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Motivation

In 1965 Gordon E. Moore, a co-founder of Intel Corporation, stated that the

number of transistors on a chip doubles about every two years. His predic-

tion, popularly known as Moore’s Law, has largely held the test of time to

date. Current PC processors are fabricated at the 90 nm level and 65 nm

chips are just being rolled out by Intel. A decade ago, chips were built at

a 500 nm level. Companies are working on using nanotechnology to solve

the complex engineering problems involved in producing chips at the 45 nm,

30 nm, and even smaller levels – a process that will postpone the industry

meeting the limits of Moore’s Law.

However, there is no doubt that sooner or later the limit for the minia-

turisation of transistors in integrated circuits (ICs) based on classical semi-

conductor technology will be reached. When individual elements in ICs reach

the size of a few nm, the physical laws that govern the behavior and proper-

ties of the circuits are inherently quantum mechanical in nature, not classical.

Physicists and computer scientists became aware of this problem a long time

ago and in the 1970’s and early 1980’s they raised the question of whether a

new kind of computer could be devised based on the principles of quantum

physics.

In 1982, Richard Feynman was among the first to attempt to provide an

answer to this question by producing an abstract theoretical model. In refer-

ence [1] he showed how a quantum system could be used to do computations.

Furthermore, he explained how such a machine would be able to act as a sim-

ulator for quantum physics. In other words, a physicist would have the ability

to carry out experiments in quantum physics (e.g. many particle problems)

inside a quantum mechanical computer.

In 1985, David Deutsch realized that Feynman’s assertion could eventually

lead to a general purpose quantum computer and published a crucial theo-

retical paper on quantum Turing machines. In reference [2] he showed that,

in principle, any physical process could be modeled perfectly by a quantum

computer. Thus, a quantum computer would have capabilities far beyond

those of any traditional classical computer.

However, quantum information processing has gained great interest as re-

cently as in 1994. Peter Shor showed in reference [3] how an ensemble of

mathematical operations – designed specifically for a quantum computer –

could be organized to enable such a machine to factor huge numbers ex-



tremely rapidly, much faster than it is possible on conventional computers.

Modern encryption algorithms are based on the fact that it is almost impos-

sible to factorize numbers that are a product of two large enough primes in

a reasonable amount of time – even on nowadays most powerful computers.

Therefore, factorization of very large composite numbers into their primes

is the key feature for decryption. A computer who can do this easily is of

great interest for government agencies and anyone interested in electronic

and financial privacy.

The field of quantum information processing has made numerous promising

advancements since its conception. Up to now there are several different

realizations of so-called qubits, the building blocks for future quantum com-

puters. However, a few potentially large obstacles still remain that prevent

us from building a quantum computer that can rival today’s modern digital

computer. Among these difficulties, error correction, decoherence, and hard-

ware architecture are probably the most demanding.

In this thesis, a device for the read out and manipulation of superconducting

flux-qubits will be discussed. The device is a superconducting transmission

line resonator with microstrip geometry. In Chapter 1 an introduction to

Circuit-Quantum ElectroDynamics (Circuit-QED) will be given. We will

discuss the basic properties of qubits with the main emphasis on the radio-

frequency Superconducting QUantum Interference Device (rf-SQUID).

After that, we will describe the interaction between the qubit and the reso-

nant cavity. Chapter 2 deals with transmission lines and waveguides. An

introduction to transmission line theory is followed by the discussion of the

two transmission line structures important for this work – the microstrip and

the coplanar waveguide. The fundamental properties of these waveguiding

structures are presented first for normal metals and are then modified for

superconducting materials. This also includes the investigation of attenu-

ation and dispersion. Finally, resonant systems based on transmission line

structures are discussed. In Chapter 3 the actual design of our resonant

structures is presented. The reader is introduced to the fundamental mode

of operation of this device, providing the strong coupling between the cav-

ity and the qubit. Computer simulations of the inductance of the slitted

groundplane – which is a crucial feature in the design of our resonators – are

compared to analytical results. A transmission line model that allows for the

calculation of the resonance frequencies is presented. Finally, we discuss the

topic of coupling capacitors and quality factors of our device. In Chapter 4



we first explain the measurement setup and the different calibration schemes

used. Then, the S-parameter measurements of several of our resonators are

discussed thoroughly and the results are compared to theory. In Chapter 5

a summary and an outlook concerning future experiments will be given.
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Chapter 1

Circuit-QED – Quantum

Optics in Solid State Physics

1.1 Introduction

In this chapter the interaction between a quantum bit and the electromag-

netic field in a solid-state transmission line, the Microstrip Resonator, is

discussed. A short overview over the main properties of quantum bits and

possible realizations in solid-state physics with focus on the rf-SQUID is

given. Next, the Hamiltonian for the coupled qubit-cavity system, leading to

the Jaynes-Cummings-Hamiltonian, is derived and will be discussed in more

detail.

