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Abstract

The present thesis deals with the improvement of the growth and annealing param-
eters as well as the influence of oxygen impurities on the structural and electronic
properties of Re2−xCexCuO4 (Re = La, Pr, Nd, Sm) single crystals. For transport
measurements a sample set of high quality single crystals of Nd2−xCexCuO4 was
available, which covers the major part of the phase diagram on the electron doped
side of the cuprate high temperature superconductors. The resulting unusual trans-
port data of the optimally doped and overdoped crystals can be explained within
conventional Boltzmann transport theory when applying a two-band model with
anisotropic scattering rates.

Zusammenfassung

In der vorliegenden Arbeit werden verbesserte Wachstumsbedingungen und Tem-
perparameter sowie der Einfluss von Sauerstoffstörstellen auf die strukturellen und
elektronischen Eigenschaften von Re2−xCexCuO4 (Re = La, Pr, Nd, Sm) Einkri-
stallen diskutiert. Für die Transportmessungen stand ein hochreiner Nd2−xCexCuO4
Probensatz zur Verfügung, der einen großen Bereich des elektron-dotierten Phasen-
diagramms der Kuprat Hochtemperatursupraleiter abdeckt. Die sich ergebenden
ungewöhnlichen Transportdaten im optimalen und überdotierten Bereich können
im Rahmen konventioneller Boltzmann-Transporttheorie erklärt werden, indem ein
Zwei-Band Modell mit anisotropen Streuraten angewandt wird.
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Chapter 1

Introduction

More than 20 years of intensive research on the cuprate high temperature super-
conductors has provided a deep insight into a rich variety of exciting new phe-
nomena of modern solid state physics. Nevertheless, the fundamental question of
the underlying pairing mechanism of the charge carriers is still open and discussed
controversially. The reason for this lies in the complexity of the material system,
which is reflected in a rich doping dependent phase diagram. As for other transition
metal oxides, such as the colossal magnetoresistance manganites, the physics of the
cuprate superconductors is controlled by the subtle interplay of electronic, spin and
orbital degrees of freedom, resulting in a complex behavior and fascinating phys-
ical properties. The superconducting state is only one facet of the entire phase
diagram, which is characterized by several competing and/or coexisting ordering
phenomena. Thus, there is a general agreement that the detailed understanding of
the nature of the superconducting state can only be achieved by developing a solid
understanding of the whole phase diagram.

At present, a thorough understanding of the phase diagram of the cuprates is
still missing. In past, this was caused by inconsistent and sometimes controversial
experimental results, depending on the details of the investigated cuprate com-
pounds and experimental techniques. In particular, the question of what is generic
and what is material specific (influence of crystal structure, defects and inhomo-
geneities) in the phase diagram is an important aspect, which can only be solved
by including material specific questions in the research efforts. On the electron
doped side of the phase diagram, for instance, the appearance of the superconduct-
ing state with increasing Ce doping strongly depends on material specific aspects
such as the rare earth elements as well as the preparation conditions and thus, the
question of the effective doping of the CuO2 unit arises. In addition, there is a no-
ticeable asymmetry between the hole and electron doped side of the phase diagram,
which turned out to be intrinsic, which is not completely understood so far.

Reliable experimental studies of the cuprate superconductors require high qual-
ity materials with reproducible properties. Until today, the fabrication of a high
quality cuprate sample set covering the entire phase diagram is the main problem
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2 Chapter 1. Introduction

for probing the phase diagram, which was also the main motivation for the present
thesis. However, the growth of a set of electron doped crystals was not only moti-
vated by the lack of available pure crystals, but also by its dichotomy in the elec-
tronic properties with respect to the hole doped compounds. An example for this is
the complementary doping dependent evolution of the Fermi surface and, presum-
ably related to it, the different physical behavior in the slightly doped regime. The
electron doped compounds are particular suitable for studying the effect of ”dop-
ing into a Mott insulator”, as the doped charge carriers lie above the band gap (in
the so-called upper Hubbard band (UHB)), which is induced by strong correlation
effects, while for hole doped compounds only states below the gap (in the lower
Hubbard band (LHB)) are involved. In addition, the relative simple crystal struc-
ture, which is similar to that of the hole doped La2−xSrxCuO4, makes both sides of
the phase diagram comparable.

During the last years the research activities were primarily focused on the
lightly and heavily doped regime of the cuprates, as remarkable progresses in the
crystal preparation and annealing treatment allowed to access also these regions of
the phase diagram. In the underdoped regime the pseudogap phenomenon (gap in
the normal state) is still considered as a central issue towards the understanding
of the cuprate phase diagram. The pseudogap crossover is observed on both sides
of the phase diagram [1–3]. Its physical origin, its relation to different ordering
phenomena (charge, spin ordering) as well as its impact on the formation of super-
conductivity as competing phase or precursor phase (preformed pairs without long
range phase coherence) are up to now controversially discussed.

On increasing the doping level, the transition from the peculiar pseudogap state
into a Fermi liquid-like metal in the heavily doped regime of the cuprates is inti-
mately connected with the change in the Fermi surface topology. Both electron and
hole doped cuprates show a crossover from a fragmented surface to a large closed
surface with hole-like character for the electron doped compounds and electron-
like character for the hole doped compounds [1, 4]. Recently, it could be shown
for several hole doped compounds that the transport data in this regime can be
explained successfully within the framework of conventional Boltzmann transport
theory [5, 6]. For the hole doped cuprates there are new attempts to extend the
Fermi liquid picture to the underdoped region and to interpret the unusual under-
doped transport data at moderate temperatures within Boltzmann transport theory.
This new approach is supported by the markedly metallic behavior of the in-plane
transport in the far underdoped regime close to the Mott insulator state. In this case
the observed Fermi arcs are interpreted as the manifestation of those regions of an
underlying, large Fermi surface, where the quasiparticles are coherent with a finite
scattering time. The states on the Fermi surface outside the arcs are incoherent
and do not contribute to the transport. The picture of an underlying, large Fermi
surface, which is gapped at certain regions due to antiferromagnetic interactions
is also supported by recent photoemission studies on La2−xSrxCuO4 [4], where it
could be shown that the large Fermi surface satisfies Luttinger’s theorem.

Very recently it became evident that the doping dependent shape and evolu-
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tion of the Fermi surface has to be reviewed again, especially for the hole doped
cuprates. The traditional interpretation of the Fermi arcs (based on observations by
angle resolved photoemission spectroscopy) as a new topological state in the mo-
mentum space, where the conventional Fermi liquid picture fails, has recently been
challenged by the observation of quantum oscillations in underdoped YBa2Cu3O6.5
single crystals [7, 8]. These new transport experiments provided evidence for small
Fermi surface pockets which behave Fermi liquid-like. Furthermore, they under-
lined once more, that the improvement of the crystal growth process and annealing
treatment is the key towards a better understanding of this class of materials.

On the electron doped side of the phase diagram a two-band model is clearly
confirmed by angle resolved photoemission spectroscopy [9, 10]. While for small
electron doping the photoemission spectroscopy data and Hall measurements seem
to reflect in the same way the small electron pockets in the Brillouin zone, the
transition from fragmented pieces to a large hole-like Fermi surface for heavily
electron doped crystals is difficult to extract from transport data. In this context, a
possible Fermi surface reconstruction accompanied by a magnetic quantum phase
transition at a Ce doping of x = 0.165 has previously been suggested arising from
a discontinuity of the low temperature Hall coefficient in Pr2−xCexCuO4 thin films
[11].

In this thesis the reconstruction of the Fermi surface in electron doped cuprates
is reviewed carefully. For that purpose the growth process and annealing treat-
ment for electron doped cuprates was improved and a sample set of high quality
Nd2−xCexCuO4 single crystals with Ce doping x ≤ 0.17 was grown. The analysis
of the transport data has revealed that, in contrast to photoemission experiments,
the two-band model with small Fermi surface pockets persists up to a Ce doping
of x = 0.17. A possible transition to a reconstructed, large Fermi surface is ex-
pected for Ce doping beyond the superconducting dome. In addition, for Ce doping
x ≥ 0.15 it was for the first time possible to explain the unusual normal state trans-
port properties of electron doped cuprates within conventional Boltzmann transport
theory.

The thesis consists of two parts. Part I, comprising Chapter 2 to 4, deals with
the growth and characterization of electron doped cuprate single crystals. In Chap-
ter 2 the general phase diagram of the electron doped and hole doped cuprates is
reviewed. In addition, the important question of appropriate sample sets for prob-
ing the entire phase diagram with respect to crystal quality and accessible doping
range is discussed. The crystal structure and magnetic behavior of the electron
doped compounds is summarized explicitly. In Chapter 3 the compositional phase
diagram of the electron doped cuprate superconductors is introduced. On the basis
of the compositional phase diagram the growth process and growth parameters are
described. Thereafter, in Chapter 4, the annealing treatment as well as the charac-
terization of the grown single crystals is presented.

Part II of the thesis is devoted to the normal state magnetotransport properties
of the grown series of high quality Nd2−xCexCuO4 single crystals. For the inter-
pretation of the transport data the theoretical background is described in Chapter
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5. Chapter 6 deals with the experimental techniques for the Hall measurements
on the Nd2−xCexCuO4 single crystals. The transport data are presented in Chapter
7 and discussed within a two-band model. Finally, the most important results are
summarized in Chapter 8.



Part I

Growth of high quality electron
doped cuprate single crystals
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Chapter 2

The electron doped and hole
doped cuprate superconductors

2.1 Similarities and differences in the phase diagram of
electron doped and hole doped cuprate superconduc-
tors

The schematic phase diagram of the electron and hole doped cuprate superconduc-
tors is shown in Figure 2.1. This material class is characterized by a variety of
phase transitions and ordering phenomena [2, 12–16]. Intensive investigations on
both sides of the phase diagram are still going on and hence, the outlined phase
diagram cannot be considered to be final. It is rather a summary of generally ac-
cepted and still discussed experimental facts, obtained from various experiments.
The undoped parent compounds are a suitable starting point for a qualitative discus-
sion of the phase diagram. The CuO2 unit provides a half filled molecular orbital of
antibonding σ∗

x2−y2 character, resulting from a strong covalent bonding between the
3dx2−y2 and 2px orbitals [28]. Thus, according to band theory, the conduction band
is semi-filled and the parent compounds are expected to show a metallic behavior.
However, this is not the case, as conventional band theory does not account for the
strong on-site Coulomb repulsion U , which is characteristic for the cuprates. The
resulting strong correlation effects are responsible for the splitting of the σ∗

x2−y2

band into a fully occupied lower and an empty upper Hubbard band. Therefore,
the parent compounds are Mott insulators with considerable energy gaps [28, 29].
Since the Cu one-site repulsion U dominates the hopping energy t (U À t) and
because of the strong covalent bonding, the antiferromagnetic ordering (AFM) of
the Cu sites (3d9 configuration) arises due to a super-exchange with J ≈ 130 meV
(see [12, 29] and the references therein). Typical values measured for the Néel tem-
perature TN are between 250 K and 400 K for the hole doped parent compounds
[12] and come up to about 250 K for the undoped Nd2CuO4 compound [30, 31],
which are moderate values compared to the high value for J. By means of electron

7



8 Chapter 2. The electron doped and hole doped cuprate superconductors

Figure 2.1: Schematic phase diagram of the electron doped and hole doped cuprate high
temperature superconductors. The doping dependent evolution of the long-range antifer-
romagnetic order (AFM) and the superconducting phase (SC) are sketched by the blue and
red areas, respectively. The transition temperatures (Néel temperature TN and supercon-
ducting transition temperature Tc) depend on the various compounds. TN for the undoped
and Tc for the optimally hole doped compounds amount to 250− 400 K [12] and 40− 130
K [17], respectively. The phase diagram corresponds to the experimental results obtained
from hole doped La2−xSrxCuO4 [6, 18–23] and electron doped Nd2−xCexCuO4 [1, 2, 24–
27]. Proposed crossovers (T*(x), black dashed lines) and quantum critical points (QCP,
yellow dots) are discussed in the text. The doping x, plotted on the abscissa, corresponds
to the effective charge carrier number p per Cu ion for the hole doped compounds. On the
electron doped side (and also for the 214 compound La2−xSrxCuO4) x might differ slightly
from the real carrier concentration n due to possible oxygen co-doping (see also discus-
sion in Chapter 4.4.3). In literature and the underlying thesis, the following terminology is
common: the doping xopt with maximal Tc,max, is called optimal doping, whereas crystals
with doping x < xopt and x > xopt are called underdoped and overdoped, respectively.

or hole doping of the undoped compounds the long-range AFM ground state van-
ishes gradually and the AFM state is replaced by a superconducting one. Hence,
both sides of the phase diagram comprise these phase transitions. For both sides of
the phase diagram the maximum transition temperature Tc of the superconducting
phase is obtained at similar doping levels of x ≈ 0.16 charge carriers per Cu site.
Despite these general similarities, the hole/electron asymmetry in the phase dia-
gram dominates. Therefore, it is worth discussing both sides separately, in order
to extract the differences in more detail. In this thesis the following terminology
is used for the discussion, which is also common in literature: the doping xopt ,
corresponding to maximum Tc,max, is called optimal doping, whereas crystals with
doping x < xopt and x > xopt are called underdoped and overdoped, respectively.
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2.1.1 Hole doped side of the phase diagram

Despite the various hole doped compounds, which differ in the absolute values of
Tc [17] and TN [12, 30], it is generally accepted that the long-range ordered three
dimensional AFM phase is destroyed rapidly with hole doping of the CuO2 planes
and disappears at x = 0.02 [12, 22]. In addition, the parabolic superconducting
dome, which extends over the broad doping interval of x = [0.05, 0.27] with a
maximum Tc at xopt ≈ 0.16, is generic for all hole doped cuprates [18, 20]. The
d-wave nature of the superconducting state was confirmed by ARPES [32, 33] and
tricrystal experiments [34]. The region between AFM and optimal doping shows a
variety of new features in complementary experiments. The origin of these features
and the underlying physics is up to now controversially discussed. A short-range
disordered AFM state is reported from µSR1 experiments [22] for doping x > 0.02,
which extends into the superconducting regime. In addition, neutron scattering
experiments show that the long-range Bragg peaks are replaced by incommensurate
magnetic peaks when crossing the AFM phase boundary [19]. These experimental
facts are interpreted in terms of the formation of charge and spin superstructures
[35], the so called stripes. This microscopic magnetic ordering can be static or
dynamic and the degree of charge and spin ordering depends upon the material
system and on its purity. A fluctuating order is common to all hole doped cuprates
for doping levels up to optimal doping [12, 36]. Microscopic ordering phenomena
might also be the reason for the so called x = 1/8 anomaly [35], at which Tc

is reduced or even suppressed, resulting in a deviation from the parabolic Tc(x)
behavior [19, 21, 37]. The origin of these stripes, their possible impact on the
formation or suppression of the superconducting state as well as their relation to
the so called pseudogap phenomenon are still unknown.

The pseudogap phenomenon shows up in an impressive way in ARPES mea-
surements as a suppression of the single-particle density of states in the normal
state and the absence of the single-particle coherence peak [3, 38]. For the op-
timally doped and underdoped region the SC gap does not collapse while mov-
ing through Tc, but is replaced by a gap in the normal state, the pseudogap. It is
anisotropic in momentum space and maximal in (π, 0) direction. It becomes zero
within a certain region around the nodal (π, π) direction, leaving behind the so
called Fermi arcs [12, 14, 38–41]. Recently, it has been shown that the anisotropy
of the pseudogap evolves with T/T ∗ and that the related Fermi surface shrinks lin-
early onto four nodal points for T → 0 [37, 41]. The temperature T ∗, at which
the crossover into the pseudogap regime appears, is illustrated qualitatively by the
dashed lines in Figure 2.1. Up to now, there is no general agreement concerning
the doping evolution of this crossover, its physical origin and its impact on the for-
mation of superconductivity. Recently, two scenarios have been discussed, which
are summarized in [14–16]:

• In the first scenario, the crossover matches the Tc line on the overdoped side

1µSR is the abbreviation of muon Spin Rotation.



10 Chapter 2. The electron doped and hole doped cuprate superconductors

(curve 1 in Figure 2.1, p-type), and the pseudogap phase is interpreted as a
precursor phase to the superconducting one (preformed pairs) without global
phase coherence, from which both the AFM and SC phase arise.

• In the second scenario (curve 2 in Figure 2.1, n-type) the T ∗ line meets the
SC dome at a doping value of x ≈ 0.16 and the pseudogap state is interpreted
as a competing phase to the superconducting one.

Experimental results, however, seem to favor the first scenario, where the pseudo-
gap is interpreted as pairing gap [37, 38].

Unusual normal state behavior over the whole doping range can also be ob-
served in transport measurements [21, 42]. Especially the strong temperature de-
pendence of the Hall signal cannot be explained within a conventional Fermi liquid
theory. It is obvious that the gaped Fermi arcs do not allow for an usual Fermi
liquid. Nevertheless, with increasing doping the Fermi surface evolves from dis-
connected arcs to a closed surface in the momentum space on the overdoped side
[4]. In this case the strongly doped cuprates might behave more like a normal
metal. In fact, a coherent quasi three-dimensional Fermi surface was found for
heavily overdoped Tl2Ba2CuO6+δ [5], and it was shown for different overdoped
compounds that the transport data can be understood within a Fermi liquid picture,
if an anisotropic scattering rate is assumed [5, 6, 43–45].

2.1.2 Electron doped side of the phase diagram

In contrast to the hole doped side, the extended AFM region and the reduced su-
perconducting dome are the most prominent differences on the electron doped side
of the phase diagram. The doping dependent evolution of the Néel temperature
TN is controversially discussed so far. µSR [24] and elastic neutron scattering [26]
show a parabolic decrease of TN , approaching zero at doping x = 0.16. At this dop-
ing level evidence for an antiferromagnetic/paramagnetic quantum phase transition
was found in transport measurements [11, 13] (see curve 1 with the quantum crit-
ical point in Figure 2.1 (n-type)). In a recent INS2 study [27] the evolution of the
AFM curve was corrected. It was shown that long-range ordered AFM disappears
at x ≈ 0.13, where superconductivity first sets in (curve 2 in Figure 2.1 (n-type)).
Therefore, in the superconducting regime the samples show only short-range spin
ordering rather than a coexistence of AFM and superconductivity [24]. A d-wave
symmetry for the superconducting order parameter was deduced from various ex-
periments [46–48]. Due to the robustness of the AFM phase, the electron doped
phase diagram does not comprise such a variety of ordered states in the underdoped
region. Stripe and charge ordering phenomena might be suppressed.

Evidence for a pseudogap in the electron doped cuprates is provided by ARPES
[1, 9] and optical conductivity measurements [2, 25] (curve 3 in Figure 2.1 electron
doped). In contrast to hole doped cuprates the normal state gap opens at the nodal

2INS is the abbreviation for inelastic neutron scattering.
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position in the k-space, causing therefore the fragmentation of the Fermi surface
into two electron-like pockets around (π, 0). At the AFM/SC boundary this gap is
filled-in abruptly and the Fermi surface is reconstructed towards a large hole-like
one in the overdoped region [1]. Because of the large energy scale of the pseudogap
and its correspondence to the spin correlation length, the pseudogap in the electron
doped compounds might be of magnetic origin [1, 2].

During the last two decades of intensive research, the asymmetry in the hole
doped and electron doped cuprate phase diagram turned out to be intrinsic, even
though its origin is not yet understood. A rather qualitative explanation is given by
[30], which states that the doped holes reside primarily on the oxygen site in the
CuO2 plane, leading to an effective frustration of the AFM order, whereas doped
electrons are located on the Cu site, which causes only a dilution of the AFM order.
It turned out, however, that a random dilution picture of a spin-1/2 model is not
fully consistent with the experimental data [26].

2.2 Appropriate sample sets for probing the whole phase
diagram

Succeeding the short discussion of the complex phase diagram of the cuprate high
temperature superconductors in the previous section, appropriate sample sets of
single crystals for probing the whole phase diagram are now discussed in more
detail. As this thesis deals primarily with the growth and characterization of high
quality single crystals, which are also provided for different experiments (spec-
troscopy, transport, etc.) within the research unit FOR538, the discussion of the
following fundamental questions seems to be important:

• Which cuprate family is suitable for the growth of high quality single crys-
tals?

• Is there a compound for probing the whole phase diagram?

• Do the single crystals meet the different requirements of the various experi-
ments?

• Which properties of the cuprates are intrinsic, and which ones are related to
structural aspects (material issues)?

The last question is crucial for outlining a generic phase diagram and for under-
standing its doping dependent phase transitions.

It must be emphasized that the growth of high quality cuprate single crystals
is not straightforward, as they are complex compounds consisting of several ele-
ments. Hence, due to material or technical reasons, only a few systems are suitable
for probing the whole phase diagram, although a multitude of cuprate supercon-
ductors is known. The cuprate compounds, which are commonly used for probing
both sides of the phase diagram, are illustrated in Figure 2.2.
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Figure 2.2: Illustration of prominent cuprate compounds for probing the hole doped and
electron doped side of the phase diagram. The bars mark the doping region in the phase
diagram, covered by a specific compound. The listed compounds are discussed in the text.

1. YBa2Cu3O7−δ system: Generally, YBa2Cu3O7−δ is the ideal compound for
probing the hole doped side of the phase diagram. As it is a stoichiometric
compound, disorder and crystal imperfections are expected to be strongly re-
duced in comparison to compounds that form solid solutions.
The compound has two crystallographically well defined states: the nonsuper-
conducting tetragonal state with δ = 1, which corresponds to a vacant O(1)
site, and the superconducting orthorhombic structure with full occupation of
the O(1) site within the copper-oxygen chains. The effective hole doping is
a function of both the oxygen deficiency δ and its ordering within the chains
[49]. Due to improved growth procedures using BaZrO3 crucibles [50] and
further developments in the annealing treatment [51, 52], crystals of highest
quality and oxygen ordering over a broad doping range are available. These
crystals offer for the first time the opportunity to see quantum oscillations in
cuprates by using ortho-II ordered YBa2Cu3O6.5 single crystals3 [7, 53].
As the maximum Tc is reached for δ ≈ 0.08, i.e. for almost full oxygenation,
the (far) overdoped region in the phase diagram is not accessible by this com-
pound. In addition, the interesting region around the AFM/SC boundary, with
the formation of spin-charge-ordered states [54–57], is difficult to probe due
to homogeneity problems in the microscopic oxygen distribution. In order to
separate extrinsic effects, caused by oxygen inhomogeneities and related struc-
tural problems, the partial substitution of bivalent Ca on the Y site is a suitable

3In the ideal ortho-II phase the dopant oxygen occupies completely every second copper-oxygen
chain, resulting in a superstructure of alternating full and empty chains in the basal plane.
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approach for overcoming the doping problems in the far underdoped and over-
doped region. Ca co-doping up to 15% is feasible, leading to an extension of
the doping region and giving access to the overdoped side up to x ≈ 0.30. In
addition, with Ca co-doping of the fully reduced YBa2Cu3O6 the underdoped
region is accessible with crystals of well defined oxygen content, resulting in
new experimental insights in the formation of stripes [54–56].
Nowadays, even detailed spectroscopic experiments on natural, flux-free sur-
faces as well as bulk sensitive experiments, such as INS [57], are performed
successfully due to the quality and quantity of available YBa2Cu3O7−δ crys-
tals. However, the main drawback lies in the difficulties of producing cleaved
surfaces. It was shown [58] that the cleavage leads to a charge transfer and thus,
to an “electronic reorganization” of the surface, leaving behind an overdoped
surface layer which is nearly independent of the oxygen content δ . This might
also be the reason, why comprehensive ARPES experiments on YBa2Cu3O7−δ
are missing so far.

2. La2−xSrxCuO4 system: This 214 solid solution is a promising alternative to
YBa2Cu3O7−δ for probing the phase diagram on the hole doped side. The dop-
ing occurs due to bivalent Sr substitution of the parent compound. Systematic
transport measurements [21, 59–61] as well as ARPES measurements [4, 62]
have been performed over the whole doping range, giving a deep insight into
the doping dependent evolution of the Fermi surface of the hole doped cuprates.
Particularly the accessibility of the (far) overdoped regime, where high quality
cuprate crystals are rare, and in this context the proof of the Fermi liquid the-
ory [42] makes this family very attractive. The solubility limit of Sr for single
crystals is close to the doping level x = 0.30. Furthermore, due to its simple
crystal structure, which is closely related to the crystal structure of the elec-
tron doped 214 compounds, one has the unique opportunity to compare both
sides of the phase diagram with compounds of similar structure. The growth of
larger quantities in mirror furnaces can be performed considerably easier than
for the electron doped counter parts. Therefore, and due to the 1S0 state of the
La cations, La2−xSrxCuO4 might be very attractive for neutron scattering exper-
iments, as well.
As for YBa2Cu3O7−δ , the disadvantage of this crystal family is given by the
difficulty to prepare clean surfaces for spectroscopy and STM4 measurements.
In addition, the appearance of twin boundaries in the underdoped region – due
to an orthorhombic distortion of the lattice [59, 63, 64] – complicates the ex-
perimental work. Generally, the doping [63, 64] and temperature dependent
[65, 66] phase transitions from a tetragonal to an orthorhombic structure and
– closely related to this – the rotation and tilt of the copper-oxygen octahedra
must be taken into account in order to exclude structural effects when interpret-
ing results such as spin or charge ordering (stripes) data.

4STM is the abbreviation for scanning tunneling microscopy.
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3. Bi2Sr2CaCu2O8+δ system: In general, the Bi-family Bi2Sr2Can−1CunO2n+4+δ
consists of three slightly different compounds. Depending on the number n =
1, 2, 3 of copper-oxide layers within the conventional unit cell, they are denoted
as single layer (Tc ≈ 40 K), double layer (Tc ≈ 90 K) and three-layer (Tc ≈ 110
K) Bi-compound. The crystal structure consists of an alternating stacking of
metal-oxide and copper-oxide layers along the c axis of the unit cell, where the
bonds between adjacent layers are extremely weak. Due to the weakness of
these bonds, the crystals can be cleaved easily by using a knife. The opportu-
nity to get large, clean surfaces without complications (surface recombination,
charge transfer) and with only a minimum of experimental effort as well as the
appearance of high transition temperatures have led to an intensive study of this
system by means of spectroscopic methods (ARPES, Raman spectroscopy, el-
lipsometry), followed by a tremendous number of publications [17, 67–71].
Concerning crystal structure, growth and doping control, the Bi-family is the
most difficult system, even though some effort in crystal synthesis using the
TSFZ5 method [72–74] has been made.
The double layer compound Bi2Sr2CaCu2O8+δ is the most promising candi-
date of the family with the highest crystal quality [73]. Nevertheless, also in
this compound the quality is limited by the intergrowth of the three phases as
well as the partial solubility of Bi on the Sr site. The fact that stoichiometric
Bi2Sr2CaCuO8+δ is very difficult to grow and instead of it a Bi:Sr nonstoi-
chiometry of x = 2.1:1.9 is generally used [17], shows that the stacked oxide
layers are hardly compatible to each other, resulting in corrugations and defor-
mations of the layers. These modulations of the orthorhombic structure, which
can easily be observed in X-ray diffraction, as well as the inherent cation disor-
der [17] and broad rocking curves are a clear hint for the low crystallographic
quality of this family. Especially experiments performed on Bi-crystals, which
are substituted by Pb in order to stabilize the bismuth-oxide layers [68], must be
reviewed critically, as a large part of Pb evaporates during the growth process
and only a small amount is crystallized, which might cause additional disorder
[75, 76]. There is another drawback, which concerns the doping (see Figure
2.2). Doping is performed by varying the oxygen content δ of the bismuth-
oxide layers while only a limited region around optimal doping is accessible
[77]. Consequently, despite of the excellent processability, the Bi-family is not
suitable for systematic studies of the phase diagram due to the limited doping
regime as well as structural problems.

4. 214 compounds on the electron doped side: On the electron doped side of
the phase diagram only the so called 214 compounds Ln2−xCexCuO4 are avail-
able. In this context Ln represents various rare earth elements. Similar to the
La2−xSrxCuO4 system, the doping is performed by partial substitution of the
trivalent rare earth ions with tetravalent Ce ions. Consequently, also on the elec-
tron doped side a precise doping control over the whole phase diagram should
be possible.

5TSFZ is the abbreviation for traveling solvent floating zone technique.
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However, these compounds reveal more than a different sign of their charge
carriers. The doping dependent evolution of the Fermi surface, pseudogap and
transport properties are complementary to those of the hole doped compounds.
Furthermore, due to a completely different behavior in the underdoped region
with its robust AFM phase, these “exotic” cuprates might play an important
role for the understanding of the Mott state. In addition, effects caused by bi-
layer splitting or CuO chains, which might complicate the interpretation, are
absent. The main disadvantage of the electron doped 214 compounds is given
by the complicated growth process and annealing treatment of single crystals,
which hampers strongly the performance of experiments. Considering crystal
preparation for various experiments the same argumentation is valid as for the
La2−xSrxCuO4 system.

2.3 The electron doped compounds

2.3.1 Crystal structure

Like the hole doped compounds the electron doped cuprates consist of an alter-
nating stack of CuO2 and rare earth oxide layers. The electronic properties are
governed primarily by the CuO2 sheets, whereas the rare earth oxide layers act as
charge carrier reservoir and spacer for the CuO2 sheets. Hence, the single crystals
are characterized by a strong in-plane to out-of-plane electronic anisotropy (see
Chapter 7.1). The electron doped 214 compounds crystallize in the body centered
(bc) tetragonal T′ structure with space group I4/mmm. The crystal structure is il-
lustrated in Figure 2.3. Note, that adjacent CuO2 sheets are shifted to each other
along the in-plane diagonal by (1/2, 1/2), and hence, the conventional unit cell
is doubled. The oxygen atoms occupy two distinct sites: the so called O(1) site,
which is the position within the CuO2 sheets, and the O(2) site, which denotes the
out-of-plane oxygen in the rare earth sublattice. The rare earth sublattice Ln2O2

2+

has the fluorite structure with an oxygen coordination number of 8 for the rare earth
ion Ln, leaving vacant the apex position directly below and above the Cu ions. This
is a potential impurity site, which might be occupied partially [78, 79] during crys-
tal growth. Because of steric considerations, the apex occupation leads to a strong,
local lattice distortion with considerable influence on the physical properties of the
electron doped compounds.
The arrangement of the O(2) oxygen and hence, the planar coordination of Cu in
the electron doped cuprates is unique, whereas the related hole doped 214 com-
pound La2−xSrxCuO4 crystallizes in the more common T structure (Figure 2.3
(right)). The T structure is characterized by the apex occupation of the O(2) oxy-
gen. In this case the Cu site is sixfold coordinated with the oxygen forming an
octahedral environment. The La2O2

2+ layers show rock salt structure with an oxy-
gen coordination number of nine for the La ion. Compared to the T structure, the
T′ structure is stable at low temperatures. There are no structural phase transitions
[66], which influence the electronic properties. The crystallization in T or T′ de-
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Figure 2.3: Left: T′ structure with its characteristic fourfold planar coordination of the
Cu ions. The vacant apex site, which is the position directly below and above the Cu
ion, acts as effective impurity site when occupied by oxygen [78, 79]. All electron doped
compounds crystallize into the T′ structure. Right: The T structure is favored by 214
compounds, where La is used as rare earth element. In this case the out-of-plane oxygen
O(2) occupies the apex position, resulting in a sixfold oxygen coordination of the Cu ions.
Both structures are tetragonal with space group I4/mmm. Note, that adjacent CuO2 layers
are shifted to each other by (1/2, 1/2) along the in-plane diagonal. Hence, the conventional
unit cell is doubled.

pends on the rare earth ionic radii [80]. 214 crystals with smaller lanthanides favor
the T′ structure, whereas the compound La2−xCexCuO4 cannot be crystallized in
the T′ structure. Concerning single crystal growth, the system La2−xCexCuO4 has
an additional problem: growth experiments have shown that the dopant Ce is pre-
cipitated on the surface and cannot be incorporated into the crystal structure. Thus,
although La2−xCexCuO4 might be the ideal compound for comparative studies with
La2−xSrxCuO4, this system can only be grown in thin film form [81].

