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Abstract

The work presented in thesis constitutes an important contribution to the flourish-

ing field of quantum microwave photonics. Quantum states of microwave light are

prepared applying Josephson-junction-based superconducting circuits. In order to

avoid thermal excitations at gigahertz frequencies, temperatures of a few tens of

millikelvins are obligatory for experiments with propagating quantum microwaves.

In addition to demanding cryogenics, superconducting micro- and nanocircuits, ad-

vanced microwave technology, and realtime data processing present substantial chal-

lenges. In this work, we get over several hurdles to master these challenges. In

particular, we illuminate the rich physics of propagating quantum microwaves with

a novel characterization technique developed in this thesis: the dual-path state re-

construction method. To this end, we develop the theoretical foundations of this

method, present its implementation and demonstrate its applicability. To gain more

insight into the quantum noise properties of microwave beam splitters, which are

key components of the dual-path method, we investigate thermal states and perform

Planck spectroscopy. Aiming at the generation of non-classical states, we then char-

acterize the amplification, squeezing and noise properties of a Josephson parametric

amplifier (JPA). Applying the dual-path method, we reconstruct the squeezed vac-

uum, squeezed thermal and squeezed coherent states generated by the JPA and

perform a detailed analysis of the squeezing physics. Finally, we make first steps

towards the implementation of quantum information processing and communication

protocols in the microwave domain by superposing the non-classical squeezed state

with the vacuum at a beam splitter to prepare path entanglement. We detect and

quantify the entanglement by directly investigating the correlations between the mi-

crowave signals propagating along spatially separated paths. We emphasize that

the observed entanglement can easily be distributed. In contrast to other work, the

frequency of the microwaves propagating along the two paths is degenerate and our

entangler and detector are based on different experimental techniques.





Kurzzusammenfassung

Die vorgelegte Dissertation stellt einen wichtigen Beitrag zu dem aufstrebenden

Forschungsgebiet der Quantenmikrowellenphotonik dar. Quantenzustände des Mi-

krowellenlichts werden mittels supraleitender Schaltkreise, welche auf Josephson-

Kontakten basieren, präpariert. Um thermische Anregungen bei Gigahertzfrequen-

zen zu vermeiden sind Temperaturen von einigen zehn Millikelvin unerlässlich für

Experimente mit propagierenden Quantenmikrowellen. Zusätzlich zur anspruchsvol-

len Kryotechnik stellen supraleitende Mikro- und Nanoschaltkreise, hochentwickelte

Mikrowellentechnologie und Datenverarbeitung in Echtzeit die wesentlichen Heraus-

forderungen dar. In dieser Arbeit unternehmen wir wichtige Schritte um diese An-

forderungen zu meistern. Insbesondere beleuchten wir die reichhaltige Physik pro-

pagierender Quantenmikrowellen mit einem von uns entwickelten neuartigen Cha-

rakterisierungsverfahren, der Zweipfadmethode zur Zustandsrekonstruktion. Hierzu

entwickeln wir die theoretischen Grundlagen dieser Methode, stellen ihre Implemen-

tierung dar und demonstrieren ihre Anwendung. Um mehr Einblick in die Quan-

tenrauscheigenschaften von Mikrowellenstrahlteilern, die eine zentrale Komponente

der Zweipfadmethode sind, zu erlangen untersuchen wir thermische Zustände und

wenden Planckspektroskopie an. Mit der Zielsetzung nichtklassische Zustände zu

generieren, charakterisieren wir die Verstärkungs-, Quetsch- und Rauscheigenschaf-

ten eines Josephson parametrischen Verstärkers. Unter Verwendung der Zweipfad-

methode rekonstruieren wir gequetschte Vakuumzustände, gequetschte thermische

und gequetschte kohärente Zustände, die wir mit dem Josephson parametrischen

Verstärker erzeugen, und analysieren im Detail die Physik des Quetschens. Schließ-

lich unternehmen wir erste Schritte im Hinblick auf die Implementierung von Proto-

kollen der Quanteninformationsverarbeitung und Quantenkommunikation im Mikro-

wellenbereich, indem wir nichtklassische gequetschte Zustände und Vakuumzustände

in einem Strahlteiler überlagern um eine Verschränkung zu präparieren. Wir detek-

tieren und quantifizieren die Verschränkung durch die direkte Untersuchung von

Korrelationen zwischen den Mikrowellensignalen, die entlang räumlich getrennter



Pfade propagieren. Wir betonen, dass die Verschränkung leicht verbreitet werden

kann. Gegenüber anderen Arbeiten ist die Frequenz der Mikrowellen, die entlang

der zwei Pfade propagieren, entartet und der von uns verwendete Detektor basiert

auf einer anderen experimentellen Technik als der Verschränker.
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Chapter 1

Introduction

Over the last few years, the investigation of the quantum properties carried by prop-

agating microwave fields has evolved into a highly active research area [1]. While the

accurate reconstruction of the involved quantum states is obviously of fundamen-

tal interest, propagating microwave fields are now more generally being considered

as promising candidates for the processing and exchange of quantum information.

These two tasks, which are designated quantum computing and quantum commu-

nication [2], aim at exploiting the fascinating features of quantum mechanics to

improve the already impressive capabilities of today’s classical information process-

ing and communication systems beyond fundamental limitations [3–5].

For microwave fields confined to small regions of space, there has been signifi-

cant progress towards the construction of a quantum information processor in the

last decade. More precisely, proof-of-principle quantum information architectures

were realized at the level of a few superconducting quantum bits and resonators

with transition frequencies of a few gigahertz [6–11]. Propagating microwave fields

however, are so far restricted to classical applications. Nevertheless, these applica-

tions are closely related to cornerstones of modern communication such as wireless

networks, mobile communication, or the clocks for processing units. Propagating

quantum microwaves now promise to provide a technological link between classical

microwave-based information processing and superconducting quantum processors.

Our work represents an important contribution to the flourishing field of quan-

tum microwave photonics [1]. Quantum states of microwave light are prepared

applying Josephson-junction-based superconducting circuits [12–14]. For instance,

circuit quantum electrodynamic (QED) systems combine the large dipole moments

of macroscopic artificial atoms [7, 15, 16] with the enhanced field strengths in one-

dimensional transmission line resonators to achieve strong interactions between mi-

1



2 1. Introduction

crowave light and matter [6, 17–19]. While there is a close analogy to quantum-

optical cavity QED1 [4], a regime with a light-matter interaction of unprecedented

strength at the single-atom-single-photon level has become accessible in circuit

QED [22].

The most relevant quantum circuit in this work is a Josephson parametric am-

plifier (JPA) which can generate non-classical microwave states. The physics of

this device is described by the interaction of a microwave field with a non-linear

medium [23] or, equivalently, as a resonator whose frequency is varied rapidly result-

ing in parametric effects. JPAs can squeeze input states in a way that the quantum

noise along a certain direction in phase space is below that of the vacuum [24, 25].

Squeezed states with this property are non-classical [26] and represent key elements

of quantum information processing and communication (QIPC) protocols [27].

The intra-cavity field inside the JPA is transformed into a propagating mode

by simply leaking into an open transmission line [28]. Alternatively, matter can be

directly coupled to the continuum of the electromagnetic field in an open transmis-

sion line. For example, a single artificial atom coupled strongly to a transmission

line scatters coherent states and reflects them back at resonance [29, 30] provid-

ing non-classical microwave fields [31]. This system also forms the basis for fast

microwave switches [30, 32] and microwave amplification by stimulated emission of

radiation [33]. By terminating a transmission line with a superconducting quantum

interference device and pumping the latter with a microwave tone the dynamical

Casimir effect has been observed [34].

Many of the results above were realized in continuous-variable systems. Proto-

typical examples for continuous variables (CV) are the position and momentum of

a particle. For quantum microwaves, these conjugate variables correspond to field

quadratures representing the real and imaginary part of the complex field amplitude.

CVs can be exploited to encode quantum information in QIPC protocols [5]. Follow-

ing this approach, quantum key distribution [35,36], quantum teleportation [37–39],

preparation of distant entangled atomic ensembles [40] and quantum memory [41]

have been demonstrated in the optical regime. However, in the microwave realm

the realization of QIPC protocols based on CV still represents an open issues. En-

tanglement is at the heart of these quantum technologies. We note that it must

occur between spatially separated subsystems in order to be a resource in quantum

communication protocols [3].

1Serge Haroche from Laboratoire Kastler Brossel de l’Ecole Normale Supérieure and Collège de
France has been awarded with the Nobel Prize in 2012 for the quantum non-demolition detection
of intra-cavity microwaves with flying atoms [20,21].



3

For the investigation of quantum properties, the measurement process is of cen-

tral relevance. The reconstruction of quantum states is referred to as tomography.

Part of the work presented in this thesis has laid the foundations for the tomography

of propagating quantum microwaves, which has become an independent, exciting re-

search area. In addition, other groups actively contributed to this field [13,28,42–45].

Although the reconstruction of intra-cavity fields in the microwave regime is well es-

tablished [14,46], the applied technique can not be adapted for propagating quantum

microwaves. Similarly, schemes for the quantum state reconstruction of propagating

light modes [47–49] such as optical homodyning fail in the microwave realm due to

the lack of efficient photon detectors. Despite notable progress from theoretical pro-

posals [50–54] to first experimental realizations [55] of microwave photon detectors,

they still lack number resolution, which is a prerequisite for optical homodyning.

The reason for this is the small energy scale of microwave photons which is five or-

ders of magnitude below that of visible light. The equivalent power in a megahertz

bandwidth of microwave signals on the single-photon level is a few attowatts and,

consequently, the detection requires amplification. However, the unavoidable noise

added by commercially available amplifiers obscures the tiny quantum signals. We

want to note that until 2010, no experimental ansatz to this problem existed. One

strategy is to minimize the added amplifier noise by using JPAs in the phase-sensitive

operation mode [56]. In contrast, our approach is to use off-the-shelf amplifiers and

to apply signal reconstruction techniques. To this end, we have developed the dual-

path state reconstruction scheme [57] which empowers us to characterize quantum

states in the presence of considerable amplifier noise with linear detectors. At the

same time, it allows us to reconstruct the amplifier noise.

In order to avoid thermal excitations at gigahertz frequencies temperatures of

a few tens of millikelvins are obligatory for experiments with propagating quan-

tum microwaves. In addition to demanding cryogenics, superconducting micro- and

nanocircuits, advanced microwave technology, and realtime data processing present

substantial challenges. In this work, we get over several hurdles to master these

challenges. In particular, we illuminate the rich physics of propagating quantum

microwaves with a novel characterization technique developed in this thesis: the

dual-path state reconstruction method [57]. To this end, we develop the theoret-

ical foundations of this method, present its implementation and demonstrate its

applicability. To gain more insight into the quantum noise properties of microwave

beam splitters, which are key components of the dual-path method, we investi-

gate thermal states and perform Planck spectroscopy [58]. Aiming at the genera-
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tion of non-classical states, we then characterize the amplification, squeezing and

noise properties of a JPA [59]. Applying the dual-path method, we reconstruct the

squeezed vacuum, squeezed thermal and squeezed coherent states generated by the

JPA [59] and perform a detailed analysis of the squeezing physics. Finally, we make

first steps towards the implementation of QIPC protocols in the microwave domain

by superposing the non-classical squeezed state with the vacuum at a beam splitter

to prepare path entanglement [60,61]. We detect and quantify the entanglement by

directly investigating the correlations between the microwave signals propagating

along spatially separated paths. We emphasize that the observed entanglement can

easily be distributed. In contrast to other work [62], the frequency of the microwaves

propagating along the two paths is degenerate and our entangler and detector are

based on different experimental techniques.

The thesis is structured in the following way. In chapter 2, we introduce propa-

gating classical and quantum microwaves and develop the theoretical foundations of

the dual-path state reconstruction method and the entanglement detection. Next,

we present the experimental techniques in chapter 3. In chapter 4, we discuss the

detection of weak propagating microwaves. Chapter 5 focuses on the generation of

squeezing using a JPA, the state reconstruction of various squeezed states and the

generation and detection of path entanglement. Finally, we conclude our work and

give an outlook in chapter 6.



Chapter 2

Propagating classical and quantum

microwaves

In this chapter, we introduce the theoretical foundations of our work. First, we con-

sider single-mode microwave states and their reconstruction. We begin with different

descriptions of quantum microwaves and give examples for common and important

states. Next, we develop the theory of the dual-path state reconstruction method

providing, in principle, access to all statistical moments of the signal. Following the

chronological evolution of our work, we start with a classical treatment and then

generalize for quantum states. Subsequently, we show how one can retrieve the

Wigner function from the reconstructed moments.

Second, we investigate correlations between two spatially separated modes which

enables us to study path entanglement. Therefore, we describe the generation of

path entanglement using a beam splitter. In what follows, we discuss the detection of

path entanglement by introducing the reference-state method and an entanglement

witness. Finally, we treat the negativity as a measure of entanglement for Gaussian

states.

2.1 Classical representation of microwave states

In general, microwaves are electromagnetic fields with a free-space wavelength be-

tween 1 m and 1 mm corresponding to frequencies between 300 MHz and 300 GHz [63].

In our case, we focus on frequencies in the range from 4 to 12 GHz, a part of the

centimeter band. In our work, we consider itinerant microwaves which propagate in

free space or along transmission line structures such as coaxial cables or coplanar

wave guides. In general, the electromagnetic fields are governed by Maxwell’s equa-

5



6 2. Propagating classical and quantum microwaves

tions and the boundary conditions. However, when measuring microwave signals

it is sufficient to consider terminal quantities such as current or voltage and one

detects a time varying signal a(t), which can be decomposed into its in-phase and

out-of-phase quadrature components, I(t) and Q(t), respectively. In other words,

a(t) = I(t) cos(2πft) +Q(t) sin(2πft), (2.1)

where f denotes the carrier frequency. For monochromatic microwaves such as those

generated by a microwave source without any modulation present, the quadratures

are constant. For signals whose bandwidth is much smaller than the carrier fre-

quency, as it is relevant in our case, the quadratures are slowly varying on a time

scale inversely proportional to the bandwidth and describe the envelope of the fast

varying microwave signal. Technically speaking, the detection of this envelope is

less demanding than the direct detection of the microwave tone itself. Furthermore,

as the bandwidth of our signals is less than one per cent of the carrier frequency we

can consider these signals as IQ modulated signals. Finally, we want to note that

microwaves propagating along quasi one-dimensional transmission line structures

used in superconducting microwave devices do not possess a polarization degree of

freedom.

2.2 Quantum representations of microwave states

In this section, we give a short overview on different ways to describe single-mode

quantum microwaves. Since our object of study is, in principle, light with frequencies

in the gigahertz regime, we revert to a quantum-optical formalism. Furthermore, as

the bandwidth of our signals is less than one per cent of the carrier frequency we

can treat them as single modes. In the following, we present three equivalent rep-

resentations of a quantum state, which have the same information content: density

operator, quasi-classical distributions, and statistical moments.

2.2.1 Density operator

The density operator allows for a general description of fluctuation phenomena [64].

Among these are non-quantum stochastic effects such as thermal fluctuations as well

as effects that do not have a classical analogon, such as vacuum fluctuations. The
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density operator is defined as a convex sum of state projectors,

ρ̂ =
∑

Ψ

PΨ|Ψ〉〈Ψ| , (2.2)

where PΨ is the probability to be in the state |Ψ〉. Via the trace one retrieves the

expectation value of any field operator 〈Ô〉= Tr(Ôρ̂). A complete set often used

to represent the density operator is the Fock or number state basis. The density

operator is normalized, i.e., Tr(ρ̂)=1.

2.2.2 Quasi-probability distributions

The state of a classical system is represented by a point in phase space, which is

spanned by Hermitian conjugate variables. In the case of an electromagnetic field

mode which is described by a harmonic oscillator these coordinates are q and p.

The quantity P (q, p)dqdp is the probability to find the system in the phase space

volume around the point (q,p), thus defining P (q, p) as a probability density function.

Whereas in classical physics the system state is represented by a well-defined point

(q,p) in phase space, this is no longer the case for quantum systems because the

Heisenberg uncertainty relation

∆q∆p ≥ 1

4
(2.3)

prohibits the exact knowledge of q and p at the same time. Therefore, the concept of

probability density was extended to quasi-probability distributions. The latter lack

some properties of ordinary probability density functions such as positiveness [49].

Nevertheless, these quasi-probability distributions are rather useful as we will see in

the following sections.

The first quasi-probability distribution was introduced by Wigner [65]. However,

we will define the Wigner function using a more modern approach following the

presentation in Ref. [66] based on the characteristic function [67]. To this end,

we introduce the displacement operator D̂(α)≡ exp[αâ†−α∗â], where â and â† are

the annihilation and creation operators obeying the bosonic commutator relation

[â, â†]=1 and α is the complex amplitude. The expectation value of the displacement

operator is known as the symmetrically ordered characteristic function

ξ(η) = Tr{ρ̂D̂(η)} = Tr{ρ̂eηâ
†−η∗â} , (2.4)

where η is a complex-valued variable. The characteristic function uniquely deter-
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mines the density operator ρ̂. The Wigner function is represented as the Fourier

transform of the characteristic function ξ(η)

W (α) =
1

π2

∫
exp(η∗α− ηα∗)ξ(η) d2η. (2.5)

The Wigner function is well defined but it can become negative. When we introduce

generalized quadrature operators

X̂θ=q̂ cos θ+p̂ sin θ (2.6)

and make use of the relation X̂θ=(â†eiθ+âe−iθ)/2, we retrieve the quadrature oper-

ators

q̂ =
â+ â†

2
and p̂ =

1

i

â− â†

2
. (2.7)

Here, i is the imaginary unit and the eigenstates of q̂ and p̂ are denoted as |q〉 and

|p〉. Next, we rewrite Eq. (2.5) in terms of the phase space variables q and p

W (q, p) = W (α)|α=q+ip. (2.8)

An alternative definition of the Wigner function is given by [49,65]

W (q, p) =
1

2π

∫ ∞
−∞
〈q − ζ/2|ρ̂|q + ζ/2〉eipζdζ , (2.9)

where ζ is a real-valued integration variable. In Ref. [68] it is shown that both

definitions are identical. The Wigner function is normalized∫ ∞
−∞

∫ ∞
−∞

W (q, p) dq dp = 1 (2.10)

and real valued for Hermitian operators ρ̂. We note that Eq. (2.9) can also be

derived by postulating only a single property [69] of the Wigner function, namely

that it should behave like a joint probability distribution for q and p [49]. The

marginal distributions for momentum and position are then given by
∫∞
−∞W (q, p)dq

and
∫∞
−∞W (q, p)dp, respectively.

Moreover, other quasi-probability functions such as the Glauber-Sudarshan P -

representation [70,71] or the Hushimi Q-representation are defined in a very similar

way to Eq. (2.5) but differ in the type of ordering used for the displacement operator

with respect to the annihilation and creation operators. For the Q-representation

anti-normally ordering is applied, whereas the P -representation is related to normal

ordering [64].
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For the states investigated in this work, the P -representation is inappropriate

because it can become highly singular (a delta function for coherent states). Similar

to the Wigner function, also the Q-function is a convolution of a Gaussian with

the P -function. However, the Gaussian is so broad that the Q-function is never

negative in contrast to the Wigner function, where negative values are signatures

of non-classical behavior [72]. The Wigner function gives a good intuition for the

quantum states as it represents the state in phase space. In this way, the vacuum

state or squeezed states are well visualized.

2.2.3 Moments of the annihilation and creation operators

The knowledge of all moments
〈
(â†)mân

〉
with m,n∈N0 is equivalent to the knowl-

edge of the Wigner function or the density operator [73–76]. In order to retrieve

the anti-normally ordered moments from the normally ordered ones, the following

operator relation is applied:

âm(â†)n =

min(m,n)∑
j=0

(
m

j

)(
n

j

)
j!(â†)n−j âm−j (2.11)

Stimulated by our work, Filippov and Man’ko [77, 78] developed a theoretical de-

scription of the degree of overlap between two states, the purity of a state and the

evolution of microwave quantum states in terms of moments. However, we note that

for these relations the knowledge of all moments is assumed. Contrarily, quantum-

mechanical uncertainty relations can be formulated containing only moments up to

a specific finite order. For second order [78], one retrieves

(
〈â†â〉 − 〈â†〉〈â〉

)
+
(
〈â†â〉 − 〈â†〉〈â〉

)2−
(
〈(â†)2〉 − 〈â†〉2

) (
〈â2〉 − 〈â〉2

)
≥ 0. (2.12)

When relation Eq. (2.12) is violated, the state is unphysical and does not comply

with the Heisenberg uncertainty relation. For the inequalities based on moments up

to the fourth order we relegate the reader to Ref. [78]. Furthermore, in Ref. [79] it

was shown that one has to consider at least moments up to the fourth order to find

the negativity of the Wigner function in general and at least up to the eighth order

for states with a rotationally invariant Wigner function. For a Fock state |N〉, only

moments up to the N-th order are non-zero, which allows for the truncation of the

Hilbert space. Finally, we want to note that Gaussian states, which are especially

relevant in this work, are fully determined by the first two moments.



10 2. Propagating classical and quantum microwaves

2.3 Important microwave states

In this section, we introduce the microwave states experimentally used in our work.

We present their basic properties such as moments and Wigner function represen-

tation and visualize them in phase space.

2.3.1 Thermal states

Thermal states are chaotic light with no phase coherence. Consequently, the off-

diagonal elements of the density operator are zero and the Wigner function is radi-

ally symmetric. Thermal states can easily be generated by black body emitters at

suitable temperatures. In the microwave regime, these emitters are termination re-

sistors, which have to be cooled to sub-Kelvin temperatures to obtain a small mean

photon number n. The latter is determined by the temperature T of the emitter via

the Bose-Planck distribution

n = 〈â†â〉 =
1

exp
(

hf
kBT

)
− 1

, (2.13)

where f is the frequency of the mode, h the Planck constant, and kBthe Boltzmann

constant. The other non-zero moments of higher order are calculated from the mean

photon number via 〈
(â†)mân

〉
= m!nmδm,n (2.14)

with the Kronecker δm,n.

The Wigner function is Gaussian

Wthermal(q, p) =
1

π
(
n+ 1

2

) exp

(
−q

2 + p2

n+ 1
2

)
, (2.15)

where the 1/e-contour is a circle with radius
√
n+ 1/2 centered at the origin of

phase space. Thus, the area enclosed by the contour linearly depends on the mean

photon number. The vacuum state exhibits minimum uncertainty, so that the equal

sign in the Heisenberg uncertainty relation, Eq. (2.3), holds. An example for a

thermal state with n=1, equivalent to a temperature of 415 mK at f=6 GHz, is

displayed in Fig. 2.1.
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Figure 2.1: Wigner function of a thermal state with n=1. (a) Mesh plot. (b) Color
map plot. The color code is the same as the one used in panel (a). (c) 1/e-contours
of Wigner functions of the vacuum (blue) and of a thermal state with n=1 (red).

2.3.2 Coherent states

A coherent state |α〉 is generated by applying the displacement operator D̂(α)

(cf. Sec. 2.2.2) to the vacuum. As shown in Fig. 2.2, the Gaussian blob of the

vacuum is displaced by the vector α. Thus, the coherent state is a member of the

class of minimum-uncertainty states.

The Wigner function of a coherent state |α〉 = |Q+ iP 〉 is

W (q, p) =
2

π
exp

[
− 2
(
(q −Q)2 + (p− P )2

)]
. (2.16)

Its 1/e-contour is given by

(q −Q)2 + (p− P )2 =
1

2
(2.17)
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Figure 2.2: Wigner function of a coherent state with α=4. (a) Mesh plot. (b) Color
map plot. (c) 1/e-contours of Wigner functions of the vacuum (blue) and of the
coherent state (red), whose contour is the one of the vacuum displaced by α.
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and forms a circle with radius 1/
√

2 centered on the point (Q, P ). We note that the

coherent state is an eigenfunction of the annihilation operator, â|α〉=α|α〉. From this

relation, we easily obtain the normally ordered moments 〈α|(â†)mân|α〉=(α∗)mαn.

In practice, coherent states are routinely generated with a microwave source or, as

in a recent experiment, with a maser at room temperature [80].

2.3.3 Squeezed states

In general, the quadratures of a squeezed state exhibit different uncertainties. In

addition, an ideal squeezed state is a minimum-uncertainty state so that the product

of its quadratures’ variances is the same as the one of the vacuum. A squeezed state

can be generated by applying the squeeze operator

Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξ(â†)2

)
(2.18)

on the vacuum |0〉, where the complex squeezing parameter ξ is defined via the re-

lation ξ = reiϕ. Here, the phase ϕ determines the direction and the squeeze factor

r the amount of squeezing. In practice, an experimental realization of the squeeze

operator demands a high non-linearity. As discussed in Sec. 3.2.1, we use a Joseph-

son parametric amplifier in the phase-sensitive (degenerate) mode of operation to

generate squeezed microwave states. Thereby, one quadrature of the input field is

amplified whereas the other one is deamplified.

The Wigner function of a squeezed state is given by the expression

W (q, p) =
2

π
exp

[
−(e2r+e−2r)|q+ip|2 − 1

2
(e2r−e−2r)e−iϕ(q+ip)2

−1

2
(e2r−e−2r)eiϕ(q−ip)2

]
. (2.19)

We simplify this formula by moving into a coordinate system rotated by the angle

ϕ/2. Applying the transformation q′ + ip′ = e−iϕ/2(q + ip) results in the expression

W (q′, p′) =
2

π
exp

[
−2(q′

2
e2r + p′

2
e−2r)

]
. (2.20)

Consequently, the 1/e-contour forms an ellipse,

q′2

e−2r
+
p′2

e2r
=

1

2
. (2.21)



2.3 Important microwave states 13

-5
0

5

-5
0

5
0

0.2

0.4

0.6

pq

W
(a) (b) (c)

p

q

-5 0 5

-5

0

5

-2 0 2

-2

0

2

p

q

Figure 2.3: Wigner function of a squeezed state with r=1 and γ = 90◦. (a) Mesh
plot. (b) Color map plot. (c) 1/e-contours of Wigner functions of the vacuum (blue)
and of the squeezed state (red), whose q quadrature is squeezed 8.7 dB below the
vacuum.

The lengths of the semi-major and semi-minor axis are given by er/
√

2 and e−r/
√

2,

respectively (cf. Fig. 2.3 for an example).

