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Introduction

Mechanical resonators are ubiquitous in today’s world. Aside from well-known, readily available

examples like swings, pendulums and musical instruments, mechanical resonators also influence

our daily life in ways that are not immediately noticeable or even visible to the human eye.

The advances of micro- and nanofabrication in recent decades have allowed the dimensions of

mechanical resonators to shrink significantly, leading to a wide range of novel applications in

industry and science [1]. Micrometer-sized resonators are used as compact and efficient sensing

devices, dubbed MEMS sensors (micro-electromechanical systems), in a variety of consumer

electronic devices [2, 3]. Smartphones, for example, rely on MEMS as microphones, altitude

sensors and gyroscopes, which detect the rotation of the device [4]. In cars, MEMS are used

for electronic stability control, tire-pressure monitoring and navigation systems as well as crash

detection and the deployment of air bags [5, 6]. Moreover, MEMS sensors are essential in

the advance of the internet of things (IoT). They provide the low-cost, low-energy sensors

that collect much of the data processed in decentralized wireless sensor networks (WSN) of

internet-connected wearables, smart home appliances and public infrastructure [7].

The high sensitivity of micromechanical sensors also plays a role in a variety of analytic

tools and measurement setups widely used in scientific research. For example, atomic force

microscopy (AFM) and surface tunneling microscopy (STM) rely on micromechanical cantilevers,

both being essential instruments for the precise investigation of a material’s texture, thickness

and topography [8, 9]. Similar, cantilever-based techniques have also been used to investigate

the dynamics of proteins [10] and manipulate single electronic spins [11]. By further scaling

down the dimensions of mechanical resonators to the nanometer-regime, even higher degrees of

sensitivity can be achieved. The resulting nanomechanical resonators are often comprised of

doubly-clamped strings or tubes fabricated from a tensile stressed material, reaching masses on

the order of 10−22 kg and resonance frequencies in the MHz to low GHz regime. The systems

have been shown to be able to detect the mass of single molecules and atoms attached to

the resonators [12, 13], and even higher sensitivities can be reached at low temperatures [14].

Future developments in this direction could eventually lead to the emergence of nanomechanical

alternatives in biological or chemical detection, i.e. the precise characterization of trace amounts

of substances like drugs or toxins by mass spectroscopy [15, 16].
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Additional, interesting fields of research present itself when mechanical modes interact with other

degrees of freedom. The integration of mechanical resonators into optical cavities lead to the

formation of the field of cavity optomechanics [17], combining the excellent control and readout

techniques for optical cavities with the high quality and coherence of mechanical modes. The

resulting optomechanical systems allow highly sensitive optical detection of small displacements

up to the limit posed by quantum fluctuations [18]. Notably, optomechanical detectors recently

gained renewed popular attention for their role in the successful detection of gravitational

waves [19], an effort eventually awarded with the Nobel prize in 2017. Apart from sensing

applications, optomechanical systems have been employed to manipulate and control mechanical

motion using light and vice versa. Thus they have been shown to enable coherent optical wave-

length conversion [20] as well as the cooling of mechanical modes to the quantum ground state [21].

Similarly, the integration of mechanical resonators into electronic circuits established the field of

circuit electromechanics. In corresponding experiments, nanomechanical resonators are used to

modulate the capacitance or inductance of (superconducting) microwave circuits, which in turn

can be used to precisely read out the mechanical motion [22, 23]. The interaction of mechanical

and electric elements can further be used to control and transfer excitations throughout the

circuit, a perk that becomes especially interesting when considering more complex systems

including other elements (e.g. qubits) [24, 25]. Furthermore, recent experiments successfully

demonstrated quantum phenomena like squeezing [26, 27] and entanglement [28, 29] in mechani-

cal resonators.

Recently, increased attention has been turned towards hybrid systems involving magnetic

degrees of freedom. This is due to the fact that magnons, the quantized excitations of magneti-

zation in magnetic materials, offer long lifetimes and good frequency tunability by magnetic

fields [30], which are important properties for information carriers. By integrating magnetic

insulators with microwave circuits, strong coupling could already be observed between magnons

and microwave photons [31–33]. Similarly, light-matter interaction between a magnetic material

and optical light was demonstrated, forming the research field of (cavity) optomagnonics [34, 35].

By combining both techniques, magnon-mediated wavelength conversion between microwave

and optical frequencies has been realized [36]. Notably, these hybrid systems do not rely on

mechanical resonators. However, experiments have demonstrated the introduction of mechanical

degrees of freedom into similar systems [37] in order to investigate magneto-mechanical interac-

tion, which will be a subject of this work.

This thesis is divided into two parts:

Part I is dedicated to the investigation of magnetoelastics on a dynamic level, i.e. the coupling

between magnonic and phononic degrees of freedom. We build upon successful concepts of

cavity optomechanics, in particular optomechanical crystals [38], in order to establish a new,

nanomechanical platform for the investigation of engineered magnon-phonon coupling. We

design and fabricate magneto-mechanical hybrid structures, aiming to couple the magnetization

of a magnetic thin film to a nanomechanical resonator and seek to observe the effects of the

interaction in ferromagnetic resonance measurements.
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In Part II, we investigate the interaction between multiple, high-Q nanomechanical resonators

which are mechanically coupled. We design and fabricate strongly coupled multi-resonator sys-

tems and demonstrate an all-mechanical protocol for the coherent transfer of phonons between

coupled resonators.

Lastly, we conclude the thesis with a brief summary and an outlook on future experimental work

and long-term perspectives.
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Part I

Magneto-Mechanical Hybrid Systems
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Chapter 1

Introduction

In the first part of this thesis, we aim to take essential first steps towards establishing a new

platform for the investigation of magnetoelastic interaction on a dynamic level [39, 40]. This

engineered magnon-phonon coupling is based on periodic, nanomechanical structures known

as phononic crystals [41, 42]. With the emergence of optomechanical crystals [38] in the field

of cavity optomechanics [17], it was found that periodicity in nanostructured materials can be

exploited to form mechanical analogues to optical Fabry-Perot cavities. These phonon cavities

are capable of confining GHz-frequency, high-Q phononic modes to nanomechanical resonators

[20, 43, 44]. Here, we attempt to extend the concept of phononic crystals towards magnetic

materials and design, fabricate and characterize a magneto-mechanical hybrid structure. As

the GHz regime is home to ferromagnetic resonance (FMR) [45] frequencies of most common

ferromagnets, localizing mechanical modes of similar frequency in a magnetic material should

lead to a strongly enhanced magnetoelastic interaction within the hybrid structure [46, 47].

Ideally, the enhanced interaction should prove strong enough to measurably affect the observed

magnetic resonance frequencies.

To this end, we present a theoretical framework for the calculation of acoustic wave prop-

agation in periodic solids in Chapter 2, introducing the concept of phononic crystals in the

process. We discuss how Finite Element Method (FEM) simulations can be employed to predict

a material’s elastic properties and how the latter can be deliberately manipulated by careful

selection of macroscopic, geometric parameters. Subsequently, we provide a brief overview of the

magnetoelastic interaction aimed to observe throughout this part of the thesis. In Chapter 3, we

discuss the detailed design process of the fabricated sample structures. In particular, we adapt

the established concepts of phonon cavities and phononic shields, relying on FEM simulations

to precisely tailor their elastic properties to our requirements. Chapter 4 is dedicated to a

step-by-step summary of the thin film fabrication process employed to produce the previously

designed sample structures. Additionally, we show Scanning Electron Microscopy (SEM) images

of fabricated samples and evaluate the achieved fidelity to the design. In Chapter 5, we present

and discuss first experimental results gathered in broadband ferromagnetic resonance (bbFMR)

measurements of two fabricated hybrid structures. Finally, we provide a summary of the findings

in Chapter 6.
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Chapter 2

Theory

This chapter is dedicated to establish a theoretical framework for the description of mechanical

vibrational waves and standing waves in engineered phononic environments. In addition, this

chapter provides an introduction to the interaction of said mechanical waves with spin-waves in

magnetic materials, called magnetoelastics.

2.1 Phononic Crystals

In solid state physics, one commonly refers to a crystal as a periodic arrangement of atoms or

molecules, repeated throughout a material on a distinct pattern called the crystal lattice. By

analyzing the periodic potential induced by the crystal’s molecules and its effect on electrons

propagating through it, insight can be gained into the conductive properties of the crystal and

the corresponding material. Similarly, information about the propagation of elastic waves and

the dispersion of phonons in the crystal can be gathered (cf. Ref. [48]). It has been found that

an arrangement of different macroscopic materials, exhibiting a discrete periodicity through

varying dielectric constants, can form an optical analogue, a photonic crystal. With carefully

constructed designs, photonic crystals allow the control and manipulation of propagating light,

including the selective attenuation of desired frequencies (cf. Refs. [49, 50]). Similarly, materials

with periodic elastic properties (e.g. density and elasticity) can be constructed in order to control

the propagation of acoustic waves through a solid. The resulting structures, called phononic

crystals [41, 42], offer a wide range of applications from the detection and focusing of sound

[51, 52] to the isolation of buildings from external vibrations [53].

In this section, we give an overview of the theoretical background governing the elastic properties

of phononic crystals. In particular, we discuss the techniques and equations employed in the

numerical calculation of mechanical modes of periodic structures and their visualization as

phononic band diagrams. Subsequently, we present a common field of application for phononic

crystals, called bandgap engineering, detailing how the theoretical knowledge can be applied to

engineer materials with very specific elastic properties.

It should be noted that, in the following discussion, we make use of some of the vocabulary and

concepts established in the field of crystallography, including the reciprocal space, Bloch’s theorem
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Chapter 2 Theory

and the Brillouin zone. Since a comprehensive introduction to this field would exceed the scope

of this thesis, we refer readers unfamiliar with these concepts to the excellent introductions in

solid state physics books such as Refs. [48] or [54].

2.1.1 Phononic Bloch Waves

The propagation of an acoustic wave in a homogeneous medium without body forces is described

by the time evolution of the displacement field ~u(~x,t), which is given (in component notation)

by [55]

ρ(~x)∂
2ui(~x,t)
∂t2

= ∂j [Cijmn(~x)∂num(~x,t)]. (2.1)

The differential equation 2.1 connects the elastic properties of a material, namely the scalar

density field ρ(~x) and the rank 4 elasticity tensor C(~x), with the displacement (i.e. the mode

shape) ~u(~x,t) of an acoustic wave propagating through the material. The indices (i,j,m,n)
range up to the number of considered dimensions, i.e. (i,j,m,n) ∈ (1,2,3)4 and ~u = (u1, u2, u3)
in the three-dimensional case. For the treatment of phononic crystals, we now consider a

material system with a discrete, one-dimensional translation symmetry of its elastic properties,

i.e. Cijmn(~x + λ~a) = Cijmn(~x) and ρ(~x + λ~a) = ρ(~x) for all integer values λ. In other words,

the material is periodic along the direction ~a with periodicity a = |~a|. Based on this periodicity,

Bloch’s theorem states that the displacement field can be expressed in the form of a Bloch wave

ui(~x,t) = eik~xUi(~x,t), (2.2)

where k is the Bloch wave number and Ui(~x,t) is a periodic function satisfying [56]

Ui(~x + ~a,t) = Ui(~x,t). (2.3)

This implies the following relation for the periodicity of the original displacement field

ui(~x + ~a,t) = eik(~x+~a)Ui(~x,t) = eik~xeik~aUi(~x,t) = eik~aui(~x,t). (2.4)

Equation 2.4 is known as a Bloch boundary condition. Since the displacement in any position

~x + ~a is connected to the displacement at ~x by a simple phase shift eik~a, calculating ~u(~x,t) for a

unit cell of the structure (i.e. for all |~x · â| < a) with respect to the Bloch boundary condition

results in a complete description of the displacement field for all positions ~x. To this end, we

rewrite Eq. 2.1 using Eq. 2.2 to [56]

ρ(~x)∂
2Ui(~x,t)
∂t2

= ikjSij(~x,t) + ∂jSij(~x,t), (2.5)

where we defined the reduced stress tensor Sij(~x,t):

Sij(~x,t) = Cijmn(x)[iknUm(~x,t) + ∂nUm(~x,t)]. (2.6)

The set of differential equations presented by Eq. 2.5 can be discretized and solved numerically for

solutions of Ui(~x,t), classified by the wave number k. However, to further simplify the calculation

10



2.1 Phononic Crystals

we make use of another property of Bloch waves: Solutions that differ in k by integer multiples

of the reciprocal lattice vector ~b = (2π/a)â are identical. This can also be seen in Eq. 2.4 when

considering the phase shift between adjacent cells, since ei(k+~b)~a = eik~a by definition of ~b. As

such, it is sufficient to consider a range of k between −π/a and π/a, which is called the Brillouin

zone. In fact, by using time-reversal symmetry, one can even further reduce the discussion to

the irreducible Brillouin zone, spanning 0 ≤ k ≤ π/a, which is typically labeled by symmetry

points Γ (k = 0) and X (k = π/a).

In summary, one chooses a wave number 0 ≤ k ≤ π/a and numerically calculates the time-

dependent displacement field of the unit cell ~u(~x,t) from Eq. 2.5 with respect to the Bloch

boundary conditions Eq. 2.4. Subsequently, the mechanical eigenfrequencies νn of the structure

can be obtained by a discrete Fourier transformation of the displacement field. Repeating this

calculation for various k within the irreducible Brillouin zone results in a phononic band diagram

of the structure. For the band diagrams shown throughout this thesis, this process is performed

by a Finite Element Method (FEM) solver, which divides a model of the unit cell of the structure

into a finite number of nodes and solves the necessary differential equations at these discrete

points.

Note that this procedure can easily be expanded to structures with higher degrees of sym-

metry (i.e. periodicity along more than one direction). In this case, the wave number classifying

the solutions becomes a wave vector ~k = (kx, ky, kz) and the irreducible Brillouin zone becomes

more complex, leading to the introduction of additional symmetry points. For example, in

the case of a two-dimensional rectangular lattice with periodicity a, the irreducible Brillouin

zone is spanned by 0 ≤ kx ≤ π/a and 0 ≤ ky ≤ kx, introducing the new symmetry point M

(kx = ky = π/a). For further information and alternative approaches regarding the calculation

of acoustic waves in periodic structures, please refer to Refs. [55, 57, 58] and [59], with the latter

focusing on the practical application of FEM simulations.

2.1.2 Bandgap Engineering and Localization

Having established suitable tools to simulate acoustic waves in periodically structured solids,

we now want to discuss how this knowledge can be employed in order to design materials with

specific elastic properties. A goal commonly pursued in the design of phononic crystals is the

fabrication of materials with a phononic band gap [60–62], i.e. a range of frequencies for which

no eigenmodes of the system exist for any wave vector ~k. A simple, classical model exhibiting a

phononic bandgap is a one-dimensional, linear chain comprised of alternating small and large

masses, which are coupled by springs. Such model systems are commonly studied in solid-state

physics lectures in the context of crystal lattices with a diatomic basis [48, 54]. An illustration

of the model along with its phononic band structure is shown in Fig. 2.1a and a sketch of the

analytic calculation of the phononic dispersion relation can be found in App. A.3. Clearly, we

observe a wide gap in the frequency spectrum between the two possible vibrational modes of

the linear chain. A detailed examination of the mode shapes reveals that the low-frequency

acoustic band corresponds to a motion that is primarily carried out by the large masses M , while

11
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Figure 2.1: Phononic band diagram for a. a simple spring-mass system and b. its nanomechanical analogue

realized with the quasi-1D phononic crystal chain shown on the far right. The crystal’s bands were

simulated for a silicon structure with dimensions of (ca, ch, cw, t) = (500, 400, 100, 200) nm and are

drawn according to the symmetry of the mode. ( ), ( ), ( ) and ( ) correspond to modes

with (σy,σz) symmetry of (+,+), (−,−), (−,+) and (+,−) respectively, where σy denotes mirror plane

symmetry about the y-axis and σz denotes mirror plane symmetry about the z-axis. The figure is

adapted from Ref. [60].

the displacement of the high-frequency optical mode predominantly affects the small masses m.

Furthermore, it can be shown that an increased discrepancy between the masses M and m leads

to an enlargement of the frequency bandgap.

Notably, it was found that the properties of this masses-and-springs model can be repro-

duced in a periodic, nanomechanical structure. Fig. 2.1b shows the realization of a quasi-1D

(i.e. infinitely periodic only in x-direction) phononic crystal chain, consisting of a series of

nanometer-sized squares, connected by narrow bridges, along with a FEM simulation of its

phononic band structure. Notably, as the crystal, unlike the spring model, is in fact a three-

dimensional body, significantly more modes result from the simulation. However, the bands

can be distinguished by symmetry arguments. When considering only modes with mirror

plane symmetry about the y- and z-axis (solid blue bands), we observe the formation of a

similar, several GHz wide bandgap between the two lower eigenmodes. Importantly, only a

negligible amount of energy is coupled between modes of alternate symmetry. Therefore, for

the propagation of a mechanical mode with a certain symmetry, the bands of other symmetries

can in fact be neglected for the general discussion of a phononic bandgap. Note that while

the phononic band structure of the crystal is similar to the spring model, the actual mode

12



2.2 Magnetoelastics

shapes exhibited by the crystal are much more complex and can not be straightforwardly

compared. For a detailed simulation and discussion of the individual mode shapes, please refer

to Ref. [60]. Lastly, it has been shown that the eigenfrequencies of the lower bands depend

strongly on the size of the connecting bridges, cw, while the high-frequency bands are almost

entirely determined by the internal resonances of the squares. As such, the position of high-

and low-frequency bands can be adjusted almost independently of each other by altering the

geometry, offering high control over the bandgap size and position over ranges of several GHz [60].

When an acoustic wave encounters a structure with a frequency inside the latter’s bandgap,

it will be assigned a complex wave number k, leading to an exponential decay of the wave’s

displacement as it propagates through the material (since eik~x in Eq. 2.2 gains a real component).

Therefore, materials exhibiting a phononic bandgap can be used as frequency dependent mirrors

for acoustic waves (phonons), exhibiting large reflection coefficients for frequencies within the

bandgap. Potential applications are not only related to the isolation of measurements against

external vibrations, but also the confinement or localization of phonons of certain frequencies to

an area surrounded by the phononic crystal (cf. e.g. Refs. [38, 63, 64]), with the latter essentially

representing the mechanical analogue to an optical Fabry-Perot cavity. We will discuss two

specific applications of bandgap-engineered phononic crystal as phonon cavities and phononic

shields in the context of our simulations in Sec. 3.

2.2 Magnetoelastics

While a large part of this thesis is focused on the description and precise engineering of elastic

properties of hybrid-nanostructures, the long term goal is the investigation of magnetoelastic

interaction between the mechanical and magnetic degrees of freedom within the fabricated samples.

To this end, we want to dedicate this section to an introduction to the field of magnetoelastics,

providing basic definitions, an overview of research applications and an evaluation of the expected

effects on ferromagnetic resonance (FMR) measurements.

2.2.1 Fundamentals

Magnetoelasticity describes the reciprocal dependency between the elastic stress of a ferromag-

netic material and its magnetization [39, 40], enabling an alternative method of control of the

latter without requiring the generation of magnetic fields [65, 66]. In particular, a periodic elastic

deformation (i.e. a mechanical oscillation) affects the magnetic anisotropy throughout a material,

which leads to an effective torque acting on the magnetization of the system. The underlying

spin-mechanical interaction can be understood as the coupling between spin waves (magnons)

and elastic waves (phonons) present in the material. According to theory, the strength of the

coupling is enhanced if the magnons and phonons exist at similar frequencies (usually few MHz

to GHz) [46, 47]. The magnetoelastic interaction has been used in a variety of experiments from

strain sensing [67] to phonon-driven ferromagnetic resonance (FMR) [68] and the creation of

spin-polarized electrical currents [69, 70]. Furthermore, the reverse application of the interaction,

called magnetostriction [39], also constitutes an active field of study. The effect can be used to
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Chapter 2 Theory

manipulate a material’s elastic properties by controlling its magnetization, e.g. by applying an

external magnetic field. For example, it has been demonstrated that magnetic thin films can

be precisely investigated using nanomechanical resonators by exploiting the magnetostrictive

properties of the material [71, 72].

In the following, we proceed with a compact overview of the equations describing the effects of

magnetoelastic interaction in order develop an understanding of how magnon-phonon coupling

could be observed in the sample structures of this thesis. For a more in-depth, theoretical

treatment of the subject please refer to Refs. [39, 46, 47].

Since we only consider magnetic films with thicknesses below 50 nm throughout this thesis

(see Chap. 3), we begin with the expression for the magnetic free energy density F 0 of a thin

magnetic film (extended in x- and y-direction), exposed to an external magnetic field ~H0 [39]

F 0( ~m) = −µ0 ~H0 · ~m +Bdm
2
z +Bu(~u · ~m)2 + const, (2.7)

using the magnetization vector normalized to the saturation magnetization ~m = ~M/Ms =
(mx,my,mz). Further, µ0 is the vaccuum permeability, Bd = µ0Ms/2 describes the shape

anisotropy and Bu is the uniaxial in-plane anisotropy along ~u = (ux, uy, 0). In a static equilibrium

scenario, the magnetization ~m will align itself towards the most energetically favorable state, i.e.

the minimum of F 0. A mechanical oscillation will introduce a time-dependent strain ε(t) to the

material, which we assume to act only along the x-direction for simplicity (i.e. ε(t) ‖ x̂). The

strain contributes to the magnetic free energy due to magnetoelastic coupling [39] according to

F elas( ~m, t) = B1ε(t)m2
x + const, (2.8)

proportional to the magnetoelastic coupling constant B1.

The change in the free magnetic energy density can now be expressed as an effective magnetic

field
~Heff(t) = −∇ ~mF = −∇ ~m

(
F 0 + F elas(t)

)
, (2.9)

acting on the magnetization vector ~m evaluated at its equilibrium position [73]. This result

tells us that for a finite coupling constant B1 the effective magnetic field gains an oscillatory

component ~Helas(t) = −∇ ~mF
elas(t)) due to the time-dependent strain ε(t).

However, at this point, we will neglect the explicit time-dependence of ε(t) and instead consider

the effect of an averaged strain εx = 〈ε(t)〉. This simplifies the following discussion since ~Helas is

now constant in time. We can consequently rewrite the time-independent effective field to

~Heff = ~H0 + ~Haniso + ~Helas, (2.10)

where we introduced a virtual anisotropy field ~Haniso to encapsulate the contributions to Eq. 2.7,

which are independent of the real, externally applied field ~H0. Note that ~Heff corresponds

to a minimization of the magnetic free energy, so that the magnetization will strive to align

itself along its orientation, i.e. ~m ‖ ~Heff in equilibrium. Therefore, the effective magnetic

field crucially influences the magnetization dynamics of the investigated system. In particular,
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2.2 Magnetoelastics

the time-evolution of ~m is governed by its classical equation of motion, known as the Landau-

Lifshitz-Gilbert (LLG) equation [74, 75]:

∂t ~m = −γ ~m × µ0 ~Heff + α~m × ∂t ~m (2.11)

Here, α is a phenomenological damping parameter and γ = gµB/~ is the gyromagnetic ratio

with the Landé-factor g, the Bohr magneton µB and the reduced Planck constant ~.

By solving Eq. 2.11, one finds that ~m performs a precessional motion around ~Heff with the

angular frequency

ωres = γµ0
∣∣∣~Heff

∣∣∣. (2.12)

Notably, a study of the precession frequency ωres for different magnetic fields ~H0 can provide

information about the magnetic properties (e.g. the anisotropy and damping) of the investigated

material. A common approach to the quantitative investigation of ωres are ferromagnetic

resonance (FMR) measurements [45], a concept which we will now introduce.

2.2.2 Ferromagnetic Resonance (FMR)

In the following, we discuss the fundamental principles of FMR and subsequently assess the

influence of magnetoelastic coupling on the observed resonance frequency. FMR measurements

probe the resonant absorption of electromagnetic waves in a magnetic material. In the presence of

an external magnetic field ~H0, the material’s magnetization ~M precesses around a corresponding

effective field ~Heff, as described by Eq. 2.11 and illustrated in Fig. 2.2a.

He�

M
-M×

M×∂t M

= H0 + hMW(t)

M

a. b.

He�

He�

Figure 2.2: Schematic illustration of the basic working principle of ferromagnetic resonance (FMR). a. The

magnetization ~M precesses around an effective magnetic field ~Heff with frequency ωres. Due to damping

effects, ~M will eventually cease precession and align itself along ~Heff. b. The external microwave field
~hMW(t) alters the effective field acting on the magnetization. In the case of ferromagnetic resonance,

i.e. ωMW = ωres, the damping is compensated by the microwave field (see orange arrow), which is

partly absorbed in the process. Thus, a resonance signature is visible in the microwave transmission

spectrum. The figure is adapted from Ref. [76].

In FMR measurements, an additional, oscillating magnetic field ~hMW(t) is introduced per-
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Chapter 2 Theory

pendicular to ~H0, generated by a microwave signal passing through a conductor close to the

investigated structure. The origin of the resonant absorption is the interaction of the oscillat-

ing field with the precessing magnetization, as is illustrated in Fig. 2.2b. In particular, the

oscillating field counteracts the damping of the precession (see orange arrow). If the precession

frequency of ~M, ωres (cf. Eq. 2.12), and the frequency of the driving field ωMW are brought on

resonance, the microwave field compensates the damping of the precessional motion completely

and an increased absorption of the microwave signal can be observed in the transmission spectrum.

Notably, due to the addition of the oscillating magnetic field, ~Heff becomes more complex.

In order to derive a corresponding solution for the ferromagnetic resonance frequency, we assume

an orientation of the magnetic field along the x-axis, i.e. ~H0 = H0x̂, and split the expressions

for ~Heff and m into static and time-dependant parts:

~Heff(t) = ~Hstat + ~hMW(t) = (H0 +Haniso +Helas)x̂ + ~hMW(t) (2.13)

~m =
~M0
Msat

+ ~m(t) (2.14)

Furthermore, we assume harmonic time-dependencies of the form ~hMW(t) = ~hMW,0 · eiωt and

~m(t) = ~m0 · eiωt.
Inserting these expressions into Eq. 2.11 and solving1 the differential equation for the FMR

frequency fFMR = ω/2π results in the solution [77]

fFMR = γ

2πµ0
√

(H0 +Haniso +Helas + (Nx −Nz)Msat) · (H0 +Haniso +Helas + (Ny −Nz)Msat),
(2.15)

which is known as the Kittel equation2. Here, Nx,y,z are demagnetization factors that depend

on the geometry of the investigated sample with respect to the applied magnetic field. In a thin

film, they lead to a distinction between two specific cases. For a magnetic field oriented normal

to the sample plane, Nx = Ny = 0 and Nz = 1, resulting in the out-of-plane Kittel equation:

foop
FMR = γ

2πµ0(H0 +Msat −Haniso −Helas) (2.16)

Conversely, for a magnetic field pointing along the plane of the thin film, Nz = Ny = 0 and

Nx = 1. Thus, we obtain the in-plane variant of the equation:

f ip
FMR = γ

2πµ0

√
(H0 +Haniso +Helas) · (H0 +Haniso +Helas +Msat) (2.17)

The Kittel equations describe the dispersion of the FMR frequency, i.e. its dependence on the

externally applied magnetic field. Therefore, the experimentally observed dispersion in FMR

measurements can be fitted with the corresponding equation in order to quantitatively analyze

the data, which we will use in Chap. 5. However, the fitting process can not distinguish between

1Here, we do not provide a detailed calculation of the equation. For a more thorough derivation, please refer to
Refs. [77–79].

