
Micromagnetic simulation of
nanogratings as possible devices for
unidirectional spin wave propagation

Master’s thesis

Markus Kügle
Garching - 31. May 2024

Supervisor: Prof. Dr. Rudolf Gross
Advisors: Dr. Stephan Geprägs, Monika Scheufele





Contents

1 Introduction 1

2 Theory 5
2.1 Ferromagnetic solids . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Macrospin model of a ferromagnetic solid . . . . . . . . . . . . . 6

2.2.1 Effective field . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Landau-Lifshitz-Gilbert equation . . . . . . . . . . . . . . 12

2.3 Ferromagnetic resonance . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Spin waves in ferromagnetic solids . . . . . . . . . . . . . . . . . 16
2.5 Unidirectional spin wave propagation . . . . . . . . . . . . . . . . 20

2.5.1 Magneto-static surface spin waves . . . . . . . . . . . . . . 21
2.5.2 Unidirectional spin waves via chiral pumping . . . . . . . 22

3 Micromagnetic simulation 31
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 MuMax3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Impact of simulation parameters . . . . . . . . . . . . . . . . . . 34

3.3.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Magnetic Excitations . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Simulation workflow and verification of MuMax3 . . . . . . . . . 40
3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Parameter sweep spectrum . . . . . . . . . . . . . . . . . 47
3.5.2 Spatial mode profiles . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Spin wave dispersion . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Band structure . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Ferromagnetic nanogratings 55
4.1 Ferromagnetic resonance . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Influence of wire spacing on inter-wire coupling . . . . . . . . . . 62
4.3 Spin wave dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

i



Contents

5 Anti-ferromagnetic order in alternating ferromagnetic nanogratings 71
5.1 Ferromagnetic resonance . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Heterostructures of ferromagnetic nanogratings and thin films 81
6.1 Ferromagnetic resonance . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Spin wave dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Summary and Outlook 99
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Additional simulation data 105
A.1 FMR of ferromagnetic nanogratings . . . . . . . . . . . . . . . . . 105

A.1.1 Influence of colormap scaling . . . . . . . . . . . . . . . . 105
A.1.2 Finite temperature simulations . . . . . . . . . . . . . . . 105
A.1.3 Increasing inter-wire distance by decreasing wire width . . 106
A.1.4 Full data for varying edge-to-edge spacing . . . . . . . . . 108
A.1.5 FMR with external field perpendicular to the grating . . . 110

A.2 FMR of heterostructures of alternating nanogratings and thin films111
A.2.1 Resonance spectra . . . . . . . . . . . . . . . . . . . . . . 111
A.2.2 Spatial mode profiles . . . . . . . . . . . . . . . . . . . . . 114

B Code examples 117
B.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.1 MuMax3 sample code for FMR . . . . . . . . . . . . . . . 117
B.1.2 MuMax3 sample code for spin wave transport . . . . . . . 124

B.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2.1 Python code to obtain FMR spectrum . . . . . . . . . . . 131
B.2.2 Python code to fit FMR spectrum . . . . . . . . . . . . . 134
B.2.3 Python code to obtain continuous medium spin wave dis-

persion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.2.4 Python code to obtain magnonic crystal spin wave dispersion142
B.2.5 Python code to determine spatial mode profiles . . . . . . 144

Bibliography 149

ii



Chapter 1

Introduction

Nowadays, the computer industry finds itself at a crossroads facing goals that
seem incompatible at first sight. For one, the emergence of technologies based on
artificial intelligence, combined with their need for enormous amounts of data,
demands more powerful computer chips than ever before. On the other hand,
the looming threats of climate change provide big incentives to strive towards
increasing energy efficiency. As an example, a single ChatGPT inquiry consumes
at least ten times the amount of power necessary for a Google search, with a
tendency to increase for upcoming, more powerful versions [1]. Considering that
some journals already list ChatGPT as a top ten contributor to science as a
whole, it may be in interest of everybody that computers and thus data centers
become not only more powerful but more efficient [2]. Satisfying both of these
demands, however, poses a serious challenge for the classical semiconductor-
based computer industry. The further miniaturization of chips is hindered by the
physical limitations imposed by e.g., quantum tunneling effects, whereas simply
increasing clock speeds of chips ventures into diminishing-returns territory with
regards to energy consumption [3].
A possible solution to overcome these challenges may lie in the field of mag-
nonics, which revolves around using spin waves instead of electrons to process,
transmit and carry information [4, 5]. Spin waves are collective excitations
of magnetically ordered systems and are often referred to by their quanta,
known as magnons [5]. In theory, they offer many enticing properties towards
a new generation of computing devices. For one, the dynamics of spin waves
take place in the frequency regime from GHz to THz [6]. Therefore, they are
compatible with current microwave technology, while also physically supporting
far higher clock speeds in the future [6]. At the same time, the wavelength of
spin waves is orders of magnitude smaller than that of microwaves at the same
frequency, making them suitable for even nanoscale applications [6]. Moreover,
the information transport via waves instead of electrons enables the possibility
of vector operations, while also eliminating the concerns about Joule-heating
[6]. Consequently, magnonic logic devices are theoretically capable of both,
drastically increasing the computational power available while simultaneously
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Chapter 1 Introduction

increasing energy efficiency.
In recent years, a focal point in magnonics research has been to create devices
capable of unidirectional spin wave transport on the nanometer scale [7]. Uni-
directional transport is an invaluable property for the creation of magnonic logic
devices, as it allows construction of e.g., spin wave insulators and diodes, which
would be the building blocks of magnonic computing units [7]. Furthermore,
unidirectionality is also an important concept in microwave electronics and
optics. However, these devices are usually on the centimeter scale and would
therefore profit from nanometer-sized on-chip solutions based on magnonics [7].
A promising approach to realize unidirectional spin wave propagation on the
nanometer scale is chiral pumping, as first proposed in 2019 by Yu et al. [8, 9].
In this framework, unidirectional spin waves are induced via dipole-coupling of
an array of ferromagnetic wires (nanograting) with an underlying magnetic thin
film [9]. The direction of spin wave transport is hereby controlled via an external
magnetic field, which allows to leverage the higher shape anisotropy of the wires
consisting the grating to realize an either parallel or anti-parallel alignment of
thin film and nanograting magnetizations [9]. An experimental realization of
chiral pumping in a system of a Co nanograting on a Y3Fe5O12 (YIG) thin
film was published by Chen et al. [10], reporting close to 100% non-reciprocity
for spin waves of wavelengths λ ≈ 50 nm. In contrast, in-house experiments in
similar material systems conducted by C. Mang at WMI did not confirm such
large values of non-reciprocity [11].

Consequently, in this thesis we turn to micromagnetic simulations in order to fur-
ther investigate unidirectional spin wave propagation in systems of nanogratings
placed on ferromagnetic thin films. We focus on the impact of certain grating
parameters, such as the edge-to-edge spacing, on the collective properties of the
nanograting, in particular their applicability for chiral pumping when placed on
a ferromagnetic thin film.
In Chapter 2, we start with a discussion of the theoretical background needed
for the interpretation of the obtained results. Concretely, we introduce the mac-
rospin model for ferromagnetic materials, allowing us to describe phenomena
such as ferromagnetic resonance and the propagation of spin waves. Afterwards,
the chapter ends with a discussion of unidirectional spin waves, including a
formal description of the chiral pumping effect.
Based on the theoretical background, Chapter 3 then explores the methodology
of micromagnetic simulations, starting off with a general overview of the field.
We follow this by detailing the specifics of conducting micromagnetic simula-
tions using the software MuMax3. Thereby, we highlight the impact of the
different input parameters, before we verify the simulations by comparing them
to known analytical results. Lastly, we discuss the numerous algorithms for post-

2



processing conceptualized and written in the scope of this work.
After establishing an understanding of the simulation process, we then turn to-
wards discussing the simulation results for isolated, ferromagnetic nanogratings
in Chapter 4, where we inspect the ferromagnetic resonance (FMR) response of
gratings with different inter-wire spacings in detail. This allows us to gain insight
into the influence of the sparsity of the grating onto its collective Kittel mode,
which directly influences its applicability to chiral pumping. Furthermore, we
study their spin wave transport properties by analyzing their dispersion relation.
Besides these homogeneous gratings, composed of wires of constant widths, we
shift towards the study of arrays of nanowires with alternating widths in adja-
cent wires in Chapter 5. There, we again focus on the collective FMR response,
leading to the proposal of a potential new device type.
Finally, we investigate the properties of combined stacks of homogeneous, fer-
romagnetic nanogratings and low magnetic damping thin films in Chapter 6.
Specifically, we focus on the question of whether a finite non-reciprocity is to be
expected in experiments according to the simulation. To this end, we compare
the FMR response of such a nanograting/thin film stack to that of an isolated
grating. Lastly, we discuss potential non-reciprocities in the spin wave disper-
sion.
To close this thesis, Chapter 7 summarizes all results presented in this work,
before highlighting potential starting points for further research.

3





Chapter 2

Theory

This chapter aims to introduce the necessary theoretical concepts to understand
and describe the physical phenomena investigated in the scope of this thesis.
Conceptually, it will follow the idea of starting with the simplest models pos-
sible and extending them piece by piece, highlighting the influence of the ad-
ditional interactions. After briefly introducing the definition of ferromagnets in
Sec. 2.1, a simple macrospin model is derived in Sec. 2.2, including both static
magnetic properties and the Landau-Lifshitz-Gilbert equation as a description of
the magnetic system dynamics. This simple model is extended by adding oscil-
lating, microwave driving fields in Sec. 2.3, discussing ferromagnetic resonance.
Moving away from ground-state behaviors, the collective excitations of ferro-
magnets, spin waves, are presented in Sec. 2.4 and described in the formalism of
previous chapters. Lastly, mechanisms responsible for unidirectional propaga-
tion of spin waves are explored in Sec. 2.5, specifically focusing on magnetostatic
surface spin waves in Sec. 2.5.1 and chiral pumping in magnetic heterostructures
in Sec. 2.5.2.

2.1 Ferromagnetic solids

Ferromagnetic materials exhibit a long-range ordered phase of their spin struc-
ture, characterized by a spontaneous net magnetization M in absence of external
magnetic fields H. This is due to permanent, microscopic magnetic moments
µi interacting mutually via exchange interaction, favoring a collinear alignment
in a single-domain ferromagnet with volume V [12]. Their collective orientation
gives rise to a macroscopically detectable quantity, the magnetization M , which
is defined as [12]

M =
1

V

∑
µi∈V

µi = Msm. (2.1)

In the context of this thesis mainly the orientation of M is discussed, therefore it
is convenient to express the magnetization via the saturation magnetization Ms,
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Chapter 2 Theory

which corresponds to the magnitude of the magnetization of a fully polarized
sample, and the unit vector of the magnetization direction m = M/Ms. Using
the magnetization to model a ferromagnet instead of explicitly modeling the
quantum many-body system of the interacting electrons with spin S is valid
in this context due to the large number of electrons typically contained in a
ferromagnetic solids volume (≈1028m−3), making an exact quantum mechanical
approach non-feasible [13].
Alternatively to Eq. (2.1), the magnetization can also be expressed via the lin-
ear response of a material to a magnetic field H as described by the magnetic
susceptibility χ̂ [14]:

M = χ̂H, (2.2)

where χ̂ is a dimensionless tensor. Considering a case where χ is a scalar quant-
ity, ferromagnetic materials are classified by χ ≈ 10−107 ≫ 1, signifying a strong
magnetization even in the absence of an external magnetic field [15]. Note that
Eq. (2.2) is an approximation for small fields in the regime of linear response,
whereas for arbitrary fields a differential definition applies (χ̂ = dM/dH) [16].

2.2 Macrospin model of a ferromagnetic solid

Since the magnetization is defined as the sum of magnetic moments in Eq. (2.1),
it becomes evident that the dynamics of a (fully polarized) ferromagnet may
be described by the motion of a single magnetic dipole moment of macroscopic
magnitude, coining the term macrospin model.
A general magnetic (dipole) moment µ can be expressed via the total angular
momentum vector J , e.g., of the corresponding atom, as

µ = −gµB
J

h̄
= −γJ , (2.3)

where g is Landé-factor, µB the Bohr magneton and h̄ the reduced plank con-
stant, often combined into the gyromagnetic ratio γ = gµB/h̄ [12]. A magnetic
field H will exert a torque T on the dipole, which is given as [15]

T =
dJ
dt

= µ× µ0H, (2.4)

where µ0 ≈ 4π × 10−7Vs/Am is the magnetic vacuum permeability.
As the magnetization M is defined as the sum over the internal magnetic mo-
ments of the ferromagnet (c.f. Eq. (2.1)), it shows analogue behavior to that of a
simple magnetic moment. Assuming all internal magnetic moments µi to be of
equivalent magnitude, the summation in Eq. (2.1) can be expressed via a factor
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2.2 Macrospin model of a ferromagnetic solid

N , denoting the number of magnetic moments in the ferromagnet, and the re-
lation between a magnetic moment and the total associated angular momentum
in Eq. (2.3), finally reading [12, 13]

M =
N

V
µ = −γ

1

V
J . (2.5)

2.2.1 Effective field

In the effort of modeling a ferromagnet, apart from externally applied magnetic
fields Hext, internal magnetic field contributions have to be taken into account,
giving rise to the effective magnetic field

µ0Heff = −
(

∂

∂mx
,

∂

∂my
,

∂

∂mz

)T

Fm = −∇mFm, (2.6)

where Fm is the free energy density of the ferromagnet [13, 17]. Several con-
tributions to the free energy landscape have to be considered to calculate an
accurate equilibrium magnetization orientation. In the following, the contribu-
tions considered most important for this work will be laid out.

Zeeman energy The first contribution to the effective field is given by any
single or sum of (homogeneous) external fields Hext the ferromagnet is exposed
to. As the strength of external fields is rather easily varied compared to intrinsic
material parameters, the Zeeman-interaction is essential, as it allows to control
the magnetization direction in experiment and simulation. Its contribution to
the free energy density is given by the general expression for energy of a magnetic
dipole in an external, homogeneous magnetic field [12]:

FZee = −µ0M ·Hext. (2.7)

Exchange energy As mentioned in the beginning of this chapter, the single
magnetic moments in the ferromagnet interact mutually via the exchange inter-
action, modeled by a simple Heisenberg Hamiltonian. In the framework of this
thesis, we will consider only collinear spin structures and neglect any asymmet-
ric exchange interactions like the Dzyaloshinskii-Moriya interaction [12, 18]. The
free energy density for the exchange interaction between a spin Si and adjacent
spins Sj is governed by the magnitude of the exchange integral Jij and assumes
the general form [18]

Fex = − 1

V

∑
<i,j>

JijSi · Sj , (2.8)
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where the summation is over pairs of nearest neighbors <i, j> as a reasonable
simplification. It is useful to note that the sign of Jij governs the type of coupling
between neighboring spins, Jij < 0 signifies antiferromagnetic coupling favoring
opposing orientation of adjacent spins, whereas Jij > 0 causes ferromagnetic
coupling with parallel alignment. This general expression can be written in terms
of the magnetization using some simplifications, namely assuming equal coupling
between all nearest neighbors (Jij = J), equal magnitude of spins/magnetic
moments (Si = Sj = S) and expressing the scalar product in Eq. (2.8) via a
taylor-expanded cosine (assuming small angles θij between the spins), simplifying
Eq. (2.8) to [13, 18]

Fex = −JS2

V

∑
<i,j>

cos θij ≈ −JS2Nn.n.

V
+

JS2

2V

∑
<i,j>

θ2ij . (2.9)

In Eq. (2.9), Nn.n. is the number of nearest neighbors in the respective lattice
geometry. To get a final expression in terms of the magnetization of a ferromag-
net, the angle between neighboring moments can be expressed via the gradient of
the magnetization. Further omitting the constant terms, the final contribution
of the exchange energy to the total free energy density reads [18]

Fex =
JS2a2Nn.n.

2V

(∇M

Ms

)2

= Aex(∇m)2, (2.10)

where a is the lattice constant of the considered system, absorbed into the ex-
change stiffness Aex = JS2a2Nn.n./(2V ). Aex is an important material para-
meter, especially for spin-wave calculations [13].

Shape anisotropy When considering ferromagnetic materials of finite dimen-
sions, the macroscopic geometry of the ferromagnet also shapes the magnetic
field landscape inside the material. This is due to the demagnetization field Hd,
which is oriented opposite to the external field direction and is only present
inside the volume of the ferromagnet [12, 17]. Its origin is often explained in
the simple picture of fictional "magnetic charges" accumulating on the sample
surface, which in turn create an opposing magnetic field of their own. Mathem-
atically, the demagnetization field Hd is connected to the sample magnetization
M via the demagnetization tensor N̂ [12]:

Hd = −N̂M with N̂ =

Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz

 . (2.11)

Subsequently, the magnitude of Hd depends on N̂, which in turn is dependent
on the macroscopic geometry of the ferromagnetic sample. For ellipsoid-shaped
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2.2 Macrospin model of a ferromagnetic solid

samples, all non-diagonal elements of N̂ vanish in the coordinate system of the
principal axes and one obtains [12]

N̂ =

Nxx 0 0
0 Nyy 0
0 0 Nzz

 and Nxx +Nyy +Nzz = 1. (2.12)

In this case, the diagonal elements Nii may be calculated as shown in Ref. [19].
The scope of this thesis mainly focuses on two geometries of ferromagnets, both
differing from an ellipsoid shape: a planar (infinite) thin film and a rectangular
prism/cuboid.

The rather simple edge case of an (infinite) planar thin film can by modeled well
by an infinitely extended disk of finite thickness [17]. With this approach, one
finds that Eq. (2.12) holds and demagnetization factors in the thin film plane
vanish Nip = Nxx = Nyy = 0, whereas the out-of-plane component satisfies
Noop = Nzz = 1 [18].

A less general case is that of a rectangular-shaped prism or cuboid. As-
suming a homogeneous magnetization in a cuboid centered around the origin of
the coordinate system, it was shown that conveniently the ellipsoid properties
in Eq. (2.12) still apply [20]. Such a general cuboid, extending over the ranges
−a ≤ x ≤ a, −b ≤ y ≤ b and −c ≤ z ≤ c, is illustrated in Fig. 2.1 (a). The
diagonal elements of N̂ can be determined analytically when the dimensions of
the prism are known [20]:

πNzz(a, b, c) =
b2 − c2

2bc
ln

(√
a2 + b2 + c2 − a√
a2 + b2 + c2 + a

)
+

a2 − c2

2ac
ln

(√
a2 + b2 + c2 − b√
a2 + b2 + c2 + b

)

+
c

2a
ln

(√
b2 + c2 − b√
b2 + c2 + b

)
+

c

2b
ln

(√
a2 + c2 − a√
a2 + c2 + a

)
+

a3 + b3 − 2c3

3abc

+ 2arctan

(
ab

c
√
a2 + b2 + c2

)
+

a2 + b2 − 2c2

3abc

√
a2 + b2 + c2

+
c

ab

(√
a2 + c2 +

√
b2 + c2

)
− (a2 + b2)3/2 + (b2 + c2)3/2 + (c2 + a2)3/2

3abc
,

(2.13)
where the other two diagonal components are obtained via the cyclic permutation
c → a → b → c as [20]
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y

x
2c

2a

2b

(a) (b)

z

x

z 2a

2c

2b

Figure 2.1: Visualization of the rectangular prism centered around the origin of the coordinate
system. (a) General case of a rectangular prism with dimensions 2a×2b×2c with the external
magnetic field Hext (orange) applied along the z-axis. The diagonal demagnetization tensor
elements for this geometry are calculated using Eq. (2.13). (b) Edge case of an infinitely long
wire (b → ∞) with the external magnetic field Hext (orange) perpendicular to the wire, where
the demagnetization factor N∞

zz is described by Eq. (2.15).

πNxx(a, b, c) = πNzz(c, a, b) and πNyy(a, b, c) = πNzz(b, c, a). (2.14)

In order to visualize Eq. (2.13) and Eq. (2.14) and verify them against the known
limit of a planar thin film, Fig. 2.2 (a) shows the demagnetization factors Nxx,
Nyy and Nzz for a transition from a rectangular cuboid towards a thin film
by fixing the width along the external field direction c = 1, while extending
the cuboid along the other dimensions a = b. For a small extension of the
cuboid perpendicular to the external magnetic field, Nzz is around zero and
Nxx/Nyy are finite, with their value depending on the exact ratio of a and b.
For an (in-plane) extension normal to the field of a/c ≈ 100, the limit of the
previously discussed thin film edge case is reasonably met by both Eq. (2.14)
with Nxx = Nyy = Nip = 0 and Eq. (2.13) with Nzz = Noop = 1.
In order to get the demagnetization factors for an infinitely long wire with the
external magnetic field applied perpendicular to the wire direction one takes the
limit b → ∞ in Eq. (2.13). This geometry is depicted schematically in Fig. 2.1 (b).
The simplified expression for this case, using the dimensionless parameter p =
c/a, is given by [20, 21]

πN∞
zz (p) =

1− p2

2p
ln(1 + p2) + p ln p+ 2arctan

(
1

p

)
. (2.15)

In Fig. 2.2 (b), the special case of the transition from a rectangular prism towards
an infinite wire is shown by increasing b while keeping a = c = 1 fixed. For this
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0 50 100

a/c

0.00

0.25

0.50

0.75

1.00
N
ij

(a)

Nxx/Nyy

Nzz

0 10 20

b/a

0.00

0.25

0.50

0.75

1.00

N
ij

(b)
Nxx/Nyy

Nzz
N∞zz

Figure 2.2: Analytical forms of the demagnetization factors Nxx, Nyy and Nzz for rectangular
prisms according to Eq. (2.13) for different dimensions. (a) Transition of a rectangular prism
towards an extended thin film by simultaneously increasing a = b while fixing the length along
the external field direction (c = 1). Nxx/Nyy starts from a finite value depending on the ratio
of a and b, whereas Nzz increases from 0 for small a = b. At an in-plane extension of a/c ≈ 100
compared to the thickness c, the demagnetization factors are in reasonable proximity to the
thin film limit, i.e., Nzz = Noop = 1 and Nxx = Nyy = Nip = 0. (b) Transition from a
rectangular prism to an infinitely long wire by increasing the length b perpendicular to the
external magnetic field direction, whereas a = c = 1 stays fixed (c.f. Fig. 2.1 (b)). For additional
reference, the analytical limit for b → ∞ of Eq. 2.13, denoted N∞

zz (c.f. Eq. (2.15)), is shown. It
can be seen that the two expressions Nzz and N∞

zz are in reasonable agreement for an extension
b/a ≈ 20 perpendicular to the external magnetic field direction.

case, Nzz is zero and Nxx/Nyy is finite for vanishing b, depending on the ratio of
a and c (similar to Fig. 2.2 (a)). For a value of b = 20a, the analytical expression
Eq. (2.13) already matches sufficiently well with the expression for the limit of
the infinitely long wire N∞

zz as described by Eq. (2.15).

All in all, the effective field landscape derives from the sum of all internal
and external magnetic fields acting on the magnet. In the scope of this thesis,
the contributions of the Zeeman-energy alongside the shape anisotropy are
deemed most important, whereas the contribution of the exchange field will be
neglected going forward for didactic purposes, under the assumption of a ho-
mogeneously magnetized sample with collinear neighboring magnetic moments.
Thus, the total effective field reads

Heff = Hext +Hd = Hext − N̂M . (2.16)
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Chapter 2 Theory

2.2.2 Landau-Lifshitz-Gilbert equation

In case of a fully saturated magnet, the orientation of the magnetization in
energetic equilibrium can be determined by minimizing the free energy density
Fm, meaning the magnetization will be aligned with the direction of the effective
magnetic field Heff in Eq. (2.6) [22].
Driving the magnetization now out of thermal equilibrium leads to a finite angle
between the orientation of the magnetization M and the effective magnetic field
Heff , thus the effective magnetic field Heff will exert a torque on the magnetic
moment akin to Eq. (2.4) due to the definition of torque as the rate of change
of angular momentum. Combined with Eq. (2.5), this results in the equation of
motion for the magnetization in case of no loss-channels for energy dissipation,
called the Landau-Lifshitz-equation [23]:

dM

dt
= −γM × µ0Heff . (2.17)

Physically, it describes the precession of the magnetization M around the ef-
fective magnetic field Heff for all times at a fixed opening angle θ between M
and Heff and a precession frequency linearly dependent on the magnitude of the
effective field, ωLL = γµ0|Heff | [14], as shown exemplarily in Fig. 2.3 (a).
However, in a real system, a relaxation towards the direction of the effective field
is observed due to the presence of so far neglected energy dissipation mechanisms,
such as e.g., eddy currents or magnon-phonon scattering [24]. Without venturing
into the physical description of these loss channels, their combined effect can be
modeled well by introducing a phenomenological damping term into Eq. (2.17),
which is controlled by a material-dependent Gilbert damping parameter α and
results in the Landau-Lifshitz-Gilbert-equation (LLG) [25]:

dM

dt
= −γM × µ0Heff +

α

Ms
M × dM

dt
. (2.18)

In a physical picture, Eq. (2.18) describes the relaxation of the magnetization M
towards the direction of the effective field Heff following a spiral trajectory due to
the finite Gilbert damping parameter α, as illustrated in Fig. 2.3 (b). In analogy
to classical mechanics Eq. (2.18) thus describes a damped harmonic oscillator as
the equation of motion for the magnetization in presence of either no or static
external magnetic field [13].

2.3 Ferromagnetic resonance

As established in Sec. 2.2, in presence of only static external magnetic fields the
dynamics of a small, homogeneously magnetized ferromagnet are well modeled
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Figure 2.3: Exemplary visualization of the magnetization trajectory as described by the
Landau-Lifshitz-Gilbert Equation (2.18) for the cases with and without finite Gilbert damping
α. (a) α = 0: No Gilbert damping leads to continuous precession of the magnetization M
around the effective field Heff at a fixed opening angle θ. (b) α ̸= 0: With Gilbert damping,
the magnetization M eventually relaxes into energetic equilibrium at M ∥ Heff , following a
spiral-like trajectory.

by a damped harmonic oscillator given by Eq. (2.18). Building on the analogy
of the harmonic oscillator, an external, oscillating driving field hrf shall now be
considered on top of any applied static magnetic fields. This driving field hrf

exerts an additional torque on the magnetization M of the shape −γM ×µ0hrf

(c.f. Eq. (2.18)). Upon correct orientation of hrf , this additional torque can coun-
teract the damping torque in the second term in the Landau-Lifshitz-Gilbert-
equation (2.18), as shown in Fig. 2.4 (a). Thereby, a resonance effect is expected
if the driving frequency matches the precession frequency ωLL [17].
To describe this resonant behavior mathematically, the systems response func-
tion, the magnetic susceptibility χ̂ as introduced in Sec. 2.1, will be derived. In
the following, it is assumed that the effective magnetic field is oriented along the
z-axis (Heff ∥ z) and the driving field lies in the x-y-plane (hrf ⊥ z), as schem-
atically visualized in Fig. 2.4 (a). Furthermore, the demagnetization tensor N̂
of the ferromagnetic sample fulfills the properties of vanishing non-diagonal ele-
ments of a general ellipsoid as shown in Eq. (2.12). This is also valid for general
rectangular prisms in the exact solution, as established in Sec. 2.2.1 [20]. Adding
the oscillatory driving field hrf(t) to Eq. (2.16), the total effective field is

13
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Htot
eff = Hext − N̂M + hrf(t) =

 −NxxMx(t)
−NyyMy(t)

Hext −NzzMz

+

hrf,x(t)
hrf,y(t)

0

 =

= Heff +H ′
eff(t),

(2.19)

where in this context Heff denotes the static and H ′
eff(t) the time-dependent

contribution to Htot
eff . In general, the driving field hrf(t) causes a time depend-

ent magnetization M(t). As a simplification, the magnetization is assumed to
have a fixed magnitude (|M | = Ms) and to only be slightly perturbed out of the
equilibrium direction (Mx/y ≪ Mz, θ small), which is reasonable for a driving
field much weaker than the static effective field (|hrf | ≪ |Heff |) [13, 17]. Fur-
thermore, the contribution of the exchange interaction to the effective magnetic
field can be omitted due to the internal magnetic moments staying aligned for
weak perturbations [26]. Note that these simplifications are already taken into
account in Eq. (2.19).
The magnetization M(t) can now be divided into a constant and a time-
dependent part:

M(t) = M0 +Mrf(t) =

 0
0
Ms

+

Mrf,x(t)
Mrf,y(t)

0

 . (2.20)

In the linear response regime, a plane-wave ansatz for the dynamic magnetization
Mrf,x/y(t) and the driving field hrf,x/y(t) is used to solve the differential equation
[27]:

hrf(t) =
(
hrf,x hrf,y 0

)T · eiωt

Mrf(t) =
(
Mrf,x Mrf,y 0

)T · eiωt.
(2.21)

Solving now the LLG (c.f. Eq. (2.18)) for this system as described by Eqs. (2.19),
(2.20) and (2.21) results in a set of differential equations for the x- and y-
component of the magnetization M , which can be expressed in matrix form
via the Polder-susceptibility χ̂P [26]:(

hrf,x
hrf,y

)
= χ̂−1

P

(
Mrf,x

Mrf,y

)
(2.22)

with

χ̂−1
P =

1

Ms

(
Hext + (Nxx −Nzz)Ms +

iωα
γµ0

− iω
γµ0

+ iω
γµ0

Hext + (Nyy −Nzz)Ms +
iωα
γµ0

)
.

(2.23)
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Figure 2.4: (a) Exemplary coordinate system visualizing the mutual orientation of the dif-
ferent torque terms in the context of a ferromagnetic resonance experiment. Upon correct
orientation of the driving microwave field hrf (orange), the resulting torque −M × hrf (cyan)
is able to compensate the damping torque M × dM/dt (purple), leading to resonant absorp-
tion of the microwave energy and consequent opening of the precession cone with a finite angle
θ. (b) Visualization of the Polder susceptibility χ̂P (c.f. Eq. (2.24)) for the exemplary case of a
permalloy thin film (Nxx = Nyy = 0, Nzz = 1) with material parameters f = ω/2π = 10GHz,
µ0Ms = 1T and α = 0.006 (parameters taken from Ref. [17]). Upon varying the static external
field Hext around the resonance field Hres the distinctive line shapes of the individual compon-
ents of χxx = χ′

xx + iχ′′
xx can be observed. The real part χ′

xx (blue) describes the dispersive
system response and has an anti-symmetric Lorentzian line shape around the resonance field.
The dissipative imaginary part χ′′

xx (red) is characterized by a symmetric Lorentzian line shape
signifying the absorption of the microwave power at Hres. Additionally, the absolute magnitude
of the Polder susceptibility, |χxx|, is shown (green).