From the knowledge of the signal moments up to second order, we can readily

extract the squeezing below the vacuum in decibel,

10 log10

(
−〈â2〉e−iφ−〈(â†)2〉eiφ+2〈â†â〉+1+〈â〉2e−iφ+〈â†〉2eiφ−2〈â†〉〈â〉

)
. (2.22)

Here, the angle φ is defined via the relation 〈â2〉− 〈â〉2 = |〈â2〉− 〈â〉2|eiφ and the ar-

gument of the logarithm is the ratio between the variance of the squeezed quadrature

and the vacuum variance. The angle φ is related to the phase of squeeze operator

by the expression φ = ϕ + π. Finally, we want to note that we use the angle

γ = −φ/2 + π/2 = −ϕ/2 between the anti-squeezed quadrature and the p-axis in

phase space in the discussion of our results, since the semi-major axis of the ellipse

is visually more prominent [cf. Fig. 2.3(b) and (c)].

2.3.4 Squeezed coherent states

For the generation of squeezed coherent states, two approaches exist. First, one can

displace a squeezed vacuum state by applying the displacement operator after the

squeeze operator. Second, we obtain a squeezed coherent state by first applying

the displacement operator D̂(α) to the vacuum followed by the squeeze operator

Ŝ(ξ) [64]. In the latter case, the squeezed coherent state is defined as

|α, ξ〉 = Ŝ(ξ)D̂(α)|0〉 , (2.23)
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where α= |α|eiΘ and ξ = reiϕ. The expectation values of the annihilation and

creation operator moments up to second order are calculated as [64]

〈â〉 = α cosh r − α∗eiϕ sinh r , (2.24)

〈â†〉 = 〈â〉∗ , (2.25)

〈â2〉 = α2 cosh2 r + (α∗)2e2iϕ sinh2 r

− 2|α|2eiϕ sinh r cosh r − eiϕ cosh r sinh r , (2.26)

〈(â†)2〉 = 〈â2〉∗ , (2.27)

〈â†â〉 = |α|2(cosh2 r + sinh2 r)− (α∗)2eiϕ sinh r cosh r

− α2e−iϕ sinh r cosh r + sinh2 r. (2.28)

In the coordinate system aligned with the squeezed and anti-squeezed axes, the prod-

uct of the quadrature variances attains the minimal value allowed by the Heisenberg

uncertainty relation (2.3). Thus, the squeezed coherent state is an ideal squeezed

state. Figure 2.4 shows the 1/e-contour line of the Wigner function for selected

squeezed coherent states. Looking at the centers of the squeezed coherent states,

we observe that the position of the squeezed coherent state depends on the squeeze

angle [cf. Eq. (2.24)]. This can be intuitively understood by the fact that in the

process of squeezing the coherent state is amplified in the anti-squeezed direction

and deamplified in the squeezed direction.

In Tab. 2.1, we give an overview on some quantities of the states relevant in this

work. If the variance of the photon number fluctuations 〈(∆n̂)2〉 is equal to the

mean photon number, the state obeys Poissonian statistics. An example for this is
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Figure 2.4: Squeezed coherent states with various squeeze angles ϕ. 1/e-
contour lines for the Wigner functions of the vacuum |0〉 (blue), the coherent state
D̂(3 + 3i)|0〉 (green), and the squeezed coherent state Ŝ(1eiϕ)D̂(3 + 3i)|0〉 (red).
(a) ϕ= 3π/2. (b) ϕ= π/2. (c) ϕ= π.
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quantity
vacuum thermal coherent squeezed vacuum

state state state state

〈n̂〉 0
1

exp
(

hf
kBT

)
− 1

|α|2 sinh2 r

〈q̂〉 0 0 <(α) 0

〈p̂〉 0 0 =(α) 0

〈(∆n̂)2〉 0 〈n̂〉2 + 〈n̂〉 〈n̂〉 2 (〈n̂〉2 + 〈n̂〉)

〈(∆q̂)2〉 1

4

〈n̂〉
2

+
1

4

1

4

e2r

4
sin2 ϕ

2

+
e−2r

4
cos2 ϕ

2

〈(∆p̂)2〉 1

4

〈n̂〉
2

+
1

4

1

4

e2r

4
cos2 ϕ

2

+
e−2r

4
sin2 ϕ

2

Table 2.1: Summary of state properties. < and = denote the real and imaginary
part, respectively.

a coherent state. The state is of super-Poissonian statistics if the photon number

variance attains a larger value than its mean photon number. This is the case for

thermal and squeezed vacuum states. For a squeezed vacuum state, the value of

〈(∆n̂)2〉 is twice that of a thermal state with the same photon number.

2.4 Detection of microwave quantum correlations

In the optical domain, efficient single-photon detectors and optical homodyning

are established measurement techniques to investigate quantum correlations [49].

However, despite theoretical [50–52] and recent experimental efforts [53–55], the

translation of these methods to the microwave regime remains difficult because of

the low photon energy. Thus, quantum state reconstruction of weak propagating

microwaves to date requires the use of linear amplifiers. The properties of the lat-

ter allow us to distinguish between two fundamentally different approaches for the
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reconstruction of microwave states. In the first class of methods, off-the-shelf noisy

linear amplifiers are used and both quadratures are simultaneously measured. The

latter demands for an equal treatment of both quadratures which is the charac-

teristics of phase-insensitive amplifiers. These are obliged to add at least half a

photon of noise to the signal [81]. Current implementations do not reach this stan-

dard quantum limit and add on the order of 10–20 noise photons at approximately

6 GHz. In our method, effects of this unavoidable noise contribution are canceled

with the help of signal recovery techniques. This technique provides access to the

undisturbed signal moments, from which the Wigner function is reconstructed. In

the second class, phase-sensitive Josephson parametric amplifiers allow for an al-

most noiseless detection of a single generalized quadrature qθ [56]. Since only one

quadrature is accessible the marginal distributions of qθ have to be collected for a

set of angles forming a so called tomogram. From the latter the Wigner function is

retrieved by applying an inverse Radon transformation [49] or maximum likelihood

reconstruction. We note that the relations between tomogram and moments have

been investigated in Ref. [78].

In this work, we concentrate on methods of the first class since the operation

of off-the-shelf amplifiers is technically straight forward and promising. Further-

more, the noise properties of cryogenic HEMT amplifiers have been continuously

improved. Therefore, we have proposed and experimentally implemented the dual-

path method for quantum microwave reconstruction based on two independent am-

plification paths and cross-correlation techniques [57]. Subsequently, this detection

scheme was extended to determine g(2) intensity correlations of the quantum states

by another group [13]. Later, a different reconstruction technique using only a sin-

gle amplification path and deconvolution based on a reference measurement was

demonstrated [28]. We will introduce an extension of this method in Sec. 2.9 and

use it for the detection of entanglement between signals propagating along separated

paths (cf. Sec. 5.4). In what follows, we describe the mathematical details on the

dual-path method both for the classical and quantum case.

2.5 Dual-path state reconstruction – classical treat-

ment

In this section, we follow closely our work [57] and introduce the dual-path state

reconstruction scheme which, even in the presence of significant amplifier noise, al-

lows one to measure, in principle, all amplitude moments of propagating microwaves
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based on cross-correlations from a dual-path amplification setup. Simultaneously,

the detector noise properties are determined, allowing for tomography. Here, we use

a classical description whereas in the next section we will dedicate ourselves to a

straightforward extension of this theory to the quantum regime.

The reconstruction of the Wigner function [49] or density matrix of a propagat-

ing quantum field represents a cornerstone in quantum optical measurement theory

and experiments. In quantum-optical homodyne tomography [47, 49], for example,

the signal is combined with a local oscillator in a beam splitter and the intensities

at the output ports are subtracted to produce the measurement of the amplified

field quadratures in terms of a histogram. The latter gives access to all quadrature

moments, or, equivalently, the Wigner function [49]. In quantum-optical homodyne

tomography experiments [47], the signals at the beam splitter output pass directly

to efficient photodetectors without the need of linear amplification1. In contrast,

in the 1−10 GHz range, which has become highly relevant due to the advent of

circuit quantum electrodynamics (QED) [12, 14, 17, 18, 29, 82–85], the detection of

few-photon microwave signals requires linear amplification. Within well-established

off-the-shelf technology, cryogenic high electron mobility transistor (HEMT) ampli-

fiers lend themselves to this purpose. They offer flat gain over a broad frequency

range, but they obscure the signals by adding random noise [81,86] of 10–20 photons

at 5 GHz. Nevertheless, we here prove that it is still possible to measure all moments

of few-photon propagating microwaves in this situation. Furthermore, we show that

our proposed reconstruction method also produces a measurement of all moments of

the detector noise. In this sense, moving from a single amplification chain to a dual-

path configuration constitutes a step beyond pure state reconstruction and towards

the complete calibration of the measurement device, i.e., detector tomography [87].

We note that previous to our work only state reconstruction of the intra-cavity field

has been demonstrated in circuit QED [14]. However, quantum states of propagat-

ing microwaves themselves can be valuable in quantum information processing [88]

and their full reconstruction represents an important issue.

In the following, we develop a theory for the measurement of all moments of both

a propagating quantum microwave signal and the noise added by the detector. The

basic idea is illustrated in Fig. 2.5. A signal a is equally split at low temperatures

by means of a four-port 50-50 microwave beam splitter. The functionality of the

latter is well-established for classical signals and was recently demonstrated also

1We note that the extension of an optical homodyning scheme with phase-insensitive linear
amplifiers does not allow for the detection of quantum states.
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Figure 2.5: Schematics of the dual-path amplification and detection setup. The
ancilla port of the 180◦-hybrid ring is terminated by a 50 Ω-load at T = 300 mK.
The split signals are amplified and detected in separate chains (rounded triangular
symbols), which add the noise χ1 and χ2 to the signal. Reprinted adopted figure
with permission from Ref. [57]. Copyright (2010) by the American Physical Society.

for the quantum regime [13, 57, 58]. The beam splitter outputs are amplified and

synchronously digitized. During this process, the amplifiers add the independent

noise contributions χ1 and χ2 to the split signals in the detection chains 1 and 2,

respectively. Assuming a 180◦-hybrid ring [58,89] as a beam splitter (cf. Sec. 3.1.2),

the recorded time traces are

C1 =

√
G̃

2
(a+ v +

√
2χ1) =

√
G(a+ v + V1) and

C2 =

√
G̃

2
(−a+ v +

√
2χ2) =

√
G(−a+ v + V2) , (2.29)

where χ1,2 are the noise contributions added by the amplification and detection

chains and G̃ their power gain, both referred to the input of the chains. Referred

to the input of the beam splitter these variables are given by V1,2=
√

2χ1,2 and

G = G̃/2. Other choices for the beam splitter such as Wilkinson power dividers

are possible as long as they provide enough isolation between the output ports.
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The equivalent of Eqs. (2.29) can in principle be calculated for any beam splitter.

The ancilla state present in the fourth port of the hybrid ring is called v. Since

we assume full knowledge of v, an obvious choice for the ancilla is the vacuum

or a weak thermal state. Vacuum or thermal states at gigahertz frequencies are

prepared reliably in an experiment by controlling the temperature [58,90]. We note

that the moments of the ancilla state can not be detected by our method, which

is not a restriction in practice. In the next step, we compute suitable correlations

of the form 〈C`
1C

m
2 〉, where `,m are non-negative integers and the brackets denote

ensemble averaging. In contrast to Hanbury Brown–Twiss experiments based on

intensity (power) correlations [90], our method is devoted to the correlations of

field quadratures (voltages). For the first signal moment, the mean values 〈V1〉 and

〈V2〉 vanish and one obtains 〈a〉= 〈C1〉/
√
G−〈v〉=−〈C2〉/

√
G−〈v〉. All higher

moments of signal and noise can now be calculated by induction:

〈an〉 =− 〈Cn−1
1 C2〉/Gn/2

−
n−1∑
k=1

k∑
j=0

(
n−1

k

)(
k

j

)
〈an−k〉〈vj〉〈V k−j

1 〉

+
n−1∑
k=0

k∑
j=0

(
n−1

k

)(
k

j

)
〈an−k−1〉〈vj+1〉〈V k−j

1 〉, (2.30)

〈V n
1 〉 = + 〈Cn

1 〉/Gn/2

−
n∑
k=1

k∑
j=0

(
n

k

)(
k

j

)
〈V n−k

1 〉〈ak−j〉〈vj〉, (2.31)

〈V n
2 〉 = + 〈Cn

2 〉/Gn/2

−
n∑
k=1

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−j〈V n−k

2 〉〈ak−j〉〈vj〉. (2.32)

We note that our assumption of equal gain in both chains and a perfect 180◦-hybrid

ring is not a restriction in practice. In the derivation of the above formulas, the

mutual statistical independence of a, v, V1, and V2 is crucial because it implies

〈aβvγV δ
1 V

ε
2 〉= 〈aβ〉〈vγ〉〈V δ

1 〉〈V ε
2 〉 for non-negative integers β, γ, δ, ε. The latter for-

mula also shows that Eqs. (2.30), (2.31), and (2.32) are suitable for quantum signals,

where a, v, V1 and V2 have to be interpreted as operators (cf. Sec. 2.6).

Explicit expressions for moments of signal and detector noise are calculated from

Eqs. (2.30), (2.31), and (2.32). We assume 〈v2j+1〉= 0 (j being a non-negative

integer) for the ancilla as in the case of vacuum or thermal states. We note that for
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the initial correlation 〈C`
1C

m
2 〉 choices other than `=n−1 and m= 1 are possible, as

long as `+m=n for positive integers `,m. Typically, balanced products with `≈m
result in simpler expressions because of higher symmetry. Starting from 〈C1C2〉,
〈C2

1C2〉, and 〈C2
1C

2
2〉, we obtain:

G1/2〈a 〉 = 〈C1〉 = −〈C2〉,

G〈a2〉 = − 〈C1C2〉+G〈v2〉,

G3/2〈a3〉 = − 〈C2
1C2〉 − 〈C1〉

(
〈C2

1〉+ 〈C1C2〉 − 3G〈v2〉
)
,

G2〈a4〉 = −G2〈v4〉 − 6G〈v2〉〈C1C2〉+ 6G2〈v2〉2

+ 〈C1C2〉2 + 〈C2
1C

2
2〉 − 〈C2

1〉〈C2
2〉,

〈V1〉 ≡ 0,

G〈V 2
1 〉 = 〈C2

1〉+ 〈C1C2〉 − 2G〈v2〉,

G3/2〈V 3
1 〉 = 〈C3

1〉+ 〈C2
1C2〉 − 2〈C1〉

(
〈C2

1〉+ 〈C1C2〉
)
,

G2〈V 4
1 〉 = 〈C4

1〉 − 12G〈v2〉〈C1C2〉 − 12G〈v2〉〈C2
1〉

+ 6〈C1C2〉〈C2
1〉+ 5〈C1C2〉2 + 12G2〈v2〉2

− 4〈C1〉〈C3
1〉 − 4〈C1〉〈C2

1C2〉+ 8〈C1〉2〈C2
1〉

+ 8〈C1〉2〈C1C2〉 − 〈C2
1C

2
2〉+ 〈C2

1〉〈C2
2〉.

Similar formulas are derived for V2. Furthermore, we assume the first moment of

the detector noise to vanish for both chains throughout the experimental part of

this work. Practically, this implies an offset correction (cf. Sec. 3.1.3). Finally, the

central moments are retrieved from the binomial transformation

〈(a− 〈a〉)n〉 =
n∑
k=0

(
n

k

)
(−1)n−k〈ak〉〈a〉n−k . (2.33)

2.6 Dual-path state reconstruction – quantum treat-

ment

As our object of study is inherently quantum, we need to extend the formalism of

the dual-path method presented in the last section to the quantum regime. This

extension has been in large part developed by Roberto Di Candia. For quantum

microwaves, we need to take into account the orthogonal signal quadratures I1,2

and Q1,2 measured at the outputs of IQ mixers. We now define the dimensionless
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complex envelope functions

ξ1,2 ≡ (I1,2 + iQ1,2)/
√
κ , (2.34)

where κ is the photon number conversion factor introduced in Sec. 3.3.4. The

corresponding operators,

ξ̂1,2 ≡ (Î1,2 + iQ̂1,2)/
√
κ , (2.35)

can, in this situation, be expressed as [42]

ξ̂1,2 = Ô1,2 + v̂†1,2 . (2.36)

Here, Ô1,2 is the bosonic annihilation operator of the input signal into the IQ mixer.

The noise added by the latter is represented by its bosonic creation operator v̂†1,2. We

now have [ξ̂1,2, ξ̂
†
1,2] =0, and the correlations 〈ξ̂j

′

1 (ξ̂†1)m
′
ξ̂k
′

2 (ξ̂†2)n
′〉= 〈(ξ̂†1)m

′
ξ̂j
′

1 (ξ̂†2)n
′
ξ̂k
′

2 〉
can be expressed in terms of the measured 〈Ij1Ik2Qm

1 Q
n
2 〉 via Eq. (2.34) by

identifying ξ̂1,2 with ξ1,2 and ξ̂†1,2 with ξ∗1,2. We note that, while in general,

j′, k′,m′, n′, j, k,m, n∈N0, in this work we restrict ourselves to j+ k+m+n≤ 4

or, equivalently, j′+ k′+m′+n′≤ 4. Using the beam splitter relations and the

standard quantum model for linear amplifiers [81], we now write

ξ̂1 =

√
Gd1

2
( + â+ v̂) +

√
Gd1 − 1 ĥ†1 + v̂†1 (2.37)

ξ̂2 =

√
Gd2

2
(− â+ v̂) +

√
Gd2 − 1 ĥ†2 + v̂†2 (2.38)

for our setup. Here, â and v̂ are bosonic annihilation operators. They describe the

modes incident on the signal and the 50 Ω-terminated input port of the beam splitter,

respectively. The noise fields added by each amplification path are represented by

the bosonic creation operators ĥ†1,2. Their effective temperature is mainly determined

by the noise temperatures of the cold HEMT amplifiers and the cable losses between

beam splitter and HEMT amplifier. Gd1,2 are the gains of the output paths, which

are calibrated as described in Sec. 3.3.4. In order to simplify the notation, we also

define the operators

V̂1,2 ≡
√

2

Gd1,2

(√
Gd1,2 − 1 ĥ1,2 + v̂1,2

)
(2.39)

Ŝ1,2 ≡
√

2

Gd1,2

ξ̂1,2 . (2.40)
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We note that V̂1,2/
√

2 is a bosonic operator, as [V̂1,2/
√

2, V̂ †1,2/
√

2] = 1. In this way,

we arrive at the simple expressions

Ŝ1 = + â+ v̂ + V̂ †1 (2.41)

Ŝ2 = − â+ v̂ + V̂ †2 . (2.42)

Here, the operators V̂1,2, â, and v̂, and therefore also Ŝ1,2, are referred to the in-

put of the beam splitter. With these definitions, we can generalize the dual-path

state reconstruction technique (cf. Sec. 2.5) in a way that it becomes applicable to

quadratures. Making the reasonable assumptions that v̂ is a weak thermal state

with a measured temperature of 40 mK and that

〈V̂1〉 = 〈V̂2〉 = 0 (2.43)

for the noise added by the amplification paths, we recursively obtain the signal

moments

〈
(â†)lâm

〉
l1,m1

= (−1)l−l1+m−m1
〈
(Ŝ†1)l1(Ŝ†2)l−l1Ŝ

m1
1 Ŝ

m−m1
2

〉
−

l1∑
k1=0

l−l1∑
k2=0

m1∑
j1=0

m−m1−1∑
j2=0

l1−k1∑
k′1=0

l−l1−k2∑
k′2=0

m1−j1∑
j′1=0

m−m1−j2∑
j′2=0

(
l1
k1

)(
l − l1
k2

)(
m1

j1

)(
m−m1

j2

)

×
(
l1 − k1

k′1

)(
l − l1 − k2

k′2

)(
m1 − j1

j′1

)(
m−m1 − j2

j′2

)
(−1)l−l1+m−m1+j2+k2

×
〈
(â†)k1+k2 âj1+j2

〉〈
(v̂†)k

′
1+k′2 v̂j

′
2+j′1
〉〈
V̂
l1−k1−k′1

1 (V̂ †1 )m1−j1−j′1
〉

×
〈
V̂
l−l1−k2−k′2

2 (V̂ †2 )m−m1−j2−j′2
〉

−
l1∑

k1=0

l−l1∑
k2=0

m1−1∑
j1=0

l1−k1∑
k′1=0

l−l1−k2∑
k′2=0

m1−j1∑
j′1=0

(
l1
k1

)(
l − l1
k2

)(
m1

j1

)(
l1 − k1

k′1

)(
l − l1 − k2

k′2

)

×
(
m1 − j1
j′1

)
(−1)l−l1+k2

〈
(â†)k1+k2 âj1+m−m1

〉〈
(v̂†)k

′
1+k′2 v̂j

′
1
〉

×
〈
V̂
l1−k1−k′1

1 (V̂ †1 )m1−j1−j′1
〉〈
V̂
l−l1−k2−k′2

2

〉
−

l1∑
k1=0

l−l1−1∑
k2=0

(
l1
k1

)(
l − l1
k2

)
(−1)l−l1+k2

〈
(â†)k1+k2 âm

〉〈
V̂
l1−k1

1

〉〈
V̂
l−l1−k2

2

〉
−

l1−1∑
k1=0

(
l1
k1

)〈
(â†)k1+l−l1 âm

〉〈
V̂
l1−k1

1

〉
(2.44)

for l,m, l1,m1 ∈N0 from the measured noisy correlations. In this process, we also
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have to compute the noise moments

〈
V̂ r

1 (V̂ †1 )s
〉

=
〈
(Ŝ†1)rŜs1

〉
−

r∑
k1=0

s−1∑
j1=0

r−k1∑
k′1=0

s−j1∑
j′1=0

(
r

k1

)(
s

j1

)(
r − k1

k′1

)(
s− j1

j′1

)〈
(â†)k

′
1 âj

′
1
〉〈

(v̂†)r−k1−k
′
1 v̂s−j1−j

′
1
〉

×
〈
V̂
k1

1 (V̂ †1 )j1
〉

−
r−1∑
k1=0

(
r

k1

)〈
(â†)r−k1

〉〈
V̂
k1

1 (V̂ †1 )s
〉

(2.45)

and〈
V̂ r

2 (V̂ †2 )s
〉

=
〈
(Ŝ†2)rŜs2

〉
−

r∑
k1=0

s−1∑
j1=0

r−k1∑
k′1=0

s−j1∑
j′1=0

(
r

k1

)(
s

j1

)(
r − k1

k′1

)(
s− j1

j′1

)
(−1)k

′
1+j′1
〈
(â†)k

′
1 âj

′
1
〉

×
〈
(v̂†)r−k1−k

′
1 v̂s−j1−j

′
1
〉〈
V̂
k1

2 (V̂ †2 )j1
〉

−
r−1∑
k1=0

(
r

k1

)
(−1)r−k1

〈
(â†)r−k1

〉〈
V̂
k1

2 (V̂ †2 )s
〉

(2.46)

associated with both amplification paths for r+ s> 1 and r, s∈N0, again in a re-

cursive fashion. In other words, the formulas for the moments of order l+m are

established using those of the moments of order l+m− 1. The formulas obtained

in this way are not unique, they depend on the specific choices of l1 and m1. We

find that the statistical uncertainty in our results is minimized by using the mean

value of all formulas found for constant l+m.

We end this section with a remark regarding the difference in notation between

the classical and quantum treatment. In the classical description the power of the

ancilla state fluctuations is given by 〈v2〉 whereas in the quantum-mechanical de-

scription 〈v̂†v̂〉 is the correct expression. Thus, one cannot simply replace v by v̂ in

the formulas of the classical treatment to retrieve the quantum-mechanical expres-

sions. Nevertheless, we emphasize that the fundamental strategy of the dual-path

state reconstruction is completely analogous for weak classical and quantum signals.

2.7 Wigner function reconstruction

In the case of infinitely many reconstructed moments 〈(â†)lâm〉, the Wigner func-

tion W (q, p) of an arbitrary state can be completely reconstructed. However, in
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this work we record these moments only up to fourth order, l+m≤ 4. As we find

that the higher moments are consistent with those of Gaussian states, we are al-

lowed to restrict ourselves to moments with l+m≤ 2. In Ref. [76] and Ref. [91],

Bužek et al. analyzed how the Wigner function of a quantum state can be par-

tially reconstructed from a finite number of moments. For our observation level [92]

O2 ≡ {â†â, (â†)2, â2, â†, â} this analytic approach based on Jaynes principle [93, 94]

of maximum entropy yields

W (q, p) =
1

π
√

(ν + 1/2)2 − |µ|2

× exp

[
−(ν + 1/2)|ζ − 〈â〉|2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ − 〈â†〉)2

(ν + 1/2)2 − |µ|2

]
,

(2.47)

with ζ ≡ q+ ip, µ≡〈â2〉− 〈â〉2, and ν≡〈â†â〉− |〈â〉|2. As explained in Sec. 2.6, we

have chosen our definitions such that phase space variables q and p are dimensionless

and their value represents the square root of a photon number. Since any Gaus-

sian state can be written as a displaced squeezed thermal state, we can also extract

the effective mode temperature analytically from the reconstructed input state mo-

ments [76, 91]. We note that this effective temperature may contain contributions

from the physical temperature as well as contributions from losses.

2.8 Path entanglement via a beam splitter

The generation of path entanglement is an important task, since the entanglement

of signals propagating along different paths serves as a key resource in fascinating

quantum information and communication protocols. Here, the exploitation of entan-

glement promises significant performance gains over classical implementations [3–5],

since its presence can, for example, increase the channel capacity [95] and the chan-

nel efficiency [96]. In this section, we consider the generation of microwave path

entanglement via a beam splitter. Kim et al. [60] have shown that a necessary pre-

requisite for this scheme is that at least one input state is non-classical. The action

of a 50:50 beam splitter on a pure squeezed state and a vacuum state is given by [60]

B̂Ŝa(ξ)|0, 0〉 = Ŝa

(
ξ

2

)
Ŝb

(
ξ

2

)
Ŝab

(
−ξ

2

)
|0, 0〉 , (2.48)
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where B̂= exp[π
4
(âb̂† − â†b̂)] is the beam splitter operator and Ŝab(ξ)= exp(−ξâb̂ +

ξ∗â†b̂†) the two-mode squeeze operator. Thus, the resulting state is a two-mode

squeezed state with two additional local squeeze operations. The latter have no

influence on the degree of entanglement which therefore is given by that of an ideal

two-mode squeezed state. Furthermore, in Ref. [60] the superposition of a squeezed

thermal state and a vacuum via a beam splitter is investigated in theory. The results

are of high relevance for our work because they imply that the thermal state has to

be squeezed below the vacuum in order to retrieve an entangled output state.