2.3.2 Magnetic behavior

As in this thesis the main focus lies on Nd2−xCexCuO4 single crystals, the magnetic
properties of this compound are discussed primarily. The magnetism of the electron
doped 214 compounds is characterized by both the AFM ordering of the CuO2
sublattice and the magnetism of the rare earth ions.
The three dimensional AFM ordering of the Cu spins below TN is governed by
the weak interplanar exchange coupling of J⊥ = 5 · 10−3 meV, which is by a
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factor of 2.5 · 104 smaller than the in-plane coupling (J‖ = 126 meV) [31, 82].
Hence, the structural anisotropy leads also to a strong anisotropy in the exchange
coupling, and above TN a two dimensional Spin-1/2 Heisenberg model is suitable
for the theoretical description [83]. TN and spin stiffness evolve with doping and are
strongly reduced for as grown optimally doped 214 compounds [84]. For T < TN ,
Nd2−xCexCuO4 shows a series of spin reorientation transitions [82, 84–87], which
are absent for the Pr2−xCexCuO4 system. Below TN the Cu spins are ordered into
the La2NiO4 type structure (phase-I, Figure 2.4 (a)), followed by a spin rotation
of 90◦ about the c axis at T ≈ 75 K (phase-II, Figure 2.4 (b)), and a subsequent
transition into the primary La2NiO4 order at T = 30 K (phase-III) [82, 85]. The
Cu spins show a noncollinear structure [86, 87], i.e. the AFM spin orientation
of adjacent layers is orthogonal to each other. By applying a magnetic field of
µ0H ≈ 4 T parallel to the CuO2 planes, the noncollinear spin structure can be
transformed into a collinear one [86] (Figure 2.4 (c)). In phase-III, at temperatures

(c)(b)(a)

[100]

[010]B

Figure 2.4: Illustration of the Cu spin orientation below TN [82, 84, 86]. The unit cell is
projected onto the in-plane area (highlighted square). For clarifying reasons, only the Cu
ions of adjacent CuO2 planes (open circles: z = 0c, closed circles: z = 1/2c ) are shown.
The unit cell of the AFM lattice is situated along the diagonal direction (highlighted dia-
mond) with lattice constants of am =

√
2 · a and cm = c. (a) In zero field below TN the

Cu spins order into a noncollinear type-I structure. (b) At T ≈ 75 K a spin rotation by
90◦ is observed (type-II). For symmetry reasons, configuration (a) and (b) are different and
the spin structure (a) cannot be transformed into the structure (b) by a simple rotation of
the crystal. Below 30 K the type-I structure is restored and the Nd3+ moments start par-
ticipating in the magnetic order. (c) With applied in-plane magnetic field the noncollinear
structure can be switched to a collinear one [86]. The collinear configuration in (c) is
obtained from (b) by applying an in-plane field along the [010] direction.

below 30 K, the Nd3+ ions start participating in the magnetic order due to the
coupling between the Nd moments and the second nearest neighbor Cu2+ spins.
Because of tetragonal symmetry the nearest neighbor interaction is canceled [82,
87].

The magnetic susceptibility of the electron doped 214 compounds is governed
by the magnetism of the rare earth ions. At high temperatures a Curie-Weiss be-
havior prevails (especially for the in-plane magnetic susceptibility χab), whereas
at lower temperatures the anisotropy between χab and χc is high. Figure 2.5
shows the temperature dependence of the in-plane and out-of-plane susceptibil-
ity for Nd2CuO4 and Pr2CuO4, respectively.
Nd2CuO4 crystals have an isotropic χ for temperatures T > 100 K. From the
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shown fit, according to the Curie-Weiss law, an effective magnetic moment of
µe f f ‖ = µe f f ⊥ = 3.72µB per Nd ion is evaluated, which is slightly higher than the
value of µ = 3.62µB for a free Nd3+ ion with ground state 4I9/2. For T < 100 K a
deviation from Curie-Weiss behavior arises due to the crystal field splittings of the
J multiplet [88] and the increasing antiferromagnetic Nd-Nd interaction. In sus-
ceptibility data, there is no evidence for a magnetic order of the Nd3+ ions at low
temperatures, as no phase transition can be seen in the data. However, it was shown
[88, 89] that the observed Schottky anomaly in specific heat at T ≤ 1.6 K can be
interpreted assuming a crystal field doublet ground state and an antiferromagnetic
transition in the Nd3+ sublattice. Hence, an AFM order of the Nd moments in-
duced by Cu-Nd interaction at T ≤ 1.6 K is deduced. The susceptibility data for
Nd2−xCexCuO4 are almost doping independent. Experimental data (not shown in
Figure 2.5) on an overdoped Nd1.83Ce0.17CuO4 crystal show an identical suscep-
tibility curve for T < 100 K, whereas the effective magnetic moment is slightly
lower due to the diamagnetic Ce4+ ions, amounting to µe f f ‖ = µe f f ⊥ = 3.55µB

per Nd ion.
For the magnetic behavior of the rare earth sublattice of other 214 compounds,

the same explanations are valid as for Nd2CuO4. Differences arise from the dif-
ferent magnetic ground states of the rare earth ions. The values for TN are below
10 K [89]. The out-of-plane susceptibility of Pr2CuO4 (Figure 2.5 (b) does not
obey a Curie-Weiss law for temperatures up to 320 K. From the in-plane data, µe f f

is estimated to be 3.75µB per Pr ion, which is about 5% higher than the value of
3.58µB, obtained by Hund’s rule for Pr3+.
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Figure 2.5: Temperature dependence of the inverse magnetic susceptibility for annealed
Nd2CuO4 (a) and Pr2CuO4 (b) single crystals. The magnetic susceptibility is governed by
the magnetism of the rare earth ions. Hence, the AFM ordering of the CuO2 sublattice
cannot be seen. The applied magnetic field amounts to µ0H = 0.5 T. Characteristic for
both systems is the strong anisotropy between the in-plane and out-of-plane configuration,
especially for temperatures T < 100 K, which is a clear indication of the crystal-field
splitting of the J multiplets.



Chapter 3

Growth of electron doped cuprate
single crystals

The availability of homogeneous, high purity single crystals covering the whole
phase diagram is a basic requirement in order to elucidate the doping dependent
appearance and interplay of the different phenomena in cuprates, already reviewed
in Chapter 2.1. While the growth process of hole doped cuprates - especially the
YBa2Cu3O7−δ and La2−xSrxCuO4 sample set - has been continuously improved
over the last two decades (see discussion in Chapter 2.2 and the references therein),
the growth of high quality electron doped 214 single crystals and their annealing
process represents a particular challenge and the results obtained are not always
satisfying [90–96]. The growth process of electron doped high temperature super-
conductors is optimized and discussed in the following chapter. Thereby, the main
focus lies on the Nd2−xCexCuO4 and Pr2−xCexCuO4 system. Moreover, other rare
earth 214 sample sets are grown to some extent using the same growth technique
and experimental setup.

3.1 The composition phase diagram of incongruently melt-
ing compounds

Before growing crystals it is inevitable to discuss the temperature-composition
phase diagram of the 214 compounds in order to find the optimal composition of
the flux and temperature, at which the crystallization of the 214 phase takes place.

3.1.1 Determination of the phase diagram by means of differential
thermal analysis (DTA)

The characteristic compositional phase diagram of the 214 cuprates is shown in
Figure 3.1. The binary compositional diagram describes the appearance and re-
gions of coexistence of thermodynamic stable phases as well as phase transforma-
tions as a function of the state variables. The state of a phase is well-defined by the

19
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state variables pressure p, temperature T and the concentration variable x of the
mixed starting components Ln2O3 and CuO.

For the thermodynamical description of the compositional phase diagram the
Gibbs free energy

G = U + pV − T S = H − T S (3.1)

is the appropriate thermodynamic potential. In this context, U represents the in-
ternal energy, V the volume, S the entropy, and H the enthalpy of the system.
Applying the first law of thermodynamics

dU = δQ− pdV + ∑
i

µidNi (3.2)

the total derivative of G is given by

dG = dU + d(pV )− d(T S) = dH − d(T S) = −SdT +V d p + ∑
i

µiNdxi, (3.3)

where µi and dNi = Ndxi are the chemical potentials and the number of particles of
each component i, respectively. Neglecting any particle loss during phase transition
and assuming given constant state variables, the system is in the thermodynamic
equilibrium, when G is minimal, i.e.

dG = dH − T dS = 0 . (3.4)

From Equation 3.4 one can see that a small variation in G is given by two contri-
butions, namely the change in the enthalpy H and the variation in the entropy S of
a system. For constant volume V , the enthalpy H represents the internal energy,
whereas the entropy S is a measure of disorder of the system. Generally speaking,
at low temperatures the contribution of H prevails over the entropy term, whereas
at high temperatures the importance of T dS increases. Therefore, for certain T
and p those phases are stable and appear in the compositional phase diagram as a
function of x, which minimize the Gibbs free energy G.

In practice the Gibbs free energy G as well as the entropy S of a system can-
not be expressed in terms of absolute values. The quantities to be measured are
differences of the thermodynamic potentials, which arise during phase transitions
or transitions from one equilibrium state to another. Therefore, the thermal ana-
lysis in combination with X-ray powder diffraction is an appropriate experimental
approach in order to determine the equilibrium states of a mixture as a function
of T , p and x. The X-ray analysis gives information about the phase formation,
whereas in the thermal analysis first-order phase transitions such as chemical re-
actions, crystallographic phase transitions, melting, peritectic and eutectic trans-
formations, spinodal decomposition etc. are detected. Note, that first-order phase
transitions are characterized by the absorption or release of latent heat1. The heat

1According to Ehrenfest, phase transitions are classified using the discontinuity in the lowest
derivative of the Gibbs free energy G [97]. A newer classification distinguishes between first-order
and second-order phase transitions depending on whether latent heat is involved or not.
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Figure 3.1: Left: Typical curve of a differential thermal analysis (DTA) of a
Pr2−xCexCuO4 pellet. Two endothermic peaks, which represent the eutectic and peritectic
phase transformation, are clearly visible. Using DTA in combination with X-ray pow-
der diffraction the binary phase diagram of the system Ln2O3 - CuO can be explored.
Right: Sketch of the binary compositional phase diagram of the (LnCe)2O3 - CuO sys-
tem with Ln = La, Pr, Nd, Sm etc. The superconducting phase Ln2−xCexCuO4 undergoes
a peritectic decomposition at temperatures greater than 1200 ◦C and therefore, the growth
is restricted to a small window between the peritectic point P and eutectic point E (blue
liquidus line).

(enthalpy change ∆H) consumed or released by a substance during a phase transi-
tion is determined in the differential thermal analysis (DTA) experiment. Thereby,
the quantity to be measured is the temperature difference

∆T = Ts − Tr (3.5)

between the substance (s) and a reference substance (r) as a function of the tem-
perature T or the heating rate β = dTr/dt of the furnace. With the definition of the
specific heat for an isobaric process

C =
(

δQ
dT

)

p
= T

(
dS
dT

)

p
, (3.6)

which is a measure of the heat quantity δQ required for an infinitesimal temper-
ature change dT of the substance, and the relation between specific heat and heat
flow

Φ =
δQs,r

dt
= Cs,r

dT
dt

, (3.7)

one can deduce the specific heat capacity Cs and the enthalpy of transition ∆H of
the sample from the signal ∆T . Figure 3.2 shows the DTA setup with the different
contributions of the heat flow as well as the corresponding thermal resistances R.
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Ts Tr

Figure 3.2: Illustration of the DTA setup with the corresponding heat flows and thermal
resistances.

The heat flow between furnace and sample/reference as well as between sample
and reference is proportional to the relative temperature difference and the inverse
thermal resistance

Φ f s,r =
Tf − Ts,r

R f s,r
and Φsr =

Ts − Tr

Rsr
. (3.8)

Considering Φ f s as the heat flow from the furnace to the sample and Φre as the heat
flow due to the reaction, the following equation arises:

Cs
dTs

dt
= Φ f s −Φre −Φsr = Cs

dTr

dt
+ Cs

d∆T
dt

. (3.9)

The corresponding relation for the reference sample is given by

Cr
dTr

dt
= Φ f r + Φsr . (3.10)

By calculating the difference between Equation 3.9 and 3.10 one obtains

Φ f s −Φ f r −Φre − 2Φsr = (Cs −Cr)
dTr

dt
+ Cs

d∆T
dt

. (3.11)

For a symmetric setup R f s ≈ R f r = R and with Equations 3.8 and 3.5 one can
rewrite Equation 3.11 according to

−∆T
(

1
R

+
2

Rsr

)
−Φre = (Cs −Cr)

dTr

dt
+ Cs

d∆T
dt

. (3.12)

With the thermal resistance R∗ =
(

1
R + 2

Rsr

)
the measured signal ∆T is finally

given by the following equation:

∆T = −R∗Φre − R∗(Cs −Cr)β −CpR∗
d∆T
dt

. (3.13)
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The first term on the right hand side describes the change in ∆T due to the first-
order phase transition, the second one is an offset contribution due to the differ-
ences in the heat capacity of reference and sample Cr,s. The third term describes
the relaxation of the system after a first order phase transition. If no first order
phase transition occurs during a temperature ramp, the measured temperatures of
sample and reference are equal (provided Cs = Cr) and therefore, ∆T = 0. If there
is a first order phase transition of the substance, the temperature of the sample is
retarded or advanced with respect to the reference temperature during an uniform
T sweep, depending on whether an endothermic or exothermic reaction occurs. If
the experimental setup is calibrated properly2 one can extract the specific heat ca-
pacity Cs and the enthalpy of transition ∆H, which is equal to the area around the
∆T peak as a function of β . For the calculation of ∆H the base line is subtracted
and the ∆T peak is integrated over the time period of the transition

∆H =
∫ t2

t1
Φ dt = − 1

R∗

∫ t2

t1
∆T dt . (3.14)

The measuring setup for thermal analysis consists basically of a furnace as heat
source, which can be evacuated and used with different atmospheres (Figure 3.2).
This furnace encloses a sample holder with a platinum/rhodium bearing area. On
the bearing area two Al2O3 crucibles for sample and reference are mounted and
on the rear side two thermocouples are fixed closely to the crucibles. The thermo-
couples are connected in difference to each other and therefore, in case of thermal
symmetry the resulting voltage signal is zero. In addition to the determination of
the enthalpy ∆H or the specific heat capacity Cs, the change in weight ∆m of a
substance as a function of β might be important. This method of thermal analysis
is called thermogravimetry analysis (TGA). The information of weight loss or gain
due to a reaction in an atmosphere with a certain oxygen partial pressure pO2 gives
hint of the reduction or oxygenation state of a phase. For this purpose the sample
holder is connected with a balance. In general, TGA and DTA experiments are
carried out at the same time3.

As shown in Figure 3.1, the 214 compounds are incongruently melting solid
solutions. This means that the 214 phase does not melt uniformly at a certain
temperature, but it decomposes at the peritectic point P into a Ln2O3 phase and
a CuO rich liquid. Generally, the formation of a peritectic phase takes primarily
place in systems, where the melting point of the different component phases differs
strongly. This is also the case in the sesquioxides Ln2O3 - CuO system, where the
melting point arises at temperatures of T > 2300 ◦C [99] and 1100 ◦C [100],
respectively4. However, for the further discussion only the quasi-binary system
(LnCe)2CuO4 - CuO is of importance. The 214 phase, which is stable at room
temperature, can only be grown along the liquidus line (blue line in Figure 3.1)

2For detailed information about thermal analysis see also [98] and the references therein.
3The DTA and TGA experiments were carried out using a Netzsch STA 409 apparatus.
4The exact values for the melting temperature are obviously dependent on the oxygen partial

pressure pO2 .
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Figure 3.3: DTA curves of Pr1.97Ce0.03CuO4 under different atmospheres in order to
determine the eutectic and peritectic temperature. For the estimation of TE and TP the
heating curves are used (upper three curves) as the temperature controlled cooling curves
are much more difficult to interpret due to supercooling and crucible corrosion effects. The
curve measured in an atmosphere of 1 % O2 / 99 % Ar shows a broadening of the peritectic
transition, which reflects the reduction/oxygenation of the melt.

between the peritectic point P and the eutectic point E. The eutectic point E in the
phase diagram is characterized by a temperature TE and an eutectic mixture xE , at
which the component mixture melts/crystallizes simultaneously. TE is the lowest
melting temperature in the phase diagram.

With DTA, TP and TE are determined using a 20 mg pellet of pre-reacted
214 phase, which is heated up to 1350 ◦C with a constant temperature ramp of
10 ◦C/min. After the heating a short dwell time of 10 minutes and a subsequent
temperature controlled cooling with the same rate are applied. The DTA curves
are recorded for both the heating-up and cooling down. For the experimental de-
termination of TE and TP the onset point5 of the endothermic peaks is used. The
values for Nd2−xCexCuO4 and Pr2−xCexCuO4 in atmospheres with different pO2

are summarized in Table 3.1. For the curves recorded during heating, only two
endothermic peaks, which can be assigned to the eutectic and peritectic point, are
clearly visible (cf. Figure 3.3). In the curves recorded during cooling one can see
that the onset point for the peritectic transition is shifted to lower temperatures and
especially for pure oxygen atmospheres the exothermic eutectic peak is splitted
up into two peaks. The discrepancy between heating and cooling curves can be
explained in terms of non-equilibrium reactions which can occur in a dynamical
measuring method such as DTA. This means that the temperature rate β is so fast
that at a certain T the system has not enough time for relaxation into the equi-
librium state and an intermediate state is recorded. For example, the shift of the

5The onset point is defined by the intersection point of the tangents, which represent the slope of
the background curve before the phase transition and the slope of the peak curve.
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DTA atmosphere TE (◦C) TP (◦C) TE (◦C) TP (◦C) TE (◦C) TP (◦C)
Pr2−xCexCuO4 x = 0 x = 0.03 x = 0.15

O2 1083 1305 1075 1295 1081 1290
20 % O2 / 80 % Ar 1035 1275 1034 1270 1038 1274
1 % O2 / 99 % Ar − 1197 1097 1203 1060 1220

Nd2−xCexCuO4 x = 0 x = 0.03 x = 0.15

O2 1075 1300 − − 1081 1326
20 % O2 / 80 % Ar 1040∗ 1253 − − 1040∗ 1300
1 % O2 / 99 % Ar 1070∗ 1200 − − 1054∗ 1218

Table 3.1: Onset temperatures TE and TP of the eutectic and peritectic transforma-
tion determined from the heating curves of differential thermal analysis (DTA) for the
Nd2−xCexCuO4 and Pr2−xCexCuO4 system. Data marked by an asterisk are determined
from cooling curves. For all measurements, Al2O3 crucibles were used, the gas flow was
set to 4 l/h and the temperature was ramped up to 1340 ◦C with rates of 10 ◦C/min. The
error of measurement is estimated to be ∆TE,P = 10 ◦C.

peritectic peak to lower temperatures and the sudden onset of the exothermic reac-
tion is a signature of a supercooling of the melt. The appearance of two or more
peaks rather than a single transition at TE might be due to the strong reaction of
the flux with the Al2O3 crucible. The wall of the crucible is coated to some ex-
tent by the flux and a strong corrosion process can be observed leading to a partial
dissolution of Al into the melt and the formation of a PrAlO3 phase, which can
clearly be seen in X-ray powder diffraction. This strong crucible corrosion due to
the aggressive CuO melt6 is responsible for the variation of the composition of the
melt and therefore, cooling curves can lead to misleading temperature-composition
diagrams.

The use of furnace atmospheres with diminishing pO2 leads to a modification
of the CuO rich melt into an oxygen deficient melt of CuO/Cu2O, while TP is de-
creasing continously. The curves recorded in an atmosphere of 1 % O2 in Ar show
a strong broadening at the peritectic transition. This broadening is associated with
the reduction/oxygenation of the melt and can also be seen in the weight loss/gain
of the simultaneous TG measurement. Within the estimated error of measurement
there is no Ce dependence of TP and TE , which differs from earlier measurements
[100, 102]. The eutectic and peritectic mixture xE and xP amount to 78 mol %
and 92 mol % [100, 102], respectively, with deviations of ±2 mol%. The general
phase diagram, presented in Figure 3.1, with a liquidus line between E = (XE ,TE)
and P = (XP,TP) is valid for all rare earth 214 compounds. Only in the La2O3 - CuO
system the appearance of a stable La2Cu2O5 is reported [103], which decomposes
peritectically at 40 ◦C above TE into La2CuO4. It is reported that the values for TP

decrease with increasing ionic radius of the rare earths [90] resulting in a narrower
liquidus line, while xE and xP are almost independent of the rare earth ion.

6Problems of crucible corrosion and their impact on DTA results are also discussed in [101].
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3.1.2 The growth of high quality single crystals using the travelling
solvent floating zone technique (TSFZ)

From the detailed discussion of the compositional phase diagram of the 214 high
temperature superconductors in Section 3.1.1, it can easily be deduced that a growth
of the 214 phase can only be performed within the peritectic and eutectic point
along the liquidus line.
The growth of Nd2−xCexCuO4 and Pr2−xCexCuO4 single crystals in crucibles out
of a CuO rich melt is reported in prior publications [90, 92, 104]. In this growth ex-
periments a mixture with the composition ratio Nd2−xCexCuO4/CuO = x = 70/30
is completely molten in a crucible at temperatures higher than T (x) of the liq-
uidus line, followed by a slow cooling of the melt until the eutectic temperature is
reached, at which the growth process of the 214 phase is finished and the remaining
flux is crystallized eutectically. Two major problems arise when using this method,
which are the crucible corrosion already mentioned in Chapter 3.1.1 and the effec-
tive distribution coefficient7kA

e .
For the Nd2−xCexCuO4 system 0.02 at./f.u. Pt impurities on the Cu site are found
when Pt crucibles are used during crystal growth [92]. This small substitution is
sufficient to suppress superconductivity completely. Corrosion problems due to the
reactive oxide melts are observed in all cuprate systems for different commercially
available crucible materials, such as Al2O3 or Y stabilized ZrO2 [50]. The second
problem of container grown crystals is the observed inhomogeneity or variation
from the nominal value of the Ce doping [92, 104], as deviations in kA

e from unity
change continuously the composition of the melt, giving rise to gradients in the
dopant concentration.

The improvement in crystal quality is closely connected with the solution of
these two main problems. One possibility to solve the problems is the use of a
container-free growth method. This method is called travelling solvent floating
zone (TSFZ) technique. The functional principle of this technique is shown in
Figure 3.4. The system consists of a feed and seed rod and a local solvent zone
in-between. This vertical floating zone is only held by surface tension and has a
composition x between E and P in the steady state growth process of the 214 phase.
During growth polycrystalline feed material is dissolved continuously at the solid-
liquid interface on the top and the material is transported within the solvent by
diffusion and convection to the second phase interface at the bottom side where the
crystallization occurs. As a result the solvent traverses slowly the feed rod leaving
behind a single crystalline rod. There a two possibilities to obtain the appropriate

7The effective distribution coefficient is defined as the ratio of the concentration of a component
A in two phases. Let [A]liquid be the concentration of the considered component in the liquid phase
and [A]solid the concentration in the crystallized phase. The definition of kA

e is: kA
e = [A]solid/[A]liquid .

Note, that the growth process initiates a linear movement of the phase interface with velocity v and
therefore, kA

e is primarily governed by the growth kinetics and the transport processes in the system,
which depend on the growth parameters. For each component of a mixture one can define a ke.
In practice only the crystallization behavior of a dopant or impurity is of importance. A detailed
description of kA

e is given in [105].
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Figure 3.4: Explanation of the TSFZ growth technique by means of the 214 compositional
phase diagram. A local vertical solvent zone of composition x is hold by surface tension
between the seed and feed rod (“floating zone”). The 214 phase from the polycrystalline
feed rod is dissolved continuously into the melt on the upper solid-liquid interface and
crystallized on the lower liquid-solid interface. In equilibrium state the solvent traverses
the polycrystalline feed rod (“travelling solvent”) and on its bottom side the 214 single
crystal is grown. When using a flux pellet of composition x between P and E, steady state
growth conditions can be reached from the beginning of the growth process. Otherwise,
when starting with the 214 phase, (LnCe)2O3 is grown at first and simultaneously the
solvent composition becomes richer of CuO, moving from x′ via x′′ to xP (green arrow),
where the crystallization of the 214 phase sets in. The underlying color represents the
composition of the solvent zone at a given stage of the growth process.

flux composition for a stable 214 growth process between E and P:

1. The flux can be generated by melting the end of the feed rod at T > Tx′ .
In this case, at the beginning, the liquid has the same composition as the rod
and according to the phase diagram only the (LnCe)2O3 phase can be crystal-
lized. Simultaneously the composition of the melt will be changed towards
a CuO richer one. Therefore, it is possible to move along the liquidus line
in Figure 3.4 (green arrow) while the temperature is gradually lowered until
the peritectic point P is reached. At P the 214 phase starts crystallizing8.

2. Alternatively, one can place a polycrystalline flux pellet of composition x
between xP and xE on the top of the seed rod. The weight of the used flux
pellet should correspond to the one of the molten zone. In this case the
growth of a 214 single crystal is possible from the beginning, provided that

8This example shows how flexible and powerful the TSFZ method is. In principle, one can use the
TSFZ method in combination with X-ray powder diffraction and EDX analysis in order to determine
the composition phase diagram of a system [106].
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a monocrystalline seed is used. This approach is also applied in this thesis.

From the discussion above it is obvious that the modern TSFZ method has many
advantages compared to flux growth methods using a crucible. The purity of the
crystals is only affected by the purity of the starting materials and the contamina-
tion problems due to crucible corrosion are avoided. In addition, by using suitable
growth conditions (oxygen partial pressure pO2 , flux composition x, temperature T ,
growth velocity v) one can overcome the problem of an inhomogeneous Ce distri-
bution and large, bulky crystals of several centimeters in length can be grown under
exactly the same conditions. This is the basic requirement for homogeneous crys-
tals. Crucible grown crystals, however, have usually a plate like structure and the
crystal yield is small, which is a serious problem for experiments such as neutron
scattering, where bulky crystals are indispensable.

3.2 Experimental setup: the mirror furnace

For the crystal growth using the TSFZ method a mirror furnace9 was used. The
esperimental setup is shown in Figure 3.5.

The mirror furnace consists of four half ellipsoidal mirrors with halogen projec-
tor lamps located on their first focus. The four mirrors are arranged symmetrically
within a horizontal plane with an angle of 90◦ to each other around the vertical axis
of the furnace. The radiation is focused on one point in the center of the furnace,
at which the second focus of all four mirrors overlaps. Hence, only a small local-
ized zone is strongly heated up and there is a large temperature gradient in vertical
direction. The advantage of four mirrors, compared to older setups using a single
or double mirror system, is given by an improvement of the homogeneity of the
horizontal temperature distribution10, which is crucial for a well defined and stable
growth process. The mirrors are made up of Al coated glass which provides high
reflectivity and low costs compared to gold coated brass systems. Another impor-
tant factor, influencing the size and the stability of the local solvent zone, is the
choice of appropriate lamps. For the 214 cuprates small 300 W halogen lamps are
adequate in order to achieve the desired temperatures of the solvent zone between
TE and TP. Compared to xenon arc lamps, which are also often used especially
for higher melting compounds, halogen lamps are much more stable. Addition-
ally, the used lamps have a flat, rectangular filament design, which improves the

9A commercial 4-mirror furnace from CSI corporation (Japan), type FZ-T-10000-H-VI-VP was
available.

10There are several other types of mirror furnaces, such as the vertical single mirror furnace. In
this configuration an ellipsoidal mirror with high excentricity is mounted vertically and the feed rod
is located within the mirror, providing therefore a homogeneous horizontal temperature distribution.
The disadvantage of this configuration is given by the limitation in the growth length due to the
setup. It is clear that furnaces with one or two opposing mirrors in horizontal configuration have a
nonuniform in-plane temperature distribution, as not each surface element of a feed rod is facing the
heat source at the same time. Rotation of the rods might reduce this effect. With a horizontal 4 mirror
setup differences in the in-plane temperature can be suppressed below 10 ◦C.
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Figure 3.5: Left: Opened 4-mirror furnace with sample space (vertical quartz tube).
Right: Illustration of the operating mode of the furnace. The furnace consists of four
half ellipsoidal mirrors with halogen projector lamps on their first focus, arranged in a 2π
configuration around the vertical center line of the system. The radiation produced by the
four lamps with their angular separation of 90◦ to each other is focused on one point in
the centre of the furnace, at which the feed and seed rod are vertically mounted along the
axis of the setup. The rods with suspension are surrounded by a quartz tube providing
the possibility to grow under arbitrary atmospheres. The growth velocity v is given by the
external movement of the mirror system in vertical direction (black arrow). Additional
degrees of freedom of the setup are the vertical translation and rotation of the shafts.

homogeneity of the horizontal temperature distribution as well as the formation of
a steep temperature gradient in vertical direction. With this setup temperatures of
2200 ◦C can be generated. The temperature of the solvent zone is given by the
output power of the four lamps, which is controlled by a silicon current regulator.
There is no possibility to measure the temperature of the solvent directly. In order
to estimate the real temperature of the solvent zone, one has to monitor, at which
power the eutectic melt and the total dissolution occur and to compare these val-
ues to the temperature values obtained by DTA. The molten zone can be observed
in real time using an integrated CCD camera. Of course, the real temperature of
the solvent depends on how effective the radiation is absorbed and converted to
heat. For example high purity Al2O3 or CaWO4 polycrystalline rods are nearly
“transparent”, i.e. the absorption of the light is small and occurs primarily via im-
purities. In addition, effects of thermal convection have to be taken into account
when atmospheres with higher pressures are applied during the growth process.

The feed and seed rods are attached vertically onto two shafts and they are
aligned exactly along the vertical center line of the system. Both shafts can be
rotated, while the rotation speed can be continuously adjusted from 0 to 60 rpm.
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The upper shaft and the mirror system can be moved in vertical direction with two
different velocities. The high speed mode with velocities from 5 to 60 cm/min
is used for the vertical adjustment of the rods, whereas the low speed mode with
velocities from 0.1 to 18 mm/h is used during the growth process. Note, that the
growth velocity v of the crystal is given by the velocity of the external parallel
translation of the mirrors and is an important growth parameter. The maximum
growth length of a crystal rod is limited to the maximum mirror translation of 15
cm. In addition to the many degrees of freedom making this furnace very flexible,
the use of different atmospheres can sometimes be essential. This can be realized
by using a quartz tube of highest purity together with an appropriate sealing system,
which surrounds the rods with suspension. The sample space generated in this way
can be evacuated and used under different atmospheres und pressures up to 10 bar.

In conclusion, it can be stated that due to its high flexibility in the adjustment
of appropriate growth conditions such as temperature range, atmosphere, pressure,
additional degrees of freedom in the parallel translation and the real time obser-
vation of the floating zone, the mirror furnace setup used for this thesis is very
suitable for growing a multitude of incongruently and congruently melting oxide
compounds. As already discussed above, this approach is not suitable for com-
pounds which are “transparent” for the light radiation. However, this is certainly
not the case for the cuprate compounds with their black color. On the other hand,
the use of a light source in the floating zone approach offers a simple opportunity
to melt poorly electroconductive substances, where the use of a HF induction coil
fails.

3.3 Crystal growth

In order to grow high quality single crystals, not only appropriate growth param-
eters are important but also a careful preparation of the polycrystalline feed rods
must be ensured.

3.3.1 Preparation of the feed rods

High quality feed rods are characterized by their homogeneity and uniformity in
density and shape. Furthermore, phase purity and homogeneous distribution of the
dopant are important as otherwise the small solvent zone changes continuously its
composition during the growth process along the vertical feed rod, thereby affect-
ing the stability of the floating zone and the crystallization. Rods of high density
avoid the penetration of a larger quantity of liquid flux into the feed rod and hence,
leading to a well defined upper solid-liquid interface.

At first, the 214 phase is prepared by solid state reaction. For this purpose
the corresponding rare earth oxide and CuO powders with a purity of 99.99 % are
mixed together according to the desired stoichiometric composition. The phase is
generated via a fivefold pre-reaction of the mixture at temperatures of 900 ◦C, 920
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◦C, 950 ◦C and 980 ◦C (twice) for 10 h in air. Between each cycle the powder
is homogenized using a ball mill. The multiple calcination steps improve the ho-
mogeneity. After the calcination the phase formation is checked by X-ray powder
diffraction.

Thereafter, the phase pure polycrystalline powder is pressed hydrostatically
into rods of 5− 7 mm in diameter and up to 140 mm in length. In order to increase
the density, the rods are sintered in O2 at temperatures of 1050 ◦C, 1100 ◦C and
1200 ◦C for 5 h, respectively. As the sintering temperature is close to TP a special
vertical furnace is used, in which the rods are suspended on one end via a Pt wire
on a holder. In this way, contaminations caused by the furnace tube or a supporting
plate are avoided. During sintering the long rod is rotated and moved uniformly
around the position of the highest temperature ensuring that each segment of the
rod undergoes the same sintering conditions.

The rods used for flux pellets with the component fraction (0.5·(2−x)·Ln2O3+
x · CeO2)/CuO = 15/85 are pre-reacted in the same way as the feed rods and are
sintered at 1010 ◦C for 10 h in air.

