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Abstract

The field of cavity electromechanics studies the interaction between electromagnetic
modes confined in superconducting microwave cavities and mechanical resonators. Re-
cently, the concept of inductive coupling has been demonstrated, where the inductance
of the microwave circuit is modulated by the mechanical displacement. This coupling
scheme allows for higher vacuum optomechanical coupling rates and is therefore consid-
ered a promising approach for reaching the single-photon strong coupling regime.

In this work, we report on efforts towards entering this regime. We present a novel
fabrication process for a flux-tunable microwave resonator that is shunted to ground by
a dc-SQUID with integrated nanostrings. This multi-step process is expected to enable
higher internal quality factors that are an essential requirement for single-photon strong
coupling. We characterize two of the flux-tunable resonators and find a major improve-
ment of internal quality factors from the first to the second sample. However, both
samples show hysteretic behavior which demands for a further optimization of the device
geometry. In addition, we investigate the shift of the uncoupled mechanical frequency
of a nanostring integrated into a SQUID and consider the creation of flux vortex lines
inside the nanostring as a possible explanation for this residual frequency shift.
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Chapter 1.

Introduction

The harmonic oscillator is among the most important models in physics. Its most tan-
gible realization are undoubtedly macroscopic mechanical resonators such as masses on
springs, suspended membranes or doubly-clamped beams. The field of optomechanics
studies the interaction between electromagnetic and mechanical modes and provides the
ideal toolkit for the read-out of their motion [1]. To this end, one can couple the me-
chanical resonator either to optical modes at THz frequencies confined in optical cavities
or to microwave modes at GHz frequencies propagating in electrical circuits. While the
first approach is known as cavity optomechanics, the latter is commonly called cavity
electromechanics. These approaches allow for measuring the displacement of mechanical
resonators with masses ranging from several kilograms to a few picograms with record
high sensitivities [2, 3, 4, 5, 6]. Besides the detection of mechanical motion, optomechan-
ics opens the way towards investigating mechanical resonators in the quantum regime [1,
7]. An indispensable prerequisite for doing so is the ability to cool the mechanical com-
ponent to its quantum ground state that has been demonstrated in both the optical [8]
and the microwave domain [9]. Once this is achieved, quantum mechanical effects can be
observed. These include the hybridization of mechanical and electromagnetic modes [10,
11] as well as the coherent exchange of excitations between them [12, 13]. Furthermore,
the generation of entanglement between microwaves and mechanical motion [14] as well
as between two mechanical resonators [15, 16] and squeezing of the mechanical state [17,
18, 19] were realized. Even for quantum information processing with superconducting
circuits, optomechanical devices might play a key role as they enable the conversion of
quantum signals between the microwave regime, where the circuits typically operate,
and the telecom band, which can be used for long range communication [20]. All of the
above mentioned experiments can be described within the linearized approximation of
the optomechanical Hamiltonian. In order to harness the full nonlinearity of this in-
teraction, the single-photon strong coupling regime needs to be reached, in which novel
quantum mechanical effects, such as the generation of non-classical mechanical states, are
predicted to become experimentally accessible [1, 21, 22]. A potential pathway towards
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Chapter 1. Introduction

single-photon strong coupling are inductively coupled electromechanical devices in which
the mechanical motion is transduced to a change in the inductance of a microwave cavity.
This novel class of devices has long been predicted to allow for larger vacuum coupling
rates than the previous capacitive coupling schemes [23, 24, 25, 26]. Recently, several
realizations of inductive coupling have been demonstrated experimentally [27, 28, 29, 30].
While the demonstrated coupling rates did exceed what was previously possible, all of
the presented devices still operate outside of the single-photon strong coupling regime.

In this thesis, we report on efforts towards realizing single-photon strong coupling by
fabricating a nano-electromechanical device consisting of a superconducting microwave
resonator shunted to ground by a dc SQUID with embedded mechanically compliant
nanostrings. Our device is inspired by the one in Ref. [28], however we aim for enhanced
internal quality factors of the microwave resonator and therefore resort to a more sophis-
ticated fabrication process. Moreover, we investigate the mechanical frequency shift of a
nanostring embedded into a SQUID, based on the work done in Ref. [31]. Specifically, we
focus on the shift of the uncoupled frequency of the nanostring and consider the creation
of flux lines inside the nanostring that couple to the mechanical motion as a possible
cause of this unexpected frequency shift.

This thesis is structured as follows. In Chap. 2, we provide the theoretical background
necessary for understanding the experimental work of this thesis. Chap. 3 presents the
layout of our device. We introduce the experimental methods in Chap. 4, which includes
an overview of the fabrication of flux-tunable resonators as well as the experimental
setup. The next two chapters present the experimental results of this work. In Chap. 5,
we describe the characterization of fixed-frequency and flux-tunable CPW resonators and
Chap. 6 is dedicated to the investigation of the above mentioned mechanical frequency
shift of a nanostring. Finally, we conclude the thesis with a summary and an outlook on
possible future directions building on the presented results.
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Chapter 2.

Theory

This chapter presents the theoretical background necessary to understand the experi-
mental results of this work. Section 2.1 introduces the optomechanical Hamiltonian that
describes the interaction of an electromagnetic with a mechanical mode. In this sec-
tion, we touch upon the full nonlinear Hamiltonian, its linearized approximation and
the single-photon strong coupling regime. Next, we introduce important elements of
superconducting quantum circuits in Sec. 2.2, namely coplanar waveguide microwave res-
onators (Sec. 2.2.1), the Josephson junction (Sec. 2.2.2) and the dc-SQUID (Sec. 2.2.3).
A coplanar waveguide resonator shunted to ground by a dc-SQUID constitutes a flux-
tunable resonator, to which Sec. 2.2.4 is dedicated. These flux-tunable resonators allow
for building nano-electromechanical devices via an inductive coupling scheme which we
explain in Sec. 2.3. One implementation of such an inductively coupled nano-electro-
mechanical device is a flux-tunable resonator featuring a mechanically compliant string
integrated into its SQUID. Sec. 2.4 treats the mechanical aspects of a SQUID with a
mechanically compliant string. In Sec. 2.4.1, we present models for the shift of the me-
chanical frequency induced by the Lorentz force and in Sec. 2.4.2, we discuss the exper-
imentally observed residual shift of the uncoupled mechanical frequency that might be
attributed to the coupling between mechanical motion and flux lines.

2.1. The optomechanical Hamiltonian

Opto- and electromechanical systems widely differ in terms of the masses and frequencies
of the mechanical elements, the cavity frequencies and the overall implementation of the
mechanical and electromagnetic resonators and their interaction [32, 1]. Nevertheless, all
opto- and electromechanical systems can be described by the same Hamiltonian, known as
the optomechanical Hamiltonian, which in general leads to coupled nonlinear equations
of motion [1]. Here, we are first going to motivate this Hamiltonian, then look at its
linearized form and finally summarize the conditions under which the system resides in
the nonlinear regime and the effects predicted to emerge therein.
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(a)

(b)

Figure 2.1.1.: (a) Schematic illustra-
tion of a typical optomechanical de-
vice consisting of a Fabry-Pérot cavity
with a mechanically compliant end mir-
ror. An optical mode of frequency ωcav

and decay rate κ couples to a mechan-
ical mode of frequency Ωm and damp-
ing rate Γm via the radiation pressure
force. The cavity is driven by an ex-
ternal laser. (b) Schematic circuit di-
agram of a common electromechanical
device, where the vibrations of a plate
capacitor modulate its capacitance C
and therefore the resonance frequency
of a LC circuit. Concepts where the in-
ductance L instead of the capacitance
is modulated exist as well. The LC cir-
cuit is coupled to an external microwave
drive. Taken from [1].

The nonlinear optomechanical Hamiltonian In order to obtain the most simple form
of the optomechanical Hamiltonian, it suffices to take into account one electromagnetic
mode of frequency ωcav interacting with only one mechanical mode of frequency Ωm [1].
Usually, the electromagnetic mode under consideration is the one closest to the frequency
of the driving mode and the choice of the mechanical mode is arbitrary to a large extent.
Schematics of standard opto- and electromechanical systems are shown in Fig. 2.1.1. Both
the mechanical mode and the optical mode can be treated as harmonic oscillators, such
that the uncoupled Hamiltonian Ĥ0 of the hybrid system reads

Ĥ0 = ℏωcavâ
†â+ ℏΩmb̂

†b̂, (2.1)

where â† (â) and b̂† (b̂) are the creation (annihilation) operators of the optical and
mechanical mode, respectively. The coupling between the two modes arises as the cavity
frequency depends parametrically on the mechanical displacement x: ωcav = ωcav(x). As
a consequence, the mechanical motion modulates the resonance frequency of the cavity.
As the mechanical displacement is usually very small, one can expand the change of the
cavity frequency to first order as

ωcav(x) ≈ ωcav +
∂ωcav

∂x
x = ωcav −Gx. (2.2)
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2.1. The optomechanical Hamiltonian

The minus sign in the definition ∂ωcav/∂x = −G makes sense especially in the context
of a Fabry-Pérot cavity with frequency ωcav = nπc/L, where n is the integer mode
number, c the speed of light and L the cavity length [1]. The mechanical displacement
x is defined such that for x > 0 the cavity length increases and consequently, the cavity
frequency decreases. As one would like to have positive coupling strengths, i.e. G > 0,
it is convenient to introduce the minus sign. With this expansion, the interaction part
of the Hamiltonian can be expressed as

Ĥint = −ℏGâ†âx̂ = −ℏg0â†â(b̂+ b̂†), (2.3)

where x̂ = x0(b̂ + b̂†) is the operator of mechanical displacement and g0 = Gx0 the
vacuum optomechanical coupling rate, quantifying the interaction strength between a
single phonon and a single photon [1]. The zero-point motion x0 of the mechanical
oscillator

x0 =

√
ℏ

2mΩm
(2.4)

is its position uncertainty in the quantum mechanical ground state. Hence, the full
Hamiltonian of the optomechanical system is given by

Ĥ = Ĥ0 + Ĥint = ℏωcavâ
†â+ ℏΩmb̂

†b̂− ℏg0â†â(b̂+ b̂†). (2.5)

Of course, one can include higher order terms in the expansion of the cavity resonance
frequency in Eq. 2.2, which leads to an interaction term quadratic in the displacement
operator [33]. However, the quadratic coupling is in most cases much smaller than the
linear coupling, such that it is neglected in the Hamiltonian in Eq. 2.5. It is important to
note that since the interaction part is cubic in operators, the equations of motion of the
operators in the Heisenberg picture are quadratic in operators and therefore nonlinear.
Usually, the cavity is driven by an external coherent driving field with Hamiltonian [1]

Ĥd = iℏ
√
κext(â

† αine
−iωLt − â α∗

ine
iωLt), (2.6)

where ωL is the frequency and αin the amplitude of the driving field and κext quantifies
the coupling strength between drive and cavity field.

The linearized optomechanical Hamiltonian In most cases it is not necessary to keep
the full nonlinear Hamiltonian for an appropriate description of the optomechanical sys-
tem. Instead, one can resort to a linearized version of Eq. 2.5. This linearized optome-
chanical Hamiltonian is applicable whenever the average occupation of the cavity ⟨â⟩ is
much larger than the quantum fluctuation of the cavity field or when the decay rate κ of
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Chapter 2. Theory

the cavity is large [1]. Then, one can decompose the cavity field as

â = ⟨â⟩+ δâ = α+ δâ. (2.7)

It is convenient to switch to a frame rotating a the drive frequency with the unitary
transformation Û = exp

(
iωLâ

†ât
)
. Then, the optomechanical Hamiltonian in Eq. 2.5

becomes

ÛĤÛ † − iℏÛ
∂Û †

∂t
= −ℏ∆â†â+ ℏΩmb̂

†b̂− ℏg0(α+ δâ)†(α+ δâ)(b̂+ b̂†), (2.8)

where we have inserted the decomposition Eq. 2.7 and ∆ = ωL − ωcav is the detuning
between the drive field and the cavity. The first term in the interaction part proportional
to |α|2 is due to an average radiation pressure force that shifts the equilibrium position of
the mechanical oscillator by δx. It can be omitted when accounting for this shift in the
operators of the mechanics and replacing ∆+Gδx → ∆. The third term of the interaction
proportional to δâ†δâ is also typically neglected, as it is considered small compared to
αδâ† and α∗δâ. Then, only the term proportional to (α∗δâ + αδâ†) remains. One can
always assume α to be real, such that it is related to the mean photon number in the
cavity n̄ by α =

√
n̄. Finally, one arrives at the linearized optomechanical Hamiltonian

Ĥ(lin) = −ℏ∆â†â+ ℏΩmb̂
†b̂− ℏg0

√
n̄(δâ† + δâ)(b̂+ b̂†). (2.9)

Importantly, the effective coupling strength between photons and phonons is no longer
given by g0 but by g = g0

√
n̄. This means that the effective coupling strength can be

enhanced via the average number of photons in the cavity that is related to the input
power of the drive.

Important milestones of cavity electromechanics were achieved with systems to which
this linearized approximation applies [9, 11, 14]. When the mechanical frequency Ωm

by far exceeds the cavity linewidth κ, the system is said to be in the resolved-sideband
regime. In this regime, the mechanical mode can be efficiently cooled to the quantum
ground state for a detuning ∆ = −Ωm [34], which was demonstrated experimentally
[9]. This can be understood as follows. For ∆ = −Ωm, terms in the interaction part
of the Hamiltonian that change the total number of quanta (that is δâb̂ and δâ†b̂†)
can be omitted as they are offresonant [1]. Then, the remaining interaction term reads
−ℏg(δâ†b̂+ δâb̂†). The first term describes the creation of a photon at frequency ωcav in
the cavity mode and an annihilation of a phonon in the mechanics. This process is known
as anti-Stokes Raman scattering [35] and gives rise to an anti-Stokes field blue detuned
from the driving field by the mechanical frequency Ωm. It is illustrated in Fig. 2.1.2 (a).
The second term describes the opposite process: a photon annihilated in the cavity and
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Figure 2.1.2.: Dominant scattering processes induced by the linearized optomechanical Hamil-
tonian for different detunings ∆ = ωL−ωcav between the frequency of the driving field ωL and
the cavity frequency ωcav. (a) When driving the cavity on the red sideband with ∆ = −Ωm,
the anti-Stokes Raman scattering process (blue arrow) that creates a photon at frequency
ωcav in the cavity and annihilates a phonon in the mechanics is enhanced as the cavity den-
sity of states is large at ωcav, while the Stokes Raman scattering process is suppressed. This
leads to cooling of the mechanical mode, indicated be the increased mechanical linewidth.
(b) For a detuning of ∆ = Ωm, the Stokes Raman scattering process (arrow in magenta)
that creates a photon in the cavity and a phonon in the mechanics is enhanced, whereas the
anti-Stokes Raman scattering is suppressed. Driving the cavity on the blue sideband thus
results in heating of the mechanical mode as indicated by the reduced mechanical linewidth.
(c) When driving the cavity on resonance (∆ = 0), both scattering processes are equally
likely as the cavity density of states is the same at ωcav − Ωm and ωcav + Ωm. Therefore,
neither cooling nor heating occur and Ωm and Γm are not modified.
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Chapter 2. Theory

a creation of a phonon. As the cavity mode is in the vacuum state in the beginning,
the transition rate for the first process exceeds that for the second one until equilibrium
is reached. Thus, driving the cavity on the red sideband leads to an overall reduction
of the number of excitations in the mechanics and therefore cooling. For a detuning of
∆ = +Ωm, the dominant part of the interaction is given by −ℏg(δâ†b̂† + δâb̂), which
describes a simultaneous creation or annihilation of an excitation in both the cavity and
the mechanical mode. This process of Stokes Raman scattering [35] creates a Stokes
field red detuned from the driving field by Ωm and is illustrated in Fig. 2.1.2 (b). As a
consequence, this causes a population of the mechanical mode which can be interpreted
as heating. Driving the cavity on the blue sideband is an essential step in a protocol
generating entanglement between the microwave field and the mechanical mode that was
implemented in Ref. [14]. In general, the mechanical resonance frequency Ωm as well as
the mechanical damping rate Γm shift due to the interaction between the cavity field and
the mechanics. This is a fundamental phenomenon in opto- and electromechanics known
as backaction. Only when the cavity is driven on resonance (∆ = 0) both Stokes and
anti-Stokes fields are created at ωcav ± Ωm as illustrated in Fig. 2.1.2 (c) and there is no
modification of Ωm and Γm [1]. In order to avoid the backaction due to the optomechanical
interaction, we choose ∆ = 0 in our experiments investigating the frequency shift of a
nanostring integrated into a SQUID loop (see Sec. 4.2 and Chap. 6).

The single-photon strong coupling regime The fundamental limitation of the lin-
earized Hamiltonian in Eq. 2.9 is that it converts Gaussian input states of the light
field only to Gaussian states of the mechanics. Therefore, the generation of nonclassi-
cal mechanical states with negative Wigner density is not possible within this protocol.
Nevertheless, such states might be created from nonclassical input states such as Fock
states that can be transferred onto the mechanics by the linearized interaction [1].
In order to harness the nonlinearity of the full optomechanical Hamiltonian in Eq. 2.5,
it is necessary to reach the single-photon strong coupling regime, where the vacuum
optomechanical coupling rate exceeds the cavity decay rate:

g0
κ

> 1. (2.10)

If this condition is met, a single phonon in the mechanical mode shifts the resonance
frequency of the cavity by more than its linewidth [1]. To develop a better intuition for
the single-photon strong coupling regime, one can consider the mechanical displacement
δx caused by a single photon in the cavity. It is given by [1, 36]

δx

x0
= 2

g0
Ωm

. (2.11)
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2.2. Superconducting quantum circuits

For nonlinear effects to be observable, the device needs to reside in the resolved-sideband
regime Ωm ≫ κ [1]. In the single-photon strong coupling regime, a single photon then
displaces the equilibrium position of the mechanics by more than the zero point motion
x0 if g0 > Ωm [1, 21, 36]. In this regime, interesting quantum effects are predicted
to emerge that are qualitatively different from the ones observable for g0 < κ. These
include the generation of nonclassical mechanical states with negative Wigner density
[22] and the phenomenon of photon blockade, where the presence of a single photon
prevents a second photon from entering the cavity [21]. Experiments that come close to
the single-photon strong coupling regime have been performed on systems with clouds
of ultracold atoms inside optical cavities [37, 38]. However, these systems did not reside
in the resolved-sideband regime that has been demonstrated in several opto- and elec-
tromechanical systems by now [8, 9, 28]. To date, there is no experimental realization of
the single-photon strong coupling regime in opto- and electromechanical systems.

2.2. Superconducting quantum circuits

2.2.1. Coplanar waveguide microwave resonators

Microwave resonators constitute essential building blocks in nano-electromechanical sys-
tems and can be implemented in different ways. One such implementation are two-
dimensional superconducting coplanar waveguide (CPW) resonators that consist of a
center conductor of width w that is separated from a ground plane by gaps of width s.
The structure is sustained by a substrate with relative permittivity ϵr. A sketch of the
cross-section of a CPW resonator is shown in Fig. 2.2.1. In the fabrication of our devices,
we pattern CPW resonators into superconducting niobium (Nb) thin films on top of a
silicon (Si) substrate with ϵr = 11.9 [39].

The CPW resonator supports only standing waves of the electromagnetic field with
frequencies close to its resonance frequency due to boundary conditions at its ends. There
are two different types of boundary conditions: an open boundary condition in the form
of a capacitor where the current vanishes and the voltage is maximal and a short to
ground where the current is maximal and the voltage vanishes [40]. One open boundary
and one short to ground result in a λ/4-resonator, whereas a λ/2-resonator is made by
introducing two open ends. In this work, we always investigate λ/4-resonators that are
capacitively coupled to a microwave feedline as shown in Fig. 2.2.1 (b), which allows for
driving the resonator by sending microwave signals through the feedline. At low temper-
atures and low excitation powers, the quantized nature of the electromagnetic field inside
the CPW resonator becomes important and each of its modes needs to be described as
a quantum mechanical harmonic oscillator [40].
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(a)

(b)

Feedline

CPW 
Resonator

b(1)
in

b(2)
out

200μm

Figure 2.2.1.: (a) Sketch of the cross-section of a CPW resonator that consists of a center
conductor of width w separated from a ground plane by a gap of width s. The center
conductor and ground plane are made of a superconducting material such as niobium (Nb).
The CPW resonator is sustained by a silicon (Si) substrate with permittivity ϵ0ϵr. The red
arrows indicate the electric field of a electromagnetic mode propagating in the resonator. (b)
Top view of a λ/4 CPW resonator capacitively coupled to a microwave feedline. The input
field at port 1 is denoted by b

(1)
in and the output field at port 2 by b

(2)
out.

For λ/4-resonators, the frequency of the fundamental mode is given by [41]

ω0

2π
=

c
√
ϵeff

1

4l
=

v

4l
, (2.12)

where c is the speed of light in vacuum, ϵeff the effective permittivity, v the phase velocity
and l the resonator’s length. The phase velocity can also be expressed as v = 1/

√
L0C0,

where L0 (C0) is the inductance (capacitance) of the CPW per unit length. Neglecting
kinetic inductance, L0 depends only on the geometry of the CPW and C0 is always
entirely determined by the geometry as well as the effective permittivity ϵeff via [41]

L0 =
µ0

4

K(k
′
0)

K(k0)
and C0 = 4ϵ0ϵeff

K(k0)

K(k
′
0)
, (2.13)

where K is the complete elliptic integral of the first kind with geometry-dependent ar-
guments. Furthermore,

k0 =
w

w + 2s
and k

′
0 =

√
1− k20. (2.14)

As we deal with CPWs made of superconducting material, the resistance can initially be
assumed negligible 1 [40] and the characteristic impedance Z0 is given by [41]

Z0 =

√
L0

C0
. (2.15)

1There exists a surface impedance which contributes to the internal quality factor of the resonator [42].
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2.2. Superconducting quantum circuits

In order to minimize reflections of incoming microwave signals, the characteristic impedance
of the CPW must be designed to 50Ω, which is achieved for w = 10 µm and s = 6 µm in
our case.