2.9 Reference-state method for the detection of

path entanglement

In order to detect the entanglement between the two paths independently from the

dual-path reconstruction of the input state, we cannot assume that the hybrid ring

is working as a beam splitter. We therefore follow a different route: we reconstruct

the moments of the output state by means of a calibration against a well-known

reference signal [28,44]. The obvious choice for this reference signal is the two-mode

vacuum. In this way, the beam splitter is treated as a black box device which, for

a vacuum state at each input, produces uncorrelated vacuum states at each output

port. This rather general assumption holds well for the temperatures measured for

attenuator and termination, 40− 50 mK. In this situation, the complex envelope

operator becomes

ξ̂1 =
√
Gr1 ŝ1 +

√
Gr1 − 1 ĥ†1 + v̂†1 (2.49)

ξ̂2 =
√
Gr2 ŝ2 +

√
Gr2 − 1 ĥ†2 + v̂†2 . (2.50)

Here, ŝ1,2 is referred to the output of the beam splitter, and Gr1,2 is the effective

gain of the amplification paths. Note that the Gr1,2 in the reference-state formulas

are numerically different from the gains Gd1,2 in the dual-path equations because

they do not contain the beam splitter losses. After defining the operators

V̂1,2 ≡
√

1

Gr1,2

(√
Gr1,2 − 1 ĥ1,2 + v̂1,2

)
(2.51)

Ŝ1,2 ≡
√

1

Gr1,2

ξ̂1,2 , (2.52)
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we again arrive at the simplified expressions

Ŝ1 = ŝ1 + V̂ †1 (2.53)

Ŝ2 = ŝ2 + V̂ †2 . (2.54)

We now evaluate the correlations between the two channels,

〈
(Ŝ†1)l1Ŝ

m1
1 (Ŝ†2)l2Ŝm2

2

〉
=
〈
(ŝ†1 + V̂1)l1(ŝ1 + V̂ †1 )m1(ŝ†2 + V̂2)l2(ŝ2 + V̂ †2 )m2

〉
=

l1∑
k1=0

l2∑
k2=0

m1∑
j1=0

m2∑
j2=0

(
l1
k1

)(
l2
k2

)(
m1

j1

)(
m2

j2

)〈
(ŝ†1)l1−k1 ŝ

m1−j1
1 (ŝ†2)l2−k2 ŝ

m2−j2
2

〉
×
〈
V̂
k1

1 (V̂ †1 )j1V̂
k2

2 (V̂ †2 )j2
〉
. (2.55)

With the terms 〈(ŝ†1)l1−k1 ŝ
m1−j1
1 (ŝ†2)l2−k2 ŝ

m2−j2
2 〉, which can be calculated straightfor-

wardly for our reference state, Eq. (2.55) forms a system of linear equations. The

latter allows us to extract the noise terms 〈V̂ k1
1 (V̂ †1 )j1V̂

k2
2 (V̂ †2 )j2〉 related to our am-

plification paths by algebraic inversion [28]. Once knowing these noise terms, we

extract the signal correlations for the squeezed state input again from Eq. (2.55)

and algebraic inversion. We note that also more sophisticated reference states and

device models, such as thermal states incident at a beam splitter, can be chosen as

reference state. Depending on the pre-characterization of the used components, this

approach might account better for experimental imperfections. Although the latter

typically tend to reduce the degree of entanglement, our entanglement detection

turns out to be quite robust against them as discussed in Sec. 5.4.

Altogether, the method described above would, in principle, allow for a recon-

struction of the output state as far as this is possible with four moments. We note

that from such a reconstruction also all entanglement properties could be derived.

However, as shown in Secs. 2.10 and 2.11, we choose a more robust approach for

this purpose.

2.10 Entanglement witness

The detection of entanglement requires substantially less information than a full

state reconstruction. Indeed, there exists an infinite number of witnesses and criteria

which allow one to decide whether or not a state is entangled. Each of these criteria

uses only a small amount of information about the examined state. In this work,
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we use the witness matrix [97]

M(2) ≡


1 〈ŝ1〉 〈ŝ†1〉 〈ŝ†2〉 〈ŝ2〉
〈ŝ†1〉 〈ŝ

†
1ŝ1〉 〈(ŝ†1)2〉 〈ŝ†1ŝ

†
2〉 〈ŝ†1ŝ2〉

〈ŝ1〉 〈ŝ2
1〉 1 + 〈ŝ†1ŝ1〉 〈ŝ1ŝ

†
2〉 〈ŝ1ŝ2〉

〈ŝ2〉 〈ŝ1ŝ2〉 〈ŝ†1ŝ2〉 〈ŝ†2ŝ2〉 〈ŝ2
2〉

〈ŝ†2〉 〈ŝ1ŝ
†
2〉 〈ŝ†1ŝ

†
2〉 〈(ŝ†2)2〉 1 + 〈ŝ†2ŝ2〉

 , (2.56)

which contains up to second order moments of the beam splitter output state. If

M(2) has at least one negative eigenvalue, the state is entangled. The absence of a

negative eigenvalue implies separability only in the case of Gaussian states.

2.11 Negativity

For a bipartite system, the amount of entanglement between the subsystems A and

B can be quantified by means of the negativity

N (ρ) ≡ ||ρ
TB ||1 − 1

2
, (2.57)

where ρ is the density matrix of the total system, and ||ρTB ||1 = Tr|ρTB | is the trace

norm of the partial transpose of ρ with respect to subsystem B, ρTB . If N (ρ)> 0,

the state is entangled. For a maximally entangled state, N (ρ)→∞.

In the case of Gaussian states, all measures of entanglement are equivalent, and

they are defined by the covariance matrix

σ =

(
α γ

γT β

)
. (2.58)

Here, we define the matrices

α ≡

(
α1 α3

α3 α2

)
, β ≡

(
β1 β3

β3 β2

)
, γ ≡

(
γ11 γ12

γ21 γ22

)
(2.59)

with

α1 = 〈ŝ2
1〉+ 〈(ŝ†1)2〉+ 2〈ŝ†1ŝ1〉 − 〈ŝ1 + ŝ†1〉2 + 1 (2.60)

α2 = −〈ŝ2
1〉 − 〈(ŝ

†
1)2〉+ 2〈ŝ†1ŝ1〉+ 〈ŝ1 − ŝ

†
1〉2 + 1 (2.61)

α3 = i
(
− 〈ŝ2

1〉+ 〈(ŝ†1)2〉+ 〈ŝ1〉2 − 〈ŝ
†
1〉2
)

(2.62)
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β1 = 〈ŝ2
2〉+ 〈(ŝ†2)2〉+ 2〈ŝ†2ŝ2〉 − 〈ŝ2 + ŝ†2〉2 + 1 (2.63)

β2 = −〈ŝ2
2〉 − 〈(ŝ

†
2)2〉+ 2〈ŝ†2ŝ2〉+ 〈ŝ2 − ŝ

†
2〉2 + 1 (2.64)

β3 = i
(
− 〈ŝ2

2〉+ 〈(ŝ†2)2〉+ 〈ŝ2〉2 − 〈ŝ
†
2〉2
)

(2.65)
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†
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†
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†
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†
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†
2 + ŝ†1ŝ2 − ŝ

†
1ŝ
†
2〉/2

+〈−ŝ2ŝ1 + ŝ2ŝ
†
1 + ŝ†2ŝ1 − ŝ

†
2ŝ
†
1〉/2

+〈ŝ1 − ŝ
†
1〉〈ŝ2 − ŝ

†
2〉 (2.69)

and γT being the transpose of γ. Finally, the negativity becomes [98]

N = max

{
0,

1− ν
2ν

}
≡ max

{
0, Ñ

}
, (2.70)

where ν≡
√(

∆(σ)−
√

∆2(σ)− 4 detσ
)
/2 and ∆(σ)≡ detα+ detβ − 2 detγ.

Note that, despite not being a measure, the negativity kernel Ñ is a witness for arbi-

trary bipartite entanglement. In fact, if a non-Gaussian state has the same first and

second moments as an entangled Gaussian state, it is entangled [99]. Consequently,

Ñ > 0 implies entanglement for any bipartite state.

2.12 Gaussianity and higher order cumulants

In order to check whether the states we reconstruct are consistent with Gaus-

sian states, we evaluate the (l+m)th order cumulants 〈〈(âl)†âm〉〉 for l+m≤ 4 and

l,m∈N0. Equivalently to the moments, the cumulants describe a probability dis-

tribution. The definition of cumulants for a quantum state with density matrix ρ
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can be written as [100]

〈〈(âl)†âm〉〉 ≡ ∂l

∂(iβ∗)l
∂m

∂(iβ)m

[
ββ∗

2
+ ln Tr

(
e(iβ∗â†+iβâ)ρ

)]
β,β∗=0

. (2.71)

Only Gaussian states have a finite number of non-zero cumulants. More specifi-

cally, all their cumulants vanish for l+m> 2. In other words, finding a non-zero

cumulant of 3rd or higher order implies that the state is not Gaussian. Despite not

being a strict proof, the fact that the 3rd and 4th order cumulants are very small

or vanish in an experimental reconstruction constitutes a reasonable indication that

the reconstructed state is Gaussian.

As an example, we spell out the 3rd order cumulants as functions of the moments

at the beam splitter outputs reconstructed with the reference-state method. We

find [101]

〈〈ŝ3
1,2〉〉 = 〈ŝ3

1,2〉 − 3〈ŝ2
1,2〉〈ŝ1,2〉+ 2〈ŝ1,2〉3 (2.72)

〈〈ŝ†1,2ŝ2
1,2〉〉 = 〈ŝ†1,2ŝ2

1,2〉 − 〈ŝ
†
1,2〉〈ŝ2

1,2〉

− 2〈ŝ†1,2ŝ1,2〉〈ŝ1,2〉+ 2〈ŝ†1,2〉〈ŝ1,2〉2 . (2.73)
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Chapter 3

Experimental techniques

Experiments with propagating quantum microwaves are technically demanding since

devices based on nanostructures have to be operated at microwave frequencies, very

low temperatures (a few tens of millikelvins), and in very low-noise environments.

Cutting edge of state-of-the-art microwave technology in combination with our signal

recovery concepts empower us to deal with ultra-weak signals with powers of a few

attowatts.

In this chapter, we discuss the experimental techniques which we have developed,

implemented, and applied to generate and detect states of classical and quantum

microwaves as well as path entanglement. In order to demonstrate the suppression

of the amplifier noise and the access to higher moments with the dual-path method,

we first describe the generation of sophisticated mixtures of weak microwave signals.

Next, we present the dual-path setup for weak propagating microwaves, which is the

basis for proof-of-principle experiments of the dual-path state reconstruction method

and for Planck spectroscopy. Subsequently, in Sec. 3.2, we introduce the Josephson

parametric amplifier (JPA) and the experimental setups used to characterize its

amplification and squeezing properties. In Sec. 3.3, we consider a setup applied for

the reconstruction of quantum microwaves and the detection of path entanglement.

Finally, in Sec. 3.4, we consider the stabilization of the experimental setup.

3.1 Dual-path setup for weak propagating mi-

crowaves

So far, we have discussed in Sec. 2.5 our powerful dual-path concept. The logical

next step is to implement this conception in a setup and to characterize it with

31
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proof-of-principle experiments. In this section, we describe the fundamental dual-

path setup in detail. Based on this setup, we demonstrate in Sec. 4.2 the suppression

of the amplifier noise and show that the reconstruction of the signal is possible at the

same time as tomography of the amplifier noise. Here, we, first, consider the gen-

eration of classical mixtures of weak microwave pulses at room temperature. Next,

in Sec. 3.1.2 we discuss the cryogenic setup and in Sec. 3.1.3 the cross-correlation

detector. Finally, in Sec. 3.1.4, we introduce the calibration techniques which we

have developed for precise measurements.

3.1.1 Generation of classical mixtures of weak coherent

states

It is our goal to predict whether the dual-path setup is adequate for the recon-

struction of quantum signals by conducting proof-of-principle experiments. Here,

higher order central moments play an important role since they describe quan-

tum states. Consequently, we need suitable signals to investigate these moments.

However, deterministic signals do not posses non-zero central moments because

〈(f(t)−〈f(t)〉)n〉=0 holds. As a solution, we use sophisticated statistical mixtures,

whose generation is explained in detail in the following.

We build an ensemble of phase-modulated microwave pulses. The latter are

created with a R&S SMF100A (SMF) microwave source in combination with a Tek-

tronix DTG5334 data timing generator (DTG). The microwave source is equipped

with a pulse and a phase modulator. The former allows to switch on and off the mi-

crowaves on a timescale of 10 ns, whereas the latter changes the phase proportional

to an externally applied control voltage. The phase shift ϕ of the microwave pulses

is tunable as shown in Fig. 3.1 and is determined by the voltage at the input of the

phase modulator in the SMF and the set value of the phase modulation sensitivity.
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Figure 3.1: Microwave pulses with various phase shifts. The amplitude of the
control voltage is constant and the phase modulation sensitivity is varied.
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Figure 3.2: Phase-shifted microwave pulses. The red and blue curves are phase-
shifted by +24

◦
and −24

◦
, respectively. For the black dashed line the phase modu-

lator was switched off.

For constant phase modulation sensitivity, we can shift the pulse by +ϕ and

−ϕ depending on the polarity of the phase control voltage (cf. Fig. 3.2 for an ex-

ample). From these microwave pulses, we build an ensemble, where the weights of

the −ϕ- and +ϕ-states are adjustable. These weights and the phase shift ϕ are

control parameters that are constant for a specific ensemble. By sending a suitable

pulse pattern to the modulation inputs of the SMF, ensembles with flat or skewed

distribution are created. For example, a sequence of coherent microwave pulses

with alternating phase shifts ±ϕ is generated with the pattern shown in Fig. 3.3(a).

This pattern results in a statistical mixture with an equally distributed histogram.

For a skewed distribution, which is necessary to investigate non-vanishing third

order central moments, the phase control pulse is created in every fourth period1

[cf. Fig. 3.3(b)].

We note that the individual states, of which the ensemble is built up, can be

investigated by changing the pulse pattern of Fig. 3.3(a) in such a way that the

acquisition trigger pulse is created only in every second period. The state +ϕ or −ϕ
is then selected by the polarity of the phase control channel, which can be inverted.

In this way, the data presented in Fig. 3.1 and Fig. 3.2 was taken.

In Fig. 3.3(c), the pulse pattern with the timings applied in the experiment is

displayed. The repetition rate of 50 kHz is limited by the response time of the phase

modulator. In the Diploma thesis by P. Eder [102], which was created under the

supervision of the author of this work, this limitation was further investigated and it

was confirmed that the phase adjustment has been completed at the time the signal

1This is achieved by setting the vector rate of the according channel at the DTG to 1/4.
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Figure 3.3: Control pulses for the generation of classical mixtures of phase-shifted
microwave pulses. (a) Pulse pattern for an equally distributed mixture. The timing of
the microwave pulse envelope is controlled by the red curve. The light orange areas
mark the measurement windows. The pulses of the control voltage for the phase
modulator (blue) are generated in every second period (vector rate is one half) and
have the same length as the base period (vertical dashed lines). The green curves
symbolize the generated microwave pulses. (b) Pattern for a skewed distribution
(25% of the pulses are shifted by −ϕ and 75% by the phase +ϕ). The vector rate
of the control voltage for the phase modulator (blue) is one fourth. (c) Pulse pattern
of panel (a) with the timing used in our experiments.
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pulse is created.

It is of utmost importance that the individual states of the ensemble, e.g., the

+ϕ-states, are created in a reproducible way so that the phase of the digitized signal

is well defined. If this is not the case, phase randomizing effects may cause the signal

to vanish during averaging. In order to obtain a well-defined phase, the frequency

of the measured signal must be commensurable with the repetition frequency of the

generated microwave pulses. Furthermore, the DTG and the microwave sources have

to be phase-locked. In our setup, we use a 10 MHz Rubidium frequency standard

(Stanford Research Systems FS725) for this purpose.

In order to clean the signals from room temperature thermal noise, they are

sent through a series of cold attenuators (Aeroflex Inmet 18AH) which, in good

approximation, restrict the thermal contribution to that of a broadband 50 Ω-resistor

anchored to the base plate of the dilution refrigerator. The signal power at the end

of the input line Pin is determined by the set value of the microwave source and the

attenuation of the input line. The calibration of the latter is described in Sec. 3.1.4.

We relate Pin to an equivalent number of signal photons on average (POA) by

dividing the pulse energy PinTpulse by the photon energy hf . Here, f is the signal

frequency and the pulse duration Tpulse of 1µs mimics standard cavity decay times

in circuit QED experiments [85].

3.1.2 Cryogenic setup

For our experiments, we use two setups which mainly differ in the cryogenic beam

splitter. In the one we call “HR setup” we make use of a 180◦-hybrid ring, whereas in

the “WPD setup” we utilize a Wilkinson power divider. Before we devote ourselves

to the description of the cryogenic setups, we want to introduce these beam splitters

as important elements of our toolbox for quantum optics on a chip.

Microwave beam splitters

Microwave beam splitters divide an input signal while possibly adding phases to their

outputs. However, in order to be lossless, matched, and reciprocal, these devices

must necessarily have four ports [103]. In a quantum-mechanical picture, this implies

that a second, possibly hidden input port is always present [58] (cf. Sec. 4.1.2). In

our work, we use two different kinds of beam splitters, a 180◦-hybrid ring and a

Wilkinson power divider. These devices are often classified as reactive power dividers

and provide, in the ideal case, a coupling of 3 dB between the input and each of the
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two output ports. In contrast, resistive power dividers based on a resistor network

have a coupling of 6 dB between input and output ports due to dissipation.

A sketch of the 180◦-hybrid ring microwave beam splitter, which has four external

ports, is shown in Fig. 3.4(a). Our device (CPL-5850-100-SMA) was custom-made

by MITEQ Estonia and consists of gold microstrip transmission lines on a dielectric

substrate encased in a copper housing. Its functionality is best understood as follows:

at a wavelength λ, the signals incident at the input ports form an interference pattern

in the ring with antinodes at the output ports and nodes at the input ports [103].

This was experimentally demonstrated in Ref. [89], where also typical transmission

characteristics are shown. The signals from the two input ports are evenly split and

superposed in the two output ports. In this superposition, the component from one

of the inputs acquires a 180◦ phase shift between the output ports, while that from

the other one remains in phase. The center frequency of our hybrid ring is 5.75 GHz.

In the frequency range used in our experiments, the hybrid ring has a coupling of

3.5 dB between input and output ports and an isolation of at least 38 dB between

any two input or output ports. The magnitude imbalance between the two output

ports is only 0.03 dB.

The other beam splitter we utilize is a multisection Cohn-type power divider [104]

containing several transmission lines of different lengths and resistors to achieve
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Figure 3.4: Sketch of the beam splitters used in our experiments. (a) 180◦-hybrid
ring. The split signals from the input (in) acquire a 180◦ phase shift with respect
to each other, while the split signals from the 50 Ω-termination remain in phase.
The microstrip (blue) width encodes the impedance: Z0 for the straight connections
and
√

2Z0 for the ring. λ refers to the wavelength corresponding to the optimal
operation frequency (“center frequency”). (b) Wilkinson power divider. The 100 Ω-
resistor in combination with the λ/4 transmission lines ensures matching of and
isolation between the output ports. Here, we assume a characteristic impedance
Z0 = 50 Ω.
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large bandwidths. For pedagogic reasons,2 we present a simplified schematic of a

Wilkinson power divider (WPD) in Fig. 3.4(b), which is the one-section limit of

the Cohn-type configuration. It equally splits the input signals to the output ports,

which are isolated from each other, and provides matching of all ports [106]. In

contrast to the hybrid ring, the WPD has only three external ports. However, the

resistor that is internally connected between the two output ports in order to provide

matching and isolation acts as the termination of a hidden fourth port [58, 105].

The lack of an external fourth port prevents to superpose two input signals in two

output paths which is a necessity for the generation of a two-mode squeezed state

without additional local squeeze operations. Compared to the hybrid ring, the

power divider MITEQ PD2-2000/18000-30S provides a larger bandwidth extending

from 2 to 18 GHz at the cost of lower isolation with a nominal value of 14 dB. The

insertion loss is specified as 0.8 dB. The large bandwidth is important for the Planck

spectroscopy experiments discussed in Sec. 4.1.

The 3He/4He-dilution refrigerator

Our aim is to recover non-classical propagating microwave fields, which so far require

superconducting circuits for their generation. Therefore, a cryogenic environment

providing millikelvin temperatures is natural for our experimental setup. We use a
3He/4He-dilution refrigerator which was designed and constructed at the Walther-

Meißner-Institut by K. Uhlig, A. Marx, C. Probst, S. Höss, and the team of our

workshop. Depending on the number of installed microwave lines, the base temper-

ature inside the mixing chamber varies from 12 to 18 mK. At these temperatures, the

thermal population for a microwave tone at approximately 6 GHz is negligible and

only vacuum fluctuations (shot noise) have to be taken into account. Furthermore,

low temperatures allow reducing unavoidable cable losses between components at

different temperature stages by using superconducting materials. Losses have to

be minimized since they always diminish the signal-to-noise ratio or, in the case of

quantum states, mix them with thermal or vacuum fluctuations. For the operation

principle and a detailed description of our dilution refrigerator, we refer the reader

to the Diploma thesis of M. Á. Araque Caballero [107], which was supervised by the

author of this work. At this point, we just want to motivate why the combination

of millikelvin temperatures and low-loss microwave circuitry is a technological and

2We note that for the Cohn-type power divider the noise properties of the resistive network can
be hard to analyze with simple circuit theory [105]. However, since the WPD and the Cohn-type
power divider differ only in the usable frequency range, it is expected that both are described by
the same scattering matrix [105]
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experimental challenge. Since the cryogenic part of the experimental setup is placed

in an inner vacuum chamber, custom-made hermetic feedthroughs for microwaves

withstanding the stress of thermally cycling have to be used [105]. The latter can

also make the inner conductor of the cables between room temperature and 4.2 K-

stage to move even if the cables are specified for cryogenic use. In first experiments,

we utilize ULT-05 cables manufactured by Keycom containing a copper foil for bet-

ter transmission properties. After several cooldowns, the inner conductor moves to

an extent such that electrical contact can be lost. For this reason, we use astro-

cobra-flex 31086S cables in later experiments. These cables are mechanically stable

due to the convoluted design of the outer conductor. As a remedy for uncontrolled

changes of the cable transmission during fridge cooldown and warmup, we develop

an in situ calibration technique which is discussed in Sec. 3.1.4.

When designing the cryogenic setup, one has to respect the limited cooling power

of the refrigerator and disburden lower temperature stages from excessive heat load.

In the case of the input lines, this can be achieved by thermally anchoring atten-

uators to various temperature stages of the cryostat. In this way, also the inner

conductor of a coaxial cable is cooled. However, for output lines the use of attenu-

ators would diminish the signal-to-noise ratio and thus is not desirable. Therefore,

only the outer conductor is thermally anchored by soldered copper wires (1.2 K-

pot) or clamped braids (100 mK-stage). Furthermore, circulators anchored to the

still (700 mK) thermalize both conductors of the coaxial line, the inner one via a

50 Ω-load. The high electron mobility transistor (HEMT) amplifiers are thermally

anchored to the He-bath (4.2 K), since their dissipated power does not allow oper-

ating them at lower temperatures. In the following, we discuss the details on the

dual-path setups shown in Fig. 3.5 and in Fig. 3.6.

Attenuated input line

In order to verify that our dual-path method is suitable for the detection

of weak propagating microwaves, we conduct proof-of-principle experiments

(cf. Sec. 4.2) with sophisticated statistical mixtures generated at room tempera-

ture (cf. Sec. 3.1.1). A series of cold attenuators ensures that the thermal noise at

the signal port of the hybrid ring is restricted to that of an effective 50 Ω-termination

at the base temperature. Furthermore, these attenuators thermally anchor the inner

conductor of the coaxial cables and thus reduce the heat load on the lower tempera-

ture stages. For the input lines at temperatures below 4.2 K, we use thin cables with

niobium inner and cupro-nickel outer conductor (SC-119/50-Nb-CN) manufactured
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Figure 3.5: Schematics of the HR setup. The amplification and detection paths
are marked in magenta. The 3 dB-bandwidths of the filters are stated close to their
symbols. The colored boxes denote the temperature stages inside the fridge.
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by Coax Co., Ltd., Japan. These Nb/CuNi-cables have an outer diameter of 1.2 mm

(UT47 standard). The total attenuation of the input line between microwave source

and beam splitter input is 94 dB for the HR setup and 97 dB for the WPD setup.

The difference in the attenuation in the two setups is attributed to the thermal

cycling, which changes the transmission properties of the cables between room tem-

perature and 4.2 K by movement of the inner conductor. For details on the applied

calibration technique we refer the reader to Sec. 3.1.4.

Millikelvin stage

The central element at the millikelvin stage is the beam splitter, either a 180◦-hybrid

ring or a power divider. It is thermally anchored to a silver base plate attached to

the mixing chamber. For good thermal conduction, we remove the varnish of the

power divider box and apply a thin layer of vacuum grease to the contact surface.

In Fig. 3.7, the base plate of the HR setup and that of the WPD setup are shown.

thermometer

heater

attenuator

2.5 cm

input line

2.5 cm

180° hybrid
ring

Wilkinson 
power divider

heater

50W-load

(a) (b)

Figure 3.7: Photographs of the dual-path setups. (a) Base temperature plate of
the hybrid ring setup. (b) Base temperature plate of the Wilkinson power divider
setup.
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The last attenuator (40 dB) of the input line, physically a serial combination of

two 20 dB-attenuators, and the load of the beam splitter (HR: external, WPD: inter-

nal), are thermally anchored to the base plate. Their temperature can be stabilized

by a PID controller (Picowatt TS-530A) in combination with a resistive heater.

The heater consists of a SMD 0402 100 Ω-resistor glued with black Stycast between

a folded silver foil, and electrically isolated from the latter with cigarette paper. The

temperature is measured by a RuO thermometer read out with a Picowatt AVS-47A

AC resistance bridge. Inside the silver box of the thermometer the leads are thermal-

ized3. The thermometer is attached to the 40 dB-attenuator (WPD setup) or to the

load of the hybrid ring (HR setup) by a gold-plated oxygen-free highly-conductive

(OFHC) copper clamp. To ensure good thermal contact, we coat the surfaces with

a thin layer of vacuum grease and press them firmly together using screws. The cre-

ation of a thermal state at the input of the beam splitter allows for a gain calibration

of the amplification and detection chains as presented in Sec. 3.1.4.

