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Quantum Cryptography

Alice said to her friend Eve,
"Why do you practice to deceive?
You know I need to talk to Bob.
Without that I won’t have a job.

"Bob can’t know where my note has been.
He thinks that you are listening in.
He wonders if it’s safe enough
For me to send him secret stuff.

"And Bob’s right not to trust you, Eve,
With quantum tricks stuffed up your sleeve.
But he thinks we can freeze you out,
With quantum tricks we’ve learned about.

"With quantum states, what we achieve
Defeats whatever you conceive.
So even Bob has to believe
That you can’t hear us, can you Eve?"

John Preskill (November 1, 2001)
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Abstract

Quantum cryptography aims to exploit the laws of quantum mechanics to securely transmit
data. Among different possible encryption methods, we focus on quantum key distribution
(QKD). In this context, the no-cloning theorem limits the access of an eavesdropper to
information communicated via a quantum channel between two parties. In this thesis, we
implement a specific prepare-and-measure continuous-variable QKD protocol proposed
by Cerf et al. [1], which encodes classical information in displacement amplitudes of
squeezed coherent states of light. In our experimental implementation, we use propagating
squeezed microwaves at the carrier frequency of f0 = 5.5231GHz. The detection of these
microwave signals relies on cryogenic amplification chains. Here, state-of-the-art cryogenic
high-electron mobility transistor amplifiers add 10 − 20 noise photons, corresponding to
a quantum efficiency of η < 5%. These phase-insensitive amplifiers are ill-suited for
QKD, as they typically reduce the signal-to-noise ratio (SNR) below a threshold required
for the secure communication and are also bound by the standard quantum limit (SQL),
η = 50%. Therefore, we make use of superconducting phase-sensitive amplifiers which can
even exceed the SQL to implement the aforementioned CV-QKD protocol with quantum
microwaves in the single-shot regime.

As our main experimental result, we achieve a positive secret key for our microwave
CV-QKD protocol implementation and analyze its robustness against an eavesdropping
attack. To this end, we use a Josephson parametric amplifier (JPA) in the phase-sensitive
regime at the beginning of the cryogenic amplification chain. With this modification, we
demonstrate a significant improvement in the experimental quantum efficiency, η = 38%.
This step allows us to increase the SNR from 14% to 177% during the CV-QKD protocol
sequence which results in the positive secret key. The current SNR is mainly limited by the
dynamic range of our JPAs. In the future, the SNR can be further improved by exploiting
traveling wave parametric amplifiers. Our results highlight the experimental feasibility of
microwave CV-QKD protocols.
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1 Introduction

Quantum information theory promises many novel applications in various fields, such
as communication [2], computation [3], and metrology [4]. These applications often rely
on the interplay between classical algorithms and features of quantum mechanics, such
as quantum uncertainty [5], quantum superposition [6], and quantum entanglement [7].
Quantum information theory emerged from the success of quantum theories in physics [8]
and the development of programmable digital computers [9]. Before the advent of modern
computers, Claude Shannon demonstrated in 1940 that electrical circuits could perform any
boolean logical operation [10]. Eight years later, he founded the field of information theory
in his seminal paper A Mathematical Theory of Communication [11]. There, he quantified
the ultimate compressibility of information and ultimate limit for transmitting information
over a communication channel. Using these newly developed concepts, he provided an
unconditional security proof of the one-time pad (OTP) method [12], where a message is
encoded with a bit-by-bit XOR operation of a randomly generated set of bits (key) [13]. In
order to achieve the absolute security, this secret shared key must be completely random
and as long as the encoded message (plaintext). The OTP method is a symmetric encryption
method, as both parties have access to the same key.

Many modern encryption methods use asymmetric encryption, where the shared key
consists of a combination of private and public keys. The Diffie–Hellman key exchange [14]
and the RSA scheme [15] are among the most prominent examples. Here, the public key
is generated from the private key, which consists of a product of two large prime numbers
and an auxiliary value. In contrast to the OTP method, its security is not unconditional.
The impossibility to infer the private key from the public key relies on the assumption that
factoring out two large unknown prime numbers requires computational resources that
are not available to a potential eavesdropper. This assumption was challenged in 1994 by
Peter Shor’s algorithm [16]. This algorithm relies on quantum resources and allows for an
efficient factorization of large integer numbers with polynomial scaling.

Prospects of quantum computing, first envisioned by Richard Feynman [17], were heavily
doubted by William Unruh [18]. In response, Shor developed the first scheme for error-
correction [19] and fault-tolerant quantum computation [20]. Afterwards, he showed that
all cryptosystems which rely on general factorization, or discrete logarithm problems, are
breakable in polynomial time on a quantum computer [21]. Consequently, the focus for
post-quantum algorithms shifted back to symmetric encryption algorithms like the OTP
method or the newly developed AES standard (2001) [22]. One of the cornerstones of these
protocols is a secure distribution of keys between the communicating parties.



1 Introduction

This goal can be achieved by using quantum key distribution (QKD), where a secret
classical key is shared using quantum states. The usage of corresponding quantum com-
munication channels instead of classical channels requires an adaptation of Shannon’s
information theory by taking into account new resources provided by quantum mechanics.
These adaptations were largely influenced by the Russian physicist Alexander Holevo. He
found that it is not possible to transmit more than one classical bit per transferred qubit
state [23]. This proof was the main ingredient for evaluating the classical capacity of a noisy
quantum channel by Holevo [24], and Schumacher and Westmoreland [25].

The first practical QKD protocol was proposed by Bennett and Brassard in 1984 and
is known under the acronym BB84 [26]. It was inspired by Wiesner’s idea for conjugate
coding [27]. In the BB84 protocol, a discrete-variable encoding is used via the preparation
and measurement of photon polarization [28]. Any interference of an eavesdropper with
the communication necessarily results in a disturbance of the statistics for the shared key
due to the no-cloning theorem [29–31]. The first security proof of the BB84 protocol by Shor
and Preskill [32] used the equivalence principle [26] between the entanglement-based E91
and BB84 protocols [33].

Timothy Ralph was first to consider the encoding of keys in continuous-variable (CV)
quadratures of multi-photon states instead of the discrete-variable (DV) polarizations of
single-photon states [34]. In 2001, Cerf et al. [1] proposed encoding symbols in the Gaussian-
modulated amplitude of displaced squeezed vacuum states, which improved the bit-depth,
as compared to DV [1]. Later, error correction and privacy amplification protocols were
added for this protocol [35]. More CV-QKD protocols emerged in the following years
[36, 37] and related security proofs for CV-QKD were provided by Pirandola et al. [38].
In 2015, a formal derivation of the secret key capacity (the maximal amount of secure bits
transmitted per channel use) was found for CV-QKD protocols [39].

So far, experimental implementations of CV-QKD protocols have been demonstrated only
for optical frequencies∼ 4000THz. First laboratory demonstrations were made in 2003 [40].
Later on, experimental implementations were continuously improved to communication
distances over 50 km in 2019 [41]. The communication at optical frequencies is possible
over high distances due to low losses in optical fibers and practically absent noise photons.

However, modern computation and communication hardware like WiFi [42], or the 5G
standard [43], operate at microwave frequencies (300MHz−5GHz). This is also the case for
superconducting quantum computers [44]. Recent advances in experiments with quantum
microwaves [45, 46] allowed for first quantum microwave communication protocols like
remote state preparation [47] or quantum teleportation [48]. Moreover, a theory analysis
showed experimental feasibility of a fully microwave CV-QKD protocol using squeezed
states [49]. There, propagating squeezed states are assumed to be generated using flux-
driven Josephson parametric amplifiers (JPAs) [50].

This work builds on the advances which were made in Ref. 49 by building a corresponding
experimental setup. We achieve a positive experimental secret key rate by averaging over
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the acquired samples with a heterodyne microwave detection scheme. However, careful
analysis shows that averaging must be inherently prohibited in the QKD protocol, because it
contradicts the security of the communication channel imposed by the no-cloning theorem.
If each symbol of the quantum key can be obtained from multiple averages, an eavesdropper
could potentially perform a precise tomography of the transmitted state and break the
encryption. In this context, our main goal is to achieve a positive secret key for a single-shot
readout of the propagating quantum microwaves at the bandwidth of our electronic readout
components. We aim to achieve this task by employing an extra JPA as a phase-sensitive
preamplifier. We improve a quadrature-dependent signal-to-noise ratio (SNR) and increase
the readout quantum efficiency, so that a positive secret key within a single demodulation
period becomes possible. In order to achieve our goal, we need to synchronize all setup
components, and characterize the optimal working point for the squeezing JPA and the
preamplifier JPA.

Chapter 2 starts with a theoretical description of properties and transformations of quan-
tum microwave states. Afterwards, we introduce a framework for amplification noise and
JPAs as a tool for phase-sensitive amplification. We introduce a particular CV-QKD proto-
col and outline how to calculate the secret key. Chapter 3 concerns experimental methods.
Our implementation operates superconducting circuits in a cryogenic dilution refrigera-
tor. We describe the implementation and characterization of the CV-QKD protocol in an
experimental cryogenic microwave setup. Chapter 4 is dedicated to the comparison of ex-
perimental secret key measurements with and without phase-sensitive amplification. We
compare our secret key with estimates from the calibration measurements and discuss our
findings. Chapter 5 highlights main novel results and provides an outlook.

3





2 Theoretical Concepts

In this chapter, we provide a conceptual theory framework. First, we introduce propa-
gating quantum microwaves and their description in phase-space using the Wigner quasi-
probability distribution. We also use the covariance matrix formalism to represent Gaussian
states and their transformations in a mathematically concise way. Later, we introduce the-
ory of phase-preserving (nondegenerate) and phase-sensitive (degenerate) amplification.
We show how phase-sensitive amplification can be implemented with a superconducting
Josephson parametric amplifier (JPA). In the third section, we describe a specific quantum
communication protocol which we study experimentally in this thesis. This protocol relies
on a continuous-variable quantum key distribution (CV-QKD) using Gaussian-modulated
displaced squeezed states. Our main goal is to investigate the security of this protocol. To
this end, we define the units and amount of information that can be shared or eavesdropped
by different communication parties over a quantum channel.

2.1 Propagating quantum microwaves

We start with a brief motivation for the phase-space representation of propagating quantum
states. In particular, we are interested in Gaussian states and operations that preserve the
Gaussian nature.

2.1.1 Quadratures of the quantized electromagnetic field

Microwaves are electromagnetic field oscillations in the frequency range (300MHz −
300GHz). A single-mode microwave field can be described by its amplitude A, angular
frequency ω = 2πf , and phase ϕ, as A(t) = A cos(ωt+ ϕ). We obtain an equivalent formu-
lation by decomposing the amplitude A(t) into its in-phase, I(t), and out-of-phase, Q(t)

quadrature components. In particular, we employ the angle sum identity, so that

A(t) = A cos(ωt+ ϕ)

= A cos(ϕ) cos(ωt) +A sin(ϕ) sin(ωt)

= I(t) cos (ωt) +Q(t) sin (ωt) ,

(2.1)

where I(t) = A cos(ϕ), Q(t) = A sin(ϕ), A =
√
I(t)2 +Q(t)2 and ϕ = arctan(Q(t)/I(t)).

However, this classical description is unable to reflect quantum features.
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(a) Quantum harmonic oscillator (b) Vacuum state

p

q

E

q

Vacuum state
,Zero point energy

Figure 2.1: (a) Zero point energy of the quantum harmonic oscillator. The ground state energy is
E0 = ℏω/2. (b) The vacuum state |0⟩ is the lowest eigenstate of the quantum harmonic oscillator. The
expectation values of the quadrature operators are ⟨p̂⟩ = ⟨q̂⟩ = 0; the variance of the quadratures is
⟨(∆p̂)2⟩ = ⟨(∆q̂)2⟩ = 0.5.

A quantum-mechanically accurate framework can be created via quantization of the
electromagnetic field in free space. A thorough introduction to this topic can be found in
Refs. 51, 52. In short, the Hamiltonian of a single-mode electromagnetic field is equivalent
to a quantum harmonic oscillator [52]

H = ℏω
(
â†â+

1

2

)
, (2.2)

with the Planck constant ℏ, the angular frequency ω and the bosonic creation, â†, and anni-
hilation, â, operators. These operators obey the bosonic commutation relation

[
â, â†

]
= 1.

Then, the single-mode solution Ê(t) is defined as [53]

Ê(t) = E0

[
âeiωt + â†e−iωt

]
, (2.3)

where E0 contains dimensional prefactors. Here, â describes the forward propagating
and â† the backwards propagating waves. Then, we can define the canonical quadrature
operators q̂ and p̂ as

q̂ =
â+ â†

2
, p̂ =

â− â†

2i
, [q̂, p̂] =

i

2
. (2.4)

Using this definition, we can rewrite the electric field in terms of the sine and cosine parts
as [53]

Ê(t) = 2E0 [q̂ cos (ωt) + p̂ sin (ωt)] . (2.5)

This description of the propagating microwave field is compatible with quantum mechanics
due to the nature of q̂ and p̂ quadrature operators. Unlike their classical counterparts I
and Q, the precision of a simultaneous measurement of both q and p is bounded by the
Heisenberg uncertainty relation [54]

⟨(∆q)2⟩⟨(∆p)2⟩ ≥ 1

4
|⟨[q̂, p̂]⟩|2 = 1

16
, (2.6)
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2.1 Propagating quantum microwaves

where the variance of an observable Ô is defined as

∆Ô2 = ⟨Ô2⟩ − ⟨Ô⟩2. (2.7)

The quadrature operators and their minimal uncertainty are the central properties for
quantum microwave signals.

2.1.2 Quadrature moments of Gaussian states

Quantum states are usually described by their density matrix ρ̂ =
∑N

i pi |ψi⟩ ⟨ψi|, Tr(ρ̂) = 1,
where pi is the probability for a system to be in the pure state |ψi⟩. An analogous description
can be achieved by using a the quasi-probability distribution provided by the Wigner
function. The Wigner function allows us to characterize a quantum state in the phase-space
spanned by the quadrature components p and q. The Wigner function W (q, p) can be
directly obtained from the density matrix [55]

W (q, p) =
1

πℏ

∫
⟨q − y| ρ̂ |q + y⟩ e2ipy/ℏdy. (2.8)

The Wigner function behaves like a classical probability distribution in terms of normal-
ization (i.e.,

∫
W (q, p)dqdp = 1) and marginal distributions (i.e.,

∫
W (q, p)dp = ⟨q| ρ̂ |q⟩).

However, the Wigner function (for example, for Fock states) can be negative, W (q, p) < 0,
for a certain range of quadratures. Therefore, the Wigner function is often referred to as
the quasi-probability distribution [56]1.

Gaussian states represent a subclass of general quantum states. Hudson’s theorem states
that the Wigner function of any pure quantum state is positive if and only if it follows a
Gaussian distribution in phase space [60–62]. Gaussian states encompass coherent, thermal,
squeezed states, and their linear superpositions. In this work, we focus on generation and
exploitation of microwave Gaussian states. Therefore, we can introduce a more concise
formalism limited to Gaussian states. In particular, the Wigner function of an N -mode
Gaussian state (see Eq. 2.9) can be reformulated using its displacement vector r̄ = ⟨r̂⟩
(first-order statistical moment) and covariance matrix V = (Vij) ∈ R2N×2N (second-order
statistical moment) as [63, 64]

W (r̂) =
1

(2π)N
√

detV
exp

[
−1

2
(r̂− r̄)V−1(r̂− r̄)T

]
. (2.9)

Here, the displacement vector is

r̄ = (⟨q̂1⟩, ⟨p̂1⟩, . . . , ⟨q̂N ⟩, ⟨p̂N ⟩), (2.10)

1This is due to the violation of Bochner’s theorem for classical probability, which tells us that the Fourier
transformation of a continuous positive-definite function on a locally compact Abelian group corresponds
to a finite positive measure on the Pontryagin dual group. The interested reader is referred to Refs. 56–59.

7
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and the covariance matrix V is given by

Vij =
1

2
⟨{∆r̂i,∆r̂j}⟩ =

⟨r̂ir̂j + r̂j r̂i⟩
2

− ⟨r̂i⟩⟨r̂j⟩, (2.11)

where ∆r̂i = r̂i − ⟨r̂i⟩, {, } is the anti-commutator, and i, j = 1, . . . , 2N . The diagonal
elements of the covariance matrix can be reduced to the variances of field quadratures [64]

Vii = ⟨(∆r̂i)2⟩ = ⟨r̂2i ⟩ − ⟨r̂i⟩2. (2.12)

The covariance matrix is constrained by the Heisenberg uncertainty principle so that
detV N ≥ 1/16N for an arbitrary N -mode state [53].

Purity is another important measure of quantum states indicating their mixedness. The
purity, µ, of a Gaussian state depends on the covariance matrix as

µ =
1

4N
√

det(V)
. (2.13)

Equivalent to their description via quadrature moments, we can formulate the Gaussian
Wigner function in terms of its measurable signal moments ⟨(â†)mân⟩ with m,n ∈ N0,
m+n ≤ 2 [65]. This allows a full state tomography [66]. The Wigner function of a Gaussian
state can be written as [65, 67]

W (â, â†) =
1

π
√

(N + 1/2)2 − |M|2

× exp

[
−
(N + 1/2)|α− ⟨â⟩|2 − (M∗/2)(α− ⟨â⟩)2 − (M/2)(α∗ −

〈
â†
〉
)2

(N + 1/2)2 − |M|2

]
,

(2.14)
with the displacement amplitude α = q + ip, and the measured central moments [68]

⟨â2⟩(c) ≡M =
〈
â2
〉
− ⟨â⟩2

⟨â†â⟩(c) ≡N =
〈
â†â
〉
− |⟨â⟩|2

N ≥ 0, N (N + 1) ≥ |M|2.

(2.15)

In conclusion, an arbitrary Gaussian state is completely described by its mean displacement
r̄ and its covariance matrix V, which are accessible through the measurements of signal
moments.

2.1.3 Gaussian squeezing and displacement

Squeezing and displacement are Gaussian unitary operations. A quantum operation is
Gaussian when it transforms Gaussian states into Gaussian states [64]. We can also in-
troduce a Gaussian communication channel which can be viewed as a linear map that is
completely positive and trace preserving [69]. A subset of these transformations can be
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2.1 Propagating quantum microwaves

represented by unitary transformations, such that ρ̂ → Uρ̂U † is pure (Tr(ρ̂2) = 1). This
holds only in the absence of added noise. In Ref. 70, the reader can find a complete deriva-
tion showing that an affine symplectic map (S,d) can fully characterize a Gaussian unitary
channel as [64, 71]

U(S,d) : r̂ → Sr̂+ d,

V → SVST ,
(2.16)

where S is a symplectic matrix which fulfills

SΩST = Ω, with Ω = diag
(

0 1

−1 0

)
. (2.17)

Next, we describe the most important states in this work: vacuum, thermal, displaced,
squeezed states and their linear superpositions.

Vacuum and thermal state

The vacuum state |0⟩ has zero noise photons nth = 0, and minimum variance in the
canonical variables (∆q)2 = (∆p)2 = 1/4 [64] (see Fig. 2.3 (a)). The vacuum state is then
simply described by

r̄vac = 0 and Vvac =
I
4

, (2.18)

where I is the identity matrix. In practice, a non-zero temperature of the electromagnetic
mode, T > 0K, increases the uncertainty by adding a finite amount of thermal photons nth
in the bosonic mode, which can be computed with the Planck distribution [72]

nth =
1

exp(ℏβω)− 1
, (2.19)

where β = 1/(kBT ). As a consequence, the covariance matrix has to account for additional
noise (see Fig. 2.3 (b)). The Gaussian Wigner function of a thermal state is defined by [64]

r̄th = 0 and Vth = (1 + 2nth)
I
4

. (2.20)

However, often the condition kBT ≪ hf is fulfilled, as it is also the case in many cryogenic
microwave experiments (f ≃ 5GHz, T ≃ 40mK, nth ≤ 10−2), the vacuum state is a good
approximation for the lowest energy state.

Displacement and coherent states

An arbitrary coherent state |α⟩ is the eigenstate of the annihilation operator â with an
eigenvalue α [73]

â |α⟩ = α |α⟩ . (2.21)
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(a) Displacement (b) Squeezing

p p

q q

Ò

D(Ë)/

›

S(Ë)

›

0 1

Ë = q + ip
1/e contour

W(q,p)

|Ë|

Û2
AS

Û2
S

Figure 2.2: (a) Displacement operation. The vacuum state |0⟩ is displaced to the coherent state
|α⟩ = D̂(α) |0⟩. The displacement amplitude is given by α = |α|eiθ = q + ip. (b) Squeezing opera-
tion. The p quadrature is squeezed. In the center, we depict a squeezed vacuum state. Off center,
we plot displaced (coherent) squeezed states with different displacement amplitudes.