An important figure of merit of oscillators in general and microwave resonators in par-
ticular is the quality factor Q. There are different equivalent definitions of Q, one of
which is [43, 1]

Q = 2π
⟨E⟩
∆E

=
ω0

κ
. (2.16)

Here, ⟨E⟩ denotes the average energy stored inside the resonator, ∆E is the energy loss
per period and κ the total loss rate. The total loss rate can be divided into a contribution
κint due to internal losses and a contribution κext due to losses to the microwave feedline
to which the CPW resonator is coupled: κ = κint+κext. The inverses of the corresponding
quality factors add up and yield the total quality factor

1

Q
=

1

Qint
+

1

Qext
. (2.17)

In real devices, one usually aims for internal quality factors as high as possible, or equiv-
alently, internal losses as low as possible. In superconducting circuits, there are different
sources of internal losses such as two-level systems (TLS), quasiparticles, vortices or para-
sitic modes [44]. The external quality factor in contrast determines the coupling strength
to the microwave feedline (the lower Qext, the stronger the coupling) and can be adjusted
via the geometry of the device. A resonator with Qint > Qext (Qint < Qext) is called
overcoupled (undercoupled), as the rate of absorption of photons inside the resonator is
smaller (larger) than the transition rate of photons between cavity and feedline. In the
special case of Qint = Qext, the resonator is said to be critically coupled.

Scattering parameter for a CPW resonator capacitively coupled to a feedline We are
now going to sketch the derivation of the S21 scattering parameter for a CPW resonator
capacitively coupled to a feedline. Such a system is shown in Fig. 2.2.1 (b). The S21

parameter is defined as the ratio of the output field at port 2 to the input field at port 1:

S21 =
b
(2)
out

b
(1)
in

. (2.18)

In order to derive this quantity, we make use of input-output theory that allows for a
quantum mechanical description of a cavity coherently driven by external electromagnetic
modes and closely follow Refs. [45, 46]. As already mentioned, each eigenmode of the
CPW resonator is described by a quantum harmonic oscillator. Here, we focus on the
fundamental mode with angular frequency ωcav, as that is usually the mode one measures
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Chapter 2. Theory

in experiments. Of course, the corresponding Hamiltonian is given by

Ĥcav = ℏωcav

(
â†â+

1

2

)
, (2.19)

where â† (â) is the creation (annihilation) operator of the fundamental mode. The
external field used to drive the resonator is modeled as a bath of modes with Hamiltonian

Ĥbath =

∫
dω ℏω b̂†(ω)b̂(ω), (2.20)

where the integration over angular frequencies ranges from −∞ to +∞. In the picture
of a CPW resonator coupled to a feedline, these modes propagate in the feedline. Lastly,
the coupling of the modes in the feedline to the mode of the resonator is accounted for
by an interaction Hamiltonian that one commonly assumes to be linear in b̂† and b̂. It is
of the form

Ĥint = iℏ
∫

dω g
[
b̂†(ω)â− â†b̂(ω)

]
, (2.21)

where we assume the coupling constant g to be independent of frequency. The full
Hamiltonian of the system is then given by

Ĥ = Ĥcav + Ĥbath + Ĥint. (2.22)

In the Heisenberg picture, we obtain the following equations of motions for the annihila-
tion operators b(ω) of the external modes and a of the cavity mode

ḃ(ω) =
1

iℏ
[b(ω), H] = −iωb(ω) + g a (2.23)

ȧ =
1

iℏ
[a,H] = −iωcava−

∫
dω g b(ω), (2.24)

where we have dropped the hats above the operators for convenience and used the usual
commutation relations of the operators [a, a†] = 1 and [b(ω), b(ω′)†] = δ(ω − ω′). One
can immediately write down the solution of the equation of motion for b. It is given by

b(ω) = b0(ω) e
−iω(t−t0) + g

∫ t

t0

dt′ e−iω(t−t′)a(t′), (2.25)

where we omit the dependence of b(ω) on t and b0(ω) is the annihilation operator at t0,
where both t0 < t and t0 > t are allowed. We can now plug this solution for t0 < t into
the equation of motion for the cavity mode and redefine g in terms of the transition rate
of a photon between cavity and bath κext as g =

√
κext/(2π). Furthermore, we define

18



2.2. Superconducting quantum circuits

the input field as

bin(t) =
1√
2π

∫
dω eiω(t−t0)b0(ω). (2.26)

The second term on the right hand side of Eq. 2.24 then describes the temporal evolution
of the cavity mode due to the exchange of photons with the bath:

ȧ
∣∣
ext

= −
√
κextbin(t)−

κext
2

a. (2.27)

So far, the model does not account for internal damping of the cavity mode, such that
we need to put in this term by hand:

ȧ
∣∣
int
= −κint

2
a, (2.28)

where κint is the internal damping rate. In the same way, one can define an output field
for t0 > t and plug the solution of Eq. 2.23 for t0 > t into Eq. 2.24. This way, one can
express the equation of motion for the resonator field in terms of bin or bout:

ȧ = −iωcava− (
κint
2

− κext
2

)a−
√
κextbout(t) (2.29)

ȧ = −iωcava− (
κint
2

+
κext
2

)a−
√
κextbin(t) (2.30)

Subtraction of these two equations yields the following boundary condition:

bout = bin +
√
κexta. (2.31)

As we measure the CPW resonator in transmission, an important subtlety arises. The
part of the cavity mode that couples back into the feedline has two possible directions of
propagation: towards port 1 or towards port 2. For this reason, a factor of 1/2 needs to
be taken into account and the actual boundary condition reads

b
(2)
out = b

(1)
in +

1

2

√
κexta. (2.32)

We now switch to Fourier space, such that the equation of motion Eq. 2.30 becomes
algebraic and we can solve it for a. This yields

a = −
√
κext

i(ωcav − ω) + κ
2

bin. (2.33)

This expression for a allows us to connect the average number of photons in the cavity
⟨a†a⟩ to the input power P = ℏω⟨b†inbin⟩. At resonance (i.e. ω = ωcav), the average cavity
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Figure 2.2.2.: (a) The absolute value of the S21 parameter given in Eq. 2.35 for both an
undercoupled (blue) and overcoupled resonator (orange and green). The full width half
maximum κ of 1−|S21| is indicated for the transmission in orange. For ϕ ̸= 0, the transmis-
sion becomes asymmetric. We have taken the following quality factors for the transmission
spectra: Qint = 2 × 103, Qext = 5 × 103 for the undercoupled resonator and Qint = 105,
Qext = 5 × 103 for the overcoupled resonators. For the asymmetric transmission ϕ = π/8.
(b) The corresponding phases of the transmission spectra shown in (a).

occupation is given by

⟨a†a⟩ = 4κext
κ2

P

ℏωcav
. (2.34)

In order to derive an expression for the complex S21 scattering parameter, we plug the
solution for a from Eq. 2.33 into the boundary condition Eq. 2.32 and arrive at

S21 = 1− κext
κ+ i(ω − ωcav)

= 1−
Q

Qext

1 + 2iQω−ωcav
ωcav

, (2.35)

where Q = ωcav/κ and Qext = ωcav/κext are the total and external quality factor, re-
spectively (cf. Eq. 2.16). In order to incorporate a possible mismatch between the input
and output impedances at the two ports, one can include a complex external quality
factor Qext = |Qext|e−iϕ that leads to a deviation of the resonance dip from the sym-
metric Lorentzian lineshape [47]. The absolute value and the phase of the S21 scattering
parameter given in Eq. 2.35 is shown in Fig. 2.2.2 for different resonator parameters.

Finally, one needs to include contributions to the transmitted signal from outside the
sample. The main external sources are due to the finite length of the cables, the finite
speed of light and the attenuation of the signal in the cables. They lead to an offset
phase α, a phase shift proportional to the excitation frequency that is parametrized by
the cable delay τ and an amplitude a that accounts for the attenuation [47]. The total
S21 scattering parameter therefore reads

S21 = aeiαe−iωτ

[
1−

Q
|Qext|e

iϕ

1 + 2iQω−ωcav
ωcav

]
. (2.36)
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2.2. Superconducting quantum circuits

We use this model for fitting the experimental complex valued S21 data of our resonators
in order to extract their resonance frequencies and quality factors.

Kerr nonlinearity In our device presented in Chap. 3, we implement the microwave
cavity as a flux-tunable resonator (cf. Sec. 2.2.4) containing a SQUID. For such a cavity,
the model of a harmonic oscillator with Hamiltonian given in Eq. 2.19 is only a good
approximation at sufficiently low input powers. When applying higher input powers, the
nonlinear SQUID potential (cf. Sec. 2.2.3) gives rise to nonlinear behavior described by
the Hamiltonian [24, 48]

Ĥcav = ℏωcavâ
†â+

ℏK
2

â†â†ââ, (2.37)

where the Kerr constant K quantifies the nonlinearity of the cavity. It can be under-
stood as a shift of the cavity’s resonance frequency per photon. For this reason, the
nonlinearity becomes evident only for an appreciable occupation of the cavity. In the
case of flux-tunable resonators, the resonance frequency decreases with increasing cavity
occupation, i.e. K < 0. Naturally, the derivation of the S21 parameter for a nonlinear
cavity is much more involved than the above presented case of a linear cavity. Never-
theless, we mention that apart from the frequency shift, the Kerr nonlinearity leads to
an asymmetric transmission spectrum around the resonance frequency and to bistable
behavior for sufficiently large excitation levels [48].

2.2.2. The Josephson junction

A Josephson junction is an important element in superconducting quantum circuits that
provides the nonlinearity necessary for superconducting qubits and is part of a SQUID
that we introduce in the next section. When two superconductors are weakly coupled to
form a Josephson junction, Cooper pairs can coherently tunnel from one superconductor
to the other, which is known as the Josephson effect [49]. A sketch of a Josephson junc-
tion is shown in Fig. 2.2.3 (a).

The wavefunction Ψ = |Ψ|eiθ of a superconductor is a macroscopic entity that de-
scribes the whole condensate of Cooper pairs. It is described by its modulus |Ψ| that
is related to the density n of Cooper pairs via n = |Ψ|2 and its phase θ whose time
derivative is related to the energy of the condensate [50]. One way of establishing a
weak link between two superconductors are insulating tunnel barriers sufficiently thin to
enable the overlap of superconducting states in the leads. For a small but finite overlap,
a supercurrent Is of Cooper pairs flows across the barrier. This phenomenon is described
by the first Josephson equation:

Is = Ic sin(φ), (2.38)
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Figure 2.2.3.: (a) Sketch of a Josephson junction that consists of two superconductors (SC 1
and SC 2) with superconducting phases θ1 and θ2 that are weakly coupled by an insulating
barrier of thickness d. If a finite magnetic field B⃗ is applied along the x-direction, the critical
current modulates with the flux Φ = BLtB according to Eq. 2.42. This equation is shown as
a function of normalized flux Φ/Φ0 in (b).

where the critical current Ic is the maximal supercurrent that can flow across the junction
and φ = θ2−θ1 is the difference of superconducting phases. If one forces a current larger
than Ic across the junction, a part of this current will be carried by quasiparticles and a
voltage drop V occurs across the junction due to the dissipative nature of the quasiparticle
current. The voltage V governs the temporal evolution of the phase difference via the
second Josephson equation:

∂φ

∂t
=

2π

Φ0
V, (2.39)

where we have introduced the flux quantum Φ0 = h/(2e). An immediate consequence
of the Josephson equations is that a nonlinear inductance, the Josephson inductance LJ,
can be associated with a Josephson junction. It is easily obtained from taking the time
derivative of the first Josephson equation, inserting the second Josephson equation and
making use of the definition of an inductance V = Lİ

LJ =
Φ0

2πIc cos(φ)
. (2.40)

Here, the 1/ cos(φ) term shows the nonlinearity of the inductance. As an inductance is
a dissipationless circuit element, one can calculate the energy stored in the Josephson
junction as [51]

U =

∫ t

t0

V Idτ =
Φ0Ic
2π

∫ t

t0

sin(φ)
∂φ

∂τ
dτ = EJ(1− cos(φ)), (2.41)

where we have chosen t0 such that φ(t0) = 0. The characteristic energy EJ = Φ0Ic/2π

that sets the scale of this potential energy is called the Josephson energy. We see that
the potential energy of a Josephson junction is nonlinear due to the cos(φ) term. This
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2.2. Superconducting quantum circuits

nonlinearity (together with its negligible dissipation) makes the Josephson junction an
essential component of superconducting qubits as it lifts the degeneracy of the energy
level spacing [51, 52].

If an external magnetic field B is applied in the plane of the junction (in Fig. 2.2.3
(a) B points along the x-direction), the phase difference and therefore the supercurrent
depend on B. For the critical current, one finds the relation [50]

Ic(Φ) = Ic0

∣∣∣∣sin πΦ
Φ0

πΦ
Φ0

∣∣∣∣, (2.42)

where Ic0 is the critical current in the absence of magnetic fields. The magnetic flux that
enters this equation is given by Φ = BLtB, where L is the length of the junction and tB

a magnetic thickness defined by tB = d+λL1+λL2. We see that apart from the thickness
d of the insulating barrier, one needs to take into account the London penetration depths
λL1 and λL2 which are characteristic length scales for each superconducting material.
The reason is that the magnetic field penetrates the superconducting electrodes only on
a length scale set by the penetration depth and decreases exponentially for increasing
distance from the interface. The dependence on magnetic flux of the critical current thus
equals a Fraunhofer diffraction pattern of a slit of width L [50]. The normalized critical
current is shown in Fig. 2.2.3 (b).

2.2.3. The dc-SQUID

A direct-current superconducting quantum interference device (dc-SQUID) consists of
two Josephson junctions that are integrated in parallel in a closed loop of superconducting
material. A sketch of such a SQUID is shown in Fig. 2.2.4 (a). The total supercurrent
flowing through the SQUID is the sum of the two supercurrents flowing through its arms.
For a symmetric SQUID (i.e. identical junctions with identical critical currents Ic), it is
given by

ISQUID
s = Ic(sin(φ1) + sin(φ2)) = 2Ic cos(φ−) sin(φ+), (2.43)

where φ1 (φ2) is the phase across the first (second) junction and we have introduced the
sum and the difference of the phases φ± = (φ2 ± φ1)/2. The difference of phases φ− is
fixed by the total flux Φ threading the SQUID loop via [50]

φ− = π
Φ

Φ0
. (2.44)

In general, there are two contributions to the total flux, which are the bias flux Φb that
is due to an external magnetic field and the induced flux LloopJ that is due to a finite

23



Chapter 2. Theory

φ1 φ2

I

I

J

I/2+J I/2-J

φ1 φ2

Lloop/2Lloop/2

CJR

Φ
Φ

RCJ

(a) (b)

Figure 2.2.4.: (a) Sketch of a dc-SQUID with two Josephson junctions symmetrically in-
corporated into the SQUID loop. The phases across the junctions are denoted by φ1 and
φ2. I is the total current flowing through the SQUID with I/2± J the components flowing
through the left (right) branch, where J is the circulating current. The total flux threading
the SQUID loop is given by Φ. (b) Equivalent circuit of a dc-SQUID where each Josephson
junction consists of an ideal junction (represented by a cross), a resistance R and a capaci-
tance CJ. Furthermore, the finite loop inductance Lloop symmetrically distributed over both
arms is taken into account.

loop inductance Lloop and circulating currents J [53]

Φ = Φb + LloopJ = Φb +
βLj

2
Φ0. (2.45)

Here, j = J/Ic is the normalized circulating current and we have introduced the screening
parameter βL = 2LloopIc/Φ0 [54] that is a measure for the maximal magnetic flux LloopIc

the SQUID loop can screen in relation to half a flux quantum Φ0/2. Only in the limit
βL ≪ 1, the self induced flux is negligible and Φ ≃ Φb. Then, the critical current of the
SQUID, which is the maximal value of the supercurrent in Eq. 2.43, is simply expressed
as

ISQUID
c = 2Ic cos

(
π
Φb

Φ0

)
. (2.46)

We see that in this case, the SQUID behaves like a Josephson junction with a flux-tunable
critical current, where φ+ plays the role of the phase difference in a single junction. As
for a single junction, we can define an inductance LS of the SQUID as [55]

LS =
Φ0

4πIc

∣∣∣cos(πΦb
Φ0

)∣∣∣ (2.47)

that depends on the bias flux Φb. For finite βL, the critical current has to be found by
maximizing Eq. 2.43 with respect to φ+ and φ−, while fulfilling the constraint given by
Eq. 2.44 [56]. In general, this cannot be done analytically.
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2.2. Superconducting quantum circuits

We now turn our attention to the currents flowing through the two Josephson junc-
tions. Of course, they are given by I1/2 = I/2 ± J (see Fig. 2.2.4 (a)), where I is the
total current through the SQUID and J the circulating current. In general, not only a
supercurrent carried by Cooper pairs contributes to the current through a junction, but
also a quasiparticle current and a displacement current need to be taken into account
[53]. Therefore, a SQUID behaves like the equivalent circuit shown in Fig. 2.2.4 (b). Each
junction consists of an ideal junction that admits only a supercurrent, a capacitance CJ

that allows for displacement currents and a resistance R through which a quasiparticle
current can flow. For identical junctions, the total currents through the junctions are
given by

I

2
± J = Ic sin

(
φ1/2

)
+

V1/2

R
+ CJV̇1/2 = Ic sin

(
φ1/2

)
+

Φ0

2πR
φ̇1/2 +

Φ0

2π
CJφ̈1/2, (2.48)

where V1 (V2) is the voltage across the first (second) Josephson junction and we have
made use of the second Josephson equation Eq. 2.39 in the second equality. We see that
in the steady state case (φ̇1 = φ̇2 = 0) the total current is given by the supercurrent
Eq. 2.43, whereas the circulating current reads

J =
Ic
2
(sin(φ1)− sin(φ2)) = −Ic sin(φ−) cos(φ+). (2.49)

It is instructive to rewrite Eq. 2.48 in dimensionless units by normalizing currents to Ic

and expressing dimensionless time as τ = ωct. Here, ωc = (2πIcR)/Φ0 is the charac-
teristic frequency of the Josephson junctions [53]. It is the Josephson frequency at the
characteristic voltage IcR. This results in

φ̇1/2 + βcφ̈1/2 =
i

2
± j − sin

(
φ1/2

)
=

i

2
− sin

(
φ1/2

)
± 2

πβL

(
φ− − π

Φb

Φ0

)
, (2.50)

where i = I/Ic and βc = (2πIcR
2C)/Φ0 is called the Stewart-McCumber parameter [53].

In the last equality, we have rewritten j making use of Eq. 2.44 and 2.45. The above
equation can be interpreted as the equation of motion of a phase particle moving in a
two-dimensional potential USQUID given by [53]

USQUID = EJ

[ 2

πβL

(
φ− − π

Φb

Φ0

)2
− 2 cos(φ−) cos(φ+)− iφ+

]
. (2.51)

The second term in the above equation is the sum of the energies stored in the two
Josephson junctions (compare Eq. 2.41) and the first term can be rewritten with Eq. 2.44
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and 2.45 as follows

2EJ

πβL

(
φ− − π

Φb

Φ0

)2
= EJ

π

2
βL

( J

Ic

)2
=

LloopJ
2

2
, (2.52)

such that it becomes apparent that it represents the inductive energy due to the circu-
lating current J and the finite loop inductance Lloop. We note that the right hand side
of Eq. 2.50 can be obtained via −1/EJ(∂USQUID/∂ϕ1/2). Therefore, it can be seen as the
field of force in which the phase particle moves.
Finally, the Lagrangian of a SQUID is given by [57]

LS =
(Φ0

2π

)2
CJ(φ̇

2
+ + φ̇2

−)− USQUID =
ℏ2

2EC
(φ̇2

+ + φ̇2
−)− USQUID, (2.53)

where EC = (2e)2/(2CJ) is the typical capacitive energy of a Josephson junction.

2.2.4. Flux-tunable resonators

In this section, we introduce flux-tunable resonators (FTRs) that are essential building
blocks for inductively coupled electromechanical devices. They usually contain a dc-
SQUID with a flux-dependent inductance given by Eq. 2.47 that makes the resonance
frequency of the FTR flux-tunable. First, we briefly touch upon flux-tunable lumped-
element LC-resonators and then treat flux-tunable distributed-element resonators in more
depth.

Flux tunable LC-resonators The resonance frequency of a lumped-elements LC-circuit
is well known to be

ωc =
1√
LC

, (2.54)

where L and C are the inductance and capacitance of the circuit, respectively. For the
circuit to be flux-tunable, it must contain a SQUID with an inductance of [26]

LJ =
Φ0

4πI0S0
=

LJ0

S0
. (2.55)

Here, S0 =
√

cos2(πΦ/Φ0) + α2 sin2(πΦ/Φ0) contains the flux dependence and α ac-
counts for possibe asymmetries of the Josephson junctions. The critical currents of the
Josephson junctions are given by Ic1 = (1−α)I0 and Ic2 = (1+α)I0 with I0 the average
critical current. When plugging Eq. 2.55 into Eq. 2.54, one arrives at

ωc(Φ) =

√
S0

LJ0C
= ωc0

√
S0, (2.56)
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Figure 2.2.5.: Resonance frequency of a flux-tunable LC-resonator as given in Eq. 2.56 for
different values of ωc0/2π and α. We have chosen ωc0/2π = 7GHz for the blue and orange
curve and ωc0/2π = 9GHz for the green and red curve as well as α = 0 for the blue and
green curve and α = 0.2 for the orange and red curves.

with ωc0 the resonance frequency at vanishing flux. This approach is only justified if
the Josephson inductance dominates over the loop inductance such that the latter is
negligible and Φ = Φb. Figure 2.2.5 shows the resonance frequency as given in Eq. 2.56
for different values of ωc0 and α. We note that even relatively large values of α = 0.2 do
not affect the resonance frequency visibly for fluxes up to |Φb/Φ0| = 0.25.