Output lines

The signal provided by the attenuated input line is divided by the beam splitter

and guided by Nb/CuNi coaxial lines to the circulators anchored at the still. We

prefer to use thick Nb/CuNi-cables (Coax Co., Ltd. SC-219/50-Nb-CN) with an

outer diameter of 2.2 mm (UT85 standard) in the output lines, because their loss

is lower compared to thin cables. The loss between the beam splitter output and

the HEMT amplifier input is crucial since it can reduce the signal-to-noise ratio

considerably. However, thicker cables are more rigid, harder to bend, and more

demanding to install. In the case of the HR setup, the output lines are 2.2 mm

thick, whereas in the WPD setup the cables are interrupted at the mixing chamber

plate by a female/male-connection. The lower, shorter part of the cable is 1.2 mm

and the upper, longer part is 2.2 mm thick.

Before the signals are amplified they have to pass a circulator which is a non-

reciprocal three-port device. It transmits microwaves in a circular manner, e.g.,

from port 1 to port 2, from port 2 to port 3, and from port 3 to port 1, whereas it

isolates in the opposite direction. It is built from a T junction on which a ferrite

post is placed. The ferrite is biased by the static field of a permanent magnet and

interacts with the microwave field. Thereby, the time-reversal symmetry is broken

resulting in the non-reciprocal transmission behavior. Our circulators (Pamtech

3This silver-box thermometer was designed, built, and precisely calibrated by K. Neumaier
(permanent guest at the Walther-Meißner-Institut) .
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CTH1392KS2) are magnetically shielded to suppress stray fields. They provide, on

the one hand, a better impedance matching to the cryogenic HEMT amplifiers and,

on the other hand, isolate the base plate components from the HEMT noise by at

least 21 dB in the frequency range from 5.35 to 6.35 GHz. Although not specified,

their transmission and isolation properties allow for their operation in a broader

bandwidth with marginal degradation of the isolation. However, the white noise

of their loads anchored at the still with a temperature of approximately 0.7 K is

not hindered from propagating down the output lines. The isolation of the beam

splitter in combination with the one of a single circulator prevents the existence of

noise which is correlated between the two chains. Figure 3.8 shows a photograph of

the still and 4.2 K-stage of our cryostat.

Next, the signals are fed into the cryogenic HEMT amplifiers each anchored at

4.2 K by an annealed Cu plate screwed to the amplifier’s housing and connected to

the vacuum flange by two soldered copper braids. The amplifiers are connected to

the circulators via Nb/CuNi-cables. Halfway in between, their 1.2 mm thick outer

conductor is thermally anchored to the 1.2 K-pot by means of soldered copper wires.

The cryogenic HEMT amplifiers were manufactured in the Group for Advanced Re-

ceiver Development (GARD) at Onsala Space Observatory and at Chalmers Univer-

HEMT amplifiers

circulators

vacuum flange

still plate
2 cm

Figure 3.8: Photograph of the still and 4.2 K-stage of the cryogenic dual-path
setups. The circulators and their 50 Ω-loads are thermally anchored to the still
plate (0.7 K). The HEMT amplifiers are anchored to the vacuum flange (4.2 K).



44 3. Experimental techniques

sity of Technology, Gothenburg, Sweden. They consist of two amplification stages

with HEMTs based on GaAs technology. Their operation bandwidth extends from

4 to 8 GHz. The two amplifiers provide a gain of 24 and 25 dB, respectively, and a

noise temperature of nominally 6±1 K for our operation frequency of approximately

6 GHz. The noise temperature was measured at an ambient temperature of 12 K by

the manufacturer. At 4.2 K, we expect similar or even lower values. Our amplifica-

tion and detection chains are designed in such a way that their noise temperature is

dominated by the cryogenic HEMT amplifiers. The room temperature components

of these chains are discussed in the next section.

3.1.3 Cross-correlation detector

In this section, we first discuss why a direct acquisition with analog-to-digital con-

verters is not suitable for our application and then introduce the cross-correlation

detector.

A direct detection of our microwave frequency signals would require fast digitizing

rates of at least 12 gigasamples per second to obey the Nyquist-Shannon sampling

theorem [108–110]. While analog-to-digital converters are commercially available

with the required sampling rates, they are limited in the vertical bit resolution to

typically 8 bits and are quite expensive. A further complication are the resulting high

data rates which have to be efficiently processed. In a computer-based architecture

the data has to be buffered and then evaluated. This results in long dead times.

Furthermore, acquisition boards equipped with field programmable gate arrays for

data processing in real time do not support the required sampling rates for direct

detection. Therefore, one has to shift the signal frequency to a range where the

signals can be handled more easily. Since our signals have a narrow bandwidth of

the order of some 10 MHz, this is possible without any loss of information. The core

component for this task is a mixer which downconverts the gigahertz frequencies

to the megahertz regime. It is a non-linear device based on fast switching diodes

that are biased by a microwave tone called local oscillator (LO). Effectively, the

mixer multiplies the input microwave signal (RF port) by the LO sinusoidal wave.

Thereby, difference and sum frequencies are created. The latter are eliminated by

internal lowpass filters.

In the following, we describe the signal flow through the cross-correlation de-

tector (cf. Fig. 3.5 and Fig. 3.6). The output signals of the cryogenic setup are

further processed by MITEQ JS2-02000800-08-0A (JS2) low-noise amplifiers with a

noise temperature of nominally 60 K and a gain of 24− 25 dB. In the HR setup, an-
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other amplifier (MITEQ AFS5-00100800-14-10P-5) is connected in series to the JS2.

The signals are then bandpass-filtered (Mini-Circuits VBFZ-5500+) to reduce noise

outside the bandwidth of interest. Next, mixers (Marki Microwave M3-0312LP)

downconvert the microwaves to an intermediate frequency (IF). In the case of co-

herent input signals, an IF of 10 MHz is chosen by setting the LO frequency 10 MHz

lower than the signal frequency. The IF signal is fed into NF Corporation SA-421F5

amplifiers with a gain of 46 dB and a bandwidth of 30 Hz−30 MHz. However, in

the HR setup the total amplification is so large that additional attenuators in front

of the NF amplifiers have to be used to prevent compression effects. For a good

linear performance of the amplifier the input signal power has to be suitably below

the 1 dB-compression point. The same is true for a mixer. In our case, the power

level at the RF input of the mixers is far to low to cause compression effects. In

the WPD setup, the AFS amplifiers and the associated attenuators are removed.

The overall lower total gain is compensated by a different sensitivity setting of the

acquisition board. Before digitizing, the signals are lowpass-filtered with a Mini-

Circuits SLP-21.4 used as an anti-aliasing filter. DC blocks (Aeroflex Inmet 8535)

suppress DC offsets possibly caused by the mixers or the NF amplifiers. We note

that the measurement bandwidth of the cross-correlation detector is twice the one of

the lowpass filter since the image band (RF frequency lower than the LO frequency)

is also detected, i.e., |fRF−fLO| ≤ flowpass holds. Due to the DC blocks, the RF and

LO frequency have to be different to produce a measurable IF signal and therefore

the setup is classified as a heterodyne receiver.

Data acquisition and processing

The IF signals are synchronously sampled by an Acqiris DC440 digitizer board with

nominally 12 bit resolution at 400 megasamples per second. The oversampling allows

for a display of the traces with good time resolution and lowers the demands on the

anti-aliasing filter. The digitizer is placed in an external enclosure to avoid the

noisy environment inside a personal computer (PC). The data is transferred to the

PC by a cabled PCI bus. The measurements are controlled by LabVIEW invoking

a dynamic link library (DLL) written in C++ by the author of this work. This

program acquires the data, calculates the moments 〈C`
1C

m
2 〉, where 0<`+m≤ 3,

and averages the ensemble. Despite the use of DC blocks, slowly drifting offsets,

e.g., due to the ADCs, may be still present. We suppress such offsets by the following

protocol. The raw data is divided into segments of 4128 traces equivalent to 0.5 s

measurement time. For each of these segments, the time average is subtracted from
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each data point before any other manipulation. Effectively, this procedure acts as

a highpass filter eliminating slow drifts in the data. Since the C++ code is quite

efficient the bottleneck is not the data processing but the data transfer between the

digitizer and the PC. This problem can be solved by a field programmable gate array

(FPGA) based architecture as discussed in the next section. We refer to the unit of

heterodyne receiver, data acquisition board, and processing DLL as cross-correlation

detector.

With respect to the cross-correlation detector, a good balancing of the experi-

mental setup regarding amplitude and phase is a prerequisite for successful experi-

ments. A pre-balancing of the amplitude is done by an attenuator in one of the lines.

In the HR setup, the phase difference has been tuned by changing the cable length

at the RF input of the mixer with the help of adapters close to 180◦. By using a

phase shifter in the local oscillator line of one of the two mixers, the phase difference

can be set more precisely in the WPD setup. There, we use a phase balancing of 0◦

since this is the phase shift between the signals at the outputs of a WPD. Further

details on the balancing are presented in the next section.

3.1.4 Calibration

In this section, we present calibration techniques which form the basis for precise

measurements. Our calibration methods provide effective means to compensate

changes in the experimental setup, which can be induced, for example, by mechanical

stress during the refill of the cryostat’s dewar with liquid helium. In order to avoid

decorrelation effects, the signals in the two amplification and detection chains have

to be aligned regarding phase. A balancing of the signal amplitude implies equal

gain of the two chains and results in simpler equations for the signal reconstruction

(cf. Sec. 2.5). Furthermore, a calibration of the power of the classical signals is

necessary to investigate the resolution limits of our implementation of the dual-path

method.

Amplitude and phase balancing of the two chains

To investigate the balancing of the dual-path setup, a coherent test signal is in-

jected into the beam splitter. Amplitude pre-balancing is achieved by means of a

3 dB-attenuator in one of the two paths. We compensate the residual gain imbalance

(<1 dB) by applying a numerical compensation factor during data acquisition before

the moments are calculated. This factor is determined by comparing the IF ampli-
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tude of the two channels C1 and C2 in the ensemble averaged first moments. Next,

the phase difference between the two channels is calibrated to 0◦ (WPD setup) or

180◦ (HR setup) by aligning the curves of C1 and C2 or of C1 and −C2, respectively.

Calibration of the input line attenuation

In our setup, the attenuated input line can be calibrated in situ by determining the

total transmission from the source to the digitizer and the gain of the amplification

and detection chains. For the gain calibration, known thermal states are injected

into the input ports of the beam splitter and the dependence of the measured power

at the digitizer on the temperature of the thermal state is analyzed. To this end,

the 50 Ω-load at the ancilla port of the hybrid ring (HR setup), respectively the

attenuator at the input of the power divider (WPD setup), is temperature-controlled

using a heater and a thermometer. Since heating is faster than cooling in our setup,

we use the following downsweep protocol. The temperature of the load and base

plate is stabilized to 800 mK for half an hour, the heating is switched off, and the

measurement is started. Due to the strong thermal coupling between the load and

the base plate the heat capacity is significant and cooling is slow enough to allow for

a well-defined temperature of each measurement point. We can safely assume the

beam splitter, ancilla load, and effective 50 Ω-load at the signal port to have the same

temperature. Both loads inject thermal voltage fluctuations into the beam splitter.

The auto-variance of these fluctuations follows the well-known Planck function. The

gains G1, G2 and noise temperatures TN,1, TN,2 of the amplification and detection

chains are inferred from a numerical fit of the power at the digitizer

〈(Ci − 〈Ci〉)2〉
R

= GiB

(
hf

exp( hf
kB(T−δTi))− 1

+
hf

2
+ kBTN,i

)
, i = 1, 2 (3.1)

with the fitting parameters gain Gi, TN,i, and δTi. Here, R= 50 Ω is the termination

load of the ADC input, f is the center of the detected frequency band and B is the

measurement bandwidth. The latter is known from a measurement with a spectrum

analyzer (B=51 MHz). The parameter δT accounts for small differences between

the measured temperature and the electronic temperature of the load. For the HR

setup, we find gains of approximately 110 dB for both chains, where small residual

gain asymmetries have been absorbed in a compensation factor already. With this

result, the 0.5 dB loss of the hybrid ring, and the total transmission from source to

digitizer, we calculate an input line attenuation of 94 dB. The latter allows us to
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determine the signal power Pin at the input of the beam splitter. For the WPD setup,

we retrieve an attenuation of the input line of 97 dB and a gain of the amplification

chains of 90 dB.

3.2 Josephson Parametric Amplifier

Since the advent of circuit quantum electrodynamics [6, 17–19], the demand for

ultra-low-noise amplifiers in the gigahertz regime is increasing. As phase-sensitive

amplifiers [81], Josephson parametric amplifiers [23, 111–119] (JPA) are allowed to

amplify a single quadrature of a signal without adding noise to it. For this reason,

they are very attractive devices for studies on propagating quantum microwaves [56].

Furthermore, the excellent noise properties allow for the investigation of quantum

objects such as superconducting qubits [7,15,114,120–122] or nano-mechanical res-

onators [123]. In addition, we want to note that there is a close analogy between

vacuum amplification effects in quantum field theory and parametric amplification

in microwave circuits [124]. As an example, the dynamical Casimir effect has been

observed in such a system [34]. Although in practice internal losses may limit the

noise performance of a JPA, it can nevertheless be used to beat the standard quan-

tum limit for phase-insensitive amplifiers [23]. The ability to do so is a prerequisite

to generate squeezed vacuum states [23–25,44,56,125–127], which have potential ap-

plications in the realm of quantum information processing. Prominent examples in

the optical regime are the generation of distributable unconditional entanglement [5]

or memories for entangled continuous-variable states [128].

In our experiments, we make use of a flux-driven JPA [117] to generate propagat-

ing quantum microwaves by squeezing vacuum, thermal or coherent states. First, in

Sec. 3.2.1, we introduce the basic operation principle. Subsequently, in Sec. 3.2.2, we

give details on the sample. In Sec. 3.2.3, we discuss a setup for the characterization

of the amplification and squeezing properties of the JPA. Finally, in Sec. 3.2.4, we

consider the optimization of the operation point.

3.2.1 Principle of operation

We illustrate the working principle of a parametric amplifier by the analogy to a

playground swing. There, a child increases the oscillation amplitude by a modula-
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Figure 3.9: Flux-driven JPA. (a) Circuit diagram. The transmission line resonator
is shunted by a dc SQUID (loop with crosses denoting Josephson junctions) at one
end. A magnetic flux Φdc + ΦRF penetrating the dc SQUID thereby modulates the
resonant frequency. (b) JPA resonance frequency fdc as a function of the applied
dc flux Φdc. Black symbols: data. Red line: fit (cf. Ref. [129] for details). Blue dot:
operating point f0 = 5.637 GHz. (c) Operation principle adopted from Ref. [129]

tion of the swing length4. The latter is most efficient if the modulation frequency

amounts to twice the oscillation frequency of the swing. In the case of a flux-driven

JPA, whose circuit diagram is depicted in Fig. 3.9(a), the oscillator is represented by

a superconducting coplanar waveguide resonator. In order to achieve a parametric

effect, the resonance frequency fdc of the quarter wavelength resonator is modulated.

To this end, a dc superconducting quantum interference device (SQUID) – a super-

conducting loop interrupted by two Josephson junctions – is inserted between the

center conductor and the ground plane at the shorted end of the resonator. Because

4More precisely, a child standing on a swing varies its center of mass by bending its knees and
thus modulates the effective length of the swing [124, 130]. This situation is analog to parametric
amplification, whereas a child sitting on a swing and moving its legs is better described by driving
the oscillator than parametrically pumping the latter [131].
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the SQUID acts as a flux-tunable inductor, the resonance frequency of the resonator

can be changed with the help of an external magnetic field [cf. Fig. 3.9(b)]. Via

an external coil, we first set a quasistatic bias corresponding to a JPA operating

frequency f0. When we apply a fast modulation at 2f0 (pump tone) via an on-chip

antenna, parametric amplification is achieved. A signal at f0− f impinging at the

signal port is amplified by the signal gain G and reflected back out of the signal port.

At the same time, an idler mode at f0 + f is created, whose amplitude is determined

by the intermodulation gain M . This operation principle is depicted in Fig. 3.9(c).

For vacuum fluctuations as input signal, this process is the analog of spontaneous

parametric downconversion in optics, where a pump photon is split into a signal and

an idler photon. Therefore, strong quantum correlations between the signal and the

idler mode are established which finally lead to squeezing.

In comparison to other implementations, we want to stress an important ad-

vantage of the flux-driven design [117]: The pump tone is well separated from the

signal regarding frequency and thus does not contaminate the signal. Furthermore,

there is a large isolation of 28 dB between the pump and signal port of the JPA

at the signal frequency hindering noise from the pump line to enter the resonator.

Contrarily, in JPAs based on Kerr-non-linearities the pump and signal frequencies

are degenerate [116]. Thus, when a clean state is needed the strong pump tone has

to be eliminated by an interference technique [56]. The flux-driven design renders

this technique obsolete and reduces the experimental complexity, e.g., the number

of required input lines.

Though the study of the JPA is an interesting topic on its own, we do not want

to delve into details on a theoretical description of the JPA that is based on input-

output formalism [132] and refer the interested reader to the appendix of Ref. [129].

Of course, this theory proved to be quite useful in predicting key characteristics

such as the signal bandwidth in the design process of the JPA. Within the frame

of this work, we want to apply the JPA as an element of our toolbox for quantum

optics on a chip solving the task of squeezed state generation. Thus, we concentrate

on a detailed experimental characterization of the JPA and ensure that the sample

is working correctly and provides squeezing. Knowing key parameters is especially

helpful to design the path entanglement cross-correlation detector correctly. For

example, the JPA signal gain bandwidth determines the choice of the measurement

bandwidth of the detector for mode matching.
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Figure 3.10: Micrographs of the JPA sample #2-1c used in our experiments.
(a) Sample chip. (b) Zoom on the region marked with the red rectangle in panel (a),
showing the coupling capacitor Cc = 30 fF (design value). (c) Pump line and dc
SQUID. Zoom on the region marked with the blue rectangle in panel (a), showing
the pump line and the dc SQUID. (d) Zoom on the region marked with the green
rectangle in panel (c), showing the dc SQUID. The size of the loop is 4.2× 2.4µm2.
Reprinted adopted figure from Ref. [59].

3.2.2 The JPA sample

The JPA samples have been designed by T. Yamamoto and fabricated by K. Ino-

mata in the group of Y. Nakamura at NEC Smart Energy Research Laboratories,

Japan. We have investigated two samples with different design values of the ex-

ternal quality factor Qext = 300 and Qext = 30 implemented by distinct values of

the coupling capacitance Cc [cf. Fig. 3.9(a)]. As the Qext = 30 sample broke during

a thermal cycle its squeezing properties could not be investigated. Therefore, we

concentrate on the sample #2-1c with Qext = 300 in this work. For a compara-

tive study of the amplification properties of the two samples we refer the interested

reader to the Diploma thesis of A. Baust [129], which was supervised by the au-

thor5. Micrographs of the device used in our experiments are shown in Fig. 3.10.

The resonator and antenna are patterned from a sputtered 50 nm thick Nb film.

At the contacts, 95 nm of gold on a 5 nm titanium bonding layer are deposited on

top. As substrate, we use thermally oxidized (300 nm) silicon with a thickness of

300µm. The dc SQUID is fabricated in the last step using aluminum technology

5In Reference [129], the overall performance of the JPA is lower than in this work, because a
different procedure for setting the operation point is applied (cf. Sec. 3.2.4 for details).
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and shadow evaporation [133]. The Al electrodes have a thickness of 50 nm each.

From Fig. 3.9(b), we estimate a Josephson coupling energy EJ =h× 650 GHz for

each junction6, where h= 6.63×10−34 Js is the Planck constant. At the operation

frequency f0 = 5.637 GHz the external quality factor is measured as Qext = 312. We

determine an isolation between antenna and resonator of more than 28 dB at the

signal frequency f0. The sample chip is placed between two small alumina printed

circuit boards inside a gold-plated copper box.

3.2.3 Characterization setup

In this section, we describe the setup used to determine the amplification properties

and for first squeezing experiments. After a description of how to generate the dc

magnetic field bias, we present the cryogenic and room temperature setups in detail.

Superconducting coil and persistent current switch

In order to tune the JPA frequency a static flux is used. The magnetic field is gener-

ated by a superconducting coil equipped with a persistent current switch. The latter

allows to freeze a persistent current in the coil. This provides an effective isolation

from current noise possibly present on the coil leads. Details on the superconducting

coil and persistent current switch are presented in Appendix A.

Spectroscopy setup for measurements of amplification properties

The experimental setup sketched in Fig. 3.11(a), allows for the characterization of

two JPA samples in the same cooldown making use of microwave switches to select

between the samples and a calibration short. The switches have been developed in

cooperation with Agilent technologies resulting in the new option C02 of the N18xx

series optimized for the use at cryogenic temperatures. This option is characterized

by removing any grease inside the switches that may block them at low temperatures

and by excluding current interrupts. In order to limit heat dissipation, the switches

are of latching-type and are operated by current pulses. The latter are provided

by an electronics [129] developed by U. Guggenberger7, the author, and A. Baust8.

6We note that this value of EJ was retrieved from a lumped element model of the JPA. Consid-
ering the distributed character of the transmission line resonator [134], we determine a Josephson
coupling energy EJ =h× 1305 GHz for each junction.

7Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Ger-
many

8Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Ger-
many
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Figure 3.12: Photographs of the base plate of the JPA characterization setup.
(a) Rear view. (b) Front view.

Figure 3.12 showing photographs of the sample plate conveys an impression that

fitting all the components is challenging.

The signal, generated either by a microwave source or the vector network analyzer

(VNA), passes a series of warm and cold attenuators. The signal power levels stated

in Sec. 5.1 are referred to the output of the 30 dB-attenuator acting as thermal

noise source. The loss of the input line is calibrated with the method described

in Sec. 3.1.1. The noise source is thermally decoupled from the base plate and is

discussed in detail in Sec. 3.3.1. For gain measurements, a coherent signal generated

either by a microwave source or a VNA is fed through the attenuated input line

via the measurement circulator to the JPA. This circulator separates the outgoing

from the incoming signal and isolates the JPA from the noise generated by the

amplifiers in the output line. The amplified output signal can be detected by a

VNA or a spectrum analyzer. The VNA allows one to investigate the complex

reflection coefficient of the JPA. The spectrum analyzer is used to investigate the

idler gain and the degenerate operation of the JPA (cf. Sec. 5.1.6). We note that

in all JPA characterization experiments we make use of continuous-wave signal and

pump tones without pulse modulation because of the used measurement devices.

Sub-harmonics of the pump tone, which can distort the signal, are suppressed by

a serial combination of four Mini-Circuits VHF-7150+ bandpass filters. For noise
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temperature measurements, the same setup is used, and by heating the weakly

anchored 30 dB-attenuator a thermal state is injected into the JPA.

As the cross-talk of the on-chip pump line and the resonator of the JPA is not

known during the design phase of the experimental setup, we choose a pump line

attenuator configuration providing a compromise between heat dissipation and re-

jection of thermal noise from higher temperature stages. This results in a sample

box temperature of approximately 70 mK, when the JPA is continuously pumped.

However, the temperature drops, when the JPA is deactivated. Therefore, the tem-

perature of the JPA box is controlled and stabilized to 90 mK. Since in these ex-

periments, only one resistance bridge and temperature controller is available, the

JPA box temperature is not stabilized when the noise source is used. We note that

due to the higher pump power dissipation, in this setup the JPA box temperature

is higher than in the path entanglement setup, where the JPA box temperature is

stabilized at 50 mK.

Homodyne detection setup for squeezing measurements

For homodyne squeezing measurements, the same cryogenic setup is used. In the

room temperature detection setup, the spectrum analyzer of Fig. 3.11(a) is replaced

by the circuit depicted in Fig. 3.11(b). The signal is split and measured by a RF

spectrum analyzer and a homodyne detector. The former provides information on

the signal power whereas the latter allows to detect a single quadrature. This phase-

sensitive detection is a prerequisite for squeezing measurements. The homodyne

detector consists of a local oscillator microwave source and a mixer to downconvert

the microwaves. The LO frequency is set to half the pump frequency so that the

signal and idler mode are mapped onto the same intermediate frequency detected

by a R&S FSV 30 spectrum analyzer. The resulting interference reveals the strong

correlations established between the idler and signal mode by the JPA. Depending

on the phase difference between signal and idler mode, which can be controlled by

the phase of the LO, the interference is constructive or destructive. For the latter

case, fluctuations are decreased and this is referred to as squeezing.

Losses of the cryogenic setup

The level of squeezing and the noise temperature of the JPA depend on the losses

present in the setup. Therefore, we determine the relevant losses by transmission

measurements at 4.2 K in a vacuum chamber cryostat. In order to reduce the number

of cooldowns to a practicable amount, the transmission through suitable combina-
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tions of parts is measured. The transmission through an individual component can

be retrieved by solving a system of linear equations.

3.2.4 Optimization of the operation point

The methods of how to set the operation point have advanced over time. In first

experiments [129], the pump frequency is set to twice the resonator frequency, where

the latter is determined from a phase-vs.-frequency characteristics without pump-

ing. Later, we observe that the resonance frequency shifts, when the JPA is pumped.

Consequently, the operation point can be optimized by tuning the pump frequency,

while measuring the signal gain with a network analyzer. However, for the path

entanglement measurements a different approach is more suitable. As the cross-

correlation detector is calibrated for a specific frequency (cf. Sec. 3.3.4), the opera-

tion point is optimized by tuning the flux. Finally, the determination of the optimal

operation point is automated applying the following sequence.

1. The pump power is calculated from the set value of the signal gain and applied.

To this end, a phenomenological formula describing the dependence of the

signal gain on the pump power is found.

2. A fine flux sweep is carried out while measuring the signal gain. The retrieved

data is analyzed with a Gaussian fit.

3. The maximum of the fitted curve is compared to the set value of the signal

gain and the pump power is adjusted accordingly.

4. Another flux sweep is measured and analyzed. The flux is set to the abscissa

value of the maximum of the fitted curve.

5. After setting the flux to persistent mode, a control measurement is taken.

Figure 3.13 shows the second flux sweep for a set value of the signal gain of 10 dB.

The result of the flux control sweep is 10.05 dB.

3.3 Dual-path setup for propagating quantum mi-

crowaves and path entanglement

When detecting actual quantum correlations or quantum states rather than weak

classical mixtures, quadratures have to be measured instead of of signal amplitudes.
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Figure 3.13: Second flux sweep for optimization of signal gain. Blue points: mea-
sured signal gain. Red curve: Gaussian fit. Brown dashed lines denote the maximum
of the Gaussian fit.