3.3.2 Growth process and growth parameters

A sequence of the growth process of 214 single crystals is shown in Figure 3.6.
For the first growth of electron doped 214 crystals a polycrystalline seed is used,
at which a flux pellet of 0.35 − 0.4 g is fixed. The radiation power is increased
slowly and the flux, which is simply a mixture of the 214 phase with CuO, starts
melting at TE . At this stage the vertically mounted feed rod is moved from the top
towards the flux pellet, closing the gap in-between. The initial melt starts coating
the feed and seed rod (Figure 3.6 (a)). Thereafter, the power is increased further on
until the flux pellet is completely dissolved at Tx and a floating zone, which is only
held by surface tension is established. In order to promote the homogenization of
the floating zone, feed and seed rod are rotated in opposite direction to each other
with rotational speeds of 20 and 15−20 rpm, respectively. At this point the growth
process is started by setting a constant velocity of 0.5 mm/h for the motion of the
mirror stage along the feed rod in vertical direction. Note, that the small growth
velocity v of 0.5 mm/h corresponds to a total growth time of circa 10 days for one
growth cycle. During the first day of growth the system is balanced by adjusting
the power of the lamps and the vertical movement of the feed rod in order to get
an equilibrium between dissolution and growth rate on both solid-liquid interfaces.
This initial stage of the growth process is also used to get rid of any surplus of
melt (in case the amount of used flux was too high) and to taper the seed to a small
diameter (so called neck). This provides an effective natural grain selection when
beginning with a polycrystalline seed (Figure 3.6 (c)). For the growth of a neck
one has to keep the major part of the liquid flux on the feed rod side, which is only
possible when a small amount can penetrate for 1 − 2 mm into the feed rod. In
addition, this penetration of the CuO rich flux assists the dissolution of the feed
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Figure 3.6: Illustration of the single crystal growth of 214 high temperature superconduc-
tors. The growth process starts with the generation of the floating zone of an appropriate
composition by melting a flux pellet (a). The growth velocity usually amounts to 0.5 mm/h.
After a few days stable conditions are obtained. In (b) a snapshot after 7 days of success-
ful growth is provided, illustrating the 6 mm thick polycrystalline feed rod with a small
region of flux penetration, the stable floating zone of 4.5 mm in length with a slightly con-
cave crystallization line and the grown single crystal rod with its shiny surface. The whole
rod (Nd1.85Ce0.15CuO4 ) is shown in (c). Note the neck at the beginning, which is useful
for the natural selection of grains when starting with a polycrystalline seed, and the facet
emerging from the end. The residual flux is crystallized eutectically on the top. Laue back
scattering shows that the facet is a (001) face (d) and the growth occurs along the crystal-
lographic [110] or [100] axis (e), which are the directions of highest growth rate. In (f) a
Nd2−xCexCuO4 crystal rod, decomposing slowly after a couple of months when grown in
an inappropriate atmosphere, is shown.
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material into the floating zone11. Once a stable growth process is established (Fig-
ure 3.6 (b)), the crystal growth is brought to a termination with exactly the same
growth parameters. Especially for the electron doped 214 crystals small variations
in parameters during this growth stage cause the formation of new nuclei, CuO
precipitations and in worst case a possible break down of the floating zone.

Concerning the growth of single crystals when starting with a polycrystalline
seed the following considerations should be made: The crystal growth is charac-
terized by the competition of different neighboring grains, which tend to become
larger and larger. As the growth direction and growth rate are predetermined by the
setup, only those grains survive and continue to grow, which have the most favor-
able orientation with respect to the growth direction, i.e. the vertical direction. The
most favorable orientation is the crystallographic [100] or [110] axis, as the growth
rate in this direction is enhanced compared to that in [001] direction12. Therefore,
it is not surprising that the remaining single crystal at the end of a boule shows
[100] or [110] orientation along the grown rod and [001] orientation in radial direc-
tion (Figure 3.6 (d, e)). This grain selection is a slow process and diminishes the
utilizable part of a boule. The slow elimination of a smaller grain on the surface of
the boule is also visible in Figure 3.6 (c). The remaining grain has a (001) facet on
the end of the rod. Of course, the natural grain selection can be forced by tapering
the crystal to small diameters, which has also been tested in this thesis. The use of
monocrystalline seed rods was successful in the La2−xSrxCuO4 compounds, where
the grown crystals have immediately adopted the [100] orientation of the seed.

At the electron doped 214 compounds, however, it was not possible to benefit
from the predefined orientation of the monocrystalline seed and a multiple nucle-
ation occurs at the beginning, as it is very difficult to find the exact amount of flux
and growth parameters from beginning. In general, the growth experiments have
shown that the growth along the crystallographic [001] axis is reduced with increas-
ing doping, resulting often in a coexistence of several plate like grains within a rod.
In this case the separation of the different grains using a polarizing microscope and
a wire saw is a time consuming and difficult task. The frequent appearance of two
or more coexisting grains with a slightly different orientation throughout the whole
rod is a serious problem of this method and cannot be avoided by simple means.

After conversion of all polycrystalline material, the growth process is finished
by a slow cooling of the melt and the simultaneous separation of both rods, the
crystal boule and the remainig feed end. The residual flux is thereby crystallized
eutectically (Figure 3.6 (c)). In order to improve the crystal quality, the influence of
the Ce doping on the growth parameters has to be investigated for the whole doping
range of a 214 system. All parameters for Nd2−xCexCuO4 and Pr2−xCexCuO4 are
summarized in Table 3.2 and 3.3.

The adjustment of the oxygen partial pressure pO2 of the growth atmosphere to

11Nevertheless, it is important to prepare feed rods of high density as otherwise the whole liquid
would be absorbed.

12The different growth rates between in-plane and out-of-plane direction are also reflected in the
plate like shape of cuprate crystals when grown in crucibles.
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compound doping x atmosphere pressure flow rate power

Nd2−xCexCuO4 0 O2 4− 5 bar 0.2 l/min 70 %
0 < x 6 0.15 8 % O2 / 92 % Ar 3− 4 bar 0.2 l/min 64 %

x > 0.15 3 % O2 / 97 % Ar 3− 4 bar 0.2 l/min 63 %

Pr2−xCexCuO4 0 O2 4− 5 bar 0.2 l/min 68 %
0 < x 6 0.08 8 % O2 / 92 % Ar 3− 4 bar 0.2 l/min 58 %

x > 0.08 1 % O2 / 99 % Ar 3− 4 bar 0.2 l/min 57 %

Table 3.2: Summary of the used growth atmospheres. The choice of an appropriate
atmosphere is the most important parameter and depends on the doping x. It affects the
oxygenation and the temperature of the floating zone. A gas flow rate of 0.2 l/min and an
excess pressure of 3 − 5 bar is used, in order to suppress CuO evaporation from the melt.
The growth temperature is given by the percentage of the output power of the lamps (100
% corresponds to 4 · 300 W).

the Ce concentration of the crystal results in a quantum leap for the improvement
of the crystal quality. In literature the doping independent growth in pure oxygen
atmospheres [26, 95, 96] is often proposed, but also growth studies in a pure Ar
environment and Ar/O2 mixtures for certain doping levels are reported [90, 107–
109]. In contrast to the floating zone growth of silicon single crystals, where inert
atmospheres of Ar or Ar/H2 are used in order to avoid oxygen impurities [105],
such atmospheres cannot be the solution for single crystals based on copper ox-
ides. Crystals grown in pure Ar show a strong tendency to form inclusions and
segregations of the component phases and they decompose after only a short time
[107, 109]. The use of a pure oxygen atmosphere, however, is only adapted suc-
cessfully for the undoped parent compounds Pr2CuO4 and Nd2CuO4, where Ar/O2
mixtures of any composition cause a nonuniform dissolution and crystallization
behavior resulting in unstable solvent zones. In this case, the molten zone has an
oxygen deficiency and the segregation of metastable LnCuO2, rare earth oxides
and Cu2O phases occurs. The formation of the floating zone for Nd2CuO4 using
atmospheres of 1 % O2 in Ar and pure O2 is shown in Figure 3.7. Interestingly, the
situation is opposite for the doped 214 crystals and hence, with increasing doping,
pO2 has to be lowered.

These experimental facts provide a clear indication of a Ce-assisted increased
oxygen solubility in the molten zone13, which causes the segregation of Ln2O3 and
CeO2 particles at the crystallization interface. These precipitations do not only de-
teriorate the grown crystal but also affect strongly the stability of the floating zone,
inhibiting thereby a long-lasting growth experiment. The precipitation of rare earth
oxide particles due to an additional oxygen enrichment from the surrounding gas
phase could also explain the inhomogeneous Ce distribution in radial direction with

13As the ratio of surface area to volume of the molten zone is relatively high, the oxygenation or
reduction of the zone should be very effective.
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Figure 3.7: By means of real time observation of the floating zone it can be seen how
strongly the stability of the vertical melt is influenced by the applied oxygen partial pres-
sure pO2 . For the undoped Nd2CuO4 the molten zone is highly unstable in oxygen reduced
atmospheres (a) and only in pure O2 the growth can be performed (b). With Ce doping the
situation is vice versa.

higher Ce concentration at the surface of the boules as well as a high effective dis-
tribution coefficient of Ce [108, 109], and the slow decomposition of the grown
crystals after a longer time, when grown in a pure oxygen atmosphere. Figure 3.6
(f) illustrates the decomposition of a Nd1.87Ce0.13CuO4 boule grown in an atmo-
sphere of 20 % O2 in Ar at a pressure of 2 bar. Although the boule consists of only
two grains and the crystal matrix looks promising at the first view, the crystal has
started decomposing after a few weeks due to unstable rare earth segregations. In
addition, by means of EDX14 analysis a slight inhomogeneity in the Ce distribution
has been found.

Apart from a suitable, doping dependent growth atmosphere, a pressure of 3−4
bar at a constant gas flow of 0.2 l/min is applied in order to suppress Cu evapora-
tion from the solvent. Nevertheless, a small amount of Cu evaporates and coats
the quartz tube, as the vapor pressure of CuO is fairly high at these growth temper-
atures. The application of even higher pressures leads to an unfavorable thermal
convection within the atmosphere and an augmented heat transport away from the
floating zone region, causing therefore additional problems in the temperature dis-
tribution of the floating zone in radial and vertical direction and hence, its stability
is reduced. A simple estimation from the measured weight loss of the whole system
after the growth process on overdoped Nd1.83Ce0.17CuO4, where the evaporation
was at highest, shows that the change of the flux composition is smaller than 2 mol
%. This means that the composition of the molten zone shifts only slightly towards
the peritectic point and the evaporation problem can easily be balanced by the flux
itself. A compensation of this evaporation by means of feed rods comprising a
surplus of 1 − 2 mol % CuO has been suggested in literature [60, 95]. Growth
experiments, however, show clearly that the CuO surplus complicates the finding
of appropriate growth parameters at the beginning, and several readjustments have

14EDX is the abbreviation for Energy Dispersive X-ray.
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to be made during the growth over several days. Readjustments, however, change
the obtained equilibrium.

growth rate v 0.50 mm/h
feed, vertical movement v f 0.10− 0.20 mm/h
rotation feed / seed R 20 / (15− 20) rpm
weight of flux pellet m 0.35− 0.45 g
diameter of starting rods 5− 6 mm

Table 3.3: Summary of the setup-related growth parameters. Parameters such as the
diameter of the starting rods, the corresponding amount of flux and the ratio v f /v are
related particularly to the shape and dimension of the filament of the lamps. Consequently,
when using another setup, these parameters might vary.

In addition to an appropriate atmosphere and pressure, which affect strongly
the crystallization behavior and hence, the stability of the floating zone, there are
additional parameters which are associated with the experimental setup and which
are summarized in Table 3.3. The maximum length of the floating zone is lim-
ited by the vertical dimension of the image of the planar designed filaments and
amounts to about 5 mm. Within this region the temperature can easily be adjusted
by radiation power, whereas beyond the filament image the effective temperature
decreases rapidly and is also affected by the effectiveness of the thermal conduc-
tivity within the melt and the solid. Generally, the thermal conductivity of the melt
and of the grown crystal as well as the ratio of heat conduction in the boules to
the radiation of heat from the surface of the zone are important factors, which gov-
ern the temperature distribution within the floating zone and therefore, the shape
of both solid-liquid interfaces. The best growth results are obtained by using feed
rods of 5 − 6 mm in diameter, which are elongated during growth by moving the
feed to the top with 0.10− 0.20 mm/h (at a given growth rate of 0.5 mm/h) result-
ing in a stable floating zone of 4.5 mm in diameter and 4 − 4.5 mm in length and
a relatively flat crystallization interface (see Figure 3.6 (b) and 3.7 (b)). Thicker
feed rods lead to a strongly cone-shaped upper solid-liquid interface, as the radial
temperature gradient increases. With thinner feed rods the stability and flexibil-
ity of the molten zone decrease dramatically, as the length of the zone cannot be
longer than its diameter and therefore, the solvent zone must be scaled in vertical
direction, as well. Generally, the length of a melt column, which is only held by
surface tension against gravitational and centrifugal forces, cannot be larger than
its diameter even if the latter forces are neglected [105].

Finally, the applied power of the lamps has to be adjusted carefully to the
grown 214 system and the corresponding atmosphere. As DTA measurements have
shown, there is a dependency of the peritectic temperature TP on the oxygen partial
pressure pO2 . By taking into account the geometrical dimensions of the system,
the above mentioned thermal conductivity as well as radiation effects, one has to
ensure that the real temperature of the melt is not too close to TE and TP, as small



3.3. Crystal growth 37

local temperature fluctuations would favor the formation of rare earth oxide or CuO
nuclei.

Concluding this chapter it can be summarized that the challenge in growing
214 compounds consists in finding the appropriate growth parameters, which are
all strongly related to each other. Parameters, which are closely related to the setup
must be linked to those which are specific of the compound. Only with the right
parameters one can obtain crack and inclusion free homogeneous single crystals.
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Chapter 4

Characterization of the grown
crystals

After the detailed discussion of the doping dependent growth parameters in the
previous chapter, the following chapter focuses on the fundamental properties of
the electon doped 214 single crystals. Concerning superconductivity of the electron
doped cuprates with T′ structure an unusual feature is reported in literature [26, 91,
93, 95, 110–114], which is absent in the hole doped compounds: electron doping
of the CuO2 sheets by substituting only tetravalent Ce4+ for trivalent Ln3+ is not
sufficient in order to induce superconductivity. An additional annealing step at high
temperatures in oxygen poor atmospheres is required in order to make the crystals
superconductive. The impact of this oxygen reduction step on the crystal structure
as well as on their physical properties such as superconductivity, Néel temperature,
transport properties etc. is up to now controversially discussed [26, 78, 79, 87, 94,
113, 115–122].
As oxygen co-doping poses a problem for all cuprate solid solutions (as well as for
the hole doped La2−xSrxCuO4+δ ) and the real charge carrier concentration n per
Cu ion is difficult to determine unambiguously, the phase diagrams in this thesis
are plotted over the dopant concentration x. Thereby, one must be aware of the fact
that the dopant concentration x of Ce or Sr can differ slightly from the real doping
level n or p of the crystal.
In this chapter an improved annealing treatment as well as the role of the oxygen
in the crystal as a source of co-doping or disorder are discussed. For this purpose
the overall value of the oxygen content of as grown and annealed single crystals is
determined by TG measurements and the microscopic distribution is analyzed by
magnetization measurements.

4.1 The annealing treatment of the grown crystals

The annealing treatment of the 214 single crystals after the growth process has two
effects: Firstly, it reduces tensions in the crystal as well as disorder in the rare
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earth sublattice and secondly, the oxygen content can be adjusted depending on the
annealing parameters. Unlike in YBa2Cu3O7−δ and the rare earth 123 supercon-
ductors, where the oxygen content can be continuously varied within the interval
δ = [0, 1] (see discussion in Chapter 2.2 and the references therein), in the 214
crystals only a tiny amount of oxygen in the range of δ = 0.02 − 0.06 can be
removed/added without decomposition [94, 95, 112, 123]. Nevertheless, this small
amount of oxygen affects strongly the Néel temperature as well as the transition
temperature in the superconducting state [94, 95], although the doping is primarily
governed by the Ce substitution.

In the past many annealing experiments were carried out in order to improve Tc

in the superconducting state [26, 93–96, 111, 115, 124]. Nevertheless, it was not
possible to give a clear answer to fundamental questions such as the onset, shape
and doping range of the superconducting dome, the overall oxygen content of as
grown and annealed samples and the reversibility of the reduction step. The general
consensus of all these studies is that bulk superconductivity and sharp transition
curves are only obtained by a severe reduction treatment very close to the stability
limit of the compounds.

In order to verify the different results the whole sample set of Nd2−xCexCuO4
and Pr2−xCexCuO4 is annealed in the following way: as grown single crystals are
annealed for 20 h in an atmosphere of flowing Ar 4.8 (O2 ≤ 3 ppm) gas at con-
stant temperatures close to the stability limit. The used temperatures depend on the
doping and the rare earth element Ln and is plotted in Figure 4.1 (a). For higher
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Figure 4.1: (a) Doping dependent annealing temperatures Tann applied to the 214 systems
Nd2−xCexCuO4 and Pr2−xCexCuO4. All crystals are annealed in a flow of pure Ar 4.8
(O2 ≤ 3 ppm) for 20 h. Under these conditions crystals start decomposing partially when
Tann is greater than the temperature, marked by the solid lines. (b) Normalized transition
curves of Nd1.85Ce0.15CuO4 single crystals of two different batches. Superconducting be-
havior in the as grown state is found in the batch C1, grown in a low oxygen atmosphere
of pO2 = 0.03 bar, whereas batch C2, grown as described in Chapter 3.3.2, is not supercon-
ducting. Crystals quenched to room temperature after the standard annealing show broader
and lower transitions curves (open triangle M and closed triangle N) compared to those
which are cooled down with moderate cooling rates (closed circle •).
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temperatures more distant from the marked solid lines, the crystals start decom-
posing into the corresponding rare earth oxides and a cuprite phase. The undoped
Nd2CuO4, for example, decomposes according to the following equation

2Nd2CuO4 → 2NdCuO2 + Nd2O3 + 0.5O2 (↑) → 2Nd2O3 + Cu2O + 0.5O2 (↑),

where NdCuO2 is metastable. This phase decomposition can clearly be detected
by X-ray powder diffraction as shown in Figure 4.2 for a Nd2CuO4 single crystal,
which was annealed at 1000 ◦C.

For the annealing treatment the crystals are enclosed in polycrystalline cru-
cibles of the same material in order to provide a homogeneous environment and
to protect the crystal surface. After the dwell time of 20 h the crystals are cooled
down to room temperature with moderate cooling rates of 50 − 100 ◦C/h. The
quenching from high temperatures [95] might induce new tension into the crystal
lattice resulting in considerably broader and lower transition curves, as one can see
in Figure 4.1 (b).

It is also reported that the annealing treatment depends on the sample size
[26, 95], and that a subsequent annealing after the reduction step in pure O2 at
moderate temperatures of 500−600 ◦C for 10 h increases Tc [26, 93, 115]. For the
cut crystals with a typical weight in the range of 50−250 mg, there is no size effect
observable in the transition curves, confirming therefore that the oxygen diffusion
coefficient D(T ) and hence, the diffusion length l =

√
D(T )tann, is large enough at

the applied annealing temperatures. In addition, a short O2 treatment at moderate
temperatures complicates the control of the oxygen content and its microscopic ho-
mogeneity within the crystal, as D(T ) might vary by some orders of magnitude at

Si wafer

Nd2O3

NdCuO2

Cu2O

Figure 4.2: X-ray powder diffraction of an as grown and annealed Nd2CuO4 single crys-
tal. The annealing at a temperature of 1000 ◦C leads to the partial decomposition of the
crystal into Nd2O3, Cu2O and the metastable NdCuO2 phase.
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these high and moderate annealing temperatures1. As there are no reliable studies
concerning the kinematics of the oxygen diffusion process for the 214 systems, the
interpretation of annealing experiments under different atmospheres, temperatures
and time scales is speculative. Diffusion studies on single crystals using TG analy-
sis failed due to sensitivity problems, as the oxygen variation per formula unit is in
the range of δ = 0.02− 0.04. Studies on large ceramic samples [123] are mislead-
ing, since the in- and out-diffusion is governed by grain boundarys, micro-cracks
and other imperfections in the samples.

Hence, the annealing parameters are optimized in a way that the crystals show
doping dependent sharp transition curves, as depicted in Figure 4.3. Another ex-
perimental observation disagrees with many publications [26, 93, 122] but might
be of importance, when trying to understand the role of the reduction treatment and
the related appearance of superconductivity:
As grown, optimally doped Nd1.85Ce0.15CuO4 crystals are already superconduct-
ing with a broad transition with Tc < 10 K, when grown in an atmosphere of low
oxygen partial pressure of pO2 = 0.03 bar. However, Nd1.85Ce0.15CuO4 crys-
tals grown in atmospheres as described in Chapter 3.3.2 are not superconducting
(compare the transition curves in Figure 4.1 for the crystal batches C1 and C2).
Unfortunately, for atmospheres with low pO2 the CuO evaporation is high and the
growth process is not stable enough resulting in crystals with medium quality. As
grown Pr2−xCexCuO4 crystals are not superconducting even at low pO2 .

4.2 The superconducting properties of Nd2−xCexCuO4 and
Pr2−xCexCuO4

So far, the shape and the doping evolution of the transition temperature Tc could
only be determined roughly [94, 96, 126]. In contrast to the hole doped compounds
there is no doping interval, in which the superconducting dome of the different
electron doped compounds coincides. The doping levels, where superconductivity
first appears, as well as the doping range in which superconductivity is established,
differ slightly depending on the rare earth composition of the 214 compounds.

4.2.1 Transition curves of 214-cuprates

The doping dependent transition curves for Nd2−xCexCuO4 and Pr2−xCexCuO4 are
illustrated in Figure 4.3. The superconducting transition is obtained by measuring

1From diffusion studies of YBa2Cu3O7−δ and rare earth RE-123 crystals it is well known that
D(T ) varies over several orders of magnitude [125]. Certainly, the O2 diffusion in YBa2Cu3O7−δ
occurs along the CuO chains and the residual crystal, such as the CuO2 planes, remains unaffected.
Thus, results from YBa2Cu3O7−δ cannot directly be applied to the 214 crystals, where the diffusion
seems to be a three dimensional process, and where much higher temperatures must be applied in
order to activate the oxygen diffusion.
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the ac-susceptibility2 of the annealed crystals in an oscillating field of µ0Hosc =
5 · 10−4 T with a frequency of 19.8 Hz. From the transition curves the supercon-
ducting dome as a function of Ce content x is derived and plotted in Figure 4.3 (b)
and (d). The midpoint of the transition curve (drop of 50 %) is taken as Tc (closed
squares) and the transition widths, defined as ∆Tc = Tc(90 %) − Tc(10 %), are
illustrated by the vertical bars.
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Figure 4.3: Transition curves obtained from ac-susceptibility measurements (µ0H =
5 ·10−4 T) on Nd2−xCexCuO4 (a) and Pr2−xCexCuO4 (c) single crystals. The crystal weight
varies from 100 to 250 mg. Because of demagnetization effects the diamagnetic suscep-
tibilities are set to unity for a better comparison. The derived superconducting dome for
both compounds is illustrated in (b) and (d), respectively. Note the common notation of
the x-axis: x is plotted to the left for electron doping, whereas for hole doping, x is plotted
to the right. The closed squares denote Tc at 50 % of the transition normalized to Tc,max.
The transition width defined as ∆Tc = Tc(90 %) − Tc(10 %) is given by the vertical bars.
The solid line in the Nd2−xCexCuO4 map (b) represents an empirical fit of the overdoped
Nd2−xCexCuO4 data according to the quadratic function Tc/Tc,max = 1−1317(x−0.146)2.
The whole superconducting dome is accessible for Nd2−xCexCuO4 crystals, whereas the
Pr2−xCexCuO4 system is limited to the optimally and underdoped region due to the low
solubility limit of Ce, which is found to be close to the doping level x = 0.15.

2The ac-susceptibility is defined as χac = ∂M
∂H = χ ′+ iχ ′′. The real part χ ′ describes the shielding

of the sample and amounts to −1 in the superconducting state. The imaginary part χ ′′ describes the
dissipative contribution of the ac-susceptibility in the Shubnikov state.
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Compared to previous studies on Nd2−xCexCuO4 single crystals [26, 94, 96]
the resolution of the doping dependent evolution of Tc within the superconduct-
ing region is improved considerably. The transition widths are small, especially
in the optimally doped and overdoped region. In this region, Tc can be well de-
scribed by the empirical quadratic function Tc/Tc,max = 1− 1317(x− 0.146)2 with
Tc,max = 25.1 K (solid line in Figure 4.3 (b)). According to this fit, Tc peaks at
x = 0.146 and becomes zero at the Ce doping of x = 0.118 and x = 0.173. Of
course, these experimentally determined doping values might vary within an esti-
mated error of a fewh, resulting from the fact that the determination of the exact
doping without destroying the crystals by EDX analysis is in the range of 5 h.
Nevertheless, the fact that all samples with different doping levels are annealed in
the same way (which is important in order to neutralize the contribution coming
from the oxygen state) and that the deviation of Tc at a certain doping level of other
crystals is in the range of ∆Tc, is a clear hint for the correctness of the determined
superconducting dome. From the steep slope on the overdoped side one can also
estimate the homogeneity of the Ce distribution within the specimen. For example,
a Tc of approximately 5 K with a transition width of ∆Tc > 3 K is expected for
a crystal with a nominal doping of x = 0.17 and a variation in the homogeneity
of only ∆x = 0.002. Hence, it is not surprising that in literature relatively sharp
transition curves are only found around the optimal doping, where ∆Tc/∆x is al-
most zero, whereas for the overdoped and underdoped crystals the transition curves
are often very broad. The underdoped region behaves quite differently. Supercon-
ductivity suddenly sets in at x = 0.13 and Tc increases rapidly to Tc,max, which is
expected at x = 0.146. The transition curves are always broad, independent from
the annealing treatment, and it is not clear whether this broadening is due to ho-
mogeneity problems of the Ce distribution or due to an intrinsic effect. However,
problems of homogeneity should be reduced by moving away from the solubility
limit and the asymmetry in the superconducting dome might be a hint for influ-
ences coming from the neighboring AFM phase. The microscopic behavior at the
phase boundary AFM/SC is up to now controversially discussed (see discussion in
Chapter 2.3). The Nd2−xCexCuO4 system meets the requirement for probing the
whole electron doped phase diagram, as the solubility limit for Ce is beyond the
superconducting dome at x = 0.18.

The Pr2−xCexCuO4 system is less suitable for a comprehensive study as the
lower solubility limit at x = 0.15 cuts off the overdoped region. In addition, the
AFM/SC transition is shifted to the lower doping level x = 0.10, where super-
conductivity sets in abruptly and the transition curves behave in the same way
as for the Nd2−xCexCuO4 system at the doping x = 0.13. The optimal doping
at x = 0.15 coincides approximately with the doping of the Nd2−xCexCuO4 and
Sm2−xCexCuO4 system and a trend towards lower transition temperatures is clearly
visible (Figure 4.4), when rare earth cations with increasing ionic radius are used.
The broader superconducting region in Pr2−xCexCuO4, which becomes already ap-
parent when comparing the slope of the Tc(x) curve in the underdoped regime of
both compounds, is also found in the related system LaPr1−xCexCuO4 [126, 127].
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Figure 4.4: Summary of the critical temperatures Tc and transition widths ∆Tc as a func-
tion of the Ce doping x for all grown electron doped 214 compounds. There is a trend to
lower transition temperatures when using rare earth cations with increasing ionic radius.
The compound LaPr1−xCexCuO4 has an extended superconducting region with its maxi-
mum Tc around the doping level 0.10 [126, 127]. Crystals with x = 0.15 are already far
overdoped with a Tc below 10 K.

LaPr1−xCexCuO4 has the advantage that the doping level with highest Tc is shifted
to x = 0.10, avoiding therefore the Ce solubility problems in the overdoped re-
gion. Indeed, a grown Pr0.85LaCe0.15CuO4 rod (Figure 4.4) shows broad transition
curves with a Tc of only 7.5 K, whereas Tc,max amounts to 26 K for x ≈ 0.10 [127],
which is equal to Tc,max of Pr2−xCexCuO4 at x = 0.15. Although LaPr1−xCexCuO4
is characterized by a broader overdoped region, which is also accessible with single
crystals, the growth of this sample set was not performed for a simple reason: the
microscopic homogeneity of the metal sublattice might suffer from the additional
substitution of the La3+ sites by Pr3+ cations. Concerning the superconducting
dome the inconsistent published results [126, 127] clearly reveal the homogene-
ity problems of this system. In addition, the difference in the shape and doping
range of the Tc(x) curves for Nd2−xCexCuO4 and the Pr based 214 compounds
cannot only be explained by the modality of the reduction step and the appearance
of a related, epitaxially grown (Ln,Ce)2O3 impurity phase (see Capter 4.3), as the
performed annealing treatment is identical for both systems and all doping levels.
The appearance of superconductivity already at lower doping x in the Pr based
214 compounds is a clear material specific issue and might arise from a small Pr
co-doping, although X-ray analysis shows that the Pr cation is trivalent.

4.2.2 Testing bulk superconductivity

For the Nd2−xCexCuO4 sample set bulk superconductivity is reported within the
doping range 0.14 ≤ x ≤ 0.17 [96]. The measurement of shielding curves3 can

3Shielding curves correspond to the zero-field-cooled (ZFC) recorded magnetization measure-
ments. For that purpose the sample is cooled down in a zero field below Tc and the magnetic field is
turned on afterwards.
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be misleading, as in principle a small, closed superconducting skin around a non-
superconducting core is sufficient in order to screen the whole interior, resulting in
a nearly perfect diamagnetic response. A non-uniform reduction of the core and
shell [26] as well as the appearance of two superconducting phases with differ-
ent Tc due to the annealing treatment [95] can be excluded for all doping levels.
Susceptibility measurements on annealed cylindrical crystal boules and on small
pieces cut from the interior of the same cylinder show clearly the same transi-
tion behavior and are compared with each other for Pr1.85Ce0.15CuO4 in Figure
4.5 (a). The Meissner fraction, determined from the field-cooled (FC) magnetiza-
tion measurement via the relation fM = −MFC/Ha · 100%, amounts to 72 % for
Pr1.85Ce0.15CuO4. The determination of the Meissner fraction on high temperature
superconductors is not straightforward, as the measurement depends on many fac-
tors, such as vortex-pinning, size effects and the strength of the applied magnetic
field Ha [128]. In general, deviations from the perfect diamagnetic value as well
as broader superconducting transition curves are not related a priori to the real su-
perconducting fraction and the homogeneity of the sample. As the 214 systems are
type-2 superconductors, flux pinning might play an important role in determining
fM. Hence, fM is larger for powdered samples than for single crystals [93], and it
decreases with increasing external fields. Values close to unity in La2−xSrxCuO4
high quality crystals are only reported for very small fields of µ0H < 10−4 T [128].
In addition, the sample size influences the magnetization measurements due to the
demagnetization effect. Figure 4.5 (b) illustrates the obtained FC and ZFC curves
for a Pr1.85Ce0.15CuO4 single crystal slab in a dc field of 5 · 10−5 T applied in c
direction. The expected perfect diamagnetism of χ = −1 is marked by the hori-
zontal line. As already mentioned above, the Meissner fraction is diminished by
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Figure 4.5: (a) Susceptibility measurements on a cut boule of a Pr1.85Ce0.15CuO4 rod and
on a small bar from the interior of the same piece. There is no evidence for a core/shell ef-
fect due to a non-uniform reduction. The crystals are perfectly homogeneous. (b) Meissner
(FC) and shielding curve (ZFC) of a Pr1.85Ce0.15CuO4 slab (a× b× c = 1× 1× 0.5 mm3)
at an applied field of µ0Ha = 5 · 10−5 T in c direction. The Meissner fraction amounts to
72 %.
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Figure 4.6: Specific heat measurement on a Pr1.85Ce0.15CuO4 single crystal (100.5 mg).
∆C/T is plotted against the temperature T . The field is applied in c direction. The high
field data at H = 8 T, where superconductivity is fully suppressed, is used as background.
A jump with onset point at T = 26 K is clearly visible. For comparison, the corresponding
transition curves obtained from susceptibility measurements are shown in Figure 4.5. (The
specific heat measurement was performed by A. Junod, Geneva).

28% whereas the shielding signal is larger than the expected value, which can be
explained by the demagnetization effect.

