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Abstract

Quantum computing is one of the most promising technologies in today’s research

providing major improvements in computational speedup and cryptography.

To realize a quantum computer it has to be possible to manipulate, store and read

out different quantum states. These tasks can be reached by coupling a transmon

qubit capacitively to two distinct modes of a single 3D cavity. Then a mode with

high Q-factor is used for long storage and another mode with low Q-factor is used for

fast readout. In this design manipulation of the qubit states via microwave signals

is reached through the readout port of the cavity.

The goal of this thesis is to design, optimize and finally test a new geometry for such

a 3D quantum memory using a horseshoe architecture. The first part consists of a

simulation part, where the cavity design is created and optimized. Subsequently,

the new cavity is experimentally tested at cryogenic temperatures. To thoroughly

analyze the characteristics of the cavity and the qubit, measurements with and

without the qubit are carried out. As a final step a quantum memory protocol is

implemented.
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Chapter 1

Introduction

Since Konrad Zuse built the first Z1 in 1938 [1], the working principle of a computer

consists of manipulating, storing and reading out information. Until today, comput-

ers have become more and more powerful by increasing the number of transistors

while simultaneously decreasing their size. But still there are certain problems that

cannot be solved on such a classical computer within human timescales.

A promising solution is the quantum computer which is theoretically proven to

allow for an exponential speedup for certain problems such as prime factoriza-

tion [2]. Recently, Google has provided the first experimental evidence for quantum

supremacy [3]. With 53 superconducting qubits, they solved a specific problem in

200 seconds, whereas a state-of-the-art classical supercomputer would have taken

about 10 000 years. Despite its impressive character, this achievement can only be

considered as the fulfillment of an intermediate milestone in the research field of

quantum computing. For instance, to perform Shor’s algorithm to factorize a 1000

bit number, a few hundreds of millions of qubits are needed [4].

Furthermore, in reality, a quantum system is never completely isolated from the

environment, so uncontrolled interactions can appear between the qubits and the

environment [5]. As a consequence, quantum effects are not observable anymore

after a characteristic timescale called the decoherence time. So, future research ac-

tivities have to strive towards fully fault-tolerant quantum computing [6].

When this goal is reached, quantum computing will not only be able to outperform

classical computers, but will also be a major resource for applications such as quan-

tum communication [7, 8] and quantum cryptography [9].

One of the most successful physical realizations of quantum computing is the field

of circuit quantum electrodynamics, where a superconducting artificial atom, i.e.,

the qubit, is coupled to a cavity [10]. A major advantage is that the environment

does not directly couple to the qubit, so the noise is reduced and the lifetime of the
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Chapter 1. Introduction

qubit extended [11]. The cavity can serve two functionalities: as readout and as

memory device for the qubit information. Due to its technological simplicity, the

cavity lends itself to act as a long-lived storage device for quantum information.

Besides such a quantum memory, which would be provided by a perfectly isolated

system, a fast readout is also needed for building a computer. These two goals are

apparently contradictory when trying to implement them with a single cavity mode.

So, one solution to achieve fast readout and long-lived storage simultaneously is

to couple two cavities to the qubit, one with a low Q-factor for readout and one

with a high Q-factor for storage [12]. As this solution is very bulky, one can also

use the multimode structure of a cavity to couple the qubit to two distinct modes

of a single cavity. The result is a compact and scalable quantum memory which

has already been investigated by E. Xie et al. [13, 14]. They use a rectangular 3D

microwave cavity and a transmon qubit to realize the quantum memory. Notably,

3D microwave resonators are known to currently outperform their 2D counterparts,

reaching millisecond coherence [15].

However, the rectangular cavity design also comes with some difficulties [13]. Hence,

the goal of this thesis is to replace the simple rectangular cavity design and create

an optimized geometry for a 3D quantum memory using a horseshoe architecture.

The theoretical background necessary for that is given in Chapter 2. Here, the prop-

erties of cavity and qubit and the coupling between them are introduced. Chapter 3

presents the simulation part of this work, where the cavity is designed and optimized

with respect to fast readout and long storage times. In order to test the final horse-

shoe design it is built by the workshop at WMI. The experimental techniques needed

for the measurement part including the setup, frequency domain measurements and

pulse protocols for time domain measurements are explained in Chapter 4. Chapter 5

finally states the measurement results obtained from the horseshoe cavity exclud-

ing and including qubit chips. It is shown that the new geometry basically works

as a quantum memory and that a quantum memory protocol can be implemented.

In Chapter 6, the results are summarized and further improvements for the cavity

design are discussed.
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Chapter 2

Theory

2.1 3D microwave cavity

In general, a 3D cavity is a closed hollow geometry that restricts the electromagnetic

field to certain boundary conditions due to the metallic walls. Comparable to an

optical cavity, where light is reflected back and forth between two mirrors, in this

case microwaves bounce back and forth between the walls of the cavity thus being

confined to the cavity. These electromagnetic waves can be described by transverse

electric (TE) and transverse magnetic (TM) modes where the electric and magnetic

fields oscillate perpendicular to the direction of propagation and to each other.

Only certain modes fulfill the boundary conditions, such as ~Et = 0 at the position

of the walls. These modes represent standing waves inside the cavity oscillating

at geometry-dependent eigenfrequencies. The mode with the lowest eigenfrequency

is referred to as the fundamental mode or TE101 mode. In case of a rectangular

cavity the different modes are straightforward to calculate [16]. For more complex

structures, such as the horseshoe geometry discussed in this thesis, a simulation

software has to be used. Figure 2.1 shows the first electric and magnetic mode of

this geometry simulated with CST Microwave Studio [17].

Quantum mechanically the cavity modes can be described by the Hamiltonian of a

harmonic oscillator [18]:

Ĥ = ~ωc(â
†â+

1

2
), (2.1)

with the cavity frequency ωc and the photon creation and annihilation operators â†

and â.
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Chapter 2. Theory

high

low

(a) (b)

Figure 2.1: (a) First electric and (b) first magnetic mode of the horse-
shoe geometry. The red rectangle marks the input and
output port. The color code shows the field strength in
arbitrary units, the arrows indicate the field orientation.

2.1.1 Quality factor

A measure for the total energy loss of the cavity is given by the loaded Q-factor,

which is defined as the ratio of total energy to dissipated energy [16]:

QL =
~ωc

~∆ω
=

fc

∆f
. (2.2)

Here fc =ωc/2π accounts for the cavity’s resonance frequency and ∆f = ∆ω/2π for

the full width at half maximum (FWHM) of the power spectrum. One differentiates

between external and internal losses quantified by external and internal Q-factors

Qx and Q0 or external and internal loss rates κx and κ0:

1

QL

=
1

Qx

+
1

Q0

=
κx + κ0

2πfc

. (2.3)

Details on which effects are responsible for either of them are discussed in the next

two sections.

If the external Q-factor is larger than the internal one the system is undercoupled.

On the other hand, if the internal quality factor is larger than the external one the

system is overcoupled. In case external and internal quality factors are equal the

system is critically coupled.
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2.1. 3D microwave cavity

2.1.2 External losses

External losses of the cavity occur due to the coupling to output ports. In this

thesis a dipole antenna which simultaneously serves as input and output port is

used for electric field coupling. The rate of photons which leave the cavity through

the antenna is then given by the external coupling rate κx:

κx =
~p · ~E
~

. (2.4)

Inserting the dipole moment ~p= q ~lant with the length of the antenna lant and the

charge q=Cx

∫
E||, antdx, where Cx is the coupling capacitance and E||, ant is the

electric field parallel to the antenna, the coupling rate can be rewritten as [14]:

κx =
Cx

~

(∫
E||, ant dx

)2

. (2.5)

A measure for the total energy loss caused by the coupling to the output antenna

is given by the external Q-factor from Eq. (2.3) which is proportional to 1/κx.

2.1.3 Internal losses

The internal losses which mainly determine the internal Q-factor are surface losses

and losses due to the insertion of a dielectric:

1

Q0

=
1

Qsurf

+
1

Qdiel

. (2.6)

Surface losses are caused by surface currents induced by the magnetic field tangential

to the surface [16]. It can be shown that the Q-factor Qsurf is proportional to the

inverse of the surface resistance. As in this thesis a superconducting cavity is used,

the surface resistance is very low, providing a high Qsurf .

Dielectric losses arise as the qubit is placed inside the cavity on a silicon chip. A

lower bound for the Q-factor Qdiel can be calculated to [16]:

1

tan(δ)
< Qdiel, (2.7)

with tan(δ) being the loss tangent of the dielectric. Equality holds when the cavity

is completely filled with the dielectric. In addition to an energy loss the insertion

of a dielectric leads to a slight downshift of the cavity’s resonance frequency due to

the change in permittivity. For the case of a simple rectangular cavity and typical
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Chapter 2. Theory

dimensions the shift accounts to 4 % [14].

2.2 Superconducting transmon qubit

2.2.1 Qubits

Quantum bits, usually referred to as qubits, can be implemented with any well de-

fined two-level quantum system. As in most real systems higher levels also exist, it

is important that these higher levels are not excited during qubit manipulations [19].

So higher level states should be well separated from ground and excited state. Nat-

ural examples for quantum two-level systems are spin-1/2 systems [20] or light of

different polarizations. [21]. In this thesis superconducting circuits provide the two-

level system for the qubit.

Different from classical bits, which either have the value “0” or “1”, a qubit can be

in an arbitrary superposition of two basis states:

|ψ〉 = α |g〉+ β |e〉 . (2.8)

Here α and β are complex numbers. After a measurement, the qubit would be

in the ground state with probability |α2| and in the excited state with probability

|β2|. As the total probability should add up to unity, α and β have to satisfy the

normalization condition |α2|+ |β2|= 1. Thus all qubit states can be visualized on

the surface of a unit sphere, the Bloch sphere. In the Bloch sphere representation

the qubit state can be rewritten as [22]:

|ψ〉 = cos
θ

2
|g〉+ eiϕ sin

θ

2
|e〉 , (2.9)

with the polar angle 0≤ θ≤ π and the azimuthal angle 0≤ϕ≤ 2π. A graphical

illustration of the Bloch sphere is depicted in Fig. 2.2.

Rotations of the qubit state about the coordinate axes of the Bloch sphere are

described using the Pauli matrices:

σ̂x ≡

0 1

1 0

 σ̂y ≡

0 −i

i 0

 σ̂z ≡

1 0

0 −1

 . (2.10)

6



2.2. Superconducting transmon qubit

Using the Pauli z-matrix, the qubit Hamiltonian can be written as:

Ĥq = ~ωqσ̂z. (2.11)

x

φ

θ
IΨ›

y

z
|g

|e›

›

Figure 2.2: Bloch sphere representation of the qubit state |ψ〉.

2.2.2 Josephson junction

S1 S2

Ψ1 Ψ2

I

Figure 2.3: Two superconductors S1 and S2 separated by a thin insula-
tor I form a Josephson junction. The superconducting state
is described by the macroscopic wave functions ψ1 and ψ2.

Since a harmonic oscillator such as the one provided by an LC-circuit is a linear

system, it alone cannot be used as a qubit (see Sec. 2.2.1). However, if an anhar-

monicity is added the system turns out to be nonlinear, providing the toolkit for

the creation of a qubit. In circuit quantum electrodynamics a Josephson junction

is used as an anharmonicity. It consists of two superconductors separated by a thin

insulating barrier as schematically shown in Fig. 2.3. This construction gives rise to

7



Chapter 2. Theory

the Josephson effect [23], which is described by the two Josephson equations:

Is = Ic sinϕ, (2.12)

∂ϕ

∂t
=

2π

φ0

V. (2.13)

To better understand the physical meaning of these equations, we introduce the su-

perconducting state, which is fully described by macroscopic wave functions of the

form ψ=
√
nse

iΘ. Here ns refers to the density of superconducting electrons and Θ

is the phase.

The first Josephson equation [cf. Eq. (2.12)] states that, in the absence of any poten-

tial, the supercurrent through a Josephson junction varies sinusoidal with the phase

difference ϕ= Θ2−Θ1. The critical current Ic defines the current below which the

system is in the superconducting state.

According to the second Josephson equation [cf. Eq. (2.13)], an externally applied

voltage across the junction leads to a change of the phase difference ϕ in time.

The Josephson junction stores a finite energy which can be considered as a binding

energy due to the overlap of the two macroscopic wave functions. This energy is

called the Josephson coupling energy and is given by:

Epot =
φ0Ic

2π
(1− cosϕ) = EJ(1− cosϕ). (2.14)

Furthermore, there is a kinetic energy as the two separated superconductors can be

seen as a capacitance. This so-called charging energy is given by

Ekin =
Q2

2C
= 4ECN

2, (2.15)

with charge Q, number of Cooper pairs N = Q
2e

and capacitance C.

To describe the system quantum mechanically, a canonical quantization N→ N̂ = −
i ∂
∂ϕ̂

and ϕ→ ϕ̂ has to be performed.

Josephson energy and charging energy define the operation regime of the Josephson

junction. The cosine in the Josephson energy makes the junction nonlinear so that

it provides the required anharmonicity for the creation of a qubit.

8



2.2. Superconducting transmon qubit

2.2.3 Transmon qubit

The transmon qubit (transmission line shunted plasma oscillation qubit) is cur-

rently the most successful qubit with respect to coherence times [24]. Its geometry

is mainly adopted from the Cooper pair box (CPB), but the ratio of Josephson

energy to charging energy at which it is operated is different. The CPB uses the

charge regime where EC�EJ, but encounters the problem that it is very sensitive

to charge noise. As the charge dispersion decreases exponentially with increasing

EJ/EC while the loss of anharmonicity obeys a weak power law, the transmon qubit

operates at EJ/EC≈ 50. Consequently, the charge noise sensitivity is reduced sig-

nificantly while maintaining an anharmonicity large enough to realize a two-level

system.