The coherent state |α⟩ = D̂(α) |0⟩ can be decomposed in the number state basis [51]

|α⟩ = exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!

|n⟩ . (2.22)

If we substitute |n⟩ =
[
(â†)n/

√
n!
]
|0⟩ in Eq. 2.22, we can obtain the definition of the

displacement operator D̂(α) (see also Sec. A.2)

D̂(α) = exp
(
αâ† − α∗â

)
, (2.23)

where α = q + ip is the complex displacement amplitude. The action of the displacement
operator on the creation and annihilation operators â† and â is [51]

D̂†(α)âD̂(α) = â+ α,

D̂†(α)â†D̂(α) = â† + α∗.
(2.24)

The displacement operator D̂(α) can be expressed using the symplectic map formalism, via
the symplectic matrix S and displacement vector d

S = I, d = dα =

(
q

p

)
=

(
Re{α}
Im{α}

)
. (2.25)

Respectively, the displacement transformation becomes [64]

D̂(α) : r̂ 7→ r̂+ dα,

V 7→ V.
(2.26)

10



2.1 Propagating quantum microwaves

(c) Squeezed vacuum state

(a) Vacuum state

(b) Coherent state
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Ë
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(d) Displaced phase-squeezed state

(e) Displaced amplitude-squeezed state

(ΔE)2(t)

(ΔE)2(t)

<E(t)>
1/e contour

0 1 W(q,p)

Figure 2.3: Wigner functionW (q, p)distributions of displaced and squeezed vacuum states in phase-
space (left column) and its electric fieldE(t) in the time domain (right column). (a) Vacuum state |0⟩
with the minimal variance 1/4 in p and q quadrature. (b) Coherent state |α⟩ = D̂(α) |0⟩, where the
displacement amplitude is α = |α|eiθ, with the displacement angle θ = 45◦. (c) Squeezed vacuum
state Ŝ |0⟩ with squeezing angle γ = 0◦. (d) Displaced squeezed state, with orthogonal squeezing
angle and displacement angle γ ⊥ θ. (e) Displaced squeezed state, where squeezing angle and
displacement angle are parallel γ ∥ θ.
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2 Theoretical Concepts

The displacement operator is a Gaussian unitary operator. Since D̂†(α) = D̂(−α) = D̂(α)−1,
we note that the displacement operator is also unitary. The displacement operation is
visualized in Fig. 2.2.

In quantum optics, the displacement operation is implemented using highly asymmetric
(transmissivity τ → 1) beam splitters whose first (strongly coupled) input port âin is to be
displaced and the second (weakly coupled) port is fed by a strong coherent state b̂coh [74].
The resulting bosonic output mode is [75]

âout =
√
τ âin +

√
1− τ b̂coh. (2.27)

By assuming that b̂coh |α̃⟩ = α̃ |α⟩, and in the limit τ → 1, the bosonic output mode of the
directional coupler âout can be approximated as [74, 75]

âout = âin +
√
1− τα̃ = âin + α, (2.28)

with α =
√
1− τα̃. In the microwave regime, the displacement operation can be efficiently

implemented by using cryogenic directional couplers [46]. Here, the quantum nature of
displaced states can be preserved even if the state is displaced by hundreds of photons [46].

Single-mode squeezing and squeezed vacuum states

The second important Gaussian operation is squeezing. It is defined by the action of a
single-mode squeezing operator [52]

Ŝ (ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξ
(
â†
)2)

, (2.29)

where the complex squeezing parameter ξ = reiφ consists of the squeezing factor r and the
squeezing phase, which describes the orientation in the phase spaceφ. The squeezing angle
γ = −φ/2 is defined between the anti-squeezed quadrature and the p-axis (see Fig. 2.3 (d)).
The squeezing factor r defines the squeezed (σ2S = e−2r/4) and anti-squeezed (σ2A = e2r/4)
quadrature variances. Typically, we quantify using a squeezing level S and antisqueezing
level A. Both quantities are usually measured in decibels

S = −10 log10

(
σ2S
0.25

)
A = 10 log10

(
σ2A
0.25

)
, (2.30)

where the variances are normalized to 0.25 corresponding to the vacuum state variance.
Squeezed and anti-squeezed quadrature variances always have to balance the Heisenberg
uncertainty relation such that A − S ≥ 0. If the squeezed state is pure, µ = 1, we expect
S = A = 20r log10 (e). Squeezing can be also represented by the corresponding symplectic
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2.1 Propagating quantum microwaves

map with the symplectic matrix S and displacement vector d

S(ξ) =

(
e−ξ 0

0 eξ

)
, d =

(
0

0

)
. (2.31)

The corresponding transformation is given by

Ŝ(ξ) : r̂ 7→ S(ξ)r̂,

V 7→ S(ξ)VS(ξ)T .
(2.32)

The operator transformation by the squeezing operator is given by the Bogoliubov transform
[52]

Ŝ†(ξ)âŜ(ξ) = â cosh(r)− â†eiφ sinh(r),

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r)− âe−iφ sinh(r).
(2.33)

Respectively, we can compute the displacement and covariance matrices of a squeezed
vacuum states to be [75]

r̄sq = 0 and Vsq =
1

4

(
e−2r cos2 φ

2 + e2r sin2 φ
2 sinφ

(
e−2r − e2r

)
/2

sinφ
(
e−2r − e2r

)
/2 e2r cos2 φ

2 + e−2r sin2 φ
2

)
. (2.34)

In our notation, positive values of S correspond to squeezing of vacuum fluctuations below
the vacuum level. Experimentally, we generate squeezed microwave states with the help of
Josephson parametric amplifiers. A summary of the Gaussian unitary operations that are
discussed above, can be found in Fig. 2.3. In particular, the squeezing operation applied
to the vacuum state (see Fig. 2.3 (a)) results in the squeezed vacuum state (see Fig. 2.3 (c)).
Squeezing and displacement can also be applied consecutively as shown in Fig. 2.3 (d,e) for
phase-squeezed and amplitude-squeezed states.

Two-mode squeezed vacuum states

Two-mode squeezed vacuum (TMSV) states are entangled states. They were used to realize
the Einstein-Podolsky-Rosen (EPR) paradox [76] for continuous position and momentum
observables [77]. A TMSV can be created by applying a two-mode squeezing operator to
the vacuum state. The two-mode squeezing operator is defined as [52]

Ŝ1,2 = exp
(
ξ∗â1â2 − ξâ†1â

†
2

)
, (2.35)

where â1 (â2) is the annihilation operator of the 1st (2nd) mode. The complex squeezing
parameter ξ = reiφ is defined by the squeezing factor r and phase φ. If we set the phase to
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G1, n1n ÑG2,n2 ...

...

GN,nN

Reference point Amplification chain Detector

Figure 2.4: Scheme of noise in an amplification chain consisting ofN amplifiers, i = {1, 2, 3, . . . , N},
with noise number ni referred to their input and gain Gi. The added noise by the first amplifier n1
(blue) dominates the total photon noise number , nth, as the noise gets amplified by the complete
amplification chain. Even a high noise number of the last amplifier (red) weakly affects the output
signal.

φ = 0, the mean r̄TMSV and covariance matrix VTMSV are given as [53]

r̄TMSV =

(
0

0

)
, VTMSV =

1

4


cosh (2r) 0 sinh (2r) 0

0 cosh (2r) 0 − sinh (2r)

sinh (2r) 0 cosh (2r) 0

0 − sinh (2r) 0 cosh (2r)

 . (2.36)

We can express the quadrature variances as cosh (2r) = (1 + 2nth). Physically, it means that
each mode looks locally like a thermal state with an average noise photon number nth [49].

2.2 Phase-sensitive amplification of quantum microwaves

In this section, we want to discuss the limitations of different quadrature detection strategies
for microwave signals. We introduce a quantum efficiency quantity and its limits for phase-
insensitive and phase-sensitive amplification. At the end of the section, we show the
working principle of a Josephson parametric amplifier, which is able to implement both
amplification regimes in the microwave regime.

2.2.1 Quantum efficiency of quantum state tomography

At optical frequencies (∼ 4000THz), the high energy of single photons enables efficient
single-photon detectors and optical homodyne detection [78]. In optics, the quantum
efficiency is defined as the ratio of incident photons to converted electrons. Optical detectors
can achieve high quantum efficiencies of η ≥ 90% [79].

At microwave frequencies (300MHz−300GHz), the realization of single-photon detectors
is still an active research challenge [80, 81]. More often, researchers still rely on linear
amplification chains for microwave state detection [82]. The quantum efficiency η of such
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2.2 Phase-sensitive amplification of quantum microwaves

an amplification chain can be defined as [83]

η =
1

1 + 2n
, 0 < η < 1, (2.37)

where n is the total added noise. The total noise for chained amplification (see Fig. 2.4) can
be expressed by the Friis noise formula with the noise photon number referred to the input
of the amplifiers, ni, with the corresponding gain factors, Gi [84]

n = n1 +
n2
G1

+
n3

G1G2
+ · · ·+ nN∏N−1

i=1 Gi

. (2.38)

This equation demonstrates that the overall added noise is dominated by the noise level of
the first amplifier in the limit of large amplifier gains, Gi ≫ 1.

2.2.2 Parametric amplification

For cryogenic amplification in microwave circuits, there are two commonly used options:
linear amplification with a HEMT, or parametric amplification with a Josephson parametric
amplifier. HEMT amplifiers rely on field effect transistors, where a small input voltage
induces a large output current due to an engineered high carrier mobility [85]. The source
for the added 10-20 noise photons is the HEMT’s non-vanishing phase-insensitive resistance
in the direct current [86]. Instead of a phase-insensitive dc resistance, parametric amplifiers
are characterized by their impedance. This impedance consists of resistance and a reactance,
which can store energy and return it to the circuit after a quarter oscillation (as in an
LC oscillator) [87]. Common mechanical analogues of parametric amplification are the
periodic variation of the pendulum length, or the pumping of a swing [88] at twice the
signal frequency ωs.

We briefly motivate the effect of a frequency-doubled pump signal in an undamped toy
model. A more detailed introduction into parametric amplification and driven oscillators
can be found in Refs. 88, 89. Parametric amplification can be studied by variation of the
intrinsic resonance frequency of an unperturbed harmonic oscillator. There, the resonance
frequency ωr is periodically modulated as ωr → ωr (1 + f(t)/2), with f(t) = A cos(2ωrt).
The classical equation of motion for the response q(t) is then [89]

d2q(t)

dt2
+ ω2

r (1 + f(t)) q(t) = 0. (2.39)

Here, the A2 term was neglected by assuming small pump amplitudes. We can write the
system as a driven harmonic oscillator with a static resonance frequency and a response-
modulated pumping signal f(t) as driving force

d2q(t)

dt2
+ ω2

rq(t) = −ω2
rf(t)q(t). (2.40)
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In general, a harmonic oscillator is driven in resonance for a π/2 phase-shifted signal at the
resonance frequency. We assume an initial resonant oscillation q(t) = cos(ωrt) and apply a
trigonometric identity on the right hand side of Eq. 2.40

f(t)q(t) =A sin(2ωrt) cos(ωrt)

=
A

2
[sin(ωrt) + sin(3ωrt)] .

(2.41)

We see that the effective driving signal consist of an off-resonant (therefore attenuated)
signal at 3ωr and a signal in resonance ωr with the oscillator. As a result the amplitude
of the oscillation increases exponentially. An analogue principle of signal pumping can be
exploited for a corresponding quantum mechanical Hamiltonian

H = ℏω0

[
â†â+

1

2
+A cos(2ωrt)(â+ â†)2

]
. (2.42)

By introducing a signal and loss port to the Hamiltonian, the equation of motion can be
solved in a reference frame rotating with ωr. The resulting output field is the expression for
the output of Josephson parametric amplifiers, which we discuss in more detail in Sec. 2.2.5.
There, parametric down-conversion splits a pump photon into two photons, called signal
and idler, with frequencies ωs = ωp/2 + δω, and ωi = ωp/2 + δω. JPAs can be employed
both for nondegenerate, ωp ̸= 2ωs, and degenerate amplification, ωp = 2ωs [90].

2.2.3 Nondegenerate amplification

In the following, we show that a nondegenerate (phase-insensitive) amplification adds at
least half a noise photon to the signal, referred to the amplifier input. Respective limits of
bosonic phase-preserving amplifiers were originally developed by Haus and Mullen (1962)
[91] and later extended by Caves (1982) [92].

In this context, we should consider general limitations on input and output modes. Let
âin be the input and âout the output modes of a bosonic amplifier. The Caves theorem states
that the output modes commutation relation

[
âout, â

†
out

]
= 1 is only fulfilled if an additional

idler mode b̂in is added. A more detailed motivation is shown in the Appendix A.3. Then,
the bosonic scattering relation for phase-preserving amplification is [44, 86]

âout =
√
Gâin︸ ︷︷ ︸

Amplification

+
√
G− 1b̂†in︸ ︷︷ ︸

Added idler noise

. (2.43)

Therefore, any bosonic amplifier input-output relation is composed of at least two different
signals: the signal and idler mode. When considering the lower bound for noise in the
output mode [86], one can retrieve the fundamental theorem for phase-insensitive linear
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(a) Nondegenerate input (b) Nondeg. 3-wave mixing

Signal

Signal and Idler

(c) Phase-insensitive amplification

added noise from 
idler mode

Idler vacuum state

(d) Degenerate input (f) Phase-sensitive amplification(e) Deg. 3-wave mixing

Pump

Signal

Idler

Pump

Signal

Idler

Figure 2.5: Schematic of 3-wave mixing during degenerate and nondegenerate amplification of a (a)
coherent input state with the respective noise represented by the radii of the circles along the real
and imaginary axes. Idler mode (grey) at idler frequency ωi ̸= ωs. (b) Schematic representation
of nondegenerate 3-wave mixing. (c) For phase-preserving amplification both quadratures are
amplified with the gain

√
G, while (for a perfect vacuum state in the idler mode) half a photon of

noise is added to the input distribution (grey halo in the output state). (d) Coherent input state
with the idler and signal mode at the same frequency ωi = ωs. (e) Schematic representation of
degenerate (fpump = 2fsignal) 3-wave mixing. (f) During phase-sensitive amplification, noise along
one quadrature is suppressed and added on the conjugate one according to the amplifier uncertainty
principle.

amplifiers as formulated by Caves [92]

n ≥ 1

2

∣∣∣∣1− 1

G

∣∣∣∣ , (2.44)

where G is the amplifier’s photon number gain, and n the average number of added noise
photons. Even in the limit of G → ∞, the added noise is at least half a photon ℏω/2
(visualized in Fig. 2.5 (c)). If we consider half a noise photon for the definition of the
quantum efficiency (see Eq. 2.37), this limit results in the standard quantum limit (SQL) of
η = 1/(1 + 2n) = 50%. State-of-the-art low-noise microwave amplifiers fall far behind this
limit. Typical high-electron mobility transistor (HEMT) amplifiers add 10-20 noise photons
to the signal [86].
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2.2.4 Degenerate amplification

In contrast to the phase-insensitive amplification, phase-sensitive amplification can be ide-
ally noiseless. Therefore, it is highly beneficial to use it at the very first stage of an am-
plification chain. In the following, we discuss added noise during the phase-sensitive
amplification process, which can be realized by a 3-wave mixing process in nonlinear res-
onators.

In particular, we can tune the pump frequency to twice the signal frequency, ωp = 2ωs, so
that the photon energy conservation yields the degenerate frequencies for signal and idler
modes, ωs = ωi. Therefore, we can identify the idler mode as a phase-shifted signal mode
b̂†in = e−iϕâ†in in the relation Eq. 2.45. Here, ϕ ∈ [0, 2π] is related to the phase shift between
the two degenerate quadratures of the input and idler modes. As a result, these modes
can interfere constructively and destructively, depending on their relative phase. Then, the
input-output relation for phase-sensitive amplification is [44]

âout =
√
Gâin︸ ︷︷ ︸

Amplification

+ e−iϕ
√
G− 1â†in︸ ︷︷ ︸

Phase dep. noise

. (2.45)

The striking result is that the uncertainty in one quadrature can be suppressed below the
vacuum level without violating Heisenberg’s uncertainty relation. This process is known
as single-mode squeezing and was first observed experimentally by Yurke et al. [90].
Considering the lower bounds for the noise in the quadratures, we can see that a reduction
of noises added to one quadrature phase requires an increase in noise added on the other
phase. This relation was coined as the amplifier uncertainty principle [92]

nqnp ≥ 1

16

∣∣∣∣∣1− 1√
GqGp

∣∣∣∣∣
2

, (2.46)

where Gq, Gp are the individual gains and nq, np are the noise numbers for conjugate
quadratures. In the case Gq = Gp, this equation reduces to the fundamental theorem for
phase-insensitive linear amplifiers (see Eq. 2.44). In the case GqGp = 1, noise numbers can
be zero which corresponds to the maximum quantum efficiency of η = 100%.

2.2.5 Josephson parametric amplifiers (JPA)

In this work, the squeezing operation (see Sec. 3.3.2) and phase-sensitive amplification (see
Sec. 2.2.4) are performed using flux-driven Josephson parametric amplifiers [50]. Josephson
parametric amplifiers (JPAs) can be employed in a number of different applications, such as
qubit readout [93–95] or quantum communication [82, 96, 97]. A flux-driven JPA consists of
three parts: a superconducting microwave resonator, a pump antenna, and a tunable direct-
current superconducting quantum interference device (dc-SQUID). The superconducting
microwave resonator is short-circuited by the dc-SQUID to ground. The JPA resonant

18



2.2 Phase-sensitive amplification of quantum microwaves

frequency can be tuned by applying an external magnetic flux through the dc-SQUID.
The pump antenna can also induce a high frequency magnetic flux through the dc-SQUID
which induces parametric amplification in the JPA. The inductance of the dc-SQUID loop
depends on the flux-dependent current across two parallel Josephson junctions.

In the following, we present a basic physical description of the Josephson effect and
corresponding dc-SQUID behavior. Then, we analyze the JPA structure using an equivalent
circuit. We discuss how interaction between signals incident to the JPA and the pump tone
may result in the 3-wave mixing process which gives rise to various amplification regimes.

Josephson equations and nonlinear inductance

A superconductor is characterized by its perfect diamagnetism [98] and resulting perfect
conductivity. These properties are typically observed below a certain critical temperature,
TC . Most of the superconducting circuits used in this work are made from superconducting
materials, such as niobium (TC ≃ 9.2K), niobium-titanium alloy (TC ≃ 10K) [99], or
aluminum (TC = 1.2K) [100]. In these materials, microwave losses are greatly reduced in
comparison with normal metals. This low-loss microwave environment is one of the keys
for preserving the fragile nature of quantum signals.

Another advantage of using superconducting circuits is the Josephson effect [101],
which appears when two superconductors are weakly coupled to another. Figure 2.6 (a)
shows a schematic of a Josephson junction, where two macroscopic wave functions
Ψk (r, t) =

√
nk (r, t)e

iθk(r,t) of two superconductors k = 1, 2 overlap in a thin layer of
non-superconducting material (insulator). Here, the density of superconducting Cooper
pairs is given by nk (r, t), and the phase of the macroscopic wave function is denoted by
θk (r, t).

The gauge-invariant phase difference of the macroscopic wave function across the Joseph-
son junction is given by [102]

φ (r, t) = θ2 (r, t)− θ1 (r, t)−
2π

Φ0

∫ 2

1
A (r, t) · dl, (2.47)

where Φ0 = h/2e is the magnetic flux quantum and A is the vector potential. The integral
path crosses the tunnel barrier from superconductor 1 to superconductor 2.

When we neglect spatial variations of the Cooper pairs, we can characterize the current
across the junction by the lumped Josephson equations. The first Josephson equation
(current-phase relation) [102]

Is (φ) = Ic sin (φ) (2.48)
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(a) Josephson junction (b) Dc-SQUID
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Figure 2.6: (a) Schematic of a Josephson junction with superconductors in gray and an insulating
layer in blue. (b) Schematic of the dc-SQUID with one Josephson junction in each arm of the
superconducting loop. Each Josephson junction is associated with the phase differences φ1, φ2.

describes the dependence of the supercurrent Is on the gauge invariant phase difference ϕ
and the critical current Ic. The second Josephson equation (voltage-phase relation) [102]

∂φ

∂t
=

2π

Φ0
V (t) , (2.49)

describes the time evolution of the phase difference ϕ when a voltage V is applied across
the Josephson junction. In presence of a constant voltage, the time-dependent phase leads
to a sinusoidal supercurrent according to Eq. 2.48.

The process of parametric amplification relies on the nonlinear inductance of the Joseph-
son junctions. This can be seen by using the conventional definition of inductance,
V = LdI/dt, in combination with Eq. 2.48 in order to obtain the equation for a nonlin-
ear Josephson inductance

Ls =
Φ0

(2πIc)

1

cos (φ)
= Lc

1

cos (φ)
, (2.50)

where Lc is the minimal Josephson junction inductance. This nonlinearity is exploited to
engineer the energy potential in many different superconducting circuits and is also the
key component for the development of superconducting qubits [103].

Flux-dependent inductance of a dc-SQUID

A dc-SQUID consists of two Josephson junctions with critical currents Ic in a supercon-
ducting loop as shown in Fig. 2.6 (b). For simplicity, we assume that the critical currents
of the Josephson junctions are identical, which is not a necessary condition. The external
magnetic field B induces a magnetic flux Φext through the dc-SQUID loop.