2Note that the original Kittel equation does not explicitly consider elastic contributions Helas. However, as they
correspond to a simple addition to the effective field, they can be easily incorporated.
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2.2 Magnetoelastics

Haniso and Helas, as they are summarized. Therefore, the magnetoelastic contribution can not

be individually extracted. Nonetheless, Eq. 2.15 clearly shows that the strain ε induced by a

mechanical oscillation of the material will affect the resonance frequency fFMR. Therefore, it

should be possible to observe the influence of magnon-phonon coupling in conventional FMR

measurements, as long as the magnetoelastic coupling is sufficiently strong. In particular, the

investigation of engineered materials exhibiting a complete phononic bandgap (see Sec. 2.1.2)

appears intriguing. Due to the wide tunability of the FMR frequency with the external magnetic

field, the dispersion of the FMR mode could be investigated at frequencies within the bandgap of

the material, where no resonant magnon-phonon coupling can occur, and subsequently compared

to the dispersion at frequencies outside of the bandgap.
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Chapter 3

Simulations and Sample Design

This section is dedicated to a detailed description of the design process which the samples

fabricated in the scope of this thesis underwent. We use Finite Element Method (FEM)

simulations to first recreate geometries of phononic crystals, which were previously published in

the field of optomechanics, and adapt them to our material system and evaluate the suitability for

our project. Subsequently, we introduce magnetic materials to the structures, forming a double-

layer system intended to investigate magnetoelastic interaction and simulate the mechanical

properties of the altered crystal. For additional information regarding FEM simulations of

acoustic waves, we recommend Ref. [59]. All simulations in this thesis are performed using the

FEM solver software Comsol Multiphysics [80].

3.1 Zipper Resonators

We commence by introducing the design of a ”zipper”-type optomechanical crystal or zipper

resonator, a design popular in the field of optomechanics [17] for its ability to simultaneously

localize GHz-frequency elastic waves (phonons) and photons in the THz regime (cf. e.g. Refs.

[20, 38, 43, 44]). Since we intend to investigate magnetoelastic interaction, we all but neglect the

optical properties and focus our discussion on the localization of GHz-frequency phonons. An

illustration of a typical zipper resonator design is shown in Fig. 3.1. It consists of a nanomechanical

mirror area
(nominal cells)

cavity area
(defect cells)

x

y

mirror area
(nominal cells)

Figure 3.1: Schematic illustration of a typical zipper resonator geometry in top-down view. The resonator consists

of a freely suspended nanomechanical string, perforated by elliptic holes. The mirror areas extend

beyond the boundaries of the illustration and form a perfectly periodic phononic crystal. They act

as mirrors for acoustic waves of certain frequencies, confining them to the cavity area of different

geometry in the center of the string.
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Chapter 3 Simulations and Sample Design

string, which is periodically perforated by holes, generating the discrete periodicity of elastic

properties necessary to create a phononic crystal with a phononic bandgap (as introduced in

Sec. 2.1.2). The perfect one-dimensional periodicity is interrupted in the center of the string by

a defect- or cavity area of altered geometry. If the mechanical eigenmodes of the defect area

are successfully matched to the bandgap of the surrounding phononic crystal, the latter forms

a mirror area reflecting and confining acoustic waves to the cavity. In order to achieve this

state, the geometry of the string, the holes and the defect has to be carefully chosen. In the

following, we will detail the design process of a zipper resonator, using FEM simulations in order

to determine the ideal geometry for the localization of phonons in a frequency range comparable

to magnonic resonance frequencies (i.e. several GHz).

3.1.1 Phonon Localization

At the beginning of the design process, we will focus on creating a fully periodic crystal (i.e. the

mirror area) which exhibits a wide phononic bandgap at suitable frequencies and neglect the

defect area for the time being. As discussed in Sec. 2.1.1, when dealing with periodic materials,

it is possible to make statements about the elastic properties of an extended structure by only

considering its unit cell, i.e. the largest, non-redundant building block that can form the actual

body when repeated sufficiently. Therefore, in order to simulate the elastic properties of our

mirror area, we treat it as a quasi one-dimensional, infinitely periodic repetition (projection) of

a rectangular unit cell with length a, width w and thickness t, which is perforated by an elliptic

hole spanned by hx and hy. A 3D model of such a unit cell is illustrated in Fig. 3.2a, with the

dimensions (a,w, hx,hy, t)nominal = (350, 500, 360, 160, 90) nm and periodicity along the x-axis.

The chosen geometric parameters are loosely based on Refs. [44, 64], but have been altered in

order to produce similar results in a material system of 90 nm thick Si3N4 .

As discussed in Sec. 2.1.1, the possible mechanical modes of the structure can now be gathered

using a FEM simulation of the unit cell by defining periodic Bloch boundary conditions as in

Eq. 2.4. The periodicity further allows us to invoke Bloch’s Theorem and classify all of the

solutions by a wave number kx in the irreducible Brillouin zone, Γ = 0 ≤ kx ≤ π
a = X, and a

band index n. Thus, we can fully describe the system’s mechanical modes by its phononic band

structure. The resulting band diagram for the zipper unit cell is plotted in Fig. 3.2c, where every

band represents one discrete eigenfrequency of the infinitely periodic structure, each continuous

in the wave number kx. Due to the plane symmetry of the unit cell about the z = 0 and y = 0
planes, the eigenmodes can be further distinguished based on their vector symmetry regarding

these planes. To this end, bands with a positive y-z-symmetry are highlighted in red. The mode

symmetry becomes significant because it has been shown [38, 43], that, in an ideal scenario, the

mode-mode coupling between bands of different symmetry is negligible, resulting in an effective-

or quasi-bandgap of more than 2.6 GHz for y-z-symmetric modes in the investigated structure

(light orange area).

So far, the simulations show that the projection of the investigated unit cell can exhibit

GHz frequency oscillations and form a phononic bandgap, but no localization is yet achieved.
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Figure 3.2: a. The unit cell of a zipper resonator defined by the geometric parameters (a,w,hx,hy, t)nominal =

(350, 500, 180, 80, 90) nm. c. Band diagram simulated for the unit cell’s projection in x-direction.

Bands with mirror plane symmetry about the y- and z-axis ( ) and other symmetries ( ) are

set apart and the resulting quasi-bandgap (light orange) is highlighted. b. Eigenfrequency of the

fundamental breathing mode (second red band) in the Γ-point during the transition from the nominal

unit cell to the defect cell. The final defect mode frequency νdefect = 4.61 GHz is projected ( ) onto

c. The insets show simulated mode shapes of the breathing mode for the nominal (right) and the

fully transformed defect cell (left) with (a,w,hx,hy, t)defect = (280, 500, 240, 200, 90) nm.

Consequently, the discrete periodicity of the structure has to be broken by insertion of a defect

area within the resonator, which allows the formation of mechanical modes of different frequencies.

If the defect area is designed properly, it will exhibit eigenfrequencies which are not allowed to

propagate within the nominal (non-defect) structure. The latter will thus act as a reflecting

Bragg mirror, effectively confining the defect modes to the cavity area. In our structure, the

defect is realized by inserting a number of differently shaped, rectangular cells around the center

of the resonator.

By performing further FEM simulations of unit cells with different geometries, we find that a cell

with shorter size a and a smaller, more circular hole (i.e. hx ≈ hy) will exhibit a y-z-symmetric

mode with a significantly lower eigenfrequency. The effect of moving from the nominal cell

geometry to a defect cell with (a,w,hx,hy, t)defect = (280, 500, 240, 200, 90) nm is illustrated in

Fig. 3.2b, where we focus only on the second y-z-symmetric mode at kx = 0. This mode is

commonly referred to as breathing mode1 [38], since it is characterized by periodic expansion

and contraction of the material along the y-direction, resembling a breathing motion (the mode

shape is visualized in the insets). Notably, this defect mode has a frequency of νdefect = 4.61 GHz
which lies within the quasi-band gap of the nominal projection. As such, a defect with this

geometry should theoretically perform mechanical oscillations strictly localized to the defect area.

In order to test this hypothesis, we move on to model a complete zipper resonator, including

1While it is possible to localize other modes to the same defect, we choose to focus on the breathing mode due to
its well suited frequency with an almost linear dependence on the cell geometry. For a discussion of other
modes exhibited by a zipper resonator, see Ref. [38].
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Figure 3.3: a. The unit cell parameters a ( ), hy ( ) and hx ( ) in units of anominal, plotted as a function

of the hole index nh, where nh = 0 corresponds to the center of the defect area. Within the defect

area, the parameters are smoothly transitioned by Eq. 3.1 to the defect geometry (a,hx,hy)defect

= (280, 240, 200). For indices |nh| ≥ 15, the unit cell remains constant at its nominal dimensions

(a,hx,hy)nominal = (350, 360, 160) nm. b. Illustration of the resulting zipper resonator’s defect area. c.

FEM simulation of the zipper resonator’s fundamental breathing mode shape at νcavity = 4.764 GHz.

The strong localization of the displacement field (color) to the center of the defect area is clearly

visible. Note that the deformation of the material is exaggerated for clarity.

the defect area discussed above, in order to perform simulations of the actual structure. We

design the resonator to have a total length of 35µm, offering space for 100 nominal unit cells,

and choose the defect area to span 15 holes to each side from the center of the string. Since

the suppression of the defect mode in the mirror region is expected to be exponential [81], this

number of surrounding nominal cells should be sufficient to form a low-loss phonon cavity. To

achieve a gradual modification of the nominal cell towards the defect cell, we transition each of

the geometric cell parameters p ∈ (a,hy,hx) with a smooth function of the form

p(nh) = pdefect + (pnominal − pdefect) ·
[
3
( |nh|
N

)2
− 2

( |nh|
N

)3]
, (3.1)

where nh ∈ [−N,N ] is used to index the cells in the defect area with N being the total number

of defect cells on each side. Equation 3.1 was chosen to ensure a smooth transition of the cell

dimensions, which has been shown to have an influence on optical quality factors [82]. So far, no

significant influence of the transition function on the localization of mechanical modes became

apparent in the simulations. However, no systematic investigation was performed. The resulting

development of the parameters a, hy and hx across the defect area is plotted in Fig. 3.3a while

the corresponding zipper resonator layout is shown in Fig. 3.3b. Using the transition functions,

we obtain a complete description of the zipper resonator’s geometry and can proceed to perform
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3.1 Zipper Resonators

a FEM simulation of the structure’s possible eigenfrequencies. While the resonator exhibits

a multitude of eigenmodes, we are primarily interested in the breathing mode of the defect

cell which we expect around νdefect = 4.61 GHz according to previous simulations. We find

the fundamental breathing mode of the zipper resonator at νcavity = 4.764 GHz and present its

displacement field in Fig. 3.3c. As expected, the displacement field is confined to a small area of

roughly 12 cells within the cavity area of the string. The fact that we find the localized mode

shifted to higher frequencies in comparison to the defect cell simulations can be explained given

that the actual structure consists of a series of smoothly transitioned defect cells and not a

periodic repetition of the fully deformed cell as assumed in the single cell simulations.

3.1.2 Influence of the Cobalt Layer
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Figure 3.4: Fundamental breathing mode frequency (at the Γ point) of the defect cell (red dots) and size of

the quasi-bandgap of the nominal cell (light orange) for increasing thicknesses tCo of Co added in

positive z-direction to the unit cell. The values are the result of FEM simulations of unit cells with

(a,w,hx,hy, t)nominal = (350, 500, 360, 160, 90) nm and (a,w,hx,hy)defect = (280, 500, 240, 200, 90) nm,

respectively. We observe a small but steady decline in the size of the quasi-bandgap and the defect

mode frequency.

According to the simulations, the localization of phonons should be achievable by fabricating

a zipper resonator with the geometric parameters described in the previous section. However,

as the aim of this thesis is to investigate magnetoelastics in the zipper structure, it is time

to introduce magnetic materials into the discussion. In a fairly straightforward approach, we

extend the zipper resonator designed above towards a double-layer system comprised of an

additional layer of cobalt applied on top of the Si3N4 string. In order to evaluate the impact of

this addition on the elastic properties of the zipper resonator, we perform additional single cell

FEM simulations for varying thicknesses of Co. The results are shown in Fig. 3.4. In particular,

we simulate band diagrams for the nominal cell with dimensions as described above in order to

extract the size of the quasi-bandgap. Additionally, we investigate the eigenfrequency of the

fundamental breathing mode (at the Γ point) of the fully deformed defect cell as a function of
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the Co thickness tCo. The results show a decrease in the bandgap size and defect mode frequency

with increasing tCo. However, both effects are comparatively small and do not seem to prohibit

mode localization in any way. It should, however, be noted, that the Co layer breaks the perfect

mirror symmetry of the zipper structure about the z-axis, which also affects the symmetry of

its exhibited modes. Therefore, it is plausible that the mode-mode coupling between modes of

formerly completely different symmetry could become non-vanishingly small, creating a loss

channel for the localized mode. To this end, it seems advisable to keep the thickness of the Co

layer as small as possible from a mechanical standpoint, while still retaining enough magnetic

material to observe magnetic resonances. Therefore, we choose a value of tCo = 20 nm for the

fabricated samples. Finally, we repeat the simulation of the full zipper geometry as shown in

Fig. 3.3 with the addition of the 20 nm Cobalt layer. The localized breathing mode frequency is

determined to νcavity,Co = 4.423 GHz. Tab. 3.1 summarizes the design parameters of the finalized

Si3N4/Co double-layer structure.

parameter value

l 35µm
w 500 nm
tSiN 90 nm
tCo 20 nm
anominal 350 nm
hx,nominal 160 nm
hy,nominal 360 nm
adefect 280 nm
hx,defect 200 nm
hy,defect 240 nm
N 15
νcavity,Co 4.423 GHz

Table 3.1: Summary of the finalized design parameters for the Si3N4/Co double-layer zipper resonator.

3.2 Phononic Shields

In an ideal scenario, the nominal cells surrounding the defect region of a zipper resonator

act as a series of Bragg mirrors and provide exponential attenuation to modes within their

bandgap. Therefore, one would expect losses from the localized defect mode to the clamps

and the remainder of the substrate to become negligible as long as the mirror region is made

sufficiently large [81, 83]. However, since we are dealing with a quasi-bandgap that relies on

the assumption of vanishing coupling between modes of alternate symmetry, small defects

inevitably occurring in fabrication processes can cause local symmetry breaking, resulting in

energy loss to other modes. This complication becomes even more relevant when considering

the broken z-symmetry introduced by the addition of the magnetic top-layer. It has been shown,

however, that energy leakage from the string can be strongly reduced by surrounding it with

an additional phononic crystal structure which is designed to exhibit a complete bandgap at
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3.2 Phononic Shields

the cavity frequency. The surrounding structure thus attenuates modes of any symmetry which

would otherwise propagate to the substrate. A design which has been proven to accomplish this

task very effectively is the two-dimensional cross phononic shield [60], as illustrated in Fig. 3.5.

It is constructed from a square unit cell with sidelength ca, perforated by a cross of width cw and

t

ca

cw

ch

b.

z

x

y

a.

x

y

Figure 3.5: a. Schematic illustration of the quasi-2D cross phononic shield structure employed to minimize

clamping losses of mechanical resonators. b. The unit cell defining the phononic shield structure as

shown in a. (dashed line). It is constructed by the geometric design parameters (ca, ch, cw, t), which

define size and position of the exhibited phononic bandgap.

height ch. The phononic shield can be considered the extension of the linear chain of squares

and bridges, discussed in Sec. 2.1.2, by introduction of a discrete two-dimensional periodicity

(in x- and y-direction). The design has been successfully employed in various experiments (cf.

e.g. Refs. [21, 63, 64]), with simulations suggesting a reduction of mechanical loss rates by

up to several orders of magnitude [83]. Furthermore, the size and frequency of the exhibited

phononic bandgap is widely tunable by altering the design’s geometric parameters, a fact we

will demonstrate in the following section and use to engineer a suitable shielding specifically for

our application.

3.2.1 Band Gap Engineering

In order to design a phononic crystal that provides effective shielding for the previously designed

zipper resonator, we aim to find a set of parameters (ca, cw, ch)2 of the cross unit cell that results

in a material with a complete bandgap around νcavity,Co = 4.423 GHz. As a starting point,

we use values similar to Ref. [64] and, for simplicity, define a fixed ratio of cw = 0.15ca and

ch = 0.85ca for the parameters. Subsequently, we proceed as above and perform FEM simulations

of the shield’s unit cell, defining periodic Bloch boundary conditions in x- and y-direction and

calculating the eigenfrequencies for wave vectors ~k along the high symmetry points Γ,X,M of

the two-dimensional, irreducible Brillouin zone (see Sec. 2.1.1). By repeating the simulation for

varying values of ca, we receive a set of band diagrams, presented in Fig. 3.6b, for differently

sized unit cells, effectively mapping out the influence of a uniform scaling operation due to the

2The thickness t = 90 nm is predetermined by the used sample material and thus kept constant.
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fixed relation between the parameters.
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Figure 3.6: FEM simulated band diagrams of the phononic shield unit cell for different values of ca, showcasing the

wide tunability of the resulting band gap (light orange). For simplicity, the other cell dimensions are

kept at a fixed ratio of ch = 0.85ca and cw = 0.15ca respectively, with ct = 90 nm remaining constant.

As such, the process corresponds to an uniform scaling operation in the unit cell’s x-y-plane. The

dashed, red line highlights the localized mode frequency νcavity,Co = 4.423 GHz of the zipper resonator,

making the design with ca = 650 nm a promising candidate for the shielding.

Clearly, the scaling operation has a large, apparently linear, influence on the frequency bands

of the shield structure, trending towards lower frequencies for increasing cell dimensions. As a

result, the exhibited bandgap (highlighted in light orange) is shifted to lower frequencies and

shrunken in width. Remarkably, this shows that the bandgap of the shield structure can be

adapted to a wide range of frequencies in a fairly predictable way by performing a simple scaling

operation. Comparing the bandgap positions with the cavity frequency νcavity,Co = 4.423 GHz
(dashed red line), the design with ca = 650 nm is identified as a promising candidate for an

effective shielding of the localized mode. Naturally, when considering cw and ch independently

of ca, the parameter space of possible bandgap positions and sizes becomes even larger. The

bandgap is shown to be tunable by more than 5 GHz in a silicon structure in Ref. [60]. In a last

step, we use these additional degrees of freedom in order to slightly optimize cw and ch for a

fixed value of ca = 650 nm, engineering a bandgap which is more precisely centered around the

cavity resonance frequency. Through this process we arrive at the finalized geometric parameters

for our design (ca, ch, cw, t) = (650, 570, 100, 90) nm.

In conclusion, the simulations confirm that the advantages of the cross phononic shield structure,

a highly flexible, GHz wide bandgap, which can be shifted across a wide frequency range, can be

successfully adapted to our material system and to a frequency range suited for the intended

application. Therefore, by surrounding the double-layer zipper resonator with a suitable phononic

shield, a significant reduction of the clamping losses should be achievable. Fabricated samples

based on the design parameters derived in this and the previous section are presented in Sec. 4.1.
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3.2.2 Double-Layer Phononic Shields

Previously, we focused on the sample design of a zipper resonator, intended to localize phonons

and investigate their interaction with magnetic modes present in the Co layer of the double-layer

structure. In this section, we want to discuss a parallel approach to investigate magnetoelastic

interaction, which omits the localization of phonons and relies directly on the ability of phononic

shields to exhibit complete phononic bandgaps in the GHz range. By fabricating Si3N4/Co

double-layer phononic shield structures, we aim to create a magnetic system which also exhibits

a phononic band gap at typical frequencies of magnetic resonances (i.e. several GHz). Conse-

quently, we hope to observe the effect of magnon-phonon coupling when comparing magnetic

resonance features within and outside of the phononic bandgap.

To this end, we simulate the band diagram of a phononic shield structure using the previ-

ously optimized design parameters (ca, ch, cw, t) = (650, 570, 100, 90) nm and model the addition

of a Co layer of varying thickness on top of the structure, plotting the results in Fig. 3.7.
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Figure 3.7: FEM simulated band diagrams of a phononic shield unit cell with design parameters (ca, ch, cw, t)

= (650, 570, 100, 90) nm for different thicknesses of Cobalt added as an additional layer on top of

the Si3N4. Clearly, the added inhomogeneity of the material along the z-axis reduces the size of the

exhibited bandgap (light orange).

Similar to the observations made in Sec. 3.1.2, the addition of a Co layer leads to a de-

crease in the size of the band gap due to a strong downwards shift of higher frequency bands.

However, in this case the effect is much more pronounced and quickly leads to a vanishingly

small bandgap. Considering the results, the design of a magnetic double-layer structure with a

complete phononic bandgap seems possible, but clearly, a thickness larger than 30 nm should

not be chosen. Fabricated samples based on the double-layer shield design are shown in Sec. 4.2

and corresponding ferromagnetic resonance (FMR) measurements are presented in Chap. 5.
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Chapter 4

Fabrication

4.1 Zipper Resonators

Fabrication Procedure

In this section, we detail the fabrication of Si3N4/Co double-layer zipper resonators surrounded

by a Si3N4 phononic shield structure, as designed in Sec. 3.1. The step-by-step fabrication

process is illustrated in Fig. 4.1:
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Figure 4.1: Schematic illustration of the thin film fabrication process of a Si3N4/Co double-layer zipper resonator

surrounded by a phononic shield structure. Each step is presented in a top-down view (top row) and

a corresponding cross-section through the sample as visualized in the 3D model in the bottom right.

The individual process steps are described in the main text. Note that the size and placement of the

zipper resonator with respect to the phononic shield are not to scale.
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Chapter 4 Fabrication

a. We commence with a commercially available silicon wafer, which is covered with a 200 nm
thick sacrificial layer of SiO2 and 90 nm of tensile stressed Si3N4 by low pressure chemical vapor

deposition (LPCVD). b. The substrate is coated with positive resist and a mask in the shape

of the zipper resonator is structured using electron beam lithography (EBL). c. A Co layer of

desired thickness is evaporated onto the sample and a subsequent lift-off process is performed

in order to remove the resist mask, along with excess Co. Due to the small dimensions of the

elliptic holes in the zipper design, a lift-off using warm acetone can fail to remove the resist

layer without residue. Better results were accomplished by employing a solvent based remover

recommended for the used resist. d. Another layer of positive resist is applied and structured

using EBL. In this step, the mask defines the phononic shield structure, but also includes the

previously structured zipper layout to protect the Co layer. e. The resist mask is transferred

into the substrate using a short anisotropic reactive ion etching (RIE) process. Afterwards, a

wet etching step with buffered hydrofluoric acid (BHF) solution (≈ 3%) removes the majority of

the SiO2 layer, leaving the resonator and the surrounding shield freely suspended. The etching

process is terminated by rinsing the sample with H2O, followed by multiple ethanol baths, which

remove the remaining resist layer. Finally, the sample is carefully dried using a critical point

dryer (CPD) in order to minimize potential damage to the delicate structures.

Fabricated Samples

a.

b. c. d.

5μm

1μm 1μm 1μm

Figure 4.2: a. Scanning Electron Microscopy (SEM) image of a fabricated zipper resonator surrounded by a cross

phononic shield structure as designed in Sec. 3.1. b. Zoom-in on the clamping area, connecting the

zipper resonator to the phononic shield. c. Zoom-in on the defect region in the center of the zipper

resonator, showcasing the gradually changing hole shape and cell size. d. Zoom-in on the edge of the

phononic shield region of the sample.
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4.1 Zipper Resonators

Scanning Electron Microscopy (SEM) images of a finished sample, fabricated as detailed above

with the design parameters derived in Sec. 3.1, are shown in Fig. 4.2. The employed lithography

process proves capable of sharply defining the nm-sized features comprising the zipper resonator

(b. and d.) and the phononic shield (d.). Furthermore, a good agreement between the designed

feature size and the observed structures is reached, at least to the accuracy of the scale provided

by the SEM software. In particular, we measure a slightly reduced beam width w ≈ 480 nm and

almost perfectly reproduced dimensions of the central hole, i.e. hx ≈ 201 nm and hy ≈ 240 nm.

From the top-down view provided in Fig. 4.2, the edges of the structure appear to be sufficiently

under-etched to be freely suspended and only supported at the edges of the phononic shield

area (not shown). However, it does not become clear whether the center of the squares forming

the phononic shield are fully released. The brighter spots (see panel b. and d.) could signify

material below the Si3N4 layer that is still connected to the substrate. On the other hand, it is

expected that the protective resist layer which covers the shield structure during the etching

process is attacked by the BHF. Therefore, the bright spots might also indicate a concentric

degradation of the top-layer itself, while the structure is fully released.

a. b.

5μm

c.

1μm

1μm

Figure 4.3: Angled (55°) Scanning Electron Microscopy (SEM) images of the fabricated sample structure shown in

Fig. 4.2. a. Wide, angled view of the zipper resonator surrounded by a cross-design phononic shield.

b-c. Zoom-in on the left (b.) and right (c.) clamping areas. It becomes obvious in the angled view

that the zipper resonator was successfully under-etched, but its central section subsequently collapsed

and is stuck to the substrate.

In order to gain more information about the state of the structure, we tilt the sample and

analyze SEM images from an angled perspective, as presented in Fig. 4.3. It becomes clear that

the central section of the zipper resonator was successfully released (see panels b. and c.), but

did subsequently collapse onto the substrate. Notably, we find released and collapsed zipper

resonators not only in the shown structure, but in a total of 20 identical resonators, located on

two different chips that underwent an identical fabrication process. Therefore, we assume the

collapse not to be caused by an external influence damaging the structure, and instead conclude

that the current zipper design is inherently incapable of supporting itself once released from the

substrate. We attribute the lack of structural integrity to the lower thickness of the material

(90 nm Si3N4 ) in comparison to other published works involving zipper resonators (220 nm Si

in Ref. [64] and 350 nm Si3N4 in Ref. [44]). Notably, solid string resonators made from the

same material system can be released from the substrate and remain stable, but the perforations

necessary for the zipper design seemingly weaken the structure sufficiently to collapse during the

release. While this implies that stable zipper structure can not be fabricated on the material

system currently in use, we are confident that, given the favorable lithography results, the
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established process can be quickly adapted to a new material system and successfully produce a

freely suspended zipper resonator.