CB CJ, EJ

Cg

E

Ege

Eef

g  

e  

f  

(a) (b)
Superconducting island 

Figure 2.4: (a) Circuit representation of the transmon qubit. The trans-
mon qubit consists of a Josephson junction with capacitance
CJ and Josephson energy EJ, a large shunting capacitance
CB and capacitance to ground Cg. (b) Energy level scheme
of the transmon qubit.

As depicted in Fig. 2.4, the transmon qubit consists of a Josephson junction with

capacitance CJ and Josephson energy EJ, a large shunting capacitance CB and capac-

itance to ground Cg. The charging energy can be seen as the energy required to add

each electron of a Cooper pair to the island. So the total capacitance that contributes

to the charging energy is a parallel connection of CB and CJ connected in series to the

ground capacitance Cg, which accounts to CΣ =Cg(CB +CJ) / (CB +CJ +Cg) [25].

The Hamiltonian is given by:

Ĥ = 4EC(N̂ − N̂g)2 − EJ cos ϕ̂. (2.16)

Solving this Hamiltonian with perturbation theory leads to the following first two

9



Chapter 2. Theory

transition energies Ege and Eef and the anharmonicity α [26]:

Ege = E1 − E0 ≈
√

8ECEJ − EC, (2.17)

Eef = E2 − E1 ≈
√

8ECEJ − 2EC, (2.18)

α ≡ Eef − Ege ≈ −EC. (2.19)

2.3 Compact 3D quantum memory

lq

Figure 2.5: Sketch of the transmon qubit. The shunting capacitance
is illustrated by the two paddles and serves as an electric
dipole antenna with length lq. The Josephson junction is
represented by the cross.

The large shunting capacitance of the transmon qubit can be seen as an electric

dipole antenna of length lq which is depicted in Fig. 2.5. So a transmon qubit

placed inside a cavity couples to the cavity electric field parallel to lq with coupling

constant [14]:

g =
−2e~lq · ~Erms

~
. (2.20)

Here ~Erms is the root mean square of the vacuum electric field.

The qubit used in this thesis operates in the strong coupling regime where the

coupling constant g is much larger than the qubit decay rate γ and the cavity decay

rate κ:

g � γ, κ. (2.21)

10



2.3. Compact 3D quantum memory

Furthermore, the coupling constant g is much smaller than the cavity and qubit

eigenfrequencies ωc and ωq:

g � ωc, ωq. (2.22)

Considering these conditions the system can be described with the Jaynes-Cummings

Hamiltonian [11]:

ĤJC = ~ωc(â
†â+

1

2
) +

~ωq

2
σ̂z + ~g(âσ̂+ + â†σ̂−), (2.23)

which is the sum of a resonator, qubit and interaction term, respectively.

2.3.1 The dispersive regime

Control and readout of the transmon qubit with the help of the cavity can be

achieved by operating the system in the dispersive regime [11]. Here, the detuning

∆ between the eigenfrequencies of qubit and cavity is much larger than the coupling

constant g:

∆ = ωq − ωc � g. (2.24)

To see what exactly happens in this regime and why it is so useful a unitary trans-

formation Û = exp(g/∆(âσ̂+ − â†σ̂−)), which cancels the cavity–qubit interaction

to lowest order, is performed. Expanding the transformed Hamiltonian to second

order in g/∆ yields the following result [11]:

ÛĤJCÛ
† ≈ ~(ωc +

g2

∆
σ̂z︸︷︷︸

AC Stark
shift

)â†â+
~
2

(ωq +
g2

∆︸︷︷︸
Lamb
shift

)σ̂z. (2.25)

The presence of the qubit causes a dispersive shift χ of the cavity frequency depend-

ing on the qubit state

ω̃c = ωc +
g2

∆
σ̂z ≡ ωc + χσ̂z, (2.26)

which is called the AC Stark effect. Therefore a measurement of the transmission

amplitude or phase of the cavity provides information on the qubit state.

As the transmon qubit is no perfect two-level system, contributions of higher energy

levels result in an effective Hamiltonian [26]:

Ĥeff =
~ω′q
2
σ̂z + ~(ω′c + χ′σ̂z)â

†â, (2.27)

11



Chapter 2. Theory

with a renormalized qubit transition and cavity resonance frequency ω′q =ωq +χ01

and ω′c =ωc−χ12/2. The effective dispersive shift χ′ which is measured experimen-

tally is given by:

χ′ = χ01 −
χ12

2
, (2.28)

with χij ≡ g2
ij/(ωij −ωc). Here, ωij =ωj −ωi are the frequency differences between

the different energy levels, while the transition from ground state to excited state

ω01 is defined as the qubit frequency ωq. The coupling of the cavity to higher levels

of the qubit increases as gi,i+1≈
√
i+ 1 g while g is the coupling to the transition of

ground and excited state.

With the definition of the anharmonicity α from Eq. (2.19) the effective dispersive

shift can be rewritten as:

χ′ ≈ g2

∆

α

~∆ + α
= χ01

α

~∆ + α
(2.29)

2.3.2 AC Stark shift

ωq’ + Χ’

1  

0  

E/ħ
2  

0  

g e

ωc’ - Χ’

ωc’ + Χ’ωb/2
1  

Figure 2.6: Energy spectrum of a coupled qubit–cavity system in the
dispersive regime. The blue arrows indicate the blue side-
band (BSB) transition which can be driven via a two-photon
process.

As discussed in Sec. 2.3.1, the coupling of the qubit to the radiation field of the

cavity shifts the resonator frequency which is used for dispersive readout of the

qubit state [27]. Correspondingly, the resonator also influences the qubit. This

influence can be seen by rearranging the terms of the Hamiltonian in Eq. (2.25)

which gives rise to a shifted qubit frequency ω̃q [28]:

ω̃q = ωq + 2nχ′ + χ′. (2.30)

12



2.3. Compact 3D quantum memory

The second term corresponds to an AC Stark shift proportional to the photon num-

ber n= 〈â†â〉 inside the cavity and the third term corresponds to a Lamb shift due

to the coupling to vacuum fluctuations.

The resulting energy level scheme of the dispersively coupled qubit–cavity system is

depicted in Fig. 2.6.

2.3.3 Control of qubit–cavity system

In order to manipulate and control the qubit–cavity system, it is driven with coherent

microwave pulses via the antenna port. Depending on frequency, power and length

of these pulses different operations can be performed. As mentioned in Sec. 2.3.1,

driving the system near the cavity resonance frequency leads to a measurement of the

qubit state. On the other hand, irradiation close to the qubit resonance frequency

allows to control the qubit state, for instance the qubit can be driven from the

ground state to the excited state.

An external microwave drive that enters the resonator via the antenna port can be

described by the Hamiltonian [11, 29]:

ĤD = ~Ωd(â†e−iωdt + âe+iωdt), (2.31)

with the amplitude Ωd and the frequency ωd. Here, the actually applied oscillating

drive is approximated by a rotating drive.

The total Hamiltonian of the system is then given by the Jaynes-Cummings Hamil-

tonian from Eq. (2.23) plus the drive:

Ĥ = ĤJC + ĤD. (2.32)

To examine the effect of the drive on the qubit–cavity system, the Hamiltonian is

transformed to a displaced frame which cancels the driving term [30]. Here the

unitary is the displacement operator [31]:

D(α) = exp(αâ† − α∗â), (2.33)

which transforms the Hamiltonian to:

Ĥ → D̂ĤD̂† + i~ ˙̂
DD̂†

= ~ωcâ
†â+ ~

ωq

2
σ̂z + ~g(âσ̂+ + â†σ̂−) + ~g(−ασ̂+ − α∗σ̂−), (2.34)
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Chapter 2. Theory

where α(t) has been chosen such that the driving term in the resulting Hamiltonian

vanishes. An explicit calculation of the displaced frame transformation is shown in

App. A. Moving the Hamiltonian from Eq. (2.34) to a frame rotating at frequency

ωd for both the qubit and the field operators and dropping any transient in α(t)

leads to:

Ĥ = ~∆câ
†â+ ~

∆q

2
σ̂z + ~g(âσ̂+ + â†σ̂−) + ~

ΩR

2
σ̂x. (2.35)

Here ∆c =ωc−ωd is the detuning between cavity and drive, ∆q =ωq−ωd is the

detuning between qubit transition frequency and drive, and ΩR is the Rabi frequency

defined by:

ΩR = 2
Ωdg

∆c

. (2.36)

From this Hamiltonian, the effect of an external drive can be seen directly: A drive

near the qubit transition frequency leads to a rotation of the qubit Bloch vector

about the x̂-axis. This phenomenon is called Rabi oscillation, because the qubit

state oscillates between the ground and excited state with the Rabi frequency. So,

depending on the pulse length of the drive, the qubit can be prepared in any possible

azimuthal angle. For instance, a pulse that excites the qubit from the ground state

to the excited state is called a π-pulse.

It is also possible to apply a drive at the sum of qubit and cavity frequency, thus

creating a photon in the cavity and an excitation in the qubit [32]. This transition

is called the blue sideband (BSB) transition which is depicted in Fig. 2.6. Due to

parity conservation, the BSB transition is a two photon process [33, 34].

2.4 Quantum coherence and decoherence

As in reality the environment interacts with the qubit, quantum effects are not ob-

servable anymore after a characteristic time. The excited state decays exponentially

to the ground state on a time scale T1, which is referred to as energy relaxation

time. Furthermore, after the dephasing time Tϕ, the phase information of the qubit

is lost. In real systems both energy relaxation and dephasing occur simultaneously.

The decoherence time T2 is related to the energy relaxation time and dephasing time

via the following formula [35]:

1

T2

=
1

2T1

+
1

Tϕ
. (2.37)
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2.4. Quantum coherence and decoherence

2.4.1 Purcell effect

As the cavity provides a different environment compared to an open system, it

influences the lifetime of the qubit excited state. This phenomenon is called the

Purcell effect. In other words, the presence of the cavity can enhance or suppress

the spontaneous emission of the qubit depending on the detuning between qubit

and cavity. The dispersive regime, where qubit and cavity are far detuned (see

Sec. 2.3.1), suppresses the spontaneous qubit emission so the cavity protects the

qubit excited state from decaying [36]. The qubit decays with the so called Purcell

decay rate:

κP =
( g

∆

)2

κ, (2.38)

where κ= 2π∆f is the average photon loss rate.

As the cavity is a multimode 3D cavity, a better description of the Purcell decay

rate is given by [37]:

κ3D
P =

Re[Y (ω)]

2πCΣ

, (2.39)

where the cavity admittance Y (ω) can be obtained by a CST simulation.
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Chapter 3

Horseshoe memory architecture

This chapter focuses on the design and optimization of the horseshoe quantum

memory. Simulations are performed with the finite-element method simulator CST

Microwave Studio [17], which is a powerful tool for electromagnetic field simulations

in the microwave frequency range. Within the scope of this thesis it is used to model

a 3D horseshoe cavity and optimize its geometric parameters with respect to the

requirements of a compact quantum memory:

� The electromagnetic mode structure of the cavity should provide one mode

appropriate for readout and another mode for storage purposes. The cor-

responding optimization consists of maximizing the external Q-factor of the

storage mode and minimizing the external Q-factor of the readout mode.

� Qubits should be positioned in such a way that they couple to both readout

and storage mode.

3.1 Limitations of simple rectangular architecture

A rectangular cavity is the simplest design for an easily accessible multimode struc-

ture where the overcoupled TE101 mode is used for dispersive readout and the

undercoupled TE201 mode is used for information storage [13]. However, there are

several limitations regarding the rectangular design. For instance, the external qual-

ity factor of the storage mode, which should be as high as possible is very sensitive

to antenna positioning inaccuracy. If the antenna is displaced by only 0.14 mm from

the optimal position, the external Q-factor of the storage mode decreases to the

level of the internal Q-factor [14]. Thus the overcoupled regime is reached leading

to a faster qubit decay and lower storage times.
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Chapter 3. Horseshoe memory architecture

Furthermore, the frequency of the next higher cavity mode is very close to the stor-

age mode frequency; the frequency gap is only about 45 MHz [14]. An undesired

excitation of the next higher mode instead of the storage mode would also lead to

shorter storage times as the next higher mode is strongly coupled to the antennas.

To overcome these limitations, the aim of this thesis is to design and test the horse-

shoe geometry as a 3D quantum memory.

3.2 Finite-element simulations of the horseshoe

geometry

The common CST workflow in a first step creates the structure to be modeled, deter-

mines the corresponding materials and defines a waveguide port where energy enters

and leaves. Then, a mesh is created and the simulation engine can be started. To

determine the electric and magnetic eigenfrequencies with corresponding field distri-

butions of the structure, CST provides the eigenmode solver. This solver is also able

to calculate external and internal Q-factors. To optimize different model parameters

for a specific goal, the optimizer can be used. Another useful tool is provided by the

parametric sweep. Here, the simulation results can be shown for different values of

a specific geometric parameter. Another solver used in this thesis is the frequency

solver. The results of this simulation yield the scattering parameters of the structure.

For all parameter simulations, the 3D horseshoe geometry is modeled as a vacuum

surrounded by a perfect electrical conductor (PEC), as shown in Fig. 3.1 (a). As CST

is not able to simulate a superconductor, cavity casing and antenna pin are always

simulated as PEC. In reality, the cavity casing is fabricated from aluminum with a

purity of 99.99 %. The cavity is operated well below the superconducting transition

temperature which justifies the PEC approximation. Transmon qubit chips are

simulated as a silicon brick of corresponding size with εr = 11.9 and µr = 1. The CST

material library provides two different types of silicon: “silicon lossy” with a finite

electric conductivity and “silicon loss free”. In experiment, high resistivity silicon

with a natural silicon oxide layer1 is used. At low temperatures, silicon behaves as an

insulator with vanishing electric conductivity. However, as the simulation assumes

a perfect dielectric whereas in reality the silicon substrate certainly contains a finite

amount of defects, simulations are performed with both “silicon lossy” and “silicon

1CrysTec GmbH Kristalltechnologie
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3.2. Finite-element simulations of the horseshoe geometry

loss free” chips.