Here, the effect on the gauge invariant phase difference can be understood when we
consider that the total phase change over a closed contour C around the dc-SQUID (green
dotted line) is quantized,

∮
C∇θ · dr = 2πnwith n ∈ N0. This is a direct result of underlying

nature of the macroscopic wave function of superconducting electrons. The phase gradient
∇θ can be expressed in terms of the supercurrent density Js, and the vector potential A as

20



2.2 Phase-sensitive amplification of quantum microwaves

[102]
∇θ = 2π

Φ0
(ΛJs +A) , (2.51)

whereΛ is the London parameter. The evaluation of the phase difference in a closed contour
becomes easier when we choose an integration path deep inside the superconductor, where
the supercurrent density Js is close to zero. Then we can neglect the supercurrent and
obtain the condition for the phase differences φ1 and φ2

φ2 − φ1 =
2πΦ

Φ0
+ 2πn. (2.52)

This result links the phase differences to the total magnetic flux Φ through the dc-SQUID
loop. The total magnetic flux consists of the externally applied flux Φext and a self-induced
flux, Φloop = LloopIcirc, where Icirc = (I1 − I2)/2 is the circulating supercurrent, and Lloop

the self-inductance of the superconducting loop. We can rewrite the supercurrent Icir with
the help of Eq. 2.52 so that the total flux through the dc-SQUID loop Φ is

Φ

Φ0
=

Φext

Φ0
+
LloopIcir

Φ0

=
Φext

Φ0
− βL

2
cos

(
φ1 + φ2

2

)
sin

(
φ1 − φ2

2

)
,

(2.53)

where the magnitude of the screening parameter βL = 2LloopIc/Φ0 [104] is indicating
whether the screening effect is negligible (βL ≈ 0) or whether the self-induced flux can no
longer be neglected (βL > 1).

If we can neglect the screening effect (βL ≈ 0), the dc-SQUID can be treated as a single
Josephson junction, where the total flux approximately coincides with the external one,
Φ ≈ Φext, and modulates the maximal supercurrent Imax

S as [105]

Imax
S (Φext) = 2Ic

∣∣∣∣cos(πΦext

Φ0

)∣∣∣∣ . (2.54)

Then, the nonlinear flux-dependent inductance of the dc-SQUID can be reduced to the
inductance of the Josephson junction (analogous to Eq. 2.50) [106]

Ls (Φext) =
Φ0

4πIc

∣∣∣cos(πΦext
Φ0

)∣∣∣ . (2.55)

If we cannot neglect the screening effect (βL > 1), we need to find a self-consistent solution
to Eq. 2.53. However, it is not possible to find an analytical solution in general. For a
numerical analysis, the reader is referred to Ref. 75.
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Figure 2.7: Circuit schematic and pump scheme for phase-sensitive amplification with a Josephson
parametric amplifier. The device consists of a quarter-wavelength CPW resonator (blue), shorted
to ground with a dc-SQUID (red). The pump antenna (green) induces the high frequency flux
oscillations Φrf in the dc-SQUID around a static point determined by Φdc. The flux pump frequency
is chosen ωp = 2ωs to enable the 3-wave mixing process and parametric amplification.

Tunable resonance frequency of a Josephson parametric amplifier

The JPA circuit schematic is shown in Fig. 2.7. Here, the resonator (blue in Fig. 2.7) is
made from a coplanar waveguide (CPW), which can be treated as a quasi one-dimensional
transmission line [84]. The wave propagation in the CPW is described by the telegrapher’s
equation, which relies on the use of a distributed inductance L0 and capacitance C0 per
unit length [84]. Since the CPW is made from a superconducting material, we assume the
characteristic impedance for a lossless transmission line

Z =

√
L0

C0
. (2.56)

The CPW can be used as a quarter-wavelength resonator by introducing appropriate bound-
ary conditions. The CPW resonator (blue) in Fig. 2.7 is coupled to the signal line via the
coupling capacitance Cc on one end, while the other end is shorted to ground via the
dc-SQUID. The total resonator inductance and capacitance, Lr = dL0, and Cr = dC0, are
defined by the electric length d of the CPW. The resonant frequency ωr corresponding to
the quarter wavelength resonance is given by [89, 107]

ωr =
2π

4d
√
L0C0

=
2π

4
√
LrCr

. (2.57)
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2.2 Phase-sensitive amplification of quantum microwaves

Resonators are typically characterized by their internal and external coupling strengths.
Typically, resonator designs aim at a low internal loss rate κint. However, two-level fluc-
tuations [108], surface resistance [109], and eddy currents [110] always lead to finite loss
contributions even when using superconducting materials. The λ/4 resonator can be char-
acterized by probing it with a external microwave tone and, then, measuring the frequency-
dependent reflection coefficient Γ [89]

Γ =
(ω − ω0)

2 + iκint(ω − ω0) + (κ2ext − κ2int)/4

((ω − ω0) + i(κext + κint)/2)
2 , (2.58)

where ω0 is the resonant frequency and κint and κext are internal and external loss rates,
respectively. The internal quality factor is defined asQint = ω0/κint and the external quality
factor is Qext = ω0/κext [75].

The resonant frequency in Eq. 2.57 depends on the inductance of the resonator Lr. In
order to correctly estimate the JPA total inductance, we take into account the effect of the
dc-SQUID: the resonant frequency of the resonator-SQUID system ω0 depends also on the
nonlinear inductance of the dc-SQUID, which in turn depends on the external flux [111–113](

πω0

2ωr

)
tan

(
πω0

2ωr

)
= 2

(2π)2

Φ2
0

LrEs (Φext)−
2Cs

Cr

(
πω0

2ωr

)2

, (2.59)

where Lr, Cr and ωr are the total inductance, capacitance, and flux-dependent resonance
frequency of the JPA. Additionally, Cs corresponds to the capacitance of a single Josephson
junction, and ωr to the resonant frequency of the bare resonator. Here, Es (Φext) represents
the flux-dependent energy of the dc-SQUID [75]

Es(Φext) =
Φ2
0

(2π)2
1

Ls(Φext + Lloop/4)
(2.60)

We see from Eq. 2.59 that the resonance frequency ω0 has two limits that depend on the
energy of the dc-SQUID. For zero dc-SQUID energy Es, the circuit is equivalent to an open
transmission line as ω0 → 0. For an infinite dc-SQUID energy, ω0 → ωr we obtain the
λ/4-resonator [49].

Squeezing and parametric amplification with flux-driven JPAs

In the flux-driven JPAs used in this work [50], the pump tone induces an additional alter-
nating flux Φrf through the dc-SQUID loop, which drives the parametric amplification. The
amplification gain depends on the power of the pump signal.

In the interaction picture, the Hamiltonian of a flux-driven JPA Ĥint corresponds to the
squeezing operator (see Appendix A in Ref. 75). The corresponding unitary evolution
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Û = exp
(
− i

ℏĤintt
)

of the intraresonator JPA field is given by [53]

Û (t) = exp

(
1

2
ξ∗â2 − 1

2
ξ
(
â†
)2)

, (2.61)

where ξ = reiφ.
The phase-sensitive amplification gainGdeg of the degenerate JPA can be computed using

the input-output formalism developed by Yamamoto et al. [89]

Gdeg(θ) =

(
κ2
ext−κ2

int
4 − 4δ2ω2

0

)2
+ 4δ2κ2extω

2
0 − 4δκextω0

(
κ2
ext−κ2

int
4 − 4δ2ω2

0

)
sin (2θ)(

(κext+κint)
2

4 − 4δ2ω2
0

)2 , (2.62)

where 2θ is the relative phase of the signal mode, δ is the pump tone amplitude, and ω0 is
the resonance angular frequency. The internal loss rate κint = ω0/Qint and external loss rate
κext = ω0/Qext are linked to the internal and external quality factors. For an overcoupled
JPA (κext > κint), we can compute the minimal and maximal gains Gmin

deg , Gmax
deg , which

describe the amplification and de-amplification of the signal quadratures as follows [89]

Gmin
deg =

(
2δω0 − (κext − κint) /2

2δω0 + (κext + κint) /2

)2

, for θ ≡ π

4
(modπ) ,

Gmax
deg =

(
2δω0 + (κext − κint) /2

2δω0 − (κext + κint) /2

)2

, for θ ≡ 3π

4
(modπ) .

(2.63)

Since noiseless phase-sensitive amplification is only possible when Gmin
degG

max
deg = 1, we can

can notice from Eq. 2.63 that this is only possible when κint = 0. Another limitation to the
noiseless phase-sensitive amplification might be that the to-be-squeezed input state is not a
perfect vacuum state, but rather a thermal state with a finite thermal photon number due to
finite environment temperatures. As a result, the purity of the produced squeezed vacuum
state decreases below unity, µ < 1. Furthermore, additional noise is introduced via other
loss channels, such as the pump line. These pump photon uncertainties may lead to an
effective noise contribution to the total JPA noise.

2.3 Continuous-variable quantum key distribution (CV-QKD)
protocol

In this section, we describe continuous-variable quantum key distribution (CV-QKD) proto-
cols. We define measures which can be used to estimate the performance of communication
protocols. The communication parties are the sender Alice, the receiver Bob, and the eaves-
dropper Eve. Throughout this work, Alice, Bob, and Eve serve as metasyntactic variables
for the sending, receiving and eavesdropping parties. This choice is a convenient standard
in the field of cryptography and was first used in Ref. 15.
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Alice Bob

Classical channel

Quantum channel

Eve

Figure 2.8: Scheme of a general Gaussian CV-QKD protocol. The sender Alice draws a random
number αi, a symbol, from a Gaussian distribution N (0, σ2). After choosing a random basis BA,
she encodes the symbol into the corresponding expectation value ⟨q⟩, or ⟨p⟩ of a Wigner function,
which is first squeezed and then displaced by the symbol magnitude D̂(αi). Then, the eavesdropper
Eve performs an attack on the quantum channel. The receiver Bob chooses a random measurement
basis BB to perform a measurement of a state arrived through the quantum channel. Alice and Bob
agree on two orthogonal bases. Depending on whether his basis was identical to Alice’s (BA ∥ BB)
or orthogonal (BA ⊥ BB), he obtains either a low-noise estimation of the true key βi ∼ αi, or a
random value βi ∼ N (0, σ2), which is uncorrelated to the initial symbol.

2.3.1 General aspects of a squeezed-state CV-QKD protocol

CV-QKD protocols exist in a number of different flavors. They can differ by the type
of quantum state that carries information (coherent states, squeezed states), the classical
encoding map (continuous Gaussian modulation, discrete alphabet), and the measurement
type (homodyne or heterodyne detection) [114]. In the following, we focus on the protocol
proposed by Cerf et al. [1]. We denote the elements of a shared key as symbols. In this
implementation, the symbols are encoded in the displacement amplitude α of Gaussian-
modulated squeezed states.

The CV-QKD protocol consists of two main steps: quantum communication and classi-
cal post-processing. First, the sender (Alice) encodes random classical variables αi in the
displacement amplitude of Gaussian quantum states. These variables αi are sampled from
a zero-mean Gaussian distribution (see Sec. 2.3.3). The states are encoded equiprobably in
q- or p-displacement amplitudes with vacuum squeezing along q or p quadratures, respec-
tively. Then, Alice sends the newly obtained displaced squeezed states over a quantum
channel, characterized by its transmissivity τ and added thermal noise n̄. This quantum
channel is controlled by an eavesdropper (Eve) who tries to listen in on the message sent
by Alice to Bob. The encoded information is protected by the no-cloning theorem [29–31].
However, Eve can get information by interfering with the channel (see Sec. 2.3.5 or imperfect
cloners in Ref. 115). At the output of the quantum channel, the receiver (Bob) obtains a cor-
responding random classical variable βi by using a projective measurement on a received
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state. After transmitting the complete key, either Alice communicates her measurement
bases B ∈ {q, p} over a generally insecure classical channel to Bob (direct reconciliation) or
vice versa (reverse reconciliation). They keep the symbols that were sent and measured
in the identical bases, BA = BB. This process is called sifting. Classical post-processing
consists of two steps: reconciliation of the key, and privacy amplification. During the rec-
onciliation step, the correlated set of variables is distilled to an error-corrected shared set
of identical variables. During the privacy amplification, Alice and Bob eliminate the threat
imposed by stolen information by Eve. Any interaction by Eve with the quantum states
induces a detectable disturbance on the quantum channel. The remaining shared variables
represent the secret key ki. This secret key can be used to encode one-time pad ciphertext
over a classical channel.

The security of the CV-QKD protocol depends on the condition whether the shared
information between Alice and Bob is larger than the information content obtained by the
eavesdropper Eve. This information game can be summarized by a mathematical condition
for information-theoretic quantities. The protocol is secure if and only if the secret key is
positive, K ≥ 0 (bits/channel use). The secret key is defined as

K = ηrecI(α:β)− χE, (2.64)

where ηrec ∈ (0, 1) is the reconciliation efficiency (see classical post-processing in Sec. 2.3.6),
I(α:β) is the mutual information shared between the sifted variablesαi andβi (see Sec. 2.3.4),
and χE is Eve’s Holevo information (see Sec. 2.3.5) on Alice or Bob’s secret key. This
definition of the secret key is an upper bound for the asymptotic secret key under the
requirement for strict unconditional security.

2.3.2 Units of classical and quantum information

Now, we need to mathematically quantify the amount of information that is stored in a
continuous variable. In order to do so, we begin with the definition of entropy in the
framework of classical information theory. A related quantity is the Shannon entropy [11].
The Shannon entropy is defined for discrete variables, whereas the differential entropy is
used for continuous variables. Later, we present the von Neumann entropy as a measure of
information in quantum states. Finally, we discuss how to calculate this entropy from the
covariance matrix of a Gaussian state.

Differential Shannon entropy

We start with the definition of Shannon entropy H of a discrete random variable X with
the possible outcomes {x1, . . . , xN} in a system of size N . The probability of each variable
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X being xi is given by pi. The Shannon entropy is defined as [11]

H (X) = −
N∑
i

pi logb (pi) , (2.65)

where the choice for base b depends on the computational units. Common computational
units are bits (b = 2) and nats (b = e). Initially, the measure was developed to quantify the
compression limit for information communication over an arbitrary channel in Shannon’s
source coding theorem [11].

Shannon tried to extend the concept to continuous variables and assumed that the equiv-
alent differential entropy for a continuous random variable X with probability density
function f can be defined as

h (X) = −
∫
D
f (x) logb (f (x)) dx, (2.66)

where D is the domain of definition of f . However, it has not the same properties as the
discrete variable version, as it is not strictly positive, and not invariant under a change
of variables. In particular, one can show that the variable change Y = aX leads to an
additional constant [116]

h (Y ) = h (X) + logb |N |. (2.67)

Lastly, in the limit of N → +∞ variables an additional term of log(N) appears which is
infinitely large. This limit does not coincide with the differential entropy [117]. While a
mathematically more advanced measure developed by Jaynes (1968) can recover the validity
of these conditions [116], a relative difference between Shannon’s differential entropies is
still a valid measure where these previously mentioned limitations are irrelevant.

Von Neumann entropy

The entropy of an arbitrary quantum state with density matrix ρ̂ is defined by the von
Neumann entropy S [118]

S (ρ̂) = −Tr (ρ̂ log (ρ̂)) , (2.68)

where log is the natural matrix logarithm. This quantity can be rewritten with respect to its
eigenvalues λi as

S (ρ̂) = −
∑
i

λi logb (λi) , (2.69)

where n represents a variable choice of the logarithm base. We note a similarity with the
Shannon entropy, where we had in probabilities pi in the place of eigenvalues λi. The von
Neumann entropy is minimal (S(ρ̂) = 0) if the state is pure, and maximal (S(ρ̂) = log n) for
a maximally mixed state ρ̂ = I/n [119, 120].
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In this thesis, we are mostly interested in Gaussian states which can be described with
the covariance matrix formalism. Therefore, we should compute the von Neumann entropy
from the covariance matrix V. For a single-mode Gaussian states (N = 1), one obtains [64]

S (ρ̂) = g
(√

det V
)

, (2.70)

where

g (x) =

(
2x+

1

2

)
log

(
2x+

1

2

)
−
(
2x− 1

2

)
log

(
2x− 1

2

)
. (2.71)

The von Neumann entropy is invariant under isometric operations (linear and distance
preserving). This includes also unitary operations, as they are isometric isomorphisms.
For any density matrix ρ̂ and any isometric operator V̂ , the von Neumann entropy S is
invariant [121],

S
(
V̂ ρ̂V̂ †

)
= S (ρ̂) . (2.72)

For two-mode Gaussian states (N = 2), the invariant von Neumann entropy S depends on
the symplectic eigenvalues ν− and ν+ of V [122]

S (ρ̂) = g (ν+) + g (ν−) , ν± =

√
∆±

√
∆2 − 4det V
2

, (2.73)

where ∆ is the abbreviation of the sum of determinants of submatrices of V

∆ = det A + det B + 2det C, V =

(
A C
CT B

)
, (2.74)

where A ∈ R2×2 describes the first mode locally, B ∈ R2×2 describes the second mode
locally, and C ∈ R2×2 describes the correlation between the two modes [64]. A pedagogic
introduction to the entropy for continuous-variable quantum states can be found in Ref. 122.

2.3.3 Alice’s preparation of squeezed displaced cipher states

In this section, we describe how Alice encodes the Gaussian-sampled classical variable αi

into a microwave state and describe the quantum-cryptographic protection of this classical
data.

Indistinguishable encoding bases

In this section, we want to discuss why Eve cannot infer the basis that Alice used to encode
the symbol in the CV-QKD described above. Alice encodes each variable αi in an ensemble
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(a) Gaussian-modulated cipher state

XOR
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Figure 2.9: Gaussian encoding schemes for indistinguishable bases. (a) Biaxial Gaussian modulation
of a coherent state with variance σ2 = 0.25 with random displacements drawn from the classical
distribution N (0, σ2

disp). (b) Uniaxial Gaussian modulation of squeezed states with variance of the
antisqueezed quadrature σ2

AS − σ2
S = σ2

disp. In both encoding schemes, the average state ρ̂avg is a
thermal state.

Em which is randomly chosen from N ensembles defined as [49]

Em = {pi,m, |ψi,m⟩ ⟨ψi,m|} , (2.75)

where each state |ψi,m⟩ ⟨ψi,m| is sent with the probability pi,m. Let us assume that the states
in different N ensembles Em are non-orthogonal. Let En be an arbitrary different ensemble
m ̸= n. If |ψi,m⟩ ⟨ψi,m| and |ψi,n⟩ ⟨ψi,n| are non-orthogonal states, and the the sum over i
yields for anym the same identical average state ρ̂avg, then Eve can’t know which ensemble
was initially chosen. More precisely, [49]

∀m :

N∑
i

pi,m |ψi,m⟩ ⟨ψi,m| = ρ̂avg, (2.76)

where ρ̂avg is an average density matrix of a thermal state. As a result, Eve has to interact
with Alice’s states. Alice and Bob can quantify this disturbance and quantify the amount
of information extracted by Eve by analyzing the statistics in their error corrected shared
secret key. Alice and Bob can then determine whether the communication is secure or not.

In Fig. 2.9, two different CV-QKD modulation schemes are shown. Fig. 2.9 (a) shows
the coherent modulation scheme [37]. Here, the symbols are encoded either in the p or
q quadrature, while the other quadrature gets a random value which encodes no useful
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information. The resulting average state has the same probability distribution as a thermal
state if σ2disp,q = σ2disp,p.

The Gaussian-modulated squeezed state protocol is shown in Fig. 2.9 (b). We use it for
our implementation of the CV-QKD protocol. Here, the symbols are also encoded either in
the p or q quadrature. However, the uncertainty distribution on the other quadrature is not
achieved with random classical sampling, but by using squeezed states with a matching
variance so that the antisqueezed quadrature matches the sum of the displacement variance
and the variance of the squeezed quadrature σ2AS = σ2disp + σ2S.

In Fig. 2.9 (c,d), we can see that both schemes result in the same average state. The symbol
encoding is also identical. The two approaches only differ in their approach to provide the
required randomness to a achieve an average thermal state. From the perspective of the
receiver Bob and the eavesdropper Eve they are equivalent.

Squeezed displaced states

Alice’s goal is to provide a displaced squeezed state with a displacement amplitude αi,
where the squeezing angle and displacement angle are parallel to each other in p- or q-
bases as follows

r̄q =

(
αi

0

)
, Vq =

(
σ2S 0

0 σ2AS

)
, (2.77)

r̄p =

(
0

αi

)
, Vp =

(
σ2AS 0

0 σ2S

)
. (2.78)

To achieve this goal with microwave states, we propose to squeeze a vacuum state using
a Josephson parametric amplifier (JPA) (see Sec. 2.2.5) and displace an intermediate prop-
agating squeezed state with a directional coupler coupled to a strong coherent tone (see
Sec. 2.1.3). In the following, we account for a finite thermal noise added by the JPA and use
a squeezed thermal state model with a noise photon number nJPA.

For the i-th symbol, the random variables consisting of basis bi and the displacement
amplitude αi are drawn from their respective distributions. In particular, the random
variable bi is defined as bi ∈ {q, p}, where the probabilities for the different bases are equally
P ({q}) = P ({p}) = 0.5. The random variable αi is drawn from N (0, σ2disp), which is a
classical Gaussian distribution of mean 0 and displacement variance σ2disp that matches the
anti-squeezing variance that can be realistically achieved by Alice’s JPA. In particular, we
can compute the average states for the limit of infinite number of symbols αi

r̄avg,q = 0, Vavg,q =
1

4

(
(1 + 2nJPA) e

−2r + 4σ2disp 0

0 (1 + 2nJPA) e
2r

)
, (2.79)

r̄avg,p = 0, Vavg,p =
1

4

(
(1 + 2nJPA) e

2r 0

0 (1 + 2nJPA) e
−2r + 4σ2disp

)
. (2.80)
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The condition for indistinguishable basis encoding from Eq. 2.76 requires that each of the
average states has the same variance in both quadratures. For both average states in q and
p, we require that

1

4
(1 + 2nJPA) e

−2r + σ2disp =
1

4
(1 + 2nJPA) e

2r. (2.81)

Now Alice’s average state can be fomulated as a thermal state with a uniform variance
depending on the photon number (1 + 2nth) = (1 + 2nJPA) e

2r. The three needed steps are:

(i) Alice samples αi from N (0, σ2disp), and bi from {q, p}.

