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Chapter 1

Introduction

In the past decades, our ever increasing demand for computational power, lead to the
development of novel electronic devices. Widespread use of information processing devices,
started with the discovery of the transistor. Further research lead to the development of
integrated circuits, as they are still used in today’s microprocessors. The miniaturization
of the feature size, e.g., the gate size of the transistors used in these devices, continuously
improves their performance. However, the feature size now apporaches fundamental physical
limits like the Heisenberg uncertainty [1], which will render its further downsizing impossible
in the near future.
New technologies are required in order to overcome these problems. One solution is to

exploit the spin of the electron and not only its electrical charge. In 1988, Albert Fert [2]
and Peter Grünberg [3] independently discovered the giant magnetoresistance (GMR)
in multilayers of iron and chrome. The discovery was honoured with the Nobel Prize in
Physics in 2007. Fert and Grünberg found that the electrical resistance in these multilayers
is smaller for parallel spin alignment than for antiparallel spin alignment [4]. A similar
effect, based on the magnetization orientation of two magnetic layers separated by an
insulator, is the tunneling magnetoresistance (TMR), discovered by M. Julliere in 1975 [5].
The phenomenology is similar to the GMR in that the resistance is dependent on the
relative orientation of the magnetizations in the magnetic layers, but the effect is even
larger. Therefore, the TMR effect is still used in read heads of hard disk drives [6].
The development of spin-based electronics lead to the research field of spintronics,

where the central goal is the manipulation and transport of spins by electrical currents
and voltages. Important progress has been made in the development of, e.g., nonvolatile
memory devices, where the memory is retained even after removing power from the device.
An example is the racetrack memory proposed by Stuart Parkin in 2008 [7], where the idea
is to store information in magnetic domains of a ferromagnetic wire by moving them with
an electrical current.

Another approach is the magnetoresistive random access memory (MRAM), which uses
two ferromagnetic layers separated by a tunnel barrier to store data as bits [8] by utilizing
the high and low resistivity configuration of the TMR effect. A further development is
the so-called spin transfer torque magnetoresistive random access memory (STT-MRAM).
This device uses polarized spin-currents to manipulate the spins in the magnetic layers to
store data [9]. These two devices combine high read and write rates, nonvolatility and low
energy consumption but they require high current densities which lead to Joule heating.
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2 Chapter 1 Introduction

Current challenges in spintronics include the identification of novel material systems
with enhanced domain wall mobility and low switching currents. With the recent discovery
of the magnetic skyrmion lattice phase [10], a new class of materials with promising
perspectives for spintronics is now available. Furthermore, spin-orbit torques that arise
at the interface of a normal metal and a magnetic thin film can be used to switch the
magnetization [11]. To study these materials and physical phenomena, it is necessary to
understand the magnetization dynamics for different material systems. The magnetization
dynamics of a material give information about its intrinsic properties such as Landè-factor,
anisotropy and damping but also exchange coupling and spin pumping properties in
magnetic multilayers [12]. Spin pumping is the mechanism of generating a spin current in
a normal metal by driving the magnetization in an adjacent ferromagnet [13, 14].
Several measurement techniques to study the magnetization dynamics are available

in the frequency range from GHz to a few hundred THz. An established method is the
broadband ferromagnetic resonance (FMR) technique, which operates in the GHz regime.
The broadband FMR uses a coplanar waveguide while earlier FMR experiments used
a microwave cavity, which limits the experiments to a single microwave frequency. The
coplanar waveguide instead allows to measure over a large frequency range, which is
essential to extract magnetic damping and spin-orbit torque efficiencies. Furthermore it
allows to study magnetization dynamics in chiral magnets in the frequency domain.

In this thesis, we investigate the magnetization dynamics in different magnetic materials
relevant for spintronics using a broadband ferromagnetic resonance technique with a
coplanar waveguide and a vector network analyzer (VNA). The VNA allows us to recover
the full amplitude and phase information, which we exploit to quantify spin-orbit torques in
normal metal/ferromagnet bilayers. We furthermore study a compensating ferrimagnet and
an insulating chiral magnet, which hosts magnetic skyrmions. Exploring the fundamentally
different dynamical properties of these systems motivated this work.
This thesis is structured as follows: In chapter 2, we start with an introduction into

the basics of magnetization dynamics in an externally applied magnetic field. Afterwards,
the ferromagnetic resonance observed when we apply an additional oscillating magnetic
field perpendicular to the external magnetic field is discussed. The resulting response of
the magnetization is described by the Polder susceptibility and the resonance condition is
given by the Kittel equation, which will be introduced here.

In chapter 3, the so-called vector network analyzer ferromagnetic resonance setup (VNA-
FMR) will be explained in detail. In particular, we discuss the detection scheme in a fully
quantitative manner. As the VNA is a versatile instrument, two operation modes (linear
frequency sweep and continuous wave mode) are discussed with regard to their applications
for FMR spectroscopy. We furthermore show how the raw FMR signal can be distinguished
from the background coming from the used microwave equipment, and how the FMR
spectra can be fitted.
In chapter 4, we present an inductive measurement technique to quantify the room-

temperature field- and damping-like spin-orbit torques (SOT) in three series of normal
metal/ferromagnet bilayer samples by evaluating the amplitude and phase of the measured
FMR signal using a VNA. Due to the phase-sensitive measurement it is possible to
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distinguish between the damping- and field-like SOTs as they are in quadrature. The
samples consist of the ferromagnet CoFeB interfaced with three different normal metal
systems (namely TaAu, W and AuPt), where also the exact composition of the binary
alloys is varied. The necessary processing steps required to extract the spin-orbit torque
conductivity are described. From the spin-orbit torque conductivity we obtain the spin
Hall angle. The experimentally determined spin Hall angles are in excellent agreement with
theory and with results from two other measurement techniques, namely the harmonic
Hall measurement (group of M. Meinert) and the THz emission spectroscopy (group of T.
Kampfrath). In the AuPt/CoFeB samples we observe a maximum of the spin Hall angle
which is two times larger than of pure platinum, for about 33% gold content. Additionally, a
correlation between the Gilbert damping parameter and the damping-like SOT conductivity
is found. For the W/CoFeB samples a correlation between the Gilbert damping parameter
and the damping-like SOT conductivity and also between the Landè-factor and the field-like
SOT conductivity is observed.

In chapter 5, the magnetization dynamics of the compensating ferrimagnet gadolinium
iron garnet (GdIG) are investigated. The crystal structure of GdIG features three magnetic
sublattices. This results in a so-called compensation temperature (Tcomp ' 288 K), where
the sublattice magnetizations cancel each other out. The temperature-dependence of the
sublattice magnetizations makes GdIG an ideal testing environment to investigate the
ferrimagnetic (FMR) and the antiferromagnetic resonance (AFMR) close and far away from
the compensation point. At the compensation point, the Landè-factor and the linewidth of
the FMR diverge as predicted by theory. The antiferromagnetic resonance has in contrast
to the ferromagnetic resonance a negative resonance frequency vs. magnetic field dispersion.
The AFMR shifts to larger frequencies for decreasing temperature because the molecular
exchange constant becomes also larger. Additionally, the strong and weak coupling between
the FMR and AFMR and its dependence on the crystallographic direction along which the
external magnetic field is applied, is discussed.
In chapter 6, we study the high frequency dynamics of the insulating chiral magnet

Cu2OSeO3, which is a known skyrmion host material. Skyrmions are topologically protected
spin solitons, which are observable below the critical temperature (Tc ' 59 K). The
theoretical calculation of M. Mochizuki [15] predicts a “melting” of the skyrmion lattice by
driving the system with large microwave power. We test this prediction using two different
measurement setups, namely the basic FMR setup with an amplifier and a 2-tone setup,
where an additional frequency source and a directional coupler is used. In the basic FMR
setup the excitation spectra do not show any changes in the different magnetic modes
when applying large microwave power. In the 2-tone experiment, the skyrmion resonance
signature is suppressed if a high power driving tone in the frequency range from 0.7 GHz
to 1.0 GHz is applied by the frequency source. This has also been observed in small angle
neutron scattering (SANS) experiments performed by the group of C. Pfleiderer.
Finally, in chapter 7, the most important experimental results are summarized and we

give an outlook on possible future experiments that are based on the results obtained in
this thesis.





Chapter 2

Ferromagnetic Resonance

Broadband magnetic resonance spectroscopy is a widely used and well-established experi-
mental technique to probe materials with a magnetic ordering. Magnetic ordering occurs
below a critical temperature and in the absence of a magnetic field. The interaction energy
then overcomes the thermal energy and causes the magnetic moments depending of the
type of interaction into an ordered state [16]. For ferromagnets and antiferromagnets,
where all the magnetic moments are aligned either parallel or antiparallel, the Heisenberg
exchange interaction [17] is responsible for the ordering. There also exist more complicated
ordering phenomena like in a chiral magnet, which will be treated in chapter 6.

For the description of the dynamics of the magnetization and the ferromagnetic resonance,
a classical, macroscopic approach is used. This is justified since the quantum numbers
corresponding to the relevant energy levels are of the order of 1015 [18], which is a simple
consequence of the correspondence principle [19]. Therefore the quantum-mechanical and
the classical description lead to the same result [20].

First, the dynamics of a magnetization in an externally applied static magnetic field will
be treated in section 2.1. By applying an additional oscillating magnetic field perpendicular
to the static field leads to the ferromagnetic resonance. In section 2.2 the response of the
system (Polder-susceptibility) as well as the Kittel-equations, which describe the resonance
condition of the FMR, will be discussed.

2.1 Magnetization Dynamics

In order to get a first intuition of the magnetization dynamics, a single magnetic moment µ
of an electron in an externally applied magnetic field H0 is considered. The magnetic field
applies a torque T on the magnetic moment

T = −µ× µ0H0, (2.1)

which results in a precession of the magnetic moment around the magnetic field with a
frequency

ω = γµ0|H0|, (2.2)

where ω is the angular frequency, µ0 = 4π × 10−7 V s/(A m) is the vacuum permeability
and

γ = g µB
~

(2.3)

5
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Figure 2.1: (a) Precessional motion of the magnetization M in an effective magnetic field H
described by Eq. (2.9). The torque originating from the externally applied field is
indicated in red and the damping torque which leads to an alignment of the magnetiza-
tion to the equilibrium position (M||H) is drawn in green. The torque opposing the
damping torque which is due to the additionally applied oscillating field hrf, which is
perpendicular to H0 and drives the magnetization away from its equilibrium position,
is drawn in orange. (b) The real and imaginary part of the high-frequency susceptibility
χ as a function of the externally applied magnetic field µ0H0. The susceptibility relates
the magnetization perpendicular to the static magnetic field H0 and the driving field
m = χhrf.

is the gyromagnetic ratio with the Landè-factor g, the Bohr magneton µB and the reduced
Planck constant ~ = h/2π. The gyromagnetic ratio relates the magnetic moment with the
angular momentum. From classical mechanics it is known that the torque is equal to the
rate of change of angular momentum, Eq. (2.1) results in

dµ

dt = −γ µ× µ0H0, (2.4)

which describes the dynamics of a single magnetic moment in an external magnetic field
and is also called Larmor precession [21].

In a solid-state material the number of electrons are in the order of 1024, so a continuum
approach is done, where the single magnetic moments of the electrons µi are added up to
a macroscopic quantity called the magnetization

M = 1
V

∑
µi∈V

µi, (2.5)

where V is a finite volume of the sample. By simply plugging in this relation into Eq. (2.4),
we get the so-called Landau-Lifshitz equation [22]

dM
dt = −γM× µ0H0, (2.6)

which describes an infinite precession in time of the magnetization around the magnetic field.
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The projection of the magnetization M on the magnetic field vector H0 stays unchanged.
So far no losses have been taken into consideration.

In 1955, T. Gilbert modified the Landau-Lifshitz equation and added a phenomenological
damping parameter α [23], which then results in the Landau-Lifshitz-Gilbert equation
(LLG)

dM
dt = −γM× µ0H + α

Msat
M× dM

dt (2.7)

with the saturation magnetization Msat. The magnetization precesses around the magnetic
field and relaxes in a finite time to its equilibrium position, which is parallel to the applied
magnetic field M||H, as depicted in Fig. 2.1(a).
Note that the relevant magnetic field is not the externally applied magnetic field, but

the effective magnetic field. The effective magnetic field contains the externally applied
magnetic field as well as any anisotropy contributions. As a consequence of the dipolar
interaction, the magnetic field outside and inside the sample are unequal. The calculation
of these so called demagnetization fields can be very tedious for arbitrary sample shape.
In our computation we limit our sample shapes to general ellipsoids and can write the
internal magnetic field as

Hi = H0 −
↔
NM (2.8)

with the demagnetization tensor
↔
N . If the principle axes of the ellipsoid coincide with the

axes of the coordinate system the tensor becomes symmetric and diagonal. Then only the
three diagonal demagnetization factors are left, for which in general Nx+Ny+Nz = 1 holds.
It is important to note that in literature and throughout this thesis the Nz component is
always defined as the axis along which the externally applied magnetic field H0 is pointing.
Furthermore magneto crystalline anisotropy has to be taken into account. Anisotropy

of a system is the dependence of properties depending on the direction of the magnetic
field relative to a preferred direction [24]. The already mentioned demagnetization fields,
which depend on the direction of the applied magnetic field with respect to the sample
geometry, can also be referred as the shape anisotropy. The preferred axes of the magneto
crystalline anisotropy instead are given by the crystal axes and therefore depend on the
angle between the magnetization and these axes. For simplicity the angle dependence is
neglected. Additionally, also interface anisotropies can be present. In order to account for all
these anisotropy contributions, they are simply collected in a total anisotropy field Haniso.
The total magnetic field H is then given by

H = H0 + Haniso −
↔
NM. (2.9)

The total magnetic field is then simply plugged into the LLG (Eq. (2.7)) and by solving
this differential equation the full information of the magnetization dynamics of the system
is obtained.
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2.2 Ferromagnetic Resonance

In our experiments, we additionally apply an oscillating magnetic field hrf perpendicular to
the static dc magnetic field H0 as shown in Fig. 2.1(a), which acts as an perturbation for
the system. This rf magnetic field exerts a torque, which points in the opposite direction
of the damping torque and prevents the magnetization from decaying. In a simple driven
harmonic oscillator model the precessing magnetization is driven by the rf magnetic field hrf
and if the precessional frequency of the magnetization is hit with the rf field, an enhanced
response should be observed, which is due to the fact that more energy is absorbed by the
system.

In the following a schematical derivation of this response is shown and how the precessional
frequency of the material is influenced by its properties will be discussed. A thorough
derivation of the following calculation can be found in [24–28].

2.2.1 Polder-Susceptibility and Kittel-Equation

We start our discussion with a magnetization M of a finite size sample in an externally
applied magnetic field along the z-axis H0 = H0êz and an oscillating magnetic field hrf(t) =
(hrf,x(t),hrf,y(t),0) perpendicular to it. First the magnetic field H and the magnetization
M is split into a time-independent (M0, H0) and a time-dependent part (hrf(t), m(t)):

H = H0 + Haniso −NzM0 + hrf(t) = (H0 +Haniso −NzM0) êz + hrf(t)
M = M0 + m(t) = M0êz + m(t). (2.10)

Furthermore the alternating parts are assumed to be harmonic, so it is possible to write
them as

hrf(t) = hrf,0 · eiωt

m(t) = m0 · eiωt. (2.11)

The time-dependent parts are supposed to be smaller than the time-independent ones
(hrf,0 � H0 and m0 � M0). The acquired equations are now simply plugged into the
Landau-Lifshitz-Gilbert equation (Eq. (2.7)). In addition, the steady magnetization is
supposed to point in its equilibrium position (M0||H0), which leads to M0 ×H0 = 0. By
splitting the LLG into the three Cartesian coordinates, this results in

iωmx = γµ0M0 · (hrf,y −Nymy)−my · (γµ0 · (H0 +Haniso −NzM0) + iωα)
iωmy = −γµ0M0 · (hrf,y −Nxmx) +mx · (γµ0 · (H0 +Haniso −NzM0) + iωα)
iωmz = 0. (2.12)

One needs to keep in mind, that the time-varying components are also attenuated by
the internal magnetic fields. In the Landau-Lifshitz-Gilbert equation the value of the
equilibrium magnetization equals the saturation magnetization M0 = Msat as the length of
this vector does not change [29]. As the last component mz = 0, the first two equations
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are rewritten into a matrix form and results in(
mx
my

)
= ↔
χ

(
hrf,x
hrf,y

)
(2.13)

with

↔
χ = µ0Msat

Det(A)

(
H0 +Haniso +Msat · (Ny −Nz) + iωα

γµ0
+ iω
γµ0

− iω
γµ0

H0 +Haniso +Msat · (Nx −Nz) + iωα
γµ0

)
︸ ︷︷ ︸

≡A

,

(2.14)
which is also known as the Polder-susceptibility and was first derived by D. Polder in
1949 [30]. The susceptibility gives the response of the magnetization to a small (compared
to the static magnetic field) rf magnetic field perpendicular to its equilibrium position and
is generally a tensor of the second order, where its components are labeled as

↔
χ =

(
χxx χxy
χyx χyy

)
. (2.15)

The susceptibility can be split into its real and imaginary part χ = χ′ + iχ′′, where
the real part χ′ describes the dissipation and the imaginary part χ′′ characterizes the
absorption of the system. The typical lineshape of the susceptibility is shown in Fig. 2.1(b).
The absorption of the system χ′′ has a typical Lorentzian lineshape, where the minimum
indicates where the most energy is absorbed.
In the last step we want to calculate the resonance condition of the ferromagnetic

resonance for a given static magnetic field. Solving Det(↔
χ) != 0 for the frequency f = ω/2π

and taking the real part of the solution, we recover the famous Kittel equation

f = γ

2π µ0

√
(H0 +Haniso + (Nx −Nz) ·Msat) · (H0 +Haniso + (Ny −Nz) ·Msat), (2.16)

which was first calculated by C. Kittel in 1948 [31]. This relation describes the resonance
condition for a finite size (bulk) sample. We are also interested in thin film samples
(thickness ∼nm), where we can deduce two special cases of Eq. (2.16). We assume the
normal of the plane to point along the z-direction.
For the in-plane (ip) case the magnetic field H0 is pointing in the plane of the sample.

Therefore the demagnetization factors are set to Nx = 1 and Ny = Nz = 0, so the in-plane
Kittel-equation takes the following form:

f = γ

2π µ0
√

(H0 +Haniso) · (H0 +Haniso +Msat). (2.17)

In the out-of-plane (oop) case the magnetic field H0 is parallel to the surface normal
of the sample so the demagnetization factors become Nx = Ny = 0 and Nz = 1. In
addition the anisotropy field Haniso and the magnetization Msat are combined to an
effective magnetization Meff = Msat −Haniso because in the fitting process it cannot be
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distinguished between them. This results in the out-of-plane Kittel-equation

f = γ

2π µ0 (H0 −Meff). (2.18)

As seen from the definition of the Polder susceptibility (Eq. (2.14)), there exists an
imaginary part in the diagonal elements, which contains the Gilbert damping parameter α.
By solving the equation Det(↔

χ) != 0 for the magnetic field H0, but this time taking the
imaginary part of the solution, we can describe the linewidth

∆HHWHM = αω

µ0γ
, (2.19)

where ∆HHWHM is the linewidth defined as half-width-at-half-maximum (HWHM). This
equation phenomenologically accounts for all kind of contributions to the linewidth, which
scale linearly with frequency. In our experiments we extract by fitting our FMR curve the
full-width-at-half-maximum (FWHM) linewidth. Therefore we need to modify Eq. (2.19)
by multiplying with a factor of 2 (∆HFWHM = 2 ·∆HHWHM). Moreover it is observed, that
the curve does not intersect with the y-axis at 0 rather at a finite value. Therefore an offset
is added to Eq. (2.19), which is called the inhomogeneous linewidth broadening ∆Hinh.
Finally, we arrive at the full equation to describe the linewidth

µ0∆HFWHM = µ0∆Hinh + 2 · 2πf α
γ

. (2.20)

The origin of the damping can be quite manifold, like two-magnon scattering or Eddy-
currents in metals, and is basically sample-dependent [29].