The Polder susceptibility χ̂P describes the linear response of Mrf(t) to a weak
external perturbation field hrf(t), and is given as [13, 26]

χ̂P =
1

MsA

(
Hext + (Nyy −Nzz)Ms +

iωα
γµ0

+ iω
γµ0

− iω
γµ0

Hext + (Nxx −Nzz)Ms +
iωα
γµ0

)
,

(2.24)
where A = det

(
χ̂−1
P

)
. Since χ̂P is complex valued, it can be decomposed as

χ̂P = χ′ + iχ′′, where the real part χ′ describes the dispersive and the imagin-
ary part χ′′ the dissipative response of the system to the external probe hrf [28].
Both χ′ and χ′′ possess a characteristic line-shape. In Fig. 2.4 (b), χ′

xx and χ′′
xx

are shown for an exemplary case of a thin film (Nxx = Nyy = 0, Nzz = 1) with
typical parameters (f = ω/2π = 10GHz, µ0Ms = 1T and α = 0.006 for permal-
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loy (Ni80Fe20) [17]. The dissipative part χ′′
xx displays a distinctly Lorentzian

line-shape and the dispersive part χ′
xx shows an anti-symmetric double-peak.

Additionally, Fig. 2.4 (b) shows the absolute magnitude |χxx|.
The system of equations derived for describing ferromagnetic resonance in
Eq. (2.22) only has a non-trivial solution if the condition det(χP) = 0 is met.
The resulting equation can then be solved for either the resonance frequency ωres

or the resonance field Hres. Solving for ωres and omitting the imaginary part of
the solution gives rise to the famous Kittel equation [27]:

fres =
ωres

2π
=

γµ0

2π

√
[Hext + (Nxx −Nzz)Ms] · [Hext + (Nyy −Nzz)Ms]. (2.25)

To close this discussion of ferromagnetic resonance, it is worth emphasizing that
the resonant mode as described by Eq. (2.25) corresponds to a uniform, in-phase
precession of all magnetic moments in the ferromagnetic material, as the de-
rivation of the system according to Eq. (2.22) was based on a fully saturated
sample, where all magnetic moments align and add up according to Eq. (2.1).
Subsequently, the ferromagnetic resonance mode satisfies k = 2π

λ → 0 (infinite
wavelength λ) as explained in Sec. 2.4, due to the non-existing phase difference
of neighboring spins [29].

2.4 Spin waves in ferromagnetic solids

So far, only fully saturated ferromagnets with all interal magnetic moments
aligned in the same direction were considered as a simple model for ferromagnetic
materials. Upon ignoring thermal effects, this approximation is valid as the fully
aligned state is the energetic ground state of a ferromagnetic system [16]. At
finite temperatures, this perfect order is, however, disrupted by fluctuations
of the spin system known as spin waves, which share many similarities with
the vibrations of a crystal lattice, as both arise from the fundamental concept
of symmetry breaking [16, 30]. An important property shared between lattice
vibrations (phonons) and spin waves is quantization [12, 30]. Here, the quanta
of spin waves are called magnons [12, 30]. In a more semi-classical picture, spin
waves can be derived in the picture of a single magnetic moment in the material
being flipped into anti-parallel alignment with its neighbors, which comes at an
energetic price due to the exchange-interaction (c.f. Eq. (2.8)). This excitation
can alternatively be distributed over the entire lattice by tilting all magnetic
moments slightly out of the equilibrium position, leading to a collective excitation
- the spin wave [12]. As established previously, the magnetic magnetic moments
will precess around the equilibrium direction along the effective magnetic field
as described by Eq. (2.18). This precessional motion does not necessarily need
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2.4 Spin waves in ferromagnetic solids

adjacent moments to be in phase, but also allows a finite phase shift between
neighboring magnetic moments, making it possible to define a wavelength λ and
a corresponding wave number k via the wave vector k: k = |k| = 2π/λ [17]. This
definition is illustrated schematically in Fig. 2.5 (b), where the wavelength λ of a
spin wave is defined as the real space interval over which the phase shift between
neighboring magnetic moments µi accumulates to 2π. Importantly, spin waves
with finite k have been shown to carry information via their angular momentum,
making them interesting for applications in magnon-based computing [31, 32].
Subsequently, ferromagnetic resonance as discussed in Sec. 2.3 describes a spin
wave of infinite wavelength λ → ∞ and zero momentum k = 0 due to all
magnetic moments precessing in phase, and thus carries no information [29,
33]. This is shown in Fig. 2.5 (a) upon comparison to a finite k spin wave in
Fig. 2.5 (b).
In general, the two interactions responsible for the propagation of spin waves
are the short-range exchange-interaction and the long-range dipole-interaction
between the magnetic moments. This allows to differentiate two edge cases:
spin waves with large k (short λ) are dominated by the contribution of the
exchange-interaction to the effective field (c.f. Eq. (2.9)) and are thus referred to
as exchange modes. For small k (large λ) on the other hand the contribution of
the dipole-interaction (stray fields caused by e.g., the shape anisotropy) dominate
the effective field, subsequently they are named dipole modes [12]. An important
parameter to quantify the relative strength of exchange- and dipole-energies is
the exchange length [34]

lex =

√
2Aex

(µ0Ms)2
, (2.26)

where Aex is the exchange stiffness defined in Eq. (2.10) and Ms is the satura-
tion magnetization. The thus purely material parameter dependent lex allows
to differentiate regimes of length scales smaller than lex, where the exchange
interaction dominates, from those at length scales larger than lex, which in turn
are dominated by the dipole/magnetostatic-interactions [13]. Spin waves that
lie in between these edge cases, where both interactions are relevant, are usually
referred to as dipole-exchange-modes.

In the following, the dispersion relation of spin waves is derived for the well
known edge case of an in-plane magnetized magnetic thin film, as no solution
exists for arbitrary magnet geometries [13]. Mathematically, the influence of the
exchange- and dipole-interaction is taken into account via respective effective
magnetic fields acting on the magnetization. The exchange-interaction adds an
isotropic field term proportional to the squared wave number k, given as [35]
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(a)

(b)

Figure 2.5: Precessional motion of magnetic moments µi (red) around the effective magnetic
field Heff (black). (a) Ferromagnetic resonance of all magnetic moments describes a spin wave
of infinite wavelength and wave number k = 0, as all magnetic moments µi precessing in phase
around the effective magnetic field Heff (c.f. Sec. 2.3). (b) Side and top view of a spin wave
for k ̸= 0. The wavelength λ is defined as the interval in real space, in which the accumulative
phase difference is 2π.

µ0Hex =
2Aex

Ms
k2. (2.27)

It is assumed that the surface normal of the thin-film is oriented along the
y-direction and the in-plane magnetization points along the z-direction (see
Fig. 2.6). Further assuming the thin film thickness tTF to satisfy k · tTF ≪ 1,
the dynamic dipole fields were then derived by Kalinikos and Slavin, resulting
in [36]

Hdip
x = Ms

(
1− 1− e−ktTF

ktTF

)
sin2(ϕ)

Hdip
y = Ms

1− e−ktTF

ktTF
,

(2.28)

where ϕ is the angle between the wave vector k and the magnetization M .
Using a similar procedure as in Sec. 2.3, the magnetization can be divided into
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2.4 Spin waves in ferromagnetic solids

a static contribution M0 and dynamic contribution M̃ , where in contrast to
ferromagnetic resonance the plane wave ansatz for the dynamic magnetization
now includes finite wave vectors k (i.e., ei(ωt−kr)), leading to [13]

M =

 0
0
Ms

+

M̃xe
i(ωt−kr)

M̃ye
i(ωt−kr)

0

 and Heff =

 −Hdip
x

−Hdip
y

H0 +Hex

+

hrf,x(t)
hrf,y(t)

0

 .

(2.29)
In Eq. (2.29), the space vector r = xêx+zêz and the wave vector k = kxêx+kzêz
are both restricted into the thin film plane, and the external field is now labeled
H0 = Hext to avoid confusion with the exchange field in Eq. (2.27). Furthermore,
the shape anisotropy field vanishes in the limit of an infinite thin film (Nyy =

1) with in-plane magnetization (My = 0), as Hd = −N̂M = −1Myêy = 0.
Inserting now the two identities in Eq. (2.29) into the LLG in Eq. (2.18) again
gives a system of equations, which can be conveniently be expressed in matrix
form hrf = χ̂−1M̃ , with the inverse susceptibility given as

χ̂−1 =
1

Ms

(
H0 +Hex +Hdip

x + iωα
γµ0

− iω
γµ0

+ iω
γµ0

H0 +Hex +Hdip
y + iωα

γµ0

)
. (2.30)

To receive the resonance frequency for in-plane spin waves in thin films, Eq. (2.30)
must have a non-trivial solution and must thus fulfill det(χ̂−1) = 0. Taking only
the real part of the solution into account results in the Kalinikos-Slavin equation
[36]

f =
ω

2π
=

γµ0

2π

√(
H0 +Hex +Hdip

x

)(
H0 +Hex +Hdip

y

)
. (2.31)

As in Sec. 2.3, the derivation of Eq. (2.31) again assumes ellipsoidal properties of
the demagnetization tensor (shown in Eq. (2.12)), which is fulfilled by both thin
films and rectangular cuboids [20]. Taking the limit of k → 0 for Eq. (2.31) as a
consistency check, the dipole fields reduce to Hdip

x = Ms and Hdip
y = 0 and the

exchange field vanishes, i.e., Hex = 0, resulting in the expected Kittel equation
for an in-plane magnetized thin film ω = γµ0

√
H0 · (H0 +Ms). Considering on

the other hand large wave numbers k (short wavelengths λ), the contributions of
the dipole fields can be omitted and the dispersion relation becomes quadratic
in k: ω(k) = γµ0(H0 +Hex) ∝ k2 [13].

Finally, two important cases for the relative orientation of the propagation dir-
ection k and the magnetization M as parameterized by the angle ϕ shall be
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Figure 2.6: Illustration of different in-plane spin wave modes in a ferromagnetic thin film
magnetized in the thin film plane. The angle ϕ is used to parameterize the relative orientation
between the wave vector (propagation direction) k and the thin film magnetization M . The
two edge cases of propagation collinear or perpendicular to the magnetization are visualized
schematically. The Backward-Volume (BV) mode describes a spin wave propagating along the
magnetization direction (k ∥ M , ϕ = 0), which is localized within the volume of the thin
film (blue). The Damon-Eshbach (DE) mode on the other hand is characterized by spin wave
propagation perpendicular to the magnetization direction (k ⊥ M , ϕ = π/2), and is localized
on the top- or bottom surface of the thin film depending on the orientation of the propagation
±k (orange).

discussed. The first special case is for collinear orientation of k and M (k ∥ M ,
ϕ = 0). These spin waves are usually referred to as backward volume (BV)
modes and are localized within the volume of the thin film, with their naming
being derived from their negative group velocity [13]. The second important
constellation is wave propagation perpendicular to the magnetization direction
(k ⊥ M , ϕ = π/2). Spin wave modes in this geometry are called magneto-static
surface (MS) modes or Damon-Eshbach (DE) modes and are localized on the
top- or bottom surface of the thin film depending on their propagation direc-
tion ±k [37]. Both Backward-Volume and Damon-Eshbach modes are depicted
schematically in Fig. 2.6.

2.5 Unidirectional spin wave propagation

After introducing the concept of spin waves in Sec. 2.4, this section aims to
explore different physical mechanisms to induce unidirectional transport proper-
ties in real material systems. Unidirectionality or non-reciprocity of spin waves
can emerge in different forms, such as different amplitude, frequency or group
velocity for counter-propagating spin waves. In the following, we focus on on
the unidirectional properties of magneto-static surface spin waves in Sec. 2.5.1,
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2.5 Unidirectional spin wave propagation

before discussing the so-called chiral pumping mechanism for the induction of
non-reciprocal spin waves in Sec. 2.5.2.

2.5.1 Magneto-static surface spin waves

As mentioned briefly in Sec. 2.4, spin waves in in-plane magnetized thin films
propagating perpendicular to the magnetization direction are called Damon-
Eshbach (surface) spin waves or magneto-static surface spin waves (MSSWs).
They possess the interesting property of counter-propagating spin waves being
exponentially localized in their amplitude on opposite surfaces of the thin film,
e.g., on the top/bottom surface of the film for the wave vector ±k as depicted
schematically in Fig. 2.7 (a) [7]. This has been shown for the limit of long
wavelengths, where the effective field contribution caused by the exchange inter-
action (c.f. Eq. (2.27)) becomes negligible [38]. Thus considering only the dipole
fields leads to a non-reciprocity in the amplitude of the spin wave [38]. Addi-
tionally, when considering both dipole- and exchange-interaction (as was done in
Sec. 2.5), it has been shown that the addition of the exchange-interaction leads
to the fundamental spin wave mode to be localized on the respective opposite
surface of the film than in the dipole-only case, however, without disrupting the
non-reciprocity (for standard excitation types) [39].
This localization at the thin film surface can be understood by considering
a dynamic dipole field generated by the dynamics of the magnetization [40].
Again, the magnetization M is separated into a static contribution M0 and a
dynamic contribution M̃ , as shown in Eq. (2.29). The spatial distribution of
M̃ across the wavelength of a spin wave with wave number k > 0 is shown
schematically in Fig. 2.7 (b). Both components M̃x (red) and M̃y (blue) lead
to the formation of magnetic poles, which cause a dynamic dipole field of their
own. These dipole fields add up in the lower half of the ferromagnetic thin film,
whereas in the top half, they are oppositely oriented. Therefore, for k > 0, the
dipole field is larger in the lower part of the film, whereas for k < 0 the situation
is reversed. This asymmetry in the dynamic dipole field is now compensated by
the dynamic magnetization when building spin wave eigenmodes by increasing
its amplitude on the side of the weaker dipole field [40]. This localization can
furthermore be switched (e.g., from top to bottom surface for k < 0) upon
inverting the external field direction [40].

Considering the schematic shown in Fig. 2.7 (a), it is a reasonable thought to in-
crease the thickness tTF of the ferromagnetic film to decrease the overlap between
the exponential localizations of the amplitudes, that is to reduce leakage of modes
onto the opposite localization surface. It has been shown experimentally that
for Y3Fe5O12 (YIG) films with d = 254 µm, unidirectionality of spin waves is in
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Figure 2.7: Schematic illustrations of magneto-static (Damon-Eshbach) surface spin waves
(MSSWs). (a) MSSWs are localized on the top or bottom surface of the ferromagnetic thin film
medium (green), depending on their propagation direction k. The localization to the surface
is due to exponential decay of the spin wave amplitude (indicated by the hatched surface),
caused by interactions with the dynamic dipole fields. (b) Illustration of the dynamic dipole
fields M̃x (red) and M̃y (blue) for a MSSW with a positive wave number k > 0. Both dynamic
dipole fields create magnetic poles, which in turn create dipole fields of their own. These
dipole fields (shown as field lines) then add up in the lower half of the film, but are oppositely
oriented in the top half, leading to stronger dipole fields in the lower half. In an effort to form a
spin wave eigenmode, the dynamic magnetization tends to compensate the asymmetric dipole
field by increasing the amplitude on the respective side with weaker dipole fields. Counter-
propagating spin waves ±k are located on opposite sides of the film, however, the localization
can be inverted by inverting the external field direction. Figure (b) is recreated from Ref. [40].

fact achieved on the respective surfaces [41]. However, it has also been found
that the unidirectionality decreases for thinner films and is almost completely
destroyed (reduced to ≈ 3%) due to mode leakage for Ni20Fe80 thin films with
tTF = 20nm due to mode leakage [41]. Furthermore, it should be noted that the
physical mechanism responsible for the unidirectionality of MSSWs is based on
the compensation of dynamic dipole fields, and is thus not valid in the regime
of very short wavelengths, where the spin waves are dominated by the exchange
interaction and dipole fields are negligible (c.f. Sec. 2.4). These limitations are
considerable drawbacks in the quest to achieve small magnonic nano-devices,
where both material dimensions on the nanometer scale and small wavelengths
are desirable [7]. Additionally, MSSWs are known to have small group velocit-
ies and are susceptible to dephasing by surface roughness, making them further
sub-optimal for application [9].

2.5.2 Unidirectional spin waves via chiral pumping

Besides using the intrinsic properties of a single magnetic material leading to
non-reciprocal behavior, as e.g., in Sec. 2.5.1 in terms of magneto-static surface
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Figure 2.8: Illustration of the system setup for chiral spin wave pumping. The spin wave
medium is given by a low-damping, ferromagnetic thin film material (blue), here Y3Fe5O12

(YIG), oriented such that the y-z-plane describes the film plane and x is surface normal. On top
of the thin film is a nanograting (red) made from a ferromagnetic material with high saturation
magnetization, here Co. The individual wires consisting the grating have a width w, height
h and are spaced a distance a from center-to-center. The thin film is defined by its thickness
tTF. A static external field Hext is applied along the z-axis, orienting the magnetization of
both the thin film and the grating along the wire direction.

spin waves, another approach to realize unidirectional spin waves is to combine
magnetic materials in such a way that their interaction with each other allows
for non-reciprocal behavior. A popular technique is to place a (periodic) array of
magnetic nanowires onto a low-damping ferro- or ferri-magnetic thin film, indu-
cing non-reciprocal spin waves by so-called chiral pumping [9]. Chiral pumping
refers to the generation of unidirectional (exchange-)spin waves in ultra-thin
magnetic films with thicknesses of order O(10 nm) via the dipole-interaction
between the film and the magnetic wires [9]. Physically, this is realized by
the Kittel mode of the nanowires coupling chirally to spin waves in the film
propagating perpendicular to the wire array (and thus the film magnetization),
even though the surface-localized and chiral Damon-Eshbach mode (as discussed
in Sec. 2.5.1) does not exist in films of these thicknesses due to large overlaps
between the exponential localizations on the film surfaces [8]. In the following,
a brief overview over the theoretical background of this coupling is given.
In Fig. 2.8, the general layout of the system is depicted: a nanograting consisting
of a periodic array of ferromagnetic wires with high saturation magnetization
(usually Ni or Co) is placed on a ferro- or ferri-magnetic thin film with low
magnetic damping, in most cases the ferrimagnetic insulator Y3Fe5O12 (YIG).
The individual wires oriented along the z-axis (see Fig. 2.8) have a width w and
a height h, and the center-to-center spacing between adjacent wires is denoted
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as a. The thin film is characterized by its thickness tTF along the surface
normal x of the film. An external field is applied in the z-direction, orienting the
magnetizations of the wires and the thin film along the grating. Going forward,
the interlayer exchange interaction will be neglected, as in real experiments it
can be suppressed effectively by inserting a thin, non-magnetic spacer between
the individual wires and the thin film [9].

To describe the coupling, this section will roughly follow the procedure in Ref. [8].
First the dynamic magnetization MK of the Kittel mode of the nanograting is
derived, which in turn induces a dipole field hD. Considering then spin waves
propagating in the thin film plane, it will become apparent that their dynamic
magnetization MSW can interact with the dipole field stemming from the grat-
ing.
When the Kittel mode is excited, the magnetization of a nanowire will pre-
cess around the direction of the effective field (z-axis) with a frequency of ωK

(as shown in Eq. (2.25)) and a corresponding amplitude (mK
x ,mK

y ). Neglecting
inter-wire dipole-interactions in the grating, the dynamic magnetization MK of
the grating can thus be written as [8]

MK =

(
MK

x (r, t)
MK

y (r, t)

)
= Θ(h− x)Θ(x)

even∑
m≥0

2fm cos(k(m)
y y) ·

(
mK

x cos(ωKt)
mK

y sin(ωKt)

)
,

(2.32)
where Θ(x) denotes the Heaviside step function, k

(m)
y = mπ/a with m ∈

{2, 4, 6, ...,∞} and

fm =

(
1− 1

2
δm,0

)
2

πm
sin
(w
2
k(m)
y

)
. (2.33)

Using the dipole field [42]

hDβ (r, t) =
1

4π
∂β

∫
dr′

∂αM
K
α (r′, t)

|r − r′| with α, β ∈ {x, y} (2.34)

and the expression for the dynamic magnetization of the nanograting MK

from Eq. (2.32), the dipole field hD generated by the in-phase precession of the
nanowires yields [8]
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hD =

(
hDx (r, t)
hDy (r, t)

)
=

even∑
m≥0

Fme
|k(m)

y |x

[
mK

R

(
cos(−k

(m)
y y − ωKt)

sin(−k
(m)
y y − ωKt)

)

+mK
L

(
cos(k

(m)
y y − ωKt)

− sin(k
(m)
y y − ωKt)

)]
.

(2.35)

Note that Eq. (2.35) includes the form factor

Fm = fm ·
(
1− e−|k(m)

y |h
)

(2.36)

and the dynamic wire magnetization, which is separated into left- and right-
circularly polarized components to simplify the expression using(

mK
x

mK
y

)
= mK

R

(
1
1

)
+mK

L

(
1
−1

)
. (2.37)

The dipole field hD emitted by the Kittel mode of the nanograting causes
the emission of two counter-propagating dipole field waves, with the respect-
ive propagation direction locked by the polarization, since k

(m)
y > 0. Therefore,

a right-circular polarized (mK
L = 0) excitation of the nanograting will, for ex-

ample, emit a left-circular polarized dipole wave [8]. The dipole field of the
nanograting hD can now couple to the dynamic magnetization MSW of spin
waves in the thin film plane (parameterized by r∥ = yêy+zêz) with a frequency
ω, which can be written as [8]

MSW =

(
mk

x(x) cos(k · r∥ − ωt)

−mk
y (x) sin(k · r∥ − ωt)

)
. (2.38)

The coupling of the dipole field hD and the dynamic magnetization MSW of the
spin wave can now be expressed using a simple Zeeman coupling Hamiltonian
(c.f. Eq. (2.7)) as [8]

F̄d = −µ0

T∫
0

dt

∫
drMSW(r, t) · hD(r, t) =

= −µ0

even∑
m≥0

Fm

∫
dx e|k

(m)
y |x

(
m̃

ky
R (x)mK

L δky ,k(m)
y

+ m̃
ky
L (x)mK

Rδky ,−k
(m)
y

)
.

(2.39)
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In the second step of Eq. (2.39), the integration was performed over one driving
cycle T = 2π/ωK performed by the Kittel mode in order to get the average coup-
ling energy. Furthermore, the spin wave amplitude is again expressed via a left-
and right-circularly polarized component (mk

x ,m
k
y )

T = m̃k
R(1, 1)

T+ m̃k
L(1,−1)T.

The main takeaways from Eq. (2.39) are the following [8]:

• The Kittel mode of the nanograting couples only to spin waves propagat-
ing perpendicular to the wire direction with momentum ky = mπ/a, as
indicated by the Dirac delta-functions δ

ky ,k
(m)
y

and δ
ky ,−k

(m)
y

.

• If both the Kittel mode and the spin wave are circularly polarized, they
couple only if the magnetizations of nanograting and thin film are anti-
parallel, i.e., m̃

ky
R (x)mK

L ̸= 0 or m̃
ky
L (x)mK

R ̸= 0. However, if the Kittel
mode has elliptical polarization (i.e., mK

L (x),m
K
R(x) ̸= 0) and only the spin

wave is circularly polarized (either m̃
ky
L (x) or m̃

ky
R (x) = 0), the coupling

is perfectly chiral, even for parallel alignment of the magnetizations MK

and MSW.

A more intuitive picture of the coupling can be gained by visualizing both the
dipole field of the grating and the dynamic magnetization of the spin wave.
Using the material parameters n = 2, h = 30nm, w = 110 nm and a = 600 nm
(akin to experimental realizations in Ref. [10]), Fig. 2.9 (a) shows the spatial
distribution of the Kittel mode dipole field hD for a right-circularly polarized
mode (mK

L = 0) at a time t = 0. The individual nanowires are indicated
by red rectangles in the figure. The spatial orientation of the dipole field
can now be compared to that of the dynamic magnetization of a spin wave:
Fig. 2.9 (b) shows the spatial orientation of the spin wave magnetization at t = 0

for a right polarized (m̃ky
L = 0) spin wave propagating in +y direction with

ky = +2π/a, whereas in Fig. 2.9 (c) a counter-propagating wave in −y direction
with ky = −2π/a is shown. It can be seen that for this example, the precession
of the dipole field hD in (a) matches only with the magnetization of the wave
with ky > 0 in (b), but not with its analogon traveling in −y-direction with
ky < 0 in (c). Subsequently, the dipole field only couples to the ky > 0 spin
wave but not to the spin wave with ky < 0, making the coupling chiral. This
effect can be inverted by switching the relative orientation of the equilibrium
magnetizations of thin film and nanograting, which is possible due to the finite
magnetic anisotropy of the nanograting and a magnetically softer thin film [8].
If the thin film magnetization is reversed, Fig. 2.9 (b) and (c) switch places, thus
making the coupling now stronger for ky < 0. Therefore, the direction of the
favored spin wave propagation direction can be controlled via external control
parameters such as external magnetic fields.
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Figure 2.9: Exemplary visualization of the dipole field hD (c.f. Eq. (2.35)) and the dynamic
magnetization of the thin film MSW (c.f. Eq. (2.38)) for realistic material parameters n = 2,
h = 30nm, w = 110 nm and a = 600 nm (taken from Ref. [10], c.f. Fig 2.8). (a) Dipole
field hD(t = 0) of the Kittel mode of the nano grating for a right-circularly polarized mode
(mK

L = 0). The positions of the individual nanowires are indicated by red squares. (b) Dynamic
magnetization MSW(t = 0) of the thin film for a right-circularly polarized mode (m̃ky

L = 0)
propagating to the right with ky = +2π/a. (c) Dynamic magnetization MSW(t = 0) of
the thin film for a right-circularly polarized mode (m̃ky

L = 0) propagating to the left with
ky = −2π/a.
The dipole field in (a) matches the precession of the spin wave with ky > 0 in (b), but not for
ky < 0 in (c). Thus the dipole field couples only to the spin wave propagating in +y-direction
with ky > 0, making the coupling chiral. If the magnetization of the thin film is inverted with
respect to the nanogratings, (b) and (c) switch places, making the dipole field now only couple
for ky < 0.
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This mechanism for the creation of unidirectional spin waves via chiral pump-
ing was experimentally realized by Chen et al. [10] in 2019. They investigated
a device consisting of an array of Co nanowires with center-to-center spacing
a = 600 nm, made from individual wires measuring w = 110 nm, h = 30nm
placed on a YIG thin film of thickness tTF = 20nm (c.f. Fig. 2.8). To quantify
the unidirectionality, frequency-dependent microwave transmission (S21 and S12)
and reflection (S11 and S22) parameter spectra have been measured using a vec-
tor network analyzer. To switch between a parallel or anti-parallel orientation of
the nanograting magnetization with respect to the thin film magnetization, the
magnetization of the magnetically softer thin film is switched by sweeping the
external magnetic field. First, the magnetizations of both the thin film as well as
the nanograting are saturated by applying a magnetic field of µ0Hext = −200mT
along the wires. Afterwards, the magnetic field is swept from negative to positive
values.
In Fig. 2.10 (a) the resulting reflection spectrum S11 is shown. Since it quan-
tifies energy dissipated into the sample, the finite signal can be interpreted as
the ferromagnetic resonance discussed in Sec. 2.3. Upon crossing the zero field,
the pronounced upper mode, interpreted as the Kittel mode of the Co-grating,
continues on a downward slope and only switches above ≈ 80mT. In contrast,
the bottom mode, identified as the thin film mode, is symmetric around zero
field, indicating the thin film reversed its magnetization direction whereas the
grating did not yet, due to its larger demagnetization field.
To now visualize the potential non-reciprocity, the transport parameters S21

(corresponding to −k spin wave propagation) and S12 (corresponding to +k
spin wave propagation) are depicted in Fig. 2.10 (b) and (c), respectively. Their
parameter range is indicated by the dashed rectangle in the S11-spectrum in a).
In (b) and (c) the signal carried by −k (+k) spin waves is only present for neg-
ative (positive) external field values and vanishes with a strong contrast at zero
field. This demonstrates the generation of unidirectional (exchange-)spin waves
above 18GHz and the theoretically predicted inversion of propagation direction
upon changing the relative orientation of the magnetization of thin films and
grating [10].
The combination of being able to excite short wavelength spin waves with high
group velocity, compatibility with ultra-thin film and switchable transport dir-
ection make chiral pumping using nanogratings a promising outlook towards
the realization of unidirectional magnon devices [7]. Therefore, nanogratings as
mediators for unidirectional spin waves will be the focal point of this work.
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Figure 2.10: Experimental results reported by Chen et al. [10] of their experimental realiz-
ation of unidirectional spin waves using a device of a Co-nanograting on a Y3Fe5O12 (YIG)
thin film with parameters h = 30nm, w = 110 nm, a = 600 nm and tTF = 20nm (c.f. Fig. 2.8).
(a) Reflection parameter S11 spectrum. The pronounced top mode (identified as the Kittel
mode of the Co-grating) demonstrates the grating does not switch its magnetization up to a
field value of about 80mT as it is magnetically harder than the YIG thin film. According to
theory this allows for switching between favored propagation directions of the chiral coupling
(parallel and anti-parallel alignment of the magnetizations of thin film and nanograting). The
dashed rectangle signifies the parameter range in which the unidirectionality in (b) and (c) is
depicted. (b) Transmission parameter S21 spectrum, carried by spin waves with −k. Strong
non-reciprocity of the signal can be seen during the magnetic field sweep from negative to pos-
itive values, indicating the change of the favored propagation direction of the chiral coupling.
(c) Transmission parameter S12 spectrum, carried by spin waves with +k. The inverted non-
reciprocity of the signal compared to the −k spin waves in (b) demonstrates that, in fact, the
favored propagation direction changes at zero field, subsequently confirming the unidirection-
ality of the excited modes. The spin waves shown in (b) and (c) have a wavelength λ ∼ 60 nm.
Figures taken from Ref. [10]
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Chapter 3

Micromagnetic simulation

Micromagnetic simulations are a popular tool in modern research to investig-
ate magnetic phenomena on scales too large for the computational modeling of
singular atoms [43]. Common applications revolve around designing, predicting
and understanding experiments. Therefore, simulations can be understood as
a connecting piece between experiment and theory [44]. This chapter serves as
an introduction to micromagnetic simulations, starting with a brief overview of
the field in Sec. 3.1. Then, focus is shifted towards the software used in this
work, MuMax3 [45], explaining its core principles and structure in Sec. 3.2, be-
fore discussing the impact of different simulation parameters on the physicality
of the results in Sec. 3.3. In order to verify MuMax3 as a simulation tool for
dynamic magnetic properties, the workflow behind creating a typical ferromag-
netic resonance simulation is explained in Sec. 3.4, comparing the output with
the theoretical results from Ch. 2. Finally, this chapter is closed by detailing
the developed post-processing algorithms necessary to compare micromagnetic
simulations to experimental results in Sec. 3.5.