(ii) Squeezing of the vacuum state.

(a) If bi = p, Alice’s JPA squeezing angle is set to γ = 0.

(b) If bi = q, Alice’s JPA squeezing angle is set to γ = 90◦.

(iii) Displacement of the squeezed vacuum state.

(a) If bi = p, Alice’s displacement angle is set to θ = 0◦the displacement amplitude
is r̄ = (0, αi)

T .

(b) If bi = q, Alice’s displacement angle is set to θ = 90◦. The displacement ampli-
tude is r̄ = (αi, 0)

T .

Finally the displaced squeezed state is sent to the quantum channel.

2.3.4 Bob’s homodyne detection

Alice’s state (see Eq. 2.77) is sent through a noisy quantum channel. Bob is the receiver at
the end of this quantum channel. In this section, we characterize the amount of mutual
information shared between Alice and Bob over the quantum channel by their two sets of
variables, αi ∈ A and βi ∈ B. We present two approaches to obtain the mutual information
between a sender (Alice) and a receiver (Bob).

The first approach is based on the differential entropy of the classical input (αi) and output
(βi) of the channel. We reformulate the differential entropy in terms of measurable variances
and covariances. The second approach is motivated by Shannon’s noisy channel coding
theorem for discrete memoryless channels [123]. In contrast to the mutual information of
a finite key, the capacity of a channel can provide an asymptotic measure for the mutual
information which is dependent only on the average signal and noise powers. This provides
us with an upper bound estimation for the mutual information and it can be computed
by using a related signal-to-noise ratio (SNR) in the considered channel. The SNR is
accessible from calibration measurements that characterize the signal and noise powers in
the amplification chain. Finally, we present the scaling of the SNR as a function of averages
in an additive white Gaussian noise (AWGN) channel. This allows us to scale the expected
mutual information with a number of averages.
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Figure 2.10: (a) Quantum channel between Alice and Bob with the input state ρ̂A and the output
state ρ̂B . (b) Venn diagram for the mutual information between Alice and Bob as the intersection of
differential entropies h.

Mutual information continuous variables

The mutual information I(A:B) quantifies the shared information between two sets, by the
correlation of their two sets of variables: Alice’s key A, Bob’s key B, which consists of N
symbols αi ∈ A, βi ∈ B. We can define the mutual information I(A:B) for continuous
variables with the joint probability distribution pA,B(α, β) as [49, 124]

I(A:B) = h(A)− h(A|B)

= h(B)− h(B|A)

= h(A) + h(B)− h(A,B)

= h(A,B)− h(A|B)− h(B|A),

(2.82)

where h(A) is the marginal differential Shannon entropy, and h(A|B) is the conditional
differential Shannon entropy. The relation can be understood from the standing point
of Alice and Bob: the general uncertainty about Alice’s key, h(A), is reduced by Bob’s
information gain on Alice’s key based on his own key, h(A|B) [124]. An illustration of
the involved quantities is shown in Fig. 2.10 (b). In this work, both encoded and decoded
keys follow Gaussian distributions N (µA, σ

2
A), N (µB, σ

2
B), as Alice samples her key from a

Gaussian distribution. Then, we assume that Bob’s measurement of Alice’s key is in itself a
Gaussian sampling process consistent with the choice of an additive white Gaussian noise
channel model. The covariance matrix of the two Gaussian-distributed sets A, B is defined
as [125]

ΣAB =

(
σ2A Cov (A,B)

Cov (A,B) σ2B

)
, (2.83)

with σ2A being the variance of A and Cov (A,B) being the covariance of A and B. The
variances σ2A, σ2B and the covariance Cov (A,B)2 are computed from the key of finite length
N by Alice’s symbols αi ∈ A and the measured symbols βi ∈ B by Bob. We use the variance
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and covariance in their Bessel-corrected form [125]

σ2A =
1

N − 1

N∑
i=1

(αi − µA)
2, µA =

1

N

N∑
i=1

αi, (2.84)

σ2B =
1

N − 1

N∑
i=1

(βi − µB)
2, µB =

1

N

N∑
i=1

βi, (2.85)

Cov(A,B) =
1

N − 1

N∑
i=1

(αi − µA) · (βi − µB). (2.86)

The conditional variance can be computed as [49]

σ2B|A =
det (ΣAB)

σ2A
= σ2B − Cov (A,B)2

σ2A
. (2.87)

Next, we find an explicit formulation for h(A) and h(B|A) to calculate the mutual informa-
tion as in Eq. 2.82. For a Gaussian variable B, we can find from Eq. 2.66 the result for the
marginal differential entropy [126]

h(A) =
1

2
log2

(
(2πe)σ2B

)
+ C, (2.88)

where C is a reference constant and we chose the unit of bits. Similarly, the conditional
differential entropy h (B|A) is given by

h (B|A) = 1

2
log2

[
(2πe)σ2B|A

]
+ C. (2.89)

Here we made use of the earlier defined conditional variance σ2B|A. We compute the mutual
information (see Eq. 2.82) by using the marginal differential entropy (see Eq. 2.88) and the
conditional differential entropy (see Eq. 2.89) as [49]

I (A:B) =
1

2
log2

(
(2πe)σ2B

)
+ C −

(
1

2
log2

[
(2πe)σ2B|A

]
+ C

)
=

1

2
log2

[
σ2B
σ2B|A

]

=
1

2
log2

[
σ2B σ

2
A

σ2B σ
2
A − Cov (A,B)2

]
.

(2.90)

Our initial concern about constant offsets in the differential entropy vanishes, as we note
that the constant C cancels out for the final expression for mutual information in terms of
differential entropies.
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Shannon channel capacity

In this section, we consider bounds on the classical mutual information which are set by
the channel capacity. The Shannon limit gives a definition for the channel capacity if the
signal power is bounded, the noise is Gaussian, and the signal and noise powers are known
for a classical channel [123]. The theorem states that the channel capacity C bounds the
maximum information rate as (see theorem 2 in Ref. 123)

C(Gclass) ≤ ∆f log2 (1 + SNR) , (2.91)

where ∆f is the channel bandwidth, SNR = PS/PN is the signal-to-noise ratio with the
average signal power PS and noise power PN, Gclass is an arbitrary white Gaussian noise
channel, and the basis n = 2 defines bits as the units here.

To retrieve the corresponding maximum information transfer rate through the channel,
we have to divide the capacity by the Nyquist rate 2∆f , which can be interpreted as the
symbol bandwidth in terms of bits (n = 2) per second (∆f ) (see Nyquist sampling theorem
1 in Ref. 123). We refer to the maximum mutual information possible to achieve through
our channel as the Shannon capacity

Imax(Gclass) =
1

2
log2 (1 + SNR) . (2.92)

This result is useful, as it gives an upper bound even for the asymptotic case of infinite
keylength. The Shannon capacity holds only for classical channels. However, we can treat
the symbol displacement amplitude at the input of the output line as classical variables.

Characterization of the output line with sample averages

The maximal mutual information I(A:B) < Imax on the output channel (bits per channel
use) can be rewritten in terms of the signal powers at the end of the quantum channel
SNR = PS/PN. Interestingly, the signal-to-noise ratio (SNR) is experimentally accessible
with low error due to the well-known scaling of the SNR in Gaussian processes. Let Bob’s
i-th sample be βi = α + ni, where Bob is repeatedly measuring a single symbol sent by
Alice α and ni represents random Gaussian noise. For the i-th sample of this averaging
process, the SNR can be defined in terms of the expectation values of random variables for
the signal S and the noise N as

SNRi =
E
[
s2
]

E [n2]
, (2.93)

where E is the expectation operator. If the random variable β is averaged M times for a
constant symbol of Aliceα, the noise contribution is reduced. We can write for the averaged
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random variable β̄

β̄ = α+
1

M

M∑
i=1

ni. (2.94)

For the M samples, the SNR is then

SNRM =
E
[
α2
]

M−2E

[(∑M
i=1 ni

)2] =M
E
[
α2
]

E
[(
n2i
)] =M · SNRi. (2.95)

We can use this result to estimate the SNR more precisely using averaging measurements.

2.3.5 Eve’s Holevo information

In this section, we discuss the strongest eavesdropping attack possible on the quantum
channel. We dilate the attack on the channel into a canonical form with a beam splitter.
This model allows us to calculate the information that Eve can extract by her attack. Finally,
we discuss the theoretical limitations of the quantum channel. The following analysis
is based on the asymptotic assumption of an infinite keylength. For composable security
proofs and other security threats like quantum hacking, we refer to Ref. 114. The final result
of a CV-QKD protocol, as described in Sec. 2.3.1, are the secret symbols ki. It is obtained
from the classical post-processing of the shared correlated variables of Alice (αi) and Bob
(βi). The secret key K defines the how many bits per symbol were transmitted securely
during one channel use.

Holevo information bound on accessible information for Eve

In the last section, we quantified the information between the two communicating parties
Alice and Bob with the mutual information I(A:B). Here, we consider attacks on the
communication channel by an eavesdropper, Eve. Eve interacts with the communication
channel by coupling her own states to propagating states coming from Alice and reading
them out.

In practice, one can implement a number of different eavesdropping attacks. The max-
imally accessible information obtainable by Eve is defined for an optimal measurement
[124]

Iacc (EE) = max
ME

I (X :E) , (2.96)

where ME corresponds to Eve’s measurements, and I (X :E) is the mutual information
between Alice (X = A, direct reconciliation) or Bob (X = B, reverse reconciliation). The
ensemble EE denotes the states which Eve obtains by performing the attack on the commu-
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Figure 2.11: (a) Eavesdropping on the quantum channel through an optimal unitary measurement
ME. (b) Holevo information bound on Eve’s accessible information.

nication channel as [124]
EE = {pki , ρ̂E,ki} , (2.97)

where Eve measures with the probability pki a corresponding state ρ̂E,ki corresponding
to the key element ki. More precisely, the ensemble EE is the environment output for the
Stinespring dilation [127] of the bosonic quantum channel between Alice and Bob, as shown
in Fig. 2.11. The corresponding output for Bob is computed by tracing out the environment
controlled by Eve [64]

EB = TrE

[
U (ρ̂A ⊗ |Φ⟩E ⟨Φ|E)U

†
]

, (2.98)

where ρ̂A is Alice’s input state, U is the unitary interaction between Alice’s state and Eve’s
pure state |Φ⟩E. Conversely, the system can be traced out to retrieve Eve’s output ensemble
EE. Eve’s input state can always be chosen to be a multi-mode vacuum state |Φ⟩E = |0⟩E, as
the Stinespring dilation is unique up to partial isometries [128].

In practice, the possibilities for the different measurements ME are not mathematically
tractable. However, Holevo’s theorem states that the upper limit for the maximal mutual
information is the Holevo information χ(EE) as [23]

Iacc (EE) ≤ χ (EE) . (2.99)

The Holevo information χ(EE) is defined by

χ (EE) = S
(∑

pki ρ̂E,ki

)
−
∑

pkiS (ρ̂E,ki) ≥ 0, (2.100)

where S is the von Neumann entropy (see Eq. 2.68). A detailed outline of the proof can
be found in Ref. 120. In conclusion, the Holevo information is the upper bound for Eve’s
information on the key for any possible measurement implementation by Eve.
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Eavesdropping strategies

In this section, we want to show three types of attacks on CV-QKD protocols, which are
known as individual, collective, and coherent attacks [129]. Unconditional security proofs
of QKD protocols rely on the following assumptions [64]:

(i) Eve has full access to the quantum channel.

(ii) Eve has unlimited computational power.

(iii) Eve can monitor the authenticated classical channel while staying undetected.

(iv) Eve has no access to Alice or Bob’s setups.

The most powerful attack is the so-called coherent attack. Eve prepares a global input
ancillary system that interacts with all signals on the quantum channel, and stores the
output ancillary system into a quantum memory. After Eve has listened to all classical
communication over the authenticated classical channel, she performs an optimal joint
measurement on the quantum memory [64].

However, the security analysis of coherent attacks is very complex. By proving the
quantum de Finetti theorem, Renner [130] enabled an equivalent proof for unconditional
asymptotic security with the simpler collective attack for continuous variables [131]. The
main point of the proof is that one can assume permutation symmetry in the classical
post-processing. In a collective attack, Eve prepares a set of independent and identically
prepared ancillas. Now, each of these ancillas interact individually with single signals in
the quantum channel instead of the global interaction with all signals (coherent attack).
Similar to the coherent attack, Eve stores the output states in quantum memory and applies
an optimal measurement after listening in on the classical channel between Alice and Bob
[64].

Dilation of Gaussian quantum channels to canonical forms

Noise in quantum communication protocols is typically characterized by using the frame-
work of Gaussian channels [64, 132, 133]. Gaussian channels G can be decomposed with
the help of unitary transformations to the canonical forms C consisting of simple diagonal
matrices. In this section, we characterize different canonical forms C for unitary chan-
nels, amplification channels, quadrature-dependent noise channels, and classical noise
channels. Later, we use these canonical forms to characterize the quadrature-dependent
signal-to-noise ratio in transmission lines.

The symplectic map formalism for Gaussian unitary operations is introduced in Sec. 2.1.3.
However, Gaussian channels do not need to be locally unitary. That means, that an ad-
ditional noise N can be introduced to the covariance matrix V. Arbitrary single-mode
Gaussian channels G(d,T,N) are completely described by the transformation map of the
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Table 2.1: Canonical classes and their corresponding forms C parametrized by their transmissivity τ ,
rank r, and thermal number n̄. Here, I is the identity matrix, 0 the zero matrix, and Z = diag(1,−1).
Adapted from Ref. 64.

Class Form C(τ, r, n̄) Tc Nc

A1 C(0, 0, n̄) 0 (2n̄+ 1)I

A2 C(0, 1, n̄) (I+ Z)/2 (2n̄+ 1)I

B1 C(1, 1, 0) I (I− Z)/2

B2 C(1, 2, n̄) I n̄I

L C(τ ∈ (0, 1), 2, n̄)
√
τI (1− τ)(2n̄+ 1)I

A C(τ > 1, 2, n̄)
√
τI (τ − 1)(2n̄+ 1)I

first-order and second-order statistical moments [64, 71]

G(d,T,N) : r̂ → Tr̂+ d,

V → TVTT +N,
(2.101)

where the complete positivity (CP) condition of Gaussian unitaries (see Eq. 2.17) is extended
to [64, 71]

N+ iΩ− iTΩTT ≥ 0, (2.102)

where Ω is defined as in Eq. 2.17, T and N = NT are 2 × 2 real matrices in the case of a
single mode. This CP condition can then be simplified to [64]

N = NT ≥ 0, detN ≥ (detT− 1)2. (2.103)

Gaussian channels characterize the (noisy) evolution of Gaussian states [64]. A single-mode
Gaussian channel G can be decomposed to [134]

G =W
[
C(Uρ̂U †)

]
W †, (2.104)

where the canonical form C = C(dc,Tc,Nc) is a Gaussian channel with zero displace-
ment, dc = 0, and diagonal matrices Tc and Nc. This constraint enables an additional
parametrization of the canonical form with respect to a set of three invariants {τ, r, n̄},
where the channel transmissivity τ , the channel rank r, and the thermal number n̄ ≥ 0 are
defined by [64]

τ = det(T), τ ∈ (−∞,∞) , (2.105)

r = min [rank(T), rank(N)] , r ∈ [0, 1, 2] , (2.106)

n̄ =

(det(N))1/2, for τ = 1,

(det(N))1/2

2|1−τ | − 1
2 , for τ ̸= 1.

(2.107)
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Figure 2.12: Schematic of the canonical form and dilation of a collective attack on the quantum
channel by an eavesdropper. The Gaussian channel G is reduced with the unitaries U and W to the
canonical form C. The canonical form C is dilated to a symplectic transformation L which takes as
inputs Alice’s state and the two-mode squeezed vacuum state ρ̂TMSV from Eve. Ũ transforms Eve’s
modes {E,F} to a quantum memory.

This concludes the tool set needed to formulate canonical forms C(τ, r, n̄) that satisfy the
requirements for Gaussian channels. The classes of canonical forms differ in their three
invariants {τ, r, n̄} introduced above. Tab. 2.1 shows examples of these classes: Class A1

replaces any input state with a thermal state; class A2 replaces one quadrature of an input
state with Gaussian noise n̄; classB1 adds classical Gaussian noise on one quadrature; class
B2 is a classical Gaussian noise channel for each quadrature; a loss channel L is defined for
0 < τ < 1; and the amplification channel A for τ > 1 [64].

Canonical form of collective Gaussian attacks

As explained above, the collective Gaussian attack is the fundamental benchmark to test
the security of continuous-variable QKD protocols. In this section, we present how this
attack can be represented in the Gaussian communication channel (see Sec. 2.3.5) coupled
to the environment controlled by Eve.

The following description is visualized in Fig. 2.12 and follows the description in Ref. 64.
Let G be the Gaussian communication channel between Alice an Bob, characterized by its
canonical form C(τ, r, n̄) up to the unitary pair U and W . For an incoming state by Alice
ρ̂A, the canonical form can be dilated to the symplectic transformation L, which includes
Eve’s two-mode squeezed vacuum (TMSV) state ρ̂TMSV with variance σ2E = 1/4(1 + 2n̄).
This TMSV state interacts through the symplectic transformation L with Alice’s state. The
resulting mode {E} is stored in a quantum memory by the transformation Ũ . The unitary
Ũ is dilated to an environment with the vacuum modes F.

The canonical dilation CL(τ, r, n̄TMSV) and the single-mode Gaussian unitaries U and W
fully characterize the attack [38]. The attack is called canonical if the unitaries U = W = I.
This canonical dilation is modeled as a beam splitter (0 < τ < 1) [40].
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Alice

Eve's input Eve's output

BobBeam
splitter

Figure 2.13: Beam splitter representation of the entangling cloner eavesdropping attack. The beam
splitter input consists of Alice’s state ρ̂A, encoding a classical variable αi, and Eve’s input state ρ̂E,in.
The transmissivity of the beam splitter is denoted as τ . At the output of the beam splitter are Bob’s
state ρ̂B, which he uses to decode the classical variable βi, and Eve’s output state ρ̂E,out.

Beam splitter model of the entangling cloner attack

In this section, we present how to model the entangling cloner attack with a beam splitter.
This attack is a collective Gaussian attack, where an optimal collective measurement is
required. However, the unitaries required to dilate the attack to an environment are not
needed when we consider the Holevo bound (see Sec. 2.3.5), as the Holevo bound is invariant
under isometric operations. Therefore, we can choose U = W = I. The Gaussian channel
of a beam splitter with transmissivity τ that couples noise from Eve GBS(d,T,N) can be
characterized as [49]

d =

(
0

0

)
, T =

√
τI, N =

1

4
(1− τ) (1 + 2nEve) I. (2.108)

As a result, the transformationLof the beam splitter representation of the entangling-cloner
attack can be written as

GBS{L(τ), ρ̂E} : r̄ 7→
√
τ r̄,

V 7→ τV +
1

4
(1− τ) (1 + 2nEve) I,

(2.109)

where we can parametrize Eve’s coupled noise by the quantity n̄ [49]

1

4
(1− τ) (1 + 2nEve) = n̄+

1

4
(1− τ). (2.110)

This leads to a modified symplectic map L, that depends now on the losses (1 − τ ) and
noise (n̄) on Eve’s channel [49]

L(τ, n̄) : r̄ 7→
√
τ r̄,

V 7→ τV + n̄I+
1

4
(1− τ)I.

(2.111)

This representation is known as the universal Gaussian cloner attack [135]. We consider
the entangling cloner attack in the limit of τ → 1, and n̄ ̸= 0.
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From here, we can show how Alice’s and Eve’s input states are transformed to Bob’s state
and Eve’s output state. Let Alice’s input state be ρ̂A, Eve’s input state is ρ̂E,in, Bob’s state is
ρ̂B, and Eve’s output state is ρ̂E,out. Alice’s state is defined by her displacement amplitude,
αi, and the squeezing factor, r. For her input noise we assume a thermal state with noise
nJPA. We justify this, as the resulting squeezed state will be generated in the microwave
circuit with a JPA that has in practice a non-zero noise contribution. We can write Alice’s
input state depending on her chosen encoding basis BA ∈ {q, p} as

r̄A,q =

(
αi

0

)
, VA,q =

(
V S
A,q 0

0 V AS
A,p

)
=

1

4

(
(1 + 2nJPA)e

−2r 0

0 (1 + 2nJPA)e
2r

)
, (2.112)

r̄A,p =

(
0

αi

)
, VA,p =

(
V AS
A,q 0

0 V S
A,p

)
=

1

4

(
(1 + 2nJPA)e

2r 0

0 (1 + 2nJPA)e
−2r

)
. (2.113)

whereαi is the initial displacement amplitude chosen by Alice, and V AS
B,q is the antisqueezed

(AS) variance of Alice’s (A) q quadrature and V S
B,p is the squeezed (S) variance. Then, we

can use the beam splitter model (see Eq. 2.111) which states that Bob’s state has the same
amplitude as Alice’s in the limit of τ → 1. Respectively, we can write

r̄B,q =

(√
ταi

0

)
, VB,q =

(
V S
B,q 0

0 V AS
B,p

)
, (2.114)

r̄B,p =

(
0

√
ταi

)
, VB,p =

(
V AS
B,q 0

0 V S
B,p

)
, (2.115)

where αi is the initial displacement amplitude chosen by Alice and V AS
B,q is the antisqueezed

(AS) variance of Bob’s (B) q quadrature and V S
B,p is the squeezed (S) variance of p quadrature.

