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Preface

What do you want to be when you grow up? The answer to the inevitable question
everyone asks you when you are a child in my case has always been “a scientist!”
I have always been fascinated by the incredible world of scientific research in all
its possible aspects. As if oftentimes happens, in the beginning I was highly inter-
ested in astronomy. The archetypical questions on the origin of the Universe and
on the mysteries of space had represented the first steps into the development of a
scientific consciousness in many civilizations. Similarly, it seems that such funda-
mental questions have occupied the young minds of many scientists. I remember to
bother my whole family while reading out loud on a beach entire chapters of the
book “L’Astronomia Pratica” by Ronan A. Colin during a summer vacation some
twenty years ago and then, at night, trying to find stars and planets in the Milky
Way looking through my old binocular! Besides the notions learnt at school, my
first serious contact with science took place when my father gave me an issue of the
popular scientific magazine “Le Scienze,” the Italian translation of “Scientific Amer-
ican.” I still jealously keep that issue at home in Italy. The article that attracted
my attention was in the “Mathematical Recreations” column, which, at that time,
was written by the mathematician Ian Stewart. The article dealt with Fermat’s last
theorem. Even if I did not understand a single line on Diophantine equations and
I was mostly interested in the intriguing illustration complementing the article, I
became aware, for the first time, that there were “crazy” people so motivated to
spend their entire life in the search for a mathematical proof!

For their encouragement during my childhood and their continuous support dur-
ing my studies, I would like to thank from the bottom of my heart both my parents,
Carla Olivieri and Dario Mariantoni. My deepest gratitude goes to both of you for
letting me discover with you the wonders of this world, for showing me that mathe-
matics and physics can be fun, and for helping me to pursue my scientific career. In
addition, I would like to thank my teachers of mathematics and physics during my
first two years of “Liceo Scientifico” (grammar school) in Rieti, Italy, Rossella Lau-
retti and Agostino Maiezza, respectively. It is during their lectures that I began to
appreciate the formal aspects of science, which ultimately resides in the axioms and
theorems of mathematics. Also, I indirectly thank Dr. Marco Lombardi, an older
alumnus of my grammar school, who, with his innate ingeniosity in mathematics
and physics, inspired me through the years in grammar school.

With the time my interests shifted more and more from mathematics to physics.
After being trained as an electronic engineer at the Politecnico di Milano, Italy,
a choice which, in retrospective, I definitely do not regret, I eventually arrived to
Chalmers University of Technology, Gothenburg, Sweden. At Chalmers, I joined
the group headed by Prof. Per Delsing and, under his supervision, I worked on my
Master Thesis for about a year. It is in Per’s group that I had my first taste of
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experimental research in physics and where I started to appreciate the beauty of
applied quantum mechanics, a completely new experience after many years spent
only studying books.

For my time at the Politecnico di Milano, I would like to thank Dr. Carlo Oleari,
Prof. Amedeo Premoli, Prof. Carlo Cercignani, Prof. Carlo D. Pagani, and Prof. San-
dro Salsa for giving me the strength and motivation to continue my studies in engi-
neering with their inspirational lectures and for making me understand, with their
tough examinations, that in life there is no gain without pain. For my period at
Chalmers, my deepest thanks go to Prof. Per Delsing, Prof. John Clarke,1 Dr. Alexei
Kalabukov, Dr. Sergey Kubatkin, and Dr. Thilo Bauch for teaching me the rudi-
ments of experimental physics. In addition, I thank Dr. Vitaly S. Shumeiko for
making me aware that a good experimental physicist needs also to be a good theo-
rist! It is during those years at Chalmers that my interest for quantum computing
has grown and, eventually, has brought me to Munich, where I started my Ph.D. the-
sis at the Walther-Meissner-Institut and, jointly, at the Physik-Department of the
Technical University Munich.

The beginning in Munich2 was tough. With all the issues of a new lab to start
up and the inevitable crash between the Italian and German cultures I did not have
an easy life. In the search for the right motivation to bring forward the work on my
Ph.D. thesis, I asked Professor Rudolf Gross, the direct supervisor of my thesis, to
give me a chance to attend the annual March meeting organized by the American
Physical Society in 2004. Professor Gross accepted immediately my request and in
late March I went to Montreal. I vividly remember the series of four talks given by
the Yale group at that meeting and, in particular, the 5.8MHz coupling strength
between a superconducting charge qubit and a resonator shown by Andreas Wallraff.
The field of circuit quantum electrodynamics and its experimental implementation
was born.3 On the plane back to Munich, I could not stop thinking about those
resonators and on the possibility to couple them to flux qubits, our topic of research
at the Walther-Meissner-Institut. The day I got back to the institute, I knocked the
door of Prof. Gross. We went to the whiteboard and started discussing about circuit
quantum electrodynamics and on the possibility to start a project in that direction
in the Munich research area.

I feel extremely lucky that both Prof. Dr. Rudolf Gross and Dr. Achim Marx,
co-supervisor of my Ph.D. thesis, did not object to the possibility of shifting the
line of research of my project from investigating π-Josephson junctions, also a very
challenging research topic, to circuit quantum electrodynamics. It is because of their
trust in my abilities that the adventure to be presented in this thesis had began.
I am indebted to Prof. Gross and Achim for giving me the possibility to join their
research group at the Walther-Meissner-Institut and for allowing me to develop my
own ideas and to pursue them, both in theory and experiments. I am convinced that
in many other laboratories such a pursuit would have not been possible, at least in
the manner and to the extent it has been possible in Munich. The freedom I have
been given at the Walther-Meissner-Institut in searching my own path constitutes
the essence of my Ph.D. work. During the past years, I have learnt the importance
of taking decisions, maintaining promises, aiming to reach a goal. The tutelage I

1Who had visited us in Sweden for a short period and helped me with my project.
2Garching to be precise.
3Theoretically, a relevant body of work already existed.
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received from my advisors has helped my personal improvement and I am convinced
their precious teachings will stand at the basis of my future research projects. I
hope the benefit I have gained from my Munich experience has been reciprocal and
also Rudolf and Achim have taken a positive advantage of it.

I use this occasion also to thank both Achim and Rudolf for investing their time
in reading this fairly long manuscript! Your comments and constructive criticism
has helped me a lot to improve the quality of this work.

Another important step in the development of my Ph.D. work is certainly rep-
resented by the encounter with Prof. Dr. Frank K. Wilhelm. Before moving to the
Institute for Quantum Computing (IQC), Waterloo, Canada, Frank Wilhelm was
leading a small group of very bright students at the Ludwig-Maximilians-Universität
(LMU) in Munich. I soon became a good friend of one of his former students,
Dr. Markus J. Storcz, with whom I started discussing about circuit quantum elec-
trodynamics with superconducting flux qubits and developing architectures for the
coupling of such qubits with on-chip microwave resonators.

It has been my pleasure to work with both FrankWilhelm and Markus. The innu-
merous discussions in Markus’ office have substantially improved my understanding
of the working principles of superconducting qubits and have largely contributed to
create the basis of my knowledge in this field of research.

In late 2004, Axel Kuhn, Pepijn Pinkse, and Prof. Gerhard Rempe organized
at the Ringberg Castle in the south of Bavaria, Germany, a very interesting work-
shop on microcavities in quantum optics. Luckily, I had the possibility to attend
such a workshop, where the most eminent experts in the field of cavity quantum
electrodynamics gave enlightening talks. It is during that workshop that I met
Prof. Dr. Enrique Solano. At that time, Enrique was a postdoctoral fellow in the
groups of Prof. Igacio Cirac and Prof. Herbert Walther at the Max Planck Institute
for Quantum Optics (MPQ), Garching, Germany.4 It did not take more than a
lunch sitting at the same table that Enrique and I started a collaboration which still
continues and, I hope, will continue for a long time to come.

It is hard to find the appropriate adjectives to describe my gratitude to Enrique.
He introduced me to the world of cavity quantum electrodynamics teaching me
literally from scratch the quantum theory of atoms and photons. Enrique has always
been extremely patient with me and has helped me in the good and bad times of my
Ph.D. thesis. He always cheered me up when my mood was down and the work did
not proceed as I wanted it and never stopped believing in my abilities as a physicist
at any time. I still remember the first time he asked me to give him the “four
pages,” that is to write the draft of a manuscript to be submitted to the journal
Physical Review Letters. Those first “four pages” were about the generation and
measurement of microwave single photons. That manuscript was never accepted on
any journal, perhaps for good reasons. However, it constitutes my “primary school”
in circuit quantum electrodynamics. In preparing that manuscript, I learnt how to
write a scientific publication at a professional level and, as painful as it is, I (we)
learnt by my (our) own mistakes that circuit quantum electrodynamics is not as
easy as it might seem and it cannot be regarded as a mere “copy and paste” from
quantum optics. I will never regret to have written that article and I thank again
Enrique for spending an insane amount of time with me to correct our mistakes and
to learn a bit more about the quantum nature of microwave circuits and signals.

4Enrique is now professor at the Universidad del Páıs Vasco, Bilbao, Spain.
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That unpublished article substantially influenced most of the material treated in
this thesis. Finally, I thank Enrique for sharing with me his Machiavellian approach
to life and physics. I could have not asked for a better master than you, Kike!

I would also like to thank Dr. Henning Christ, a former graduate student of
theoretical physics in the group of Prof. Igacio Cirac at the MPQ. I thank Henning
for his valuable help with the development of the codes used for some of the numerical
simulations reported in this thesis, for teaching me many tricks of theoretical physics,
and for investing a considerable amount of time in studying with me, Markus, and
Enrique the basic concepts of circuit quantum electrodynamics. Unfortunately, I
think that both Markus and Henning did not get enough pay back for their time
invested in this field of research. Nevertheless, I hope your professional life will
always be as successful as it is now.

Again in 2004, this time during a workshop which took place in Bad Honnef,
Germany, organized by Markus Storcz, Udo Hartmann, Frank Wilhelm, and Jan
von Delft, I met another physicist who changed my way of interpreting microwave
quantum circuits and signals, Dr. William D. Oliver. Will, who works as a staff
member at the Lincoln Laboratory of the Massachusetts Institute of Technology
(MIT) and as a visiting scientist at the MIT campus in the group led by Prof. Terry
Orlando, has hosted me two times at MIT. The first time was in August/September
2004 and the second time in March 2005. I greatly enjoyed both my visits, during
which I have been exposed to a different approach to physics as compared to the
European way. In addition, Will’s experience has been extremely valuable in im-
proving my understanding of issues such as beam splitting, quantum amplification,
and quantum statistics.

The activity at the Walther-Meissner-Institut was largely boosted by the arrival
of Dr. Frank Deppe5 in late 2005. Frank came with all the experience he gained
during a three-year period at the Nippon Telegraph and Telephone (NTT) corpora-
tion, Japan, where he worked in the group headed by Prof. Hideaki Takayanagi and
Dr. Kouichi Semba. I remember that Frank and I started having deep discussions
about physics already one or two days after his arrival, in occasion of the submission
of the unpublished “four pages” mentioned above. In a few weeks our discussions
became a routine. Frank, I have learnt more from our discussions than reading
a hundred books of physics. One day Frank came to my office with an old data
set from his time in Japan. We looked at the data and thought that there could
have been something particularly interesting hidden in them. It took more than two
years, but we finally managed to publish those results in our first (and only for now!)
Nature Physics paper. I wish that we will both keep publishing many of these kind
of papers and I really hope that we will keep having our discussions, this time via
Skype I assume, for a long time to come. As for Enrique, it is very hard to find the
right words to thank Frank. In the past four years, we have shared our knowledge
about quantum mechanics and qubits, our common interests in understanding what
we are doing in the lab, we have shared good and bad times, accepted and rejected
papers, and, most importantly, we have shared a great friendship which, I hope, we
will continue sharing in the future.

My deepest gratitude goes also to Edwin P. Menzel with whom I carried out most
of the experiments discussed in the first part of this thesis. Edwin has been of great
help for me in the lab and from him I learnt to appreciate the technical aspects

5Still a graduate student at that time.
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of experimental physics, which, indeed, are extremely important for a successful
experiment. We spent many days and nights trying to measure “the cross-over” and
“the nontrivial signals.” It was a lot of fun. Edwin, I have no doubt that you will
become an even better physicist than what you already are!

I would like to thank the entire scientific and technical staff of the Walther-
Meissner-Institut. In particular, the present and former members of the qubit
team: Elisabeth Hoffmann, Georg Wild, Thomas Niemczyk, Fredrik Hocke, Manuel
Schwarz, Alexander Baust, Thomas Weißl, Dr. Hans Hübl and Dr. Andreas Emmert,
Susanne Hofmann, Miguel Á. Araque Caballero, Heribert Knoglinger, Renke Stolle,
Lars Eggenstein, Max Häberlein, Christian Rauch, Karl Madek, Tobias Heimbeck,
Dr. Jürgen Schuler, and Dr. Chiara Coppi.

A special acknowledgement goes to my former officemates Dr. Leonardo Tassini,
Wolfgang Prestel, and Deepak Venkateshvaran as well as to Frank Deppe’s office-
mates (who had to suffer during the many discussions Frank and I had in the past
years) Dr. Michael Lambacher and Toni Helm. I also thank Stephan Geprägs and
Matthias Kath for their help in translating the exercises of the course in solid-state
physics 2004-2005.

I would also like to thank Dr. Kurt Uhlig and two of the permanent guests of the
Walther-Meissner-Institut, Dr. Christian Probst and Dr. Karl Neumaier. Watching
them at work I started to understand what is the “art of cooling.”

I thank Dr. Dietrich Einzel for his help with a few mathematical matters and
Dr. Werner Biberacher for his help with burocracy matters.

I also thank the technicians Robert Müller, Dipl.-Ing. Thomas Brenninger, Hel-
mut Thies, Christian Reichlmeier, Dipl.-Ing. Sepp Höß, and Astrid Habel for their
help in manufacturing and machining components for our experimental setup.

During the years of my Ph.D. work I have visited several institutions. An in-
complete list of people I interacted with in occasion of those visits follows. I would
like to thank all of them. Some of the people mentioned below are now in different
institutions. However, I list them according to the time of my visit.

MPQ, Germany - theory group of Prof. Dr. J. I. Cirac: Dr. Diego Porras,
Dr. Juan José Garćıa-Ripoll (I am glad you are also working on circuit quantum
electrodynamics now), Dr. Géza Giedke, Dr. Michael Wolf, Dr. Norbert Schuch, and
Christine Muschik.

MPQ - experimental group of Prof. Dr. Gerhard Rempe: Jörg Bochmann and
Barbara G. U. Englert. I thank Barbara also for the many discussions about the
shelving project.

Technical University Munich, Germany - group of Prof. Dr. Steffen Glaser:
Dr. Thomas Schulte-Herbrüggen (I always enjoyed our morning discussions on the
09:05 a.m. “tube!”) and Dr. Andreas Spörl.

LMU, Germany - theory group of Prof. Dr. Jan von Delft: Dr. Ferdinand Helmer,
Dr. Florian Marquardt, Johannes Ferber, Dr. Udo Hartmann, Dr. Michael Sindel,
and Dr. Lásló Borda. In particular, I would like to thank Florian Marquardt for
making me part of two of his projects. It has been my pleasure to work with you
Florian. I think you are one of the smartest physicist I have ever met!

LMU - experimental group of Prof. Dr. Jörg P. Kotthaus: Dr. Stefan Ludwig
and Prof. Dr. A. W. Holleitner.

University of Regensburg, Germany - theory group of Prof. Dr. Milena Gri-
foni: Dr. Francesco Nesi. A special acknowledgment goes to Prof. Dr. Jens “Jenzo”
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Siewert with whom I had many fruitful discussions about the basic principles of
superconducting qubits.

University of Augsburg, Germany - theory group of Prof. Dr. Peter Hänggi:
Georg M. Reuther, Dr. David Zueco, Dr. Martijn Wubs, and Prof. Dr. Sigmund
Kohler.

University of Erlangen, Germany - experimental group of Prof. Dr. Alexey V.
Ustinov: Judith Pfeiffer, Dr. Jürgen Lisenfeld, Dr. Alexander Kemp, Dr. Abdufar-
rukh A. Abdumalikov, Jr., Dr. Alexandr Lukashenko, and Prof. Dr. Alexey V. Usti-
nov.

The quantronics group CEA-Saclay, France - experimental group of Prof. Dr.
Daniel Esteve: Agustin Palacios-Laloy, Dr. François Mallet, Dr. Florian R. Ong,
Dr. Patrice Bertet, Dr. Denis Vion, Dr. Cristian Urbina, and Prof. Dr. Daniel Esteve.

École Normale Supérieure, Paris, France - experimental group of Prof. Dr. Serge
Haroche: Prof. Dr. Adrian Lupaşcu, Prof. Dr. Jean-Michel Raimond, Prof. Dr.
Michel Brune, and Prof. Dr. Serge Haroche.

MIT, Boston, USA - experimental group of Prof. Dr. Terry P. Orlando: Dr. Jan-
ice C. Lee, Dr. David M. Berns, Dr. Jonathan L. Habif, Dr. William D. Oliver, and
Prof. Dr. Terry P. Orlando.

University of Southern California, Los Angeles, USA: Dr. Justin F. Schneider-
man, Prof. Dr. Tommaso Roscilde, and Prof. Dr. Stephan Haas.

University of Yale, New Haven, USA - experimental group of Prof. Dr. Robert
J. Schoelkopf: Dr. Johannes Majer, Dr. David I. Schuster, Dr. Luigi Frunzio, and
Prof. Dr. Robert J. Schoelkopf.

IQC and University of Waterloo, Waterloo, Canada: Prof. Dr. Frank K. Wilhelm,
Prof. Dr. Jan B. Kycia, and Prof. Dr. A. Hamed Majedi.
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M. Martinis and Prof. Dr. Andrew N. Cleland: Matthew Neeley, Aaron D. O’Connell,
Radoslaw “Radek” C. Bialczak, Daniel Sank, Dr. Markus Ansmann, Dr. Max
Hofheinz, Dr. Martin Weides, Prof. Dr. Andrew N. Cleland, and Prof. Dr. John
M. Martinis. In particular, I would like to thank John Martinis and Andrew Cle-
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you in Japan one day and perhaps even to work with you!

These years in Munich have not only been physics and work. I have also enjoyed
the culture, the music, the art, and the beauty of a city which ranks as 7th world’s
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top city offering the best quality of life. Most importantly, in Munich I have met my
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you from the bottom of my heart for your love and extreme patience during these
stressing years of hard work. I am sure we will have a wonderful and happy life
together. I will always cherish you and I will try my hardest to take good care of
you.

Matteo Mariantoni, Munich, September 2009 6

6Final revised edition: Fall 2010
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Chapter 1

General Introduction

What is the importance of the interaction between light and matter and what is the
interest in studying it? The answer to the first question lies in front of our eyes,
manifesting itself in that fundamental cycle of nature which repeats itself every day:
the photosynthesis.1 Releasing oxygen as a waste product, the process of photosyn-
thesis is vital for life on Earth. The light emitted by the Sun is absorbed by the
chlorophylls contained in the photosynthetic reaction centers of the plants. Part
of the sunlight energy gathered by the chlorophylls is stored as adenosine triphos-
phate, the rest is utilized to remove electrons from a substance such as water [1].
This light-electron interaction, which stands at the basis of the Calvin cycle, is the
archetypical example of quantum electrodynamics. With such example in mind, the
interest in understanding the basic mechanisms behind the interaction between light
and matter is an obvious consequence!

1.1 The Light-Matter Interaction: a Historical

Excursus

“When Marcellus withdrew them [the ships of the Roman fleet] a bow-shot, the
old man [Archimedes] constructed a kind of hexagonal mirror, and at an interval
proportionate to the size of the mirror he set similar small mirrors with four edges,
moved by links and by a form of hinge, and made it the centre of the sun’s beams–
its noon-tide beam, whether in summer or in mid-winter. Afterwards, when the
beams were reflected in the mirror, a fearful kindling of fire was raised in the ships,
and at the distance of a bow-shot he turned them into ashes. In this way did
the old man prevail over Marcellus with his weapons” (from John Tzetzes, Book
of Histories (Chiliades) - circa 12th century AD) [2]. Whether the Archimedes
heat ray (cf. Fig. 1.1) is a myth, fruit of the invention of Anthemius of Tralles, or
reality, it nevertheless shows that the ancient Greeks might already have considered
the interaction between light and matter as a useful topic of research. That of
the great Archimedes would have been the first implementation of cavity quantum
electrodynamics (QED) with direct application into everyday life, where the poor
Roman vessels played the role of the atoms!

1The word photosynthesis comes from the ancient Greek photo-, “light,” and synthesis, “placing
with.”
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1.1. THE LIGHT-MATTER INTERACTION: A HISTORICAL EXCURSUS

Figure 1.1: The burning mirrors of Archimedes. Wall painting from the
“Stanzino delle Matematiche” in the Galleria degli Uffizi (Florence, Italy).
Painted by Giulio Parigi (1571-1635) in the years 1599-1600.

The debate on light and matter continued based on more mature basis through-
out the 17th and 18th centuries. In his treatise on optics [3], Newton argues about
light and void and supports the hypothesis that light might consist of corpuscles,
or atoms, emitted from a luminous source such as the Sun. In contrast to Newton’s
doctrine, a number of contemporary philosophers and mathematicians of his, such
as Hobbes, Descartes, Spinoza, Huyghens, and Leibniz, asserted that light consists
of a wave motion in an all-pervasive material ether.

After the theoretical and experimental developments on the concept of electro-
magnetic waves made by Maxwell, Hertz, and Heaviside [4–11], the discussion on
the meaning of light and of its interaction with solid matter moved to Munich.
In the years before World War I, Munich was the vibrant capital of a large cul-
tural movement and one of the main hubs of research in physics. Considering that
in this very moment the author is writing only a few hundred meters away from
Munich’s “Hofgarten,” a tribute to the school of Arnold J. W. Sommerfeld is in
order. Arnold Sommerfeld, who was appointed professor of theoretical physics in
Munich in 1906, was undoubtedly the central figure in the “coffee meetings” at the
Hofgarten, a charming garden at the Northern gates of the inner city of Munich.
During Sommerfeld’s time, the coffeehouse at the Hofgarten soon became one of the
centers of scientific innovation in the South of Germany. The Hofgarten discussions
created an entire generation of exceptional physicists. The “Sommerfeld school,” a
real furnace of talents, had among its ranks physicists and chemists of the caliber
of Max T. F. von Laue, Werner K. Heisenberg, Peter J. W. Debye, Isidor I. Rabi,
Wolfgang E. Pauli, Linus C. Pauling, and Hans A. Bethe - all Nobel Laureates but
Sommerfeld [12].

Since the time of the Newton-Leibniz debate on the nature of light, eminent
physicists had argued whether light behaved as a wave or a particle. Five years
after Röntgen’s discovery of X-rays, on 19th October 1900 Max Planck2 presented
his theory on the blackbody radiation, thus paving the way to the advent of quan-

2The author notices that only 36 civic numbers down the street where he lives, resides the
Maximiliansgymnasium (Karl-Theodor-Straße 9, Munich), i.e., the high school where Max Planck
became acquainted with astronomy, mechanics, and mathematics under the guidance of the math-
ematician Hermann Müller.
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tum mechanics [13]. Planck’s theory showed that energy is composed of individual
particles in a similar way as matter is composed of atoms. In 1905, the hypothesis
on the particle nature of light was strengthened by Albert Einstein’s explanation of
the photoelectric effect [14]. The photoelectric effect, that is the current flow and
heat release occurring when light shines on a metal surface, is a beautiful example
of light-matter interaction.

This was the physics background of one of the most relevant discoveries originat-
ing from the school of the Hofgarten coffeehouse. On 23rd April 1912 in the labora-
tories of the Ludwig-Maximilians-Universität in Munich, Walter Friedrich and Paul
Knipping carried out an experiment designed by Max von Laue, where they proved
the wave-like nature of X-rays and, at the same time, the space-lattice structure of
crystals [15]. It started to become more clear that light or, more in general radia-
tion, behaves both as a wave and a particle. Almost simultaneously, in 1911 Heike
Kamerlingh Onnes discovered superconductivity [16].

The understanding of the physics of light advanced substantially thanks to the
seminal work due to Albert Einstein on the quantum theory of radiation (1917) [17].
We remind the reader to chapter 4, Sec. 4.1 for a detailed analysis of that work. A
major stir towards a complete theory of quantum electrodynamics was created by
the experiment and subsequent theoretical explanation of the so-called Lamb shift
(1947) [18, 19]. This phenomenon triggered the attention of Shin’ichirō Tomonaga,
Julian S. Schwinger, Richard P. Feynman, and Freeman J. Dyson to develop the
QED theory [20–27], which opened up a new era in the history of physics in the
20th century. In the same years the theory of QED was developed, the formal
treatment of the phenomenon of superconductivity reached its climax in the theories
of Ginzburg and Landau (1950) [28] and, later, of Bardeen, Cooper, and Schrieffer
(BCS theory, 1957) [29].

The invention of the laser3 in 1958 by Arthur L. Schawlow and Charles H.
Townes [30], then developed and patented by Theodore H. Maiman [31], launched
the research topic of quantum optics. From the theoretical point of view, quantum
optics was born with the studies on optical coherence and on the states of the radi-
ation field by Roy J. Glauber in 1963 [32, 33], which followed a large body of work
on the semiclassical theory of light by Edward M. Purcell and Leonard Mandel [34–
36]. In the early-mid 60’s, also superconductivity witnessed a rapid sequence of
experiments and theoretical achievements, which, in order, allowed a) to prove the
existence of the flux quantum [37, 38], b) to predict the Josephson effect [39, 40],
c) to realize the first Josephson tunnel junction [41],4 and d) to implement the first
DC and RF superconducting quantum interference devices (SQUIDs) [42, 43].

In 1977, the field of quantum optics was finally persuaded by undoubtable exper-
imental evidence that there exists a class of light sources which cannot be explained
in classical or semiclassical terms, but only by means of a fully quantum-mechanical
treatment. The article on photon antibunching in resonance fluorescence by H. Jeff
Kimble et al. [44] represents a milestone for our modern understanding of light
as an entity made up of photons. Only a few years later, in the early-mid 80’s

3Acronym for “light amplification by stimulated emission of radiation.”
4We cannot avoid to remind the reader the title of the article by Anderson and Rowell, “Probable

Observation of the Josephson Superconducting Tunneling Effect.” How many articles would be
accepted nowadays on the Physical Review Letters starting with the word probable? Probably
none!
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the experimental prove of macroscopic quantum tunneling and of the energy-level
quantization in Josephson junctions [45–49] as well as the first observation of single-
electron charging effects [50] opened up the avenue of quantum coherence on a chip
and quantum circuits.

By the early 90’s, all necessary constituents for modern applications based on
atoms and light or Josephson junctions and microwave fields were available in a
number of laboratories around the globe.

1.2 The Light-Matter Interaction: Modern Ap-

plications

We are now ready to appreciate the further developments in the fields of quantum
optics and quantum circuits achieved in the past two decades. In particular, we
focus on experimental realizations where the light is confined within a privileged
environment: a cavity.

The section is organized as follows. First (cf. Subsec. 1.2.1), we briefly review
the basic concepts of cavity QED distinguishing between resonant and dispersive
regime and discussing the different measurement methods typically employed in
experiments. We then explain the experimental apparatuses used in quantum op-
tical cavity QED and enumerate chronologically the most important experimental
achievements both for implementations at optical and microwave frequencies.

Second (cf. Subsec. 1.2.2), we present two classes of “artificial atoms” based on
semiconducting and superconducting devices, respectively: quantum dots and su-
perconducting qubits. In the case of quantum dots, we shortly introduce the most
commonly used dot designs and show that it is possible to perform cavity QED
experiments with them. As always, the experimental milestones reached in the field
are enumerated. In addition, we make a remark on the measurement techniques used
for the detection and characterization of optical photons. In the case of supercon-
ducting qubits, we delve into a detailed discussion of their working principle, define
charge an flux qubits, and give a list of relevant experiments. Finally, we discuss the
interaction between superconducting qubits and microwave on-chip resonators. This
architecture is defined as circuit QED and constitutes one of the central topics of this
thesis. Before concluding the section, we review the most important experiments
realized in circuit QED in the past five years.

1.2.1 Cavity QED with Natural Atoms

Among the most fruitful playgrounds for the experimental test of quantum optical
systems stands out the subfield referred to as cavity QED.

The three fundamental ingredients for the realization of a cavity QED experiment
are: 1) an atom (or a stream of atoms); 2) a photon (or a beam of photons); 3) a
cavity. In standard cavity QED, the atoms are let pass through the cavity, where
photons are opportunely “trapped.” In this sense, the cavity represents a special
environment that allows the confinement of the photon-atom interaction.

If the cavity were a totally closed and lossless system, the photons would be
trapped inside it forever. In real applications, we must be able to access the cavity

4
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in order to perform an experiment. The inevitable apertures on the cavity walls5

reduce the photon trapping time. This time is further reduced because of walls’
imperfections, which give rise to radiation loss. The combined effect of the apertures
and radiation loss sets the so-called loaded quality factor, QL, of the cavity.6

The presence of a cavity in a cavity QED experiment has two important conse-
quences. The first concerns the coupling strength between photons and atoms ((i))
and the second the coherence properties of the system ((ii)).

(i) - On one hand, the electromagnetic radiation field in free space is represented
by travelling waves. The spatial pattern of a travelling wave varies continuously in
time, which makes it hard to couple, for example, to a nearby atom. In this case,
the coupling strength for the atom-photon interaction cannot easily be controlled.
On the other hand, due to the boundary conditions imposed by the cavity walls,
the electromagnetic field inside a cavity maintains a well-define shape at all times.
The waves associated with such a field are called standing waves and their spatial
pattern is called mode. In this case, it is possible to engineer the photon-atom
coupling strength in order to maximize it. The photon-atom coupling coefficient,
defined as g, is a relevant figure of merit of a cavity QED implementation.

(ii) - The cavity behaves as an effective filter, narrowing down the energy spec-
trum to which an atom is coupled. The atoms used in cavity QED experiments can
usually be regarded as two-level atoms, which means they are characterized by an
energy groundstate, |g〉, and a first excited state, |e〉. These two states are separated
by an energy gap, ΔEat. The energy gap is oftentimes defined in terms of a wave-
length, λat = hc/ΔEat, or a frequency, fat = ΔE/h. The latter is called transition
frequency of the atom. Here, h is the Planck constant and c the velocity of light in
free space. The three-dimensional (3D) free space is characterized by a continuous
energy spectrum, which corresponds to a continuum of frequencies. When an atom
is placed in free space, one of the infinite frequencies f obviously equals the atomic
transition frequency, f = fat. In this case, if the atom were initially in the excited
state |e〉, it would rapidly decay to the groundstate |g〉 emitting energy into the
environment in the form of a photon. The information which was once stored in
the atom as an energy excitation is forever lost in the environment. This is the
prototypical example of an energy relaxation process. The rate at which an atom
decays is defined as γ, the inverse of which sets the atom lifetime. Being typically
an unwanted process,7 energy relaxation should be minimized in experiments. The
presence of a cavity gives us this opportunity.

In fact, in contrast to the 3D free space, the energy spectrum inside a cavity is
discrete with a discrete set of frequencies, fi (i = 1, 2, . . .) . Each of these frequencies
corresponds to a cavity mode. In real applications, a cavity mode is characterized
by a continuous-narrow frequency band δfi centered around fi, rather than a single-
sharp frequency fi only. This is due to the fact that the cavity quality factor is
usually finite. The higher the quality factor, the narrower the mode frequency
band, δfi ∝ 1/QL. Bearing this notion in mind, two distinguished scenarios are
now possible. The first is when the transition frequency of the atom equals one

5In reality, the cavity design is more complex than just a box with some holes! For example,
cf. Figs. 1.2 and 1.3.

6We recall that the cavity quality factor contains the same information as the cavity finesse,
which is the figure of merit mostly used when referring to optical cavities.

7There are several applications where it is desirable to have fast relaxation dynamics. We will
not discuss these cases here.
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of the cavity frequencies, fat = fi. This case is similar to that of free space, but
with an important difference. This time, the energy of an initially excited atom
which decays to the groundstate is emitted in the form of a photon into a cavity
mode (Purcell effect). If the quality factor of that mode is high enough, the photon
remains trapped inside the cavity for a long time before being lost into the external
environment via the cavity apertures or other loss mechanisms. The information
which was stored in the atom does not get lost until a time on the order of the
cavity lifetime, 1/κ = 1/δfi. The second scenario is when the transition frequency
of the atom is different from any of the cavity frequencies, fat �= fi, ∀i. If the
atom is in the excited state, it cannot decay into the groundstate emitting a photon
because of the frequency mismatch between its transition frequency and the cavity
frequencies. The atom lifetime is thus enhanced due to a mismatched environment.
The enhancement is obviously more effective the further the atomic frequency is
from the closest cavity mode frequencies and the narrower are the frequency bands
of such modes (i.e., the higher is the cavity quality factor). This case, which does
not have counterpart for an atom in free-space, clearly shows the filtering action of
the cavity.

It is worth pointing out that the lifetime enhancement due to the cavity is inde-
pendent of other atom loss mechanisms. In fact, atoms are not only characterized
by energy relaxation processes, but also by decoherence mechanisms such as dephas-
ing.8 The atomic phase coherence generally does not benefit from the presence of a
cavity.

It is also worth mentioning that the twofold nature of the cavity quality factor,
i.e., the combined action of walls’ apertures and radiation loss, gives rise to two
important subcases. When the radiation loss is the dominant contribution to the
quality factor, once a photon is emitted into the external environment it is practically
lost anywhere in the 3D space. In contrast, when the contribution attributable to
the apertures dominates over radiation loss, the photon can be guided into privileged
directions defined by the geometrical shape of the apertures. In this case, the photon
is not actually lost in space and the information carried by it can still be utilized
for further operations.

Finally, another characteristic time scale of cavity QED implementations in quan-
tum optics is the limited dwell time of an atom inside the cavity. Atoms are gener-
ated outside the cavity and then let pass through it. As a consequence, they interact
with the photons inside the cavity only for a finite, usually short transit time, ttrans.
As we shall show later, major experimental efforts have been realized in order to
keep an atom trapped inside a cavity under stable conditions and for a long time.

Resonant and Dispersive dynamics

Our discussion on photon emission into a cavity mode and atom lifetime enhance-
ment opens the way to the description of the photon-atom dynamics in cavity QED.
The dynamics associated with a cavity QED system can be distinguished into two
major categories: the resonant and dispersive regime.9

8As we will show later, this issue is more important for “artificial atoms.” We mention it here
for completeness.

9Obviously, the transition between these two regimes is smooth and there are intermediate
cases. For simplicity, we will not focus on those in the present discussion.
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The resonant regime occurs when the atomic transition frequency is equal to
one of the cavity frequencies, fat = fi. Let us assume a high quality factor cav-
ity initially prepared with a single photon and a long-lived atom prepared in the
groundstate |g〉. Before being emitted into the external environment, the photon
remains trapped inside the cavity long enough to be absorbed by the atom, which,
thus, gets populated to the excited state. While decaying to the groundstate, the
atom then emits a photon into the cavity mode. The photon is again absorbed by
the atom, giving rise to an emission-absorption process which continues at a rate
set by the photon-atom coupling coefficient g. The larger the g, the higher the
number of oscillations the photon-atom system undergoes within the minimum of
the cavity and atom lifetimes, min{1/κ, 1/γ}. Such oscillations are called vacuum
Rabi oscillations and g is defined as the vacuum Rabi frequency.10

The dispersive regime occures when the atom transition frequency is largely
detuned from the closest of the cavity frequencies. Mathematically, it is expressed
by the condition |fat − fi| � g. In this case, no photon-atom oscillations can take
place because of the large frequency mismatch.

We can try to understand the dispersive regime by means of a simple Gedanken
experiment. Let us consider an empty cavity, with no atoms. For simplicity, we
assume the cavity to be made of a pair of semitransparent parallel mirrors, positioned
one in front of the other. If we shine a laser beam towards the left mirror, part of
the beam will be reflected by the mirror and part transmitted. The transmitted
portion of the beam will then continue towards the right mirror, where, again, it
will be partially reflected and partially transmitted. The reflected portion will now
go back to the left mirror where it will be partially reflected and partially transmitted
and so on and so forth until a standing wave is established inside the cavity. The
electromagnetic path followed by the light beam is defined by the distance between
the two mirrors or, in other terms, by the cavity resonance frequency. If we now
place an atom inside the cavity, in the resonant regime this will give rise to a sort
of amplitude modulation of the light beam, which ultimately results in the Rabi
oscillations described above.11 In the dispersive regime, instead, the presence of
the atom modifies the reflection/tranmsission properties of the cavity. That is, if
we shine a light beam through the cavity, the beam will not only be reflected and
transmitted by the cavity mirrors, but also by the atom. The atom behaves as
if it were an additional “mirror” inside the cavity. Since the light bounces back
and forth more times in the presence of an atom, it is clear that the corresponding
effective electromagnetic path is longer than in the case of an empty cavity. A longer
electromagnetic path results in a redshift of the resonance frequency of the cavity!
In reality, the direction of the shift and, thus, whether the effective electromagnetic
path is longer or shorter, depends on which state the atom is prepared and on the
sign of the cavity-atom detuning.

In summary, the relevant energy scales in a cavity QED experiment are: a)
the atom transition frequency, fat and b) the cavity resonance frequency fi closer
to fat. The relevant rates are: 1) the photon-atom coupling strength, g; 2) the

10In this general introduction, we will not be picky on possible factors of 2 or π in the definition
of g and on possible global phases. These issues will be properly addressed throughout the rest of
this thesis.

11This is a highly simplified representation of the vacuum Rabi dynamics in analogy to classical
electronics. Basically, a high frequency carrier, the light beam at frequency fat, is amplitude-
modulated (AM) by the low frequency Rabi dynamics at frequency g.
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cavity decay rate, κ; 3) the atom lifetime, γ; 4) the inverse atom transit time,
1/ttrans. If the atom transit time is long compared to all the other time scales of the
system, we can neglect it from the discussion. In the resonant regime, fat = fi, and
under strong coupling conditions, g � max{κ, γ}, a large number of vacuum Rabi
oscillations can occur before the photon-atom excitation relaxes. In the dispersive
regime, |fat − fi| � g, the cavity resonance frequency is shifted by the presence of
the atom. The magnitude of the shift depends on the coupling strength g and its
sign (redshift or blue-shift) on the state of the atom and on the sign of the detuning.

A formal treatment of the resonant and dispersive regime of cavity QED will be
given in chapter 2, Subsec. 2.3.3.

The Measurement Dilemma: Photons or Atoms?

Since there are two main actors on the stage of a cavity QED experiment, the photon
and the atom, the question whether it is more suitable to measure the first or the
second in order to obtain information on the total system naturally arises.

As a matter of fact, both the photon and the atom encode the same amount of
information about a cavity QED system, even if, for real applications, it makes a
considerable difference which one is measured. Depending on the frequency of oper-
ation, in the past three decades two main types of experiments have been developed.
For cavity QED implementations at optical frequencies (i.e., for wavelengths on the
order of 1000 nm) the light emitted by the cavity is directly detected and/or manip-
ulated. The two major groups actively working in this direction are those headed by
Gerhard Rempe at the Max Planck Institute for Quantum Optics (MPQ), Garching,
Germany, and by H. Jeff Kimble at the California Institute of Technology, Pasadena,
USA. Figure 1.2 shows a standard cavity QED experimental setup employed in the
Rempe group (courtesy of Alexander Kubanek). For implementations at microwave
frequencies (on the order of 50GHz) the atoms are typically detected. The two
groups actively working in this direction are those of Serge Haroche, Jean-Michel
Raimond, and Michel Brune at the École Normale Supérieure (ENS), Paris, France,
and of Ben T. H. Varcoe at the University of Leeds, UK. Historically, there has
been another important group involved in cavity QED at microwave frequencies:
the group of H. Walther, also at the MPQ in Garching. Figure 1.3 shows the ex-
perimental setup of the Paris group (courtesy of Jean-Michel Raimond and Michel
Brune).

Optical Experiments. The cavities employed in a typical experiment at optical
frequencies consist of a pair of spherical dielectric mirrors with ultra-high reflectivity.
The cavity lateral dimension is approximately 0.1mm and its finesse is on the order
of 4× 105. The distance between the mirrors can be adjusted by means of a piezo-
ceramic tube in order to tune the cavity frequency. Several holes allow the atoms
to enter the volume enclosed by the two mirrors.

The atoms used are usually cold rubidium or cesium atoms. The preparation
principle is that of the “atomic fountain,” where the cold atoms are launched into
the cavity with light forces. After being trapped by means of a magneto-optical trap
(MOT), the atoms are cooled first by an optical molasses and, then, by frequency
detuning. The detuning also allows the vertical acceleration of the atoms, which are
finally directed into the cavity.

The photons emitted by the cavity are usually detected by means of photodi-
odes characterized by a quantum efficiency of approximately 50%. Depending on
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Figure 1.2: Quantum-optical cavity QED at optical frequencies: the setup of
the MPQ group (courtesy of Alexander Kubanek; cf. also Ref. [51]). From left
to right: A laser beam (red arrows) is sent through a cavity (blue mirrors),
where it interacts with an atom. The cavity can be made highly asymmetric
such that, after interacting with the atom, the photons are emitted in one
special direction, e.g., to the right side. The emitted photons are splitted with
an optical beam splitter and then detected by means of, e.g., single photon
counting modules (SPCM 1 and 2). The time-correlation properties (τ) of the
two stream of photons are finally obtained.

the specific implementation, also photomultiplier tubes or single photon counting
modules can be used [51].12

The first observation of the normal-mode splitting due to the photon-atom in-
teraction in optical cavity QED was realized in 1992. In that year, R. J. Thompson,
G. Rempe, and H. J. Kimble were able to resolve the vacuum-Rabi splitting by in-
vestigating the spectral response of a small collection of atoms strongly coupled to a
cavity under weak excitation conditions (a sort of low-level spectroscopy at optical
wavelengths) [52].

Since that experiment, a tremendous progress has been realized in quantum-
optical cavity QED. Here is a short list of the most important achievements: (1) A
one-atom laser in the regime of strong coupling has been experimentally realized [53];
(2) an atom has been trapped inside a cavity for several tens of seconds [54]; such an
experiment has made possible to overcome the short transit time issue of an atom
in a cavity and (3) has allowed the implementation of a single photon server with
one atom [55]; (4) the photon blockade in an optical cavity with one trapped atom
has been observed [56]; (5) the quantum nature of the photon-atom interaction has
been proved beyond any doubt by studying the nonlinear spectroscopy response of
a cavity where a single atom is illuminated with two photons [57];13 (6) this has also
made possible the realization of a two-photon gateway [58] and can eventually lead
to a single photon transistor. Recently, the possibility to study two independent
cavity QED systems via two-photon quantum interference has been envisioned and

12The author thanks Jörg Bochmann for his detailed explanation of the optical cavity QED
setup in occasion of a visit at the MPQ in Garching in early 2009.

13This experiment is highly related to our two-photon experiment in circuit QED to be discussed
in chapter 8, Sec. 8.3.
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Figure 1.3: Quantum-optical cavity QED at microwave frequencies: the
setup of the Paris group (courtesy of Jean-Michel Raimond and Michel Brune;
cf. also Ref. [60]). From left to right: Circular Rydberg atoms [magenta (mid-
dle grey) circles] are prepared one at a time and fly at thermal velocities (100
to 500 ms−1) through the apparatus. Before and after interacting with the
superconducting cavity (depicted in the center), the atoms are manipulated in
the so-called classical Ramsey zones (left and right of the cavity). The cavity
state can be prepared by means of a classical microwave source (front left).
After passing through the second Ramsey zone, the atoms are detected by a
state-selective field ionization detector (last device on the right).

is being realized in the laboratory [59]. We find this advanced implementation of
cavity QED based on two cavities an intriguing research area, which goes along the
lines of our pioneering studies on two-resonator circuit QED (cf. chapters 5 and 6)
and correlation homodyne detection at microwave frequencies (cf. chapters 3 and
4).

Microwave Experiments. There are two types of cavities employed in cavity
QED experiments at microwave frequencies: closed superconducting cavities and
open Fabry-Perot superconducting cavities. The former were used at the MPQ in
Garching and are being used in Leeds,14 whereas the latter are used at the ENS in
Paris. The Paris cavities consist of two superconducting mirrors made of optically
polished copper onto which a niobium layer is then deposited by cathode sputtering.
The lateral dimension of the cavity is approximately 5 cm and its quality factor is
on the order of 3 × 108. Also this kind of cavities can be tuned by means of piezo
elements.

The atoms used are rubidium atoms, which are prepared in low angular mo-
mentum Rydberg states by means of a stepwise laser excitation. At the ENS in
Paris, the standard Rydberg states are efficiently and selectively transferred to the
so-called circular level in an adiabatic rapid passage process involving static electric
and magnetic fields and a radio-frequency electric field. This is a rather complex
procedure which makes the Paris experiment unique in its gender!

After interacting with the intracavity field, the Rydberg atoms are detected via
field ionization upon exiting the cavity. For Rydberg atoms in the circular state the
detection efficiency is up to 80% with a level assignation error (selectivity) of a few
% [60].15

14We notice that the implementation with closed cavities is also referred to as micromaser.
15The author thanks Jean-Michel Raimond and Michel Brune for their detailed explanation of
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The dawn of microwave cavity QED can be considered the experimental work of
C. Fabre et al. on Rydberg atoms and radiation in a resonant cavity [61].

Since that experiment, the quantity of physics phenomena unveiled by microwave
cavity QED has been enormous. Here is a short list of the most important achieve-
ments: (1) self-induced Rabi oscillations in two-level atoms excited inside a resonant
cavity have been observed [62]; (2) a two-photon maser has been realized [63];16 (3)
the sub-Poissonian photon statistics in a micromaser have been observed [64]; (4) the
quantum nondemolition measurement of small photon numbers by Rydberg-atom
phase-sensitive detection has been performed [65]; (5) quantum jumps of a micro-
maser field have been measured [66]; (6) the field quantization in a cavity has been
directly tested by the observation of quantum Rabi oscillation [67]; (7) Einstein-
Podolsky-Rosen pairs of atoms have been generated [68]; (8) a single photon has
been measured without destruction [69] and (9) the preparation of pure number
states of the radiation field realized [70]; (10) the Wigner function of a one-photon
Fock state in a cavity has been measured [71]; (11) a mesoscopic field has been
entangled with an atom [72]; (12) the birth and death of a photon in a cavity has
been recorded via the measurement of light quantum jumps [73]; (13) the recon-
struction of non-classical cavity field states with snapshots of their decoherence has
been implemented [74]. Recently, an experimental setup based on two cavities has
been realized in Paris. The ongoing experiments will eventually help understanding
the delocalization of quantum phenomena over two distinguished objects. This de-
velopment gives us further confidence on the potential of the two-resonator circuit
QED realizations envisioned in this thesis (cf. chapters 5 and 6).

To conclude, the two implementations of cavity QED with natural atoms based
on optical or microwave cavities can be considered to be complementary architec-
tures: At optical frequencies the light emitted by the cavity is used to probe the
photon-atom interaction, whereas at microwave frequencies this role is played by the
atoms. Remarkably, if desired, both the light and atoms emitted by a cavity can be
reused for further manipulations.

1.2.2 Cavity QED with “Artificial Atoms”

In this subsection, we briefly introduce the two most prominent groups of “artificial
atoms” utilized in cavity QED applications: quantum dots and superconducting
qubits. In both cases, after summarizing the basic operation principles we present
a selection of the most relevant experimental achievements.

We will keep the discussion on superconducting qubits and circuit QED short
given that this is the main topic of the present thesis. An exhaustive treatment
of this field of research will be presented in the following chapters. In this brief
introduction, we will try to explain the working principle of charge and flux qubits
without recurring to the derivation of any Hamiltonian.

the microwave cavity QED setup in occasion of a visit at the ENS in Paris in late 2008.
16Related to our work; cf. chapter 8, Sec. 8.3.
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Quantum Dots

A quantum dot is defined as a small region of a semiconductor where excitons17 or
electrons18 are confined in all three spatial dimensions. This scenario resembles one
of the prototypical examples studied in quantum mechanics: a particle confined in a
three-dimensional box. If the dimensions of the confinement region are comparable
to the wavelength of the confined excitons or electrons, the dot is characterized by
a discrete energy spectrum, which is similar to the spectrum of natural atoms.19

Remarkably, the energy levels of a quantum dot can be tuned in situ by attaching
leads to them and establishing opportune potentials.

There are several ways to confine excitons or electrons in semiconductors, result-
ing in different methods to produce quantum dots. In general, quantum dots are
grown by advanced epitaxial techniques or by depleting a two-dimensional electron
gas (2DEG).

Self-assembled quantum dots nucleate spontaneously under suitable conditions
during a molecular beam epitaxy (MBE) process, when a material is grown on a
substrate to which it is not lattice matched. The resulting strain produces coherently
strained islands on top of a so-called two-dimensional “wetting-layer.” The islands
can subsequently be buried to finally form the quantum dot, the dimensions of which
range between 5 and 50 nm. A fundamental application of self-assembled quantum
dots is for the realization of single-photon sources. One of the main limitations of
this method is represented by the lack of control over the positioning of individual
dots.

Individual quantum dots can be created by depleting a 2DEG. The 2DEG, which
constitutes a plane where electrons are allowed to move freely, can be realized, for
example, in a semiconductor heterostructure such as GaAs/AlGaAs. By combining
layers of semiconducting materials, it is possible to create an edge in the band
structure of the electrons. As a result, the electrons are localized within this edge
and confined in the z-direction of the structure, thus forming a 2DEG. The 2DEG
can be depleted by applying a negative voltage to a metal gate fabricated on top of
the heterostructure. Due to the Schottky effect, direct tunneling of electrons from
the metal gate to the semiconductor heterostructure is not allowed and a Schottky
barrier is formed. In addition, due to the Coulomb interaction between the electrons
in the 2DEG and those on the metal gates, the electrons in the 2DEG are further
confined. This confinement acts now in the x− y-direction, depending on the gate
geometry on the top of the structure. In this way, a so-called lateral quantum dot
is realized. Typical dimensions for lateral quantum dots are on the order of a few
100 nm or larger. Such quantum dots are mainly of interest for experiments and
applications involving electron (or hole) transport, i.e., an electrical current.

The energy spectrum of a quantum dot can be engineered by controlling the
geometrical size, shape, and the strength of the confinement potential defined by the
metal gates. In contrast to natural atoms, it is relatively easy to connect quantum

17We recall that an exciton is a bound state of an electron and a hole in an insulator or semi-
conductor, i.e., a Coulomb-correlated electron-hole pair. Excitons are elementary excitations, or
quasiparticles, of a solid.

18Similar arguments apply to holes.
19We find the distinction between natural and “artificial” atoms to be awkward. Everything we

find in nature is natural. However, this is the generally accepted classification and we use it here
for consistency with the literature.
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Figure 1.4: Cartoon of a 2D photonic crystal (“L3” resonator) with self-
assembled quantum dot in the center (courtesy of Jonathan J. Finley, Michael
Kaniber, and Arne Laucht; cf. also Ref. [81]).

dots by tunnel barriers to conducting leads, which allows the application of the
techniques of tunneling spectroscopy for their investigation [75, 76].

There are other types of quantum dots such as vertical dots or “dots” created
by impurities. In addition, both the charge and spin degree of freedom can be used
in manipulating a dot. We remind the interested reader to Refs. [77–80] for an
exhaustive discussion on mostly all types of quantum dots.

CAVITY QED WITH QUANTUM DOTS

Self-assembled quantum dots are actively being used in cavity QED applications.
The dots are typically fabricated inside 2D photonic crystal membrane cavities,
where, depending on the coupling regime, they can either serve as light emitters
or be used to investigate the fundamental light-matter interaction as well as the
effects of the altered local photonic density of states on their spontaneous emission
properties.

Figure 1.4 shows a cartoon of a 2D photonic crystal with self-assembled quan-
tum dot in the center (courtesy of Jonathan J. Finley, Michael Kaniber, and Arne
Laucht). By tailoring in a controlled manner the size of a single hole in such a 2D
photonic crystal it is possible to disrupt the translational crystal symmetry. This
has the effect to create a tiny region where light can be trapped. Such a defect effec-
tively constitutes a nanoscale optical cavity characterized by a volume on the order
of a cubic half wavelength. This particular type of cavity is called “L3” resonator
since it consists of a line of three missing holes in a line. The wavelengths achievable
in L3 resonators are only a few hundred nanometers [81].

Quantum dots in the weak coupling regime. In the weak coupling regime, i.e.,
when g < {κ, γ}, the Purcell effect can be used to enhance the induced emission
rate into a cavity mode initially prepared in the vacuum state instead of into other
environmental modes.20 The light is effectively funneled into a privileged direction

20Several authors prefer to talk about spontaneous emission into the cavity mode. It is true
that the mode is in the vacuum state. It is also true that, according to Einstein’s definition of
the emission-absorption rates (cf. Ref. [17]), when an atom emits an excitation into the vacuum
this should be referred to as a spontaneous emission. However, under suitable conditions, the
presence of the cavity effectively guides the emitted light into a privileged direction, a fact which,
in our mind, contradicts Einstein’s original idea on the concept of spontaneous emission. In fact, a
spontaneous emission should be an emission which happens at a not-well-defined time and, more
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and, thus, can easily be controlled and manipulated in experiments. In this case, the
dot realizes a nanometer-scale single photon source (cf. Refs. [82–85]). Such quantum
sources constitute one of the basic hardware elements for the future implementation
of quantum telecommunication protocols and quantum cryptography.

The best samples are capable of generating single photons with external quantum
efficiencies in excess of approximately 20% at repetition frequencies higher than
100MHz.

Quantum dots in the strong coupling regime. In the strong coupling regime, i.e.,
when g � max{κ, γ}, the standard vacuum Rabi dynamics discussed in the case
of quantum-optical cavity QED can be realized also with quantum dots in photonic
crystal nanocavities. In the case of quantum dots, instead of an atomic state, an
exciton (electron-hole pair) is entangled with a photon. This unprecedented scenario
allows the study of photon-semiconductor-excitations [86–89]. The typical coupling
strengths found in experiments are on the order of a few hundred μeV [86].

Recent developments in the field have led to the observation of photon-exciton
entangled states in electrically contacted photonic crystal nanocavities. In this sys-
tems, the photon-exciton coupling strength can be electrically turned on and off by
tuning the voltage applied to a gate contact [90].

REMARK

A common feature to cavity QED experiments with natural atoms at optical fre-
quencies and with quantum dots is that, in both cases, the quantum nature of the
photons emitted by the cavities is tested by means of a Hanbury Brown and Twiss–
type experiment. In other words, the stream of emitted photons is first split by an
optical beam splitter and, then, the second-order correlation function of the splitter
output beams is measured. If at delay time zero the correlation peak vanishes, the
emitted photons are single quanta of the electromagnetic field. In fact, it is impos-
sible to record simultaneously two events after splitting due to the quantum nature
of the photons [91].

Hanbury Brown and Twiss–type experiments can be realized at microwave fre-
quencies taking advantage of the correlation detection scheme studied in chapters 3
and 4 of this thesis. Hanbury Brown and Twiss–type experiments, which have
already been implemented with GHz photons [92], have not been realized in our
laboratories yet. To avoid confusion, it is worth stressing that every time we discuss
about cross-correlation measurements as one of the seminal results of our work, we
refer to amplitude-amplitude correlation measurements. This type of measurement
is inherently different from a Hanbury Brown and Twiss–type experiment, where
intensity-intensity correlation measurements are performed.

It is also important to mention that the microwave cross-correlation measure-
ment apparatus to be introduced in chapters 3 and 4 looks similar to the quantum
homodyning apparatus employed at optical frequencies to reconstruct the Wigner
function of propagating states of light (single photons, squeezed states, and so forth).
In optics, quantum homodyning is based on a beam splitter followed by two high
efficiency photodetectors. A quantum state of light, e.g., a propagating single pho-
ton generated by parametric down-conversion, a, is linearly superposed at the beam
splitter with a strong coherent state, e.g., a laser field, B. The two beams at the out-
put of the beam splitter are, thus, the sum and difference of the weak single photon

specifically, in a not-well-defined direction.
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and strong coherent state, a+B and a−B, respectively. The photodetectors “trans-
form” the amplitudes associated with these two beams into intensities. In other
words, they square the incoming amplitudes, giving as a result I1 = a2 + 2aB +B2

and I2 = a2− 2aB+B2. The difference between the two intensities at the detectors
output finally gives I1 − I2 = 4Ba. Such an intensity is the product of the ampli-
tude associated with the strong coherent state and that of the weak quantum signal
which is intended to be measured. The effect of the coherent state is to “amplify” the
weak quantum signal making it easily measurable.21 This is possible only because
the photodetectors practically do not add noise contributions to the single photon
and coherent state signals. Repeating a homodyne measurement many times then
makes possible to obtain the probability distribution associated with a, which, after
opportune mathematical transformations, can be used to reconstruct the Wigner
function of the single photon. For a complete review on quantum homodyning we
remind the reader to Refs. [91, 93–95].

At microwave frequencies the scenario is quite different due to the technical
limitations of microwave amplifiers. The amplifiers add large noise contributions
to the signals,22 making impossible to reproduce exactly the optical experiment.
The use of noisy amplifiers allows only the measurement of the first two moments
of a given state of the microwave radiation. This is a very restricted subset of the
state full-counting statistics, the entire knowledge of which is necessary for full-state
tomography [93]. We remind to chapters 3 and 4 for all details about microwave
homodyning.

Superconducting Qubits

There exists in nature a special class of materials, such as aluminum or niobium,
which, below a certain temperature, become superconducting. This simply means
that current can flow through the material without a voltage drop being established
at its ends. In simple terms, no dissipation can take place in a superconductor,23

which, to be qualified as such, must also be perfectly diamagnetic due to the Meißner
effect. Below the critical temperature, a superconducting material is characterized
by a condensed state made of so-called Cooper-pairs. A Cooper-pair is nothing but
two electrons together. The condensed state, which can be described in terms of a
single wave function, is separated from the excited states by the superconducting
energy gap, ΔBSC.

24 The gap practically isolates the condensed states from higher
energetic excitations, which are also referred to as quasiparticles. The motivation
to utilize superconducting materials for the implementation of “artificial two-level
atoms” [called quantum bits (qubits)] originates from the isolation property of the
superconducting gap. In fact, when attempting to realize a qubit, the first funda-
mental requirement is the ability to isolate one specific Hilbert space from all other
possible Hilbert spaces in the system. In the case of superconducting qubits, the
Hilbert space of interest is defined within the superconducting gap!

Let us consider a metallic island, e.g., made of aluminum. Below a critical

21Our calculation is purely classical. Similar arguments apply to the full quantum-mechanical
case.

22The continuous development of ultra-low noise amplifiers will eventually help solving this issue.
23At least as far as DC currents are considered.
24The subscript “BSC” stands for Bardeen, Cooper, and Schrieffer, i.e., the last names of the

three physicists who developed the theory of superconductivity in 1957 [29].
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Figure 1.5: The Cooper-pair box: an “artificial two-level atom.” CPB:
Cooper-pair box (a superconducting island). n: number of excess Cooper
pairs on the box. Vg: gate voltage applied via the gate capacitance Cg. The
CPB is connected to a large superconducting reservoir through a Josephson-
tunnel-junction, which makes possible to realize linear superpositions of the
two lowest charge states of the box, n = 0, 1.

temperature Tc � 1.2K the island resides in the superconducting state.25 At zero
absolute temperature, the superconducting energy gap ΔBCS for a given supercon-
ducting material is related to the material critical temperature Tc by the simple rela-
tion ΔBCS/kBTc � 1.764 [96]. This relation allows us to express 2ΔBCS, which is the
experimentally accessible quantity, as an equivalent temperature TBCS � 2×1.764Tc
or as an equivalent frequency fBCS = 2 × 1.764 kBTc/h. In the case of aluminum,
TBCS � 4.234K and fBCS � 88GHz.26 Here, kB is the Boltzmann constant and
h the Planck constant. A gap corresponding to approximately 4.234K constitutes
a good isolation from the quasiparticle excitations. Within the condensed state of
the aluminum island we now have to choose a suitable Hilbert space to work with.
This can easily be realized by noticing that the island behaves as an electrostatic
box with total capacitance CΣ:

27 a Cooper-pair box (cf. Fig. 1.5). The electrostatic
energy of the box is given by EC = e2/2CΣ, where e is the electron charge and,
in typical applications, CΣ � 50 fF. In experiments, the Cooper-pair box is cooled
to an operating temperature T � 50mK. If the characteristic energy scales of the
system are chosen such that ΔBCS � EC � kBT , the charge fluctuations on the box
are suppressed and the number of Cooper pairs on it can be defined as an integer
number n. This represents the Hilbert space we were searching for. By applying
an external biasing voltage Vg to the box via a capacitive gate Cg, the electrostatic
potential of the box can be modified. This has the effect to induce charge in excess
with respect to the neutral background represented by the Cooper pairs in the con-
densed state. In summary, we have been able to define a Hilbert space, the number
of Cooper pairs on a superconducting island, n, and a tuning knob, the external
biasing voltage, Vg. For a special choice of Vg, the number of excess Cooper pairs
on the box can be restricted to 0 or 1. These represent the two states of a super-

25We remind that the critical temperature of a given material, Tc, is defined as the temperature
below which the material becomes superconducting.

26Remarkably, this simple estimate already gives us a hint that the characteristic transition
frequencies of superconducting qubits lie in the microwave range.

27The total capacitance is set by the geometric dimensions of the box.
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conducting “artificial two-level atom.” The states n = 0, 1 are still classical states
in the sense that no quantum-mechanical superposition of them is possible.28 How
is it possible to create a quantum-mechanical coupling energy between such states?
A Josephson tunnel junction is the natural answer to this question. Connecting
the Cooper-pair box to a large superconducting reservoir via one or more Joseph-
son junctions allows Cooper pairs to tunnel on and off the box via the junction(s),
thus establishing a Josephson coupling energy EJ between the Cooper-pair states.
The Josephson coupling energy depends on the phase difference φ associated with
the junction(s) [97]. Figure 1.5 shows a sketch of a voltage biased Cooper-pair box
connected to a superconducting reservoir via one Josephson tunnel junction.

Depending on the relationship between the charging energy EC and the Joseph-
son coupling energy EJ two scenarios are conceivable. In fact, we remind that
charge n and phase φ are quantum-mechanical conjugated variables [97]. Hence, if
EC � EJ, the number of Cooper pairs n on the box is a well-defined quantum vari-
able and the phase difference φ on the junction(s) fluctuates. In this case, a so-called
charge qubit is realized. On the contrary, if EJ � EC, the phase difference φ on the
junction(s) is a well-defined quantum variable and the number of Cooper pairs n on
the box fluctuates. In this case, a so-called flux (or phase) qubit is realized.29 In
reality, intermediate regimes where EC ≈ EJ are also possible. In that case, both
the charge and phase quantum variables must be accounted for when describing the
qubit [97–101].

In brief, these are the milestones achieved in the field of superconducting qubits:

1. The quantum coherence of superconducting qubits has been studied spectro-
scopically [102, 103];

2. Coherent oscillations in charge, phase, and flux qubits have been observed [104–
107];

3. Different strategies for a high fidelity readout have been implemented [108–
111];

4. Two-qubit gates have been realized [112, 113];

5. Qubits with tunable coupling have been implemented [114–117];

6. Long coherence times have been achieved [118–120].

We remind the reader to the review articles of Refs. [97–101] and to chapters 2,
7, and 8, for a complete introduction to the field of superconducting qubits and their
possible applications.

CAVITY QED WITH SUPERCONDUCTING QUBITS: CIRCUIT QED

Superconducting qubits can be strongly coupled to on-chip microwave resonators.
The resonators are made by terminating a microstrip or coplanar waveguide trans-
mission line into input and output capacitors. In circuit QED, these capacitors play
the role of the mirrors in quantum-optical cavity QED. The typical frequency of

28For special values of Vg they are eventually degenerate states.
29Flux and phase qubits are different types of qubits [97]. We group them together here for

simplicity.
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operation is on the order of 5GHz, which corresponds to a resonator length of ap-
proximately 10− 20mm. The resonators used in circuit QED applications are quasi
one-dimensional structures and are usually made of superconducting materials in
order to maximize the cavity internal quality factor. Typical loaded quality factors
can reach values of 105 at temperatures of approximately 1K. A detailed study of
the resonators used in circuit QED and of their quantization is reported in chapter 2,
Sec. 2.1.

In the past decade, we have witnessed a tremendous progress in the realm of
circuit QED [97, 121–144]. Different types of superconducting qubits have been
strongly coupled to on-chip microwave resonators, which act as quantized cavities.
It has been shown that single qubit operations can be realized with very high fi-
delity [108]. A quantum state has been stored and coherently transferred between
two superconducting phase qubits via a microwave resonator [145] and two transmon
qubits have been coupled utilizing an on-chip cavity as a quantum bus [146]. Very
recently, the Grover search and Deutsch–Jozsa algorithms have been implemented
using transmon qubits [147] and the Bell’s inequality violated by means of phase
and transmon qubits separated by a resonator [148, 149]. Furthermore, microwave
single photons have been generated by spontaneous emission [150] and arbitrary
quantum states synthesized and characterized via quantum tomography in a system
based on a phase qubit [151–153]. In addition, photon number states as well as the
Lamb shift have been unveiled exploiting the strong dispersive limit in a transmon-
resonator system [154, 155], lasing effects demonstrated using a single Cooper-pair
box [156], the nonlinear response of the so-called Jaynes-Cummings (JC) model ob-
served [157, 158], the two-photon driven JC dynamics utilized as a means to probe
the symmetry properties of a flux qubit [159], and resonators tuned with a high
level of fidelity [160, 161]. Finally, microwave beam splitters have been employed to
carry out Hanbury Brown and Twiss experiments [92] and to study the fundamental
properties of vacuum fluctuations [162]. These formidable advances show how cir-
cuit QED systems are rapidly reaching a level of complexity comparable to that of
the already well-established quantum-optical cavity QED [52–58, 70–74, 163–185].

Note added in Fall 2010. Before concluding this short general introduction to
circuit QED, it is worth noting that the very first experiment dealing with Josephson
tunnel junctions coupled to on-chip cavities dates back to 1989 [186]. We thank
J. M. Martinis for bringing such a seminal, almost forgotten, paper to our attention.

1.3 About This Thesis: Two Amplifiers, Two Res-

onators, and Two Photons

This thesis work is concerned with the development of novel circuit QED implemen-
tations, where the circuit nature of microwave quantum devices is exploited in order
to unveil unprecedented phenomena.

Two distinguished philosophies can be followed while attempting to develop the
field of circuit QED. The first doctrine is to open up a textbook on quantum optics
and, one by one, try to repeat all experiments already realized in quantum-optical
cavity QED. In principle, this is not a faulty approach. In fact, circuit QED has
certain advantages compared to traditional cavity QED, such as the possibility to
achieve extremely strong coupling strengths between microwave photons and super-
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conducting qubits (perhaps even larger than the qubit transition frequency!). In
addition, the fact that the qubit resides inside the cavity indefinitely without incur-
ring in the finite transient time issue encountered in optics constitutes an important
benefit in experimental implementations. These facts allow the exploration of more
exotic regimes of cavity QED not easily reachable in quantum optics (Refs. [153] and
[154] are two remarkable examples of nontrivial circuit QED experiments). However,
we truly believe that this path will soon have an end with the risk of turning circuit
QED into a sterile field. For this reason, we are convinced that different strategies
and ideas must be envisioned to create an independent area of research. In partic-
ular, we think that the “circuit” part of circuit QED embodies a large potential for
new applications, which have not been exploited yet.

Within this framework lies the motivation for our work. As hinted by the title
of the thesis, three are the main concepts studied here. Two of them are intimately
connected and are presented one after the other in the beginning of the thesis,
whereas the third has its own status and is treated at the end. In brief:

(I) Two amplifiers. We have constructed a correlation detection apparatus based
on a microwave beam splitter and two amplification channels. Admittedly, in
the first stage of this project we were trying to emulate the quantum-optical
technique of quantum homodyning. We soon realized that it is not possible to
directly export such a technique into the microwave domain. This led us to the
development of a full quantum network theory of our correlation measurement
setup, with special emphasis on the understanding of the working principles
of microwave beam splitters and amplifiers. This part of the project has been
our “primary school,” where we have learnt, the hard way, the implications
of detecting signals in the microwave domain;

(II) Two resonators. The possibility of measuring a pair of quantum microwave
signals independently has triggered our attention to the development of a two-
resonator circuit QED architecture. In our view, the flexibility in designing
on-chip microwave resonators and the simplicity in realizing them must be
exploited for coupling together two or more resonators. Indeed, it is easier to
couple multiple resonators than multiple superconducting qubits. The latter,
even in state-of-the-art experiments, are still largely affected by poor coher-
ence properties. Obviously, qubits must also be involved in our two-resonator
architectures in order to provide the necessary nonlinearity to the system,
which allows us to explore the fundamental laws of quantum mechanics. No-
tably, we have shown that two-resonator architectures can be tuned in special
regimes where qubit decoherence only minimally affects the manipulation of
the system. In addition, two-resonator circuit QED opens up intriguing possi-
bilities in understanding the entanglement characteristic of bipartite systems,
which can opportunely be studied by means of our correlation setup. Last
but not least, David P. DiVincenzo has recently shown a deep interest in our
theoretical study of two-resonator systems and has proposed a fault tolerant
architecture for quantum computing having two-resonator cells has the basic
hardware components [187];

(III) Two photons. A peculiarity of superconducting qubits is represented by the
possibility of tuning them in situ, while performing an experiment. This has
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allowed us to unveil the upconversion dynamics of a resonator-qubit system,
where a qubit of given transition frequency is irradiated with two classical
photons of half the qubit transition frequency. The qubit then behaves as
a “nonlinear medium,” which effectively upconverts the input photons into
a single output quantum photon with twice the frequency. We have shown
that the possibility to observe this phenomenon is intimately connected to
the selection rules of the qubit, which depend on the qubit operation point.
We have also been able to show the transition between electric-dipole-type
selection rules and a controlled broken symmetry situation for the qubit-
resonator system.

These three concepts constitute the bulk of the present thesis, which is meant
to be a not so short introduction to the field we like to refer to as “circuit QED2:”
two amplifiers, two resonators, and two photons!

Before enumerating the key results of our work and a few instructions for the
further reading of the thesis, we stress that this thesis contains both experimental
and theoretical research topics. In a few occasions, as in the case of two amplifiers
and two photons, theory and experiments are combined together. In other cases,
such as two- and multi-resonators architectures, the research is purely theoretical.
For the sake of completeness, we have to make clear that the experimental work on
two amplifiers has been carried out by the author, whereas that on two photons by
Frank Deppe [159]. Nevertheless, the author has substantially contributed in the
development of the theory of two-photon interactions, upconversion dynamics, and
controlled symmetry breaking in circuit QED, which is at the basis of the two-photon
project.

1.3.1 Seminal Results and Reference Sections

In this thesis, we report on a set of seminal results, which are presented in parallel
with a number of reference sections. Our intention is to provide an exhaustive
treatment of the basic aspects of circuit QED in connection with our experimental
and theoretical findings. The reader only interested in the seminal results can skip
the reference sections. Here is a list of topics which we recommend to read:

SEMINAL RESULTS

(i) Theory:

(a) Quantum theory of microwave beam splitters including noise (cf. chap-
ter 3, Sec. 3.1);

(b) Theoretical model for the measurement of the distance from the variance
of microwave vacuum fluctuations (cf. chapter 4, Subec. 4.3.2);

(c) Circuit theory of two-resonator circuit QED (cf. chapter 5, Sec. 5.1);

(d) The quantum switch Hamiltonian (cf. chapter 5, Sec. 5.2);

(e) The quantum bus and the leaky cavity: A method to efficiently read out
a qubit in two-resonator circuit QED (cf. chapter 6, Sec. 6.1);

(f) Quantum tomography in two-resonator circuit QED (cf. chapter 6, Sec. 6.4);
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(g) A two-dimensional cavity grid setup for quantum computation (cf. chap-
ter 7, Secs. 7.1 and 7.6);

(h) Two-photon driven Jaynes-Cummings, selection rules, and controlled sym-
metry breaking in circuit QED (cf. chapter 8, Secs. 8.3 and 8.4);

(ii) Experiments:

(a) Experimental observation of the distance from the variance of microwave
vacuum fluctuations by means of auto-correlation measurements (cf. chap-
ter 4, Subsecs. 4.3.1 and 4.3.2);

(b) Experimental realization of Planck spectroscopy (cf. chapter 4, last part
of Subsec. 4.3.1);

(c) Towards the process tomography of microwave beam splitters: cross-
correlation and covariance measurements of vacuum fluctuations (cf. chap-
ter 4, Subsec. 4.3.3);

(iii) Technical achievements:

(a) Realization and characterization of a two-channel amplification chain
(cf. chapter 3, Sec. 3.2);

(b) Implementation of high-frequency, high-vacuum, cryogenic feedthroughs
(cf. chapter 3, Subsec. 3.2.3).

REFERENCE SECTIONS

1. Quantization rules of an LC-resonator circuit (in chapter 2, first part of Sub-
sec. 2.1.3);

2. Quantization of transmission line resonators by means of the phasor picture
(in chapter 2, center part of Subsec. 2.1.3);

3. Quantum signals propagating on a transmission line (in chapter 2, last part of
Subsec. 2.1.3);

4. From an LC-resonator to a qubit (in chapter 2, Subsec. 2.2.2);

5. Quantum small-signal formalism (in chapter 2, Subsec. 2.3.1);

6. Quantum network theory of amplification (in chapter 3, central part of Sub-
sec. 3.2.2);

7. Quantum theory of mixing (in chapter 3, Subsec. 3.2.5).
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1.3.2 Organization of the Thesis

The thesis is organized as follows. In chapter 2, we summarize the main concepts
about classical resonant circuits. We then introduce the quantization rules for such
circuits and extend those rules to the case of quantum signals propagating on a
transmission line. We present the concept of Josephson tunnel junction and its
use for the implementation of RF SQUID and three-Josephson-junction SQUID
quantum circuits (flux quantum circuits). Under opportune conditions, such circuits
can be used to realize superconducting flux qubits. In addition, we study in detail
the interaction between flux quantum circuits and quantized microwave fields. We
consider both the case of flux quantum circuits as multi-level “artificial atoms” and
in the two-level (qubit) approximation.

In chapter 3, we present a full study of three-port and four-port microwave
beam splitters, both in the classical and quantum regime. We then describe the
two-channel amplification chain, with special emphasis on the quantum-mechanical
treatment of amplifiers and mixers. This allows us to follow the quantum signals
we intend to measure from the beam splitters to the acquisition electronics and
computer aided data postprocessing. Stage by stage, the complexity of the quantum-
mechanical formalism describing the quantum signals increases, acquiring more and
more contributions the further we go along the detection chain. At the end of the
chapter, we summarize the quantum-mechanical expressions for the various quantum
signals of interest.

In chapter 4, we review the basic concepts about blackbody radiation and vac-
uum fluctuations, with emphasis on the derivation of the Planck distribution from
Einstein’s A and B coefficients. We then present the field of quantum signal theory,
focusing on the derivation of the quantum-mechanical mean value and variance of
a quantum signal with respect to a given state of the microwave radiation. The
case of thermal/vacuum states is studied in detail. The mean value and variance,
which are defined as quantum parameters, have to be estimated during an experi-
mental measurement process. This is the next topic of the chapter. In particular,
we review the fundamental definitions and properties of auto-correlation and cross-
correlation functions, auto-covariance and cross-covariance functions, and variance
and covariance for weakly stationary signals. The case of white signals is extensively
treated. All these definitions and properties are the basis for our experimental study
on the vacuum fluctuations of the microwave radiation field. The measurements of
the Planck distribution and the realization of Planck spectroscopy are shown. In
addition, the quantum-mechanical characteristics of microwave beam splitters are
experimentally studied by means of cross-correlation and covariance measurements.

In chapter 5, we introduce two-resonator circuit QED and develop a suitable
formalism to describe it. We show that it is possible to couple two resonators via
a largely detuned qubit, which acts as a quantum bus between the two resonators.
By tuning the operation point of the qubit, we show that it is possible to realize
a superconducting quantum switch between the two resonators. When the switch
is on photons can freely move from one resonator to the other, while when the
switch is off the two resonators are (theoretically) totally decoupled. The qubit
acts as a gate for the photonic excitations in the resonators. We propose several
applications for the superconducting quantum switch, ranging from the realization
of entanglement between two resonators to the preparation of so-called Schrödinger
cat states. Moreover, we study the effect of decoherence on the operation of the
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quantum switch and analyze a possible experimental realization.
In chapter 6, we further develop the field of two-resonator circuit QED showing

that it is possible to take advantage of the two resonators for efficiently reading
out the state of a qubit coupled to both of them. In this implementation of two-
resonator circuit QED, one resonator must have a high quality factor and the other
one a low quality factor. The high quality factor resonator is defined as quantum
bus, whereas the low quality factor one as leaky cavity. The quantum bus allows one
to perform cavity QED experiments in the strong coupling regime, while the leaky
cavity can be used to independently read out the qubit population via a dispersive
measurement. As a possible application, we propose and theoretically analyze a
protocol for the generation and measurement of large Schrödinger cat states. In
addition, we propose two different methods for the full-state quantum tomography
of quantum fields residing in the quantum bus.

In chapter 7, we extend two-resonator circuit QED to the case of a multi-
resonator architecture, where the resonators are arranged on a two-dimensional grid
(cavity grid). Superconducting qubits can be positioned at the crossing of each
pair of resonators, thus allowing to pack a large number of qubits within a small
area. The whole grid can easily be realized on the same chip. We show that all
basic quantum operations (one- and two-qubit gates) can be performed on such a
grid. Taking into account decoherence effects, we demonstrate that, in principle,
high-fidelity gates can be realized using state-of-the-art qubits and resonators. In
addition, we consider the possibility to utilize the cavity grid for the implemen-
tation of a fault-tolerant architecture for quantum computing. The experimental
issues related to this architecture are also examined.

In chapter 8, we first present a circuit QED setup based on a flux qubit, where
the qubit population is read out by means of a DC SQUID. We then show experi-
mental evidence for a two-photon driven Jaynes-Cummings interaction, which allows
us to study the selection rules and symmetry properties of superconducting qubits.
Within this framework, we develop a theoretical formalism for the description of
the upconversion dynamics at the basis of the two-photon Jaynes-Cummings inter-
action. In addition, we analyze the role played by spurious fluctuators with respect
to selection rules and symmetry breaking and study their influence on the coherent
dynamics of a qubit.

Finally, in chapter 9, we summarize our main results and give an outlook on possi-
ble future applications of correlation measurements and two-resonator circuit QED.
In addition, we outline the crucial milestones on the circuit QED road map which,
in our mind, will have to be experimentally proven towards a) quantum computing
applications and b) a more complete understanding of the quantum properties of
microwave signals and circuits.

In the appendices, we discuss a few technical aspects concerning the measure-
ments of the vacuum fluctuations at microwave frequencies (cf. Appendices A, B, and
C) and a possible real implementation of a two-resonator circuit QED architecture
(cf. Appendices D and E).
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Chapter 2

The Quantum Circuit Toolbox: an
Optical Table on a Chip

A circuit QED architecture is composed by one or more on-chip microwave res-
onators, which act as quantized harmonic oscillators, interacting with one or more
nonlinear quantum circuits based on Josephson tunnel junctions. Under opportune
conditions, such nonlinear quantum circuits behave as two-level systems and are
referred to as superconducting qubits. The qubit-resonator interaction can be used
to generate quantum signals, which play an important role in unveiling the basic
properties of the quantized microwave field.

Despite the vast body of theoretical work on circuit QED [97, 121–137, 144] and,
more in general, on quantum circuits [98, 99, 188–192], a systematic theory which
describes in a unified form the various aspects of microwave quantum networks is
still missing. Without the presumption of achieving such formidable task, in this
chapter an attempt towards a self-consistent treatment of quantum circuits and
signals is presented. Indeed, the material to be discussed in the following sections is
still partially incomplete and more work is needed to be able to obtain a full theory
of quantum networks.1

In this chapter, we develop the quantum theory of circuits and signals start-
ing from the stand point of classical microwave engineering. First, after revisiting
the basic properties of classical resonators, we give a set of rules for the diagram-
matic representation of a quantized lumped-parameter LC-resonator in terms of
quantum voltages and currents. The quantum voltage and current are canonically
conjugated variables and represent quantized sources associated with the capacitive
and inductive part of the resonator, respectively. By inspecting the circuit diagram
which represents the LC-resonator, the resonator quantum-mechanical Hamiltonian
is readily obtained. The rules for the diagrammatic representation of a quantized
LC-resonator can be extended to more sophisticated quantum circuits, thus allowing
for the determination of the quantum-mechanical Hamiltonian of advanced circuit
QED architectures (as an example, cf. chapter 5, Subsec. 5.1.3). Second, by mak-
ing use of the phasor representation of voltages and currents, we are able to derive
the quantum-mechanical Hamiltonian of any given distributed-parameter resonator
without resorting to the oftentimes cumbersome Lagrangian formalism [188]. Third,
we extend the concepts of quantum voltage and current of an LC-resonator to the

1The author is eager to continue developing the theory of microwave quantum networks in his
future research.
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case of quantized signals propagating on a transmission line. Such quantum signals
constitute the fundamental observables at the basis of the results of chapters 3 and
4. Fourth, we introduce the concept of the Josephson tunnel junction as a nonlinear
element for the realization of “artificial atoms.” As a propaedeutic example, we show
that in the absence of Josephson elements a circuit behaves as a simple harmonic
oscillator. Instead, the presence of one or more Josephson junctions within a cir-
cuit makes possible the implementation of a superconducting qubit. Fifth, inspired
by classical circuit theory we derive the interaction Hamiltonian between different
types of “artificial atoms” and quantized resonators by means of the quantum small-
signal formalism. In this formalism, quantum voltages or currents are considered to
be small AC perturbations about a DC (or quasi-static) biasing point. Finally, we
reduce the interaction Hamiltonian to the case of a qubit and demonstrate that the
transition matrix elements describing the qubit-resonator coupling can straightfor-
wardly be derived from a transformation (rotation) of the reference frame used to
represent the qubit. The quantum circuits presented in this chapter constitute the
core of the circuit QED toolbox and, together with the microwave beam splitters,
amplifiers, and mixers to be presented in chapter 3, they enable the realization of a
complete optical table at microwave frequencies. Remarkably, many of these devices
can already be integrated on a single chip.2

The chapter is organized as follows. In Sec. 2.1, we introduce the classical and
quantum-mechanical theory of microwave resonators. Both the lumped-parameter
and distributed-parameter case are considered. Furthermore, the rules for the quan-
tization of the signals propagating on a transmission line are given. In Sec. 2.2,
we present the basic concepts about Josephson tunnel junctions, RF SQUIDs, and
three-Josephson-junction SQUIDs. We show how to use such devices for the imple-
mentation of “artificial atoms” and, eventually, superconducting qubits. In Sec. 2.3,
we derive the interaction Hamiltonian between microwave resonators and flux quan-
tum circuits (both RF SQUIDs and three-Josephson-junction SQUIDs) and consider
the special case of a superconducting qubit-resonator interaction, where the Hilbert
space associated with the flux quantum circuit is truncated to the two lowest states.
Finally, in Sec. 2.4, we summarize the main results of this chapter, which will help
understanding the more complex quantum circuits to be discussed in the rest of the
thesis.

Historical Excursus

Considering the basic nature of the material discussed in this chapter, there is an
inevitable overlap with a number of references available in the literature. Those
references represent milestones in the fields of microwave engineering, classical and
quantum network theory, as well as superconducting qubits. We strongly advise the
interested reader to consult such references for a more exhaustive analysis. Given
their special relevance, we devote this brief historical excursus to single out those
references which we believe have most strongly influenced the development of this
thesis.

2With the rapid development of parametric amplifiers, microstrip SQUID amplifiers, and dif-
ferent types of quantum-limited amplifiers [193–210], bifurcation amplifiers and shelving tech-
niques [110, 211–221], and proposals for a microwave single photon detector [222–224], all devices
necessary for circuit QED experiments will soon be integrated on the same chip (or adjacent chips)
and advantageously operated at very low temperatures!
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Among such references it is worth mentioning Linear and Non-Linear Circuits
by L. O. Chua, C. A. Desoer, and E. S. Kuh, McGraw-Hill C., New York, 1987,3

Principles of Microwave Circuits edited by C. G. Montgomery, R. H. Dicke, and
E. M. Purcell, IEE Electromagnetic Waves Series 25, Institution of Engineering
and Technology, London, 1987, and Foundations for Microwave Engineering by
R. E. Collin, 2nd ed., Wiley-IEEE Press, New Jersey, 2001. As a historical re-
mark, we notice that many scientists are not aware of the contributions of eminent
physicists R. H. Dicke and E. M. Purcell to the field of microwave engineering.
Before becoming famous in atomic and laser physics because of the prediction of
the so-called collisional narrowing, during the Second World War Dicke worked at
the Radiation Laboratory at the Massachusetts Institute of Technology, Cambridge,
USA and designed the Dicke radiometer, i.e., a microwave receiver. Purcell also
spent the years of the Second World War at the Radiation Laboratory developing
microwave radar technology. Soon after the war, he discovered with other colleagues
the phenomenon of nuclear magnetic resonance. Because of his discovery, he shared
with F. Bloch the Nobel Prize in Physics 1952. Without the fundamental contri-
butions of these authors, the field of microwave engineering would barely have a
glimpse of the horizon that has approached in both classical communication and
computing technologies and, in recent years, in circuit QED applications. The book
edited by Montgomery, Dicke, and Purcell is a monument to the work carried out at
the Radiation Laboratory and undoubtedly represents a key reference in microwave
engineering.

Regarding the quantization of a harmonic oscillator, we refer to the classic
books Quantum Mechanics - Vol. I by C. Cohen-Tannoudji, B. Diu, and F. Laloë,
Wiley-Interscience, New York, 1977, Modern Quantum Mechanics, Revised Edt., by
J. J. Sakurai, Addison-Wesley Pub. Comp., Inc., Reading, Mass., 1994, and The
Quantum Vacuum - An Introduction to Quantum Electrodynamics by P. W. Milonni,
Academic Press, Inc., San Diego, 1994. Our approach to quantum network theory
has been inspired by the articles Quantum Limits on Noise in Linear Amplifiers
by C. M. Caves, Phys. Rev. D 26, 1817 (1982) and Quantum Network Theory by
B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984). Even if strongly influenced
by these articles, we have constructed an independent method for the diagrammatic
representation of quantum circuits. Our method, which does not rely on the com-
plicated Lagrangian formalism of Ref. [188], is simple to visualize and allows one
to obtain straightforwardly useful information about the circuit at hand (cf. Sub-
sec. 2.1.3). Nevertheless, we recommend to read the article by Yurke and Denker,
which, besides deriving a rigorous theory of quantum networks, stands at the basis
of one of the most important results in quantum optics: The input and output for-
malism developed by Gardiner and Collett in 1985 [225] and Gardiner, Collett, and
Parkins in 1987 [226]. Two other articles which largely influenced the development
of this thesis are the classics Thermal Agitation of Electric Charge in Conductors
by H. Nyquist, Phys. Rev. 32, 110 (1928) and the lecture of M. H. Devoret reported
in Quantum Fluctuations, Lecture Notes of the 1995 Les Houches Summer School,
edited by S. Reynaud, E. Giacobino, and J. Zinn-Justin (Elsevier, The Netherlands,
1997), p. 351.

At last, the derivation of the flux quantum circuit Hamiltonian and of its in-
teraction with a quantized resonator follows the line of Superconducting Persistent-

3A great book, unfortunately out of print.
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Current Qubit by T. P. Orlando et al., Phys. Rev. B 60, 15398 (1999), Possible
Realization of Entanglement, Logical Gates, and Quantum-Information Transfer
with Superconducting-Quantum-Interference-Device Qubits in Cavity QED by C.-
P. Yang, S.-I Chu, and S. Han, Phys. Rev. A 67, 042311 (2003), Cavity Quan-
tum Electrodynamics for Superconducting Electrical Circuits: An Architecture for
Quantum Computation by A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004), and The Quantum Theory of
Light by R. Loudon, 3rd ed., Oxford Univ. Press Inc., New York, 2000. In particu-
lar, the article by Blais et al. represents the first work where the circuit nature of
cavity QED with superconducting qubits made its appearance. In that article, the
use of on-chip microwave resonators is proposed and the resonator quantization de-
rived by means of the Lagrangian density.4 In addition, an early attempt to develop
a quantum small-signal formalism is presented.5

2.1 On-Chip Microwave Resonators

In this section, we first summarize the standard textbook introduction to RLC-
resonators deriving the complex impedance and/or admittance of a series or parallel
lumped-parameter resonant circuit (cf. Subsec. 2.1.1). We then present a classical
model for distributed-parameter resonators based on transmission lines, discussing
both the cases of a short-circuited and open-circuited line. In this context, the
concept of mode is introduced by describing the reflection of waves on a semi-infinite
transmission line and the origin of the natural frequencies by considering a finite
segment of line (cf. Subsec. 2.1.2). Most importantly, we derive the quantization
of microwave resonators both in the lumped-parameter and distributed-parameter
regime. The fundamental extension to the quantization of signals propagating on a
transmission line is also shown (cf. Subsec. 2.1.3).

2.1.1 Lumped-Parameter Resonators

Resonant circuits are of great importance in many branches of physics and engineer-
ing, with applications from very low frequencies to optical frequencies. Besides being
used in oscillator circuits, tuned amplifiers, frequency filter networks, wavemeters
for measuring frequency, etc., they represent a prototypical example of the natural
phenomenon of resonance.

Before continuing with our study, it is worth making a remark on the notation
to be used in the rest of the thesis. Voltages and currents are associated with plain
lowercase characters, e.g., v and i, when representing variables in the time domain.
In the frequency domain (phasor picture), they are associated with plain uppercase
characters, e.g., V and I. There are a few exceptions. For example, Ic0 represents
the critical current of a Josephson tunnel junction and Ip the persistent current
circulating in a flux qubit loop. These, typically, are time/frequency independent
quantities. Quantum-mechanical voltages and currents are associated with upper-
case characters with a hat, e.g., V̂ and Î. If it is necessary to specify in which
quantum-mechanical picture the operators are represented, a subscript S is used

4We will derive it from simple circuit considerations; cf. Subsec. 2.1.3.
5We remind to chapter 5, Subsec. 5.1.3 for a thorough analysis of the issues related to the

quantum small-signal formalism presented in Ref. [131].
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Figure 2.1: Series and parallel RLC-resonators. (a) Circuit diagram of a
series RLC-resonator. V and I are, respectively, the voltage and current at
the circuit input port. Zin(jω) is the resonator input impedance. C and L
are the series capacitance and inductance associated with the complex part of
the input impedance, Bs(ω), which is indicated by a dashed box. R = 1/Gs

is the resistance representing the internal losses of the resonator. (b) Circuit
diagram of a parallel RLC-resonator. Yin(jω) is the resonator input admit-
tance. C and L are the parallel capacitance and inductance associated with
the complex part of the input admittance, Bp(ω), which is indicated by a
dashed box. G = 1/Rp is the finite conductance representing the internal
losses of the resonator.

for the Schrödinger picture, a subscript H for the Heisenberg picture, and, if not
indicated differently, a “∼” between the top of the character and the hat for the
interaction picture.

We begin considering the two simplest types of lumped-parameter resonators: the
series and parallel RLC-resonators [cf. Figs. 2.1(a) and 2.1(b)]. These two networks,
which are dual of each other, can easily be studied in the frequency domain. The
series network is characterized by a well-defined current I flowing over the entire
branch and can be represented by a complex input impedance Zin(jω), where j ≡√
−1 and ω is a generic angular frequency, ω ≡ 2πf with f ∈ [0,+∞). The

corresponding parallel network has a well-defined voltage V between the nodes of
each branch and can be represented by a complex input admittance Yin(jω).
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The Series RLC-Resonant Circuit

For the circuit of Fig. 2.1(a), the capacitor C, inductor L, and resistor R are in series
and the voltage across C is given by VC = ZC I = I/jωC. The complex impedance
Zin(jω) can straightforwardly be computed by a circuit inspection,

Zin(jω) = R + jωL+
1

jωC

= R + j

(
ωL− 1

ωC

)
. (2.1)

From this equation, it is evident that the real part of the impedance is constant
with frequency, �{Zin(jω)} = R. On the contrary, the imaginary part Bs(ω) ≡
�{Zin(jω)} = ωL − 1/ωC varies between −∞ and +∞ as the angular frequency
ω varies between 0 and +∞. In particular, Bs(ω) = 0 at the special value of the
angular frequency

ω0 ≡
1√
LC

, (2.2)

which is defined as the resonance angular frequency of the circuit. In this case, the
input impedance is pure real

Zin(jω0) = R . (2.3)

This has the important consequence that the time-average energies stored in the
electric field (i.e., in the capacitor C)

WC ≡ 1

4
C V ∗

C VC

=
1

4ω2C
I∗ I (2.4)

and in the magnetic field (i.e., in the inductor L)

WL ≡ 1

4
L I∗ I (2.5)

must be equal. This property follows from the general expression for the input
impedance of any one-port circuit with a suitably defined equivalent terminal current
I, as the circuit of Fig. 2.1(a). In this case [227],

Zin ≡ PR + 2jω(WL −WC)

I∗ I/2
, (2.6)

where

PR ≡ 1

2
RI∗ I (2.7)

is the power loss or, equivalently, the energy loss per unit time due to resistor R. We
notice that the factor I∗ I/2 in the denominator of Eq. (2.6) serves as a normalization
factor and is required in order to make the input impedance Zin independent of the
magnitude of the current I at the input of the network. From Eq. (2.6) it appears
evident that the input impedance is pure real, Zin = R, iff6 WL = WC. This

6Throughout this thesis, we adopt the notation used in mathematics, where if and only if ≡
“iff.”
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condition sets the resonance angular frequency of the circuit to be ω0 = 1/
√
LC, a

result which is consistent with the definition of Eq. (2.2).

In the extreme cases of very low and very high frequency, we obtain the following
asymptotic expressions for the input impedance:

Zin(jω) ≈ −j 1

ωC
for 0+ ← ω � ω0 , (2.8a)

Zin(jω) ≈ jωL for ω � ω0 . (2.8b)

The physical meaning of these expressions can easily be understood in terms of open
circuits. For ω0 � ω → 0+, the input impedance Zin of the series RLC resonant
circuit of Fig. 2.1(a) is very large: The capacitor C tends to be an open circuit. In
analogy, for ω � ω0 the input impedance Zin of the series RLC resonant circuit of
Fig. 2.1(a) is still very large: This time the inductor L tends to be an open circuit.

A fundamental parameter specifying the frequency selectivity and the general
performance of a resonant circuit is the quality factor Q.7 The most general defini-
tion of Q applicable to all resonant systems is

Q ≡ 2πω(time-average energy stored in system)

energy loss per cycle in system
, (2.9)

where we notice the presence of an extra factor 2π in the numerator, which is needed
for consistency with the standard definition of quality factor.8 For the circuit of
Fig. 2.1(a), we already know that on resonance WC = WL. In addition, the peak
value of electric energy stored in C is 2WC and occurs when the energy stored in L
is zero, and vice versa. Thus, the time-average energy W stored in the circuit is

W = WC +WL = 2WC = 2WL =
1

2
L I∗I . (2.10)

We also know that the energy loss per unit time in the circuit is PR = RI∗I/2.
Hence, the quality factor for a series RLC-resonator is given by

1

2π
Qs =

ω0L

R
= ω0G

sL =
Gs

ω0C
, (2.11)

where Gs = 1/R is the series conductance of the circuit.9

The complex input admittance of the series RLC-resonator is simply the inverse
of its input impedance, Y s

in = 1/Zin. In the vicinity of resonance, we can redefine
the angular frequency as ω = ω0+Δω, where Δω represents a small deviation from
the resonance condition. Under these assumptions, we can use the approximation10

7In optics, oftentimes a different figure of merit is used: the finesse F . The quality factor is
related to the finesse as Q = Ff0/Δf . Here, f0 = ω0/2π and Δf is the free spectral range [228].

8It is important to notice that we use the factor of 2π throughout the thesis, in particular in
chapter 5, Sec. 5.3 and chapter 8, Sec. 8.3, where we use the quality factor to extract important
information about our experiments.

9For the series conductance, we use the superscript “s” to distinguish it from the parallel
conductance G of the parallel RLC-resonator of Fig. 2.1(b).

10The approximation can be obtained by a Taylor expansion to first order of the function 1/x
in the limit x→ x0 and then applying the substitutions x0 → ω0 and x→ Δω.
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Figure 2.2: Modulus and phase of the complex Lorentzian function associated with Y s
in

of Eq. (2.13). (a) |Y s
in|/Gs as a function of Δω/ω0. The dark blue (dark grey) curve

is obtained for Qs = 10. The light green (light grey) curve for Qs = 25. The magenta
(middle grey) curve for Qs = 100. The dashed horizontal line indicates a 3 dB loss from
the maximum. (b) ∠Y s

in in degrees as a function of Δω/ω0. The color code for the three
plotted curves is the same as in (a).
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1/ω = 1/(ω0 + Δω) ≈ (1 −Δω/ω0)/ω0 and rewrite the complex input admittance
as

Y s
in =

(
1

Gs
+ jωL+

1

jωC

)−1

≈
(

1

Gs
+ jω0L+ jΔωL+

1−Δω/ω0

jω0C

)−1

. (2.12)

Since jω0L+ 1/jω0C = 0 and LCω2
0 + 1 = 2, we obtain11

Y s
in

(
Δω

ω0

)
=

Gs(ω2
0C)

ω2
0C + j2Gs Δω

=
Gs

1 + j2
Qs

2π

(
Δω

ω0

) , (2.13)

which is the general form of a complex Lorentzian function, a typical resonance
curve. The modulus of the complex input admittance Y s

in is given by

|Y s
in|
(
Δω

ω0

)
=

Gs√
1 + 4

(
Qs

2π

)2 (
Δω

ω0

)2
(2.14)

and its phase by

∠Y s
in

(
Δω

ω0

)
= arctan

[
−2

Qs

2π

(
Δω

ω0

)]
. (2.15)

In Figs. 2.2(a) and 2.2(b) both the normalized modulus |Y s
in|/Gs and the phase ∠Y s

in

are plotted as a function of the normalized angular frequency deviation Δω/ω0 for
three different values of the quality factor, Qs = 10 , 25 , and 100, respectively. All
curves associated with |Y s

in|/Gs reach a maximum in correspondence of the angular
resonance frequency ω0, which is obtained for a vanishing deviation Δω = 0. When
|Y s

in|/Gs falls 3 dB below its maximum value [i.e., to � 0.707 of the maximum;
cf. Fig. 2.2(a)], its phase ∠Y s

in is +π/4 rad (+45◦) if ω < ω0 and −π/4 rad (−45◦) if
ω > ω0 [cf. dashed vertical lines in Fig. 2.2(b)]. From Eq. (2.12), the corresponding
values of Δω are found to be given by

2
Qs

2π

Δω

ω0

= ∓ 1 , (2.16)

from which it follows that

Δω1,2 = ∓ ω0

2π

2Qs
. (2.17)

It is custom to define the full bandwidth κ (in units Hz) between these two points
as

Δω2 −Δω1 ≡ 2πκ = 2ω0

2π

2Qs
, (2.18)

11Henceforth, in the expressions for the input admittance we substitute the “≈” symbol with
the “=” symbol for simplicity.
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which provides an alternative definition of the quality factor Qs,

Qs ≡ ω0

κ
≡ 2πf0

κ
. (2.19)

In summary, the quality factor Qs of a series RLC-resonator can be defined as the
fractional bandwidth between the two points where ∠Y s

in = ∓ π/4 rad [cf. bottom
part of Fig. 2.2(b)]. The definition of Eq. (2.19) is very useful when evaluating
the quality factor of a resonator from a set of experimental data. In fact, such a
definition is independent from any circuit element, being given only by the observed
resonance angular frequency and linewidth in units Hz at −3 dB from the maximum
of the resonance curve.

The Parallel RLC-Resonant Circuit

The second example to be considered is that of the circuit of Fig. 2.1(b), where the
capacitor C, inductor L, and resistor Rp are in parallel and the current on L is given
by IL = YLV = V/jωL.12 The complex admittance Yin(jω) can again be computed
by a circuit inspection

Yin(jω) = G+
1

jωL
+ jωC

= G+ j

(
ωC − 1

ωL

)
. (2.20)

From this equation it follows that the real part of the admittance is constant
with frequency, �{Yin(jω)} = G. On the contrary, the imaginary part Bp(ω) ≡
�{Yin(jω)} = ωC − 1/ωL varies between −∞ and +∞ as the angular frequency ω
varies between 0 and +∞. As for the case of the series circuit, Bp(ω) = 0 at the
resonance angular frequency ω0. In this case, the input admittance of the circuit is
pure real, Yin(jω0) = G. This is possible iff the time-average energies stored in the
capacitor C, WC ≡ C V ∗V/4 and in the inductor L, WL ≡ L I∗LIL/4 = V ∗V/4ω2L
are equal, WL = WC. The latter condition consistently sets the resonance angular
frequency of the circuit to be ω0 = 1/

√
LC. In the extreme cases of very low and

very high frequency, we obtain the following asymptotic expressions for the input
admittance,

Yin(jω) ≈ −j 1

ωL
for 0+ ← ω � ω0 , (2.21a)

Yin(jω) ≈ jωC for ω � ω0 . (2.21b)

This time, the physical meaning of these expressions can be understood in terms
of short circuits. For ω0 � ω → 0+, Yin is very large and L tends to be a short
circuit. For ω � ω0, Yin is still very large and C tends to be a short circuit. In the
case of a parallel resonant circuit, the time-average energy stored in the circuit is
W = C V ∗V/2. From the knowledge of the power loss PR and using Eq. (2.9), the
quality factor of the parallel circuit is given by

1

2π
Qp =

ω0C

G
= ω0R

pC =
Rp

ω0L
, (2.22)

12This is the standard example reported in all textbooks. We summarize it here for completeness.
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where Rp = 1/G is the parallel resistance of the circuit as opposed to the series
conductance Gs defined for the series circuit of Fig. 2.1(a). Finally, the complex
input impedance of the parallel RLC-resonator can be evaluated following the lines
of the calculations which led to Eq. (2.12). We find

Zs
in

(
Δω

ω0

)
≈ Rp

1 + j2
Qp

2π

(
Δω

ω0

) , (2.23)

from which it follows that the quality factor Qp of a parallel RLC-resonator can be
defined as the fractional bandwidth between the two points where ∠Zp

in = ∓π/4 rad.
If the resistances R and Rp of the circuits of Figs. 2.1(a) and 2.1(b), respectively,

represent the losses in the resonant circuit only, the quality factors Qs given by
Eq. (2.11) and Qp given by Eq. (2.22) are referred to as unloaded or internal quality
factors. If needed for a clearer notation, they are renamed as Qs

int and Q
p
int. When

the resonant circuit is coupled to an external load that can absorb a certain amount
of power, this loading effect can be represented as an additional resistor Rload in
series with R for a series RLC-resonator and in parallel with Rp for a parallel RLC-
resonator. In this case, the total conductance of the series resonator or resistance
of the parallel resonator are smaller and, as a consequence, also the loaded quality
factors Qs

load or Qp
load are smaller,

1

2π
Qs

load =
1

(R +Rload)ω0C
, (2.24a)

1

2π
Qp

load =
RpRload

(Rp +Rload)ω0L
. (2.24b)

The external quality factors Qs
ext and Qp

ext are defined as the quality factors the
series and parallel resonant circuits would have if they were loss free and only the
external loading Rload were present,

1

2π
Qs

ext =
1

Rloadω0C
, (2.25a)

1

2π
Qp

ext =
Rload

ω0L
. (2.25b)

Using the definitions of Eqs. (2.11), (2.22), (2.24a), (2.24b), (2.25a), and (2.25b) it
is easy to prove that

1

Qs
load

=
1

Qs
ext

+
1

Qs
, (2.26a)

1

Qp
load

=
1

Qp
ext

+
1

Qp
. (2.26b)

2.1.2 Distributed-Parameter Resonators

In real applications, microwave resonators in the frequency range from 100MHz to
10GHz are usually realized by means of finite segments of transmission lines. These
types of resonators are typical examples of distributed-parameter systems as opposed
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Figure 2.3: Transmission line model and line characteristic parameters.
(a) A current I(z) flows through the top wire (blue) of an infinite trans-
mission line in the positive z direction. A voltage V (z) drops between the top
wire and groundplane wire (blue) via a dielectric material (grey). (b) Equiv-
lent circuit model for an infinitesimal segment dz of transmission line. The
characteristic parameters of the line are the series inductance l dz, in series
with the resistance r dz, and the shunting capacitance c dz, in parallel with
the conductance g dz. The current and voltage at the output of the infinites-
imal segment of line are I(z + dz) and V (z + dz) and can be determined by
means of differential equations (e.g., cf. Ref. [227]). (c) A finite segment � of
transmission line terminated on a load impedance ZL. The input impedance
of the line, Zin, depends on the line characteristic impedance Z0, the propa-
gation phase constant β, the attenuation constant α, and the load impedance
ZL [cf. Eq. (2.31)].

to the ideal models described in the previous subsection, which are based on lumped
elements. The reason to opt for distributed-parameter devices instead of lumped-
parameter ones is because the latter are usually characterized by too high losses to
be effective at microwave frequencies. Such losses are due to the conductor and/or
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dielectric materials as well as large electromagnetic radiation.13

A transmission line can be regarded as a quasi one-dimensional (1D) structure
composed of two parallel conductors, a top wire and a groundplane wire, separated
by a dielectric material [cf. Fig. 2.3(a)]. As shown in Figs. 2.3(b) and 2.3(c), the pa-
rameters needed for a complete characterization of a transmission line of length z = �
are its series inductance l and shunting capacitance c per unit length. Typically,
transmission lines are accompanied by (small) losses due to the finite conductivity
of the wires and to dielectric losses. All these losses are represented by a resistance
per unit length r, which is in series with the inductance l, and a conductance per
unit length g, which is in parallel with the capacitance c. Possible radiation losses
due to the geometrical configuration of the actual transmission line are assumed
to be included in the series resistance r. For the sake of simplicity we consider
nondispersive lines [227]. The characteristic impedance of the line is defined as

Z0 ≡
√
l/c (2.27)

and its propagation phase constant as

β ≡ ω/c̄ , (2.28)

where c̄ is the velocity of the electromagnetic waves on the line. For a low-loss
transmission line it is possible to prove that

β = ω
√
lc (2.29)

and that the line attenuation constant is given by

α =
1

2
(rY0 + gZ0) , (2.30)

where Y0 ≡ 1/Z0 =
√
c/l is the characteristic admittance of the transmission line.