An appropriate, but very complex experimental method to test the bulk su-
perconductivity is the measurement of the specific heat change at Tc due to the
difference in the free energy between the superconducting and the normal state.
Thereby, the problem for high temperature superconductors is primarily given by
the dominating phononic contributions to the specific heat of the system at Tc as
well as by a significant contribution from unpaired electrons even at low tempera-
tures, due to the nodes in the energy gap ∆. The electron doped 214 compounds,
however, have moderate upper critical fields Hc2 when the magnetic field is ap-
plied perpendicular to the CuO2 sheets. For Pr1.85Ce0.15CuO4, µ0Hc2 amounts to
8 T (estimation from resistivity curves) and the curve recorded at this field is used
as background. Curves at lower and zero field are subtracted from the normal state
curve at 8 T in order to eliminate the normal state contribution to the specific heat

∆C = CS −CN = C(H)−C(8 T) . (4.1)

In Figure 4.6 ∆C/T is plotted against T . Starting at T ' 26 K an increase in ∆C/T
of approximately 1 mJ/(K2gat), which corresponds to 7.0 mJ/(K2mole), is clearly
visible. For comparison, the total specific heat of the sample amounts to 304.50
mJ/(K2mole) at a temperature of 28 K.
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The measured value for ∆C/T is about 13 % higher than the value for optimally
doped Pr1.85Ce0.15CuO4 reported in literature [129]. ∆C/Tc has been found to
amount to 6.1 mJ/(K2mole), from which a condensation energy Ec of 568 mJ/mole
was calculated, which corresponds to only 70 % of the BCS d-wave prediction.

4.3 X-ray analysis

X-ray powder diffraction confirms the phase purity and T′ structure of the grown
Nd2−xCexCuO4 and Pr2−xCexCuO4 single crystals. The diffraction pattern for the
undoped and optimally doped 214 crystals is shown in Figure 4.7. The lattice con-
stant c of the tetragonal unit cell decreases linearly with increasing doping x. Be-
tween undoped and optimally doped crystals the contraction in c amounts to 7.5h
and 6.5 h for Nd2−xCexCuO4 and Pr2−xCexCuO4 , respectively (see Figure 4.8).
The linear decrease of c as a function of the doping x is interpreted as evidence for
the oxidation state of 4 of the dopant, since the ionic radius of the tetravalent Ce is
smaller than the radius of the corresponding trivalent rare earth ions [80, 130, 131].
In principle, one can use this linear relationship for estimating the doping concen-
tration in a grown crystal. Further evidence for the formal Ce oxidation state of
4 rather than 3 was derived from X-ray absorption spectroscopy (XAS) studies
[132]. Interestingly, the in-plane lattice parameter a increases slightly with doping
(≈ 1h), although one would expect a steady decrease for the same considerations
of the ionic radius size. This lengthening of a might result from the weakening of
the Cu-O bond due to electron doping into the CuO2 sheets. The Cu-O bonds have
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Figure 4.7: X-ray diffraction pattern (2θ − θ scan) of grinded as grown single crystals,
confirming the tetragonal T′ structure and the phase purity of the grown crystals.
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Figure 4.8: (a) Doping dependent evolution of the lattice parameters a and c, obtained
from X-ray powder diffraction on as grown single crystals of the Pr2−xCexCuO4 and
Nd2−xCexCuO4 sample set. The lattice constant c decreases linearly with increasing dop-
ing, which is interpreted as an evidence for the oxidation state Ce4+ of the dopant [80].
The lattice parameter a increases slightly with increasing doping. (b) X-ray (006) rocking
curves for Nd2−xCexCuO4 single crystals with a full width at half maximum (FWHM) of
less than 0.08◦.

antibonding σ∗
x2−y2 character and thus, doped electrons are added into the antibond-

ing band orbital, causing therefore the weakening of the Cu-O bonds [28, 131]. The
elimination of electrons from the CuO2 sheets (hole doping) strengthens the CuO
bond (i.e. shortens the bond length), as electrons from the antibonding orbital are
removed. This implies that electron doping is favored in the T′ structure, whereas
hole doping is found in the T structure. Concerning the mosaicity as a measure
of crystal quality, rocking curves for both systems of different doping levels have
been recorded. Figure 4.8 (b) shows the (006) curves for Nd2−xCexCuO4. The full
width of half maximum (FWHM) of the (006) reflex is less than 0.08◦, which is
the lowest value reported so far.

The annealing treatment does not influence the lattice parameters and the rock-
ing curves, but can cause the intergrowth of a small (Ln,Ce)2O3 impurity phase
[26, 122]. The volume fraction of the impurity phase depends on the annealing
treatment and is roughly estimated to be in the range of ≤ 1 % [26]. Additional
peaks after annealing were detected at first in systematic neutron scattering exper-
iments and were attributed to coherent atomic displacements and oxygen vacancy
superstructures [95]. However, it could be shown [26] by means of systematic X-
ray and neutron scattering that the additional peaks can be assigned to a parasitic
(Ln,Ce)2O3 phase, which grows epitaxially in [110] direction onto the CuO2 lay-
ers. The (Ln,Ce)2O3 phase has a cubic bixbyite structure (C-type) with a lattice
constant of ac ≈ c/1.1 ≈ a2

√
2. Because of the nearly perfect in-plane lattice

matching of the cubic lattice constant (subscript c) and the diagonal of the CuO2
planes (Figure 4.9 (a)), but a mismatch of ≈ 10 % in c direction, the growth of
the parasitic phase is almost two- dimensional. Typical values for the in-plane and
out-of-plane dimensions of the parasitic phase amount to 1 µm and a few unit cells,
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Figure 4.9: (a) Illustration of the epitaxial intergrowth of the (Ln,Ce)2O3 phase onto the
CuO2 plane. Note, that for clarifying reasons only the Cu2+ ions are shown (red dots).
The unit cell of the parasitic phase is highlighted as yellow diamond. For comparison the
magnetic unit cell is illustrated as well (green diamond). (b) (004.4) reflex of the epitaxial
intergrown parasitic phase. From the full width at half maximum (FWHM) of the Gauß fit
a thickness of 13 nm in the out-of-plane direction is estimated.

respectively [26]. An estimation of the real thickness d of the parasitic phase can
be obtained from the full width at half maximum (FWHM) of the additional broad
peaks by using the Scherrer relation [133]:

d =
K · λCu,Kα

FWHM · cos θ
, (4.2)

where K = 0.94 is the Scherrer constant, λCu,Kα = 0.154056 nm is the X-ray
wavelength and θ the diffraction angle at the maximum of the peak. The impurity
peaks are well fitted with a Gauß function (Figure 4.9 (b)), from which the value
of the FWHM is determined. The calculated thickness d, derived from the (004.4)
and (008.8) peaks, amounts to 13 nm, which is in good agreement with reported
averaged values of 8 nm and 6 nm [26], respectively. Note, that in the Scherrer
formula the values for the FWHM are given in radian. As the FWHM values of the
peaks are in the range of 0.7◦ − 0.8◦, the influence of the apparative resolution is
negligible.

The in-plane Bragg reflections from the impurity phase appear at commen-
surate positions, whereas along the c direction the incommensurability increases
according to the Miller index transformation l = 1.1lc = 0,±1.1,±2.2,±3.3, ...
(compare the position of the impurity peaks with respect to the (00L) peaks of the
single crystal in Figure 4.10). This incommensurability in the c direction shows
clearly that the additional peaks are not due to a three-dimensional superstructure
but due to a parasitic phase with the same c orientation but different lattice constant.

Recently, a microscopic model was suggested [122] in order to explain the
annealing-assisted formation of the epitaxial intergrowth. According to this model
the as grown single crystals have a Cu deficiency of a few percent. Due to the
reduction process, oxygen vacancies in the rare earth oxide layers arise, which
drive the phase separation into the Cu free C-type rare earth minority phase and the
Cu repaired T′ majority phase. As a result of a partial decomposition Cu does not
segregate within the crystal, but it repairs the vacancies of adjacent CuO2 layers.
Hence, the Cu deficiency must be equal to the volume fraction of the (Ln,Ce)2O3
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minority phase and the annealing treatment must be fully reversible. In fact, it has
been reported [122] that the rare earth interlayer disappears with oxygenation and
reappears with reduction. Surprisingly, the stability of the T′ structure seems to be
uncritical against a small amount of Cu and oxygen deficiency due to the strong
three-dimensional interconnections of the rare earth-oxygen sublattice.

The reversibility of the appearance/disappearance of the parasitic phase and
– related to this – the occurance of superconductivity was checked by annealing
experiments on an optimally doped Nd1.85Ce0.15CuO4 single crystal. After each
annealing treatment a 2θ − θ scan along the (00L) direction is recorded, which is
shown in Figure 4.10. The scan along L is sufficient for identifying unambiguously
the parasitic phase, as Bragg reflections are expected at the above mentioned in-
commensurate positions, whereas X-ray powder diffraction is not sensitive enough.
Surprisingly, the additional peaks disappear upon oxygenation and the crystal is not
superconducting anymore, confirming therefore the proposed model of a reversible
rearrangement within the crystal. In addition, after annealing the appearance of the
parasitic phase is found to be independent from doping for most crystals.

Based on this microscopic model an attempt was made in order to explain
the impact of oxygen on the physical properties and the appearance of supercon-
ductivity in electron doped cuprates [122]. From the ambiguous experimental
data, obtained from X-ray diffraction, neutron scattering and TG measurements
on LaPr1−xCexCuO4, it was concluded that the Cu deficiency of a few % in the as
grown state weakens enormously the electron doping of Ce, whereas the recovery

Figure 4.10: X-ray (00L) scan on a Nd1.85Ce0.15CuO4 single crystal after standard anneal-
ing (blue curve) and re-oxygenation at 900 ◦C for 20 h in a pure oxygen atmosphere (black
and red curve). The red curve represents a scan with an integration time of 10 s around
the (008.8) peak, in order to minimize the background. After the reduction step additional
broad peaks at the incommensurate positions (004.4), (008.8) and (0013.2) arise. The
corresponding lattice parameter of the impurity phase amounts to ac = 1.100 nm ≈ c/1.1.
The intergrowth is fully reversible, as the additional peaks disappear with re-oxygenation.
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of the full occupation of the Cu site promotes the electron number in the CuO2
sheets. In addition to this doping effect of the annealing treatment, the healing out
of Cu vacancies might increase the charge carrier mobility as these point defects
break the translation symmetry of the CuO2 planes and therefore, charge carriers
are scattered effectively on these impurities. Simultaneously, in comparison to the
as grown state, an increase of O(1) vacancies was found in the annealed samples,
whereas the O(2) site was assumed to be fully occupied. This additional induced
disorder in the CuO2 sheets is inconsistent with the argumentation of increased
mobility by repairing the CuO2 planes. In addition, the datasets, on which this
microscopic model is based, are not fully consistent with each other and the tiny
deviations from the nominal occupation of the Cu and O(1) site obtained by Ri-
etveld refinement are model dependent and questionable.

4.4 The role of oxygen in electron doped high temperature
superconductors

X-ray analysis on a high quality Nd2−xCexCuO4 single crystal confirms the oxygen-
driven formation of a rare earth oxide impurity phase, which is absolutely re-
versible with annealing. The proposed model for the microscopic reorganization
seems to be adequate, but its implications on the physical properties are incon-
sistent. Therefore, for further characterization of the crystals, the crucial overall
oxygen content is determined as a function of doping and is compared to the re-
sults of [122].

4.4.1 Determination of the oxygen concentration of as grown and an-
nealed crystals

In literature there are contradicting observations of the real overall oxygen content
of as grown and annealed crystals. In [123, 134–137] stoichiometric oxygen for
the as grown Nd2−xCexCuO4+δ system (i.e δ = 0) is proposed. In addition, the T′

structure is found to be stable against a small oxygen deficiency of a few % due to
reduction. For the deviation from stoichiometry an upper limit of δ = −0.07 in
Nd2CuO4+δ was found before decomposition sets in. Simultaneously, oxygenation
experiments showed that δ does not become greater than zero [123]. These obser-
vations are inconsistent with studies primarily based on neutron diffraction, which
have found an excess of oxygen (δ ≈ 0.1), which occupies the apical position
[78, 79]. The apical oxygen is removed partly during the reduction treatment.

In order to determine the overall oxygen content, TG experiments in combina-
tion with X-ray powder diffraction on high quality as grown single crystals were
performed. Since, according to the above mentioned studies, the deviation from
oxygen stoichiometry is expected to be very small, only crack- and inclusion-free
single crystals4 of 100 − 200 mg were investigated in order to minimize errors in

4A major part of the previous studies was carried out on polycrystalline samples and hence, the
real oxygen content of the phase determined by TGA or titration experiments might be misleading
due to some contributions arising from grain boundaries and small inclusions. In addition, the re-
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Figure 4.11: (a) Illustration of the TG experiment carried out on an as grown
Nd1.87Ce0.13CuO4+δ single crystal (m = 123.182 mg). The weight loss (open squares)
during the reduction in an inert gas flow of H2/N2 = 15/85 for 1 h at 1000 ◦C is recorded,
from which the oxygen content of the crystal can be calculated. The used temperature
ramps are shown as well (closed squares). (b) Plot of the measured overall oxygen content
of the as grown 214 crystals as a function of the Ce content x.

the results. The oxygen content is calculated from the measured weight loss during
the reduction in a gas flow of H2/N2 = 15/85 for 1 h at 1000 ◦C. A typical TG
measurement is shown in Figure 4.11. The crystals are heated with 10 ◦C/min,
held for 1 h at 1000 ◦C and cooled to room temperature with the same rate. The
crystals starts decomposing at ≈ 500 ◦C according to the following equation:

Ln2−xCexCuO4+δ
H2−→ (1− x)Ln2O3 + xLnCeO3.5 + Cu + (1 + δ − x

2
)H2O (↑) .

Subsequent X-ray powder diffraction clearly confirms the perfect transforma-
tion of the 214 phase into elemental copper and the corresponding rare earth oxides.
For comparison, the phase transformation for a Nd1.87Ce0.13CuO4+δ single crystal
is illustrated in Figure 4.12. In general, the rare earths form thermodynamically
very stable oxides, which cannot be cracked by the used reactive atmosphere and
temperature. X-ray analysis has confirmed the valency of 3 for Nd and Pr as well
as the valency of 4 for Ce. From the weight of the nonvolatile reaction product one
can calculate the oxygen content of the as grown crystal. The corresponding re-
sult is plotted in Figure 4.11 (b) for both compounds. Undoped, as grown crystals
show nearly stoichiometric oxygen content, which is in good agreement with [123]
and in disagreement with neutron data [78]. Upon doping a small oxygen surplus
δ is found, which increases linearly with x/2. A total error of measurement of
∆δ = ±0.01 is estimated from the uncertainties in measuring the oxygen weight
loss. Small variations in doping of ∆x < 0.005 do not affect the result. This is
the first systematic investigation on the evolution of the oxygen content as a func-
tion of doping, as previous experiments were mostly limited to one specific doping

duction and oxygenation of polycrystalline samples behave differently as diffusion of any kind is
increased along the grain boundarys.



54 Chapter 4. Characterization of the grown crystals

Si wafer

Nd2O3

Cu elemental
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Figure 4.12: X-ray pattern of a crystal before and after the TGA experiment. The
Nd1.87Ce0.13CuO4 phase is completely transformed into the corresponding rare earth ox-
ides and elemental Cu.

level. The oxygen content does not depend on the used growth atmosphere. If it
were the case, the undoped compound, grown in a pure O2 environment, should
show the highest value for δ . The correlation of δ and the growth parameters (cf.
discussion in Section 3.3.2) with the Ce doping is a clear signature of a doping
assisted oxygen enrichment within the crystal. Although TGA experiments are not
site sensitive, this additional oxygen must occupy the apex position, which is the
only available impurity site in the T′ structure. Finally, the oxygen content of the
annealed crystals is given by subtracting the nearly doping independent oxygen
loss which amounts to 0.020 ± 0.003 for Nd2−xCexCuO4 and 0.030 ± 0.003 for
Pr2−xCexCuO4, when using the annealing described in Section 4.1. Thus, only a
part of the excess oxygen is reduced by annealing.

4.4.2 Magnetization measurements: Testing the microscopic homo-
geneity of the crystals

After the determination of the overall oxygen content of as grown and annealed
crystals, the role of oxygen has to be clarified, especially with respect to the ap-
pearance of superconductivity in the electron doped 214 compounds. This is a
difficult task, as reduction/oxygenation experiments for 214 single crystals at the
inevitable high temperatures are difficult to control, resulting often in phase sepa-
rations and irreversible rearrangements in the metal lattice [95].

So far, there are no systematic data concerning the evolution of the supercon-
ducting phase as a function of the oxygen variation per formula unit ∆δ and their
reversibility with reduction/re-oxygenation of the crystals. In addition, depend-
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ing on the investigation method, the change in the oxygen content of ≈ 5 h due
to annealing experiments is often close to the detection limit of the method, re-
sulting therefore in contradicting models. In thin film samples the reversible oxy-
genation/reduction process is much easier to control and it is reported that oxygen
removal has a similar effect as Ce doping [113, 138, 139] and hence, oxygen is
believed to act as co-dopant.

In order to clarify this issue, a slab of an overdoped Nd1.84Ce0.16CuO4+δ high
quality single crystal of 51.5288 mg is used for oxygenation experiments. Over-
doped crystals are expected to be very sensitive to small variations in the oxygen
content ∆δ due to the steep slope of Tc(x) on the overdoped side (Figure 4.13
(a)). Additionally, the effects of doping and disorder of a small oxygen varia-
tion ∆δ within the crystal can only be separated from each other in the overdoped
regime, as disorder always inhibits superconductivity, whereas oxygen co-doping
in electron doped superconductors is directly opposed to the Ce doping. These two
competing doping effects can be described within a simple ionic model. Assuming
the valencies for the constituents to be Ln(+3), Ce(+4), O(−2) and Cu(ν), the
nominal oxygen contribution fraction to the total charge carrier concentration per
Cu ion nCu is obviously given by the relation:

nCu = ν − 2 = −x + 2∆δ , (4.3)

with the formal valency ν for the copper. Thus, in the overdoped region disorder
causes a decrease in Tc, whereas oxygen co-doping leads to an increase in Tc. In
the underdoped region, however, co-doping and disorder lead to a decrease in Tc.
The impact of oxygenation and reduction on Tc is shown in Figure 4.13 (a). In
principle, by starting with an annealed overdoped single crystal, one should be able
to move on the Tc(x) curve towards the underdoped region and back by fractional
oxygenation/reduction of the crystal. Note, that for this experiment the absolute
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Figure 4.13: (a) Demonstration of the oxygenation/reduction experiment on an overdoped
Nd1.84Ce0.16CuO4+δ crystal and its implications to superconductivity. (b) Magnetization
curves recorded after the standard reduction process of an as grown Nd1.85Ce0.15CuO4+δ
crystal.
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value of oxygen content of the annealed crystals is of secondary importance as
only relative changes in Tc and δ are measured.

The Nd1.84Ce0.16CuO4+δ crystal was annealed according to the following se-
quence, the corresponding results are shown in Figure 4.14 (a, b): At first the crys-
tal is reduced by using the standard reduction procedure. From the weight loss,
∆δ = −0.018 is estimated. Tc amounts to 16.2 K with a transition width ∆T of
2 K. In the subsequent annealing step a small amount of oxygen of ∆δ = +0.005
is added. According to the ionic model for explaining the oxygen co-doping and
the assumption that the samples have nearly stoichiometric oxygen content after
the first reduction treatment of the as grown crystals, one would expect a strong in-
crease in Tc towards Tc(x = 0.15), as the electron carrier concentration nCu should
be changed by +0.01 (cf. Figure 4.13 (a)). The transition curve, however, is di-
minished by 1 K and the absolute value of the susceptibility at low temperatures
is decreased dramatically. In order to check the reversibility of the system, the
reduction step with the same parameters as in the first reduction step is repeated.
The oxygen loss amounts to ∆δ = −0.006 and the transition curve of anneal-
ing 1 (compare the curves for annealing 1 and 3 in Figure 4.14 (a) ) is reproduced.
The reversibility of the oxygenation/reduction step shows clearly that the rare earth
sublattice remains unaffected by the oxygenation experiment. There are no micro-
scopic CeO2 precipitations or rearrangements in the metal lattice, which might be
responsible for the change in the transition curve. Thus, the experiment shows that
oxygen co-doping cannot explain completely the evolution of superconductivity in
the electron doped 214 single crystals. The decreased value in the susceptibility af-
ter oxygenation suggests rather an augmentation of disorder, which is responsible
for a decreasing effective repulsion of the field within the sample. Note, that the
volume of the sample does not change during the experiment.

Concerning the microscopic homogeneity, the measurement of hysteresis loops
of magnetization is very informative. It is reported [50] that there is an unambigu-
ous relation between the microscopic homogeneity and the evolution of the mag-
netization curve. For example the appearance of a second peak in the hysteresis
loop (the so-called fishtail effect) and its temperature dependence can be related to
microscopic inhomogeneities in the crystal. Due to the short coherence length in
high temperature superconductors, local deviations from the dopant or oxygen con-
tent, as well as inhomogeneities in the rare earth sublattice lead to an effective field
induced pinning, which influences the magnetization curves. In fact, the magneti-
zation curves, recorded at 10 K for applied fields along the c axis, show a second
peak effect after oxygenation (annealing 2 in Figure 4.14 (b)). This effect is absent
after re-reducing the crystal and was never observed in crystals of different doping
and size after standard annealing (Figure 4.13 (b)). Thus, the appearing/vanishing
second peak is clearly related to the partial oxygenation of the crystal. Hence, it
is an unambiguous confirmation of an augmented, oxygen induced disorder within
the crystal, which gradually destroys superconductivity.

The reduced/injected oxygen might be associated with the oxygen fraction,
which occupies the apex position. Because of steric considerations the occupation
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Figure 4.14: Annealing experiments on a c oriented Nd1.84Ce0.16CuO4+δ crystal of
51.5288 mg. Annealing 1: Standard reduction of the as grown crystal in an argon gas
flow at 960 ◦C for 20 h (∆δ = −0.018). Annealing 2: Oxygenation of the reduced sample
in a gas flow of O2/Ar = 0.1h at 750 ◦C for 70 h (∆δ = +0.005). Annealing 3: Repetition
of annealing 1 with the same parameters (∆δ = −0.006). (a) The ac-susceptibility curves
confirm the reversibility of the annealing steps. The transition curve after oxygenation
shows a reduction of Tc by 1 K and the absolute value of the response decreases by a factor
of 1/3. (b) Magnetization curves recorded at 10 K after the annealing 2 and 3. The par-
tial oxygenation causes a broader magnetization curve with irregularities. This fluctuation,
which appears/disappears with oxygenation/reduction, is a clear sign for oxygen induced
disorder, which gradually destroys superconductivity.

of this impurity site might lead to a local deformation of the crystal lattice and
hence, to a distortion of the CuO2 plane. This oxygen induced disorder in the CuO2
planes might behave pair breaking and influences strongly the electronic properties
of the 214 crystals. During reduction the removal of oxygen on the apex site should
be favored in comparison to a removal of the stronger bound oxygen, occupying
the O(1) and O(2) site. Of course, it cannot completely be excluded that some
small fraction of O(1) and O(2) oxygen is also removed at such high reduction
temperatures. However, the removal/incorporation of oxygen on the regular lattice
sites O(1) and O(2) implies the creation/reduction of disorder, which should also
affect superconductivity. Thus, if oxygen of the O(1) site were mainly removed
due to the reduction step, the disorder would increase, which is inconsistent with
the observation that superconductivity appears upon reduction.

4.4.3 Oxygen as co-dopant and source of disorder

From the oxygenation/reduction experiments as well as from the oxygen determi-
nation experiments the following conclusions can be drawn:

1. The crystals contain a slight, doping dependent surplus of oxygen and only
the parent compounds Pr2CuO4 and Nd2CuO4 have a nearly stoichiometric
oxygen content. This experimental result obtained from TG measurements
agrees with Raman results [117] and is in contrast to the finding of a small
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oxygen deficiency of the doped, as grown crystals in [122]. The surplus of
oxygen has to occupy the apex position, which is the only impurity site in
the tetragonal T′ structure.

2. The purpose of annealing is the reduction of tensions in the crystal structure
and the removal of the surplus of oxygen. Because of the high annealing
temperatures not only the apex oxygen, but also the oxygen of the O(1) and
O(2) side is mobile. Thus, the removal of a small amount of the O(1) and
O(2) oxygen and consequently, the formation of a reversible parasitic phase
cannot be excluded [27, 117, 118]. Nevertheless, superconductivity occurs
only in the stoichiometric T′ phase, and the appearance of the impurity phase
is rather a structural by-product than a prerequisite for superconductivity.

3. The oxygen nonstoichiometry of the crystals dopes the crystals only margi-
nally and is primarily a source of disorder. This is an unambiguous result
of the oxygenation/reduction experiments on the overdoped side, where the
influence of oxygen co-doping on superconductivity can be separated clearly
from disorder effects. This important result agrees with recently published
transport data on overdoped Pr2−xCexCuO4 thin films [140], where addi-
tional oxygen is found to affect the mobility of the charge carriers rather
than the band filling. However, the result disagrees with prior publications
[27, 139], which have deduced an effective oxygen co-doping from oxygena-
tion experiments on optimally doped thin films.

4. From the magnetization measurements on an overdoped, oxygenated/reduced
Nd1.84Ce0.16CuO4+δ single crystal and the corresponding evolution of Tc it
can be concluded, that the apical oxygen is removed during reduction, re-
sulting in a decrease of disorder in the crystal lattice. Recent publications
[117, 122] suggest that the apical oxygen (provided that there is an api-
cal oxygen) is unaffected by reduction and only the oxygen in the CuO2
planes O(1) is removed. This picture is inconsistent, as one would not ex-
pect the establishment of superconductivity with increasing disorder in the
CuO2 planes.

5. A suggested small Cu deficiency of a few % in as grown crystals [122] can-
not be the main reason for the absence of superconductivity in electron doped
compounds. In addition, the Cu deficiency cannot be simply related to the
CuO evaporation during crystal growth, as this small evaporation can be
balanced easily by the Cu rich flux. Experiments have shown that as grown
Nd1.85Ce0.15CuO4+δ single crystals, grown in an atmosphere of O2/Ar= 1%,
are superconducting with Tc < 10 K, although the CuO evaporation is no-
ticeably higher compared to the standard grown crystals. The Cu nonstoi-
chiometry is expected to be negligible and the incorporated, additional oxy-
gen influences strongly the as grown behavior of the crystals.
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Chapter 5

Theory: The normal state
transport

The electron and hole doped cuprate high temperature superconductors reveal un-
usual transport properties, which cannot be understood within conventional Fermi
liquid theory. For both sides of the phase diagram (electron and hole doped side)
the compounds are characterized by an unusual, strong temperature and doping
dependent evolution of the Hall coefficient RH . A sign change in RH at higher
doping levels is reported for both types of doping [141, 142]. In addition, un-
usual features are also observed in the behavior of the normal state resistivity and
magnetoresistance, which are incompatible with the established transport theory of
normal metals. At low temperatures the normal state resistivity shows a remark-
able doping dependent upturn behavior, whose origin is up to now controversially
discussed. Additionally, fluctuation effects must be kept in mind – especially for
the hole doped cuprates with their high upper critical fields Bc2 – when analyzing
the low temperature normal state transport data.
In this chapter the characteristic normal state transport properties are reviewed
briefly. Afterwards proposed theoretical models for explaining the transport data
are introduced and discussed in terms of their applicability.

5.1 Phenomenology of the normal state transport in cuprate
superconductors

In this section the most prominent results of DC transport – based on transport
measurements of more than 20 years – are summarized separately for electron and
hole doped cuprates.

5.1.1 Transport properties of hole doped cuprates

The T dependence of the in-plane resistivity of hole doped cuprates shows a clear
evolution with doping. The often reported linear T dependence of the in-plane
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resistivity
ρxx ∝ T (5.1)

over a broad doping interval [5, 141] from the underdoped to the optimally doped
region is inconsistent with newer measurements. It was shown on underdoped
high quality single crystals of YBa2Cu3O7−δ and La2−xSrxCuO4 that ρxx obeys a
T 2 rather than a T dependence [21] and thus, the in-plane resistivity shows the
same power law as the inverse Hall angle

cot θH ∝ T 2. (5.2)

Consequently, the transport in the underdoped regime, carried by the quasiparticles
on the Fermi arcs (see illustration in Section 5.3.2), behaves similar as in a con-
ventional Fermi liquid. Nevertheless, it seems to be difficult to reconcile a Fermi
liquid model for lightly hole doped cuprates with an arc-like topology of the Fermi
surface as observed by ARPES [4, 62] and a strong violation of the Mott limit1

[21, 143]. At moderate temperatures even for the almost undoped compounds a
metallic behavior in ρxx (i.e. dρxx/dT > 0) was found [23], although the Mott
limit is strongly violated and, hence, Boltzmann transport theory is not applicable.
It was estimated for La2−xSrxCuO4 [143] that the mobility of the holes changes
only by a factor of 3 from far underdoped crystals with x = 0.01 to overdoped
samples with x = 0.17. This metallic behavior of the underdoped compounds is a
remarkable feature which is not understood so far. As there is a correlation between
the inverse mobility of La2−xSrxCuO4 and the AFM correlation length ξAFM with
varying doping level x, a not clearly specified stripe assisted transport mechanism
has been suggested [143].

The unambiguous observation of crossovers in the transport data of underdoped
cuprates such as the pseudogap is difficult and often not reliable. A crossover
temperature T ∗ was deduced from the inflection point of the slightly “S-shaped”
ρxx(T ) curves by taking the second derivative d2ρxx/dT 2. The observed change in
curvature was interpreted in terms of a partial reduction of an inelastic scattering
channel in the pseudogap state. From resistivity measurements on different hole
doped cuprates an about linear decrease of T ∗ with increasing doping level x was
observed, terminating near optimal doping [23].

A linear T dependence in resistivity for all temperatures T > Tc was only found
in a small region around optimally doping [5, 21, 23]. This linearity seems to be
a characteristic feature of optimally hole doped cuprates. Its physical origin might
be rather attributed to electron correlation effects than to phonon interactions. A
similar linear T dependence of the resistivity for temperatures T → 0 was found
in the system YbRh2Si2 [144] exactly at the position of a quantum critical point
(QCP). However, the interpretation of the linear T dependence as a signature for

1The Mott limit states whether a material behaves metallic or not. For metallic transport the
Fermi wave length λF of the Bloch electrons must be larger than the mean free path l, or equivalently:
l · kF ≥ 2π . For 1% doped La2−xSrxCuO4 a value of l · kF ≈ 0.1 at T = 300 K is estimated [143].
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quantum criticality in the hole doped cuprates is up to now controversially dis-
cussed. From negative intercepts of the extrapolated ρxx(T ) curves [145] as well
as from explicit measurements of ρxx(T ) at high magnetic fields [146] a devia-
tion from a strict linear T dependence to higher powers in T has been found for
T → 0. In the overdoped regime the purely linear ρxx(T ) behavior is replaced
by a power law behavior ρxx ∝ T α at moderate temperatures [23], where α in-
creases continuously, starting with 1 at optimal doping up to 2 in the far overdoped
region beyond the superconducting dome. For non-superconducting, strongly over-
doped La1.7Sr0.3CuO4 samples a strict T 2 behavior was observed for temperatures
T < 50 K and interpreted as Fermi liquid ground state [147], whereas at higher
temperatures deviations from T 2 towards smaller exponents were found.

The unusual doping and temperature dependence of the Hall coefficient is an-
other intriguing feature of high temperature superconductors. For weakly doped
La2−xSrxCuO4 samples, RH was found to scale with 1/x [21, 148], which dis-
agrees with Luttinger’s theorem for the “normal” Fermi surface, stating a scaling
with 1/(1 + x). This discrepancy was associated with a reduced Fermi surface
(Fermi arcs) containing exactly the carrier number given by the nominal doping
x [21]. In the far overdoped region of La2−xSrxCuO4 the sign change of RH is
meanwhile well established and explained consistently within theoretical models
[6]. Instead of RH , the quantity cot θH is often discussed due to its characteristic
T 2 dependence observed over a wide doping range [21]. Although both quantities,
ρxx and cot θH , are in the same way related to the scattering rate Γ, they differ in
the T dependence, suggesting two independent scattering rates [149].

Concerning the orbital magnetoresistance, Boltzmann transport theory predicts
the proportionality ∆ρ/ρ ∝ (ωcτ)2. If τ changes only by a~k independent function
f (T ) due to a temperature variation, the magnetoresistance curves for different
temperatures must collapse on a temperature independent straight line when plotted
versus (B/ρ)2. This scaling behavior is known as Kohler’s rule. However, it has
been reported that Kohler’s rule is strongly violated in hole doped cuprates [150],
and that ∆ρ/ρ follows the T dependence of the Hall angle tan2 θH . Hence, Kohler’s
rule can be modified by plotting ∆ρ/ρ versus m · tan2 θH , where m is a constant.
Only in the far overdoped La2−xSrxCuO4 a recovery of Kohler’s rule could be
observed [151].