Furthermore, the stability of the dual-path setup is significantly improved by ther-

mally isolating the noise source from the mixing chamber and an FPGA logic allows

for real time data processing. In Sec. 3.3.1, we describe the cryogenic setup. Next,

in Sec. 3.3.2, we discuss the IQ cross-correlation detector and, in Sec. 3.3.3, the data

acquisition and the FPGA logic. Finally, in Sec. 3.3.4, we consider the calibration

of the setup.

3.3.1 Cryogenic setup

The complexity of the cryogenic setup required for reliable and clean preparation

of squeezed states implies a large number of quite bulky microwave components

at the base plate of the dilution fridge. A detailed sketch of the experiment is

shown in Fig. 3.14. However, the limited space in our fridge (cf. Fig. 3.7) does not

allow us to place these components. Therefore, we enlarge the base plate length

from 13 cm (cf. Fig. 3.7) to 48 cm (cf. Fig. 3.15), demanding for the redesign and

production or acquisition of a number of parts such as a silver base plate extension,

the still radiation shield, the vacuum chamber, the Cryoperm magnetic shield, the

He Dewar, and the room temperature Mu-metal shields. In this way, we make room

for mounting multiple experiments in a single cooldown. As a consequence, our

millikelvin resources can be used more efficiently: During the time needed for data

analysis or improvement of room temperature setups, the fridge is used by a different
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person carrying out another experiment. The fridge provides now 40 twisted-pair

lines, 7 high-bandwidth coaxial input lines, and 4 high-bandwidth coaxial output

lines. The latter are equipped with a cryogenic HEMT amplifier each. Rather than

bothering the reader with an endless description of all the work leading to a well

equipped and stably performing fridge, we mention that four PhD students including

the author and two student trainees worked one year on the reconstruction. The

increased sample throughput has made this time investment worthwhile already

within another year. In the following, we present the main components of the

cryogenic setup for experiments with quantum microwave states.

Noise source for the generation of thermal states

We use a temperature-controlled load to generate thermal microwave states. These

are required for the calibration of the gain of our amplification and detection chains

and for the investigation of squeezed thermal states. In contrast to the WPD and

HR setups, where a strong coupling of the load to the base plate changes the temper-

ature of the whole millikelvin setup, we have decoupled the load thermally from the

base plate. To this end, we use a UT47 Nb/CuNi-cable between the temperature-

controlled 30 dB-attenuator and the input port of the measurement circulator. Fig-

ure 3.15 displays a photograph of the base plate setup. Furthermore, we utilize an

annealed silver ribbon with a cross-sectional area of 4 mm× 40µm and 15 cm length

as weak thermal link between the noise source and the lower step exchanger. This

configuration has a number of advantages:

1. The heat capacity of the noise source, which is much smaller than that of the

base plate, allows for a much faster thermal cycling of the noise source and

decreases the waiting time between calibration and measurements. Due to

the fast cooling rate, the downsweep protocol described in Sec. 3.1.4 is im-

practical. Therefore, we make use of upsweeps, where each temperature is

set and stabilized. Thus, in contrast to downsweeps, the cooling rate does

not influence the measurements. As the cooling rate decreases with time, the

number of acquired points and thus the statistical uncertainty is temperature-

dependent in a downsweep measurement. This does not pose a problem for

Planck spectroscopy experiments. However, in path entanglement experiments

with squeezed thermal states the measurement takes so long that the temper-

ature would not be well defined. With the help of temperature-controlled

upsweeps, the conditions for the measurements become significantly more re-

producible.
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Figure 3.15: Photograph of the sample plate of the path entanglement setup.
Unlabeled components are part of other experimental setups.
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2. The temperature range of the noise source is extended by the thermal decou-

pling and ranges from 50 to 800 mK. In the WPD and HR setups, due to

the downsweep protocol the upper limit for the temperature is approximately

350 mK.

3. With the decoupled noise source, fridge parameters such as the condenser pres-

sure hardly change during a temperature sweep. As a consequence, the still

temperature remains constant. In contrast, in the downsweep measurements

with strongly coupled load, the fridge is driven into a non-equilibrium con-

dition. As a result, the still temperature changes by approximately 50 mK,

which affects the noise generated by the circulator load.

4. The base plate temperature can be stabilized independently of the load tem-

perature with the help of a second temperature controller at 50 mK and stays

constant up to a noise source temperature of 700 mK. This is of major im-

portance when using a JPA since its operating point shifts with temperature.

The stable base plate temperature guarantees that microwave losses in the

cryogenic setup and in the output lines are constant. Variable temperature

gradients occur only in the short cable connecting the noise source with the

measurement circulator. This localization allows one to model the effects of

the temperature gradients in order to obtain a more precise gain calibration.

Generation of squeezed states and path entanglement

For the generation of squeezed states, we make use of a JPA. Its signal line is

heavily attenuated at various temperature stages, whereas the pump line is only

moderately attenuated to disburden the fridge from dissipation caused by the much

larger power levels. The low attenuation of the pump line is made possible by the

large isolation of more than 28 dB between the pump line and the resonator on

the JPA chip. The reduced heat load compared to the JPA characterization setup

enables us to stabilize the base plate temperature at 50 mK measured on the JPA

sample box. As the JPA is operated in reflection, a measurement circulator is used

to separate the JPA input and output signals. The latter is sent into the hybrid ring

acting as the beam splitter of the dual-path detection setup. JPA, 50 Ω-terminated

hybrid ring, and measurement circulator are anchored to the base plate. Near the

50 Ω-termination of the hybrid ring, we measure a temperature of 40 mK.

For the propagating microwave state impinging at the input of the 180◦-hybrid

ring we have several options: We can apply strongly attenuated coherent states
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generated by a microwave source (SMF) at room temperature by directing them

through the measurement circulator to the inactive JPA (pump off). There, they

are reflected and sent back through the circulator to the input of the beam splitter.

Thermal or vacuum states are produced by the temperature-controlled noise source

as described above. When we switch on the JPA by applying a suitable pump

tone, we can squeeze the mentioned states and produce squeezed vacuum, squeezed

thermal and squeezed coherent states. By superimposing such non-classical states

with the vacuum state of a cold load we produce path entanglement between the

propagating signals in the output (cf. Sec. 2.8 for theory and Sec. 5.4 for experimental

results).

We note that during measurements of squeezed states, the JPA pump at fre-

quency 2f0 is operated in pulsed mode. Similarly, we also use pulsed probe signals

when measuring coherent states of frequency f0, where f0 is the center frequency of

the mode, whose quadrature components are measured by the IQ cross-correlation

detector (cf. Sec. 3.3.2). The rise and fall times of the pulse envelopes are approx-

imately 10 ns. As shown in Fig. 3.16, the measurement window always contains an

off-region as a reference in addition to the signal. At temperatures below 51 mK, the

thermal occupation is less than 0.005 photons at 5.637 GHz and, as a consequence,

this reference state can be considered as the vacuum (cf. also Sec. 2.9).

With the help of a microwave switch between the measurement circulator and

the JPA, the latter can be replaced by a calibration short with ideal reflection

allowing for the determination of the total loss of the combination of JPA, sample

box (alumina boards and connectors), and interconnecting cable. However, we note

that we use the switch only for this purpose and do not change it in all the other

experiments. The reason for this is that switching heats the base plate requiring long

waiting times for cooling and increases significantly the probability of flux jumps.
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Figure 3.16: Measurement protocol for squeezed and coherent states. During the
high time (“1”) of the pulse envelope, either the coherent signal or the JPA pump
tone is on, during the low time (“0”) both are off. The shaded area denotes the
measurement window.
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As shown in the discussion of the generation of classical mixtures in Sec. 3.1.1,

phase synchronization is important. Here, the rotationally non-invariant9 squeezed

states demand for a good phase stability and control (cf. Sec. 3.4.2). To this end,

the JPA pump and signal microwave sources, the vector network analyzer, the lo-

cal oscillator for the IQ mixers, and the clock for the ADCs and the FPGA logic

are synchronized with a 10 MHz Rubidium frequency standard (Stanford Research

Systems FS725).

The vector network analyzer is used to measure the JPA operating point, signal

gain, and idler gain. Finally, in addition to the elements shown in Fig. 3.14, several

components such as mechanical microwave switches, power dividers, and a spectrum

analyzer are used in the real setup. We omit these elements in the present discussion

since they serve purely technical purposes (e.g., debugging or switching to other

experiments) and are not essential for the functionality of the IQ cross-correlation

detector and the entanglement detection.

Output lines

In the IQ cross-correlation detector, each of the two amplification paths contains a

circulator anchored to the base plate and one anchored to the still. The base plate

circulators (PAMTECH CTH1932KS2) suppress the noise from the loads of the still

circulators by nominally 21 dB in the frequency range from 5.35 to 6.35 GHz. Due

to space limitations, the still circulators are mounted as double-circulator assem-

blies (PAMTECH CTH1365-K18-A, cf. Fig. 3.17). The still circulators provide an

isolation of 18 dB from the cryogenic amplifiers (Low Noise Factory LNF-LNC4 8A)

within a bandwidth of 4 to 8 GHz. These amplifiers consist of three amplification

stages with HEMTs based on InP technology and are thermally anchored to the

4.2 K-flange of the fridge. At our operation frequency of approximately 5.6 GHz,

their nominal gain and noise temperature are 43.5 dB and 2 K, respectively. These

values were measured by the manufacturer for an ambient temperature of 10 K.

In comparison to the cryogenic GARD amplifiers, used in the setups discussed in

Sec. 3.1.2 and Sec. 3.2.3, the gain is larger by 19 dB and the noise temperature has

improved by a factor of three. This results in a significantly better noise perfor-

mance of the amplification chains. Notably, the power consumption is only 7 mW

and thus less than half of that of the GARD amplifiers.

9We refer to the Wigner function representation in phase space.
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Figure 3.17: Photograph of the cryogenic amplifiers and still circulators. These
circulators and their 50 Ω-loads are thermally anchored to the still plate (0.7 K).
The HEMT amplifiers are anchored to the vacuum flange (4.2 K).

3.3.2 IQ cross-correlation detector

In Fig. 3.18, a simplified sketch of the IQ cross-correlation detector is shown. Along

each path, the high frequency (RF) signal emerging from the hybrid ring is linearly

amplified, filtered, downconverted to an intermediate frequency (IF) fIF = 11 MHz,

and digitized at a sampling rate of 150 MHz by 16 bit analog-to-digital converters.

The IQ mixers (Marki microwave IQ4509LXP) used for downconversion are biased

by a strong local oscillator (LO) at 5.626 GHz and split each output signal into its in-

phase (I1,2) and quadrature (Q1,2) components – therefore four ADCs are required.

The digitized signals are finally fed into an FPGA logic (details can be found in

Sec. 3.3.3) which computes all correlations up to the fourth moment in amplitude in

real time. Phase synchronization is guaranteed by using a joint local oscillator for

downconversion and referencing the clock of the FPGA logic to that of the local os-

cillator. By means of a phase shifter at the LO input of one of the two IQ mixers, the

phase difference of the two paths is pre-balanced to approximately 180◦. Finetuning

of the phase balance is performed within the FPGA logic. In order to avoid spurious
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Figure 3.18: Sketch of the IQ cross-correlation detector. Colored arrows: output
signals from the hybrid ring. Triangular symbols: amplifiers. Circles with crosses:
IQ mixers.

correlated noise contributions, isolators (MCLI IS-19-1/SMO) are inserted at sev-

eral points in the setup (cf. Fig. 3.14). At room temperature, the output signals are

amplified with Miteq JS2-02000800-08-0A (JS2PT) and Mini-Circuits ZX60-6013E

amplifiers in the RF path and with Miteq AU-1447 (AU) amplifiers in the IF path.

Since the output power of the IF amplifiers is limited, we use Mini-Circuits SBP-

10.7+ bandpass filters at their input avoiding compression effects induced by noise

outside the region of interest in the frequency spectrum. Furthermore, we place

tunable attenuators with a resolution of 0.1 dB (EPX microwave inc. ESA2-1-10/8-

SFSF) before the IF amplifiers allowing one to adapt the amplitude of the IF signals

to the fixed ±1.5 V input range of the ADCs and to pre-balance the four channels.

The four ADCs and a Xilinx Virtex-5 SX95T FPGA providing 9 million gates are

combined in the Innovative Integration X5-RX high performance digitizing and sig-

nal processing module. It is connected via a single lane cabled PCIe interface to a

host computer, where a measurement server program written by Peter Eder10 and

Matthias Ihmig11 represents the interface to the LabVIEW control software. The

author has coordinated and supervised the development process and contributed to

the debugging and testing of the measurement server and its interface to LabVIEW.

The LabVIEW control program, which contains routines such as the phase stabi-

lization protocol (cf. Sec. 3.4.2), has been developed by the author. Figure 3.19

10Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Ger-
many

11Lehrstuhl für Integrierte Systeme, Technische Universität München, D-80333 München, Ger-
many
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Figure 3.19: Photograph of the IQ cross-correlation receiver.

depicts a photograph of the IQ cross-correlation detector and in Fig. 3.20, the mea-

surement rack is shown. With the help of microwave switches, the cryogenic setup

can be bypassed and the receiver inputs are connected to a microwave source using

a splitter at room temperature. In this way, the FPGA logic can be tested with

large amplitude signals without noise, which is very convenient during debugging.

3.3.3 Data acquisition and processing by FPGA logic

For the reconstruction of quantum microwaves and the detection of path entangle-

ment, we have to measure the complex envelope of two microwave signals, i.e., their

orthogonal quadrature voltages by homodyning. To this end, we make use of a

two-step approach consisting of an analog heterodyne receiver (cf. Sec. 3.3.2) and a

digital downconversion logic. Compared to a purely analog version of homodyning,

our method has several advantages:

1. By using intermediate frequencies on the order of 10 MHz and appropriate

analog and digital filtering, 1/f -noise is effectively suppressed.

2. Imperfections of the IQ mixers such as amplitude and phase imbalances can

be corrected for in the digital downconversion scheme.
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Figure 3.20: Photograph of the measurement devices. (a) Rubidium 10 MHz source
for phase locking. (b) Microwave source. (c) Vector network analyzer. (d) Data
timing generator. (e) Spectrum Analyzer. (f) IQ cross-correlation receiver.
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3. The high-speed ADCs of our FPGA board are AC-coupled with the band

starting at nominally 1 MHz. Although our FPGA board is also equipped with

ADCs with DC-coupled inputs, these do not fulfill our bandwidth requirements

because of their low sampling rate of 250 kHz. Therefore, we use the high-speed

ADCs and intermediate frequencies well above 1 MHz.

We want to note that, in principle, single ended analog mixers in combination

with digital IQ mixers may be used. However, this method has the disadvantage that

the measurement bandwidth is only half of that in our approach [135]. This band-

width restriction would render future applications such as the analysis of systems

with superconducting qubits suffering from decoherence effects difficult. Moreover,

as compared to a single mixer setup, the IQ mixer setup has the advantage that it

does not require a steep filter (≈ 2 MHz) at the LO frequency f0− fIF in the RF path

to remove unwanted frequency components at the mirror frequency f0− 2fIF. Such

a filter would be difficult to calibrate and fix the setup to that specific frequency f0.

For the dual-path reconstruction and the entanglement detection, the orthogonal

I and Q quadratures of the noisy signal have to be recorded for both paths and

products of the type 〈Ij1Ik2Qm
1 Q

n
2 〉, where 0<j+ k+m+n≤ 4 and j, k,m, n∈N0,

need to be calculated for each recorded data point. However, the presence of the

amplifier noise of our paths requires significant averaging. The latter in combination

with the high acquisition rate (150 − 400 MHz) results in a large amount of data. As

a consequence, data transfer rate and computation time become a serious bottleneck

in a computer-based acquisition system. By streaming the data from the ADCs

directly into an FPGA logic, we solve these problems and are able to perform the

moment calculations in real time. The FPGA logic has been developed by Matthias

Ihmig, at which the author has defined specifications and contributed to testing and

debugging the logic. In the design process, Simulink and Xilinx System Generator

provide a graphical environment clearly representing the logic structure. Once the

development is complete, a bitstream is synthesized using the tools of the ISE Design

Suite from Xilinx [136]. Finally, this bitstream is loaded into the FPGA.

Figure 3.21 shows the task graph for our FPGA logic. After an external trigger

event the four IF signals I1,IF, Q1,IF, I2,IF, Q2,IF are synchronously sampled at a rate

of 150 MHz. For each channel, 8192 raw samples, equivalent to one frame of data,

are directly streamed into the physical layer processing chain. The digital front-end

consists of the gain balancing (GB), digital mixer (DM), cascaded integrator-comb

(CIC) filter and finite impulse response (FIR) filter blocks and converts the IF

signals to filtered quadratures by digital homodyning. After this procedure, we
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Figure 3.21: Sketch of the physical layer processing chain of the FPGA logic.

are left with 512 preprocessed samples for each of the quadratures I1, Q1, I2, Q2

(cf. Fig. 3.22). For each preprocessed sample, the 63 moments 〈Ij1Ik2Qm
1 Q

n
2 〉 with

0<j+ k+m+n≤ 4 and j, k,m, n∈N0 are calculated and added to the ensemble

sum registers in a parallel fashion (cf. Fig. 3.22). We note that the DM, CIC, FIR,

and moments calculation (MC) blocks can be individually enabled or disabled in

the logic at run time. As an example, one can bypass the MC block and stream the

digitally processed quadratures for testing purposes.

In the following, we describe the different blocks of the logic (cf. Fig 3.21) in

more detail. In the gain balancing blocks, Q1,IF, I2,IF, and Q2,IF are multiplied each

with a constant factor to balance the signal amplitudes. We remark that all values

are represented in a fixed-point format in the FPGA logic and considerable care has

been taken to keep the full precision during the different mathematical operations

and to prevent overflow.

The DM block digitally mixes the IIF and QIF signals with a local oscillator

generated by a direct digital synthesizer (DDS) applying the equations

I1,mix = I1,IF cos(2πfDDS,1t+ φcos,1)−Q1,IF sin(2πfDDS,1t+ φsin,1)

Q1,mix = I1,IF sin(2πfDDS,1t+ φsin,1) +Q1,IF cos(2πfDDS,1t+ φcos,1), (3.2)

where fDDS,1 is the frequency of the digital local oscillator and φsin,1, φcos,1 are phase-

offsets for path 1. When thinking of a phasor representation of the IF signal Eq. (3.2)

is equivalent to changing into a coordinate system rotating with the frequency of the

digital local oscillator. Eq. (3.2) can be written for path 2 by replacing all indices

“1” with “2”. We note that our logic provides two independent digital front-ends

for the two paths. Consequently, our logic allows us to set different frequencies for

the digital local oscillators. In practice, however, we always use an LO frequency of

11 MHz for both digital mixers. At the beginning of each new data frame, the DDS

is reset, i.e., it starts at a predefined phase value. In this way, we synchronize the
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Figure 3.22: Sketch of the data processing in the FPGA logic. The traces symbolize
a coherent microwave pulse with very small added amplifier noise contributions. In
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digital local oscillator to the analog LO of the heterodyne receiver. With the help

of the predefined phase shifts φsin,1, φcos,1, φsin,2, φcos,2, phase imbalances of the IQ

mixers are corrected and the phase difference between the two paths is fine-tuned

to 180◦.

After the digital mixing, we reject the sum frequency image by digital lowpass

filters and restrict our measurement bandwidth further to match the mode of the

squeezed state. This is important not to dilute the squeezed vacuum with non-

squeezed frequency modes. For JPA signal gains up to 20 dB, the JPA bandwidth is

larger than the measurement bandwidth. We use a combination of two digital filters

(CIC and FIR) to achieve a narrow filter bandwidth of 489 kHz. Readers not familiar

with digital signal processing are recommend to consult Ref. [137]. If one used only

a FIR filter, one would need on the order of some hundred filter coefficients which

may pose problems regarding numerical errors. Therefore, we reduce the sampling

rate by a factor of 16 by applying a CIC down sampling filter before the FIR filter, so

that only 61 filter coefficients are required. After each filter there is a divider in order

to reduce the bit width again, which has been enlarged in the filter block in order to

avoid overflows by multiplications and summations. These filters also determine the

measurement bandwidth (noise bandwidth) of 2×BWfilter = 2× 489 kHz of the IQ

cross-correlation detector. The corresponding transmission characteristics is shown

in Fig. 3.23. We note that one of the key advantages of digital filtering is that

the frequency dispersion is flat and that the transmission characteristics are exactly

equal for all four detection channels. We further want to mention that there is no

loss of information due to the lower data rate, since the reduced sampling rate after
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Figure 3.23: Measured transmission characteristics of the IQ cross-correlation de-
tector.
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the CIC filter is 9.5 times larger than the measurement bandwidth. An important

side effect of the lower data rate is the fact that we can record longer time traces

with the same fixed number of time points per moment. In our implementation we

are limited to 512 samples resulting from the number of available block RAMs of

the FPGA, the number of moments, and the 128 bit width of the ensemble sum

registers for each sample. Usually, we measure in pulsed mode to collect data of a

reference state and the actual state in the same time trace. Due to the small filter

bandwidth the filter ring up time is significant. In the case without sample rate

reduction, the measurement time equivalent to the 512 samples is so short that we

would be limited to record only the filter transients.

As the last step of the logic, the moments up to fourth order in amplitude are

calculated. For each moment and each processed sample, the ensemble sum over a

specified number of frames is stored inside the FPGA. The ensemble sums of the

processed moments are transferred to a computer, where they are further processed

with Matlab scripts. Due to the phase stabilization protocol, which is described

in detail in Sec. 3.4.2, 10 to 60 ensemble sums each based on half a million frames

are measured for a specific input state. For the reconstruction of this input state,

we apply the dual-path state reconstruction method. First, each of the ensemble

sums are processed. To this end, we restrict the analysis to the data portion of the

frame, where the squeezed state appears (cf. Fig. 3.16). For each sample, the com-

plex envelope moments are retrieved using Eq. (2.34) and Eq. (2.40). The dual-path

corrected signal moments are reconstructed for each sample applying the formulas

Eq. (2.44), Eq. (2.45), and Eq. (2.46). Thus, the dual-path correction preserves

the time information. Since the moments of the states under investigation are, in

principle, time independent, we use their time averages in the further analysis. De-

rived quantities such as the cumulants, the squeeze angle, and the level of squeezing

are calculated from the time averaged corrected signal moments. This analysis is

repeated for each ensemble sum. Next, the signal moments and derived measures

from the different ensemble sums are averaged and the statistical uncertainty is de-

termined. Finally, the Wigner function is reconstructed from the ensemble averaged

corrected signal moments applying Eq. (2.47). For the detection and quantification

of path entanglement, the output state is analyzed with the reference-state method.

Again, first, each ensemble sum is analyzed. From Eq. (2.34) and Eq. (2.52), the

correlations of the complex envelopes are determined from the quadrature moments.

The noise terms 〈V̂ k1
1 (V̂ †1 )j1V̂

k2
2 (V̂ †2 )j2〉 (cf. Sec. 2.9) are retrieved for each sample of

the frame, where the reference state is measured. The noise terms are time averaged
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and used in Eq. (2.55) to determine the corrected output moments for each sample

of the frame, where the squeezed state appears. The corrected output moments

are time averaged and the witness matrix and negativity are retrieved. Next, the

mean values and statistical uncertainties are determined using the results from the

different ensemble sums.

Finally, we want to quantify the data throughput of our logic. Data acquisition is

triggered every 100µs. For each trigger event, 8192 consecutive points are digitized

in each of the four channels at a rate of 150 MHz. As shown in Fig. 3.16, this

results in a duty cycle of 54.6%. Taking this into account, we get an input data

rate of 625 MB/s. When we look at the data rate at the end of the processing chain

including the down sampling factor of 16, we get 2.4 GB/s, which is equivalent to

a data volume of 8.4 TB in one hour of measurement time. Since the summation is

done inside the FPGA memory, only a few megabyte have to be transferred to the

PC. Since this takes only fractions of a second, the FPGA is the key to realtime data

processing in our experiment. So far we have not optimized the duty cycle to have

the same conditions in the measurements and in the tests of the logic. However, in

principle, duty cycles of 99% should be achievable with our logic.

3.3.4 Calibration

In this section, we discuss the adapting of the room temperature part of the IQ

cross-correlation receiver to the cryogenic setup. Furthermore, we describe calibra-

tion procedures which are important for precise measurements. More specifically,

we devote ourselves to the balancing of the IQ cross-correlation detector and the

determination of the gain.

Amplitude and phase balancing of the IQ cross-correlation detector

First, we check that no active part of the IQ cross-correlation receiver is suffering

from compression effects. When we connect the amplification chain to the receiver,

we measure with a R&S NRP-Z31 power meter at the input of the IQ mixers, i.e.,

after the broadband bandpass filters, a noise power of −31.5 dBm. This value is

orders of magnitudes lower than the 1 dB-compression point of the IQ mixers of

4 dBm, ensuring that there are no compression effects in front of the IF amplifiers.

Next, we determine the correct setting of the tunable attenuators at the input of the

IF amplifiers. During this procedure, two conditions have to be kept in mind. One

is to limit the gain in such a way that the ADCs are not overloaded and no clipping
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occurs. The other one is not to saturate the IF amplifiers. In our current setup, the

latter is the limiting condition. As input signal, we use a squeezed thermal state,

where the noise source temperature is 800 mK and the JPA signal gain is 10 dB. We

choose the IF attenuators to limit the output power of the IF amplifiers to 25 dB

below their 1 dB-compression point of 12 dBm. In this way, we ensure that we can

exclude compression effects in all of the presented measurements. Figure 3.24 shows

a histogram of the IF signal amplitude. We note that our resolution is effectively

two bits lower than in the case of a signal spanning the full input range. However,

theoretical simulations by P. Summer in his bachelor thesis [138] under the super-

vision of the author have shown that effects of the bit resolution are negligible for

resolutions larger than 5 bit, which is well fulfilled in our case. Furthermore, we can

exclude that signals are clipped in our experiments when we consider Fig. 3.24.