The variances are defined as

V AS
B,q = τ (1 + 2nJPA) e

2r/4 + n̄+ (1− τ) /4, (2.116)

V S
B,p = τ (1 + 2nJPA) e

−2r/4 + n̄+ (1− τ) /4. (2.117)

Eve’s input state ρ̂E,in is a two-mode squeezed vacuum state (see Eq. 2.36) with the variance
VTMSV = cosh(2r) = 1 + 2nEve. If we assume that the encoding basis BA = q, Eve’s output
state is then

VE,q =


V S
E,q1

0 1
4

√
τ∆n̄ 0

0 V AS
E,p1

0 −1
4

√
τ∆n̄

1
4

√
τ∆n̄ 0 n̄ 0

0 −1
4

√
τ∆n̄ 0 n̄

 , (2.118)

where V S
E,q1

= (1− τ) (1 + 2nJPA) e
−2r/4+ n̄+ τ/4, V AS

E,p1
= (1− τ) (1 + 2nJPA) e

2r/4+ n̄+

τ/4, and ∆n̄ =
√

(4n̄)2 − 1. If the encoding basis was BA = p, only the variances V S
E,q1

and
V AS
E,p1

are exchanged.
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Calculation of Eve’s Holevo information from the covariance matrix

In the previous section, we have presented the beam splitter model for the entangling cloner
eavesdropping attack. Here, we can use this model to calculate the Holevo information
analytically for direct (▶) and reverse reconciliation (◀) explicitly based on the methodology
presented in Refs. 64, 136.

Eve’s Holevo quantities for direct reconciliation χ▶
E and reverse reconciliation χ◀

E are
defined by using Eq. 2.100 as

χ▶
E = S

(∑
pαi ρ̂E,αi

)
−
∑

pαiS (ρ̂E,αi) , (2.119)

χ◀
E = S

(∑
pβi

ρ̂E,βi

)
−
∑

pβi
S (ρ̂E,βi

) . (2.120)

First, we note that due to the indistinguishable encoding schemes, the average state for all
keys does not depend on the encoding basis (see Sec. 2.3.3) as

ρ̂E,avg =
∑

pαi ρ̂E,αi =
∑

pβi
ρ̂E,βi

. (2.121)

In general, the average density matrix ρ̂avg =
∑M

i=1 piρ̂i can be computed as the pi-weighted
sum of states ρ̂i. Therefore, we can write the average density matrix as

ρ̂avg,E =
∑

B∈{q,p}

1

2

∫ ∞

−∞

1√
2πσ2disp

exp

(
− x2

2σ2disp

)
ρ̂kiEdki. (2.122)

where σ2disp is the displacement variance, and ki = αi (▶) or ki = βi (◀). The weighted
probability of the encoding bases B ∈ {q, p} is assumed to be 1/2.

We compute the von Neumann entropy by using the entropic function (see Eq. 2.71) of the
symplectic eigenvalues of the covariance matrix (see Eq. 2.70). To obtain the average state
in covariance matrix form, we use the property of the signal moments similar to average
density matrices [49]

〈
(â†)mân

〉
avg

= Tr
(
(â†)mân ρ̂avg

)
=

M∑
i=1

pi · Tr
(
(â†)mân ρ̂i

)
=

M∑
i=1

pi ·
〈
(â†)mân

〉
i
, (2.123)

where
〈
(â†)mân

〉
avg

is them,n ∈ N0 signal moment for the average state ρ̂avg, and
〈
(â†)mân

〉
i

is the same signal moment for the individual state ρ̂i. Then, the covariance matrix of Eve’s
average state is

Vavg,E =


Vavg,E,1 0 1

4

√
τ∆n̄ 0

0 Vavg,E,1 0 −1
4

√
τ∆n̄

1
4

√
τ∆n̄ 0 n̄ 0

0 −1
4

√
τ∆n̄ 0 n̄

 , (2.124)
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where the variance for Eve’s output mode of the beam splitter is quadrature independent
Vavg,E,1 = (1− τ) (1 + 2nJPA) e

2r/4 + n̄+ τ/4, with ∆n̄ =
√

(4n̄)2 − 1.
Finally, we have an analytical expression of the average covariance matrix (Eq. 2.124)

and the quadrature-dependent covariance matrix. The information that Eve can maximally
obtain is bounded by the Holevo information for direct (χ▶

E) and reverse (χ◀
E) reconciliation

as

χ▶
E = S (ρ̂E,avg)−

∑
B∈{q,p}

1

2

∫ ∞

−∞
f
(
αi|0, σ2disp

)
S
(
ρ̂αi
E,B

)
dαi, (2.125)

χ◀
E = S (ρ̂E,avg)−

∑
B∈{q,p}

1

2

∫ ∞

−∞
f
(
βi|0, σ2disp

)
S
(
ρ̂βi
E,B

)
dβi, (2.126)

where f
(
αi|0, σ2disp

)
is the Gaussian probability density function distribution with the

displacement variance σ2disp

f
(
αi|0, σ2disp

)
=

1√
2πσ2disp

exp

(
− α2

i

2σ2disp

)
. (2.127)

2.3.6 Classical post-processing and secret key rate

The variables exchanged over the quantum channel need to be distilled to an error corrected,
secure classical key. Classical post-processing is performed by Alice and Bob to meet this
goal. The classical post-processing consists of three steps: sifting discards all symbols where
Bob measured in a different basis than Alice’s preparation basis; reconciliation uses the
correlated information to distill a smaller, but error-corrected key based on Alice’s sent key
(direct reconciliation) or Bob’s measured key (reverse reconciliation); privacy amplification
discards a fraction of the key to limit the probability of successful eavesdropping attacks.

Sifting for matching bases

During the sifting, all measurements are discarded that were measured in the wrong basis
B ∈ {q, p}. This step is called sifting and has a typical efficiency of ηsift = 0.5 for homodyne
detection, as the probability is 1/2 that Bob chooses randomly the same basis as Alice.
Interestingly, it is in general not necessary to uniformly sample the bases pBi = 0.5 [126].
Sifting is an active research field, where modern algorithms like the iterative sifting protocol
are developed (see Ref. 137). The protocol with the currently highest sifting efficiency for
a finite size key length was first proposed by Lo, Chau and Ardehali (LCA) [138]. The
LCA sifting protocol relies on an asymmetric basis choice probability. A thorough security
analysis for the LCA sifting protocol was performed by Pfister et al. [137], where it was
found that a different parameter estimation subroutine is required to ensure perfect security.
However, this protocol does not substantially exceed the Shor-Preskill efficiency ηsift = 0.5
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(first security proof for a QKD scheme in Ref. 32). Therefore, we assume in the following
the lower bound ηsift = 0.5, which holds for asymptotic key length.

Information reconciliation of the noisy key

The information reconciliation processes the sifted noisy symbols that are shared between
Alice and Bob and generates an error-corrected shared key of a smaller size. The reconcil-
iation efficiency ηrec = Nrec/Nnoisy is the fraction between the original key size Nnoisy and
the reconciliated key Nrec. The number of error-corrected, correlated symbols over a noisy
channel is limited by the mutual information [11]. In practice, common protocols like the
low-density parity-check (LDPC) code achieve an efficiency of ηrec = 86.7% [139].

Privacy amplification

The last step of the classical post-processing is called privacy amplification. This process gets
rid of compromised symbols by reducing the length of the key. From the estimated losses
and noise in the quantum channel, Alice and Bob can estimate the amount of eavesdropping.
This information is converted to a security parameter which reflects the risk that Eve
obtained parts of the key [140]. Then, a two-universal symmetric hash function reduces the
key and increases security [140].

Secret key rate

We define the secret key rate R (bits per symbol and second) as

R = frηsiftK, (2.128)

where K = ηrecI(α:β)− χE is the secret key, fr is the repetition rate (number of channel
usage per second), and and ηsift ∈ [0, 1] is the sifting efficiency, which is the fraction of bits
that are not discarded.
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In this chapter, we focus on technical requirements for a particular microwave CV-QKD
protocol. In this context, a high fidelity single-shot microwave readout is one the central
milestones.

This chapter starts with a description of our microwave CV-QKD protocol. Afterwards,
we introduce a relevant cryogenic measurement setup, which includes a basic description
of our dilution cryostat and microwave input and output lines. Later, we report on phase-
sensitive amplification experiments with Josephson parametric amplifiers which serve as
main building blocks of our investigations.

3.1 Implementation of squeezed-state CV-QKD protocol

A general goal of the microwave CV-QKD protocol is to communicate a secret key be-
tween the sender (Alice) and the receiver (Bob), which consists of a chain of symbols, i.e.
continuous real numbers.

We implement the protocol presented in Sec. 2.3.1. This requires the implementation of
Alice’s preparation of squeezed displaced states (see Sec. 2.3.3), Bob’s homodyne detection
(see Sec. 2.3.4), and the effect of Eve’s eavesdropping (see Sec. 2.3.5). A simplified schematic
of our experimental setup is shown in Fig. 3.1. We use a first JPA to generate a propagating
microwave squeezed state using a weak thermal state with an average temperature of
T = 40mK as an input state. Then, we displace the previously squeezed state by applying
a coherent tone to the weakly coupled port of directional coupler 1. The incident coherent
tone is calibrated with respect to the induced displacement amplitude |α| and displacement
angle θ = arg(α).

Instead of fully implementing the attacks as described in Sec. 2.3, we simulate its effect
by inducing additional noise in Alice’s cipher states. We achieve this, by coupling white
Gaussian noise to the previous displaced squeezed states by using the second directional
coupler. The coupled noise photon number, n̄ is referenced to the output of directional cou-
pler 2 and can be described with the highly asymmetric beam splitter model (see Eq. 2.1.3).
Eve’s thermal states are generated using an up-converted white Gaussian noise from an
arbitrary function generator (AFG). Locally, such signal is equivalent to the entangling
cloner eavesdropping attack, where Eve would couple a TMSV state to the cipher states.
Using this local equivalence between the TMSV and thermal states, we can experimentally
simulate the entangling cloner attack on our microwave CV-QKD protocol.
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Figure 3.1: Signal flow in our experimental implementation of the microwave CV-QKD protocol. JPA
1 performs the squeezing operation, Ŝ, with a squeezing angle γ1. Directional coupler 1 implements
the displacement operation D̂(α) encoding a particular key element (symbol). The output state of
directional coupler 1 represents Alice’s cipher. In directional coupler 2, thermal noise n̄ is coupled
the cipher in order to simulate an eavesdropping attack by Eve. The resulting state is detected by
the receiver, Bob. The detection chain consists of another JPA 2 with the gain G2 and added noise
n2, followed by a cryogenic HEMT and room temperature amplifiers. Finally, the signal moments is
down-converted and sampled by an FPGA. Colored boxes in the signal propagation line characterize
Wigner functions of relevant microwave quantum states.

At the output of the second directional coupler, the signal can now be read out by Bob.
The first step of the signal readout consists in a phase-sensitive amplification of the incoming
signal in the same basis as the symbol was encoded. This phase-sensitive amplification is
performed by driving JPA 2 with a strong coherent pump. The corresponding signal gain
(G2 ∼ 20 dB) is large enough so that the signal-to-noise ratio is not significantly reduced
by the noise of subsequent linear amplifiers. The microwave signals in the frequency range
of around 5GHz are down-converted to 11MHz and subsequently sampled by an FPGA.
The FPGA performs filtering and demodulation of the experimental signal, followed by
calculation of statistical moments. The latter, in combination with a proper calibration (see
Sec. 3.2.4), provide access to a partial or full tomography of the original microwave quantum
state.

3.2 Cryogenic measurement setup

In order to operate superconducting microwave circuits in the quantum regime, we use a
dilution cryostat to cool down our experimental set up to a temperature of 40 mK. In doing
so, it also allows us to exploit superconducting coaxial NbTi cables with Tc = 9.8K and
characteristic losses around 1.0 × 10−3 dB/m. More importantly, we need to consider the
signal-to-noise ratio from a thermal point of view.

Our typical propagating microwave quantum states consist of a few photons. Assuming
the named above frequency and temperature range, the Planck distribution can be used to

46



3.2 Cryogenic measurement setup

Isolation vacuum
Liquid Nitrogen 77K

Isolation vacuum
Liquid Helium 4.2 K

4He

Still 
500 mK

6.6 % 3He

100 % 3He

Mixing chamber
40 mK

Heat exchanger

1K-pot
1200 mK Isolation vacuum

Sample stage

4He Mixture3He

Figure 3.2: Schematic of a wet dilution refrigerator. The pre-cooled 3He/4He mixture enters the
mixing chamber, where cooling to millekelvin temperatures is achieved by exploiting the dilution
process of 3He in the 3He/4He mixture.

estimate an average number of thermal photons per mode ⟨n⟩ as

⟨n⟩ = 1

exp(ℏβω)− 1
, (3.1)

This results in a noise floor of ⟨n⟩ ≤ 10−2 noise photons, where ℏ is the Planck constant, ω is
the frequency, β = 1/(kBT ) is defined by the Boltzmann constant kB and the temperature
T .

In the following, we are going to present details of our cryogenic and room temperature
microwave set up. Its central components are the dilution refrigerator, superconducting
flux-driven JPAs, and room temperature microwave state reconstruction set up.

3.2.1 Wet dilution refrigerator

Here, we use a custom made wet dilution refrigerator based on the dilution process of 3He

in the 3He/4He mixture to achieve base temperatures around 10mK. In particular, liquified
nitrogen and helium pre-cool a mixing chamber, where 3He is diluted in a 3He/4He phase.1

As liquid Helium has a low latent heat [141], an efficient heat shielding from the room
temperature environment is required. The cryostat used in this experiment was engineered
at the Walther-Meißner-Institut. Its simplified schematic is shown in Fig. 3.2. It has several
cooling stages. Each cooling stage limits the interaction with previous stages by making use
of isolation vacuum. These insulation vacuum shields are formed by several nested dewars.

1Today’s commercially available 3He is as a byproduct of tritium generation in nuclear reactors:
6
3Li + 1

0n −−→ 3
1T + 4

2He,
3
1T

12.3 y−−−→ 3
2He+ 0

– 1e + ν [141]
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The nitrogen dewar at 77K pre-cools the helium dewar at 4.2K, which in turn contains the
the third dewar (internal vacuum chamber) with the 1K-pot and 3He/4He mixing chamber.

The 3He/4He mixture is fed through all the aforementioned precooling stages and is
gradually cooled down to temperatures below 1K, where the 3He evaporation cooling
and dilution process start to take place. Below 0.87K, a 3He/4He mixture seperates into
two phases: a 3He-rich mixture, and a 3He-poor phase. These phases are referred to as
concentrated (near 100% 3He) and dilute (6.6% 3He) phase. In the mixing chamber, the 3He
rich mixture floats on top due to its lower density. The cooling power Q̇(T ) is

Q̇(T ) = ṅ3 [H3,d(T )−H3,c(T )] , (3.2)

where ṅ3 (µmol/s) is the circulation rate of 3He, and H3,d(T ) and H3,c(T ) the enthalpies
of the diluted and concentrated phase. The resulting enthalpy difference is the energy
required to transfer a 3He atom from the concentrated into the dilute phase. This process is
endothermic, as 3He experiences a larger binding energy in the dilute phase due to a smaller
zero point motion of 4He atoms. This effect was experimentally quantified by Simon et al.
[142, 143]. Unlike most two-phase liquids, there is a finite 3He concentration in the dilute
3He/4He phase even at T = 0K [141].

The evaporating still has a higher temperature of 500mK. The resulting difference be-
tween the osmotic pressures of the mixing chamber and the 3He evaporating still is sucking
3He through the mixing chamber from the concentrated phase. This reflow of cold mixture
is again used to pre-cool the diluted phase entering the mixing chamber over a heat ex-
changer. A detailed description of the cryostat can be found in Ref. 144. Further information
on the physics of wet dilution refrigerators can be found in Pobell’s book Ref. 141.

3.2.2 Cryogenic sample stage

In this section, we consider physical arrangement of components in the cryogenic setup.
The sample stage is depicted in Fig. 3.3. There, the mixing chamber is providing cooling
of the microwave set up to temperatures below 50mK. Microwave input and output lines
are thermally anchored to all temperature stages in order to gradually thermalize related
signals. The input line with a heatable attenuator is fed first into the circulator (Quinstar
OXE89 SN 1603200002 from Low Noise Factory) at the bottom of the stage 1 . There, it is
connected to JPA 1 at the stage rear 2 . Then, the signal line leads through two directional
couplers 3 (Sirius Microwave SN E16944, Miteq SN E15876), where the first one is used
for displacement of squeezed states, and the second one simulates Eve’s entangling cloner
attack by coupling a thermal signal. The top circulator 4 (Quinstar OXE89 SN 1519200003)
interfaces with JPA 2 5 with the output line 6 leading outside of the cryostat. Both JPAs
were fabricated in RIKEN, Japan.

Our flux-driven JPAs are extremely magnetically sensitive devices and need to be shielded
from stray magnetic flux. As JPA 1 sits back to back with the weakly magnetic circulator, an
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Figure 3.3: Photographs of the (a) rear sides and (b) back of the sample stage. (c) JPA chip with
(d) the input capacitor and (e) dc-SQUID inside of the (f) JPA package, protected by the aluminum
shield and (g) aluminum foil against stray magnetic fields.

aluminum shield is used in order to protect the JPA. This shield consists of a solid aluminum
plate wrapped with an additional aluminum foil (see Fig. 3.3 (g)). The plate is mounted at
the sample stage. The foil is wrapped around in order to leave small openings and allow

49



3 Experimental Techniques

for passing of incoming and outgoing microwave connections, as well as for a DC line for
the JPA magnetic coil and the silver wires, which thermalize the JPA.

In our setup, we measure the JPAs in the reflection regime. Therefore, the signal port
serves both as an input and output. The latter signals are separated by using a 3-port
microwave nonreciprocal device (circulator). In Fig. 3.3 (f), the port to the left belongs to
the pump line and introduces the pump tone to the JPA. A superconducting NbTi coil is
mounted on top of the JPA sample box in order to provide stable and controllable magnetic
flux, as required for the JPA frequency tuning.

Inside of the sample boxes, the JPA chips (see Sec. 2.2.5) are bonded to an internal
printed circuit board (see Sec. 2.2.5 (c)) in order to provide a stable interface between the
superconducting circuit and external coaxial cables. At the heart of the JPA chip, there is a
CPW quarter-wavelength resonator short-circuited to ground with a dc-SQUID, as depicted
in Fig. 3.3 (e).

3.2.3 Signal processing and data acquisition

Output microwave lines allow us to measure weak quantum signals coming from the sample
stage. In particular, we are interested in the photon number of displaced squeezed states
at the output of the second directional coupler (Bob’s state). In Fig. 3.4, the upper half is
showing the room temperature devices. The bottom part illustrates the cryogenic part.

Input microwave lines

Five input microwave lines lead into the cryostat. Input 4 is used to calibrate the working
points of our JPAs. A coherent signal from a signal generator (SGS 100A, Rohde & Schwarz)
through input 1 leads to the weakly coupled port of directional coupler 1; up-converted
Gaussian white noise from an arbitrary function generator (81160A, Agilent Technologies)
through input 3 leads to the weakly coupled port of directional coupler 2. The up-conversion
is performed by using a harmonic mixer driven by a strong local oscillator (SGS 100A,
Rohde & Schwarz) at the frequency around 5GHz. This step is necessary, as the AFG has
a maximum bandwidth of 500MHz. Inputs 2 and 5 provide JPAs 1 and 2 with the pump
tones.