Hereafter, we consider negligible dielectric losses and, thus, we set g = 0. Accord-
ingly, α = rY0/2.

In order to operate a transmission line as a resonator, we must cut it into a finite
segment and terminate it at the two edges into suitable circuit elements. In the
ideal case, those elements are short or open circuits and determine the boundary
conditions the electromagnetic waves have to fulfill in order to be sustained by the
line. As a result, the line is characterized by so-called standing waves. Before delving
into the details on the form of the standing waves associated with different types
of terminations, we analyze the equivalent circuit model for two relevant examples:
short-circuited and open-circuited transmission lines.

A fundamental result in the circuit theory of transmission lines, which must be
explained before proceeding with our study, is represented by the so-called transfor-
mation of impedances. Let us consider again the transmission line of Fig. 2.3. The
line is terminated in a load impedance defined as ZL [cf. Fig. 2.3(c)]. Such a load
can be a short circuit, ZL = 0, an open circuit, YL ≡ 1/ZL = 0, a matched resistor
with impedance ZL = Z0, or, more in general, a resistor or any other circuit element

13It is worth mentioning that accurate engineering can overcome those issues and state-of-the-art
technology might allow for the implementation of high quality factor resonators based on lumped
elements.
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with unmatched impedance ZL �= Z0. In the case of a lossy line, the transformation
of impedances tells us that the impedance seen at the input of the transmission line
is given by [cf. Fig. 2.3(c)]

Zin = Z0

ZL + Z0 tanh(jβ�+ α�)

Z0 + ZL tanh(jβ�+ α�)
, (2.31)

which, as expected, approaches Z0 for � large since tanh x approaches 1 for x large
and not a pure immaginary quantity.

With this result in hand, we can now straightforwardly analyze the circuit models
of short- and open-circuited transmission lines.

Short-Circuited Transmission Lines

If the termination on the righthand side of the transmission line of Fig. 2.3(c) is a
short circuit, ZL = 0, the input impedance reduces to

Zin = Z0 tanh(jβ�+ α�)

= Z0

tanhα�+ j tan β�

1 + j tan β� tanhα�
. (2.32)

Let � = λ0/2, where λ0 is the wavelength at ω = 2πf = ω0 = 2πf0.
14 For small

deviations Δω around the resonance angular frequency ω0, we can assume ω = ω0+
Δω. Since at ω0 we find β� = π, we can write β� = (ω/c̄)� = πω/ω0 = π+πΔω/ω0.
Given that we are assuming small losses, tanhα� ≈ α�. This condition guarantees
that α� � 1. In addition, since Δω/ω0 is small, tan β� = tan(π + πΔω/ω0) =
tan πΔω/ω0 ≈ πΔω/ω0. Hence, we obtain

Zin = Z0

α�+ jπΔω/ω0

1 + jα�πΔω/ω0

≈ Z0

(
α�+ jπ

Δω

ω0

)
, (2.33)

where the approximation is valid because the second term in the denominator,
∝ αΔω, is of second order compared to the two numerator terms, which are

proportional to α and Δω, respectively. Reminding that β� = ω0

√
lc � = π, we find

that π/ω0 = �
√
lc and the expression for Zin can be further simplified as

Zin =

√
l

c

(
�

2
r

√
c

l
+ jΔω�

√
lc

)
=

1

2
r�+ jl�Δω . (2.34)

It is of pedagogical interest to compare the result of Eq. (2.34) with the inverse of
the input admittance of the series RLC-resonant circuit given by Eq. (2.13), which
is valid in the vicinity of resonance. Dividing both numerator and denominator of
Eq. (2.13) by Gs = 1/R and reminding that Qs/2π = Gs/ω0C, we readily obtain

Zs
in = R + j2LΔω . (2.35)

14We remind that, in general, the wavelength λ ≡ c̄/f .
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Comparing the above expression with the impedance of Eq. (2.34), we see that in
the vicinity of the frequency for which � = λ0/2 the short-circuited line behaves as
a series resonant circuit with equivalent total resistance R ≡ r�/2 and inductance
L ≡ l �/2. The factors 1/2 arise because the current on the short-circuited line is
obviously only a half sinusoid. Therefore, the effective circuit parameters R and L
are one-half of the total line quantities.

It is remarkable that the quality factor of a short-circuited transmission line
resonator can be calculated as if it were the quality factor of a simple series RLC-
resonant circuit. Applying the result of Eq. (2.11) to the case of a short-circuited
line we find

1

2π
Qs =

ω0L

R
=
ω0l

r
=

β

2α
. (2.36)

This definition of quality factor can be applied to any transmission line with arbi-
trary geometrical configuration, as long as one is able to compute the associated
propagation phase constant β and attenuation constant α. We refer to Ref. [227]
for more details on the specific implementation of transmission line resonators.

Open-Circuited Transmission Lines

If the termination on the righthand side of the transmission line of Fig. 2.3(c) is an
open circuit, YL = 1/ZL = 0, it can easily be verified that the line is equivalent to a
series RLC-resonant circuit in the vicinity of the frequency for which it is a quarter
wavelength long, i.e., � = λ0/4. An analysis similar to the case of the short-circuited
line reveals that the input impedance of an open-circuited line is given by

Zin ≈ Z0

(
α�+ j

π

2

Δω

ω0

)
=

1

2
r�+ jl �Δω . (2.37)

As a consequence, all the equivalent circuit parameters can be calculated as in the
case of a short-circuited transmission line. We notice that the approximated form
for the input impedance of Eq. (2.33) differs from that of Eq. (2.37) by a factor 1/2
(π → π/2) because the resonator length is now one-half the length in the short-
circuit case, λ0/4 instead of λ0/2.

It is noteworthy to mention that short-circuited transmission lines behave as
parallel RLC-resonant circuits in the frequency range where they are close to be
one-quarter wavelength long. The same property is true for open-circuited lines
that are close to be one-half wavelength long. When a transmission line behaves as
an RLC-parallel resonant circuit, it is said to be antiresonant. We do not enter into
the details of this matter here and remind to Ref. [227] for further elucidation.

The Reflection of Waves: Modes

The problem of a transmission line terminated at one end, which so far we have
analyzed by means of impedance transformations, is analogous to the problem of
a string fastened to the bridge of a classical guitar and let loose at the headstock.
Mathematically, this boundary condition problem can be formulated by imposing
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that the space-time–dependent displacement i(z, t) of the string at the position z = 0
must be zero because this end does not move,

i(z = 0, t) = 0 ∀t . (2.38)

If it were not for the bridge where the string is held, the general solution for the
string motion would be the sum of two functions. Each of these functions would
represent a wave travelling one way through the string and a wave travelling the
opposite way, respectively. If we assume that the string carries 1D waves along the
z direction with velocity c̄, the string motion for the unbound problem would read

i(z, t) = f(z − c̄t) + g(z + c̄t) . (2.39)

Imposing the boundary condition of Eq. (2.38) in the above equation and examining
i for any value of t, we obtain the solution i(t) = f(−c̄t) + g(+c̄t). This expression
is zero at all times iff g(+c̄t) = −f(−c̄t). Under these conditions, the string motion
for the bound problem becomes

i(z, t) = f(z − c̄t)− f(−z − c̄t) . (2.40)

It is easy to check that, ∀t, we get i = 0 when z = 0. In other words, the sum of
two waves interferes in order to get a zero displacement of the string in the origin
of the z-axis.

For the string motion problem, as for any other problem related to vibrational
motion, the standard Ansatz is to consider periodic waves as solutions. Suppose
that the wave represented by f(z − c̄t) is a cosine function with amplitude Ĩ0 and
angular frequency ω. If there are no losses at the bridge of the guitar,15 the wave
reflected back, −f(−z − c̄t), is also a cosine function of the same amplitude and
frequency, but travelling in the opposite direction. This situation can most simply
be described by employing the complex function notation, i.e., the so-called phasor
picture. We start assuming

f(z − c̄t) = Ĩ0 cos(ωt− βz) , (2.41)

where, once again, β = ω/c̄. The amplitude Ĩ0 is a positive real number. More
generally, we can define the incident wave f+ as

f+ ≡ f(z − c̄t) ≡ �
{
Ĩ0e

j(ωt−βz)
}

(2.42)

and the associated phasor (or complex phasor amplitude) as

F+ ≡ Ĩ0e
−jβz . (2.43)

In a similar way, we can define the reflected wave f− as

f− ≡ f(−z − c̄t) ≡ �
{
Ĩ0e

j(ωt+βz)
}

(2.44)

and the associated phasor as
F− ≡ Ĩ0e

+jβz . (2.45)

15The bridge behaves as if it were an infinite solid wall, which does not absorb energy.
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Remarkably, in the definition of phasor the common time-dependent term, exp(jωt),
drops out. Since the angular frequency ω is the same for both incident and reflected
waves, the phasors defined by Eqs. (2.43) and (2.45) uniquely represent the associ-
ated waves. In experiments, the angular frequency ω is set by means of a so-called
local oscillator (LO) signal and, as a consequence, is a known parameter (cf. chap-
ters 3 and 4). In most of the following calculations we will use the phasor picture.
When needed, we will insert back the time-dependent terms for explanatory pur-
poses. The phasor picture is a sort of simplified Fourier transform valid for periodic
monochromatic functions in the case of no losses.16

It can easily be seen that the complex functions of Eqs. (2.42) and (2.44) verify
the solution for the string bound problem of Eq. (2.40). Consequently, Eq. (2.40)
can be rewritten in the phasor picture as

I = I(z) = Ĩ0
(
e−jβz − e+jβz

)
= −2jĨ0 sin(βz) . (2.46)

I is the complex phasor amplitude associated with i(z, t). The second line of
Eq. (2.46) is obtained by applying the Euler definition of sine. In the time domain,
the displacement i can finally be written as

i(z, t) = �
{
−2jĨ0e

jωt sin(βz)
}

= �
{
−2jĨ0(cosωt+ j sinωt) sin(βz)

}
= 2Ĩ0 sin βz × sinωt

= −Ĩ0 sin βz × j (e+jωt − e−jωt) , (2.47)

where the minus sign in front of I0 represents a global phase. Equation (2.47) is a
beautiful example of the power of the Euler representation of sine/cosine functions
and, as we will show later, stands at the basis of the quantization of a transmission
line resonator.

The solution for the displacement i of Eq. (2.47) reveals two important facts.
First, if we observe the string in time, the string oscillates at the same angular
frequency ω at any fixed point z. In particular, there are some special points where
there is no displacement at all, e.g., where sin βz = 0. Second, if we observe the
string in space and take a snapshot of it, the picture is a sine wave at any time
t. However, the displacement of this sine wave depends upon the time t. From
Eq. (2.47) it also follows that the length corresponding to one period of the sine
wave is equal to the wavelength of either of the superimposed waves,

λ =
2π

β
. (2.48)

The points where there is no motion satisfy the condition sin βz = 0, which implies
that at these points βz = nπ, with n ∈ N. These points have a peculiar name and
are defined as nodes. The pattern of motion characteristic of the string problem has
the property that at any point the string moves perfectly sinusoidally and that all

16With losses, the so-called pseudo-cisoids, a simplified Laplace transform, must be used.
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points move at the same frequency (even if some of them move more than others).
This special motion is defined as mode.

By analogy, we can now think of extending the results obtained for the string
problem to the case of electromagnetic waves propagating on a transmission line.
The solutions to the problem of a string which is held at one end are formally
equivalent to those of a steady-state sinusoidal electromagnetic wave propagating
on a transmission line which is open- or short-circuited at one end. Let us begin
with the case of an open-circuited transmission line. In this case, the displacement
acquires the meaning of a current, which has to be zero at the open-circuited end.17

If the transmission line is loss free, the current on the line is a pure standing wave
and can be written as in Eqs. (2.46) and (2.47) in the phasor picture and time
domain, respectively. The case of electromagnetic waves, though, is more complex
than that of a simple string. To any electromagnetic wave are associated both a
current with space-dependent complex phasor amplitude I(z) and a voltage with
space-dependent complex phasor amplitude V (z). Assuming steady-state solutions
and invoking Kirchhoff’s circuit laws in the phasor picture, it is straightforward to
prove that for a transmission line the following differential equation holds [227]:

∂

∂z
I(z) = − jωc V (z) . (2.49)

Substituting the expression for the current given in Eq. (2.46) into the above equa-
tion, bearing in mind that β = ω

√
lc and Z0 =

√
l/c, and solving for V (z) we finally

obtain

V (z) = 2Ĩ0Z0 cos βz

= 2Ṽ0 cos βz , (2.50)

where Ṽ0 = Z0Ĩ0. V is the complex phasor amplitude associated with v(z, t), which
can then be written as

v(z, t) = �
{
ejωtV (z)

}
= �
{
2Ṽ0e

jωt cos(βz)
}

= �
{
2Ṽ0(cosωt+ j sinωt) cos(βz)

}
= 2Ṽ0 cos βz × cosωt

= Ṽ0 cos βz × (e+jωt + e−jωt) . (2.51)

As expected, at time t = 0 the voltage reaches a maximum at the node z = 0, where
cos βz = 1. At any other time, it oscillates as a cosine function. The behavior of
the current is the dual of the voltage: Where one reaches a maximum the other is at
a minimum and vice versa. For the case of an open-circuit termination, the nodal
variable, which is zero at the node for all times, is the current.

The case of a short-circuited transmission line can be treated as the dual of the
open-circuited line. In this case, the displacement acquires the meaning of a voltage,
which has to be zero at the short-circuited end. If the transmission line is loss-free,

17It is now evident why we have chosen to indicate the displacement of the string as i !
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the voltage on the line is a pure standing wave and can be written as in Eqs. (2.46)
and (2.47) upon applying the substitutions I → V , i → v, and Ĩ0 → Ṽ0. The
current can then be obtained from the following differential equation in the phasor
picture [227]:

∂

∂z
V (z) = − jωl I(z) . (2.52)

In summary, for a short-circuited transmission line

V = V (z) = − 2jV0 sin(βz) , (2.53a)

v(z, t) = −Ṽ0 sin βz × j(e+jωt − e−jωt) , (2.53b)

I = I(z) = 2Ĩ0 cos βz , (2.53c)

i(z, t) = Ĩ0 cos βz × (e+jωt + e−jωt) . (2.53d)

For the case of a short-circuit termination, the nodal variable, which is zero at the
node for all times, is the voltage.

The Confinement of Waves: Natural Frequencies

(i) λ/2 resonators - We now go back to the general problem of a vibrating string.
If the string is fastened to both the bridge and headstock of our classical guitar,
we have to impose two boundary conditions at, e.g., z = 0 and z = �. Because of
these boundary conditions, it is evident that the problem admits periodic solutions.
A wave on the string is reflected back and forth at the bridge and headstock in a
periodic motion. An interesting question is whether such motion can be sinusoidal.
We can imagine to put a sinusoidal periodic wave on the string. If the string is tied
at one end, we know that the wave must be as in Eq. (2.47). If it is tied at the
other end, it must be the same at the other end too. Hence, the only possibility for
a sinusoidal periodic motion to be conceivable is that the sine wave perfectly fits
into the string length. In this case, the frequency associated with the sine wave is
defined as natural frequency. In other words, if the string is started with a sine wave
shape that fits in perfectly, then it will continue to keep that perfect shape of a sine
wave and will oscillate harmonically at the corresponding natural frequency.

Mathematically, we can formulate the problem as

i(z = 0, t) = 0 ∀t , (2.54a)

i(z = �, t) = 0 ∀t , (2.54b)

or, equivalently,

I(z = 0) = 0 , (2.55a)

I(z = �) = 0 . (2.55b)

Since we are only interested in the spatial shape of the sine wave, for simplicity
we can use the set of boundary conditions for the phasors, which are independent
of time. Notably, Eq. (2.46) fulfills the boundary condition given by Eq. (2.55a)
for every value of the propagation phase constant β. In fact, imposing the bound-
ary condition of Eq. (2.55a) for a sine wave is equivalent to solve the half-open
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string problem, which led to the solution of Eq. (2.46). Imposing the condition of
Eq. (2.55b), instead, adds a new constraint to the problem. The significance of such
constraint is that β is no longer arbitrary, as in the case of a half-open string, but
fixed by the geometry of the string, i.e., by its length. When the string is tied at
both ends the only possibility is that

I(z = �) = − 2jĨ0 sin(β�) = 0 . (2.56)

In order for a sine to be zero, the angle which is argument of the sine must be an
integer multiple of π

β� = mπ , with m ∈ N (2.57)

or

β =
mπ

�
. (2.58)

The equation above, which fixes β to the geometry of the string, can be rewritten
as

β =
ω

c̄
=

2πf

c̄
=

2π

λ
=
mπ

�
, (2.59)

where λ ≡ c̄/f . Finally, we can write

� = m
λ

2
= m

c̄

2f
. (2.60)

Equation (2.60) represents a fundamental result in the theory of confined waves. It
tells us that, given a particular wavelength (or frequency), the length of the string
must be an integer multiple of half wavelength. We have thus proven that a string
tied at two ends can have sinusoidal motion, but only at some special wavelengths (or
frequencies). According to Eq. (2.60), there are many different possible wavelengths
(or frequencies) for which the boundary conditions of Eqs. (2.55a) and (2.55b) are
fulfilled. Each of these wavelengths (or frequencies) corresponds to a mode because,
by definition, a mode is a pattern of motion repeating itself sinusoidally. Neglecting
the trivial case for m = 0, we can define the mode for m = 1 as the fundamental
mode of vibration for the string. In this case, the length of the string is set to be

� =
λ0
2
, (2.61)

where

λ0 =
c̄

f0
, (2.62)

and f0 is the fundamental frequency associated with the string under consideration.
The sine wave on the string is then given by the phasor

I = I(z) = − 2jĨ0 sin
(mπ
�

)
= −2jĨ0 sin

(
m2π

λ0
z

)
= −2jĨ0 sin

(
2πmf0

z

c̄

)
, (2.63)
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or, in time domain, by the function

i(z, t) = �
{
ej2πmf0tI(z)

}
= −Ĩ0 sin

(
2πmf0

z

c̄

)
× j(e+j2πmf0t − e−j2πmf0t) . (2.64)

The first mode of vibration for the string is obtained when m = 2 and, consequently,
f1 = 2f0. The second mode when m = 3 and f2 = 3f0 and so on and so forth. For
the m-th mode, the frequency is fm−1 = mf0. So, the frequencies associated with
the different modes of vibration are integer multiple of the fundamental frequency
f0.

18

The problem of a string tied at both ends is analogous to that of a finite segment
of transmission line with both ends open circuited. At the open circuits the current
on the transmission line has to be zero and, thus, it can be written as in Eqs. (2.63)
and (2.64) in the phasor picture and time domain, respectively. The corresponding
voltage can be derived from Eq. (2.49). In the phasor picture, the voltage reads

V (z) = 2Ṽ0 cos
(
2πmf0

z

c̄

)
(2.65)

and, in time domain,

v(z, t) = Ṽ0 cos
(
2πmf0

z

c̄

)
× (e+j2πmf0t + e−j2πmf0t) . (2.66)

As expected, in correspondence of the open circuits the voltage reaches a maximum,
thus showing a dual behavior as compared to the current.

Equations (2.63)-(2.66) fully characterize the class of resonators defined as λ/2
resonators, which owes its name to the condition of Eq. (2.60). In summary, for the
synthesis of a λ/2 resonator, given the desired resonance frequency f0 we first calcu-
late the corresponding wavelength λ0. We then take a finite segment of transmission
line λ0/2 long and terminate it into two open circuits. The open-circuit terminations
represent the nodes of the resonator. This segment of transmission line can then
sustain any current and voltage mode with frequency fm−1 = mf0, integer multiple
of the fundamental frequency f0.

19 For λ/2 resonators the nodal variable is the
current. Figures 2.4(a) and 2.4(b) show the first three modes (m = 1, 2, 3) for a
generic λ/2 resonator. The modes are obtained from an opportune renormalization
of Eqs. (2.65) and (2.63).

(ii) λ/4 resonators - There is another important class of electromagnetic res-
onators known as λ/4 resonators. Such resonators can be synthesized taking a
segment of transmission line and terminating it into an open and a short circuit,
respectively. We assume the open to be positioned at z = 0 and the short at z = �.
On one hand, the open circuit termination sets the current to zero, as in the case of
one node of a λ/2 resonator. On the other hand, the short circuit sets the voltage
to zero. This condition can be expressed as

V (z = �) = 2Ṽ0 cos βz = 0 , (2.67)

the solution of which is

β� = (2m+ 1)
π

2
, with m ∈ N (2.68)

18m > 1.
19Notably, ∀m, � = mλ/2 = mc̄/2mf0 = λ0/2.
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or, equivalently,

� = (2m+ 1)
λ

4
= (2m+ 1)

c̄

4f
. (2.69)

We can now define the mode for m = 0 as the fundamental mode for the λ/4
transmission line resonator. In this case, the length of the string is set to be

� =
λ0
4
, (2.70)

and the voltage and current in the phasor picture and time domain, respectively,
are given by

V = V (z) = 2Ṽ0 cos

[
2(2m+ 1)π

λ0

]
= 2Ṽ0 cos

[
2π(2m+ 1)f0

z

c̄

]
, (2.71a)

v(z, t) = Ṽ0 cos
[
2π(2m+ 1)f0

z

c̄

]
×[e+j2π(2m+1)f0t + e−j2π(2m+1)f0t] , (2.71b)

I = I(z) = − 2jĨ0 sin

[
2(2m+ 1)π

λ0

]
= −2jĨ0 sin

[
2π(2m+ 1)f0

z

c̄

]
, (2.71c)

i(z, t) = −Ĩ0 sin
[
2π(2m+ 1)f0

z

c̄

]
× j[e+j2π(2m+1)f0t − e−j2π(2m+1)f0t] . (2.71d)

The first mode of resonance is obtained when m = 1 and, consequently, f1 = 3f0.
The second mode when m = 2 and f2 = 5f0 and so on and so forth. For the m-th
mode, the frequency is fm = (2m + 1)f0. So, the frequencies associated with the
different modes are odd integer multiple of the fundamental frequency f0.

20 The
open- and short-circuit terminations represent the nodes of the λ/4 resonator and
the nodal variables are the current in correspondence of the open circuit and the
voltage in correspondence of the short. As always, where the voltage reaches a
maximum the current is at a minimum and vice versa. Figures 2.4(c) and 2.4(d)
show the first three modes (m = 0, 1, 2) for a generic λ/4 resonator. The modes are
obtained from an opportune renormalization of Eqs. (2.71a) and (2.71c).

To conclude this subsection, we remind that any generic signal on a transmis-
sion line21 can always be regarded as the superposition of an infinite (or at least
a very large) number of modes, combined with opportune amplitudes and phases.
Each mode can be described by a very simple sinusoidal wave as those derived for
open- and short-circuited transmission line resonators. This is a special case of the
general superposition principle valid for all linear systems. The possibility to use
the superposition principle has important consequences for the quantum theory of
signals to be developed below.

20m � 0.
21Similar to a field in free space.
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Figure 2.4: Spatial distribution for the voltage V and current I on a λ/2
resonator [(a) and (b)] and λ/4 resonator [(c) and (d)]. (a) Normalized
voltage V (z)/2Ṽ0 obtained from Eq. (2.65) for m = 1, dark blue (dark grey)
line, m = 2, light green (light grey) line, and m = 3, magenta (middle grey)
line. The voltage is maximum at each open circuit (OC). (b) Normalized
current I(z)/(−2j Ĩ0) obtained from Eq. (2.63). The color code for the three
plotted modes is as in (a). The current is zero at each OC. (c) V (z)/2Ṽ0
obtained from Eq. (2.71a) for m = 0, dark blue (dark grey) line, m = 1, light
green (light grey) line, and m = 2, magenta (middle grey) line. The voltage
is maximum at the OC and zero at the short circuit (SC). (d) I(z)/(−2j Ĩ0)
obtained from Eq. (2.71c). The color code for the three plotted modes is as
in (c). The current is zero at the OC and maximum at the SC. The modes
are plotted until the z = 0 and z = λ/2 or z = λ/4 planes, which, for clarity,
have been separated from the open and short circuit elements.
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2.1.3 Quantization of Microwave Resonators and Signals

In Subsecs. 2.1.1 and 2.1.2, the general properties of classical electromagnetic res-
onators have been studied. The scope of this subsection is to extend those properties
to the case of quantum-mechanical resonators. We begin analyzing the simple case of
a quantized LC-resonator22 and show that it behaves as a 1D quantum-mechanical
harmonic oscillator. We then generalize the results obtained for an LC-resonator to
more complex structures such as quantized transmission line resonators. Finally, we
show that any quantum signal of a given frequency propagating on a transmission
line, i.e., a monochromatic electromagnetic field, is mathematically equivalent to a
1D quantum-mechanical harmonic oscillator of the same frequency. This result will
be very useful for the derivations of chapters 3 and 4.

Lumped-Parameter Quantized Resonators

The classical Hamiltonian, i.e., the total energy, of a lumped-parameter LC-resonator
can be written as

HLC =
Q2

2C
+

Φ2

2L

=
Q2

2C
+

1

2
ω2CΦ2 , (2.72)

where Q is the charge associated with capacitor C, Φ the flux associated with in-
ductor L, and ω ≡ 1/

√
LC the resonance frequency of the resonator.23 Substituting

the general definitions of charge and flux,

Q ≡ Cv , (2.73a)

Φ ≡ Li , (2.73b)

where v is the voltage on C and i the current on L, into the Hamiltonian of Eq. (2.72)
we readily obtain

HLC =
1

2
Cv2 +

1

2
Li2 . (2.74)

Depending on the problem, we will use either Eq. (2.72) or Eq. (2.74) for the Hamil-
tonian of a resonator.

In quantum mechanics, the classical quantities charge and flux are replaced by
observables in a Hilbert space, Q → Q̂ and Φ → Φ̂. By means of these transfor-
mations, the quantum-mechanical version of the Hamiltonian of Eq. (2.72) can be
written as

ĤLC =
Q̂2

2C
+

1

2
ω2CΦ̂2 . (2.75)

The observables Q̂ and Φ̂ are canonically conjugated and, thus, must satisfy the
standard commutation relation

[Q̂, Φ̂] = j� . (2.76)

22We neglect losses for simplicity, R = 0.
23We remind that lumped-parameter resonators are characterized by one mode only. Hence, the

energy of Eq. (2.72) represents the total energy of the resonator.
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From this relation it follows that the flux Φ̂ can be interpreted as the position op-
erator and the charge Q̂ as the corresponding momentum operator. It is convenient
to replace Q̂ and Φ̂ by a pair of dimensionless (non-Hermitian) operators, which are
defined as

â ≡ 1√
2C�ω

(Q̂+ jCωΦ̂) (2.77)

and its adjoint

â† ≡ 1√
2C�ω

(Q̂− jCωΦ̂) . (2.78)

Consequently, we can rewrite the observables Q̂ and Φ̂ as

Q̂ =

√
C�ω

2
(â† + â) (2.79)

and

Φ̂ =

√
�

2Cω
j(â† − â) . (2.80)

From [Q̂, Φ̂] = j� it follows that

[â, â†] = 1 . (2.81)

Equations (2.79) and (2.80) with the aid of Eq. (2.81) allow us to write the Hamil-
tonian of a quantized LC-resonator in the from

ĤLC =
�ω

2
(ââ† + â†â) = �ω

(
â†â +

1

2

)
, (2.82)

which represents a 1D quantum-mechanical harmonic oscillator. The theory of the
1D quantum-mechanical harmonic oscillator is developed equivalently in terms of
the Hamiltonian of Eq. (2.75) and the commutation relation of Eq. (2.76) or by the
analogous Eqs. (2.82) and (2.81).

From the Hamiltonian of Eq. (2.82) it appears evident that the energy levels of
the harmonic oscillator are determined by the eigenvalues of the so-called number
operator N̂ ≡ â†â. We denote the eigenvalues and (normalized) eigenkets of N̂ by
n and |n〉, respectively. Hence,

N̂ |n〉 = n|n〉 . (2.83)

The scalar product of the vector â|n〉 with itself is given by 〈n|N̂ |n〉 = 〈n|â†â|n〉.
It then follows from Eq. (2.83) that n〈n|n〉 = n, with n ∈ N. It can also be proven
that

â|n〉 =
√
n|n− 1〉 , (2.84a)

â†|n〉 =
√
n+ 1|n+ 1〉 , (2.84b)

and, for consistency, â|0〉 = 0. The state |0〉 is called the vacuum state of the
quantum harmonic oscillator. Because of Eqs. (2.84a) and (2.84b) â and â† are
defined as lowering (annihilation) and raising (creation) operators, respectively. The
annihilation and creation operators are extremely useful in calculations, although
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they do not represent observable features of the oscillator. The energy levels of the
1D quantum-mechanical harmonic oscillator are given by

En =

(
n+

1

2

)
�ω , (2.85)

with n = 0, 1, 2, . . . . Finally, the wave functions of the oscillator can be expressed
in terms of the position operator Φ̂ as

ψ0(Φ̂) =

(
Cω

π�

)1/4

e−ξ̂
2/2 , (2.86a)

ψn(Φ̂) =
jn

(2nn!)

(
Cω

π�

)1/4(
ξ̂ − ∂

∂ξ̂

)n
e−ξ̂

2/2 , (2.86b)

for the groundstate and excited states, respectively. In the above equations, ξ̂ ≡√
Cω/� Φ̂. It is easy to see that the wave functions are the product of exp(−ξ̂2/2)

and a polynomial of degree n and parity (−1)n called a Hermite polynomial [229].
We can now apply the general definitions of Eqs. (2.73a) and (2.73b) to the

case of the quantum-mechanical observables Q̂ and Φ̂, Q̂ ≡ CV̂ and Φ̂ ≡ LÎ. The
quantum voltage V̂ and current Î can then be written as

V̂ =
Q̂

C
=

√
�ω

2C
(â† + â) (2.87)

and

Î =
Φ̂

L
=

√
�ω

2L
j(â† − â) , (2.88)

which are Hermitian operators. It is straightforward to prove that the coefficient
in front of Eq. (2.87) has the units of a voltage (volt - V) and the one in front
of Eq. (2.88) the units of a current (ampere - A). As for the case of the classical
Hamiltonian given by Eq. (2.74), the Hamiltonian of a quantized LC-resonator can
be expressed as

ĤLC = ĤC + ĤL

=
1

2
CV̂ 2 +

1

2
LÎ2 , (2.89)

where ĤC ≡ CV̂ 2/2 is the Hamiltonian associated with capacitor C and ĤL ≡ LÎ2/2
the one associated with inductor L. Notably, the following commutation relation
holds between quantized voltage and current:

[V̂ , Î] = j�ω2 . (2.90)

In summary, any quantum-mechanical LC-resonator can be described in terms of two
equivalent sets of observables, charge and flux or voltage and current. In standard
textbooks, charge and flux (or phase) are usually considered as canonical conjugated
variables. For example, in the case of the quantization of a flux quantum circuit
this turns out to be the natural choice (e.g., cf. Sec. 2.2). However, in quantum
network theory it is oftentimes more practical to utilize voltage and current as
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conjugated observables (e.g., cf. chapters 3 and 4). In fact, the voltage drop on
a given impedance, from which the power absorbed by the impedance and other
useful parameters can be derived, is the quantity usually measured in experiments.
Experimentally, we are never able to measure directly a charge or flux (or phase).

It is noteworthy to mention that in theoretical quantum mechanics the dimen-
sionless operators

X̂ ≡ j
â† − â√

2
(2.91)

and

Ŷ ≡ â† + â√
2

(2.92)

are typically used in calculations.24 In the light of Eqs. (2.87) and (2.88), the mean-
ing of X̂ and Ŷ becomes evident: They simply represent a dimensionless voltage and
current, respectively. The quantities X̂ and Ŷ are also called quadrature operators :
The simultaneous knowledge of both of them is a necessary condition for the full
characterization of a resonator.

A fundamental difference between classical and quantum-mechanical resonators25

is that in the quantum case there is a finite energy stored in the oscillator even
when the oscillator is in the groundstate |0〉 (vacuum state). In other words, at zero
temperature and without any external driving a quantum-mechanical resonator is
characterized by a nonzero energy. It is easy to calculate the total vacuum (also
called zero-point) energy associated with a quantized resonator. In order to do so,
we can consider the Hamiltonian of Eq. (2.82) and, employing the properties of the
annihilation and creation operators [cf. Eqs. (2.84a) and (2.84b)], we can calculate
the quantum-mechanical expectation value

E0 = 〈0|ĤLC |0〉 =
�ω

2
. (2.93)

This result is obviously confirmed by the energy spectrum given by Eq. (2.85) for
n = 0. Similarly, the vacuum (zero-point) energy associated only with the capacitive

part (kinetic energy) of ĤLC is given by

EC0 ≡
1

2
CV 2

0

= 〈0|ĤC |0〉 =
�ω

4
. (2.94)

Equation (2.94) allows us to calculate the vacuum (zero-point) voltage of capacitor
C,

V0 =

√
�ω

2C
. (2.95)

The vacuum (zero-point) current I0 of inductor L can be obtained following an

analogous calculation considering only the inductive part (potential energy) of ĤLC .

24In the literature, the factor
√
2 in the denominator of the definitions of Eqs. (2.91) and (2.92)

is sometimes replaced by a factor 2.
25This difference can easily be extended to more complicated circuits.
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Figure 2.5: Quantum-mechanical circuit associated with an LC-resonator.

The quantum voltage source V̂ is in parallel with capacitor C and the quantum
current source Î in series with inductor L. Dissipation is not included (R = 0).

However, we prefer to derive it from the classical Ohm’s impedance law, which can
safely be used when dealing with expectation values.26 We obtain

I0 =
V0
Z0

, (2.96)

where, as always, Z0 =
√
L/C. Consequently,

I0 =

√
C

L

√
�ω

2C
=

√
�ω

2L
. (2.97)

Equations (2.95) and (2.97) show that, on average, the total vacuum energy �ω/2 is
equally distributed between the capacitor and inductor composing the LC-resonator.

The Hamiltonian of Eq. (2.89) and the commutation relation of Eq. (2.90) con-
stitute the basis for the construction of the quantum-mechanical circuit associated
with an LC-resonator. These are the quantum-circuit construction rules:

(i) The classical capacitor C must be replaced by the parallel combination of a
voltage source with quantum voltage

V̂ = V0 (â
† + â) (2.98)

and the capacitor itself. The vacuum voltage is V0 =
√
�ω/2C;

(ii) The classical inductor Lmust be replaced by the series combination of a current
source with quantum current

Î = I0 j(â
† − â) (2.99)

and the inductor itself. The vacuum current is I0 =
√
�ω/2L;

(iii) The presence of both the quantum voltage source and quantum current source
is required for the description of an LC-resonator.

26We notice that one must be extremely careful when using Ohm’s law. Here, for the sake of an
example we employ it to derive I0 because this is an expectation value, i.e., just a number. When
dealing with operators and observables Ohm’s law is, in general, not valid.
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Corollary 2.1.1 The minimum energy stored in an LC-resonator is the quantum-
mechanical energy associated with the vacuum state, �ω/2 (also referred to as quan-
tum noise). Figure 2.5 shows the quantum-mechanical circuit corresponding to an
LC-resonator.

We remind that we are considering the simple case of a dissipationless resonator,
where R = 0. The presence of a resistive element is not to be studied here.

Distributed-Parameter Quantized Resonators

We are now in the position to generalize the results obtained for an LC-resonator
to the case of quantum-mechanical transmission line resonators. Since transmission
lines are distributed-parameter elements, we have to define a capacitance c and
inductance l per unit length. The total capacitance and inductance of a transmission
line resonator are then given by C ≡ c � and L ≡ l �, respectively, where � is the
resonator length. As shown in Subsec. 2.1.2, � can assume two possible values, � =
λ0/2 or � = λ0/4, depending on the boundary conditions imposed at the edges of the
line (open or short circuits, respectively). We begin assuming that a vacuum voltage
Ṽ0 and current Ĩ0 are distributed over the entire length of the transmission line
resonator according to a mode function Υ(z) for the voltage and Ξ(z) for the current.
Such mode functions are assumed to be a priori unknown. In the Heisenberg picture,
the voltage and current on the line can generally be written as

V̂� = Ṽ0Υ(z)
(
â†e+j2πg(m)f0t + âe−j2πg(m)f0t

)
(2.100)

and
Î� = Ĩ0Ξ(z) j

(
â†e+j2πg(m)f0t − âe−j2πg(m)f0t

)
, (2.101)

respectively, where g(m) is an a priori unknown function of integer m. Compar-
ing the above expressions with the corresponding classical voltage and current of
Eqs. (2.66) and (2.64) for λ/2 resonators, and Eqs. (2.71b) and (2.71d) for λ/4
resonators, we readily find

Υ(z) = cos
(
2πmf0

z

c̄

)
, (2.102a)

Ξ(z) = − sin
(
2πmf0

z

c̄

)
, (2.102b)

g(m) = m (2.102c)

for λ/2 resonators (with m ∈ N0)
27 and

Υ(z) = cos
[
2π(2m+ 1)f0

z

c̄

]
, (2.103a)

Ξ(z) = − sin
[
2π(2m+ 1)f0

z

c̄

]
, (2.103b)

g(m) = 2m+ 1 (2.103c)

for λ/4 resonators (with m ∈ N). Moreover, the substitutions e−j2πg(m)f0t →
âe−j2πg(m)f0t and e+j2πg(m)f0t → â†e+j2πg(m)f0t have to be applied to change from

27
N0 indicates all integer excluding 0.
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the classical to the quantum-mechanical representation. The mode functions Υ(z)
and Ξ(z) for the first three modes of a λ/2 and λ/4 resonator are respectively shown
in Figs. 2.4(a)-2.4(b) and Figs. 2.4(c)-2.4(d).

In the case of λ/2 resonators and for m = 1, the vacuum voltage Ṽ0 can be
calculated as follows:

�ω

2
= 〈0|

∫ λ0/2

0

dz

[
1

2
c Ṽ 2

0 cos2
(
2π

λ0
z

)
× (â† + â)2

− 1

2
l Ĩ20 sin

2

(
2π

λ0
z

)
× (â† − â)2

]
|0〉

=

∫ λ0/2

0

dz

(
1

2
c Ṽ 2

0 cos2
2π

λ0
z +

1

2
l Ĩ20 sin

2 2π

λ0
z

)

=
1

2
c Ṽ 2

0

∫ λ0/2

0

dz

(
cos2

2π

λ0
z + sin2 2π

λ0
z

)
=

1

2
C Ṽ 2

0 . (2.104)

Since cos2(2πz/λ0) + sin2(2πz/λ0) = 1, C ≡ cλ0/2, and Ĩ0 =
√
c/l Ṽ0, we finally

obtain

Ṽ0 =

√
�ω

C
= V0

√
2 . (2.105)

From Ohm’s law, Ĩ0 = Ṽ0/Z0, we can then compute the vacuum current, which reads

Ĩ0 =

√
�ω

L
= I0

√
2 , (2.106)

where L ≡ lλ0/2. Equations (2.105) and (2.106) are valid also in the case of λ/4
resonators for m = 0 upon defining C ≡ cλ0/4 and L ≡ lλ0/4.

28 We notice that the
expressions for the vacuum voltage and current are different in the case of lumped-
parameter and distributed-parameter resonators.

Quantum Signals Propagating on a Transmission Line

In the last part of this subsection we study the properties of a signal propagating on
an infinite transmission line. We consider again a λ/2 resonator, the Hamiltonian
of which can be written as

Ĥλ/2 =
∞∑
m=1

�ωm

(
â†mâm +

1

2

)
, (2.107)

where m ∈ N, ωm = mω0 = 2πmf0, and â†m and âm are the bosonic creation and
annihilation operators for mode m. The resonator is characterized by a discrete

28The results of Eqs. (2.105) and (2.106) are very general. In fact, for a generic value of m it
is always possible to redefine a new λ/2 resonator with length � = λ0/2 ≡ c̄/2mf0 and then use
Eqs. (2.105) and (2.106) to compute the vacuum voltage and current. The same applies to λ/4
resonators.
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infinite spectrum of frequencies. If we now imagine to stretch more and more the
resonator on both sides, � becomes larger and larger and the resonance frequency
corresponding to the fundamental mode becomes smaller and smaller,

f0 =
c̄

λ0
=

c̄

2�
. (2.108)

In the limit of infinite stretching, i.e., when the left end of the resonator, z = 0,
tends to −∞ and the right end, z = �, tends to +∞, the fundamental frequency
becomes infinitesimally small, f0 → df . This has the important consequence that
all harmonics of the infinitely stretched resonator become infinitesimally close to
each other. The resonator, which is now equivalent to an infinite transmission line,
is characterized by a continuous infinite spectrum of frequencies. Neglecting the
presence of dielectric materials between the conductors, such an infinite transmission
line represents a 1D free space29 where, ideally, signals of any given angular frequency
ω are allowed to propagate. Each of these signals can be described mathematically
in terms of a single lumped-parameter quantized LC-resonator, which is obviously
characterized by a single mode of the same angular frequency ω. Hence, the voltage
and current associated with any propagating quantum signal of frequency ω are
given by Eqs. (2.87) and (2.88), respectively. We repeat them here as a reference:

V̂ =

√
�ω

2C
(â† + â)

and

Î =

√
�ω

2L
j(â† − â) .

In many applications, for example when computing the power absorbed by a load
impedance terminating a transmission line or the quantum-mechanical variance of
a signal, it is custom to define the quantum voltage and current per-root-hertz30 as
follows

V̂ ≡ V̂√
ω

=

√
�

2C
(â† + â)

=

√
�Z0ω

2
(â† + â) = V̄0 (â

† + â) (2.109)

and

Î ≡ Î√
ω

=

√
�

2L
j(â† − â)

=

√
�Y0ω

2
j(â† − â) = Ī0 j(â

† − â) , (2.110)

respectively. The vacuum voltage and current per-root-hertz, V̄0 and Ī0, can easily
be found noticing that ω/C = Z0ω

2, ω/L = Y0ω
2, and Y0 = 1/Z0. Being inde-

pendent of the total capacitance C and inductance L of the original LC-resonator,

29In reality, a quasi-1D free space because of the very small, but finite lateral dimensions char-
acteristic of any real structure.

30Strictly speaking, this is an abuse of language because in our definitions we renormalize over√
ω, which is an angular frequency with units rad/s and not a natural frequency with units Hz.
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the definitions of Eqs. (2.109) and (2.110) are totally general. The only information
required are on the characteristic impedance Z0 of the transmission line and the
signal angular frequency ω. Equations (2.109) and (2.110) play a central role in
quantum signal theory and will extensively be used in chapters 3 and 4.

Before concluding this section it is worth outlining the main goals of quantum sig-
nal theory. One goal is to study signals associated with quantum-mechanical circuits,
where the signal energy (frequency) is significantly larger than the environmental
thermal energy (temperature). Another goal is to describe the statistical properties,
e.g., mean value and variance, of signals generated by quantum-mechanical circuits
and then transmitted through classical devices, e.g., amplifiers, in order to be exper-
imentally measured. In this case, the ultimate aim is to fully characterize any given
state |ψ〉 associated with a quantum voltage or current by means of a tomographic
process. One possibility to achieve full-state tomography is to measure all (central)
moments of the quantum voltage or current with respect to state |ψ〉. In real appli-
cations, this is oftentimes an extremely hard or even impossible task. However, there
is a certain class of states for which the knowledge of the first two central moments,
i.e., the quantum-mechanical mean value and variance of the signal, is sufficient to
obtain all the necessary information about the state. This is the so-called class of
Gaussian states. A few remarkable examples of Gaussian states are:

1. the vacuum state (cf. chapter 4), |ψ〉 = |0〉;

2. all coherent states, |ψ〉 ≡ |α〉;

3. most of the typically encountered thermal states (cf. chapter 4, Subsec. 4.2.2),
|ψ〉 ≡ |γ〉;

4. and a subset of squeezed states [91], |ψ〉 ≡ |χ〉.
In the case of number states |n〉, the knowledge of the first two moments31 can
sometimes provide valuable information (cf. chapter 4, Subsec. 4.2.1), but it does
not constitute a complete characterization of the state.

Since in experiments we usually measure voltages, we hereafter focus on the
calculation of the quantum-mechanical mean value and variance associated with a
given state |ψ〉 using the observable of Eq. (2.109) only.

In general, the quantum-mechanical first (central) moment or mean value for the
quantum voltage per-root-hertz V̂ with respect to state |ψ〉 can be written as

μ ≡ 〈V̂〉
= V̄0〈ψ|(â† + â)|ψ〉 . (2.111)

The quantum-mechanical second central moment or variance is defined as

σ2 ≡
(
ΔV̂
)2

≡ 〈V̂2〉 − 〈V̂〉2

= V̄ 2
0 〈ψ|(â† + â)2|ψ〉 − μ2

= V̄ 2
0 〈ψ|[(â†)2 + 2â†â + 1 + (â)2]|ψ〉 − μ2

= V̄ 2
0

{
〈ψ|[(â†)2 + 2â†â + (â)2]|ψ〉+ 1

}
− μ2 , (2.112)

31As we will show later (cf. chapter 4, Subsec. 4.2.1), the first moment is, in this case, always
zero.
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where σ is called the standard deviation of the quantum signal with respect to
state |ψ〉. In order to obtain Eq. (2.112), we have used the commutation relation
[â, â†] = 1 ⇒ ââ† = 1+ â†â for the annihilation and creation operators and the fact
that 〈ψ|ψ〉 = 1 for a complete orthonormal set of states. The vacuum contribution
V̄0 is always present in the quantum-mechanical expression for the variance of a
signal [cf. last line of Eq. (2.112)]. We remind that the mean value μ given by
Eq. (2.111) and the variance σ2 given by Eq. (2.112) are expressed per-root-hertz
and per-hertz, respectively.

We will come back to the concepts of quantum-mechanical mean value and vari-
ance in chapter 4, Sec. 4.2.

2.2 Flux Quantum Circuits

In this section, we first present the basic concepts on Josephson tunnel junctions
(cf. Subsec. 2.2.1). We then show that the introduction of a Josephson element into
an LC-resonator, which realizes a so-called RF SQUID, generates an anharmonic
potential. Under suitable conditions, such potential allows for the implementation of
a qubit (cf. Subsec. 2.2.2). We subsequently extend the RF SQUID to the so-called
three-Josephson-junction SQUID, which is the type of flux quantum circuit used in
our experiments and mostly discussed throughout this thesis (cf. Subsec. 2.2.3). Fi-
nally, we reduce the Hamiltonian of the three-Josephson-junction SQUID to a qubit
Hamiltonian (two-level approximation) and briefly review the basic qubit formalism.

2.2.1 Josephson Tunnel Junctions

At the basis of all circuit QED architectures with superconducting devices stand the
DC and AC Josephson effects [39, 40, 96, 230–232],32 which describe the quantum-
mechanical behavior of Josephson tunnel junctions.

A Josephson tunnel junction is realized by means of two weakly coupled super-
conducting leads. The weak coupling can be an insulating barrier (S-I-S junction),
a normal conducting thin film (S-N-S junction), or a constraint/grain boundary
(S-c-S junction) [96]. In superconducting qubit applications S-I-S junctions are typ-
ically preferred over other types. In this case, the barrier is an oxide layer (e.g.,
AlOx) grown between two superconducting electrodes (e.g., made of Al) fabricated
by lithography techniques.33 Figure 2.6(a) shows a simple schematic of an S-I-S
junction. A fundamental parameter of a Josephson tunnel junction is the so-called
critical current Ic0. The critical current is a constant representing the maximum DC
supercurrent that the junction can support.

The Josephson effect can be summarized as follows [cf. Fig. 2.6(a)]:

1. Josephson or weak-link current-phase relation - When a current bias I � Ic0
is applied to the superconducting electrodes of a Josephson tunnel junction, a
DC supercurrent flows between the two electrodes. This current is given by

Is = Ic0 sinΔϕ , (2.113)

32After B. D. Josephson, the Welsh physicist who predicted them in 1962 and 1965, respectively.
33There is a very extensive body of work on materials and fabrication techniques of Josephson

tunnel junctions for qubit applications [233–237].
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(c)

Figure 2.6: The S-I-S Josephson tunnel junction. (a) Sketch of a
superconductor-insulator-superconductor junction. The grey area between the
two superconducting leads (blue) represents the “weak link” characteristic of
any Josephson tunnel junction [96]. The external current bias I can either be
smaller than the critical current Ic0, I � Ic0, or exceed it, I > Ic0. In the
first case, we obtain the DC Josephson effect [cf. Eq. (2.113)]. In the second
case, we obtain the AC Josephson effect [cf. Eq. (2.114)]. (b) The resistively
and capacitively shunted junction (RCSJ) model. The resistance R is, in gen-
eral, a function of the voltage drop across the junction, V , and the junction
temperature T (cf. main text for details). (c) Normalized tilted washboard
potential U/EJ as a function of the gauge-invariant phase φ. Dark blue (dark
grey) curve: I = 0. Magenta (middle grey) curve: I = Ic0. Light green (light
grey) curve: 0 < I < Ic0.
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where Δϕ is the “phase difference” across the junction, i.e., the difference in
phase factor or, equivalently, argument between the Ginzburg-Landau com-
plex order parameter of the two superconducting electrodes comprising the
junction [96].34 The critical current is an important phenomenological35 pa-
rameter of the device that can be affected by temperature as well as by an
applied magnetic field. This parameter also defines the so-called Josephson
coupling energy, EJ ≡ (�/2e)Ic0 = Ic0Φ0/2π, where the physical constant
Φ0 ≡ h/2e, is the magnetic flux quantum, the inverse of which is the so-called
Josephson constant (e is the electron charge).

Equation (2.113) is the mathematical representation of the DC Josephson
effect, where a DC supercurrent can flow due to tunneling in the absence of a
voltage drop between the two electrodes of the junction;

2. Superconducting phase evolution equation - When the current bias applied to
the superconducting electrodes of a Josephson tunnel junction exceeds the
critical current, I > Ic0, a finite voltage drop V is established between the two
electrodes of the junction and the phase difference Δϕ evolves according to

d

dt
Δϕ =

2e

�
V . (2.114)

This implies that (besides integration constants)

Δϕ =
2e

�
V t , (2.115)

which, substituted into Eq. (2.113), finally gives

Is(t) = Ic0 sin

(
2e

�
V t

)
. (2.116)

Equation (2.116) is the mathematical representation of the AC Josephson
effect, where an AC supercurrent of amplitude Ic0 and angular frequency
fJ = (2e/h)V = Φ−1

0 V flows between the two electrodes of the junction.

Using Eq. (2.113) and the fact that

V =
Φ0

2π

d

dt
Δϕ ,

the coupling free energy stored in the junction can be calculated as

F =

∫
dt V Is = EJ

∫
sin (Δϕ) d (Δϕ)

= const.− EJ cosΔϕ . (2.117)

This is the electrical work done by a current source in changing the phase across the
junction.

34In this very brief introduction to the Josephson effect we always refer to the Ginzburg-Landau
theory of superconductivity, as in Ref. [96]. Obviously, the BCS theory would give similar, or even
more general, results [238].

35Its detailed form can be obtained using the Ginzburg-Landau theory.

59



2.2. FLUX QUANTUM CIRCUITS

In all expressions above we have assumed no vector potentials (i.e., zero exter-
nal magnetic fields), A = 0. If a vector potential is introduced (i.e., an external
magnetic field is applied), A �= 0, we must use the full gauge-invariant definition of
gradient (e.g., cf. Ref. [96] for details) and define the gauge-invariant phase

φ ≡ Δϕ− 2π

Φ0

∫
A · ds , (2.118)

where the integration is from one electrode of the junction to the other. The defini-
tion of Eq. (2.118) allows us to rewrite Eq. (2.113) as

Is = Ic0 sinφ . (2.119)

Since in most qubit applications we need to apply DC and/or AC external magnetic
fields, Eq. (2.119) is the relation to be used in the rest of this thesis.36

For practical purposes, it is useful to describe a Josephson tunnel junction in
terms of lumped-circuit elements. The standard accepted model goes under the
name of resistively and capacitively shunted junction (RCSJ) model [cf. Fig. 2.6(b)].37

In this model, which accounts for both the DC and AC Josephson effects, the junc-
tion is represented by the parallel combination of a capacitor Cj, a resistor R, and
the junction itself (ideal Josephson element). In general, the capacitance Cj de-
pends on the detailed geometry of the junction and the material used as insulating
layer. The resistance R, which is due to the quasiparticle channel associated with
the junction [96], is close to the normal state resistance Rn for S-I-S junctions at
temperature close to the superconductor critical temperature, T � Tc. At lower
temperatures, R rises approximately as Rn exp(ΔBCS/kBT ) for a junction voltage
V < Vg ≡ 2ΔBCS/e, where ΔBCS is the energy gap of the superconductor and kB
the Boltzmann constant. For V > Vg, R ≈ Rn. For T = 0, R → ∞ and the resistor
can be substituted by an open circuit. In the case of S-N-S or S-c-S junctions the
behavior of R with temperature and voltage can generally be different [96].

By inspection of Fig. 2.6(b), we can equate the bias current I to the total junction
current from the three parallel channels (Kirchhoff’s current law) obtaining

I = Ic0 sinφ+
V

R
+ Cj

d

dt
V . (2.120)

Substituting Eq. (2.114) for the gauge invariant phase into Eq. (2.120), we find the
inhomogeneous ordinary differential equation of second order

d2

dτ 2
φ+

1

Qj

d

dτ
φ+ sinφ =

I

Ic0
, (2.121)

where
τ ≡ ωpt

and

ωp ≡
√

2eIc0
�Cj

(2.122)

36Obviously, φ = Δϕ for A = 0.
37Here, we ignore the possible inductance associated with the junction leads.
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is the so-called “plasma frequency” of the junction. In addition, we define the
Stewart-McCumber parameter

βc ≡
(
ωpRCj

)2
= Q2

j , (2.123)

where Qj is the junction quality factor.
In analogy to classical mechanics, Eq. (2.121) can be interpreted as the equation

describing the motion of a particle of mass

M =

(
�

2e

)2

Cj

moving along the axis given by the gauge invariant phase φ in an effective potential

U(φ)

EJ

= − cosφ− I

Ic0
φ (2.124)

and subjected to a viscous drag force(
�

2e

)2
1

R

d

dt
φ .

The potential of Eq. (2.124) is referred to as tilted washboard potential and is shown
in Fig. 2.6(c) for three values of the bias current I. For R → ∞ (R → OC, i.e.,
the current on the resistive channel is zero), we can neglect the viscous drag force.
In this case, depending on the plasma frequency ωp and the washboard inclination,
which is set by the bias current I, the particle can either be trapped in one well of
the potential or run along it [Fig. 2.6(c)].38

In qubit applications the operating temperature is usually low enough to justify
the substitution of the resistive channel of the RCSJ model with an open circuit.
This allows us to neglect the resistor and, thus, to simplify the model significantly
(see below).

2.2.2 The RF SQUID

Let us consider the quantum-mechanical LC-resonator of Fig. 2.7(a). The resonator
is composed of a capacitor Cj and an inductor LF connected in a closed-loop config-
uration (LF is indeed the geometric self-inductance of such a loop). For pedagogical
reasons, we here assume the loop to be in the normal conducting state. The reason
behind this choice is not to apply the fluxoid quantization valid for superconduct-
ing loops, which would complicate the derivation and, possibly, give wrong results.
Superconductivity will be switched on as soon as a Josephson element is inserted
in the loop (see below). Bearing this assumption in mind, the resonator angular
frequency is ωF = 1/

√
LFCj. The Hamiltonian of such a resonator can be obtained

from Eq. (2.72) after the replacements Q→ Q̂ and Φ → Φ̂,

Ĥ
(I)
F =

Q̂2

2Cj

+
Φ̂2

2LF

, (2.125)

38It is worth mentioning that the particle dynamics strongly depends on the operating temper-
ature. For more details we remind the reader to Ref. [96].
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(a) (b)

Figure 2.7: From an LC-resonator to an RF SQUID. (a) Circuit diagram
of a closed-loop LC-resonator in the normal conducting state. The resonator
kinetic energy TF is associated with the capacitor Cj and its potential energy

U
(I)
F with the inductor LF. Φ̂: total flux threading the loop. (b) Circuit

diagram of an RF SQUID. EJ: Josephson coupling energy depending on Φ̂.
In this case, it is crucial to apply the fluxoid quantization for a closed super-
conducting loop in order to express the RF SQUID Hamiltonian in terms of

the total flux Φ̂. The circuit potential energy U
(II)
F depends on EJ and is not

parabolic anymore (cf. main text for details). fDC
x ≡ ΦDC

x /Φ0 is an external
DC (or quasi-static) flux bias, also called frustration.

where Φ̂, which plays the role of position operator, is the total flux threading the
loop due to the current flowing on the inductor LF and Q̂, which plays the role of
momentum operator, is the charge on the capacitor Cj. As always, the quantized

charge Q̂ and flux Φ̂ are canonically conjugated variables, [Q̂, Φ̂] = j�. We already
mentioned in Subsec. 2.1.3 that in the case of flux quantum circuits it is more
convenient to use charge and flux instead of voltage and current as quantization
variables.

The Hamiltonian of Eq. (2.125) can be regarded as the sum of a kinetic energy

TF and a potential energy U
(I)
F , with

TF ≡ Q̂2

2Cj

, (2.126a)

U
(I)
F ≡ Φ̂2

2LF

. (2.126b)

In Fig. 2.8(a), the potential energy U
(I)
F , also called potential landscape, is plotted

as a function of Φ̂. The shape of the potential is parabolic, as expected for a simple
harmonic oscillator. Figure 2.8(a) also shows the first three energy levels of the
oscillator, En with n = 0, 1, 2. The levels are obviously equally spaced with spac-
ing ΔE = �ωF. The wave functions ψn associated with these levels are plotted in
Fig. 2.8(b) as a function of Φ̂. Such wave functions can be calculated either analyti-
cally using the expressions given in Eqs. (2.86a) and (2.86b) upon replacing C with
Cj and ω with ωF or numerically by diagonalizing the Hamiltonian of Eq. (2.125).
The plots reported in Fig. 2.8(b) have been computed numerically. Notably, the
first and third wave functions ψ0 and ψ2 are even functions of Φ̂, whereas the second
wave function ψ1 is odd. The parity of the wave functions sets the selection rules
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Figure 2.8: Potential landscape, energy levels, and wave functions for an LC-

resonator. (a) Potential landscape U
(I)
F as a function of Φ̂ for an LC-resonator

(solid black line). The solid dark blue (dark grey) line represents the energy
level corresponding to the groundstate, E0, the dashed light green (light grey)
line the energy level E1, and the dashdot magenta (middle grey) line the energy
level E2. (b) Wave functions ψn for the three lowest levels of the LC-resonator
as a function of Φ̂. The color coding is equivalent to that used for the energy
levels in (a). Numerical values used for the plots: LF = 266 pH, Cj = 120 fF,
and, thus, ωF � 2π×28.2GHz. The latter corresponds to the spacing between
two consecutive energy levels, ΔE/� = ωF. We notice that the minimum
energy of the resonator is at (E1 − E0)/2� = ωF/2 � 2π × 14.1GHz. This
corresponds to the vacuum energy and constitutes the vertical offset with
respect to 0 in (a).

for the oscillator. For example, let us drive the (fundamental) mode ω0 = ωF of the
resonator by means of an external classical field (e.g., a sine wave) of frequency ω.
In order to drive this mode, the external driving must match the mode frequency,
ω = ωF. The transition between the resonator groundstate ψ0 (the vacuum state
|0〉) and the first excited state ψ1 (state |1〉) is allowed only for a one-photon pro-
cess, i.e., a process involving one photon of frequency ωF. In this case, the resonator
wave function flips from even to odd. The transition between the groundstate and
the second excited state ψ2 (state |2〉) is allowed only for a two-photon process, i.e.,
a process involving two photons of frequency ωF. In this case, the resonator wave
function flips from even to odd and then to even again. Similarly, from |1〉 to |2〉
only a one-photon process is allowed and the resonator wave function flips from odd
to even. If the resonator were a distributed-parameter resonator, similar rules would
apply for higher modes, ωm = mωF with m ∈ N andm � 2. Remarkably, because
of selection rules we are not allowed to drive any mode m of the resonator from |0〉
to |2〉 by means of a one-photon process with two times the mode frequency! Such
process would correspond to drive the |0〉 − |1〉 transition of the 2m + 1 resonator
mode.39

If we now insert an ideal Josephson tunnel junction40 in parallel to the capacitor
Cj, we can regard the parallel combination between the capacitor and the junction

39The selection rules outlined here are valid only under the assumption of perfect linearity.
40Here, “ideal” means that the resistive channel of the junction is negligibly small.
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Figure 2.9: Potential landscape, energy levels, and wave functions for an RF

SQUID. (a) Potential landscape U
(II)
F as a function of Φ̂ for an RF SQUID bi-

ased at ΦDC
x = Φ0/2 (solid black line). The solid dark blue (dark grey) line rep-

resents the energy level corresponding to the groundstate, E0, the dashed light
green (light grey) line the energy level E1, and the dashdot magenta (middle
grey) line the energy level E2. (b)Wave functions ψn for the three lowest levels
of the RF SQUID as a function of Φ̂. The color coding is equivalent to that used
for the energy levels in (a). Numerical values used for the plots: Ic0 = 1.35μA
corresponding to EJ � 670.5GHz. The values for all the other parameters
are the same as those used in Fig. 2.8. Also, (E1 − E0)/h � 1.46GHz,
(E2 − E0)/h � 8.23GHz, and (E2 − E1)/h � 6.77GHz. In this case, the
vertical offset with respect to 0 in (a) is given by (E1−E0)/2� � 2π×730MHz.

itself as a simplified version of the RCSJ model described in Subsec. 2.2.1. If, in
addition, we make the circuit loop superconducting and thread such a loop with
an external DC (or quasi-static) flux bias ΦDC

x ≡ fDC
x Φ0, the so-obtained circuit is

referred to as RF SQUID [96, 232, 239, 240]. The dimensionless quantity fDC
x is

called magnetic frustration and is oftentimes used instead of ΦDC
x . The Hamiltonian

of the RF SQUID is obtained by adding the energy contribution associated with
the Josephson junction to the Hamiltonian of Eq. (2.125) and imposing fluxoid
quantization41 around the superconducting loop [239]. This gives

Ĥ
(II)
F =

Q̂2

2Cj

+
(Φ̂− ΦDC

x )2

2LF

− EJ cos

(
2π

Φ̂

Φ0

)
, (2.127)

where all global energy offsets have been neglected. In Eq. (2.127), Cj assumes now
the role of junction capacitance, EJ = Ic0Φ0/2π is the Josephson coupling energy,
and Ic0 the junction critical current. Notably, it is possible to write the Josephson
contribution −EJ cos(2πΦ̂/Φ0) in this form because of fluxoid quantization. Fluxoid
quantization allows us to express the Josephson energy as a function of the total
flux threading the loop, Φ̂, which, in this case, is equivalent to the phase difference
across the Josephson junction (the reader can check pages 72 and 73 of Ref. [239]).

41Indeed, in this case simply flux quantization [232]. In the rest of the thesis, we keep using the
nomenclature “fluxoid quantization” for generality.
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In this case, the potential energy becomes

U
(II)
F ≡ (Φ̂− ΦDC

x )2

2LF

− EJ cos

(
2π

Φ̂

Φ0

)
. (2.128)

Figure 2.9(a) shows a plot of U
(II)
F as a function of Φ̂ for an external DC flux bias

ΦDC
x = Φ0/2. For this choice of ΦDC

x , U
(II)
F is symmetric and the RF SQUID is

said to be biased at the degeneracy point. We notice that the potential U
(II)
F is not

a parabolic potential. Instead, it is characterized by a double-well shape, which
indicates that the Hamiltonian of Eq. (2.127) associated with an RF SQUID is
inherently different from a simple harmonic oscillator. Figure 2.9(a) also shows the
first three energy levels for the RF SQUID, En with n = 0, 1, 2, which are manifestly
not equally spaced as in the case of the harmonic oscillator. The introduction of the
Josephson junction adds a nonlinearity to the circuit, which is now characterized
by an anharmonic potential. In particular, the third energy level E2 is very far
away from the first two. This has the important consequence that the first two
levels can be used to implement a qubit. In reality, besides the experiments of
Ref. [240], the RF SQUID has rarely been used for qubit applications due to a
number of technical issues. Here, we use it as an example to show the similarities
and differences between harmonic (without Josephson elements) and anharmonic
(with Josephson elements) oscillators. The wave functions ψn associated with the
first three energy levels of an RF SQUID are plotted in Fig. 2.9(b) as a function of
Φ̂ and for ΦDC

x = Φ0/2. Such wave functions have to be calculated numerically by
diagonalizing the Hamiltonian of Eq. (2.127). It is worth mentioning that the wave
functions maintain the parity properties characteristic of the harmonic oscillator, at
least at the special point ΦDC

x = Φ0/2 (degeneracy point). A comprehensive study
of the selection rules associated with flux quantum circuits is reported in chapter 8,
Subsec. 8.4.2.

In summary, the RF SQUID is an interesting circuit characterized by an anhar-
monic potential [cf. Eq.(2.128)]. When setting Ic0 = 0, which corresponds to substi-
tuting the ideal Josephson tunnel junction of the RF SQUID with an open circuit
[cf. Fig. 2.7(a)], switching off superconductivity, and neglecting the external DC flux
bias ΦDC

x , the RF SQUID reduces to a simple harmonic oscillator [cf. Eq. (2.125)].
This clearly shows the importance of Josephson elements in superconducting circuit
QED architectures. In the next subsection, we present a more complex flux quantum
circuit based on three (or even more) Josephson junctions.

2.2.3 The Three-Josephson-Junction SQUID

The example of the RF SQUID shows that the presence of both the Josephson tunnel
junction with energy EJ and equivalent inductance Lj ≡ Φ0/2πIc0 and the self-
inductance of the circuit loop LF play a role in the shaping of the circuit potential.

Defining the parameter Λ ≡ Lj/LF, we can divide all quantum circuits based
on Josephson elements into two major categories. Circuits of the first type are
characterized by a Λ � 1. In this case, the flux induced by the circulating currents
in the circuit loop is important. Such circulating currents, which correspond to
quantized states in the circuit, can have opposite signs. Under opportune conditions,
these special current states can be used to implement qubits. Hereafter, we refer
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to the circulating currents in a circuit loop as “persistent currents.” Circuits of the
second type are characterized by a Λ � 1 so that the induced flux in the circuit loop
is unimportant. For circuits of the second type, two energy scales determine the
quantum-mechanical behavior of the circuit: the Josephson coupling energy, EJ =
Ic0Φ0/2π, and the Coulomb energy for single charges, Ec ≡ e2/2Cj. The energies can
be determined by the phases of the Cooper-pair wave function of the nodes of the
circuit (also defined as islands) and the number of excess Cooper pairs on each node
(island) [189]. Phase and number are quantum-mechanical conjugated variables
and correspond to charge and flux in the Hamiltonian of a quantized harmonic
oscillator [e.g., cf. Eq. (2.125]). In the “phase” limit, EJ � Ec, the phase is a well-
defined quantum-mechanical variable and the charge fluctuates. In the “charge”
limit, Ec � EJ, the charges on the nodes are well defined and the phase fluctuates.
When EJ ≈ Ec, the eigenstates of the circuit must be considered as quantum-
mechanical superpositions of either charge states or phase states. Such superposition
states are important in designing qubits.

Quantum circuits of the first and second type have both advantages and disad-
vantages for the implementation of superconducting qubits. Traditionally, circuits
of the second type were considered to be good with respect to flux noise because of
the very small dimensions due to a small loop inductance. However, these circuits
are largely affected by background charge noise (e.g., charge qubits [97–101, 241])
or substrate impurities (e.g., phase qubits [97–101, 242]). Additionally, this type
of circuits was considered hard to be read out. Circuits of the first type were con-
sidered to be bad with respect to flux noise because of the large loop inductance,
but only marginally affected by background charge noise and substrate noise. In
addition, these circuits should in principle be easy to be read out. Over the years,
the frontier between circuits of the first and second type has become more and more
undefined. Nowadays, there is vast variety of quantum circuits for quantum com-
puting purposes that combine one or the other aspect of the two categories defined
above [101, 120, 243, 244].

For example, the RF SQUID was thought to be a bad choice for qubit implemen-
tations because of the very large LF, which, in that case, is a necessary condition
to obtain a double-well potential [cf. Fig. 2.9(a)]. For this very reason the three-
Josephson-junction SQUID was introduced by J. E. Mooij and T. P. Orlando in
1999 [189, 245]. Such a circuit makes possible to obtain a double-well potential even
for a very small circuit loop inductance, LF → 0. In this sense, the three-Josephson-
junction SQUID combines the advantages of the first and second type of quantum
circuits: It is characterized by quantum states associated with μA persistent cur-
rents, which are minimally affected by charge and substrate noise and can easily
be read out; it is small and, thus, less susceptible to flux noise. However, a decade
after the Mooij-Orlando proposal, decoherence in superconducting circuits appears
not to be due to the physical dimensions of the circuit [246], but to a combination
of several different mechanisms the origin of which is still largely unknown [118–
120, 234–236, 241, 242, 246–262]. As all the other types of superconducting qubits,
also the three-Josephson-junction SQUID suffers in large measure from decoher-
ence issues [118, 119, 261, 262]. Nevertheless, its performances are among the best
available and that is the reason why we have chosen it for our experimental investi-
gations.42

42In fact, many important groups pursue the three(or four)-Josephson-junction SQUID path
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Figure 2.10: Circuit diagram of a three-Josephson-junction SQUID. A su-
perconducting loop is interrupted by three Josephson tunnel junctions, Ji with
i = {1, 2, 3}. Each junction, marked by a cross (×), is the parallel combination
of an ideal Josephson junction and a capacitor Ci. Two of the three junctions
are equal, whereas the third is α-times larger than the other two. Hence, two
junctions are characterized by the energy EJ = Ic0Φ0/2π and the third by

αEJ = αIc0Φ0/2π. A gauge-invariant phase φ̂i is associated with each junc-

tion i. Due to fluxoid quantization, φ̂3 = φ̂2− φ̂1− 2πfDC
x . fDC

x is an external
DC (or quasi-static) flux bias. The nodes 1 and 2 represent a pair of super-
conducting islands connected to the external voltage sources V̂A and V̂B via

the capacitors CgA and CgB. These capacitors sustain the voltages V̂gA and

V̂gB, respectively. The counterclockwise and clockwise persistent currents ±Ip
circulate around the loop. These currents are associated with the qubit states
|+〉 and |−〉 (cf. main text). The circuit virtual ground is indicated [189].

The circuit diagram of the three-Josephson-junction SQUID is represented in
Fig. 2.10. In the first part of the following derivation we do not make use of operator
hats, as indicated in the figure. We will use the hats when promoting the classical
variables to quantum variables. In the figure(s), we always use hats given that,
in the end, the entire system under analysis is quantized. The three-Josephson-
junction SQUID circuit, which is an extension of the RF SQUID, is made by a
superconducting loop interrupted by three Josephson tunnel junctions, Ji with i =
{1, 2, 3}. Each junction is marked by a cross (×) and is modeled as the parallel
combination of an ideal Josephson junction and a capacitor Ci. This is as in the

for quantum computing implementations with superconducting devices. For example, the NEC
and NTT groups in Japan, MIT, UC Berkeley, and University of Syracuse, USA, TU Delft, The
Netherlands, University of Karlsruhe and IPHT-Jena, Germany.
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RCSJ model, but with the parallel resistive channel neglected due to the typically
very low operating temperature of the device. We notice that two of the three
junctions are equal, whereas the third is α-times larger than the other two.43 The
parameter α depends on the geometry of the junctions and is set during fabrication.
Consequently, two junctions have Josephson coupling energy EJ = Ic0Φ0/2π and the
third αEJ = αIc0Φ0/2π. A gauge-invariant phase φi is associated with each junction
i. In addition, C1 = C2 = C and C3 = αC.

We first focus only on the classical potential energy UF of the circuit. For the
calculation of UF the self-inductance of the loop is considered to be negligible, Λ � 1,
so that the total flux threading the loop is the external DC flux bias ΦDC

x = fDC
x Φ0.

In this case, fluxoid quantization around the superconducting loop containing the
junctions gives φ1−φ2+φ3 = −2πfDC

x . The Josephson energy due to each junction
is EJi(1 − cosφi), where, in our case, EJ1 = EJ2 = EJ and EJ3 = αEJ. The total
Josephson energy (equivalent to the potential energy) is then UF =

∑3
i=1EJi(1 −

cosφi). Imposing the fluxoid quantization condition, we readily obtain

UF = EJ(1− cosφ1) + EJ(1− cosφ2) + αEJ(1− cosφ3)

= EJ[2 + α− cosφ1 − cosφ2 − α− cos(2πfDC
x + φ1 − φ2)] , (2.129)

where (2 + α)EJ is a global energy offset. The important feature of this potential
energy is that it is a function of two independent phases. For a range of external
DC bias fDC

x , these two phases, φ1 and φ2, permit two stable configurations, which
correspond to DC currents circulating in opposite directions (persistent currents).
These two states of opposite current can be used as the two states of a qubit. We will
give more details on the physical origin of the DC persistent current states towards
the end of this subsection.

Before deriving the entire classical Hamiltonian of the three-Josephson-junction
SQUID, it is worth plotting the potential UF as a function of the independent phase
drops on the circuit. This potential can be best visualized in a rotated coordinate
frame obtained by choosing as coordinates the sum and difference of the gauge-
invariant phases φ1 and φ2,

φp ≡ φ1 + φ2

2
, (2.130a)

φm ≡ φ1 − φ2

2
. (2.130b)

In the rotated frame the potential energy reads

UF(φp, φm) = EJ[2 + α− 2 cosφp cosφm − α cos(2πfDC
x + 2φm)] . (2.131)

Manifestly, this is a 2D periodic function with period fDC
x = 1 and is symmetric

about fDC
x = 0.5. Figure 2.11(a) shows a portion of UF(φp, φm) defined over a single

unit cell of the periodic potential for fDC
x = 0.5. Cutting the potential landscape

along φp = 0 results in the magenta line indicated in the plot. Such a slice, defined
as Um(φm) ≡ UF(φp = 0, φm), is reported in Fig. 2.11(b) for clarity. Remarkably,
Um is very similar to the potential of an RF SQUID [cf. Fig. 2.9(a)]. We also notice

43In order to avoid confusion, it is useful to mention that usually α < 1 and, thus, being α-times
larger actually means that the third junction is smaller than the other two [189].
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Figure 2.11: Potential landscape of a three-Josephson-junction SQUID for a

single unit cell centered around φ̂p = φ̂m = 0 and fDC
x = 0.5 [189]. (a) Color-

code plot of the 2D potential landscape UF(φ̂p, φ̂m). Magenta (middle grey)

line: slice of the potential landscape along φ̂p = 0. (b) Plot of the double-well

potential Um(φ̂m) ≡ UF(φ̂p = 0, φ̂m) obtained from cutting the 2D potential
in (a). The qubits states |+〉 and |−〉 are confined at the bottom of the
left and right wells of Um(φ̂m), respectively. The red arrows indicate the
interwell barriers. The grey arrows indicate the three potential maxima at
φm = − π, 0,+π. The green arrows indicate the two degenerate potential
minima at φm = ∓ arccos(1/2α), with α > 1/2.
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that the intrawell barrier44 between the two states at the bottom of the double-well,
|+〉 and |−〉, is much lower than the interwell barrier indicated in Fig. 2.11(b) by
the arrows pointing towards the neighboring lattice cells (red arrows). The phase
particle associated with the circuit tends to be confined at the bottom of the shallow
double-well without escaping to neighboring lattice cells. The states |+〉 and |−〉 or a
linear superposition of them are the metastable states used in our qubit experiments
(cf. chapter 8).

Figure 2.12(a) shows the plot of a single unit cell of UF(φp, φm) for f
DC
x = 0.468.

The potential landscape is now highly asymmetric and cutting it along φp = 0
results in the magenta line reported in Fig. 2.12(b). Controlling the external DC
bias fDC

x allows one to play with the symmetry properties of the circuit potential
and constitutes an important knob for qubit operations.

We now consider the classical kinetic energy TF associated with the circuit. This
energy corresponds to the electrostatic energy stored in all the circuit capacitors Cj
with j = {1, 2, 3, gA, gB}. Since the external biasing voltages at ports A and B are
VA and VB, respectively, (cf. Fig. 2.10) and each capacitor Cj has a voltage across
it of Vj, the kinetic energy can be written as

TF =
1

2

∑
j

CjV
2
j −QgAVA −QgBVB , (2.132)

where QgA ≡ CgAVgA and QgB ≡ CgBVgB. The last two terms in Eq. (2.132) subtract
the work done by the voltage sources to give the available electric free energy [263].
The voltage across each Josephson tunnel junction, i, is given by the usual Josephson
voltage-phase relation

Vi =
Φ0

2π

∂

∂t
φi . (2.133)

The ground point in the circuit of Fig. 2.10 labels the zero of potential and is a
virtual ground.

From the inspection of the left and right branches of the circuit of Fig. 2.10
and applying Kirchhoff’s voltage law [264], we find that the voltages across the gate
capacitors gA and gB are

VgA = VA − V1 , (2.134a)

VgB = VB − V2 , (2.134b)

respectively. The convention on the voltage signs are as follows: The external source
voltages VA and VB drop from ports A and B to the virtual ground; the voltages V1
and V2 drop from nodes 1 and 2 to the virtual ground, respectively, and the voltages
VgA and VgB drop from ports A and B to nodes 1 and 2, respectively. Defining the
vector of independent gauge-invariant phases as

�φ ≡

⎡⎣φ1

φ2

⎤⎦ , (2.135)

the capacitance matrix of the circuit as

CF = C

⎡⎣1 + α + γg −α

−α 1 + α + γg

⎤⎦ , (2.136)

44This barrier depends on the choice of the parameter α [189].
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Figure 2.12: Potential landscape of a three-Josephson-junction SQUID for

a single unit cell centered around φ̂p = φ̂m = 0 and fDC
x = 0.468. Due to

this bias condition the potential is highly asymmetric. (a) Color-code plot of
the 2D potential landscape UF(φ̂p, φ̂m). Magenta (middle grey) line: slice of

the potential landscape along φ̂p = 0. (b) Plot of the double-well potential

Um(φ̂m) ≡ UF(φ̂p = 0, φ̂m) obtained from cutting the 2D potential in (a).
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and neglecting the constant term

−1

2
�V TCg

�V ,

where the source voltage vector

�V ≡

⎡⎣VA
VB

⎤⎦ (2.137)

and the gate capacitance matrix

Cg = γgC

[
1 0
0 1

]
, (2.138)

we can finally express the circuit kinetic energy in terms of the time derivatives of
the phases as

TF =
1

2

(
Φ0

2π

)2 (
∂

∂t
�φ

)T
CF

∂

∂t
�φ . (2.139)

In all above definitions and equations we have assumed CgA = CgB = γgC, where γg
is a parameter that accounts for both the external gate capacitances and, eventually,
parasitic capacitances to ground. Such parameter is usually extremely small com-
pared to all other characteristic parameters of the circuit, γg � 0.01 [189]. This is an
important fact because it signifies that the three-Josephson-junction SQUID is only
weakly coupled to background charge fluctuations and, thus, is almost insensitive
to charge noise.

The classical equations of motion can then be found from the Lagrangian LF =
TF − UF, the canonical momenta for the three junctions being Pi = ∂LF/∂φi. We
can now transform the Lagrangian by shifting it as

LF = TF − UF −
(
Φ0

2π

) (
∂

∂t
�φ

)T
Cg

�V . (2.140)

For the transformed Lagrangian the canonical momenta are then given by the vector

�P =

(
Φ0

2π

)2

CF

∂

∂t
�φ−
(
Φ0

2π

)
Cg

�V . (2.141)

These momenta are directly proportional to the charges on the islands at nodes 1
and 2 of Fig. 2.10,

�Q =
2π

Φ0

�P . (2.142)

This relation tells us that we have reduced the three-Josephson-junction SQUID
to a two-port equivalent circuit characterized by two independent variables (i.e.,
two degrees of freedom). These are the gauge-invariant phases φ1 and φ2, the first
derivatives of which, according to Eq. (2.142), are proportional to the charges Q1

and Q2 on the islands 1 and 2 of Fig. 2.10. In the case of the RF SQUID, instead,
we were dealing with a one-port equivalent circuit characterized by one independent
variable (i.e., one degree of freedom). This was the total flux Φ threading the RF
SQUID loop or, equivalently, its canonically conjugated variable, the charge Q.

72



CHAPTER 2. THE QUANTUM CIRCUIT TOOLBOX: AN OPTICAL TABLE
ON A CHIP

For the three-Josephson-junction SQUID, the kinetic energy part of the classical
Hamiltonian can readily be written as

TF = �QT
tot

1

2CF

�Qtot , (2.143)

where the total charge of the two-port circuit is given by the sum of the charges �Q
and induced charges �Qg ≡ Cg

�V on the islands 1 and 2,

�Qtot ≡ �Q+ �Qg

=
2π

Φ0

(
�P +

Φ0

2π
Cg

�V

)
. (2.144)

The kinetic energy of Eq. (2.143) is just the electrostatic energy of the two-port
circuit (e.g., cf. Ref. [265] and references therein). To conclude the treatment of the
classical circuit we remind that the characteristic electric energy of the circuit is
the so-called charging energy, Ec = e2/2C. Finally, the classical Hamiltonian of the
three-Josephson-junction SQUID can be expressed as

HF =
1

2

(
�P +

Φ0

2π
�Qg

)T
1

�MF

(
�P +

Φ0

2π
�Qg

)
+ U
(
�φ
)
, (2.145)

where the anisotropic effective mass �MF is defined as45

�MF ≡ Φ0

2π
CF

Φ0

2π
. (2.146)

The Hamiltonian of Eq. (2.145) can also be derived following a more formal approach
based on the usual definition HF =

∑
i Pi(∂φi/∂t)− L.

The transition to the quantum-mechanical circuit is realized considering the
classically conjugated variables in the Hamiltonian of Eq. (2.145) as quantum-
mechanical operators. This means that the independent gauge-invariant phases
become position operators, φi → φ̂i, and the classical charges ( �Q ∝ �P ) become
momenta operators,46 Pi → P̂i = − j�∂/∂φ̂i. The wave functions can then be
considered as |Ψ〉 = Ψn(φ̂1, φ̂2), where n indicates the n-th energy level of the
quantum-mechanical circuit.

Without loosing generality, we can transform out of the problem the induced
charges on the islands. We thus obtain a new Hamiltonian that we use as the
quantum-mechanical Hamiltonian of the three-Josephson-junction SQUID,

ĤF =
1

2
�̂
P T �M−1

F
�̂
P

+ EJ[2 + α− cos φ̂1 − cos φ̂2 − α cos(2πfDC
x + φ̂1 − φ̂2)] . (2.147)

The energy levels and wave functions for the Hamiltonian of Eq. (2.147) are obtained

numerically by rewriting ĤF in the charge basis or, equivalently, by expanding the
wave functions in terms of states of constant phase [189].47

45For visualization reasons, we split the (Φ0/2π)
2 contribution between the left and right side of

the mass.
46Equivalently, �φ→ �̂

φ and �P → �̂
P = − j�∂/∂

�̂
φ.

47We have double checked all our numerical calculations by comparing the results obtained both
in charge and phase basis without finding any discrepancy.
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Figure 2.13: Energy levels for the six lowest states of a three-Josephson
junction SQUID plotted as a function of fDC

x ∈ [0.468, 0.5]. Since the energy
levels are symmetric with respect to the fDC

x -axis, the plots stop at the qubit
degeneracy point fDC

x = 0.5. (a) Energy band diagram. En is the energy
of each level of the three-Josephson junction SQUID, with n = 0, 1, 2, 3, 4, 5.
Dark blue (dark grey) line: energy level E0 for the groundstate |g〉. Light green
(light grey) line: energy level E1 for the first excited state |e〉. Magenta (middle
grey) line: energy level E2 for the second excited state (auxiliary state) |a〉,
and so forth. The dashed black box indicates the frustration region where the
two-level (qubit) approximation can be applied (cf. main text). (b) Difference
between the energy En for the first five excited states and E0, ΔE ≡ En−E0,
with n = 1, 2, 3, 4, 5.

In the charge basis, the numerical calculations are done in the coordinate system
of the gauge-invariant phases (φ̂1, φ̂2). The resulting energy band diagram for the
six lowest states of the circuit is plotted as a function of fDC

x in Fig. 2.13(a). The
frustration ranges between fDC

x = 0.468 and the degeneracy point fDC
x = 0.5. No-

tably, the band diagram is symmetric with respect to the axis set by fDC
x = 0.5.48

The energy E0 corresponding to the groundstate |g〉 is represented by the dark blue
(dark grey) line and the energy E1 of the first excited state |e〉 by the light green
(light grey) line. The magenta (middle grey) line represents the energy E2 of the
second excited state |a〉 (also referred to as auxiliary state; cf. chapter 7, Sec. 7.4).
Figure 2.13(b) shows the difference between the energy En of the first five excited
states and the energy of the groundstate E0, ΔE ≡ En − E0 with n = 1, 2, 3, 4, 5.

In the phase basis, we prefer to rotate the coordinate system of the gauge-
invariant phases into a new frame which diagonalizes the capacitance matrix CF.
Such rotated frame can easily be obtained employing the quantum-mechanical ver-
sion of the transformations of Eqs. (2.130a) and (2.130b), where we substitute φp

with φ̂p and φm with φ̂m. In the rotated frame the total circuit Hamiltonian then

48This is the reason why we only plot it up to 0.5.
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Figure 2.14: Wave function amplitudes for a three-Josephson-junction

SQUID as a function of φ̂p and φ̂m and for fDC
x = 0.5. (a) |Ψ0|: ground-

state |g〉. (b) |Ψ1|: first excited state |e〉. (c) |Ψ2|: second excited state
(auxiliary state) |a〉.
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reads

ĤF =
1

2

P̂ 2
p

Mp

+
1

2

P̂ 2
m

Mm

+ EJ[2 + α− 2 cos φ̂p cos φ̂m − α cos(2πfDC
x + 2φ̂m)] , (2.148)

where

P̂p ≡ −j� ∂

∂φ̂p

, (2.149a)

P̂m ≡ −j� ∂

∂φ̂m

(2.149b)

and

Mp ≡
(
Φ0

2π

)2

2C
(
1 + γg

)
, (2.150a)

Mm ≡
(
Φ0

2π

)2

2C
(
1 + 2α + γg

)
. (2.150b)

Figure 2.14 shows the wave functions Ψn for the three lowest states |g〉, |e〉, and
|a〉 of the three-Josephson-junction SQUID as a function of φ̂p and φ̂m and for
fDC
x = 0.5. As expected, the parity properties of these wave functions are analogous
to those found in the case of the RF SQUID: Ψ0 is even [cf. Fig. 2.14(a)], Ψ1 is odd
[cf. Fig. 2.14(b)], and Ψ2 is again even [cf. Fig. 2.14(c)]. In particular, we notice
that the first two wave functions are strongly localized in correspondence to the two
wells of the 2D potential of Fig. 2.11(a), two bumps down or one bump up and one
down, respectively. This is different for the third wave function, which, instead, is
delocalized above the shallow barrier of the potential landscape (three bumps). The
wave functions of higher states become more and more delocalized. This peculiarity
of the wave functions, together with the fact that E1−E0 � E2−E0 in the vicinity
of the degeneracy point,49 [cf. Fig. 2.13(b)] gives a hint that the two lowest states
of the quantum circuit, |g〉 and |e〉, can be used to implement a qubit.

Two-Level (Qubit) Approximation

We will encounter again the Hamiltonian of Eq. (2.148) in chapter 8, where ĤF rep-
resents the free energy term in the interaction between a three-Josephson-junction
SQUID (a flux quantum circuit) and an external classical and/or quantized electro-

magnetic field. In that chapter (as in Sec. 2.3) such Hamiltonian is defined as Ĥ0
F,

where the superscript “0” indicates that we are dealing with the free energy term
of the interaction. We will not use this superscript in this section. The numerical
diagonalization of ĤF described above allows us to calculate the energy eigenvalues
En ≡ �Ωn, with n = g, e, a, . . . of the circuit and the corresponding eigenstates
{|n〉} = {|g〉 , |e〉 , |a〉 , . . .} . Applying the closure theorem∑

n

|n〉 〈n| = I , (2.151)

49Consequently, also E1 − E0 � E2 − E1.
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(I is the n× n identity matrix) twice, the flux quantum circuit Hamiltonian can be
expressed in the energy eigenbasis as

ĤF =
∑
n

�Ωn |n〉 〈n| . (2.152)

As pointed out earlier, in the vicinity of the degeneracy point fDC
x = 0.5 [cf.

dashed black box in Fig. 2.13(a)] we can restrict ourselves to the two lowest states
of the flux quantum circuit, |g〉 and |e〉, and neglect all higher states. In this case,
the circuit Hamiltonian can be approximated as

ĤF ≈ ĤQ = Ĥge

= �
Ωge

2
(|e〉〈e| − |g〉〈g|) = �

ΩQ

2
σ̂z , (2.153)

where ΩQ = Ωge ≡ Ωe − Ωg, i.e., the zero of energy is taken at the middle level
between the groundstate |g〉 and excited state |e〉, and |e〉〈e|−|g〉〈g| = σ̂z is the usual
Pauli operator for a spin-1/2 system in the energy eigenbasis.50 The Hamiltonian of
Eq. (2.153) represents the Hamiltonian of a flux two-level system or qubit expressed
in its energy eigenbasis.

To attach a more physical meaning to the qubit Hamiltonian ĤQ, we now attempt
to derive it in the coordinate system of the so-called diabatic basis |+〉 and |−〉
[cf. Fig. 2.11(b)]. What is the physical meaning of the states |+〉 and |−〉? In
the beginning of this subsection, we already mentioned that these states represent
the counterclockwise and clockwise DC persistent currents circulating in the flux
quantum circuit loop, but we did not explain their origin. Let us consider again
the 2D potential landscape of Fig. 2.11(a) obtained at the degeneracy point, ΦDC

x =
Φ0/2. We first remind that the potential assumes the shape of a double-well iff
α > 1/2 (α = 1/2 is called the critical value of the potential) [189]. In this case,
cutting the 2D potential along φ̂p = 0 results in the 1D potential Um of Fig. 2.11(b).

Since this potential is a periodic function of φ̂m, we only plot one unit cell, namely
the one centered around the value φ̂m = 0. We are now interested in computing the
classical51 stable solutions of the function

Um

(
φm,Φ

DC
x =

Φ0

2

)
= EJ[2 + α− 2 cosφm − α cos(π + 2φm)] . (2.154)

This is equivalent in finding the minima of Um(φm,Φ
DC
x = Φ0/2),

∂

∂φm

Um

(
φm,Φ

DC
x =

Φ0

2

)
= sinφm(1− 2α cosφm) = 0 . (2.155)

The first set of solutions,
φm = kπ (2.156)

with k ∈ Z, obviously corresponds to unstable solutions (maxima), as shown in
Fig. 2.11(b). In the figure, the grey arrows indicate the three maxima present
within the first unit cell, φm = − π, 0,+π. The second set of solutions,

φm = ∓ arccos
1

2α
+ 2kπ , (2.157)

50We remind that it is always possible to add a global energy offset to the Hamiltonian of a
quantum circuit, which gives freedom when choosing the zero of energy.

51This is why, again, we will not use the operator hats in this part of the derivation.
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corresponds instead to stable solutions (minima), as shown in Fig. 2.11(b). The
green arrows indicate the two degenerate minima present within the first unit cell,
φm = ∓ arccos(1/2α). As expected, all solutions are symmetric with respect to the
point φm = 0.52 Hereafter, we define the two stable solutions corresponding to the
degenerate minima in the first unit cell as ∓φ∗

m ≡ ∓ arccos(1/2α).
The next step of our derivation is to expand in a Taylor series up to first order

the potential Um in the vicinity of the degeneracy point, ΦDC
x → Φ0/2, and at the

potential energy minima ∓φ∗
m. Readily,

Um

(
φm = φ∗

m,Φ
DC
x

)
≈ Um

(
φ∗
m,Φ

DC
x

) ∣∣
ΦDC

x =
Φ0
2

+
∂

∂ΦDC
x

Um

(
φ∗
m,Φ

DC
x

) ∣∣
ΦDC

x =
Φ0
2

δΦDC
x , (2.158)

where δΦDC
x ≡ ΦDC

x − Φ0/2.
53 This expansion allows us to accurately describe the

circuit for a narrow DC bias window around the degeneracy point (linear approxi-
mation). We have thus found the DC bias dependence of the flux qubit Hamiltonian.
Since the zero-order term of the expansion of Eq. (2.158) vanishes, we are able to
define the so-called energy bias as

�ε
(
ΦDC

x

)
≡ 2

∣∣∣∣( ∂

∂ΦDC
x

Um

(
φ∗
m,Φ

DC
x

) ∣∣
ΦDC

x =
Φ0
2

δΦDC
x

)∣∣∣∣
= 2|Ip|δΦDC

x , (2.159)

where the DC persistent current Ip is given by54

Ip = ± Ic0

√
1− 1

(2α)2
. (2.160)

The sign of Ip depends on the choice of the potential minimum. When choosing −φ∗
m

as a solution, the persistent current is positive (it circulates counterclockwise in the
loop) and corresponds to state |+〉. For +φ∗

m, the persistent current is negative
(it circulates clockwise in the loop) and corresponds to state |−〉. It is now clear
the physical meaning of the two states |+〉 and |−〉. They simply represent the
classical states (classical DC currents) of the flux quantum circuit within the two-
level approximation, i.e., the classical states of a qubit! Bearing this in mind, we
can write the first part of the flux qubit Hamiltonian in the diabatic basis |+〉 and
|−〉 as ̂̄Hz =

1

2
� ε
(
ΦDC

x

)
ˆ̄σz , (2.161)

where ˆ̄σz is the usual Pauli operator for a spin-1/2 system in the diabatic basis. The

Hamiltonian ̂̄Hz vanishes right at the flux degeneracy point ΦDC
x = Φ0/2, whereas

far away from this point it can fully be described by the classical states |+〉 and |−〉.
52It is an easy exercise to show that for α � 1/2 the potential Um(φm,Φ

DC
x = Φ0/2) admits

only one set of solutions (minimum) at φm = 2kπ. This minimum bifurcates into two degenerate
minima only for α > 1/2.

53In general, δΦDC
x ≡ ΦDC

x − Φ(k), where Φ(k) ≡ (2k + 1)Φ0/2, with k ∈ Z.
54We remind that the derivative of an energy with respect to a flux has the units of a current.
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These states are well localized at the bottom of each of the two wells of the potential
of Fig. 2.11(b), where they are separated by the energy barrier in the center of Um.

What is the role played by the energy barrier? We start again considering the
case ΦDC

x = Φ0/2. In this case, the barrier gives rise to a tunneling matrix element t1
between the two classical states |+〉 and |−〉, which otherwise would be degenerate.
An estimate of t1 can be obtained by the JWKB semiclassical approximation.55 For
this we must calculate the action S1 between the two minima at ∓φ∗

m (here, we
always assume φp = 0) and then use

t1 ≈
�ωatt

2π
e−S1/� , (2.162)

where ωatt is the attempt frequency of escape in one of the wells of the 2D potential
of Fig. 2.11(a). Since we are only interested in evaluating the action between the
minima ∓φ∗

m of the potential Um of Fig. 2.11(b), we can safely assume ωatt = ωm.
In order to compute ωm we have to make a simple model of each side of the double-
well potential Um. Near the minimum at +φ∗

m the potential is equivalent to an
anisotropic 2D harmonic oscillator. Hence, the flux quantum circuit Hamiltonian in
the vicinity of the minimum is approximately (with �Qg = �0)

HF ≈
P 2
p

2Mp

+
1

2
Mpω

2
p φ

2
p

+
P 2
m

2Mm

+
1

2
Mmω

2
m (φm − φ∗

m)
2

+ U0 , (2.163)

where

�ωp

EJ

≡
√

4

α(1 + γ)(EJ/Ec)
, (2.164a)

�ωm

EJ

≡
√

4(4α2 − 1)

α(1 + 2α + γ)(EJ/Ec)
, (2.164b)

and U0 ≡ 2 − 1/2α = Umin is the potential energy at the minimum (similar results
are obtained for the other minimum at −φ∗

m).

In general, the action from point �φa to point �φb is

Sab =

∫ �φb

�φa

|dφq|
√

2Mqq(E − U) . (2.165)

Here, �q is a unit vector along the path of integration, dφq the differential path length,
and Mqq ≡ �qT M �q is the component of the mass tensor along the path direction. In
Eq. (2.165), we can approximate the energy difference E−U as the deviation in the
potential energy ΔU from the minima along the path.

55Usually, this approximation is referred to as WKB approximation. However, H. Jeffreys had
used it before Wentzel, Kramers, and Brillouin [266].
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We are now able to estimate t1. The path of integration is taken from −φ∗
m to

+φ∗
m along the direction �q = �um,

56 so that Mqq = Mm for this path. The potential
energy at the minima is Umin. The difference in the potential energy from the minima
at −φ∗

m along this path can be written as ΔU1 = EJ[2α(cosφm−1/2α)2]. The action
along this path is then [189]

S1 =

∫ +φ∗m

−φ∗m
dφm

√
4MmαEJ

(
cosφm − 1

2α

)
= �

√
4α(1 + 2α + γ)(EJ/Ec)

(
sinφ∗

m − 1

2α
φ∗
m

)
, (2.166)

which finally allows us to obtain the intracell tunneling matrix element t1. It is
also possible to estimate the energy dispersion t2, which is responsible for intercell
tunneling [cf. Fig. 2.11(b)]. The derivation is analogous to that used to estimate t1.
Without delving into the details of such derivation [189], we just mention that for
a suitable choice of parameters (e.g., that of Fig. 2.11) we find t2 � t1. Hence, the
tunneling from unit cell to unit cell, t2, can safely be neglected, whereas t1 �= 0 also
at the qubit degeneracy point. We notice that the estimate based on Eq. (2.162) is
not entirely correct. In particular, the prefactor in front of the exponential function
is incomplete. We remind to Ref. [267] for more details on this subtle issue and on
the proper use of the JWKB approximation. Nevertheless, this little inconsistency
does not affect in any manner the results of this chapter.

So far, we have estimated the tunneling matrix elements in the case ΦDC
x = Φ0/2.

As ΦDC
x is changed from ΦDC

x = Φ0/2, the potential Um is modified such that one
well becomes higher than the other. In this case, the barrier height also changes
and the new tunneling matrix element is given by tQ = t1 + δt1 where t1 is the
intracell tunneling matrix element obtained from Eqs. (2.162) and (2.166) at the
degeneracy point and δt1 is the change in the intracell tunneling matrix element
due to new biasing point. For a narrow DC bias window around the degeneracy
point (linear approximation), it is possible to give an analytical estimate of δt1 (e.g.,
cf. Appendix B in Ref. [189]). Under these conditions, we can define the energy
gap of the qubit as �δQ ≡ tQ and we can write the second part of the flux qubit
Hamiltonian in the diabatic basis |+〉 and |−〉 as

̂̄Hx =
1

2
�δQ ˆ̄σx , (2.167)

where ˆ̄σx is the usual Pauli operator for a spin-1/2 system in the diabatic basis.
The total Hamiltonian of the flux qubit in the diabatic basis |+〉 and |−〉 can

finally be written as

̂̄HQ = ̂̄Hz +
̂̄Hx

=
1

2
�
[
ε
(
ΦDC

x

)
ˆ̄σz + δQ ˆ̄σx

]
. (2.168)

This result is extremely important because it reveals that in the diabatic basis any
external field, in this simple case the external DC flux bias ΦDC

x , couples to the
qubit only via the ˆ̄σz part of the Hamiltonian. More in general if the external fields

56Here, �um represents the unit vector along the φm direction.
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Figure 2.15: Rotation from the qubit diabatic basis to the energy eigenbasis
frame. 0x̄z̄: frame associated with the qubit diabatic basis |+〉 and |−〉. a ˆ̄σx
and b ˆ̄σz: generic components of a qubit in the diabatic basis. The interaction
with external fields happens via the ˆ̄σz term only (cf. Sec. 2.3). After a ro-
tation by an angle θ = arctan(a/b) from 0x̄z̄ to 0xz (red broken arrow), the
qubit Hamiltonian is in diagonal form,

√
a2 + b2 σ̂z. In the new frame, the

component b ˆ̄σz is decomposed into two components, −b sin θ σ̂x and b cos θ σ̂z.
These two components play a crucial role in the qubit-resonator interaction
explained in Subsec. 2.3.3.

were RF classical and/or quantized fields, they would also couple to the qubit via a
ˆ̄σz-type interaction. We will come back to this topic in the next section.

Before studying the interaction between flux quantum circuits and quantized
fields, we analyze the mathematical transformation which brings us from the diabatic
basis to the energy eigenbasis and vice versa. This transformation, for example,

allows us to move from the Hamiltonian of Eq. (2.168), ̂̄HQ, to the Hamiltonian

of Eq. (2.153), ĤQ. By means of this transformation, we are able to compute
analytically the qubit energy ΩQ and other relevant qubit parameters. There are
two equivalent approaches to describe such transformation: a geometric approach
and an analytic one. Being both methods formally correct, we prefer starting with
that based on geometric considerations because it is more intuitive and easy to
visualize.

Figure 2.15 shows the reference frame 0x̄z̄ associated with the qubit diabatic
basis |+〉 and |−〉. In the figure, the two quantities a and b are used instead of �δQ
and �ε(ΦDC

x ), respectively. This is to keep the figure general and to be able to utilize
it again when interpreting the qubit-resonator interaction Hamiltonian (cf. Sec. 2.3).
In the 0x̄z̄ frame, the qubit Hamiltonian of Eq. (2.168) can be written as the scalar
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product ̂̄HQ =
1

2
��Ω · �̂σ , (2.169)

where �Ω ≡
[
δQ, 0, ε

(
ΦDC

x

)]
and �̂σ ≡ (ˆ̄σx, ˆ̄σy, ˆ̄σz). The angle between vector �Ω and

the z̄-axis is then

θ = arctan
δQ

ε (ΦDC
x )

(2.170)

and, consequently,

cos θ =
ε
(
ΦDC

x

)
‖�Ω‖

(2.171)

and

sin θ =
δQ

‖�Ω‖
. (2.172)

Here, ‖�Ω‖ =
√
δ2Q + ε2 (ΦDC

x ).

As indicated in Fig. 2.15, a clockwise rotation by the angle θ brings us into the
new reference frame 0xz. In this frame, the qubit Hamiltonian is diagonal and can
be written as

ĤQ = �
‖�Ω‖
2
σ̂z . (2.173)

By comparing the Hamiltonian of Eq. (2.173) with the one of Eq. (2.153), we find

‖�Ω‖ = ΩQ =
√
δ2Q + ε2 (ΦDC

x ) . (2.174)

Thus, the frame 0xz is the natural frame associated with the qubit energy eigenbasis
|g〉 and |e〉.

The rotation which transforms the frame 0x̄z̄ into 0xz can more formally be
defined by means of the unitary rotation operator

D̂(θ) ≡ exp

(
−
jσ̂yθ

2

)
, (2.175)

which rotates the frame about the y-axis. We remind that rotations in the so-called
two-component (Pauli) formalism are defined by the operator

exp

(
− j�̂σ · �uϕ

2

)
=

⎡⎢⎢⎢⎣
cos

ϕ

2
− juz sin

ϕ

2
(−jux − uy) sin

ϕ

2

(−jux + uy) sin
ϕ

2
cos

ϕ

2
+ juz sin

ϕ

2

⎤⎥⎥⎥⎦ , (2.176)

where �u ≡ (ux, uy, uz). By comparing Eq. (2.175) with Eq. (2.176) and assuming

σ̂y = �̂σ · (ux = 0, uy = 1, uz = 0), we can straightforwardly rewrite the unitary

rotation operator D̂(θ) in a more convenient matrix form,

D̂(θ) =

⎡⎢⎢⎢⎣
cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎤⎥⎥⎥⎦ . (2.177)
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It is now an easy exercise to prove that the unitary transformation

D̂†(θ) ̂̄HQ D̂(θ) = D̂† 1

2
�ε
(
ΦDC

x

)
ˆ̄σz D̂ + D̂† 1

2
�δQ ˆ̄σx D̂

= ĤQ . (2.178)

[Hint: One has to work with the matrices corresponding to the operators D̂†, D̂, σ̂z,
and σ̂x (equivalently, ˆ̄σz and ˆ̄σx) and extensively use the double-angle trigonometric
identities cos2(θ/2)− sin2(θ/2) = cos θ and 2 sin(θ/2) cos(θ/2) = sin θ. At the end,
the definitions given by Eqs. (2.171), (2.172), and (2.174) must be applied].

Before concluding this subsection, it is worth mentioning that several authors
have investigated both theoretically and experimentally different variants of the
three-Josephson-junction SQUID. Two remarkable examples are represented by the
four-Josephson-junction SQUID (e.g., cf. Refs. [118, 119, 268]) and the large loop
three-Josephson-junction SQUID (e.g., cf. Ref. [269]). The first example exploits
the symmetries of a flux quantum circuit based on four Josephson tunnel junctions
to protect the qubit from unwanted coupling to the noisy environment. In such
environment, in fact, unintended junctions due to the standard fabrication process
can spoil the qubit quantum coherence. The second example takes advantage of
a large circuit loop with nonnegligible inductive energy, Λ � 1, to achieve very
strong coupling to external fields. Strong coupling is a desirable condition for both
fast qubit control and other quantum computing protocols based on circuit QED
architectures. The basic physics of all those devices is analogous to that described
here.