5.1.2 Transport properties of electron doped cuprates

On the electron doped side of the phase diagram systematic transport measure-
ments have been carried out primarily on Pr2−xCexCuO4 thin films [11, 141, 152–
156]. The in-plane resistivity has been reported to be doping independent over a
wide doping range at moderate temperatures [141]. This doping independent be-
havior in resistivity is believed to arise primarily from the charge carriers of the
electron-pockets. At lower temperatures (T < 100 K) the normal state resistivity
is highly doping dependent with crossovers to insulating behavior (upturn) [156].
The temperature dependence of the resistivity obeys roughly a quadratic behavior
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ρxx ∝ T 2 [11].
The deduced Hall angle tan θH has been reported to depend strongly on the

doping level. With increasing doping level, tan θH is initially negative for under-
doped samples and shows a turning point followed by a sign change at low tem-
peratures, when doping levels close to x = 0.15 are reached. Obviously, the same
dependence on x and T is also displayed by the Hall coefficient RH [11]. In the
overdoped region, RH becomes positive over the whole temperature range [11]. It
has been tried to explain the doping evolution as well as the sign change in RH by
invoking a two band model [11, 139, 157]. Further experimental evidence for two
electronic bands caused by the interactions with a spin-density-wave (SDW) state
[158] was obtained from ARPES measurements [1, 10, 159, 160]. At low tempera-
ture RH shows a kink at x = 0.16 when plotted over doping, which was interpreted
in terms of a quantum phase transition (QPT) [11] into a SDW ordered state. High
field measurements of ρxy(B) have been reported to deviate from linearity [152],
which was ascribed to a possible ~B field induced suppression of the SDW gap ∆,
and consequently, to a reconstruction of the Fermi surface.

Concerning magnetoresistance it was shown that for optimally doped
Nd1.85Ce0.15CuO4 samples, Kohler’s rule holds for T > 50 K [139]. At low tem-
peratures and depending on doping, ∆ρ/ρ shows a complicated field dependence
with possible negative magnetoresistance and saturation effects at high magnetic
fields [152].

5.2 Models for explaining the anomalous normal state trans-
port

It was tried to explain the unusual normal state transport within different models
based on Fermi liquid theory, or by involving a non-Fermi liquid scenario. While
in electron doped compounds some doping and temperature dependent features can
be understood qualitatively within a two band model, the transport in hole doped
compounds is governed by a single band and the apparent “separation” of lifetimes
is difficult to explain within a Fermi liquid approach.

5.2.1 The two-lifetime picture of Anderson

In the phenomenological model of Anderson [149] two different lifetimes τtr and
τH are introduced, which are assigned to two different many-particle excitations,
called holons and spinons. The latter comprise only the spin of the electrons while
the charge is carried by the holons. The normal state resistivity is dominated by
the holons scattered on spinons with a scattering rate of Γtr = τ−1

tr ∝ T , while the
temperature evolution of the Hall angle is determined by spinon-spinon scattering
with the Hall scattering rate of ΓH = τ−1

H ∝ T 2. Note, that in a conventional
Fermi liquid there is no “separation” of lifetimes, thus τtr = τH . With the intro-
duced transverse and longitudinal scattering rates the T dependence of the transport
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properties (at least for optimally hole doped cuprates) is explained quantitatively
by

ρxx ∝ Γtr ∝ T, (5.3)

cot θH ∝ (ωcτH)−1 ∝ ΓH ∝ A + BT 2, (5.4)

∆ρ/ρ ∝ (ωcτH)2 ∝
1

(A + BT 2)2 , (5.5)

where A and B are free parameters determined by the experimental data. The
model of Anderson comprehends only the experimental results of optimally doped
cuprates. It does not explain the very important aspect of the doping evolution
of the transport quantities. Furthermore, it is not applicable to electron doped
cuprates.

5.2.2 The marginal Fermi liquid model of Varma

Varma and Abrahams [161–163] have proposed a marginal Fermi liquid (MFL)
model for the description of the “bad metal” behavior of cuprates. In contrast to
the two-lifetime picture of Anderson, this MFL model assumes a single scattering
rate Γ, which consits of two parts: an elastic, T independent, anisotropic scattering
rate Γi and a T linear, isotropic, inelastic scattering rate ΓM:

Γ = ΓM + Γi ≈ B · T + τ−1
i · cos2(2θ). (5.6)

The modeling of the scattering rate was deduced from ARPES results, which give
evidence for an isotropic linear T dependence of the scattering rate. The physical
origin of Γi was ascribed to small angle scattering off impurities, which are lo-
cated at a certain distance D from the CuO2 sheets. The theory provides a modified
expression for the Hall angle, which consists of a dominating term which is pro-
portional to the square of the particle lifetime. Consequently, the observed T and
T 2 dependence of ρxx and cot θH is also predicted by this theory. The introduced
small angle scattering accounts for the unconventional T dependence of the mag-
netotransport quantities.

Note, that the MFL theory is confined to optimal doping, as well. While the
term comprising the squared lifetime in the Hall angle is responsible for a doping
independent lifetime separation in the different transport quantities, recent experi-
ments show a convergence of the transport and Hall lifetime in the overdoped and
underdoped regime of hole doped cuprates [21]. Hence, this theory also seems not
to be suitable to explain the observed experimental results.

5.2.3 Boltzmann theory in combination with an anisotropic scattering
rate

Recently, a more generalized phenomenological model was proposed by Hussey
[5]. The basic idea consists in using standard Boltzmann transport theory in com-
bination with a doping dependent anisotropic scattering rate Γ, and the application
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of the Mott-Ioffe-Regel (MIR) limit. The Boltmann transport theory is discussed
in Section 5.3.1. The aim of this section is the discussion of the expression for
the scattering rate. Based on experimental results [43, 45, 164, 165] the following
assumptions are made for the scattering rate Γ in hole doped compounds.

1. The scattering rate is anisotropic in the basal plane with fourfold symmetry.
The anisotropy is already introduced in the elastic term Γ0(φ) of the scattering
rate. For the parameterizations a sinusoidal ansatz of the form

Γ0 = G0 · [1 + χ · cos2(2φ)] , (5.7)

or an ansatz according to Abrahams and Varma (AV) [161]

Γ0 =
β

vF(φ)
(5.8)

is used. G0, χ and β are free fit parameters and φ describes the angle between
the Fermi vector kF and the Cu-O-Cu bond direction. The strong anisotropy of
the elastic scattering rate is an essential assumption in order to explain the pro-
nounced T dependence of RH , which increases for T → 0, as well as the angle
dependent magnetoresistance data [165]. Abrahams and Varma have suggested
that this anisotropy might arise from small-angle scattering off impurities away
from the CuO2 layers [161]. In this case the scattering rate of the charge carri-
ers is proportional to the density of states (DOS), which is proportional to v−1

F ,
and the characteristic scattering angle δθ ≈ D−1, where D is the characteristic
distance of such impurity from the basal plane.

2. For the inelastic scattering, which has a similar anisotropy as Γ0, the following
ansatz is made [164, 166]:

ΓT = G1 · cos2(2φ) · T + G2 · T 2 , (5.9)

where G1 and G2 are again free parameters in the model. The inelastic term
consists of an isotropic T 2 scattering term, which might be associated with
electron-electron scattering, and an anisotropic part, which is linear in T . The
nature of the anomalous linear term in T is unknown and might have a mag-
netic origin [167]. A doping dependent study of the evolution of the anisotropy
might elucidate the underlying scattering mechanism. The total scattering rate
is therefore given by

Γtot = Γ0 + G1 · cos2(2φ) · T + G2 · T 2 . (5.10)

3. Application of the Mott-Ioffe-Regel (MIR) limit: The MIR limit states that
the quasi-particle mean-free-path l cannot be smaller than the in-plane lattice
constant a:

l ≥ a . (5.11)
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If l was smaller than a, coherent transport within the basal plane and hence,
Boltzmann transport theory would break down. The MIR limit is introduced by
using a “parallel resistor” model with a maximum scattering rate Γmax, at which
the condition l = a is attained [5, 168]. The maximum scattering rate is given
by the parameter free term [6]

Γmax =
〈vF〉

a
. (5.12)

According to the model one can introduce an effective scattering rate Γe f f ,
which comprises the total scattering rate, which is shunted by a saturation scat-
tering rate Γmax

1
Γe f f

=
1

Γtot
+

1
Γmax

. (5.13)

Finally, Γe f f is the expression, which is inserted into an appropriate Boltzmann
transport expression (Equation 5.23 in Section 5.3.1) for calculating the con-
ductivity tensor. The observation of resistivity saturation at higher temperatures
and its explanation within a ”parallel resistor” model was also reported for A-15
superconductors [168]. In [169] an explanation for the necessity of a minimum
conductivity (thus, a maximum scattering rate) is given. One has to keep in
mind that a perfect periodic lattice does not give rise to scattering of Bloch
electrons. Scattering in a crystal occurs only due to deviations from the per-
fect periodicity due to imperfections of the lattice, phonons, etc. Hence, the
distance between potential scattering centers cannot be smaller than the lattice
constant itself, which characterizes the spatial periodicity. Note, that for hole
doped cuprates with their pronounced anisotropy in the mean-free-path l, the
impact of the MIR limit on the effective scattering rate Γe f f is different for the
various regions of the Fermi surface at a given temperature. For increasing tem-
perature the MIR limit attenuates the degree of anisotropy between nodal and
antinodal direction and the system becomes more isotropic [5].

By using Equation 5.13 for the scattering rate in the Boltzmann transport theory,
Hussey et al. [5] could explain straightforwardly the lifetime separation of ρxx

and cot θH for optimally doped Tl2201 and Bi2212 compounds. The scattering
rate Γe f f was assumed to be purely T 2 dependent (no linear term in T ) and the
linear behavior in resistivity of the optimally doped compounds turned out to be
the result of the T 2 contribution in nodal direction, which is shunted by the MIR
limit. In antinodal direction (π

a , 0) the MIR limit is already achieved at tempera-
tures of T ≈ 90 K where the quasiparticles lose their coherence, while in nodal
direction ( π

a , π
a ) the model suggests a MIR limit at much higher temperatures at

approximately T = 600 K. Hence, in nodal direction coherent quasi-particles
exist over a wide temperature interval, whereas in antinodal direction the quasi-
particles lose their coherence already at low temperatures. This finding is in
perfect agreement with the loss of the quasiparticle peak in antinodal direction
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in ARPES2 results [3, 170]. The anisotropy in the effective scattering rates in
nodal/antinodal direction is also reflected by the temperature evolution of the
Hall coefficient RH(T ). Upon doping the amount of anisotropy, which is de-
scribed by the parameters χ and G1, decreases. This suggests that an increasing
part of the Fermi surface is effectively contributing to the transport [5].

Recently, the transport data of strong overdoped La1.70Sr0.30CuO4 were ex-
plained successfully by using the same approach [6]. The anisotropy in the
scattering rate was introduced by using the AV ansatz for the elastic part of
the scattering rate. The inelastic scattering rate was assumed to be isotropic
and only T 2 dependent. In addition, the MIR limit was implemented. Hence,
the used model consists only of two free fit parameters β and G2, which are
already determined one-to-one by the ρxx(T ) curve. For the measured quanti-
ties RH and ∆ρ/ρ there is no free parameter in the model. With the values of
β = 4.0 · 1018 ms−2 and G2 = 1.6 · 109 s−1K−2, Narduzzo et al. were able to
reproduce all characteristic features in ρxx, RH and ∆ρ/ρ of the far overdoped
La1.70Sr0.30CuO4 samples. ρxx shows a pure T 2 dependence in the low temper-
ature regime and a transition to a linear T -behavior at moderate temperatures
(influence of the MIR limit). RH(T ) and ∆ρ/ρ are reflecting the Fermi surface
topology and the anisotropy of the mean-free-path l. The sign change in RH

clearly reflects the different curvatures in the Fermi surface (hole-like in nodal,
electron-like in antinodal direction, obtained from ARPES measurements [4])
and the corresponding anisotropy in l on different segments of the Fermi sur-
face. In the case of La1.70Sr0.30CuO4, the mean-free-path l must be larger in
nodal direction than in antinodal direction, as otherwise a sign change cannot
occur for topological reasons (cf. discussion in Section 5.3.1). There is no need
of the incorporation of an anisotropic linear T term in the scattering rate, which
might be a sign of a pure Fermi liquid-like ground state.

The application of the described approach to experimental data of various hole
doped compounds [5, 6] has shown, that hole doped cuprates from optimally
doping to the far overdoped region behave more like a Fermi liquid as one would
expect when having a first look at the data. Fermi liquid-like behavior was also
deduced from transport data in the underdoped cuprates [21], and there are first
attempts [171] to explain the transport data within a Fermi liquid picture by
introducing a factor p = Larc

L f ull
in the conductivity expressions, which accounts

for the real length of the Fermi arcs with respect to the underlying whole Fermi
surface.

2From the imaginary part of the quasiparticle self energy Σ = Σ′(ω) + i · Σ′′(ω) a scattering rate
can be deduced from the FWHM of the quasiparticle peak. Γ = 1

τ = |2ImΣ| = ~∆kvF. vF is the
unrenormalized Fermi velocity.
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5.3 Modeling the normal state transport of electron doped
cuprates

The successful description of the normal state transport properties of hole doped
cuprates using Boltzmann transport theory in combination with an anisotropic scat-
tering rate Γ(φ) gives the motivation to apply the same model to electron doped
cuprates. For doing so one has to calculate the conductivity tensor by using an
appropriate band dispersion E(~k) and an expression for Γ(φ).

5.3.1 Boltzmann transport theory

In the following it is assumed that there is no temperature gradient ~∇T within the
investigated samples, and that the electrical current is only caused by an applied
electrical field ~E. Hence, the linear current response ~J to the applied electrical field
~E is given by the equation

~J = 2e ∑
k∈BZ

gk~vk =
e

4π3

∫

BZ
gk~vkd~k = σ̂~E , (5.14)

where gk = fk − fk,0 denotes the displacement of the non-equilibrium distribution
function fk from the Fermi equilibrium distribution

fk,0 =
1

e
Ek−µ
kBT + 1

(5.15)

due to an applied external force. 1
4π3 is the electron density in momentum space for

both spin directions. The velocity of the Bloch electrons ~vk is related to the band
dispersion Ek via the first equation of motion

d~r
dt

=~vk =
1
~
~∇Ek . (5.16)

Furthermore, the time evolution of the momentum of the Bloch electrons is given
by the second equation of motion

~F = ~
d~k
dt

= e(~E +~vk × ~B) . (5.17)

The Boltzmann equation describes the time evolution of the non-equilibrium dis-
tribution function fk, taking into account collisions:

∂ f (~r,~k, t)
∂ t

+~vk · ~∇r f (~r,~k, t) + ~F · 1
~
~∇k f (~r,~k, t) =

(
∂ f (~r,~k, t)

∂ t

)tot

coll

. (5.18)

The terms on the left are denoted as drift terms and the term on the right is the
collision term. The collision term in a generalized form must include explicitly
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the distribution function and the type of scattering, which is incorporated in the
scattering probabilities Wk,k′ derived from the “Golden Rule”, and is given by [172]
(

∂ f (~k)
∂ t

)tot

coll

= −
∫ d~k

(2π)3 {Wk,k′ f (~k)[1− f (~k′)]−Wk′,k f (~k′)[1− f (~k)]} . (5.19)

With this generalized collision term Equation 5.18 becomes a nonlinear integro-
differential equation. A simplification is obtained by using the relaxation time
approximation (

∂ f (~k)
∂ t

)tot

coll

= − fk − fk,0

τk
= −gkΓk , (5.20)

where τk is the averaged time elapsed between two consecutive scattering events
experienced by a Bloch electron. Hence, Γk is the corresponding scattering rate.
Assuming no explicit time and spatial dependence of the distribution function (sta-
tionary situation) and the validity of the relaxation time approximation, Equation
5.18 can be rewritten using the equations of motion 5.16 and 5.17:

e
~
(~vk × ~B)~∇kgk + Γkgk = −e~E~vk

∂ fk,0

∂E
. (5.21)

From this equation an expression for gk can be obtained by means of the Jones
Zener expansion

g(n)
k =

{ −e
~Γk

(~vk × ~B)~∇k

}n

·
{

~vk

Γ

(
−∂ fk,0

∂E

)
· e~E

}
, (5.22)

where gk = ∑n=0,1,2,... g(n)
k . With this expression for gk one can calculate the con-

ductivity tensor σ̂ by using Equation 5.14. Note, that the Jones Zener expressions
are expansions in ~B. The zero order of gk describes the in-plane conductivity σ (0).
It is independent from the magnetic field and the current is only driven by the ap-
plied electrical field ~E. An applied magnetic field causes corrections in the conduc-
tivity, where the correction terms expand with ~Bn. The components of the tensor σ̂
are given by

σ (n)
i, j =

1
4π3

∫

BZ
d~k

{
evi

(
− e
~Γ

(~vk × ~B)~∇k

)n
· ev j

Γ

(
−∂ fk,0

∂E

)}
. (5.23)

For a further evaluation of the integral in Equation 5.23 some general con-
siderations are useful. Without restrictions of any kind, ~B is applied along the ẑ
direction and ~E along the x̂ direction for the following discussion. x̂ and ŷ di-
rection correspond to the in-plane crystal axis, whereas ẑ corresponds to the out-
of-plane direction (perpendicular to the CuO2 sheets). Since the system is quasi
two-dimensional, one can simplify the integration in Equation 5.23 by evaluating
the integral of one CuO2 sheet and multiplying it with a factor of 2π/d, which is
the value obtained from the integration in out-of-plane direction. It is usual [172]
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to express the volume element d~k in terms of a surface element dSF and an element
in~k-space dk⊥, which is oriented perpendicular to the Fermi surface

d~k = dSF · dk⊥ = dSF
dE

| ~∇kE |
= dSF

dE
~vk

. (5.24)

For the quasi two-dimensional cuprates the Fermi surface is one-dimensional with
a certain circumference S and the surface element is equal to the curvature element
ds. In addition, for moderate temperatures T or T << TF one can approximate
the derivative

(
−d fk,0

dE

)
≈ δ (E − EF), and hence the integral of Equation 5.23 is

completely reduced to an integration over the Fermi surface circumference S:

σ (n)
i, j =

1
4π3

(
2π
d

) ∮

S

ds
~vk

{
evi

(
− e
~Γ

(~vk × ~B)~∇k

)n
· ev j

Γ

}
. (5.25)

For a further evaluation of the conductivity expression in Equation 5.25, the defi-
nition of special unit vectors might be helpful, which are oriented tangentially (t̂)
and normally (n̂) on each point of the Fermi circumference S:

n̂ =
~vk

vk
and t̂ = ẑ× n̂ = −~vk × ~B

vkB
. (5.26)

With the definition of the mean-free-path l of the Bloch electrons

~l =
(

ls · cos θs

ls · sin θs

)
=~vk · τ , (5.27)

where θ denotes the angle between the ~E field direction and~l, one obtains finally
the expression for the in-plane conductivity

σ (0)
xx =

e2

4π3~

(
2π
d

) ∫

S
dsls cos2 θs . (5.28)

The in-plane conductivity is proportional to the mean-free-path lav, averaged over
the Fermi surface circumference. For a tetragonal system with fourfold symmetry
the in-plane conductivity is a scalar and is independent from the ~E field direction.

The Hall conductivity σ (1)
xy is obtained by evaluating Equation 5.25 using g(1)

k :

σ (1)
xy = B · e3

4π3~2

(
2π
d

) ∫

S
ds

{
ls sin θs

d
ds

[ls cos θs]
}

. (5.29)

The physical interpretation of the integral on the right side might be easier using lx
and ly explicitly. In this case Equation 5.29 can be rewritten as

σ (1)
xy = B · e3

4π3~2

(
2π
d

) ∫

S
ds

{
ly

d
ds

[lx]
}

= B · e3

4π3~2

(
2π
d

) ∫

l−space
dlx · ly .

(5.30)



72 Chapter 5. Theory: The normal state transport

With the definition of the so called “Stokes area” Al in the two-dimensional l-space
[173]

2 ·Al = ẑ ·
∫

l−space
d~l×~l =

∫

l−space
[dlx · ly− dly · lx] = 2 ·

∫

l−space
dlx · ly , (5.31)

the path integral in Equation 5.29 can be transformed into an integral in the l-space,
leading to the famous Ong interpretation of the Hall conductivity [173]:

σ (1)
xy = B · e3

4π3~2

(
2π
d

)
· Al = B · e3

4π3~2

(
2π
d

)
· ẑ

2
·
∫

l−space
d~l ×~l . (5.32)

With the magnetic flux Φ = B · Al and the flux quantum Φ0 = h
e one can express

the Hall conductivity by means of the magnetic flux, which penetrates the Stokes
area

σ (1)
xy =

2
d

(
e2

h

)(
Φ
Φ0

)
. (5.33)

Figure 5.1 illustrates the advantage of the transformation from an integral in the
~k-space to an integral in the ~l-space on the basis of a simulation result of over-
doped La1.78Sr0.22CuO4. Since the two-dimensional Fermi surface has fourfold
symmetry, only one quadrant of the Brillouin zone (BZ) is shown. Equation 5.32
indicates that σ (1)

xy is directly proportional to the Stokes area Al in the~l-space. Al is
generated by the set of mean-free-path vectors~ls, which are obtained when moving
along the Fermi circumference. The vectors~ls , which are located perpendicular to
the Fermi surface, are plotted into the new coordinate system with the same norm
and orientation with respect to an applied external field ~E, which is characterized
by the angle θ . Note, that the Stokes area is an oriented area, and the sign (positive
or negative) depends only on the sense of rotation, when the vector ~ls traces out
the circumference of Al . If ~l rotates clockwise, Al is positive and hence, σ (1)

xy is
hole-like. Else σ (1)

xy becomes electron-like. Figure 5.1 shows the expected Fermi
surface of overdoped La2−xSrxCuO4 (x = 0.22) based on band dispersion param-
eters taken from [4]. In principle, the Fermi surface has an electron-like topology,
centered around the Γ point of the Brillouin zone (BZ). However, the Hall signal
is always positive for moderate overdoped La2−xSrxCuO4 [21, 61]. This behav-
ior can be explained by discussing the~l-curve in Figure 5.1 (b). The Fermi curve
consists basically of two segments with different curvature. By moving along the
Fermi surface (following the arrows) up to position 1, the curvature is positive and
θ increases continously. At the inflexion point 1 the curvature changes sign and
remains negative in a longer segment around the

( π
2a , π

2a

)
position. In this segment

the angle θ turns to 1 and starts decreasing until the second inflexion point 3 is
reached. Between 1 and 3 the sense of rotation of~kF and~l is opposite to each other
(note the sense of circulation of both curves in Figure 5.1) and shows again the
same circulation, when position 3 is crossed. The segments in the Fermi surface
with negative curvature provide a positive contribution (+) to the Hall conductivity,
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whereas the positive curved parts in antinodal direction provide a negative contri-
bution (−). The net contribution to σ (1)

xy is obtained by summing up the values of
the oriented areas of the different loops

Al = ∑
i

Ai . (5.34)

Note, that the local Fermi surface topology is not sufficient to explain the sign of the
Hall signal. Assuming isotropic~ls, the two loops in Figure 5.1 (b) would collapse
on a single curve, resulting in a negative sign of σ (1)

xy . The anisotropy in~l is a further
important criterion, which has strong influence on the topology of the~l- curve and
hence, determines the sign of RH . In overdoped La2−xSrxCuO4 the highly mobile
electrons in nodal direction govern the transport properties and consequently, RH is
positive. The discussion of the Hall conductivity is concluded with the remark that
the shape of the~l-curve is independent from the ~E field orientation and therefore,
σ (1)

xy is a scalar quantity.
The magnetoconductivity σ (2)

xx is obtained by evaluating Equation 5.25 using
g(2)

k :

σ (2)
xx = B2 · e4

4π3~3

(
2π
d

) ∫

S
ds

{
ls cos θs · d

ds

[
ls

d
ds

(ls cos θs)
]}

. (5.35)

Concerning the geometrical interpretation, the magnetoconductivity σ (2)
xx re-

flects the amount of curvature of the~l-curve. Hence, it is a measure of the anisotropy
in~l and serves as a check for the assumed anisotropic scattering rates Γ in the sim-
ulation.
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Figure 5.1: (a) Typical two-dimensional Fermi surface, obtained from overdoped
La2−xSrxCuO4 with x = 0.22. The band dispersion parameter for the simulation is taken
from [4]. (b) Illustration of the corresponding ~l-curve. The Hall conductivity σ (1)

xy is di-
rectly proportional to the area in the~l-space, which is swept out by the~ls-vector.
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Finally, the relations between the derived conductivities and the measurable
quantities ρxx, RH and ∆ρ/ρ are given by collecting the lowest order terms in B
(weak field limit ωcτ ¿ 1, i.e. ρxy ¿ ρxx)

ρxx ≈ 1

σ (0)
xx

, (5.36)

RH ≈ 1
B
· σ (1)

xy(
σ (0)

xx

)2 , (5.37)

∆ρ/ρ = −σ (2)
xx

σ (0)
xx

−
(

σ (1)
xy

σ (0)
xx

)2

. (5.38)

The magnetoresistance consists of the magnetoconductance and the Hall angle as a
negative correction term. Generally, the change in the conductivity σ (2)

xx is always
negative due to the Lorentz force and the first term in Equation 5.38 is larger than
the second one, so that the orbital magnetoresistance ∆ρ/ρ is always positive. For
a further explanation the Hall angle might be useful

tan θH =
ρxy

ρxx
≈ σ (1)

xy

σ (0)
xx

, (5.39)

cot θH =
1

tan θH
≈ σ (0)

xx

σ (1)
xy

. (5.40)

For a two band model with a hole-like (indexing “h”) and an electron-like (in-
dexing “e”) band, ρxx, RH and ∆ρ/ρ in the weak field limit (ωcτ ¿ 1) are given
by

ρxx =
1

σ (0,h)
xx + σ (0,e)

xx

, (5.41)

RH ≈ 1
B
· σ (1,h)

xy + σ (1,e)
xy(

σ (0,h)
xx + σ (0,e)

xx

)2 , (5.42)

tan θH =
ρxy

ρxx
≈ σ (1,h)

xy + σ (1,e)
xy

σ (0,h)
xx + σ (0,e)

xx

, (5.43)

∆ρ/ρ = −σ (2,h)
xx + σ (2,e)

xx

σ (0,h)
xx + σ (0,e)

xx

− tan2 θH . (5.44)
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5.3.2 Fermi surface topology

The doping dependent evolution of the two-dimensional Fermi surface depends
strongly on whether holes or electrons are added into the CuO2 planes. The evo-
lution of the hole doped compounds is shown in Figure 5.2. The undoped Mott
insulator is half-filled and the Fermi surface coincides with the diamond-shaped
AFM Brillouin zone3. The Fermi surface of hole doped cuprates is usually de-
scribed by a single band tight-binding (TB) model [4] with the particle dispersion

E~k = −2t[cos(kxa)+cos(kya)]+4t ′ cos(kxa) cos(kya)−2t ′′[cos(2kxa)+cos(2kya)]+µ ,
(5.45)

where t, t ′ and t ′′ are the first, second and third nearest-neighbor transfer integrals
within the CuO2 layers. The values for transfer integrals and chemical potential µ
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Figure 5.2: (a) Simulation of the Fermi surface evolution of hole doped La2−xSrxCuO4.
The band parameters are taken from [4]. For clarifying reasons only one quadrant of the
Brillouin zone is shown. (b) Calculation of the Fermi velocity from the energy disper-
sion. Note the anisotropy in the Fermi velocity, which is highest in nodal direction (corre-
sponding to φ = 45◦) for all doping levels. The charge carriers in nodal direction govern
primarily the transport properties in hole doped cuprates.

are adjusted to ARPES measurements. For the simulation parameters from [4] are
used. Note, that µ is an adjustable quantity determined by the band filling.

Concerning the Fermi surface topology two aspects are remarkable. In the un-
derdoped region up to doping levels of x ≈ 0.18 the Fermi surface has a hole-like
topology. The Fermi surface is centered around the S point (π

a , π
a ) in the Brillouin

zone, and it crosses the AFM Brillouin zone close to the (π, 0) region. In this re-
gion near the nodal direction the Fermi surface is gaped probably due to strong
interactions of the quasiparticles with the spin density wave (SDW) background.

3Remember the AFM unit cell in Figure 2.4 with the lattice constant am =
√

2 · a. Hence, the
magnetic Brillouin zone is half of the Brillouin zone obtained from the crystal lattice.
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These positions on the Fermi surface are refered to as hot spots (red dots in Figure
5.2), as the quasiparticles undergo a coherent backscattering of amplitude ∆ and
wave vector ~q = (π

a , π
a ). Consequently, the Fermi surface in the underdoped re-

gion consists of Fermi arcs confined around the nodal position [4, 62, 174]. The
truncated one-dimensional arcs, as they are mapped by ARPES experiments [174],
are unique concerning their topology. So far, there are two scenarios of interpreting
the Fermi arcs [7, 175]: Based on observed quantum oscillations on underdoped
YBa2Cu3O7−δ the Fermi arcs are interpreted as small, closed hole pockets, which
cannot be resolved by ARPES measurements [8, 176]. In this case the estimated
hole number differs from the nominal doping. The second scenario, however, as-
sumes a large underlying Fermi surface with a spectral weight loss in antinodal
direction. Yoshida et al. [4] were able to determine the underlying Fermi sur-
face by extrapolating the momentum distribution curves (MDCs) in the gaped seg-
ments. From the large Fermi surface a charge carrier number, which corresponds to
the nominal hole doping, could be determined using Luttinger’s theorem. With in-
creasing hole doping the Fermi surface shrinks towards the Γ point direction. Thus,
the hot spots are shifted continuously towards the van Hove singularity at (π

a , 0).
At the doping level x ≈ 0.18 the Fermi level reaches the van Hove singularity and a
crossover in the topology towards a closed electron-like Fermi surface is observed
[4]. At these doping levels quasiparticle spectral weight in ARPES can also be
observed in antinodal direction. In Figure 5.2 (b) the simulated Fermi velocities
are shown, as well. Note the strong anisotropy in vF (factor 3) between nodal and
antinodal direction for all doping levels x ≤ 0.30, which explains the discrepancy
between the measured positive Hall signal and the electron-like Fermi surface in
the overdoped region. For doping levels x > 0.30, vF might become more isotropic
and thus, a sign change in RH for the entire temperature range is expected.

The electron doped cuprates, however, exhibit a contrary evolution of the Fermi
surface. The Fermi surface moves diagonally towards the S point in the Brillouin
zone when the doping level is increased. Consequently, the hot spot regions on
the Fermi surface are moving continuously towards nodal direction and disappear
when the Fermi surface has completely crossed the AFM Brillouin zone boundary.
In this case the Fermi surface is expected to be reconstructed to a hole-like large
S-centered surface. The doping level, at which the Fermi surface is fully recon-
structed, is estimated to be x ≥ 0.17 [10]. From the discussion of the Hall signal in
Section 5.3.1 by using the~l-representation, it can be concluded immediately that –
independent from the~l anisotropy – the Hall signal must be positive over the whole
temperature range when the Fermi surface is reconstructed.

In the underdoped region the strong AFM correlations in electron doped com-
pounds, which have been found to exist up to opimally doping (cf. discussion in
Section 2.1), lead to a Fermi surface fragmentation at the hot spot regions. Hence,
the treatment of the electron doped compounds within a two-band model is more
appropriate than a single band description. Due to the strong backscattering of the
charge carriers with momentum transfers of ~q = (π

a , π
a ), the unit cell is doubled,

and at the degeneracy points (i.e. on the AFM zone diagonal) the levels are split
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Figure 5.3: (a) Single-band Fermi surface of electron doped cuprates. Typical band
parameters for the electron doped cuprates are given by [177]. Compared to the hole
doped cuprates the hot spots (red dots) are shifted towards nodal direction. Electrons in the
hot spot region undergo an effective backscattering by the AFM wave vector ~q = ( π

a , π
a ).