Chapter 3

Measurement Technique (VNA-FMR)

The investigation of the ferromagnetic resonance (FMR) has triggered the development of
a multitude of experimental techniques in order to extract the high-frequency properties of
a magnetic material. The ferromagnetic resonance can be used to determine the intrinsic
parameters such as its damping characteristics [32], its magnetic anisotropies [33] or
the interlayer exchange coupling of an magnetic multilayer [12]. In this work a so-called
vector network analyzer ferromagnetic resonance (VNA-FMR) technique with a coplanar
waveguide is used. Further measurement techniques also characterizing the FMR are
the pulsed inductive microwave magnetometer (PIMM) [34], spin-torque ferromagnetic
resonance (ST-FMR) [35] or ferromagnetic resonance with a frequency source and a Lock-
in [36]. The big advantage of the VNA-FMR over the other methods is that it has a very
high sensitivity and the ability to fully analyze the amplitude and the phase of the signal.
The VNA-FMR setup and its general working principle is discussed in section 3.1 . As

the vector network analyzer is a versatile measurement device, one can perform VNA-FMR
in two different measurement modes. These are the frequency-swept FMR, where the VNA
operates in the linear frequency sweep mode, and the magnetic field-swept FMR, where
the VNA is in the continuous wave mode. Both will be treated in sections 3.2 and 3.3
respectively. In these sections we further discuss how the background coming from the used
microwave equipment in the setup (cable, endlaunches etc.) has to be subtracted in order
to get the raw FMR-signal.

3.1 Experimental Setup VNA-FMR

The basic vector network analyzer ferromagnetic resonance (VNA-FMR) setup consists of
three main parts: a coplanar waveguide (CPW), the vector network analyzer itself and an
instrument to produce magnetic fields as depicted in Fig. 3.1.
Starting with the magnetic field, either an electromagnet is used, when performing

room temperature experiments, or an superconducting 3D-vector magnet for cryogenic
temperature experiments. The 3D vector magnet is assembled from two opposing coils in
Helmholtz configuration and a solenoid, which are producing a homogeneous magnetic field
by Amperè’s law, when a current is flowing through the wires of the coils. The magnet is in
a bath of liquid helium (boiling point T = 4.2 K). A disadvantage of the superconducting
magnet is its slow slew rate. The room-temperature electromagnet uses an iron yoke to

11
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Figure 3.1: Schematic experimental vector network analyzer setup for ferromagnetic resonance
(VNA-FMR). The sample (thickness dFM, length l) is placed flip-chip style on the
coplanar waveguide (CPW) and is solely inductively coupled to it. The oscillating
magnetic field hrf is produced by the frequency source of the vector network analyzer
(VNA) by applying a sinusoidal microwave to the cables, which is then coupled into the
center conductor (in brown) via the endlaunch connectors (front connector not shown
for clarity).

produce magnetic inductions with fast slew rates up to 3 T along a single axis. The field
resolution is for both systems in general better than 0.5 mT.

The vector network analyzer (VNA) is a device to fully characterize an electrical rf circuit.
In a simple picture, a network analyzer produces a wave with frequency f at port 1 and
measures the transmitted wave with the same frequency at port 2 after travelling through
the rf circuit. A scalar network analyzer only measures the amplitude difference between
these waves, in contrast to the vector network analyzer, which additionally measures
the phase [37]. From the amplitude and the phase the VNA calculates the complex S-
parameters. In our measurements, we are interested in the change of transmission as the
sample absorbs energy, if the FMR resonance condition is fulfilled. Therefore we measure
the complex transmission parameter S21, which is simply defined as the ratio between the
incident wave at port 2 and the outgoing wave at port 1

S21 = V2
V1

= |V2|
|V1|

ei(φ2−φ1), (3.1)
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where Vi are the measured voltages, which are complex quantities. These complex variables
are described by their magnitude |Vi| and a complex phase factor eiφi . The transmission
parameter S21 consists of the transmission change ∆S21 coming from the sample and the
background S0

21 originating from the frequency-dependent transmission of the setup. The
transmission change ∆S21 can be written as

∆S21 = S21 − S0
21

S0
21

. (3.2)

In our measurements, we assume to have a fully impedance matched rf circuit of
Z0 = 50 Ω in order to neglect the back reflected wave in the system (S11 = 0). In general
this assumption does not hold, but the data analysis that we describe below, remains valid
in the limit of |S11| � 1, which is generally the case.
The amplitude of the outgoing wave can be adjusted by changing the power level of

the frequency source of the VNA. The software of the VNA then performs a full phase
and amplitude analysis after detecting the signal in a heterodyne measurement scheme.
In order to reduce the noise figure, it is possible to adjust the IF bandwidth. The smaller
the IF bandwidth is chosen, the less broadband noise is detected at the cost of extended
measurement time. Therefore we choose our IF bandwidth such, that it gives a good
balance between an adequate Signal-to-Noise ratio and reasonable measurement time. An
extensive discussion of the working principle of a VNA can be found in [37].
The last part is the coplanar waveguide, which consists of a metallic thin film, which

is deposited on a low loss dielectric substrate, and two electrodes parallel to it, which
are also deposited on the same surface and connected to a common ground [38]. The
transmission line in the middle is the so-called center conductor and is responsible for the
transportation of the induced microwave in a TEM-mode. The microwave in the center
conductor generates due to Ampere’s law an elliptical rf magnetic field hrf in the y,z-plane
because of the finite width wcc of the transmission line, which is typically in the range
of µm to mm. This generated magnetic field can be quantitatively calculated with the
Karlqvist equations [27, 39, 40]

hy(y,z) = 1
π

I

2wcc

(
arctan

(
y + wcc

2
z

)
− arctan

(
y − wcc

2
z

))
(3.3)

hz(y,z) = 1
2π

I

2wcc
ln
((

y + wcc
2
)2 + z2(

y − wcc
2
)2 + z2

)
, (3.4)

where the term I/(2wcc) describes the magnetic field, which is produced by an infinite
sheet with a current I. The current I in the center conductor of the CPW can be related
to the applied power P by I =

√
P/Z0. The geometry of the center conductor is chosen in

a way, that the impedance of the CPW equals 50 Ω in order to match the impedance of
the whole system, so no back-reflecting waves are produced.

The vector network analyzer is connected with the coplanar waveguide using cables and
two endlaunche connectors at each side of the CPW. The endlaunches couple the microwave,
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produced by the frequency source of the VNA, into the center line. Consequently the center
conductor produces the oscillating magnetic field hrf with a frequency f given by the VNA.
In the experiment, the sample is placed flip-chip style onto the CPW and is purely

inductively coupled to the coplanar waveguide. By applying a static magnetic field H0 in
an arbitrary direction, the magnetization of the sample is orientated and the magnetization
starts to precess with a frequency according to the Kittel equation (Eq. (2.16)). The CPW
acts here as an excitation as well as a detection transducer, in a way that it drives the
excitation torque on the precessing magnetization with a oscillating magnetic field hrf as
well as it detects the additional current, which is induced by the precessing magnetization
in the sample into the CPW due to Faraday’s law. If the applied frequency of the VNA
matches the resonance frequency of the precession of the magnetization, the induced current
opposes the excitation current, such that microwave power is absorbed.

The coupling between the CPW and the AC magnetic field produced by the precessing
magnetization can be calculated by assuming a simple voltage divider model, where we
have the resistance of our impedance matched system of Z0 = 50 Ω and the inductance of
the sample L0 in series. As a result we acquire for the transmission parameter

∆S21 = 1
2
−iωL0

Z0 − iωL0
, (3.5)

where the factor 1/2 occurs due to the fact that the measured voltage at port 2 V2 is
measured between the CPW signal and ground and not between port 1 and 2 [41]. The
inductance of the sample is given by [40, 41]

L0 = µ0Msatl

wccdFMI2

 +∞∫
−∞

dy
δsl+dFM∫
δsl

dz
(

q(y,z)↔
χ(ω,H0)hrf(y,z,I)

)
·

 +∞∫
−∞

dy
δsl+dFM∫
δsl

dz (q(y,z)hrf(y,z,I))

 (3.6)

= µ0ldFM
4wcc

χyy(ω,H0) η2(δsl,wcc), (3.7)

where the geometry shown in Fig. 3.1 is used and additionally a finite spacing δsl between
the sample and the CPW (not shown in figure) is taken into account. Furthermore we
have used in the last step, that the sample is a thin film (dFM ' nm) and that the
magnetic field H0 is applied in the out-of-plane (oop) direction because the precession
of the magnetization becomes circular in the xy-plane and only the y-component of the
oscillating magnetic field hrf,y has to be taken into consideration. If the static magnetic
field is applied in the in-plane direction (e.g. x-direction) then both components of hrf
contribute as the precession movement of the magnetization becomes elliptic [29]. This
simplification of an out-of-plane applied magnetic field will be used frequently, as we are
only interested in the quantitative evaluation of the signal amplitude in chapter 4, where
the magnetic field is applied out-of-plane.
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In Eq. (3.6), l describes the effective length of the sample on the CPW and q(y,z) is the
normalized spatial amplitude of the uniform excitation mode (FMR), where q(y,z) = 1
holds. The integrated amplitude of the excited mode as a consequence of the field excitation
is quantified by the first term in Eq. (3.6) and the integrated sensitivity of the waveguide,
which inductively detects the excited mode, is described by the second term [40].

Between the two equal signs in Eqs. (3.6) and (3.7), we assumed that the rf driving
field hrf to be uniform over the whole sample and that the magnetic field is applied
out-of-plane so only the y-component hrf,y contributes. Therefore the rf field, described by
the Karlqvist equation (Eq. (3.3)), can be simplified to

hrf,y(I,δsl) ∼=
I

2wcc
η(δsl,wcc) with η(δsl,wcc) = 2

π
arctan

(
wcc
2δsl

)
. (3.8)

For the in-plane case, the sum of the diagonal elements of the susceptibility χxx + χyy
would occur in Eq. (3.7).

Now the question arises: What is really measured at port 2 of the VNA? As already men-
tioned, we have to deal with losses in the whole setup coming from the cables, endlaunches
and impedance mismatch due to the sample on the CPW, which can be magnetic field
as well as temperature-dependent. These losses are collected in the frequency-dependent
background transmission parameter S0

21(ω). The total transmission parameter can be
quantified by simplifying Eq. (3.5) under the assumption ωL0 � Z0, which leads to
∆S21 = −iωL0/(2Z0), and using Eq. (3.2). Therefore, we obtain

S21(ω,H0) = S0
21(ω) + S0

21(ω) ·∆S21 = S0
21(ω) + S0

21(ω) · −iωL0
2Z0

= S0
21(ω)− S0

21(ω) · iω 1
2Z0

µ0ldFM
4wcc

χyy(ω,H0) η2(δsl, wcc)

= S0
21(ω)− iAeiφχyy(ω,H0), (3.9)

where A comprises all the constants and φ is a phase, which is due to the finite electrical
length of the system. This phase appears due to the background S0

21.
In the experiment we use two different procedures in order to investigate the magnetization

dynamics of the material. On the one hand either the microwave frequency is set to a
fixed value and the magnetic field is swept through the FMR or on the other hand the
magnetic field is fixed at a certain value and the frequency of VNA is swept through the
FMR. The first one is referred to as the “field-swept FMR”, where the VNA is set into the
continuous wave (cw) mode, and the second one is called the “field-swept FMR”, where
the VNA operates in the linear frequency sweep mode. In the following sections, these two
measurement procedures will be discussed in more detail.
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3.2 Continuous Wave Mode

In field-swept FMR the frequency of the VNA is fixed and the magnetic field is varied
and swept through the ferromagnetic resonance condition. The vector network analyzer is
therefore set into the continuous wave mode (cw-mode) and the IF bandwidth is set small
(typically a few Hz). For various fixed frequencies f this protocol is repeated. In order to
derive a fitting formula for fixed frequency, we restrict ourselves to the out-of-plane case
of a thin film. We will see later, that this assumption does only affect the amplitude but
nonetheless gives the correct resonance position and linewidth.
The susceptibility (Eq. (2.14)) takes for the out-of-plane case (Nx = Ny = 0, Nz = 1)

the following form

↔
χoop = µ0Msat√

(H0 −Meff)2 −
(

ω
γµ0

)2
− i∆H(H0 −Meff)

(
H0 −Meff + i∆H

2 + iω
γµ0

− iω
γµ0

H0 −Meff + i∆H
2

)

with Meff = Msat −Haniso and ∆H
2 = ωα

γµ0
. (3.10)

For the out-of-plane case, we only need to take the χyy-component of the Polder-susceptibility
(Eq. (3.10)). To correct the background Nembach et al. [42] proposed to introduce a
phenomenological, linear complex function. Therefore S0

21 can be written as S0
21(H0) =

C0 + C1 ·H0, where C0 and C1 are complex parameters. Plugging this into the already
derived form of the transmission parameter S21, Eq. (3.9) leads to

S21(H0)|ω = C0 + C1 ·H0 − iAeiφ
µ0Msat ·

(
H0 −Meff + i∆H

2
)√

(H0 −Meff)2 −
(

ω
γµ0

)2
− i∆H(H0 −Meff)

. (3.11)

It is intuitive from Eq. (3.11) that the resonance field Hres has a mutual dependence
on both the gyromagnetic ratio γ and the effective magnetization Meff. Therefore it is
convenient to replace the effective magnetization by the resonance condition (Eq. (2.18),
oop-Kittel equation) and setting the g-factor fixed to g = 2.0 and consequently fixing γ
(see Eq. (2.3)). It was shown by Nembach et al. [42] that this is without consequences for
the resonance field Hres as well as the linewidth ∆H.

In the final step we divide the susceptibility by the saturation magnetization µ0Msat and
collect the terms belonging to the susceptibility for more clearness again, which leads to
the final result

S21(H0)|ω = C0 + C1H0 − iAeiφ
χyy(H0)
µ0Msat

. (3.12)

In the fitting process, we extract the background parameters C0 and C1, the amplitude A,
the phase φ, the resonance magnetic field µ0Hres and the linewidth µ0∆H. It is important
to note that this fitting formula can also be used for bulk samples and in-plane applied
magnetic field. This results in the correct resonance field as well as correct linewidth,
although the resulting amplitude has no direct physical meaning.

For the derivation of the fitting formula for an in-plane applied magnetic field, it would
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be necessary to go back to Eq. (3.6) and take both components of the rf magnetic field hrf
into account, which would lead in Eq. (3.7) and (3.9) to the occurrence of hxχxx + hyχyy
as the ellipticity of the precessional motion of the magnetization has to be considered.

3.3 Linear Frequency Sweep and Derivative Divide vs. Divide
Slice

In this measurement protocol, the external magnetic field µ0H0 is fixed and the frequency
f of the vector network analyzer is swept through the ferromagnetic resonance and the
complex transmission parameter S21 is measured. This procedure is repeated for a series of
fixed magnetic fields, where the step size between two values is generally fixed. As discussed
before, when measuring the complex transmission parameter S21, the frequency-dependent
background coming from the setup is always superimposing the signal of the ferromagnetic
resonance. The magnitude of the raw measured S21 parameter is shown in Fig. 3.2(a).
It is quite obvious that the signal coming from the FMR is small and can be even much
smaller. Also in the field cut at 0.5 T shown in Fig. 3.2(d), the expected FMR is weakly
visible at 15 GHz. A possibility to remove the frequency-dependent background, would be
to calibrate the whole microwave network [43]. Typically such a calibration is tedious and
insufficient as the background can be magnetic field- and temperature-dependent.
In order to overcome this problem, a more sophisticated approach is necessary. One

solution is to take a field cut at a fixed magnetic field far away from the ferromagnetic
resonance, where we assume to only measure the transmission of the system and no
contribution from the investigated sample, and divide the measured complex transmission
parameter S21 by it. Therefore e.g. S21/S

µ0H0=3.0 T
21 is calculated and the result is shown

in Fig. 3.2(b). The FMR can be seen as a deviation from the background, so it is now
more pronounced. The field cut at 0.5 T shown in Fig. 3.2(e) shows the typical signature
of the FMR susceptibility as already emphasized in Fig. 2.1(b). In order to derive a fitting
formula, we assume that by dividing by a magnetic field far away from the resonance, the
whole background is taken care of, so consequently S0

21 drops out of Eq. (3.9) with the
final result

Sds21(ω)|H0 = 1− iA′eiφχ(ω,H0), (3.13)

where a new amplitude factor A′ = A/S0
21 is introduced.

Another solution is to use a processing method called “derivative divide”, which was
developed at the Walther-Meißner-Institut [43] and is shown in Fig. 3.2(c). The idea is to
calculate the symmetric difference quotient of the transmission parameter S21 with respect
to the magnetic field H0, which results in

dDS21 = S21(ω,H0 + ∆Hmod)− S21(ω,H0 −∆Hmod)
S21(ω,H0)∆Hmod

= −iA χ(ω,H0 + ∆Hmod)− χ(ω,H0 −∆Hmod)
∆Hmod

+O(A2). (3.14)

In order to denote the usage of derivative divide, it is labelled throughout this work as dD.



18 Chapter 3 Measurement Technique (VNA-FMR)

From the general definition of the symmetric difference quotient, we get the freedom to
set the finite step size ∆Hmod. Division by S21 in Eq. (3.14) cancels the transmission and
phase of the background S0

21(ω). If the chosen field step Hmod is small, the symmetric
difference quotient can be approximated by the derivative with respect to the external
magnetic field H0:

dDS21 ≈ −iA
dχ

dH0
= −iA′′ dχ

dω . (3.15)

For small field steps the field derivative is equal to the frequency derivative, as χ varies
smoothly with field and frequency if the modulation amplitude Hmod is chosen small
enough [43]. For the equal sign, a new amplitude A′′ is introduced, which includes the
conversion factor (dω/dH0). Generally we are not interested in the precise evaluation of
the amplitude.

A big advantage of derivative divide is, that it suppresses the variations of the background
and features in the data, which vary way faster or slower than the expected FMR linewidth
as it quasi-imitates a field modulation. In order to now derive a fitting formula, the
distortion of the linewidth due to the modulation amplitude has to be taken into account
and therefore the central difference quotient is fitted in the frequency space

dDS21|H0 = −iA′′ χ(ω + ∆ωmod)− χ(ω −∆ωmod)
2∆ωmod

(3.16)

with ∆ωmod ≈ γµ0∆Hmod. A field cut at 0.5 T using derivative divide is shown in Fig. 3.2(f)
with the corresponding fits according to Eq. (3.16).

Derivative divide has another large advantage over the divide slice method: By simply
looking at the shape of the resonance at a field slice, it is possible to extract the resonance
frequency vs. magnetic field dispersion of the resonance. The real part Re(dDS21) will have
a dip-peak shape for positive dispersion and a peak-dip shape for negative dispersion. This
is discussed in more detail in chapter 6.
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Figure 3.2: Acquired data of a typical frequency-swept FMR measurement for a gadolinium iron
garnet (GdIG) single crystal (see chapter 5). (a) Magnitude of the complex transmission
parameter S21 with a logarithmic scale, where the ferromagnetic resonance is barely
visible and mainly the frequency-dependent background is observed. (b) Real part of
the transmission parameter S21, which is divided at a field far away from the FMR
(µ0H0 = 3.0 T) in order to eliminate the background coming from the microwave
setup. (c) Real part of the transmission parameter dDS21 using derivative divide. (d)
Transmission of the system at 0.5 T, where the FMR is barely visible at f ≈ 15 GHz.
(e),(f) Field cuts at µ0H0 = 0.5 T of the divide slice and the derivative divide method
respectively including fits (solid lines), using Eqs. (3.13) and (3.16) respectively, of the
real and imaginary part of the transmission parameter.





Chapter 4

Spin-Orbit Torques in Ferromagnet/Normal
Metal Bilayers

In the development of novel spintronic devices, such as memories or logic devices, so-called
spin-orbit torques (SOT) are of high interest. Direct spin-orbit torques allow to drive
magnetization precession in ferromagnetic materials by electric fields. In the reciprocal
process, the magnetization precession leads to an electrical current, due to inverse spin-orbit
torques (iSOT) [41]. In 2011, Miron et al. [11] first demonstrated, that these spin-orbit
torques can be used to switch a perpendicular magnetized bilayer by applying an in-plane
current.
The origins of these torques are manifold and can be phenomenologically divided into

two groups: damping-like and field-like. The terminology originates from the direction in
which these torques are acting. The damping-like torque leads, as the name suggests, to a
relaxation of the magnetization to its equilibrium position. The symmetry of this torque is
odd under time-reversal. In contrast, the field-like torque leads to a magnetization precession
with the symmetry of that caused by an applied magnetic field. The field-like torque is
even under time-reversal [14, 41]. Both torques are perpendicular to the magnetization
(see Fig. 2.1).

