.15: Evolution of the character of the magnetic and nematic transitions in the
spin-driven nematic theory. The inverse nematic coupling g acts as control parameter,
which changes as a function of doping, disorder, pressure and elastic coupling. Adopted
from reference [30].

gT
∑

q χ
2
mag(q) = 1, that is at sufficiently large but still finite magnetic correlation

length. Thus, fluctuations split the two transitions giving rise to an intermediate

phase at Tm<T <Ts, where the tetragonal symmetry is broken (ϕ 6=0) but the spin-

rotational symmetry is not (〈Mi〉 = 0) [48]. This is by definition a nematic order

which is driven by spin fluctuations of unequal strength in the qx and qy directions.

The nematic coupling strength g sets, if positive, the magnetic ground state of the

system to be of the stripe type. It is linked to the inter pocket interaction (g∝V 2
inter)

and its strength determines the character of the magnetic and nematic transitions

in the spin-driven nematic theory. The inverse nematic coupling g, which changes

as a function of various control parameters like pressure or doping, determines if the

phase transitions are first or second order (see Fig. 2.15). Eq. (2.5) is not limited to

the itinerant approach employed in [30] and [48] but emerges in a similar fashion from

any model of stripe magnetism, the only difference being the microscopic expression

for the nematic coupling g [30]. Moreover, Eq. (2.5) naturally ties the nematic and

magnetic transition temperatures over the entire phase diagram without fine-tuning

of parameters which provides a strong argument in favor of spin-driven nematicity.

In the Ising-nematic model the tetragonal to orthorhombic structural transition

is triggered by anisotropic spin fluctuations which also impose orbital order, because
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the Fermi pockets centered at (π, 0) and (0, π) have different orbital character. In

this scenario the orbital and Ising-nematic order parameters are linearly coupled via

〈∆Orb〉=ω/a〈M2
X−M2

Y〉, with a the tetragonal lattice constant and ω describing the

coupling strength [48], i.e., the development of one order triggers the development

of the other. The same reasoning also applies to the interplay between the Ising-

nematic and orthorhombic orders. Their order parameters are also linearly linked

via 〈εs〉= λsl/c
s
0〈M2

X −M2
Y〉, with λsl being the magneto-elastic coupling constant

and cs
0 the shear modulus. Note that the coupling to structural degrees of freedom

also renormalizes the nematic coupling constant as [48]

g̃ = g +
λ2

sl

cs
0

. (2.6)

Finally, the anisotropy in the spectrum of magnetic fluctuations leads to anisotropic

scattering of electrons, resulting in different in-plane resistivities along x and y

directions [142].

It is currently under debate whether the Ising-nematic and the structural tran-

sition occur at the same temperature or if the nematic order sets in at much higher

temperatures than Ts. Transport studies on detwinned crystals found a strong resis-

tivity anisotropy that emerges below the structural transition temperature Ts [34]

(which is also the temperature at which the orbital order arises). On the other hand,

recent magnetic torque [46], scanning tunneling spectroscopy [45] and inelastic neu-

tron scattering [143] experiments, also with detwinned crystals, suggest that the

nematic order sets in at higher T . This is as well possible within the Ising-nematic

model as the proportionally coefficient ω scales with the chemical potential µ (and

thus with doping) and is, generally, small. As a result, if the orthorhombic order is

induced by Ising-nematic order at T =Ts, the orthorhombic order parameter is ini-

tially small and may become visible only at some distance below the Ising-nematic

transition [48].

2.3.3 Orbital-driven electronic nematicity

The simplest model for orbital driven nematicity is very similar to the one introduced

above. The main difference is the sign of the interaction Vinter between electron and

hole pockets. If it is negative, the orbital susceptibility is enhanced rather than the

the spin susceptibility as χorb(q) = χ0(q)/[1 + Vinterχ0(q)] diverges at qx or qy at a

certain Torb. This divergence would signal the onset of an orbitally ordered state with

ordering vectors qx or qy corresponding to the order parameters WX and WY. Such
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(d)(c)

(b)(a)

Figure 2.16: (a) Antiferro-, (b) stripe- and (c) ferro-orbital ordered states possibly stable
together with a spin-stripe state in FeSCs [128]. (d) Only ferro-OO has been observed
experimentally within ARPES experiments [32].

an order breaks the translational symmetry and, like in the magnetic scenario, breaks

also an additional C4 symmetry if only one order parameter becomes non-zero.

Fluctuations could then as well split the temperatures at which the translational

and the C4 symmetries are broken, in a similar manner to Eq. (2.5). Then, in the

intermediate temperature range Torb<T <Tnem, the system spontaneously develops

an orbital order in which 〈W 2
X〉 6= 〈W 2

Y〉 while 〈WX〉 = 〈WY〉 = 0. A structural

distortion and the difference between 〈M2
X〉 and 〈M2

Y 〉 appear instantly once orbital

order sets in. However, in such a scenario magnetic order is not naturally linked to

nematicity [30,48].

It has been shown, starting from a strong-coupling viewpoint, that three different

types of orbital order (OO) could be realized accompanying the stable experimentally

observed spin-stripe state in FeSCs [128]. Those are the so-called antiferro-, stripe-

and ferro-orbital ordered states, depicted in Fig. 2.16 (a), (b) and (c), respectively.

Of these, only the latter two break the in-plane rotational symmetry, possibly giving

rise to nematicity.

Ferro-OO is the unequal occupation of the bands deriving from dxz and dyz

orbitals. An examination of Fig. 2.16 (c) reveals that there is no finite ordering vector

associated with ferro-OO, or in other words, its ordering vector is qferro
c = (0, 0).
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Ferro-OO has been experimentally detected within ARPES (Fig. 2.16 (d), [32]) and

X-ray linear dichroism (XLD) [144] experiments on detwinned Ba(Fe1−xCox)2As2

samples. The ARPES experiment finds a splitting of the originally degenerate dxz

and dyz bands occurring at the structural transition and having a magnitude of

approximately 60 meV. In addition, the electronic anisotropy seen in the orbital

degree of freedom is observed at temperatures well above the structural transition

in detwinned crystals, while orbital order is absent above Ts in samples where no

detwinning stress is applied. The XLD experiment confirms both, the existence

of ferro-OO below Ts and the OO-signal well above the structural and magnetic

transition temperatures in detwinned samples. Moreover, the presence of ferro-OO

can also explain the experimentally observed in-plane resistivity anisotropy [137].

Stripe-OO corresponds to the formation of zigzag chains of dxz and dyz orbitals

along the antiferromagnetically coupled spin-direction [Fig. 2.16 (d)]. Interestingly,

the stripes in the magnetic and orbital sectors have the same orientations and thus

exhibit an ordering vector qstripe
c =(0, π) equivalent with the SDW vector. Stripe-OO

is also the only one which would fit to the simple orbital driven nematic scenario

outlined above. However, stripe-OO is expected to lead to a displacement pattern

of the As ions, which can in principle be observed in X-ray diffraction experiments

and might even be directly visible within resonant X-ray diffraction at the iron K-

edge [128]. However, this has not been observed experimentally suggesting that

from the three possible orbitally ordered states shown in Fig. 2.16 (a)-(c), ferro-OO

is the one which is realized, at least in Ba(Fe1−xCox)2As2.



Chapter 3

Theory of electronic Raman

scattering

It is the purpose of this chapter to give a brief summary of the theoretical concepts

which are essential for the understanding of the experimental results and their im-

plications presented in this thesis. It is, however, not intended to give a pedagogical

introduction into Raman scattering. The reader who prefers a more detailed intro-

duction to the subject is referred to the review article by Devereaux and Hackl [19]

and references therein.

3.1 The Raman effect

Raman scattering is the inelastic scattering of (visible) light, in which an incident

photon characterized by (ki, ωi, ei) is scattered into another state (ks, ωs, es), thereby

transferring energy and momentum to a target material. During this instantaneous

process, which takes place within the time interval ∆t, the material makes a transi-

tion from an initial |I〉 to a final state |F 〉 via a (virtual) intermediate level |ν〉. If

|F 〉 is lower (higher) in energy than |I〉, the process is called an Anti-Stokes (Stokes)

process. Both cases are illustrated in Fig. 3.1 (a) and (b). Since the process must

satisfy energy and momentum conservation

~Ω = ~ωi − ~ωs (3.1)

~q = ~ki − ~ks, (3.2)

scattered photons exhibit a blue shift −~Ω (red shift ~Ω) with respect to the incident

33
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Figure 3.1: Anti-Stokes (a) and Stokes (b) process. In the former case, an excitation is
annihilated in the sample while in the latter case an excitation is created. The scattered
photon thus is blue- (red-) shifted with respect to the incident photon. ~ki (~ks) is
the momentum, ~ωi (~ωi) the energy and ei (es) the complex polarization vector of the
incident (scattered) photon. (c) Schematic Raman spectrum with contributions from
phonons (blue) and electrons (red) in the Anti-Stokes and Stokes channel. The intensity
of excitations in the Anti-Stokes channel is weaker by a factor of exp(−~Ω/kT ), see Sec. 3.3.
The peak at Ω = 0 (yellow) corresponds to elastic scattering of photons.

photons in an Anti-Stokes (Stokes) process. The low temperature Raman studies

presented in Chs. 5 and 6 show Stokes spectra, as on this side the intensity does not

decay exponentially with decreasing temperature.

3.2 Coupling to light via electrons

In a solid, inelastic scattering of light induces variations of the electronic charge den-

sity in the illuminated region of a sample which may lead to the creation of many

types of excitations. When high energy electron-hole pairs excited by the photons

couple to the conduction electrons of a metal the process is referred to as electronic

Raman scattering (ERS). The fraction of inelastically scattered light contains infor-

mation about the excitations, manifested in characteristic signatures in the Raman

spectrum. Such a spectrum is illustrated schematically in Fig. 3.1 (c). The sharp
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peaks (blue) correspond to optical phonons which sit on top of a continuum of

particle-hole excitations (red). Experimentally, Raman spectroscopy measures the

rate of photons with frequency ωi that are scattered into a solid angle interval be-

tween Ω and dΩ and a frequency window between ωs and dωs per second. This rate

is proportional to the differential light scattering cross section

Ṅ(ω, T ) ∝ ∂2σ

∂Ω ∂ωs
= ~r2

0

ωs
ωi
R, (3.3)

where r0 = e2/4πε0mc
2 is the Thomson radius of an electron, and R the transition

rate determined via Fermi’s golden rule,

R =
1

Z
∑
I,F

exp−βEI |MF,I |2 δ(EF − EI − ~Ω), (3.4)

with Z the partition function, β = 1/kBT and MF,I = 〈F |M |I〉 the transition

matrix element with the effective light scattering operator M which describes the

interaction between light and sample. The sum represents a thermodynamic average

over possible initial and final states with k vectors in the solid angle element dΩ of

the many-electron system having energies EI , EF , respectively.

A general expression for the matrix element MF,I for Raman scattering is found

considering a Hamiltonian for N electrons coupled to an electromagnetic field [145,

146]:

H =
N∑
i

[p̂i + (e/c)Â(ri)]
2

2m
+HCoulomb +Hfields, (3.5)

where p̂ = −i~∇ is the momentum operator, e is the magnitude of the elementary

charge, and c is the speed of light. Â(ri) is the vector potential of the field at ri

and m is the electron mass. HCoulomb represents the Coulomb interaction and Hfields

is the free electromagnetic part. Expanding the kinetic energy yields

H = H0 +Hfields +
e

2mc

∑
i

[p̂i · Â(ri) + Â(ri) · p̂i]︸ ︷︷ ︸
HI

+
e2

2mc2

∑
i

Â(ri) · Â(ri)︸ ︷︷ ︸
HII

, (3.6)

with H0 = (1/2m)
∑

i p̂2
i + HCoulomb the unperturbed Hamiltonian of the electron
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system. MF,I has contributions from either of the last three terms in Eq. (3.6). HI

couples the electron’s current to a single photon and HII couples the electron’s charge

to two photons. Let |α〉 denote eigenstates of H0 with eigenvalues Eα: H0 |α〉 =

Eα |α〉. Then, the general expression for the matrix elements of M = HI + HII in

second quantized notation1 reads [19]

MF,I = ei · es
∑
α,β

ρα,β(q) 〈F | c†αcβ |I〉

+
1

m

∑
ν

∑
α,α′,β,β′

pα,α′(qs) pβ,β′(qi)

×

(
〈F | c†αcα′ |ν〉 〈ν| c†βcβ′ |I〉

EI − Eν + ~ωi

+
〈F | c†βcβ′ |ν〉 〈ν| c†αcα′ |I〉

EI − Eν − ~ωs

)
. (3.7)

Here |I〉, |F 〉, |ν〉 represent the initial, final and intermediate many-electron states

having energies EI,F,ν , respectively. ρα,β(q) =
∫
d3rϕ∗α(r)eiq·rϕβ(r) = 〈α| eiq·r |β〉 is

the matrix element for single-particle density fluctuations involving states α, β and

the momentum density matrix element is given by pα,β(qi,s) = 〈α|p · ei,se±iqi,s·r |β〉.
The first term in the expression arises from the two-photon scattering term HII in

Eq. (3.6) in first-order perturbation theory. The remaining terms arise from the

single-photon scattering term HI in Eq. (3.6) in second -order perturbation theory

via intermediate states ν and involve different time-orderings of photon absorption

and emission. The p ·A coupling does not enter MF,I in first-order since the average

of the momentum operator is zero.

At this point, simplifying assumptions have to be made in order to evaluate the

matrix elements for Raman scattering in Eq. (3.7). In the following, the limit of

noninteracting electrons is discussed.

1The single-particle wave function and its conjugate are given by ψ(r) =
∑
α cαϕα(r) and

ψ†(r) =
∑
α c
†
αϕ
∗
α(r) with ϕ, ϕ∗ the eigenstates of the Hamiltonian H0. Electron states α, β

are created or annihilated by c†α, cβ , respectively, and the indices refer to the quantum numbers
associated with the state.
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3.3 Single-particle excitations and weak correla-

tions

Assuming that the intermediate many-particle states only differ from the initial and

final states by single-electron excitations, Eq. (3.7) can be simplified by replacing

Eν in the denominators by EI −Eβ′ +Eβ and EI −Eα′ +Eα in the first and second

terms, respectively, and using the closure relation
∑

ν |ν〉 〈ν| = 1. Commutator

algebra eliminates the four-fermion matrix element and

MF,I =
∑
α,β

γα,β 〈F | c†αcβ |I〉 , (3.8)

where

γα,β = ρα,β(q) ei · es +
1

m

∑
β′

(
psα,β′piβ′,β

Eβ − Eβ′ + ~ωi
+

piα,β′psβ′,β

Eβ − Eβ′ − ~ωs

)
. (3.9)

Now the Raman response [Eq. (3.3)] simplifies to a correlation function S̃ of an

effective charge density ρ̃,

∂2σ

∂Ω ∂ωs
= ~r2

0

ωs
ωi
S̃(q, iΩ→ Ω + i0). (3.10)

Here the Raman effective density-density correlation function is

S̃(q, iΩ) =
∑
I

e−βEI

Z

∫
dτ eiΩτ 〈I|Tτ ρ̃(q, τ)ρ̃(−q, 0) |I〉 , (3.11)

Tτ is the complex time τ ordering operator, and

ρ̃(q) =
∑
k,σ

γ(k,q) c†k+q,σck,σ. (3.12)

the effective charge density operator representing a weighed momentum average of

the charge density. Here c†k+q,σ and ck,σ are the creation and annihilation operators

of the electrons with spin σ and momentum k+q and k, respectively. The scattering

amplitude (or Raman vertex) γ(k,q) is determined from the Raman matrix elements

and polarization vectors of incident and scattered photons as

γ(k,q) =
∑
α,β

eαi γα,β(k,q)eβs . (3.13)
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Figure 3.2: Feynman diagram of the
polarization bubble. Wavy and solid
lines represent photonic and fermionic
propagators, respectively. γ denotes
the k-dependent Raman vertex.

γ γ

The Raman vertex is a 3×3 tensor from which elements are projected out according

to Eq. (3.13). The single tensor components read

γα,β(k,q) = δα,β +
1

m

∑
kν

(
〈k + q| pβs |kν〉 〈kν | pαi |k〉

Ek − Ekν + ~ωi

+
〈k + q| pαi |kν〉 〈kν | pβs |k〉

Ek+q − Ekν − ~ωs

)
(3.14)

with pαi,s = pαe±iqi,s·r the projected momentum operators.

Returning to Eq. (3.11) and noting that, in general, a correlation function

S̃AB(r, t) := 〈Â(r, t)B̂(0, 0)〉 of two observables Â(r, t) and B̂(r, t) is given in terms

of a susceptibility via the fluctuation-dissipation theorem χ′′AB(Ω) = (2~)−1(1 −
e−~Ω/kT )S̃AB(Ω) [147,148], S̃ can be written as

S̃(q,Ω) = − 1

π
{1 + n(Ω, T )} χ̃′′γγ(q,Ω), (3.15)

with n(Ω, T ) the Bose-Einstein distribution and

χ̃γγ(q,Ω) =

∫ 1/T

0

dτe−iΩτ 〈Tτ [ρ̃q(τ)ρ̃−q(0)]〉. (3.16)

Thus for noninteracting electrons the Raman response is given as a two-particle

effective density correlation function and can be calculated using, e.g., diagrammatic

techniques. The Feynman diagram which has to be evaluated in this case is shown

in Fig. 3.2. It describes the creation of electron-hole pairs within a single band.

The wavy and solid lines represent photonic and fermionic propagators (Green’s

functions) and the black squares correspond to the vertices γ depending upon the

incident and scattered photon frequencies.

Using the principle of detailed balance, SBA(−Ω) = e−~Ω/kTSAB(Ω), another

useful expression can be obtained: With Eqs. (3.3) and (3.11), in the important case

of small frequency shifts Ω�ωi, the intensities of scattered photons from a Stokes

and anti-Stokes process are connected as
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ṄAS

ṄST

= exp

(
− ~Ω

kT

)
. (3.17)

Eq. (3.17) can be used to determine the temperature of the laser spot. The ex-

ponential decay of the scattering intensity on the AS side was already shown in

Fig. 3.1 (c).

The charge fluctuations inside the unit cell created by light scattering are cou-

pled via the long range Coulomb interaction to charge fluctuations in other cells.

Therefore, screening effects have to be considered which reduce the scattering cross

section at small q. The general expression for the screened Raman response function

χscγ,γ can be written as [22,24]

χscγ,γ = χγ,γ +
χγ,1χ1,γ

χ1,1

+
χγ,1χ1,γ

χ2
1,1

χsc (3.18)

where χsc = χ1,1(1 − νqχ1,1)−1. In the expression, the subscript γ denotes the ef-

fective Raman density and 1 denotes the pure charge density, obtained when the

momentum-dependent vertex γ is replaced by a constant. The first term is the bare

response for a neutral system and the other terms represent the backflow needed to

enforce particle number conservation and gauge invariance. These terms are impor-

tant for light scattering configurations which transform according to the symmetry

of the lattice, such as A1g in D4h crystals. For crossed light polarizations projecting

out representations of lower symmetry than that of the lattice (for instance B1g and

B2g in a D4h crystal) backflow terms make no corrections to the Raman scattering

cross section [19].

3.4 Selection rules

The sum over the intermediate states kν in Eq. (3.14) includes states of the con-

duction band as well as states separated from the conduction band. Now the fact

can be used that the vertex γα,β(k,q) depends on polarization, but does not depend

sensitively on q for q � kF . In this case, matrix elements for transitions into the

conduction band are smaller by a factor of (νF/c
2) than the other terms and can be

neglected [145]. In addition, if one excludes resonant scattering by assuming that

~ωi,s � |εkν − εk|, the widely used effective-mass approximation

γα,β(k, q → 0) ∝ 1

~2

∂2εk
∂kα∂kβ

(3.19)
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Figure 3.3: Top: Schematic illustration of first order Raman vertices γµ for polarization
orientations transforming as µ=A1g, B1g and B2g for a D4h crystal. Bottom: γ2

µ gives
the weighing of the light-scattering transition. Taken from [150].

is recovered (see Appendix E in [149]). The Raman vertex is thus proportional

to the second derivatives of the conduction band εk projected by the polarization

vectors of incident and scattered photons2. Thus the curvature of the bands and

the orientations of the light polarizations determine which carriers close to the FS

are involved in the light scattering process in different regions of the Brillouin zone.

If a model band structure is available, which can be obtained, for instance, by a

tight-binding fit to a DFT band structure, details in the Raman response can be

traced back to specific portions of the FS.