Conversely, even after investigation of the angled SEM images, it is still unclear whether the

phononic shield structure surrounding the resonator is fully released from the substrate. To

positively confirm or refute this, a destructive measurement would have to be performed. For

example a section of the structure could be cut free by a focused ion beam (FIB). Subsequently it

would be possible to determine via SEM whether the structure has collapsed or is still supported.

4.2 Double-Layer Phononic Shields

Fabrication Procedure

In the following, we will detail the fabrication process of the second sample type, a Si3N4/Co

double-layer phononic shield structure, which we discussed in Sec. 3.2.2. A schematic illustration

of the process steps is presented in Fig. 4.4:
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Figure 4.4: Schematic illustration of the thin film fabrication process of a Si3N4/Co double-layer phononic shield

structure. Each step is presented in a top-down view (top row) and a corresponding cross-section

through the sample as visualized in the 3D model in the bottom right. A detailed description of the

process steps can be found in the main text.

a. The substrate is identical to the one discussed above, i.e. silicon with a sacrificial layer of

200 nm SiO2 and 90 nm of tensile stressed Si3N4 deposited by LPCVD. b. The sample is coated

with negative resist and the phononic shield structure is defined using EBL. The use of negative

resist is advisable for this type of structure, since it requires exposition of the smaller cross

area (orange), as opposed to the larger squares (green), greatly reducing the negative effects of
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4.2 Double-Layer Phononic Shields

back-scattering [84] during EBL. c. Cobalt of desired thickness is evaporated onto the sample

and the resist mask is removed in a lift-off process. As described above, a specialized remover

did achieve better lift-off results for the small cross-like structures compared to warm acetone.

d. The shield structure is transferred into the substrate by anisotropic RIE and subsequently

released by a wet etching process with BHF solution (≈ 3%), which dissolves the sacrificial SiO2

layer. The termination of the etching process is achieved by H2O, followed by removal of the

resist in ethanol baths. Finally, the samples are dried using a CPD process.

For more information regarding specific process steps or parameters, please refer to App. A.4.

Fabricated Samples

a. b.

1μm5μm

Figure 4.5: a. Wide, angled (55°) view of a fabricated Si3N4/Co double-layer phononic shield structure. The

X-shaped features are markers intended for alignment of optical measurements. b. A detailed look at

the dashed orange area of the phononic shield structure.

Here, we present SEM images of Si3N4/Co double-layer phononic shield samples, fabricated

according to the procedure detailed above. In Fig. 4.5, an angled view of a small phononic

shield array spanning roughly 60x30 µm2 is shown, along with surrounding X-shaped markers,

intended for alignment purposes in measurements. The periodic cells appear to be nicely and

consistently defined, and only a few defects, mostly consisting of resist residue, are found.

Comparing the observed feature dimensions with the designed parameters, we find slightly

enlarged trenches (i.e. crosses with cw ≈ 117 nm) at the cost of smaller squares (ca ≈ 507 nm).

These are most likely effects of beam broadening [84] during the EBL process. Following further

quantification of these deviations, it should be possible to derive a correction factor which can

be applied to the layout in order to achieve more precisely replicated dimensions. Notably, it

can not be positively determined from the images whether the structure is fully released from

the substrate. As previously discussed in Sec. 4.1, a definite proof can only be gained from

destructive measurements (e.g. cutting the sample with FIB). However, based on the experiences

with the zipper design (i.e. the released but collapsed resonator) and the evaluation of damaged

sample structures (shown in Fig. A.9), we believe that the wet etching duration was sufficient to

leave this phononic shield structure freely suspended.
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Chapter 5

Experimental Results

In Section 2.2, we discussed the theory of magnetoelastic interaction, i.e. how the magnetization

dynamics of a material are influenced by mechanical oscillations of the same body. Furthermore,

we discussed the principle of ferromagnetic resonance (FMR) and how it can be affected by the

magnetoelastic coupling. We found that the stress induced by mechanical oscillations leads to

a change of the effective magnetic field in the material. Thus, as the ferromagnetic resonance

frequency depends on the same effective magnetic field (see Eq. 2.15), we expect the effect

of magnon-phonon coupling to be observable in FMR measurements, i.e. through a shift in

resonance frequency. Therefore, in this chapter, we experimentally investigate two different

Si3N4/Co double-layer phononic shield samples, which we designed in Sec. 3.2.2, using FMR

measurements. Notably, the samples were fabricated as detailed in Sec. 4.2, but were not exposed

to the final wet etching process. Consequently, the phononic shield structures are not fully

released and still supported by the substrate. Unreleased samples have been chosen because a

FMR measurement as performed here, especially the placement of the sample (which we will

discuss shortly), would likely damage or even destroy a freely suspended structure. As such,

the samples are not expected to exhibit the designed phononic bandgap, which would allow the

comparison of FMR lines within and outside of the frequency range of the bandgap in order to

determine the influence of resonant magnon-phonon interaction. Instead, the samples will be

used to investigate the magnetization dynamics of the fabricated hybrid structures and use this

knowledge to optimize the design in future iterations.

Figure 5.1a-b shows schematic illustrations of the two investigated samples. Both samples

are designed using the finalized geometric parameters derived from the simulations in Sec. 3.2.2

with a chosen cobalt layer thickness of 30 nm. The sample shown in panel a. consists of a small

phononic shield structure (dotted red area), spanning roughly 1x1 mm2, which is centered on a

6x5 mm2 chip. Notably, the remainder of the chip is covered with an unstructured Co layer.

The second sample (see panel b.) contains a larger phononic shield structure spanning 3x1.3

mm2, centered on a chip of identical size. Furthermore, the surface of the chip, aside from the

phononic shield area, was cleared of any excess Co.

For the measurement, we employ a standard broadband ferromagnetic resonance (bbFMR)

spectroscopy setup (cf. e.g. Refs. [86, 87]). To this end, the sample is mounted on the center
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Figure 5.1: a-b. Top-down view on a schematic sample geometry of the two investigated double-layer phononic

shield samples. Sample a. consists of a small phononic shield structure (dotted red area), spanning

roughly 1x1 mm2. The remainder of the chip is covered with an unstructured, homogeneous Co film

(red). Sample b. contains a larger phononic shield array spanning 3x1.3 mm2 and the surface of the

chip was cleared of any excess Co. The blue arrows indicate the magnetic field orientation during the

measurement. c. Schematic experimental setup for broadband FMR measurements. The sample is

placed in flip-chip orientation on the center conductor (brown) of a coplanar waveguide (CPW). An

external magnetic field ~H0, oriented along the sample plane (blue arrow), is applied to the area by

an electromagnet. A vector network analyzer (VNA) connected to the ends of the center conductor

applies a microwave signal which induces an oscillating magnetic field ~hMW(t) (orange arrows). In

the measurement, the microwave transmission parameter S21 between the two ports of the VNA is

analyzed. The figure in panel c. is adapted from Ref. [85].

conductor of a coplanar waveguide (CPW) in flip-chip orientation, i.e. with the top layer of the

sample directly facing the CPW. The CPW is then placed in the homogeneous magnetic field

region of an electromagnet so that the external field ~H0 = H0ŷ acts along the sample plane

(in-plane orientation), as illustrated in Fig. 5.1c. The ends of the center conductor are connected

to the ports of a vector network analyzer (VNA). The VNA applies a microwave signal the center

conductor, inducing an oscillating magnetic field ~hMW(t) which interacts with the magnetization

of the investigated sample. After passing through the conductor, the transmitted microwave

signal is returned to the VNA, which measures the complex transmission parameter of the

setup S21 as a function of the microwave frequency ν = ωMW/2π. As discussed in Sec. 2.2.2, an

increased absorption in the transmission spectrum is found when the frequency of the microwave

field is resonant with the internal precession frequency ωres of the samples magnetization. The

process is then repeated for a multitude of (temporarily) constant magnetic field amplitudes H0.

In each measurement, we investigate frequencies and magnetic fields up to 50 GHz and 1.25 T
respectively.

The results of the first measurement, preformed with the sample shown in Fig. 5.1a are presented

in Fig. 5.2. In panel a., we show the experimentally measured transmission parameter in

the form of its derivative divide ∂DS21/∂H, a numerical derivative technique which is highly

successful in removing the signal’s background (see App. A.1 and Ref. [88]). We observe

two strong, distinct resonance lines that shift upwards in frequency roughly parallely as the

magnetic field is increased. Furthermore, curious vertical features can be observed between

µ0H0 ≈ 0.7 T to 0.9 T. These are known to be unphysical measurement artifacts, which regularly
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Figure 5.2: a. bbFMR measurement data of the first sample, featuring a 1x1 mm2 phononic shield structure as

shown in Fig. 5.1a. Shown is the real part of the field-derivative of the VNA transmission spectra as

a function of magnetic field and frequency. We observe two strong, distinct resonance lines which

shift in frequency as the externally applied field H0 is swept. The lower line is attributed to the FMR,

while the upper line is identified as a perpendicular standing spin wave (PSSW). Note that the vertical

features between µ0H0 ≈ 0.7 T to 0.9 T are known to be caused by small cable movements or similar

disturbances to the measurement setup. The experiment was performed with the microwave power

PMW = 0.1 mW. b. The blue circles indicate the resonance frequencies of the FMR mode, extracted

by fitting the data in panel a, where possible. The orange line is a fit to the resonance frequencies

according to Eq. 2.17. From the fit we extract µ0Msat = 1.697 T and g = 2.135.

appear in the measurement setup, caused by cable movements or similar disturbances. Notably,

the dispersion of the lower, high intensity mode is visible almost through the entire measurement

and traverses frequencies from 1 GHz to 50 GHz. By comparing the observed behaviour to FMR

measurements found in literature (cf. e.g. Refs. [89–91]), we find that a dispersion of this form

is typical for ferromagnetic resonance lines. The higher-frequency mode on the other hand can

be attributed to a perpendicular standing spin wave (PSSW). PSSWs are additional, standing

spin wave modes that form between the boundaries of thin films perpendicular to the applied

magnetic field, and are the topic of various publications [89, 91]. In this case however, we will

focus the discussion on the analysis of the FMR mode and neglect the PSSW for the time

being. In order to quantitatively analyze the data, we extract the resonance frequencies from the

experimental data by fitting the individual spectra with the expected resonance lineshape found

in the form of the derivative divide (see App. A.1). The extracted resonance frequencies are

shown in Fig. 5.2b. Note that not all spectra could be successfully fitted due to the previously

discussed artifacts. According to theory (see Sec. 2.2.2), the dispersion of FMR frequencies

should be described by the Kittel equation, in particular Eq. 2.17, since ~H0 is oriented in-plane

with the sample structure. Therefore, we attempt to fit the experimentally observed frequencies
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to Eq. 2.17 and plot the result as a solid line in panel b. The equation is able to match the

experimental data excellently and allows us to extract several material parameters. We obtain

µ0Msat = 1.697 T for the saturation magnetization and g = 2.135 for the Landé-factor. By

comparison with literature values, reasonably good agreement is found between the reported

saturation magnetization of a cobalt thin film and the measured value. In particular, in the

supplementary material to Ref. [92], a saturation magnetization of µ0Msat ≈ 1.775 T is reported.

Regarding the Landé-factor, one theoretically expects a value of g ≈ 2 for elemental ferromag-

nets. However, an increased g in association with microwave-driven resonance experiments is

reported [93]. Given these results, the data appears to be in line with measurements of fully

homogeneous cobalt thin films and no significant influence of the phononic shield structure

is found. Recalling the sample geometry (see Fig. 5.1a), this is likely a consequence of the

presence of the unstructured Co film around the shield structure. Since bbFMR measurements

are not localized, it seems plausible that the FMR signal of the large Co thin film dominates

and overshadows any influence the phononic shield structure might have had on the trans-

mission spectra. To test this hypothesis, we perform an identical bbFMR measurement on

the second fabricated sample (see Fig. 5.1b) which does not feature an extended cobalt thin film.

Figure 5.3: a. bbFMR measurement data of the second sample, featuring a 3x1.3 mm2 phononic shield structure

as shown in Fig. 5.1b. Shown is the real part of the field-derivative of the VNA transmission spectra

as a function of magnetic field and frequency. We observe one strong, and many weaker resonance

lines shifting in frequency as the external field H0 is swept. The additional resonance lines are well

visible between ν ≈ 15 GHz to 25 GHz. The strongest mode is again attributed to the FMR. The

remaining modes are discussed in the main text. The experiment was performed with the microwave

power PMW = 0.1 mW. b. The blue circles indicate the resonance frequencies of the FMR mode,

extracted by fitting the data in panel a, where possible. The orange line is a fit to the resonance

frequencies according to Eq. 2.17. From the fit we extract µ0Msat = 1.386 T and g = 2.179.
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The acquired measurement data is presented in Fig. 5.3. We proceed as above and investigate

panel a., which shows the derivative divide of the experimentally measured microwave transmis-

sion parameter. In this measurement, we observe only one strong resonance line but a much larger

number of lower-intensity resonance features (especially visible around ν ≈ 15 GHz to 25 GHz).

As previously, we attribute the strongest resonance line to the FMR, based on its high intensity

and the shape of the dispersion, which appears very similar to the previous measurement.

However, the line only becomes visible for frequencies ν > 10 GHz, a significantly different

behavior than in the previous measurement, where the dispersion could be observed over the

full frequency range. A possible interpretation of this finding is that a higher magnetic field

is required to align a majority of the spins in the phononic shield structure compared to the

homogeneous film. The structure of the phononic shield (i.e. the squares separated by trenches)

imposes additional boundary conditions on the propagation of spin waves. This could make the

formation of other, more localized spin wave energetically favorable compared to the collective

ferromagnetic resonance for weak magnetic fields. In individual, nano-structured permalloy

disks such localized spin wave modes in the low GHz regime have been experimentally observed

[94]. Furthermore, It is very likely that the appearance of the additional resonance lines in this

measurement can be explained by a similar argument. In particular, the previously discussed

boundary conditions imposed by the periodic structure of the phononic shield will lead to a

much more complex magnonic bandstructure in the material, allowing for the formation of

additional spin wave modes aside from the FMR. The number of modes is likely additionally

increased due to the inevitable variatation that arises from fabrication as well as by defects in

the geometry of the structure. In other words, cobalt squares of slightly different size will exhibit

internal magnetic resonances of slightly different frequency. In order to gain deeper insight into

the various spin waves in nano-structured materials, the geometry would need to be evaluated

using micromagnetic simulation tools [73, 95], which have already been employed successfully in

similar contexts [94].

Moving on to a quantitative analysis of the data, the resonance frequencies of the main FMR

line are extracted using fits to the experimental data (see App. A.1) and plotted in Fig. 5.3b.

The discrepancy compared to the previous measurement also shows in the fitting process, as no

frequencies could be successfully extracted for fields below µ0H0 = 0.1 T, where the FMR line

begins to vanish. Fitting the resonance frequencies to the in-plane Kittel equation (Eq. 2.17)

produces the fitting parameters µ0Msat = 1.386 T for the saturation magnetization and g = 2.179
for the Landé-factor. While the g-factor is comparable to the previous measurement and the

expectation, Msat is found to be significantly lower than before. Given the nominally identical

material, we assume an actual change of the saturation magnetization in this magnitude to be

unlikely. Instead, it is possible that the Kittel equation is no longer able to accurately describe

the resonance behavior of the system. Recalling Sec. 2.2.2, we made several assumptions related

to the geometry of the sample in the derivation of the in-plane Kittel equation. In particular, the

demagnetization factors Nx,y,z were chosen assuming an infinitely extended, homogeneous thin

film geometry. It seems plausible that some of these assumptions do not hold when confronted

with the complex geometry of the phononic shield structure.

In conclusion, we find that the phononic shield’s geometric structure clearly influences the
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spin wave modes present in the material, an effect which is expected for nano-structured mag-

netic materials. We observe the disappearance of the FMR line below ν ≈ 10 GHz, which

implies that resonant magnon-phonon coupling with the Kittel mode would not be observable in

this sample at frequencies close to the designed phononic bandgap (ν ≈ 4.4 GHz). This shows

that it is crucial to consider the influence of the sample geometry on the FMR mode, and the

magnonic modes in general, in the design process of any subsequent magneto-mechanical hybrid

structures. In particular, the engineering of phononic modes, as performed in this thesis, has to

be coordinated with the engineering of magnonic modes, which can be achieved by performing

micromagnetic simulations [73, 95].

Moreover, it would be desirable to investigate the sample with other measurement techniques

that offer spatial resolution, e.g. micro-focused Brillouin light scattering (BLS) spectroscopy [96]

or magneto-optical Kerr effect (MOKE) techniques [97], which allow visualization of local spin

wave propagation within the shield structure. In addition, BLS spectroscopy would enable us to

investigate the phonon- and magnon- modes of the freely suspended phononic shield structures

shown in Sec. 4.2 and hereby allow to test the fidelity of the simulations regarding the phononic

engineering presented in Sec. 3.2. In these samples, the existence of a phononic band gap could

be examined and the effects of magnon-phonon coupling could possibly be observed.
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Summary

Throughout the first part of this thesis, we developed design and fabrication processes for

two different magneto-mechanical hybrid structures, namely a zipper-type phonon cavity and

a double-layer phononic shield structure designed to exhibit a complete phononic bandgap.

Both hybrid structures are intended to be employed as novel platforms for the investigation of

magnetoelastic interaction.

We successfully adapted established designs from the field of optomechanics to incorporate ferro-

magnetic materials. Using FEM simulations we demonstrated that a newly designed extension

of the zipper-type optomechanical crystal, featuring a magnetic layer of cobalt, is capable of

confining GHz-frequency phononic modes despite the altered material system. We also showed

that the design can be widely tuned regarding its localized frequency by controlling macroscopic,

geometric parameters. Additionally, we introduced a second sample design, which does not rely

on the localization of phonons to a cavity region but is instead based on the cross phononic

shield structure. Similarly to the zipper resonator, we successfully expanded the design towards

a Si3N4/Co double-layer structure, retaining the essential feature of the original phononic shield,

namely the complete phononic bandgap, which is widely tunable by altering geometric parameters.

Subsequently, we established a suitable thin film fabrication process for both sample geometries,

involving the challenging optimization of the final wet etching step, where we are confident

to have found a set of parameters which will reliably succeed in producing freely suspended

structures. Upon evaluating SEM images of fabricated sample structures, we found the estab-

lished lithography process to be sufficiently accurate in replicating the nanometer-sized features

necessary to define the zipper cavity as well as the phononic shield. Unfortunately, all fabricated

zipper-type samples appeared to lack the necessary structural integrity to support themselves

once released from the substrate. We attribute this to an insufficient thickness of the sample

material. Consequently, no working zipper-type sample could be fabricated in the limited time

frame of this thesis. Due to the otherwise favorable results, however, we are confident that the

established process can be quickly adapted to a new, thicker material system and successfully

produce a freely suspended zipper resonator in the near future.
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Conversely, the second sample type, the double-layer phononic shield structure, could be

successfully fabricated and investigated in a first series of measurements. In broadband FMR

measurements, we found a significant difference in the FMR measurement signature of a phononic

shield structure in comparison to a quasi-homogeneous thin film. We concluded that the altered

signature is likely a consequence of the finite size of the phononic crystal structure, which

influences the exhibited magnon modes in the material. Therefore, in order to investigate

magnon-phonon coupling, the sample geometry has to be engineered not only regarding its

elastic properties, but also considering the effects on the exhibited magnon modes. Notably, this

is a crucial realization for the design process of any future magneto-mechanical hybrid structure.

Lastly, micro-focused BLS spectroscopy measurements on the same sample type could not be

completed in time due to technical problems of the measurement setup. However, once the

problems are resolved, these measurements will allow to test the existence of a phononic bandgap

within the phononic shield structure and evaluate the fidelity of the phononic engineering

performed in this thesis.
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Chapter 7

Introduction

The second part of this thesis is dedicated to the investigation of strong inter-resonator coupling

between nanomechanical string resonators (nanostrings) and its applications. We design and

fabricate networks of multiple high-Q nanostring resonators, which are mechanically coupled by

a shared support structure, forming a fully mechanical and classical multi-level system [98–100].

Such systems allow the exploration of quantum-classical analogies to a variety of phenomena like

population oscillations [101, 102], Landau-Zener-Stückelberg dynamics [103–105] and electro-

magnetically induced transparency [106]. In addition, they represent an important step towards

all-mechanical realizations of information processing [107–109] and storage [110–112].

By definition, almost all of these applications require strong inter-resonator coupling, the

ability to perform targeted transfer of phonons, and the possibility to control the resonance

frequency of individual resonators (or modes), with the latter commonly achieved through

application of electric fields [106, 113, 114]. Throughout this part of the thesis, we demonstrate

all three of these key requirements in our nanostring resonator networks using a recent, purely

mechanical eigenfrequency tuning technique [105] based on the inherent geometric non-linearity

of tensile stressed nanostring resonators. Therefore, in our system, we completely eliminate the

need for electric fields and the corresponding local control gates and offer an alternative, fully

mechanical approach to the design of multi-resonator networks.

We establish theoretical background and the mathematical foundation for the description

of nanomechanical resonator networks in Chapter 8, which is divided into three parts.

Section 8.1 introduces a simplified one-dimensional oscillator model for the vibrational motion

of a tensile stressed nanostring and employs it to derive a theoretical model for the interaction

in arbitrarily large, mechanically coupled resonator networks. In Section 8.2, we explore the

transition dynamics of multi-level systems and discuss how the Landau-Zener model of quantum

tunneling can be applied to describe coherent transfer of phonons between coupled resonators.

Section 8.3 deals with the inherent geometric non-linearity of nanostrings and examines how

it can be exploited to manipulate a nanostring’s resonance frequency in situ, introducing the

mechanical eigenfrequency tuning technique which will be used extensively in experiments. In

Chapter 9, we discuss the fabrication procedure of Si3N4 nanostring resonators and present
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the three different resonator network designs fabricated and investigated in the scope of this

thesis. The employed measurement setups and signal processing systems are then examined in

Chapter 10. Lastly, we present experimental data in Chapter 11. Using optical interferometry

techniques, we characterize single Si3N4 nanostrings regarding their quality factors and material

parameters in Section 11.1. We move on to the investigation of multi-nanostring networks in

Section 11.2, where we investigate the capabilities of the eigenfrequency tuning technique and

employ it to quantify the inter-resonator coupling of the three fabricated networks. Finally, we

present the results of Landau-Zener-type experiments in Section 11.3, demonstrating targeted

excitation transfer between nanostring resonators in the same network. The findings are then

summarized in Chapter 12.
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Chapter 8

Theory

8.1 Nanomechanical String Resonators

This section is dedicated to a theoretical treatment of nanomechanical string resonators, referred

to in the following as nanostrings. We will introduce an easily accessible description of the string’s

oscillatory motion, describe the fundamental formulas that are employed in the experiments and

discuss the interaction of multiple resonators in a mechanically coupled network.

8.1.1 Fundamentals of Nanostrings

t

w

l

 
k

me�

a. b.

Figure 8.1: a. Illustration of a nanomechanical string resonator of length l, width w and thickness t. Its in-plane

and out-of-plane vibrational modes are indicated by the orange arrows. b. A simple, 1D mass-on-a-

spring model of a harmonic oscillator with effective parameters mass meff and stiffness k, offering a

simplified description for the center of mass motion of nanostring resonators.

A nanostring resonator, as illustrated in Fig. 8.1a, is formed by a freely suspended string,

which is clamped to an underlying substrate on both ends. Although it naturally constitutes a

three-dimensional body, its motion can be theoretically treated as a one-dimensional, damped,

harmonic oscillator1 for most intents and purposes. Conveniently, by introducing substitute

1For a full derivation validating this model, please refer to [115, 116] or other works concerning Euler-Bernoulli
beam theory.
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Chapter 8 Theory

parameters like the effective mass meff, stiffness k and damping rate Γm, the description can

be reduced to a single degree of freedom per vibrational mode, as shown in Fig. 8.1b. Note

that nanostring resonators exhibit a multitude of different modes (transversal, torsional etc.),

but since they can be considered uncoupled, each mode can be treated independently. For

this thesis we will limit the discussion to the in-plane and out-of-plane vibrational modes (as

visualized in Fig. 8.1a), which are most accessible in experiments, and neglect any other modes.

Proceeding with this model, we can describe each mode’s center of mass motion as an independent

one-dimensional harmonic oscillator governed by the equation

ẍ(t) + Γmẋ(t) + k

meff
x(t) = F0

meff
exp(−iΩt) (8.1)

with the displacement x and an added, coherent driving force with the frequency Ω. Solving this

differential equation using the Ansatz x(t) = x0 exp(−iΩt), a complex solution can be found:

x0 = F0/meff

(Ω2
m − Ω2)− iΩmΓ (8.2)

defining the angular2 resonance frequency Ωm =
√
k/meff. We can further introduce the quality

factor Q = Ωm/Γm, a measure of the loss rate of a resonator in relation to its stored energy.

Since experimental setups are commonly sensitive to the squared magnitude of the displacement

x0, an amplitude spectrum can be described by

|x0|2 = F 2
0 /m

2
eff

(Ω2
m − Ω2)2 + Γ2

mΩ2 ≈
(
F0/meff

2Ω

)2 1
(Ωm − Ω)2 + Γ2

m/4
(8.3)

where the right hand side approximation assumes Γm � Ωm. This condition is usually well

satisfied for nanostring resonators, especially for the high-Q strings studied in this thesis. Notably,

in the approximation, Eq. 8.3 corresponds to an Lorentzian lineshape.

The effective mass meff in the formulas is a necessary correction since the calculated cen-

ter of mass motion does not take into account any asymmetry in the cross-section of the string

and which part of its mass contributes to the oscillations. For an exact calculation the string’s

geometry, boundary conditions and even specific mode shapes have to considered [117]. However,

in the limit of highly tensile-stressed nanostrings, the effective mass can be well approximated

to meff = 0.5m [118] using the physical mass of the string m = ρlwt (l, w and t as in Fig. 8.1).