Note the sense of circulation of the electrons on the Fermi surface. (b) Illustration of the
Fermi surface fragmentation due to the strong coupling of the electronic states with the
SDW state in electron doped compounds. The new Fermi surface is obtained from the
single-band dispersion by a translation of the dispersion with the AFM vector ~q in the
reciprocal space (dashed green line) and by an inclusion of the level splitting of 2∆ at
the points of intersection. The resulting Fermi surface consists of two different parts: An
electron-like pocket around ( π

a , 0) with counterclockwise circulation of the charge carriers
and a hole pocket in nodal direction with clockwise circulation of the charge carriers. The
band parameters are chosen as: t = 0.38 eV, t ′ = 0.32 · t eV, t ′′ = 0.5 · t ′ eV, µ = 0 eV
and ∆ = 0 eV for the dashed curves and ∆ = 0.2 eV for the solid curves.

by the energy gap 2∆. The energy gap is directly proportional to the AFM inter-
action strength, which obviously depends on the Ce content x. The new two-band
dispersion is given by

E±~k =
1
2
{E~k + E~k+~q ±

√
(E~k − E~k+~q)

2 + 4∆2} , (5.46)

where E~k is the single band dispersion as defined in Equation 5.45. For ∆ = 0 (see
dashed lines in Figure 5.3 (b)), the lower branch (-) is equal to the shifted band
dispersion E~k+~q, which crosses the upper branch (+) given by E~k at the hot spots.
From the sense of circulation of the charge carriers of both branches it is easy to
see that, after splitting the degeneracy at the hot spots by 2∆, a hole-like pocket
with clockwise circulation in nodal direction as well as an elektron-like pocket
with counterclockwise circulation in antinodal direction is formed.

The doping dependent evolution of ∆ and hence, the evolution of the upper (+)
and lower band (−) has been simulated by Kusko et al. [10] and has been com-
pared with ARPES data [9]. Figure 5.4 summarizes the corresponding results. In
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Figure 5.4: Band calculations by using a t − t ′ − t ′′ − U Hubbard model [10] (right,
upper left) and the corresponding ARPES data of Nd2−xCexCuO4 crystals (bottom left)
taken from [9].

the model the Fermi energy EF is set to zero and the corresponding evolution of the
upper (+) and lower band (−) is shown. For the undoped parent compound EF lies
within the band gap. Hence, the lower band is fully occupied corresponding to 1e−

per Cu ion. With increasing doping the band gap is closing gradually. The upper
band is crossing EF at first at low doping levels and consequently small elektron-
like pockets in antinodal direction appear. With further doping the electron pockets
increase and change their shape from circular to squarish. In this context a peculiar
feature is the loss of spectral weight in Γ− X direction, so that the squarish Fermi
surface is transformed into an arc-like segment at optimally doping. This redis-
tribution of spectral weight, as it is seen by ARPES, is not included in the above
discussed two-band model.

The lower band initially shows only a small evolution with doping (x = 0.04),
but moves rapidly towards EF at higher doping levels. At doping of x = 0.10 a
small hole-like pocket in nodal direction is already visible. Concerning the spectral
weight redistribution, the same evolution has been found as for the electron pock-
ets. In other words, the well established hole pocket at x = 0.15 has been found to
be an arc rather than a closed pocket as described in the two-band approach above.
At optimally doping the imminent transition into a large hole-like Fermi surface
is already observable, as the three pieces can be seen as parts of a large spherical
Fermi surface, which is gaped at the hot spots. The redistribution of the spectral
weight upon doping is represented clearly by the linewidth of the band dispersion
in Figure 5.4 (right). Following the thick linewidth in the dispersion for doping
x = 0.15, one can see the underlying uncorrelated single-band dispersion. Reach-
ing the overdoped regime, the gaped states at the hot spots might be filled up [1],
resulting in the already mentioned hole-like electronic state of the electron doped
compounds.



Chapter 6

Experimental techniques

The second part of this thesis deals with the unusal transport properties in electron
doped high temperature superconductors. For this purpose standard DC transport
was carried out on Nd2−xCexCuO4 single crystals of different doping and highest
quality. The measured variables are the resistivity, the Hall signal as well as the
transversal magnetoresistance.
In addition to the in-plane transport, the out-of-plane transport was measured for
different doping levels in order to map the resistivity anisotropy in the NCCO sam-
ple system and to compare it with other sample sets.
Transport measurements are also a powerful tool in order to check the microscopic
homogeneity of the crystals. Therefore, transport measurements on annealed crys-
tals complete the characterization methods already discussed in Chapter 4.

6.1 Preparation of the single crystals

6.1.1 In-plane transport with a standard six-terminal Hall bar

For the in-plane measurements annealed and characterized single crystals with well
defined Tc are cut into bars with typical dimensions of 4.0×1.0×0.1 mm3 (length
l × width w × thickness t). Depending on the size of the grown crystals the edge
length may vary slightly by keeping always the aspect ratio of length to width equal
to 4 : 1. The edges are oriented parallel to the crystallographic a and b axis and
the tilt of the ab planes with respect to the sample surface, that is, the orientation
of the c axis is better than 0.5◦. The thickness of the Hall bar is controlled by
gradually grinding of the ab surfaces. The downscaling in c direction is critical
as microcracks within the thin crystal can arise due to the grinding and polishing
procedure. However, the reduction of the Hall bar thickness is crucial, as the Hall
voltage is proportional to 1/t at constant current. Unlike in thin film Hall bars the
reduction of t in single crystals is limited for reasons of handling: Crystals with
t < 100 µm easily break during processing. The thickness of the bars measured in
this thesis ranges between 100 µm and 200 µm.

79
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The Hall bar was realized by attaching platinum or gold leads to the single
crystal bars by using a silver paint1. The pads together with platinum or gold
leads are cured by a heat treatment at 400 ◦C for 1 hour in air. Note that this
short heat treatment does not affect notably the oxygen state of the sample but is a
precondition in order to get stable low resistance ohmic contacts. Typical values of
contact resistance achieved with this technique are a few Ohm.

Initially, gold contacts were sputtered on the crystal surface. For this purpose
the crystals are masked with aluminium foil leaving blank only the contact areas.
On the masked crystal a 500 nm thick gold film was sputtered. Thereafter, the
generated gold contacts are annealed in the same way as it is done for the silver
paint. It was found that the sputtered gold contacts are less stable than the silver
ones and the transition curves sometimes show a second transition, which is a clear
signature for the change of the doping state due to contacting. Therefore, for the
major part of the crystals the contacts are made manually by using a silver paste
only.

For the current contacts the whole area of the two opposing side faces are cov-
ered by silver paint (pin 1, 2) in order to provide a homogeneous current injection
and flow through the crystal. A pair of voltage leads is mounted under an optical
microscope on each lateral side along the current flow direction. Therefore, the
Hall bar is equipped with four voltage contacts (pin 3, 4, 5, 6) and the resistivity is
measured by using both pairs, independently. The resistivity is calculated as

ρxx = (Ul/I) · (wt/l) , (6.1)

and the Hall coefficient RH is given by:

RH = ρxy/B = (UH/I) · (t/B) . (6.2)

In order to minimize the uncertainty in the absolute values of ρxx and ρxy, relatively
long samples and narrow voltage contacts with a width of 100− 250 µm are used.
The total error in the absolute values is estimated to be 10 %. The in-plane resistiv-
ities measured independently on both voltage pairs provide a good indication for
the quality of the Hall bar. If crystals show qualitative different T dependence in
the resistivity on both sides or the amplitudes differ from each other in the range
of more than 10 %, the crystals are not investigated further, since some inhomo-
geneities or microcracks may be the reason of such behavior.
In order to measure the bare Hall signal (e.g. the transverse voltage drop over pin
(4, 6)) one has to align the opposing voltage leads exactly in the same distance
with respect to the current leads. In practice, this is not feasible when drawing the
contacts manually and therefore, the transverse signal is superposed by a longitu-
dinal fraction, which - depending on the doping x - can be two or three orders of
magnitude higher than the transverse signal.

1For the electrical contacts the silver paste Du Pont 4929 is used. In order to get an adequate
consistency, the paste is diluted with butyl acetate before contacting.
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6.1.2 Measuring technique

The quantities to be measured are the resistivity ρxx, the Hall coefficient RH and
the magnetoresistance ∆ρ/ρ . These three quantities are measured within the tem-
perature interval from 1.5 K to 300 K in magnetic fields up to 15 T. A cryostat
with a variable temperature insert (VTI) and superconducting magnet system from
Oxford Instruments is used for the measurements.

The crystals with leads are glued 2 to an electrically isolating sapphire plate 3.
The sapphire with sample is glued with GE varnish on a copper or brass interface,
which is mounted onto the dip stick. The sample temperature is measured and con-
trolled with precision of a few mK by using a Lake Shore temperature controller.
This controller reads the T dependent resistance of a Cernox sensor and regulates
the heater power of the sample heater. Both, heater and sensor are mounted very
close to the sample position, providing therefore an accurate temperature measure-
ment. Up and down sweeps in temperature result in the same transition curves, that
is, no hysteresis effects are observable.

The second independent variable to measure is the magnetic flux density B. By
using a superconducting switch connected in parallel to the superconducting coil,
one can run the magnet in the so called “persistent mode”: For energizing the mag-
net, the temperature of the switch is increased above Tc by a heater and therefore,
the magnet is connected to the current source. After switching off the heater the
superconducting coil is disconnected from the current source and a certain field,
which corresponds to the applied current, is frozen in. The coil in the persistent
mode provides a very stable magnetic field and deviations from the nominal value
are only due to the decay of the persistent current. Typical decay rates are better
than 100 ppm per hour.

ρxx, RH and ∆ρ/ρ can be measured at the same time by using the configuration
described in Chapter 6.1.1. As it is possible to make large geometrical well defined
bars from the TSFZ grown rods, there is no need to use a complicated technique
such as the Montgomery [178, 179] or Van der Pauw [180, 181] method in order
to measure the magnetotransport quantities. The Van der Pauw technique is used
for small isotropic crystals of arbitrary shape, when the preparation of Hall bars
is not feasible. The Montgomery approach, however, is applied for anisotropic
systems and for the analysis of the resistivity the anisotropic sample is maped to an
isotropic one. The used measurement setup is shown in Figure 6.1. Depending on
the expected amplitude of the voltage signals a standard DC or Lock-In technique
is used:

2As glue GE varnish or Stycast 2850 FT, prepared with Catalyst 24 LV, is used. Especially in
out-of-plane measurements, where the samples are fixed on the small lateral ac side (Figure 6.2), the
use of Stycast is indispensable in order to prevent a rotation of the crystals in high magnetic fields due
to the strong imposed torque. The Stycast 2850 FT is characterized by a high thermal conductivity,
small thermal expansion and good working properties due to the low viscous consistency. Once
hardened, the embedded crystal cannot be dismounted without destroying it.

3Dimensions of the sapphire plate are 10.0× 5.0× 0.2 mm3.
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cryostat

Figure 6.1: Electrical circuit for measuring ρxx and ρxy. A low frequency AC current
(< 300 Hz) is biased on pin (1, 2) and the voltage drop between the pins (3, 4) and (4, 6)
is measured by using modern SR830/SR850 Lock-In amplifiers. For this purpose the ref-
erence output of the HP3245A current source is connected to the reference input of the
Lock-In amplifiers and the A-B mode is used. A 10 Ω reference resistance R1 is connected
in series with the sample in order to adjust the phase. When a DC technique is used, the
Lock-In amplifiers are only substituted by low noise Keithley 2182 Nanovoltmeters and as
current source a Keithley 2400 SourceMeter is used. The connecting lines represent the
inner conductor of the used coaxial cables. Cryostat, cable box and measuring instruments
are grounded.
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• DC nanovoltmeters:

The simplest way to measure the longitudinal voltage drop Ul and the Hall
voltage UH is to bias a DC current on pin (1, 2) and to measure the longitu-
dinal and transverse voltage with multimeters on the four other pins. Typical
current values are 1−10 mA corresponding to current densities for the above
mentioned dimensions of up to 10 A/cm2. As DC current source a Keithley
2400 SourceMeter and for the voltage measurements the low noise Keithley
2010 or Keithley 2182 Nanovoltmeters are used.
In order to eliminate thermovoltages, the current is reversed during measure-
ment. The highest resolution of both multimeter types are 10 nV and 1 nV,
respectively. Certainly, the speed and noise rejection are determined by the
filter and rate settings. In order to improve the noise performance analog
and digital filters are activated and the rate is set to medium or slow modus.
The rate operation of the multimeters sets the integration time of the A/D
converter and therefore, it affects fundamentally the accuracy and speed of
the measurement. The digital filter averages a certain number of integrated
single measurements and the average value is continuously corrected by the
new incoming single measurement (moving average filter). Thus, one has
to find a compromise between accuracy and speed. As the Hall voltage is
expected to be very small (< 100 nV) especially for the overdoped crystals,
and as the accuracy of the low noise multimeter is in the range of 50 − 100
nV, the Lock-In technique is also applied.

• Lock-In technique:

The main advantage of using a Lock-In is the gain of accuracy and speed
during data acquisition. As it is an AC method there is no need of current
reversal at each data point in order to eliminate thermal EMFs, which of
course affect the low resistance measurement accuracy.
One challenge is to find the ideal measurement settings, which might vary
from sample to sample. In practice it turned out that, whenever the contacts
are drawn carefully resulting in good ohmic contacts, there are no problems
with phase shifts caused by some spurious capacitances.

In the following the operating mode of a Lock-In amplifier is summarized in
few words: On the sample an AC excitation with a given frequency, gener-
ated by an oscillator or function generator, is applied and the Lock-In detects
the response of the sample at the same frequency and optimum phase. Noise
signals of different frequency are rejected and will not disturb the measure-
ment. For this purpose a Lock-In is made up of different components: A
reference component, which provides a reference signal with a certain fre-
quency and phase θ to the phase sensitive detector (PSD); the PSD compo-
nent, which multiplies the incoming signal from the sample by the reference
signal; a subsequent low pass, which integrates the PSD-signal over a certain
time constant; a phase shifter, which allows the determination of the signal
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phase with respect to the reference signal. Modern, highly sensitive Lock-In
amplifiers, such as the SR830 or SR850 used in these measurements, convert
the signal after a preamplification to digital form using a A/D converter, and
the already discussed signal processing occurs digitally. Additionally, they
measure with two independent phase sensitive detectors, where the phase
shift between both PSDs is 90◦. Thus, magnitude (R) and phase (θ ) or real
(X) and imaginary part (Y) are measured at once. Note, that the signal com-
ing out from the low pass filter is a phase dependent DC signal which is
proportional to the amplitude of the incoming AC sample signal.

The electrical circuit used for measuring small resistivities with a Lock-In-
amplifier is shown in Figure 6.1. In this case the AC excitation of the sample
is an applied AC current. A HP3245A or homemade current source is used.
The internal oscillator of the Lock-In in combination with a high ohmic se-
ries resistor is sometimes used as current source, too. The amplitude of the
current varies from 1 − 10 mA. Common frequencies are < 300 Hz and
have to be adjusted from sample to sample. All other settings such as time
constant, sensitivity, filters and dynamic reserve are adjusted to optimize the
signal resolution. The voltage pins are connected to the Lock-In inputs A-B.
The signal is measured using the X and Y mode. As the resistivity of the
sample is measured, only the real part X is of importance. For checking the
current and phase adjustment a low ohmic reference resistance R1 of 10 Ω
is connected in series with the sample, which can be measured comfortable
by using a switch box.

6.1.3 Collection of data

After mounting the sample on a dip stick, Ul is measured on both sides of the Hall
bar during cooling down at zero field for testing the homogeneity. At low temper-
atures U(I) curves are recorded in order to exclude a possible non-linear behavior
of the contacts as well as heating effects. After these preliminary tests and after
finding a reasonable value for the current, the measurement procedure can begin.
Note, that the measured quantities are always dependent on both variables, temper-
ature T and magnetic flux density B. The measurements are carried out by varying
one parameter while keeping the other one constant. For the Hall measurements B
is applied in c direction (normal to the Hall bar plane).

• T sweeps at constant B:
The longitudinal resistivity ρxx is measured at different magnetic fields (up
to 14 T) by sweeping T with a certain rate and simultaneously measuring Ul .
This is the simplest series of measurements, which already gives significant
information about the evolution of ρxx as a function of T (power law of T
dependence, suppression of superconductivity at high fields, upturns at low
T ).
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• B sweeps at constant T :
In order to measure precisely the transverse magnetoresistance ∆ρ/ρ and
the Hall coefficient RH , B field sweeps at different temperatures are carried
out by starting at low T up to 300 K. For T > 40 K field sweeps in intervals
of 20 K are performed, whereas for T < 40 K the T intervals are reduced
depending on the doping of the crystals and the related features one would
like to study. As ∆ρ/ρ and particularly RH are small compared to possible
deviations of ρxx due to small T fluctuations, the stabilization of tempera-
ture is of great importance. As described in Chapter 6.1.2 the temperature is
stabilized with an accuracy of 10 mK. ∆ρ/ρ and RH can be measured simul-
taneously by using a longitudinal and transverse contact pair, as in general
both measurements do not influence each other. The extraction of UH from
the transverse measurement is challenging, as the signal is superimposed by
a longitudinal fraction due to a misalignment. Hence, the B field is swept
with sweep rates of 1 T/min up to 14 T. During ramping in steps of 0.2 − 1
T the field was stabilized for 20 − 30 s and after stabilization a data point
is taken 4. Thereafter, the field is swept to the next point, stabilized and
measured again. In order to avoid hysteresis effects data at the same field
positions are also recorded when sweeping down to 0 T. Under field rever-
sal the measurement is repeated by sweeping up to −14 T and a subsequent
down sweep to 0 T. This B field sweep is repeated at each temperature. UH

is extracted by using the fact that ρxx has only even contributions in B:

ρxx(B) = ρxx(0) · [1 + aB2 + O(B4)] , (6.3)

and ρxy has only odd contributions in B

ρxy(B) = RH · B + O(B3) . (6.4)

Therefore, UH is extracted according to the following equation:

UH(B, I) =
1
4
·{[UH(+B,+I)−UH(+B,−I)]−[UH(−B,+I)−UH(−B,−I)]} .

(6.5)
Note, that for each temperature data are taken for the up and down sweep.
Therefore, UH is the result of 8 independent data points 5.

6.2 Out-of-plane transport

For the out-of-plane measurements the crystals are prepared and contacted in the
same way as for the in-plane measurements. The crystal dimensions are 1.0× 0.5
mm2 in the ab plane and 0.2−0.3 mm in the c direction. The shape of the ab plane
is of secondary importance, whereas the thickness t of the sample must be uniform

4When multimeters are used, the current is reversed in order to eliminate the zero point offset.
5For Lock-In measurements one has 4 independent data points.
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Figure 6.2: Sketch of the experimental setup for the out-of-plane measurements. The
crystal is glued with Stycast 2850 in lateral position to a sapphire plate. On one contact
pair the current I is applied and the voltage U is measured on the second pair.

throughout the sample and also well determined. There are only four electrical
contacts applied to the crystal by a conducting paint, two on each lateral surface.
The current I is applied in c direction over one contact pair and the voltage U is
measured over the other contact pair (Figure 6.2). The out-of-plane resistivity is
given by the ratio

ρc = (U/I) · (lw/t). (6.6)

As Nd2−xCexCuO4 is a highly anisotropic system (cf. Section 7.1) with an anisotropy
ratio

ρc/ρab ≈ 104, (6.7)

the equivalent isotropic configuration corresponds to a rod of the same cross sec-
tional area of 1.0× 0.5 mm2 but a thickness t of 2 · 102−3 · 102 mm and therefore,
the current distribution can be regarded as perfectly homogeneous.



Chapter 7

Magnetotransport properties of
high quality Nd2−xCexCuO4
single crystals

In the following Chapter the doping dependent normal state transport of
Nd2−xCexCuO4 single crystals is discussed. One advantage of the electron doped
compounds with respect to the hole doped compounds is their much lower upper
critical field Bc2. As a consequence, superconducting fluctuation effects, which
contribute also above Tc, are expected to be less influential as in YBa2Cu3O7−δ or
La2−xSrxCuO4 with their high Bc2 values [182]. For the available magnetic fields
up to µ0H = 15 T the normal state at T = 2 K might be accessible for all doping
levels, as the highest value of Bc2 derived from resistivity measurements amounts
to 8 T for the opimally doped Nd1.85Ce0.15CuO4

1.

7.1 The in-plane and out-of-plane resistivity

The T dependent zero field and high field (14−15 T) in-plane and out-of-plane re-
sistivity curves for Nd2−xCexCuO4 are illustrated in Figure 7.1 and 7.2. The mea-
sured resistivity curves ρ(T, B) reveal various properties of the Nd2−xCexCuO4
single crystals, such as the critical temperature Tc, an estimation of the upper crit-
ical field Bc2, the residual resistivity (which provides information about the impu-

1The debate about the real upper critical field Bc2 in high temperature superconductors is still go-
ing on. The cuprates exhibit a complex vortex phase diagram (presence of vortex lattice, vortex liquid
phases), which complicates the determination of the transition between the superconducting state and
normal state. Hence, in resistivity measurements, for example, the discrimination between normal
state and vortex liquid state might be difficult and the derived values represent rather the transition
between vortex lattice and vortex liquid. Consequently, Bc2(T ) derived from resistivity measure-
ments might be underestimated. Higher values of Bc2(T ) in optimally doped Nd1.85Ce0.15CuO4 are
deduced from vortex Nernst signal [183] with Bc2(0) ≈ 10 T. New studies of the B − T phase dia-
gram of the electron doped La2−xCexCuO4 compound by means of zero energy Andreev bound states
[184] reveal considerably higher values of Bc2(T ) with Bc2(0) ≈ 25 T.
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Figure 7.1: In-plane (black) and out-of-plane (blue) resistivity curves for
Nd1.95Ce0.05CuO4 (a), Nd1.90Ce0.10CuO4 (b) as well as for Nd1.87Ce0.13CuO4 (c, d)
single crystals. The zero field and high field measurements (µ0H = 14 T) are plotted.
Note, the different T dependence of ρab(T ) (linear fit) and inverse Hall angle (inset in (c))
for the doping level x = 013.

rity concentration of the crystals) and the dominant scattering mechanisms of the
charge carriers. Therefore, transport measurements are an useful tool in order to
characterize the single crystals.

At first glance two general features attract immediately attention when com-
paring the resistivity data for different doping levels. The upturn in resistivity (i.e
dρab
dT < 0) at low temperatures and the metallic behavior (dρab

dT > 0) at moderate
temperatures up to 300 K. Both regimes are separated by a reversal point, which
shifts towards lower temperatures with increasing doping and disappears com-
pletely for the overdoped Nd1.83Ce0.17CuO4 sample. For doping levels of x = 0.15
and x = 0.16 the reversal point lies below Tc and appears only when superconduc-
tivity is suppressed by a strong magnetic field (Figure 7.2 (b) and (d)).

Concerning the temperature evolution of the resistivity, the in-plane and out-of-
plane resistivity show surprisingly the same features (upturn, reversal point, metal-
lic regime, Tc ) for all doping levels. This is in strong contrast to the hole doped
La2−xSrxCuO4 system, where a semiconducting behavior in the ρc(T ) curves for
doping levels of x ≤ 0.10 has been found at moderate temperatures up to 300 K
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[60]. Consequently, also the resistivity ratio ρc/ρab in La2−xSrxCuO4 evolves dif-
ferent with doping and temperature. It is doping independent at T = 270 K for
doping levels of x ≤ 0.05 and decreases with increasing doping, suggesting that
the system becomes more three-dimensional in the overdoped regime. The trans-
port results in the underdoped regime of La2−xSrxCuO4 have been interpreted in
terms of an in-plane charge carrier network (possibly charge ordering), which is re-
sponsible for the strange metallic transport close to the Mott insulator limit [143],
and an incoherent hopping between these networks in c direction, which is doping
independent. In Nd2−xCexCuO4, however, the resistivity anisotropy at 270 K is
enhanced with respect to La2−xSrxCuO4 (by a factor of 5 at T = 270 K for crystals
with the same nominal doping x = 0.05) and amounts to 7 · 103. For optimally
doped and overdoped crystals ρc/ρab increases slightly up to values of 1− 2 · 104.
The temperature evolution of the resistivity ratio in Nd2−xCexCuO4 evolves mod-
erately for all doping levels (factor < 2).

In the (far) underdoped regime the metallic behavior of the resistivity at intermedi-
ate temperatures is another peculiar feature of the electron doped compounds. Fig-
ure 7.1 (a), (b) presents the resistivity curves for the underdoped Nd1.95Ce0.05CuO4
and Nd1.90Ce0.10CuO4 crystals, respectively. Both curves reveal two reversal points
at doping specific temperatures T (1) and T (2) and a small linear regime with posi-
tive slope in-between. For Nd1.95Ce0.05CuO4 the characteristic temperatures amount
to T (1) = 87 K and T (2) = 322 K (extremum) and for Nd1.90Ce0.10CuO4 they come
up to T (1) = 62 K and T (2) = 254 K, respectively. For T > T (2) the resistivity
shows again a negative slope. One can get an idea of the physical reason for the
strong change in ρc and ρab when analyzing the optical conductivity data. Onose
et al. [2] have shown that T (2) coincides with the pseudogap temperature T ∗, at
which the optical conductivity σ(ω) loses spectral weight at energies < 0.5 eV.
Additionally, with T ∗ a concomitant evolution of a Drude peak in the limit ω → 0
is observed, which is interpreted in terms of a change from an incoherent to a
coherent charge transport of the electron pockets in antinodal direction. The pseu-
dogap is believed to play a crucial role in the out-of-plane transport, depending on
its position in the Brillouin zone. For La2−xSrxCuO4, for instance, the out-of-plane
transport – described by the hopping integral t⊥ and dominated by the charge carri-
ers in antinodal direction – is reduced due to the pseudogap formation in antinodal
direction. Hence, the gap opening in antinodal direction might explain the differ-
ent evolution of ρc and ρab. For Nd2−xCexCuO4, however, the pseudogap evolves
close to the nodal position and is expected to influence the out-of-plane transport
only marginally. Thus, the qualitatively same evolution of ρc and ρab at moderate
temperatures is plausible. According to the interpretation of Onose et al. the sec-
ond reversal point at T (2) and the following decrease in resistivity for T < T (2) are
associated with the formation of coherent charge carriers below T (2).

The superconducting underdoped Nd1.87Ce0.13CuO4 sample (Figure 7.1 (c)) ex-
hibits at first glance a different temperature dependence in ρab(T ) and ρc(T ), which
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Figure 7.2: In-plane (black) and out-of-plane (blue) resistivity curves for
Nd1.85Ce0.15CuO4 (a, b), Nd1.84Ce0.16CuO4 (c, d) and Nd1.83Ce0.17CuO4 (e, f) sin-
gle crystals. The magnetic field is applied perpendicular to the CuO2 layers. The insets
show the inverse Hall angle cotθH of the in-plane measurements.
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resembles to that of the optimally and overdoped crystals. Nevertheless, at closer
examination the features in the T dependence of the normal state resistivity are
rather related to the doping level x = 0.10 than to x = 0.16. In particular, T (1) is
shifted to temperatures slightly above Tc and amounts to 32 K for the ρab(T ) mea-
surement and to 44 K for the ρc(T ) measurement. The difference in T (1) in both
measurements might be due to a small variation in doping, although both samples
arise from the same batch and show the same transition curves (Figure 7.1 (d)).
For T > T (1), the curves show a positive slope up to 300 K and the second reversal
point is vanished. However, there is a characteristic temperature T (2) = 160±10 K,
at which the slope (first derivative) of the ρab(T ) curve reveals a kink. Above 160
K the resistivity follows an almost linear dependence (see linear fit in Figure 7.1
(c) with a slope of 2.48 · 10−3 mΩcm and an ordinate intersection of 0.18 mΩcm),
whereas for T < T (2) the resistivity drops initially below the linear fit and shows
a complex curved behavior, which cannot be fitted by a power law. This S-shaped
behavior at T (2) resembles the ρab(T ) curve in underdoped La2−xSrxCuO4 [23],
which has been interpreted in terms of pseudogap opening. Interestingly, in the
out-of-plane transport the S-shaped drop in resistivity at T (2) is absent. The curve
is linear in the temperature range from 160 K to 300 K and deviates smoothly from
linearity towards higher values for T < 160 K. The in-plane inverse Hall angle
cot θH , which is related to the scattering rate Γ in the same way as the resistivity,
follows a T 2.2 dependence over the whole temperature range (inset in Figure 7.1
(c). Hence, also the electron doped cuprates reveal a similar ”separation” of life-
times as the hole doped cuprates (cf. phenomenological discussion in Chapter 5).

At doping levels x ≥ 0.15, a fundamental change in the features of the T de-
pendence of the normal state resistivity can be observed. T (2) disappears and the
low temperature upturn is superposed by the superconducting regime. It is only
visible at high magnetic fields. For the optimally doped Nd1.85Ce0.15CuO4 sam-
ple (Figure 7.2 (a, b)), T (1) amounts to 10 K. The normal state in-plane resistivity
obeys a power law with ρab(T ) = ρab,0 + AT 1.8, where the residual resistivity
ρab,0 and A are estimated to be 4.34 · 10−2mΩcm and 1.35 · 10−5 mΩcm/K1.8.
For temperatures T > 200 K the resistivity deviates from the power law and be-
comes linear. The inverse Hall angle follows a T 3.6 dependence for temperatures
T ≥ 50 K, which is twice the exponent of the ρab dependence. A deviation from
power law towards linearity at already T = 180 K is also observed in the ρc curve.
For T < 180 K the derivative of the curve suggests a resistivity fit of the form
ρc(T ) = ρc,0 + BT + AT 2 with ρc,0 = 0.77 Ωcm, B = 5.96 · 10−3 Ωcm/K and
A = 3.99 · 10−5 Ωcm/K2.

The upturn in the overdoped Nd1.84Ce0.16CuO4 sample (Figure 7.2 (c, d)) can be
suppressed in both the in-plane and out-of-plane transport, when a magnetic field
of 14 T is applied perpendicular to the CuO2 sheets. In this case ρc(T ) decreases
linearly for T < 40 K and ρab(T ) reveals a sublinear T dependence. At interme-
diate magnetic fields (4 − 6 T) the upturn behavior is still visible below T (1) and
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amounts to 5.5 K for both in-plane and out-of-plane resistivity curves. Similar to
the optimally doped sample, ρab(T ) obeys the relation ρab(T ) = ρab,0 + AT 1.8

with ρab,0 = 7.81 · 10−2 mΩcm and A = 8.49 · 10−6 mΩcm/K1.8 for temperatures
T > 40 K. At T ≥ 200 K, a deviation towards lower powers (T 1.6) is observed.
The inverse Hall angle shows a T 4.0 dependence for T ≥ 80 K. Furthermore, ρc(T )
reveals the same two temperature regions with lower powers of T 1.5 and T 1.3. The
residual resistivity amounts to 0.72 Ωcm.

The doping level x = 0.17 (Figure 7.2 (e, f)) has an exceptional position within
the Nd2−xCexCuO4 sample set. This is not only confirmed by the positive Hall
signal at low and moderate temperatures (see Section 7.3) but also by the normal
state transport ρ(T, B). For instance, there is no upturn and related to this there
is no negative magnetoresistance observable for temperatures down to 1.4 K (see
inset in Figure 7.2 (f)). Superconductivity is already fully suppressed for applied
magnetic fields of 3 T perpendicular to the CuO2 layers and ρ(B, T = const)
evolves with B2. Moreover, ρab(T ) can be fitted by ρab(T ) = ρab,0 + AT 1.2 with
ρab,0 = 4.52 · 10−2 mΩcm and A = 2.83 · 10−4 mΩcm/K1.2 and flattens again for
T > 200 K. In comparison to the nearly linear in-plane resistivity, ρc(T ) exhibits
a stronger curvature and follows a T 1.7 dependence for temperatures up to 220 K
with a residual resistivity of 0.37 Ωcm. For higher temperatures a crossover to
linear behavior appears.

In the metallic regime the residual resistivities provide a good test for the crys-
tal purity. ρc,0 decreases steadily with increasing doping from 0.89 Ωcm for the
underdoped sample x = 0.13 to 0.37 Ωcm for the overdoped sample x = 0.17.
For the in-plane measurements ρab,0 is minimal at the doping level x = 0.15. In
comparison to x = 0.15, ρab,0 is increased by 80% for x = 0.16 and by 4% for
x = 0.17, respectively. This demonstrates clearly the very high quality of the
optimally doped sample and the difficulty to grow high purity crystals in the over-
doped regime close to the solubility limit of the dopant. In literature the residual
resistivity values vary considerably, what might be due to the pronounced sen-
sitivity of the resistivity on the annealing treatment [185]. For optimally doped
Nd1.85Ce0.15CuO4, values of ρ0 ≈ 15 µΩcm ([81], thin films), ρ0 ≈ 20 µΩcm
([139], thin films), ρ0 ≈ 10 µΩcm ([2], single crystals) have been reported. On
the other hand, much higher values for overdoped Nd2−xCexCuO4 single crystals
(≈ 45 µΩcm for x = 0.17 and ≈ 25 µΩcm for x = 0.20) [157] have been found.
For comparison, the Pr2−xCexCuO4 system reveals considerably higher ρ0 values
for all doping levels [153].