However, even without detailed knowledge of the band structure, symmetry ar-

guments can be applied to gain insight into the types of excitations created by

incident photons. The polarization dependence of Raman scattering can be gen-

erally classified using arguments of group theory. The charge-density fluctuations

brought about by light scattering are modulated in directions determined by the

polarizations of the incident and scattered photons. Therefore, these density fluc-

tuations have a symmetry determined by the way in which the light is oriented. As

a result, the charge-density fluctuations obey the symmetry rules associated with

2In the experiment, eαi and eβs are usually chosen to point along the crystal axes of the system
under investigation. In cuprates or in iron-based systems, both having tetragonal crystal-structure
and a FS topology with quasi-2D character, one is often interested in the carrier dynamics in the
ab plane and kα,β are momenta pointing along the a or b axis of the crystal.
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the scattering geometry. The Raman matrix elements MF,I can be decomposed into

basis functions Φµ of the irreducible point group of the crystal [21, 22,151–153]

MF,I(q→ 0) =
∑
µ

MµΦµ, (3.20)

with µ representing an irreducible representation of the point group. Which set of

µ contributes to the sum is determined by the orientation of incident and scattered

polarization directions. For the D4h group of the tetragonal lattice, relevant for

cuprates and iron-based systems, the decomposition reads [19]

MF,I =
1

2
O
A

(1)
1g

(exi e
x
s + eyi e

y
s) +

1

2
O
A

(2)
1g

(ezi e
z
s)

+
1

2
OB1g(e

x
i e
x
s − e

y
i e
y
s) +

1

2
OB2g(e

x
i e
y
s − e

y
i e
x
s)

+
1

2
OA2g(e

x
i e
y
s − e

y
i e
x
s) +

1

2
O
E

(1)
g

(exi e
z
s + ezi e

x
s)

+
1

2
O
E

(2)
g

(eyi e
z
s + ezi e

y
s)

(3.21)

with the projected operators Oµ describing the light-matter interaction. Eq. (3.21)

connects the light polarizations ex,y,zi,s with the symmetry contributions to the matrix

element. The basis functions (e.g. crystal harmonics) of the D4h point group have

already been introduced in Sec. 2.2.1 (see Fig. 2.8). Since the Raman vertex γ(k, q →
0) has the same symmetry as the matrix elements [19] it can be expanded into the

same set of basis functions Φµ(k). A subset of D4h vertex components (A1g, B1g

and B2g) is shown in Fig. 3.3.

The scattering intensity is proportional to |MFI |2 and therefore the Raman re-

sponse is proportional to γ2(k, q → 0), displayed in Fig. 3.3. Considering the generic

FS of FeSCs (Fig. 2.2), it is evident that polarizations projecting out the A1g sym-

metry highlight the Raman response of excitations on the hole bands. The Raman

response of excitations on the electron pockets is obtained choosing polarizations

projecting out the B1g symmetry. On the other hand, since in the case of FeSCs

the B2g vertex component is sensitive in regions of the BZ where no bands cross the

Fermi-level, the Raman response in this channel is expected to be small.

From Eq. (3.21), one observes that in most cases the pure symmetries cannot be

accessed individually by a single set of polarizations, but that a linear combination of

two symmetries is obtained from most combinations of light scattering polarizations.

Fig. 3.4 summarizes all in-plane polarization combinations and the related obtained



42 3. Theory of electronic Raman scattering

x’x’

A1g + B2g

RL

B1g + B2g

xy

A2g + B2g

x’y’

A2g + B1g

RR

A1g + A2g

xx

A1g + B1g

+ + +

Figure 3.4: Scattering geometry of incoming (blue arrow) and scattered photons (red
arrow) and projected symmetries for the ab plane of an FeSCs. The red spheres mark the
position of the Fe atoms and the solid and dashed lines are the 1 Fe and 2 Fe unit cell (as
adopted from [150]).

symmetries. Using the linear combinations

IA1g = (1/3)[(xx+ x′x′ +RR)− (1/2) (xy + x′y′ +RL)],

IA2g = (1/3)[(xy + x′y′ +RR)− (1/2) (xx+ x′x′ +RL)],

IB1g = (1/3)[(xy + x′x′ +RL)− (1/2) (xx+ x′y′ +RR)],

IB2g = (1/3)[(xx+ x′y′ +RL)− (1/2) (xy + x′x′ +RR)],

(3.22)

the individual symmetry contributions are accessed. Thus, due to the dependence

of the light scattering rate on k, Raman scattering is one of the few spectroscopic

probes able to examine charge excitations in different regions of the Brillouin zone.

3.5 Finite correlations

In the following, inelastic light scattering in systems with electronic correlations

is shortly addressed. Interactions between electrons or electrons and lattice are

essential for the formation of the superconducting state and lead to a variety of

excitations in a solid which can be probed by electronic Raman scattering.

3.5.1 Normal state: particle-hole excitations

It was shown in Sec. 3.3 for weak correlations that to obtain the Raman response

function χ′′γγ for the creation of particle-hole excitations, one has to evaluate the

bubble-diagram depicted in Fig. 3.2. The electrons are, in this limit, described

by the so-called bare propagator, or Green’s function G0(k, z) = (z − ξk)−1 with

ξk = εk − µ denoting the bare electronic band dispersion εk minus the chemical
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Figure 3.5: (a) Diagrammatic representation of the Dyson equation. (b) Diagrammatic
representation of the Raman response function for the creation of particle-hole pairs,
involving interactions.

potential µ.

Correlations can be introduced perturbatively. The bare propagator is then

replaced by the renormalized propagator via the Dyson equation [154] G−1(k, z) =

G0(k, z)−1 − Σ(k, z) = z − ξk − Σ(k, z), which is illustrated in Fig. 3.5 (a). Σ =

Σ′+iΣ′′ denotes the electronic self-energy, its real and imaginary parts describing the

renormalization of the particle energy and the damping of the particle motion due to

interactions, respectively [154]. Moreover, vertex-corrections have to be introduced.

The general expression for the two-particle correlation function describing the non-

resonant Raman response reads [19]

χγ,Γ(q = 0, iΩ) = − 2

V β

∑
iω

∑
k

γ(k)G(k, iω)G(k, iω + iΩ) Γ(k, iω, iΩ). (3.23)

Similar expressions are obtained for χγ,1 and χ1,1 where the vertices γ and Γ are

successively replaced by 1 to be inserted into Eq. (3.18). The renormalized vertex

is given by a Bethe-Salpeter Equation:

Γ(k, iω, iΩ) = γ(k) +
1

V β

∑
iω′

∑
k′

V (k− k′, iω − iω′)

× G(k′, iω′)G(k′, iω′ + iΩ)

× Γ(k′, iω′, iΩ).

(3.24)

Here V (k, ω) is the generalized electron-electron interaction. The Feynman-diagram

which includes vertex- as well as the self-energy corrections to the Green’s functions

is shown in Fig. 3.5 (b). In the limit of weakly interacting electrons (V (k, ω) → 0,
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Figure 3.6: Top: Feynman diagrams which
describe the 3rd order perturbation cal-
culation of first-order Raman scattering
by lattice vibrations involving intermedi-
ate electron-hole pair states. The Raman
vertices are indicated by black squares,
the electron-lattice vertex is represented by
an empty circle and the dotted line rep-
resents the phonon. (a) shows the elec-
tron contribution and (b) the hole con-
tribution. Adapted from [156]. Bottom:
Direct (c) and crossed (d) diagrams for
the fluctuation contribution to the Raman
response. Black squares indicate Raman
vertices while the electron-fluctuation ver-
tices are represented by full circles. Here
the dashed lines correspond to fluctuation-
propagators. Adapted from [157].
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Σ→ 0) one obtains

χ′′γ,γ(Ω) =
2

V

∑
k

γ2(k)

∫ ∞
−∞

dω

π
G′′(k, ω)G′′(k, ω + Ω)

× [f(ω)− f(ω + Ω)].

(3.25)

which corresponds to the bare bubble diagram (Fig. 3.2). In a multiband system,

contributions of individual bands must be added up. The effect of the long range

Coulomb interaction is treated formally in the same way as in Eq. (3.18). However,

Coulomb-coupling between the bands introduces mixing terms in channels that have

the full lattice symmetry [155].

3.5.2 Normal state: higher order diagrams

There are also contributions to the inelastic light-scattering cross-section, that derive

from higher order processes than self-energy corrections to the fermionic propagators

and vertex renormalizations. Prominent examples are light-scattering from optical

phonons or two-magnon scattering which always happens via the intermediate cre-

ation of particle-hole pairs through the Raman vertex. The former scattering process

is shown in Fig. 3.6 (a) and (b).

A process which is of particular interest for this thesis is the inelastic light-

scattering from charge- and/or spin-fluctuations, represented by the direct (c) and
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crossed (d) Aslamazov-Larkin (AL) diagrams in the lower part of Fig. 3.6. Particle-

hole pairs scatter via the exchange of two fluctuations with opposite momenta q

and −q, hence preserving qtot = 0, and thus opening up an additional channel

for the Raman response. The three fermion matrix elements (solid triangles in

the diagrams) introduce new selection rules which can be used to identify the wave-

vector of the order associated with the fluctuations. This matter is further discussed

in chapter 6.

3.5.3 Superconducting state

In the superconducting state the Raman response is given by generalizing Eqs. (3.23)

and (3.24) in particle-hole space using the Pauli matrices and Nambu notation [158]

χγ,γ(q = 0, iΩ) = − 2

V β

∑
iω

∑
k

Tr
[
γ̂(k) Ĝ(k, iω) Γ̂(k, iω, iΩ) Ĝ(k, iω + iΩ)

]
(3.26)

where Tr denotes the trace, and

Γ̂(k, iω, iΩ) = γ̂(k) +
1

V β

∑
iω′

∑
k′

Vi(k− k′, iω − iω′)

× τ̂i Ĝ(k′, iω′) Γ̂(k′, iω′, iΩ)

× Ĝ(k′, iω′ + iΩ) τ̂i.

(3.27)

Here the bare Raman vertex of coupling to charge is γ̂ = τ̂3γ and the interaction Vi

determines the channel of the vertex corrections. For example, Vi=3 corresponds to

interactions coupling to electronic charge, while Vi=0 corresponds to spin interactions

[19]. In the BCS approximation and for singlet pairing, the matrix Green’s functions

appearing in Eqs. (3.26) is given by

Ĝ(k, iω) =
iωτ̂0 + ε(k)τ̂3 + ∆(k)τ̂1

(iω)2 + E2(k)
(3.28)

with E2(k) = ξ2(k)+∆2(k) the QP energies, ξ(k) the band dispersion and ∆(k) the

energy gap. In addition, in the weak-coupling limit Vi=3 =−V applies for phonon

mediated pairing.

Neglecting vertex corrections and taking the limit q → 0, the Raman response

in a superconductor with n bands crossing the Fermi level is obtained by evaluating

the Matsubara frequency sum in Eq. (3.26) yielding
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χγγ(Ω) =
∑
n

∑
k

γ2
n(k)λn(k,Ω) (3.29)

where

λn(k,Ω) = tanh

(
En(k)

2kBT

)
4|∆n(k)|2/En(k)

4En(k)− (~Ω + iδ)2
(3.30)

is the Tsuneto-Maki function for the nth band. Neglecting band-structure effects

and assuming circular FSs, the imaginary part of the expression for the response at

T = 0 can be transformed into [159]

χ′′γγ(Ω) = 4π
∑
n

〈
γ2
n(k)|2∆n(k)|2

Ω
√

Ω2 − |2∆n(k)|2

〉
, (3.31)

where Ω > |2∆n(k)| and 〈...〉 denotes an average over the FS sheet n. Eq. (3.31)

can be used to fit the experimentally obtained spectra of a multiband system. Using

Raman vertices either obtained due to an effective-mass approximation [Eq. (3.19)]

or an expansion in BZ harmonics, the only relevant physical parameters that are

varied to achieve the best agreement with the data are k-dependent gaps ∆n(k)

for each FS. However, including backflow is not straight forward for a multiband

system. In case of a single band the full response is once again given by inserting

Eq. (3.31) into Eq. (3.18). In multiband systems where the bands are coupled by

the long-range Coulomb interaction, mixing terms appear in channels which have

the full lattice symmetry (like the A1g channel in D4h crystals) and have therefore

to be taken into account [155].



Chapter 4

Experiment

In electronic Raman scattering experiments, approximately one out of 1013 incom-

ing photons is scattered inelastically per second, meV bandwidth and steradian [19].

The already low scattering cross section is reduced further in metals or supercon-

ductors due to the small light-matter interaction volume (penetration depth). Pho-

tons which have lost energy by breaking Cooper-pairs in iron-based materials, for

instance, are as rarely detected as one every few seconds. Here, the Raman setup

allowing for the detection of inelastically scattered photons with extremely low scat-

tering rates is briefly described.

4.1 Incident light path

Fig. 4.1 shows a schematic drawing of the experimental setup. As light source either

a continuous wave Ar+ laser (Coherent Innova 304C, 6 discrete wavelengths between

457.9 nm and 514.6 nm are available) or a Nd-YAG diode-pumped solid state laser

(Klastech Scherzo, λ= 532 nm) can be selected via a removable mirror (M1). The

beam emitted by the solid state laser has a smaller beam diameter (∅ = 800 µm)

than that of the Ar+ laser (∅ = 1600 µm). This mismatch must be corrected by

a two-achromat system [L1, f1 = 30 mm and L2, f2 = 60 mm] sharing a common

focal point. The correction is necessary due to the light-path being adjusted to the

diameter of the Ar+ laser beam.

A pinhole system (PH1), consisting of two achromats and a circular aperture

(∅ = 30 µm) serves as spatial filter, removing divergent components of the laser

beam. Moreover, large portions of light originating from the other allowed transi-

tions in the plasma are suppressed. The remaining plasma line intensity is blocked

by a prism monochromator (PMC), which disperses the laser light, projecting it onto

47
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Figure 4.1: Schematic drawing of the Raman experiment. For details and description see
text. Adapted from [160].

a slit where only monochromatic light of a selected wavelength can pass, thus sup-

pressing plasma lines which differ by more than 30 cm−1 from the laser line. Plasma

lines which can not be blocked by the PMC are blocked by a second spatial filter

(PH2) which consists of two achromats and a slit (S2) which is adjustable perpen-

dicular to the dispersion direction of the PMC. The intensity of the pre-polarized

laser beam is controlled by rotating its polarization with a λ/2-plate with respect to

the desired polarization chosen with a Glan-Thompson polarizer (P). The resulting

laser power is quantified via a digital laser power meter (PM).

The polarization of incoming photons is prepared via the combination of the

Glan-Thompson polarizer and a Soleil-Babinet compensator (SBC) which facili-

tates independent control over polarization and phase of the light, thus allowing

the preparation of any desired polarization state. The capability of doing so is of

vital importance as in a Raman experiment it is crucial to control the polarization

state of the incident light after transmission into the sample. Since the polarization

inside the sample matters, the change of the polarization upon entering the metallic



4.2 Cryogenic environment 49

samples must be anticipated1.

The spatial filter PH3 with a small circular aperture (∅= 10 µm) removes self-

interference effects introduced by the polarizer and/or compensator and provides a

Gaussian beam profile2. Finally, the beam is focused on the sample surface with the

achromatic lens L8 after transmitting through the optical window of the cryostat.

4.2 Cryogenic environment

The sample is mounted on the cold finger of a cryogenically pumped 4He flow cryostat

providing a vacuum of better than 10−6 mbar and an accessible temperature range of

1.8 K≤T ≤340 K. The temperature of the sample-holder is measured via a Si-diode.

Incident and scattered photons enter and leave the cryogenic environment via two

optical windows. A detailed description of the cryostat can be found in Ref. [161].

Before the sample is mounted, the orientation of the crystal-axes must be deter-

mined via a Laue experiment. If one is interested in the carrier dynamics regarding

certain directions in a material, the crystal axes must be adjusted properly with

respect to the scattering geometry and the light polarizations. For instance, in

cuprates and FeSCs which have quasi 2-dimensional FSs one is interested in the

carrier dynamics within the CuO2 and (1Fe-) FeAs planes. Raman scattering pro-

vides this kind of information via the selection rules. However, the polarizations

of incident and scattered photons have to exhibit certain geometries with respect

to the ab plane of the D4h crystal. Controlling the polarizations is thus simplified

by mounting the sample in a way that the crystal a and b axes match the x and y

directions of the laboratory system.

The scattering geometry is shown schematically in Fig. 4.2. Panel (a) shows an

example in which the incident photons exhibit a polarization pointing along the

x-axis of the laboratory system, while from the inelastically scattered light only

photons exhibiting a polarization pointing along the y-axis of the laboratory system

are chosen by the analyzer. According to panel (b), which displays a properly ad-

justed sample with the orientation of a generic FeAs plane matching the xy plane

of the laboratory system, this scattering geometry will project out the A2g and B2g

symmetry components of the Raman response function as discussed in Sec. 3.4.

In the experiment the incident beam encloses an angle of 66◦ with respect to the

1A thorough introduction into the preparation of the polarization state with the above men-
tioned optical components can be found in [160].

2PH4 uses a microscope objective lens (O1) instead of an achromat, as this provides a diffraction-
limited focal point.
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Figure 4.2: (a) Sketch of the scattering geometry, involving a set of polarization orienta-
tions of incident and scattered photons. (b) Orientation of the crystal axes of the sample
with respect to the scattering geometry. Adapted from [160].

surface normal of the sample, which is close to the pseudo-Brewster angle and thus

minimizes the intensity of specularly reflected light polarized parallel to the plane

of incidence. The remaining part of this light does not enter the objective lens (O2)

and is absorbed by a beam stopper. The portion of the light which was scattered

inelastically is collected by the objective lens (O2) and focused on the entrance slit of

the spectrometer. This geometry guarantees a minimum of elastically scattered light

entering the spectrometer. However, it can cause contributions of symmetries which

are projected out by polarization combinations where the incident beam is polarized

parallel to the crystallographic c-axis. In a D4h crystal, this leads to contributions

of phonons with Eg symmetry in x′y′, yy, yx, RR and RL scattering geometries.

However, the contributions to the electronic continuum are expected to be small in

materials with quasi 2-dimensional FS topology.

4.3 Detection of scattered photons

Before the Raman light enters the spectrometer, the polarization of scattered pho-

tons is selected by the combination of a λ/4 retardation plate and an analyzer (A).

For linear polarizations of scattered photons one does not need the retardation plate

and simply adjusts its fast or slow axis parallel to the transmission axis of the an-

alyzer. Circular polarizations can be selected only with the fast or slow axis of the
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Figure 4.3: (a) 3D and (b) 2D illustration of the double monochromator used for the
Raman measurements.

λ/4-plate being rotated by 45◦ with respect to the direction selected by the analyzer.

The λ/2-plate positioned after the analyzer facilitates the rotation of the selected

linear polarization to the x-axis of the laboratory system, which is the direction of

maximal transmission of the spectrometer.

The spectrometer is a Jarrell-Ash 25-100 double monochromator with the grat-

ings mounted in Czerny-Turner configuration as illustrated in Fig. 4.3. The two

monochromator stages are symmetrically coupled and each have a focal length of

1 m. Light entering the first stage of the spectrometer through the entrance slit (S4)

is collimated by the first spherical mirror (Sp1) and reflected as a parallel beam on

the grating G1. The dispersed light is then collected by a second spherical mirror

(Sp2) which projects the dispersed beam on the intermediate slit (S5) selecting a

small frequency band for the transmission into the second stage of the spectrom-

eter. The second stage reverses the dispersion of the frequency band which was

introduced in the first stage and produces a real image of the intensity distribution

of light at S4 on the exit slit of the spectrometer (S6). However, the image is created

exclusively by photons within the energy interval chosen by the position and width

of the intermediate slit S5. Thereby, the spectrometer acts as an effective band pass

filter.

The fraction of inelastically scattered light which passes the double monochro-

mator is subsequently focused by an achromatic lens (L9) and a camera objec-

tive (O3) on a cryogenically cooled CCD detector (Princeton Instruments, Py-

LoN:100BR exCelon). The spectra are acquired point by point with the CCD chip

acting as a single channel detector. The measured quantity is the scattering rate Ṅ



52 4. Experiment

integrated within the dwell time as a function of energy ωs of the scattered photons.

The intensity is then plotted versus the transmitted energy Ω=ωi−ωs, usually given

in wavenumbers (cm−1). This energy unit is related to the more common unit eV

via

ν̃ =
1

λ
=

E

h · c
= 8065.54 cm−1eV−1 · E. (4.1)

The measured spectra need to be corrected for the sensitivity of the experimental

setup and the selected width of the entrance slit of the spectrometer (S4). Crucial

parts like the gratings or the CCD sensor have characteristic efficiencies which vary

over a wide frequency range. A calibration yields the transmission coefficient T (ωs)

of the entire setup, which can be found in Ref. [150].

All spectra shown in this thesis are presented in units of counts per second

and Milliwatt (counts s−1 mW−1) if not indicated otherwise. They are corrected

for the response of the instrument and divided by the Bose-Einstein thermal factor

{1+n(Ω, T )} yielding the Raman response function Rχ′′γγ(Ω, T ) (see Sec. 3.3). Here,

R is a constant absorbing effects of experimental details such as sample surface

quality, scattering geometry, et cetera.

4.4 Samples

The optimally doped Ba0.6K0.4Fe2As2 single crystals used in the experiment were

grown with the self-flux method. The X-ray diffraction patterns taken on these

samples show only [00l] peaks which is a sign for very good crystallinity. Specific

heat measurements reveal a residual coefficient γ0 of about 1 mJ/mol K2, indicat-

ing very clean samples. The resistivity curve shows a very sharp transition to the

superconducting state, starting at about 39.0 K, and ending at about 38.5 K, sug-

Tc ∆Tc Ts Tm reference sample ID
Ba0.6K0.4Fe2As2 39 K 0.25 K - - [162] #100805a1
Ba0.6K0.4Fe2As2 39 K 0.25 K - - [162] #100909a1
Rb0.8Fe1.6Se2 32 K 1.50 K - - [163] #111029
BaFe2As2 - - 134 K 134 K [29] #100310a1
Ba(Fe0.975Co0.025)2As2 - - 102.8 K 98 K [29] #131028a1
Ba(Fe0.949Co0.051)2As2 18 K 1.00 K 52 K 37 K [29] #100121a1

Table 4.1: Table of the studied samples, with the corresponding superconducting transition
temperatures Tc and widths ∆Tc, structural and magnetic transition temperatures Ts and
Tm, respectively, reference and sample ID.



4.4 Samples 53

gesting very homogeneous doping. Further details about the preparation and the

characterization can be found in Ref. [162].