3.1 Overview

The term micromagnetics describes a theory developed by W. Brown [46] in
an effort to describe ferromagnetic materials. Its goal was to model ferromag-
netism on "intermediate" length scales, where instead of considering the spins
of individual atoms, a continuum theory is used to describe the material using
a continuous function of the magnetization vector [43]. Effectively, this allows
for using calculus to describe magnetic phenomena on length scales of the order
of 0.01 µm to 10 µm [43]. The magnetization dynamics in this framework are
described by the time- and space-dependent version of the previously derived
Landau-Lifshitz-Gilbert (LLG) equation (c.f. Sec. 2.2.2):

dM(r, t)

dt
= − γµ0

1 + α2
M(r, t)×Heff(r, t)−

αγµ0

Ms(1 + α2)
M(r, t)× dM(r, t)

dt
.

(3.1)
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Note that Eq. (3.1) differs from the previously derived Eq. (2.18) due to the fact
that the gyromagnetic ratio γ and the Gilbert damping parameter are both
scaled by an extra factor of 1/(1 + α2) as a correction term, since Eq. (2.18)
is technically an approximation for α ≪ 1. Unfortunately, Eq. (3.1) is hard to
solve exactly, e.g., due to the ambiguity of initial- and boundary-conditions,
leading to big interest towards numerical solutions [47].
Coupled with the rise of cheaply available computational power, this has led
to the rise of the now vast field of micromagnetic simulations. In research
they nowadays find wide application with different intentions, such as trying
to replicate experiments to gain insight into the physical mechanisms behind
observations, making predictions about novel phenomena or testing and optim-
izing designs for setups [44]. Although many different software solutions exist
nowadays, the core principle is nearly the same for all of them: discretize the
magnetic volume into a finite number of computational cells and solve the LLG
Eq.(3.1) in these cells as an ordinary differential equation (ODE) in time [44].
In terms of discretization, two basic approaches are commonly used. The first
is called finite-difference-method (FDM) and works by dividing the simulated
material into a regular array of orthorhombic unit cells, making it possible to
directly express derivatives via finite difference approximations. Here, physical
quantities are represented directly on-site for each mesh point without addi-
tional interpolations [48]. The strong suits of FDM are that it leads to efficient
and fast calculations and is quite easy to set up, however, it can struggle to
provide accurate solutions of irregularly shaped samples [48]. A second popular
approach is the finite-elements-method (FEM), which divides the sample into
an irregular array of cells called "elements" (often tetrahedron-shaped). Hereby,
the mesh density is increased in areas where large forces are expected. Physical
quantities (i.e., fields) are then represented using nodal basis functions and
continuous (often polynomial) interpolation between the elements [48]. FEM
excels at the local resolution of the solution and can handle arbitrarily shaped
samples well, however, at the cost of complexity, increased calculation time and
the caveat of the solution being very sensitive to the type of mesh chosen [48].

In general, micromagnetic simulations can be split into two types: static simu-
lations aim to find an equilibrium configuration of the magnetic moments in the
sample after sufficiently long time, and are often used to simulate magnetic hys-
teresis loops, finding the magnetic ground states before dynamics considerations
or to evaluate the static magnetic (stray) fields created by a certain magnetic
configuration [44]. Dynamic simulations, on the other hand, aim to deliver the
magnetization as a function of time, allowing insight into effects such as ferro-
magnetic resonance, spin wave dynamics or domain wall motion to name a few
[44].
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3.2 MuMax3

MuMax3 is an open-source software for micromagnetic simulations developed
by the DyNaMat group of the University of Ghent, Belgium [45]. Among the
first open-source programs, MuMax3 allows to use relatively inexpensive con-
sumer market gaming graphics-processing-units (GPUs) and their parallel pro-
cessing capabilities to accelerate micromagnetic simulations by around two orders
of magnitude compared to similar programs running on traditional CPUs [49].
Written in Go (see Ref. [50]) and CUDA (Compute Unified Device Architecture,
see Ref. [51]), the only requirements for running MuMax3 are an NVIDIA GPU
and the corresponding GPU drivers, thus having a low cost entry-barrier [45].
In the following, a rough sketch of its basic design will be given, following the
original publication by Vansteenkiste et al. [45].
MuMax3 uses a 2D or 3D finite-difference discretization of the simulation
volume into orthorhombic cells. Volumetric quantities, such as the magnet-
ization, are considered at the center of each of these cells, whereas coupling
quantities such as the exchange coupling strength are considered at the faces
between cells. These parameters are, however, not stored for each cell, but
rather in look-up tables in an effort to conserve memory. This is done by fur-
ther subdividing the sample in the simulation volume into a maximum of 256
material regions with region indices 0, ..., 255, where for each region separate
material parameters and external excitations (magnetic fields) can be assigned.
In principle, this allows a maximum of 256 different magnetic materials to be
considered in one simulation.
Different geometries (e.g., cuboids, spheres, cylinders, ...) are defined in
MuMax3 using boolean functions (e.g., sphere: f(x, y, z) returns true if (x,y,z)
inside the sphere, false otherwise), which can be translated, rotated, scaled, re-
peated and combined with other geometries using boolean operators. Geometries
can be used to define the shape of the magnet, necessary in cases where the shape
of the simulation box (i.e. cuboid) is not equal to that of the considered magnet.
The combination of geometries and material regions thus allows the construction
of a magnetic system of arbitrary complexity in terms of material composition or
geometry. Furthermore, periodic boundary conditions (PBC) can be applied in
each spatial dimension, implying a wrap-around magnetization for short-range
interactions. For the long-ranged dipole interaction, PBC are approximated by
simulating a (large) finite amount of copies of the simulation box in each spatial
direction, the exact number of which can be set by the user.
As for initializing the system, the initial magnetization orientation can be set
into various shapes (e.g., uniform, vortex, domains,...) for either different ma-
terial regions or in geometric areas of the simulation box. Excitations in form
of external magnetic fields can be static or dynamic in both time and space,
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supporting also the import of previously generated vector fields. As for material
parameters, at least the saturation magnetization Ms (Msat), the exchange stiff-
ness Aex (Aex) and the Gilbert damping parameter α (alpha) must be supplied
for simulations to run.
The magnetization dynamics are calculated for each cell by solving a simplified
Landau-Lifshitz-Gilbert (LLG) equation in time:

dM(r, t)

dt
=− γµ0

1 + α2
M(r, t)×Heff(r, t)

− αγµ0

Ms(1 + α2)
M(r, t)× (M(r, t)×Heff(r, t)) .

(3.2)

Notably, Eq. (3.2) differs from the original analytic expression in Eq. (3.1) by
assuming that for small Gilbert damping α, dM(r, t)/dt can be approximated
by the first term (precession) of Eq. (3.1). The physics of the system is considered
via various contributions to the effective field landscape Heff . The solution of
the LLG in Eq. (3.2) in time for dynamic magnetic simulations is handled by a
number of available explicit Runge-Kutta-methods (see e.g., Ref. [52]), offering
a dynamical time step control based on error boundaries or fixed time steps. In
order to minimize the energy of a given magnet (i.e. bringing the system into
energetic equilibrium via static simulation), MuMax3 will disable the precession
term in Eq. (3.2) and propagate the system in time until the system energy
is converged in the scope of numerical precision. Then, the torque between
neighboring cells will be monitored as a more precise measure of equilibrium:
the system is again propagated in time until the torque converges and is no
longer distinguishable from numerical noise. It should be noted that even though
this procedure usually succeeds in finding the energetic equilibrium, depending
on the system it is always possible to accidentally end up in a saddle-point or
generally flat part of the energy landscape.
The output of MuMax3 simulations can be delivered via two channels: first,
each simulation automatically generates a table.txt output table, saving the
averaged magnetization components either manually or in automated time steps.
Arbitrary quantities may be added to the table in the simulation script, and are
then also averaged over the sample and saved in the table. Alternatively, the
spatial quantities such as the magnetization can be exported as entire vector
fields, saved in the open-vectorfield-format .ovf, also either manually or at fixed
time steps.

3.3 Impact of simulation parameters

Due to the multitude of different parameters that go into a micromagnetic simu-
lation in MuMax3, it is important to know how these parameters influence not
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only the physicality of the results but also the computational expense. This is es-
pecially true for larger simulations involving broad field sweeps or long sampling
to obtain high resolutions, where the computational efficiency of a single sim-
ulation run is of the essence. This section attempts to discuss how to design
simulations and choose parameters in such a way that they produce the desired
physical results reliably and fast.
An important parameter not discussed explicitly in the following sections is
temperature. In principle, MuMax3 allows to consider arbitrary sample tem-
peratures, which are accounted for via the addition of a fluctuating magnetic
field contribution to the effective magnetic field [45]. This is, however, in most
cases not desirable, as the addition of these fluctuating fields causes discontinu-
ities in the magnetic torque of the system and therefore forces the system to
choose a lower-order integration algorithm [45]. Specifically, these lower order
integration algorithms do not offer variable time steps and have a uncertainty
two to three orders of magnitude worse in the time step, forcing the user to ad-
apt the manual time step accordingly [45]. We conducted test simulations with
different finite temperatures and found that temperature effects do not alter the
dominant modes of the spectrum, but lead to worse contrast due to higher back-
ground noise and a broadening of the modes in frequency (see Appendix A.1.2).
Subsequently, simulating at finite temperatures impedes our goal of simulating
as efficiently as possible, as they increase the simulation time oftentimes from
hours to days, while also bearing no observable influence of the physical nature
of the modes. Therefore, in this thesis, all simulations are performed at a sample
temperature of 0K.

3.3.1 Mesh

A very basic but one of the most influential user inputs is defining the finite-
difference (FD) mesh used to discretize the sample. The core quantity in defining
the mesh are the dimensions of a single computational grid cell (cx, cy, cz). There,
one is confronted with a weigh-off: on one hand, choosing the cells very large
results in a lower amount of computational cells in the simulation box, which
drastically increases performance in FDM solvers and thus lowers the simulation
time [44]. On the other hand choosing large cell sizes has been shown to gener-
ate large errors in the results due to underestimating the exchange interaction,
while also causing problems in resolving curves in sample geometries [14, 44]. As
previously derived in Sec. 2.4, the exchange length lex gives the length scale of
exchange-interaction dominated effects. Therefore, as a general rule of thumb,
if one wants to simulate exchange-interaction influenced phenomena, such as
exchange spin waves or dipole-exchange spin waves, it is necessary to choose a
cell size (cx, cy, cz) < lex [14, 44]. Conversely, a cell size larger than lex was
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found to be unproblematic for dipole-interaction dominated phenomena such as
ferromagnetic resonance or magneto-static spin waves in thin films, as the error
induced by different cell sizes is comparable to typical experimental resolutions
[14]. Apart from its influence on the physical results, the cell size also controls
the range of observable wave numbers k for spin wave dispersion simulations.
This is due to the Shannon-Nyquist-theorem, stating that the maximum wave
number resolvable is determined by the sampling rate in real space (i.e. cell size)
via |kx,max| = 2π/2cx [53]. Another important choice to make when configuring
the simulation mesh is whether to use periodic boundary conditions (PBC). It
has been found that proper ferromagnetic resonance is not possible in simulated
finite-size thin films due to the stray fields at the edges prohibiting uniform pre-
cession [14]. This can be remedied by using in-plane PBC, effectively removing
the edge effects [14]. In general, it makes sense to almost always use PBC, as
it usually enhances the physicality of the simulations and the performance hit
taken due to more complex magneto-static kernel calculations is more often than
not negligible. It then makes sense to choose a high number of "copies" of the
simulation box to calculate the dipole field (c.f. Sec. 3.2). In this thesis usually
PBCx = PBCy = 100 is chosen, as this already achieves good agreement with
analytical limits [45]. However, in the case of some specific simulations it makes
sense to disable PBC in a particular direction to, e.g., determine the attenuation
of the signal.

3.3.2 Sample

After configuring the mesh, the next important point of consideration is the size
(lx, ly, lz) of the simulated sample, which is controlled by the number of grid
cells (Nx, Ny, Nz) in each spatial direction. This is especially relevant in cases,
where PBC cannot be used, e.g., due to interest in spin wave attenuation. For
ferromagnetic thin films, it was found that for the results to agree with those us-
ing PBC (and thus the analytical expectation), the simulated thin film must be
constructed such that the in-plane extension must be around 1000 times larger
than the thickness [14]. This implies huge computational effort and demonstrates
that PBC are an efficient way to simulate realistic magnetic systems by greatly
reducing simulation time for large samples.
Furthermore, the number of cells constituting the simulation box in each spa-
tial direction (Nx, Ny, Nz) also plays an important role in spin wave dispersion
simulations, as the number of cells in real space corresponds to the total num-
ber of samples. Thus, via elementary properties of the fast-Fourier-transform
(FFT) the maximally achievable resolution in reciprocal space, δkx, is connec-
ted to the cell size cx and the number of cells Nx via δkx = 1/(cxNx). It is
therefore advisable to choose a large Nx,y,z in the sample direction, where finite
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kx,y,z properties are to be resolved, and as low as possible in the other sample
directions to balance the computational effort.
The most important constrain on (Nx, Ny, Nz) in terms of performance comes
directly from MuMax3 and is more relevant than the absolute number of cells:
the largest bottleneck is given by the CUDA FFT routine, which works fast-
est if (Nx, Ny, Nz) are all chosen as powers of 2, e.g., (256, 128, 2) [45]. This is
extremely relevant for the performance of all simulations and should always be
respected.
Lastly, attention is shifted towards the edgesmooth parameter of MuMax3. Its
purpose is to further define the resolution of geometries or shapes by subdivid-
ing simulation cells that are on their boundary. Specifically, edgesmooth is an
integer parameter, where edgesmooth=n implies a further subdivision of a cell
on the edge of a structure into n3 subcells, scaling the saturation magnetization
accordingly. This enables a much more realistic calculation of the magneto-static
field by determining the number of the subcells that lie in versus outside of the
geometry edge. Usually, choosing edgesmooth=8 results in accurate results for
smooth edges, however, it has to be considered that not well-resolved edges may
induce pinning effects or nucleation points, which mimics the effects of disorder
in experimental settings [54].

3.3.3 Magnetic Excitations

Excitations in MuMax3 are realized via adding various static and dynamic ex-
ternal magnetic fields to the simulation landscape. Static fields are used for
saturating the sample magnetization along a certain axis and can be swept to
record broad-band ferromagnetic resonance spectra. In their usual, spatially ho-
mogeneous form, they are defined by a simple direction vector and field strength
value. Here, it can be advantageous to misalign this direction vector with the
actual desired direction by a small angle (≈ 1°) to mimic experiments, where ex-
perimental uncertainties make it challenging to determine the exact orientation
of sample and external field [14].
All dynamical simulations include some form of external excitation applied to
the sample to probe its response. Since the form of the excitation is entirely up
to the user to be defined in MuMax3, it is important to know the implications
of different excitation types. Designing a driving magnetic field can be broken
down into three choices: the temporal shape, the spatial shape and the amp-
litude of the signal.
For the temporal shape, a straightforward approach would be to use a Dirac
delta distribution δ(t), due to its property of uniformly exciting the entire fre-
quency range. However, since numerics work in discrete time domains, this
is not feasible [44]. Rather, one would have to use a Gaussian pulse profile,
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HG(t) = exp(−a(t − t0)
2), as an approximation, which is a common choice for

studies of a range of large wave vectors [44]. A much more popular choice,
however, is a sinc-type excitation:

Hs(t) = sinc(2πfc(t− t0)) =
sin(2πfc(t− t0))

2πfc(t− t0)
, (3.3)

where fc defines the cut-off frequency and t0 is the temporal delay of the sig-
nal. The sinc-shape in Eq. (3.3) is favored as its frequency space representation
(in an ideal, continuous case) is given by a rectangle function. This allows the
definition of the range of desired excited frequencies, but also helps avoid spec-
tral aliasing, which can introduce numerical artifacts in the final spectra [44].
A common mistake in literature is to claim that Hs in Eq. (3.3) will have an
approximately rectangular Fourier representation with borders [−fc, fc] [14, 44].
This is incorrect due to the factor π in the argument of Eq. (3.3) as shown in
Fig. 3.1, where the real-time signal Hs(t) in (a) can be compared to the energy-
spectral-density ESD = 40 log10 |FFT(Hs)| in (b). The parameters chosen for
this example are fc = 100GHz and t0 = 50ps, as they are also the typical choice
in the following of this thesis. Fig. 3.1 (b) shows that the signal in (a) provides a
uniform excitation energy in the interval [-πfc, πfc] with a steep fall-off outside
of this range.
As for the spatial shape of the excitation, the easiest case is to use a spatially
homogeneous magnetic field varying only temporally, which is useful for simu-
lating ferromagnetic resonance. In terms of simulating spin wave dispersions,
it is recommendable to use a sinc-type excitation also in real space, completely
analogous and for the same reasons as the temporal case:

Hs(x) = sinc(2πkc(x− x0)) =
sin(2πkc(x− x0))

2πkc(x− x0)
, (3.4)

where kc defines a cut-off wave number to get a total excitation of shape Hext =
Hs(x) ·Hs(t) [44, 55].
Finally, the amplitude h0 of the external excitation must be chosen. Since usually
only the linear response regime is probed, the excitation must be weak enough
to not introduce non-linear effects. This is usually fulfilled for h0 = 1mT, which
is the value used in this thesis [14, 44].
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Figure 3.1: Comparison of a sinc-type temporal excitation pulse and its energy spectrum
in frequency space. (a) Signal Hs(t) = sinc(2πfc(t − t0)) with parameters t0 = 50ps and
fc = 100GHz. (b) Energy spectral density ESD = 40 log10 |FFT(Hs)| of the signal shown in
(a). The ESD assumes an approximately (due to discrete numerics) rectangular shape, with
maximum energy being evenly distributed in the interval [-πfc, πfc]. Outside of this interval
the energy provided by the pulse in (a) drops off steeply, only providing weak to negligible
excitation. Sinc-type excitations in time are thus well suited to excite a pre-defined range of
frequencies.

3.3.4 Simulation

Apart from defining the sample and its discretization or the type of excitation,
the exact manner in which the simulation is conducted also plays an important
role in the eventual results. As for static simulations, finding the ground state
of the magnetic sample can be achieved via two internal functions in MuMax3:
relax() and minimize(). In most cases, it is recommendable to use relax()
as it is the more robust variant to minimize the energy, whereas minimize() is
usually much faster but more prone to divergence [56]. However, the function
minimize() is useful for simulating detailed hysteresis curves, where small in-
cremental changes in the external magnetic field value cause the sample never
being too far out of equilibrium [56].
As for dynamical simulations, two important parameters need to be set: the total
simulated timespan T and the saving interval of the output files dt. Starting with
T , two points are to be considered: first, the simulation should be long enough
so that the sample can reach equilibrium. Second, the total simulation time also
controls the maximum resolution in frequency space that can be resolved in this
simulation via δf = 1/T (similarly to the sample size in real space in Sec. 3.3.2).
These two points favoring simulating long time spans have to be weighed against
the additionally induced computational effort. It was found that in the realm
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of this work T = 20ns is usually a good choice to satisfy both precision and
efficiency concerns. For the sampling interval dt the Shannon-Nyquist-theorem
must be considered to choose dt in such a way that only frequencies up to a
maximum value fc are sampled: dt = 1/(2fc) [53]. This allows to save storage
by not sampling irrelevant frequencies and can be matched with the maximally
induced excitation frequency (c.f. Sec. 3.3.3).

3.4 Simulation workflow and verification of MuMax3

This section seeks to deliver a practical guide on how the MuMax3 simulations
were constructed for this work, while also serving as a proof of concept to
validate the obtained results. Scripting in MuMax3 follows the syntax of the
Go programming language (see Ref. [50] for a detailed description), extended
by certain keywords, functions and parameters. An overview of the internal
parameters and supported functions can be found in the MuMax3 API in
Ref. [56]. In the following, a basic ferromagnetic resonance experiment will be
simulated for a ferromagnetic rectangular wire made of permalloy (Ni80Fe20) as
an illustrative example of the general MuMax3 procedure and a consistency
check whether the simulation agrees with the theory as established in Sec. 2.3.
Note that representative examples of the actual code used in this work to
conduct micromagnetic simulations are included in the Appendix B.1.

Setting up the simulation box Starting off, the simulation box (the
mesh) must be initialized. For this example, it will be sized (lx, ly, lz) =
(1000 nm, 1000 nm, 10 nm) (see coordinate system in Fig. 4.1). In order to
choose the correct number of cells to discretize this box, the exchange length for
permalloy lNiFe

ex = 5.69 nm [14] gives a physically sensible upper bound for the
size of a single cell to fulfill (cx, cy, cz) < lNiFe

ex . This code example will determine
the number of grid cells Nx,y,z by using the integer binary logarithm (ilogb)
function of MuMax3, in order to automatically have cell numbers as powers of
2. Periodic boundary conditions will not be used to simulate a single wire of
finite length.

//Simulation box dimensions
lx := 1000e-9
ly := 1000e-9
lz := 10e-9
//Approximately desired cell sizes
cx := 3e-9
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cy := 3e-9
cz := 10e-9
//Calculate number of cells to discretize simulation box
Nx := pow(2, ilogb(lx/cx))
Ny := pow(2, ilogb(ly/cy))
Nz := pow(2, ilogb(lz/cz))
//Do not use periodic boundary conditions
PBCx := 0
PBCy := 0
PBCz := 0

//Set up the final mesh
SetMesh(Nx, Ny, Nz, lx/Nx, ly/Ny, lz/Nz, PBCx, PBCy, PBCz)

//Use edgesmooth
Edgesmooth = 8

Constructing the wire sample The geometry of the wire can be set by using
the internal cuboid function to first create a geometry object, which can then
be set as the magnet shape. Geometry objects are always centered around the
origin (i.e. center of the simulation box), similar to the sketch in Fig. 2.1. The
wire shall have the measurements (dx, dy, dz) = (200 nm, 1000 nm, 10 nm). The
material parameters of the wire will be set by defining the wire as the material
region with index 1, using Ms = 800 kA/m, Aex = 13pJ/m and α = 0.01 [14,
55].

//wire geometry
dx := 200e-9
dy := 1000e-9
dz := 10e-9
wire := cuboid(dx, dy, dz)

//the total magnet geometry is just the wire
setgeom(wire)

//assign material region and parameters
defregion(1, wire)
msat.setregion(1, 800e+3)
alpha.setregion(1, 0.01)
aex.setregion(1, 13e-12)
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Relax system into groundstate Simulated samples are usually initialized with
random magnetization, before relaxing into energetic equilibrium after apply-
ing an external bias field. Typically when simulating ferromagnetic resonance
(FMR), a field sweep will be performed, thus it is sensible to iteratively relax
the system for each subsequent field value as well. Here, a field sweep will be
performed from µ0Hext = 0.5T to µ0Hext = −0.5T in 4mT increments, where
Hext is applied along the y-axis.

//Initialize a random magnetization
m = RandomMag()
//Apply the maximum static field value in y-direction
B_ext = vector(0, 0.5, 0)
//Relax the system into equilibrium
Relax()

Define excitations For FMR, usually the excitation of choice is uniform in
space and sinc-shaped in time (c.f. Sec. 3.3.3). The parameters for the temporal
sinc Eq. (3.3) are fc = 100GHz and t0 = 50ps. The sinc-excitation will be
applied perpendicular to the static magnetic field Hext in x-direction with a
maximum amplitude of 1mT.

Set simulation parameters As established in Sec. 3.3.4, a simulation time of
T = 20ns is usually sufficient for the system to reach equilibrium. This timespan
will thus be simulated for each external field value in the field sweep of the
FMR simulation. The sampling (i.e. saving the averaged magnetization to the
output table) will be performed every dt = 5ps, which according to the Shannon-
Nyquist sampling theorem allows to resolve signals of a maximum frequency of
100GHz, which is sufficient for this case [53]. In this example, ferromagnetic
resonance will be simulated, which ideally would correspond to a collective, in-
phase precession of the entire sample. This involves averaging ("integrating") the
magnetization over all grid cells anyway. Therefore, it makes sense to not even
output the magnetization data for the entire sample in order to save storage.
This is realized easily by simply auto-saving the table output in the desired
interval, as it only contains spatially averaged data:

tableautosave(5.0e-12)

Run simulation The dynamic part of the simulation will be handled using a
simple for-loop structure, sweeping over the external field values. Here, it is
crucial that in the output table, each saved value of the magnetization can be
identified by two associated entries: the point in time where it was recorded, and

42



3.4 Simulation workflow and verification of MuMax3

the current value of the magnetic field sweep. In each iteration, the simulation
time t will be reset, as otherwise, the excitation (being t-dependent) will only
be present in the first iteration. Then, the system will be relaxed after applying
the new field value, before adding the dynamic component to the external field.
Finally, the simulation is started using run.

//Initialize the B_stat variable to keep track of the field sweep
B_stat := 0.5
//Keep track of B_stat by adding it to the output table
TableAddVar(B_stat, "B_stat", "T")

//Field sweep simulation using a for-loop
for B_stat=0.5; B_stat>=-0.5; B_stat-=4e-3{

//Reset the simulation time
t = 0

//Apply new static field and relax the structure
B_ext = vector(0, B_stat, 0)
Relax()

//Add the driving field in x-direction (ampl. = 1mT)
B_ext = vector(1e-3*sinc(2*pi*100e+9*(t - 50e-12)), B_stat, 0)

//Run the simulation for 20ns
run(20e-9)

}

Comparison to theory At last, to verify that MuMax3 and the numerical
analysis explained in Sec. 3.5 are able to reproduce the analytical solutions,
the results of the simulation built in this section will be compared to the Kit-
tel formula (c.f. Eq. (2.25)), using the demagnetization factors determined via
Eq. (2.13). In Fig. 3.2, the output spectrum of the simulation is shown as a
two-dimensional colormap, allowing to view the results as both a function of fre-
quency f and external field strength µ0Hext. Additionally, the analytical result
as given by the Kittel equation (2.25) is shown as a red dotted line. It can be
seen that the analytical curve shows reasonable agreement with the dominant
FMR mode in the simulated spectrum. The additionally visible but far weaker
mode below the FMR mode in the simulation spectrum can be attributed to an
edge-mode of the wire caused by the boundaries in y-direction. As no periodic
boundary conditions were used, additional stray fields accumulate at the edges,
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leading to the formation of edge-domains and the corresponding excitation [14].
The discrepancy between the analytical curve and the simulation spectrum in a
range of approximately µ0Hext = 0 to µ0Hext = −50mT can be explained by
the shape anisotropy of the wire: the magnetization of the wire does not im-
mediately switch upon sweeping from positive to negative external field values.
All in all, this example simulation illustrates the typical workflow for simulating
FMR while verifying the methodology by matching the analytical result well.
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Figure 3.2: Result of the ferromagnetic resonance (FMR) simulation of a Ni80Fe20 (Ms =
800 kA/m, Aex = 13pJ/m and α = 0.01 [14, 55]) rectangular prism with dimensions
(dx, dy, dz) = (200 nm, 1000 nm, 10 nm), compared to the analytical solution as given by the
Kittel equation (2.25). The simulation result |S21| is shown as a two-dimensional color spec-
trum as a function of both frequency f and external field µ0Hext. The solution of the Kittel
formula (red dashed line) shows reasonable agreement with the spectrums dominating main
mode, which is identified as the FMR mode. A weaker, lower frequency mode is also visible
in the spectrum, which can be explained as an edge-mode of the prism in y-direction, induced
by additional stray fields due to open boundary conditions. The coercivity of the cuboid fer-
romagnet caused by the shape anisotropy explains the discrepancy between the theory curve
and the spectrum between µ0Hext = 0 to −50mT: the branch of the FMR mode coming from
positive field values continues, indicating non-switching wire magnetization.