Flux-tunable distributed-elements resonators We now consider a distributed-elements
resonator that is shunted to ground via a dc-SQUID. A schematic diagram of such a device
is shown in Fig. 2.2.6. As we will see, the SQUID makes the resonance frequency of the
whole resonator flux-tunable. In order to derive the resonance frequency of the FTR, we
closely follow Refs. [58, 59, 60]. The classical Lagrangian of the flux-tunable cavity Lcav

consists of the Lagrangian of the bare cavity L(0)
cav and the Lagrangian of the SQUID LS.

The authors of Ref. [58] treat the FTR as a series of discrete LC-elements shunted by a
SQUID with negligible loop inductance such that φ̇− = 0. Moreover, we assume both
junctions to be identical as the authors of Ref. [59]. Then, the full cavity Lagrangian
takes the form

Lcav = L(0)
cav + LS =

N−1∑
i=1

(Φ0

2π

)2(Cϕ̇2
i

2
− (ϕi+1 − ϕi)

2

2L

)
+
(Φ0

2π

)2(Cϕ̇2
N

2
− (φ1 − ϕN )2

2L

)
+

ℏ2

2EC
φ̇2
+ + 2EJ cos(φ−) cos(φ+)

(2.57)
Here, ϕi represents the phase across the i-th capacitance. Moreover, C = C0 dx and
L = L0 dx are the linear capacitances and inductances of each element of infinitesimal
length dx with the inductance L0 and capacitance C0 per unit length. We stress that
the authors take only the second term of the SQUID potential in Eq. 2.51 into account.
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Figure 2.2.6.: Schematic of a distributed-elements flux-tunable resonator shunted to ground
by a dc-SQUID. The two Josephson junctions are identical with Josephson energy EJ and
capacitance CJ and phases φ1 and φ2 across them. Furthermore, the SQUID might have
a finite loop inductance Lloop equally distributed over the arms and Φext is the external
flux threading the SQUID loop. The bare resonator itself consists of repetitive elements of
infinitesimal length dx with inductance L0 and capacitance C0, both per unit length. For
clarity, the first element is enclosed by a dashed rectangle. The superconducting phases
across the capacitances are denoted by ϕi. The FTR is capacitively coupled to a microwave
feedline with coupling strength κext.

In the continuum limit, Eq. 2.57 becomes

Lcav =
(Φ0

2π

)2
∫ d

0
dx

(C0ϕ̇
2

2
− (ϕ′)2

2L0

)
+

ℏ2

2EC
ϕ̇2
d + 2EJ(cos(f) cos(ϕd))

(2.58)

Here, we have introduced the field of the superconducting phase inside the cavity ϕ =

ϕ(x, t). The total length of the cavity is denoted by d and we have changed notation
from φ− to f and from φ+ to ϕd = ϕ(d, t) in order to be consistent with Refs. [58, 59]
and to emphasize that the dynamical phase φ+ of the SQUID is the boundary value of
the cavity phase ϕ. It is important to note that the Langrangian contains ϕ and ϕd as
dynamical variables.

When varying the action corresponding to the Lagrangian in Eq. 2.58 with respect to
ϕ, one obtains a wave equation for the cavity field in the bulk

ϕ̈− v2ϕ
′′
= 0, (2.59)

where v = 1/
√
L0C0 is the wave velocity. With the boundary condition at the open end,

ϕ
′
(x = 0, t) = 0, the above equation of motion is solved by eigenmodes of the form

ϕn(x, t) ∝ e±iωnt cos(knx). (2.60)
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The condition that determines the wave number kn (or equivalently the angular fre-
quency ωn = vkn) of the eigenmodes in Eq. 2.60 is obtained when varying the action
corresponding to Eq. 2.58 with respect to the boundary value ϕd. It reads

ℏ2

EC
ϕ̈d + 2EJ cos(f) sin(ϕd) + EL,cavdϕ

′
d = 0, (2.61)

with EL,cav = (Φ0/2π)
2/(L0d) the characteristic inductive energy of the cavity. Note

that the last term on the left hand side in the above equation stems from varying the
part of the action corresponding to the bare cavity Langrangian at x = d. Now, we
assume ϕd ≪ 1. This central assumption is valid because in the absence of the SQUID
ϕd = 0 at the end of the cavity and the SQUID changes the boundary value only slightly.
Then, one can make the approximation sin(ϕd) ≈ ϕd and plug the bulk solution from
Eq. 2.60 into Eq. 2.61, arriving at

(knd) tan(knd) =
2EJ cos(f)

EL,cav
− 2CJ

C0d
(knd)

2. (2.62)

In practice, CJ/(C0d) ≪ 1, such that the last term is negligible. From now on, we focus
on the fundamental mode of the flux-tunable cavity with resonance frequency ωcav. We
replace wavenumbers by frequencies via

kcavd =
ωcav

v
d =

π

2

ωcav
πv
2d

=
π

2

ωcav

ω0
,

where ω0 is the angular frequency of the fundamental mode of the bare λ/4 cavity, and
obtain (π

2

ωcav

ω0

)
tan

(
π

2

ωcav

ω0

)
=

2EJ cos(f)

EL,cav
. (2.63)

Usually, EJ ≫ EL,cav, such that ωcav ≈ ω0 for f close to the sweet spot, which is the
applied flux where the frequency curve is flat. Then, one can expand the left hand side
of Eq. 2.63 around ωcav/ω0 = 1:

(π
2

ωcav

ω0

)
tan

(
π

2

ωcav

ω0

)
≈ 1

1− ωcav
ω0

− 1

Finally, one obtains the following expression for the resonance frequency of the FTR

ωcav = ω0

(
1 +

EL,cav

2EJ cos(f)

)−1
= ω0

(
1 +

LS

Lcav

)−1
, (2.64)

where the cavity inductance is given by Lcav = L0d and the flux-dependent SQUID
inductance LS = Φ0/(4πIc| cos(πΦb/Φ0)|) contains the bias flux Φb. We stress again

29



Chapter 2. Theory

that the validity of this expression is restricted to bias fluxes close to the sweet spot
(Φb/Φ0 almost integer) and a SQUID with negligible loop inductance.

For the case of a SQUID with finite loop inductance Lloop, it is suggested [61, 62, 60]
to account for Lloop by replacing LS by LS + Lloop/4. This can be justified as follows.
From the schematic of the FTR in Fig. 2.2.6 we see that in each arm of the SQUID, there
are two inductances in series. Since inductances in series add up, the total inductance in
arm 1 is LJ1 + Lloop/2 and accordingly in arm 2. The total inductance of the SQUID is
then given by

1

LS,total
=

1

LJ1 + Lloop/2
+

1

LJ2 + Lloop/2

as the inverse values of inductances in parallel add up. Only for ϕd = 0, the Josephson
inductances of the junctions are equal (LJ1 = LJ2 = LJ) and the total inductance of the
SQUID is given by

LS,total =
LJ + Lloop/2

2
= LS +

Lloop

4
,

with the SQUID inductance from Eq. 2.47. For a SQUID with finite loop inductance, the
resonance frequency of the FTR then reads

ωcav = ω0

(
1 +

LS + Lloop/4

Lcav

)−1
. (2.65)

In Fig. 2.2.7 (a), we show the resonance frequency of a FTR as given in Eq. 2.65 for finite
and vanishing loop inductance and two different critical currents for Lcav = 1.8 nH 2.
The resonance frequency exhibits a periodicity of one flux quantum and reaches zero at
Φ/Φ0 = (n + 1/2) (n ∈ Z). However, this drop to zero is only present for perfectly
symmetric junctions and therefore suppressed in real devices.

Next, we want to take into account the finite loop inductance in the SQUID potential.
The Lagrangian of the SQUID is then given by

LS =
ℏ2

2EC
ϕ̇2
d + 2EJ(cos(f) cos(ϕd)−

π

4
βL sin2(f) cos2(ϕd)). (2.66)

While the wave equation for the cavity field in the bulk remains unchanged, one obtains
a new boundary condition when varying the action with respect to ϕd. It is given by

ℏ2

EC
ϕ̈d + 2EJ(cos(f) sin(ϕd)−

π

2
βL sin2(f) cos(ϕd) sin(ϕd)) + EL,cavdϕ

′
d = 0. (2.67)

2This value corresponds to the cavity inductance of the device investigated in Chap. 6

30



2.2. Superconducting quantum circuits
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Figure 2.2.7.: Resonance frequency ωcav of a flux-tunable distributed-elements resonator
normalized to the resonance frequency of the bare cavity ω0 as given in Eq. 2.65 (a) and
Eq. 2.69 (b). We have chosen I0 = 1 µA, Lloop = 0 for the blue curves, I0 = 3 µA, Lloop = 0
for the orange curves and I0 = 3 µA, Lloop = 120 pH for the green curves. For all curves,
Lcav = 1.8 nH.

As before, we assume ϕd ≪ 1, approximate sin(ϕd) ≈ ϕd and cos(ϕd) ≈ 1 and plug the
bulk solution of the cavity field Eq. 2.60 into the above boundary condition. This yields

(π
2

ωcav

ω0

)
tan

(
π

2

ωcav

ω0

)
=

2EJ(cos(f)− π
2βL sin2(f))

EL,cav
, (2.68)

where we have again neglected the term CJ/(C0d) ≪ 1. Again, we expand the tangent
for ωcav ≈ ω0 and obtain the final result

ωcav = ω0

(
1 +

EL,cav

2EJ(cos(f)− π
2βL sin2(f))

)−1
. (2.69)

The resonance frequency of the FTR as predicted by Eq. 2.69 is shown in Fig. 2.2.7 (b).
For vanishing loop inductance (blue and orange curves), it is equivalent to Eq. 2.65, but
shows a markedly different behavior for finite loop inductance (green curve). For the green
curve in Fig. 2.2.7 (b), we have chosen I0 = 3 µA and Lloop = 120 pH which corresponds
to a realistic value of βL ≈ 0.35. While close to the sweet spot, the resonance frequency
does not differ noticeably from the case with vanishing Lloop, its zero is now reached when
cos(f) = π

2βL sin2(f) and thus shifted towards smaller flux values. Furthermore, ωcav

exhibits a pole when the term in the brackets in Eq. 2.69 vanishes. As EJ ≫ EL,cav, this
pole lies in the vicinity of the zero. Both the location of the zero and the pole depend
on the precise value of βL and are shifted further towards Φ/Φ0 = 0 with increasing
βL. When approaching |Φ/Φ0| = 0.5, the resonance frequency drops to a value slightly
above ω0 that again depends on βL. We note that frequencies that correspond to fluxes
outside of the zeros are not physical. This can be seen seen from Eq. 2.68: as soon as
the numerator on the right hand side becomes negative, there is no solution for ωcav.
This indicates that Eq. 2.69 is not a sensible relation for the resonance frequency of the
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(a) (b)

Figure 2.3.1.: Capacitive and inductive coupling schemes in electromechanics. In both cases,
a lumped-element resonator with capacitance Cr and inductance Lr is coupled to a microwave
feedline via a capacitance Cext. In (a) the resonator’s frequency is modulated mechanically
via the displacement dependent capacitance Cx, resulting in capacitive coupling. In (b) the
resonator’s frequency depends on the Josephson inductance LJ. The magnetic flux threading
the Josephson inductance is modulated mechanically, leading to inductive coupling. Taken
from [60].

FTR. For completeness, we mention that it is in principle possible to fit experimental
data close to the sweet spot with Eq. 2.69. However, one obtains unreasonable values for
the loop inductance from this fit that are many orders of magnitude smaller than usual
values.

2.3. Inductive coupling in electromechanics

The first demonstrations of light-matter coupling in electromechanics were achieved on
systems where the mechanical motion modulates the capacitance C = C(x) of a mi-
crowave cavity and therefore its resonance frequency ωcav = 1/

√
LC(x) [3, 11, 63, 64]. A

schematic of a microwave resonator with a capacitively coupled mechanical oscillator is
shown in Fig. 2.3.1 (a). After considerable optimization efforts, these capacitive coupling
schemes were able to reach single-photon coupling rates of a few 100Hz [11, 19]. As the
internal damping rate κint of the microwave cavity is usually on the order of at least a few
tens of kHz, these systems are however far away from the single-photon strong coupling
regime. The disadvantage of devices implementing the optomechanical interaction by
capacitive coupling is that the single-photon coupling rate g0 is fundamentally limited by
the geometry. For a plate capacitor with displacement dependent plate gap d = d0 + x,
it is easy to see that g0 is bound by [27]

g0 =
∂ωcav

∂x
x0 ≤

ωcav

2

x0
d
. (2.70)

32



2.3. Inductive coupling in electromechanics

Thus, the only way to increase g0 in these devices is by optimizing the ratio x0/d and
minimizing all stray capacitances not participating in the modulation of C. However,
the fabrication of devices with plate gaps below a few 10 nm becomes almost impossible,
even with the most advanced methods of nanofabrication. Therefore, increasing g0 be-
yond 300Hz is extremely challenging with the approach of capacitive coupling [27].

In order to circumvent this limitation, inductive coupling schemes have been proposed
[23, 24, 25, 26], where the single-photon coupling rate might reach values on the order
of several tens of kHz [26]. With this enhancement by two orders of magnitude com-
pared to capacitive coupling schemes, a realization of the single-photon strong coupling
regime seems feasible. In the approach of inductive coupling, a displacement dependent
inductance L = L(x) needs to be integrated into the microwave resonator, such that
the resonance frequency is modulated by the mechanical displacement. A schematic of
a circuit with displacement dependent inductance in shown in Fig. 2.3.1 (b). In recent
years, this approach has been demonstrated experimentally [28, 27, 29, 30], yielding
single-photon coupling rates of a few kHz. Most implementations feature a flux-tunable
resonator based on a dc-SQUID (see Sec. 2.2.4) whose inductance becomes displacement
dependent by mechanically modulating the total flux threading the SQUID loop. In
general, there are two ways of achieving this. Either, one modulates the external mag-
netic field while keeping the cross section of the SQUID loop constant. This can be
accomplished by placing a cantilever with a magnetic specimen above the SQUID loop
such that the motion of the cantilever changes the distance between SQUID and mag-
netic specimen, which was realized in Ref. [29]. Or, one keeps the external magnetic field
constant and instead integrates a mechanically compliant string into the SQUID loop
whose motion modulates the cross section of the loop. The latter approach was realized
in Refs. [28, 27, 30] and will be the one we focus on in this work.

The single-photon coupling rate g0 in the case of inductive coupling with vibrating
strings is given by [23, 26]

g0 =
∂ωcav

∂x
x0 =

∂ωcav

∂Φ

∂Φ

∂x
x0 =

∂ωcav

∂Φ
λBlx0. (2.71)

Here, λ is a dimensionless geometry factor that accounts for the shape of the mechanical
mode coupling to the cavity [65], B an external magnetic field, l the length of the vibrating
string and Φ the total external flux threading the SQUID loop. The derivative ∂ωcav/∂Φ

of the cavity resonance frequency with respect to the total external flux is called the
flux responsivity. As schematically illustrated in Fig. 2.3.2, the flux responsivity allows
for an in-situ tunability of g0 since it depends on the flux bias applied to the SQUID.
This is a major advantage over capacitive coupling schemes where g0 is determined by
the geometry only. By an appropriate choice of the bias flux, it is possible to effectively
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Coupling o�

Coupling on

Figure 2.3.2.: Tunability of the single-
photon coupling rate in Eq. 2.71.
Shown is the resonance frequency of a
FTR as given in Eq. 2.65. When op-
erating the device at external fluxes
where the flux responsivity ∂ωcav/∂Φ
vanishes, the coupling can be turned
off. In contrast, choosing a working
point with a large flux responsivity al-
lows for enhancing the coupling rate.

BOOP

ΔΦ ~ BOOP l x

(a) (b)

Figure 2.3.3.: Illustration of a mechanically compliant nanostring embedded into a SQUID
that is part of a FTR. The out-of-plane magnetic field BOOP generates a bias flux that allows
for tuning the resonance frequency of the FTR. The mechanical motion is transduced to a
change of the flux threading the loop by a magnetic field, which is the out-of-plane field
BOOP in the case of an in-plane mode (a). (b) In order to couple the out-of-plane mode to
the FTR, an additional in-plane field BIP is needed for the transduction. Taken from [31].

turn off or enhance the coupling. The bias flux is the part of the total external flux that
is due to an out-of-plane magnetic field and it is the flux that determines the resonance
frequency of the cavity. Operating the device at bias fluxes where the flux responsivity
is large enables the previously mentioned single-photon coupling rates in the kHz range.

Finally, we want to distinguish between the interaction of an in-plane (IP) and an
out-of-plane (OOP) mechanical mode with the microwave cavity. In the case of an IP
mechanical mode, the relevant magnetic field B in Eq. 2.71 is just the external OOP field
generating the bias flux, as depicted in Fig. 2.3.3 (a). When considering an OOP mode,
B is the additional IP field BIP needed to transduce the mechanical motion to a change
of the flux threading the SQUID loop. An illustration of this case is shown in Fig. 2.3.3
(b). Although BIP lies in the plane of the SQUID loop, it nevertheless contributes to the
total magnetic flux as the OOP motion of the string corresponds to effectively canting the
loop area. One advantage of this configuration is that one has access to two independent
control parameters for tuning g0 which are the bias flux and BIP. Moreover, as g0 scales
linearly with B and superconducting thin films support larger IP than OOP fields until
superconductivity breaks down, this configuration allows for significantly larger g0.
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2.4. Impact of a SQUID on the mechanical resonance frequency

2.4. Impact of a SQUID on the mechanical resonance
frequency

2.4.1. Lorentz force induced mechanical frequency shift

In the previous chapter, we presented the concept of inductive coupling in electromechan-
ics. Now, we focus on the influence of the microwave cavity on the mechanical resonator.
In general, the coupling via the optomechanical interaction of a cavity to a mechanical
resonator alters both the mechanical frequency and linewidth, which is known as backac-
tion [1, 7, 65]. Here, we focus on the mechanical frequency and discuss different models
of a mechanical resonator embedded in the loop of a dc-SQUID. We will see that in all
models, the Lorentz force that acts on the resonator in the presence of an external mag-
netic field alters the resonator’s stiffness which leads to a shift of the resonance frequency
of the mechanical resonator.

Asymmetric SQUID with negligible loop inductance First, we consider a SQUID with
negligible loop inductance and asymmetric Josephson junctions (i.e. with different critical
currents). This case was treated in Ref. [26] and here, we closely follow this reference.
The two Josephson junctions have critical currents of Ic1 = (1−α)I0 and Ic2 = (1+α)I0,
where I0 is the average critical current of the junctions and α a parameter quantifying
the asymmetry. The gauge-invariant phase differences across the junctions are given by
φ1 and φ2. Their sum φ+ = (φ1 + φ2)/2 governs the dynamics of the SQUID, whereas
the difference φ− = (φ1 − φ2)/2 is fixed by the total magnetic flux Φ penetrating the
SQUID loop

φ− = π
Φ

Φ0
. (2.72)

It is convenient to split Φ into two different contributions. The first contribution is called
the bias flux Φb and it is the flux penetrating the loop when the mechanical resonator
is at x = 0. The second contribution stems from the resonator’s oscillatory motion that
modulates the cross section of the SQUID loop and therefore the total flux Φ, as we have
seen in Sec. 2.3. It is given by λBlx, where l is the length of the mechanical resonator, λ
the dimensionless geometry factor and B the component of the external magnetic field
perpendicular to the plane of mechanical motion. In our experiments, B is the field in
the plane of the SQUID loop, as we measure the mechanical motion perpendicular to the
SQUID loop. Hence, the total flux Φ can be expressed as

Φ = Φb + λBlx. (2.73)
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Inserting this expression for Φ into Eq. 2.72 yields

φ− = π
Φb

Φ0
+ π

λBlx

Φ0
= πϕb + ξx. (2.74)

We now consider the classical Hamiltonian that describes the system of mechanical res-
onator and dc-SQUID in order to derive the shift of the mechanical resonance frequency.
The Hamiltonian reads [26]

H =
Mrẋ

2

2
+

MrΩ
2
0x

2

2
+

CJΦ
2
0

2(2π)2
φ̇2
+ + E(φ+, x), (2.75)

where Mr is the effective mass of the resonator and Ω0 its angular frequency. Throughout
this work, we consider the fundamental mechanical mode, whose resonance frequency in
the limit of highly tensile-stressed strings is given by [66]

Ω0

2π
=

1

2l

√
σ0
ρ
. (2.76)

Here, l is the length, σ0 the prestress and ρ the density of the string. It is crucial to note
that Ω0/2π is the resonance frequency of the uncoupled resonator, i.e. not subject to
the influence of the SQUID. In contrast, the frequency of the resonator coupled to the
SQUID is denoted by Ωm/2π and differs from Ω0/2π due to backaction.
The last term in Eq. 2.75 represents the potential energy of the SQUID that gives rise to
the coupling between the mechanical motion and the SQUID’s dynamics. An important
consequence of this coupling is that the Lorentz force FL = BlI(Φ) that the mechanical
resonator experiences becomes displacement-dependent. This is because the mechanical
displacement changes the total flux Φ = Φ(x) and thus FL = FL(Φ(x)). Consequently,
this displacement-dependent Lorentz force alters the stiffness of the resonator and gives
rise to a mechanical frequency shift. A schematic representation of a Lorentz force acting
on a nanostring is given in Fig. 2.4.1. When the cavity frequency is much larger than the
mechanical frequency, the potential energy of the SQUID takes the form

E(φ+, x) = −2EJS(φ−) cos(φ+), (2.77)

where S(φ−) =
√

cos2(φ−) + α2 sin2(φ−) takes into account the asymmetry of the junc-
tions and EJ = Φ0I0/2π is the average Josephson energy. This is safely fulfilled in our
case, as we operate with cavity frequencies in the GHz regime and mechanical frequencies
in the MHz regime.