2.3 Interaction between Resonators

and Flux Quantum Circuits

We have now in hand all the necessary formalism to adequately describe quantum
circuits and signals. We can thus attempt to study the circuit-signal quantum-
mechanical interaction, which stands at the basis of all circuit QED applications.

In this section, we first introduce the so-called quantum small-signal formalism
in the linear regime. This formalism allows us to derive the interaction Hamiltonian
between a quantized RF SQUID and a quantized electromagnetic field (cf. Sub-
sec. 2.3.1). Following a similar path, we then derive the interaction Hamiltonian for
the case of a quantized three-Josephson-junction SQUID (cf. Subsec. 2.3.2). Finally,
we consider the case of a qubit-signal interaction and briefly revise the most relevant
properties of the so-called Jaynes-Cummings Hamiltonian (cf. Subsec. 2.3.3).

In Sec. 2.2, we have shown that flux quantum circuits can be controlled by means
of an external DC (or quasi-static) flux bias

ΦDC
x ≡ fDC

x Φ0 . (2.179)

Such flux bias inherently represents an interaction between the quantum circuit and
an external current source,

ΦDC
x =MFXi

DC
x , (2.180)

where MFX represents the mutual inductance between the flux quantum circuit
and the biasing network and iDC

x a DC biasing current. Nothing prevents us from

83



2.3. INTERACTION BETWEEN RESONATORS
AND FLUX QUANTUM CIRCUITS

generalizing this interaction to the case of AC signals, where we can define

Φx ≡ ΦDC
x + ΦAC

x . (2.181)

Here,
ΦAC

x =MFXi
AC
x , (2.182)

where iAC
x is a generic AC current flowing in the external network. Within this

framework, flux quantum circuits behave very much as standard electronic devices.
A DC current bias iDC allows one to polarize the circuit, i.e., to choose the desired
operation point. Once the polarization point is set, a small fluctuating signal δ i
(an AC signal) can be applied to the circuit and the circuit response to it can
be studied. In electronics this method is referred to as small-signal analysis. We
can heuristically transfer it to the case of quantum circuits bearing in mind two
important caveats. First, the AC signal must be small enough not to give rise
to nonlinear effects. We shall consider the case of large, but still not exceedingly
large, AC signals in chapter 8, Subsec. 8.4.2 (small-signal formalism in the nonlinear
regime). Second, we always have to remember that we are dealing with circuits,
which are oftentimes characterized by complex topologies. The Hamiltonians of the
flux quantum circuits derived in the previous section do not fully account for the
circuit topology. As we shall show in chapter 5, Subsec. 5.1.3, this can give origin
to spurious terms in the interaction Hamiltonian. These terms are only artifacts
without any physical meaning. We will underline the critical steps where such
artifacts can pop up throughout the following derivations.

Keeping those caveats in mind, we can quantize the AC flux of Eq. (2.182)
promoting it to its corresponding quantum-mechanical operator,

Φ̂AC
x =MFXÎ

AC
x , (2.183)

where, in general, ÎAC
x can represent the quantum current of a propagating wave on

an infinite transmission line, the standing wave on a transmission line resonator, or,
more simply, the quantum current of a lumped-parameter LC-resonator.

In the case of a simple LC-resonator ÎAC
x → Î, where Î = I0 j(â

† − â) and the
vacuum current I0 is given by Eq. (2.97). Also, in the case of a resonator we redefine
the mutual inductance between the flux quantum circuit and the resonator as MFR,
MFX →MFR. Therefore,

Φ̂AC
x =MFRI0 j(â

† − â) . (2.184)

In the case of a transmission line resonator, Φ̂AC
x depends on the resonator mode

function and, thus, on the specific position of the flux quantum circuit on the line. In
general, for a λ/2 resonator we have to substitute I0 with Ĩ0 Ξ(z), where Ĩ0 is given
by Eq. (2.106) and Ξ(z) by Eq. (2.102b). Similarly, for a λ/4 resonator we have
to apply the same substitution as for a λ/2 resonator, but with the mode function
Ξ(z) given by Eq. (2.103b) this time.

For an infinite transmission line we have to use multi-mode annihilation and cre-
ation operators, as defined in chapter 8, Subsec. 8.4.2, Eq. (8.18). We will not further
discuss this case in the present section, where we mostly focus on the interaction
with a simple LC resonator.

The fundamental equation at the basis of the quantum small-signal formalism
can finally be expressed as

Φ̂x = ΦDC
x + Φ̂AC

x . (2.185)
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z

Figure 2.16: Interaction between a resonator and an RF SQUID. (a) A
lumped-parameter LC-resonator interacting with an RF SQUID via the mu-
tual inductance MFR. The resonator is constructed according to the rules
given in Subsec. 2.1.3. The RF SQUID is as described in Subsec. 2.2.2, but
with the external flux through the loop, Φ̂x, now given by the sum of a DC (or
quasi-static) bias ΦDC

x and an AC quantum excitation Φ̂AC
x , Φ̂x = ΦDC

x +Φ̂AC
x .

(b) The first spatial mode, m = 1, of a λ/2 resonator interacting with an
RF SQUID. The geometric contribution to the interaction is due to the mu-
tual inductance MFR. The RF SQUID is positioned at the maximum of the
current mode function I(z) to optimize the coupling strength. The resonator
is open-circuited (OC) at both edges.

2.3.1 The Interaction Hamiltonian for the RF SQUID

Figure 2.16(a) shows the circuit diagram of an RF SQUID interacting with a lumped-
parameter LC-resonator. The resonator circuit is constructed according to the rules
given in Subsec. 2.1.3. In order to derive the interaction Hamiltonian ĤI associated
with this circuit, we employ the quantum small-signal formalism.

We first write the generic Hamiltonian of an RF SQUID quantum circuit as

ĤF =
Q̂2

2Cj

+
(Φ̂− Φ̂x)

2

2LF

− EJ cos

(
2π

Φ̂

Φ0

)
. (2.186)
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We then split it up into the sum of two components, ĤA + ĤB, where

ĤA =
Q̂2

2Cj

− EJ cos

(
2π

Φ̂

Φ0

)
, (2.187a)

ĤB =
(Φ̂− Φ̂x)

2

2LF

. (2.187b)

Among these two Hamiltonians, ĤA is independent from any external classical or

quantum signal, whereas ĤB explicitly depends on Φ̂x. Inserting the general expres-

sion for Φ̂x given by Eq. (2.185) into ĤB, we obtain

ĤB =
[(Φ̂− ΦDC

x ) + Φ̂AC
x ]2

2LF

=
(Φ̂− ΦDC

x )2

2LF

+
(Φ̂− ΦDC

x )Φ̂AC
x

LF

+
(Φ̂AC

x )2

2LF

. (2.188)

The last term of this Hamiltonian, (Φ̂AC
x )2/2LF, is one example of the artifacts due

to circuit topology and has to be neglected.57

We can now isolate the term of Eq. (2.188) interacting only with the DC (or
quasi-static) flux bias,

ĤZ =
(Φ̂− ΦDC

x )2

2LF

. (2.189)

This Hamiltonian together with ĤA allows us to define the free energy term of

the RF SQUID Hamiltonian, Ĥ0
F ≡ ĤA + ĤZ, which resumes the Hamiltonian of

Eq. (2.127). Diagonalizing Ĥ0
F gives the RF SQUID energy eigenstates {|n〉} =

{|g〉, |e〉, |a〉, . . .〉} and the corresponding eigenvalues �Ωn, with n = g, e, a, . . . . Fi-
nally, applying the closure theorem (

∑
n |n〉〈n| = I, where I is the n × n identity

matrix) twice, the RF SQUID free energy Hamiltonian can be expressed in the

energy eigenbasis as Ĥ0
F =
∑

n �Ωn|n〉〈n|.
We now focus on the remaining term in the Hamiltonian of Eq. (2.188) besides

ĤZ. That term defines the interaction Hamiltonian between the RF SQUID and
the LC-resonator. Using the expression of Eq. (2.184) for Φ̂AC

x , the interaction
Hamiltonian reads

ĤI =
(Φ̂− ΦDC

x )MFRI0 j(â
† − â)

LF

. (2.190)

This Hamiltonian can be rewritten invoking again the closure theorem for the energy
eigenstates of Ĥ0

F twice, obtaining

ĤI =
MFRI0
LF

∑
m,n

|m〉〈m|(Φ̂− ΦDC
x )|n〉〈n| j(â† − â) , (2.191)

where m,n = g, e, a, . . . . The total Hamiltonian of the RF SQUID coupled to the
LC-resonator is thus ĤT = Ĥ0

F + ĤI + ĤLC, where ĤLC is given by Eq. (2.82).

57More details in chapter 5, Subsec. 5.1.3.
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The coupling coefficients between the RF SQUID and the LC-resonator can
finally be evaluated by inspecting the Hamiltonian of Eq. (2.191). Expressing the
coefficients as angular frequencies, we obtain

gmn
(
ΦDC

x

)
≡ 1

�

MFRI0
LF

〈m|(Φ̂− ΦDC
x )|n〉 (2.192)

and

ĤI = �

∑
m,n

gmn|m〉〈n| j(â† − â) . (2.193)

This is the interaction Hamiltonian associated with the circuit of Fig. 2.16(a). Fig-
ure 2.16(b) shows the interaction between an RF SQUID and a λ/2 resonator. In
this case, the quantity I0 of Eq. (2.192) must be substituted with Ĩ0 Ξ(z), where
Ĩ0 is given by Eq. (2.106) and Ξ(z) by Eq. (2.102b). The mutual inductance MFR

maintains the same meaning as for the simple LC-resonator case.

2.3.2 The Interaction Hamiltonian for the
Three-Josephson-Junction SQUID

In the case of a three-Josephson junction SQUID, the quantum small-signal analysis
can be carried out more easily in terms of frustrations. First, we define the classical
total frustration

fx ≡ fDC
x + δfx (2.194)

and, then, we substitute δfx with f̂AC
x ≡ Φ̂AC

x /Φ0. The quantity δfx plays the role
of a small perturbation (usually an oscillating field).

In this manner, we can write the general Hamiltonian of a three-Josephson junc-
tions SQUID as

ĤF =
1

2

P̂ 2
p

Mp

+
1

2

P̂ 2
m

Mm

+ EJ[2 + α− 2 cos φ̂p cos φ̂m

− α cos(2πfx + 2φ̂m)] , (2.195)

where P̂p, P̂m, Mp, and Mm are defined in Eqs. (2.149a), (2.149b), (2.150a), and
(2.150b), respectively.

Following a similar calculation as for the RF SQUID, we split up the Hamiltonian
ĤF of Eq. (2.195) into the two Hamiltonians

ĤA =
1

2

P̂ 2
p

Mp

+
1

2

P̂ 2
m

Mm

+ EJ(2 + α− 2 cos φ̂p cos φ̂m) , (2.196a)

ĤB = −αEJ cos(2πfx + 2φ̂m) . (2.196b)

Inserting the expression for fx given by Eq. (2.194) into ĤB, we obtain

ĤB = −αEJ cos[(2πf
DC
x + 2φ̂m) + 2πδfx]

= −αEJ[cos(2πf
DC
x + 2φ̂m) cos(2πδfx)

− sin(2πfDC
x + 2φ̂m) sin(2πδfx)] . (2.197)
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In the spirit of the quantum small-signal analysis, we now expand in a Maclaurin
series up to first order with respect to the perturbation δfx the Hamiltonian ĤB of

Eq. (2.197). This allows us to write ĤB = ĤZ + ĤI, where

ĤZ = − αEJ cos(2πf
DC
x + 2φ̂m) (2.198)

and
ĤI = 2παEJ sin(2πf

DC
x + 2φ̂m)× δfx . (2.199)

The free energy term of the three-Josephson-junction SQUID Hamiltonian is given
by Ĥ0

F = ĤA + ĤZ, which resumes the Hamiltonian of Eq. (2.148). Hence, we can

write Ĥ0
F in the energy eigenbasis {|n〉} = {|g〉, |e〉, |a〉, . . .} as in Eq. (2.152).

Substituting δfx with f̂AC
x and using the expression of Eq. (2.184) for Φ̂AC

x , the

interaction Hamiltonian ĤI becomes

ĤI = αMFRIc0I0 sin(2πf
DC
x + 2φ̂m)⊗ j(â† − â) . (2.200)

Invoking the closure theorem for the energy eigenstates of Ĥ0
F twice, we obtain

ĤI = αMFRIc0I0
∑
m,n

|m〉〈m| sin(2πfDC
x + 2φ̂m)|n〉〈n| ⊗ j(â† − â) , (2.201)

where, again, m,n = g, e, a, . . . . The total Hamiltonian of the three-Josephson-
junction SQUID coupled to the LC-resonator is thus ĤT = Ĥ0

F + ĤI + ĤLC, in a
similar way as for the RF SQUID case.

In the three-Josephson-junction SQUID case, the coupling coefficients expressed
as angular frequencies are defined as

gmn(f
DC
x ) ≡ αMFRIc0I0

�
〈m| sin(2πfDC

x + 2φ̂m)|n〉 . (2.202)

This definition allows us to write ĤI for the three-Josephson-junction SQUID as in
Eq. (2.193).

2.3.3 The Qubit-Signal Interaction Hamiltonian

The interaction Hamiltonian of Eq. (2.193), which depends on the specific set of
energy eigenstates {|n〉}, is formally equivalent for both the quantized RF SQUID
and the three-Josephson-junction SQUID coupled to a quantized LC-resonator. We
can thus write the total Hamiltonian of any flux quantum circuit as58

ĤT = Ĥ0
F + ĤI + ĤLC

=
∑
n

�Ωn |n〉 〈n|

+ �

∑
m,n

gmn|m〉〈n| j(â† − â)

+ �ω

(
â†â +

1

2

)
, (2.203)

58Neglecting the interaction with the environment.
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where the coupling coefficients gmn are defined in Eqs. (2.192) and (2.202) for the
RF SQUID and the three-Josephson-junction SQUID, respectively.

In the vicinity of the degeneracy point, fDC
x = 0.5, we can restrict ourselves to

the subset {|g〉, |e〉} of the energy eigenstates {|n〉} and neglect all higher states. In
this case, the approximated total Hamiltonian of the circuit becomes

ĤT ≈ �(Ωg |g〉〈g|+ Ωe |e〉〈e|)
+ �(ggg |g〉〈g|+ gge |g〉〈e|

+ geg |e〉〈g|+ gee |e〉〈e|) j(â† − â)

+ �ω

(
â†â +

1

2

)
. (2.204)

This Hamiltonian can be simplified after the following assumptions:
(i) - We take the zero of energy at the middle level between the groundstate |g〉

and excited state |e〉 and define Ωge ≡ Ωe − Ωg;
(ii) - Because of the opposite parity of the wave functions associated with the

states |g〉 and |e〉 [cf. Fig. 2.9(b) for the RF SQUID and Figs. 2.14(a) and 2.14(b)
for the three-Josephson-junction SQUID], we assume ggg = − gee;

(iii) - We assume the transition matrix elements to be equal, gge = geg.
Under these assumptions, we obtain

ĤT ≈ �
Ωge

2
(|e〉〈e| − |g〉〈g|)

+ �[gee(|e〉〈e| − |g〉〈g|) + gge(|g〉〈e|+ |e〉〈g|)] j(â† − â)

+ �ω

(
â†â +

1

2

)
. (2.205)

Using the standard definitions |g〉 ≡ [0, 1]T and |e〉 ≡ [1, 0]T , it is easy to prove that
|e〉〈e| − |g〉〈g| = σ̂z and |g〉〈e|+ |e〉〈g| = σ̂x. Hence,

ĤT ≈ �
Ωge

2
σ̂z

+ �geeσ̂z j(â
† − â) + �ggeσ̂x j(â

† − â)

+ �ω

(
â†â +

1

2

)
, (2.206)

which represents the total Hamiltonian of a flux59 qubit coupled to a quantum signal
in the qubit energy eigenbasis.

To attach a more physical meaning to the Hamiltonian ĤT of Eq. (2.206), we
can attempt to derive it starting from the coordinate system of the qubit diabatic
basis |+〉 and |−〉.

In Subsec. 2.2.3, we already noticed that in the qubit diabatic basis any external
field couples to the qubit via a ˆ̄σz-type interaction. Employing the quantum small-
signal formalism developed here, we can write the general Hamiltonian of a flux

59Indeed, such a Hamiltonian is valid for other types of superconducting qubits (e.g., charge
qubits [131]).
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qubit in the diabatic basis as

̂̄HQ =
1

2
�[ε(Φ̂x)ˆ̄σz + δQ ˆ̄σx] . (2.207)

Given that �ε, as defined in Eq. (2.159), is a linear function of the external DC flux
bias ΦDC

x , we can straightforwardly generalize it to the case of a quantized AC flux
as

�ε(Φ̂x) = 2|Ip|
(
ΦDC

x − Φ0

2
+ Φ̂AC

x

)
= �ε

(
ΦDC

x

)
+ 2|Ip|Φ̂AC

x , (2.208)

where Ip is given by Eq. (2.160).
Inserting the general expression for �ε given by Eq. (2.208) into the Hamiltonian

of Eq. (2.207), using the expression of Eq. (2.184) for Φ̂AC
x , and changing MFR with

MQR, we can write ̂̄HQ = ̂̄HA + ̂̄HB, where

̂̄HA =
1

2
�
[
ε
(
ΦDC

x

)
ˆ̄σz + δQ ˆ̄σx

]
, (2.209a)

̂̄HB =MQR|Ip|I0 ˆ̄σz j(â† − â) . (2.209b)

Notably, the Hamiltonian ̂̄HA resembles the flux qubit Hamiltonian of Eq. (2.168)
valid for DC excitations.

The total Hamiltonian of a qubit coupled to a quantized signal in the qubit
diabatic basis is then

̂̄HT =
1

2
�
[
ε
(
ΦDC

x

)
ˆ̄σz + δQ ˆ̄σx

]
+ �gQR

ˆ̄σz j(â
† − â)

+ �ω

(
â†â +

1

2

)
, (2.210)

where the qubit-resonator coupling coefficient is defined as

gQR ≡ 1

�
MQR|Ip|I0 . (2.211)

The total Hamiltonian ̂̄HT of Eq. (2.210) can be rotated into the energy eigen-
basis either by inspection of Fig. 2.15 or by performing the unitary transformation

D̂†(θ) ̂̄HT D̂(θ). In this way we obtain

ĤT = D̂†(θ) ̂̄HT D̂(θ)

= �
ΩQ

2
σ̂z

+ �gQR cos θ σ̂z j(â
† − â)− �gQR sin θ σ̂x j(â

† − â)

+ �ω

(
â†â +

1

2

)
, (2.212)
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which allows us to map back the unknown coefficients of the Hamiltonian of Eq. (2.206).
We finally find,

Ωge = ΩQ =
√
δQ + ε2 (ΦDC

x ) , (2.213a)

gee = gQR cos θ , (2.213b)

gge = −gQR sin θ . (2.213c)

Circuit QED and the Jaynes-Cummings Approximation

The Hamiltonian ĤT of Eq. (2.212) and its dynamics60 are the starting point for a
large subset of circuit QED applications (not only with flux qubits). It is useful to
represent this Hamiltonian in an interaction picture with respect to both qubit and
resonator,

â† → â† e+jωt , (2.214a)

â → â e−jωt , (2.214b)

σ̂∓ → σ̂∓ e∓jΩQt , (2.214c)

where σ̂x = σ̂++σ̂−, σ̂z = σ̂+σ̂−−σ̂−σ̂+, and σ̂+ and σ̂− are the lowering and raising
operators between the qubit energy groundstate |g〉 and excited state |e〉, respec-
tively. In this picture, only the time-dependent interaction terms of ĤT explicitly
appear,

̂̃
HT = �gQR cos θ σ̂z j

(
â†e+jωt − âe−jωt

)
− �gQR sin θ

(
σ̂+e+jΩQt + σ̂−e−jΩQt

)
⊗ j
(
â†e+jωt − âe−jωt

)
. (2.215)

This Hamiltonian assumes a particularly simple form when |ω| � |gQR| and |ΩQ +
ω| � |gQR|. Under these assumptions and defining the qubit-resonator detuning as
Δ ≡ ΩQ − ω, we are allowed to apply the so-called rotating wave approximation
(RWA),61 which yields

̂̃
HT ≈ �jg̃QR

(
σ̂+âe+jΔt − σ̂−â†e−jΔt

)
, (2.216)

where g̃QR ≡ gQR sin θ.

60Studied here in the absence of dissipation. In fact, dissipation constitutes a vast topic of
research on its own and will not be discussed in details in this chapter.

61Interestingly, it has recently been proposed the realization of an ultra-strong coupling regime of
circuit QED [270], where the RWA breaks down. Indeed, such extreme regime of circuit QED, which
is not going to be treated in this thesis, seems to be experimentally feasible [271]. Note added in Fall
2010: A variety of theoretical proposals [272–276] and some very preliminary experiments [277, 278]
on the ultra-strong coupling regime of circuit QED has flourished in the past few months. Even if
interesting from a purely academical point of view, such a regime will not be useful in applications
in the immediate future, in particular in quantum computing. A very large coupling is counter-
productive since it requires extremely fast gate operations, which must rely on correspondingly fast
electronics, as well as the technical difficulty of effectively switching off the coupling at the end of
a gate operation.
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Figure 2.17: The Jaynes-Cummings energy diagram. All quantities are ex-
pressed as angular frequencies. (a) The resonant regime, Δ = 0. Solid black
lines: unperturbed energy levels obtained for gQR = 0. Dashed black lines:
perturbed energy levels obtained for a finite gQR and associated with the
dressed states of Eqs. (2.217a) and (2.217b). The red double arrows indicated
the energy separation between the various doublets of the resonant JC ladder.
Such an energy scales with

√
n+ 1 and is smallest for the single excitation

states, |g, 1〉 and |e, 0〉, where, according to our convention, n = 0. (b) The
dispersive regime, gQR/Δ � 1. Solid black lines: unperturbed energy levels
obtained for gQR = 0. Dashed black lines: perturbed energy levels obtained
for a finite gQR under the dispersive assumption (cf. main text). The global
energy offset −Δ/2 is a convention. The red double arrow indicates the “per-
turbed” |g, 1〉-|g, 0〉 (|−, 0〉-|g, 0〉) energy separation, which is reduced by a
quantity g2QR/Δ with respect to the unperturbed case. The blue double arrow
indicate the “perturbed” |e, 1〉-|e, 0〉 (|+, 1〉-|+, 0〉) energy separation, which is
augmented by a quantity g2QR/Δ with respect to the unperturbed case. The
green single arrows indicate energy level shifts due to higher photonic excita-
tions, scaling linearly with n+1. The grey double arrows indicate the various
detunings.

At the qubit degeneracy point, where cos θ = 0, sin θ = 1 and, thus, g̃QR =
gQR, the Hamiltonian of Eq. (2.216) is typically referred to as Jaynes-Cummings

Hamiltonian. In absence of dissipation processes, the exact diagonalization of
̂̃
HT
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yields the groundstate |g, 0〉 and the excited eigenstates (dressed states) [131, 279]

|−, n〉 = − sinϕn |e, n〉+ cosϕn |g, n+ 1〉 , (2.217a)

|+, n〉 = cosϕn |e, n〉+ sinϕn |g, n+ 1〉 . (2.217b)

The corresponding eigenenergies are

Eg,0 = − �
Δ

2
(2.218)

and

E∓,n = (n+ 1)�ω ∓ �

√
4g2QR(n+ 1) + Δ2

2
, (2.219)

respectively.
In the expressions above,

ϕn ≡ 1

2
arctan

(
2gQR

√
n+ 1

Δ

)
. (2.220)

Usually, the Jaynes-Cummings (JC) Hamiltonian is accompanied by two types of
dissipation processes: qubit decoherence (i.e., energy relaxation and dephasing) and
resonator energy relaxation.62 The first process is governed by a rate γQ, which
depends on the relaxation and dephasing rates characteristic of the specific qubit.
The second process directly depends on the loaded quality factor of the resonator
and is governed by a rate κR.

63

There are two fundamental regimes of the Jaynes-Cummings dynamics. The
resonant regime, where Δ = 0, and the dispersive regime, where gQR/Δ � 1.

(i) Δ = 0.

In this case, the degeneracy of the pair of states with n + 1 quanta is lifted
by 2gQR

√
n+ 1 due to the qubit-field interaction [131, 279]. In the manifold

with a single excitation, Eqs. (2.217a) and (2.217b) reduce to the maximally
entangled qubit-field states |∓, 0〉 = (|g, 1〉 ∓ |e, 0〉)/

√
2. An initial state with

one photon and the qubit in the groundstate, |g, 1〉, flops into a state with
an excited qubit and zero photons, |e, 0〉, and back again at the vacuum Rabi
angular frequency gQR/π. Because of such dynamics, states |g, 1〉 and |e, 0〉 are
called bright states of the JC interaction. In contrast, state |g, 0〉 is referred
to as a dark state because when the system resides in such a state the JC
evolution is frozen [279].

Since the excitation is half atom and half photon, the decay rate of state |∓, 0〉
is given by the average value

Γ∓,0 =
γQ + κR

2
. (2.221)

Strong coupling is achieved when g � max{γQ, κR};
62Resonator dephasing has also been studied [252, 280–283] and observed [141, 151], but can be

considered to be negligible as compared to energy relaxation [284].
63It is worth mentioning that in quantum-optical implementations of cavity QED there is one

more relevant rate, that is the inverse dwell time of an atom inside a cavity, 1/tdwell [174]. This
rate is oftentimes a major obstacle in experiments and substantial technical efforts must be made
to overcome this important issue [53–56, 163, 175–178].
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(ii) gQR/Δ � 1.

In this case, for ϕn → 0 we obtain cosϕn ≈ 1 and sinϕn ≈ ϕn = gQR/Δ. The
eigenstates of the one excitation manifold take then the form [131, 279]

|−, 0〉 ≈ −
gQR

Δ
|e, 0〉+ |g, 1〉 , (2.222a)

|+, 0〉 ≈ |e, 0〉+
gQR

Δ
|g, 1〉 . (2.222b)

The corresponding decay rates can easily be estimated associating with the
“quton” (a state more qubit then photon), |e, 0〉, the decay rate γQ and with
the “phobit” (a state more photon then qubit), |g, 1〉, the decay rate κR and
then computing the probability amplitudes. Here, we have adopted the quton-
phobit nomenclature introduced by D. I. Schuster [285]. We find

Γ−,0 ≈
(gQR

Δ

)2
γQ + κR , (2.223a)

Γ+,0 ≈ γQ +
(gQR

Δ

)2
κR . (2.223b)

Figure 2.17 shows the energy diagram for the dressed states associated with the
JC Hamiltonian of Eq. (2.216). Figure 2.17(a) refers to the resonant regime, where
Δ = 0, while Fig. 2.17(b) refers to the dispersive regime, where gQR/Δ � 1. In the
figure, the energy associated with state |g, 0〉 and the entire ladder of energy states
appear to be detuned by a global offset −Δ/2 in the dispersive regime as compared
to the resonant regime [cf. Eq. (2.218)]. This means that the zero of energy is chosen
differently in the resonant and dispersive regime. Such a convention does not affect
the calculations, since only energy differences are of physical interest. All quantities
reported in Fig. 2.17 can easily be calculated by means of Eqs. (2.218) and (2.219).
In particular, the unperturbed energy levels (solid black lines) are obtained when
switching off the qubit-resonator interaction, gQR = 0. The perturbed energy levels
in the resonant regime [dashed black lines in Fig. 2.17(a)] are simply obtained by
setting Δ = 0 in Eqs. (2.218) and (2.219).

To gain further insight into the more complex dispersive regime of the JC dy-
namics, we can define the two Hermitian conjugated superoperators

Ξ̂† ≡ jgQRσ̂
+â , (2.224a)

Ξ̂ ≡ −jgQRσ̂
−â† . (2.224b)

Under dispesive conditions, it is possible to show that the Dyson series for the
evolution operator associated with the time-dependent Hamiltonian of Eq. (2.216)
can be rewritten in the exponential form

Û = exp

(
− j
̂̃
Hefft

�

)
, (2.225)

where the effective Hamiltonian
̂̃
Heff is given by

̂̃
Heff = �

[Ξ̂†, Ξ̂]
Δ

. (2.226)
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The commutator [Ξ̂†, Ξ̂] can be expanded as

[Ξ̂†, Ξ̂] = g2QR

(
σ̂+σ̂−ââ† − σ̂−σ̂+â†â

)
. (2.227)

Applying the commutation relation for bosonic operators of Eq. (2.81), remembering
that σ̂+σ̂− = (σ̂z + I2)/2, where I2 is the 2 × 2 identity matrix, and neglecting all
terms proportional to I2 we finally obtain the effective Hamiltonian

̂̃
Heff = �

g2QR

Δ
σ̂z

(
â†â +

1

2

)
. (2.228)

The term proportional to the number operator â†â represents the so-called AC-Stark
or -Zeeman shift of the qubit levels [also called dynamic shift; cf. Fig. 2.17(b)]. The
AC-Stark shift refers to the case of charge qubits (electric coupling) and the AC-
Zeeman shift to the case of flux qubits (magnetic coupling). The offset �g2QR/2Δ
is the qubit Lamb shift due to vacuum fluctuations. In the literature, the result of
Eq. (2.228) is usually found by means of the Schrieffer-Wolff unitary transformation
followed by Taylor expansion to second order in the coupling coefficient (standard
second-order perturbation theory; e.g., cf. Ref. [131]). If not otherwise stated, we
prefer to use the approach outlined above because it is more convenient from the
calculation point of view.

The AC-Stark or -Zeeman shift for states |−, 0〉-|g, 0〉 (associated with the qubit
groundstate |g〉 and due to a single photonic excitation) can also be found by expand-
ing the energy difference E−,0 − Eg,0 [cf. Eqs. (2.218) and (2.219) and Fig. 2.17(b)]
in a Maclaurin series up to first order,

E−,0 − Eg,0 = �ω − �

√
4g2QR +Δ2

2
+ �

Δ

2

= �ω − �
Δ

2

√
1 +
(
2
gQR

Δ

)2
+ �

Δ

2

≈ �ω − �
Δ

2

[
1 +

1

2

(
2
gQR

Δ

)2]
+ �

Δ

2

= �

(
ω −

g2QR

Δ

)
, (2.229)

where we have used the property
√
1 + x ≈ 1 + x/2 for x→ 0 and the substitution

x = (2gQR/Δ)2. In the case of states |+, 1〉-|+, 0〉 (associated with the qubit excited
state |e〉 and due to a single photonic excitation), the result of an expansion similar
to that of Eq. (2.229) gives �(ω + g2QR/Δ). These results can be generalized to

the case of states with higher photonic excitations |∓, n〉, where the state dynamic
shift scales linearly with the number of photons in the resonator, (n + 1) g2QR/Δ
[cf. Fig. 2.17(b)].

2.4 Summary and Conclusions

In summary, the main facts about circuit QED which we should bear in mind as a
guide for the rest of the thesis are:
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1. The concept of quality factor expressed by Eq. (2.19);

2. The concept of impedance transformation of Eq. (2.31);

3. The set of Eqs. (2.63)- (2.66), which fully characterize the class of λ/2 res-
onators and the set of Eqs. (2.71a)-(2.71d), which fully characterize the class
of λ/4 resonators;

4. The fundamental set of rules for the construction of a quantum-mechanical
LC-resonator, Eqs. (2.98) and (2.99) and the corresponding Fig. 2.5;

5. Equations (2.100) and (2.101) for the synthesis of quantum-mechanical trans-
mission line resonators;

6. Equations (2.109) and (2.110) for the description of generic quantum signals
propagating on a transmission line;

7. The expressions for the quantum-mechanical mean value and variance of a
given quantum signal, Eqs. (2.111) and (2.112);

8. The RCSJ model of Fig. 2.16(b);

9. The Hamiltonians of Eqs. (2.127) and (2.148) representing the quantum-mechanical
RF SQUID and three-Josephson-junction SQUID, respectively;

10. The qubit Hamiltonian in the diabatic basis of Eq. (2.168) and the rotation
sketched in Fig. 2.15;

11. The expression at the basis of the quantum small-signal formalism, Eq. (2.185);

12. The interaction Hamiltonian for a flux quantum circuit of Eq. (2.193);

13. The total Hamiltonian for a qubit-resonator system given by Eq. (2.212), which
leads to the JC Hamiltonian.

In conclusion, in this chapter we have realized a complete classification of the
basic quantum circuits needed in circuit QED applications through the development
of a consistent quantum theory of networks.
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Chapter 3

Correlation Homodyne Detection
at Microwave Frequencies:
Experimental Setup

Circuit QED experiments are technically demanding due to the necessity of op-
erating sensitive devices based on micro- or nano-structures at high (microwave)
frequencies, very low temperatures (a few tens of mK), very low noise, and high
vacuum environments. In addition, the challenge of dealing with ultra-weak signals
characterized by powers on the order of a few aWplaces circuit QED at the cutting
edge of state-of-the-art microwave technology.

Starting from the mid 80’s, there have been a succession of milestone experiments
showing that the tasks required for the ultimate implementation of circuit QED ex-
periments with signals at the quantum-level were feasible. The experimental test
of the quantum behavior of the phase difference across a Josephson tunnel junc-
tion has opened the avenue to microwave spectroscopy of Josephson circuits [286].
Within the same work, it has been shown that the reduction of noise disturbance
brought about by room-temperature electronics is a fundamental condition for the
observation of quantum effects in micro-circuits. Another important step forward
in quantum electronics has been achieved with the implementation of the Joseph-
son parametric amplifier [193], which has largely contributed to the development
of ultra-weak signal detection. The invention of the radio-frequency single-electron
transistor [287] and microstrip SQUID amplifier [288] has boosted the search for
quantum-limited detectors. This search has witnessed further progress with the
development of the Josephson bifurcation amplifier [110, 211–220] and continues
growing in the realms of circuit QED and nanomechanics [194–210].

A common feature to all these achievements is the accurate design of the exper-
imental setup. Therein lies the bias for the development of a correlation homodyne
apparatus at microwave frequencies, which constitutes the experimental bulk of
this thesis. Our correlation homodyne scheme extends standard circuit QED se-
tups based on a single detection chain to the richer domain of a double detection
chain. The theoretical analysis and technical specifications of the basic equipment
required for the implementation of such an apparatus constitute the main topic of
this chapter.

The chapter is organized as follows. In Sec. 3.1, we present two types of mi-
crowave beam splitters based on a three- and four-port network, respectively. These
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are the Wilkinson power divider and the 180◦ hybrid ring. In particular, we develop
a full classical and quantum theory of the noise properties for the Wilkinson power
divider. In Sec. 3.2, we describe the key devices used in our detection chain and
show the measurement of a relevant set of their parameters. The key devices are: the
cryogenic circulators, the RF HEMT (cryogenic) amplifiers, the cold feedthroughs,
the RF multioctave band amplifiers, the mixers, and the IF FET amplifiers. Sec-
tion 3.3 is a short “bridge” between the end of this chapter and the beginning of
the following one, where the detection chain analyzed here is used to investigate the
properties of vacuum fluctuations at microwave frequencies.

The material discussed in this chapter is entirely unpublished.1 The author has
developed the noise theory of microwave beam splitters presented within the chap-
ter and has extensively contributed to the design of the experimental setup, which
is based on his original idea triggered by discussions with Enrique Solano [289]. In
addition, the author has largely participated in the hardware realization of the setup
(development of the beam splitters, cabling, cold feedthroughs, cryogenic, and room
temperature electronics). This was completed with the help of Edwin P. Menzel,
who largely contributed to the measurement software, Miguel Á. Araque Caballero,
and Achim Marx. Frank Deppe has also assisted with fruitfull discussions and tech-
nical support with cryogenics and software. Several other students have contributed
to the realization of the setup (cf. Preface). All data shown in this chapter were
taken and retrieved by the author, except for the room temperature amplifiers data
and their corresponding 1 dB compression point measurements. These were taken
by Miguel Á. Araque Caballero with the help of Edwin P. Menzel and were in-
dependently retrieved by the author. The author acknowledges a discussion with
J. M. Martinis and D. Sank, who helped proving the four-port scattering matrix of
the Wikinson power divider.

3.1 Microwave Beam Splitters

In chapter 2, we have introduced the basic quantum devices required for circuit QED
experiments. However, in order to realize a complete optical table on a chip an
additional class of devices is needed: the microwave beam splitters.

The flexibility in patterning complex structures on a chip by lithography tech-
niques allows for the design of a variety of microwave beam splitters.2 Here, we
consider a subset of microwave beam splitters: the Wilkinson power divider, a
three-port network (cf. Subsec. 3.1.1), and the 180◦ hybrid ring, a four-port net-
work (cf. Subsec. 3.1.2). In the case of the Wilkinson power divider we develop a
detailed classical and quantum noise model.

The standard mathematical representation of microwave beam splitters and the
study of their noise properties is based on the concept of scattering matrix. We
will extensively use the scattering matrix formalism throughout this chapter. We
recommend the reader not acquainted with this concept to consult Refs. [227, 264,
290] for a basic introduction. Here, we only remind that any signal s (voltage or
current) entering into a device is designated as incident signal and indicated by the

1Note added in Fall 2010: A few elements of the experimental setup have now been shown in
Ref. [162].

2In this chapter, we only consider quasi 1D structures. The entire class of 3D waveguide beam
splitters is thus not treated here [227].
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(a)

(b)

Figure 3.1: Basic Wilkinson power divider (referred to as WPD in the figure).
(a) A: input port. B and C: output ports. The signals at ports B and C are
fed into channels 1 and 2 of the detection chain, respectively (cf. bottom
part of Fig. 3.10). An input transmission line with indefinite length � and
characteristic impedance Z0 is connected in parallel with two output λ/4 lines
with characteristic impedances ZB0 and ZC0, respectively. Ports B and C are
connected with a resistance Req. (b) In the experiments, port A is terminated
into a purely real (resistive) impedance Z0, which constitutes the primary
noise source and is associated with the noise voltage un (cf. main text). The
temperature of the primary noise source is controlled by means of a heater and
continuously monitored with a RuO thermometer. The temperature typically
varies between 20 and 350mK. The dashed box delimits the Wilkinson power
divider including the resistance Req. The scattering matrix for a Wilkinson
power divider operated at its center frequency is indicated [cf. Eq. (3.7)].
After being connected to other devices (assumed to be impedance matched
and schematically indicated by slashes in the figure), the output ports B and
C are finally terminated into two load impedances ZLB = ZLC = Z0. Cf. also
the left part of Fig. 3.16 for more details.

symbol s+. In contrast, any signal exiting from a device is designated as reflected
or scattered signal and indicated by the symbol s−.
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3.1.1 The Wilkinson Power Divider

Wilkinson three-port splitters belong to the class of three-port junctions (also known
as T-junctions)3 referred to as power dividers. This nomenclature, owing its origin
to historical reasons and engineering applications, is rather unfortunate because it
seems to imply that Wilkinson three-port splitters act only on the power of an
incoming signal. In reality, they act only on the amplitude and phase of any given
input signal. By extension, the power expressed in decibel (dB) at one output of
the splitter can be computed and found to be (nominally) 3 dB lower than at the
input. Bearing this caveat in mind, we hereafter adopt the nomenclature used in
all standard books and refer to Wilkinson three-port splitters as Wilkinson power
dividers. Oftentimes, Wilkinson power dividers are utilized backwards, in which
case they are called Wilkinson power combiners.

Since any given T-junction is made of three ports (N = 3), it is completely
characterized by a scattering matrix of the third order, ST = [Spq] with p, q =
A,B,C. For a T-junction to be well-defined six of the Spq elements have to be
independent (i.e., 2 × N ) [290]. A T-junction is said to be reciprocal when, ∀p, q,
its scattering matrix ST is symmetrical about the leading diagonal, i.e., Spq = Sqp.
This has the important consequence that interchanging the input and output ports
of the junction does not change its transmission properties. The T-junctions used
to implement power dividers are reciprocal.

Theorem 3.1.1 Fundamental theorem for a lossless reciprocal T-junction: It is
impossible to match all three ports of the T-junction simultaneously.

Proof The proof of this theorem follows straightforwardly from the unitary char-
acter of the scattering matrix of a lossless T-junction,

S∗
TST = I3 , (3.1)

where I3 is the 3 × 3 identity matrix. Notably, the unitary property expressed by
Eq. (3.1) is valid for any generic lossless N-junction. A T-junction is said to be
completely matched if the input impedance of any port is unity when matched loads
are connected to the other two ports. If we start with the assumption that all three
ports of a T-junction are matched, then, ∀p, all diagonal elements of its scattering
matrix must be equal to zero, Spp = 0. In this case,

ST =

⎡⎢⎢⎢⎢⎢⎣
0 SAB SAC

SAB 0 SBC

SAC SBC 0

⎤⎥⎥⎥⎥⎥⎦ , (3.2)

where the reciprocity property has been already used. Since ST is unitary, the off-
diagonal elements of S∗

TST must be zero. This means that the sum of the products

3This does not mean that such devices are based on Josephson tunnel junctions. There are
no Josephson junctions embedded in any of the beam splitters described in this chapter. How-
ever, N-junction is the commonly used name for multi-port microwave devices characterized by N
ports [290].
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of the complex conjugate elements in any row of ST with the elements in another
row is zero. For example, from the (A,B) element of S∗

TST,

S∗
AC SBC = 0 , (3.3)

it follows that either SAC or SBC must be zero,4

SAC = 0 ∨ SBC = 0 . (3.4)

If this condition were true, it would mean that not all diagonal elements of S∗
TST

are unity. For example, if SAC = 0, S∗
ABSAB = 1 for the (A,A) element of S∗

TST to
be unity. Consequently, S∗

BCSBC = 0 for the (B,B) element of S∗
TST to be unity.

This finally leads to the absurd conclusion that the (C,C) element of S∗
TST, given

by S∗
ACSAC+S

∗
BCSBC, must be zero. Being this finding against the unitary property

of all lossless T-junctions, we can safely state that the diagonal elements of ST must
not all vanish, thus proving the theorem. Q.D.E.

More in general, one can prove that two of the transmission coefficients SAB,
SBC, and SAC must simultaneously vanish in order to realize a completely matched
T-junction [227]. This allows us to attach a more physical meaning to the theorem,
which simply means that a fully matched T-junction would not function as a T-
junction. It can also be seen, by the use of similar arguments, that any two of the
diagonal elements of S∗

T can vanish iff the third port of the T-junction is completely
decoupled from the junction itself [290].

In the light of the just proven theorem, we can conclude that it is possible to
construct a lossless power divider (or splitter) simply taking a lossless transmission
line and dividing it into two output lines at some desired point. The price to be
paid for such a simple design is twofold: First, the output ports cannot be matched
if the input port is matched; second, there is no isolation between the two output
ports [227]. Isolation is an important condition so that a reflected signal at one
output port does not couple into the other output port, and vice versa.

E. Wilkinson has developed an N-junction power divider that allows to equally
split the input signal among the output ports, where all N ports are impedance
matched, and the output ports are isolated [291]. In these terms, the Wilkinson
power divider seems to represent the ideal beam splitter. The secret feature of the
Wilkinson power divider, e.g., for N = 3, is the use of a resistor connected between
the two output ports. The presence of a resistive element has the nontrivial conse-
quence to enable full matching and isolation. In this case, the three-port scattering
matrix (as we like to define it: the reduced scattering matrix) of such a splitter
can be shown to be a nonunitary matrix. This nonunitary reduced three-port scat-
tering matrix is the matrix typically used to represent Wilkinson power dividers
operated in the classical regime. It is worth mentioning that the resistor adds no
resistive loss to the power split, so an ideal Wilkinson divider is 100% efficient [227].
Consequently, the reason behind the seemingly nonunitary scattering matrix of a
Wilkinson power divider cannot be attributed to losses in the resistor, as oftentimes
incorrectly believed. As we shall show below, a more correct representation of the
Wilkinson power divider, particularly useful in the quantum regime, can be obtained

4Here, ∨ represents a vel, i.e., an inclusive OR.
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when considering the resistor as the termination of a fourth port of the divider. Un-
der this assumption, the complete scattering matrix of the Wilkinson power divider
is a four-port unitary matrix.

A number of different versions and configurations of the Wilkinson power divider
has been developed over the years. In particular, the two-way multisection broad-
band design created by S. B. Cohn is among the most popular classes of Wilkinson
power dividers and is used in a variety of practical implementations [292]. Because
of its large bandwidth, this type of splitter is also the one utilized in most of our
experiments.

In order to avoid unnecessary complications, we prefer to consider the basic
Wilkinson power divider here instead of the more involved Cohn’s design. In fact,
we can assume the Wilkinson and Cohn power dividers to be formally equivalent,
being only their characteristic operational bandwidths significantly different.

The basic Wilkinson power divider is illustrated in Fig. 3.1(a). It consists of
two quarter-wave transmission line sections with characteristic impedances ZB0 and
ZC0 connected in parallel with an input transmission line, which has a character-
istic impedance Z0 and undefined length �. All transmission lines are assumed to
be lossless. In typical applications, Z0 = 50Ω. In addition, a resistor with equiv-
alent resistance Req is connected between ports B and C and the output ports are
assumed to be terminated in suitable load impedances ZLB and ZLC, respectively
[cf. Fig. 3.1(b)]. After a tedious calculation (cf. Ref. [227] for a detailed derivation),
we can express all impedances in terms of Req as

ZB0 = K
√
ReqZ0 , (3.5a)

ZC0 =
1

K

√
ReqZ0 , (3.5b)

ZLB =
K2Req

K2 + 1
, (3.5c)

ZLC =
Req

K2 + 1
, (3.5d)

where K is the splitting factor (cf. Ref. [227]). If we do not require port A to be
matched at all frequencies, the value of the resistance Req can be chosen arbitrarily.
For example, a 3 dB power divider is obtained by choosing K2 = 1. In this case, if
we specify the load impedances to be matched, ZLB = ZLC = Z0, from Eq. (3.5c)
it follows that Req = 2Z0. From Eq. (3.5a) we then find that ZB0 = ZC0 =

√
2Z0.

These values allow for the synthesis of a basic Wilkinson power divider, whose full
functionality is guaranteed only in the close vicinity of the center frequency f0 set by
the quarter-wave transmission line sections. Because of such quarter-wave sections,
the so obtained power divider is a narrow-band device. Many tricks can be applied
in order to extend the operational frequency range and make the power divider
broader, but we will not delve into such engineering details here (e.g., the interested
reader can cf. Refs. [227, 292]).

Right at the center frequency f0, the reduced three-port scattering matrix S̃WPD

of the Wilkinson power divider of Fig. 3.1(a) can be derived by means of the so-
called even/odd mode analysis. The calculation is very cumbersome (the reader can
go through it step by step following the excellent tutorial by J. Stiles, cf. Ref. [293]).
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Here, we limit ourselves to give only the final result,

˜̄SWPD = − j√
2

⎡⎣ 0 1 1
1 0 0
1 0 0

⎤⎦ . (3.6)

Notably, this scattering matrix is nonunitary, ˜̄S∗
WPD
˜̄SWPD �= I3. Even if so, this is

the matrix presented in standard microwave textbooks (e.g., cf. Ref. [227]). In order
to recover a unitary scattering matrix, in the next subsection we will introduce a
complete model of the Wilkinson power divider, where the resistor Req constitutes
the termination of a fourth internal port of the divider. This model has important
consequences on the noise properties of the Wilkinson power divider and, thus, for
the experiments to be discussed in chapter 4.

Additionally, it is important to mention that, while developing the noise analysis
of the basic Wilkinson power divider, we will deal only with real input and output
voltages and/or currents, instead of complex phasors. This assumption guaran-
tees that, when promoting the classical voltages and currents to the correspond-
ing quantum-mechanical operators, such operators are always Hermitian. In order
to fulfill the Hermitian condition, we will thus multiply the scattering matrix of
Eq. (3.6) by a global phase −j = exp(−π/2), which, as such, does not affect the
general validity of our derivations. Notably, global phases do not play any active
role when considering the correlation measurements to be shown in the next chapter.
Hence, the matrix to be used will be

S̃WPD = − 1√
2

⎡⎣ 0 1 1
1 0 0
1 0 0

⎤⎦ . (3.7)

The Wilkinson Power Divider Noise Model

In standard room-temperature applications, the scattering matrix given by Eq. (3.7)
is sufficient to characterize the properties of a Wilkinson power divider. However,
the experiments to be described in chapter 4 have been performed at very low
temperatures. The main aim of those experiments is to study the cross-over from
thermal states to vacuum states at microwave frequencies in a range between ap-
proximately 4.5 and 7.5GHz and to characterize the quantum-mechanical properties
of microwave beam splitters. In that framework, we will be able to show that the
matrix of Eq. (3.7) does not suffice to represent a quantum-mechanical Wilkinson
power divider.

In this subsection, we will develop the bulk of the quantum theory of the Wilkin-
son power divider based on a thorough noise analysis. Although the analysis de-
veloped here is for a basic Wilkinson power divider, a version of the two-way mul-
tisection broadband divider of Cohn’s class is used in the actual experiments. The
Cohn-type power divider is preferred over the simple Wilkinson power divider be-
cause of its wide operational frequency range.

Before delving into the noise theory of the Wilkinson power divider, we start
describing the wiring and a few other technical properties of the device used in the
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Table 3.1: MITEQ-USA two-way power divider model PD2-2000/18000-30S:
nominal specifications [294]. The insertion loss is defined in terms of the scat-
tering parameters as 10 log[|SBA|2/(1− |SAA|2)]. The isolation is 10 log |SBC|.
The voltage standing-wave ratio (VSWR) is a measure of the amount of re-
flections at a given port. VSWR = 1 means no reflections (a perfect match).
VSWR = 1.5 means � 14 dB return loss, i.e., 20% of the signal (voltage) or
4% of the power reflected back. VSWR = ∞ means total reflection (a short
or open circuit).

frequency range insertion loss isolation input VSWR output VSWR
(GHz) (dB, Max.) (dB, Typ.) (-) (-)

2− 18 0.8 16 1.5 : 1 1.5 : 1

experiments. This is important to understand the environment in which the divider
is operated. We opted for a commercial device the fabrication and packaging of
which was realized by MITEQ-USA. The nominal specifications of the device are
reported in Table 3.1.

As shown in Fig. 3.1(b) and in the left part of Fig. 3.16, the first steps of our
experiments are:

1. The input port A of the power divider is terminated into a purely real matched
load impedance Z0.

5 Such a termination is a broadband6 50Ω resistor pro-
duced by HUBER+SUHNER [295] with SMA precision connector. Since the
termination is not specified for very low temperature (a few tens of mK) ap-
plications, during our experiments we always monitor the DC resistance of an
identical termination, which is cooled to the same temperature of the power
divider input termination. In this way, we assure that the termination does
not become superconducting. The input termination Z0 represents the noise
source under investigation;

2. The power divider is heat sunk to the mixing chamber stage of a homemade di-
lution refrigerator. The dilution refrigerator used in our experiments has been
developed entirely at the Walther-Meissner-Institut by K. Uhlig, A. Marx,
C. Probst, and S. Höß. The mixing chamber stage can reach a base temper-
ature T = Tb � 20mK. The power divider is screwed to a tempered-silver
plate (cf. left part in Fig. 3.16) directly attached to the mixing chamber (not
shown);

3. The input termination Z0 is clamped by means of a gold-plated OFHC7-copper
holder. A resistive heater [cf. red resistor in Fig. 3.1(b)] is then attached to
the holder by means of a silver strap. The heater, an SMD 0402 component
(1.0× 0.5mm) of 1 kΩ, allows us to accurately control the temperature of the

5In this case, some authors redefine Z0 = R0. In this thesis, for the sake of generality, we prefer
to keep on using the impedance notation Z0.

6At least at room temperature.
7Oxygen-free high-conductive.
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termination, i.e., the temperature of our noise source. Typically, we vary the
termination temperature in a range comprised between approximately 20 and
350mK;

4. The temperature of the Z0 termination is measured by means of a RuO ther-
mometer directly screwed to the termination clamp (cf. Fig. 3.16). The de-
sign and precise calibration of the thermometer were performed by K. Neu-
maier. We notice that the effective electronic temperature of the resistor
cannot directly be accessed. In fact, within calibration errors, we can only
measure the temperature T of the termination clamp. At low temperatures
[T ∈ (20, 50)mK], the termination electronic temperature T̃ , i.e., the real
temperature of the resistor, is usually approximately equal to the measured
temperature, T̃ ≈ T . At high temperatures [T ∈ (150, 350)mK], the heat-
ing stabilization time in our experiments is not long enough to let the system
reach a complete thermodynamical equilibrium (cf. chapter 4). We can thus

assume, in this case, that the termination electronic temperature T̃ is slightly
lower than the measured temperature, T̃ � T . In general, we can model the
resistor electronic temperature as

T̃ = T − η(T − Tmin) , (3.8)

where η accounts for a temperature gradient between the resistor clamp and
the resistor itself and Tmin is the minimum measured temperature, Tmin ≡
min{T}. In the light of the discussion which brought to the model of Eq. (3.8)
and assuming a reasonable upper bound for η of 10%, we expect 0 < η < 0.1.
It is also possible to compute a mean temperature difference between clamp
and resistor as

ΔT = − 1

Tmax − Tmin

∫ Tmax

Tmin

dT η(T − Tmin)

= −η
2
(Tmax − Tmin) , (3.9)

where Tmax is the maximum measured temperature, Tmax ≡ max{T}. We
expect the quantity ΔT , which also accounts for possible slight calibration
errors, to be small (a few mK) and generally negative (cf. chapter 4 for the
experimental results);

5. Finally, Fig. 3.1(b) shows that the output ports B and C of the power divider
are connected to two transmission lines. Those lines can contain a number of
microwave devices such as circulators, amplifiers, mixers, and so forth (slashes)
and are ultimately terminated in the matched load impedances ZLB and ZLC,
respectively. If all devices between the divider output ports and the load
impedances are matched, we can disregard the presence of such devices for the
moment and analyze the circuit as if it were directly terminated into ZLB and
ZLC.

8 For convenience, the standard scattering matrix of the Wilkinson power
divider [Eq. (3.7)] is reported again in Fig. 3.1(b), where the dashed black box
indicates the boundaries of the divider, including resistor Req.

8In reality, of course, the signals will change according to the gain of the amplifiers and the
global attenuation of the lines, both disregarded here.
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Following the steps enumerated above, the Z0 termination is employed as a noise
source generating a thermal state |γ〉 and, when the temperature T is low enough,
the vacuum state |0〉.9 Trivially speaking, the signal generated at the power divider
input port is split by the divider and, after being transmitted through the output
matched transmission lines, is measured as a voltage on the load impedances ZLB and
ZLC. The topology of the entire circuit of Fig. 3.1(b) is equivalent to that of a tripolar
double bipole. As a consequence, the circuit can be represented diagrammatically
as in Figure 3.3, where vB and vC constitute the voltages to be measured. We now
attempt to rigorously derive those voltages in terms of all other circuit parameters.
In order to achieve this goal, we proceed according to the fundamental principles
of classical network theory and theory of electronic circuits [227, 264, 296]. The
procedure is visualized in Figs. 3.2, 3.3, 3.4, and 3.5.
These are the main steps:

(i) First, we derive the equivalent circuit model of a noisy resistor, both in the
classical and quantum regime. In general, any given resistor rn [cf. Fig. 3.2(a)]
at absolute temperature T exhibits voltage (current) fluctuations vn (in) due to
thermal Johnson-Nyquist noise. This is the electronic noise generated by the
thermal agitation of the charge carriers (usually the electrons) inside an electri-
cal conductor at equilibrium, which happens regardless of any applied voltage.
Thermal noise is approximately white, meaning that the power spectral den-
sity is nearly uniform throughout the frequency spectrum. Additionally, the
amplitude of the signal has very nearly a Gaussian probability density function.

Classical regime. In the white-noise frequency limit, the effective or root mean
square (RMS) thermal noise voltage and current associated with resistor rn over
a frequency bandwidth BW = f2−f1 can be obtained analyzing the circuits of
Figs. 3.2(b), 3.2(c), and 3.2(d). Following the basic arguments described in the
seminal work by H. Nyquist [297], we first terminate the noisy resistor rn into
a load impedance ZL [cf. Fig. 3.2(b)]. We then substitute the noisy resistor
rn by a Thévenin equivalent circuit given by an ideal noiseless resistor r in
series with a noise voltage source vn. We assume the load impedance ZL to be
matched to resistor r, ZL = r, and the entire circuit to be in thermodynamic
equilibrium at temperature T [cf. Fig. 3.2(c)]. In this case, the current flowing
on the loaded circuit can easily be evaluated noting that the voltage vn is
equally divided between r and ZL,

iL = vn/2r . (3.10)

A similar result suffices in the inverted scenario, where the noisy resistor plays
the role of load impedance and viceversa. In the direct scenario, there is a
power flow from the left to the right side of the circuit and, obviously, an
opposite flow happens in the inverted scenario. The two flows must be equal
due to the thermodynamic equilibrium condition [297]. In real applications,
the load impedance ZL is the input impedance of a detector which absorbs
the power generated by the noisy resistor and, thus, allows one to measure the
resistor noise. In order to consider only one of the two simultaneous flows, we
can invoke the transformation of impedances of Eq. (2.31) and break the circuit

9These states are obviously multi-mode states of the microwave field.

106



CHAPTER 3. CORRELATION HOMODYNE DETECTION AT MICROWAVE
FREQUENCIES:
EXPERIMENTAL SETUP

Figure 3.2: The classical and quantum Nyquist theorems. (a) Circuit dia-
gram for a noisy resistor rn with input port voltage v and current i in ther-
modynamic equilibrium at temperature T . vn and in): voltage and current
fluctuations due to thermal Johnson-Nyquist noise. (b) The noisy resistor rn
is terminated into a load impedance ZL. (c) The noisy resistor is substituted
by its Thévenin equivalent circuit characterized by the series of a noise volt-
age source vn and an ideal resistor r, and the load impedance is assumed to
be matched, ZL = r. (d) A semi-infinite transmission line of characteristic
impedance Zcar = ZL = r is inserted right after r. Since the length of such
a line � → ∞, according to Eq. (2.31) the line input impedance Zin = r and,
thus, vn is equally divided between r and Zin. (e) Thévenin equivalent circuit
for a noisy resistor given by an ideal noiseless resistor r in series with a noise
voltage source vn,RMS → vn (cf. main text). (f) Norton equivalent circuit for
a noisy resistor given by an ideal noiseless resistor r in parallel with a noise
current source in,RMS → in = vn/r.

inserting right after the ideal resistor r a semi-infinite10 transmission line with
characteristic impedance Zcar matched to the load impedance, Zcar = ZL = r
[cf. Fig. 3.2(d)]. The semi-infinite transmission line sustains a continuous of
electromagnetic modes each, according to the equipartition law, characterized
by an average energy kBT . Within the bandwidth BW, the power associated
with the line modes is consequently given by kBT BW. This power has to be

equal to the power associated with the noisy resistor, i2L r, where the current
has been first squared and then averaged over time.11 Imposing the two powers

10Semi-infinite because we know the starting point of the line. The line is still infinitely long,
thus sustaining a continuous of modes (cf. chapter 2, Subsec. 2.1.2).

11In the case of signals which are ergodic for the average, the time average can be substituted
by the mean value [298–302], i2L r → 〈i2L〉 r.
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to be equal and using the result of Eq. (3.10), we find

v2n
4r2

r = kBT BW , (3.11)

from which we can finally obtain the RMS noise voltage and current

vn,RMS ≡
√
v2n =

√
4kBT rBW (V) , (3.12a)

in,RMS ≡
√
i2n =

√
4kBT BW

r
(A) . (3.12b)

The bandwidth depends on the details of the measurement apparatus and
it is typically taken to be a so-called “boxcar,” i.e., a rectangle, with upper
and lower frequency cutoff f1 and f2. If the system under consideration does
not have a boxcar frequency response, then an equivalent noise bandwidth is
defined as the boxcar with a) the same amplitude as the peak amplitude of the
frequency response magnitude squared and b) the same integrated area as the
actual system frequency response magnitude squared. To simplify the notation,
we will hereafter indicate the RMS noise voltage and current simply as vn and
in, vn,RMS → vn and in,RMS → in, respectively, even if in the beginning of the
above derivation the symbols vn and in originally referred to time-dependent
fluctuations instead of RMS values.

Hence, a noisy resistor can be modeled as a noise voltage source with RMS
voltage vn given by Eq.(3.12a) in series with an ideal noiseless resistor r. This
is the fundamental Thévenin (voltage controlled) model of a noisy resistor
[cf. Fig. 3.2(e)]. By means of the inverse first Ohm’s law,

in =
vn
r
,

we can then obtain the fundamental Norton (current controlled) model of a
noisy resistor [cf. Fig. 3.2(f)].

Quantum regime. The main departure between the classical and quantum
version of the Nyquist result of Eq. (3.11) is due to the fundamental quantum-
mechanical requirement that the minimum energy associated with any elec-
tromagnetic mode of angular frequency ω be the vacuum energy �ω/2. We
can therefore conjecture that, in the limit of a circuit in the vacuum regime,
kBT → �ω/2. In this case, Eq. (3.11) becomes

V 2
n0

4r2
r =

�ω

2
BW , (3.13)

where Vn0 represents the vacuum voltage of a quantum-mechanical resistor with
a given resistance r. Normalizing such a voltage over

√
BW and assuming r =

Z0, we thus obtain the vacuum voltage per-root-hertz of a standard resistive
load Z0,

V̄n0 ≡
√

2�Z0ω = 2 V̄0 . (3.14)

Remarkably, we find that the vacuum voltage of a noisy resistor is two times
as large as the vacuum voltage of a capacitor associated with a transmission
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line [cf. Eq. (2.109)]. A similar result applies to the vacuum current of a noisy
resistor.

A more rigorous analysis of the quantum-mechanical noisy resistor can be
carried out by substituting the classical noise voltage vn of Fig. 3.2(c) by the
corresponding quantum-mechanical operator V̂n,

vn → V̂n ≡ V̄n0 (â
† + â) , (3.15)

where â† and â are the bosonic creation and annihilation operators associated
with the internal modes of the resistor. We want to prove that the vacuum
noise voltage V̄n0 is as heuristically found in Eq. (3.14).

Assuming a purely real load impedance12 ZL = Z0 and assuming r = Z0, we
can easily derive the quantum current flowing on the loaded circuit,

ÎL =
V̂n
2Z0

=
V̄n0
2Z0

(â† + â) . (3.16)

In addition, we consider one single-mode of the semi-infinite transmission line
of Fig. 3.2(d) to be characterized by the creation and annihilation bosonic
operators b̂† and b̂. In the case of the vacuum and thermal white Gaussian
noise considered here, the extension to multi-mode operators is straightfor-
ward, since the noise frequency distribution is uniform over the bandwidth
BW. As a consequence, we can derive all expressions per-root-hertz or per-
hertz and simply multiply the final result by

√
BW or BW in order to obtain

the desired multi-mode expressions. Under these conditions, we can write the
quantum voltage associated with the transmission line as V̂ = V̄0 (b̂

† + b̂).13

Assuming the entire circuit of Fig. 3.2(d) to be prepared in the vacuum state
|0〉 (i.e., T → 0+) and imposing the power generated by resistor r ( = Z0) to
be equal to the power on the transmission line, we finally obtain

〈Î2L〉0 Z0 = 〈0|Î2L|0〉Z0 =
V̄ 2
n0

4Z2
0

〈0|(â† + â)2|0〉Z0

=
〈V̂ 2〉0
Z0

=
V̄ 2
0

Z0

〈0|(b̂† + b̂)2|0〉 , (3.17)

from which it follows again the result of Eq. (3.14).

Armed with the classical and quantum-mechanical models of a noisy resistor,
we can proceed with our network analysis;

(ii) Second, we notice that besides the load impedances ZLB and ZLC, which are
typically at a very different temperature stage as compared to the Wilkinson

12If ZL were complex, the phasor picture of quantum mechanics should be used. Due to its
difficulty, the phasor picture will be studied by the author in a later paper.

13For simplicity, hereafter we will use the notation V̂ instead of V̂ for the quantum voltage on a
transmission line, which, we remind the reader, is defined per-root-hertz.
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Figure 3.3: Circuit representation of a Wilkinson power divider (WPD; indi-
cated by a dashed box) including noise sources. The noisy resistive impedance
Z0 at the input port A is substituted by a Thévenin equivalent circuit, where
un represents the noise voltage of the primary noise source (cf. main text). The
noisy resistor Req between ports B and C is substituted by a Norton equivalent
circuit, where in = vn/Req represents the noise current of the secondary noise
source (cf. main text). The voltage drops vB and vC constitute the output
voltages of the WPD.

power divider, the circuit of Fig. 3.1(b) contains two independent noise sources.
These are the primary noise source associated with the input port termination
Z0, which we originally intended to characterize, and the secondary noise source
associated with the equivalent resistor Req between ports B and C, which is
part of the basic Wilkinson power divider. Both these noise sources contribute
to the final voltage signals vB and vC to be measured over the load impedances
ZLB and ZLC, respectively.

As shown in Fig. 3.3, we substitute the noisy input port termination Z0 with
the Thévenin equivalent circuit of Fig. 3.2(e) and the noisy resistor Req with the
Norton circuit of Fig. 3.2(f). For clarity of notation, the noise source at port
A is now indicated as un and the one between ports A and B as in = vn/Req.

It is worth pointing out already at this stage that the noise voltage source at
input port A does not modify the axial symmetry of the circuit and, thus,
contributes to the voltages vB and vC in the same amount, both in amplitude
and sign. However, the noise current source between ports B and C does modify
the axial symmetry of the circuit and, thus, contributes to the voltages vB and
vC with the same amount in amplitude, but opposite sign. This antisymmetry
conjecture will be proven in the next steps of our derivation;

(iii) Third, the circuit of Fig. 3.3 can be analyzed invoking the superposition prin-
ciple of network theory [264], where the total output voltages at ports B and
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(b)

(a)

Figure 3.4: Superposition principle for the Wilkinson power divider. (a) The
source in is switched off, in → OC. At the input port A we see an impedance
Zin,A to ground. The series circuit below the main circuit of (a) shows that
the noise voltage un is divided between the termination Z0 and the input
impedance Zin,A, on which a current iu flows. At port A the voltage is defined

as v−A . At ports B and C we find the two partial output voltages v
(I)
B and v

(I)
C

due to un only. (b) The source un is switched off, un → SC. Since SBC = 0,
the divider input impedances at ports B and C are independent (dashed red

line). The partial output voltages v
(II)
B and v

(II)
C are due to vn only. The final

result is obtained summing the partial voltages found in (a) and (b).
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C, vB and vC, can be decomposed in the sum of the independent contributions

v
(I)
B and v

(I)
C , due to the noise voltage source un, and v

(II)
B and v

(II)
C , due to the

noise voltage source vn, vB = v
(I)
B + v

(II)
B and vC = v

(I)
C + v

(II)
C . Following this

approach, the main steps are:

(I) The noise current source in is replaced by an open circuit and only the
effect of the noise voltage source un is considered [cf. Fig. 3.4(a)].

Defining the input impedance between port A and ground as Zin,A, the
circuit is reduced to the simple series circuit sketched on the left-bottom
part of Fig. 3.4(a). From Kirchhoff’s voltage law it follows that

−un − Z0 iu − Zin,A iu = 0 , (3.18)

where iu is the current flowing in the circuit. In Eq. (3.18), we adopt
the standard sign convention for the voltages on Z0 and Zin,A, i.e., we
assume them dropping in the opposite direction of the current flow. The
sign of un is set by the Thévenin model for the noisy resistor. In this
way, we find

iu = − 1

Z0 + Zin,A

un

and, from first Ohms’s law,

v−A = −
Zin,A

Z0 + Zin,A

un , (3.19)

which resembles the usual result for a voltage divider [296]. The minus
sign in the expression for v−A indicates that the physical voltage drops
between point A and ground [it is the opposite of the conventional sign
assumed in Eq. (3.18)]. Thus, v+A = − v−A is the incident voltage at the
input port A of the Wilkinson power divider.

At this point, we need to make use of some of the elements of the re-
duced three-port scattering matrix S̃WPD of the Wilkinson power divider
[cf. Eq. (3.7)]. Considering the scattering parameter between port A and
port B or C, SAB = SAC = − 1/

√
2, we can calculate the reflected volt-

ages at ports B and C and obtain the partial voltages v
(I)
B and v

(I)
C as

v−B = v−C = v
(I)
B = v

(I)
C

= − 1√
2
v+A = −

Zin,A√
2(Z0 + Zin,A)

un . (3.20)

Under matching conditions Zin,A = Z0 and, thus,

v
(I)
B = v

(I)
C = − 1

2
√
2
un . (3.21)

This result quantifies the amount of voltage associated with the primary
noise source that we are expected to measure at the output. The factor
−1/

√
2 is due to the Wilkinson divider, whereas the factor 1/2 owns

its origin to the voltage division at the input. The latter, which can
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Figure 3.5: Noise contribution of the Wilkinson power divider internal re-
sistance. The noise current in is divided between the input impedance Zin,B

(Zin,C) of the power divider at port B (C) and a load impedance Z0. iin,B
(iin,C): current flowing on Zin,B (Zin,C).

easily be missed at first glance, is due to the internal resistance of our
noise source, which in this case is simply Z0. Remarkably, this is exactly
what happens in any commercial signal generator. The generator is
characterized by some internal resistance Rg which absorbs part of the
signal generated by the internal oscillator. The output power specified on
the machine is referred to the machine output plane and already accounts
for internal losses. In our case, we have to be careful to include such
losses in the calculations without doing the trivial mistake of assuming
v
(I)
B = v

(I)
C = un/

√
2;14

(II) The noise voltage source un is replaced by a short circuit and only the
effect of the noise current source in is considered [cf. Fig. 3.4(b)].

In Fig. 3.4(b), the dashed black box indicates, as always, the power
divider. Since for a Wilkinson divider the scattering parameter between
ports B and C is zero, SBC = 0, no current is allowed to flow between
these two ports. As a consequence, we can consider the impedances
seen at the input of ports B and C of the diver as independent circuit
elements [cf. dashed red line in Fig. 3.4(b)]. The circuit of Fig. 3.4(b)
can therefore be reduced to that of Fig. 3.5.

Following the usual sign conventions, we can apply Kirchhoff’s voltage
law to the left and right loops of the circuit of Fig. 3.5,

v
(II)
B + vin,B = Z0 iB + Zin,B iin,B = 0 , (3.22a)

v
(II)
C − vin,C = Z0 iC − Zin,C iin,C = 0 . (3.22b)

Under matching conditions, Zin,B = Zin,C = Z0, from Eq. (3.22a) it
follows that

iin,B = − iB (3.23)

and from Eq. (3.22b) that

iin,C = iC . (3.24)

14A resistor is not only a noise source, but also a circuit element on which a voltage drop is
established.
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Applying Kirchhoff’s current law to nodes B and C of the circuit of
Fig. 3.5,

iB − iin,B + in = 0 , (3.25a)

iC + iin,C − in = 0 , (3.25b)

and using the results of Eqs. (3.23) and (3.24), we obtain

iB = −1

2
in , (3.26a)

iC =
1

2
in . (3.26b)

In Eqs. (3.25a) and (3.25b), we adopted the standard sign convention
for currents, i.e., we assumed them to be positive when entering a node
and negative when exiting it (cf. Fig. 3.5).

Finally, the partial voltages v
(II)
B and v

(II)
C can straightforwardly be cal-

culated from Eqs. (3.26a) and (3.26b) as

v
(II)
B = − v

(II)
C = − Z0

2
in = − Z0

2Req

vn . (3.27)

For a basic Wilkinson power divider Req = 2Z0 and, thus,

v
(II)
B = − v

(II)
C = − 1

4
vn . (3.28)

This result, which has been carefully checked also with spice simulations
(data not shown), quantifies the amount of voltage associated with the
secondary noise source that we are expected to measure at the output
of the divider. The minus sign is in accordance with our conjecture
about the breaking of the axial symmetry of the power divider by the
secondary noise source.

Instead of a Norton representation we could have used a Thévenin rep-
resentation for the noise source vn, in the same manner as we have done
for un. However, because of symmetry reasons15 it is then hard to make
use of the scattering matrix elements of the Wilkinson power divider.
The use of S̃WPD, readily possible only within the Norton representa-
tion of the noisy resistor associated with Req, significantly simplifies the
analysis of the circuit.

In summary, applying the superposition principle finally gives the total
results

vB = v
(I)
B + v

(II)
B

= −
Zin,A√

2(Z0 + Zin,A)
un −

Z0

2Req

vn , (3.29a)

vC = v
(I)
C + v

(II)
C

= −
Zin,A√

2(Z0 + Zin,A)
un +

Z0

2Req

vn , (3.29b)

15The broken axial symmetry of the power divider.
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Figure 3.6: The Wilkinson power divider as a four-port beam splitter. In
order to obtain the complete scattering matrix of a Wilkinson divider given
by Eq. (3.34), a fourth port D must be considered. Since such a port is always
terminated in a resistive element, we refer to it as internal port of the divider.
The other three ports A, B, and C are defined as in Fig. 3.1.

which are valid for any generic power divider, including Cohn’s design.
In the case of a basic Wilkinson power divider, these equations become

vB = − 1

2
√
2
un −

1

4
vn , (3.30a)

vC = − 1

2
√
2
un +

1

4
vn . (3.30b)

By means of the general representation of a quantum-mechanical resistor given
by Eqs. (3.14) and (3.15), it is straightforward to quantize Eqs. (3.30a) and (3.30b).

First, we assume single-mode signals with angular frequency ω = ω0 = 2πf0.
Since Eq. (3.15) is defined per-root-hertz, the single-mode assumption is the most
suitable approach for the quantization of Eqs. (3.30a) and (3.30b). In the usual
scenario of thermal white Gaussian noise, the necessary extension to the multi-
mode case can easily be performed at any point of the calculation by multiplying
voltages or currents times

√
BW and powers times BW.

Second, we note that the secondary noise source does not represent a standard
resistive load. In fact, in the case of a basic Wilkinson power divider the internal
resistance r = Req = 2Z0 is two times as large as the resistance of a standard
load, e.g., the primary noise source. This has the fundamental consequence that the
vacuum voltage of the secondary noise source is

√
2 larger than that of the primary

source,

V̄
′
n0 ≡

√
2�Reqω =

√
2�(2Z0)ω =

√
2 V̄n0 = 2

√
2 V̄0 . (3.31)

Third, using the expressions of Eqs. (3.14) and (3.31) for the vacuum voltage of
a standard (Z0) and nonstandard (2Z0) resistor, respectively, we can promote the
noise voltage of the primary noise source, un, and secondary noise source, vn, to the
corresponding quantum-mechanical operators as

un → Ûn = V̄n0 (â
† + â)

= 2 V̄0 (â
† + â) = 2 V̂A , (3.32a)

vn → V̂n = V̄
′
n0 (d̂

† + d̂)

= 2
√
2 V̄0 (d̂

† + d̂) = 2
√
2 V̂D , (3.32b)
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where V̂A ≡ V̄0 (â
† + â) and V̂D ≡ V̄0 (d̂

† + d̂) represent the quantum voltages
incident at the input port A and at a newly defined port D (cf. Fig. 3.6) of the
power divider, respectively, and â†, â, d̂†, and d̂ are usual bosonic creation and
annihilation operators. Since port D is always terminated into resistance Req, we
refer to such a port as the internal port of the divider.

Fourth, we promote vB and vC to their corresponding quantum-mechanical op-
erators by substituting Eqs. (3.32a) and (3.32b) into Eqs. (3.30a) and (3.30b),

vB → V̂B = − 1

2
√
2
2 V̂A − 1

4
2
√
2 V̂D

= − 1√
2
V̂A − 1√

2
V̂D , (3.33a)

vC → V̂C = − 1

2
√
2
2 V̂A +

1

4
2
√
2 V̂D

= − 1√
2
V̂A +

1√
2
V̂D . (3.33b)

The knowledge of the input-output relations of Eqs. (3.33a) and (3.33b) allows

us to extend the reduced three-port scattering matrix S̃WPD of Eq. (3.7) to the
complete four-port scattering matrix

SWPD = − 1√
2

⎡⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

⎤⎥⎥⎦ . (3.34)

In order to obtain this matrix, the inverse relations for the voltages at the input

ports A and D as a function of the voltages at the output ports B and C, obtained
by inverting Eqs. (3.33a) and (3.33b), have been used. It can easily be shown that,
differently from the matrix of Eq. (3.7), the complete scattering matrix of Eq. (3.34)
is unitary, S∗

WPDSWPD = I4, where I4 is the 4× 4 identity matrix.
It is worth mentioning that the scattering matrix of Eq. (3.34) is equally appli-

cable to both quantum voltages V̂A, V̂D, V̂B ≡ V̄0 (b̂
† + b̂), and V̂C ≡ V̄0 (ĉ

† + ĉ) and

currents ÎA ≡ jĪ0 (â
†− â), ÎD ≡ jĪ0 (d̂

†− d̂), ÎB ≡ jĪ0 (b̂
†− b̂), and ÎC ≡ jĪ0 (ĉ

†− ĉ).

Here, b̂†, b̂, ĉ†, and ĉ are the bosonic creation and annihilation operators for the
output ports B and C, respectively.

As already mentioned, in the experiments to be shown in the next chapter we do
not use a basic Wilkinson power divider. We use, instead, the more complex Cohn-
type power divider, where the noise properties of the resistive network at the divider
output ports [292] can be hard to analyze with simple circuit theory. However, for
the self-consistency of the complete four-port scattering matrix of any divider, a
matrix analogous to that of Eq. (3.34) is expected also for the Cohn design. In
addition, we would like to stress that the choice of naming the input ports as A and
D was dictated by our historical introduction of the Wilkinson power divider, where
only three ports are defined: port A as the input and ports B and C as the outputs.
In the case of the hybrid ring, to be discussed next, the input ports are defined as
A and C and the output ports as B and D.
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Before concluding our analysis of the basic Wilkinson power divider, we want to
show the relevance of the unitary character of the scattering matrix of Eq. (3.34).

Let us assume that the reduced matrix of Eq. (3.7) were the complete matrix
representing a Wilkinson divider, even in the quantum-mechanical regime. In that
case, the quantum voltages at the divider output ports would read

V̂B = − 1√
2
V̂A , (3.35a)

V̂C = − 1√
2
V̂A . (3.35b)

The first test is to check whether the quantum-mechanical power at the input
port of the divider is equal to the total power delivered to the output ports. This
can readily be confirmed assuming the divider to be prepared in the vacuum state
|0〉. In this case, using the relations of Eqs. (3.35a) and (3.35b), we find

〈0|V̂ 2
A |0〉
Z0

=
〈0|V̂ 2

B |0〉
Z0

+
〈0|V̂ 2

C |0〉
Z0

=
V̄ 2
0

Z0

. (3.36)

In addition to power conservation, the quantum voltages and currents at the
input and output ports of the divider must obey the fundamental commutation
relations [V̂A, ÎA] = [V̂B, ÎB] = [V̂C, ÎC] and [V̂B, ÎC] = [ÎB, V̂C] = 0. However, if
we use the relations of Eqs. (3.35a) and (3.35b), we find the inconsistent results
[V̂B, ÎB] = [V̂C, ÎC] = j �ω/2 �= [V̂A, ÎA] = j �ω and [V̂B, ÎC] = [ÎB, V̂C] = j �ω/2 �= 0.

Such a fundamental inconsistency suggests that, in the quantum regime, the
input-output relations given by Eqs. (3.35a) and (3.35b), and, thus, the reduced
scattering matrix of Eq. (3.7), are necessarily incomplete. It can readily be verified,
instead, that making use of the relations of Eqs. (3.33a) and (3.33b) allows us to
obtain the consistent results [V̂A, ÎA] = [V̂D, ÎD] = j �ω = [V̂B, ÎB] = [V̂C, ÎC] =
[V̂A, ÎA]/2 + [V̂D, ÎD]/2 = j �ω and [V̂B, ÎC] = [ÎB, V̂C] = 0, as required by basic
quantum-electrodynamics [303].

Finally, we notice that the quantum voltages of Eqs. (3.33a) and (3.33b) represent
the noise voltages at the input of the detection chain of Fig. 3.10. To establish a
general notation, we will rename such quantum voltages as V̂B → V̂1 and V̂C → V̂2,
as shown in the bottom part of Fig. 3.10. We will make extensive use of Eqs. (3.33a)
and (3.33b) in chapter 4 in order to explain our experimental results.

3.1.2 The 180◦ Hybrid Ring

The 180◦ hybrid ring is a four-port splitter belonging to the class of four-port junc-
tions referred to as directional couplers.

Since any given directional coupler is made of four ports (N = 4), it is completely
characterized by a scattering matrix of the fourth order, Sdir = [Spq] with p, q =
A,B,C, and D [cf. Fig. 3.7(a)]. For a directional coupler to be well-defined eight of
the Spq elements have to be independent (i.e., 2 × N ) [290]. Directional couplers
are reciprocal junctions.
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Figure 3.7: Sketch of a generic four-port junction also referred to as direc-
tional coupler. (a) A wave incident at port A is reflected by ports B and D
(solid arrows). Similarly, a wave incident at port B is reflected by ports A
and C (broken arrows). Ports A and C are isolated as well as ports B and D.
(b) Sketch used to prove Theorem 3.1.2. In order to prove the theorem, the
waves indicated by broken arrows in (a) have to be reversed in time and the
two waves incident at port A must be made to cancel each other by destructive
interference.

Definition A directional coupler is defined as a four-port junction such that, with
all lines terminated in their characteristic impedances, ports A and B are matched
and there is no coupling between A and C and B and D. Figure 3.7(a) is a diagram-
matic representation of a directional coupler.

A wave incident at port A is reflected (leaves) by ports B and D. A wave incident
at port B is reflected (leaves) by ports C and A. There are several theorems valid
for directional couplers.

Theorem 3.1.2 All four ports of a directional coupler are matched.

Proof The waves indicated by broken arrows in Figure 3.7(b) can be reversed in
time and combined with the waves indicated by solid arrows. If the amplitudes
and phases of the two waves relative to each other are properly adjusted, the two
waves incident at port A can be made to cancel each other (destructive interference).
Consequently, we are only left with a wave incident at port C and reflected at ports
B and D. Hence, a wave incident on the junction at port C is transmitted to ports
B and D without any reflection and port C is matched. Similarly, port D is also
matched. This, together with the definition of directional coupler, implies that all
directional couplers are completely matched. Q.D.E.

The high level of symmetry characteristic of a directional coupler is at the basis
of Theorem 3.1.2. In contrast, we remind that the matching properties for three-
port junctions are much poorer: It is impossible for any T-junction to have all three
ports matched.
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Another theorem of importance applicable to directional couplers is the following:

Theorem 3.1.3 Any given four-port junction such that two noncoupling ports are
matched is a directional coupler.

We leave the proof to the reader as an exercise.16

The scattering matrix of a generic directional coupler is of the form

Sdir =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 SAB 0 SAD

SBA 0 SBC 0

0 SCB 0 SCD

SDA 0 SDC 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.37)

The vanishing diagonal elements show that the junction is completely matched. The
remainder of the zero elements indicate that ports A and C as well as ports B and D
are decoupled from each other. We are left with eight elements, which, in principle
are necessary for representing a four-port junction. However, such elements are not
entirely independent due to the reciprocity and unitary of Sdir,

Spq = Sqp ∀p, q , (3.38a)

|SAB|2 + |SAD|2 = 1 (3.38b)

and

S∗
BASBC + S∗

DASDC = 0 , (3.39a)

S∗
ABSAD + S∗

CBSCD = 0 . (3.39b)

From these conditions it follows that

|SAB| = |SCD| , (3.40a)

|SAD| = |SBC| , (3.40b)

which mean that the coupling from port A to port B is equal to that from port C
to port D and, similarly, the coupling from port A to port D is equal to that from
port B to port C.

By properly choosing the location of the reference planes, it is also possible to
eliminate the arbitrariness in the phases of the various scattering elements. For
example, the location of the terminal plane at port B can be chosen in such a way
that SAB is real and positive, the location of the plane at port D such that SAD

is positive imaginary, and the location of the plane at port C such that SCD is
positive real. From Eqs. (3.40a) and (3.40b) it follows that SAB = SCD = α ∈ R

+.
From Eqs. (3.38a), (3.39a), and (3.39b) it follows that αSBC + S∗

DAα = 0 and, if
α �= 0, SBC = SDA = jβ with β ∈ R

+. In addition, from Eq. (3.38b) it follows that
α2 + β2 = 1.

16The unmotivated reader can also find the proof in Ref. [290] at the bottom of page 300.
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Under all these assumptions, the scattering matrix of Eq. (3.37) reduces to

Sdir =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α 0 jβ

α 0 jβ 0

0 jβ 0 α

jβ 0 jβ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.41)

which is regarded as the standard form for the scattering matrix of a directional
coupler.

Before proceeding with our study, it is worth stating one more fundamental
theorem for directional couplers (cf. Ref. [290] for the proof).

Theorem 3.1.4 Any completely matched four-port junction is a directional coupler.

We now turn our attention to a subclass of directional couplers designed, at
least in some specified bandwidth, for 3 dB coupling. Directional couplers with 3 dB
coupling are also referred to as hybrid junctions and are widely used in microwave
technology and telecommunication networks [227]. It is needless to mention that
there are innumerous configurations for hybrid junctions. For the sake of an example,
we here focus only on the so-called “rat-race” hybrid ring. Figure 3.8 gives justice
to such a name. The figure schematically represents a microstrip 180◦ junction. To
gain insight into the operating principles of the device, consider a wave incident at
port A. This wave splits equally into two waves travelling around the ring circuit
in opposite directions. The two waves arrive in phase at ports B and D and out of
phase at port C. As a consequence, ports A and C are decoupled. In a similar way,
ports B and D are decoupled because the two paths connecting these ports differ
in length by λ/2. In brief, the rat-race hybrid ring is based on interference effects
between the various waves travelling around the ring.

A quantitative analysis of the rat-race hybrid ring can be found in Ref. [227].
Here, we limit ourselves to summarize the main steps of such a derivation, with the
hope to be of some guidance to the reader interested in the rigorous proof. First, we
assume each input transmission line to have a characteristic impedance Z0 and the
central ring a characteristic impedance Z1. The electrical length of the ring between
ports A and B, B and C, and C and D is defined as θ1. Thus, the electrical length
between ports A and D is θ2 = 3θ1. We then split up the circuit into two subcircuits,
which are symmetric with respect to the plane a−a (cf. Fig. 3.8). We can thus study
only one-half of the structure in terms of scattering matrices for a simpler two-port
junction, the junction associated with ports A and B. By symmetry arguments we
can extend those results and construct the entire four-port scattering matrix of the
hybrid. Invoking the superposition principle, we can find solutions when plane a−a
is open circuited [solutions indicated as (I)] and when plane a− a is short circuited
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Figure 3.8: A microstrip 180◦ hybrid ring (rat-race). Port C is terminated
into the resistive impedance ZL, which is maintained at temperature Tu. Sim-
ilar to the case of the Wilkinson power divider, this impedance constitutes
the primary noise source and is associated with the noise voltage un. The
temperature Tu is controlled by means of a heater and monitored with a ther-
mometer. Port A is terminated into another resistive impedance ZL, which
is maintained at temperature Tv. This impedance constitutes the secondary
noise source and is associated with the noise voltage vn. The output signals
are obtained at ports B and D. Due to the properties of the hybrid junction
(cf. main text), at port B (Σ) the sum of the input signals at ports A and
B is obtained, while at port D (Δ) the difference of the input signals is ob-
tained. The signals at ports B and D are then fed into channels 1 and 2 of
the detection chain, respectively (cf. bottom part of Fig. 3.10). Cf. also the
right part of Fig. 3.16 for more details. We stress that, as shown in the right
part of Fig. 3.16, in reality port A is connected to the series of two attenuators
(symbolized by the grey resistor on the left of port A). These attenuators are
then connected to a coaxial cable, which can be used to send probing signals
to the splitter. In all experiments discussed in this thesis, such probing sig-
nals were never applied and, thus, the two attenuators can be regarded as a
50Ω impedance load to ground. In fact, we remind that microwave coaxial
attenuators are characterized by a resistive path to ground.
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[solutions indicated as (II)]. Hence, we obtain⎡⎢⎣ V −
A

V −
B

⎤⎥⎦ =
1

2

⎡⎢⎣ S(I)
AA + S

(II)
AA S

(I)
AB + S

(II)
AB

S
(I)
BA + S

(II)
BA S

(I)
BB + S

(II)
BB

⎤⎥⎦
⎡⎢⎣ V +

A

V +
B

⎤⎥⎦ , (3.42a)

⎡⎢⎣ V −
D

V −
C

⎤⎥⎦ =
1

2

⎡⎢⎣ S(I)
AA − S

(II)
AA S

(I)
AB − S

(II)
AB

S
(I)
BA − S

(II)
BA S

(I)
BB − S

(II)
BB

⎤⎥⎦
⎡⎢⎣ V +

A

V +
B

⎤⎥⎦ , (3.42b)

where V +
A and V +

B are incident waves at ports A and B, respectively, and V −
A ,

V −
B , V −

D , and V −
C are reflected waves at ports A, B, D, and C, respectively. From

Eqs. (3.42a) and (3.42b) we can then identify the eight four-port parameters neces-
sary to characterize the hybrid junction,

SAA =
1

2

(
S
(I)
AA + S

(II)
AA

)
SAB =

1

2

(
S
(I)
AB + S

(II)
AB

)
SBA =

1

2

(
S
(I)
BA + S

(II)
BA

)
SBB =

1

2

(
S
(I)
BB + S

(II)
BB

)
SCA =

1

2

(
S
(I)
BA − S

(II)
BA

)
SCB =

1

2

(
S
(I)
BB − S

(II)
BB

)
SDA =

1

2

(
S
(I)
AA − S

(II)
AA

)
SDB =

1

2

(
S
(I)
AB − S

(II)
AB

)
.

From symmetry arguments, we find SDD = SAA, SCC = SBB, and SCD = SBA and,
from reciprocity, we find all the five remaining elements. Simple circuit consid-
erations and some algebra (cf. Ref. [227]) finally allows us to obtain the physical
relations

S
(I)
AA =

1

ΔHR

[
Y 2
0 − Y 2

1 + �1�2 − Y1 (�1 + �2) cot θ1 + jY0 (�2 − �1)
]
, (3.43a)

S
(I)
AB = S

(I)
BA = − 2jY0Y1 csc θ1

ΔHR

, (3.43b)

S
(I)
BB = S

(I)
AA − 2jY0 (�2 − �1)

ΔHR

, (3.43c)

where

ΔHR = Y 2
0 − �1�2 + Y1 (�1 + �2) cot θ1 + Y 2

1

+ jY0 (�1 + �2 − 2Y1 cot θ1) , (3.44)

�1 = Y1 tan(3θ1/2), �2 = Y1 tan(θ1/2), Y0 = 1/Z0, and Y1 = 1/Z1. The short-
circuit two-port scattering matrix parameters are obtained by replacing �1 by �3 =
−Y1 cot(3θ1/2) and �2 by �4 = −Y1 cot(θ1/2). From the above set of equations it is
possible to construct the entire 4×4 scattering matrix of the hybrid ring. We remind
that the electrical length θ1 is related to the normalized frequency f/f0 as f/f0 =
2θ1/π, where f0 is the center frequency of operation of the device. Consequently,
the center frequency is obtained for θ1 = π/2.
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Figure 3.9: Scattering parameters for the 180◦ hybrid ring (rat race) manu-
factured by MITEQ-Estonia. (a) Light green (light grey) line: coupling pa-
rameter between ports A and B, SAB, with ports C and D terminated. Dark
blue (dark grey) line: coupling parameter between ports A and D, SAD, with
ports B and C terminated. The black and red lines are theoretical calculations
for the scattering parameters SAB and SAD, respectively, obtained from the
model of Eqs. (3.42a)-(3.44). (b) Light green (light grey) line: isolation pa-
rameter between ports C and A, SCA, with ports B and D terminated. Dark
blue (dark grey) line: coupling parameter between ports C and B, SCB, with
ports A and D terminated. The black and red lines are theoretical calculations
for SCA and SCB, respectively, obtained from the model of Eqs. (3.42a)-(3.44).
The hybrid center frequency is at approximately 5.85GHz.

Figure 3.9 shows the measurement of a set of relevant scattering matrix param-
eters Spq for the commercial rat-race hybrid ring used in some of our experiments.
The device was developed by T. Neemela at MITEQ-Estonia under the direct su-
pervision of the author. The input lines and internal ring are microstrip lines made
of 15μm thick copper covered with a film of gold and patterned over an alumina
substrate. The substrate is glued to a Kovar17 package. Kovar allows for a better
thermal compatibility between package and substrate, which otherwise is likely to
break after a few thermal cycles at very low temperatures. The measurements were
performed using a vector network analyzer (VNA). The sample was fixed inside
the vacuum chamber of a testing dipstick equipped with microwave cables.18 The
dipstick was then cooled to about 4.2K in liquid helium and the sample thermal-
ized by means of exchange helium gas. All cables were accurately calibrated out.
The frequency range was chosen to extend from 1 to 11GHz. Since it is possible
to measure only the transmission between two ports at the time (at least with our
VNA), all ports not under test have to be terminated into matched loads. Thus, for
the measurement of each scattering parameter shown in Fig. 3.9 it was necessary to
make a new cool down. When using a dipstick, the measurement of the reflection

17Kovar is a trademark of Carpenter Technology Corporation and is a nickel-cobalt ferrous alloy.
18The dipstick has been designed and realized by the author.
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parameters is more complex than simple transmission measurements because of the
difficulty in calibrating out the long input cables. For this reason we were not able to
measure the reflection coefficients of our hybrid ring at low temperatures. However,
we measured them at room temperature (data not shown). These measurements
show reflection parameters with amplitudes on the order of approximately −20 dB
or better for all four ports of the hybrid, indicating excellent matching conditions.

The light green (light grey) line in Figure 3.9(a) corresponds to the measured
coupling parameter between ports A and B, SAB, with ports C and D terminated.
The dark blue (dark grey) line corresponds to the measured coupling parameter
between ports A and D, SAD, with ports B and C terminated. The black and
red lines are theoretical calculations for the scattering parameters SAB and SAD,
respectively, obtained from the model given by Eqs. (3.42a)-(3.44).

The light green (light grey) line in Figure 3.9(b) corresponds to the measured
isolation parameter between ports C and A, SCA, with ports B and D terminated.
The dark blue (dark grey) line corresponds to the measured coupling parameter
between ports C and B, SCB, with ports A and D terminated. Again, the black and
red lines are theoretical calculations for SCA and SCB, respectively, obtained from
the model developed above. Remarkably, all measured coupling parameters are very
close to −3 dB in the vicinity of the hybrid center frequency, which was designed to
be f0 = 5.85GHz. Close to f0 the isolation parameters SCA is higher than 50 dB,
indicating superb isolation conditions.

Right at the center frequency f0 (or, equivalently, for θ1 = π/2), the scattering
matrix of the hybrid ring becomes

Sdir = − j
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.45)

which is the standard form for the scattering matrix of a 3 dB 180◦ rat-race hybrid
ring. In this case, Z1 =

√
2Z0 in order for all ports to be matched [227]. As for the

case of the scattering matrix of the Wilkinson power divider, we will multiply all
the elements of the matrix of Eq. (3.45) by a global phase −j. This will allow us to
work with Hermitian operators when quantizing the hybrid ring.

In the experiments to be presented in chapter 4, the hybrid ring is screwed to
a tempered-silver plate (cf. right part of Fig. 3.16), in a similar manner as for the
power divider. Port C is terminated into a load impedance Z0 acting as the primary
noise source of the experiment. The temperature of the termination is controlled
and measured by means of a resistive heater and a thermometer, respectively. Port
A is connected to a cascade of two 20 dB Aeroflex attenuators in series to an input
line used in some experiments to feed in signals into the hybrid ring. In the experi-
ments discussed in this thesis, however, the input line was not used. Nevertheless,
the presence of the attenuators creates a resistive path to ground with resistance
equivalent to Z0. Such resistive path acts as a secondary noise source in a similar
fashion as for the power divider.

Let un and vn be the noise voltages of the primary (port C) and secondary (port
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A) noise sources. Assuming all ports of the hybrid ring to be matched and using the
Thévenin model of a noisy resistor, the noise voltages at the output ports B and D
can easily be found keeping in mind that the incident voltages v+A and v+C are given
by the voltage divisions

v+A =
1

2
vn , (3.46a)

v+C =
1

2
un . (3.46b)

From the standard scattering matrix of Eq. (3.45), opportunely multiplied by a
global phase −j, we obtain the reflected voltages at ports B and D as

v−B = − 1√
2

(
v+A + v+C

)
, (3.47a)

v−D =
1√
2

(
v+A − v+C

)
. (3.47b)

Finally, from Eqs. (3.46a) and (3.46b) it follows that

v−B = vB = − 1

2
√
2
(vn + un) , (3.48a)

v−D = vD =
1

2
√
2
(vn − un) . (3.48b)

Following a path similar to that used to obtain the quantum-mechanical rela-
tions of Eqs. (3.33a) and (3.33b), we can promote vB and vD to their corresponding
quantum-mechanical operators obtaining

vB → V̂B = − 1

2
√
2
V̄n0 (â

† + â)− 1

2
√
2
V̄n0(ĉ

† + ĉ)

= − 1√
2
V̂A − 1√

2
V̂C , (3.49a)

vD → V̂D =
1

2
√
2
V̄n0 (â

† + â)− 1

2
√
2
V̄n0 (ĉ

† + ĉ)

=
1√
2
V̂A − 1√

2
V̂C , (3.49b)

where â†, â, ĉ†, and ĉ are bosonic creation and annihilation operators for the input
ports A and C of the ring, respectively, and b̂†, b̂, d̂†, and d̂ for the output ports B
and D. The voltages of Eqs. (3.49a) and (3.49b) are the signals at the input of the
detection chain implemented in our experiments (cf. next section). For simplicity,
we will rename them as V̂B → V̂1 and V̂D → V̂2 (cf. Fig. 3.10).

3.2 The Detection Chain

We now take the perspective of the noise voltages at the output ports B and C of
the Wilkinson power divider or at the output ports B and D of the 180◦ hybrid ring

125



3.2. THE DETECTION CHAIN
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Figure 3.10: The entire setup for cross-correlation homodyne detection. The two chan-
nels of the detection chain are indicated as 1 and 2 and are connected directly to the
output ports of the microwave beam splitters [ports B and C for the Wilkinson power
divider (cf. Fig. 3.1) and ports B and D for the 180◦ hybrid ring (cf. Fig. 3.8)]. Bottom
part. Solid red arrow: noise due to circulator on channel 1; broken red arrow: circulator
noise reflected by the splitter into channel 1. Solid magenta arrow: noise due to circulator
on channel 2; broken magenta arrow: circulator noise transmitted via the splitter from
channel 1 to channel 2. (cf. main text). All relevant temperature stages of the detection
chain are indicated together with the characteristic parameters of all devices.
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and follow them along our detection chain. Since we have to deal with two output
voltages originating from the splitters, the detection chain has to be composed by
two channels (cf. Fig. 3.10). As indicated in Figs. 3.1(a) and 3.8, the output ports
of the power divider and hybrid are both renamed as ports 1 and 2 in order to
use a homogeneous notation along the detection chain. As indicated at the bottom
of Fig. 3.10, these two ports constitute the starting point of each channel of the
detection chain.

3.2.1 The Cryogenic Circulators

The first stage in each channel of the detection chain is represented by a cryogenic
circulator (cf. Fig. 3.10 and bottom part of Fig. 3.17). As indicated by the circular
arrows inside the circulator symbol in Fig. 3.10, the characteristic property of a
circulator is that a wave incident at port A is coupled into port B only and a wave
incident at port B into port C only: The circulator is manifestly an example of a
nonreciprocal network. This property is obtained by adding a ferrite material to
a T-junction, which otherwise has similar properties as the ideal three-port power
divider studied in the beginning of Sec. 3.1.1. For any circulator, the following
theorem can be proven [304]:

Theorem 3.2.1 Any lossless, matched, nonreciprocal T-junction is a perfect three-
port circulator.

Proof As always, the proof follows from the basic properties of the scattering ma-
trix. A perfectly matched T-junction has a scattering matrix of the form

Scirc =

⎡⎢⎢⎢⎢⎢⎣
0 SAB SAC

SBA 0 SBC

SCA SCB 0

⎤⎥⎥⎥⎥⎥⎦ . (3.50)

In the case of a nonreciprocal junction the scattering matrix is no longer symmetrical
with respect to the leading diagonal, i.e., Spq �= Sqp. Nevertheless, if the junction is
lossless the scattering matrix must still be unitary and Eq. (3.1) holds. The unitary
condition requires that

S∗
ABSAB + S∗

ACSAC = 1 , (3.51a)

S∗
BASBA + S∗

BCSBC = 1 , (3.51b)

S∗
CASCA + S∗

CBSCB = 1 (3.51c)

and that
S∗
ACSBC = S∗

ABSCB = S∗
BASCA = 0 . (3.52)

If SBA �= 0, from Eq. (3.52) it follows that SCA = 0. From Eq. (3.51c), it follows
that |SCB| = 1. Thus, from Eq. (3.52) it follows that SAB = 0, from Eq. (3.51a) that
|SAC| = 1, and from Eq. (3.52) again that SBC = 0. Equation (3.51b) then implies
that |SBA| = 1 and

|SBA| = |SCB| = |SAC| = 1 , (3.53a)

SAB = SBC = SCA = 0 . (3.53b)
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Table 3.2: PAMTECH cryogenic circulator model CTH1392KS2: nominal
specifications [305]. Cf. Table 3.1 for the definition of insertion loss, isolation,
and VSWR.

frequency range insertion loss isolation input VSWR temperature range
(GHz) (dB, Typ.) [dB, Min. (Typ.)] (Typ.) (K)

4− 8 0.4 18 (20) 1.22 : 1 0.01− 77

The above parameters obviously fulfill the requirements for a perfect circulator.
Q.D.E.

If we choose properly all terminal planes at ports A, B, and C such that SBA =
SCB = SAC = 1 (zero phases), the resulting circulator scattering matrix is given by

Scirc =

⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦ , (3.54)

which is regarded as the standard form for the scattering matrix of a circulator.
Real circluators are realized by placing an axially magnetized ferrite post in the

center of a waveguide or stripline symmetrical junction (a special type of T-junction
also called Y-junction) [227]. Suitable tuning elements are placed at the three ports
in order to achieve best matching. The circulators used in our experiments were
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Figure 3.11: Relevant scattering parameters for the PAMTECH cryogenic
circulators measured between 3.5 and 8.5GHz. (a) Circulator of channel 1.
Black line: coupling parameter SAB. Magenta (middle grey) line: isolation
parameter SBA. (b) As in (a) for the circulator of channel 2.
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manufactured by Passive Microwave Technology Inc. (PAMTECH). We refer to Ta-
ble 3.2 for the nominal specifications. As shown in Fig. 3.10 and in the bottom
part of Fig. 3.17, port C of the circulators is terminated into a load impedance
ZLc(= Z0), which is then heat sunk to the still stage of our dilution refrigerator.
The still temperature is nominally held at T � 500mK. Owing to such low oper-
ation temperature, the circulators have to meet special requirements and must be
designed for cryogenic applications. In addition, due to the magnetized ferrite mate-
rial they must be enclosed inside tick cryoperm shields (cf. bottom part of Fig. 3.17).
These shields protect our experiment from DC magnetic fields. For the experiments
discussed in this thesis, the presence of DC magnetic fields in the proximity of the
noise sources does not constitute a major issue and, in principle, the bulky shields
could have been avoided. However, for future experiments based on flux qubits
the shields will become important in order to suppress possible disturbance to the
quasi-static operation of the qubit. Figures 3.11(a) and 3.11(b) show the measured
scattering parameters SAB (coupling, black lines) and SBA [isolation, magenta (mid-
dle grey) lines] for the circulators of channel 1 and 2, respectively, employed in our
experiments. Notably, the circulators are characterized by a fairly broad bandwidth
extending from approximately 3.5 to 7.5GHz around the center frequency, which
was designed to be at f0 = 5.85GHz (our measurements are close to the specified
nominal values reported in Table 3.2). Being the coupling parameter never worse
than approximately −1 dB, the intrinsic losses of the circulators are very small and,
for all practical purposes, do not limit the device performance. The measurements
were made at room temperature with a VNA. Calibration was performed.

As indicated in Fig. 3.10, the temperature TLc of the terminations ZLc at port
C of each circulator varies between approximately 450 and 500mK during the ex-
periment. This phenomenon is due to the heating of the primary noise source at
the splitter input, which is thermalized at the mixing chamber of the dilution refrig-
erator. Varying the temperature of the mixing chamber results in a temperature-
dependent heat flow between the mixing chamber and still stage of the refrigerator.
While heating the mixing chamber to 350mK (cf. first temperature stage at the
very bottom of Fig. 3.10), the still temperature decreases to approximately 450mK.
When letting cool the mixing chamber to base temperature, the still temperature
stabilizes back to the nominal value of 500mK. We refer to Appendix A for more
details on the dependence of the still temperature as a function of the mixing cham-
ber (primary noise source) temperature. As we will show in Appendix A, the still
(circulators) temperature drop is measurable, but does not substantially affect our
experimental results. Moreover, since the still temperature is monitored at all times,
we can accurately account for the effect of the circulators when retrieving the data.