Rb0.8Fe1.6Se2 single crystals were prepared by the Bridgman method. The prepa-

ration and characterization details of the samples investigated here are given in

Ref. [163]. Polycrystalline FeSe synthesized from high-purity elements (99.98 % Fe

and 99.999 % Se and 99.75 % Rb) were used as starting materials. Handling of the

reaction mixtures was done in an argon box with residual oxygen and water con-

tent of less than 1 ppm. The composition of the grown samples was determined by

wavelength dispersive spectroscopy (WDS) using the electron probe micro-analyzer

(EPMA) Cameca SX50 with an accuracy of 0.5 % for Fe and 1 % for Se. The sharp

superconducting transition with an onset temperature of 32.4 K was demonstrated

by susceptibility and specific heat measurements. Recently, evidence was reported

that Rb0.8Fe1.6Se2 is a system with macroscopically phase-separated antiferromag-

netic insulating and metallic (superconducting) layers [164–166]. However, both the

well defined Q vectors of the spin resonance in neutron scattering [167] and the se-

lection rules in our light scattering experiments show that the different layers have

equivalent crystallographic orientations.

The single crystals of undoped and electron-doped Ba(Fe1−xCox)2As2 were grown

using a self-flux technique and have been characterized by Chu et al. [29]. The cobalt

concentration was determined by microprobe analysis. As shown in the phase dia-

gram (Fig. 2.6), the material exhibits a structural and a magnetic phase-transition.

The corresponding critical temperatures, Ts and Tm, are close to 134 K in the un-

doped case and cannot be distinguished. Co-doping increases the temperature-gap

∆T between the two transitions, which at nominally x=0.025 doping has already a

magnitude of approximately ∆T =5 K, becoming as large as ∆T =15 K for x=0.051

Co-doping. Transition temperatures, references and sample IDs of all studied sam-

ples are summarized in table 4.1.
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Chapter 5

Evidence of near-degenerate

pairing channels in FeSCs

The following chapter summarizes inelastic light-scattering results which provide

insight into the interaction potential V (k,k′) of FeSCs. Sharp modes in the Raman

response of optimally doped Ba1−xKxFe2As2 are interpreted as spectroscopic fin-

gerprints of Bardasis-Schrieffer excitons. Their observation allows the identification

of a strong subdominant component of the interaction potential. The chapter also

contains a proposal on how the dominant and subdominant components of V (k,k′)

may evolve across the generic phase diagram of FeSCs. The proposed scenario is

then tested against earlier results. Parts of this chapter have been published in

Ref. [168].

5.1 Experimental results

This section contains inelastic light scattering results on the superconducting states

of the hole-doped iron-pnictide BaFe2As2 and the iron chalcogenide Rb0.8Fe1.6Se2.

Across the hole-doped side of the generic phase diagram (see Fig. 2.6), only the

optimally doped Ba0.6K0.4Fe2As2 was available for experiments.

5.1.1 Experimental results: Ba0.6K0.4Fe2As2

Fig. 5.1 shows Raman spectra measured in the normal and superconducting states

of Ba0.6K0.4Fe2As2. Normal state spectra (light blue), were taken at 45 K, well above

the superconducting transition temperature Tc. Spectra taken in the superconduct-

ing state (dark blue) were obtained at 8 K. Spectra plotted with full lines in panels

55
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Figure 5.1: Normal
and superconduct-
ing Raman spectra of
Ba0.6K0.4Fe2As2 at tem-
peratures as indicated.
The spectra plotted with
full lines in panel (a) and
(b) are measured with
a resolution of 6.5 cm−1

whereas the spectra in
panel (c) and the spectra
displayed with orange
points are measured with
a resolution of 4.7 cm−1.
The insets show the
correspondence between
light polarizations and
sensitivities in momentum
space for the 1 Fe unit
cell.

A1g

B2g

B1g

(a) and (b) are measured with a resolution of 6.5 cm−1 whereas the spectra in panel

(c) and the spectra displayed with orange points are measured with a resolution of

4.7 cm−1. As indicated in the insets of the figure which depict the Raman vertex,

panels (a), (b) and (c) show the A1g, B2g and B1g Raman response, respectively. As

discussed in Sec. 3.4, the different symmetries project out different high-symmetry

domains of the 1 Fe BZ (cf. Sec 3.4).

The sharp structures at 185 cm−1 and 215 cm−1 in A1g and B2g symmetry, which

broaden below Tc, correspond to the A1g(As) and the B1g [2 Fe cell notation] (Fe)

lattice-vibrations, respectively. Due to a finite projection of the polarization vectors

of the incident laser-light on the crystallographic c-axis (see Sec. 4.2), the Eg (Fe,As)

phonon is visible at 125 cm−1 in both the A1g and B2g spectra [169]. The strength of

electron-phonon coupling in FeSCs has been addressed by several authors [170–173]

and is generally found to be too weak to account for the high transition temperatures

of these materials [107].

Figure 5.2 displays the B1g (Fe) phonon at 215 cm−1 in the normal (light blue)
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Figure 5.2: B2g phonon soften-
ing. The phonon has an al-
most Lorentzian shape and its
linewidth broadens by approxi-
mately 2.5 cm−1 upon cooling from
the normal (light blue) to the su-
perconducting state (dark blue).
The phonon softening is less than
2 cm−1. These findings are com-
patible with weak electron-phonon
coupling.

and the superconducting state (dark blue). For a phonon near the pair-breaking

threshold 2∆, the linewidth is predicted to grow due to the enhancement of the

density of states at the gap edge, and there can be either pronounced softening or

hardening depending on which side of the threshold the phonon is located [174].

In the present case the linewidth-broadening upon cooling to the superconducting

state is clearly visible, but does not exceed 2.5 cm−1 (FWHM). No substantial shift

or change of symmetry is observed. A close look reveals that the phonon softens

slightly by less than 2 cm−1 and the phonon line shape remains almost a Lorentzian,

compatible with weak electron-phonon coupling.

We now focus on the spectroscopic imprints of superconductivity on the elec-

tronic continua. These imprints are observed, against expectation, in all symme-

tries. Below a symmetry independent threshold of approximately 25 cm−1 the re-

sponse in the superconducting state is very small and nearly energy independent.

Although the intensity is not exactly zero it is safe to conclude that there is a full

gap on all bands having a magnitude of at least 0.9 kBT c. The spectral weight

which is removed by the opening of the superconducting gap is shifted to the higher

energy part of the spectra. Excess intensity can be found between 160 cm−1 and

265 cm−1 in A1g , between 170 cm−1 and 340 cm−1 in B2g and between 130 cm−1

and 195 cm−1 in B1g symmetry. The important secondary structures of the spectra

between the minimal and the maximal gaps are better resolved in the difference

spectra ∆Rχ′′ = Rχ′′(Ω, 8K)−Rχ′′(Ω, 45K) plotted in Fig. 5.3. In this way, the

redistribution of spectral weight as a consequence of the superconducting transi-

tion is highlighted and the contributions from phonons are by and large subtracted

out. Only the Fe vibration at 215 cm−1 in the B2g spectrum (B1g phonon in the

crystallographic cell) has an anomalous intensity for its proximity to the gap edge.

The anomalous phonon contribution to the spectrum is truncated in Fig. 5.3. Both
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Figure 5.3: Dif-
ference between
superconducting
and normal-state
spectra. In B2g

symmetry (green),
the phonon at
215 cm−1 is trun-
cated for having
a higher intensity
below Tc.

the A1g and B2g spectra have edge-like onsets above approximately 150 cm−1 before

reaching distinct maxima at 190 and 210 cm−1, respectively, and decaying slowly

towards higher energies. The shapes of these features are characteristic for fairly

isotropic superconducting gaps [19]. The observation of such a pair-breaking peak

in the A1g channel suggests that a gap opens up on one of the central hole pockets.

This is in agreement with ARPES results, which find a large gap on the inner hole

pocket.

In B2g symmetry, the observation of a pair-breaking feature is unexpected. The

absence of Fermi sheets in the regions which are marked in green color in the insets

of Fig. 5.1, implies that a gap feature in this symmetry is at odds with the selection

rules. Since the feature is strong, it is difficult to justify this observation by the fact

that the outer hole (β) band has a large Fermi momentum kF (β) at which the B2g

vertex reaches already 20% of its maximum. This applies in particular considering

that ARPES finds the gap on this outer hole-pocket to be much smaller. It is,

however, possible to explain the observed feature when the backfolding of the 1 Fe

cell band structure in the crystallographic 2 Fe cell is considered, see Sec. 5.2.

A look to the lower energy part of the spectra reveals a shoulder at approximately

80 cm−1 in all symmetries. Since the outer hole-pocket is located in a region of the

BZ where all vertices have finite values, the shoulder could be due to a small gap

on this FS which is in line with the results of ARPES experiments [64,89,175].

The B1g Raman response (red curve in Fig. 5.3) exhibits three narrow features

at 72 cm−1, 140 cm−1 and 175 cm−1, the narrowest being the one at 140 cm−1. While

the signatures in A1g and B2g symmetry are broad and asymmetric, as expected for a

coherence peak [19,22], the features in B1g symmetry are too sharp (even though not

resolution limited) and symmetric, to account for ordinary pair-breaking. Phonon
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A1g

B1g

Figure 5.4: Comparison
of the spectra of two dif-
ferent single crystals of
Ba0.6K0.4Fe2As2 (raw data).
Without adjustment all in-
tensities coincide, except for
the two prominent modes in
B1g diminishing considerably.

enhancement or enhancement of defect induced vibrational modes due to a coupling

to the redistribution of QP excitations below Tc are not likely to be responsible for

the observed peaks.

A phonon-enhancement, as observed in multilayer Hg-based cuprates [176], is

attributed to self-energy effects. However, in the cuprates the enhanced phonons

are already visible above Tc and, in some cases, show a strong asymmetry due to

the Fano effect. There are no lines above Tc in the B1g response of Ba0.6K0.4Fe2As2

and the new modes are symmetric.

After excluding phonons it is sensible to interpret the sharp structures in the

(1 Fe) B1g Raman response in terms of signatures of the superconducting state.

The observation of sharp and symmetric modes is compatible with scattering from

exciton-like pairs of QPs bound by residual interactions in the pairing potential,

which have been introduced in Sec. 2.2.4. The appearance of such excitations de-

pends intimately on the polarization geometries of incident and scattered photons

and on the given FS topology, just as it is the case for the pair-breaking signatures of

ordinary Cooper-pairs. A detailed discussion of this matter can be found in Sec. 5.2.

It depends crucially on the quality of the used single-crystals, if the observation

of the excitonic modes is possible or not since the modes get considerably damped by

impurity scattering [120]. A comparison between spectra of two single crystals from
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Figure 5.5: Normal and
superconducting Raman
spectra of Rb0.8Fe1.6Se2 at
temperatures as indicated.
The insets show the cor-
respondence between
light polarizations and
sensitivities in momentum
space for the 1 Fe unit
cell.

A1g

B2g

B1g

1Ag

2Ag

3Ag

1Bg

2Bg

3Bg
4Bg

the same batch is shown in Fig. 5.4. The spectra are well reproducible concerning the

overall intensity and the major part of the spectral shape. A closer look reveals small

differences. The phonon line at 180 cm−1 [Fig. 5.4 (a)] and the superconductivity-

induced structures at 140 and 170 cm−1 [Fig. 5.4 (b)] are a little more pronounced

in sample 1 than in sample 2 indicating a slightly smaller impurity concentration

in sample 1. This shows that very small changes in the impurity concentration are

probably enough to suppress the collective modes. The Figs. 5.1 and 5.3 show the

results from sample 1.

5.1.2 Experimental results: Rb0.8Fe1.6Se2

It was pointed out in section 2.1.1 that Rb0.8Fe1.6Se2 crystals belong to a different

space group than the 122-family of pnictides. While the latter have D4h symme-

try, the selenide compounds exhibit the lower C4h symmetry, which is important

for the symmetry assignment of phonons. Since the investigation focuses on the
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39

Figure 5.6: The dif-
ference spectra high-
light the absence of
pair-breaking in B2g

and most likely also
in A1g symmetry.
Only the B1g spec-
tra show the fea-
tures typical for a
superconductor.

electronic properties (in particular the superconducting energy gap) of the sample,

the polarizations of the incident and scattered light in the experiment were chosen

according to the 1 Fe unit cell, just as in Ba0.6K0.4Fe2As2 and Ba(Fe1−xCox)2As2.

This choice also provides better comparability with the results in the aforemen-

tioned compounds. Therefore, in the following the spectra will be labeled according

to the D4h point group symmetries A1g, B1g and B2g. However, phonons are labeled

according to the C4h point group symmetries Ag and Bg.

The symmetry-dependent Raman response of Rb0.8Fe1.6Se2 is shown in Fig. 5.5.

Due to diffuse scattering from sample surface irregularities there is a relatively strong

increase towards the laser line. All spectra have in common that the phononic

contribution is much stronger than the electronic continuum and in the case of the

122-pnictides. This might be caused by the electronic properties of the insulating

layers in the material since there is no contribution from electronic Raman scattering.

The energy gap between the occupied and empty states of the insulating layers is

much larger than 300 cm−1. Some phonon modes can be identified by comparing

the spectra to the ones given in [177]. Typically, phonons which have Bg symmetry

show up in both the B1g and B2g spectra, whereas the Ag phonons are present only

in the A1g spectrum.

The difference between the normal (light blue) and the superconducting state

spectra (dark blue), is less pronounced than in Ba0.6K0.4Fe2As2 or Ba(Fe1−xCox)2As2.

In the A1g and B2g spectra, the relative difference between the normal and the su-

perconducting state is weak and absent, respectively. This is attributed to the

fact that the band structure of Rb0.8Fe1.6Se2 [178, 179] does not have FS crossings

close to the sensitivity maxima of the related form factors shown in the insets of

Fig. 5.5. An appreciable difference between superconducting and normal state spec-
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tra is present only in B1g symmetry [Fig. 5.5 (c)] where the response from the large

electron pockets is projected out. The suppression of the low-temperature spectra

due to the gap and the excess intensity at and above 2∆ can be considered typical

features of a superconductor [19]. The relative changes of below and above a thresh-

old at approximately 60 cm−1 reach 80% and 30%, respectively. Below 60 cm−1, the

intensity is only weakly energy dependent, indicating a clean isotropic gap. The

phonons at 80 cm−1 and 115 cm−1, close to the gap edge, gain intensity below Tc

as expected for weak electron-phonon coupling. The effects of superconductivity

on the Raman response are highlighted in Fig. 5.6 where the difference spectra

∆Rχ′′(Ω,∆T )=Rχ′′(Ω, 8 K)−Rχ′′(Ω, 39 K) are shown.

5.2 Discussion

We start with a discussion of the sharp, symmetric structures that emerge in the

Raman spectra of Ba0.6K0.4Fe2As2 upon cooling to the superconducting state. The

section proceeds with a proposal for the gap distribution on the multiple FSs of

Ba0.6K0.4Fe2As2. Finally, the section concludes with a discussion of the idea of

competing superconducting ground states in the family of 122 pnictides. It is argued

that this physical picture may help interpreting earlier results on Ba(Fe1−xCox)2As2

[150].

5.2.1 Bardasis-Schrieffer modes in Ba0.6K0.4Fe2As2

Theoretical studies of spin fluctuations using either random-phase approximation

(RPA) [59, 111] or numerical functional renormalization-group (RG) calculations

[112] show consistently that s±- (A1g) and d-wave (B1g) instabilities can occur in

multiband models of iron-pnictides. As a consequence, an excitonic collective mode

formed by the subdominant interaction is expected to exist in the excitation spec-

trum of these materials. The case of an s±-wave ground state with a subdominant

d-wave pairing channel has been discussed by Scalapino et al. [17]. They point out

that a collective mode originating in a bound state with angular momentum L= 2

could be excited from an s-wave superconducting state and calculated the Raman

response using a three-band model. In this model the FS consists of one hole band

encircling Γ and two electron bands around X and Y . The s-wave part Vs (A1g) of

the pairing interaction connects the hole and electron pockets while the d-wave part

Vd (B1g) of the pairing interaction connects the two electron pockets [see Fig. 5.7 (a)].

Effects of intraband pairing are neglected.
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Figure 5.7: Raman response of FeSCs with competing pairing channels. (a) Model FS
of FeSCs used in [17]. The FS consists of only one hole pocket (α) encircling the Γ-point
of the 1 Fe/cell Brillouin zone and two electron pockets (β1 and β2) at (0, π) and (π, 0),
respectively. The s-wave part (A1g) of the pairing interaction connecting the α and β Fermi
sheets is denoted by Vs. The d-wave part (B1g) of the pairing interaction connecting the
β1 and β2 Fermi sheets is denoted by Vd. (b),(c) Calculated B1g Raman response for
an isotropic gap and a strongly anisotropic (4∆min = ∆max) gap. If the subdominant
contribution to the pairing potential is negligible (Vd = 0), the Raman spectra have the
typical shape (black curves). Collective modes emerge and draw spectral weight from
the higher energy portion of the response, when the subdominant contribution becomes
considerable. The red curves display the case for Vs = 1 and Vd = 0.5. Adopted from [17].

Panels (b) and (c) of Fig. 5.7 show the calculated B1g Raman response for an

isotropic and a strongly anisotropic (4∆min =∆max) gap, respectively. If the subdom-

inant contribution to the pairing potential is negligible (Vd=0), the Raman spectra

exhibit the typical pair-breaking features (black curves). Collective modes emerge

and drain spectral weight from higher energies, when the subdominant contribution

increases (red curves). Fig. 5.7 shows the case for Vs=1 and Vd=0.5. The frequency

and damping of the collective mode depend on the difference of coupling strengths

in the s- and d-wave pairing channels and on the anisotropy of the s-wave gap on the

β FSs, respectively. In the case of an isotropic gap, an essentially undamped mode

appears below 2∆, capturing most of the spectral weight from the pair-breaking

peak. For an anisotropic gap without nodes, a well defined collective-mode appears

at frequencies slightly below 2∆min, removing the singularity of the bare response

at 2∆max and transferring spectral weight to lower energies. In general, an isotropic

gap will lead to a sharp mode, while an anisotropic gap leads to a broader resonance.

Symmetry considerations can be used to determine the collective mode con-

tributions from the interplay of dominant and subdominant pair interactions and

polarization geometries. The d-wave interaction contribution to the Raman response

is proportional to [17]
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χ′′CM(ω) ∝ Im

∫ 2π

0

gdβ(θ)γβ(θ)∆β(θ)P̄ (ω, θ)dθ (5.1)

where gdβ(θ) is a symmetry form factor which parameterizes the d-wave part of the

interaction potential and depends upon the angle of k on the β-FS measured from

the kx axis. γβ(θ) is the Raman vertex, ∆β(θ) is the s± gap function on the β-

band and P̄ (ω, θ) is the response kernel determining the shape and position of the

mode, see Eq. (12) in Ref. [17]. The integral represents an angular average and

thus the collective mode contribution to the Raman response will vanish unless the

product gdβ(θ)γβ(θ)∆β(θ)P̄ (ω, θ) transforms as A1g. Since ∆β(θ) and P̄ (ω, θ) both

have A1g symmetry1, the product gdβ(θ)γβ(θ) also needs to transform as A1g. Thus,

since gdβ(θ) has B1g symmetry, a collective mode will appear only for a B1g Raman

vertex. This is fortunate, because in this way the mode will not be coupled to

long range Coulomb forces, which nominally push A1g collective mode contributions

up to the plasma frequency [17] thus inhibiting its experimental detection. Note

that the Raman vertex in Eq. (5.1) enters the response function in a linear fashion

as opposed to regular pair-breaking, where it enters quadratically. Therefore, the

observation of the mode in the Raman response directly reflects the dx2−y2 symmetry

of the pair-wave function of the observed exciton-like modes.

In the experiment (Fig. 5.3) the B1g response exhibits not one but three narrow

structures at 72 cm−1, 140 cm−1 and 175 cm−1. At least the feature at 140 cm−1

is too sharp and symmetric to originate from ordinary pair-breaking. However,

all three features occur only when the sample enters the superconducting state

(see Sec. 5.1.1). At the same time, broad and symmetric gap structures at 190

and 210 cm−1 in the A1g and B2g response (Fig. 5.3) indicate the presence of gaps

with gap-maxima well above the energies of the sharp B1g features. Moreover, the

signature of a smaller gap can be found at 80 cm−1 in both A1g and B2g symmetry.

From the synopsis of the theoretical results comprised above and the experimental

findings, it is sensible to interpret at least the sharp peak at 140 cm−1 in the B1g

response as spectroscopic signature of a Bardasis-Schrieffer (BS) exciton which is

excited out of an s± ground state. Motivated by the observation of in total three gaps

in the other symmetries also the peaks at 72 cm−1 and 175 cm−1 will be interpreted

as excitons in the following, since then each exciton can be assigned to a particular

gap and it is possible to derive a gap distribution from the Raman spectra which is

compatible with what has been reported from other experiments.

1Note that the case of a dominant s±-wave interaction is discussed.



5.2 Discussion 65

The modes at 140 cm−1 and 175 cm−1 correspond to the A1g and B2g gap struc-

tures at 190 cm−1 and 210 cm−1 implying binding energiesEb of 50 cm−1, and 35 cm−1,

respectively, and indicate that Vd is smaller but of the same order of magnitude as

Vs [22]. The bound state at 73 cm−1 corresponds to the minimum at 80 cm−1 of the

strongly momentum dependent gap on the δ band as predicted by Scalapino and De-

vereaux [17], implying a binding energy Eb of 7 cm−1. This scenario in a natural way

explains all three symmetric peaks which appear in (the proper) B1g symmetry and

provides direct evidence of a strongly anisotropic pairing potential resulting from

a superposition of Vs and Vd. Since the collective modes drain intensity from the

gap features [17,22] direct pair-breaking peaks cannot be resolved in B1g symmetry.