The final cavity design is then imported as a CAD drawing to CST [cf. Fig. 3.1 (b)]

to conduct a final simulation check before the cavity is fabricated by the workshop.

 (a)        (b)

y
x

z

Figure 3.1: (a) CST cavity model. The blue vacuum is surrounded
by PEC (not visible). Silicon chips are depicted in green.
(b) CST cavity model of imported CAD cavity drawing.
Vacuum is depicted in blue and PEC in grey.

3.2.1 Horseshoe cavity design

(a) (b)pin depth

recess w
idth

gap

recess height

length
y
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width

y

x

z

x

Figure 3.2: Cavity design parameters. (a) Relevant design parameters
of a cross section through the antenna plane. The antenna is
depicted in grey. (b) Xz-profile of the cavity with relevant
design parameters. The blue color code indicates vacuum.
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Chapter 3. Horseshoe memory architecture

In the following, the optimization process of the horseshoe cavity is described. For

this task, all relevant design parameters are sketched in Fig. 3.2.

The width of the cavity is fixed to 5 mm, so that our standard qubit chip fits in and

can be fixed easily. Details on the qubit chip placement can be found in Sec. 3.2.3.

The resonance frequency of the cavity mainly depends on its lengthx, lengthy and

height. CST provides a tool, that optimizes these parameters in predefined ranges

to achieve any required eigenfrequency. This is done by starting the frequency solver

and setting the target frequency to be the one with minimum reflection in the opti-

mizer. For the final cavity design in this thesis the following parameters are used:

lengthx = 40 mm, lengthy = 24.5 mm and height= 20 mm.

To achieve a cavity design that provides an overcoupled readout mode and, si-

multaneously, an undercoupled storage mode, gap, pin depth, recess width and

recess height are optimized. For this task, the optimizer of the eigenmode solver is

used and the following optimization goals are defined:

� QRO
x < 1000

� QS
x > 1015

� QS
x/Q

RO
x > 1014.

The parameters gap and pin depth are finally optimized to 4.73 mm, recess width

to 20 mm and recess height to 9.33 mm. As this value for the recess height is more

difficult to build by the workshop, it is set to 10 mm, which does not make a major

difference in the Q-factor performance.

In order to prevent the development of high electric fields due to sharp corners, edges

are rounded. With the help of a parametric sweep, the optimal radius is determined

to be 2.3 mm.

3.2.2 Horseshoe mode structure

The electric field distribution of the different cavity modes is simulated with the CST

eigenmode solver and depicted in Fig. 3.3 for the first 16 modes. For the first mode

[cf. Fig. 3.3 (a)], the electric field mainly lives in the recess of the cavity and runs

parallel to the connected dipole antenna. Thus, according to Eq. (2.5), it couples

strongly to the antenna resulting in a low external Q-factor which is appropriate for

a readout mode. For the final cavity model from Fig. 3.1 (b), the simulated external

Q-factor is given by QRO
x = 1105.90.

In contrast, for the second mode [cf. Fig. 3.3 (b)], the electric field mainly lives in the
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3.2. Finite-element simulations of the horseshoe geometry

arms of the horseshoe geometry. At the antenna position, there is nearly no field,

so the external Q-factor of this mode is very high which is suitable for a storage

mode. For the final cavity design from Fig. 3.1 (b), the simulated external Q-factor

is QS
x = 2.18 · 1012.

(a) 7.34 GHz  (b) 7.66 GHz  (c) 8.45 GHz  (d) 9.92 GHz

(e) 10.80 GHz (f) 12.03 GHz (g) 12.65 GHz (h) 13.94 GHz

(i) 14.46 GHz  (j) 15.005 GHz (k) 15.01 GHz (l) 15.32 GHz

(m) 15.33 GHz (n) 15.57 GHz (o) 15.64 GHz (p) 16.09 GHz

low high

Figure 3.3: Simulated electric field distribution of the first 16 cavity
modes for a cavity including two silicon chips. Results for
the material silicon lossy and loss free do not make a dif-
ference in this case. The red rectangle marks the input and
output port. The color code shows the field magnitude in
arbitrary units.

One advantage of this horseshoe design is the frequency gap between the storage

mode in Fig. 3.3 (b) and the next higher mode in Fig. 3.3 (c). With 790 MHz, it is
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Chapter 3. Horseshoe memory architecture

more than 17 times larger than the one for the rectangular cavity design [14] and

thus it is unlikely that the next higher mode is excited unintentionally.

3.2.3 Chip placement

To guarantee for a symmetric field distribution, the horseshoe cavity includes two

silicon chips of size 3.5× 10× 0.525 mm3 which either contain a qubit or serve as

dummy chips.

The chips should be positioned in such a way that the qubits couple to both readout

and storage mode. Thus the electric field component in parallel to the qubits, which

in this thesis is the y-component, should be as high as possible. On the other hand

internal losses caused by the insertion of the chips should be minimized. As high

electric fields at the chip position lead to higher dielectric losses and thus lower

internal Q-factors, a comprise regarding the chip placement has to be found.

y

x
0

Figure 3.4: Cavity cut through the chip plane. In the simulation, the y-
component of the electric field is evaluated along the black
curve with origin 0.

To examine the y-component of the electric field along the curve depicted in

Fig. 3.4, CST provides the “Evaluate Field on Curve” tool as a postprocessing step

in the eigenmode solver. The electric field is distributed symmetrically with respect

to the arms of the cavity, so when in the following a position of the first arm is

discussed, the same results apply to the opposite position of the second arm.

To get an impression of the electric field for the different cavity modes, simulation

results for a cavity model without the chips are plotted in Fig. 3.5 (a). Here the

maximum Ey-field for the storage mode is reached at a curve position of 24 mm.

The maximum of the readout mode at 32 mm is also the position, where storage

mode and readout mode have the same Ey. An advantage of the cavity design is

that the next higher mode has its maximum at 16 mm and drops constantly for
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3.2. Finite-element simulations of the horseshoe geometry

higher positions. So the chips could be easily positioned in a way that they couple

strongly to readout and storage mode, while minimizing the coupling to the next

higher mode.
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Figure 3.5: (a) and (c) Simulated y-component of the electric field eval-
uated along the curve depicted in Fig. 3.4. In (a) the simu-
lation model does not include the chips while in (c) the chip
areas are marked in grey. (b) Simulated y-component of the
electric field evaluated at the center of the chip position for
different chip center positions.

As the insertion of a dielectric affects the electric field distribution, a simulation

including the chips has to be performed. A parametric sweep allows to evaluate the

electric field along the curve for different chip positions. Here “position” refers to

the distance between curve origin and chip center. Figure 3.5 (b) plots the Ey-field

at the chip center for different chip positions. The storage mode is not very sensi-
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Chapter 3. Horseshoe memory architecture

tive to different chip positions: The maximum Ey-field is reached for a chip position

at 27 mm, still maintaining 98 % at 20 mm and 32 mm. The readout mode has a

maximum at 32 mm, constantly dropping to 92 % at 27 mm and 82 % at 20 mm. An

equal coupling constant for readout and storage mode can be reached for a chip

position at 35 mm, where the storage mode has dropped to 74 % and the readout

mode to 83 % of their maximum Ey-field. The next higher mode has its maximum

at 11 mm, constantly dropping for higher chip positions. At 21 mm the next higher

mode crosses the readout mode and reaches its minimum at 32 mm with only 4 % of

the readout mode Ey-field. So if the main criterion for an appropriate chip place-

ment consisted in reaching a maximal Ey-field for readout and storage mode while

maintaining a vanishing Ey-field for the next higher mode, a chip position between

27 mm and 32 mm would be chosen.

The second criterion which has to be taken into account when placing the chips

are dielectric losses and corresponding internal Q-factors. For this simulation, the

cavity model has to include the cavity casing consisting of PEC. Dimensions of the

cavity casing (cf. App. B) do not affect the inner cavity performance, so they are

chosen to be as small as possible in order to cool down fast and save space inside

the measurement cryostat.

With the help of the “Loss and Q Value from H-Field” tool, dielectric losses and in-

ternal Q-factors can be evaluated. Here, CST uses the expression “TotalQ” instead

of internal Q-factor. When choosing “silicon loss free” as the chip material, the in-

ternal Q-factor only includes surface losses and largely does not depend on the chip

position. For chip positions from 15 mm to 32 mm, the internal Q-factors of readout

and storage mode are simulated to QRO
0 = (1.03–1.04) ·106 and QS

0 = (1.09–1.10) ·106.

When choosing “silicon lossy” as the chip material, dielectric losses are considered

in the Q-factor calculation yielding lower internal Q-factors at higher Ey-fields. So

at 32 mm, where the Ey-field of the readout mode is highest, the internal Q-factor

of the readout mode is simulated to QRO
0 = 3.39 · 105, which is the lowest value. For

lower chip positions the internal Q-factor of the readout mode is constantly rising,

reaching QRO
0 = 4.04·105 at 20 mm. The lowest internal Q-factor of the storage mode

is simulated to QS
0 = 3.03 · 105 at 27 mm, where the Ey-field of the storage mode is

highest. At 32 mm, where the Ey-field is decreasing again, an internal Q-factor of

QS
0 = 3.11 · 105 and, at 20 mm, an internal Q-factor of QS

0 = 3.09 · 105 is simulated.

In this thesis, a chip position of 20 mm is chosen as a compromise between high Ey-

field of readout and storage mode and high internal Q-factor, although the Ey-field

of the next higher mode at this chip position is the same order of magnitude as that
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3.2. Finite-element simulations of the horseshoe geometry

of the readout mode. Electric field simulation results for this model are plotted in

Fig. 3.5 (c). As the resonance frequency of the next higher mode is 790 MHz detuned

from the storage mode, we assume that the next higher mode is not excited and

therefore the rather high Ey-field at the qubit position is not a problem.

Since the transmon qubit is both finite in size and possibly not exactly in the

middle of the chip, the electric field at the wall–chip interface should be maximally

reduced by a factor of two with respect to the electric field in the middle of the

qubit chip. The relevant quantity in this case is the y-component of the electric

field because it is responsible for the mode–qubit coupling. Simulation results in

Fig. 3.6 show that the y-component of the electric field at the borders of the qubit

chip is still 77 % compared to the center of the chip, which is still sufficient for the

mode–qubit coupling.
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Figure 3.6: (a) Simulated y-component of the electric field of the stor-
age mode along the curves modeled in (b). The curves lie
in the qubit-chip plane, evaluating the electric field in the
middle of the chip (black) and at the wall–chip interface
(red, blue). The black box marks the range of examined
chip positions in (a).

An interesting effect arises at the edges of the cavity–chip interface: Due to the

sharp corners, there is a discontinuity in the Ey-field strength. Here the Ey-field

is about 20 % higher than in the middle of the chip. To have a closer insight into

the discontinuity, Fig. 3.7 evaluates the Ey-field along the cavity–chip interface and
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in comparison to that along two curves shifted to the left and to the right. For all

three curves, the Ey-field stays constant from approximately 0.5 mm away from the

cavity wall. The discontinuity, which arises inside these 0.5 mm has no direct effect

on the qubit in the middle of the chip. However other two-level systems, which for

instance arise from defects inside the silicon chip, can be excited and can contribute

to a faster decoherence of the qubit. Nevertheless, in this thesis it is assumed that

qubit coherence times are not limited by the discontinuity. For future designs, one

could consider modifying the shape of the horseshoe to prevent such discontinuities.
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Figure 3.7: Simulated y-component of the electric field of the storage
mode along the curves modeled in (b). The curves lie in the
qubit-chip plane, evaluating the electric field at the cavity–
chip interface (black), 0.25 mm to the left of the disconti-
nuity (red) and in the middle of the chip (blue).

3.2.4 Antenna design

Serving as input and output port, the used dipole antenna is the source for external

losses (see Sec. 2.1.2). Therefore it is important to examine the electric field strength

parallel to the antenna for readout, storage and next higher mode of the cavity. This

is done by modeling a line along the antenna’s position with CST [cf. Fig. 3.8 (b)] and

using the “Evaluate Field on Curve” tool as a postprocessing step in the eigenmode

solver. The result of the simulation is plotted in Fig. 3.8 (a), showing that there is a

factor of 1000 between the electric field strength of readout and storage mode. As

the external loss rate κx is proportional to the square of the electric field strength [see

Eq. (2.5)], the external loss rate of the readout mode is a factor of a million higher
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3.2. Finite-element simulations of the horseshoe geometry

than that of the storage mode. So the main requirement of a compact quantum

memory providing a maximal coupling of the readout mode while maintaining a

minimal coupling of the storage mode is fulfilled.
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Figure 3.8: (a) Simulated electric field strength along a line parallel to
the antenna for readout, storage and next higher mode. (b)
Line parallel to the antenna (grey) with origin at 0.

As in reality the antenna can never be placed with perfect accuracy, it is impor-

tant to investigate how sensitive the Q-factor performance is to a displacement or

tilt. Furthermore, it has to be verified that the asymmetric antenna position in

z-direction does not influence a symmetric field distribution around the qubit chip

plane.

As a last part of the antenna design, the fixation of the antenna to the cavity has

to be discussed.

Impact of a displaced antenna

In Fig. 3.9 (a), the external Q-factor of the storage mode is simulated for differ-

ent y-positions of the antenna. The model taken for the simulation is depicted in

Fig. 3.9 (b). A maximum Q-factor is reached for an antenna position in the middle

of the two arms at y = 0, where the electric field is oriented in parallel to the antenna

and consequently the coupling vanishes. As a slimmer antenna is not as sensitive

to a displacement in y-direction, in this thesis we use a 0.1 mm diameter antenna.

Details on the antenna fabrication are found in Sec. 4.1.1.