In the same high-stress limit, the angular resonance frequency of a nanostring’s vibrational mode

can be approximated to [119]

ΩHTS
m,n = nπ

l

√
σ0
ρ

(8.4)

with the pre-stress σ0 and density ρ of the material of the string and the mode index n. While

this approximation is sufficient for most calculations, it can be shown that its accuracy can be

2Note that, throughout this thesis, formulas generally contain angular frequencies Ω, which are related to the
(bare) frequencies f , which are usually measured in experiments, via f = Ω/2π.
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8.1 Nanomechanical String Resonators

improved by applying a first order correction based on bending effects in the string [118]:

ΩTS
m,n = ΩHTS

m,n

l
√
σ0wt

l
√
σ0wt− 2

√
EI

. (8.5)

Equation 8.5 requires knowledge of the material’s Young’s modulus E and the moment of inertia

I of the investigated mode, which is found to be Iip = w3t/12 for in-plane and Ioop = wt3/12
for out-of-plane modes [120], using the width w and thickness t of the string. The corrected

equation holds for typical tensile stressed nanostrings with σ2
0wt� 2EIρΩ2.

Lastly, it should be noted that, even in absence of an externally applied driving force, os-

cillatory motion can be observed in mechanical resonators. This Brownian motion is driven

by thermal energy present in the system and can be used to connect the read-out signal of an

experiment (e.g. the voltage) to a corresponding mechanical displacement. To this end, we use

the equipartition theorem [121] to quantify the thermal driving force F 2
th(Ωm) = 2meffΓmkBT

[122] and calculate the thermal amplitude spectrum of a mechanical resonator [122, 123]

Sxx(Ω) = kBT

2Ω2
mmeff

Γm

(Ω− Ωm)2 + (Γm/2)2 (8.6)

given in units of m2/Hz with kB being the Boltzmann constant. We will use Eq. 8.6 in Chap. 11

to calibrate our experimental data in terms of displacement amplitudes.

8.1.2 Coupling Two Harmonic Oscillators

Having established the harmonic oscillator model used to describe the nanostring resonators in

this thesis, we want to extend the discussion to the interplay of multiple resonators in a network,

i.e. the mechanical coupling of harmonic oscillators. Remaining in the model system, we begin

with one of the simplest forms of inter-resonator coupling and consider the linear interaction

of two masses and three springs as illustrated in Fig. 8.2. Each mass mA,B, along with its

kA kBκ

mA mB

xA xB

Figure 8.2: Illustration of a simple model system for the coupling of two 1D harmonic oscillators. Each mass

mA,B is affixed to a wall by a spring with stiffness kA or kB respectively. Additionally, the masses

are connected to each other by a third spring with stiffness κ, causing their equations of motion to

become coupled.

corresponding stiffness kA,B represents a one dimensional harmonic oscillator as discussed above,

while the third spring with stiffness κ introduces a cross-dependency between their displacements.

As such, we formulate an equation of motion for each one of the oscillators, recalling Eq. 8.1,

but neglecting external forces and damping, which simplifies the discussion and allows us to
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focus on the eigenfrequencies.

−kAxA + κ(xB − xA) = mAẍA

−kBxB + κ(xA − xB) = mBẍB

(8.7)

In the model geometry, the sign of the inter-resonator coupling κ can be intuitively understood

to be positive, since a displacement of mass A relative to mass B in positive x-direction must

lead to a positive force acting on mass B. We will later discuss how the simple coupling assumed

in Eq. 8.7 describes the situation in the experiment.

We assume harmonic solutions of the form xm(t) = x0
m exp(iΩ±t), with the index (m = A,B)

referring to the corresponding mass, and obtain(
Ω̃2

A − κ
mA

− κ
mB

Ω̃2
B

)(
x0

A

x0
B

)
= Ω2

±

(
x0

A

x0
B

)
, (8.8)

defining Ω̃m =
√

(km + κ)/mm. We recognize the presentation as an eigenvalue equation and

solve it for Ω2
±, obtaining the two normal modes of the coupled system

Ω2
± = 1

2

[
Ω̃2

A + Ω̃2
B ±

√
(Ω̃2

A + Ω̃2
B)2 + 4g2Ω̃AΩ̃B

]
(8.9)

with g2 = κ2/(mAmBΩ̃AΩ̃B).

Since we investigate networks of nominally identical nanostrings in this thesis, only differing by

small factors due to fabrication, we focus on studying coupled resonators with mA = mB ≡ m,

kA ≡ k and kB = k + ∆k with ∆k � k, which allows us to approximate

g2 ≈ κ2/(mk). (8.10)

The behavior of the two normal modes Ω+ and Ω− for a varying detuning ∆k is illustrated in

Fig. 8.3. We see that for |∆k| � κ, the resulting frequencies are barely affected by the inter-

resonator coupling κ and Ω± ≈ Ω̃A,B. By decreasing the detuning to |∆k| ≈ κ on the other hand,

we observe an increased hybridization of modes in the coupled system, which in turn modifies

the observed eigenfrequencies significantly. Finally, for ∆k = 0 the mode-splitting becomes

exactly Ω+ − Ω− = g, a fact that is commonly exploited in order to extract inter-resonator

coupling rates from avoided crossings observed in measurements (see Sec. 11.2.2 and e.g. Refs.

[102, 105, 110]).

8.1.3 General Description of N Coupled Oscillators

We now want to demonstrate that the above treatment of two coupled harmonic oscillators can

be easily expanded to a larger network consisting of an arbitrary number of resonators. However,

we will restrict the discussion to certain key aspects and refer the reader to Ref. [124] for an

in-depth derivation and treatment of the general coupled oscillator problem.
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Figure 8.3: Normal mode frequencies Ω± as a function of the detuning ∆k, calculated according to Eq. 8.9. Due

to the finite inter-resonator coupling κ, the normal modes of the system hybridize and an avoided

crossing can be observed. For ∆k = 0, i.e. two resonators exactly on resonance, the mode-splitting

Ω+ − Ω− minimizes to g.

Recalling Eq. 8.7, it can be understood that the general equation of motion for a harmonic

oscillator with index n ∈ [ 1,N ] and mass mn
3 in a network of N resonators can be written

as [124]

mnẍn = Fn = −κnnxn +
N∑
i,n

κni(xi − xn), (8.11)

again neglecting the damping and defining κni as the coupling between resonators n and i for

i , n (i.e. the stiffness of the connecting spring in the model), and its own effective stiffness for

i = n. We now introduce a generalized stiffness kij , defined as

kij = ∂Fi
∂xj

, (8.12)

which allows us to write the N linear, homogenous differential equations that arise from Eq. 8.11

concisely in the matrix form

M~̈x = K~x, (8.13)

defining the mass matrix M, stiffness matrix K and displacement vector ~x

M =


m1 0 . . . 0
0 m2 . . . 0
... 0 . . .

...

0 . . . 0 mn

 , K =


k11 k12 . . . k1n
k21 k22 . . . k2n
...

...
. . .

...

kn1 . . . . . . knn

 , ~x =


x1
x2
...

xn

 . (8.14)

3For clarity, we will employ numeric instead of alphabetic indices for the discussion of the generalized problem,
i.e. xA ≡ x1,kAB ≡ k12 etc.
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Note that since the inter-resonator coupling is bi-directional, we can require kij = kji, making

K a symmetric matrix. As above, we now assume solutions of the form xn(t) = x0
n exp(iΩt) and

subsequently produce an eigenvalue equation for Ω2 and the eigenvector ~x0 =
(
x0

1 . . . x
0
n

)T
that

can be written as

− Ω2M~x0 = K~x0. (8.15)

Equation 8.15 is a generalized Eigenvalue problem that can be solved for exactly N eigenvalues Ωλ

(which do not have to be distinct) and up to N corresponding, linearly independent eigenvectors

~x0,λ. Each pair (Ωλ,~x0,λ) with λ ∈ [1 . . . N ] forms one oscillatory normal mode of the coupled

system. However, since K is real and symmetric and M is real and positive-definite, basic

theorems of linear algebra [125] tell us that the problem can be decomposed to an ordinary

eigenvalue problem that will result in exactly N distinct normal mode solutions of the system.

Problems of this kind arise regularly in a wide variety of engineering and scientific applications

and algorithms to find their solutions as efficient as possible have been studied extensively (cf.

e.g. Ref. [126]). Therefore, by describing multi-resonator networks in the above matrix form,

the normal modes of even very large networks can be quickly calculated with widely available

numerical solver software (e.g. Mathematica, MATLab).

8.1.4 Independent Crossing Approximation

While we have shown above that it is comparatively easy to solve large resonator networks

for their normal modes, calculating the inter-resonator coupling factors κij from an observed

mode splitting can become increasingly complex when considering the full system of equations.

However, as seen in Fig. 8.3, the influence of inter-resonator coupling on the eigenfrequencies of

the coupled modes is actually largely confined to a small area with |∆k| ≈ κij , while the normal

modes otherwise remain close to the undisturbed eigenfrequencies of the resonators. Based on

this observation, we want to proof in the following lines that, for all resonators investigated in

this thesis, it is in fact sufficient to treat the two modes directly involved in the avoided crossing

as an independent two-level system, as long as all other modes are far enough detuned.

To this end, we start by considering a network of three nominally identical resonators with

m1 = m2 = m3 ≡ m. We further assume uniform coupling across the network, i.e. k13 = k12 =
k23 ≡ κ, which implies k11 = k22 ≡ −(k + 2κ), and set k33 ≡ −(k + 2κ+ ∆k). This corresponds

to two resonators on resonance (i.e. at the center of an avoided crossing), both separated by a

finite detuning ∆k from the third.

Solving Eq. 8.15 for these values, we obtain the three normal mode frequencies of the coupled

system

Ω2
1 = k + 3κ

m
, Ω2

2,3 = 2k + ∆k + 3κ∓
√

∆k2 + 2∆kκ+ 9κ2

2m . (8.16)
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Now, for large frequency detunings ∆� κ, the expression for Ω2
4 can be approximated to

Ω2 =

√
2k + ∆k + 3κ−

√
∆k2 + 2∆kκ+ 9κ2

2m

≈

√
2k + ∆k + 3κ−

√
(∆k + κ)2

2m =

√
k + κ

m
.

(8.17)

Subsequently, we can calculate the mode-splitting on resonance between the hybridized modes

Ω1 and Ω2 to

Ω1 − Ω2 =

√
k + 3κ
m

−

√
k + κ

m
=

√
k

m
(1 + 3κ/k)−

√
k

m
(1 + κ/k)

≈

√
k

m

(
1 + 1

2(3κ/k)
)
−

√
k

m

(
1 + 1

2(κ/k)
)

= κ√
mk

(8.18)

where we used an approximation of the square root valid for κ� k, finally arriving at the same

expression as in Eq. 8.10.

In other words, the observed mode-splitting g between the two crossing resonators is not

significantly altered by the presence of a third resonator in the same network as long as the

latter’s eigenfrequency is far enough detuned (i.e. |∆k| � κ). It should be noted that while the

analytic approximation above assumes uniform coupling across the network, it can be shown

(e.g. numerically) that it holds for differences in κ, e.g. κ13 = κ23 + ∆κ, as long as ∆κ� ∆k.

Therefore, in the majority of scenarios where avoided crossing are analyzed individually (see

Sec. 11.2.2), it is a viable approach to consider the crossings independent and extract the

inter-resonator coupling rates κij using Eq. 8.10.

8.2 Transition Dynamics in Multi-Level Systems

The Landau-Zener model [127, 128] provides a description for time dependent transition dynamics

in strongly coupled quantum two-level systems. In particular it can be used to predict the

outcome of a system’s passage through an avoided crossing, where the model describes the

tunneling of quantum mechanical excitations from one state to another. Coupled mechanical

resonators, while still in the domain of classical physics, have been shown [99, 129, 130] to

form an equivalent two-level system and adhere to the same formulas presented by Landau and

Zener. Therefore, the model can be used to describe the dynamics of excitation transfer from

one mechanical resonator to another [103, 131]. In the following section, we will introduce the

original Landau-Zener formulas, discuss the resulting transition dynamics in two-level systems,

and subsequently extend the discussion to systems comprised of three (or more) levels, like the

three-resonator networks investigated in this thesis.

4Looking at Eq. 8.16, it becomes clear that the avoided crossing occurs between Ω1 and either Ω2 or Ω3,
depending on the sign of ∆k. Without loss of generality we perform the calculation for Ω2.
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8.2.1 The Landau-Zener Formula

The original problem investigated by Landau and others concerns the time evolution of a

quantum mechanical system described by the time-dependent Schrödinger equation [132]

i~

(
Ψ̇A

Ψ̇B

)
= H(t)

(
ΨA

ΨB

)
(8.19)

with the time-dependant Hamiltonian operator

H(t) =
(
eA + βAt v

v eB + βBt

)
. (8.20)

From a physical standpoint, the equation corresponds to a system of two states or levels with

undisturbed energies of Em(t) = em + βmt (m = A,B) that exhibit a linear time-dependence βm
and are coupled to each other by the off-diagonal elements v. The squared wave function |Ψm|2

represents the probability for the system to be found in state m.

For βA , βB the system will eventually develop to a point in time tc where the undisturbed

energy levels cross (i.e. EA(tc) = EB(tc) ≡ Ec), making transitions between the states possible

for |v| > 0. Calculating the eigenvalues of the Hamiltonian in this case, we obtain λ+,− = Ec± v,

showing that an avoided crossing of λ+ − λ− = 2v is formed. At this point, it becomes clear

that the system of mechanically coupled oscillators discussed in Sec. 8.1.2 does indeed behave

equivalently to this quantum mechanical two-level system, with each normal-mode Ω± corre-

sponding to one energy state of the system.

During the passage through an avoided crossing, tunneling processes can lead to the transfer of

excitation from one state to the other. The Landau-Zener model quantifies this process and

gives an expression for the transition probability [128]

Pdiab = exp
(
−2πv2

ζ

)
, (8.21)

introducing ζ = |βA − βB| as the relative time dependency or passage rate. Pdiab is defined as

the probability that a system prepared in a certain state at the start of time evolution (e.g.

|ΨA(t→ −∞)|2 = 1) passes through the crossing diabatically and is found in a different state at

the end (e.g. |ΨA(t→ −∞)|2 = 0). Notably, the probability depends only on the coupling term

v and the rate ζ at which the energy of the levels change relative to each other, not the energy

itself. Analyzing Eq. 8.21, it can be seen that for slow transitions (i.e. small ζ), the transition

probability is also small. This adheres to the adiabatic theorem, which postulates that in the limit

of slow passage (ζ → 0) the probability for the system to leave its current state must become

exponentially small [133, 134], thus the crossing is passed adiabatically. Necessarily, in a system

comprised of only two states, this scenario exhibits an inverse probability Padiab = 1 − Pdiab.

The different modes of passage through the crossing are further illustrated in Fig. 8.4.
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Figure 8.4: Illustration of Landau-Zener dynamics at an avoided crossing of a two-level system as defined in

Eq. 8.20, calculated for a coupling of v = 0.2EB. If the passage through the crossing is performed

slowly (i.e. small passage rate ζ), the system follows the lower branch of the mode splitting and ends

up in state (1), i.e., the transition is adiabatic. For fast passage rates ζ, the system passes through

the crossing diabatically without energy transfer and ends up in state (2).

The validity of the formula has been experimentally confirmed [135] and is since widely used in

a variety of research fields (cf. e.g. [103, 136–138]).

8.2.2 Multi-Level Transitions

Analytic Solutions

Notably, while the Landau-Zener formula offers a strikingly simple model for transition dynamics

in two-level systems, extending the discussion to systems with three or more levels turns out to

be a highly challenging endeavor. In particular, already for a three-level system, defined by the

Hamiltonian

H(t) =

eA + βAt v12 v13
v12 eB + βBt v23
v13 v23 eC + βCt

 , (8.22)

no explicit analytic solution can be found [132].

In an approximative approach, it is possible to consider all crossings in a system to be fully

independent and treat more complex problems as a series of individual two-level crossings,

eventually arriving at transition probabilities of the form

Pdiab,n = (Pdiab)n, (8.23)

where Pdiab,n is the probability for the system to pass through n successive crossings completely

diabatically.

Furthermore, there exist several special cases, where some or all of the transition probabilities

can be calculated analytically as long as certain conditions are fulfilled. These require e.g. for
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all but one energy level to be constant in time (i.e. βB = βC = 0) and the crossed levels to

be uncoupled (i.e. v23 = 0). For a detailed description of solvable n-level systems, please refer

to Refs. [132, 139]. In this thesis, however, the investigated networks exceed the scope of the

analytically solvable cases and we will instead introduce a set of differential equations, which

can be solved numerically in order to model the transition dynamics of the networks.

Numerical Solution for Three-Level Systems

In the following we will briefly derive the differential equations used to model transition dynamics

of three-resonator networks in response to the measurement protocol described in Sec. 11.3.1.

Note that the following is an expansion of the model used in Ref. [105] to three-level systems

and can easily be expanded further based on the general coupled oscillator treatment discussed

in Sec. 8.1.3.

We begin with the equations of motion for the three coupled resonators according to Eq. 8.11

under addition of linear damping terms and an external driving force Fdrive.

mAẍA +mAΓAẋA + κAAxA = κAB(xB − xA) + κAC(xC − xA) + Fdrive (8.24)

mBẍB +mBΓBẋB + κBBxB = κAB(xA − xB) + κBC(xC − xB) + Fdrive (8.25)

mCẍC +mCΓCẋC + κCCxC = κAC(xA − xC) + κBC(xB − xC) + Fdrive (8.26)

In the following, as we are dealing with almost identical nanostrings, we will set ΓA = ΓB =
ΓC ≡ Γ and mA = mB = mC ≡ m. Without loss of generality, we assume nanostring A to be

excited and controlled in the measurement. Thus, its eigenfrequency Ω̃A is time dependent,

being tuned upwards by an amount ∆Ω̃A in time τ . Therefore we describe Ω̃A as a function of

time as

Ω̃A(t) =


Ω̃0

A t < t0

Ω̃0
A + ζ(t− t0) t0 ≤ t ≤ t0 + τ

Ω̃0
A + ∆Ω̃A t ≥ t0 + τ

(8.27)

using ζ = ∆Ω̃A/τ . In the beginning of the measurement, nanostring A is excited by a short

(tp) pulse with an oscillatory force with the frequency Ω̃0
A. Since tp < t0, we can write

Fdrive(t) = F0 exp
(
iΩ0

At
)
Θ(tp − t) with the Heaviside step function Θ(t). Note that in the

experiment, the driving force is applied globally via a piezoelectric actuator, so it affects the

three nanostrings equally.

We now use the ansatz xm(t) = x0cm(t) exp
(
iΩ̃A(t)t

)
(m = A,B,C) in order to find solutions for

the amplitude coefficients cm(t) with |cA|2 + |cB|2 + |cC|2 = 1 and re-introduce Ω̃2
B,C = kBB,CC/m

with the generalized stiffness kij from Eq. 8.12 as the (non-hybridized) resonance frequencies

of resonators A and B. Note that we use the time dependant resonance frequency Ω̃A(t) of

nanostring A in the harmonic solution for all three equations of motion. This is possible since∣∣∣Ω̃A(t)− Ω̃B,C

∣∣∣� Ω̃B,C holds in general, and in particular Ω̃A(t) = Ω̃B,C at the corresponding
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8.3 Non-Linear Response Regime

avoided crossings, where the transfer of excitations takes place. We obtain

c̈A +G(t)ċA + (F (t) + Ω̃2
A(t))cA = κAB

m
cB + κAC

m
cC + F0

mx0
Θ(tp − t) (8.28)

c̈B +G(t)ċB + (F (t) + Ω̃2
B)cB = κAB

m
cA + κBC

m
cC + F0

mx0
Θ(tp − t) (8.29)

c̈C +G(t)ċC + (F (t) + Ω̃2
C)cC = κAC

m
cA + κBC

m
cB + F0

mx0
Θ(tp − t), (8.30)

defining the functions

F (t) = (i ˙̃ΩAt+ iΩ̃A)2 + 2i ˙̃ΩA + Γ(i ˙̃ΩAt+ iΩ̃A)

G(t) = 2i(i ˙̃ΩAt+ Ω̃A) + Γ.

Note that, as the coupling rates are much smaller than the stiffness of the resonators (i.e.

κij � kii ∀ ((i,j) ∈ (A,B,C)2 ∧ i , j), we assume the coefficients cm(t) to vary much slower

in time than the oscillatory motion ∝ exp
(
iΩ̃A(t)t

)
. Consequently, we neglect the second

derivatives c̈m(t) in the Eqs. 8.28-8.30 and arrive at the final form of the equations:

G(t)ċA + (F (t) + Ω̃2
A(t))cA = κAB

m
cB + κAC

m
cC + F0

mx0
Θ(tp − t) (8.31)

G(t)ċB + (F (t) + Ω̃2
B)cB = κAB

m
cA + κBC

m
cC + F0

mx0
Θ(tp − t) (8.32)

G(t)ċC + (F (t) + Ω̃2
C)cC = κAC

m
cA + κBC

m
cB + F0

mx0
Θ(tp − t). (8.33)

A sketch of the algorithm to perform the numerical solution of Eqs. 8.31-8.33 can be found in

App. A.10. The resulting model calculations are shown in Sec. 11.3 and provide good agreement

with experimental results.

8.3 Non-Linear Response Regime

So far, we discussed the mechanical motion of nanostring resonators in the model of one-

dimensional, harmonic oscillators with a fully linear equation of motion. However, in the case of

real nanostrings, the geometry of a doubly clamped string can lead to the emergence of non-linear

effects. In particular, as the string performs a transverse motion, the material stretches, causing

additional stress. Considering only low amplitudes, i.e. much smaller than the width of the

beam, these effects can be well neglected. However, in our experiments, the strings are regularly

excited by strong external forces, causing the oscillation amplitudes to reach the order of the

string’s width. In the following, we will derive this geometric non-linearity and discuss how it

affects the response of the nanostring. Notably, we will subsequently employ the non-linearity of

highly excited nanostrings in order to derive a technique which allows for the all-mechanical

tuning of the eigenfrequencies of nanostring resonators.
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η

x(η)

η = 0

x

η = l

Figure 8.5: Schematic illustration of a nanostring resonator aligned along the axis of a coordinate η. The

displacement profile of the string’s vibrational modes is described by x(η), which takes the form of

Eq. 8.34 in the limit of high tensile stress. The figure is adapted from Ref. [118].

8.3.1 Geometric Non-Linearity

We start by considering a nanostring resonator aligned along the axis of a coordinate η, as

illustrated in Fig. 8.5. For highly tensile stressed strings, the displacement profile x(η) (i.e. the

mode-shape) of its vibrational modes is given by the expression [120]

x(η) = x0,n sin (nπη/l), 0 ≤ η ≤ l, (8.34)

where x0,n is the displacement at the center of the string for the mode index n.

Therefore, a center displacement x0,n > 0 leads to an elongation of the string according to

l′ =
∫ l

0

√
1 +

( d
dηx(η)

)2
dη ≈

∫ l

0

[
1 + 1

2

( d
dηx(η)

)2
]
dη = l

(
1 +

n2x2
0,nπ

2

4l2

)
, (8.35)

which can be translated into an increase in the tensile stress σ along the string using the Young’s

modulus E of the material [140]

σ = σ0 + E
l′ − l
l

= σ0 +
n2x2

0,nπ
2E

4l2 . (8.36)

Substituting the altered stress into the equation of motion for a highly tensile stressed nanos-

tring [115, 119]

ẍ(t) + Γm,nẋ(t) +
(
nπ

l

)2σ

ρ
x(t) = F0

meff
exp(−iΩt), (8.37)

introduces a non-linear term proportional to x3(t) and results in

ẍ(t) + Γm,nẋ(t) + Ω2
m,nx(t) + αnx

3(t) = F0
meff

exp(−iΩt). (8.38)

Equation 8.38 represents the standard form of a Duffing oscillator [141, 142], using the expression

from Eq. 8.4 for the angular resonance frequency of the mode Ωm,n and defining the non-linearity

or Duffing parameter as

αn = n4π4E

4l4ρ . (8.39)
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8.3 Non-Linear Response Regime

The amplitude spectrum of such an oscillator’s vibrational mode with index n, linear damping

Γm,n and resonance frequency Ωm,n is found to be described by the implicit equation [142]Γ2
m,n + 4

(
Ω− Ωm,n −

3
8
αn

Ωm,n
x2

0,n

)2
x2

0,n = F0
meffΩ2

m,n

, (8.40)

which corresponds to a Lorentzian shaped response function for low driving powers, where the

geometric non-linearity remains negligible. However, for increasing drive powers, we observe a

more complex behavior, as illustrated in Fig. 8.6.

 

(Ω-Ωm,n)/Γm,n

 |x
0,

n/x
cr

it,
n|
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0.0
10-1-2 2

Figure 8.6: Theoretical amplitude spectrum of a Duffing oscillator according to Eq. 8.40 for increasing drive

powers (bottom to top). Above a critical amplitude xcrit,n, the response spectrum becomes bistable.

The blue arrows illustrate a frequency sweep from left to right, following the high-amplitude path of

the hysteresis until the bistability breaks down at the effective resonance frequency Ωeff,n. The orange

dotted line corresponds to the backbone curve given in Eq. 8.41 connecting the amplitude maxima to

Ωeff,n. The figure is adapted from Ref. [118].

In particular, the point of maximum displacement x2
0,n,max is shifted towards an increased,

effective resonance frequency Ωeff,n ≥ Ωm,n according to [142]

x2
0,n,max = 8

3
Ωm,n

αn
(Ωeff,n − Ωm,n), (8.41)

which is called the backbone curve of the oscillator (see the orange dashed line in Fig. 8.6).

Furthermore, for driving forces that are sufficient to cause the resonator to exceed a critical

amplitude of x0,n ≥ xcrit,n = (4
3)3/2

√
Γm,nΩm,n/αn, a bistability of the response spectrum

emerges, forming two stable and one metastable state, which is not accessible experimentally.

By performing a continuous upwards sweep of the drive frequency, the spectrum follows the

high amplitude solution until the bistability breaks down for frequencies Ω > Ωeff,n (dashed

blue line in Fig. 8.6). Similarly, a downwards frequency sweep can be performed to investigate

the lower branch of the hysteretic amplitude spectrum. Since both x0,n,max and Ωeff,n depend
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Chapter 8 Theory

on the amplitude of the external drive F0, information about the non-linearity of a device can

be gained by analyzing amplitude spectra for varying drive powers, which we will use in Sec. 11.1.2.

For a more comprehensive derivation and discussion of Duffing oscillators, please refer to

Refs. [116, 142, 143] and the sources therein.

8.3.2 Eigenfrequency Tuning Mechanism

Notably, the additional stress that is induced into the material of the nanostring by high ampli-

tude motion is not confined to the mode that performs the oscillations. Instead, it affects every

possible mode exhibited by the driven nanostring, individually shifting the resonance frequency

of each. In the following, we want to quantify how the resonance frequency of the fundamental

mode of a nanostring Ωm,n=1 ≡ Ωm changes due to the high amplitude oscillations of one of its

higher harmonics Ωm,n>1.