We can now treat the SQUID as a linear harmonic oscillator by expanding cos(φ+) =

1 − φ2
+/2 + O(φ4

+) and expand S(φ−) up to second order around zero displacement,
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I

FL

BIP

Figure 2.4.1.: A doubly-clamped nanostring subject to a Lorentz force F⃗L. The Lorentz force
arises because the nanostring is part of a SQUID such that an electronic current I flows
through it while an external in-plane field B⃗IP is applied. The Lorentz force contributes to
the stiffness of the nanostring and consequently changes the frequency of the out-of-plane
mode.
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Figure 2.4.2.: Plot of the mechanical frequency Ωm/2π given in Eq. 2.78 as a function of
normalized bias flux ϕb = Φb/Φ0 for external magnetic fields from 12mT to 30mT. We
have fixed the other parameters to the following values: Ω0/2π = 6MHz, I0 = 200 nA,
l = 30µm, Mr = 0.9 pg, λ = 0.9 and α = 0.01.

leading to

E(φ+, x) ≈ −2EJ

(
S0 +

∂S

∂φ−

∣∣
φ−=πϕb

ξx+
1

2

∂2S

∂φ2
−

∣∣
φ−=πϕb

ξ2x2
)(

1−
φ2
+

2

)
,

where S0 = S(φ− = πϕb). The term quadratic in φ+ gives rise to a radiation pressure
interaction of the usual form Ĥint = ℏg0â†â(b̂†+b̂). The term independent of φ+ leads to a
new equilibrium position x0 due to the term linear in x and contributes to the potential
energy via the term quadratic in x. This additional contribution to the resonator’s
potential energy results in a shifted mechanical frequency Ωm expressed as [26]

Ωm =

√
Ω2
0 +

2EJπ2λ2B2l2(1− α2)(cos4(πϕb)− α2 sin4(πϕb))

MrΦ2
0S

3
0

. (2.78)

The mechanical frequency of the coupled resonator as given in Eq. 2.78 is displayed
in Fig. 2.4.2 for different values of B as a function of normalized bias flux ϕb. For the
other parameters, we take the following values matching the device parameters discussed
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in Sec. 6.2: Ω0/2π = 6MHz, I0 = 200 nA, l = 30 µm, Mr = 0.9 pg, λ = 0.9 and
α = 0.01. We see that the mechanical frequency is symmetric around vanishing bias
flux and periodic in bias flux with a periodicity of Φ0. The shift from the uncoupled
frequency (Ωm−Ω0)/2π is maximal at ϕb = 0 and increases quadratically with B as can
be seen from an expansion of Eq. 2.78 to first order in B.

Symmetric SQUID with finite loop inductance We now consider a symmetric SQUID
with finite loop inductance Lloop. The reason we assume a symmetric SQUID is that the
asymmetry between the junctions is usually very small when the junctions are fabricated
in a single process [67], as the fabrication of Josephson junctions is a well-established
and reliable process by now. Also, we have seen that even for quite large asymmetry of
0.2, the resonance frequency of the FTR does not differ significantly from the symmetric
case close to the sweet spot where one usually operates (cf. Fig. 2.2.5). In the presence
of a circulating current J , the loop inductance leads to a self-induced flux LloopJ that
contributes to the total flux. Therefore, the phase difference φ− now reads

φ− = π
Φb

Φ0
+ π

λBlx

Φ0
+ π

LloopJ

Φ0
= πϕb + ξx+ πβL

J

2Ic
, (2.79)

As the circulating current J in the above equation depends on the total flux itself, it is
usually not possible to find an analytical expression for φ−. However, βL < 1 in most
cases, such that the last term in Eq. 2.79 can be omitted for J/Ic ≪ 1.
The classical Hamiltonian is still given by Eq. 2.75, but for the potential energy we now
take

E(φ+, x) = −ES(φ−) cos(φ+), (2.80)

where ES denotes the Josephson energy of the SQUID. For a symmetric SQUID with
finite loop inductance, it reads [61, 62]

ES =
Φ2
0

(2π)2
1

LS + Lloop/4
, (2.81)

where the SQUID inductance is given by

LS =
Φ0

4πI0| cos(φ−)|
. (2.82)

As before, we make the approximation cos(φ+) = 1+O(φ2
+) in order to derive the shift of

the mechanical frequency due to a static external magnetic field. Again, all higher order
terms in this expansion describe the interaction between the mechanical motion and the
dynamics of the SQUID. In analogy to the previous approach, we expand −ES(φ−) to
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Figure 2.4.3.: Plot of the mechanical frequency Ωm/2π given in Eq. 2.83 as a function of
normalized bias flux ϕb = Φb/Φ0 for constant β = 0.05 and different B (a) as well as for
constant B = 30mT and various β (b). The other parameters are fixed to the following
values: Ω0/2π = 6MHz, I0 = 600 nA, l = 30µm, Mr = 0.9 pg and λ = 0.9.

second order in the mechanical displacement x. The term linear in x shifts the equilibrium
position of the resonator and the term quadratic in x contributes to its potential energy.
The corresponding shifted mechanical frequency Ωm now reads

Ωm =

√
Ω2
0 +

2EJπ2λ2B2l2(| cos(πϕb)|+ π
2β(1 + sin2(πϕb)))

MrΦ2
0(1 +

π
2β| cos(πϕb)|)3

. (2.83)

We note that for β = 0 (negligible loop inductance) this expression for Ωm coincides with
the formula given in Eq. 2.78 for symmetric junctions (α = 0).

In Fig. 2.4.3, we show the mechanical frequency as given in Eq. 2.83 for constant
β = 0.05 and different B (Fig. 2.4.3 (a)) as well as for constant B = 30mT and various β
(Fig. 2.4.3 (b)). We take the following values for the other parameters: Ω0/2π = 6MHz,
I0 = 600 nA, l = 30 µm, Mr = 0.9 pg and λ = 0.9. As in Fig. 2.4.2, Ωm/2π is symmetric
around ϕb = 0 and possesses a periodicity of Φ0. In contrast to the model in Eq. 2.78, Ωm

is always higher than the uncoupled frequency Ω0. For constant β = 0.05, the mechanical
frequency is maximal at ϕb = 0 and the frequency tunability increases in first approxi-
mation quadratically with the applied field B. For constant B, the frequency tunability
decreases with increasing β. At a certain value of β (for the parameters chosen here
close to β = 0.15) the mechanical frequency becomes very flat around ϕb = 0 and finally
develops a valley around vanishing bias flux such that Ωm is minimal there for sufficiently
large β. To our knowledge, such a behaviour has not been oberved experimentally yet.

2.4.2. Residual mechanical frequency shift

The models for the mechanical frequency of a nanostring presented in the previous section
do not predict a change of the uncoupled mechanical frequency Ω0/(2π). However, such a
change was found in the experiments presented in [31]. There, the mechanical frequency
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Figure 2.4.4.: Uncoupled mechanical frequency Ω0/(2π) as a function of in-plane field BIP.
The data was published in Ref. [31] and obtained from measurements on the device presented
in Chap. 3. The solid black line is a fit to Eq. 2.85 with α ∝ B1.81.

of a nanostring integrated into the SQUID loop of a FTR was evaluated with the model
from Eq. 2.78 as a function of bias flux and in-plane field BIP. The dependence of
Ω0/(2π) on BIP obtained in that work is shown in Fig. 2.4.4. One sees that the residual
shift ∆Ω0/(2π) of the uncoupled mechanical frequency is on the order of several 100Hz.

The authors ruled out several potential origins of this residual frequency shift that
we want to briefly recapitulate here. First, the volume increase of the superconducting
Al nanostring for in-plane fields close to the critical field was considered. The relative
volume increase for Al is stated in literature to be on the order of ∆V/V ≈ 1×10−8 [68].
The mechanical frequency of a highly tensile-stressed nanobeam is given by Eq. 2.76, such
that the frequency change due to a length increase of ∆l is given by

∆Ω0

2π
= −Ω0

2π

∆l

l
, (2.84)

which is negative and on the order of 1×10−8 as well. This does not fit the experimental
observation of a frequency increase on the order of 1× 10−4.
Next, they thought about the possibility of second order contributions to the optome-
chanical interaction giving rise to the observed frequency increase [33]. The second order
contribution would result in an increase of the mechanical frequency with B2

IP, which
is in good agreement with the experimental data in Fig. 2.4.4. However, the expected
frequency shift would be on the order of a few Hz for the parameters of the measured
device and thus substantially smaller than the observed shift of a few 100Hz.
Also, they were able to disprove by means of an additional measurement the hypothesis
that a magnetic torque acting on the nanostring causes the observed frequency shift.
This magnetic torque would be a consequence of a magnetic moment of the SQUID loop
due to trapped flux and a small misalignment between this magnetic moment and the
in-plane field. Hence, it would be proportional to the number of trapped flux quanta
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in the loop. However, no difference in the mechanical frequency was found for different
numbers of flux quanta in the experiment.

Instead, experiments with superconducting vibrating reeds in external static magnetic
fields provide a possible explanation for the residual frequency shift [69, 70, 71]. When
a type-II superconductor is placed in an external magnetic field B that is sufficiently
large, magnetic flux in the form of flux lines penetrates the sample [72]. This behavior
is present for external fields Bc1 < B < Bc2, where Bc1 is the lower and Bc2 the upper
critical field. Although we deal with a nanostring made of Al, it is known that sufficiently
thin Al films behave as type-II superconductors [73] and thus allow for the penetration
of flux lines. Each flux line comprises a normal conducting core that is surrounded by
circulating currents and carries precisely one flux quantum Φ0 = h/(2e). The flux lines
in the sample are pinned at pinning sites such as impurities or defects in the crystal
lattice and arrange in a flux line lattice. When the reed moves in the external field, the
flux lines follow the reed due to the pinning and therefore bend. This bending results
in elongated field lines and therefore an increase in the magnetic energy, which can be
described in terms of a magnetic line tension (energy per unit length). As a consequence,
an additional restoring force arises, leading to an increase of the mechanical resonance
frequency. For rigidly pinned flux lines, the line tension and therefore the frequency
increase are proportional to B2 [71]. When there is a finite displacement of the flux
lines relative to the pinning centers, the frequency increase is smaller than for rigidly
pinned flux lines. The coupling strength between the flux lines and the atomic lattice is
quantified by the Labusch parameter (also called elastic constant) α = α(B, T ) that can
be thought of as the spring constant of a system composed of flux line and pinning site.
For very small pinning forces, the resonance frequency Ω of a reed in an external field
reads [69]

Ω2 = Ω2
0 +

α(B, T )

ρ
, (2.85)

where Ω0 is the resonance frequency in the absence of external field and ρ the density
of the material. This equation shows that the frequency shift with B is only due to the
dependence of the Labusch parameter on B, such that it allows to determine the pinning
forces the flux lines experience [71]. This dependence follows a power law α(B, T ) ∝ Bk,
where the exponent k differs between materials. The solid black line in Fig. 2.4.4 is a fit
of the data points to the above equation, yielding k ≈ 1.81 and a Labusch paramter of
7.88×1014N/m4 at 35mT [31]. This is in good agreement with values of k = 2±0.2 and
Labusch parameter between 1010N/m4 and 1015N/m4 found in other experiments [69, 71,
74]. Hence, these findings are quantitatively compatible with the interpretation that the
pinning of flux lines underlies the residual mechanical frequency shift. If that is the case,
the mechanical frequency should increase in a discontinuous, step-like manner whenever
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an additional flux line is created in the nanostring, thus revealing the quantization of
magnetic flux. We will further investigate this hypothesis in Chap. 6.
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The device layout

Our device is inspired by a sample made by Philip Schmidt at the WMI, about which de-
tailed information can be found in Ref. [28]. It consists of superconducting coplanar wave-
guide λ/4-microwave resonators that are capacitively coupled to a feedline and shorted
to ground by a dc-SQUID that makes the resonance frequency flux-tunable. Panel (a) of
Fig. 3.0.1 shows a flux-tunable microwave resonator and panel (b) of Fig. 3.0.1 the SQUID.
Both the microwave resonators and the SQUID are made of Al on top of a Si substrate.
The flux-tunable resonator that was investigated in Ref. [28] has a resonance frequency
of ωc = 7.445GHz, a total linewidth of κ/2π = 2.5MHz and an internal linewidth of
κint/2π = 2MHz, all at the sweet spot where the flux responsivity ∂ωc/∂Φ vanishes. This
corresponds to an internal quality factor of the FTR of roughly Qint = 3700. In practice,
the internal linewidth of the microwave resonator would be even larger than 2MHz as
one would typically operate the device at working points with finite flux responsivity
where the resonator becomes more susceptible to flux noise. The SQUID loop features
two nanostrings with a length of 30 µm, a width of 200 nm and a thickness of 110 nm.
With the density of Al of 2700 kg/m3 [50], this amounts to a mass of m = 1.8 pg and
an effective mass of meff = m/2 = 0.9 pg for the fundamental mode that we focus on
[60]. In order to establish inductive coupling between the mechanical motion and the
electromagnetic fields of the resonator, both nanostrings are released from the substrate
and therefore able to move. A SEM image of the nanostrings can be seen in panel (c)
of Fig. 3.0.1. The nanostrings exhibit an in-plane (IP) and out-of-plane (OOP) mode
that can both couple to the resonator, depending on the direction of the applied external
magnetic field. In the case of an OOP (IP) external field, the IP (OOP) mode modulates
the total flux threading the loop and thereby changes the flux-dependent Josephson in-
ductance of the SQUID (cf. Sec. 2.3). Due to tensile prestress, the nanostrings have a
comparatively high mechanical resonance frequency of ωIP

m ≈ 6.3MHz for the IP mode
[28] and ωOOP

m ≈ 5.8MHz for the OOP mode [31]. As these frequencies exceed the total
cavity linewidth, the device resides in the resolved-sideband regime (cf. Sec. 2.1). This
regime had been realized in both optomechanical [75] and electromechanical systems [76].
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When operating the device at mK temperatures as we do in our experiments, the thermal
occupation of the mechanical modes amounts to a few hundred phonons. This relatively
large thermal occupation results in a noticeable mechanical motion that can be measured
without further driving the mechanical mode. In order to obtain a large participation ra-
tio, the loop area of the SQUID is chosen to be as small as possible, in this case 44.6µm2.
This way, the mechanical motion modulates a large part of the total flux, which enhances
the vacuum optomechanical coupling strength. Indeed, a vacuum coupling strength of
up to g0/2π = 1.62 kHz was reported for the OOP field configuration [28] and even up
to 55 kHz for the IP field configuration that allows for larger magnetic fields [31]. These
coupling strengths are substantially larger than typical coupling strengths in capacitively
coupled systems, as we have discussed in Sec. 2.3. However, the ratio g0/κint is on the
order of 10−3, meaning that the device is far from the single-photon strong coupling
regime. We suspect that the main reason for the low internal quality factors is the choice
of materials and the fabrication process. Both microwave resonators and SQUIDs were
fabricated in a single lift-off procedure and therefore consist of an Al/AlOx/Al trilayer.
The oxide layer in between the Al layers is crucial for the formation of the Josephson
junctions in the SQUID. The disadvantage of this trilayer structure is that interfaces
between Al and the oxide host a significant amount of two-level systems (TLS) that can
absorb microwave photons and hence introduce losses [77]. In addition, the trilayer can
lead to the formation of parasitic Josephson junctions away from the intended locations
of junctions. However, this was not observed in this device.

An obvious approach for reaching the single-photon strong coupling regime would
thus be to increase Qint while maintaining a similarly large vacuum coupling strength g0

in the kHz range. To do so, we have chosen different materials for the components of
our electromechanical system and come up with a more sophisticated fabrication process.
The overall geometry of our device is the same as for the device of Philip Schmidt, i.e.
λ/4-microwave resonators that are capacitively coupled to a microwave feedline. The mi-
crowave resonators have different lengths and therefore different resonance frequencies.
Half of the resonators is flux-tunable as they are shunted to ground by a dc-SQUID. An
overview of the whole chip with microwave feedline and resonators is shown in Fig. 3.0.2
(a). In contrast to the previous device generation, we fabricate the microwave resonators
from thin films made of Nb instead of Al. A flux-tunable microwave resonator with a
SQUID at its end can be seen in Fig. 3.0.2 (b). This is a reasonable choice as stan-
dard CPW resonators made from Nb have been demonstrated to reach quality factors
exceeding 106 and their fabrication has been heavily optimized at the WMI [78]. One
reason for these enhanced quality factors is that Nb has a critical temperature of 9.25K,
whereas that of Al is only 1.19K [50]. As a consequence, the number of quasiparticles
in Nb is smaller than that in Al at the same temperature, which leads to lower resistive
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Figure 3.0.1.: Images of the previous device generation fabricated in a single lift-off step.
Panel (a) shows a flux-tunable λ/4-microwave resonator capacitively coupled to a microwave
feedline. In panel (b), a zoom-in on the Al SQUID can be seen. Panel (c) shows a SEM
image of the two mechanically compliant nanostrings integrated into the SQUID loop. The
two Josephson junctions are located to the right of the nanostrings. The images shown here
have been published in [31].
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(a) (b)

(c)
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Figure 3.0.2.: Images of one of the devices fabricated for this work using the new multi-step
process. Panel (a) shows the whole sample with microwave feedline and eight microwave
resonators, of which the four to the right are flux-tunable. Panel (b) shows a flux-tunable
microwave resonator that is capacitively coupled to the feedline at one end and shunted to
ground by a SQUID at the other end. A zoom-in on the SQUID is depicted in panel (c),
where the two thin nanostrings are visible. A false-colored scanning electron micrograph can
be seen in panel (d), where the SQUID is pink, the two Manhattan type Josephson junctions
are turquois, the bandages are yellow and the two nanostrings are visible as white thin lines.

46



losses and contributes to a higher quality factor [44]. For the nanostrings as well as the
SQUID, we still choose Al due to its well-studied mechanical properties [66] and the ease
of fabricating Josephson junctions with Al. However, the SQUID is now made in three
consecutive steps, which ensures that the oxide layer is only present in the Josephson
junctions and not in the rest of the SQUID. By avoiding these unwanted Al/AlOx in-
terfaces, the number of TLS and therefore the loss rate is greatly reduced. Panel (c) of
Fig. 3.0.2 shows a SQUID with integrated nanostrings and a SEM image of the nanostring
and the Josephson junctions can be seen in panel (d). The Manhattan-type Josephson
junctions (false-colored in turquoise) consist of two arms that are perpendicular to each
other. The overlap of these two arms constitutes the junction area through which charge
carriers have to flow. A galvanic contact between the SQUID (false-colored in pink) and
the Josephson junctions is established by bandages (false-colored in yellow). Further
details on the fabrication process of our samples are given in Sec. 4.1.

Under the assumption that in our device vacuum coupling strengths around 50 kHz

are within reach as well, a linewidth of the FTR not larger than this value would be re-
quired for the single-photon strong coupling regime. With a typical resonance frequency
of 10GHz of the FTR, this would correspond to an internal quality factor on the order
of 2× 105, which seems realistic with our modifications.
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Methods

4.1. Fabrication of flux-tunable resonators

4.1.1. Fabrication procedure

In the following, we explain in detail the fabrication of our flux-tunable resonators (FTRs)
that were introduced in Chap. 3. An overview of the fabrication process is given in
Fig. 4.1.1 and detailed fabrication recipes are provided in Sec. B.

In a first process step shown in panel (a) of Fig. 4.1.1, we pattern microwave resonators
into 150 nm thick Nb thin-films that were previously sputtered onto Si substrates of size
6×10mm2. To do so, we spin-coat a blank Nb chip with AZ MIR 701 positive photoresist.
After a pre-exposure bake, the resonators are written in a PicoMaster 200 direct laser
writer. A subsequent post-exposure bake is crucial in order to increase the etch stability
of the photoresist. As we write with a positive photoresist, the resist that was exposed
to laserlight gets removed during the development with AZ MIF 726, such that the resist
forms a mask for the following step of reactive ion etching (RIE). During that process,
a mixture of SF6 and Ar+-ions, that are accelerated towards the surface of the sample,
etch away the metal that is not protected by photoresist. As the accelerated Ar+-ions
cause a surface roughening of the underlying Si substrate and both Ar+-ions and SF6

etch Si, the right duration of the RIE process is important in order to avoid unnecessary
damage of the substrate. For that reason, we later resorted to etching only with SF6 as
it has an etching rate of Si that is smaller than that of Ar+ and furthermore leads to
smoother Si surfaces. However, the etching process only with SF6 is less anisotropic and
can lead to larger under-etching and rounded edges. Therefore, process paramters have
to be chosen with care. After the RIE process, the remaining photoresist is removed with
Technistrip P1331.

In a second process step shown in panel (b) of Fig. 4.1.1, we fabricate the main part of
the SQUID in the pocket at the end of the FTR. The main part consists of the nanos-
trings with a nominal width of 200 nm and the leads to ground and to the microwave
resonator with a width of 1.5 µm. (The Josephson junctions as well as the bandages that
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Figure 4.1.1.: Overview of the fabrication process. The fabrication process consists of four
different steps. (a) Microwave resonators are patterned into Nb thin films by a standard
optical lithography (OL) process followed by RIE. (b) SQUIDs are fabricated in the pockets
at the end of the FTRs by means of electron-beam lithography (EBL), Al evaporation and
lift-off. (c) The Manhattan-type Josephson junctions are fabricated in a shadow-evaporation
process. (d) A galvanic contact between all previously fabricated components is established
by Ar ion milling and a bandaging technique.
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establish a galvanic contact will be fabricated in subsequent process steps.) Due to the
small feature sizes of these elements, we make use of our in-house nanobeam electron
beam lithography system. We first spin-coat our sample with a double-layer stack of
two different electron beam lithography resists (e-beam resists): CSAR 62 at the bottom
and PMMA 950K at the top. This results in a total resist height of 1 µm. After the
electron-beam lithography process and development of the double-layer stack with AR
600-56 and AR 600-546, we evaporate 150 nm of Al for the SQUIDs in a Plassys electron
beam evaporator. Before the evaporation of the SQUID’s main part, we remove organic
resist residues by an ozone descumming process which is expected to improve the internal
quality factor of the FTR. The descumming results in a slight enlargement of structure
sizes, which can be in principle compensated for in the design file. Finally, lift-off with
AR600-71 removes the resist and the Al on top of it such that only the main part of the
SQUID remains.