The positioning window for reaching an external Q-factor of 106, which is approxi-
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mately the order of magnitude of the internal Q-factor, is ±0.53 mm for the 0.1 mm

diameter antenna. Thus, if the antenna is displaced by half of a millimeter, the over-

coupled regime of the storage mode is reached and the storage time of a qubit state

decreases. In comparison to the rectangular cavity design, the positioning window

of the horseshoe model increases by a factor of four [14].
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Figure 3.9: (a) Simulated external Q-factor of the storage mode de-
picted as a function of the antenna y-position for two dif-
ferent antenna diameters. (b) Simulated electric field dis-
tribution on a cross section through the antenna plane for
a centered antenna position. The color code shows the field
strength in arbitrary units, the arrows indicate the field
orientation. The solid black line is the 0.1 mm diameter
antenna.

Impact of a tilted antenna

Another factor which leads to a Q-factor reduction is a tilted antenna. As the

antenna actually consists of a thin gold wire soldered onto a commercial antenna, it

may not be perfectly straight. More details on the antenna fabrication can be found

in Sec. 4.1.1. The influence of such a tilt in the xy-plane is simulated in Fig. 3.10.

For a slightly displaced antenna, even a tilt of 10° does not have a major influence.
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Figure 3.10: (a) Simulated external Q-factor of the storage mode de-
picted as a function of the antenna tilt angle. Simula-
tion results are shown for a perfectly positioned antenna
(black) and for an antenna displaced in y-direction by
0.265 mm (blue) and 0.53 mm (red). (b) Simulated electric
field distribution on a cross section through the antenna
plane for a centered antenna position and an antenna tilt
angle of 10°. The color code shows the field strength in
arbitrary units, the arrows indicate the field orientation.
The solid black line is the tilted 0.1 mm diameter antenna
soldered onto a commercial antenna which is depicted in
blue.

Impact of asymmetric antenna position in z-direction

To place the qubit chips inside the cavity volume, the cavity has to be fabricated in

two halves. The antenna is designed to be screwed to the middle of the recess of the

upper cavity half. Thus the antenna is positioned asymmetrically with respect to the

z-direction of the cavity. To justify this design, it has to be shown that a symmetric

field distribution around the qubit chip plane is guaranteed. As the y-component of

the electric field couples to the transmon qubit, this is the relevant quantity to be

simulated for different z-positions. Simulation results are shown in Fig. 3.11. Near

the qubit chip position the electric field is distributed symmetrically in positive

and negative z-direction. A maximum is reached at the qubit chip position. Two

millimeters above and below the qubit there are still 87 % and four millimeters above

and below the qubit there are still 71 % of the maximum electric field strength. Only

in the recess near the antenna’s position there is a slight deviation in the electric field

29



Chapter 3. Horseshoe memory architecture

strength above and below the qubit chip plane, which is illustrated in Fig. 3.11 (c).

But as the field is distributed symmetrically around the qubit chips, where it could

influence the performance of the qubit–mode coupling, the presented design of the

antenna is appropriate for the quantum memory.
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Figure 3.11: (a) Simulated y-component of the electric field strength of
the storage mode along the curves indicated in (b). (b)
Curves along which the electric field is evaluated. The
grey curve lies in the qubit chip plane. Black and red
curves are shifted by 2 mm in positive respectively negative
z-direction. Dark blue and light blue curves are shifted
by 4 mm in positive respectively negative z-direction. (c)
Simulated Ey-field deviation of the other curves (black,
red, dark blue and light blue) from the grey curve.
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Antenna fixation

The final antenna has to be attached to the cavity with two screws. In the work of

E. Xie [14], the corresponding cavity wall is designed to be thick enough to allow

for blind holes. Hence, the presence of the holes does not affect the performance of

the cavity.

As the cavity is cooled down to millikelvin temperatures and aluminum is a bad

thermal conductor the aluminum walls of the cavity should be as thin as possible.

This demand motivates to examine the impact of two additional holes drilled through

the cavity wall for antenna fixation.

Table 3.1: CST simulation results are shown for cavity designs where
the two holes for the antenna fixation are not drilled through
(no holes) or drilled through. For the second case, the im-
pact of screws reaching 3 mm inside the cavity and made of
different materials is examined. The model taken for the
simulation includes chips made of “silicon lossy”.

no holes vacuum brass screws plastic screws PEC screws

Surface Losses 4.41 · 104 4.31 · 104 9.11 · 101 1.12 6.10

RO mode (Loss/W)

Surface Losses 4.40 · 104 4.31 · 104 1.00 · 101 8.22 · 10−2 6.68 · 10−1

S mode (Loss/W)

QRO
0 1.85 · 105 1.91 · 105 2.32 · 105 2.32 · 105 2.32 · 105

QS
0 1.16 · 105 1.18 · 105 1.32 · 105 1.32 · 105 1.32 · 105

QRO
x 1703.27 930.75 1106.03 1105.90 1106.94

QS
x 1.38 · 1012 7.14 · 1012 1.18 · 1012 2.18 · 1012 1.86 · 1012

As the electric field decays exponentially inside an aperture [14] the additional

holes are not expected to have a crucial impact on the external Q-factors. The

internal Q-factors are also expected to stay constant or even rise a bit because of

lower surface losses. Simulation results which are summarized in Tab. 3.1 confirm

that the influence of the additional holes can be neglected. The comparison of

different screw materials shows that plastic screws have the best performance. The

external Q-factor of the storage mode is highest and of the readout mode lowest.
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Chapter 3. Horseshoe memory architecture

So the antenna screws used in this thesis consist of a plastic called polyether ether

ketone (PEEK) and are produced by the workshop at WMI.

3.2.5 Scalability

Considering DiVincenzo’s requirements for the implementation of quantum com-

puting [19], a quantum memory should be designed in such a way that there is the

possibility to increase the number of qubits. This can be accomplished very easily by

interleaving horseshoe cavities as shown in Fig. 3.12, where the cavities can be scaled

along the y- and z-direction while the control access is addressed in x-direction. The

distance between neighboring arms is 1.5 mm, which is small enough to use bridge

qubits. A bridge qubit is a qubit which couples to two arms and is implemented

on a chip connecting these arms. Furthermore, it is possible to shift the cavities in

height and build a whole block of memory cells while being able to control each of

the cells separately.

For multiplexed readout, the resonance frequencies of the cavities have to differ from

each other. This can be accomplished by integrating different dampers in each cav-

ity. For instance an aluminum block replacing a small part of the vacuum might

serve as a damper. The advantage of this approach is that each cavity has a different

resonant frequency while the geometric design is the same. Another option would

be to use different geometries that fit together.

y

x

z

Figure 3.12: Design of a horseshoe chain. The distance between neigh-
boring arms is 1.5 mm which is small enough to use bridge
qubits.
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Experimental techniques

4.1 Sample design

10 mm(a) (b) (c)

Figure 4.1: Photograph of the final horseshoe cavity built by the work-
shop at WMI. (a) Closed cavity. (b) Cavity halves. The
upper cavity half on the left contains the recess and the an-
tenna port. (c) An approximately 1.5 mm thick gold-plated
copper plate is screwed onto the cavity for better thermal
conductance.

After completing the design and optimization of the horseshoe cavity as discussed

in Chapter 3, the final cavity model is built by the workshop at WMI. A detailed

CAD drawing of the model can be found in App. B.

Figure 4.1 (a) shows a photograph of the resulting horseshoe cavity. To guarantee

for an accurate positioning of the two cavity halves depicted in Fig. 4.1 (b), they are

bolted with the help of three dowel pins.

As the cavity is made of aluminum, which has a weak thermal conductance in the su-

perconducting state, it takes long to cool it down. Therefore, besides minimizing the

wall thickness, an approximately 1.5 mm thick gold-plated copper plate is screwed

onto it and thermally connected to the sample rod by two annealed silver wires.
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This plate is depicted in Fig. 4.1 (c). Before gold-plating the plate galvanically, it is

annealed at 850 ◦C for one hour and then cooled down to room temperature slowly

to even increase the conductance.

4.1.1 Coupling antenna

The horseshoe cavity is designed to have only one antenna simultaneously serving

as an input and output port to perform reflection measurements. As discussed

in Sec. 3.2.4, a slimmer antenna allows for more position inaccuracy. Therefore a

0.1 mm diameter gold wire is soldered onto a commercial 1.6 mm diameter antenna1.

The exact process is described in the following:

First, the commercial antenna is shortened to a length of 4 mm. Then, a hole with

a diameter of 0.15 mm and a depth of approximately 1 mm is drilled in the center of

the connector end. As a next step, the antenna is cleaned with an ultrasonic bath

first in a beaker filled with acetone for one minute and second in a beaker filled

with isopropanol for 30 seconds. For soldering the gold wire inside the drilled hole

the antenna is fixed under a tabletop stereo microscope. Then, one end of the gold

wire is dipped into Castolin2 before it is stuck into the drilled hole and soldered.

Figure 4.2 (a) shows how the gold wire is finally cut to the correct length of 4.7 mm:

The connector end and the end of the gold wire are fixed and the gold wire is cut

with the help of a slide gauge. The final antenna screwed to the cavity is depicted

in Fig. 4.2 (b).

4.7 mm

(a) (b)

10 mm

Figure 4.2: (a) Setup to cut the antenna gold wire to the correct length.
(b) Photograph of the antenna screwed to the cavity.

1Rosenberger SMA 32S722-500S5
2Castolin GmbH www.castolin.com
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4.1.2 Transmon qubit chips

The first test of the qubit–cavity system is intentionally done with the horseshoe

cavity containing two qubit chips. In case one qubit is broken, there would be still

the second one to measure. The two transmon qubits QMv3 2nd and C2 used in this

thesis are fabricated by Edwar Xie within the scope of his PhD thesis. Details on

the fabrication process can be found in Ref. [14].

The silicon chips containing the qubits are placed between the two cavity halves

inside the allocated dents and fixed with indium as depicted in Fig. 4.3 (a). An

optical micrograph of the qubit QMv3 2nd is shown in Fig. 4.3 (b).

Qubit QMv3 2nd

Qubit C2

x
z

x y1 cm

355 µm

(a) (b)10 mm

Figure 4.3: (a) Upper cavity half with transmon qubits. The chips con-
taining the qubits are placed inside the allocated dents and
fixed with indium. The red rectangles mark the qubit po-
sitions. (b) Optical micrograph of qubit QMv3 2nd. The
Josephson junction connecting the two capacitor plates is
indicated with the red arrow.

4.2 Setup

4.2.1 Cryogenic setup

As cavity and qubit are superconducting and the qubit needs to be protected from

thermal excitations, measurements have to be performed at millikelvin tempera-

tures. This is achieved by mounting the horseshoe–qubit system to the base plate

of a 3He/4He dilution refrigerator. Details concerning the working principle of the

dilution refrigerator can be found in Ref. [38].

A photograph of the cavity mounted to the sample rod is depicted in Fig. 4.4 (a).

For better thermalization additional silver wires connect cavity and sample rod.

Figure 4.4 (b) sketches the different temperature stages of the dilution refrigerator

including the input and output lines of the cavity with all microwave components. At
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the base temperature stage, both input and output lines are filtered with a low-pass

filter3 to protect the qubit from high frequency noise.

room temperature

4 K
1.2 K
700 mK
300 mK
40 mK
25 mK

10 dB attenuator

HEMT amplifier
low-pass filter

300 K

circulator

4He bath
1K pot
still
coil exchanger

mixing chamber
step exchanger

Cavity

RF in RF out

3 dB attenuator
thermometer

(a) (b)

Figure 4.4: Cryogenic setup. (a) Photograph of the base plate of the
dilution refrigerator before cooldown. The red dashed line
marks the horseshoe cavity. (b) Schematic drawing of the
different temperature stages of the cryostat. The input and
output line of the horseshoe cavity and all used microwave
components are shown.

4.2.2 Frequency domain measurements

The cavity and qubit characteristics are measured in the frequency domain using

the setup depicted in Fig. 4.5. For single-tone measurements, a vector network

analyzer4 (VNA) drives the resonator inside the fridge and detects the reflected

signal after it passed the cryogenic output setup, a room-temperature isolator5, and

a room-temperature amplifier6. In the following, the VNA signal is called readout

3K&L 6L-250-12000 tubular filters
4Rohde & Schwarz ZVA24
5MCLI IS-19-1
6AMT-A0019
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signal. Two-tone measurements require an additional microwave source7 to drive

the qubit. Readout and qubit drive signals are combined using a power combiner8

before entering the cryostat.

     VNA microwave 
source

Σ

cryostat

isolator
amplifier

power combinerΣ

RO drive Qubit drive

Figure 4.5: Experimental setup for a two-tone measurement. For a
single-tone measurement the same setup without the mi-
crowave source is used.

4.2.3 Time domain setup

To investigate the dynamics of the qubit–cavity system, a time resolved measurement

setup is required [38, 39]. Controlled qubit manipulations can only be achieved with

the help of pulsed microwave signals, as the final state of the qubit depends on the

pulse length of the drive (see Sec. 2.3.3). To read out the qubit state, the resonator

has to be driven right after the qubit pulse. So an accurate sequence timing is

needed.

The pulse generation setup used in this thesis is sketched in Fig. 4.6. Usually a

microwave source provides a continuous signal at the desired drive frequency and

power and an arbitrary function generator9 (AFG) provides the pulse envelope. The

shape of the envelope is chosen to be a flattop Gaussian with a fixed Gaussian ramp

of 20 ns on each side. This is advantageous in order to prevent sharp edges and

thus a broad frequency spectrum of the pulse envelope, which might excite higher

transmon qubit levels [14].

The microwave source responsible for the readout drive10 is connected to the AFG

7Rohde & Schwarz SMF100A
8Mini-Circuits ZX10-2-183-S+
9Agilent Technologies 81160A

10Rohde & Schwarz SMB100A
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via two RF mixers11 in series and a power combiner12. The mixers are necessary

for a sufficient on/off ratio. The microwave sources used for the qubit drive13 and

BSB drive14 have a sufficient on/off ratio, so here the mixers are not needed. All

drives are finally combined with power combiners15 before entering the cryostat and

eventually the horseshoe cavity.