The coupling between the spin of the electron in the ferromagnetic material and its
orbital angular momentum plays a crucial role, when discussing effects in coupled ferromag-
net/normal metal systems. This coupling is known as the spin-orbit coupling (SOC), as
discussed in the context of atomic physics [44]. Spin-orbit interaction is especially prominent
in heavy metals (Pt, Ta). The microscopic effects giving rise to these spin-orbit torques
are manifold. As an example, a current flowing in the normal metal induces a spin current
flowing into the ferromagnetic layer with spin polarization orthogonal to both, charge
current flow and interface normal directions. This effect is known as the spin Hall effect
(SHE) [45] and is leading to a damping-like torque [14, 46].

The spin Hall effect is quite analogous to the “classical” Hall effect, where the Lorentz
force due to the applied magnetic field deflects charges with opposite sign to opposite
sample boundaries resulting in a charge separation and consequently to a voltage. The spin
Hall effect converts an unpolarized charge current into a chargeless spin current transverse
to it. This can only occur in a system with a large spin-orbit interaction. In the extrinsic
spin Hall effect, the scattering at impurities leads to an anisotropic scattering cross section
for the two spin directions. These extrinsic effects are represented by the Mott or Skew

21
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scattering and the Side-Jump scattering. The band structure itself might also lead to the
spin Hall effect as the spin-orbit coupling causes a spin-dependent transverse velocity. This
effect is referred to as the intrinsic spin Hall effect [45, 47, 48].
Another mechanism assumes a charge transport at the normal metal/ferromagnet

interface, where the two layers are modelled as two dimensional. The so-called Rashba-
model results in a direct coupling of the magnetization and the flowing current at the
interface. The effect is known as the Rashba-Edelstein effect (REE) [49, 50] and leads to a
field-like torque with an even time-reversal symmetry [14, 41].

The Onsager reciprocity [51] provides a description to relate the forward and the inverse
process to produce magnetic torques or current flow in a FM/NM system by electric field or
magnetization dynamics. A simple example for Onsager reciprocity in this system is found
from Faraday’s and Ampère’s law: A precessing magnetization in the ferromagnet induces
a current in the normal metal (Faraday’s law). A current in the normal metal produces
an Oersted field (Ampère’s law), which acts on the magnetization in the ferromagnet [41].
This is important to note here, as the experiments explained in the following measure the
forward process in contrast to our method, which will test the inverse process as discussed
in section 4.1.
Several methods to quantify spin-orbit torques have been established. One example

is the setup used by Miron et al. [11], where a Hall-bar is structured onto the normal
metal. A current is then applied along a certain direction of the Hall-bar and the voltage
perpendicular to the current is measured. This is the so-called Hall-voltage and quantifies
the (damping-like) torque coming from the spin Hall effect. This measurement method is
completely DC. In a complimentary approach, it is also possible to pattern the bilayer into
a strip and measure the DC voltage VSH due to spin pumping and the spin Hall effect.

As shown by Weiler et al. [52] it is also possible to measure the AC spin Hall effect in an
analogous fashion, as shown in Fig. 4.1(a). The challenge here is to pattern the sample with
an impedance matching that of the microwave network in order to prevent back-reflection.
This makes the measurement of the AC inverse spin Hall effect more technically challenging
than the DC iSHE measurement.

In this chapter, we demonstrate, that the inverse spin-orbit torques (iSOT) of a bilayer
system consisting of a normal metal and ferromagnet can also be detected using an inductive
method, which does not require any patterning of the sample or any impedance matching.
In our experiments, the ferromagnet remains always the same (CoFeB) while the normal
metal is varied between three different systems (TaAu, W, AuPt), where also the exact
composition of the binary alloys is varied. In section 4.1 we discuss the experimental setup
and compare it to the already established methods. Additionally we discuss the advantages
of our approach. The obtained experimental results are presented in section 4.2. Finally, in
section 4.3 we compare our findings with two other well established methods: Harmonic
Hall and THz spectroscopy. The harmonic Hall measurements were performed in the group
of Markus Meinert (University of Bielefeld) and the THz measurement in the group of
Tobias Kampfrath (Fritz Haber Institut of the Max Planck Society, Berlin).
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Figure 4.1: Typical experimental setups to quantitatively measure spin-orbit torques. (a) AC
spin Hall measurement, where an additional detection coplanar waveguide with an
impedance matching that of the microwave network is patterned onto the sample. Figure
is taken from [52]. (b) Our inductive measurement technique using a phase-sensitive
FMR setup, where the sample is simply placed flip-chip style onto the CPW and the
complex transmission parameter S21 is measured.

In this chapter we are interested in the quantification of the spin-orbit torques of normal
metal/ferromagnet bilayer samples. All investigated samples were fabricated in the group
of Markus Meinert at the University of Bielefeld using a sputtering technique. Using glas
as the substrate (size 10× 10 mm2), first the normal metal (thickness dNM = 3 nm) and
then the ferromagnet (dFM = 3 nm) was sputtered onto the substrate. The normal metal
and the ferromagnet are therefore in direct contact. Finally a thin layer of tantalum (1 nm)
was sputtered as a capping layer, in order to prevent oxidation. The thickness of each
layer remained unchanged for all samples. The rectangular thin film on the substrate has a
length of l = (8.7± 0.1) mm and a width of (4.7± 0.1) mm.

The ferromagnet used throughout all the samples was the metallic cobalt-iron-bor alloy
(CoFeB), which is a widely used material in spintronics. For the saturation magnetization
of CoFeB a value of µ0Msat = 1.05 T is used. For the normal metal, three different material
systems were used: TaxAu1−x and AuxPt1−x, with 0 ≤ x ≤ 1, and Wx, where x is the
inverse sputtering power 1/Pdep.

The variation of the sputtering power for the wolfram films with a constant background
O2-pressure, allows to control the oxidation of the wolfram. For small sputtering power
(1/Pdep large), the wolfram has more time to oxidate with the oxygen in the sputtering
chamber and as a consequence forms W(O)x. If the sputtering power is larger (1/Pdep
small), the wolfram does not oxidise completely and forms β-W. In the sample series only
one sample is claimed to be pure wolfram (1/Pdep ≈ 0) and is denoted as “W” in contrast
to the the oxidized wolfram samples, which are identified as “W(O)x”.
In our experiments, we used a VNA-FMR setup at room-temperature as described in

chapter 3. The samples were placed with the film-side down onto the coplanar waveguide
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(center conductor width wcc = 56 µm) as shown in Fig. 4.1(b), which is utilized both as an
excitation and a detection transducer. The sample is therefore solely inductively coupled to
the CPW. The used vector network analyzer Agilent N5224A PNA is capable of frequencies
up to 43.5 GHz. An electromagnet at room-temperature is used, which is able to produce
magnetic fields up to 2.9 T. The magnetic field configuration is out-of-plane, where the
static magnetic field H0 is applied perpendicular to the CPW.

For all measurements, we are using the field-swept FMR, where the microwave frequency
of the VNA is fixed and the magnetic field is swept through the FMR, as already explained
in section 3.2. We measure the complex transmission parameter S21 for frequencies 5 GHz ≤
f ≤ 40 GHz with a step width of ∆f = 0.5 GHz. The microwave power is set to 1 mW and
the IF bandwidth of the VNA is 2 Hz. In order to get an appropriate signal to noise ratio,
the field sweeps are repeated several times and then averaged before fitting the data.

The working principle of this method explained for the spin Hall effect is as follows: The
driven magnetization dynamics in the ferromagnet induce a spin current into the normal
metal due to spin pumping [53]. This spin current is then converted by the inverse spin
Hall effect into a charge current. The charge current produces an Oersted field which is
inductively detected by the CPW, which detects all sources of AC magnetic flux in a S21
parameter measurement. As proposed by Berger et al. [41], we have to distinguish between
four sources of AC magnetic flux. The first contribution is coming from the precessing
magnetization in the ferromagnet (CoFeB). The second source of AC magnetic flux is
coming from the currents in the normal metal, which are induced by the Faraday-effect
due to the precessing magnetization in the ferromagnet. Finally the third and the fourth
source are due to field-like inverse spin-orbit torques (e.g. Rashba-Edelstein effect) and the
damping-like iSOT (e.g. spin pumping and inverse spin Hall effect).
The large advantage of this measurement method is that the samples do not have to

be structured or patterned in any way. Therefore the samples can afterwards be used for
other measurements. Furthermore, the method is phase-sensitive, allowing to distinguish
damping-like torques and field-like torques.

In the following section, we discuss the necessary processing steps starting from the raw
FMR spectra to finally acquire the complex spin-orbit torque conductivity σSOT, which
represents the strength of the spin-orbit torques. From σSOT we estimate the spin Hall
angle θSH for the AuPt and TaAu alloys and find excellent agreement with theoretical
calculations.

4.2 Spin-Orbit Torques Measurement Results

We measure the complex transmission amplitude S21 as a function of the external static
magnetic field µ0H0 with fixed frequency f . The complex S21 spectra are fitted by Eq. (3.12).
The spectra are then divided by S0

21, in order to de-embed the spectra from the background.
Therefore we use Eq. (3.2) and acquire

∆S21 = S21 − S0
21

S0
21

= −i Aeiφ

C0 + C1H0

χyy(ω,H0)
µ0Msat

, (4.1)
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Figure 4.2: Raw data spectrum of the measured complex transmission parameter S21 at (a)-(c)
f = 11 GHz and (d)-(f) f = 35.5 GHz for three exemplary NM/CoFeB-samples, where
the background has already been subtracted according to Eq. (4.1). In solid lines are
the fits according to Eq. (3.12). Note that the amplitude of the real and imaginary part
of ∆S21 at the resonance field µ0Hres are different.

which comprises only the contributions from the sample itself. The variable χyy is the
diagonal entry of the Polder-susceptibility for the given out-of-plane geometry and is
described by Eq. (3.10). Exemplary background-corrected data at f = 11 GHz and f =
35.5 GHz for one composition of each normal metal systems are shown in Fig. 4.2. By
comparing the data at the different frequencies, it is obvious that the amplitude at the
resonance field µ0Hres, indicated by the vertical dashed line, changes. For Au0Pt1/CoFeB,
the amplitude decreases with increasing frequency (c.f. Fig. 4.2(a) and (d)) while for
W0.033/CoFeB the amplitude increases with frequency (c.f. Fig. 4.2(b) and (e)).

For all the measured frequencies f we perform two different types of data evaluation.
First, we extract the resonance magnetic field µ0Hres and the linewidth µ0∆H from the raw
spectra (Fig. 4.2) and plot them as a function of the microwave frequency f . The resulting
plots are shown in Fig. 4.3, again for the same exemplary normal metals. By fitting the
resonance field µ0H0 with the out-of-plane Kittel-equation (Eq. (2.18)), it is possible to
extract the effective magnetization, which is given by the y-offset, and the Landè-factor g,
which is proportional to the slope. From the linewidth µ0∆H it is possible to extract the
inhomogeneous linewidth broadening and the Gilbert-damping parameter αG by fitting it
with the Landau-Lifshitz-Gilbert equation (Eq. (2.20)). These fits are shown in Fig. 4.3(a)
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Figure 4.3: Comparison of the acquired FMR data between the different normal metals (TaAu,
W and AuPt). FMR results (a) from the resonance position µ0Hres, where the Landè-
factor g and the effective magnetization µ0Meff is extracted by fitting Eq. (2.18), and
(b) from the linewidth µ0∆H, where the Gilbert damping parameter αG and the
inhomogeneous linewidth broadening µ0∆Hinh is determined by Eq. (2.20).

and (b) as solid lines. The extracted Landè-factor g and Gilbert-damping parameter αG
are shown later in Figs. 4.6(a),(b), 4.7(a),(b) and 4.8(a),(b) for TaAu/CoFeB, W/CoFeB
and AuPt/CoFeB respectively.

The second type of calculation is taking the amplitude of ∆S21 into account. As known
from section 3.1, the transmission parameter ∆S21 can be described in a voltage divider
model with a resistance Z0 and an inductance L. Under the assumption Z0 � ωL and
after normalizing by χyy(ω,Hres), Eq. (3.5) leads to

∆S21
χyy(ω,Hres)

= −iω
∼
L

2Z0
, (4.2)

where we introduced the normalized inductance
∼
L = L/χyy(ω,Hres). By plugging Eq. (4.1)

into Eq. (4.2) and solving for the normalized inductance
∼
L, we get

∼
L = 1

µ0Msat

Aeiφ

C0 + C1H0

Z0
πf

, (4.3)

where we used ω = 2πf .
The result is shown in Fig. 4.4(a) and (b) for the real and imaginary part of

∼
L respectively.

By comparing the raw data ∆S21 for, e.g., Au0Pt1 shown in Fig. 4.2(a) and (d), one can
reproduce the trend shown in Fig. 4.4(a), that the amplitude decreases with increasing
frequency f . For W (Fig. 4.2(b), (e)) exactly the opposite is observed, that with increasing
frequency f , the amplitude also increases. In Ta0Au1 (Fig. 4.2(c), (f)) the amplitude
remains more or less the same.
As shown in Fig. 4.4(b), the linear trend of the imaginary part of the normalized

inductance Im(
∼
L) has a finite offset. This is unphysical as in the DC limit (f = 0), we

would expect Im(
∼
L)(f = 0) = 0. In order to enforce Im(

∼
L)(f = 0) = 0, we introduce an
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Figure 4.4: Comparison of the acquired inductances between the different normal metals (TaAu, W
and AuPt) before ((a),(b)) and after the anomalous phase correction ((c),(d)). The
anomalous phase correction forces the imaginary part of the normalized inductance
∼
L in panel (d) to Im(

∼
L)(f = 0) = 0. The solid lines represent the fits according to

Eqs. (4.5) and (4.6).

anomalous phase φcorr, which is defined as φcorr = arctan (Im(L)(f = 0)/Re(L)(f = 0)).
We therefore effectively perform a rotation of the coordinate system by calculating

∼
L = Re(

∼
L) + i Im(

∼
L)Re(

∼
Lcorr)

Im(
∼
Lcorr)

 =
(

cos(φcorr) − sin(φcorr)
sin(φcorr) cos(φcorr)

)Re(
∼
L)

Im(
∼
L)

 . (4.4)

This anomalous phase is most likely due to the small (but finite) capacitive coupling
between the CPW and the sample. The result of the anomalous phase correction is shown
in Fig. 4.4(c) and (d). The behaviour of these curves can then be described by

Re(
∼
Lcorr) =

∼
L0 + Re(

∼
LNM) · f (4.5)

Im(
∼
Lcorr) = Im(

∼
LNM) · f, (4.6)

where the real part Re(
∼
Lcorr) is split into a frequency-independent Re(

∼
L0) and into a



28 Chapter 4 Spin-Orbit Torques in Ferromagnet/Normal Metal Bilayers

frequency-dependent part Re(
∼
LNM) and the imaginary part Im(

∼
Lcorr) is solely described

by a frequency-dependent contribution Im(
∼
LNM).

The offset of Re(
∼
Lcorr) is known and has already been discussed in section 3.1. This term

is the normalized dipolar inductance
∼
L0 of the precessing magnetization of the ferromagnet

and can be quantified by Eq. (3.7), where also the finite spacing δsl between the sample
and the CPW is taken into account (also shown in Fig. 4.1). The slope of the real and
imaginary part of the inductance

∼
Lcorr is coming from the currents in the normal metal

and is therefore denoted as
∼
LNM. It is obvious that

∼
LNM scales linearly with frequency f ,

as the currents in the normal metal are driven by the oscillating part of the magnetization
∂m(t)/∂t [41]. The dipolar inductance L0 in contrast is frequency-independent.
By extracting the values for the real and imaginary part of the normalized inductance

∼
Lcorr by fitting the acquired data with Eqs. (4.5) and (4.6) for all the measured samples,
we obtain the data shown in Fig. 4.5. From Fig. 4.5 we observe two features: The first is the
difference in the magnitudes of the inductances especially for

∼
LNM, where the TaAu/CoFeB

shows the lowest magnitude compared to the other two normal metals. The second feature
is the sign change of the inductance

∼
LNM, not only across the normal metals but also

within a certain normal metal (e.g. Im(
∼
LNM) for AuPt/CoFeB). For our further discussions

Re(
∼
L0) will not be taken into account any more, as it only is a measure of how well the

sample was coupled to the CPW. The spacing δsl between the sample and the CPW is
calculated from the measured Re(

∼
L0) by using the Eqs. (3.7) and (3.8).

In the next section we want to quantify the inverse spin-orbit torques by giving an
analytical expression for LNM and consequently calculate the complex conductivity σSOT ,
which is a direct measure for the strength of the effects.

4.2.1 Conductivities of the Inverse Spin-Orbit Torques

As already discussed in the previous section, LNM describes the inductance due to the AC
currents in the normal metal. This quantity can be calculated by [41]

LNM = −L21 η(δsl,wcc)
~ω

4Msate
χyy(ω,H0)σSOT, (4.7)

where e is the electron charge, η(δsl,wcc) is an attenuation factor described by Eq. (3.8),
which accounts for the finite spacing δsl between the sample and the CPW, and L21 is
the mutual inductance between the CPW and the sample. The minus in Eq. (4.7) is
due to the used stacking order of substrate/normal metal/ferromagnet. In the case of
substrate/ferromagnet/normal metal the minus becomes a plus because when reversing the
stacking order the sign of the spin-orbit torques and the Faraday currents also changes [41].
The mutual inductance L21 can be modelled as two current-carrying sheets with a finite
spacing δsl, which results in [54]

L21 = µ0
4π 2l

(
ln
(

2l
R

)
− 1
)

(4.8)



4.2 Spin-Orbit Torques Measurement Results 29

0
1 0
2 0
3 0
4 0
5 0

- 0 . 6
- 0 . 3
0 . 0
0 . 3
0 . 6

0 2 0 4 0 6 0 8 0 1 0 0
- 0 . 2

0 . 0

0 . 2

0 . 4

0 2 0 4 0 6 0 8 0 1 0 0 0 . 0 0 0 . 0 5 0 . 1 0

W x / C o F e BT a x A u 1 - x / C o F e B
Re

(L 0
) (f

H)
A u x P t 1 - x / C o F e B

( a ) ( b ) ( c )

( d )

Re
(L N

M) 
(fH

/G
Hz

) ( e ) ( f )

( g )

Im
(L N

M) 
(fH

/G
Hz

)

A u  C o m p o s i t i o n  ( % )

( h )

T a  C o m p o s i t i o n  ( % )

( i )

1 / P d e p  ( 1 / W )

Figure 4.5: Overview of the measured inductances L of the three different normal metal systems
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with

R ≡
√
w2
cc + δ2

sl

 δsl√
w2
cc + δ2

sl


(
δsl
wcc

)2

exp
(

2δsl
wcc

arctan
(
wcc
δsl

)
− 3

2

)
. (4.9)

The variable σSOT in Eq. (4.7) is an effective conductivity, which relates the charge
current density J flowing in the NM-layer with the driving force ∂m(t)/∂t. This can be
seen as an analogy to the Ohm’s law J = σE, which relates the charge current density
with an electrical field [41]. This conductivity is a complex quantity, which comprises
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the inverse spin-orbit torques and can be written as the sum of the conductivities of the
iSOT σSOT = σSOT

o + i(σSOT
e − σFe ), where “o” and “e” denote the already mentioned

odd and even symmetry of the SOT with respect to time-reversal. The odd iSOT σSOT
o

corresponds to the inverse spin Hall effect and to spin currents due to spin pumping and is
90◦ phase-shifted to the even iSOT (σSOT

e − σFe ), which is related to the Rashba-Edelstein
and the Faraday effect.

The spin-orbit torques due to spin pumping can be described with the concept of the spin-
mixing conductance G↑↓, which allows the description of spin transport between FM/NM
interfaces [55]. As already discussed, the precessing magnetization in the ferromagnet
induces a current in the normal metal. As proposed by Tserkovnyak et al. [13], this spin
current density Js due to spin pumping can be described by [13, 52]

Js = ~
4π

(
Re(G↑↓) m× dm

dt − Im(G↑↓)
dm
dt

)
, (4.10)

where m is defined as m = M/Msat. In Eq. (4.10), the first term describes a damping-like
and the second term a field-like torque. The real part of the spin-mixing conductance
Re(G↑↓) is related to the Gilbert-damping constant αG and the imaginary part to the
Landè-factor g [13]. In the experiment, if σSOT

o increases with increasing Gilbert damping
parameter αG, this indicates that the spin pumping mechanism is responsible for the
spin-orbit torque. The Gilbert damping αG increases because the spin current responsible
for the spin-orbit torque first has to get into the normal metal.