The remarkable ”coherence” between in-plane and out-of-plane transport poses
the question of the transport mechanism in c direction. In principle, the metallic
behavior of the in-plane resistivity within the observed temperature interval (for
all doping levels around the superconducting dome) is preserved in the out-of-
plane transport, suggesting therefore a coherent transport mechanism in c direction.
However, the same behavior of ρab(T ) and ρc(T ) is not an unambiguous hint for
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a coherent transport, as it has been shown [186] that ρc(T ) can image the in-plane
dependence even though the transport is incoherent. So far, the existence of a
quasi three-dimensional Fermi surface was only reported for heavily overdoped
Tl2201 [5]. In principle, the transport is coherent when the interlayer hopping time
satisfies the relation τc = ~

tc
< τ , where tc is the interlayer transfer integral and τ

the in-plane scattering time. In this case an electron might tunnel through multiple
layers before dephasing occurs. In the incoherent regime, i.e. τc = ~

tc
À τ ,

the coherent tunneling is blocked [186] as the carriers undergo multiple dephasing
scattering events in the highly conductive layers before tunneling. However, one
can assume a weakly incoherent scenario, where coherent tunneling takes place
only between neighboring layers (single tunneling process) due to a finite tc before
dephasing of the charge carriers occurs again. In this case the transfer integral is
renormalized to t ′c = t2

c τ
~ . Note, that the transfer integral is then governed by the

in-plane scattering time. In this context it has been shown [186] that, although the
out-of-plane transport is (weakly) incoherent, ρc can be expressed via ρab:

ρc ∝ ρab ·
(a

d

)2
·
(

tab

tc

)2

. (7.1)

Here, a is the in-plane lattice constant, d the interlayer spacing and tab the in-
tralayer transfer integral. Thus, as fully consistent with the experimental findings,
ρc mirrors the in-plane transport and depends on the ratio of the transfer integrals.

Concerning the power law behavior of the resistivity curves, in-plane and out-
of-plane curves are fitted best by using a bare ρ0 + AT α relation without a linear
term (with the exception of ρc for Nd1.87Ce0.13CuO4), where α < 2 for all doping
levels, which seems to be smaller for the out-of-plane measurements. In literature
a pure T 2 dependence is reported at least for a small temperature regime above
40−50 K [81, 139, 187] and a flattening occurs at higher temperatures (≈ 200 K).
Deviations from the value of 2 in the power law are assigned to some imperfections
in the system and the origin of the T 2 term is believed to arise from electron-
electron scattering. For this scattering mechanism in a three-dimensional Fermi
liquid one obtains [172]

ρ(T ) = ρ0 + Ae,eT 2. (7.2)

The deviations from a strict T 2 at higher temperatures are often explained using a
two-dimensional expression of the electron-electron interaction [139]

ρ(T ) = ρ0 + Ae,e

(
T
TF

)2

ln
(

TF

T

)
. (7.3)

However, the deviation from T 2 behavior might be rather explained by the
parallel resistor model (application of the MIR limit, see Chapter 5) than by a
proposed transition from three to two dimensions. In addition, the scattering am-
plitude for electron-electron interaction (fit parameter Ae,e) is in the order of 10−2

µΩ cm/K2, which is 4 orders of magnitude higher than for alkali metals. There-
fore, it is questionable, if the observed T 2 dependence of the scattering rate is only
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due to electron-electron interaction. It has been shown [188] that scattering on spin
fluctuations leads to a quadratic dependence in T , as well.

7.2 The upturn behavior at low temperatures

For the discussion of the upturn behavior in the resistivity vs. temperature curves
at low temperatures only the ρab(T ) curves are used, as the ρc(T ) curves reveal
the same features. The reversal point T (1), at which the resistivity starts to in-
crease with decreasing temperature is strongly doping dependent (Figure 7.3 (b))
and disappears for the doping level x = 0.17. For T < T (1), ρab follows roughly a
log(1/T) dependence with some doping dependent deviations for T → 1.4 K (note
the logT scale in Figure 7.3 (a) and 7.1 (a)). For instance, at high doping levels of
x = 0.16, x = 0.15 and x = 0.13 (not shown), the curves flatten towards smaller
values below T = 3 K, T = 5 K and T = 6.5 K, respectively. However, no trend
of saturation could be deduced at the lowest accessible temperature of 1.4 K from
this sublogarithmic behavior.

The strongly underdoped sample (x = 0.05) shows a nearly log(1/T ) depen-
dence in the temperature range from 18 to 40 K and bends towards smaller values
for T < 13.5 K. The same deviation from linearity in the upturn regime (even
though not as pronounced) has also been observed for the doping level x = 0.10
at about T = 12 K. In the sublinear regime both curves reveal a strong decrease in
ρab(T ) when a magnetic field of µ0H = 14 T is applied perpendicular to the CuO2
sheets. This perpendicular, negative magnetoresistance (NMR) within the upturn
regime is found for all doping levels. At 2 K, ∆ρ(14T)/ ρ amounts to−11.6 % and
−4 % for x = 0.05 and x = 0.10, respectively. In the superconducting regime the
zero field upturn is hidden and the remnants are observed at high magnetic fields.
Thus, the field evolution of the ρab(B) curves for the corresponding doping levels
is difficult to study due to the influence of superconductivity. For the optimally
doped Nd1.85Ce0.15CuO4 sample (Figure 7.3 (c)) the magnetic field sweeps peak
at about 10 T, followed by a negative slope. From the small negative edge only a
crude linear extrapolation is possible in order to estimate an extrapolated field of
µ0He = 23 T, at which the upturn is expected to be fully suppressed at T = 1.4
K. It cannot be excluded that ρab(B) follows a -logB dependence at higher fields,
which of course would lead to higher values of He. Evidence for a logB behavior
of ∆ρ/ρ arises from the underdoped x = 0.05 and overdoped x = 0.16 sample.
For the latter one and for fields µ0H ≥ 10 T (i.e. H > Hc2), the curve follows
roughly -logB. The crossover to metallic behavior is reached for applied fields of
µ0He = 10 T.

For the doping level x = 0.05, ∆ρ/ρ is logarithmic in B at high fields and
deviates from this behavior when approaching the zero field. An extrapolated field
of µ0He ≈ 500 T is calculated from the negative slopes at low temperatures. One
important aspect is the anisotropy of the MR in the upturn region, which can easily
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Figure 7.3: (a) Low temperature in-plane resistivity plotted vs. logT . The curves are
plotted with offset for a better comparison. The straight lines represent log1/T fits. (b)
Doping dependent evolution of the reversal point T (1) (upturn regime). (c) ρab(B) curves
at low temperatures obtained from doping level x = 0.15. (d) Magnetoresistance data of
the underdoped x = 0.05 sample for H ‖ a (upper chart) and H ‖ c (lower chart). The
corresponding ρ(T ) curves are shown in Figure 7.1.

be investigated in the far underdoped regime (x =0.05)2. In contrast to the observed
NMR for magnetic fields applied perpendicular to the CuO2 sheets, the MR is
positive for temperatures T ≤ 8 K (Figure 7.3 (d)) when the magnetic field is
applied parallel to the CuO2 sheets. The positive MR consists of two regimes, a
steep increase at low fields and a moderate, almost saturating behavior at higher
fields. This crossover in the magnetoresistance for applied fields parallel to the
CuO2 sheets has been interpreted as a transition of the AFM spin structure from a
noncollinear to a collinear one [189] (cf. Section 2.3.2 for the spin structure).

The reason for the upturn3 in the resistivity vs. temperature curves for T → 0,
and related to it for some unidentified localization of itinerant charge carriers is
up to now not fully understood. It is widely believed that the upturn is primarily

2The upturn region at doping levels x = 0.15 and x = 0.16 is not accessible for field orientations
parallel to the CuO2 planes due to the high B‖c2 fields.

3Note, that in literature [146, 156] the terminology of a metall-insulator (MI) crossover is often
used. This notation might be somewhat misleading, as the resistivity change is very small (much less
than one order of magnitude). For example the doping level x = 0.05 shows a ρab value at T = 2
K (µ0H = 0 T curve) with an increment of only 35% with respect to the minimum at T (1). Upon
doping this magnitude is decreasing further.
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a disorder-driven effect [146, 156], as shape and appearance of the upturn depend
on the cuprate system [146, 190] and the detail of fabrication. For example, for
Nd2−xCexCuO4 the literature is contradicting concerning the rigid log(1/T ) depen-
dence down to lowest temperatures [191–194]. In order to find a useful criterion for
the estimation of a disorder-driven metal-insulator transition, the idea from Ioffe
and Regel is used [195], who argued that conventional metallic transport breaks
down, when the mean free path l becomes comparable to the interatomic spacing
or k−1

F (see also Section 5.1.1). In other words a metal-insulator transition is ex-
pected for kF l = 1. For a quasi two-dimensional system with distance d = c/2
between the conducting layers a simple relation between the measured resistivity
ρ and the Ioffe-Regel criterion is obtained by using standard transport theory4:
ρab = h

e2 · d
kF l . Note, that ρab

d is the sheet resistance, which is directly proportional
to the von Klitzing constant h

e2 = 25812.807 Ω.
Hence, for Nd2−xCexCuO4 a resistivity value of ρab = 1.558319 mΩcm corre-

sponds to kF l = 1. With the exception of the underdoped crystals of x = 0.05 and
x = 0.10, where a value of kF l = 0.3 and kF l = 0.4 is deduced – corresponding to
ρmin at T (1) –, all other samples are below this limit in the temperture range from
1.4 K to 300 K. For doping x = 0.15 and x = 0.16 the transition at applied fields
of 14 T and 4 T occurs at values of kF l = 35 and kF l = 21, respectively. For com-
parison, the residual resistivity for Nd1.83Ce0.17CuO4 corresponds to a comparable
value of kF l = 36. Hence, there is a crossover to insulating behavior at resistivity
values, which correspond to values of kF l À 1, suggesting therefore the strange
nature of the normal state transport at low temperatures. This is a typical behavior
of so-called bad metals [196], which is also observed in hole doped La2−xSrxCuO4
[146]. Additionally, from far underdoped La2−xSrxCuO4 a metallic behavior of ρab
is known [143], although the Ioffe-Regel limit is strongly violated (kF l = 0.1).

In theory two effects can be invoked in order to explain a logT correction of
the conductivity and a -logB behavior of the magnetoresistance: two-dimensional
weak localization and the Kondo effect.

The weak localization is a quantum correction effect to the conductivity in dis-
ordered metals [195, 197]. In principle, an electron, which undergoes elastic scat-
tering processes on impurities, can move on various paths from point A to point
B. In order to calculate the conductivity the total scattering probability for the mo-
tion from point A to B has to be evaluated. According to quantum mechanics this
is given by the square of the modulus of the sum of all amplitudes of the differ-
ent paths. Hence, the total probability arises from the sum of the probabilities of
each single path and an interference term, which in principle disappears due to the
strong differences in phase for different paths when summing up. There are, how-
ever, special self-intersecting trajectories with loops, which can be traversed in two
opposite directions. In this case the amplitudes for both cycles are coherent and the
interference term leads to an increase in the scattering probability, which is twice
as large as the classical sum of the probabilities. Hence, due to coherent backscat-

4σ = ne2τ
m∗ = ne2 l

vm∗ = e2

~ · d·n2dim
k2

F
· (kF l) and with kF = d · √n2dim · 2π follows: σ = e2

h · kF l
d
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tering the conductivity decreases and the resistivity increases, respectively. For the
quantitative deduction one has to account for the dimensionality of the system and
the fact that coherent interference is only possible when the elastic scattering time
τel is much smaller than the time scale of coherence of the charge carriers τφ , i.e.
τel ¿ τφ . This is the reason why weak localization is only observed at low temper-
atures in the region of the residual resistivity, as the dephasing inelastic scattering
due to electron-phonon or electron-electron interactions dominates at higher tem-
peratures. For the correction of the conductivity the following expression is derived
[195, 197]:

∆σ2dim = σ(T )− σ0 ∝ −e2

~
· ln

(
T0

T

)
. (7.4)

As a consequence, the weak localization leads to the log(1/T ) dependence in the
resistivity. For small corrections ρab is given by

ρab = ρ0 + ρ2
0 ·C · ln

(
T0

T

)
, (7.5)

where C is a constant and T0 a characteristic temperature.
In addition, the negative magnetoresistance for magnetic fields applied perpen-

dicular to the current direction results from the fact that the momentum ~p has to
be replaced by ~p− e

c · ~A, where the vector potential ~A causes a phase difference of
2π · Φ

Φ0
between both amplitudes. This phase difference gives rise to a destruction

of the positive interference, resulting therefore in a negative magnetoresistance.
The magnitude is estimated to be [197]

σ2dim(B)− σ0 ∝
e2

~
· ln

(
eBDτφ

~c

)
, (7.6)

where D is the diffusion constant and L =
√

Dτφ the diffusion length of the elec-
trons. The product BDτφ ∝ Φ reflects the magnetic flux, which penetrates the loop
trajectory. Thus, the magnitude of the effect depends on the penetrating flux and
hence, a strong anisotropy in the magnetoresistance is expected when the field is
turned towards in-plane direction. In addition, due to τφ in the numerator a strong
temperature dependence is expected, as well.

In literature, two-dimensional weak localization has often been used in order to
explain the metal-insulator transition at low temperatures [2, 146, 193]. However,
at least for Nd2−xCexCuO4 there are some experimental aspects, which are strongly
contrary to the conventional weak localization theory of a two-dimensional disor-
dered metal:

• For all doping levels there are remarkable deviations from a predicted pure
logarithmic divergence. At certain doping specific temperatures the upturn
deviates strongly, showing a sublogarithmic behavior.

• The doping dependent scaling of the reversal point T (1) is difficult to under-
stand within weak localization (Figure 7.3 (b)). The high onset temperature
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of the upturn in the underdoped region is incompatible with the basic as-
sumption of τφ À τel .

• Indeed, there is evidence for a logB behavior of the magnetoresistance. How-
ever, it was shown by Sekitani et al. [191] that the anisotropy of MR does
not follow a cosine dependence when the field is turned towards parallel po-
sition. In addition, the data show a strange positive MR at low temperatures,
when the field is applied parallel to the CuO2 layers (Figure 7.1 (b)). Thus,
the upturn behavior is rather related to a spin effect than to conventional
disorder induced localization.

The Kondo effect describes the interaction between the spin of itinerant charge
carriers ~σ and the magnetic moment of localized magnetic impurities ~S. This leads
to a scattering amplitude of [197]

J
n
· (~σ~S)σ ′σ ·

{
1− J

n
D(EF) ln

(
Ẽ

max(|ξ |, T )

)}
, (7.7)

where ξ = Ek−µ , D(EF) is the DOS, n the impurity concentration, Ẽ a character-
istic energy and J the exchange constant. The logarithmic term is a second order
correction to the first one. For J < 0 the amplitude and therefore the resistivity
increases as a scattering process with a flip of the electron spin is allowed. For
a ferromagnetic interaction (J > 0) the spin flip is forbidden due to spin conser-
vation, and the amplitude decreases. The Kondo contribution to the resistivity is
given by the square of the scattering amplitude

ρK = ρ(0)
J ·

{
1− 2

J
n

D(EF) ln
(

Ẽ
kBT

)}
. (7.8)

Thus, for J < 0 the resistivity diverges logarithmically with decreasing tempera-
ture. Considering the residual resistivity ρ0 and some general T p dependent contri-
bution to the resistivity, one can see immediately that for decreasing temperatures
the resistivity passes through a minimum before showing the logarithmical upturn.
Note, that the upturn does not diverge to infinity. For T < TK , with the Kondo
temperature TK = Ẽ · exp(− n

JD(EF )), the logarithmic correction is large and Equa-
tion 7.8 is no longer valid. Calculations have shown that for the limit T → 0 the
resistivity tends to a finite value [198]. Concerning the magnetoresistance behavior
a negative logB dependence with saturation for B → 0 is expected [191]. An ap-
plied magnetic field polarizes the spins of the impurities, so that the the probability
of spin-flip scattering is diminished. In principle, the magnetoresistance should be
isotropic for the Kondo effect.

The Kondo effect might explain the majority of the observed features such as
the finite maximum value for T → 0 and the logB dependence of the magnetore-
sistance with saturation. Nevertheless, there are two fundamental problems left:
First, the magnetoresistance is anisotropic. Here, Sekitani et al. [191] have argued
that the anisotropy can be explained by an anisotropic g value due to the crystal
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field. Secondly, the unknown nature of possible Kondo scattering centers. Gener-
ally, an interaction between charge carriers and the magnetic moments of the rare
earth ions can be ruled out, as La2−xSrxCuO4 with the non-magnetic La3+ shows
the same features. In addition, assuming rare earth scatters, it is difficult to explain
the doping dependent scaling of the upturn. Thus, possible scatters must lie within
the CuO2 layers. It was suggested that local spins of Cu2+ act as Kondo scatters
[191].

When trying to explain the metal-insulator transition, one aspect has always
been ignored. There is a clear doping dependency, which is not considered in both
theories. The characteristic temperature T (1) scales nearly linearly with doping
and becomes zero close to the doping level x = 0.17 (Figure 7.3 (b)). Hence,
the upturn behavior in ρab(T ) might be associated with an additional scattering
channel, which arises from an unusual strong coupling of the charge carriers with
AFM fluctuations. The upturn evolution seems to correlate with the Fermi surface
evolution of Nd2−xCexCuO4 [1], and a completely metallic behavior for T → 0
might be obtained at doping levels x ≥ x∗, where the Fermi surface is fully restored.
In literature a QCP is often suggested at x = x∗, at which a magnetic quantum phase
transition occurs [1, 11].

7.3 The Hall effect and magnetoresistance

7.3.1 The Hall resistivity

The Hall resistivity ρxy(B), from which the Hall coefficient RH is obtained, is
shown in Figure 7.4. The determination of the Hall coefficient is not straight-
forward, especially at low temperatures where large magnetic fields are required
in order to suppress superconductivity and to restore completely the normal state
(cf. brief discussion at the beginning of this Chapter). Nevertheless, with available
magnetic fields of 14 T the normal state in Nd2−xCexCuO4 can be explored down
to low temperatures. Obviously, in the superconducting regime the Hall signal is
expected to disappear. However, there is a peak structure visible in all doping lev-
els 0.13 ≤ x ≤ 0.17, which increases with T and shifts towards smaller magnetic
field values. The appearance correlates with the transition in ρxx(B, T = const).
This contribution to the Hall signal is assigned to flux flow.

For Nd1.87Ce0.13CuO4 (Figure 7.4 (a)), ρxy is linear in the magnetic field with
a negative slope over the entire temperature range well above Bc2 (≈ 8 T at 2 K,
extrapolated from ρxx(B) ). The slope decreases steadily with increasing tempera-
ture. A similar behavior is also found in the overdoped Nd1.83Ce0.17CuO4 (Figure
7.4 (d)), though the sign is reversed. Bc2 is estimated to be ≈ 3 T, so that the
Hall coefficient can be determined easily from the linear slope of the field sweeps.
Note the large positive value in ρxy(B) for T ≤ 20 K, which decreases rapidly
and reaches a value very close to zero at T = 140 K. For higher temperatures the
change to negative sign is clearly visible, although the error of the extracted Hall
values is not negligible due to the low amplitudes of the measured signal (< 10
nV).
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Figure 7.4: Measurements of the Hall resistivity ρxy at low temperatures for single crystals
with nominal Ce-concentration x = 0.13 (a), x = 0.15 (b), x = 0.16 (c) and x = 0.17
(d).The magnetic field is applied perpendicular to the CuO2 sheets.

For Nd1.84Ce0.16CuO4 (Figure 7.4 (c)) the sign change is shifted to tempera-
tures close to 40 K. At low temperatures, ρxy(B) shows a clear dominance of a
hole-like contribution to the Hall signal. The curves are fully linear in the mag-
netic field with a positive slope for temperatures up to 10 K. In the temperature
range between 10 K and 50 K, ρxy(B) deviates slightly from linearity and with in-
creasing field it starts bending towards negative slope. For T ≥ 60 K, ρxy follows
a straight line again.

For optimally doped Nd1.85Ce0.15CuO4 (Figure 7.4 (b)), the ρxy curves are lin-
ear in H for temperatures T ≥ 50 K. Below this temperature they reveal a complex
behavior. In the temperature interval 2 ≤ T ≤ 10 K, ρxy(B) shows a reversal point
with positive slope for magnetic fields µ0H > 10 T. This unusual behavior is only
observed for optimal doping within the upturn region and is similar to the evolution
of the ρxx(B) curves at these temperatures. Thus, it is difficult to extract the normal
state in this temperature regime due to influences arising from the mixed state. The
positive linear slope at the high field end of the curves (≥ 12 T) might reflect the
normal state at low temperatures (remember Bc2 ≈ 10 T at T = 5 K, estimated
from the Nernst signal [183]). At T = 8.5 K, the Hall signal is entirely positive
and remains positive for temperatures up to 20 K, while simultaneously the slope
for magnetic fields > 5 T is curving towards negative values and changes sign be-
tween 15 − 20 K. Above 20 K, the contribution from the electron band prevails
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more and more over the contribution from the hole band. At T = 30 K, ρxy be-
comes completely negative. The curves recorded at temperatures of 30 K and 40 K
can be well described by considering the next order of the Jones Zener expansion,
i.e. ρxy ∝ RHB + R3B3. The low temperature evolution of RH (see Figure 7.10
(b)), is deduced from the linear slopes at high magnetic fields, which is the only
reasonable criterion. The temperature evolution of RH passes continuously into the
regime where ρxy is only given by a straight line. The sign change in RH occurs at
T ≈ 18 K. We are well aware of the fact that the absolute value of RH as well as the
temperature, where RH changes sign, might depend on the details of the evaluation.
Nevertheless, the main features (positive Hall coefficient at low temperatures, sign
change) are independent from analysis.

In principle, the doping levels x = 0.15 and x = 0.16 are comparable with
respect to their magnetic field evolution of RH for temperatures T < 50 K, although
for the optimally doped crystal the ρxy(B) curves show a stronger curvature, which
is certainly related to the higher purity of the optimally doped crystal. For instance,
ωcτ estimated from the magnetoresistance amounts to 0.34 and 0.20 at an applied
field of µ0H = 14 T at T = 30 K for the doping levels x = 0.15 and x = 0.16,
respectively. Thus, deviations from the weak field limit might be visible especially
in the Hall data for x = 0.15. Recently, similar deviations from linearity were
reported for Pr2−xCexCuO4 thin films at higher magnetic fields (between µ0H =
20 − 60 T) [152]. For doping levels x > 0.15 a bending in ρxy(B) towards a
positive slope at high enough fields was observed for different doping levels, which
was interpreted in terms of a magnetic field induced rearrangement of the Fermi
surface. This is certainly not the case in the presented measurements. However,
the ρxy(B) data for x = 0.15 and x = 0.16 suggest not only a two band model
with different T dependent mobilities, but also a strong influence of the magnetic
field on the scattering mechanism of both types of carriers, or alternatively some
instability of the Fermi surface against magnetic fields. Of course, such effects
are not included when analyzing the data within the framework of conventional
Boltzmann transport theory.

7.3.2 The transverse magnetoresistance

Another important transport quantity is the magnetoresistance, which is very sensi-
tive to the variation of the mean free path l around the Fermi surface (Section 5.3).
More precisely, it is a measure of the variance of the Hall angle over the Fermi
surface [150]. The field dependence and temperature evolution of the orbital mag-
netoresistance for 0.13 ≤ x ≤ 0.17 is illustrated using Kohler’s plot. According to
conventional transport theory (Chapter 5), ρab ∝ Γ and ∆ρ/ρ ∝ 1/ Γ2, and thus,
the curves in Figure 7.5 should collapse on a straight line for different tempera-
tures. However, from the data one can immediately see that there are significant
doping dependent deviations from Kohler’s rule in the Nd2−xCexCuO4 system.

For the underdoped Nd1.87Ce0.13CuO4 crystal the transverse magnetoresistance
exhibits a quadratic behavior in B over the whole temperature range (also in the
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Figure 7.5: Kohler’s plot of the orbital magnetoresistance for single crystals with nominal
Ce-concentration x = 0.13 (a), x = 0.15 (b), x = 0.16 (c) and x = 0.17 (d). Note the
logarithmic scales. The magnetic field is applied perpendicular to the CuO2 sheets.

superconducting regime for fields far above Bc2). For clarifying reasons, the tem-
perature evolution of the magnetoresistance is plotted in Figure 7.5 (a) by using
a logarithmic scale. The data do not collapse on a straight line. There is rather a
continuous increase in the slope with decreasing temperature (shift in the double
logarithmic plot), suggesting that the in-plane lifetime τ obeys a different tempera-
ture dependence in contrast to the lifetime, which enters in the magnetoresistance.
Similar behavior has been also found in different hole doped cuprates. The vi-
olation of the conventional Kohler’s rule is attributed to the unusual temperature
dependence of the Hall signal [150]. A better understanding for the anomaly – at
least for the hole-doped cuprates – has been achieved by plotting the data versus
tanθH . In this case the magnetoresistance data collapse on a straight line according
to the relation ∆ρ/ρ = m2tanθH (modified Kohler’s rule), where m is a tempera-
ture independent constant [5, 150]. Thus, the magnetoresistance follows the same
temperature dependence as the Hall angle and from the expression of Equation
5.38, Ong et al. [150] have concluded that the Hall scattering life time τH(T ) must
change uniformly with T , independent from the position s on the Fermi surface.
However, the underdoped Nd1.87Ce0.13CuO4 does not obey the modified Koher’s
rule, as well. The constant m has a large value of 7.4 at T = 10 K and increases
with temperature like T 0.4, which might reflect a different T dependent scaling of



7.4. Simulation of the normal state transport 103

the mean free path l on different segments s on the Fermi surface.
A quite different behavior of the magnetotransport has been found for the opti-

mally doped Nd1.85Ce0.15CuO4 ( Figure 7.5 (b)). Comparable to the Hall data, the
magnetotransport cannot be evaluated completely in the upturn region (≤ 10 T).
For temperatures T > 10 K, ∆ρ/ρ shows a positive, but sub-quadratic behavior.
The power increases continuously and for T ≥ 50 K Kohler’s rule is approxi-
mately satisfied. This experimental result agrees with previous measurements on
optimally doped Nd2−xCexCuO4 thin films [139].

In the overdoped Nd2−xCexCuO4 with x = 0.16, Kohler’s rule is strongly vio-
lated as it can be seen from the strong diversification in the curves of Figure 7.5 (c).
The magnetoresistance is quadratic in B for T ≥ 40 K. At lower temperatures the
dependence is similar to that described for optimal doping. The modified Kohler’s
rule does not work, as well. Like for Nd1.87Ce0.13CuO4, and in contrast to the hole
doped cuprates the constant m is quite high and reveals a strong T dependence.

Like in the Hall data, the doping level x = 0.17 also differs considerably in
the magnetoresistance compared to the smaller doping levels. The B2 dependence
was found for the whole temperature range down to 2 K. There is no large spin-
dependent contribution superimposed to the orbital transverse magnetoresistance,
which dominates the low temperature behavior with reversal point, negative mag-
netoresistance, etc. Nevertheless, the (modified) Kohler’s rule is also violated for
this doping level.

It is clear that at low temperatures close to the superconducting regime the
orbital magnetoresistance can be falsified by paraconductivity influences or a con-
tribution related to an isotropic spin magnetoresistance. Nevertheless, as already
mentioned above, the influence of superconducting fluctuations in Nd2−xCexCuO4
might be negligible already at T = 30 − 40 K for all doping levels and the con-
tribution of the isotropic spin magnetoresistance can be eliminated by subtracting
the longitudinal magnetoresistance. For instance, for Nd1.84Ce0.16CuO4 at T = 30
K the correction of the transverse magnetoresistance only amounts to 5% and de-
creases rapidly with increasing temperature.

7.4 Simulation of the normal state transport

Based on the various characteristics, already obtained from a general discussion of
the transport data, a two band model was used in order to simulate the data. In the
past, the quantity tanθH or cotθH has often been used in order to analyze the Hall
problem [141, 157]. However, it is important to keep in mind that the (inverse)
Hall angle is only a derived quantity [199] (tanθH = ρxy

ρxx
), and models using the

cotθH as starting point for the T parameterization of the scattering rate Γ should
be tested implicitly if they also comprise the T evolution of RH and ∆ρ/ρ . Thus,
apart from the in-plane resistivity ρxx and the magnetoresistance ∆ρ/ρ , RH is used
rather than tanθH in order to adjust the parameters in the presented model.
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7.4.1 The two-band model

The numerical simulation of the in-plane transport data is based on the band dis-
persion of Equation 5.46. The mean-free-path l is obtained from the analytically
derived Fermi velocity~vF and the scattering rate Γ, which is the adjustable quantity
in this model and which is discussed below in more detail. The transport quantities
are derived from the conductivity tensor, which was calculated up to the second
order by summing up over the Fermi surface (see Section 5.3.1 for the expressions
used in the calculation). The band dispersion is calculated by using the doping
independent parameter values of t = 0.38 eV, t ′ = 0.32 · t, and t ′′ = 0.5 · t ′, which
are generally accepted values in literature [177].

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

LB
-

 S ( , )  (0,0)X ( ,0)

 

 

E 
(e

V)

 =0 eV, E
k

 =0 eV, E
k+q

 =0.25 eV
 =0.50 eV
 =0.80 eV
 =1.00 eV

 (0,0)

EF

+UB

0.0 0.5 1.0
0.0

0.5

1.0

Ek+q

 path in the BZ 
 AFM 
  = 0.25 eV

e

 

 

k F,
y (

/a
)

kF,x ( /a)

h

e
S

X

Ek

Figure 7.6: Evolution of the upper (UB) and lower band (LB) along the principal directions
Γ−X−S−Γ of the Brillouin zone for different values of ∆ and constant µ = 0.05 eV. The
Fermi energy EF is set to zero. The band filling can be adjusted by the parameter µ .

In Figure 7.6 the simulated dispersion along the most important directions of
the Brillouin zone is shown. Note, that there are two further doping dependent
adjustable parameters: the chemical potential µ = f (x) and ∆ = f (x), which splits
the degeneracy at the AFM zone diagonal by 2∆. For comparison, the evolution of
the upper and lower band for different ∆ is calculated and plotted in Figure 7.6. For
the limit ∆ → 0 (vanishing AFM correlations) the gap on the AFM zone diagonal
is closed and the dispersion consists of the single band dispersion E~k (blue curve
in Figure 7.6) and of the single band dispersion E~k+~q, which is shifted by the AFM
wave vector~q (green curve in Figure 7.6)5. The strength of the AFM interaction is
reflected by ∆. In literature no clear relation between Ce content x and ∆ has been
reported so far [1, 10, 177]. Matsui et al. [1] have deduced a nearly linear decrease

5The two-band model has already been introduced in Section 5.3.2. The construction of the two
bands due to the AFM superlattice structure is analog to the construction of energy bands in solid
state physics using free electron parabolas.
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in ∆ from ARPES with a relative large value of ∆ ≈ 0.08 eV, still visible in the
overdoped Nd1.87Ce0.13CuO4. Consequently, ∆ is also varied to some extend in the
fitting procedure, studying therefore its influence on the transport data.

In the simulation the Fermi energy EF is set to zero and the quantity µ is
adjusted by calculating numerically the so called band filling factor. The band
filling is related to the nominal Ce doping x. For the undoped compound, for
instance, a remarkable energy gap between the upper and lower band is expected
(∆ ≈ 0.8 eV [10]), while EF lies within the band gap. Hence, the lower band is
fully occupied corresponding to a filling factor of nLB := Nocc/Ntot = 1, where
Ni denotes the number of occupied/all states in the Brillouin zone. In this case
nUB obviously amounts to zero. With increasing doping ∆ decreases (cf. Figure
7.6) and the Fermi level may cross the upper and lower band. Therefore, the total
filling is given by ntot = nLB + nUB and is related to the nominal doping x via
x = ntot − 1. Note, that the introduced quantity µ is not a real chemical potential,
which in thermodynamics describes the energy gain of a system when a particle is
added to the system. For analyzing the transport data the real value of the chemical
potential is unimportant and only the band filling counts. Hence, the introduced
quantity µ is used in order to shift the energy bands with respect to EF := 0.