Nevertheless, it is important to understand the exact role played by the circula-
tors in terms of noise added to the signals to be measured. We remind that the two
quantum voltages at the output of the Wilkinson power divider or 180◦ hybrid ring
are defined as V̂1 and V̂2, respectively. To keep a general notation, we refer to such
voltages as V̂k, where k = {1, 2} indicates one of the two channels of the detection
chain. The quantum voltage V̂k constitutes the input voltage of one of the cryogenic
circulators. Due to its finite temperature, according to Eq. (3.12a) the circulator
inevitably generates a quantum noise voltage

Êck = V̄0(ζ̂
†
k + ζ̂k) , (3.55)
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where ζ̂†k and ζ̂k are bosonic creation and annihilation operators. Consequently,
at the circulator output we must add an effective noise contribution to the input
voltage V̂k, obtaining

V̂ck = V̂k + δckÊck . (3.56)

In Eq. (3.56), the coefficient δck represents an attenuation constant which accounts
for the effective contribution of the circulator noise. The meaning of the coefficient
δck can be understood following the path of the quantum noise voltage generated
by the termination ZLc at port C of the circulator through the detection chain
(red/magenta solid/broken arrows in the bottom part of Fig. 3.10). Let us focus
on the case of a Wilkinson power divider. The noise generated in port C, e.g., of
the circulator on channel 1 is directed to the output port B of the Wilkinson power
divider [solid red arrow in Fig. 3.10; cf. also Fig. 3.1(a) for the port notation used
for the divider]. Part of the noise signal is absorbed by the divider and part is
reflected back towards port A of the circulator (broken red arrow in Fig. 3.10). The
amount of reflected signal can be estimated from the output VSWR of the divider
given in Table 3.1. An output VSWR of 1.5 : 1 corresponds to approximately 20%
reflection [306]. The portion of signal absorbed by the Wilkinson power divider is
partially transmitted to port C of the divider. This is due to the finite isolation
between ports B and C. Looking up Table 3.1 again, we find that the nominal
isolation between ports B and C is typically 16 dB. This means that approximately
16% of the absorbed signal is transmitted to port C. Since the power divider is
a symmetric device, a similar noise contribution originating from the circulator on
channel 2 (solid magenta arrow in Fig. 3.10) is transmitted from port C to port B
of the divider (broken magenta arrow in Fig. 3.10). Hence, the effective quantum
noise voltage added by one circulator is given by the sum of the reflected noise on
one channel and the noise transmitted from the other channel (sum of broken red
and magenta arrows in Fig. 3.10). In first approximation, this amounts to 36%
of the total noise of Eq. (3.55) which is generated by one circulator. Thus, in the
experiments we have to assume a coefficient δck � 0.36. Similar arguments apply to
the case of the 180◦ hybrid ring, where the coefficient δck � 0.06 because of smaller
output reflections (typically −25 dB) and better isolation between the output ports
(typically −50 dB).

3.2.2 The RF HEMT Cryogenic Amplifiers

The second stage of the detection chain is represented by a pair of RF HEMT cryo-
genic amplifiers, one for each channel (cf. Fig. 3.10 and center-top part of Fig. 3.17).

The cryogenic amplifiers are the first active device in the detection chain and,
thus, their performance is critical for the success of the experiment. In fact, it is
because of these amplifiers that we are able to measure the ultra-small quantum
signals generated within the coldest region of the cryostat. In contrast to the case of
the passive devices analyzed so far in this chapter (beam splitters and circulators),
obtaining a detailed quantum model for the process of amplification is a very hard
task. Instead of delving into the details of the basic constituents of a cryogenic
amplifier, we prefer to attack the problem of amplification from the perspective
of quantum network theory. Following the general quantization rules introduced
in chapter 2, we start with the classical network modeling an amplifier and then
promote it to its corresponding quantum network. Given an input signal, the prop-
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erties of such a quantum network allow us to find a) the signal at the output of
the amplifier and b) the amount of noise added by the amplifier to the signal. In
particular, assuming that the amplifier noise owns its origin to the internal resistive
channels of the amplifier, we are able to quantify the minimum noise which must be
added by the amplifier to the input signal at zero operating temperature (case of
ideal amplifier). This result is a special case of the fundamental theorem for linear
phase-preserving amplifiers derived in Ref. [307].

Classification of Quantum-Mechanical Amplifiers

Before describing the classical network model of an amplifier and its quantum ver-
sion, it is worth summarizing the basic classification and nomenclature for quantum
amplifiers. To achieve this task, we follow the seminal work by C. M. Caves [307].

Definition An amplifier is a device that takes an input signal and produces an
output signal by allowing the input signal to interact with the internal degrees of
freedom of the amplifier.

The input and output signals are assumed to be quantized coordinates of the
collective motion of an Avogadro number of electrons. Such motion produces charges
and magnetic fluxes which can be represented directly as bosonic modes [188].

The internal degrees of freedom of the amplifier can be bosonic or fermionic
modes or a complex admixture of them.

An amplifier can be thought as a collection of interacting modes: The external
modes associated with the input and output signals and the internal modes associ-
ated with the amplifier internal degrees of freedom, each of them characterized by
an angular frequency ωp, with p ∈ R. Hereafter, we only consider one single mode
with frequency ω0 (single-mode signal assumption).19 The single-mode assumption
reflects reality if both the input modes and amplifier modes are narrow-band sig-
nals. In this case, the input and output signals are nearly sinusoidal oscillations
with bandwidth BW = Δf = f2 − f1 = Δω/2π, where Δω = ω2 − ω1 � ω0 is
a narrow angular frequency span centered around ω0 = 2πf0. Information about
the signals is carried by slow variations of the signal complex amplitude on a time
scale τ ≈ 1/Δf , i.e., by phase or amplitude modulations. We describe the input
modes with single-mode bosonic annihilation and creation operators â and â† and
the output modes with ˆ̃a and ˆ̃a†, respectively. The usual commutation relations
for single-mode bosonic operators hold, [â, â†] = [ˆ̃a, ˆ̃a†] = 1. In general, the output
modes are function of the input modes as

ˆ̃a = T (â, â†) , (3.57a)

ˆ̃a† = T †(â, â†) , (3.57b)

where T is the amplifier transfer function. Equations (3.57a) and (3.57b) must
satisfy appropriate commutation and anticommutation relations (cf. Ref. [307]). In
addition, the operating state of the amplifier must be specified in order to have
a complete picture of the amplification process. The amplifier operating state is
assumed to be independent of the input modes. Formally, this corresponds to assume

19If necessary, the generalization to multi-mode signals can readily be carried out at any step of
the derivation of the amplifier model [307].
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that the initial density matrix of the entire system is the product of the density
matrix associated with the input modes and the density matrix associated with the
operating state of the amplifier,

ρ̂tot = ρ̂in ⊗ ρ̂op . (3.58)

We now specialize Eqs. (3.57a) and (3.57b) to the relevant case of linear ampli-
fiers.

Definition A linear amplifier is an amplifier that relates the input and output
modes through purely linear relations. The signal information is carried by the
complex amplitude of the input and output modes (and not by the number of quanta,
i.e., energy or intensity of the signals).

As a consequence, we can simplify Eq. (3.57a) as

ˆ̃a = L̂â + M̂â† + ξ̂ . (3.59)

A similar results is found when linearizing Eq. (3.57b).

The operator ξ̂ accounts for the additive noise of the amplifier. This noise is
independent of the input signal level and is solely due to the amplifier internal
modes (resistive channels). Typically,

〈ξ̂〉op = 0 , (3.60)

where the subscript “op” indicates that the mean value is computed for the amplifier
prepared in the operating state. A similar result as in Eq. (3.60) also holds for the
Hermitian noise operator ξ̂†, i.e., 〈ξ̂†〉op = 0.

The operators L̂ and M̂ are clearly related to the amplifier gain. In particular,
neglecting any gain fluctuation we can define the amplifier gain as

L ≡ 〈L̂〉op , (3.61a)

M ≡ 〈M̂〉op . (3.61b)

Substituting Eqs. (3.61a) and (3.61b) into Eq. (3.59), we finally obtain the standard
input-output relation for a linear amplifier,

ˆ̃a = Lâ +Mâ† + ξ̂ . (3.62)

All our ignorance about the internal modes of the amplifier in the operating state
is hidden in the operator ξ̂ and in the constants L and M .

In order to make a suitable classification of linear amplifiers, it is crucial to revise
the notion of phase-insensitive noise.

Definition A state whose noise is randomly distributed in phase space is said to be
phase-insensitive. More formally, a state with phase-insensitive noise is such that

〈â2〉 − 〈â〉2 = 0 . (3.63)
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The reader should be aware that 〈â2〉 is not the variance of a signal, it is only a part
of it. However, it is an important part. For example, for a squeezed state this part of
the variance defines the variance phase-dependence, which also means that squeezed
states are not phase-insensitive states [91]! Coherent states and thermal-equilibrium
states are instead phase-insensitive [cf. Ref. [307], p. 1822, right after Eq. (3.13)]. In
particular, for a thermal-equilibrium state (hereafter referred to simply as thermal
state) it can be shown that [307],

〈â2〉 = 〈â〉2 = 0 , (3.64)

which embodies the twofold property of a thermal state: phase-insensitive and with
vanishing mean value (i.e., 〈â〉 = 〈â†〉 = 0). We will use the fundamental condition
of Eq. (3.64) in chapter 4. To appreciate the relevance of Eq. (3.64) it is worth men-
tioning that many authors believe that, when computing the variance of a thermal
state, the terms â2 [and (â†)2] are cancelled because of a RWA. They think the filter
used in the experiments acts as a physical RWA, which erases the phase information
carried by the signal. In the light of the condition expressed by Eq. (3.64) it is now
clear that this is not the case and the reason why for a thermal state such terms
vanish is because of the phase-insensitive property. Of course, if instead of the vari-
ance of the signal it is its power to be measured, then the RWA argument holds.
Variance measurements and power measurements are inherently different even if the
units typically used are the same in both cases (W). These two types of measure-
ment give the same result iff the state being monitored is phase-insensitive! It is
unfortunate that many do not appreciate the beauty of this statement.20 We will
come back to variance measurements in the next chapter.

All linear amplifiers can be reduced to two fundamental classes. The class of
phase-preserving amplifiers and the class of phase-sensitive amplifiers. In the lit-
erature, phase-preserving amplifiers are oftentimes defined as phase-insensitive am-
plifiers [307]. Then, among phase-insensitive amplifiers the subclasses of phase-
preserving and phase-conjugating amplifiers are defined. Since it is hardly conceiv-
able to realize a phase-conjugating amplifier (and rather useless), we prefer to call all
phase-insensitive amplifiers as phase-preserving (indeed, in contemporary literature
this is most common notation; e.g., cf. Ref. [309]).

Definition A linear amplifier is said to be phase-preserving when, given an input
signal with phase-insensitive noise, the output in both terms of signal and noise
shows no phase preference. A phase shift of the input signal corresponds to an
equivalent phase shift of the output. This can be formalized in the two following
conditions:

1. The expression for 〈ˆ̃a〉 is invariant under arbitrary phase transformations of
the input signal of the kind

â → ˆ̄a = â e−jϕ ; (3.65)

20The author admits that it took a while for himself to understand such subtle, but nevertheless
crucial differences. The reader can try to solve the following exercise. Calculate the variance of a
squeezed state and compare it to the power measured by means of a square-law detector. Hint:
Check Ref. [308] for a definition of classical square law detector and extend it to the quantum
case by means of our procedure for the quantization of a classical network. Then compute the
mathematical variance of the quantum signal. Check Ref. [91] for a simple definition of squeezed
state.

133



3.2. THE DETECTION CHAIN

2. If the input signal has phase-insensitive noise, the output signal also has phase-
insensitive noise,

〈â2〉 = 〈â〉2 ⇒ 〈ˆ̃a2〉 = 〈ˆ̃a〉2 . (3.66)

The first condition means that a phase shift of the input signal produces the same
phase shift of the output signal (phase-preservation).21 The second condition means
that the amplifier adds noise which is randomly distributed in phase space [cf. the
definition of Eq. (3.63)].

Definition A linear amplifier that fails to meet both conditions 1. and 2. is defined
as phase-sensitive amplifier.

We can now work out the constraints due to the conditions for a linear phase-
preserving amplifier. Condition 1. implies that

M = 0 (3.67)

and condition 2. that

〈ξ̂2〉op = 0 . (3.68)

Equation (3.68) also holds for the Hermitian noise operator ξ̂†, i.e., 〈(ξ̂†)2〉op = 0.
We remind that Eqs. (3.67) and (3.68) are constraints for both the standard input-
output relation of Eq. (3.62) and the amplifier operating state.22 From Eq. (3.67)
it follows that the power gain for a phase-preserving amplifier is given by G = g2,
where g = L is called the signal gain.

Quantum Network Theory of Amplification

In hand now are all necessary tools to study the amplification process from the point
of view of quantum network theory. We assume linear phase-preserving amplifiers,
which are the ones used in our experiments. Figure 3.12(a) shows the network
model associated with one such amplifier. It is sufficient to define the amplifier
signal noise and gain in order to obtain a minimal model consistent with quantum
mechanics [307]. The amplifier is represented as a two-port network comprising both
noise and gain, a so-called noisy two-port network. The input signal is assumed to
be either V̂c1 or V̂c2, i.e., one of the output signals of the Wilkinson power divider
[cf. Eqs. (3.33a) and (3.33b)] or hybrid ring [cf. Eqs. (3.49a) and (3.49b)] with the
addition of the temperature-dependent noise introduced by the cryogenic circulators.
As already pointed out in Subsec. 3.2.1, the circulators have no other practical
effect on the signals at the output of the splitters than adding this (tiny) noise
[cf. Eqs. (3.56)]. As always, in the figure and calculations we refer to the generic
quantum voltage V̂ck, with k = {1, 2}.

In analyzing the noise produced at the output of a linear two-port network due
to the internal noise sources, we can replace all such sources by a series noise voltage
generator,

Ênk = V̄0(ξ̂
†
k + ξ̂k) , (3.69)

21We recall that 〈ξ̂〉op = 0, cf. Eq. (3.60).
22It can happen that a phase-sensitive amplifier, prepared in some initial operating state, can

then be prepared in a new state which makes it phase-preserving.

134



CHAPTER 3. CORRELATION HOMODYNE DETECTION AT MICROWAVE
FREQUENCIES:
EXPERIMENTAL SETUP

Figure 3.12: Circuit models for the quantum network theory of amplification.

(a) Noisy two-port network with input voltage source, V̂ck, and output load

impedance, ZLk. (b) Equivalent input noise voltage source, Ênk, and noise

current source, Înk, for the noisy two-port network of (a). Applying the su-
perposition principle to the circuit model of (b) allows us to obtain the output
voltage on the load impedance, V̂Lk (cf. main text for the full derivation).

and a shunt noise current generator,

Înk = Ī0 j(ξ̂
†
k − ξ̂k) , (3.70)

at the input, as shown in Fig. 3.12(b). In Eqs. (3.69) and (3.70), ξ̂†k and ξ̂k are
the bosonic creation and annihilation operators associated with the noise for the
cryogenic amplifier of the first or second amplification chain, V̄0 =

√
�Z0ω0/2 is

calculated at the center angular frequency ω0, and Ī0 = V̄0/Z0. Two equivalent noise
sources are required at the input because if the input is short-circuited, the source Înk
does not produce any output noise. However, the noisy two-port network does have
a noise output under short circuit conditions at the input, hence the need for Ênk

to be included in the network. Similar arguments hold for the case of open circuit
conditions at the input with the role of Înk and Ênk interchanged [227]. If Γk is the
reflection coefficient of the two-port network, it is custom to define the impedance
mismatch mk ≡ 1 − |Γk|2. In real amplifiers the impedance mismatch can be of
relevance and can have important consequences in the quantitative derivation of the
model. For simplicity, we hereafter assume mk = 1 (perfect matching conditions)
and remind the interested reader to Ref. [227] for a complete analysis of the noise
properties of classical amplifiers including impedance mismatch.

The output signal including noise on the load impedance ZLk (cf. Fig. 3.12) can be
obtained invoking the superposition principle for linear networks. This corresponds
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to consider one source (voltage or current) at the time and switch off all other sources
by substituting them with short circuits (for voltage sources) or open circuits (for
current sources). First, we replace Ênk with a short circuit (SC) and Înk with an
open circuit (OC),

Ênk → SC , (3.71a)

Înk → OC . (3.71b)

In this way, the input contribution to the output voltage on the load impedance ZLk

is only given by the quantum signal V̂ck,

V̂
(I)
Lk = gkV̂ck , (3.72)

where gk is the signal gain for either one of the two cryogenic amplifiers. Second,
we replace V̂ck with a short circuit and Înk with an open,

V̂ck → SC , (3.73a)

Înk → OC . (3.73b)

In this way, the input contribution to the output voltage on ZLk is only given by
the quantum noise voltage Ênk of the amplifier,

V̂
(II)
Lk = gkÊnk . (3.74)

Third, we replace both Ênk and V̂ck with short circuits,

Ênk → SC , (3.75a)

V̂ck → SC . (3.75b)

In this special case, the input of the amplifier is under short circuit conditions and,
thus, the input voltage is zero. As a consequence, the output voltage on ZLk after
amplification is also zero,

V̂
(III)
Lk = 0 . (3.76)

Superimposing the solutions of Eqs. (3.72), (3.74), and (3.76) finally allows us to
obtain the total voltage on the load impedance ZLk,

V̂Lk = V̂
(I)
Lk + V̂

(II)
Lk + V̂

(III)
Lk

= gk(V̂ck + Ênk) . (3.77)

Throughout the rest of this thesis, we prefer to use Eq. (3.77) rather than Eq. (3.62)
as the basic input-output relation for a linear phase-preserving amplifier.

It is now an easy exercise to calculate the generic variance of the output signal
given by Eq. (3.77) normalized over the load impedance Z0 for the amplifier in a
given operating state. Using Eq. (3.77) and defining the power gain for either one
of the two cryogenic amplifiers as GCHk ≡ g2k (cf. Fig. 3.10), the normalized variance
is given by

1

Z0

(ΔV̂Lk)
2 ≡ 1

Z0

(
〈V̂ 2

Lk〉op − 〈V̂Lk〉2op
)

=
GCHk

Z0

[
〈V̂ 2

ck〉op + 2〈V̂ck〉op〈Ênk〉op + 〈Ê2
nk〉op

− 〈V̂ck〉2op − 2〈V̂ck〉op 〈Ênk〉op − 〈Ênk〉2op
]
. (3.78)
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It has been possible to obtain Eq. (3.78) by assuming signals V̂ck and Ênk to be
completely uncorrelated (this is a good assumption since they are generated by
independent sources, i.e., the two amplifiers). Only in this case we are allowed
to write 2〈V̂ckÊnk〉op = 2〈V̂ck〉op 〈Ênk〉op. In addition, because of the definition of

Eq. (3.69) and the condition of Eq. (3.60), 〈Ênk〉2op = 〈(ξ̂†k + ξ̂k)〉2op = 0. Using again

the definition of Eq. (3.69) and defining the variance of signal V̂ck as (ΔV̂ck)
2 ≡

〈V̂ 2
ck〉op − 〈V̂ck〉2op we then obtain

1

Z0

(ΔV̂Lk)
2 = GCHk

[
(ΔV̂ck)

2

Z0

+
V̄ 2
0

Z0

〈(ξ̂†k)2 + ξ̂†kξ̂k + ξ̂kξ̂
†
k + (ξ̂k)

2〉op

]

= GCHk

[
(ΔV̂ck)

2

Z0

+ �ω0〈ξ̂†kξ̂k〉op +
�ω0

2

]
, (3.79)

where we have used the phase-insensitive noise condition of Eq. (3.68) and the
commutation relation for the noise bosonic operators, [ξ̂k, ξ̂

†
k] = 1.

The equivalent noise temperature of the amplifier is defined as

TCHk ≡
1

kB

(
�ω0〈ξ̂†kξ̂k〉op +

�ω0

2

)
. (3.80)

Together with the power gain, the noise temperature is the commonly used figure
of merit to characterize the quality of an amplifier. From Eq. (3.80) it is evident
that the noise temperature is defined for one single internal mode of the amplifier
with frequency ω0. That is, it represents the equivalent amount of noise (expressed
in number of quanta) added by the amplifier to a single-mode input signal. If we
are interested in the noise power added by the amplifier for a bandwidth Δf , this
is simply given by

PCHk = kBTCHkΔf . (3.81)

Given that the amplifier noise is generated by its internal resistive channels, we
can assume that 〈ξ̂†kξ̂k〉op follows a Bose-Einstein distribution,

〈ξ̂†kξ̂k〉op =
1

e�ω0/kBTopk − 1
, (3.82)

where Topk is the amplifier operating temperature.23 This assumption is not valid
in general. In fact, the noise of an amplifier can be more complex than the simple
white Gaussian noise associated with a resistor in thermal equilibrium at a given
temperature. However, since we are interested in the amplifier behavior for a narrow
frequency bandwidth around the center frequency f0 and, in our experiments, we
do not access higher moments than the second central moment (the variance), for
our purposes Eq. (3.82) can be considered to be a good model.

Equations (3.80) and (3.82) have important consequences on the limiting per-
formance of the amplifier. If the amplifier were prepared in an operating state close

23Equation (3.82) holds only for a narrow-bandwidth amplifier.
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to zero absolute temperature, T → 0+, its noise temperature would approach the
minimum possible value allowed by quantum mechanics,

TCHk →
�ω0

2
= Tmin

CHk . (3.83)

This is due to the fact that the Bose-Einstein distribution of Eq. (3.82) vanishes
at very low temperatures. Equation (3.83) represents one form of the fundamental
theorem for phase-preserving linear amplifiers [307], which states that one such am-
plifier must add a minimum noise equivalent to the vacuum fluctuations associated
with its mode of operation. A more formal statement of this theorem can be found
in Ref. [307].

It is worth mentioning that the network model of an amplifier developed so far
is oversimplified. For example, the value for the internal resistance (Rek) associated
with the amplifier noise voltage and of the internal conductance (Gik) associated with
the amplifier noise current do not explicitly appear in Eqs. (3.79) and (3.80). The
simple model behind these equations seems to imply that the noise properties of the
amplifier only depend on the amplifier operating temperature Topk. In particular, in
the limit of high temperature, Topk � �ω0/2kB, Eq. (3.82) becomes asymptotically
close to kBTopk and the amplifier noise temperature saturates to temperature Topk,
TCHk ≈ Topk. This is only partially correct. In fact, in a more realistic model
(e.g., cf. Ref. [227]) the internal resistance and conductance of the amplifier enter in
the form of dimensionless quantities renormalized over the resistance of the input
source. This means that the design of a low noise amplifier can be optimized playing
with at least two parameters: the amplifier operating temperature and its internal
resistance (conductance).24 Nevertheless, the fundamental limit given by Eq. (3.83)
holds even if Rek → 0 (Gik → 0) and Topk → 0+ simultaneously.

We now turn our attention to a more technical analysis of the specifications
and characteristic parameters of the HEMT cryogenic amplifiers employed in our
experiments.

As indicated in Fig. 3.10, the cryogenic amplifiers are thermalized at a constant
operating temperature of approximately 4.2K inside the vacuum chamber of the
dilution refrigerator (cf. center-top part of Fig. 3.17). The operating temperature
can be assumed to be constant since it is set by the helium bath of the cryostat,
which acts as a large heat reservoir. At this temperature, the noise temperature for
both amplifiers is nominally TCH1 = TCH2 = 6 ± 1K.25 These nominal values were
measured at the Onsala Space Observatory and GARD group at Chalmers Univer-
sity of Technology, Gothenburg, Sweden,26 where the cryogenic amplifiers were also
manufactured. The amplifiers are based on two-stage high electron-mobility transis-
tors (HEMTs) [310, 311], which allow for the operation at low temperatures (where
regular semiconductor transistors do not work) and for very low noise performances.
The HEMTs used in our amplifiers are based on gallium-arsenide technology and
are engineered to dissipate power on the order of 15mW (nominal value). Low
power dissipation is a highly desirable property for cryogenic amplifiers to be used

24For this very reason it is possible to design room temperature amplifiers with noise tempera-
tures of less than 60K, which is much lower than room temperature (here assumed to be 290K).

25In chapter 4, we will show more accurate noise temperature measurements.
26The noise temperature measurements were actually performed at 12K, but nothing should

prevent us from assuming similar values at 4.2K, where the noise temperature should be even
lower.
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Figure 3.13: The RF HEMT cryogenic amplifiers. (a) Light green (light
grey) line: power gain for the cryogenic amplifier of channel 1, GCH1. Dark
blue (dark grey) line: power gain for the cryogenic amplifier of channel 2,
GCH2. (b) Power dependence of the gain for the two cryogenic amplifiers.
The light green (light grey) squares refer to the amplifier of channel 1 and
the dark blue (dark grey) squares to that of channel 2. The light green (light
grey) horizontal line indicates the 1 dB compression point for the amplifier of
channel 1 and the dark blue (dark grey) horizontal line the 1 dB compression
point for the amplifier of channel 2.

in dilution refrigerators. Even if at 4.2K the available cooling power is fairly large
(practically unlimited as long as one refills helium), it is not a wise idea to ther-
malize a device with very large power consumption in the vacuum chamber of a
dilution refrigerator, if for not better reason because of possible instabilities in the
refrigerator operation or heat leaks to nearby stages.

In our case, the two-stage transistors have to be biased with two drain voltages,
two gate voltages, and a ground reference for a total of five DC bias lines for each
amplifier (the expert reader may notice the CINCH connectors providing the DC bias
lines in the center-top part of Fig. 3.17). The optimal value used in the experiments
for the drain voltage of each stage of each amplifier is vd � 1.5V and for the drain
current id � 5mA. From these values we can also estimate the power consumption
for the two stages, Pdiss = 2vdid � 15mW, which is consistent with the nominal
value given by the manufacturer.

Figure 3.13(a) shows a measurement of the power gain for both cryogenic ampli-
fiers employed in our experiments at the optimal bias points. The gain is pretty flat
(∓ ∼ 3 dB) over a bandwidth extending from approximately 4 to 8GHz. At the fre-

quency of interest, f0 = 5.85GHz, we find the power gains G̃CH1 = 10GCH1/10 � 24 dB

and G̃CH2 = 10GCH2/10 � 25 dB. The measurement of the power gain of an amplifier
can easily be performed by means of a VNA, which allows us to measure the direct
transmission parameter S21 of the amplifiers. After an opportune network calibra-
tion, S21 corresponds to the desired amplifier power gain. Network calibration is a
nontrivial task at low temperatures. In order to obtain the curves of Fig. 3.13(a),
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we have to make a first cool down where the cryogenic amplifiers are replaced by a
through connector and the entire network response is measured and stored for cal-
ibration. Only then the amplifiers are placed back into the network instead of the
through connectors and, in a second cool down, the amplifier power gain is measured.
This cumbersome procedure allows us to clean the measurement from the unwanted
transmission response of all cables and other necessary microwave components. It is
important to mention that our original plan was to thermalize the cryogenic ampli-
fiers at the 1K-pot stage of the refrigerator aiming at slightly better amplifier noise
temperatures. The measurements of Fig. 3.13(a) are indeed performed under these
conditions. However, during those measurements we pretty soon figured out that
the available cooling power of the 1K-pot was insufficient to both thermalize the
amplifiers and properly operate the dilution refrigerator [312]. As a consequence,
the amplifiers were thermalized at 4.2K in all subsequent experiments.

Another important figure of merit of an amplifier is the so-called 1 dB compres-
sion point. The 1 dB compression point is determined by the power level at which
the amplifier power gain decreases by 1 dB with respect to the optimal value. Exper-
imentally, the 1 dB compression point can be obtained by monitoring the amplifier
gain as a function of the amplifier input power. For sufficiently low power levels the
gain is flat and maximum. When the power is increased above some threshold, the
amplifier starts being saturated. In other words, the elongation of the sinusoidal
excitation (proportional to the power) at the amplifier input around the DC biasing
point becomes large enough to excite a nonlinear response. Because of such response
the gain curve looses its flatness and the gain decreases. This is an example that all
assumptions on linear amplifiers are valid only for a very restricted range of param-
eters. Outside this range, the internal degrees of freedom of the amplifier are not
independent of the input signal level anymore and all our models fail. Figure 3.13(b)
shows a rough estimate of the 1 dB compression point for our cryogenic amplifiers at
f0 = 5.85GHz. Saturation happens at approximately −20 dB. Notably, this signal
is extremely large as compared to the signals we intend to measure (on the order
of −140 dBm or less!) and, thus, the cryogenic amplifiers will hardly be saturated
in the experiments. We remind to Ref. [312] for a more profound discussion on
amplifier compression and on the technical limitations of the measurements shown
in Fig. 3.13(b).

3.2.3 The Cold Feedthroughs

Before entering the third stage of the detection chain, the signals have to pass from
the vacuum chamber of the dilution refrigerator to the helium bath and, finally, to
the room temperature microwave equipment.

The interface between the high vacuum and 4He stage is implemented by means
of a pair of cold feedthroughs, as shown in the bottom part of Fig. 3.18. Such
devices represent a crucial link between the actual dilution stage of the refrigerator
and the external world and cost a great deal of work to the author to be designed
and developed. We can summarize the technical challenges behind the realization
of the cold feedthroughs saying that the feedthroughs have to be operated at 4.2K,
they must be highly hermetic to avoid any leak to the cryostat vacuum chamber,
they have to sustain high frequency signals up to 40GHz, and, last but not least,
they should not break after each cool down (i.e., they have to be robust with respect
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Figure 3.14: Transmission and reflection characteristics for the cold hermetic
microwave feedthroughs developed at the Walther-Meissner-Institut by the
author. (a) Measurement of the direct transmission parameter SBA from
50MHz to 40.05GHz. The tiny “gain” above approximately 30GHz is due to a
slight miscalibration of the VNA. (b)Measurement of the reflection parameter
SAA from 50MHz to 40.05GHz.

to heavy duty thermal cycling).
After a fairly large set of trial-and-error steps, the cold feedthroughs were suc-

cessfully implemented. The basic recipe for their manufacturing is as follows:

1. Design an OFHC-copper housing as sketched and shown in the bottom-right
part of Fig. 3.18. The housing serves to accommodate a so-called glass bead.
This is the key ingredient for the feedthrough to work. The beads used are
V100 glass support beads produced by the ANRITSU Company, Japan. The
beads are specified for a temperature range between 55 and 300◦C, but, as
it turns out, they work very well down to 4.2K. The bead sleeve and cen-
ter conductor are made of Kovar and are gold plated. The bead itself is
corning 7070 glass. The model V100 is used to mate with so-called V spark-
plug launcher male/female connectors (V102M/F) [313]. The V connector is a
Wiltron/ANRITSU Corporation connector, developed in 1989. This connector
uses a 1.85mm geometry and is mode-free up to 65GHz;

2. The glass bead is soldered inside the inner hole of the housing. This is the
critical step for the final product to be hermetic. The solder has to flow all
around the bead. The soldering has to be done on a hot plate with the aid
of extra soldering irons. A stainless-steel soldering fixture has to be mounted
into the top and bottom threads of the housing. These threads will then be
used for the actual sparkplug connectors. The fixture avoids solder to flow
into the threads eventually damaging them. A reasonable amount of Castolin
eutectic has to be used to perform proper hot soft soldering of the bead to the
housing;

3. After cooling and cleaning with acetone and isopropyl alcohol, two sparkplug
connectors are screwed into the top and bottom threads of the housing. The
threads have to be made using the ANRITSU drill and tap set, model 01 −
304 [313] (or equivalent tools), which allows one to make a flat surface at
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the bottom of the thread (instead of the standard conical shape, which would
prevent from a good galvanic electrical contact between the sparkplugs and
glass bead; cf. the bottom-right part of Fig. 3.18). Loctite 243 can be applied
to the sparkplug connector’s therads to improve the connector stability;

4. Finally, the sparkplug connector must be torqued by means of the appropriate
ANRITSU torquing kit model 01− 105A.

Once the feedthrough is manufactured, it has to be first tested for DC shorts
against ground. Then, the transmission and reflection parameters have to be mea-
sured. If the device works properly at room temperature, the cold testing begins.
In our case, the testing was performed using a dipstick equipped with microwave
cables. The feedthrough was placed on the top part of the vacuum chamber of the
dipstick with the input and output sparkplug connectors connected to two standard
stainless-steel UT085 coaxial cables. After cooling the dipstick in a large vessel
filled with liquid helium, the first basic check is against leaks between the vacuum
chamber of the dipstick and the helium bath. This is realized by means of a leak
detector set for 4He-mass detection, which allows for the continuous monitoring of
the feedthrough hermeticity while the feedthrough is cold. The typical leak rate
detected for all our feedthroughs was on the order of 5.0 × 10−8mbarL s−1 or bet-
ter. This procedure was repeated for at least ten times for each feedthrough. If
the feedthrough passed all 4.2K tests, it was then remeasured both in DC and high
frequency as a check. Figures 3.14(a) and 3.14(b) show a measurement of the direct
transmission parameter SBA (black line) and of the reflection parameter SAA [ma-
genta (middle grey) line] for a feedthrough after ten cooling cycles between room
temperature and 4K. The feedthrough performances are excellent from 50MHz to
40.05GHz (the upper limit of our VNA). We notice that the transmission parame-
ter SBA shows a tiny “gain” above approximately 30GHz. This is obviously a small
calibration artifact27 due to the very low value of the transmission being measured.
We have been using glass-bead feedthroughs in several stages of our dilution refrig-
erator for more than two years now and they have proven to be very reliable both
electrically and mechanically. The cryostat has been cooled several times (on the
order of 15), sometimes for more than 3−4 consecutive months, without ever having
a leak due to the feedthroughs.28

Room temperature feedthroughs can also be used. However, cold feedthroughs
have a double advantage allowing the use of the helium bath to cool microwave
devices (e.g., dissipative amplifiers which cannot be cooled in the cryostat vacuum
chamber) and precool all microwave cables more efficiently. In addition, the tech-
nology developed here can be used in different applications such as packaging of
microwave devices for low-temperature high-vacuum applications.

Before proceeding to the next stage of detection, it is noteworthy to mention that
in the vacuum chamber of the cryostat almost all coaxial cables are either UT085
or UT047 cables with niobium inner conductor and cupro-nickel outer conductor.
A few cables have a stainless-steel inner and outer conductor. The inner conductor
of the niobium cables becomes superconducting below a critical temperature of
approximately 9.3K. These special cables are used to minimize losses and heat

27The feedthroughs are passive devices.
28We have heard from other groups using 3.5mm feedthroughs that they suffer from feedthrough-

related leaks every 7− 8 cool downs [314].
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Figure 3.15: The RF multioctave band amplifiers - JS2. (a) Light green
(light grey) line: power gain for the JS2 amplifier of channel 1, GRH1. Dark
blue (dark grey) line: power gain for the JS2 amplifier of channel 2, GRH2.
(b) Power dependence of the gain for the two JS2 amplifiers. The light green
(light grey) data points refer to the amplifier of channel 1 and the dark blue
(dark grey) data points to that of channel 2. The light green (light grey)
horizontal line indicates the 1 dB compression point for the JS2 of channel 1
and the dark blue (dark grey) horizontal line the 1 dB compression point for
the JS2 of channel 2.

conduction between different stages of the cryostat and are particularly important
before the cryogenic amplifiers, where avoiding signal losses is critical.

3.2.4 The RF Multioctave Band Amplifiers

After the cold feedthroughs, the signals reach room temperature via a set of approx-
imately 1.2m-long UT085 cables. These cables were manufactured by KEYCOM
Characteristic Technologies and were specified for low temperature, less heat con-
duction, and less insertion loss applications [315]. The inner conductor is made of
silver plated beryllium copper (plate thickness of 2.5μm) and the outer conductor
of stainless-steel SUS304 with a copper clad of 5μm.29

The signals then reach the third stage of the detection chain, which comprises
a pair of RF multioctave band amplifiers (one per channel; cf. Figs. 3.10 and the
top part of Fig. 3.18). In the design of an amplification chain care must be taken
that the limiting amplifier in terms of added noise is the first amplifier of the chain.
As explained in Subsec. 3.2.2, a linear amplifier30 is completely characterized by

29Probably due to the copper clad, we had many problems with those cables related to thermal
cycling. Even if we accurately precooled the cables first in liquid nitrogen and then in liquid helium
for at least ten times before usage and we bent them in order to diminish stresses and dielectric
(teflon in this case) sliding, the inner conductor of the cables always moved considerably after each
cool down (on the order of 1mm). We recently became aware that KEYCOM has slightly changed
the production of such cables [315].

30Well before the 1 dB compression point.
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its power gain, noise temperature, and impedance mismatch. In our case, GCHk is
the power gain, TCHk the noise temperature, and mCHk the impedance mismatch
of either one of the two cryogenic amplifiers. Similarly, GRHk is the power gain,
TRHk the noise temperature, and mRHk the impedance mismatch of either one of the
two RF multioctave band amplifiers. Assuming perfect matching conditions for all
amplifiers, i.e., mCHk = mRHk = 1, it can be shown that the total noise (in terms
of noise temperature) added by the cascade of cryogenic and RF multioctave band
amplifiers at the mixers input (cf. Fig. 3.10) is given by Friis’ equation [227],

TMk = TCHk +
TRHk

GCHk

. (3.84)

According to Friis’ equation, the noise added by the next amplification stage is
diminished by the power gain of the previous stage. In other words, it is desirable
to design the amplification chain such that the first amplifier has high gain and
low noise temperature and the second amplifier low noise temperature. Under these
conditions, the noise contribution from the second amplifier may be neglected.

The RF multioctave band amplifiers used in our experiments are JS2 amplifiers
manufactured by MITEQ-USA. Figure 3.15(a) shows a measurement of the power
gain for both JS2 amplifiers. At the frequency of interest, f0 = 5.85GHz, we
find GRH1 � 24.6 dB and GRH2 � 26.7 dB. The nominal noise temperature for the
JS2 amplifiers is TRHk = 58.7K. Given these numbers, we can now estimate the
noise added by the JS2 amplifiers to the chains. By means of Eq. (3.84) we obtain
ΔTM1 ≡ TM1 − TCH1 � 0.23K for the first channel of the detection chain and
ΔTM2 ≡ TM2 − TCH2 � 0.19K for the second channel. Notably, ΔTM1 � ΔTM2 �
TCHk = 6 ± 1K. Hence, the noise added by the JS2 amplifiers is negligible and
the cryogenic amplifiers are the limiting amplifiers of the chain (at least until the
mixers).

Figure 3.15(b) shows the measurement of the 1 dB compression point for the JS2
amplifiers at f0 = 5.85GHz. Saturation happens at approximately −15 dB. This
signal is still fairly large compared to the signals at the output of the cryogenic
amplifiers (on the order of −115 dBm or less) and, thus, the JS2 amplifiers will
hardly be saturated in the experiments.

In summary, the only effect of the JS2 amplifiers on the quantum voltage at the
output of either one of the cryogenic amplifiers, V̂CHk, is to increase its amplitude
by the signal gain gRHk =

√
GRHk. At the output of either one of the JS2 amplifiers

the quantum voltage then become

V̂RHk = gRHkV̂CHk . (3.85)

3.2.5 The Mixers

After the JS2 amplifiers, the signals of Eq. (3.85) are filtered by means of a pair of
Mini-Circuits bandpass filters, VBFZ5500+. We remind that the signals we intend
to measure are generated by cold resistors and, thus, can be assumed to be white
Gaussian noise. The power associated with such signals is thus proportional to the
measurement bandwidth Δf = Δω/2π,

PRHk =
〈V̂ 2

RHk〉
Z0

Δf . (3.86)
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If the measurement bandwidth Δf is too large, the active devices following the
JS2 amplifiers in the detection chain (i.e., mixers and IF amplifiers; cf. Fig. 3.10)
can easily be saturated because of a too large input power. The bandpass filters,
selecting a narrow bandwidth Δf , are one possible remedy to this issue.

The filtered signals, which we keep on calling V̂RHk for simplicity, then reach the
fourth stage of the detection chain. This stage comprises a pair of mixers Mk (one
per channel; cf. Fig. 3.10). Mixers are three-port active microwave devices typically
based on a combination of Schottky barrier diodes [227, 308]. The three ports of a
mixer are referred to as radio frequency (RF), local oscillator (LO), and intermediate
frequency (IF) ports, respectively (cf. Fig. 3.10). The quantum voltage V̂RHk is fed
into one of the RF ports, while the corresponding LO port is fed with a reference
sinusoidal signal generated by a microwave source (cf. Fig. 3.10). The analysis of the
operation principle of a classical mixer is rather complex and we will not delve into
details here. We remind the reader to Refs. [227, 308] for a complete introduction
to the topic.

A poor man’s approach to mixing in the quantum regime can readily be carried
out knowing that the signal at the mixer output is proportional to the product of
the input signals (RF and LO). The proportionality factor is given by a function of
the amplitude of the RF signal and, in general, depends on the amplitude of the LO
signal. Under suitable conditions this function can be linerized, thus simplifying the
analysis substantially. We start assuming the RF and LO signals to be given by the
expressions

V̂ S
RF = V̄RF0(â

†
RF + âRF) , (3.87a)

V̂ S
LO = V̄LO0(â

†
LO + âLO) , (3.87b)

where â†RF, âRF, â
†
LO, and âLO are the bosonic creation and annihilation operators

in the Schrödinger picture for the RF and LO signals, respectively, and V̄RF0 ≡√
�Z0ωRF/2 and V̄LO0 ≡

√
�Z0ωLO/2 are the RF and LO vacuum voltages per-

root-hertz. The RF and LO signals are characterized by the angular frequencies
ωRF and ωLO, respectively, which, in general, are different. In order to gain insight
into the mixer operation, it is convenient to represent the RF and LO signals of
Eqs. (3.87a) and (3.87b) in the Heisenberg picture and, consequently, make explicit
the operator’s time dependence. We obtain

V̂ H
RF = V̄RF0(â

†
RFe

+jωRFt + âRFe
−jωRFt) , (3.88a)

V̂ H
LO = V̄LO0(â

†
LOe

+jωLOt + âLOe
−jωLOt) . (3.88b)

Omitting the indexes indicating the specific picture (S or H), the signal at the output
of an ideal mixer is given by

V̂IF = f(V̄RF0)[â
†
RFâ

†
LOe

+j(ωRF+ωLO)t

+ â†RFâLOe
+j(ωRF−ωLO)t + âRFâ

†
LOe

−j(ωRF−ωLO)t

+ âRFâLOe
−j(ωRF+ωLO)t] . (3.89)

Under the realistic assumption ωRF ≈ ωLO, which allows us to make a RWA approx-
imation, assuming a linear mixer response, f(V̄RF0) ≈ δ̃M (we do not work out the

145



3.2. THE DETECTION CHAIN

explicit dependence of δ̃M on the LO amplitude [227]), and defining the intermediate
frequency ωIF ≡ ωRF − ωLO we then obtain the IF signal

V̂IF ≈ δ̃MV̄RF0(â
†
RFâLOe

+jωIFt + âRFâ
†
LOe

−jωIFt) , (3.90)

which is regarded as the standard quantum-mechanical input-output relation for a
mixer operated in the linear regime. This result constitutes also the central equation
of any microwave receiver. The definition of ωIF justifies the origin of the nomen-
clature chosen for the output port of a mixer. The IF signal is in fact characterized
by an angular frequency which is the difference between the angular frequencies
of the RF and LO signals. Since the RF and LO frequencies are usually similar
[cf. assumption before Eq. (3.90)], the intermediate angular frequency is usually
low, ωIF � min{ωRF, ωLO}. The mixer is said to down convert the input RF signal.
In particular, when

ωRF = ωLO ⇒ ωIF = 0 , (3.91)

the overall microwave receiver comprising circulators, all amplifiers, filters, phase-
shifter(s), and mixers (cf. Fig. 3.10) is referred to as homodyne detector (from ancient
Greek: homo=equal and dynamis=force). When

ωRF �= ωLO ⇒ ωIF �= 0 , (3.92)

the overall microwave receiver is referred to as heterodyne detector (from ancient
Greek: hetero=different and dynamis=force).

In the case of homodyne detection, since ωIF = 0 we can set

ωRF = ωLO = ω0 . (3.93)

This is a critical condition because it states that in a homodyne detector the fre-
quency of the signal to be measured is set by the reference frequency provided by
the LO signal. Hence, frequency is typically not a degree of freedom in experiments
based on mixing schemes. This will have dramatic consequences in the experiments
to be discussed in chapter 4. After Eq. (3.93), we can rewrite the vacuum voltage
associated with the RF signal simply as V̄RF0 = V̄0. The expression for the IF signal
(in the Heisenberg picture) reduces to31

V̂IF = δ̃MV̄0(â
†
RFâLO + âRFâ

†
LO) . (3.94)

The LO signal is usually a sinusoidal excitation generated by a microwave source,
as shown in Fig. 3.10. Quantum mechanically, such excitation is represented by a
coherent state [32, 91], |αLO〉, with complex amplitude

αLO = |αLO|ejϕLO , (3.95)

where the real amplitude |αLO| is a dimensionless quantity defined in units of the
vacuum voltage V̄0. The phase ϕLO can be adjusted by means of a phase shifter
(cf. Fig. 3.10). Depending on the specific experimental requirements, the LO phase
can either play a role as a tuning knob, in which case must be considered in the
calculations, or it is irrelevant, in which case can safely be set to zero. In the next

31Hereafter, we use “=” instead of “≈” for the expressions of all IF signals.
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chapter, we will show two distinguished experiments where both these scenarios
apply.

We are now in the position to calculate a partial mean value of the result of
Eq. (3.94) with respect to the LO operators only. Using the basic properties of the
coherent state,

âLO|αLO〉 = αLO|αLO〉 and 〈αLO|â†LO = 〈αLO|α∗
LO ,

the partial mean value is given by

V̂IF = δ̃MV̄0〈αLO|(â†RFâLO + âRFâ
†
LO)|αLO〉

= δ̃MV̄0(αLOâ
†
RF + α∗

LOâRF)

= δMV̄0(â
†
RFe

+jϕLO + âRFe
−jϕLO) , (3.96)

where δM ≡ δ̃M|αLO|.
Results similar to those obtained for homodyne detection can be found for hetero-

dyne detection, where the major difference is represented by the finite intermediate
frequency. In this case, the LO phase ϕLO loses its meaning due to continuous
rotation of the IF operators.32

It is an easy exercise to specialize the general result of Eq. (3.96) to our quantum
voltage, V̂RHk.

For the case of a Wilkinson power divider:

1. The voltage at the input of mixer M1 is given by

V̂RH1 = gRH1 gCH1V̄0

{[
− 1√

2
(â† + â)− 1√

2
(b̂† + b̂)

]

+ δc1(ζ̂
†
1 + ζ̂1) + (ξ̂†1 + ξ̂1)

}
. (3.97)

Thus, at the mixer output we obtain

V̂M1 = δM1 gRH1 gCH1V̄0

{[
− 1√

2
(â†e+jϕLO + âe−jϕLO)− 1√

2
(b̂†e+jϕLO + b̂e−jϕLO)

]

+ δc1(ζ̂
†
1e

+jϕLO + ζ̂1e
−jϕLO) + (ξ̂†1e

+jϕLO + ξ̂1e
−jϕLO)

}
; (3.98)

2. The voltage at the input of mixer M2 is given by

V̂RH2 = gRH2 gCH2V̄0

{[
− 1√

2
(â† + â) +

1√
2
(b̂† + b̂)

]

+ δc2(ζ̂
†
2 + ζ̂2) + (ξ̂†2 + ξ̂2)

}
. (3.99)

32If phase-sensitive heterodyne detection has to be performed, the technical remedy to the phase
arbitrariness is to trigger on the IF signal. In this case, the LO phase reacquires its meaning.
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Thus, at the mixer output we obtain

V̂M2 = δM2 gRH2 gCH2V̄0

{[
− 1√

2
(â†e+jϕLO + âe−jϕLO) +

1√
2
(b̂†e+jϕLO + b̂e−jϕLO)

]

+ δc2(ζ̂
†
2e

+jϕLO + ζ̂2e
−jϕLO) + (ξ̂†2e

+jϕLO + ξ̂2e
−jϕLO)

}
. (3.100)

For the case of a 180◦ hybrid ring:

1. The voltage at the input of mixer M1 is given by

V̂RH1 = gRH1 gCH1V̄0

{[
− 1√

2
(â† + â)− 1√

2
(b̂† + b̂)

]

+ δc1(ζ̂
†
1 + ζ̂1) + (ξ̂†1 + ξ̂1)

}
. (3.101)

Thus, at the mixer output we obtain

V̂M1 = δM1 gRH1 gCH1V̄0

{[
− 1√

2
(â†e+jϕLO + âe−jϕLO)− 1√

2
(b̂†e+jϕLO + b̂e−jϕLO)

]

+ δc1(ζ̂
†
1e

+jϕLO + ζ̂1e
−jϕLO) + (ξ̂†1e

+jϕLO + ξ̂1e
−jϕLO)

}
; (3.102)

2. The voltage at the input of mixer M2 is given by

V̂RH2 = gRH2 gCH2V̄0

{[
1√
2
(â† + â)− 1√

2
(b̂† + b̂)

]

+ δc2(ζ̂
†
2 + ζ̂2) + (ξ̂†2 + ξ̂2)

}
. (3.103)

Thus, at the mixer output we obtain

V̂M2 = δM2 gRH2 gCH2V̄0

{[
1√
2
(â†e+jϕLO + âe−jϕLO)− 1√

2
(b̂†e+jϕLO + b̂e−jϕLO)

]

+ δc2(ζ̂
†
2e

+jϕLO + ζ̂2e
−jϕLO) + (ξ̂†2e

+jϕLO + ξ̂2e
−jϕLO)

}
. (3.104)

The mixers used in our experiments were manufactured by Marki Microwave,
Inc., model M3 − 0312. The RF and LO ports of such mixers can accept signals
in a frequency range between 3 and 12GHz. The IF port can deliver signals in a
frequency range from DC to 4GHz. The typical conversion loss, LO-RF isolation,
and LO-IF isolation are 5.5, 34, and 25 dB, respectively. The 1 dB compression
point for the RF port is at +5 dBm and the two-tone third-order intercept point
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at +15 dBm. The latter qualifies the linearity of the mixer: Keeping the RF power
below +15 dBm avoids signal distortion. However, the condition on the mixer sat-
uration at the RF port is more stringent in this case. The LO port must be driven
with a power comprised between +7 and +10 dBm (low diode option, L). Such power
is required to saturate the mixer LO port and, thus, to operate the mixer in the
linear regime [227].

When performing homodyne measurements the IF signal is obviously a DC sig-
nal. However, for heterodyne measurements given the RF frequency fRF = ωRF/2π,
we always choose the LO frequency fLO = ωLO/2π such that the IF frequency
fIF = ωIF/2π = 10MHz. This choice is important when measuring coherent signals
because it is equal to the frequency of the signal used to phase lock the microwave
sources and data timing generator (e.g., cf. Ref. [312] for more details). When
measuring noise of some specified bandwidth BW = Δω/2π, one special angular
frequency, i.e., the center frequency f0 = ω0/2π, participate in a pure homodyne
measurement. All other frequencies comprised within the noise bandwidth partic-
ipate in heterodyne measurements. To simplify the calculations, we will usually
consider only the special noise component at angular frequency ω0. However, the
presence of all other noise components contributes to the final result. To conclude,
it is worth mentioning that, in our experiments, the effective noise bandwidth is
BWeff = 2BW = Δω/π due to the presence of the noise image frequencies. This
type of measurement is called double sideband (DSB) mixing [312, 316].

3.2.6 The IF FET Amplifiers and the Rest of the Detection
Chain

If necessary, the signals at the mixers’ output [cf. Eqs. (3.98), (3.100), (3.102), and
(3.104)] are fed into a pair of Aeroflex attenuators, Asat1 and Asat2 (cf. Fig. 3.10).
These attenuators are used to decrease the signal level (and thus its power) in order
not to saturate the following IF amplifiers. The value of the attenuators Asat1 and
Asat2 depends on the specific experiment and usually ranges between 0 and 30 dB.

The IF amplifiers are FET-based amplifiers manufactured by the NF Corp.,
Japan, model SA-421F5. The typical bandwidth of such amplifiers extends from
16Hz to 40MHz, the nominal power gain is GRLk = 46dB, and the nominal noise
temperature TRLk = 139K. The input impedance is 1MΩ, which is not an issue for
IF signals. For such low frequency signals, the input impedance of the amplifiers
need not be 50Ω-matched. The only effect of the IF amplifiers on the input quantum
voltage V̂Mk is thus to increase the signal level by the signal gain gRLk =

√
GRLk,

obtaining the output quantum voltage V̂RLk = gRLkV̂Mk.
After the IF amplifiers, the signals are filtered again this time by means of a

combination of Mini-Circuits low-pass filters, SLP−21.4+, and Aeroflex inner only
DC-blocks, 8535. The resulting bandwidth is then BWIFk � (7 kHz, 52MHz). To
keep the notation simple, the contribution of all attenuators, the attenuation due
to coaxial cables and connectors, and any mismatching effect due to filters and
DC-blocks is considered to be included in the overall gain of each channel of the
detection chain.

Before reaching an A/D converter, the signals can be further attenuated in order
to balance the two channels of the detection chain, which, in reality, are never
characterized by the same exact parameters. In the experiments to be discussed
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in chapter 4, the values of the balancing attenuators are fixed to Abal1 = 0dB and
Abal2 = 3dB.

An Acqiris A/D acquisition card with sampling rate fsampling = 420MS s−1 and
12-bit nominal resolution is finally used to obtain one realization sk of the quantum
voltage V̂RLk. Each realization is collected into a PC and the data postprocessed
as explained in chapter 4, Sec. 4.3. The acquisition card is triggered by means
of a triggering pulse generated by a Tektronix DTG 5334 data timing generator
(cf. Fig. 3.10). The triggering signals have a maximum peak-to-peak amplitude of
3.5Vpp and a rise/fall-time of approximately 340 ps. The pulses are 1μs long, which
is on the order of the experimental measurement time Δtm.

3.3 From the Experimental Setup to The Results

The natural continuation of the material treated in this chapter is represented by
the postprocessing stage of the experimental data acquired by means of the two-
channel detection chain. The data postprocessing is realized on a personal computer
(PC; cf. top part of Fig. 3.10), where the raw data are averaged in order to obtain
relevant statistical quantities such as the mean value and variance of the signals to
be measured.

The postprocessing stage is a key step in our experiments and, thus, deserves
to be treated in an independent chapter. The next chapter represents a thorough
analysis of the methods used to extract relevant information from our data and
contains the bulk of our experimental findings.
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2.5 cm 2.5 cm

Figure 3.16: Pictures of the two types of microwave beam splitter em-
ployed in our experiments. Left side: Wilkinson power divider mounted on a
tempered-silver plate. The spacer between the back side of the divider and the
plate is a gold-plated OFHC-copper plate of a few millimeters thickness. Right
side: 180◦ hybrid ring mounted directly on the tempered-silver plate. In both
sides, the scale is indicated for a better comparison between the dimensions
of the various devices.
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2 cm

Figure 3.17: Picture of cryogenic circulators and amplifiers. The circulators
are located on the bottom part. The tick cryoperm shields are visible. The
RF HEMT amplifiers are located just below the flange which separates the
cryostat vacuum chamber from the helium bath. The scale is indicated.
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topsidebottom

1.5 cm

0.7 cm

0.7 cm

Figure 3.18: The cold feedthroughs and room temperature microwave am-
plifiers. Bottom left: the cold feedthroughs mounted on a box immersed in
liquid helium during the experiments. Bottom right: cold feedthrough tech-
nical drawing. The glass bead (light blue) and the position where the indium
sealing is applied are indicated. The cavity channel used to apply the solder is
shown in yellow. The bottom, side, and top view of one feedthrough without
V sparkplug launcher connectors are shown. It is possible to see the glass bead
soldered inside the feedthrough. The side view also shows the cavity channel
used for soldering. Top: the JS2 amplifier of channel 1 of the detection chain.
The picture refers to a setup configuration slightly different from the one used
in the experiments described in this thesis. The AFS amplifiers were never
used to obtain the experimental results reported in this thesis. The scale is
indicated in all pictures for a better comparison.
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Chapter 4

Correlation Homodyne Detection
at Microwave Frequencies:
Experimental Results

The field of superconducting quantum circuits has recently witnessed a series of
rapid developments, which were almost unpredictable only a few years ago. The
most striking advances have been possible thanks to the accurate engineering of the
electromagnetic environment where superconducting qubits are embedded. The use
of on-chip resonant cavities as environment has made possible the first experimental
implementation of a cavity QED system [174, 180, 185] using microcircuits coupled
to microwave signals [139], which has given rise to the rich field of circuit QED.
Ever since, circuit QED has become the new standard in the community working
on superconducting qubits and has already pushed the envelope of experimental re-
search to a high level of complexity [101, 144]. On one hand, the biggest strength of
circuit QED compared to its cavity QED quantum-optical counterpart is offered by
the flexibility of engineering microwave devices: qubits, acting as “artificial atoms,”
and resonators, acting as on-chip cavities. The latter, in particular, are easy to
fabricate and can be coupled to the qubits very strongly. On the other hand, the
biggest weakness of circuit QED is represented by the measurement resources avail-
able for quantum signals at microwave frequencies, which are by far less advanced
than those available on an optical table. For instance, the standard microwave ho-
modyne detection employed in circuit QED experiments is very inefficient compared
to measurements performed with an optical photodetector. This fact has two im-
portant consequences: Both the high-fidelity single-shot readout of the qubit state
and the detection of a propagating microwave single photon cannot be realized in
circuit QED yet.1

The qubit readout and microwave photodetection issues are intimately intercon-
nected since they are both limited by the low efficiency of microwave amplifiers,
which are typically used as detectors in circuit QED experiments. Nonlinear mea-

1We notice that, in circuit QED as well as in quantum-optical cavity QED, either the state of
the qubit or the field emitted by the resonator can be used to infer information about the coupled
system. In this chapter, we focus on studying a set of relevant properties of the field only. We
remind that, though, there are particular circuit QED architectures where the qubit can directly be
read out with very high fidelity [151]. This can be used to perform full-state quantum tomography
of intracavity fields [153, 284]. Note added in Fall 2010: Very recently a significant improvement
on circuit QED readout has been realized [111].
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surements based on “bifurcation amplifiers”2 [110, 211–220] or mesoscopic shelv-
ing [221] are being used or proposed to overcome the readout issue. The direct de-
tection of propagating microwave photons at the level of a single quantum appears
to be a more challenging task. Two distinguished paths can be pursued to achieve
this goal. The first is to improve on the performances of linear microwave amplifiers.
These can either be phase-sensitive [194–201] or phase-preserving [203–206, 208, 209]
amplifiers. The advantage of phase-preserving amplifiers is the possibility to mea-
sure both signal quadrature operators, X̂ and Ŷ (i.e., both quantum voltage and
current), simultaneously, without a preferred direction in phase space (cf. chapter 2,
Subsec. 2.1.3 and Refs. [307, 309, 317] for a definition of quadrature operators).
The drawback is that this type of amplifier cannot beat the standard quantum limit
(cf. Refs. [307, 309, 317]). Phase-sensitive amplifiers can beat this limit at the ex-
pense that only one quadrature at the time can be measured [307, 309, 317]. The
second path is to develop true single photon detectors at microwave frequencies [222–
224].3 The development of ultra low-noise amplifiers and microwave single photon
detectors will enable the direct transfer to circuit QED of a large set of exquisite
techniques belonging to the realm of quantum optics. Among those, it is worth
mentioning balanced homodyne detection [91, 93] and Hanbury Brown and Twiss
(HBT) interferometry [91]. Even if we truly believe that these paths will have to be
followed to reach a deeper knowledge on circuit QED systems, we are convinced that
it is important to understand how much information can be obtained on microwave
quantum signals by using standard noisy amplifiers, as those described in chapter 3,
Subsec. 3.2.2.

In this chapter, we develop a cross-correlation homodyne detection scheme based
on a microwave beam splitter and two amplification channels with noisy amplifiers.
Our scheme resembles the setup employed in HBT correlation measurements [91]
and quantum-optical balanced homodyne detection [93]. In optics, the latter rep-
resents the most accurate method for the full-state tomography of a propagating
quantum field [94, 95, 320, 321]. This was the main reason behind our choice to set-
ting up a cross-correlation homodyne detector. However, our experimental findings
reveal that at microwave frequencies cross-correlation homodyne detection only al-
lows for a partial reconstruction of the state associated with a quantum signal. The
impossibility for a full-state tomography is due to the noise added by the microwave
amplifiers. Because of this noise, extensive ensemble averages are required in order
to reach a reasonable signal-to-noise ratio (SNR), which allows the measurement of
a subset of the statistical moments of ultra-weak quantum signals. In particular, our
results show that by means of cross-correlation homodyne detection it is possible to
measure with high fidelity only the first two central moments, i.e., the mean value
and variance, of a given quantum signal.4 It is well-known that the knowledge of
the mean value and variance of a quantum signal is a sufficient condition for the
full characterization of all Gaussian states [93]. This is a rich class of states which

2The author finds this definition inappropriate considering that the bifurcation readout is more
a threshold-latching mechanism rather than an amplification process.

3For microwave single photon detector we intend a photodetector at frequencies below 10GHz.
In fact, there already exist single photon detectors in the range of 500GHz [318, 319], which, for
us, is already in the THz regime.

4Theoretically, it is possible to measure higher moments, but the higher the moment, the more
extensive the ensemble average needed to resolve it. In other words, cross-correlation homodyne
detection is a rather inefficient method to obtain the full-counting statistics of a quantum signal.
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includes thermal/vacuum states, coherent states, and squeezed states. In this thesis,
we will mainly focus on the characterization of thermal/vacuum states.

If the high-fidelity measurement of the first two moments of a microwave quantum
signal were the only achievement reached by means of cross-correlation homodyne
detection, we could safely state that such scheme is not worth the efforts. In fact,
similar results can be obtained using the standard microwave homodyne detection
based on a single amplification chain (e.g., cf. [150, 193, 198]). However, the split-
ting of a quantum signal via microwave beam splitters allows us to explore a set
of phenomena which would otherwise be inaccessible. We will show that employ-
ing cross-correlation homodyne detection we have been able to a) fully characterize
the thermal/vacuum fluctuations at microwave frequencies for a wide range of fre-
quencies as compared to the experimental measurement bandwidth and b) confirm
experimentally the theoretical models for the microwave beam splitters described
in chapter 3, Sec. 3.1. The latter constitutes an unprecedented result, which paves
the way to the tomographic characterization of quantum devices [322] at microwave
frequencies.

In addition, it is worth pointing out that cross-correlation homodyne detection
can be used to realize HBT interferometry5 at microwave frequencies [92] and can
serve as an entanglement detector in two- or multi-resonator architectures (cf. chap-
ters 5 and 7 and Refs. [136, 137]).

The chapter is organized as follows. In Sec. 4.1, we revise the basic concepts
of thermal/vacuum states with special emphasis on the derivation of the Planck
distribution via Einstein’s A and B coefficients. In Sec. 4.2, we give an overview of
quantum signal theory and derive the expressions for the mean value and variance
of any given quantum signal. In general, the mean value and variance belong to the
larger set of the quantum parameters of a signal. In the rest of the section, we spe-
cialize such quantum parameters to the case of number states and thermal/vacuum
states. In Sec. 4.3, we link the abstract concepts of quantum-mechanical mean value
and variance to real statistical measurements based on a large set of realizations of
a quantum signal associated with a given state. Such statistical measurements rep-
resent an estimation of the theoretical quantum parameters. In particular, we study
the concepts of auto-correlation function, from which it is possible to obtain the
auto-covariance function and, thus, estimate the variance of a quantum signal. We
then generalize these results to the case of cross-correlation and cross-covariance
functions, which allow us to estimate the covariance of a quantum signal. We apply
experimentally all these concepts to the case of thermal/vacuum microwave states.
Within this framework, we develop a complete theoretical model which makes possi-
ble to extract valuable information on vacuum fluctuations at microwave frequencies
from the knowledge of the variance and covariance of the vacuum state. Finally, in
Sec. 4.4 we summarize our results and give a brief outlook on future applications of
cross-correlation homodyne detection.

The material discussed in this chapter is entirely unpublished.6 The main con-
tributions of the author are on the development of the theoretical idea at the basis

5The reader should be aware that all cross-correlation measurements presented in this thesis re-
fer to the correlation of the amplitude of two signals and not of their intensity. Intensity correlation
is an exquisite feature of HBT interferometry.

6Note added in Fall 2010: At the time of the final submission of this thesis, part of this chapter
was published in Physical Review Letters [162]. The technical calibration of the setup was also
independently published [323].
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of the experiments and of the model utilized to fit the data. Experiments and data
analysis were entirely performed by the author. The data were partially taken to-
gether with Edwin P. Menzel, while performing a simultaneous experiment based
on the same setup. With Edwin P. Menzel the author shared innumerous nights
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4.1 Introduction

The routine experiment in circuit QED is either based on the measurement of prop-
agating microwave classical signals, which encode information on a qubit-resonator
quantum system (e.g., cf. Ref. [139]), or on the low-frequency measurement of a
qubit, which encodes information on intra-resonator microwave quantum states (e.g.,
cf. Refs. [138, 141, 145, 151]). The measurement of propagating nonclassical signals
in the microwave range is only recently attracting the attention of the community.
Inspired by the pioneering work by B. Yurke and collaborators [188, 193, 324], the
use of Josephson tunnel junctions for the implementation of parametric amplifiers
is gaining increasing interest [194–201]. Parametric amplification naturally leads
to the possibility of squeezing microwave vacuum fluctuations [193, 198] as well as
enabling the phase-sensitive measurement of propagating microwave quantum sig-
nals [194–201]. The possibility of measuring propagating fields is also at the basis
of the work on the microstrip SQUID amplifier [203–206] and Josephson parametric
converter [208, 209], and of recent photon-detection proposals [222–224]. In addition,
the importance of studying such fields has been stressed by the seminal theoreti-
cal [325, 326] and experimental [92] works on the quantum statistics of GHz photons
emitted by conductors.

A common feature to all the experiments mentioned above is the necessity to
prepare the system under analysis in the vacuum state |0〉. The vacuum state is the
simplest quantum state available in nature and its properties play a fundamental
role in many aspects of the quantization of the radiation field [327]. Given its
importance, we decided to use the vacuum state as a benchmark test for our cross-
correlation homodyne detection scheme. In our experiments, the vacuum state is
generated by means of cold resistors. The quantum voltage associated with it is then
split via a microwave beam splitter, the output voltages of which propagate on two
different transmission lines. After being amplified by means of noisy amplifiers, one
realization of each quantum voltage is finally recorded by an acquisition card. Before
delving into the details of the measurement of microwave vacuum fluctuations, it is
worthwhile reviewing a few relevant examples involving the vacuum. This will help
us to better appreciate the importance of vacuum fluctuations in QED.

The first example to show the importance of the vacuum is certainly represented
by the concept of spontaneous emission. The theory on the absorption and emission
of radiation was developed by A. Einstein in its 1917 paper “Zur Quantentheorie
der Strahlung” [17]. This paper is cram full with gems of rare beauty, among which
the derivation of the so-called A and B coefficients. In summary, Einstein assumes
N1 and N2 numbers of two-level atoms with energy levels E1 (groundstate) and E2
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Figure 4.1: The Planck spectrum (also referred to as Planck distribution).
(a) Color-code plot (top view) of the Planck spectrum given by Eq. (4.13)
as a function of both temperature, T , and angular frequency, ω0. As it will
appear clear later in the chapter, the angular frequency is set by the angular
frequency of the LO signal applied to a microwave mixer, ω0 = ωLO. (b) Color-
code plot (3D view) of the Planck spectrum. In Subsec. 4.3.2, we will show a
set of experimental results corresponding to the theory plotted in the present
figure.

(excited state), respectively, with E2 > E1. Using a more contemporary jargon, we
would say N1 and N2 number of qubits. The rate at which N1 changes due to the
absorption of radiation, which causes an atom to make an upward transition from
the level E1 to the level E2, is assumed to be proportional to N1 and to the spectral
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density ρ(ω0) at the atom transition angular frequency ω0 ≡ (E2 − E1)/�,

d

dt
(N1)abs = − B12N1 ρ(ω0) , (4.1)

where B12 is the absorption rate constant. Einstein then proposes two kinds of emis-
sion processes by which the atom can decay from the excited state to the groundstate.
The first is spontaneous emission

d

dt
(N1)spont = A21N2 (4.2)

and the second is stimulated emission

d

dt
(N1)stim = B21N2 ρ(ω0) , (4.3)

where A21 and B21 are the associated rate constants. As it appears from Eq. (4.2),
spontaneous emission occurs in the absence of any radiation: The environment in
which the two-level atom is embedded is the vacuum. Imposing now the equilibrium
condition

d

dt
(N1)abs +

d

dt
(N1)spont +

d

dt
(N1)stim = 0 (4.4)

and since N1/N2 = exp(�ω0/kBT ) in thermal equilibrium, we obtain

ρ(ω0) =
A21/B21

(B12/B21)e
�ω0/kBT − 1

. (4.5)

At very high temperatures, ρ(ω0) becomes so large that spontaneous emission can be
considered negligible compared to stimulated emission. This means that B21 = B12

and Eq. (4.5) can be rewritten as

ρ(ω0) =
A21/B21

e�ω0/kBT − 1
. (4.6)

In the limit kBT � �ω0, this equation reduces to approximately (A21/B21)kBT/�ω0

and the classical Rayleigh-Jeans law is applicable. Invoking this law, we obtain

A21

B21

=
�ω3

0

π2c3
(4.7)

(c is the velocity of light in vacuum) and, finally,

ρ(ω0) =
�ω3

0/π
2c3

e�ω0/kBT − 1
, (4.8)

which represents the Planck spectrum for ρ(ω0). Einstein’s work has two major con-
sequences. First, it introduces the concept of stimulated emission, without which the
Wien distribution instead of the Planck distribution would have been found [327].
Second, it shows for the first time that atomic radiation is characterized by sponta-
neous emission. This is a nonclassical process, where there is nothing to tell us when
the atom undergoes a transition from the excited state to the groundstate [327].

We now try to give an argument on the relationship between vacuum and stimu-
lated emission based on the assumption that there is a vacuum electromagnetic field
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characterized by a spectral energy density ρ0(ω0) = (�ω3
0)/2π

2c3. This assumption
can be explained in modern QED, but it was not entirely clear when the A and B co-
efficients were derived. In the light of Einstein’s derivation, we can ask the question
whether an excited atom can be subjected to stimulated emission under the action
of the vacuum field only. If this process exists, then the rate at which an atom in the
excited state is stimulated by the vacuum field to drop to the groundstate should
be

d

dt
(N2)

(0)
stim = − B21 ρ0(ω0)N2 = − B21

(
�ω3

0

2π2c3

)
N2 . (4.9)

Using Eq. (4.7), we have

d

dt
(N2)

(0)
stim = −B21

A21

2B21

N2 = − 1

2
A21N2

=
1

2

d

dt
(N2)spont . (4.10)

This equation shows that we can almost interpret spontaneous emission as stimu-
lated emission due to the vacuum field, but only half the correct A coefficient for
spontaneous emission is obtained. Consequently, the associated rate due to vacuum
fluctuations is RVF = A21/2. This point, which has important consequences also for
the experiments to be discussed in the next sections, is not widely appreciated and
oftentimes spontaneous emission is considered to be entirely induced by the vacuum
field. Equation (4.10) suggests that spontaneous emission is related to vacuum ra-
diation, but is not simply emission induced by this radiation. It can be shown that
the missing one-half comes from the radiation reaction field [327],7 which induces
transitions at a rate RRR = A21/2. Hence, the Einstein A coefficient for spontaneous
emission is correctly given by

A21 = RVF +RRR . (4.11)

A noteworthy fact is that for a two-level atom in the groundstate the effects of
the vacuum and radiation reaction field cancel each other and the corresponding
“spontaneous absorption” rate is zero, A12 = RVF −RRR = 0.

From the standpoint of modern QED, the Planck spectrum of Eq. (4.8) is in-
complete. As we will show in Subsec. 4.2.2, a simple calculation based on the com-
mutation relations valid for bosonic field operators reveals that the correct Planck
spectrum should be

ρ̃(ω0) =
�ω3

0/π
2c3

e�ω0/kBT − 1
+

�ω3
0

2π2c3
(4.12)

or, in terms of average energy of the atoms,

〈E〉 =
�ω0

e�ω0/kBT − 1
+

1

2
�ω0 . (4.13)

To summarize, the Planck spectrum of Eq. (4.8) as derived by Planck and ob-
tained from Einstein’s A and B coefficients contains information about the vacuum

7We remind that the radiation reaction field is the field generated by a charged particle (in
vacuum) acting on the particle itself.
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fluctuations, which are responsible for half the spontaneous emission rate. How-
ever, it does not include the offset due to the vacuum fluctuations arising from the
canonical quantization of the electromagnetic field, i.e., from the bosonic commu-
tation relations. Such offset is included in our more mature version of the Planck
distribution as shown by the second term of Eqs. (4.12) and (4.13).8 Thus, the
Planck distribution as expressed by Eq. (4.13) encodes information on the vacuum
fluctuations two times: One time because of one half of the spontaneous emission
coefficient and another time because of the bosonic commutation relations.

At microwave frequencies, the vacuum state can be reached by cooling the en-
vironment to sufficiently low temperatures. For example, the energy corresponding
to an angular frequency ω0 = 2π × 10GHz is �ω0 � 6.626 × 10−24 J and its equiv-
alent temperature T = �ω0/kB � 480mK, where kB is the Boltzmann constant.
In this case, the energy associated with the vacuum fluctuations is E0 = �ω0/2 �
3.313 × 10−24 J, which corresponds to a temperature Tcr � 240mK. When cooling
below such a temperature, the contribution arising from the thermal radiation is neg-
ligible and the vacuum fluctuations of the electromagnetic field become appreciable.
In our experiments, we study the most simple source of thermal radiation: a resis-
tor (cf. chapter 3, Sec. 3.1). We gradually cool down the resistor from temperatures
higher than Tcr to a minimum temperature of approximately 20mK. While cooling,
we measure the variance of the signal emitted by the resistor and, simultaneously,
record its temperature. In this manner, we are able to measure the Planck spectrum
in an angular frequency window centered around ω0 as a function of temperature
[cf. Eq. (4.8)]. As discussed in detail in Subsec. 4.3.2, from such measurement we ob-
tain indirect information on the one-half part of the spontaneous emission coefficient
which accounts for the vacuum fluctuations. This represents an indirect observation
of the variance of the vacuum fluctuations emitted (propagating) at angular fre-
quency ω0. Furthermore, we can measure the Planck spectrum in angular frequency
windows centered around different values of ω0. This type of experiment is one of
the building elements for the implementation of so-called “Planck spectroscopy,”
which may be employed to characterize the thermal properties of various microwave
devices, including nanomechanical resonators (cf. chapter 9). Figures 4.1(a) and
4.1(b) show a color-code plot (top and 3D view) of the Planck spectrum given by
Eq. (4.13) as a function of both temperature and frequency. The parameters used to
obtain such plots are extracted from our experiments in order to allow for a better
comparison between the theory and the experimental results to be presented later
in this chapter.

It is worth mentioning that if we were able to measure the offset associated with
the vacuum fluctuations due to the commutation relations, we could then realize a
direct observation of the variance of the vacuum fluctuations. As we show in Sub-
sec. 4.3.3, there are however fundamental limitations preventing such measurement.

Another fundamental incarnation of the vacuum fluctuations in QED is rep-
resented by the Lamb shift. According to the Schrödinger and Dirac equations,
atomic states with equal principal quantum number n and equal total angular
momentum quantum number j, such as the 2s1/2 and 2p1/2 states of hydrogen
atoms, are degenerate. However, in 1947 W. E. Lamb Jr. and R. C. Retherford

8It is worth mentioning that the offset due to the vacuum fluctuations made its first appearance
in Planck’s “second theory.” However, the path followed by Planck to derive it was incorrect and
the vacuum field contribution dropped out Planck’s final expression for the spectral energy density.
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Figure 4.2: The Lamb shift in atomic physics. (a) Energy level diagram
for the n = 2 states of the hydrogen atom. The Lamb shift is approximately
1058MHz. Both the Lamb shift and fine structure splitting are in the mi-
crowave range. (b) Feynman diagram representing the Lamb shift in terms
of emission and absorption of virtual photons, which are indicated as γ. The
arrow marked by t indicates the direction of increasing time. More details are
given in the main text.

made an experiment showing that these two states actually differ by approximately
1.06GHz [cf. Fig. 4.2(a)]. Interestingly, the experiment was also realized employ-
ing microwave technology, which had greatly advanced during World War II. The
Lamb shift can be interpreted as the result of emission into and re-absorption from
the vacuum of virtual photons. This simple explanation, however, is not accom-
panied by a correspondingly simple theory. In summary, the Lamb shift is the
energy (or equivalently frequency) shift of a state |n〉 |0〉, in which the atom is in
stationary level n and the field in the vacuum state with no photons. Such shift
is due to the emission process |n〉 |0〉 → |m〉 |1〉 followed by the absorption process
|m〉 |1〉 → |n〉 |0〉 [cf. Fig. 4.2(b)]. Altogether, this is a virtual process which brings
the system back to the original state |n〉 |0〉 via the intermediate state |m〉 |1〉. The
intermediate state corresponds to the atom in level m and the field populated with
a single-photon excitation. A simple-minded approach to explain the Lamb shift
via second-order perturbation theory would lead to the uncomfortable conclusion
that the shift is infinite, where experiments show that it has to be small [327]. The
solution to this conundrum was given in 1947 by H. A. Bethe, who proposed the
mass renormalization approach in order to obtain the correct results for the Lamb
shift [19]. According to P. A. M. Dirac, the “Bethe log,” so-called because it reduces
a linear infinite divergence to a logarithmic one and, eventually, to a finite result,
deeply changed the character of modern physics.

The last example we would like to report in this brief summary of vacuum-related
phenomena goes under the name of Casimir effect. If we consider the vacuum fluc-
tuations of a three-dimensional infinite volume, these fluctuations are characterized
by a continuous energy spectrum with infinite energy. We can imagine to “engineer”
this scenario by placing a cavity (a resonator) within the three-dimensional volume
just defined. The cavity confines a finite volume and the intracavity vacuum field is
now characterized by a discrete energy spectrum. However, the vacuum field energy
is still infinite since we have to sum over all infinite modes. The presence of the
cavity, though, significantly modifies the environment. This is now separated into
two distinguished regions, one with a continuous energy distribution of levels and
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(a)

continuous

(b)

discrete continuous
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Figure 4.3: The Casimir effect. (a) A cavity [magenta (middle grey)], made
of two uncharged and perfectly conducting plates (in Casimir’s original model
the plates were parallel [327]), separates the environment into two distin-
guished regions. The region outside of the cavity is characterized by a contin-
uous energy spectrum [dark blue (dark grey) lines], whereas the one inside the
cavity by a discrete spectrum [light green (light grey) lines]. (b) The vacuum
field outside of the cavity “pushes” the two plates towards each other [dark
blue (dark grey) arrow], whereas the field inside the cavity “repulses” them
[light green (light grey) arrow]. The final effect is an attractive force [327].

the other with a discrete one [cf. Fig. 4.3(a)]. In simple words, there are “more”
possible levels outside than inside the cavity. The idea is that the virtual photons of
the vacuum field carry linear momentum �k/2 (where k represents a wavevector).
Then, vacuum virtual photons reflected on the outside of the cavity plates push
the plates together, whereas reflections on the inside repulses them. Since there are
“more” possible levels outside the cavity than inside, the global effect results in an
attraction of the two plates [cf. Fig. 4.2(b) for a simplified sketch representing this
phenomenon and Ref. [327] for a rigorous proof].

All these examples show that playing with the vacuum is similar to playing with
the subtraction of infinite expressions characterized by a different order of infinity.
This makes possible the observation of vacuum-field-related effects, which are a
profound test of the validity of QED.

4.2 Quantum Signal Theory

After presenting the general concepts of quantum signal theory, this section is de-
voted to the calculation of the first two quantum-mechanical central moments (mean
value and variance) associated with quantum voltages with respect to number states
(cf. Subsec. 4.2.1) and thermal/vacuum states (cf. Subsec. 4.2.2). In particular, we
show that the quantum-mechanical variance (even after opportune normalizations)
of a given quantum signal is generally different from the power associated with that
signal. Finally, as a special application of the results obtained for thermal/vacuum
states, we calculate the mean value and variance for the quantum voltages asso-
ciated with the key devices of the two channels of the detection chain described
in chapter 3. The quantum-mechanical mean value and variance are an important
subset of the so-called signal quantum parameters.

In chapter 3, Subsecs. 3.2.5 and 3.2.6, we have derived the quantum-mechanical
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expression for the quantum voltages to be measured in our experiments,

V̂RLk = gRLkV̂Mk , (4.14)

where gRLk is the signal gain of the last amplification stage (i.e., the gain of the
IF FET amplfiers) and V̂Mk are the signals at the mixers’ output, which are given
by Eqs. (3.98) and (3.100) for the case of the Wilkinson power divider and by
Eqs. (3.102) and (3.104) for the case of the 180◦ hybrid ring. Henceforth, where not
further specified, both the Wilkinson power divider and 180◦ hybrid ring will simply
be referred to as microwave beam splitters.

Given the quantum voltages (in general, quantum signals) V̂RLk of Eq. (4.14) and
the state |ψ〉 at the input ports of either one of the two microwave beam splitters,
we are able to predict exactly all quantum-mechanical parameters of interest. Such
parameters are based on the concept of the quantum-mechanical mean value. The
quantum-mechanical mean value with respect to state |ψ〉 can be of the bare voltages
V̂RLk,

μRLk ≡ 〈V̂RLk〉ψ ≡ 〈ψ|V̂RLk|ψ〉 (4.15)

or any well-defined function f(V̂RLk),

〈f(V̂RLk)〉ψ . (4.16)

Of particular relevance is the case when f(V̂RLk) = V̂ r
RLk, with r ∈ N0. For r = 1 we

simply obtain Eq. (4.15), whereas for r = 2 we get the quantum-mechanical second
moment of signal V̂RLk with respect to state |ψ〉,

〈V̂ 2
RLk〉ψ ≡ 〈ψ|V̂ 2

RLk|ψ〉 . (4.17)

The second moment can opportunely be skewed by the mean value squared in order
to obtain the quantum-mechanical variance of the signal,

σ2
RLk ≡

(
ΔV̂RLk

)2 ≡ 〈ψ|V̂ 2
RLk|ψ〉 − μ2

RLk , (4.18)

which is also referred to as second central moment. The formalism at the basis of
these exact predictions is here defined quantum signal theory.

Equations (4.15) and (4.16) are very simple expressions for obtaining quantum-
mechanical mean values, but they are not of general validity. In practice, in fact,
they are only useful for so-called pure states. Pure states are those which can be
represented by a linear combination of a complete orthonormal set of eigenstates
{|p〉} (ket states),

|ψ〉 =
∑
p

cp|p〉 , (4.19)

where cp is a generic complex coefficient andNp is the dimensionality of the ket space.
An example is in order. The quantum signal (voltage or current) sustained by an
infinite or semi-infinite transmission line is spanned by the complete orthonormal
set of photon number states

{|nm〉} , (4.20)
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with nm = 0, 1, 2, . . . (i.e., n ∈ N) for each mode m of the line.9 In this case, the
most general pure state associated with a quantum signal on the line is given by

|ψ〉line =
∑
nm

c(nm)|nm〉 . (4.21)

Such a state, in its full generality, is rarely encountered in real applications. However,
there are several states in which the superposition is restricted to the number states
of a single mode of the line. Examples of such states are single-mode squeezed states,
coherent states, simple superposition of single-mode number states, and single-mode
number states (including the vacuum state). Later (cf. Subsec. 4.2.1), we will use the
case of number states as an example for the calculation of some relevant quantum-
mechanical parameters. A fundamental feature common to superposition states
is that the contribution of each basis state, |nm〉, has a specified amplitude and
a well-defined phase, which is relative to the overall phase angle of the complete
superposition. This property is embodied in the complex coefficient c(nm).

In general, Eq. (4.19) allows us to define the so-called pure ensemble as a collec-
tion of physical systems such that every member is characterized by the same state
|ψ〉. If we perform a measurement on a pure ensemble of an observable Ô, which is
spanned by a set of eigenstates |p〉, the quantum-mechanical mean value is defined
as

〈Ô〉ψ ≡ 〈ψ|Ô|ψ〉

=
∑
p

p |〈p|ψ〉|2 , (4.22)

where p is a measured value and |〈p|ψ〉|2 is the probability for obtaining p. Equa-
tion (4.22) represents the general form of Eq. (4.15).

In contrast, we define the so-called mixed ensemble as a collection where each
fraction of the members with a relative population wi is characterized by state |ψ(i)〉.
A mixed ensemble is, thus, a mixture of pure ensembles. The fractional populations
have a classical statistical origin. Hence, they are constrained to fulfill the standard
normalization condition ∑

i

wi = 1 , (4.23)

but the number of terms in the sum need not coincide with the dimensionality Np

of the ket space (it can be smaller or larger). In addition, the set of states {|ψ(i)〉}
needs not be an orthogonal set. If we perform a measurement on a mixed ensemble
of the observable Ô, the quantum-mechanical mean value is now defined as

〈Ô〉 ≡
∑
i

wi〈ψ(i)|Ô|ψ(i)〉

=
∑
i

∑
p

wi |〈p|ψ(i)〉|2 p , (4.24)

9In the special case of a transmission line resonator, m = 1, 2, 3, . . . (i.e., m ∈ N0). In this case,
m is related to the propagation phase constant β; cf. chapter 2, Subsec. 2.1.2.
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where |〈p|ψ(i)〉|2 is the quantum-mechanical probability for state |ψ(i)〉 to be found
in an eigenstate |p〉 of Ô and wi is the probability factor for finding a state |ψ(i)〉
in the ensemble. Applying twice the closure theorem of quantum mechanics (e.g.,
cf. Ref. [266]) then motivates the definition of a density operator ρ̂,

ρ̂ ≡
∑
i

|ψ(i)〉〈ψ(i)| . (4.25)

The density operator ρ̂ is the standard form to represent a mixed state. An example
is in order. The quantum signal (voltage or current) associated with a resistor
in thermodynamical equilibrium with its environment cannot be represented by a
pure state of the form of Eq. (4.21). For a resistor, all that can be specified is a

set of probabilities P (n
(i)
m ) that the signal is found in a range of states |n(i)

m 〉, each
corresponding to one of a complete orthonormal set of photon number states such
as in Eq. (4.20). The quantum signal of a resistor is manifestly a multi-mode signal

and the use of the multi-mode set of number states {|n(i)
m 〉} is appropriate. The most

general mixed state associated with such a quantum signal is given by

ρ̂res =
∑
n
(i)
m

P (n(i)
m )|n(i)

m 〉〈n(i)
m | . (4.26)

As for the case of the pure state of Eq. (4.21), the mixed state of Eq. (4.26) in
its full complexity is rarely used in calculations.10 Typically, all considerations
are restricted to the number states of one single mode among all infinite modes
associated with the resistor. Within this framework (cf. Subsec. 4.2.2), we will
later work out some relevant quantum-mechanical parameters of quantum signals
associated with resistors. In strict contrast to pure states, a fundamental feature
of mixed states is that the contribution of each basis state, |nm〉, does not have a
well-defined phase with respect to the complete state. This is due to the statistical
origin of the complete state.

Finally, an extremely powerful relation for density operators allows us to obtain
the quantum-mechanical mean value of an observable Ô as

〈Ô〉 ≡ Tr {ρ̂ Ô} , (4.27)

where the trace “Tr” of an operator is the invariant sum of its diagonal matrix
elements for any complete orthonormal set of eigenstates (i.e., we can use the most
convenient set for each specific case!). The relation of Eq. (4.27) can be used for
both mixed and pure states. Thus, the quantum-mechanical mean value for the
quantum voltages to be measured, V̂RLk, can be rewritten as

〈V̂RLk〉 ≡ Tr{ρ̂ V̂RLk} (4.28)

and, for f(V̂RLk), as
〈f(V̂RLk)〉 ≡ Tr{ρ̂ f(V̂RLk)} . (4.29)

We will make extensive use of these relations in particular in the case of thermal
states.

10Even if, this time, the general form of Eq. (4.26) is closer to reality than any approximation
we are going to use.
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4.2.1 Number States

The photon number states constitute a paradigmatic example in the quantum theory
of light. In contrast of being among the hardest to be generated and characterized
experimentally, number states are the easiest to be comprehended on theoretical
basis. Because of their simple properties, number states are the natural starting
point in the quantum theory of signals. Number states are pure states and, hence,
the density operator formalism needs not be used to study them.11

As shown by Eq. (4.21), number states form a complete orthonormal set of
states for any quantum signal (voltage or current) on a transmission line. Number
states are also the standard basis for the single-mode quantum-mechanical harmonic
oscillator and for the Planck distribution. Hereafter, we consider single-mode num-
ber states only. Dropping the mode subscript m from the multi-mode states of
Eq. (4.21), a complete orthonormal set of single-mode number states is then

{|n〉} , (4.30)

with n ∈ N. Such a set of states has already been introduced in chapter 2, Sub-
sec. 2.1.3. Under single-mode assumptions, the pure state associated with a quantum
signal on a transmission line assumes the form

|ψ〉line =
∑
n

c(n)|n〉 . (4.31)

We start reminding a few fundamental properties of single-mode number states:12

â|n〉 =
√
n|n− 1〉 , (4.32a)

â|0〉 = 0 , (4.32b)

â†|n〉 =
√
n+ 1|n+ 1〉 . (4.32c)

In addition,

(â)2|n〉 = â(â|n〉) =
√
n(n− 1)|n− 2〉 , (4.33a)

â†â|n〉 = â†(â|n〉) = n|n〉 , (4.33b)

(â†)2|n〉 = â†(â†|n〉) =
√

(n+ 1)(n+ 2)|n+ 2〉 (4.33c)

and, since {|n〉} represents a complete orthonormal set of kets,

〈n′′|n′〉 = δn′′,n′ , (4.34)

where |n′〉, |n′′〉 ∈ {|n〉}.
Using the properties of Eqs. (4.32a), (4.32c), and (4.34), it is straightforward to

invoke Eq. (2.111) and calculate the quantum-mechanical mean value per-root-hertz

11Even if nothing would prevent us from using it.
12Notably, the properties given here for the generic ket |n〉 can directly be applied to the corre-

sponding bra 〈n|.
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for a generic quantum voltage V̂ = V̄0 (â
†+ â) with respect to a number state |n〉 as

μn ≡ 〈V̂ 〉n
= V̄0〈n|(â† + â)|n〉
= V̄0(

√
n+ 1〈n+ 1|n〉+

√
n〈n|n− 1〉) = 0 , (4.35)

∀n ∈ N.
Using the properties of Eqs. (4.33a), (4.33c), (4.33b), and (4.34) and the result for

the mean value of Eq. (4.35), we can invoke Eq. (2.112) and calculate the quantum-
mechanical variance per-hertz normalized over the load impedance Z0 as

σ̄2
n ≡ σ2

n

Z0

≡ 1

Z0

(ΔV̂ )2n

=
V̄ 2
0

Z0

{
〈n|[(â†)2 + 2â†â + (â)2]|n〉+ 1

}
− μ2

n

= 2
V̄ 2
0

Z0

(
n+

1

2

)
= �ω

(
n+

1

2

)
, (4.36)

∀n ∈ N. As expected, for the vacuum state |0〉 the normalized variance is equal to
the energy of the total vacuum fluctuations of the signal, �ω/2. For higher number
states |n〉, with n > 1, the normalized variance scales with the number of photons
and is augmented by �ω for each extra photon.

4.2.2 Thermal/Vacuum States

In contrast to number states, thermal states are usually easy to generate experi-
mentally. All we need to create a thermal state is a resistor in thermodynamical
equilibrium with a heat reservoir at a specified temperature T . For temperatures
T � Tcr (cf. Sec. 4.1), a thermal state effectively becomes a vacuum state. As
described in Sec. 4.1, thermal states have been studied since the dawn of quantum
mechanics and have always played a central role in the theory of quantum fields. The
Planck distribution of Eq. (4.13) is one example of their relevance. A distinct feature
of thermal states typically encountered in experiments is in that they belong to the
special class of Gaussian states (cf. chapter 2, Subsec. 2.1.3.) As a consequence,
they can be completely characterized by means of the first two quantum-mechanical
(central) moments. Thermal states, which represent the basic ingredient of our
experiments, are a prototypical example of mixed states and, hence, the density op-
erator formalism is necessary to study them. Given their simplicity, such states are
an ideal playground to get acquainted with the concept of statistical mixture. Due
to their statistical nature, thermal states cannot carry coherent information and are
characterized by a totally uncertain phase.

As shown by Eq. (4.26), thermal states are associated with multi-mode signals

and are specified by the probability distribution P (n
(i)
m ) to find the quantum sig-

nal (voltage or current) of a resistor in a number state |n(i)
m 〉. The general form

of Eq. (4.26) can be substantially simplified by considering only one single resistor
mode with angular frequency ω0. In this case, we can model the resistor as if it
were a single-mode LC-resonator with angular frequency ω0 maintained in thermo-
dynamical equilibrium at temperature T . As demanded by intuition, the resonator
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is then populated with a thermal state. Employing the set given by Eq. (4.30) as
a complete orthonormal set for describing a single-mode thermal state, the density
operator for such a state assumes the form

ρ̂th =
∑
n

Pth(n)|n〉〈n| , (4.37)

where Pth(n) is the probability distribution for a single mode.
We remind a few fundamental properties of single-mode thermal states. In

Sec. (4.1), we have proven by means of Einstein’s A and B coefficients13 that for
atoms with transition angular frequency ω0 in thermodynamical equilibrium at tem-
perature T the mean (average) energy is given by Eq. (4.13). This result can be
directly extended to the mean energy 〈En〉 of a single-mode LC-resonator with
angular frequency ω = ω0 at temperature T . From Eq. (2.85), the mean energy
associated with such a resonator can be written as

〈En〉th = �ω0

(
〈n〉th +

1

2

)
, (4.38)

where 〈n〉th is the thermal population of the resonator in terms of mean number of
photons. Comparing Eqs. (4.38) and (4.13), we then obtain

〈n〉th =
1

e�ω0/kBT − 1
, (4.39)

which, according to our model, represents the mean number of thermal photons
populating a single mode of a resistor. Using the shorthand notation

ε ≡ e−�ω0/kBT (4.40)

and recalling the sum of a geometric series
∑∞

n εn = 1/(1− ε), we readily find

〈n〉th =
1

ε−1 − 1
=

ε

1− ε

= (1− ε)ε
∂

∂ε

( ∞∑
n

εn

)
= (1− ε)

∞∑
n

nεn . (4.41)

Dropping the “∞” from all sums for simplicity, from the general definition of mean
value

〈n〉 =
∑
n

nP (n) (4.42)

it finally follows that for single-mode thermal states

Pth(n) = (1− ε)εn

= (1− e−�ω0/kBT )e−n�ω0/kBT . (4.43)

With Eqs. (4.37) and (4.43) in hand, we can write the density operator representing
a single-mode thermal state as

ρ̂th = (1− e−�ω0/kBT )
∑
n

e−n�ω0/kBT |n〉〈n| , (4.44)

13Induced absorption, induced emission, and spontaneous emission.
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which is characterized by only diagonal number-state matrix elements. It now ap-
pears evident that the number states are the natural basis for the density operator
of Eq. (4.44) because the thermal distribution gives information only on the proba-
bilities of finding a system in its various energy eigenstates, which are equivalent to
the states |n〉.

From the general relation of Eq. (4.27), the mean number of thermal photons in
the resistor is given by

〈n〉th = Tr {ρ̂th N̂} , (4.45)

where N̂ = â†â is the number operator. It is then an easy exercise to rewrite the
density operator of Eq. (4.44) as

ρ̂th =
∑
n

〈n〉nth
(1 + 〈n〉th)1+n

|n〉〈n| . (4.46)

The results of Eqs. (4.44) and (4.46) can readily be generalized to multi-mode
states from the definition of grand probability distribution (e.g., cf. Ref. [91]).

The quantum-mechanical mean value per-root-hertz for a generic quantum volt-
age V̂ with respect to a thermal state with density operator ρ̂th given by Eq. (4.37)
can be calculated by means of Eq. (4.27). Applying the closure theorem of quantum
mechanics for a generic complete orthonormal set {|m〉},14 ∑m |m〉〈m| = I,15 using
the definition of matrix trace, and recalling that μn = 0 [cf. Eq. (4.35)], we find

μth ≡ 〈V̂ 〉th
= Tr {ρ̂th V̂ }

= Tr
{∑

n

Pth(n)|n〉〈n|V̂
}
= Tr

{∑
m,n

Pth(n)|n〉〈n|V̂ |m〉〈m|
}

=
∑
n

Pth(n)〈n|V̂ |n〉 =
∑
n

Pth(n)μn = 0 . (4.47)

Similarly, the quantum-mechanical variance per-hertz normalized over the load
impedance Z0 can be calculated recalling the results of Eqs. (4.36) and (4.47),
the general definition of Eq. (4.42) for the case of Eq. (4.39), and the condition∑

n Pth(n) = 1. We find

σ̄2
th ≡ σ2

th

Z0

≡ 1

Z0

(ΔV̂ )2th ≡ 1

Z0

(〈V̂ 2〉th − 〈V̂ 〉2th)

=
1

Z0

Tr {ρ̂th V̂ 2} − μ2
th

Z0

=
1

Z0

Tr
{∑

m,n

Pth(n)|n〉〈n|V̂ 2|m〉〈m|
}

=
1

Z0

∑
n

Pth(n)〈n|V̂ 2|n〉 =
∑
n

Pth(n)
σ2
n

Z0

= �ω0

(
1

e�ω0/kBT − 1
+

1

2

)
=

�ω0

2
coth

�ω0

2kBT
. (4.48)

14Here, m must not be confused with the index for the mode number. When applying the closure
theorem we use always m and n for consistency with most books.

15As always, I represents an identity matrix with dimensionality given by the dimensionality of
{|m〉}.
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As expected, the normalized variance per-hertz is equal to the mean energy given by
the Planck distribution including vacuum [cf. Eq. (4.13)]. If we intend to calculate
the normalized variance in units W, we must multiply the result of Eq. (4.48) by
the measurement bandwidth Δf in units Hz.

Remarkably, the first two quantum-mechanical moments for thermal states are
equal to those for number states, but with n replaced by 〈n〉th.

Only in the special case of thermal states, the normalized variance in units W is
equivalent to the power associated with a quantum signal (e.g., voltage) on a resistor
of real impedance (resistance) Z0. The power ΠZ0

absorbed by the resistor can

be calculated quantum-mechanically: (i) assuming that the power is measured by
means of a power meter or square law detector. In this case, all rapidly rotating
terms of the kind (â†)2 and (â)2 are filtered out by the internal network of the power
meter or square law detector. This is the experimental version of a theoretical RWA;
(ii) recalling the property for number states given by Eq. (4.33b); (iii) the general
definition of Eq. (4.42) for the case of Eq. (4.39); (iv) that

∑
n Pth(n) = 1 because

of the standard normalization condition for probability distributions. In this way
we obtain

ΠZ0
=

〈V̂ 2〉th
Z0

Δf

=
V̄ 2
0

Z0

〈[(â†)2 + 2â†â + 1 + (â)2]〉th Δf

≈ �ω0

2
Tr {ρ̂th (2â†â + 1)}Δf

= �ω0

{∑
n

Pth(n)〈n|
(
â†â +

1

2

)
|n〉
}
Δf

= �ω0

[∑
n

nPth(n) +
1

2

∑
n

Pth(n)
]
Δf

= �ω0

(
〈n〉th +

1

2

)
Δf = Δf

�ω0

2
coth

�ω0

2kBT
. (4.49)

Notably, the result of Eq. (4.49) is only an approximated solution because of the
RWA. For thermal states, due to all assumptions explained above and due to the
vanishing mean value μth = 0, the results for the power absorbed by the resistor
and for the normalized variance in units W coincide, ΠZ0

= Δf σ̄2
th. If, however, we

were to measure a single-mode squeezed state, the two results would be different.
The variance would be the only quantity able to account for the squeezed state
nontrivial phase dependence, which is encoded in the square terms (â†)2 and (â)2

(cf. Ref. [91], bottom of p. 203 for a definition of squeezed states). A power meter
or square law detector alone is insufficient to fully characterize a squeezed state
directly! Even if we have measured thermal states only, in all the experiments
presented in this chapter we never used power meters or square law detectors to
estimate quantum signal parameters. As explained in Sec. 4.3, we always resorted
to signal post-processing in order to estimate the quantum-mechanical variance as
given by Eq. (4.48). This allows us to obtain less distorted estimations compared to
mere power measurements, which only give approximated results. Our approach will
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be indispensable when extending the measurements from thermal/vacuum states to
squeezed states or more complex Gaussian states.

The Quantum Voltages V̂RLk and the Detection-Chain States

In Subsec. (4.2.2), we obtained the general relations for the quantum-mechanical
mean value per-root-hertz and variance normalized over the load impedance Z0 in
the case of a generic quantum voltage V̂ with respect to a generic thermal state
with density operator ρ̂th. We now specialize these results to the relevant case of the
quantum voltages V̂RLk given by Eq. (4.14) with respect to the various states of the
detection chain used in our experiments (cf. chapter 3 for a thorough description of
the chain). We remind that k = 1, 2.

In summary, we can write the quantum voltages V̂RLk as

V̂RLk = gRLkδMkgRHkgCHk × (V̂k,ϕ + δckÊck,ϕ + Ênk,ϕ) , (4.50)

where the subscript “ϕ” indicates the phase picked by the signals during mixing
(cf. chapter 3, Subsec. 3.2.5).

In general, the detailed structure of the first term in Eq. (4.50), V̂k,ϕ, depends on
which output port of which microwave beam splitter we are considering. The terms
in the square brackets of Eqs. (3.98), (3.100), (3.102), and (3.104) show the exact
form for V̂k,ϕ in the case of the two output ports of a Wilkinson power divider and
180◦ hybrid ring, respectively, in units of V̄0. As explained in Sec. 3.1, the output
signals of the microwave beam splitters, and, consequently, the quantum voltages
V̂k,ϕ, depend on the interplay between a primary and secondary noise source at
the beam splitter input. As it will appear clear by the end of this chapter, the
experiments to be presented in Subsec. 4.3.3 are highly sensitive to the different
contributions arising from the primary and secondary noise sources. In contrast, the
experiments to be presented in Subsecs. 4.3.1 and 4.3.2 do not allow us to discern
between the two noise sources, which, in that case, can be considered to constitute
one single effective noise source. Such effective noise source can be described by a
single set of bosonic creation and annihilation superoperators, Ξ̂† and Ξ̂. The main
physical assumption behind the definition of the superoperators Ξ̂† and Ξ̂ is that the
primary and secondary noise sources are characterized by exactly the same absolute
temperature.16 Under the assumption of a single effective noise source, the quantum
voltage at the output port of either one of the microwave beam splitters is given by

V̂k,ϕ = V̄0(Ξ̂
†e+jϕLO + Ξ̂e−jϕLO) , (4.51)

where ϕLO is the phase induced by the LO signal. Such a phase is irrelevant for
the experiments of Subsecs. 4.3.1 and 4.3.2 and we show it here only for the sake of
completeness. The state associated with the single effective noise source is a thermal
state with density operator

ρ̂eff =
∑
n

〈n〉neff
(1 + 〈n〉eff)1+n

|n〉〈n| , (4.52)

where

〈n〉eff =
1

e�ω0/kBT − 1
. (4.53)

16In Subsec. 4.3.3, we will show that this assumption does not hold in general.
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In first approximation, the temperature T of the effective noise source is assumed
to be the temperature of the clamp of the primary noise source Z0 (cf. description
of the noise model for a Wilkinson power divider in chapter 3, Subsec. 3.1.1). This
temperature typically varies between approximately 20 and 350mK (cf. bottom part
of Fig. 3.10).

Recalling the results for the first two quantum-mechanical central moments of a
thermal state given by Eqs. (4.47) and (4.48), we readily find

μk ≡ 〈V̂k,ϕ〉eff
= Tr {ρ̂eff V̂k,ϕ} = 0 (4.54)

and

σ̄2
k ≡

σ2
k

Z0

≡ 1

Z0

(ΔV̂k,ϕ)
2
eff

=
1

Z0

Tr {ρ̂eff V̂ 2
k,ϕ} −

μ2
k

Z0

=
�ω0

2
coth

�ω0

2kBT
. (4.55)

Equation (4.55) reveals that, in the low temperature limit, T � �ω0/2kB, the
quantum-mechanical variance of a thermal state approaches the variance of the
vacuum state at angular frequency ω0, σ̄

2
k ≈ �ω0/2.

As shown in chapter 3, Subsec. 3.2.1, the quantum voltage Êck,ϕ owns its origin
to the two cryogenic circulators [cf. the argument which led to Eq. (3.55)]. At the
output of either one of the two circulators and including the LO phase for generality,
such a voltage is given by

δckÊck,ϕ = δckV̄0(ζ̂
†
ke

+jϕLO + ζ̂ke
−jϕLO) . (4.56)

The state associated with the quantum noise voltage Êck,ϕ it is a thermal state
characterized by the density operator

ρ̂ck =
∑
n

Pck(n)|n〉〈n| , (4.57)

where Pck is the probability distribution for a single mode of the circulator noise,
which depends on the exact temperature TLc of the ZLc termination at port C of the
circulator (cf. Fig. 3.10).

As already pointed out in chapter 3, Subsec. 3.2.1, the temperature TLc depends
on the heat flow between the mixing chamber and still stage of the cryostat. In
general, the function describing this flow is unknown and, thus, is the exact form of
Pck. Here, we assume state ρ̂ck such that

μck ≡ 〈Êck,ϕ〉ck
= Tr {ρ̂ck Êck,ϕ} = 0 (4.58)

and

σ̄2
ck ≡

σ2
ck

Z0

≡ 1

Z0

(ΔÊck,ϕ)
2
ck

=
1

Z0

Tr {ρ̂ck Ê2
ck,ϕ} −

μ2
ck

Z0

= ς(TLc) , (4.59)
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where ς(TLc) is an unknown function of TLc expressed in units J. In Appendix A,
we will derive ς(TLc) phenomenologically from our experiments. In addition, we will
show that it is possible to accurately account for it when retrieving the data.