The postprocessing and analysis of the reflected signal emerging from the horseshoe

cavity is done with the help of a field programmable gate array (FPGA) card16 and

a LabView Code on the computer. More details on the measurement setup and

recording can be found in Refs. [14, 38, 40].

microwave 
source

microwave 
source

Σ

postprocessing and analysis

RO drive Qubit driveBSB drive
microwave 
source

mixer

power combinerΣ

Σ

Σ

AFG AFGAFG

cryostat

Figure 4.6: Time domain pulse generation setup. A microwave source
and an arbitrary function generator (AFG) are each used to
generate qubit, BSB and readout pulses with an adjustable
power, frequency and pulse length.

11Marki M10220LA)
12Mini-Circuits ZFRSC-42-S+
13Agilent Technologies PSG
14Rohde & Schwarz SMF100A
15Mini-Circuits ZX10-2-183-S+ and MCLI PS2-11
16X5-RX from Innovative Integration
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4.3 Spectroscopy

4.3.1 Single-tone measurement

6.9995 7 7.0005
frequency (GHz)

0

0.5

1

m
ag

ni
tu

de

Q0 = 1 ∙ 105, Qx = 5 ∙ 105

Q0 = 1 ∙ 105, Qx = 5 ∙ 104

Q0 = 1 ∙ 105, Qx = 1 ∙ 105

6.9995 7 7.0005
frequency (GHz)

-200

-100

0

100

200

ph
as

e 
(°

)

6.9995 7 7.0005
frequency (GHz)

-300

-200

-100

0
un

w
ra

pp
ed

 p
ha

se
 (°

)

(a)

(b) (c)

Figure 4.7: Theoretical (a) magnitude, (b) phase and (c) unwrapped
phase of the reflection coefficient from Eq. (4.1). The inter-
nal Q-factor is kept at 1 · 105, while the external Q-factor
is larger (black), lower (red) and equal (blue).

To obtain the resonance frequency of the resonator, a frequency sweep of the readout

signal is performed. Whenever necessary, a linear fit line of the measurement data

is subtracted to remove background structure.

A simple theoretical model to fit the magnitude and phase of the reflected signal is

provided by the input-output formalism which gives the reflection coefficient [41]

Γ =
κ0 − κx + 4πi(f − fc)

κ0 + κx + 4πi(f − fc)
. (4.1)
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Here, κx and κ0 denote the external respectively internal coupling rates which de-

termine the external and internal Q-factors according to:

Qx, 0 =
2πfc

κx, 0

. (4.2)

The theoretical magnitude and phase of the reflection coefficient are plotted in

Fig. 4.7 for different values of the external Q-factor Qx, respectively a coupling rate

κx. The phase response is shown in two different ways. Figure 4.7 (b) shows the

phase between −180° and 180°, while Fig. 4.7 (c) shows the unwrapped phase which

linearly shifts the angles by multiples of 2π whenever there is a phase jump greater

or equal to 180°.

The resonance frequency of the resonator can be found at the minimum of the re-

flected magnitude. The size of this minimum is mainly determined by the difference

of internal and external Q-factor. For Q0 =Qx, zero magnitude is reached. A larger

|Q0−Qx| leads to smaller dip sizes. The width of the reflection magnitude is propor-

tional to 1/Q0 + 1/Qe, so higher Q-factors lead to narrower dips. In the overcoupled

regime, Q0�Qx, there is a very strong phase response. In the undercoupled regime,

Qx�Q0, the phase response is very small.
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Figure 4.8: Single-tone measurement of the readout mode (horseshoe
sample with qubit QMv3 2nd and C2). (a) The reflection
magnitude is plotted as a function of drive frequency and
power. The blue and black vertical cuts at −50 dBm and
−30 dBm, respectively, are shown in (b).

The dispersive shift χ01 from Eq. (2.28) can be extracted from a power sweep

of the readout signal [40], as shown in Fig. 4.8 (a). At low drive power, the qubit
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4.3. Spectroscopy

is in the ground state |g〉 since the drive is off-resonant from the qubit transition

frequency. When a critical power is reached, the qubit decouples from the cavity

and the resonance frequency of the cavity shifts towards the bare cavity frequency

fc [42]. To determine this shift, Fig. 4.8 (b) shows two reflection spectra at power

values lower and higher than the critical power.

4.3.2 Two-tone measurement and qubit levels

-40 -20 0 20
qubit drive power (dBm)
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cy

 (G
H

z)

-5

0
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f01

f02/2
f03/3

f04/4

readout phase (°)

Figure 4.9: Two-tone spectroscopy of the qubit levels. The readout
phase is plotted as a function of qubit drive frequency and
qubit drive power. The two red crosses mark the transition
from the ground state to the first and the second excited
state.

The qubit levels are measured using two-tone spectroscopy. Therefore the system is

probed with two drive sources (cf. Fig. 4.5): The microwave source is used to drive

the qubit while the VNA probes the cavity at its resonance frequency for dispersive

readout. If the qubit changes its state, the resonance frequency of the cavity shifts

and accordingly a phase shift in the readout signal can be detected. Notice that the

power of the cavity probe tone has to be weak enough, that it does not excite the

qubit.

In the experiment, the frequency and power of the microwave source are swept. If a

qubit transition is induced, a phase shift of the readout signal is detected. Figure 4.9

shows the result of such a measurement. Here, the transition from the ground state

to the first excited state already starts at a low drive below one photon on average.

We find a qubit frequency f01 = 5.982 GHz. Higher qubit levels are only excited at

higher drive powers because of the required multi-photon processes. For instance,
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the next transition excites the qubit from the ground to the second excited state in

a two-photon process at f 02/2 = 5.889 GHz.

This kind of measurement allows us to calculate the anharmonicity α and the charg-

ing energy EC of the transmon qubit according to Eq. (2.19):

α = h(f02 − 2f01) ≈ −EC. (4.3)

Further qubit parameters including the total capacitance CΣ, the Josephson energy

EJ and the critical current Ic can be obtained using Eqs. (2.15), (2.17) and (2.14).

All qubit parameters are summarized in Tab. 4.1.

4.3.3 AC-Stark shift and photon number calibration

As described in Sec. 2.3.2, the qubit frequency depends on the photon number inside

the cavity. To determine the single photon power and obtain the bare qubit fre-

quency, a dispersive readout for different readout powers as depicted in Fig. 4.10 (a)

is performed. Here, the qubit drive power of the source is fixed at −40 dBm and

the qubit drive frequency is swept. The qubit frequency depends linearly on the

linearized drive power, as shown in Fig. 4.10 (b). Extrapolating the fit line to zero

power determines the bare qubit frequency fq = 5.988 GHz. The single photon power

is calculated by plugging in the linear relation:

ω̃q = m · P + ωq (4.4)

inside Eq. (2.30) and solving for the power P :

P =
2nχ′ + χ′

m
. (4.5)

With the slope m=−0.605 14 GHz/µW, a single photon power of 5.9 nW, respec-

tively −52 dBm is calculated.

Due to quantum fluctuations about the average photon number inside the resonator,

the qubit is affected by random fluctuations in its transition frequency. This phe-

nomenon leads to measurement-induced dephasing resulting in a broader qubit tran-

sition dip [28]. The spectroscopic lines of the qubit transitions have a Lorentzian

line shape with a FWHM ∆f determined by [35]:

π∆f =

√
1

T 2
2

+ n(2g)2
T1

T2

. (4.6)
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Extrapolating the squared FWHM in Fig. 4.10 (c) to zero power is a rough estimation

of the T2-time:

T est
2 =

1

π∆f
, (4.7)

yielding T est
2 = (0.47 ± 0.45) µs. As this kind of measurement procedure sends con-

tinuous signals, the influence of measurement-induced dephasing is expected to be

bigger than in time domain measurements where the signals are pulsed. Thus, in

time domain measurements a slightly longer and more accurate T2-time is expected.
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Figure 4.10: (a) AC-Stark shift of the qubit transition frequency de-
pending on the readout power. (b) Photon number cali-
bration. The qubit transition frequency is plotted over
the linearized readout power. The red line shows a linear
fit to the measurement data. (c) The squared FWHM of
the qubit transition is plotted over the linearized readout
power. The red line shows a linear fit to the measurement
data.
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Table 4.1: Summary of qubit parameters determined by spectroscopy.

parameter Xie 2018 Lamprich 2020

fq (GHz) 6.234 5.988

α/h (MHz) -187 -186

CΣ (fF) 105 104.14

EJ/h (GHz) 26.55 25.57

EJ/EC 142 137.46

Ic (nA) 53 51.48

4.4 Time domain measurements

With the help of time domain measurements, qubit and BSB characteristics can

be examined in a pulsed manner. Properties such as π- and π/2-pulse length (see

Sec. 2.3.3), energy relaxation time T1 and decoherence time T2 (see Sec. 2.4) can be

directly extracted from specific pulse protocols. As a final step the implementation

of a memory protocol yields the storage time of the qubit state.

All pulse sequences discussed in the following are measured using the time domain

setup discussed in Sec. 4.2.3.

4.4.1 Qubit characteristics

The π-pulse length of the qubit can be determined with the help of driven Rabi os-

cillations. To this end, the qubit is driven at its resonance frequency and the length

t of the drive pulse is increased for each sweep. Fitting the measurement data with

a damped sine function yields the π-pulse length at the first oscillation dip. As we

use flattop Gaussian pulse shapes, the π/2-pulse length is not exactly half of the

π-pulse length. Hence it has to be extracted from a driven Rabi measurement with

two identical pulses in series. Here again a damped sine function is fitted to the

measurement data and the π/2-pulse length is half of the time needed for the first

oscillation dip. The corresponding pulse schemes for a Rabi with one and a Rabi

with two pulses are depicted in Fig. 4.11 (a).

Knowing the qubit π-pulse length allows us to perform an energy relaxation mea-

surement as sketched in Fig. 4.11 (b). The qubit is driven to the excited state and
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4.4. Time domain measurements

the time between qubit pulse and readout is increased for each sweep. As a result,

the qubit decay due to energy relaxation is recorded and the energy relaxation time

T1 can be extracted.

The decoherence time T2 of the qubit can be extracted from a Ramsey measurement

depicted in Fig. 4.11 (c). With the help of a π/2-pulse the qubit is excited to the

equatorial plane of the Bloch sphere. After a waiting time ∆t, which is increased for

each sweep, another π/2-pulse brings the qubit back to the ẑ-axis and the readout

is performed. During the waiting time, the qubit undergoes dephasing and energy

relaxation.

A modified version of the Ramsey protocol, which also yields the T2-time, is given by

a spin-echo measurement. Here an additional π-pulse is applied in the middle of the

protocol, which cancels the effect of low-frequency noise [38, 43]. The corresponding

protocol is depicted in Fig. 4.11 (d).

Typically, the measurement protocols that yield T1 and T2-times are repeated sev-

eral times and the corresponding T1 and T2-times are collected in a histogram. This

kind of statistics is necessary because energy relaxation and dephasing are statistical

processes.

ωq RO

t

ROωqωq

t t

π RO∆t

π/2 ROπ
∆t ∆t

π/2

ROπ/2∆tπ/2

(a)

(b)

(d)

(c)

Figure 4.11: Basic pulse protocols to measure the qubit characteristics:
(a) driven Rabi oscillations to determine the π- and π/2-
pulse length, (b) relaxation measurement to determine the
T1 decay, (c) Ramsey T2 measurement, (d) spin echo T2

measurement.

4.4.2 Blue sideband transition and memory protocol

The storage time of the horseshoe quantum memory designed in this thesis can be

measured with a memory protocol. In the following this protocol is discussed by

means of the energy spectrum of the coupled qubit–cavity system from Fig. 4.12 (a).
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Figure 4.12: (a) Energy spectrum of the qubit coupled to the storage
mode of the cavity. The blue arrows indicate the BSB
transition which can be driven via a two-photon process.
The green arrows indicate qubit transitions, and the or-
ange arrow indicates excitations between the ground and
excited state of the storage mode. (b)-(d) Pulse protocols
to measure the BSB characteristics and to perform the
memory protocol. Blue boxes refer to BSB pulses, green
boxes refer to qubit pulses and orange boxes are read-
out pulses applied to the readout mode. (b) Driven Rabi
oscillations to determine the π-pulse length of the BSB
transition. (c) Relaxation measurement to determine the
T1 decay of the BSB transition. (d) Quantum memory
protocol for storage and retrieval of the qubit state.

There are two different transitions needed for the final protocol: the BSB tran-

sition and the qubit transition. Parameters for a qubit transition from |g1〉 to |e1〉
and vice versa by a qubit π-pulse are already discussed in the previous section. For

the BSB transition from |g0〉 to |e1〉, measurements to find the transition frequency

and π-pulse length still have to be discussed. The transition frequency can be found

by a frequency sweep around the sum of qubit frequency ωq and eigenfrequency of

the cavity’s storage mode ωs. As the BSB transition is a two-photon process, the
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drive power has to be substantially higher than for the qubit drive. A dip in the

reflected amplitude yields the frequency of the BSB transition ωb/2. The π-pulse

length and the T1-time of the BSB transitions are extracted from Rabi and relax-

ation measurements as depicted in Fig. 4.12 (b) and Fig. 4.12 (c).

Knowing all parameters for both qubit and BSB π-pulse allows us to implement the

final memory protocol shown in Fig. 4.12 (d). The sequence starts with a BSB π-

pulse which excites the ground state population of the qubit to the |e1〉-state. Then

a qubit π-pulse transfers the population to the first excited state of the storage on

the left ladder (|g1〉-state).

For the excited state population of the qubit, the BSB π-pulse has no influence and

the qubit π-pulse transfers the population to the ground state of the storage on the

left ladder (|g0〉-state). Consequently, the qubit state is encoded in the first two

states of the storage mode [44].