We begin by recalling the effect of an elongation ∆l on the pre-stress σ0 of a nanostring

resonator (cf. Eq. 8.36)

σ′ = σ0 + ∆σ = σ0 + E
∆l
l

(8.42)

and substituting the modified pre-stress σ′ into the expression for the fundamental mode (n = 1)

frequency from Eq. 8.4

Ω′m = π

l

√
σ′

ρ
≈ Ωm

(
1 + ∆σ

2σ0

)
. (8.43)

To determine the elongation ∆l, we time-average the expression derived in Eq. 8.35 under

assumption of a harmonic time-dependency (i.e. x(t) ∝ exp(iΩm,nt)) and receive

∆l = 〈l′ − l〉 = 1
2
n2x2

0,nπ
2E

4l2 . (8.44)

Combining equations 8.42 and 8.43, we arrive at the relative eigenfrequency change of the

fundamental mode
∆Ωm

Ωm
= Ω′m − Ωm

Ωm
=
x2

0,n
4σ0

n2π2E

4l2 , (8.45)

as a function of the amplitude of the higher order mode x0,n, which is described by the amplitude

spectrum of a duffing oscillator in Eq. 8.40.

Conveniently, the amplitude of the upper branch of the rather complex Duffing spectrum

for a drive frequency Ωaux > Ωm,n can be simplified to

x2
0,n,max = 8

3
Ωm,n

αn
(Ωaux − Ωm,n) (8.46)

within the limits of the bistability region x3
0,n � 4F0/(3αnmeff) and x0,n ≤ F0/(Γm,nmeffΩm,n)

[105, 142]. Note that the expression is almost identical to Eq. 8.41, indicating that the backbone

is actually a full description of the frequency to amplitude relation for the upper branch of a
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8.3 Non-Linear Response Regime

duffing oscillator within the bistability region. Finally, by substituting Eq. 8.46 into Eq. 8.45 we

obtain
∆Ωm

Ωm
= 2

3
Ωaux − Ωm,n

Ωm,n
. (8.47)

connecting the auxiliary drive frequency to the shift in fundamental mode frequency. Notably,

the expression is not only independent of the drive signal’s power (∝ F0), but the pre-factor is

also independent of the mode index n.

Equation 8.47 shows that the geometric non-linearity of a nanostring resonator can be ex-

ploited to increase the eigenfrequency of its fundamental mode (and, in fact, any other mode5)

by controlling the frequency Ωaux of an auxiliary drive applied to the system. It is, however,

important to note that the drive signal’s power defines the size of the bistability region and thus

the range of accessible frequencies. Furthermore, the drive frequency needs to be initialized at

Ω0
aux ≈ Ωm,n and increased continuously towards the desired value of Ωaux in order to access

the upper branch of the hysteresis. We will make use of this eigenfrequency tuning mechanism

extensively in Chap. 11. It should also be noted that geometric non-linearity is not a feature

exclusive to nanostrings. Therefore, similar considerations should apply to many types of

(nano)mechanical resonators, e.g. cantilevers.

5Since Eq. 8.4 shows that Ωm,n = n ·Ωm, Eq. 8.47 remains valid for arbitrary mode indices n in the high tensile
stress approximation.
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Chapter 9

Fabrication and Sample Design

In recent years, the fabrication of doubly clamped, nanomechanical string resonators made of

Si3N4 has become a well established process at the WMI as well as the nanomechanics community

as a whole [113, 144, 145]. As such, we will only briefly address the individual steps involved

in the fabrication procedure and subsequently focus on the introduction and discussion of the

resonator network designs that were fabricated and investigated in the scope of this thesis.

9.1 Fabrication Procedure

a. b. c. d. e.

Si Si3N4

EBL resist (pos.)Al

Figure 9.1: Schematic illustration of the thin film fabrication process of Si3N4 nanostring resonator networks. The

individual steps are described in the main text.

Figure 9.1 illustrates the fabrication process of the Si3N4 nanostring resonators investigated in

this thesis. a. Initially, the substrate is a commercially available silicon wafer covered with a

90 nm thick layer of tensile stressed Si3N4 by low pressure chemical vapor deposition (LPCVD).

b. The substrate is coated with positive resist and structured using electron beam lithography

(EBL), creating a mask in the shape of the clamps and string after development. c. Next, a

30 nm thick layer of Al is evaporated onto the sample and a lift-off in warm acetone is performed

to remove the resist layer along with the excess Al. d. With the Al acting as an etch mask
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Chapter 9 Fabrication and Sample Design

for the Si3N4 , a sequence of anisotropic and isotropic reactive ion etching (RIE) processes first

transfers the shape of the mask into the Si3N4/Si and subsequently releases the string from the

substrate. e. Finally, the remainder of the Al mask is removed using a suitable remover and the

sample is carefully dried using either a critical point dryer (CPD) or compressed N2, leaving the

Si3N4 nanostring resonator freely suspended.

9.2 Resonator Network Designs

Due to the purely mechanical nature of the inter-resonator coupling investigated throughout

this thesis, the geometric properties of the network design have an immense impact on the

strength of the observed coupling and thus need to be thoroughly examined at the design-stage.

Specifically, the small, partly under-etched, shared support that acts as a weak link and mediates

the coupling between the two or more nanostrings it is connected to, must be carefully chosen

regarding its shape as well as placement in the network. In the following, we will present the

three resonator networks that have been investigated in this thesis, discussing the intentions

behind the chosen design as well as their expected physical properties.

9.2.1 Tri Resonator Network (Series A)

c.

2 µm 2 µm

d.

10 µm

a. b.

 10 µm

C

B

A

120°

Figure 9.2: a. CAD model of a Tri-design (Series A) resonator network, consisting of three nanostring resonators

with (l, w, t) = (30 · 103, 300, 90) nm, equally distributed around a circular shared support with 2µm
diameter. The individual strings are assigned letters alphabetically in clockwise order for future

reference. b. Wide, angled (50°) Scanning Electron Microscopy (SEM) image of a fabricated Series A

Tri-Resonator network. c. Zoom-in on the shared support structure that links the three resonators. d.

Zoom-in on the clamp region, showing the freely suspended string as well as the under-etched clamp.
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9.2 Resonator Network Designs

Figure 9.2 shows a 3D model (a.) and SEM images (b-d.) of a Tri-design (Series A) net-

work. For this type of resonator network, three nominally identical nanostrings with (l, w, t) =

(30 · 103, 300, 90) nm share a centrally placed, circular support with a diameter of 2µm, each

held aloft by a own square clamp (10x10µm2) on the other end. The individual resonators are

evenly placed around the shared support, forming a 120° angle between each of the strings. The

zoom-ins in Fig. 9.2c-d show the freely suspended strings as well as the effect of the RIE step on

the clamps and the circular support.

Based on the geometry chosen for this network design, it is possible to formulate a set of

expectations regarding the behavior and strength of the inter-resonator coupling. In particular,

since all of the resonators share the same support, we expect each resonator to be coupled to

the two other resonators (i.e. |κAB| > 0 ∧ |κAC| > 0). Due to the equal spacing between the

resonators and the resulting symmetry of the network, it further seems reasonable to assume

equally strong coupling between any two resonators in the network (i.e. κAB = κAC ≡ κBC = κ).

Finally, given the geometry of the shared support, one might intuitively expect a negative

coupling κ < 0, i.e. a displacement of nanostring A in positive z-direction might tilt the circular

support which in turn induces a force acting in negative z-direction on e.g. nanostring B.

However, considering the small displacement amplitudes typically in the nanometer regime in

comparison to the 2µm wide support, this intuitive picture might not be applicable. Instead, the

coupling could be primarily mediated by additional strain induced by a nanostring’s motion into

the shared support structure, which subsequently affects the other connected strings. Therefore,

no well-founded prediction regarding the sign of the coupling can be made at this point. Notably,

in a previous experiment with two coupled nanostrings placed in 180° angle a negative coupling

constant was observed [105]. Recalling the matrix form of the eigenvalue equation 8.15 we can

concisely summarize the the expected behavior of the network by forming its stiffness matrix:

KTri,SA =

kAA κ κ

κ kBB κ

κ κ kCC

 (9.1)

9.2.2 Tri Resonator Network (Series B)

In Figure 9.3 a SEM image of a Tri -design (Series B) network is shown, featuring three nanostring

resonators with (l, w, t) = (30 · 103, 140, 90) nm linked by a circular support (�= 2µm). Unlike

in the previously discussed design, the resonators are not evenly spaced around the center

support. Instead, two of the nanostrings form a 90° angle while the third is placed at an angle of

135° with respect to each of them. The sample design is equivalent to the series A design in all

other aspects and will thus only be discussed in short. Due to the different distribution of the

strings, one has to reconsider the assumptions made previously for series A regarding coupling

strengths. Given the close proximity of the ends of resonators A and B, it appears highly likely

that the strain induced on the shared support by the motion of resonator A will affect resonator

B much more intensely in comparison to the farther distanced resonator C. Therefore, we assume
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90°

135°

10 µm

Figure 9.3: Scanning Electron Microscopy (SEM) image of a fabricated Series B Tri-Resonator network, consisting

of three nanostring resonators with (l, w, t) = (30 · 103, 140, 90) nm. Unlike series A networks, the

nanostrings are not evenly distributed, the different angles between the strings are highlighted. Aside

from the altered distribution of strings and a smaller resonator width, the design is equivalent to series

A.

|κAB| > |κCA| = |κCB| and write the expected stiffness matrix used in Eq. 8.15

KTri,SB =

kAA κ+ κ−
κ+ kBB κ−
κ− κ− kCC

 , (9.2)

introducing κAB ≡ κ+ and κCA ≡ κ− for simplicity.

9.2.3 Inline Resonator Network

The third and last network design investigated over the course of this thesis is the Inline-

design presented in Fig. 9.4, showing a 3D model (a.) and SEM images of a fabricated sample

(b-d.). The design consists of 3 or 4 nanostring resonators with the dimensions (l, w, t) =

(30 · 103, 300, 90) being placed in line, each connected to its nearest neighbors via a circular

support 2µm in diameter, or stabilized by a clamp in the case of the outermost resonators.

The linear geometry of the inline-network should produce a significantly different coupling

behavior within the network in comparison to the previously discussed Tri-networks. Specifically,

due to the resonators being placed in line, no interaction between next-nearest-neighbors is

expected in first order (i.e. κAC ≈ 0). Under the further assumption that nominally identical

strings and supports result in identical coupling between each neighboring string, we once more

form the stiffness matrix as used in Eq. 8.15

KInline =

kAA κ 0
κ kBB κ

0 κ kCC

 (9.3)

with κAB = κBC = κ.
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 5 µm

a. c.

d.

e)

 10 µm

C

B

A

D

b.

 5 µm

 10 µm

Figure 9.4: a. CAD models of the two fabricated inline resonator network designs, consisting of 3 and 4 nanostrings

with (l, w, t) = (30 · 103, 300, 90) nm respectively. Each string is linked with its nearest neighbour(s)

by circular shared supports with a diameter of 2µm. The individual strings are assigned letters

alphabetically from left to right for future reference. b. Scanning Electron Microscopy (SEM) image

of a fabricated 3-string network. In the angled perspective, the freely suspended strings are clearly

discernible. c. Zoom-in on the clamp region. d. Zoom-in on the center resonator with its two shared

supports.

9.2.4 Shared Support Size and Shape

Early in the design and fabrication process, with the aim to gain a better understanding of

the coupling mechanism mediated by the shared support and to determine the most suitable

geometry for use in the following design of new resonator networks, Tri (Series B) networks

have been fabricated with a variety of support geometries and investigated regarding their

coupling rates. In the following, we will briefly discuss experimental results of these preliminary

measurements since they have proven relevant for the design of subsequent samples.

An overview of the different support geometries fabricated for the investigation is presented in

Fig. 9.5b. Out of six investigated designs only one was able to produce measurable inter-resonator

coupling: The 2µm circular support (i) that was subsequently used for all experimental samples.

Notably, even the square support (iii) of almost identical size (2x2µm2) was unable to mediate

finite coupling rates. This observation suggests that the corners of the square design somehow

prevent information about the motion of one nanostring to travel to the other resonators in

the network. Consequently, it could be speculated that a continuous path along the freely

suspended region of the support structure from one nanostring to another is desirable in order to

generate strong inter-resonator coupling between resonators. In any case, these results emphasize
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a. b.

i) ii)

iii) iv)

v) vi)10 µm

Figure 9.5: a. Top-down illustration of a Tri (Series B) resonator network used to evaluate the influence of the

shared support geometry. Samples were fabricated with shared supports (black dashed area) of various

geometries shown in b i-vi. The red bar represents 4µm. Of all investigated support structures, only

the circular support with a diameter of 2µm (i) resulted in a measurable coupling.

the significance of careful choice of geometric parameters in the design process of mechanical

multi-resonator networks.
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Chapter 10

Measurement Setup

The measurements in Part II of this thesis were exclusively performed using an optical, homodyne

laser interferometry setup. Since the optical setups involved in the experimental setup are fairly

complex, whilst contributing comparatively little to the understanding of the results, we will

only provide a very rudimentary description of the optics at this point and relegate a more

detailed examination to the appendix. Instead, we will utilize the remainder of the chapter to

discuss the employed signal processing.

10.1 Laser Interferometry Setup

The centerpiece of the interferometer is a single-mode diode laser with a wavelength of λ = 633 nm
and a maximum power of 50 mW. After being collimated and passed through a single mode

optical fiber to ensure optimal coherence and spot shape, the beam is focused onto the sample,

which is held in a vacuum chamber (p < 1 · 10−5 bar), to suppress the negative influence of

air-damping on the resonators [144]. The sample itself is glued to a piezoelectric actuator, which

can be driven by AC voltages to generate oscillating forces with multiple frequencies which affect

the nanomechanical resonators on the chip. Additionally, the piezo-actuator (along with the

sample) is mounted on a piezoelectric positioner, allowing for the fine control of the sample

position in three dimensions (x,y,z) that is needed to focus the laser beam accurately onto

nanostring resonators. Once sufficiently in focus, a small percentage of the incoming light is

reflected off the sample, now modulated with the motion of the nanostring, and directed towards

a photo-detector, converting the oscillating intensity of the light into an AC voltage signal that

is then evaluated using the signal processing setups discussed in the following.

For additional information regarding the interferometry setup itself, please refer to App. A.5 as

well as Ref. [146].

10.2 Frequency Domain Setup

An illustration of the frequency domain setup used in a majority of the measurements in this

thesis is shown in Fig. 10.1. The piezo-actuator below the sample is connected to the output port
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Figure 10.1: Schematic of the optical laser interferometry setup used for frequency domain measurements shown in

this thesis. Note that the Vector-Network-Analyzer (VNA) was replaced by a spectrum analyzer for

some measurements. The optics have been strongly simplified for this illustration and are discussed

in Sec. 10.1.

of a Vector-Network-Analyzer (VNA), with the latter’s input port being fed by the amplified (+

50 dB) and filtered (< 11 MHz) AC photovoltage signal generated by the detector. By sweeping

the drive frequency of the VNA and measuring the scattering parameter S21, a response spectrum

is generated and resonances of the investigated nanostring become visible as Lorentzian shaped

features, allowing their properties, e.g. resonance frequency and linewidth, to be extracted.

Three additional radio frequency (RF) signal sources are connected to the piezo-actuator via a

power combiner and can be employed as independent auxiliary drive tones, e.g. to excite the

higher harmonics of individual resonators necessary to perform eigenfrequency tuning sequences

(see Sec. 11.2.1). In order to carry out measurements without an external force applied to the

sample and thus investigating solely the thermal motion spectrum of a resonator, the VNA can

be replaced by a spectrum analyzer.

10.3 Time Domain Setup

Figure 10.2b shows an illustration of the time domain setup employed in the excitation transfer

experiments presented in Sec. 11.3. The most prominent adjustments in comparison to the

previous setup are the replacement of the VNA by a fast digitizer card, used for time resolved

acquisition of the detector’s AC photovoltage signal with up to 200 · 106 samples/s, and the

introduction of an Arbitrary Waveform Generator (AWG) capable of designing and emitting
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Figure 10.2: Schematic of the optical laser interferometry setup used for the time domain measurements shown in

Sec. 11.3. The optics have been strongly simplified for this illustration and are discussed in Sec. 10.1.

almost arbitrarily complex auxiliary drive sequences. Furthermore, one of the RF sources is now

configured to produce a pulsed output, controlled by an external modulation port. A detailed

description of how the setup is employed to perform excitation transfer experiments is found at

the beginning of Sec. 11.3.

10.4 Experimental Challenges

Largely independent of the chosen measurement electronics, the optical detection and the eigen-

frequency tuning protocol, when confronted with the peculiarities of nanomechanical structures,

encounter challenges that have to be overcome in order to produce consistent experimental results.

First and foremost, the eigenfrequencies of nanostring resonators prove to be heavily temperature-

dependent, an effect that can be attributed to additional strain induced by differing thermal

expansion coefficients of the string and the underlying substrate [116, 118]. In fact even the

energy of the focused laser beam of the detection setup is sufficient to increase a nanostring’s

resonance frequency by several hundred Hz. However, an equilibrium between heat dissipation

and laser heating is usually reached within few minutes. Much more critically, when exposed

to the high signal powers necessary to perform eigenfrequency tuning sequences (sometimes

ranging up to 10 Vrms) the self-heating of the piezoelectric actuator affects the sample and can

lead to resonance frequency shifts of several kHz over extended periods of measurement time.
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Unfortunately, the current interferometry setup is not capable of reading out the sample

temperature, preventing an exact quantification of the heating effects. Instead, as a short term

solution, cool-down phases were integrated between measurements or measurement points in

order to reduce the impact on the collected data. In the long term, it is desirable to improve

heat dissipation from the sample, e.g. by outfitting the vacuum chamber with a suitable cooling

system, and to introduce a way of monitoring the sample temperature allowing quantification

and correction of arising heating effects.

Lastly, even though short pulse sequences, like the ones performed in excitation transfer experi-

ments, are much less likely to produce significant heating on their own, a multitude of them in

quick succession could indeed adversely affect the performance of following sequences due to

frequency shifts. Therefore, sufficient heat dissipation should be seen as a key consideration in

the design process of more sophisticated resonator network applications.
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Experimental Results

11.1 Characterization of Nanostring Resonators

In the following section we present measurement data of individual Si3N4 nanostring resonators

that are part of the various resonator networks which were fabricated for this thesis (as introduced

in Sec. 9.2). Thermal motion spectra are analyzed to characterize the resonators with respect to

their undisturbed resonance frequencies, linewidths1 and quality factors. These parameters can

later be used to model and predict the interaction within a multi-resonator network. Subsequently,

we evaluate driven resonance measurements with increasing drive powers in order to access the

non-linear regime of the resonators, extracting various material parameters of the strings (e.g

the Young’s modulus E and the Duffing parameter α) in the process. Finally, we demonstrate

the effectiveness of a purely mechanical eigenfrequency tuning method based on the inherent

geometric non-linearity of nanostring resonators. It will be shown, that, by strongly exciting

a nanostring’s higher order mode, the resonance frequency of its fundamental mode can be

deliberately modified in a way predictable by theory and without negative effect on its quality

factor. For all measurements in this section, we have employed the frequency domain setup

introduced in Sec. 10.2.

11.1.1 Quality Factors and Linewidth

We begin by presenting a thermal motion spectrum of the fundamental out-of-plane (oop)

mode2 of a single nanostring in a Tri (Series 2) resonator network, along with a complex

Lorentzian fit (see App. A.2) to the data in Fig. 11.1. The resonance frequency of the exam-

ined resonator is determined to be Ωm/2π = 9.3123 MHz with a linewidth of Γm/2π = 87 Hz
resulting in a quality factor of Q = Ωm/Γm = 1.07 · 105, a value within the expected range for

a Si3N4 nanostring resonator of this length (cf. Ref. [147]). Additionally, with the maximum

photovoltage amplitude Smax
UU = 1.43 mV2/Hz extracted from the fit and the thermal motion

peak amplitude calculated with Eq. 8.6 to Smax
xx = 4.20 pm2/Hz, we can establish a calibration

1linewidth refers to the full width at half maximum (FWHM) of a resonator’s Lorentzian resonance feature.
2In the scope of this thesis, we exclusively investigated the nanostring resonators regarding their out-of-plane

vibrational modes. This is due to the fact that for the used optical interferometry setup, oop motion results in
higher peak amplitudes and better signal-to-noise ratios. As such, all shown spectra can be assumed to show
oop modes unless explicitly stated otherwise.
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Figure 11.1: Thermal motion spectrum of a single nanostring resonator in a Tri (Series A) network. The orange

line is a complex Lorentzian fit to the data, used to extract the mode’s resonance frequency and

linewidth. The fit is also employed to determine the calibration factor between photovoltage (left

axis) and mechanical displacement (right axis) according to Eq. 8.6.

factor of C ≡ Sxx/SUU = 2.95 pm2/mV2 that allows us to determine the displacement amplitude

of the string’s motion from the measured voltage signal. For this we used the effective mass

of the string meff = 1.053 pg, which we calculated as described in Sec. 8.1.1 from the string’s

dimensions (l,w, t) = (30 · 103, 300, 90) nm and ρSiN = 2600 kg/m3 [103].

After performing analogous evaluations of thermal motion spectra for several nanostrings

in all of the investigated network types, we summarize a selection of the extracted parameters

in Tab. 11.1 for comparison. As is expected, we observe small variations in the resonance

frequencies and quality factors between different resonators, caused by imperfections arising

during fabrication. However, we can not find any systematic differences that can be related to

the type of network design. Notably, we find the resonators in position A and B of an Inline

network to be equivalent within the usual range of variation. Therefore, the type of clamping,

one clamp and one shared support on position A compared to two shared supports on position B,

does not seem to affect the quality of nanostring resonators significantly. This finding suggests a

network type resonator pos. Ωm/2π (MHz) Γm/2π (Hz) Q (105)

Tri B 9.3123 87 1.07
Inline A 9.2393 83 1.12
Inline B 9.1740 79 1.16

Table 11.1: Overview of fundamental out-of-plane mode parameters extracted for individual Si3N4 nanostring

resonators in each of the investigated resonator network designs. The position column refers to the

placement of the resonator in the network, as introduced in Sec. 9.2. No significant influence of the

network type or resonator placement on the measured quality factors can be observed.
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11.1 Characterization of Nanostring Resonators

high flexibility in the design process regarding the placement of resonators, eliminating the need

for corrections to the string geometries.

11.1.2 Nonlinear Response Regime

In order to investigate the response of nanostring resonators to external drive forces, the spectral

analyzer is replaced by a VNA, which allows us to apply a coherent radio frequency signal to the

piezo-actuator and record the resulting scattering parameter (see Sec. 10.2). Amplitude spectra

of the driven mechanical motion for drive voltages3 from UVNA = 280µVrms to 1000µVrms are

recorded and shown in Fig. 11.2. Note that the shown displacement amplitudes were converted

from the measured signal voltage using a calibration to the thermal motion amplitude as previ-

ously detailed in Sec. 11.1.1. The investigated resonator is located on position B in an Inline-type

network. Following the theoretical prediction, the resonator enters a non-linear response regime

(see Sec. 8.3), exhibiting the expected increase in effective resonance frequency as it enters the

bistable region characteristic of a forced Duffing oscillator.
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Figure 11.2: Driven mechanical motion spectra of a single nanostring resonator on position B of an Inline

resonator network for increasing VNA output voltages from UVNA = 280µVrms to 1000µVrms. For

high voltages (brighter colors), shifting resonance frequencies and an emerging bistability can be

observed, typical for Duffing oscillators. The orange line is a backbone curve fit of the maximum

displacement amplitudes according to Eq. 8.41, allowing for extraction of the resonators’ Duffing

parameter α.

The spectra can be fitted according to Eq. 8.41, forming a so-called backbone curve, relat-

ing the maximum displacement amplitude to the shifted, effective resonance frequency of the

resonator. From the fit, we extract the Duffing parameter α = 3.166 · 1027 m−2s−2 and use it to

calculate the material’s Young’s modulus to E = 274 GPa. A comparison with literature finds

that this value resides much closer to those reported for homogeneous thin films [1] than those

experimentally observed with Si3N4 string resonators [118, 147, 148] in the past. Remarkably, the

3All RF drive voltages given in this thesis correspond to output values of the signal sources, including any
subsequent amplification. No statement can be made about potential losses on the path to the piezo-actuator.
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tensile stress, calculated from the resonance frequency and Young’s modulus following Eq. 8.5 to

σ0 = 736 MPa aligns very well with published results from the same experiments. Consequently,

we attribute the higher observed value to differences in the sample geometry and the fabrication

process, possibly lowering the impact of the effects found to reduce the Young’s modulus in

other publications.

11.1.3 Auxillary Drive Eigenfrequency Tuning

It has been shown that the geometric non-linearity, causing nanostring resonators to behave as

Duffing oscillators for high drive powers, can be exploited to selectively tune the eigenfrequency

of the resonator [105]. To this end, a strong, external drive voltage is matched in frequency to a

higher harmonic of the targeted resonator and globally applied to the chip via the piezo-actuator.

The higher harmonic mode is driven into the Duffing regime, where its amplitude depends on

the drive frequency, and additional effective stress is induced in the string, altering the resonance

frequency of every mode exhibited by the string (see Sec. 8.3.2).
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Figure 11.3: a. Thermal motion spectrum of nanostring resonator B in a Tri (Series A) network as a function of

the auxiliary drive frequency Ωaux applied to the piezo-actuator with Uaux = 3.5 Vrms. The expected

change in the resonance frequency ΩB according to Eq. 8.47 is drawn as dashed, cyan line. Two

low-intensity features are visible in the measurement at frequencies above the investigated resonance

peak. They are likely caused by an unintended output of the auxiliary RF source at Ωaux/2. b.

Linewidth and c. amplitude of the main resonance peak as function of the applied drive frequency.

The values are extracted from Lorentzian fits to the individual spectra shown in a. No adverse effect

of the tuning process on the linewidth is observed. The decrease of the peak amplitude is discussed

in the main text.
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11.2 Characterization of Nanostring Resonator Networks

Fig. 11.3 shows measurement data of a selective eigenfrequency tuning protocol, targeting

nanostring B of a Tri (Series A) resonator network. In a., thermal motion spectra are presented

as a function of the auxiliary drive frequency Ωaux which is first initialized slightly below the

second harmonic mode frequency Ω0
B,n=2 and is subsequently swept upwards by roughly 80 kHz.