The extracted inductances
∼
LNM are plugged into Eq. (4.7) and the conductivities σSOT

are calculated for the real and imaginary part respectively. The results are shown in
Figs. 4.6(c),(d), 4.7(c),(d) and 4.8(c),(d) for each normal metal respectively.
Now the different normal metals should be discussed in a little more detail, starting

with the TaAu/CoFeB samples, which are shown in Fig. 4.6. The FMR parameters g and
αG (panel (a) and (b)) do not show any correlation. Also the even iSOT conductivities
(σSOT

e − σFe ) (panel (c)) only increase a little with more tantalum content in the normal
metal. The sample Ta5Au95 is most likely an outlier as a sign change for only one sample
in the series would be unreasonable. The odd iSOT conductivity σSOT

o (panel (d)) reaches
its maximum for Ta20Au80 and also features a sign change at a tantalum content of about
57%. This sign change is reasonable by looking at the sign of the spin Hall angle for the
normal metals (e.g. [56] Fig. 7). For gold we would expect a positive spin Hall angle in
contrast to tantalum, which should have a negative one. This is in accordance with our
measurement, because the spin Hall angle is directly proportional to the conductivity σSOT

o .
As also already seen from Fig. 4.5 the size of the iSOT effects is, in contrast to the other
normal metals, small and almost at the detection limit of the measurement technique.
Continuing with the W/CoFeB samples shown in Fig. 4.7, we observe a correlation

between the g-factor (panel (a)) and the even inverse spin-orbit torques (σSOT
e −σFe ) (panel

(c)). This behaviour might be related to the imaginary part of the spin-mixing conductance
Im(G↑↓), which is theoretically predicted to cause a field-like torque [13]. Also the odd
inverse spin-orbit torque σSOT

o (panel (d)) shows a correlation with the Gilbert-damping
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Figure 4.6: FMR extracted parameters (g-factor (a) and αG (b)) and the calculated iSOT conduc-

tivities ((σSOT
e −σFe ) (c) and σSOT

o (d)) for TaAu/CoFeB as a function of the tantalum
composition. The plots are aligned the way, that they eventually show the correlation
between the iSOT conductivity and the corresponding FMR parameter.

αG. The sign of the iSOT conductivity σSOT
o matches the expected negative sign of the

spin Hall angle of wolfram. However, we observe a sign change for W(O)x with the most
oxygen (P−1

dep = 0.10), which so far has not been predicted by theory.
The last sample series is AuPt/CoFeB shown in Fig. 4.8. In this normal metal system

we observe a correlation between σSOT
o and the Gilbert damping αG. The Gilbert damping

decreases with an increasing gold concentration. In the range between 0% − 35% Au
composition we find a plateau in the spin-orbit torque conductivity σSOT

o but the damping
constant αG decreases. This indicates, that for pure platinum the spin current is more
contributing to σSOT

o than for e.g. Au33Pt67. With increasing gold contribution the spin
current decreases (as αG decreases). However, the plateau in σSOT can be explained if we
assume that the spin Hall angle increases. In section 4.3, we calculate the spin Hall angle θSH
and indeed find that it initially increases with increasing Au content in AuxPt(1−x)/CoFeB.
Furthermore we do not observe a sign change in the odd iSOT conductivity σSOT

o as both
gold and platinum have a positive spin Hall angle.
In the next section we derive the spin Hall angle θSH from the conductivity of the

inverse odd spin-orbit torque σSOT
o . The calculated spin Hall angles θSH are shown in

section 4.3, where they are compared to the outcome of the two collaborating groups with
their measurement techniques, which should be treated briefly.
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Figure 4.7: FMR extracted parameters (g-factor (a) and αG (b)) and the calculated iSOT con-

ductivities ((σSOT
e − σFe ) (c) and σSOT

o (d)) for W/CoFeB as a function of the inverse
sputtering power. The plots are aligned the way, that they eventually show the correla-
tion between the iSOT conductivity and the corresponding FMR parameter.

4.2.2 Spin Hall Angle

The odd iSOT conductivity σSOT
o is related to the inverse spin Hall effect. It is known

from theory that the Gilbert damping αG is related to σSOT
o . In order to calculate the spin

Hall angle θSH, a voltage divider model for the spin accumulation at the FM/NM interface
due to spin pumping is assumed, because the interfacial spin-mixing conductance 1/G↑↓
and the spin conductance of the normal metal 1/Gext are assumed to be in series [41].
The spin-mixing conductance describes the spin transport between interfaces [55]. It is
important to note, that the spin-mixing conductance G↑↓ is a complex quantity in contrast
to the spin conductances G↑ and G↓, which are real quantities.
Without a derivation, we get for the conductivity [41]

σSOT
o = θSH σNM Re

 G↑↓
σNM
2λs

tanh
(
dNM
λs

)
+G↑↓

 (1− δ), (4.11)

where σNM is the conductivity, λs is the spin diffusion length of the normal metal and
δ is the interfacial spin memory loss due to unavoidable spin relaxation [57]. From this
equation it is evident, that the term θSHσNM is related to the spin Hall effect and the
rest of Eq. (4.11) to the spin current due to spin pumping. In a perfectly transparent
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Figure 4.8: FMR extracted parameters (g-factor (a) and αG (b)) and the calculated iSOT con-

ductivities ((σSOT
e − σFe ) (c) and σSOT

o (d)) for AuPt/CoFeB as a function of the gold
composition. The plots are aligned the way, that they eventually show the correlation
between the iSOT conductivity and the corresponding FMR parameter.

interface, only the spin Hall effect contributes to the spin-orbit torque. It is now necessary
to calculate the spin-mixing conductance, which is given by [58]

Geff = G↑↓

1 + G↑↓
Gext

, (4.12)

with the external conductance

Gext = σNM
2λs

tanh
(
dNM
λs

)
. (4.13)

The real part of the spin-mixing conductance G↑↓ can now be computed by solving

αG − α0 = γ ~2

2e2Msat dFM
Re(Geff) (4.14)

and by plugging in Eqs. (4.12) and (4.13). In this relation, α0 is the intrinsic Gilbert
damping of the ferromagnet (CoFeB) only and is taken from literature using a value
α0 = 4.2·10−3 [59]. It is therefore evident from Eq. (4.14), that the spin-mixing conductance
is proportional to the Gilbert damping αG. As seen from Eq. (4.11), the calculation of
the spin Hall angle θSH requires the conductivity of the normal metal σNM. We use σNM
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measured at the University of Bielefeld (group of M. Meinert) on reference samples grown
on MgO. The spin diffusion length λs is directly proportional to the conductivity σNM.
To calculate the spin diffusion lengths λs, we assume Ta0.1Au0.9 to have λs = 2.0 nm and
pure platinum to have λs = 1.3 nm. From the measured conductivities σNM, λs is then
calculated for all samples. The resulting spin Hall angles θSH are shown in Fig. 4.9.

In the next section, the calculated spin Hall angle θSH are discussed and compared with
the data of the two other collaborating groups and with theoretical calculations.

4.3 Comparison with THz-, Harmonic Hall-Measurement and
Theory
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Figure 4.9: Comparison of the calculated spin Hall angle θSH with three different measurement
techniques (GHz, THz and harmonic Hall) and theory for (a) AuPt/CoFeB and (b)
TaAu/CoFeB.

The idea of this collaboration was to measure the spin-orbit torques with different
measurement techniques, which cover a broad frequency spectrum. The lowest frequencies
are found in the harmonic Hall measurement conducted by the group of Markus Meinert,
which uses frequencies of a few kilohertz. Our method operates in the gigahertz regime
and finally terahertz (THz) emission experiments were conducted by Oliver Gückstock and
Tom Seifert from the group of Tobias Kampfrath. In the following paragraph these two
other techniques will be briefly explained.

The harmonic Hall measurement technique requires to pattern a Hall-bar structure onto
the normal metal. An alternating current with a frequency of 3.219 kHz is applied along the
Hall bar. The magnetic field is applied in-plane and swept from −1.6 T to 1.6 T. A Lock-In
amplifier is used to measure the Hall-voltage, where the in-phase first harmonic and the
out-of-phase second harmonic signals give the full information about the odd spin-orbit
torque [60, 61].
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The terahertz emission experiment uses an incident femtosecond laser pulse at the
ferromagnet, which excites the electrons. Consequently a spin current, due to the different
transport properties of the ferromagnet and the normal metal, along the FM/NM stack is
occurring. When the spin current enters the normal metal it is converted into an ultrafast
transverse charge current due to the inverse spin Hall effect. This current radiates then an
electromagnetic wave in the terahertz regime, which is then finally detected [62].
It is important to note that the THz emission experiment is only able to provide a

relative measure of the spin Hall angle. This means that the measured THz amplitudes of
the samples, which are proportional to the spin Hall angle, are normalized to a certain
sample amplitude (e.g. pure gold). A scaling factor is hence used for the THz measurements,
in order to best describe the theoretical calculations. Our measurement method and the
harmonic Hall measurement technique are in contrast quantitative.
In Fig. 4.9 the gained results of the three measurement techniques are shown for (a)

AuPt/CoFeB and (b) TaAu/CoFeB. Starting with AuPt/CoFeB we remarkably observe a
maximum in the curve in the range of 30%− 40% gold content. The spin Hall angle θSH is
here two times larger than that of pure platinum. For our calculations of the spin Hall angle,
we assumed a interfacial spin loss of δ = 0.5 [57]. By comparing Figs. 4.8(d) and 4.9(a)
we can qualitatively distinguish the spin pumping and the spin Hall effect contribution. As
already shown in section 4.2.1, at pure platinum the spin-orbit torque conductivity is larger
than at 30% gold concentration. This means that pure Pt is more efficient in converting an
applied charge current to a spin-orbit torque than Au0.3Pt0.7. The increase of the spin Hall
angle seen in Fig. 4.9(a) hence is accompanied by a reduction of the effective spin-mixing
conductance. The theoretical data (green curve) is taken from Obstbaum et al. [63]. The
results of the three measurement techniques are in very good agreement with theory and
with each other. Although at low gold compositions the THz-data (blue points) differs
from the harmonic Hall and our GHz measurements.

For TaAu/CoFeB, shown in Fig. 4.9(b), we assumed for our calculation of the spin Hall
angle θSH an interfacial spin loss of δ = 0.6. The theory data is provided by Sebastian
Wimmer from the group of Hubert Ebert (LMU Munich). Again we find a good agreement
of our GHz measurement data with the THz results and the theoretical calculation. The
expected sign change of the spin Hall angle from gold (positive) to tantalum (negative) is
observed.

For the W/CoFeB samples we have data for the conductivities σNM. Nevertheless, we do
not have information about the spin diffusion length λs in this system and additionally the
dependence of the spin diffusion length λs on the conductivity σNM of oxidized wolfram is
not known. Therefore we cannot extract the spin Hall angle θSH for the W/CoFeB series.
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4.4 Summary

In this chapter, we have investigated normal metal/ferromagnet bilayers with different
normal metal compounds using a phase-sensitive vector network analyzer ferromagnetic
resonance technique in the frequency range of 5 GHz ≤ f ≤ 40 GHz. By placing the
samples flip-chip style onto the coplanar waveguide, the inverse spin-orbit torques have
been quantified. The idea of this technique is, that the sample is inductively coupled to
the coplanar waveguide, which detects the additional flux produced by the current caused
by the inverse spin-orbit torques.
Due to our phase-sensitive measurement, we were able to distinguish between the

damping-like and the field-like spin-orbit torques as they are 90◦ phase-shifted to each
other. The damping-like torque was attributed to the inverse spin Hall effect and the spin
currents due to spin pumping. We were also able to calculate the spin Hall angle, which is
a measure for the conversion efficiency of a charge current to a spin current. The field-like
torques are related to the Faraday-effect in the normal metal and to the Rashba-Edelstein
effect. In order to quantify the effects of the inverse spin-orbit torques, we calculated the
iSOT conductivities σSOT.

We have probed three different normal metal/ferromagnet sample series, namely: TaAu/CoFeB,
W/CoFeB and AuPt/CoFeB. The TaAu/CoFeB did not show any remarkable features in
the conductivities. As expected this sample series showed the smallest spin Hall effect and
also the sign change from a negative spin Hall angle for pure tantalum to a positive one for
pure gold could be reproduced. For these samples we could not observe any correlation
between the FMR parameters and the iSOT conductivities.
The W/CoFeB showed a remarkably correlation between the FMR parameters (g and

αG) and the iSOT conductivities ((σSOT
e − σFe ) and σSOT

o ). Although the matching is not
perfect, the corresponding parameters show an uncanny likeness (cf. Fig. 4.7). For the
inverse spin Hall effect we also observe the expected negative sign of the spin Hall angle
for wolfram. It is interesting that the sign of the spin Hall angle changes with decreasing
sputtering power (P−1

dep increasing) or with increasing oxygen content for W(O)x. The
reason for this behaviour is unknown.
The AuPt/CoFeB samples shows a maximum in the spin Hall angle θSH. The sample

Au0.33Pt0.67/CoFeB has a two times larger spin Hall angle than the pure platinum sample
Au0Pt1/CoFeB. This is interesting, as platinum is known as a normal metal with one of
the largest spin Hall angles [56].
Due to the collaboration with Markus Meinert and the group of Tobias Kampfrath, it

was possible to compare our results with two different measurement techniques namely
the harmonic Hall measurement and the terahertz emission experiment. These techniques
are sensitive to the damping-like spin-orbit torques and it was possible to compare the
spin Hall angle θSH with each other and with theory. The results throughout the three
techniques are in very good agreement with each other and also with theory. This shows
that the damping-like spin-orbit torques do not depend on frequency from dc to THz and
can be accurately determined using different measurement techniques.



Chapter 5

(Strongly) Coupled Magnetization Dynamics
in the Compensated Ferrimagnet Gadolinium
Iron Garnet

In the previous chapter we discussed the magnetization dynamics in a magnetic bilayer
thin film. We now consider a single crystalline ferrimagnet. Ferrimagnetism is a magnetic
ordering phenomena like ferro- and antiferromagnetism. In a ferromanget the spins are
aligned in parallel and in an antiferromanget they are antiparallel due to the Heisenberg
exchange interaction [17]. In the antiferromagnet the magnetization is zero. The ferrimanget
may now be defined as an antiferromagnet with unbalanced magnetic sublattices so the total
magnetization is different from zero. This can occur, for example if either the population
of similar spins (up or down) are unbalanced or the total magnetic moments of different
sublattices are unequal, which requires some sort of crystallographic selection [64].
The so-called (rare-earth) iron garnets, which have a cubic lattice, are a prototype

ferrimagnetic system. Their lattice consists of three sublattices, which are an octahedrally
coordinated Fe-ions sublattice (a-sublattice), a tetrahedral Fe-sublattice (d-sublattice)
and a dodecahedral rare-earth metal or yttrium lattice (c-sublattice), which leads to
the occurrence of ferrimagnetism [65]. The most famous representative of the material
class is yttrium iron garnet (Y3Fe5O12) or short YIG, which is already used in numerous
applications like in microwave technology [66].

In this chapter we focus on the fully gadolinium (Gd) substitute gadolinium iron garnet
(Gd3Fe5O12) or short GdIG. The main difference between YIG and GdIG is, that gadolinium
has an unfilled 4f shell in contrast to yttrium, which has an unfilled 4d shell. This leads to
completely different magnetic properties [64].

The three sublattices of the rare-earth iron garnets contribute to the total magnetization
and add up to the total magnetization

Mtot = Mc +MFe,a −MFe,d = MGd +MFe,coupled. (5.1)

The two iron-sublattices (a- and d-sublattice) are strongly antiferromagnetically coupled
and can be treated as one effective sublattice MFe,coupled = MFe,a − MFe,d. Therefore
the effective number of sublattices is reduced from three to two. This simplification will
be needed later in section 5.2.2 because performing calculations with three sublattices
is tedious. The gadolinium-sublattice is again weakly antiferromagnetically coupled to
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Figure 5.1: (a) Simulation of the magnetization of the sublattices according to [67]. In black a
SQUID measurement with a magnetic field µ0H0 = 1 T is shown to compare the
simulated data with a measurement. (b) Schematic evolution of the magnetization of
the gadolinium iron garnet sublattices for certain temperatures for a finite external
applied magnetic field (µ0H0 6= 0). (b1) At temperatures lower than the compensation
temperature Tcomp > T the magnetization of the Gd-sublattice dominates. (b2) At
the compensation point T = Tcomp the net remanent magnetization vanishes as the
magnetization of the Gd- and the Fe-sublattice are equal. (b3) For temperatures larger
than the compensation temperature Tcomp < T the magnetization of the Fe-sublattices
dominates. Note that the magnetization of the Fe-sublattices barely changes with
temperature in contrast to the Gd-sublattice.

the iron-sublattice, which leads to the emergence of a so-called compensation point at
the compensation temperature Tcomp, where the magnetic moment of the Gd-sublattice
equals the moment of the coupled iron-lattice MGd = MFe,coupled. This is in complete
contrast to YIG, which does not feature such a compensation point due to the fact, that
the magnetization of the c-sublattice (here Y-sublattice) is zero and therefore only the
magnetization of the coupled iron-sublattice is relevant.
The calculation of the sublattice magnetization can be done by using molecular field

theory [67, 68]. The sublattices are only exchange coupled, which then leads for the three
sublattices to

Mi(T ) = Mi(0) ·BSi(ai) i ∈ {a,d,c} , (5.2)

where Mi(0) is the magnetization at T = 0 K and BSi(ai) is the Brillouin function
with the Boltzmann energy ratios ai = miµ0H

(i)
ex /kBT , where the coupling between the

sublattices is taken into account. The molecular field coefficients are taken from [67]
and slightly adjusted to yield the compensation temperature Tcomp = 288 K found in
the SQUID-measurement performed by Stephan Geprägs. By solving these equations
self-consistently, the magnetization of the sublattices and the total magnetization can be
calculated, which is shown in Fig. 5.1(a). To compare the calculated values, the data of a
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SQUID-measurement at an external magnetic field of µ0H0 = 1 T is shown. At an applied
external field H0 the total magnetization always points along the magnetic field as also
shown in Fig. 5.1(b). The Fe-sublattice only shows a very weak temperature dependence
and directly corresponds to the total YIG magnetization (blue curve). At the compensation
point Tcomp the magnetization of the Gd- and Fe-sublattice cancel each other out and the
total magnetization is zero, as schematically shown in Fig. 5.1(b2).

The tune-ability of the magnetization makes gadolinium iron garnet an ideal testbed to
investigate the magnetization dynamics close to and far away of the compensation point.
In this experiment we investigate the magnetization dynamics in a single crystalline bulk
GdIG-disk using a cryogenic-temperature VNA-FMR setup. In section 5.1 the sample
under investigation and the used experimental setup are discussed. The magnetic modes
of the ferrimagnet, namely the ferrimagnetic and antiferromagnetic resonance, and their
theoretical description are briefly discussed in section 5.2. Afterwards the transition between
weak and strong coupling of the ferrimagnetic and antiferromagnetic mode depending on
the orientation of the external magnetic field relative to the crystallographic directions, is
investigated in section 5.3.

5.1 Experimental Setup

In this experiment, we investigate a single crystalline bulk GdIG-disk, which was grown
by Andreas Erb using travelling solvent floating zone [69]. The magnetic alignment of the
ferrimagnet was done by Stephan Geprägs. The disk has a diameter of d = 6.35 mm and a
thickness of t = 500 µm.
For our investigation of the magnetization dynamics in the ferrimagnet, a cryogenic-

temperature broadband vector network analyzer ferromagnetic measurement setup is
used. The GdIG-disk is placed on a coplanar waveguide with a center conductor width
of wcc = 250 µm. The CPW is mounted on a dipstick, which is placed in the variable
temperature inset (VTI) of the cryostat. The sample temperature is adjusted in the range
of 150 K ≤ T ≤ 300 K. The used cryostat features a 3D-vector magnet, which is capable
of generating magnetic fields up to 6 T into the z-direction and up to 2 T in an arbitrary
direction. The GdIG-disk is placed in a way, that the z-direction of the cryostat coincides
with the crystallographic [12̄1]-direction of the sample.

We use the frequency-swept FMR (c.f. section 3.3), where the magnetic field µ0H0 is
fixed and the frequency is swept through the FMR. The magnetic field is set in the range of
3.0 T ≥ µ0H0 ≥ 0 T with a step width of ∆µ0H0 = 10 mT. This increases the measurement
time drastically, as the vector magnet has to stabilize every set point of the magnetic
field. The measurements are performed with a vector network analyzer, Agilent N5242A
PNA-X, using the linear frequency mode and measuring the complex frequency-dependent
transmission parameter S21 in the frequency range of 0.1 GHz ≤ f ≤ 26.5 GHz with 1080
frequency-points. In order to ensure an acceptable signal to noise ratio, the frequency
traces are averaged 4 times and the IF bandwidth is set to 1 kHz. The acquired data were
then processed by using the “derivative divide” algorithm [43] as discussed in section 3.3.
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Exemplary data for GdIG-disk using different processing methods, was already shown in
Fig. 3.2.