To retrieve the qubit state from the storage, the pulse sequence is implemented in

reverse order and a readout is performed. Increasing the storage time for each sweep

of the memory protocol records the decay of the stored state and the storage time

can be extracted from an exponential fit.
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5.1 Empty horseshoe cavity characterization
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Figure 5.1: Reflection measurement of the undercoupled horseshoe cav-
ity readout mode without chips. Eq. (4.1) is fitted (red line)
to the measurement data (black dots). (a) Reflection mag-
nitude. (b) Reflection phase.

This section focuses on the horseshoe cavity without any chips via a single-tone

reflection measurement as described in Sec. 4.3.1. The goal of this measurement

is to extract the internal Q-factor of the bare horseshoe geometry. Therefore it is

appropriate to measure the system in the undercoupled regime, where the internal Q-

factor essentially equals the loaded Q-factor. Consequently, the internal Q-factor can

be extracted from the reflection spectrum according to Eq. (2.2) and furthermore,

the fitting model from Eq. (4.1) can be tested.

The undercoupled regime for the readout mode can be reached by using a retracted

antenna. Simulation results show that, for a pin length of . 2.3 mm the loaded
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Q-factor is dominated by the internal Q-factor. Therefore the standard commercial

antenna1 without the soldered gold wire is cut to a length of 2.3 mm.

Table 5.1: Simulation and measurement results of the undercoupled
horseshoe cavity readout mode without chips. The general
agreement is very good.

parameter simulation measurement

fRO (GHz) 7.539 7.731

Q0 1.06 · 106 1.86 · 106

Qx 7.61 · 106 3.18 · 106

QL 9.27 · 105 1.18 · 106

FWHM (kHz) 7.11 6.58

The results of the reflection measurement fitted to the model from Eq. (4.1) are

plotted in Fig. 5.1. A comparison of model parameters and simulation results can

be found in Tab. 5.1. Overall, there is a good agreement between simulation and

measurements with only minor deviations. The measured resonance frequency of the

readout mode of 7.731 GHz is slightly higher than the one expected from the sim-

ulation with a value of 7.539 GHz. To some extent this difference can be explained

by the shrinking of the material at low temperatures, resulting in an increased fre-

quency [45]. The deviation in internal Q-factors can be attributed to the fact, that

CST is not able to simulate a superconductor, thus the simulated surface losses

can be higher than in reality. Furthermore, the measured external Q-factor is only

about half of the simulated one, which might be caused by fitting errors and a slight

position inaccuracy of the antenna. As the difference between the measured values

for internal and external Q-factors finally is only about 42 % and not 86 % as in

the simulated case, the undercoupled regime, where the internal Q-factor equals the

loaded Q-factor is not quite reached in reality. Nevertheless, due to the fitting model,

the internal Q-factor can be extracted directly from the measurements without the

need of the loaded Q-factor. As a result, the internal Q-factor of the bare horseshoe

cavity exceeds one million, which agrees with the state-of-the-art internal Q-factors

reached in 3D cavities with typical values of Q0 ≈ 5 · 106 [46] and Q0 ≈ 1.5 · 106

for the rectangular cavity at WMI [14]. As a comparison, 2D resonators generally

1Rosenberger SMA 32S722-500S5
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5.2. Horseshoe memory with two qubits

achieve values of Q0 ≈ 105 [47] and only by careful fabrication also values above

106 [48].

Measurement results of the empty cavity readout mode in the overcoupled regime

with the designed antenna from Sec. 4.1.1 are shown in Fig. 5.2. Due to the large

difference between internal and external Q-factors, the amplitude response of the

cavity is very flat and we use the qualitatively better phase response for fitting.

Here, the internal Q-factor is in the same order of magnitude as in the undercoupled

case. The low external Q-factor on the order of 103 paves the way for a fast readout

application.
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Figure 5.2: Reflection phase of the overcoupled horseshoe cavity read-
out mode without chips. Eq. (4.1) is fitted (red line) to the
measurement data (black dots).

5.2 Horseshoe memory with two qubits

In the following, the horseshoe cavity including the two qubit chips QMv3 2nd and C2

(see Sec. 4.1.2) is measured. In a first step, readout and storage mode are analyzed

via a single-tone reflection measurement in the frequency domain and the resonance

frequency of the next higher mode is detected. A characterization of the qubit QMv3

2nd in the frequency domain is already done in Sec. 4.3.2 and Sec. 4.3.3. So this part

focuses on the qubit characterization in the time domain with the resulting qubit

T1- and T2-times, the characterization of the BSB transition and finally a discussion

of the memory protocol. The second qubit C2 could neither be detected with an

AC-Stark measurement nor with a two-tone measurement, so it is assumed to be

broken and will be ignored in the following discussion.
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5.2.1 Readout, storage and next higher mode
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Figure 5.3: Reflection measurement of the horseshoe cavity readout
mode with two qubits QMv3 2nd and C2 at a source power of
−30 dBm. Eq. (4.1) is fitted (red line) to the measurement
data (black dots). (a) Reflection magnitude. (b) Reflection
phase.

The bare cavity frequency fc and the dispersive shift χ01 of the readout mode can be

extracted from a power sweep of a single-tone measurement as described in Sec. 4.3.1.

Together with the qubit parameters from Tab. 4.1, the detuning ∆, the effective dis-

persive shift χ′ and the coupling constant g can be calculated according to Eq. (2.24)

and Eq. (2.29).

Figure 5.3 shows the results of a single-tone measurement of the readout mode at

a source power of −30 dBm, where the qubit is already decoupled from the mode

and the bare readout frequency is detected. To extract the Q-factors of the readout

mode, the model from Eq. (4.1) is fitted to the reflected amplitude and phase. Here

the phase of the fitting model is unwrapped to fit to the phase response of the VNA.

All measured respectively calculated readout mode parameters are summarized in

Tab. 5.2.

The storage mode parameters of the cavity are obtained in the same way as the

readout mode parameters and are also summarized in Tab. 5.2. A single-tone re-

flection measurement of the storage mode at −15 dBm, where qubit and mode are

decoupled, is plotted in Fig. 5.4. Here the qubit–mode decoupling occurs at higher

drive powers than for the readout mode, as the electric field strength Ey at the qubit

position and thus the qubit–mode coupling is designed to be stronger for the storage

mode (cf. Sec. 3.2.3). This design prediction also agrees with the actually measured
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5.2. Horseshoe memory with two qubits

coupling constant g, which is about 50 % higher for the storage mode.
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Figure 5.4: Reflection measurement of the horseshoe cavity storage
mode with two qubits QMv3 2nd and C2 at a source power of
−15 dBm. Eq. (4.1) is fitted (red line) to the measurement
data (black dots). (a) Reflection magnitude. (b) Reflection
phase.

Comparing the measured cavity frequencies to the ones obtained from simula-

tion (see Sec. 3.2.2) there is a slight deviation of 0.11 GHz for the readout mode

and 0.21 GHz for the storage mode, which approximately matches the deviation of

0.19 GHz for the readout mode of the empty cavity (cf. Sec. 5.1). Given these de-

viations the next higher mode is expected to be around (8.56–8.66) GHz, which fits

to the measured mode at 8.616 GHz for a source drive power of −40 dBm. Thus,

the measured gap between storage mode and next higher mode is around 750 MHz,

which is a factor of 17 larger compared to the rectangular cavity of Refs. [13, 14]

(cf. Sec. 3.1).

The measured external Q-factor of the readout mode of 1.94 · 103 matches the order

of magnitude from simulation results (see Sec. 3.2.2). Thus the goal of reaching a

fast readout is accomplished. Slight deviations of simulation and measurement data

can be attributed to fitting errors and a not perfectly accurate antenna positioning.

The measured external Q-factor of the storage mode of approximately one million

is in the same range as the one reached for the rectangular cavity [14].

The measured internal Q-factors for readout and storage mode are two orders of

magnitude lower than for the empty cavity from Sec. 5.1. They are even one order

of magnitude lower than the simulated ones for the cavity including lossy silicon

chips from Sec. 3.2.3. Thus, the extracted decay time 1/κ of the storage mode is

only given by 0.33µs. Possible reasons for the low internal Q-factor performance are
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examined in Sec. 5.3 and Sec. 5.4. In Sec. 5.3, the not working qubit C2 is replaced

by a dummy chip to exclude a perturbation of C2 or its chip. As this approach

does not have an impact on the internal Q-factor performance, Sec. 5.4 evaluates

the horseshoe cavity with two dummy chips. Here, we can successfully demonstrate

that the old qubit chip QMv3 2nd or the qubit QMv3 2nd itself is responsible for the

low internal Q-factor and the horseshoe cavity with chips in general reaches internal

Q-factors exceeding one million.

Table 5.2: Readout mode and storage mode characterization of the
horseshoe cavity with qubits QMv3 2nd and C2.

parameter readout mode storage mode

fbare (GHz) 7.4521 7.8691

χ01 (MHz) -1.32 -2.15

χ′ (MHz) -0.586 -0.824

∆ (GHz) -1.464 -1.881

g (MHz) 43.96 63.59

Q0 3.51 · 104 1.65 · 104

Qx 1.94 · 103 1.38 · 106

QL 1.84 · 103 1.63 · 104

1/κ (µs) 0.04 0.33

5.2.2 Transmon qubit

The π- and π/2-pulse length of the transmon qubit are determined via driven Rabi

oscillations (see Sec. 4.4.1) to 0.3790 µs respectively 0.1705 µs for a qubit source drive

power of −40 dBm. Here, the low source drive power of −40 dBm is chosen to avoid

effects due to higher-level excitations and noise. An exemplary Rabi oscillation mea-

surement with a damped sine fit is depicted in Fig. 5.5 (a). Here, the phase denotes

the phase of the reflected readout signal, which is 0 for the qubit in the ground state

and shifts to more negative values for the qubit in the excited state.

According to Eq. (2.36), the Rabi frequency ΩR is proportional to the drive ampli-

tude Ωd and thus proportional to the square root of the drive power
√
P . To check

up to which power this linear dependence holds, a Rabi oscillation measurement is

54



5.2. Horseshoe memory with two qubits

performed for different qubit drive powers and the results are plotted in Fig. 5.5 (b).

At a drive power of −5 dBm the measurement does not follow the linear fit line

anymore, so here higher qubit levels are also excited.
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Figure 5.5: (a) Driven Rabi oscillation between ground and excited
state of the qubit at a qubit source drive power of −40 dBm.
The dots correspond to the measurement data, while the
solid line is a damped sine fit. (b) The Rabi frequency ΩR

is plotted over the square root of the qubit source drive
power. The last measurement dot at a source power of
−5 dBm does not follow the linear fit line anymore.

Qubit relaxation measurements and Ramsey measurements yield average qubit

decay times of T q
1 = (0.48± 0.03) µs and T q

2 = (0.84± 0.08) µs. Exemplary measure-

ment results are plotted in Fig. 5.6 (a) and Fig. 5.6 (c) with the corresponding his-

tograms in Fig. 5.6 (b) and Fig. 5.6 (d). From these values, an average dephasing

time of T q
ϕ = (6.72± 5.90) µs can be calculated according to Eq. (2.37) and Gaussian

error propagation. Consequently, the qubit coherence is mostly relaxation-limited.

The relatively short lifetime of the qubit did not allow for spin echo measurements.

A rough estimate of the Purcell decay time according to Eq. (2.38) yields 44 µs for

the readout mode and 289µs for the storage mode. Calculating the Purcell time

more accurately with the simulated cavity admittance according to Eq. (2.39) leads

to t3D
P = 48 µs. Here the CST model includes chips of the material silicon lossy. As

the measured qubit T1-time is considerably below the Purcell time, the system is

not Purcell limited.
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Figure 5.6: Qubit decoherence measurements at a qubit source drive
power of −40 dBm. (a) Qubit relaxation measurement ac-
cording to the protocol of Fig. 4.11 (b). The T 1-time is de-
termined by the exponential fit of the measurement dots.
(b) Histogram of the measured qubit T 1-times. (c) Ram-
sey measurement according to the protocol of Fig. 4.11 (c).
The T 2-time is determined by the exponential fit of the
measurement dots. (d) Histogram of the measured qubit
T 2-times.

5.2.3 BSB transition and memory protocol

In an eigenfrequency measurement (see Sec. 4.4.2), the BSB tranisition frequency is

measured for different source drive powers starting from 5 dBm. Then the corre-

sponding Rabi measurements to determine the π-pulse length are performed. For a

drive power of 5 dBm, the Rabi oscillation is very noisy, so higher powers are needed

for the two-photon process. From a power of 10 dBm on and higher, there seems

to be also another excitation apart from the blue sideband, as after the first very
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5.2. Horseshoe memory with two qubits

clear oscillation peaks there is only noise. This additional excitation can actually

be observed via a two-tone measurement at the corresponding power and frequency,

which can be considered as a sideband transition of qubit and an excitation around

8.3 GHz. Possible reasons for the excitation are the accumulation of other two-level

systems at the chip’s surface as an aging effect or the second qubit chip, that dis-

turbs. Another possibility is, that the next higher mode of the resonator is already

at 8.3 GHz, although the mode measured at 8.616 GHz matches the expected fre-

quency. The latter can be excluded from a measurement of the cavity where the

second qubit chip is replaced by a dummy chip. Here, there is no mode around

8.3 GHz anymore, so the previous excitation originated from the second qubit chip.
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Figure 5.7: Blue sideband measurements at a source drive power of
8 dBm. (a) Driven Rabi oscillation between |g0〉S and |e1〉S.
(b) BSB relaxation measurement according to the protocol
of Fig. 4.12 (c). (c) Histogram of the measured BSB T 1-
times.
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For the blue sideband transition in the configuration of the cavity with the two

qubit chips a drive power of 8 dBm is finally chosen. Here, the Rabi oscillation is

not noisy anymore and the additional excitation of the second qubit chip is not

present yet. The eigenfrequency measurement yields a BSB transition frequency

of fb/2 = 6.8845 GHz and, from the Rabi measurement of Fig. 5.7 (a), a π-pulse

length of 0.157µs is extracted. The average BSB relaxation time is determined to

T b
1 = (0.50± 0.11) µs from the histogram in Fig. 5.7 (c). An exemplary relaxation

measurement is shown in Fig. 5.7 (b).
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Figure 5.8: (a) Storage time measurement by performing the quantum
memory protocol of Fig. 4.12 (d) with exponential fit. (b)
Histogram of the measured memory T 1-times.