1.2 Quantum Bits

In classical computers information is processed and stored using classical bits

(binary digits) usually denoted as ”0” and ”1”. In modern microprocessors

for example, the information is processed and stored using transistors. The

smallest building block in quantum computers are called quantum bits or

qubits. In general, a qubit is a quantum two-level system and can be repre-

sented as,

|Ψ(t)〉 = α(t)|0〉+ β(t)|1〉 with α(t), β(t) ∈ C . (1.1)

Measuring the quantum state of a qubit would yield |0〉 with a probability
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|α(t)|2 and |1〉 with a probability |β(t)|2. The coefficients α(t) and β(t) must

satisfy the normalization condition,

|α(t)|2 + |β(t)|2 = 1 . (1.2)

The first key difference between a classical bit and a qubit is that the latter

can not only exist in the ”0” and ”1” states of classical bits but also in a

superposition of these states. An illustration of the qubit state as a unit

vector on the Bloch sphere is found reference [4] and is shown in Figure 1.1.

The qubit state can therefore be described by means of the two angles θ and

φ as

|Ψ(t)〉 = cos
θ(t)

2
exp(−iφ(t)/2)|0〉+ sin

θ(t)

2
exp(iφ(t)/2)|1〉 . (1.3)

A quantum computer consisting of 100 qubits represents a quantum superpo-

sition of 2100 states. A single operation on that particular system operates on

all 2100 states simultaneously leading to massive quantum parallelism. One

would need approximately 2100 classical processors to carry out the same

operation in the same amount of time. It is the measurement process that

projects one of these 2100 states to the qubits computational basis states,

leading to a classical list of 100 zeros and ones.

The second key difference is the existence of entanglement between two or

more qubits if there is finite interaction between the subsystems. Entangled

qubit states are states that cannot be expressed mathematically as a product

of the qubit basis states, |Ψ〉 6= |Ψ1〉 ⊗ . . . ⊗ |Ψn〉. Physically speaking, the

measurement of the state of one qubit in an entangled system is determining

the state of the other qubit instantly. In principal this means infinite fast

communication between entangled states.

1.3 Superconducting Flux Qubits – The rf-

SQUID

There are many possible physical realizations of qubits, e.g. optical photon

qubits, ion traps, nuclear magnetic resonance qubits, and quantum dots in

semiconducting materials. From the solid-state implementations of qubits
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Figure 1.1: Representation of the qubit state as unit vector on the Bloch sphere.

we want to focus on the superconducting flux qubit. The use of supercon-

ducting materials has several advantages. First, the superconducting ground

state is separated from the quasiparticle states by an energy gap ∆ (∼ meV)

and therefore quasiparticle excitations are suppressed at very low temper-

atures. Second, the superconducting state represents a macroscopic, well-

defined ground state. Last but not least, due to the large electron density in

superconducting metals, perturbing background charges are screened.

In general, a superconducting flux qubit consists of a SQUID loop with in-

ductance L interrupted by one or three Josephson junctions (JJs) 1 with

capacitance C and critical current Ic. The SQUID loop interrupted by a sin-

gle junction is called rf-SQUID while the three JJ SQUID loop is in general

referred to as flux qubit. The rf-SQUID had been discussed in the mid 1980s

as a realization of a macroscopic quantum two-level system in references [5]

and [6]. However, only very recently the level repulsion near the degeneracy

point has been demonstrated in reference [7]. An experimental realization of

a qubit with three JJs is found in reference [8]. In equilibrium, a dissipation

less supercurrent can flow inside the loop, depending on the difference of the

flux Φ penetrating the loop and the external flux Φex applied to the loop.

1A good overview over the physics of Josephson junctions is given in reference [4].
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This either clock-wise or counter-clock-wise circulating screening current de-

fines the two states of the qubit. The phase differences across the junctions in

a SQUID device and the flux threading the superconducting loop are related

by the fluxoid quantization,

∑
i

γi = 2π
Φ

Φ0

+ 2πn with n ∈ N . (1.4)

Φ0 denotes the flux quantum h/2e. The first experimental proof of flux quan-

tization in superconducting loops was reported in references [9] and [10].

We will now give a theoretical description of the rf-SQUID. The Hamilto-

nian of the rf-SQUID is found in many textbooks (e.g. reference [11]) and

can be expressed as

Ĥ =
Q̂2

2C
− EJ cos

(
2π

Φ̂

Φ0

)
+

(Φ̂− Φex)
2

2L
with EJ =

Φ0Ic

2π
. (1.5)

The first term describes the charging energy EC associated with the charge

Q̂ on the capacitance C of the JJ. This term can be interpreted as the kinetic

energy as Q̂ and Φ̂ are canonically conjugate variables2 with [Q̂, Φ̂] = i~ and

therefore3

Q̂2

2C
= − ~2

2C

∂2

∂Φ̂2
. (1.6)

The second term in (1.5) accounts for the energy stored in the junction. Sim-

ilar to the binding energy of a molecule this energy results from the overlap of

the macroscopic wavefunctions across the superconducting electrodes. The

third term finally takes into account the self-inductance L of the qubit loop.