All input lines are equipped with attenuators which are distributed across the different
cooling stages. These attenuators function as power dividers and effectively allow to
thermalize the intrinsic signal fluctuations to a temperature of the corresponding cryostat
stage. This ultimately suppresses thermal noise population to around n = 10−3 noise
photons at the sample stage for signal frequencies of around 5GHz. In order to achieve this
goal, one has to use high attenuation values, which correspond to high dissipated powers.
Therefore, the bulk of this attenuation is placed above the 40mK stage to avoid an excessive
cryostat heating.
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Output lines

In our experimental setup, we use a single output line, which is fed through two circula-
tors mounted in series followed by a high-electron-mobility transistor (HEMT) amplifier
(CLNA-C-0506-A TCA4003, TTI Inc.) with the average gain of GH = 43dB installed at the
4K stage. Signals are subsequently amplifed by a room temperature amplifier with the gain
of GRT

1 = 41.5 dB (AFS5, Miteq) to bring the signal power to a sufficiently high level for
the FPGA sampling. The room temperature microwave set up can be seen in Fig. 3.5.The
signal detection path goes through a band-pass filter of 4.9− 6.2GHz (VBFZ-5500+, Mini-
circuits) is followed by an isolator (ECI04-5, EPX microwave). The filtered signal around
fRF = 5.5GHz is down-converted using an image rejection mixer (IRM4080B, Polyphase
microwave). This IRM mixer is driven by the local oscillator (SGS 100A, Rohde & Schwarz),
which is set to the frequency fLO = fRF + fIF, such that fIF = 11MHz. The IRM mixer
is followed by a step attenuator (ESA2-1-10/8-SFSF, EPX microwave) to tune the result-
ing output power, if necessary, and avoid compression in the subsequent amplifier. After
down-conversion, the signal carrier frequency is fIF = 11MHz and another band-pass filter
(9.5 - 11.5 MHz) helps suppressing unwanted noise at the input of a low-frequency amplifier
with the gain GRT

2 = 58.7 dB (AU 1447, Miteq). The step attenuator was also used to adjust
the gain just below the maximum signal power 2.05Vpp at the input of the FPGA to ensure
the integrity of the device and to obtain the best dynamic range for the signal sampling. Fi-
nally, after passing through a low-pass filter, the signal is fed through a transceiver adapter
module (NI 5782-02) which is mounted on the FPGA (NI PXIe 7975), where the signal is
digitized.
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Signal demodulation

The transceiver adapter module is sampling the down-converted (11MHz) analog signal
at the sampling rate of fS = 250MHz with the 14-bit vertical resolution. Three different
channels are used: an analog input channel (AI 0) for the signal line, a trigger input (TRIG),
which initiates the start of measurement traces, and an external reference channel (CLK IN)
for the frequency synchronization. An arbitrary waveform generator (HDAWGG4, Zurich
Instruments) supplies the trigger pulse for the FPGA and generates modulation waveforms
for other devices as shown in Fig. 3.4.

The primary goal of the FPGA is to extract I and Q quadratures of the incoming signal.
An internal digital local oscillator sitting at the same frequency fd = fIF modulates the
digitized IF signal A(ti) with numerically generated sine and cosine functions. The I and
Q quadratures are the result of numerical integration of these functions

I = 2fIF

N∑
i=1

cos (2πfIFti)A (ti)∆t,

Q = 2fIF

N∑
i=1

sin (2πfIFti)A (ti)∆t.

(3.3)

Here, ∆t = 8ns is the sampling time, and the number of integration points is

N =

⌊
fS
fIF

⌋
, (3.4)

which results in N = 22, considering that the FPGA samples at an effective sampling
frequency of fS = 250MHz. Then, the quadratures are filtered with a digital finite-impulse
response (FIR) filter, which uses a Hamming window over 90 demodulated quadrature
values. As a result, the ring-up time of the FIR filter is around 4 ns × 22 × 90 = 7.92µs,
which determines the lower bound for the temporal length of our various modulation
pulses, such as those used for JPAs, displacement, and noise.

Each triggering allows the FPGA to acquire 1650 quadrature values with a total duration
of 145.2µs. After filtering and demodulation, the FPGA calculates the quadrature moments
⟨InQm⟩ with n+m ≤ 4, n,m ∈ N0, as required for Gaussian quantum state tomography.

Pulse scheme

The pulse scheme can be seen at the top of Fig. 3.4. This scheme has four different calibration
sections:

(i) Trigger the FPGA and aquire a well-calibrated vacuum reference state during the
state when all other elements of the set up are switched off (see Sec. 2.1.3).

(ii) The second temporal window is used to measure a squeezing angle of the squeezed
states generated by JPA 1. This squeezing angle can be stabilized around a prede-
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termined value in subsequent measurements by adjusting the phase of the respective
pump tone.

(iii) The same procedure is repeated for the JPA 2 phase stabilization to select which
quadrature is amplified during the phase-sensitive amplification step.

(iv) The displacement angle of Alice’s cipher state is measured. In the second measure-
ment the angle is calibrated to align with the JPA’s squeezing angles.

(v) All devices are operating. The samples acquired in this window provide measurement
data for the CV-QKD protocol.

The trigger and modulation pulses are generated with an arbitrary waveform generator
(HDAWGG4, Zurich Instruments). Except for the noise generation, all input signals are
generated using SGS 100A microwave generators from Rohde & Schwarz. These devices
are operated with a modulation voltage amplitude of 0.6V.

Reference state reconstruction

A well-defined vacuum reference state is crucial to analyze our signals and perform an
accurate quantum state tomography. The method used here is based on the work from
Ref. 145 and Ref. 146.

The reference state reconstruction uses a well-calibrated state as a reference measurement.
In our experiments, this reference state corresponds to a weak thermal state emitted from
a cold attenuator at the mean temperature of T = 40mK. We define the complex envelope
ξ̂ref of the amplified reference state as

ξ̂ref =
√
G
(
v̂ + V̂

)
, (3.5)

where V̂ describes the original thermal state, andG represents the gain of the amplification
chain. The complex envelope function is calculated by using the measured quadratures Î
and Q̂ (see Sec. 3.2.3), and κ, the photon number conversion factor (also see Sec. 3.2.4), as

ξ̂ =
Î + iQ̂√

κ
. (3.6)

We compute the moments
〈
(v̂†)mv̂n

〉
of the weak thermal vacuum reference state v̂, and

the moments of the complex envelope function of the reference state
〈
(ξ̂†ref)

mξ̂nref

〉
. After

we have computed the amplification noise moments
〈
(V̂ †)mV̂ n

〉
, we can extract the signal

moments from the complex envelope function of the signal. For our quantum states, the
complex envelope function reads as

ξ̂s =
√
G
(
â+ V̂

)
, (3.7)
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Figure 3.6: (a) Output line calibration measurement of the amplification chain. (b) Solid markers
and black line represent experimental data and fit (Eq. 3.8) at the center frequency of f0 = 5.5231
GHz with the detection bandwidth of 400 kHz.

where â represents a signal mode. From the complex envelope function moments ⟨(ξ̂†s )mξ̂ns ⟩
and the previously computed amplification noise moments ⟨(V̂ †)nV̂ m⟩, we can compute
the signals moments ⟨(â†)nâm⟩. A detailed explanation can be found in Ref. 82.

3.2.4 Photon number conversion factor (PNCF)

We know only approximately by how much we amplify and attenuate the signal in our
amplification chain. Therefore, we need a more precise method to associate an incoming
signal power at the input of our FPGA with a specific photon number at a specific location
of our cryogenic set up. Previously, we used the Planck distribution to calculate the average
thermal photon number for a given temperature. We can use this knowledge by using a
heatable attenuator which is set to a well-defined temperature. Then, this attenuator acts
as a black-body emitter and generates a thermal signal with a well-defined average photon
number, as shown in Fig. 3.6. This temperature and photon number are then related to
the absolute output signal power measured at the FPGA. The result of this procedure is
shown in Fig. 3.6 (b). The signal power is calculated from the quadrature second moments〈
I2
〉

and
〈
Q2
〉
, normalized toR = 50Ω. When related to the predefined temperature at the

30-dB attenuator Tatt, the signal power reads [82, 147]

P =
⟨I2⟩+ ⟨Q2⟩

R
=
κG

R

[
1

2
coth

(
hf0

2kBTatt

)
+ n

]
. (3.8)

The product between the photon number conversion factor and the gain κG defines the
slope, while the total detection noise n = nI + nQ corresponds to the offset in the I and
Q quadrature. In this formula, h is the Planck constant, and f0 is the center detection
frequency. These two parameters can be determined by fitting the formula to the measured
signal power while varying the temperature Tatt of the attenuator. The resulting fit is
shown in Fig. 3.6 (b). The resulting fitting parameters are shown in Tab. 3.1. From the
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Moments κG
[
V2/photon

]
n [photon]〈

I2
〉

1.490 · 10−06 ± 2.934 · 10−08 9.868± 0.203〈
Q2
〉

1.502 · 10−06 ± 2.934 · 10−08 9.784± 0.199

Table 3.1: Fit parameters obtained from the exemplary PNCF measurement at the center frequency
f0 = 5.5231GHz.

datasheet of the HEMT amplifier, we expect a total detection noise of around 20 noise
photons. Evidently, our extracted noise photon number coincide well the expectations and
are dominated by the HEMT noise. For these PNCF measurements, we can additionally
take into account effects of losses along the signal path. If no losses are accounted for, the
thermal signal power is referred directly to the output of the heatable attenuator, as well
as the extracted PNCFs. However in our experiments, we need to reconstruct quantum
states at various different points in the setup. To shift the reconstruction point, we have to
estimate losses L (dB) between the output of the attenuator and the desired reconstruction
point. Then, the effective gain referred to the output of the attenuator Gatt is given by

Gatt = GR · 10−L/10, (3.9)

where GR is referred to the desired reconstruction point. This procedure allows us to
obtain an accurate estimation of PNCFs for an arbitrary point in our microwave cryogenic
set up, provided that we can reliably estimate losses between this point and the heatable
attenuator.

3.3 Working point

A working point is defined by the resonance frequency f0 of the JPAs employed in the
experiment. An optimal working point must allow for large squeezing levels with a purity
close to unity for JPA 1. For JPA 2, we aim at obtaining high degenerate gain close to 20 dB.

The JPA working point calibration consists of several steps. First, we start with the
calibration of the JPAs by finding a possible resonance frequency for both our JPAs. This
frequency should provide a high nondegenerate and degenerate gain. The frequency
defines a center frequency for all other devices. Then, we calibrate the output line to relate
the thermal noise temperature to a photon number (see Sec. 3.2.4). We calibrate the supplied
power to the JPAs to analyze squeezing and purity. The power to the weakly coupled inputs
of the directional couplers allow a calibration of Alice’s cipher state displacement, Eve’s
added noise, and Bob’s optimal amplification. Bob’s detection efficiency is dependent on
the signal power and pump power incident to JPA 2. In that regard, we characterize the
quantum efficiency.
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Figure 3.7: (a) JPA characterization scheme. The vector network analyzer (VNA) measures the
magnitude and phase of the reflected signal from the JPA. (b) Flux-dependent resonant frequency
of JPA 1. Solid markers represent resonant frequencies that are extracted from the frequency
dependence of the reflection coefficient phase. (c) Pump power (green) sweep at the given working
point for JPA 1 with a pump frequency of fpump = 11.0462GHz (d) Flux-dependent resonant
frequency of JPA 2 tuned by the magnetic coil current (purple). (e) Pump power sweep at the given
working point for JPA 2.

3.3.1 Flux-dependent JPA resonance frequency and nondegenerate gain

A systematic way to relate the dc magnetic flux Φdc to the applied coil current Icoil is to
measure a frequency-dependent reflection coefficient from the JPA with a vector network
analyzer (VNA) versus a varied coil current as depicted in Fig. 3.7 (a). By measuring a
corresponding S-parameter, the JPA’s resonant frequency can be identified by its induced
phase shift and frequency dependent amplitude response. The flux dependence of the
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resonant frequency is shown in Fig. 3.7 (b) for JPA 1 and Fig. 3.7 (d) for JPA 2. On the
lower x-axis, the total flux Φ/Φ0 shows the characteristic periodicity that is expected for a
dc-SQUID.

Next, for a given resonant frequency, the coil current is fixed to stabilize the JPA frequency
at the chosen frequency f0 and the pump tone is applied at the double frequency of
2f0. Then, the pump frequency is fine-tuned around 2f0 in order to achieve symmetric
amplification response with up to 10 dB of gain. The only free parameter left after this
procedure is the pump power, which is swept in a certain range of powers in order to verify
the JPA gain response. Exemplary sweeps can be seen in Fig. 3.7 (c) for JPA 1 and (e) for
JPA 2.

Finally, we need to fix the pump power Ppump. The JPA gain increases for higher pump
powers, until nonlinear effects (see Ref. 148) start to manifest, preventing the JPA operation
as a linear amplifier. This effect can be seen after−39.5 dBm applied to the pump port of JPA
2 in Fig. 3.7 (e). The working point corresponding to the JPAs frequencies of f0 = 5.5231GHz

was used throughout the thesis and serves as a basis for further calibrations.

3.3.2 Squeezing and purity measurement

The calibration of the squeezing level in JPA 1 is important for the CV-QKD protocol, as the
overall key variance depends both on the displacement amplitude and squeezing level. A
high squeezing level enables high displacement amplitudes, and respectively, high secret
key rates.

For the measurement, we use the working point f0 = 5.5231GHz, by tuning the coil cur-
rent Icoil = −27.8µA as described above and sweep the pump tone power, at the frequency
of 2f0, between −55 dBm and −25 dBm referred to the JPA pump port. Instead of using
the VNA for probing of the JPA, we send a weak thermal state from the mixing chamber
attenuator to the JPA input, as illustrated in Fig. 3.8 (a). We use the reference state recon-
struction method introduced in Sec. 3.2.3 to analyze the squeezed states. The squeezing
level and purity is computed from the quadrature moments measured by the FPGA and
are plotted in Fig. 3.8 (b). The target squeezing angle is set to γ = 45◦, and shows a low
variance of around ±1◦ for the different pump powers. The squeezing level S and purity µ
are calculated as [64]

S = 10 log10

(
σ2S
0.25

)
, µ =

1

4N
√
det(V)

, (3.10)

where 0.25 represents the variance of vacuum fluctuations, σ2S corresponds to the recon-
structed squeezed variance, and V is the covariance matrix of the reconstructed state.

Higher-order nonlinear effects lead to a break down of the JPA squeezing operation, as
observable at high pump powers, Ppump > −35 dBm in Fig. 3.8 (b). These effects force the
JPA in a non-Gaussian regime of operation. For a more detailed description the reader is
referred to Ref. 148 and Ref. 149.
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Figure 3.8: (a) Schematic for the squeezing measurements. A weak thermal state is squeezed by the
pumped JPA. The FPGA extracts the output signal moments and, by using the PNCF calibration,
converts them to the squeezed quadrature variance σ2

s and squeezing angle γ. (b) Exemplary
squeezing and purity measurement versus the pump power referenced to the input of the JPA at
the working point frequency f0 = 5.5231GHz, and the pump frequency fpump = 11.0462GHz. (c)
Squeezing angle versus the pump power.

During the CV-QKD protocol we stabilize the squeezing angle by establishing a feedback
loop between a reconstructed angle based on relatively low averaging numbers. Within this
feedback loop we adjust the phase of the JPA pump signal. The pump phase is changed by
∆γ = 2 (γset − γmeas), where γset is the target phase and γmeas is the measured phase. For
the power calibration measurement shown in Fig. 3.10, we use the set angle of γset = 45◦.

The measurement results displayed in Fig. 3.8 (b), (c) can be obtained when JPA 2 is
detuned from the working point frequency f0 to avoid its extra attenuation of signal trans-
mission near its resonant frequency. However, the protocol for degenerate amplification
requires a calibration of the squeezing angle of JPA 1, while both JPAs are tuned to the
resonant frequency f0 = 5.5231GHz. When not pumped, JPA 2 has a noticeable insertion
loss of around 10 dB which makes the squeezing angle stabilization more difficult, as it
reduces the corresponding SNR and precision of angle stabilization. As a result, we have to
adapt the pulse sequence and increase the JPA 1 pulse duration to compensate for the poor
signal power due to attenuation by JPA 2. In Fig. 3.9, we demonstrate that we are able to
stabilize the squeezing angle of JPA 1 by using 3× 106 averaged traces Navg to an accuracy
of ±2◦ even in this unfavorable regime.
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Figure 3.9: (a) Pulse scheme for the experimental implementation of the microwave CV-QKD pro-
tocol. Amplitude of each modulation pulse is set to 0.6V. (b) Angle stabilization measurement for
JPA 1. The standard deviation for the squeezing angle of JPA 1 is sufficiently small for three million
averages, reaching a deviation of ±2◦ around the setpoint.

3.3.3 Displacement calibration

In our CV-QKD protocol, we encode key symbols in the displacement amplitude of prop-
agating displaced squeezed states. The displacement operator D̂ (α) (see Sec. 2.1.3) is
implemented by coupling the squeezed state to a coherent tone via a cryogenic directional
coupler. Hence, we need to calibrate how much input power is needed to displace the state
by a certain number of photons. In the measurement displayed in Fig. 3.10 (a), we perform
the displacement on an incident weak thermal state coming from the heatable attenuator.
Similar to the squeezing stabilization measurements we have to stabilize the displacement
angle in order to compensate for drifts in long measurements. This is achieved by introduc-
ing yet another feedback loop and changing the coherent tone phase by ∆θ = θset − θmeas,
where θmeas is the reconstructed displacement phase from the previous iteration, and θset

is the set point displacement phase (see Fig. 3.10 (c)).
Figure 3.10 (b) illustrates that in the range of displacement powers we need, the purity

of the resulting displaced state remains close to 1, deviating only by ∼ 4% from unity.The
amount of displacement photons is computed via the reference state construction method,
as described in Sec. 3.2.3. Corresponding data points are fitted with a linear noise model

nd = md Pcoh + pd, (3.11)

which we use to estimate the amount of displacement photons throughout the measure-
ments.

Fig. 3.10 (c) shows that the measured displacement angles agree well with the target
displacement angles. This ensures that the states can be displaced with the well-controlled
displacement amplitude and displacement angle.
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Figure 3.10: (a) Measurement scheme for displacement power calibration at the first directional
coupler. (b) Displacement photon numbernd = |⟨â⟩|2 versus input power at the output of directional
coupler 1. The fit parameters are md = 4.66× 10−11 ± 2.8−14, pd = 9.54× 10−15± < 10−14. (c)
Displacement angle for different powers.

3.3.4 Noise calibration

The second directional coupler simulates an eavesdropping attack as described in Sec. 2.3.5.
To this end, we generate white Gaussian noise, approximating a thermal state, and couple
it by a second cryogenic directional coupler to incoming propagating signals, as depicted in
Fig. 3.11 (a). The artificial noise signal from an arbitrary function generator (81160A, Agilent
Technologies) is up-converted to a carrier frequency of around 5GHz by mixing the initial
noise signal with a strong local oscillator at the harmonic mixer. The noise photon number,
nn = ⟨â†â⟩, is extracted from the signal moments measured at the FPGA. The purity of the
noisy state rapidly decreases as the input voltage from the AFG is increased, as shown in
Fig. 3.11 (b). The resulting noise photon dependency can be fitted with the linear model

nn = mn V
2
pp + pn, (3.12)

where Vpp is the peak-to-peak voltage of the noise source andmn, pn are the fitting parame-
ters. For plotting, the value of Vpp is converted to dBm units, referred to the weakly coupled
port of the second directional coupler. The added variance to Alice’s cipher state can be
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Figure 3.11: (a) Measurement scheme for the AWG noise calibration. (b) Exemplary calibra-
tion data of the average noise photon number versus the noise power (dBm) at the weakly
coupled port of the directional coupler 2 and fitting parameters mn = 4.52× 101 ± 2.22× 10−2,
pn = −0.01± 2.2× 10−2.

computed by using the relation

(1− τ)VE = (1− τ)
1

4
(1 + 2nEve) =

1

4
(1− τ) + n̄, (3.13)

where nEve is average noise photon number, coming from Eve’s side, and n̄ is the effective
coupled noise added to Alice’s state.

3.3.5 Degenerate gain

The phase-sensitive amplification implemented at Bob’s side is crucial to obtain a high
signal-to-noise ratio and reach the single-shot readout regime. Fig. 3.12 (a) displays the
schematic for the degenerate gain measurements of JPA 2.

In our implementation of the CV-QKD protocol, JPA 2 is used as a quantum-limited
amplifier in the phase-sensitive regime. To study its degenerate gain, we use a coherent
tone as an input signal and sweep the phase of the coherent tone from 0 to 180◦. As shown
in Fig. 3.12 (b), the JPA 2 response is a π-periodic function of the input coherent phase. The
maxima for each pump power are visualized in Fig. 3.12 (c). Here, we achieve a maximum
degenerate gain of up to 32 dB. However, this is possible only for the weak input signals with
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in the degenerate regime. (e) Signal power of a cipher state by Alice, considering a displacement of
3σ.

less than−140 dBm signal power. For higher powers, JPA 2 starts to slowly enter a nonlinear
amplification regime and stops being useful for our purposes. This effect can be investigated
by varying the input power and observing the resulting gain, as shown in Fig. 3.12 (d). Here,
we use the 1-dB compression criterion which indicates that the signal gain decreased by
1 dB from its maximal value, in order to characterize maximally acceptable input powers
for JPA 2. Finite 1-dB compression powers arise from higher-order nonlinear effects in JPAs
which destroy Gaussianity of the incident states. Gaussianity implies that the third and
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fourth order cumulants (n +m ≥ 3) are close to zero [145], which can be used as witness
values to measure departure from the Gaussian character in amplified states. Also, the
covariance matrix formalism, which we use to analyze displacements and variances of the
microwave states, relies on the condition that our quantum states can be treated as Gaussian
states, as the covariance matrix is only computed from second order moments. A detailed
discussion of higher-order nonlinear effects leading to compression is presented in Ref. 148.

In order to identify an optimal pump power for JPA 2, we first need to estimate a maxi-
mum photon number in the incident states during the execution of our CV-QKD protocol.
In Fig. 3.12 (e), a simplified circuit shows the signal line leading to the first directional
coupler. As we sample the symbols from a Gaussian distribution N (0, σ2disp), sometimes,
the corresponding photon numbers and power will be very large, because Gaussian distri-
butions have a infinite domain of definition. However, we can choose the variance of the
Gaussian distribution such that 99.7% of the resulting displaced squeezed states incident
to JPA 2 do not induce compression effects. This corresponds to a 3σ interval of a Gaussian
distribution. Thus, the maximal tolerable displacement photons during the experiments are
calculated by using a high-power cipher state at 3σ of the Gaussian distribution. We denote
the corresponding signal photon number as n3σ and choose the circulator at JPA 2 as refer-
ence point. The average photon number of a squeezed displaced state is n = |α|2+sinh2(r).
For the high-power cipher state, we set the displacement to 3σ, so that its photon number
is n3σ = (3τσdisp)

2 + sinh2(r), where τ = 1− 10−c/10 = 0.99 and c = 20dB is the coupling
constant for the directional couplers, r is the squeezing factor, and σ2disp the sample variance
of the Gaussian distribution from which the displacement amplitudes are sampled.