The voltage of the auxiliary signal is Uaux = 3.5 Vrms, driving the second harmonic mode of

the nanostring deep in the non-linear response regime. As a result, the resonance frequency of

the fundamental mode (dark color) can be clearly seen following the increase in applied drive

frequency and perfectly matches the theoretical prediction given by Eq. 8.47 and highlighted by

the cyan dashed line. At frequencies slightly above the main resonance peak, two low-intensity

features are visible in the measurement, apparently being tuned by the drive signal. We attribute

them to an unintended output of the auxiliary RF source, which is known to generate signals

at half its configured output frequency, i.e. Ωaux/2, due to technical reasons. In Fig. 11.3b-c,

the development of the thermal motion spectra’s linewidth and amplitude is shown over the

course of the tuning sequence, extracted from Lorentzian fits (Eq. A.3) to the data presented

in a. While the observed linewidth shows minor fluctuations - an effect that can be attributed

to a combination of thermal instabilities and uncertainties of the fit - it becomes clear that

the eigenfrequency tuning operation does not adversely affect the linewidth of the targeted

mode. This, of course, is important to ascertain for any potential application of the tuning

protocol relying on constantly high quality factors for operation. The peak amplitude, on the

other hand, appears to linearly decrease over the course of the measurement. It seems possible

that the presence of high amplitude oscillations of the second harmonic mode (whose squared

displacement depends linearly on the frequency) impairs the sensitivity of the optical detection

to the fundamental mode, which is not excited by an external drive, thus exhibiting much lower

amplitudes. However, the origin of this effect would need to be investigated further in order to

confirm or rule out a dependency on the tuning mechanism.

11.2 Characterization of Nanostring Resonator Networks

After having successfully characterized the behavior and properties of individual Si3N4 nanostrings,

we extend the discussion to multi-resonator networks. In particular, we demonstrate the ability

to individually and independently address and tune multiple resonators in a network using the

previously introduced eigenfrequency tuning protocol. Subsequently, we employ the discussed

tuning mechanism to demonstrate the appearance of hybridized states when multiple strings are

brought into resonance and prove the existence of strong inter-resonator coupling by analyzing

avoided crossings. The different resonator network designs will be characterized regarding their

inter-resonator coupling rates, comparing the experimental results with theoretical predictions

made at the design-stage. Finally, the appearance of dark-modes in a strongly coupled Tri

resonator network is investigated and reproduced using theoretical models.

11.2.1 Independent Tuning

Applications of mechanical multi-resonator networks in the field of information processing or

storage (cf. e.g. Refs. [107–109]) are inherently reliant on protocols to perform targeted transfer
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of phonons in between multiple resonators. To this end, the capability to control the resonance

frequency of individual resonators without affecting other parts of the network is a crucial re-

quirement. While tuning techniques based on dielectric gradient forces have been widely adopted

(cf. e.g. [106, 113, 114]), they require local control gates to address individual resonators. In

the following, we want to demonstrate that the previously introduced eigenfrequency tuning

protocol based on the non-linearity of higher harmonic modes (see Secs. 8.3.2 and 11.1.3) is able

to fulfill this requirement via global application of a drive voltage to the piezo-actuator. This

completely eliminates the need for local control gates, promising increased scalability on the way

to larger multi-resonator networks.
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Figure 11.4: a. A multi-resonator tuning sequence. The frequencies Ωaux
A,B,C of three auxiliary drive signals are

shown over nseq, the index of the sequence’s sweep-points. Each signal, generated by an independent

source with Uaux = 3.5 Vrms, performs a separate eigenfrequency tuning operation targeted at a

single resonator in the investigated network. b. Driven mechanical motion spectrum of resonator

B of an Inline-type network over the course of the tuning sequence, measured with a VNA output

voltage of UVNA ≈ 0.7µVrms. c. The measurement data shown in b., superimposed with two models

predicting the development of the resonators’ eigenfrequencies due to the tuning sequence. The solid

lines represent the model according to Eq. 8.47, while the dashed lines are obtained by addition

of a linear correction term to the former model, intended to compensate the self-heating of the

piezo-actuator. Note that all resonators have been initialized to higher frequencies prior to the shown

measurement in order to make downwards tuning possible. The illustration above a. clarifies the

resonator naming scheme and the laser spot position (red).

In order to demonstrate the capabilities of the eigenfrequency tuning technique, we design

a complex auxiliary drive sequence shown in Fig. 11.4a. Three independent drive signals with

the frequencies Ωaux
A,B,C and voltages Uaux

A,B,C = 3.5 Vrms are combined and applied to the piezo-

actuator, with each of the signals intended to perform a separate tuning operation on one of

the strings in the Inline network investigated in this experiment. As such, each frequency

Ωaux
A,B,C is matched to the second harmonic mode of one targeted resonator (i.e. Ωaux

A = Ω0
A,n=2).

As previously discussed in Secs. 8.3.2 and 11.1.3, a strong auxiliary signal causes the higher

harmonic mode it drives to enter a non-linear response regime, where its amplitude depends on

the drive frequency. The high oscillation amplitudes lead to an effective elongation of the string

which induces additional stress in the material, altering the resonance frequency of the string’s
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11.2 Characterization of Nanostring Resonator Networks

fundamental mode depending on the auxiliary frequency. Notably, the three drive signals are

applied simultaneously to the piezo-actuator in this experiment, demonstrating that the required

superposition of the three forces is achievable.

It is important to note that prior to the measurement (not shown in the figure), the three drive

frequencies have been swept upwards, increasing the eigenfrequencies of all resonators by several

kHz, effectively initializing them to their new levels Ωinit
A,B,C > Ω0

A,B,C. This is necessary since

the eigenfrequency tuning mechanism is based on the addition of effective stress to the material,

therefore a decrease of the resonance frequency below its undisturbed level is not possible (i.e.

σeff,tuning > 0). However, a controlled downtuning of the eigenfrequencies of previously raised

frequencies using the same tuning protocol is feasible, as demonstrated here.

After initialization, the auxiliary frequencies are decreased one after another by 10 kHz below their

initial levels Ωinit
A,B,C and then subsequently swept to higher frequencies of Ωinit

A,B,C/(2π) + 10 kHz.

We observe the influence of the driving sequence on the fundamental modes by recording a

driven mechanical motion spectrum for each sweep-point nseq while the laser spot is focused on

nanostring B. The resulting spectra are presented in Fig. 11.4b and show three distinct features

(darker colors). The strongest feature corresponds to the fundamental mode of the nanostring

spatially selected by the laser, while the less intense features result from an inter-resonator

coupling across the network, making the resonance frequencies of both coupled resonators

observable in the spectrum of the third. This is already an indication of a finite inter-resonator

coupling in the investigated nanostring network. Clearly, it can be seen that the resonance

frequencies of all three resonators in the network can be controlled by their respective drive

frequencies. In addition, the fundamental mode frequencies ΩA,B,C are visibly not sensitive to

the changes in the frequencies of the other modes (here in the limit of far detuning), suggesting

a purely selective tuning of the modes via their respective drive tones. To validate this visual

interpretation, we perform a model calculation according to Eq. 8.47, predicting the shifting of

eigenfrequencies of the three resonators based on the applied drive signals. Results from the

calculation are shown in Fig. 11.4c. It should be pointed out that for the calculation, Eq. 8.47

has been applied to every resonator individually, only taking into account its own resonance

frequency and the single drive signal targeted at its second harmonic mode.

Comparing the model predictions (solid lines) and the position of the resonance features in

the spectrum, a deviation from the calculation does stand out. While the tuning operations

themselves, the triangular shaped up- and downtuning of the frequency, are accurately repre-

sented, we observe a gradual upwards drift for all experimental resonance frequencies, that is

not explained by theory. As previously discussed in Sec. 10.4, we can confidently attribute this

drift to self-heating effects within the piezo-actuator, caused by the three comparatively high

powered drive signals. Since the measurement shown in Fig. 11.4 took 30 minutes to complete

and empirical observations during the measurements for this thesis show the heating influence on

nanostring resonance frequencies to behave relatively linear for long measurements, we attempt

to apply a correction to the theoretical predictions in Fig. 11.4c in the form of a linear heating

term added to the tuning model (dashed lines). With the heating correction term applied, the
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theoretical model visually appears to accurately reproduce the experimental data experimental

data. To further examine the validity of the model, we extract the resonance frequencies from

the experimental data shown in Fig. 11.4b by fitting the peaks of every individual amplitude

spectra using a complex Lorentzian function. The results along with the two model calculations

are presented in Fig. 11.5.
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Figure 11.5: Extracted fundamental mode resonance frequencies ΩA,B,C (black circles) of the three nanostrings

A,B and C over the course of the auxiliary drive sequence presented in Fig. 11.4. The frequencies have

been extracted by applying complex Lorentzian fits to the individual peaks found in the mechanical

motion spectra shown in Fig. 11.4b. The solid lines represent a model calculation of the fundamental

mode frequencies in response to the applied drive tones (see Fig. 11.4a) according to Eq. 8.47. The

dashed lines are obtained by addition of a linear correction term to the former model, intended to

compensate the self-heating of the piezo-actuator. The model calculations are performed individually

for each mode, with the color of the line indicating the corresponding nanostring. We observe

deviations of both models in the beginning of the measurement, i.e. nseq < 40, corresponding to the

first 10 minutes of measurement time. However, the heat-corrected model shows increasingly good

agreement towards the end of the measurement.

Examining the extracted data along with the two model calculations, we observe a devia-

tion from the linear heating model in the beginning of the measurement sequence, i.e. for

nseq < 40, which corresponds to the first 10 minutes of the measurement. In this region, the

experimentally observed resonance frequencies increase more rapidly than predicted by the

model. However, the slope of the frequency increase flattens and takes a more linear shape as

the measurement progresses and eventually shows good agreement with the prediction. Based

on these observations, it seems plausible that the heating effects in fact follow a more complex

behavior, especially in the beginning of the measurement. Furthermore, one would expect the

heating to eventually saturate towards a thermal equilibrium. However, since we still observe a

finite slope for the resonance frequencies at the end of the measurement, the 30 minute duration

of this experiment does not appear to be sufficient to reach an equilibrium state. In order to
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11.2 Characterization of Nanostring Resonator Networks

quantify this behavior, the sample temperature or a related quantity would have to be observed.

In thermal motion measurements for example, the amplitude of the recorded spectra could allow

to draw conclusions on the temperature. However, the impact of the temperature-dependent

thermal motion, which usually resides in the picometer regime (see Fig. 11.1), is negligible in

comparison to the nanometer amplitudes observed in driven displacement spectra (see Fig. 11.2)

as recorded here. In the long term, as discussed in Sec. 10.4, outfitting the detection setup

with a way to monitor the temperature during the measurement would allow a more thorough

investigation of the heating effects. Importantly, aside from the previously discussed effects, we

see no indication in the extracted experimental data pointing towards any unpredicted, adverse

influence of the simultaneous tuning operations.

However, due to the global application of drive signals an inherent challenge for the tun-

ing protocol presents itself in the form of mode-mode cross-talk, i.e overlap in the drive frequency

range of different resonators due to frequency crowding [149], which can lead to the unintentional

tuning of multiple resonators with one drive signal. To circumvent this problem, the higher

harmonic frequencies of the resonators that are part of a network have to lie sufficiently far

apart. This goal can be accomplished partly by thoughtfully choosing the geometric parameters

of the resonators, but also requires post-selection of fabricated networks, as has been done for

all samples shown in this thesis. A more detailed look at the challenges of frequency crowding

along with an example can be found in App. A.6.

In conclusion, the eigenfrequency tuning technique presented in this thesis is capable of indepen-

dently addressing multiple resonators in a resonator network without relying on local control

gates and has the potential to be a useful tool for applications in targeted excitation transfer

experiments, which will be explored in Sec. 11.3.

11.2.2 Inter-Resonator Coupling

In this section, we employ the previously established tuning mechanism in order to quantify the

inter-resonator coupling rates of the investigated multi-resonator networks. To this end, we tune

pairs of two nanostring resonators in resonance, where the inter-resonator coupling leads to a

hybridized state. From the spatial distribution of this state, information can be extracted about

the magnitude of the coupling (see Sec. 8.1.2 and e.g. Refs. [102, 110]).

Tri Resonator Networks (Series A)

First, we probe mechanical motion spectra of resonator A of a Tri (Series A) nanostring network

over the course of an eigenfrequency tuning sequence and present the data in Fig. 11.6a. The

tuning sequence employs two drive signals at Ωaux
A,B with Uaux

A,B ≈ 7 Vrms, targeting resonator A

and B respectively, and tuning each possible pair of resonators in the network in resonance,

inducing the formation of hybridized states and avoided crossings. In turn, we observe three

individual avoided crossings between B and C at nseq ≈ 31, A and C at nseq ≈ 50, A and B at

nseq ≈ 58, each containing information about one of the three inter-resonator coupling rates.

Figure 11.6b displays a more highly resolved measurement in the area around the third avoided
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A B
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Figure 11.6: a. Driven mechanical motion spectrum of resonator A in a Tri (Series A) nanostring network over

the course of an eigenfrequency tuning sequence, indexed by sweep-points nseq. The sequence consists

of two independent drive signals with Uaux ≈ 7 Vrms and is designed to induce avoided crossings

between all of the involved resonators pair-by-pair. The inset shows the network layout and the laser

spot position (red). As expected, three individual avoided crossings are visually discernible. b. A

more detailed measurement of the avoided crossing between resonators A and C (dashed cyan area)

c. A single spectrum from the data shown in panel b. for nseq,detail = 89 (dashed black line). The

solid orange line is a double Lorentzian fit to the data, used to determine the resonance frequencies

of both involved resonators. d. Fitted resonance frequencies of the lower (red) and upper (blue)

branch of the avoided crossing shown in b., extracted from the individual spectra as demonstrated

in c. The minimal mode-splitting is found at nseq,detail = 106 to be gAC/2π = 1307 Hz.

crossing (dashed cyan). In order to extract the coupling rates, avoided crossing behavior between

the modes is quantitatively analyzed. This process is most accurately accomplished by fitting

the recorded displacement spectra with two Lorentzian lineshapes to determine both resonance

frequencies of the modes. Fig. 11.6c visualizes this process for the data presented in panel b

for nseq,detail = 89 (black dashed line). Hereby, we find two resonance frequencies Ω+ and Ω−,

referring to the upper and lower branch of the avoided crossing respectively.4 Repeating this

process for every spectrum in the datasets allows us to extract the dispersion of resonator A’s and

C’s resonance frequencies along the avoided crossing (see Fig. 11.6d). Finally, the mode-splitting

can be extracted by finding the minimum difference between the two resonance frequencies which

4It should be noted that employing a double Lorentzian fit model (i.e. the simple addition of two Lorentzian
functions) is only valid as long as the peaks are well seperated with respect to their linewidth (i.e. Ω+ −Ω− >
Γ+,−). Fig. 11.6c shows the condition is clearly fulfilled in this case.
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parameter value

gAC/2π 1307 Hz
gAB/2π 1281 Hz
gBC/2π 1230 Hz

Table 11.2: Summary of the experimentally determined inter-resonator coupling rates in the Tri (Series A)

network investigated in this section.

is found at nseq,detail = 106 to be

gAC/2π = min |Ω+ − Ω−|/2π = 1307 Hz.

Analogous investigations of the avoided crossing between resonators B and C as well as A and B

have been performed and can be found in App. A.7.1. We summarize the extracted coupling

rates in Tab. 11.2. The expectation that a symmetric geometry of Tri (Series A) networks, in

particular with a symmetrically shaped shared clamp, results in an equal coupling rate between

all of the involved resonators is hereby strongly supported. All inter-resonator coupling rates are

within a range of 80 Hz. From the coupling rates, the coupling factors κij can be calculated using

the effective mass of the resonators meff = 1.053 pg and Eq. 8.10. Subsequently we assemble the

complete stiffness matrix for the investigated network as used in Eq. 8.15

KTri,SA =

 −3.535 −7.0 · 10−4 −7.1 · 10−4

−7.0 · 10−4 −3.553 −6.7 · 10−4

−7.1 · 10−4 −6.7 · 10−4 −3.561

 kg/s2. (11.1)

Notably, all of the values fall in line with the previously observed inter-resonator coupling rate

of two purely mechanically coupled nanostrings [105]. Moreover, due to the small damping rates

of the investigated nanostring resonators ΓA,B,C ≈ 80 Hz, the observed coupling rates easily

fulfill gAB,AC,BC � ΓA,B,C, placing the network deeply in the strong coupling regime, a key

requirement for the coherent and controlled transfer of excitations in a network that will be

investigated later on.

Tri Resonator Networks (Series B)

Figure 11.7a shows a driven mechanical motion spectrum of nanostring A of a Tri (Series B)

nanostring network5 over the course of a performed eigenfrequency tuning sequence. In this

case, only resonator A is tuned upwards by a single drive signal with Uaux ≈ 4 Vrms, intended to

cause avoided crossings with both other resonators in the network.

Avoided crossings can clearly be observed at nseq ≈ 30 between resonators A and B as well as

around nseq ≈ 145 between resonators A and C. It is immediately noticeable that the latter

5Please take note of the ordering of the nanostring’s resonance frequencies for the investigated Series B network:
Ω0

B > Ω0
C > Ω0

A.
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A B

C

Figure 11.7: a. Driven mechanical motion spectrum of resonator A in a Tri (Series B) nanostring network over

the course of an eigenfrequency tuning sequence, indexed by sweep-points nseq. The sequence consists

of one drive signal with Uaux ≈ 4 Vrms, tuning resonator A upwards and leading to avoided crossings

with the two remaining nanostrings in the network. The inset shows the network layout and the

laser spot position (red). Both expected avoided crossings are clearly visible, but show a significantly

different extent of mode-splitting. An instance of unintended tuning due to frequency crowding is

visible around nseq ≈ 85− 100 (see main text). b-c. Development of resonance frequencies for the

upper (blue) and lower (red) branch of the avoided crossings of two resonators, extracted from double

Lorentzian fits to individual mechanical motion spectra. b. presents frequencies fitted to a more

detailed measurement of the dashed cyan area and extracts a coupling rate of gAB/2π = 2266 Hz. c.

presents frequencies fitted to a more detailed measurement of the dashed blue area and extracts a

coupling rate of gAC/2π = 767 Hz.

crossing exhibits a significantly larger mode-splitting than the former, pointing to an asymmetric

coupling behavior in the network. To quantify this observation, we extract numerical values

for the extent of the mode-splitting from the measurement data. In Fig. 11.7b-c, the resonance

frequencies of the upper and lower branches of the avoided crossing areas have been extracted

using double Lorentzian fits to individual spectra taken from more detailed measurements. Once

again seeking the minimum mode separation, we receive

gAC/2π = 767 Hz and

gAB/2π = 2266 Hz,

confirming the visual observation of significant differences in the coupling rate.

Unfortunately, due to the influence of frequency-crowding (see Sec. 11.2.1), independent tuning
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of resonator C in resonance with resonator B is not possible for this sample. Moreover, the

same effect leads to a brief unintended tuning of resonator C by the drive signal targeting

resonator A, which can be seen in Fig. 11.7a around nseq ≈ 85 − 100. This circumstance

prevents us from extracting the third coupling rate gBC. However, the successfully extracted

values do confirm an influence of the resonator placement on the resulting coupling rates: As

expected, resonators A and B, only separated by a 90° angle in the Series B design, exhibit

a significantly larger inter-resonator coupling in comparison to resonators A and B, being

placed in a 135° angle. Given the symmetry of the network geometry about the plane spanned

by resonator C, it is highly plausible that the unobserved coupling rate gBC closely resembles gAC.

In conclusion, the Series B resonator network, described by its stiffness matrix calculated

as above6 to

KTri,SB =

 −1.653 −5.8 · 10−4 −1.9 · 10−4

−5.8 · 10−4 −1.669 κBC

−1.9 · 10−4 κBC −1.656

 kg/s2, (11.2)

has been shown to exhibit strong inter-resonator coupling and furthermore proves the large

influence that the geometric design properties, in particular the placement of the resonators,

have on the resulting coupling rates. By employing this knowledge in the design stage, resonator

networks can be specifically designed to exhibit different coupling rates in between groups of

resonators.

Inline Resonator Networks

Moving on to the final resonator network design, Fig. 11.8a shows measured mechanical mo-

tion spectra of nanostring B in an Inline resonator network7 exposed to an eigenfrequency

tuning sequence. Similar to the first presented sequence, two independent tuning signals with

Uaux ≈ 10 Vrms targeted at higher harmonics of resonators A and C are employed to induce

pair-wise crossings of the resonance frequencies for all of the nanostrings in the network. We

observe visible avoided crossings between resonators A and B as well as C and B at nseq ≈ 35
and nseq ≈ 58 respectively. However, for the leftmost crossing, no obvious mode-splitting is

visible when bringing resonators A and C on resonance. Towards the end of the sequence,

another instance of frequency crowding can be observed, unintentionally increasing the resonance

frequency of resonator B. However, in this case the effect only appears outside the region of

interest for the experiment.

Proceeding as above, we fit the resonance frequencies for the separate branches of the avoided

crossings, extracting coupling rates of

gAB/2π = 260 Hz and

gBC/2π = 207 Hz

6Unlike all other samples investigated in this thesis, this Tri (Series B) network consists of nanostrings with a
width of 140 nm. This results in a different effective mass used for calculation: mTri,SB

eff = 4.9 · 10−16 kg.
7Please note the order of resonance frequencies for the investigated Inline network: Ω0

B > Ω0
C > Ω0

A.
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A B C

Figure 11.8: a. Driven mechanical motion spectrum of resonator B in a Inline nanostring network over the

course of an eigenfrequency tuning sequence, indexed by sweep-points nseq. The sequence consists of

two independent drive signals with Uaux ≈ 10 Vrms designed to induce crossings of all resonators’

eigenfrequencies in the network pair by pair. The inset shows the network layout and the laser spot

position (red). We observe two avoided crossings, but no obvious mode-splitting is visible at the

leftmost crossing. b-c. Development of resonance frequencies for the upper (blue) and lower (red)

branch of the avoided crossings of two resonators, extracted from double Lorentzian fits to individual

mechanical motion spectra. b. presents frequencies fitted to a more detailed measurement of the

dashed cyan area and extracts a coupling rate of gAB/2π = 260 Hz. c. presents frequencies fitted to

a more detailed measurement of the dashed blue area. No finite mode-splitting can be extracted

from the fitted crossing of resonators A and C.

from Fig. 11.8b and Fig. A.6, respectively. However, even with the fits of a more detailed

measurement, no trace of mode-splitting can be found in Fig. 11.8c, confirming a coupling

rate smaller than the resolution of the measurement. Using this data, we assemble the Inline

network’s experimentally observed stiffness matrix, as introduced previously, to

KInline =

 −3.529 −1.4 · 10−4 0
−1.4 · 10−4 −3.551 −1.1 · 10−4

0 −1.1 · 10−4 −3.532

 kg/s2, (11.3)

matching the theoretical predictions formulated in Sec. 9.2.3. It stands out that the observed

coupling rates are considerably lower than those observed for the other investigated network

designs, but our previous observations regarding the influence of resonator placement on coupling

rates can attribute the reduction to the larger angle (180°) in between the linked resonators.

However, with g
Γ ≈ 4 the values are approaching the lower limit of the strong coupling regime, a

fact that might impair the performance of excitation transfer protocols.
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11.2 Characterization of Nanostring Resonator Networks

11.2.3 Mechanical Dark Modes

Modes that can not absorb or emit excitations and thus are not visible in measurements are

commonly called dark-modes. Such modes have been extensively studied in the field of optome-

chanics [150–152]. Moreover, in a recent experiment, mechanical dark-modes were observed in

strongly three-mode coupled micromechanical systems [106]. Mechanical dark-modes have been

described as the mechanical analogue to electromagnetically induced transparency [153, 154] and

coherent population trapping [155]. In order to understand the appearance of this interesting

phenomenon in our system, we dedicate the following section to the investigation and modeling

of the observed features.
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Figure 11.9: a. Thermal motion spectrum of resonator A in a Tri (Series A) nanostring network as a function of

the auxiliary drive frequency Ωaux
A . With the tuning sequence, resonator A is tuned in resonance

with resonators B and C, which have been initialized to be on resonance (not shown), forming a

dark-mode, noticeable by the temporarily vanishing central branch (found between the dashed cyan

lines). The inset shows the network layout and the laser spot position (red). b. The blue circles

show the resonance frequencies of the three hybridized modes ΩA,B,C, extracted by fitting the spectra

shown in panel a. with three Lorentzian line shapes. The orange lines represent a model calculation

of the same hybridized mode frequencies (see main text). c. Experimentally observed spectral

density (orange circles) integrated over the area between the dashed cyan lines in panel a. Black

circles signify spectra without a visible peak, i.e. noise spectral density. The purple line represents a

model calculation for the normalized displacement of resonator B, |xB|2 (right scale), evaluated at the

resonance frequencies along the center branch of the hybridized mode. The calculation reproduces

the vanishing displacement observed on resonator B once the central mode goes dark.

Building on the reported observation in strongly three-mode coupled systems, we attempt

to prompt the appearance of dark-modes in a Tri (Series A) nanostring network by tuning

all three resonators in the network in resonance. To this end, we design an eigenfrequency

tuning sequence that brings two of the nanostrings in resonance (in this case resonators B

and C) until the mode-splitting becomes visible, and subsequently increase the eigenfrequency

of the remaining resonator (A) until it would cross the frequencies of the hybridized states.

Experimental data recorded over the course of this sequence is presented in Fig. 11.9a. It

shows the thermal motion spectra of resonator B as a function of the auxiliary drive frequency.
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Note that the initialization of the other resonators to the hybridized state is not shown in the plot.

With the simultaneous interaction of three coupled resonators close to resonance, we observe a

much more complex hybridization of states, compared to the previously investigated avoided

crossings, that can no longer be described by the approximation of two independent crossings

(see Sec. 8.1.4). This fact becomes apparent due to the two separate mode-splittings of visibly

different size, although the inter-resonator coupling has been shown to be roughly equal for

all of the involved resonators in this network. More importantly, the central branch (between

the dashed cyan lines) vanishes temporarily from (Ωaux
A − Ωinit

A,n=2)/2π ≈ 8 kHz to 13 kHz, ap-

parently forming one of the dark-modes sought to be observed in this experiment. In order

to quantitatively analyze the measurement, we extract the resonance frequencies of the three

hybridized modes over the course of the measurement by fitting three individual Lorentzian

lineshapes to the spectra shown in Fig. 11.9a. The extracted mode frequencies are shown as

blue circles in Fig. 11.9b. Note that no frequencies could be extracted from the central branch

for (Ωaux
A − Ωinit

A,n=2)/2π = 9 kHz to 11 kHz, since no peaks are discernible in the corresponding

spectra. We now perform a calculation of the hybridized mode frequencies ΩA,B,C over the

course of the experiment. This is accomplished by solving Eq. 8.15 with the stiffness matrix of

the network8 derived in Eq. 11.1, under consideration of the auxiliary drive Ωaux
A applied in the

experiment. More information about the calculation can be found in App. A.8. The calculated

mode frequencies are shown as solid orange lines in panel b. Note that we choose to limit

the model calculation to (Ωaux
A − Ωinit

A,n=2)/2π > 3 kHz in order to avoid the strongly non-linear

heating effects that appear at the beginning of measurements (see discussion in Sec. 11.2.1). As

discussed in the same context, we also incorporate a linear correction term into the model to

compensate the remaining, more linear heating effects during the remainder of the measurement.