The noise properties of phase-preserving linear amplifiers have already been de-
scribed in chapter 3, Subsec. 3.2.2, while developing the quantum network theory
of amplification. Within that context, Eq. (3.69) represented the formal expression
for the quantum noise voltage associated with an amplifier. Such an expression
can straightforwardly be extended in order to include the LO phase due to mixing,
therefore obtaining the quantum noise voltages

Ênk,ϕ ≡ V̄0(ξ̂
†
ke

+jϕLO + ξ̂ke
−jϕLO) . (4.60)

It is worth stressing that these voltages represent the noise referred to the input of
either one of the two cryogenic amplifiers and, thus, need to be multiplied by the
amplifier signal gain gCHk (and all other amplifiers/mixers gains/attenuations), as
Eq. (4.50) correctly shows. The state associated with such voltages is the so-called
operating state of the amplifier (cf. chapter 3, Subsec. 3.2.2), which is characterized
by the density operator ρ̂opk. The general structure of ρ̂opk depends on the internal
modes of the amplifier (its internal degrees of freedom) and can be rather compli-
cated.17 However, for a stable operating temperature Topk (in our case Topk � 4.2K;
cf. Fig. 3.10) and under the reasonable assumption that the mean value

μopk = Tr {ρ̂opk Ênk,ϕ} = 0 , (4.61)

the definition of Eq. (3.80) allows us to write

σ̄2
opk ≡

σ2
opk

Z0

≡ 1

Z0

(ΔÊnk,ϕ)
2
opk

=
1

Z0

Tr {ρ̂opk Ênk,ϕ} −
μ2
opk

Z0

= kBTCHk , (4.62)

where TCHk is a well-defined constant temperature referred to as the amplifier noise
temperature. We recall that the noise model developed in chapter 3, Subsec. 3.2.2
is an oversimplified model. In fact, in the high temperature limit Topk � �ω0/2kB,
which is certainly valid for microwave signals of approximately 5GHz, Eq. (3.82)
reduces to ≈ kBTopk/�ω0. From Eq. (3.80), it then follows that TCHk ≈ Topk. For
real amplifiers, it is not generally true that the amplifier noise temperature equals
the amplifier operating temperature. The reader should bear this important caveat
in mind when reading through this chapter (cf. also the opportune explanations
given in chapter 3, Subsec. 3.2.2, Quantum Network Theory of Amplification).

Defining the total attenuation due to cables, connectors, and other device losses
of either one of the two channels of the detection chain as δattk, the power gain of
the channel is given by

Gk ≡ g2k ≡ (gRLkδMkgRHkgCHkδattk)
2 . (4.63)

In addition, recalling that the effective measurement bandwidth is given by

BWk = 2min{BWIFk,BWRFk} = 2BWIFk (4.64)

17We remind that the noise of an amplifier is, in general, a frequency dependent non-Gaussian
noise.
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and using the results of Eqs. (4.54), (4.55), (4.58), (4.59), (4.61), and (4.62), fi-
nally allows us to write the basic theoretical model for determining the quantum-
mechanical variance (normalized over the load impedance Z0) in units W associated
with the quantum voltage V̂RLk with respect to the thermal states of the beam
splitters and circulators, and the operating state of the amplifiers. We obtain

σ̃2
k ≡ BWk σ̄

2
k ≡

BWk

Z0

σ2
k

= GkBWk

1

Z0

(Tr {ρ̂eff V̂ 2
k,ϕ}+ Tr {ρ̂ck Êck,ϕ}+ Tr {ρ̂opk Ênk,ϕ})

= GkBWk

[
�ω0

2
coth

�ω0

2kBT
+ ς(TLc) + kBTCHk

]
. (4.65)

It is needless to say that the quantum-mechanical mean value associated with the
quantum voltages V̂RLk vanishes because of Eqs. (4.54), (4.58), and (4.61).

Equation (4.65) clearly shows that the LO phase is totally irrelevant when com-
puting the variance of thermal states. For this reason, we will hereafter drop the
unnecessary subscript “ϕ.”

4.3 Quantum Parameter Estimation

After presenting the main idea at the basis of quantum parameter estimation, in
this section we introduce the experimental method used to measure the classical
auto-correlation function for a set of realizations {sk}i (with i ∈ N) of the quantum
voltage V̂RLk with respect to the thermal/vacuum states associated with the different
stages of our detection chain (cf. Subsec. 4.3.1). Afterwards, we show how to obtain
from the auto-correlation function the classical auto-covariance function and, then,
the variance associated with the set of realizations {sk}i for a temperature range
comprised between approximately 20 and 350mK. The classical variance represents
an estimation of the quantum-mechanical variance given by Eq. (4.65), which has
thoroughly been discussed in the previous section. Based on Eq. (4.65), we then
introduce a fitting model for the temperature dependence of the variance, enabling,
for the first time to our knowledge, the high fidelity observation of the “distance”
between the experimental measurement and theoretical value of vacuum fluctuations
at microwave frequencies. Furthermore, we present the frequency dependence of the
variance for a frequency range comprised between approximately 4.7 and 7.1GHz.
Our data and fits constitute a clear demonstration that we are able to characterize
the microwave vacuum state for a broad range of parameters. In addition, the fits
allow us to thoroughly characterize the experimental setup by extracting the total
gain and noise temperature as a function of frequency for both channels of the
detection chain (cf. Subsec. 4.3.2). Finally, we take advantage of our two-channel
detection chain to obtain an estimation of the cross-correlation function of the signals
at the output ports of the microwave beam splitters. In this manner, we have access
to the cross-covariance function and, thus, to the covariance of such signals. The
most relevant features of our correlation measurements are: a) the almost total
cancellation of the noise contribution added by the cryogenic amplifiers; b) the
possibility of controlling the sign of the cross-correlation function by means of a
phase shifter; c) the cancellation of the thermal/vacuum noise associated with the

176



CHAPTER 4. CORRELATION HOMODYNE DETECTION AT MICROWAVE
FREQUENCIES:
EXPERIMENTAL RESULTS

primary and secondary noise sources (cf. Subsec. 4.3.3). The latter represents an
unprecedented result, which helps unveiling the quantum-mechanical behavior of
microwave beam splitters.

In Appendix A, we discuss the role played by the temperature-dependent noise
contribution due to the cryogenic circulators. In Appendix B, we show that a simple
polynomial fit leads to ambiguity in the interpretation of our experiments. Finally, in
Appendix C, we present an alternative method for the analysis of the temperature-
frequency dependence of the auto-covariance (Planck spectroscopy) data shown in
Subsec. 4.3.2.

Brief Review of Quantum Parameter Estimation

Calculating the exact form of the quantum-mechanical mean value and variance
or, more in general, of a quantum parameter for a given signal is a deterministic
process, which follows from the fundamental laws of quantum mechanics. Because
of its deterministic nature, such a process suffers from the impossibility of giving
us a measurable - classical - quantity. Quantum parameters are representations of
the noumenological reality residing behind the phenomenological reality we intend
to grasp with our experimental - classical - hands [328]. Thus, all the results of
Sec. 4.2 do not correspond to real measurements. Even further, such results cannot
be measured, but they can only be estimated. By what means we can perform such
estimations is our next quest.

The estimation of quantum parameters is realized through the experimental pro-
cess of measurement. Let us focus on the case of random signals, e.g., thermal states
(vacuum states in the limit of very low temperatures):

1. At the top of either one the two channels of the detection chain (cf. Fig. 3.10),
after all circulators, amplifiers, attenuators, mixers, and filters, the quantum
voltage V̂RLk is recorded by means of an A/D acquisition card. The signal
sk recorded by the card is a classical realization of the quantum voltage,
V̂RLk → sk. Each realization sk corresponds to one single measurement and is
characterized by a random time dependence. The duration of one time-trace
sk(t) is set by the measurement time Δtm, i.e., by the time window during
which the acquisition card is “open.”

Reminder: Every time we refer to a classical realization (signal), we remove
the “∧,” which is reserved only to quantum-mechanical operators;

2. We are allowed to repeat the measurement of point 1. a number Nc of times.18

In this manner, we obtain a set of realizations indicated as {sk}i, with i =
1, 2, . . . , Nc. For random signals, the elements of this set are generally different
one from another. Employing the experimental jargon, such elements are
referred to as cycles, which explains the subscript “c” in Nc;

3. There are now two possible scenarios. The short and long measurement time
limits:

(a) In the limit of short measurement time, the quantum parameters (mean
value and variance) associated with the voltage V̂RLk cannot be estimated

18In the experiments, Nc ranges between a few hundreds and a few millions, up to 100 million.
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from a single time-trace, sk(t). In this case, we need to collect a suffi-
ciently large number Nc of realizations in order to obtain unambiguous
information about the moments of V̂RLk.

The quantum-mechanical mean value given by Eq. (4.15) can then be
estimated resorting to the classical ensemble average

μRLk = 〈ψ|V̂RLk|ψ〉

≈ 1

Nc

Nc∑
i=1

{sk}i ≡ 〈sk〉 . (4.66)

Oftentimes, the quantity 〈sk〉 is also defined as mk. It is well-known from
any basic course in statistics that the larger the number of realizations,
Nc, the more accurate the estimation given by Eq. (4.66) [298]. Trivially,
in the limit Nc → ∞ we would expect to obtain a perfect parameter
estimation.19

More in general, the quantum-mechanical mean value for any well-defined
function f(V̂RLk) can be estimated as

〈ψ|f(V̂RLk)|ψ〉 ≈
1

Nc

Nc∑
i=1

f({sk}i) ≡ 〈f(sk)〉 . (4.67)

When f(V̂RLk) = V̂ 2
RLk, the quantum-mechanical variance given by Eq. (4.18)

can be estimated by means of a classical ensemble average as

σ2
RLk = 〈ψ|V̂ 2

RLk|ψ〉 − μ2
RLk

≈ 1

Nc

Nc∑
i=1

({sk}i)2 −
( 1

Nc

Nc∑
i=1

{sk}i
)2

≡ 〈s2k〉 − 〈sk〉2 ; (4.68)

(b) In the limit of long measurement time, one single time-trace sk(t) may be
sufficient to estimate the quantum parameters of V̂RLk.

In this case, assuming time-traces with a continuous time dependence,
the quantum-mechanical mean value given by Eq. (4.15) can be estimated
resorting to the classical time average

μRLk = 〈ψ|V̂RLk|ψ〉

≈ 1

Δtm

∫ +Δtm/2

−Δtm/2

dt sk(t) ≡ sk . (4.69)

The quantum-mechanical mean value for f(V̂RLk) can be estimated as

〈ψ|f(V̂RLk)|ψ〉 ≈
1

Δtm

∫ +Δtm/2

−Δtm/2

dt f [sk(t)] ≡ f(sk) . (4.70)

19Indeed, that of parameter estimation is a vast chapter in the theory of statistics. It is possible
to define parameter estimators with higher or lower level of distortion and a large set of tests to
verify estimation accuracy. We remind to Refs. [298, 301] for a more complete treatment of this
topic.
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Finally, when f(V̂RLk) = V̂ 2
RLk, the quantum-mechanical variance given

by Eq. (4.18) can be estimated as

σ2
RLk = 〈ψ|V̂ 2

RLk|ψ〉 − μ2
RLk

≈ 1

Δtm

∫ +Δtm/2

−Δtm/2

dt s2k(t) ≡ s2k − sk
2 . (4.71)

If the classical realizations sk are ergodic with respect to the first moment,
then sk = 〈sk〉 = mk. Similarly, if they are ergodic with respect to

the second moment, then also s2k = 〈s2k〉. These properties can be very
useful when performing experiments, making possible to switch between
ensemble and time average depending on the specific experimental needs.
For an introduction to the complex topic of ergodic processes we remind
the reader to Refs. [300–302].

In the experimental reality, the time traces sk(t) recorded by the acqui-
sition card are not a continuous function of time. The acquisition card
samples each time trace at a given sampling rate fsampling (cf. chapter 3,
Subsec. 3.2.6), transforming the trace into a discrete function of time

sk(t) → sk[ j ] , (4.72)

where j = 1, 2, . . . , Ns and Ns ≡ Δtm fsampling is the number of samples
within one single trace. Under these more realistic assumptions, the
quantum-mechanical mean value and variance are estimated as

μRLk ≈
1

Ns

Ns∑
j=1

sk[ j ] , (4.73a)

σ2
RLk ≈

1

Ns

Ns∑
j=1

s2k[ j ]−
( 1

Ns

Ns∑
j=1

sk[ j ]
)2
. (4.73b)

Hereafter, we will give all relevant expressions in terms of realizations
with both a continuous and a discrete time dependence. We find the
continuous case to be helpful from a pedagogical point of view, whereas
the fully discretized case reflects more closely the experimental reality.

All estimations enumerated above take place in the so-called post-processing
stage of the experiment (cf. very top part of Fig. 3.10) and are carried out with the
aid of a PC.

4.3.1 Estimation of The Auto-Correlation Function

In our brief introduction to quantum parameter estimation we have made a sharp
distinction between short and long measurement time. The question we want to
address now is on the possibility to make full use of the twofold nature of a given set
of realizations {sk(t)}i (or {sk[ j ]}i in the fully discretized case). Such set encodes
information in both the number of cycles Nc and measurement time Δtm (or number
of samples Ns). The ensemble average takes only advantage of the large number
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Figure 4.4: Auto-correlation function R11(τ) for a vacuum state obtained by
cooling to 30mK a Wilkinson power divider with a resistive load at the input
port. At first glance, the auto-correlation function reminds of a delta Dirac
centered in the origin of the time axis. The zoom-in shown in the inset reveals
that the function is actually a cardinal sine [cf. Eq. (4.82)], which owns its
origin to the finite measurement bandwidth BW1.

of cycles in the set, while the time average only of the long time duration (or,
equivalently, large number of samples) of one single trace. One way to combine these
two opposite approaches is to define a third limit, where the number of realizations
is large enough to obtain an accurate global ensemble average and, simultaneously,
each realization is long enough (or with a large enough number of samples) for the
time correlation of one trace with itself to be well defined. We refer to this limit as
the intermediate measurement time limit. In this regime, all information about the
signals to be measured is encoded in the so-called auto-correlation function.

Before giving the expression utilized in the experiments for the estimation of
the auto-correlation function, we recall a few basic definitions valid for random
signals [300, 301]:20

1. Given a continuous random signal x(t), we define the auto-correlation function
Rxx(t1, t2) as the mean value of the product of two samples of the signal at
the two times t1 and t2, respectively,

Rxx(t1, t2) ≡ 〈x∗(t1) x(t2)〉

=

∫ +∞

−∞

∫ +∞

−∞
da db a∗b fxt1,xt2(a, b) , (4.74)

20The extension to deterministic signals is straightforward.
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where the function fxt1,xt2(a, b) is the joint probability density of the two ran-

dom variables x(t1) ≡ xt1 and x(t2) ≡ xt2;

2. Given a discrete random signal x[n], we define the auto-correlation function
Rxx[n1, n2] as the mean value of the product of two samples of the signal at
the two discrete times n1 and n2, respectively,

Rxx[n1, n2] ≡ 〈x∗[n1] x[n2]〉

=

∫ +∞

−∞

∫ +∞

−∞
da db a∗b fxn1,xn2

(a, b) , (4.75)

where the function fxn1,xn2
(a, b) is the joint probability density of the two

random variables x[n1] = xn1 and x[n2] = xn2.

The majority of continuous and discrete signals encountered in reality have
the characteristic to be a function of only one independent variable. These
signals belong to the class of so-called stationary signals. There are two types
of stationary signals:

(a) strictly stationary signals are those signals for which all statistical prop-
erties are independent of time;

(b) weakly stationary signals are those signals for which the mean value is
independent of time, 〈x(t)〉 ≡ μx(t) = μx , ∀t (continuous signals) and
〈x[n]〉 ≡ μx[n] = μx , ∀n (discrete signals), and the auto-correlation func-
tion depends only on the time lag τ = t1 − t2 for continuous signals and
� = n1−n2 for discrete ones, Rxx(t1, t2) = Rxx(τ) or Rxx[n1, n2] = Rxx[�].

Weakly stationary signals are the most common ones.

The auto-correlation function for a continuous or discrete random signal can
be rewritten as a function of the time lag τ or � as

Rxx(t2, τ) ≡ 〈x∗(t2 + τ) x(t2)〉 , (4.76a)

Rxx[n2, �] ≡ 〈x∗[n2 + �] x[n2]〉 , (4.76b)

or, substituting t2 → t and n2 → n, more simply as

Rxx(t, τ) ≡ 〈x∗(t+ τ) x(t)〉 , (4.77a)

Rxx[n, �] ≡ 〈x∗[n+ �] x[n]〉 . (4.77b)

Equation (4.77b) clearly shows the dependence of the auto-correlation function
from the first sample n of the signal and the interval � between the first and
second sample which are involved in the calculation. If the signal x is weakly
stationary, the auto-correlation function depends only on the time lag τ or �
and, thus, is given by

Rxx(τ) ≡ 〈x∗(t+ τ) x(t)〉 , (4.78a)

Rxx[�] ≡ 〈x∗[n+ �] x[n]〉 . (4.78b)

Since the signal sk measured in our experiments is weakly stationary, our
next task is to find a suitable estimation for the auto-correlation functions of
Eqs. (4.78a) and (4.78b) in the case x = sk.
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There are several methods to estimate the auto-correlation function of a weakly
stationary signal. In the case of signal sk, the most general way is to perform a double
averaging, which involves both the number of cycles Nc and the measurement time
Δtm (or number of samples Ns) in two different steps. In a first step, the average of

the i-th cycle {sk(t)}i ≡ s
(i)
k (t) or {sk[ j ]}i ≡ s

(i)
k [ j ] is carried out with respect to

the measurement time Δtm or number of samples Ns of that cycle, as follows

R(i)
kk(τ) ≡

1

Δtm

∫ +Δtm/2

−Δtm/2

dt s
(i)
k (t+ τ)s

(i)
k (t) , (4.79a)

R(i)
kk[�] ≡

1

Ns

Ns∑
j=1

s
(i)
k [ j + � ]s

(i)
k [ j ] . (4.79b)

The above equations are referred to as biased estimations due to the normalization
over the number of samples Ns. A particularly relevant feature of this class of esti-
mations is that their Fourier transform is directly related to the true spectral density
of the signal and, consequently, does not present unphysical negative values. For in-
stance, if we were to use an unbiased estimation, the Fourier transform would present
negative values! We remind the reader to Ref. [301] for more details on biased and
unbiased estimations. It is noteworthy to mention that Eqs. (4.79a) and (4.79b) on
their own do not constitute an accurate estimation for the auto-correlation function
of signal s

(i)
k , as one might be tempted to assume. In fact, if only one single real-

ization of the signal is available, as often happens in classical telecommunications,
it can be shown that Eqs. (4.79a) and (4.79b) are an inconsistent estimation for
the auto-correlation function [301]. In that case, special techniques must be used in
order to obtain more accurate results [301]. In our case, however, a large number
of realizations Nc is available. We can thus perform a second averaging step, where

the average of R(i)
kk(τ) or R

(i)
kk[�] is carried out with respect to the number of cycles

Nc. We obtain

Rkk(τ) ≈
1

Nc

Nc∑
i=1

R(i)
kk(τ)

=
1

Nc

Nc∑
i=1

1

Δtm

∫ +Δtm/2

−Δtm/2

dt s
(i)
k (t+ τ) s

(i)
k (t) , (4.80a)

Rkk[�] ≈
1

Nc

Nc∑
i=1

R(i)
kk[�]

=
1

Nc

Nc∑
i=1

1

Ns

Ns∑
j=1

s
(i)
k [ j + � ] s

(i)
k [ j ] . (4.80b)

Differently from Eqs. (4.79a) and (4.79b), the estimations for the auto-correlation
function of signal sk given by Eqs. (4.80a) and (4.80b) are among the most accurate
estimations available. It is worth reminding that, in this case, the level of accuracy,
i.e., the variance of the estimation, depends almost entirely on the number of cycles
Nc. The number of samples Ns only contributes to improving the quality of the
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central part of the auto-correlation function. Once again, we remind the reader to
Ref. [301] for a more elaborate analysis.

The estimation of Eq. (4.80b) is the one employed in our experiments. Hereafter,
in order to avoid too many indexes in the equations and cumbersome definitions, we
will refer to an auto-correlation function or its estimation as the same entity. For
simplicity, we also prefer to discuss the case of continuous signals instead of the more
realistic case of discrete signals. In addition, since signal sk has units V/Hz,

21 we will
scale the auto-correlation function by the bandwidth BWk and normalize it by the
load impedance Z0 in order to obtain units W, Rkk(τ) ≡ BWk 〈s∗k(t+ τ) sk(t)〉/Z0.

Figure 4.4 shows the auto-correlation function R11(τ) of signal s1, when a Wilkin-
son power divider is used as the microwave beam splitter. The data refer to an
experiment performed at a stable temperature T � 30mK. Similar results are
obtained for signal s2 (data not shown). We stress one more time that, in the ex-
periments, we measure an approximation of Rkk(τ) or Rkk[�] [cf. Eqs. (4.80a) and
(4.80b), respectively].

Since signal sk is the sum of the noise contributions due to the single effective
noise source described by Eq. (4.51), the cryogenic circulators, and the cryogenic
amplifier of one of the two channels of the detection chain, the auto-correlation
function is given by [301]

Rkk(τ) =
BWk

Z0

[εk δ(τ) + μ2
k] , (4.81)

where δ(τ) represents a dimensionless delta Dirac centered in the origin of the time
axis and the quantity εk has units V

2/Hz.22 In general, all weakly stationary signals
characterized by an auto-correlation function similar to that of Eq. (4.81) are defined
as white signals. Equation (4.81) is an idealized function valid in principle only for
signals with an infinite bandwidth BWk. It is easy to show that the power associated
with such signals, i.e., the integral of the signal spectral density, is infinity [301]!
This result, due to the infinite bandwidth, does not carry any physical meaning.

In reality, however, the measurement bandwidth is always limited. For example,
in our experiments the nominal measurement bandwidth BWk is set by Eq. (4.64).
In this case, the signal is said to be white over the finite bandwidth BWk and the
auto-correlation function of Eq. (4.81) becomes [301]

Rkk(τ) =
BWk

Z0

(
εk
sin πBWk τ

πBWk τ
+ μ2

k

)
. (4.82)

This function is a translated cardinal sine23 with argument BWk τ . The inset of
Fig. 4.4 clearly shows an experimental curve resembling a cardinal sine. In order
to give a more quantitative analysis of the experimental data, we use the simple
model of Eq. (4.82) to fit the curve in the inset of Fig. 4.4. Figures 4.5(a) and 4.5(b)
show such a fitting for signals s1 and s2, where εk and BWk (k = 1, 2) are used
as free fitting parameters. It is worth fitting both signals in order to extract the

21This comes from our self-consistent definition of the quantum voltage V̂RLk and we keep it also
for the measured signal sk given that in all the formalism developed so far we have always assumed

V̂RLk → sk. In reality, the signals recorded by the acquisition card have units V.
22We already know from Subsec. 4.2.2 that μk = 0. We continue keeping it in all auto-correlation

functions for consistency.
23We recall that a cardinal sine (sinc) is defined as (sinπx)/πx.
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Figure 4.5: Auto-correlation functions Rkk(τ) for channels 1 and 2. The
measurements refer to the same state as in Fig. 4.4. (a) Full blue diamonds:
experimental data. Red line: fit obtained from the model of Eq. (4.82) with
ε1 and BW1 as free fitting parameters. (b) As in (a) for channel 2.
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experimental measurement bandwidth B̃Wk for both channels of the detection chain.

As indicated in the figures, we find B̃W1 � 51.56MHz and B̃W2 � 52.52MHz.
The fitting is practically perfect for both channels and reveals that the cardinal
sine (auto-correlation function) intercepts the x-axis, which, in the figures, is given

in units of inverse experimental bandwidth, at exact integer multiples of B̃W
−1

k .
Notably, the experimental bandwidth is approximately twice as large as the nominal
bandwidth of the filter/DC block combination at the output port of each mixer,

B̃Wk � 52MHz � 2BWIFk, where BWIFk = 7kHz − 24.5MHz (cf. Fig. 3.10). This
effect is due to DSB mixing.

Remarkably, in our definitions of white signals we did not make any assumption
on the probability density of the random signals themselves. In the case of signal
sk, all information about the signal probability density (or distribution) is encoded
in the density operators of the states associated with the quantum voltage V̂RLk, as
explained in Subsec. 4.2.2.

4.3.2 Auto-Covariance Function and Variance

The auto-correlation function presented in the previous section can opportunely be
skewed in order to obtain the so-called auto-covariance function for a random signal.
The various definitions of auto-covariance follow directly from the corresponding
definitions of auto-correlation:

1. Given a continuous random signal x(t), we define the auto-covariance function
Cxx(t1, t2) as

Cxx(t1, t2) ≡ 〈[x(t1)− μx(t1)]
∗ [x(t2)− μx(t2)]〉

= Rxx(t1, t2)− μx(t1)μx(t2) , (4.83)

where μx(t) is the mean value of the signal x(t) at time t;

2. If the signal x is weakly stationary, the auto-covariance function depends only
on the time lag τ and, thus, reduces to

Cxx(τ) ≡ Rxx(τ)− μ2
x . (4.84)

A fundamental property of the auto-covariance function given by Eq. (4.83) is
obtained when t1 = t2 = t. In this case, the auto-covariance reduces to the time-
dependent variance of the random signal,

Cxx(t, t) = 〈[x(t)− μx(t)]
∗ [x(t)− μx(t)]〉

= 〈x2(t)〉 − μ2
x(t) = σ̃2

x(t) . (4.85)

In the case of weakly stationary signals, the variance is obtained setting the delay
time τ = 0 and is just a number,

Cxx(τ = 0) ≡ Rxx(τ = 0)− μ2
x = σ̃2

x . (4.86)

In the special case of signal sk, which is white over a bandwidth BWk, the auto-
covariance is given by the cardinal sine function

Ckk(τ) =
BWk

Z0

εk
sin πBWk τ

πBWk τ
. (4.87)
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Figure 4.6: Planck distribution for a thermal/vacuum state at ωLO =
2π × 5.3GHz centered around a measurement bandwidth BWk = 52MHz.
(a) Full blue circles: experimental data estimating the temperature depen-
dence of the quantum-mechanical variance of Eq. (4.90), Ckk(τ = 0) = σ̃2k(T ).
Dashed red lines: curves obtained using the polynomial fitting model from
which f0 = ω0/2π and, equivalently, Tcr,k are estimated. (b) Full blue cir-
cles: same experimental data as in (a). Dashed light green (light grey) line:
fitted curve obtained from the two-parameter fitting model [cf. Eq. (4.90)].
Magenta (middle grey) line: fitted curve obtained from the three-parameter
fitting model [cf. Eq. (4.98)]. The magenta line fits the data almost perfectly.
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At delay time τ = 0 the cardinal sine is unity and Eq. (4.87) becomes equivalent to
the variance of signal sk,

σ̃2
k =

BWk

Z0

εk . (4.88)

The result of Eq. (4.88) must be the same as that of Eq. (4.65). Hence, mapping
back Eq. (4.88) into Eq. (4.65), we readily find that εk = σ2

k. On one hand, Eq. (4.88)
accounts for the general statistical properties of one realization sk of the quantum
voltage V̂RLk, i.e., it accounts for the fact that the signal is white over a finite
bandwidth BWk. On the other hand, Eq. (4.65) accounts for the detailed statistical
properties of the quantum states associated with the quantum voltage V̂RLk, i.e., it
accounts for the probability density (or distribution) of such states.

Since for signal sk the mean value μk = 0 (cf. Subsec. 4.2.2), the auto-correlation
function given by Eq. (4.82) is equivalent to the auto-covariance function of Eq. (4.87),

Rkk(τ) = Ckk(τ) . (4.89)

This result, in conjunction with the possibility of mapping Eq. (4.88) into Eq. (4.65)
and vice versa, embodies the soul of our experiments. That is, if we are able to obtain
an accurate estimation for the auto-correlation function of signal sk by means of
Eq. (4.80a) [or Eq. (4.80b)], then setting the delay time τ = 0 (or � = 0) allows
us to measure the quantum-mechanical variance for the quantum voltage V̂RLk with
respect to the various quantum states of the two channels of the detection chain.

Figure 4.6(a) shows the measurement, i.e., a quantum-parameter estimation, of
the quantum-mechanical variance given by Eq. (4.65) as a function of temperature T .
As for the case of the auto-correlation data of Fig. 4.4, also in this case a Wilkinson
power divider is employed as microwave beam splitter. The experimental results of
Fig. 4.6(a) are obtained first estimating the auto-correlation function of signal sk
by means of Eq. (4.80b) for many different values of the temperature and, then,
extracting the data points associated with delay time � = 0. In other words, we first
measure a set of cardinal sine functions as in Fig. 4.4 for an increasing monotonous
set of temperatures and, then, plot only the points corresponding to the peak of
each cardinal sine. The final curve evidently reminds of a Plank distribution with a
large vertical offset. The origins of such an offset will soon be explained.

A first inspection of the data of Fig. 4.6(a) shows that at high temperatures the
variance is characterized by a linear dependence with T , while at low temperatures
it becomes flat. The polynomial (linear) fit indicated by the dashed red lines in
the figure help visualizing such a behavior. What is the origin of the plateau at
low temperatures? In the answer to this question lies the quantum-mechanics of
our problem. In order to gain insight into the physics underlying our data, we
recall the theoretical model for the variance of the quantum voltage V̂RLk found in
Subsec. 4.2.2, Eq. (4.65):

σ̃2
k(T ) ≈ Gk BWk

[
�ω0

2
coth

�ω0

2kBT
+ kBTCHk

]
. (4.90)

The expression for the variance in Eq. (4.90) differs from that in Eq. (4.65) because
the noise associated with the circulators has been neglected for simplicity.24 We

24This is also the reason for the “≈” sign instead of the “=” sign in Eq. (4.90).
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remind the reader to Appendix A for more details on the treatment of the circulators
noise in the analysis of the experimental data.

The asymptotic response of Eq. (4.90) in the high temperature limit is given by

lim
T→+∞

σ̃2
k(T ) ≈ Gk BWk kB(T + TCHk) . (4.91)

In this limit, the variance σ̃2
k is the sum of two contributions: The variance of the

thermal state associated with the single effective noise source at the output of the
power divider [cf. Eqs. (4.51) and (4.52)], which is a linear function of T , and the
variance of the noise due to one of the cryogenic amplifiers, which is a constant
offset. On one hand, the slope of Eq. (4.91) is proportional to the power gain Gk

and bandwidth BWk. The latter is set by the narrowest filter in the detection chain
and, as shown in Subsec. 4.3.1, can be extracted from the fit based on the model
of Eq. (4.82). On the other hand, the y-intercept of Eq. (4.91) is proportional to
the amplifier noise temperature TCHk. Thus, the simple first-order polynomial fit
indicated by the oblique dashed red line in Fig. 4.6(a) allows us to estimate both
power gain and amplifier noise temperature.

The asymptotic response of Eq. (4.90) in the low temperature limit is given by

lim
T→0+

σ̃2
k(T ) ≈ Gk BWk

(
�ω0

2
+ kBTCHk

)
. (4.92)

In this limit, the variance σ̃2
k is also the sum of two contributions: The variance of

the vacuum state associated with the noise source at the power divider output and,
again, the variance of the noise due to one of the cryogenic amplifiers. Notably, both
these contributions are constant offsets. This fact has a very important consequence.
It shows that the vacuum and amplifier contribution to the total variance are de-
generate, in the sense that the sum of two offsets is still an offset. This means that
the auto-correlation experiments discussed here are insensitive to the fundamental
offset which is due to the vacuum fluctuations and which is a direct consequence
of the commutation relations for bosonic signal operators. In summary, we are not
allowed to perform a direct measurement of the variance of the vacuum fluctuations,
at least with phase-preserving amplifiers.

Nevertheless, the intercept point between Eqs. (4.91) and (4.92) on the horizontal
axis,

Tcr,k =
�ω0

2kB
, (4.93)

which is referred to as cross-over temperature, is also related to the energy of the
vacuum fluctuations of the noise at the power divider output. Below the cross-over
temperature, the system can safely be assumed to be in the vacuum state. We notice
that the cross-over temperature encodes exactly the same amount of information as
the difference between the y-intercepts of Eqs. (4.91) and (4.92) [cf. Fig. 4.6(a)].
Assuming no knowledge on the angular frequency ω0, we might be tempted to use the
zero- and first-order polynomial fits indicated by the horizontal and oblique dashed
red lines in Fig. 4.6(a), respectively, in order to estimate the experimental cross-
over temperature and, thus, the variance associated with the vacuum fluctuations.
Such an estimate would represent an indirect measurement of the variance of the
vacuum fluctuations. It is worth recalling here that the Planck spectrum of Eq. (4.8)
can be derived via Einstein’s A and B coefficients without knowing the bosonic
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commutation relations (cf. Sec. 4.1). Since one half of the spontaneous emission
coefficient is due to the vacuum fluctuations, the Planck distribution embodies the
vacuum regardless of any vertical offset (cf. Sec. 4.1). The presence of the vacuum
manifests itself in the plateau of the Planck distribution: Observing such a plateau
constitutes an indirect measurement of the vacuum fluctuations.

The fundamental relation of Eq. (3.93), which stands at the basis of our model,
reminds us that we indeed posses a full knowledge of ω0, being this the angular fre-
quency of the LO signal. As a consequence, if from the polynomial fits of Fig. 4.6(a)
we obtain an estimate for ω0 which is not equal to the LO angular frequency, the
result does not contain any physical meaning. Under more realistic assumptions, the
fitted ω0 should be equal to ωLO within the measurement bandwidth BWk. In this
case, if the fitted ω0 differs from ωLO for more than the measurement bandwidth,
then, again, the result does not have any physical meaning.

The experimental data25 of Fig. 4.6(a) refer to a LO angular frequency ωLO =
2π × 5.3GHz. Assuming a measurement bandwidth BWk = 52MHz,26 the poly-
nomial fit indicated by the dashed red lines give a gain Gk � 89.64 dB and a
noise temperature TCHk � 7.03K. In this case, the fitted cross-over temperature
is Tcr,k � 108.9mK, which corresponds to an angular frequency ω0 � 2π×2.27GHz.
The angular frequency ω0 obtained from the fit differs from ωLO by more than
2π × 3GHz, which is larger than the measurement bandwidth by orders of magni-
tude! Similar results are reproducible throughout all our experiments.

What is the reason for such a conceptual catastrophe? The most plausible answer
is that it is incorrect attempting to fit the angular frequency ω0, which, within the
(narrow) measurement bandwidth, must be equal to ωLO. But if we assume perfect
knowledge of ω0, we also assume perfect knowledge of the variance of the vacuum
fluctuations. If this were the whole truth, given our data we would not be allowed to
tell anything about the variance of the vacuum fluctuations, the knowledge of which
is assumed a priori among the hypothesis of our model [cf. Eq. (3.93)]. However,
from the derivation of Eq. (4.8) via Einstein’s A and B coefficients (cf. Sec. 4.1), we
know that the Planck spectrum embodies the vacuum fluctuations.27 The presence
of the vacuum fluctuations manifests itself in the plateau observed in the experi-
ments. We thus reach a dilemma: Either we accept the fact that only a qualitative
observation of the vacuum fluctuations via the measurement of the plateau of the
Planck distribution is conceivable or we try to follow a different path in order to
extract quantitative information about the vacuum. The latter is the option to be
pursued in the following.

One possibility to restore physical meaning to our results and carry out a quan-
titative analysis of the data is to further develop the theoretical model at the basis
of our experiments. As already discussed in chapter 3, Subsec. 3.1.1, the measured
temperature T does not reflect the effective temperature of the resistive termination
utilized as a noise source. In fact, such an effective temperature is more correctly

25These data refer to channel 1, i.e., k = 1. For the sake of generality, we keep on using the
generic index k.

26This bandwidth is slightly different from the experimental measurement bandwidth of each of
the two detection channels (cf. last part of Subsec. 4.3.1). However, this does not affect the present
discussion and, assuming a single approximated value, it helps here maintaining the discussion
more general.

27Regardless of any vertical offset.
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given by Eq. (3.8),

T̃ = T − η(T − Tmin) ,

from which it is possible to obtain the mean temperature difference between clamp
and resistor given by Eq. (3.9),

ΔT = − η

2
(Tmax − Tmin) .

Substituting T with the effective temperature T̃ , T → T̃ , we can rewrite the asymp-
totic behavior of Eq. (4.90) in the high temperature limit as

lim
˜T→+∞

σ̃2
k(T̃ ) ≈ Gk BWk kB(T̃ + TCHk) . (4.94)

The intercept between Eq. (4.94) and the T̃ -independent Eq. (4.92) is now found to
be

T̃cr,k =
�ω0

2kB
= Tcr,k − η(Tcr,k − Tmin) , (4.95)

or, equivalently,

Tcr,k =
1

1− η

�ω0

2kB
− η

1− η
Tmin . (4.96)

According to Eq. (4.96), the parameter η quantifies the deviation (i.e., the distance)
between the measured cross-over temperature Tcr,k and the theoretical cross-over

temperature T̃cr,k. Obtaining the more physical quantity ΔT from Eq. (3.9) and

assuming 0 � |ΔT | < T̃cr,k, which is typically the case in our experiments, it allows
us to define the measurement fidelity of the variance of the quantum fluctuations as

F ≡ 1− |ΔT |
T̃cr,k

. (4.97)

In this sense, the quantity |ΔT | tells us how close we can observe the vacuum in
the experiments. Together with the power gain Gk and noise temperature TCHk,
η, from which the mean temperature difference ΔT can be estimated, constitutes
a free fitting parameter of the model. As explained in chapter 3, Subsec. 3.1.1, we
would expect, in general, ΔT to be a negative quantity. As we will show next, this
is almost always true in our experiments, with the exception of a few cases, where
ΔT < 0. This could be due to unknown systematic errors in the experiment and,
thus, further experiments would be needed to shed light on such an issue. Such
negative values impose us to use of the absolute value of ΔT when defining the
fidelity of Eq. (4.97).

We now have in hand an advanced theoretical model based on three fitting pa-
rameters that allows us to gain quantitative information on the measurement of the
vacuum fluctuations. This model may be applied to the polynomial fits shown in
Fig. 4.6(a) and the distance in temperature from the vacuum fluctuations may be
estimated. However, there is an important issue related to this type of fit, i.e., that
the number of experimental data points used to obtain the fitted curves is totally
arbitrary. We can choose to use 5 data points or 500 data points in order to get
the oblique dashed red line of Fig. 4.6(a), resulting in two different sets of values
for the fitted parameters. This leads to an unacceptable level of ambiguity in the
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interpretation of the experiments, which suggests that a simple polynomial fit is
unsuitable for a proper quantitative analysis of the data (cf. Appendix B for more
details on the ambiguity of the polynomial fit).

Since the combined high/low temperature asymptotic behavior of Eq. (4.90)
constitutes an inaccurate fitting procedure, we can go one step back and utilize
Eq. (4.90), rather than its asymptotic functions, as fitting model. Figure 4.6(b)
shows the same experimental data of Fig. 4.6(a) with two overlaid fitted curves. The
dashed light green (light grey) line is obtained using Eq. (4.90) as fitting model with
the power gain Gk and noise temperature TCHk as the only free fitting parameters
(two-parameter fitting model). The resulting curve approaches the data, but the
fitting is far from being perfect. We notice, in fact, a pronounced gap between data
and fitted curve: The basic model of Eq. (4.90) is not confirmed by the experiments.
On the contrary, the magenta (middle grey) line fits the experimental data almost
perfectly. Such a curve is obtained applying our effective temperature model to
Eq. (4.90) and using

σ̃2
k(T ) ≈ Gk BWk

{
�ω0

2
coth

�ω0

2kB[T − η(T − Tmin)]
+ kBTCHk

}
(4.98)

as fitting function, with Gk, TCHk, and η as free fitting parameters (three-parameter
fitting model). In this case, from the fitting we find Gk � 89.62 ± 0.05 dB, TCHk �
7.04 ± 0.08K,28 and η � − 0.0081 ± 0.0130. Since Tmax � 360.28mK and Tmin �
21.70mK, we obtain ΔT � 1.37 ± 2.20mK. The latter corresponds to a fidelity in
the measurement of the variance of the vacuum fluctuations, F � 98.92 + 0.42 −
1.73%. It is remarkable that even for such a high fidelity, i.e., small |ΔT |, the
difference between the two- and three-parameter fits is so dramatic [cf. Fig. 4.6(b)].
If |ΔT | � 0, the dashed light green and magenta lines would overlap and fit almost
perfectly the data. As a consequence, we would posses an almost perfect knowledge
of the variance of the vacuum fluctuations. Only in that case the basic model
of Eq. (4.90) would be confirmed by the data. To summarize, the crucial result
of our three-parameter fitting model is that we are able to perform an indirect
measurement of the distance from the theoretical (ideal) variance of the vacuum
fluctuations at microwave frequencies with an experimental fidelity very close to
99%. Our experimental findings together with the theoretical interpretation and
modeling constitute an unprecedented result, which helps understanding the basis
of the quantization of microwave signals. This is an important step for the further
development of the research field of circuit QED.

Planck Spectroscopy

In order to consolidate the validity of our three-parameter fitting model and gain
further insight into the fundamental concept of vacuum fluctuations, we can now try
to extend the experimental parameter space at hand by adding an extra dimension.
While sweeping the temperature of the noise source (resistive termination), we can
simultaneously vary the LO angular frequency ωLO over a large range. Figures 4.7(a)
and 4.7(c) show the results of a set of experiments where the variance associated with

28Notably, these results are very similar to those obtained from the simple polynomial fitting.
In fact, within the given confidence bounds, power gain and noise temperature are practically
insensitive to different fitting models.
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thermal/vacuum states for both channels of the detection chain is measured at 9

different values of the LO angular frequency, from ω
(1)
LO/2π = 4.7GHz to ω

(9)
LO/2π =

7.1GHz with a spacing (frequency resolution) fr = 300MHz (in general, ω
(h)
LO =

ω
(h)
LO+2π(h−1)fr with h = 1, 2, ..., 9). In the figures, each face color associated with

a set of full circles represents a different LO frequency. For each LO frequency, the
temperature-dependent Planck distribution is obtained via a so-called downsweep
measurement.

A downsweep is realized by first heating the noise source (resistive termination)
to 800mK and let it stabilize at this temperature for 30min. At the end of the
stabilization time, the resistive termination is let cool to the cryostat base temper-
ature. Since the cooling power of the cryostat depends on the temperature of the
mixing chamber (also heated up during the stabilization time), in the temperature
range comprised between 800 and 400mK the temperature of the resistor drops
rapidly due to a high cooling power and the quality of the data is low. For this
reason, all data points above approximately 350mK are not plotted in the figures
and are disregarded from the analysis. Below 350mK, the resistor cools very slowly
due to a lower cooling power. As a consequence, the data quality drastically im-
proves because of the possibility to perform more averaging. In fact, we remind that
the data plotted in the figures are obtained by means of the estimation given by
Eq. (4.80b), the accuracy of which depends on the number of averaged cycles (signal
realizations). Since the temperature, even if slowly below 350mK, is continuously
dropping, the estimation of the variance refers to all signal realizations (cycles) con-
tained within the temperature range T ∓δT/2, where δT is the average temperature
drop corresponding to a fixed cooling time δtcooling.

29 The more cycles are recorded

within the average temperature drop δT , the more accurate is the estimation of the
signal variance 〈σ̃2

k(T )〉T , where the subscript “T” indicates that in a downsweep the
variance is the average of the variance of each realization in the temperature range
T ∓ δT/2. To maintain the notation simple, in all figures and following derivations
we will indicate 〈σ̃2

k(T )〉T simply as σ̃2
k(T ).

To minimize statistical errors, each trace displayed in Figs. 4.7(a) and 4.7(c) is
obtained by averaging 4 distinct traces for the same LO frequency,30 but measured
at different times. The fact that the distinct traces are measured at different times
results in an inhomogeneity between their corresponding temperatures. In other
words, the same range of variance is obtained at different temperatures for any
of the 4 distinct traces. Hence, special care must be taken when averaging the 4
distinct traces together. In the case of Figs. 4.7(a) and 4.7(c), the displayed traces
are obtained in two steps: First, the moving average for the p-th trace of each
one of the 4 distinct traces associated with the h-th LO frequency is computed
and, second, the so-obtained new 4 traces are averaged together. In this way, the
temperature inhomogeneity between the 4 distinct traces is largely reduced and their
global average is much more accurate. More formally, given the trace {x(h)i }p, where
i ∈ [0, Ni] and Ni ∈ N is the number of temperature points contained in the trace,31

the forward moving average (also called sliding or smoothing average with lag) of

29Given that the Planck distribution is a continuous monotonic function, we assume δT/2 > 0.
Also, δT must not be confused with the distance from the vacuum, ΔT .

30Typical value. The number of distinct averaged traces can slightly vary.
31It is important to stress that in a downsweep the vector containing the temperature points is

ordered from high to low temperatures.

194



CHAPTER 4. CORRELATION HOMODYNE DETECTION AT MICROWAVE
FREQUENCIES:
EXPERIMENTAL RESULTS

such a trace is the new trace {y(h)j }p, where each element is given by

y
(h)
j ≡ 1

Nlag

j−(Nlag−1)∑
i=j

x
(h)
i . (4.99)

Here, Nlag represents the number of points used when averaging in the forward
direction (also called lag) and j is contained in the range [0, Nj], where Nj ≡
Ni − (Nlag − 1). We have chosen to perform a moving average with lag because
the temperature drop during a downsweep is highly anisotropic, being the forward
direction, from high to low temperatures, the privileged direction. The moving av-
erage with lag inevitably results in a slight loss of information. In fact, as shown by
Eq. (4.99) the last (Nlag − 1) points must be neglected. In our experiments, these
points correspond to very low temperatures. Usually, we let the system cool for
enough long time to have a redundancy of points at very low temperatures. As a
consequence, the loss of points due to the moving average is not an issue. If we
had realized a moving average with lead (i.e., in the backward direction), the loss
of points would have happened at high temperatures. Due to the more rapid tem-
perature drop at high temperatures, the number of points in this region is not as
dense as at low temperatures and the loss of information would have been a severe
problem. Assuming the same number of points Ni (and, thus, Nj) for all traces,
each displayed trace is finally obtained as

{y(h)j } =
1

4

4∑
p=1

{y(h)j }p . (4.100)

The generalization to more that 4 distinct traces is straightforward. In Appendix C,
we show a different averaging method, which, instead of being based on a moving
average, uses a bin average to obtain the final traces displayed in the plots.

The experimental results of Figs. 4.7(a) and 4.7(c) constitute the paradigmatic
example of a new measurement technique which we define as Planck spectroscopy.
Given a test device, in this case the resistive termination acting as a noise source, by
means of Planck spectroscopy we obtain information on the variance of the states
associated with such a device. In the case of the thermal and vacuum states gen-
erated by a resistor, which are Gaussian states, Planck spectroscopy is equivalent
to a complete tomographic measurement of the states. In fact, we recall that the
knowledge of the mean value (in this case zero) and variance of any Gaussian state
fully characterizes the state (cf. chapter 2, Subsec. 2.1.3). Planck spectroscopy can
almost directly be implemented to characterize more complex devices such as on-
chip resonators or parametric amplifiers (cf. Sec. 4.4), thus making it an appealing
tool in the realm of quantum microwave engineering.

In order to extract quantitative information from the data of Figs. 4.7(a) and
4.7(c), we resort again to our three-parameter fitting model. In Figs. 4.7(b) and
4.7(d), the data points are represented by open dark blue circles. The red lines
overlaid to the data are fitted curves obtained from the three-parameter fitting
model. The fitting is of high quality for all traces and allows us to extract for each
channel k of the detection chain the distance ΔTk in units K between the fitted and
theoretical cross-over temperature as a function of the LO angular frequency ωLO.
It is important to stress that, in general, the distance ΔT should be independent

195



4.3. QUANTUM PARAMETER ESTIMATION

of which channel of the detection chain is considered. In fact, such a temperature
difference refers to effective noise sources which are located before the splitter. How-
ever, as we will show later, each channel of the detection chain is characterized by
a different total power gain and a different noise temperature. Because of this un-
balance and considering that the number of averages used for the signals from both
channels is equal, the results for ΔT associated with the two channels are slightly
different. This is the reason why we here define two temperature differences, ΔT1
and ΔT2 (or, more in general, ΔTk). Figures 4.8(a) and 4.8(b) show the fitted Planck
distributions of Figs. 4.7(b) and 4.7(d) in a 2D color-code plot. The theoretical and
fitted cross-over temperatures as a function of the LO frequency are overlaid to the
curves associated with the 9 Planck distributions for a more clear visualization of
the frequency dependence of the vacuum fluctuations. The function corresponding
to the theoretical cross-over temperature is represented by a dashed white line and
is obtained from Eq. (4.93) imposing ω0 = ωLO. The data points associated with the
fitted cross-over temperatures are indicated by open brown-red diamonds connected
by a brown-red line. These points are obtained from the three-parameter fitting
model, i.e., by extracting the fitting parameter η from Eq. (4.98) and, then, com-
puting the corresponding cross-over temperature from Eq. (4.96). The agreement
between the theory and the results from the three-parameter fitting model is superb
for the entire parameter space.

Figures 4.8(c) and 4.8(d) show the same fitted Planck distributions shown in
Figs. 4.8(a) and 4.8(b), with the difference that the fitted cross-over temperatures
overlaid to the Planck distributions are now estimated from the simple polynomial
fitting model instead of the three-parameter fitting model. As before, the theoretical
cross-over temperature is represented by a dashed white line and the fitted cross-
over temperatures by open brown-red diamonds connected by a brown-red line.
The latter are obtained finding the intercept between the two asymptotic curves
in the limits of low and high temperature for the Planck distributions [e.g., cf. the
horizontal and oblique dashed red lines in Fig. 4.6(a)] at each LO frequency. In
this case, there is a substantial discrepancy between theory and fittings. As already
mentioned above, in Appendix B we show that this is not the only major issue
related to the polynomial fit, which, thus, is unsuitable for a quantitative analysis
of our data.

Yet another possibility to visualize the cross-over between thermal and vacuum
states can be obtained by computing the second derivative of the Planck distribution
with respect to temperature. This is equivalent to calculate the rate of change with
temperature of the specific heat at constant volume CV associated with a given noise
source,

C(T ) ≡ ∂

∂T
CV =

∂

∂T

(
∂

∂T
〈E〉
)
V

, (4.101)

where the mean energy 〈E〉 is given by Eq. (4.13). Figures 4.9(a) and 4.9(b) show
a color-code plot (top and 3D view) of Eq. (4.101). The parameters used to obtain
such plots are extracted from our experiments in order to allow for a better compar-
ison between theory and experimental results. The plots indicate that the second
derivative defines a new cross-over temperature between thermal and vacuum states
in correspondence of the maximum curvature of the Planck distribution,

T
(II)
cr,k = max{C(T )} , (4.102)
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Figure 4.9: Color-code plots of the second derivative of the Planck distribu-
tion with respect to temperature as a function of ωLO = ω0 [cf. Eqs. (4.101)
and (4.13)]. The parameters used to plot the figures are extracted from
our experiments. (a) Top view of ∂/∂T (∂/∂T 〈E〉)V normalized over
max[∂/∂T (∂/∂T 〈E〉)V ]. Dashed white line: Second derivative maximum
showing the frequency dependence of the vacuum fluctuations. (b) 3D view
of the plot in (a).
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which is obtained finding the solution to (∂/∂T )C(T ) = 0. In the figures, the cross-

over temperature T
(II)
cr,k has been calculated numerically32 and is represented by the

dashed white line in Fig. 4.9(a), which corresponds to the sharp ridge shown in
the 3D plot of Fig. 4.9(b). The nature of such a cross-over is closely related to
the angular frequency ω0 of the signal being measured, in a similar manner as for
the cross-over temperature defined by Eq. (4.93). However, the cross-over condition
expressed by Eq. (4.102) is more strict and, according to this definition, the vacuum
is now “reached” at lower temperatures. The difference between the theoretical
cross-over temperature defined by the plain Planck distribution [Eq. (4.93)] and the
one defined by the second derivative of the Planck distribution [Eq. (4.102)] can
easily be seen by comparing the dashed white lines in Figs. 4.1(a) and 4.9(a).

In our experiments the noise source is represented by the resistive termina-
tion, the volume of which can safely be assumed to be constant. The contrac-
tion/expansion due to the cooling/heating cycles between 350 and 20mK is in fact
negligible. In this case, we can apply the definition of Eq. (4.101) to the variance
given by Eq. (4.65) and obtain

Ck(T ) =
∂2

∂T 2
σ̃2
k(T )

= Gk BWk �ω0

∂2

∂T 2

e2z + 1

e2z − 1

= 2Gk

BWk �ω0

T 2

z

sinh2 z
(z coth z − 1) , (4.103)

where z ≡ �ω0/2kBT . Unfortunately, computing the second derivative expressed by
Eq. (4.103) from the raw data reported in Figs. 4.7(a) and 4.7(c) is a challenging task.
In fact, it is an easy exercise in numerical analysis to prove that any small random
(statistical) error in the data prevents from obtaining a meaningful second derivative.
Interpolation is not helpful either because any interpolating function utilized to
emulate the data will result in second derivatives other than the searched one.33 The
most suitable functions emulating the raw data are represented by the fitted curves
reported in Figs. 4.7(b) and 4.7(d), which are obtained from the three-parameter
fitting model. Figures 4.10(a) and 4.10(b) show the second derivative with respect
to temperature of such fitted curves. The theoretical cross-over temperature defined
by Eq. (4.102) as well as the maxima of the second derivatives of the fitting functions
associated with each LO frequency are reported on top of the so-obtained 2D color-
code plot. As always, the theory is represented by the dashed white lines, whereas
the maxima extrapolated from the data by open dark blue diamonds connected by
a dark blue line. Also in this case the agreement between theory and experiment
is excellent (due to technical reasons, we always find that the results for channel 1
are better than for channel 2). Figures 4.10(c) and 4.10(d) show a 3D plot of the
second derivatives, where the sharp ridge clearly indicates the cross-over region.

A close inspection of Figs. 4.7 and 4.8 indicates that the data suffer from an
irregular frequency-dependent structure, which has nothing to do with the intrin-
sic frequency dependence of the Planck distribution. It is enough to consider the
pattern formed by the highest temperature points of each displayed trace for both

32The analytical calculations are trivial, but cumbersome and are not reported in this thesis.
33The author has tried a large variety of interpolation functions and methods without success.
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channels to realize the presence of such a structure. This is due to the depen-
dence on the LO angular frequency of the total gain of each channel of the de-
tection chain, Gk = Gk(ωLO). The frequency-dependent gain can accurately be
estimated by means of the three-parameter fitting model. The results are shown in
Figs. 4.11(a) and 4.11(b). We notice that there is an increasing drop in the gain
at higher LO frequencies mostly owing to the RF bandpass filters located before
the mixers, which are characterized by a nominal high-frequency cutoff at approxi-
mately 6.2GHz (cf. Fig. 3.10). The insets of Figs. 4.11(a) and 4.11(b) show the total
gain as a function of frequency estimated by means of the simple polynomial fitting
model. The results are very similar to those obtained from the three-parameter
model, showing that the gain is insensitive to the specific fitting procedure.

Each trace in Figs. 4.7 and 4.8 has opportunely been shifted in the y-direction
by an offset power equivalent to the noise temperature of the cryogenic amplifiers
at the specific LO frequency of that trace. This allows for a better and more di-
rect comparison between the different displayed traces.34 This manipulation of the
data is legitimate, but we must always bear it in mind. In fact, as for the case
of the total gain, also the noise temperature of the cryogenic amplifiers is charac-
terized by a pronounced angular frequency dependence, TCHk = TCHk(ωLO). Such
a dependence is clearly shown in Figs. 4.11(c) and 4.11(d), where the noise tem-
peratures estimated from the three-parameter fitting model are reported for all LO
frequencies (full dark blue squares). Figure 4.11(c) refers to the cryogenic amplifier
of channel 1 and Figure 4.11(d) to the cryogenic amplifier of channel 2. The insets
of Figs. 4.11(c) and 4.11(d) show the noise temperatures estimated by means of the
simple polynomial fitting model (full light green squares). As for the total gain, also
the noise temperature is practically insensitive to the employed fitting procedure.
The results of Figs. 4.11(c) and 4.11(d) are very important because they reveal that
the noise generated by the cryogenic amplifiers is not white noise.35

To summarize the main findings of Planck spectroscopy, in Figs. 4.12(a) and
4.12(b) we give an overview of the cross-over temperatures estimated from the three-
parameter fitting model for channels 1 and 2, respectively. In these figures, the dark
blue diamonds represent the measured cross-over temperatures as a function of the
LO frequency. The solid red lines are obtained by means of a linear fit to the data,
while the dashed red lines represent the theory. As it appears, the experimental
results for channel 1 are of higher quality than for channel 2, revealing an unbal-
ance between the two channels. Such an unbalance probably owns its origin to the
misbehavior or not optimal biasing of one of the active devices, e.g., an amplifier or
mixer.36 In addition, we notice that the slope of the curves obtained from the linear
fits (solid red lines) is shallower than the slope of the theoretical curves (dashed red
lines) and that theory and curves obtained from the linear fits intercept each other in
the frequency range comprised between 5.3 and 5.9GHz. This indicates that at low
frequencies we overestimate the cross-over temperature, whereas we underestimate
it at high frequencies. A possible frequency dependence of the distance ΔTk between

34Indeed, the displayed traces could have also been normalized over the frequency-dependent
gain. However, there is no large improvement in the appearance of the data to justify such a
normalization.

35This fact does not particularly surprise the author, but it seems to impress a number of
theorists working on circuit QED due to the potential extension of these results to so-called process
tomography [322].

36Just a speculation. To be confirmed experimentally.
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Figure 4.12: Summary of the cross-over temperatures estimated from the
three-parameter fitting model [cf. Eq. (4.98)] for channels 1 and 2 as a func-
tion of the LO angular frequency ωLO. Dark blue diamonds: data points
for the cross-over temperatures obtained from Eq. (4.96) using the channel-
dependent ηk (here, η → ηk) fitted from Eq. (4.98). The confidence bounds
are indicated. Solid red lines: linear fits to data. Dashed red lines: frequency
dependence of the theoretical cross-over temperature associated with the vac-
uum. (a) Results for channel 1. (b) Results for channel 2.
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the theoretical and measured cross-over temperature can arise from the frequency
dependence of the total gain Gk and noise temperature TCHk analyzed above. In
fact, for the same number of averages the estimation of ΔTk converges slightly faster
if the gain is higher and/or the noise temperature lower. Nevertheless, since there
is no other evident reason for a frequency dependence of ΔTk, such dependence
should not be too pronounced. To make sure that the spread in the estimations of
ΔTk found in the experiments [cf. Figs. 4.12(a) and 4.12(b)] is attributable solely to
statistical errors, we performed the following experiment (data not shown). While
measuring one downsweep, the LO frequency was varied between three different val-
ues at short time intervals. In this way, we almost simultaneously obtained three
Planck distributions for the three LO frequencies. Under these conditions, the esti-
mated distance ΔTk should not show any major frequency dependence. Indeed, this
expectation has been confirmed by the experiment.37 Finally, we notice that the
estimated mean temperature difference ΔTk for both detection channels are nega-
tive, as it should be according to our model (cf. 3, Subsec. 3.1.1, The Wilkinson
Power Divider Noise Model), in 61% of the cases [cf. Figs. 4.12(a) and 4.12(b)]. In
addition, the corresponding values of |η| are typically very small, on the order of a
few percent.38

4.3.3 Cross-Correlation Function, Cross-Covariance Func-
tion, and Covariance

In this subsection, we follow a deductive approach to explain a set of measured data.
We start describing the experimental results from a purely qualitative perspective
and then attempt to find the correct theoretical picture which explains them in
quantitative terms.

Let us begin recalling a few basic definitions valid for continuous random signals.
The extension to discrete signals is straightforward.

1. Given two distinct continuous random signals x(t) and y(t), we define the
cross-correlation function Rxy(t1, t2) as the mean value of the product of one
sample of the first signal at time t1 and one sample of the second signal at
time t2, respectively,

Rxy(t1, t2) ≡ 〈x∗(t1) y(t2)〉 ; (4.104)

2. Given the signals x(t) and y(t), we define the cross-covariance function Cxy(t1, t2)
as

Cxy(t1, t2) ≡ 〈[x(t1)− μx(t1)]
∗ [y(t2)− μy(t2)]〉

= Rxy(t1, t2)− μx(t1)μy(t2) , (4.105)

where μx(t) and μy(t) are the time-dependent mean values of signals x(t) and
y(t), respectively;

37We only found very little frequency dependence correlated to the frequency dependence of the
gain and noise temperature.

38As suggested by D. Vion, it would also be interesting to make a multi-branch fit, where a single
value of η for all Planck distributions in a Planck spectroscopy can be obtained. Ideally, this value
should be positive, close to a few percent, and equal for both detection channels. This approach
will be the object of future investigations.
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3. When t1 = t2 = t, the cross-covariance function of Eq. (4.105) reduces to the
time-dependent covariance of the random signal,

Cxy(t, t) = 〈[x(t)− μx(t)]
∗ [y(t)− μy(t)]〉

= 〈x(t) y(t)〉 − μx(t)μy(t) = σ̃xy(t) . (4.106)

If the cross-correlation function and, thus, the cross-covariance function of two
random signals x(t1) and y(t2) depends only on the time lag τ = t1 − t2 and
the signals mean values are time-independent, the two signals are said to be
jointly stationary. In this case,

4. the cross-correlation function is given by

Rxy(τ) = 〈x∗(t+ τ) y(t)〉 , (4.107)

5. the cross-covariance function by

Cxy(τ) = Rxy(τ)− μx μy , (4.108)

6. and the covariance, which is found for τ = 0, reduces to just a number

Cxy(τ = 0) = Rxy(τ = 0)− μx μy = σ̃xy ; (4.109)

7. It is well-known from the theory of probability that two random variables
are independent if their joint probability density is given by the product of
the probability density of each variable. Recalling the general definition of
Eq. (4.74), when two samples xt1 and xt2 of a random signal x are independent,
the density fxt1,xt2(a, b) = fxt1(a)×fxt2(b) and the auto-correlation function of
the random signal is equal to the product of its mean values at times t1 and
t2, μx(t1)× μy(t2),

Rxx(t1, t2) ≡ 〈x∗(t1) x(t2)〉

=

∫ +∞

−∞

∫ +∞

−∞
da db a∗b fxt1(a) fxt2(b)

=

∫ +∞

−∞
da a∗ fxt1(a)

∫ +∞

−∞
db b fxt2(b)

= 〈x∗(t1)〉 〈x(t2)〉 = μx(t1)μx(t2) . (4.110)

Similarly, the cross-correlation function of independent random signals is given
by

Rxy(t1, t2) ≡ 〈x∗(t1)〉 〈y(t2)〉 = μx(t1)μx(t2) ; (4.111)

8. A direct consequence of Eqs. (4.110) and (4.111) and of the definitions given by
Eqs. (4.83) and (4.105) is that the auto- and cross-covariance functions associ-
ated with independent random signals both vanish, Cxx(t1, t2) = Cxy(t1, t2) =
0. It is worth reminding that this is only a necessary condition for the inde-
pendence of two random signals. In general, if the auto- and cross-covariance
of two random signals are zero, the two signals are said to be uncorrelated,
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which does not mean they are independent. The class of independent ran-
dom signals is characterized by the property that if two samples xt1 and xt2
are independent, also their functions g[xt1] and g[xt2] are independent. That
is, if Cxy(t1, t2) = 0, also Cg[xy](t1, t2) = 0. This is not valid in the case of

uncorrelated signals [301].

Taking advantage of our two-channel detection chain, we can measure the cross-
correlation function associated with the realizations s1 and s2 of the quantum volt-
ages V̂RL1 and V̂RL2, respectively. In order to understand what is new in the mea-
surement of the cross-correlation function in comparison to the case of the auto-
correlation function treated in Subsec. 4.3.1, we can start with the following exam-
ple. We know that the realizations sk correspond to white noise over the bandwidths
BWk. Let us consider only one monochromatic component of such a noise at fre-
quency ω0. Referring to Fig. 3.10, we set the phase induced by the LO signal on
channel 2 to zero and that induced on channel 1 to φLO. This can easily be realized
by means of the phase shifter indicated in the figure. At the output of the mixers
we then obtain

s̃1 ∝
√
ε1 cos(ω0t+ δφ) |αLO| cos(ωLOt+ ϕLO) , (4.112a)

s̃2 ∝
√
ε2 cos(ω0t) |αLO| cos(ωLOt) , (4.112b)

where
√
ε1 and

√
ε2 represent random amplitudes (e.g., with Gaussian distribution)

with units V/
√
Hz, δφ a fixed relative phase between signals s̃1 and s̃2 due to a

possible phase unbalance between channels 1 and 2, |αLO| the amplitude of the LO
signal (in reality we know that this quantities factors out from the final expression
for the mixing; cf. Subsec. 3.2.5), and ωLO the LO angular frequency. In the case of
homodyne detection, ωLO = ω0, we can perform a RWA and rewrite Eqs. (4.112a)
and (4.112b) as

s̃1 ∝
1

2

√
ε1|αLO| cos(δφ− ϕLO) , (4.113a)

s̃2 ∝
1

2

√
ε2|αLO| . (4.113b)

Thus, the cross-product of signals s1 and s2 can be written as

c12 = s̃1 × s̃2 ∝
1

4

√
ε1
√
ε2|αLO|2 cos(δφ− ϕLO) . (4.114)

Under the realistic assumptions that BW1 ≈ BW2 = BW and that the signals s1 and
s2 are jointly stationary, the result of Eq. (4.114) can straightforwardly be extended
to all frequency components of the white noise within the bandwidth BW. In this
case, applying the definition of Eq. (4.107) allows us to find the cross-correlation
and cross-covariance functions R12 and C12 as [300, 301],

R12(τ) = C12(τ)

≡ BW

Z0

〈s∗1(t+ τ) s2(t)〉

=
BW

Z0

ε12
sin πBWτ

πBWτ
cos(δφ− ϕLO) , (4.115)
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Figure 4.13: Full correlation and covariance matrices for a Wilkinson power divider for
a thermal/vacuum state at ωLO = ω0 = 2π × 5.0GHz. From Figs. 4.11(a) and 4.11(b),
G1 ≈ 90.5 dB, G2 ≈ 91.3 dB, and G12 ≈ 90.9 dB [cf. Eq. (4.124)]. (a) Auto-correlation
function R11(τ). (b) Cross-correlation function R12(τ) at ϕLO = 0. (c) Cross-correlation
function R21(τ) = R12(τ). (d) Auto-correlation function R22(τ). (e) Temperature de-
pendence of the auto-covariance function at delay time zero, C11(τ = 0) = σ̃21(T ) (vari-
ance). (f) Temperature dependence of the cross-covariance function at delay time zero,
C12(τ = 0) = σ̃12(T ) (covariance). (g) Covariance σ̃21(T ) = σ̃12(T ). (h) Variance
C22(τ = 0) = σ̃22(T ). Blue circles: data points. Red line: fitted curves. Insets: zoom-in
into the thermal-to-vacuum state cross-over region.
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where ε12 ≡ 〈√ε1
√
ε2〉 = σ12. The cross-correlation and cross-covariance functions

R21 and C21 are obtained from Eq. (4.115) by swapping the indexes 1 and 2. Equa-
tion (4.115) reveals that the sign of the cross-correlation (cross-covariance) function
can be tuned by means of the phase induced by the LO signal and can also be nega-
tive. Setting for simplicity δφ = 0 (perfect phase matching between the two channels
of the detection chain), the absolute value of the cross-correlation (cross-covariance)
function reaches its maximum when cosϕLO = ∓ 1, i.e., for ϕLO = nπ with n ∈ N.

Figures 4.13(b) and 4.13(c) show a set of experimental data corresponding to the
measurement (i.e., estimation) of the cross-correlation functions R12(τ) and R21(τ)
for the states generated by the primary and secondary noise source at the input
of a Wilkinson power divider (cf. Subsec. 3.1.1) cooled to a stable temperature of
30mK. We notice that, in our experiments, the cross-correlation function is inde-
pendent of the order of the indexes, R12 = R21, and the two curves of Figs. 4.13(b)
and 4.13(c) are exactly the same. The experiment refers to a measurement band-
width BW � 52MHz centered at an angular frequency ω0 = 2π × 5.0GHz. The
displayed curves remind of a cardinal sine, even if the data quality is visibly worse
than for the case of the auto-correlation functions R11(τ) and R22(τ) plotted in
Figs. 4.13(a) and 4.13(d), where the cardinal sine is practically perfect. The reason
behind such a behavior will become clear towards the end of this subsection. For the
curves in Figs. 4.13(b) and 4.13(c), the phase of the LO signal is opportunely chosen
in order to maximize the cross-correlation function. This is achieved by realizing a
large set of measurements, each of them at a different ϕLO (data not shown), until
the peak value of the cross-correlation function reaches a positive maximum.39 The
positive sign is chosen only for convenience. Nothing would prevent us from opting
for a negative sign, as long as the modulus of the peak value of the cross-correlation
function stays maximum. An inspection of Figs. 4.13(b) and 4.13(c) reveals that
the peak value reached by the cross-correlation function is on the order of a few
tens of nW, while the peak values for the auto-correlation functions are of several
μW. The discrepancy between the experimental data for the auto-correlation and
cross-correlation functions becomes more evident by repeating the cross-correlation
measurements at many different temperatures and, then, extracting those values cor-
responding to a time lag τ = 0. This procedure allows us to obtain the temperature
dependence of the covariance associated with signals s1 and s2. The dashed red lines
in Figs. 4.13(b) and 4.13(c) indicate how to perform such a measurement for a tem-
perature T = 30mK. For a temperature range comprised between approximately
350 and 20mK, the temperature-dependent covariance functions C12(τ = 0) = σ̃12
and C21(τ = 0) = σ̃21 are reported in Figs. 4.13(f) and 4.13(g). As for the case of
the cross-correlation function, also the covariances are independent of the order of
the indexes, C12 = C21, and, thus, the two curves of Figs. 4.13(f) and 4.13(g) are
exactly the same. Such curves, which seem to resemble a Planck distribution, are
characterized by a large data scattering in comparison to the curves associated with
the variance, which are plotted in Figs. 4.13(e) and 4.13(h). Since the amount of
averaging for all curves in Fig. 4.13 is the same, the large data scattering indicates
that the signal associated with the covariance must be much weaker than the sig-

39The LO phase is a knob which allows us to correlate or decorrelate the signals associated
with the two noise sources. Due to the technical difficulties in finding the exact maximum of the
cross-correlation function and, thus, the optimum value of the LO phase, the data presented here
could be slightly decorrelated. This does not constitute a major issue for our analysis.
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nal associated with the variance. This conclusion is confirmed by comparing the
span between the minimum and maximum value for the covariance C12 to the same
span for the variance C11(τ = 0) = σ̃2

1 and/or C22(τ = 0) = σ̃2
2. The span for

the covariance is approximately 70− 90 times smaller than the one for the variance
[compare Fig. 4.13(f) to Figs. 4.13(e) and 4.13(h)]. In addition, a comparison be-
tween Figs. 4.13(e) and 4.13(h), and Figs. 4.13(f) and 4.13(g) reveals that the large
vertical offset due to the noise added by the cryogenic amplifiers is reduced almost
to zero in the cross-correlation measurements.

A quantitative analysis of the different features characterizing auto- and cross-
correlation functions can be carried out recalling the noise model developed for the
Wilkinson power divider in Subsec. 3.1.1. According to that noise model, we must
take into account two noise sources at the input of the beam splitter, the primary and
secondary noise source. While in the analysis of the auto-correlation measurements
the two noise sources can be assumed to constitute a single effective noise source,
for the cross-correlation data this hypothesis does not hold anymore. This is best
understood by calculating the covariance σ̃12 for the quantum voltages V̂RL1 and V̂RL2

associated with the states of the two channels of the detection chain. Neglecting the
noise contribution due to the cryogenic circulators (cf. Appendix A), the quantum
voltages at the input of the acquisition card are given by

V̂RL1 = gRL1δM1 gRH1 gCH1 × (V̂1,ϕ + Ên1,ϕ) , (4.116a)

V̂RL2 = gRL2δM2 gRH2 gCH2 × (V̂2 + Ên2) , (4.116b)

where

V̂1,ϕ ≡ − 1√
2
V̂A,ϕ −

1√
2
V̂D,ϕ , (4.117a)

V̂2 ≡ − 1√
2
V̂A +

1√
2
V̂D (4.117b)

and

V̂A,ϕ ≡ V̄0(â
†e+jϕLO + âe−jϕLO) , (4.118a)

V̂D,ϕ ≡ V̄0(d̂
†e+jϕLO + d̂e−jϕLO) , (4.118b)

V̂A ≡ V̄0(â
† + â) , (4.118c)

V̂D ≡ V̄0(d̂
† + d̂) , (4.118d)

Ên1,ϕ = V̄0(ξ̂
†
1e

+jϕLO + ξ̂1e
−jϕLO) , (4.118e)

Ên2 = V̄0(ξ̂
†
2 + ξ̂2) . (4.118f)

The quantum voltages V̂A,ϕ and V̂A represent the primary noise source with and

without the phase induced by the LO signal, respectively. In analogy, V̂D,ϕ and V̂D
represent the quantum voltages of the secondary noise source with and without LO
phase. The states associated with such voltages are given by the density operators
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[cf. Eq. (4.52)]

ρ̂A =
∑
n

〈n〉nA
(1 + 〈n〉A)1+n

|n〉〈n| , (4.119a)

ρ̂D =
∑
n

〈n〉nD
(1 + 〈n〉D)1+n

|n〉〈n| , (4.119b)

with

〈n〉A ≡ 1

e�ω0/kBTA − 1
, (4.120a)

〈n〉D ≡ 1

e�ω0/kBTD − 1
. (4.120b)

The temperatures of the primary and secondary noise sources, TA and TD, respec-
tively, are typically similar, but in general not equal. Recalling that our measurement
method is based on downsweeps, the temperature difference TA − TD is expected to
be larger at high temperatures due to a short stabilization time which does not
allow the system to reach a thermodynamical equilibrium (cf. Subsec. 4.3.2), with
TD � TA. At very low temperatures, instead, we expect TD ≈ TA because of the
very slow cooling process. Hence, we can model the relationship between the tem-
peratures TD and TA as

TD = TA − γAD(TA − Tmin) , (4.121)

where γAD accounts for a temperature gradient between the two noise sources and
Tmin is the minimum measured temperature, Tmin ≡ min{T}. Remembering the
definition of effective temperature given by Eq. (3.8) and remembering that, when
fitting the auto-correlation data, for each detection channel we find two slightly
different values of the parameter η, η1 and η2, respectively, we can define a new

effective temperature T̃ ∗
A as

T̃ ∗
A = TA − η∗(TA − Tmin) , (4.122)

where η∗ = (η1 + η2)/2. We finally obtain the relationship

TD = T̃ ∗
A − γAB(T̃

∗
A − Tmin) . (4.123)

From Eqs. (4.122) and (4.123) it appears evident that when TA → Tmin (i.e., at very
low temperatures), TD ≈ TA, as expected.

Defining the total power cogain of the detection chain as

G12 ≡ gRL1 δM1 gRH1 gCH1 δatt1 gRL2 δM2 gRH2 gCH2 δatt2

=
√
G1

√
G2 , (4.124)

the covariance σ̃12 can be written as

σ̃12 ≡ BW σ̄12 ≡
BW

Z0

σ12

= G12 BW
1

Z0

〈V̂RL1 V̂RL2〉

= G12 BW
1

Z0

(〈V̂1,ϕ V̂2〉+ 〈V̂1,ϕ Ên2〉+ 〈Ên1,ϕ V̂2〉+ 〈Ên1,ϕ Ên2〉) . (4.125)
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It is reasonable to assume independence between signals V̂1,ϕ and Ên2 as well as

between signals Ên1,ϕ and V̂2 given that such signals are associated with completely
different stages of the detection chain and with totally independent devices. Un-
der this assumption and reminding that the mean value for the quantum voltages
associated with the states of the cryogenic amplifiers are zero [e.g., cf. Eq. (4.61)],

〈V̂1,ϕ Ên2〉 = 〈V̂1,ϕ〉 〈Ên2〉 = 0 , (4.126a)

〈Ên1,ϕ V̂2〉 = 〈Ên1,ϕ〉 〈V̂2〉 = 0 . (4.126b)

In addition, since the cryogenic amplifiers are two distinct devices, we can also
assume the quantum voltages associated with them to be independent signals,40

thus
〈Ên1,ϕ Ên2〉 = 〈Ên1,ϕ〉 〈Ên2〉 = 0 . (4.127)

Under these conditions, setting ϕLO = nπ to maximize the absolute value of the co-
variance,41 and invoking the definitions of Eqs. (4.118a), (4.118b), (4.118c), (4.118d),
(4.119a), (4.119b), (4.120a), (4.120b), (4.122), and (4.123) the expression for the co-
variance reduces to

σ̃12 = G12 BW
1

Z0

〈V̂1,ϕ V̂2〉

= (−1)nG12 BW
1

Z0

1

2
(〈V̂ 2

A〉 − 〈V̂ 2
D〉)

= (−1)nG12 BW
1

Z0

1

2
(Tr {ρ̂A V̂ 2

A} − Tr {ρ̂D V̂ 2
D})

= (−1)nG12 BW
1

2
�ω0

(
1

e�ω0/kBTA − 1
− 1

e�ω0/kBTD − 1

)
= (−1)nG12BW

�ω0

4

{
coth

�ω0

2kBT̃
∗
A

− coth
�ω0

2kB[T̃
∗
A − γAD(T̃

∗
A − Tmin)]

}
. (4.128)

For ϕLO = 0, obtained for example for n = 0, the contribution of the secondary
noise source is smaller than the contribution of the primary noise source and the
covariance is maximum in modulus and positive in sign,42

σ̃12 = G12 BW
�ω0

4

{
coth

�ω0

2kBT̃
∗
A

− coth
�ω0

2kB[T̃
∗
A − γAD(T̃

∗
A − Tmin)]

}
. (4.129)

40In reality, there could be some tiny level of correlation between the noise generated by the
cryogenic amplifiers, which share part of the biasing electronics.

41A more specific choice of the angle will be done in the light of the final expression of the
covariance.

42We recall here that the noise model of Subsec. 3.1.1 is valid only for a basic Wilkinson power
divider. In our experiments, the equivalent resistance Req is more complicated than the one
assumed in such a simplified model. However, the quality of the data, even if generally very high,
does not permit us to appreciate the subtleties of a possibly more refined model as, e.g., that of
Ref. [292].
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The red curves overlaid to the data of Figs. 4.13(e), 4.13(f), 4.13(g), and 4.13(h)
are fits obtained using Eqs. (4.98) and (4.129) as theoretical models for the variance
and covariance, respectively. From the fitting of the variance data we find the power
gains G1 and G2 as well as the temperature gradients η1 and η2. The power cogain
is then given by Eq. (4.124) and does not constitute a free fitting parameter in the
model of Eq. (4.129). In analogy, the quantity η∗ = (η1 + η2)/2 is also set to a fixed
value and cannot be used as a free fitting parameter in Eq. (4.129). The temperature

TA is a measured quantity and, thus, both the temperature T̃ ∗
A of Eq. (4.122) and

Tmin = min{T} are fixed quantities. As a consequence, the only available free fitting
parameter in Eq. (4.129) is represented by the temperature gradient between the
two noise sources, γAD. Remarkably, the covariance data and the corresponding fits
obtained applying the theoretical model of Eq. (4.129) with γAD as the only fitting
parameter43 are in very good agreement, confirming the validity of our noise model
for the Wilkinson power divider (cf. Subsec. 3.1.1). From the fitting of the data
shown in Figs. 4.13(f) and 4.13(g) we find the dimensionless coefficient γAD � 0.01.
This is a reasonable value because it means that the temperatures TA and TD are only
slightly different, as expected. We have thus demonstrated that the Wilkinson power
divider, a seemingly three-port classical device, quantum-mechanically behaves as a
four-port beam splitter.

According to Eq. (4.129), the covariance σ̃12 for the case of a Wilkinson power
divider and for ϕLO = 0 is given by the difference between the variance of the
primary noise source and the variance of the secondary noise source. The vacuum
offset due to each one of the two noise sources cancels out completely. To summarize
our findings, the variance is proportional to

〈(−V̂A − V̂D)
2〉 = V̂ 2

A + V̂ 2
D

for channel 1 and to
〈(−V̂A + V̂D)

2〉 = V̂ 2
A + V̂ 2

D

for channel 2.44 The covariance is proportional to

〈(−V̂A − V̂D)× (−V̂A + V̂D)〉 = V̂ 2
A − V̂ 2

D .

In the light of these results it is now evident that the signal associated with the
covariance, which is given by the difference of the variance of the two noise sources,
has to be much weaker than the signal associated with the variance, which is given
by the sum of the variance of the two noise sources. This explains the difference in
data quality between the auto- and cross-correlation functions as well as between
the temperature-dependent variance and covariance functions. It also explains the
factor of approximately 70 − 90 between the spans associated with variance and
covariance and, partially, the reduction in the peak value of the cross-correlation
function as compared to the auto-correlation function. Such reduction also depends
on the cancellation of the covariance of the noise added by the cryogenic amplifiers, as
expressed by Eq. (4.127). Because of the latter, the vertical offset for the covariance

43In reality, we also used a fitting parameter to obtain the small vertical offset observed in the
covariance measurements. Since the fitted value is very small and we cannot attribute a secure
physical meaning to it (see below), we disregarded it from the present discussion.

44We can neglect the phase induced by the LO for the variance because it drops from the final
expression.
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Figure 4.14: Temperature dependence of the variance and covariance for a
180◦ hybrid ring for a thermal/vacuum state at ωLO = ω0 = 2π × 5.85GHz.
(a) Variance C11(τ = 0) = σ̃21(T ). Full blue circles: data. Red curve: fit
obtained from the model of Eq. (4.98). (b) Covariance C12(τ = 0) = σ̃12(T ).
Full blue circles: data. Red curve: fit obtained from the model of Eq. (4.129).
The different power scale compared to Figs. 4.13(e) and 4.13(f) results from a
different amplifier configuration.

goes almost to zero. The tiny vertical offset found in the covariance measurements
of Figs. 4.13(f) and 4.13(g) might be due to amplifiers’ gain drift and/or other
uncontrolled temperature trends.

Very similar results as in Figs. 4.13(e) and 4.13(f) have been found when em-
ploying a 180◦ hybrid ring as microwave beam splitter, as shown in Fig. 4.14. In
a similar fashion as for the Wilkinson power divider, also for the hybrid ring the
phase of the LO signal, ϕLO, has been adjusted to obtain a maximum positive value
of the covariance data [cf. full blue circles in Fig. 4.14(b)]. Under this condition,
and reminding that the input-output relations for the 180◦ hybrid ring are formally
equivalent to those of the Wilkinson power divider [compare Eqs. (3.49a) and (3.49b)
to Eqs. (3.33a) and (3.33b)], we can use again the models of Eqs. (4.98) and (4.129)
to fit the experimental data. This allows us to obtain the red curves shown in
Figs. 4.14(a) and 4.14(b).

The reason why most of the experiments where performed using a power divider
instead of a hybrid ring is because the first is broader in frequency and, thus, it
makes possible to measure a wider Planck spectroscopy.

Finally, in Fig. 4.15(a), the variance C11 and the covariance C12 are plotted
together on the same scale for both x- and y-axis. This helps visualizing the large
difference in vertical offset between the two curves. The y-intercept for the variance
is found to be at approximately 6800mK. The covariance is then plotted alone in
Fig. 4.15(b), in order to more clearly show the intercept with the y-axis. In this
case, the y-intercept is found to be at approximately 15mK. This result is the
experimental proof of the validity of Eq. (4.127), i.e., the noisy signals added by
the two cryogenic amplifiers are uncorrelated.45 The tiny offset of 15mK shown in
Fig. 4.15(b), owns its origin to the inevitable finite number of averages performed
to obtain the results and to possible drifts in the gain of the amplifiers or other
unwanted experimental offsets. Nevertheless, an offset of 15mK can be assumed to
be negligible for all practical purposes.

45With the experimental data at hand, we cannot prove the independence of such signals.
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Figure 4.15: Comparison between variance σ̃21 = C11(τ = 0) and covariance
σ̃12 = C12(τ = 0). (a) Blue circles: data points associated with the temper-
ature dependence of the variance. Red line: fitted curve obtained from the
three-parameter fitting model [cf. Eq. (4.98)]. Grey circles: data points asso-
ciated with the temperature dependence of the covariance. For the covariance
the vertical offset due to the noise of the amplifiers is practically suppressed.
(b) Blue circles: data points associated with the temperature dependence of
the covariance. Red line: fitted curve obtained from Eq. (4.129) using γAD

and the vertical offset given by the residual noise of the system as only free
fitting parameters.

4.4 Summary and Outlook

In summary, the main results presented in this chapter are:

1. We have understood that the Planck distribution as derived by Planck, that is
without the knowledge of the commutation relations for bosonic fields, inher-
ently encodes information about the vacuum fluctuations of the electromag-
netic field.

By deriving the Planck distribution from Einstein’s A and B coefficients, we
have been able to show that the vacuum manifests itself in the Planck distri-
bution as one half of the spontaneous emission coefficient.

We have then shown that the correct Planck distribution obtained by prop-
erly quantizing the electromagnetic field has to be shifted by an offset quantity,
which is also due to the vacuum fluctuations. The same vacuum appears in
the Planck distribution “two times.” This means that even if we are not able
to resolve experimentally the tiny offset associated with the vacuum fluctua-
tions due to unwanted offsets (e.g., the noise power of the amplifiers and/or
offsets due to the drift of the amplifiers bias point), we should still be able
to extract information about the vacuum state because of the spontaneous
emission contribution to the Planck distribution;

2. We have measured the Planck distribution by means of an autocorrelation
technique and developed a fitting model which has allowed us to quantify
the distance from the variance associated with the vacuum fluctuations. In
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other words, we have been able to show how close we can observe the variance
of the vacuum state. This is a beautiful example of a two times indirect
measurement: First, it is impossible to directly measure the vacuum state or
the energy (or power) associated with it. This would correspond to extract
energy from an infinite reservoir, thus realizing a sort of perpetual motion of
the first kind. Only a set of properties of the vacuum state, e.g., its variance,
can be accessed experimentally. Second, we have found that by means of
autocorrelation measurements it is impossible to even measure directly the
variance of the vacuum state. Only an indirect measurement of the variance
is allowed. Remarkably, this indirect variance measurement contains useful
information about the vacuum state, consistently with our conjecture of point
1.;

3. We have realized a so-called Planck spectroscopy measurement, that is, we
have been able to measure the distance from the variance of the vacuum state
for a wide range of parameters (temperature and frequency). The frequency
span accessed in our experiments allows us to monitor the raising of the vacuum
level with the center frequency of the noise bandwidth being measured;

4. We have performed a cross-correlation measurement which has helped us to
understand the operation principle of microwave beam splitters at the quan-
tum level. In particular, we have shown that the beam splitters used in our
experiments behave always as an equivalent four-port junction, even if at first
glance they appear to be three-port junctions. The experimental results con-
firm our theoretical models, which were derived in the beginning of the previous
chapter. This is an important result which sheds new light on quantum mi-
crowave devices and paves the way towards microwave device quantum process
tomography.

Concerning future applications of correlation homodyne detection, at least two
possibilities stand out:

1. The amplitude-amplitude measurements presented in this thesis can straight-
forwardly be extended to intensity-intensity (power-power) correlations, which
will allow the implementation of HBT interferometry. This represents an in-
dispensable tool in the future development of circuit QED;

2. Correlation measurements can be used to probe the quantum properties of two-
resonator circuit QED architectures. The next two chapters will introduce
and analyze in detail the field of two-resonator circuit QED. Eventually, a
combination of the experimental techniques developed in this and the previous
chapter with the schemes proposed in the next chapters will make possible to
open up a new avenue of research in circuit QED.
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Chapter 5

Two-Resonator Circuit QED: a
Superconducting Quantum Switch

A striking feature of circuit QED is the possibility to make use of more than one
resonator by employing simple fabrication techniques. Multi-resonator architectures
can be implemented more easily than multi-cavity architectures in quantum-optical
cavity QED. In the latter case, in fact, the cavity dimensions represent a major
constraint to the scalability of the system. We thus believe that investigating multi-
resonator devices constitutes an important step in circuit QED, which can ultimately
allow us to unveil novel physical phenomena absent in the quantum-optical domain.

In this chapter, we introduce a systematic formalism for two-resonator circuit
QED, where two on-chip microwave resonators with high quality factor are simulta-
neously coupled to one superconducting qubit. Within this framework, we demon-
strate that the qubit can function as a quantum switch between the two resonators,
which are assumed to be originally independent. In this three-circuit network, the
qubit mediates a geometric second-order circuit interaction between the otherwise
decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-
order perturbative interaction. The geometric and dynamic coupling strengths can
be tuned to be equal, thus permitting to switch on and off the interaction between
the two resonators via a qubit population inversion or a shifting of the qubit opera-
tion point. We also show that our quantum switch represents a flexible architecture
for the manipulation and generation of nonclassical microwave field states as well as
the creation of controlled multipartite entanglement in circuit QED. In addition, we
clarify the role played by the geometric interaction, which constitutes a fundamental
property characteristic of superconducting quantum circuits without counterpart in
quantum-optical systems. We develop a detailed theory of the geometric second-
order coupling by means of circuit transformations for superconducting charge and
flux qubits. Furthermore, we show the robustness of the quantum switch operation
with respect to decoherence mechanisms. Finally, we propose a realistic design for a
two-resonator circuit QED setup based on a flux qubit and estimate all the related
parameters. In this manner, we show that this setup can be used to implement a
superconducting quantum switch with available technology.

Before delving into the details of the theory of two-resonator circuit QED, it is
worth giving a brief overview on related works or works that could eventually benefit
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from it. In circuit QED, several other scenarios have been envisioned where a qubit
interacts with different bosonic modes, e.g., those of an adjacent nanomechanical
resonator or similar. It has been proposed to implement quantum transducers [329]
as well as Jahn-Teller models and Kerr nonlinearities [330], to generate nontrivial
nonclassical states of the microwave radiation [331, 332], to create entanglement
via Landau-Zener sweeps [333], and to carry out high fidelity measurements of mi-
crowave quantum fields [332, 334]. Moreover, multi-resonator setups might serve to
probe quantum walks [335] and to study the scattering process of single microwave
photons [336]. All these proposals, however, do not develop a systematic theory of
a realistic architecture based on two on-chip microwave resonators and do not take
into account the fundamental geometric second-order coupling between them. Also,
our quantum switch is inherently different from the quantum switches investigated in
atomic systems [337]. First, we consider a qubit simultaneously coupled to two res-
onators, which are not positioned one after the other in a cascade configuration as in
Ref. [337]. Second, our switch behaves as a tunable quantum coupler between the two
resonators. Last, atomic systems naturally lack a geometric first- and second-order
coupling. Furthermore, it is important to stress that the dynamic interaction studied
here cannot be cast within the framework of the quantum reactance theory (capaci-
tance or inductance, depending on the specific implementation) [218, 338–344]. The
main hypothesis for a quantum reactance to be defined is a resonator characterized
by a resonance frequency extremely different from the transition frequency of the
qubit. Typically, the resonator frequency is considered to be very small (practically
zero) compared to the qubit one. Such a scenario is undesirable for the purposes of
this work, where a truly quantized high-frequency cavity initialized in the vacuum
state has to be used. Also, to our knowledge, the quantum reactance works men-
tioned above do not directly exploit a geometric coupling between two resonators to
compensate a dynamic one, being their main focus the tunable coupling of qubits.
Nevertheless, we believe that a circuit theory approach [98, 99, 188, 190–192, 264] to
two-resonator circuit QED, which we pursue throughout this manuscript, allows for
a deep comprehension of the matter discussed here. Finally, we point out that the
geometric first-order coupling between two resonators can be reduced or erased by
simple engineering, whereas the second-order coupling due to the presence of a qubit
circuit is a fundamental issue. As we show later, whenever the coupling between
qubit and resonators is wanted to be large, an appreciable geometric second-order
coupling inevitably appears, especially for resonators perfectly isolated in first order.
The only circumstances where the geometric coupling between the two resonators
can be safely neglected is under resonant conditions. In that case, the vacuum Rabi
coupling between the qubit and each resonator is typically much larger than any ge-
ometric coupling. In summary, the lesson to be learnt when studying two-resonator
circuit QED setups is that quantum circuits behave differently from natural atoms
and we must be extremely careful when making analogies and/or approximations.

The chapter is organized as follows. In Sec. 5.2, we develop a systematic for-
malism for two-resonator circuit QED employing second-order circuit theory and,
focusing on the dispersive regime, we are able to derive the effective Hamiltonian
of a quantum switch. In Sec. 5.3, we discuss the main limitations to the quantum
switch operation due to decoherence processes of qubit and cavities. In Sec. 5.4,
we propose a realistic implementation of a two-resonator circuit QED architecture,
which is suitable for the realization of a superconducting quantum switch. Finally,
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QUANTUM SWITCH

in Sec. 5.5, we summarize our main results, draw our conclusions, and give a brief
outlook.

The material discussed in this chapter is a revised version of article number 5
on the List of Publications and is published in Physical Review B - Ref. [136]. The
author is the main contributor to the development of the concept of two-resonator
circuit QED. The possible application as a quantum switch originated from discus-
sions with Frank Deppe, who also largely contributed in the treatment of decoher-
ence. Enrique Solano has always participated in the discussion and has triggered
the attention of the author towards the possibility to use “transverse modes!” On
the night between the 13th1 and 14th April 2005, the author turned such modes into
two resonators... In addition, Enrique Solano has contributed to the development
of multipartite entanglement using the quantum switch. The author acknowledges
many fruitful discussions with M. J. Storcz, H. Christ, and F. K. Wilhelm.

5.1 Analysis of a Three-Circuit Network

In the following, we theoretically study a three-circuit network where a supercon-
ducting charge or flux qubit [97–100] interacts with two on-chip microwave cavities,
a two-resonator circuit QED setup (cf. Fig. 5.1 for a generic sketch and Fig. 5.12 for
a realistic implementation). In the absence of the qubit, the resonators are assumed
to have negligible or small geometric first-order (direct) crosstalk. This scenario is
similar to that of quantum optics, where an atom can interact with two orthogonal
cavity modes [345]. However, there are some crucial differences. The nature of the
three-circuit system considered here requires to account for a geometric second-order
circuit interaction between the two resonators. This gives rise to coupling terms in
the interaction Hamiltonian, which are formally equivalent to those describing a
beam splitter. This interaction is mediated by the circuit part of the qubit and does
not depend on the qubit state. It is noteworthy to mention that this coupling does
not exist in the two-mode JC model studied in quantum optics, where atoms do not
sustain any geometric interaction. This means that introducing a second resonator
causes a departure from the neat analogy between cavity and one-resonator circuit
QED [97, 121–144]. In the dispersive regime, where the transition frequency of the
qubit is largely detuned from that of the cavities, also other beam-splitter-type in-
teraction terms between the two resonators appear. Their existence is known in
quantum optics [346] and results from a dynamic second-order perturbative interac-
tion, which depends on the state of the qubit. The sign of this interaction can be
changed by an inversion of the qubit population or by shifting the qubit operation
point. The latter mechanism can also be used to change the interaction strength.
Notably, for a suitable set of parameters, the geometric and dynamic second-order
coupling coefficients can be made exactly equal by choosing a proper qubit-resonator
detuning. In this case, the interaction between the two cavities can be switched on
and off, thereby enabling the implementation of a discrete quantum switch as well
as a tunable coupler.

In order to fully understand a two-resonator circuit QED system, we take the
perspective of classical circuit theory [264] and extend it to the quantum regime to
derive the Hamiltonian of a quantized three-circuit network. In general, the latter

1Author’s birthday.
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is composed of two on-chip microwave resonators and a superconducting qubit. Our
approach is similar to that of Refs. [98, 99, 188, 190–192]. In addition, we account
for second-order circuit elements linking different parts of the network, which is
considered to be closed and nondissipative. Here, closed means that we assume no
energy flow between the network under analysis and other possible adjacent net-
works. These could be additional circuitry used to access the three-circuit network
from outside and where excitations could possibly decay. Nondissipative means that
we consider capacitive and inductive circuit elements only, more in general, reactive
elements. We neglect resistors, which could represent dissipation processes of qubit
and resonators. In summary, the network of our model is altogether a conservative
system. The detailed role of decoherence mechanisms is studied later in Sec. 5.3.

The first step of our derivation is to demonstrate a geometric second-order cou-
pling between the circuit elements of a simple three-node network. This means
that we assume the various circuit elements to be concentrated in three confined
regions of space (nodes). Any topologically complex three-circuit network can be
reduced to such a three-node network, where each node is fully characterized by
its capacitance matrix C and/or inductance matrix M. The topology of the dif-
ferent circuits (e.g., two microstrip or coplanar waveguide resonators coupled to a
superconducting qubit) is thus absorbed in the definition of C and M, simplifying
the analysis significantly. The system Hamiltonian can then be straightforwardly
obtained. In fact, the classical energy of a conservative network can be expressed
as E = (�V T C �V + �I T M �I )/2, where the vectors �V and �I represent the voltages
and currents on the various capacitors and inductors [264]. The usual quantiza-
tion of voltages and currents [131] (cf. chapter 2, Subsec. 2.1.3) and the addition
of the qubit Hamiltonian allows us to obtain the fully quantized Hamiltonian of
the three-node network (cf. Subsec. 5.1.1). Special attention is then reserved to
compute contributions to the matrices C and M up to second order. These are con-
sequently redefined as C(2) and M(2), respectively (cf. Subsec. 5.1.2). Corrections
of third or higher order to the capacitance and inductance matrices are discussed in
Appendix D, where we show that they are not relevant for this work.

We finally consider two examples of possible implementations of two-resonator
circuit QED (cf. Subsec. 5.1.3). These examples account for two superconducting
resonators coupled to a charge quantum circuit (e.g., a Cooper-pair box or a trans-
mon) or a flux quantum circuit (e.g., an RF SQUID or a three-Josephson-junction
SQUID). Before moving to a two-level approximation, the Hamiltonians of these de-
vices can be used to deduce the geometric second-order circuit interaction between
the two resonators. This result is better understood considering the lumped-element
equivalent circuits of the entire systems. In this way, also the conceptual step from a
three-circuit to a three-node network is clarified and the role played by the topology
of the different circuits becomes more evident. We show that special care must be
taken when quantizing the interaction Hamiltonian between charge or flux quantum
circuits and microwave fields by the simple promotion of an AC classical field to
a quantum one. Interestingly, comparing the standard Hamiltonian of charge and
flux quantum circuits coupled to quantized fields with ab initio models based on
lumped-element equivalent circuits, we prove that the latter are better suited to
describe circuit QED systems.
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5.1.1 The Hamiltonian of a Generic Three-Node Network

The system to be studied is sketched in Figs. 5.1(a) and 5.1(b), where the microwave
resonators are represented by symbolic mirrors. A more realistic setup is discussed
in Sec. 5.4 and is drawn in Fig. 5.12(a). A and B represent the two cavities and
Q a superconducting qubit, making altogether a three-node network. The coupling
channels between the three nodes are assumed to be capacitive and/or inductive.
We also hypothesize the first-order interaction between A and B to be weak and that
between A or B and Q to be strong by design. In other words, the first-order capac-
itance and inductance matrices are C = Ckl and M = Mkl, with k, l ∈ {A,B,Q},
where Ckl = Clk and Mkl = Mlk because of symmetry reasons. In addition, we
assume CAB ≡ c � Ckl �=AB and MAB ≡ m � Mkl �=AB. The elements c and m
represent a first-order crosstalk between A and B, which can be either spurious or
engineered and, here, is considered to be small. In Sec. 5.4, we delve into a more
detailed analysis of the geometric first-order coupling between two microstrip res-
onators. Restricting the cavities to a single relevant mode, the total Hamiltonian of
the system is given by

ĤT =
1

2
�̂
V T C(n) �̂V +

1

2
�̂
IT M(n) �̂I +

1

2
G (Ec, EJ) ˆ̄σx , (5.1)

where C(n) and M(n) are the renormalized capacitance and inductance matrices up

to the n-th order, with C(1) ≡ C and M(1) ≡ M. Also,
�̂
V ≡ [V̂A, V̂B, V̂Q]

T and
�̂
I ≡ [ÎA, ÎB, ÎQ]

T . In general, G is a function of the charging energy Ec and/or
coupling energy EJ of the Josephson tunnel junctions in the qubit. For instance,
G = EJ for a charge qubit and G ∝

√
EcEJ exp(−μ

√
Ec/EJ) for a flux qubit

(μ ≡ const). Furthermore, V̂A ≡ vDC + vA0(â
† + â), V̂B ≡ vB0(b̂

† + b̂), V̂Q ≡ vQ ˆ̄σz,

ÎA ≡ iDC + iA0 j(â
† − â), ÎB ≡ iB0 j(b̂

† − b̂), and ÎQ ≡ iQ ˆ̄σz. In these expressions, ˆ̄σx
and ˆ̄σz are the usual Pauli operators for a spin-1/2 system in the diabatic basis, which
consists of the eigenstates |−〉 and |+〉 of CAQvDCvQ ˆ̄σz (charge case) orMAQiDCiQ ˆ̄σz
(flux case). Additionally, â†, b̂†, â, and b̂ are bosonic creation and annihilation
operators for the fields of cavities A and B, respectively, and j ≡

√
−1. The DC

voltage vDC and current iDC account for the quasi-static polarization of the qubit and
can be applied through any suitable bias circuit. For definiteness, we have chosen
here cavity A to perform this function. This is the standard approach followed by
the charge qubit circuit QED community [139]. However, for flux qubits the current
iDC is more easily applied via an external coil [141, 159, 262, 347]. In the latter case,
we impose iDC = 0 and add to the Hamiltonian of Eq. (5.1) the term (ΦDC

x −Φ0/2)ÎQ,
where ΦDC

x is an externally applied flux bias and Φ0 ≡ h/2e = 2.07 × 10−15Wb is
the flux quantum. The results of our derivation are not affected by this particular
choice. The vacuum (zero point) fluctuations of the voltage and current of each
resonator are given by vA0 ≡

√
�ωA/2CAA, vB0 ≡

√
�ωB/2CBB, iA0 ≡

√
�ωA/2MAA,

and iB0 ≡
√

�ωB/2MBB, respectively.
2 Here, ωA and ωB are the transition angular

frequencies of the two cavities. Finally, vQ and iQ represent the voltage of the
superconducting island(s) and the current through the loop of the qubit circuit.

2In this subsection, we make use of a lumped-parameter model. Hence, the factor of 2 in
the denominator of the square roots representing the vacuum voltages and currents is necessary
(cf. chapter 2, Subsec. 2.1.3).
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Figure 5.1: Sketch of the system under analysis. All constants are defined in
the main text. Only inductive couplings are considered. (a) Schematic rep-
resentation of the first-order coupling Hamiltonian of our three-node network.
Two cavities (resonators) A and B interact with a generic superconducting
qubit Q. A and B can have a weak geometric first-order coupling MAB = m

[broken blue (dark grey) arrow], as in the Hamiltonian Ĥ
(1)
AB of Eq. (5.2). The

two solid green (light grey) arrows represent a two-mode Jaynes-Cummings
dynamics with coupling coefficients gA ∝ MAQ and gB ∝ MQB, respectively.

(b) Visualization of the effective second-order coupling Hamiltonian Ĥeff of
Eq. (5.14). The solid blue (dark grey) arrows show the second-order geometric
coupling channel mediated by a virtual excitation of the circuit associated with

Q, as in the Hamiltonian Ĥ
(2)
AB of Eq. (5.3). This channel is characterized by a

constant gAB ∝MAQMQB/MQQ (the small contribution from m is neglected)
and is qubit-state independent. The solid green (light grey) arrows show the
second-order dynamic channel mediated by a virtual excitation of the qubit
Q. This channel is characterized by a constant gAgB/Δ and is qubit-state
dependent.

Depending on the specific qubit implementation, either vQ or iQ dominates, thus
defining the charge and flux regimes.

5.1.2 The Capacitance and Inductance Matrices up to Sec-
ond Order

The matrices C(n) and M(n) account for corrections up to the n-th order interaction
process between the elements of the network. In fact, in order to write the exact
Hamiltonian of the circuit, all possible electromagnetic paths connecting its nodes
must be considered. A consequence of this approach to circuit theory is that the
direct coupling

Ĥ
(1)
AB = V̂A c V̂B + ÎAm ÎB (5.2)

between resonators A and B [cf. Fig. 5.1(a)], here assumed to be small, is not the only
interaction mechanism to be considered. In fact, an indirect coupling mediated by
the circuit associated with the qubit Q has also to be included in the Hamiltonian.
The dominating term for the A-Q-B excitation pathway can be derived from its
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second-order electromagnetic energy [cf. Fig. 5.1(b)], which gives

Ĥ
(2)
AB = Ĥ

(1)
AB

+ V̂ACAQ

1

CQQ

CQB V̂B

+ ÎAMAQ

1

MQQ

MQB ÎB . (5.3)

Note that the inverse path (B-Q-A) is already included in this equation. In our work,
we assume 0 � c � CAQCQB/CQQ and 0 � m �MAQMQB/MQQ (cf. Sec. 5.4). When
c,m � 0, the direct coupling between A and B is negligible, i.e., the contribution
of Ĥ

(1)
AB can be omitted. On the other hand, when c > 0 and/or m > 0, both first-

and second-order circuit theory contributions are relevant. In this case, c and m
can represent a spurious or an engineered crosstalk. The latter can deliberately be
exploited to increase the strength of the geometric second-order coupling. However,
c and m should be small enough to leave the mode structure and quality factors of
A and B unaffected.