5.2 Magnetic Resonances (AFMR vs. FMR)
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Figure 5.2: Real part of the background-subtracted transmission parameter dDS21 using derivative

divide at (a) T = 250 K and at (b) T = 282 K for a magnetic field along H0||[12̄1]. In
(a) only the FMR is observable as the AFMR is shifted to higher frequencies, which
were not observable due to the limited frequency range of the VNA. Note that the
dispersion of the ferrimagnetic resonance follows ∂fres/∂H0 > 0. In (b1) both the FMR
and AFMR are observable, although the AFMR is very faint. The resonance on the left
is probably due to a magnetic compound in the endlaunch. In (b2) a limited range of
(b1) is shown with an adjusted colorbar range to get a better contrast for the AFMR.
For the AFMR ∂fres/∂H0 < 0 holds in contrast to the FMR. Note that the colorbar
range changes within these three plots as the amplitude of the resonances gets smaller
the closer the temperature is to the compensation point.

Typical data for the [12̄1]-direction are shown in Fig. 5.2. For temperatures T far away
from the compensation point Tcomp only one magnetic mode is observable as depicted in
Fig. 5.2(a). This mode is the so-called low frequency mode or the ferrimagnetic resonance
(FMR). This mode will be discussed in the following section 5.2.1.

If the temperature is close to the compensation point, another magnetic mode is noticeable
as shown in Fig. 5.2(b1). This magnetic mode is weak if compared to the FMR. We attribute
this mode to an antiferromagnetic resonance (AFMR). The small contrast in Fig. 5.2(b1) is
due to the fact that the amplitude of the AFMR is proportional to (g1 − g2)2, where gi are
the Landè-factors of the sublattices [70]. Therefore the colorbar is adjusted in order to get
a better contrast (Fig. 5.2(b2)). The theoretical description is a little bit more challenging
as it requires to take both sublattices into account. The antiferromagnetic resonance will
be discussed in section 5.2.2.
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The resonance on the left of the ferrimagnetic resonance (Fig. 5.2(b1)) is probably due
to a magnetic compound in the endlaunch. This resonance is not showing up at lower
temperatures (Fig. 5.2(a)), because the amplitude of the ferrimagnetic resonance increases
with decreasing temperatures. Close to the compensation point the magnitude of the FMR
and AFMR is small and therefore the additional resonance is more present (compare the
different colorbar scaling).

5.2.1 Ferrimagnetic Resonance (FMR)

In Fig. 5.2(a) a typical spectrum of the ferrimagnetic resonance is exemplary shown for
T = 250 K (below Tcomp). It is important to note that the dispersion of the ferrimagnetic
resonance is positive and follows ∂fres/∂H0 > 0. As we will see later, this is exactly
opposite for the high frequency mode. In order to get a quantitative picture, frequency
traces at constant magnetic field are extracted and the real and imaginary part are fitted
simultaneously (c.f. Fig. 3.2). As the used processing method is derivative divide, Eq. (3.16)
is used to fit the frequency data at fixed magnetic field.

From the fits, the resonance frequency fres and the linewidth ∆fres is extracted. We first
discuss the resonance frequency fres. We fit the bulk Kittel equation (Eq. (2.16)) to fres
vs. H0 and extract the Landè-factor g. For the Kittel fits, we use the demagnetization
factors Nx = 0.888 and Ny = Nz = 0.056 obtained by modelling the disk as a general
ellipsoid with semiaxes according to the dimensions of the disk and using the equations
proposed in [71]. It is important to note, that the z-direction is defined as the direction
of the applied magnetic field. The saturation magnetization Msat is obtained from the
SQUID-data measured by Stephan Geprägs and interpolated between the temperatures in
order to reduce the number of fit parameters to two. The two remaining fit parameters are
the anisotropy field Haniso and the Landè-factor g.
The fitted g-factor as a function of temperature is shown in Fig. 5.3(a). As clearly

visible, the g-factor diverges to negative infinity, when coming from temperatures lower
than the compensation point, and diverges to positive infinity, when coming from higher
temperatures. The reason for this dispersive shape is that the compensation point for the
angular momentum occurs at higher temperatures than the compensation point of the
magnetization [72]. It is important to note, that there is a difference between these compen-
sation points: At the angular momentum compensation point the net angular momentum
vanishes and at the magnetization compensation the net remanent magnetization becomes
zero [73].

From the already mentioned calculations of the sublattice magnetizations using molecular
field theory, it is also possible to calculate the expected temperature-dependence of the
effective Landè-factor of GdIG. Therefore

geff = MGd +MFe,a −MFe,d
MGd
gGd

+ MFe,a
gFe,a

− MFe,d
gFe,d

(5.3)

is calculated, where gGd = 1.994, gFe,a = 2.003 and gFe,d = 2.0047 are the g-factors of the
Gd- and Fe-sublattices respectively and are taken from literature [72]. The gained trend is
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Figure 5.3: Evolution of typical FMR parameters of GdIG as a function of temperature. In (a) the

fitted g-factor from Eq. (2.16) is shown (black symbols) with the simulated g-factor
(red curve). The vertical red line indicates the compensation temperature, which was
adapted to the compensation point of the SQUID-data. In (b) the linewidth ∆fres is
shown for a fixed field of 0.50 T. The black solid line is a guide to the eye. The open
symbols indicates the outliers close to the compensation point.

shown as a red curve in Fig. 5.3(a). Below the compensation point the simulation describes
the measured data well, although above Tcomp the simulation predicts a slower decrease of
the g-factor than our data shows. One possible explanation for this deviation could be, that
the g-factors of the sublattices are also temperature-dependent, which is not considered in
the calculation. The open symbols in Fig. 5.3 are the outliers close to the compensation
point, where the amplitude of the FMR is very small and the fits become less reliable.

Now the extracted linewidth ∆fres of the FMR at a fixed magnetic field of µ0H0 = 0.50 T
is taken into consideration, which is shown in Fig. 5.3(b) as a function of temperature T . The
linewidth varies at lower temperatures only in a small range and is more or less constant.
The increasing linewidth with decreasing temperature is attributed to inhomogeneous
broadening due to magnetostatic modes (MSMs), which are standing spin wave patterns
due to the shape of the sample [74]. In the vicinity of the compensation point, the linewidth
diverges to positive infinity. This behaviour is due to the rapid rise of the anisotropy
field Haniso, which also diverges at the compensation point (not shown), and due to the
breakdown of the dipolar narrowing [72, 75].
Comparing the obtained data with literature, we could reproduce the theoretically

expected behaviour of the g-factor and the linewidth near the compensation point. One
should notice that in the discussion regarding the ferrimagnetic resonance the existence of
two or more sublattices was irrelevant. Therefore it is justified to treat the ferromagnetic
resonance in a ferrimagnet like in a ferromagnet.
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5.2.2 Antiferromagnetic Resonance (AFMR)
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Figure 5.4: Precession of the magnetizations of the Gd-sublatticeMGd and the coupled Fe-sublattice
MFe of (a) the ferrimagnetic resonance (FMR) and (b) the antiferromagnetic resonance
(AFMR). (a) For the ferrimagnetic resonance, both magnetizations are aligned and
precess in-phase. Therefore the angle of the magnetizations θ relative to the equilibrium
position are the same. (b) As the oscillating parts of the magnetizations mi are almost
the same (tiny difference not shown), the angles θi are now different. (c) The resonance
frequency of the antiferromagnetic resonance for different temperatures shown as a
function of the magnetic field. The points are the extracted data and the solid lines
are the calculated curves according to [25]. The shaded region indicates the magnetic
field region, where the AFMR cannot described by the simulation due to the coupling
between the FMR and AFMR (see section 5.3). The inset shows the fitted molecular
exchange constant λex as a function of temperature T . The lines are added as a guide
to the eye.

For the antiferromagnetic resonance, both sublattices have to be taken into account as
depicted in Fig. 5.4(a) and (b). In contrast to the ferrimagnetic resonance (Fig. 5.4(a)),
where the magnetizations of the sublattices are aligned and precess in the same sense,
the magnetizations of the sublattices are not aligned for the antiferromagnetic resonance
(Fig. 5.4(b)). Additionally, the magnetizations now precess clockwise compared to the
ferrimagnetic mode, where they precess counterclockwise [25].

In order to describe the antiferromagnetic resonance as shown in Fig. 5.4(c) for various
temperatures, the properties of the two sublattices have to be taken independently into
account. The AFMR resonance frequency is extracted by hand as the signal-to-noise
ratio of the data is insufficient in order to fit it. The coupling between the sublattices is
described by Nèel theory. The following calculation is based on [24] and [25], where a more
extensive discussion on the antiferromagnetic resonance can be found. We start with the
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Landau-Lifshitz equation (Eq. (2.6)), which is modified by an exchange term λijMj . This
leads to

ω ×Mi = γiMi ×

H0 +Haniso,i −
∑
i 6=j

λijMj

 with i,j ∈ {1,2}, (5.4)

where we used that dMi/dt = ω ×Mi and i, j accounts for the number of sublattices
(here 2). As only two sublattices are considered, the sum disappears and the molecular
exchange constant λij is rewritten to λij = λex. Under the assumption, that the external
magnetic field H0 is applied in the z-direction, this equation can be written down for each
sublattice and the calculations can be performed equivalently to section 2.2.1. This finally
leads (without derivation) to a quadratic equation for the resonance frequency [25]

ω2 +Aω +B = 0 (5.5)

with

A = (γ1 + γ2) ·H0 + γ1Haniso,1 − γ2Haniso,2 + λex · (γ1M2 − γ2M1)
B = γ1γ2 [(H0 +Haniso,1)(H0 +Haniso,2) + λex (H0 (M1 −M2)−M1Haniso,1 −M2Haniso,2)] .

(5.6)

For the gyromagnetic ratios γi = giµB/~, the g-factors of the sublattices taken from [72]
are plugged in (c.f. section 5.2.1). As we do not have information about the anisotropy
fields of the respective sublattices, we assume that Haniso = Haniso,1 = Haniso,2 = 2K1/Msat.
Only a cubic anisotropy is taken into consideration with the anisotropy constant K1 =
4.1× 102 J/m3 [65]. The saturation magnetization is taken from the SQUID-measurements.

The only unknown parameter is the molecular exchange constant λex. Therefore Eq. (5.5)
is solved using Mathematica and the exchange constant λex is taken as a fitting parameter.
The resulting AFMR curves are shown in Fig. 5.4(c) as solid lines. For decreasing tempera-
tures the AFMR is shifted to higher frequencies until they are out of our accessible frequency
range (f ≤ 26.5 GHz). In the inset of Fig. 5.4(c) the fitted molecular exchange constant
λex is shown as a function of temperature T . For decreasing temperatures the exchange
constant increases such as the saturation magnetization (c.f. Fig. 5.1(a)) because from Nèel
theory the saturation magnetization is proportional to the exchange constant. Consequently,
the exchange constant λex goes to zero at the compensation temperature Tcomp.
The mismatch at high magnetic fields, where the AFMR slightly bends, is due to the

small misalignment of the magnetic field to the [12̄1]-direction (≈ 1◦) as shown in [76].
At low magnetic fields the curves cannot describe the data due to the coupling to the
ferromagnetic resonance, which will be discussed in the next section.
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Figure 5.5: Measured colormaps of the weak (a) and the strong coupling (b) regime at T = 282 K.
The FMR and the AFMR are indicated with dashed blue lines as especially the intensity
of the AMFR is low.

5.3 Coupling of AFMR and FMR

Previously we have treated the antiferromagnetic (AFMR) and the ferromagnetic resonance
(FMR) independently of each other. In a certain temperature range some “cross-talk”
between these two modes can be observed as shown in Fig. 5.5(a). In the previous
discussions the magnetic field was applied in the [12̄1]-direction because qualitatively the
other directions in the disk plane show the same behaviour regarding the FMR and AFMR.
The only thing what changes between these crystallographic directions is the anisotropy
field. Nevertheless by now rotating the magnetic field by 90◦, which corresponds to the
[1̄01]-direction, a clear anti-crossing between the FMR and the AFMR is observable as
shown in Fig. 5.5(b).
In the following we discuss the distinct behaviours between the [12̄1]- and the [1̄01]-

direction, where on the one side weak and on the other strong coupling is observed. It
should here be noted, that in discussions of coupling phenomena the involved coupling
strength and the linewidths have in literature the units of an angular frequency (rad/s).

5.3.1 Weak Coupling

Along the [12̄1]-direction the ferromagnetic as well as the antiferromagnetic resonance is
observed as shown in Fig. 5.5(a). At the crossing point of the FMR and AMFR a small
“kink” in the FMR can be seen. To illustrate this behaviour both the FMR and the AFMR
resonance frequencies are shown with dashed blue lines.

To get a more quantitative picture, the frequency difference ∆(µ0H0)/2π = fres,FMR(µ0H0)−
fres,AFMR(µ0H0) between the FMR and the AFMR is extracted, which is also indicated
in Fig. 5.5(a). As the intensity of the FMR is larger than of the AFMR, fixed magnetic
field slices of the FMR are fitted and the linewidth dfres is extracted. It is important to
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Figure 5.6: Linewidth extraction for the weak coupling regime. In (a) the real and imaginary part
of dDS21 is fitted exemplary at a field cut of 0.58 T in order to extract the linewidth
dfres. (b) The extracted linewidths dfres are plotted as a function of the frequency
difference between the FMR and AMFR and are then fitted by the model of Herskind
[77] with Eq. 5.7 in order to extract the coupling strength geff/2π and the linewidths of
the FMR and the AFMR κ/2π.

note, that in literature the linewidths in coupling phenomena are always defined as half
width at half maximum (HWHM), as it will also be used here. Upon the crossing point a
broadening of the linewidth is observed as depicted in Fig. 5.6(a).

Following the approach of Herskind et al. [77] the extracted linewidths dfres are plotted
as a function of the frequency difference ∆/2π in Fig. 5.6(b) for various temperatures. The
Lorentzian lineshape can now be fitted by using [77, 78]

2π dfres(∆) = κFM + g2
eff

κAFM
κ2
AFM + ∆2 , (5.7)

where κFM and κAFM are the linewidths of the FMR and the AFMR respectively and
geff is the coupling strength. As depicted in figure 5.6(b), κFM is given by the offset and
describes the linewidth of the undisturbed system. The linewidth of the AFMR κAFM is as
indicated the HWHM linewidth of the Lorentz curve.
The gained parameters are shown in Fig. 5.7(a). A discussion will be given later in

section 5.3.3.

5.3.2 Strong Coupling

By applying a magnetic field along the [1̄01]-direction, the ferrimagnetic and the antiferro-
magnetic resonance interact strongly and the characteristic anti-crossing forms as seen in
Fig. 5.5(b). In order to describe this coupled system, we assume the FMR and the AFMR
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are modelled as two coupled harmonic oscillators. The coupling might be mediated by
dipolar interaction1.
This system can mathematically described by [78]

2πf±(µ0H0) = 2πfres, AFMR(µ0H0) + ∆(µ0H0)
2 ± 1

2

√
∆(µ0H0)2 + 4g2

eff, (5.8)

where the resonance frequencies fres, AFMR and fres, FMR are taken from the [12̄1]-direction.
The effective coupling strength geff is given by the minimum of the frequency splitting
between the two branches. The coupling strength is then two times this value. In order to
confirm the extracted value, it is plugged into Eq. (5.8) and the gained curves are then
overlayed to the colormap as shown in Fig. 5.5(b) as blue curves. The calculated curve is
in good agreement with the measured data.
In order to be able to distinguish between the different coupling regimes, it is also

necessary to take the linewidth into account. For the strong coupling regime, it is necessary
to fit a magnetic field slice far away from the crossing point to extract the undistorted
linewidth κ of the FMR and the AFMR respectively. The gained values of the linewidths κ
and the effective coupling strength geff are shown in Fig. 5.7(b). It is important to note
that due to the low magnitude of the AFMR the error of the linewidth is larger because
the AFMR is barely larger than the noise floor.

5.3.3 Comparison of Weak and Strong Coupling
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Figure 5.7: Comparison of the coupling strength geff/2π and the linewidths of the FMR and the
AFMR κ/2π for the strong (a) and the weak coupling regime (b). The approach in
order to extract the shown parameters is shown for (a) in section 5.3.1 and for (b) in
section5.3.2.

1From private communication with Akashdeep Kamra (University of Konstanz).
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The gained values for the effective coupling strength geff and the linewidths κ of the
undistorted system are shown in Fig. 5.7 for the [12̄1]- and the [1̄01]-direction respectively.
The strong coupling regime is characterized by a coupling constant geff, which is much
larger than both the linewidths κ of the two undistorted systems [77, 79]. The system is
claimed to be in the weak coupling regime, if the coupling strength geff is smaller or in the
order of the linewidths κ.
In the [12̄1]-direction, as depicted in Fig. 5.7(a), the effective coupling strength geff is

barely larger than the AFMR linewidth κAFM in the temperature range T = 280− 281 K
and at higher temperatures it becomes smaller, while the linewidth of the FMR remains
more or less constant. The system is therefore found to be in the weak coupling regime.
Along the [1̄01]-direction as shown in Fig. 5.7(b) the situation is completely different.

The effective coupling strength geff is always at least two times larger than the individual
linewidths κ. Therefore the system is clearly in the strong coupling regime.

The shown temperatures in Fig. 5.7(b) are limited due to the already discussed reasons:
The antiferromagnetic resonance shifts to higher frequencies for lower temperatures until
they are not accessible anymore due to the limited frequency range of the VNA and the
closer the temperature gets to the compensation point Tcomp the magnitude of the FMR
and AFMR gets smaller until especially the AFMR is no longer detectable.

5.4 Summary

In this chapter we investigated the magnetization dynamics of the compensating ferrimagnet
gadolinium iron garnet in the form of a single crystalline disk by using a frequency-swept
VNA-FMR. In contrast to the ubiquitous yttrium iron garnet (YIG), gadolinium iron garnet
features a compensation point Tcomp, where the magnetizations of the two sublattices cancel
each other out. In an external magnetic field and by driving the system with a microwave,
it is possible to observe two magnetic modes: the ferrimagnetic and the antiferromagnetic
resonance. First, they were described independently from each other, then the coupling
between these two magnetic modes was considered.
In the ferrimagnetic mode (FMR) the magnetization of the Gd- and the effective Fe-

sublattice are aligned and precess in the same sense. Therefore the system behaves in
the FMR mode like a ferromagnet and can be treated as one. For the FMR we extracted
the Landè-factor g, which when coming from temperatures lower than the compensation
temperature diverges to negative infinity at the compensation point and comes back
from positive infinity at higher temperatures. This behaviour is in agreement with theory.
Furthermore the linewidth at a fixed magnetic field was extracted, which diverges to
positive infinity at the compensation point. This is also in accordance with theory.

For the antiferromagnetic resonance (AFMR) the magnetizations of the sublattices are
not aligned. The dispersion of the AFMR is negative, in contrast to the positive FMR
dispersion. In the accessible frequency range the AFMR could be described by using Nèel
theory and fitting the molecular exchange constant λex, which becomes smaller the closer
the temperature is to the compensation point.
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By applying the magnetic field along the [12̄1]-direction, weak coupling between the
ferrimagnetic and the antiferromagnetic resonance was observed. In the weak coupling
regime the FMR features a small “kink” at the crossing point with the AFMR. By following
the approach of Herskind et al. [77], it was possible to extract the effective coupling strength
geff and the linewidths κ of the undisturbed systems (FMR and AFMR).

In the [1̄01]-direction the ferrimagnetic and the antiferromagnetic mode interact strongly
and the characteristic anti-crossing can be observed. The system is modelled as two
harmonic oscillators, which are coupled to each other. The effective coupling strength geff is
here given by the minimal frequency splitting of the anti-crossing. As the coupling strength
is at least to times larger than the individual linewidths the system can be classified as
strongly coupled.

Due to the limited frequency range of the used vector network analyzer (f ≤ 26.5 GHz),
it was only possible to observe the antiferromagnetic resonance in a limited temperature
range because the AFMR shifts to higher frequencies for decreasing temperatures. This is
also the reason, why especially the strong coupling regime could only be observed for a
very limited temperature range (c.f. Eq. (5.8) and Fig. 5.7(b)).