3.5 Data analysis

After running micromagnetic simulations, the raw output, such as the magnet-
ization or effective magnetic field as discrete functions of space and time, has

44



3.5 Data analysis

little use by itself, since, as initially discussed in this chapter, most motivations
in micromagnetic simulations revolve around either predicting, optimizing or
understanding experimental findings. Thus, it is indispensable to apply post-
processing and data analysis to the raw simulation output with the goal of
recovering data, which can be more or less directly compared to experimentally
accessible parameters. This section lays out an overview of the post-processing
algorithms developed in the realm of this thesis.
Generally, all post-processing in this work is done in Python. Note that in the
following, all quantities are discrete-valued; however, for didactic purposes the
notation of continuous functions will be used at some points. As for the general
simulation output, the quantities are saved either only time- or both space- and
time-dependent. Usually, time-dependent data such as M(t) is obtained via
the table output of MuMax3 by including the command tableautosave(ts)
in the simulation script to sample spatial averages in intervals of ts. This holds
the big advantage that by averaging before saving, the storage demands of the
simulation are drastically reduced, typically from the order ofGB to MB. The
output table can also be used to save space-dependent output data when simu-
lating periodic structures, i.e., magnonic crystals. For the latter, it makes sense
to periodically save spatial averages of each periodic object, e.g., a nanowire,
by adding certain simulation cells to the output table using the crop command.
Most commonly, space- and time-dependent data, e.g., M(r, t), is obtained by
saving the entire vector-field of, e.g., the magnetization m in intervals of ts using
autosave(m, ts) in the simulation script.
In Fig. 3.3, a flow-chart depicts different kinds of data presentation used in this
thesis, depending on the output of the simulation. If the sample magnetization
M(t) is saved only as a function of time, i.e. averaged over the entire struc-
ture, only quantities regarding a collective sample response may be obtained,
as illustrated on the left portion of Fig. 3.3. Most commonly, these will be
resonance spectra as functions of external parameters like the frequency f , the
magnetic field strength µ0Hext or magnetic field angle ϑ, which are obtained
from M(t) by numerically determining either the systems susceptibility χ̂ or the
transmission parameter S21, background corrected using the derivative-divide
method [57], i.e., dDS21, as a function of these quantities. A more detailed
description of the workflow behind resonance spectra is discussed in Sec. 3.5.1.
For a more intricate analysis of the sample behavior, it is necessary to save
the magnetization M(r, t) as a both time- and space-dependent vector field, as
depicted on the right half of Fig. 3.3. Commonly, the output M(r, t) will be
used to provide more elaborate insight into the previously mentioned resonance
spectra. By obtaining a frequency- and space-dependent power distribution
P (f, x, y, z), the spatial mode profiles at fixed frequencies may be obtained,
allowing to assign the visible modes in the resonance spectra to their actual
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Figure 3.3: Flowchart depicting the possibly obtainable data depending on the simulation out-
put of MuMax3. If the spatial average of the magnetization M(t) is saved, only the averaged
response of the entire magnet (or region) is accessible. This allows for spectra depicting the
frequency behavior of the susceptibility χ or the background-corrected transmission parameter
dDS21 to swept system parameters such as the external field strength (µ0Hext) or magnetic
field angle (ϑ). Saving the magnetization M(r, t) in a spatially resolved format allows more
detailed examination of the system properties. By transforming the output data into frequency
space using a fast-Fourier-transform (FFT), spatial mode profiles can be obtained allowing to
classify the nature of system modes. If being brought into frequency and momentum space us-
ing a multi-dimensional FFT, the spin wave dispersion relation can be visualized along certain
sample directions up to multi-dimensional band structures.

physical interpretation. The algorithm behind spatial mode profiles is explained
in more detail in Sec. 3.5.2. Spatially resolved magnetization M(r, t) also en-
ables the analysis of finite wave vectors k by transferring it into reciprocal space.
In its simplest form, this allows to obtain dispersion spectra along a specified
transport direction, as detailed in Sec. 3.5.3. More involved techniques allow to
obtain the band structure by traversing over momentum space, as discussed in
Sec. 3.5.4.
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3.5.1 Parameter sweep spectrum

Ferromagnetic resonance (FMR) spectroscopy is a popular experimental tech-
nique, allowing to gain insight into the magnetization dynamics and therefore
many characteristics of magnetic materials [58]. It is thus of interest to be able
to replicate or predict FMR experimental data using micromagnetic simulations.
As FMR describes a uniform mode with in-phase precession (c.f. Sec. 2.3), it is
not necessary to resolve the magnet spatially to analyze it. Subsequently, it
makes sense to utilize the table-output functionality of MuMax3, where quant-
ities are averaged over the entire lattice before being saved, thus saving both
system memory and storage requirements. The algorithm used to obtain the
spectra out of the output-table assumes that each entry (row in the table) has
the current external magnetic field strength µ0Hext saved in the column B_stat.
The general algorithm is depicted as a flowchart in Fig. 3.4. However, it can tech-
nically be extended to work with any parameter in the output-table that allows
to group the data in blocks to keep track of the sweep. First, all unique values B
are extracted from the column B_stat. For each value B, the corresponding mag-
netization mi(t) is extracted (i = {x, y, z} depending on the orientation of the
excitation field), which is the average sample magnetization orientation over time
for this specific value in the field sweep experiment. Note that t and all other vari-
ables in this case refer to discrete variables. In an optional step, the data mi(t)
can now be interpolated (with, e.g., cubic splines), which is sensible especially
if tableautosave() was used. To obtain the frequency-dependent magnetiza-
tion mi(f), a fast-Fourier-transform (FFT) is performed on the data, before it
is saved into a new array. The output of this loop thus gives a frequency and
external field-dependent magnetization component mi(f, µ0Hext), which cannot
yet be directly compared to the experiment. As defined in Sec. 2.1, the mag-
netic susceptibility χ is the response function of a magnetic system to weak
external perturbation. It can be obtained easily from the already calculated
frequency-dependent magnetization via χ(f, µ0Hext) = dmi(f, µ0Hext)/dHext

and allows insight into the dissipative and dispersive properties of a magnetic
sample (c.f. Sec. 2.3). The susceptibility χ(f, µ0Hext) can be then plotted as a
color spectrum and be directly compared to experimental findings, as done e.g.,
by Zhou et al. in Ref. [59]. There, the numerically determined susceptibility
χ(f, µ0Hext) was used to compare the line shape of the numerical versus the ex-
perimentally determined absorption of microwaves into NiFi nano dots of various
thicknesses [59]. The code developed for this thesis to obtain the dynamic sus-
ceptibility from the output-table is included in the Appendix B.2.1.
Since broadband FMR experiments are usually done using vector-network-
analyzer (VNA) devices, a common experimental parameter used to present
FMR data is the transmission parameter S21. It was found that by remov-
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ing the measurement background by the so-called derivative-divide method, the
resulting spectrum dDS21 is connected to the susceptibility via [57]

dDS21 ∝ −if
dχ

df
. (3.5)

Since it is used in many experimental works, most FMR spectra in this work will
thus be presented using |dDS21|. It should be noted that in cases where not only
a dominant main mode is of interest, it makes sense to work with log10 |dDS21|,
as the intensity of the dominant mode and other present modes in the spectrum
is oftentimes several orders of magnitude (see Appendix A.1.1).

B_statmxt mzmy

for each value
B in B_stat

Extract

Optional: interpolate

Figure 3.4: Flowchart depicting the general algorithm of obtaining the (dynamical) suscept-
ibility χ(f, µ0Hext) from the output-table of a MuMax3 field sweep simulation. The column
B_stat in the table is used to group the output by the separate values of the external field,
allowing to extract the time-dependent magnetization mi(t) for each simulation run, where
i = {x, y, z} denotes the direction of the external driving magnetic field. Optionally, mi(t)
may be interpolated using cubic splines, as it allows to migitate artifacts that arise if the
data was not sampled at the exact same point in time for each subsequent field value. In or-
der to obtain the frequency-dependent magnetization, each mi(t) is fast-Fourier-transformed
into mi(f). Finally, the susceptibility is recovered via χ(f, µ0Hext) = dmi(f, µ0Hext)/dHext.
The dynamical susceptibility can then be either visualized directly as the FMR spectrum or
processed into the derivative-divide transmission parameter dDS21 using Eq. (3.5) to allow for
more direct comparison to experimentally accessible quantities.

3.5.2 Spatial mode profiles

Upon examining ferromagnetic resonance (FMR) spectra, it is often ambiguous
what the physical interpretation of the visible modes is, e.g., differentiating which

48



3.5 Data analysis

modes are edge-modes, Damon-Eshbach modes or Kittel modes. Micromagnetic
simulations can provide valuable insight towards the proper physical interpret-
ation of mode spectra by visualizing the spatial distribution of the power of
the frequency-dependent magnetization. The resulting spatial mode profiles can
be examined from each angle, but most commonly they are presented as two-
dimensional color spectra in a top-down or front view of the sample to visualize
the real space nature of a mode with fixed frequency [14, 60, 61]. The algorithm
used to obtain these mode profiles is depicted as a flowchart in Fig. 3.5. Starting
with importing the time- and space-dependent magnetization files, in a first step
their spatial information gets averaged along the z-axis, as usually a top-down
view is desired. This can, however, be changed for, e.g., a front- or side-view of
the sample. Then, a loop iterates over the discrete space values (grid cell posi-
tions) xi and yi, effectively traversing over the 2D real-space grid and bringing
the dynamical magnetization m(t, xi, yi) into frequency space using a FFT. The
resulting m(f, xi, yi) replaces the previous time-dependent array slice in-place,
as usually system memory is a big constraint for larger sample sizes. Finally,
to obtain a power function P (f, xi, yi) of frequency and real-space, the single
components of the frequency-dependent magnetization are combined using a L2

norm. Importantly, one can instead simply add up the complex phase of all
three magnetization components and proceed normally in order to obtain a spa-
cial phase profile of the dynamic magnetization. This resulting array can now
be used to visualize certain mode profiles by using the corresponding array of
frequencies f to identify the indices corresponding to the mode frequencies of
interest. Usually, these mode frequencies can be determined via fitting of peaks
fp in FMR spectra at the current value of the external field µ0Hext. Performing
a numerical integration over the FWHM of the peak fp then results in the spatial
mode profile for the frequency fp. The code developed for the analysis of spatial
mode profiles is included in the Appendix B.2.5.
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Figure 3.5: Flowchart depicting the algorithm for obtaining spacial mode profiles out of a
MuMax3 simulation. The spacial output files are loaded into memory and averaged over the z-
axis to obtain m(t, xi, yj), since usually a top-down view of the sample is visualized . Then, for
each "pixel" (xi, yj) the magnetization is brought into frequency space using a FFT. To obtain
the mode power P (f, xi, yj) as a function of frequency and space, the single magnetization
components are combined via a L2-norm. Note that in this step, alternatively the complex
phase of the magnetization components can be added up to provide a spatial phase profile.
To now display the profile for a mode visible in, e.g., a FMR spectrum, one must fit the peak
location of interest, fp, in the (separate) FMR simulation output. By numerically integrating
over the full-width-half-maximum range (FWHM) of this peak, one receives the spacial mode
profile for fp.

3.5.3 Spin wave dispersion

Knowing how the dispersion of spin wave modes differ in various material systems
(e.g., magnonic crystals) is important for both the fundamental understanding
and the engineering of novel material systems [62]. Micromagnetic simulations
can provide the spin wave dispersion spectra by following the procedure depic-
ted in Fig. 3.6. Starting from loading in the spatially resolved magnetization
output files of MuMax3, a loop iterates over the grid coordinates perpendicular
to the spin wave travel direction. Usually, the system is initialized in such a
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way that the excitation will be along the x-direction, thus the loop will iterate
over the perpendicular dimensions y and z. For each (yj , zk), a 2D fast-Fourier-
transformation is applied on the x-component of the magnetization, bringing
it into frequency and wave number domain m

yj ,zk
x (f, kx). Here, the quantity

|myj ,zk
x (f, kx)| describes the dispersion along the x-direction for the coordin-

ate pair (yj , zk). By summing over all (yj , zk), one subsequently obtains the
total dispersion relation of the sample along x-direction by visualizing the power
P (f, kx) = log10 |mx(f, kx)|, which is in units of dB. This method is well estab-
lished in literature [44, 62, 63]. Code examples on how to obtain the spin wave
dispersion from both the spatial magnetization output files and the region-wise
ordered output table (in the following often referred to as "magnonic crystal
approach") are included in the Appendix B.2.3 and B.2.4, respectively.

t

for each    &  

Figure 3.6: Illustration of the algorithm used to obtain spin wave dispersion spectra from
MuMax3 simulations. After loading the spatial magnetization output files in memory, a loop
iterates over coordinate pairs (yj ,zk), assuming that the propagation direction is along the x-
axis. For each (yj ,zk), a 2D FFT is applied to the x-component of the magnetization to transfer
it into the frequency and wave number domain m

yj ,zk
x (f, kx). Summing up the absolute values

|myj ,zk
x (f, kx)| for all (yj ,zk) allows to obtain the total power P (f, kx) of a spin wave traveling

along the x-direction in the sample, which can be visualized using a 2D color spectrum to show
the dispersion.

3.5.4 Band structure

Upon moving to more complicated structures, such as, e.g., magnonic crystals,
it is often desirable to visualize the systems band structure in order to observe
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band gap closings or openings as done for example by Feilhauer et al. in the
context of topological edge modes in magnonic crystals [64]. The procedure
is similar to that of determining the spin wave dispersion in Sec. 3.5.3, how-
ever, extended to multi-dimensional wave vector spaces as illustrated in Fig. 3.7.
The loaded spatially resolved magnetization data is again averaged over the z-
dimension as a simplifying step, as most often dynamics along the z-axis are not
of interest. Note this step is optional, as the workflow can analogously be ex-
panded towards three-dimensional wave vector space. The averaged m(t, xi, yj)
is then component-wise transferred into the frequency and wave number de-
pendent mi(f, kx, ky) by using a 3D fast-Fourier-transformation. The absolute
magnitude |m(f, kx, ky)| is constituted by the absolute magnitudes of the single
components. Now, two possible outputs are possible using |m(f, kx, ky)|. First,
one can use this array to visualize a mode profile P (f, kx, ky) for fixed frequency
in momentum space, similarly to the one discussed in Sec. 3.5.2 for the real space
case. Secondly, one can proceed to construct the band structure for a fixed suc-
cession of (high symmetry) points in reciprocal space, e.g., Γ → X → M → Γ.
This is done by traversing the 2D array of possible momenta (kx, ky) along the
path in momentum space and saving the indices. The possible momenta are
given by the numerically sampled momenta, controlled by the cell sizes and the
total size of the simulation box. This is done using a slightly modified version
of Bresenhams algorithm [65], originally designed to draw angled lines on a dis-
crete pixel plane. By saving the index pairs along the path one can then extract
the corresponding slices along the frequency axis from |m(f, kx, ky)| and arrange
them in order of the path Γ → X → M → Γ, resulting in a 2D array |m(f, k)|.
To now visualize the band structure, one only has to plot a color spectrum of
the power P (f, k) = log10 |m(f, k)|.
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Figure 3.7: Algorithm used to obtain the (multi-dimensional) band structure from a MuMax3

simulation. The output files containing the spatially resolved magnetization m(t, xi, yj , zk)
are loaded into system memory. Since most commonly the dynamics are considered in the
x-y-plane, the data is averaged along the z-direction, which can be changed if necessary. Af-
terwards, the data is transferred into frequency f and wave number k space by applying a
3D FFT on each magnetization component, before summing up the absolute magnitude of
each component to obtain |m(f, kx, ky)|. From here on, one can directly use a base 10 log-
arithm to plot a mode profile in momentum space, P (f, ky, kz), similarly to the real space
case. Alternatively, the band structure can be obtained by traversing over the array of dis-
crete (kx,ky) (turquoise) along a fixed path (magenta) and saving the index pairs. Using these
indices, one can construct the band structure by extracting the slices along the frequency axis
in |m(f, kx, ky)| and plotting them.
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Chapter 4

Ferromagnetic nanogratings

Nanogratings, i.e., regular arrays of nanometer-sized ferromagnetic wires, have
gained significant interest in the magnonics community due to their possible
application in mediating unidirectional transport of spin waves via the chiral
pumping mechanism [7, 10]. This chapter revolves around simulating the mag-
netic properties of nanogratings, with the goal of investigating how the mutual
interaction between adjacent nanowires influences the collective behavior of the
array in terms of its magnetostatic properties and spin wave transport character-
istics. The knowledge gained can serve as a guide on how different grating design
parameters may interfere with using the grating to construct unidirectional spin
wave transport devices. For this purpose, Sec. 4.1 starts with discussing the
differences emerging in ferromagnetic resonance (FMR) spectra for differently
spaced but otherwise equal nanogratings, highlighting both the visible changes
in the spectra alongside the physical interpretations of the modes. Extending
this approach, in Sec. 4.2 we extract datapoints from simulated FMR data to
determine the diagonal elements of the demagnetization tensor of the nanograt-
ing. This is done by fitting a modified Kittel equation, which can be used to
give an estimate for the interaction range of the wires. Sec. 4.3 then discusses
the influence of the inter-wire spacing on the spin wave dispersion across the
grating, before the findings of this chapter are finally summarized in Sec. 4.4.

4.1 Ferromagnetic resonance

The Kittel mode of the nanogratings plays a central role in the mechanism of
chiral pumping (c.f. Sec. 2.5.2), which is used to realize unidirectional spin wave
propagation. Therefore, knowing how the Kittel mode changes for nanogratings
of varying edge-to-edge spacings between neighboring wires presents vital in-
formation to design possible devices. By simulating a broad-band ferromagnetic
resonance (FMR) experiment for different nanogratings, one can compare the
Kittel modes of the nanogratings with each other and make conclusions about the
inter-wire coupling and its impact on the respective Kittel mode. The material
system studied in the following is a ferromagnetic Co25Fe75 (CoFe) nanograting,
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Chapter 4 Ferromagnetic nanogratings

using typical material parameters of µ0Ms = 2.258T, Aex = 2.6 × 10−11 J/m
and α = 3.76 × 10−3 [13, 66]. For the simulation of the nanogratings we use
the "unit cell" shown in Fig. 4.1, with the simulation box (solid, black lines)
consisting of infinitely long ferromagnetic wires/cuboids of width w = 200 nm
and height h = 35nm, oriented along the y-direction and arranged periodically
along the x-axis with a certain edge-to-edge spacing se2e between adjacent wires.
The width of the simulation box along the x-axis is chosen such that three wires
fit in it, with a respective distance of se2e/2 from the outer wires to the borders
of the box. In the Damon-Eshbach geometry, we apply a static external mag-
netic field Hext along the y-axis with a 1° offset, to account for experimental
uncertainties regarding the exact orientation of Hext with respect to the nano-
grating [14] (for reference see Backward-Volume geometry in Appendix A.1.5).
The magnetization of the individual wires is then saturated along the y-axis by
the static magnetic field Hext (orange), before a dynamic driving magnetic field
hrf (turquoise) is applied perpendicular to the wire magnetization in x-direction
to excite the spin system within the grating. Specifically, a spatially homogen-
eous excitation field µ0hrf(t) = 1mT · sinc(2πfc(t − t0)) is used, with a cut-off
frequency fc = 100GHz and a pulse delay t0 = 50ps (c.f. Sec. 3.3.3). For each
external field value, the system is simulated for a total time of T = 20ns, while
sampling the (averaged) magnetization in dt = 5ps intervals.
This procedure is repeated for various different edge-to-edge spacings se2e to in-
vestigate the impact of the wire spacing on the Kittel mode of the nanograting.
In Fig. 4.2, the resulting FMR spectrum is shown for six selected values of se2e,
indicated by the sketch in the lower right-hand corner of each plot. Fig. 4.2 (a)
and (b) show the case of se2e = 100 nm and se2e = 150 nm, respectively. The
spectra reveal three noticeably strong mode signals: the lowest frequency mode
is considered the main mode (mode 0) due to its high intensity, with a slightly
weaker second mode (mode 1) closely above it in frequency space. The third
mode (mode 2) is separated from the first two by ≈ 10GHz at zero magnetic
field and is comparable to the second mode in terms of intensity. All three
modes continue past the zero field before the wire magnetization switches due
to the shape-anisotropy inducing a coercivity of µ0Hc = −150mT. Upon dir-
ect comparing Fig. 4.2 (a) and (b), the mode 0 appears to move up to higher
frequencies for se2e = 150 nm in (b). This trend continues for se2e = 200 nm
in Fig. 4.2 (c), where the intense mode 0 seems to cross mode 1 in the mag-
netic field range between µ0Hext = 0mT and µ0Hext = −75mT. This is es-
pecially visible upon comparing the spectra in Fig. 4.2 (a), (b) and (c) at field
values µ0Hext ≈ −145mT, shortly before the magnetization reversal. When
slightly increasing the spacing to se2e = 250 nm in Fig. 4.2 (d), mode 0 continues
to push upwards in frequency, while mode 1 remains fixed. Further enlarging
se2e in bigger steps to se2e = 450 nm in Fig. 4.2 (e) and se2e = 900 nm in (f)
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x

yz

Figure 4.1: Schematic illustration of a model system simulating the ferromagnetic resonance
(FMR) response of a nanograting. The simulation box (black lines) is designed as a "unit
cell", meaning it can be extended easily to simulate larger samples by using periodic boundary
conditions (pale red wires) in the in-plane directions x and y. In the box, three ferromagnetic
wires of width w and height h are arranged in a grating along the y-axis, with an edge-to-edge
spacing se2e between neighboring wires. The width of the simulation box along the x-axis
is chosen such that three wires fit in it with a distance of se2e/2 from the outer wires to
the boundary of the box. The height of the simulation box is always simply given by the
height of the grating to avoid unnecessary computation cost. To saturate the ferromagnetic
sample, a static external magnetic field Hext (orange) is applied along the y-axis with a 1°-
offset to account for experimental uncertainties. Excitation is provided via the dynamic driving
magnetic field hrf (turquoise) applied along the x-axis.

shows that the shift to higher frequencies of mode 0 saturates, as both spectra
show almost no visible difference amongst each other. All in all, the results
in Fig. 4.2 suggest that for edge-to-edge spacings smaller than the width of the
individual wires, i.e., se2e < w, the main mode (mode 0) pushes upwards in fre-
quency. For spacings comparable to the wire width (se2e ≈ w), mode 0 appears
to cross the first higher mode (mode 1). This upwards trend, however, ceases
for spacings larger than the width (se2e > w) with only small differences visible
between se2e = 250 nm and se2e = 450 nm and no visible differences between
se2e = 450 nm and se2e = 900 nm.
In order to further discuss the results of Fig. 4.2, it is vital to understand the
physical interpretation of the modes visible in the spectra. This allows to confirm
the apparent mode crossing and rule out alternative scenarios, e.g., an anti-
crossing or avoided crossing of the modes. This can be done by visualizing the
spatial mode profile for each mode at a given external field strength. Fig. 4.3
shows the spatial profile of the three modes of interest for se2e = 100 nm at
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Figure 4.2: Results of the ferromagnetic resonance (FMR) simulation of nanogratings con-
sisting of wires of width w = 200 nm and height h = 35nm for various edge-to-edge spacings
se2e (indicated by the sketch in the lower right-hand corner of the respective spectrum). In
all spectra, three modes are of interest: the high intensity mode 0 and two less intense higher
frequency modes (mode 1 and mode 2), as labeled in (a) and (f). (a) - (b) For cases se2e < w,
the main mode (mode 0) is below mode 1 in frequency but appears to be shifting upwards in
frequency for increasing se2e. In (c) and (d), mode 0 appears to cross mode 1 in the magnetic
field range from µ0Hext = −75mT to µ0Hext = 0mT. For larger spacings, shown in (e) and
(f), the spectra differ only marginally, indicating that the frequency shift of the main mode
(mode 0) saturates for grid spacings larger than the wire width (se2e > w).
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4.1 Ferromagnetic resonance

µ0Hext = −75mT. In Fig. 4.3 (a), the three fitted mode peaks are indicated by
cross marks in the FMR spectrum. Fig. 4.3 (b)-(d) then show the spatial mode
profiles from a top-down (color spectrum) and a front view (inset) of the sample
in order of increasing frequencies. The color coding allows to connect (b)-(d)
to the marked fitting points in the FMR data presented in (a). It can be seen
that the high intensity mode (mode 0), located at f0 = (16.1300± 0.0004)GHz
(orange) in Fig. 4.3 (b), has a quasi-uniform profile across the wires, only falling
off at the wire edges. This allows mode 0 to be identified as the Kittel mode
of the nanograting. The observed fall off in intensity upon approaching the
wire edges can be explained by the stray fields at the edges locally preventing
uniform precession [14]. The power spectra of mode 1 and mode 2 located
at f1 = (17.740 ± 0.025)GHz (purple) and at f2 = (30.04 ± 0.04)GHz (dark
blue) are shown in Fig. 4.3 (c) and (d), respectively Both exhibit a non-uniform
mode profile across the wires. Examining the front view of the structure (insets)
reveals that both modes are Damon-Eshbach modes of different orders, as their
wave vectors are perpendicular to the magnetization, which is oriented along the
wires. Furthermore, both modes possess odd wave numbers, as overall only odd
wave numbers appear in this simulation due to the spatially uniform excitation
field [14]. The analysis of the spatial mode profiles in Fig. 4.3 subsequently
reveals that the highest intensity mode (mode 0) is the nanogratings Kittel mode,
whereas the higher order modes (mode 1 and mode 2) are Damon-Eshbach modes
with odd wave numbers.
Furthermore, the findings of Fig. 4.3 are now compared to the exact same mode
profile analysis applied to a larger spacing se2e = 250 nm in Fig. 4.4. This com-
parison confirms the previously made assumption of a mode crossing between
the nanogratings Kittel mode (mode 0) and the lowest order Damon-Eshbach
mode (mode 1). The quasi-uniform Kittel mode in Fig. 4.4 (c) is located at a
higher frequency f ′

0 = (18.4500±0.0004)GHz than the Damon-Eshbach mode in
(b) at f ′

1 = (17.560± 0.004)GHz contrary to the previous findings for a smaller
grating spacing in Fig. 4.3. This is proof that the modes cross for smaller se2e

distances with se2e = 100 nm < w in Fig. 4.2 (a) and se2e = 250 nm > w in
Fig. 4.2 (d). Consequently, in the negative field range, where chiral pumping is
expected, the Kittel mode is not necessarily the lowest frequency excitation of
the grating.
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Figure 4.3: Spatial mode profiles for a ferromagnetic resonance (FMR) simulation of a nano-
grating consisting of wires of width w = 200 nm and height h = 35nm, arranged with an
edge-to-edge spacing of se2e = 100 nm. (a) FMR spectrum with color-coded cross marks in-
dicating the location of modes fitted at µ0Hext = −75mT. (b) The spatial mode profile of the
highest intensity mode, fitted at f0 = (16.1300± 0.0004)GHz, shows a quasi-uniform distribu-
tion of power across the individual wires, identifying it as the Kittel mode of the nanograting.
(c) For the less intense second mode at f1 = (17.740 ± 0.025)GHz, a non-uniform profile
across the wires identifies this mode as a Damon-Eshbach mode, due to the wave vector being
perpendicular to the wire magnetization. The frontal view in the inset further shows that this
mode has an odd wave-number. (d) The third mode, located at f2 = (30.04 ± 0.04)GHz,
is classified as the next higher-order Damon-Eshbach mode exhibitin an odd wave number,
analogous to (c).
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Figure 4.4: Spatial mode profiles for a ferromagnetic resonance (FMR) simulation of a nano-
grating consisting of wires of width w = 200 nm and height h = 35nm arranged with an
edge-to-edge spacing of se2e = 250 nm. These mode profiles allow to confirm the mode cross-
ing of the Kittel and the lower order Damon-Eshbach mode of the nanograting, when compared
to the smaller spacing se2e = 100 nm in Fig. 4.3. (a) FMR spectrum with color-coded cross
marks, indicating the location of modes fitted at µ0Hext = −75mT. (b) The spatial non-
uniformity of the mode profile allows to identify this mode as a Damon-Eshbach mode with
an odd wave number at f ′

1 = (17.560 ± 0.004)GHz. (c) The quasi-uniform Kittel mode of
the nanograting is located at a higher frequency f ′

0 = (18.4500 ± 0.0004)GHz than the low-
est present Damon-Eshbach mode. (d) The third mode, next higher-order Damon-Eshbach
mode, located at f ′

2 = (29.99± 0.18)GHz is equivalent to the case of the results of the grating
presented in Fig. 4.3 with se2e = 100 nm.
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Chapter 4 Ferromagnetic nanogratings

4.2 Influence of wire spacing on inter-wire coupling

Apart from the (visual) differences in the spectra due to the frequency shift of
the Kittel mode as a function of the edge-to-edge distance se2e between the wires
discussed in Sec. 4.1, the simulated ferromagnetic resonance (FMR) spectra also
allow to quantify the range of the mutual dipole-coupling between individual
wires. By gradually increasing se2e for otherwise fixed grating parameters, the
system slowly transitions from a continuous thin film (se2e = 0) towards the
limit of a single, isolated ferromagnetic wire (se2e → ∞). Evaluating the Kittel
mode and thus the resulting diagonal elements of the demagnetization tensor for
each spacing allows us to deduce the coupling regime with regards to se2e, as
we can compare the obtained diagonal demagnetization tensor elements to the
analytical solutions for a single wire.
The simulation procedure for each value of se2e is equal to the model presented
in Sec. 4.1: individual wires of fixed width w = 200 nm and height h = 35nm are
arranged in a three wire unit cell with edge-to-edge spacing se2e, as illustrated in
Fig. 4.1. The collection of FMR spectra evaluated in this section is included in the
Appendix A.1.4 In order to compare the Kittel modes beyond visual differences,
a finite number of points is extracted from the resulting FMR spectrum, as
exemplarily shown for the case of se2e = 150 nm in Fig. 4.5 (a). By extracting
modes from a specified number of line slices along the frequency (f) axis, one
can fit each slice as a sum of Lorentzians (c.f. Sec. 2.3). Since it was established
in Sec. 4.1 that the dominant mode in the FMR spectra is the Kittel mode of
the grating, one simply takes the fitted peak location fpeak of the Lorentzian
with highest intensity as the Kittel frequency at the current field value. For
details of the implementation of fitting a FMR spectrum, see the example code
in the Appendix B.2.2. These frequencies fpeak are indicated by black markers
superimposed over the spectrum in Fig. 4.5 (a). In a second step, one can then
fit a modified Kittel equation, given as

f ′
res =

γµ0

2π

√
[Hext + a ·Ms] · [Hext + b ·Ms] (4.1)

with a = (Nxx − Nzz) and b = (Nyy − Nzz), to the extracted data points, as
shown in Fig. 4.5 (b). By utilizing Eq. (2.12), one obtains the fitted demagnetiz-
ation factors Nxx, Nyy and Nzz for the current spacing se2e by solving a simple
system of equations.

Fig. 4.6 displays the fitted values for Nxx (red), Nyy (blue) and Nzz (green) for
increasing edge-to-edge spacing se2e in units of the wire width w. The analytical
values of the demagnetization factors in the limit of a single wire (c.f. Eq. (2.13))
are shown as straight horizontal lines in the corresponding color, with the shaded
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Figure 4.5: Approach for fitting the Kittel equation to a simulated ferromagnetic resonance
(FMR) spectrum, exemplarily shown for an edge-to-edge spacing se2e = 150 nm. (a) Simulated
FMR spectrum with the extracted data points indicated by black dots. The data points are
obtained by fitting the amplitude dDS21 at a fixed magnetic field value µ0Hext using a sum
of Lorentzians. Since the Kittel mode has the strongest intensity, its frequency location is
determined as the peak of the Lorentzian with highest magnitude. As visible in the spectrum,
this method is not applicable in frequency regions containing mode crossings, as there both
modes have approximately the same intensity. (b) The data points extracted from (a) are
fitted to the Kittel equation. Commonly, a modified version (Eq. (4.1)) is used to increase
fitting accuracy by only having two instead of three fitting parameters.

area indicating a 5% deviation as a guide to the eye. For the continuous thin
film (se2e = 0), we recover the expected Nzz = 1 and Nxx = Nyy = 0. In-
creasing se2e in small increments initially shows Nxx and Nyy converging rather
quickly towards the analytical expression of a single wire, however, tapering off
between se2e = 1w and se2e = 1.5w. For larger spacings, the fitted values only
converge slowly towards the analytical result. At around se2e = 0.85w, one data
point appears to be an outlier, being much closer to the single wire limit than
surrounding points. This can be explained by the mode crossing between the
Kittel and Damon-Eshbach mode discussed in Sec. 4.1, which is located roughly
at this value. At se2e = 6w, Nxx and Nyy are steadily within 5% of the single
wire limit. Nzz on the other hand appears to not converge towards the analyt-
ical value at all, remaining at a mean value of Nzz = (0.0026 ± 0.0050). This
allows to approximate Nzz ≈ 0. Upon assuming Nzz = 0 and only using Nxx

and Nyy as free fitting parameters, one recovers the same result as presented in
Fig. 4.6 for Nxx/Nyy as a function of the wire spacing se2e. All in all, the data in
Fig. 4.6 point towards sizable dipole-coupling between the individual wires of the
grating for edge-to-edge spacings se2e ≤ 1.5w, leading to collective modes rather
than excitations of the individual wires. This result agrees well with previously
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established values for the interaction range in literature, determined by both
experimental and analytical methods [67–71].