From the knowledge of Ĥ
(2)
AB, the capacitance matrix up to second order is readily

obtained

C(2) =

⎡⎢⎢⎢⎢⎢⎣
CAA c+

CAQCQB

CQQ

CAQ

c+
CBQCQA

CQQ

CBB CBQ

CQA CQB CQQ

⎤⎥⎥⎥⎥⎥⎦ . (5.4)

The second-order corrections to the self-capacitances, i.e., the diagonal elements Ckk
are absorbed in their definitions 3 (cf. Subsec. 5.1.3). In analogy, the corrected induc-
tance matrix M(2) is found substituting Ckl with Mkl and c with m in matrix (5.4)
yielding

M(2) =

⎡⎢⎢⎢⎢⎢⎣
MAA m+

MAQMQB

MQQ

MAQ

m+
MBQMQA

MQQ

MBB MBQ

MQA MQB MQQ

⎤⎥⎥⎥⎥⎥⎦ . (5.5)

Again, second-order corrections to the self-inductances are absorbed in the defini-
tion of Mkk. The matrices C(2) and M(2) constitute the first main result of this
chapter. They show that, if a large qubit-resonator coupling (i.e., a vacuum Rabi
coupling ∝ CAQ , CQB for charge quantum circuits and ∝MAQ , MQB for flux quan-
tum circuits) is present, as in most circuit QED implementations [144], a relevant
geometric second-order coupling (∝ CAQCQB/CQQ or ∝ MAQMQB/MQQ for charge

3In Refs. [137, 331], we have studied charge qubits in multi-resonator systems. In that case, we
have performed numerical simulations to study the geometric first-order capacitance between two
resonators [in a configuration similar to that of Fig. 5.2(c)]. We have found a scattering matrix
element Sab � − 50 dB at approximately 4GHz, which gives CAB = c = 3× 10−3 CBB. Assuming
CAQ ≈ CQB, we can easily compare c to the second-order cross-capacitance between A and B and

obtain c/
(
C2

AQ/CQQ

)
� 0.9. For these calculations, we use CBB � 2.2 pF, CAQ � 22 fF, and

CQQ � 67 fF from Ref. [146]. In particular, we find c � 7 fF and CAQCQB/CQQ � 7.5 fF. In this
case, an example of third-order cross-capacitance is CAQCQBCBQ/CQQCBB � 76 aF.
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Figure 5.2: Three generic sketches of a possible setup. (a) A flux qubit
(Q) sits at the current antinode of, e.g., the first mode of two λ/2 resonators
(solid black lines, only inner conductor shown). The open circles at the “IN”
and “OUT” ports denote the position of the coupling capacitors to be used
in real implementations [e.g., cf. Sec. 5.4 and Fig. 5.12(a)]. (b) A charge
qubit (Q) sits at the voltage antinode of, e.g., the first mode of two λ/2
resonators. (c) A charge or flux qubit sits at the voltage (e.g., second mode,
λ resonators) or current (e.g., first mode, λ/2 resonators) antinode of two
orthogonal resonators [137].

and flux quantum circuits, respectively) has to be expected. This coupling becomes
relevant in the dispersive regime [131, 140, 154, 155], where a dynamic second-order
coupling, whose magnitude can be comparable to that of the geometric one, is also
present (cf. Subsec. 5.2.1). We study in more detail the relationship between m and
MAQMQB/MQQ in Sec. 5.4. There, we show that for a realistic design engineered for
a flux qubit, which is our experimental expertise [159, 262] (cf. chapters 2 and 8),
the geometric second-order interaction dominates over the first-order one.

Figures 5.2(a)-(c) show three generic sketches, where the coupling of two on-chip
resonators to one superconducting qubit is illustrated. In particular, the sketch
drawn in Fig. 5.2(a) is suitable when a flux qubit is intended to be utilized. In this
case, the qubit is positioned at the current antinode of the first mode (cf. chapter 2,
Secs. 2.1 and 2.3) of two λ/2 resonators. Moreover, this design clearly allows for
engineering a strong coupling between the qubit and each resonator, while reducing
the geometric first-order coupling between resonators A and B. This is due to the
fact that the two cavities are close to each other only in the restricted region where
the qubit is located and then develop abruptly towards opposite directions. The
sketch in Fig. 5.2(b), instead, is more suitable for charge qubit applications. The
qubit can easily be fabricated near a voltage antinode [131, 139]. Similar arguments
as in the previous case apply for the qubit-resonator couplings and the geometric
first-order coupling between A and B. Finally, the sketch of Fig. 5.2(c) relies on
an orthogonal-cavity design, which can be used for both charge and flux qubits.
The main properties of such a setup have already been presented in Refs. [137, 331]
where orthogonal cavities have been exploited for different purposes. In conclusion,
we want to stress that based on the general sketches of Figs. 5.2(a)-(c), a large
variety of specific experimental implementations can be envisioned.

5.1.3 The Role of Circuit Topology: Two Examples

All results of Subsecs. 5.1.1 and 5.1.2 are general and do not rely a priori on the
knowledge of the three-circuit network topology. Here, we explain with the aid of
two easy examples how to obtain a reduced three-node network starting from a
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three-circuit one. The examples are based on the coupling of two superconducting
coplanar waveguide or microstrip resonators to a single Cooper-pair box [131, 139]
(or a transmon [120, 243, 244]) or to an RF SQUID (or a three Josephson-tunnel-
junction SQUID) [125, 134, 289, 347] (cf. chapter 2, Subsecs. 2.2.2 and 2.2.3).

The first example is the case of a single Cooper-pair box (a charge quantum
circuit), which is formally equivalent to the more appealing case of the transmon.
As we have shown in chapter 1, a single Cooper-pair box [131, 139] is made of
a superconducting island connected to a large reservoir via two Josephson tunnel
junctions with Josephson energy EJ and capacitance CJ. The box is capacitevely
coupled to two resonators A and B by the gate capacitors Cga and Cgb, respectively.
In the charge basis, the Hamiltonian of a single Cooper-pair box can be written
as [131]

Ĥc = 4Ec

∑
n

(n̂− ng)
2 |n〉〈n|

− EJ

2

∑
n

(|n〉〈n+ 1|+ |n+ 1〉〈n|) , (5.6)

where Ec = e2/2CΣ is the box electrostatic energy (e is the electron charge), CΣ =
Cga + 2CJ + Cgb is its total capacitance,4 〈n| n̂ |n〉 represents the number of excess
Cooper pairs on the island, and ng is the global dimensionless gate charge applied
to it. The latter is the sum of a DC signal nDC

g (here, considered to be applied
through cavity A) and a high-frequency excitation δng applied through cavities A
and/or B, ng ≡ nDC

g + δng. In particular, δng can represent the quantized electric
fields (equivalent to the voltages) of the two cavities acting as quantum harmonic
oscillators. Restricting ourselves to the two lowest charge states n = 0, 1, we can
rewrite the Hamiltonian of Eq. (5.6) as

Ĥc = 2Ec

(
1− 2ng + 2n2

g + ˆ̄σz − 2ng
ˆ̄σz
)
− EJ

2
ˆ̄σx

= 2Ec

(
1− 2nDC

g

)
ˆ̄σz −

EJ

2
ˆ̄σx

− 4Ecδng

(
1− 2nDC

g − δng + ˆ̄σz
)
. (5.7)

The second line of the above equation forms the standard charge qubit, which can
be controlled by the quasi-static bias nDC

g ≡ CgavDC/2e. The third line contains
four high-frequency interaction terms. Among those, two of them are particularly
interesting.5 These are 4Ecδn

2
g and−4Ecδng

ˆ̄σz. We now quantize the high-frequency

excitations δng → δn̂g ≡ CgavA0(â
† + â)/2e+CgbvB0(b̂

† + b̂)/2e, using the fact that
they are the quantized voltages of the two resonators. We subsequently perform a

4In the definition of self-capacitance, we neglect the capacitance of the island itself because it
is small compared to the other capacitances, Cisl � min{Cga, 2CJ, Cgb}.

5The remaining two interaction terms, when quantizing the AC excitations, result in a
displacement-type of operator [131], which act on the two resonators coordinates. These oper-
ators reduce to zero right at the charge degeneracy point (i.e., for nDC

g = 1/2). In general, these
terms are small and can thus be neglected [131].
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Figure 5.3: Equivalent circuit diagram for an implementation of two-
resonator circuit QED based on a charge qubit (cf. Subsec. 5.1.3 for details).
V̂ra and V̂rb: quantized voltage sources associated with resonators A and B in

parallel to the self-capacitances Cra and Crb of the resonators. Îra and Îrb:
quantized current sources associated with resonators A and B in series to the
self-inductances Lra and Lrb of the resonators. The number of excess Cooper
pairs on the charge qubit island (big dot) is 〈n| n̂ |n〉. CJ: capacitance of each
of the two Josephson tunnel junctions connecting the island to ground. Cga

and Cgb: coupling capacitances between the qubit and the two resonators.
Cab: first-order cross-capacitance between A and B (typically small, dotted
line). The dashed box marks a T-network composed of Cga, 2CJ, and Cgb.

rotating-wave approximation (RWA) and, finally, write the interaction Hamiltonian

Ĥ int
c = �GAB(â

† + â)(b̂† + b̂)

− �GA
ˆ̄σz(â

† + â)− �GB
ˆ̄σz(b̂

† + b̂)

+ �ω̃Aâ
†â + �ω̃Bb̂

†b̂ , (5.8)

where all constant energy offsets, e.g., the Lamb shifts, have been neglected. Re-
markably, in the first line of Eq. (5.8) we identify a geometric resonator-resonator
interaction term with second-order coupling coefficient GAB ≡ vA0vB0CgaCgb/CΣ�.
Furthermore, the two terms in the second line of Eq. (5.8) represent the expected
first-order interactions between qubit and resonators, which are characterized by
the coupling coefficients GA ≡ e(Cga/CΣ)vA0/� and GB ≡ e(Cgb/CΣ)vB0/�, respec-
tively. In the third line, the two small renormalizations ω̃A ≡ (CgavA0)

2/CΣ� and
ω̃B ≡ (CgbvB0)

2/CΣ� of the resonator angular frequencies are artifacts due to the
simple model behind the Hamiltonian of Eq. (5.6). A more advanced model based on
a realistic circuit topology yields similar renormalization terms, which, however, are
governed by different topology-dependent constants. Among the possible ways to
find the correct constants, we choose the circuit transformations of Figs. 5.3, 5.4, and
5.5. This approach also allows us to better understand the geometric second-order
interaction term.

In Fig. 5.3, the two cavities are represented as LC-resonators with total capac-
itances and inductances Cra, Crb, Lra, and Lrb, respectively. The quantized volt-

ages and currents of the two resonators are V̂ra ≡ vA0(â
† + â), V̂rb ≡ vB0(b̂

† + b̂),

Îra ≡ iA0 j(â
† − â), and Îrb ≡ iB0 j(b̂

† − b̂), respectively. Also, Cab accounts for a
first-order cross-capacitance between resonators A and B, which, for simplicity, is
neglected in Eqs. (5.7) and (5.8). In addition, here we are only interested in the
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Figure 5.4: The circuit of Fig. 5.3 expressed as the sum of two topologi-
cally less complex circuits. Ccr ≡ CgaCgb/CΣ: second-order cross-capacitance.
Csa ≡ 2CJCga/CΣ and Csb ≡ 2CJCgb/CΣ: resonator shift capacitances. Cab

is neglected for simplicity.

geometric properties of the charge quantum circuit. The dynamic properties of this
circuit are studied following a more canonical approach within a two-level approx-
imation in Sec. 5.2. The dynamic properties are governed by the two Josephson
tunnel junctions and by the number of excess Cooper pairs on the island, 〈n| n̂ |n〉.
To simplify our derivations, we can then assume n̂ = 0 and consider only the capac-
itance CJ of the two Josephson tunnel junctions, but not their Josephson energy.

We now derive in three steps the geometric part of the interaction Hamiltonian
by means of circuit theory. The procedure is visualized in Figs. 5.3, 5.4, and 5.5.
The steps are:

(i) First, we assume that the circuit associated to the charge qubit is positioned
at a voltage antinode [131] of both resonators. Consequently, we can replace
the two current sources of Fig. 5.3 with open circuits, Îra = Îrb = 0. Thus, we
can eliminate both Lra and Lrb from the circuit diagram because they are in
series to open circuits;

(ii) Second, we apply the superposition principle of circuit theory [264]. One at
the time, we replace each of the two voltage sources with short circuits, V̂ra = 0
or V̂rb = 0. This allows us to split up the circuit of Fig. 5.3 into the two subcir-
cuits of Fig. 5.4, which are topologically less complex. As a consequence, in the
respective subcircuits, Crb or Cra can be substituted by short circuits and all
other capacitors opportunely rearranged. In this way, for the case of cavity A,
we find the small shift capacitance Csa ≡ 2CJCga/CΣ, which gives the correct
angular frequency renormalization of the resonator, ω̃corr

A ≡ 2CJCgav
2
A0/CΣ�.

Figure 5.5: The circuits of Fig. 5.4 rearranged as a single Π-network (dashed
box). The latter is equivalent to the T-network of Fig. 5.3. The magnitudes
of Cra and Crb are increased by the presence of the shift capacitances Csa and
Csb.
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Figure 5.6: Equivalent circuit diagram for an implementation of two-
resonator circuit QED based on a flux qubit (cf. Subsec. 5.1.3 for details).
The two resonators A and B are inductively coupled via Mqa and Mqb to a

flux qubit with total self-inductance Lq = Lq/2 + Lq/2 and flux operator Φ̂.
The first-order mutual inductance m between the two resonators is neglected
to simplify the notation.

Remarkably, we also find the second-order cross-capacitance Ccr ≡ CgaCgb/CΣ,
corresponding to the geometric second-order coupling between the resonators.
This coincides with our result obtained in Eq. (5.3) of Subsec. 5.1.2 and is
consistent with the simple model of Eqs. (5.6)-(5.8). We notice that Ccr devi-
ates from the simple series of the two gate capacitances Cga and Cgb because
of the presence of CJ in CΣ. For the case of cavity B, Csb ≡ 2CJCgb/CΣ

and ω̃corr
B ≡ 2CJCgbv

2
B0/CΣ� can be derived in an analogous manner. In Sub-

sec. 5.1.2, the two renormalization constants as well as CJ are absorbed in the
definitions of CAA, CBB, and CQQ, respectively;

(iii) Third, we notice that the cross-capacitance Ccr, which is responsible for the
geometric second-order interaction between A and B, is subjected to both
quantum voltages V̂ra and V̂rb. Hence, we can finally draw the circuit diagram
of Fig. 5.5. Indeed, we could have identified the T-network of Fig. 5.3 (indicated
by a dashed box) and transformed it into the equivalent Π-network of Fig. 5.5
(also indicated by a dashed box) in one single step [264], obtaining the same
results. We prefer to explicitly show the steps of Fig. 5.4 for pedagogical
reasons.

The second example is based on an RF SQUID. We choose the RF SQUID here
for pure pedagogical reasons. In fact, our treatment could be extended to the more
common case of three-Josephson-junction SQUID [189]. The Hamiltonian of an RF
SQUID [97, 98, 125, 289] (cf. chapter 2, Subsec. 2.2.2) can be expressed as

Ĥf =
Q̂2

2CJ

+
(Φ̂− Φx)

2

2Lq

− EJ cos

(
2π

Φ̂

Φ0

)
, (5.9)

where Q̂ is the operator for the charge accumulated on the capacitor CJ associated
with the Josephson tunnel junction. The flux operator Φ̂ is the conjugated variable
of Q̂, i.e., [Φ̂, Q̂] = j�. In analogy to the dimensionless gate charge ng of the previous
example, the flux bias Φx ≡ ΦDC

x + δΦx consists of a DC and an AC component.
The self-inductance of the superconducting loop is defined as Lq. When the

RF SQUID is coupled to two quantized resonators, we can quantize the high-
frequency excitations performing the transformations δΦx → δΦ̂x ≡ MqaiA0 j(â

† −
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Figure 5.7: The disconnected circuit of Fig. 5.6 is transformed into a con-
nected circuit [264]. Again, we can identify a Π-network (dashed box).

â) + MqbiB0 j(b̂
† − b̂). Here, Mqa and Mqb are the mutual inductances between

the loop and each resonator. We can then assume Φ̂ = 0, perform a two-level ap-
proximation and a RWA, and finally obtain the same interaction Hamiltonian as in
Eq. (5.8). However, in this case the coefficients are redefined as ω̃A ≡ (MqaiA0)

2/Lq�,
ω̃B ≡ (MqbiB0)

2/Lq�, and GAB ≡ iA0iB0MqaMqb/Lq�. The term with coupling co-
efficient GAB constitutes the geometric second-order interaction between A and B.
As it appears clear from the discussion below, once again the renormalization terms
ω̃A and ω̃B do not catch the circuit topology properly. This issue can be clarified
analyzing the circuit diagram drawn in Fig. 5.6, where all the geometric elements for
this example are shown. The geometric first-order mutual inductancem between the
two resonators is neglected to simplify the notation. Again, the Josephson tunnel
junctions responsible for the dynamic behavior are not included.

We now study the geometric part of the interaction Hamiltonian between the
RF SQUID and the two resonators following a similar path as for the case of the
single Cooper-pair box (cf. Figs. 5.6, 5.7, and 5.8). The four main transformation
steps are:

(i) First, we assume the circuit corresponding to the flux qubit to be positioned
at a current antinode. Thus, in Fig. 5.7, we replace all voltage sources and
capacitors of Fig. 5.6 with short circuits. The self-inductance of the qubit loop
is split up into two Lq/2 inductances to facilitate the following transformation
steps;

(ii) Second, a well-known theorem of circuit theory [264] allows us to transform

Figure 5.8: Left side: T-network obtained from the Π-network of Fig. 5.7. We
identify the second-order mutual inductance Mcr ≡MqaMqb/Lq and the shift

inductances Lsa ≡ M2
qa/Lq and Lsb ≡ M2

qb/Lq. Right side: The connected
circuit on the left side is transformed into a disconnected circuit [264].
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the three disconnected circuits of Fig. 5.6 into the connected circuit of Fig. 5.7.
Here, the region indicated by the dashed box evidently forms a Π-network;

(iii) Third, a Π-to-T-network transformation [264] results in the circuit on the left
side of Fig. 5.8;

(iv) Fourth, applying the inverse theorem of that used in step (ii) finally allows
us to draw the equivalent circuit on the right side of Fig. 5.8. Here, Mcr ≡
MqaMqb/Lq represents the second-order mutual inductance between resonators
A and B, corresponding to the geometric second-order coupling between them.
Remarkably, this coincides with our result obtained in Eq. (5.3) of Subsec. 5.1.2
and is consistent with the simple model of Eq. (5.9).

However, in this model the small shift inductances Lsa ≡ M2
qa/Lq and Lsb ≡

M2
qb/Lq (here defined to be strictly positive) acquire the wrong sign. Our

circuit approach reveals that the correct renormalization constants of the res-
onators angular frequency are ω̃A = − Lsai

2
A0/� and ω̃B = − Lsbi

2
B0/�. This

result is also confirmed by our numerical simulations (cf. Sec. 5.4 and Ta-
ble 5.1). In Subsec. 5.1.2, these renormalization constants are absorbed in the
definitions of MAA and MBB.

5.2 Derivation of the Quantum Switch Hamilto-

nian

In this section, we analyze the Hamiltonian of a three-node quantum network as
found in Subsec. 5.1.2. In particular, we focus on the relevant case of large qubit-
resonator detuning, i.e., the dispersive regime of two-resonator circuit QED. Under
this assumption, we are able to derive an effective Hamiltonian describing a quan-
tum switch between two resonators. We compare the analytical results to those
of extensive simulations (cf. Subsec. 5.2.1). We also propose a protocol for the
quantum switch operation stressing two possible variants. One is based on a qubit
population inversion and the other on an adiabatic shift pulse with the qubit in the
energy groundstate (cf. Subsec. 5.2.2). Finally, we give a few examples of advanced
applications of the quantum switch and, more in general, of dispersive two-resonator
circuit QED (cf. Subsec. 5.2.3).

5.2.1 Balancing the Geometric and Dynamic Coupling

We now give the total Hamiltonian of the three-node quantum network of Figs. 5.1(a)
and 5.1(b). In order to avoid unnecessarily cumbersome calculations, we restrict our-
selves to purely inductive interactions up to geometric second-order corrections. In
this framework, the most suitable quantum circuit to be used is a flux qubit. Here-
after, all specific parameters and corresponding simulations refer to this particular
case. Nevertheless, the formalism which we develop remains general and can be
extended to purely capacitive interactions (charge qubits) straightforwardly.

The flux qubit is assumed to be positioned at a current antinode. As a conse-
quence, the vacuum fluctuations iA0 and iB0 have maximum values imax

A0 and imax
B0 at

the qubit position and we can impose vA0 = vB0 = 0. Also, in the standard opera-
tion of a flux qubit no DC voltages are applied, i.e., vDC = 0, and the quasi-static
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Figure 5.9: Simulation of the Hamiltonian of Eq. (5.10) in the dispersive
regime (cf. Subsec. 5.2.1 for a detailed description of the system parameters).
(a) The differences between the first nine excited energy levels of the quantum
switch Hamiltonian and the groundstate energy level, ΔE, as a function of
the frustration fDC

x ≡ ΦDC
x /Φ0. The two lowest lines [blue (dark grey) and

green (light grey), respectively] are associated with resonators A and B. The
dispersive action of the qubit, which modifies the shape of the resonator lines,
is clearly noticeable in the vicinity of the qubit degeneracy point. In this
region, the third energy difference [hyperbolic shape, magenta (middle grey)
line] represents the modified transition frequency of the qubit. (b) Close-up of
the area indicated by the black arrow in (a). Here, the two modified resonator
lines [thick blue (dark grey) and thin green (light grey), respectively] cross each

other. (c) Quantum switch coupling coefficient |2g|g〉sw | extrapolated from the
energy spectrum of (a) plotted versus fDC

x . (d) Close-up of the area indicated

by the black arrow of (c). The switch setting condition |2g|g〉sw | = 0 is reached
at fDC

x � 0.4938.

flux bias is usually controlled by an external coil and not by the cavities (cf. Sub-
sec. 5.1.1). Again, we impose iDC = 0 and add to the Hamiltonian of Eq. (5.1)
the term (ΦDC

x − Φ0/2)ÎQ. Under all these assumptions and substituting M(n) of

Eq. (5.1) by M(2) of matrix (5.5), we readily obtain

Ĥ ′ =
1

2
�εˆ̄σz +

1

2
�δQ ˆ̄σx + �ωAâ

†â + �ωBb̂
†b̂

+ �gA ˆ̄σz(â
† + â) + �gB ˆ̄σz(b̂

† + b̂)

+ �gAB(â
† + â)(b̂† + b̂) . (5.10)

Here, all global energy offsets have been neglected and we have included both first-
and second-order circuit theory contributions. In Eq. (5.10), �ε ≡ 2iQ(Φ

DC
x −
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Φ0/2) is the qubit energy bias, δQ ≡ δQ (Ec, EJ) is the qubit gap [97, 189], ωA ≡
1/
√
MAACAA and ωB ≡ 1/

√
MBBCBB are the angular frequencies of resonators

A and B, respectively, gA ≡ iQiA0MAQ/� and gB ≡ iQiB0MBQ/� are the qubit-
resonator coupling coefficients, and, finally, the second-order coupling coefficient
gAB ≡ iA0iB0

(
m+MAQMQB/MQQ

)
/�. In general, gA and gB can be different due

to parameter spread during the sample fabrication. Later, we show that the archi-
tecture proposed here is robust with respect to such imperfections. We now rotate
the system Hamiltonian of Eq. (5.10) into the qubit energy eigenbasis {|g〉 , |e〉}
obtaining

Ĥ = �
ΩQ

2
σ̂z + �ωAâ

†â + �ωBb̂
†b̂

+ �gA cos θ σ̂z(â
† + â) + �gB cos θ σ̂z(b̂

† + b̂)

− �gA sin θ σ̂x(â
† + â)− �gB sin θ σ̂x(b̂

† + b̂)

+ �gAB(â
† + â)(b̂† + b̂) . (5.11)

Here, ΩQ =
√
ε2 + δ2Q is the ΦDC

x -dependent transition frequency of the qubit and

θ = arctan
(
δQ/ε
)
is the usual mixing angle. In the Hamiltonian of Eq. (5.11) and in

all the following Hamiltonians expressed in the qubit energy eigenbasis, we use the
redefined Pauli operators σ̂x and σ̂z, where σ̂x = σ̂++σ̂−, σ̂z = σ̂+σ̂−−σ̂−σ̂+, and σ̂+

and σ̂− are the lowering and raising operators between the qubit energy groundstate

|g〉 and excited state |e〉, respectively. Expressing Ĥ in an interaction picture with
respect to the qubit and both resonators, â† → â† exp (+jωAt), â → â exp (−jωAt),

b̂† → b̂† exp (+jωBt), b̂ → b̂ exp (−jωBt), and σ̂∓ → σ̂∓ exp
(
∓jΩQt

)
, assuming

ωA = ωB ≡ ω ≡ 2πf , and performing a RWA yieldŝ̃
H = � sin θ[σ̂−(gAâ

† + gBb̂
†)e−jΔt + σ̂+(gAâ + gBb̂)e

+jΔt]

+ �gAB(â
†b̂ + âb̂†) . (5.12)

Here, Δ ≡ ΩQ−ω is the qubit-resonator detuning. The first two terms of Eq. (5.12)
represent a standard two-mode JC dynamics [345, 348]. The last term, instead,
constitutes a beam-splitter-type interaction specific to two-resonator circuit QED.
This interaction is not present in the quantum optical version [345, 348]. The cou-
pling coefficient gAB is typically much smaller than gA and gB (see below). However,
in the dispersive regime (|Δ| � max {gA, gB, gAB}), gAB becomes comparable to all
other dispersive coupling strengths. To gain further insight into this matter, we
can define two superoperators Ξ̂† ≡ σ̂+(gAâ + gBb̂) and Ξ̂ ≡ σ̂−(gAâ

† + gBb̂
†). It

can be shown that the Dyson series for the evolution operator associated with the
time-dependent Hamiltonian of Eq. (5.12) can be rewritten in the exponential form

Û = exp(−j ̂̃Hefft/�), where
̂̃
Heff = �[Ξ̂†, Ξ̂]/Δ+ �gAB(â

†b̂ + âb̂†). Thus

̂̃
Heff = �

(gA sin θ)2

Δ
σ̂z

(
â†â +

1

2

)

+ �
(gB sin θ)2

Δ
σ̂z

(
b̂†b̂ +

1

2

)
+ �

(
gAgB sin2 θ

Δ
σ̂z + gAB

)
(â†b̂ + âb̂†) . (5.13)
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In this Hamiltonian, the first two terms represent dynamic (AC-Zeeman) shifts
(AC-Stark shifts in the case of charge qubits) of the transition angular frequency of
resonators A and B, respectively. If gA = gB ≡ g and we only use eigenstates of σ̂z,
the first two terms of Eq. (5.13) equally renormalize ωA and ωB, respectively. The
Hamiltonian of Eq. (5.13) can be further simplified through an additional unitary

transformation described by Û0 = exp(jĤ0t/�), where Ĥ0 ≡ �(g2A sin2 θ/Δ)σ̂z(â
†â+

1/2) + �(g2B sin2 θ/Δ)σ̂z(b̂
†b̂ + 1/2). When gA = gB ≡ g, this transformation yields

the final effective Hamiltonian

Ĥeff = �

(
g2 sin2 θ

Δ
σ̂z + gAB

)
(â†b̂ + âb̂†) , (5.14)

which constitutes the second main result of this chapter. This Hamiltonian is the key
ingredient for the implementation of a quantum switch between the two resonators.
In fact, it clearly represents a tunable interaction between A and B characterized
by an effective coupling coefficient

g|g〉sw ≡ gAB − g2 sin2 θ

Δ
, (5.15a)

g|e〉sw ≡ gAB +
g2 sin2 θ

Δ
, (5.15b)

for |g〉 and |e〉, respectively. The switching of such an interaction triggers, or pre-
vents, the exchange of quantum information between A and B. On one hand, the
first part of this interaction is a purely geometric coupling, which is constant and
qubit-state independent. On the other hand, the second part is a dynamic coupling,
which depends on the state of the qubit. The switch setting condition

g2 sin2 θ

|Δ| = |gAB| (5.16)

can easily be fulfilled varying Δ, changing sin θ, or inducing AC-Zeeman or -Stark
shifts [146] (cf. chapter 6, Subsec. 6.3.1). This task can also be accomplished
modifying the qubit transition frequency ΩQ via a suitable quasi-static magnetic field
in connection with a special qubit design [139, 349] (cf. chapter 6, Subsec. 6.3.1).
This allows one to keep the qubit at the degeneracy point. Here, we focus on the
first option, i.e., finding a suitable qubit bias for which the detuning Δ fulfills the
relation of Eq. (5.16). For a flux qubit, this can be realized polarizing the qubit by
means of an external flux.

To better understand the switch setting condition, we numerically diagonalize
the entire system Hamiltonian of Eq. (5.10), without performing any approxima-
tion. The results are presented in Fig. 5.9, which shows the energy spectrum of
the quantum switch Hamiltonian and the effective coupling coefficient |2g|g〉sw | for a
flux qubit with iQ = 370 nA, δQ/2π = 4GHz, f = 3.5GHz, g/2π = 472MHz, and
gAB/2π = 2.2MHz. The parameters for the flux qubit are chosen from our previous
experimental works [159, 262], whereas the three coupling coefficients are the result
of detailed simulations (cf. Sec. 5.4). It is noteworthy to mention that large vacuum
Rabi couplings g/2π on the order of 500MHz have already been achieved both for
flux and charge qubits [144, 347]. We have chosen the qubit to be already detuned
from both resonators by 0.5GHz when biased at the flux degeneracy point. Moving
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Figure 5.10: Comparison between the fDC
x -dependence of the analytical ex-

pression for the coupling coefficient |2g|g〉sw | obtained from Eq. (5.15a) and the
one found by numerically diagonalizing the Hamiltonian of Eq. (5.10). (a) We
choose a center frequency fA = fB = f = 2.7GHz for the two resonators.
All the other parameters are the same as those used to obtain the results of
Fig. 5.9. The analytical [dashed green (light grey) line] and the numerical
[solid blue (dark grey) line] results are in excellent agreement. In the large de-

tuning limit far away from the qubit degeneracy point, |2g|g〉sw | saturates to the
value |2gAB| � 2.6MHz. Inset: close-up of the region near the switch setting
condition. (b) Here, we choose a center frequency fA = fB = f = 3.5GHz for
the two resonators. The analytical [dashed green (light grey) line] and numer-
ical [solid blue (dark grey) line] results are in good agreement away from the
qubit degeneracy point. Closer to it they diverge (cf. Subsec. 5.2.1 for more
details). In the large detuning limit far away from the qubit degeneracy point,

|2g|g〉sw | saturates to the value |2gAB| � 4.4MHz. Inset: close-up of the region
near the switch setting condition.

sufficiently far from the degeneracy point enables us to increase the qubit-resonator
detuning such that the system can be modeled by the Hamiltonian of Eq. (5.14).

Figure 5.9(a) shows the differences between the first nine excited energy levels of
the quantum switch Hamiltonian and the groundstate energy level, ΔEi ≡ Ei − E0

with i = {1, . . . , 9}, as a function of the frustration fx ≡ ΦDC
x /Φ0. Here, Ei is the

energy level of the i-th excited state and E0 that of the groundstate. Due to the
qubit-resonator detuning, the two lowest energy differences [blue (dark grey) and
green (light grey) lines, respectively] correspond to the modified transition frequen-
cies of the two resonators. Owing to the interaction with the qubit these lines are
not flat. This effect becomes particularly evident in the region close to the qubit
degeneracy point, where dispersivity is reduced. In this region, the third energy
difference [hyperbolic shape, magenta (middle grey) line] represents the modified
transition frequency of the qubit. When moving away from the qubit degeneracy
point, a crossing between the modified resonator lines is encountered, as clearly
shown in Fig. 5.9(b) [see, thick blue (dark grey) and thin green (light grey) lines].
This crossing represents the switch setting condition of Eq. (5.16). Figures 5.9(c)

and 5.9(d) show the absolute value of the flux-dependent coupling coefficient |2g|g〉sw |
in the flux windows of Figs. 5.9(a) and 5.9(b), respectively. The switch setting
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condition |2g|g〉sw | = 0 is reached at fDC
x � 0.4938.

A comparison between the analytic expression of Eq. (5.15a) with the qubit in
|g〉 [dashed green (light grey) lines] and a numerical estimate of the effective coupling

coefficient |2g|g〉sw | [solid blue (dark grey) lines] is shown in Figure 5.10. To clarify
similarities and differences between analytical and numerical calculations, we choose
two different sets of parameters. In Fig. 5.10(a), the center frequencies of the two
resonators are set to be fA = fB = f = 2.7GHz, whereas in Fig. 5.10(b) we choose
fA = fB = f = 3.5GHz. All the other parameters are equal to those used to
obtain the results of Fig. 5.9. In Fig. 5.10(a), analytics and numerics agree over
the entire frustration window. The inset shows that the switch setting condition
obtained from the numerical simulation is only slightly shifted with respect to the
analytical prediction. Also in Fig. 5.10(b), the agreement between analytical and
numerical estimates is good far away from the qubit degeneracy point. However,
closer to it the qubit and the two resonators are not detuned enough to guarantee
dispersivity. Therefore, analytics and numerics start to deviate, as expected.6 Again,
the inset shows that the switch setting condition can be fulfilled. It is noteworthy
to point out that both analytical and numerical estimates converge to the value
|2gAB| in the limit of large detuning. We find |2gAB|/2π � 2.6MHz and |2gAB|/2π �
4.4MHz from the simulations that produce Figs. 5.10(a) and 5.10(b), respectively.
Additionally, we have two important remarks on the results shown in Figs. 5.10(a)
and 5.10(b). First, the change of the coupling constants g and gAB between the two
parameter sets is a direct consequence of altering the resonator frequency. Although
the mutual inductances remain unaffected, the vacuum (zero-point) currents are
changed. Second, the fact that the switch setting condition occurs at almost the
same frustration value for both parameter sets is due to our specific choice of these
parameters.

Finally, we demonstrate that the quantum switch Hamiltonian is robust to pa-
rameter spread due to fabrication inaccuracies. Typically, for a center frequency
of 5GHz the expected spread around this value is approximately ∓10MHz for two
resonators fabricated on the same chip [351, 352]. Also, the coupling coefficients gA
and gB can differ slightly. In this case, a generalized effective Hamiltonian for the
quantum switch can be derived [353],

Ĥgen
eff = �

(gA sin θ)2

ΔA

σ̂zâ
†â + �

(gB sin θ)2

ΔB

σ̂z b̂
†b̂

+ �

[
gAgB sin2 θ

2

(
1

ΔA

+
1

ΔB

)
σ̂z + gAB

]
× (â†b̂e+jδABt + âb̂†e−jδABt) , (5.17)

where ΔA ≡ ΩQ − ωA, ΔB ≡ ΩQ − ωB, and δAB ≡ ωA − ωB. From Eq. (5.17),

we can deduce the generalized coupling coefficient of the switch, g
|g〉,|e〉
sw ≡ gAB ∓

gAgB sin2 θ (1/2ΔA + 1/2ΔB) for the qubit groundstate |g〉 or excited state |e〉, re-
spectively. As a consequence, the generalized switch setting condition becomes∣∣∣∣gAgB sin2 θ

2

(
1

ΔA

+
1

ΔB

)∣∣∣∣ = |gAB| . (5.18)

6In a recent work, we have found an analytical expression which agrees with the numerical
simulations over the entire frustration window of Fig. 5.10(b) [350].
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Figure 5.11: Robustness of the quantum switch to fabrication imperfections.
Solid blue (dark grey) line: numerical simulation of the quantum switch cou-

pling coefficient |2g|g〉sw | as a function of the frustration fDC
x . Here, we assume

a relatively large spread of 1% for the resonators center frequencies [351, 352]
and a difference of approximately 15% between gA and gB. Dashed green

(light grey) line: plot of |2g|g〉sw | extracted from the generalized switch setting
condition of Eq. (5.18) for the same parameter spread as in the numerical
simulations. For both the analytical and numerical result the switch setting
condition is fulfilled (see black arrows).

This condition is displayed in Fig. 5.11 [dashed green (light grey) line] as a function
of the external flux. Here, we assume two resonators with center frequencies fA =
3.5GHz and fB = 3.5GHz + 35MHz. This corresponds to a relatively large center
frequency spread of 1% [351, 352].

In addition, we choose the two coupling coefficients gA/2π = 472MHz and
gB/2π = 549MHz to differ by approximately 15%. It is remarkable that, also
in this more general case, the switch setting condition can be fulfilled easily. We
confirm this result by means of numerical simulations [solid blue (dark grey) line in
Fig. 5.11] of the full Hamiltonian of Eq. (5.10), assuming fabrication imperfections.
Interestingly, in contrast to the case where ΔA = ΔB and gA = gB, we observe a
different behavior of the analytical and numerical curves of Fig. 5.11 when mov-
ing far away from the qubit degeneracy point. The reasons behind this fact rely
on the conditions used to obtain the second-order Hamiltonian of Eq. (5.17). If
δAB � max

{
gAgB sin2 θ/2ΔA, gAgB sin2 θ/2ΔB, gAB

}
, as for the parameters chosen

here, this Hamiltonian does not represent an accurate approximation anymore. In
this case, as expected, only a partial agreement between analytics and numerics is
found. Nevertheless, a clear switch setting condition is obtained in both cases. We
notice that the numerical switch setting condition is shifted towards the degeneracy
point with respect to the analytical solution. This is due to the detuning δAB present
in Eq. (5.17), which is not accounted for when plotting the analytical solution.

All the above considerations clearly show that the requirements on the sample
fabrication are substantially relaxed.
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5.2.2 A Quantum Switch Protocol

We now propose a possible switching protocol based on three steps and discuss
two different variants to shift from the zero-coupling to a finite-coupling condition
characterized by a coupling coefficient gonsw. It is important to stress that this protocol
is independent of the specific implementation (capacitive or inductive) of the switch.
For definiteness, we choose a quantum switch based on a flux qubit in the following.

(i) First, we initialize the qubit in the groundstate |g〉;

(ii) Second, in order to fulfill the switch setting condition, we choose the appropri-
ate detuning Δ by changing the quasi-static bias of the qubit. For the switch
operation to be practical, we assume Δ = Δ1 > 0. In this way, the sign of the
coefficient in front of the σ̂z-operator of Eq. (5.14) remains positive and, as a
consequence, the switch is off in the groundstate |g〉 (where the eigenvalue of

σ̂z is −1), i.e., g
|g〉
sw = 0;

(iii) Third, the state of the quantum switch can now be changed from off to on in
two different ways, (a) or (b):

(a) Population-inversion. The qubit is maintained at the bias point preset in
(ii). Its population is then inverted from |g〉 to |e〉, e.g., applying a Rabi
π-pulse of duration tπ. Such a pulse effectively changes the switch to the

on-state, g
|e〉
sw = 2gAB. In this case, gonsw = 2gAB. Under these conditions,

the two resonators are effectively coupled and the A-to-B transfer time is
t = π/2gonsw, which also constitutes the required time-scale for most of the
operations to be discussed in Subsec. 5.2.3;

(b) Adiabatic-shift pulse. We opportunely change the quasi-static bias of the
qubit by applying an adiabatic shift pulse [262] (cf. chapter 8, Sec. 8.2).
In this way, the qubit transition frequency becomes effectively modified.
As a consequence, the detuning Δ is changed from Δ1 to Δ2 such that

g
|g〉
sw = g̃sw = gAB − g2 sin2 θ/Δ2 �= 0. In other words, the geometric and
dynamic coupling coefficients are not balanced against each other anymore
and the switch is set to the on-state. In this case, gonsw = g̃sw. The rise
time trise of the shift pulse has to fulfill the condition 2π/gonsw � trise �
max
{
2π/δQ, 2π/ω

}
[141, 262].

Variant (b) strongly benefits from the dependence of g̃sw on the external quasi-
static bias of the qubit [see Figs. 5.9(c) and 5.9(d)]. We can distinguish between
two possible regimes. The first regime is for a flux bias close to the qubit degener-
acy point, where the qubit-resonator detuning is reduced and, thus, Δ2 < Δ1. In
this case, the dynamic contribution to g̃sw dominates over the geometric one. This
enables us to achieve very large resonator-resonator coupling strengths, which is a
highly desirable condition to perform fast quantum operations (e.g., cf. Sec. 5.2.3).
The second regime is for a flux bias far away from the qubit degeneracy point, where
the qubit-resonator detuning is increased and, thus, Δ2 > Δ1. In this case, the ge-
ometric contribution to g̃sw dominates over the dynamic one. Since very far away
from the qubit degeneracy point g̃sw → |2gAB| [cf. Subsec. 5.2.1 and Figs. 5.10(a)
and 5.10(b)], operating the system in the second regime allows us to probe the pure
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geometric coupling between A and B. This would constitute a direct measurement
of the geometric second-order coupling when MAQMQB/MQQ � m.

5.2.3 Advanced Applications: Nonclassical States
and Entanglement

We now provide a few examples showing how the quantum switch architecture can
be exploited to create nonclassical states of the microwave radiation as well as entan-
glement of the resonators and qubit degrees of freedom. In this subsection, when we
discuss about the qubit we refer to the one used for the quantum switch operation.
If the presence of another qubit is required, we refer to it as the auxiliary qubit.

Fock State Transfer and Entanglement between the Resonators

First, we assume the quantum switch to be turned off, e.g., following the protocol
outlined in Subsec. 5.2.2 with the qubit in the groundstate |g〉. In addition, we
assume resonator A to be initially prepared in a Fock state |1〉A, while cavity B
remains in the vacuum state |0〉B. Following the lines of Ref. [150], for example,
a Fock state |1〉A can be created in A by means of an auxiliary qubit coupled to
it. A population inversion of the auxiliary qubit (via a π-pulse) and its subsequent
relaxation suffice to achieve this purpose. Then, we turn on the quantum switch
for a certain time t following either one of the two variants (a) or (b) introduced
in Subsec. 5.2.2. The initial states are |e〉 |1〉A |0〉B and |g〉 |1〉A |0〉B for (a) and (b),
respectively. The quantum switch is now characterized by an effective coupling gonsw
and the dynamics associated with the Hamiltonian of Eq. (5.14) is activated for the
time t. In this manner, a coherent linear superposition of bipartite states containing
a Fock state single photon [141, 150, 151, 289, 354] can be created

cos (gonswt) |1〉A |0〉B + ejπ/2 sin (gonswt) |0〉A |1〉B , (5.19)

where the qubit state does not change and qubit and resonators remain disentangled.
If we choose to wait for a time t = π/2gonsw, we can exploit Eq. (5.19) as a mechanism
for the transferring of a Fock state from resonator A to resonator B, |1〉A |0〉B →
|0〉A |1〉B. In this case, also the resonators remain disentangled. It is noteworthy to
mention that the controlled transfer of a Fock state between two remote locations
constitutes the basis of several quantum information devices [355]. If we choose to
wait for a time t = π/4gonsw instead, we can achieve maximal entanglement between
the two remote resonators. This goes beyond the results obtained in atomic systems,
where two nondegenerate orthogonally polarized modes of the same cavity have been
used to create mode entanglement [345].

Tripartite Entanglement and GHZ States

We follow a modified version of variant (a) of the switching protocol. We start from
the same initial conditions as in the previous example. Resonator A is in |1〉A and
resonator B is in |0〉B. The qubit is in |g〉 and the switch setting condition is fulfilled,
i.e., the switch is off. We then apply a π/2-pulse to the qubit bringing it into the
symmetric superposition (|g〉+ |e〉) /

√
2 [108]. Then, the state of the system is still
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disentangled and can be written as

|g〉 |1〉A |0〉B + |e〉 |1〉A |0〉B√
2

. (5.20)

Now, the Hamiltonian of Eq. (5.14) yields the time evolution

1√
2

(
|g〉 |1〉A |0〉B + cos (gonswt) |e〉 |1〉A |0〉B

+ ejπ/2 sin (gonswt) |e〉 |0〉A |1〉B
)

(5.21)

for the state of the quantum switch. Under these conditions, the dynamics displayed
in Eq. (5.21) is characterized by two distinct processes. The first one acts on the
|g〉 |1〉A |0〉B part of the initial state of Eq. (5.20). This process is actually frozen
because the quantum switch is turned off when the qubit is in |g〉. The second
process, instead, acts on the |e〉 |1〉A |0〉B part of the initial state, starting the transfer
of a single photon from resonator A to resonator B and vice versa. If during such
evolution we wait for a time t = π/2gonsw, a tripartite entangled state

|g〉 |1〉A |0〉B + ejπ/2 |e〉 |0〉A |1〉B√
2

(5.22)

of the GHZ class [356] is generated. Here, the two resonators can be interpreted as
photonic qubits because only the Fock states |0〉A,B and |1〉A,B are involved. Hence,
Eq. (5.22) represents a state containing maximal entanglement for a three-qubit
system, which consists of two photonic qubits and one superconducting (charge
or flux) qubit. The generation of GHZ states is important for the study of the
properties of genuine multipartite entanglement. Interestingly, the quantum nature
of our switch is embodied in the linear superposition of |g〉 |1〉A |0〉B and |e〉 |1〉A |0〉B
of the initial state of Eq. (5.20).

Entanglement of Coherent States

Finally, we show how to produce entangled coherent states of the intracavity mi-
crowave fields of the two resonators. These are prototypical examples of the vast
class of states referred to as Schrödinger cat states [331, 337, 357–359] (cf. chap-
ter 6, Sec. 6.3). This time, we start with cavity A populated by a coherent state |α〉A
instead of a Fock state |1〉A. Again, cavity B is in the vacuum state |0〉B and the
qubit in the symmetric superposition state (|g〉+ |e〉) /

√
2, i.e., a modified version

of variant (a) of the switching protocol is again employed. The total disentangled
initial state can be written as

|g〉 |α〉A |0〉B + |e〉 |α〉A |0〉B√
2

. (5.23)

The resulting dynamics associated with the Hamiltonian of Eq. (5.14) yields a time
evolution similar to that shown for Fock states in Eq. (5.21). In this case, the
part of the evolution involving |e〉 can be calculated either quantum-mechanically
or employing a semi-classical model. In both cases, after a waiting time t = π/2gonsw,
resonator B is in the state |α〉B and A in the vacuum state |0〉A. However, Eq. (5.23)
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contains an initial linear superposition of |g〉 |α〉A |0〉B and |e〉 |α〉A |0〉B, requiring
a quantum-mechanical treatment of the time evolution. From this, one finds that,
after the waiting time t = π/2gonsw the quantum switch operation creates the tripartite
GHZ-type entangled state

|g〉 |α〉A |0〉B + ejϕ |e〉 |0〉A |α〉B√
2

, (5.24)

where ϕ is an arbitrary phase. Again, the creation of such states clearly reveals
the quantum nature of our switch, showing a departure from standard classical
switches [264]. Remarkably, the state of Eq. (5.24) describes the entanglement of
coherent (“classical”) states in both resonators. This feature is peculiar to our quan-
tum switch and cannot easily be reproduced in atomic systems [345]. In principle,
in absence of dissipation the quantum switch dynamics continues transferring back
the coherent state to cavity A. In order to stop this evolution, an ultimate measure-
ment of the qubit along the x-axis of the Bloch sphere [150, 360] is necessary. This
corresponds to a projection associated with the Pauli operator σ̂x, which creates the
two-resonator entangled state

|α〉A |0〉B + ejϕ |0〉A |α〉B√
2

. (5.25)

This state is decoupled from the qubit degree of freedom.
Obviously, all the protocols discussed above need suitable measurement schemes

to be implemented in reality. For instance, it is desirable to measure the trans-
mitted microwave field through both resonators and, eventually, opportune cross-
correlations between them by means of a cross-correlation homodyne detection ap-
paratus as the one described and characterized in chapters 3 and 4. In addition, a
direct measurement of the qubit state, e.g., by means of a DC SQUID coupled to
it [141, 159] (cf. chapter 8) would allow for the full characterization of the quantum
switch device.

In summary, we have shown that a rich landscape of nonclassical and multipartite
entangled states can be created and measured by means of our quantum switch in
two-resonator circuit QED.

5.3 Treatment of Decoherence

The discussion in the previous sections implicitly assumes pure quantum states.
In reality, however, a quantum system gradually decays into an incoherent mixed
state during its time evolution. This process, called decoherence, is due to the
entanglement of the system with its environment and it is known to be a critical issue
for solid-state quantum circuits. Since it is difficult to decouple these circuits from
the large number of environmental degrees of freedom to which they are exposed,
their typical decoherence rates cannot be easily minimized. Usually, they are in
the range from 1MHz to 1GHz, depending on the specific implementation. In this
section, we discuss the impact of the three most relevant decoherence mechanisms
on the quantum switch architecture. These are: First, the population decay of
resonators A and B with rates κA and κB, respectively; second, the qubit relaxation
from the energy excited state to the groundstate at a rate γr due to high-frequency
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noise; third, the qubit dephasing (loss of phase coherence) at a pure dephasing rate
γϕ due to low-frequency noise. We show by means of detailed analytical derivations
that, despite decoherence mechanisms, a working quantum switch can be realized
with readily available superconducting qubits and resonators.

Decoherence processes are most naturally described in the qubit energy eigenba-
sis {|g〉 , |e〉}. Under the Markov approximation, the time evolution of the density

matrix of the quantum switch Hamiltonian Ĥ of Eq. (5.11) is described by the
master equation

˙̂ρ =
1

j�
(Ĥ ρ̂ − ρ̂Ĥ ) +

4∑
n=1

L̂n ρ̂ . (5.26)

Here, L̂n is the Lindblad superoperator defined as

L̂n ρ̂ ≡ γn(X̂n ρ̂ X̂
†
n − X̂†

nX̂n ρ̂/2− ρ̂ X̂†
nX̂n/2) .

The indices n = 1, 2, 3, 4 label the decay of resonator A, the decay of resonator B,
qubit relaxation, and qubit dephasing, respectively. Consequently, the generating
operators are X̂1 ≡ â, X̂†

1 ≡ â†, X̂2 ≡ b̂, X̂†
2 ≡ b̂†, X̂3 ≡ σ̂−, X̂†

3 ≡ σ̂+, and
X̂4 = X̂†

4 ≡ σ̂z. The corresponding decoherence rates are γ1 ≡ κA, γ2 ≡ κB,
γ3 ≡ γr, and γ4 ≡ γϕ/2. For the resonators, κA and κB are often expressed in
terms of the corresponding loaded quality factors QA and QB, κA ≡ ωA/QA and
κB ≡ ωB/QB, respectively. Although in general all four processes coexist, in most
experimental situations one of them dominates over the others. In fact, it is a
common experimental scenario that γϕ � γr, for example in the special case of
a flux qubit operated away from the degeneracy point (see, e.g., Ref. [262]). In
this situation, we can extract pessimistic relaxation and dephasing rates from the
literature [118, 119, 261, 262], γr � 1MHz and γϕ � 200MHz. In other words,
dephasing is the dominating source of qubit decoherence.7 The decay rates of the
resonators can be engineered such that κA, κB � γr � γϕ [351, 352]. For these
reasons, hereafter we focus on dephasing mechanisms only. Hence, we analyze the
following simplified master equation

˙̂ρ =
1

j�

(
Ĥ ρ̂ − ρ̂Ĥ

)
+ L̂ϕ ρ̂ , (5.27)

where L̂ϕ ρ̂ ≡ L̂4 ρ̂ = (γϕ/2)(σz ρ̂σ̂z − ρ̂).
The impact of qubit dephasing on the switch operation depends on the chosen

protocol (cf. Subsec. 5.2.2). When employing the population-inversion protocol,
qubit dephasing occurs within the duration time tπ of the control π-pulses. The
time tπ coincides with the inverse of the qubit Rabi frequency and can be reduced
to less than 1 ns using high driving power [361]. In this way, the time window during
which the qubit is sensitive to dephasing is substantially shortened. However, it is
more favorable to resort to the adiabatic shift pulse protocol. In this case, the
qubit always remains in |g〉 resulting in a complete elimination of pulse-induced
dephasing. The relevant time scale during which dephasing occurs is therefore set

7At the qubit degeracy point, the scenario can be quite different and energy relaxation can
become the dominating source of decoherence. However, qubit energy relaxation rates are typically
� 10MHz in this situation and, thus, a reasonable operating time for the quantum switch is
guaranteed.
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by the operation time of the switch between two on-off events. Naturally, this time
should be as long as possible if we want to perform many operations.

The effect of dephasing during the switch operation time is better understood
by inspecting the effective quantum switch Hamiltonian Ĥeff of Eq. (5.14). In Sub-
sec. 5.2.1, we deduce this effective Hamiltonian by means of a Dyson series expansion.
This approach is very powerful and compact when dealing with the analysis of a
unitary evolution. However, when treating master equations, we prefer to utilize a
variant of the well-known Schrieffer-Wolff unitary transformation [131, 362], Û Ĥ Û †,
where

Û ≡ exp

[
gA sin θ

Δ
(σ̂−â† − σ̂+â)

+
gB sin θ

Δ
(σ̂−b̂† − σ̂+b̂)

]
(5.28)

and Û † is its Hermitian conjugate. In the large-detuning regime, gA sin θ, gB sin θ �
Δ, we can neglect all terms of orders (gA sin θ/Δ)2, (gB sin θ/Δ)2, gAgB sin2 θ/Δ2, or
higher. After a transformation into an interaction picture with respect to the qubit
and both resonators (cf. Subsec. 5.2.1) and performing opportune RWAs, we obtain

again Ĥeff of Eq. (5.14). The master equation governing the time evolution of the

effective density matrix ρ̂eff ≡ Û ρ̂ Û † then becomes

˙̂ρeff =
1

j�

(
Ĥeff ρ̂

eff − ρ̂eff Ĥeff

)
+ L̂eff

ϕ ρ̂eff . (5.29)

The analysis is complicated by the fact that also the Lindblad superoperator L̂ρ̂ has
to be transformed. For the sake of simplicity, we can assume gA = gB ≡ g and find

L̂eff
ϕ ρ̂eff ≈ L̂ϕ ρ̂eff + 2γϕ ×O

[(
g sin θ

Δ

)2]
. (5.30)

When deriving this expression, all terms of O (g sin θ/Δ) are explicitly neglected by
a RWA. This approximation relies on the condition

(
γϕ/Δ

)
g sin θ � Δ, which is

well satisfied in the large-detuning regime as long as γϕ � Δ. The latter require-
ment can easily be met by most types of existing superconducting qubits. In the
frame of Ĥeff , L̂ϕ ρ̂eff has the standard Lindblad dephasing structure and the qubit
appears only in the form of σ̂z-operators. Since the initial state of the switch op-
eration is characterized by either no (adiabatic shift pulse protocol) or only very
small (population-inversion protocol) qubit coherences, the effect of L̂ϕ ρ̂eff on the
time evolution of the system is negligible. All other nonvanishing terms are com-
prised in the expression 2γϕ × O[(g sin θ/Δ)2] of Eq. (5.30) and scale with a factor

smaller than γeffϕ ≡ 2γϕ (g sin θ/Δ)2. Hence, the operation of the quantum switch is
robust to qubit dephasing on a characteristic time scale T eff

ϕ = 1/γeffϕ � 1/γϕ. For
completeness, it is important to mention that the higher-order terms of Eq. (5.30)
can contain combinations of operators such as â†â and b̂†b̂. In this case, T eff

ϕ would
be reduced for a large number of photons populating the resonators. Fortunately,
this does not constitute a major issue since the most interesting applications of a
quantum switch require that the number of photons in the resonators is of the order
of one.
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In summary, we have shown that for suitably engineered cavities the quantum
switch operation time for the adiabatic shift pulse protocol is limited only by the
effective qubit dephasing time T eff

ϕ . The latter is strongly enhanced with respect
to the intrinsic dephasing time Tϕ ≡ 1/γϕ. In this sense, the quantum switch is
superior to the dual setup, where two qubits are dispersively coupled via one cavity
bus [146]. Moreover, the intrinsic dephasing time Tϕ and, consequently, T eff

ϕ are
further enhanced by choosing a shift pulse which sets the on-state bias near the
qubit degeneracy point [262]. As explained in Subsec. 5.2.2, this regime takes place
for a qubit-resonator detuning Δ2 < Δ1. In this case, the switch coupling coefficient
is also substantially increased because of a dominating dynamic interaction. As a
consequence, this option is particularly appealing in the context of the advanced
applications discussed in Subsec. 5.2.3. Finally, we notice that for the population-
inversion protocol the switch operation time could be limited by the qubit relaxation
time Tr ≡ 1/γr. However, the switch setting condition is typically fulfilled for a
bias away from the qubit degeneracy point. There, Tr is considerably enhanced
by both a reduced sin θ [262] and by the Purcell effect due to the presence of the
cavities [120, 131].

5.4 An Example of Two-Resonator Circuit QED

with a Flux Qubit

In this section, we focus on the geometry sketched in Fig. 5.2(a) and present one
specific implementation of two-resonator circuit QED. As a particular case, the
described setup can be operated as a superconducting quantum switch. In this ex-
ample, we consider microstrip resonators. Coplanar wave guide resonators can also
be used without significantly affecting our main results. In addition, we choose a
flux qubit because this is our main topic of research [159, 261, 262, 289] (cf. chap-
ters 2 and 8). Moreover, as shown in Subsec. 5.2.1, the dynamic properties of the
quantum switch are independent of specific implementations. As a consequence, in
this section we concentrate on its geometric properties only. It is worth mentioning
again that such properties are inherent to circuit QED architectures and constitute
a fundamental departure from quantum optical systems.

In Figs. 5.12(a) and 5.12(b), the design of a possible two-resonator circuit QED
setup is shown. The overall structure is composed of two superconducting microstrip
transmission lines, which are bounded by input and output capacitors, Ca,in, Cb,in,
Ca,out, and Cb,out. This geometrical configuration forms the two resonators A and
B. The input and output capacitors also determine the loaded or external quality
factors QA and QB of the two resonators [363]. Both A and B are characterized
by a length �m, which defines their center frequencies fA and fB. We choose �m =
λm/2 = 12mm, where λm ≡ λA = λB is the full wavelength of the standing waves
on the resonators. The superconducting loop of the flux qubit circuit is positioned
at the current antinode of the two λm/2 resonators.

In Fig. 5.12(c), only the two microstrip resonators A and B are considered.
They are chosen to have a width Wm = 10μm and a thickness tm = 100 nm. The
height of the dielectric substrate between each microstrip and the corresponding
groundplane is Hs = 12.3μm. The substrate can opportunely be made of different
materials, for example silicon, sapphire, amorphous hydrogenated silicon, or silicon
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Figure 5.12: A possible setup for two-resonator circuit QED with a flux qubit. (a) Over-
all structure (dimensions not in scale). Two microstrip resonators A and B (thick blue
lines) of length �m simultaneously coupled to a flux qubit loop [magenta (middle grey)
rectangle]. Ca,in, Cb,in, Ca,out, and Cb,out: input and output capacitors for A and B. The
dashed black box indicates the region of the close-up shown in (b). �sim: length of the
region used for the FASTHENRY [364] simulations. (b) Close-up of the region which
contains the flux qubit loop in (a). �q1 and �q2: qubit loop lateral dimensions. Wq: width
of the qubit lines. dmq: distance between the qubit and each resonator. The dashed black

line denominated as S̃ marks the cross-section reported on the top part of the panel. tq:
thickness of the qubit loop lines. (c) As in (b), but without the qubit loop. Wm and tm:
width and thickness (see cross-section S) of the two microstrip resonators. Hs: height of
the dielectric substrate. The reference axis 0z is also indicated (cf. Appendix E). Both
in (b) and (c), ain, aout, bin, and bout represent the input and output probing ports used
in the simulations. (d) Current density distribution at high frequency (5GHz) for the
structures drawn in (c). The currents are represented by small arrows, green (light grey)
for resonator A and blue (dark grey) for resonator B. (e) Current density distribution at
high frequency (5GHz) for the structures drawn in (b). The two black arrows indicate two
high-current-density channels between the two resonators. The dashed black box marks
the close-up area shown in (f). (f) Close-up of one of the two geometric second-order
interaction channels.
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oxide, depending on the experimental necessities. A detailed study on the properties
of a variety of dielectrics and on the dissipation processes of superconducting on-
chip resonators can be found in Refs. [242, 252, 280–283]. The aspect ratio Wm/Hs

is engineered to guarantee a line characteristic impedance Zc � 50Ω, even if this
is not a strict requirement for the resonators to function properly.8 The remaining
dimensions of our system are shown in Fig. 5.12(b): the lateral dimensions �q1 =
200μm and �q2 = 87μm of the qubit loop, the widthWq = 1μm of each line forming
the qubit loop, the interspace dmq = 1μm between qubit and resonators, and the
thickness tq(= tm) = 100 nm of the qubit lines. The dimensions of the qubit loop are
chosen to optimize the qubit-resonator coupling strengths. This geometry results
in a relatively large inductance Lq � 780 pH (number obtained from FASTHENRY
simulations [364]; cf. Table 5.1). Despite the large self-inductance Lq, reasonable
qubit coherence times are expected (see, e.g., Refs. [347] and [365]). Moreover,
in the light of Sec. 5.3 these coherence times easily suffice for the operation of a
superconducting quantum switch, where the qubit acts as a mere mediator for the
exchange of virtual excitations.

In our numerical simulations (cf. Appendix E), we restrict ourselves to the region
indicated by the black dashed box in Fig. 5.12(a), the close-up of which is shown in
Fig. 5.12(b) and, in the absence of the flux qubit loop, in Fig. 5.12(c). This region
is characterized by a length �sim = 500μm of the resonators and is centered at a
position where the magnetic field reaches a maximum (antinode) and the electric
field reaches a minimum (node). We notice that magnetic and electric fields can
equivalently be expressed in terms of currents and voltages, respectively. There are
two main hypotheses behind the validity of our simulation results for the entire
two-resonator-qubit system. These are the uniformity of the electromagnetic field
(voltage and current) in the simulated region and the abruptly9 increasing geometric
distance between resonators A and B outside of it [see sketch of Fig. 5.12(a)]. The
three main implications of the above assumptions are explained in the following.
First, all coupling strengths are dominated by inductive interactions and there are
no appreciable capacitive ones. Inside the simulated region, in fact, the voltage is
practically characterized by a node, which results in a vanishing coupling coeffi-
cient. Outside the simulated region, the effective distance deff between the cavities
strongly increases together with the geometric one [227, 308]. As a consequence, the
geometric first-order capacitance c ∝ 1/deff becomes negligible. Second, the cou-
pling coefficients between qubit and resonators can be obtained without integrating
over the spatial distribution of the mode. This is because of the uniformity of the
field, which, for all practical purposes, is constant over the restricted simulated re-
gion. Third, the geometric first-order coupling between the two resonators, which is
proportional to their mutual inductance m, is still accurately determined. In fact,
outside the simulated region any additional contribution to m becomes negligible.
For all the reasons mentioned above, we are allowed to use the FASTHENRY [364]
calculation software for our simulations. In this section, we utilize two different
versions of FASTHENRY, one for superconducting materials and one for almost

8However, in order to avoid unwanted reflections all on-chip transmission lines connected to the
resonators via the input and output capacitors have to be properly engineered to be 50Ω-matched.

9Obviously, this does not mean that sharp edges of the microwave on-chip structures are needed
(which would imply unwanted radiation effects). It only means that the lines of the two resonators
have to rapidly depart from each other.
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perfect conducting ones. We use the second version only when we want to obtain
current density distributions or the frequency dependence of an inductance. In these
cases, due to technical limitations of the software, we cannot use the version valid
for superconductors [364].

Figures 5.12(d) and 5.12(e) display the simulated current density distributions
at a probing frequency of 5GHz (high-frequency regime) for the different structures
drawn in Fig. 5.12(c) and 5.12(b), respectively. Similar results can be found in
a range between 1GHz and 10GHz (data not shown). Without loss of generality,
these simulations are performed for almost perfect conductors using a FASTHENRY
version which does not support superconductivity. The results of Fig. 5.12(d) clearly
show that the two microstrip lines are regions characterized by a high current density
separated by a region with a low current density in absence of the flux qubit loop.
In this case, the geometric interaction between resonators A and B is reduced to
a bare first-order coupling, which turns out to be very weak. On the contrary, in
Fig. 5.12(e) the presence of the qubit loop clearly opens two new current channels
between A and B. These are located at the position of the upper and lower qubit
loop segments of Fig. 5.12(b). For clarity, the close-up of one of these channels is
shown in Fig. 5.12(f). Notably, the two additional current channels of Fig. 5.12(e)
represent the geometric second-order coupling.

We now study in more detail the relationship between geometric first- and
second-order inductances for the structures of Fig. 5.12(b) and 5.12(c). The nota-
tion is that of Subsec. 5.1.3 and Figs. 5.6, 5.7, and 5.8. All quantities are computed
numerically with the aid of FASTHENRY for superconducting materials [364] as-
suming a London penetration depth λL = 180 nm. We notice that, in this case,
the simulated inductances are independent of the probing frequency. In a first
run of simulations, we calculate pure first-order inductances only (cf. Appendix E).
These are the simulated test inductances L∗

ra and L
∗
rb from which we obtain the self-

inductances Lra and Lrb of resonators A and B (more details in the next paragraph),
the first-order mutual inductance m between the two resonators, the self-inductance
Lq of the qubit loop, and the mutual inductances Mqa and Mqb between qubit and
resonators. In a second run of simulations, we calculate directly (cf. Appendix E)
the sum of first- and second-order inductances. These are the renormalized test
inductances L̃∗

ra and L̃
∗
rb of the portions of resonators A and B shown in Fig. 5.12(b)

and the total mutual inductance m̃ between the two resonators. The difference
m̃ −m = 4.78192 pH, i.e., the geometric second-order coupling, coincides up to the
sixth significant digit with the quantityMqaMqb/Lq expected from our general three-
node network approach of Subsec. 5.1.2 and, equivalently, from the three-circuit
theory of Subsec. 5.1.3 (cf. Table 5.1). We also find that the dominating geometric
coupling between A and B is not the first-order inductance m = 2.90130 pH, but
the second-order one. The ratio between second-order and first-order inductances
is (m̃−m)/m � 1.6. In addition, the numerical simulations yield the two shift test

inductances |L̃∗
ra −L∗

ra| = |L̃∗
rb −L∗

rb| = 4.78100 pH (cf. also next paragraph). These
shifts renormalize the bare center frequencies fA and fB of resonators A and B, re-
spectively, and are found to be in very good agreement up to several decimal digits
with their analytical estimates Lsa ≡M2

qa/Lq and Lsb ≡M2
qb/Lq of our three-circuit

theory of Subsec. 5.1.3 (cf. Table 5.1). We point out that, in our definition, the
quantities Lsa and Lsb are strictly positive. Remarkably, our simulations reveal that

L∗
ra > L̃∗

ra and L∗
rb > L̃∗

rb, reproducing the minus sign in the expressions Lra − Lsa
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and Lrb −Lsb of Fig. 5.8. These findings confirm the superiority of the three-circuit
theory of Subsec. 5.1.3 over the simple model which results in the Hamiltonian of
Eq. (5.9). In the case of purely inductive interactions, the resonators suffer a small
blue-shift of their center frequencies, i.e., a shift towards higher values. This is op-
posite to the redshift, i.e., towards lower frequencies, experienced by the resonators
for a pure capacitive coupling [cf. Subsec. 5.1.3 and Fig. 5.5].

The numerical values of all parameters discussed above are listed in Table 5.1.
The values of the bare self-inductances of the two resonators are first evaluated for
the test length �sim in absence of the qubit loop. This yields the simulated test
inductances L∗

ra and L∗
rb. Then, L∗

ra and L∗
rb are extrapolated to the full length �m

of each microstrip resonator to obtain Lra and Lrb, respectively. In the presence of

the qubit loop, the simulated test inductances L̃∗
ra and L̃∗

rb can also be found. The
resonator capacitances per unit length, cra and crb, are calculated analytically by
means of a conformal mapping technique [227]:

cra = crb = 2πε0εr ln

(
8Hs

W eff
m

+
W eff

m

4Hs

)
. (5.31)

Here, ε0 = 8.854×10−12 F/m is the permittivity of vacuum (electric constant) [366],
εr = 11.5 the relative dielectric constant of the substrate (in our example, sapphire or
silicon; other dielectrics could be used), andW eff

m ≡ Wm+0.398tm[1+ln(2Hs/tm)] the
effective width of the resonators [227]. As a consequence, the resonator capacitances
are Cra = �mcra and Crb = �mcrb. Finally, from the knowledge of the velocity
of the electromagnetic waves inside the two resonators, c̄A ≡ �m/

√
(LraCra) and

c̄b ≡ �m/
√
(LrbCrb), one can find the full wavelengths λA = c̄A/fA and λB = c̄B/fB

of the two resonators. As before, all these results are summarized in Table 5.1.

We now analyze the frequency dependence of the geometric first- and second-
order coupling coefficients, i.e., the first- and second-oder mutual inductances, for a
broad frequency span between 1Hz and 10GHz. Again, we assume almost perfectly
conducting structures and use the FASTHENRY version which does not support su-
perconductivity. The results are plotted in Figs. 5.13 and 5.14. In Fig. 5.13(a), we
plot the frequency dependence of the simulated inductances Lq (which is renormal-
ized by a factor of 8.5 for clarity) andMqa =Mqb. From these, we then compute the
expression MqaMqb/Lq for the second-order mutual inductance as derived in Sub-
secs. 5.1.2 and 5.1.3. This expression is plotted in Fig. 5.13(b). In Fig. 5.13(c), we
plot the bare second-order mutual inductance m̃−m as a function of frequency. Re-
markably, comparing Fig. 5.13(b) to Fig. 5.13(c), we find MqaMqb/Lq = m̃ − m
with very high accuracy over the entire frequency range. In the frequency re-
gion of interest for the operation of a quantum switch, i.e., from approximately
1GHz to 6GHz, we find Lq � 63.02 pH, Mqa = Mqb � 7.37 pH, and, consequently,
MqaMqb/Lq = m̃ −m � 7.33 pH. All these results prove again the general validity
of the derivations of Subsecs. 5.1.2 and 5.1.3.

Finally, we study the scattering matrix elements between resonators A and B
both without and with flux qubit loop. In absolute value, these elements correspond
to the isolation coefficients between A and B. As before, the FASTHENRY simula-
tions are performed within the regions of Figs. 5.12(c) and 5.12(b), respectively. In
these figures, we also define the input and output probing ports used in the simula-
tions as ain, aout, bin, and bout, respectively. Under these assumptions, the scattering
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Figure 5.13: FASTHENRY simulation results for the frequency dependence
of some relevant first- and second-order inductances relative to our example
of two-resonator circuit QED. Vertical dashed black lines: frequency region
of interest for the operation of the quantum switch from 1GHz to 6GHz.
(a) Magenta (middle grey) line: qubit loop self-inductance Lq renormalized
by a factor of 8.5 for clarity. Green (light grey) line: mutual inductance
Mqa( =Mqb) between the qubit and resonator A (or B). (b) Bare second-order
mutual inductance between the two resonators calculated with the results
from (a) using the expression MqaMqb/Lq. (c) Bare second-order mutual
inductance between the two resonators, m̃ −m. The agreement with (b) is
excellent.

matrix element Sab = Sba in absence of the flux qubit loop is given by [227, 308]

Sab ≡ 20 log

∣∣∣∣∣−I
−
ain

I+bin

∣∣∣∣∣
I+=0

= 20 log
m

L∗
ra

, (5.32)

where I+bin
is a test current wave incident on the input probing port bin of resonator

B. The current −I −
ain

corresponds to the outgoing wave from the input probing
port ain of resonator A. The remaining current waves incident on the ports of the

two resonators are I+ ≡
{
I+ain , I

+
aout

, I+bout

}
. In a similar way, the scattering matrix

element S̃ab = S̃ba in presence of the flux qubit loop is given by

S̃ab = 20 log
m̃

L̃∗
ra

. (5.33)

We note that the same results as in Eqs. (5.32) and (5.33) are obtained replacing
the input probing port bin with the output probing port bout for the incident wave.
In this case, the associated current I+bin

has to be exchanged with I+bout . Similar sub-
stitutions apply for the probing port and associated current of the outgoing waves.
In the literature [227], the outgoing waves are often denominated as reflected waves.
Equation (5.32) can be straightforwardly found via the definitions of mutual and self-
inductance, mI+bin

= Φba = L∗
raI

−
ain
. There, Φba is the flux generated in the portion

of resonator A by the current flowing in the portion of resonator B of Fig. 5.12(c).
Similar arguments lead to Eq. (5.33). When considering superconducting materi-
als, the scattering matrix elements between A and B without and with flux qubit
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Figure 5.14: FASTHENRY simulation results for the frequency dependence
of the scattering matrix elements between resonators A and B considering al-
most perfect conducting structures. Frequency span: From 1Hz to 10GHz.
(a) Scattering matrix element Sab in absence of the flux qubit loop. (b) Scat-

tering matrix element S̃ab in presence of the flux qubit loop. Owing to
the significant second-order mutual inductance between A and B, we find
|S̃ab| < |Sab|.

loop can be evaluated inserting the opportune numbers reported in Table 5.1 into
Eqs. (5.32) and (5.33). This yields Sab � − 38.80 dB and S̃ab � − 30.18 dB. If
we want to calculate the scattering matrix elements between A and B over a broad
frequency span (e.g., from 1Hz to 10GHz), we can consider again almost perfect
conducting structures.

In this case, the results are plotted in Figs. 5.14(a) and 5.14(b). In the high fre-

quency region from 1GHz to 6GHz, we find Sab � −37.66 dB and S̃ab � −30.54 dB.
These numbers are in good agreement with the results obtained for superconduct-
ing materials. In addition, it is noteworthy to mention that the scattering matrix
elements between A and B calculated here with FASTHENRY for almost perfect con-
ducting structures are in excellent agreement with those evaluated for similar struc-
tures by means of more advanced software based on the method of moments [227].

In conclusion, we have studied a detailed setup of two-resonator circuit QED
based on a superconducting flux qubit. In this case, we have proven that the geo-
metric second-order inductance found with our three-node network approach agrees
well with that obtained from numerical simulations. Moreover, we have given a set
of parameters (many sets can easily be found) for which the second-order inductance
dominates over the first-order one.

5.5 Summary and Conclusions

In summary, in this chapter we have first introduced the formalism of two-resonator
circuit QED, i.e., the interaction between two on-chip microwave cavities and a
superconducting qubit circuit. Starting from the Hamiltonian of a generic three-
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node network, we have shown that the qubit circuit mediates a geometric second-
order coupling between the two resonators. For the case of strong qubit-resonator
coupling, the geometric second-order interaction is a fundamental property of the
system. In contrast to the geometric first-order coupling between the two resonators,
the second-order one cannot be arbitrarily reduced by means of proper engineering.

With the aid of two prototypical examples, we have then highlighted the im-
portant role played by circuit topology in two-resonator circuit QED. Our models
reveal a clear departure from a less detailed theory based on the Hamiltonian of
a charge quantum circuit (e.g., a Cooper-pair box or a transmon) or a flux quan-
tum circuit (e.g., an RF SQUID or a three-Josephson-junction SQUID) coupled to
multiple quantized microwave fields. We have demonstrated that this simplified
approach easily produces artifacts. We have also shown that our three-node net-
work approach suffices to obtain correct results when including topological details
appropriately into the definitions of the nodes.

We have subsequently demonstrated the possibility of balancing a geometric
coupling against a dynamic second-order one. In this way, the effective interaction
between the two resonators can be controlled by means of an external bias. Based
on this mechanism, we have proposed possible protocols for the implementation
of a quantum switch and outlined other advanced applications, which exploit the
presence of the qubit.

Remarkably, we have found that the quantum switch operation is robust to
decoherence processes. In fact, we have been able to show that the qubit acts as a
mere mediator of virtual excitations between the two resonators, a condition which
substantially relaxes the requirements on the qubit performances.

Finally, we have given detailed parameters for a specific setup of two-resonator
circuit QED based on a superconducting flux qubit. We have performed numerical
simulations of the geometric coupling coefficients and found an excellent agreement
with our analytical predictions. In particular, we have confirmed the existence of
a regime where the geometric second-order coupling dominates over the first-order
one.

In conclusion, our findings show that, in circuit QED, the circuit properties of the
system are crucial to provide a correct picture of the problem and also constitute a
major difference with respect to atomic systems. This peculiar aspect of circuit QED
makes it a very rich environment for the prediction and experimental implementation
of unprecedented phenomena.

In the next chapter, we will study different regimes of two-resonator circuit
QED, where, for example, the qubit and both cavities are on resonance. Under
opportune conditions this gives rise to JC and anti-JC dynamics, which can be
exploited to generate, e.g., Schrödinger cat states. Also, we will consider the case
where one cavity is characterized by a high quality factor and the other one by a
comparatively low quality factor. In this way, the low quality factor cavity can be
used as an efficient readout device, which allows, e.g., for the reconstruction of the
Wigner function of nonclassical states of the microwave radiation.
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Chapter 6

Two-Resonator Circuit QED:
Generation of Schrödinger Cat
States and Quantum Tomography

The generation and measurement of nonclassical states of the microwave radiation
represent fundamental tasks to understand the interplay between matter and light
in solid-state systems. Circuit QED architectures are among the best candidates
for the realization of such experiments. However, the lack of microwave single pho-
ton detectors and the difficulty in realizing quantum-limited microwave amplifiers
make it hard to directly measure the microwave photons emitted by on-chip res-
onators, extrapolate their full-counting statistics, and perform full-state quantum
tomography.1 This is readily possible in the optical domain, where quantum ho-
modyne tomography has been used to fully characterize squeezed states and Fock
states [94, 95, 320, 321].

Recent experiments based on phase qubits capacitively coupled to coplanar wave-
guide (CPW) resonators have shown that an accurate measurement of the qubit
state allows for the reconstruction of the entire Wigner function of intracavity fields.
These can be Fock states, arbitrary superposition of Fock states, or even Schrödinger
cat states [153]. This technique, which is well-known in quantum optics [367], has
reached in circuit QED an extremely high level of precision compared to quantum
optical implementations [71, 74]. In the case of phase qubits, the interaction between
the qubit and the resonator is used to first generate quantum field states and, then,
to encode information on such states into the qubit state. Finally, the qubit is
read out with very high efficiency by means of a DC superconducting quantum
interference device (SQUID) (cf. chapter 8).

Is it possible to perform similar or even more refined experiments employing only
resonators? This is an important question considering that in many implementations
of circuit QED [108, 131, 139, 143, 144] it is simpler to use a resonator rather than a
DC SQUID [138, 141, 159] or a single-electron transistor (SET) [104, 368] as readout
apparatus. Also, DC SQUIDs and SETs can possibly represent an unwanted source
of dissipation [262, 369–371], whereas resonators are known to better preserve the
qubit coherence [120].

1Microwave single photon detectors have been proposed [222–224] and quantum-limited ampli-
fiers are being developed [194–196, 198, 199, 201, 203, 205, 208, 209]. In the near future it could
also be possible to directly detect propagating nonclassical microwave fields.
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In this chapter, we focus on a different regime of two-resonator circuit QED
compared to the case analyzed in the previous chapter. We assume a qubit to be
resonantly coupled to one mode of two different resonators, where the first resonator
(hereafter also referred to as quantum bus) is characterized by a high quality factor
and the second resonator (referred to as leaky cavity) by a relatively low one. The
quantum bus is long lived and can be utilized to perform coherent dynamics and store
quantum information, whereas the leaky cavity can be used as a fast independent
readout of the qubit state.2 We present realistic setups for the implementation
of this specific case of two-resonator circuit QED. We then show that such setups
can be exploited to generate entanglement of coherent states (i.e., Schrödinger cat
states [331, 337, 357–359]) with large photon number. This can be realized by means
of a strong driving pulse through the leaky cavity, which enables a simultaneous JC
and anti-JC dynamics. Other modes of the leaky cavity, dispersively coupled to
the qubit, can subsequently be used to switch on and off the quantum-bus–qubit
interaction, to project, and, finally, to measure the qubit state. We propose a
measurement technique based on a very short interaction time that allows one to
obtain all necessary information about relevant observables of the field populating
the quantum bus. Due to the short interaction time, our method is naturally robust
to qubit dephasing and field relaxation. In addition, we show that the leaky cavity
can be utilized to perform full-state quantum tomography of any given nonclassical
field.

The regime of two-resonator circuit QED considered here is inherently different
from the quantum switch regime analyzed in the previous chapter. In fact, under
resonance conditions no quantum switch dynamics can take place. Nevertheless, the
geometric first- and second-order coupling between the two resonators cannot be set
to zero and must always be accounted for when studying the system Hamiltonian.
Another crucial difference compared to the setup described in the previous chapter
is represented by the presence of a leaky cavity. This is assumed to be in the so-
called overcoupled limit, where the loaded quality factor of the cavity is dominated
by the external quality factor (cf. chapter 2 and Refs. [227, 308]). This means that,
as for the quantum bus, the leaky cavity is also characterized by very small internal
losses. However, its total relaxation rate is enhanced because of a larger coupling
to the transmission lines used to read it out. The last main departure from the
previous chapter is the use of more than one mode of the same cavity [372]. This
feature allows for an advanced control of the circuit QED system. For example, it
makes possible to switch on and off the qubit-resonator interaction or to measure
the qubit state taking advantage of a mode dispersively coupled to the qubit, while
keeping another mode resonantly coupled to it.

The chapter is organized as follows. In Sec. 6.1, we introduce the two main ingre-
dients for the implementation of two-resonator circuit QED in the regime considered
here: the quantum bus and the leaky cavity. In the same section, we present the
total Hamiltonian of the system. In Sec. 6.2, we show that, when strongly driven,
the system under analysis gives rise to a simultaneous JC and anti-JC dynamics.
In Sec. 6.3, we show that such dynamics can be exploited, for example, to generate
large Schrödinger cat states. In the same section, we propose a method to measure
relevant observables of these states. In Sec. 6.4, we study two different alternatives

2We remind that the measurement time depends on the quality factor of the resonator used to
read out the qubit state [131]. The lower the quality factor, the faster the readout.
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for the reconstruction of the Wigner function of any given intracavity field state.
Finally, in Sec. 6.6 we summarize our results and draw our conclusions.

The material treated in this chapter, which is totally unpublished, has mainly
been developed by the author with a strong support and encouragement from En-
rique Solano. The author acknowledges many useful discussions with M. J. Storcz
and H. Christ.

6.1 Quantum Bus vs. Leaky Cavity

In this section, we first present two setups for the implementation of two-resonator
circuit QED, one suitable for charge and the other for flux qubits. Both setups are
optimized to realize two-mode resonant dynamics, to switch on and off the qubit-
resonator interaction, and to perform a fast qubit readout (cf. Subsec. 6.1.1). We
then introduce the total system Hamiltonian (cf. Subsec. 6.1.2).

6.1.1 The Setup

Figures 6.1(a) and 6.2(a) show a possible implementation of two-resonator circuit
QED for charge and flux qubits, respectively. In these implementations, one res-
onator, the quantum bus, B, is characterized by a high quality factor and the other
one, the leaky cavity, L, by a comparatively low quality factor. The two resonators
are engineered in an asymmetric T-shape design, where the leaky cavity is orthogo-
nal to the quantum bus. This configuration helps reducing the geometric crosstalk
between the two resonators. One end of the quantum bus is positioned nearby the
center of the leaky cavity. The latter is a full-wavelength resonator (i.e., its length
�L = λ) terminated with input and output capacitors at both edges, CL,in and CL,out.
These capacitors can be engineered to be large enough in order to operate the leaky
cavity in the overcoupled limit. This means that the loaded quality factor of the
leaky cavity, Qload

L , is dominated by the external quality factor QL,ext instead of the
internal quality factor QL,int,

1

Qload
L

≡ 1

QL,int

+
1

QL,ext

≈ 1

QL,ext

. (6.1)

In other words, the intrinsic quality of the leaky cavity must be as good as possible
in order not to loose radiation through uncontrolled channels. Radiation should be
“lost” only through the input and output capacitors that connect the cavity to the
transmission lines used to access the cavity from outside and read it out.

In the case of charge qubits (cf. Fig. 6.1), the quantum bus is a λ/2 resonator
(i.e., its length �B = λ/2) capacitively terminated on the end close to the leaky cavity
via a stray capacitor CB. The other end is left open, i.e., capacitively terminated
to infinity via a capacitor CB,∞. This guarantees a very high loaded quality factor
for the quantum bus, which, in this geometry, is as decoupled as possible from
external networks. In this configuration, the charge qubit can be fabricated in a
region of the leaky cavity where it couples well to the first three modes of the
voltage [cf. Fig. 6.1(a) and 6.1(b)]. At the same time, the qubit resides close to the
capacitive edge CB of the quantum bus, thus being coupled to the voltage antinode
of, e.g, the first mode of B [cf. Fig. 6.1(c)]. We notice that the edges of the leaky
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Figure 6.1: Two-resonator circuit QED setup for charge qubits. (a) The
leaky cavity, L, is represented by the horizontal finite segment of CPW trans-
mission line depicted in blue (dark grey). CL,in and CL,out: input and output
capacitors of L. �L = λ: total length of L. The reference axis 0zL is also indi-
cated. The big blue arrow next to CL,out symbolizes the high relaxation rate
of L. The quantum bus, B, is represented by the vertical finite segment of
CPW transmission line depicted in red (grey). CB: stray capacitor terminat-
ing one end of B. CB,∞: open circuit (capacitor to infinity) terminating the
other end of B. �B = λ/2: total length of B. The reference axis 0zB is also
indicated. The small red arrow next to CB,∞ symbolizes the low relaxation
rate of B compared to L. The qubit, Q, is indicated by the T-shape black line.
The mode structures of L and B are shown for clarity (thin light grey lines).
(b) Distribution of the zero-point fluctuations of the voltage v0L,i (i = {1, 2, 3})
for the first three modes of L as a function of the position zL. 1: first mode
[light green (light grey) line]; 2: second mode [thick dark blue (dark grey)
line]. The qubit is resonantly coupled to this mode; 3: third mode [magenta
(middle grey) line]. The black arrow indicates the approximate position of
the qubit with respect to zL. The qubit is well coupled to all three modes.
(c) Distribution of the zero-point fluctuations of the voltage v0B,1 for the first
mode of B as a function of the position zB [thick red (grey) line]. The black
arrow indicates the approximate position of the qubit with respect to zB.

cavity close to the capacitors CL,in and CL,out can also be used to couple the qubit
to many voltage modes. In absolute value, the zero-point fluctuations of the voltage
v0L,i (i = {1, 2, 3}) are even larger at these points. However, their sign changes
depending on the specific mode to be used [cf. Fig. 6.1(b)]. This does not have
dramatic consequences, but, as shown in Ref. [146], one needs to account for it
when designing an experiment.

In the case of flux qubits (cf. Fig. 6.2), the quantum bus is a λ/4 resonator (i.e.,
its length �B = λ/4) terminated with a short on the end close to the leaky cavity.
The other end is left open, i.e., capacitively terminated to infinity via a capacitor
CB,∞. Again, this guarantees a very high loaded quality factor for the quantum bus.
In this configuration, the flux qubit can be fabricated in a region of the leaky cavity
where it couples well to the first three modes of the current [cf. Fig. 6.2(a) and
6.2(b)]. At the same time, the qubit resides close to the short-circuited edge of the
quantum bus, thus being coupled to the current antinode of, e.g, the first mode of
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CB∞
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 λ
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B

CL,outCL,in
L

Q

Figure 6.2: Two-resonator circuit QED setup for flux qubits. (a) The leaky
cavity, L, is represented by the horizontal finite segment of CPW transmission
line depicted in blue (dark grey). The quantum bus, B, is represented by the
vertical finite segment of CPW transmission line depicted in red (grey). One
end of B is short circuited, whereas the opposite end is left open (capacitor to
infinity, CB,∞). �B = λ/4: total length of B. All the other symbols are equal
to those used in Fig. 6.1. The qubit, Q, is indicated by the black rectangle.
The mode structures of L and B are reported for clarity (light grey thin lines).
(b) Distribution of the zero-point fluctuations of the current i0L,i (i = {1, 2, 3})
for the first three modes of L as a function of the position zL. 1: first mode
[light green (light grey) line]; 2: second mode [thick dark blue (dark grey)
line]. The qubit is resonantly coupled to this mode; 3: third mode [magenta
(middle grey) line]. The black arrow indicates the approximate position of
the qubit with respect to zL. The qubit is well coupled to all three modes.
(c) Distribution of the zero-point fluctuations of the current i0B,1 for the first
mode of B as a function of the position zB [thick red (grey) line]. The black
arrow indicates the approximate position of the qubit with respect to zB.

B [the current reaches a maximum in the vicinity of a short circuit, cf. Fig. 6.2(c)].

It is worth mentioning that a simplified version of the setups of Figs. 6.1 and 6.2
is realized when the qubit is resonantly or dispersively coupled to B and, at the same
time, dispersively coupled to one mode of L (e.g., the first mode). In this case, while
the quantum-bus–qubit system undergoes a coherent evolution, the leaky cavity can
be used to independently and rapidly read out the qubit state. This would constitute
an important improvement on existing experiments [150, 154], where the same cavity
is used both for the coherent evolution and the qubit readout. Practically, this can
be considered a special case of the general setups analyzed here.

6.1.2 The System Hamiltonian

We consider a superconducting (charge or flux) qubit Q coupled to the first three
modes of L and to the first mode of B with coupling coefficients gL,i (i = {1, 2, 3})
and gB,1, respectively. These coefficients already account for the spatial distribu-
tion of the zero-point fluctuations of the voltages or currents in the two resonators
[cf. Figs. 6.1(b), 6.1(c), 6.2(b), and 6.2(c)]. We assume the second mode of L (with
angular frequency ωL,2) and the first mode of B (with angular frequency ωB,1) to
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be resonant by construction, ωL,2 = ωB,1 ≡ ω ≡ 2πf . We further assume them to
be geometrically coupled with a total coupling coefficient gLB. This coefficient is
the sum of geometric first- and second-order circuit contributions, as discussed in
chapter 5, and simply represents the inevitable crosstalk between the two resonators.
Obviously, there are crosstalks between all modes of L and B. Here, we consider only
the one between the second mode of L and the first mode of B because these are
the only two modes to be resonant.

The first and third modes of L (with angular frequencies ω/2 and 3ω/2, respec-
tively) are not drastically affected by the geometric crosstalk with any mode of B
(with angular frequencies ω, 2ω, 3ω, . . .) because of the large frequency detunings.
An important feature of the first and third modes of L is that they are dispersively
coupled to the qubit (i.e., largely detuned by ω/2) and, thus, give rise to second-
oder effects such as AC-Stark or -Zeeman shifts. These can efficiently be used to
switch on and off the interaction of the qubit with B and L [146] or to read out
the qubit state [108, 131]. It is worth mentioning that also the second mode of B
is dispersively coupled to the qubit (largely detuned by ω) and could be used for
similar purposes. However, the cavity modes of L are more suitable for those tasks
because of their lower quality factor (faster readout) and the smaller detuning with
respect to the qubit. As a consequence, in the rest of this chapter we do not consider
the coupling of the qubit to the second mode of B. Decoherence effects are also not
included at this stage.

Before proceeding with our derivations, it is important to make a remark on the
possibility to perform rotating-wave approximations (RWAs) and on the applica-
bility of dispersive (large detuning) conditions, all very important for the further
development of this chapter. As we will discuss later, in order to generate large
Schrödinger cat states it is necessary to have large vacuum Rabi couplings between
qubit and resonators. In this case, while RWAs are usually met well enough, dis-
persive conditions, which are reached when the qubit-resonator detuning is much
larger than the corresponding qubit-resonator coupling strength, are often on the
edge of applicability due to the large coupling strengths. This means that it is not
always completely correct to apply the usual tricks of second-order perturbation
theory. However, the order of magnitude and qualitative behavior of our results
remain unchanged. We thus prefer to use all standard approximations of quantum
optics in order to keep the notation simple and clear. It is also worth mentioning
that when the resonators are populated with coherent or Schrödinger cat states, the
simple dressed state picture, which is valid only for number states, fails. We can
still use such simple picture under the assumption that these states are associated
with a photon number distribution very localized around their effective mean photon
number.

In the qubit diabatic basis, which consists of the eigenstates |−〉 and |+〉 of
�εˆ̄σz/2 (where �ε/2 is the qubit energy bias [97–101] (cf. also chapter 2, Sec. 2.2),
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the system Hamiltonian can be written as

̂̄H =
1

2
�εˆ̄σz +

1

2
�δQ ˆ̄σx +

3∑
i=1

�ωL,i â
†
i âi + �ωB,1 b̂

†
1b̂1

+
3∑
i=1

�gL,i ˆ̄σz(â
†
i + âi) + �gB,1 ˆ̄σz(b̂

†
1 + b̂1)

+ �gLB (â†2 + â2)(b̂
†
1 + b̂1) . (6.2)

Here, all global energy offsets have been neglected since, in experiments, only energy
differences are accessible. Also, �δQ is the qubit gap [97–101] (cf. also chapter 2,
Sec. 2.2), ωL,i and ωB,1 are the angular frequencies of the relevant modes of res-

onators L and B, respectively, ˆ̄σx and ˆ̄σz are the usual Pauli operators, and â†i , âi,
b̂†1, and b̂1 are bosonic creation and annihilation operators for the fields of the vari-
ous modes of L and B. We notice that the qubit energy bias �ε usually depends on
external control parameters such as gate voltage or applied flux for charge and flux
qubits, respectively. In general, the coefficients gL,i and gB,1 are slightly different
because of the different zero-point fields of the corresponding modes and, possibly,
because of asymmetries in the geometric couplings (cross-capacitances and/or mu-
tual inductances) between each mode and the qubit [cf. Figs. 6.1(b), 6.1(c), 6.2(b),
and 6.2(c)]. This does not constitute an issue for the validity of our derivations.
We now rotate the system Hamiltonian of Eq. (6.2) into the qubit energy eigenbasis
{|g〉 , |e〉}, obtaining

Ĥ = �
ΩQ

2
σ̂z +

3∑
i=1

�ωL,i â
†
i âi + �ωB,1 b̂

†
1b̂1

+
3∑
i=1

�gL,i cos θ σ̂z(â
†
i + âi) + �gB,1 cos θ σ̂z(b̂

†
1 + b̂1)

−
3∑
i=1

�gL,i sin θ σ̂x(â
†
i + âi)− �gB,1 sin θ σ̂x(b̂

†
1 + b̂1)

+ �gLB(â
†
2 + â2)(b̂

†
1 + b̂1) . (6.3)

Here, ΩQ =
√
ε2 + δ2Q is the bias-dependent transition angular frequency of the qubit

and θ = arctan(δQ/ε) is the usual mixing angle. In the Hamiltonian of Eq. (6.3) and
in all the following Hamiltonians expressed in the qubit energy eigenbasis, we use
the redefined Pauli operators σ̂x and σ̂z, where σ̂x = σ̂+ + σ̂−, σ̂z = σ̂+σ̂− − σ̂−σ̂+,
and σ̂+ and σ̂− are the lowering and raising operators between the qubit energy
groundstate |g〉 and excited state |e〉, respectively.

Expressing Ĥ in an interaction picture with respect to the qubit and all rele-
vant modes of both resonators, â†i → â†i exp(+jωL,it), âi → âi exp(−jωL,it), b̂

†
1 →

b̂†1 exp(+jωB,1t), b̂1 → b̂1 exp(−jωB,1t), and σ̂∓ → σ̂∓ exp(∓jΩQt) (where t is the
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time and j =
√
−1), and performing a RWA yields

̂̃
H =

3∑
i=1

�gL,i sin θ (σ̂
−â†ie

−jΔL,it + σ̂+âie
+jΔL,it)

+ �gB,1 sin θ (σ̂
−b̂†1e

−jΔB,1t + σ̂+b̂1e
+jΔB,1t)

+ �gLB(â
†
2b̂1 + â2b̂

†
1) . (6.4)

Here, ΔL,i ≡ ΩQ − ωL,i and ΔB,1 ≡ ΩQ − ωB,1 are the qubit-resonator detunings.
Under the assumption ΩQ = ωL,2 = ωB,1 ≡ ω, the qubit is resonantly coupled to
the second mode of L and to the first mode of B, in close analogy to the standard
two-mode JC model. The coupling coefficients are gL,2 and gB,1, respectively.

3 At
the same time, the first and third modes of L are largely detuned from the qubit
by ±ω/2, respectively (ωL,1 = ω/2 and ωL,3 = 3ω/2). Assuming

∣∣ΔL,1

∣∣ = ∣∣ΔL,3

∣∣ �
max
{
gL,i, gB,1, gLB

}
,4 it is an easy exercise in second-order perturbation theory to

determine the contributions of these modes. To this end, we can define the operators
Ξ̂†
1 ≡ gL,1σ̂

+â1, Ξ̂1 ≡ gL,1σ̂
−â†1, Ξ̂†

3 ≡ gL,3σ̂
+â3, and Ξ̂3 ≡ gL,3σ̂

−â†3. It can be
shown that the Dyson series for the evolution operator associated with the time-
dependent Hamiltonian of Eq. (6.4) can be rewritten in the exponential form Û =

exp(−jĤefft/�), where

Ĥeff = �gL,2 sin θ (σ̂
−â†2 + σ̂+â2) + �gB,1 sin θ (σ̂

−b̂†1 + σ̂+b̂1)

+ �
2[Ξ̂†

1, Ξ̂1]

ω
− 2[Ξ̂†

3, Ξ̂3]

ω

+ �gLB(â
†
2b̂1 + â2b̂

†
1) . (6.5)

For simplicity, we can express this Hamiltonian at the qubit degeneracy point, where
sin θ = 1 and, thus, all coupling coefficients reach their maximum.5 This represents
the best choice also with respect to qubit dephasing, which is highly reduced at the
qubit degeneracy point [118, 119, 261, 262]. Under this condition and computing
explicitly the commutators of Eq. (6.5), we obtain

Ĥsys = �gL,2(σ̂
−â†2 + σ̂+â2) + �gB,1(σ̂

−b̂†1 + σ̂+b̂1)

+ �
2g2L,1
ω

σ̂zâ
†
1â1 −

2g2L,3
ω

σ̂zâ
†
3â3

+ �gLB(â
†
2b̂1 + â2b̂

†
1) , (6.6)

where all Lamb shifts have been neglected. The terms in the second line of Eq. (6.6)
represent AC-Stark or -Zeeman shifts and, when using eigenstates of σ̂z only, they
renormalize the transition frequencies of the first and third mode of L. Under driv-
ing conditions, these dynamic shifts can be utilized to modify the qubit transition

3In reality, the two-mode JC studied here is unbalanced due to the generally different coupling
coefficients and, more importantly, the different relaxation rates of the two resonators.

4In reality, this condition is only partially met and, strictly speaking, we are in a quasi-dispersive
more than a truly dispersive regime of circuit QED (cf. Sec. 6.5 for a set of realistic numbers which
help clarifying the quasi-dispersivity of the setup considered here).

5In this case, the resonance condition between Q, the second mode of L, and the first mode of
B becomes δQ = ωL,2 = ωB,1 ≡ ω.
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frequency [146] and/or to measure the qubit state [108, 131] (cf. Subsec. 6.3.1). It
is also worth pointing out that quantum switch dynamics similar to those described
in chapter 5 cannot take place here due to the fact that the modes of L and B which
are dispersively coupled to the qubit are frequency mismatched. The Hamiltonian
of Eq. (6.6) constitutes the starting point of our protocol for the generation and
measurement of large Schrödinger cat states in two-resonator circuit QED.

6.2 JC and Anti JC Dynamics

An important application of the Hamiltonian of Eq. (6.6) is obtained when the
second mode of L is resonantly driven generating an intracavity coherent state |α〉
with angular frequency ωα = ω and complex amplitude |α| exp(jϕα). Here |α|
is a real amplitude and ϕα a generic phase, which for simplicity, we set to zero,
ϕα = 0. Under this driving condition and assuming the first and third modes of L
to be initially in the vacuum state |0〉L,1 |0〉L,3,6 we can rewrite the Hamiltonian of
Eq. (6.6) as

Ĥα = � |α| gL,2(σ̂−e+jωt + σ̂+e−jωt)

+ �gB,1(σ̂
−b̂†1 + σ̂+b̂1)

+ � |α| gLB(b̂†1e−jωt + b̂1e
+jωt) . (6.7)

We can now define the effective driving strength of the qubit as gαQ ≡ |α| gL,2 and
the effective driving strength of B as gαB ≡ |α| gLB,7 which, as expected, are larger
the larger the amplitude of the coherent state, |α|. Following Ref. [373], we describe

Ĥα in a reference frame rotating with the driving field frequency,

ĤD = �gαQ(σ̂
− + σ̂+)

+ �gB,1(σ̂
−b̂†1 + σ̂+b̂1) + �gαB(b̂

†
1 + b̂1)

= Ĥ0 + Ĥint , (6.8)

where Ĥ0 ≡ �gαQ(σ̂
−+ σ̂+) plays the role of the unperturbed Hamiltonian and Ĥint ≡

�gB,1(σ̂
−b̂†1+ σ̂

+b̂1)+�gαB(b̂
†
1+ b̂1) is the interaction Hamiltonian. We notice that the

transformation above assumes such a simple form because of the resonance condition
between the qubit, the first mode of B, and the driving field. In order to simplify the
Hamiltonian of Eq. (6.8), we write the lowering and raising operators as σ̂− = |g〉 〈e|
and σ̂+ = |e〉 〈g| and, then, perform the substitutions |g〉 = (|+〉 + |−〉)/

√
2 and

|e〉 = (|+〉 − |−〉)/
√
2. We remind that |+〉 and |−〉 are eigenstates of σ̂x with

eigenvalues ±1, respectively. Describing now ĤD in the interaction picture with

6Being these two modes in the vacuum state, the AC-Stark or -Zeeman shifts of Eq. (6.6)
do not have any effect. We could transform away those dynamic shifts by means of a unitary
transformation similar to the one used to derive Eq. (5.14) in chapter 5. However, we prefer to
keep them here given that we make use of them at a later stage of our protocol.

7We assume the constant gLB to be real.
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respect to Ĥ0 (i.e., |+〉 → exp
(
+jgαQt

)
|+〉 and |−〉 → exp

(
−jgαQt

)
|−〉), we obtain

Ĥ I = �
gB,1
2

[(|+〉 〈+| − |−〉 〈−|

+ e−j2g
α
Qt |−〉 〈+| − e+j2g

α
Qt |+〉 〈−|)b̂†1

+ (|+〉 〈+| − |−〉 〈−|
+ e+j2g

α
Qt |+〉 〈−| − e−j2g

α
Qt |−〉 〈+|)b̂1]

+ �gαB(b̂
†
1 + b̂1) . (6.9)

The time evolution of the last term of this Hamiltonian, Û(t) = exp[−jgαBt(b̂†1+ b̂1)],
after a certain interaction time tI corresponds to the displacement operator

D̂(β) = e|β|(b̂†1 + b̂1) , (6.10)

where |β| ≡ − jgαB tI. When applying D̂(β), e.g., to the vacuum state |0〉B,1 of
resonator B, this generates a coherent state, the amplitude of which depends on
the interaction time tI and on the driving strength |α|. This coherent state can
be harmful for the nonclassical states we are interested to generate and store in B.
There are two possible strategies to overcome this issue. The first is to engineer
the geometric coupling gLB to be as small as possible. In this way, Ĥ I could evolve

for a sufficiently long time before any coherent state generated by D̂(β) becomes
appreciable. However, as we extensively discuss in chapter 5 it is a hard task to
avoid geometric couplings in two-resonator circuit QED. The most elegant strategy
is, thus, to implement a calibration technique, which compensates the spurious
coherent state generated in B. This can be realized by resonantly driving B with
an externally generated coherent state |βcal〉, characterized by a complex amplitude
|βcal| exp(jϕcal). Here, |βcal| is the real amplitude of the calibration state and ϕcal

its phase. Consequently, Ĥ I (which is already in the rotating frame of the driving
field under resonance conditions) becomes

Ĥ I
cal = �

gB,1
2

[(|+〉 〈+| − |−〉 〈−|

+ e−j2g
α
Qt |−〉 〈+| − e+j2g

α
Qt |+〉 〈−|)b̂†1

+ (|+〉 〈+| − |−〉 〈−|
+ e+j2g

α
Qt |+〉 〈−| − e−j2g

α
Qt |−〉 〈+|)b̂1]

+ �gαB(b̂
†
1 + b̂1) + � |βcal| (b̂†1e−jϕcal + b̂1e

+jϕcal) . (6.11)

In order to compensate the spurious coherent state generated by the geometric
coupling, we have to choose the externally generated coherent state such that |βcal| =
gαB and ϕcal = π. This can be realized connecting the output port of B, terminated
with an open in Figs. 6.1(a) and 6.2(a), to a transmission line and using known
feedback methods to calibrate both amplitude and phase of |βcal〉 [227, 308, 360]. In
this way, for any given interaction time the system Hamiltonian is readily reduced
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to ̂̄H I

= �
gB,1
2

[(|+〉 〈+| − |−〉 〈−|

+ e−j2g
α
Qt |−〉 〈+| − e+j2g

α
Qt |+〉 〈−|)b̂†1

+ (|+〉 〈+| − |−〉 〈−|
+ e+j2g

α
Qt |+〉 〈−| − e−j2g

α
Qt |−〉 〈+|)b̂1] . (6.12)

This Hamiltonian assumes a particularly useful form when imposing the strong-
driving condition gαQ = |α| gL,2 � gB,1. This condition is straightforwardly realized
inducing a large enough amplitude |α|. In this case, we can realize a RWA, eliminate
the rapidly oscillating terms, and finally obtain

ĤS = �
gB,1
2

(σ̂− + σ̂+)(b̂†1 + b̂1) , (6.13)

where σ̂− + σ̂+ = |+〉 〈+| − |−〉 〈−|. The strong-driving limit results in a circuit
QED realization of a simultaneous JC and anti-JC dynamics. It is worth mentioning
that, under time evolution, there are no Rabi oscillations associated with ĤS. This
is a remarkable aspect of Eq. (6.13), which finds its origin in the exquisite nature of
the strong driving regime.

The Hamiltonians of Eqs. (6.6) and (6.13) enable the generation and measure-
ment of mesoscopic superposition states between the qubit and the field in B. This
can be accomplished following the protocol here summarized (see also the sketch of
Fig. 6.3): (i) – The qubit and the quantum bus are initialized in the groundstate.
The second mode of L is continuously driven by a strong field in order to keep active
the Hamiltonian ĤS. At the same time, the interaction between the qubit and both
resonators is effectively switched off by means of a dynamic shift. This is realized
by taking advantage of the dispersive action of the third mode of L under driving
conditions. The qubit-resonator interaction can alternatively be switched off tuning
the qubit energy gap or its energy bias with pulses. (ii) – The qubit-resonator inter-
action is switched on for a time tgen. A Schrödinger cat state starts being generated
in B. (iii) – Both the strong driving through L and the qubit-resonator interaction
are switched off. (iv) – The qubit state is projected by means of a QND dispersive
measurement of duration tproj via the first mode of L. (v) – A π/2-pulse is applied to
the qubit through L. (vi) – The qubit-resonator interaction is switched on and the
system is let evolve for a very short pre-measurement time tpre. (vii) – The qubit
state is measured by means of a QND dispersive readout again via the first mode of
L. (viii) – The protocol is repeated many times in order to acquire enough statistics
for the qubit measurement. In the next section, we delve into the details of this
protocol. Additionally, two variants for the reconstruction of the Wigner function
of the field in resonator B are given in Sec. 6.4.