After finding the coarse setting of the attenuators, we make a calibration ex-

periment with a coherent test signal while the digital mixer and filter blocks are

deactivated. We record an ensemble average to suppress the amplifier noise and

consider the first moments of the IIF,1,2 and QIF,1,2 signals. We fine tune the attenu-

ators such that the amplitudes of the IF IQ signals are equal with deviations smaller

than 0.1 dB. Residual imbalances are compensated by the gain blocks in the FPGA

logic. By fitting sinusoids oscillating at the intermediate frequency of 11 MHz to the

data, we retrieve DDS start phases to correct for phase imbalances of the IQ mixers
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Figure 3.24: Input range of the FPGA board. Black points: Histogram of the
digitized IIF,1 signal, whereby the temperature of the noise source is stabilized to
800 mK and the JPA is operated at a signal gain of 10 dB. Red curve: Gaussian fit
to the data.
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and between the two paths. We note that the uncorrected phase imbalances are

below 5◦ since the IQ mixers are of high quality. As a last step, the dividers of the

digital filters have to be configured to prevent clipping. It is important to check the

dividers with active digital mixing to provide the correct signal band to the filters.

First, the divider of the CIC filter is set with active digital mixers and inactive FIR

filters and we have determined a value of 223. Then the divider of the FIR filter

is configured with active digital mixer and active CIC and we have found a value

of 218. We calibrate the IQ mixers right before important measurements and after

each liquid helium refill of the cryostat’s dewar.

Gain calibration of the experimental setup

The coldest attenuator of the JPA signal line (cf. Fig. 3.14) represents the thermal

noise source (cf. Sec 3.3.1), which is thermally weakly coupled to both the base

plate and the lower step exchanger of the fridge. Its temperature can therefore

be controlled in the range Tatt = 50− 700 mK, while all other components retain a

stable temperature. This attenuator constitutes a broadband microwave black body

emitter, which is used to calibrate the gains of the amplification paths in a Planck

experiment [58]. The total power of each amplification path detected at the ADCs

is

Pi(Tatt) =
〈I2
i 〉+ 〈Q2

i 〉
R

=
κGi

R

[
1

2
coth

(
hf0

2kBTatt

)
+ ni

]
, i = 1, 2 (3.3)

where R= 50 Ω is the input resistance of the ADCs and kB = 1.38×10−23 J/K the

Boltzmann constant. The product of the gain Gi and the photon number con-

version factor κ≡R×2×BWfilter×hf0 = 1.83×10−16 V2 relates the measured auto-

correlations 〈I2
i 〉 and 〈Q2

i 〉, which have units of V2, to the number of photons of

frequency f0 emitted by the attenuator. The gain Gi and the number of noise

photons added by each amplification path, ni, are retrieved from fitting Eq. (3.3) to

the experimentally recorded auto-correlations. For pedagogical reasons, all formulas

given in Sec. 2.6 assume equal gains and losses for the I and Q branches within each

path. However, in the actual evaluation of the data, we do not make this assump-

tion. We model the losses with beam splitters and also account for temperature

gradients along our cables. In this way, we make individual fits for the dependence

of 〈I2
1 〉, 〈I2

2 〉, 〈Q2
1〉, and 〈Q2

2〉 on Tatt. As an example, we show data and fit for
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Figure 3.25: Gain calibration using thermal input states. Dependence of the second
moment 〈I2

1 〉 on the temperature of the attenuator temperature Tatt. Black symbols:
data. Red line: fit.

〈I2
1 〉 in Fig. 3.25. From this figure, we immediately see that the number of thermal

photons in the mode f0 is negligible at 40− 50 mK. Furthermore, with a total loss

of 1.8 dB between attenuator and beam splitter input (upper bound; from calibra-

tion measurements; dominating source of error), we retrieve Gd1/2 = 116.5 dB and

nd1 = 24.3 photons. Here, the index “d” denotes that Gd1/2 and nd1 are referred to

the input of the hybrid ring. From our reference-state analysis described in Sec. 2.9,

we obtain, with respect to the beam splitter output ports, noise temperatures of

3.00 K and 3.27 K for the two amplification paths. Considering that our beam split-

ter reduces the input signal by 3.5 dB, the value of 3.00 K is in very good agreement

with that of 10−0.35nd1hf0/kB = 2.94 K.

3.4 Stability of the experimental setup

In this section, we present methods applied to improve the stability of the experi-

mental setup. The latter is an important prerequisite to successfully run experiments

with long averaging times and sensitivities on the quantum level. Therefore, tremen-

dous efforts have been taken to analyze the stability, identify sources for spurious

fluctuations and to suppress them. In Sec. 3.4.1, we consider the stabilization of

the amplifier gain and cable losses. Finally, in Sec. 3.4.2, we discuss a protocol for

the stabilization of phase-sensitive microwave states such as coherent and squeezed

states.
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3.4.1 Stabilization of amplifier gain and cable losses

In the formalism of the dual-path state reconstruction method and in that of the

reference-state method, the gain is assumed to be constant. In practice, this gain

is a combination of the gains of the cryogenic and room temperature amplifiers and

the losses of the other components building the amplification and detection chain.

In reality, disturbances acting on the different parts of the chain can result in gain

fluctuations. In the following, we give an overview on measures taken to stabilize

the gain.

• Some of the microwave amplifiers dissipate so much power that their operation

demands for cooling. For this reason, the amplifiers are water-cooled applying

cooling wings originally designed for computer components. In the exper-

iments with classical mixtures of microwave signals, tab water was used for

this purpose. However, the temperature of tab water depends on the consump-

tion of the whole institute which is not constant. Therefore, we have replaced

it for the path entanglement experiments by a closed cooling cycle managed

by a Van der Heijden Cool-Care, which provides a temperature stability of

±0.1◦C for the cooling water.

• Microwave devices are sensitive to temperature fluctuations. For example,

thermal expansion results in a change of the transmission phase of microwave

cables or the transmission of electronic attenuators depends also on their tem-

perature. To suppress variations of the room temperature during the day and

to remove the heat generated by the measurement rack and computers (on the

oder of several kW) the laboratory is equipped with a split-type air condition-

ing system. It is capable of cooling and heating with a temperature stability

of ±1◦C.

• The power supplies of cryogenic and room temperature amplifiers have been

placed in compartments with home-made temperature stabilization realized

by fans and a temperature controller. The boxes are isolated from the envi-

ronment with foam material.

• During the reconstruction of the cryostat system to increase the sample space,

a dewar with a larger helium reservoir is installed. This has the positive side

effect that the operation time of the fridge per helium refill has been prolonged

and effects caused by the continuous dropping of the helium level reduced.
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• The cryogenic and part of the room temperature setup including the first

two microwave amplification stages are located inside a shielded room, which

suppresses spurious signals up to 20 GHz.

• The operation point and, thus, the gain of the JPA are sensitive to the mag-

netic field threading the SQUID loop. Variations of this field are reduced by

three layers of Mu-metal at room temperature and a Cryoperm shield sur-

rounding the inner vacuum chamber at 4.2 K. For details on the supercon-

ducting coil system and its persistent operation mode, we refer the reader to

Sec. 3.2.3.

3.4.2 Phase stabilization protocol

The phase stability between signal/pump and local oscillator is better than ±0.3◦

for 5×105 traces. Hence, reconstructions based on such a number of averages

exhibit very good phase control. However, for quantifying the path entanglement

properties, an average over 8×106− 3×107 traces is necessary to reduce the

influence of the noise added by each amplification path to a negligible amount.

In such measurements, the phase stability of our setup is not sufficient. For

this reason, we record the data in 5×105 trace portions and adjust the relative

phase between signal/pump and local oscillator in a way that phase drifts are

compensated. The effective stabilization of the phase is shown in Fig. 3.26. With

active phase stabilization the standard deviation of the phase error is 0.3◦, whereas

in this measurement the maximum phase drift without stabilization would have

been 6.6◦.

After discussing the relevant setups and experimental techniques, which empower

us to study propagating quantum microwaves and path entanglement, we analyze

the obtained results in the next chapters.
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Figure 3.26: Stabilization of squeezed state phase applying our protocol. The JPA
produces a squeezed vacuum state (signal gain: 10 dB). Blue curve: Plot of the
phase error defined as the deviation of the measured phase from the set value of
45◦, where the phase is stabilized using our protocol. We note that there are more
negative than positive values in the phase error curve. Red curve: Cumulative sum
of the phase error representing the evolution of phase if it is not stabilized. The
phase drift is clearly visible.
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Chapter 4

Detection of weak propagating

microwaves

In this chapter, we present our results on the reconstruction of weak propagating

microwaves retrieved with the experimental setups and methods discussed in the

last chapter. The chapter is organized as follows. First, in Sec. 4.1, we investi-

gate thermal microwave states with dual-path setups. These experiments lead to

the fundamental observation that our beam splitters are working with signals on the

quantum level and are, independently of the external configuration, always four-port

devices. Furthermore, the cross-over from weak thermal to vacuum fluctuations is

investigated with a new technique called Planck spectroscopy. These results are

important for the following experiments as they provide an elegant calibration tech-

nique and give first hints that the beam splitter is a suitable device for experiments

on quantum microwaves. Subsequently, we study the applicability of the dual-path

method in proof-of-principle experiments. In Sec. 4.2, we demonstrate the amplifier

noise suppression which lies at the heart of the dual-path method. In Sec. 4.3 we

infer time-dependent variances and non-zero third moments of statistical mixtures

of coherent states with few photons.

4.1 Planck spectroscopy and quantum noise of

microwave beam splitters

In the following, we present results of two experiments demonstrating the success-

ful application of our setup to the characterization of weak thermal states. The

content of this section has been published in Ref. [58]. In a first experiment de-

81
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noted as Planck spectroscopy we analyze the microwave black body radiation emit-

ted by a 50 Ω-load resistor as a function of temperature in the frequency regime

4.7≤ f ≤ 7.1 GHz. Besides confirming that the mean thermal photon number follows

Bose-Einstein statistics [25, 90, 105, 139], our data directly show that the quantum

crossover temperature Tcr shifts with frequency as Tcr =hf/2kB, as it is expected

from quantum mechanics because of the existence of vacuum fluctuations. In a

second experiment, we use weak thermal states for a detailed experimental char-

acterization of microwave beam splitters at the quantum level. This task is par-

ticularly important because microwave beam splitters are key elements in a variety

of quantum-optical experiments such as Mach-Zehnder and Hanbury Brown–Twiss

interferometry [90,140].

Figure 4.1 shows the equivalent circuits of the internal and external noise sources

for the two types of beam splitters used in our experiments. The experimental setup

has been discussed in Sec. 3.1 in detail and we refer the reader to Fig. 3.5 and Fig. 3.6

for sketches of the setup.

As an ideal black body source emitting thermal microwave states [141], we use

50 Ω-loads whose temperature T can be varied between 20 and 350 mK and measured

with a RuO thermometer. The associated quantum voltages can be expressed as

V̂ A
th = V0(â†+ â) and V̂ C

th = V0(ĉ†+ ĉ), where V 2
0 = 4BR0hf/2, R0 = 50 Ω, â†, ĉ† and

3l/4
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Figure 4.1: Equivalent circuits of the microwave beam splitters. The ports B and D
are connected to the inputs of the amplification and detection chains. (a) 180◦-hybrid
ring (HR). (b) Wilkinson power divider (WPD). For the WPD, port C represents a
hidden internal port and Req an internal distributed resistor, which can be modeled
as two equivalent 50 Ω-loads adding correlated thermal noise via the hidden port C
only. Reprinted adopted figure with permission from Ref. [58]. Copyright (2010) by
the American Physical Society.
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â, ĉ are bosonic creation and annihilation operators, and B is the bandwidth. The

thermal microwave signal is fed into the input ports of a 3 dB beam splitter. We

perform experiments on two different beam splitter realizations: a 180◦-hybrid ring

(HR) with four external ports [cf. Fig. 4.1(a)] and Wilkinson power divider (WPD)

with three external ports [cf. Fig. 4.1(b)]. For the WPD, an internal distributed

resistor Req shunting the output ports B and D provides isolation between those

ports and impedance matching for port A. In addition, an external 50 Ω-load is

attached to input port A. For the HR, 50 Ω-loads are attached to both input ports

A and C. The input-output relations of the HR are V̂B = (V̂A + V̂C)/
√

2 and V̂D =

(−V̂A + V̂C)/
√

2 [103]. We remark that the WPD, although appearing to be a

three-port device, has to be treated quantum-mechanically as having an additional

“hidden” internal fourth port C, see Fig. 4.1(b), ensuring energy conservation and

commutation relations. In this case the input-output relations are V̂B = (V̂A −
V̂C)/
√

2 and V̂D = (V̂A + V̂C)/
√

2. Regarding thermal noise, the internal resistor Req

can be modeled as two equivalent matched 50 Ω-loads. The noise added by these

thermal noise sources in the two arms acts as if it were correlated. For a detailed

derivation of this model based on circuit theory, we refer the reader to Ref. [105].

If the input signal at port A is large, this additional noise can be neglected and the

WPD can be formally treated as a three-port device.

As shown in Fig. 3.5 and Fig. 3.6, the output ports B and D of the beam split-

ter are connected to two symmetric amplification and detection chains. The noise

added by the linear HEMT amplifiers is the dominating amplifier noise in each de-

tection channel and is expressed by χ̂ = V0(ŵ† + ŵ), where ŵ† and ŵ are bosonic

creation and annihilation operators [81]. Since we use a double-sideband receiver,

the total bandwidth B in our experiment is twice the bandwidth of the bandpass

filter BF = 26 MHz.

According to Nyquist [142], the black body radiation emitted by a resistor R0

within the frequency band of width B and center frequency f = fLO is given by

〈V 2
th〉/R0 = 4B〈nth〉hf . Here, 〈nth〉 is the average thermal photon population. It

has been shown that for conductors with a large number of electronic modes the

statistics of the emitted photons is given by a Bose-Einstein distribution [141]. In

this case, the well-known result 〈V 2
th〉/R0 = 4B hf

2
coth(hf/2kBT ) is obtained. The

power emitted into a perfectly matched circuit with characteristic impedance Z0 is

reduced by a factor of 1/4 due to voltage division. Together with the beam splitter

input-output relations of the HR, the signal components C1 and C2 are given by

C1 =
√
G1(αV A

th + βV C
th + χ1) and C2 =

√
G2(−αV A

th + βV C
th + χ2). Here, G1 ' G2
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is the total power gain of the amplification chains, α = β = 1/2
√

2, and χ1 and

χ2 are the independent noise contributions of the amplifiers. Equivalently, for the

WPD we obtain C1 =
√
G1(αV A

th − βV C
th + χ1) and C2 =

√
G2(αV A

th + βV C
th +

χ2). We note that V A
th , V C

th and χ1,2 are classical realizations of the operators given

above. By recording a large number of 1µs-long time traces (∼ 106), the auto-

and cross-correlation functions Rii(τ) = 〈C∗i (t + τ)Ci(t)〉/Z0 = σ2
ii sinc(Bτ)/Z0

and Rij(τ) = 〈C∗i (t + τ)Cj(t)〉/Z0 = σ2
ij sinc(Bτ) cos(ϕLO)/Z0, respectively, can be

calculated (i, j = 1, 2). Here, ϕLO is the phase difference between the LO signals

of the two downconversion mixers. Since 〈Ci(t)〉 = 0 for thermal states, the auto-

and cross-correlation functions are equal to the auto-variance Cii(τ) = Rii(τ)−〈Ci〉2

and cross-variance Cij(τ) = Rij(τ)−〈Ci〉〈Cj〉, respectively. Here, τ is the time shift

between two traces being correlated, and σ2
ii and σ2

ij are the variance and covariance

of the voltage signals C1 and C2.

4.1.1 Planck spectroscopy

We first discuss the Planck spectroscopy experiment [105, 139]. Here, we use only

a single amplification chain and determine the auto-correlation function R11(τ) or

R22(τ). Figure 4.2(a) shows the measured R11(τ) curve obtained for T = 30 mK

using a WPD. A very similar result is obtained for R22(τ) [cf. Fig. 4.3(d)]. Fitting

the data to C11(τ) allows us to extract the measurement bandwidth B ' 52 MHz.

Assuming that the signal contributions V A
th and V C

th due to the two load resistors

and the noise χi of the HEMT amplifier are independent, we can add up their

variances and obtain Rii(0) = Cii(0) =σ2
ii = 〈C2

i 〉/Z0 =Gi [(α
2 + β2)〈V 2

th〉+ 〈χ2
i 〉] /Z0.

With hf/2kBTi,HEMT� 1 we can introduce a classical noise temperature Ti,HEMT for

the amplifiers and obtain

Rii(0) = G?
i B

[
hf

2
coth

(
hf

2kBT

)
+ kBT

?
i,HEMT

]
, i ∈ {1, 2} . (4.1)

Here, G?
i = γGi is the effective gain, Gi the total gain of amplification chain i and

T ?i,HEMT =Ti,HEMT/γ is the effective noise temperature representing the amplifier

noise temperature relative to the input of the WPD. For both HR and WPD, γ =

4(α2 + β2) = 1.

Figure 4.2(b) shows the measured variance R11(0) as a function of T for

f = 5.3 GHz in the case of a WPD. In the experiments, T was varied between approx-

imately 20 and 350 mK by means of a resistive heater and continuously monitored

with a RuO thermometer. The measured variance is close to a Planck function
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Figure 4.2: Planck spectroscopy of thermal microwave states using a WPD. (a) Auto-
correlation function R11(τ) at f = 5.3 GHz. The line is a fit to the data (sym-
bols). (b) Temperature dependence of the variance R11(τ = 0) (Planck function) at
f = 5.3 GHz. The dashed and full lines are obtained by two- and three-parameter fits,
respectively, to the data (symbols). The gain is 90 dB. Inset: Wider temperature
range. (c) Planck spectroscopy. Contour plot of R11(τ = 0) versus T for different f .
The data have been corrected for the frequency-dependent amplifier gain, and the
offset due to vacuum and amplifier noise has been subtracted. Symbols and dot-
ted line: Measured and expected quantum crossover temperatures Tcr =hf/2kB,
respectively. Reprinted rearranged figure with permission from Ref. [58]. Copyright
(2010) by the American Physical Society.
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and reproduces the expected crossover temperature from thermal to vacuum noise,

Tcr = hf/2kB. A fit of Eq. (4.1) to the data using G?
1 and T ?1,HEMT as free parameters

yields G?
1' 90 dB and T ?1,HEMT' 6 K. The slight deviations between the data and

the two-parameter fit can be understood by taking into account that the effective

electronic temperature Teff of the load resistors at ports A and C may differ by

a small amount δT . By using δT as the third fitting parameter, the solid line in

Fig. 4.2(b) is obtained, demonstrating excellent agreement with the experimental

data. The δT values obtained by fitting the data are reasonably small and typically

range between 1 and 10 mK. The large bandwidth of the HEMT amplifier allows us

to perform measurements at frequencies between 4.7 and 7.1 GHz. The result of such

Planck spectroscopy is shown in Fig. 4.2(c). Clearly, the crossover temperature Tcr

shifts to higher values with increasing frequency. Because of the finite uncertainty

in Teff , we derive an effective crossover temperature Tcr + δTcr, which again slightly

deviates from the theoretically expected value, Tcr =hf/2kB [cf. Fig. 4.2(c)]. The

magnitude δTcr quantifies the measurement fidelity F ≡ 1 − |δTcr|/Tcr of our setup

for vacuum fluctuations. Notably, for the entire frequency range F & 95 %. In sum-

mary, our Planck spectroscopy experiments not only provide clear evidence for the

Bose-Einstein statistics of photons emitted by a conductor in the few-photon limit,

but also directly demonstrate the frequency dependence of the crossover temperature

characterizing the transition between thermal-noise-dominated and vacuum-noise-

dominated regime.

4.1.2 Quantum noise of microwave beam splitters

We next turn to the analysis of the microwave beam splitters. Figures 4.3(a)–4.3(d)

show the entire correlation matrix. The off-diagonal elements are cross-correlation

functions measured choosing ϕLO in order to obtain a maximum positive result.

This guarantees that the signals associated with the two detection channels are

skewed in phase and no unwanted decorrelation is introduced. Since the signal

contributions of the thermal noise sources and the amplifier noise are independent,

all cross-correlations vanish, e.g., 〈χ̂1χ̂2〉= 〈χ̂1〉〈χ̂2〉= 0. Then, for α2 = β2 = 1/8

the covariance R12(0) = C12(0) =σ2
12 is obtained to

R12(0) =
hf

4
G12B

[
coth

(
hf

2kBTA

)
− coth

(
hf

2kBTC

)]
(4.2)

with the power cogain G12 =
√
G1

√
G2. We note that the temperatures TA and TC

of the load resistors at port A and C, respectively, are identical only in the ideal
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Figure 4.3: Full correlation function and covariance matrices measured at
f = 5.0 GHz using a WPD (G1' 90.5 dB, G2' 91.3 dB, and G12' 90.9 dB).
(a)–(d) Rii(τ) and Rij(τ) measured at T = 30 mK. (e)–(h) Temperature depen-
dence of Rii(0) and Rij(0). The lines are fits to the data (symbols) including a
global offset of approximately 0.2 photons in the measurement bandwidth. Reprinted
rearranged figure with permission from Ref. [58]. Copyright (2010) by the American
Physical Society.
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case, resulting in R12(0) = 0 for the HR and WPD. However, in our experiments

the temperatures differ slightly, TA = TC(1 − η). Figures 4.3(e)–4.3(h) show the

covariance matrix as a function of T for f = 5.0 GHz and a WPD. The diagonal ma-

trix elements R11(0) and R22(0) represent variance measurements and are analogous

to the results shown in Fig. 4.2(b). The off-diagonal elements, instead, represent

covariance measurements. It is evident that both the offset signal at 20 mK and the

signal span between 20 and 350 mK for the covariance is reduced by approximately

two orders of magnitude as compared to the variance. This suggests that there is a

cancellation of both the amplifier noise and the signal when measuring the covari-

ance. The former is due to the fact that the amplifier noises are uncorrelated. The

latter is expected from Eq. (4.2). In order to prove this conjecture, we use Eq. (4.2)

to fit the experimental data by using the cogain determined from the variance data.

Furthermore, we set TA =T , where T is the temperature measured by the ther-

mometer, and use η as a free fitting parameter. We thus obtain the red curves in

Figs. 4.3(f) and 4.3(g), which are in excellent agreement with the data. We obtain

η values of less than 2% amounting to temperature differences of a few millikelvin.

Since Eq. (4.2) explicitly assumes the existence of four ports, the perfect fit of the

experimental data provides clear evidence that the WPD effectively behaves as a

four-port device. In the quantum limit, the internal fourth port adds vacuum noise

to any given input signal. In order to confirm our findings on the WPD, we have

measured the temperature dependence of the variance and covariance also for a HR

(cf. Fig. 4.4), which is a beam splitter with four external ports. The covariance
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Figure 4.4: Temperature dependence of the (a) variance R11(0) and (b) covariance
R12(0) measured at f = 5.85 GHz using a HR. The different power scale compared
to Figs. 4.3(e)–(h) results from a different amplifier configuration resulting in a gain
of 110 dB. Reprinted rearranged figure with permission from Ref. [58]. Copyright
(2010) by the American Physical Society.
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data of Fig. 4.4(b) are in very good agreement with the fitted curve obtained from

Eq. (4.2). This clearly demonstrates that, both the HR and WPD are characterized

by the same fundamental quantum-mechanical behavior.

In conclusion, we apply a correlation function analysis of the field amplitudes

to characterize black body radiation and the quantum properties of microwave

beam splitters. Our Planck spectroscopy experiments show that the mean ther-

mal photon number emitted by a load resistor follows Bose-Einstein statistics and

that the crossover temperature from a thermal-noise-dominated to a vacuum-noise-

dominated regime shifts with frequency according to the relation Tcr = ~ω/2kB.

This result can be interpreted as an indirect measurement of microwave vacuum

fluctuations. Moreover, we show that a WPD, a beam splitter with only three ex-

ternal ports, must be considered as a four-port device at the quantum level and adds

at least the vacuum noise to any input signal.

4.2 Dual-path noise suppression

In this section, we demonstrate the cancellation of the amplifier noise by applying

cross-correlation techniques. The content of this and the following section has been

published in Ref. [57].

We first emphasize the practical relevance of our dual-path theory (cf. Sec. 2.5)

by conducting proof-of-principle experiments with weak classical microwaves. For a

detailed description of the setup, we refer the reader to Sec. 3.1. As signals, we use

pulsed coherent microwaves with a frequency of 5.85 GHz generated by a source at

room temperature. A series of cold attenuators ensures that the thermal noise at the

signal port of the hybrid ring is restricted to that of an effective 50 Ω-termination

at the base temperature of 300 mK1. The source power at the input of the hybrid

ring Pin is related to an equivalent number of signal photons on average (POA)

(cf. Sec. 3.1.1). Figure 4.5(a) shows the ensemble average of a typical signal used in

our experiments. The pulse duration of 1µs mimics standard cavity decay times in

circuit QED experiments [85].

We first demonstrate the suppression of the amplifier noise via cross-correlations.

The auto-variance 〈C2
1〉−〈C1〉2 of an ensemble of 107 pulses is depicted in Fig. 4.5(b),

where one immediately notices the large offset of 35.7×10−3 V2 due to the amplifier

noise. In the cross-variance 〈C1C2〉−〈C1〉〈C2〉, this offset is efficiently suppressed by

1Due to a blockage of the condenser line, the base temperature in this experiment is 300 mK.
The loss of the input line has been calibrated before the blockage occurred.
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Figure 4.5: Amplifier noise suppression. The signal consists of coherent microwave
probing pulses (107 traces averaged). (a) Mean value of downconverted signal
(10 MHz). (b) Auto-variance (blue) and cross-variance (red). (c) Auto-variance
(blue) and cross-variance (red) fluctuations, obtained by subtracting the respective
time averages. Reprinted rearranged figure with permission from Ref. [57]. Copy-
right (2010) by the American Physical Society.

two orders of magnitude. As expected for a coherent signal, the variances are flat

and do not allow us to distinguish between the on- and off-regions of the pulses.

The fluctuations of the variance signals are smaller for the cross-correlation than for

the auto-correlation by a factor of 1.6; cf. Fig. 4.5(c).