Comparing the model calculation to the extracted data in Fig. 11.9b, we observe a remarkably

good quantitative agreement and only slight deviations in the central branch frequencies towards

the end of the measurement. The latter can be most likely attributed to the finite precision

with which resonators B and C can be tuned on resonance during the initialization prior to the

experiment.

Having successfully replicated the dispersion of the hybridized modes during the measure-

ment, in the following we want to focus on a quantitative investigation of the dark-mode itself.

To this end, we evaluate the displacement amplitude of this dark mode along the center branch

(dashed cyan area), as shown in Fig. 11.9c. The data points correspond to the integrated

spectral density between the dashed cyan lines, resulting in an average displacement amplitude

〈|xB|2〉 as a function of the auxiliary drive. Spectra where no resonance peak is discernible by

eye have been marked in black, indicating the data-range where the mode goes dark and only

spectral density of the noise-floor is measured. Clearly, the visual observation of a vanishing

signal is also confirmed in the analysis of the data as the measured displacement temporarily

drops below 0.1 pm2 around (Ωaux
A − Ωinit

A,n=2)/2π ≈ 10 kHz. Based on the previously derived

8In this measurement we are examining the exact same network that was used to extract the inter-resonator
coupling rates in Fig. 11.6 and Eq. 11.1. Therefore, we use the experimentally determined coupling rates for
the calculation.

88



11.2 Characterization of Nanostring Resonator Networks

model for the dispersion of the hybridized modes, we now perform a calculation of the expected

displacement amplitude. In particular, we evaluate the system of three coupled equations of

motion of the nanostring network (Eqs. 8.24-8.26). Numerically solving9 the system at the

previously calculated resonance frequencies of the hybridized mode allows us to calculate an

expected amplitude coefficient proportional to the displacement |xB|2 of nanostring B for any

point along the central branch. The result of the calculation is plotted as purple line in Fig. 11.9c

on a suitable scale to match the non-normalized experimental data. The model shows excellent

agreement with the experimental data, correctly predicting the vanishing displacement for

(Ωaux
A − Ωinit

A,n=2)/2π ≈ 8 kHz to 12 kHz. The discrepancy towards the end of the measurement,

which predicts a slightly larger increase in amplitudes, is likely the consequence of the previously

discussed inaccuracies in the calculated frequencies of the hybridized modes, as seen in panel

b. Notably, the fact that the model predicts amplitudes even lower than those experimentally

observed is expected, given that most data points in proximity to the minimum represent the

integrated noise floor of the experiment (black dots) instead of physical features. In fact, in the

theoretical model, the displacement drops to less than 0.2% of its maximum value, which further

corroborates the interpretation that a true, physical dark-mode is exhibited by the network.

Consequently, we are confident that the employed models accurately and quantitatively describe

the physical phenomenon observed in this experiment.

1 0|u|2  (norm.)

A B

x

y

C

Figure 11.10: FEM simulation of the displacement field ~u of the investigated resonator network, assuming

absolutely identical nanostrings with Ω̃A = Ω̃B = Ω̃C. We observe a vanishing displacement of

nanostring B, providing a physical interpretation how the dark-mode is distributed over the network.

Finally, we perform a FEM simulation10 of the investigated Tri (Series A) network in order

to gain insight into the physical distribution of the dark-mode across the network. A visual

representation of the simulated displacement field ~u for one of the possible eigenfrequency

solutions11 is presented in Fig. 11.10. The simulation assumes absolutely identical nanostrings

with matching undisturbed resonance frequencies Ω̃A = Ω̃B = Ω̃C, which corresponds exactly

9For more information regarding the numeric calculation of the resonator amplitude, please refer to App. A.9.
10The simulation was performed using the finite element solver COMSOL Multiphysics [80]
11Due to the perfect rotational symmetry of the model structure, in fact, three solutions for the fundamental

mode are found, only differing in rotations of 120° in the x-y-plane.

89



Chapter 11 Experimental Results

to the desired state of the network after the tuning sequence brings all of the nanostrings in

resonance. Examining the simulated displacement field (color), we can clearly identifiy the

strongly suppressed displacement amplitudes of nanostring B in comparison to the remaining

strings, effectively forming a dark-mode.

In summary, we successfully observed the formation of mechanical dark-modes, a phononic

analogue to coherent population trapping, in a strongly coupled three-nanostring resonator

network. Subsequently, we replicated the experimental observations quantitatively with a simple

theoretical model and visualized how the corresponding mode shape is distributed over the

network using FEM simulations.

11.3 Transition Dynamics of Resonator Networks

In 1932, Landau [127] and Zener [128] analytically described the tunneling behavior of quantum-

mechanical excitations between two states in a quantum two-level system during the passage

through an avoided crossing (see Sec. 8.2.1). However, it was later shown that the exchange of

excitations in coupled mechanical systems can be accurately described by the same dynamics

[99, 129, 130]. A key requirement for establishing nanomechanical resonator networks as suitable

systems for phonon-based information processing or storage is the ability to perform consistent,

targeted transfer of phonons between coupled nanostring resonators [104, 131], we dedicate this

section to demonstrate this ability in our multi-resonator networks by performing a classical

Landau-Zener-type experiment [103] and comparing the results to the theoretical prediction.

Subsequently, we attempt to exact more sophisticated control on the observed excitation transfer

using the selective eigenfrequency tuning technique, laying the groundwork for targeted phonon

transfer to arbitrary resonators in a multi-resonator network.

11.3.1 Excitation Transfer Measurement Protocol

All experiments in this section have been performed with the time-domain measurement setup

introduced in Sec. 10.3. In the following, we will describe the measurement protocol presented in

Fig. 11.11, which has been employed for the Landau-Zener-type excitation transfer experiments:

At first, a short excitation pulse (tp = 400µs, amplitude Up) with the frequency Ωp = Ω0
A

12, is

generated by a pulsed RF source. After a waiting time t0 = 1 ms, the AWG begins emitting

its previously programmed auxiliary drive sequence with an amplitude of UAWG
13, smoothly

transitioning its output signal from Ω0
aux to Ω0

aux + ∆Ωaux at a determined ramp rate ζ = ∆Ωaux
τ ,

thereby increasing the eigenfrequency of the excited resonator and causing it to pass through

avoided crossings with both other resonators in the network. Over the course of the entire

sequence, the digitizer card acquires the detector’s photo-voltage signal with a sampling rate of

200 · 106 samples/s, gathering time resolved information about the displacement of the observed

12For simplicity, the excitation pulse is assumed to match the frequency of resonator A, Ω0
A. Generally, the

resonator with the lowest eigenfrequency will be initialized, allowing it to be tuned upwards by the auxiliary
drive sequence, crossing the eigenfrequencies of both other resonators in the network.

13Different pulse amplitudes Up and auxiliary drive voltages UAWG have been employed for different measurements.
Exact values are found in the figure captions.
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Figure 11.11: Measurement protocol for a Landau-Zener-type excitation transfer experiment. A detailed descrip-

tion can be found in the main text. The figure is adapted from Ref. [105].

nanostring resonator. In post-processing the time-domain data is digitally downconverted,

downsampled and lowpass-filtered to a cutoff-frequency of 25 kHz. Due to the short timescales

the experiment operates on, the synchronization of the individual components is of utmost

importance for its success. For this purpose, a second channel of the AWG is programmed to

send a trigger pulse to the RF source and the digitizer card at the start of the measurement,

simultaneously launching the excitation pulse and the acquisition of data. The measurement is

then repeated for varying ramp times (τ = 0.2 ms to 12 ms) and laser spot positions on different

resonators in order to investigate the influence of the ramp rate on inter-resonator excitation

transfer.

11.3.2 Landau-Zener Transitions in Tri Resonator Networks (Series A)
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Figure 11.12: Level scheme of the nanostring network investigated in this section as a function of the measurement

time t. Shown are the resonance frequencies ΩA,B,C of the three corresponding resonators (see

inset). ΩA is tuned upwards, eventually crossing the frequencies ΩB and ΩC for times tc,B and tc,B

respectively. For finite inter-resonator coupling, avoided crossings will form and allow the transfer

of excitation between resonators. For clarity, we neglect the coupling in this illustration and do not

consider the hybridization of modes.

We now perform a Landau-Zener transition sequence, as detailed in Sec. 11.3.1, on a Tri (Series

A) nanostring network. In the measurement, we record the time-resolved development of the

91



Chapter 11 Experimental Results

displacement of nanostrings A, B and C as a function of the ramp rate ζ. In order to evaluate

experimental data of a Landau-Zener-type measurement, it is crucial to understand the dispersion

of the eigenfrequencies over the course of the performed sequence. To this end, we illustrate

the level scheme, i.e. the eigenfrequencies of the investigated nanostring network, as a function

of the measurement time t in Fig. 11.12. During the measurement, the eigenfrequency ΩA(t)
resonator A is increased using the established tuning technique. The frequencies of the remaining

resonators are unaffected by this, so that eventually ΩA(t) will become resonant with ΩB and

ΩC at points in time tc,B and tc,C respectively (see illustration). Due to the finite inter-resonator

coupling in the network, the eigenfrequencies will instead hybridize and pass through an avoided

crossing, where the transfer of energy between the corresponding resonators becomes possible

(not shown in the figure). Keeping this in mind, we now investigate the measurement results

presented in Fig. 11.13a-c.
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Figure 11.13: a-c. Experimentally observed squared displacement amplitude of the fundamental mode of resonator

A, B and C, respectively, in a Tri (Series A) network (shown in the lower right) as a function

of auxiliary frequency ramp rate ζ and time t. The signal voltages used for this measurement

are Up = 70 mVrms and UAWG ≈ 4.5 Vrms. d-f. Model calculation for the squared displacement

amplitude of resonators A, B and C, respectively, based on numerically solving the three time-

dependent, coupled equations of motion presented in Sec. 8.2.2. a-f. The dashed cyan lines indicate

calculated crossing times for which ΩA is resonant with ΩB (lower line) and ΩC (upper line). We

observe high quantitative agreement between experimental data and model predictions.

We begin the discussion of the experimental data by considering the case of slow ramp rates,

i.e (ζ/2π)−1 > 100µs/kHz. By examining the development of the displacement amplitudes

(color) in the vicinity of the calculated crossing times (dashed cyan lines), a distinct transfer of

energy between the resonators due to the inter-resonator coupling can be seen. For example, the
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displacement measured on resonator A (see panel a.) practically vanishes as soon as t exceeds

the predicted time of the first crossing, i.e. the point in time for which ΩA(t) = ΩB. At the

same time, an increased signal can be observed in panel b., corresponding to a displacement

of resonator B. This can be interpreted as an adiabatic transfer of energy from resonator A to

resonators B. The transfer is performed at the time of passage through the avoided crossing in

accordance with the Landau-Zener model (see Sec. 8.2.1), which predicts the adiabatic passage for

slowly changing frequencies. The fact that a majority of the energy of resonator A is transferred

becomes especially apparent when considering panel c. The displacement of resonator C stays

close to zero even after resonator A crosses its frequency (upper dashed line) with the same slow

rate. Clearly, resonator A barely retains any energy after the previous avoided crossing with

resonator B.

For faster ramp rates of (ζ/2π)−1 ≈ 50µs/kHz on the other hand, we observe a significant signal

in panel a. for t larger than both crossing times, and it can subsequently be seen decaying

exponentially. Therefore, energy remains stored in resonator A even after passing through the

avoided crossings with resonators B and C, pointing towards the diabatic passage behavior that

the model predicts for large ramp rates. However, since we also observe signals in panels b.

and c., energy is still transferred to resonators B and C. We can conclude that the system has

not yet fully arrived at diabatic behavior and still resides in a transition region. Moving to

extremely high ramp rates over (ζ/2π)−1 ≈ 10µs/kHz, we eventually reach a regime in which the

eigenfrequency tuning mechanism breaks down and ΩA can no longer be tuned upwards to cross

the other resonator’s eigenfrequencies. Subsequently, we observe a simple exponential decay of

the energy stored in resonator A and no transfer of energy to the other strings. This breakdown

is attributed to the bandwidth of the higher order mode, limiting the Duffing oscillator’s ability

to perform high amplitude oscillations long enough for the frequency shift to take effect (cf. Ref.

[105]). Since no crossings can be provoked without the tuning of the resonators frequency, this

presents an upper limit for the investigated ramp rates. Consequently, in order to gain access

to even higher ramp rates and fully explore the diabatic transition regime, the bandwidth of

the auxiliary mode employed for tuning has to be reduced, e.g. by special mode engineering

[156, 157].

By numerically solving14 the time-dependent, coupled equations of motion as derived in Sec. 8.2.2,

we can subsequently model the transition behavior of our three-resonator network without the

need for any free fit parameters, as demonstrated in Fig. 11.13d-f. Aside from the high-rate limit

of the tuning mechanism that is not considered in the mathematical model, the calculation is

able to quantitatively reproduce all of the experimentally observed features, including the small,

interference-like patterns, that become visible around the crossings (see e.g. the area between

the crossings in panel b.) and can be explained by Rabi-like population oscillations in the network.

In conclusion, the employed sequence is capable of performing coherent transfer of excita-

tions from one nanostring in a Tri resonator network to another and even a partial transfer to

both mechanically coupled nanostrings, depending on the chosen frequency ramp rate.

14A sketch of the numerical calculation algorithm is found in App. A.10
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11.3.3 Landau-Zener Transitions in Inline Resonator Networks

Next, we proceed by performing an identical, classical Landau-Zener experiment on an Inline

nanostring network. Recalling that the resonators A and C are not coupled in this network

design, we choose the investigated network to fulfill Ω0
B < Ω0

A < Ω0
C, since this will allow us the

investigation of two successive avoided crossings in one tuning sequence. To clarify the dynamics

of the measurement, we present the level scheme of the investigated network in Fig. 11.14. In
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Figure 11.14: Level scheme of the Inline nanostring network investigated in the following section as a function of

the measurement time t. Shown are the resonance frequencies ΩA,B,C of the three corresponding

resonators (see inset). ΩB is tuned upwards, eventually crossing the frequencies ΩA and ΩC for

times tc,A and tc,C respectively. For finite inter-resonator coupling, avoided crossings will form and

allow the transfer of excitation between resonators. For clarity, we neglect the coupling in this

illustration and do not consider the hybridization of modes.

this case resonator B is excited by the initialization pulse and tuned upwards by the tuning

mechanism so that ΩB will eventually become resonant with ΩA and subsequently ΩC. The

resulting measurement data, tracking the nanostrings’ displacement over the course of the

Landau-Zener sequence for different ramp rates ζ, is presented in Fig. 11.13a-c.

We proceed as above and first investigate the case of slow ramping rates, i.e. (ζ/2π)−1 >

30µs/kHz. Examining panel b., which shows the measured displacement of resonators A, we

can clearly identify the appearance of a. measurement signal as soon as the t exceeds tc,A

(first dashed line), i.e. the calculated time of the avoided crossing between resonators B and

A. Similar observations can be made in panel c, i.e. the displacement of resonator C, where

a signal becomes visible only above the second dashed line, indicating the relevant crossing.

This confirms that a transfer of excitations at the avoided crossings is performed. However,

upon examination of the measured displacement of resonator B (panel a.), we find no visually

discernible loss of energy in the area of the predicted crossing times, even for extremely slow ramp

rates (i.e. (ζ/2π)−1 > 130µs/kHz. Instead the signal shows a simple exponential decay. We

attribute this to the significantly weaker inter-resonator coupling rate that was experimentally

determined in this type of network (see Sec. 11.2.2). Due to the lower coupling strength, the

energy transferred from resonator B to the resonators A and C at the avoided crossing appears

to be small enough for its absence to not be visually discernibly in the colorcode. Nonethe-

less, we proceed to investigate the characteristic features of Landau-Zener experiments. For

ramp rates (ζ/2π)−1 < 30µs/kHz, we can identify features that point towards an increasingly

diabatic passage. In particular, the displacement in panel b. can be seen to drop below the
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Figure 11.15: a-c. Experimentally observed squared displacement amplitude of the fundamental mode of resonator

B, A and C, respectively, in a Inline network (shown in the lower right) as a function of auxiliary

frequency ramp rate ζ and time t. The signal voltages used for this measurement are Up = 125 mVrms

and UAWG ≈ 7 Vrms. d-f. Model calculation for the squared displacement amplitude of resonators

B, A and C, respectively, based on numerically solving the three time-dependent, coupled equations

of motion presented in Sec. 8.2.2. a-f. The dashed cyan lines indicate calculated crossing times for

which ΩB is resonant with ΩA (lower line) and ΩC (upper line). Due to the small inter-resonator

coupling rates, the amount of transferred energy is comparatively low, leading to noisy measurements

that do not resolve smaller features. Still, we observe good agreement between experimental data

and model predictions.

detection threshold earlier as we move to faster ramp rates. In particular, take note of the

disappearance of the red color at around 7 ms for (ζ/2π)−1 = 20µs/kHz, while for slightly higher

rates the decay can be visually tracked over the full measurement duration. For ramp rates

(ζ/2π)−1 < 10µs/kHz, the signal vanishes entirely from panels b. and c., signaling that we

once again encountered the limit of the eigenfrequency tuning technique and no more crossings

are induced. Notably, the breakdown appears more prominently in this measurement. This

can be explained by the larger frequency range (80 kHz compared to 50 kHz in the previous

measurement) which ΩB needs to traverse in order to reach the eigenfrequencies of the other

resonators. Therefore, using the same ramp times τ , we accessed higher ramp rates ζ in this

measurement. Lastly, the comparison of the experimental data with the theoretical model (see

Sec. 8.2.2 and App. A.10) presented in Fig. 11.13d-f shows reasonably good agreement. However,

the small amplitudes observed on nanostrings A and C suffer from a low signal-to-noise ratio

and can only partially resolve the small, oscillatory features predicted by the model.

In summary, even though the low inter-resonator coupling rate does not allow for truly adiabatic
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transport of excitations in this particular sample, Landau-Zener transition dynamics between all

coupled nanostrings in the Inline network have been successfully demonstrated. It seems highly

plausible that with comparatively simple changes to the geometry of the network (e.g. smaller

shared support area) the inter-resonator coupling rates could be enhanced, bringing the network

deeper into the strong coupling regime and towards similar performance to the investigated Tri

network design, regarding the coherent transfer of excitations.

It should be noted that an interesting research application for the Inline resonator design

would be the investigation of mechanical analogues to more complex adiabatic passage phe-

nomena. In particular, stimulated Raman adiabatic passage (STIRAP) [158] and coherent

tunneling adiabatic passage (CTAP) [159, 160] are concerned with population transfer between

two uncoupled states by coupling them via an intermediate state. A natural mechanical analogue

would be the transfer of phonons from resonator A to resonator C in Inline nanostring networks.

Unfortunately, in the sample shown in this section, frequency crowding prevented the necessary

tuning operations to bring resonators A and C on resonance, rendering an investigation of

this topic challenging. However, with a suitable sample, nanostring networks might be viable

candidates to explore the possibility of a phononic analogue to STIRAP.

11.3.4 Controlling Transition Dynamics in Resonator Networks

Having successfully demonstrated coherent excitation transfer in multi-resonator networks, we

want to conclude the examination of transition dynamics by performing a proof-of-principle

experiment, showcasing the possibility for the transfer protocol to be improved towards truly tar-

geted transfer of phonons. In particular, we show the stability of the protocol against additional

eigenfrequency tuning operations, allowing for flexible configuration of the avoided crossings in
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Figure 11.16: Level schemes of the investigated Tri (Series A) network over the course of two different Landau-

Zener measurements. a. Level scheme for the off resonance case. Prior to t = 0 an initialization

operation (init.) is performed to increase ΩC. In the measurement (data acq.) ΩA is tuned upwards

and the crossing times tc,B and tc,C are well separated. b. Level scheme for the on resonance

case. In a initialization sequence (init.) prior to t = 0, ΩB is increased to a level close to ΩC,

where the two modes already hybridize (not shown). In the measurement (data acq.) ΩA is tuned

upwards and passes through ΩB and ΩC at very similar times tc,B ≈ tc,C. a-b. In both illustrations,

inter-resonator coupling and the hybridization of modes is neglected.
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the network. To this end, we perform to slightly different Landau-Zener type measurements on

the exact same network that has been investigated in Sec. 11.3.2. The performed Landau-Zener

sequences are completely identical, but an additional initialization operation is performed prior

to the acquisition of data, altering the eigenfrequencies of certain resonators in the network.

The corresponding level schemes are illustrated in Fig. 11.16. In panel a., we show the level

scheme for the off resonance measurement run. In the initialization operation, an additional

auxiliary drive signal is employed to tune ΩC upwards leaving the resonators B and C far off

resonance. Therefore, in the main measurement, the two crossings passed by ΩA are widely

separated in time and frequency. Conversely, the level scheme for the on resonance measurement

run is shown in panel b. In the initialization sequence prior to the measurement, ΩB is increased

by an auxiliary drive such that ΩB ≈ ΩC and the two modes begin to hybridize (not shown in

the illustration). In the main measurement, ΩA then passes through both frequencies almost

simultaneously. It should be pointed out that, after initialization, the employed auxiliary signal

needs to be remain enabled and constant throughout the main measurement, as the resonance

frequencies would otherwise revert back to their initial values.
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Figure 11.17: Experimentally observed squared displacement amplitude of the fundamental mode of resonators A,

B and C as a function of auxiliary frequency ramp rate ζ and time t for two different experimental runs.

Prior to each measurement, certain resonance frequencies have been initialized to new levels by an

auxiliary drive with Uaux ≈ 5 Vrms (see Fig. 11.16). a-c. shows data of a off-resonant measurement,

for which ΩB and ΩC were tuned far apart. d-f. shows data of a on resonance measurement,

for which ΩB and ΩC have been initialized to be close to resonance. a-f. All measurements are

performed in the same Tri (Series A) network previously investigated in Sec. 11.3.2 with an identical

Landau-Zener sequence and the same signal voltages Up = 70 mVrms and UAWG ≈ 4.5 Vrms. The

dashed cyan lines indicate calculated crossing times for which ΩA is resonant with ΩB (lower line)

and ΩC (upper line).
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The experimental results for both measurements are presented in Fig. 11.17. Comparing

the acquired data between the two different measurement, it can be seen that the position of the

avoided crossings is significantly influenced by the initialization operations. For example, in the

off resonant case shown in panel a., we clearly find the influence of two distinct crossings along

with a transfer of energy, as the displacement of resonator A significantly decreases at each of the

calculated crossing times (dashed lines). In the on resonance measurement data of the same res-

onator (panel d.) on the other hand, the influence effect of the individual crossings can no longer

be visually separated. Instead we find the signal to vanish almost completely as soon the first

crossing is reached. This indicates an almost simultaneous transfer of a majority of the energy in

resonator A to both of the crossed resonators. Notably, characteristic features of Landau-Zener

measurements are still found in both measurements, i.e. the adiabatic or diabatic passage through

the crossings depending on the ramp rate. The expected dependency is clearly visible in panels a.

and d. However, since these features were already discussed in Sec. 11.13 based on a measurement

of the exact same network, we will not perform an in-depth analysis at this point. It should be

noted that the main goal of this proof-of-principle experiment was successfully accomplished.

We demonstrated that the eigenfrequency tuning mechanism can not only be used to perform

coherent transfer of excitations via Landau-Zener sequences, but can also be used to initialize

the system in a desired state prior to the measurement. Notably, this opens up the possibility of

targeted excitation transfer between arbitrary resonators in the network. For example, the most

challenging process in the investigated network is a direct transport of energy from resonator A

to resonator C without affecting resonator B. By tuning the eigenfrequency of resonator B, ΩB,

to exceed ΩC, this can be accomplished by a simple adiabatic ramp of ΩA. Unfortunately this

particular sequence could not be performed in the investigated sample due to frequency crowding.

Note that an equivalent protocol to accomplish an adiabatic excitation transfer from resonator A

to C would be to first increase ΩA very rapidly to (diabatically) transition ΩB and subsequently

perform a slower, adiabatic transition across ΩC, thus transferring the excitation to resonator C

while leaving resonator B undisturbed. However, as discussed previously, this would require a

reduction of the auxiliary mode bandwith in order to gain access to the fast frequency ramp

rates necessary for truly diabatic transitions.

We conclude that the demonstrated control of resonance frequencies during execution of the

Landau-Zener protocol is a valuable step towards the goal of universal, targeted excitation

transfer in mechanical resonator networks, which remains, at the time, primarily limited by

frequency-crowding effects.
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Summary

Throughout the second part of this thesis, we investigated and characterized the interaction of

multiple high-Q nanostring resonators which are mechanically coupled to form a multi-resonator

network. We designed three distinct resonator network geometries and adapted the established

fabrication process to reliably produce the structures from thin, tensile stressed Si3N4 films.

In optical interferometry measurements, we characterized individual nanostrings within different

network geometries regarding their quality factors and material parameters. The resulting

parameters proved consistent with literature values and confirmed the excellent quality fac-

tors expected of Si3N4 nanostring resonators. Subsequently, we evaluated the capabilities of

the recently introduced, mechanical eigenfrequency tuning technique based on the geometric

non-linearity of nanostrings. We demonstrated simultaneous and individual control of the

eigenfrequencies of up to three resonators in the same network without requiring local control

gates. In the next step, the inter-resonator coupling rates between individual nanostrings in

the same multi-resonator network were quantified. Strong coupling was observed in all of the

investigated samples and a significant influence of the network geometry on the coupling rates

was found. Consequently, several geometric parameters were identified which can be used to

manipulate specific inter-resonator coupling rates at the design stage.