In a third process step shown in panel (c) of Fig. 4.1.1, two Manhattan-type Joseph-
son junctions (JJs) [79, 80] are fabricated to complete each SQUID. As for the main
part of the SQUID, we define the junctions using the double-layer resist stack described
above in combination with e-beam lithography, patterning, development and an ozone
descumming step. The shadow-evaporation of the junctions then happens in two steps.
In the first step of Al evaporation, the sample is tilted by 45◦ around the y-axis. This
way, only one arm of the junction is evaporated. The reason for the other arm not being
evaporated is that the width of the junction is 170 nm, whereas the height of the resist is
1 µm. As the evaporation occurs under an angle of 45◦, the Al is deposited only onto the
top-layer resist and not on the Si substrate. In this first step, we evaporate 30 nm of Al.
Then, the evaporated arm of the JJ is oxidized in a controlled manner using dynamic
oxidation at 5mTorr in order to form an AlOx layer that constitutes a tunneling barrier
between the two superconducting Al arms of the JJ. For the second evaporation step,
the direction of evaporation is rotated by 90◦ while maintaining a tilt angle of 45◦. This
way, the second arm of the JJ is evaporated onto the Si substrate. In this second step,
we evaporate 70 nm of Al. The junction area is the region where the two arms overlap.

In a forth and final process step shown in panel (d) of Fig. 4.1.1, we establish a galvanic
contact from the microwave resonator to the SQUID to ground and between the SQUID’s
main part and the JJs by a bandaging process. The bandaging requires removing the
native oxide layers on top of Nb and Al by Ar-ion milling before the evaporation of the
bandages in order to avoid the formation of parasitic Josephson junctions. Moreover, it
was shown in Ref. [81] that oxide layers between Nb/Al interfaces are a source of TLS
losses when they are located at antinodes of the current, as it is the case in our device.
The advantage of this bandaging technique is that the substrate underneath the metals
is not damaged by Ar-ions during the process of Ar-ion milling, leading to enhanced
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internal quality factors compared to a simpler process where oxide removal by milling is
done prior to junction evaporation [82]. For the Ar-ion milling, we use a Kaufman ion
source that is connected to the load lock of the Plassys system.

4.1.2. Process optimization

Now, we report on major challenges identified during the fabrication of FTRs using this
multi-step process.

Junction yield We were facing the problem of JJs tearing off during the lift-off process.
A corresponding example is shown in panel (a) of Fig. 4.1.2. We speculate that there
are two main reasons for the junctions tearing off. First, we suppose that the surface
roughness of the Si substrate introduced by the RIE process reduces the adhesion of the
junctions to the substrate. This assumption is supported by the observation that JJs
did not tear off on test Si samples where RIE was not performed. Second, we lack a
pronounced undercut in the lower resist of the double-layer stack, as can be seen in the
SEM-image in panel (b) of Fig. 4.1.2. Therefore, the deposited JJs stick to the lower resist
and tear off during lift-off. In order to circumvent this problem, we put an additional
ghostlayer around the junction where we were going to deposit a dose that would develop
the lower CSAR resist only, which clears at lower doses than PMMA 950K. However,
this approach was not successful and led to a broadening of the structure in both the
upper and the lower resist. We suspect this happens because the two resists are sensitive
to both the AR 600-56 and the AR 600-546 developer. As a workaround, we made the
arms of the junctions longer and added Dolan bridges at the end of each arm, which are
narrow bridges in the resist suspended from the substrate [83]. Panel (c) of Fig. 4.1.2
shows a schematic of a JJ with longer arms and Dolan bridges. Since we observed that
the JJs always tore off from their ends, we were hoping the increased length would avoid
that the junction area tears off as well. In addition, the Dolan bridge should decrease
the probability of junctions tearing off, although we do not know for certain whether
the lower resist under the bridge is fully removed during development. Finally, we made
a lift-off test chip only with JJs and Dolan bridges of different widths (and without
SQUIDs) in order to find the optimal values for these parameters. We obtained decent
results for a nominal width of 170 nm for the junctions and 150 nm for the Dolan bridges.
We used these values for the fabrication of all further samples. With these values, JJs
still tear off in our samples where they are part of a SQUID, but less frequently than
before. This indicates that the geometry surrounding the JJs also plays a role in the
stability of the JJs. In order to minimize the frequency of junctions tearing off, we resort
to a very smooth lift-off process, where we put the chip at 40 ◦C for at least two hours
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Figure 4.1.2.: Challenges in the fabrication of FTRs. Panel (a) shows an optical micrograph
image of the junction region of a FTR, where one arm of the left junction tore off during
lift-off. Panel (b) shows a SEM-image of the double-layer resist stack used for the fabrication
of JJs. In contrast to our expectation, no undercut is visible in the lower resist, which seems
to be one reason for junctions tearing off during lift-off. Panel (c) shows a schematic of a JJ
with longer arms and Dolan bridges at the end of the arms. With these modifications, JJ
should be less likely to tear off during lift-off. Panel (d) shows an optical micrograph image
of the junction region of a FTR after bandaging. Due to misalignment, there is no galvanic
contact between the lower bandages and the JJs.
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in AR600-71 remover, then carefully blow away the Al with a pipette and rinse with
isopropanol at the end.

Finally, we note that advances in the fabrication of superconducting qubits on wafer-
scale at the WMI recently showed that a HF dip prior to junction evaporation fully
solved the problem of junctions tearing off. This confirms that the surface roughness of
the substrate is a main cause for the observed tear-off of JJs. However, this workaround
is not applicable in our case, as a HF dip would damage the nanostrings of the SQUID.

Multi-step alignment An additional problem we had to cope with concerns the relative
alignment of the various layers used for the fabrication of our devices. As the feature
size of these structures is of the order of 100 nm, a precise relative alignment is crucial.
Unfortunately, we initially found that the alignment accuracy between subsequent e-
beam lithography steps was insufficient; especially the bandages showed a substantial
misalignment in many cases. Moreover, the misalignment was not reproducible between
different samples and could be as large as 1 µm, which results in a lack of galvanic
contact between parts of the device. An example of such a device is shown in panel (d)
of Fig. 4.1.2. We observed alignment errors to become increasingly large with subsequent
steps, and realized that repeated use of the same markers (which are covered by aluminum
in every evaporation step) can introduce focus offsets due to the added metal. We think
that the deposited Al on the markers makes accurate focussing more difficult. To mitigate
this problem, we tried using multiple sets of markers for the focussing during the e-beam
lithography. For example, we put markers in one column in a distance of 200µm and
used a new marker for each step in the nanobeam. While the focus offsets can be avoided
this way, and it is generally advisable to use multiple sets of markers, it did not solve the
problem of larger non-reproducible alignment errors. Alternatively, we suspected that
the lack of nm-scale accuracy in the optical lithography step could lead to the observed
misalignment. As the exposure of a single chip in the direct laser writer takes several
hours, it is possible that drifts in the operating conditions over time lead to deviations
between the target layout and the final exposed resonator structures. To investigate this
hypothesis, we put marker systems close to each pocket, such that markers and pocket are
within close proximity and should suffer less from any time-dependent drifts. As that did
not solve the problem either, we fabricated an entire chip, including the resonators, using
e-beam lithography and lift-off. However, this resulted in a considerable misalignment
between resonators and SQUIDs as well. Finally, we learned about the registration
writing mode of the nanobeam that was previously unknown to us. This mode compares
the actual location of markers on the chip to their expected location according to the
layout and is able to correct for any distortions of the layout that occur during laser
lithography by performing appropriate scale, shear and rotate operations on the layout
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before exposure. This way, we manage to achieve a sufficient and reproducible alignment
between the different fabrication steps.

4.2. Experimental setup

The measurements of (flux-tunable) microwave resonators presented in Chap. 5 were done
using standard continuous wave (CW) excitation schemes with a vector network analyzer
(VNA). These measurements were performed in either a commercial TRITON dilution
refrigerator by Oxford Instruments or a commercial Fast Sample Exchange dilution re-
frigerator by Bluefors at temperatures in the mK range. As both setups are conceptually
the same regarding the measurements of microwave resonators, we are only going to ex-
plain in detail the setup in the TRITON refrigerator.

The measurements of the resonance frequency of a nanostring discussed in Chap. 6
require a more elaborate microwave spectroscopy scheme in addition to the continuous
wave excitation with a VNA and were performed in the TRITON refrigerator as well. A
schematic overview of the measurement setup is shown in Fig. 4.2.1. The sample (device
under test, DUT) is mounted inside a sample box that is attached to the mixing cham-
ber of the dilution refrigerator. An image of a sample inside a sample box is shown in
Fig. 4.2.2. The input and output ports of the DUT are connected to the output and input
of the VNA respectively via microwave cables. The signal path for the continuous wave
microwave spectroscopy with the VNA is shown in blue in Fig. 4.2.1. The attenuation of
in total −70 dB on the input line, distributed over the various temperature stages of the
cryostat, ensures that we can reach input powers equivalent to a few microwave photons
and that no thermal photons from the parts of the setup at room temperature enter the
device. Moreover, there is an additional attenuation due to cable losses of −9.2 dB (not
shown in Fig. 4.2.1). For the amplification of the outgoing microwave signal, we employ
a low-noise cryogenic HEMT-amplifier with a gain of 40 dB. After leaving the cryostat,
the outgoing signal passes a circulator that prevents thermal noise from entering the
cryostat via the output line. It is then amplified by a room-temperature amplifier with
a gain of 28 dB. After passing a directional coupler that becomes important for measur-
ing the mechanical motion of the nanostring, it returns to the input port of the VNA.
For each input frequency, the VNA measures the complex scattering parameter S21 (cf.
Sec. 2.2.1) that contains information about the magnitude and phase of the transmitted
output signal relative to the input signal. From this information, characteristic quantities
of microwave resonators such as the resonance frequency, spectral linewidth and quality
factors can be determined.

In order to exploit the flux tunability of the FTRs, we mount a coil, that is made
from superconducting wire and generates an OOP bias flux Φb, on top of the sample
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Figure 4.2.1.: Overview of the measurement setup. The complex transmission through the
sample (device under test, DUT) is measured with a VNA (blue signal path). If the sample
is a FTR, its resonance frequency can be tuned with a coil. For the measurement of the
mechanical frequency of the nanostring, a microwave spectroscopy scheme is implemented
(green signal path). A SMF100A microwave signal source probes the FTR on resonance and
a spectrum analyzer (FSV) measures the sidebands generated by the mechanical motion.
Prior to the measurement with the FSV, the signal is downconverted from GHz to MHz
frequencies by heterodyne downconversion. The FTR is stabilized against flux noise by an
active feedback control loop (red signal path).
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Figure 4.2.2.: Sample (rectangular chip in the middle) mounted inside a copper sample
box. Microwave cables connect the VNA to the sample and are screwed onto microwave
connectors. The pins of the microwave connectors lie on top of coplanar waveguides that are
connected to the feedline of the device by wire bonds.

box. The applied OOP flux can then be controlled by the current sent through the coil.
Furthermore, the sample is hosted inside a 3D-vector magnet that is used to apply the
larger in-plane magnetic fields BIP.

We implement a microwave spectroscopy scheme for the readout of the mechanical
displacement noise spectral density by the following steps. An overview of the microwave
tones and frequencies used in this spectroscopy scheme is given in Fig. 4.2.3. First, we
determine the resonance frequency of the flux-tunable cavity ωc(Φb) with a VNA as de-
scribed above. With a SMF100A microwave signal source, we then apply a weak probe
tone of frequency ωp that is on resonance with the microwave cavity (ωp = ωc(Φb), green
in Fig. 4.2.3). The probe tone must be resonant with the cavity in order to avoid unin-
tended heating or cooling of the mechanics (cf. Sec. 2.1) and is incident on the sample
sharing the same input line as the signal from the VNA. The corresponding signal path
is shown in green in Fig. 4.2.1. When photons from the probe tone enter the microwave
resonator and interact with the nanostring via the optomechanical interaction discussed
in Sec. 2.1, they can scatter into the Stokes field at ωp − Ωm and into the anti-Stokes
field at ωp + Ωm. These scattering processes are schematically shown in Fig. 4.2.3. As
explained below, we experimentally record the anti-Stokes field, which is indicated by
the data acquisition window in Fig. 4.2.3.

After the interaction with the nanostring, the outgoing probe signal is coupled out by
a directional coupler with an attenuation of −20 dB and fed into the receiver box where a
bandpass (BP) filter admits only frequency components from 6.85GHz to 7.85GHz that
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Figure 4.2.3.: Overview of the microwave tones and frequencies used in the spectroscopy
scheme for the readout of the mechanical noise spectral density. A probe tone on resonance
with the cavity (ωp = ωc) is sent into the device. Via Stokes (dashed arrow in magenta) and
anti-Stokes processes (dashed arrow in blue), the mechanical motion generates two sidebands
above and below the probe tone that are detuned by the mechanical frequency Ωm. For
the analysis of the mechanical properties, we record data of the blue-detuned sideband at
ωp + Ωm. Moreover, a stabilizer tone is applied at ωstab with the purpose to stabilize the
cavity frequency against flux noise. Adapted from [31].

are subsequently amplified. Then, the Stokes and anti-Stokes fields are shifted from GHz
to MHz frequencies by heterodyne downconversion. In this frequency mixing technique,
the sidebands are mixed with a local oscillator (LO) at frequency ωLO = ωp + ωIF offset
from the probe frequency ωp by the intermediate frequency ωIF [84]. Here, we choose
an intermediate frequency of ωIF/2π = −3.5MHz. This results in an in-phase I and a
quadrature Q signal that contain components at the sum (i.e. at ωp±Ωm+ωLO) and the
difference (i.e. at ωp ± Ωm − ωLO) of the sideband frequencies and the frequency of the
LO. A low pass (LP) filter with a cut-off frequency at 11MHz then suppresses the high
frequency components in I and Q, such that only the low frequency components are left.
Before being fed into the spectrum analyzer (FSV), the quadratures are amplified and
added in a power combiner, which essentially returns the original Stokes and anti-Stokes
fields, but now downconverted in frequency. Although the FSV is in principle able to
measure signals in the GHz range, we make use of downconversion as it reduces the
amount of data one needs to record and simplifies the LP filtering. With the FSV, we
selectively measure the power spectral density (PSD) of the anti-Stokes field. The PSD
indicates how much power the signal contains per 1Hz around each frequency. The anal-
ysis of the frequency position of the anti-Stokes field with respect to the probe frequency
allows to determine Ωm. More detailed information on the frequency downconversion
setup that we used in our measurements can be found in Ref. [85].

Furthermore, we have to implement an active feedback control loop in order to stabilize
the flux-tunable cavity against flux noise. The corresponding signal path is shown in red
in Fig. 4.2.1. This feedback loop is necessary because it is not possible to host the sam-
ple inside a magnetic shielding that protects it from magnetic field noise, as that would
screen the external magnetic fields necessary for our experiments as well. We realize the
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feedback loop by applying a stabilizer tone at a frequency of ωstab/2π = ωp/2π−500 kHz

(red in Fig. 4.2.3) with the second SMF100A power source. The stabilizer frequency is
chosen such that it is located where the resonance dip of the cavity is steepest. Therefore,
a relatively small change of the cavity frequency due to magnetic field noise leads to a
relatively large change in the transmission of the stabilizer tone. The transmitted stabi-
lizer tone is the input error signal for a PID controller that tries to keep the transmission
of the stabilizer tone, and therefore the cavity frequency, constant. This is accomplished
by generating a DC voltage output signal which controls a DC current source connected
to the OOP flux coil on top of the sample.
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Chapter 5.

Characterization of fixed-frequency and
flux-tunable CPW resonators

This chapter is devoted to measurements of fixed-frequency and flux-tunable supercon-
ducting λ/4 CPW resonators. In Sec. 5.1, we first characterize fixed-frequency resonators
on Tantalum (Ta) and Niobium (Nb) thin films in terms of their internal quality factors
with and without external magnetic fields applied in the plane of the thin films. High
quality superconducting thin films are an essential requirement for the fabrication of
FTRs with internal quality factors on the order of 2 × 105, which is a necessary condi-
tion for reaching the single-photon strong coupling regime (cf. Chap. 3). In Sec. 5.2, we
report on the optimization of the bandaging process with the aim of enhancing the inter-
nal quality factors of FTRs. In Sec. 5.3, we present measurements of FTRs patterned on
Nb thin films. We compare their performance in terms of internal quality factors with
fixed-frequency resonators, estimate the Kerr shift and investigate the frequency-tuning
behavior.

5.1. In-plane field stability of CPW resonators on Ta and Nb

In this section, we report on measurements of fixed-frequency λ/4 superconducting CPW
resonators on either Tantalum (Ta) or Niobium (Nb) thin films. The resonators’ response
to an external continuous excitation is probed with a VNA as explained in Sec. 4.2. From
the complex S21 parameter, we extract quality factors for various input powers as well
as for externally applied magnetic fields. The goal of these investigations is to find out
whether our Ta and Nb thin films are suitable for the fabrication of FTRs and - by exten-
sion - inductively coupled nano-electromechanical devices, which require finite magnetic
fields for their operation (see Sec. 2.3). In order to characterize the film quality of both
the Ta and Nb films, we fabricate an identical layout with eight λ/4 CPW resonators on
both of the substrates. All resonators are coupled capacitively to a shared feedline (cf.
Fig. 3.0.2 (a)) and characterized using a standard microwave transmission spectroscopy
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Chapter 5. Characterization of fixed-frequency and flux-tunable CPW resonators

Table 5.1.1.: Resonance frequencies of CPW resonators made of Ta
Resonator Resonance frequency (GHz)

R1 5.16
R2 5.40
R3 5.64
R4 5.89
R5 6.13
R6 6.62
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Figure 5.1.1.: Fit of transmission data of resonator 1 to the model for the complex S21

parameter given in Eq. 2.35. The input power at the sample was −130.2 dBm, corresponding
to an average occupation of 290 microwave photons in the cavity. A fit of the resonance
circle (a), the absolute value |S21| (b) and the phase of S21 (c) as a function of excitation
frequency f are shown.

setup as described in Sec. 4.2. The resonators have different lengths, corresponding to
nominal frequencies ranging from 5GHz to 6.75GHz in steps of 0.25GHz.

CPW resonators on Tantalum In the experiment investigating the Ta thin film, only
six of eight resonators could be identified as such using microwave spectroscopy. Their
frequencies are given in Tab. 5.1.1. We note that while the spacing in frequency between
the resonators is consistent with the designed value of 0.25GHz, the absolute resonance
frequencies deviate considerably from the designed values. This deviation probably stems
from the Tantalum Nitride (TaN) seed layer on which the Ta film is grown, as it impacts
the dielectric constant and therefore the resonance frequency according to Eq. 2.12.

The circle fit method presented in [47] allows us to determine the resonance frequencies
and quality factors by fitting the complex S21 scattering parameter to the model given
in Eq. 2.36. Plotting the imaginary versus the real part of Eq. 2.35 in the complex plane
yields a circle known as the resonance circle. As the circle fit method takes into account
the full complex transmission data, it is able to determine the resonator parameters more
accurately than methods that make use of the absolute value of S21 only. A fit of the
resonance circle, the absolute value |S21| and the phase of S21 as a function of frequency
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Figure 5.1.2.: Internal (a) and external (b) quality factors in zero external magnetic field for
all six Ta microwave resonators as a function of the average photon number in the resonator.
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Figure 5.1.3.: Internal (a) and external (b) quality factor of resonator 1 and 3 in an external
magnetic field BIP applied in the thin film plane for constant input power at the sample
of −79.2 dBm corresponding to an average photon number of 2.2 × 107 for resonator 1 and
1.1× 107 for resonator 3.

to Eq. 2.35 is shown in Fig. 5.1.1. There, the data was normalized in the sense that
the influence of the environment onto the transmission was removed. We measured the
microwave resonators for input powers at the sample from −79.2 dBm to −159.2 dBm

in zero external magnetic field. The external and internal quality factors can be seen in
Fig. 5.1.2, where the input power was converted into the mean number of photons in the
resonator using Eq. 2.34. The internal quality factors show a different behaviour for the
different resonators. While Qint of R1 strongly increases with photon number, Qint of
R2 and R3 show a much weaker dependency on photon number and for the remaining
three resonators Qint barely changes with photon number. As discussed in Refs. [44, 77]
and Sec. 5.2, this suggests that for R1 TLS are the dominant source of losses, whereas
for resonators with higher frequency other loss mechanisms that do not saturate at high
powers become more important. Such a significant frequency dependence of Qint in Ta
thin films has been repeatedly observed at the WMI.

We then went on to investigate the evolution of quality factors in an external magnetic
field that we applied in the plane of the thin film using the 3D vector magnet surrounding
the sample in the cryostat (cf. Sec. 4.2). The results for R1 and R3, the resonators with
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highest Qint in zero field, can be seen in Fig. 5.1.3. These measurements were done
at constant power of 0 dBm at the VNA output, corresponding to an average photon
number of 2.2 × 107 for R1 and 1.1 × 107 for R3. Furthermore, the data was recorded
in decreasing external field, such that at 0mT, Qint does not recover its value from the
measurements in zero field due to the trapping of flux lines. While Qint overall decreases
with increasing field, a pronounced drop is visible around 30mT. We suppose that this
is a threshold field above which additional loss mechanisms play a role.