In a next iteration of this experiment, it would be advantageous to use a vector network
analyzer, which is capable of higher frequencies (e.g. f ≤ 50 GHz). In this way the AFMR
could be observed up to lower temperatures and consequently the coupling phenomena
between the FMR and the AFMR could be investigated more extensively.





Chapter 6

Dynamic Skyrmion Melting in Cu2OSeO3

After discussing the magnetization dynamics in normal metal/ferromagnet bilayers (chap-
ter 4) and in a compensating ferrimagnet (chapter 5), we now switch to a more complicated
magnetic system, which is a chiral magnet. The magnetic order in the already discussed
ferromagnet and ferrimagnet is due to the Heisenberg exchange interaction, where the
spins in the system are either aligned in parallel or antiparallel. In a chiral magnet, the
so-called Dzyaloshinskii-Moriya interaction [80, 81] is responsible for a canting of the spins.
As a consequence, the spins are helically or conically aligned.

If both Dzyaloshinskii-Moriya and Heisenberg exchange interaction are present and of
comparable magnitude, a so-called skyrmion-lattice ground state can emerge. Skyrmions
are topologically protected spin solitons with a particle-like behaviour, which were first
discovered in the metallic MnSi in 2011 by Mühlbauer et al. [10] using a neutron scattering
experiment. Due to their long lifetime and their nanometer-sized dimensions [82], skyrmions
are promising candidates for future race track memory [83], GHz oscillators [84] and logic
devices [85].

Therefore it is necessary to investigate the properties of the magnetization dynamics of
the skyrmionic system. Onose et al. [86] and Schwarze et al. [87] pioneered the investigation
of the magnetization dynamics of the insulating Cu2OSeO3, the metallic MnSi and the
semiconducting Fe1−xCoxSi, which all share the same cubic space group P213. In order to
detect the spin excitations in these materials, these authors used a broadband ferromagnetic
resonance setup with a vector network analyzer and a coplanar waveguide.

In this chapter, we investigate the magnetization dynamics of the insulating Cu2OSeO3
using a broadband VNA-FMR setup. In contrast to the previous experiments, we however
perform the skyrmion excitations with very large microwave power. As proposed by
Mochizuki [15], such strong driving of the skyrmion resonance can result in a “melting” of
the skyrmion lattice.
We start with an introduction into the basics and dynamic excitations of skyrmions

in section 6.1. In section 6.2, the concept of melting of the skyrmion lattice by intense
microwave irradiation proposed by Mochizuki is briefly discussed. Here, we also discuss the
small angle neutron scattering experiments, that were performed on the same sample by
Franz Haslbeck from the group of Christian Pfleiderer (TU Munich). In section 6.3, the
two used microwave spectroscopy setups, referred to as 2-tone experiment and broadband
magnetic resonance setup (bFMR) will be discussed. Additionally, the data analysis steps
and the procedure in order to extract a phase diagram are outlined. In the last two
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sections 6.4 and 6.5, the results of the 2-tone and the bFMR measurements are discussed.
Here, we also discuss the employed temperature correction procedure.

6.1 Introduction to Skyrmions and their Dynamics

In a chiral magnet, the most prominent interactions are the the Heisenberg exchange and
the Dzyaloshinskii-Moriya interaction or short DMI. For the occurrence of the DMI two
requirements have to be fulfilled: First strong spin-orbit interaction needs to be present [88]
and second a broken inversion symmetry is needed. The second precondition can be directly
seen from the mathematical form of the Hamiltonian of the DMI [16]

HDMI = Dij · (Si × Sj), (6.1)

with the spins Si and the Dzyaloshinskii vector Dij . By inverting the term in the bracket
and in the presence of a given inversion symmetry, the Dzyaloshinskii vector has to be zero
(Dij = 0). Therefore DMI can only be present in a system with broken inversion symmetry.
The broken inversion symmetry is generally fulfilled at interfaces and surfaces, leading
to interfacial DMI [89]. Another possibility is a crystal structure with a broken inversion
symmetry. This is, for example, given for the non-centrosymmetric cubic Cu2OSeO3, MnSi
and Fe1−xCoxSi, which all posses the same space group P213 [90].
In contrast to the Heisenberg exchange interaction, which leads to a parallel or anti-

parallel alignment of the spins, the Dzyaloshinskii-Moriya interaction leads to a canting
of the spins. As seen from Eq. (6.1), the energy of the DMI is minimized, if the spins are
canted by 90◦ to each other. This leads, depending on the direction of the Dzyaloshinskii
vector Dij relative to the space vector connecting the spins Si and Sj , to a helical or a
cycloidal ordering. The helical ordering is depicted in Fig. 6.1(b). In the helical phase, the
spins are aligned on a helix. It is interesting to note, that the DMI leads to intrinsically
periodic magnetic properties [90].

As already mentioned, if the Dzyaloshinskii-Moriya and the Heisenberg exchange inter-
action become comparable, skyrmions can emerge. Skyrmions are spin structures with a
finite size in the range of 10 nm− 100 nm [91]. The size of the skyrmion is determined by
the ratio |Dij |/J , where J is the Heisenberg exchange integral. A schematic of a skyrmion
is shown in Fig. 6.1(d). By taking a cut through the middle of the skyrmion and looking at
the resulting configuration of the spins, one recovers a helical ordering. This is the reason,
why this type of skyrmions is referred as helical- or Bloch-type. There also exist so-called
cycloidal- or Nèel-type skyrmions [92], which we do not want to discuss here.
Another characteristic of skyrmions is the emergence of a lattice with a hexagonal

symmetry for bulk materials as depicted in Fig. 6.1(e). This so-called skyrmion crystal
forms in a simple picture due to close-packing of equal disks. The skyrmions are two-
dimensional structures and the spacing between the skyrmions is minimized by the hexagonal
arrangement. In a neutron scattering experiment this hexagonal symmetry is recovered. A
more sophisticated explanation of the hexagonal symmetry including experimental neutron
scattering data can be found in [10].
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Now, we want to briefly discuss the topological aspect of the skyrmions. Skyrmions
were first proposed by T. Skyrme in 1962 [93], who described the stability of hadrons due
to topological protection. Interestingly, his concepts are also applicable to problems in
condensed matter physics like in quantum Hall systems or liquid crystals [91]. The skyrmion
itself can be assigned with a topological charge, which is coming from the fact, that the
spin in the middle is exactly opposed to the spins at the edge of the skyrmion. Additionally,
skyrmions have a topological skyrmion number, which is related to the vorticity and counts
how many times the skyrmion wraps around the unit sphere [91].
From a topological point of view, one can transform a doughnut into coffee cup and

vice versa because they both have one hole, which is their topologically protected Chern
number. On the contrary these two objects cannot be transformed into a ball because the
ball has no hole. The same line of thinking can be applied to the skyrmions, which are
not classified by the number of holes but by the before mentioned topological charge. This
topological protection gives the skyrmions their stability.
After this discussion of the basic concepts of skyrmions, we now discuss the magnetic

properties and dynamic excitations of these systems.

6.1.1 Magnetic Modes in Skyrmion Materials

Figure 6.1: (a) Typical phase diagram of a chiral magnet hosting skyrmions. Above the critical
temperature Tc the material behaves like a paramagnet (PM). The magnetic field at the
phase transition from ferrimagnetic/field polarized (FP) to conical is labelled Hc2 and
from conical to helical Hc1. (b) Schematic of helical mode and (c) conical mode with
the propagation vector ~Q. (d) Spin arrangement of a helical- or Bloch-type skyrmion.
(e) Hexagonal symmetry of the skyrmion lattice with perpendicular applied magnetic
field ~H. Figure taken from [90].

Spin dynamics in Cu2OSeO3 were first investigated by Onose et al. [86] in 2012. They
were able to identify the characteristic eigenmodes of a chiral magnet, which also hosts a
skyrmionic phase. The phase diagram, depicted in Fig. 6.1(a), shows four distinct magnetic
modes below the critical temperature Tc. Starting at low fields, there is the helical phase,
where the spins are aligned on a helix along a crystalline easy axis, which is parallel to the
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propagation vector ~Q. As shown in Fig. 6.1(b), the magnetization along the propagation
vector ~Q is zero.

By applying a magnetic field the spins of the helical mode start to tilt towards the
propagation vector as shown in Fig. 6.1(c). Consequently, the conical spin arrangement
has a finite magnetization parallel to the applied magnetic field. By driving a collective
excitation (FMR) of the conical phase, two modes can be observed. The spins can then
either precess with phase velocity parallel to the pitch vector ~Q, which is called the Q+
mode, or antiparallel, which is then the Q− mode [87]. The same can be observed in the
helical phase.
By further increasing the magnetic field, the material loses its chiral structure and

becomes a ferrimagnet. The magnetic mode is then also referred to as the field-polarized
mode. We have already discussed and derived the resonance frequency for this mode in
section 2.2, when discussing the magnetization dynamics of a bulk material. Using the
Kittel equation for bulk materials (Eq. (2.16)) and neglecting anisotropies (Haniso = 0), as
the Heisenberg exchange interaction and the DMI are dominating, we get the resonance
frequency fres,FP for the field-polarized mode [31]

fres,FP = gµB
h

µ0

√
(H0 + (Nx −Nz) ·M) · (H0 + (Ny −Nz) ·M), (6.2)

with the magnetization M , the Bohr magneton µB and the Planck constant h.
In a limited regime close to the critical temperature Tc, a skyrmion lattice forms. In the

skyrmion (SkX) phase three distinct magnetic modes can be observed. Two of these are
the clockwise (cw) and the counterclockwise (ccw) rotational modes, where the core of
the skyrmion rotates in the clockwise or the counterclockwise rotation respectively. The
third magnetic mode is the breathing mode, where the core of the skyrmion alternatingly
shrinks and expands [86]. As we will see later in our experimental data (Sec. 6.3.1), only
two of these modes are observed, which are the breathing and the counterclockwise mode,
because the intensity (spectral weight) of the clockwise mode is very small.

The identification of the discussed magnetic modes in the experimental data is done in
section 6.3.1 and the procedure to extract a phase diagram, similar to that in Fig. 6.1(a),
will be shown in section 6.3.2. In the next section we want to briefly discuss the theory
paper by M. Mochizuki [15], who proposed a melting of the skyrmion lattice by large
microwave power. Further, we show the data obtained from small angle neutron scattering
experiments (SANS) performed by Franz Haslbeck.

6.2 Motivation: Melting of Skyrmions with Large Microwave
Power

Masahito Mochizuki theoretically studied in 2012 [15] spin excitations in the skyrmion
(SkX) phase. Starting with a Hamiltonian containing the Heisenberg exchange interaction,
Zeeman coupling and the DMI and by numerically solving the Landau-Lifshitz-Gilbert
equation for a two-dimensional square lattice with a constant magnetic field, he reproduced
characteristics of the skyrmion lattice. He observed the hexagonal symmetry of the skyrmion
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lattice and further could describe the dynamic properties of the skyrmion by additionally
applying a small oscillating magnetic field. The calculations show the evolution with time
of the three magnetic modes (ccw, cw, breathing).

Furthermore he observed the loss of the hexagonal symmetry of the skyrmion lattice by
irradiating the material with a microwave of large power. The system then transitions into
a state without any long-range ordering. This means that the long range stability of the
skyrmion lattice is overcome by the dynamic excitations. This process is, as suggested by
M. Mochizuki, called “melting” of the skyrmion lattice. The melting occurs within a few
nanoseconds and is due to the intensely excited rotational spinwave modes, in particular
the counterclockwise mode with its large intensity.
In order to prove this theoretical perediction of the “melting” of the skyrmion lattice,

neutron scattering experiments under intense microwave radiation were performed by
Franz Haslbeck of the group of Christian Pfleiderer (TUM) in a collaboration with the
Walther-Meißner-Institut. The experimental setup and the gained results shall be briefly
discussed in the following section.

6.2.1 Neutron Scattering Experiments

The experimental setup for the small angle neutron scattering (SANS) experiment [94]
performed by Franz Haslbeck is depicted in Fig. 6.2(a). The Cu2OSeO3 sample is mounted
on a coplanar waveguide (center conductor width wcc = 1.3 mm) and placed in a magnet
cryostat. A frequency source and a microwave amplifier capable of a maximum output
power of P = 5 W produce a driving field hrf at the sample.

In order to observe the hexagonal skyrmion lattice, the static magnetic field H0 is applied
in the same direction as the neutron beam, which corresponds to the [110]-direction of the
Cu2OSeO3 crystal. The magnetic field is fixed at µ0|H0| = 22 mT. The number of scattered
neutrons is then detected as a function of the transversal neutron wavevector. From this
SANS data [10] the intensity of the signal of the conical and skyrmion phase is extracted.
The signal intensity I stemming from scattering off the magnetic lattice is shown in

Fig. 6.2(b) as a function of the corrected temperature Tc − T . The critical temperature Tc
is defined as the temperature, where the skyrmion and conical intensity become zero. By
applying a power of Pdrive = 5 W and by varying the frequency of the frequency source fdrive,
it is observed, that at fdrive = 0.6 GHz the response of the system is unchanged compared to
no applied microwave power. In the range of 0.7 GHz ≤ fdrive ≤ 1.0 GHz the magnitude of
the skyrmion signal is strongly suppressed but comes back nearly to its original magnitude
at fdrive = 1.2 GHz.
Figure 6.2(c) shows SANS data obtained at fixed frequency fdrive = 0.8 GHz, when

varying the microwave power. As depicted in Fig. 6.2(c) the “melting” of the hexagonal
skyrmion lattice is a continuous process with no real threshold. The loss of the SkX signal
means, that the spin-system gets in a disordered state (like an amorphous material) and
loses its regular magnetic ordering. Therefore the wavevector is not defined and in the
neutron scattering experiment no signature of skyrmions is observable anymore.

In conclusion, the neutron scattering experiment shows, that a “melting” of the skyrmion
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Figure 6.2: Neutron scattering experiment for the Cu2OSeO3 crystal performed by F. Haslbeck.
(a) Illustration of neutron scattering setup. Intensity of the skyrmion and conical phase
as a function of the corrected temperature Tc−T for (b) various microwave frequencies
fdrive and (c) microwave powers Pdrive. The conical signal is divided by a factor of 10.
Data is reproduced with permission of F. Haselbeck and C. Pfleiderer.

lattice is observable as the signal of the SkX phase is lost. This means, that the long-range
ordering of the skyrmion crystal is not present anymore.

6.3 Experimental Setup and Processing

In this chapter we investigate the spin dynamics of a cuboid Cu2OSeO3 crystal, obtained
from the group of Christian Pfleiderer (TUM). Our experiments are performed using
a broadband ferromagnetic resonance setup at cryogenic temperatures with a coplanar
waveguide (CPW) and a vector network analyzer (VNA). The crystal, with dimensions
and crystallographic directions as shown in Fig. 6.3(a), is chosen to be small and the CPW
center conductor width of wcc = 1.3 mm is chosen wider than the sample. The long side of
the sample is aligned parallel to the center conductor to achieve a homogeneous excitation
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Figure 6.3: (a) Geometry and crystallographic axes shown for the given Cu2OSeO3 crystal with a
picture of the mounted sample on the CPW. (b) 2-tone measurement with a frequency
source at a fixed frequency fdrive, which drives the system with large microwave
power Pdrive. With the directional coupler the frequency of the VNA is superimposed
with the large frequency source signal but with an attenuation of typically −20 dBm.
(c) Single-tone setup (bFMR), which equals the already explained setup in chapter 3,
but with an additional amplifier in order to get to high microwave power P .

field over the whole sample. The large sample volume (and thus large center conductor
width) is required for the neutron scattering experiments. For the ferromagnetic resonance
spectroscopy, the large center conductor width is disadvantageous because the sensitivity
of the CPW-FMR scales as 1/wcc.
For our investigation of the dynamic properties of Cu2OSeO3 we used two different

experimental setups. The first one is the so-called “2-tone” setup shown in Fig. 6.3(b),
where the idea is to mimic the pump-probe aspect of the neutron scattering experiment
by using a high power, fixed frequency pump (fdrive, Pdrive) and a low power, scanning
frequency probe microwave tone (fprobe, Pprobe). To combine fprobe and fdrive microwave
tones, we use a directional coupler (Mini-Circuits ZFBDC16-63HP+). The directional
coupler has the property that an incident microwave at the IN port can travel to the OUT
port with small losses (typically −0.5 dB) and vice versa. The same applies for a microwave
from REV to FWD. The directional coupler now enables that an incident microwave at
port REV is coupled to the OUT port with a typical attenuation of −20 dB. Therefore, if
a microwave is applied at the IN and at the REV port, we get a superposition of the two
microwaves at the OUT port but the microwave coming from the REV port is strongly
attenuated. At the FWD port, we would get the same but with an attenuated microwave
coming from the IN port.
In our setup a frequency source (Rhode&Schwarz SMF100A) capable of generating

frequencies of 0.1 GHz ≤ fdrive ≤ 22 GHz is connected to an amplifier (Mini-Circuits ZHL-
5W-422+) which has a maximum output power of 5 W and a bandwidth of 0.5−4.2 GHz. The
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output of the amplifier is consequently the sinusoidal driving microwave with frequency fdrive
and power Pdrive and is connected to the IN port of the directional coupler. The input
power at the amplifier is chosen in a way, that the amplifier is operated in saturation at an
output power of Pdrive = 5 W.
Additionally, a vector network analyzer (Agilent N5242A PNA-X) is used to measure

the complex transmission parameter S21 over a broad frequency range. The VNA samples
201 points in a frequency range of 0.1 GHz ≤ fprobe ≤ 3.25 GHz with an IF bandwidth of
200 Hz and 10 averages of the frequency trace and port power Pprobe = 10 dBm. Port 1
(P1) of the VNA is connected to the REV port of the directional coupler. The microwave
of the VNA is consequently coupled to the OUT port with an attenuation of typically
−20 dB, which means that the effective power of the VNA at the OUT port is about
−10 dBm ' 0.1 mW. Compared to the large power coming form the frequency source
(5 W ' 37 dBm), the VNA microwave power is about 4 to 5 magnitudes smaller. The VNA
probes the dynamic response of the system strongly driven at fdrive by measuring the
complex transmission parameter S21 at scanning frequency fprobe. It is important to note,
that the frequency source and the vector network analyzer are not phase-locked to each
other, which means they both use their own local oscillator as their reference. Therefore
the VNA does not “see” the signal coming from the frequency source. Otherwise, in a
phase-locked scheme, we would expect a large signal coming from the frequency source in
our data. A 30 dB-attenuator is inserted between port 2 of the VNA (P2) and the CPW in
order to protect the VNA from too large input powers (not shown in figure).
We performed a second experiment, which is quasi identical to the already discussed

VNA-FMR in section 3.1. The only difference is, that we now have an amplifier between
port 1 of the VNA and the coplanar waveguide as shown in Fig. 6.3(c). As the power
range of the used vector network analyzer is insufficient to saturate the input of the 5 W
amplifier used in the 2-tone experiment, we use an additional preamplifier (Kuhne LNA
BB 202 A). After these two amplifiers we drive the system with a microwave power P . In
contrast to the 2-tone experiment, we drive and probe the system with the same frequency
fdrive = fprobe = f . We measure the complex transmission parameter S21 of the system
at frequency f , where we are also driving the system. The port 2 of the VNA is again
protected by a 30 dB-attenuator

The coplanar waveguide with the sample (as it was mounted from the neutron scattering
experiment) is mounted on a dipstick, which is inserted in the variable temperature inset
of the cryostat, where the temperature range was adjusted in the range of Tset = 51− 59 K
with a step size of ∆Tset = 0.25 K. The magnetic field H0 is applied in the [110]-direction
of the Cu2OSeO3 crystal. As these materials are known to have hysteretic properties, the
measurement protocol has to be the same for all temperatures. We start each measurement
cycle at the lowest temperature, which is stabilized at zero magnetic field (µ0H0 = 0 T).
After stabilization of the temperature Tset, the magnetic field is set to µ0H0 = 90 mT.
Then the magnetic field is ramped with a constant rate of 2 mT/min to µ0H0 = −90 mT,
while the VNA continuously measures the S21 parameter for the given settings. The field
resolution is therefore approximately 0.3 mT. Once the −90 mT are reached, the magnetic
field is ramped to zero and temperature is raised by 0.25 K. This procedure is repeated
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until the critical temperature Tc is reached (for Cu2OSeO3: Tc ≈ 59 K). Above Tc, only
the field polarized mode is observable.

In the next section we want to discuss the data processing and the identification of the
magnetic modes present in the skyrmion material.

6.3.1 Processing Raw Data: Derivative Divide vs. Divide Slice
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Figure 6.4: Exemplary data of 2-tone experiment for Pdrive = 0 at Treal = 57.50 K with (a)-(d)
divide slice at µ0H0 = 0 T and (e)-(h) with derivative divide. The resonance positions
of the magnetic modes are indicated with arrows. The solid lines in the field cuts are
smoothed data added as a guide to the eye.

As discussed in section 3.3, by measuring in the frequency-swept mode, it is necessary to
de-embed the signal coming from the magnetic modes of the system from the microwave
transmission background. One way to do so, is by dividing a frequency trace at a certain
magnetic field (S21/S

µ0H0=0 T
21 ) as depicted in Fig. 6.4(a) exemplary at Treal = 57.50 K,



60 Chapter 6 Dynamic Skyrmion Melting in Cu2OSeO3

referred to as “divide slice” in the following. Another possibility is to use the “derivative
divide” method [43] by calculating the symmetric difference quotient of S21 (Eq. (3.14)).
The resulting plot is shown in Fig. 6.4(e). We now want to identify the different magnetic
modes as already discussed in section 6.1.1.

Starting at low magnetic fields (µ0H0 . 10 mT), we would expect to observe the helical
mode. Due to the low signal-to-noise ratio, which is because of the large center conductor
width wcc, it is barely visible. In the range of 10 mT . µ0H0 . 18 mT the conical mode is
recognizable. Then a discontinuity is observed (especially in Fig. 6.4(a)), which indicates
the phase transition from conical to skyrmion mode. By taking a field cut at µ0H0 = 22 mT
as shown in Figs. 6.4(b) (divide slice) and 6.4(f) (derivative divide), we observe two
resonances, attributed to the counter-clockwise (ccw) and the breathing mode. In the
divide slice depiction, the resonances are identified as Lorentz peaks in contrast to the
derivative divide depiction, where the resonances are identified by dip-peak or peak-dip
shapes. The ccw mode has a dip-peak shape, which means that its resonance frequency
vs. magnetic field dispersion is positive (∂fres/∂H0 > 0), and the breathing mode has a
peak-dip shape, which corresponds to a negative dispersion (∂fres/∂H0 < 0).

By further increasing the magnetic field, the system transitions to the conical phase. In
the field cuts at µ0H0 = 40 mT shown in Figs. 6.4(c) (divide slice) and 6.4(g) (derivative
divide) only one resonance is observed. The Q+ and the Q- mode of the conical mode
cannot be resolved separately because the modes become degenerate at the phase transition
from conical to field polarized phase degenerate. Again, in the divide slice depiction the
resonance exhibits a Lorentzian lineform, while in the derivative divide depiction the
resonance has a peak-dip shape, which means, that the dispersion is negative. This negative
dispersion can also be seen in the colormaps (c.f. Figs. 6.4(a) and (e)).
For large magnetic fields only the ferrimagnetic mode is present. In the field cut at

µ0H0 = 70 mT, we see the same signature for the resonance in the divide slice methode (c.f.
Fig. 6.4(d)) in contrast to the derivative divide depiction, where we observe a dip-peak
shape of the ferrimagnetic resonance (c.f. Fig. 6.4(h)), which indicates a positive dispersion.
The qualitatively observed frequency vs. magnetic field dispersions are in agreement

with the findings of Schwarze et al. [87], who used the divide slice method. It is evident
from Fig. 6.4, that the signal-to-noise ratio is better in the derivative divide depiction.
Additionally, the dispersion of the resonance can be extracted by a single field cut in
contrast to the divide slice method. Nevertheless, its easier to extract the phase boundaries
in the divide slice depiction, as a discontinuity or a change in the dispersion indicates the
boundary. A brief description of the process used to extract a phase diagram from data
such as that shown in Fig. 6.4 is given in the next section.

6.3.2 Phase Diagram Extraction

In order to extract the phase diagram, we choose the divide slice depiction because the
phase transitions are then indicated by discontinuities or by changes in the dispersion. For
a given color map as shown in Fig. 6.5(a) the magnetic fields µ0H0, at which the phase
transition occurs, are extracted by hand as a function of temperature Treal (see section 6.4.1
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Figure 6.5: (a) Exemplary color plot of 2-tone experiment for Pdrive = 0 at Treal = 57.50 K with
already marked phase boundaries (vertical lines). (b) Complete phase diagram (phase
transition at magnetic field µ0H0 for given temperature Treal) for no applied microwave.
The helical phase is not shown because the signal-to-noise ratio is too low in order to
observe the helical mode and extract a phase boundary.

for the determination of Treal). Starting at large magnetic field µ0H0, the field polarized
mode is observed with its positive frequency vs. magnetic field dispersion. As the conical
mode has a negative dispersion, the boundary is indicated by the changing point of the
dispersion as indicated by the red vertical line. The critical magnetic field for this transition
is called Hc2.
For the emergence of skyrmions the system undergoes a phase transition of the first

order as the susceptibility is discontinuous at this point. In the color plot this exhibits in
a discontinuity. These two transition points are indicated by the blue and green line in
Fig. 6.5(a). Due to the poor signal-to-noise ratio the helical mode is not clearly observable
and therefore the Hc1-phase boundary cannot be determined.
This procedure is repeated for all the measured temperatures Treal. The final phase

diagram is shown in Fig. 6.5(b). The phase diagram is also used as an indicant to confirm
the validity of our performed temperature correction.

6.4 2-Tone Measurement

We have already discussed the method of the 2-tone experiment in section 6.3. It is
important to note that the large applied microwave power Pdrive leads to heating at the
sample. Therefore we first want to present our procedure to correct the heating at the
sample in order to extract the real sample temperature Treal. After that, we discuss the
dynamic response of the system by considering the excitation spectra at fixed magnetic field
µ0H0 = 22 mT as a function of the microwave frequency fdrive at fixed Pdrive = 5 W and the
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applied power Pdrive at fixed fdrive = 0.8 GHz. The magnetic field µ0H0 and the considered
fdrive and Pdrive are chosen in accordance with the neutron scattering experiment. Finally,
we want to briefly discuss the non-linear magnetization dynamics in the conical phase, if
the driving frequency fdrive matches the resonance frequency of the conical mode.

6.4.1 Temperature Correction and Recovery of Phase Diagram
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Figure 6.6: Procedure in order to correct the temperature in a 2-tone experiment due to the heating
effect at the sample due to the large applied microwave power exemplary done for
fdrive = 0.8 GHz and Pdrive = 5 W. For more details refer to text.

In contrast to the neutron scattering experiment, where the temperature correction is
carried out by analyzing the conical scattering intensity, we perform our temperature cor-
rection by analyzing the temperature-dependent resonance frequency of the field-polarized
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mode. This temperature correction method shall be exemplarily shown for fdrive = 0.8 GHz
and Pdrive = 5 W.
First, for each uncorrected spectrum, such as that shown in Fig. 6.4(e), we focus on

the data recorded with H0 � Hc2, i.e., deep in the field-polarized phase. To this end, we
analyze the spectra recorded for the 20 largest values of H0. For each of these H0, the
real and imaginary part of the complex transmission parameter S21 is recorded in the
field-polarized phase and fitted simultaneously by using Eq. (3.16) as exemplarily shown in
Fig. 6.6(a). From the fits the resonance frequency fres is extracted and plotted as a function
of the magnetic field µ0H0 as depicted in Fig. 6.6(b). The resonance condition for the field
polarized mode, which is given by Eq. (6.2), is used to fit the data. The demagnetization
factors are given by Nx = 0.2 and Ny = Nz = 0.4, which were calculated by modelling the
sample as a general ellipsoid with semiaxes according to the dimensions of the cuboid (c.f.
Fig. 6.3(a)) with the equations given in [71]. By fixing the Landè-factor to g = 2.0, we
extract the magnetization µ0M .
The extracted magnetization µ0M is plotted as a function of the set temperature Tset

of the cryostat. As shown in Fig. 6.6(c) the data set with “MW on“ (fdrive = 0.8 GHz,
Pdrive = 5 W) is shifted to lower temperatures compared to Pdrive = 0, which in the
following is referred to as “MW off”. This is a clear evidence for heating at the sample.
We assume, the heating effect is negligible for Pdrive = 0 W (Pprobe ≤ 0.1 mW). Hence, for
Pdrive = 0, we use Tset = Treal. A rough estimate of the resonant heating effects is given in
appendix A.

In order to compensate for the heating, the blue curve in Fig. 6.6(c) is rigidly shifted in
temperature so the two data sets coincide as shown in Fig. 6.6(d). The real temperature
Treal is then calculated by Treal = Tset + ∆T . In the given example, the heating effect at the
sample can be quantified to ∆T = 1.3 K. Note that at the critical temperature Tc = 59 K
the magnetization vanishes (M = 0) as here the thermal energy exceeds the exchange
energy and the system becomes paramagnetic.
In order to confirm the validity of our temperature correction the extracted phase

diagram is taken into consideration. In Fig. 6.6(e), the phase diagrams with and without
applied microwave power are shown as a function of the set temperature Tset. Again, a
shift in temperature is observed between the two phase diagrams. Shifting the blue phase
diagram with the extracted temperature shift ∆T , results in Fig. 6.6(f).

Here, the size of the skyrmion pocket does not change substantially by applying a large
microwave power for the given exemplary microwave frequency fdrive = 0.8 GHz. We also
do not observe clear changes of the SkX phase in the phase diagram for all other tested
microwave frequencies fdrive and powers Pdrive. This means, that the phase transition into
and out of the skyrmion phase itself is not affected by strong microwave driving fields.
Having established that the phase diagram can be recovered independent of applied

fdrive and Pdrive, we are now interested in the dynamic response of the system while
simultaneously applying strong microwave driving fields, which is discussed in the next
section.
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6.4.2 Excitation Spectra
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Figure 6.7: Excitation spectra shown for the (a) conical, (b) skyrmion and (c) field-polarized

phase for Pdrive = 5 W as a function of the drive frequency fdrive. The blue lines are
smoothed curves of the raw data (gray) and are added as a guide to the eye. The
excitation spectrum for no microwave power (Pdrive = 0) is shown as a reference in
dashed red. The resonance positions of the magnetic modes for Pdrive = 0 are indicated
with arrows. The y-axis scale is indicated by the black bar and applies to each column.

We have seen, that the phase diagrams extracted in the previous section are unchanged
in the presence of a strong microwave excitation. On first sight, this seems to be in contrast
to the neutron scattering data discussed in section 6.2.1, where the loss of the skyrmion
signal is observable for the very same combination of Pdrive and fdrive that does not lead
to a modification of the phase diagram (compare Fig. 6.6(f)). In this section we now focus
on the dynamic response of the system.
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To this end, we consider frequency traces recorded at fixed magnetic field µ0H0. First,
we discuss the excitation spectra at fixed Pdrive = 5 W. For all spectra, we employ the tem-
perature correction scheme discussed in the previous section. Starting in the conical phase
at Treal = 55.00 K and µ0H0 = 22 mT as shown in Fig. 6.7(a) we observe two resonances
attributed to the Q+ and the Q- mode of the conical spiral, which are non-degenerate for
the given parameters. By comparing the spectra with the reference measurement, where
no microwave power is applied (Pdrive = 0, MW off) and which is shown as a dashed
red curve in each panel, the curves coincide for the microwave frequencies in the range
0.6 GHz ≤ fdrive ≤ 1.2 GHz. At fdrive = 1.8 GHz the conical resonances are shifted to higher
frequencies and the amplitude is enhanced, while at fdrive = 3.0 GHz, the resonances are
shifted to lower frequencies and their amplitude is reduced. This behaviour is compatible
with an avoided crossing of the conical resonance frequencies with fdrive. Note that the
observed behaviour is in particular, not compatible with a resonant heating effect, as this
would always lead to a decrease of the resonance frequency. This behaviour is subject to
further investigation and will be briefly discussed in section 6.4.3.
Next we consider the excitation spectra deep in the skyrmion phase (Treal = 57.75 K,

µ0H0 = 22 mT), which are depicted in Fig. 6.7(b). With fdrive = 0.6 GHz and Pdrive = 5 W
the excitation spectrum coincides closely with the reference measurement obtained for
Pdrive = 0. At fdrive = 0.7 GHz the amplitude of the SkX modes become smaller and in
the range 0.8 GHz ≤ fdrive ≤ 1.0 GHz no signature of the skyrmion modes is observed.
The amplitudes of the SkX resonances get larger at fdrive = 1.2 GHz until they completely
recover to their initial value for 1.8 GHz ≤ fdrive ≤ 3.0 GHz. For 0.8 GHz ≤ fdrive ≤ 1.0 GHz
approximately equals the resonance frequency of the counterclockwise mode (ccw), which
leads to the conclusion that by strongly driving the ccw mode, the dynamic response of
the skyrmions can be suppressed. This is in accordance with the theoretical description of
Mochizuki, including the required red-shift of the driving frequency with respect to the
ccw mode to drive the system efficiently.

Note that the data in Fig. 6.7(b) are not compatible with a resonant heating effect. The
spectral weight of the breathing mode is larger than of the ccw mode. However, driving the
system at the breathing mode resonance (f ∼= 1.8 GHz) does not suppress the resonances,
while driving the system at the ccw resonance (f ∼= 1.2 GHz) does. The loss of the dynamic
response of the system implies, that we are driving the system outside of the linear response
regime. In the nonlinear regime, the superposition principle does not apply anymore and
therefore the excitations by the driving and probing microwave do not superimpose. If the
superposition principle was still valid, we would expect to see the signature of the skyrmion
modes independent of Pdrive and fdrive.
In the field polarized phase (Treal = 59.00 K, µ0H0 = 70 mT) shown in Fig. 6.7(c) the

excitation spectra remain mostly unchanged when changing the microwave frequency fdrive.
Only at fdrive = 1.8 GHz, which coincides with the ferrimagnetic resonance, the line becomes
broader in accordance with power-broadening of the curve.

We have seen that by setting the driving frequency fdrive close to the resonance frequency
of the counterclockwise mode, we can suppress the dynamic response of the system. We
now investigate data obtained by changing the applied power Pdrive for a fixed microwave
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Figure 6.8: Excitation spectra shown for the (a) conical, (b) skyrmion and (c) field-polarized
phase for fdrive = 0.8 GHz as a function of the microwave power Pdrive. The blue lines
are smoothed curves of the raw data (gray) and are added as a guide to the eye. he
excitation spectrum for no microwave power (Pdrive = 0) is shown as a reference in
dashed red. The resonance positions of the magnetic modes for Pdrive = 0 are indicated
with arrows. The y-axis scale is indicated by the black bar and applies to each column.

frequency of fdrive = 0.8 GHz. The results obtained by the 2-tone experiment are shown in
Fig. 6.8.
Starting again with the conical mode shown in Fig. 6.8(a) no change of the Q+ and

Q- mode is observed by changing the power Pdrive. In the skyrmion mode depicted in
Fig. 6.8(b) the curve remains unchanged for low power Pdrive = 0.5 W. At Pdrive = 1 W
the amplitude of the SkX resonances is enhanced but at Pdrive = 2 W the magnitude
decreases until it effectively vanishes at Pdrive = 5 W. The decrease of the amplitude is
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quite continuous and no real threshold can be determined. In the field polarized mode
(Fig. 6.8(c)), the resonance does not show any response to changing the power in the range
of 0.5 W ≤ Pdrive ≤ 5 W.
In conclusion, we observe the suppression of the dynamic response of the skyrmion

resonance by applying a large microwave power Pdrive at a microwave frequency fdrive close
to the resonance frequency of the counterclockwise mode. A threshold power could however
not be extracted with the data at hand. The other magnetic modes (conical, field polarized)
remain mostly unaffected by the large microwave power.

6.4.3 Nonlinear Magnetization Dynamics in the Conical Phase
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Figure 6.9: Exemplary color plots in derivative divide depiction for Treal = 55.00 K and Pdrive = 5 W
for different driving frequencies fdrive to illustrate the nonlinear magnetization dynamics
in the conical phase. The situation for Pdrive = 0 is shown in (a) as a reference.

As already briefly mentioned, if the driving frequency fdrive matches the resonance
frequency of the conical mode a new phenomenon is observed. In order to illustrate
it, we consider the four color plots shown in Fig. 6.9. If the driving frequency fdrive is
below the resonance frequency of the conical mode (e.g. fdrive = 0.8 GHz in Fig. 6.9(b)),
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qualitatively no difference is observed compared to the no microwave power case Pdrive = 0
(c.f. Fig. 6.9(a)).

For fdrive = 1.8 GHz the situation changes as here the conical mode is degenerate with
the driving frequency (Fig. 6.9(c)). Two features are observed: First a large “resonance” in
the conical mode is observed, which leads to a “jump” of the conical resonance frequency
vs. field dispersion. As the chosen depiction is derivative divide, the discontinuity is shown
as peak (derivative of step function). This might indicate a phase transition of the first
order due to the discontinuity of the susceptibility1. The second peculiarity is, that the
Hc2-transition seems to be shifted to lower magnetic fields. Nevertheless, it is interesting to
note that the field polarized mode itself is not influenced by the external driving frequency.
At fdrive = 3.0 GHz (Fig. 6.9(d)), far away from the conical resonance frequency, the
situation is again unchanged compared to no microwave power. Currently, this phenomenon
is not yet understood and is subject to further investigation.

6.5 Broadband Ferromagnetic Resonance (1-Tone
Measurement)

In the previous section, the suppression of the skyrmion resonance was observed by applying
a large power P at a certain microwave frequency fdrive using a 2-tone setup. Now we
switch to a broadband ferromagnetic resonance setup (bFMR) as shown in Fig. 6.3(c). The
idea is now to perform a control experiment, where the driving and the probing microwave
are the same and where we would expect to see no change in the excitation spectra as the
applied power always has to be absorbed by the sample when driving spin dynamics.

In the next section, first the performed temperature correction for the bFMR experiment
is presented. Afterwards the gained experimental results regarding the dynamical response
(excitation spectra) and the phase diagram are discussed.

6.5.1 Temperature Correction

In section 6.4.1 we have already presented the temperature correction for the 2-tone setup.
For the bFMR measurement this procedure remains basically the same besides one aspect:
The system is now driven with a broad range of frequencies fdrive = f instead of one
frequency fdrive. Therefore the effect of heating is now dependent on the spectral weight of
the present magnetic modes, which decreases the closer the temperature is to the critical
temperature. A rough estimate of the resonant heating effects is given in appendix A.
Repeating the procedure described in section 6.4.1, we first consider the uncorrected

spectrum deep in the field polarized mode (H0 � Hc2) and analyze the spectra recorded
for the 20 largest values of H0. For each H0 the real and imaginary part of S21 is recorded
in the field-polarized mode and fitted simultaneously. The extracted resonance frequency
fres is plotted as a function of the magnetic field H0. From the resonance condition of
the field-polarized mode (c.f. Eq. (6.2)) the magnetization M is extracted. The fitted
magnetizations M is shown in Fig. 6.10(a) as a function of Tset. As a reference the 2-tone

1From private communications with Achim Rosch (University of Cologne).
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Figure 6.10: Procedure in order to correct the temperature in a bFMR experiment due to the
heating effect at the sample in the presence of a large applied microwave power
exemplary done for P = 5 W. For more details refer to text.

measurement with Pdrive = 0 is used (c.f. Fig. 6.6). In order to compensate for the heating,
the blue curve is shifted rigidly to the reference curve (red) as shown in Fig. 6.10(b) and
the temperature shift ∆T is extracted.

By extracting the phase diagram as described in section 6.3.2 and by comparing it with the
reference measurement (both plotted vs. Tset in Fig. 6.10(c)), a large deviation is observed.
Note that a rigid shift of the P = 5 W dataset (as done in Fig. 6.6) cannot be used here to
match the phase diagrams. This is particularly obvious from the seemingly much broader
SkX phase with P = 5 W. We attribute this to the already mentioned dynamic heating
depending on the spectral weight of the present magnetic modes at each temperature.
In particular, because the magnetization M increases when decreasing the temperature
T (see Fig. 6.10(b)), the spectral weight becomes larger for lowering T . Therefore, we
separate the heating effect in a static and a temperature-dependent contribution. The
static contribution is already determined by ∆T . The temperature-dependent contribution
is defined from the phase diagram. We use the equation Treal = Tset + ∆T +k · (58 K−Tset),
where k is a scaling factor and is determined from the phase diagram. This equation has
been derived phenomenologically. By using k = 0.44 the agreement with the reference is
adequate (c.f. Fig. 6.10(d)).
After acquiring the correct temperature Treal, we are now interested in the excitation
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spectra in the skyrmion phase and the phase diagram for various microwave powers P .
These are discussed in the following section.

6.5.2 Excitation Spectra

- 1 . 5
0 . 0
1 . 5
3 . 0

- 1 . 5
0 . 0
1 . 5
3 . 0

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
- 1 . 5
0 . 0
1 . 5
3 . 0

P = 1 m W

S k X  
b F M R ,  T r e a l = 5 7 . 7 5 K ,  � 0 H 0 = 2 2 m T

 

P = 2 W

 

Re
(d D

S 2
1) (

1/T
)

 

f  ( G H z )

b F M R

2 - t o n e ,  M W  o f f  ( P d r i v e = 0 W )

2 - t o n e ,  f d r i v e = 0 . 8 G H z ,  P d r i v e = 5 W

P = 5 W

Figure 6.11: Excitation spectra in the skyrmion phase for varying microwave powers P . The low
power bFMR (P = 0.1 mW) (dashed red) and the 2-tone excitation spectrum (green),
where “melting” is observed (fdrive = 0.8 GHz, P = 5 W), are shown as a reference.

After the temperature has been corrected in the previous section, we first want to
compare the excitation spectra in the skyrmion phase for various microwave powers P .
In the excitation spectra in Fig. 6.11 the same reference as in the 2-tone measurement
(Pdrive = 0) and the measurement, where the skyrmion signal is strongly suppressed
(fdrive = 0.8 GHz, Pdrive = 5 W), are added in order to compare the magnitudes.

At P = 1 mW the curves coincide and the skyrmion modes are not affected. This indicates,
that the directional coupler in the 2-tone experiment does not affect the measurement
result. With a power level of P = 2 W the amplitude of the skyrmion resonances become
larger, which is also observed in the 2-tone experiment (c.f. Fig. 6.8(b)). Qualitatively the
form of the skyrmion resonance is unchanged and both modes can be observed. By further
increasing the power to P = 5 W the amplitude and noise figure are again comparable
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to the lower power case as especially the second amplifier is operated in saturation. The
excitation spectrum remains again unchanged.
This is something expected, as in a ferromagnetic resonance measurement the energy

provided by the vector network analyzer has to be absorbed in the case of resonance.
Therefore some resonant absorption of microwave power has to be observable independent
of the input power P . This is in contrast to the 2-tone spectroscopy, where almost no
microwave absorption at fprobe takes place in Fig. 6.11.

In conclusion, there is no significant change in the excitation spectra compared with the
low power data. Therefore, this control experiment confirms the validity of the gained data
in the 2-tone experiment, as we observe all skyrmion modes even with large driving powers
with the bFMR setup.

6.6 Summary

In this chapter, we investigated the magnetization dynamics of a Cu2OSeO3 crystal, where
we were especially interested in the dynamics in the skyrmion phase at large microwave
power. We therefore used two different experimental setups: 2-tone and broadband FMR
setup.
First, in the 2-tone experiment a microwave source was connected to an amplifier,

which is capable of providing microwave powers up to 5 W. Additionally, a vector network
analyzer was used to measure the complex transmission parameter S21 in the frequency
range of 0.1 GHz to 3.25 GHz. The small microwave signal coming from the VNA was
then superimposed via a directional coupler to the strong signal of the frequency source.
The magnetization dynamics of the Cu2OSeO3 crystal, which was placed on a coplanar
waveguide, was therefore driven by a high power microwave at a fixed frequency fdrive
coming from the frequency source and probed with small, varying microwave frequency
from the VNA.

Because of sample heating due to the large power, we performed a temperature correction.
The resulting phase diagrams did not depend on the microwave power Pdrive or driving
frequency fdrive. Additionally, the advantages of the derivative divide method compared to
the divide slice depiction were shown, as derivative divide allows to determine the sign of
the resonance frequency vs. magnetic field dispersion in a single field cut.

In the 2-tone excitation spectra we demonstrated suppression of the skyrmion resonance
signature by using 0.7 GHz ≤ fdrive ≤ 1.0 GHz and Pdrive = 5 W. By choosing a frequency
of fdrive = 0.6 GHz the excitation spectrum coincides with the reference measurement at
low power and both skyrmion modes were observed (counterclockwise and breathing mode).
At larger frequencies (1.2 GHz ≤ fdrive ≤ 3.0 GHz) the skyrmion resonances return to their
original magnitude. This indicates that strong driving of the counterclockwise mode with
resonance frequency fres ' 1.2 GHz is responsible for the suppression of the SkX signal. We
however were not able to determine wether this effect possesses a clear threshold behaviour.
This will remain subject of further studies.

In a second experiment, we performed a VNA-FMR measurement with an amplifier. The
driving and probing microwave were provided by the VNA and hence at the same frequency.
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Here we did not observe any changes in the excitation spectra. This was expected in a
FMR measurement since the provided energy has to be absorbed when driving a magnetic
resonance.
In conclusion, we have seen that we can suppress the dynamic response of the system

in a 2-tone measurement. We attribute that to the observation of nonlinear skyrmion
dynamics, where the superposition principle is not applicable anymore. In the neutron
scattering experiment performed by F. Haslbeck, the signal of the sixfold skyrmion lattice
was suppressed under identical conditions, which means that the long-range ordering of the
lattice is not present anymore. Therefore the prediction of the “melting” of the skyrmion
lattice by Mochizuki [15] could be observed in neutron scattering and in a 2-tone FMR
experiment. Further experiments and corresponding theoretical efforts, are required to
determine the microscopic processes involved in the “melting” process. We however note
that our data represent the first step towards studying nonlinear spin dynamics in skyrmion
systems.



Chapter 7

Summary and outlook

In this thesis, the magnetization dynamics in different magnetic material systems at room-
and cryogenic temperatures have been investigated. For this purpose, a ferromagnetic
resonance technique using a coplanar waveguide and a vector network analyzer (VNA)
has been used. In particular, the spin-orbit torques in a normal metal/ferromagnet bilayer
system, where the ferromagnet remained always the same (CoFeB) but the normal metals
were varied between compositions of TaAu, W and AuPt, have been quantified. The
magnetization dynamics in the compensating ferrimagnet gadolinium iron garnet have
been investigated, with the focus on the ferrimagnetic and antiferromagnetic resonance
and their coupling. Finally, skyrmion dynamics in the insulating chiral magnet Cu2OSeO3
have been probed with large microwave power, where a “melting” of the skyrmion lattice
could be observed. In the following, we summarize the main results of this thesis.

Summary

Spin-Orbit Torques in Ferromagnet/Normal Metal Bilayers In chapter 4, we presented
an inductive measurement technique that allows us to quantify the spin-orbit torques
in normal metal/ferromagnet bilayers. We used a vector network analyzer ferromagnetic
resonance setup at room-temperature and placed the bilayers flip-chip style onto a coplanar
wavguide. The waveguide was used as an excitation as well as a detection transducer, which
picks up every source of AC magnetic flux. As shown by Berger et al. [41], we have to
distinguish between four different flux sources: dipolar contribution due to the precessing
magnetization in the ferromagnet, magnetic flux due to currents induced in the normal
metal by Faraday’s law and magnetic flux due to currents driven by the inverse field- and
damping-like spin-orbit torques, which are 90◦ phase shifted to each other. Due to the
phase-sensitive measurement using a VNA in the frequency range from 5 GHz to 40 GHz,
it was possible to distinguish these contributions by quantitative evaluation of the FMR
signal alone. In particular, our technique does not require any patterning of the samples.
The TaAu/CoFeB samples showed the smallest magnitude of the spin-orbit torque

conductivities. From the odd contribution of the total spin-orbit conductivities, we were
able to calculate the spin Hall angle θSH as a function of the TaAu composition. As part of
the collaboration with the group of Markus Meinert (University of Bielefeld), who performed
harmonic Hall measurements, and the group of Tobias Kampfrath (Fritz-Haber-Intitut,
Berlin), who conducted THz emission measurements, it was possible to compare the gained
spin Hall angles from these different techniques. We found good quantitative agreement
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of the spin Hall angles obtained from the different measurement methods and also with
theory, provided by Sebastian Wimmer from the group of Hubert Ebert (LMU).
In the AuPt/CoFeB sample series, we observed a maximum in the spin Hall angle

θSH ≈ 0.20 at a gold content of about 33%. This spin Hall angle is about two times
larger than that of pure platinum, which is known to have one of the largest spin Hall
angles. Our data are in excellent agreement with THz emission experiments and theory [63].
Additionally, we were able to observe a correlation between the Gilbert damping parameter
αG and the odd spin-orbit torque conductivity σSOT

o . Starting at pure platinum the Gilbert
damping αG decreased with increasing gold content but σSOT

o remained more or less
unchanged. This indicates, that spin current due to spin pumping decreased with increasing
gold content while at the same time the spin Hall effect increased.

In the last sample series, which is W/CoFeB, the level of wolfram-oxidation was varied.
We found that the spin-orbit torque conductivities strongly decrease for increasing levels
of oxidation. Furthermore, we again observed a correlation between the Gilbert damping
parameter αG and the odd spin-orbit torque conductivity σSOT

o . Additionally, at largest the
oxygen content of W(O)x we observed a sign change in σSOT

o . This has not been predicted
by theory and is not yet understood. Furthermore, we observed a correlation between the
Landè-factor g and the even spin-orbit torque conductivity σSOT

e , which is related to the
Faraday effect and the Rashba-Edelstein effect. This correlation indicates that the even
SOT might be mediated by a spin current due to spin pumping and the imaginary part of
the spin mixing conductance Im(G↑↓). This has been predicted by theory [13] but has not
yet been observed in experiment.

(Strongly) Coupled Magnetization Dynamics in the Compensated Ferrimagnet Gadolin-
ium Iron Garnet In chapter 5, we investigated the compensating ferrimagnet gadolinium
iron garnet (GdIG), which has the same crystal structure as the well known and widely
used yttrium iron garnet (YIG). However, only GdIG exhibits a compensation point
(Tcomp = 288 K), where the magnetization of the (three) sublattices cancel each other out.
The reason for this behaviour is, that GdIG features a third very temperature-dependent
Gd-sublattice in contrast to YIG, where the Y-sublattice has no magnetization according
to Nèel-theory [64]. The tuneability of the magnetization of GdIG makes it an ideal testbed
to investigate the magnetization dynamics close and far away from the compensation point.
We used a VNA-FMR setup at cryogenic temperatures in the range from 150 K to

300 K and in the frequency range 0.1 GHz ≤ f ≤ 26.5 GHz to investigate a disk shaped
gadolinium iron garnet single crystal. The static magnetic field was applied along the [12̄1]-
direction of the crystal. First, we extracted the Landè-factor g and the linewidth µ0∆H
of the ferrimagnetic resonance (FMR) as a function of temperature T . The Landè-factor
g diverges to negative infinity at the compensation point Tcomp when coming from lower
temperatures and diverges to positive infinity when coming from higher temperatures. The
reason for this behaviour is, that the angular momentum compensation point occurs at a
higher temperature than the magnetization compensation point. In the linewidth µ0∆H
an enormous broadening at the compensation point is observed, which is due to the rapid
rise of the anisotropy field and probably to the breakdown of the dipolar narrowing [72].
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The increase of the linewidth at lower temperatures is attributed to the magnetostatic
modes, which are standing spin wave patterns due to the shape of the sample. The observed
temperature-dependence of the g-factor and of the linewidth are in accordance with theory.

Close to the compensation point, we were able to observe the antiferromagnetic resonance
(AFMR), which shifts to higher frequencies with lower temperature due to the increasing
molecular exchange constant. In this temperature range, we additionally observed weak
coupling between the AFMR and the FMR when their dispersions intersected. Following
the approach of Herskind et al. [77], we fitted the broadened linewidth as a function of the
frequency splitting with a Lorentzian function in order to extract the coupling strength
and the linewidths of the isolated resonant modes.

By applying the magnetic field along the [1̄01]-direction a characteristic anti-crossing of
the FMR and AFMR was observed. The anti-crossing can be modelled by two harmonic
oscillators which are coupled to each other. The coupling strength is given by the minimal
frequency splitting, which is at least two times larger than the linewidths of both the FMR
and AFMR. This classifies the system to be in the strong coupling regime. The origin of
the coupling is still unclear but it might be mediated by dipolar interaction. Due to the
limited frequency range of the used VNA (f ≤ 26.5 GHz), the AFMR and consequently the
coupling between the AFMR and the FMR could only be studied in a limited temperature
range. Therefore, in a next iteration of this experiment a vector network analyzer which is
capable of higher frequencies should be used.

Dynamic Skyrmion Melting in Cu2OSeO3 In chapter 6, the insulating, chiral magnet
Cu2OSeO3 was taken into consideration. This material is known to host skyrmions, which
are topologically protected spin solitons and form a (skyrmion) lattice with hexagonal
symmetry in a narrow range of temperatures and external magnetic fields. This experiment
was motivated by the theoretical calculations of M. Mochizuki [15], who predicted a
“melting” of the skyrmion lattice by a large microwave power. In small angle neutron
scattering experiments (SANS) performed by F. Haslbeck (TUM), the sample was placed
on a coplanar waveguide and it was indeed observed that the SANS-intensity of the
skyrmions vanishes for a microwave frequency of fdrive = 0.8 GHz and a microwave power
of Pdrive = 5 W. In these experiments and in all our experiments discussed below, heating
effects are corrected and not responsible for the melting of the skyrmion lattice.

In our approach, we used a so-called 2-tone experiment, where a frequency source with an
amplifier was used to drive the magnetization of the same Cu2OSeO3 crystal. Additionally,
the complex transmission parameter S21 is measured by a vector network analyzer over
a frequency range of 0.1 GHz ≤ fprobe ≤ 3.25 GHz. To this end, the probing microwave
tone was superimposed with the microwave driving tone using a directional coupler. The
frequency source and the VNA were not phase-locked with each other. By comparing the
excitation spectra in the skyrmion phase at a fixed magnetic field of 22 mT for various
microwave frequencies fdrive, we find that the skyrmion resonance signal at fprobe is strongly
suppressed whenever fdrive matches the counterclockwise skyrmion resonance mode. The
skyrmion resonance at fprobe is not affected if fdrive is detuned from the skyrmion resonance.
We furthermore set the microwave frequency fixed to fdrive = 0.8 GHz and varied



76 Chapter 7 Summary and outlook

the power Pdrive. In accordance with the neutron scattering experiment, we observed a
continuous decrease of the amplitude of the skyrmion resonance. As a control experiment,
we additionally performed a standard VNA-FMR experiment with an amplifier, so that the
driving and probing frequencies were identical. No change of skyrmion resonance intensity
with varying microwave power was found, in accordance with our expectations.

Outlook

The “melting” of the skyrmion lattice is an interesting phenomenon, because the skyrmions
can be “destroyed” by microwave power and not by thermal energy. If this phenomenon
is fully understood, it can be technologically relevant for example in skyrmion racetrack
memories. There already exist theoretical predictions [95, 96] and experimental implemen-
tations [97] of a skyrmion racetrack memory. The skyrmions can be transported through
the racetrack with electrical currents [83] and are stable due to their particle-like behaviour
and their topological protection. The “melting” could then possibly be used to erase the
information stored in the skyrmion. Nevertheless, it is inevitable to get a full understanding
of the “melting” process as it is currently unclear, what the resulting physical state of the
system after the “melting” is and what really mediates the process.

Another not yet understood phenomenon observed during the skyrmion measurements is
an additional resonance in the conical phase. As very briefly discussed in sections 6.4.2 and
6.4.3, an avoided crossing of the conical resonance and the microwave frequency is observed
for large microwave powers. The conical mode becomes discontinuous at the value of the
external magnetic field, where its resonance frequency matches the driving frequency fdrive.
As suggested by theorists from the University of Cologne (Achim Rosch), this might indicate
a phase transition of first order (due to the discontinuity) as the conical mode is hit with a
microwave of large power. This behaviour is by no means fully understood and should be
further investigated.
The inductive measurement technique that we used in chapter 4 to quantify the field-

and damping-like spin-orbit torques, is not limited to only normal metal/ferromagnet
bilayers. This method is versatile and can be used for any material systems with either
interfacial or even bulk spin-orbit torques [98]. Therefore it would be interesting to study
spin-orbit torques in more complicated systems containing the compensating ferrimagnet
gadolinium iron garnet, the chiral magnet Cu2OSeO3 or any other magnetic material. This
would require to fabricate thin films using a sputtering or pulsed laser deposition technique.
For gadolinium iron garnet this is already possible but thin films of Cu2OSeO3 have not
been synthesized so far due to its toxicity. Nevertheless, thin films of Cu2OSeO3 would
be highly interesting, as it is reported that the skyrmion phase is not limited to a small
region close to the critical temperature in thin films (c.f. Fig. 6.5(b)), but the skyrmions
more or less displace the conical phase completely [99]. We could extract spin-orbit torques
at Cu2OSeO3/normal metal interfaces by our inductive technique. It would furthermore
be interesting to check, if the spin-orbit torques have a microwave power dependence in a
2-tone experiment and if the melting is also observable in thin films.

The quantification of the spin-orbit torques is not limited to VNA-FMR measurements.
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It is also possible to quantify spin-orbit torques with an optical setup exploiting the
frequency-resolved magneto-optical Kerr effect (MOKE). The phase-resolved dynamic
MOKE technique probes the magnetization component perpendicular to the applied driving
magnetic field. Consequently, the off-diagonal component of the Polder-susceptibility can
be extracted. It should hence be possible to extend our quantitative spin-orbit torque
analysis technique to allow for the processing of phase-sensitive frequency-resolved MOKE
data. This would allow to study spin-orbit torques in a spatially resolved manner.





Appendix A

Estimation of the Resonant Heating Effect
with Large Microwave Power in Cu2OSeO3

To give a rough estimate of the resonant heating effects, we assume that the sample
absorbs all the microwave power but does not dissipate any energy. The thermal energy Q
corresponding to a temperature difference ∆T is related to the mass m and the specific
heat capacity c by [100]

Q = cm∆T. (A.1)

The mass can be calculated by m = ρ ·V , where ρ = 5.07× 106 g/m3 [101] is the density of
Cu2OSeO3 and V is the volume calculated from the dimensions given in Fig. 6.3(a). The mo-
lar heat capacity is close to the critical temperature approximately CM ' 40 J/(mol K) [102]
and can be converted to the specific heat capacity c = CM/Mmol using the molar mass of
Cu2OSeO3 (Mmol ' 270 g/mol).
Due to the frequency-dependent microwave losses, the applied power of maximally

5 W ∼= 37 dBm from the amplifier is attenuated in the cables, in the coplanar waveguide
and in the directional coupler (c.f. setups in Fig. 6.3). The losses are roughly −2.5 dB
which leads to an effective power of Peff ' 2.8 W at the sample.

To obtain the energy which is absorbed on resonance, we consider the excitation spectra
in the “divide slice” depiction as shown in Fig. 6.4(b)-(d) because it directly gives the
relative absorption of the complex transmission parameter S21. As the field-polarized
mode has the largest spectral weight, we take exemplary the excitation spectrum in the
ferrimagnetic phase shown in Fig. 6.4(d). By considering the depth of the resonance we get
an absorption of approximately 1% of the total transmission. As seen from the definition
of the transmission parameter S21 = V2/V1 (c.f. Eq. (3.1)), we need to convert to power
by P = I · V = V 2/Z0, where Z0 = 50 Ω is the impedance of the microwave system. This
results in the absorbed power at resonance described by

Pabs = Re
(

S21

Sµ0H0=0 mT
21

)2
∣∣∣∣∣∣
fres

= Peff
10000 = 280 µW. (A.2)

In the final step, the absorbed power needs to be rewritten into an energy using Pabs = Qabs·t,
where t is the dwell time on the resonance. This time is approximately t ' 25 ms, which is
estimated from the time of the total frequency trace (∼ 1 s) and the width of the resonance.
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Cu2OSeO3

Plugging everything into Eq. (A.1), we get a temperature difference for Peff = 2.8 W of

∆T = Pabs · t
c ·m

t=25 ms' 9 mK. (A.3)

This result means, that every time we ramp the frequency through the resonance, the
sample gets 9 mK hotter. Importantly, this is an upper limit as we do not consider any
heat transfer from the sample to the environment.
For the 1-tone experiment (bFMR) this result is reassuring. For the 2-tone experiment

the situation is however more difficult: If the driving frequency fdrive matches the resonance
frequency of a magnetic mode, we constantly heat the sample and ∆T would become
infinite in this approximation. To estimate the heating in the 2-tone experiments, we would
need to determine the thermal time constant of the CPW-sample system.
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