Next, we prove that our method works efficiently at the quantum level, i.e., for

signals of few photons on average. To this end, we investigate the resolution limits of

the constituents of the variance, mean value, and cross-product. In Fig. 4.6(a), the

root mean square power inside the pulse region is plotted against the signal power

at the input of the hybrid ring. We find a large dynamic range of the mean value ex-

tending over six decades down to 0.001 POA. This means that pulse energies as low

as 3.7×10−26 J (0.01 POA) are still very well detectable. The power dependence of
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Figure 4.6: Dynamic range investigated with coherent pulses with various power
levels (107 traces averaged). (a) Dynamic range of the mean value. Prms is the root
mean square power at the digitizer. The numbers above the data points indicate the
number of photons on average. (b) Dynamic range of the cross-product 〈C1C2〉.
The arrows indicate the values obtained from the time traces shown in (c). The rms
amplitude inside the pulse region is calculated after subtracting the time average
from each data point. (c) Power dependence of the cross-product time traces in the
limit of few photons on average. (d) Discrete Fourier transform (DFT) of the pulse
region of the traces shown in (c). The arrows indicate the 20 MHz peaks. Reprinted
rearranged figure with permission from Ref. [57]. Copyright (2010) by the American
Physical Society.
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the cross-product 〈C1C2〉 is displayed in Figs. 4.6(b)–(d). Down to 2 POA, the pulse

region is clearly visible [Fig. 4.6(c)]. For 1 POA, a Fourier transform [Fig. 4.6(d)] re-

veals that the signal component can still be identified. However, the associated peak

has approximately the same amplitude as the largest noise peak in the spectrum.

Hence, the detection limit of the cross-product [cf. also Fig. 4.6(b)] and therefore

the one of the cross-variance is 1–2 POA. We note that this is not a fundamental

limit, but is rather due to technical issues such as the filter bandwidth, isolation be-

tween the chains or the ensemble size. In order to study statistical effects, numerical

simulations have been carried out by Phillipp Summer in his Bachelor thesis [138]

under the supervision of the author. The simulations are based on sinusoidal sig-

nals and Gaussian amplifier noise and take into account quantization effects of the

analog-to-digital converters. For typical experimental parameters, we observe that

a bit resolution of 5 bit is sufficient. The statistical uncertainty of a reconstructed

moment scales as 1/
√
N , where N is the ensemble size. Furthermore, this uncer-

tainty is proportional to T
k/2
N , where TN is the noise temperature of the amplifiers

and k is the order of the considered moment. Finally, the resolution limits obtained

from experiment and simulation agree very well.

4.3 Dual-path weak signal mixtures

So far, we have studied time-independent ensemble variances because

〈f(t)2〉−〈f(t)〉2 = 0 always holds for deterministic signals. Time-dependent variance

signals require statistical mixtures of signals. As a first example, a sequence of co-

herent microwave pulses with alternating phase shifts ±ϕ is applied to the input line.

This corresponds to a statistical mixture with an equally distributed histogram. The

mean value and cross-variance are A cos(ϕ) sin(ωt) and −α cos2(ωt), respectively,

where α=A2 sin2(ϕ) is the cross-variance amplitude and ω/2π= 10 MHz is the sig-

nal frequency after the mixers. The frequency doubling cos2(ωt)∝[1+ cos(2ωt)] is

confirmed in our experiments (cf. Fig. 4.7). In Fig. 4.8(a), we reproduce the ex-

pected sin2(ϕ) dependence of α for a power level of 2 POA, which is just above the

detection limit.

Studying signal mixtures also allows us to address time-dependent third central

moments 〈(S−〈S〉)3〉 and 〈(χ1−〈χ1〉)3〉. They are proportional to the skewness of

their associated probability histograms and vanish for Gaussian distributions. In

particular, both quantities are zero for an equally distributed histogram. Hence,

to observe an oscillating third central moment a statistical mixture with an asym-
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Figure 4.7: Time traces of first moment (green) and cross-variance of an equally
distributed statistical mixture of phase-shifted pulses. α denotes the cross-variance
amplitude. The power level is equivalent to 100 POA. The gain of the amplification
and detection chain is 110 dB.

metric histogram [cf. inset of Fig. 4.8(b)] is required. In the experiment, we again

create a train of pulses with 100 POA, but this time 75% of them are shifted by the

phase ϕ and 25% by −ϕ. Figure 4.8(b) shows the third central moment calculated

from the data of a single amplification chain. In contrast to the case of an equally

distributed mixture, a clear oscillating signal is visible within the pulse duration for

a skewed histogram. However, there is an offset of approximately −7×10−5 V3. In

Fig. 4.8(c), one can see that this offset disappears when also taking into account

the data from the second chain and applying the dual-path detection scheme de-

scribed by Eqs. (2.30),(2.31),(2.32) and (2.33). Following these equations, we can

write down the third central moment of C1 as the sum of the third central moments

of signal, noise, and ancilla state:

〈(C1 − 〈C1〉)3〉 = G3/2〈(S − 〈S〉)3〉+G3/2〈(χ1 − 〈χ1〉)3〉

+G3/2〈(V − 〈V 〉)3〉.

Since 〈(V−〈V 〉)3〉= 0 due to the Gaussian statistics of V , it becomes obvious that

the offset in Fig. 4.8(b) must be G3/2〈(χ1−〈χ1〉)3〉. In this sense, the noise of the

detection chain shows non-Gaussian statistics. Although the exact origin of the

latter inside the detection chain remains unclear, our experiments provide a first

confirmation that the dual-path method is indeed capable of characterizing signal

and detector noise moments simultaneously. The detection limit for the third central

moment is 10–20 POA in our measurements [cf. Fig. 4.8(d)].

In summary, we have experimentally demonstrated the applicability of the dual-
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Figure 4.8: Statistical mixtures of phase-shifted pulses. (a) Cross-variance ampli-
tude α plotted versus ϕ at 2 POA. Solid line: fit to the data. Inset: Pulse distribution
histogram. (b) Third central moment at 100 POA measured with a single amplifica-
tion chain. As expected, the trace is ∝ sin3(ωt). Insets: Equally distributed (brown)
and finite skew (green) histograms. (c) Third central moment measured with the
dual-path method, data set as in (c). (d) Power dependence of the third central
moment. Gray area: detection limit (10–20 POA). For technical reasons, in (a) and
(d) a Wilkinson power divider [58] was used instead of the hybrid ring. Reprinted
rearranged figure with permission from Ref. [57]. Copyright (2010) by the American
Physical Society.

path method for the moment reconstruction of both the detector noise and statistical

mixtures of weak coherent microwaves. Our method is tolerant to the considerable

noise added by off-the-shelf phase-insensitive amplifiers for which we observe evi-

dence of a non-Gaussian statistics. The obtained resolution limit of 1–2 POA for

the second moment indicates that our dual-path method is a suitable tool for de-

tecting propagating quantum signals such as squeezed states from a JPA, Fock

states [14] leaking out of an on-chip resonator [12], or non-classical microwave field

states generated in a two-resonator circuit QED setup [83]. Indeed, we successfully

reconstruct squeezed states as presented in the next chapter and in Ref. [61].



Chapter 5

Squeezing and path entanglement

In the previous chapter, we have shown the applicability of the dual-path method

for the reconstruction of signal moments of weak propagating quantum microwaves

and, at the same time, the moments of the amplifier noise. Here, we want to concen-

trate on non-classical states and entanglement, a purely quantum-mechanical effect.

As non-classical state, we use a squeezed state which we generate with a Josephson

parametric amplifier (JPA). In Sec. 5.1, we characterize the JPA sample used in our

experiments in detail. Next, in Sec. 5.2, we confirm, that the sample can squeeze

the vacuum applying a standard homodyning setup. In the following Sec. 5.3, we

quantitatively analyze the squeezing utilizing the dual-path cross-correlation tech-

nique to reconstruct the Wigner functions of various squeezed vacuum and thermal

states and to measure the JPA noise temperature in the degenerate operation mode.

In addition, a detailed noise analysis shows that our JPA is operated near the quan-

tum limit in the phase-insensitive mode and that its noise temperature is below the

standard quantum limit in the degenerate mode. Finally, in Sec. 5.4, we detect and

quantify path entanglement present in the output state of the beam splitter. The

results presented in this chapter have been published in Refs. [59, 61].

5.1 JPA characterization measurements

JPAs are promising devices for applications in circuit quantum electrodynamics and

for studies on propagating quantum microwaves because of their excellent noise

performance. In this section, we present a systematic characterization of a flux-

driven JPA at millikelvin temperatures using the spectroscopy setup (cf. Sec. 3.2.3).

More specifically, we analyze amplification properties, i.e., signal and idler gain, the

associated bandwidths, compression effects, and the noise properties in the non-

95
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degenerate operation mode. A detailed characterization of the JPA is essential

to design the filters of the cross-correlation detector correctly (cf. Sec. 3.3). For

a discussion of the operation principle of a flux-driven JPA, we refer the reader

to Sec. 3.2.1. The sample used in all experiments presented in this chapter, is

introduced in Sec. 3.2.2.

5.1.1 Operation point

The first step in characterizing the JPA is to determine a suitable operating point.

To this end, we measure the signal gain with a VNA while synchronously sweeping

the pump tone, fulfilling the relation fpump = 2fsignal + 10 kHz. Since the VNA mea-

surement bandwidth of 30 Hz is much smaller than 10 kHz, only the signal mode is

detected. Hence, no interference effects with the idler mode can occur. Further-

more, we emphasize that this measurement is different from the signal bandwidth

measurements discussed in Sec. 5.1.3, where the pump tone is at a fixed frequency

and only the signal frequency is swept. In Fig. 5.1, we plot the measured signal

gain when synchronously sweeping the pump and signal frequency for varying flux

values. For lower frequencies, the signal gain increases because the dependence of

the resonant frequency on the flux becomes steeper [cf. also Fig. 3.9(b)]. For flux

values larger than −0.62 Φ0, the dependence of the signal gain on the frequency

is no longer Lorentzian resulting in an irregularly formed contour. This indicates

the presence of large non-linearities and may be related to bifurcation [143]. We
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Figure 5.1: Signal gain as a function of frequency and applied magnetic flux at
a pump power Ppump =−39 dBm. The temperature of the JPA is stabilized at
130 mK. The dashed lines indicate the working point for our experiments. Reprinted
figure from Ref. [59].
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note that previously smooth contours become irregular when increasing the pump

power (data not shown). The flux dependence of the signal gain also exhibits re-

gions, where the signal gain attains negative dB-values (blue regions in Fig. 5.1).

There the JPA attenuates the signal instead of amplifying it. A possible explana-

tion is the conversion of the signal mode to a different mode (for example higher

harmonics). However, the frequency range of the cryogenic microwave components

(measurement circulator and HEMTs) do not allow us to investigate these higher

order modes. We choose our operating point f0 inside the interval of 5.634 GHz and

5.639 GHz, depending on the measurement. As it can be seen from Fig. 5.1, our

operation point is located in the center of a region where the signal gain is apprecia-

ble and its frequency dependence is well behaved. At this operation frequency, the

external quality factor is measured as Qext = 312, and the isolation between antenna

and resonator is at least 28 dB.

5.1.2 Non-degenerate gain

When the signal frequency is detuned from half the pump frequency, signal and idler

modes are at different frequencies and can be observed individually. This mode of

operation is therefore called “non-degenerate mode”. Figure 5.2 shows the pump

power dependence of the non-degenerate signal and idler gain for a detuning of

10 kHz. For low pump power, no significant signal gain is observed and the idler
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Figure 5.2: Pump power dependence of the idler and signal gain in the non-
degenerate operation mode. The solid lines are guides to the eye. The pump
and signal frequencies are set to 11.278 GHz and 5.63901 GHz, respectively. The
temperature of the JPA is stabilized at 90 mK. Reprinted figure from Ref. [59].
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gain is small. For large pump power, the two curves converge and both idler and

signal gain reach 19.5 dB.

5.1.3 Bandwidth

Besides the gain properties described above, the bandwidth is an important feature

of an amplifier. Therefore, we determine the instantaneous bandwidth of signal

and idler modes at a fixed operation point (constant flux and pump frequency) by

measuring the signal and idler gain for varying detuning between half the pump

frequency fpump/2 and the signal frequency f . As shown in Fig. 5.3, we observe a

signal and idler bandwidth of 1.72 MHz for a pump power of −39 dBm. For smaller

pump powers, the bandwidth increases, however, the gain is reduced. We define the

gain bandwidth product (GBP) as the product of the voltage gain in linear units and

the bandwidth of our amplifier. In the large gain limit, the GBP is nearly constant

and close to the theoretical limit of f0/Qext = 18 MHz [129] [cf. Fig. 5.3(c)]. For

low values of the signal gain, the idler gain vanishes and the signal gain approaches

one because the signal gain is normalized to the pump-off condition. Therefore,

we expect the idler GBP to decrease and signal GBP to increase. However, in the

low gain limit the signal bandwidth measurement is very sensitive to the calibration

data and fluctuations. Consequently, the signal GBP does not diverge in contrast

to expectations from theory.
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Figure 5.3: Signal (a) and idler (b) gain as a function of frequency, showing the
bandwidth for various values of the pump power. (c) GBP as a function of the
signal voltage gain in linear units. The dashed lines are guides to the eye. The
temperature of the JPA is stabilized at 90 mK. Reprinted figure from Ref. [59].
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5.1.4 1 dB-compression point

Another important figure of merit for amplifiers is their 1 dB-compression point.

It denotes the power where the signal gain is 1 dB below the value expected for a

perfectly linear device [119]. In other words, at some point the signal gain starts to

decrease as a function of input power due to the non-linearity of the amplifier. In

Fig. 5.4(a) bandwidth measurements of the signal gain are displayed. In contrast to

Fig. 5.3, here the pump power is fixed at −39 dBm and the dependence on the signal

power is studied. For small signal powers (Psignal ≤ −136 dBm) the curves overlap

meaning that the gain is constant and that the amplifier is in the linear regime. For

larger signal powers a reduction of the gain is observed. Figure 5.4(b) shows the

signal gain of Fig. 5.4(a) in the limit f→ fpump/2 for several signal powers. The

1 dB-compression point can be observed at −133 dBm. An analogous analysis for

the idler gain (data not shown) reveals that the compression occurs for both the

idler and signal gain at the same input power. For a circuit QED experiment with a

cavity decay rate of 1 MHz, this power level is equivalent to 10 photons on average.
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Figure 5.4: (a) Signal gain as a function of frequency for various values of the signal
power and (b) signal gain at f→ fpump/2 versus signal power. Squares: data. Line:
guide to the eye. The temperature of the JPA is stabilized at 88 mK. Reprinted
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5.1.5 JPA noise properties in non-degenerate mode

A low noise temperature of an amplifier is very important when using it for measur-

ing signals at the quantum level. Here, we use the spectroscopy setup for a rough

characterization of the noise properties of our JPA when it is operated in the phase-

insensitive mode. For details on the noise temperature in the degenerate mode, we

refer to Sec. 5.3.3. In order to determine the JPA noise properties, we measure the
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amplified noise power emitted by the 30 dB-attenuator, whose temperature is con-

trolled in the range Tatt = 50− 800 mK. The total noise power P at the spectrum

analyzer is given by

P (Tatt) = GB

[
hf0

2
coth

(
hf0

2kB (Tatt + δT )

)
+ kBTtotal

]
, (5.1)

where G denotes the total gain, B the detection bandwidth, h the Planck constant,

kB the Boltzmann constant and Ttotal the total noise temperature of the complete

detection chain, which includes the measurement circulator, the JPA and the ampli-

fication chain. Ttotal is related to the number of photons ntotal added by the complete

detection chain by kBTtotal =ntotalhf0. The first term in Eq. (5.1) describes thermal

fluctuations and vacuum fluctuations according to Ref. [144]. Possible deviations

between the electronic temperature of the attenuator and the measured tempera-

ture are taken into account by δT . We set the signal gain to Gsignal(T→0) = 19 dB

at the operation point f0. However, sample heating due to the pumping process

and compression effects at high noise source temperatures may cause the signal

gain to deviate from this value. Therefore, we measure the dependence of the gain-

corrected power on the noise source temperature Tatt (cf. Fig. 5.5). To this end,
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Figure 5.5: Gain-corrected power as a function of the noise source temperature. Red
line: Fit to the data using Eq. (5.1). The JPA operation frequency f0 is 5.6372 GHz.
The JPA temperature is in the range from 92 to 115 mK. Reprinted figure from
Ref. [59].
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we implement the following protocol for each temperature point: after measuring

the signal gain with the VNA, we turn off the VNA and measure the total noise

power using a spectrum analyzer. We obtain the gain-corrected power by divid-

ing the total noise power at each temperature point by the effective JPA gain for

white uncorrelated noise, Geff(T ) = 2Gsignal(T )− 1. Here, we consider the idler gain

using Gidler =Gsignal− 1 from Ref. [112]. Taking into account the cable and connec-

tor losses between the noise source and the measurement circulator, we estimate

Ttotal = 167 mK, which corresponds to ntotal = 0.62 for the noise photons added by

the whole detection chain referred to the input of the measurement circulator. This

value is close to the standard quantum limit for phase-insensitive amplifiers of 0.5

photons (135 mK). In addition, we find δT = − 19 mK to be reasonably small.

5.1.6 Degenerate gain

In order to demonstrate the usability of our JPA as a phase-dependent amplifier,

we investigate the degenerate gain. In this mode of operation, the pump frequency

is twice the signal frequency. Thus, the idler mode is created at the frequency of

the amplified signal mode. This results in an interference of the two modes that

is constructive or destructive depending on the phase between the idler and the

signal modes, which can be controlled by shifting the phase difference between the

probe signal and the pump tone. The degenerate gain is measured with a spectrum

analyzer, where a measurement with zero pump power is used as a reference.

In Fig. 5.6, the degenerate gain is plotted as a function of the phase between the

probe signal and the pump for various pump power levels. We observe a maximum

degenerate gain of 25.5 dB and a maximum deamplification of 22.3 dB. The former

value is consistent with the signal and idler gain of 19.5 dB (cf. Sec. 5.1.2), since the

constructive interference of equal amplitudes results in a 6 dB increase of gain.

In summary, at an operating frequency close to 5.637 GHz, we find a total noise

temperature of 167 mK (non-degenerate operation mode), a signal and idler gain of

19.5 dB, a bandwidth of 1.72 MHz, and a maximum degenerate gain of 25.5 dB.

5.2 Homodyne detection of squeezed vacuum

As mentioned in the discussion of the operation principle (cf. Sec. 3.2.1), the JPA

creates quantum correlations between the signal and the idler mode. In the degen-

erate operation mode, these correlations result in deamplification or amplification
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Figure 5.6: Degenerate gain as a function of the phase difference between probe
and pump signal for various values of the pump power. For clarity, the curves are
shifted in phase direction, so that the minima coincide. The temperature of the JPA
is stabilized at 95 mK. Reprinted figure from Ref. [59].

depending on the quadrature direction. In the case of deamplification, the quadra-

ture fluctuations can be squeezed below those of the vacuum. In this section, we

investigate squeezed vacuum fluctuations generated by the flux-driven JPA with the

homodyne detection setup (cf. Sec. 3.2.3). The dual-path state reconstruction [57,61]

of squeezed states is considered in the next section, Sec. 5.3.

To define the squeezing level S in decibel, we compare the variance of the

squeezed quadrature (∆Xsq)2 with the quadrature variance of vacuum fluctuations,

obtaining

S = max{0,−10 lg
[
(∆Xsq)2 /0.25

]
}. (5.2)

We note that (∆Xsq)2 < 0.25 indicates squeezing and S is positive. Larger S corre-

sponds to a higher squeezing level. (∆Xsq)2 ≥ 0.25 indicates no squeezing and, in

this situation, S equals zero. Hence, in this work we use the nomenclature that the

term “squeezing” is equivalent to “squeezing below the vacuum level”.

We detect the output signal of the JPA with the homodyne detector shown in

Fig. 3.11(b). By sweeping the temperature of the 30 dB-attenuator from 50 mK to

800 mK with inactive JPA, we calibrate the gain and the noise temperature of the

detection chain using Eq. (5.1). Then, we cool the attenuator to 33 mK and investi-
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Figure 5.7: Squeezing of vacuum fluctuations detected with the homodyne setup.
(a) Power spectral density ratio dS plotted as a function of phase and intermediate
frequency. (b) The power spectral density ratio averaged over the frequency range
from 118 to 487 kHz, dSavg, plotted as a function of phase. The averaged region is
indicated by the dotted lines in panel (a). The inset shows a zoom-in of the region
marked by the red ellipse. The JPA temperature is stabilized at 88 mK. Reprinted
figure from Ref. [59].

gate the squeezed vacuum state. To this end, we record the power spectral densities

Son and Soff with the JPA pump power on and off, respectively. In Fig. 5.7(a),

the ratio dS ≡ Son/Soff is plotted as a function of the relative phase between the

pump and the local oscillator and the detected intermediate frequency fIF. The

latter is obtained by downconverting the signal using a fixed local oscillator fre-

quency fLO = f0 = fpump/2. For these settings, signals at fLO + fIF and fLO− fIF,

representing the signal and idler modes, are downconverted to the same intermedi-

ate frequency fIF. Therefore, the homodyne detector is sensitive to the correlations

between the two modes created by the JPA. In Fig. 5.7(b), the average dSavg of

dS calculated in the frequency range 118 kHz<fIF < 487 kHz is plotted. Whenever

dSavg < 0 dB, the noise detected at the spectrum analyzer referred to the input of

the amplification chain is smaller than the vacuum noise emitted by the attenuator.

This demonstrates the effect of vacuum squeezing. From the minimal value dSmin

indicated in the inset of Fig. 5.7(b), we calculate the squeezing level [25]

S = −10 lg

[
1−

Tn

(
1− 10dSmin/10

)
0.5hf0/kB

]
. (5.3)



104 5. Squeezing and path entanglement

Here, Tn is the noise temperature of the detection chain with the JPA off. Taking

into account the cable losses, reference spectrum fluctuation and thermal population

at the input of the JPA, we retrieve a lower bound of 2.8 dB of squeezing at the input

of the amplification chain.

5.3 Dual-path state reconstruction

The estimation of the squeezing level with the homodyne detection setup only yields

a lower bound for the amount of squeezing. Rather than improving this setup,

we choose to fully reconstruct the squeezed state emitted by the JPA with the

dual-path setup, which is based on cross-correlation techniques and realtime data

processing [57, 61]. For an introduction of the dual-path theory and a detailed

description of the dual-path setup, we refer the reader to Sec. 2.6 and Sec. 3.3,

respectively. For the sake of a convenient discussion on the relevant physics, we

display a simplified sketch of the experimental setup in Fig. 5.8. We measure all

moments of the signal mode and of the noise contributions in the two detection paths

up to fourth order. The calibration of the photon number conversion factors, which

relate the auto-correlations measured in our detector (in units of V 2) to photon

numbers at the input of the beam splitter, is presented in Sec. 3.3.4.

Following Sec. 2.12, we calculate the third and fourth order cumulants from the

third and fourth signal moments to verify the Gaussianity of the state. Whenever
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Figure 5.8: Layout of the experiment. The signal can be a thermal state or a
(displaced) vacuum and becomes squeezed by the JPA when the pump is on. The
signal is split into two paths by a 180◦-hybrid ring microwave beam splitter (green).
The blue-and-red arrows denote the output state, which is measured by the cross-
correlation detector. Reprinted figure with permission from Ref. [61]. Copyright
(2012) by the American Physical Society.
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this verification is positive, we use the first two moments to reconstruct the signal

Wigner functions at the input of the beam splitter (cf. Sec. 2.7). In all dual-path

experiments, the temperature of the JPA sample box is stabilized at 50 mK resulting

in a 50 Ω-termination temperature of 40 mK.

5.3.1 Reconstruction of coherent states

As a first test of our setup, we perform dual-path reconstructions of the Wigner

function for known input states. Here, we exploit the fact that the noise contri-

butions of the two amplification paths are independent, while the split signals are

correlated (cf. also Sec. 2.6 and Ref. [57]). We reconstruct vacuum fluctuations and

coherent states (displaced vacuum), both at a frequency f0 = 5.637 GHz. The JPA

pump is off in these measurements. Because of the narrow measurement bandwidth

of 978 kHz, we approximate the vacuum and thermal states as single-mode fields.

The results shown in Fig. 5.9 exhibit a very good phase control for the coherent state.

In addition, we find a small thermal contribution of 0.097±0.007 photons above the

vacuum level which can be due to a small thermal population or other experimental

imperfections. At the same time, the noise moments of the two detection paths are
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Figure 5.9: Dual-path reconstruction of the vacuum and of coherent states incident
at the beam splitter. The photon number is 8.80±0.01 photons and the phase
varies from 0◦ to 315◦ in steps of 45◦. All nine Wigner functions are superposed. p
and q are dimensionless variables spanning the phase space. Reprinted figure with
permission from Ref. [61]. Copyright (2012) by the American Physical Society.
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obtained. We find that the detection chains add 24.82±0.03 and 26.87±0.03 pho-

tons referred to the beam splitter input which corresponds to noise temperatures

of 6.71±0.01 K and 7.27±0.01 K for the detection path 1 and 2, respectively. The

error bars we provide are of purely statistical nature.

In Fig. 5.10, we show the photon number n≡〈â†â〉 and amplitude α≡〈â〉 ex-

tracted from the reconstructed moments against power Pgen at the output of the

signal generator. Here, â† and â are the field operators of the input state as defined

in Sec. 2.6. The expected linear and square root dependences, n(Pgen) =APgen and

α(Pgen) =B
√
Pgen, are clearly reproduced. Within an error bar of less than two

percent, B is the square root of A for independent fits.
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Figure 5.10: Coherent state reconstruction. Photon number n and amplitude |α|
as a function of the signal generator power Pgen.

5.3.2 Reconstruction of squeezed vacuum and squeezed

thermal states

Having verified that our detector is well calibrated, we reconstruct squeezed vacuum

and squeezed thermal states incident at the input of the beam splitter. To this end,

we generate squeezed states by pumping the JPA at 2f0 = 11.274 GHz. Figure 5.11

shows typical time traces for selected second moments of a squeezed vacuum state

averaged over 5×105 traces. Since the phase angle in this example is chosen to be

0◦, 〈Q2
1〉 increases significantly above the vacuum level and 〈I2

1 〉 decreases below
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Figure 5.11: Typical averaged time traces of selected second moments from a
squeezed state measurement with 0◦ phase and for 10 dB signal gain. Each av-
eraged trace consists of 5×105 single traces. The rise time of 650 ns is determined
by the digital filters. The step between JPA pump off (vacuum) and on (squeezed
state) is shifted by 4µs with respect to the pulse shown in Fig. 3.16 because of a
delay due to filtering.

the vacuum level as expected. The cross-moment 〈I1I2〉 shows the characteristic

cancellation of the uncorrelated noise contributions of the amplification paths, which

lies at the heart of the dual-path tomography. A Wigner function reconstruction

based on this dataset is shown in Fig. 5.13(b).