The above measurements show that our Ta thin films allow for CPW resonators with
Qint on the order of 3 × 105 in the single photon regime in zero external field. Also,
they possess a decent field stability, as Qint above 1.5× 105 can be achieved in external
in-plane fields up to 100mT. Therefore, one might envisage fabricating FTRs with Qint

on the order of 2 × 105 on these films. As discussed in Chap. 3, this might be sufficient
for realizing single photon strong coupling in our device. However, CPW resonators at
frequencies above 6GHz exhibit significantly lower Qint, which would drastically limit
the operating range of the FTR. We are not aware of the nature of the losses in our
Ta thin films; but we suppose that the TaN seed layer on which the Ta films are grown
contributes to them. Also, the losses might depend on the crystallographic phase of
the thin films which is presently unknown to us. While in principle it is possible to
fabricate superconducting qubits with coherence times exceeding 300 µs on Ta thin films
[86], it is not trivial - and perhaps even impossible with our films - to fabricate CPW
resonators with internal quality factors above 1×106 on Ta. In contrast, internal quality
factors of CPW resonators on Nb thin films can reach values above 106 [78] and their
fabrication has been heavily optimized at the WMI. For this reason, we focus from now
on on resonators made from Nb thin films.

CPW resonators on Niobium Five CPW resonators on Nb thin films were measured in
detail whose frequencies can be found in Tab. 5.1.2. In contrast to the resonators on Ta,
the actual resonance frequencies agree well with the nominal values. As the Si substrate
was cleaned by a HF dip before the sputtering of the Nb thin film, the interfaces between
Si and Nb are supposedly very clean, which we think to be the reason for this good
agreement.

As before, we make use of the circle fit routine for extracting internal and external
quality factors from the complex S21 data. These are displayed for all five resonators
as a function of photon number in zero external field in Fig. 5.1.4. Apparently, Qint is
substantially larger for the resonators on the Nb chip than on the Ta chip. In the single
photon regime, Qint of all resonators are comparable, ranging from 4.6 × 105 (R3) to
7.5 × 105 (R5). With increasing photon number, Qint of R1 and R2 increase almost
identically to 8.5 × 106 (R1) and 7.2 × 106 (R2) and show no sign of saturation. The
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Table 5.1.2.: Resonance frequencies of CPW resonators made of Nb
Resonator Resonance frequency (GHz)

1 4.99
2 5.23
3 5.48
5 5.98
6 6.23
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Figure 5.1.4.: Quality factors of standard microwave resonators patterned on Nb thin films
as a function of the average photon number n inside the resonator.

other three resonators reach smaller Qint at highest photon numbers of 2.4 × 106 (R3)
4.6 × 106 (R5) and 3.1 × 106 (R6). This indicates that Qint of R1 and R2 is mainly
dominated by TLS, whereas for the other resonators additional loss mechanisms seem
to be of importance. For instance, the box in which we measured the resonator chip
possesses a box mode at 7GHz that might constitute such an additional loss channel for
the resonators with higher frequencies.

Next, we investigated resonator 1, 2 and 3 in an external in-plane magnetic field of up
to 75mT. Each resonator was measured both in increasing and decreasing external field
at a constant input power at the sample of −149.2 dBm that corresponds to an average
resonator occupation of 4 to 10 photons, i.e. not too far away from the single photon
regime we are ultimately interested in. Figure 5.1.5 shows Qint of the three resonators for
both increasing and decreasing external field. We find that Qint is relatively stable over
the whole field range and comparable to the value obtained from the measurements in
zero external field. Moreover, Qint deteriorates - if at all - only slightly when decreasing
the field from 75mT down to 0mT. This remarkable field stability in combination with
the inherently high Qint at small photon numbers is very promising for the fabrication of
FTRs and nano-electromechanical devices. As pointed out in Chap. 3, Qint on the order
of 2 × 105 would be necessary for the realization of the single-photon strong coupling
regime in our previous devices. With the here presented Qint of roughly 7.5× 105 for the
bare resonator in the single photon regime, Qint = 2×105 seems to be reachable after the
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Figure 5.1.5.: Internal quality factor Qint as a function of an external in-plane magnetic field
BIP for the three Nb resonators lowest in frequency. Qint was measured for both increasing
field (Upsweep) and decreasing field (Downsweep) at a constant input power of −149.2 dBm
at the sample, corresponding to an average cavity occupation of 4 to 10 photons. The
horizontal dashed line indicates the average internal quality factor.

integration of the SQUID. For this reason, we choose to optimize design and fabrication
of future devices based on Nb thin films.

5.2. Optimization of the bandaging process

As we will show in the next section, the internal quality factors of the first fabricated
FTR are unexpectedly low. We suppose that the reason for this lies in the way we mill
away the oxide on Al and Nb before the evaporation of bandages in order to establish
galvanic contact between the components of the SQUID. If the Ar-ion milling is done too
aggressively, Ar-ions might roughen the metal surfaces and be implanted into the metal.
These defects might act as scattering centers for charge carriers or pinning centers for
vortices. Since each vortex carries a magnetic flux of a flux quantum, a Lorentz force
acts on the vortices when a current flows through the superconductor. This force induces
dissipative vortex motion that constitutes an additional loss channel and hence reduces
Qint [87]. We expect substantial currents to flow close to the pinned vortices because
the surfaces we treat with milling are located at the current antinode of the fundamental
mode. Also, the fact that the same milling recipes work well for our in-house fabrication
of superconducting qubits suggests that the given current distribution in FTRs makes
them more susceptible to damages introduced by milling.

In order to optimize the milling recipe, we systematically vary relevant parameters
of the Kaufman source that we use for Ar-ion milling (cf. Sec. 4.1). Comprehensive in-
formation on the functionality of a Kaufman source and its parameters can be found in
Ref. [88]. Here, we fabricated a test chip with ten resonators that is shown in Fig. 5.2.1.
Six of these resonators are initially λ/2 resonators with two open ends. We then bridge
the gap at one of the ends by an Al bandage that is evaporated after milling with differ-
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Figure 5.2.1.: Test chip for the optimization of the Ar-ion milling parameters for the bandag-
ing process. The four resonators in the black box are standard λ/4 resonators. The other
six resonators are shunted to ground at one of their ends by an Al bandage. Resonators in
the same box were fabricated with the same milling recipe, given in Tab. 5.2.1.

ent parameters, turning the resonators into λ/4 resonators. Two adjacent resonators are
fabricated using the same milling parameters, such that we are able to compare three
different sets of milling parameters on one chip, given in Tab. 5.2.1. For comparison, the
remaining four resonators on the chip are standard λ/4 resonators. In all three recipes,
the beam voltage Vbeam defining the beam energy and the acceleration voltage that forms
the beam are kept constant. We vary the beam current Ibeam, that is a measure for the
number of Ar ions arriving at the target per second, from Ibeam = 15mA in recipe 1 and
2 to Ibeam = 30mA in recipe 3 and the milling time from 3min in recipe 1 and 3 to 6min

in recipe 2.
For each resonator, we measure the complex microwave transmission parameter S21

defined in Eq. 2.36 as a function of excitation frequency at base temperature in a commer-
cial cryostat for different input powers. The circle fit routine [47] allows us to extract the
relevant resonator properties from the complex transmission data. The internal quality
factors as well as the resonance frequencies for the nine resonators that were measured
are shown in Fig. 5.2.2, where the input power was converted into the average number of
photons inside the cavity using Eq. 2.34. As expected, the reference resonators without
a bandage (resonators 1, 3 and 5, black symbols in Fig. 5.2.2) exhibit the highest internal
quality factors, ranging from about 1.5 × 105 to 4 × 105. The observed increase of Qint

with increasing photon number n is characteristic for losses arising from the coupling to
a bath of two-level systems (TLS), which get saturated at high input powers [77, 44].
This suggests that TLS are the main loss channel for the standard resonators.
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Table 5.2.1.: Ar ion milling recipes for the test chip shown in Fig. 5.2.1. The numbering of
resonators coincides with the numbers given therein.

Recipe Resonator Vbeam (V) Ibeam (mA) Vacc (V) Milling time (min)
1 2, 4 400 15 90 3
2 6, 7 400 15 90 6
3 8, 9 400 30 90 3
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Figure 5.2.2.: (a) Internal quality factors Qint and (b) resonance frequencies ωc/2π of the
λ/4 microwave cavities fabricated using the milling recipes given in Tab. 5.2.1 as a function
of the average number of photons n. Error bars are smaller than the symbol size.

Interestingly, resonator 2 features high Qint as well that are comparable to those of the
standard resonator 5. Again, we see an increase of Qint with increasing photon num-
ber, indicating that the quality factor is limited by TLS as for the reference resonators.
Resonator 4, which was fabricated with the same parameters as resonator 2, shows signif-
icantly smaller Qint than resonator 2. We attribute this decline in Qint to dirt (possibly
resist residues) in the vicinity of the bandage. Resonators 8 and 9, for which Ibeam was
twice as large as for the other resonators, exhibit smaller Qint on the order of 105 that
are relatively constant over the range of applied input powers. This suggests that the
dominant loss mechanism are no longer TLS but rather defects related to the milling pro-
cess such as implanted Ar ions or missing metal atoms. Resonator 7, that was fabricated
with a doubled milling time compared to the other resonators, shows similar Qint to res-
onators 8 and 9, which means that once again the milling process limits Qint. Resonator
6 however shows much smaller Qint that are most likely due to a grain of dirt directly
next to it. We see that for recipes 2 and 3 the product of beam current and milling time
and therefore the number of ions that hit the target is the same. In contrast, for recipe 1
only half the number of ions hit the target. This means that for constant beam voltage
(and therefore ion energy) the number of ions that reach the sample seems to be the
relevant parameter that needs to be optimized.

The result of this milling optimization study can be understood intuitively as follows.
After the optimal milling of the oxide layer, additional ions hitting the structures lead to
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a degradation of the metal surface and hereby to a decrease in Qint. Therefore, a milling
recipe with a lower number of ions reaching the surface seems to be favorable. However,
we need to make sure that the milling process implemented within recipe 1 is sufficient
to fully remove the oxide layer. An indication for such an incomplete milling process
would be a power dependent shift of the microwave resonator’s resonance frequency, as a
residual oxide layer can be understood as a Josephson junction resulting in a microwave
resonator with a Kerr nonlinearity (cf. Sec. 2.2.1). However, in Fig. 5.2.2 (b) we see that
the resonance frequencies of all resonators stay constant over many orders of magnitude.
This indicates that no oxide layer remains after the milling process and the devices still
behave like linear harmonic oscillators. Hence, we conclude that for the study conducted
here, a beam current of 15mA and a milling time of 3min lead to the highest internal
quality factors.

Of course, these results leave room for a further optimization towards a shorter milling
time until one observes a nonlinear behavior of the microwave resonators. Also, the opti-
mization of other parameters such as the beam voltage might lead to improved internal
quality factors as well.

5.3. Measurements of FTRs on Nb

We fabricated flux-tunable resonators (FTRs) on Nb thin films as explained in Sec. 4.1.
In the following, we are going to present measurement results of two FTRs that we call
sample 1 and sample 2. The samples are almost identical, with only minor differences in
the device geometry and fabrication process.

Sample 1 For this sample, the RIE process was performed with a mixture of SF6 and
Ar+-ions for a duration of 65 s. The Josephson junctions have a nominal width of 200 nm
and the Dolan bridges of 50 nm. We let the JJ oxidize for 30min and milled away the
native oxide before bandaging for 6min using recipe 2 from Tab. 5.2.1.

As with the measurements of the standard microwave resonators presented in the pre-
vious section, we measured the complex S21 parameter with a VNA. A color map of |S21|
as a function of excitation frequency and different input powers at the sample is shown
in Fig. 5.3.1 (a). The resonance signature of the FTR is visible as a dark blue curve. For
increasing input powers, the resonance frequency of the FTR decreases. This is known
as the Kerr shift (cf Sec. 2.2.1) and a characteristic of a nonlinear resonator. In our case,
the nonlinear behaviour is due to the nonlinear inductance of the SQUID which gives
rise to a nonlinear Duffing term in the equation of motion of the resonator’s phase [24].
The shift of the resonance frequency becomes also apparent in the two linecuts taken
at input powers of −120 dBm and −84 dBm and shown in Fig. 5.3.1 (b). In addition to
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Figure 5.3.1.: (a) Microwave transmission spectroscopy of the FTR in zero external field.
Shown is a color map of the absolute value of the scattering parameter |S21| as a function
of excitation frequency f and different input powers at the sample. The resonance signature
of the FTR is visible in darker blue. (b) Two line cuts at input powers of −120 dBm and
−84 dBm. At −120 dBm, the transmission data is fitted to Eq. 5.1. At −84 dBm, the Kerr
shift of the resonance frequency and the asymmetry of the transmission around it become
apparent.

the shift in resonance frequency, the transmission spectrum becomes asymmetric around
the resonance frequency for increasing input powers. Again, this is a characteristic of
a nonlinear Duffing oscillator [89]. This asymmetry increases with input power until
eventually, the resonator becomes bistable and behaves hysteretically in the sense that
the resonator’s response is different for upsweeps and downsweeps of the excitation fre-
quency. However, the hysteretic behaviour was not further investigated as the frequency
was always swept in the same direction. More information on the Kerr nonlinearity in
inductive nano-electromechanical systems can be found in Refs. [48, 90].

In the regime where the transmission spectrum of the FTR is still sufficiently symmet-
ric, we fit the experimental |S21| data to a Lorentzian of the form

|S21| =
∣∣∣∣1− 2η

1 + 2i(fcav/κ)(f/fcav − 1)

∣∣∣∣. (5.1)

This is nothing but the absolute value of the complex transmission given in Eq. 2.35
for an ideal resonator without influence from the environment and without impedance
mismatch (i.e. ϕ = 0), where 2η = Q/Qext and fcav/κ = Q. Here, it is justified to neglect
the influence from the environment as we have normalized the data such that |S21| = 1

far away from the resonance. The reason we do not make use of the circle fit routine is
that the resonator operates in the strongly undercoupled regime due to its low internal
quality factor. In this regime, the circle fit routine does not yield robust fit results due
to convergence issues. With the relation Q−1 = Q−1

int + Q−1
ext, we can calculate Qint of

the FTR from the fitting results. Qint of the FTR as a function of the average number
of photons in the cavity is shown in Fig. 5.3.2 (b) and Qint of the standard microwave
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Figure 5.3.2.: Internal quality factors Qint of the four standard resonators (a) and the FTR
(b) on sample 1 as a function of average photon number n.
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Figure 5.3.3.: Resonance frequency ωcav/2π of the FTR on sample 1 as a function of the
average number of photons n. The linear fit takes only the five data points to the right into
account. Errorbars are smaller than the symbol size.

resonators Fig. 5.3.2 (a). As before, we have made use of the circle fit routine for the
fitting of the standard resonators. They have good quality factors and show the expected
behavior. With Qint ≈ 4000, the FTR has much lower quality factors than the standard
resonators that have a Qint of at least 1.8× 105. We attribute these low internal quality
factors to defects in the bandaged area introduced by the milling process (cf. Sec. 5.2).
After the conversion of input powers to number of photons in the cavity with Eq. 2.34,
we can quantify the Kerr shift per photon. The resonance frequency of the FTR as a
function of photon number is shown in Fig. 5.3.3. By fitting a straight line to the five
data points on the right, we get an estimate for the Kerr shift of −38Hz per photon. In
comparison to other reported values [28, 48], this is extremely small.

Now, we investigate the flux-tuning behavior of the FTR. To this end, we measure
the complex transmission through the FTR with a VNA, while sending a current I of a
few mA through the coil mounted on top of the sample box (cf. Fig. 4.2.1). In Fig. 5.3.4
(a), the absolute value of the scattering parameter |S21| is color coded as a function of
excitation frequency and coil current. The resonance frequency of the FTR does change
with coil current and therefore with the flux through the SQUID. Instead of continuous
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Figure 5.3.4.: Frequency tuning of the FTR on sample 1. Panel (a) shows the absolute value
of the scattering parameter |S21| as a function of excitation frequency f and coil current I.
The resonance frequency is met whenever the transmission is lowest (dark blue arcs). The
dashed orange curve is the same as in the right panel. In panel (b), the resonance frequency
ωcav/2π is plotted for coil currents around −4mA. The dashed orange curve is a fit to
Eq. 2.65 with the SQUID inductance from Eq. 5.2.

arcs as predicted by Eq. 2.65, the resonance frequency features jumps at certain values
of the coil current. These jumps are a consequence of discontinuous transitions of the
phase φ− from one local minimum to an adjacent local minimum at certain values of the
external flux and can only be seen in SQUIDs with sufficiently large screening parameter
βL [62]. Also, such a SQUID would show hysteresis, meaning that the flux values where
the jumps occur differ for up- and downsweeps. Since rather large nonlinearity is to
some degree desirable for electromechanical devices, hysteretic FTRs are common and in
principle useable [27]. From the almost complete arc centered around −4mA, we extract
the critical current Ic by fitting to Eq. 2.65. Due to the discontinuities of the resonance
frequency, an easy conversion from coil current to bias flux is not possible such that we
use the following expression for the SQUID inductance

LS =
Φ0

4πIc

∣∣∣cos(π k(I−I0)
Φ0

)∣∣∣ = Ls0∣∣∣cos(π k(I−I0)
Φ0

)∣∣∣ . (5.2)

Here, I0 denotes the coil current where the bias flux vanishes (this is not necessarily the
case at I = 0mA) and k is a factor proportional to the ratio of bias flux and coil current.
It is important to note that k is not equal to this ratio, as the inductance of a hysteretic
SQUID for fluxes around zero bias flux reads [27]

LS =
Ls0∣∣∣cos(πγ Φ

Φ0

)∣∣∣ ,
with a phenomenological parameter γ that accounts for a widening of the central flux
arc beyond ±Φ0/2. However, it is clear that when k(I − I0) = ±Φ0/2, the resonance
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frequency of the FTR reaches zero. This allows us to get an initial estimate for k by
fitting the central arc of the resonance frequency to a quartic polynomial and determine
its zeros. We then fit the central arc to Eq. 2.65 with the SQUID inductance as given
in Eq. 5.2 for values of k in a range around the initial estimate with only Ic as free fit
parameter (see the orange curve in Fig. 5.3.4). Finally, we take that value of k for which
the deviation between fit and experimental data is minimal. The cavity inductance Lc of
the CPW resonator, the loop inductance Lloop of the SQUID loop as well as the resonance
frequency of the microwave cavity of f0 = 9GHz are fixed by the geometry of the FTR in
a first approximation. With a width of 10 µm and a gap of 6 µm for the CPW resonator,
we obtain a line inductance of 430 nH/m using the software presented in Ref. [91]. Then,
the cavity inductance equals 1.42 nH, as the length of the cavity is lc = 3.3mm. The loop
inductance of the SQUID consists of two contributions, which are the geometric and the
kinetic inductance. For the geometric inductance, we take a value of 19 pH from Ref. [28],
as the geometry of our SQUID is very similar to the one used in this work. The kinetic
inductance is due to the inertia of the Cooper pairs and therefore dominated by the long
and thin nanostrings. It is proportional to the ratio l/A, where l = 30 µm is the length of
the nanostrings and A = 200× 150nm2 their cross section. The proportionality constant
was found to be 4.5× 10−8pHm [28]. Thus, the kinetic inductance is Lkin = 45pH and
the loop inductance Lloop = 64pH.

With these values, the fit shown in Fig. 5.3.4 (b) yields a critical current of Ic = 838 nA,
which corresponds to a critical current density of 2095A/cm2. The critical current is
comparable to the value found in [28], but much smaller than the value reported in
[27]. Also, the screening parameter takes a value of βL = 0.05, meaning that the FTR
should not behave hysteretically and therefore the resonance frequency should not exhibit
jumps. Of course, this is in clear contradiction to what we observe in the experiment. We
believe that this unexpected behavior might be due to additional parasitic inductances
that might form between bandages and Josephson junctions. As the overlap region is
quite small, patches of oxide might remain after the milling that act as a Josephson
junction introducing an additional inductance.

Sample 2 In contrast to sample 1, we performed the RIE process only with SF6 for
a duration of 165 s as this results in smoother Si surfaces (cf. Sec. 4.1). The nominal
width of the Josephson junctions is 170 nm and of the Dolan bridges 150 nm. For these
values, JJs were least likely to tear off during lift-off (cf. Sec. 4.1.2.) The oxidation time
of the JJs was 75min. For the milling step prior to bandaging, we used recipe 1 from
Tab. 5.2.1, as this led to the highest Qint on the test chip (cf. Sec. 5.2).

In the experiment, three standard resonators at 4.48GHz, 4.97GHz and 5.47GHz and
a FTR close to 7.1GHz were found. The resonators’ internal quality factors extracted
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Figure 5.3.5.: Internal quality factors Qint of three standard microwave resonators (R1 to
R3) and the FTR on sample 2 as a function of photon number n.

Figure 5.3.6.: Frequency tuning of the FTR on sample 2. The transmission |S21| as a function
of excitation frequency f and coil current I is shown for downsweeps (left) and upsweeps
(right) of the coil current. The resonance of the FTR is met at lowest transmission (dark
blue arcs).

from the measurement of S21 are displayed in Fig. 5.3.5 as a function of photon number.
The quality factors of the standard resonators depend only weakly on photon number
and range from 1.5 × 105 to 3.9 × 105. They are therefore comparable to the ones of
resonator 3 of sample 1 (cf. Fig. 5.3.2). The internal quality factor of the FTR lies
between 1.0 × 105 and 2.2 × 105 and is thus only slightly below the quality factors of
the standard resonators. Also, it is roughly 20 times larger than Qint of the FTR on
sample 1. We attribute this improvement of Qint partly to the different milling recipe
used for this sample. But as one can see from Fig. 5.2.2 (a), milling recipe 1 is expected
to improve Qint only by a factor of 1.5 to 2.5 over milling recipe 2. Therefore, there must
be an additional cause for the greatly enhanced Qint of the FTR. We note that these
quality factors correspond to an internal loss rate of at most κint = 71 kHz. In a device
with released strings, this loss rate would bring us quite close to the single-photon strong
coupling regime if g0 = 55 kHz demonstrated in the previous device generation can be
reproduced.