64



4.2 Influence of wire spacing on inter-wire coupling

0 1 2 3 4 5 6
se2e/w

0.0

0.2

0.4

0.6

0.8

1.0

Theory Nxx
Theory Nyy

Theory Nzz

Fitted Nxx
Fitted Nyy

Fitted Nzz

Figure 4.6: Resulting demagnetization factors Nxx (red), Nyy (blue) and Nzz (green) from
fitting the modified Kittel equation (4.1) to the simulated ferromagnetic resonance spectra
of the nanogratings. This figure partially shows the transition from a continuous thin film
(se2e = 0) towards the limit of a single wire (se2e → ∞). The edge-to-edge spacing se2e
is presented in units of the constant wire width w = 200 nm. The analytical results for
a single ferromagnetic wire are shown as horizontal lines of corresponding color, with the
shaded area marking a 5% deviation. For se2e = 0, the expected result for the ferromagnetic
thin film is recovered: Nzz = 1 and Nxx = Nyy = 0. Upon increasing the wire spacing
se2e, the demagnetization factors converge strongly towards the analytical limit, but start to
saturate between se2e = 1w and se2e = 1.5w. For large wire separation se2e = 6w, Nxx

and Nyy are both steadily converged within 5% of the single wire limit, whereas Nzz is well
approximated as Nzz ≈ 0 without significant impact on the results. Subsequently, for spacings
se2e ≤ 1.5w a strong dipole-coupling is present between the wires, inducing a collective mode
of the nanograting rather than individual wire modes.
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4.3 Spin wave dispersion

Apart from studying the resonant behavior of nanograting structures, one can
also investigate their spin wave transport properties by simulating the disper-
sion relation. For this purpose, a simulation model with a unit cell containing
99 individual nanowires and no periodicity along the x-direction is used. Each
wire has a width w = 200 nm and height h = 20nm. By utilizing this modified
simulation box, one can effectively simulate large spin wave travel distances of
order 10 µm along the x-direction, while restricting the simulation box in the
transverse directions to conserve memory and calculation power. In order to ex-
cite spin waves, the system is first relaxed with an external field µ0Hext = 50mT
applied along the wire direction (i.e., the y-axis). Then, a spatially and tempor-
ally sinc-shaped excitation field µ0hrf = 1mT ·sinc(kc(x−x0)) ·sinc(2πfc(t−t0))
is applied along the x-axis, transverse to the grating. The excitation parameters
are kc = 500 · 2π/lx, fc = 100GHz and t0 = 50ps, while choosing x0 = 0 to
center the excitation in the sample middle. The parameter lx hereby describes
the length of the simulation box along the x-axis (c.f. Fig. 4.1).
In Fig. 4.7, the spin wave dispersion along the x-axis is depicted for several
different edge-to-edge spacings se2e, which in turn leads to varying center-to-
center distances a = se2e + w (indicated by the sketch in the lower right-hand
corner of each plot). Each spectrum was created by interpreting the nanograting
as a one-dimensional magnonic crystal, treating the individual wires as lattice
sites by considering only their averaged magnetization. Effectively, this com-
putational trick reduces the system to a 1D-chain of lattice sites, separated by
the center-to-center spacing a of the wires. Fig. 4.7 (a) depicts the dispersion
spectrum of a continuous thin film (se2e = 0nm). The reduced zone scheme
matches the expectation for the excitation of Damon-Eshbach spin waves in a
ferromagnetic thin film, as shown by the reasonable agreement to the previously
derived Kalinikos-Slavin equation (2.31), which is included in (a) as a red dashed
line. Upon introducing a finite spacing se2e = 5nm in Fig. 4.7 (b), a gap opens
at the Brillouin zone boundaries between the first and second excitation band.
Furthermore, the higher bands of the reduced zone scheme already appear to
flatten considerably. Increasing the spacing to se2e = 50nm and se2e = 150 nm
in Fig. 4.7 (c) and (d), respectively, flattens the lowest band from an initial width
of ≈ 14GHz in (a) to a respective bandwidth of ≈ 5GHz in (c) and ≈ 2GHz
in (d). In contrast, for even larger spacings se2e = 200 nm and se2e = 350 nm,
presented in Fig. 4.7 (e) and (f), respectively, the lowest band flattens only mar-
ginally. In Fig. 4.7 (e), the upper bands appear to be almost horizontal, whereas
for the lowest band the bandwidth seems to remain at ≈ 2GHz.
The results depicted in Fig. 4.7 (b) and (c) suggest that nanogratings exhibit
transport properties of one-dimensional magnonic crystals for small edge-to-edge
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Figure 4.7: Dispersion spectra of CoFe nanogratings of varying edge-to-edge spacing se2e,
resulting in different center-to-center spacings a = se2e + w = se2e + 200 nm, as indicated by
the sketch in the lower right-hand corner of each spectrum. (a) For the case of a continuous
thin film (se2e = 0) the expected reduced zone scheme for the excitation of Damon-Eshbach
spin waves is recovered. As a guide to the eye, the analytic result of the Kalinikos-Slavin
equation (2.31) is shown as a red dashed line, agreeing well with the simulation data. (b) A
small inter-wire spacing se2e = 5nm opens a band gap at the Brillouin zone boundary between
the first and second band, while the higher order bands are already flattened strongly. (c) At
se2e = 50nm, the lowest band flattens from a band width of initially ≈ 14GHz in (a) to around
≈ 5GHz. (d) - (f) For even larger spacings se2e = 150 nm to se2e = 350 nm only marginal
changes are observed in the dispersion, with the lowest band flattening to a bandwidth of
≈ 2GHz in (f).
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Figure 4.8: Dispersion spectrum of an array of Ni80Fe20 nanowires of width w = 350 nm,
height h = 30nm and edge-to-edge spacing se2e = 55nm. The simulation data shown as a
colormap is in reasonable agreement to both analytical considerations (gray lines) and ex-
perimental data (gray dots) previously published by Giubbotti et al. [72]. This confirms the
validity of the presented calculation method for the dispersion of nanogratings.

spacings. This finding was first reported by Gubbiotti et al. [72] and confirmed
using both theoretical and experimental data. In order to validate the approach
developed in this section for the simulation of spin wave dispersions, we simulate
the material system used in Ref. [72], consisting of an array of Ni80Fe20 nanowires
(Ms = 800 kA/m, Aex = 13pJ/m and α = 0.01 [14, 55]) of width w = 350 nm,
height h = 30nm and edge-to-edge spacing se2e = 55nm. Fig. 4.8 depicts the
simulation results as a color spectrum. Additionally, the analytical (gray lines)
and experimental (gray dots) data of Gubbiotti et al. [72] is included in Fig. 4.8,
showing decent agreement with the simulation.

4.4 Summary

In conclusion, the investigation of ferromagnetic nanogratings (c.f. Fig. 4.1) in
this chapter has yielded insight into three main points of consideration with re-
spect to their potential usage as local transducers for chiral pumping. First, the
study of the ferromagnetic resonance (FMR) for nanogratings of different wire
spacings in Sec. 4.1 showed that for large inter-wire distances the Kittel mode
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is no longer the lowest frequency excitation of the grating (c.f. Fig. 4.2). This
observation is of particular relevance as the dynamic dipole field induced by the
nanogratings Kittel mode is crucial to realize non-reciprocal spin wave transport
in the theoretical framework of chiral pumping (c.f. Sec. 2.5.2). Furthermore,
analyzing the mutual coupling range via fitting the Kittel equation to the FMR
spectra of gratings with various spacings showed an upper bound for the dipole-
interaction regime of se2e ≤ 1.5w, where se2e is the edge-to-edge spacing and
w the width of a single wire of the grating (c.f. Fig. 4.6). This observation is
in accordance with estimates derived from both analytical calculations and ex-
periments. Since the theoretical description of chiral pumping is based on the
assumption of negligible inter-wire dipole-interactions, this bound serves as an
important design parameter for experimental realizations. Finally, by analyzing
the spin wave dispersion of Damon-Eshbach modes traveling across the nano-
grating in Sec. 4.3, two conclusions can be made. Firstly, the nanograting can
be treated as a one-dimensional magnonic crystal, which allows for precise cal-
culations of the dispersion relation and is confirmed by its agreement with both
experimental and analytical dispersions of nanogratings (c.f. Fig. 4.8). Secondly,
the dispersion is flattened by increasing the inter-wire edge-to-edge spacing se2e,
leading to an opening of band gaps at the Brillouin-zone boundaries (c.f. Fig. 4.7).
This showed that for small wire spacings a considerable spin wave transport is
possible across the grating without an adjacent spin wave medium.
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Chapter 5

Anti-ferromagnetic order in
alternating ferromagnetic
nanogratings

Apart from the so-far discussed homogeneous nanogratings, alternating nanowire
arrays have gained attention in literature due to several peculiarities. Initially,
it has been found that in arrays of alternating Co/Ni80Fe20 nanowires, the hys-
teresis curve of the grating displays two distinct switching fields, caused by the
different magnetic coercive fields of the different material compositions [73]. This
results in a state of anti-parallel alignment or anti-ferromagnetic order (AFO)
between the two wire type sub-lattices in a specific magnetic field range [73].
Apart from the wire material, i.e., the saturation magnetization, also the phys-
ical dimensions of the wires influence their magnetic coercive fields via the shape
anisotropy (see Sec. 2.2.1). Therefore, by alternating not the wire material but
the width of adjacent wires, it has been found that the two-step magnetiza-
tion reversal is also visible in hysteresis curves recorded for material-wise uni-
form Ni80Fe20 nanogratings with alternating wire widths [67, 74]. In magneto-
statically coupled alternating width nanowire arrays (AWNAs), the desired mag-
netic state of the grating (anti- or ferromagnetic alignment of adjacent wire mag-
netizations) can, therefore, be realized by sweeping the external magnetic field
from a fully polarized state with parallel magnetizations towards the magnetic
switching field [67]. The (anti-)ferromagnetic alignment of the two sub-lattices
is furthermore revealed in ferromagnetic resonance (FMR) experiments of the
respective structure, due to a discontinuous mode spectrum [67]. These sub-
stantial differences in the behavior of a homogeneous grating merit a separate
investigation of AWNAs in this chapter. Specifically, the following analysis con-
ducted in Sec. 5.1 is in analogy to the discussion of the homogeneous nanogratings
(c.f. Sec. 4.1), particularly focusing on the impact of the edge-to-edge wire spa-
cing on the collective ferromagnetic resonance behavior. Additionally, special
focus is again put on the Kittel mode of the structure as a possible mediator
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for chiral pumping. We then close this chapter by summarizing our findings in
Sec. 5.2.

5.1 Ferromagnetic resonance

In Fig. 5.1, the adjusted simulation unit cell for an alternating width nanowire
array (AWNA) is depicted schematically. Two infinitely long wires of different
widths w1 and w2 are periodically aligned along the x-direction in an alternating
array, where the respective sub-array containing the wires of width w1 and w2

can be interpreted as a sub-lattice of the structure. Both sub-lattices are other-
wise identical with regards to wire height h, length and material composition.
The grating is formed with a homogeneous edge-to-edge spacing se2e between
adjacent wires. To align the wire magnetizations, a homogeneous static external
magnetic field Hext is applied along the wire direction (y-axis). A weak external
driving field µ0hrf(t) = 1mT · sinc(2πfc(t − t0)) is used with a cut-off fre-
quency fc = 100GHz and a pulse delay t0 = 50ps, applied perpendicular to the
grating along the x-axis to excite ferromagnetic resonance in the magnetic wires.

In order to investigate the impact of the edge-to-edge spacing se2e and thus
the strength of the dipolar coupling on the AWNAs, a ferromagnetic resonance
(FMR) simulation is performed for systems with varying values of se2e but
otherwise constant system parameters, akin to the homogeneous nanogratings
presented in Sec. 4.1. In Fig. 5.2, the resulting data of AWNAs consisting of
CoFe wires with widths w1 = 200 nm, w2 = 800 nm and height h = 20nm is
shown. We use the material parameters µ0Ms = 2.258T, Aex = 2.6× 10−11 J/m
and α = 3.76× 10−3 for CoFe [13, 66]. For all spacings se2e, which are indicated
in the respective lower right-hand corners in the plots of Fig. 5.2, a multitude
of modes is observed. The discontinuities of these modes allow to discern
the external magnetic field range, in which anti-ferromagnetic order (AFO)
is established in the AWNA, here approximately from µ0Hext = −130mT to
µ0Hext = −30mT. Furthermore, it is noteworthy that the magnetic field range
of the AFO state is independent of se2e. Starting with a small spacing of
se2e = 50nm in Fig. 5.2 (a), the spectrum generally agrees with the expectation
of a superposition of two spectra of non-alternating, homogeneous nanogratings
(c.f. Fig. 4.2) in the positive magnetic field range. Two high intensity modes
at low frequencies and a multitude of higher order Damon-Eshbach modes
are visible, which both can be attributed to the two different kinds of wire
sub-lattices being present. Upon comparing these results with those in Sec. 4.1,
it is therefore reasonable to assume that the two lowest frequency modes of high
intensity in Fig. 5.2 (a) are the Kittel modes of the respective sub-lattices of the
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x

yz

Figure 5.1: Schematic depiction of the model system for alternating width nanowire arrays
(AWNAs). The simulation box (black lines) contains two "sub-lattices" of the AWNA, each
being a regular array of nanowires with height h but different widths w1 and w2. These two
different wire types of widths w1 and w2 are alternatingly aligned along the x-axis, with an
edge-to-edge spacing se2e between neighboring wires. The width of the simulation box along
the x-axis is chosen such that each wire width is represented twice, giving a total of four wires.
By choosing a non-wire-centric layout of the simulation box, different wire types are present at
the respective left and right border of the simulation box, allowing the use of periodic boundary
conditions (indicated by pale red wires) to simulate realistic system proportions. To saturate
the structure and control the (anti-)ferromagnetic order of the two sub-lattices, an external
static magnetic field Hext (orange) is applied along the wire axis in y-direction with again a
1°-offset to account for experimental uncertainties. After saturation, the array is excited using
an oscillating driving magnetic field hrf (turquoise), applied perpendicular to the wires along
the x-direction.

AWNA. In the AFO-state, the mode spectrum clearly changes, as the lowest two
modes now show a strong curvature over the rather small window of external
field strengths. More precisely, it appears that an avoided- or anti-crossing is
present between the two lowest modes in the spectrum. When increasing the
wire spacing, starting from se2e = 100 nm in Fig. 5.2 (b) over se2e = 200 nm
in (c) to se2e = 300 nm in (d), the spectrum appears mostly unaffected by the
spacing in both ferromagnetic (FO) and anti-ferromagnetic (AFO) alignments.
An exception are the two lowest modes of the AFO-state, as the first mode
shifts upwards in frequency.Further increasing the spacing to se2e = 900 nm
in Fig. 5.2 (e) shows a mode crossing between the two lowest modes of the
AFO state, where the lowest mode at the left boundary of the AFO state
(µ0Hext ≈ −130mT) is now continuous with the mode in ferromagnetic ordered
(FO) state in the positive magnetic field range. Contrarily, the first higher
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Chapter 5 Anti-ferromagnetic order in alternating ferromagnetic nanogratings

mode at µ0Hext ≈ −130mT appears continuous with the ferromagnetic state
present for negative external magnetic fields. Finally, increasing the spacing to
se2e = 1600 nm (c.f. Fig. 5.2 (f)) shows no observable difference to the case of
se2e = 900 nm (c.f. Fig. 5.2 (e)).
In Fig. 5.2, a general distinction can be made between a possibly coupled state
of the AWNA, showing apparent anti-crossing between the two lowest modes
for the spacings se2e ≤ 300 nm (Fig. 5.2 (a)-(d)), and an uncoupled state, where
the two lowest modes cross for large spacings se2e ≥ 900 nm (Fig. 5.2 (e)-(f)).
In the coupled state, we assume that the dipole-interaction between the two
sub-lattices mediates coupled modes of both wire types if the system is in
the AFO state. Since the dipole-interaction dominates in the long wavelength
limit (c.f. Sec. 2.4), it is reasonable that this mode coupling mainly affects the
Kittel modes of the respective sub-lattices. This is further supported by the
dependence of the two lowest modes in Fig. 5.2 as a function of the wire spacing.
For large spacings, the dipole-interaction is too weak to mediate any coupling
between modes (see Fig. 5.2 (e)-(f)). Therefore, we interpret these spectra as
a simple superposition of the FMR spectra of the respective (isolated) sub-
lattices, with the different coercivity, i.e., shape anisotropy, causing different
switching fields and frequencies of the modes.This interpretation is consistent
with both the experimental finding by Goolaup et al. [74] that the dipole fields
are dominated by the thicker wire, as well as consistent with the coupling range
for nanogratings se2e ≤ 1.5 determined in Sec. 4.2, as the mode crossing appears
in Fig. 5.2 (e) at se2e = 900 nm = 1.125w2.

In order to verify the interpretation of the FMR spectra for different values of
se2e in Fig. 5.2, the spatial mode profiles can be used to determine the physical
nature of each mode in the spectrum, which allows insight into the coupling of
modes in the AFO-state for small spacings. In Fig. 5.3, the spatial mode profile
is analyzed for three selected modes in the AFO-ordered state in the regime
of strong dipole-coupling, at an edge-to-edge spacing of se2e = 50nm. Three
markers in the FMR spectrum shown in Fig. 5.3 (a) symbolize the location of the
selected modes at an external field value of µ0Hext = −40mT, located shortly
after the transition from a fully saturated into an anti-ferromagnetically orderd
(AFO) state. The lowest mode in Fig. 5.3 (a) exhibits the highest intensity at
a frequency of f0 = (11.1054 ± 0.0014)GHz, indicated by the orange marker.
Visualizing its mode profile in Fig. 5.3 (b) reveals that this mode is in fact
a coupled Kittel mode of the two sub-lattices of the AWNA, as the spatial
power distribution is quasi-uniform across both wire types. The intensity of this
coupled Kittel mode is furthermore approximately equal for both wire species.
The next higher mode, also strongly affected by the coupling, is located at
f1 = (17.13 ± 4.60)GHz and is indicated by a purple marker in the spectrum.
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Figure 5.2: Results of the ferromagnetic resonance (FMR) simulation for a CoFe alternat-
ing width nanowire array (AWNA), consisting of two sets of wire widths w1 = 200 nm and
w2 = 800 nm arranged with various edge-to-edge spacings se2e (indicated by the sketch in
the respective lower right-hand corner). The mode discontinuities at µ0Hext ≈ −130mT and
µ0Hext ≈ −30mT separate the anti-ferromagnetically ordered (AFO) from the ferromagnet-
ically ordered (FO) state of the AWNA. (a) For se2e = 50nm, the two lowest modes in the
spectrum presumably couple via the dipole-interaction and display an anti-crossing in the AFO
region.(b)-(d) Increasing the spacing to values se2e ≤ 300 nm reveals that the coupled modes
of the anti-crossing approach each other in frequency space, due to a frequency upshift of the
lower mode. (e)-(f) The result of large spacings se2e ≥ 900 nm show a direct mode crossing
due to decoupled modes in the AFO state, caused by a strongly reduced dipole-interaction.
For such large values, the FMR spectrum is presumably simply the overlay of the FMR spectra
of the two sub-lattices of the AWNA.
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The mode profile in Fig. 5.3 (c) shows that this mode appears to be a coupling of
the Kittel mode of the thinner wire sub-lattice with a low order Damon-Eshbach
mode in the ticker wire sub-lattice, as deduced from the quasi-uniform power
distribution in the thinner wire contrasted by the standing wave appearance
in the thicker wire. Moreover, the latter shows a concentration of intensity
towards the middle of the thicker wire, but it is dominated by the Kittel
mode of the thinner wire. Lastly, the third mode influenced by the spacing is
f2 = (21.23 ± 0.17)GHz, shown as a dark blue marker in the FMR spectrum.
Its mode profile visualized in Fig. 5.3 (d) reveals that it is again a coupling of
the Kittel mode of the thin wire with a Damon-Eshbach mode of the thick wire,
however, in contrast to (c) the Damon-Eshbach mode is now of a higher order
and of higher intensity than the Kittel mode and thus dominates over the thin
wire mode.
All in all, the spatial mode profiles presented in Fig. 5.3 confirm the assumption
of a coupling of the Kittel modes of the two wire type sub-lattices, mediated by
the strong dipole-interactions of the Kittel modes. Additionally, the close prox-
imity in frequency between the Kittel mode of the thinner wire with the first two
odd orders of Damon-Eshbach modes in the thicker wire leads to an additional
hybridization of two coupled modes. For the lower order Damon-Eshbach mode
of the thick wire the Kittel mode of the thin wire dominates, which is reversed
for the higher order Damon-Eshbach mode. We assume that this multitude of
couplings of the thin wire Kittel mode gives rise to the anti-crossing between
the two lowest modes.

To contrast the findings in the strong dipole-interaction regime shown in Fig. 5.3,
the spatial mode profiles are also analyzed for the case of negligible inter-wire
coupling. The results for an edge-to-edge spacing of se2e = 1600 nm are shown
in Fig. 5.4.Fig. 5.4 (a) displays the corresponding FMR spectrum alongside
three markers indicating the extracted modes at an external magnetic field
µ0Hext = −120mT, which is shortly before the array switches back into a fully
polarized state. The lowest mode at f ′

0 = (12.650± 0.004)GHz (orange marker)
is shown in Fig. 5.4 (b) and has a quasi-uniform power distribution across the
thinner wires with no visible power from the thick wires, which points towards
a fully independent Kittel mode of the thin wire sub-lattice. The contrary
case is present for the mode at f ′

1 = (18.214 ± 0.002)GHz (purple marker),
Fig. 5.4 (c), where the power is quasi-uniformly distributed only across the thick
wires, indicating to be the independent Kittel mode of the thick wire sub-lattice.
Finally, the third mode at f ′

2 = (24.28± 0.03)GHz, which is also affected by the
dipole-interaction for smaller se2e values (c.f. Fig. 5.3), is depicted in Fig. 5.4 (d),
showing only a low order Damon-Eshbach mode in the thick wire.
Subsequently, the mode profiles for the non-interacting wires presented in Fig. 5.4
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Figure 5.3: Selected spatial mode profiles for the FMR simulation of an alternating CoFe
nanograting, consisting of wires with widths w1 = 200 nm, w2 = 800 nm and height h =
20nm, arranged with an edge-to-edge spacing se2e = 50nm. The mode profiles confirm the
assumption of coupled Kittel modes of the two wire types, mediated by the dipole-interaction
in the anti-ferromagnetically ordered (AFO) state. (a) FMR spectrum depicting the selected
modes at µ0Hext = −40mT, shortly after the transition into the AFO-state. (b) The lowest
frequency, highest intensity mode at f0 = (11.1054 ± 0.0014)GHz (orange) shows a quasi-
uniform distribution in both wire types, and therefore represents a coupling of the Kittel modes
of the individual wires. (c) The second lowest frequency mode at f1 = (17.13 ± 4.60)GHz
(purple) also features a quasi-uniform distribution across the thinner wire, whereas a low order
Damon-Eshbach mode is present in the thicker wire. Therefore, the Kittel mode of the thin wire
additionally couples to a Damon-Eshbach mode of the thick wire due to the close proximity of
the modes in frequency space. (d) The next higher mode lies at f2 = (21.23±0.17)GHz (dark
blue), and represents a coupling of the thin wire Kittel mode to a thick wire Damon-Eshbach
mode similarly to (c), however, with a higher order of the thick wire Damon-Eshbach mode.
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confirm the interpretation of the FMR spectrum for different spacings presented
in Fig. 5.2, where the anti-crossing of modes in the AFO-state is attributed to
a mode coupling between the respective Kittel modes of the sub-lattices and
adjacent low-frequency modes. This coupling vanishes for larger spacings, as
the dipole-interaction becomes too weak for spacings w1 < w2 ≤ se2e, which
leads to a simple superposition of the FMR spectra of the respective sub-lattices.
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Figure 5.4: Selected spatial mode profiles for the FMR simulation of an alternating CoFe
nanograting, consisting of wires with widths w1 = 200 nm, w2 = 800 nm and height h = 20nm,
arranged with an edge-to-edge spacing se2e = 1600 nm. The absence of coupled modes for
larger spacings confirms that these FMR spectra may be seen as a simple superposition of the
spectra of the respective sub-lattices. This is due to the negligibly small dipole-interaction
at this length scale. (a) FMR spectrum depicting the selected modes at µ0Hext = −120mT,
shortly before the transition back to the fully polarized array. (b) The lowest frequency mode
at f ′

0 = (12.650 ± 0.004)GHz (orange) shows a quasi-uniform distribution only in the thin
wires, and is thus interpreted as the isolated Kittel mode of the thin wire sub-lattice. (c) The
second lowest frequency mode at f ′

1 = (18.214± 0.002)GHz (purple) features a quasi-uniform
distribution across the thicker wire, therefore representing the isolated Kittel mode of the thick
wire sub-lattice. (d) The third lowest frequency mode, located at f ′

2 = (24.28 ± 0.03)GHz
(dark blue), shows an isolated Damon-Eshbach mode of third order in the thicker wire sub-
lattice.
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5.2 Summary

The study of the ferromagnetic resonance response of alternating width nanowire
arrays (AWNAs) (c.f. Fig. 5.1) can be summarized into two main takeaways.
Firstly, we find that the different coercivities of the two wires species, induced
by different shape anisotropies, result in a stable state of anti-ferromagnetic ori-
entation (AFO) of adjacent wires. This AFO state is hereby only bound by the
respective coercive magnetic fields of the two wire types, and thus both control-
lable via the external magnetic field and independent of the inter-wire spacing
(c.f. Fig. 5.2). We further find that the edge-to-edge spacing se2e mainly affects
modes in the AFO state. For small values of se2e the dipole-interaction between
neighboring wires mediates a coupling of the Kittel mode of the thin wires with
both the Kittel mode and low order Damon-Eshbach modes of the thick wires
(c.f. Fig. 5.3). This hybridization of the thin wire Kittel mode subsequently res-
ults in an anti-crossing of the coupled modes in the AFO state. In contrast,
for wire spacings se2e ≥ w2, with w2 the width of the thicker wire, the dipole-
interaction is too weak to form a mode coupling, resulting in a mode crossing of
the isolated Kittel modes of the respective wire types (c.f. Fig. 5.4).
In total, the findings for AWNAs allow for intriguing speculation towards their
possible usage as mediators of chiral pumping (c.f. Sec. 2.5.2) to induce non-
reciprocal spin waves. The relative orientation of the nanograting and thin film
magnetizations is a crucial aspect in the realization of a chiral coupling between
the gratings Kittel mode and the thin film spin waves. Since for dipole-coupled
AWNAs the relative orientation of the two sub-lattices can be controlled via
the external field, one possible proposition is an externally switchable device:
for the fully polarized grating, both sub-lattices are expected to exhibit a chiral
coupling to a certain momentum direction +k, whereas in the AFO state the
thicker nanowires (with now anti-parallel magnetization direction) are coupling
chirally to spin waves travelling in the opposite direction −k, therefore reducing
the overall unidirectionality. For first simulation results of systems of AWNAs
on top of YIG thin films, we refer to the Appendix A.2.
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Chapter 6

Heterostructures of ferromagnetic
nanogratings and thin films

As initially discussed in Sec. 2.5.2, the core mechanism of chiral pumping is based
on the interaction between the Kittel mode of a ferromagnetic nanograting with
spin waves traveling in the low-damping ferri- or ferromagnetic thin film un-
derneath the grating. Specifically, Chen et al. [10] used a ferromagnetic Co
nanograting placed on an insulating, ferrimagnetic thin film made of Y3Fe5O12

(YIG) for their experimental realization. This section now aims to investigate
how the interaction with the thin film changes the results obtained for isolated
nanogratings in Ch. 4. To this end, we start with a discussion of the ferromag-
netic resonance (FMR) response of a stacked system modeled according to the
experimental device of Chen et al. [10] in Sec. 6.1, before comparing our findings
to their reported experimental results. To then quantify whether this system
realizes unidirectional spin waves induced via chiral pumping, we focus on its
spin wave transport properties in Sec. 6.2. Finally, we end this chapter by sum-
marizing our findings in Sec. 6.3.

6.1 Ferromagnetic resonance

Starting with simulating the ferromagnetic resonance (FMR) for bilayered sys-
tems of nanogratings and thin films, the simulation box must be adjusted. In
Fig. 6.1, the updated "unit cell" of the simulation (solid, black lines) is depicted
schematically. The base is given by an either ferri- or ferromagnetic thin film
(blue) with low magnetic damping, parameterized by its thickness tTF. It is
positioned at the bottom of the simulation box with respect to the z-axis.
Three ferromagnetic wires (red) of width w and height h are oriented along the
y-direction and positioned directly on top of the thin film to provide optimal
conditions for (magnetic) dipole-interactions between the wires and the thin
film. The grating formed by the wires is characterized by the edge-to-edge
spacing se2e between adjacent wires. In order to simulate realistic sample
proportions, periodic boundary conditions are used in both the x- and the
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x

yz

Figure 6.1: Simulation box designed for simulating bilayered systems consisting of a nano-
grating on top of a continuous thin film. Three (ferromagnetic) wires of width w and height h
form the nanograting (red) at the top of the simulation box (positive z-direction), by aligning
them along the y-axis with an edge-to-edge spacing se2e. The bottom of the simulation box
is then filled by a (ferri-/ferromagnetic) thin film (blue), characterized by its thickness tTF.
In order to simulate sensible sample sizes for comparisons to experiments, periodic boundary
conditions (pale color) are used in the in-plane x- and y-directions. To saturate the sample
a static external magnetic field µ0Hext (orange) is applied along the grating in y-direction.
To provide excitation of the magnetic system, an oscillating driving magnetic field µ0hrf (tur-
quoise) is added perpendicular to the grating along the x-axis.

y-direction (pale colors). The sample is saturated by a static magnetic field
Hext (orange) applied along the y-direction, before the spin system is excited
via an oscillating driving magnetic field hrf (turquoise) applied perpendicular
to the grating, along the x-axis. In this context, a spatially homogeneous
excitation field µ0hrf(t) = 1mT · sinc(2πfc(t − t0)) is used with a cut-off fre-
quency fc = 100GHz and a pulse delay t0 = 50ps. For each value of µ0Hext,
the total propagation time is set to T = 20ns, while sampling the (averaged)
magnetization in dt = 5ps intervals.

The material system studied in the following is modeled according to the exper-
imental device studied by Chen et al. [10]. A nanograting is constructed with
infinitely long Co wires, measuring a width w = 110 nm and height h = 20nm.
They are arranged periodically along the x-axis, with a center-to-center period
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6.1 Ferromagnetic resonance

a = 600 nm or equivalently an edge-to-edge spacing of se2e = 490 nm. The mater-
ial parameters for the Co grating are MCo

s = 1430 kA/m, ACo
ex = 13× 10−12 J/m

and αCo = 0.01 [10]. Due to its rather large wire spacing se2e ≈ 4.45w, the
Co nanograting falls firmly in the previously determined (c.f. Sec. 4.2) non-
interacting regime, as the dipole-interactions become negligibly small for large
inter-wire distances. This grating is positioned on top of a Y3Fe5O12 (YIG)
thin film with thickness tTF = 20nm, which is modeled using the material
parameters MYIG

s = 140 kA/m, AYIG
ex = 3 × 10−12 J/m and αYIG = 8 × 10−5

[10].