In addition, we investigated the formation of mechanical dark-modes in a system of three strongly

coupled nanostring resonators. Mechanical dark-modes represent an interesting quantum-classical

analogue to electromagnetically induced transparency and coherent population trapping. We

successfully prompted the formation of a mechanical dark mode and quantitatively analyzed

the experimentally observed behavior. The vanishing displacement of one of the nanostrings

and the dispersion of the underlying hybridized modes could be accurately replicated by a

mathematical model derived directly from the classical equations of motion. Subsequently, the

physical distribution of the dark-mode across the resonator network was visualized by FEM

simulations. Finally, we explored transition dynamics within nanostring resonator networks

by performing Landau-Zener-type experiments. We successfully demonstrated the controlled

transfer of excitations between coupled nanostring resonators and presented a mathematical

model that quantitatively describes the dynamics of mechanical Landau-Zener transitions. In
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addition, we performed a proof-of-principle experiment opening the possibility to extend the

employed transfer protocol towards truly targeted transfer of phonons in larger multi-resonator

networks.

In conclusion, we have realized three different designs of nanostring resonator networks and

demonstrated strong inter-resonator coupling, all-mechanical eigenfrequency control of individual

resonators and the coherent transfer of phonons within the network.
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Conclusion and Outlook

Concluding the thesis is a brief summary of the results achieved within and an outlook on the

next steps and long-term perspectives:

We successfully established a fabrication process for the magneto-mechanical hybrid systems

designed in the first part of the thesis. Unfortunately, due to an unstable sample material and

the breakdown of an important measurement setup, no in-depth evaluation could be performed

regarding the suitability of the new platform for the investigation of magnon-phonon coupling.

Consequently, in a next step, the sample material should be replaced with a thicker Si3N4 or

Si layer. The resulting samples can then be examined in micro-focused BLS spectroscopy

measurements, testing the existence of a complete phononic band gap and the localization of

GHz-frequency phonons. Notably, the magnon-modes exhibited by the samples fabricated for

this thesis were found to be significantly affected by the finite size of the phonon-engineered

structures. Therefore, for the design of any future hybrid systems, it will be crucial to perform

coordinated simulations of phononic and magnonic modes, using micromagnetical simulations

[73, 95] in combination with the techniques for phonon engineering described in this thesis. It

should then be possible to tune magnon modes on resonance with the localized phonon mode

and study the effects of resonant magnon-phonon coupling. Given favorable results, a next step

could be to cool down the system to mK temperatures and investigate the interaction in the

quantum limit.

In the long term, it would further be conceivable to move towards more complex magnetic

material systems in order to gain even more control over the magnon modes, a process that

has been already demonstrated for periodic lattices of magnetic materials, forming magnonic

crystals [161–164]. It has to be seen whether the concept can be combined with phononic

crystals. However, should it be possible to simultaneously localize magnon- and phonon modes

to the same crystal structure, this would represent a new class of magnetomechanical crystals,

promising a similarly wide range of applications as their optomechanical counterparts.

The nanomechanical multi-resonator networks fabricated in the second part of the thesis were

shown to fulfill all three of the requirements formulated at the beginning of this work: We

demonstrated strong coupling rates, an all-mechanical eigenfrequency tuning technique, and a

protocol to perform controlled transfer of excitations. Moreover, every one of these experimen-

tally observed features could be quantitatively described by a mathematical model. As such, the
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Chapter 12 Summary

fabricated networks fulfill three essential requirements for applications towards the mechanical

simulation of fundamental quantum mechanics [101, 104] as well as phonon-based quantum

information processing [107–109] and storage [110–112]. In a next step, special attention should

be given to the issue of frequency crowding, which currently poses limits on the ability to perform

truly targeted transfer of excitations between all resonators in larger networks. If the design

and fabrication process of nanostrings can be improved to produce more predictable resonance

frequencies, networks could be more reliably fabricated to exhibit a desired distribution of

modes. Subsequently, more complex phonon transfer protocols could be realized as alluded in

the final proof-of-principle experiment. In particular, due to its geometry, the Inline network

appears to be an intuitive candidate for experiments towards a phononic analogue to stimulated

Raman adiabatic passage (STIRAP) [158] and coherent tunneling adiabatic passage (CTAP)

[159, 160]. Another interesting long-term perspective is to investigate nanomechanical resonators

or resonator-networks close to their quantum mechanical ground state [110]. With resonance

frequencies in the MHz regime, this can not be solely achieved by a cooldown of the system

to mK temperatures. The ground state cooling of MHz modes was realized by coupling of

mechanical resonators to a microwave- or optical cavity [26]. However, the high oscillation

amplitudes of harmonic modes essential for the eigenfrequency tuning technique can potentially

pose additional challenges when moving towards lower temperatures. Before experiments in the

quantum limit can be approached, it will be crucial to determine whether mode-mode coupling

between the fundamental and the higher harmonic modes could counteract attempts to cool the

fundamental mode to its ground state.
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Appendix

A.1 Derivative Divide

In Chapter 5, we display and fit the transmission spectra of FMR measurements in the form of

its derivative divide as introduced in Ref. [88]. The corresponding expression is

∂DS21 = −iωA′χ(ω + ∆ωmod)− χ(ω −∆ωmod)
2∆ωmod

(A.1)

with the angular probe frequency ω = 2πf , an amplitude factor A′ and a variable step size

∆ωmod for the numeric computation. Furthermore, χ is the magnetic susceptibility

χ(ω,H0) = γµ0|M |(γµ0H0 − i∆ω)
(ωres(H0))2 − ω2 − iω∆ω (A.2)

using H0 =
∣∣∣ ~H0

∣∣∣ as static magnetic field and the gyromagnetic ratio γ. This allows us to extract

the angular resonance frequency ωres and the linewidth ∆ω. It should be noted that the simple

dependence of χ on H0 holds only for neglected magnetic anisotropy. For more information

please refer directly to Ref. [88].

A.2 Complex Lorentzian Fit Model

Theoretically, the response spectrum of a nanostring resonator, i.e. its squared displacement

amplitude |x0|2(Ω) in response to the angular frequency Ω is given by a Lorentzian lineshape of

according to Eq. 8.3. In experiments however, one regularly observes deviations from theory, e.g.

an asymmetric lineshape, which can be caused by impedance mismatches or other effects in the

readout electronics. Many of these effects can be compensated by employing a slightly altered

lineshape to fit the data.

In particular, we assume a complex background ic1 added to the measured signal, resulting in a

modified Lorentzian lineshape of

Smeas(Ω) = a

∣∣∣∣ic1 + Γ
i(Ω− Ωm) + Γm/2

∣∣∣∣2 + c2. (A.3)
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Here Smeas ∝ |x0|2 is the measurement signal proportional to the squared displacement of the

string, Ωm and Γm the extracted resonance frequency and linewidth respectively. Further a is

an amplitude factor and c2 a correction term for a real background.

Throughout this thesis we use Eq. A.3 for all fits of nanostring resonance frequencies. Note

that the fitting model is based on a similar treatment for microwave transmission measurements

found in Ref. [118].

A.3 Linear Chain of Masses

Mnmn mn+1 Mn+1Mn-1mn-1

a

vnun un+1 vn+1vn-1un-1

Figure A.1: A linear chain of alternating masses m and M which are connected by springs with a fixed, identical

spring constant κ. We denote the displacement of atoms mn by un and the displacement of atoms

Mn by vn. The equilibrium distance between two identical masses is a.

Here, we derive the dispersion relation of a linear chain of alternating masses m and M on

springs, as illustrated in Fig. A.1. In this simple model, we only consider the motion along

the chain, i.e. in one dimension and assume that all masses are coupled by identical springs

with a fixed spring constant κ. We further assume only nearest-neighbour coupling. With the

expressions for the displacement of the masses from the illustration, we can write the equations

of motions of the masses mn and Mn [48]

mün = κ(vn − un) + κ(vn−1 − un)
Mv̈n = κ(un − vn) + κ(un+1 − vn)

(A.4)

reducing to

mün = κ(vn + vn−1 − 2un)
Mv̈n = κ(un+1 + un − 2vn).

(A.5)

We use the periodicity of the chain and assume plane wave solutions of the form un = uei(nkxa−ωt)

and vn = vei(vkxa−ωt), resulting in

−ω2mu = κv(1 + e−ikxa)− 2κu
−ω2Mv = κu(eikxa + 1)− 2κv.

(A.6)

We can rewrite the expressions into the determinant form of an eigenvalue equation∣∣∣∣∣ 2κ−mω2 −κ(1 + eikxa)
−κ(1 + eikxa) 2κ−Mω2

∣∣∣∣∣ = 0 (A.7)
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which becomes

mMω4 − 2κ(m+M)ω2 + 2κ2(1− cos(kxa)) = 0. (A.8)

Solving Eq. A.8 for ω2 results in two solutions

ω2
±(kx) = κ

mM

[
m+M ±

√
(m+M)2 − 4mMsin2qa

]
. (A.9)

Notably, for m ,M the two solutions for the dispersion ω2
+(kx) and ω2

−(kx) split up, forming

two separated bands in the phononic bandstructure, which are drawn in Fig. 2.1.

A.4 Fabrication Processes

A.4.1 Zipper Resonator

The following is a detailed fabrication sequence for a Si3N4/Co double-layer zipper resonator

surrounded by a Si3N4/Co phononic shield. The essential steps are summarized and illustrated

in Sec. 4.1.

1. Clean new Si/SiO2/Si3N4 chip by ultrasonic bath in technical acetone for 2 minutes, rinse

in acetone and IPA, dry with N2, briefly bake at 200°C.

2. Coat chip with positive EBL resist PMMA/MA(33%). Spin-coat for 60s at 4000RPM.

Bake at 170°C for 2 minutes.

3. Define markers for alignment of subsequent steps by EBL process. 10x10µm2 squares

(mpsquare) work. Exposure dose 6.5 C/m2.

4. Develop 2 minutes in AR 600-56 under constant motion, rinse 2x in IPA, dry with N2.

5. Evaporate Ti(4nm)/Au(24nm) onto sample.

6. Lift off resist layer along with excess evaporated material in warm (70°C) acetone. After

20-30 minutes, remove dissolved material and transfer sample to new beaker. Repeat until

resist layer is gone, rinse in acetone and IPA, dry with N2.

7. Coat chip with positive EBL resist PMMA/MA(33%). See step 2.

8. Define zipper layout by EBL process. Exposure dose 4.55 C/m2. Use slowest, most accurate

database!

9. Develop resist as in step 4.

10. Evaporate Cobalt (20nm) layer onto sample.

11. Lift off resist layer, see step 6. If the Cobalt proves hard to remove, use dedicated remover

(e.g. mr-rem700) instead of acetone and increase time between switching of beakers (> 30

min).

12. Coat chip with positive EBL resist PMMA/MA(33%). See step 2.
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13. Define negative shape of phononic shield, including the zipper, as etch mask by EBL

process. Exposure dose 5.2 C/m2 for shield, 4.55 C/m2 for zipper. Use slowest, most

accurate database!

14. Develop resist as in step 4.

15. Load sample to RIE and run job TL NanomechanicsAnisotropic (SF6=20, Ar=10, RF

Power=100W, ICP=30W, pressure=15, time=2min20s).

16. Wet etch sample in buffered hydrofluoric acid (BHF) solution (3%) at room temperature.

At least 5 minutes are necessary for a freely suspended structure. Terminate in H2O,

transfer through several ethanol baths and keep sample submerged.

17. Dry sample in CPD. 25 cycles, slowest gas exchange rate.

A.4.2 Double-Layer Phononic Shields

The following is a detailed fabrication sequence for a Si3N4/Co double-layer phononic shield

structure. The essential steps are summarized and illustrated in Sec. 4.2.

1. Clean new Si/SiO2/Si3N4 chip by ultrasonic bath in technical acetone for 2 minutes, rinse

in acetone and IPA, dry with N2, briefly bake at 200°C.

2. Coat chip with negative EBL resist ma-N 2403. Spin-coat for 60s at 4000RPM. Bake at

90°C for 1 minute.

3. Define negative phononic shield structure by EBL process. Exposure dose 1.54 C/m2. If

Cobalt on the remainder of the chip is not wanted, expose complete chip in second EBL

step.

4. Develop in ma-D 525: Wait 30s, briefly shake sample, wait another 30s (total: 1min).

5. Evaporate Cobalt layer of desired thickness plus ≈ 30 nm to compensate loss during wet

etching. BHF attacks Co at roughly 30 nm per 5 minutes.

6. Lift off resist layer along with excess evaporated material in warm (70°C) acetone. After

20-30 minutes, remove dissolved material and transfer sample to new beaker. Repeat until

resist layer is gone, rinse in acetone and IPA, dry with N2. If the Cobalt proves hard to

remove, use dedicated remover (e.g. mr-rem700) instead of acetone and increase time

between switching of beakers (> 30 min).

7. Load sample to RIE and run TL NanomechanicsAnisotropic (SF6=20, Ar=10, RF Power=100W,

ICP=30W, pressure=15, time=2min20s).

8. Wet etch sample in BHF solution (3%) at room temperature. 5-6 minutes are necessary

for a freely suspended structure. Terminate in H2O, transfer through several ethanol baths

and keep sample submerged.

9. Dry sample in CPD. 25 cycles, slowest gas exchange rate. 40°C.
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A.5 Interferometry Setup
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Figure A.2: Illustration of the homodyne, optical interferometry setup used for measuring a nanostring resonator’s

oscillatory motion.

Figure A.2 shows a complete illustration of the homodyne, optical interferometry setup used

for the measurement of nanostring displacement in this thesis. A full description of the setup

and the detection principle can be found in Ref. [146].

A.6 Frequency Crowding

Due to the global application of drive signals in the eigenfrequency tuning technique (see

Sec. 8.3.2), the protocol can be adversely affected by mode-mode cross-talk, i.e the overlap in the

drive frequency range of different resonators, also called frequency crowding [149]. Cross-Talk

can lead to the unintentional tuning of multiple resonators with one drive signal. This problem

can be avoided as long as the higher harmonics of the network’s resonators are sufficiently

separated in frequency. In the following we want to present an example of a three-nanostring

network that fulfills these conditions and is thus unaffected by frequency crowding. Note that a

similar discussion of this example system can be found in the supplementary material to Ref.

[105]. The level scheme of the network is illustrated in Fig. A.3. It consists of three nanostrings
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with the fundamental mode frequencies ΩA < ΩB < ΩC and the second harmonic frequencies

ΩC,n=2 < ΩA,n=2 < ΩB,n=2.

> 3(ΩC−ΩA)

Ω

ΩA

ΩB

ΩC

ΩB,n=2

ΩA,n=2

ΩC,n=2

Figure A.3: Exemplary level scheme of an ideally designed three-nanostring network, highlighting the importance

of sufficient spacing of the higher harmonics to avoid unintended tuning effects. The figure is redrawn

based on Ref. [105].

In order to perform excitation transfer between resonators A and C, their fundamental modes

have to be tuned on resonance. Recalling Sec. 8.3.2 and in particular Eq. 8.47, it becomes clear

that an auxiliary drive would have to be swept from ΩA,n=2 to ΩA,n=2 + 3(ΩA −ΩC) in order to

increase ΩA up to the level of ΩC. Therefore, any higher order mode above ΩA,n=2 (in this case

ΩB,n=2) has to adhere to ΩB,n=2 − ΩA,n=2 > 3(ΩA − ΩC), otherwise ΩB will be tuned by the

same drive signal. With these conditions fulfilled, ΩA can be tuned in resonance with ΩB as well

as ΩC. Due to correct ordering of frequencies, ΩB is also freely tunable towards ΩC, allowing

for every possible interaction in the network. Note that, even though these requirements can

be considered at the design stage, the fabrication process leads to a degree of variance in the

resonance frequencies and post-selection of fabricated resonator networks is required.
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A.7 Additional Inter-Resonator Coupling Data

In this section, we present additional data that was used to extract the inter-resonator coupling

rates from the mode-splitting of hybridized modes in coupled resonator systems. The correspond-

ing measurements, along with a description of the fitting process can be found in Sec. 11.2.2,

while the theory of avoided crossings is discussed in Sec. 8.1.2.
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(red) and upper (blue) branch of the first

avoided crossing shown in Fig. 11.6 at

nseq ≈ 31, involving resonators B and C.

The data is extracted from the individ-

ual spectra as described in Sec. 11.2.2.

The minimal mode-splitting is found

at nseq,detail,BC = 64 to be gAC/2π =
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Figure A.5: Fitted resonance frequencies of the lower

(red) and upper (blue) branch of the third

avoided crossing shown in Fig. 11.6 at

nseq ≈ 58, involving resonators A and B.

The data is extracted from the individ-

ual spectra as described in Sec. 11.2.2.

The minimal mode-splitting is found

at nseq,detail,AB = 63 to be gAC/2π =
1281 Hz.

A.7.2 Inline Network
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Figure A.6: Fitted resonance frequencies of the lower (red) and upper (blue) branch of the third avoided crossing

shown in Fig. 11.8 at nseq ≈ 58, involving resonators B and C. The data is extracted from the individual

spectra as described in Sec. 11.2.2. The minimal mode-splitting is found at nseq,detail,BC = 14 to be

gAC/2π = 207 Hz.
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A.8 Drive-Dependent Hybridized Modes

Here, we will briefly demonstrate how the hybridized eigenfrequencies of a coupled three-

nanostring network can be calculated in dependence to an applied auxiliary drive signal.

We recall Eq. 8.15:

− Ω2M~x0 = K~x0, (A.10)

with the stiffness and mass matrices K and M as in Eq. 8.14. As we are considering a three-

nanostring network, K and M are 3x3 matrices. We invert the positive definite matrix M and

write the eigenvalue equation as

Ω2~x0 =

 Ω̃2
A −kAB/mA −kAC/mA

−kAB/mB Ω̃2
B −kBC/mB

−kAC/mC −kBC/mC Ω̃2
C

~x0 (A.11)

using the undisturbed resonance frequencies Ω̃i =
√
kii/mi and masses mi of the resonators

i ∈ (A,B,C). Using the experimentally determined stiffness matrix (e.g. Eq. 11.1), this generalized

eigenvalue problem can already be numerically solved.

However, we now need to consider the effect of an eigenfrequency tuning sequence (see Sec. 8.3.2)

with an auxiliary drive signal Ωaux
A . Without loss of generality we assume the eigenfrequency of

resonator A to be tuned, its eigenfrequency Ω̃A is thus altered from its initial value Ω̃0
A according

to Eq. 8.47. In particular

Ω̃A(Ωaux
A ) = Ω̃0

A + 2
3

Ωaux
A − ΩA,n=2

ΩA,n=2
Ω̃0

A, (A.12)

assuming that the tuning sequence is performed with the second harmonic mode ΩA,n=2.

Finally, Eq. A.11 can be solved numerically (e.g. via the Eigenvalues method in Mathematica)

for arbitrary drive signals Ωaux
A . The eigenvalues of the equation are the squares of the three

hybridized mode frequencies, i.e. Ω2
A,B,C.

Note that additional tuning sequences can be incorporated analogously, e.g. by including

a second variable frequency Ω̃B(Ωaux
B ). Furthermore, the calculation can be easily extended

towards any number of coupled resonators.

A.9 Numerically Calculated Mode Displacement

Here, we present the mathematical model and a sketch of the numeric calculation algorithm

used to calculate the displacement of any or all nanostrings in a coupled resonator network

in response to an arbitrary drive frequency. Model calculations performed in this manner are

shown in Fig. 11.9.
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We begin with the equations of motion for the three coupled resonators shown in Eqs. 8.24-8.26:

mAẍA +mAΓAẋA + κAAxA = κAB(xB − xA) + κAC(xC − xA) + Fdrive

mBẍB +mBΓBẋB + κBBxB = κAB(xA − xB) + κBC(xC − xB) + Fdrive

mCẍC +mCΓCẋC + κCCxC = κAC(xA − xC) + κBC(xB − xC) + Fdrive

(A.13)

We are searching for the response of a specific string (w.l.o.g. nanostring A) to a externally

applied driving force Fdrive(t) = F0 exp(iΩpt), where Ωp can be arbitrarily chosen. As we are deal-

ing with almost identical nanostrings, we will set ΓA = ΓB = ΓC ≡ Γ and mA = mB = mC ≡ m.

Using an ansatz of the form xm(t) = x0cm(t) exp(iΩpt) (m = A,B,C) we find solutions for

the amplitude coefficients cm(t) with |cA|2 + |cB|2 + |cC|2 = 1. As in Sec. 8.2.2, we neglect the

second derivatives c̈m(t) and obtain

(2iΩp + Γ)ċA + (Ω̃A2− Ω2
p + iΩpΓ)cA = κAB

m
cB + κAC

m
cC + F0

mx0

(2iΩp + Γ)ċB + (Ω̃B2− Ω2
p + iΩpΓ)cB = κAB

m
cA + κBC

m
cC + F0

mx0

(2iΩp + Γ)ċC + (Ω̃C2− Ω2
p + iΩpΓ)cC = κAC

m
cA + κBC

m
cB + F0

mx0
,

(A.14)

where we used the undisturbed resonance frequencies Ω̃i =
√
kii/mi of the resonators i ∈ (A,B,C).

The system of coupled differential equations in Eq. A.14 can now be numerically solved (e.g.

by Mathematica’s NDSolve) for cA(t) using the initial values cA(0) = cB(0) = cC(0) = 0.

Subsequently we can integrate the coefficient over a duration T to obtain a value proportional

to the displacement. In particular

|xnum
A |2 =

∫ T

0
|cA(t)|2dt ∝ |xA|2. (A.15)

Since the amplitude of the drive force F0 is independent of time, T should be chosen as short as

possible in order save computation time. However, the timescale of the oscillations need to be

kept small with respect to the simulation time, i.e. T � 2π/Ωp.

In the case discussed in Sec. 11.2.3, the displacement of a nanostring is evaluated along one of

the hybridized modes of the system, i.e. we choose Ωp as the hybridized eigenfrequency. The

hybridized frequencies change over the course of the measurement due to an auxiliary drive Ωaux

and can be calculated as described in App. A.8. We define a pseudo-function Ωhyb
i (Ωaux) that

retrieves the i-th hybridized mode for a given auxiliary drive.

Finally, we sketch the numeric calculation of the amplitude of nanostring A, |xnum
A |2 along

the first hybridized mode (i = 1) in Fig. A.7 as pseudo-code,

As a result one obtains one value |xnum
A |2 for each sweep-point of the measurement, proportional

to the displacement |xA|2 that the resonator exhibits along the investigated hybridized mode

branch.
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while Ωaux < Ωaux
max do . tuning sequence

Ωp ← Ωhyb
1 (Ωaux) . calc. hyb. freq. for drive

xnum
A ←NDSolve[EOMs] . Solve eqs. of motion

return |xnum
A |2 . solution at curr. drive

Ωaux ← (Ωaux + ∆Ωaux) . tuning step
end while

Figure A.7: Pseudo-code for the numerical calculation of the displacement amplitude |xnum
A |2 for an arbitrary

tuning sequence with a drive frequency ranging from Ωaux to Ωaux
max. Note that the NDSolve command

refers to a numerical solution of the system of equations shown in A.14, as described in the text.

Further, the return command signifies only the output or storage of the calculated value, not a

termination of the program.

A.10 Landau-Zener Transitions

Here we will provide a sketch of the numerical calculation algorithm to model Landau-Zener

transitions in multi-nanostring networks. The theory of Landau-Zener transitions is described in

Sec. 8.2.1 and the measurement protocol is presented in Sec. 11.3.1.

The model calculation is based on the solution of the differential equations 8.31-8.33, which we

derived in Sec. 8.2.2. We recall that the Landau-Zener protocol is driven by an auxiliary drive

that leads to a time dependent resonator frequency ΩA(t), which develops according to Eq. 8.27

with a ramp rate of ζ = ∆ΩA + τ . The duration of each Landau-Zener sequence, i.e. the window

of data acquisition is t = 0 . . . tend. Accordingly, ∆t is the time interval at which the model

is evaluated. Sequences are then repeated for varying ramp rates from τstart to τend with ∆τ
being the step-size between investigated ramp rates. The goal is the calculation of the amplitude

coefficients |cA,B,C(t)|2 ∝ |xA,B,C(t)|2, which are proportional to the observable displacement.

Lastly we define Ωτ
A(t) as the current frequency of resonator A, evaluated according to Eq. 8.27

at t for a ramp rate τ.

Note that for the solution of the differential equations The differential equations can be solved

numerically by e.g. the NDSolve method of Mathematica, which we will use in the following. In

particular, we solve Eqs. 8.31-8.33 for cA,B,C(t) using the initial values cA(0) = cB(0) = cC(0) = 0
and performing the calculation up to t = tend. Having defined all necessary expressions, we

present the algorithm for the calculation as pseudo-code in Fig. A.8.

The resulting model calculations are shown in Sec. 11.3 and provide good agreement with

experimental results.
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τ ← τstart

while τ < τend do . sweep ramp rate
t← 0
cτA,B,C ← NDSolve[EOMs] . Solve eqs. of motion
while t < tend do . sweep meas. time

ΩA = Ωτ
A(t)

return |cA,B,C(t)|2 . solution at curr. time and rate
t← (t+ ∆t) . next time-step

end while
τ ← (τ + ∆τ) . next sequence

end while

Figure A.8: Pseudo-code for the numerical calculation of the amplitude coefficients |cA,B,C|2 for a Landau-Zener

transition sequence with duration t = 0 . . . tend, evaluated for ramp rates from τstart to τend. Note

that the NDSolve command refers to a numerical solution of the system Eqs. 8.31-8.33, as described

in the text. Further, the return command signifies only the output or storage of the calculated value,

not a termination of the program.

A.11 Additional Images

Figure A.9: Angled (55°) Scanning Electron Microscopy (SEM) image of a Si3N4/Co double-layer phononic shield

structure after wet etching in buffered hydrofluoric acid (BHF). The image shows a different shield

structure on the same chip as the ones shown in Fig. 4.5. Due to unknown reasons the structure was

damaged. Parts of it consequently collapsed, indicating that it was fully released from the substrate.
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Michael Renger, Christian Besson, Christoph Utschick, Daniel Arweiler, Ulrike Zweck, Mingxing

Xu and Mohammad T. Amawi, for creating a friendly and enjoyable atmosphere as well as

plenty of memorable moments.

All the other Postdocs and PhD students at the WMI, for providing support and advice whenever

needed.

Everyone at the WMI, for creating a pleasant and collegial working atmosphere.

Lastly, I want to thank my family, for the support during my studies, and my friends, for

their unrelenting efforts to establish a hint of work-life-balance.

127


	Introduction
	Magneto-Mechanical Hybrid Systems
	Introduction
	Theory
	Simulations and Sample Design
	Fabrication
	Experimental Results
	Summary

	Nanomechanical Resonator Networks
	Introduction
	Theory
	Fabrication and Sample Design
	Measurement Setup
	Experimental Results
	Summary

	Conclusion and Outlook
	Appendix
	Bibliography