We now turn our attention to the frequency tuning behaviour of the FTR in Fig. 5.3.6,
where the absolute value of the transmission |S21| is shown as a function of excitation

74



5.3. Measurements of FTRs on Nb

frequency and coil current. As for the FTR on sample 1, the resonance frequency exhibits
a series of jumps. Interestingly, the distance between neighbouring jumps is not constant.
Instead, there are current ranges where the jumps have a rather large spacing (e.g. for
coil currents above 0.5mA in Fig. 5.3.6(b)) or a rather small spacing (e.g. for coil currents
around 0.4mA in Fig. 5.3.6(b)). The tuning depth of the FTR of about 1MHz is roughly
10 times smaller than for the FTR on sample 1. We think that this reduced tuning depth
renders the FTR more insensitive to flux noise, which might contribute to the enhanced
internal quality factor. Furthermore, we observe that the FTR behaves hysteretically as
the orientation of the truncated resonance frequency arcs inverts from a downsweep in
Fig. 5.3.6 (a) to an upsweep in Fig. 5.3.6 (b) of the current.

Outlook We conclude that we were able to achieve a major improvement of the internal
quality factors of the FTRs from sample 1 to sample 2 by optimizing the milling recipe for
the bandages. The FTR on sample 2 exhibits an internal quality factor close to the target
value that would be necessary for reaching the single-photon strong coupling regime.
However, the frequency tuning behavior showing signatures of hysteresis in spite of a
sufficiently small critical current for the FTR on sample 1 as well as the unusually small
Kerr shift of that FTR suggest that the current design needs to be further optimized.
The complex frequency tuning behavior of the FTR on sample 2, which is even in the
context of hysteretic FTRs not fully understood, seems to confirm this assumption. As
we believe that the hysteretic behaviour might be due to parasitic inductances forming
between bandages and JJs, a reasonable modification would be to significantly enlarge the
overlap between them. Once the fabrication of a FTR with a suitable frequency tuning
behavior succeeds, the next step would be to release the nanostrings and investigate the
interplay of mechanical motion and microwaves in this nano-electromechanical device.
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Chapter 6.

Measurement of mechanical frequency
shift

In this chapter, we present measurements of the mechanical frequency of a nanostring
embedded into the SQUID-loop of a flux-tunable superconducting microwave resonator.
The device on which these measurements were performed was made by Philip Schmidt
and introduced in Chap. 3. Here, we investigate the fundamental out-of-plane mechanical
mode whose motion is transduced to a flux change by an in-plane (IP) magnetic field
BIP (see Sec. 2.3). In a previous study [31], it was found that the resonance frequency
of the nanostring can be tuned via the backaction mediated by the Lorentz force. This
behavior is theoretically well understood [26] and the corresponding theory was presented
in Sec. 2.4.1. In addition to this expected evolution of the mechanical frequency Ωm with
bias flux Φb and in-plane field BIP, a residual shift of the uncoupled mechanical frequency
Ω0 with BIP was observed. As mentioned in Sec. 2.4.2, the most likely origin of this
residual frequency shift seems to be the coupling between the flux lines penetrating the
nanostring and the mechanical motion of the nanostring. Here, we are going to further
investigate this hypothesis. In Sec. 6.1, we describe how we acquire the data for the
mechanical frequency Ωm as a function of bias flux Φb for a given BIP. In Sec. 6.2, we
analyze this data in terms of the two models for the mechanical frequency presented in
Sec. 2.4.1 and explain how we extract the uncoupled mechanical frequency Ω0. We close
this chapter with a discussion of the results for Ω0 as a function of BIP in Sec. 6.3.

6.1. Data acquisition

The measurements of the mechanical frequency of a nanostring inductively coupled to
a FTR were performed using the heterodyne downconversion spectroscopy scheme de-
scribed in Sec. 4.2. We measure the mechanical frequency for different BIP that contribute
to the coupling strength g0 between FTR and nanostring according to Eq. 2.71. For each
BIP, we first record the transmission S21 through the FTR as a function of excitation
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Figure 6.1.1.: Panel (a) shows a color map of |S21| as a function of excitation frequency f
and normalized bias flux Φ/Φ0 at BIP = 28mT. The resonance frequency of the FTR is
met when |S21| is minimal (dark blue arc) and is tunable via the bias flux in a range from
6.80GHz to 7.36GHz. Close to 7.30GHz a parasitic mode is present that probably stems
from a non-tunable resonator on the chip. For the measurement of the mechanical frequency,
we operate the FTR at different bias flux working points indicated by the dashed colored
lines. At each working point, we measure the PSD of the outgoing microwave signal, shown
in panel (b). The sideband created by the mechanical motion is visible as a peak in the PSD.
For clarity, each PSD is offset from the previous one by 10 dBm/Hz. The colors correspond
to the ones in panel (a).

frequency and current flowing through the coil that is mounted on top of the sample. The
coil current generates an out-of-plane magnetic field and therefore a bias flux Φb. The
conversion from coil current to bias flux is easily done since we know that the periodicity
of the FTR’s resonance frequency is given by Φ0. A color map of |S21| (the so-called fre-
quency tuning map) is shown in panel (a) of Fig. 6.1.1. The excitation frequency equals
the resonance frequency of the cavity when |S21| is minimal, indicated by the dark blue
arc. As this frequency changes with Φb, we can confirm that the microwave resonator
is flux-tunable. For the microwave spectroscopy, we choose different working points (i.e.
different resonance frequencies of the FTR) by setting the coil on top of the sample box to
the corresponding current. In panel (a) of Fig. 6.1.1, five different working points are de-
noted by dashed colored lines. Unlike shown in this figure, we usually measure at at least
one working point to the right of the maximal FTR frequency. This is important for more
reliable fits when analyzing the data. At each working point, we send a probe tone of
varying input power on resonance with the FTR into the system and measure the voltage
power spectral density (PSD) of the outgoing microwave signal with a spectrum analyzer
(cf. Sec. 4.2). We do not drive the mechanical mode under investigation such that the
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sideband in the PSD is due to the thermal motion of the nanostring. Before measuring
the PSD, the transmission of the FTR is probed again in order to know its resonance
frequency precisely. The precise knowledge of the FTR’s resonance frequency is needed
in order to determine the exact bias flux corresponding to this resonance frequency. To
this end, we remove the background signal from the recorded frequency tuning map by
dividing the raw S21 data for each coil current by a S21 data set at a coil current where
the FTR resonance is not visible and remove noise by a simple moving average filter.
After converting coil current to bias flux, this yields a frequency tuning map like the
one shown in Fig. 6.1.1 (a). For each bias flux, we then search for the frequency where
|S21| becomes minimal and take this frequency as the resonance frequency of the FTR.
Finally, we interpolate between the data points obtained like this with cubic splines. The
resulting interpolation function allows us to convert a given resonance frequency of the
FTR to the corresponding bias flux.

For the data analysis, we select an input power where the sideband that is created
by the mechanical motion is clearly visible. However, the selected power must not be
too high in order to ensure that the mechanical frequency is not affected by unwanted
sideband cooling or heating. Such a shift of the mechanical frequency due to the optome-
chanical interaction is known as the optical spring effect [1]. Panel (b) of Fig. 6.1.1 shows
the PSD when operating the device at the working points indicated in Fig. 6.1.1 (a). From
the working point at Φb/Φ0 = −0.443 to the working point at Φb/Φ0 = −0.168, the me-
chanical frequency shifts by 600Hz, which corresponds to about 38 times the mechanical
linewidth. This frequency shift is a consequence of backaction based on the Lorentz force
and was studied in detail in [31]. In order to extract the mechanical resonance frequency
Ωm and the mechanical damping rate Γm, we fit the PSD SV V for each working point to
a Lorentzian of the form

SV V (Ω) = a
2Γm

(Ω2 − Ω2
m)

2 + Γ2
mΩ

2
+ b. (6.1)

The parameter b accounts for the noise floor and a is the proportionality constant between
the displacement noise spectral density and the PSD of the microwave signal. A fit of
the PSD at BIP = 28mT and Φb/Φ0 = −0.331 to this equation is shown in Fig. 6.1.2
(a). Panel (b) of Fig. 6.1.2 displays the mechanical resonance frequency as a function
of normalized bias flux Φb/Φ0 for three different BIP. We observe that Ωm/2π changes
with bias flux and increases with increasing in-plane field. This behaviour is qualitatively
predicted by Eq. 2.78 and by Eq. 2.83 for sufficiently small β.
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Figure 6.1.2.: (a) A fit of the PSD at BIP = 28mT and Φb/Φ0 = −0.331 to Eq. 6.1. From the
fit, we obtain a mechanical resonance frequency of Ωm/2π = 5.887 12MHz and a mechanical
damping rate of Γm/2π = 13.3Hz. (b) The mechanical resonance frequency at different bias
fluxes and in-plane fields of 20mT, 24mT and 28mT. We see that the tuning range increases
with increasing BIP from 350Hz at 20mT to 600Hz at 28mT. Errorbars are smaller than
the symbol size.

6.2. Data analysis

We performed measurements of the mechanical resonance frequency at in-plane fields
from BIP = 12mT to BIP = 30mT at various flux bias points. We extracted the
mechanical resonance frequency Ωm/2π from the measured data as explained in Sec. 6.1.
It is then possible to fit this experimental data to the models introduced in Sec. 2.4.1.
For all fits shown in this section, we made use of lmfit, a Python package for nonlinear
optimization and curve fitting.

Figure 6.2.1 shows a fit of experimental data at in-plane fields of 20mT, 26mT

and 30mT to Eq. 2.78 (panel (a)) and Eq. 2.83 (panel (b)). We see that both models
are in principle able to reproduce the experimentally observed shift of Ωm/2π, as all
fits agree well with the experimental data. Concerning the fitting itself, we note that
Eq. 2.78 and Eq. 2.83 contain parameters that we know and therefore can fix in the fit and
parameters that we do not know precisely and therefore leave as free fit parameters. For
the latter, we can make a reasonable guess and set boundaries, such that in the fitting
process, the values of the fit parameters are optimized within these boundaries. For both
models, parameters we fix in the fit are the external field B = BIP, the geometry factor
λ = 0.9, the length of the nanostring l = 30 µm and its effective mass Mr = 0.9 pg.
For the model in Eq. 2.78 that considers an asymmetric SQUID, we additionally fix the
asymmetry α = 0.01, although it is in principle not known to us. However, α = 0.01 is
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Figure 6.2.1.: Experimental data (dots) of the mechanical frequency at three different in-
plane fields versus bias flux and fits (dashed lines) to the model from Ref. [26] given in
Eq. 2.78 (panel (a)) and our model given in Eq. 2.83 (panel (b)). Errorbars are smaller than
the symbol size.

Table 6.2.1.: Results of the fits shown in Fig. 6.2.1. The first value corresponds to the fit to
Eq. 2.78 and the second value to the fit to Eq. 2.83. The following parameters were fixed in
the fit: l = 30µm, Mr = 0.9 pg, λ = 0.9, α = 0.01.

Fit Parameter BIP = 20mT BIP = 26mT BIP = 30mT

Ω0/2π (MHz) 5.88655 5.88642 5.88668 5.88644 5.88678 5.88646
I0 (nA) 194 565 178 561 177 557

Lloop (pH) - 80 - 99 - 103

a reasonable value to account for small deviations in fabrication and worked well for the
analysis of data measured on the same sample in Ref. [31]. Then, only Ω0 and the critical
current I0 remain as free fit parameters. For these, we make inital guesses of Ωinit

0 /2π =

5.887MHz and I init0 = 200 nA. The model in Eq. 2.83 considering a SQUID with finite
loop inductance takes one additional free fit parameter, which is the loop inductance
Lloop. For the free fit parameters, we make initial guesses of Ωinit

0 /2π = 5.887MHz,
I init0 = 600 nA and Linit

loop = 100 pH. The best values for the fit parameters corresponding
to the fits in Fig. 6.2.1 can be found in Tab. 6.2.1.

Although it would be possible to determine the uncoupled mechanical frequency Ω0/2π

this way for all in-plane fields, this is not the approach we pursue here. The reason is
that we want to determine Ω0/2π as accurately as possible in order to verify whether
it shows discontinuous, step-like evolution with BIP. To this end, we try to determine
I0 (and Lloop for our model) independently from a fit of the resonance frequency of the
flux-tunable cavity as a function of bias flux and plug the resulting values into the fit of
the mechanical frequency.

Lumped-element model We start by fitting the resonance frequency of the FTR to the
lumped-element model given in Eq. 2.56, where we assume α = 0.01 and ωc0 is the only fit
parameter. Since this model is derived under the same assumptions that led to Eq. 2.78,
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Figure 6.2.2.: Resonance frequency of the flux-tunable cavity as function of bias flux Φ/Φ0 at
BIP = 30mT and fit to Eq. 2.56. Clearly, this fit does not converge to a useful representation
of the experimental data.

it should be consistent with that equation for the mechanical frequency. An exemplary
fit to this model at BIP = 30mT is shown in Fig. 6.2.2. As the fit does not at all converge
to a result matching the experimental data, we conclude that the lumped-element model
does not describe our device correctly. The fundamental problem with this model is
that it neglects the cavity inductance of the CPW as well as the loop inductance of the
SQUID. Instead, the only fit parameter ωc0 (the maximal frequency of the cavity) does
not affect the curvature of the fit which depends only on S0. Therefore, it is impossible
to fit this model to our data.

Distributed-element model Next, we fit the resonance frequency of the FTR for all in-
plane fields to the distributed-element model given in Eq. 2.65. For the geometry of the
FTR under investigation, we obtain a line inductance of L0 = 468 nH/m with the software
presented in [91]. Given the physical length of the CPW of d = 3.95mm, this results in
a cavity inductance of Lcav = L0d = 1.8486 nH. We obtain a resonance frequency of the
bare cavity of ω0/2π = 7.5985GHz using the same software. The loop inductance of the
SQUID is the sum of the geometric and the kinetic inductance: Lloop = Lgeo +Lkin. For
the geometric inductance, we take a value of Lgeo = 28pH [60]. The kinetic inductance
is dominated by the long and thin nanostrings of length l = 30 µm and is proportional to
l/A, where A = 200×110nm2 is the cross section of the nanostrings. The proportionality
constant was found to be 4.5× 10−8pHm [28], leading to a kinetic inductance of 61.3 pH
and thus a total loop inductance of Lloop = 89.3 pH. In general, the kinetic inductance
depends on the current flowing through the device. According to [42], it can be expanded
to lowest order as

Lkin(I) = Lkin(0)
(
1 +

I2

I22
+ . . .

)
, (6.2)
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where Lkin(0) is the kinetic inductance for vanishing current and I2 a parameter on the
order of the critical current. This means that in an external magnetic field, the kinetic
inductance is expected to increase quadratically with B due to the presence of screening
currents proportional to B [85]. However, we do not know the parameter I2 and the
above value for Lloop is merely a rough estimate, as it takes only the contribution of the
nanostrings to the kinetic inductance into account. Therefore, we do not fix Lloop but
leave it as a fitting parameter for all in-plane fields. In principle, the cavity inductance
Lcav increases with external magnetic field as well due to a kinetic contribution. However,
this effect should be negligible in comparison to the geometric contribution to Lcav.
More specifically, the relative change of the resonance frequency of the bare cavity when
applying an external magnetic field B is

ω0(B)

ω0(0)
≈ 1− 1

2

∆Lcav

Lcav
≈ 1− k(T )B2,

where Lcav is the cavity inductance at zero field and ∆Lcav the change in cavity induc-
tance due to an external field [92, 85]. The temperature-dependent proportionality factor
k(T ) was found to be smaller than 0.1T−2 at the temperatures where we perform our
experiments [85]. With applied fields between 12mT and 30mT, the correction to the
bare cavity frequency as well as the relative change in cavity inductance is on the order
of 10−5 and therefore negligible.

In order to fit the resonance frequency of the FTR to Eq. 2.65, we proceed as follows.
For each BIP, we fix Lcav to the above value and leave Lloop and the critical current
I0 as free fit parameters. In a fit to the resonance frequency in zero external field, we
also leave the bare cavity frequency ω0/2π as a free fit parameter and then fix it for all
finite BIP to the value obtained from the fit at zero field. A fit of the FTR resonance
frequency at BIP = 0mT and BIP = 30mT is shown in Fig. 6.2.3. We see that the model
reproduces the experimental data accurately for both fields. The corresponding values
for the fit parameters are given in Tab. 6.2.2. This means that our flux-tunable cavity
is well described by the model of a flux-tunable distributed-element resonator given in
Eq. 2.65. In particular, it is essential to take the cavity inductance Lcav into account in
order to reproduce the experimental data.

From these fits, we can then extract the values of the critical current I0 and the loop
inductance Lloop for all in-plane fields. From Eq. 2.42 and Eq. 6.2 we expect a quadratic
decrease of I0 and a quadratic increase of Lloop for small BIP. I0 and Lloop as a func-
tion of BIP together with quadratic fits are shown in Fig. 6.2.4. We observe an overall
decrease of I0 with BIP that agrees quite well with the expected quadratic behavior. In
contrast, the evolution of the loop inductance shows a slightly decreasing trend from
zero field to 12mT and then increases for larger BIP. For the data presented here, we
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Figure 6.2.3.: Extracted resonance frequency of the flux-tunable cavity ωc/2π as function of
bias flux Φ/Φ0 for in-plane fields of 0mT and 30mT. Solid lines are fits to Eq. 2.65.

Table 6.2.2.: Parameters for the fits to the model Eq. 2.65 shown in Fig. 6.2.3. The resonance
frequency of the bare cavity ω0/2π is a free fit parameter at vanishing in-plane field only and
fixed for finite in-plane fields. For both fits, we fixed Lcav, as it is given by the geometry in
a first approximation.

Fit Parameter BIP = 0mT BIP = 30mT

ω0/2π (GHz) 7.6686 7.6686
Lcav (nH) 1.8486 1.8486
Lloop (pH) 59.0 118.6
I0 (µA) 3.406 3.196

0 5 10 15 20 25
BIP (mT)

3.2

3.3

3.4

3.5

I 0
 (µ

A)

(a) Data
Quadratic Fit

0 5 10 15 20 25
BIP (mT)

80

90

100

110

L l
oo

p (
pH

)

(b) Data
Quadratic Fit

Figure 6.2.4.: (a) Critical current I0 and (b) loop inductance Lloop versus magnetic in-plane
field BIP. I0 and Lloop were extracted from fits of resonance frequency of the flux-tunable
cavity to Eq. 2.65 (see Fig. 6.2.3). Dashed lines are a quadratic fit to the data as expected
from Eq. 2.42 for I0 and Eq. 6.2 for Lloop. Error bars due to statistical fit uncertainties are
smaller than the symbol size.
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Figure 6.2.5.: (a) Fit of the mechanical frequency Ωm/2π to the model from from Ref. [26]
given in Eq. 2.78 and (b) to our model given in Eq. 2.83. For both fits, the critical current
I0 as well as Lloop for the fit to our model were fixed to the values obtained from fitting the
resonance frequency of the FTR to Eq. 2.65. The mechanical frequency was extracted from
measurements at BIP = 30mT.

measured the frequency tuning curves in decreasing in-plane field and observed shifts of
the resonance frequency arcs with respect to zero coil current at certain in-plane field
values. These shifts indicate a trapping or sudden release of flux quanta, which might
lead to the observed behavior of Lloop. Moreover, we note that the correlations between
the fit results for I0 and Lloop are close to unity, such that the total uncertainty on Lloop

might be quite large.
As we have now determined I0 and Lloop from a fit to the FTR resonance frequency, we

can fit the mechanical frequency Ωm/2π to the model from Ref. [26] (Eq. 2.78) while fixing
I0. In addition, we fit Ωm/2π to our model (Eq. 2.83) while fixing I0 and Lloop. These fits
are shown in Fig. 6.2.5 for an in-plane field of BIP = 30mT. Surprisingly, the fits do not
reproduce the experimental data at all. From the fit to the model in Eq. 2.78, we see that
the curvature of the fit is too large to match the data. As the curvature depends on the
critical current, we conclude that I0 extracted from the fit to the flux tuning curve is too
large. For the fit to our model, we see that we are in the regime where the valley around
ϕb = 0 is present, meaning that the screening parameter β is quite large (see Sec. 2.4.1).
Again, this confirms that the value to which we fix I0 is too large. The fact that this
fitting procedure does not reproduce the experimental data means that the models of the
mechanical frequency of a nanostring embedded into a SQUID (Eq. 2.78 and Eq. 2.83) are
not consistent with the model of a distributed-element FTR given in Eq. 2.65. In contrast
to that latter model, the models of the mechanical frequency consider only a SQUID as
the flux-tunable cavity. We suspect that for a consistent fitting routine, a model of the
mechanical frequency that considers a distributed-element resonator shunted to ground
by a SQUID with integrated nanostring would be needed.
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Figure 6.2.6.: Fit of the mechanical frequency Ωm/2π (a) to the model from Ref. [26] given
in Eq. 2.78 and (b) to our model given in Eq. 2.83 at 12mT, 16mT and 20mT. At 12mT,
both Ω0/2π and I0 are free fit parameters. At the other in-plane fields, we calculate I0 based
on the value at 12mT with Eq. 2.42 and retain only Ω0/2π as free fit parameter. For the fits
to our model, we also fix Lloop via the fit to the FTR resonance frequency.