In Fig. 6.2, the resulting FMR spectrum is shown for (a) a Co grating on top of
a YIG layer and (b) an isolated Co grating without a thin film underneath. The
direct comparison between Fig. 6.2 (a) and (b) provides insights on the impact
of the YIG film on the FMR spectrum of the nanograting. In Fig. 6.2 (a), two
different coercivities of the bilayered system are visible as mode discontinuities,
which allows to differentiate the modes stemming from the Co grating from
those stemming from the YIG layer. For one, a first switching field is observed
at µ0H

YIG
c ≈ −4mT, which is identified as the point of magnetization reversal,

i.e., the coercive magnetic field, of the YIG thin film, as it it close to the
zero field due to the vanishing in-plane shape anisotropy. Several modes in
the spectrum are discontinuous at µ0H

YIG
c , most notably the highest intensity

mode, labeled mode 0, at low frequency. Subsequently, we assume that mode
0 is the Kittel mode of the YIG film. Furthermore, higher frequency modes of
low intensity also appear to switch at µ0H

YIG
c , and are are presumably Damon-

Eshbach modes of the film. A second point of mode discontinuities can be seen
at µ0H

Co
c ≈ −145mT, the coercive magnetic field of the Co nanograting. Sub-

sequently, the two visible coercivities µ0H
Co
c ≈ −145mT and µ0H

YIG
c ≈ −4mT

restrict the magnetic field range, where the nanograting and the thin film
magnetizations are anti-parallel (AP) aligned to each other. Fig. 6.2 (a) further
reveals that only two additional modes have a comparable intensity to mode 0.
These modes are labeled as mode 1 and mode 2, respectively, and are crossing
µ0H

YIG
c before showing discontinuous behavior at µ0H

Co
c . Specifically, mode 1

crosses the zero field at f ≈ 8GHz, and continues into the AP state as a mode
with strongly reduced intensity. Conversely, mode 2 passes the zero field at
f ≈ 19GHz, almost preserving its intensity upon entering the AP region. Going
forward, we focus on the modes 0, 1 and 2, neglecting higher frequency modes
with low intensity crossing µ0H

YIG
c , as we expect these modes to exhibit only

weak dipole-interaction.
The FMR spectrum of the isolated nanograting shown in Fig. 6.2 (b) reveals
an increased coercivity of µ0H

NG
c ≈ −170mT. The five visible modes in the

spectrum are explained as the high intensity Kittel mode of the Co nanograting,
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accompanied by 4 orders of odd wave number Damon-Eshbach modes in the
grating (see discussion in Sec. 4.1 for details).
Comparing now the FMR spectrum of the Co nanograting placed on the YIG
thin film in Fig. 6.2 (a) with that of the isolated Co nanograting in Fig. 6.2 (b),
several interesting differences can be observed. For one, a non-negligible decrease
in the coercivity of the Co nanograting, reducing from µ0H

NG
c ≈ −170mT in

the isolated case to µ0H
Co
c ≈ −145mT when placed on the YIG thin film, is

observed. Secondly, it appears that mode 2 in Fig. 6.2 (a) corresponds to the
Kittel mode of the Co nanograting upon comparison to Fig. 6.2 (b). This raises
questions about the physical interpretation of the weak mode 1 in Fig. 6.2 (a),
as there should be no excitation of the grating with frequencies lower than its
Kittel mode.

To discern the physical nature of the modes in the FMR spectrum shown Fig. 6.2,
the spatial distribution of power for the respective modes can be used. The
FMR spectrum for the system in Fig. 6.3 (a) displays three markers indicating
the location of the respective modes calculated at an external magnetic field of
µ0Hext = 50mT, where the color coding of the markers connects them to the
respective spatial profiles. The lowest mode with highest intensity (mode 0) is
found at f0 = (3.062 ± 0.009)GHz (orange) and is visualized in Fig. 6.3 (b).
There, an almost cosine shaped distribution of power is visible in the front
view (inset), which could either be attributed to a computational artifact or
interactions with the nanograting, as discussed later on. As the minima of the
cosine-like signal are located exactly at the positions of the nanowires, the signal
shape could be explained by non-resonant nanowires reducing the local intensity
when averaging the response over the entire stack of thin film and grating.
Following this argument, mode 0 at f0 can be regarded as spatially uniform
across the entire thin film and identified as the Kittel mode of the YIG film,
as initially expected from its symmetric shape and high intensity in the spec-
trum. The power spectrum of the first mode without discontinuity at µ0H

YIG
c

(mode 1) is located at f1 = (9.460 ± 0.007)GHz (purple), and is depicted in
Fig. 6.3 (c). It shows a distinct concentration of power with a quasi-uniform
mode profile across the wires, which would identify mode 1 as the Kittel mode
of the Co nanograting. Additionally, mode 1 appears to be superpositioned
with a lower intensity, high order Damon-Eshbach mode of the YIG thin film.
Mode 1 appearing to be the Kittel mode of the grating is unexpected, as the
comparison with the isolated nanograting in Fig. 6.2 suggests that mode 2 and
not mode 1 is the Kittel mode of the grating. The more intense mode 2 is
located at f2 = (20.46 ± 0.03)GHz (dark blue) and is visualized in the mode
profile depicted in Fig. 6.3 (d). Here, in the front-view on the sample (inset) the
mode distribution is complex, as it contains densely spaced higher order modes.
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Figure 6.2: Influence of a YIG film of thickness tTF = 20nm on the ferromagnetic resonance
(FMR) spectrum of a Co nanograting. The nanograting consists of wires of width w = 110 nm
and height h = 20nm, arranged periodically with an edge-to-edge spacing of se2e = 490 nm.
(a) The grating on top of the thin film results in a rich mode spectrum, featuring two separate
coercivities visible in the spectrum due to the different shape anisotropy of the grating wires
and the thin film. In the magnetic field range between the coercivities µ0H

Co
c ≈ −145mT and

µ0H
YIG
c ≈ −4mT the magnetizations of thin film and grating are anti-parallel (AP) aligned.

The highest intensity mode (mode 0), is attributed to the Kittel mode of the YIG film, due
to its symmetry with regards to µ0H

YIG
c . At higher frequencies, the modes 1 and 2 with low

and high intensity, respectively, do not show any discontinuity at µ0H
YIG
c and are therefore

attributed to the Co nanograting. (b) For the isolated grating without the YIG thin film, an
increased grating coercivity µ0H

NG
c ≈ −170mT is observed. The high intensity mode stems

from the Kittel mode of the nanograting and is equivalent to mode 2 in (a). The higher modes
in (b) are Damon-Eshbach modes of the nanograting.

However, from the top view in the spectrum it appears that mode 2 may be
consisting of a Damon-Eshbach mode in both the thin film and the grating.
The unexpected discrepancies between the mode profiles in Fig. 6.3 and the
frequency position of the modes in the spectrum may be explained by interac-
tions between the Co nanograting and the YIG thin film. In the case of mode
0, shown in Fig. 6.3 (b), a cosine-like profile of the mode instead of a quasi-
uniform one can be seen. A possible explanation beyond numerical artifacts
could be magnetization pinning effects of the magnetically much harder Co
nanowires acting on the YIG film. Specifically, we assume that the stray fields
of the nanowires dampen the uniform precession below themselves, i.e., inducing
a reduced amplitude of the Kittel mode of the YIG film directly below the
nanowires. Subsequently, this would cause local dips in the mode intensity, just
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as observed in Fig. 6.3 (b). A more involved question is why mode 1 appears to
be the Kittel mode of the grating with a quasi-uniform intensity across the wires,
as visible in Fig. 6.3 (c). Assuming again magnetization pinning caused by the
magnetically hard Co wires, we deduce that the regions in the YIG film directly
below the wires may be subject to strong interactions with the Co stray fields,
creating magnetic domains in the continuous YIG film. To verify this claim, we
inspect the spatial magnetization orientation of the thin film in Fig. 6.4. There,
it can be seen that the stray field caused by Co wires influences the thin film
so strong that their location is visible in the magnetic texture of the thin film,
even when inspecting the sample from the opposite side. Subsequently, Fig. 6.4
verifies our assumption of magnetization pinning by the Co grating leading to
the formation of magnetic domains in the YIG thin film. In this picture, the
thin film can thus be treated as a one-dimensional magnonic crystal, composed
of alternating regions located below the Co wires and below the vacant spaces
of the grating. This leads us to the interpretation that mode 1 may be the
Kittel mode of the YIG domains directly below the wires, rather than stemming
from the wires themselves. This argument can further be extended to mode
2 in Fig. 6.3 (d). Here, we interpret the Damon-Eshbach mode profile visible
also across the wires as modes belonging to the YIG regions below the wires,
however, superimposed with the Kittel mode of the Co wires above it. The
distinct difference in intensity between the wire locations and vacant spaces in
Fig. 6.3 (d) is seen as support of this interpretation.

After understanding the nature of the modes labeled in the FMR spectrum shown
in Fig. 6.2, a direct comparison can be made between the findings of the micro-
magnetic simulation and the experimental results reported by Chen et al. [10],
which are depicted in Fig. 6.5. Fig. 6.5 (a) shows the simulated ferromagnetic res-
onance (FMR) spectrum for the system, following the experimental specifications
and material parameters taken from Ref. [10]. The experimentally determined
FMR spectrum of Chen et al. [10] is given for comparison in Fig. 6.5 (b). The
first striking visual difference between the two spectra is the large difference in
the number of visible modes. The simulated spectrum in Fig. 6.5 (a) exhibits a
much richer spectrum with a multitude of higher order modes. In contrast, the
experimental data in Fig. 6.5 (b) shows only two visible modes: a dominating up-
per mode and an almost vanishing lower mode. A detailed comparison between
Fig. 6.5 (a) and (b) reveals that the high intensity mode in the experiment cor-
responds to mode 2 (Kittel mode of the nanograting) in the simulation, whereas
the low intensity mode of the experimental data is represented by mode 0 (Kit-
tel mode of the thin film) in the simulation. Strikingly, the intensity of mode
2 in the experiment is far larger than that of mode 0 (see Fig. 6.5 (b)). In the
simulated data shown in Fig. 6.5 (a), mode 0 contrastingly shows an intensity at
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Figure 6.3: Spatial mode profiles for the ferromagnetic resonance (FMR) simulation of a Co
nanograting consisting of wires of width w = 110 nm and height h = 20nm, arranged with
an edge-to-edge spacing se2e = 490 nm on a YIG film of thickness tTF = 20nm. (a) FMR
spectrum showing color-coded markers of the three analyzed modes, at an external magnetic
field µ0Hext = 50mT. At this magnetic field, the nanograting and thin film magnetizations
are ferromagnetically aligned to each other. (b) The lowest mode of highest intensity (mode
0) is located at f0 = (3.062± 0.009)GHz (orange), and shows a cosine-like power distribution
in the front view of the sample (inset). Hereby, the magnetically hard Co nanowires could
impede the magnetization precession of the YIG film directly below them, due to magnetostatic
interactions. Therefore, mode 0 is identified as the Kittel mode of the thin film. (c) The first
mode continuously passing µ0H

YIG
c into the region of the anti-parallel alignment of thin film

and grating magnetization is located at f1 = (9.460 ± 0.007)GHz (purple). The mode power
is concentrated at the wire positions with quasi-uniform distribution. Therefore, it could be
unexpectedly identified as the Kittel mode of the nanograting. However, we assume that this
mode possibly stems from Kittel mode excitations of the magnetically pinned regions in the
YIG film located directly below the wires, rather than from the grating itself. (d) A higher
intensity mode can be observed for the mode at f2 = (20.46 ± 0.03)GHz (dark blue). The
mode profile here contains both a high order Damon-Eshbach modes of the thin film and a
(fifth order) Damon-Eshbach mode at the wire locations. We interpret this mode to be a
superposition of a Damon-Eshbach mode of the YIG regions below the wires and the Kittel
mode of the nanograting, indicated by the increase in intensity across the wire regions.
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Figure 6.4: Magnetization of the YIG thin film, seen from a bottom-up view on the sample
(c.f. Fig. 6.1). The location of the Co nanowires can be seen in the magnetic texture of the
thin film. This supports our interpretation of magnetic domains forming in the thin film due
to magnetization pinning, which is caused by the magnetically hard Co wires.

least one order of magnitude greater than mode 2. This is especially surprising
as our simulations are conducted at a temperature T = 0K, therefore we would
expect an even weaker Kittel mode of the Co grating in the experimental data
(c.f. Appendix A.1.2). Further of interest is the large difference of the coercive
fields of the nanogratings between the two spectra: for the simulated data in
Fig. 6.5 (a), the coercivity was found to be µ0H

Co
c ≈ −145mT, whereas the ex-

perimental data in Fig. 6.5 (b) displays a coercivity of only µ0H
Co,exp
c ≈ −80mT

for the Co nanograting.
In light of the spatial mode profiles discussed in Fig. 6.3, a further interesting res-
ult is that mode 1, which is comparable to mode 2 intensity-wise, is not present
in the experimental data (c.f. Fig. 6.5 (a)-(b)). This is surprising, as Chen et
al. [10] did not use a spacer layer between the Co grating and the YIG thin film
in their experimental device, similar to the simulated model (c.f. Fig. 6.1). One
possibility could be that, again, magnetization pinning effects show an impact
on the observed behavior.
Summing up the takeaways from the comparison in Fig. 6.5 in terms of possible
unidirectionality induced via chiral pumping, an obvious difference is that the
simulated data displayed in Fig. 6.3 (a) predicts a vastly weaker intensity of mode
2 compared to the experimental data shown in Fig. 6.3 (b). This difference is
especially striking when considering that the Kittel mode of the YIG film is
barely visible in the experimental spectrum, whereas it has an intensity at least
one order of magnitude larger than modes 1 and 2 in the simulated data. In
the theoretical framework of chiral pumping, the intensity of the Kittel mode
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6.1 Ferromagnetic resonance

of the nanograting is of central importance to the induced unidirectionality,
as it corresponds to the intensity of its dynamic dipole fields mediating the
coupling. Consequently, the much weaker Kittel mode of the Co grating in the
simulation points towards far less unidirectionality induced via chiral pumping
than reported by Chen et al. [10].
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Figure 6.5: Comparison between the simulated data (a) and experimental findings of Chen
et al. [10] (b) for a device consisting of a Co nanograting placed on a continuous Y3O5Fe12
(YIG) thin film. The device specifications are w = 110 nm, h = 20nm and se2e = 490 nm
with tTF = 20nm (c.f. Fig. 6.1). (a) The simulation spectrum displays a variety of modes.
Three modes, labeled 0, 1 and 2, are physically interpreted in Fig. 6.3 and are of special
interest. Mode 0 is found to be the Kittel mode of the YIG thin film, which also exhibits
higher order modes. Mode 1 might stem from magnetic pinning effects in the YIG film caused
by magnetoelastic coupling with the Co grating, inducing a magnetic domain structure in the
YIG film. Finally, mode 2 is identified as the Kittel mode of the nanograting. Upon comparing
their intensities, mode 0 dominates the spectrum, whereas mode 1 and 2 are approximately
one order of magnitude less intense than mode 0. (b) The experimental data shows only
two visible modes. The top mode, corresponding to mode 2 in the simulated spectrum (a),
dominates the spectrum with high intensity. Far weaker, the analog to mode 0 in (a) is visible
at the bottom of the spectrum.
The coercivities of the Co nanograting in the simulation (a) and experiment(b) differ strongly
from each other: µ0H

Co,sim
c ≈ −145mT versus µ0H

Co,exp
c ≈ −80mT. Furthermore, mode 1

from the simulation (a) is missing entirely in the experimental data (b). Finally, the difference
in intensities of mode 2 between the two spectra leads to the assumption that the unidirectional
spin wave transport properties of the device reported by Chen et al. [10] are not present in
micromagnetic simulations. Figure (b) was taken from Ref. [10].
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6.2 Spin wave dispersion

The discussion of the ferromagnetic resonance response of a bilayered system
consisting of a Co nanograting placed on top of a YIG thin film in Sec. 6.1 con-
cluded that only a weak dynamic dipole field is induced by the grating, due to the
comparatively low intensity of its Kittel mode. Subsequently, the chiral pumping
effect and the thus induced non-reciprocity of spin waves in the YIG film are
also assumed to be weak or even negligible. In order to verify this assumption,
the spin wave dispersion spectrum of the same device is analyzed. The device
parameters are again w = 110 nm, h = 20nm, se2e = 490 nm and tTF = 20nm
(c.f. Fig. 6.1), in order to allow for comparison with the experimental findings
reported by Chen et al. [10]. Fig. 6.6 shows the dispersion relation for the YIG
thin film (blue) below the Co nanograting (red) in both the parallel (P) and
anti-parallel (AP) alignment of the respective thin film and grating magnetiza-
tions (see sketches at the top of the figure). To realize the P state, the system
is relaxed with an external magnetic field of µ0Hext = 50mT applied along the
y-axis (c.f. Fig. 6.1). Conversely, the AP state is realized by first establishing
the P-state, before switching the external magnetic field to µ0Hext = −50mT
and relaxing again. To obtain the dispersion relation, the thin film may be in-
terpreted in two separate ways.
One possibility is to use the previous methodology for one-dimensional magnonic
crystals (c.f. Fig. 4.7) for the YIG thin film below the grating. Specifically, the
thin film is interpreted as consisting of stripes of regions that are alternatingly
located directly below a Co wire and below vacant spaces. For this purpose, a
slight modification of the unit cell depicted in Fig. 6.1 is made, where now 99
Co wires are included. This allows to obtain a better resolution in momentum
space. In Fig. 6.6 (a) and (b), the results of the magnonic crystal analysis of
the thin film dispersion spectrum are shown. In the P state (Fig. 6.6 (a)), the
dispersion displays a reduced zone-scheme, with clearly discernible modes vis-
ible above a frequency of ≈ 7GHz. Upon examining small momenta |kx| → 0,
a slight chirality is observed. In detail, a shift of the mode intersections away
from kx = 0 and towards negative momenta can be seen, increasing in mag-
nitude for lower frequencies. Upon transferring the system into the AP state
(Fig. 6.6 (b)), the spectrum loses contrast, as the modes appear to broaden in
frequency and lose intensity. Nonetheless, the slight shift to negative kx of the
dispersion spectrum is also present here. The observations in Fig. 6.6 (a) and (b)
allow for important conclusions about whether the chiral pumping mechanism
induces non-reciprocity for spin waves traveling in the YIG film. The asymmetry
(i.e., the shift to negative momenta) present in the dispersion spectrum for both
the P and AP states suggests that a finite chirality is induced in the dispersion
spectrum, especially at lower frequencies. However, this chirality is expected to
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be reversed upon entering the AP state if it is caused by chiral pumping, fa-
voring then the opposite transport direction [8, 9]. Therefore, one would expect
Fig. 6.6 (a) and (b) to be mirrored versions of each other in case in presence of
chiral pumping, which is not the case. Consequently, the spin wave dispersion
analysis of the YIG thin film as a magnonic crystal in Fig. 6.6 (a) and (b) points
towards a finite chirality being present in the film, however, its indifference with
regards to the P or AP state do not support the assumption that it is caused by
the chiral pumping mechanism.
A different approach to obtaining the spin wave dispersion for the YIG thin
film below the Co nanograting is by treating the film as a continuous medium,
sampled by the real space discretization into computational cells. The result-
ing spectra are shown in Fig. 6.6 (c) and (d). In the P state (Fig. 6.6 (c)),
the data shows multiple parabolic dispersions. Furthermore, in Fig. 6.6 (c) a
multitude of periodic artifacts are visible, which are assumed to root from the
real-space sampling inducing an artificial, non-physical Brillouin-zone in the
spectrum. Nonetheless, the general shape of the dispersion in the P state shows
a momentum-symmetric dispersion relation with no visible chirality. This is
also observable in the AP state (Fig. 6.6 (d)), while showing again a decrease in
contrast. Consequently, the analysis of the thin film dispersion as a continuous
medium shows no impact on the spectrums chirality upon changing from the P
to the AP state. This further supports the assumption that the Co grating fails
to induce unidirectional spin waves via the chiral pumping mechanism.

In order to further check this interim result, the dispersion spectra shown in
Fig. 6.6 may be used to compare the transmission of counter-propagating spin
waves. This allows identifying any potential non-reciprocal spin wave transport
properties of the YIG thin film, which could be attributed to interactions with
the Co grating. Furthermore, a comparison can be made to the experimentally
determined transmission rates of spin waves with opposite momenta reported
by Chen et al. [10]. In Fig. 6.7, the transport properties of counter-propagating
spin waves of momenta |k| = ±k

(m=20)
x = ±20π/a = ±0.1047 rad/nm are

investigated. Note that for a momentum of this magnitude, only the dispersion
spectra of continuous sampling of the YIG thin film (i.e., Fig. 6.6 (c) and (d))
are viable, as the magnonic crystal approach cannot resolve the dispersion in
this wave number range. Again, both the parallel (P) and anti-parallel (AP)
alignment state of the respective magnetizations of YIG thin film (blue) and
Co nanograting (red) are considered, as indicated by the sketch at the top of
Fig. 6.7. The first row (Fig. 6.7 (a)-(b)) presents the experimentally determined
transmission rates of oppositely orientated spin waves, shown for the P and
AP state, respectively [10]. For the P state (Fig. 6.7 (a)), a constant trans-

92



6.2 Spin wave dispersion

−10 0 10

kx (rad/µm)

10

15

20

f
(G

H
z)

(a)

−10 0 10

kx (rad/µm)

10

15

20

f
(G

H
z)

(b)

−0.25 0.00 0.25

kx (rad/µm)

0

20

40

f
(G

H
z)

(c)

−0.25 0.00 0.25

kx (rad/µm)

0

20

40
f

(G
H

z)
(d)

−0.5

0.0

0.5

1.0

P
(f
,k
x
)

(a
.u
.)

0.0

0.5

1.0

P
(f
,k
x
)

(a
.u
.)

−0.5

0.0

0.5

1.0

P
(f
,k
x
)

(a
.u
.)

0.25

0.50

0.75

1.00

P
(f
,k
x
)

(a
.u
.)

Figure 6.6: Spin wave dispersion spectra for the YIG thin film (blue) below the Co nanograt-
ing (red) (c.f. Fig. 6.1) in the parallel (P) and anti-parallel (AP) orientation of the respective
magnetizations (sketches at the top of the figure). Two different approaches are used to calcu-
late the dispersion in the YIG film: the top panels (a) and (b) treat the thin film as a magnonic
crystal (MC), whereas the bottom panels (c) and (d) as a continuous medium (CM). (a) The
MC dispersion in the P state shows a reduced zone scheme, with a shift of the visible modes
towards negative momenta −kx, obvious especially at mode intersections. The resulting asym-
metry points towards an induced chirality in the dispersion of the thin film. (b) In the AP
state, the MC dispersion loses sharpness, due to an apparent mode broadening. However, the
visible modes appear to show the same features as in the P state (a). (c) The CM approach
in the P state yields a parabolic dispersion. Additionally, the sampling in real-space causes
periodic artifacts. Due to the perfect symmetry with regard to momentum, no chirality is
observed. (d) The AP state in the CM approach also shows a parabolic dispersion with higher
orders visible, showing no change in dispersion from the P state.
Overall, the observed indifference of the spin wave dispersion to the P or AP alignment of thin
film and nanograting magnetizations is an argument against any unidirectionality induced in
the thin film via chiral pumping.
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mission rate is observed for +k (purple), whereas the opposite direction −k
(turquoise) deviates considerably, showing a strongly increased transmission at
around f ≈ 19GHz. When entering the AP state (Fig. 6.7 (b)), the situation
is reversed, with now an almost constant transmission for −k (turquoise) and
strong deviations for +k (purple), mostly at around f ≈ 18.5GHz. The data
presented in Fig. 6.7 (a) and (b) is taken from the results of Chen et al. [10].
The change in spin wave transmission direction observed upon entering the AP
state is in accordance with unidirectional spin wave transport realized via chiral
pumping.
In contrast, the simulated transport properties resulting from the calculation of
the dispersion in the YIG thin film are presented in Fig. 6.7 (c) and (d). There,
in both the P (Fig. 6.7 (c)) and AP (Fig. 6.7 (d)) state, the signal shows no
significant deviation between −k (green) and +k (orange). This points towards
the thin film not having any preferred transport direction for spin waves of wave
number |k| = ±k

(m=20)
x and subsequently no induced non-reciprocity at this

wave number. This is in stark contrast to the experimental findings of Chen et
al. [10]
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Figure 6.7: Comparison of the experimentally obtained transmission signal by Chen et al. [10]
to the simulated system dispersion. Both the parallel (P) and anti-parallel (AP) alignment of
the thin film (blue) and nanograting (red) magnetizations are considered (sketches at the top
of the figure). This allows to check for inverted unidirectionality between the P and AP state,
which is an indication of the chiral pumping mechanism. The comparison is made for fixed
momenta |k| = ±k

(m=20)
x = ±20π/a = ±0.1047 rad/nm, as was done in Ref. [10]. (a) The

experimental transmission parameters show a preferred transmission of spin waves with −k
(turquoise) over +k (purple) in the P state, with the largest deviation at f ≈ 19GHz. (b)In
the AP state, this is inverted, with now +k being favored. The present non-reciprocity, coupled
with the observed change in the favored transport direction, points towards chiral pumping
as the origin of the unidirectionality. The data in both (a) and (b) is taken from Ref. [10].
(c)-(d) The line slices of the dispersion show no preferred transport direction in either the P
(a) or AP (b) state, as the signal does not differ significantly between +k (orange) and −k
(green). Consequently, this points towards no induced unidirectionality in the thin film and
therefore also no chiral pumping to be present in the simulation.
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6.3 Summary

Our investigation of stacks consisting of ferromagnetic nanogratings placed on
low magnetic damping thin films (c.f. Fig. 6.1) yields important takeaways to-
wards their usage as local transducers for chiral pumping.
Starting off, we first focus on the ferromagnetic resonance (FMR) of the stack
in Sec. 6.1 to investigate the impact of the added thin film on the spectrum of
the nanograting. Comparing the spectra of the stack and the isolated grating,
we make two central observations (c.f. Fig. 6.2). For one, we find that the ad-
dition of the YIG film lowers the coercive magnetic field of the Co grating by
about 15% from µ0H

Co
c ≈ −170mT to µ0H

Co
c ≈ −145mT. Furthermore, we

observe that the FMR spectrum of the combined system displays a richer mode
spectrum than for the isolated grating. Specifically, the spectrum of the stack
displays an additional mode (mode 1 in Fig. 6.2 (a)), which we interpret to stem
from magnetization pinning effects caused by the Co grating, which in turn lead
to the formation of magnetic domains in the YIG film (c.f. Figs. 6.3-6.4). Com-
paring our findings in the simulated spectrum to the experimental data reported
by Chen et al. [10] reveals two key differences (c.f. Fig. 6.5). On one hand, we
find the mode previously predicted to be caused by magnetization pinning ef-
fects (mode 1) is not present in the experimental data. On the other hand, the
intensity of the nanogratings Kittel mode relative to the YIG film Kittel mode is
inverted between the two spectra. While the simulated data suggests the Kittel
mode of the grating to be about one order of magnitude less intense than the
Kittel mode of the YIG film, the experimental data reveals that the Co Kittel
mode dominates over all other features (c.f. Fig. 6.5). From the less intense Kit-
tel mode of the nanograting in the simulation, we deduce that correspondingly
also its dynamic dipole fields are less intense, leading us to expect only weak
chiral coupling effects in the simulation.
To further investigate this assumption, we turn towards the analysis of the spin
wave transport spectra of the YIG thin film in Sec. 6.2. There, we use two differ-
ent approaches to determine the dispersion of the thin film layer, treating it for
one as a magnonic crystal and conversely as a continuously sampled medium. In
the magnonic crystal approach, the spin wave dispersion yields a small chirality
(c.f. Fig. 6.6 (a)-(b)), which was however found to not be sensitive towards the
relative orientation of thin film and nanograting magnetizations. On the other
hand, obtaining the spin wave dispersion via a sampling of the continuous thin
film (c.f. Fig. 6.6 (c)-(d)) showed no chirality present at all. Lastly, we ana-
lyze the line slices of the continuously sampled dispersion spectrum to compare
them to the experimentally obtained transmission parameters of Chen et al. [10]
(c.f. Fig. 6.7). We find the simulation data is nearly identical for both momentum
directions (c.f. Fig. 6.7 (c)-(d)) with no changes induced by transferring into the
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AP state. Subsequently, our data does not agree with the assumption of chiral
pumping, as one would expect an inversion of the preferred transport direction
upon changing the relative orientation of thin film and nanograting magnetiza-
tions.
All in all, we find that the investigation of both, the ferromagnetic resonance
(FMR) response in Sec. 6.1 and the spin wave transport spectrum in Sec. 6.2,
have not yielded any results in support of the realization of chiral pumping in
this system.
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Chapter 7

Summary and Outlook

At the end of this thesis, we summarize all results in Sec. 7.1, before discussing
promising starting points for further research towards unidirectional magnonic
devices in Sec. 7.2.

7.1 Summary

In this thesis, micromagnetic simulations are used to investigate the mag-
netic properties of ferromagnetic nanogratings with special emphasis on their
possible application in devices enabling unidirectional spin wave propagation.
Specifically, the theoretical framework of chiral pumping predicts an induced
non-reciprocity of short wavelength spin waves in hetero-structures of ferromag-
netic nanogratings and thin films, caused by the dipole-interactions between the
layers [8, 9]. The non-reciprocity is further supported by recent experimental
realizations by Chen et al. [10], demonstrating that chiral pumping provides a
promising approach for nanometer-sized non-reciprocal devices. Nonetheless,
in-house experiments conducted in similar material systems by C. Mang [11]
were not able to confirm the unidirectionality close to 100% reported by Chen
et al. [10]. To further investigate these experimental discrepancies, we use
micromagnetic simulations to explore the impact of different grating design
parameters on their applicability with regards to chiral pumping.

To this end, we started with simulating the ferromagnetic resonance (FMR)
response of nanogratings constructed with different edge-to-edge spacings se2e
between adjacent wires. There, we found that the systems Kittel mode shifts up-
wards in frequency and eventually crosses with the lowest order Damon-Eshbach
mode for large separations se2e > w, where w is the width of a single wire
(c.f. Sec. 4.1). Moreover, extracting the demagnetization factors of the structure
and comparing them to the analytical prediction for an isolated wire revealed
that a sizable dipole-coupling between the wires induces a collective mode of
the array for spacings below se2e ≤ 1.5w (c.f. Sec. 4.2). These findings suggest
that the wire spacing se2e must be chosen carefully, as low values obstruct the
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assumption of an uncoupled array, whereas larger values lead to the Kittel mode
not being the lowest energy excitation of the grating. Both of these scenarios are
highly relevant for the realization of chiral pumping, as according to theory the
Kittel mode of the nanograting and the coupling of its dynamical dipole fields
is responsible for the unidirectionality of spin waves in adjacent magnetic thin
films [8, 9]. Furthermore, we studied the dynamic properties of the gratings with
focus on their spin wave dispersion, finding that for small wire separations se2e
the system may be treated as a one-dimensional magnonic crystal (c.f. Sec. 4.3).
Therein, we additionally demonstrated that increasing se2e opens up a band
gap at the boundaries of the Brillouin-zone and leads to the flattening of the
bands in the spectrum. The dynamical properties of the nanogratings thus
show that for small spacings se2e < w, one must further consider also a non-
negligible transport of spin waves via the grating itself and not only the thin film.