This effect provides the most compelling evidence for the proper interpretation of

the in-gap modes.

5.2.2 Gap distribution in Ba0.6K0.4Fe2As2

The recombination of electrons of a broken Cooper-pair into Bardasis-Schrieffer

excitons explains the sharp and symmetric peaks in theB1g spectra shown in Fig. 5.3.

However, the analysis is incomplete without interpreting the origin of the pair-

breaking feature observed in B2g symmetry. It turns out that this issue can be

resolved by considering the influence of the As atoms on the band structure.

The electronic and crystallographic unit cells have been introduced already in

Sec. 2.1.2. The 1 Fe unit cell is an abstraction which is useful for the analysis of the

electronic properties in a similar fashion as the CuO2 planes in the cuprates [19].

For the presence of the As layers the crystallographic unit cell is larger by a factor

of two and rotated by 45◦ as indicated in Fig. 2.2. It is important to note that,

while the roles of the B1g and B2g symmetries are interchanged upon going from

the 1 Fe to the 2 Fe cell, the independent projections of the electron and hole bands

are maintained. In particular, the A1g spectra project the hole bands while the

electron bands are projected in B2g symmetry if the 2 Fe cell is used as in Ref. [180].

While the crystallographic cell is the only possible choice for the general symmetry

assignment of phonons [169], it is less useful for the interpretation of the electronic

excitations in the Raman spectra. For the latter purpose, the 1 Fe cell is better

suited since all bands reasonably close to the Fermi level derive from Fe 3d-orbitals

(see Sec. 2.1.2).

The 2 Fe cell can then be treated as a weak superstructure which causes a back-

folding of the electron pocket at (0, π) on top of the electron pocket at (π, 0). This

situation is illustrated in Fig. 5.8 (a) and (b). The backfolding leads to a hybridiza-
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Figure 5.8: The 1 Fe BZ,
displayed in panel (a), is
more suitable for the in-
terpretation of the Ra-
man data. However, the
2 Fe cell can be treated
as a weak superstructure
which causes a backfold-
ing of the electron pocket
at (0, π) on top of the
electron pocket at (π, 0)
[panel (b)]. The conse-
quence is a hybridization
of the electron pockets and
resulting hot spots on the
electron-bands where the
Raman response is greatly
enhanced [panels (c) and
(d)].
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tion of the electron bands, producing a strong curvature of the resulting electron

pockets labeled γ and δ in Fig. 5.8 (c). As a reference, the band structure based on

the ARPES data is shown [89]. Strong curvature results in hot spots for the Raman

response which is proportional to the inverse effective mass of the charge carriers,

see Fig. 5.8 (d). Calculations based on a realistic band structure show that the B2g

vertex is enhanced by a factor of approximately 2-5 in the hybridized regions of the

electron-like FSs [181].

Major parts of the gap-distribution on the various bands have been assigned

already in section 5.1.1, but some open questions remained. When the hot spots of

the Raman vertex and the existence of in-gap modes are considered, it is possible

to consistently pin down the gap anisotropy on the various bands. The following

analysis rests on four assumptions:

1. The electronic bands are comparable to the findings from band structure cal-

culations and ARPES, see Fig. 5.8 (c).

2. The symmetry dependence is given by the lowest order Brillouin zone (BZ)

harmonics. Here, the 1 Fe unit cell is most appropriate. Then, for each pro-

jected symmetry, the sensitivity varies as a squared trigonometric function as

indicated in the insets of Figs. 5.1 and 5.5.

3. The sensitivity may be enhanced substantially around lifted band degeneracy

points as indicated in Fig. 5.8 (d) [61,181].



5.2 Discussion 67

4. In Ba0.6K0.4Fe2As2, Bardasis Schrieffer (BS) modes exist on the electron bands

and are qualitatively described by the model calculations of Scalapino and

Devereaux [17]. Beyond the model we assume that the d-wave interaction can

also lead to a collective mode on the hole bands.

As a consequence of assumptions (1) and (2) the dominant contribution to the

A1g spectrum results from a large gap on at least one of the hole bands. Since the

spectrum has a relatively sharp edge below approximately 190 cm−1 [see Figs. 5.1 (a)

and 5.3] the large gap is nearly isotropic. The existence of a BS mode at 140 cm−1

in B1g symmetry below this edge and its small width, indicating a long lifetime

[Figs. 5.1 (c) and 5.3], argues the same way [assumption (4)]. Although the edge

is pronounced, the intensity does not vanish below the threshold. Rather there

is a secondary feature at approximately 80 cm−1 below which the intensity decays

continuously down to approximately 25 cm−1 where it finally vanishes. This implies

that the gap on one of the hole bands must be as small as 25 cm−1.

For pinpointing the small and the large gap and the anisotropy, information from

the B2g spectrum is necessary. Here features are observed at low and high energies

in similar but not identical spectral positions as in A1g symmetry. The peak at

210 cm−1 is at higher energy than that in A1g symmetry and, therefore, does not

contain contributions from a gap on the hole bands. The feature at 80 cm−1 indicates

that the smaller anisotropic gap opens up on the β band since the B2g vertex is

negligible on the α band. For symmetry reasons the B2g vertex is also small on the

electron bands but is enhanced along the line (π, 0)−(0, π) due to the focusing effect

[assumption (3)]. Therefore, the gap must be slightly larger at the band degeneracy

point of the electron bands (see Fig. 5.8) than on the α band. Since the B2g spectrum

has only one well-defined threshold, the gaps on the γ and on the δ bands are similar

at the degeneracy points. For the existence of another BS mode at 175 cm−1 in the

B1g spectrum at least one of the gaps is essentially isotropic.

More details for the electron bands can be derived from the B1g spectrum. Along

with the strong BS modes at 140 and 175 cm−1 a well defined but weak peak is

observed at 73 cm−1 slightly below the shoulder at 80 cm−1 in A1g and B2g symmetry.

Such a structure appears typically below the minimal gap of a broad distribution [17].

Therefore, one of the gaps on the electron bands is expected to vary between a

maximum at 2∆0 ≈ 210 cm−1 and a minimum at 80 cm−1. Since the maxima are

pinned by the degeneracy points, the minima are expected on the principle axes and

the BZ edges, assuming the lowest order momentum dependence of the gap. From

that we conclude that the γ surface hosts the isotropic gap. Otherwise, the slightly
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Figure 5.9: Most probable anisotropy of the energy gap in Ba0.6K0.4Fe2As2. In the text,
arguments are provided how the gap distribution shown here is derived from Fig. 5.1. The
energy of the bound state Eb (red line) is largest on the α band.

different gaps on the central hole and the outer electron band would be projected

out by the A1g vertex, which is as large as 20% at the crossing points of the δ band

with the principle axes and the BZ edges, and smear out the threshold there.

It is important to note that pair-breaking peaks at the expected energy of ap-

proximately 210 cm−1 are not observed in the B1g spectrum where the strongest

contribution from the gaps on the γ and the δ bands are expected. The reason

for the absence of pair-breaking features is the existence of BS modes which in any

of the scenarios studied so far drain intensity from the coherence peaks at the gap

edge [17,21, 22]. Consequently, the missing intensity in the range of the gap on the

γ and the δ bands is direct evidence for the interpretation of the narrow B1g modes

in terms of excitons.

In summary, the well-defined distinct edges in A1g and B2g symmetry indicate

that large but slightly different isotropic gaps open up on the inner hole (α) and

electron (γ) bands. Anisotropic gaps reside on the respective outer bands, β and

δ, ranging from 25 to 80 cm−1 and from 80 to 210 cm−1. The gap on the β band

is responsible for the low energy threshold at 25 cm−1 which is seen consistently

in all symmetry projections. The largest gap exists on the γ band where the s
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and the d interaction cooperate. The orientation of the anisotropic gaps cannot

be pinned down with ultimate certainty but any choice other than indicated in

Fig. 2.12 would entail inconsistencies. By and large the results are consistent with

those from ARPES [64, 89, 175] except for the strong anisotropies on the β and

δ bands. However, for unclear reasons ARPES is notoriously insensitive to gap

anisotropies in the Fe-based superconductors although small or vanishing gaps have

been observed by various techniques (see Sec. 2.2.2). A detailed comparison of the

the gap-magnitudes found by other methods and by Raman scattering can be found

in Appendix 8.A of this thesis.

Finally, a 2D FS approximation was used for the argumentation. Whether or

not the anisotropy is in the (kx, ky)-plane or entangled with the kz dispersion was

not a subject of the discussion and is beyond the scope of the present qualitative

analysis. A quantitative study of the Bardasis-Schrieffer excitons using numerical

methods is necessary to confirm the outlined explanation. Such an analysis of the

Raman spectra presented in Fig. 5.3, based on LDA band structure calculations and

the subsequent estimation of effective Raman vertices was recently performed by

Böhm et al. [159]. The numerical results are in general agreement with the above in-

terpretation. The Raman spectra could be reproduced quantitatively with estimates

for the magnitude and momentum space structure of the s± pairing gap on different

FS sheets. The main difference to the proposal given in the two previous sections is

the identification of only one collective mode, namely the one located at 140 cm−1

in the B1g spectrum. The feature at 175 cm−1 derives from pair-breaking of Cooper-

pairs formed by the dominant s± pairing interaction. Its untypical symmetric shape

can be explained by noticing that the spectral weight which is transferred into the

collective mode, stems predominantly from the high energy tail of the coherence

peak. The subdominant dx2−y2 pairing channel is shown to be as strong as 60% of

that in the dominant s± channel.

5.2.3 Doping dependent gap symmetry in Ba(Fe1−xCox)2As2

The presence of the BS mode in the Raman spectrum of optimally hole-doped Ba-

K-122 implies a strong but subdominant dx2−y2 pairing channel and naturally leads

to the question if a competition of pairing channels might explain the large diversity

of gap structures reported for FeSCs [12]. A scenario for Ba(Fe1−xCox)2As2, which

is based on such a competition of near-degenerate s± and dx2−y2 components of the

interaction potential V (k,k′) is outlined in the following.

The interpretation relies on the concept of pairing via magnetic interactions. The



70 5. Evidence of near-degenerate pairing channels in FeSCs

Figure 5.10: Proposal for the gap evo-
lution in Ba(Fe1−xCox)2As2 with dop-
ing, relying on the concept of pair-
ing via magnetic interactions and al-
most degenerate s± and dx2−y2 pairing
channels. Shown is a segmentation of
the phase diagram into four regions of
which some are dominated by the s±
and others by the dx2−y2 component of
V (k,k′).
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discussion will focus on how the gap evolves with doping, ranging from the undoped

compound to the electron-overdoped regime. The phase diagram (Fig. 5.10) is seg-

mented into four regions, where some are dominated by the s± and others by the

dx2−y2 component of V (k,k′). Note, that the proposal given in the following ignores

certain aspects which are known to be relevant for the physics of Fe-based supercon-

ductors. For instance, it is known that the orbital character of the band structure

plays a crucial role in the formation of the SDW, as well as for pairing. However,

this aspect will not be discussed. Similarly, it has been conjectured that FeSCs may

be in an intermediate regime between itinerant and localized magnetism [141, 182],

where here only the itinerant aspect is addressed.

At first we will revisit some earlier results obtained by Muschler [150] [see

Fig. 5.11]. The data are presented here in the same fashion as in Sec. 5.1. Dif-

ference spectra are shown in Fig. 5.11 which highlight the spectroscopic imprints

of the superconducting gap. The left column (A1g) shows the response from the

hole-like FSs while the middle column displays the response which is expected to

originate from the electron pockets. The B2g response is not shown here since for

all doping levels no difference appears between spectra obtained in the normal and

in the superconducting state2.

Fig. 5.11 (a)-(d) show the results for two underdoped compounds. At 4.5% Co

doping (Tc = 14 K), the response from the hole bands (A1g) is exactly zero. The

increase below 15 cm−1 is attributed to an elastic contribution from the laserline. In

the B1g spectrum there is a weak signature signalling the opening of a small gap on

the electron pockets with a maximum of approximately 25 cm−1, as indicated by a

2The B2g spectra can be found in [150]
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Figure 5.11: Doping dependence of the gap in Ba(Fe1−xCox)2As2. A1g (blue) and B1g

(red) difference spectra are shown for five doping concentrations (a)-(e). On the right hand
side, the order parameters which correspond to the regions II and III in the PD (Fig. 5.10)
are illustrated. They are overlapped with generic FSs which evolve with electron-doping.
The gaps on the FS sheets are indicated with red and blue color. For details and description
see text. Adapted from [150].

black arrow. This signature becomes more pronounced in the compound with 5.1%

Co doping (Tc =18 K). An anisotropic gap opens up on the electron bands having a

maximum of approximately 35 cm−1. An examination of the raw data [Fig. 5.12 (d)]

reveals that the gap may have a minimum threshold of approximately 8 cm−1. The

response coming from the hole-pockets is still zero, indicating a vanishingly small or

absent gap. The observation of anisotropic gaps in underdoped Ba(Fe1−xCox)2As2

was also reported from heat transport [183, 184] and penetration depth measure-

ments [185]. However, the absence of a gap on the hole pockets as seen in our

Raman experiment suggests that superconductivity originates from pairing of elec-

trons from the electron FSs, implying a nodeles dx2−y2 order parameter, as indicated

on the right hand side of Fig. 5.11.

At optimal doping [5.11 (e)-(h)] the spectra exhibit two major differences to
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the spectra of the underdoped compounds: First, besides the large gap on the

electron FS sheets, a large gap on the hole-pockets appears. Both gaps have the

same order of magnitude. Second, there is a huge change in the intensity of both

A1g and B1g spectra. Both changes occur within only 0.4 % electron doping, at a

composition which is close to the AFM quantum critical point [cf. Fig. 5.10] [90].

The observed gaps are highly anisotropic, but nodeless, as can be seen from the

raw data [5.12 (e)-(h)]. The B1g low-energy Raman susceptibility is proportional to

∼
√

Ω, suggesting that the gap on the electron FS is nodeless but has a minimum

close to zero energy [180]. The A1g intensity varies faster than linear following Ω1.5.

If there is a threshold, it must be smaller than 30 cm−1. This would translate into

a minimal gap ∆min ≤ 2 meV somewhere on the hole pockets. The observation

of anisotropic but nodeless gaps in optimally doped samples via Raman scattering

[180, 186] is in agreement with results from heat transport [184] and penetration

depth [185] measurements. Even more importantly, the Raman experiments show

that the gaps reside on the electron as well as the hole FSs, which implies an s±

order parameter.

Fig. 5.11 (i) and (j) comprise the results on an overdoped compound. Anisotropic

gaps reside on the hole and electron pockets with maxima of approximately 75 cm−1,

respectively. The raw data reveal a minimal gap of ∆min ≤ 25 cm−1 on the hole-

and an even smaller minimal gap on the electron FSs [180], in agreement with

the highly anisotropic gaps observed in heat transport [183, 184] and penetration

depth [185] experiments. The finite gaps on all bands suggest an s± order parameter

at this composition. Summarizing, the Raman data suggest that the order parameter

switches from dx2−y2 to s± symmetry upon doping somewhere near the magnetic

quantum critical point.

The emergence of superconductivity in underdoped compositions coincides with

marked changes in the FS topology, at a so-called Lifshitz transition [90, 187]. The

presence of AFM order leads to a reconstruction of the electronic structure via

the folding of the central hole pocket on top of the elliptical electron pocket at

the X-point. This leads to the appearance of petal-like hole pockets at the X-

point, see Fig. 5.13 (c). The electron- and hole-bands hybridize and an anisotropic

SDW gap opens at the Fermi level. At low doping [Fig. 5.13 (b1)], portions of the

lower hole band are above the Fermi level, giving rise to the petal-like hole pockets

shown in Fig. 5.13 (c). Electron doping leads to the disappearance of these pockets

[Fig. 5.13 (b2)], marking a radical change of the FS topology. ARPES measure-

ments [90] at 13 K show that the transition occurs between 3.4 % and 4.7 % doping,
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Figure 5.12: Doping dependent Raman spectra of Ba(Fe1−xCox)2As2 above (green) and
below (blue) Tc in A1g and B1g symmetry. The B1g are published in [150]. For details
and description see text. Adapted from [150].

simultaneously with the onset of superconductivity [Fig. 5.13 (a)]. The ARPES mea-

surements also suggest that the transition does not occur via an intermediate state,

with completely gapped Fermi pockets at the X-point [Fig. 5.13 (b2)]. Instead, the

transition to the state shown in Fig. 5.13 (b3) and (d) occurs without the absence of

Fermi sheets at the X-point at any measured doping level, and the elliptical electron

pockets appear immediately after the petals are gone [90].

In a scenario of competing pairing channels, the Lifshitz transition marks the

opening of the d-wave pairing channel as the phase space for scattering between the

electron pockets becomes huge. If a combination of d-wave pairing and (π, 0) SDW

order leads to a higher energy reduction than s±-wave pairing alone, both instability

coexist in region (II) of the phase-diagram. Upon further doping with electrons this

coexistence persists, until magnetism disappears completely at the magnetic QCP
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Figure 5.13: Lif-
shitz transition in
Ba(Fe1−xCox)2As2. (a)
Phase diagram based on
transport measurements
as adopted from [29],
with ARPES data (from
Ref. [90]) on the presence
of small hole-like pockets
(flower-petals), that ap-
pear in the SDW phase.
The pockets disappear
at the Lifshitz transition.
The red arrows indicate
the sample compositions
which belong to the data
presented in Fig. 5.11. (b)
Schematic representation
of the Lifshitz transition
(from Ref. [90]). (c) Low
T ARPES spectra (from
Ref. [90]) of undoped x=0
and overdoped x = 0.114
Ba(Fe1−xCox)2As2.
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at x≈5.2 [90] in favor of the s± channel.

Finally, an examination of the B1g spectra of the near-optimal and optimally

doped compounds [Fig. 5.11 (f) and (h)] reveals weak sub-gap features, indicated

with orange arrows, which may be the heavily damped3 spectroscopic remnants

of BS excitons, formed by the d-wave part of V (k,k′). However, this last point

needs further investigation. If the features could be identified as BS excitons, their

doping dependent position with respect to the gap-edge might shed light on the

interplay between the two pairing channels. Recently, high-quality crystals with

hole-underdoped and overdoped compositions have become available for experiment.

Since damping of the modes does not seem to play an important role in the hole-

doped crystals, an experimental investigation appears to be more promising on this

side of the phase diagram.

3The damping is expected to occur in systems with low-lying quasi-particles.



Chapter 6

Spin-driven nematic order in

Ba(Fe1−xCox)2As2

This chapter summarizes inelastic light-scattering results on the nematic phase in

Ba(Fe1−xCox)2As2. A broad peak which emerges in B1g symmetry upon cooling

the samples to the SDW ordering temperature Tm is interpreted as the signature

of nematic fluctuations. The symmetry and temperature dependence of the peak

suggests a magnetic origin of nematicity in this compound.

6.1 Experimental results

Inelastic light scattering results acquired in the normal state of underdoped samples

are presented. The undoped compound, as well as samples with 2.5 % and 5.1 %

doping concentration have been investigated. The results are shown in the following

sections 6.1.1, 6.1.2 and 6.1.3, respectively.

6.1.1 Experimental results: BaFe2As2

Figure 6.1 shows the temperature evolution of the A1g and B1g Raman susceptibili-

ties of undoped BaFe2As2. The spectra were taken at constant temperatures ranging

from 300 K to 8 K.

The A1g response [Fig. 6.1 (a)] exhibits the expected As-lattice vibration at

185 cm−1. The broader feature at 265 cm−1 is the Eg Fe-As phonon, which shows

up in the A1g spectra due to the finite overlap of the light polarizations with the

crystallographic c-axis in the experiment, cf. Sec. 4.2. Both features sit on top of a

particle-hole continuum, which shows only a weak temperature dependence as one

75
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Tm = 134K
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Figure 6.1: (a) A1g and (b) B1g Raman susceptibilities of undoped BaFe2As2. The
spectra are taken at temperatures ranging from 300 K to 8 K. The temperature range in
which fluctuations are observed is shaded green. The black line in panel (b) is a fit to the
250 K particle-hole continuum [Eq. (6.6)], which is subtracted from the spectra in order
to obtain the fluctuation contribution to the Raman susceptibility, see Sec. 6.2.2. Parts
of the spectra were obtained in collaboration with Bernhard Muschler and are published
in [150].
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approaches the magneto-structural phase transition at 134 K. Below the transition

temperature, there is a decrease of spectral weight below 400 cm−1 which becomes

more pronounced with decreasing temperature. This behavior can be assigned to

the opening of the anisotropic SDW gap [150, 173]. At the same time an increase

of spectral weight in the high energy part of the spectra is observed which leads

to a broad hump with a maximum at about 800 cm−1 in the 8 K spectrum. It was

argued that this feature is due to interband scattering, the final state of the process

being located in a “shadow” band which emerges as a result of backfolding due to

the SDW superstructure [173].