The displacement variance σ2disp corresponds to a squeezing level S, as these quantities
need to fulfill the condition for indistinguishable bases, as discussed in Sec. 2.3.3. In
the experiment, we decide for a squeezing level of S = 5.2 dB. As a result, we have a
corresponding displacement photon number sample variance of σ2disp = 1.4. As a result we
need to choose a corresponding squeezing factor of r = S/(20 log10(e)) = 0.59. This results
in a total 3σ photon level n3σ of n3σ = 12.94. Finally, we can compute the signal power Psig

for this photon number n3σ using

Psig,3σ = Bhfn3σ = 6.087× 10−18W = −142.16 dBm, (3.14)

with the bandwidth B = 400 kHz, the Planck constant h, and the signal frequency
f = 5.5231GHz. The resulting signal power of −143.29 dBm is marked by the dashed
purple line in Fig. 3.12 (d). In conclusion, we are below the compression limit for the lowest
pump power of −42.3 dBm, which is indicated in blue. For the higher powers −42.0 dBm

(red) and −41.7 dBm (green), the compression effect is already decreasing the degenerate
gain.
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3.3.6 Quantum efficiency

In the last section, we showed how to estimate the signal power up to the input of JPA 2. In
order to characterize the whole signal-to-noise ratio, we need to estimate the noise which
is added by the subsequent degenerate (JPA 2) and nondegenerate amplifiers (HEMT and
further linear amplifiers). To this end, we extract the total amplification noise referred to the
input of JPA 2. The measurement configuration is shown in Fig. 3.13 (a). In contrast to the
usual PNCF measurement (see Sec. 3.2.4), JPA 2 is active here and used in the degenerate
regime. Then, we run individual PNCF calibration measurements for the individual JPA 2
pump powers, as shown in Fig. 3.13 (b), in order to extract the corresponding JPA 2 noise
photon numbers and covert these to the quantum efficiency

η =
1

1 + 2n
, (3.15)
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where n are the total amplification noise photons. By applying the Friis formula (see
Eq. 2.38), the total noise with reference to the input of the HEMT is given by

n = n2 +
nH
G2

+
�
�

��>
≃ 0

nRT
GHG2

, (3.16)

where n2 is the number of noise photons added by JPA 2 referred to its input, nH is the
noise added by the HEMT referred to its input, G2 is the gain of JPA 2, and nRT is the
noise added by room temperature amplifiers referred to their inputs. From the known gain
G2 ∼ 20 dB, HEMT noise in one quadrature nH ∼ 10, and measured quantum efficiency η,
we can estimate the added noise by JPA 2.

The resulting data points are shown in Fig. 3.13 (d), where the standard quantum limit
(see Ref. 83) is indicated by the purple line at η = 50%. In the plot, we notice two regimes:
the low power regime below −41.7 dBm, where the quantum efficiency is increasing, and
a high power regime above −41.7 dBm, where the quantum efficiency reaches its max-
imum at ηJPA = 48± 3% and starts decreasing. In comparison, the efficiency of phase-
insensitive amplification, using only the HEMT amplifier, resulted in the quantum efficiency
of ηH = (1 + 2nH)

−1 = 4.8%. Therefore, the phase-sensitive amplification JPA 2 increases η
by a factor of ∼ 10.

The observed behavior of the phase-sensitive quantum efficiency can be explained using
the Friis formula for noise, Eq. 2.38. The quantum efficiency increases with the gain
of JPA 2, G2, as long as the noise of the HEMT dominates the overall noise, nH/G2 > n2.
After reaching the maximum quantum efficiency, the pumped-induced noise and nonlinear
effects (see Ref. 83) lead to an increase of n2, which eventually leads to a degradation of the
total noise, n.
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In this chapter, we characterize the security of the microwave CV-QKD protocol in its ex-
perimental implementation as described in Sec. 3.1. The experiment is performed with and
without phase-sensitive amplification by JPA 2. We expect that the improved quadrature-
dependent signal-to-noise ratio increases the mutual information between Alice and Bob.
This increase affects the secret key K (secure bits/channel use), which is defined as

K = ηrecIAB − χ▶
E , (4.1)

where IAB is the mutual information, ηrec ∈ (0, 1) is the reconciliation efficiency, and χ▶
E

Eve’s Holevo information. In this analysis, we focus on the direct reconciliation case (▶ in
Sec. 2.3.5).

Throughout all measurements, we stick to the working point frequency f0 = 5.5231GHz.
Pre-characterization of this working point is provided in Sec. 3.3.1. JPA 1 is tuned in-
resonance with f0, to Icoil,1 = 10.2µA (−0.172Φ/Φ0). For phase-sensitive amplification,
JPA 2 is tuned to Icoil,2 = −27.8µA (−0.135Φ/Φ0) and it is tuned off-resonance, when
phase-sensitive amplification is not needed. In a first step, we compute the signal-to-noise
ratio from calibration measurements and use it to calculate an expected limit for the mutual
information IAB = Imax from the Shannon capacity (see Eq. 2.92). In a second step, we
compare the Shannon limit with the measured mutual information IAB = I(α:β) between
Alice’s and Bob’s variables, α and β (see Eq. 2.90), and calculate the secret keyK. Then, we
analyze whether our previous estimates for the secret key coincide with the measurements
performed with a finite key length. Afterwards, we discuss the measured secret key rate.
We conclude the chapter with an outlook directed towards possible improvements.

4.1 Preliminary calibrations and definitions

In this section, we compute the signal-to-noise ratio (SNR) for the phase-insensitive (PI)
and phase-sensitive amplification (PS) regimes by using calibration measurements at the
chosen working point. We use the Shannon limit Imax = 1

2 log2 (1 + SNR) to estimate the
maximal mutual information between Alice and Bob. Afterwards, we consider Eve’s Holevo
information χ▶

E , which is obtained from a tomography of the average state of the CV-QKD
protocol. Finally, we define the efficiencies and bandwidths needed to compute the secret
key K and the corresponding secret key rate R in the PI and PS configurations.



4 Experimental Results and Discussion

Eve’s state

Alice’s state preparation
Reference point

Bob’s amplification chain

DC 1 DC 2

Coherent state

RT amp. IRM mixer

LO

HEMT

FPGA
Pump 1

JPA 1 SP

Pump 2

JPA 2 SP

300 K40 mK

PS:

100 mK - 4KWeak thermal state

off

onPI:

Figure 4.1: Simplified signal propagation path. The squeezed quadrature variance is σ2
1,S. The

second directional coupler (DC 2) couples Eve’s noise signal to the Alice cipher, simulating the
entangling cloner attack. Afterwards, the signal is either phase-senitively amplified (PS), if JPA 2 is
tuned in-resonance to f0 and pumped, or passing through the circulator without any amplification,
if the JPA 2 is detuned (PI). The rest of the amplification chain consists of the high-electron-mobility-
transistor (HEMT) at 4K and several subsequent amplifiers at room temperature. The input of the
HEMT is chosen as the reference point (green) for the state tomography.

4.1.1 Shannon limit with and without phase-sensitive amplification

Here, we compare the signal-to-noise ratio and resulting for phase-insensitive (PI) and
phase-sensitive amplification (PS) regimes. A simplified sketch of the noise in the experi-
mental setup is shown in Fig. 4.1. The added noise of the room temperature amplifiers nRT
can be neglected, as explained in Sec. 3.3.6.

The signal-to-noise ratio relates the signal power to the total noise power present in
the channel. The average signal power is determined by the variance of the sampled
displacement amplitudes α drawn from the Gaussian distribution N (0, σ2disp). We denote
this quantity as the displacement variance σ2disp. The latter is linked to the squeezing level
of JPA 1, such that the average over all displaced squeezed states corresponds to a thermal
state (see Sec. 2.3.3). The noise power is a sum of different contributions: the squeezed
variance of Alice’s state itself, the noise added by Eve, and the amplification noise. The
amplification noise depends on the mode of operation of JPA 2. Either JPA 2 is detuned
and not pumped (HEMT amplification, PI in Fig. 4.1), or JPA 2 is tuned in-resonance with
f0 and pumped (degenerate JPA amplification, PS in Fig. 4.1). The expected signal-to-noise
ratio SNR can be written as

SNR =
τσ2disp

τ2σ21,S︸ ︷︷ ︸
Alice

+ n̄+ 0.25(1− τ)︸ ︷︷ ︸
Eve

+namp︸ ︷︷ ︸
Bob

, (4.2)

where τ is the transmissivity of the first and second directional couplers, σ2disp is the
displacement variance of the key, σ2S,JPA1 is the variance in the squeezed quadrature of
Alice’s state, n̄+ 1

4(1−τ) is Eve’s added noise photons at the output of the second directional
coupler (see Sec. 2.3.5), and namp is the total amplification noise added at Bob’s side for one
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S σ2disp SNRPI SNRPS Imax,PI Imax,PS

3.5 dB 0.5 5% 63% 0.035 0.352

5.2 dB 1.4 14% 177% 0.095 0.734

Table 4.1: Expected signal-to-noise ratioSNR and Shannon capacity Imax (bits/channel use) with (PS)
and without (PI) phase-sensitive amplification. For SNRPI, the amplification noise is namp = nH; for
SNRPS, the amplification noise is namp = n2 + nH/G2. σ2

disp denotes the sample variance ofN = 150
symbols.

quadrature. Depending on the mode of operation, the total amplification noise is either
dominated by the HEMT noise, namp = nH (PI), or by the JPA 2 noise, namp = n2 + nH/G2

(PS).
We are using two different squeezing levels S = 3.5 dB, S = 5.2 dB at the same working

point f0 = 5.5231GHz. The purities for the squeezing levels are µ(S = 3.5 dB) = 96%

and µ(S = 5.2 dB) = 95%. The signal-to-noise ratio can be used to calculate the Shannon
capacity of the channel between Alice and Bob (see Sec. 2.3.4). For a single channel use,
the maximally obtainable mutual information is bound by Imax = 1

2 log2 (1 + SNR). The
squeezing level S dictates the displacement variance σ2disp through the condition for in-
distinguishable encoding bases, so that the antisqueezed variance of Alice’s state is equal
to the sum of the displacement variance and the squeezed variance. In the case of the
squeezing level S = 5.2 dB, the displacement variance drawn from a distribution of vari-
ance σ2AS − σ2S = σ2disp was 1.4 photons. We draw 150 symbols from the corresponding
distribution. We know from the earlier PNCF measurements (see Sec. 3.2.4) that the am-
plification noise in one quadrature is namp = nH ∼ 10 photons. In the degenerate case, a
pump power of −42.3 dBm results in namp = n2 + nH/G2 = 0.81 noise photons. With an
exemplary coupled noise of n̄ = 0.05 noise photons, and the known directional coupler
transmissivity, τ = 0.99, we can compute the expected signal-to-noise ratios for the squeez-
ing levels S = 3.5 dB and S = 5.2 dB, as shown in Tab. 4.1. As expected, the SNRs increase
in the PS regime.

In conclusion, we observe a more than tenfold improvement of the signal-to-noise ratio
by exploiting the degenerate pre-amplification by JPA 2. This should also lead to an increase
by one order of magnitude for the maximally obtainable mutual information given by the
Shannon limit.

4.1.2 Calculation of Holevo information for Eve’s added noise photons

The computation of Eve’s Holevo information χ▶
E relies on the approach introduced in

Sec. 2.3.5. We estimate the Holevo information by using the covariance matrix formalism
(see Sec. 2.3.5). In particular, we calculate the entropy of individual states S

(
ρ̂αi
E,B

)
and the

entropy of the average state S (ρ̂E,avg) with the encoding basis B ∈ {q, p} from their corre-
sponding covariance matrices. The Holevo information is computed using the symplectic
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model. The Holevo information χ▶

E is the maximally attainable information possible based on a
coupled state ρ̂E . (c) Eve’s Holevo information for direct reconciliation depending on the average
number of coupled noise photons.

eigenvalues S(V) = g(ν+) + g(νi) so that

χ▶
E = S (Vavg,E)−

∑
B∈{q,p}

1

2

∫ ∞

−∞
f
(
αi|0, σ2disp

)
S
(

Vαi
E,B

)
dαi, (4.3)

where Vavg,E is the covariance matrix of the average state as defined in Eq. 2.124, and Vαi
E,B

is the covariance matrix of an individual cipher state with the corresponding symbol αi

that is encoded in the basis B, as defined in Eq. 2.118. The function f
(
αi|0, σ2disp

)
, is the

probability density function at the symbol value αi of the Gaussian distributed key with
variance σ2disp and mean 0.

An accurate estimate of the covariance matrix of the average state and the covariance
matrix of each individual cipher state relies on a precise tomography by Bob. There-
fore, we measure each symbol with a high number of averages, M = 105. The com-
puted Holevo quantities for the selected noise levels are shown in Fig. 4.2. The noise lev-
els, n̄ ∈ {2.4× 10−3, 7.6× 10−2, 0.15, 0.23} (photons), are purposefully chosen so that the
Holevo information χ▶

E is close to the expected levels of mutual information as computed
from the signal-to-noise ratios in Tab. 4.1.

4.1.3 Definition of the single-shot secret key

In this work, we define a single-shot secret key K as a single quadrature value that was
acquired at the maximum bandwidth B = 400 kHz of our readout setup (see Sec. 3.2.3).
The secret key rate R = frηsiftK, as defined in Eq. 2.128, is the product of the secret key
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K = ηrecIAB − χE, the sifting efficiency ηsift, and the repetition rate fr. For simplicity, we
assume a perfect reconciliation efficiency of ηrec = 100%.

In our experimental setting, the repetition rate fr of the protocol depends largely on
the required time for phase stabilization. We stabilize the phase (see Sec. 3.3.2) of the
involved JPAs and the coherent tone for each transmitted symbol to prohibit a loss of mutual
information due to the phase drift. The experimental repetition rates for phase-insensitive
amplification fr,PI = 0.17 (symbols/s) exceeds the repetition rate fr,PS = 0.01 (symbols/s)
for phase-sensitive amplification due to extra attenuation when JPA 2 is not active and
induced significant losses of around −10 dB in the signal path. However, this limitation
is not of fundamental nature and can be completely circumvented in the future by using
fast flux lines for rapid tuning of the JPA resonant frequency. For now, we require a phase
stabilization time for PS of around 7min. Our microwave signal detection operates at the
bandwidth of ∆f = 400 kHz. This sets an upper bound for the repetition rate, fr = 400 kHz,
and can be used to estimate the secret key rate. Similarly, we assume that Eve’s Holevo
information χ▶

E is obtained at the same bandwidth. However, the employed FPGA in our
experiment lacks a port for synchronized digital data transmission during the runtime.
Information can only be extracted at the beginning and the end of the runtime. This implies
that in the current setup, only one symbol can be sent synchronously per runtime of the
FPGA. In the experiment, the signal moments for a single symbol are stored in the memory
of the FPGA and sent to the CPU after the synchronized measurement is completed. This
also effectively limits the repetition rate to the latency of the communication between CPU
and FPGA and the initialization time of the FPGA. This latency is on the order of one
second per symbol. Therefore, a more practical implementation would require a FPGA
with a digital bus.

The sifting efficiency ηsift = 50% represents the fraction of symbols that are discarded due
to non-matching quadrature bases B ∈ {q, p}. In the current experimental implementation
(see Sec. 3.1), we restrict ourselves to one encoding quadrature basis. This restriction
is equivalent to an already applied sifting procedure. Therefore, the measured mutual
information I(α:β) is already sifted with the efficiency of ηsift = 50%.

4.1.4 Definition of secret key capacity

We can define the secret key capacity R as the upper bound for the secret key rate R, so
that R ≥ R

R = frηsiftK

= frηsift(ηrecImax(A:B)− χ▶
E,min)

(4.4)

where K ≥ K is the maximum single-shot secret key. Since a sufficiently noisy eavesdrop-
ping attack can bring down any secret key rate to zero, this metric serves as a measure for
the maximally possible secure communication rate. It is important to note that we typi-
cally introduce noise accessible to Eve in experimental settings. The fundamental result of
non-zero losses in the signal path, which couple to environmental noise sources (controlled
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Figure 4.3: (a) Scheme for the phase-insensitive amplification with the detuned JPA 2. The amplifi-
cation is performed by the HEMT and room temperature amplifiers. (b) Wigner function of an input
signal (red) with the displacement amplitude α = σdisp. The standard deviation of the thermal state
representing the HEMT input noise nH is colored in grey. (c,d) Mutual information scaling with the
number of performed averages. Subfigure (c) shows the scaling in the single-shot regime.

by Eve), lead to a finite Holevo quantity χ▶
E . We define the experimentally achievable

maximum secret key rate Rexp correspondingly by using the measured secret key Kexp.

4.2 CV-QKD in the phase-insensitive (PI) regime

We measure the mutual information in the PI regime to allow for a later comparison with the
PS regime. Furthermore, we are interested in how close the measured mutual information
is to the Shannon limit. Our approach consists of three steps: key generation, synchronized
measurements, and post-processing. First, the key corresponding to the squeezing level
is drawn from a Gaussian distribution. Second, the measurement is conducted in the PI
configuration (see Fig. 4.1). Third, we compute the mutual information from the measured
keys (see Eq. 2.90). Lastly, we compute the secret key K from the mutual information
between Alice and Bob and estimated Eve’s Holevo information. The latter serves as a
security criterion. The communication is secure if and only if K > 0.

Here, we compare the measured mutual information with the Shannon limit (see Sec. 4.1)
for different amount of averages M . These two quantities are defined as (see Sec. 2.3.4)

Shannon limit (· · · in Fig. 4.3) Imax =
1

2
log2(1 + SNR), (4.5)

Measured mutual information (• in Fig. 4.3) I(α:β) = −1

2
log2(1− ρ2), (4.6)
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Figure 4.4: Single-shot secret key K (bits/channel use) versus the coupled noise photon number n̄
without phase-sensitive amplification in the PI regime for the squeezing levels S = 3.5 dB (blue) and
S = 5.2 dB (red) for M = 1. The left subfigure shows that the experimental secret key is negative
even in the low-noise regime.

with the correlation coefficient ρ = Cov(α, β)/(σασβ) andM times averaged symbolsαi and
βi. The signal-to-noise ratio SNR improves linearly with M averages to SNRM = SNR ·M
as shown in Eq. 2.95. We note that Eq. 4.1 for the secret key is only valid for M = 1.
However, we are interested in the scaling of the measured mutual information to charac-
terize the channel and to spot possible time dependent errors in the calibration. We expect
from the computed Shannon limit in Tab. 4.1 that the signal-to-noise ratios are bound by
SNR(S = 3.5 dB) = 5%, and SNR(S = 5.2 dB) = 14%.

4.2.1 Comparison of measured mutual information with the Shannon limit

Fig. 4.3 compares these bounds to the measured mutual information. The x-Axis scales the
amount of averages logarithmically. We observe that the measured mutual information in
both cases is following the expected logarithmic increase given by the Shannon limit and
the linear scaling of the SNR with increasing averages. In particular, the measured mutual
information is increasing logarithmically with the amount of averages per symbol. The
single-shot mutual information for both squeezing levels is near the low expected mutual
information of less than 0.1 bits. For the squeezing level S = 3.5 dB, the expected single-
shot Shannon limit was Imax = 0.035 bits. The experiment for N = 150 symbols and n = 3

runs yielded I(α:β) = 0.045±0.019 bits. ForS = 5.2 dB, the single-shot mutual information
was Imax = 0.095 bits, with an expected Shannon limit of Imax = 0.095 bits. As the unit
for mutual information is given in bits, the configuration is two orders of magnitude away
from delivering binary information I = 1 bit.

4.2.2 Secret key for single-shot CV-QKD in the PI regime

When we consider that the Holevo information, as shown in Fig. 4.2, ranges from approx-
imately 0.1 to 0.8 bits per channel use, we expect a negative secret key for any level of
eavesdropping. Fig. 4.4 shows the secret key K = ηrecIAB − χE with an assumed reconcil-
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4 Experimental Results and Discussion

iation efficiency ηrec = 100%. We observe that the measured mutual information for both
squeezing levels is not high enough to allow for a secure communication (K > 0).

In particular, the amplification noise namp = nH is so high that Bob is not able to gain
enough information on Alice’s key. We conclude, not very surprisingly, that a phase-
insensitive amplification relying solely on the HEMT amplifier is not suited for the single-
shot readout. An intuitive explanation of our observations is that the signal powers,
corresponding to Alice’s cipher states, are too low as compared to the HEMT noise level.
As a result, the HEMT noise, nH ∼ 10, is dominating the output signal.

4.3 CV-QKD in the phase-sensitive (PS) regime

In this section, we investigate the mutual information by using JPA 2 for phase-sensitive
amplification (PS in Fig. 4.1) with the JPA 1 squeezing level S = 5.2 dB. We compare the
results with the corresponding Shannon limit and measured mutual information in the PI
regime. Alice sends an identical key in both configurations (PS and PI). We compute the
mutual information from the measured keys (see Eq. 4.6) and compare it with the Shannon
limit (see Eq. 4.5).