Apart from homogeneous nanogratings, arrays of nanowires alternating in, e.g.,
material composition or geometric properties, have been the subject of several
studies in literature [67, 74]. Distinctively, the different coercivities of the wire
types induce a stable state of anti-ferromagnetic order (AFO) between the two
wire type sub-lattices, which can be controlled via the external magnetic field
[67]. By investigating the FMR response of alternating width nanowire arrays
(AWNAs), we found that for small edge-to-edge spacings se2e < w2, where w2 is
the width of the thick wires, an anti-crossing of the two lowest modes appears in
the AFO state (c.f. Sec. 5.1). This is due to the dipole-interactions between the
two sub-lattices, as the anti-crossing is a consequence of the mode hybridization
of the Kittel mode of the thin wire with both the Kittel mode and lowest order
Damon-Eshbach mode of the thick wire. Conversely, for large inter-wire spacing
se2e > w2, the dipole-coupling is not present and the isolated Kittel modes of
the respective wire species cross in the AFO state. These distinctive features of
the Kittel modes in AWNAs allow for intriguing speculation about their use as
local transducers in the framework of chiral pumping. Concretely, we speculate
that for uncoupled AWNAs the two-step magnetization reversal could allow for
a device capable of not only one but two fixed values for the unidirectionality of
spin waves.

Finally, we studied stacks consisting of ferromagnetic nanogratings deposited
onto low magnetic damping thin films. Specifically, we modeled the system used
by Chen et al. [10], consisting of a Co nanograting on a Y3Fe5O12 (YIG) thin
film. We simulated the ferromagnetic resonance of the stack and found that the
simulation does not reproduce the results reported by Chen et al. [10], as the
intensity of the Co gratings Kittel mode is far weaker than in the experimental
data (c.f. Sec. 6.1). This leads us to the assumption that the weaker Kittel mode,
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and therefore its weaker dynamic dipole fields, will not induce strong unidirec-
tionality in the simulated system. Furthermore, we found an additional mode
that is not featured in the experimental data by Chen et al. [10], which we inter-
preted to stem from magnetization pinning effects caused by the magnetically
much harder Co grating acting on the YIG film (c.f. Sec. 6.1). Lastly, to quantify
if any spin wave unidirectionality is induced in the thin film via chiral pumping,
we analyzed of the spin wave dispersion of the stack (c.f. Sec. 6.2). There, we
found that the simulated stack does not exhibit any non-reciprocal behavior at
the wavelengths where Chen et al. [10] report close to 100% unidirectionality.
Consequently, the simulations conducted in this work agree with previous exper-
iments realized by C. Mang [11] and do therefore not support the presence of a
chiral coupling between the nanogratings Kittel mode and the spin waves in the
YIG thin film.

7.2 Outlook

The results of this thesis do not support chiral pumping as a promising candidate
for the realization of unidirectional spin wave propagation in nanometer-sized
magnonic devices. Nonetheless, several other physical mechanisms are currently
investigated as possible sources of non-reciprocity in the magnonics community
[7]. To close this thesis, we discuss two promising approaches that also take
advantage of periodically structured magnetic materials, similar to the nano-
gratings discussed in this thesis.

For example, several approaches exist trying to leverage the Dzyaloshinskii–Moriya-
interaction (DMI) to induce unidirectional spin waves. The DMI describes an
asymmetric exchange interaction between two (neighboring) spins [75]. A
particular type of DMI is the interfacial DMI (iDMI), which is relevant in multi-
layered structures of ferromagnets and heavy metals (e.g., Pt). [7]. With respect
to unidirectionality, the iDMI is relevant as the asymmetric exchange induces
an asymmetry in the spin wave dispersion, therefore inducing a non-reciprocity
[7]. Micromagnetic simulations and theoretical considerations suggest that,
consequently, the iDMI should be able to induce unidirectional spin waves in
multi-layer magnetic materials containing heavy metals, with the experimental
confirmation of these claims still ongoing [7]. Apart from stacks of continuous
films, the iDMI also plays an important role in periodically structured material
systems, similar to the nanogratings discussed in this thesis. For one, Gallardo
et al. [76] have conducted simulations of systems consisting of Pt nanogratings
placed on ferromagnetic thin films, finding a controllable band gap and flat
bands induced by the periodic iDMI. A similar approach is taken by Flores-
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Farías et al. [77], who extend this idea to two-dimensional magnonic crystals
consisting of Pt square dots deposited on a ferromagnetic thin film. Using the
combination of the asymmetric iDMI together with magnonic crystals therefore
presents a promising starting point for further research towards unidirectional
devices.

Another enticing approach towards realizing non-reciprocal spin waves is utiliz-
ing the unidirectionality of topologically protected edge-modes. Realizations of
non-reciprocal spin waves via topological effects use the time-reversal symmetry
protected edge-states of topological insulators [64]. These modes are located
on opposite surfaces of the respective material and are robust towards material
defects and back-scattering [64]. Recent studies by Mieszcak et al. [78] repor-
ted that numerical investigations of planar, one-dimensional magnonic crystals
host interface modes located on the respective material boundaries. Another
material system proposed by Feilhauer et al. [64] is a two-dimensional mag-
nonic crystal built from dipole-coupled Permalloy triangles (c.f. Fig. 7.1 (a)).
Up to now, experimental demonstration of 2D topological insulators in mag-
nonic systems is hindered by the complex manufacturing [64]. Intriguingly, this
approach reportedly offers a topological phase transition controllable via an ex-
ternal magnetic field, which would allow to invert the directions of the respective
edge-modes [64]. We already conducted first simulations of a two-dimensional
magnonic crystal built from the simulation cell in Fig. 7.1 (a), measuring 32 cells
in x-direction and 8 cells in y-direction, as depicted in Fig. 7.1 (b). To visualize
the edge-modes, we calculate the dispersion along the x-direction at the top and
bottom edge and the middle of the magnonic crystal, as indicated by the arrows
in Fig. 7.1 (b). At the top edge (c.f. Fig. 7.1 (c)) two separate bands can be seen,
separated by a gap of ≈ 200MHz, with a unidirectional edge-mode connecting
the two bands by crossing the gap with a negative slope. In contrast, in the
sample middle (c.f. Fig. 7.1 (d)) the same two bands are visible, however, here
the bands are separated with no mode crossing the gap. Moving now to the
sample bottom edge (c.f. Fig. 7.1 (e)), a similar picture is visible. However, the
unidirectional edge-mode crossing the gap now has a positive slope and has there-
fore changed direction. In total, we find two unidirectional, counter-propagating
modes crossing the systems band gap at opposite edges of the two-dimensional
magnonic crystal. This is in agreement with the results reported Feilhauer et
al. [64] and therefore highlights the intriguing outlook of studying periodically
modulated magnetic systems as hosts of (topological) unidirectional spin wave
propagation.
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Figure 7.1: Unidirectional, topologically protected edge-modes in the system proposed by
Feilhauer et al. [64]. (a) Visualization of the material system of NiFe triangles, pointing to
a common center. Feilhauer et al. propose that this structure could be realized by etched
X-shaped lines out of a fabricated square. The triangles are modeled to interact via dipole-
coupling in the unit cell, but not between separate unit cells. This Figure is taken from Ref. [64].
(b) Top-down view on a two-dimensional magnonic crystal constructed from the simulation
cells shown in (a). We simulate 32 unit cells in x-direction to enhance the resolution of the
dispersion spectra. We study the edge-modes by comparing the dispersion at the top, middle,
and bottom of the sample, as indicated by the arrows. (c) The dispersion spectrum at the
top edge of the sample shows two bands separated by a gap ≈ 200MHz. An edge-mode
with a negative slope crosses the gap from the upper to the lower band. (d) In the sample
middle, the dispersion spectrum shows the same two bands as in (c), however, no modes can
be seen to cross the gap. (e) At the bottom edge, the gap is crossed by an edge-mode with
a positive slope from the lower to the upper band. The counter-propagating edge-modes at
the top/bottom edge of the magnonic crystal are hallmarks of a topological insulator. The
presence of topological edge-modes in magnonic crystals gives a promising outlook to further
engineer these material systems to be feasible for fabrication at larger scales.
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Appendix A

Additional simulation data

A.1 FMR of ferromagnetic nanogratings

A.1.1 Influence of colormap scaling
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Figure A.1: Influence of the colormap scaling when presenting ferromagnetic resonance spec-
tra (FMR) of micromagnetic simulations. Both figures depict the FMR response of a CoFe
nanograting, consisting of infinitely long nanowires of width w = 200 nm and height h = 35nm
arranged with an edge-to-edge spacing of se2e = 100 nm (c.f. Fig 4.1). (a) Presenting the FMR
spectrum using a base 10 logarithmic scaling for the colormap reveals a multitude of visible
modes, including less intense higher orders. (b) Using a linear scale for the colormap results
in the loss of essential features in the spectrum. In comparison to (a), only one mode is faintly
visible. In scenarios where many modes are of equal intensity, oftentimes no modes are visible
at all.

A.1.2 Finite temperature simulations
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Figure A.2: Simulating structures at finite temperatures does not change the physical nature
of the modes or their frequency dependence. Rather, only the relative intensity compared to
the background, as well as the width of the mode, is influenced by finite temperature effects.
Specifically, this figure shows the simulation of a CoFe nanograting, consisting of infinitely long
nanowires of width w = 200 nm and height h = 35nm arranged with an edge-to-edge spacing
of se2e = 100 nm (c.f. Fig 4.1). This structure is simulated at three different temperatures:
T = 0K, which represents the conditions used for all other simulations throughout this thesis,
T = 5K, and T = 292K. We find that increasing the temperature leads to a broadening of
the modes and a higher background intensity, both of which is expected as the temperature is
accounted for via randomly fluctuating magnetic fields [45].

A.1.3 Increasing inter-wire distance by decreasing wire width
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Figure A.3: Apart from simply moving the individual nanowires apart, one can also manip-
ulate the edge-to-edge distance se2e by fixing the center-to-center distance a and varying the
width w of the wires. (a)-(e) show the transition from se2e = 100 nm (a) to se2e = 200 nm (e)
by decreasing the wire width w (gray sketch) from w = 300 nm (a) to w = 200 nm (e). Between
(a)-(e), the changing coercivity of the individual wires due their change in geometry can be ob-
served by the increasing coercive magnetic field from µ0Hc ≈ −80mT (a) to µ0Hc ≈ −150mT
(e). This approach also results in a crossing of the high intensity Kittel mode with the lowest
order Damon-Eshbach mode, as discussed in Sec. 4.1.
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A.1.4 Full data for varying edge-to-edge spacing
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Figure A.4: Results of the ferromagnetic resonance (FMR) simulations for different nano-
gratings, each consisting of wires with width w = 200 nm and height w = 35nm, arranged
with different edge-to-edge spacings se2e (c.f. Fig 4.1). This figure specifically shows the FMR
spectra for spacing values se2e < w, starting from a continuous thin film (se2e = 0nm). For the
small spacings depicted in this figure, the strong dipole-interactions between adjacent wires
strongly affect the collective response of the grating. This is visible, for example, by the con-
tinuous change of the coercive magnetic field for increasing se2e.
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Figure A.5: Results of the ferromagnetic resonance (FMR) simulations for different nano-
gratings, each consisting of wires with width w = 200 nm and height w = 35nm, arranged
with different edge-to-edge spacings se2e (c.f. Fig 4.1). This figure shows the FMR spectra for
spacing values se2e ≈ w, where the inter-wire dipole-interactions start to lose relevance, as
indicated by the almost constant coercive magnetic field in all spectra. Additionally, a mode
crossing between the intense Kittel mode of the system and the lowest order Damon-Eshbach
mode is observed in the negative field range before the wires switch magnetization, especially
visible upon comparing se2e = 125 nm (a) and se2e = 300 nm (e).
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Figure A.6: Results of the ferromagnetic resonance (FMR) simulations for different nano-
gratings, each consisting of wires with width w = 200 nm and height w = 35nm, arranged
with different edge-to-edge spacings se2e (c.f. Fig 4.1). This figure depicts the FMR spectra
for spacing values se2e > w. Here, dipole-interactions between neighboring wires are mostly
irrelevant, as evident in the figure with no large visual differences between se2e = 350 nm (a)
and se2e = 1200 nm (e).

A.1.5 FMR with external field perpendicular to the grating
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Figure A.7: Results of the ferromagnetic resonance (FMR) simulation for different nanograt-
ings, each consisting of wires with width w = 200 nm and height w = 35nm, arranged with
different edge-to-edge spacings se2e. Differently to previous simulations, the static magnetic
field µ0Hext is oriented perpendicular to the nanograting, along the x-direction, using the co-
ordinate system as in Fig 4.1). Induced by the shape-anisotropy of the wires, the minima of
the systems Kittel mode is now shifted to around µ0Hext = 300mT.

A.2 FMR of heterostructures of alternating
nanogratings and thin films

A.2.1 Resonance spectra
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Figure A.8: Simulated ferromagnetic resonance (FMR) spectrum for a CoFe alternating width
nanowire array (AWNA) on a YIG thin film in fine resolution around zero magnetic field. The
AWNA is composed of wires of widths w1 = 200 nm and w2 = 800 nm, arranged with edge-
to-edge spacing se2e = 100 nm (c.f. Fig. 5.1). Both thin film and nanograting have a height
h = 20nm.
The spectrum clearly depicts regions of ferromagnetic (FO) and anti-ferromagnetic (AFO)
order, restricted by the mode discontinuities appearing at the respective coercivity fields.

112



A.2 FMR of heterostructures of alternating nanogratings and thin films

150 0 150
0Hext (mT)

0

20

40

f (
G

H
z)

(a)

100nm

150 0 150
0Hext (mT)

0

20

40

(b)

100nm

0.0

0.5

1.0
lo

g 1
0
|d

DS
21

| (
a.

u.
)

0.0

0.5

1.0

lo
g 1

0
|d

DS
21

| (
a.

u.
)

Figure A.9: Impact of a YIG thin film on the ferromagnetic resonance (FMR) spectrum of a
CoFe alternating width nanowire array (AWNA), placed on top of the YIG film. The AWNA
is composed of wires of widths w1 = 200 nm and w2 = 800 nm, arranged with edge-to-edge
spacing se2e = 100 nm (c.f. Fig. 5.1). Both thin film and nanograting have a height h = 20nm.
(a) The FMR spectrum of AWNA on top of the YIG film reveals a clear mode spectrum in
the positive magnetic field range, similar to that of an isolated array. In the AFO state, from
µ0Hext ≈ −70mT to µ0Hext ≈ 0mT, the visible modes become hard to interprete, as the
spectrum loses clarity for frequencies above ≈ 10GHz. (b) FMR spectrum for the isolated
AWNA shows a distinct mode coupling in the AFO state (for details see Sec. 5.1).
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A.2.2 Spatial mode profiles
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Figure A.10: Spatial mode profiles for a system of a CoFe alternating width nanowire array
(AWNA) placed on a YIG thin film in a fully polarized state at µ0Hext = 50mT. The system
is the same as in Fig.A.8. (a) FMR spectrum of the stack of the AWNA on the thin film with
three color-coded markers indicating the frequency location of the modes. (b) The mode at
f0 = (1.44 ± 0.26)GHz (orange) displays a uniform distribution of intensity across the thick
nanowires, but no power at all the locations of the thin wires. We assume that magnetization
pinning effects of the thin wires are at play, locally hindering the precession of the YIG thin
film below them (similar to Fig. 6.3). Since the thicker Co wires have a strongly reduced
shape anisotropy compared to the thinner wires, they do not induce magnetization pinning
effects of this magnitude, and therefore also do not prevent precession in the YIG film. We
therefore interpret this mode as the Kittel mode of the YIG thin film. (c) The mode at
f1 = (9.759 ± 0.002)GHz (purple) shows a quasi-uniform mode profile across the thicker Co
wires. Interestingly, in the thin wires an edge-mode appears to form, with sharp peaks of
intensity located at the wire edges. No power is present in the vacant spaces, subsequently we
classify this mode as a coupling of the Kittel mode of the thick wires with an edge-mode in
the thin wires. (d) At f2 = (22.326 ± 0.237)GHz (dark blue), we find a quasi-uniform mode
profile across the thin wires, with a low order Damon-Eshbach mode present in the thick wires.
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Figure A.11: Spatial mode profiles for a system of a CoFe alternating width nanowire array
(AWNA) placed on a YIG thin film shortly after transitioning into an anti-ferromagnically
ordered (AFO) state of adjacent wires at µ0Hext = −8mT. The system is the same as in
Fig.A.8. (a) The line slice of the dynamical susceptibility |χ| at µ0Hext = −8mT reveals
that the system no longer responds with a characteristic Lorentzian line shape, indicating that
in this state linear response theory (c.f. Sec. 2.3) does not apply. (b) FMR spectrum with
color-coded markers indicating the location of the modes of interest at µ0Hext = −8mT. (c)-
(e) The interpretation of the mode spectra is in large parts unclear, as the system is pertubed
too far out of equilibrium to use the so-far applied methodology.

115





Appendix B

Code examples

This part of the appendix contains samples of code written for this thesis that we
deem essential to recreate the presented work. While not exhaustive, they show
the fundamental steps of how data for both ferromagnetic resonance (FMR) and
spin wave dispersion spectra were obtained and evaluated.

B.1 Simulation

B.1.1 MuMax3 sample code for FMR

1 OutputFormat = OVF2_TEXT
2 //##############################################//
3 //------------- SAMPLE DEFINITION --------------//
4 //##############################################//
5 //thin film height
6 lz_tf := 20e-9
7 //spacer between thin film and periodic structure/grating
8 sz := 0e-9
9 //Width of the periodic structures

10 dx := 110e-9
11 //Horizontal spacing between perdiodic structures
12 sx := 490e-9
13 //Etch depth of the periodic structures
14 dz := 20e-9
15 //Spacing between sample and antenna (z-dir)
16 s_ant := 0e-9
17 //Total simulation box height
18 lz := dz + sz + s_ant + lz_tf
19

20 //Sample lenghts/measurements in all spatial directions
21 //Set the unit-cell size to include n_wires nanowires
22 n_wires := 3
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23 lx := n_wires*(dx + sx)
24 ly := 200e-9
25

26 /////Material parameters
27 //YIG
28 TF_Msat := 140e+3
29 TF_Aex := 3e-12
30 TF_alpha := 8e-5
31

32 //Co
33 NG_Msat := 1430e+3
34 NG_Aex := 13e-12
35 NG_alpha := 0.01
36

37

38 //Calculate the minimal exchange length of the system
39 lex_tf := sqrt(TF_Aex / (0.5 * mu0 * pow(TF_Msat, 2)))
40 lex_ng := sqrt(NG_Aex / (0.5 * mu0 * pow(NG_Msat, 2)))
41 lex_1 := min(lex_tf, lex_ng)
42 print(sprintf("Smallest exhange length - %.3f nm", lex_1*1e9))
43

44

45 ////Initialize FEM grid
46 //grid cell dimensions (approx. start point; automatically adjusted)
47 cx := 5e-9
48 cy := 5e-9
49 cz := 20e-9
50

51 //Number of grid cells (preeliminary)
52 Nx := pow(2, ilogb(lx/cx))
53 Ny := pow(2, ilogb(ly/cy))
54 Nz := pow(2, ilogb(lz/cz))
55

56 //override values with the actually chosen grid size
57 cx = lx/Nx
58 cy = ly/Ny
59 cz = lz/Nz
60

61 //check if cell size is less than exchange length (in-plane)
62 //if yes, increase the cell density until fulfilled
63 for cx>lex_1{
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64 Nx = pow(2, ilogb(lx/cx)+1)
65 print("Cells in x-dir too large!")
66 print(sprintf("Reduce %.3f nm --> %.3f nm", cx*1e9, lx/Nx*1e9))
67 cx = lx/Nx
68 }
69

70 for cy>lex_1{
71 Ny = pow(2, ilogb(ly/cy)+1)
72 print("Cells in y-dir too large!")
73 print(sprintf("Reduce %.3f nm --> %.3f nm", cy*1e9, ly/Ny*1e9))
74 cy = ly/Ny
75 }
76

77

78 print(sprintf("Chosen Num. of cells: %f - %f - %f", Nx, Ny, Nz))
79

80 //periodic boundary conditions
81 PBCx := 100
82 PBCy := 100
83 PBCz := 0
84 SetMesh(Nx, Ny, Nz, lx/Nx, ly/Ny, lz/Nz, PBCx, PBCy, PBCz)
85

86 //edgesmoothing to better resolve edges of structure
87 Edgesmooth = 8
88

89 //override values with the actually chosen grid size
90 cx = lx/Nx
91 cy = ly/Ny
92 cz = lz/Nz
93

94

95

96

97 //##############################################//
98 //------------- SIMULATION PARAMS --------------//
99 //##############################################//

100 //Define external Bias field
101 //FMR sweep parameterss
102 B_stat_max := 0.2
103 B_stat_min := -0.2
104 B_stat_step := 1e-3
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105 N := trunc(abs(B_stat_max - B_stat_min)/B_stat_step)
106 B_stat := B_stat_max
107

108 //azimuth
109 phi := 89 * (pi/180)
110 //polar
111 theta := pi/2
112

113

114 //Define microwave excitation strength
115 //frequency [Hz]
116 f := 100e+9
117 //amplitude [T]
118 B_rf := 1e-3
119 //delay of the sinc pulse [s]
120 t_p := 100e-12
121

122 //Define the simulation time parameters
123 //Total simulated timespan (for each run) [s]
124 T_total := 20e-9
125 //Sampling interval for table and magnetization [s]
126 t_sample := 5e-12
127 //Total steps
128 N_T := trunc(T_total/t_sample)
129

130

131

132 //##############################################//
133 //------------- OUTPUT CONFIG --------------//
134 //##############################################//
135 outputformat = OVF2_TEXT
136 //Add (averaged) quantities to the output table
137 TableAdd(B_ext)
138 TableAddVar(B_stat, "B_stat", "T")
139 TableAdd(dt)
140 TableAddVar(t_sample, "t_sample", "s")
141 //Define saving interval
142 tableautosave(t_sample)
143

144

145 //////Timing and performance eval: Variable declaration
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146 count := 0
147 count1 := 0
148 tic := Now()
149 tic_r := Now()
150 tic_s := Now()
151

152 mins := Since(tic).Minutes()
153 mins_r := Since(tic).Minutes()
154 mins_s := Since(tic).Minutes()
155

156 secs := Since(tic).Seconds()
157 secs_r := Since(tic).Seconds()
158 secs_s := Since(tic).Seconds()
159

160 hs := Since(tic).Hours()
161 eta_ms := Since(tic).Minutes()
162 eta_s := Since(tic).Seconds()
163 eta_hs := Since(tic).Hours()
164

165

166 //##############################################//
167 //-------------- SAMPLE GEOMETRY ---------------//
168 //##############################################//
169 //Define the nanograting
170 wire := cuboid(dx, ly, dz)
171 grating := wire.repeat(dx+sx, 0, 0).transl(0, 0, lz/2-dz/2-s_ant)
172 //Define the thin film
173 tf := cuboid(lx, ly, lz_tf).transl(0, 0, -lz/2+lz_tf/2-s_ant)
174

175 //set the geometry and save it
176 setgeom(tf.add(grating))
177 save(geom)
178

179 //Define material regions and save them!
180 defregion(1, tf)
181 defregion(2, grating)
182 save(regions)
183

184 //Assign material parameters to the regions
185 msat.setregion(1, TF_Msat)
186 alpha.setregion(1, TF_alpha)
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187 aex.setregion(1, TF_Aex)
188 msat.setregion(2, NG_Msat)
189 alpha.setregion(2, NG_alpha)
190 aex.setregion(2, NG_Aex)
191

192 //Add the averaged response of the separate material regions to the output table
193 TableAdd(m.region(1))
194 TableAdd(m.region(2))
195

196

197 //##############################################//
198 //------------- CONF INITIAL STATE -------------//
199 //##############################################//
200

201 //Initialize the system with randomized magnetization in each cell
202 m = randommag()
203

204 //Save picture of magnet as .jpg as confirmation
205 snapshot(m)
206

207 //Apply strongest static field value and repeat steps
208 B_ext = vector(B_stat_max*sin(theta)*cos(phi),
209 B_stat_max*sin(theta)*sin(phi) ,
210 B_stat_max*cos(theta))
211 Relax()
212 snapshot(m)
213

214

215

216

217 //##############################################//
218 //--------------- RUN SIMULATION ---------------//
219 //##############################################//
220

221 tic = Now()
222

223 //Run field sweep simulation
224 for B_stat=B_stat_max; B_stat>=B_stat_min; B_stat-=B_stat_step{
225 t = 0
226

227 //Apply bias field, then relax structure
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228 B_ext = vector(B_stat*sin(theta)*cos(phi),
229 B_stat*sin(theta)*sin(phi),
230 B_stat*cos(theta))
231 tic_r = Now()
232 Relax()
233 secs_r = Since(tic_r).Seconds()
234

235

236 //Run the time dynamics simulation
237 B_ext = vector(B_stat*sin(theta)*cos(phi) + B_rf*sinc(2*pi*f*(t-t_p)),
238 B_stat*sin(theta)*sin(phi),
239 B_stat*cos(theta))
240

241 tic_s = Now()
242 tableautosave(t_sample)
243 run(T_total)
244 mins_s = Since(tic_s).Minutes()
245 secs_s = Since(tic_s).Seconds()
246

247

248 //Keep track of the time consumed per evaluation in the console
249 if mins_s<1.0 {
250 print(sprintf("@%.5gT - Min:%.2fs - Sim:%.2fs", B_stat, secs_r, secs_s))
251 }
252 if mins_s>=1.0 {
253 secs_s = secs_s - 60*floor(mins_s)
254 print(sprintf("@%.5gT - Min:%.2fs - Sim:%.0fm %.2fs", B_stat, secs_r,
255 floor(mins_s), secs_s))
256 }
257

258 count += 1
259 count1 += 1
260

261 if count1 >= 10 {
262 hs = Since(tic).Hours()
263 mins = Since(tic).Minutes()
264 hs = hs - trunc(mins/60)
265 secs = Since(tic).Seconds()
266 secs = secs - trunc(mins)*60
267

268 eta_s = secs*(N-count)
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269 eta_hs = Trunc(eta_s/3600)
270 eta_ms = Trunc(eta_s/60) - 60*eta_hs
271 eta_s = eta_s - (3600*eta_hs + 60*eta_ms)
272

273 print(sprintf("Elapsed: %.0f h:%.0f m:%.2f s", hs, mins, secs))
274 print(sprintf("--> ETA:%2.0f:%2.0f:%2.0f", eta_hs, eta_ms, eta_s))
275 print("")
276 count1 = 0
277 }
278

279 }

B.1.2 MuMax3 sample code for spin wave transport

1 OutputFormat = OVF2_TEXT
2 //##############################################//
3 //------------- SAMPLE DEFINITION --------------//
4 //##############################################//
5 //thin film height
6 lz_tf := 20e-9
7 //spacer between thin film and periodic structure/grating
8 sz := 0e-9
9 //Width of the periodic structures

10 dx := 110e-9
11 //Horizontal spacing between perdiodic structures
12 sx := 490e-9
13 //Etch depth of the periodic structures
14 dz := 20e-9
15 //Spacing between sample and antenna (z-dir)
16 s_ant := 0e-9
17 //Total simulation box height
18 lz := dz + sz + s_ant + lz_tf
19

20 //Sample lenghts/measurements in all spatial directions
21 //Set the unit cell to include large number of nanowires (n_wires)
22 n_wires := 99
23 lx := n_wires*(dx + sx)
24 ly := 200e-9
25 /////Material parameters
26 //YIG
27 TF_Msat := 140e+3
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28 TF_Aex := 3e-12
29 TF_alpha := 8e-5
30

31 //Co
32 NG_Msat := 1430e+3
33 NG_Aex := 13e-12
34 NG_alpha := 0.01
35

36

37 //Calculate the minimal exchange length of the system
38 lex_tf := sqrt(TF_Aex / (0.5 * mu0 * pow(TF_Msat, 2)))
39 lex_ng := sqrt(NG_Aex / (0.5 * mu0 * pow(NG_Msat, 2)))
40 lex_1 := min(lex_tf, lex_ng)
41 print(sprintf("Smallest exhange length - %.3f nm", lex_1*1e9))
42

43

44 ////Initialize FEM grid
45 //grid cell dimensions (approx. start point; automatically adjusted)
46 cx := 3e-9
47 cy := 3e-9
48 cz := 20e-9
49

50 //Number of grid cells (preeliminary)
51 Nx := pow(2, ilogb(lx/cx))
52 Ny := pow(2, ilogb(ly/cy))
53 Nz := pow(2, ilogb(lz/cz))
54

55 //override values with the actually chosen grid size
56 cx = lx/Nx
57 cy = ly/Ny
58 cz = lz/Nz
59

60 //check if cell size is less than
61 //.75 (transp.) exchange length (in-plane)
62 //if yes, increase the cell density until fulfilled
63 for cx>0.75*lex_1{
64 Nx = pow(2, ilogb(lx/cx)+1)
65 print("Cells in x-dir too large!")
66 print(sprintf("Reduce %.3f nm --> %.3f nm", cx*1e9, lx/Nx*1e9))
67 cx = lx/Nx
68 }
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69

70 for cy>0.75*lex_1{
71 Ny = pow(2, ilogb(ly/cy)+1)
72 print("Cells in y-dir too large!")
73 print(sprintf("Reduce %.3f nm --> %.3f nm", cy*1e9, ly/Ny*1e9))
74 cy = ly/Ny
75 }
76

77

78 print(sprintf("Chosen Num. of cells: %f - %f - %f", Nx, Ny, Nz))
79 //periodic boundary conditions
80 //use no pbc for the transport direction
81 PBCx := 0
82 PBCy := 100
83 PBCz := 0
84 SetMesh(Nx, Ny, Nz, lx/Nx, ly/Ny, lz/Nz, PBCx, PBCy, PBCz)
85

86 //edgesmoothing to better resolve edges of structure
87 Edgesmooth = 8
88

89 //override values with the actually chosen grid size
90 cx = lx/Nx
91 cy = ly/Ny
92 cz = lz/Nz
93

94

95 /////Specifications of the antenna
96 //desired number of points in k_space
97 Nc := 1000
98 //cut off momentum
99 kc := Nc/2 * 2*pi/lx