6.3 Generation and Measurement of Schrödinger

Cat States

In this section, we analyze in detail the protocol outlined above for the generation
(cf. Subsec. 6.3.1) and measurement (cf. Subsec. 6.3.2) of large Schrödinger cat
states.
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Figure 6.3: Protocol for the generation and measurement of Schrödinger cat
states in a two-resonator/multi-mode circuit QED architecture. (a) Pulse
sequence. L, 1 - L, 2 - L, 3 - B, 1: relevant modes of resonators L and B used
in the protocol. The angular frequencies of these modes are ωL,i (i = {1, 2, 3})
and ωB,1, respectively. At the qubit degeneracy point, a superconducting qubit
is resonant with modes B, 1 and L, 2. Initially, a pulse through mode L, 3 with
〈nshift〉 photons [light green (light grey) area] is used to dynamically shift the
qubit which, as a result, becomes decoupled from mode L, 2 (AC-Stark or
-Zeeman decoupling pulse). The qubit can be shifted also by means of fast
DC-Stark or -Zeeman pulses, as indicated in (b), or applying an adiabatic shift
pulse through a charge or flux gate, as indicated in (c). The qubit is then
set on resonance with both B, 1 and L, 2, while mode L, 2 is strongly driven
with 〈ndr〉 photons [magenta (middle grey) area]. During the generation time
tgen, the spurious crosstalk between modes L, 2 and B, 1 is calibrated out by
means of a pulse with 〈ncal〉 photons through B, 1 [dark blue (dark grey) area].
As soon as the strong driving is switched off, the qubit is simultaneously
decoupled from L, 2, e.g., via a shift pulse through L, 3 [light green (light
grey) area], and projected via a projection pulse with 〈nproj〉 photons and
duration tproj through L, 1 [red (grey) area]. After the projection, a π/2-pulse
of duration tπ/2 (brown area) is applied resonantly to the qubit, which is
now at frequency ωL,2 + Δshift due to the decoupling pulse, using L, 2 as a
waveguide. All pulses are then switched off and the qubit-resonator system
is let to evolve freely for a time tpre, after which the qubit is dispersively
measured for a time tm via L, 1 [red (grey) area]. (b) E/�: qubit energy
expressed as an angular frequency. The qubit [magenta (middle grey) dot] is
in the groundstate |g〉 and biased at its degeneracy point, ε = 0. The qubit
transition angular frequency can be shifted from δQ to δ̃Q via AC- or DC-Stark
or -Zeeman decoupling pulses [146, 147, 349, 374]. (c) Alternatively, the qubit
can initially be prepared away from its degeneracy point at ε̃ and, during the
generation time tgen, pulsed to the degeneracy point via an adiabatic shift
pulse [141, 261, 262] (cf. chapter 8).
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6.3.1 Generation of Schrödinger Cat States

We first examine the steps which allow for the generation of Schrödinger cat states.
(i) – System initialization. The first operation of step (i) is the initialization of

the qubit and the first mode of B in the groundstate

|Ψ0〉 = |g〉 |0〉B,1 =
|+〉+ |−〉√

2
|0〉B,1 . (6.14)

In order to realize the Hamiltonian ĤS, the second mode of L must be driven
with a strong coherent state |α〉. Only if the field inside L is in the steady-state

regime, we can safely assume ĤS as our effective Hamiltonian. For this reason, it
is more appropriate to start the protocol with L under a continuous driving, which
can be turned off when necessary. In the case of a pulsed driving, in fact, the
pulse rise time would be limited by the inverse decay rate of the second mode of
L, tpr � 1/κL,2. This would originate a transient and could ultimately limit the
efficiency of our protocol.8

While the second mode of L is strongly driven, the qubit-resonator interaction
is initially switched off. There are at least three possible ways to achieve this goal.
The first is to AC-Stark or -Zeeman shift the qubit with an off-resonance driving
pulse [146]. The second is to tune the qubit gap δQ by means of fast pulses [147,
349, 374]. The third is to apply an adiabatic shift pulse that modifies the qubit bias
ε [141, 261, 262] (cf. chapter 8). The first two approaches allow one to keep the
qubit at the degeneracy point, whereas the third naturally moves it away from it.
This high level of flexibility makes possible to choose between a scenario where either
the qubit dephasing rate (at the qubit degeneracy point) or its energy relaxation
rate (away from the qubit degeneracy point) are best [262].

The first approach can be realized by resonantly driving the third mode of L,
thus generating an intracavity coherent state |αshift〉. Assuming the amplitude of
|αshift〉 to be |αshift|, the mean number of photons populating the third mode of L
is then 〈nshift〉 = |αshift|2. From Eq. (6.6), in the presence of |αshift〉, we obtain the
effective qubit shift

|Δshift| = 4 〈nshift〉
g2L,3
ω

. (6.15)

This dynamic (AC-Stark or -Zeeman) shift scales linearly with the mean number of
photons of the coherent state and has the effect of “pulling” the qubit out of the
cavity. A large shift can be realized by choosing the amplitude |αshift| to be large
enough. In this case, qubit dephasing induced by photon shot noise becomes a severe
issue, even when the qubit is biased at its degeneracy point [118, 131, 140]. However,
this is not an important limitation for our protocol. In fact, the switch-off pulse is
active only before the starting of the cat generation and during the projection pulse
(see Fig. 6.3). In the latter case, we are interested in the qubit populations only
and the relevant figure of merit is the energy relaxation of the qubit, which is not
affected by photon shot noise.

8Even if κL,2 is here considered to be large, typically tgen ≈ tpr, i.e., it is relatively short
(cf. Sec. 6.5). We notice that if it is strictly necessary to apply a pulsed driving from the beginning,
this could be realized sending a pulse with larger amplitude, which overcomes the resonator filtering
effect. However, heating effects and, possibly, the triggering of nonlinear dynamics could deteriorate
our protocol.
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Another way to switch off the qubit-resonator interaction is to make use of the
high level of tunability of superconducting qubits. In the design of a charge qubit,
such as the Cooper-pair box [97] or the transmon [120, 243, 244], is usually included
a DC SQUID loop, which can be threaded by an external flux ΦZ. This allows the
tuning in situ of the qubit gap δQ, which is a function of ΦZ. In a similar fashion,
also flux qubits can be tuned by means of a DC SQUID embedded in their basic
loop [189, 349, 374]. In both cases, tuning δQ via a magnetic field corresponds to
a DC-Zeeman shift of the qubit energy levels, whose final effect is analogous to the
dynamic shifts discussed above: It pulls the qubit out of the cavity.

Finally, the third possibility to decouple the qubit-resonator system is to prepare
the qubit in its energy groundstate away from the qubit degeneracy point. In the
case of charge qubits, the qubit bias ε is a function of an external gate charge
ng ≡ Cgvg/2e [131]. Here, Cg is the cross-capacitance between the qubit and the
biasing circuit where the voltage vg is applied (e is the electron charge). In the case
of flux qubits, ε is a function of an external frustration fx ≡ MQ,bias Ix/Φ0 [189].
Here, MQ,bias is the mutual inductance between the qubit and the biasing circuit
where the current Ix is applied (Φ0 is the flux quantum). In our setup, the qubit is
chosen to be on resonance with the second mode of L and with the first mode of B
right at the qubit degeneracy point. This is realized for half the charge of a Cooper
pair, ng = 1/2, or for half a flux quantum, fx = 1/2. Consequently, qubit and
resonators can be largely detuned by choosing different values of the external gate
charge or frustration. This condition corresponds to effectively switch off the qubit-
resonator interaction. Notably, the qubit-resonator interaction can be switched off
also employing tunable resonators [160, 161]. We do not discuss this obvious option
in further detail here.

In order to switch off the qubit-resonator interaction efficiently, one has to make
sure that |Δshift| � max{gL,2, gB,1, gLB} or at least large enough compared to these
coupling strengths. Here, |Δshift| represents the qubit-resonator detuning induced
by any of the three switch-off methods presented above. In this sense, a critical
figure of merit for the efficiency of the switch-off pulse is the effective mixing rate
of the states of the qubit due to the off-resonance driving |α〉 [131]

γmix
α ≈ 〈nα〉

(
gL,2

|Δshift|

)2

γr , (6.16)

where 〈nα〉 ≡ |α|2 and γr is the energy relaxation rate of the qubit (i.e., the linewidth
of the qubit excited state). Equation (6.16) shows that the detuning |Δshift| should
be large enough to suppress real transitions between the qubit levels, but small
enough not to shift the qubit too close to the first and third modes of L, where
other pulses could effectively drive the qubit. Finally, given that in this step of the
protocol the qubit and resonator B are in a dark state [see Eq. (6.14)], no qubit-
resonator dynamics can happen and there are no other conditions on the efficiency
of the switch-off pulse.

Our protocol requires to perform the decoupling operations outlined above on
a short time scale. In the case of the dynamic shifts, this has already been ex-
perimentally realized [146]. The second approach is more challenging, since extra
control lines have to be specially dedicated to apply fast DC-Zeeman pulses [137].
Nevertheless, this seems to be feasible and there are already very encouraging ex-
perimental results in this direction both for charge and flux qubits [147, 349, 374].
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As for the third approach, this can easily be done implementing an adiabatic shift
pulse [141, 261, 262]. The rise time trise of the shift pulse has to fulfill the condition
2π/gB,1 � trise � max

{
2π/δQ, 2π/ω

}
[141, 261, 262]. This condition ensures that

the shift pulse is adiabatic with respect to qubit and resonators and nonadiabatic
with respect to the interaction between them.

(ii) – Generation pulse. While the second mode of L is continuously driven, the
interaction between the qubit, the second mode of L, and the first mode of B is
switched on. Depending on the chosen strategy, either the driving which generates
|αshift〉 is turned off or a fast DC-Zeeman pulse or an adiabatic shift pulse are applied.
The qubit-resonator interaction is turned on for a time tgen. Within this time, the
evolution associated with the Hamiltonian of Eq. (6.13) acting on the initial state
of Eq. (6.14) yields the following Schrödinger cat state

|Ψcat〉 =
(|+〉 |βcat〉+ |−〉 |−βcat〉)√

2
. (6.17)

In the expression above,

βcat = − j
gB,1
2
tgen , (6.18)

which is straightforward to find from the definition of the time evolution opera-
tor. The state of Eq. (6.17) is in accordance with the original definition given by
E. Schrödinger in 1935 of entanglement between a microscopic degree of freedom (in
our case, a mesoscopic degree of freedom: a superconducting quantum circuit) and
a macroscopic one (the electromagnetic field inside B) [375]. However, for practical
purposes it is desirable to separate the two degrees of freedom by means of a pro-
jecting (strong) measurement of the qubit state. This will allow us to obtain the
so-called even- or odd-cat states (see below).

(iii) – Switch-off pulse. At the end of the generation pulse, both the strong
driving which generates |α〉 and the interaction between the qubit, the second mode
of L, and the first mode of B are switched off. It is necessary to turn off the
qubit-resonator interaction, e.g., following similar steps as in (i), in order to prevent
a two-mode JC dynamics. This would eventually deteriorate the Schrödinger cat
state |Ψcat〉.

In this case, the switch-off pulse is efficient when both the effective mixing rate
due to the presence of the Schrödinger cat state in B

γmix
cat ≈ ncat

(
gB,1

|Δshift|

)2

γr (6.19)

and the effective decay rate into the second mode of L (now in the vacuum state)
due to the fact that the qubit-resonator system is not in a dark state anymore

γL,2κ ≈
(

gL,2
|Δshift|

)2

κL,2 (6.20)

are low. In Eq. (6.19), ncat ≡ |βcat|2 represents the size of the cat state, which is
considered to behave as an effective driving field.

Before moving to the next step, it is worth gaining further insight into the dissi-
pative dynamics of the first mode of B. B is the quantum bus and its quality factor
should be engineered to be as high as possible. The T-shape designs of Figs. 6.1(a)
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and 6.2(a) are optimized to achieve this goal. However, there is always an inevitable
crosstalk between B and L due to the sum of first- and second-order geometric cou-
plings, gLB (cf. chapter 5). When deriving the Hamiltonian of Eq. (6.12), the field
leaking from L to B due to the strong driving of L can be compensated by means
of a calibration pulse. The scenario becomes more complex when the strong driving
is switched off. In this case, a unitary evolution associated with the Hamiltonian
ĤLB ≡ �gLB(â

†
2b̂1 + â2b̂

†
1) starts taking place. As soon as some field is transferred

from B to L, the very large decay rate of L dominates over the unitary dynamics,
κL,2 � gLB, and does not permit the field to go back into B. The field rather leaks
out of L, thus making the B→L dynamics an effective dissipative evolution. This
has the effect to limit the quality factor of B, whose corresponding decay rate, when
|α〉 is turned off, becomes κB,1 ≈ gLB/2π.

9

(iv) – Projection pulse. As soon as the generation time window is ended, the
qubit state must be projected in order to obtain an even- or odd-cat state. The
projection can be realized by means of a QND dispersive measurement of duration
tproj via the first mode of L [131]. We choose this mode because the conventional
linear phase-preserving amplifiers used for such measurements perform better at
lower frequencies. As we see from the Hamiltonian of Eq. (6.6), the first mode of L
is characterized by an AC-Stark or -Zeeman shift

�
2g2L,1
ω

σ̂zâ
†
1â1 .

When driving this mode with a classical field which generates an intracavity coher-
ent state

∣∣αproj

〉
(with complex amplitude

∣∣αproj

∣∣ exp(jϕproj)), at the output of the
resonator the field acquires a qubit-state dependent phase [131, 376]

ϕ∓
proj = arctan

(
∓2
〈
nproj

〉 g2L,1
κL,1ω

)
, (6.21)

where
〈
nproj

〉
≡
∣∣αproj

∣∣2 and κL,1 is the decay rate of the first mode of L. The

phase shift ϕ∓
proj scales with the coherent state amplitude

∣∣αproj

∣∣. Reading out this
phase shift10 corresponds to a QND projective measurement of the qubit, which is
then in either the energy groundstate |g〉 or excited state |e〉.11 It has been shown
experimentally that QND measurements can reach the single-shot limit [108].

There are several conditions that must be met for the projection pulse to accu-
rately perform its function. First, the strong dispersive coupling condition between
the qubit and the first mode of L has to be fulfilled

χ0
L,1 = 4

g2L,1
ωκL,1

� 1 . (6.22)

9A full simulation of the quantum dynamics with and without strong driving should eventually
be performed in order to better understand the physics of the bus-leaky cavity system. We believe
in fact that the qualitative arguments presented in this thesis are still too speculative.

10At the output of the resonator, also the field amplitude is modified by the presence of the
qubit and can equivalently be used to monitor the qubit state [131].

11Strictly speaking, we should use |g̃〉 and |ẽ〉 for the qubit energy groundstate and excited state,
respectively. In fact, after the switch-off pulse, the qubit eigenstates are effectively modified. For
convenience, we keep using the simplified notation |g〉 and |e〉 throughout the rest of the chapter.
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Here, χ0
L,1 represents the cavity pull per photon due to the off-resonance interac-

tion. If the condition of Eq. (6.22) is fulfilled, it is in principle possible to perfectly
distinguish the qubit energy groundstate from the excited state.

Under driving conditions, the cavity pull is enhanced by a quantity
〈
nproj

〉
. This

enhancement is very important to be able to reach a sufficiently large (at least
theoretically) signal-to-noise ratio (SNR), which is given by [131]

SNR ≡
〈
nproj

〉
κL,1〈

namp

〉
2γr

> 1 , (6.23)

where
〈
namp

〉
is the noise level of the first amplifier expressed in equivalent photons.12

It has been shown experimentally that it is hard to reach a very large SNR. This
usually saturates to a maximum value smaller than 10 [377]. A theoretical effort has
found the origin of this issue in nonlinear effects and intrinsic dephasing mechanisms
of the qubit [378, 379]. Nevertheless, from the definition of SNR it appears evident
that a low quality factor, i.e., a large decay rate κL,1, for the mode used to measure

the qubit state and/or a large
〈
nproj

〉
are desirable.

The projection time tproj has to be shorter than the energy relaxation time of
the qubit [131]

tproj ≡ 2

〈
namp

〉
κL,1
〈
nproj

〉 � 1/γr . (6.24)

This expression takes into account for the amplifier noise level, which scales up
the fundamental time limitation on the resolution of a phase shift in a quantum
homodyne measurement [131]. Finally, an upper-bound limit for the readout error
is given by the probability for the qubit to relax during the projection time, Pr ≈
tproj γr, which limits the projection fidelity [131].

The qubit projection could be realized by means of different techniques. Among
those, it is worth mentioning the cavity bifurcation amplifier [110, 216] and the
mesoscopic shelving readout [221]. In addition, the development of quantum-limited
amplifiers will substantially help improving on the qubit projection speed [194–
196, 198, 199, 201, 203, 205, 208, 209].

After the projection pulse, depending on the qubit state |g〉 or |e〉 the field in B
is left in an even or odd coherent state

|Ψeven〉 =
|βcat〉+ |−βcat〉√
1 + exp

(
− |βcat|2

) (6.25)

or

|Ψodd〉 =
|βcat〉 − |−βcat〉√
1− exp

(
− |βcat|2

) , (6.26)

respectively.
Before proposing a method for the measurement of the intracavity states |Ψeven〉

and |Ψodd〉, we give an upper-bound estimate of their maximum size. The latter is
set by the maximum generation time, which is limited by the effective decay rate

12If Tn is the noise temperature of the amplifier,
〈
namp

〉
≡ kBTn/�ω, where kB is the Boltzmann

constant.
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κeffB,1 ≡ |βcat|2 κB,1 of the first mode of B,

tmax
gen =

1

κeffB,1
. (6.27)

This condition means that the larger the cat size, the faster the effective decay
rate κeffB,1, and, consequently, the shorter the maximum generation time, which self-
consistently limits the cat size. Substituting the definition of βcat given by Eq. (6.18)
into Eq. (6.27), we find the maximum amplitude of the Schrödinger cat state to be

|βmax
cat | = 3

√
|gB,1|
2κB,1

, (6.28)

which also sets the maximum generation time tmax
gen .

In reality, the scenario is more complex and we must take into account the
projection time tproj for a more accurate estimate of the cat size. We thus make the
substitution tmax

gen ≡ z, to simplify the notation, and rewrite Eq. (6.27) as

tmax
Σ =

(
z

tmax
Σ

κB,1
g2B,1
4
z2 +

tproj
tmax
Σ

gLB
g2B,1
4
z2
)−1

, (6.29)

where tmax
Σ ≡ tmax

gen +tproj = z+tproj. This condition clearly shows that the generation
time (and, thus, the cat size) is further reduced compared to the estimate given by
Eq. (6.28) because of the time needed to project the qubit state. In Eq. (6.29), the
effective decay rate of the quantum bus is the weighted average between the bare
decay rate κB,1, valid during the time tgen � tmax

gen , and the enhanced rate κB,1 ≈ gLB,
to be used during the time tproj. The latter is due to the fact that |α〉 is turned off
during the projection time [see explanation in step (iii)]. Notably, from Eq. (6.29)
it is evident that the best results, i.e., the largest cat states, depend on a trade off
between κB,1 and 1/tproj ∝ κL,1 [see Eq. (6.24)] and are obtained when tproj � tgen.
From the same equation, it also appears that the effective decay rate of the quantum
bus is limited by gLB when κB,1 → 0.

After some simple algebra, Eq. (6.29) can be rewritten as

z3 + A2z
2 + A0 = 0 , (6.30)

where A0 ≡ − 4/g2B,1 κB,1 and A2 ≡ (gLB/κB,1)tproj. The discriminant of this third-
order algebraic equation is always larger than zero, D = A2

0/4 − A0A
3
2/27 > 0. As

a consequence, the equation has one real and two complex conjugate solutions. We
are obviously interested in the real (positive) solution only, which is given by

z = tmax
gen = − A2

3
+ (S + T ) , (6.31)

where S ≡ 3

√
−A0/2− A3

2/27 +
√
D and T ≡ 3

√
−A0/2− A3

2/27−
√
D. It is now

straightforward to calculate the cat size substituting Eq. (6.31) into Eq. (6.18).13 In
Sec. 6.5, we study |βmax

cat | as a function of the decay rates of the quantum bus, κB,1,
and of the leaky cavity, κL,1.

13It is easy to prove that the result of Eq. (6.31) reduces to that of Eq. (6.27) when setting
tproj = 0.
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Finally, we notice that the generation time has to be much shorter than the
worst qubit coherence time, tgen � min{1/γr, 1/γϕ}, where γϕ represents the qubit
dephasing rate.

The architecture proposed here could directly be applied to implement conven-
tional cavity field measurement. These would consist of an initial qubit-cavity pre-
measurement where the qubit acts as the quantum probe with which the cavity field
gets entangled, followed by a measurement of the qubit state [380]. In this case, the
pre-measurement requires an interaction time sufficiently long (on the order of the
inverse interaction frequency) to adequately entangle the cavity field with the qubit.
Accordingly, the noisy action of decoherence plays an important role [179, 381]. In
contrast to this common approach, in the next subsection we show an alternative
method to realize a measurement of the cavity field with a relatively fast qubit-
cavity pre-measurement (on the order of a small fraction of the inverse interaction
frequency) and, thus, minimal action of decoherence [382]. In this context, we are
able to extend the results in Ref. [382] to the case of qubit dephasing. This is
an important extension considering that superconducting qubits largely suffer from
dephasing mechanisms.

6.3.2 Measurement of Schrödinger Cat States

We now propose a method for the measurement of relevant observables of the
Schrödinger cat states generated according to the recipe given in the previous sec-
tion. Obviously, our method can be applied to other generic intracavity field states.

(v) – π/2-pulse. For the sake of an example, we now consider the even coherent
state |Ψeven〉 of Eq. (6.25). We then apply a π/2-pulse of duration tπ/2 on resonance

with the qubit.14 We remind that, at this stage, the interaction between qubit and
resonators is still switched off. The π/2-pulse can be sent through L even if it is
detuned from any of its modes (cf., e.g., Refs. [108, 131]). This yields the system den-
sity matrix ρ̂sys (tΣ) = |+φ〉〈+φ|⊗ ρ̂even⊗ ρ̂L,2, where |+φ〉 ≡ [|g〉+ exp(jφ) |e〉] /

√
2,

ρ̂even ≡ |Ψeven〉 〈Ψeven|, and ρ̂L,2 ≡ |0〉L,2 〈0|L,2. Here, φ is a relative phase and
tΣ ≡ tgen+ tproj � tmax

Σ may be reset to zero, tΣ = 0. The π/2-pulse is used to induce
the phase φ. This can easily be realized by means of I/Q mixing techniques [360].
As we show in the following, continuously shifting φ allows for the measurement
of the quadrature of the intracavity field (e.g., |Ψeven〉) in all possible phase-space
directions. The first phase to be used is adopted as reference phase, φref .

(vi) – Pre-measurement. The qubit-resonator interaction is switched on. The

system, described by the Hamiltonian Ĥsys of Eq. (6.6), is let to evolve for a very
short pre-measurement time tpre. Since the first and third mode of L are now in
the vacuum state, the corresponding dynamic shifts are zero. Under the realistic
assumption gL,2 = gB,1 � gLB, the state ρ̂sys(0) evolves via a two-mode resonant JC
for a dimensionless time τ ≡ gB,1tpre. In the presence of a dispersive bath, producing
qubit dephasing, and a thermal bath at zero temperature, inducing field relaxation,
the system dynamical equation becomes

˙̂ρsys =
1

j�
[Ĥsys, ρ̂sys]−

∑
k

γk
2
({Â†

kÂk, ρ̂sys} − 2Âkρ̂sysÂ
†
k) , (6.32)

14Depending on the pulse amplitude, the π/2-pulse can be very fast. We can consequently
neglect the time tπ/2 in the rest of the protocol.
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where ˙̂ρsys ≡ (d/dτ)ρ̂sys, the braces denote anti-commutators, and the sum runs over

two indices corresponding to qubit dephasing (Â1 ≡ σ̂z, γ1 ≡ γϕ/2) and resonator

energy relaxation (Â2 ≡ â2, γ2 ≡ κL,2), respectively. Above, we neglect the energy
relaxation rate of the qubit, which is assumed to be small compared to the other
decoherence rates [108] (cf. also the discussion in chapter 5, Sec. 5.3),15 and the field
relaxation of B because κB,1 � κL,2. Calculating now dPe(τ)/dτ ≡ d 〈|e〉 〈e|〉 /dτ =

Tr[ ˙̂ρsys |e〉 〈e|] from Eq. (6.32), and after some algebra, we obtain

d

dτ
Pe(τ) =

1

j�
〈[|e〉 〈e| , Ĥsys]〉 . (6.33)

Interestingly, the terms involving qubit dephasing and resonator energy relaxation
vanish in this expression. This happens when calculating the expectation value at
time τ . Evaluating Eq. (6.33) in the limit τ → 0+ yields the important result

d

dτ
P
|+φ〉
e (τ)

∣∣∣
τ→0+

= (〈Ŷ φ
B,1〉+ 〈Ŷ φ

L,2〉)
∣∣
τ→0+

, (6.34)

where Ŷ φ
B,1 ≡ [b̂1 exp(−jφ)− b̂†1 exp(jφ)]/2j and Ŷ φ

L,2 ≡ [â2 exp(−jφ)− â†2 exp(jφ)]/2j
are field quadratures. The conjugated quadratures are X̂φ

B,1 ≡ [b̂1 exp(−jφ) +
b̂†1 exp(jφ)]/2 and X̂φ

L,2 ≡ [â2 exp(−jφ) + â†2 exp(jφ)]/2, which are obtained by re-
placing φ → (φ − π/2). Considering that at time τ → 0+ the second mode of L
is in the vacuum state (or a very small thermal state due to the finite operation
temperature of circuit QED experiments), 〈Ŷ φ

L,2〉
∣∣
τ→0+

= 0. Hence, we obtain

〈Ŷ φ
B,1〉
∣∣∣
τ→0+

=
d

dτ
P
|+φ〉
e (τ)

∣∣∣
τ→0+

. (6.35)

Equation (6.35) shows mathematically that the first derivative of the measured
excited-state qubit population, obtained at infinitesimally small interaction time,
contains information about resonator-field observables with no influence of decoher-
ence processes.

If the qubit is now prepared in the excited state |e〉,16 it is also possible to
determine the mean photon number of the fields inside resonators B and L, via

(〈n̂B,1〉+ 〈n̂L,2〉)
∣∣
τ→0+

= (〈b̂†1b̂1〉+ 〈â†2â2〉)
∣∣
τ→0+

= −1

2

d2

d2τ
P |e〉
e (τ)

∣∣∣
τ→0+

− 1 . (6.36)

Again, the contribution from resonator L is negligible,
〈
n̂L,2

〉 ∣∣
τ→0+

≈ 0. Eq. (6.36)
thus gives the mean photon number in B (i.e., the size of the Schrödinger cat state).
The (−1) on the right hand side of Eq. (6.36) accounts for the vacuum, which is a
constant offset.

Although Eqs. (6.35) and (6.36) are exact mathematical expressions, due to their
infinitesimal character they do not represent a realistic theoretical description of the

15In more recent experimental works, the qubit energy relaxation and dephasing have been
largely improved and have now become comparable [118–120, 244, 261]. However, in the present
calculations we still prefer to neglect the energy relaxation rate for simplicity.

16This can easily be done after the projection pulse. If the qubit is found in the groundstate |g〉,
a π-pulse brings it in |e〉. Differently, the qubit is already in |e〉.
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measurement process. A more realistic picture is obtained considering an estimator
for the derivative, e.g., in Eq. (6.35) over short, but non-zero measurement times
Δτ through the Taylor expansion: P (τ +Δτ) = P (τ)+P ′(τ)Δτ +P ′′(τ)(Δτ)2/2!+
O[(Δτ)3]. Subsequently, it can be shown that

ΔP
|+φ〉
e (τ)

Δτ

∣∣∣
τ=0

≈ 〈Ŷ φ
B,1〉 −

[
1 +

(κL,2 + γϕ)

4gB,1
〈Ŷ φ

B,1〉
]
Δτ , (6.37)

where the second term on the right hand side is the dominant higher-order con-
tribution to Eq. (6.35). This term, even for ideal ensemble averaging, contains the
dominant resonator decay rate κL,2 and the qubit dephasing rate γϕ. Equation (6.37)
shows that in the strong-coupling regime, {κL,2, γϕ} � gB,1, or even in the weak-
coupling regime, {κL,2, γϕ} > gB,1, it is possible to identify a time Δτ that is long

enough to allow the readout of 〈Ŷ φ
B,1〉 and short enough to suppress the effects of

decoherence during the pre-measurement. Clearly, a similar discretization can also
be done for the case of the mean photon number of Eq. (6.36).

(vii) – Measurement pulse. In order to calculate the probability Pe(τ), the qubit
state must be measured, e.g., by means of a QND dispersive readout. This can be
performed taking advantage again of the dispersive action of the first mode of L.
This measurement pulse has to fulfill similar conditions as those outlined in step (iv).
In particular, the measurement time has to be shorter than the energy relaxation
time of the qubit, tm � 1/γr.

(viii) – Repetition. Establishing an accurate estimator with the prescribed accu-
racy for the ensemble averages in Eqs. (6.35) and (6.36) requires, in general, many
repetitions of the prescribed protocol. There is a trade-off between the length of
the physically implemented Δτ , the number of measurement repetitions, and the
strength of the qubit-resonator coupling required to achieve a desired degree of noise
immunity. In summary, the proposed measurement technique consists of two main
steps. First, a fast pre-measurement allows the pointer (qubit) to encode the infor-
mation about the system (resonator field). This minimizes decoherence processes.
Second, the readout of the pointer, happening typically over longer time scales,
completes the quantum measurement procedure [380].

6.4 Quantum Tomography in Two-Resonator Cir-

cuit QED

In this section, we show that two-resonator circuit QED architectures can be ex-
ploited as a quantum-tomography toolbox. We first demonstrate that a variant of
the protocol outlined in Sec. 6.3 allows one to reconstruct, in the resonant regime,
the Wigner function of any given field (cf. Subsec. 6.4.1). We then consider a sim-
plified configuration of the setups of Figs. 6.1 and 6.2 and show that this can be
straightforwardly used to reconstruct, in the dispersive regime this time, the Wigner
function of unknown fields (cf. Subsec. 6.4.2).

6.4.1 Wigner Function Reconstruction via JC and Anti-JC
Dynamics

The following protocol can be considered as an extension of the protocol of Sec. 6.3.
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We assume the first mode of resonator B to be populated with an unknown field
state ρ̂B,1 =

∣∣ΨB,1

〉 〈
ΨB,1

∣∣. This, for example, can be the Schrödinger cat state
generated following the protocol of Subsec. 6.3.1. It is well known that state ρ̂B,1
can equivalently be expressed via its corresponding characteristic function χ(β̃) ≡
Tr[ρ̂B,1D̂(β̃)]. Here, D̂(β̃) is the usual displacement operator and β̃ the complex
amplitude in phase space of an arbitrary coherent state [383]. For the sake of
simplicity, we consider a pure field state, even though our results remain valid for
any arbitrary mixed state. The first step for a full-state quantum tomography is the
initialization of the qubit in state

∣∣+θ
〉
≡ [|+〉 + exp(jθ) |−〉]/

√
2, while resonator

B, populated with the unknown field |ΨB,1〉, stays unperturbed. At this point,
the interaction described in Eq. (6.13) must be turned on by driving again the
second mode of resonator L strongly. After an interaction time td, the initial state∣∣+θ
〉
|ΨB,1〉 evolves to

|Ψ(β̃, θ)〉 = (|+〉 D̂(β̃) |ΨB,1〉+ ejθ |−〉 D̂(−β̃) |ΨB,1〉)√
2

, (6.38)

with β̃ ≡ − jgB,1 td/2. Notably, the displacement D̂(β̃) is intrinsically realized by
the JC–anti-JC dynamics characteristic of our protocol. Such displacement, which
usually has to be induced by populating the resonator with a coherent state [71, 153,
367, 384], is necessary to explore the entire phase space via the complex amplitude
β̃.

By measuring the groundstate qubit population Pg(β̃, θ), given that the initial

state is
∣∣+θ
〉
, we can retrieve the characteristic function through

χ(β̃) =

[
Pg

(
β̃

2
, 0

)
− 1

2

]
+ j

[
Pg

(
β̃

2
,
π

2

)
− 1

2

]
. (6.39)

From the measured function χ(β̃), it is possible to derive ρ̂B,1 or its associatedWigner
function via a Fourier transform [383, 385], thus achieving a full-state reconstruction.

6.4.2 Wigner Function Reconstruction via Dispersive Inter-
actions

In all protocols studied so far, the qubit, the first mode of B, and the second mode
of L are considered to be on resonance. In addition, the qubit is considered to
be dispersively coupled to the first and third modes of L. A simplified variant of
such setup can be realized assuming the qubit transition angular frequency to be
comprised between the transition angular frequencies of the first mode of L and
the first mode of B, ωL,1 < ΩQ < ωB,1. If the frequency spacing is large enough,
the qubit is dispersively coupled to these two modes, which, at the same time, are
largely detuned from each other. We also assume the modes of L and B to be suitably
spaced in order to avoid resonances between higher harmonics, e.g., 2ωL,1 �= ωB,1,
3ωL,1 �= ωB,1, 3ωL,1 �= 2ωB,1, etc. Being all relevant modes of L and B detuned, the
effect of the geometric crosstalk between them is largely minimized and can safely be
neglected. Finally, we consider all modes of L besides the first to be in the vacuum
state and, as a consequence, disregard their dispersive interaction with the qubit.

272



CHAPTER 6. TWO-RESONATOR CIRCUIT QED: GENERATION OF
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Under these assumptions, the Hamiltonian of Eq. (6.3) in an interaction picture
with respect to the qubit and the relevant modes of resonators L and B and after a
RWA can be written as

̂̃
H

new

= �gL,1 sin θ (σ̂
−â†1e

−jΔL,1t + σ̂+â1e
+jΔL,1t)

+ �gB,1 sin θ (σ̂
−b̂†1e

−jΔB,1t + σ̂+b̂1e
+jΔB,1t)

+ �gLB(â
†
1b̂1e

−jδLBt + â1b̂
†
1e
jδLBt) , (6.40)

where δLB ≡ ωB,1 − ωL,1. If the dispersive conditions |ΔL,1| � max{gL,1, gB,1, gLB},
|ΔB,1| � max{gL,1, gB,1, gLB} are fulfilled, and sin θ = 1 (qubit at the degeneracy
point), the following effective Hamiltonian can easily be derived (cf. chapter 5)

̂̃
H

new

eff = �
g2L,1
ΔL,1

σ̂zâ
†
1â1 + �

gB,1
ΔB,1

σ̂z b̂
†
1b̂1

+ �

[
gL,1gB,1

2

(
1

ΔL,1

+
1

ΔB,1

)
σ̂z + gLB

]
× (â†1b̂1e

−jδLBt + â1b̂
†
1e

+jδLBt) . (6.41)

Defining gsw ≡ gL,1 gB,1(ΔL,1 +ΔB,1)σ̂z/(2ΔL,1ΔB,1) + gLB and assuming δLB � gsw,
we can estimate the effect of the last term of Eq. (6.41) via second-order perturbation
theory. We can define the superoperators Λ† ≡ gswâ1b̂

†
1 and Λ ≡ gswâ

†
1b̂1 and, in

analogy to the Dyson series derivation of Eq. (6.5), obtain the Hamiltonian

̂̄Hnew

eff = �

(
g2L,1
ΔL,1

σ̂z −
g2sw
δLB

)
â†1â1 +

(
g2B,1
ΔB,1

σ̂z +
g2sw
δLB

)
b̂†1b̂1 . (6.42)

We notice that the coefficient gsw is the balance between a dynamic coupling, which
depends on σ̂z, and a geometric one, which is qubit-state independent. This is in
agreement with the results of chapter 5. In the present setup, though, gsw contributes
to the system dynamics only in second-order as g2sw/δLB. This effective coupling
coefficient becomes very small for large δLB (as in our case) and can be neglected.
If necessary, it can be set to zero exactly by choosing a proper qubit-resonator
detuning. This can be realized modifying the qubit transition frequency, e.g., as in
step (i) of the protocol of Subsec. 6.3.1. In the light of these results, the present
variant of two-resonator circuit QED does not suffer from any crosstalk between the
two resonators and the Hamiltonian can finally be expressed as

Ĥnew
eff = �

g2L,1
ΔL,1

σ̂zâ
†
1â1 +

g2B,1
ΔB,1

σ̂z b̂
†
1b̂1 . (6.43)

If we now consider resonator B (the quantum bus) to be prepared in an unknown
field state ρ̂B,1 (e.g., a Fock state, a linear superposition of Fock states, a squeezed
state, a Schrödinger cat state, etc.), it is straightforward to utilize the Hamiltonian of
Eq. (6.43) to reconstruct the Wigner function of ρ̂B,1. This can be realized adapting
to our setup the recipes described in Refs. [367, 384]:
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(i) The field state ρ̂B,1 is displaced by means of a classical driving with strength
(angular frequency) ηdr and frequency ωdr = ωB,1. This frequency must be
retuned to compensate for the AC-Stark or -Zeeman shift due to the disperive
interaction between the qubit and resonator B (L is now in the vacuum state).
The complex amplitude of the displacement field generated in resonator B
under the action of ηdr grows with the driving time tdr, βdisp = − jηdrtdr. This
amplitude should be large enough to be able to explore the phase space far
from the origin and, thus, resolve with high accuracy the tails of the Wigner
function [384]. At the same time, it should be kept low enough in order not
to accidentally mix the states of the qubit. As always, the time scale at which
the mixing process takes place is 1/γmix

disp, where γ
mix
disp ≈ nβ(gB,1/ΔB,1)

2γr. Here,
〈nβ〉 is the mean number of photons in resonator B, i.e., the mean number of
photons of state ρ̂B,1 with the addition of the displacement photons 〈ndisp〉 ≡
|βdisp|2. The time 1/γmix

disp should be large compared to the total duration of the
measurement;

(ii) A π/2-pulse with frequency ωπ/2 = ΩQ is applied to the qubit, which is initially

prepared, for example, in |g〉. The π/2-pulse is send through resonator L not
to disturb state ρ̂B,1 and is characterized by a strength with real part (angu-

lar frequency) ηπ/2 and phase ϕ
(1)
π/2. The pulse strength must be chosen such

that the pulse duration time is tπ/2 = πΔL,1/4gL,1ηπ/2. The phase ϕ
(1)
π/2 con-

stitutes our reference phase. The π/2-pulse rotates the qubit and, indirectly,
affects the field in resonator B, which is dispersively coupled to the qubit. To
keep this effect small, the π/2-pulse should be fast compared to the disper-
sive dynamics which takes place between the qubit and resonator B. This can
easily be realized increasing the strength of the π/2-pulse (angular frequency),
ηπ/2 � ΔL,1 g

2
B,1(〈nβ〉+ 1/2)/ΔB,1 gL,1;

(iii) The driving ηdr is switched off. According to Eq. (6.43), qubit and resonator
B now evolve under a dispersive interaction with coupling strength g2B,1/ΔB,1.
This evolution, which naturally gives rise to the parity operator necessary
for the Wigner function reconstruction [367, 384], has to continue for a time
tpar = πΔB,1/2g

2
B,1. It is during this time that information about the field

state is encoded into the qubit state. It is worth mentioning that the presence
of resonator L, also dispersively coupled to the qubit, does not influence the
encoding process. This is due to the fact that, at this stage, resonator L is in
the vacuum state |0〉L,1;

(iv) A second π/2-pulse is applied to the qubit. This pulse is analogous to that of

step (ii), the only difference being its phase, which is now ϕ
(2)
π/2. This second

pulse is crucial to set the effective phase of the system. In fact, the phase
difference δϕ ≡ ϕ

(2)
π/2 − ϕ

(1)
π/2 is the only experimentally accessible quantity and

must be set to a precise value in order to reconstruct the Wigner function of
ρ̂B,1;

(v) Finally, the qubit state must be measured, e.g., by means of a QND dispersive
readout via resonator L, as explained in Sec. 6.3. The qubit measurement
starts at a time tmeas = tdr + tpar + tπ/2 and sets the end of the field-qubit
encoding process.
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Once the qubit populations Pg and Pe are measured, following the lines of
Ref. [384] we can readily compute

〈σ̂z〉 ≡ Pe − Pg = Tr
[
sin(ϕ

(1)
π/2 − ϕ

(2)
π/2)ρ̂B,1D̂

−1(βdisp)e
−jπâ†âD̂(βdisp)

]
. (6.44)

Setting the phase difference δϕ = − π/2 allows for the measurement of the Wigner
function of ρ̂B,1 at the point −βdisp, W (−βdisp) = 〈σ̂z〉 /π. Differently from the case
of Ref. [384], in our protocol the π/2-pulses are applied through resonator L and do
not generate any extra displacement of the field in resonator B. Finally, the entire
phase space can be explored repeating the experiment for different times tdr.

The presence of a leaky cavity represents a key element for the reconstruction of
the Wigner function of a generic state ρ̂B,1 in circuit QED. Our scheme is particu-
larly useful in those implementations of circuit QED where the qubit is measured
by means of a dispersive readout [386] or any other cavity-based readout and con-
stitutes an important extension of the theoretical study reported in Ref. [384]. We
notice that there are other qubit-resonator systems where the qubit can be measured
independently without the necessity of a second resonator [145, 151]. In those cases,
the reconstruction of the Wigner function can be performed straightforwardly [153].

6.5 Experimental Considerations

In this section, we show that for the typical parameter space accessible in circuit
QED experiments our protocols can readily be implemented. We first focus on the
estimate of the maximum size of the Schrödinger cat states generated according to
the recipe of Sec. 6.3. We show that this size depends on a trade-off between the
decay rates of the quantum bus B and of the leaky cavity L. We then briefly consider
the case of two-resonator circuit QED for the Wigner function reconstruction in
the dispersive regime (see Subsec. 6.4.2) and give an estimate of the most relevant
parameters for this case. All the numbers used in this section are very close to those
reached in existing experiments [144].

In Fig. 6.4, the maximum Schrödinger cat size and generation time are plot-
ted as a function of the decay rates of B and L, nmax

cat = nmax
cat (κB,1, κL,1) and

tmax
gen = tmax

gen (κB,1, κL,1). Here, nmax
cat ≡ |βmax

cat |2. These results are obtained for a
qubit transition frequency, at the qubit degeneracy point, δQ = ω = 2π × 5GHz.
The first mode of resonator B and of resonator L are assumed to have transition
frequencies ωB,1 = ω = 2π × 5GHz and ωL,1 = ω/2 = 2π × 2.5GHz, respectively.
The coupling coefficient between the qubit and resonator B is considered to be
gB,1 = 2π × 500MHz and those between the qubit and the modes of resonator L to
be gL,i = 2π×250MHz. The couplings with respect to B and L differ by a factor of 2
because of the different zero-point fluctuations of the two resonators.17 Figs. 6.1(b),
6.1(c), 6.2(b), and 6.2(c) clearly show that for B the maximum zero-point voltage
and current are v̄0B,1 � 1μV and ī 0B,1 � 25 nA, respectively, whereas for L they are
v̄0L,i � 0.5μV and ī 0L,i � 10 nA, respectively. In reality, there is a slight difference
also among the zero-point fluctuations of the modes of L, but it is small and we
neglect it. A realistic estimate for the geometric coupling between the first mode
of B and the second mode of L is gLB = 1MHz (cf. chapter 5). In Fig. 6.4, we

17We remind that the vacuum Rabi coupling is directly proportional to the zero-point field.
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Figure 6.4: Maximum Schrödinger cat size and generation time. (a) 3D plot
of nmax

cat as a function of the decay rates of B and L, κB,1 and κL,1, respectively.
(b) Top view of the plot in (a). (c) 3D plot of tmax

gen as a function of κB,1 and
κL,1. (d) Top view of the plot in (c). We remind to the main text for the
complete list of parameters used to obtain these figures and for a more detailed
explanation.

also assume κB,1 ∈ [0.5, 10]MHz, κL,1 ∈ [10, 70]MHz, 〈nproj〉 = 100, and, finally,
〈namp〉 = 10, which corresponds to a typical amplifier noise temperature Tn � 2.5K
at ω = 2π × 5GHz.

The plots of Figs. 6.4(a) and 6.4(b) are based on Eqs. (6.18) and (6.31). They
clearly show that the largest cat size is achieved for a very high quality factor
quantum bus with decay rate κB,1 � 500 kHz and, simultaneously, for a low quality
factor resonator L with decay rate κL,1 � 70MHz. In this case, nmax

cat � 45, which
represents a remarkable result. Figures 6.4(c) and 6.4(d) reveal that such a cat
size is reached within only tmax

gen � 27 ns, which is much shorter than typical qubit
decoherence times [118–120, 244, 261]. In this case, the generation time largely
dominates over the projection time, tmax

Σ ≈ tmax
gen � 27 ns � tproj � 2.9 ns. Notably,

as already pointed out in step (iv) of Subsec. 6.3.1, Fig. 6.4(a) shows that it is not
sufficient to have a very high quality factor quantum bus to generate large cats,
it is also necessary to perform a very fast projection (measurement) of the qubit
state. In fact, for κB,1 � 500 kHz and κL,1 � 10MHz the cat size nmax

cat → 0. This
is due to the fact that, in this case, the effective decay rate of the quantum bus
is limited by gLB and the generation time is dominated by the projection time,
tmax
Σ ≈ tproj � 20 ns � tmax

gen � 1.75 ns [see Eqs. (6.24) and (6.29)].

Figure 6.5(a), based on Eqs. (6.18) and (6.31), and Fig. 6.5(b), based on Eq. (6.24),
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SCHRÖDINGER CAT STATES AND QUANTUM TOMOGRAPHY

0

25

50

n
xa

m 
tac 

(a)

50 100 150 200 250 300

5

10

15

 n proj

t
jorp 

)sn(  

(b)

Figure 6.5: The role played by the mean number of photons in the projection
pulse, 〈nproj〉. Parameters: κB,1 = 500 kHz, κL,1 = 50MHz, 〈nproj〉 ∈ [25, 300]
photons. All other parameters are the same as those used to obtain Fig. 6.4.
(a) Maximum cat size nmax

cat as a function of 〈nproj〉. The calculation is based
on Eqs. (6.18) and (6.31). (b) Projection time tproj as a function of 〈nproj〉.
The calculation is based on Eq. (6.24). The cat size grows as the projection
time decreases. The dashed black line helps to comparing the two plots. This
figure clearly shows the main limitation of our protocol for the generation of
large cat states: The projection time must be very short. State-of-the-art
experiments can hardly realize high fidelity qubit measurements by means of
projection pulses on the order of 5 ns or shorter [386]. However, with the
advent of quantum-limited amplifiers [110, 194–196, 198, 199, 201, 203, 205,
208, 209, 211–220] and mesoscopic shelving readout [221] this scope might
soon become reachable.

show the dependence of nmax
cat and tproj on the number of photons used for the pro-

jection pulse, 〈nproj〉. In this case, κB,1 = 500 kHz, κL,1 = 50MHz, 〈nproj〉 ∈ [25, 300]
photons, and all other parameters are the same as those used to obtain Fig. 6.4. The
cat size grows as the projection time is reduced by applying a stronger projection
pulse and can reach dimensions larger than 50 photons for 〈nproj〉 > 200 photons.

Finally, we show that all conditions necessary for the implementation of the
protocol of Sec. 6.3 are readily fulfilled for a realistic set of parameters. In step
(i) of the protocol, if we assume a moderate 〈nshift〉 = 20 photons, we obtain
|Δshift| = 1GHz [Eq. (6.15)] when opting for a dynamic shift pulse [we remind
that |Δshift| can be induced by means of different switch-off techniques if neces-
sary (cf. Subsec. 6.3.1)]. Hence, a driving through the second mode of resonator
L corresponding to 〈nα〉 = 50 photons starts mixing the states of the qubit af-
ter a time on the order of 1/γmix

α � 640 ns [Eq. (6.16)]. This time is long enough
to reach the steady-state regime, exp(−κL,2/10 γmix

α ) � 0.04. Here, we consider
κL,2 = κL,1 = 50MHz.18 In step (iii) of the protocol, again for 〈nshift〉 = 20 pho-

18In reality, the decay rates of different modes of the same resonator are slightly different. They
get larger for higher modes.
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tons, for ncat = 45 photons, and for γr � 0.5MHz [118–120, 244, 261], we get
1/γL,2κ � 320 ns > 1/γmix

cat � 178 ns � tproj � 2.9 ns [Eqs. (6.19) and (6.20)]. This
means that tproj � 1/γr � 2μs, which largely reduces errors due to qubit energy re-
laxation, Pr � 0.1%. We also get χ0

L,1 = 1 [Eq. (6.22)] and a theoretical SNR = 500
[Eq. (6.23)].

In the case of two-resonator circuit QED for the Wigner function reconstruc-
tion in the dispersive regime, the parameter space has to be adapted to differ-
ent necessities. In order to minimize the effect of the geometric crosstalk be-
tween resonators B and L, we can chose, for example, ωB,1 � 2π × 7.5GHz and
ωL,1 � 2π× 3GHz. In this way, all relevant modes of B and L are detuned. We also
choose κB,1 � 100 kHz and κL,1 = 1MHz. For a qubit transition angular frequency
ΩQ = δQ � 2π × 5GHz, we have |ΔB,1| � 2π × 2.5GHz and |ΔL,1| � 2π × 2GHz.
In this case, it is also important to choose moderate qubit-resonator coupling coef-
ficients, gB,1 ≈ gL,1 � 50MHz,19 which corresponds to χ0

L,1 ≡ 2g2L,1/ΔL,1κL,1 = 2.5.
The choice of relatively small coupling coefficients is due to the fact that the con-
dition on the π/2-pulses, ηπ/2 � ΔL,1 g

2
B,1(〈nβ〉 + 1/2)/ΔB,1 gL,1, is hard to ful-

fill for very large couplings and/or very large intracavity fields. In fact, assuming
〈nβ〉 ≈ 〈ndisp〉 = 10 photons, which is obtained for ηdr � 32MHz and tdr = 100 ns,
ηπ/2 should be much larger than 2π×0.42GHz. This is very easy to realize in contrast

to the case when 〈nβ〉 ≈ 〈ndisp〉 = 100 photons, which is obtained for ηdr = 100MHz
and tdr = 100 ns, and ηπ/2 should be much larger than 2π × 4.02GHz. This means
that the tails of the Wigner function are harder to resolve, in particular for states
ρ̂B,1 characterized by large photon numbers (e.g., large Schrödinger cat states). For
the parameters chosen here, tpar = 250 ns < max{1/κB,1, 1/γr, 1/γϕ} � 1μs [118–
120, 244, 261, 351, 352]. It is also easy to show that, for 〈nβ〉 = 100 photons,
1/γmix

disp = 50μs � tmeas ≈ tdr + tpar = 350 ns.

6.6 Summary and Conclusions

In conclusion, we have presented a two-resonator circuit QED architecture where
one resonator, the quantum bus, is characterized by a very high quality factor, and
the other resonator, the leaky cavity, by a comparatively low quality factor.

We have shown that this architecture is well suited for the realization of a si-
multaneous JC and anti-JC dynamics. Such dynamics can be exploited for the
generation of large Schrödinger cat states.

Remarkably, we have shown that the interaction between the leaky cavity and
the qubit allows for a fast, high-fidelity projection and/or read out of the qubit state.
This is due to the low quality factor, which corresponds to a fast measurement time.
Taking advantage of this property, we have proposed a complete protocol for the
measurement of nonclassical microwave fields trapped inside the quantum bus (e.g.,
the large Schrödinger cat states mentioned above).

We have analyzed two main techniques to measure such nonclassical states. The
first technique is based on a fast qubit pre-measurement and the subsequent esti-
mation of the first and second derivatives of the qubit population. In this way, we
have shown that it is possible to obtain information on the first moment of the field

19Since we only use the first mode of each resonator, we can now design both B and L to be λ/2
resonators.
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quadratures over the entire phase space and on the mean number of photons of
such field. This method has the unique characteristic to be immune to decoherence
processes of qubit and resonators.

The second technique is based on the reconstruction of the Wigner function of
the intracavity fields and, thus, of their full-state quantum tomography. We have
studied two different approaches for the Wigner function reconstruction, the first
based on the JC and anti-JC dynamics and the second on an adaptation of the
Lutterbach-Davidovich reconstruction method to two-resonator circuit QED.

We have proven by means of numerical simulations and accurate parameter es-
timation that all tasks enumerated above can readily be realized in circuit QED.
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Chapter 7

Two-Dimensional Cavity Grid for
Scalable Quantum Computation
with Superconducting Circuits

Chapters 5 and 6, clearly show that one of the main strengths of circuit QED setups
is the possibility to construct many resonators on one and the same chip. Hence,
it is legitimate to pose the question whether it is conceivable to take advantage of
this property for the realization of complex architectures based on multi-resonator-
multi-qubit systems. The answer to this question constitutes the main subject of
this chapter.

Here, we propose a scalable setup for quantum computing where many on-chip
microwave resonators are arranged in a two-dimensional grid (hereafter, also referred
to as 2D cavity grid) with a qubit at each intersection. The versatility of such a
setup allows any two qubits on the grid to be coupled at a swapping overhead
independent of their distance. It also yields an optimal balance between reducing
the spread of the qubit transition frequencies and spurious cavity-induced couplings.
These features make the 2D cavity grid setup unique in its gender and distinct from
existing proposals based on ion traps [387, 388], optical lattices [389], semiconductor
spins [390], or superconducting qubits [97, 391]. In addition, we demonstrate that
our approach encompasses the fundamental elements of a scalable fault-tolerant
quantum computing architecture.

The chapter is organized as follows. In Sec. 7.1, we introduce the basic 2D
cavity grid architecture and its corresponding Hamiltonian. In Sec. 7.2, we briefly
show that one-qubit gates can easily be performed and the qubit state read out
with available tools. In Sec. 7.3, we propose a method to perform arbitrary two-
qubit gates between any two qubits in the cavity grid. We also study by means of
numerical simulations a model including dissipation of qubits and resonators. In
Sec. 7.4, we discuss the possibility to perform fast gate operations. In Sec. 7.5, we
analyze the scalability properties of our system. In Sec. 7.6, we present a realistic
hardware implementation of the 2D cavity grid and address qubit tunability issues.
Finally, in Sec. 7.7, we summarize our results.

The material discussed in this chapter is a revised and extended version of article
number 7 on the List of Publications and is published in Europhysics Letters -
Ref. [137]. The main contributions of the author are on the development of the
hardware implementation of a 2D cavity grid with orthogonal resonators as well
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Figure 7.1: Basic architecture for the 2D cavity grid proposal. (a) The 2D
cavity grid, with qubits depicted as circles and resonators (cavities) shown as
lines. The grid is composed by a set of modes belonging to NA horizontal and
NB vertical resonators. A qubit (i, j) sits at the intersection of resonators i
and j. The different colors indicate the transition frequencies of the qubits.
In the “idle state,” all frequencies are different in any column or row. The
coordinates (i, j) and (i, j′) denote two different qubits belonging to the same
(in this case horizontal) resonator. (b) ω: angular frequency. t: time. δΩ:
angular frequency difference between two qubits. A two-qubit operation can
be realized by tuning the transition frequencies of two qubits into resonance
near the resonator frequency. This activates a resonator-assisted dispersive
coupling between the two qubits [131, 146].

as the discussion on the experimental feasibility of such setup. This project has
been led by Florian Marquardt and Enrique Solano, who envisioned the grid as a
means for quantum computing. The author expresses his gratitude to both for the
possibility of joining such exciting project. The numerical simulations are due to
Ferdinand Helmer and the extension to a possible scalable fault-tolerant architecture
to Austin G. Fowler and Florian Marquardt. The author thanks Jan von Delft for
accepting him in this project and Rudolf Gross for allowing him to be part of the
article solo.

In addition to the material treated in Ref. [137], in this chapter we consider the
possibility to perform fast resonant gates. Also, we give more details on hardware-
related issues for the realization of grids with many resonators.

7.1 Basic Architecture

A single superconducting qubit coupled to a microwave on-chip resonator (cavity)
has been explored in a series of groundbreaking experiments [108, 138, 139, 141].
More recently, two qubits have been coupled via a resonator which is used to induce
a flip-flop (XY) interaction [145, 146], sideband transitions have been exploited
to realize two-qubit operations [392], and the Grover search and Deutsch–Jozsa
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algorithms have been implemented in a circuit QED architecture [147]. The flip-flop
interaction of Refs. [145, 146], in particular, can be exploited to realize two-qubit
gates, as outlined, e.g., in Refs. [131]. The natural extension of these experiments
is to a scenario where multiple qubits share the same resonator in a linear array
configuration [393]. In this case, arbitrary qubit pairs could be coupled selectively.
This is advantageous compared to schemes based on sequential nearest-neighbor
interactions, which suffer from swapping overhead and disruption by single unusable
qubits. However, in the “idle state” of the quantum processor the interactions have
to be effectively turned off by detuning all the qubits from each other. For two
qubits, this requires a detuning δΩ between them much larger than their coupling
strength J in order to avoid spurious two-qubit operations. As a consequence, for
N qubits inside one resonator, an angular frequency interval on the order of NδΩ is
required, restricting the maximum number of possible qubits.

To overcome this issue, we propose a 2D cavity grid architecture that relaxes the
NδΩ requirement and can form the basis for a scalable fault-tolerant scheme. The
proposed setup is sketched in Fig. 7.1: Two arrays of parallel resonators are placed
orthogonally on top of each other forming an NA ×NB grid, where NA and NB are
the number of horizontal and vertical resonators, respectively. One qubit sits at
each intersection between two resonators on the grid. By making sure that within
each resonator (column or row) no two qubit angular frequencies are closer than δΩ,
the required angular frequency range has to be on the order of

√
NδΩ (where N is

the total number of qubits). In this manner, we are able to reduce the necessary
frequency spread by a factor

√
N . This readily allows for grids with more than

N = 20× 20 = 400 qubits, for realistic parameters (cf. Sec. 7.6). The constraint on
each row and column is similar to the rules of the game of “Sudoku,” but without
any requirement to choose a prescribed number of different frequencies. Figure 7.1
shows an acceptable frequency distribution. An extension to a fully scalable setup
is discussed towards the end of the chapter.

The essential features of our 2D cavity grid are contained in the Hamiltonian

Ĥcgrid =

NA∑
i=1

�ωAi â
†
i âi +

NB∑
j=1

�ωBj b̂
†
j b̂j +

1

2

∑
i,j

Ωij σ̂z

+
∑
i,j

n̂ij[g
A
ij(â

†
i + âi) + gBij (b̂

†
j + b̂j)] , (7.1)

where ωAi and ωBj are the transition angular frequencies of the i-th horizontal and

the j-th vertical resonators, respectively, and âi, â
†
i , b̂j, and b̂

†
j are annihilation and

creation bosonic operators for the i-th and j-th modes of the horizontal and vertical
resonators. In addition, Ωij represents the transition angular frequency of qubit
(i, j), σ̂z the usual Pauli operator, n̂ij the dipole operator of qubit (i, j), and gAij
and gBij the coupling coefficients between the qubit (i, j) and the horizontal or verti-
cal resonator modes, respectively. The qubit-resonator coupling coefficients and the
qubit dipole operator depend on the detailed electromagnetic field distribution in
the resonators, on the geometry of the qubit, and on its operation point. In the case
of charge qubits, the electric-dipole-type operator n̂ij couples to the electric field of
the resonators, whereas in the case of flux qubits, it couples to the magnetic field. In
general, the form of Eq. (7.1) is independent of the specific hardware implementation
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and we can use Ĥcgrid as the starting Hamiltonian for deriving the Jaynes-Cummings
model and the resonator-mediated interaction between the qubits [131]. For defi-
niteness, we consider charge (or transmon) qubits, unless noted otherwise.

7.2 One-Qubit Gates and Readout

We briefly review some required features on one-qubit gates that have already been
implemented experimentally [108]. σ̂x-type operations on a selected qubit can be
performed inducing Rabi oscillations of frequency ΩR by means of a microwave pulse
with angular frequency Ωij/�. This pulse matches the qubit, but is detuned from the
resonator mode [108] and all the other qubits in any of the two resonators coupled
to the selected qubit, i.e., the peaks of the Mollow triplet Ωij/� and Ωij/� ∓ ΩRabi

do not overlap with those qubits. σ̂z-type operations can be performed by means of
strong microwave pulses detuned from the qubit, which induce AC-Stark or -Zeeman
shifts [146], or by means of non-adiabatic pulses [104, 394].

We notice that the state of a selected qubit can be measured using the res-
onators of the grid to perform a high-fidelity dispersive quantum non-demolition
readout (cf. chapter 6), a technique which has already been demonstrated in exper-
iments [108]. By tuning only one qubit at the time near the resonator mode used to
read out, this method allows for a fast individual qubit addressing (cf. chapter 6).
Alternatively, the more sophisticated combinatorial parallel readout (multiplexed
readout) suggested in Ref. [131, 146] might be applied.

7.3 Two-Qubit Gates and Treatment of Decoher-

ence

In this section, we study the possibility to perform two-qubit gates in a 2D cavity
grid taking advantage of the well-known dispersive qubit-resonator-qubit interac-
tion, which arises from the Hamiltonian of Eq. (7.1) when qubit and resonators are
largely detuned from each other [332, 395, 396]. In this case, the resonator acts as a
quantum bus which mediates a flip-flop interaction between a pair of qubits α and
β. Indicating one of the horizontal or vertical resonators with the index k = A,B
and its corresponding transition angular frequency as ωk, we define the coupling
coefficients between each qubit and a resonator as gkα and gkβ, respectively, and the

corresponding qubit-resonator detunings as Δk
α ≡ Ωα − ωk and Δk

β ≡ Ωβ − ωk. Un-

der the dispersive assumption |Δk
α|, |Δk

β| � max{|gkα|, |gkβ|}, it is an easy exercise in
second-order perturbation theory to obtain the effective Hamiltonian [131, 146]

Ĥk
αβ = �Jkαβ

(
σ̂+
α σ̂

−
β e

+jδαβt + σ̂−
α σ̂

+
β e

−jδαβt
)
, (7.2)

where Jkαβ ≡ gkα g
k
β(Δ

k
α +Δk

β)/2Δ
k
αΔ

k
β is the effective coupling strength between the

two qubits α and β, σ̂−
α , σ̂

+
α , σ̂

−
β , and σ̂

+
β are the usual lowering and rising operators

for α and β, and δαβ ≡ Ωα − Ωβ is the detuning between the two qubits, which, in
general, are nondegenerate.

In the “idle state,” the qubit-qubit interaction of the Hamiltonian of Eq. (7.2)
must be effectively switched off in order to avoid spurious two-qubit operations. In
the “computational state,” when the gate is active, the two-qubit interaction must
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Figure 7.2: Operations between two arbitrary qubits on a 2D cavity grid. (a) Sequence
of operations for a two-qubit gate between two arbitrary qubits α and γ, which reside
in different resonators, via an intermediate qubit β, which is located at the junction of
the two orthogonal resonators containing α and γ. (b) Quantum circuit associated with
the physical implementation described in (a). Every SWAP gate has to be decomposed
into three iSWAP gates and local gates. OP: generic operation between qubits β and
γ. (c) Numerical simulation of the master equation for the sequence of operations in (a)
and (b) assuming OP = iSWAP [cf. Eq. (7.6)]. The probabilities for the groundstate
|g〉 and excited state |e〉 of qubits α, β, and γ, respectively, are shown together with the
overall gate fidelity as a function of time. The parameters used are presently achievable
in experiments (cf. Sec. 7.3). (d) Quantum circuit for the special cases OP = CNOT or
OP = CPHASE. This circuit (faster than the one sketched in (b)) exploits the possibility
to implement each SWAP-CNOT pair of operations using a single iSWAP gate and local
gates [397]. The numerical simulations were performed by F. Helmer [137].
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be maximum in order to allow fast operations. This can be realized following a
simple flip-flop protocol :

(i) In the “idle state,” the two qubits α and β are prepared far away from the
mode of resonator k, Ωα → Ω̃α and Ωβ → Ω̃β. This can be realized employing
flux control lines, which are used to DC-Zeeman shift the qubit energy levels
(cf. Sec. 7.6), thus creating very large qubit-resonator detunings Δ̃k

α ≡ Ω̃α−ωk
and Δ̃k

β ≡ Ω̃β − ωk. In this manner, the coupling coefficient between the two

qubits is drastically reduced to J̃kαβ = gkα g
k
β(Δ̃

k
α + Δ̃k

β)/2Δ̃
k
α Δ̃

k
β � Jkαβ;

(ii) At this stage, the qubits are also detuned from each other by a quantity |δαβ| �
|J̃kαβ|, which further reduces their mutual interaction. In this case, it is possible

to write an effective second-order Hamiltonian Ĥk,eff
αβ = �[Υ†,Υ]/δαβ, where

Υ† ≡ J̃kαβσ̂
+
α σ̂

−
β and Υ ≡ J̃kαβσ̂

−
α σ̂

+
β . A simple calculation shows that Ĥk,eff

αβ = 0

when |δαβ| � |J̃kαβ|. This condition can easily be fulfilled since J̃kαβ is small
due to the very large detuning condition of point (i). Being the qubits largely
detuned from each other also minimizes the nearest-neighbor coupling between
them, which is independent from the dispersive action of the resonator;

(iii) In the “computational state,” the interaction between qubits α and β is switched
on by tuning the qubit transition frequencies into mutual resonance near the
resonator frequency, |Δ̃k

α| → |Δ|, |Δ̃k
β| → |Δ|, with |Δ| � min{|Δ̃k

α|, |Δ̃k
β|}

(cf. Fig. 7.1). The qubit-resonator interaction remains dispersive, but the
detuning condition is largely relaxed. In this way, the coupling coefficient be-
tween the qubits is increased to Jkαβ � J̃kαβ, the qubits are degenerate, and the
flip-flop interaction Hamiltonian can finally be expressed as

Ĥflip−flop = �
gkα g

k
β

Δ

(
σ̂+
α σ̂

−
β + σ̂−

α σ̂
+
β

)
. (7.3)

We notice that when the two qubits are degenerate, a nearest-neighbor-type
interaction can contribute to their mutual coupling strength. This could possibly
generate errors and one has to account for it while designing an experiment.

The time evolution of the Hamiltonian of Eq. (7.3) after a waiting time t =
π|Δ|/(2|gkα gkβ|) realizes a universal two-qubit iSWAP gate (as demonstrated recently
in Ref. [146]), which can be used to construct CNOT and SWAP gates. For exam-
ple, each SWAP(α, β) operation in the protocol [cf. Fig. 7.2(a) and 7.2(b)] can be
decomposed into three iSWAP gates between qubits α and β [397]:

SWAP(α, β) = iSWAP(α, β)×Rx
β× iSWAP(α, β)×Rx

α× iSWAP(α, β)×Rx
β . (7.4)

Here, Rx
α and Rx

β represent Rabi pulses (i.e., local qubit rotations) applied via a
resonant microwave driving. Such pulses rotate qubits α and β by an angle −π/2
about the x-axis of the Bloch sphere.

Arbitrary two-qubit gates between any two qubits α and γ residing in different
resonators can be implemented using the SWAP gate of Eq. (7.4) and employing
an intermediate qubit β located at the junction of the two orthogonal resonators
containing α and γ [cf. Fig. 7.2(a)]. The sequence

SOPS(α, γ) ≡ SWAP(α, β)×OP(β, γ)× SWAP(α, β) (7.5)
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leaves the state of qubit β unchanged and performs the desired operation OP be-
tween qubits α and γ.

In order to gain further insight into the physics of the operation of Eq. (7.5)
under more realistic assumptions, we model energy relaxation and pure dephasing
of each qubit m = {α, β, γ} involved in the operation introducing Lindblad terms
in the corresponding master equation. The master equation thus reads

˙̂ρ = − j

�

[
ĤSOPS, ρ̂

]
+
∑
m

(Lr
m + Lϕm) ρ̂ , (7.6)

where

Lr
m ρ̂ ≡ Γr

[
σ̂−
m ρ̂ σ̂

+
m − 1

2
σ̂+
mσ̂

−
mρ̂−

1

2
ρ̂σ̂+

mσ̂
−
m

]
, (7.7a)

Lϕm ρ̂ ≡ Γϕ
[
2P̂mρ̂P̂m − P̂mρ̂− ρ̂P̂m

]
. (7.7b)

In the master equation, ˙̂ρ(t) ≡ (d/dt)ρ̂(t), ĤSOPS is the Hamiltonian associated with
the entire operation SOPS, where each pair of qubits (α, β) and (β, γ) are coupled
via the flip-flop Hamiltonian of Eq. (7.3) and we assume OP = iSWAP, Γr and Γϕ are
the energy relaxation and pure dephasing rates equal for all qubits, P̂m ≡ |e〉m m〈e|
projects onto the excited state of the m-th qubit, and σ̂−

m and σ̂+
m are the usual

lowering and rising operators for the m-th qubit. Due to the dispersive condition,
the resonators are adiabatically eliminated from the system.1

During any two-qubit gate the qubit energy must be ramped. As a consequence,
other qubit energies are inevitably crossed [cf. Fig. 7.1(b)]. On one hand, if the
ramping process is too slow, it can lead to a spurious population transfer to other
qubits. On the other hand, ramping too fast can excite higher qubit energy levels.
For a switching time of 10 ns (during which a sweep over δΩ � 2π × 10GHz has to
be typically performed), the probability of an erroneous population transfer during
one crossing is estimated to be less than 10−2 from the Landau-Zener-Stückelberg
tunneling equation. We can therefore safely disregard this effect from our simula-
tions, where we assume the qubit energies to be switched instantaneously. We notice
that although several crossings may occur during one single sweep because of the
presence of many qubits inside each resonator, the scalable setup to be introduced
in Sec. 7.5 keeps this type of error under control by requiring only eight qubits per
resonator.

The parameters used for the simulations are: Initial qubit transition angular
frequencies Ωm = 2π × 4, 5, 6GHz for qubit m = α, β, γ, respectively; resonator
transition angular frequencies ωki = ωkj = 2π×15GHz, ∀i, j, k; for the local rotations
of qubits α and β, Rx

α and Rx
β, a resonant classical microwave driving yielding

a Rabi frequency ΩR = ΩR
α = ΩR

β = 150MHz;2 a qubit-resonator vacuum Rabi

coupling gkm = 2π × 245MHz, ∀m, k, and a detuning Δ = 2π × 1GHz. From
these numbers, it is easy to compute the effective coupling coefficient between two

1We notice that Eq. (7.6) uses a definition of the Lindblad terms based on the projector P̂m.
This is different from the definitions used in the master equations of chapter 5, Sec. 5.3, and
chapter 6, Subsec. 6.3.2. For this reason, the rate Γϕ is not divided by two here.

2The phase of the driving field already accounts for the qubits phases accumulated during the
gate sequence.
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qubits, Jkmn � 60MHz, with n = α, β, γ and m �= n. In addition, we assume
the pessimistic values for the energy relaxation and pure dephasing rates of the
qubits, Γr = 0.1MHz and Γϕ = 2MHz (i.e., T1 = 10μs and Tϕ = 500 ns). It is
worth mentioning that longer pure dephasing times have been reported in recent
experiments on transmon qubits [120, 244]. Notably, in the “idle state” the actual
qubit-qubit coupling strength is largely reduced due to a larger detuning from the
resonator. Assuming |Δ̃k

m| � 10GHz, ∀m, k, we obtain |J̃kmn| � 6MHz. The effect
of this spurious coupling can be further reduced by spacing the qubits, e.g., by
|δαβ| � 500MHz (� J̃kmn � 6MHz). As shown in point (ii) of the flip-flop protocol,
in this case the resonator-mediated interaction between the two qubits is negligible.
The results of our simulations are summarized in Fig. 7.2(c).

The accuracy of the adiabatic elimination of the resonator mode can be verified
by performing an additional simulation of an iSWAP operation between two qubits
taking fully into account the resonator mode. Such a simple simulation (data not
shown) reveals that the spurious population of the resonator mode during the dis-
persive iSWAP operation stays at all times well below 0.03 and the corresponding
error is below the error induced by dissipation. Such errors can be further minimized
by optimizing pulse shapes and parameters [398].

A measure of the operation fidelity is obtained by computing F [ρ̂(t), ρ̂ideal(t)]

[399], where F (ρ̂1, ρ̂2) ≡ Tr(
√√

ρ̂1ρ̂2
√
ρ̂1)

2 and ρ̂ideal denotes the time-evolution in

the absence of dissipation. Figure 7.2(c) shows a fidelity of approximately 85% after
a gate operation of approximately 210 ns. This result clearly confirms that presently
achievable parameters suffice for a first proof-of-principle experiment. We emphasize
that the swapping overhead does not grow with the distance between the qubits.
Furthermore, multiple operations can run in parallel even if they involve the same
resonators, provided that no qubit is affected simultaneously by two operations and
the qubit pairs are tuned to different frequencies.

In this section, we have deliberately chosen the comparatively slow dispersive
two-qubit gate that relies on proven achievements. Nevertheless, much faster reso-
nant gates might be implemented on a time scale of 1/gkm instead of |Δ|/(gkm)2. In
the next section (Sec. 7.4), we briefly discuss one example of such gates.

7.4 Fast Resonant CPHASE Gates

In this section, we briefly show that the 2D cavity grid architecture can also be ex-
ploited to realize resonant gates, which are inherently faster than the dispersive gates
analyzed in the previous section (Sec. 7.3). A resonant controlled-phase (CPHASE)
gate between two qubits coupled to the same resonator can be implemented if one
of the two qubits is characterized by a third energy level |a〉 with higher energy
compared to its groundstate |g〉 and first excited state |e〉. The third level |a〉 can
be regarded as an auxiliary level3 used to acquire the phase π necessary to perform
the CPHASE gate [147, 400, 401]. We assume two qubits α and β coupled to the
same resonator. Initially, the qubits are prepared in a linear superposition of energy

3It now becomes clear the chosen nomenclature for the third level (cf. chapter 2, Sec. 2.2).
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CHAPTER 7. TWO-DIMENSIONAL CAVITY GRID FOR SCALABLE
QUANTUM COMPUTATION WITH SUPERCONDUCTING CIRCUITS

groundstate and excited state

|α〉 = |g〉α + |e〉α√
2

, (7.8a)

|β〉 =
|g〉β + |e〉β√

2
, (7.8b)

where |g〉α, |e〉α, |g〉β, |e〉β represent the groundstates and excited states of qubits
α and β, respectively. The states of Eqs. (7.8a) and (7.8b) can easily be prepared
by means of Rx

α and Rx
β rotations. All qubit transitions |g〉 ↔ |e〉, |e〉 ↔ |a〉, and

|g〉 ↔ |a〉 for both qubits are detuned from the resonator transition in order to
avoid spurious population transfers. The resonator is prepared in the vacuum state
|0〉. The initial state of the system is thus

|Ψ〉0 = (A |g〉α |g〉β +B |g〉α |e〉β + C |e〉α |g〉β +D |e〉α |e〉β)⊗ |0〉 , (7.9)

where A,B,C, and D are opportune renormalization coefficients.
The state of qubit β is then transferred to the resonator by tuning the transition

|g〉β ↔ |e〉β into resonance with the resonator transition for half a vacuum Rabi
oscillation period. This can be realized by applying a fast DC-Zeeman shift pulse
to the qubit through opportune control lines [147, 349, 374] (cf. Sec. 7.6). The
resonator is thus turned into a photonic qubit and the system state is

|Ψ〉1 = (A |g〉α |0〉+B |g〉α |1〉+ C |e〉α |0〉+D |e〉α |1〉)⊗ |g〉β , (7.10)

where |1〉 represents a Fock state one in the resonator. The transition |g〉β ↔ |e〉β
is tuned back out of resonance with respect to the resonator transition.

A CPHASE gate between qubit α and the photonic qubit in the resonator can be
implemented by tuning the transition |e〉α ↔ |a〉α into resonance with the resonator
transition during a full vacuum Rabi period. The process |e〉α |1〉 → |a〉α |0〉 →
− |e〉α |1〉 results in a phase factor −1, while all the other initial states only acquire
free-evolution phases. The system state becomes

|Ψ〉2 = (A |g〉α |0〉+B |g〉α |1〉+ C |e〉α |0〉 −D |e〉α |1〉)⊗ |g〉β . (7.11)

The transition |e〉α ↔ |a〉α is tuned back out of resonance with respect to the
resonator transition.

Finally, by mapping back the photonic qubit in the resonator onto qubit β, a
CPHASE gate between qubits α and β is implemented. This is realized by tuning
once again the transition |g〉β ↔ |e〉β into resonance with the resonator transition
for half a vacuum Rabi oscillation period. The final system state is

|Ψ〉3 = (A |g〉α |g〉β +B |g〉α |e〉β + C |e〉α |g〉β −D |e〉α |e〉β)⊗ |0〉 . (7.12)

In the case of a 2D cavity grid, resonant two-qubit gates can be implemented
between qubits located in different resonators if a SWAP gate can efficiently be
decomposed into CPHASE gates and local qubit rotations. It can be shown that

SWAP(α, β) = Rx
α × CPHASE(α, β)× Rx

α

× Rx
β × CPHASE(α, β)× Rx

β

× Rx
α × CPHASE(α, β)× Rx

α . (7.13)
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Figure 7.3: A possible fault-tolerant scalable architecture based on the cavity
grid. (a) The unit cell of the periodic arrangement, with two logical qubits,
each made up of seven data qubits (grouping indicated by dashed rectangles),
together with ancilla and placeholder qubits. (b) First sequence of SWAP
and CNOT gates. (c) Second sequence of SWAP and CNOT gates. (d) Final
arrangement produced by the sequence of SWAP and CNOT gates shown
in (b) and (c), which implements a transversal CNOT between the logical
qubits; cf. main text for details.

The resulting two-qubit gate based on the gate of Eq. (7.5) in combination with
local qubit rotations can be used for universal quantum computation. It could also
be used to directly generate a 1D cluster state [402] sequentially along each row
of the grid. Such state can then be extended to a 2D cluster state [403–405] by
coupling different rows. We recall that 2D cluster states are fundamental elements
for the implementation of the so-called one-way quantum computing [406, 407].
More details on these advanced applications can be found in Ref. [401, 408].

7.5 Scalable Fault-Tolerant Architecture

The 2D cavity grid presented in this chapter has the potential of serving as a building
block for a truly scalable, fault-tolerant architecture. Scalability means that, at a
minimum, the physics of initialization, readout, single- and two-qubit gates does not
depend on the total number of qubits in the system. Figure 7.3 shows a scalable
architecture requiring only eight different qubit frequencies to selectively couple a

290



CHAPTER 7. TWO-DIMENSIONAL CAVITY GRID FOR SCALABLE
QUANTUM COMPUTATION WITH SUPERCONDUCTING CIRCUITS

constant fraction of an arbitrarily large number of qubits in parallel. In each unit
cell of 64 physical qubits [cf. Fig. 7.3(a)], we choose 2 arrays of 7 data qubits and use
each array to store a single logical qubit following the 7 qubit Steane quantum error
correction code [409]. This logical qubit is capable of tolerating an arbitrary single
qubit error and may itself be part of a larger logical qubit through concatenation.
A logical transversal CNOT gate is illustrated in Figs. 7.3(b), 7.3(c), and 7.3(d).
The final arrangement of data qubits [cf. Fig. 7.3(d)] differs from the initial one and
could be returned to it by swapping. However, if all logical qubits undergo similar
logical gates, explicitly swapping back is not necessary as subsequent logical gates do
this automatically. Figure 7.3 also shows 2 additional arrays of 7 ancilla qubits used
during error correction.4 Clean logical states are prepared in these ancilla. Errors
in the data are then copied into the ancilla, which are finally measured locating the
errors and enabling correction [410]. All unmarked qubits are placeholder qubits
and are not used at any given time. The presence of placeholder qubits is crucial to
prevent single SWAP gate failures corrupting multiple data qubits in a single logical
qubit. If a pair of data qubits need to be interchanged, swapping them directly could
corrupt both data qubits in the case of a SWAP gate failure. In fact, this would result
in a pair of errors that is not always correctable, since the 7 qubit encoding only
copes with a single data or ancilla qubit error in each error correction round. Using a
placeholder qubit as a temporary location for one of the data qubits and a sequence
of three SWAP gates eliminates this problem by ensuring that each SWAP gate
only touches a data and placeholder qubit. We ignore errors on placeholder qubits
as they contain no data. A broad range of single logical qubit gates is also possible.
Full details of our chosen set of universal fault-tolerant gates and their associated
logical circuits including error correction can be found elsewhere [411, 412].

7.6 Experimental Considerations

In this section, we introduce the experimental elements needed for the hardware
implementation of a 2D cavity grid. Figure 7.4 shows a possible setup, where the
cavities are realized as coplanar wave guide (CPW) resonators and are arranged
on two separate layers (layers 2 and 3). As sketched in Fig. 7.4(a), all resonators
located on the top layer (layer 3) are parallel with each other and oriented orthogo-
nally with respect to the resonators on the underlying layer (layer 2). Such a design
partially reduces the direct crosstalk between the resonators (cf. discussion below
for a quantitative analysis) and can easily be implemented with available multilayer
technology, which allows for the fabrication of thin films stacked on top of each
other. The lowest layer (layer 1) is used for the control lines. These are necessary
to tune the qubit energies and to apply fast control pulses. In the case of charge
qubits (or transmons), one of such lines for each qubit is dedicated to voltage pulses
[charge control line in Fig. 7.4(b)] and another line to flux pulses [flux control line
in Fig. 7.4(b)]. In the case of flux qubits, only flux control lines are in principle
necessary [349, 374].5 The qubits are fabricated at the last step above all other
layers. This is an important feature of the setup proposed here since it minimizes

4We notice that these ancilla qubits move during error correction.
5Indeed, the energy of a flux qubit could be tuned via a DC voltage [413], in which case a charge

control line would also be required.
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Figure 7.4: Possible multilayer design for a 2D cavity grid setup. (a) Layer
1 (bottom, brown): control lines [cf. detail in (b)]. Layer 2 (middle, green):
portion of vertical CPW resonators. Layer 3 (top, blue): portion of horizontal
CPW resonators. The qubits are indicated as red ovals and are resported on
each layer for clarity. In reality they are fabricated above layer 3. (b) Detail
of the charge and flux control lines, which provide individual addressability
to each qubit (indicated here as semitransparent red ovals). (c) The orthog-
onal resonators are represented in their entire length. The input and output
capacitors as well as the area in (a) are indicated.
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the possibility of damaging the qubits due to fabrication steps after the qubit fabri-
cation.6 Another important feature is represented by the small lateral dimensions of
the actual grid compared to the total length of the resonators [cf. Fig. 7.4(c)]. This
guarantees a homogeneous coupling between all qubits and resonators, the latter be-
ing engineered in order to have an antinode of the electromagnetic field right in the
center. We emphasize that there is a large flexibility for choosing the components of
a 2D cavity grid setup, which can also be realized employing microstrip resonators
or even a combination of CPW and microstrip resonators. Here, we focus on the
case of CPW resonators for definiteness.

Referring to Fig. 7.5, we now analyze in detail the geometrical dimensions and
other experimental parameters of the 2D cavity grid. We consider all metallic struc-
tures to be made of Nb or Al, which are in the superconducting state at the typical
temperatures of circuit QED experiments. We assume the width of the inner strip
of each CPW resonator and the gap between the inner strip and the corresponding
groundplanes to be Ws � 19μm and G � 11.5μm, respectively. In this case, the
aspect ratio Ws/(Ws + 2G) � 0.45 guarantees a good 50Ω matching for the CPW
structure. In order to reduce unwanted crosstalk between two adjacent resonators we
choose the width of the groundplane separating the resonators to be Wg � 72μm,
which is large enough compared to Ws. Using these numbers, it is easy to find
that the total area of the actual grid [i.e., the region where the qubits are placed;
cf. Fig. 7.4(a)] for 10×10 CPW resonators is characterized by a lateral dimension of
approximately 1mm. Since the typical length of the resonators is comprised between
10 and 20mm, this allows for a homogeneous coupling between the qubits and the
electromagnetic field of all resonators. In fact, for the qubits positioned at the edges
of the grid the electromagnetic field can easily be estimated to be approximately
99% of the maximum, which is reached in the center of the resonators. The thick-
ness of the dielectric material between the different layers containing resonators and
control lines is assumed to be t � 100 nm. Such small separation between the res-
onator layers compared to the width of the resonator gaps (G/t � 100) guarantees
a good coupling between qubits and both horizontal and vertical resonators. The
dielectric can be made, for example, of amorphous hydrogenated silicon (a-Si:H), a
material which has been proven to be optimal with respect to induced decoherence
of the qubits [252].

In chapters 5 and 6, we have shown that there is an inevitable crosstalk be-
tween two resonators in any two-resonator-qubit setup. This is due to a geometric
first- and second-order coupling, which is qubit-state independent, and a dynamic
second-order coupling, which is qubit-state dependent and appears when qubit and
resonators are detuned from each other (as in the cavity grid architecture). If not
opportunely balanced, these two coupling mechanisms sum up giving rise to an ef-
fective resonator-resonator interaction dynamics. Such dynamics can constitute a
severe issue for the 2D cavity grid architecture, making the model of Eq. (7.1) in-
adequate for a thorough description of the grid physics. As mentioned in Ref. [331],
for the orthogonal design sketched in Figs. 7.4(a), 7.4(c), and 7.5 the geometric
first-order coupling between two orthogonal resonators i and j for a resonance fre-
quency of 15GHz can be estimated to be ggeom,1ij � 2π × 100MHz. The geometric
second-order coupling mediated by the presence of a qubit circuit α at the junction

6The damaging of a qubit could easily happen when fabricating the qubits between two res-
onators, in a “sandwich-type” design.
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Figure 7.5: Detail of a 2D cavity grid setup. Qubits: red ovals (indicated on
all layers for clarity). (a) Layer 1 (bottom, brown): control lines. Wb: control
line width. Gb: gap between adjacent lines. Layer 2 (middle, green): two
vertical CPW resonators. Ws: resonator inner strip width. G: gap between
inner strip and groundplanes. Wg: groundplane width. Layer 3 (top, blue):
two horizontal CPW resonators. The notation is equivalent to that of layer
2. (b) The control lines (Nb or Al) are fabricated above a Si or sapphire
substrate. A dielectric layer of thickness t (a-Si:H) is fabricated above the
control lines and below the first set of CPW resonators (Nb or Al). A second
dielectric layer separates the first set of CPW resonators from the second set.
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between the two resonators is typically ggeom,2ij � 2π × 1MHz (cf. chapters 5 and
6) and we can safely neglect it in the present discussion. In the “idle state,” the
dynamic second-order coupling mediated by the dispersive action of qubit α is given
by (cf. Sec. 5.2)

g̃dynij ≡ gAα g
B
α

Δ̃α

, (7.14)

where Δ̃A
α ≡ Ωα − ωAi = Δ̃B

α ≡ Ωα − ωBi = Δ̃α. Assuming gAα = gBα � 2π × 245MHz
and Δ̃α � 2π × 9GHz,7 we find a dynamic coupling g̃dynij � 2π × 6.7MHz, which

is negligibly small compared to ggeom1
ij . In the “computational state,” however, the

dynamic coupling becomes

gdynij ≡ gAα g
B
α

Δ
. (7.15)

Assuming Δ � 2π × 1GHz, we find gdynij � 2π × 60MHz.8 As a consequence,
in the “idle state” the crosstalk between two resonators can be considered to be
approximately gcross ≡ ggeom,1ij � 2π × 100MHz, whereas in the “computational
state,” depending on the state of the qubit (cf. chapter 5), such crosstalk varies
between gcross ≡ ggeom,1ij − gdynij � 2π × 40MHz (qubit in the groundstate) and

gcross ≡ ggeom,1ij + gdynij � 2π × 160MHz (qubit in the excited state). The resonator-
resonator crosstalk does not constitute an issue for the operation of the dispersive
gates studied in this chapter. In fact, each pair of qubits utilized for the gates
exchanges only virtual excitations with the resonators [146], which, thus, remain
always in the vacuum state. In this way, the crosstalk dynamics gcross(â

†
i b̂j + âib̂

†
j)

is effectively inactive. The scenario is different when reading out the state of the
qubits. Employing a standard dispersive readout, as suggested in Sec. 7.2, the
resonators have to be driven with a resonant coherent field [108]. In this case,
the field leakage due to the resonator-resonator crosstalk can spoil the operations
between other qubits on the grid. In order to avoid this effect, two possible strategies
can be followed. The first strategy is to design the vertical and horizontal resonators
with different frequencies, ωAi �= ωBj , ∀i, j. Under this assumption, the interaction
between a pair of orthogonal resonators can be modeled by a Hamiltonian similar
to that of Eqs. (5.17) and (6.41) in chapters 5 and 6, respectively. As shown in
chapter 6, Subsec. 6.4.2, if ωAi −ωBj � gcross, ∀i, j, any dynamics due to the crosstalk
is effectively turned off.9 This approach would also help for the realization of the
resonant gates mentioned in Sec. 7.4. The second strategy consists to position an
auxiliary qubit at the end of each resonator and operate it as a quantum switch to
compensate any resonator-resonator crosstalk (cf. chapter 5).

Following the recipes outlined above, the role played by the resonator-resonator
crosstalk in the unitary evolution of the 2D cavity grid gates can be largely mini-
mized. However, we remind that the crosstalk is due to the combination of a stray
cross-capacitance and mutual inductance at the junction of each pair of orthogonal

7This is the smallest detuning in the “idle state” for the example of our numerical simulations;
cf. Sec. 7.3.

8It is worth mentioning that for the case of the “computational state” the dispersive condition
Δ � {gAα , gBα } is not well satisfied. It is more appropriate to use numerical simulations analogous
to those of chapter 5, Sec. 5.2. In this way, it is possible to estimate the true dynamic coupling
coefficient without the dispersive assumption. This gives gdynij � 62.5MHz, which is nevertheless
very similar to the simple analytical estimate based on Eq. (7.15).

9ωA
i − ωB

j � 2π × 1GHz, ∀i, j would be sufficient.
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resonators. The presence of such stray elements imposes a set of extra boundary
conditions on each resonator besides the conditions already imposed by the input
and output capacitors, which define the length of the resonators [cf. Fig. 7.4(c)]. As
a consequence, each resonator on the grid behaves as a periodic structure with a
modified mode function due to the extra boundary conditions. In addition, the qual-
ity factor of each resonator is degraded by the leakage owing to the crosstalk to other
resonators (this is similar to the effect already discussed in chapter 6, Sec. 6.3.1).
It is a very hard task to properly simulate a grid structure as the one depicted in
Fig. 7.4 and verify mode-function distortions and quality factor degradation. For
the work of Ref. [331], we have simulated two transmission lines crossing each other.
In such a simplified design, we have found that the presence of the crossing affects
only marginally the transmission through the lines. This is an encouraging result,
but not an ultimate prove. In the case of many crossings, the total effect could be
much more pronounced and experimental investigations are needed to further clarify
the physics of the 2D cavity grid.

The control lines [cf. Figs. 7.4(b) and 7.6], can be used to adjust the quasi-static
charge or flux bias of the qubits and/or to apply fast pulses. The quasi-static bias
is necessary to set the qubits right at the degeneracy point, thereby ensuring maxi-
mum dephasing times through a weak coupling to 1/f noise [118, 119, 261, 262].10

For charge qubits a charge control line is used and for flux qubits a flux control
line. It is desirable to keep such lines weakly coupled to the qubits in order to min-
imize noise backaction. In the case of charge qubits, we suggest to use a very small
cross-capacitance between charge gate and qubit, e.g., Cg � 0.01 fF [104, 112]. The
dimensions of Cg can be tuned by adjusting the gate-qubit separation distance. Con-
sidering a Cooper-pair box [97] or transmon [120, 243, 244] of total capacitance CΣ

biased at the degeneracy point, the energy relaxation rate induced by the presence
of the control line can be estimated as 2(Cg/CΣ)

2e2Ωij �[Zenv(Ωij)]/�, where e is the
electron charge and Z(Ωij) the control line environmental impedance at the qubit
transition angular frequency. If we assume CΣ � 67 pF [146] and �[Z(Ωij)] � 100Ω,
we find a relaxation rate on the order of approximately 0.43MHz, which is similar
to the rate Γr of our simulations and, thus, does not pose a major limitation to
the fidelity of the gates. In the case of flux qubits, the mutual inductance between
flux control line and qubit can be engineered to be small enough not to induce any
appreciable noise backaction on the qubit (see below).

Fast pulses need to be applied via flux control lines (microcoils [147, 349, 374])
both for charge and flux qubits [cf. Fig. 7.6(b)].11 Such pulses allow one to DC-
Zeeman shift the qubit energies Ωij on a short time scale maintaining the qubits at
the degeneracy point (cf. chapter 6, Sec. 6.3.1 for more details). Good choices for the
inductance and capacitance per unit length of the microcoils are lb � 0.9μH/m and
cb � 1.4 nF/m, respectively, which guarantee a microcoil characteristic impedance
Zc � 25Ω. Assuming a microcoil length � � 10mm ensures a frequency cut-off at
about 3GHz for any excitation applied through the microcoils. This allows for pulses
with a bandwidth of at least 100MHz, corresponding to pulse rise times on the order
of 10 ns or less. The microcoils are coupled to the qubits via a mutual inductance,

10We notice that this requirement is not strictly necessary for transmon qubits [120, 244].
11It is worth mentioning that in the case of flux qubits two similar flux control lines are needed:

one for the quasi-static control and one for the fast control. In Fig. 7.6, this means substituting
the charge control line with another flux control line.
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Figure 7.6: Equivalent circuit model for the charge and flux 2D cavity grid
control lines [cf. Fig. 7.4(b)]. (a) A generic charge control (bias) line is de-
picted. The equivalent LC lumped-parameter circuit is sketched in red. The
quantities lb and cb represent the line inductance and capacitance per unit
length, respectively, and set the line characteristic impedance. The length � of
the line, which sets the line cut-off frequency, is also indicated. A qubit (red
oval) is positioned 2t [corresponding to the combined thickness of two dielec-
tric layers; cf. Fig. 7.5(b)] above the charge bias line. The cross-capacitance
Cg between line and qubit is reported. (b) A generic flux control line is de-
picted. This line can be represented by an LC lumped-parameter equivalent
circuit similar to the one sketched in (a). The quantity Lm indicates the
flux line (microcoil) self-inductance. Mmq indicates the microcoil-qubit mu-
tual inductance. Lq indicates the qubit self-inductance. Cp is the parasitic
microcoil-qubit cross-capacitance, which should be minimized (cf. main text
for details). Signals are applied through the input ports, which are indicated
as “in,” via 50Ω transmission lines and/or coaxial cables.

which can easily be estimated by means of FASTHENRY simulations [364]. In order
to obtain a large enough mutual inductance, the qubit design must include control
loops with area in the range between 2×2μm2 and 2×6μm2. These areas correspond
to self-inductances Lq � 20-40 pH and allow for mutual inductancesMmq � 0.1-1 pH.
Such mutual inductances are large enough to permit a good control of the qubit and
small enough to minimize flux noise backaction. The microcoils can also be used to
apply a quasi-static flux bias, which can help compensating the inevitable spread
of the qubit energies due to fabrication inaccuracy. It is worth mentioning that, in
order not to screen the pulses and other signals applied through the control lines,
the gap G of the resonators has to be designed to be large enough. For example,
G � 11.5μm should suffice for this purpose.

Although individual addressability by means of extra control lines introduces
some hardware overhead, it is an essential feature for the entire operation of any
large scale architecture.
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7.7 Summary and Conclusions

In conclusion, we have proposed a new kind of flexible architecture for quantum
computation using a grid of superconducting qubits coupled to an orthogonal array
of microwave transmission line resonators: a 2D cavity grid.

We have shown that a “Sudoku”-type arrangement of qubit transition frequencies
permits global coupling of a large number of qubits with strongly suppressed spurious
interactions.

We have proven by means of numerical simulations based on the parameters
reached in standard circuit QED experiments that high-fidelity gates can be im-
plemented on the 2D cavity grid. In addition, we have analyzed in detail the ex-
perimental issues related to the hardware realization of 2D grids in circuit QED,
showing that such grids could possibly be realized with available technology.

Elementary operations within this scheme could be demonstrated in the near
future on small grids, while the setup has the potential to form the basis for truly
scalable fault-tolerant architectures or for the implementation of one-way quantum
computing.
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Chapter 8

Circuit QED Experiments with
Superconducting Flux Qubits

In all previous chapters, we have considered qubit-cavity systems where the cavity
is assumed to be either a coplanar wave guide (CPW) or a microstrip transmission
line resonator. Moreover, we have mostly dealt with systems where the microwave
radiation emitted by the resonator is used to infer information about the qubit-
resonator interaction. Also, such interaction has been typically assumed to be in
the strong coupling limit, which means the loss rates of both qubit and resonator
are small compared to the qubit-resonator coupling strength. These are not the only
conditions under which circuit QED experiments can be performed.

In this chapter, we experimentally study a superconducting flux qubit [189, 245]
coupled to the resonant mode of a lumped-parameter LC-resonator with low quality
factor [141]. Instead of the radiation from the resonator, the state of the qubit is
utilized to characterize the qubit-resonator interaction. Even if such interaction is
associated with a large coupling coefficient, due to the low quality factor of the
resonator we cannot reach the strong coupling regime of circuit QED. Nevertheless,
we are able to observe the key signatures of a two-photon driven Jaynes-Cummings
model, which unveils the upconversion dynamics of the qubit-resonator system. Our
experiment and theoretical analysis show clear evidence for the coexistence of one-
and two-photon driven level anticrossings in such a system. This results from the
controlled symmetry breaking of the system Hamiltonian, causing parity to become
a not well-defined property [414]. Our study provides deep insight into the interplay
of multiphoton processes and symmetries in circuit QED.

The chapter is organized as follows. In Sec. 8.1, we compare our experiment to
cavity QED experiments in quantum optics and the state-of-the-art experiments in
circuit QED. In Sec. 8.2, we introduce the main elements of the setup and explain
the qubit manipulation and readout processes. In Sec. 8.3, we present our experi-
mental results on the two-photon probing of the Jaynes-Cummings (JC) model. In
Sec. 8.4, we theoretically analyze the role played by selection rules and symmetry
breaking in circuit QED reserving special attention to the case of superconducting
flux quantum circuits. In Sec. 8.5, we discuss the impact of spurious fluctuators [spu-
rious resonators or two-level systems (TLSs)] on circuit QED experiments. Finally,
in Sec. 8.6, we summarize our results and draw our conclusions.

The material discussed in this chapter is an extension of article number 4 on
the List of Publications and is published in Nature Physics - Ref. [159]. Frank
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8.1. INTRODUCTION

Deppe and the author contributed equally to this work. In particular, the author
has largely contributed in the interpretation of the data suggesting the concepts of
selection rules, symmetry breaking in circuit QED, and two-photon upconversion
dynamics as explanation of the experimental results. Moreover, the author has
extensively helped in the development of the numerical simulations used to clarify
the experimental data, in the critical discussion of the results, and in the writing
of the manuscript. The experiments were carried out by Frank Deppe at the NTT
corporation, Japan.

In addition to the material treated in Ref. [159], in this chapter we delve into
the details of the concept of selection rules in circuit QED experiments based on
supeconducting flux quantum circuits. Also, we discuss more extensively the role
played by spurious fluctuators in time-resolved experiments summarizing part of the
results described in article number 3 on the List of Publications, which is published in
Physical Review B - Ref. [262]. The main contributions of the author to this article
are on the development of the theoretical model utilized to explain the time-resolved
experimental data, on the critical discussion of the results, and on the writing of the
manuscript. Once again, the experiments were carried out by Frank Deppe at the
NTT corporation, Japan.

8.1 Introduction

In cavity QED, a two-level atom interacts with the quantized modes of an optical
or microwave cavity. The information on the coupled system is encoded both in the
atom and in the cavity states. The latter can be accessed spectroscopically by mea-
suring the transmission properties of the cavity [52], whereas the former can be read
out by suitable detectors [180, 185]. In circuit QED, the solid-state counterpart of
cavity QED, the first category of experiments has been implemented by measuring
the microwave radiation emitted by a resonator (acting as a cavity) strongly coupled
to a superconducting charge qubit [139]. In a dual experiment, the state of a super-
conducting flux qubit has been detected with a DC SQUID and vacuum Rabi oscilla-
tions have been observed [141]. More recently, both approaches have been exploited
to extend the toolbox of quantum optics on a chip [108, 142–158, 160, 161]. Whereas
all these experiments employ one-photon driving of the coupled qubit-resonator sys-
tem, multi-photon studies are available only for sideband transitions [142] or bare
qubits [361, 415–419]. Only very recently, the nonlinear dynamics of the JC model
both in quantum-optical cavity QED [57] and in circuit QED have been studied
experimentally [151, 157, 158]. Differently from those works, which focus on higher-
level excitations of the JC ladder, the experiments discussed in this chapter explore
the physics of the two-photon driven JC dynamics in circuit QED. In this context, we
show that the dispersive interaction between the qubit and the two-photon driving
enables real level transitions. The nature of our experiment can be understood as
an upconversion mechanism, which transforms the two-photon coherent driving into
single photons of the JC dynamics. This process requires energy conservation and
a not well-defined parity [414] of the interaction Hamiltonian due to the symmetry
breaking of the qubit potential. Our experimental findings reveal that such symme-
try breaking can be obtained either in a controlled way by choosing a suitable qubit
operation point or by the presence of additional TLSs or spurious fluctuators [249].
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Figure 8.1: Circuit QED with superconducting flux qubits: experimental
architecture. (a) The flux qubit [magenta (middle grey) square, junctions
marked by crosses] is inductively coupled to the readout DC SQUID (black
rectangle), which is shunted by an LC-circuit acting as a quantized resonator
[dark blue (dark grey) square] [141]. The DC SQUID is biased with a voltage
pulse Vin and its response, which encodes information on the qubit state, is
read out as a voltage Vout [cf. also Figs. 8.2(a) and 8.3]. All elements within the
shaded area are at a temperature T � 50mK. Microwave signals and flux-shift
pulses are applied via an on-chip antenna [light green (light grey) line]. The
signal-to-noise ratio is improved by cold attenuators (10 dB at 4K and 3 dB
at 100mK). C and L are the capacitor and inductor forming both the LC-
resonator and DC SQUID shunting circuit. (b) Scanning electron microscopy
micrograph of flux qubit (inner square) and readout DC SQUID (outer square).

8.2 Setup

The main elements of our setup, shown in Figs. 8.1(a) and 8.1(b), are a supercon-
ducting flux qubit based on a three-Josephson-junction SQUID, an LC-resonator, a
readout DC SQUID, and a microwave antenna [261, 262]. The investigated sample
was fabricated on a 3.5 × 3.5mm2 SiO2-covered Si substrate. Standard electron
beam lithography and aluminum thin film technology were used. The sample chip
is surrounded by a T-shaped printed circuit board (PCB). Both sample chip and
PCB are placed inside a gold-plated copper box, which is connected to the mix-
ing chamber stage of a dilution refrigerator. All experiments were performed at
the base temperature of the cryostat, which is approximately 50mK. In the follow-
ing, we briefly describe the main components of the sample and summarize their
characteristic parameters and function. A sketch of the sample layout is shown in
Fig. 8.1(a). The superconducting flux qubit [189, 245] consists of a square-shaped su-
perconducting aluminum loop interrupted by three nano scale Al/AlOx/Al Joseph-
son tunnel junctions. The size of two of these junctions is chosen to be the same,
0.03μm2, whereas the third one is designed to be smaller by a factor α = 0.7.
The qubit (and DC SQUID) junctions are fabricated using the shadow evaporation
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technique. The Josephson junctions are characterized by their Josephson coupling
energy EJ ≡ Ic0Φ0/2π and their charging energy Ec ≡ e2/2Cj. Here, Φ0 is the
flux quantum, e the electron charge, and Ic0 and Cj are the critical current and
capacitance of the junction, respectively. The specific capacitance of our junctions
was determined to be Cs = 100 ∓ 25 fF/μm2 [420]. When the ratio EJ/Ec is ap-
proximately 50, the device is expected to behave as an effective quantum two-level
system (qubit).

As already described in chapter 2, Sec. 2.2.3, the qubit can be described by the
effective Hamiltonian [97, 189, 229, 245]̂̄HQ =

1

2

[
ε
(
ΦDC

x

)
ˆ̄σz + δQ ˆ̄σx

]
, (8.1)

where ˆ̄σx and ˆ̄σz are the usual Pauli operators, ε(ΦDC
x ) is the so-called qubit en-

ergy bias, which depends on an externally applied quasi-static flux ΦDC
x , and δQ is

the qubit energy gap (tunnel coupling). For vanishing tunnel coupling (δQ = 0)
the two qubit states correspond to the classical states |+〉 and |−〉 with counter-
clockwise and clockwise persistent currents Ip = ± Ic0

√
1− (2α)−2 circulating in

the loop [189, 245]. These two states are eigenstates of εˆ̄σz and are separated by
the flux-dependent qubit energy bias ε = 2|Ip|(ΦDC

x − 1.5Φ0). Our sample is de-
signed to be operated in the vicinity of the flux bias ΦDC

x = 1.5Φ0 instead of the
usual ΦDC

x = 0.5Φ0 [189, 245]. For finite tunnel coupling (δQ > 0), we obtain su-
perpositions of |+〉 and |−〉 states. This results in new qubit eigenstates |g〉 and

|e〉, whose energy difference EQ ≡ �ΩQ(Φ
DC
x ) ≡ hνQ(Φ

DC
x ) ≡

√
δ2Q + ε(ΦDC

x )2 =√
δ2Q + [2Ip(Φ

DC
x − 1.5Φ0)]

2 has a hyperbolic flux dependence (νQ is the qubit tran-

sition frequency). At the qubit degeneracy point (ΦDC
x = 1.5Φ0, ε(Φ

DC
x ) = 0) the

qubit is protected from dephasing because ΩQ(Φ
DC
x ) is stationary with respect to

small variations of the control parameter ΦDC
x . Therefore, this point represents the

optimal point for the coherent manipulation of the qubit. Note that at the qubit de-
generacy point the qubit eigenstate is an equal superposition of |+〉 and |−〉 states,
i.e., the expectation value of the persistent current vanishes. Far away from the
qubit degeneracy point (ε(ΦDC

x ) � δQ) the qubit behaves as a classical two-level
system and the eigenstates |g〉 and |e〉 correspond to the classical states |±〉 of̂̄HQ. From low-level microwave spectroscopy (see below), we estimate a qubit gap

δQ/� = 2π×3.89GHz, EJ/Ec � 50, and a critical current density Jc � 1300A/cm2.
This means that at an operation temperature T � 50mK the condition kBT � δQ
required for the observation of quantum effects is well satisfied.