Furthermore, we demonstrate the capability of the dual-path state reconstruc-

tion method to retrieve clean signal moments. Figure 5.12(a) displays the Wigner

functions based on the measured complex envelope moments of a single path for a

squeezed vacuum state. The elliptic shape suggests squeezing, however, the blue

contour line in Fig. 5.12(c) reveals that the noise of the HEMT amplifiers dominates

the detected signal. Thus, one cannot evaluate if the state is squeezed below the

vacuum without making use of a signal recovery method. The situation changes com-

pletely, when we apply the dual-path state reconstruction method to the data. The

resulting Wigner function, shown in Fig. 5.12(b), is much thinner in the squeezed

direction than the one based on the uncorrected complex envelope moments of a

single path. An analysis of the reconstructed signal moments reveals that, at the

input of the beam splitter, the state generated by the JPA is squeezed by 4.9±0.2 dB

below the vacuum level and contains 8.72±0.05 photons. Furthermore, the product
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of the standard deviation of the squeezed quadrature with that of its orthogonal,

enlarged one, is 3.45±0.07 times larger than the variance of the ideal vacuum. In

other words, we can model the state as one created by an ideal squeezer acting on

an effective thermal field with 1.22±0.04 photons. This thermal field contains the

combined effects of losses and the small thermal population found in the experimen-

tal vacuum. It is noteworthy to mention that the amount of squeezing quoted above

is mainly limited by cable losses and not by the JPA itself.
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Figure 5.12: Reconstruction of a squeezed vacuum state at the input of the beam
splitter for a JPA signal gain of 10 dB and a phase of 45◦. (a) Color map plot of
the Wigner function based on the uncorrected measured complex envelope moments
of path 1. (b) Color map plot of the Wigner function using the signal moments
reconstructed with the dual-path method. (c) 1/e-contours of the Wigner functions
displayed in panels (a) and (b). The blue curve is calculated from the uncorrected
complex envelope moments. The red line is based on the dual-path reconstructed
signal moments. Black line: ideal vacuum. (d) Zoom-in on the central region of
panel (c). Black line: ideal vacuum. Green line: experimental vacuum. Red line:
squeezed vacuum.
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Again, we notice good control of the phase. The phase stability between sig-

nal/pump and local oscillator is better than ±0.3◦ for 5× 105 traces. Hence, recon-

structions based on such a number of averages exhibit very good phase control as

shown in Fig. 5.13.

Next, we investigate the squeezing and its dependence on the signal gain and

on thermal fluctuations in more detail. Selected Wigner function reconstructions

are plotted in Fig. 5.14. When the 30 dB-attenuator is stabilized at 50 mK, vacuum

fluctuations are present at the input of the JPA. As shown in Fig. 5.14(a), the

increase in pump power, which corresponds to an increase of signal gain, causes

an increase of the squeezing level and an increase of the photon number [cf. also

Fig. 5.15(a)]. We achieve a maximum squeezing level of 4.9± 0.2 dB below vacuum

at 10 dB signal gain.
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Figure 5.13: Phase control for squeezed state reconstruction. Wigner functions
of (a) the vacuum, (b) a squeezed state at 0◦, (c) a squeezed state at 1◦, (d) a
squeezed state at 45◦, (e) a squeezed state at 90◦, and (f) a squeezed state at
135◦. The angle between the anti-squeezed quadrature and the p-axis is denoted as
γ. The number of averaged traces is 5 × 105. The residual thermal population of
the vacuum is 0.102±0.005 photons. For the squeezed state, the JPA signal gain is
10 dB and the reconstructed photon number n= 8.67 varies by approximately 0.5%
for the different phase angles.
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Figure 5.14: Reconstructed Wigner functions (color map) of squeezed vacuum and
squeezed thermal states incident at the input port of the microwave beam splitter.
p and q are dimensionless quadrature variables spanning the phase space. The insets
show the 1/e-contours of the ideal vacuum (blue), the experimental vacuum or
thermal states (green), and the squeezed vacuum or squeezed thermal states (red).
(a) Constant 30 dB-attenuator temperature of 50 mK. (b) Constant signal gain of
1 dB. Reprinted figure from Ref. [59].

However, if we further increase the signal gain, the squeezing level decreases

again. This behavior is expected [66] because the squeezing becomes suppressed

when the JPA enters the bifurcation regime. In this regime, also the higher order

cumulants are no longer expected to vanish. Indeed, we observe this effect in our

data for signal gains larger than 10 dB. In addition, from the JPA input-output

relation [64] we identify the signal voltage gain in the non-degenerate mode in linear

units as Gsignal,V = cosh (r). Applying this relation, we obtain from the photon
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Figure 5.15: (a) Squeezing level (blue squares) and photon number (red triangles)
plotted as a function of the signal gain when the 30 dB-attenuator is at 50 mK. The
lines are guides to the eye. (b) Photon number as a function of signal power gain
in linear units. Red triangles: data. Green dashed line: linear fit. Inset: Signal gain
range equivalent to that shown in panel (a). The two data points with the largest
signal gain are excluded from the fit. (c) Squeezing level (blue squares) and photon
number (red triangles) plotted as a function of the 30 dB-attenuator temperature
for 1 dB signal gain. The lines are guides to the eye. All error bars are of statistical
nature. Reprinted figure from Ref. [59].
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number of a squeezed state, n= sinh2 (r), the expression n=Gsignal,P − 1, where

Gsignal,P =G2
signal,V is the signal power gain in linear units. Therefore, we expect

that the photon number increases linearly with Gsignal,p in the non-degenerate mode

with a slope of one. Figure 5.15(b) confirms this behavior for small signal gains

below the bifurcation regime. Next, we fix the signal gain at 1 dB. When the

temperature of the 30 dB-attenuator is increased [cf. Fig. 5.14(b) and Fig. 5.15(c)],

more and more thermal photons are incident at the input port of the JPA. Thus,

the squeezing level decreases and at some point the output state of the JPA is not

squeezed below vacuum any more.

5.3.3 JPA noise properties in degenerate mode

A JPA operated in the degenerate mode can not only generate vacuum squeezing, it

can also be used as a low-noise phase-sensitive amplifier which, in principle, does not

need to add any noise to the amplified quadrature [81]. With the dual-path setup,

we therefore study the noise properties of our JPA in the degenerate mode. More

precisely, we perform a temperature sweep of the 30 dB-attenuator at the input of

the JPA (see also Fig. 3.14 in Sec. 3.3.1). The variance of the fluctuations at the

frequency f0 generated with this procedure is

(∆Xtherm)2 =
1

4
coth

(
hf0

2kBTatt

)
(5.4)

where (∆Xtherm)2 has the unit of photon number. At each temperature, the JPA

pump is operated in the pulsed mode. Consequently, a single time trace in our

measurement always contains a region corresponding to a non-squeezed thermal

state and a region corresponding to a squeezed thermal state. For any quadrature,

the variance (∆Xout)
2 at the output of the JPA is related to the variance (∆Xin)2

at the input via the relation [81]

(∆Xout)
2 = GX (∆Xin)2 + (∆Xnoise)

2 . (5.5)

Here, GX is the gain for this quadrature and (∆Xnoise)
2 is the noise added by the

amplifier referred to the output. In principle, we could determine the variance of

the thermal state at the input of the JPA using the dual-path reconstructed signal

moments at the input of the beam splitter taking into account the cable, circulator

and JPA losses. However, the dual-path reconstruction detects a thermal population

of 0.1 photons in the vacuum which would result in a significant underestimation of
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the JPA noise. For this reason, we calculate (∆Xin)2 based on Eq. (5.4), and model

the cable loss between the 30 dB-attenuator output and the measurement circulator

input with beam splitters, and account for the temperature gradients. In this way,

we model an equivalent amplifier consisting of the measurement circulator, JPA, and

cables to the beam splitter input. The noise contributions of all these components

are represented by the noise temperature of the equivalent amplifier. Therefore, the

latter is a pessimistic estimate for the noise properties of the JPA itself.

In Fig. 5.16, we show the anti-squeezed and squeezed quadrature variance as a

function of the noise source temperature. We find good agreement between theory

and experiment. The corresponding numerical results are displayed in Tab. 5.1.

Most importantly, we observe a variance of 0.14±0.01 photons (referred to the input)

for the noise added by our JPA to the anti-squeezed quadrature. This value is clearly

below the standard quantum limit of 0.25 photons for a single quadrature of a phase-

insensitive amplifier. The relevant noise number for the use of the JPA as a squeezer

is the noise it adds to the squeezed quadrature at the JPA output. We do not refer

the added noise from the squeezed quadrature to the input of the equivalent JPA,

because systematic uncertainties in the setup [61] dominate the squeezed quadrature

noise variance at the JPA output and would be amplified by 1/Gsq when referring

to the JPA input. However, these uncertainties are negligible for the anti-squeezed
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Figure 5.16: Anti-squeezed and squeezed quadrature variance as a function of the
noise source temperature Tatt. Lines: Fits of Eq. (5.5) to the data (symbols). The
fit results are summarized in Tab. 5.1. For each temperature point, 2×106 traces
are measured. Reprinted figure from Ref. [59].
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X GX (dB) (∆Xnoise)
2 (∆Xnoise)

2 /GX

sq −11.7± 0.3 0.06± 0.01 –
anti 13.7± 0.1 – 0.14± 0.01

Table 5.1: Dual-path analysis results for JPA gain and noise along squeezed and
anti-squeezed quadratures. The error bars describe the statistical error obtained
from the fitting procedure. (∆Xnoise)

2 has the unit of photon number.

quadrature. Instead, following [81] we calculate a lower bound for the squeezed

quadrature noise variance at the JPA input from the experimentally more robust

quadrature gains Gsq and Ganti of the squeezed and anti-squeezed quadrature noise

variance. Using the values from Tab. 5.1, we obtain the relation

(∆Xnoise,sq)2 /Gsq ≥
1

16

∣∣∣1− (GsqGanti)
−1/2

∣∣∣2 / [(∆Xnoise,anti)
2 /Ganti

]
= 0.02 . (5.6)

Thus, the JPA adds at least 0.02 noise photons referred to its input to the squeezed

quadrature.

To sum up, we present a detailed analysis of the physics of squeezed propagat-

ing microwaves generated with a flux-driven JPA. We find 4.9 ± 0.2 dB of squeez-

ing at 10 dB signal gain. In the degenerate mode, we verify that our JPA, as a

phase-sensitive device, adds less noise to the amplified quadrature than an ideal

phase-insensitive amplifier. This property is of utmost importance for high effi-

ciency detection, state tomography and quantum communication applications in

the microwave domain. In these protocols, a key resource is entanglement which we

consider in the next section.

5.4 Path entanglement

Fascinatingly, quantum mechanics allows for a compound system to have a common

description while, at the same time, no individual states can be ascribed to its sub-

systems [3]. The presence of entanglement between spatially separated systems is

a necessary condition for what Einstein called “spooky action at a distance” [145]:

the contradiction between quantum mechanics and local realism [3, 146]. Further-

more, entanglement is at the heart of quantum communication and information

processing technologies, which promise significant performance gains over classical

protocols [3–5]. Consequently, entanglement has been extensively explored in atomic

physics and quantum optics [4, 5, 147]. In these investigations, optical frequencies

were preferred over microwaves because the higher photon energies facilitate prac-
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tical applications. However, since the late 1990s, microwave technology has evolved

rapidly in both industry and science. For one thing, classical microwave fields have

become an indispensable tool in mobile communication. For another, a promising

direction towards scalable quantum information processing has appeared with the

advent of superconducting microwave quantum circuits [6,7,9]. Despite some deco-

herence issues, these systems provide unprecedented light-matter coupling strengths

due to their large effective dipole moments and field enhancement effects [18, 22].

As a consequence, standing-wave fields in transmission line resonators were shown

to act as a short-range quantum bus between superconducting qubits [148,149] and

various gates were implemented [148–152]. For microwave quantum communication,

however, propagating fields are required. As a first step in this direction, early exper-

iments demonstrated tomography of weak thermal states [58], coherent states [57],

and single photons [13]. Next, continuous-variable states generated by Josephson

parametric devices were reconstructed [56]. Very recently, such devices have permit-

ted to investigate two-mode squeezing [34, 44] and frequency non-degenerate path

entanglement [62]. An important aspect of these experiments is the understand-

ing they provide regarding entanglement. In order to be a resource in quantum

communication protocols, it must occur between spatially separated subsystems [3].

Furthermore, a strict proof of entanglement requires the entangler and the detec-

tor to be based on independent experimental techniques. In this work, we make a

significant step beyond previous efforts and demonstrate frequency-degenerate path

entanglement in the microwave regime. We respect both criteria mentioned above

by directly measuring the correlations between two different propagation paths. Our

experiments follow the spirit of the quantum-optical realization [147] of the original

Einstein-Podolsky-Rosen (EPR) paradox [146]. As shown in Fig. 5.8, we combine a

vacuum and a squeezed vacuum state in a hybrid ring microwave beam splitter [89]

acting as an entangling device. Its two output ports hold a continuous-variable state

which is frequency-degenerate and entangled with respect to the two propagation

paths. Along these paths, the entanglement can be conveniently distributed to two

parties requiring it for any suitable quantum communication protocol. In our exper-

iments, we first reconstruct the squeezed input state by means of dual-path tomog-

raphy [57], which assumes knowledge of the beam splitter relations (cf. Sec. 5.3.1

and Sec. 5.3.2). Next, we reconstruct the moments of the output state after the

beam splitter by treating the latter as a black box and calibrating against a known

state [28]. In this reference-state method (cf. Sec. 2.9), we only assume that inde-

pendent vacuum states are produced in each output path when vacuum is incident
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at both input ports. From the moments reconstructed in this way, we build a wit-

ness matrix which proves the existence of path entanglement independently of the

detailed nature of our output state [97]. Since in practice the data shows that our

states are Gaussian, we finally quantify the degree of entanglement by means of

the negativity [98]. The result of this analysis agrees with what we expect for our

squeezed input state. We note here that for bipartite single-mode Gaussian entan-

glement, as it is relevant in our case, entanglement implies nonlocality [3, 5]. All in

all, our results show that we have realized the main building block for microwave

quantum teleportation and communication protocols.

The characterization of the input fields of the beam splitter is considered in

Sec. 5.3.2. Here, we investigate the output state of the beam splitter. With the

moments reconstructed using the reference-state method, we build an entanglement

witness matrix. For the determination of the moments, we typically average over

7.7×108− 5.7×109 samples and all subsequently given error bars are based on this

statistics. Our witness indicates path entanglement in the outputs for a squeezed

state input present at the JPA-port of the beam splitter, while it does not do so for

a vacuum state input. Next, we analyze the third and fourth order cumulants and

find them to be small for JPA signal gains up to 10 dB. Since this is a strong indica-

tion for Gaussian states, we explore the path entanglement generated in our setup

quantitatively via the negativity Nout. For positive values, Nout describes the degree

of entanglement produced between the beam splitter output paths (cf. Sec. 2.11).

In the limit of low JPA signal gain, Fig. 5.17 shows how Nout becomes suppressed

when sending more and more thermal photons into the JPA. At some point, the

JPA cannot squeeze the incoming field below the vacuum anymore and the output

state is no longer entangled.

For constant temperature, Fig. 5.18 shows how Nout increases with increasing

signal gain from zero to a value Nout,max = 0.55±0.04 at 10 dB signal gain. This

behavior is in good agreement with the negativity Ncalc calculated from the dual-

path reconstructed input state. Again, we observe a suppression for large thermal

fields sent into the JPA. Our results confirm the expectation [60] that the degree

of squeezing at the beam splitter input determines the amount of entanglement

generated between the output paths. However, since Ncalc is generally slightly lower

than Nout, we conclude that either the dual-path reconstruction underestimates the

squeezing at the beam splitter input or the reference-state method ignores a small

amount of spurious classical correlations between the two paths. Both effects are

consistent with the data shown in Fig. 5.17, where at constant signal gain, the curve
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Figure 5.17: Path entanglement generated applying squeezed thermal states. The
negativities Nout, Ncalc are the maxima of the corresponding negativity kernels Ñout,
Ñcalc and 0. Circular symbols: Ñout data at the beam splitter output. Square
symbols: Ñcalc calculated from the reconstructed input state. The lines are guides
to the eye. Negativity kernel versus attenuator temperature (color code) at 1 dB
signal gain. For the data points in the shaded area, the witness matrix [97] confirms
entanglement. Reprinted figure with permission from Ref. [61]. Copyright (2012)
by the American Physical Society.

measured with the reference-state method at the beam splitter output converges

for high temperatures to that calculated from the dual-path reconstructed input

state. We finally note that the path-entangled state is expected to be a two-mode

squeezed state with two additional local squeezing operations applied to it [60].

Since local operations do not change the amount of entanglement, the negativity

Nout,max = 0.55±0.04 implies that the two-mode squeezed state before the two local

operations would have a variance squeezed by 3.2±0.2 dB below that of the two-

mode vacuum. All in all, we present clear evidence for path entanglement generated

by combining two frequency-degenerate continuous-variable microwave fields, the

vacuum and the squeezed vacuum, in a beam splitter.

To sum up this chapter, we present a detailed characterization of a flux-driven

JPA regarding its amplification and noise properties in the degenerate and non-

degenerate operation mode. The latter allows us to create continuous-variable quan-

tum states, which are studied in detail applying the dual-path state reconstruction

method. Making use of these quantum states, we demonstrate the generation and

detection of frequency-degenerate path entanglement.



118 5. Squeezing and path entanglement

0 5 10

-0.2

0.0

0.2

0.4

0.6

          reference-state method
  dual-path method

ne
ga

tiv
ity

 k
er

ne
l

signal gain (dB)  
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Chapter 6

Conclusions and outlook

The results of this thesis constitute a significant contribution to the progress of the

new and highly active research area of propagating quantum microwaves. Propa-

gating microwave fields offer a great potential for applications in quantum electro-

dynamics. However, the low energy scale of the microwave photons make a sim-

ple adoption of well-known quantum-optical strategies impossible. Accepting this

challenge, we succeeded to extend the experimental investigation of propagating mi-

crowaves to the quantum regime. In particular, we establish the foundations as well

as the experimental techniques and resources for quantum information processing

and quantum communication with continuous-variable microwaves.

Our first main result is the invention of the dual-path state reconstruction

method for propagating quantum microwaves. In order to address this problem,

one has to deal with the absence of efficient single-photon detectors working at

microwave frequencies. Instead, our reconstruction method uses a cryogenic beam

splitter, linear amplifiers with a finite noise temperature, and signal recovery tech-

niques to provide simultaneous access to, in principle, all moments of signal and

amplifier noise. Exploiting suitable cross-correlations as well as massive and effi-

cient averaging, our approach tolerates significant amplifier noise.

Second, we experimentally test our method with weak classical microwave sig-

nals. Applying thermal states, we perform Planck spectroscopy and corroborate the

functionality of our beam splitters for signals on the quantum level. Using statisti-

cal mixtures of phase-shifted microwave pulses, we confirm that we can detect third

order moments for such weak signals.

Third, we generate non-classical squeezed vacuum states by applying a Josephson

parametric amplifier (JPA) and reconstruct them with an advanced dual-path setup.

Applying realtime data processing, we measure moments up to the fourth order. By

119
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considering cumulants up to this order, we confirm the Gaussianity of the states

for JPA signal gains up to 10 dB. At this operation point, we obtain the maximum

squeezing of 4.9± 0.2 dB referred to the beam splitter input.

Finally, we use the dual-path setup with a squeezed input state to observe the

quantum physics of path-entangled microwave beams. We confirm experimentally

that the beam splitter input states are such that the output state must be entan-

gled. In addition, we characterize this output state directly applying an independent

analysis technique, where we treat the beam splitter as a “black box” device. In

this way, we find that the maximum entanglement contained in the output state is

equivalent to 3.2 dB of two-mode squeezing, occurring at 10 dB JPA signal gain.

Currently, we are continuing the research on propagating quantum microwaves by

investigating squeezed state physics. More precisely, our work in progress considers

the generation and reconstruction of squeezed coherent states. Figure 6.1(a) and

Fig. 6.1(b) display 1/e-contours of measured squeezed coherent states. When the

anti-squeezing direction is collinear to the displacement vector of the coherent input

state, the displacement of the squeezed state is maximal. In Fig. 6.1(a), we are close

to this situation. As expected, we observe that the squeezed coherent state physics

is governed by the phase of the coherent state at the input of the JPA, while we

control and stabilize the coherent state phase at the output of the inactive JPA.

In Fig. 6.1(b), the anti-squeezing direction is almost perpendicular to the coherent

displacement vector. In this situation, the displacement of the squeezed coherent

state is small since the coherent state displacement is deamplified. Additionally,

the squeezed coherent state is shifted along the anti-squeezed direction due to the

imperfect alignment already mentioned above. This shift is obviously larger than in

Fig. 6.1(a) where it occurs along the squeezed direction and is therefore deamplified.

As it can be seen from Fig. 6.1(c) and (d), the agreement between experiment

and theory regarding the orientation and position of the squeezed state ellipse is

excellent. However, the area enclosed by the experimental contour is larger than the

theoretical one. The reason for this are effective thermal photons which are contained

in the state due to losses or residual JPA noise contributions. For simplicity reasons,

we only mention that the area of the squeezed vacuum ellipse is the same as the one

of the squeezed coherent ellipse and refer the reader to Ref. [59] for further details.

One limitation of our current setup for the investigation of squeezed coherent

states is that large displacements, especially along the anti-squeeze direction, are

hard to achieve due to JPA compression effects. Therefore, we want to displace

squeezed vacuum states by applying a directional coupler in the near future. In this
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highly asymmetric beam splitter, the transmission for the squeezed vacuum input

state is close to unity, whereas the coherent state is strongly attenuated before

both are superposed. With such a setup, we plan to further extend our studies on

squeezing physics and compare the generated coherent squeezed states to squeezed

coherent states. In this way, we will be able to characterize the implementation
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Figure 6.1: Squeezed coherent states. (a) and (b): 1/e-contours of reconstructed
Wigner functions. Green: coherent state referred to the input of the JPA. The
misalignment of the coherent displacement vector from the angle bisector (dotted
line) is 6.2±0.2◦. Red: squeezed coherent state at the input of the hybrid ring. Blue:
vacuum. (c) and (d): 1/e-contours of theoretical Wigner functions. The calculations
are based on the experimentally determined squeeze factor of 1.809 ± 0.001, the
coherent state photon number of 1.972± 0.005 and the angle of 6.2± 0.2◦ between
input and output of the active JPA. In panel (a) and (c) the dotted line represents
the anti-squeeze direction (γ= 45◦) and in panel (b) and (d) the squeeze direction
(γ= 135◦).
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of the displacement operator, which is a key element in remote state preparation

or quantum teleportation protocols. These applications represent the mid-term

goals for our experimental work exploiting continuous-variable propagating quantum

microwaves. Our successful demonstration of path entanglement already provides a

good basis for further research towards the realization of these protocols. Regarding

the latter, one challenge is the reduction of losses which diminish the entanglement

by mixing the quantum state with vacuum or thermal fluctuations. An ansatz for

this is to avoid interconnections by combining different elements on a single chip

and to avoid dielectrics by using wave guides for long transmission lines. Another

challenge is the temporal mode matching of the classical communication signal and

the EPR state, which could be solved by applying entangled states with slowly

decreasing correlations or ultra-low-loss delay lines. Regarding the grand goal of

quantum microwave communication over macroscopic distances, our results allow

for the optimistic outlook that fundamental protocols such as state teleportation

between two nearby laboratories are certainly challenging, but by no way impossible

even with present-day technology.



Appendix A

Superconducting coil and

persistent current switch

For the generation of a static magnetic flux bias for the JPA, we use a superconduct-

ing coil [cf. Fig. A.1(a)] equipped with a persistent current switch [cf. Fig. A.1(b)

and (c)]. The latter allows to freeze a persistent current in the coil. This provides an

effective isolation from current noise possibly present on the coil leads. The circuit

diagram is shown in Fig. A.1(d). The coil is wound from a S1-1,5(0,10)V supercon-

ducting wire from European Advanced Superconductors consisting of a single NbTi

filament embedded in a copper matrix. The conductor diameter is 0.1 mm. The coil

frame material is gold-plated OFHC copper. The 4416 windings are distributed on

46 layers. For better thermal anchoring of the wire, it has been wound in Stycast

1266, which needed to harden after 2 to 3 layers. The twisted leads of the coil are

well anchored with GE varnish over their complete length, e.g., following the wind-

ings of the coil exchanger, to prevent quenches and to reduce the heat load. Thus,

after installing the coil system the base temperature increases by less than 1 mK.

The coil is tested with currents up to 200 mA and no changes in the fridge perfor-

mance is observed. Figure A.2 shows a numerical calculation of the z-component of

the magnetic field. The simulation agrees well with the magnetic field determined

with a niobium SQUID without resonator (data not shown). In order to change the

flux in the SQUID loop of the JPA by the amount Φ0, we expect a field value of

0.21mT requiring for a coil current of 3.1 mA. However, a current of only 138µA is

sufficient to change the flux by Φ0. Therefore, the flux is concentrated in the small

gaps between the superconducting ground planes of the resonator. We note that

large magnetic fields can degrade the performance of the JPA. As a remedy, the

JPA has to be heated above the critical temperature of niobium to release trapped
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plastic core

manganine wire

superconducting wire
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Icoil
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Figure A.1: Superconducting coil and persistent current switch. (a) Photograph
of the superconducting coil. (b) Photograph of the persistent current switch before
assembly. (c) Installed persistent current switch without protective tube. (d) Circuit
diagram. The dashed rectangle represents the persistent current switch. (e) Cross-
sectional schematics of the persistent current switch.

flux.

The coil is equipped with a persistent current switch. A cross-section of this

switch is displayed in Fig. A.1(e). Between two layers of Manganin heating wire

there is a layer of superconducting wire. It is wound in a bifilar fashion in order to

be insensitive to external flux variations and to prevent cross-talk from the heater

wire. The characteristics of the persistent current switch is shown in Fig. A.3. For

heater currents up to 25 mA, the switch filament is superconducting. Above 25 mA

the superconductivity breaks down. The switch is in a stable resistive state for

heater currents above 33 mA. We usually operate the switch at a heating current

of 80 mA resulting in a larger filament resistance and a faster change of the coil

current.

The persistent current switch is connected to the superconducting coil by point

welding the NbTi filaments after removing the copper matrix. We generate the coil

current with a home-made ultra-low-noise current source controlled via a National

Instruments 16 bit digital-to-analog converter board (NI PCI-6052E). We filter the

coil leads with a combination of a Mini-Circuits BLP-1.9 and a home-made RC

lowpass filter. Except for flux sweeps, we always operate the coil in the persistent

mode.
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