100 //offset of excitation peak from sample middle (x-dir)
101 d_cc := 0
102

103

104

105 //##############################################//
106 //------------- SIMULATION PARAMS --------------//
107 //##############################################//
108 //Define external Bias field
109 //For transport: fixed static field, no sweep
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110 B_stat := 50e-3
111 //azimuth
112 phi := 89 * (pi/180)
113 //polar
114 theta := pi/2
115

116 //Define microwave excitation strength
117 //frequency [Hz]
118 f := 100e+9
119 //amplitude [T]
120 B_rf := 1e-3
121 //delay of the sinc pulse [s]
122 t_p := 50e-12
123

124 //Define the simulation time parameters
125 //Total simulated timespan (for each run) [s]
126 T_total := 20e-9
127 //Sampling interval for table and magnetization [s]
128 t_sample := 5e-12
129 //Total steps
130 N_T := trunc(T_total/t_sample)
131

132

133

134 //##############################################//
135 //------------- OUTPUT CONFIG --------------//
136 //##############################################//
137 outputformat = OVF2_TEXT
138 //Add (averaged) quantities to the output table
139 TableAdd(B_ext)
140 TableAddVar(B_stat, "B_stat", "T")
141 TableAdd(dt)
142 TableAddVar(t_sample, "t_sample", "s")
143 //Define saving interval
144 tableautosave(t_sample)
145

146

147

148 //##############################################//
149 //-------------- SAMPLE GEOMETRY ---------------//
150 //##############################################//
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151 //Define the nanograting
152 wire := cuboid(dx, ly, dz)
153 grating := wire.repeat(dx+sx, 0, 0).transl(0, 0, lz/2-dz/2-s_ant)
154

155 //Define the thin film
156 tf := cuboid(lx, ly, lz_tf).transl(0, 0, -lz/2+lz_tf/2-s_ant)
157

158 //set the geometry and save it
159 setgeom(tf.add(grating))
160 save(geom)
161

162 //Define material regions and save them!
163 defregion(1, tf)
164 defregion(2, grating)
165 save(regions)
166

167 //Assign material parameters to the regions
168 msat.setregion(1, TF_Msat)
169 alpha.setregion(1, TF_alpha)
170 aex.setregion(1, TF_Aex)
171 msat.setregion(2, NG_Msat)
172 alpha.setregion(2, NG_alpha)
173 aex.setregion(2, NG_Aex)
174

175

176 //Manually add the avr magnn. of each wire to the table
177 //This is done by manually calculating the cell indices
178 //and cropping the magnetization to the respective cell ranges
179 for z_idx:=Nz-1; z_idx>=0; z_idx--{
180 for i:=0; i<n_wires; i++{
181 x := -lx/2 + (i+1/2)*(dx + sx)
182

183 //Add the wire
184 TableAdd(Crop(m, trunc((x+lx/2-dx/2)/cx),
185 trunc((x+lx/2+dx/2)/cx)+1,
186 0,
187 Ny,
188 z_idx,
189 z_idx+1))
190

191 //Add the inter-wire spacing to the right
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192 //of the current wire
193 if i<(n_wires-1){
194 TableAdd(Crop(m, trunc((x+lx/2+dx/2)/cx),
195 trunc((x+lx/2+dx/2+sx)/cx)+1,
196 0,
197 Ny,
198 z_idx,
199 z_idx+1))
200 }
201 }
202 }
203

204 //##############################################//
205 //------------- CALC ANTENNA FIELD -------------//
206 //##############################################//
207 //Create vector mask array for the field distribution of the spatial sinc
208 //Vector mask to save field vectors in
209 mask := newVectorMask(Nx, Ny, Nz)
210

211 //Initialize vector norm as a float number
212 max_norm := 0.1
213 vec_norm := 1.2
214

215 for i:=0; i<Nx; i++{
216 for k:=0; k<Nz; k++{
217 r := index2coord(i, 0, k)
218 x := r.X() + d_cc
219 z := lz/2 - r.Z()
220

221 //Field at i, k from cc (Karlqvist equations)
222 vec_cc := vector(sinc(kc*x), 0, 0)
223

224 //Calc Norm of current vector and compare
225 //to previous one (Find max norm)
226 vec_norm = sqrt(pow(vec_cc.X(),2)+pow(vec_cc.Y(),2)+pow(vec_cc.Z(),2))
227 max_norm = max(vec_norm, max_norm)
228

229 //Set the vector as field direction along
230 //all y-coordinates y (for the x, z)
231 for j:=0; j<Ny; j++{
232 mask.SetVector(i, j, k, vec_cc)
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233 }
234 }
235 }
236

237

238

239

240 //##############################################//
241 //------------- CONF INITIAL STATE -------------//
242 //##############################################//
243

244 //Initialize the system with randomized magnetization in each cell
245 m = randommag()
246

247 //Save picture of magnet as .jpg as confirmation
248 snapshot(m)
249

250 //Apply strongest static field value and repeat steps
251 B_ext = vector(B_stat*sin(theta)*cos(phi),
252 B_stat*sin(theta)*sin(phi),
253 B_stat*cos(theta))
254 Relax()
255 snapshot(m)
256

257

258

259

260 //##############################################//
261 //--------------- RUN SIMULATION ---------------//
262 //##############################################//
263 //Relax the structure to get constant magnetization
264 Relax()
265

266 //Add the sinc-shaped excitation field for the dynamic pulse
267 B_ext.Add(mask, B_rf*sinc(2*pi*f*(t-t_p)))
268

269 //Run simulation
270 run(T_total)
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B.2 Post-processing

B.2.1 Python code to obtain FMR spectrum

1 import numpy as np
2 import pandas as pd
3 import scipy as sp
4 import matplotlib.pyplot as plt
5 import matplotlib.colors as colors
6 from collections import Counter
7 import scipy as sp
8 import scipy.signal as signal
9

10

11 def calc_susceptibility(df:pd.DataFrame, dt:float, interpolate=False,
12 BiasFieldDir='y', MWFieldDir='x'):
13 """
14 Takes as input the output "table.txt" of a mumax3 simulation.
15 Calculates the systems dynamic susceptibility.
16

17 Inputs-------------------------------------------------------
18 df: pd.Dataframe (loaded table.txt)
19 dt: sampling rate of the simulation in seconds (saving interval)
20 interpolate: choose wether interpolation of input data is performed
21 BiasFieldDir: direction of the external (static) field
22 MWFieldDir: direction of the (dynamic) microwave field
23

24

25 Returns------------------------------------------------------
26 fields: np.array with swept (static) external field values
27 f: np.array with the (positive) frequency axis
28 X: np.array containing the susceptibility X,
29 frequency values along the rows, field values along columns
30 """
31

32 ########################################################################
33 ###----------------------- INPUT HANDLING ----------------------------##
34 ########################################################################
35

36 if BiasFieldDir.lower() not in ['x', 'y', 'z']:
37 raise ValueError("Bias field direction can only be 'x', 'y' or 'z'.")

131



Appendix B Code examples

38 else: BiasFieldDir = BiasFieldDir.lower()
39

40 if MWFieldDir.lower() not in ['x', 'y', 'z']:
41 raise ValueError("Microwave field direction can only be 'x', 'y' or 'z'.")
42 else: MWFieldDir = MWFieldDir.lower()
43

44

45 ########################################################################
46 ###----------------------- Processing ----------------------------##
47 ########################################################################
48

49 #Check if 'B_stats' provided -> If yes it gives the swept field values
50 if "B_stat (T)" in df.columns.to_list():
51 Use_B_stats = True
52 else:
53 Use_B_stats = False
54

55 #If not provided, use the user input to find the swept field values
56 if Use_B_stats:
57 B_stats = df["B_stat (T)"].unique()
58 else:
59 B_stats = df[f"B_ext{BiasFieldDir} (T)"].unique()
60

61 #Create lists to store swept field values and corresponding FFT(m(t))
62 FFTs = []
63 fields = []
64

65 #Keep track of lengths to identify possible incomplete simulation runs
66 Ls = []
67

68 #Sweep through field values
69 for i in range(len(B_stats)):
70 #Grab data recording during current field value
71 if Use_B_stats:
72 df_1 = df[df["B_stat (T)"]==B_stats[i]].copy()
73 else:
74 df_1 = df[df[f"B_ext{BiasFieldDir} (T)"]==B_stats[i]].copy()
75

76 #Remove potential duplicates
77 #(timepoints that have been recorded mult. times)
78 df_1 = df_1.drop_duplicates(subset="# t (s)")
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79

80 #Extract data vectors for current field value
81 t = df_1["# t (s)"].to_numpy()
82 m = df_1[f"m{MWFieldDir} ()"].to_numpy()
83

84 #If interpolata==True: interpolate the data to obtain even timestep
85 if interpolate:
86 spl = sp.interpolate.CubicSpline(t, m)
87 t = np.linspace(0, np.max(t), int(np.max(t)/dt), endpoint=True)
88 m = spl(t)
89

90 #Calculate FFT(m(t)) (for positive frequencies)
91 L = len(t)
92 FFT = np.fft.fft(m)[0:int(L/2)]
93

94 #Append results to lists
95 Ls.append(L)
96 FFTs.append(FFT)
97 fields.append(B_stats[i])
98

99 #Find out if there are incomplete simulation runs
100 Ls = np.array(Ls)
101 L_vals, L_counts = np.unique(Ls, return_counts=True)
102 #Sort unique values by their number of occurences
103 L_vals = L_vals[np.argsort(-L_counts)]
104 L = L_vals[0]
105 if len(L_vals)>1:
106 print("\nNot all simulation runs of equal length!")
107 #Go through all L values that are not the maximum count
108 for j in range(len(L_vals)-1):
109 #Find the indices corresponding to the current L value
110 indices = [i for i,x in enumerate(Ls) if x == L_vals[j+1]]
111

112 for index in sorted(indices, reverse=True):
113 print(f"Removing sim run of B_stat = {fields[index]}")
114 del FFTs[index]
115 del fields[index]
116

117

118 #Get the frequency axis (positive half)
119 f = np.fft.fftfreq(L, d=dt)[0:int(L/2)]
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120

121 #Construct spectrum array
122 fields = np.array(fields)
123 FFTs = np.array(FFTs)
124

125 #Transposing the array returns array of shape
126 FFTs = np.transpose(FFTs)
127

128 # ^ ( | | | )
129 # | ( m(f) m(f) m(f) ..... )
130 # f ( | | | )
131 # |
132 # --------B_stats---------->
133

134

135 #Calculate the suceptibility X by deriving w/ respect to B_stat
136 if fields.shape[0]>1: X = np.gradient(FFTs, axis=1)
137 else:
138 print("No field sweep. Returning m(f) insteand of susceptibility.")
139 X = FFTs
140

141 return fields, f, X

B.2.2 Python code to fit FMR spectrum

1 import numpy as np
2 import pandas as pd
3 import scipy as sp
4 import matplotlib.pyplot as plt
5 import matplotlib.colors as colors
6 from collections import Counter
7 import scipy as sp
8 import scipy.signal as signal
9

10

11

12 def fit_spectrum_peaks(X:np.array, f:np.array, fields:np.array,
13 num_peaks:int, num_points:int,
14 peak_prom:float = 1e-3, min_peak_freq=1,
15 max_peak_freq=np.inf, Verbose=False):
16 """
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17 Takes a spectrum as input (e.g. S21 or X) and fits a
18 sum of <num_peaks> Lorentzians to the respective field slices.
19 Note that the fit is done in a converted spectrum of T vs GHz.
20 Thus the output data is in units T/GHz respectively.
21 It is recommended to unpack the fit data using Params2Arrays().
22

23 Inputs-------------------------------------------------------
24 X: np.array containing the spectral data
25 f: np.array containing the swept frequencies (i.e. y-axis of X)
26 fields: np.array containing the swept ext. fields (i.e. x-axis of X)
27 num_peaks: int, # peaks to (maximally) fit per slice
28 -> number of modes desired
29 num_points: int, # of datapoints to return
30 -> Number of field slices to be fitted
31

32 Optional:
33 peak_prom: float, default = 1e-3:
34 Filter factor of peak prominences for point
35 to be considered a peak in the data
36 min_peak_freq: float, default = 1:
37 Minimum frequency value of a point to be considered a peak.
38 This helps avoiding fitting artifacts in FFT data
39 max_peak_freq: float, default = np.inf:
40 Maximum frequency a point is allowed to have
41 to be considered a peak
42 Verbose: bool, default = False:
43 If true, prints statements for failed fits
44

45

46 Returns------------------------------------------------------
47 fit_idx: list of all slice indices that were fit successfully
48 params: list of the fit parameters for all fitted peaks in pairs of 3:
49 First column: Intensity of the peak
50 Second column: Peak location (fres)
51 Third column: HWHM (Multiplied by 2 gives FWHM or \Delta f)
52

53 params_err: list of the uncertainties to params organized in the same way
54 """
55

56 #Define the fitting funtions
57 def Lorentzian(x, I, x0, gamma):
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58 return I * (gamma**2)/((x-x0)**2 + gamma**2)
59

60 def sum_of_lorentzians(x, *params):
61 # Each Lorentzian has 3 parameters (A, x0, gamma)
62 num_peaks = len(params) // 3
63 result = np.zeros_like(x)
64 for i in range(num_peaks):
65 A = params[i * 3]
66 x0 = params[i * 3 + 1]
67 gamma = params[i * 3 + 2]
68 result += Lorentzian(x, A, x0, gamma)
69 return result
70

71 #Create empty lists to store fitting data
72 fit_idx = [] #indices of field slices that were (successfully) fitted
73 fit_p = [] #frequency value of fitted Lorentzian peak (f_res)
74 fit_p_err = [] #errors on resonance frequencies (\Delta f_res)
75

76 #Stepsize along the field axis
77 n = int(X.shape[1]/num_points)
78 #If step size is chosen too high, use every available data slice
79 if num_points>X.shape[1]:
80 if Verbose: print("Too many points chosen! Fitting all possible slices")
81 n = 1
82

83 #Iterate through field slices
84 for i in range(0, X.shape[1], n):
85 data = X[:, i]
86

87 #Determine peaks and sort them (descending order) by prominence
88 peaks, _ = signal.find_peaks(data, prominence=peak_prom*np.max(data))
89 prominences = signal.peak_prominences(data, peaks)[0]
90 sorted_peaks = [peak for _, peak in sorted(zip(prominences, peaks),
91 reverse=True)]
92

93 #Check if minimum frequency condition is met
94 sorted_peaks = [peak for peak in sorted_peaks if f[peak]*1e-9>=min_peak_freq]
95

96 #If more peaks were found than fitted peaks desired
97 #->omit those of weaker prominence
98 if len(sorted_peaks)>num_peaks:
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99 sorted_peaks = sorted_peaks[0:num_peaks]
100

101 #Construct initial guess for the Lorentzian fits
102 init_guess = []
103 for j in range(len(sorted_peaks)):
104 peak_idx = sorted_peaks[j]
105 # Amplitude, position, width
106 init_guess.extend([data[peak_idx], f[peak_idx]*1e-9, 0.1])
107

108

109 #Fit using sum of <num_peaks> Lorentzians
110 try:
111 popt, pcov = sp.optimize.curve_fit(sum_of_lorentzians,
112 f*1e-9, data,
113 p0=init_guess)
114 fit = True
115

116 except:
117 if Verbose:
118 print(f"Fit didn't converge @ {fields[i]:.4f}T")
119 fit = False
120

121

122 #If fit was successful:
123 #note this in the list of fit_idx and save parameters
124 if fit:
125 fit_p.append(popt)
126 fit_p_err.append(np.sqrt(np.diag(pcov)))
127 fit_idx.append(i)
128

129

130 fit_idx = fit_idx
131 params = fit_p
132 params_err = fit_p_err
133

134 return fit_idx, params, params_err
135

136

137 def Params2Arrays(fields:list, fit_idx:list, params:list, params_err:list):
138 """
139 Takes lists of output of fit_spetrum_peaks() and
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140 converts them into a sorted output dict "arrays".
141

142 Structure of output-dict:
143 1.First key gives the modenumber
144 (Fitted points associated with the <modenumber> most prominent peak)
145 Example: arrays[0] gives the data dict for the most prominent mode
146

147 2.Second-level key gives the desired quantity in regards to the mode fit.
148 Current options: 'field', 'fpeaks', 'fpeaks_err', 'deltaf', 'deltaf_err'
149 Example: arrays[0]['fpeaks'] gives peak freqs @ fields arrays[0]['field']
150 """
151

152 #Determine number of modes as maximum length of sublist in params
153 N = max([len(list) for list in params])
154

155 #Create dicts of emtpy lists w/ respective name for each mode
156 arrays = {}
157 for i in range(N):
158 arrays[i] = {'field(T)':[],
159 'fpeaks(GHz)':[], 'fpeaks_err(GHz)':[],
160 'deltaf(GHz)':[], 'deltaf_err(GHz)':[]}
161

162 #Iterate through params list
163 for i in range(len(params)):
164 #iterate through the number of fitted peaks
165 for j in range(int(len(params[i])/3)):
166 #Store information in relevant arrays
167 arrays[j]['field(T)'].extend([fields[fit_idx[i]]])
168

169 arrays[j]['fpeaks(GHz)'].extend([params[i][1 + 3*j]])
170 arrays[j]['fpeaks_err(GHz)'].extend([params_err[i][1 + 3*j]])
171

172 arrays[j]['deltaf(GHz)'].extend([2*params[i][2 + 3*j]])
173 arrays[j]['deltaf_err(GHz)'].extend([2*params_err[i][2 + 3*j]])
174

175 #Transform into npy arrays before returning
176 for modenum in list(arrays.keys()):
177 for quant in list(arrays[modenum].keys()):
178 arrays[modenum][quant] = np.array(arrays[modenum][quant])
179

180
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181 return arrays
182

183 def sort_arrays_by_frequency(arrays):
184 """
185 Sorts the output dictionary of Params2Arrays function.
186 Retursn dict sorted by descending frequency values in 'fpeaks(GHz)'.
187 """
188 # Define custom key function to extract frequency value
189 def get_frequency(arr):
190 # If 'fpeaks(GHz)' is empty, return a high value
191 # This sorts it to the end later
192 if arr['fpeaks(GHz)']:
193 return arr['fpeaks(GHz)'][0]
194 else:
195 # Assign a high value for empty 'fpeaks(GHz)'
196 return float('inf')
197

198 # Sort the dictionary based on frequency values for each mode
199 sorted_arrays = {k:v for k,v in sorted(arrays.items(),
200 key=lambda x: get_frequency(x[1]))}
201

202 return sorted_arrays

B.2.3 Python code to obtain continuous medium spin wave
dispersion

1 import numpy as np
2 import pandas as pd
3 import scipy as sp
4 import os
5 import re
6 from glob import glob
7 import multiprocessing
8 from functools import partial
9 import matplotlib as mpl

10 import matplotlib.pyplot as plt
11

12 def dispersion_from_files_multithread(out_dir:str, comp='x',
13 dt=5e-12, filepat="m.region1[0-6]*"):
14 """
15 Calculates spin wave dispersion spectrum for a mumax3 simulation.
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16

17 Inputs-------------------------------------------------------
18 out_dir: str,
19 dir containing the spatial .ovf output files
20

21 Optional
22 comp: str, default 'x'.
23 Desired dispersion component (i.e., kx)
24 dt: float, default 5e-12s
25 Sample rate of the mumax3 simulation
26 filepat: str, default "m.region1[0-6]*"
27 Regex pattern of the files to evaluate.
28

29

30 Returns------------------------------------------------------
31 k: np.array of the sampled momenta
32 f: np.array of the sampled (positive) frequencies
33 m_w_k: np.array containing the spin wave dispersion spectrum,
34 frequency values along the rows,
35 field values along columns
36 """
37

38 #Remember current working directory
39 cwd = os.getcwd()
40 #Go to output directory
41 os.chdir(out_dir)
42

43 #Get list of the output magnetization files
44 m_files = glob(f"{filepat}.ovf")
45

46 #Translate the comp input to an index
47 comp_indices = {'x':0, 'y':1, 'z':2}
48 if comp.lower() in comp_indices: comp_idx = comp_indices[comp]
49 else: raise ValueError("comp has to be 'x', 'y' or 'z.")
50

51 #Manually determine the node dimensions in a first step
52 first_file = ovf.ovf_file(m_files[0])
53 xdim = int(first_file.xnodes)
54 ydim = int(first_file.ynodes)
55 zdim = int(first_file.znodes)
56
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57 #Also determine the spacing in transport direction for FFT later
58 dx = float(first_file.xbase)
59 #Remove first_file from memory
60 del(first_file)
61

62 #Load in the remaining arrays multi-threaded
63 with multiprocessing.get_context("spawn").Pool() as pool:
64 multi_thread_files = list(pool.map(partial(ovf.loadarray,
65 newshape=(zdim, ydim, xdim),
66 column=comp_idx), m_files))
67 pool.close()
68 pool.join()
69

70 #Convert the file list to array
71 array = np.array(multi_thread_files)
72

73 #Release the file list from memory
74 del(multi_thread_files)
75

76 #Transpose array [t, z, y, x] ---> [t, x, y, z]
77 array = array.transpose((0,3,2,1))
78

79 #Calculate necessary window function
80 window_f = np.hanning(array.shape[0])
81 window_k = np.hanning(array.shape[1])
82 window_2D = np.sqrt(np.outer(window_f, window_k))
83

84 #Save memory: Use only in-place transformation for the FFTs
85 for y in range(array.shape[2]):
86 for z in range(array.shape[3]):
87 #Perform 2D FFT on windowed data
88 array[:, :, y, z] = np.abs(np.fft.fft2(window_2D*array[:, :, y, z]))
89

90 #Sum over the squared absolute values of |M_y_z (kx, f)|
91 #Finally, apply fftshift in order to get correct k-value alignment
92 m_w_k = np.fft.fftshift(np.sum(np.power(array, 2), axis=(2, 3)), axes=1)
93

94 #Get the frequency axes
95 k = np.fft.fftshift(np.fft.fftfreq(m_w_k.shape[1], d=dx))
96 f = np.fft.fftfreq(m_w_k.shape[0], d=dt)
97
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98 #Remove array from memory
99 del(array)

100

101 #Return to original cwd
102 os.chdir(cwd)
103

104 #Return the spectral data
105 return k, f[:int(m_w_k.shape[0]/2)], m_w_k[:int(m_w_k.shape[0]/2), :]

B.2.4 Python code to obtain magnonic crystal spin wave dispersion

1 import numpy as np
2 import pandas as pd
3 import scipy as sp
4 import os
5 import re
6 from glob import glob
7 import multiprocessing
8 from functools import partial
9 import matplotlib as mpl

10 import matplotlib.pyplot as plt
11

12

13 def MagnonicCrystalDispersion_from_table(df:pd.DataFrame,
14 x:int, y:int, z:int,
15 a:float, dt:float):
16 """
17 Calculates the dispersion relation/spectrum P(f, kx)
18 in x-direction for 2D-Magnonic crystals from table.txt.
19 This function specifically takes tables as input, where columns
20 correspond to numerous crop-ins of the simulation grid.
21 Specifically, it is assumed that the crop-ins are ordered
22 from left to right and top to bottom.
23 These crops of the simulation grid are interpreted as "unit cells"
24

25 Input:--------------------------------------------------------------------
26 df: pd.DataFrame, output table from mumax3
27 x: int, number of "unit cells" in x-direction
28 y: int, number of "unit cells" in y-direction
29 z: int, number of "unit cells" in z-direction
30 a: float, lattice constant of the "unit cells" (center-center)
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31 dt: float, sampling rate of table in seconds
32

33

34 Output:-------------------------------------------------------------------
35 k: np.array, vector of momentum kx in [rad/m]
36 f: np.array, vector of frequency f in [Hz]
37 m_f_k: np.array, dispersion spectrum, f along rows, kx along columns
38 """
39

40 #If the single lattice sites of the magnonic crystal aren't defined as regions
41 #->rename them - Order: Left to right, Top to bottom
42 if df.filter(regex="m.region[0-9]+[xyz]").empty:
43 #Rename the columns if necessary
44 for comp in ['x','y','z']:
45 colnames = [col for col in df.columns if re.search(f"m_.*_{comp} ()", col)]
46 rename_dict = {}
47

48 for i in range(len(colnames)):
49 rename_dict[colnames[i]] = f"m.region{i}{comp}"
50 df.rename(columns=rename_dict, inplace=True)
51

52 #Remove static magnetization
53 #df = df - df.iloc[0].squeeze()
54

55 #Loop over magnetization components, apply transformation
56 for comp in ['x','y','z']:
57 #Select subset of data
58 m_data = df.filter(regex=f"(?<=m.region)([0-9]+{comp})")
59 m_array = np.zeros(shape=(m_data.shape[0], x, y, z))
60

61 if comp=='x': m_f_k = np.zeros(shape=(m_data.shape[0], x, y, z))
62

63 #Reorder data on array reflecting proper magnonic crystal dimensions
64 counter = 0
65 for i in range(z):
66 for j in range(y):
67 for k in range(x):
68 m_array[:, k, j, i] = m_data.iloc[:, counter].to_numpy()
69 counter += 1
70

71 #Calculate necessary window function
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72 window_f = np.hanning(m_data.shape[0])
73 window_k = np.hanning(x)
74 window_2D = np.sqrt(np.outer(window_f, window_k))
75

76 #Apply FFT transformation
77 for i in range(y):
78 for j in range(z):
79 m_f_k[:,:,i,j] += np.power(np.abs(
80 np.fft.fftshift(np.fft.fft2(
81 window_2D*m_array[:,:,i,j]), axes=(1))
82 ), 2)
83

84

85 #Apply FFT transformation
86 for i in range(y):
87 for j in range(z):
88 m_f_k[:,:,i,j] = np.sqrt(m_f_k[:,:,i,j])
89

90 #Shift the reciprocal arrays to fit plotting range
91 k = np.fft.fftshift(np.fft.fftfreq(n=x, d=a))
92 f = np.fft.fftfreq(n = m_data.shape[0], d=dt)
93 m_f_k = m_f_k[0:int(f.shape[0]/2),:,:,:]
94 f = f[0:int(f.shape[0]/2)]
95

96 return k, f, m_f_k

B.2.5 Python code to determine spatial mode profiles

1 def power_phase_pixelmap(out_dir:str, phase=False,
2 filepat="m.region1[0-6]*",
3 comps=[0,1,2]):
4 """
5 Creates a power/phase-pixelmap of a magnet
6 simulated in mumax3 from a top-down view.
7 The returned array has the frequency as first axis.
8 Choosing a frequency index i will give
9 the spectrum at the f[i].

10 Calculation of the spectra (after avr in z-dir for top-down view):
11 Power: spectrum = abs(sqrt(mx(f)^2 + my(f)^2 + mz(f)^2))
12 Phase: spectrum = unwrap(angle(mx(f) + my(f) + mz(f)))
13
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14 Input:---------------------------------------------------------------
15 out_dir: str, path to dir with the .ovf outputfiles
16 phase: bool, choose between power or phase-pixelmap.
17 (Default: False = Power spectrum)
18 filepat: str, regex pattern to glob the corresponding .ovf files
19 (Default: material region 1)
20

21

22 Output:--------------------------------------------------------------
23 f: np.array, vector containing the frequency f values in [Hz]
24 spectrum: np.array, array of power/phase-spectrum with axes f, x, y
25 """
26

27 #Remember current working directory
28 cwd = os.getcwd()
29 #Go to output directory
30 os.chdir(out_dir)
31

32 #Get the table of the simulation
33 df = pd.read_csv("table.txt", sep='\t')
34

35 #Check if there is a duplicate for t
36 #(sometimes certain timepoints are recorded twice)
37 indices = df.duplicated(subset='# t (s)', keep='last').to_numpy()
38 if indices.any():
39 #drop duplicates out of the time series
40 df = df.drop_duplicates(subset="# t (s)")
41 #list of indices, where "# t (s)" has duplicate entries
42 double_indices = list(indices.nonzero()[0])
43

44

45 t = df["# t (s)"].to_numpy()
46 T = np.max(t)
47

48

49 #Get list of the output magnetization files
50 m_files = glob(f"{filepat}.ovf")
51

52 #Get the relevant spacing in time-space
53 try: dt = fmr.get_samplerate("log.txt")
54 except:
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55 dt = 5e-12
56 print("No <log.txt> file found. Using default dt=5e-12s.")
57

58

59

60 #Manually determine the node dimensions in a first step
61 #-> Can use loadarray()
62 first_file = ovf.ovf_file(m_files[0])
63 xdim = int(first_file.xnodes)
64 ydim = int(first_file.ynodes)
65 zdim = int(first_file.znodes)
66

67 #determine the spacing in transport direction for FFT
68 dx = float(first_file.xbase)
69 #Remove first_file from memory again
70 del first_file
71

72 #Iterate through all components to get desired quantities
73 for comp_idx in comps:
74 #Load in the remaining arrays multi-threaded
75 with multiprocessing.get_context("spawn").Pool() as pool:
76 multi_thread_files = list(pool.map(partial(ovf.loadarray,
77 newshape=(zdim, ydim, xdim),
78 column=comp_idx), m_files)
79 )
80 pool.close()
81 pool.join()
82

83

84 #Convert to array
85 array = np.array(multi_thread_files)
86

87 #Release list of files from memory after creating array
88 del multi_thread_files
89

90 #Transpose array [t, z, y, x] ---> [t, x, y, z]
91 array = array.transpose((0,3,2,1))
92

93 if indices.any():
94 total_indices = list(np.arange(array[:,0,0].shape[0]))
95 sel = list(set(total_indices).difference(set(double_indices)))
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96 else:
97 sel = list(np.arange(array[:,0,0].shape[0]))
98

99 #Omit indices corresponding to double timepoints
100 array = array[sel,:,:]
101

102 #Average in z-direction
103 array = np.mean(array, axis=3)
104

105 #FFT in-place to conserve memory!
106 array = array.astype(np.complex128)
107

108

109

110 #Perform FFT for the time slices
111 for i in range(array.shape[1]):
112 for j in range(array.shape[2]):
113 array[:,i,j] = np.fft.fft(array[:,i,j])
114

115 #Calculate the power/phase in frequency space
116 if comp_idx==0:
117 f = np.fft.fftfreq(array.shape[0], d=dt)
118 if phase: spectrum = np.angle(array)
119 else: spectrum = np.power(array, 2)
120

121 else:
122 if phase: spectrum += np.angle(array)
123 else: spectrum += np.power(array, 2)
124

125 #Release array from memory
126 del array
127

128 #Final processing on the spectra
129 if phase:
130 #unwrap takes the phase signal to the interval (-pi, pi],
131 #i.e., removing phases larger than 2pi
132 spectrum = np.unwrap(spectrum[:int(len(f)/2),:,:], axis=0)
133 else:
134 spectrum = np.abs(np.sqrt(spectrum[:int(len(f)/2),:,:]))
135

136 #Crop to positive frequencies
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137 f = f[:int(len(f)/2)]
138 spectrum = spectrum[:int(len(f)/2),:,:]
139

140 os.chdir(cwd)
141

142 return f, spectrum
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