With the parameters for qubit and BSB π-pulses, the memory protocol (see

Sec. 4.4.2) is implemented. Figure 5.8 (a) shows an exemplary measurement of the

memory protocol for the ground state being the initial state of the qubit and thus

the state to be stored. Histograms for the storage time are depicted in Fig. 5.8 (b),

resulting in T s
1 = (0.53± 0.19) µs. Thus, we find that the storage time is similar to

the qubit T1-time.

5.3 Horseshoe memory with one qubit and one

dummy chip

As the qubit C2 from Sec. 5.2 is most probably broken, it is replaced by a dummy

chip in another cooldown. Thus the horseshoe cavity with the qubit QMv3 2nd can

be examined without a possible perturbation of qubit C2.
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5.3.1 Readout mode
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Figure 5.9: Single-tone measurement of the readout mode (horseshoe
memory with one qubit and one dummy chip). (a) The
reflection magnitude is plotted as a function of drive fre-
quency and power. The blue and black vertical cuts at
−50 dBm respectively −30 dBm are shown in (b).

The dispersive shift of qubit and readout mode is extracted from a power sweep of the

readout signal (cf. Fig. 5.9). Here, the small deviation in the depth of the resonance

dips in Fig. 5.9 (b) can be attributed to the frequency-dependent gain of the ampli-

fication chain (cf. Sec. 4.2.3). The measured dispersive shift of χRO
01 =−1.10 MHz is

only 5/6 from the value of the previous cooldown for the cavity with qubit QMv3

2nd and C2 (see Sec. 5.2). Assuming that the coupling constant g has not changed,

a difference in the qubit–mode detuning ∆ has to be responsible for the reduction

of the shift [cf. Eq. (2.29)]. The bare mode frequency at −30 dBm is extracted from

Fig. 5.10 to 7.4498 GHz, which is 2.3 MHz lower than for the cavity with QMv3 2nd

and C2. Thus the qubit frequency fq is estimated to be around 5.6930 GHz, which

is a reduction of approximately 0.30 GHz, compared to the previous cooldown. This

reduction can be explained by the aging effect of the transmon qubit once it is ex-

posed to air [14, 49], which inevitably happened between the two cooldowns. In

order to measure the actual qubit transition frequency, an AC-Stark and a two-tone

measurement are performed. The measurement results do not show any phase shift

in the readout signal, although the qubit drive frequency is swept from (5–6) GHz.

So, within the scope of this thesis, it is not possible to find the qubit transition

frequency anymore, which may be caused by a further deterioration of the qubit

coherence.

The Q-factors and the decay time of the readout mode are extracted from the data
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shown in Fig. 5.10 and summarized in Tab. 5.3. Except for negligible deviations due

to fitting errors, they are in accordance with the values of the cavity with qubit

QMv3 2nd and C2 from Tab. 5.2. As a result, the source of the unforeseen low

memory lifetime is expected to be caused by the qubit QMv3 2nd or its chip.
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Figure 5.10: Reflection measurement of the horseshoe cavity readout
mode with qubit QMv3 2nd and a dummy chip at a source
power of −30 dBm. Eq. (4.1) is fitted (red line) to the
measurement data (black dots). (a) Reflection magnitude.
(b) Reflection phase.

5.3.2 Storage mode
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Figure 5.11: Reflection measurement of the horseshoe cavity storage
mode with qubit QMv3 2nd and a dummy chip at a source
power of −15 dBm. Eq. (4.1) is fitted (red line) to the
measurement data (black dots). (a) Reflection magnitude.
(b) Reflection phase.
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The parameters for the storage mode extracted from Fig. 5.11 are summarized in

Tab. 5.2. The bare resonance frequency at 7.8642 GHz is 4.9 MHz lower than the

one measured for the cavity with two qubits. The internal Q-factor decreased by

40 %, while the external Q-factor nearly increased by a factor of 3. In part these

deviations can certainly be attributed to fit imprecision, but nevertheless the order of

magnitude has not changed. One can conclude, that the total Q-factor performance

of the storage mode is limited by the internal Q-factor, which is approximately two

orders of magnitude lower than the external one.

Table 5.3: Readout mode and storage mode characterization of the
horseshoe cavity with qubit QMv3 2nd and a dummy chip.

parameter readout mode storage mode

fbare (GHz) 7.4498 7.8642

Q0 1.67 · 104 8.70 · 103

Qx 1.90 · 103 4.70 · 106

QL 1.70 · 103 8.69 · 103

1/κ (µs) 0.04 0.18

5.4 Horseshoe memory with two dummy chips

To investigate the reason for the low internal Q-factor performance of the horseshoe

with qubit chips from Sec. 5.2 and Sec. 5.3, the horseshoe cavity is measured with

two dummy chips in another cooldown. Thus it can be inferred more directly,

whether the chip insertion in general or the special qubit chip with qubit QMv3

2nd is responsible for the internal Q-factor reduction by two orders of magnitude

compared to the empty cavity.

Due to the crosstalk between the cables or the coupling structures, the reflected raw

data contains background structure. One possibility to account for this background

is to add a complex translation to the reflection coefficient from Eq. (4.1):

Γ′ = Γ + x+ iy, (5.1)

resulting in two additional fitting parameters [50, 51]. This is done for the reflection

magnitude in Fig. 5.12 after a linear fit of the first data points has been subtracted
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from the raw data. Another possibility to account for the background is to subtract

a linear trend and thus symmetrize the reflection dip. Then, Eq. (4.1) can be fitted

to the magnitude or phase of the reflection coefficient, as depicted in Fig. 5.13.
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Figure 5.12: Reflection measurement of the horseshoe cavity read-
out mode with two dummy chips at a source power of
−30 dBm. Eq. (5.1) is fitted (red line) to the measurement
data (black dots). A linear fit of the first data points has
been subtracted from the raw data. (a) Reflection magni-
tude. (b) Reflection phase.
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Figure 5.13: Reflection measurement of the horseshoe cavity read-
out mode with two dummy chips at a source power of
−30 dBm. Eq. (4.1) is fitted (red line) to the measurement
data (black dots). A linear trend has been subtracted from
the raw data. (a) Reflection magnitude. (b) Reflection
phase.
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5.4. Horseshoe memory with two dummy chips

The resulting resonance frequency, Q-factors and decay time extracted from the

two fitting models are summarized in Tab. 5.4. The results agree very well with each

other. The main result of this measurement is the high internal Q-factor exceed-

ing one million, which is the same order of magnitude as for the empty horseshoe

cavity. So one can conclude that the cavity design discussed in this thesis actually

works fine and the qubit chip with qubit QMv3 2nd or the qubit QMv3 2nd itself

has been responsible for the low internal Q-factor performance of the cavity. With

the external Q-factor of the storage mode from Tab. 5.3 and the measured internal

Q-factor for the readout mode in this section, we expect a FWHM of approximately

6 kHz for the storage mode. This value corresponds to a storage time of 27 µs. In

the scope of this thesis, it has not been possible to actually find the storage mode

in this configuration with direct VNA measurements, although we explore a fre-

quency range of ±30 MHz around the expected resonance frequency from Tab. 5.3

with a maximal step width of 0.5 kHz. As the frequency of the readout mode is only

shifted by 3 MHz, the storage mode frequency is expected to be in the measured

range. Since a strongly undercoupled mode is expected to be difficult to detect with

a direct VNA measurement, our result supports the assumption that the Q-factor

of the storage mode is in principle high and has only been reduced due to the pres-

ence of the QMv3 2nd qubit chip. In other words, the above results suggest that a

long-lived quantum memory is not at all forbidden by design restrictions, but can

be straightforwardly implemented with a better qubit chip.

Table 5.4: Readout mode characterization of the horseshoe cavity with
two dummy chips.

parameter readout mode asymmetric readout mode symmetric

fbare (GHz) 7.4534 7.4531

Q0 1.18 · 106 1.94 · 106

Qx 2.00 · 103 2.07 · 103

QL 1.99 · 103 2.07 · 103

1/κ (µs) 0.04 0.04
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Future measurements to find the storage mode could be performed by inserting a

branched antenna pin, that expands to the left and right of the recess to lower the

external Q-factor. From such a measurement the internal Q-factor of the storage

mode can be extracted and the range of the resonance frequency can be restricted.

Then, the next step consists in actually measuring the storage mode with the normal

pin, confirming the high storage time and eventually test the horseshoe quantum

memory with another qubit.
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Conclusions and Outlook

In this thesis a novel geometry for a compact 3D quantum memory has been de-

signed, optimized, and experimentally investigated for the applications in the emerg-

ing field of quantum technologies.

The goal to optimize the horseshoe cavity design with respect to fast readout and

long storage times has been reached with finite-element simulations. Therefore the

cavity parameters have been designed in such a way that the readout mode cou-

ples strongly to the antenna port reaching a low external Q-factor of magnitude

103. Simultaneously, the storage mode, which mainly lives in the arms of the horse-

shoe geometry, is expected to reach an external Q-factor on the order of 1012 for

a perfectly positioned antenna. Due to the beneficial mode structure of readout

and storage mode, the horseshoe design allows for an antenna position inaccuracy

in y-direction of ±0.53 mm to still reach an external Q-factor of 106 for the storage

mode. This tolerance is an improvement by a factor of four compared to a rectan-

gular geometry [14]. Furthermore, it has been shown that even a tilt of 10° of the

antenna pin barely has any influence on the external Q-factor performance of the

storage mode.

In experiment, it has been shown that the internal Q-factor of the empty cavity

exceeds one million without any surface treatment. This order of magnitude also

agrees with simulation results. In order to even increase the internal Q-factor in

future measurements, the aluminum cavity could be electropolished [45] or treated

with acid [52] to decrease surface losses. Such a treatment increases the internal

Q-factor by at least one order of magnitude. In addition, we have shown that the

internal Q-factor is not reduced by inserting dummy chips. Equally important, our

measurements indicate that the external Q-factor of the storage mode is currently

neither limited by the antenna placement accuracy nor by field distortions due to

the presence of the dummy chips.

65



Chapter 6. Conclusions and Outlook

The measured frequency gap between storage mode and next higher mode around

750 MHz matches the simulation results and is a factor of 17 larger compared to a

rectangular cavity design. This is beneficial since now an undesired excitation of

the next higher mode is unlikely.

Paving the way towards a fast readout, a low external Q-factor of approximately

2 · 103 for the readout mode has been measured. Unexpectedly, the insertion of the

qubit chips has caused the internal Q-factor of readout and storage mode to de-

crease by two orders of magnitude, resulting in a Q0 on the order of 104. Thus, the

performance of the current memory device (which requires the presence of a qubit)

has been limited by the internal Q-factor. Decay times of 0.04µs for the readout

mode and 0.33 µs for the storage mode have been measured in frequency domain

measurements.

Besides the characterization of the horseshoe geometry, it has been possible to mea-

sure the parameters of qubit QMv3 2nd, the blue sideband transition and finally to

implement the quantum memory protocol in the horseshoe cavity. Qubit decoher-

ence times of T q
1 = (0.48± 0.03) µs and T q

2 = (0.84± 0.08) µs have been extracted.

In comparison to previous measurements in 2018 [14], the qubit decoherence times

decreased by 2/3, which can be attributed to aging. Statistics on the quantum mem-

ory protocol yield storage times of T s
1 = (0.53± 0.19) µs, which match the frequency

domain measurements. Due to the low internal Q-factor resulting from the insertion

of the qubit QMv3 2nd, these storage times unfortunately do not exceed the qubit

decay time in the current device. However, when the designed horseshoe cavity is

measured with a new qubit, more promising storage times are expected.

In the future, a possible next step consists in increasing the external Q-factor of the

storage mode for the horseshoe configuration with two dummy chips in a controlled

way by suitably modifying the antenna. In this way, the lifetime of the storage

mode could be measured in a more direct way as compared to the current work.

Ultimately, the horseshoe architecture has to be tested with a freshly fabricated

transmon qubit. When fabricating the new qubit, one could think about a surface

treatment of the silicon substrate to improve the internal Q-factor [53, 54]. From a

design point of view, further simulations can explore a possible effect of the qubit

design on the storage mode properties.
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Appendix A

Transformation of driven

qubit-resonator Hamiltonian

In Sec. 2.3.3, the Hamiltonian of a driven qubit-resonator system

Ĥ = ~ωcâ
†â+

~ωq

2
σ̂z + ~g(âσ̂+ + â†σ̂−) + ~Ωd(â†e−iωdt + âe+iωdt) (A.1)

(here the zero-point energy of the resonator is neglected) is transformed to a dis-

placed frame as

Ĥ → D̂ĤD̂† + i~ ˙̂
DD̂†. (A.2)

To evaluate the first term in Eq. (A.2) the Hadamard lemma

ex̂ŷe−x̂ = ŷ + [x̂, ŷ] + ..., (A.3)

with x̂=αâ†−α∗â is applied to the Hamiltonian. The following commutator rela-

tions are used during the calculation:

[â, â†] = 1, (A.4)

[x̂, â†â] = −αâ† − α∗â, (A.5)

[x̂, â†] = −α∗, (A.6)

[x̂, â] = −α. (A.7)
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Appendix A Transformation of driven qubit-resonator Hamiltonian

Then, the first term in Eq. (A.2) applied to each part of the Hamiltonian separately

gives:

D̂ĤD̂† =~ωcâ
†â+ ~ωc(−αâ† − α∗â)+

~ωq

2
σ̂z+

~g(âσ̂+ + â†σ̂−) + ~g(−ασ̂+ − α∗σ̂−)+

~Ωd((â† − α∗)e−iωdt + (â− α)eiωdt. (A.8)

The second term in Eq. (A.2) gives:

i~ ˙̂
DD̂† = i~ ˙̂x ex̂e−x̂︸ ︷︷ ︸

=1

= i~(α̇â† − α̇∗â), (A.9)

where the Baker-Campbell-Hausdorff formula is used to show that x̂e−x̂ = 1. To

reach the desired form of the transformed Hamiltonian from Eq. (2.34) the remaining

terms from Eq. (A.8) and Eq. (A.9) have to cancel each other:

~ωc(−αâ† − α∗â) + i~(α̇â† − α̇∗â) + ~Ωd((â† − α∗)e−iωdt + (â− α)eiωdt = 0. (A.10)

Selecting the coefficients associated with â† and â leads to the ordinary differential

equation for α:

α̇ = −iωcα + iΩde
−iωdt. (A.11)
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Appendix B CAD drawing

Appendix B

CAD drawing
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[21] M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmat-

ten, “Quantum Storage of a Photonic Polarization Qubit in a Solid”, Phys.