Final analysis routine As our approach to fix I0 to the value obtained from fitting the
FTR resonance frequency to Eq. 2.65 did not work out, we decided to analyze the me-
chanical frequency data using an alternative approach. At the lowest in-plane field (here
BIP = 12mT), we fit the mechanical frequency to the model from Ref. [26] (Eq. 2.78) with
both Ω0 and I0 as free fit parameters. For all subsequent in-plane fields, we extrapolate
the critical current I0(BIP) based on the value at BIP = 12mT with Eq. 2.42 such that Ω0

is the only free fit parameter. To do so, we assume a London penetration depth of 16 nm
for Al [93], an oxide layer thickness of 4 nm and the length of the JJ perpendicular to the
in-plane field is 200 nm. For comparison, we fit the mechanical frequency to our model
in Eq. 2.83 as well. Again, we leave Ω0 and I0 as free fit parameters at BIP = 12mT

and fix I0 for the other in-plane fields to the value calculated using Eq. 2.42 taking the
same lengths as above. We also fix the loop inductance to the value obtained from fitting
the cavity resonance frequency to Eq. 2.65. This is necessary because we do not have a
formula that allows us to calculate the loop inductance based on an initial value and we
think that having more than one free fit parameter results in a less accurate fit result for
Ω0. Figure 6.2.6 shows fits that were performed this way to the model from Ref. [26] (see
panel (a)) and to our model (see panel (b)). In contrast to the previous approach, the fits
now match the data well. At BIP = 12mT, we obtain a critical current of I0 = 207 nA

when fitting with the model from Ref. [26] and I0 = 618 nA when fitting with our model.
These values of I0 are one order of magnitude smaller than the ones that a fit of the FTR
resonance frequency to Eq. 2.65 yields (cf. Tab. 6.2.2).
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Figure 6.3.1.: First measurement run. (a) Uncoupled mechanical frequency Ω0/2π as a
function of in-plane magnetic field BIP. At each BIP, Ω0/2π was extracted from fits of the
mechanical frequency as a function of bias flux to Eq. 2.78 (see Sec. 6.2). Black arrows indicate
the locations of discontinuities in Ω0/2π. The errorbars capture the statistical uncertainty
from the fit to Eq. 2.78 and the uncertainty that is due to the fact that we calculate Ic
based on the value at 12mT (see Chap.A for more details). Panel (b) shows the change
in the uncoupled mechanical frequency ∆Ω0/2π between subsequent in-plane fields. The
changes that correspond to the discontinuities in the left panel are encircled and numbered
correspondingly. The data is composite from two measurement runs and the axes are aligned
based on the mechanical frequency at BIP = 20mT that was determined in both runs.

6.3. Discussion

After having determined the uncoupled mechanical frequency Ω0/2π for in-plane fields
BIP between 12mT and 30mT as explained in Sec. 6.2, we can plot Ω0/2π as a func-
tion of BIP, shown in Fig. 6.3.1 for the evaluation with the model from Ref. [26] and in
Fig. 6.3.3 for the evaluation with our model. The results consist of two data sets that
were taken in two independent measurement runs at in-plane fields from 12mT to 20mT

and from 20mT to 30mT. As the sample was warmed up between these two runs, Ω0/2π

shifted from approximately 5.864MHz to approximately 5.887MHz. We align the axes
in such a way that the data points for the mechanical frequency at BIP = 20mT, that
was measured in both runs, coincide.

First, we discuss the results obtained from the evaluation with the model from
Ref. [26]. We observe an overall increase of the uncoupled mechanical frequency Ω0/2π

with in-plane field BIP (panel (a) in Fig. 6.3.1). Within the range of BIP probed in
the experiments, four clearly visible discontinuities are present at 15.0mT, 19.5mT,
22.0mT and 23.75mT and a fifth discontinuity might be identified at 26mT. We
note that the fields at which discontinuities are visible do not show an exact peri-
odicity but rather have intervals of the order of 2mT to 5mT that seem to decrease
with increasing applied field. In panel (b) in Fig. 6.3.1, we show the change in uncou-
pled mechanical frequency between subsequent in-plane fields ∆Ω0/2π. (For instance,
∆Ω0/2π (12mT) = Ω0/2π (12.5mT)− Ω0/2π (12mT).) Except for the last one, all dis-
continuities are associated with frequency changes of the order of 40Hz, whereas the
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Figure 6.3.2.: Uncoupled mechanical frequency Ω0/2π as a function of in-plane magnetic field
BIP. Blue and red points are our data from Fig. 6.3.1 and black points are data published
in Ref. [31]. The black line is a fit to the black data points with Eq. 2.85.

usual frequency change between subsequent in-plane fields is rather ±10Hz. In Fig. 6.3.2
we superimpose our data for the bare mechanical frequency Ω0/2π from Fig. 6.3.1 (a)
with the data presented in Ref. [31] that was obtained doing the same analysis as de-
scribed here. We first align the published data and data set 1 such that the data points
for the mechanical frequency at BIP = 17.5mT, that is contained in both the published
data and data set 1, coincide. Then, we align data set 2 with respect to data set 1 such
that the data points for the mechanical frequency at BIP = 20mT coincide. We see that
our data agrees well with the data from Ref. [31] and the fit of that data to Eq. 2.85 that
revealed a field dependence of the Labusch parameter following α ∝ B1.81

IP (cf. Ref. [31]).
When evaluating the data with our model (see Fig. 6.3.3), the discontinuities persist

at the same in-plane fields as in the evaluation with the model from Ref. [26]. Only the
last discontinuity (that might also be an artifact) is now located at 25.5mT. At least
for the first three discontinuities, the associated change in Ω0/2π is again of the order of
40Hz. In between the discontinuities, Ω0/2π decreases quite sharply. We suppose that
this is related to the fact that we have to fix the loop inductance to the value obtained
from fitting the resonance frequency of the FTR to Eq. 2.65, which is a model we have
shown to be incompatible with our model for the mechanical frequency shift (Eq. 2.83).

As pointed out in Sec. 2.4.2, the discontinuities in Ω0/2π might be caused by the cre-
ation of single flux lines in the nanostring that couple to the mechanical motion. For
this to be the case, the superconducting Al thin film must be in the Shubnikov phase of
type-II superconductors. Although Al is a type-I superconductor in the bulk, supercon-
ducting thin films are well known to exhibit behavior characteristic of type-II supercon-
ductors [73]. The quantity that discriminates type-I from type-II superconductors is the
Ginzburg-Landau parameter [50]

κ =
λL

ξGL
, (6.3)
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Figure 6.3.3.: First measurement run. (a) Uncoupled mechanical frequency Ω0/2π as a
function of in-plane magnetic field BIP. At each BIP, Ω0/2π was extracted from fits of the
mechanical frequency as a function of bias flux to Eq. 2.83 (see Sec. 6.2). Black arrows indicate
the locations of discontinuities in Ω0/2π. The uncertainties on Ω0/2π that we determine as
explained in Chap. A are quite large (several 100Hz) and not shown for clarity. Panel (b)
shows the change in the uncoupled mechanical frequency ∆Ω0/2π between subsequent in-
plane fields. The changes that correspond to the discontinuities in the left panel are encircled
and numbered correspondingly. The data is composite from two measurement runs and the
axes are aligned based on the mechanical frequency at BIP = 20mT that was determined in
both runs.

which is the ratio between the two characteristic length scales of a superconductor: the
London penetration depth λL and the Ginzburg-Landau coherence length ξGL. The
London penetration depth is the length scale on which a magnetic field can penetrate
the superconductor and the Ginzburg-Landau coherence length sets the length scale of
spatial variations of the Cooper pair density. For κ < 1/

√
2, the material is a type-I

superconductor, whereas for κ > 1/
√
2 it is a type-II superconductor [72]. In a thin film,

the penetration depth and the coherence length differ from their bulk values λ∞
L and ξ∞GL

due to a finite mean free path l [50]. For Al, λ∞
L = 50nm and ξ∞GL = 1600 nm [50]. Our

Al thin film does not consist of a single crystal but of multiple grains whose typical size
is reported to be of the order of 4 nm [94]. We take this value as an estimate for the
mean free path l. In the present limit of l ≪ ξ∞GL, the penetration depth and coherence
length can be calculated via the following formulas [50]

λL = λ∞
L

(
1 +

ξ∞GL

l

)1/2
(6.4)

(6.5)

ξGL = ξ∞GL

(
1 +

ξ∞GL

l

)−1/2
. (6.6)

This yields κ = 12.5, which shows that we can expect our thin film to behave like a
type-II superconductor. For the coherence length, we obtain a value of ξGL = 80nm,
which is comparable to the nanostring’s thickness of 110 nm. As the diameter of a vortex
is roughly given by ξGL [50], this means that vortices do fit into the nanostring.
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Next, we analyze whether the field interval between the discontinuities in Ω0/2π agrees
with the expected value for the generation of single vortices. In a very naive approach,
one can estimate the number n of flux vortices inside the nanostring at a given local field
Bloc as

n =
Blocld

Φ0
, (6.7)

where l is the length of the nanostring and d its thickness. Thus, to create an additional
flux vortex in the nanostring, an increase in the local field of

∆Bloc =
Φ0

ld
(6.8)

is needed. With the value of the flux quantum Φ0 ≈ 2×10−15V s, the length of the nanos-
tring l = 30 µm and its thickness d = 110 nm, we arrive at a value of ∆Bloc ≈ 0.6mT.
Next, we want to establish a relation between the local and the external field by taking
the diamagnetic response of the superconducting material and the demagnetizing field
into account. The demagnetizing field HN arises due to the finite size of the nanostring
and the direction in which we apply the external field. It is related to the magnetization
M via [50]

HN = −NM, (6.9)

where N is known as the demagnetizing factor. In the case of an infinitely long cylinder,
N = 1/2 when the external field is applied perpendicular to the cylinder’s long axis.
This case approximates our experimental situation sufficiently well. The local magnetic
field inside the nanostring is then given by [50]

Hloc = Hext −NM, (6.10)

where Hext is the external magnetic field we apply in the experiment. With the usual
relation between magnetic flux density B, the magnetic field H and the magnetization
M , the local flux density inside the nanostring reads

Bloc = µ0(Hloc +M) = Bext + (1−N)µ0M, (6.11)

where we have inserted Eq. 6.10. We see that this equation relates the local flux density
Bloc that would be responsible for the creation of vortices to the external flux density
Bext that we control experimentally. As superconductors are diamagnets that (partially)
expel magnetic fields from their interior, M is negative and we see that Bloc is always
smaller than Bext. When the type-II superconductor is in the Shubnikov phase, the
modulus of the magnetization decreases monotonically with increasing Bext, i.e. M
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Figure 6.3.4.: Second measurement run. (a) Uncoupled mechanical frequency Ω0/2π as a
function of in-plane field BIP. For each BIP, Ω0/2π was extracted from fits of the mechanical
frequency Ωm/2π as a function of bias flux to Eq. 2.78. The black arrows indicate the location
of discontinuities. Uncertainties on Ω0/2π were determined as explained in Chap. A. (b)
Change in uncoupled mechanical frequency ∆Ω0/2π between subsequent in-plane fields as
a function of BIP. The frequency changes corresponding to the discontinuities are encircled
and numbered correspondingly.

increases. Therefore, the difference between the magnetization at two different external
fields ∆M > 0 and we see that ∆Bloc > ∆Bext. Thus, we would expect the interval
in the external field between the discontinuities to be smaller than 0.6mT, which is not
what we see in the experiment. Therefore, this simple picture does not corroborate the
hypothesis that the creation of single vortices in the nanostring is at the origin of the
discontinuities we observe experimentally.

From the frequency increase of ∆Ω0/2π = 40Hz associated with the discontinuities,
we can estimate the change in stiffness of the nanostring that might be due to the sudden
presence of an additional vortex. In the approximation of a nanobeam with high tensile
stress, the bare mechanical frequency of the nanostring is given by (cf. Eq. 2.76)

Ω0

2π
=

1

2l

√
σ0
ρ
, (6.12)

where σ0 is the prestress and ρ the density of the nanobeam. The length and the density
of the nanostring stay constant during the experiment, such that an increase in frequency
can only be brought about by an increased stress σ0+∆σ. As ∆Ω0/Ω0 ≪ 1, ∆σ/σ0 ≪ 1

as well and the following expansion is justified:

1

2l

√
σ0 +∆σ

ρ
≈ 1

2l

√
σ0
ρ

(
1 +

∆σ

2σ0

)
=

Ω0

2π
+

∆Ω0

2π
(6.13)

With Ω0/2π ≈ 5.9MHz, this yields ∆σ/σ0 = 2∆Ω0/Ω0 ≈ 1.4 × 10−5. Using ρ =

2700 kg/m3 [50], we calculate the prestress σ0 = 338MPa and thus obtain ∆σ = 4.7 kPa.
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Figure 6.3.5.: Second measurement run. (a) Uncoupled mechanical frequency Ω0/2π as a
function of in-plane field BIP. For each BIP, Ω0/2π was extracted from fits of the mechanical
frequency Ωm/2π as a function of bias flux to Eq. 2.83. The black arrows indicate the location
of discontinuities. Uncertainties on Ω0/2π determined as explained in Chap. A are quite large
(several 100Hz) and therefore not shown for clarity. (b) Change in uncoupled mechanical
frequency ∆Ω0/2π between subsequent in-plane fields as a function of BIP. The frequency
changes corresponding to the discontinuities are encircled and numbered correspondingly.

Finally, we have confirmed the presence of discontinuities in Ω0/2π as a function of BIP

in a second, independent measurement run. Here, we applied in-plane fields ranging from
18mT to 35mT. At 18mT, both Ω0/2π and Ic are free fit parameters and as before, we
extrapolate the critical current at subsequent in-plane fields based on Ic(18mT). The
result of the evaluation with Eq. 2.78 is shown in Fig. 6.3.4 and with Eq. 2.83 in Fig. 6.3.5.
In both figures, panel (a) shows the uncoupled mechanical frequency Ω0/2π as a func-
tion of BIP and panel (b) the change ∆Ω0/2π in the uncoupled mechanical frequency
between subsequent in-plane fields. When evaluating the data with Eq. 2.78, we observe
five discontinuities at in-plane fields that do not coincide with the ones from the first mea-
surement run. Now, the discontinuities are located at in-plane fields of 20.5mT, 22mT,
26.5mT, 31mT and 32mT (see Fig. 6.3.4(a)) with corresponding changes ∆Ω0/2π be-
tween 24Hz and 75Hz (see Fig. 6.3.4(b)) that are of the same order as the ones found
in the first measurement run. As the errors on Ω0/2π increase with increasing BIP, the
presence of the last two discontinuities is less certain. For the evaluation with Eq. 2.83,
the first four discontinuities are found at the same in-plane fields and the fifth disconti-
nuity shifts to 32.5mT. The corresponding changes ∆Ω0/2π now lie between 15Hz and
66Hz and are thus comparable to the ones found in the evaluation with Eq. 2.78.

We conclude that the fact that discontinuities in Ω0/2π persist between independent
measurement runs is a strong evidence for a physical origin. As shown in Fig. 6.3.2, our
results match the data presented in [31], which means that the physical origin is likely
to be related to the coupling between flux line vortices and the mechanical motion of the
nanostring. When evaluating data from the same measurement run with the models in
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Eq. 2.78 and Eq. 2.83, discontinuities are found at the same in-plane fields and associated
with changes of the uncoupled mechanical frequency of roughly 20Hz to 60Hz. How-
ever, the locations of the discontinuities between different measurement runs do mostly
not coincide. Moreover, the magnetic field spacing of 2mT to 5mT does not match
the predictions of a simple model that assumes that the creation of single vortices leads
to discontinuities in Ω0. Instead, a more complex mechanism involving several vortices
might be at the origin of the discontinuities.
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Chapter 7.

Summary and outlook

The goal of this thesis was the realization of an inductively coupled nano-electromechani-
cal device that would constitute a major advancement towards the single-photon strong
coupling regime. Based on the device presented in Ref. [28], we have developed a multi-
step process for the fabrication of a new device generation. Our device consists of a
λ/4 microwave CPW resonator patterned into a Nb thin film and shunted to ground
by a SQUID made from Al with mechanically compliant strings. The advantage of this
multi-step process in comparison to the device presented in Ref. [28] is that the presence
of oxide layers is restricted to the area of the Josephson junctions only. In principle, this
greatly reduces the internal loss rate κint of the flux-tunable resonator and, conversely,
enhances the ratio g0/κint.

We were able to demonstrate high internal quality factors and outstanding stability
in external in-plane fields of fixed-frequency Nb CPW resonators, justifying their use as
component of the FTRs. In the fabrication of FTRs, we were confronted with several
challenges, including the yield of Josephson junctions and insufficient alignment accuracy
between subsequent e-beam steps for which we managed to find solutions or workarounds.
One of the measured FTRs showed very low Qint that we attributed to the presence of de-
fects introduced in the bandaging process. Moreover, it exhibited a hysteretic frequency
tuning behavior and an unusually small Kerr shift. In order to improve the bandaging
process, we fabricated a test sample and found a bandaging recipe yielding an increase in
Qint by a factor of 1.5 to 2.5. This optimization of the bandaging process can be further
continued until arriving at an optimal recipe. Using the improved bandaging recipe, we
were able to fabricate a FTR with internal quality factor on the order of 1×105. Similar
to the first FTR, this second FTR showed hysteretic behavior as well, which might be
due to spurious inductances and hence points to the need for an optimization of the
current design. A straightforward adjustment would be to enlarge the overlap between
bandages and Josephson junctions by increasing the width of the bandaged part of the
junctions.
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In parallel, using a device of the earlier generation, we built upon the investigation
of the mechanical frequency shift in SQUID based nano-electromechanical systems pre-
sented in Ref. [31]. We found out that fitting the mechanical resonance frequency as a
function of bias flux to the model from Ref. [26] while fixing the critical current to the
value extracted from fitting the frequency tuning curve to the model from Ref. [62] does
not work. Instead, we came up with a different fitting routine in order to extract the
uncoupled mechanical resonance frequency Ω0. We verified that the obtained results
match the data presented in Ref. [31], reaffirming that the coupling of the flux line vor-
tices to the mechanical motion is a plausible explanation for the observed frequency shift.
Moreover, we observed discontinuities in Ω0 as a function of in-plane field BIP and de-
rived an alternative model for the mechanical frequency that confirms the location of the
discontinuities. While the appearance of discontinuities is consistent with the flux line
lattice theory presented in Refs. [70, 69], we did not find a quantitative explanation for
the magnitude and spacing of these discontinuities, but could argue that the magnetic
field spacing does not fit to the predictions of a simple model that assumes that flux
lines are created in the nanostring one by one. As a next step, a model that is able to
distinguish whether pinning of single flux lines or an interplay of several flux lines is at
the origin of the observed phenomenon would be highly desirable.
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Appendix A.

Uncertainty on the uncoupled
mechanical frequency

We take into account two contributions to the uncertainty on the uncoupled mechanical
frequency Ω0/2π. First, there is a statistical uncertainty on Ω0/2π from the fit of the
mechanical frequency Ωm as a function of bias flux to Eq. 2.78 and 2.83, respectively.
A second contribution is due to the fact that for each BIP above 12mT (or 18mT for
the second measurement run), we calculate the critical current with Eq. 2.42 based on
I0(12mT), which itself has a finite statistical uncertainty σI0 . In order to account for the
propagation of this uncertainty to the uncertainty on Ω0/2π, we again fit the mechanical
frequency Ωm/2π, but now with a critical current based on I0(12mT)± σI0 . This yields
two values for the uncoupled mechanical frequency, Ω̃0,+/2π and Ω̃0,−/2π that are slightly
different from the original value Ω0/2π. We then take the larger one of the two deviations
from Ω0/2π, |Ω̃0,+/2π−Ω0/2π| and |Ω̃0,−/2π−Ω0/2π|, as the additional uncertainty on
the uncoupled mechanical frequency.

97



Appendix A. Uncertainty on the uncoupled mechanical frequency

98



Appendix B.

Fabrication recipes

(a) Resonators

1) Clean the chip in acetone and isopropanol (IPA).

2) Spin-coat the chip with 40 µL of AZ MIR 701 positive photoresist at 4000 rpm
for 60 s.

3) Pre-exposure bake at 90 ◦C for 75 s

4) Write resonators in a PicoMaster 200 direct laser writer with an exposure of
120mJ

5) Post-exposure bake at 110 ◦C for 90 s

6) Development in AZ MIF 726 for 70 s. Move the chip inside the development
beaker with tweezers. Stop the development in water for 30 s and transfer the
chip to a beaker with unused water. Blow the chip dry with a nitrogen gun.

7) Reactive ion etching (RIE) with Ar ions and SF6 for about 70 s and for later
samples with SF6 only for about 165 s.

8) Resist removal with Technistrip P1331 at 70 ◦C for 120 s. Stop in water and
clean in IPA.

(b) SQUIDs

1) Dehydrate the chip at 150 ◦C for 60 s.

2) Bottom layer: spin-coat the chip with 27 µL of AR CSAR 6200.13 at 1500 rpm
for 120 s. Then, bake at 150 ◦C for 60 s.

3) Top layer: spin-coat the chip with 25 µL of AR-P 672.045 PMMA 950K at
1600 rpm for 105 s. Then, bake at 150 ◦C for 180 s.

4) Do a proximity error correction (PEC) on the layout with BEAMER and write
the SQUID in the nanobeam with a base dose of 4.5C/m2.
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5) Development: develop the top layer in AR 600-56 for 180 s, stop in IPA for
30 s. Then, develop the bottom layer in AR 600-546 for 90 s and stop in IPA
for 30 s. For later samples, both layers were developed in AR 600-546 for 120 s
and stopped in IPA for 30 s.

6) Ozone descumming for 180 s in the Plassys and subsequent evaporation of
150 nm of Al.

7) Lift-off: Put the chip in AR600-71 at 40 ◦C for at least 2 h. Then, remove Al
by carefully blowing with a pipette and rinse in IPA.

(c) Josephson junctions

1) Spin-coat the chip with the double-layer resist stack as for the SQUIDs.

2) PEC with BEAMER. Write the junctions in the nanobeam with a base dose
of 4.2C/m2.

3) Development of the double-layer resist stack as for the SQUIDs.

4) Ozone descumming for 180 s in the Plassys.

5) Evaporation of 30 nm of Al under an angle of 45◦.

6) Dynamic oxidation of Al at 5mTorr for a duration between 30min and 75min

(cf. main text).

7) After a planetary rotation by 90◦, evaporation of 70 nm of Al.

8) Lift-off as for the SQUIDs.

(d) Bandages

1) Spin-coat the chip with the double-layer resist stack as for the SQUIDs.

2) PEC with BEAMER. Write the bandages in the nanobeam with a base dose
of 4.5C/m2.

3) Development of the double-layer resist stack as for the SQUIDs.

4) Ar-ion milling in the Plassys with one of the recipes given in Tab. 5.2.1.

5) Evaporation of about 300 nm of Al, depending on the etch depth resulting
from the RIE process.

6) Lift-off as for the SQUIDs.
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