The temperature dependence of the B1g spectra [Fig. 6.1 (b)] is substantially

different. The temperature range between 300 K and 250 K is also dominated by

the weakly temperature dependent particle-hole contribution. However, with de-

creasing temperature the initial slope of the spectra starts to increase rapidly, and

a broad peak emerges which sharpens, while its maximum shifts to lower energies

as the temperature is reduced further. The integrated intensity of the spectra has

a pronounced maximum just above the magneto-structural transition temperature

Ts/m = 134 K. Upon further reducing the temperature, the peak disappears at the

phase transition. Note that the rate of change in which the peak gains integrated

intensity drastically increases as one approaches Ts/m, reminiscent of a divergent

behavior. As in the A1g channel, the imprints of the SDW gap and the opening

of the interband scattering channel dominate the low-temperature B1g response.

Simultaneously, the symmetry-forbidden A1g phonon appears at 185 cm−1 as soon

as the magneto-structural transition occurs. Although puzzling at first glance, the

presence of the A1g phonon in the B1g susceptibility is not quite surprising. The B1g

response is sensitive to an inequivalence of the a and b directions, which is intro-

duced by the spin-density-wave and/or the structural distortion. As a consequence

there is leakage of the A1g response into the B1g channel.

The broad peak visible in the B1g Raman response is assigned to fluctuations

of some type of nematic order which disappear at the magneto-structural phase

transition. Currently, the nature of these fluctuations is a matter of extensive debate.

Since at the magneto-structural transition, magnetic ordering (in form of a spin-

density-wave) and charge ordering (in form of orbital ordering) set in simultaneously,

the question arises whether the fluctuations observed in the Raman response are

associated with the magnetic or the charge order. To that end, we investigate

underdoped Ba(Fe1−xCox)2As2, as this provides the possibility to explore the regime

between the magnetic and structural transition, e.g. the nematic phase.
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Figure 6.2: (a) A1g and (b) B1g Raman spectra of underdoped Ba(Fe1−xCox)2As2. The
temperature regimes in which fluctuations are observed are shaded green (T > Ts) and
purple (Tm<T <Ts).

6.1.2 Experimental results: Ba(Fe0.975Co0.025)2As2

Fig. 6.2 illustrates the A1g (a) and B1g (b) Raman susceptibilities of underdoped

Ba(Fe0.975Co0.025)2As2, plotted in the same manner as for the undoped compound.

As in Fig. 6.1, the A1g response shows little temperature dependence despite the

SDW signature (the loss of spectral weight at low energies for spectra taken at

T <Tm≈ 98 K). The high-temperature B1g response shows a weakly temperature-

dependent particle-hole continuum, the initial slopes of the spectra increase slightly

as the temperature is reduced. At T <200 K, a stronger increase in the initial slopes

of the spectra indicates a finite contribution from fluctuations that grows with de-

creasing temperature until a maximum of the integrated intensity is reached for

the 102.8 K spectrum. Again, an increase in the rate of change for the integrated

intensity is visible as the temperature approaches Ts = 102.8 K, where the intensity

reaches a maximum. Interestingly, upon lowering the temperature below Ts, but

staying well above Tm, the fluctuation peak does not disappear, but just loses inten-

sity, and finally disappears at the magnetic phase transition at Tm≈98 K (see also

Fig. 6.3).

The low-temperature B1g response (T <Tm) exhibits the expected reduction of

spectral weight at energies Ω< 300 cm−1, indicating the opening of the SDW gap

that is somewhat smaller in comparison to the undoped compound. The excess

intensity at higher energies (Ω > 600 cm−1) signals the opening of the interband

scattering channel although this feature is less pronounced than in the undoped
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Figure 6.3: B1g Raman susceptibil-
ity of Ba(Fe0.975Co0.025)2As2 for tem-
peratures in close to Tm. The
fluctuation peak does not disappear
abruptly at Ts, but slowly decreases
as the temperature approaches Tm.
In the orthorhombic/paramagnetic
phase, there is no sign of a phonon.
Below Tm, a Fano-shaped phonon ap-
pears at 180 cm−1.

compound. Note that the symmetry-forbidden A1g phonon is present, as in the

undoped compound, but shows up only below the magnetic transition temperature

Tm in the doped sample. This is highlighted in Fig. 6.3, which shows the B1g sus-

ceptibility of Ba(Fe0.975Co0.025)2As2 for temperatures close to the magnetic ordering

temperature Tm. In the orthorhombic/paramagnetic phase, there is no indication of

a phonon. As the temperature drops below Tm, a Fano-shaped phonon line appears

at approximately 180 cm−1 and gains intensity when the temperature is reduced fur-

ther. Whatever is responsible for the presence of the symmetry-forbidden phonon,

the temperature dependence of the feature argues that it is the magnetic phase

transition rather than the structural one that triggers it’s appearance.

6.1.3 Experimental results: Ba(Fe0.949Co0.051)2As2

Finally, underdoped Ba(Fe0.949Co0.051)2As2, which in addition to the nematic and

magnetic phase also exhibits superconductivity, has been investigated. The tem-

perature dependent Raman susceptibilities are shown in Fig. 6.4 (a) (A1g) and (b)

(B1g). The A1g response in the tetragonal state (Ts = 53 K) shows weak tempera-

ture dependence without any sign of a fluctuation contribution. In contrast to the

lower doped compounds, the opening of the SDW gap is not visible in the A1g re-

sponse. A considerable fluctuation contribution can be found in the B1g symmetry

for temperatures below 200 K where an increase of the initial slope of the spectra

is observed. This contribution grows with decreasing temperature and is largest for

the 70 K spectrum.

The structural and magnetic phase transitions in this sample take place at Ts =

53 K and Tm = 37 K, respectively. The only spectrum taken at an intermediate

temperature, the 50 K spectrum, does not decrease substantially in comparison to
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Figure 6.4: (a) A1g and (b) B1g Raman spectra of slightly underdoped
Ba(Fe0.949Co0.051)2As2, which, in addition to the nematic (Ts = 53 K) and magnetic
(Tm =37 K) phases also becomes superconducting at temperatures below 19.5 K. A fluctu-
ation signal can be found in the B1g symmetry for temperatures below 200 K. The spectra
are taken from [150] and have been replotted here in the same fashion as for the x=0 and
x=0.025 samples.

the 70 K spectrum. However, since spectra at temperatures just slightly above Ts are

missing, and only one spectrum in the nematic regime is available, a statement on

the temperature dependence of the fluctuations for Tm<T <Ts is not possible and

the qualitative discussion in the next section is restricted to the fluctuation regime

in the tetragonal phase.

The Raman spectra allow some general statements on the temperature- and

doping-dependence of the fluctuations. With increasing doping, the temperature

at which the fluctuations set in drops from approximately 250 K in the undoped

sample to somewhat below 200 K in the sample with 5.1 % Co content. Another

clearly visible trend is that the maximum of the fluctuation peak shifts to lower

energy with increasing doping. Unfortunately, it is not trivial to determine the

exact temperature at which fluctuations emerge since the fluctuation contibution is

small just below the onset-temperature and sits on top of a weakly temperature-

dependent particle-hole background. Disentangling the fluctuation and particle-hole

contribution in the Raman response is therefore a prerequisite for a quantitative

analysis of the fluctuations. Such an analysis is given in section 6.2.
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6.2 Discussion

We wish to identify the origin of the fluctuation signal observed in the B1g Raman

response. To this end, the onset temperatures Tf(x), the spectral shape, the selec-

tion rules and the detailed temperature dependence close to the magneto-structural

transitions will be scrutinized.

6.2.1 Relaxation rate analysis

It is necessary to isolate the fluctuation contribution to the Raman response from the

particle-hole continuum. If we assume that the latter is only weakly temperature-

dependent, it is enough to pin down the temperature Tf at which fluctuations start

to emerge, and subtract a spectrum taken at a temperature slightly higher than Tf

from the Raman spectra obtained at temperatures Tm<T <Tf . If the assumption

of a constant particle-hole continuum is relaxed, one has to model the continuum

by fitting spectra that do not have contributions from fluctuations, and extrapolate

the fits to temperatures where fluctuations are present.

In the following, we extract carrier lifetimes τγγ(Ω, T ) or scattering rates Γγγ =

1/τγγ along with mass enhancement factors 1+λγγ(Ω, T ) from the bare particle-hole

Raman susceptibility, which then can be compared with the findings of transport

measurements. For the analysis it is assumed that as soon as these quantities are

no longer in accordance with the transport results, the Raman response no longer

originates from particle-hole excitations alone. Given the excellent agreement of

Raman and transport relaxation rates at high temperatures this is a safe assumption.

The extraction of relaxation rates and mass enhancement factors works via the

relaxation or memory function approach proposed by Götze and Wölfle [188], which

is a standard procedure in infrared (IR) or optical spectroscopy to derive the complex

conductivity from the reflectivity [189]. Opel et al. [190] adopted this method for

the Raman susceptibility and showed in particular that absolute numbers for all

quantities can be obtained [150,160,190,191]. A few remarks on the quantities that

can be derived from the spectra will be given in the following.

The imaginary part of the Raman spectral function χ′′γγ(Ω, T ), which is ob-

tained from the experiment is connected with the dynamic (Raman) relaxation rate

Γγγ(Ω, T ) and the mass enhancement factor 1 + λγγ(Ω, T ) via

χ′′γγ(Ω, T ) =
ΩΓγγ(Ω, T )

Ω2[1 + λγγ(Ω, T )]2 + Γ2
γγ(Ω, T )

. (6.1)
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The equation can serve as a starting point to extract Γγγ(Ω, T ) and 1 + λγγ(Ω, T )

numerically from the Raman data. The index γ is short hand for γ(k) and rep-

resents the Raman vertex which projects out symmetry dependent parts of the

Brillouin zone and thus Γγγ and λγγ reflect k-dependent properties. Consequently,

given the specific FS topology of Ba(Fe1−xCox)2As2, the scattering rates which are

extracted from the A1g and B1g Raman susceptibilities presented in Sec. 6.1, mea-

sure the effective scattering rates of QPs from the hole-bands and electron-bands

of the particular material. In this context Γγγ(Ω, T ) can be best thought of as a

k-resolved Raman resistivity. In the same manner 1 + λγγ(Ω, T ) = m∗/mb with mb

the band mass, describes a frequency- and band-dependent mass enhancement that

measures the strength of interactions of the QPs either among each other or with

other excitations such as phonons. Since we seek to compare the Raman results with

resistivity measurements, we can use the fact that in the static limit, the scattering

rate Γγγ(Ω → 0, T ) ≡ Γ0(T ) = 1/τ0(T ) is equivalent with the inverse of the static

two particle lifetime. In the Drude model the latter is related to the dc-resistivity

of a metal [190]

Γ0(T ) =
1

τ(T )
= 1.08 · ρ(T ) · ω2

pl (6.2)

with Γ0(T ) given in cm−1, ρ(T ) being the resistivity [µΩcm] and ωpl the plasma

frequency [eV].

Fig. 6.5 shows the dynamic relaxation rates Γγγ(Ω, T ) of Ba(Fe0.975Co0.025)2As2

derived from the energy dependent response Rχ′′γγ(Ω, T ) displayed in Fig. 6.2 for

temperatures T < Ts, (a) and (b), and T > Ts, (c) and (d). Above Ts, the scat-

tering rates have little structure and a similar spectral shape at intermediate and

high energies, where all curves exhibit a similar finite slope and have a tendency

to become flat. At low energies, Γγγ(Ω, T ) starts with zero slope for all T > Ts in

the A1g symmetry [panel (c)] and for temperatures T >150 K in the B1g symmetry

[panel (d)]. In the range Ts >T > 150 K, all B1g scattering rates start with a finite

slope close to zero energy. This slope tends to become larger as one approaches the

structural phase transition temperature Ts. The T > Ts A1g scattering rates differ

only by a small constant offset which is approximately proportional to temperature.

They clearly exhibit an overall weaker temperature dependence than the B1g scat-

tering rates above Ts where the offset is larger and not proportional to temperature.

Below Ts, also the A1g scattering rates exhibit a small initial slope and a general

trend towards an increasing initial slope is observed at low T , cf. Fig. 6.5 (a). This

trend is even stronger pronounced in the B1g symmetry, cf. Fig. 6.5 (b). Below Tm,
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Figure 6.5: Temperature and symmetry dependence of the Ba(Fe0.975Co0.025)2As2 relax-
ation rates Γγγ(Ω, T ) for temperatures T <Ts [panels (a) and (b)] and T >Ts [panels (c)
and (d)]. The rates were obtained, using the procedure described by Opel et al. [190], from
the energy dependent response Rχ′′γγ(Ω, T ) displayed in Fig. 6.2. The smooth black lines
correspond to a fit with the parallel resistor model of Hussey et al. [192].

an additional feature in the B1g scattering rate appears at 180 cm−1, which is an

artifact originating from the symmetry-forbidden A1g phonon-mode which sits on

top of the B1g particle-hole continuum.

In summary, the rates reflect the variation of the raw data (Fig. 6.2) but, due

to the extraction procedure [190], show some features in a more pronounced fashion

such as the low-energy variation with temperature. Note however, that the memory

function approach for the extraction of scattering rates is valid, strictly speaking,

only for particle-hole excitations. Due to the presence of SDW correlations, the

physical meaning of scattering rates Γγγ(Ω, T <Tm) is therefore questionable. Hence

scattering rates obtained at T <Tm will not be considered for further discussions.

In order to reliably extract the zero-energy extrapolation values of Γγγ(Ω→ 0, T )

from the dynamic scattering rates (Fig. 6.5) we use the phenomenological parallel

resistor model with a quadratic energy dependence at Ω→ 0 [192–195]

1

Γγγ(Ω, T )
=

1

Γ∗γγ(Ω, T )
+

1

Γmax
γγ (T )

. (6.3)

where Γ∗γγ(Ω, T ) = c(T ) + a(T )Ω2 dominates at low frequencies while Γmax
γγ (T ) de-

scribes the high energy part. Eq. (6.3) yields functions having the correct ana-
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lytical behavior in the limits Ω → 0 and Ω → ∞: (i) Γγγ(Ω, T ) (as opposed to

the imaginary part of the single particle self energy Σ′′) is a symmetric function,

Γγγ(−Ω, T ) = Γγγ(Ω, T ), (ii) λγγ(Ω → 0, T > 0) is finite and symmetric, and (iii)

Γγγ(Ω, T ) saturates at high energy. The latter condition is a restriction in the spirit

of the Mott-Joffe-Regel limit [196, 197] that applies when the quasi-particle mean

free path at high temperature becomes progressively shorter and finally comparable

to the lattice constant. As phonons dominate the scattering in metals at high tem-

peratures, the mean free path cannot decrease below the lattice constant and the

resistivity saturates. In the case of two-particle response functions there are contri-

butions to the carrier response beyond the mean free path, and general statements

as to the high-energy behavior become impossible [198]. Inversion of Eq. (6.3) yields

Γγγ(Ω, T ) =
[c(T ) + a(T )Ω2] · Γmax

γγ (T )

c(T ) + a(T )Ω2 + Γmax
γγ (T )

, (6.4)

with the zero frequency limit Γγγ(0, T ) given by

Γγγ(0, T ) =
c(T )Γmax

γγ (T )

c(T ) + Γmax
γγ (T )

. (6.5)

The fits to the relaxation rates Γγγ(Ω, T ) according to Eq. (6.4) correspond to the

black lines in Fig. 6.5. As expected, the Ω → 0 extrapolation depends on both the

high frequency limit Γmax
γγ (T ) and the offset c(T ).

Fig. 6.6 shows the symmetry dependent static Raman relaxation rates Γ0(T )

of Ba(Fe1−xCox)2As2 for the three doping levels (a) x = 0, (b) x = 0.025 and (c)

x = 0.051. Each point in Fig. 6.6 is obtained from Eq. (6.5)1. For comparison,

all panels show the in-plane (dc) resistivities ρab (black line, right axis) of samples

from the same batch [29], which are converted into relaxation rates Γρ(T ) using

Eq. (6.2). The plasma frequencies which are used for the conversion (cf. Fig. 6.6)

are in good agreement with optical spectroscopy data [199–203]. From the dynamic

relaxation rates of the x= 0.025 sample (Fig. 6.5), it was already evident that the

T > Ts B1g scattering rates exhibit a stronger temperature dependence than those

of the A1g channel. This behavior is reproduced in the static limit, displayed in

Fig. 6.6 (b). Starting at 300 K, the average of ΓA1g(0, T ) and ΓB1g(0, T ) tracks Γρ(T )

until the temperature reaches approximately 200 K. This behavior is to be expected

if the Raman relaxation rates express k-resolved transport properties. At lower

temperatures, ΓA1g(0, T ) continues to follow Γρ(T ), but ΓB1g(0, T ) begins to deviate,

1The x=0 and x=0.051 relaxation rates and fits can be found in Appendix 8.C.
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Figure 6.6: Static relaxation rates and
transport data. Panels (a)-(c) show
the doping dependent Raman relax-
ation rates Γγγ(Ω=0, T ) for A1g (blue
symbols) and B1g (red symbols) sym-
metries as derived from Γγγ(Ω, T ) (see
text). The in-plane (dc) resistivity ρab
(black line, right axis) [29] is converted
into a relaxation rate Γρ(T ) using a
Drude model [Eq. (6.2)]. The plasma
frequencies used for the conversion are
indicated in each panel. Note that in
(a) results of two samples are summa-
rized.

the difference becoming more pronounced as the temperature approaches Ts.

It is inadequate to interpret this behavior in terms of an increasing lifetime

τ=1/Γ of particle-hole excitations in the B1g channel, since this would still require

the condition [ΓA1g(0, T ) + ΓB1g(0, T )]/2 ≈ Γρ(T ) to be fulfilled. In contrast, it is

more sensible to argue that the premise of Rχ′′γγ(Ω, T ) being dominated by particle-

hole excitations is not correct as soon as the Raman relaxation rates, on average,

do no longer coincide with the rates derived from the transport measurements.

Consequently, the deviation of the B1g scattering rate results from an additional

contribution to the Raman response, which grows upon approaching the nematic

transition. In the following, we will presume that the drop in the B1g relaxation rates

derives from fluctuations and assign the onset of fluctuations to the temperature Tf ,

where the B1g scattering rates begin to deviate from the transport data. Finally, it

is worth noting that the B1g scattering rate once more proceeds parallel to Γρ(T )

in the narrow temperature interval between the magnetic and nematic transition,

signaling a weakening influence of fluctuations.

The temperature interval in which fluctuations contribute to the Raman response

is colored yellow in Fig. 6.6. The BaFe2As2 scattering rate shows a similar temper-

ature dependence as the one of the x = 0.025 sample. While the A1g scattering

rate tracks Γρ(T ) from room temperature down to Tm, the B1g rate does so only
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down to the temperature Tf =(215± 10) K, below which it decreases stronger than

Γρ(T ). Note that the empty B1g data points correspond to a measurement of a

second sample which, at high temperatures, exhibits a somewhat lower scattering

rate than sample 1. A comparable behavior is found for the scattering rates of the

x= 0.051 sample, even if the deviations of the B1g scattering rates from the trans-

port data are less pronounced than at lower doping concentrations, see Fig. 6.6 (c).

Replacing 2.5 % [5.1 %] of iron by cobalt leads to a decrease of Tf to (190 ± 10) K

[(160±10) K], see Fig. 6.6 (b) and (c), respectively. Simultaneously, the temperature

range in which fluctuations contribute to the Raman response becomes broader with

doping.

It should be noted that ARPES measurements on Ba(Fe1−xCox)2As2 reveal an

anisotropic energy splitting of the dxz and dyz bands in stressed crystals [32], that

persists up to a temperature which approximately coincides with Tf . Moreover, the

temperature window in which the splitting is observed appears to be larger closer to

the superconducting dome, a trend also seen in transport measurements [47]. These

observations are in line with the existence of a regime exhibiting a large nematic

susceptibility which is responsible for the deformation of the electronic ground state

in response to a symmetry breaking perturbation. It stands to reason that the

observed fluctuation contribution to the B1g Raman response derives from nematic

fluctuations.

6.2.2 Aslamazov-Larkin fluctuations

Having identified the onset temperatures Tf , we can go on and isolate the fluctuation

contributions from the spectra Rχ′′γγ(Ω, T ) shown in Sec. 6.1. This will be done in the

following exemplary for the sample with 2.5 % Co doping. At this composition there

is a sufficiently large temperature gap of approximately 5 K between the structural

and magnetic phase transitions. This is of importance as it will prove crucial for

the later analysis to determine the behavior of the fluctuations between the two

transitions.

Above Tf(2.5%)≈190 K, Rχ′′γγ(Ω, T ) reflects the bare particle-hole contribution

to the Raman response. Fluctuations set in below this temperature and persist down

to Tm(2.5%) = 98 K, as is evident from the Raman susceptibility (see Fig. 6.3). In

order to approximate the temperature dependent particle-hole continuum between

these two temperatures, we fit the 300 K and 97 K spectra by

χ′′cont(Ω, T ) = a(T ) · tanh
(Ω

c

)
+ b(T ) ·

(Ω

c

)
(6.6)
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Figure 6.7: Approximation of the p-h continuum for Ba(Fe0.975Co0.025)2As2. (a) Fits
to the electronic continuum according to Eq. (6.6), shown explicitly along with three
spectra. (b) Continuum approximation and (c) the resulting dynamic relaxation rates
for all temperatures T >Tm. (d) Static relaxation rate of the continuum approximation,
along with the A1g and B1g relaxation rates derived from experiment. The average of the
experimental A1g and the B1g continuum approximation relaxation rate (violet circles) by
and large reflects the experimental resistivity data.

with a(T ) = a1−a2 ·T , b(T ) = b1 +b2 ·T . a and b depend linearly on temperature

with the coefficients a1 = 0.82379, a2 = 0.00138, b1 = −0.00923 and b2 = 0.00028

fixed for doping x= 0.025. c corresponds to the relaxation rate Γ and is adjusted

to reproduce the data above Tf and the resistivity. Eq. (6.6) exhibits the correct

analytical behavior at Ω → 0, and provides an excellent fit to the continuum. Fits

to the continuum are shown explicitly along with three spectra in Fig. 6.7 (a). The

deviations from the fits to the 150 K and 200 K spectra derive from fluctuations.