Rev. Lett. 108 (2012).

74

http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/physreva.69.062320
http://dx.doi.org/10.1103/PhysRevLett.118.223604
http://dx.doi.org/10.1063/1.5029514
https://www.wmi.badw.de/publications/theses/Xie,Edwar_Doktorarbeit_2019.pdf
https://www.wmi.badw.de/publications/theses/Xie,Edwar_Doktorarbeit_2019.pdf
http://dx.doi.org/10.1103/PhysRevB.94.014506
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1103/physreva.84.012322
http://dx.doi.org/10.1103/physrevlett.108.190504
http://dx.doi.org/10.1103/physrevlett.108.190504


Bibliography

[22] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition (Cambridge University Press, 2010).

[23] R. Gross and A. Marx, Festkörperphysik (De Gruyter, 2014).

[24] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow,

J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, and et al., “Suppressing

charge noise decoherence in superconducting charge qubits”, Phys. Rev. B 77

(2008).

[25] A. A. Houck, J. Koch, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Life

after charge noise: recent results with transmon qubits”, Quantum Information

Processing 8, 105 (2009).

[26] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit

design derived from the Cooper pair box”, Phys. Rev. A 76 (2007).

[27] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M.

Girvin, and R. J. Schoelkopf, “Approaching Unit Visibility for Control of a

Superconducting Qubit with Dispersive Readout”, Phys. Rev. Lett. 95, 060501

(2005).

[28] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. M.

Girvin, and R. J. Schoelkopf, “ac Stark Shift and Dephasing of a Superconduct-

ing Qubit Strongly Coupled to a Cavity Field”, Phys. Rev. Lett. 94 (2005).

[29] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret,

and R. J. Schoelkopf, “Quantum-information processing with circuit quantum

electrodynamics”, Phys. Rev. A 75, 032329 (2007).

[30] C. J. Axline, “Building Blocks for Modular Circuit QED Quan-

tum Computing”, Ph.D. thesis, Yale University (2018), URL https:

//rsl.yale.edu/sites/default/files/files/Chris%20Axline%20-%

20Thesis%20-%20smaller.pdf.

[31] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press,

1997).

[32] A. Wallraff, D. I. Schuster, A. Blais, J. M. Gambetta, J. Schreier, L. Frunzio,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Sideband Transitions and

75

http://dx.doi.org/10.1103/physrevb.77.180502
http://dx.doi.org/10.1007/s11128-009-0100-6
http://dx.doi.org/10.1007/s11128-009-0100-6
http://dx.doi.org/10.1103/physreva.76.042319
http://dx.doi.org/10.1103/PhysRevLett.95.060501
http://dx.doi.org/10.1103/physrevlett.94.123602
http://dx.doi.org/10.1103/PhysRevA.75.032329
https://rsl.yale.edu/sites/default/files/files/Chris%20Axline%20-%20Thesis%20-%20smaller.pdf
https://rsl.yale.edu/sites/default/files/files/Chris%20Axline%20-%20Thesis%20-%20smaller.pdf
https://rsl.yale.edu/sites/default/files/files/Chris%20Axline%20-%20Thesis%20-%20smaller.pdf


Bibliography

Two-Tone Spectroscopy of a Superconducting Qubit Strongly Coupled to an

On-Chip Cavity”, Phys. Rev. Lett. 99 (2007).

[33] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx, S. Saito, K. Kakuyanagi,

T. Meno, K. Semba, H. Takayanagi, E. Solano, and R. Gross, “Two-photon

probe of the Jaynes-Cummings model and controlled symmetry breaking in

circuit QED”, Nature Phys. 4, 686 (2008).

[34] J. Goetz, F. Deppe, K. G. Fedorov, P. Eder, M. Fischer, S. Pogorzalek, E. Xie,

A. Marx, and R. Gross, “Parity-Engineered Light-Matter Interaction”, Phys.

Rev. Lett. 121, 060503 (2018).

[35] A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press,

1961).

[36] H. et al., “Controlling the Spontaneous Emission of a Superconducting Trans-

mon Qubit”, Phys. Rev. Lett. 101 (2008).

[37] K. L. Geerlings, “Improving Coherence of Superconducting Qubits and

ResonatorsImproving Coherence of Superconducting Qubits and Resonators”,

Ph.D. thesis, Yale University (2013), URL https://qulab.eng.yale.edu/

documents/theses/Kurtis_ImprovingCoherenceSuperconductingQubits.

pdf.

[38] J. Goetz, “The Interplay of Superconducting Quantum Circuits and Prop-

agating Microwave States”, Ph.D. thesis, Technische Universität München

(2017), URL http://www.wmi.badw.de/publications/theses/Goetz,Jan_

Doktorarbeit_2017_TUM.pdf.

[39] D. Schuster, “Circuit Quantum Electrodynamics”, Ph.D. thesis, Yale Univer-

sity (2007), URL https://rsl.yale.edu/sites/default/files/files/RSL_

Theses/SchusterThesis.pdf.

[40] S. Trattnig, “Quantum Memory with Optimal Control”, Master’s thesis, TU

München (2020).

[41] M. Pierre, S. R. Sathyamoorthy, I.-M. Svensson, G. Johansson, and P. Delsing,

“Resonant and off-resonant microwave signal manipulation in coupled super-

conducting resonators”, Phys. Rev. B 99 (2019).

76

http://dx.doi.org/10.1103/physrevlett.99.050501
http://dx.doi.org/10.1038/nphys1016
http://dx.doi.org/10.1103/PhysRevLett.121.060503
http://dx.doi.org/10.1103/PhysRevLett.121.060503
http://dx.doi.org/10.1103/physrevlett.101.080502
https://qulab.eng.yale.edu/documents/theses/Kurtis_ImprovingCoherenceSuperconductingQubits.pdf
https://qulab.eng.yale.edu/documents/theses/Kurtis_ImprovingCoherenceSuperconductingQubits.pdf
https://qulab.eng.yale.edu/documents/theses/Kurtis_ImprovingCoherenceSuperconductingQubits.pdf
http://www.wmi.badw.de/publications/theses/Goetz,Jan_Doktorarbeit_2017_TUM.pdf
http://www.wmi.badw.de/publications/theses/Goetz,Jan_Doktorarbeit_2017_TUM.pdf
https://rsl.yale.edu/sites/default/files/files/RSL_Theses/SchusterThesis.pdf
https://rsl.yale.edu/sites/default/files/files/RSL_Theses/SchusterThesis.pdf
http://dx.doi.org/10.1103/physrevb.99.094518


Bibliography

[42] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and

R. J. Schoelkopf, “High-Fidelity Readout in Circuit Quantum Electrodynam-

ics Using the Jaynes-Cummings Nonlinearity”, Phys. Rev. Lett. 105, 173601

(2010).

[43] S. M. Anton, C. Müller, J. S. Birenbaum, S. R. O’Kelley, A. D. Fefferman, D. S.

Golubev, G. C. Hilton, H.-M. Cho, K. D. Irwin, F. C. Wellstood, G. Schön,

A. Shnirman, and J. Clarke, “Pure dephasing in flux qubits due to flux noise

with spectral density scaling as 1/fα”, Phys. Rev. B 85, 224505 (2012).

[44] P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and

A. Wallraff, “Cavity Quantum Electrodynamics with Separate Photon Storage

and Qubit Readout Modes”, Phys. Rev. Lett. 104, 100504 (2010).

[45] J. R. A. Müller, “3D Cavities for Circuit Quantum Electrodynamics”,

Bachelor’s thesis, TU München (2014), URL https://www.wmi.badw.de/

publications/theses/Mueller,Jonathan%20Bachelor%20Thesis%202014.

pdf.

[46] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears,

B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H.

Devoret, and R. J. Schoelkopf, “Observation of High Coherence in Josephson

Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture”,

Phys. Rev. Lett. 107, 240501 (2011).

[47] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit Quantum

Electrodynamics”, (2020), 2005.12667.

[48] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and

L. DiCarlo, “Reducing intrinsic loss in superconducting resonators by surface

treatment and deep etching of silicon substrates”, Appl. Phys. Lett. 106, 182601

(2015).

[49] I. M. Pop, T. Fournier, T. Crozes, F. Lecocq, I. Matei, B. Pannetier, O. Buisson,

and W. Guichard, “Fabrication of stable and reproducible submicron tunnel

junctions”, Journal of Vacuum Science & Technology B 30, 010607 (2012).

[50] P. J. Petersan and S. M. Anlage, “Measurement of resonant frequency and

quality factor of microwave resonators: Comparison of methods”, Journal of

Applied Physics 84, 3392 (1998).

77

http://dx.doi.org/10.1103/PhysRevLett.105.173601
http://dx.doi.org/10.1103/PhysRevB.85.224505
http://dx.doi.org/10.1103/PhysRevLett.104.100504
https://www.wmi.badw.de/publications/theses/Mueller,Jonathan%20Bachelor%20Thesis%202014.pdf
https://www.wmi.badw.de/publications/theses/Mueller,Jonathan%20Bachelor%20Thesis%202014.pdf
https://www.wmi.badw.de/publications/theses/Mueller,Jonathan%20Bachelor%20Thesis%202014.pdf
http://dx.doi.org/10.1103/PhysRevLett.107.240501
2005.12667
http://dx.doi.org/10.1063/1.4919761
http://dx.doi.org/10.1116/1.3673790
http://dx.doi.org/10.1063/1.368498
http://dx.doi.org/10.1063/1.368498


[51] N. Pompeo, K. Torokhtii, F. Leccese, A. Scorza, S. Sciuto, and E. Silva, in 2017

IEEE International Instrumentation and Measurement Technology Conference

(I2MTC) (2017), pp. 1–6.

[52] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop,

N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J.

Schoelkopf, “Reaching 10 ms single photon lifetimes for superconducting alu-

minum cavities”, Appl. Phys. Lett. 102, 192604 (2013).

[53] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and

L. DiCarlo, “Reducing intrinsic loss in superconducting resonators by surface

treatment and deep etching of silicon substrates”, Appl. Phys. Lett. 106, 182601

(2015).

[54] C. Müller, J. H. Cole, and J. Lisenfeld, “Towards understanding two-level-

systems in amorphous solids: insights from quantum circuits”, Rep. Prog. Phys.

82, 124501 (2019).

78

http://dx.doi.org/10.1063/1.4807015
http://dx.doi.org/10.1063/1.4919761
http://dx.doi.org/10.1088/1361-6633/ab3a7e


Acknowledgments

Finally I want to thank everybody who supported me in conducting and writing

this master’s thesis.

First of all I need to express my gratitude to my supervisor Dr. Frank Deppe, who

provided me the possibility to write this thesis at the WMI. Due to his experience

and know-how he has always been a great help.

Also great thank applies to the people of the in-house workshop, who actually built

the designed horseshoe cavity of this thesis. Thanks for preparing plenty of com-

mercial antennas until the soldering procedure of the gold wire finally worked.

Special thanks go to Stephan Trattnig who introduced me to the workflow in the

lab, the measurement electronics and the control program on the computer. He was

always available for questions and helpful discussions. At this point I also want to

thank Matti Partanen for the collaborative work with the cryostat and for taking

over one or the other night shift. He always had an open ear for questions and I

enjoyed the nice conversations.

Furthermore my office mates Florian, Leander, Manuel, Raffael, Stephan, Elisabeth,

Korbinian and Christopher deserve great thanks for all the funny and encouraging

coffee and lunch breaks. This gratitude certainly also goes to all the other people

at WMI who attended these nice conversations.

Besides the comfortable atmosphere at WMI I also want to thank my parents and

my friend Lars for their mental support during this thesis.

79


	Introduction
	Theory
	3D microwave cavity
	Quality factor
	External losses
	Internal losses

	Superconducting transmon qubit
	Qubits
	Josephson junction
	Transmon qubit

	Compact 3D quantum memory
	The dispersive regime
	AC Stark shift
	Control of qubit–cavity system

	Quantum coherence and decoherence
	Purcell effect


	Horseshoe memory architecture
	Limitations of simple rectangular architecture
	Finite-element simulations of the horseshoe geometry
	Horseshoe cavity design
	Horseshoe mode structure
	Chip placement
	Antenna design
	Scalability


	Experimental techniques
	Sample design
	Coupling antenna
	Transmon qubit chips

	Setup
	Cryogenic setup
	Frequency domain measurements
	Time domain setup

	Spectroscopy
	Single-tone measurement
	Two-tone measurement and qubit levels
	AC-Stark shift and photon number calibration

	Time domain measurements
	Qubit characteristics
	Blue sideband transition and memory protocol


	Results
	Empty horseshoe cavity characterization
	Horseshoe memory with two qubits
	Readout, storage and next higher mode
	Transmon qubit
	BSB transition and memory protocol

	Horseshoe memory with one qubit and one dummy chip
	Readout mode
	Storage mode

	Horseshoe memory with two dummy chips

	Conclusions and Outlook
	Transformation of driven qubit-resonator Hamiltonian
	CAD drawing
	Bibliography
	Acknowledgments