The Fermi surface topology with its different circulations of the hole- and
electron-like pockets has already been discussed in Section 5.3.2. However, it is
worth discussing briefly the most important properties of the pockets, which can
be derived from the band structure. The Fermi velocity ~vF is anisotropic, as one
can easily deduce from the shape of the Fermi surface of both pockets. A typ-
ical evolution of the Fermi velocity for both pockets is presented in Figure 7.7,
where the values for ∆ and µ correspond to those of simulation 1 and 3 for the
optimally doped Nd1.85Ce0.15CuO4 sample. The absolute value of the Fermi ve-
locity vF becomes minimal at angles where ~vF shows up along the AFM zone
diagonal (Figure 7.7). Moving away from the AFM zone boundary vF increases
and the magnitude of anisotropy depends on the choice of ∆ and µ , especially for
the electron pocket. The anisotropy decreases with decreasing filling factor for the
electron band. This means that the electron pocket moves towards the X point and
simultaneously the Fermi surface changes its shape from square- to circular-like.
Hence, the Fermi velocity becomes more isotropic and decreases mainly at the
zone boundaries. For simulation 3, the anisotropy amounts to 1.53, while for sim-
ulation 1, which comprises a more circular Fermi surface, the anisotropy is lower
and amounts to 1.36. For the hole pocket the evolution of the anisotropy is dif-
ferent. It decreases slightly with increasing hole pocket. There is a tendency to a
shift in vF to higher values when ∆ is decreased and the elliptical surface is trans-
formed into a larger almond-shaped Fermi surface. For simulation 1 the anisotropy
in vF amounts to 1.8, whereas for the smaller pocket it amounts to 2.1. Note also
the higher maximum values of vF for the electron band. Typical values are in the
range of 5− 7 · 105 m/s and 2− 5 · 105 m/s for electrons and holes, respectively.

Generally speaking the electron pocket can be described easier than the hole
one. For example, the minimum at point X of the band dispersion along the high
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Figure 7.7: (a) Illustration of one quadrant of the Fermi surface calculated with the param-
eters used in simulation 1 and simulation 3 of the Nd1.85Ce0.15CuO4 sample (see Table 7.1).
Note the different angles φe and φh introduced for the numerical calculation. For the elec-
tron pocket the calculation starts at position (1) and follows the red arrows, while for the
hole pocket the simulation starts at position (2) on the diagonal between Γ and S point. In
(b) the Fermi velocity~vF is shown for both pockets. The absolute values vF =

√
v2

F,x + v2
F,y

are illustrated separately for the electron pocket in (c) and for the hole pocket in (d).

symmetry directions can be described by a parabolic function as a first approxima-
tion at moderate values of ∆ (see Figure 7.6 and 7.8). In Figure 7.8 the numerical
results for the optimally doped Nd1.85Ce0.15CuO4 sample (simulation 1) are sum-
marized for both bands. For the upper band (elektron-like) the following averaged
quantities are derived by using the parabolic approximation: kF = 1.97 · 109 m−1,
m∗

e ≈ 0.44 · m, vF = 5.2 · 105 m/s and TF = 4000 K, where m is the free elec-
tron mass. Comparable values have been also found for the electron pockets of the
overdoped samples. The hole pocket, however, behaves differently. The parabolic
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Figure 7.8: Calculation of the band dispersion Ek, Fermi velocity vF and effective mass m∗

(inset) along directions of high symmetry. The results for the upper band (UB) and lower
band (LB) are illustrated in (a) and (b), respectively. The effective mass m∗ is only plotted
for small intervals in momentum space, where the pockets appear. The parameters are the
same as in simulation 1 of the Nd1.85Ce0.15CuO4 sample (cf. Table 7.1).

approximation along the principal axis of the hole pocket (diagonals of the Bril-
louin zone) fails also for moderate values of the level splitting ∆ (Figure 7.6 and
Figure 7.8). Nevertheless, one can make some qualitative conclusions about the
effective mass of the holes in the lower band m∗

h, when comparing the curvature
of both bands (UB and LB) near the band edge. The curvature of the lower band
along the diagonal SΓ is larger and hence, the effective mass6 m∗

h is expected to be
smaller than the effective mass of the electrons m∗

e . The calculated value amounts
to m∗

h ≈ 0.15 · m and is shown in the inset of Figure 7.8 (b). Comparable values
of m∗

h ≈ 0.10 · m have been also found for the overdoped samples. The effective
mass of the hole pocket along the second principal axis (AFM zone diagonal) has
not been calculated explicitly, as the contribution of this part of the Fermi surface
to the transport is only small.

In the following the expression for the scattering rate Γ is introduced and dis-
cussed in combination with the experimental results. A key result recently pre-
sented by Narduzzo et al. [6] was the statement that RH can obviously deviate
from the free electron value RH = 1/(pe) by taking into account the real band dis-
persion, but it still remains T -independent when an isotropic Γ is assumed. Note,
that even for isotropic Γ, l might be anisotropic due to the intrinsic anisotropy of
the Fermi velocity vF = 1

~
∂E
∂k . Thus, the pronounced T dependence of RH or in

general, observed deviations from the expected T dependencies of the transport
quantities, which in standard transport theory are clearly related to each other by
the T dependence of Γ, reflect the strong anisotropy of Γ. In a two-band model,
however, a T dependence of RH can result directly from Equation 5.42, even if an
isotropic scattering time is used and R±H for the individual bands is T independent.

6The effective mass is defined as
(

1
m∗

)
i j = 1

~2
∂ 2E(~k)
∂ki∂k j

.
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The main evidence for invoking an anisotropic Γ in electron-doped compounds,
as well, is the magnetoresistance ∆ρ/ρ , which is completely underestimated for
isotropic Γ. As the in-plane and out-of-plane resistivity show a power law behav-
ior T α (with 1 < α < 2) and no indication for a term with explicitly linear T
dependence is found, the following ansatz for Γ in the model for both bands is
made:

Γe,h
tot = Γe,h

0 + Γe,h
T · T 2. (7.9)

The anisotropy of Γ0 is parameterized for both bands separately and has the form:

Γe
0 = G0,e · (1 + χe · sin2(2φe)) and Γh

0 = G0,h · (1 + χh · sin2 φh). (7.10)

Remember the different angles introduced in the numerical calculation. For the
electron pocket the integration starts at position (1) in Figure 7.7 (a) and the angle
φe becomes zero along the Brillouin zone boundary XS, whereas for the hole pocket
φh amounts to zero along the diagonal SΓ. Hence, the sinusoidal ansatz accounts
for a strong suppression of the mean-free-path l = vτ close to the hot spot regions
along the AFM diagonal. Alternatively, an AV ansatz (Equation 5.8) was also used
in order to reduce the number of free adjustable parameters:

Γe,h
0 =

βe,h

vF(φe,h)
. (7.11)

In the AV ansatz the anisotropy of Γ results from the intrinsic anisotropy of
vF(φ) with its minima along the AFM diagonal. The sinusoidal ansatz is fully
equivalent to the AV ansatz, but provides a more flexible handling due to its addi-
tional paramters χe,h.

The temperature dependent scattering rate Γe,h
T is modeled in the same way:

Γe
T = GT,e · (1 + εe · sin2(2φe)) and Γh

T = GT,h · (1 + εh · sin2 φh). (7.12)

Concerning the anisotropy of ΓT the same arguments are valid as for Γ0. The
magnitude and shape of ∆ρ/ρ at moderate temperatures T > 100 K evoke the
assumption of anisotropy. In principle the ansatz according to Equations 7.9-7.12
is also plausible from the physical point of view. An increased scattering, and
thus a smaller l, might be expected on those parts of the Fermi surface, where
the charge carriers undergo interactions with magnetic excitations (i.e close to the
hot spot regions). There are 10 or 8 free parameters depending on whether the
sinusoidal ansatz or AV ansatz is chosen. Thus, a general discussion of the trans-
port data seems to be difficult. However, there are some constraints (filling factor,
Matthiesen rule), which limit the number of free adjustable parameters and there
are not too many possibilities to interpret all features of the three transport quanti-
ties within the measured temperature interval.

For optimally doped Nd1.85Ce0.15CuO4 three fits are shown in order to illustrate
the impact of anisotropy and band filling. The corresponding parameters are sum-
marized in Table 7.1. The best agreement with the data is obtained in simulation 1
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Figure 7.9: ρxx (a), RH (b), Hall angle tan θH (c) and magnetoresistance ∆ρ/ρ (d) data
(red squares) plotted versus T for an optimally doped Nd1.85Ce0.15CuO4+δ single crystal
together with the simulation results. See the text for details concerning the data simulation
by using the two-band dispersion, given by Equation 5.46. The corresponding parameters
are summarized in Table 7.1.

(Figure 7.9). It is assumed that the charge carriers of both bands have a comparable
scattering rate G0, which governs the residual resistivity. G0 is adjusted simulta-
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Parameter simulation 1 (sine) simulation 2 (AV) simulation 3 (sine)
e h e h e h

G0 [s−1] 3.0 · 1013 2.4 · 1013 − − 3.4 · 1013 2.4 · 1013

χ 4 1.5 − − 6 1
β [ms−2] − − 3.5 · 1019 8.0 · 1018 − −
GT [s−1K−2] 3.0 · 109 6.5 · 109 3.7 · 109 6.5 · 109 3.1 · 109 8.5 · 109

ε 5.5 30 3 13 7.5 15
∆ [eV] 0.307 0.307 0.255
µ [eV] 0.100 0.100 0.025

Table 7.1: Summary of the parameters for the simulation of the transport data of the
Nd1.85Ce0.15CuO4 sample.

neously for both bands to the low temperature region of the in-plane resistivity.
The anisotropy factors χ also affect the magnitude of the in-plane resistivity to a
certain extent. The T dependence of both bands is modeled in a different way. The
electron pocket seems to dominate the transport at temperatures T > 80 K, which
is also supported by the negative Hall signal. Using σxy ∝ Al (cf. Chapter 5) it be-
comes clear that the electron mean-free-path le(φ) must exceed the hole value lh(φ)
at higher temperatures. At low temperatures both quantities become comparable.
Therefore, GT,e is adjusted to the in-plane data at moderate temperatures up to 300
K. The value of GT,h is set considerably higher (approximately for a factor 2 for all
simulations) and is adjusted in relation to GT,e using the Hall data. Consequently,
lh is decreasing rapidly with temperature (vF,h is also smaller than vF,e), so that
the major part of the hole pocket becomes already incoherent at T ≈ 100 K. This
means that lh < a, and with increasing temperature all carriers on the hole pocket
violate the MIR criterion (cf. discussion in Section 5.2.3). However, this is not the
case for the electron pocket, where a small segment close to the hot spots reaches
the incoherent state at T > 200 K. Hence, for the hole pocket the parameter free
MIR limit is introduced by using the already discussed ”parallel resistor” model in
the simulation. This shunting of the resistivity ρh is responsible for the observed
reversal point in the Hall data. However, the implementation of the MIR limit for
the electron pocket does not lead to satisfying results. Especially the in-plane re-
sistivity shows a strong linearization, which cannot be compared with the reported
deviations at T > 200 K. Nevertheless, the observed deviations from the power
law towards linearity are consistent with the simulation data, which show that also
the electron pocket starts approaching gradually the MIR limit for T > 200 K.

It is mandatory to discuss the AV ansatz (simulation 2) simultaneously in order
to understand the influence of the anisotropy modulation on the transport proper-
ties. The φ dependent evolution of the mean-free-path l(φ) is illustrated in Figure
7.10. The values of β are adjusted in the same way as G0 in simulation 1, keep-
ing in mind the special form of Expression 7.11. Therefore, after dividing by vF ,
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the value for Γh
0 is comparable to that in simulation 1. Γe

0 is approximately by
a factor of 2 higher than in simulation 1, which can be explained with the lower
anisotropy in simulation 2. Thus, at low temperatures le is more isotropic in the
AV ansatz, whereas in simulation 1 the electronic contribution to the transport is
primarily caused by the regions close to the zone boundaries (compare the l val-
ues in Figure 7.10 (a)). For the hole pocket the best results are obtained when the
anisotropy factor χh is comparable to that of the AV ansatz. Hence, the T evolution
and anisotropy of lh are comparable for both simulations. The parameters for Γh,e

T
do not deviate considerably from the ones of simulation 1. As it is shown in Figure
7.9 both simulations reflect the in-plane data in an equally good manner. The Hall
signal and the Hall angle in simulation 2 comprise all important features (reversal
point, sign change), although the magnitude of RH and the temperature, at which
the sign change occurs, cannot be fully reproduced in a correct way. However, the
main evidence for the fact that simulation 2 does not reflect the physical situation
in Nd1.85Ce0.15CuO4 arises from the ∆ρ/ρ(T ) curve. The magnetoresistance is
underestimated by a factor of approximately 5 for T = 50 K and 2.5 for T = 260
K, respectively. Thus, the invoked, strange anisotropy in G0 for T → 0, as it is
derived from the AV ansatz, is not sufficient to explain the magnetoresistance data.
The sinusoidal ansatz 1 seems to reflect the transport behavior in Nd1.85Ce0.15CuO4
in a better way, as all transport quantities are simulated successfully. The aniso-
topy in l(φ) is not only reflected by ∆ρ/ρ , but also in an attenuated way by RH

and ρxx. The upturn in RH at low temperatures requires a small value for χh while
χe is adjusted to this value. At higher temperatures up to 300 K, εe is the essential
fit parameter, as the electron contribution dominates the transport. εh affects the
transport only marginally and is usually set to high values of 10 − 30 in order to
improve the Hall simulation at 300 K. The small deviations of the simulations for
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T > 200 K are most likely related to the MIR limit of the electron pockets, as dis-
cussed above. Deviations below 50 K must be interpreted considering the difficulty
of extracting accurate RH and ∆ρ/ρ data. The choice of the values for εh does not
influence the main message of this model. It shows that the strange transport prop-
erties of Nd1.85Ce0.15CuO4 can be understood in terms of conventional transport
theory using a two-band model and assuming an anisotropic scattering rate Γ.

However, one important question in the discussion of Nd1.85Ce0.15CuO4 is
still left: The influence of ∆ on the model. In simulation 1 and 2 the parame-
ters ∆ = 0.307 eV and µ = 0.10 eV are chosen, corresponding to a filling factor
of nLB = 0.988 and nUB = 0.106 for the hole and electron pocket, respectively,
from which an effective electron doping of ntot = 0.094 is deduced. In simulation
3 the values amount to nLB = 0.996 and nUB = 0.147, respectively, leading to an
effective doping of 0.143. This value for the doping is much closer to the nominal
doping n = 0.15. However, simulations have shown that the T evolution of RH and
especially the minimum of RH cannot be modeled in an appropriate way (compare
simulation 1 and 3 in Figure 7.9). The Hall signal shifts towards positive values
and the T dependence is less pronounced. One possible way to explain this dis-
crepancy between the nominal doping n = 0.15 and the effective electron number
ntot in the CuO2 sheets, as it is deduced from simulation 1, is the consideration of
a small amount of excess oxygen in the crystal, which has already been discussed
in Section 4.4.

For the overdoped Nd1.84Ce0.16CuO4 the same considerations have been made
as for the optimally doped Nd1.85Ce0.15CuO4 in order to simulate the data. The
parameters are summarized in Table 7.2 and the data are shown in Figure 7.11.
Simulation 1 fits the experimental data reasonably well. The Hall signal at low
temperatures and the sign change are clearly visible. The reversal point is shifted
by ≈ 20 K and the deviations near room temperature are again related to the MIR
limit for the electron pockets. The parameters used in simulation 1 are similar to

Parameter simulation 1 (sine) simulation 2 (sine)
e h e h

G0 [s−1] 6.5 · 1013 6.5 · 1013 7.0 · 1013 5.4 · 1013

χ 6 1.5 6 1.5
β [ms−2] − − − −
GT [s−1K−2] 2.7 · 109 7.0 · 109 3.2 · 109 1.3 · 1010

ε 4 30 3 15
∆ [eV] 0.25 0.22
µ [eV] 0.05 0.0

Table 7.2: Summary of the parameters for the simulation of the transport data of the
overdoped Nd1.84Ce0.16CuO4 sample.
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Figure 7.11: ρxx (a), RH (b), Hall angle tan θH (c) and magnetoresistance ∆ρ/ρ (d) data
(red squares) plotted versus T for an overdoped Nd1.84Ce0.16CuO4+δ single crystal together
with the simulation results. The corresponding parameters are summarized in Table 7.2.
See the text for details.

those used in simulation 1 for the optimally doped crystal. The main difference
lies in the higher values for G0 (both 6.5 · 1013 Hz), which arise when accounting
for the residual resistivity. The anisotropy factors deviate only slightly for the elec-
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tron pocket. Both T dependent scattering terms are comparable. Note again the
necessity of a different scattering amplitude GT for both pockets.

We note that the magnetoresistance is not fully consistent with the data, espe-
cially in the moderate temperature regime up to 300 K, where ∆ρ/ρ(T ) is overes-
timated by a factor of 2. Better results in ∆ρ/ρ(T ) are obtained in simulation 2 at
the expense of a good fit of the Hall signal. Simulation 2 differs from simulation
1 by using a smaller ∆. The values ∆ = 0.22 eV and µ = 0 eV are assumed for
the second fit, corresponding to a filling factor of nLB = 0.993 and nUB = 0.165,
which results in an effective doping of x = 0.158. For simulation 1, the values of
∆ = 0.25 eV and µ = 0.05 eV are used, corresponding to band filling factors of
nLB = 0.986 and nUB = 0.139, respectively. Hence, the effective doping amounts
only to ntot = 0.125. Simulation 2 underestimates the real Hall data at moderate
temperatures. The comparison of both fits shows again – analog to the optimally
doped case – the tendency of RH to move towards positive values with decreasing
∆.

Finally, the overdoped Nd1.83Ce0.17CuO4 is modeled and the results are summa-
rized in Table 7.3 and Figure 7.12. The data simulation reveals some surprises,
which are discussed in the following. From ARPES measurements a Fermi surface
reconstruction is reported in the overdoped regime at doping levels x ≈ 0.17 [1, 9].
The hot spot is filled up and a large hole-like Fermi surface with volume 1 + x,
which is centered about the S point, has been reported. Further evidence for a re-
constructed Fermi surface has been deduced from various transport measurements
[11]. Indeed, when looking at the Hall data in Figure 7.12 (b) a collapse of the
two-band model and a transition to a single hole-like band seems to be recogniz-
able. For T < 100 K, the data show a remarkable positive Hall signal. At higher
temperatures the Hall signal approaches the zero level and changes sign. However,
as already mentioned in Section 7.3, the measured signal is very small and errors of
measurement have to be taken into account. Therefore, at first a single band mod-
eling was applied and the surprising result is that both transport quantities RH(T )
and ∆ρ/ρ(T ) cannot be explained sufficiently within a single band model. For the
single band dispersion the parameters t = 0.38 eV, t ′ = 0.076 eV and t ′′ = 0.038
eV are used. The chemical potential is adjusted according to the band filling to a
value of µ = −0.03 eV. Note, that details in the band parameter do influence the
simulation result only marginally. The anisotropic scattering rate is assumed simi-
lar to the two-band model and has the form of Γ = G0 ·(1+χ ·sin2(4φ))+GT ·T 2.
The angle φ is measured from the SX connecting line in the Brillouin zone and the
integration occurs clockwise. (4φ) in the sine-term is used to account for possible
remaining influences of the hot spot regions on the charge carriers. In addition, the
MIR limit is implemented. The main result is that the shape of RH can only be
reproduced when a huge anisotropy of χ = 60 of the T independent scattering rate
is assumed and simultaneously, the anisotropy of the T dependent scattering rate is
set to zero (ε → 0). For finite ε , RH moves to higher values at moderate tempera-
tures and the Hall curve flattens. The Hall coefficient is completely overestimated



7.4. Simulation of the normal state transport 115

Parameter simulation 1 (sine) simulation 2 (sine) simulation 3 (1 band)
e h e h h

G0 [s−1] 1.4 · 1014 3.4 · 1013 2.4 · 1014 4.4 · 1013 1.7 · 1013

χ 4 4 2 3.5 60
β [ms−2] − − − − −
GT [s−1K−2] 2.0 · 109 7.0 · 109 5.0 · 109 7.0 · 109 8.5 · 109

ε 14 20 3 15 −
∆ [eV] 0.15 0.10 0.0
µ [eV] 0.02 -0.02 -0.03

Table 7.3: Summary of the parameters for the simulation of the transport data of the
overdoped Nd1.83Ce0.17CuO4 sample.

(for a factor 10 at T = 120 K) and a sign change cannot be obtained indepen-
dently from the modeling of the l-anisotropy. As already discussed in Chapter 5, a
typical non-fragmented Fermi surface for electron doped cuprates (see Figure 5.3
(a)) is always hole-like over the whole doping range, as the Stokes area Al has a
uniform positive sign. This is different for hole doping, where the Fermi surface
transforms gradually into an electron-like Fermi surface in the overdoped regime
(see Figure 5.2 (a)). In summary, there are two problems with simulations based
on a single-band model. Firstly, the positive Hall coefficient over the whole tem-
perature range and secondly, the magnetoresistance, which cannot be reproduced
in an appropriate way. For the used parameters, ∆ρ/ρ(T ) is overestimated at low
temperatures, whereas at higher temperatures the simulated value drops rapidly far
below the measured values (for about two orders of magnitude).

In view of the problems with a single band model, a two band model is also
applied to the overdoped Nd1.83Ce0.17CuO4 data, which improves the simulation
of the experimental results. For simulation 1, a band gap of ∆ = 0.15 eV is as-
sumed with a chemical potential of µ = 0.02 eV. This corresponds to a band filling
of nLB = 0.969 and nUB = 0.175, respectively. The effective doping amounts to
ntot = 0.144. The anisotropy factors χ are comparable to those used for simulating
the data of doping level x = 0.15 and x = 0.16. The main difference lies in the
choice of the high residual scattering rate G0,e for the electron pocket. However,
this is necessary in order to promote the large positive Hall coefficient at low tem-
peratures. The T dependent scattering term does not differ much from the ansatz
used for optimally doped Nd1.85Ce0.15CuO4. With this two-band ansatz the trans-
port data can be nicely fit, although there are some inconsistencies concerning the
magnitude and T evolution of the magnetoresistance. In simulation 2, ∆ is changed
to 0.10 eV and µ is adjusted by assuming an effective doping of ntot ≈ 0.17. The
corresponding band filling amounts to nLB = 0.971 and nUB = 0.199, respec-
tively. As one can see in Figure 7.12, ∆ρ/ρ(T ) is slightly underestimated and RH

is overestimated with increasing temperature. Nevertheless, the evolution of both
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Figure 7.12: ρxx (a), RH (b), Hall angle tan θH (c) and magnetoresistance ∆ρ/ρ (d) data
(red squares) plotted versus T for an overdoped Nd1.83Ce0.17CuO4+δ single crystal together
with the simulation results. The corresponding simulation parameters are summarized in
Table 7.3. See the text for details.

quantities is reproduced in a correct way.
At the end of this subsection the derived quantity tanθH(T ), which is often used

in literature rather than the coefficient RH , is discussed briefly. In this context we
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note that tanθH is not too sensitive to the T evolution and details are often smeared
out. Hence, the Hall angle is easier to model as the Hall coefficient, which can be
also seen in Figure 7.12.

7.4.2 Discussion

At the end of this Chapter the main results are summarized and a physical interpre-
tation of the main aspects is given:

1. The phenomenological ansatz of the scattering term Γe,h
tot = Γe,h

0 + Γe,h
T · T 2

(Equation 7.9) is plausible, where both the T independent and T dependent
parts have an anisotropic amplitude. It follows from the in-plane measurements
of ρab(T ) (no T -linear component) as well as from the magnetoresistance (re-
quires anisotropic amplitudes). The T 2 term might be ascribed to electron-
electron scattering or/and scattering on spin fluctuations. The modeling of
the anisotropy for both bands following a sin2(2φe) and sin2(φh) dependence
(Equation 7.10 and Equation 7.12) accounts for presumably strong magnetic
interactions of those charge carriers on the Fermi surface, which are close to the
hot spots (Figure 7.13). This anisotropy is still preserved in the limit T → 0.
In addition, the anisotropy χ0 seems to be larger for the electron pocket than
for the hole pocket. This might be ascribed to the different curvatures of both
Fermi surfaces in the vicinity of the hot spots.

2. Note, that in our two-band model AFM correlations are assumed to persist also
in the overdoped region of the phase diagram at a doping level of x = 0.17.
This is in contrast to neutron scattering experiments, where long range AFM
order is reported to disappear at a doping level of x ≈ 0.13. However, AFM
fluctuations can still exist up to higher doping levels. These fluctuations must
have a lifetime longer than the scattering time τ of the charge carriers in order
to provide an effective scattering channel.

3. From the anisotropic scattering rate it can be followed that the transport in both
bands is primarily governed by those regions of the Fermi surface, which are
most far away from the hot spots, i.e close to the Brillouin zone boundary for
the electron band and along the ΓS diagonal for the hole band. For temperatures
T > 100 K, the electron pockets dominate the transport, whereas for T < 100
K there is a remarkable contribution from the hole pocket, which increases with
increasing doping. The remarkable contribution of the hole carriers to the trans-
port at low temperatures can be easily explained by their higher mobility due to
the smaller effective mass m∗

h. However, the physical mechanism responsible
for the strong T dependent localization of the holes at higher temperatures is
unclear. The implications on superconductivity and the question whether holes
or electrons are responsible for superconductivity cannot be answered at this
stage.
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Figure 7.13: Illustration of the doping dependent underlying Fermi surfaces, which
are used for the data simulation.

4. The proposed simple two-band model reproduces very well the transport data
for x ≥ 0.15. The general trend of a steep decrease in ∆ (0.307 eV → 0.15 eV,
simulations 1) and a simultaneously increase of the hole pocket with increasing
doping coincides with ARPES results [1, 9, 10]. Nevertheless, the underlying
Fermi surfaces (Figure 7.13) do not agree with those deduced from ARPES [1]
for the same doping levels. However, concerning Fermi surface topology there
is a general discrepancy between ARPES and transport measurements [7], i.e.
between truncated arcs or arc-like segments and closed pockets in the Brillouin
zone. The Fermi surfaces for the doping levels x = 0.16 and x = 0.17 – as
they are deduced from ARPES measurements by Matsui et al. [1] – are rather
hole-like than electron-like, which is in clear disagreement with the transport
data presented in this thesis for the same doping levels.

5. Finally, the Hall coefficient RH(T ) and the magnetoresistance ∆ρ/ρ(T ) are
summarized in Figure 7.14 for all measured doping levels. It has been shown
that for doping levels x ≥ 0.15 the data can be understood in terms of a two-
band model. The characteristic temperature dependence of the transport quan-
tities, the deviations of RH from the Drude value as well as the violation of the
Kohler’s rule can be understood in terms of a pronounced anisotropic scattering
rate. In contrast, the simulation of the underdoped region turns out to be diffi-
cult, due to strong non-orbital contributions to the transport data (strong upturn
behavior in ρab(T ), negative magnetoresistance). The Hall data for the dop-
ing level x = 0.13 suggest a single band model with smaller electron pockets
around the X point in the Brillouin zone. However, simulations have shown
that the strong T evolution of RH cannot be explained within the present model
independent from the modeling of the scattering rate. The Hall data for the far
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Figure 7.14: Temperature dependence of the measured Hall coefficient RH (a) and
(b), the Hall angle tanθH (c) and the magnetoresistance ∆ρ/ρ (d) for Nd2−xCexCuO4
crystals of different doping levels. The simulation results are represented by the solid
lines. In (b) the absolute value of RH is plotted and compared with the Drude value
(solid horizontal lines) using the nominal carrier concentration n = x

V/2 .

underdoped x = 0.05 sample can be explained qualitatively. The Hall coeffi-
cient is almost T independent and reflects the Drude value n = x

V/2 (Figure 7.14
(b)), suggesting small circular electron pockets with an isotropic scattering rate.
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Chapter 8

Summary

This thesis deals with the growth and characterization of high quality single crys-
tals of the electron doped cuprates. To this end, the main aim was the growth
and characterization of a well defined sample set, which covers in narrow steps
the whole phase diagram on the electron doped side of the cuprate high tempera-
ture superconductors, thus allowing a systematic study of their magnetotransport
properties.

Systematic growth experiments on different electron doped 214 solid solutions
have revealed that Nd2−xCexCuO4 can be regarded as the most promising system,
as high quality crystals can be grown over a wide doping range from the undoped
parent compound Nd2CuO4 up to the overdoped metallic regime. The solubil-
ity limit has been found to be beyond the superconducting dome at a Ce doping
of x = 0.18. Alternatively, the electron doped compound La2−xCexCuO4 could
not be grown in crystalline form due to precipitations of the Ce dopant. Further-
more, growth experiments show that the closely related systems Pr2−xCexCuO4 and
LaPr1−xCexCuO4 are afflicted with homogeneity problems and rare earth-oxide
precipitations in the overdoped regime. Hence, these systems were not included in
the transport measurements. The solubility limit for Ce in Pr2−xCexCuO4 has been
found to be very close to the optimal doping level of x = 0.15. The high quality
of the annealed crystals is indicated by the achieved sharpness of transition curves
into the superconducting regime, which to our knowledge are the best values re-
ported so far. For Nd2−xCexCuO4 a series of high quality single crystals has been
grown in steps of ∆x = 0.01 within the doping interval 0.12 ≤ x ≤ 0.18. For the
first time it was possible to resolve the narrow superconducting dome, which shows
a parabolic behavior of Tc(x) with an expected maximum at x = 0.146. In the un-
derdoped regime there is a small deviation from parabolicity at x = 0.13, where
the long-range AFM disappears and superconductivity suddenly sets in, showing
broad transition curves.

The strong improvement of the quality of electron doped cuprate single crystals
is the result of a systematic, doping dependent investigation of the growth process
and the annealing treatment, differing from earlier growth experiments. The crys-
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tals are grown from a copper-rich flux composition by applying the container-free
TSFZ technique, in order to avoid additional contaminations coming from crucible
corrosion. The oxygen partial pressure of the growth atmosphere is the crucial,
doping dependent parameter, as the dopant Ce in the solvent promotes the oxygen
enrichment from the ambient atmosphere. This causes not only a change in the
physical properties and hence the stability of the floating zone, but also supports
the segregation of rare earth-oxides and CeO2 at the crystallization interface.

The annealing treatment is another import aspect for all electron doped com-
pounds. It is intimately connected with the appearance of superconductivity and a
reversible epitaxial intergrowth of a parasitic rare earth oxide phase. Nevertheless,
it has been shown that the macroscopic impurity phase is rather a structural by-
product than a prerequisite for superconductivity. Superconductivity occurs only
in the stoichiometric host crystal. The parasitic phase is the result of a severe treat-
ment in a pure Ar atmosphere at high annealing temperatures. This treatment close
to the stability limit of the crystals is inevitable in order to remove the interstitial
oxygen on the apex site. Thermogravimetric experiments have shown that the as
grown crystals have a doping dependent surplus of oxygen, which must occupy the
apex position within the crystal structure. This additional oxygen has only a small
co-doping effect (band filling). However, it is rather an effective source of disorder,
which suppresses superconductivity. It has been shown in annealing experiments
on an overdoped Nd1.84Ce0.16CuO4 single crystal that the disorder effect prevails
over the co-doping effect. Microscopic disorder and inhomogeneities within the
crystals can be probed by means of magnetization measurements, as they act as
effective pinning centers, which influence the magnetization curves. With the pre-
sented annealing treatment the Nd2−xCexCuO4 sample set shows low irreversibility
fields and no anomalies in the magnetization data, confirming therefore the micro-
scopic homogeneity of the crystals.

On the entire Nd2−xCexCuO4 sample set transport measurements have been
carried out and discussed within a two-band model. The out-of-plane transport re-
veals the same features as the in-plane transport and was interpreted to be weakly
incoherent. The resistivity in both directions reveals a doping dependent upturn
behavior, the onset temperature of which decreases linearly with Ce doping and
disappears at x = 0.17. The upturn behavior is rather related to AFM fluctua-
tions than to disorder induced localization effects, which is also confirmed by the
strongly anisotropic magnetoresistance. For temperatures above the upturn region
the spin contribution to the magnetoresistance is negligible and the orbital magne-
toresistance prevails. For doping levels x ≥ 0.15, it was for the first time possible
to explain the unusual behavior of the magnetotransport properties within standard
Boltzmann transport theory by assuming a two-band model and an anisotropic scat-
tering rate. The transport data clearly reflect the Fermi surface fragmentation at the
hot spot regions due to strong interactions of the charge carriers with the AFM cor-
relations. The simulations show that ∆, which is a measure for the AFM correlation
strength, decreases steadily with increasing doping but does not drop to zero for the
doping level x = 0.17. Thus, the Fermi surface is not yet fully reconstructed at this
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doping level. For T < 100 K there is a remarkable contribution of a small hole
pocket to the normal state transport, which can be observed at best in the temper-
ature evolution of the Hall coefficient. The implications on superconductivity and
the question whether holes or electrons are responsible for superconductivity are
still open questions and could not be answered within the present thesis.
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[67] V. B. Zabolotnyy, S. Borisenko, A. A. Kordyuk, J. Fink, J. Geck, A.
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