The approximation to the p-h continuum and the resulting dynamic relaxation

rates for all temperatures 97 K≤T ≤300 K are shown in Fig. 6.7 (b) and (c), respec-

tively. The static relaxation rates of the approximation, derived from the dynamic

ones as described in the last section, are plotted as green stars in Fig. 6.7 (d), along

with the A1g and B1g relaxation rates derived from experiment. As expected, the

average of the experimental A1g and the B1g relaxation rates of the approximated

continuum by and large reflect the experimental resistivity data, confirming that the

temperature dependent continuum displayed in Fig. 6.7 (b) is indeed appropriate.

The subtraction of the continuum from the spectra yields the bare fluctuation



88 6. Spin-driven nematic order in Ba(Fe1−xCox)2As2

102.0K

102.3K

102.6K

102.9K

103.2K

103.5K

Energy

Figure 6.8: Bare fluctuation contribution to the Raman susceptibility in the tetragonal (a)
and the nematic phase (b). The red curves correspond to the theoretical Raman response
contribution of 2D nearly critical spin and/or charge fluctuations [Eq. (6.8)]. The right
hand side of the figure shows the appearance of stripes in the laser focus, signaling the
tetragonal to orthorhombic phase transition at Ts (see text).

contribution that is shown in Fig. 6.8 (a) and (b) for the tetragonal and the nematic

phase, respectively. The 175 K spectrum exhibits a broad maximum at 150 cm−1. On

lowering the temperature, the integrated intensity increases rapidly, the maximum

becomes more distinct and shifts to lower energies while approaching Ts.

This trend has been observed earlier [204], where it was interpreted as a fin-

gerprint of an incipient charge-nematic order that fully develops at Ts. The au-

thors argue that, owing to the nature of the Raman experiment in which the light

couples to the charge of the electron rather than to the spin degree of freedom,

the nematic susceptibility measurable in the Raman experiment originates from

anisotropic charge fluctuations. However, the charge nematic transition tempera-

ture extracted in Ref. [204] is off by at least 50 K over the whole doping range.

Moreover, a comparison of the Raman data to measurements of the orthorhombic

lattice stiffness [51, 52] implies that charge nematicity is coupled too weakly to the

lattice to drive the structural transition. Thus, Gallais et al. [204] conclude that

charge nematicity is not the only nematic degree of freedom in Ba(Fe1−xCox)2As2,

but that the precise nature of this additional contribution cannot be identified in

the Raman experiment.
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Recently, two theories have been put forward suggesting that either the magnetic

moments of the iron atoms (ordering below Tm) or the iron d-orbital degrees of

freedom (assumed to order below Ts) provide the driving mechanism for nematicity

(see Sec. 2.3). Therefore, we performed inelastic light scattering experiments also in

the small temperature window of the nematic phase between Tm≈(98±0.5) K<T <

Ts≈ (102.8 ± 0.1) K. We were able to determine Ts precisely by the appearance of

twin boundaries at Ts. The image of the focus is shown as a function of temperature

on the right hand side of Fig. 6.8. The direct reflex of the elastically scattered

laser light does not enter the observation optics (see Sec. 4.1). As a consequence,

the laser focus is hardly visible on a very smooth sample surface. This is the case

above 102.9 K, where no additional structures are visible in the spot. Upon cooling

down to 102.0 K, vertical stripes appear in the focal spot. They are faint already

at 102.6 K and finally become clearly visible at 102.3 K. The vertical stripes derive

from stray light of the laser from particles adsorbed at the polar twin-boundaries.

Note, that for Ts≈102.8 K the doping is slightly below the nominal value according

to the phase diagram of Chu et al. [29]. The magnetic transition at Tm is expected

to occur at approximately 5 K below Ts. Indeed, a signature of this transition can be

identified in the B1g Raman response, where the symmetry-forbidden A1g phonon

at 180 cm−1 evolves between 99 K and 97 K (see Sec. 6.1.2).

Three spectra obtained in the nematic phase are plotted with a violet color

scheme Fig. 6.8 (b). Surprisingly, the fluctuations do not disappear directly below

Ts. Instead, the intensity decreases continuously and the maximum stays pinned at

the same energy. These observations cast doubt on an interpretation of the observed

peak in terms of orbital fluctuations, as orbital order is established at Ts [32], while

the observed fluctuations persist down to Tm. However, while a close relation to

magnetism is evident, the peak does not reflect the temperature dependence of the

magnetic susceptibility either, as it does clearly not diverge at the magnetic phase

transition, but rather shows a cusp at the structural transition.

In the following, we present an explanation in terms of a spin-nematic fluctuation

scenario alternative to the one given in Ref. [204]. For a quantitative analysis we

apply the functions derived by Caprara et al. [157], which have already been used for

the cuprates [205] and tritellurides [61], describing the symmetry-dependent Raman

response contribution of 2D nearly critical spin and/or charge fluctuations. The

theory describes the Raman response contribution deriving from the exchange of

two fluctuations with opposite momenta q and −q, hence preserving the qtotal = 0

selection rule. Thus, the scattering from these soft collective modes (CMs) provides
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an additional scattering channel besides the bare particle-hole bubble presented in

Sec. 3.3. The theory is based on the work of Aslamazov and Larkin on fluctuations

in the conductivity of superconductors [206], hence the soft CMs are also referred to

as Aslamazov-Larkin (AL) fluctuations. Caprara et al. show that the role of charge-

and spin-fluctuations and their particular contributions to the Raman response can

be disentangled, given that both kinds of modes are peaked at distinct characteris-

tic wave vectors qλ, the index λ= c, s referring to the charge- or spin-character of

the CMs [207]. The leading order AL diagrams which, in good approximation, de-

scribe the fluctuation contribution to the Raman response are shown in Figs. 6.9 (a)

and (b). Each dashed line represents a bosonic CM propagator depending on the

Matsubara frequencies ωm on the imaginary time axis

D(q, ωm) =
1

|ωm|+ ν|q− qλ|+m(T )
(6.7)

with ν a constant electronic energy scale and m(T ) ∝ ξ−2 the mass of the CM

which encodes the proximity of the electron system to long-range charge- and/or

spin-order. This propagator is largest at zero frequency and q=qλ, the wave vector

setting the modulation of the most singular fluctuations.

Evaluating the diagrams in Fig. 6.9 yields the symmetry-dependent Raman re-

sponse contribution from fluctuations [157]

∆χ′′γγ = Λ2
γγ

∫ ∞
0

dz [b(z − Ω/2)− b(z + Ω/2)]
z+z−
z2

+ − z2
−

[F (z−)− F (z+)] . (6.8)

where b(z) is the Bose distribution function,

F (z) ≡ 1

z

[
arctan

(
Ω0

z

)
− arctan

(m
z

)]
, (6.9)

z±≡ [z±Ω/2][1 + (z±Ω/2)2/Ω2
0], and Ω0∼(100−500) cm−1 is an ultraviolet cutoff.

The AL fits to Rχ′′fluct(Ω, T ) are displayed in Fig. 6.8 as red curves. All fits

were obtained by varying the only adjustable parameter m(T ). By determining

the overall intensity at 103 K, the spectra at all other temperatures can be repro-

duced satisfactorily with this single parameter as visualized in Fig. 6.8. The over-

all good agreement between theory and experiment suggests that the functions by

Caprara et al. capture the essential physics of the observed fluctuations.

The approach does not naturally explain why the fluctuations, after showing

a distinct spectral-weight maximum at 103 K (just slightly above Ts), survive in
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Figure 6.9: Direct (a) and crossed (b) diagrams for the fluctuation contributions to
Raman spectra. The squares denote Raman vertices which carry the γ(k) factor, while the
circles represent spin-fermion vertices which carry the Pauli matrix. Solid lines represent
fermionic QP propagators and dashed lines represent CM propagators.

the nematic phase and only disappear below Tm. Furthermore, since the fits can

be applied on charge/orbital- as well as spin-fluctuations, the question about the

nature of the fluctuations is still not answered. However, one can take advantage of

related selection rules to single out fluctuations associated with certain critical wave

vectors.

6.2.3 Aslamazov-Larkin selection rules

Similar to the case of creation of particle-hole pairs, inelastic light scattering from

fluctuations obeys selection rules that will be used to explain why the fluctuations

appear only in B1g symmetry. Those are carried by an expression given by the

fermionic loop (that is the solid-line triangle, representing three fermion propagators)

in Figs. 6.9 (a) and (b), having the form [157]

Λγγ(Ωl,q, ωm) = CT
∑
n

∑
k

γ(k)G(k, εn + Ωl)G(k− q, εn − ωm)G(k, εn) (6.10)

which enters Eq. (6.8) quadratically. The dominant contributions of the diagrams in

Figs. 6.9 (a) and (b) occur if q=qλ, see Eq. (6.7), thus it is convenient to set q=qλ

in Eq. (6.10). Since the loop contains the symmetry factor γ(k) linearly inside

the momentum integral the sign of γ(k) is crucial. For each given qλ, to avoid

cancellations in Eq. (6.10), the sum over k must encounter FS points connected by

qλ without the vertex γ(k) between k and k + qλ changing sign.

To further illustrate the Aslamazov-Larkin selection rules, we quickly review the

case of La2−xSrxCuO4 (LSCO) discussed in Ref. [207]. In the so-called pseudo gap

region, there is a wealth of experimental evidence for short-range charge- and/or
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Figure 6.10: LSCO FS with hot
spots, connected by the characteris-
tic wave vectors of charge- (qc) and
spin-scattering (qs), as adopted from
Ref. [207]. In panels (a) and (b) the
sign structures of the form factors for
the B1g and B2g channels are plotted,
respectively.

(a) (b)

spin-ordered states [208–213]. The near-critical fluctuations associated with these

instabilities are strongly peaked around qc = 2π(±0.2, 0) and qs = (π, π) [207] and

connect hot spots near (±π, 0) and (0,±π) [214]. For the Raman experiment, this

has the consequence that fluctuations of the charge order are visible only in the B1g

symmetry while those of the spin-order only appear in the B2g symmetry. This is

illustrated schematically in Fig. 6.10 (a) and (b) for the B1g and B2g Raman vertex,

respectively. In the B1g symmetry, qc connects hot spots where the vertex does not

change sign and cancellations in Eq. (6.10) can be avoided. At the same time, qs

connects hot spots where the vertex does change sign, thus canceling out any signal

of spin-fluctuations in the B1g channel. The inverse situation is realized for the B2g

Raman vertex.

In iron-based materials, either spin fluctuations or fluctuations of various types

of orbital order are expected to play the key-role in the formation of the nematic

phase, and possibly also of the superconducting state [30]. The spin fluctuations

are associated with the nesting vector qs = (±π, 0), (0,±π), while for the case of

orbital fluctuations, different critical vectors are possible, depending on which type

of orbital order is finally realized below Ts (see Sec. 2.3.3). There are only two types

of OO that break the C4 rotational symmetry, and thus can possibly be responsible

for the formation of the nematic phase in FeSCs. (i) Stripe-OO, corresponding to

the formation of orbital zig-zag chains [Fig. 2.16 (d)], exhibits an ordering vector

qstripe
c = (±π, 0), (0,±π) equivalent with the SDW ordering vector. Therefore, it

is not possible to distinguish stripe-orbital fluctuations from spin fluctuations, just

by considering the AL selection rules in the FeSCs. However, stripe-OO, although

potentially easily observable within X-ray diffraction experiments [128], has not yet

been observed in FeSCs. As opposed to that, (ii) ferro-OO, that is the unequal

occupation of iron dxz and dyz orbitals [Fig. 2.16 (e)], has been observed below

Ts in Ba(Fe1−xCox)2As2 by ARPES and XLD experiments [32, 144]. As there is

no superstructure being introduced together with this ordering phenomenon the

ordering vector is qferro
c = (0, 0). In this case, the AL selection rules allow for a
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distinction between ferro-orbital and spin fluctuations in FeSCs.

If the ordering vector characterizing ferro-orbital fluctuations is used in Eq. (6.10),

there are no cancellations in the k-summation, irrespective which symmetry is con-

sidered. In this case ferro-orbital fluctuations were visible in all symmetries (or in

none, if orbital fluctuations couple weakly to the e-h pairs brought about by light

scattering in general). Since we observe a fluctuation-contribution exclusively in the

B1g symmetry, the signal can not derive from ferro-orbital fluctuations.

The case of spin or stripe-orbital fluctuations is illustrated in Fig. 6.11. The

panels (a), (b) and (c) show the A1g, B1g and B2g Raman vertices projected on

top of a generic FeSCs FS. Within the panels, the first and second order vertices

(from Brillouin-zone harmonics) are shown, followed by the vertex derived from

a realistic tight-binding band structure using the effective-mass approximation as

adopted from [159]. qs = (π, 0) (= qstripe
c ) connects hot spots, which derive from

improved nesting conditions between the circular hole- and slightly elliptic electron-

pockets in these regions2, see Fig. 6.12. Only for the 1st order A1g, and the 1st and

2nd order B1g vertices the sum over k encounters FS points connected by qs without

the vertex γ(k) between k and k+qs changing sign. As opposed to that, γ(k) does

change sign in the B2g and in the 2nd order A1g symmetry, with the consequence

that any fluctuation response gets canceled out in these symmetries.

In order to understand why there is no fluctuation signal observable in the A1g

channel, one has to compare the vertices approximated by the 1st and 2nd order

BZ harmonics with the vertices derived from the effective mass approximation (see

bottom of Fig. 6.11, [159]). The black frame represents the 1 Fe BZ ranging from

−π to π in each dimension kx, ky and kz. There are three FSs in the center and two

at each face (the outer ones are cut open to visualize the inner ones) showing the

hole bands and electron bands, respectively. All three symmetries have a common

color scale that shows the sign and intensity of the Raman vertex at the FS. For

the A1g symmetry, the effective mass approximation gives a positive value on all

electron bands and a negative value on the central hole pockets. In particular, there

are no sign changes of the vertex taking place anywhere at the FS, thus it is safe to

say that the A1g vertex, in terms of BZ harmonics, has 2nd order A1g character. As

a consequence, any signal deriving from fluctuations with qs= (π, 0) cancels out in

the A1g channel.

Comparing the B1g vertex to crystal harmonics leads to the conclusion that its

2Note that considering circular electron pockets (perfect nesting), one can make the same ar-
gument without the hot spots.
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Figure 6.11: AL selection rules in FeSCs. Panels (a), (b) and (c) show the A1g, B1g

and B2g Raman vertices, respectively, shown along with a generic FeSCs FS. The two top
rows depict the first two basis functions (crystal harmonics) of each symmetry. On the
bottom, the vertex derived from a realistic tight-binding band structure with the effective-
mass approximation is shown. Adapted from [159]. q= (π, 0) connects hot spots, which
derive from nesting between the circular hole- and slightly elliptic electron-pockets. A
finite fluctuation contribution to the Raman response is expected in symmetries where q
connects FS portions having the same sign of the Raman vertex. In the present case, these
are the 1st order A1g and the 1st and 2nd order B1g symmetries. A comparison with the
vertex derived from the effective mass approximation explains the absence of a fluctuation
signal in the A1g channel (see text).
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Figure 6.12: q connects
hot spots (denoted by
small yellow ellipses),
which derive from locally
improved nesting condi-
tions between the round
hole- and slightly elliptic
electron-pockets.

character changes from 1st to 2nd and then back to 1st order, as one considers cuts

with kz = const., going from kz =±π to kz =0. Therefore, since both a 1st and 2nd

order character of the vertex does not lead to cancellations in Eq. (6.10), qs =(π, 0)

fluctuations are expected to emerge in the B1g channel also from the more realistic

effective mass approximation viewpoint. Finally, an examination of the B2g vertex

reveals that its character is mostly that of the 2nd order B2g BZ harmonic. However,

there are no harmonics in this channel in which qs = (π, 0) fluctuations would not

cancel out.

In summary, the AL selection rules clearly state that the observed fluctuation

response which is present exclusively in the B1g symmetry is compatible with q =

(π, 0) critical fluctuations only. The signal therefore either derives from qs = (π, 0)

spin-fluctuations or, less likely, from qstripe
c = (π, 0) stripe-orbital fluctuations. As

opposed to that, qferro
c = (0, 0) ferro-orbital fluctuations can not be the origin of

the fluctuation signal in the Raman response, since they would be visible in all

symmetries.

6.2.4 Considering spin-fluctuations with finite interactions

After explaining the spectral shape and the selection rules we finally discuss the finite

fluctuation intensity in the nematic phase along the lines of Karahasanović et al.

[215]. To this end we now specialize to fluctuations of stripe-like magnetic order

and assume interactions between the fluctuations. In addition the spin-nematic

order is weakly coupled to the lattice.

In the presented model, spin fluctuations associated with the striped magnetic

phase [ordering along qx=(π, 0) or qy=(0, π)] stabilize the nematic phase [30] which

pre-empts the magnetic phase. The nematic phase is then characterized by unequal

strength of spin-fluctuations along the kx and ky directions in momentum space.

Within the model, anisotropic spin-fluctuations are primarily responsible for the
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Figure 6.13: Higher order Aslamazov-Larkin diagrams for interacting fluctuations. The
paramagnetic coupling between fluctuations mediated by fermions is obtained by inserting
quaternions into the leading order Aslamazov-Larkin diagram. The re-summed box B̃αβ
is shaded gray. The first index of the matrix B denotes the type α=X/Y of entering spin
fluctuations, and the second index the type of exiting spin fluctuations.

anisotropies found in several spectroscopies [32,35,216], transport measurements [34,

47] and even cause the tetragonal to orthorhombic phase transition in the 122-family

of iron pnictides. In this scenario, orbital-order and -fluctuations are only secondary

effects which are caused by the anisotropic spin-fluctuations. The observation of

orbital order and resistivity anisotropy at much higher temperatures [32, 144] is

then just a consequence of the spin-nematic regime being extended, as the preferred

orientation for the spin-fluctuations is chosen at much higher temperatures when an

external (detwinning) stress is applied to the samples.

Karahasanović et al. analyze the fluctuation contribution to the Raman response

function in the tetragonal phase, as the structural phase transition is approached.

The leading order AL diagrams R0(Ω) (Fig. 6.9) yield the noninteracting response

and explain the selection rules (see Sec. 6.2.3). However, this diagram alone, which

predicts the divergence of the response at the magnetic transition, cannot account

for the rapid increase of the amplitude of the Raman response function as one

approaches the structural transition, or the reduction of the signal inside the nematic

phase Tm<T <Ts.

In order to describe this aspect, one has to account for the interactions between

spin-fluctuations, which become crucial in the treatment of spin-driven nematicity,

as has been shown in detail in Ref. [48]. The interactions between spin-fluctuations

manifest themselves as a series of quaternion paramagnetic couplings mediated by

fermions inserted into the leading order AL diagrams as shown in Fig. 6.13. The

inserted fermionic boxes effectively resemble the nematic coupling constant g of the
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theory (see Sec. 2.3.2). Karahasanović et al. show that for small frequencies Ω

and in the large N -limit, after re-summing an infinite number of such boxed-like

Aslamazov-Larkin diagrams one obtains the re-summed Raman response function

R̃(Ω):

R̃(Ω) = R0(Ω)
[
1 + gχel

nem(0)
]

(6.11)

Eq. (6.11) states that the Raman response is proportional to the electronic contri-

bution to the susceptibility of the nematic order parameter,

χel
nem(0) =

∫
q
χ2

mag(q)

1− g
∫
q
χ2

mag(q)
. (6.12)

χmag(q) represents the magnetic susceptibility that diverges at Tm, and χel
nem(0)

diverges at T ∗≥Tm as |T − T ∗|−1 in a mean-field scenario.

If the spins (or charges) couple to the lattice, the susceptibility of the nematic

order parameter is given by [217]

χnem(0) =

∫
q
χ2

mag(q)

1− [g + (λ2
sl)/c

s
0]
∫
q
χ2

mag(q)
. (6.13)

where λsl denotes the magneto-elastic coupling, and cs
0 is the bare elastic constant.

Obviously χnem(0) diverges at higher temperature than χel
nem(0). Finally, Ts≥T ∗ is

identified with the structural phase transition.

T dependence of the nematic susceptibility (T >Ts)

The nematic coupling constant has been evaluated as g=α/T 4, where α is a factor

that depends on the ellipticity of the electron pockets [48]. However, this has only

a weak temperature dependence in the vicinity of the magnetic transition, and one

might as well set T =Tm, where Tm is the temperature at which magnetism sets in.

The magnetic susceptibility in the classical regime is given by [218]

χmag(q) =
1

r(T ) + q2
(6.14)
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where r(T ) =T − Tm is the distance from the magnetic transition. One then finds

that in d=2 dimensions,

∫
q

χ2
mag(q) =

1

r(T )
. (6.15)

Substituting the above, the nematic susceptibility is then

χnem(0) =
1

r(T )− [g +
λ2sl
cs0

]

=
1

T − Ts

(6.16)

where Ts = Tm + α
T 4
m

+
λ2sl
cs0

, i.e. structural transition temperature is higher than

the magnetic transition temperature [this can also be seen directly from Eq. (6.13)].

However, χel
nem and R̃(Ω) diverge at T ∗=Tm+ α

T 4
m

[cf. (6.11) and (6.12)]. Since Ts>T
∗

one concludes that the Raman response function develops only a maximum rather

than a divergence at Ts. This is the central result of the analysis given in [215].