When describing the influence of fluctuations δ�Ω on the qubit, it is convenient
to express the Hamiltonian of Eq. (8.1) in a two-dimensional Bloch vector repre-

sentation: ̂̄HQ = ��Ω �̂σ/2. Here, �̂σ ≡ (σ̂⊥, σ̂‖) ≡ (ˆ̄σx, ˆ̄σz) and �Ω ≡ (Ω⊥,Ω‖) ≡[
δQ, ε(Φ

DC
x )
]
/�. The representation of the Bloch vector �Ω in the qubit energy eigen-

basis (|g〉 and |e〉) is obtained by multiplying �Ω with the rotation matrix

D ≡
[
cos θ − sin θ
sin θ cos θ

]
(8.2)

from the left. The angle θ is defined via tan θ ≡ δQ/ε(Φ
DC
x ) [229]. This results in

sin θ = δQ/EQ and cos θ = ε(ΦDC
x )/EQ. In the qubit energy eigenbasis, for simplicity

we redefine the Pauli operators as σ̂x, σ̂y, and σ̂z.
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t
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/2 /2
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(b)

(a) Figure 8.2: Flux qubit
manipulation and readout
sequences. (a) Adiabatic
shift pulse (ASP) readout.
Adiabatic shift pulse: light
green (light grey) rectangle.
RF control pulse pattern:
magenta (middle grey) box
[cf. (b)]. Readout sequence:
dark blue (dark grey) rect-
angles. (b) Five possible
RF control pulse patterns.
The boxed values denote ei-
ther the pulse duration t
or the corresponding rota-
tion angle of the qubit state
vector on the Bloch sphere.
Free evolution times are de-
noted by the symbol τ .

The qubit control is achieved by varying the control parameter ΦDC
x and, si-

multaneously, applying a suitable sequence of microwave pulses A cos(ωt + ϕ) =
A cos(2πνt+ϕ) with frequency ν ≈ νQ. A single microwave pulse results in a rotation

of the qubit state vector by an angle Ω = 2πνRt
√
1 + (δ/νR)

2 on the Bloch sphere,
where t is the pulse duration and the Rabi frequency νR ≡ νR(A) is a function of the
pulse amplitude A. The relative phase ϕ of the pulse and the detuning δ ≡ ν − νQ
determine the rotation axis �v ≡ (v1, v2, v3) = (νR cosϕ, νR sinϕ, δ)/

√
ν2R + δ2. Math-

ematically, we can describe this rotation with the matrix

R̃ϕ,δ(Ω) ≡ R̃v(Ω) =⎡⎣ cosΩ + v21(1− cosΩ) v1v2(1− cosΩ)− v3 sinΩ v1v3(1− cosΩ) + v2 sinΩ
v2v1(1− cosΩ) + v3 sinΩ cosΩ + v22(1− cosΩ) v2v3(1− cosΩ)− v1 sinΩ
v3v1(1− cosΩ)− v2 sinΩ v3v2(1− cosΩ) + v1 sinΩ cosΩ + v23(1− cosΩ)

⎤⎦.
(8.3)

For the case ϕ = 0 and δ = 0, Eq. (8.3) describes a rotation by an angle 2πνRt
about the x-axis. When introducing a finite relative phase ϕ the orientation of the
rotation axis within the x, y-plane changes. Finite detuning results in a change of
the rotation angle and a tilt of the rotation axis out of the x, y-plane. In the absence
of any microwave radiation (νR = 0) the qubit evolves freely, i.e., its state vector
rotates about the z-axis of the Bloch sphere with a frequency Ωfree = 2πδ · t (since
we work in a frame rotating with the frequency ν). The corresponding rotation
matrix R̃z(Ωfree) is obtained from Eq. (8.3) by choosing �v = �vz ≡ (0, 0, 1).

Finally, the qubit-resonator system can be controlled and excited by means of
microwave pulses applied through an on-chip antenna. The antenna, which is in-
ductively coupled to the qubit, is implemented as a CPW transmission line shorted
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at one end [cf. Fig. 8.1(a)]. From a FASTHENRY [364] simulation, the mutual in-
ductance between the antenna and the qubit is determined to beMQA � 73 fH. The
applied microwave radiation is cooled by means of a 10 dB and a 3 dB attenuator,
which are thermally anchored at a temperature of 4K and 100mK, respectively
[cf. Fig. 8.1(a)]. The initial qubit state, which in our measurements is always the
groundstate, is prepared by waiting for a time t � 300μs much longer than the
energy relaxation time T1 of the system. For the time and frequency domain experi-
ments, the pulse sequences shown graphically in Figs. 8.2(a) and 8.2(b) are used for
the qubit manipulation. For the measurements in the frequency domain (microwave
spectroscopy) the qubit is saturated to an equilibrium mixed state by means of a
sufficiently long microwave pulse, followed by the readout [cf. Fig. 8.2(b) - spec-
troscopy]. In the time domain, driven Rabi oscillations are recorded by measuring
the qubit state as a function of the duration of a single microwave pulse of fixed
amplitude A [cf. Fig. 8.2(b) - Rabi]. From the measured Rabi frequency νR of these
oscillations we determine the duration tπ and tπ/2 of the π- and π/2-pulses, which
rotate the qubit state vector by the corresponding angles. In our experiments, we
typically choose the microwave amplitude such that tπ = 2tπ/2 = 1/2νR � 8 ns.
Then, the energy relaxation time is determined by exciting the qubit with a π-pulse
and, subsequently, recording the decay of 〈σ̂z〉 as a function of the waiting time
[cf. Fig. 8.2(b) - relaxation]. Finally, the evolution of

〈
σ̂x,y
〉
is probed by the se-

quence π/2-pulse–wait–π/2-pulse–readout [cf. Fig. 8.2(b) - Ramsey] or the sequence
π/2-pulse–wait–π-pulse–wait–π/2-pulse–readout [cf. Fig. 8.2(b) - spin-echo]. In the
case of a spin-echo sequence, low-frequency phase fluctuations are canceled because
of the refocusing effect of the intermediate π-pulse.

In order to read out the qubit state, the qubit is surrounded by a slightly larger
square-shaped aluminum loop containing two Al/AlOx/Al Josephson tunnel junc-
tions, a so-called DC SQUID [cf. Figs. 8.1(a) and 8.1(b)]. The DC SQUID is sensitive
to the flux difference generated by the persistent currents flowing in the qubit loop.
In our design the DC SQUID is coupled to the qubit via a purely geometric mu-
tual inductance MSQ = 6.7 pH. Different from other flux qubit designs [118, 119],
in our sample there is no galvanic connection between qubit and DC SQUID. This
is expected to reduce the effect of asymmetry-related issues as well as the detector
backaction on the qubit. In fact, we do not find any measurable bias current depen-
dence of the qubit decay time, as reported recently for shared-edge designs [118, 119].
The lines used for biasing and reading out the DC SQUID detector are heavily fil-
tered against noise in the gigahertz range using a combination of copper powder
filters and stainless steel ultra-thin coax cables at the mixing chamber temperature
level (see below and cf. Fig. 8.3).

The detection of the qubit state (|g〉 or |e〉) is straightforward far away from
the qubit degeneracy point. In this region, the energy eigenstates coincide with the
states |+〉 and |−〉, which correspond to counterclockwise and clockwise persistent
currents in the qubit loop, respectively. The flux generated by these currents is then
detected by the DC SQUID. However, in the vicinity of the qubit degeneracy point
the qubit eigenstates |g〉 and |e〉 cannot be distinguished in this way because they
become nearly equal superpositions of |+〉 and |−〉. This means that the expecta-
tion value

〈
Ipσ̂z
〉
of the persistent current circulating in the qubit loop vanishes. To

circumvent this problem we employ the adiabatic shift pulse method [cf. Fig. 8.2(a)].
This method exploits the possibility to perform the readout process sufficiently far
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away from the qubit degeneracy point by applying a control pulse, which adiabat-
ically shifts the qubit in and out of the region around the degeneracy point. In
contrast to the quasi-static flux bias at the readout point, which is generated by a
superconducting coil located in the helium bath of a dilution refrigerator, the shift
pulse is applied to the qubit through the on-chip microwave antenna sketched in
Fig. 8.1(a). The total control sequence (cf. Fig. 8.2) for initialization, manipulation,
and readout of the qubit can be summarized as follows: First, the qubit is initialized
in the groundstate at the readout point far away from the degeneracy point by wait-
ing for a sufficiently long time. Second, a rectangular (0.8 ns rise time) adiabatic
shift pulse together with the microwave control sequence is applied to the qubit via
the microwave antenna. In this way, the qubit is adiabatically shifted to the desired
operation point, where the qubit operation is performed according to the chosen
microwave pulse sequence. Finally, immediately after the ending of the microwave
pulse sequence, the qubit is adiabatically shifted back to the readout point, where
the state detection is performed. Note that, in order to avoid qubit state transitions,
the rise and fall times of the shift pulse have to be long enough to fulfill the adiabatic
condition, but also short enough to avoid unwanted relaxation processes.

In the readout process performed right after shifting the qubit back to the readout
point, the DC SQUID is biased with a current pulse of amplitude just between the
two switching currents corresponding to the qubit states. Depending on the actual
qubit state, the DC SQUID detector either remains in the zero-voltage state or
switches to the running-phase state. Only in the latter case a voltage response pulse
can be detected from the readout line. The DC SQUID voltage signal is amplified
by means of a room temperature differential amplifier with an input impedance of
1MΩ against a cold ground taken from the mixing chamber temperature level.

The DC SQUID is shunted with an Al/AlOx/Al on-chip capacitance C = 6.3∓
0.5 pF. This capacitance also behaves as a filter and, in combination with the other
biasing elements (either a resistor or a resistor-capacitor combination), creates the
electromagnetic environment of the qubit. The environmental noise should be re-
duced as much as possible in order not to deteriorate the qubit coherence times.
The resistive part of the biasing circuit helps damping away modes formed by the
shunted DC SQUID and the parasitic inductance/capacitance of its leads. Ideally,
it should be placed as close as possible to the shunted DC SQUID.

Finally, after a typical “single-shot” measurement sequence as described above,
the response signal of the DC SQUID is binary (zero or finite voltage state), depend-
ing on the qubit state. In the experiments, we measure the switching probability
Psw, which is the average over several thousands of single-shot measurements. For a
proper bias current pulse height the qubit state is encoded in the value of the switch-
ing probability. In the best case, the groundstate would correspond to Pmin

sw = 0%
and the excited state to Pmax

sw = 100%, or vice versa. In reality, however, due to
noise issues the actual visibility Pmax

sw − Pmin
sw is usually significantly smaller than

100%.

The readout of the qubit is performed by means of a switch&hold measurement
technique, which makes use of the hysteretic current-voltage characteristic of the
DC SQUID detector. In the so-called resistive-bias detection scheme, a voltage
pulse is generated at room temperature, fed into the DC SQUID bias line, and
then transformed into a current pulse via a cold 1.25 kΩ bias resistor (cf. Fig. 8.3).
According to Ohm’s law, the voltage pulse must have the same shape as the desired
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Figure 8.3: Resistive bias setup. Top part. LPF10.7 and LPF250: com-
mercial low-pass filters with 10.7 and 250MHz cutoff frequency, respectively.
SS/CPF: combination of 1m of ultra-thin (∅0.33mm) stainless steel coax-
ial cable and copper powder filter (bias line: 25 cm wire length; readout
line: 100 cm wire length). Qubit, DC SQUID, and shunting capacitor C
are indicated with a single cross (×). Solid and broken lines represent high-
bandwidth semirigid ∅1.2mm CuNi/Nb and narrower bandwidth stainless
steel braided flexible coaxial cables, respectively. The bias voltage pulse is
attenuated by 40 dB at 4K. The bias resistors are RRbias = 250Ω + 1kΩ and
RRread = 2.25 kΩ + 3kΩ (on-chip + off-chip). Vin and Vout refer to the same
voltages indicated in Fig. 8.1(a). Bottom part. Switch&hold readout pulses
for the resistive-bias setup. Note that the 60 ns-segment is the portion of the
switching pulse which exceeds the � 1μs-long hold level. Only there switching
events can be induced. Vbias and Ibias: voltage and current bias pulses sent
through the line indicated by Vin in the top part. The voltage and current
bias pulses have the same shape because of Ohm’s law.

bias current pulse. The latter is composed of a short rectangular switching pulse
(of duration � 60 ns) immediately followed by a much longer hold pulse (� 1μs) of
smaller amplitude, as shown in Fig. 8.3. The switching pulse height is chosen such
that the DC SQUID either switches to the voltage state or stays in the zero voltage
state, depending on the state of the qubit. Therefore, the length of the switching
pulse determines the time resolution for the switching event detection. The hold
pulse level is chosen to be just above the value of the DC SQUID retrapping current.
Consequently, if the DC SQUID switches to the voltage state during the switching
pulse, it does not switch back to the zero voltage state during the hold pulse. In
this way, the voltage is sustained for a sufficiently long time interval allowing one
to use a room temperature amplifier with reduced bandwidth. At the same time,
quasiparticle generation is minimized.

In the resistive-bias experiments the bias lines of the readout DC SQUID are
strongly low-pass filtered (cf. Fig. 8.3). This is required to reduce the high-frequency
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noise Sω(ω = ΩQ), which is responsible for the qubit energy relaxation. Here,
ω ≡ 2πf ∈ [0,∞) is a generic angular frequency. In addition, filtering is necessary to
eliminate part of the low-frequency noise. Here, the term low-frequency noise refers
to noise which has a large spectral density at frequencies much smaller than the qubit
level splitting ΩQ � 2π × 3.89GHz. The dephasing time Tϕ of the qubit is mainly
determined by this low-frequency environmental noise spectral density Sω(ω → 0).
Consequently, the cut-off frequency for the low-pass filter should be chosen as low
as possible in order to strongly attenuate low-frequency noise. However, a lower
limit is set by the requirement that the readout pulse has to be sufficiently short
to avoid any deterioration of visibility. For this reason, the filter cutoff cannot be
chosen smaller than approximately 10MHz.

The shunting circuit of the readout DC SQUID, including the inductance of its
leads, constitutes an effective lumped-parameter LC-resonator [141] [cf. Fig. 8.1(a)],
which is inductively coupled to the qubit. This resonator can be represented by a
quantum harmonic oscillator,

ĤR = �ωR

(
â†â +

1

2

)
, (8.4)

with photon number states |0〉, |1〉, |2〉 , . . . and boson creation and annihilation op-
erators â† and â, respectively. The photon number operator is defined as N̂ ≡ â†â.
In our experiments, the resonator is designed such that its angular frequency, ωR =
2π× 6.16GHz, is largely detuned from Δ/�. In the rest of the chapter, we base our
arguments on the assumption that our LC-resonator is characterized by a purely
harmonic behavior. This means that a classical driving with half the resonator fun-
damental angular frequency, ωR/2 (two-photon driving), cannot directly populate
the resonator. An anharmonic response would allow such two-photon driving to
populate the resonator. However, in the case of strong driving, anharmonicities
only arise when the maximum induced current density Jmax in the LC-resonator
approaches the critical current density of the resonator lines. For lines made of
aluminum, as in our case, the critical current density is Jc � 107 Acm−2. From
qubit Rabi oscillation measurements (data not shown), we can determine the cur-
rent flowing through the microwave antenna to be IA � 1μA. This results in a
maximum resonator current Imax = MARIA/L � 25 nA. Here, L � 200 pH is the
resonator self-inductance and MAR � 5 pH the antenna-resonator mutual induc-
tance. Assuming that the supercurrent flows only within the London penetration
depth λL � 50 nm, we obtain Jmax � 2.5 × 102 Acm−2 for a thin film of 100 nm
thickness. Since Jmax/Jc < 10−4, anharmonicities can be neglected safely.

Finally, the qubit-resonator interaction Hamiltonian iŝ̄HQR = �g ˆ̄σz
(
â† + â

)
, (8.5)

where g = 2π × 115MHz (cf. Sec. 8.3 for details) is the qubit-resonator coupling
strength. This interaction Hamiltonian is expressed in the qubit diabatic basis,
which consists of the eigenstates |+〉 and |−〉 of �εˆ̄σz.

8.3 Two-Photon Driven Jaynes-Cummings

In order to probe the basic properties of our system, we perform qubit microwave
spectroscopy using the adiabatic shift pulse technique explained in Sec. 8.2 and
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Figure 8.4: Qubit mi-
crowave spectroscopy: data
and simulations. (a) Center
frequency of the measured
absorption peaks (symbols)
plotted versus the flux bias
fDC
x . The lines are fits to
the data based on ĤU. The
presence of a large (ω ≈ ωR)
and small (2ω ≈ ωR) anti-
crossing constitutes direct
evidence that two-photon
spectroscopy selectively
drives the qubit, but not the
resonator. This allows us to
extrapolate the bare vacuum
Rabi coupling g. On the
contrary, the one-photon
driving populates the cavity
resulting in an enhanced

coupling g

√
〈N̂〉. (b) Mea-

sured probability Pe to find
the qubit in the excited state
plotted versus flux bias and
driving frequency [black box:
area shown in Fig. 8.5(a)].
(c) Simulated probability
Pe obtained with the time-
trace-averaging method for
ĤD (black box: area shown
in Fig. 8.10). We start with
the qubit in |g〉 and take Pe

as the average over a full
100 ns time trace consist-
ing of 10000 discrete time
points. This simple method
gives excellent agreement
with the experimental data
reported in (b).
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Fig. 8.2(a) (cf. also Refs. [261, 262]). The main results are shown in Figs. 8.4(a) and
8.4(b). First, we notice a flux-independent feature at approximately 6GHz due to
the resonator. Second, we observe two hyperbolas with minima near 4GHz � δQ/h
and 2GHz � δQ/2h, one with a broad and the other with a narrow linewidth. They
correspond to the one-photon (ω = ΩQ) and two-photon (2ω = ΩQ) resonance con-
dition between the qubit and the external microwave driving field. Additionally,
the signatures of two-photon driven blue sideband transitions are partially visible.
One of these sidebands can be attributed to the resonator, |g〉 |0〉 → |e〉 |1〉, and the
other to a spurious fluctuator [249]. We remind that the presence of spurious fluctu-
ators in qubits based on Josephson tunnel junctions is a well-known issue [249]. In
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principle, such fluctuators can either be resonators or TLSs [421]. Since our experi-
mental data do not allow us to distinguish between these two cases, for simplicity,
we assume a TLS represented by the flux-independent Hamiltonian

ĤTLS =
1

2
(ε�σ̂�z + δ�σ̂�x) , (8.6)

which is coupled to the qubit via the interaction Hamiltonian

ĤQ−TLS = �g�σ̂zσ̂
�
z . (8.7)

Here, σ̂�x and σ̂�z are Pauli operators, ε� and δ� are the TLS characteristic energies,
and g� is the qubit-TLS coupling coefficient. Exploiting the different response of the
system in the anticrossing region under one- and two-photon driving, as explained
in Fig. 8.4(a), the center frequencies of the spectroscopic peaks can accurately be

fitted to the undriven Hamiltonian ĤU = ̂̄HQ + ĤR + ĤTLS + ̂̄HQR + ĤQ−TLS.
In the numerical fit shown in Fig. 8.4(a), we choose ε� = 0 due to the limited
experimental resolution. We thus obtain g = 2π×115MHz,1 〈N̂〉 � 10, Ip = 367 nA,

ωTLS ≡
√
ε�2 + δ�2/� = 2π × 3.94GHz, and g� sin θ� = 37MHz, where sin θ� ≡

δ�/�ωTLS. Consequently, the coupling constant estimated from the undriven fit is
not g�, but g� sin θ�. Away from the qubit degeneracy point, in particular near the
qubit-resonator anticrossings, the effect of the observed TLS can be neglected within
the scope of this study. However, near the qubit degenercy point, its effect can have
important consequences on the symmetry properties of the system (cf. Sec. 8.5). We
notice that, differently from sin θ and cos θ, the TLS parameters sin θ� and cos θ� are
constants, i.e., they do not depend on the quasi-static frustration bias fDC

x . Another
important feature emerging from the spectroscopy data of Figs. 8.4(a) and 8.4(b) is
the presence of a pronounced flux-independent one-photon excitation signal of the
resonator. On the contrary, two-photon excitation peaks exclusively occur when the
qubit is two-photon driven. In other words, the data unambiguously show that there
is no direct two-photon excitation of our resonator, thus confirming our theoretical
estimate on resonator anharmonicities discussed toward the end of Sec. 8.2.

Further insight into our experimental results can be gained by numerical spec-
troscopy simulations based on the driven Hamiltonian ĤD = ĤU + ĤMQ + ĤMR +

ĤM−TLS. Here, ĤMQ ≡ (ΩD/2)σ̂z cosωt, ĤMR ≡ η
(
â† + â

)
cosωt, and ĤM−TLS ≡

(Ω�
D/2)σ̂

�
z cosωt represent the driving of the qubit, resonator, and fluctuator, re-

spectively. We approximate the reaching of the steady state condition of the qubit
evolution with the time average of the probability Pe to find the qubit in |e〉 (time-
trace-averaging method). By inspecting Fig. 8.4(c), we find that for the driving
strengths ΩD = 2π × 244MHz, η = 2π × 655MHz, and Ω�

D = 0 our simulations
match well all the experimental features discussed above. Using η and the relation
〈N̂〉 = (η/κ)2 for the steady-state mean number of photons of a driven dissipative

1We remind that g ≡ MQRIpI
0
R (cf. chapter 2, Sec. 2.3 for an exhaustive explanation), where

MQR is the mutual inductance between qubit and resonator and I0R ≡
√

�ωR/2L is the zero-point

(vacuum) current of the resonator. Thus, from the knowledge of g and computing I0R � 101 nA
we find MQR � 0.327 pH. This simple estimate reveals that the origin of such a large qubit-
resonator coupling g is due to the very high zero-point current of our LC-resonator. This current
is approximately one order of magnitude larger than the typical currents achieved in a CPW
resonator design [e.g., cf. chapter 6, Figs. 6.2(b) and 6.2(c)].
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resonator, we estimate a resonator decay rate κ � 210MHz. This result is of the
same order as κ � 400MHz estimated directly from the experimental linewidth of
the resonator peak. The large κ (corresponding to a poor quality factor) is due
to the galvanic connection of the resonator to the DC SQUID measurement lines
[cf. Fig. 8.1(a)].

To elucidate the two-photon driving physics of the qubit-resonator system we
consider the spectroscopy data near the corresponding anticrossing, as shown in
Fig. 8.5(a). For 2ω = ΩQ = ωR, the split peaks cannot be observed directly because
the spectroscopy signal is decreased below the experimental noise floor δPe � 1−2%.
This results from the fact that the resonator cannot absorb a two-photon driving
and its excitation energy is rapidly lost to the environment (κ > g/2π). In contrast,
for the one-photon case (ω = ΩQ = ωR), there is a driving-induced steady-state

population of 〈N̂〉 � 10 photons in the resonator. Accordingly, the one-photon peak
height shows a reduction by a factor of approximately two, whereas the two-photon
peak almost vanishes [cf. Fig. 8.5(b)]. To support this interpretation, we compare the
simulation results from the time-trace-averaging method to those obtained with the
standard Lindblad dissipative-bath approach [cf. Figs. 8.5(c)-(f)]. In the latter case,
the role of qubit decoherence and resonator decay can be studied explicitly solving a
master equation [131]. The simulation results of Figs. 8.5(c)-(f) prove that the two-
photon peak indeed vanishes because of the rapid resonator decay, but not because
of qubit decoherence. Altogether, our experimental data and numerical simulations
constitute clear evidence for the presence of a qubit-resonator anticrossing under
two-photon driving.

The effective second-order Hamiltonian under two-photon driving can be derived
using our usual Dyson-series approach to perturbation theory (cf. chapter 5, Sub-
sec. 5.2.1 and chapter 6, Subsec. 6.1.2). We start from the first-order Hamiltonian
in the basis |±〉,

Ĥ =
1

2

(
εˆ̄σz + δQ ˆ̄σx

)
+ �ωR

(
â†â +

1

2

)
+ �g ˆ̄σz

(
â† + â

)
+

ΩD

2
ˆ̄σz cosωt . (8.8)

Here, in comparison to ĤD, the terms associated with the TLS are not included
(ε∗ = δ∗ = Ω∗

D = 0) since the important features are contained in the driven qubit-
resonator system. Additionally, we focus on the two-photon resonance condition
ωR = ΩQ = 2ω. Thus, the driving angular frequency ω is largely detuned from ωR

and the corresponding term in ĤD can be neglected (η = 0). Next, we transform
the qubit into its energy eigenframe. As already mentioned, in this frame the Pauli
operators are defined as ˆ̄σx → σ̂x and ˆ̄σz → σ̂z. We then move to an interaction
picture with respect to qubit and resonator, σ̂± → σ̂± exp(±jΩQt) (where, σ̂

+ and
σ̂− are the qubit raising and lowering operators, respectively), â† → â† exp(+jωRt),
and â → â exp(−jωRt). After a rotating-wave approximation (RWA), we iden-
tify the expression Ŝ† exp(+jωt) + Ŝ exp(−jωt), where the superoperator Ŝ ≡
ΩD(cos θ σ̂z−sin θ σ̂−)/4 and its Hermitian conjugate Ŝ† ≡ ΩD(cos θ σ̂z−sin θ σ̂+)/4.
In our experiments the two-photon driving of the qubit is weak, i.e., the large-
detuning condition ΩQ − ω = ω � (ΩD/2) sin θ is fulfilled. In such a situation, it
can be shown that the Dyson series for the evolution operator associated with the
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Figure 8.5: Qubit microwave spectroscopy close to the qubit-resonator anticrossing un-
der two-photon driving: data and simulations. (a) Measured probability Pe to find the
qubit in |e〉 plotted versus flux bias and driving frequency (black rectangle: area of simu-
lations in (c) and (e); solid lines: fit to ĤU). (b) Maximum height of the spectroscopy
peaks under one-photon and two-photon driving plotted versus the flux bias (solid lines:
guides to the eye). (c) Simulated probability Pe [time-trace-averaging method, no dissi-
pation, parameters as in Fig. 8.4(c)], revealing an anticrossing signature. (d) Light green
(light grey) curve: split-peak profile of Pe along the vertical line in (c). Dark blue (dark
grey) curve: single-peak result obtained for the same flux bias and g = 0. (e) Simulated
probability Pe using the Lindblad formalism [131] neglecting the TLS (dissipation: qubit
relaxation rate γr = 3.3MHz, qubit dephasing rate γϕ = 67MHz, resonator quality factor
Q ≡ ωR/κ = 2π × 6.16GHz/400MHz � 100). When qubit and resonator become degen-
erate, the spectroscopy signal fades away. (f) Light green (light grey) curve: split-peak
profile of Pe along the vertical line in (e). Dark blue (dark grey) line: single-peak result
obtained for the same flux bias and g = 0. Differently from the nondissipative case [(c)
and (d)], the split peak amplitudes are reduced by a factor of 10 compared to the single
peak. This demonstrates that the vanishing two-photon spectroscopy signal observed in
the experimental data [cf. (a), (b), and (e)] is not caused by qubit decoherence.
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Figure 8.6: Upconversion dynamics describing the physics governing our
experiments [cf. Eq. (8.10)]. The qubit (red) level splitting is �ΩQ and the
resonator (blue) angular frequency is ωR. In the relevant case of two-photon
driving with frequency ω = ΩQ/2 (green), the system predominantly decays
via the resonator at frequency ωR = 2ω. The qubit-resonator coupling strength
is g sin θ̃ = gδQ/ωR � 0.63 g. For fDC

x = 1.5 the qubit potential (red double

well; x-axis: phase variable φ̂m) is symmetric and two-photon transitions are
forbidden. For fDC

x �= 1.5 the mirror symmetry of the qubit potential is broken
allowing for two-photon transitions.

time-dependent Hamiltonian −�g sin θ(σ̂−â†+ σ̂+â)+ [Ŝ† exp(+jωt)+ Ŝ exp(−jωt)]
can be rewritten in an exponential form Û = exp(−jĤefft/�), where

Ĥeff = − �g sin θ
(
σ̂−â†e−jΔt + σ̂+âe+jΔt

)
+

[
Ŝ†, Ŝ

]
�ω

= − �g sin θ
(
σ̂−â†e−jΔt + σ̂+âe+jΔt

)
+

Ω2
D

4δQ

(
sin2 θ cos θ σ̂x +

1

2
sin3 θ σ̂z

)
. (8.9)

Here, Δ ≡ ΩQ − ωR is the qubit-resonator detuning. In Eq. (8.9), the dispersive

shift Ω2
D sin3 θ σ̂z/8δQ is a reminiscence of the full second-order σ̂z-component of the

interaction Hamiltonian, Ω2
D sin3 θ σ̂z[exp(+j2ωt)+exp(−j2ωt)+1]/8δQ. The terms

proportional to σ̂z exp(±j2ωt) are neglected implicitly by a RWA when deriving the

effective Hamiltonian Ĥeff of Eq. (8.9). In this equation, the σ̂z-term renormalizes
the qubit transition frequency, and, in the vicinity of the anticrossing (|Δ| � g sin θ̃,

sin θ̃ = δQ/ωR � 0.63), the Hamiltonian Ĥeff can be considered equivalent to

Ĥ(2) =
�ΩQ

2
σ̂z +

Ω2
D

4δQ
sin2 θ cos θ

(
σ−e+j2ωt + σ+e−j2ωt

)
− �g sin θ

(
σ̂−â† + σ̂+â

)
+ �ωR

(
â†â +

1

2

)
. (8.10)

The upconversion dynamics sketched in Fig. 8.6 is clearly described by Eq. (8.10).
The first two terms represent the qubit and its coherent two-photon driving with
angular frequency ω. The last two terms show the population transfer via the JC
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interaction to the resonator. As discussed before, the resonator then decays emitting
radiation of angular frequency 2ω.

8.4 Selection Rules and

Controlled Symmetry Breaking

In this section, we first analyze in detail the theory governing the selections rules and
controlled symmetry breaking in circuit QED within a simple two-level/two-photon
approximation (cf. Subsec. 8.4.1). We then extend our scope to the more general case
of superconducting flux quantum circuits, where many quantized states have to be
considered in the theoretical model. This allows us to study the coupling coefficients
between one such circuit and an electromagnetic field for many circuit levels and
higher photon transitions (cf. Subsec. 8.4.2). A comparison between the results
obtained using the flux quantum circuit approach and the two-level approximation
in the case of one- and two-photon transitions is given.

8.4.1 Two-Level/Two-Photon Approximation

The model outlined above allows us to unveil the symmetry properties of our sys-
tem. Even though the two-photon coherent driving is largely detuned, ΩQ/2 = ω �
ΩD/2 sin θ, a not well-defined symmetry of the qubit potential permits level transi-
tions away from the optimal point. Because of energy conservation, i.e., frequency
matching, these transitions are real and can be used to probe the qubit-resonator
anticrossing. The effective two-photon qubit driving strength, (Ω2 sin2 θ/4δQ) cos θ,
has the typical structure of a second-order dispersive interaction with the extra
factor cos θ. The latter causes this coupling to disappear at the qubit degeneracy
point (optimal point). There, the qubit potential is symmetric and the parity of the
interaction operator is well defined. Consequently, selection rules similar to those
governing electric dipole transitions hold [414]. This is best understood in our ana-
lytical two-level model, where the first-order Hamiltonian for the driven diagonalized
qubit becomes

Ĥ
(1)
OP =

δQ
2
σ̂z +

ΩD

4
σ̂x
(
e+jωt + e−jωt

)
(8.11)

at the qubit degeneracy point (optimal point). In this case, one-photon transitions
are allowed because the driving couples to the qubit via the odd-parity operator
σ̂x. In contrast, the two-photon driving effectively couples via the second-order
Hamiltonian

Ĥ
(2)
OP =

δQ
2
σ̂z +

Ω2
D

8δQ
σ̂z
(
e+2jωt + e−2jωt + 1

)
. (8.12)

Since σ̂z is an even-parity operator, real level transitions are forbidden. We note that

the second σ̂z-term of Ĥ
(2)
OP only slightly renormalizes the qubit transition frequency

and, thus, can be neglected in Eq. (8.10), which describes the real level transitions
corresponding to our spectroscopy peaks. The intimate nature of the symmetry
breaking resides in the coexistence of σ̂x- and σ̂z-operators in the first-order Hamil-

tonian ĤD, which produces a nonvanishing σ̂x-term in the second-order Hamiltonian

Ĥ(2) of Eq. (8.10).
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The role of selection rules and symmetry breaking in circuit QED systems can be
fully explained in terms of qubit parity operators. The two lowest energy eigenstates
|g〉 and |e〉 are, respectively, symmetric and antisymmetric superpositions of |+〉 and
|−〉. Thus, |g〉 has even parity and |e〉 is odd. In this situation, the parity operator

Π̂ can be defined via the relations

Π̂ |g〉 = + |g〉
Π̂ |e〉 = − |e〉

. (8.13)

The Hamiltonian of the classically driven qubit at the qubit degeneracy point is

ĤDQ =
δQ
2
σ̂z −

ΩD

2
cosωt σ̂x . (8.14)

For a one-photon driving, ω = δQ/� (energy conservation), after a RWA, and mov-
ing into the uniformly rotating frame of the external driving field, the Hamiltonian
becomes −ΩDσ̂x/4, where σ̂x ≡ |g〉 〈e| + |e〉 〈g|. This is an odd-parity operator

because the anticommutator {Π̂, σ̂x} = 0 and, consequently, one-photon transitions
are allowed. For a two-photon driving, ω = δQ/2� (energy conservation), the effec-
tive interaction Hamiltonian becomes Ω2

Dσ̂z/8δQ, where σ̂z ≡ |e〉 〈e| − |g〉 〈g|. Since
the commutator [Π̂, σ̂z] = 0, this is an even-parity operator and two-photon tran-
sitions are forbidden [229]. These selection rules are analogous to those governing
electric dipole transitions in quantum optics. The major departure from this simple
behavior is that in circuit QED the qubit can be biased away from its degeneracy
point. In this case, the symmetry of the system is broken in a controlled way and
the discussed strict selection rules do not hold. Instead, we find the finite transition
matrix elements ΩD sin θ/2 and Ω2

D sin2 θ cos θ/2δQ for the one- and two-photon pro-
cess, respectively.2 These elements allow for real level transitions between the qubit
levels as demonstrated by our experimental data.

8.4.2 Selection Rules and Flux Quantum Circuits

In the search for a more intimate relationship between selection rules, broken sym-
metries, and quantum circuits, we now attempt to go beyond the two-level (qubit)
approximation considered so far and analyze the complete Hamiltonian of a flux
quantum circuit (cf. also chapter 2, Sec. 2.2). Such a circuit is made by three
Josephson tunnel junctions interrupting a superconducting loop [189]. Under spe-
cial conditions, e.g., in all experiments described above, the flux quantum circuit
can be used as a flux qubit and the properties of the Pauli operators adequately
describe its interaction with external classical and/or quantum fields. The aim of
this subsection is to give a hint that there might be a more general way to describe
such interaction and, eventually, to reveal different phenomena. Before delving into
the details of the analytical derivations, we remind that the shape of the potential
of a flux quantum circuit is governed by the Josephson-junction potential. This is

2We remind that, depending on which picture the interaction Hamiltonian between driving and
qubit is represented, the transition matrix elements are sometimes renormalized by an extra factor
of 2. This is due to the Euler expansion of the sine or cosine driving term. We prefer to use
the definition without renormalization because it refers to the complete driven Hamiltonian before
moving into the interaction picture and performing the RWA.
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a transcendental (combination of cosine functions) function of the gauge-invariant
phases across the junctions as well as of an external control parameter, a control
flux acting as a field (see below). Inspired by Ref. [414], we can regard the control
flux as a perturbative field and perform a quantum small-signal analysis of the tran-
scendental potential. In other words, we can expand the potential with respect to
the external control parameter and compute the corresponding matrix elements for
the circuit-field interaction. First-order processes correspond to one-photon tran-
sitions, second-order processes to two-photon transitions, and so on and so forth.
As expected, we find that everything works well up to first order and we can show
that all results obtained from the expansion of the flux quantum circuit Hamiltonian
converge with those derived within the two-level approximation. However, already
in second order we find that, for example, the two-photon transition matrix element
of Eq. (8.10) is characterized by a drastically different behavior than that obtained
in the flux quantum circuit case.

There are several possible explanations for this unexpected result. When ex-
panding the flux quantum circuit potential to higher order with respect to the ex-
ternal field (e.g., with respect to a cosωt driving), we are exploring the intrinsic
nonlinearity of the circuit. In this case, such nonlinearity gives rise to two-photon
(multiphoton) transitions, since the potential is a cos(cosωt)-function, which can be
expanded in a Bessel series.3 This is in perfect analogy to the generation of higher
harmonics in a nonlinear classical circuit [422]. When deriving the two-photon
Hamiltonian of Eq. (8.10), we do not rely on the specific nature of the qubit. This
can be any type of qubit, flux- or charge-based. It is the time evolution of the driven
qubit4 ∝ exp(cosωt), which can also be expanded in a Bessel series, to give rise to
two-photon (multiphoton) transitions. If this explanation were true, we would face a
scenario where two distinguished mechanisms allow for multiphoton transitions: one
based on the nonlinear response of the flux quantum circuit and the other on its time
evolution. The global effect would be the sum or a combination of both of them.
However, we could argue that any two-level system is inherently the most nonlinear
system there is and in any case we are studying its nonlinear response with respect
to external fields. If this were true, it could be that the different results arise from
the wrong use of the quantum small-signal formalism applied to the flux quantum
circuit. In fact, it is well-known that, due to gauge-invariance arguments, one can
place the field associated with the external control parameter in different terms of
the circuit potential, paying back this arbitrariness with an opportune choice of the
quantum variables of the circuit. Oftentimes, such choice can be counterintuitive
and not a trivial task. Last but not least, it could be that the simple two-level
approximation fails in explaining multi-photon transitions, in particular away from
the qubit degeneracy point. Understanding this conundrum5 goes far beyond the
focus of this thesis, where the message we want to give is that further investigations
are needed in order to straighten up so many outstanding issues.

We can now start a more quantitative study of the problem. The basic Hamil-
tonian of a flux quantum circuit has already been derived in chapter 2. Here, we

3We notice that a Taylor expansion can also be employed yielding similar results.
4Here, we omit all qubit-related operators for simplicity.
5The author has enjoyed many discussions with the most eminent experts in the field of su-

perconducting quantum circuits to find out that the mechanisms at the base of the circuit-field
interaction are not well-understood and properly studied yet.
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summarize only the key points of that derivation. In general, the flux quantum
circuit is based on the quantization of the gauge-invariant phases across the three
junctions, φ̂1, φ̂2, and φ̂3 (cf. chapter 2, Fig. 2.10). The superconducting loop is
characterized by a geometric self-inductance LF, whose dimension is small enough
to allow us to neglect the magnetic energy term associated with it in the final
Hamiltonian [189]. Nevertheless, the presence of LF is necessary for any classical or
quantum external circuit to be inductively coupled to the flux quantum circuit. This
coupling is mediated by the mutual inductance MFX, which is a function of LF, be-
tween the external circuit and the flux quantum circuit. The coupling also depends
on the driving level or the zero-point (vacuum) fluctuations of the external circuit.
As already mentioned in Sec. 8.2, in a flux quantum circuit two of the three tunnel
junctions, e.g., those characterized by the phases φ̂1 and φ̂2, have equal Josephson
coupling energy EJ ≡ Ic0Φ0/2π and same charging energy Ec ≡ e2/2Cj. Here, Ic0
and Cj are again the critical current and capacitance of each junction, respectively,

and Φ0 is the flux quantum. The third junction, characterized by a phase φ̂3, is
made α-times smaller than the other two, where α is a parameter chosen during the
design of the device. Since the three Josephson tunnel junctions are embedded in a
superconduting loop, due to flux quantization only two of the three phases associ-
ated with them are independent. For example, we can choose φ̂1 and φ̂2 to be the
independent phases and rewrite them as φ̂p ≡ (φ̂1 + φ̂2)/2 and φ̂m ≡ (φ̂1 − φ̂2)/2.
Following Ref. [189] (cf. also chapter 2, Sec. 2.2), the Hamiltonian associated with
the flux quantum circuit can be written as

ĤF =
1

2

P̂ 2
p

Mp

+
1

2

P̂ 2
m

Mm

+ EJ[2 + α− 2 cos φ̂p cos φ̂m

− α cos(2πfx + 2φ̂m)] , (8.15)

where P̂p ≡ − j�∂/∂φ̂p and P̂m ≡ − j�∂/∂φ̂m, Mp ≡ (Φ0/2π)
2 2Cj

(
1 + γg

)
and

Mm ≡ (Φ0/2π)
2 2Cj

(
1 + 2α + γg

)
(γg is a parameter that accounts for external

gate capacitances and/or parasitic capacitances to ground), and, as always, fDC
x =

ΦDC
x /Φ0 is a normalized externally applied flux bias (frustration).
The presence of fDC

x in Eq. (8.15) shows that this Hamiltonian contains already
an effective interaction with external circuits. In general, the frustration can be
written as

fx = fDC
x + fAC

x , (8.16)

where the first term of the sum represents a DC or quasi-static flux bias and the
second term an AC flux excitation, typically in the radio-frequency or microwave
range. The AC flux excitation can either be a classical signal

fAC
x =

MFXIx
Φ0

sin (ωt+ φ) ≡ f̃Q sin (ωt+ φ) (8.17)

due to an AC current of amplitude Ix driving the external circuit or a quantum
signal. In the latter case, the classical AC flux excitation is promoted to its quantum-
mechanical counterpart, fAC

x → f̂AC
x . The quantum flux excitation

f̂AC
x =

∫ +∞

0

dω
MFX (ω) I0x (ω)

Φ0

[
â† (ω) + â (ω)

]
(8.18)
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is due to the interaction with, in general, a multi-mode quantized current charac-
terized by a frequency-dependent zero-point fluctuation I0x (ω) and bosonic creation
and annihilation operators â† (ω) and â (ω), respectively. In our experiments, where
the flux quantum circuit is operated as a qubit (cf. Sec. 8.2), the classical signal
is represented by the antenna driving with amplitude Ix = IA. This signal couples
to the qubit via the antenna-qubit mutual inductance MFX = MQA. The quantum
signal instead is associated with the single mode of a quantized LC-resonator with
resonance frequency ωR, zero-point current I

0
x (ω) → I0R, inductively coupled to the

flux quantum circuit (qubit) via a mutual inductance MFX (ω) → MQR, and char-
acterized by single-mode bosonic operators â† (ω) → â† and â (ω) → â. Hereafter,
for the sake of simplicity, we focus on the classical signal case only. This can easily
be extended to the case of quantum signals via a canonical quantization.

We now split the Hamiltonian of Eq. (8.15) into the sum of two components,

ĤF ≡ ĤA + ĤB, where

ĤA =
1

2

P̂ 2
p

Mp

+
1

2

P̂ 2
m

Mm

+ EJ(2 + α− 2 cos φ̂p cos φ̂m) , (8.19a)

ĤB = −αEJ cos(2πfx + 2φ̂m) . (8.19b)

Among these two Hamiltonians, ĤA is independent of any external classical or quan-

tum signal, whereas ĤB explicitly depends on fx. Inserting the general expression

for fx given in Eq. (8.16) into ĤB and using the expression of Eq. (8.17) for fAC
x , we

obtain

ĤB = −αEJ cos[(2πf
DC
x + 2φ̂m) + 2πf̃Q sin(ωt+ ϕ)] . (8.20)

Hereafter, without loosing generality, we assume the signal phase ϕ = 0. Under
this condition and after some easy trigonometry, the Hamiltonian of Eq. (8.20) can
readily be written as

ĤB = −αEJ[cos(2πf
DC
x + 2φ̂m) cos(2πf̃Q sinωt)

− sin(2πfDC
x + 2φ̂m) sin(2πf̃Q sinωt)] . (8.21)

This Hamiltonian contains two nested trigonometric functions that can easily be
expanded in a Jacobi-Anger series [423], which ultimately results in a Bessel-Fourier

structure of Hamiltonian ĤB:

ĤB = −αEJ

{
cos(2πfDC

x + 2φ̂m)

[
J0(2πf̃Q) + 2

∞∑
k=1

J2k(2πf̃Q) cos 2kωt

]

− sin(2πfDC
x + 2φ̂m)

[
2

∞∑
k=0

J(2k+1)(2πf̃Q) sin(2k + 1)ωt

]}
, (8.22)

where Jn( · ) are nth-order Bessel functions of the first kind and k ∈ N. In typical
applications, even under the strong driving conditions of our experiments, we can
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assume f̃Q � 1 and approximate ĤB as

ĤB ≈ −αEJ

{
cos(2πfDC

x + 2φ̂m)

+ 2 cos(2πf̃Q + 2φ̂m)
∞∑
k=1

(2πf̃Q)
2k [Γ(2k + 1)]−1 cos 2kωt

− 2 sin(2πfDC
x + 2φ̂m)

∞∑
k=0

(2πf̃Q)
2k+1 [Γ(2k + 2)]−1 sin(2k + 1)ωt

}
,

(8.23)

where Γ( · ) is the gamma function. We can now isolate the term of Eq. (8.23)
interacting only with the DC (or quasi-static) flux bias, i.e., the term in the flux
quantum circuit Hamiltonian enabling DC Zeeman shifts,

ĤZ = − αEJ cos(2πf
DC
x + 2φ̂m) . (8.24)

Together with ĤA, the Hamiltonian of Eq. (8.24) allows us to define the free energy

term of the flux quantum circuit Hamiltonian, Ĥ0
F ≡ ĤA + ĤZ. The Hamiltonian

Ĥ0
F resumes the Hamiltonian studied in Ref. [189]. Diagonalizing Ĥ0

F gives the flux
quantum circuit energy eigenstates {|i〉} = {|g〉 , |e〉 , |a〉 , . . .} and the correspond-
ing eigenvalues �Ωi, with i = g, e, a, . . . . Finally, applying the closure theorem
(
∑

i |i〉 〈i| = I, where I is the i× i identity matrix) twice, the flux quantum circuit
free energy Hamiltonian can be expressed in the energy eigenbasis as

Ĥ0
F =
∑
i

�Ωi |i〉 〈i| . (8.25)

The diagonalization of Ĥ0
F has to be carried out by means of a numerical simula-

tion. For the flux quantum circuit parameters of our experiments, the results are
shown in chapter 2, Fig. 2.10. There, the energy levels for the six lowest states
of the Hamiltonian Ĥ0

F are plotted as a function of the DC frustration bias fDC
x .

Figure 2.11 shows the wavefunctions for the three lowest states of Ĥ0
F, |g〉, |e〉, and

|a〉, respectively.
We now focus on the remaining terms in the Hamiltonian of Eq. (8.23) besides

ĤZ. Those terms define the interaction Hamiltonian between the flux quantum
circuit and external microwave fields,

ĤI = −αEJ

{
2 cos(2πfDC

x + 2φ̂m)

×
∞∑
k=1

(2πf̃Q)
2k [Γ(2k + 1)]−1 cos 2kωt

− 2 sin(2πfDC
x + 2φ̂m)

×
∞∑
k=0

(2πf̃Q)
2k+1 [Γ(2k + 2)]−1 sin(2k + 1)ωt

}
. (8.26)
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This interaction Hamiltonian can be rewritten invoking again the closure theorem
for the energy eigenstates of Ĥ0

F twice, obtaining

ĤI = −αEJ

∑
i,j

{
|i〉 〈i| cos(2πfDC

x + 2φ̂m) |j〉 〈j|

×
∞∑
k=1

(2πf̃Q)
2k [Γ(2k + 1)]−1 cos 2kωt

− |i〉 〈i| sin(2πfDC
x + 2φ̂m) |j〉 〈j|

×
∞∑
k=0

(2πf̃Q)
2k+1 [Γ(2k + 2)]−1 sin(2k + 1)ωt

}
, (8.27)

where i, j = {g, e, a, . . .} . The total Hamiltonian of the driven flux quantum circuit

is thus ĤT = Ĥ0
F+ĤI. We remind that in the case of a quantized external field, e.g.,

of a resonator coupled to the flux quantum circuit, also the resonator free energy
Hamiltonian [cf. Eq.(8.4)] has to be added to the total system Hamiltonian.

The coupling coefficients between the flux quantum circuit and the external
microwave field can be evaluated by inspecting the Hamiltonian of Eq. (8.27). Ex-
pressing the coefficients as angular frequencies, this gives

g
(2k+1)
ij (fDC

x ) =
αEJ(2πf̃Q)

2k+1

�
[Γ(2k + 2)]−1 〈i| sin(2πfDC

x + 2φ̂m) |j〉, (8.28a)

g
(2k)
ij (fDC

x ) = −
αEJ(2πf̃Q)

2k

�
[Γ(2k + 1)]−1 〈i| cos(2πfDC

x + 2φ̂m) |j〉. (8.28b)

These coefficients are formed by the product of two terms: The first term is a
constant factor, which depends on f̃Q and, thus, on the driving strength Ix of the
external circuit (e.g., in our experiments, the current on the antenna, IA) and on
the mutual inductanceMFX between external and flux quantum circuit (MQA in the
case of the antenna); the second term is one of the matrix elements 〈i| · |j〉 of the
flux quantum circuit. Such matrix elements are different from those characteristic
of the electric-dipole moment operator D̂E of atoms [91]. In atomic physics, D̂E

is typically an odd-parity operator where all diagonal terms of the kind 〈i| D̂E |i〉
are zero. This is different in the case of flux quantum circuits (or superconducting
quantum circuits in general), where both diagonal and off-diagonal matrix elements
can exist. In addition, for quantum circuits all matrix elements depend on the
externally applied frustration bias fDC

x . If i = j, the matrix elements represent the
expectation value to find the circuit in an eigenstate |i〉. For i �= j, they represent the
overlap between the wavefunctions of two different eigenstates |i〉 and |j〉 (transition
matrix elements). The fDC

x -dependence of the absolute value |g(1)ij | and |g(2)ij | for the
three lowest states |g〉, |e〉, and |a〉 is plotted in Fig. 8.7.

(i) – When fDC
x = 0.5 (or, equivalently, = 1.5 as in our experiments),6 the

potential landscape of chapter 2, Fig. 2.11(a) associated with the flux quantum
circuit is characterized by a well-defined symmetry with respect to the quantum
variables φ̂p and φ̂m. In particular, the two-dimensional potential can be reduced

6In this theoretical section, we use fDC
x = 0.5 instead of fDC

x = 1.5 for simplicity.

319



8.4. SELECTION RULES AND
CONTROLLED SYMMETRY BREAKING

Figure 8.7: Absolute value for the coupling coefficients between the flux quantum circuit
and the external microwave field as a function of fDC

x . The elements of the full matrix for
the first three states |g〉, |e〉, and |a〉 are plotted (i, j = {g, e, a}). (a) One-photon coupling

coefficients expressed in unit Hz, |g(1)ij |, for fDC
x ∈ [0.468, 0.5] [dark blue (dark grey) lines].

(b) Two-photon coupling coefficients expressed in unit Hz, |g(2)ij |, for fDC
x ∈ [0.468, 0.5]

[light green (light grey) lines].
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to a symmetric one-dimensional double well with respect to the phase variable φ̂m

[cf. chapter 2, Fig. 2.11(b); cf. also the red well on the left-hand side of Fig. 8.6].
Under these conditions, the transition matrix elements of Eqs. (8.28a) and (8.28b)
constitute a well-defined set of selection rules, in analogy with the electric-dipole
selection rules of atomic systems.

In order to compare the results of this subsection to those of Subsec. 8.4.1,
we now restrict ourselves to the subspace of the two lowest eigenstates of the flux
quantum circuit, {|g〉 , |e〉}. In this case, from the symmetry of the interaction
Hamiltonian or, equivalently, from the symmetry of the wavefunctions of |g〉 and
|e〉, it is easy to decide whether an n-photon transition is allowed or not. We first
consider one-photon transitions, which, for a bias fDC

x = 0.5, are governed by the
total Hamiltonian

Ĥ
(1)
T = �(Ωg |g〉〈g|+ Ωe |e〉〈e|)

+ αEJ[|g〉〈g| sin(π + 2φ̂m) |g〉〈g|+ |g〉〈g| sin(π + 2φ̂m) |e〉〈e|
+ |e〉〈e| sin(π + 2φ̂m) |g〉〈g|+ |e〉〈e| sin(π + 2φ̂m) |e〉〈e|]
× (2πf̃Q) sinωt

= �
Ωge

2
(|e〉〈e| − |g〉〈g|) + �

g
(1)
ge

2j
(|g〉〈e|+ |e〉〈g|) (e+jωt − e−jωt) , (8.29)

where Ωge ≡ Ωe − Ωg, the zero of energy is taken at the middle level between the
groundstate |g〉 and excited state |e〉, and the definition of Eq. (8.28a) is evaluated at

fDC
x = 0.5, which gives the conditions g

(1)
gg = g

(1)
ee = 0 and g

(1)
eg = g

(1)
ge [cf. Fig. 8.7(a)].

After a RWA, moving into the uniformly rotating frame of the external driving field,
and assuming angular frequency matching, ω = Ωge (energy conservation), we ob-

tain the effective interaction Hamiltonian
̂̃
H

(1)

I = − �jg
(1)
ge (|g〉〈e| − |e〉〈g|)/2. As in

Subsec. 8.4.1, this Hamiltonian is an odd-parity operator because the anticommu-

tator {Π̂, ̂̃H(1)

I } = 0 and, consequently, one-photon transitions are allowed. In the
case of two-photon transitions, the total Hamiltonian becomes

Ĥ
(2)
T = �(Ωg |g〉〈g|+ Ωe |e〉〈e|)

− αEJ[|g〉〈g| cos(π + 2φ̂m) |g〉〈g|+ |g〉〈g| cos(π + 2φ̂m) |e〉〈e|
+ |e〉〈e| cos(π + 2φ̂m) |g〉〈g|+ |e〉〈e| cos(π + 2φ̂m) |e〉〈e|]

×
(2πf̃Q)

2

2
cos 2ωt

= �
Ωge

2
(|e〉〈e|−|g〉〈g|)+�

(
g
(2)
gg

2
|g〉〈g|+ g

(2)
ee

2
|e〉〈e|

)
(e+j2ωt + e−j2ωt) , (8.30)

where the definition of Eq. (8.28b), evaluated at fDC
x = 0.5, gives the condi-

tion g
(2)
ge = g

(2)
eg = 0 [cf. Fig. 8.7(b)]. Assuming angular frequency matching,

2ω = Ωge (energy conservation), we obtain the effective interaction Hamiltonian̂̃
H

(2)

I = �(g
(2)
gg |g〉〈g|+g(2)ee |e〉〈e|)/2. As in Subsec. 8.4.1, this Hamiltonian is an even-

parity operator because the commutator [Π̂,
̂̃
H

(2)

I ] = 0 and, consequently, two-photon
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Figure 8.8: Comparison between the models based on the flux quantum
circuit and on the simple two-level approximation: one-photon transitions.

Dark blue (dark grey) line: |g(1)ge | in unit Hz for fDC
x ∈ [0.468, 0.5] obtained

from Eq. (8.28a). Light green (light grey) line: |g(1)ge | = ΩD sin θ/2 in unit
Hz for fDC

x ∈ [0.468, 0.5] obtained within the two-level approximation. The
agreement between the two curves is excellent. The reduction in the absolute
value of the maximum amplitude at the degeneracy point for the flux quantum
circuit curve is due to the presence of higher energy levels compared to the
two-level approximation.

transitions are forbidden. More in general, for the |g〉 → |e〉 transition, which goes
from a state with a symmetric to one with an antisymmetric wavefunction [cf. chap-
ter 2, Figs. 2.14(a) and 2.14(b), respectively], all processes involving an odd number
of photons are allowed, whereas processes with an even number of photons are for-
bidden [229].

(ii) – When fDC
x �= 0.5 (or, equivalently, �= 1.5), the symmetry of the poten-

tial landscape is broken [cf. chapter 2, Fig. 2.12(a) and, for the cut along the φ̂m-
direction, chapter 2, Fig. 2.12(b) as well as the red well on the right-hand side
of Fig. 8.6], the selection rules are not well-defined anymore, and level transitions,
which are usually forbidden in the atomic case, are allowed. We can use Eqs. (8.28a)
and (8.28b) to compute the coefficients for the various transitions as a function of
the frustration fDC

x . In Figs. 8.7(a) and 8.7(b), such coefficients are plotted for the
three lowest levels of a flux quantum circuit in the case of one- and two-photon
processes.

We can now make a quantitative comparison between these results and those
obtained within the two-level approximation in some cases of interest. The first
case is for the transition matrix element between |g〉 and |e〉 and one-photon tran-
sitions. As found in Subsec. 8.4.1, within a two-level approximation this element is
�ΩD sin θ/2 (before representing the interaction Hamiltonian in the rotating frame
of the driving). Figure 8.8 shows a plot of this quantity together with the more

general result g
(1)
ge computed with the aid of Eq. (8.28a) for an extended range of

the externally applied frustration bias fDC
x . Remarkably, the agreement between

the two curves is excellent. The reduction by approximately 19% in the absolute
value of the maximum amplitude at the degeneracy point (fDC

x = 0.5) for the flux
quantum circuit result is due to the presence of higher energy levels compared to the
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Figure 8.9: Comparison between the models based on the flux quantum
circuit and on the simple two-level approximation: two-photon transitions.

(a) Color code plot of |g(2)ge | in unit Hz for fDC
x ∈ [0.468, 0.5] and a driv-

ing strength ΩD ∈ [300MHz, 4GHz] obtained from Eq. (8.28b). (b) Color

code plot of |g(2)ge | = Ω2
D sin2 θ cos θ/4δQ in unit Hz for fDC

x ∈ [0.468, 0.5] and
a driving strength ΩD ∈ [300MHz, 4GHz] obtained within the two-level ap-
proximation. (c) Cut along the dashed white line in (a) for a driving strength
ΩD = 3GHz. (d) Cut along the dashed white line in (b) for a driving strength
ΩD = 3GHz. The departure between the curves in (c) and (d) is drastic. We
notice that, in experiments, the maximum applied driving strength is typi-
cally not larger than approximately 1GHz. Here, we plotted a more extended
driving strength range for a better comparison.

simple two-level approximation.7 Such agreement ensures that we are not making
trivial mistakes in computing the tricky prefactors of the different matrix elements.

The second case is for the transition matrix element between |g〉 and |e〉 and
two-photon transitions. The two-level approximation result is represented by the
coefficient of the second term of Eq. (8.10), Ω2

D sin2 θ cos θ/4δQ. Figure 8.9(b) shows
a plot of this quantity for the same range of fDC

x as in Fig. 8.8 and also as function
of the driving strength ΩD. The reason for plotting the driving strength dependence
is to analyze a broader range of regimes of two-photon processes and permit a more
thorough comparison between two-level approximation and flux quantum circuit
approach. In fact, we find a drastic departure between the two approaches as it
appears evident from Figs. 8.9(a) and 8.9(b), which are obtained using the flux
quantum circuit approach and the simple two-level approximation, respectively. The

7We have double checked the numerical calculations using two codes based on a different ap-
proach to the quantization of the flux quantum circuit finding the same reduction factor.
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departure is true for the entire fDC
x − ΩD parameter space and it is twofold. Not

only the absolute values of the matrix elements in Figs. 8.9(a) and 8.9(b) differ by
several orders of magnitude, at least in the close vicinity of the degeneracy point,
but also their fDC

x -dependence is totally different. This is more easily noticeable in
Figs. 8.9(c) and 8.9(d), where the transition matrix elements for the flux quantum
circuit approach and the two-level approximation, respectively, are plotted for a
fixed driving strength ΩD = 3GHz.

As already pointed out in the beginning of this subsection, such an unexpected
behavior in the case of two-photon transitions can be due to the fact that the
quantum small-signal analysis of the driven flux quantum circuit inherently explores
the nonlinear response of the circuit. It could also be due to artifacts arising from
a wrong choice of the quantum variables involved in the dynamics. In our quantum
small-signal analysis we only focus on the potential energy term of the Hamiltonian,
factoring out the kinetic energy contribution. A more opportune choice of the gauge
conditions could possibly unify the two approaches. However, the quantum small-
signal formalism has already been employed by other authors successfully8 [414]
and we find striking the agreement between the two different theories for one-photon
processes. Finally, it could be that the simple two-level approach fails away from the
trivial degeneracy point (where the system symmetries help hiding the differences
giving zero transition matrix elements) when considering multi-photon transitions.
In fact, as studied in Refs. [63, 351, 424] two-photon (multi-photon) processes can
be explained with the aid of virtual intermediate levels. It might be that the two-
level approximation is not the most adequate way to account for such multi -level
scenarios. Nevertheless, the notion to be learnt from this subsection is that the
physics behind multi-level/multi-photon transitions in circuit QED is far from being
a closed subject and deeper theoretical and experimental investigations must be
carried out in order to shed new light on such an intriguing topic of research.

8.5 Spurious Fluctuators

In this section, we discuss the impact of two-level systems (TLSs) or, more in general,
spurious fluctuators on circuit QED experiments. We first show that the presence of
a TLS can indeed break the symmetry properties of superconducting qubits even at
the qubit degeneracy point (cf. Subsec. 8.5.1). We then characterize the interaction
between a flux qubit and a generic spurious fluctuator9 by means of numerical sim-
ulations that qualitatively explain certain beatings in a Ramsey-type experiment
(cf. Subsec. 8.5.2). The main point of this subsection is to show that the time
evolution of the interaction between a superconducting flux qubit and a spurious
fluctuator can give rise to a so-called collapse and revival of the system dynamics.
This phenomenon has been first studied in the realm of atomic physics, which con-

8Indeed, some of the plots in Fig. 8.7(a) reproduce accurately the findings of Fig. 1(c) of
Ref. [414].

9We notice that in this subsection we prefer to use the more generic expression “spurious
fluctuator” instead of TLS. A spurious fluctuator could either be a TLS or some other kind of
impurity/defect behaving as a resonator [421] and located in the vicinity of the qubit [249, 262].
There are two reasons behind this choice. First, we find no major difference assuming a TLS or
a point-like resonator to explain our data. Second, our experimental findings do not allow us to
distinguish between these two scenarios. In any case, this does affect our results.
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Figure 8.10: Two-photon spectroscopy simulations close to the qubit de-
generacy point using the time-trace-averaging method. (a) Probability Pe

to find the qubit in |e〉 plotted versus driving angular frequency and frustra-
tion bias [parameters as in Fig. 8.4(c); in particular, the TLS parameters are
ε∗ = 0 ↔ sin θ∗ = 1 and Ω∗ = 0]. The spectroscopy signal vanishes completely
at the denegeracy point, fDC

x = 1.5, because of the specific selection rules as-
sociated with the symmetry properties of the Hamiltonian [414]. (b) Same as
in (a), however, for sin θ∗ = 0.3 and Ω∗ = 280MHz.

stitutes the inspiration for our analysis [425, 426]. A more detailed study of such
effects in associations with superconducting flux qubits can be found in our article
Ref. [262], where we also explain in ample length the experimental data only briefly
mentioned here. We remind the interested reader to this reference for a complete
enumeration of all fitting parameters used to characterize our system and to perform
the corresponding numerical simulations.

8.5.1 Symmetry Breaking via TLSs

As explained in Subsec. 8.4.1, symmetries can be broken in a controlled way in circuit
QED because of the coexistence of σ̂x- and σ̂z-operators in the first-order Hamilto-

nian ĤD, which produces a nonvanishing σ̂x-term in the second-order Hamiltonian

Ĥ(2) of Eq. (8.10). As illustrated by the simulation results shown in Fig. 8.10, this
scenario can also be realized at the qubit degeneracy point when considering the
terms due to the TLS, σ̂∗

x and σ̂∗
z . The coexistence of these flux-independent first-

order terms gives rise to a nonvanishing second-order σ̂∗
x-term even at the qubit

degeneracy point. As a consequence, the symmetry of the total system is broken
and, again, parity becomes a not well defined property. Hence, the discussed strict
selection rules no longer apply and the spectroscopy two-photon signal is partially
revived. Due to this very phenomenon we observe only a reduction instead of a
complete suppression of the two-photon peaks near the qubit degeneracy point in
the experimental data of Fig. 8.4(b). In reality, an ensemble of TLSs with some dis-
tribution of frequencies and coupling strengths rather than a single TLS is expected
to contribute to the symmetry breaking. Furthermore, when the experimental res-
olution is limited, a single peak is detected instead of the detailed structure of
Fig. 8.10(b). This is the case in our measurements [cf. Fig. 8.4(b)].
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Figure 8.11: Ramsey decay beatings: experimental data and simulations.
(a) Ramsey decay trace measured for fDC

x � 1.5. τ is the free evolution time
(cf. Fig. 8.2). The red lines are fits to the data (blue crosses) using a split-peak
model in combination with an exponentially decaying envelope (for details
cf. [262]). The observed decay time is T2R = 75∓4 ns. (b) Simulated periodic
Ramsey beatings due to a qubit-fluctuator interaction. The system parame-
ters are chosen to be similar to those found in the experiment (cf. Secs. 8.2
and 8.3). The qubit and fluctuator are assumed to be on resonance. The max-
imum free evolution time τ is 450 ns. The microwave excitation frequency is
slightly detuned from that of the fluctuator by � 1%. The coupling constants
are chosen in a way that the results resemble our experimental data. Three
simulated Ramsey traces are shown for increasing driving strengths Ω∗

D. The
other parameters are a qubit-fluctuator coupling of 2MHz and a qubit driving
of 80MHz for the displayed traces.

8.5.2 Collapse and Revival

Figure 8.11(a) shows a Ramsey decay trace obtained applying the corresponding
pulse sequence of Fig. 8.2. The experimental data clearly reveal a beating structure,
which, as carefully explained in Ref. [262], cannot be due to trivial reasons such
as imperfect pulse sequences or spurious resonance modes of the packaging/chip
environment. Therefore, we suggest a different explanation for the origin of the
observed beatings in analogy to cavity QED, where the coupling between an atom
and a photonic mode can give rise to beating signals [425, 426]. In our case, the
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qubit acts as an “artificial atom” and the photonic mode is represented by a spurious
fluctuator. We stress one more time that such fluctuator could either be a TLS (e.g.,
as modeled in Sec. 8.3) or a resonator-like center. This distinction does not affect
our general arguments. Since the coupling strength between qubit and fluctuator is
larger than the characteristic decay rates of both qubit and fluctuator, the system
has to be treated as a single quantum entity (cf. also Ref. [427]). This argument
can be supported by numerical simulations, which reproduce the main experimental
features of Figure 8.11(a) qualitatively.

As already pointed out in Sec. 8.3, the fluctuator is characterized by a transition
angular frequency ωTLS = 2π × 3.94GHz. This is very close to the qubit transition
angular frequency at the degeneracy point. As a consequence, we can restrict our-
selves to the region in the close vicinity of the qubit degeneracy point (approximately

4GHz). Based on the driven Hamiltonian10 ĤD and adiabatically eliminating the
resonator degree of freedom (located at approximately 6GHz) because largely de-
tuned from the qubit in the region of interest, we simulate the Ramsey sequence
choosing similar parameters to those found in the experiments. The effects of deco-
herence are neglected for simplicity. The driving terms are only present within the
duration of the control pulses and are switched off during the free evolution periods
(cf. Fig. 8.2). The time traces are obtained by numerically solving the Schrödinger
equation for the Ramsey pulse sequence. The initial state is the energy ground-
state of the qubit-fluctuator system in absence of driving. The results are shown
in Fig. 8.11(b). Already at a first glance, it is evident that the simulations can
reproduce the main feature of the experimental data, i.e., periodic Ramsey beatings
due to an on-resonance qubit-fluctuator interaction. Energy is coherently exchanged
between the two systems resulting in a typical collapse and revival effect. On closer
inspection, we find that the resonance condition is very important for our simulation
results. This might seem controversial, given that we observe the beatings over a
considerable frequency range around the degeneracy point. However, we have to
recall that we neglect decoherence here. As a consequence, in the simulations we
have much sharper resonance peaks than in the experiments. Furthermore, we only
account for a single fluctuator. In reality, there is probably an ensemble of fluctu-
ators with slightly different frequencies close to 4GHz and with different coupling
constants. It is noteworthy to mention that there is no fundamental restriction for
these fluctuators to be present only in the frequency range around 4GHz. However,
only there the qubit coherence time is long enough to allow for a clear observation
of beatings or splittings.

8.6 Summary and Outlook

In summary, in this chapter we have introduced the main ingredients to perform
circuit QED experiments with superconducting flux qubits: the three-Josephson-
junction qubit, the lumped-parameter LC-resonator, the on-chip microwave an-
tenna, and the DC SQUID readout circuitry. In addition, we have shown how
to perform advanced manipulation and readout of the qubit state. We have then

10Strictly speaking, for the numerical simulations of Fig. 8.11(b) the fluctuator is assumed to
be a resonator-like center. This has later been double checked with a true TLS without noticing
a major difference. However, we prefer to keep the original simulations for consistency with our
published article Ref. [262].
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demonstrated that it is possible to use two-photon qubit spectroscopy to study the
qubit-resonator interaction. Our experimental findings are evidence for the presence
of an anticrossing under two-photon driving, which permits us to estimate the bare
vacuum Rabi coupling. Furthermore, our experiments and theoretical analysis shed
new light on the fundamental symmetry properties of quantum circuits and the non-
linear dynamics inherent to circuit QED. Finally, we have developed a theoretical
model to explain the role played by spurious fluctuators in connection to symmetry
breaking and the phenomenon of collapse and revival of Ramsey decay experiments.

As an outlook, we notice that multi-photon transitions in circuit QED can be ex-
ploited in a wide range of applications such as parametric up-conversion, generation
of microwave single photons on demand [150, 289, 354] or squeezing [428]. Moreover,
it will be exciting to repeat and extend the experimental results of this chapter to
the case of circuit QED with flux qubits in the strong coupling limit. This would
allow for example to resolve the two-photon vacuum Rabi splitting with very high
accuracy. At last, a deeper theoretical understanding of multi-photon processes in
the case of flux quantum circuits beyond the simple two-level approximation will be
another important milestone on the circuit QED road map.
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Chapter 9

Summary and Outlook

In this chapter, we summarize our main theoretical and experimental results, em-
phasizing a set of possible future applications. In addition, we point out the main
steps which we think have to be followed in order to further develop the field of
research of circuit QED.

In this thesis work, we have proposed a novel circuit QED architecture based
on two resonators coupled to a superconducting qubit. We have defined this sub-
field of circuit QED as two-resonator circuit QED. In order to properly describe
two-resonator circuit QED architectures, we have developed a theoretical formalism
where the circuit properties of the resonators and qubit help finding the correct
Hamiltonian of the system. When the resonators and qubit are largely detuned
from each other, which means the resonance frequencies of the resonators, assumed
here to be the same, and the transition frequency of the qubit are different, two
interaction channels are established between the resonators.

The first channel owns its origin to a first- and second-order geometric interaction
between the resonators and qubit circuit components. The second channel, instead,
is due to a dynamic interaction originating from the presence of a detuned qubit.
The first-order geometric interaction is present even in the absence of the qubit
circuit and simply represents a finite cross-talk between the two resonators. The
second-order geometric interaction is mediated by the presence of the circuit associ-
ated with the qubit. This circuit is made of capacitors and inductors where electric
and magnetic energy can be stored. Via the cross-capacitances and/or mutual induc-
tances between each resonator and the qubit circuit, energy can be transferred from
one resonator to the other. Remarkably, while the first-order geometric interaction
can largely be reduced by proper engineering, we have shown that the second-order
interaction is a fundamental property of the system and is inevitably present in the
total Hamiltonian.

The dynamic interaction is due to a second-order perturbative coupling between
the resonators, which arises when a qubit is dispersively (large detuning condition)
coupled to two resonators. This interaction depends on the state of the qubit.

Since the geometric and dynamic interactions are characterized by coupling co-
efficients with similar strength, it is possible to balance them one against the other
and, thus, realize a superconducting quantum switch. The switch tunability resides
in the possibility to bias the qubit at different operation points or to apply fast
pulses which rapidly change the qubit population. As a result, the bosonic fields
in the two resonators can be made to interact strongly or weakly depending on the
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biasing/pulsing conditions. This has the important consequence that entanglement
of bosonic fields between two distinguished resonators can be realized.

How to measure such entanglement? The natural answer to this question is by
means of a cross-correlation measurement apparatus, where the output signals of
the two resonators can be measured independently or can be correlated. This pos-
sibility has given us a strong motivation in developing a cross-correlation homodyne
detection setup at microwave frequencies.

In order to thoroughly characterize such a setup at the quantum level, we have
performed a complete set of experiments where thermal and vacuum states were
measured for a wide range of parameters. In particular, we have been able to
quantify how close it is possible to observe the variance of vacuum fluctuations at
microwave frequencies by using noisy amplifiers. Moreover, we have measured the
temperature and frequency dependence of the thermal-to-vacuum state cross-over
by recording a large set of Planck distributions. We have called this measurement
technique Planck spectroscopy.

Planck spectroscopy can be used for the characterization of quantum microwave
devices. This can be realized as follows. Let us assume that a microwave device (a
black box) is cooled in a dilution refrigerator and its temperature suitably controlled.
The device is then connected to a transmission line and its emission monitored. By
measuring the temperature and frequency dependence of the emitted signals we
obtain a Planck spectroscopy diagram. Along the temperature axis, the diagram
encodes information on the state populating the device. Below a certain tempera-
ture, when the Planck distribution flattens, we can assure that the device is in the
vacuum state. The frequency dependence of the diagram encodes information on a
relevant subset of scattering matrix parameters of the device. For example, if the
device were an electromagnetic resonator, it should be possible to observe the typical
Lorentzian peak characteristic of a resonator. This would allow us to state beyond
any doubt that a resonator, for example in a circuit QED experiment, is prepared in
the vacuum state. The scenario becomes more intriguing when the electromagnetic
resonator is substituted by a nanomechanical resonator with resonance frequency in
the microwave range, such as the dilatational disk resonators proposed and realized
in Refs. [429, 430]. In this case, Planck spectroscopy would allow us to demonstrate
the vacuum state of a nanomechanical system, which represents one of the holy grail
of the physics research in the past few years.

While characterizing our cross-correlation setup, we have also been able to study
the quantum properties of microwave beam splitters. First, we have developed a
theoretical model for the three-port beam splitter known as Wilkinson power divider.
We have shown that such a divider effectively behaves as if it were a four-port device.
We have shown that an input resistive impedance and the internal resistance of the
divider constitute two effective noise sources with amplitude A and B, respectively.
These amplitudes are linearly superposed by the splitter and, thus, at the splitter
output ports we find the sum and difference A + B and A − B. When correlating
the output signals, A + B and A − B, we simply obtain A2 − B2: The amplitude
squared associated with the first noise source cancels with the amplitude squared
associated with the second noise source. Because of a slight temperature difference
between the two noise sources, we effectively obtain a nonvanishing correlation,
A2 − B2 �= 0. By measuring such a correlation and fitting the results with our
theoretical model for the Wilkinson power divider, we have experimentally proven
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CHAPTER 9. SUMMARY AND OUTLOOK

the validity of the model. We have repeated similar experiments using four-port
beam splitters obtaining analogous results. These experiments reveal that in any
beam splitter, including so-called three-port dividers, there are always two intrinsic
noise sources at the input. In this sense, it is impossible, at least for the splitters
tested in our experiments, to realize a true three-port quantum-mechanical beam
splitter.

Note added in Fall 2010. We find remarkable that our work on cross-correlation
measurements has already prompted several other theoretical [431] and experimental
investigations [432].

Among the other results presented in this thesis, it is worth mentioning the
theoretical development of another class of two-resonator circuit QED applications.
In this class, one resonator (the quantum bus) is characterized by a high quality
factor and allows the realization of cavity QED experiments in the strong coupling
regime. The other resonator (the leaky cavity) has, instead, a low quality factor and
can be used to perform an independent dispersive read out of the qubit population.
A low quality factor, in fact, results in a fast measurement time, which constitutes
a highly desirable feature for quantum computing applications. In addition, the low
quality factor resonator can be used to perform full-state tomography of nonclassical
microwave fields prepared in the quantum bus.

Note added in Fall 2010. After the first submission of this thesis, two experi-
mental works on the coupling of a high and a low quality factor mode of the same
resonator [433] and of two distinct resonators have been reported [434].

We have also proposed an extension from a two-resonator to a multi-resonator
architecture, where the resonators form a two-dimensional pattern defined as cavity
grid. Such a grid has the advantage over linear implementations of circuit QED for
quantum computing purposes because it allows to scale the number of qubits with√
N instead of N . Hence, a large number of qubits can be positioned at the crossing

between two resonators on the grid. We have shown that all basic operations for
quantum computing can be realized on the grid and that the grid encompasses all
fundamental elements of a scalable fault-tolerant architecture.

Finally, we have studied theoretically and experimentally the two-photon driven
Jaynes-Cummings interaction in a circuit QED setup based on a flux qubit read out
by means of a DC SQUID. At the basis of such an interaction stands an upconver-
sion dynamics, where two incoming classical photons with half the qubit transition
frequency are transformed into a single quantum output photon at the qubit fre-
quency. This process, which has allowed us to prove experimentally the selection
rules and symmetry properties of a superconducting qubit, can serve as a means to
generate microwave single photons and squeezed states.

What Next?

We conclude this chapter with a “todo-list” of circuit QED, opening a window on
what we think are the next steps that should be pursued in the field:

1. A single photon detector at microwave frequencies has to be experimentally
developed. Such a photodetector is a necessary tool in most quantum comput-
ing architectures based on photonic qubits. Also, it is indispensable to have
a single photon detector for a deeper understanding of the quantum nature of
propagating microwave fields, which still represents a totally open topic;
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2. The work on phase-preserving and phase-sensitive (parametric) linear ampli-
fiers has to continue. This will allow us to further improve the readout of
superconducting qubits in circuit QED. The combination of quantum-limited
amplifiers and nonlinear readout based on bifurcation amplifiers will eventually
permit to reach qubit readout fidelities above 99%;

3. The coherence properties of superconducting qubits must be largely improved.
This is one of the weakest point of circuit QED. Increasing the qubit-resonator
coupling strength will help to realize many more quantum operations within
the same time. However, we truly believe that a novel qubit design is needed
in order to bring circuit QED to the next level of complexity;

4. The realization of multi-resonator architectures has to be pursued in order to
create an independent field of research with respect to quantum-optical cavity
QED;

5. The coupling of qubits to transmission lines instead of resonators also consti-
tute and intriguing path to follow.

We hope this thesis has served its purpose to show that circuit QED is an ex-
tremely interesting and highly interdisciplinary field of research, where a number of
doors is still open for further ground-breaking developments.
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Appendix A

The Noise Contribution of the
Cryogenic Circulators

In this Appendix, we show two set of experimental data on the noise contribution of
the cryogenic circulators to the measurement of the quantum-mechanical variance
of thermal/vacuum states as a function of temperature T (i.e., of the Planck distri-
bution). We focus on the case of a Wilkinson power divider used as a microwave
beam splitter.

The role played by the circulators in terms of added noise has already been ex-
plained in detail in chapter 3, Subsec. 3.2.1. In summary, the terminations ZLc at
port C of each circulator are heat sunk to the still stage of the dilution refrigerator.
Hereafter, we will assume ZLc = Z0. As indicated in the bottom part of Fig. 3.10,
the temperature TLc of the terminations ZLc, which is equivalent to the still temper-
ature, varies between approximately 450 and 500mK during the experiment. Such
a variation depends on the temperature T of the mixing chamber stage of the dilu-
tion refrigerator according to a nontrivial function which accounts for the heat flow
between the mixing chamber and the still stage,

TLc = fflow(T ) . (A.1)

During the experiments, we monitor both T and TLc at all times. This allows us to
obtain experimentally the function fflow.

In the classical limit, the resistive terminations ZLc at temperature TLc generate
an RMS thermal noise voltage

vck =
√
4kBTLcZLcBWk , (A.2)

which, recalling Eq. (A.1), corresponds to an available power

Πck =
v2ck
4Z0

= kBTLcBWk

= kBfflow(T )BWk . (A.3)

The power Πck generated by one of the two circulators follows, for example, the
path indicated by the solid red arrow in the bottom part of Fig. 3.10 until it gets
reflected by one of the output ports of the Wilkinson power divider [in this case, port
1 ≡ B; cf. also Fig. 3.1(a)]. At the same time, the power generated by the other
circulator follows the path indicated by the solid magenta arrow in the bottom
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Figure A.1: Temperature and frequency dependence of the noise power due
to the circulators obtained according to Eq. (A.6). Each face color of the full
circles is associated with a different LO frequency. The temperature depen-
dence is plotted backwards for a better visualization of the data. (a) Noise
power Pcircs,1 added to the signals on the first channel of the detection chain.
(b) Noise power Pcircs,2 added to the signals on the second channel of the
detection chain.
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APPENDIX A. THE NOISE CONTRIBUTION OF THE CRYOGENIC
CIRCULATORS

part of Fig. 3.10. Once it reaches the output port of the divider [in this case,
port 2 ≡ C; cf. also Fig. 3.1(a)], the power gets partially transmitted through
the divider into port B ≡ 1. In the bottom part of Fig. 3.10, the noise from the
first circulator reflected by the divider is indicated by a broken red arrow and the
noise from the second circulator transmitted through the divider is indicated by
a broken magenta arrow. Both these noise contributions go back into channel 1
of the detection chain (similar arguments apply for channel 2). The effect of the
reflection and transmission1 coefficients of the divider is to diminish significantly the
power Πck initially generated by the two circulators. As a consequence, we define a
coefficient δck which accounts for the effective contribution of the noise voltage due
to the circulators. At the output of either one of the two circulators we are left with
a power

Πout
ck = δ2ck Πck , (A.4)

which is then amplified along one of the two channels of the detection chain resulting
in a power Gk Π

out
ck at the input ports of the acquisition card.

Since we are dealing with thermal/vacuum states, the power Πck is a good ap-
proximation of the quantum-mechanical variance associated with the circulator noise
voltage [cf. Eq. (4.49) in chapter 4],

Πck ≈ σ̃2
ck = BWk σ̄

2
ck = BWk ς(TLc) , (A.5)

where σ̄2
ck is given by Eq. (4.59). The effective noise power generated by the circu-

lators after amplification can finally be written as

Pcircs,k = Gkδ
2
ckΠck . (A.6)

Figures A.1(a) and A.1(b) show a set of experimental data for the noise power
due to the circulators obtained according to Eq. (A.6). The noise power is plotted as
a function of the temperature of the primary noise source and of the LO frequency.
The primary noise source is represented by the resistive load at the input of the
Wilkinson power divider [cf. Fig. 3.1(b)]. Since such a load is thermalized to the
mixing chamber stage, in first approximation we can assume its temperature to be
the same as the mixing chamber temperature. Each face color of the full circles in the
figures is associated with a different frequency [same color coding as in Figs. 4.7(a)
and 4.7(c) of chapter 4]. The temperature dependence is plotted backwards for a
better visualization of the data. The frequency-dependent gains for each channel,
G1(ωLO) and G2(ωLO), are taken from Figs. 4.11(a) and 4.11(b), respectively. The
attenuation coefficient has been estimated in chapter 3, Subsec. 3.2.1 to be δck �
0.36 for the case of a Wilkinson power divider. It is worth comparing the results
for the effective noise power added by the circulators to the corresponding power
due solely to the thermal/vacuum states generated by the primary and secondary
noise sources at the divider input, which are reported in chapter 4, Figs. 4.7(a) and
4.7(c). Notably, the difference between the maximum and minimum noise power
due to the circulators ranges between approximately 1 and 3.3 nW depending on the
chosen LO frequency. In the case of the power due to the primary and secondary
noise sources, such a difference ranges between approximately 60 and 240 nW. This
clearly indicates that the temperature-dependent noise contribution originating from

1We remind that the transmission is equivalent to the isolation between the output channels C
and B of the divider.
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the circulators does not constitute an issue for our experiments, being the average
circulators noise power much smaller than the power we are interested in measuring.
In this sense, the approximation performed when deriving Eq. (4.90) is now justified
by experimental evidence.

In the experiments, the physics modeled by Eq. (4.90) can be obtained by sub-
tracting the noise power contribution due to the circulators from the raw variance
data expressed in units W. All data plotted and analyzed in chapter 4 have been
obtained in this way.
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Appendix B

The Polynomial Fitting Model

In chapter 4, Subsec. 4.3.2 we have mentioned that extracting the thermal-to-vacuum
state cross-over temperature by means of a simple polynomial fitting model is inade-
quate because of the ambiguity associated with such a simple fitting. An example of
polynomial fitting is shown in Fig. 4.6(a), where the horizontal and oblique dashed
red lines give the asymptotic behavior of a Planck distribution in the limits of low
and high temperature, respectively. The statement we have made in chapter 4 was
that the number of data points used to obtain the dashed red lines is totally arbi-
trary. In other words, we can choose as many points as we want in order to fit such
lines resulting in an arbitrary level for the horizontal line and in an arbitrary slope
for the oblique line. The horizontal line is fitted by means of a zero-order polynomial
fitting based on the first Nlow data points of the Planck distribution (i.e., the first
Nlow points from the left), whereas the oblique line is fitted by means of a first-order
polynomial fitting based on the last Nup data points of the Planck distribution (i.e.,
the first Nup points from the right). Hereafter, we assume Nlow = Nup = Npoly and
we refer to them as fitting points.

In this Appendix, we motivate the statement of arbitrariness of the polynomial
fitting model by investigating the dependence of the cross-over temperature ex-
tracted from the crossing between the horizontal and oblique lines as in Fig. 4.6(a),
but for three different sets of fitting points. Figures B.1(a), B.1(b), and B.1(c) show
three Planck spectroscopy measurements, where the fitted cross-over temperatures
indicated by open brown-red diamonds connected by a brown-red line are compared
to the theoretical cross-over temperature represented by a dashed white line. The
fitted cross-over temperatures of Figs. B.1(a), B.1(b), and B.1(c) are obtained for
Npoly = 4, 8, 12, respectively. The three figures clearly show that the fitted cross-over
temperatures vary arbitrarily as a function of the fitting points. The measurements
refer to channel 1. Similar results hold for channel 2 (data not shown). As a con-
sequence, we can conclude that the simple polynomial fitting model is an improper
method for analyzing our experimental results.
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Figure B.1: Planck spectroscopy: the arbitrariness of the polynomial fitting model.
Color-code plots of the red curves in Fig. 4.7(b). (a) Polynomial fitting for Npoly = 4,
(b) for Npoly = 8, and (c) for Npoly = 12.
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Appendix C

The Bin Average

In chapter 4, Subsec. 4.3.2, within the analysis of the Planck spectroscopy data,
we have described in detail the averaging method which leads to the results of
Figs. 4.7(a) and 4.7(c). Such results were obtained employing a so-called moving
average. The moving average allows us to average together many different traces
associated with the same LO frequency minimizing the temperature inhomogeneity
between the points of the different traces.1 This inhomogeneity owns its origin to
the time lag between the recording of such traces.

In this Appendix, we show an alternative method for the averaging of the different
traces of the Planck spectroscopy data: the bin average method. We make use of a
similar notation as in chapter 4, Subsec. 4.3.2. The bin average method is realized
as follows:

1. We first consider one LO frequency, (h). The Planck distribution associated
with such a frequency is measured p times. Henceforth, we assume the maxi-
mum number of measured traces to be pmax;

2. The minimum and maximum temperatures for the p-th trace are evaluated.
These are defined as Tmin

p and Tmax
p , respectively;

3. The total minimum and maximum temperatures for the set of measurements
associated with the h-th LO frequency are calculated as

Tmin
(h) = min{Tmin

p } , (C.1)

and

Tmax
(h) = max{Tmax

p } , (C.2)

for p = 1, 2, . . . , pmax;

1More in general, there are two different issues connected to the so-called downsweep measure-
ments. First, within each measured trace the temperature spacing is uneven due to the different
response of the cooling power of the cryostat at different temperatures. Second, the tempera-
tures are inhomogeneously distributed between traces measured at different times. All averaging
methods explained in this thesis try to cope with both issues. In the experiments, we have tried
to perform so-called upsweep measurements (data not shown), where the Planck distribution is
measured for a limited set of temperatures which are well stabilized. The drawback of this method
is that is very slow and, thus, does not allow to measure many temperature points.
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APPENDIX C. THE BIN AVERAGE

4. The width ΔTbin of one temperature bin is set. This represents the desired
temperature spacing of the final trace resulting from the averaging method.
The number of bins for the h-th LO frequency is obtained as

Nbin =

⌊
Tmax
(h) − Tmin

(h)

ΔTbin

⌋
; (C.3)

5. For every trace p, the temperature corresponding to each point x
(h)
i of the

trace is compared to the lower, T low
binj, and upper, T up

binj, temperatures of the
j-th temperature bin. The upper and lower temperatures are given by

T low
binj = Tmax

(h) − jΔTbin , (C.4)

and
T up
binj = Tmax

(h) − (j − 1)ΔTbin , (C.5)

where j = 1, 2, . . . , Nbin. All points x
(h)
i the temperature of which lies within

the range comprised between T low
binj and T

up
binj are averaged together resulting in

one single point
y
(h)
j . (C.6)

The effective temperature associated with this point is simply the average
temperature of the j-th temperature bin,

T binj =
T low
binj + T up

binj

2
. (C.7)

In this way, each trace {x(h)i }p is reduced to a new trace {y(h)j }p with fewer
data points, which are now equally spaced in temperature;

6. This procedure is repeated for all traces p, until pmax. The so-obtained {y(h)j }p
traces are all equally spaced in temperatures and can homogeneously be aver-
aged together,

{y(h)j } =
1

p

pmax∑
p=1

{y(h)j }p . (C.8)

All traces displayed in Figs. C.1(a) and C.1(c) are obtained following the recipe
given above. In this case, pmax = 4 and ΔTbin = 15mK. The exact number of
temperature bins, Nbin, varies depending on which LO frequency is considered. In
the case of Fig. C.1, Nbin varies between 25 and 27. Figures C.1(b) and C.1(d) show
the same data as in Figs. C.1(a) and C.1(c). The red lines overlaid to the data
are fitted curves obtained from the three-parameter fitting model (cf. chapter 4,
Subsec. 4.3.2). The fitting allows us to extract for each channel k of the detection
chain an ηk as a function of the LO angular frequency ωLO.

2 From the knowledge
of ηk we can then compute the corresponding measured cross-over temperature by
means of Eq. (4.96). Figures C.2(a) and C.2(b) show the frequency dependence of

2We remind that the ηk are obtained by substituting η → ηk in Eq. (4.98), where the η were ini-
tially assumed to be channel-independent, an assumption that turned out not to be experimentally
confirmed.
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Figure C.2: Summary of the cross-over temperatures estimated from the
three-parameter fitting model [cf. Eq. (4.98)] for channels 1 and 2 as a func-
tion of the LO angular frequency ωLO. Dark blue diamonds: data points
for the cross-over temperatures obtained from Eq. (4.96) using the channel-
dependent ηk (here, η → ηk) fitted from Eq. (4.98). The confidence bounds
are indicated. Solid red lines: linear fits to data. Dashed red lines: frequency
dependence of the theoretical cross-over temperature associated with the vac-
uum. (a) Results for channel 1. (b) Results for channel 2. The data used for
the fittings were obtained employing the bin average method.
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APPENDIX C. THE BIN AVERAGE

the measured cross-over temperature (dark blue diamonds) for the two channels of
the detection chain, respectively. The solid red lines are obtained by means of a
linear fit to the data, while the dashed red lines represent the theoretical cross-over
temperature. It is worth comparing these results with those shown in chapter 4,
Figs. 4.12(a) and 4.12(b). Focusing on the results for channel 1 only (similar argu-
ments are valid for channel 2), we notice that in the case of the bin average method
the measured cross-over temperatures deviate from the theory more than in the case
of the moving average method. The reason behind this difference is due to the larger
loss of data points when performing the bin average as compared to the moving av-
erage. However, according to the bin average method the fitted η is always positive
(at least for channel 1) and it is visibly less dependent on frequency, as expected
from our model.

In summary, we find a slight dependence of the downsweep measurements on
the averaging method employed to analyze the data. This fact reveals that further
studies should be made in order to more clearly understand the validity of our three-
parameter fitting model. However, it seems that in general our model can explain
reasonably well the basic features of the Planck spectroscopy data.
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Appendix D

Higher-Order Corrections to the
Capacitance and Inductance
Matrices

In chapter 5, Subsec. 5.1.2, we have accounted for corrections up to second-order
capacitive and inductive interactions between the elements of a three-node network.
We have shown that for a three-node network the geometric second-order coupling
coefficients can dominate over the first-order ones. For this reason, in the following
we can safely assume vanishing first-order coupling coefficients, c = m = 0. Nev-
ertheless, we notice that our results would not be qualitatively affected even in the
presence of appreciable first-order couplings.

In this Appendix, we demonstrate that third- and fourth-order capacitances and
inductances are negligible. We start with the case of third-order corrections. There
are two possible excitation pathways giving rise to third-order coupling coefficients.
These pathways are between resonator A and qubit Q, A-Q-B-Q, or between res-
onator B and qubit Q, B-Q-A-Q. Assuming the two resonators to have identical
properties, we only study the A-Q-B-Q pathway. In this case, from the knowledge
of the electromagnetic energy we can derive

Ĥ
(3)
AQ = V̂ACAQV̂Q + ÎAMAQÎQ

+ V̂ACAQ

1

CQQ

CQB

1

CBB

CBQV̂Q

+ ÎAMAQ

1

MQQ

MQB

1

MBB

MBQÎQ , (D.1)

where the inverse paths Q-A and Q-B-Q-A are already included. In the equation
above, resonator B is only virtually excited. In the same equation, we identify the
capacitance and inductance matrix elements up to third order

C
(3)
AQ ≡ CAQ

(
1 +

C2
QB

CQQCBB

)
(D.2)

and

M
(3)
AQ ≡MAQ

(
1 +

M2
QB

MQQMBB

)
. (D.3)
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In circuit theory, it is well-known that the squares of the electromagnetic coupling
coefficients are C2

QB/CQQCBB < 1 and M2
QB/MQQMBB < 1 [264]. This implies that

the pure third-order capacitance and inductance are always smaller than the first-
order ones, C

(3)
AQ − CAQ < CAQ and M

(3)
AQ −MAQ < MAQ. For typical experimental

parameters, we find third-order processes to be negligible, C
(3)
AQ − CAQ � CAQ and

M
(3)
AQ−MAQ �MAQ. For example, using the parameters given in chapter 5, Sec. 5.4

yields M2
QB/MQQMBB � 7.88× 10−4 � 1.

In a similar way, the fourth-order coupling coefficients for the excitation pathways
A-Q-B-Q-B and, equivalently, B-Q-A-Q-A can easily be found. In this case, it is the
qubit to be only virtually excited. The capacitance and inductance matrix elements
up to fourth order become

C
(4)
AB ≡

CAQCQB

CQQ

(
1 +

C2
QB

CQQCBB

)
(D.4)

and

M
(4)
AQ ≡

MAQMQB

MQQ

(
1 +

M2
QB

MQQMBB

)
. (D.5)

When comparing the above equations to Eqs. (D.2) and (D.3), respectively, we find
that fourth-order processes are negligible for typical experimental parameters.

In the light of all these considerations, all higher-order coupling coefficients can
safely be ignored in two-resonator circuit QED.
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Appendix E

Details of the FASTHENRY
Simulations

In this Appendix, we discuss the details of our FASTHENRY simulations [364].
First, we verify our hypothesis on the uniformity of the AC currents (corresponding
to the magnetic fields) flowing on the resonators in the regions of Figs. 5.12(b) and
5.12(c) in chapter 5. To this end, we derive the quantized current on one of the two
resonators (e.g., A) following similar calculations as in Refs. [131] and [289]

Îra (z, t) ≡ iA0 cos

(
πz

�m

)
j
[
â† (t)− â (t)

]
, (E.1)

where z represents a coordinate along the longitudinal direction of the resonator
[see Fig. 5.12(c)] and t is the time. In Eq. (E.1), the bosonic field operators are
expressed in the Heisenberg picture. We notice that Eq. (E.1) is valid for the first
mode of the λ/2 resonator(s) considered in our example. The contribution from the
second mode is negligible for two main reasons. First, the current is characterized
by a node at the flux qubit loop position chosen here. Second, the qubit-resonator
detuning becomes substantially larger, hence resulting in a correspondingly reduced
coupling. The contribution form higher modes can also be neglected because of the
increasing detuning.

Substituting the numbers of Table 5.1 into Eq. (E.1) and setting z = ∓�sim/2, we
find that the two currents at the boundaries ∓�sim/2 are about 0.998iA0, where iA0

is the maximum amplitude of the quantized current in Eq. (E.1). This maximum
is obtained at the position z = 0 of the mode antinode. The main implications of
current uniformity over �sim are explained in detail in Sec. 5.4. In a similar way,
we can also estimate the voltage contribution for the first mode at the boundaries
∓�sim/2. In this case, we must replace the cosine function of Eq. (E.1) with a
sine function, owing to the conjugation of quantized currents and voltages. The
maximum vacuum voltage of, e.g., resonator A is given by vA0 ≡

√
�ωA/2Cra �

0.5871μV for the realistic parameters of Table 5.1. At ∓�sim/2, we then obtain the
maximum voltages in the simulated regions, which are approximately ∓0.065vA0.
Towards the center of the simulated regions the voltage reduces to zero because
its corresponding first mode is characterized by a node. Also, higher modes do
not contribute for the same detuning arguments outlined above. Therefore, we can
safely neglect all capacitive couplings in our simulations.

Second, we notice that �sim = 500μm is chosen to be large enough compared
to the lateral dimension lq1 = 200μm of the flux qubit loop [see Figs. 5.12(a)-(c)].
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This avoids errors due to fringing effects when simulating the coupling coefficients
between qubit and resonators. For consistency, we have also performed several
simulations assuming larger values of �sim, up to 1-1.5mm (data not shown). We
have not found any appreciable deviation in the resulting inductances.

Third, we stress that special care has to be taken when using FASTHENRY
to simulate the second-order inductances of our three-circuit network. In order
to compute the inductance matrix, test currents must be applied to the involved
structures at specific probing ports. However, when applying test currents to all
three circuits simultaneously, only first-order inductances are calculated. This is due
to the boundary conditions that must be fulfilled at the probing ports. This fact
has important implications for the calculation of the mutual inductance m̃, which
is the sum of first- and second-order mutual inductances between resonators A and
B. In this case, it is crucial to apply test currents only to the two resonators, but
not to the qubit circuit. On the contrary, the pure first-order mutual inductance m
between A and B can be simulated in two equivalent ways: Either the qubit circuit
is completely removed from the network or test currents are applied to all three
structures. We do not notice any difference between these two approaches. The
above arguments also apply to the calculation of the renormalized self-inductances
L̃∗
ra and L̃∗

rb of the two resonators and their pure counterparts L∗
ra and L∗

rb.
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(Wiley-Interscience, New York, 1977).

[230] B. D. Josephson, Coupled Superconductors, Rev. Mod. Phys. 36, 216 (1964).

[231] B. D. Josephson, The Discovery of Tunnelling Supercurrents, Rev. Mod. Phys.
46, 251 (1974).

[232] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect,
(Wiley-VCH, New York, 1982).

[233] K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and
J. M. Martinis, Conducting Atomic Force Microscopy for Nanoscale Tunnel
Barrier Characterizaton, Rev. Sci. Instrum. 75, 2726 (2004).

[234] S. Oh, K. Cicak, R. McDermott, K. B. Cooper, K. D. Osborn, R. W. Sim-
monds, M. Steffen, J. M. Martinis, and D. P. Pappas, Low-Leakage Supercon-
ducting Tunnel Junctions with a Single-Crystal Al2O3 Barrier, Superconductor
Science and Technology 18, 1396 (2005).

[235] R. W. Simmonds, D. A. Hite, R. McDermott, M. Steffen, K. B. Cooper,
K. M. Lang, J. M. Martinis, and D. P. Pappas, Junction Materials Research
using Phase Qubits, in Quantum Computing in Solid State Systems edited by
P. Delsing, C. Granata, Yu. Pashkin, B. Ruggiero, and P. Silvestrini, (Springer,
New York, 2005).

[236] J. S. Kline, H. Wang, S. Oh, J. M. Martinis, and D. P. Pappas, Josephson
Phase Qubit Circuit for the Evaluation of Advanced Tunnel Barrier Materials,
Superconductor Science and Technology 22, 015004 (2009).

[237] J. M. Martinis, Superconducting Phase Qubits, Quantum Information Pro-
cessing 8, 81 (2009).

[238] P. G. De Gennes, Superconductivity Of Metals And Alloys (Advanced Book
Program, Perseus Books, Reading, 1999).

[239] J. Clarke and A. I. Braginski (Eds.), The SQUID Handbook - Vol. I Funda-
mentals and Technology of SQUIDs and SQUID Systems, (Wiley-VCH Verlag,
GmbH & Co. KGaA, Weinheim, 2004).

365



BIBLIOGRAPHY

[240] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Quan-
tum Superposition of Distinct Macroscopic States, Nature (London) 406, 43
(2000).

[241] K. W. Lehnert, B. A. Turek, K. Bladh, L. F. Spietz, D. Gunnarsson, P. Delsing,
and R. J. Schoelkopf, Quantum Charge Fluctuations and the Polarizability of
the Single-Electron Box, Phys. Rev. Lett. 91, 106801 (2003).

[242] J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. Os-
born, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, Deco-
herence in Josephson Qubits from Dielectric Loss, Phys. Rev. Lett. 95, 210503
(2005).

[243] J. Koch, T. M. Yu, J. M. Gambetta, A. A. Houck, D. I. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge Insensitive
Qubit Design from Optimizing the Cooper-Pair Box, Phys. Rev. A 76, 042319
(2007).

[244] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson,
J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Suppressing Charge Noise Decoherence
in Superconducting Charge Qubits, Phys. Rev. B 77, 180502(R) (2008).

[245] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and
S. Lloyd, Josephson Persistent-Current Qubit, Science 285, 1036 (1999).

[246] S. Sendelbach, D. Hover, A. Kittel, M. Mueck, J. M. Martinis, and R. McDer-
mott, Magnetism in SQUIDs at Millikelvin Temperatures, Phys. Rev. Lett.
100, 227006 (2008).

[247] R. H. Koch, D. P. DiVincenzo, and J. Clarke, Model for 1/f Flux Noise in
SQUIDs and Qubits, Phys. Rev. Lett. 98, 267003 (2007).

[248] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Decoher-
ence of a Superconducting Qubit from Bias Noise, Phys. Rev. B 67, 094510
(2003).

[249] R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, and J. M. Martinis,
Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev.
Lett. 93, 077003 (2004).

[250] R. C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero,
M. Neeley, A. D. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, 1/f
Flux Noise in Josephson Phase Qubits, Phys. Rev. Lett. 99, 187006 (2007).

[251] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero,
A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Transformed Dis-
sipation in Superconducting Quantum Circuits, Phys. Rev. B 77, 180508(R)
(2008).

[252] A. D. O’Connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz,
E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland,

366



BIBLIOGRAPHY

and J. M. Martinis, Microwave Dielectric Loss at Single Photon Energies and
milliKelvin Temperatures, Appl. Phys. Lett. 92, 112903 (2008).

[253] J. M. Martinis, M. Ansmann, and J. Aumentado, Energy Decay in Josephson
Qubits from Non-Equilibrium Quasiparticles, Phys. Rev. Lett. 103, 097002
(2009). Cf. also the eprint supplement arXiv:0904.2035 or
http://ftp.aip.org/epaps/phys rev lett/E-PRLTAO-103-
051936/QPtheoryPE3.pdf .

[254] J. Lisenfeld, A. Lukashenko, M. Ansmann, J. M. Martinis, and A. V. Ustinov,
Temperature Dependence of Coherent Oscillations in Josephson Phase Qubits,
Phys. Rev. Lett. 99, 170504 (2007).

[255] C. Song, T. W. Heitmann, M. P. DeFeo, K. Yu, R. McDermott, M. Neeley,
J. M. Martinis, and B. L. T. Plourde, Microwave Response of Vortices in
Superconducting Thin Films of Re and Al, Phys. Rev. B 79, 174512 (2009).

[256] D. J. Van Harlingen, B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, and
J. Clarke, in Quantum Computing and Quantum Bits in Mesoscopic Systems,
edited by A. Leggett, B. Ruggiero, and P. Silvestrini, p. 171, Proceedings of
the 3rd International Workshop on Quantum Computing, June 3-7 2002 Città
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Zeno Physics in Ultrastrong-Coupling Circuit QED, Phys. Rev. A 81, 062131
(2010).

[274] Q.-H. Chen, L. Li, T. Liu, K.-L. Wang, Theory of Spectrum in Qubit-Oscillator
Systems in the Ultrastrong Coupling Regime, eprint arXiv:1007.1747 (unpub-
lished).

[275] J Hausinger and M. Grifoni, The Qubit-Oscillator System: An Analytical
Treatment of the Ultra-Strong Coupling Regime, eprint arXiv:1007.5437, (un-
published).

[276] J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and E. Solano,
Deep Ultrastrong Coupling Regime of the Jaynes-Cummings Model, eprint
arXiv:1008.1240 (unpublished).

[277] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz,
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T. Niemczyk, E. Hoffmann, A. Marx, E. Solano, and R. Gross, Dual-Path State
Reconstruction Scheme for Propagating Quantum Microwaves and Detector
Noise Tomography, Phys. Rev. Lett. 105, 100401 (2010);

13. M. Mariantoni, E. P. Menzel, F. Deppe, M. Á. Araque Caballero, A. Baust,
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