4.3.1 Comparison of measured mutual information with the Shannon limit

Similar to Sec. 4.2, we compare the measured mutual information with the Shannon limit
for different numbers of averages M for the squeezing level S = 5.2 dB. From the es-
timated Shannon limit in Tab. 4.1, we expect that the signal-to-noise ratio is bound by
SNRPS = 177%. This implies an expected increase by around twelve times in comparison
to SNRPI = 14%. This expectation is based on our main hypothesis that the dominating
factor in the SNR is the HEMT amplification noise nH.

Figure 4.5 shows a comparison between the mutual information values experimentally
obtained in the PI and PS regimes. The mutual information is measured for the real part
(green) and the imaginary part (purple) of the displacement amplitude (see Fig. 4.5 (c)).
We observe that the mutual information estimated from the amplified quadrature of the
signal in the PS configuration is 13 times larger than the one in the PI configuration (PI) in
the low-average regime ≤ 103. As a result, we can achieve for a positive single-shot secret
key in the PS regime (see Sec. 4.3.3), which was the main goal in this work. The measured
single-shot mutual information, IPS = 0.65± 0.08 bits, agrees well with the single-shot
Shannon limit, Imax,PS = 0.73 bits, that was computed from the improved quadrature-
dependent quantum efficiency (see Sec. 4.1).The measured mutual information above 103

averages per symbol unexpectedly deviates from the Shannon limit and saturates at the
mutual information value of I(A:B) ≃ 5 bits. This effect is irrelevant for the precision of the
single-shot measurements. However, future protocols can increase their repetition rate fr
by reducing the amount of calibration runs per transmitted symbol. Therefore, we discuss
this issue below.
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Figure 4.5: (a) Scheme for the phase-sensitive amplification with pumped JPA 2. One quadrature
of the input signal (red) is amplified, so that the power of the output signal (green) is large in
comparison to the HEMT noise (grey). (b) Wigner functions of the input signal (red) and output
state (green). The real part of the input state is amplified to Re(αout) =

√
G2Re(αin) = 6.6 photons.

The degenerate gain of JPA 2 is G2 = 14.8 dB. (c) Signal and noise powers referred to the input
of the HEMT. (d) Mutual information I(A:B) for the encoding quadrature of the phase-sensitively
amplified state (green) and the orthogonal squeezed quadrature carrying no useful information.

4.3.2 Phase-drift impact on the signal-to-noise ratio

The most probable reason for the experimental decrease of the signal-to-noise ratio (SNR) is
a dephasing during the averaging time, as indicated by ξ2 in Fig. 4.5 (b). We note that most
contributions to the SNR (see Eq. 4.2) are not prone to large deviations: the displacement
variance σ2disp or the added noise n̄ are stable during the measurements. The transmissivity
of the directional coupler τ is also a well-fixed passive quantity. The only contribution that
can be subject to large deviations over time is the phase noise in the amplification chain.

To calculate the effect of this dephasing on the amplification chain, we once again use
the Friis formula, so that namp = n2 + nH/G2 (see Eq. 2.38). We consider an extreme case
of dephasing between the input signal and the JPA 2 squeezing angle of ϕ = 2γ = π.
Thus, JPA 2 actively adds amplified noise to the quadrature that carries the signal, so that
namp = n2 +G2nH.

If we assume a first-order approximation for the JPA 2 phase drift, ϕ = ωt as sin(ωt) ≃ ωt,
where ω (◦/s) is the phase drift velocity, we can rewrite the total amplification noise namp

as a sum of the suppressed noise and actively added noise dependent on the phase drift
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Figure 4.6: Single-shot secret key K (bits/channel use) versus the average coupled noise photon
number n̄ for the squeezing level S = 5.2 dB. (a) Phase-insensitive configuration. (b) Phase-
sensitive configuration. (c) Secret key for the PI and PS regimes. The dashed line acts as a guide
between the expected maximal secret key calculated from the Shannon limit.

ϕ(t) at time t as
namp ≃ n2 + nH/G2 +G2nHωt (4.7)

The solid black line in Fig. 4.5 (d) represents the fitted function using the Shannon limit
on Eq. 4.2 with the adjusted the amplification noise Eq. 4.7. For the fit, we rescale the
averages M = Dt in terms of seconds, where the trace repetition rate (in averages M per
second) is D = 6.6 kHz. This rate includes the minimal latency of the CPU generating and
communicating the random symbols. The resulting phase drift is ω = 0.04 rad/s. This
model assumes a mean random phase error of γ = ωD−1M = 0.35 rad for the inflection
point at M = 103. Therefore, the small angle approximation assumed for the first-order
approximation holds in the regime of low averages at a time ≤ 0.15 s. We note that a
more advanced model needs to be developed for larger time scales and that the phase drift
velocity is unusually high in our experiments.

4.3.3 Positive secret key for single-shot CV-QKD in the PS regime

As the measured single-shot mutual information for phase-sensitive amplification (PS)
agreed with the Shannon limit, we immediately achieve a positive secret key in the limit of
minimal eavesdropping. If we assume a small contribution of Eve’s noise to the signal-to-
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noise ratio, we expect the threshold for secure key, K = 0, at a corresponding noise level
for the Holevo information to be approximately 0.6 bits per channel use.

In Fig. 4.6, the estimated secret key for the PS regime is compared with the PI regime. The
secret key is calculated from K = ηrecIAB − χE with an assumed reconciliation efficiency
ηrec = 100%. The dashed line indicates the maximal mutual information IAB = Imax due to
the Shannon limit; the mutual information IAB = I(α:β) represented by the solid markers is
estimated using Eq. 4.6. We observe that the measured mutual information for S = 5.2 dB

is high enough to allow for a secure communication (K > 0) below the coupled noise
threshold of n̄ = 0.15 noise photons. This is a very important experimental milestone.
It illustrates that the single-shot microwave CV-QKD is feasible even in the presence of
significant external noise coupled to the quantum channel.

4.3.4 Calculation of secret key rate

Furthermore, we can estimate the secret key capacity R = frηsiftK (bits/s) following the
approach as defined in Sec. 4.1.3. The maximally achievable rate at the lowest noise level of
n̄ = 0.05 enables the secret key capacity ofRexp = 3.1±0.6×10−3 bits/s, where fr = 0.17Hz

and ηsift = 50%. Assuming an optimized protocol as proposed in Sec. 4.1.3 and setting our
repetition rate to the upper limit defined by the detection bandwidth, fr = 400 kHz, we can
obtain a secret key capacity of R = 1.3 ± 0.23 × 105 bits/s, which illustrates a significant
application potential for the near term future.

Let us make an estimation for the communication rate with a practical example: we
can consider the binary UTF-8 encoding of „Hello!“). This 6 byte message requires the
transmission of a quantum key of the same length. For the experimental secret key capacity
Rexp = 3.1± 0.6× 10−3 bits/s, the communication of a 6 byte quantum key takes 4.3 h. The
optimized protocol that would solely require a digital bus (see Sec. 4.1.3 for details) can
transmit the same message in a fraction of a second. Remarkably, one could communicate
a secret key long enough to encode every word1 in Shannon’s article A Mathematical Theory
of Communication, at the secret key capacity of R = 1.3± 0.23× 105 bits/s, in only 4.4 s [11].

4.4 Discussion of possible improvements and research directions

In Sec. 4.3.3, we demonstrate the positive secret key (K > 0) in the experimental setting
by using the Josephson parametric amplifier for phase-sensitive amplification. We also
successfully achieve the single-shot measurement for the microwave quantum states se-
curely encoding classical key elements. Furthermore, we demonstrate that the Shannon
limit, Imax = 1

2 log2(1 + SNR), provides an accurate estimate for the channel capacity in the
low-average regime below 103. The quantities determining the signal-to-noise ratio are
obtained from the calibration measurements that does not rely on any key transmission.

1The 45 pages long article has approximately 15000 words. With an average of 4.7 characters per word in the
english language, the total byte count in UTF-8 encoding (1 byte per character) is 70.5 kilobyte (564,000 bits).
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Parameter phase-insens. phase-sensitive improved components

namp (photons) 10 0.81 (G2 = 14.8 dB) 0.51 (G2 = 25dB)
σ2disp (photons) 1.4 1.4 (S1 = 5.2 dB) 39.6 (S1 = 10dB)
SNR 0.14 1.77 62.2

Kexp (bits/ch. use) < 0 0.63± 0.11 -
K (bits/ch. use) 0.028 0.67 2.99

fr,max (symbols/s) 400 kHz 400 kHz 71.1× 106 (fS = 6.4GHz)
Rexp (bits/s) < 0 3.1± 0.6× 10−3 -
R (bits/s) 16.4× 103 1.3± 0.23× 105 1.06× 108

Table 4.2: Parameters and results for an improved single-shot microwave CV-QKD. The parameters
are presented both the PI and PS regimes. The third column shows the technically possible im-
provements discussed in Sec. 4.4.1, Sec. 4.4.2, and Sec. 4.4.3. For the calculation of maximal secret
key rate R, we assume the reconciliation efficiency ηrec = 100%, and ηsift = 50%.

The average signal power is |α|2 = σ2disp = 1.4 photons. In the current configuration, an
added noise of more than 10% leads to an unsecure connection. Therefore, the tolerance
for maximally added noise can still be improved.

The main efforts for improving the secret key rateR should be directed towards increasing
the mutual information I(A:B), and the repetition rate fr. As demonstrated, the mutual
information depends on the signal-to-noise ratio which we define as

SNR =
τσ2disp

τ2σ2S,JPA1 + n̄+ 0.25(1− τ) + namp
. (4.8)

In general, we want to decrease the quantities in the denominator and increase the ones
in the nominator. If we review the different contributions, we have three main levers for
increasing the SNR (and the secret key rate R). We discuss below the limits for a reduced
amplification noise namp, an increased signal power |α|2 = σ2disp equal to the displacement
variance of the key, and a increased repetition rate fr. The discussed improvements are
summarized and contrasted with the current metrics in Tab. 4.2.

4.4.1 Reduction of amplification noise

We reduced the amplification noise by using the JPA 2 in the degenerate regime,
from namp = nH = 10 to namp = n2 + nH/G2 = 0.81. However, the JPA 2 compression
limit bounds the maximal gain (see Sec. 3.3.5). In particular, the maximum power
(Psig,3σ = −142 dBm) in a 3σ−interval of the Gaussian distributed powers N (0, σ2disp),
corresponding to the desired squeezing level S = 5.2 dB, allows only for the JPA 2 gain
G2 = 14.8 dB. Therefore, the contribution of the HEMT noise nH/G2 = 0.33 is still sig-
nificantly contributing to the total amplification noise. This becomes evident, when we
review the low power regime in Fig. 3.13. An increased gainG2 can reduce the contribution
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of the HEMT noise to the total amplification noise even further. Considering compres-
sion limits due to the signal power (Psignal = −143 dBm), a realistically achievable gain is
G = 25dB. With a similar JPA input noise n2, this would improve the amplification noise
from namp = 0.81 to namp = 0.51.

4.4.2 Increased signal power

With an increased displacement variance σ2disp, we can achieve a higher SNR. We can see
this effect in Sec. 4.2, where an increase of 1.7 dB resulted in a tripled single-shot Shannon
limit. Traveling wave parametric amplifiers (TWPAs) can provide a higher dynamic range
with input powers up to Pmax = −92 dBm for the gain range similar to this work (12−15 dB)
[150]. If we follow the procedure presented in Sec. 3.3.5, we can calculate the maximum
displacement variance, so that the signal powers of 99.7% of the symbols are below the
1-dB compression point. From Psig,3α = (∆f)hf(|3α|2 + sinh2(r)), the resulting maxi-
mum displacement variance for Psig,3α = Pmax = −92 dBm, ∆f = 400 kHz at f = 5.2GHz

is σ2disp = 5× 104 photons.
However, the security of the protocol requires that the displacement variance agrees

with the variance of the antisqueezed quadrature σ2disp + σ2S = σ2AS (see Sec. 2.3.3). There-
fore, the maximally achievable squeezing level by the squeezing JPA Smax with a high
purity µ determines the upper bound for the displacement variance. If we estimate from
Fig. 3.8 a maximal squeezing level of Smax = 10dB, the maximal displacement variance is
bound by σ2disp,max = σ2A,max − σ2S,min = 4 · (10Smax/10 − 10−Smax/10) = 39.6 photons. A con-
stant squeezing level for a displacement power of up to 160 photons was demonstrated in
Ref. 46. Therefore, we can assume that it is possible to sample squeezed displaced states
from a displacement variance of σ2disp = 39.6. This would be a major increase considering
that this work uses at most σ2disp = 1.4.

4.4.3 Increased repetition rate

Finally, the repetition rate fr (symbols/s) can be improved. The current setup is limited by
the phase stabilization time of the two JPAs and the communication latency between the
CPU and the FPGA, since the FPGA has no synchronized digital bus during runtime (see
Sec. 4.3.4).

For FPGAs that allow for synchronized digital signal transmission, the effective sampling
rate is only limited by the window size of the finite impulse response (FIR) filter if we assume
a slower random phase error drift in an optimal setup. In the FPGA unit (PXIe 7975), the
FIR filter acts as a band-pass filter, where the signals are digitized at the sampling frequency
fS = 250MHz with a vertical resolution of 14 bit (see Sec. 3.2.3). Recent FPGA models are
capable of sampling frequencies of up to fS,opt = 6.4GHz (e.g. PXIe-5775 by National
Instruments) with a vertical resolution of 12 bit. Most importantly, modern chassis (e.g.
PXIe-1088) connect embedded controllers with the data acquisition unit over internal high-
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bandwidth digital bus connections (e.g. 8GB/s for PXIe-8861). Hence, the synchronized
measurement of statistically independent symbols is no longer limiting the repetition rate.
We estimate an increased symbol sampling rate for a Hamming window size of M = 90

samplesof fr,opt = fS,opt/M = 71.1MS/s.

4.4.4 Variable quantum channel transmissivity

In our experiments, we model the quantum channel (see Sec. 2.3.5) by the second directional
coupler (see Sec. 3.3.4), with transmissivity τ = 0.99. The ultimate bound for the secret key
over a lossy channel with transmissivity τ is given by the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound for the secret key capacity− log2(1−τ) [39]. This bounds the maximal
secret key from above by Kmax < 6.6 bits per channel use. As it is the ultimate bound, it
is not surprising that we fall below it. Future experiments with variable transmissivities τ
could evaluate how the secret key capacity of the protocol relates to the PLOB bound.
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5 Conclusion and Outlook

In this work, we have implemented a microwave (f0 = 5.5231GHz) continuous-variable
quantum key distribution (CV-QKD) protocol which encodes classical information in the
displacement amplitude of Gaussian-modulated propagating displaced squeezed states.
The goal of this thesis has been to achieve the single-shot detection of the involved mi-
crowave quantum states and perform the aforementioned QKD protocol with it.

To this end, we have used a flux-driven Josephson parametric amplifier (JPA) in the phase-
sensitive regime for an improved microwave readout. By using this approach, we have ob-
served a significant reduction of the quadrature-dependent amplification noise, measured
in terms of average number of added photons, from 10 (η < 5%) to 0.81 (η = 38%). This cor-
responds to an increase of the SNR from 14% to 177%. In the subsequent experiments, we
have observed positive secret keys in the CV-QKD protocol, providing direct evidence for
unconditional security in the microwave regime. These experiments have been performed
with microwave signals with a power of up to 1.4 photons on average corresponding to the
squeezing level ofS = 5.2 dB below the vacuum limit and a detection bandwidth of 400 kHz.
Furthermore, we have investigated and proved the robustness of our protocol to reasonable
imperfections and eavesdropping in microwave quantum channels. The extracted secret
key capacity, Kexp = 0.63± 0.11 (bits/channel use) agrees well with the estimated Shannon
capacity, K = 0.67 (bits/channel use). With these positive secret keys, we have fulfilled our
initial goal of single-shot microwave CV-QKD. Our experiments have demonstrated that
microwave CV-QKD is experimentally feasible and possesses a large potential for future
applications.

In perspective, microwave CV-QKD protocols can become an important part of future
5G/6G networks due to their frequency compatibility [151] and can even outperform op-
tical counterparts [152]. In future experiments, the secret key can benefit from using more
advanced superconducting quantum devices with high detection efficiencies, such as travel-
ing wave parametric amplifiers or microwave single-photon detectors. Our results uncover
and motivate a novel exciting field of microwave quantum key distribution.





A Appendix

A.1 Moyal equation in presence of harmonic forces

The phase-space formulation of the Liouville–von Neumann equation

iℏ
∂ρ

∂t
= [H, ρ]. (A.1)

is given by the Moyal equation [153]

∂W (q, p, t)

∂t
= −{{W (q, p, t), H(q, p)}}, (A.2)

where {{ , }} is the Moyal bracket, and { , } the Poisson bracket. The analogy to the
classical Liouville equation (see Ref. 154) is remarkable, when considering that the equation
of motion for each point in the phase space is classical in presence of strictly harmonic forces
[155]

∂W (q, p)

∂t
= −p∂W (q, p)

∂q
. (A.3)

The solution is an oscillation around the center of the phase-space.

A.2 Displacement operator

A coherent state is defined as [52]

|α⟩ = exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!

|n⟩ . (A.4)

The Fock state |n⟩ can be obtained from consequent applications of the creation operator â†

on the vacuum state |0⟩ as [52]

|n⟩ =
[
(â†)n/

√
n!
]
|0⟩ . (A.5)

We substitute |n⟩, and rewrite the coherent state as [51]

|α⟩ = eαa
† |0⟩ e−|α|2/2, (A.6)
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where the exponential on the left can be extended with the invariant term exp(−α∗â), so
that [51]

|α⟩ = D(α) |0⟩ with D(α) = e−|α|2/2+αâ†−α∗α̂. (A.7)

Using the Baker-Hausdorff formula eA+B = e−[A,B]/2eAeB for two operatorsA,B it follows
that [51]

D̂(α) = eαâ
†−α∗â. (A.8)

A.3 Added noise mode in a nondegenerate bosonic amplifier

We briefly outline why an additional idler mode b̂in is required to fulfill the commutation
relation at the output of a phase-preserving amplifier following Refs. 86, 92. We start with
defining a single-mode electric field in terms of the photon ladder operators â and â† as in
Eq. 2.3

Ê(t) = E0

[
âeiωt + â†e−iωt

]
. (A.9)

We describe the bosonic input mode of the amplifier as â = âin. The output mode is
â = âout. The signals are described by the expectation values of input ⟨âin⟩ and output
⟨âout⟩ mode. The symmetrized noise for â is given by [86]

(∆a)2 =
1

2
⟨{â, â†}⟩ − |⟨â⟩|2, (A.10)

We have to fulfill two conditions [86]:

(i) Both modes have to obey the bosonic commutation relation
[
â, â†

]
= 1.

(ii) The relation between the input and output modes must be linear, as the amplifier
is phase-preserving. Therefore is has to hold that âout =

√
Gâin and â†out =

√
Gâ†in,

where G is the dimensionless photon-number gain of the bosonic amplifier.

In the current input-output model, condition (ii) violates condition (i). We can see this by
inserting (ii) into the commutation relation of the output mode [86][

âout, â
†
out

]
!
= 1 (A.11)[

âout, â
†
out

]
(i)
=
[√

Gâin,
√
Gâ†in

]
= G E, (A.12)

which is a contradiction. To account for the factorGwhile fulfilling the necessary condition
(i), we have to add an additional noise operator F̂ to the phase-preserving amplification
condition as [86]

âout =
√
Gâin + F̂ , â†out =

√
Gâ†in + F̂†. (A.13)
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A.3 Added noise mode in a nondegenerate bosonic amplifier

The minimum possible noise can be obtained by considering that F̂ is uncorrelated to
the input signal. It follows that the noise operator commutes with the signal input mode[
F̂ , â

]
=
[
F̂ , â†in

]
= 0. Now, we can successfully enforce the bosonic commutation relation

as [
âout, â

†
out

]
!
= 1[

âout, â
†
out

]
A.13
=
[√

Gâin + F̂ ,
√
Gâ†in + F̂†

]
= G

[
âin, â

†
in

]
︸ ︷︷ ︸

=1

+
[
F̂ , F̂†

]
+
√
G
([
âin, F̂†

]
+
[
â†in, F̂

])
︸ ︷︷ ︸

=0

✓

⇒
[
F̂ , F̂†

]
= 1−G.

(A.14)

We can find a lower bound for the noise of the output mode (∆b)2 by using A.13 in A.10

(∆âout)
2 = G(∆ain)

2 +
1

2
⟨{F̂ , F̂†}⟩

≥ G(∆ain)
2 +

1

2
|⟨{F̂ , F̂†}⟩|.

(A.15)

We note that for no gainG = 1, no noise needs to be added. In the limit of large amplification
(G≫1), the gain is dominating the added noise |G− 1| ≃ G. Then we can write [86]

(∆aout)
2 ≥ G

(
(∆ain)

2 +
1

2

)
. (A.16)

The contribution of 1
2 is half an added noise quantum, which defines the standard quantum

limit. It is convenient to write the noise operator in terms of an auxiliary bosonic mode b̂in
as

F̂ =
√
G− 1b̂†in, F̂† =

√
G− 1b̂in. (A.17)
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