T dependence of the nematic susceptibility (Tm>T >Ts)

Using a simple argument, one can show that the nematic susceptibility inside the

nematic (ordered) phase is smaller by a factor two than the susceptibility in the

tetragonal (disordered) phase. The free energy as a function of the nematic order

parameter φ is of the form [30,218]

F (φ) =
a(T )

2
φ2 +

b

4
φ4 − hφ (6.17)

where a field h conjugate to the nematic order parameter has been added and a(T )=

T − Ts. After minimizing the free energy one obtains

a(T )φ+ bφ3 − h = 0 (6.18)

Differentiating the equation above with respect to h, and by noting that ∂φ
∂h
|h=0 =

χnem, one obtains

χnem =
1

a(T ) + 3bφ2
(6.19)
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Figure 6.14: (a) T dependence of Rχ′′fluct/Ω. From Rχ′′fluct/Ω the initial slope of
Rχ′′fluct(Ω, T ) can be directly extracted as it is equal to the intersection of the curves
with the ordinate, assuming a linear frequency dependence of Rχ′′fluct(Ω, T ) at small Ω.
(b) Nematic susceptibility χnem(0) as a function of temperature. The structural transition
temperature is Ts > Tm, where Tm is the temperature at which magnetism sets in. The
nematic susceptibility shows a pronounced maximum at the structural phase transition,
and is smaller by a factor of two inside the nematic phase.

In the nematic phase φ2 =−a(T )
b

[which follows from Eq. (6.18)]. After substitution

we conclude that inside the nematic phase the susceptibility is

χnemnem = − 1

2a(T )
. (6.20)

In the tetragonal phase φ=0 in Eq. (6.19) and χtet
nem = 1

a(T )
. Therefore

χnem
nem = − 1

2(T − Ts)

χtet
nem =

1

(T − Ts)
. (6.21)

Comparison of theory and experiment

The theoretical description presented above is valid only in the limit Ω → 0. The

treatment of the interacting fluctuations at finite energies becomes very difficult

[215]. However, the essential features of the phase transition follow already from the

zero-energy approximation. The appropriate quantity for the analysis is the initial

slope of the fluctuation spectra. Since, according to Eqs. (6.11)-(6.13), a divergence
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Figure 6.15: Initial slope of the Raman spectra of Ba(Fe0.975Co0.025)2As2 after subtract-
ing different particle-hole continua. In the tetragonal phase, the cases of a constant (solid
blue triangles), a weakly temperature dependent (red diamonds) and strongly tempera-
ture dependent p-h continuum have been considered. In the nematic phase, the effect of
adsorbates at the twin boundaries influencing the low-energy spectra outweighs the tem-
perature dependence of the p-h continuum. Three cases, namely ignoring the effect (blue
triangles), considering it to be fully present already directly below the structural phase
transition (orange squares) and, representing the middle course, assuming the adsorbates
to grow constantly between Ts and Tm (violet triangles), are shown. The complete analysis
on the extraction of the initial slopes can be found in Appendix 8.B.

of the nematic susceptibility leads to a maximum of the Raman susceptibility, the

initial slopes of Rχ′′fluct(Ω, T ) are expected to reflect this maximum at Ts. In order to

visualize the initial slopes of the experimental data and the according fits, we plot

Rχ′′fluct/Ω [Fig. 6.14 (a)], from which the slope of Rχ′′fluct(Ω = 0, T ) can be directly

extracted as it is equal to the intersection of the curves with the ordinate, assuming a

linear frequency dependence of Rχ′′fluct(Ω=0, T ) at small Ω. The slopes are extracted

from AL fits of R0(Ω) to the data rather than the data themselves because the data

points close to zero energy depend critically on experimental details.

Fig. 6.14 (b) shows the temperature dependence of the theoretical nematic sus-

ceptibility in the tetragonal and the nematic phase (gray) along with the initial

slopes of Rχ′′fluct (red). We find qualitative agreement in the ranges Tm<T <Ts and

Ts<T .

To assign error bars to the data points presented in Fig. 6.14 it is necessary to

investigate the dependence of the extracted initial slopes to the three major factors

that influence the results of the above analysis. These are, in the tetragonal phase,
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(i) the choice of the particle-hole background and (ii) the AL fit to the resulting

fluctuation contribution to the experimentally obtained Raman response, which is

basically done by hand. Thus, the above analysis was repeated assuming a p-h

continuum that does not change with temperature and a p-h continuum that has a

stronger temperature dependence than the one presented in Fig. 6.7. The detailed

analysis can be found in Appendix 8.B. An important result of the analysis is that

variations in the AL fit introduce only small deviations in the initial slopes. The

change of the fluctuation response itself according to which respective p-h continuum

is chosen outweighs possible inaccuracies of the fits.

Note that even for the chosen constant and strongly temperature dependent p-h

continua, which represent the two extremes for the approximation of the contin-

uum, our result is reproduced for both cases. The nematic susceptibilities which

were extracted from spectra where a constant and strongly temperature dependent

continuum was subtracted are shown as solid dark blue triangles and light blue

circles in Fig. 6.15, respectively. The red diamonds represent the nematic suscepti-

bility shown already in Fig. 6.14 (b). Above 110 K all three susceptibilities by and

large coincide. Only below 110 K the susceptibilities from the constant and strong

temperature-dependent continuum cases have a weaker and stronger divergent be-

havior, respectively. The susceptibility represented by the red diamonds is situated

approximately in the middle between the extremal cases which we chose to define

the upper and lower value of the error bars in Figs. 6.14(b) and 6.15.

In the nematic phase there is a third factor which has a strong influence on

the analysis, that is (iii) the low energy spectra are superposed by elastic stray

light being scattered into the spectrometer from adsorbates (in a high vacuum that

means N2 and H2O), condensing at the twin-boundaries. Ignoring this effect, which

is directly visible with our observation optics (see Fig. 6.8), leads to additional

spurious intensity below Tm (see hatched area, left column in Fig. 8.3). Therefore

we considered this effect and subtracted the low energy part of the original 97 K

spectrum from the raw data obtained in the nematic phase. This was done in two

different ways: In the first approach, the low energy part of the p-h continua for the

temperatures 99 K, 101 K and 102 K were substituted up to 120 cm−1 with the low

energy part of the original 97 K spectrum. The effect of the adsorbates are clearly

visible in the low energy part of the 97 K spectrum as it is clearly not possible to

extrapolate the low energy spectrum to zero. In a second approach it is assumed that

the effect of elastically scattered photons influencing the low energy Raman signal of

the nematic state spectra grows linearly with decreasing temperature. The obtained
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Figure 6.16: (a)-(c) Fluctuation contribution to the Raman response Rχ′′fluct(Ω, T ) in
Ba(Fe1−xCox)2As2 along with AL fits as a function of doping. A higher Co-concentration
leads to a stronger increase of the initial slopes when reducing the temperature towards
the nematic transition. (d)-(e) Rχ′′fluct(Ω, T )/Ω and AL fits on a logarithmic scale which
highlights the low energy evolution of the spectra. The initial slopes (and thus the spin-
nematic susceptibility) of Rχ′′fluct(Ω, T ) can directly be extracted from the intersection of
the AL fits with the ordinate. The trend of an increasing temperature window of critical
fluctuations towards optimal Co-concentration is confirmed.

fluctuation spectra and according AL fits of both approaches are shown in Fig. 8.3.

The resulting nematic susceptibilities are represented by orange squares and violet

triangles in Fig. 6.15. Along with them, the case in which the adsorbates have not

been taken into account is shown as blue triangles. However, the latter case gives

unrealistic results due to the finite fluctuation response in the magnetically ordered

phase. The error bars attached to the violet triangles are much larger than in the

tetragonal phase, owing to the circumstance that we can only estimate the effect of

the adsorbates. However, it is sensible to assume that the true susceptibility in the

nematic phase can be found between the two extremal cases in which the adsorbates

have not been taken into account and where they are assumed to be equal to that

of the 97 K spectrum. We chose our error bars accordingly.
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In summary, the Raman scattering results presented in this chapter support the

spin-nematic model of Fernandes et al. [30,48]. First, the observed symmetry depen-

dence of the fluctuations is in agreement with q = (π, 0) critical fluctuations only,

which happens to be the SDW nesting vector. Second, the model by Fernandes et al.

requires the nematic susceptibility to show a pronounced maximum at the structural

phase transition, and not to be zero in the nematic phase.

On the other hand our results are at variance with the orbital-fluctuation model

of Kontani et al. [50]. First, ferro-orbital fluctuations, the major contender in the

orbital fluctuations model for nematicity and superconductivity in the FeSCs, would

be observable in all symmetry channels whereas the experiment is compatible only

with B1g selection rules. Second, a finite fluctuation response in the nematic regime

is at odds with the orbital fluctuations picture in general since orbital order is

established at Ts, leaving no room for orbital fluctuations below that temperature.

6.2.5 Doping dependence

Having established that anisotropic spin-fluctuations are the driving force behind

the nematic ordering in Ba(Fe1−xCox)2As2, we move on and discuss their doping de-

pendence in this last section. Fig. 6.16 shows the fluctuation contribution to the Ra-

man response Rχ′′fluct(Ω, T ) and the corresponding AL fits for (a) undoped BaFe2As2,

(b) underdoped Ba(Fe0.975Co0.025)2As2 and (c) underdoped Ba(Fe0.949Co0.051)2As2.

Rχ′′fluct(Ω, T ) has been extracted from the Raman response (Figs. 6.1, 6.2 and 6.4)

in the same way as discussed in the previous sections. The related relaxation rates,

p-h continua and AL fit parameters are compiled in the Appendix.

Overall, the doping dependence shows that increasing the Co-concentration leads

to a stronger increase of the initial slopes (which encode the electronic nematic sus-

ceptibility) when reducing the temperature towards the nematic transition. This

is obvious regarding the evolution from an ensemble of relatively broad fluctuation

peaks in the undoped compound to the ensemble of relatively narrow shapes of the

fluctuation response in the x= 0.051 sample. The right hand side of Fig. 6.16 dis-

plays Rχ′′fluct(Ω, T )/Ω from which the initial slopes of Rχ′′fluct(Ω, T ) can be extracted

directly.

Fig. 6.17 displays the magnitude of the spin-nematic susceptibility plotted as a

color map in a doping-temperature phase diagram. Structural (nematic), magnetic

and superconducting transition temperatures (Ts, Tm and Tc) are shown as green

triangles, dark yellow dots and blue squares, respectively. The onset-temperatures

of spin-fluctuations Tf are shown as black squares with error bars that derive from
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Figure 6.17: Phase diagram of Ba(Fe1−xCox)2As2 as adapted from [29]. Structural (ne-
matic), magnetic and superconducting transition temperatures (Ts, Tm and Tc) are shown
as green triangles, dark yellow circles and blue squares, respectively. In addition, the
evolution of the spin-nematic susceptibility versus doping and temperature is shown. The
onset-temperatures of spin-fluctuations Tf are shown as black squares with error bars that
derive from uncertainties in the static B1g relaxation rates (see Fig. 6.6). The spin-nematic
susceptibility is equivalent with the initial slopes of Rχ′′fluct(Ω, T ).

uncertainties in the static B1g relaxation rates (see Fig. 6.6). The values of the spin-

nematic susceptibility encoded in the color-map are equivalent to the initial slopes

of Rχ′′fluct(Ω, T ).

The regime in which fluctuations are observed in our experiment is as broad

as 100 K in the underdoped regime, becoming even broader when the composition

approaches optimal doping. The wide temperature range suggests already that the

signal derives from fluctuations of the primary order parameter, since fluctuations of

the secondary order parameters appear only in the immediate vicinity of Tnem [30].

In the underdoped part of the phase diagram, the spin-nematic susceptibility in-

creases rapidly in the vicinity of the structural phase boundary, by and large showing

a Curie-Weiss-like temperature dependence as expected for a transition driven by

thermal fluctuations. As the doping concentration increases, the intensity of fluctu-

ations increases as well, in particular the critical regime of strong fluctuations (red

color code) gets significantly broader towards optimal doping. This behavior does

not reflect a simple Curie-Weiss law anymore, suggesting a growing importance of

quantum fluctuations upon approaching optimal composition.



Chapter 7

Summary

This thesis reports a systematic study on the doping, temperature and momen-

tum dependent electron dynamics in Fe-based superconductors using inelastic light

scattering. The aim of this work was the investigation of the magnetic, nematic

and superconducting instabilities, which are believed to be intertwined. The su-

perconducting state was studied in Ba0.6K0.4Fe2As2. The investigation revealed the

existence of bound states of electrons with non-zero angular momentum in the ex-

citation spectrum. The energy, temperature and symmetry dependence of these so-

called Bardasis-Schrieffer excitons was analyzed. In the normal state the focus was

placed on the regime that is dominated by strong nematic fluctuations. The studies

were performed in Ba(Fe1−xCox)2As2 for the three compositions x = 0, x = 0.025

and x = 0.051. The variation with temperature of the fluctuation contribution to

the Raman susceptibility was investigated in detail and analyzed theoretically. In

addition, the critical wave vector of the fluctuations was identified to be (π, 0) via the

application of Aslamazov-Larkin selection rules. In combination with the tempera-

ture dependence, this allowed the identification of (i) the nature of the fluctuations

and (ii) the origin of nematicity in Ba(Fe1−xCox)2As2.

The study of hole-doped Ba0.6K0.4Fe2As2 revealed a combination of isotropic and

anisotropic but finite superconducting gaps that are present on the different Fermi

surface sheets. Large isotropic gaps with magnitudes of 190 cm−1 and 210 cm−1 re-

side on the central hole (α) and the inner electron (γ) bands, respectively. The outer

hole (β) and electron (δ) bands host anisotropic gaps with gap minima as small as

25 cm−1 and 80 cm−1 [see Fig. 7.1 (a)]. An important result is the identification of

Bardasis-Schrieffer modes in the B1g spectrum of superconducting Ba0.6K0.4Fe2As2.

This observation allowed the identification of a strong subdominant component in

the BCS interaction potential V (k,k′). The energy distance of the mode with re-
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Figure 7.1: Central results of Ch. 5. (a) Superconducting gaps in Ba0.6K0.4Fe2As2 as seen
via electronic Raman scattering. (b) Mechanism for Bardasis-Schrieffer excitonic modes.

spect to the gap edge [see Fig. 7.1 (b)] shows that this subdominant pairing channel

is weaker, but of the same order of magnitude as the dominant channel. While the

symmetry of the dominant channel could not be identified it was shown that the

observation of the mode in the B1g channel directly reflects the dx2−y2 symmetry

of the subdominant pairing channel. This is a strong piece of evidence that pair-

ing in the subdominant channel is due to magnetic interactions. Finally, the idea

of competing pairing channels was applied to interpret earlier results of Bernhard

Muschler on electron-doped Ba(Fe1−xCox)2As2 [150]. It was shown that the doping

dependence of the superconducting state Raman spectra may be interpreted via a

change of the pairing symmetry from dx2−y2 to s± and back to dx2−y2 as one proceeds

from underdoped to overdoped compositions. However, this last point needs further

investigation.

The isolation of the bare fluctuation contribution to the Raman susceptibility of

Ba(Fe1−xCox)2As2 was achieved via the identification of the onset temperatures of

fluctuations Tf . The subsequent approximation of the particle-hole continuum by an

analytic function enabled the extraction of the bare fluctuation signal which could

be described in terms of Aslamasov-Larkin type of diagrams [cf. Fig. 7.2 (a)]. The

theory imposes selection rules which require that the wave vector of the fluctuations

connects FS sheets in regions of the BZ for which the Raman vertex γ(k) does not

change sign. Otherwise the fluctuation signal cancels out. It could be shown that

the fluctuations observed in our experiments have a (π, 0) wave vector, which hap-

pens to be the SDW vector. Another important result is the observation that the

fluctuations persist in the nematic phase and only vanish below the magnetic order-

ing temperature Tm, providing strong evidence for a close relation with magnetism.

In collaboration with Karahasanović et al. [215] it was shown, adopting the model of

Fernandes et al. which is based on anisotropic spin-fluctuations [30, 48], that in the
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Figure 7.2: Central results of Ch. 6. (a) Fluctuation contribution to the Raman suscepti-
bility in the tetragonal (top) and the nematic phase (bottom). The red curves correspond
to the theoretical Raman response of nearly critical spin and/or charge fluctuations. (b)
The Raman R̃(Ω) as well as the nematic susceptibility χnem(0) as a function of tempera-
ture shows a pronounced maximum at the structural phase transition as expected within
the spin-nematic scenario.

limit Ω→ 0 the Raman susceptibility R̃(Ω) close to the nematic transition is propor-

tional to the electronic contribution of the nematic susceptibility χel
nem(0). Taking

coupling to the lattice into account, Curie-Weiss like behavior of R̃(Ω) ∝ |T −T ∗|−1

is expected. Since T ∗<Ts, the Raman response function develops only a maximum

rather than a divergence at Ts. This is in exact agreement with our experiments [cf.

Fig. 7.2 (b)]. Consequently spin-fluctuations of unequal strength in the qx and qy

directions drive the series of phase transition at Ts and Tm and are responsible for

the existence of the nematic phase in Ba(Fe1−xCox)2As2.
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Chapter 8

Appendices

8.A Gap structure and magnitude in FeSCs

Determining the possible pairing symmetries for FeSCs is challenging, because of the

wide diversity of experimental results for the gap structure. While surface probes,

such as ARPES [64, 89, 175, 219–223] show full gaps with no nodes, the situation is

less clear for bulk probes. Magnetic penetration depth measurements give varying

results ranging from a linear T -dependence of the low-T data in LaFePo [224, 225]

and BaFe2As1−xPx [226], characteristic for the existence of line nodes, to an ex-

ponential T -dependence in Ba1−xKxFe2As2 [227] and LiFeAs [228], indicating fully

gapped superconductivity. Other bulk probes like specific heat [229–236] and ther-

mal conductivity [26,183,184,237–240] measurements also draw a more diverse pic-

ture which points to a non-universal gap-structure. The results suggest that the gap

changes from isotropic to a very anisotropic or even nodal structure as one exam-

ines different compounds of the FeSCs family or even different doping levels of the

same compound. However, the vast majority of bulk probes gives consistent results

comparing the same family members of the FeSCs and it was pointed out that one

can explain the discrepancies between bulk and surface probes by mechanisms like

surface electronic reconstruction or surface depairing [12]. In summary, experimen-

tal results suggest that the SC gap structure is sensitively related to details of the

FS.

Two of the three compounds which have been investigated during this thesis be-

long to the 122-family of the iron-pnictides. Ba(Fe1−xCox)2As2 and Ba1−xKxFe2As2

are considered to represent the electron-, respectively hole-doped side of the generic

phase diagram shown in Fig. 2.6. For the gap anisotropy of these two compounds the

available experimental data obtained by bulk-sensitive probes suggest that [12] in
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Figure 8.1: Raman spectra of Ba0.6K0.4Fe2As2 and Rb0.8Fe1.6Se2 at temperatures as
indicated along with the gaps 2∆ derived from other results (see also tables 8.1 and 8.2).

Ba1−xKxFe2As2 the gap changes its character from nodal to fully gapped and back

to nodal as one goes from hole-overdoped KFe2As2 [241–243] to optimally doped

Ba0.6K0.4Fe2As2 [25–28] and finally to the underdoped compounds [27].

Regarding the bulk-sensitive probes of the electron-doped side a somewhat dif-

ferent behavior can be identified. The gap seems to be much more anisotropic

over the whole doping range with deep minima, or even weak (that means present

only on small portions of the FS) nodes present in the under- and overdoped sam-

ples [183, 184]. At optimal doping ambiguous reports of either a still anisotropic

but small gap [184–186] or QP excitations down to zero energy [180,186] have been

reported.

The third compound which was examined in this thesis, Rb0.8Fe1.6Se2, belongs to

the family of iron-chalcogenides with the generic chemical composition AxFe2−ySe2.

ARPES studies have revealed large electron- and in some cases the absence of hole-

pockets at the Fermi level in these materials [178, 179], which is why this material

class is often viewed as an electron-overdoped case in the family of FeSCs. In fact,

there are multiple reports that these materials show mesoscopic phase separation

with a phase exhibiting an insulating ground state with a
√

5×
√

5 iron-vacancy pat-
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tern and a phase that has a superconducting ground state which has the 122-crystal

structure [57,244–258], justifying that viewpoint (see also Sec. 2.1.1). Nevertheless,

this is most likely an oversimplification, since the iron-chalcogenides seem to exhibit

stronger correlations than the 122-pnictides. At particular compositions the low-

temperature ground states are insulating and display antiferromagnetic order with

large iron magnetic moment. This points to the relevance of Mott physics in these

compounds [259–263].

The symmetry of the order parameter in the chalcogenides remains an open

question. Via the study of low-temperature specific heat [264] and ARPES [178,

179] almost isotropic nodeless superconductivity was reported for KxFe2−ySe2. This

observation is compatible with an s- or a d-wave order parameter. However, several

ARPES studies find a small electron pocket at the Γ-point in some of the iron-

chalcogenides, exhibiting full gaps of roughly the same magnitude as on the BZ-

boundary pockets [265–267], which would exclude the d wave nature of the gap.

However, the same mechanisms that are responsible for purely isotropic gaps being

observed by ARPES in the iron-pnictides could as well be at work in the iron-

chalcogenides.