The last two terms determine the potential energy of the rf-SQUID and can

be rewritten as

U(Φ̂) = U0

[
1

2

(
2π(Φ̂− Φex)

Φ0

)2

− βL cos

(
2π

Φ̂

Φ0

)]
, (1.7)

2Like momentum p̂ and spatial coordinate x̂ in quantum mechanics, Q̂ = −i~∂/∂Φ̂
3Note the similarity to the kinetic energy term in a Hamiltonian describing the motion

of a particle with mass M = C and spatial coordinate x̂ = Φ̂
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(a) (b)

Figure 1.2: (a) Normalized potential for three different values of Φex and βL = 5.
(b) Normalized Potential for three different values of βL and Φex = 0.4 .

where U0 = Φ2
0/4π

2L and βL = EJ/U0. For βL > 1 a double-well potential is

formed with a barrier height depending on βL and thus on Ic and L. Figure

1.2 (a) shows the potential landscape for different values of the external flux

Φex and βL = 5. The potential is symmetric for an external applied flux of

Φex = 1/2. Any other value of Φex tilts the potential landscape. The induc-

tance was chosen to be 0.4 nH leading to an Ic ≈ 4µA. The plot in Figure

1.2 (b) shows the dependence of the barrier height for different values of βL

and an external applied flux Φex = 0.4.

1.3.1 Low-temperature approximation

In general, the rf-SQUID is a multi-level system. The states in each well cor-

respond to opposite circulating currents. At low temperatures however, only

the lowest states have to be taken into account. Therefore, the Hamiltonian

can be reduced to an effective two-level system and is given by

Ĥ =

(
ε ∆

∆ −ε

)
= εσ̂z + ∆σ̂x , (1.8)

where σ̂z and σ̂x are the Pauli spin-matrices, the energy bias is ε = (E1 −
E2)/2 and a constant offset of (E1 + E2)/2 is neglected. The effective po-

tential landscape can be seen in Figure 1.3. The lowest energy levels in each
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E

Φ

Figure 1.3: Effective potential of the rf-SQUID in the low-temperature approxi-
mation. E1 and E2 are the unperturbed energy levels in the absence of interaction
between the wells. The arrows indicate opposite circulating currents.

well, E1 and E2, are the unperturbed energy levels in the absence of inter-

action. The tunneling amplitude ∆, which depends4 on EJ and thus on Ic,

can be derived using the WKB-approximation.

Formally, the Hamiltonian Ĥ is identical to that of a spin-1/2 system in a

static magnetic field B whose components can then be expressed in terms of

E1 and E2. In general, this can be done with every quantum two-level sys-

tem. As this concept is only a formal (but very helpful) interpretation one

refers to it as the fictitious spin model. Diagonalizing Ĥ yields the eigenen-

ergies of the two-level system (Figure 1.4). At the degeneracy point ε = 0

the level splitting is ∆ and the eigenstates are symmetric and antisymmetric

superpositions of the qubits basis states. The energy bias ε can be tuned by

varying the external flux Φex and is given by

ε = 2Iq

(
Φ̂

Φ0

− 1

2

)
= 2Iq

(
f − 1

2

)
, (1.9)

where f = Φ̂/Φ0 denotes the so-called frustration and Iq is the persistent

current in the qubit loop.

4In a conventional rf-SQUID with one JJ it is not possible to vary EJ . However, by
replacing the single JJ with a dc-SQUID, EJ can be changed by varying the flux Φdc

through the dc-SQUID.
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Figure 1.4: Plot of the eigenenergies for the effective Hamiltonian in the low-
temperature approximation.

1.4 Qubit inside a resonant cavity

Figure 1.5 gives an idea of the capacitively coupled Microstrip Resonator

(MR) to be discussed later in more detail. The qubit is placed in the center

of the coil leading to an inductive coupling. The Hamiltonian of the joint

qubit-cavity system can be written as

Ĥ = Ĥc + Ĥq + Ĥi , (1.10)

where Ĥc is the cavity Hamiltonian, Ĥq is the qubit Hamiltonian and Ĥi

models the interaction between them.

The Hamiltonian of the single-mode cavity is given by

Ĥc = ~ωr

(
a†a +

1

2

)
. (1.11)

This result is obtained by quantizing the classical expression for the Hamil-

tonian of a series LC-circuit and is given in Appendix A.
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Figure 1.5: Section of the capacitive coupled Microstrip Resonator (schematic).
The qubit is placed in the center of the coil. The resonator is a three layer device
consisting of a washer groundplane, a dielectric (blue), and a spiral coil.

The qubit Hamiltonian in the low-temperature approximation was already

given in Equation (1.8),

Ĥq =
1

2

(
ε ∆

∆ −ε

)
=

1

2
εσ̂z +

1

2
∆σ̂x . (1.12)

The factor 1/2 arises from the renormalization of the energy scales.

The cavity and the qubit are coupled via their mutual inductance Mq,c with

a coupling energy given in reference [12] as

Ĥi = −Mq,cÎcÎq (1.13)

where Îc and Îq are the current operators of the resonant cavity and the

qubit, respectively. Following a similar normal mode expansion of the cavity

as given in reference [13], the current operator of the cavity field can be ex-

pressed as

Îc = i · Ic,ko/e
(z) [a† − a] (1.14)
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with

Ic,ko/e
(z) =

k̃o∑
ko=1

√
~ωko

Dl
cos(koπz/D) +

k̃e∑
ke=2

√
~ωke

Dl
sin(keπz/D) (1.15)

being the vacuum current for odd (ko) and even (ke) cavity modes. a† and

a in Equation (1.14) are the bosonic creation and annihilation operators, re-

spectively. D = λ/2 is the length of the resonator along the z-axis5 and l is

the total inductance per unit length.

The cavity is chosen to operate at ko = 1 and the qubit is preferably placed

at an antinode (cos(πz/D) = 1) of the vacuum current. Therefore, the ex-

pression for the vacuum current simplifies to,

Ic,ko/e
=

√
~ωr

Ltot

η , (1.16)

where Ltot = Dl is the total series inductance and ωr is the cavity resonance

frequency for ko = 1. The dimensionless parameter η ∈ [0; 1] has been in-

troduced to account for the factor cos(πz/D) and models the position of the

qubit with respect to the nodes and antinodes of the vacuum current.

Differentiation of Equation (1.12) with respect to the frustration f under

consideration of Equation (1.9) yields the expression for the current operator

of the qubit Îq,

Îq =
∂Ĥq

∂f
= Iqσ̂z . (1.17)

Now, the total Hamiltonian of the joint qubit-cavity system can be written as

Ĥ = ~ωr

(
a†a +

1

2

)
+

1

2
(εσ̂z + ∆σ̂x)− i ·Mq,cIqη

√
~ωr

Ltot︸ ︷︷ ︸
g′

[a† − a]σ̂z (1.18)

Diagonalization of Ĥ in the eigenbasis of the qubit yields

5The cavity is assumed to be quasi-one-dimensional, meaning, that the spatial dimen-
sions along the x- and y-axis are negligible to its dimension along the z-axis.
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Ĥ = ~ωr

(
a†a +

1

2

)
+

~Ω

2
σ̂
′

z + i · g′
[a† − a][cos(θ)σ̂

′

z + sin(θ)σ̂
′

x] , (1.19)

where Ω = ~−1
√

ε2 + ∆2 and θ = arctan(ε/∆) is the mixing angle. At the

degeneracy point θ = π/2 and by introducing the Pauli raising and lowering

operators

σ̂
′

± =
σ̂
′
x ± i σ̂

′
y

2
, (1.20)

the total Hamiltonian can be simplified to

Ĥ = ~ωr

(
a†a +

1

2

)
+

~Ω

2
σ̂
′

z + i · ~g [a†σ̂
′

− − aσ̂
′

+] . (1.21)

Here we neglected the fast oscillating terms6, omitted damping, and defined

the cavity-qubit coupling as g := g
′
/~. Equation (1.21) is the so-called

Jaynes-Cummings-Hamiltonian.

A. Blais et al. have shown theoretically in reference [13] how the state of

the qubit7 acts on the resonance frequency ωr of the cavity. For large qubit-

cavity detuning δ = Ω−ωr � g, the system is in the dispersive regime which

is favorable for readout of the qubit. By applying the unitary transformation

U = exp
[g
δ
(aσ̂

′

+ − a†σ̂
′

−)
]

(1.22)

on Ĥ and expanding to second order in g one obtains

U †ĤU ≈ ~
[
ωr +

g2

δ
σ̂
′

z

]
a†a +

~
2

[
Ω +

g2

δ

]
σ̂
′

z . (1.23)

6This is the so-called rotating wave approximation: terms that contain a†σ̂
′

+ and aσ̂
′

−
are oscillating in the interaction picture at twice the frequencies of interest ωr and Ω and
are therefore neglected.

7The calculations were carried out for the case of a superconducting charge qubit, also
known as the Cooper Pair Box. However, this is no limitation and the physical principals
are also valid for a superconducting flux qubit, provided that the coupling between the
qubit and the cavity is strong enough.
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The first term in Equation (1.23) accounts for an ac-Stark shift of the cavity

transition by σ̂
′
z g2/δ. Driving the resonator with an appropriate frequency

will induce a shift of the cavity resonance frequency ωr by an amount ±g2/δ,

depending of the state of the qubit. This situation – the so-called vacuum

Rabi splitting – is shown in Figure 1.6, where κ = ωr/Q is the decay rate and

Q is the quality factor of the cavity. The state-dependent pull of ωr can be

used to entangle the state of the qubit with that of the photons transmitted

or reflected by the resonator. Due to the strong coupling between the qubit

and the cavity they form a kind of ’molecule’ with two new energy levels

separated by 2g2/δ. For a drive frequency ωmw ' ωr±g2/δ, the transmission

of the cavity will be close to unity for one state of the qubit and close to zero

for the other. By choosing the drive frequency ωmw ' ωr, the state of the

2g2/δ

ωr – g2/δ ωr + g2/δ

κ

|↑i |  i↓

Figure 1.6: Transmission spectrum of the cavity. The resonance frequency is
shifted by an amount ±g2/δ. (red: qubit in the excited state. blue: qubit in the
ground state.)

qubit is encoded in the phase of the reflected and transmitted microwaves.

In reference [14] it is shown that such entangled states can be used to couple
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qubits in distant resonators and therefore allowing quantum communication.

Finally, we want to give an estimate for the coupling g for the case of the

Microstrip Resonators to be discussed in this thesis. To this end, we have

to use some of the results that will be discussed in the subsequent chapters.

With the induction extraction program FastHenry c© we estimated the mutual

inductance between the cavity and the qubit to be

Mq,c ≈ 1 pH , (1.24)

where we assumed a square shaped rf-SQUID with a edge length of 10 µm

and a line width of 0.5 µm. Further assuming a reasonable current through

the qubit of Iq = 1 µA and a total inductance8 of Ltot = 32 · 848 pH we get

for a resonance frequency of ωr = 2π5 GHz a coupling of

g = 197 MHz . (1.25)

This value is approximately twice the calculated value in reference [13]. The

experimental realization to this proposal was reported by A. Wallraff et al.

in reference [15]. This was the first experiment that showed the coherent

coupling between a single (microwave) photon and a superconducting qubit

establishing the term Circuit-QED.

8In chapter 3 it will be shown that the total inductance of our resonators is dominated
by the inductance of the groundplane and the number of turns of our spiral input coil.
Here we assumed a coil with 3 turns, the inductance of the groundplane is calculated to
be 848 pH.



Chapter 2

Transmission Lines and

Waveguides

2.1 Introduction

Electrical transmission lines are used to transfer electromagnetic waves - and

therefore electromagnetic energy - from a source to a device or system in

which it is to be used. In general, transmission lines consist of two or more

parallel conductors and support the propagation of transverse electromag-

netic (TEM) waves. For a TEM wave the electric field E is perpendicular to

both, the magnetic field B and the direction of propagation k.

A parallel two-wire system is a typical and important example of the trans-

mission lines to be studied in this chapter. The concepts of energy propa-

gation, phase and group velocity, and the effects of losses can be extended

from these transmission-line results to the more general classes of guiding

structures.

2.2 Transmission Line Theory

2.2.1 The Lumped-Element Circuit Model

Transmission line structures can be satisfactorily analyzed on the basis of line

voltages and currents when the wavelengths of the signals being transmitted

are of the same order as or a considerable fraction of the physical dimensions.

The theory thus developed is often referred to as distributed circuit theory. A
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piece of line with infinitesimal length ∆z shown in Fig. 2.1 can be modeled

as a lumped-element circuit, where R,L, G, and C are quantities per unit

length defined as:

• R = series resistance [Ω/m]

• L = series inductance [H/m]

• G = shunt conductance [S/m]

• C = shunt capacitance [F/m]

Figure 2.1: Voltage and current definitions and equivalent circuit for an incre-
mental length of a transmission line.

The series inductance L represents the total self-inductance of both con-

ductors while the shunt capacitance C is due to the close proximity of the

two conductors. The series resistance R accounts for losses due to the finite

conductivity of the conductors and the shunt conductance G represents di-

electric losses. A finite length of transmission line can be regarded as many

successive sections as the one shown in Fig. 2.1.

Let the input voltage and current, both dependent on position and time, of

our incremental line with length ∆z be v(z, t) and i(z, t), respectively. Then
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the output voltage and current can be written as v(z+∆z, t) and i(z+∆z, t)

and by applying Kirchhoff’s voltage and current laws to the input and output

nodes we obtain

v(z, t)−R∆z · i(z, t)− L∆z · ∂i(z, t)

∂t
− v(z + ∆z, t) = 0 , (2.1)

i(z, t)−G∆z · v(z +∆z, t)−C∆z · ∂v(z + ∆z, t)

∂t
− i(z +∆z, t) = 0 . (2.2)

Dividing equations (2.1) and (2.2) by ∆z and taking the limit ∆z → 0 leads

us to the following differential equations:

∂v(z, t)

∂z
= −R · i(z, t)− L

∂i(z, t)

∂t
, (2.3)

∂i(z, t)

∂z
= −G · v(z, t)− C

∂v(z, t)

∂t
. (2.4)

These are the time-domain forms of the general transmission line equations,

often referred to as the Telegrapher’s Equations. Note that space and time

derivatives are partial derivatives as the reference point may be changed in

space and time in independent fashion. Assuming a harmonic time depen-

dence ejωt and denoting v(z, t) = <{V (z)ejωt} and i(z, t) = <{I(z)ejωt},
where < represents the real part of a complex quantity, equations (2.3)

and (2.4) can be further simplified to

∂V (z)

∂z
= −(R + jωL) · I(z) , (2.5)

∂I(z)

∂z
= −(G + jωC) · V (z) . (2.6)

By inserting equation (2.6) into the derivative of equation (2.5) with respect

to z (and vice versa) one obtains the differential equations for V (z) and I(z):
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∂2V (z)

∂z2
− γ2V (z) = 0 , (2.7)

∂2I(z)

∂z2
− γ2I(z) = 0 , (2.8)

where

γ = α + jβ =
√

(R + jωL)(G + jωC) (2.9)

is the complex propagation constant, which is a function of frequency, its unit

is [m−1]. Equations (2.7) and (2.8) represent one-dimensional wave equations

for which the solutions can be easily found to be

V (z) = V +
0 e−γz + V −

0 eγz (2.10)

and

I(z) = I+
0 e−γz + I−0 eγz . (2.11)

Converting back to the time domain 1, the voltage waveform can be expressed

as

v(z, t) = |v+
0 | cos(ωt− βz + Φ+)e−αz + |v−0 | cos(ωt + βz + Φ−)eαz , (2.12)

where Φ± is the phase angle of the complex voltage V ±
0 = |v±0 |ejΦ±

. In the

same way one obtains the expression for the current wave. We see that the

propagation factor e−γz represents a wave traveling in the +z direction. Fur-

thermore, from the damping factor e−αz one can deduce that α represents the

decay with distance and is therefore called the attenuation constant [Nepers

1This is done by multiplying V (z) by the harmonic time dependence and taking the
real part: <{V (z)ejωt}.
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m−1 or dB m−1]. β is the phase constant of the propagating wave [rad m−1

or deg m−1]. In general, α and β are not constant but depend on ω which

can be seen from equation (2.9). The phase velocity vp is the velocity of a

fixed phase point and can be calculated as

vp =
dz

dt
=

d

dt

(
ωt + Φ+ − const.

β

)
=

ω

β
. (2.13)

The wavelength λ is the distance between two successive reference points on

the wave with the same phase at a fixed instant of time. Thus,

[ωt− βz]− [ωt− β(z + λ)] = 2π , (2.14)

and therefore,

λ =
2π

β
=

2πvp

ω
=

vp

f
. (2.15)

We already derived some useful expressions of important transmission line

quantities. The last one to be discussed in this section is the characteristic

impedance Z0 [Ω], which relates the voltage wave to the corresponding cur-

rent wave at any point of the line,

V +
0

I+
0

= Z0 =
−V −

0

I−0
. (2.16)

Z0 can be evaluated by inserting equation (2.10) into the time-harmonic form

of the general transmission line equation (2.5) which yields

Z0 =
R + jωL

γ
=

γ

G + jωC
=

√
R + jωL

G + jωC
. (2.17)

2.2.2 The Low-Loss Line

In practice all transmission lines are lossy due to a finite conductivity and/or

dielectric losses, but these losses are usually small. In many practical prob-

lems these losses can then be neglected, but sometimes the effect of loss may
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be of interest (e.g. when dealing with the quality factor Q of a resonant

cavity). We will now see how the assumption of low losses simplifies the

expressions for the general transmission line parameters γ and Z0.

The general expression for the complex propagation constant is given by

equation (2.9),

γ = α + jβ =
√

(R + jωL)(G + jωC) (2.18)

which can be rearranged as

γ =

√
(jωL)(jωC)

(
1 +

R

jωL

)(
1 +

G

jωC

)

= jω
√

LC

√
1− j

(
R

ωL
+

G

ωC

)
− RG

ω2LC
.

(2.19)

For the low-loss line we can assume R � ωL and G � ωC which expresses

that both, conductor and dielectric losses are small. Then, RG � ω2LC and

equation (2.19) reduces to

γ = jω
√

LC

√
1− j

(
R

ωL
+

G

ωC

)
. (2.20)

Ignoring the (R/ωL + G/ωC) term would lead to a purely imaginary propa-

gation constant which accounts for a lossless line. A Taylor series expansion√
1 + x ' 1+x/2+. . . is used to obtain the first higher order real term for γ :

γ ' jω
√

LC

[
1− j

2

(
R

ωL
+

G

ωC

)]
, (2.21)

so that

α ' 1

2

(
R

√
C

L
+ G

√
L

C

)
=

1

2

(
R

Z0

+ GZ0

)
, (2.22)

β ' ω
√

LC , (2.23)
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where

Z0 =

√
R + jωL

G + jωC
∼=
√

L

C
(2.24)

is the characteristic impedance for both, the low-loss and the lossless case

(equal sign in (2.24)). Note, that the first term in (2.22) is due to conductor

loss while the second term models dielectric losses. Equations (2.22) – (2.24)

are known as the high-frequency, low-loss approximations for transmission

lines.

2.2.3 The Terminated Lossy Line

Figure 2.2 shows a length l of a lossy transmission line with characteris-

tic impedance Z0 terminated in an arbitrary load impedance ZL as often

encountered in practical problems. In general ZL 6= Z0 and therefore an

incident wave V +
0 e−γz generated from a source at z < 0 will be reflected at

the interface between the line and the load. The presence of a reflected wave

leads to standing waves where the magnitude of the voltage on the line is not

constant.

Figure 2.2: A transmission line terminated in a load impedance ZL.
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The voltage on the line can be written as in (2.10) as a sum of an incident

and reflected wave:

V (z) = V +
0 e−γz + V −

0 eγz . (2.25)

With (2.11) and (2.16) the current on the line can be expressed as

I(z) =
V +

0

Z0

e−γz − V −
0

Z0

eγz . (2.26)

The load impedance at z = 0 is then given by

ZL =
V (0)

I(0)
=

V +
0 + V −

0

V +
0 − V −

0

Z0 (2.27)

and solving for V −
0 /V +

0 leads to

Γ = Γ(z = 0) =
V −

0

V +
0

=
ZL − Z0

ZL + Z0

. (2.28)

Γ is called reflection coefficient and gives the amplitude of the reflected wave

normalized to the amplitude of the incident wave at the point of the load.

For a matched line Γ = 0 (no reflected wave), otherwise the line is called

mismatched.

The voltage and current on the line can be rewritten in terms of Γ as

V (z) = V +
0

[
e−γz + Γeγz

]
, (2.29)

I(z) =
V +

0

Z0

[
e−γz − Γeγz

]
. (2.30)

Thus, the input impedance Zin looking towards the load at a point z = −l is

Zin(l) =
V (−l)

I(−l)
= Z0

1 + Γe−2γl

1− Γe−2γl
= Z0

ZL + Z0 tanh(γl)

Z0 + ZL tanh(γl)
, (2.31)

which is an important result that correlates the characteristic impedance

of a length of transmission line with an arbitrary load impedance. Equa-

tion (2.31) is called the transmission line impedance equation. The input

impedance for the lossless case where α = 0 is easily obtained by inserting
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γ = jβ into equation (2.31) and using tanh(jβ) = j tan(β).

In the same way we can generalize the expression for Γ for any point on the

line z = −l. From (2.25) the ratio of the reflected component to the incident

component is

Γ(l) =
V −

0 e−γl

V +
0 eγl

= Γe−2γl , (2.32)

where Γ = Γ(z = 0) as described in (2.28).

2.3 Planar Transmission Lines

Several different forms of wave-guiding structures made from metal strips

on a dielectric substrate are used for applications in microwave engineering.

The superconducting microstrip resonator discussed in this thesis is a hybrid

structure, formed of a section of microstrip (MS) line with a transition to a

section of coplanar waveguide (CPW). In this section we will briefly discuss

the geometry of these transmission lines and give some useful analysis formula

that apply to the normal conducting case.

2.3.1 Microstrip

The MS is one of the most popular types of planar transmission lines, pri-

marily because it can be fabricated by photolithographic processes and is

easily implemented in other passive or active microwave devices. Figure 2.3

shows the geometry of a MS transmission line. A conductor of width w is

printed on a thin, grounded dielectric substrate with thickness h and relative

dielectric permittivity εr. The thickness of the strip and the groundplane are

ts and tg, respectively.

In a MS most of the electrical field E is concentrated in the dielectric region

between the strip conductor and the groundplane but a certain fraction is in

the air region around the strip conductor. Therefore, a MS cannot support a

pure TEM wave as the phase velocity vp in the dielectric region (c/
√

εr) is not

equal to that in air (c). In most practical applications though the dielectric

region is electrically very thin (h � λ) and the fields can be approximated

by quasistatic or static solutions. The fundamental mode of propagation is

therefore called a quasi-TEM mode.
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Figure 2.3: Section of a MS transmission line.

Various textbooks and publications deal with the calculations of the funda-

mental transmission line parameter Z0. A particularly useful expression for

the characteristic impedance is found in reference [16],

Z0 =
120π
√

εeff,qs

[
w

h
+ 1.98

(w

h

)0.172
]−1

, (2.33)

which is accurate within < 0.3% for all w/h > 0.06. This expression is an

approximation to the exact solution found by means of conformal mapping

techniques and applies for ts → 0. Formulas that include a finite strip thick-

ness are found in reference [17] but the effects on the design parameters are

very small.

The effective dielectric constant εeff,qs in (2.33) models a MS with an effective

dielectric material, filling the whole space but leading to the same capacitance

per unit length as if the MS had an air/εr interface. The index qs in (2.33)

reminds that this expression refers to the quasi-static case. A widely used

expression for εeff,qs is found in reference [18],

εeff,qs = 1 +
εr − 1

2

[
1 +

1√
1 + 10h/w

]
, (2.34)
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which is always between unity and εr.

Dispersion in MS

In general, the non-linear dependence of the wavelength on the frequency

is called dispersion. In the case of the MS, dispersion has to be taken into

account for frequencies f > 1 GHz. At high frequencies the electric field be-

comes more confined to the region between the center strip and the ground

plane resulting in a frequency-dependent effective permittivity εeff(f) and

therefore a frequency-dependent Z0 in (2.33). For computer-aided design

(CAD) of MS circuits it is important to have simple and accurate formulas

for εeff(f). Kirschning and Jansen [19] developed an expression for εeff(f)

which is claimed to be valid up to 60 GHz with an accuracy better than

0.6 %. This model has the restriction 0 ≤ h/λ0 ≤ 0.13 with λ0 being the

free-space wavelength.

Here, we present the formulation for dispersion calculation that is given by

Kobayashi [20]. This work is based on the concept of a significant 50 % dis-

persion point at which the effective MS permittivity is the arithmetic mean of

the substrate relative permittivity εr and the quasi-static value εeff,qs in (2.34).

Kobayashi calculates the frequency for this condition and develops the dis-

persion expression,

εeff(f) = εr −
εr − εeff,qs

1 + (f/f50)m
, (2.35)

where

f50 =
fk,TM0

0.75 + [0.75− (0.332/ε1.73
r )] w/h

(2.36)

fk,TM0 =
c · arctan

(
εr

√
εeff,qs−1

εr−εeff,qs

)
2πh

√
εr − εeff,qs

(2.37)

m0 = 1 +
1

1 +
√

w/h
+ 0.332

(
1

1 +
√

w/h

)3

(2.38)



24 Chapter 2: Transmission Lines and Waveguides

mc =

 1 +
1.4

1 + w/h

[
0.15− 0.235 exp

(
−0.45f

f50

)]
for w/h ≤ 0.7

1 for w/h > 0.7
(2.39)

m =

{
m0mc for m0mc ≤ 2.32

2.32 for m0mc > 2.32
(2.40)

In these formulas c is the speed of light, h is in mm, and the frequency f

in GHz. The accuracy of Kobayashi’s expressions is estimated to be within

0.6 % for 0.1 ≤ w/h ≤ 10, 1 ≤ εr ≤ 128 and for any value h/λ0. Figure 2.4

shows εeff(f) for εr = 4.69 and h = 500 nm as encountered in our MS design.
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Figure 2.4: Frequency-dependent effective permittivity εeff,qs for three different
aspect ratios w/h.

2.3.2 Coplanar Waveguide

Of the several different forms of wave-guiding systems in which all conductors

are on one surface of a dielectric substrate, the most widely used is the CPW.

Figure 2.5 shows the geometry of a CPW transmission line with two differ-

ent dielectric substrates as encountered in our design. The signal voltage is

applied between the center strip and the grounded outer strips, which are
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separated symmetrically by a gap g. The quantity w/(w+2g) is called aspect

ratio. As with the MS, the fundamental mode of propagation is a quasi-TEM

mode because the dielectric is not homogeneous in the transverse plane.

Figure 2.5: Section of a CPW transmission line with two different dielectric
substrates.

We will now derive an analytical expression for the characteristic impedance

Z0 of a CPW with zero-thickness conductors and infinitely wide ground plane.

The phase velocity can be expressed in terms of capacitance and inductance

by combining equations (2.23) and (2.13),

vph =
1√
LC

!
=

c
√

εeff,qs

. (2.41)

Thus, Z0 can be written as

Z0 =

√
L

C
=

1

cCAir
√

εeff,qs

, (2.42)

where

εeff,qs =
C

CAir

, (2.43)
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is the effective dielectric constant under quasi-static approximation. C and

CAir are the capacitances of the CPW with and without dielectrics, respec-

tively. These capacitances can be expressed by complete elliptic integrals of

the first kind as shown in reference [21],

C = 4ε0
K(k0)

K(k
′
0)

+ 2ε0(εr1 − 1)
K(k1)

K(k
′
1)

+ 2ε0(εr2 − εr1)
K(k2)

K(k
′
2)

, (2.44)

CAir = 4ε0
K(k0)

K(k
′
0)

, (2.45)

where

k0 =
w

w + 2g
and k

′

0 =
√

1− k2
0 , (2.46)

ki =
sinh(πw/4hi)

sinh(π(w + 2g)/4hi)
and k

′

i =
√

1− k2
i with i = 1, 2 . (2.47)

Inserting equations (2.44) and (2.45) into (2.42) and (2.43) gives

Z0 =
30π
√

εeff,qs

K(k
′
0)

K(k0)
, (2.48)

εeff,qs = 1 +
(εr1 − 1)

2

K(k1)

K(k
′
1)

K(k
′
0)

K(k0)
+

(εr2 − εr1)

2

K(k2)

K(k
′
2)

K(k
′
0)

K(k0)
. (2.49)

Figure 2.6 shows εeff,qs and Z0 as a function of the dielectric height h1 and

the three realized aspect ratios of our CPW section. w + 2g = 30 µm is

constant in all designs of the MS resonator. The dielectric with height h2

has an εr2 = 4.69 (SiO2). Depending on the production run of Hypres, Inc.,

h2 is either 500 nm or 50 nm, where the latter case refers to our designs.

The other dielectric layer has h1 ≈ 600 µm and εr1 = 11.9 (Si). For a height

h1 = 50 µm the effective dielectric constant εeff,qs ≈ 6.37 can be assumed to

be constant for all three aspect ratios and we will use this value for further

calculations. Even though one could neglect the last term in (2.49) due to
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the very thin SiO2 layer2 the complete expression is given for the sake of

completeness.

Figure 2.6: Effective dielectric constant εeff,qs and characteristic impedance Z0

for different aspect ratios as a function of dielectric height h1.

Dispersion in CPW

An empirical formula to compute εeff(f) of the CPW shown in Figure 2.5 has

been obtained by curve fitting the dispersion data using the spectral domain

method and is given in reference [22] as√
εeff(f) =

√
εeff,qs +

√
εr −

√
εeff,qs

1 + aF−1.8
(2.50)

where

F =
f

fTE

and fTE =
c

4h
√

εr − 1
(2.51)

are the normalized frequency and the cut-off frequency (for the lowest-order

TE mode), respectively. Equation (2.50) disregards the presence of a double-

layer dielectric substrate. For our case however, this is not important as

2Calculations showed that even when h2 would have been 500 nm, εeff,qs is mainly
dominated by the thick Si-layer leading to approximately the same dielectric constant.
Actually, the effect of the SiO2 dielectric is only noticeable when h2 is increased to≈ 1.7 µm
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we will neglect the very thin SiO2 layer in our calculation and therefore

εr = εr1 = 11.9. The factor a in (2.50) is computed from the expression

log(a) ≈ u log

(
w

g

)
+ v (2.52)

where u and v depend on the substrate thickness h1 and are given by
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Figure 2.7: Frequency dependent effective dielectric constant εeff(f) for three
different aspect ratios. The cut-off frequency fTE ