








Abstract

Magnons are the quantized excitations of an exchange-coupled spin system in a
magnetically ordered material. Magnons can couple to other quantized excitations
such as photons, phonons, plasmons etc. or other types of magnon modes, forming
so-called hybridized modes. Such modes in magnon hybrid systems are potential
candidates for novel systems for information storage. In such hybrid systems coherent
exchange of information between the constituent modes requires strong coupling,
where the effective coupling rate between the systems exceeds the loss rates of the
two respective systems.
The focus of this thesis is the investigation of novel coupling mechanisms and

approaches by measuring the magnetization dynamics of the magnon hybrid sys-
tem. To this end, electrical detection techniques as well as spatially-resolved optical
spetroscopy methods are used. We apply broadband magnetic resonance using a
coplanar waveguide or cavity-based magnetic resonance spectroscopy, the estab-
lished microfocused Brillouin light scattering or the novel microfocused frequency-
resolved magneto-optic Kerr effect and the microfocused super-Nyquist sampling
magneto-optic Kerr effect technique. In particular, we investigate the spin dynamics
of the compensated ferrimagnet gadolinium iron garnet using broadband magnetic
resonance. We find ultrastrong magnon-magnon coupling where the intralayer ex-
change interaction amplifies the coupling rate. We also study the magnon-photon
coupling between a three-dimensional microwave cavity and the skyrmion host
material Cu2OSeO3 . Here, we demonstrate the tunability of the magnon-photon
cooperativity, which is a measure of the coherent exchange of interaction, at the
magnetic phase boundaries using an external control parameter. Finally, the linear
and non-linear magnon dynamics of a micro-patterned magnonic waveguide with
an on-chip antenna is investigated using optical techniques. Here, we focus on the
spatially-resolved characterization of the magnetization dynamics and use novel
phase-sensitive techniques to detect the three-magnon scattering processes. We
model and explain our findings, leading to a better understanding on how to utilize
the spin degree of freedom of the electron for potential new spintronic applications.
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Kurzfassung

Magnonen sind die quantisierten Anregungen eines austauschgekoppelten Spin-
systems in einem magnetisch geordneten Material. Magnonen können mit anderen
quantisierten Anregungen wie Photonen, Phononen, Plasmonen etc. oder anderen
Magnonenmoden wechselwirken und dadurch so genannte hybridiseirte Moden
bilden. Diese Moden in Magnon-Hybridsystemen ermöglichen viel versprechende
Konzepte für neuartige Informationsspeicher. In solchen Hybridsystemen erfordert
der kohärente Austausch von Infromation zwischen den konstituierenden Moden eine
starke Kopplung. Hierbei bedeutet starke Kopplung, dass die effektive Kopplungsrate
zwischen den Systemen größer ist als die Verlustraten der beiden einzelnen Systeme.

Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung neuartiger Kopplungs-
mechanismen und -ansätze durchMessung derMagnetisierungsdynamik desMagnon-
Hybridsystems. Zu diesem Zweck werden elektrische Detektionstechniken, wie Breit-
band Magnetresonanzspektroskopie unter Verwendung eines koplanaren Wellen-
leiters oder hohlraumbasierte Magnetresonanztechniken, sowie ortsaufgelöst op-
tische Spektroskopieverfahren, wie die etablierte mikrofokussierte Brillouin-Licht-
streuung oder die neuartige mikrofokussierte frequenzaufgelöste magnetooptische
Kerr-Effekt Methode und die mikrofokussierte Super-Nyquist-Abtastung magnetoop-
tische Kerr-Effekt Technik, verwendet. Insbesondere untersuchen wir die Spindy-
namik des kompensierten Ferrimagneten Gadolinium Eisengranat unter Verwen-
dung von Breitband Magnetresonanzspektroskopie, wo wir ultrastarke Magnon-
Magnon-Kopplung, die durch die Intralayer-Austauschwechselwirkung verstärkt wird,
beobachten. Die Magnon-Photon-Kopplung zwischen einem dreidimensionalen
Mikrowellenresonator und dem Skyrmionen-Material Cu2OSeO3 wird untersucht.
Es wird gezeigt, dass die Magnon-Photon-Kooperativität, die ein Maß für den
kohärenten Austausch von Wechselwirkungen ist, durch einen externen Steuer-
parameter an den magnetischen Phasengrenzen stark verändert und beeinflusst
werden kann. Abschließend wird die lineare und nichtlineare Magnonendynamik
eines mikrostrukturierten magnonischen Wellenleiters mit einer On-Chip Antenne
mithilfe optischer Messtechniken untersucht. Der Schwerpunkt liegt hier auf der orts-
aufgelösten Charakterisierung der Magnetisierungsdynamik und der Verwendung
neuer phasensensitiver Techniken zur Detektierung der Drei-Magnonen-Streuung.
Wir modellieren und erklären unsere Ergebnisse, die zu einem besseren Verständnis
der Fragestellung beitragen können, wie der Spinfreiheitsgrad des Elektrons für
potenzielle, neue spintronische Anwendungen genutzt werden kann.
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Introduction 1
For over half a century, the semiconductor silicon has proven to be a reliable and
universal material in the modern technological industry. It is the key ingredient of
the highly successful hardware platform for our today’s information and communica-
toin technology. The applications range from sensors to integrated circuits such as
microprocessors or memory devices. These are routinely integrated in large num-
bers in todays smartphones, personal computers and servers enabling novel digital
applications such as cloud-based computing. The demand for more computational
power has been satisfied by increasing the clock speed, and by downscaling the
transistor size, allowing to feature more transistors. With decreasing feature size,
the current density increases, limiting the increase of the maximum clock frequency
due to Joule heating [1]. With the advancement in lithography tools such as extreme
ultraviolet (EUV) lithography [2], the semiconductor industry was able to follow the
prediction of Gordon Moore [3] that the number of transistors on an integrated cir-
cuit or chip doubles about every two years (Moore’s law), until today. Nowadays,
semiconductor manufacturer are working on sub-10 nm process nodes to satisfy the
everlasting demand for more computational power.

Downscaling the feature size on the integrated circuits does not only involve more
challenging fabrication procedures and a drastic increase of research investments
but also means that physical limits especially quantum effects become more relevant
as the features scale down to a few tens of atoms. To overcome these problems
either novel semiconductor materials are required or new physical approaches are
necessary. One idea is to not only utilize the electric charge of the electron but also
its spin degree of freedom. In 1988, the so-called giant magnetoresistance (GMR)
was discovered [4, 5], where the relative orientation of the magnetization of two
ferromagnetic layers separated by a normal metal controls the electrical conductivity.
The parallel spin alignment leads to a smaller electrical resistance than the anti-
parallel spin alignment [6]. The discovery of the GMR was awarded with the Nobel
Price in physics in 2007. The change in resistivity depending on the relative spin
orientation becomes larger when replacing the normal metal with an insulator, leadint
to the so-called tunneling magnetoresistance (TMR) [7]. Since the mid 1990s, read
heads in hard disk drives were based on the GMR and were later replaced by TMR-
based read heads, which are still in use [8]. The associated huge increase of storage
density in hard disks is a key prerequisite for our today’s information search via
internet.
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In general, the field of spintronics studies the control and manipulation of the
spin degree of freedom of electrons in a solid-state system. The most notable
technological product is the magnetoresistive random access memory (MRAM).
The MRAM consists of two magnetic layers separated by a tunnel barrier, where
the magnetization direction of one magnetic layer is fixed and the other magnetic
layer can be switched. The state of high and low resistance corresponds to “0”
and “1” [9]. The desire for more computational power is accompanied by a huge
increase of generated data and interim results need to be stored and accessed
quickly. The MRAM has comparable or even faster read/write cycles than static or
dynamic random access memory (SRAM or DRAM) and is referred as the “universal
memory” [10, 11]. The advantage of the MRAM is its non-volatility (in contrast to
SRAM and DRAM) at fast read/write speeds. Currently novel MRAM technologies are
in development which are the spin-transfer torque RAM (STT-RAM) or the spin-orbit
torque RAM (SOT-RAM) [12–14]. Another novel spintronic-basedmemory application
are three-dimensional device approaches such as racetrack memories [15–18],
where mechanical parts are absent in the storage device.

These are only some examples of spintronic-based approaches to enhance the
functionality of existing devices. In addition to these potential applications in informa-
tion storage, novel applications are also envisaged in information processing and
information transport based on excitations of the magnetically ordered ground state,
so-called spin waves or magnons. The advantage of spin wave-based processing is
the possibility of vector-based calculations, the intrinsic operation frequencies in the
range from GHz to THz and the minimal structure size limited by the lattice constant
of the material [19, 20]. To this end, it is necessary to identify and characterize po-
tential material systems. The materials can either be characterized by their static or
dynamic properties. The latter one is especially important with regard to processing
applications.

Fundamentally, the MRAM and the racetrack memory are based on the dynamics
of the magnetization. Therefore, the understanding and control of the magnetization
dynamics is key for the realization of these devices and to develop novel approaches.
One attempt are hybrid devices where the dynamics of the magnetization is coupled
to an external degree of freedom. This is realized by coupling the magnetic system
to other physical systems such as a photonic, a phononic or another magnonic sys-
tem [21–23]. The coupling of the quantized excitations of the subsystems (magnons,
photons, phonons) leads to so-called hybridized modes – the quantized excitations
of the coupled system. Within this thesis we investigate a novel coupling mechanism
between magnons and magnons in a compensated ferrimagnet, where the coupling
strength is enhanced by the exchange interaction and we demonstrate magnon-
photon coupling between the skyrmion host material Cu2OSeO3 and a microwave
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cavity. This might open the exciting perspective for topological systems and qubit
systems [24].
In order to measure magneto-dynamical phenomena, measurement techniques

with high sensitivity are necessary. Within this thesis, we study the magnetization
dynamics in the GHz regime. The used measurement techniques are based on
fully electric measurement techniques, such as broadband magnetic resonance
spectroscopy using a coplanar waveguide or a three-dimensional microwave cavity.
These techniques probe the uniform dynamics of the magnetization within a certain
penetration depth. For the characterization of micro-patterned samples, generally
optical measurement techniques are more suited to probe the dynamical properties
locally. To this end, we developed a novel optical spectroscopy method called
micro-focused frequency-resolved Kerr effect (µFR-MOKE), where the magnetization
dynamics can be captured in a spatially- and phase-resolved manner.

This thesis is organized as follows: In Chapter 2, we start with a phenomenological
description of the magnetization dynamics in a simple macrospin model. We herein
introduce the concept of the effective magnetic field and derive the characteristic
equation of motion of the magnetization namely the Landau-Lifshitz-Gilbert equation.
Furthermore, we solve the equation of motion for the uniform precessional mode
of the magnetic moments, which is the so-called ferromagnetic resonance. As a
result, we calculate the resonance frequency of the uniform mode as a function of the
external magnetic field and thus derive the Kittel equations. The concepts introduced
herein will be further extended in the following Chapters.
In Chapter 3, we measure ultrastrong magnon-magnon coupling enhanced by

the intralayer exchange interaction in the compensated ferrimagnet gadolinium iron
garnet (GdIG). The Chapter starts with an introduction to the general properties
of GdIG and we discuss the magnetization dynamics in a two-sublattice system.
Close to the compensation temperature of GdIG, the system mimics the dynamics of
an antiferromagnet. Experimentally the magnon-magnon coupling is investigated
using broadband magnetic resonance spectroscopy with a coplanar waveguide.
We demonstrate the tunability of the coupling strength due to the axial symmetry
breaking induced by the small cubic anisotropy in the system depending on the
direction of the external magnetic field. We model our findings with the concept of
magnon hybridization and exchange-enhancement, which is confirmed by analytical
and numerical calculations. Our results present a novel coupling mechanism, where
the exchange interaction amplifies the originally small coupling rate of the cubic
anisotropy by more than one order of magnitude.
In Chapter 4, we demonstrate the tunability of the magnon-photon cooperativity

of the skyrmion host material Cu2OSeO3 in a three-dimensional microwave cavity
using an external control parameter. Starting with an introduction to the material
system Cu2OSeO3, we will discuss the unique properties of the rich uniform magnon
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spectrum and explain the hybridized magnon-photon spectrum in the framework
of the input-output formalism. The magnon-photon coupling is investigated using
magnetic resonance spectroscopy using a microwave cavity (loop-gap resonator).
From the measured data we extract the effective coupling rate and the loss rate of the
magnons and photons, respectively. We show that the unique excitation geometry of
the magnon modes in Cu2OSeO3 can be used to drastically change the magnon-
photon cooperativity at the magnetic phase boundaries by changing the external
magnetic field by a few mT.
In Chapter 5, we investigate the magnetization dynamics in a micro-patterned

magnonic waveguide in the linear and non-linear regime using spatially-resolved
optical spectroscopy techniques. The focus of this Chapter is on propagating magnon
modes (spin waves) and on optical measurement techniques based on the magneto-
optic Kerr effect (MOKE). In this Chapter, we start with an introduction to the dynamics
of dipolar-exchange spin waves and derive a simplified form of the Kalinikos-Slavin
equation describing the wavevector-dependence of the spin wave resonance fre-
quency. Next, we discuss the details of the MOKE and how to excite and detect spin
waves using different optical techniques, which rely on different detection principles.
We show that in the linear regime of the magnetization dynamics the different mea-
surement methods lead to the same results and that the phase-sensitive techniques
are additionally able to capture the wavevector of the excited spin waves. In the
non-linear regime we demonstrate the capability of the novel techniques to capture
the non-linearly generated spin waves due to three-magnon scattering, which was
previously only possible with Brillouin light scattering.

Finally, in Chapter 6 we summarize our results and give a brief outlook.
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Phenomenological
Description of Magnetization
Dynamics

2

The term spin dynamics refers to the time-dependent and dynamical properties of
a single spin, an ensemble of spins or the coherent spin manipulation [25]. The
spin is a relativistic quantum mechanical property of particles and contributes to the
total magnetic moment [26]. In an atom, the electron exhibits the largest magnetic
moment due to its smaller mass compared to the proton by roughly a factor of
1840 and is responsible for magnetism in condensed matter systems [27]. In an
applied magnetic field, Zeeman energy tend to align these magnetic moments parallel
to magnetic field. However, there are also other effects forcing the moments to
point in a particular direction such as magnetocrystalline or shape anisotropy. In
magnetism, the related energies are expressed in terms of effective magnetic fields
(cf. Section 2.1). Together with the applied magnetic field, they are adding up to a
total effective field. In a simple picture, the magnetic moments being not parallel to the
effective magnetic field experience a torque, in analogy to a compass needle. Due
to the huge number of magnetic moments in a solid of macroscopic dimensions, the
magnetization is introduced which is the sum over all individual magnetic moments
of the spins normalized to the volume of the solid [28].

The equilibrium position of the system is reached when the magnetic moments
are aligned along with the effective magnetic field. This state is reached after a
finite amount of time in a dynamical process of the magnetization. These dynamic
processes have invoked large attention in the research community and is known as the
research field of magnetization dynamics. Depending on the type of excitation, like,
e.g., an externally applied magnetic field, and on the involved interaction energies, the
time scale of the spin dynamics differs. In general, spin dynamics is divided into so-
called ultrafast spin dynamics happening in a time range of 10 fs to 1 ps and fast spin
processes happening on the time scale between 1 ps and 100 ns [25, 29]. At ultrafast
time scales, in particular the de- and re-magnetization processes are investigated
by the laser-induced ultrafast demagnetization technique which was first realized
by Beaurepaire et al. [30]. In this thesis, we will restrict ourselves to processes with
timescales between sub-ns and a few hundred ns. In these timescales, the temporal
dynamics of the precession of the magnetization and its damping characteristics
occur [31].
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In this chapter, we introduce a simple classical model to describe the spin dynamics
in a single-domain ferromagnet and the equation of motion, the so-called Landau-
Lifshitz-Gilbert equation (LLG). Here, we are using a continuums approach in the
macrospin approximation where we are considering a single-lattice system. In
the classical approximation, we assume the magnetic moments coupled by the
Heisenberg exchange-interaction can follow the dynamics of their neighbors in a
uniform way. This assumption will be abrogated in Chapter 5 when we discuss
spin waves with a finite wavelength λ. The uniform precession is therefore the
special case of a spin wave with wavelength λ → ∞. In the second part of this
chapter we derive the resonance condition of the uniform precession mode which
is also known as the ferromagnetic resonance described mathematically by the
Kittel equations. This chapter is foundational for the following chapters where we
extend the presented model in Chapter 3 to describe the spin dynamics in a coupled
two-sublattice system and in Chapter 4 to understand the dynamics of a chiral
magnet coupled to a microwave cavity. An extensive discussion about magnetization
dynamics can be found in Refs. [32–35].

2.1 Macrospin Model

We start our discussion by introducing the measurable macroscopic quantity of the
magnetizationM which is the sum of all magnetic moments µ of the electrons in
the volume V of the solid-state

M = 1
V

∑
µi∈V

µi. (2.1)

We assume that the single magnetic moments are ferromagnetically exchange
coupled via the quantum-mechanical Heisenberg interaction [36]. This contin-
uum approach is applicable due to the large number of electrons per volume (≈
1028 m−3) [26], where a quantum-mechanical description of the coupled electron
dynamics is not feasible. We introduce here the normalized magnetization m =
M/Ms = [mx my mz]ᵀ with the saturation magnetizationMs.

Additional to the externally applied magnetic fieldH0, we need to take the internal
fields stemming from, e.g., magnetic anisotropy into account. Therefore, we need to
introduce the effective magnetic fieldHeff which is given by [37]

µ0Heff = −
(

∂

∂mx
,
∂

∂my
,
∂

∂mz

)
Fm = −∇mFm (2.2)

with the free energy density Fm. In the following we want to discuss the most relevant
free energy density contributions to Fm for this thesis:
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Zeeman energy
The Zeeman interaction describes the interplay between a magnetic moment
or magnetization with an external magnetic field. The corresponding Zeeman
energy density is given by [35, 38]

FZ = −µ0M ·H0. (2.3)

It is important to note that for the Zeeman interaction only real magnetic fields
are relevant and not molecular- or exchange fields [38]. The effective field
stemming from the Zeeman energy is derived by plugging in Eq. (2.3) into
Eq. (2.2) and is simply given byHZ = H0.

Exchange energy
The quantum-mechanical exchange interaction occurs due to spin-spin interac-
tion of electrons in combination with the Pauli-principle. Without derivation, the
strength of this interaction is given by the exchange constant Jij given by the
exchange integral [38, 39]. In the Heisenberg-model the free energy density
reads [39]

Fex = − 1
V

∑
i<j,n.n.

JijSi · Sj (2.4)

with the spin operators Si,j . The sum is iterated over all nearest neighbor (n.n.)
pairs of spins. The exchange constant Jij can either be positive (Jij > 0)
leading to a preferred parallel alignment of neighbouring spins, which is also
known as ferromagnetic coupling, or negative (Jij < 0) which results in an
anti-parallel alignment of adjacent spins, which is known as antiferromagnetic
coupling. In order to simplify this expression, we assume a spatially constant
exchange parameter Jij = J and that the exchange energy is dependent on
the relative angle θij between the spins. The absolute size of the spin vector
should also be equal (Si = Sj = S). Equation (2.4) becomes

Fex = −JS
2

V

∑
i<j,n.n.

cos (θij) ≈ −
JS2Nn.n.

V
+ JS2

2V
∑

i<j,n.n.
θ2
ij , (2.5)

where in the second step we Taylor expanded cos(x) ≈ 1− x2/2 + . . . in the
limit of small angles θij . The first term is constant while the second term
describes the spatially varying exchange energy and is usually smaller than the
first term. The relative angle change θij can also be expressed as a change
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in distance between the spins and as a further consequence in a change in
magnetizationM . Assuming a cubic lattice this simplifies to [39, 40]

Fex = −JS
2Nn.n.
V

+A

(
∇M
Ms

)2
, (2.6)

with the exchange stiffness constant A = S2a2JNn.n./(2V ), cubic lattice con-
stant a, number of next neighbours Nn.n. and spin number S. For Co25Fe75 the
exchange stiffness is A = 2.6× 10−11 J/m [41]. Note that the second term is
especially interesting in the discussion of magnetic excitations like spin waves
which will be done in Chapter 5.

Uniaxial anisotropy
Themagnetocrystalline anisotropy leads to a preferred crystallographic direction
of the magnetization due to the finite Spin-Orbit coupling because the orbitals
of the 3d- and 4f -electrons are not spheric but have a complicated form. This
leads to a different overlap of the quantum-mechanical wave functions of
neighbouring atoms and as a consequence to different energies [38]. One
possible magnetocrystalline anisotropy is the uniaxial anisotropy which has
one preferred axis and an isotropic plane perpendicular to it. The preferred
direction of the uniaxial anisotropy is given by the unit vectoru. If we assume the
preferred axis of the uniaxial anisotropy to be along the z-direction (m2

x +m2
y =

1−m2
z), we get for the corresponding free energy density [34, 35, 38]

Fu = Ku1(u ·m)2 = Ku1(1−m2
z), (2.7)

where we only account for terms of the uniaxial anisotropy to the first order. For
the effective fieldHeff , we get [35]

µ0Hu = −2Ku1
Ms

êz. (2.8)

Cubic anisotropy
Another possible magnetocrystalline anisotropy is the cubic anisotropy, where
the reversal of the magnetization M and the switching of two orthogonal
axes must not affect the free energy density [35]. The free energy density
becomes [34, 35, 38]

Fc = Kc1(m2
xm

2
y +m2

xm
2
z +m2

ym
2
z) +Kc2m

2
xm

2
ym

2
z, (2.9)
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where only terms of 4th and 6th order occur. To derive an expression for the
effective field, we use Eq. (2.2), insert Fc and get [35]

µ0Hc = −2Kc1

mx(m2
y +m2

z)
my(m2

x +m2
z)

mz(m2
x +m2

y)

− 2Kc2

mxm
2
ym

2
z

mym
2
xm

2
z

mzm
2
xm

2
y

 . (2.10)

Note that for the magnetocrystalline anisotropies it may be necessary to trans-
form the coordinate system because the easy and hard axis of the anisotropy
crucially depend on the specific crystal lattice. We will pick up on this topic
in Chapter 3, where we will discuss the importance of magnetocrystalline
anisotropies to describe mode coupling in a compensated ferrimagnet.

Shape anisotropy
In a finite sized sample, the magnetic field inside the sample differs in mag-
nitude depending on the direction of the magnetic field due to the so-called
demagnetization field. The demagnetization field arises due to induced mag-
netic charges at the surface of the sample, which are generating a magnetic
field opposing the stray field [32, 38]. For simplicity, we assume a uniform
demagnetization field inside an ellipsoid where the main axes of the ellipsoid
coincide with the principle axes of the coordinate system. The free energy
density then reads [40]

Fd = µ0
2 M

↔
NM = µ0

2
∑

i,j∈{x,y,z}

NijM
2
i , (2.11)

with the demagnetization tensor

↔
N =

Nxx 0 0
0 Nyy 0
0 0 Nzz

 . (2.12)

Note that the demagnetization tensor
↔
N is only diagonalized in the principal

axes coordinate system of an ellipsoid [40]. For the remaining demagnetization
factors Nii, the relation Nxx +Nyy +Nzz = 1 holds and can be calculated by
the equations provided by J. A. Osborn [42]. The demagnetization field can be
calculated with Eq. (2.2) to

µ0Hd = µ0
↔
NM . (2.13)

The assumption of a uniform demagnetization field is not sufficient in the
discussion of micropatterned magnonic waveguides for propagating spin waves.
In Chapter 5 we will modify the description of the dipolar fields.
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The effective field is consequently the sum of all internal fields. For didactic reasons
we will not consider the magnetocrystalline anisotropy and furthermore, we neglect
the second term of the exchange fieldHex where we assume a spatially homogenous
magnetization and fully parallel magnetic moments [43]. The effective field is then
given by

Heff = H0 +Hd = H0 −
↔
NM . (2.14)

x y

z
M

He�

-M × Heff

M × dM/dt

Fig. 2.1. Schematic model in the
macrospin approach where
the magnetization M is
precessing around the ef-
fective magnetic field Heff .
We assume that the static
external field H0 is parallel
to the effective magnetic
fieldHeff .

In a classical picture, we can consider the
magnetizationM as a vector and the effective
fieldHeff generates a torque τ to the magneti-
zation. This leads to a precession of the mag-
netization with an angular frequency ω around
the effective field as depicted in Fig. 2.1. The
magnetizationM therefore has an angular mo-
mentum J which is given by [35]

M = −γ J
V

(2.15)

connected by the gyromagnetic ratio γ =
gµB/~ with the Landé-factor g, the Bohr mag-
neton µB and the reduced Planck constant
~ = h/(2π). The torque τ is the rate of change
of angular momentum which leads to

τ = dJ
dt = −V

γ

dM
dt = −V µ0M×Heff , (2.16)

where µ0 = 1.256 637 061× 10−6 V s/(A m) is the vacuum permeability. Reordering
the variables leads to the Landau-Lifshitz equation [44]

dM
dt = −γµ0M ×Heff . (2.17)

This equation describes a sustained precession of the magnetizationM around the
effective magnetic fieldHeff as depicted in Fig. 2.1.

In the ideal case, the magnetization will precess forever around the effective
field at a fixed cone angle due to the absence of damping in Eq. (2.17). In a real
physical system, different dissipation mechanisms can occur like magnon-phonon
relaxation, two-magnon scattering, eddy currents [25, 45] or radiative damping [46].
Disregarding the physical nature of the loss channels, we formulate the damping
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Fig. 2.2. Ferromagnetic Resonance. (a) Schematic depiction of the ferromagnetic resonance
where the magnetizationM precesses at a fixed cone angle due to the additional
driving torque (−M × hrf ) opposing the damping torque (M × dM/dt) due to the
oscillating driving field hrf . (b) Real and imaginary part of the χxx = χ′xx + iχ′′xx

component of the Polder-susceptibility. (c) Resonance frequency ω derived from
the Kittel equation [Eq. (2.27)] where the solutions of the three discussed cases
namely in-plane (ip), out-of-plane (oop) and sphere are shown.

term according to T. Gilbert who added a phenomenological, material-dependent
damping parameter α [47]. This leads to the Landau-Lifshitz-Gilbert equation (LLG)

dM
dt = −γµ0M ×Heff + α

Ms
M × dM

dt . (2.18)

The second term in the above equation leads to a parallel alignment of the magne-
tization M with the effective field Heff after a finite time, which is the equilibrium
position of the magnetization. This process is schematically depicted in Fig. 2.1. This
system can be understood as a damped harmonic oscillator in classical mechanics.
In the following section we will derive the resonance condition in the presence of an
additional oscillating magnetic field.

2.2 Ferromagnetic Resonance
In the previous section, we have discussed the dynamical process of the magnetiza-
tion without any external perturbation. In this case, the magnetization aligns with the
effective field after a finite relaxation time. Now, an oscillating magnetic field hrf per-
pendicular to the effective fieldHeff is introduced as depicted in Fig. 2.2(a). The idea
is to drive the magnetization away from its equilibrium orientation. If the frequency of
the oscillating field matches the precessional frequency of the magnetization, the
torque generated by the oscillating driving field hrf is compensating the damping
torqueM × dM/dt, resulting in a magnetization precession with constant opening
angle of the precession cone. This is analogous to a driven harmonic oscillator in
classical mechanics. For the derivation of the resonance frequency the external
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oscillating field hrf is not absolutely necessary as the resonance frequency is inde-
pendent of hrf . For didactic reasons we still keep hrf in the derivation. The following
paragraphs are adapted in main parts from Ref. [48].

We start our derivation by assuming the effective field to point along the z-direction
Heff ‖ z in a finite sized sample with the shape of a rotational ellipsoid with demagne-
tization tensor components Nxx, Nyy and Nzz and the oscillating driving field to lie in
the xy-plane hrf(t) = [hrf,x(t) hrf,y(t) 0]ᵀ. Adding this oscillating field to the effective
field, the effective magnetic field Heff modifies to

Heff = H0 +Hd + hrf(t) =

 −NxxM
∼
x

−NyyM
∼
y

H0 −NzzMs

+

hrf,x(t)
hrf,y(t)

0

 , (2.19)

where the first term is the time-independent and the second term the time-dependent
part of the total magnetic field. Here, we disregarded all anisotropy contributions
other than shape-anisotropy. We already took into account that the driving field
is also attenuated by the demagnetizing field by the dynamic components of the
magnetization M∼(t). The total magnetization M can also be split into a time-
independentM0 and time-dependent partM∼(t), that is

M = M0 +M∼(t) =

 0
0
Ms

+

M
∼
x (t)

M∼y (t)
0

 . (2.20)

We restrict ourselves to the magnetization dynamics in the linear regime where
the opening cone of the magnetization relative to the effective field is supposed
to be small. This assumption is equivalent to |hrf | � |H0| and Mx,My � Mz.
Furthermore, we have used in Eq. (2.20) that the absolute value of the magnetization
does not change (|M | = Ms) [45] and is pointing along its equilibrium position and
consequently alongHeff . In the linear regime, we use an harmonic ansatz for the
magnetization and oscillating magnetic field

hrf(t) =
[
hrf,x hrf,y 0

]ᵀ
· eiωt,

M∼(t) =
[
M∼x M∼y 0

]ᵀ
· eiωt.

(2.21)

Plugging Eqs. (2.19)-(2.21) into the Landau-Lifshitz-Gilbert equation [Eq. (2.18)],
results in

iω

[
M∼x
M∼y

]
=
[
γµ0Ms · (hrf,y −NyyM

∼
y )−M∼y · [γµ0 · (H0 −NzzMs) + iωα]

−γµ0Ms · (hrf,x −NxxM
∼
x ) +M∼x · [γµ0 · (H0 −NzzMs) + iωα]

]
.

(2.22)
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We can rewrite this equation in matrix form[
hrf,x

hrf,y

]
= ↔
χ
−1
[
M∼x
M∼y

]
(2.23)

with

↔
χ
−1 = 1

Ms

[
H0 + (Nxx −Nzz)Ms + iωα

γµ0
− iω
γµ0

+ iω
γµ0

H0 + (Nyy −Nzz)Ms + iωα
γµ0

]
. (2.24)

Inverting this expression yields the so-called Polder susceptibility [49]

↔
χ =

[
χxx χxy

χyx χyy

]

= 1
Ms

1
det
(

↔
χ
−1) ·

[
χ∼xx χ∼xy
χ∼yx χ∼yy

] (2.25)

with the determinant of the inverse susceptibility det
(

↔
χ
−1) and the tensor entries

χ∼xx = H0 + (Nyy −Nzz)Ms + iωα

γµ0
,

χ∼xy = + iω

γµ0
,

χ∼yx = − iω

γµ0
,

χ∼yy = H0 + (Nxx −Nzz)Ms + iωα

γµ0
.

(2.26)

The susceptibility represents the proportionality constant between the magnetization
(linear response) and the small external perturbation (hrf �H0) and is a complex
quantity which can be split into its real and imaginary part χ = χ′ + iχ′′. The typical
lineshape of the susceptibility is exemplarily shown for the χxx component with
Nxx = Nyy = 0, Nzz = 1 in Fig. 2.2(b). The real part of the susceptibility χ′xx has the
typical dispersive lineshape and describes the dissipation of the system while the
imaginary part χ′′xx has a Lorentzian lineshape and describes the absorption of the
system.

For the resonance frequency ωres/(2π) and the linewidth ∆ω, we need to solve
the characteristic equation for ω which is given by det

(
↔
χ
)

!= 0. This equation can
either be solved for the magnetic field H0 or for the frequency ω. The real part of
the solution gives the resonance frequency ωres (or field Hres) and is known as the
famous Kittel equation [50]

ωres = γµ0

√
[H0 + (Nxx −Nzz)Ms] · [H0 + (Nyy −Nzz)Ms]. (2.27)
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This equation depends on the demagnetization factors Nii characteristic for the
specific sample shape. We briefly want to discuss three special cases:

1. Sphere: For a sphere the demagnetization factors are the same Nxx = Nyy =
Nzz = 1/3 and therefore the demagnetization does not play any role. The Kittel
equation becomes

ωres = γµ0H0. (2.28)

2. Thin-film, in-plane: If the magnetic field is applied in the sample plane of a
thin film (thickness�lateral dimensions, z-direction perpendicular to sample
plane), we can assume that Nxx = 1 and Nyy = Nzz = 0. The Kittel equation
simplifies to

ωres = γµ0
√
H0 · (H0 +Ms). (2.29)

3. Thin-film, out-of-plane: For the situation that the magnetic field is applied
perpendicular to the sample plane of a thin film, the demagnetization factors
can be approximated to Nxx = Nyy = 0 and Nzz = 1. The Kittel equation
consequently results in

ωres = γµ0 (H0 −Ms). (2.30)

We emphasize here that in thin-films typically interface anisotropies play a
crucial role and modify the resonance equations Eqs. (2.29) and (2.30) [51].

These three cases discussed above are shown in Fig. 2.2(c) where the effect of the
sample shape is visualized.

The imaginary part of the solution characterized by the half-width-at-half-maximum
(HWHM) linewidth, which is given by

∆H(ω) = αω

γµ0
. (2.31)

This equation accounts for all kind of damping contributions, which scale linearly
with frequency ω. In experiments, it is usually observed that the experimentally
measured ∆H(ω) curve does not extrapolate to zero for ω → 0. This can be
attributed to e.g. long-range magnetic inhomogeneities [51] in the sample. Therefore,
Eq. (2.31) is modified by an additional term ∆Hinh called inhomogeneous linewidth
broadening accounting for inhomogeneities, which leads to

∆H(ω) = ∆Hinh + αω

γµ0
. (2.32)
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Note that the above derivation is only valid for the uniform precession mode
with wavevector k = 0 and if the equilibrium position of the magnetization and
the direction of the effective field are known. The latter can lead to non-analytical
solutions and therefore can be only solved numerically. Nevertheless, this chapter
should give a basic understanding of magnetization dynamics which we will now
extent in the following chapters. In Chapter 3 we will model a ferrimagnet as an
effectively two-sublattice system with different free energy contributions. In Chapter 4
the magnetization dynamics of a chiral magnet with different uniform precessional
modes coupled to a microwave resonator is considered. In Chapter 5, we discuss
propagating precession modes with wavevector k 6= 0, where we will particularly
discuss the magnetization dynamics of so-called dipolar-exchange spin waves.
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Magnon-Magnon Coupling in
the Compensated
Ferrimagnet Gadolinium Iron
Garnet

3

Hybrid dynamic systems, where two physical systems are coupled to each other,
have attracted great attention over the last years due to their potential application
in coherent information exchange, sensing or communication [21]. For these appli-
cations strong coupling is especially interesting because information needs to be
coherently transferred between the coupled systems, which means that the phase
in these excitations needs to be preserved [23]. This is only the case if the decay
rates of the systems are smaller than the coupling strength between each other.1

Strong coupling has already been realized in e.g. coupled spin-photon [52–54] and
magnon-photon systems [55–60]. Magnetic systems are interesting for frequency
up-conversion [61, 62] and quantum state storage applications [24].
In all these cases, electromagnetic interactions, such as magnetic and electric

dipolar interactions and magneto-optic effects, are fundamentally responsible for
the coupling. The dipolar nature of the coupling between spins or magnons to
photons in microwave cavities has two important consequences. First, the magnetic
dipolar coupling is weak, limiting the single spin-photon coupling rates to sub-kHz-
regime [63]. Second, the effective coupling rate geff of a system of spins (magnons)
scales with their number N as geff ∝

√
N [64]. Thus, increasing geff hinges on tuning

the cavity filling factor [56] or the spin density (saturation magnetization) [55, 65]
in a given volume. Therefore, strong magnon-photon or cavity-mediated magnon-
magnon coupling [66, 67] requires large filling factors or photon-wavelength sized,
i.e., macroscopic dimensions. The dipolar interactions are typically weak compared
to the energy scales of the involved excitations themselves. In magnetically ordered
systems, the energy scale relevant for the magnon-magnon interaction is the quantum
mechanical exchange interaction. The physical picture is introduced in Section 3.2.

While ferromagnets only feature a single uniform precessional mode, antiferromag-
nets, ferrimagnets or chiral magnets can host multiple magnon modes. These are

1Strong coupling can be easily observed with two tuning forks placed close to each other and coupled
by small permanent magnets attached to one arm of the fork. If only one of the tuning forks is
excited, the excitation is completely transferred to the other after a period determined by the coupling
strength. In the case of strong coupling, the excitation is coherently transferred back and forth
between the two tuning forks before the decay of the excitation due to damping.

17



the acoustic and optical mode in the canted phase and the clockwise and counter-
clockwise mode in the collinear phase [34]. Recently, magnon-magnon coupling
between two magnetic materials in particular the ferrimagnet yttrium iron garnet (YIG)
and a ferromagnetic metal [68–70] has been demonstrated where the weak interlayer
exchange interaction mediates the coupling. Here, we want to access the much
stronger intralayer exchange interaction. The THz-frequency dynamics in antiferro-
magnets is challenging to address experimentally not only with microwave techniques
but also with optical spectroscopy [71]. The charm of compensated ferrimagnets
is that the sublattice magnetization can be tuned by temperature and consequently
tuning the magnetization dynamics not only to an experimentally accessible range
but also to investigate the dynamics in a quasi-antiferromagnetic limit.
In this chapter, we discuss the experimental observation of ultrastrong magnon-

magnon coupling in the compensated ferrimagnet gadolinium iron garnet (GdIG)
close to its compensation temperature with a coupling rate reaching up to 37% of
the characteristic magnon frequency. Furthermore, we demonstrate the tunability
of the coupling strength from the weak to ultrastrong coupling regime and propose
a physical mechanism for the large coupling strength which is called exchange-
enhancement. This chapter will start with an introduction to the investigated material
system, namely gadolinium iron garnet, and its static sublattice magnetizations.
Subsequently we will discuss the difference of the typical spatially uniform spin
dynamics eigenmodes of a quasi-antiferromagnet and why it is an ideal system to
investigate mode hybridization. Next, we will introduce the broadband magnetic
resonance spectroscopy technique and discuss how to eliminate the microwave
background. The magnon mode hybridization will be modelled by different models
where wewill discuss the necessary ingredients to observe coupling and the important
role of the anisotropy. Finally, we will provide a full numerical model to describe the
magnetization dynamics of a coupled two-sublattice system.

Main parts of this chapter (figures and text) have been published in L. Liensberger,
A. Kamra, H. Maier-Flaig, S. Geprägs, A. Erb, S. T. B. Goennenwein, R. Gross,
W. Belzig, H. Huebl, and M. Weiler, Exchange-Enhanced Ultrastrong Magnon-
Magnon Coupling in a Compensated Ferrimagnet, Phys. Rev. Lett. 123, 117204
(2019) [72].

3.1 Material System Gadolinium Iron Garnet

First, we want to emphasize the unique properties of a compensated ferrimagnet
compared to a ferromagnet or an antiferromagnet. In Fig. 3.1(a) the difference
between the static magnetizations between a ferrimagnet and a ferromagnet or
antiferromagnet is schematically depicted. A ferromagnet has a single sublattice with
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Fig. 3.1. (a) Schematic depiction of the alignment of magnetic moments in a (single-
sublattice) ferromagnet, antiferromagnet and ferrimagnet. The total magnetiza-
tionMtot is zero for an antiferromagnet and finite for a ferromagnet and a ferrimagnet.
(b) Simulated static magnetizations of the gadolinium (blue solid line) and iron (or-
ange solid line) sublattices as well as the total magnetizationMtot of gadolinium iron
garnet (GdIG) (red solid line) as a function of temperature T . The grey points are
the measured total magnetization at a magnetic field of µ0H0 = 1.0 T determined by
SQUID magnetometry. The inset shows schematically the sublattice magnetization
at temperatures below, above and at the compensation temperature Tcomp = 288 K.

the magnetic moments aligned in the same direction due to the Heisenberg exchange
interaction (cf. Eq. (2.4)), where we neglect the formation of potential magnetic
domains. The total magnetization Mtot is the sum over all magnetic moments
(cf. Eq. (2.1)) and is for a ferromagnet non-zero (Mtot 6= 0). In antiferromagnets
and ferrimagnets the sign of the exchange constant is negative and therefore the
Heisenberg exchange interaction favors the anti-parallel alignment of neighbouring
magnetic moments to minimize its energy. In the particular case of an antiferromagnet
the absolute value of the opposingmagnetic moments are equal and therefore the total
magnetization isMtot = 0. The ferrimagnet also has opposing magnetic moments
but these are now imbalanced due to a different number of magnetic moments
pointing up and down or due to the different magnitude of magnetic momentum due
to some sort of crystallographic selection [73]. This leads to a non-zero magnetization
Mtot 6= 0.
Gadolinium iron garnet (Gd3Fe5O12, GdIG) is a compensated ferrimagnet with

a cubic crystal lattice and three magnetic sublattices. The material class of (rare-
earth) iron garnet consists of an octahedrally coordinated Fe3+-ions (a-)sublattice, a
tetrahedral Fe3+-ions (d-)sublattice and a dodecahedral rare-earth metal or yttrium
(c-)sublattice [73, 74]. Due to the imbalanced magnetic moments of the sublattices
and their mutual antiferromagnetic coupling, this leads to ferrimagnetism. The most
famous representative of this material class is yttrium iron garnet (Y3Fe5O12, YIG),
where on the c-site Y3+-ions are situated. These yttrium ions have a noble gas
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configuration, leading to no magnetic moment. Therefore, the total magnetization
is given by the strongly antiferromagnetically coupled iron-sublattices as shown in
Fig. 3.1(b) (orange line). The total magnetization stemming from the coupled iron-
sublattice is only weakly temperature-dependent. Nevertheless, YIG is due to its low
damping characteristics and small linewidth broadly used in numerous applications
like in microwave technology in filters or microwave sources [75, 76].

Gadolinium iron garnet in contrast has on the c-sublattice Gd3+-ions which have
an unfilled 4f -shell leading to a finite magnetic moment. The total magnetization
of the gadolinium-sublattice is strongly temperature-dependent and couples antifer-
romagnetically to the total magnetization of the two antiferromagnetically coupled
iron-sublattice [73] in the considered temperature and magnetic field range. This
results in an effective two-sublattice system. The three sublattices of gadolinium iron
garnet add up to the total magnetization

Mtot = MGd +MFe,a −MFe,d = MGd +MFe. (3.1)

The two iron sublattices (a- and d-site) are strongly antiferromagnetically coupled
and can be treated as one effective iron sublattice MFe = MFe,a −MFe,d. There-
fore, the effective number of sublattices is reduced from three to two. Due to the
temperature-dependence of the Gd-sublattice a compensation of the sublattice mag-
netizations occurs, where the net magnetization of the Gd-sublattice equals that
of the net Fe-sublattice |MGd| = |MFe| at the so-called magnetic compensation
temperature Tcomp as shown in Fig. 3.1(b). Note that for compensated iron garnets
there are two compensation points: The magnetic compensation point where the net
magnetization vanishes and the angular momentum compensation point where the
angular momentum of the two sublattices cancel each other [77]. For gadolinium iron
garnet the magnetization compensation point occurs at slightly lower temperature
than the angular momentum compensation point, which can be seen from the diver-
gence of the Landé factor as a function of temperature close to the compensation
point [48, 78]. Within our experiments we cannot resolve and distinguish between
these two compensation points.

In our experiments, we investigate a single crystal GdIG disk which was grown by
travelling solvent floating zone method [79] by Andreas Erb (WMI) and cut to a (111)-
oriented disk with diameter d = 6.35 mm and thickness t = 500 µm. The magnetic
alignment and the superconducting quantum interference device (SQUID) magne-
tometry of the single crystal were done by Stephan Geprägs (WMI). From the SQUID
magnetometry measurements we can determine the magnetization compensation
temperature to Tcomp = 288 K (cf. Fig. 3.1(b)).

We first calculate the sublattice magnetizations at non-zero temperature as we
will need them later. Following the approach proposed in Refs. [80] and [81], we
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consider all three sublattice and use molecular field theory. The magnetizationsMi

of the three sublattices are given by

Mi(T ) = Mi(0) ·BSi(ai), i ∈ {a,d,c} (3.2)

with a=Fea, d=Fed and c=Gd. In this context, Mi(0) is the magnetization at tem-
perature T = 0 K and BSi(ai) is the Brillouin function with the Boltzmann energy
ratios

ad = SdgµBµ0
kBT

· (NddMd +NdaMa +NdcMc),

aa = SagµBµ0
kBT

· (NadMd +NaaMa +NacMc),

ac = JcgµBµ0
kBT

· (NcdMd +NcaMa +NccMc),

(3.3)

where the coupling between the sublattices has been taken into account. In Eq. (3.3),
kB is the Boltzmann constant, g = 2 the Landé factor and Nij are the molecu-
lar field coefficients taken from Ref. [81]. The value Nac is slightly adjusted from
−3.44 mol/cm3 to −3.3 mol/cm3 to yield the compensation temperatures Tcomp =
288 K determined from SQUID magnetometry measurements (cf. Fig. 3.1(b), grey
points). The other molecular field coefficients remain unchanged and take the
following values: Ndd = −30.4 mol/cm3, Naa = −65.0 mol/cm3, Ncc = 0 mol/cm3,
Ndc = 6.0 mol/cm3 and Nad = 97.0 mol/cm3. The spin angular momentum Si is for
the iron sublattices Sd = Sa = 5/2 and for the gadolinium sublattice Jc = 7/2 [73].
The sublattice magnetic moments per formula unitMmol

i (0) at zero temperature are
given by [81]

Mmol
d (0) = 3gSdµBNA,

Mmol
a (0) = 2gSaµBNA,

Mmol
c (0) = 3gJcµBNA,

(3.4)

with the Bohr magneton µB and the Avogadro constant NA. Solving the set of
equations (3.2) self-consistently, the sublattice magnetizationMmol

i and consequently
the total magnetization Mtot with Eq. (3.1) can be calculated. To convert from
magnetic moments per formula unitMmol

i to magnetizationMi, the density of GdIG
(ρ = 6.45 g/cm3 [82]) and the molar masses of the constituent elements are used [83].
The result is shown in Fig. 3.1(b) as solid lines. The inset in Fig. 3.1(b) schematically
illustrates the relative orientation and magnitude of the sublattice magnetizations in a
finite magnetic field. Below the compensation temperature T < Tcomp the sublattice
magnetization of the Gd-sublatticeMGd is larger than the net magnetization of the
iron sublatticeMFe. In the temperature range above the compensation temperature
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T > Tcomp the magnetization of the Gd-sublattice decreases and becomes smaller
than the net iron magnetization (see Fig. 3.1(b), inset). The total magnetizationMtot

calculated with Eq. (3.1) is in good agreement with the measured SQUID data.
Note that for YIG, the Yttrium-sublattice does not posses a magnetic moment

and therefore the magnetization of YIG is determined by the net iron sublattice
magnetization MFe = MYIG. YIG consequently does not feature a compensation
point in contrast to the investigated GdIG.

3.2 Magnetization Dynamics in a Two-Sublattice System

In the previous section, we have discussed the static magnetization properties of
the investigated gadolinium iron garnet and highlighted the difference between a
ferromagnet, antiferromagnet and a (compensated) ferrimagnet. Now we want to
turn our focus to the dynamical properties of the uniform oscillation modes [34]. We
simplify our discussion by considering the magnetizationsMi in an external magnetic
field H0 and an easy-axis of a magneto-crystalline anisotropy pointing along H0.
In Fig. 3.2 the difference between ferromagnets, antiferromagnets and so-called
quasi-antiferromagnets are summarized which we now want to discuss in detail.
Starting with a single-sublattice ferromagnet as depicted in the left column in

Fig. 3.2, we expect a single uniform mode with a positive dispersion relation, that is,
the resonance frequency f increases with increasing magnetic field H0 as shown in
panel (a). The theoretical description in a classical picture presented in the previous
Chapter 2 is sufficient to understand the behaviour of the resonance frequency f↑
and can be described with the Kittel equation [Eq. (2.27)]. The result from the
classical description is a magnetization precessing in the external field in the counter-
clockwise direction [panels (c) & (d)]. In a quantum mechanical picture [panel (b)]
spin excitations can be described as collective excitations of the spin system – so-
called magnons – which in a particle picture can be viewed as quasiparticles with
spin ±~ [84]. In a ferromagnet the excitation of the uniform precessing mode is
equivalent to generation of spin-up magnons which reduces the magnetization [85].
In an antiferromagnet in the collinear-state (middle column) and with an external

magnetic fieldH0 applied along the easy-axis of the anisotropy, we find two uniform
resonance modes f↑ and f↓ which posses a positive (∂f/∂H0 > 0) and negative dis-
persion (∂f/∂H0 < 0) relation, respectively [panel (a)]. At zero magnetic field the two
resonance frequencies are degenerated (f↑ = f↓) and have a resonance frequency
f ∝ Hc =

√
2HanisoHex, with the anisotropy field Haniso and the exchange field Hex.

The critical field Hc typically corresponds to a resonance frequency in the order of a
few hundred GHz [34]. In the quantum picture [panel (b)] these resonance modes
can be identified as spin-up and spin-down magnons with unit net spin ~ pointing in
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Fig. 3.2. Schematic illustration of the different magnetization dynamics in a ferromagnet (left
column), an antiferromagnet (middle column) and a quasi-antiferromagnet (right
column). The (a) frequency dispersion f vs. magnetic fieldH0 for a spheric sample,
(b) the quantum representation, (c) the dynamic modes in a classical picture and
(d) the polarization of the precessional eigenmodes are compared. Note that the
quasi-antiferromagnet can, additionally to the ccw and cw-precessional mode of
an antiferromagnet, feature two linearly polarized hybrid mode with frequencies f1
and f2, which are orthogonal to each other. The angles between the two sublattice
magnetizations have been exaggerated for clarity. Refer to main text for details.

opposite directions collinear with the equilibrium sublattice magnetizations [72, 84].
In the classical picture the two opposing sublattice magnetizationsMA andMB with
equal magnitude are either precessing in the clockwise (cw) or counter-clockwise
direction (ccw) as depicted in panels (c) and (d).
A compensated ferrimagnet close to its compensation point, where the two sub-

lattice magnetizations are nearly identical MA & MB, can be viewed as a “quasi-
antiferromagnet” with similar magnetization dynamics. In a quasi-antiferromagnet
(right column) we expect the same uniform resonance modes as in a classical anti-
ferromagnet with counter-clockwise and clockwise uniform rotational modes which
have a positive and negative resonance frequency vs. magnetic field dispersion.
The main difference in the resonance frequencies of the two precessional modes is
the fact that at zero magnetic field the resonance frequencies of the spin-up f↑ and
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spin-down mode f↓ are not degenerate anymore and have a finite frequency differ-
ence. At a certain magnetic field H0 the two resonance frequencies cross and under
certain circumstances can couple to each other. The new hybridized modes can be
viewed as spin-zero magnons in a quantum-mechanical picture and are symmetric
and anti-symmetric superposition of spin-up and spin-down magnons [72, 84]. The
polarizations of the two resonance modes are linear and they are orthogonal to each
other.2 This is also true for an antiferromagnet at H0 = 0 in the collinear state if the
degeneracy at this point can be lifted.
After discussing the main differences in the magnetization dynamics, we want to

emphasize a few points: The frequency dispersion of the quasi-antiferromagnet (cf.
Fig. 3.2(a), right column) is similar to an antiferromagnet where the magnetic field is
applied perpendicular to the easy axis of the crystalline anisotropy as any source
of anisotropy lifts the degeneracy of the resonance frequencies of the two uniform
precessional modes at zero magnetic field. In this configuration the two sublattice
magnetizations are no longer collinear but in a canted state. The precessional modes
are then called acoustic and optical mode. It is well known that these two modes
can couple to each other [34, 86]. The physical pictures discussed above cannot be
applied to a canted antiferromagnet.

In a ferrimagnet in the collinear state an anticrossing is at first sight not expected.
In our experiments we will later observe a tunable exchange-enhanced coupling,
and the concomitant hybridization, between the up- and down-spin magnons. In
order to achieve this, we need two essential ingredients, namely mode coupling
and exchange-enhancement. These are intuitively understood within the quantum
picture as follows. Note that the description of the observed physical phenomena
is equivalently done in a classical or quantum-mechanical picture. We will switch
between them as per convenience.

The two eigenexcitations or magnons of the ferrimagnetic collinear ground states
possess unit (~) net spins in opposite directions collinear with the equilibrium sub-
lattice magnetizations. When two modes couple, it means that energy can be
transferred from one mode to the other. In the quantum picture, this implies that
one mode can be converted into the other. This mode interconversion, and thus the
coupling, has to satisfy the conservation laws in the system. As a result, a spin-up
magnon is not allowed to couple with (transmute into) its spin-down counterpart, if the
spin along the magnon spin axis is a conserved quantity. In order to achieve this, a
mechanism that violates the conservation of spin along the sublattice magnetization,
and consequently the magnon spin, direction is required [84] and cannot stem from
the isotropic exchange interaction. Since the conservation of spin along a direction
is mathematically a consequence of axial symmetry about this direction, the spin-

2This is completely analog to the superposition of left- and right-circularly polarized light resulting in
linearly polarized light.
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nonconserving mechanism required for the magnon-magnon coupling is provided
by an anisotropy about the magnon spin axis. A locally varying axial anisotropy
correspondingly allows to vary the resultant magnon-magnon coupling.

However, the typically weak magnetocrystalline anisotropy may not be expected to
yield observable effects and, therefore, has typically been disregarded. This is where
exchange-enhancement in a quasi-antiferromagnet makes the crucial difference.
The antiferromagnetic magnons, despite their unit net spin, are formed by large,
nearly equal and opposite spins on the two sublattices [87]. The anisotropy-mediated
mode coupling results from, and is proportional to, this large sublattice spin instead
of the unit net spin, and is therefore strongly amplified. This amplification effect is
termed exchange-enhancement within the classical description [87–89].
This briefly summarizes the most important physics for our experiment. We will

pick them up again during this chapter and explain them in more detail when we
establish the theoretical framework of the observed tunable exchange-enhanced
magnon-magnon coupling. In the following section we will discuss the experimental
realization and results.

3.3 Broadband Magnetic Resonance Spectroscopy

In our corresponding experiments, we study the magnetization dynamics of a (111)-
oriented single crystal GdIG-disk by broadband magnetic resonance (BMR) using a
Keysight N5242A PNA-X vector network analyzer (VNA) with a microwave frequency
range f ≤ 26.5 GHz [48, 90]. A schematic depiction of the setup is shown in Fig. 3.3.
The VNA is used to record the complex transmission S21 as a function of the mi-
crowave frequency f and the external magnetic fieldH0 applied in the (111)-plane.
The applied microwave power is P = 0 dBm and we confirmed that the magnetization
dynamics of the system are in the linear regime. In the following subsection we want
to discuss the VNA-based BMR measurement technique in more detail.

3.3.1 Experimental Setup

A typical broadband magnetic resonance setup based on a vector network analyzer
in a simple scheme consists of three different parts: (i) An electromagnet to generate
a controllable static magnetic field to saturate and align the magnetization of the
sample and to determine the magnetic resonance frequency. (ii) A coplanar waveg-
uide (CPW) that converts the microwave current into oscillating magnetic fields to
excite the ferromagnetic resonance. Due to reciprocity, the CPW also picks up uni-
form magnetization dynamics according to Faraday’s law of induction. (iii) A device
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Fig. 3.3. Schematic broadband magnetic resonance (BMR) setup, with the (111)-oriented
gadolinium iron garnet (GdIG) disk placed on the coplanar waveguide (CPW) with
centerconductor width wcc. The microwave current in the center conductor (brown)
generates an oscillating magnetic field hrf to excite the magnetic resonance and
separated by a gap are the ground planes (yellow) which are connected with each
other via the backside of the CPW. The ports P1 and P2 are connected to a vector
network analyzer (not shown). The angle ϕ in the coordinate system on the right
defines the in-plane direction in the (111)-disk plane of the magnetic fieldH0. For
the origin of the nomenclature of the effectively axially symmetric (EAS) and the
axial symmetry broken (ASB) directions, refer to main text.

to generate and detect microwaves typically in the frequency range from 0.01 GHz to
50 GHz which in our case is both achieved by a vector network analyzer.
The static magnetic field required for ferromagnetic resonance is typically in the

range of at most a few T which can be accomplished by a room-temperature elec-
tromagnet consisting of two opposing coils with an inserted iron yoke where the
maximum achievable magnetic field can be up to µ0H0 ≤ 3 T or at low tempera-
tures using a pair of superconducting coils or solenoids where magnetic fields up to
µ0H0 ≤ 20 T can be achieved. The working principle is for both systems the same:
A dc current is applied to the (superconducting) wires of the coils of the magnet
which produce by Ampère’s law a homogenous magnetic field between them. In our
experiments we use a superconducting 3D-vector magnet consisting of a solenoid
and two pairs of coils in Helmholtz configuration in a liquid helium bath at a temper-
ature of T = 4.2 K (boiling point of liquid helium). The static magnetic field can be
applied in an arbitrary direction with a field strength of up to µ0|H0| ≤ 2.5 T and up
to µ0|H0| ≤ 6.0 T along the direction of the solenoid.
The coplanar waveguide (CPW) consists of a low-loss dielectric substrate with

a high dielectric constant with a metallic thin film deposited on both sides. The top
metallization is patterned into a center conductor with a certain conductor width wcc

and separated by a gap on each side are the ground planes. These are connected
to the metallized back side of the antenna by vias which are metallized bore holes to
connect the front- and backside of the CPW [91, 92]. For the design of the CPW it is
crucial that the impedance matches Z0 = 50Ω of the whole microwave setup (cables,
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connectors etc.) in order to reduce back-reflections. Especially the dimensions of the
center conductor are crucial for the experiment because the microwave in the center
conductor is converted into an oscillating magnetic field hrf by Ampère’s law which
depends on the width of the center conductor wcc. Assuming the microwave current
flow I along the x-direction, the resulting oscillating magnetic field is consequently
given by the Karlqvist equations [48, 93, 94]

hrf,y(y,z) = 1
π

I

2wcc

[
arctan

(
y + wcc

2
z

)
− arctan

(
y − wcc

2
z

)]
(3.5)

hrf,z(y,z) = 1
2π

I

2wcc
ln
((

y + wcc
2
)2 + z2(

y − wcc
2
)2 + z2

)
, (3.6)

where the z-direction is pointing perpendicular to the CPW-plane and y along the
CPW-plane perpendicular to the current flow. The current I can be related to the
applied microwave power P via I =

√
P/Z0.

For broadband magnetic resonance spectroscopy experiments, it is necessary to
have a device to generate microwaves, which are coupled into the center conductor
of the CPW using an endlaunch connector, and a device to detect the signal change
at the magnetic resonance frequency. In our experiments we use a vector network
analyzer (VNA) which combines the two required capabilities: excitation and detection.
The VNA generates a microwave with frequency f and microwave power P at port 1.
The microwave travels through the microwave circuit and is consequently detected at
port 2 at the same frequency. In a simple picture the VNA measures the difference
between the outgoing and incoming microwave. Due to the heterodyne detection
scheme, the VNA is not limited to evaluate the amplitude change but can also
measure the phase change. The vector network analyzer calculates the complex
scattering parameters Sij which are defined as

Sij ≡
V in
i

V out
j

with V in
i ,V

out
j ∈ C, (3.7)

where i and j are the VNA port numbers and Vi the detected voltages at the ports.
In a magnetic resonance measurement we expect at resonance a change in the
transmission of the rf circuit. Therefore, we measure in our experiments the complex-
transmission parameter S21 given by

S21 = V2
V1

= |V2|
|V1|

eiφ, (3.8)

where φ = φ2−φ1 is the relative phase between the outgoing and incomingmicrowave.
In the heterodyne detection scheme the outgoing and detected signal at the excitation
frequency are downconverted to an intermediate frequency (IF), subsequently filtered
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by an adjustable bandpass filter and digitized by an analog-to-digital converter [95].
The smaller the bandwidth of the IF bandpass filter is chosen, the smaller the
noise figure. Therefore better signal-to-noise ratio is achieved at the cost of an
increased measurement time, where the IF bandwidth is ideally given by fIFBW =
1/∆t with the measurement time ∆t. The terminology of heterodyne detection
scheme stems from the fact that the phase and amplitude analysis of the signals are
at a different frequency compared to the excitation frequency. A full discussion of
the working principle of the vector network analyzer can be found in Ref. [95]. Later
in Section 5.3.2, we will discuss more advanced measurement schemes of the VNA
and go into more detail of the detection scheme inside the VNA.

After having discussed the three main parts to perform broadband magnetic
resonance spectroscopy, we now want to derive an expression for the measured
S21-parameter and relate it to the detected magnetic resonance. In the experiment,
the sample is placed onto the CPW where we assume a solely inductive coupling
to the CPW. The static magnetic fieldH0 aligns the magnetization along a certain
direction and the magnetization starts to precess at its resonance frequency given
by the Kittel equation [Eq. (2.27)]. The VNA generates a microwave current with
a certain frequency f and power P which is coupled via endlaunch connectors to
the center conductor of the CPW where the resulting microwave field hrf applies a
torque to the magnetization. In the classical driven harmonic oscillator analogon
the frequency of the driven excitation needs to match the frequency of the physical
system. As we discussed in Section 2.2, we expect a change of absorbed energy
of the magnetic system when the resonance condition is fulfilled. Additionally, the
precessing magnetization generates an oscillating magnetic field which is converted
to an alternating current in the center conductor of the CPW via Faraday’s law [48, 96].
The VNA detects the change in amplitude and phase by measuring the complex
transmission parameter S21, which consists of the contribution stemming from the
microwave background S0

21, originating from the frequency-dependent transmission of
the whole microwave setup (cables, endlaunches, CPW etc.), and of the contribution
from the sample ∆S21. To extract the contribution from the sample we calculate the
transmission change

∆S21 = S21 − S0
21

S0
21

, (3.9)

where we neglect the reflection of the microwave by assuming S11 = 0. This simplifi-
cation is made under the assumption that loading the CPW with the sample does not
result in a substantial deviation of the sample-CPW impedance from the unloaded
CPW impedance Z0 = 50Ω. The coupling between the CPW and the sample can

28 Chapter 3 Magnon-Magnon Coupling in the Compensated Ferrimagnet
Gadolinium Iron Garnet



be modelled in a voltage-divider model where the inductance of the sample L0 is in
series with the impedance Z0 of the microwave setup

∆S21 = 1
2
−iωL0

Z0 − iωL0
, (3.10)

where the factor 1/2 is stemming from the fact that the voltage is measured between
signal line and ground of the CPW and not between port 1 and 2 of the VNA [96]. The
calculation of the signal strength ∆S21 measured in BMR measurements depends on
the sample size, magnetic field and CPW geometry. Especially the precise evaluation
of the amplitude is an involved task which is not topic of this thesis. Here, we do not
want to present a full derivation and refer here to Refs. [48, 94, 96–99].

The precessing magnetization in the sample has an inductance L0, which is
proportional to the Polder susceptibility L0 ∝ χ(ω,H0). To derive an expression for
the S21-parameter we will use Eq. (3.9) and insert Eq. (3.10) with the assumption
that ωL0 � Z0 which leads to ∆S21 = −iωL0/(2Z0). We obtain for the complex
transmission parameter

S21 = S0
21(ω) + S0

21(ω) ∆S21,

= S0
21(ω)− iAeiφχ(ω,H0) (3.11)

with a real valued amplitudeA, accounting for all constants and geometry parameters,
and a phase φ due to the microwave background transmission S0

21(ω). Depending on
the measurement geometry, we use for the susceptibility χ(ω,H0) = χyy(ω,H0) if the
magnetic field is applied perpendicular to the CPW plane, χ(ω,H0) = χxx(ω,H0) if the
magnetic field is applied in the CPW plane but perpendicular to the center conductor,
and χ(ω,H0) = 1/2 (χxx(ω,H0) + χyy(ω,H0)) for the magnetic field applied in the
CPW plane and parallel to the center conductor [97].
In the experiment there are as already mentioned two possibilities to drive the

system to resonance as described by the Kittel equation. It can either be fulfilled by
setting the static magnetic field |H0| fixed and sweeping the microwave frequency f
which is the so-called “frequency-swept BMR” or vice versa, where the excitation
frequency is fixed and the magnetic field is changed which is the “field-swept BMR”. In
this thesis, we will not use the “field-swept BMR” and therefore spare the discussion.
In the following section we will discuss the data processing required for the frequency-
swept BMR due to the present background microwave transmission during the
measurement.
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3.3.2 Data Processing

In this section we will discuss the frequency-swept BMR as performed in our experi-
ment in more detail which is adapted from Ref. [48]. In this measurement procedure,
we set the magnetic field |H0| at a fixed value and sweep the microwave frequency of
the VNA f = ω/(2π) and measure the complex transmission parameter S21(f). The
magnetic field H0 is then incremented/decremented by ±∆H0 and the measurement
procedure is repeated for a series of magnetic field values. The microwave back-
ground transmission S0

21 is frequency-dependent even in the absence of magnetic
resonances, due to the frequency-dependent transmission through the microwave
cables and CPW. This frequency-dependence is always superimposed on any mag-
netic resonance signal and typically dominates over the magnetic signature. This
makes a background-correction necessary.

To demonstrate the necessity of a sophisticated background-correction wemeasure
at a temperature T = 250 K far below the compensation point Tcomp with the magnetic
fieldH0 applied along the EAS direction. The transmission S21 as a function of the
applied magnetic field H0 and microwave frequency f is shown in Fig. 3.4(a). The
visible field-dependent, weak signal is the ferromagnetic resonance of the system.
In the frequency trace taken at µ0H0 = 0.5 T, the resonance is hardly visible at
f ≈ 15 GHz which is superimposed on the background transmission. Background
removal in VNA measurements is typically done by calibration. A full rf network
calibration, however, is a tedious task and additionally would need to be done for all
temperatures. Thus, we here discuss possible ways to remove the background in
data post-processing.

One way to isolate the signal from the background transmission is to assume that
the microwave background is magnetic field independent. Therefore, a frequency-
trace at fixed magnetic field far away from the magnetic resonance Sref

21 (ω)|H0 can
be used as a reference and all other frequency traces at different magnetic fields
normalized to the transmission at this “reference” field, resulting in

Sds
21(ω,H0) = S21(ω,H0)

Sref
21 (ω)|H0

. (3.12)

For our measured data, we choose the maximum available magnetic field as a
reference (µ0H0 = 3.0 T) and calculate Sds

21(ω,H0) = S21(ω,H0)/Sref
21 (ω)|µ0H0=3.0 T

as shown in Fig. 3.4(b). The signature of the magnetic resonance is now clearly
visible and the microwave background eliminated. As shown in the frequency trace at
µ0H0 = 0.5 T, the characteristic line shape of the ferromagnetic resonance given by
the Polder susceptibility is observed (cf. Fig. 2.2(b)). Due to the applied data process-
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ing we need to modify our fitting formula Eq. (3.11) by dividing by the background
transmission which results in

Sds
21(ω)|H0 = 1− iA′eiφ′

χ(ω,H0) (3.13)

with a new amplitude factor A′ = A/|S0
21| and a new phase φ′ = φ − arg

(
S0

21
)

introduced. The signal-to-background ratio in Fig. 3.4(b) is evidently vastly improved
compared to Fig. 3.4(a). However, note that some background signature remains,
which is attributed mostly to a temporal drift of S21.

The spurious influence of such temporal drift in the microwave background can be
minimized by calculating the symmetric difference quotient of S21. This is the so-called
“derivative divide” method where the numerical derivative of the measured complex
transmission parameter S21 with respect to the magnetic field H0 is calculated [100]

∂DS21/∂H0 = S21(ω,H0 + ∆H)− S21(ω,H0 −∆H)
S21(ω,H0)∆H (3.14)

= −iA χ(ω,H0 + ∆H)− χ(ω,H0 −∆H)
∆H +O(A2),

≈ −iA ∂χ(ω,H0)
∂H0

, (3.15)

with the fixed magnetic field step size ∆H. For the approximation Eq. (3.15) in
the last step we used that the chosen magnetic field step size is small ∆H → 0.
Due to the division with the measured signal S21, the microwave background S0

21
is eliminated as shown in Fig. 3.4(c). The advantage of derivative divide is, that
signatures with a stronger magnetic field dependence are stronger pronounced than
small variations of the background which vary faster or slower with the magnetic field
than with the step size ∆H [100]. This results in a superior signal-to-background ratio
as visible by comparing Fig. 3.4(b) and (c). The modified fitting formula to describe
our measured S21 data becomes

∂DS21/∂H0|H0 = A′
χ(ω,H0 + ∆H)− χ(ω,H0 −∆H)

(A′χ(ω,H0) + 1) ·∆H . (3.16)

In the following experiments we will use the derivative divide algorithm for our data
processing as the observed magnetic resonance signatures are small in amplitude.
Unless stated otherwise, we will use Eq. (3.14) to process our data.
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Fig. 3.4. Exemplary data of a frequency-swept broadband magnetic resonance experiment
at a temperature of T = 250 K, far below the compensation temperature of the
gadolinium iron garnet single crystal. (a) Magnitude of raw data (complex transmis-
sion parameter S21) on a logarithmic scale. (b) Microwave background subtraction
by dividing every S21-trace at fixed field with a frequency trace at large fields e.g.
µ0H0 = 3.0 T. (c) Using derivative divide, the microwave background is eliminated
by taking the symmetric difference quotient [Eq. (3.14)]. The line traces on the
right side are frequency-traces at fixed magnetic field µ0H0 = 0.5 T (indicated by
dashed vertical line in color plots on left side) with the ferromagnetic resonance at
f ≈ 15 GHz. For details refer to main text. Figure adapted from [48].
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3.3.3 Spin Dynamics Close to the Compensation Point

As previously discussed in Section 3.2 the advantage of a compensated ferrimag-
net is the tunability of the sublattice magnetizations and therefore it is possible to
investigate the magnetization dynamics of a “quasi-antiferromagnet” close to the
compensation point Tcomp using the previously discussed broadband magnetic reso-
nance (BMR) technique by measuring the complex transmission parameter S21. We
now choose temperatures below (T = 280 K & T = 282 K) and above (T = 294 K)
the compensation temperature Tcomp. Furthermore, we apply the static magnetic
fieldH0 along the effectively axially symmetric (EAS) direction with an angle φ = 90°
and also along the axial symmetry broken (ASB) direction with φ = 0° (cf. Fig. 3.3).
We will explain in Section 3.4 where the name of the two distinct directions comes
from. The magnetic field is swept from µ0|H0| = 2.0 T to zero with a field step
size of µ0∆H = 10 mT. The microwave frequency is linearly swept in the range
0.1 GHz ≤ f ≤ 26.5 GHz with a frequency resolution of approximately 25 MHz. The
results of the BMR measurements for the different temperatures T and magnetic
fieldH0 directions are shown in Fig. 3.5.

Along the EAS direction [Figs. 3.5 (a), (c) and (e)] we observe two resonance
modes which we identify as the spin-up f↑ and the spin-down f↓ mode. These two
modes are identified by their frequency dispersion f as a function of the external
magnetic field H0 as we will see below. The spin-down mode is weak in spectral
weight and therefore barely visible. For T < Tcomp, we observe a shift of the spin-
down mode to higher resonance frequencies with decreasing temperature. The
resonance visible at low magnetic fields is stemming from the setup and is observed
in all temperature regions and magnetic field directions.

In the ASB case [Figs. 3.5 (b), (d) and (f)] we see a splitting between the spin-up
and spin-down modes which can be identified as an anti-crossing between the two
resonance modes. The frequency splitting between the two modes is largest at
T = 282 K < Tcomp and becomes smaller with decreasing temperature. The physics
remains unchanged with the temperature above the compensation point T > Tcomp.
Evidently, only the temperature difference to the compensation temperature Tcomp is
crucial. This corresponds to the difference of the two sublattice magnetizations which
becomes larger and therefore the net magnetic moment increases (cf. Section 3.1).
The dashed lines in Fig. 3.5 are the results of the numerical simulations which we
will discuss in Section 3.5.3.

We now will quantify the observed phenomena and will focus on the temperature
T = 282 K < Tcomp if not stated differently. In Fig. 3.6(a), we show the normalized
background-corrected field-derivative of S21 recorded at fixed magnetic field magni-
tude µ0H0 = 0.58 T applied at ϕ = 90° along the EAS direction. In this situation we
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Fig. 3.5. Broadband ferromagnetic resonance spectroscopy data of the real part of the nor-
malized magnetic field derivative of the complex transmission parameter ∂DS21/∂H0
as a function of the external magnetic fieldH0 and microwave frequency f at temper-
atures (a),(b) T = 280 K and (c),(d) T = 282 K below the compensation temperature
Tcomp = 288 K and (e),(f) T = 294 K above the compensation point. The external
magnetic field is either applied along (a),(c),(e) the effectively axially symmetric
(EAS) direction (ϕ = 90°) or along (b),(d),(f) the axial symmetry broken (ASB)
direction (ϕ = 0°). The resonance visible at low magnetic fields is stemming from
the setup and is present in all temperature regions. The dashed lines are the
results from the numerical simulations where the orange line corresponds to the
high frequency and the black line to the low frequency branch (see Section 3.5.3).

observe two resonances close to each other. The spectra can be fitted by modifying
Eq. (3.16) to account for two resonances as follows

∂DS21/∂H0|H0 =
2∑
i=1

[
A′i

χi(ω,H0 + ∆H)− χi(ω,H0 −∆H)
(A′iχi(ω,H0) + 1) ·∆H

]
+ C, (3.17)

where we allow for a complex linear offset C = C0 + C1 · ω and use the following
form of the susceptibility [100]

χi (ω,H0) = γµ0|M | (|γ′|µ0H0 − i2κi)
ω2
i − ω2 − iω 2κi

(3.18)

with |γ′| the gyromagnetic ratio and |M | the magnetization. By fitting the data to
Eq. (3.17), we extract the resonance frequencies f1 and f2 of the two observed
resonances, their difference ∆fres and their linewidths κ1 and κ2. In Fig. 3.6(b) we
show corresponding data and fits for the ASB direction ϕ = 0° and µ0H0 = 0.65 T.
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Fig. 3.6. (a),(b) Broadband ferromagnetic resonance spectra obtained at T = 282 K and
fixed magnetic field strengths applied along the (a) effectively axial symmetric (EAS)
direction in the (111)-plane (ϕ = 90°) at µ0H0 = 0.58 T and along the (b) axial
symmetry broken (ASB) direction (ϕ = 0°) at µ0H0 = 0.65 T. The solid lines are
fits to Eq. (3.17). The arrows indicate the resonance frequencies and ∆fres their
difference. (c),(d) Mode frequencies as a function of the magnetic field strength
where the open circles denote the extracted resonance frequencies. The dashed
blue line are results from the numerical simulations and the dotted red curve is the
result from the analytical model. The solid gray lines in (d) represent the uncoupled
case taken from the analytical solution in (c) where ϕ = 90°. The vertical dashed
line indicates the magnetic field, where the frequency traces of ∂DS21/∂H0 from
(a) and (b) are taken from, respectively. (e),(f) Linewidths κ/2π of the spin-up κ↑
and spin-down κ↓ modes, and resonance frequency splitting ∆fres/2 as a function
of H0. The coupling strength gc/2π is given by the minimum of ∆fres/2.
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Again, two resonances are observed but in contrast to the data in Fig. 3.6(a), the
resonances are now clearly separated.

We repeat this procedure for a range of magnetic field magnitudesH0 applied along
the two directions (EAS and ASB) of interest. The obtained resonance frequencies
are shown as symbols in Figs. 3.6(c) and (d). In the EAS case shown in Fig. 3.6(c),
we clearly observe two resonance modes. The first one follows ∂fres/∂H0 > 0 and is
the spin-up mode f↑ and the second resonance with ∂fres/∂H0 < 0 is the spin-down
mode f↓. The vertical dashed line corresponds to µ0H0 = 0.58 T where ∆fres is
minimized and the data shown in Fig. 3.6(a) is obtained. The blue dashed and
red dotted lines are the solutions from numerical and analytical calculations to the
Landau-Lifshitz equation and are in excellent agreement with the measured data. We
will discuss the analytical calculations and the numerical simulations in Sections 3.5.2
and 3.5.3 in detail.
When applying H0 along the ASB axis, we obtain the resonance frequencies

shown in Fig. 3.6(d). Here, we observe a more complex evolution of the resonance
frequencies for two reasons. First, for µ0H0 / 0.4 T, the equilibrium net magnetization
is titled away fromH0 and varies with H0 (cf. Section 3.4). Second, and crucially, f↑
and f↓ exhibit a pronounced avoided crossing. The dashed vertical line indicates the
value of H0 of minimal ∆fres where also the data shown in Fig. 3.6(b) is taken from.

We plot ∆fres and the half-width-at-half-maximum (HWHM) linewidths κ↑ and κ↓ as
a function of the magnetic field H0 in Figs. 3.6(e) and (f) for the EAS and ASB cases,
respectively. We find the mutual coupling strength gc/2π = min |∆fres/2| = 0.92 GHz
for the EAS case and gc/2π = 6.38 GHz for the ASB configuration. In the former
case, gc . κ↑,κ↓ [Fig. 3.6(e)] and thus the system is in the weak to intermediate
coupling regime. For the ASB case, the linewidths κ are at least three times smaller
than gc. Hence the condition for strong coupling gc > κ↑,κ↓ is clearly satisfied.
Furthermore, the extracted coupling rate of gc/2π = 6.38 GHz is comparable to the
intrinsic excitation frequency fr = (f1 + f2)/2 = 17.2 GHz. The normalized coupling
rate η = gc/(2πfr) [56, 101] evaluates to η = 0.37. Consequently, we observe
magnon-magnon hybridization in the ultrastrong coupling regime [102]. Importantly,
the measured gc is the intrinsic coupling strength between spin-up and spin-down
magnons and is independent of geometrical factors, in particular, sample volume
or filling factor. This is in stark contrast to the magnon-photon or cavity-mediated
magnon-magnon coupling typically observed in spin cavitronics [56, 63–67]. For the
sake of completeness we can also calculate the normalized coupling rate for the
temperatures T = 280 K < Tcomp and T = 294 K > Tcomp as shown in Figs. 3.5(b)
and (f). We extract η(280 K) = 0.24 and η(294 K) = 0.35 so the system remains in
the ultrastrong coupling regime.

In a last experiment, we want to demonstrate the tunability of the coupling strength
as we have discussed the extreme cases so far. We rotateH0 with fixed magnetic

36 Chapter 3 Magnon-Magnon Coupling in the Compensated Ferrimagnet
Gadolinium Iron Garnet



9 04 50- 4 5- 9 0
0
5

1 0
1 5
2 0
2 5

f (
G

H
z)

�  ( ° )

� 0 H 0 = 0 . 5 T

A S B E A S( a ) T = 2 8 0 K

9 04 50- 4 5- 9 0
�  ( ° )

- 7

0

7

Re
(∂

D
S 21

/∂
�)

 (1
0-3

/°
)

� 0 H 0 = 0 . 8 T

A S B E A S( b )

Fig. 3.7. Measured broadband ferromagnetic resonance spectrum at fixed magnetic field
magnitude at (a) µ0H0 = 0.5 T (below the hybridization point) and (b) µ0H0 = 0.8 T
(above the hybridization point) as a function of the magnetic field orientationH0
in the (111)-disk plane parameterized by the in-plane angle ϕ at T = 280 K. The
dashed lines are the results from the numerical simulations where the orange line
corresponds to the high frequency and the black line to the low frequency branch
(see Section 3.5.3).

field magnitude in the (111)-plane at T = 280 K as a function of the in-plane angle ϕ
with a step size of ∆ϕ = 1° as defined in Fig. 3.3. For the microwave background
correction of the measure S21 parameter we adapted the “derivative divide” algorithm
for angle rotations at fixed magnetic field and calculate

∂DS21/∂ϕ = S21(ω,H0,ϕ+ ∆ϕ)− S21(ω,H0,ϕ−∆ϕ)
S21(ω,H0,ϕ) ·∆ϕ . (3.19)

The background corrected transmission parameter as a function of the angle ϕ

is shown in Fig. 3.7(a) and (b) for µ0H0 = 0.5 T and µ0H0 = 0.8 T, respectively.
These magnetic field magnitudes correspond to H0 slightly below and above the
hybridization point at T = 280 K as the magnetic field magnitude H0 where the
frequency splitting is smallest is slightly shifting between the EAS and ASB direction
[Fig. 3.5(a) and (b)]. For both H0 values, we observe two resonances for each value
of ϕ, where the lower resonance frequency depends strongly on ϕ while the upper
one is nearly independent of ϕ. Overall, these results strongly indicate a ϕ-dependent
level repulsion that allows to continuously adjust the coupling strength. The dashed
lines in Fig. 3.7 are the results from numerical simulations which we will discuss in
Section 3.5.3.

As already discussed in Section 3.2, it requires two key ingredients to observe
mode hybridization in the (ultra-)strong coupling regime which are (i) nonzero mode
coupling arising from the violation of spin conservation by an axial anisotropy [84]
and (ii) a strong amplification of the otherwise weak coupling via an exchange-
enhancement effect characteristic of (quasi-)antiferromagnetic magnons [87]. In the
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next Section we will address the first point (i) and discuss the anisotropy landscape
of GdIG while in Section 3.5 we will model the data and discuss the physics of
exchange-enhancement.

3.4 Nonzero Mode Coupling, Anisotropy Landscape
For the calculation of the free energy density F and consequently the anisotropy
landscape, we follow the approach already presented in Section 2.1 and sum over all
relevant energy contributions in the system. Additionally, we need to account for the
energies of both sublattice magnetizations which we denote with the subscripts A
and B which refer to the Gd- and Fe-sublattice, respectively. The free energy density
of GdIG then reads

F =− JABMA ·MB

− µ0H0 · (MA +MB)

+ µ0
2 (MA +MB)

↔
N (MA +MB)

+Kc1 (α2
Aβ

2
A + α2

Aδ
2
A + β2

Aδ
2
A + α2

Bβ
2
B + α2

Bδ
2
B + β2

Bδ
2
B)

+Kc2 (α2
Aβ

2
Aδ

2
A + α2

Bβ
2
Bδ

2
B).

(3.20)

The first term is the exchange interaction energy between the two sublattice mag-
netizations and is characterized by the intersublattice antiferromagnetic exchange
constant JAB. To keep the notation and the following equations simple, we write
J = JAB.3 The second term is the Zeeman energy of the two sublattice magne-
tizations and the third term is the demagnetization tensor

↔
N for the disk-shaped

sample [42]. Finally, the fourth and fifth term are the first and second order terms of
the magnetocrystalline cubic anisotropy with the 1st and 2nd order cubic anisotropy
constants Kc1 and Kc2. In this context, αA,B, βA,B and δA,B are the direction cosines
of the magnetizationsMA,B with respect to the cubic (100)-axes.

It is known for GdIG that the cubic anisotropy has its easy axis along (111) and the
hard axis along (100) [103]. The free energy density F is plotted in Fig. 3.8(a) using
the parameters compiled in Tab. 3.2, which were adjusted for the numerical simulation
to fit the measured data (see Section 3.5.3) and setting the sublattice magnetizations
exemplarily toMB0 = 0 andMA0 = 10 mT/µ0. The z-axis corresponds to the [111]-
direction. In the top-down view shown in Fig. 3.8(b) it becomes evident that the
[111]-direction is a crystalline easy axis and that the crystalline hard axes in the
upper and lower plane are shifted by 60° with respect to each other. For the geometry
relevant to our experiments, where the [111]-direction is pointing perpendicular to
3Note that in Eq. (2.4), Jij is the exchange constant between the ith and jth spins. Here, JAB describes
the intersublattice exchange constant between the two magnetizations MA and MB. Therefore,
JAB is equivalent to an averaged mean field constant [28, 38].
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Fig. 3.8. Free energy density of gadolinium iron garnet (GdIG) at T = 282 K and H0 = 0
calculated with Eq. (3.20). The sublattice magnetizations are set to MB0 = 0
andMA0 = 10 mT/µ0, respectively. (a) 3D-illustration, (b),(c),(d) two-dimensional
projection along the (b) z-axis (disk normal), (c) y-axis and (d) x-axis. (e) Free
energy density F as a function of the in-plane angle ϕA in the xy-plane (disk-plane,
θA = 90°). The angles φA and θA denote the orientation ofMA and are analogously
defined to ϕ and θ in Fig. 3.3. The crystallographic axes of the GdIG-disk are
indicated at the top. For Kc2 = 0 (orange line) the (111)-disk plane is isotropic. The
blue arrows denote the axial symmetry broken axis (ASB) and effectively axially
symmetric axis (EAS).

the disk plane, we consider the change of the free energy F in the disk plane as
a function of the in-plane angle ϕ as shown in Fig. 3.8(e). For Kc2 = 0, the free
energy landscape is isotropic and for Kc2 6= 0 local easy and hard axes emerge.
Nevertheless, the second order cubic anisotropy has a negligible contribution to the
magnon-magnon coupling as it does not further break the rotational symmetry of the
free energy density.

After this discussion of the free energy density, we want to go back to the question
why we observe a nonzero mode coupling between the spin-up and spin-down
magnons and what the physical origin of the tunability of the coupling strength shown
in Fig. 3.7 is. Therefore, we project the three-dimensional free energy density plotted
in Fig. 3.8(a) to a two-dimensional colormap as a function of the angles θA and ϕA
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which is the two-dimensional projection of the 3D-landscape shown in Fig. 3.8. The
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and θ in Fig. 3.3. The dashed horizontal line at θA = 90° corresponds to the (111)-
disk plane. The orange and white arrows at the effectively axially symmetric (EAS)
(ϕA = 90°) and axial symmetry broken (ASB) (ϕA = 0°) orientations point towards
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denotes a crystalline hard axis (HA) and [1̄11] a crystalline easy axis (EA).

of the Gd-sublattice magnetization as shown in Fig. 3.9. The applied field directions
for the EAS and ASB cases are indicated by the two grey dots. The sublattice
magnetizations as well as the magnon spin axis are assumed to be collinear with
the applied field.
As we will derive rigorously in the following Section 3.5, coupling between the

opposite-spin magnons is proportional to the degree of anisotropy in the free energy
about the magnon spin axis [84]. Moreover, since they represent small and symmetric
deviations of magnetization about the equilibrium configuration, the magnons can only
sense anisotropy variations that are local and averaged over antiparallel directions.
Considering the ASB configuration first, if the magnetization deviates from equilibrium
along the orange (white) arrows, it experiences an increase (a decrease) in energy.
Therefore, the free energy change depends on the direction of deviation and the
symmetry about the magnon spin axis in this configuration is clearly broken by
anisotropy. This causes a non-zero mode-coupling in the ASB configuration. In
contrast, for the EAS configuration, an averaging over the two antiparallel directions
results in a nearly vanishing and direction-independent change in the free energy,
thereby effectively maintaining axial symmetry. This is prominently seen when
considering the direction collinear with the orange and white arrows, which nearly
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Fig. 3.10. Measured magnetic field-dependence of the total magnetizationMtot along the
EAS (orange) and ASB direction (purple) at T = 282 K. The inset show the SQUID
magnetometry measurement with the full magnetic field range µ0|H0| ≤ 2.0 T.
From the shape of the hysterisis we can determine the EAS-direction to be a local
easy axis and the ASB-direction to be a local hard axis (for details see main text).

cancel each other’s effect on averaging. This configuration is thus named effectively
axially symmetric (EAS). The corresponding degree of axial anisotropy, and thus
mode-coupling, varies smoothly with ϕ between these two extreme cases.

We additionally want to highlight that the second order cubic anisotropy con-
stant Kc2 is not the (dominant) cause for the re-orientation of the magnetization for
small external magnetic fields applied along the ASB direction. In the ASB configu-
ration and for sufficiently small external magnetic fields, the antiparallel sublattice
magnetizations can rigidly rotate towards the adjacent easy [111]-equivalent direc-
tions. This re-orientation is the cause of the minimum in f vs. H0 in Fig. 3.6(d). In
the EAS configuration a rigid (uncanted) rotation of both antiparallel sublattice mag-
netizations towards the adjacent [111] directions is not possible and consequently
we do not observe such re-orientation phenomena in Fig. 3.6(c). Thus, the EAS
and ASB directions are local magnetically easy and hard directions even for Kc2 = 0
where they are energetically degenerate (see Fig. 3.8(e)).

In order to see wether our assumption of local easy and hard axes is true, we
measured the magnetic field dependence of the total magnetizationMtot at T = 282 K
as shown in Fig. 3.10. We observe the expected hysteresis loop due to the switching
of the total magnetization. Comparing the two directions in the (111)-plane of the
GdIG-disk (EAS and ASB), it can be seen from the shape of the hysteresis that
along the EAS, the curve “jumps” at the coercive field as expected for an easy axis
in a Stoner-Wolfarth model [104]. Along the ASB direction, the hysteresis is more
rounded at the coercive field which in comparison to the EAS direction is a magnetic
harder axis. This small difference stems from the small cubic anisotropy as discussed
above.
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Now we understand why we observe mode hybridization and where the symmetry
breaking required for mode coupling is coming from. The second question left is the
origin of the large coupling strength. We will answer this in the next Section.

3.5 Exchange-Enhancement, Modelling of Data
In this Section, we will develop a theoretical model to describe the observed mode
hybridization phenomena. To this end, we will neglect dissipative effects and solve
the Landau-Lifshitz equation [Eq. (2.17)] for the two-sublattice system by calculating
the effective field Heff which depends on the free energy F of the system [Eq. (2.2)].
Using the free energy density F given by Eq. (3.20) we encounter the problem that
especially the mathematical form of the cubic anisotropy leads to not analytically
solvable equations. In this sense, we need to make simplifications and assumptions
to get an analytical solution.
We will structure this Section as follows: First, we will establish the simplest

analytical model to explain the mode coupling. Then we will present a sophisticated
analytical model developed by Akashdeep Kamra (NTNU Trondheim, QuSpin) and
Wolfgang Belzig (University of Konstanz) to fully explain the so-called exchange
enhancement. In a last step, we consider the full free energy density F and solve
the Landau-Lifshitz equations numerically.

3.5.1 Minimal Analytical Model
In this Section, we develop a minimal model to describe the origin of the mode
hybridization. As discussed in the previous Section, mode coupling requires to break
the axial symmetry. We will therefore reduce the number of terms in the free energy
density F in Eq. (3.20) and only consider the terms stemming from the exchange and
Zeeman interaction (first and second term in Eq. (3.20)). Furthermore, we introduce
an uniaxial symmetry with the uniaxial anisotropy constant Ku which is orthogonal
to the equilibrium orientation. This means that Ku = 0 corresponds to the absence
of symmetry breaking equivalent to the effectively axial symmetric (EAS) case and
Ku 6= 0 to the case of broken axial symmetry which is analog to the axial symmetry
broken (ASB) situation. With these assumptions the free energy density Fs takes the
simple form

Fs = −JMA ·MB − µ0H0 · (MA +MB) +Ku

(
m2
xA +m2

xB
)
. (3.21)

Note that J < 0 for antiferromagnetically coupled sublattices and, hence, the first
terms results in a reduction of the free energy density forMA antiparallel toMB. We
assume that the equilibrium orientation of the sublattice magnetizations is along the
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z-direction parallel to the external magnetic field H0 = H0 êz and the precession
of the magnetization is in the xy-plane. We write for the normalized sublattice
magnetizations

mA,B =
MA,B
MsA,sB

=

mxA,xB(t)
myA,yB(t)
mzA,zB

 . (3.22)

We calculate the effective field using Eq. (2.2) for each sublattice magnetization,
respectively, and include the external oscillating driving field hrf(t) oscillating in the
xy-plane. We obtain

µ0Heff,{A,B} = −∇mA,BFs + µ0hrf,{A,B}(t)

=

µ0hxA,xB(t)− 2KumxA,xB(t)
MsA,sB

+ JMsB,sAmxB,xA(t)
µ0hyA,yB(t) + JMsB,sAmyB,yA(t)

µ0H0 + JMsB,sAmzB,zA

 (3.23)

and solve the coupled Landau-Lifshitz equation [Eq. (2.17)]

dmA
dt = −γµ0mA ×Heff,A

dmB
dt = −γµ0mB ×Heff,B

(3.24)

using a harmonic Ansatz [Eq. (2.21)] and assuming that the gyromagnetic ratio γ is
the same for both sublattices. We furthermore take into account that the z-component
of the Gd-sublattice is pointing along the external field mzA = 1 and that of the Fe-
sublattice is antiparallel to the static magnetic field mz,B = −1 as the magnitude
of the sublattice magnetization of the Gd-sublattice is larger at the temperature of
interest. Solving Eq. (3.24) results in the characteristic equation [Eq. (2.23)]

hrf = ↔
χ
−1 (m�Ms)

hxA

hyA

hxB

hyB

 = ↔
χ
−1


mxAMsA

myAMsA

mxBMsB

myBMsB


(3.25)

with the Polder-susceptibility tensor
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↔
χ
−1 = 1

µ0


2Ku+µ0H0MsA−JMsAMsB

MsA
− iω

γ −JMsB 0
iω
γ −JMsB + µ0H0 0 −JMsB

−JMsA 0 2Ku−µ0H0MsB−JMsAMsB
MsB

iω
γ

0 −JMsA − iω
γ −JMsA − µ0H0

 .
(3.26)

The resonance frequency ω = 2πf is now given by det
(

↔
χ
−1) != 0 which leads to

two physical solutions with ω > 0. The two results for the resonance frequency f are
shown in Fig. 3.11 for MsA = 0.2 T/µ0, MsB = 0.195 T/µ0 and J = −2.5 V s/(A m).
We distinguish the cases where we assume to have no axial symmetry breaking
with Ku = 0 (dashed lines) corresponding to the EAS case, and the situation where
we have axial symmetry breaking and set Ku = 500 J/m3 (solid lines). As shown in
Fig. 3.11 our simple model is already sufficient to observe the mode hybridization.

From this simple analytical model we can derive two other results. The first result
is the field of hybridization Hhybr which we can derive from the crossing point of the
resonance frequencies fres,i with the uniaxial anisotropy constant turned off Ku = 0.
It is determined by fres,1(Hhybr)

!= fres,2(Hhybr). The hybridization field is given by

µ0Hhybr = 1
2 J (MsB −MsA) . (3.27)

For our used parameters given above, we calculate µ0Hhybr = 0.5 T.
The second result is an analytical expression for the coupling rate geff which is

given by half the difference of the resonance frequencies at the magnetic field of
hybridization geff/(2π) = 1/2(fres,2−fres,1)|Hhybr . From this we derive for the coupling
strength

geff
2π = 1

4
γ
√
|J |√

MsAMsB

[(
2
√
K2

u
(
M4

sA + 14M2
sAM

2
sB +M4

sB
)

+2Ku(MsA +MsB)2 − JMsAMsB(MsA −MsB)2
)

−
(
−2
√
K2

u
(
M4

sA + 14M2
sAM

2
sB +M4

sB
)

+2Ku(MsA +MsB)2 − JMsAMsB(MsA −MsB)2
)] 1

2
.

(3.28)

In the limit of an antiferromagnet MsA = MsB and J < 0, the coupling strength
simplifies to the expression

geff
2π = γ

√
Ku|J |. (3.29)
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We see from the result above that the uniaxial anisotropy is multiplied or amplified by
the exchange interaction which is for the given physical system in the collinear state
generally a large quantity compared to the anisotropy constant. Furthermore, we note
that in the limit of a quasi-antiferromagnet like our GdIG close to its compensation
temperature, Eq. (3.29) is a good approximation and already shows the exchange-
enhancement.

3.5.2 Full Analytical Model

We have seen in the previous section that a uniaxial symmetry is sufficient to observe
mode hybridization. In the following, we introduce a theoretical model developed by
Akashdeep Kamra (NTNU Trondheim, QuSpin) and Wolfgang Belzig (University of
Konstanz). This model is based on squeezed antiferromagnetic magnons leading to
exchange-enhancement. In this section, we will only give a short overview and do not
perform the full calculations involved. Here, we refer the reader to the supplemental
information of Ref. [72] for the full classical calculation and Ref. [87] for the full
quantum-mechanical description. We emphasize that the classical and quantum-
mechanical description are equivalent and lead to the same results.

Gadolinium iron garnet has a cubic magneto-crystalline anisotropy which leads to
non-analytically solvable equations. Therefore, the cubic anisotropy is approximated
by two uniaxial anisotropies. One uniaxial anisotropy to capture the easy and hard
axis anisotropy which leads to the re-orientation of the equilibrium magnetization
direction with the external magnetic field applied along the ASB direction. A second
weak uniaxial anisotropy that breaks the axial symmetry about the applied field
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direction which is required to observe the mode hybridization. The free energy
density Fm within the analytical model takes the form

Fm =− µ0H0(MzA +MzB)∓KAM
2
zA ∓KBM

2
zB − JMA ·MB

+Kxa
(
M2
xA +M2

xB
)

+Kya
(
M2
yA +M2

yB
)

+ µ0
2 (MxA +MxB)2,

(3.30)

where J (< 0) parameterizes the inter-sublattice antiferromagnetic exchange,KA,B (>
0) account for easy-axis (upper sign) and hard-axis anisotropies (lower sign) along
the applied field H0êz, Kxa,ya anisotropy contributions allow for the axial symmetry-
breaking about the z-axis when Kxa 6= Kya, and the last term stems from shape
anisotropy of our disk shaped sample corresponding to the demagnetization ten-
sor elements Nxx = 1, Nyy,zz = 0. We further assume the following hierarchy of
interactions J � KA,B � |Kxa,ya|.

The equilibrium configuration is determined by minimizing the free energy den-
sity Fm with respect to the spatially uniform sublattice magnetization directions. With
the assumed energy hierarchy, the axial symmetry-breaking Kxa,ya minorly affects
the equilibrium state. We again solve the Landau-Lifshitz equation [Eq. (2.17)] by
minimizing the free energy density Fm

∂MA,B
∂t

= −|γA,B|
[
MA,B ×

(
− ∂Fm
∂MA,B

)]
. (3.31)

We define a new coordinate system with the static magnetizations (nearly) collinear
with êz′ which is set by the equilibrium configuration. Using a harmonic ansatz
Mx′A = M∼x′Ae

iωt and a circular basis via M∼A± = M∼x′A ± iM∼y′A, the eigenvalue
problem can be formulated in terms of 4× 4 matrices

(
P̃0 + P̃a + P̃d

)
M̃ = 0, (3.32)

with the magnetization vector M̃ᵀ ≡
[
M∼A+ M∼B+ M∼A− M

∼
B−
]
. Theses 4× 4 matrixes

describe the dynamics and eigenmodes and are given by

P̃0 =


(−ω + ΩA) −ΩE1 0 0
−ΩE2 (ω + ΩB) 0 0

0 0 (ω + ΩA) −ΩE1

0 0 −ΩE2 (−ω + ΩB)

 , (3.33)

P̃a =


ωuA 0 ωcA 0

0 ωuB 0 ωcB

ωcA 0 ωuA 0
0 ωcB 0 ωuB

 , (3.34)
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P̃d =1
2


ωsA ωsA ωsA ωsA

ωsB ωsB ωsB ωsB

ωsA ωsA ωsA ωsA

ωsB ωsB ωsB ωsB

 (3.35)

with the definitions

K̄a ≡ (Kxa +Kya)/2,

∆K̄a ≡ (Kxa −Kya)/2,

ΩA ≡ |γA|(−JMsB ± 2KAMsA + µ0H0),

ΩB ≡ |γB|(−JMsA ± 2KBMsB − µ0H0),

ΩE1 ≡ |γA|JMsA,

ΩE2 ≡ |γB|JMsB,

ωuA,uB ≡ 2|γA,B|K̄aMsA,sB,

ωcA,cB ≡ 2|γA,B|∆K̄aMsA,sB,

ωsA,sB ≡ |γA,B|µ0MsA,sB,

(3.36)

and additionally account for a field-dependent Gd-magnetization using MsA =
M0A + χaH0 determined from SQUID-magnetometry (cf. Fig. 3.10) and for the
Fe-magnetization MsB = M0B. The plus sign corresponds to the EAS case and
the minus sign to the ASB situation. Note that for the ASB case these dynamical
matrices are only valid in the high field regime where the sublattice magnetization
is collinear with the magnetic field. In the low field regime where we observe the
re-orientation [Fig. 3.6(d)] it is necessary to account for a finite angle between the
sublattice magnetizations and the applied magnetic field where the sublattice mag-
netizations rotate to align with the magnetic field with increasing field magnitude. We
will omit this discussion for simplicity and refer to Ref. [72] for the full discussion.

The dynamic matrix P̃0 is block-diagonal in 2× 2 sub-matrices and represents the
two uncoupled eigenmodes delocalized over the two sublattices. P̃a captures the
off-diagonal, anisotropy-mediated contributions that cause an exchange-enhanced
coupling between the two modes. P̃d represents the shape anisotropy or dipolar
interaction terms which are not exchange-enhanced, and thus do not significantly
contribute to the observed coupling. This is because the 2 × 2 sub-matrices that
constitute P̃d have a vanishing determinant. The corresponding physical interpretation
is that close to compensation, i.e. whenM0A ≈M0B, the static net magnetization
nearly vanishes and only the small magnetic moment resulting from the dynamics
causes dipolar interaction or shape anisotropy.

The resonance frequency f = ω/(2π) is given by solving the eigenvalue problem
Eq. (3.32). The result of the analytical calculations with the parameters summarized
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Tab. 3.1. Parameters used in the analytical calculations for T = 282 K. For parameters
with adjusted reference value (adj.), adjustments were less than 10% for better
agreement with experimental data.

Variable Value Unit Source
M0A 1.602× 105 A/m from Fig. 3.1(b), adj.
M0B 1.576× 105 A/m from Fig. 3.1(b), adj.
|γA| 1.754× 1011 1/(T s) [78, 105]
|γB| 1.773× 1011 1/(T s) [78, 105]
KA 7.2× 10−9 V s/(A m) [105], adj.
KB 2× 10−8 V s/(A m) [105], adj.
Ka 3.58× 10−8 V s/(A m) adj.
J −1.44× 10−4 V s/(A m) [105], adj.
χa 0.0078 from Fig 3.10, adj.

in Tab. 3.1 is shown in Fig. 3.6(c) and (d) for the EAS and ASB case, respectively. The
analytical results are in good agreement with the experimental data. All parameters
listed in Tab. 3.1 are either measured or taken from literature. Furthermore, the
parameters in the table show that the anisotropy parameters employed to reproduce
the experimental curves do not respect the hierarchy of interactions assumed, in
order to enable an analytical solution, herein. This underlies the relatively minor
deviations of the eigenmode frequencies evaluated within our analytic model from
their experimentally measured counterparts.
In this analytical model, it is possible to give an analytical expression for the

exchange-enhanced frequency splitting. Therefore, the eigenvalue problemEq. (3.32)
is simplified by neglecting the contribution of the shape anisotropy P̃d as it is not
exchange-enhanced and therefore has only a negligible influence. Without any
derivation (see Ref. [72]) the frequency splitting can be analytically calculated close
to the compensation temperature and is given by

2π∆fres = ωc

√
16|J |M2

0
|J | (M0A −M0B)2 + 16KM2

0
(3.37)

with the bare coupling rate ωc = |γ||Ka|M0 considering γA ≈ γB ≡ γ and M0A ≈
M0B ≡M0. The maximum enhancement, given by

√
|J |/K, is achieved at compen-

sation of the two-sublattices (M0A = M0B). We find that the small bare coupling rate
2πωc = 160 MHz originating from the weak cubic anisotropy is greatly enhanced to
several GHz due to the exchange-enhancement effect [78, 87–89].

This (exchange-)enhancement has its origin in strong antiferromagnetic quantum
fluctuations [87] which we want to briefly discuss in the following. A schematic depic-
tion of the antiferromagnetic eigenmodes is shown in Fig. 3.12. The antiferromagnetic
ground state is a superposition of states with equal number of spin-up and spin-down
sublattice magnons with spin±~. The net spin of the ground state is zero. The excited
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Fig. 3.12. Schematic depiction of the quantum-mechanical wavefunction of the ground and
excited spin-up state of an (quasi-)antiferromagnet. An empty ket denotes the
perfect antiferromagnetic state while the blue and orange arrows are spin-up and
spin-down sublattice magnons. Figure adapted from [87, 106].

state spin-up magnon state is a superposition of N spin-up and N − 1 spin-down
magnons where N is a large number [87]. Despite the unit net spin, the number of
spins on each of the sublattices is rather larger (∼

√
|J |/K). Any interaction which is

mediated by the sublattice spin, instead of the net spin, is therefore amplified by the
large sublattice spin (∼

√
|J |/K) [87]. This effect is termed exchange-enhancement

since it is mediated by and increases with the antiferromagnetic exchange interac-
tion. It is evident from Eq. (3.30) that the anisotropy-mediated mode-coupling is
governed by the sublattice magnetizations or spins (free energy ∼M2

xA +M2
xB) and

not the net magnetization or spin (∼ (MxA + MxB)). Thus, the mode-coupling is
accordingly amplified via the exchange-enhancement effect described by Eq. (3.37)
when the ferrimagnet is close to its compensation temperature and behaves like an
antiferromagnet.

3.5.3 Numerical Model
In this last section, we will solve the full free energy density F described by Eq. (3.20)
numerically. We herein follow the approach by Dreher et al. [37]. In the first step,
we introduce a new coordinate system which we will refer to as the 1,2,3-coordinate
system where the equilibrium direction of the magnetization defines the 3-direction
and the 1- and 2-axes are along the dynamic components. In Fig. 3.13 the coordinate
system with the real world coordinate axes x,y,z and the transformed coordinate
system 1,2,3 are schematically depicted. In order to transform the two sublattice
magnetizations we need to define a transformation matrix ÛA. Our transformation
rule for the two-sublattice magnetizations, respectively, is then [37]
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M1,2,3
A,B = ÛA,B ·Mx,y,z

A,B ,M1A,1B

M2A,2B

M3A,3B

 =

cos θA,B cosϕA,B − sinϕA,B sin θA,B cosϕA,B

cos θA,B sinϕA,B cosϕA,B sin θA,B sinϕA,B

− sin θA,B 0 cos θA,B

 ·
MxA,xB

MyA,yB

MzA,zB

 .
(3.38)

On a more technical side, we transform the direction cosines αA,B, βA,B and δA,B in
the free energy density F , so the easy axis of the magnetocrystalline anisotropy (111)
coincides with the z-axis of the coordinate system and reflects the sample geometry
(cf. Fig. 3.13). To this end, we use the pre-defined Wolfram Mathematica function
RotationTransform[{{0, 0, 1}, {1, 1, 1}}] which calculates the rotation matrix ÛR to
transform the vector z = [0 0 1]ᵀ to the direction of the vector [1 1 1]ᵀ. For the
transformed direction cosines α′A,B, β′A,B and δ′A,B we calculate

α
′
A,B
β′A,B
δ′A,B

 = ÛR ·

αA,B

βA,B

δA,B

 =


1
6
(
3 +
√

3
) 1

6
(
−3 +

√
3
) 1√

3
1
6
(
−3 +

√
3
) 1

6
(
3 +
√

3
) 1√

3
− 1√

3 − 1√
3

1√
3

·
sin θA,B cosϕA,B

sin θA,B sinϕA,B

cos θA,B


(3.39)

and replace the direction cosines in Eq. (3.20) with α′A,B, β′A,B and δ′A,B, respectively.

By minimizing the free energy density F for each magnetic field magnitude H0

numerically, the angles θA,B and ϕA,B are determined. In order to distinguish between
the EAS and ASB case, we parameterize the external magnetic field in the lab frame
Hx,y,z

0 = |H0| [sin θH cosϕH sin θH sinϕH cos θH]ᵀ, where we set θH = 90° and for the
EAS case ϕH = 0° and for the ASB direction ϕH = 90° (cf. Fig. 3.9).

We solve the coupled Landau-Lifshitz equations given by Eq. (3.31) using a har-
monic Ansatz for the magnetizationsM1A,2B = m1,2e

iωt andM3A,3B = MsA,sB. The
lengths of theM3A,3B vectors are the saturation magnetizations MsB = M0B and
MsA = M0A + χaH0, where we account for a field-dependent Gd-magnetization.

The eigenvalue problem is formulated as h1,2,3 = ↔
χ
−1
m′1,2,3 with the inverse

susceptibility ↔
χ
−1 which is a 4 × 4 matrix, the oscillating driving field h1,2,3 =[

h1Ae
iωt h2Ae

iωt h1Be
iωt h2Be

iωt
]ᵀ and the magnetizationm′ = [m′

A m
′
B]ᵀ =

[m1A m2A m1B m2B]ᵀ. The resonance frequencies are obtained by setting
det
(

↔
χ
−1) = 0 and solving for ω = 2πf .
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Fig. 3.13. Employed coordinate systems for
the numerical simulation. The
x,y,z-coordinate system is the
real coordinate system with the
corresponding crystallographic
axes of the GdIG-crystal. The
1,2,3-coordinate system is rotated
by the angles θ and ϕ so the 3-
axis points along the equilibrium
direction of the normalized mag-
netization m which is employed
for the Gd- and Fe-sublattice in-
dicated by the subscripts A and
B. Note that the transformation of
the Fe-sublattice is equivalent to
the Gd-sublattice but not shown
in the coordinate system on the
left for clarity.

The resulting resonance frequencies
from the numerical calculations in the mag-
netic field sweep experiment with the mag-
netic field applied along the EAS and ASB
direction are shown as dashed blue lines in
Figs. 3.6(c) and (d) respectively. Addition-
ally, we performed the calculations also
for the other temperatures (T = 280 K and
T = 294 K) shown in Fig. 3.5 in dashed
black and orange lines. Furthermore, we
can also use the numerical simulation
to calculate the resonance frequencies
as a function of the magnetic field direc-
tion in the disk plane at fixed magnitude.
The resulting resonance frequencies are
shown as dashed black and orange lines in
Fig. 3.7 demonstrating the tunability of the
coupling strength. The parameters used
for the numerical calculations are listed in
Tab. 3.2. The results from the numerical
simulation are in excellent agreement with
the measurement data. Importantly, the
numerical calculations demonstrate that
the observed magnon-magnon coupling is captured by the linearized Landau-Lifshitz
equation.

As a last step we calculate the ellipticity of the dynamical magnetization precession
in the 1,2,3-frame where we will limit the calculations to the Gd-sublattice although
the calculations are equivalent for the Fe-sublattice. The calculated susceptibility ↔

χ

will be simplified to the response of the magnetizationm′ to a driving field h1,2,3 =
[h1A cos (ωt) 0 0 0]ᵀ so we only need to consider the first column of the susceptibility
tensor. The ellipticity of the magnetization precession is defined as

ε = 1−
min (|m′

A(t)|)
max

(
|m′

A(t)|
) (3.40)

which is the ratio of the shortest divided by the longest half axis of the precessional
ellipse. The determination of the minimum and maximum length of the dynamical
magnetization component is repeated for all magnetic field magnitudes H0. The
resulting ellipticity for the Gd-sublattice is shown in Fig. 3.14(a) for the field sweep
experiment at fixed magnetic field directions (cf. Fig. 3.6). An ellipticity of ε = 0
corresponds to a circular precession while a ellipticity of ε = 1 describes a linear
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Tab. 3.2. Used parameter sets for the numerical solving of the Landau-Lifshitz equation at
T = 280 K, T = 282 K and T = 294 K. For parameters with adjusted reference
value (adj.), adjustments were less than 10% for better agreement with experimental
data.

Variable Value Unit Source
M0A (280 K) 1.614× 105 A/m from Fig. 3.1(b), adj.
M0A (282 K) 1.606× 105 A/m from Fig. 3.1(b), adj.
M0A (294 K) 1.500× 105 A/m from Fig. 3.1(b), adj.
M0B (280 K) 1.568× 105 A/m from Fig. 3.1(b), adj.
M0B (282 K) 1.568× 105 A/m from Fig. 3.1(b), adj.
M0B (294 K) 1.534× 105 A/m from Fig. 3.1(b), adj.
|γA| 1.754× 1011 1/(T s) [78, 105]
|γB| 1.773× 1011 1/(T s) [78, 105]
Kc1 (280 K, 282 K) −430 J/m3 adj.
Kc1 (294 K) −300 J/m3 adj.
Kc2 (280 K, 282 K) −400 J/m3 adj.
Kc2 (294 K) −300 J/m3 adj.
J −1.40× 10−4 V s/(A m) [105], adj.
χa (280 K) 0.0079 from magnetometry, adj.
χa (282 K) 0.0077 from Fig 3.10, adj.
χa (294 K) −0.0080 from magnetometry, adj.

polarization. The solid black line corresponds to the branch of the resonance fre-
quency at lower frequencies and the orange line to the resonance frequencies at
higher frequencies which is also used in the figures with experimental data.

The point in time t where the minimum and maximum length of the dynamic
magnetization precession is observed can be used to calculate the rotation of the
precessional ellipse in the 1,2,3-coordinate system. Themode frequency as a function
of the external magnetic field is shown in Fig. 3.14(b), where the symbol size and
form encodes the ellipticity and rotation of the magnetization precession. The color
gradient indicates the hybridization from the spin-up to spin-down magnon and
vice versa. We observe for the ellipticity that magnons are linearly polarized at
the anti-crossing point, consistent with the small, but non-zero splitting observed
along the EAS direction. In the ASB case a more complicated evolution of the
ellipticity close to the hybridization point is observed. This complexity is rooted
in several factors including evolution of the equilibrium configuration, ultrastrong
nature of the hybridization, and a finite static susceptibility of the Gd-sublattice. The
linear polarization at the hybridization point is consistent with our expectations from
Section 3.2.
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Fig. 3.14. Calculated ellipticities of the Gd-sublattice magnetization precession from numer-
ical simulations. (a) Ellipticity εA shown as a function of the magnetic field H0
applied along the effectively axial symmetric (EAS) (left column) and the axial
symmetry broken (ASB) direction (right column). An ellipticity of ε = 0 corresponds
to a circular precession and ε = 1 corresponds to linear polarization. (b) Mode
frequencies as a function of the magnetic field strength with the ellipticity and
rotation of the Gd-sublattice magnetization precession encoded as elliptical points.

3.6 Summary

In conclusion, we investigated the magnetization dynamics of a compensated fer-
rimagnet gadolinium iron garnet (GdIG) single crystal. The disk-shaped sample is
placed onto a coplanar waveguide and broadband magnetic resonance is measured
using a vector network analyzer. Gadolinium iron garnet features a compensation
temperature, where the magnetizations of the two-sublattices compensate for each
other and the system mimics a “quasi-antiferromagnet”. We choose a temperature
slightly below the compensation temperature and measure the dynamic magnetic
response of the GdIG magnetization. The observed (ultra-)strong magnon-magnon
coupling between spin-up and spin-down magnons can be modelled using analytical
and numerical calculations. The calculated results are in excellent agreement with the
measurement data and explain the observed tunable coupling with axial symmetry
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breaking due to a small cubic anisotropy violating the spin conservation and, in turn,
amplifying the coupling strength by the intralayer exchange interaction.

These findings demonstrate that previously typically neglected details of the mag-
netocrystalline anisotropy can lead to giant effects on spin dynamics if they have
the appropriate symmetry. The exchange-enhanced ultrastrong magnon-magnon
coupling reported here opens exciting perspectives for studying ultrastrong coupling
effects in nanoscale devices and exploring quantum-mechanical coupling phenomena
beyond classical electrodynamics. The reported effect also enables the engineering
of novel material systems to investigate the dynamics of quasi-antiferromagnetic
magnon modes such as in tunable synthetic antiferromagnets. This physical con-
cept is not restricted to uniform modes presented herein but can also be applied to
propagating magnon modes [107].
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Magnon-Photon Coupling in
the Chiral Magnet Cu2OSeO3

4
As discussed in the previous chapter, the coupling of two physical systems has at-
tracted great attention over the last years. Strongly coupled magnon-photon systems,
where the magnitude of the effective coupling rate between the magnons and photons
in a microwave resonator exceeds their respective loss rates, become particularly
interesting. In this limit, coherent exchange of the quantized excitations is estab-
lished [22, 102]. The magnon-photon coupling in ferromagnets and ferrimagnets
has been extensively studied [55–58, 60]. The cooperativity of coupled spin-cavity
systems is a measure of the coherent exchange of excitations. The possibility to tune
the cooperativity in-situ by an external control parameter is interesting by itself and a
promising tool for applications. A large tunability can be expected at the boundaries
of different phases of the spin system. To experimentally demonstrate this concept,
we have used the skyrmion host material Cu2OSeO3, featuring several magnetic
phases in a small magnetic field and temperature window.

Skyrmions are topologically stabilized spin solitons [108–118]. They can form
ordered phases featuring a rich spectrum of collective excitations of the spin texture
known as magnons. The magnetization dynamics of skyrmion phases has been
extensively studied in the limit of weak coupling to microwave circuits [119–122].
For potential applications such as realizing novel magnetic state storage [23], it is
necessary to strongly couple the magnons to other quantized excitations such as pho-
tons [24]. While the coupling of the higher order helimagnonmodes [121] to an X-band
(9.8 GHz) photonic resonator has been demonstrated already in Cu2OSeO3 [123]
the coupling in the skyrmion lattice phase and the potential for tunable cooperativity
associated with it remained an open issue so far.

In this chapter, we report the coupling of uniform-mode excitations of the insu-
lating chiral magnet Cu2OSeO3 to microwave photons in a three-dimensional mi-
crowave cavity with a resonance frequency of 683.8 MHz. In contrast to earlier
experiments [123], the magnon-photon coupling was addressed in all magnetic
phases including the skyrmion lattice phase. We find a large coupling rate of the
breathing-mode skyrmion excitation to the cavity photons resulting in a high cooper-
ativity C = g2

eff/(κmag κres) > 50. Most importantly, the cooperativity can be tuned
values as low as 1 by changing the externally applied magnetic field magnitude by
only ∼ 10 mT.
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This chapter is structured as follows: We start with an introduction to the magne-
tization dynamics of bulk skyrmion host materials and show broadband magnetic
resonance spectroscopy to pre-characterize the used Cu2OSeO3 single crystal over
a large microwave frequency range. We will then describe the characterization of the
coupled magnon-photon systems by microwave spectroscopy experiments. To this
end, we discuss the modelling of these experiments by the input-output formalism,
allowing us to derive the expected spectrum of a microwave resonator dispersively
coupled to the magnon system. Finally, the experimental details and results of the
cavity-based magnetic resonance spectroscopy with the self-designed loop-gap res-
onator is discussed and modelled using the input-output formalism to demonstrate
the tunability of the cooperativity.

4.1 Chiral Magnets as Skyrmion Host Materials

Chiral magnets possess a broken inversion symmetry of their crystal structure, which
leads with additional strong spin-orbit coupling to the so-called Dzyaloshinskii-Moriya
interaction (DMI) [124, 125]. One class of chiral magnets are non-centrosymmetric
cubic crystals with space group P213. Prominent examples are for example MnSi,
FeGe, Fe0.8Co0.2Si or Cu2OSeO3 [116]. The Hamiltonian of the DMI reads [38]

HDMI = Dij · (Si × Sj) (4.1)

with the DMI vector Dij , which determines the strength and direction of the DMI.
The DMI leads to a canting of neighbouring spins Si,j either in clockwise or counter-
clockwise direction depending on the orientation of the DMI vector Dij . This is in
contrast to the Heisenberg exchange interaction, which, depending on the sign of
the exchange integral Jij , favors either parallel (Jij > 0) or anti-parallel alignment
(Jij < 0) of the magnetic moments. We emphasize that the DMI is not only present
in crystals or intrinsically broken crystal classes but also at interfaces and surfaces
leading to interfacial-DMI [126].

Chiral magnets feature a rich magnetic mode spectrum, which is in contrast to
the ferro- or ferrimagnets as discussed in the previous chapter. This is due to the
different relevant energy scales of the interactions, which are in descending strength
the Heisenberg exchange interaction, the DMI and higher-order spin-orbit coupling
terms such as magneto-crystalline (cubic) anisotropy [118]. The total free energy
density F of a chiral magnet is given by [116]

F = Fex + FDMI + Faniso + FZ + Fdip, (4.2)
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Fig. 4.1. (a) Magnetic phase diagram of Cu2OSeO3 extracted from broadband magnetic
resonance spectroscopy, representative for Bloch-skyrmion host materials. The
magnetic phases can be identified coming from a large magnetic fieldH0 as the field-
polarized (fp), conical (c) and helical (h) phase. Close to the critical temperature Tc
a skyrmion lattice phase (S) forms. Above Tc the system is paramagnetic (pm).
Illustration of the local magnetic moments (b) in a helical and (c) in a conical spin
texture along the helical propagation vector Q ‖H0 and (d) of the field-polarized
state. (e) Spin texture of an individual Bloch-type skyrmion, forming (f) a hexagonal
lattice in the plane perpendicular to the external magnetic fieldH0. Note that an
individual skyrmion as shown in (e) is composed of three helical spirals with pitch
vectorsQi arranged in one plane with an angle of 60° to each other. Figure adapted
from Refs. [116] and [127].

with the free energy density contributions from the exchange interaction Fex, the
DMI FDMI, magneto-crystalline anisotropy Faniso, Zeeman interaction FZ and dipolar
interaction Fdip. A representative magnetic phase diagram of a chiral magnet is
shown in Fig. 4.1(a), which in this particular case is extracted by broadband magnetic
resonance (BMR) spectroscopy of a Cu2OSeO3 single crystal with the magnetic
field applied H0 ‖ [100], which is used in the experiments described below (cf.
Section 4.3). The magnetic moments in the chiral magnet order below a critical
temperature Tc. For T > Tc, the magnetic moments in the system are disordered
and the system is in a paramagnetic state (pm). Below Tc and at low magnetic
fields H0, the magnetic moments in the system order in the helical phase with the
spins aligned in a periodic helix along the pitch vector Q as depicted in Fig. 4.1(b).
At low magnetic fields the orientation of the pitch vector Q is determined by the
magnetic anisotropy [128–130]. With the pitch vector along the z-direction Q = Qêz

and using the continuum approximation [131], the local magnetization as a function
of the position vector r = [x y z]ᵀ is given by [108, 121]

mH(r,Q) = êx cos (Q · r) + êy sin (Q · r) . (4.3)

This equation is used to calculate the spin alignment shown in Fig. 4.1(b).
With increasing magnetic field, the magnetic moments in the helix tilt towards the

pitch vector Q, which at the critical field points along the external magnetic field Q ‖

4.1 Chiral Magnets as Skyrmion Host Materials 57



H0 as depicted in Fig. 4.1(c). In this so-called conical phase, the magnetic moments
have a finite projection along the external magnetic field leading to a finite macroscopic
magnetization. Assuming the magnetic field to point along the z-directionH0 = H0êz

and consequently the pitch vector Q parallel to it, the magnetization as a function of
the position vector reads [121, 127]

mC(r,Q) = cos θ êz + sin θmH, (4.4)

with cos θ = H0/Hc2 and the critical magnetic field Hc2. Above Hc2 the magnetic field
aligns all magnetic moments parallel toH0, so the system is in the field-polarized
state (fp) similar to the ferro- or ferrimagnetic state. The schematic alignment of the
magnetic moments in the system is depicted in Fig. 4.1(d). Close to the critical tem-
perature Tc a topologically-protected skyrmion lattice phase forms due to fluctuations
close to Tc. A skyrmion can be described as a superposition of three helices with
equal chirality and pitch length with a relative angle of 120° in the plane perpendicular
to the applied magnetic field [108, 132]. The magnetization of a skyrmion in the
continuums approach can be described by [108]

mS(r) = mf +
3∑
i=1

mH (r + ∆ri,Qi) , (4.5)

where mf is a finite uniform magnetization component and Qi · ∆ri is the phase
of a single helix [132]. The arrangement of the spins in a single, isolated skyrmion
is depicted in Fig. 4.1(e) while the complete skyrmion lattice with the hexagonal
symmetry is schematically shown in Fig. 4.1(f), calculated using Eq. (4.5). We want
to emphasize that the shown single skyrmion in Fig. 4.1(e) is a Bloch-type skyrmion
meaning that by taking a cut through the center of the skyrmion the spins are aligned
in a helix. The counterpart is the Néel-type skyrmion where the spins are aligned on
a cycloid due to the different direction of the DMI vectorD. This type of skyrmions is
prominently observed in thin-films [114, 133] or in bulk GaV4S8 [134].

Due to the periodic, long-range order of the skyrmions, they can be detected
using small angle neutron scattering (SANS) [108, 110], resonant elastic x-ray scat-
tering (REXS) [135, 136] or using real-space imaging techniques such as Lorentz
transmission electron microscopy (LTEM) [112, 137] or magnetic force microscopy
(MFM) [130, 138, 139]. The magnetization dynamics of chiral magnets and in particu-
lar the skyrmion dynamics are well understood [116, 140] and have been extensively
investigated [119–122]. In the following section, we will discuss the magnetization
dynamics of a chiral magnet in the context of a coupled magnon-cavity system and
introduce the concept of the input-output formalism.
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4.2 Magnon-Photon Coupling and Magnetization
Dynamics in a Chiral Magnet

In this section, we will provide a basic understanding on the magnon-photon coupling
in a chiral magnet using the input-output formalism. The magnon-photon system can
in a very simple, classical model be understood as two harmonic oscillators coupled
to each other. Each of the oscillators possesses an eigenfrequency fi and a certain
decay rate κi, describing the damping in each system. Energy can now be transferred
between the two coupled oscillators, where the coupling strength is parameterized
by the effective coupling rate geff . The details of the origin of the coupling are not
relevant for the discussion. If the eigenfrequencies of the two harmonic oscillators are
modified by an external control parameter and they cross each other, the eigenmodes
can hybridize. Depending on the relative magnitude of the decay rates κi to the
effective coupling rate geff , strong coupling with the characteristic anti-crossing is
observed if geff > κ1,κ2 holds. If one or both decay rates exceed the effective coupling
rate, the anti-crossing disappears.
Using this simple analogy from classical mechanics, we can understand the

magnon-photon coupling between a magnetically ordered system and a microwave
cavity as schematically depicted in Fig. 4.2(a). The microwave photons inside the
cavity possess a resonance frequency fres and a loss rate κres = κint + κext, consist-
ing of the internal κint and the external cavity loss rate κext. These parameters are
determined by the specific geometry, feedline design, used materials and dielectric
substrates of the microwave cavity design and are usually magnetic field independent.
The external loss rate κext thereby quantifies the coupling strength of the cavity to
the feedline and κint quantifies the inverse lifetime of cavity photons.

The magnon system has an excitation frequency characterized by fmag and a decay
rate of κmag. Generally, the magnon resonance frequency fmag is magnetic field
dependent and can be tuned with this control parameter. Tuning fmag into resonance
with fres allows one to observe the magnon-photon hybridization. The coupling of
the magnons with the photons is herby mediated by the dipolar interaction [55]. This
approach of mode hybridization, where fmag and fres cross and hybridize, is called
resonant coupling and has been extensively studied in previous works in the limit of
different relative magnitudes of geff , κmag and κres [23, 55, 56, 65, 83].
A different approach is to measure dispersively, where the magnon frequency

cannot be tuned to the cavity frequency so they never cross. This is for example
the case if the cavity frequency is lower than the magnon resonance frequency. In
this case, it is still possible to couple to the magnon system with the cavity photons
but in contrast to the resonant coupling, no coherent exchange of excitations takes
place. Nevertheless, there is a second order coupling due to virtual exchange of
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Fig. 4.2. Schematic depiction of the input-output formalism. (a) Illustration of the system
parameters used in the input-output formalism described by Eq. (4.7). The magnons
of the chiral magnet with resonance frequency fmag and loss rate κmag couple with
the effective coupling rate geff to the photons of the cavity resonance mode with
frequency fres. The total resonator loss rate is given by the internal κint and external
loss rate κext. The resonance frequencies in the input-output formalism manifest
themselves in the scattering parameters. (b) Schematic magnetic field dependence
of the uncoupled, uniform resonance frequencies of the magnon modes fmag
present in a chiral magnet. The resonance frequency of the resonator fres is lower
than all magnon frequencies. Normalized and absolute frequencies are shown on
the left and right ordinate respectively. (c) Frequency shift of the resonator mode in a
coupled magnon-photon system as calculated using the input-output-formalism with
constant coupling rate geff/(2π) = 120 MHz in all magnetic phases. The hybridized
magnon-cavity modes are denoted by tildes.

excitations. Typically, this coupling exhibits itself by a dispersive shift of the cavity
frequency which can be detected in the experiment [123].
For a simple ferromagnet, the ferromagnetic resonance is given by the Kittel

equation [Eq. (2.27)]. In a chiral magnet due to the multiple magnetic phases,
the situation is more complicated. A calculated, exemplary mode spectrum for
an uncoupled chiral magnet is shown in Fig. 4.2(b). The right vertical axis shows
absolute frequencies calculated for Cu2OSeO3. For the field-polarized mode (fp), we
expect a single mode, which is equivalent to the uniform mode in a ferromagnet and
can be described by the Kittel equation given by Eq. (2.27) [116, 120]. In the conical
mode (c), two resonant magnon modes are present, which are the +Q and −Qmode.
Here, the net magnetic moments are either precessing in the positive or negative
sense [119]. Depending on the details of the demagnetization, the degeneracy of
the two modes is lifted by the dipolar interaction [120, 121]. The analytical formula
to describe the resonance frequency of the conical modes as a function of magnetic
field, takes a complicated form and is given in Refs. [120, 121].
In the skyrmion lattice phase three different uniform magnon modes exist, which

are with increasing resonance frequency the counter-clockwise (ccw), the breath-
ing (b) and the clockwise mode (cw). The clockwise and counter-clockwise modes
are gyrating modes, where the core of the skyrmion rotates clockwise or counter-
clockwise, respectively. The breathing mode is the topological non-trivial mode,
where the core of the skyrmion expands and shrinks periodically. These modes differ
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in their excitation geometry, where the gyrating modes are excited with an oscillating
magnetic field perpendicular to the static field hac ⊥H0 while the breathing mode
couples to hac ‖H0. All other uniform magnetic modes present in the chiral magnet
are expected to couple toH0 ⊥ hac [116, 119, 120, 140]. The clockwise mode has
the lowest spectral weight compared to the breathing and counter-clockwise skyrmion
modes and is thus usually not observed in experiments. Therefore, the clockwise
mode is neglected in the spectrum in Fig. 4.2(b).

At low magnetic fields in the helical phase, we expect the same uniform magnon
excitations as in the conical phase. Below the critical field of the phase transition
h↔c, the helix reorients from the magnetic field direction to the magnetic easy axis
of the magneto-crystalline anisotropy [116]. With the possible formation of domains
depending on the temperature and magnetic field history, there is no analytical
formula to describe the magnetic field-dependent resonance frequency.

After the discussion of the uncoupled, uniformmagnon dynamics in a chiral magnet,
we now discuss the coupled dynamics of the magnon-photon system and introduce
the input-output formalism. Using the quantum mechanical picture, the Hamiltonian
of the magnon-photon system can be formulated in the rotating wave approximation
as [55, 141–144]

Hcp = ~ωresa
†a+ ~ωmagb

†b+ ~g0

(
ab† + a†b

)
(4.6)

with the reduced Planck constant ~ = h/(2π) and the generation and annihilation
operator for the photon excitations in the microwave cavity (a†,a) and for the magnon
excitations (b†,b). The eigenfrequency of the magnon and photon system are denoted
by ωmag = 2πfmag and ωres = 2πfres, respectively. The first and the second term in
Eq. (4.6) describe the total energy of the uncoupled photon and magnon system,
respectively. The third term describes the coupling between the two systems with
the single spin coupling rate g0. The generation (annihilation) of a magnon in the
magnetic system is associated with the annihilation (generation) of a photon of the
cavity. Due to the large number of spins N in the system, the effective coupling
strength in the system is enhanced by geff = g0

√
N [55, 145], where a constant single

spin coupling rate g0 for all spins is assumed.

By solving the above Hamiltonian and calculating the temporal dynamics, it is
possible to relate the results to the measured quantities of the vector network analyzer.
Using the input-output formalism the final result for the reflection parameter S11 is
derived as [123, 142, 145, 146]

S11(f) = −1 + κext

i · 2π(fres − f) + κres + g2
eff

i·2π(fmag−f)+κmag

, (4.7)

4.2 Magnon-Photon Coupling and Magnetization Dynamics in a Chiral Mag-
net
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with κres = κext + κint. Fitting the experimental data by the prediction of the input-
output formalism allows one to characterize the magnon-photon coupling in the
different coupling regimes. Due to the complex uniform magnon spectrum present
in the chiral magnet and the used microwave cavity with resonance frequency
fres = 683.8 MHz, which is lower than all resonance frequencies of the magnon
modes (green line in Fig. 4.2(b)), we want to calculate the modified resonance fre-
quencies of the coupled magnon-cavity system close to 680 MHz. The resonance
frequencies are obtained by minimizing |S11| from Eq. (4.7) by varying f and keep-
ing further parameters constant. The significant detuning of the cavity resonance
frequency relative to the uniform magnon resonance frequency limits our analysis
to the dispersive regime. Using the resonance frequencies fmag and fres depicted
in Fig. 4.2(b) and a effective coupling rate geff/(2π) = 120 MHz (compatible to the
values we find later), we calculate the coupled mode spectrum shown in Fig. 4.2(c),
where the left vertical axis describes the relative shift of the cavity frequency and the
right vertical axis the absolute frequencies for a coupled Cu2OSeO3-cavity system.
In all magnetic phases, the frequency of the hybridized magnon-photon modes (de-
noted by overset tilde in the figure) is reduced to values well below the resonance
frequency fres of the unperturbed cavity due to the formation of normal modes.

After this introduction to magnetization dynamics of chiral magnets and the descrip-
tion of the response of the coupled magnon-photon dynamics using the input-output
formalism, we now switch to the experimental results. First, we perform broadband
magnetic resonance spectroscopy equivalent to pre-characterize our Cu2OSeO3

single-crystal and then switch to cavity-based magnetic resonance measurements.

4.3 Pre-Characterization of Cu2OSeO3 Single Crystal
Using Broadband Magnetic Resonance
Spectroscopy

For the pre-characterization of the Cu2OSeO3 single crystal, we perform broadband
magnetic resonance (BMR) spectroscopy using a coplanar waveguide (CPW) and a
vector network analyzer (VNA). The principle and the data processing of the BMR
technique are discussed in detail in Section 3.3. The irregularly shaped Cu2OSeO3

single crystal with maximum dimensions of the main axis lx = 3.4 mm, ly = 7.7 mm
and lz = 12.9 mm, is placed onto a CPW with center conductor width wcc = 340 µm
as schematically depicted in Fig. 4.3. The VNA (Keysight N5225B PNA) is connected
via microwave cables and endlaunch connectors to the CPW, which is mounted on
a dipstick and inserted into a 3D-vector magnet cryostat. We perform frequency-
swept BMR measurements, where we set the magnetic field H0 to a fixed value and
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Fig. 4.3. (a) Schematic setup of the broadband magnetic resonance spectroscopy measure-
ment of the Cu2OSeO3 single crystal. For details refer to main text. (b) Photograph
of the Cu2OSeO3 single crystal on the used coplanar waveguide (CPW).

sweep the microwave frequency linearly in the range 0.1 GHz ≤ f ≤ 3.25 GHz with
a resolution of 15.75 MHz and a microwave power of P = 0 dBm. In this way, we
measure the complex transmission parameter S21 for a series of magnetic fields
in the range −90 mT ≤ µ0H0 ≤ 90 mT, where we sweep from positive to negative
fields with a step size of approx. 0.5 mT. The magnetic fieldH0 is applied along the
H0 ‖ x ‖ [100] and along H0 ‖ z ‖ [110]. We will discuss in Section 4.4, why we
have chosen these two directions. The measurements are performed at T = 56.5 K
as indicated by the dashed blue line in the magnetic phase diagram in Fig. 4.1(a).

The microwave background of the measured complex transmission parameter S21

is eliminated by using the “derivative divide” method as explained in Section 3.3.2 and
in Ref. [100]. The real part of the background-corrected field-derivative ∂DS21/∂H0 is
shown in Fig. 4.4(a). The magnetic phase transitions cause “vertical features” due to
the changing magnetic field-dependence of the resonance frequency of the different
magnetic modes in the chiral magnet. The phase boundaries are indicated by gray
vertical arrows. Due to the irregularly shaped single crystal, the demagnetization
fields and thus magnetic phases are non-uniform over the crystal. Consequently,
the phase boundaries especially of the skyrmion lattice phase are not sharp but
rather broad. We indicate this region by an orange shading to show that this region
neither belongs to the skyrmion lattice phase (S) nor to the conical phase (c). In
the data, we only show the positive magnetic field magnitudes as we expect the
measured data to be symmetric for positive and negative fields. From the phase
transition from the field-polarized to the conical phase at positive and negative field
magnitudes, we correct the data by the trapped magnetic flux in the superconducting
coils of the 3D-vector magnet, which is in the order of a few mT. The difference in
the magnetic fields between the two different directions stems from the anisotropic
demagnetization fields in the single crystal.

4.3 Pre-Characterization of Cu2OSeO3 Single Crystal Using Broadband
Magnetic Resonance Spectroscopy
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Fig. 4.4. Broadband magnetic resonance spectroscopy of the Cu2OSeO3 single-crystal.
(a) Color-coded background corrected transmission parameter ∂DS21/∂H0 as a
function of microwave frequency f and magnetic field H0 with the magnetic field
applied alongH0 ‖ [100] and alongH0 ‖ [110]. The phase boundaries are indicated
by gray arrows. (b) Fitted resonance frequency of the uniform magnon modes fmag
The error bars are smaller than symbol size. The horizontal green line indicates
the resonance frequency of the microwave cavity fres and is added as a guide to
the eye. (c) Extracted half-width-at-half-maximum linewidth κmag as a function of
the magnetic field H0. The resonance frequency fmag and the linewidth κmag are
extracted by fitting frequency traces of the data shown in (a) at fixed magnetic
field H0 to Eq. (3.17). The solid black lines in (b) and (c) are fits and interpolations
to the data. For details refer to main text.

The details of the demagnetization play a crucial role for the observation of the +Q
and −Q modes in the conical phase [127]. Therefore, we observe with the magnetic
field alongH0 ‖ z both the +Q and −Q mode but not alongH0 ‖ x which could also
be due to the lower spectral weight of the −Q mode [120].

From the data, we fit frequency traces at fixed magnetic field to Eq. (3.17) and ex-
tract the resonance frequency fmag and the half-width-at-half-maximum linewidth κmag

of the uniform magnon modes. We plot the extracted fit parameters as a function of
the magnetic field in Fig. 4.4(b) and (c) for fmag and κmag respectively. The skyrmion
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lattice phase is indicated by the red shaded area. The extracted values for fmag

and κmag are in good agreement with the expected behaviour shown in Section 4.2
and with earlier observations [119, 120]. In Fig. 4.4(b), the resonance frequency of
the microwave cavity fres is indicated by a horizontal green line. As already discussed
before, the cavity frequency fres is below all uniform magnon mode frequencies fmag,
so we expect dispersive coupling when performing cavity-based magnetic resonance
measurements as discussed in the next section.
For the modelling of our cavity-based magnetic resonance data in Section 4.4.3,

we need the information of the magnetic field-dependence of fmag and κmag over
the whole field range. Therefore, we fit the resonance frequencies fmag in the
field-polarized (fp) and in the conical mode (c) to the Kittel equation [Eq. (2.27)]
and to Eq. (1) proposed in Ref. [121], respectively. As no analytical formulas are
available in the skyrmion lattice phase and in the helical phase, the magnetic field-
dependence of fmag is fitted to a linear function. In the phase transition region S↔c,
we linearly interpolate between the last extracted value of fmag in the skyrmion lattice
phase (S) and the conical phase (c). For the magnon decay rates κmag, the data
is fitted linearly using κmag/(2π) = α · fmag + ∆f with a damping parameter α and
an inhomogeneous linewidth ∆f . The results for fmag and κmag are shown as solid
black lines in Fig. 4.4(b) and (c) respectively.

4.4 Cavity-based Magnetic Resonance Spectroscopy
The Cu2OSeO3 single crystal is placed into a 3D cavity resonator in order to observe
magnon-photon coupling. The resonator experiments differ from those performed
with the CPW in various aspects. Most important is the different frequency range of
the devices. The CPW features a broad frequency response which can reach up to
100 GHz while the resonator is only sensitive to a certain frequency determined by
the geometry, used material of the resonator and dielectric substrate. Commercially
available 3D cavity resonators typically have resonance frequencies particularly
designed for electron paramagnetic resonance spectroscopy, which is typically in the
X-band (9.8 GHz). For this purpose, we designed a loop-gap resonator, which we will
explain in more detail below. Subsequently, we discuss the experimental results from
the cavity-based magnetic resonance spectroscopy and the modelling of the data.

4.4.1 Experimental Setup and Loop-Gap Resonator Design

The magnon-photon coupling in the chiral magnet Cu2OSeO3 using a commercial
X-band resonator has already been demonstrated [123]. Due to the high resonance
frequency, coupling has been observed between the microwave photons and higher
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order helimagnon modes [121]. As we have seen in the section before, in order
to observe coupling of photons with the fundamental uniform magnon modes in
Cu2OSeO3, it is necessary to use a resonator with a resonance frequency . 1 GHz.
There is no commercial resonator available with these low resonance frequencies
combined with a sample space in the order of the crystal size. Therefore, we designed
a so-called loop-gap resonator, which is schematically depicted in Fig. 4.5(a). In
the simplest design, the loop-gap resonator is a cylinder with a gap on one side.
This resonator design has the advantage of a large filling factor, low resonance
frequencies within a reasonable physical size and a homogenous driving field inside
the cavity [147].

For a first concept, the resonance frequency of the loop-gap resonator was cal-
culated analytically and then confirmed by finite element simulations using CST
microwave studios. The resonance frequency of a resonator is given by its induc-
tance Lres and its capacitance Cres related by [147]

2πfres = 1√
LresCres

. (4.8)

The inductance Lres is given by the hole of the cylinder, representing a single loop,
which is mathematically given by

Lres = µ0πd
2

4h (4.9)

with the height h and the inner diameter d of the loop-gap resonator. The capaci-
tance Cres is given by the gap, which is modelled as a plate capacitor, described by

Cres = ε0εr
h · (D − d)

2g , (4.10)

where ε0 is the vacuum permittivity, εr is the dielectric constant of the substrate
in the gap with size g, and D is the outer diameter of the loop-gap resonator. The
dimensions of the aluminum cylinder are height h = 22 mm, inner diameter d = 10 mm,
outer diameter D = 22 mm and gap width g = 0.6 mm. The high dielectric constant
substrate is a Rogers Corporation RO3010 with a nominal dielectric constant of
εr = 10.2. A photograph of the loop-gap resonator is shown in Fig. 4.5(b) mounted
by Teflon screws to a copper base.

One advantage of the loop-gap resonator is the homogenous driving field inside
at the sample location. The driving field hac is coupled into the resonator using a
self-designed feedline consisting of a copper loop soldered to a SMA connector. A
vector network analyzer (Rohde&Schwarz ZVA 8) is connected to the feedline and
applies a microwave current Iac with frequency f and power P . The feedline then
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Fig. 4.5. (a) Schematic of the experimental setup with the loop-gap resonator and feedline
design. (b) Image of the loop-gap resonator with the high dielectric material in the
gap. (c) Side-view of the resonator and the Cu2OSeO3 crystal inside the cavity.
Note the different configurations of static external magnetic fieldH0 relative to the
oscillatingmagnetic fieldhac. (d) CST simulation of themagnetic field strength inside
and outside of the cavity. The magnitude of the oscillating magnetic field is indicated
by the size of the arrows. The gray square represents the high dielectric constant
material. (e) Resonance frequency fres of the loop-gap resonator depending on
the horizontal offset δgap of the high dielectric constant material in the gap. A value
of δgap = 0 mm means the gap is fully filled by the material and a value of 5 mm
denotes an almost fully air-filled gap as shown in panel (c).

inductively couples hac to the resonator. The distance of the feedline to the cavity can
be adjusted by the rotatable radiation shield and optimized to maximize the absorbed
microwave power by the cavity measuring the complex reflection parameter S11. In
the schematic side view in Fig. 4.5(c) the oscillating driving field hac is shown. The
Cu2OSeO3 single crystal is mounted on a brass rod and placed in the center of the
cavity.

The modelling and simulation of the loop-gap resonator is done in CST microwave
studio. The loop-gap resonator is fully simulated including the Teflon screws and the
radiation shield. The result of the oscillating driving field is shown in Fig. 4.5(d), where
the arrows denote the direction and the size of the oscillating magnetic field hac. From
the simulations, it is possible to extract the resonance frequency fres. Due to the
chosen design of the loop-gap resonator it is possible to adjust the filling factor of the
high dielectric constant material in the gap. This is parameterized by the length δgap,
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Fig. 4.6. Finite-element simulation of the magnetic field inside the loop-gap resonator per-
formed with CST microwave studio. Magnetic field strength of (a) the out-of-plane
component hz and (b) the in-plane component hx normalized to the maximum field
hmax

z = max (hz) in the center of the microwave cavity where the sample is placed.
The solid black lines indicate the contour of the loop-gap resonator. In the right
panels a cut through the center of the cavity (indicated by the dashed black line in
the left figures) is shown, demonstrating the homogeneity the magnetic field inside
the microwave cavity. The dark gray shaded area indicates the aluminum and in
light gray area the space outside the resonator (air).

which defines the width of the air pitch in the gap as shown in Fig. 4.5(c). A value
of δgap = 0 mm defines a fully filled gap with the high dielectric constant material.
The dependence of the resonance frequency of the cavity fres as function of δgap

is shown in Fig. 4.5(e). Due to this geometry it is possible to tune the resonance
frequency in the range 683 MHz . fres . 1.2 GHz by inserting the high dielectric
constant material more or less into the gap. For our experiments, the gap was fully
filled by the substrate, where we measure a resonance frequency of fres = 683.8 MHz
and a loaded quality factor of Q = 2πfres/ (2κres) = 350± 26.

Before discussing the experimental results, we want to briefly discuss the field
homogeneity inside the cavity. To estimate the homogeneity, the magnetic field
distribution at the center of the cavity is calculated for the oscillating magnetic
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field hac = [hx hy hz]ᵀ, where we consider the field component along hz and per-
pendicular to the cylinder axis hx as shown in Fig. 4.6. The simulation is performed
with a normalized microwave pulse, so the resulting field magnitudes are normalized
to the maximum value of the z-component hmax

z = max (hz). The magnetic field hz
at the sample location is homogenous and varies by less than 1% over the whole
sample space. This is also indicated by the linecut through the center of the cavity.
The transverse component hx is roughly three order of magnitude smaller than hz,
indicating that this driving field component is negligible for exciting the magnetization
dynamics. We confirmed that the same argument holds for hy.
We emphasize here that the homogenous and clearly defined oscillating driving

field hac of the loop-gap resonator is in stark contrast to a CPW, where driving field
components in the in-plane and out-of-plane direction are present as described by
the Karlqvist equations [Eqs. (3.5) and (3.6)]. As discussed in the previous section,
the breathing and gyrating modes have different excitation geometries. In a BMR
measurement with a CPW both modes are excited and observed (cf. Fig. 4.4). With
the loop-gap resonator it is possible to selectively excite either the breathing mode
or the gyrating modes. Therefore, in the experiment, two distinct configurations will
be considered: The situation where the oscillating driving field is perpendicular to
the static magnetic field H0 ‖ hac denoted as orthogonal excitation (OE), and the
situation of parallel excitation (PE) whereH0 ⊥ hac holds.

4.4.2 Experimental Results

In the experiment, the Cu2OSeO3 single crystal is mounted inside the assembled
loop-gap resonator and the temperature is adjusted to different temperature regimes
to get a first intuition of the temperature-dependence of the coupled magnon-photon
system. In order to demonstrate the tunable cooperativity, the system is cooled
down to T = 56.5 K, which is below the critical temperature Tc ≈ 58 K as shown in
the phase diagram in Fig. 4.1(a). The external magnetic field is swept in the range
−126 mT ≤ µ0|H0| ≤ 126 mT from positive to negative fields with a step size of
approx. 0.3 mT. The flux trapping in the coils of the superconducting vector magnet
is corrected in the post-processing, similar to the situation in the BMR measurements
(cf. Section 4.3). The VNA measures the complex reflection parameter S11 in the
frequency range 500 MHz ≤ f ≤ 850 MHz with a resolution of approx. 4 kHz and
an intermediate frequency filter bandwidth of 2 kHz. The applied microwave power
is 0 dBm and we confirmed that the magnetization dynamics of the system are in
the linear regime. In the following, we will first explain the performed microwave
background correction procedure and then discuss the results of the cavity-based
magnetic resonance spectroscopy and the modelling of the data.
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4.4.2.1. Background correction
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Fig. 4.7. (a) Measured complex reflection parameter S11 of the loaded resonator with a VNA
without any background correction. The dashed black line shows the magnetic
field (µ0H0 = 33.5 mT), where the frequency trace is extracted from. To eliminate
the field-independent microwave background a piece-wise defined function Sbg is
defined, where we take frequency-traces at magnetic fields where no resonance of
the cavity is observable. The measured S11 is then divided by the newly defined
function ∆S11 = S11/Sbg. The result is shown in panel (b) with the corresponding
frequency-trace at µ0H0 = 33.5 mT.

Similar to frequency-swept BMR experiments, the frequency-dependent transmis-
sion of the used microwave equipment is superimposed on the magnetic resonance
signal. Exemplary data from the cavity magnetic resonance experiments is shown
in Fig. 4.7(a). Due to the small impedance mismatch in the used microwave setup
especially of the feedline and due to the frequency-dependent attenuation of the
microwave, an oscillating standing wave pattern is measured as shown in the lineplot
at fixed magnetic field. Therefore, an appropriate post-processing procedure needs
to be applied to remove the background signal. In an equivalent way as discussed
for BMR measurements (cf. Section 3.3.2), we define a piece-wise defined func-
tion Sbg, where we take frequency-traces at magnetic fields, where no resonance
of the magnon-cavity system is observable [123]. This is similar to the “divide slice”
method for BMR measurements with the modification, that the background func-
tion Sbg is piece-wise defined as the resonance of the microwave cavity is visible for
all magnetic fields. Due to the dispersive coupling, the resonance frequency of the
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cavity shifts with magnetic field. The assumption that the microwave background
does not change with changing magnetic field, needs to be satisfied.

The measured reflection parameter S11 is consequently divided by the background
function Sbg, resulting in the newly defined function ∆S11 = S11/Sbg shown in
Fig. 4.7(b). As seen in the frequency-trace at fixed magnetic field, only the absorbed
energy of the cavity-magnon system is observed.

4.4.2.2. Temperature-dependence of the coupled Magnon-Photon System
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Fig. 4.8. Cavity-based magnetic resonance measurements at different temperatures for the
external magnetic field applied along the OE case (H0 ‖ [100] ⊥ hac). (a) The
temperature is chosen too low for the skyrmion lattice phase to be able to form
(T < TSkX < Tc). (b) The temperature is close to the transition temperature
(Tc ≈ 58 K), where magnon-photon coupling in the skyrmion lattice phase (S) is
observed. Due to the irregular shape of the crystal and therefore inhomogeneous
demagnetization fields, the phase transition from conical (c) to the skyrmion lattice
phase (S) is not sharp, indicated by the dashed gray lines. (c) The temperature
is chosen larger than the transition temperature Tc, where the spin system is no
longer ordered. In this regime the magnetic field-independent cavity resonance is
observed.

For a first intuition, the temperature T is set to three different temperature regimes
and the microwave frequency- and magnetic field-dependent reflection parameter S11

is measured as shown in Fig. 4.8 for the magnetic field applied in the OE-direction.
At temperatures below a “skyrmion lattice temperature” TSkX we do not expect to
observe a skyrmion lattice phase. We define the “skyrmion lattice temperature” TSkX

as the lower temperature boundary, where a skyrmion lattice phase emerges. This
means that the skyrmion lattice phase exists in the temperature range TSkX ≤ T ≤ Tc.
As seen from the results in Fig. 4.8(a), a shift in the resonance frequency of the
cavity is observed. The transition from the field-polarized (fp) to the conical phase (c)
is identified by the changing frequency-dependence of the cavity with decreasing
magnetic field. As the magnetic field where the transition fp↔c occurs is strongly
temperature-dependent as shown in the magnetic phase diagram 4.1(a), this field
is used to determine the temperature of the crystal. The temperature of the single
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crystal and the microwave cavity is strongly influenced by the helium flow in the
variable temperature inset of the cryostat and we found this procedure of temperature
calibration to be very reliable. The vertical dashed lines in the figure represent
the magnetic phase boundaries determined from broadband magnetic resonance
spectroscopy.
Increasing the temperature into the regime of the skyrmion lattice phase, TSkX <

T < Tc, the measured response of the coupled magnon-photon system changes. As
shown in Fig. 4.8(b), the frequency-shift in the field-polarized and conical phase is
still observed, while in the skyrmion lattice phase (S) a different signal characteristic
is observed. This is a clear indication that coupling between photons and magnons
in the skyrmion lattice phase is realized. We will discuss this in more detail below.
If the temperature is set above the critical temperature T > Tc, the chiral magnet

becomes paramagnetic and only the magnetic field-independent response of the mi-
crowave cavity is measured. The spectrum in Fig. 4.8(c) is not background-corrected,
compared to panel (a) and (b), because with the presented procedure above, it is
impossible to take frequency-traces without the cavity resonance observable. There-
fore, the spectrum in panel (c) is scaled to the same magnitude as in the other
panels.

4.4.2.3. Experimental Data of Magnon-Photon Coupling in the Skyrmion
Lattice Phase

The temperature is set to T = 56.5 K corresponding to the case where TSkX <

T < Tc holds. The magnetic field H0 is applied along the OE (H0 ‖ [100] ⊥ hac)
and PE direction (H0 ‖ [110] ‖ hac). As discussed before, in the skyrmion lattice
phase, the gyrating and breathing mode possess different excitation configurations
as schematically depicted in Fig. 4.9(a). In the ccw-mode, the core of the skyrmion
rotates in the counter-clockwise direction, while in the breathing mode the core shrinks
and expands alternately with the characteristic uniform magnon frequency fmag [119].
The results of the reflection measurements are shown in Fig. 4.9(b). In order to

account for different demagnetization fields, the magnetic field is normalized to the
critical field Hc2, namely 71.7 mT for OE and 39.1 mT for PE extracted from BMR
measurements shown above. For OE a shift of the cavity resonance frequency is
observed in the field-polarized and conical phase in agreement with Fig. 4.2(c). In
the skyrmion lattice phase, we observe coupling between the ccw mode and the
cavity photons. There is no distinct transition from the conical to the helical phase
because the external magnetic field H0 is applied along the magnetic easy axis
of the cubic anisotropy in Cu2OSeO3 [128], where the system does not rearrange
in energetically unfavorable domains upon decreasing field but keeps a small net
moment alongH0 [129, 130, 148].
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Fig. 4.9. Magnon-photon coupling in a skyrmion host material. (a) Illustration of the two
relevant skyrmion resonance modes, where the oscillating driving field hac is ei-
ther orthogonal (ccw mode) or parallel (breathing mode) to the external magnetic
field H0 and consequently to the skyrmion lattice. (b) Background-corrected re-
flection parameter |∆S11| as a function of the magnetic field H0 and the applied
microwave frequency f . The vertical dashed lines indicate the magnetic phase
boundaries slightly adjusted from BMR measurements (cf. Fig. 4.4) to account for
the different probing volumina in cavity and BMR measurements (see main text
for details). The magnetic fields are normalized to the critical field Hc2. The gray
dashed lines indicate the broadened phase transition between S↔c. (c) Simulated
spectrum calculated with Eq. (4.7). The fitted rates geff and κmag used to calculate
the spectrum are shown in (d), extracted by fitting Eq. (4.7) to frequency traces
taken at fixed magnetic field. The orange shaded area indicates the broadened
S↔c phase transition. The fit error bars are smaller than the symbol size. (e) Co-
operativity calculated by using Eq. (4.11) for orthogonal excitation (OE) and for
parallel excitation (PE). The cooperativity is calculated by using the parameters
shown in (d). In the PE case, the cooperativity can be tuned from 1 . C . 60. The
fit error bars are smaller than the symbol size.
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If the static magnetic field is parallel to the oscillating driving field (PE), no coupling
is observed in the field-polarized and conical phase. As the magnetic moments are
aligned withH0, the driving field hac cannot exert a torque on the precessing magnetic
moments. In the skyrmion lattice phase, we clearly observe coupled dynamics of
the cavity and the breathing mode of the Cu2OSeO3 spin system. This coupling
is most efficient for driving field hac parallel to the static field H0 [Fig. 4.9(a)]. In
the helical phase, a finite coupling is observed in contrast to the OE case. The
domain population in the helical phase crucially depends on the field direction as
well as on the temperature and field history. For decreasing magnetic field along the
〈110〉-direction, two domains are equally populated leading to a finite angle between
them [129, 130, 148]. Consequently, a finite coupling in the helical phase is observed.

4.4.3 Modelling of Cavity-Based Magnetic Resonance Data using
the Input-Output Formalism
We now turn to a quantitative evaluation of the magnon-photon coupling employing
the input-output formalism in the following manner consisting of three steps: First, we
extract the external loss rate κext, the total loss rate κres, and resonance frequency fres

of the cavity by fitting Eq. (4.7) to a frequency trace of the background-corrected
reflection parameter |∆S11| at the largest static magnetic field available (µ0H0 =
126 mT for PE). The system is assumed to be unperturbed and therefore geff = 0.
The following values are inferred: fres = 683.8 MHz, κres/(2π) = (1.041± 0.004) MHz,
and κext/(2π) = (0.848± 0.004) MHz. The internal loss rate of the cavity κint is
smaller than the external loss rate κext, indicating that the cavity is overcoupled [149].

In a second step, we keep these parameters fixed and fit Eq. (4.7) to all frequency
traces of |S11| for a series of external magnetic fields H0 along both magnetic field
directions. From these fits, the coupling strength geff is extracted. The magnon decay
rate κmag and the field-dependent resonance frequency of the different magnon
modes fmag are taken from BMR spectroscopy data on the same crystal (see Fig. 4.4).
We emphasize that the cavity-based magnetic resonance technique probes the whole
sample volume while the BMR technique is sensitive to a spin dynamics within the
first few µm of the sample volume measured from the CPW. The penetration depth of
the microwave magnetic field is expected to be similar to the width of the CPW center
conductor (here 340 µm) according to Eqs. (3.5) and (3.6). Because of the irregular
shape of the crystal, its demagnetization fields are inhomogeneous, such that phase
transitions and magnetic resonance phenomena are inhomogeneously broadened
in different ways for cavity and BMR measurements. Thus, minor deviations in the
magnetic fields of the phase transitions, in the resonance frequencies and linewidths
of the magnetic excitations are expected when comparing the cavity and BMR
measurements.
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Using the extracted parameters allows to recalculate |S11| using Eq. (4.7), which is
displayed in Fig. 4.9(c). This fit and the measurement shown in Fig. 4.9(b) are in good
agreement. The used parameters κmag and geff are shown in Fig. 4.9(d). The magnon
decay rate κmag is larger than the coupling strength geff in all magnetic phases which
classifies the system to be in the Purcell coupling regime with κres < geff < κmag [56].
For PE the coupling strength outside the skyrmion and helical phase becomes small.
In the skyrmion lattice phase, the breathing mode couples to the cavity and we extract
almost the same effective coupling rate geff as for the counter-clockwise rotation
mode. Note that the resonator properties may subtly evolve with magnetic field, also
leading to minor changes in geff .

In the third and final step, the magnon-photon cooperativity C of the system is
calculated as a measure for the coherent exchange of excitations. The cooperativity
defined as [55, 56, 65, 150]

C =
g2

eff
κres · κmag

(4.11)

is shown in Fig. 4.9(e). For OE, the cooperativity increases from C ≈ 8 in the helical
phase to a high cooperativity of C ≈ 50 in the skyrmion lattice phase. In the conical
and field-polarized phase a rather constant cooperativity of C ≈ 40 is observed. At
the magnetic phase boundaries, the magnon-photon cooperativity shows a strong
change with magnetic field due to the induced phase transition.

For PE, the cooperativity C is small or close to unity in the field-polarized and
conical phase. A drastic change of the cooperativity is observed when a magnetic
phase transition into the skyrmion lattice phase is induced by a small variation of the
magnetic field. The cooperativity reaches a maximum value of C ≈ 60 and can be
tuned between its maximum and minimum value by changing the external magnetic
field by ∼ 10 mT. The change of the magnetic field induces a magnetic phase
transition which in turn allows us to control the effective coupling rate geff between
the microwave photons and the magnons in Cu2OSeO3. Here, we utilize that the
breathing mode exhibits a different excitation geometry compared to the magnon
excitations in the other magnetic phases. This property is unique to the topologically
protected skyrmion lattice phase. At the phase boundaries , the magnon-photon
cooperativity distinctly changes withmagnetic field due to the induced phase transition.
Similarly, at the boundary of the helical phase, when the helices reorientate under
decreasing magnetic field and gain components orthogonal to hac, the microwave
photons can more efficiently couple to the spin system. However, such transitions
lack the pronounced excitation efficiency.
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4.5 Summary
In conclusion, we experimentally demonstrated the magnon-photon coupling between
the fundamental, uniform magnetic excitations in the chiral magnet Cu2OSeO3 and
photons inside a three-dimensional microwave cavity using magnetic resonance
spectroscopy. The resonance frequency of the self-designed loop-gap resonator is
below all magnon mode frequencies limiting the analysis to the dispersive regime.
The coupling between the photons in the cavity and all magnetic modes including
those in the topologically protected skyrmion lattice phase of the chiral magnet,
which is mediated by the dipolar interaction, is observed and a high magnon-photon
cooperativity of up to C ≤ 60 is measured. By changing the magnetic field in a small
field range, the system undergoes a topological phase transition resulting in a strong
tunability of the magnon-photon rate and therefore the magnon-photon cooperativity.
The phase change is induced by means of a control parameter, which can either be
magnetic field, temperature, or electric field [151–153].
In our presented study, the magnon-photon cooperativity is mainly tuned via the

effective coupling strength due to the induced phase transition. The used chiral
magnet Cu2OSeO3 is a prototypical system to demonstrate the concept of tunable
magnon-photon cooperativity. The presented scheme using an external control
parameter is not limited to chiral magnets but can also be applied to other material
systems, which feature different magnetic phases with magnon excitations with
unique excitation geometries. In chiral magnets the breathing mode in the skyrmion
lattice phase possesses this unique excitation geometry with hac ‖ H0. Tuning
the magnon-photon cooperativity in a dispersive read-out scheme can have great
potential for novel hybrid systems such as magnon-qubit systems [22, 154].
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Spatially-Resolved
Magnetization Dynamics in a
Magnonic Device

5

In the recent years, huge progress in the research and development of novel ap-
proaches for the microelectronics industry utilizing the spin degree of freedom of the
electrons has been made. Two highlight applications are novel non-volatile magnetic
memories such as magnetic random-access memories (MRAMs) or spin-transfer
torque (STT) and spin-orbit torque (SOT) RAMs, and new logic devices for new
computational devices [155]. For the latter, the angular momentum of quantized
collective excitations in exchange-coupled magnetic systems are utilized to transport
and store information [19]. These quantized excitations are called magnons. In
magnon spintronics especially insulating magnetic materials with low intrinsic damp-
ing are used such as yttrium iron garnet (YIG) [156]. The choice of the used magnetic
material is essential as long spin-wave propagation lengths and high group velocities
are desired [20, 157]. The large advantage of insulating magnetic materials is the
absence of free electrons and less Joule heating [19, 158]. Especially liquid-phase
epitaxially (LPE) grown YIG with micrometer thickness has extraordinary large prop-
agation lengths and large magnon group velocities. Nevertheless, for the use in e.g.
CMOS-based devices, the integration of single-crystals is unfavorable due to the
necessary use of gadolinium gallium garnet (GGG) as a growth substrate for YIG.
Unfortunately, in thinner YIG grown by other deposition techniques such as pulsed
laser deposition, these favorable properties are lost to some extend.

In contrast, metallic magnetic materials generally have higher damping due to the
scattering of magnons with the conduction electrons [159]. Although the damping
is larger, metallic magnetic materials feature a larger group velocity and a large
saturation magnetization. Recently, a metallic low damping alloy was found which is
sputtered Co25Fe75 [159], where the numbers in the subscripts give the composition
in atomic percent. This material has comparable damping characteristics to thin
LPE-YIG. In recent experiments, the spin wave characteristics of thin film Co25Fe75

were investigated, which demonstrate large propagation lengths in the range of
∼ 6 µm for a 10 nm thick Co25Fe75 [41, 51, 160]. Due to the low damping properties,
this system can also be operated in the non-linear regime without the necessity
of very large driving power. Non-linear effects such as 3- or 4-magnon scattering
can be investigated, and lead to an increased damping due to the additional loss
channels [161].
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The development of suitable spectroscopy techniques to determine the material
parameters is key to designing magnonic devices. For unstructured thin films the
broadband ferromagnetic resonance technique with a vector network analyzer (cf.
Section 3.3.1) is state-of-the-art and routinely used to measure the magnetization
dynamics phase-sensitively [90, 96]. For nano- and micro-structured samples this
technique is not applicable and also lacks the ability to measure the magnetization
dynamics in a spatially-resolved way. For the latter, optical measurement techniques
are employed using microfocusing methods to bring the spot size of the laser beam to
the Abbe diffraction limit. The majority of these techniques rely on the magneto-optic
Kerr effect (MOKE) such as microfocused time-resolved magneto-optic Kerr effect
(µTR-MOKE) [162–164] or microfocused Brillouin light scattering (µBLS) [165–167].
Especially, the latter technique is well established and allows not only to measure
coherently excited magnetization dynamics but also incoherent processes such
as thermal magnons [168]. The µBLS technique measures the intensity (not the
amplitude) and can also be extended for phase- and temporal resolution but at the
cost of largely increased measurement time [167, 169–171].
In this chapter, we present our results on the experimental study of the magne-

tization dynamics of the low damping metallic ferromagnet Co25Fe75 in the linear
and non-linear regime. We used a micro-structured Co25Fe75 waveguide with a
coplanar waveguide-like antenna design to coherently excite the magnetization
dynamics. The sample is investigated with three different optical spectroscopy tech-
niques which are the well-established microfocused Brillouin light scattering (µBLS),
the microfocused Super-Nyquist sampling magneto-optic Kerr effect (µSNS-MOKE)
originally developed by the group of Georg Woltersdorf (Martin Luther University
Halle-Wittenberg) [172] and the microfocused frequency-resolved magneto-optic
Kerr effect (µFR-MOKE) technique developed by us [160]. These spectroscopy
techniques are all integrated into a single optical setup to allow for the comparison of
them without removing the sample.
This chapter is structured as follows: We will start with an introduction on the

magnetization dynamics of dipolar-exchange spin waves. Subsequently, we discuss
the underlying detection principle of the used measurement techniques which is the
magneto-optic Kerr effect (MOKE) and continue with a detailed explanation of the
different measurement techniques. We will then discuss the experimental results of
the magnetization dynamics in the linear regime and then in the non-linear regime.
Finally, we will present an electrical 2-tone spectroscopy approach of the µFR-MOKE
technique.
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5.1 Magnetization Dynamics of Spin Waves

In the previous chapters, we have considered and investigated the magnetization
dynamics of more complicated configurations of the magnetic moments such as a
compensated ferrimagnet (Chapter 3) or a chiral magnet (Chapter 4) in an extended,
unpatterned single-crystal. Here, in this chapter we will go back to the simple case
of a ferromagnet where the magnetic moments µi are all parallelly aligned with each
other due to the Heisenberg exchange interaction (cf. Section 2.1) and pointing
along the effective magnetic fieldHeff . In the presence of an additional oscillating
magnetic field to drive the magnetization to resonance or due to thermal excitations,
the magnetic moments µi are all precessing in-phase as schematically depicted in
Fig. 5.1(a). This is the so-called ferromagnetic resonance (FMR) as we derived it in
Section 2.2.
We can also explain the ferromagnetic resonance as an excitation of the ferro-

magnetic ground state where all magnetic moments are pointing along the same
direction. Flipping one of the magnetic moments into the anti-parallel direction rel-
ative to the other magnetic moments, leads to an energetically unfavorable state
with an additional energy depending on the exchange constant J and the number
of next neighbours. Another possibility for an excitation of the ordered spin lattice
is to (slightly) tilt the magnetic moments away from their parallel alignment. In this
case, we get a collective excitation of the whole spin lattice. These are so-called
spin waves and their quantized excitation are called magnons [38].
As a consequence of the tilting of the magnetic moments, they are not aligned

with the effective field anymore leading to a precession of the magnetic moments
due to the torque from the effective magnetic field on the magnetic moments. The
precessing magnetic moments do not necessarily need to precess all in-phase like in
the previously discussed ferromagnetic resonance excitation but can also have a fixed
phase shift between each other as shown in Fig. 5.1(b). We call these excitations
with a finite phase shift between the magnetic moments spin waves. Due to the
finite phase shift, we can define a wavelength λ and correspondingly a wavevector
|k| = k = 2π/λ. The FMR can be understood as a non-propagating spin wave with
infinite wavelength λ =∞ or equivalently with wavevector |k| = 0. Therefore, a spin
wave with |k| = 0 does not transport any information. This is due to the vanishing
group velocity vg which generally vanishes at |k| = 0 but can also become zero at
finite wavevectors |k| 6= 0 due to the competition between the dynamic dipolar and
exchange fields [20].
In this chapter, we want to switch our focus to propagating spin waves k 6= 0 in

the limit where the film thickness d is much smaller than the lateral dimensions of
the magnonic waveguide. In this regime not only the Heisenberg exchange interac-
tion needs to be considered but also the dipolar interaction between the magnetic

5.1 Magnetization Dynamics of Spin Waves 79



μ

μ

He�

He�

k

λ

m

FMR

Spinwave

(a)

(b)

Fig. 5.1. Locally precessing magnetic moments µ around the effective fieldHeff . (a) Uniform
precessing mode where all magnetic moments are precessing in-phase which is
also known as ferromagnetic resonance (FMR). (b) Magnetic excitation of a spin
wave where the spin-flip of a single magnetic moment is distributed over all other
magnetic moments leading to a propagating spin wave mode with wavelength λ
and wavevector k. The lowest panel shows the top-down view of the dynamic
magnetizationm of the locally precessing magnetic moments µ.

moments. The relevant length scale to characterize the competition between the
dipolar and exchange interaction is the exchange length lex (typically a few nm) given
by l2ex = 2A/

(
µ0M

2
s
)
with the exchange stiffness constant A. If length scales smaller

than the exchange length are considered, corresponding to small wavelengths λ or
large wavevectors |k|, the exchange interaction is dominant and the magnetization
becomes uniform. For length scales larger than lex, the dipolar interaction is dominant
and domains with different magnetization orientations can be formed [20]. These
spin waves are the so-called dipolar-exchange spin waves. We will see later that the
wavelength of pure exchange spin waves is smaller than the optical diffraction limit
and cannot be optically resolved. Note, as demonstrated by Nembach et al. [126], the
wavelength of pure exchange spin waves can be in the range of µm if the thickness
of the film goes to zero d→ 0 due to the vanishing dipolar interaction. This special
case is not topic of this chapter.

We want to start with a derivation of the resonance frequency for dipolar-exchange
spin waves for in-plane magnetized thin films. Unfortunately, the derivation for
arbitrary geometries is not analytically possible. However, in the thin film limitNyy = 1
for an in-plane magnetized ferromagnet, the dipolar magnetic fields arising due to
the sample shape can be calculated analytically assuming that the precession of
the magnetization is uniform along the film thickness d. This has been derived by
B. A. Kalinkos and A. N. Slavin in 1986 [173]. Our approach is to start with the
effective magnetic field from Eq. (2.2) and modify the procedure in Section 2.2 to
allow for solutions for k 6= 0 using the coordinate system shown in Fig. 5.2 and in the
limit kd� 1.
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Fig. 5.2. Schematic illustration of dipolar-exchange spin waves in a magnetic material with
magnetizationM which lies in the plane of the waveguide with thickness d. In the
backward volume configuration the spin wave is propagating in the same direction as
the magnetization is pointing (k ‖M ). For the surface spin waves the propagation
direction is perpendicular to the magnetization (k ⊥M ). In this configuration the
spin waves are also called Damon-Eshbach modes.

For our derivation we start with the magnetizationM where we use a plane wave
ansatz exp (i(ωt− kr)) for the time-varying components of the magnetizationM∼(t)
resulting in [174, 175]

M = M0 +M∼(t) =

 0
0
Ms

+

M
∼
x (t)

M∼y (t)
M∼z (t)

 =

 0
0
Ms

+

M
∼
x e

i(ωt−kr)

M∼y e
i(ωt−kr)

0

 (5.1)

with an arbitrary space vector r = xêx + zêz in the disk plane and the wavevector
k = kxêx + kzêz also restricted to the disk plane. We consider the Zeeman energy
Eq. (2.3), the exchange energy Eq. (2.6), the dipolar interaction energy and the
shape anisotropy Nyy = 1. The total magnetic fieldH, with the external magnetic
field applied along the z-directionH0 = H0êz and the effective magnetic fieldHeff ,
takes the form

H = Heff + hrf(t) =

 −Hdx

−Hdy

H0 +Hex

+

hrf,x(t)
hrf,y(t)

0

 . (5.2)

The exchange field can be derived by inserting Eq. (5.1) into (2.6) and calculating
the effective field with Eq. (2.2), which results in

µ0Hex = 2A
Ms

k2, (5.3)

with the exchange stiffness constant A.
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The dipolar fields Hdx and Hdy are derived in Ref. [173] in the limit kd � 1 and
take the form

Hdx = Ms

(
1− 1− e−kd

kd

)
sin2 φ,

Hdy = Ms
1− e−kd

kd
,

(5.4)

with the in-plane angle φ between the magnetizationM and the wavevector k as
defined in Fig. 5.2. Plugging the above Eqs. (5.1) and (5.2) into the Landau-Lifshitz-
Gilbert equation [Eq. (2.18)] results in

iω

[
M∼x
M∼y

]
=
[
γµ0Ms · hrf,y −M∼y · [γµ0 · (H0 +Hex +Hdy) + iωα]
−γµ0Ms · hrf,x +M∼x · [γµ0 · (H0 +Hex +Hdx) + iωα]

]
. (5.5)

Consequently, by solving the above equation for hrf = ↔
χ
−1
M∼, the inverse suscep-

tibility takes the form

↔
χ
−1 = 1

Ms

[
H0 +Hex +Hdx + iωα

γµ0
− iω
γµ0

+ iω
γµ0

H0 +Hex +Hdy + iωα
γµ0

]
. (5.6)

Comparing the susceptibility with the one derived for the ferromagnetic resonance
[Eq. (2.24)], we find a very similar form with slight modifications in the diagonal terms,
where we now account for an exchange field Hex and for the dipolar fieldsHd. The
resonance frequency for dipolar-exchange spin waves is given by solving det

(
↔
χ
−1) !=

0 for ω = 2πf . The real part of the solution describes the resonance frequency and
we recover the famous Kalinikos-Slavin equation [173]

ω = γµ0

√
(H0 +Hex +Hdx) · (H0 +Hex +Hdy). (5.7)

Before we discuss the dispersion relation of the dipolar-exchange spin waves, we
want to discuss two particular limits of Eq. (5.7). First, the limit of infinite wavelength
spin waves k → 0 where the dipolar fields become Hdx = Ms and Hdy = 0 and
the exchange field Hex = 0. In this case, we recover the Kittel equation ω =
γµ0

√
H0 · (H0 +Ms) for an in-planemagnetized film [Eq. (2.29)]. The second limit we

want to discuss is for short-wavelength spin waves where the wavevector k becomes
large. In this case the dipolar fields can be neglected as (1−exp(−kd))/(kd)|k�d = 0
so the dispersion relation becomes ω(k) = γµ0 (H0 +Hex) ∝ k2. These exchange
spin waves feature a parabolic dispersion in k and have wavelengths λ = 2π/k in
the range of 100 nm and smaller.
The dispersion relation for Co25Fe75 at fixed magnetic field µ0H0 = 50 mT calcu-

lated with Eq. (5.7) is shown in Fig. 5.3(a). The used parameters to produce the
figure are: A = 2.6× 10−11 J/m [41], µ0Ms = 2.36 T [51], d = 30 nm and α = 0.003.
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Fig. 5.3. (a) Calculated dispersion relation from Kalinikos-Slavin equation [Eq. (5.7)] as a
function of the wavevector k for backward volume (φ = 0) and Damon-Eshbach
spin wave modes (φ = π/2) in d = 30 nm thick Co25Fe75 and an external magnetic
field of µ0H0 = 100 mT. The other material parameters are given in the main text.
(b) The group velocity vg resulting from the wavevector-derivative of the spin wave
resonance frequency vg = ∂ω(k)/∂k. (c) Spin wave propagation length normalized
to the wavelength of the spin wave, calculated using Eq. (5.10).

Furthermore, we distinguish two particular cases of the Kalinikos-Slavin equation
which is for spin wave propagation along the direction of the magnetization φ = 0
and propagation perpendicular to the magnetization φ = π/2 as depicted in Fig. 5.2.
The latter one are the so-called magneto-static surface modes or Damon-Eshbach
modes [176] and are localized on one of the surfaces of the volume in which they
propagate [177]. Spin waves propagating along the direction of magnetization are
so-called backward volume magnetostatic waves and are, in contrast to Damon-
Eshbach modes, volume modes. Furthermore, these modes feature a negative
frequency vs. wavevector dispersion ∂ω(k)/∂k < 0. For large wavevectors k the
dispersion increases quadratically as the system enters the exchange dominated
regime.

An important characterization parameter for spin waves is their group velocity vg

which is given by the slope of their dispersion

vg = ∂ω(k)
∂k

. (5.8)

The group velocity of the backward volume and the Damon-Eshbach spin wave
modes are shown in Fig. 5.3(b). For the backward volume mode (φ = 0) we find
a negative group velocity which is antiparallel to the positive phase velocity, which
is the origin of their name. The Damon-Eshbach modes possesses a larger group
velocity which is comparable to LPE-YIG [20, 157].
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With the Kalinikos-Slavin equation it is possible to calculate the lifetime and propa-
gation length of spin waves. Therefore, we consider the imaginary part of the solution
of det

(
↔
χ
−1) != 0 solved for ω and get for the spin wave linewidth

∆ω = γµ0

(
H0 +Hex + Hdx

2 +
Hdy

2

)
. (5.9)

The lifetime of spin wave is given by the inverse of the spin wave linewidth τ = 1/∆ω
which is the typical timescale on which the amplitude of the spin wave exponentially
decays after the external excitation field is removed. The spin wave propagation
length is the characteristic distance a spin wave travels before its amplitude decreased
to 1/e due to the damping and is given by

ξsw = vg · τ. (5.10)

The spin wave propagation length normalized to the wavelength of the spin wave
is shown in Fig. 5.3(c). We expect for the Damon-Eshbach modes (φ = π/2) a
larger propagation length due their larger group velocity. For applications a large
propagation length is desirable because less information is lost over travelling dis-
tance. A large group velocity is also favorable because information can be transported
faster [20]. Obviously, in the exchange interaction dominated regime at large wavevec-
tors k the number of wavefronts observed before attenuation is much larger and
desired to utilize in novel spin wave computing devices.

We want to emphasize that there also exists so-called forward volume spin wave
mode where the magnetic thin film is magnetized perpendicular to the film plane and
the propagation direction of the spin waves is perpendicular to the magnetization. In
order to access these spin wave modes it is necessary to align the magnetization in
the out-of-plane direction which in the case of Co25Fe75 requires a static magnetic
field of more than 2 T. We do not discuss these modes as in our experiments they
are not accessible by our setup due to the limited magnetic field range available in
the out-of-plane direction.

5.2 Experimental Details on Spatially-Resolved
Magnetization Dynamics
After this general discussion of dipolar-exchange spin waves, we want to switch our
focus to the experimental techniques to excite and detect spin waves. In order to
excite spin waves we use a microwave antenna patterned on top of the magnonic
waveguide. Our detection of spin waves relies on the magneto-optic Kerr effect
(MOKE) which induces a rotation of the polarization plane when linear polarized light
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interacts with magnetization. This physical mechanism we utilize in three different
measurement techniques namely the microfocused frequency-resolve magneto-
optic Kerr effect (µFR-MOKE), microfocused super Nyquist-sampling magneto-optic
Kerr effect (µSNS-MOKE) and microfocused Brillouin light scattering (µBLS). In this
section, we will discuss the excitation as well as the detection of spin waves with the
aforementioned spectroscopy techniques in detail.

5.2.1 Magneto-Optic Kerr Effect

The magneto-optic Kerr effect (MOKE) was first discovered in 1877 by John Kerr [178]
while examining the polarization of backreflected light from an electromagnet pole.
The magneto-optic effect itself and thus the interaction between magnetism and light
was found earlier by Michael Faraday in 1845 when investigating the polarization
rotation of a “heavy” glass containing traces of lead under the influence of an elec-
tromagnet [179]. Nowadays the rotation of the polarization plane of polarized light
when transmitting through a magnetized material is known as Faraday effect and
the reflection from a material is known as Kerr effect. For our experiments, we are
only interested in the Kerr effect and therefore will discuss it in more detail below.
Nevertheless, the discussion is equivalent for the description of the Faraday effect.

We now want to quantify the MOKE by the so-called Kerr angle θK which is a
complex quantity. To this end, we will provide a short derivation without the claim
of completeness. For an extensive discussion and a complete derivation of the
magneto-optic effects refer to Refs. [31, 179–185]. We will herin follow the derivation
presented in Ref. [184]. We start with the Maxwell equations [186]

∇×El = −µ0
∂Hl
∂t

(5.11)

∇×Hl = ε0

(
1 + ↔

χe(ω)
) ∂El

∂t
(5.12)

with the electric field El and the magnetic fieldHl of the electromagnetic wave, the
vacuum permittivity ε0 and the polarizability ↔

χe of the magnetic system. Generally,
the magnetic permeability ↔

µ(ω) also needs to be taken into account but for optical
phenomena such as the magneto-optic effect, its contribution is negligible so we
assume ↔

µ = µ01 with the identity matrix 1 [184]. The frequency-dependent dielectric
constant is related to the polarizability by the relation ↔

ε (ω) = 1 + ↔
χe(ω) and is

dependent on the applied field direction. The dielectric displacement vector is given
by

Dl = ε0
↔
ε (ω)El (5.13)
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and the dielectric tensor takes the form

↔
ε (M ,ω) =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =

 εxx εxy 0
−εxy εxx 0

0 0 εzz

 , (5.14)

where in the second step we used the symmetry of a cubic crystal with a magneti-
zation pointing along the z-direction which in our case is the out-of-plane direction.
The entries of the dielectric tensor are complex quantities εij = ε′ij + iε′′ij and fol-
low the Onsager relation εij(−M ,ω) = εji(M ,ω) [187]. We solve the Maxwell
equations by using a plane wave ansatz for the electric and magnetic field (i.e.
Hl = H0l exp [i(ωt− kr)]) and get

k ×El = ωµ0Hl,

k ×Hl = −ωε0
↔
εEl.

(5.15)

Eliminating the magnetic field in the above equation leads to [184]k̄
2 − εxx −εxy 0
εxy k̄2 − εxx 0
0 0 k̄2 − εzz

 ·
Exl

Eyl

Ezl

 = 0 (5.16)

with the normalized wavevector k̄ = k/k0 and the wavevector for light propagation in
vacuum k0 = ω2µ0ε0. In order to further simplify and solve Eq. (5.16) we assume
the light propagation to be parallel to the magnetization along z so k̄ =

[
0 0 k̄

]ᵀ. We
can neglect the last row in Eq. (5.16) as Ezl = 0 and get the equation system(

k̄2 − εxx
)
Exl − εxyEyl = 0,

εxyExl +
(
k̄2 − εxx

)
Eyl = 0,

(5.17)

with the non-trivial solutions

k̄2
± = εxx ± iεxy and ± iExl = Eyl. (5.18)

The normal modes of the light in the sample are then D±l = ε0k̄
2
± (Exl ± iEyl)

corresponding to right and left circularly polarized light. In a Kerr experiment the
reflected light is measured so the reflection coefficients for the reflected light are
given by the Fresnel equations [184, 188, 189]

r± = k̄± − 1
k̄± + 1

. (5.19)

In our experiment we assume a linearly polarized incident light Ein,l = [Exl 0 0]ᵀ on
the surface of the ferromagnet. The linearly polarized light can be understood as a
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superposition of right- and left-circularly polarized light. Therefore, the reflection co-
efficients are given by rx = (r+ + r−) /2 and ry = −i (r+ − r−) /2 and consequently
the backreflected light is given by Eout,l = [rxExl ryExl 0]ᵀ. The complex Kerr angle
is given by [184]

ΦK = θK + iηK = −ryExl
rxExl

= i
r+ − r−
r+ + r−

,

= i
k̄+ − k̄−
k̄+k̄− − 1

,

(5.20)

with the real-valued Kerr rotation θK and the Kerr ellipticity ηK. We see from the
above equation that the linearly polarized light is converted to elliptically polarized
light due to the different magnitudes of the right- and left-circular polarized light. The
phase difference between the opposite circular polarizations leads to the rotation
from the initial polarization. This is described by the Kerr angle θK due to circular
dichroism. The Kerr ellipticity ηK describes the imbalance of the opposite circular
polarization states and is due to the circular birefringence [31].

Before switching to the discussion of the dynamic MOKE, we want to emphasize
that the MOKE can be measured in different configurations. The discussion above
where the magnetization M is pointing perpendicular to the sample surface and
parallel to the plane of incidents is the so-called polar MOKE. If the magnetization is
parallel to the sample surface and to the plane of incidents defined by the incident
and reflected light beam, it is the so-called longitudinal MOKE. The last configuration,
the transverse MOKE, is given if the magnetization is parallel to the sample surface
but perpendicular to the plane of incidents [190]. In our experiments the relevant
effect is the polar MOKE as this effect is roughly one order of magnitudes larger than
the longitudinal MOKE and approximately two orders of magnitudes larger than the
transverse MOKE [191]. Due to symmetry reasons the longitudinal and transverse
MOKE are not observed in our experiment, which will be discussed below. We further
want to note that the polar and longitudinal MOKE induce a rotation and ellipticity to
the polarization while the transverse MOKE only changes the intensity which makes
it due to its small effect size challenging to measure.

After the discussion of the static MOKE and the basic description of the physical
effect, we want to switch our focus back to the detection of magnetization dynamics
utilizing the MOKE. In Fig. 5.4 the MOKE process when the laser light interacts with
the magnetization dynamics of the spin wave is schematically depicted. The incident
laser light has linear polarization and is directed to the ferromagnetic material. The
laser light does not reflect at the interface but travels through a certain thickness
of the ferromagnet where the intensity of the laser is attenuated and the phase of
the light is delayed. Due to the oscillating magnetizationM parallel to the sample
plane, the dynamic component of the magnetizationm(t) oscillates as a function of
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Fig. 5.4. Schematic illustration of the dynamic magneto-optic Kerr effect (MOKE). The linear
polarized light with polarization P interacts with the out-of-plane component of the
precessing magnetizationM via the polar MOKE. This leads to a rotation of the
polarization plane by the Kerr angle θK and to elliptical polarization, parameterized
by the semi-major and semi-minor axis a and b respectively. Due to the oscillating
magnetization and therefore its dynamic out-of-plane component, the Kerr angle is
oscillating at the same frequency as the magnetization dynamics. In the graph on
the right the Kerr angle θK(t) as a function of time t is shown.

time with frequency ωsw = 2πfsw. Therefore, the dynamic componentm(t) oscillates
between the out-of-plane and the in-plane direction which for the polar MOKE means
that it is either zero, minimal or maximal. Due to the oscillating magnetization also
the Kerr angle θK(t) becomes time-dependent and is oscillating at the frequency of
the magnetization dynamics as schematically shown in the right graph in Fig. 5.4. We
want to note that in this configuration the longitudinal MOKE has the same response
as the polar MOKE but has a phase shift of 90°. The dynamic magnetizationm(t)
for the polar and longitudinal MOKE, corresponding to the spin wave amplitudes, can
be described by [191]

mP(z,t) = m0P(z) sin (ωswt) ,

mL(z,t) = m0L(z) cos (ωswt) ,
(5.21)

where the subscript denotes the polar (out-of-plane) component and longitudinal
(in-plane) component of the dynamic magnetization. The complex Kerr angle is then
a superposition of the polar and longitudinal MOKE originating from different depths
of the magnetic material and can be written as [191–195]

θK(t) =
∫ d

0
[L(z)mL(z,t) + P (z)mP(z,t)] dz,

= θK sin (ωswt+ φ)
(5.22)

with the thickness of the ferromagnet d, the phase shift φ and the complex MOKE
depth sensitivity functions L(z) and P (z) related to longitudinal and polar MOKE. We
neglect the details of the dependence of the Kerr angle θK on the polarization of the
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incident light. The sensitivity functions basically describe the exponential decay of the
laser amplitude in the magnetic material and consequently the decreased sensitivity
of the MOKE with increasing penetration depth. Typically the MOKE probing depth
is in the range of tens of nm and depends on the wavelength of the used laser [191].
From Eq. (5.22) we see that the Kerr angle θK(t) is oscillating with the frequency

of the magnetization dynamics ωsw as schematically depicted in Fig. 5.4. This is
essential as the oscillation of the Kerr angle θK is in the microwave regime which is
easily accessible with conventional microwave techniques compared to the frequency
of the laser light in the range of a few hundred THz. We will discuss in Sections 5.2.3-
5.2.5 how the oscillating Kerr angle can be utilized in different optical spectroscopy
techniques to measure the magnetization dynamics. Before, we want to briefly
discuss the complete excitation and detection scheme in order to investigate spatially-
resolved magnetization dynamics.

5.2.2 Excitation and Detection of Spin Waves

In this section we will discuss how to excite and detect magnetization dynamics
of propagating spin waves. We will start with the excitation of spin waves where
we use a microstrip antenna which is patterned on top of the magnonic waveguide
as schematically depicted in Fig. 5.5. A static magnetic field H0 is applied in the
plane to fix the direction of the magnetizationM . A microwave source generates a
microwave with a certain frequency fMW and power PMW which is coupled to the
patterned antenna and generates an oscillating magnetic field hrf by Ampère’s law.
The magnetic fields generated by the microstrips can be calculated by the Karlqvist
equations given by Eqs. (3.5) and (3.6). From the side view shown in Fig. 5.5(b) we
see that the oscillating fields generated by each microstrip add up in the gap due
to the opposing microwave currents Irf in neighboring microstrips. In this particular
example, the rf current in the outer microstrips flows in the same direction and the
center line’s current is opposing them. This periodicity in the rf currents given by
the distance of the two outer microstrips, determines the most efficiently excited
wavelength λ = 2π/k of the spin wave. The efficiency of the antenna is given by
the Fourier transform of the current distribution of the antenna, where we neglect
the details of the Skin effect and a constant current density through the microstrips
is assumed [196, 197]. We will calculate the efficiency of the used antenna in our
experiment in Section 5.3.

The spin wave is coherently excited at the antenna where the dynamic magnetiza-
tionm(t) couples to the oscillating driving field hrf if the microwave frequency fMW

matches the spin wave dispersion for the given static magnetic fieldH0 as described
by Eq. (5.7). The coherently excited spin wave starts to propagate away from the
antenna but the phase between the local, dynamic magnetization m(t) and the
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Fig. 5.5. Excitation principle of coherent spin waves in (a) top view and (b) side view. A
static magnetic field H0 is applied to the ferromagnet (FM) to fix the direction of
the magnetization. A microwave current Irf is applied to an on-chip patterned
antenna generating an oscillating magnetic field hrf which couples to the dynamic
magnetizationm(t). The periodicity of the antenna determines the efficiency to
excite spin waves with a certain wavevector k and wavelength λ. The microscope
objective focuses the polarized laser light to a diffraction limited spot size with
diameter dlimit at its working distance Lwork to spatially resolve the magnetization
dynamics.

phase of the excitation field hrf and consequently the microwave source is retained
due to the dipolar and exchange interaction. The dynamics of the magnetization is
measured using a linearly polarized laser which is focused onto the ferromagnet using
a microscope objective. With the microscope objective the laser light is collimated
and collected in a cone with a certain angle β. Due to symmetry reasons the Kerr
rotation and ellipticity induced by the longitudinal Kerr effect are averaged to zero.
The polarization of laser light from opposite directions of the microscope objective
experience a Kerr rotation of +θK and −θK respectively and consequently cancel
each other out. The same argument holds for the transverse MOKE. Only the polar
MOKE remains and is not vanishing.

The polarization of the laser light gets rotated and elliptical due to the MOKE
where the Kerr angle θK oscillates now as a function of time as explained before
[Section 5.2.1]. The backreflected light with the phase-information comprised is
collected by the microscope objective and is returned to the optical setup. In the
experiment, the microscope objective is fixed at a certain position in order to guar-
antee the alignment of the optical setup but the sample is mounted on piezo-based
nanopositioners to allow the movement of the sample in all three dimensions and
therefore the scanning of the magnonic waveguide.
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Before we switch to the discussion of the different measurement techniques and
how to analyze the oscillating Kerr angle θK, we want to briefly discuss the properties
of the microscope objective especially with regard to our used one1. The (infinity-
corrected) microscope objective is used to focus parallel light with a typical diameter
of a few mm to a diffraction limited spot depending on the magnification and numerical
aperture. The distance from the exit of the light at the microscope objective to the
focus point is the so-called working distance Lwork. For these kind of experiments a
large working distance is desired as the sample is typically contacted by bond wires
or picoprobes and a large working distance prevents to scratch the sample or rip off
the bond wires. Our long distance microscope objectives has a working distance of
Lwork = 4.1 mm.

The optical resolution of the microscope objective is given by the Abbe limit [188,
198]

dlimit = λl
2n · sin β = λl

2 N.A. , (5.23)

with the wavelength of the laser2 λl = 532.2 nm and the refractive index n of the
medium of light propagation which in our case is air (nair ' 1.0). For the second
equal sign in Eq. (5.23), we introduced the numerical aperture N.A. = n · sin β which
is determined by the opening angle β of the microscope objective and consequently
defines the magnification. For our microscope objective the numerical aperture
is N.A. = 0.75 corresponding to an angle β ' 48.6°. The diffraction limit spot
size is calculated to dlimit ≈ 355 nm. This value determines the minimal detectable
wavelength of an in-plane excited spin wave [167].

In the following sections, we want to discuss three different measurement tech-
niques, namely the microfocused frequency-resolved MOKE (µFR-MOKE), the mi-
crofocused Super-Nyquist sampling MOKE (µSNS-MOKE) and the microfocused
Brillouin light scattering (µBLS) technique, integrated into a single optical setup to
analyze the Kerr rotation in more detail.

1Zeiss LD EC Epiplan-Neofluar 100x/0,75 HD DIC M27
2Laser Quantum Torus 532
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5.2.3 Frequency-Resolved Magneto-Optic Kerr Effect

The microfocused frequency-resolved magneto-optic Kerr effect (µFR-MOKE) tech-
nique is a relatively new technique based on the FR-MOKE technique [199–201]
adapted for detecting the magnetization dynamics in a spatially-resolved man-
ner [160]. The principle idea is to adapt the vector network analyzer based broadband
magnetic resonance (VNA-BMR) technique (cf. Section 3.3.1), with its powerful
phase-resolving capability and its frequency accuracy to capture the magnetiza-
tion dynamics locally. The optical experimental setup is schematically depicted in
Fig. 5.6(a). The full optical setup including all optical elements is shown in the
Appendix A.1.

We use a continuous wave (cw) laser (Laser Quantum Torus 532, λl = 532.2 nm,
Pl,max = 180 mW) passing through a neutral density filter (NDF) to adjust the laser
power to the desired value as the laser needs to run at full power to ensure the correct
laser mode-locking. After that the laser light passes through a Glan-Thompson
polarizer to have a clearly defined linear polarization before focusing the laser beam
onto the sample through the microscope objective (MO). In order to “see” the sample
and allow for a measurement in a spatially-resolved manner, we build a Köhler-
illumination, routinely implemented in commercial microscopes, to homogenously
illuminate the sample. Combined with piezo-based nanopositioners allowing the
movement of the sample in all three dimensions (spatial scan and focus) this enables
us to precisely determine the position of the laser spot on the sample. For this, the
backreflected blue LED light of the Köhler illumination is measured using a CCD
camera. For details on the Köhler illumination refer to Appendix A.1.1.

The backreflected laser light, with its oscillating polarization angle at the frequency
of the magnetization dynamics ωsw, is reflected by a non-polarizing beamsplitter,
where 90% of the light is reflected and consequently transmitted through another
beamsplitter cube, used for the image acquisition of the sample. Now the laser beam
is at the crucial part of the setup, where the oscillation of the polarization is converted
to a change in intensity by using another polarizer (analyzer). In our experimental
setup, this polarizer is substituted by a zero-order half-wave plate and a polarizing
beam splitter cube in order to allow the fast change of the desired polarization
angle to switch between µFR-MOKE (transmitted beam) and µBLS (reflected beam)
measurements (see Appendix A.1 for details). We confirmed that the lower extinction
ratio of the polarizing beam splitter cube compared to the Glan-Thompson polarizer
has no significant impact on the measured signal-to-noise ratio. In this context, we
will refer to the half wave-plate and the polarizing beam splitter as the analyzer. We
set the angle of the analyzer to ϕanaly = 45° with respect to the first polarizer, which
is the optimal angle for FR-MOKE detection as we will derive below.
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Fig. 5.6. (a) Schematic depiction of the microfocused frequency-resolved magneto-optic
Kerr effect (µFR-MOKE) setup. For details refer to main text. (b) Different angle
positions ϕanaly for the analyzer to visualize the detected voltage at the photodetec-
tor Vdet(t) depending on the direction of the polarization axis e′analy. The red and
orange arrow illustrate the two extreme values of polarization at times t1 and t2 and
are exaggerated for clarity.

After the oscillating polarization of the laser beam is converted to an oscillating
laser intensity, we couple the laser light into a single-mode FC/APC optical fiber with
a fiber coupling efficiency of ∼55% of the laser intensity into the fiber. The optical
fiber impinges through the anti-reflection coated FC/PC end on a fast broadband
photodetector with a bandwidth of 25 GHz. The dc-signal of the photodetector is
proportional to the total laser power coupled into the optical fiber. This voltage is
measured by a multimeter and used to actively stabilize the focusing of the laser on
the sample. For the fiber coupling of the backreflected laser light from the sample, it
is critical to have parallel laser light which is only obtained if the laser spot is in focus
on the sample.

The ac-signal of the photodetector is amplified by a low-noise amplifier and sent to
the port 2 of the VNA. The VNA phase-sensitively analyzes the signal and calculates
the complex transmission parameter S21 = V2/V1 with an intermediate frequency
filter bandwidth of 1 Hz to minimize the noise [160]. The VNA is also used to apply
a microwave frequency fMW at port 1 and coupled into the microstrip antenna to
excite the magnetization dynamics. In this context, V2 is the measured voltage of the
photodetector and V1 the applied voltage to the microstrip antenna.

We now want to answer why we set the angle of the analyzer to ϕanaly = 45°. In
our derivation, the change of the electric field of the laser beam El is considered in
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its initial state, after the interaction with the sample and after it passes through the
analyzer. We can write the electric field vector of the laser beam El as follows

El =

Exl

0
0


x

, (5.24)

polar MOKE−−−−−−−−→

Exl · cos θK(t)
Exl · sin θK(t)

0


x

, (5.25)

Analyzer−−−−−→

Exl · cos θK(t) · cos (ϕanaly) + Exl · sin θK(t) · sin (ϕanaly)
0
0


x′

.

(5.26)

Going through the steps in the equations above: First, we write the linearly polarized
laser light with a single component in the x coordinate system [Eq. (5.24)]. After
the interaction of the linearly polarized light with the magnetization dynamics, the
polarization of the laser light becomes elliptically polarized and the polarization plane
rotates due to the polar MOKE [Eq. (5.25)]. The ellipticity of the laser light will be
neglected for simplicity. The analyzer projects the electric field or polarization of the
laser light onto the polarization axis of the analyzer as schematically depicted in
Fig. 5.6(b). Additionally, we transformed the coordinate system into the x′ system so
the second and third component of the electric field vector are zero [Eq. (5.26)].
For the µFR-MOKE we are using an ac-detector so the measured voltage on the

diode detector can be calculated to

Vdet(t) = [Exl · cos θK(t) · cos (ϕanaly) + Exl · sin θK(t) · sin (ϕanaly)]2 ,

= E2
xl · cos2 θK(t) · cos2 (ϕanaly) + E2

xl · sin2 θK(t) · sin2 (ϕanaly)

+ 2E2
xl · cos θK(t) · sin θK(t) · cos (ϕanaly) · sin (ϕanaly) ,

≈ E2
xl · cos2 (ϕanaly) + 2E2

xl θK(t) · cos (ϕanaly) · sin (ϕanaly) . (5.27)

In the last step, we used cos θk(t) ≈ 1+O(θ2
K), sin θk(t) ≈ θK(t)+O(θ3

K) and cos θk(t)·
sin θk(t) ≈ θK(t) +O(θ3

K) in the approximation for small Kerr angles θK(t). The first
term is an offset term independent of the Kerr angle, while the second term is linearly
dependent on the Kerr angle θK(t) possessing all the information on themagnetization
dynamics. The second term is maximized by max [cos (ϕanaly) sin (ϕanaly)] = 1/2 if
the angle of the analyzer is set to ϕanaly = 45°. The total voltage measured on the
ac detector is then

Vdet(t) ≈
E2
xl
2 + E2

xl θK(t). (5.28)
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The chosen ϕanaly = 45° can also be understood with the schematics shown in
Fig. 5.6(b). Here, the oscillating polarization after the interaction with the magnetiza-
tion dynamics via the MOKE is shown for two different points in time t1 and t2 at the
extreme values of the polarization. For simplicity, the ellipticity of the polarization is
omitted. The polarization is oscillating between t1 and t2 with the frequency of the
magnetization dynamics (typically fMW ∼ 10 GHz) and within the arrow (front to back)
with the frequency corresponding to the laser wavelength (∼ 560 THz). By changing
the angle of the analyzer ϕanaly and consequently the polarization vectors of the
analyzer e′analy, the projection of the oscillating polarization on the analyzer vector is
considered. For ϕanaly = 0° and ϕanaly = 90° the projection of the polarization leads
to no voltage on the detector Vdet(t) = 0 as it leads to the same point on the analyzer
axes e′analy. For the situation where ϕanaly = 45° the polarizations do not project to
the same point on the analyzer axis e′analy leading to a finite difference in the laser
intensity and consequently to a measurable voltage at the detector Vdet(t) 6= 0. We
want to emphasize that any angle between 0° and 90° leads to a difference in laser
intensity after the analyzer but, as mathematically derived above, the effect is largest
at ϕanaly = 45°.

5.2.4 Brillouin Light Scattering

The Brillouin light scattering (BLS) technique is a widely-used and well established
optical spectroscopy technique. The large advantage of BLS is its sensitivity not
only to coherent processes, such as the excitation of magnetization dynamics with a
microstrip antenna, but also to incoherent processes like thermal spin waves [168].
The BLS technique can be adapted to study the magnetization dynamics also in
a spatially- [165, 167], wavevector- [126, 202], temporal- [203–205] and phase-
resolved [169–171] manner [20, 167]. Before we go into details of the spatially-
resolved, microfocused BLS technique, we first want to discuss the BLS principle
and the tandem Fabry-Pérot interferometer.

The physical principle utilized in BLS measurements is best explained in a quantum
picture as schematically depicted in Fig. 5.7(a). The photons of the laser possess an
energy depending on the frequency ω and a momentum described by the wavevec-
tor k. These photons can either generate or annihilate an excitation in the ferromagnet.
These excitations are known as magnons and posses an energy ~ωsw and a mo-
mentum ~ksw. The scattered photon experiences a frequency shift ω ± ωsw and a
change in momentum k ± ksw due to the energy and momentum conservation. The
process of generating a magnon is the so-called Stokes process and the annihilation
of a magnon is the anti-Stokes process.

In order to analyze the energy transfer, a (3+3)-pass tandem Fabry-Pérot interfer-
ometer (TFPI) designed by J. R. Sandercock is used as shown in Fig. 5.7(b). The
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Fig. 5.7. (a) Principle of Brillouin light scattering (BLS). The incident light with frequency ω
and wavevector k generates or annihilates a magnon with frequency ωsw and
wavevector ksw which is the so-called Anti-Stokes or Stokes process, respectively.
The scattered light experiences a shift in frequency ω±ωsw and momentum k±ksw
due to the momentum and energy conversion. (b) Schematic of the tandem Fabry-
Pérot interferometer (TFPI) with the two etalons FP1 and FP2. For details refer
to main text. (c) Transmission of the two etalons as a function of the frequency
shift f . The scattering of magnons leads to the frequency shift ∆fS and ∆fAS for
the Stokes- and Anti-Stokes process, respectively.

TFPI consists of two Fabry-Pérot interferometers (FPI) aligned in series which again
consists of two parallel, highly reflective mirrors. The demand on the TFPI is to
resolve small signals (single photons), due to the small inelastic scattering cross
section compared to the large elastic scattering, and to measure small frequency
shifts in the laser frequency [25]. To achieve a high contrast and to allow for fre-
quency resolution, the laser beam passes three times through each FPI. The second
Fabry-Pérot interferometer (FP2) lies with an angle α with the scan direction (FP1)
so the stage translation for the second interferometer becomes L2 = L1 cosα.

A FPI functions as a frequency or wavelength analyzer where laser light is re-
flected multiple times within the two mirrors and constructively interferes if the mirror
distance L is an integer multiple of half the wavelength of the laser light L = nλ/2
with n ∈ N [25]. This means that the elastically scattered light is transmitted after
one scan by λ/2 which is known as the free spectral range (FSR) [206]

fFSR = c

2L (5.29)

with the speed of light c. In order to suppress the unwanted higher order elastic peaks
after every FSR scan, the distance travelled by FP2 is slightly different to FP1 leading
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to a suppression of higher order transmissions when the laser light travels through
both FPIs as shown in Fig. 5.7(c) (lower panel). The remaining peaks in the TFPI
spectrum are stemming from the elastically scattered light, known as the Rayleigh
peak, and the peaks from the inelastically scattered photons due to the Stokes and
anti-Stokes process leading to a frequency shift ∆fS and ∆fAS, respectively. The
mirror spacing of FP1 can be adjusted with motors to access a FSR between 5 GHz
and ∼ 1.5 THz (L = 0.1 mm − 30 mm) while the stage scan with piezo motors is in
the range of a few µm [206].
The frequency resolution δf of the TFPI is given by the finesse F which is a

measure for the number of interfering beams in the FPI and reflects the quality of
the interferometer. The finesse of a FPI is given by [198]

F = fFSR
δf

. (5.30)

The typical finesse of the TFPI is between 100 and 120 [206]. In our experiments
the mirror spacing was set to L1 = 6 mm leading to a FSR of fFSR = 25 GHz and a
frequency resolution of δf ≈ 250 MHz. Therefore, it is crucial to use a laser with a
smaller linewidth than the TFPI resolution (Laser Quantum Torus 532, ∆fl = 1 MHz)
to eliminate the potential limitation of the measured signal by the laser linewidth. Note
that the finesse and transmission function as shown in Fig. 5.7(c) crucially depends
on the parallelism of the mirrors of the two FPIs and the correct mirror spacing of
FP2 with respect to FP1. To this end, one of each FPI mirrors is equipped with a
pair of piezo motors to adjust the polar and azimuthal angle of the mirror.

After passing the two FPIs, the laser light is passed through a spectral and a spatial
filter before the photons are analyzed by a single photon detector3. The counted
photons are correlated with the scanning mirror spacing so the photon counts are
assigned to a frequency shift. As most of the photons will be elastically scattered,
the intensity is large enough to damage the photodetector. To prevent this, a double-
shutter system is present at the entrance of the interferometer. If the scanned mirror
spacing comes close to the Rayleigh peak, the double-shutter closes the entrance
from the sample and opens the beam path to the so-called reference-beam which
is a low intensity laser light directly from the laser. The reference beam is also
used to “stabilize” the TFPI. During this PhD-thesis an automated software was
developed to actively stabilize (adjust FPI mirrors for parallelism and correct spacing
of FP2), control (e.g. double-shutter) and perform measurements with the TFPI (see
Appendix A.2).

In our experiment, we perform spatially-resolved, microfocused Brillouin light
scattering experiments with the setup schematically depicted in Fig. 5.8. The op-
tical path remains compared to the µFR-MOKE up to the analyzer unchanged (cf.
3Hamamatsu H10682
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Section 5.2.3). After the analyzer, the laser beam is routed into the TFPI. For the
reference path of the TFPI, a 10:90 beam splitter is placed after the laser with a neu-
tral density filter (NDF) to adjust the laser power. Due to the usage of a microscope
objective in the µBLS the change in momentum cannot be measured because the
laser light cone averages over the contributions ±ksw. In wavevector-resolved BLS a
low N.A. lens is used to focus the laser beam and the sample is rotated to change
the angle of incidents and consequently the wavevector. Additionally, the wavevector
conservation is only valid for the in-plane component of the wavevector but not for
the out-of-plane component in thin films [167].

The analyzer in the µBLS measurements is set to ϕanaly = 90° with respect to the
first polarizer. We will now show mathematically why we chose ϕanaly = 90° and how
the optical sidebands (Stokes- and anti-Stokes peak) occur. Starting again with the
electric field vector of the laser beam described by Eqs. (5.24)-(5.26), we can write

E(t) = Exl [cos θK(t) · cos (ϕanaly) + sin θK(t) · sin (ϕanaly)] , (5.31)
= Exl cos (θK(t)− ϕanaly) . (5.32)

From Eq. (5.32), it is clear that ϕanaly changes the background of the measured
signal as the Kerr angle θK(t) is very small (< mdeg). To minimize the background
primarily coming from the elastically scattered light, the angle of the analyzer is set
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to ϕang = 90° = π/2. Utilizing cos (θk(t)− π/2) = sin θK(t) and Taylor expanding
sin θk(t) ≈ θK(t) +O(θ3

K) for small θK(t), we find

E(t) = ExlθK(t), (5.33)
= E0

xl cos (ωlt) θK cos (ωswt) ,

=
E0
xlθK
2 [cos ((ωl − ωsw)t) + cos ((ωl + ωsw)t)] , (5.34)

where we used Exl = E0
xl cos (ωlt) with the laser frequency ωl = 2π c/λl. From

Eq. (5.34) we get optical sidebands with frequencies ωl ± ωsw corresponding to the
Stokes- and anti-Stokes peak. The installed single photon detector in the TFPI is
in contrast to the µFR-MOKE a dc detector. The measured signal after frequency
filtering with the TFPI and low-pass filtering is

VDC ∝
[
E0
xl θK

]2
. (5.35)

As seen from the above equation, the detected signal is tiny but there is no background
in the measured signal, which is distinct from the µFR-MOKE (cf. Eq. (5.27)), due
to the analyzer rotated orthogonally with respect to the first polarizer. Therefore, a
single photon detector with a low dark count rate is required to detect these small
signals. In the µBLS the intensity is measured and not the amplitude and therefore
the phase-information is lost. This problem can be overcome by performing phase-
resolved µBLS measurements where an electro-optic modulator (EOM) is inserted
after the polarizer [169–171]. The limiting factor of the phase-resolved µBLS is the
limited frequency range of the EOM. Consequently, the accessible frequency range
of the magnetization dynamics is restricted.

5.2.5 Super-Nyquist Sampling Magneto-Optic Kerr Effect

The microfocused super-Nyquist sampling MOKE (µSNS-MOKE) is an improved
measurement scheme based on the classical time-resolved MOKE (TR-MOKE) [41,
164, 207, 208] and was developed by the group of Georg Woltersdorf (Martin Luther
University Halle-Wittenberg) [172]. The optical setup is schematically depicted in
Fig. 5.9(a). In our experiment, we are using a pulsed laser (NKT Photonics Origami)
with a wavelength of λl = 515.6 nm, a repetition rate of frep = 80 MHz, a gaussian
pulse length of τpulse = 146 fs and a cw laser power of Pl = 78 mW corresponding
to a pulse energy of 975.0 pJ. The laser light passes through the same optical path
as in the µFR-MOKE and µBLS measurements. The optical setup differs in the
measurement of the oscillating polarization due to the polar MOKE. For the µSNS-
MOKE, a Wollaston prism is used to separate the ordinary and extraordinary ray,
corresponding to the two orthogonal polarization states, by an angle of 20°. These two
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Fig. 5.9. (a) Schematic depiction of the microfocused Super-Nyquist sampling magneto-optic
Kerr effect (µSNS-MOKE) setup. For details refer to main text. (b) Nyquist-sampling
principle where a slow oscillating signal with frequency δ (red line) is generated due
to the non-stroboscopic detection of the oscillating out-of-plane component of the
dynamic magnetization mz (black line) with frequency fMW and the laser repetition
rate frep (black triangles). (c) Fourier spectrum of the frequency combs generated
by pulsed laser. For illustration purposes the used parameter values for panels (b)
and (c) are fMW = 255 MHz, frep = 80 MHz and δ = 15 MHz.

beams are then focused by 15 mm lenses (not shown in figure) onto the detectors of a
balanced photodetector with a fast monitor output and a frequency response between
dc and 350 MHz. In front of the Wollaston prism a zero-order half-wave plate is placed
to rotate the polarization plane such that the subtracted signal of the two balanced
detector inputs is zero. The output signal of the balanced photodetector is measured
by a lock-in amplifier (Zurich Instruments UHFLI, frequency range f ≤ 600 MHz).

The crucial part is the synchronization of the laser with the lock-in amplifier and the
microwave source, used to excite themagnetization dynamics with frequency fMW, on
the same timebase. The laser features a synchronization module to stabilize the laser
to an external signal with ultra-low jitter and frequency equal to the laser repetition
rate frep. This is necessary to maintain a fixed phase relation between the microwave
used to excite spin waves and the laser pulses used to detect the spin wave dynamics.
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In our experiment we used the lock-in amplifier to generate the synchronization signal
for the laser and the 10 MHz reference output to synchronize the microwave source.
Note that the measurements can also be performed with a lock-in amplifier with
a frequency range lower than the laser repetition rate (e.g. Zurich Instruments
MFLI, f ≤ 500 kHz). However, in this case the usable microwave frequencies are
constrained. For the synchronization, a waveform generator (Keysight 33600A) is
then additionally used to generate the synchronization signal for the laser (80 MHz)
and for the other microwave equipment (10 MHz). The excitation of the magnetization
dynamics is done by the microwave source (Rohde&Schwarz SMF100A) generating
a cw microwave with frequency fMW and power PMW coupled into the microstrip
antenna.

In the traditional TR-MOKE, measurements are performed in a stroboscopic man-
ner, such that the microwave excitation frequency fMW = n ·frep with n ∈ N. For SNS-
MOKE, we allow an arbitrary offset between the microwave frequency fMW and multi-
ples of the laser repetition rate frep [172]. This can be expressed by fMW = n·frep +δ,
where δ is an arbitrary frequency offset in the range 0 < δ < 80 MHz. In Figs. 5.9(b)
and (c) the Nyquist sampling process is shown in the time- and frequency-domain,
respectively. The oscillations of the out-of-plane component of the dynamic magneti-
zation mz is faster than the repetition rate of the laser. Due to the frequency offset δ,
the laser pulse probesmz at different times and not always at the same periodic time
as in the stroboscopic measurement scheme (fMW = n · frep) as depicted by the
red points in Fig. 5.9(b). This periodic wave (red line) oscillates with a frequency δ.
The down-conversion to frequency δ by the frequency combs of the pulsed laser
occurs coherently as shown in Fig. 5.9(c), which conserves the phase-information of
the magnetization precession relative to the microwave excitation of the microwave
source [172]. Due to this undersampling of the magnetization dynamics, this tech-
nique is called super-Nyquist sampling. The lock-in amplifier can consequently be set
to δ and the real and imaginary part of the susceptibility can be measured. Therefore,
also this technique is phase-sensitive and measures the amplitude of the magneti-
zation dynamics. The measured voltage on the photodetector can be equivalently
estimated with the approach in Section 5.2.3. The first term in Eq. (5.28) vanishes
in the µSNS-MOKE measurement due to the usage of the balanced photodetector
where as mentioned before the two input signals are subtracted. The resulting ac
voltage is consequently

Vdet(t) ≈ 2E2
xlθ
′
K(t). (5.36)

Note that the Kerr angle is not oscillating with fMW but with δ. The time-dependent
Kerr angle takes the form θ′K(t) = θK sin (δt+ φ) similar to Eq. (5.22). This measure-
ment technique will in the following be used to cross-check some of the results of the
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µFR-MOKE as from the measurement principle they are very similar and are both
phase-sensitive. The main focus of this chapter will be on the µFR-MOKE technique
and its capabilities.

5.3 Low-Damping Spin Wave Dynamics in Co25Fe75

For the following experiments, a microstructured Co25Fe75 sample is used as shown
in the camera image in Fig. 5.10(a), which was taken by the CCD of the optical
setup. The sample is structured on a silicon substrate with a thermal oxide layer
with a thickness of 1 µm on top using electron beam lithography. The magnonic
waveguide with width w = 1.5 µm is written using positive resist (Allresist AR-P
617.08). After development, the Co25Fe75 is deposited using dc sputtering tech-
nique in the SUPERBOWL facility at the WMI. The complete stack sequence is
substrate/Pt(3)/Cu(3)/Co25Fe75(50)/Cu(3)/Ta(3), where the numbers in the brackets
denote the nominal thickness in nm. This composition features excellent low damping
properties as demonstrated in Ref. [51].

After lift-off in acetone, the procedure is repeated for the microwave antenna and
markers, used for optical drift stabilization of the sample stage. For the markers
and the antenna a 30 nm thick SiOx layer was rf sputtered first to ensure electrical
and thermal isolation. Afterwards 100 nm of gold (Au) was in-situ dc sputtered in
the SUPERBOWL. The antenna is contacted using bond wires from a coplanar
waveguide which is connected to port 1 of the VNA or the output port of a microwave
source.

The antenna is designed as a coplanar waveguide-like microstrip antenna consist-
ing of a single center strip and two ground lines shorted at the end of the antenna.
The width of the center conductor is 1.5 µm, the width of the ground lines 0.75 µm and
the gap between them is 0.5 µm. The idealized current distribution in the antenna is
shown in Fig. 5.10(b). The widths were chosen so that the current densities in the
center and ground lines are equal. As already discussed in Section 5.2.2, it is possible
from the given current distribution in the sample to calculate the excitation efficiency
of spin waves by Fourier transformation [196]. The excitation efficiency of the antenna
is shown in Fig. 5.10(c), where we get a peak efficiency at |k|max = 1.77 µm−1. The
non-propagating spin waves with k = 0 are excited with roughly half the efficiency
compared to the most efficiently excited magnons.

In this section, we will use the aforementioned optical spectroscopy techniques to
investigate the magnetization dynamics of the low damping ferromagnet in the linear
regime, such as spin wave propagation, and non-linear regime, such as magnon-
scattering. We especially will focus on the µFR-MOKE technique and use the other
two (µBLS and µSNS-MOKE) to compare the results or to get additional insights.
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Fig. 5.10. (a) Camera image of the investigated magnonic device taken by the CCD camera.
The static magnetic field H0 is orientated perpendicular to the Co25Fe75 strip.
(b) Current distribution Ix through the antenna. (c) Fourier transform of the current
distribution Ix which gives the excitation efficiency of the antenna as a function of
the wavevector k.

First, the linear magnon dynamics is discussed and in Section 5.3.2 the non-linear
dynamics with a focus on measurement technique is addressed.

5.3.1 Spin Wave Dynamics in the Linear Regime

In this section, we present our results on the study of the magnetization dynamics
of spin waves in the linear regime with the focus on spin wave propagation charac-
teristics. In the presented experiments, the cw laser power before the microscope
objective is set to Pl = 1.85 mW for the cw laser in the µFR-MOKE and µBLS mea-
surements and Pl = 0.90 mW for the pulsed laser in the µSNS-MOKE measurements.
The microwave power of the VNA or the microwave source is set to PMW = 10 dBm
and the number of averages in the µBLS is set to 1500, if not stated differently. Due
to the need to slightly change the optical path when either measuring with the cw
laser (µFR-MOKE & µBLS) or the pulsed laser (µSNS-MOKE), the spot positions
on the sample cannot be perfectly reproduced leading to small deviations between
the spectra. Additionally, the beam diameter of the two lasers are different and the
beam shape of the pulsed laser is elliptical and slightly divergent, what results in
different focused spot sizes on the sample. While for the cw laser the spot size
is in the diffraction limit, for the pulsed laser this is not the case and therefore the
resolution will be slightly worse.
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First, we will briefly compare the typical spectra of the three aforementioned optical
spectroscopy techniques in magnetic field sweep experiments at fixed spot position
before discussing the propagation characteristics.

5.3.1.1. Comparison of Fieldsweep Spectra with Different Optical
Spectroscopy Techniques

In these experiments, the laser spot is focused on the center of the magnonic
waveguide roughly 4.5 µm away from the microwave antenna to minimize the near-
field excitation of the antenna. The spot location on the sample is indicated by the
green circle in Fig. 5.10(a). The applied microwave frequency is fMW = 12 GHz. The
magnetic fieldH0 is swept in the range from 145 mT to 0 mT with a resolution of 1.0 mT.
For the µSNS-MOKE the frequency offset is chosen to δ = 10 kHz resulting in a
excitation frequency of fMW = 12 GHz+δ. The lock-in frequency is set to δ+80 MHz =
80.01 MHz for a better voltage noise density of the used lock-in amplifier [209].

In Fig. 5.11(a) the measured complex S21-parameter of the µFR-MOKE mea-
surement and in Fig. 5.11(b) the measured lock-in voltage Ui of the µSNS-MOKE
measurement with the laser spot at a fixed position are shown. These two spec-
troscopy techniques are as already mentioned phase-sensitive and proportional the
susceptibility of the magnetization dynamics. At µ0H0 ' 110 mT, a large spin wave
resonance is observed and at fields between µ0H0 = 40 mT − 50 mT some small
fast changing resonance are measured. We confirmed that the spin waves with
fast changing resonancess are not a non-linear effect by decreasing the microwave
power and are not an excitation of higher order harmonics of the microwave source
by inserting a low-pass filter after port 1 of the VNA.

We attribute the small background in the µFR-MOKE measurements to spurious
signals stemming from free space electromagnetic radiation of the sample, to the
mobile network and other microwave signals in free space. The detector and the
low-noise amplifier in the µFR-MOKE are placed into a self-made aluminum box with
a copper mesh cladded on the walls and the lid of the box to reduce the pick up of
such spurious signals by the amplifier.

The measured spectrum of the µBLS shown in Fig. 5.11(c) is completely different
as the TFPI periodically changes the mirror spacing and therefore the full frequency
response fBLS to a given excitation frequency fMW is obtained as seen in the col-
ormap. The strong signal at fBLS = 12 GHz is the intensity of the spin waves excited at
fMW. The weak, almost magnetic field-independent signal around fBLS = 14.5 GHz
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Fig. 5.11. Magnetic field dependence of the (a) real and imaginary part of the complex
transmission parameter S21 from µFR-MOKE, (b) the real and imaginary part of
the lock-in voltage UX and UY, respectively, from µSNS-MOKE and (c) the photon
counts from BLS measurements at microwave frequency fMW = 12 GHz and
fixed spot position (cf. Fig. 5.10(a), green circle). For the µBLS measurements
the complete frequency f information is retained and not only at the excitation
frequency fMW. The non-linear dynamics are discussed in Sec. 5.3.2. Note that
for µ0H0 > 100 mT in the µBLS measurements the temperature interlock of the
electromagnet triggers as the measurements require to keep the magnetic field
constant for a longer period of time.
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is due to thermal magnons. As these magnons are thermally excited, the measured
signal is proportional to the magnon spectral density ρ(f) described by [168]

ρ(f) = D(f)n(f) = D(f)
exp

(
hf
kBT

)
− 1

, (5.37)

with the Bose-Einstein distribution n(f), the Planck constant h, the Boltzmann con-
stant kB and the temperature T . The magnon density of states is given by

D(f) =
∫ dk

(2π)3 δ(f − f(k)) (5.38)

with the dispersion relation f(k) described by the Kalinikos-Slavin equation [Eq. (5.7)].
Due to the large saturation magnetization of Co25Fe75 (Msat = 2.36 T/µ0 [51]), the
demagnetization field produced by the magnonic waveguide is also large Hd =
−NxxMsat. The magnetization of the thermal magnons is confined along the waveg-
uide and at a magnetic field of µ0H0 ' 75 mT the magnetization is tilted along the
direction of the magnetic field. To give an estimation of the demagnetization field,
we assume that the demagnetization factor Nxx is given by the ratio of the Co25Fe75

thickness tFM = 50 nm and the width of the magnonic waveguide w. The demagneti-
zation factor is consequentlyNxx = tFM/w = 1/30 as along the magnonic waveguide
we do not expect any demagnetization fields. For the demagnetization field, we
calculate µ0Hd ≈ 79 mT which is in good agreement with the observed behaviour.

The BLS signals at fBLS = 6 GHz and fBLS = 18 GHz are due to three-magnon
scattering [210] as the applied microwave power PMW is sufficiently large to drive the
system in the non-linear regime. We will discuss this in more detail in Section 5.3.2.

If we take the spectrum at fixed interferometer frequency fBLS, we get a spectrum as
shown in the right panel which can be compared to the other spectroscopy techniques.
Note that in BLS the intensity is measured and in FR-MOKE and SNS-MOKE the
amplitude of the spin wave susceptibility. The obtained data is in full agreement with
each other although the magnetic field in the µBLS is not sufficiently large to compare
the full spectrum. This is due to the temperature interlock on the electromagnet
that prevents overheating. For the µBLS the magnetic field is fixed for a longer
period of time, which causes especially at large magnetic fields µ0|H0| > 100 mT
a lot of Joule heating. In the µFR-MOKE and µSNS-MOKE measurements this is
not an issue as each magnetic field point needs to be measured for only 1 s. The
comparison of the magnitude of the spectra will be done later in Section 5.3.2.3.
We briefly comment on the signal-to-noise ratio and the measurement time. The
µFR-MOKE and µSNS-MOKE measurements have a comparable signal-to-noise
ratio at the same measurement time of roughly 35 min. The µBLS instead took
more measurement time (≈ 19 h) but features more information because the full
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frequency response of the magnonic system at a certain excitation frequency fMW

is captured. The signal-to-noise ratio in µBLS crucially depends on the number of
averages performed and on the quantum efficiency and dark count rate of the single
photodetector.
From these measurements, we observe two pronounced sets of spin wave reso-

nances: The first at magnetic fields of around µ0H0 ' 100 mT where we observe a
large spin wave resonance and at fields around µ0H0 ' 45 mT with small magnitude
but fast variation with field. These different behaviours can be attributed to the large
demagnetization fields. In the following, we will have a closer look at this behaviour.

5.3.1.2. Spin Wave Propagation Characteristics while Changing the Magnetic
Field

In this experiment, the spin wave propagation characteristics are measured while
changing the external magnetic field. The measurement scheme is as follows: The
magnetic field H0 is set in the range from 115 mT to 0 mT with a step size of 0.7 mT.
After the magnetic field is stabilized, the laser spot is scanned along the center of
the magnonic waveguide with a step size of roughly 150 nm and the complex S21-
parameter or the lock-in voltage Ui in the µFR-MOKE or µSNS-MOKE measurement
are measured, respectively. The microwave frequency is set to the fixed value of
fMW = 10 GHz. We do not measure in this scheme with the µBLS technique as it is
not feasible due to the large required measurement time. For the µSNS-MOKE the
frequency offset is δ = 10 kHz resulting in an excitation frequency of fMW = 10 GHz+δ
and a lock-in frequency of 80.01 MHz.

The results are compiled in Fig. 5.12. In the left column the dc voltage of the fast
photodetector (µFR-MOKE) and the dc voltage of the “Monitor+” output of the bal-
anced photodetector (µSNS-MOKE) are shown and are a measure of the reflectivity
of the sample at the laser spot location. In this regard, we want to briefly discuss
the different automated focusing routines established in µFR-MOKE/µBLS and in
µSNS-MOKE respectively. In the µFR-MOKE and µBLS we couple (parts of) the
laser light into the optical fiber and consequently to the fast photodetector (cf. full
optical setup shown in Appendix A.1). Inside the fast photodetector the signal is
split into its dc and ac component, where the dc signal is proportional to the laser
power coupled into the optical fiber as seen from Eq. (5.28) in the first term. The
laser light is most efficiently coupled into the optical fiber if the laser light is perfectly
parallel before focused into the fiber. The reflected light from the sample, which
is collected by the infinity-corrected microscope objective, is only parallel after the
entrance pupil if the laser spot is in focus on the sample. Otherwise the laser light
is divergent. By moving the nanopositioners in small steps closer or further away
from the microscope objective, we measure the change of the dc voltage detected at
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Fig. 5.12. Line scan along the middle of the magnonic waveguide with a combined magnetic
field sweep at fMW = 10 GHz using (a) µFR-MOKE and (b) µSNS-MOKE. The
left column shows the dc voltage Udc of the respective photodetector which is
a measure for the reflectivity. The structure around y = 0 µm is the antenna
structure used for the excitation of the spin waves. The middle and right column
show the real and imaginary part (a) of the complex-transmission parameter S21
of the µFR-MOKE and (b) of the lock-in voltages UX and UY of the µSNS-MOKE
measurement.

the fast photodetector with a multimeter and maximize the dc signal by moving the
sample stage.

In the µSNS-MOKE technique, we cannot use the optical fiber due to the different
optical paths (cf. Fig. A.1). Here, we fully rely on image detection. In the imaging ac-
quisition software we select a certain region of the optical image and use pre-defined
routines from National Instruments Vision Development Module and determine the
“sharpness” of the selected region. We optimize the sharpness of the optical image by
moving the sample stage. Additionally, we monitor the voltage of one of the balanced
photodetector inputs “Monitor+” to observe differences in the reflected laser light
intensity. Note that this routine does not have the same sensitivity to changes in the
focus than the auto-focusing routine used in the µFR-MOKE/µBLS, where already
small deviations are detectable.

From the changing reflectivity, the antenna can be clearly identified as well as the
stability of the software automated focusing routine can be checked. The different
scales in the dc voltage between the two measurement techniques is due to the
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different electronics in the photodetectors. From the reflectivity, we observe a dif-
ference in the resolution between these methods where the µFR-MOKE features a
better resolution which is due to the aforementioned smaller spot size on the sample.
In the center and right column in Fig. 5.12, the real and imaginary part of the

complex S21-parameter and the lock-in voltage Ui are shown. In the measured
spectra two main features are observed: The spin wave dynamics can be divided
into three distinct regions. The first region at large magnetic fields between µ0H0 '
75 mT − 115 mT, where we observe spin waves in the Damon-Eshbach regime
(M ⊥ k). As discussed in the previous section, the magnetic field H0 is large
enough to overcome the demagnetization field Hd. The second regime is between
µ0H0 ' 45 mT− 75 mT and the third regime between µ0H0 ' 0 mT− 45 mT, where
spin waves in an intermediate configuration between backward-volume and Damon-
Eshbach, and in the backward-volume regime are excited. Especially interesting is
the second regime, where spin waves with small wavelengths are excited. This is a
consequence of the large demagnetization fields as the magnetization is pointing at
low magnetic fields along the magnonic waveguide and with increasing magnetic
field starts to rotate towards the external magnetic field H0 perpendicular to the
waveguide because this is a magnetic hard axis. Between these two extreme cases
the spin waves are neither backward-volume nor Damon-Eshbach modes but in
an intermediate state, which can be calculated using the Kalinikos-Slavin equation
[Eq. (5.7)] by first determining the equilibrium position parameterized by the in-plane
angle φ of the magnetization at a given magnetic field strength.

The second feature is the different amplitude above and below the antenna. This
spin wave non-reciprocity of the spin wave amplitude is most prominently seen for
the Damon-Eshbach spin waves which are surface modes and is attributed to the
antenna non-reciprocity. The physical origin for this non-reciprocity is the relative
orientation of the spin wave wavevector and the external magnetic field leading to
different coupling efficiencies of the microwave field of the antenna to the dynamic
magnetization of the spin wave [211, 212].
In a more quantitative approach, the propagation properties of the coherently

excited spin waves are extracted by considering the spatial-dependence of the com-
plex S21-parameter and the lock-in voltage Ui at fixed magnetic field H0. Exemplary
spectra at µ0H0 ≈ 26.5 mT for both measurement techniques are shown in Fig. 5.13.
The grey points represent the measured data from Fig. 5.12 and show an oscillating
behaviour corresponding to the wavefronts of the spin wave superimposed with an ex-
ponential decay due to the finite damping in the system. Due to the phase-sensitivity
of both spectroscopy technique, it is possible to extract the wavevector k and spin
wave propagation length ξsw by fitting the µFR-MOKE data to [160]

S21(y) = A · exp
(
− y

ξsw

)
· eiky+φ + C0, (5.39)
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Fig. 5.13. Line scans of the (a) µFR-MOKE and (b) µSNS-MOKE signal shown in Fig. 5.12
along the y-axis at fixed magnetic field µ0H0 ≈ 26.5 mT. The grey points are the
measured data. The solid red and blue lines are the fits to the real and imaginary
part, respectively, by using Eq. (5.39) in (a) for the µFR-MOKE and Eq. (5.40) in
(b) for the µSNS-MOKE data.

with an amplitude parameter A, a phase factor φ and a complex offset C0. The
µSNS-MOKE data is equivalently fitted with [41]

UX(y) = B · exp
(
− y

ξsw

)
· cos

(
ky + φ′

)
+ C0X ,

UY (y) = B · exp
(
− y

ξsw

)
· sin

(
ky + φ′

)
+ C0Y ,

(5.40)

where B is the amplitude, φ′ a phase factor, and C0X and C0Y are offset parameters.
The real and imaginary part of S21 and of the lock-in voltages UX and UY are fitted
simultaneously with the equations above but data to either side of the antenna is
fitted separately. The solid lines in Fig. 5.14 show the fits to the data.
This procedure is repeated for all available magnetic fields H0. The extracted fit

parameters, namely the wavevector k and propagation length ξsw of the spin wave, are
shown in Fig. 5.14. In the magnetic field-dependence of the wavevector we observe
again the aforementioned three different spin wave regimes. Especially in the second
regime µ0H0 ' 45 mT− 75 mT we find large wavevectors up to |k| ≤ 4.1 µm−1 while
in the other two regimes (lower backward volume and Damon-Eshbach spin waves)
the wavevectors are |k| ≤ 2.0 µm−1. The reason for this behaviour is as already
mentioned the changing magnetization direction in the magnonic waveguide from
parallel to the waveguide to perpendicular with increasing magnetic field due to the
large demagnetization fields. The spin wave propagation length for the backward
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Fig. 5.14. Extracted wave vector of the spin wave k and spin wave propagation length ξsw as
a function of the magnetic fieldH0 from the line scans at fixed microwave frequency
fMW = 10 GHz with combined magnetic field sweep shown in Fig. 5.12 for (a) the
µFR-MOKE and (b) the µSNS-MOKE measurements. The orange and purple
square symbols are the results from the spatial xy-scans (cf. Section 5.3.1.3),
where the signal is integrated over the width w of the magnonic waveguide and
then fitted. The error bars for the wavevector k are smaller than symbol size.

volume mode in the magnetic field range µ0H0 ' 0 mT − 75 mT is on average
ξ̄sw = (7± 1) µm. In the Damon-Eshbach regime µ0H0 & 75 mT the propagation
length increases up to a large value of ξsw ≈ 30 µm for spin waves with a large
wavelength, which is compatible with the findings in Ref. [51]. Due their larger
group velocity the Damon-Eshbach surface modes are expected to have a larger
propagation length.
At this point we want to emphasize that this measurement scheme, where we

measure the magnetic field dependence of the spin wave propagation length and the
wavevector by scanning the laser spot through the center of the magnonic waveguide,
can give misleading results. From earlier observations [160, 166, 213] it is known for
spin waves in patterned waveguides to have a multimode character. This is explained
by the restricted possible wavevectors in the sample plane k = [kx ky]ᵀ. Along the
(in our case) x-direction, the wavevector kx can take values knx = nπ/w with n ∈ N
in the limit tFM � w due to the formation of resonant standing waves in the direction
perpendicular to the waveguide [166]. In an extended film, the wavevectors kx and ky
can both change continuously.
In order to observe this multimode character, we will perform spatial xy-scans of

the magnonic waveguide at fixed microwave frequency and magnetic field in the
following section.
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5.3.1.3. Spatial Propagation Characteristics of Spin Waves
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Fig. 5.15. Two-dimensional spatial maps obtained by scanning the laser spot across the
magnonic waveguide at fixed microwave frequency fMW = 10 GHz and fixed
magnetic fields (a) µ0H0 = 17 mT, (b) µ0H0 = 57 mT and (c) µ0H0 = 104 mT using
µFR-MOKE spectroscopy. In the left column the dc-voltage of the photodiode Udc,
which is a measure of the reflectivity at the laser spot position, is shown. In the
middle and right column the real and imaginary parts of the complex S21-parameter
are shown. The dashed grey lines indicate the width of the magnonic waveguide
extracted from the reflectivity measurements shown in the left column.

In this experiment, we resolve the wavefronts of the spin waves in the magnonic
waveguide by performing a spatial 2D scan using the µFR-MOKE technique. The
laser spot is scanned in the xy-plane with a step size of roughly 140 nm along
both directions. The “fast” scan axis during the experiment is the y-direction. The
microwave frequency is fixed to fMW = 10 GHz and the magnetic field is fixed
to certain field magnitudes. Exemplary colormaps of the spatial-dependence of
the complex S21-parameter measured with µFR-MOKE spectroscopy are shown
in Fig. 5.15. In the left column Udc of the fast photodetector is shown, which is
proportional to the reflectivity of the sample. From the reflectivity data we can clearly
distinguish between the magnonic waveguide and the substrate due to the much
smaller reflectivity of the Si/SiOx-substrate. From these measurements we determine
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Fig. 5.16. Linescan obtained by averaging the data over the data shown in Fig. 5.15 averaged
over the width of the magnonic waveguide at fixed microwave frequency fMW =
10 GHz and fixed magnetic fields (a) µ0H0 = 17 mT, (b) µ0H0 = 57 mT and
(c) µ0H0 = 104 mT. The points are the averaged data points and the solid red
and blue lines are the fits to the real and imaginary part respectively by using
Eq. (5.39).

the optical width of the magnonic waveguide and indicate them with dashed grey lines
into the data shown in the middle and right column, where the real and imaginary
part of the S21-parameter are shown.
The magnetic fields H0 in Fig. 5.15 are chosen so that the different regimes

discussed in the previous Section 5.3.1.2 can be investigated. In panel (a) and (b) the
wavefronts of the spin waves are resolved due to the phase-sensitive measurement
enabled by the heterodyne detection scheme of the VNA. For a magnetic field of
µ0H0 = 57 mT as shown in panel (b), the distance of the wavefronts is reduced
drastically corresponding to a smaller wavelength λ of the spin wave. In Fig. 5.15(c)
the spin waves are in the Damon-Eshbach regime and the wavefronts of the spin
waves become distorted. This is due to the aforementioned multimode character
of the spin waves [160, 166, 213], which can be clearly resolved with the µFR-
MOKE technique. We speculate that the signal next to the magnonic waveguide
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and therefore coming from the substrate is from some spurious effects where small
deviations in the laser light intensity are observed.

For the analysis of the wavevector k and propagation length ξsw the signal is
averaged over the width of the waveguide marked by the dashed grey lines in
Fig. 5.15 along the x-direction. The resulting real and imaginary part of the S21-
parameter are shown in Fig. 5.16. We perform the same fitting procedure as in
the section before, and fit Re(S21) and Im(S21) simultaneously to Eq. (5.39). The
extracted fit parameters for the wavevector k and propagation length ξsw for the two
respective sides of the antenna are denoted in the panels. For comparison, these
values are added to the results in Fig. 5.14 as orange and purple symbols. We find
good agreement between these two different detection schemes, although there
are some deviations especially in the propagation length. This is attributed to the
multimode character of the spin waves mainly due to the presence of the second and
third transverse modes [160, 166, 213]. We want to emphasize that when extracting
the propagation length ξsw, a single linescan along the magnonic waveguide can
lead to different results compared to a full 2D map. To overcome this problem, the
width of the magnonic waveguide can be reduced to roughly the spot size of the laser.
In this case, a single measurement the laser spot then averages over the multiple
modes.

5.3.1.4. Mapping the Dispersion Relation of Spin Waves

In the previous two sections, we discussed the dynamics of spin waves at fixed
microwave frequency fMW, changed the magnetic field and consequently the mag-
netization state. In this experiment, we perform the same measurement procedure
as in Section 5.3.1.2 but keep the magnetic field H0 fixed and change the microwave
frequency in the range fMW = 6 GHz− 16 GHz with a step size of 100 MHz. For each
frequency, the laser spot is scanned along the center of the magnonic waveguide
and the complex S21-parameter is measured using µFR-MOKE technique. For the
magnetic fields H0 we choose three different field magnitudes in order to investigate
each of the three different regime.

The measured spectra are shown in Fig. 5.17. In the left column again the reflec-
tivity, given by the dc voltage Udc of the fast photodetector, is shown. In the center
column the real part of the S21-parameter as measured by the VNA is depicted. Due
to the changing microwave frequency fMW the transmission through the microwave
cables changes. Additionally, the phase alters due to electrical length of the cables
and the optical path. The signal originating from the magnetization dynamics is super-
imposed by the large microwave background. In order to eliminate the background,
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Fig. 5.17. Line scans along the middle of the magnonic waveguide recorded for different
microwave frequencies fMW at fixed magnetic fields (a) µ0H0 = 10 mT, (b) µ0H0 =
50 mT and (c) µ0H0 = 104 mT using µFR-MOKE spectroscopy. The left column
shows the dc-voltage Udc of the respective photodetector, which is a measure
for the reflectivity. The middle column shows the measured real part of the
complex-transmission parameter S21. The right column is the real part of the
microwave-background corrected ∆S21.

we use the fact that the microwave background has no spatial-dependence while
scanning the laser spot. We therefore calculate

∆S21(f,y) = S21(f,y)− S21(f,y0)|y0=fixed, (5.41)

where each frequency trace of S21 at every laser spot position y is subtracted by a
frequency trace of S21 typically at spot location y0 where no signal from the sample
is expected. In our case, y0 is set to y0 = −25 µm. The resulting frequency and
spatial-dependence of the real part of ∆S21 is shown in Fig. 5.17 in the right column.
This background-subtraction method can lead to artifacts as seen in Fig. 5.17(c) at
fMW ≈ 8.2 GHz.

From these spectra it is now possible to extract the magnon dispersion. In this
sense, we repeat the fitting procedure as discussed in Section 5.3.1.2 and fit at fixed
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Fig. 5.18. Exemplary spatial y-dependence of the measurement data shown in Fig. 5.17(c)
at fixed magnetic field µ0H0 ≈ 104 mT and microwave frequency fMW = 12.3 GHz.
The points are the measured data points and the solid red and blue lines are the
fits to the real and imaginary part, respectively, by using Eq. (5.39).

microwave frequencies fMW the spatially dependent S21-parameter as exemplarily
shown for µ0H0 = 104 mT and fMW = 12.3 GHz in Fig. 5.18. The real and imaginary
part of S21 are fitted simultaneously to Eq. (5.39) for each side of the antenna. From
these fits the wavevector k and the propagation length ξsw are extracted.
The fitted wavevector k and the propagation length ξsw as a function of the mi-

crowave frequency fMW are shown in Fig. 5.19. For µ0H0 = 10 mT (panel (a)), we
observe a negative dispersion (∂k/∂f < 0) as expected for a backward-volume-
like spin wave mode as discussed in Section 5.1. In the second regime, where
µ0H0 = 50 mT (panel (b)), we find three different spin wave modes with increasing
microwave frequency fMW. We emphasize again that here we expect neither a
clear backward-volume mode nor a Damon-Eshbach mode as the magnetization
is in an intermediate state. Also here we find that we can excite and detect short
wavelength spin waves close to the optical diffraction limit. In the last case, where
we are in the Damon-Eshbach regime (panel (c)), we find a positive dispersion
(∂k/∂f > 0) as expected from theory (cf. Chapter 5.1). The discrepancy in the
propagation length ξsw between the different measurement schemes is attributed to
the multimode character of the spin waves as a single linescan can lead to slightly
different values (cf. Section 5.3.1.3).

5.3.2 Spin Wave Dynamics in the Non-Linear Regime

In this section, the focus of the magnetization dynamics of spin waves is shifted to
the non-linear regime, which has been extensively studied in previous works focusing
on the context of multi-magnon scattering [214]. These non-linear processes are
often related to Suhl instabilities [215]. Previously, these non-linear processes have
been investigated using BLS [161, 216–219] or TR-MOKE techniques. Especially
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Fig. 5.19. Extracted wave vector of the spin wave k and spin wave propagation length ξsw
as a function of the microwave frequency fMW from the line scans with combined
magnetic field sweep shown in Fig. 5.17 for magnetic fields (a) µ0H0 = 10 mT,
(b) µ0H0 = 50 mT and (c) µ0H0 = 104 mT with µFR-MOKE spectroscopy. The
error bars for the wavevector k are smaller than symbol size.

the BLS technique allows to investigate the frequency response of the magnetic
system at a different frequency compared to the excitation frequency. The aim of
this section is to test the capabilities of the µFR-MOKE technique and utilize the
heterodyne detection scheme of the VNA. This section will be structured as follows:
First, we will perform some preliminary µBLS measurements to get a first intuition
of the physical processes of the system. Then, we will use the µFR-MOKE and
µSNS-MOKE technique and capture the non-linear response of the system. Finally,
we will perform 2-tone spectroscopy with the µFR-MOKE technique by applying two
different excitation frequencies where one excites the system non-linearly and a
second microwave to probe the system.

5.3.2.1. Power-dependence of the Spin Wave Response

For a first intuition, we perform µBLS spectroscopy measurements at fixed magnetic
field µ0H0 = 104 mT and microwave frequency fMW = 12 GHz by locating the laser
spot roughly 4.5 µm away from the microwave antenna as indicated by the green
circle in Fig. 5.10(a). For this external magnetic field strength, the equilibrium magne-
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Fig. 5.20. Power sweep PMW at fixed spot position (cf. Fig. 5.10(a), green spot), mag-
netic field µ0H0 = 104 mT and microwave frequency fMW = 12 GHz in a µBLS
spectroscopy measurement. (a) Color-coded BLS counts as a function of the
microwave power PMW and interferometer frequency fBLS. (b) Exemplary BLS
spectrum as a function of the interferometer frequency fBLS at fixed microwave
power PMW = 10 dBm as indicated by the dashed white line in (a). The dashed
vertical lines indicate the region of interests with a width of 1.2 GHz, where the BLS
counts are summed up. (c) Integrated BLS counts around the excitation frequency
f = 12 GHz as a function of the excitation power. The solid red line indicates
the expected linear response which deviates from the data at large microwave
power PMW. (d) Integrated BLS counts at fBLS = 6 GHz and fBLS = 18 GHz
corresponding to half and three half of the excitation frequency fMW, respectively.
The difference at low microwave powers PMW is attributed to incoherent thermal
magnons.
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tization is oriented orthogonal to the magnonic waveguide (see Section 5.3.1.2). The
microwave power is changed in the range −17 dBm ≤ PMW ≤ 12 dBm with a step
size of 1 dBm and the number of TFPI averages is set to 1500. The measured µBLS
spectrum is shown in Fig. 5.20(a). At fBLS = 12 GHz, we find the linearly excited
spin wave resonance with an increasing BLS intensity with increasing microwave
power PMW.4 Around fBLS = 17 GHz, we find the thermally excited magnons, which
are independent of the microwave power and can be seen as an enhanced back-
ground in the spectrum. At PMW ≈ 6 dBm, additional stronger signals are observed
at fBLS = 6 GHz and fBLS = 18 GHz corresponding to f/2 and 3f/2 of the coher-
ently excited spin wave at f = fMW. As we will see in the next section, these
modes correspond to non-linearly excited spin waves due to three-magnon scattering
processes [34, 210].

To get a quantitative understanding, we consider the BLS spectra at fixed mi-
crowave power PMW as exemplarily shown for PMW = 10 dBm in Fig. 5.20(b). For
the power dependence of the BLS counts we define a region-of-interest (ROI) with a
width of 1.2 GHz and sum up the BLS counts around fBLS = 6 GHz, fBLS = 12 GHz
and fBLS = 18 GHz, respectively, as indicated by dashed vertical lines. The summed
up BLS counts are represented by the coloured area under the BLS counts.

The integrated BLS counts as a function of the microwave power PMW are shown
in Figs. 5.20(c) and (d). In panel (c) the power-dependence of the coherently excited
magnons at f = fMW is depicted. Fitting a linear function in the region −18 dBm ≤
PMW ≤ 0 dBm to the data on the double-logarithmic scale, we extract a slope of
0.96± 0.01, which is close to the expected value of 1. Correspondingly, this results in
an increase of counts by a factor of 9.6 when the microwave power PMW is increased
by one order of magnitude. Up to PMW ' 3 dBm the integrated BLS counts follow
the linear trend with increasing excitation power. Above this value, the data starts to
deviate from the linear function, indicating non-linear processes to start to take place.
From the power dependence of the frequencies fBLS = 6 GHz and fBLS = 18 GHz
shown in panel (d), we can determine a threshold where the integrated BLS counts
start to increase compared to the background counts. We determine a threshold
power for the non-linear processes of approx. 5 dBm. For the magnons around
fBLS = 6 GHz the integrated BLS counts do not increase further with excitation power.
The difference in the background between 6 GHz and 18 GHz is due to the thermal
magnons at around fBLS = 17 GHz.

4The power PMW describes the applied microwave power by the microwave source or vector network
analyzer. The microwave power at the on-chip antenna, which is proportional to the Oersted field
generated by the microwave to excite the dynamics of the spin waves, is lower due to losses in the
microwave cables, bond wires, impedance mismatch etc. The relevant quantity to describe the
excitation power of the spin wave dynamics is the mz-component of the magnetization, which is
challenging to quantify.
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5.3.2.2. Three-Magnon Scattering of Spin Waves
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Fig. 5.21. BLS intensity plotted as a function of the microwave frequency fMW and fBLS
measured at fixed spot position (cf. Fig. 5.10(a), green spot), magnetic field
µ0H0 = 104 mT and excitation power PMW = 10 dBm.

As a second preliminary experiment, we measure with the µBLS at the same
laser spot position as before (cf. Fig. 5.10(a), green spot) and set the microwave
power fixed to PMW = 10 dBm. The magnetic field is adjusted to µ0H0 = 104 mT
and the excitation frequency is changed in the range 6 GHz ≤ fMW ≤ 20 GHz with a
step size of 200 MHz. The measured BLS spectrum is shown in Fig. 5.21 with the
BLS counts colorcoded as a function of the TFPI frequency fBLS and the excitation
frequency fMW. The strong diagonal signal are stemming from spin waves directly
excited at the microwave frequency fBLS = fMW.

Besides this strong signal, additional signals originating from spin waves generated
as the system is driven in the non-linear regime. These non-linear effects generate
spin waves with integer multiple frequencies (2f , 3f , . . . ) and non-integer frequencies
(f/2, 3f/2, . . . ). For the generation of modes with f/2 and 2f the dominant process
is the so-called three-magnon scattering [210] where one magnon excited at fMW

generates two magnons f1 and f2 under the conservation of momentum and energy
(f1 + f2 = fMW). The lower threshold frequency for the f/2-mode is determined by
the bottom of the spin wave band. Spin wave irradiation (multi-magnon scattering
effects) is observed at combination frequencies 3f/2, 3f etc. [210]. The next higher-
order process is the four-magnon scattering, where two magnons excited at fMW

scatter into two magnons [161, 217]. This process is not observed, which would be
indicated by a significant broadening around fMW, because the applied microwave
power is presumably slightly too low to observe this process and due to the selected
large scanning region of the interferometer.
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From these preliminary µBLS experiments we find our low-damping Co25Fe75

system in the non-linear regime and correspondingly observe non-linear effects,
mainly three-magnon scattering. The idea is now to measure the three magnon
scattering using µFR-MOKE and µSNS-MOKE. Before discussing our data, we need
to make ourselves familiar with the functional principle of a VNA.

5.3.2.3. Detecting the Non-linear Response of Spin Waves by VNA-based
Optical Spectroscopy

The µBLS technique has itself established as a reliable spectroscopy technique to
measure non-linearities. The crucial part is the tandem Fabry-Pérot interferometer,
which works as a frequency analyzer and allows to freely adjust the frequency within
the free-spectral-range of the TFPI. In the µFR-MOKE, this is different due to the
usage of a vector network analyzer (VNA). A schematic electrical diagram of the VNA
is shown in Fig. 5.22. A thorough discussion of the working principle of a VNA can be
found in Ref. [95]. The VNA has a microwave source (Src) generating a microwave
with a certain frequency fMW, which is either sourced at port 1 (P1) or port 2 (P2).
The generated microwave is partially coupled into the reference port (Ref1/2) through
a directional coupler. The reflected and transmitted microwave through the device
under test (connected to P1 and P2) are coupled to the detector port (Det1/2). Note
that the detector and reference ports are internal ports and not directly accessible.
The VNA uses a heterodyne detection scheme, which means that the signal is

(generally) downconverted to an intermediate frequency fIF (IF), which is different
from the excitation frequency fMW using the tunable local oscillator (LO) with fre-
quency fLO. The downconversion fully retains the phase information of the original
signal. The downconverted IF signal is then bandpass-filtered (adjustable by the IF
bandwidth), amplified, and digitized. A subsequent I/Q-demodulation of the digitized
signal is performed to calculate the S-parameters [Eq. (3.7)] [95]. To retain the
phase information, it is necessary to synchronize the LO and the microwave source
to prevent additional phase shifts due to the downmixing of the signals. For this
purpose, a phase-locked loop (PLL) is used, where the microwave source and the LO
are synchronized to a reference oscillator (typically quartz oscillator). With changing
the microwave frequency also the reference receivers are shifted in frequency due to
the PLL. Before each measurement the local oscillator (LO) is reset, which ensures
that the phase of the generated wave starts from zero again.

When investigating frequency-translating devices (FTDs) the frequency response
is shifted relative to the stimulating frequency fMW. The large dynamical range
of the VNA is achieved by tuning the receivers in a narrow frequency range of the
stimulus signal. To evaluate a signal with a frequency different from fMW, the receiver
frequency needs to be independently tuned from the microwave source [220]. In the
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Fig. 5.22. Schematic electrical diagram of a vector network analyzer equipped with the
frequency-offset mode (FOM). The difference between the standard measurement
and a FOM measurement is the phase-locked loop (PLL) to synchronize the
phase of the microwave source (Src) and the local oscillator (LO) to frequency
downconvert the signal at the reference (Ref) and signal detector (Det). Note that
multiplexer, filters, amplifiers and additional frequency conversion stages are not
depicted in the electrical circuit for clarity. For details refer to main text. Figure
adapted from [220].

so-called frequency offset mode (FOM) additional PLL hardware is used as depicted
in Fig. 5.22. The PLL is modified by an offset LO detuning the PLL frequency for
the microwave source by the desired frequency offset. For the LO, the PLL remains
unchanged. Typically the FOM is only present in 4-port VNAs, where two microwave
sources are present and the second microwave is utilized as the offset LO. We want
to emphasize that by using the FOM, the phase information is typically lost. This is
easily seen by considering two sinusoidal waves with two arbitrary frequencies. If
the frequencies are not integer-valued multiples of each other, the relative phase is a
function of time and not constant anymore.

To test the FOM feature of the VNA, we perform magnetic field sweep µFR-MOKE
measurements with the laser spot positioned roughly 4.5 µm away from the antenna
as indicated in Fig. 5.10(a) by the green circle and measure the non-linear response
from the three magnon scattering at half the excitation frequency. The microwave
frequency is set to fMW = 12 GHz and the applied power is PMW = 10 dBm. The
magnetic field is applied in the range µ0H0 = 145 mT − 0 mT with a step size of
1.0 mT and the field sweep is repeated in total for 50 times. For this measurement the
receiver frequency of the VNA is adjusted to 6 GHz. With the VNA, we simultaneously
measure the S21-parameter as well as the S11 scattering parameter as shown in
Fig. 5.23.
The S11-parameter gives the reflection of the applied microwave at port 1 and

electrically measures the non-linear conversion of the magnetization dynamics close
to the antenna. The microstrip antenna not only inductively excites the magnetization

122 Chapter 5 Spatially-Resolved Magnetization Dynamics in a Magnonic Device



0 . 2 7

0 . 3 0

0 . 3 3

0 . 3 6

- 0 . 3 6

- 0 . 3 3

- 0 . 3 0

- 0 . 2 7

- 0 . 2 4

- 0 . 0 2

0 . 0 0

0 . 0 2

- 0 . 0 2

0 . 0 0

0 . 0 2

0 4 0 8 0 1 2 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

0 4 0 8 0 1 2 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

Re
(S

11
)

( a )

1  . . .  5 0F R - M O K E

Im
(S

11
)

1  . . .  5 0

Re
(S

21
)

( b )

1  . . .  5 0F R - M O K E
Im

(S
21

)
1  . . .  5 0

U
X 

(µ
V)

� 0 H 0  ( m T )

( c )

1  . . .  5 0
S N S - M O K E

U
Y (

µV
)

� 0 H 0  ( m T )

1  . . .  5 0

Fig. 5.23. Measured spectra at fixed excitation power PMW = 10 dBm and microwave fre-
quency fMW = 12 GHz with the detector shifted to 6 GHz in a magnetic field
sweep H0 measurement repeated 50 times, indicated by the color gradient and
the numbers in the top right corners of the panels. (a) Complex reflection pa-
rameter S11 showing the electrically detected non-linear response at the antenna
measured with the VNA. (b) Real and imaginary part of the complex transmission
parameter S21 measured with µFR-MOKE spectroscopy at a fixed spot position
roughly 4.5 µm away from the antenna (cf. Fig. 5.10(a), green spot). (c) Measured
real and imaginary part of the lock-in voltage Ui with µSNS-MOKE technique at
nominally the same spot position as in the µFR-MOKE measurement.
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dynamics at the antenna but also inductively detects resonantly excited dynamics
by Faraday’s law. The physical principle is equivalent to the already discussed
broadband magnetic resonance spectroscopy utilizing a coplanar waveguide (cf.
Section 3.3.1). In the measured S11-spectrum shown in Fig. 5.23(a) with the receiver
frequency at 6 GHz, we observe large signals in the magnetic field range µ0H0 '
80 mT− 110 mT. We observe multiple signals due to the fact that a broad spectrum
of spin waves excited at fMW in the Damon-Eshbach regime decomposes into spin
waves with frequency fMW/2.

The S21-parameter shown in Fig. 5.23(b) is the optically detected, non-linear
response of the spin waves. Relative to the background, the signal is much smaller
compared to the electrically detected signal. The signal now does not feature a
broad response but a rather sharp double peak around µ0H0 = 80 mT. To check
this optical response, we use the µSNS-MOKE technique to detect this response. In
order to be sensitive with the lock-in amplifier to the response at fMW/2, the excitation
frequency of the microwave source is set to fMW = 12 GHz + δ with δ = 20 kHz. For
the linear response, the lock-in frequency is set to 80 MHz + δ. We confirmed that
we measure the same signal as shown in Fig. 5.11(b). For the non-linear response,
we need to consider fMW/2 = 6 GHz + δ/2. The lock-in frequency is therefore set to
80 MHz + δ/2, basically to half the frequency offset δ. The result of the µSNS-MOKE
measurement for the non-linear response is shown in Fig. 5.23(c). We observe
the same double peak and measure a smaller background signal due to the use
of a balanced photodetector. The double peak is at larger field (µ0H0 ' 100 mT)
compared to the µFR-MOKE data due to the aforementioned small offset of the
laser spot position and the divergence of the laser spot from the pulsed laser. The
divergence might lead to the observation of the uniform magnon mode additional to
the propagating spin wave modes.

A prominent feature observable in all measurements is the changing signal phase
with each measurement iteration. As for example in Re (S21) in Fig. 5.23(b), the signal
at µ0H0 ' 80 mT changes from a peak to a dip and vice versa and changes with each
iteration. Taking a closer look at the phase at the resonance field µ0Hres = 80.7 mT
for the µFR-MOKE and µ0Hres = 101.8 mT in the µSNS-MOKE measurement as a
function of the measurement iteration as depicted in Fig. 5.24. In the µFR-MOKE the
phase is calculated using θ = arctan (Im (S21) /Re (S21)) and for the µSNS-MOKE
by θ = arctan (UY /UX). For the situation that the receiver frequency equals the
excitation frequency f = fMW = 12 GHz, the phase remains constant with each
measurement repetition. In the case that the receiver frequency is half the excitation
frequency f = fMW/2 = 6 GHz, the phase jumps between two values with a phase
shift of roughly 180° within errors. In the µSNS-MOKE we observe a linear shift
of the 180° jumps, which we attribute to the changing amplitude observed in the
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Fig. 5.24. Phase of (a) the complex S21-parameter calculated by θ =
arctan (Im (S21) /Re (S21)) and of (b) the lock-in voltage Ui calculated by
θ = arctan (UY /UX) at fixed magnetic field H0 = Hres as a function of the number
of measurement iteration. The detector frequency is either equal to the excitation
frequency 12 GHz (blue) or at half the excitation frequency at 6 GHz (green). The
grey vertical lines indicate a phase difference of 180°. Note in (b) that the linear
change of the phase in the µSNS-MOKE measurement is originating from the
changing measured amplitude due to stronger heating of the pulsed laser.

measurement presumably due to an instable focus routine used in the µSNS-MOKE
measurement and due to stronger heating of the pulsed laser.

We will briefly discuss the origin of these 180° phase-jumps using Fig. 5.25. In
a simple picture, consider two sinusoidal waves with the same frequency f1 = f2

(panel (a)), an arbitrary amplitude offset and an arbitrary phase shift. The phase
shift between these two waves is determined by considering one full period of the
wave τ . We calculate the difference in time ∆t between e.g. the maximum values of
the waves and convert it to a phase difference as the signal is periodic. Changing
to the situation of two sinusoidal waves with a factor of 2 difference in frequency
f1 = f2/2 (panel (b)) and an arbitrary phase difference. Again, considering one full
period of the wave τ with the smaller frequency, we calculate the time difference of
the maximum values of the waves. In this case we will find two solutions ∆t1 and ∆t2.
As the ratio of the frequencies is 1/2, the phase difference between the solutions
is 180°. In our experiment, the VNA cannot distinguish between the solutions and
returns arbitrarily one of the phases.

After the discussion about the phase of the measured signals, we want to turn our
focus to the amplitude of the signals. Form the measurement data shown in Fig. 5.23
it is clear that the complex data cannot be averaged by the arithmetic mean as the
measured phase changes with each measurement iteration. The apparent signal
would be averaged to zero by this approach. Therefore, we use a different averaging
procedure, where we do not average the complex values of S21 and Ui but rather
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average their magnitudes. The phase consequently does not play a role anymore.
We calculate

Savg
21 (H0) = 1

N

N∑
n=1
|S21,n(H0)| and Uavg(H0) = 1

N

N∑
n=1
|UXn(H0) + i UY n(H0)| ,

(5.42)

where N = 50 is the total number of measurements. The results are collected in
Fig. 5.26, where the averaged magnitudes are normalized to the maximum signal
for a qualitative comparison. In panels (a) and (b) we first compare µFR-MOKE
measurements at different microwave powers, which are at large power PMW =
10 dBm and at low power PMW = −5 dBm, where we do not expect any non-linear
dynamics. With the receiver frequency equal to the excitation frequency f = fMW as
depicted in Fig. 5.26(a), the signal strength decreases with increasing microwave
power PMW, indicating the presence of additional losses due to the occurrence of non-
linear processes. Changing the receiver frequency to half the excitation frequency
f = fMW/2 as shown in Fig. 5.26(b), no signal is observed at the lower microwave
power PMW = −5 dBm and only noise is observed. At the larger microwave powers
PMW = 10 dBm a response of the system is observed, confirming that the signal we
observe is due to the non-linear response of the magnetization dynamics.
Finally, we compare the signals from the linear and non-linear signals measured

by all three optical spectroscopy techniques. In Fig. 5.26(c) the normalized averaged
magnitude of the linear response of the magnetization dynamics at microwave power
PMW = 10 dBm and the receiver frequency equal to the excitation frequency f = fMW

is shown. The data shown here is taken from Fig. 5.11. The signals observed with
the different optical spectroscopy techniques are in good agreement.
For the comparison of the non-linear signature at half the excitation frequency

f = fMW/2, we use for µBLS the data shown in Fig.5.11(c) and extract the magnetic
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Fig. 5.26. (a),(b) Comparison of the normalized magnitude of the Savg
21 -parameter as a func-

tion of the external magnetic field H0 at high PMW = 10 dBm and low microwave
power PMW = −5 dBm for (a) the detector frequency equal to the excitation
frequency f = fMW = 12 GHz and (b) the detector frequency at half the exci-
tation frequency f = fMW/2 = 6 GHz. (c),(d) Comparison of the normalized
magnitude between the different measurement techniques at microwave power
PMW = 10 dBm with (c) the detector frequency equal to the excitation frequency
f = fMW = 12 GHz and (d) the detector frequency at half the excitation frequency
f = fMW/2 = 6 GHz.

field-dependence at the TFP frequency fBLS = 6 GHz. For the µFR-MOKE and
µSNS-MOKE, the data shown in Figs. 5.23(b) and (c) are used, respectively. The
normalized intensity of the µBLS and the normalized averaged magnitude data of
the µFR-MOKE and the µSNS-MOKE are shown in Fig. 5.26(d). All three optical
measurement techniques show qualitatively the same signature.

These experiments demonstrate that the signals of spin waves, either originat-
ing from linear or non-linear processes, measured by the well-established µBLS
technique can also be detected by the µFR-MOKE and µSNS-MOKE techniques.
While for linear signatures, such as spin wave propagation, this is well known, for
non-linear processes this has not been demonstrated. In these first experiments,
we demonstrated that the magnetic field-dependence of the signals from the mag-
netization dynamics at a fixed spot location lead to the same results as in µBLS.
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In future experiments, a more thorough and systematic investigation is required to
also compare spin wave propagation and frequency-dependence of the non-linearly
excited spin waves.

5.3.2.4. Electrical 2-Tone Spectroscopy of Spin Waves

After we demonstrated in the previous section, that it is possible to measure the
response of the non-linear signature of spin waves using the frequency-offset mode
of the VNA in a µFR-MOKE measurement, we want to measure the susceptibility
of the non-linearly generated spin wave. As we have seen, the frequency-offset
mode cannot be directly used to measure the phase of the non-linear signal, but
can detect its amplitude. Inspired by previous experiments [48], we will perform an
electrical 2-tone spectroscopy technique equivalently to an electrical pump-probe
experiment. The idea is to “pump” the magnons with large microwave power to
undergo three-magnon scattering and then “probe” at half the excitation frequency
with low power to test the response of the non-linear magnons. In the low-damping
Co25Fe75 alloy we have seen that very low microwave powers are required to excite
spin waves (cf. Fig. 5.20). This means that we always need to confirm our results
with conventional single-tone to distinguish between signals from linear and non-
linear origin. For these experiments we will use the full capability of the used VNA
performing µFR-MOKE measurements as explained in the following.
In Fig. 5.27 the two different microwave path configurations of the used VNA for

1-tone and 2-tone spectroscopy are shown. The used 4-port VNA (Keysight N5242A
PNA-X) features two microwave sources, which can be used independently, where
microwave source 1 (Src1) can apply a microwave to port 1 and 2 and source 2
(Src2) supplies port 3 and 4. For the single-tone experiment shown in Fig. 5.27(a)
the internal microwave path does not change compared to the previous µFR-MOKE
experiments (compare microwave path shown in Fig. 5.22). Note that the detection
electronics shown in Fig. 5.22 is omitted in Fig. 5.27 for clarity. The VNA excites
with Src1 a microwave and applies it to port 1 and measures the response of the
device-under-test (DUT), which in our case is the optical setup including the sample,
at port 2. Consequently, it calculates the complex transmission parameter S21.

In the 2-tone scheme shown in Fig. 5.27(b), a microwave with a certain frequency
is additionally generated with Src2. Due to the additional microwave switches and
directional couplers, it is possible to couple this microwave to the port 1. As a
consequence, two microwaves with (potentially) different microwave frequencies
and powers are emitted at port 1. As both microwaves are coupled to the reference
receiver (Ref1), it is possible to measure phase-sensitively at both frequencies of
the microwave. This is a big advantage over the frequency-offset mode technique
explained above. The microwave generated by Src2 has a significantly lower output
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Fig. 5.27. Internal microwave path of a Keysight PNA-X N5242A with two microwave sources
(Src1/2). (a) 1-tone measurement configuration, where the second source Src2 is
not coupled into the path of Src1. (b) 2-tone measurement configuration, where the
microwave of Src2 is superimposed via a directional coupler onto the microwave
of Src1. Note that the reference receiver (Ref1) frequency can still be detuned
from Src1. The detection electronics from Fig. 5.22 is omitted for simplicity. Figure
adapted from [221].

power at port 1 due to the additional directional coupler. In our experiments the
maximum possible power at port 1 of the Src2 microwave is Psrc2 < 1 dBm. We thus
refer to the microwave of Src1 as the pump signal and the microwave of Src2 with
lower power as the probe tone. The receiver frequency of the VNA is always set
to the same frequency as the probe frequency, which for the 2-tone measurement
is fsrc2 and for the 1-tone measurement fMW. For consistency, the parameters of the
pump tone will be subscripted by MW and the probe tone from Src2 will be denoted
by src2. As for the 1-tone experiment, the pump and probe signal are the same, it
will be subscripted as MW.

In the following, we perform two different experiments to test the 2-tone technique.
The laser spot is set to a fixed location at roughly 4.5 µm away form the antenna (cf.
Fig. 5.10(a), green circle) and the magnetic field is swept form µ0H0 = 141 mT−0 mT
with a step size of approx. 1.5 mT. Each magnetic field sweep is performed 10 times
and the arithmetic mean of the complex transmission parameter S21 is calculated.

In the first measurement, we fix the microwave frequency of Src1 to fMW = 12 GHz
and its power to PMW = 10 dBm. For the probe tone, we use for Src2 a microwave
frequency of fsrc2 = 6 GHz and change the power Psrc2 from −27 dBm to 1 dBm with a
step size of 1 dBm. The measured S21-parameter is shown colorcoded in Fig. 5.28(a).
To distinguish between linear and non-linear dynamics, the same measurement
procedure is performed for a single-tone measurement with the microwave frequency
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Fig. 5.28. Color-coded magnitude of the S21-parameter in a (a),(c) 2-tone µFR-MOKE mea-
surement and in a (b),(d) 1-tone µFR-MOKE measurement as a function of the
external magnetic field H0 and the applied microwave power of (a),(c) the probe
power Psrc2 and (b),(d) the driving power PMW. (a),(c) The excitation frequency
is fMW = 12 GHz with a microwave power of PMW = 10 dBm and microwave
frequency of the second microwave source and of the receiver fsrc2 = 6 GHz. In
(a) the S21-parameter is normalized to the probe power Psrc2 and in (c) to the pump
power PMW. Note the different scales of the colorcode. (b),(d) The microwave fre-
quency in the 1-tone measurement is set to fMW = 6 GHz where at low microwave
powers PMW the power is too low to excite spin waves. The data in (b) and (d)
are the same.

fMW = 6 GHz and the same microwave power PMW as for the probe tone Psrc2 in
the 2-tone measurement. The 1-tone measurement procedure is equivalent to the
measurements performed in Section 5.3.1. The result is shown in Fig. 5.28(b).
Comparing the two colorcoded S21-parameters of the single- and 2-tone mea-

surement, we observe different behaviours of the magnetization dynamics. The
most prominent feature in the spectra is the signal at roughly µ0H0 = 105 mT and at
µ0H0 = 85 mT which are present in the 2-tone measurement but not in the 1-tone.
This indicates that the signal stems from the non-linear dynamics of the spin wave at
half the excitation frequency. The dependence of the S21-parameter on the probe
power Psrc2 might be due to the wrong calculation of S21 as intuitively it is not ex-
pected. Therefore, we recalculate the S21-parameter by normalizing S21 to the pump
power PMW by using S′21 = S21 ·

√
Psrc2/PMW. The resulting dependence of S′21 as

a function of the probe power Psrc2 is shown in Fig. 5.28(c). As emphasized before,
the power-dependence of S′21 is not observed anymore with this recalculation of S21.
We conclude from these measurements that it is possible with this 2-tone method to
detect the non-linear response of the spin waves at half their excitation frequency
phase-sensitively.
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Fig. 5.29. Color-coded magnitude of the S21-parameter in a (a) frequency-locking experiment
of the non-linear spin wave at 6 GHz with an excitation at fMW = 12 GHz as a
function of the magnetic field H0 and the tuning frequency fsrc2. The excitation
power is PMW = 10 dBm and the tuning power is Psrc2 = −5 dBm. (b) The 1-tone
measurement at microwave frequency fMW = 6 GHz and power PMW = −5 dBm is
performed to distinguish between direct excitation at 6 GHz and non-linear locking
in the 2-tone measurement in panel (a).

An intriguing question is now wether it is possible to “lock” the non-linear spin wave
with the second microwave and tune the frequency of the resonance. This is inspired
by phase-locking experiments using spin Hall nano-oscillators [222, 223]. To this
end, we will set the pump frequency fixed to fMW = 12 GHz and with microwave
power PMW = 10 dBm. The probe tone fsrc2 is swept from 5.5 GHz to 5.9 GHz and
from 6.1 GHz to 6.5 GHz with a step size of 0.1 GHz, and from 5.9 GHz to 6.1 GHz with
a resolution of 0.01 GHz. The power of the second microwave source is chosen to
Psrc2 = −5 dBm. Themagnetic field is swept again in the range µ0H0 = 141 mT−0 mT
with a step size of 1.5 mT. Each magnetic field sweep is repeated 10 times and the
arithmetic mean of the complex transmission parameter S21 is calculated.
The measured S21-parameter as a function of the external field and frequency

is shown in Fig. 5.29. Due to the changing microwave frequency, we subtract the
arithmetic mean of each magnetic field trace for each frequency and subtract it,
similar to the procedure presented in Section 5.3.1.4. The main resonances shown
between µ0H0 ' 60 mT− 100 mT at frequencies f > 6.05 GHz and f < 5.9 GHz are
attributed to the linearly excited dynamics at 6.00 GHz. Close to half the excitation
frequency fMW/2 where the frequency step size is decreased, the behaviour between
2-tone and 1-tone does not differ besides exactly at 6.00 GHz. Here, we observe
in the 2-tone spectroscopy a signal at µ0H0 ≈ 105 mT, which is not present in the
single-tone experiment.

From themagnetic field spectra of the complex transmission parameter S21 recorded
at three different microwave frequencies as depicted in Fig. 5.30, the situation be-
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Fig. 5.30. Fieldtraces of the complex S21-parameter for the measurement data shown in
Fig. 5.29 for fixed frequencies (a) f = 5.98 GHz, (b) f = 6.00 GHz and (c) f =
6.40 GHz. In the left column, the 2-tone measurements and in the right column the
1-tone measurements are shown. Note that there is an offset added to Re(S21) for
clarity. The y-axis scale for each figure is indicated by the black bar and is for (b)
different compared to (a) and (c) for clarity.

comes more evident. The largest response of the system is observed at exactly half
the excitation frequency fsrc2 = fMW/2 = 6.00 GHz shown in panel (b), as we would
expect. Comparing this signal to the corresponding 1-tone experiment (right column),
it is clear that the signal is stemming from the non-linear response of the system. If
we decrease the probe frequency to fsrc2 = 5.98 GHz, the response vanishes. The
same behaviour is observed if we increase the probe frequency to fsrc2 = 6.4 MHz,
where we recover the linear response of the system (cf. right column).

We also performed the same measurement with the smallest frequency steps,
within the specified phase noise of the microwave source, possible 1 kHz in the
frequency range fsrc2 = 6.0 GHz ± 10 kHz and observe the same behaviour as ex-
plained above. Furthermore, the same experiment was conducted with the maximum
available probe power of Psrc2 = 1 dBm, where we also do not see any signature
of locking or tuning behaviour as it becomes more difficult to distinguish between
linearly and non-linearly excited spin waves. Consequently, a tunability of the res-
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onance frequency of the non-linear spin waves by frequency-locking could not be
observed within the available sensitivity and microwave power. From the data at
hand, we emphasize that the frequency linewidth of the non-linearly generated spin
waves at half the excitation frequency seems to be smaller than 1 kHz as we do
not find any signal signature comparable to exactly half the excitation frequency.
This is not the natural linewidth of the spin wave but originating from the coherent
narrow-band excitation of spin waves at the driving frequency fMW. Therefore, the
spin waves involved in the three-magnon scattering process decompose to the same
magnon state within a small frequency linewidth. Note that the detected linewidth of
the non-linear spin waves in the µBLS (cf. Figs. 5.11(c) and 5.20) is not the “real”
linewidth of the magnon system but limited by the resolution of the TFP. In a future
experiment, it may be necessary to try to pump the spin waves with even larger
microwave power PMW to receive a larger non-linear response from the non-linearly
excited spin waves.

5.4 Summary and Outlook

In conclusion, we investigated the magnetization dynamics of a micro-patterned
magnonic waveguide consisting of the low-damping alloy Co25Fe75 in a spatially and
phase-resolved manner. The dynamics were excited using a static magnetic field
applied in the sample plane, perpendicular to the magnonic waveguide and by using
an on-chip antenna, micropatterned on top of the ferromagnet. We used three differ-
ent optical spectroscopy techniques namely the microfocused frequency-resolved
magneto-optic Kerr effect (µFR-MOKE), microfocused Brillouin light scattering (µBLS)
and microfocused super Nyquist-sampling magneto-optic Kerr effect (µSNS-MOKE).
These spectroscopy techniques are integrated into a single optical setup allowing
the comparison between these methods and to use the best suited technique to
measure the dynamics of dipolar-exchange spin waves.

We tested the magnetization dynamics in the linear and non-linear regime. In the
linear regime the 50 nm thick and 1.5 µm wide Co25Fe75 waveguide shows excellent
spin wave propagation lengths of up to 30 µm, which could be confirmed by µFR-
MOKE and µSNS-MOKE. Due to the large saturation magnetization of Co25Fe75,
the consequently large demagnetization fields lead to a pronounced magnetically
easy axis along the magnonic waveguide. By increasing the magnetic field applied
perpendicular to the waveguide, we measured the transition from backward-volume
spin waves to Damon-Eshbach modes is a promising property for application oriented
devices. Additionally, we could resolve the wavefronts of the propagating spin waves
with our phase-resolved techniques confirming the multi-mode character of the
Damon-Eshbach modes and the very short-wavelength excitations at intermediate
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Fig. 5.31. Upconversion/downconversion technique to phase-sensitively measure the non-
linear spin wave response based on Ref. [224]. (a) The optical setup remains
unchanged compared to Fig. 5.6 but on the microwave path an additional mixer
with a microwave source at the local oscillator input (LO) is inserted. (b) Reduced
diagram of the upconversion/downconversion technique. The non-linear spin
waves can be modelled as a frequency-translating device with an embedded
local oscillator, where the additional mixer up- or downconverts the frequency
translation of the non-linear spin waves back to the excitation frequency.

magnetic fields between the backward-volume (low-field) and Damon-Eshbach spin
wave excitations (high field).

For the investigation of the non-linear dynamics, we used µBLS to confirm the
three-magnon scattering process as the relevant physical mechanism in the non-
linear regime. With the µFR-MOKE and µSNS-MOKE method, we could measure
this non-linear response at half the excitation frequency with the use of the so-called
frequency-offset mode with the disadvantage of losing the phase-sensitivity of the
vector network analyzer (VNA) and lock-in amplifier, respectively. In an electrical
2-tone experiment, where we apply a “pump” microwave with large power and a
“probe” microwave with smaller power and different frequency to the on-chip antenna,
we were able to detect the susceptibility of the non-linearly generated spin wave
using the µFR-MOKE technique. Further, we did not find any sign of tunability of the
spin wave frequency at half the excitation frequency but rather conclude that within
the specifications of the microwave source in the VNA, the frequency of the spin
waves generated by three-magnon scattering are determined by the linewidth of the
used microwave source.
These experiments demonstrate the expected consistency between the mea-

surement results of the different optical spectroscopy techniques to characterize
the magnetization dynamics of micropatterned devices. Up to now, the non-linear
characteristics of spin waves were optically determined by the established µBLS
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technique. The frequency-offset mode and 2-tone FR-MOKE techniques shown here
offer potentially new approaches to measure non-linear properties of spin waves. One
caveat of the frequency-offset mode is the reduced dynamical range of the VNA and
the loss of the phase-sensitivity. In a future experiment, an adaption of the so-called
upconversion/downconversion technique [224] could be realized. A potential experi-
mental setup is shown in Fig. 5.31. The optical setup shown in panel (a) based on
the µFR-MOKE technique remains unchanged. The idea of the up-/downconversion
method is to convert the optical sidebands generated by the non-linear processes
of the spin waves back to the excitation frequency of the VNA. Therefore, the VNA
detects at the same microwave frequency as it excites and consequently the full
dynamical range of the VNA can be accessed and the phase-sensitivity is retained.
To perform the frequency conversion, a mixer is integrated between the detection
port (P2) of the VNA and the low-noise amplifier. The local oscillator (LO) input of the
mixer is connected to an additional microwave source and converts the input signal
at the IF-port to fRF = |fIF ± fLO|.

In a schematic electrical circuit as shown in Fig. 5.31(b) the idea of this technique
becomes more obvious. The sample with non-linear spin wave generation can be
modelled as a frequency-translating device (DUT) with an embedded local oscillator.
By converting this frequency translation back with the additional mixer and microwave
source, the VNA can at least measure a relative phase-shift. This technique is then
limited in frequency by the usedmicrowave equipment and allows to further investigate
the underlying physical mechanism of non-linear spin wave generation.
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Summary and Outlook 6
This thesis explores hybrid magnon dynamics in several qualitatively different sys-
tems. Hybrid magnon systems play an important role, since magnons frequently
couple to other quantized excitations such as photons, phonons, plasmons etc. or
other types of magnon modes forming so-called hybridized modes. In particular, we
study spin dynamics in (quasi-)antiferromagnets, metallic ferromagnets and skyrmion
host materials. These material systems and hybrids are interesting models systems
to address current challenges in spintronics. In particular, the research area of
spintronics is dedicated to utilize the spin degree of freedom of the electron to store
and transport information. In this thesis, we revealed a new coupling mechanism
for magnon-magnon coupling in compensated ferrimagnets close to their compen-
sation temperature. The ensuing quasi-antiferromagnetic dynamics leads to an
exchange-enhancement of the magnon-magnon coupling rate. We further demon-
strated magnon-photon coupling between a chiral magnet and a three-dimensional
microwave cavity. In this hybrid system, the magnon-photon cooperativity can be
drastically tuned at the topological phase transition of the chiral magnet with an exter-
nal control parameter. Besides the detailed study of these fundamentally novel hybrid
spin dynamic phenomena, we also developed advanced optical spectroscopy tools
such as microfocused frequency-resolved magneto-optic Kerr effect (µFR-MOKE).
They allow for the development of novel magnonic devices that might exploit hybrid
magnon dynamics. We performed a comprehensive characterization of linear and
non-linear magnon dynamics in microstructured prototype magnonic devices using
our optical spectroscopy methods. A quantitative comparison of three different optical
spectroscopy methods has thereby been carried out and reveals several key advan-
tages of the novel techniques developed during this thesis compared to established
optical magnon spectroscopy tools.

The results presented in this thesis are obtained in different magnetically ordered
systems using different, phase-sensitive measurement techniques. They are either
based on fully electrical methods, such as broadband magnetic resonance using a
coplanar waveguide or a microwave cavity, or entirely optical techniques, like microfo-
cused Brillouin light scattering, or the combination of optical and electrical detection
principles, such as frequency-resolved magneto-optical Kerr effect spectroscopy. In
the following, we give an overview of the key results of this thesis by summarizing
the main findings of each chapter:
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Chapter 2 introduces the basic physical concepts of magnetization dynamics. A
simple approach on how to derive and solve the characteristic equation of motion to
describe the dynamics of the macroscopic magnetization, namely the Landau-Lifshitz-
Gilbert equation, is presented. Furthermore, we discuss the ferromagnetic resonance,
which is the resonant uniform precession of the magnetic moments in the magnetic
system driven by a coherent microwave tone. Based on this theoretical introduction,
we extended the presented physical concepts to the subsequent chapters.

In Chapter 3, we use the compensated ferrimagnet gadolinium iron garnet (GdIG)
to demonstrate exchange-enhanced ultrastrong magnon-magnon coupling. Gadolin-
ium iron garnet features a compensation temperature, where the sublattice magneti-
zations compensate each other and the magnetic system, including the magnetization
dynamics, mimics a quasi-antiferromagnet. In order to investigate the magnetiza-
tion dynamics of GdIG close to the compensation temperature, a (111)-oriented,
disk-shaped single-crystal is placed onto a coplanar waveguide and investigated
using broadband magnetic resonance spectroscopy with the magnetic field applied
in the disk plane. Due to the axial symmetry breaking by the magneto-crystalline
cubic anisotropy, the two magnon modes hybridize, forming two orthogonal, linearly
polarized magnon modes. Due to the Heisenberg exchange interaction the generally
small coupling rate mediated by the small cubic anisotropy is exchange-enhanced.
The coupling rate reaches a maximum value of almost 37 % of the characteristic
magnon frequency, denoting the system in the ultrastrong coupling regime. Addition-
ally, we demonstrate the tunability of the coupling strength by changing the direction
of the external magnetic field in the disk plane. The coupling rate is changed from the
aforementioned maximum value to a minimum value, where the coupling rate is in the
range of the loss rates of both magnon modes. The presented coupling mechanism
is independent of sample size and not restricted to GdIG or ferrimagnets. This opens
exciting perspectives for studying ultrastrong coupling effects in nanoscale devices.
In Chapter 4 a large tunability of the magnon-photon cooperativity is realized by

inducing a phase transition of the magnetic system with an external control parameter.
As a prototypical system, we use the chiral magnet Cu2OSeO3 and put the single-
crystal into a self-designed three-dimensional cavity. Cu2OSeO3 features a rich
magnetic phase diagram including a topologically-stabilized skyrmion lattice phase.
The uniform magnon modes in the skyrmion lattice phase, which are the two gyrating
modes (clockwise and counter-clockwise mode) and the breathing mode, differ in
their excitation geometries. Due to the homogenous and clearly defined oscillating
magnetic field inside the cavity, it is possible to selectively excite either the breathing
mode or the gyrating modes and all other uniform magnon modes in Cu2OSeO3

by changing the external magnetic field direction relative to the oscillating driving
field. By changing the external magnetic field magnitude by a few mT in the parallel
excitation geometry and inducing a magnetic phase transition from the conical to the
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skyrmion lattice phase, the cooperativity can be tuned from unity to C . 60. Utilizing
this property for hybrid devices, might enable interesting new approaches to read-out
the state of e.g. a magnon-qubit system in a dispersive read-out scheme.

In Chapter 5 we use microfocused, optical measurement techniques to character-
ize themagnetization dynamics of a microstructured ferromagnet in the linear and non-
linear regime. To this end, three different optical techniques are employed, namely
the micro-focused frequency-resolved magneto-optic Kerr effect (µFR-MOKE), micro-
focused Brillouin light scattering (µBLS) and micro-focused super-Nyquist sampling
MOKE (µSNS-MOKE), all integrated into a single optical setup. Besides demonstrat-
ing the capabilities and limitations of these techniques, we systematically characterize
the dynamics of spin waves in the low-damping alloy Co25Fe75 structured into a 1.5 µm
wide and 50 nm thick waveguide with a micro-patterned gold antenna on top to excite
the magnetization dynamics. Due to the large saturation magnetization in the system,
the magnetization is aligned parallel to the waveguide. With increasing external
magnetic field applied perpendicular to the waveguide, the magnetization starts to
orient along the external magnetic field. Therefore, with changing field magnitude,
the dynamics of the dipolar-exchange spin waves propagating along the waveguide
are investigated from the Backward-volume regime to the Damon-Eshbach regime.
We find a maximum propagation length of approx. 30 µm in the Damon-Eshbach
regime. The combination of a large propagation length with high saturation mag-
netization found in Co25Fe75 is unique for metallic ferromagnets and interesting for
potential applications in magnon based devices. Additionally, we investigated the
non-linear dynamics of spin waves, where we focused on three-magnon scattering.
The occurrence of three-magnon scattering is typically analyzed with µBLS. In our
experiments, we measure this mechanism for the first time using µFR-MOKE with
the frequency-offset mode and with µSNS-MOKE by detuning the demodulation
frequency of the lock-in amplifier. We probe the non-linear spin waves with electrical
pump-probe experiments with optical detection. The combination of the presented
optical measurement techniques allows us to better understand the magnetization
dynamics in a spatially-resolved manner. This provides a powerful tool for the study
of future spintronic devices.
In conclusion, the presented optical and electrical measurement techniques and

their very high sensitivity are powerful methods to characterize the magnetization
dynamics in the GHz regime. Using these methods, we presented novel coupling
mechanisms and approaches for hybrid magnon systems, which might contribute
to a better understanding of the spin dynamics in coupled systems with microscale
dimensions.
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A.1 Optical Setup
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Fig. A.1. Full optical setup with all relevant optical elements labelled for the (a) combined
µFR-MOKE/µBLS setup and the (b) µSNS-MOKE setup. The full parts list is given
in Tab. A.1. Note that the optical path from (E)-(L) is identical in both setups. The
Köhler illumination is separately shown in Fig. A.2.
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Tab. A.1. Parts list of the optical elements used in the optical setup depicted in Fig. A.1.

Label Optical element Part number

A Laser Laser Quantum Torus 532
B 10:90 Beam Splitter Cube Thorlabs BS025
C Neutral Density Filter (NDF) Thorlabs NDC-25C-2M
D Neutral Density Filter (NDF) Thorlabs NDL-25C-2
E Glan-Thompson polarizer Thorlabs GTH10-A
F 30:70 Beam Splitter Cube Thorlabs BS019
G 90:10 Beam Splitter Cube Thorlabs BS028
H Microscope Objective Zeiss LD EC Epiplan-Neofluar

100x/0,75 HD DIC M27
I Film Polarizer Thorlabs LPVISE2X2
J Achromatic Lens Thorlabs AC254-150-A-ML
K Bandpass Filter Thorlabs FB450-40
L EMCCD Camera Andor Luca DL-658M-OEM
M Zero-Order Half-Wave Plate Thorlabs WPH10ME-532
N Motorized Rotation Stage Thorlabs DDR25/M
O Polarizing Beam Splitter Cube Thorlabs PBS251
P Fiber coupling

+ lens
Thorlabs KT100/M (modified)
+ Thorlabs C240TME-A

Q FC/APC Optical Fiber Thorlabs P5-460AR-2
R Fast Broadband Photodetector New Focus 1414
S Low-Noise Amplifier Narda-MITEQ

AFS4-02001 800-24-10P-4
T Aspheric lens Thorlabs A280TM-A
U Tandem Fabry-Pérot

interferometer (TFPI)
The Table Stable Ltd.
Tandem Interferometer TFP-1

V Pulsed Laser
+ 2x Dichroic mirrors

NKT Photonics Origami 05 LP
+ 2x Thorlabs DMLP650

W Achromatic Lens Thorlabs AC254-400-A-ML
X Zero-Order Half-Wave Plate Thorlabs WPH05M-514
Y Wollaston Prism Thorlabs WP10-A
Z 15mm lens mounted

on XYZ Dovetail stage
Thorlabs LA1222-A
+ Thorlabs DT12XYZ/M

α Balanced Photodetector Thorlabs PDB435A
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A.1.1 Köhler Illumination
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Fig. A.2. Optical path of the Köhler illumination used in the optical setup. The idea of a
Köhler illumination is to focus the LED onto the back-focal plane of the microscope
objective (MO) so that the light of the LED is parallel after the MO. The first iris
adjusts the brightness and the second iris (“field aperture”) controls the size of the
illuminated area. The used optical elements are listed in Tab. A.2

Tab. A.2. Parts list of the optical elements used in the Köhler illumination depicted in Fig. A.2.

Label Optical element Focal length Part number

a Blue LED (λ = 455 nm) Thorlabs M455L4
b Aspheric condenser lens 40 mm Thorlabs ACL5040U-A
c Iris diaphragms Thorlabs SM1D25
d Plano-convex lens 75 mm Thorlabs LA1145-A
e Plano-convex lens 30 mm Thorlabs LA1805-A
f Iris diaphragms Thorlabs ID36/M
g Plano-convex lens 200 mm Thorlabs LA1979-A
h Plano-convex lens 300 mm Thorlabs LA1256-A
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A.2 Measurement and Auto-Stabilization Software for a
Tandem Fabry-Pérot Interferometer

The Brillouin light scattering (BLS) technique requires the use of a tandem Fabry-Pérot
interferometer (TFPI) to analyze the inelastically scattered photons in a frequency-
resolved manner. To this end it is necessary to assure long-term stability of the
optical alignment in the TFPI which crucially depends on the parallelism of the FP1
and FP2 mirrors and on the precise synchronization of the mirror distance difference
between FP1 and FP2. The employed TFPI (JRS Systems, TFP1) has a control
unit with analog circuits inside and only possesses an analog remote interface in
the form of a D-Sub 15 connector. The use of this remote connector disables the
auto-stabilization circuit in the control unit. Due to the required compatibility with
the existing measurement software, which is not featured in commercially available
software, a new software called “BLScontrol” was developed during this thesis. The
user interface of the software is shown in Fig. A.3(a).

We use a compact digital data acquisition (cDAQ) system fromNational Instruments
(NI cDAQ-9174) featuring four slots for input/output modules and is connected via USB
to the PC. The used cDAQ possesses an integrated TTL pulse counter running with
a maximum base clock of 80 MHz, which we use to count the TTL pulses generated
by the detected photons of the single-photon counter (Hamamatsu H10682), and
more importantly allows to synchronously run tasks across the modules. On the PC
the tasks for each module are programmed via LabView and then triggered (internal
trigger in cDAQ) simultaneously. This is crucial because while the mirror spacing is
permanently changed, the TTL pulses of the single photon detector are counted and
correlated to the current mirror spacing and additionally the double shutter needs to
switch between the measurement and reference beam at the correct timing.

From the available four slots of the cDAQ, three are occupied. The analog output
module NI 9264 is used to apply voltages (±5 V) that are control inputs for the piezos
at the mirrors of FP1 and FP2. These voltages are amplified by the control unit
and applied to the piezos at the mirrors. The piezos X1/X2 and Y1/Y2 are for the
tilting of the mirror in horizontal and vertical direction of FP1 and FP2, respectively.
The piezo dZ is for changing the mirror spacing of FP2 so the higher orders of the
free-spectral-range of the TFPI are suppressed (cf. Section 5.2.4). Following the
auto-stabilization procedure proposed in Ref. [225], these piezos are kept constant
while scanning the stage and only changed between two scans.

The digital input/output module NI 9403 is used for boolean 5V-TTL logic which
is necessary to switch between the optical alignment and tandem path inside the
TFPI [206] and to control the double shutter. Furthermore, it would allow to control
an additional shutter before the single photon detector, which is not present in our
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system. The last module is another digital input/output module (NI 9401) but with
a faster refresh time of 100 ns used for measuring TTL signals. On the one hand
this module is used to determine the current optical path inside the TFPI (alignment
or tandem path), check wether the optics is currently changed or not (busy) and
counting the TTL pulses generated by the single-photon counter. The wiring of the
modules is shown in Fig. A.3(b). The D-Sub 15 connector is found at the back of
the control unit. The BNC output of the photodetector with the TTL pulses is first
looped into the control unit of the TFPI, where the pulses are stretched for easier
detection [206]. The stretched pulses from TTL out are then connected via a BNC
cable to the NI 9401 module.
The LabView program “BLScontrol” is divided into five independently executed

while-loops. In total three loops are responsible for the remote connection so other
programs or PCs can connect via the TCP/IP protocol and control the TFPI. One
loop just establishes and manages TCP/IP connections (“Connection manager”),
the second loop processes received commands and the third loop sends data or
parameters of current TFPI settings back to the client. For this purpose the NI
Simple Messaging (STM) reference library1 is used. The “User interface” loop
processes commands either from the user via the LabView interface or from the
remote interface and are consequently sent to the last loop, the “TFPI control” loop.
The main task of this while-loop is to keep the TFPI aligned over time using the
auto-stabilization algorithm proposed in Ref. [225] and to program the cDAQ to
perform BLS measurements. The measured and averaged data is first sent to the
user interface, where the data can be viewed in real time, and then to the remote
interface if the measurement was started via the remote connection. This software is
consequently fully compatible with the measurement software “DollRotate” used at
the WMI to allow fully automated measurements, like for example complete xy-spatial
scans of the magnetization dynamics.

1https://sine.ni.com/nips/cds/view/p/lang/de/nid/212055
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Fig. A.3. (a) Screenshot of the LabView user interface of the “BLScontrol” software developed
during this thesis. (b) Block diagram of the working principle of the BLScontrol
software. The rounded rectangles in BLScontrol denote independently running
LabView while-loops. For details refer to text.
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A.3 Sample Fabrication
In the following we list the process steps to fabricate the sample investigated in
Chapter 5:

1. Cleaning of substrate in acetone and isopropyl.

2. Spincoating using PMMA 33% (AR-P 617.08) at 4000 rpm for 1 min and bake-
out at 170 °C for 2 min.

3. Electron beam lithography with base dose 6.5 C/m2.

4. Development of sample in AR600-46 for 2 min and then in isopropyl for 30 s
while puddling.

5. Sputtering (see below)

6. Lift-off in hot acetone using a pipette and cleaning with isopropyl.

For the sample we used a 6× 10× 0.525 mm3 Si substrate with 1000 nm of thermal
oxide, where in total 10 structures with different widths of the magnonic waveguide
and two different microwave antenna designs were patterned. In the first step,
platinum markers with a size of 10× 10 µm2 and thickness 50 nm were structured,
which are used for aligning the different layers during the electron beam lithography
step. In the second step the magnonic waveguide is structured. For the dc-sputtering
process in the SUPERBOWL facility of the WMI, the parameters shown in Tab. A.3
were used. In the last step, the on-chip antenna is patterned.

Tab. A.3. Sputtering parameters for the magnonic waveguide and the on-chip antenna of
the sample used in Chapter 5. The rates were determined prior the sputtering
process of the samples using the quartz crystal. The pressure inside the sputtering
chamber is 5× 10−3 mbar.

Material Nominal thickness Power Rate Tilt

Pt 3 nm 6 W 1.12Å/s tilt out
Cu 3 nm 20 W 1.08Å/s tilt in
Co25Fe75 50 nm 20 W 1.70Å/s tilt out
Cu 3 nm 20 W 1.08Å/s tilt in
Ta 3 nm 30 W 0.71Å/s tilt in
SiOx 30 nm 60 W 0.34Å/s tilt in
Au 100 nm 25 W 1.46Å/s tilt in
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