The gap magnitudes in Ba0.6K0.4Fe2As2 and Rb0.8Fe1.6Se2 found by ARPES,

STS, optical conductivity, µSR, specific heat and NMR experiments are summa-

rized in Fig. 8.1 (a) and (b), respectively, along with the Raman results presented in

this thesis. The results are obtained from scanning tunneling spectroscopy (STS),

optical conductivity, nuclear magnetic resonance (NMR), angle resolved photoemis-

sion spectroscopy (ARPES) [64, 89, 175], specific heat (SH) [271], and muon spin

rotation (µSR) [270] experiments. Not surprisingly, SH and µSR experiments re-

port smaller values than ARPES measuring averages and truly momentum resolved

quantities, respectively. The ARPES and Raman results agree qualitatively here.

Rather surprisingly, the ARPES measurements indicate constant gaps in all com-

pounds including Ba(Fe0.939Co0.061)2As2 where the Raman scattering data are more

consistent with a broad gap distribution [170, 180]. In Ba(Fe0.939Co0.061)2As2, sur-

face issues are unlikely to be sufficient an explanation. We rather believe that the

band curvature varies substantially on the FS, and Raman scattering may project

out other parts than ARPES.

In Tables 8.1 and 8.2 we compile the data on Ba0.6K0.4Fe2As2 and Rb0.8Fe1.6Se2 in

detail. The ARPES results in Ba0.6K0.4Fe2As2 (Table 8.1) reveal the biggest gaps on

the inner central band (α) and on the electron bands (γ, δ) close to the degeneracy

points (Fig. 5.8) while that on the β (in Ba0.6K0.4Fe2As2) band is smaller. All other
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Table 8.1: Gap energies in Ba0.6K0.4Fe2As2 as derived from Raman scattering, ARPES,
tunneling spectroscopy, optical conductivity, µSR, specific heat, and nuclear magnetic
resonance.

method Ref 2∆ [cm−1] 2∆ [meV] 2∆/kBTc comments

Raman [168] 190 23.5 7.0 α-band

25-80 3.1-9.9 0.9-3.0 β-band

210 26.0 7.7 γ-band

80-210 9.9-26.3 3.0-7.7 δ-band

ARPES (1) [89], [64] 200 24.8 7.4 α-band

95 11.8 3.5 β-band

195 24.2 7.2 γ-band

185 22.9 6.8 δ-band

ARPES (2) [175] 150-160 18.6-19.8 5.5-5.9 α-band

<65 <8.0 <2.4 β-band

150 18.6 5.5 ”x-pocket”

145 18.0 5.3 ”blades”

STS [268] 58 7.2 2.2 small gap

131 16.2 5.1 big gap

opt. cond. [269] 60 7.4 2.2 small gap

160 19.8 6.0 big gap

µSR [270] 110 13.6 4.1 small gap

194 24.1 7.2 big gap

specific [271] 56 6.9 2.1 small gap

heat 177 21.9 6.5 big gap

NMR [272] 30 3.7 1.11 small gap

152 18.8 5.63 big gap
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data except for Raman scattering are best described in terms of two essentially

constant gaps in the range of 1 − 2 and 4 − 7 kBTc. Although slightly smaller, the

magnitudes are essentially in agreement with our own results.

However, we cannot derive with certainty how the gaps vary on the γ and δ band

from our light scattering results in A1g and B2g symmetry. For further insight, we

include the collective modes in our discussion. In the case of an anisotropic gap the

bound state will appear close to gap minimum and become asymmetric [17]. Hence,

the symmetric shapes of the B1g modes at 140, and 175 cm−1 [Fig. 5.3] indicate

that the related gaps from which the collective modes are pulled down are nearly

isotropic and correspond to the superconductivity-induced A1g and B2g structures

at 190 and 210 cm−1. The integrated intensities Zd of the two high-energy modes

are on the order of 10 and 30% of those of the pair-breaking features at 190 and

210 cm−1, respectively, as can be seen directly in Fig. 5.3. Recalling that Zd ∝ Eb

this is in qualitative agreement with the binding energies Eb. The shape of the weak

mode at 73 cm−1 is not as well defined, and the mode can either couple to a nearly

constant gap on the β band observed in A1g and B2g symmetry at 80 cm−1 or to the

minimum of an anisotropic gap on the γ or δ band. The coupling to an isotropic β

band leaves the intensity down to 25 cm−1 unexplained making the second possibility

more likely and leaving room for an anisotropic β band.

Then, the β and the δ bands, in contrast to the α and γ bands, have relatively

broad distributions of gaps ranging from 25 to 80 cm−1 and from 80 to 210 cm−1,

respectively, with the minima at 25 and 80 cm−1 close to the principle axes and

the BZ boundaries. This would explain the small but finite symmetry-independent

intensity between 25 and 70 cm−1 without, however, resolving the conflict with the

ARPES results. Although the conflict between ARPES and Raman scattering is

more quantitative here than in Ba(Fe0.939Co0.061)2As2 it remains to be explained.

We therefore conclude that the analysis of the collective modes supports the gap

distribution given in table 8.1 and in Fig. 5.9.

From these results, two messages can be derived: (i) The ground state in op-

timally doped Ba1−xKxFe2As2 is characterized by large nearly constant gaps with

similar magnitude on the nearly perfectly nested inner hole and electron bands (α

and γ) having the full symmetry of the lattice [15, 175]. (ii) The second strongest

interaction channel has dx2−y2 symmetry since all bound states appear in the B1g

spectra.

Yet, the Raman experiments cannot directly pin down the phase of the pairing

state, and we are left with either a fully symmetric s++ state with the same phase
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Table 8.2: Gap energies in AxFe2−ySe2, A = (K,Tl,Rb,Cs) as derived from Raman scat-
tering, ARPES, scanning tunneling spectroscopy, optical conductivity, and µSR.

method/ Ref. 2∆ 2∆ 2∆/kBTc comments

compound [cm−1] [meV]

Raman [168] 80 9.9 3.6 M-point

Rb0.8Fe1.6Se2, Tc=32K

ARPES (1) [178] 166 20.6 7.9 M-point

(K,Cs)Fe2Se2, Tc=30K

ARPES (2) [266] 193 23 9 M-point

(Tl0.58Rb0.42)Fe1.72Se2, Tc=32K 242 30 11 Γ-point

ARPES (3) [267] 129 16 6.6 M-point

(Tl0.45K0.34)Fe1.84Se2, Tc=28K − − − Γ-point

ARPES (4) [267] 145 18 6.5 M-point

K0.68Fe1.79Se2, Tc=32K − − − Γ-point

ARPES (5) [273] 137 17 6.8 M-point

(Tl,K)Fe1.78Se2, Tc=29K 129 16 6.4 Γ-point

STS [57] 16 2 0.7 small gap

KxFe2−ySe2, Tc=32K 64 8 2.9 big gap

opt. cond. [165] <129 <16 <5.8 one gap

RbxFe2−ySe2, Tc=32K model

µSR [274] 124 15.4 5.5 one gap

RbxFe2−ySe2, Tc=32.6K model

µSR [274] 102 12.6 4.7 one gap

KxFe2−ySe2, Tc=31K model
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on all FSs due to electron-phonon coupling or orbital fluctuations [16] or with the

s± state due to spin fluctuations proposed first by Mazin and coworkers [15]. While

electron-phonon interaction is considered too weak for transition temperatures well

above 30 K [107, 171] coupling via orbital fluctuations cannot be excluded a priori.

Even the resonance observed by neutron scattering experiments [275] is not ulti-

mately conclusive and may also be explained by electron damping and correlation

effects [104]. The experiments presented here tell us that the interaction potential

in the subdominant channel favors a sign change between the electron pockets at

(±π, 0) and (0,±π) and is therefore repulsive. Consequently, it stands to reason

that the dominant channel has the same origin suggesting the s± gap to be more

likely.

In Rb0.8Fe1.6Se2 (Table 8.2) Raman scattering returns a gap slightly below 4 kBTc

while the magnitudes derived from ARPES are approximately twice as large. Optical

conductivity and µSR are compatible with isotropic gaps having a slightly bigger

magnitude than those derived from Raman scattering. Only scanning tunneling

spectroscopy (STS) yields a substantial anisotropy and a small maximal gap below

3 kBTc. Given these discrepancies, a final conclusion as to the momentum depen-

dence of the gap is probably premature. For a further analysis, the issues with the

surface preparation and the layered structure of Rb0.8Fe1.6Se2 need to be understood

better. However, in comparison with Ba0.6K0.4Fe2As2 and Ba(Fe0.939Co0.061)2As2 the

modulation on the individual FSs seems to be the weakest one here. In addition,

there is no indication of a gap in the A1g and B2g spectra. This is in agreement with

the expectations if the central hole bands are absent and, respectively, the electron

bands do not have a strong curvature induced by weak hybridization after down-

folding the 1 Fe BZ as in Ba0.6K0.4Fe2As2 and Ba(Fe0.939Co0.061)2As2 [181]. Given

the weak electron-phonon coupling a pairing potential supporting a dx2−y2 gap is

indeed compatible with the data.

8.B Nematic suscebtibility: Errorbar determina-

tion

In this Appendix, the error bars which are given in Figs. 6.14 (b) and 6.15 are derived

from assuming different extreme cases for the approximation of the p-h continuum.

Overall, three major factors are considered which dominate the variation of results.

These are, in the tetragonal phase, (i) the choice of the p-h background and (ii)

the AL fit to the resulting fluctuation contribution to the experimentally obtained



116 8. Appendices
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Figure 8.2: Error bar determination in the tetragonal phase. Three different cases for
the approximation of the p-h continuum are considered: (I) a constant continuum, (II)
a continuum varying in such way that the temperature dependence of the static B1g

relaxation rate reflects the resistivity data of the sample, (III) a continuum varying in
such way that the temperature dependence of the static B1g relaxation rate drops much
stronger than would be justified by the resistivity.

Raman response, which is basically done by hand. In the nematic phase it is (iii)

elastically scattered light which superimposes the low energy spectra which has the

strongest influence on the analysis. The additional stray light derives from scattering

from adsorbates condensing at the twin-boundaries of the now present twins.

Fig. 8.2 shows the analysis for the tetragonal phase. Additionally to the case

presented in the main part of the thesis, where a p-h continuum was assumed which

reflects the bulk resistivity of the sample (see Sec. 6.2.2, case II), we analyze two

extreme cases: (I) the continuum having no temperature dependence at all and (III)

the continuum varying in such way that the temperature dependence of the static

B1g relaxation rate drops much stronger than would be justified by the resistivity.

The first row in Fig. 8.2 displays the p-h continua for the three cases, followed by

the resulting fluctuation contributions to the Raman response together with the
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Figure 8.3: Error bar determination in the nematic phase. Three different cases for the
approximation of the p-h continuum are considered: (IV) elastic scattering from adsorbates
is ignored, (V) the influence of elastic scattering from adsorbates on the low energy spectra
is assumed to grow in a linear fashion and (VI) adsorbates were assumed to have the
maximal effect (which is showing the low energy behavior of the 97 K spectrum already
at 102 K, just below the structural transition).

according AL fits in the second row of the figure. A general statement which can

be made is that the inaccuracy of the AL fit is not the major error-source of the

analysis. It is rather the change of the fluctuation response itself according to which

respective p-h continuum is chosen which outweighs possible inaccuracies of the AL

fits. The third row finally comprises the initial slopes for the three different cases (for

clarity only the AL fits over omega are shown) which can be directly extracted from

the intersection of the red curves with the ordinate. The temperature dependence

of the these slopes are comprised in Fig. 6.15. We chose the extreme cases to define

the upper and lower limit of the error bars given in the figure.

Fig. 8.3 shows the analysis for the nematic phase. Besides the case presented in

the main part of the thesis, which assumes a constantly growing influence of elastic

scattering from adsorbates [Fig. 8.3, case (V)], two more extreme cases are displayed
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in the figure: (IV) elastic scattering from adsorbates is ignored in the analysis and

(VI) the low energy part of the p-h continua for the temperatures 99 K, 101 K and

102 K were substituted up to 120 cm−1 with the low energy part of the original 97 K

spectrum. As in Fig. 8.3, the first row displays the p-h continua for the three cases,

followed by the resulting fluctuation contributions to the Raman response together

with the according AL fits in the second row. It is evident from the fluctuation

response that ignoring the effect of adsorbates [case (IV)] gives unphysical results,

as the fluctuation contribution from the 97 K spectrum is nonzero at low energies (see

hatched area in the left column of the figure), which finally results in much to high

initial slopes of the spectra in the nematic phase. Thus we considered the effect of

adsorbates and subtracted the low energy part of the original 97 K spectrum from the

raw data obtained in the nematic phase. This was done in two different ways: In the

first approach (case V), the low energy part of the p-h continua for the temperatures

99 K, 101 K and 102 K were substituted up to 120 cm−1 with the low energy part of

the original 97 K spectrum. The effect of the adsorbates are clearly visible in the

low energy part of the 97 K spectrum as it is clearly not possible to extrapolate the

low energy spectrum to zero. In a second approach [case (VI)] it is assumed that the

effect of elastically scattered photons influencing the low energy Raman signal of the

nematic state spectra grows linearly with decreasing temperature. Again, the third

row comprises the initial slopes for the three different cases (for clarity only the AL

fits over omega are shown) which can be directly extracted from the intersection of

the red curves with the ordinate. The temperature dependence of the slopes are as

well comprised in Fig. 6.15. We chose the cases (IV) and (V) to define the upper

and lower limit of the error bars.

8.C Dynamic relaxation rates of x=0 and x=0.051

samples

This Appendix contains the dynamic relaxation rates of BaFe2As2 for the composi-

tions x=0 and x=0.051, from which the static relaxation rates shown in Fig. 6.6 (a)

and (c) were extracted. The relaxation rates were obtained following the relaxation

or memory function approach by Götze and Wölfle [188] in the same manner as

described in Sec. 6.2.1. The zero energy extrapolation values were extracted from

the dynamic scattering rates via a fit using the phenomenological parallel resistor

model [Eq. (6.4)]. The fits are displayed with black lines in Figs. 8.4 and 8.5.
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Figure 8.4: Temperature and symmetry dependence of the BaFe2As2 relaxation rates
Γγγ(Ω, T ) for temperatures T < Ts/m [panels (a) and (c)] and T > Ts/m [panels (b) and
(d)]. The rates were obtained, using the procedure described by Opel et al. [190], from
the energy dependent response Rχ′′γγ(Ω, T ) displayed in Fig. 6.1. The smooth black lines
correspond to a fit according to Eq. (6.4).

Ba(Fe1-xCox)2As2
Ts = 52K

x = 0.051

A1g B1g(a)

(b)

(c)

(d)
fit

Energy Energy

Figure 8.5: Temperature and symmetry dependence of the Ba(Fe0.949Co0.051)2As2 relax-
ation rates Γγγ(Ω, T ) for temperatures T <Ts [panels (a) and (c)] and T >Ts [panels (b)
and (d)].
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Energy

Figure 8.6: Approximation of the p-h continuum for BaFe2As2. (a) Fits to the experimen-
tal data according to Eq. (6.6), shown explicitly for three temperatures. (b) Continuum
approximation and (c) the resulting dynamic relaxation rates for all temperatures T >Tm.
(d) Static relaxation rate of the continuum approximation (green stars), along with the
A1g and B1g relaxation rates derived from experiment. The B1g continuum approximation
relaxation rate by and large reflects the experimental resistivity data.

8.D Approximation of the p-h continua for x=0

and x=0.051 samples

This Appendix comprises the p-h continua of undoped (x = 0) and underdoped

(x=0.051) Ba(Fe1−xCox)2As2, which have been used to extract the bare fluctuation

response shown in Fig. 6.16 from the measured Raman susceptibility (Figs. 6.1 and

6.4). From the static relaxation rates (Fig. 6.6) the onset temperatures T 0%
f ≈

215 K and T 5.1%
f ≈ 160 K can be identified. Above Tf , Rχ

′′
γγ(Ω, T ) reflects the bare

particle-hole contribution to the Raman response. Fluctuations set in below Tf

and do persist down to T 0%
s/m = 136 K and T 5.1%

m ≈ 50 K, respectively. The particle-

hole continuum between Tf and Tm is approximated by a fit using Eq. (6.6), as

described in Sec. 6.2.2. The according fitting parameters for the undoped sample

are: a1 = 0.710, a2 =−0.00120, b1 =−0.0000350 and b2 = 0.0000013. The ones for

the sample with 5.1% doping read: a1 = 0.715, a2 =−0.00122, b1 =−0.0000587 and

b2 = 0.0000013. The x = 0 and x = 0.051 continua are shown in panel (b) of the

Figs. 8.6 and 8.7, respectively.

The continua were chosen in a way such that the sum of the static A1g and

B1g relaxation rates, obtained from a Kramers-Kronig analysis of the experimental
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Figure 8.7: Approximation of the p-h continuum for Ba(Fe0.949Co0.051)2As2. (a) Fits to
the experimental data according to Eq. (6.6), shown explicitly for three temperatures. (b)
Continuum approximation and (c) the resulting dynamic relaxation rates for all temper-
atures T >Tm. (d) Static relaxation rate of the continuum approximation (green stars),
along with the A1g and B1g relaxation rates derived from experiment. The B1g continuum
approximation relaxation rate by and large reflects the experimental resistivity data.

A1g Raman response and the B1g p-h fit according to Eq. (6.6), respectively, reflect

the experimentally obtained resistivity data of Chu et al. (Ref. [29]). The B1g

dynamic relaxation rates deriving from the fit are displayed in the panels (c), the

static relaxation rates are plotted together with the resistivity data in the panels (d)

of both figures.

8.E AL fit parameters

This Appendix chapter comprises the Aslamazov-Larkin fit parameters used in Eqs.

(6.8) and (6.9) to fit the experimental data shown in Figs. 6.8 and 6.16. The fits are

shown as smooth red curves in all figures. The aforementioned formulas read

∆χ′′γγ = Λ2
γγ

∫ ∞
0

dz [b(z − Ω/2)− b(z + Ω/2)]
z+z−
z2

+ − z2
−

[F (z−)− F (z+)] . (8.1)

with b(z) the Bose distribution function,

F (z) ≡ 1

z

[
arctan

(
Ω0

z

)
− arctan

(m
z

)]
, (8.2)
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and z± ≡ (z ± Ω/2)(1 + (z ± Ω/2)2Ω0
2). The fit parameters are highlighted in red

in the formulas for clarity.

Table 8.3: AL fit parameters for Ba(Fe1−xCox)2As2, x = 0

T (K) m(cm−1) Ω0(cm−1) Λ2
γγ

136 13 350 0.21

138 16.5 350 0.21

150 21 350 0.21

160 28 350 0.21

180 44 350 0.21

200 65 350 0.21

225 120 350 0.21

Table 8.4: AL fit parameters for Ba(Fe1−xCox)2As2, x = 0.025

T (K) m(cm−1) Ω0(cm−1) Λ2
γγ

99 12 350 0.065

101 8.5 350 0.095

102 7.75 350 0.105

103 7.5 350 0.125

105 9 350 0.125

115 12.3 350 0.125

125 16.8 350 0.125

135 23 350 0.125

150 32 350 0.125

175 55 350 0.125

Table 8.5: AL fit parameters for Ba(Fe1−xCox)2As2, x = 0.051

T (K) m(cm−1) Ω0(cm−1) Λ2
γγ

70 5.5 350 0.091

100 12.5 350 0.091

150 38 350 0.091
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son, and A. Forget, Raman scattering study of spin-density-wave order and

electron-phonon coupling in Ba(Fe1−xCox)2As2, Physical Review B 84, 104508

(2011).

[174] T. P. Devereaux, Symmetry dependence of phonon line shapes in superconduc-

tors with anisotropic gaps, Physical Review B 50, 10287 (1994).

[175] D. V. Evtushinsky, D. S. Inosov, V. B. Zabolotnyy, A. Koitzsch, M. Knupfer,
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Werner, and B. Büchner, Nanoscale Electronic Order in Iron Pnictides, Phys-

ical Review Letters 104, 097001 (2010).

[217] H. Kontani and Y. Yamakawa, Linear Response Theory for Shear Modulus C66

and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluc-

tuations in Fe-based Superconductors, Physical Review Letters 113, 047001

(2014).

[218] U. Karahasanovic, private communication, 2015.

[219] L. Zhao, H.-Y. Liu, W.-T. Zhang, J.-Q. Meng, X.-W. Jia, G.-D. Liu, X.-L.

Dong, G.-F. Chen, J.-L. Luo, N.-L. Wang, W. Lu, G.-L. Wang, Y. Zhou, Y.

Zhu, X.-Y. Wang, Z.-Y. Xu, C.-T. Chen, and X.-J. Zhou, Multiple Nodeless Su-

perconducting Gaps in Ba0.6K0.4Fe2As2 Superconductor from Angle-Resolved

Photoemission Spectroscopy, Chinese Physics Letters 25, 4402 (2008).

[220] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman, E. D. Mun,

J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski,



BIBLIOGRAPHY 145

Momentum Dependence of the Superconducting Gap in NdFeAsO0.9F0.1 Single

Crystals Measured by Angle Resolved Photoemission Spectroscopy, Physical

Review Letters 101, 147003 (2008).

[221] L. Wray, D. Qian, D. Hsieh, Y. Xia, L. Li, J. G. Checkelsky, A. Pasupathy,

K. K. Gomes, C. V. Parker, A. V. Fedorov, G. F. Chen, J. L. Luo, A. Yazdani,

N. P. Ong, N. L. Wang, and M. Z. Hasan, Momentum dependence of supercon-

ducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs

in the high-Tc (SrBa)1−x(K,Na)xFe2As2 superconductors, Physical Review B

78, 184508 (2008).

[222] S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V.

Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and
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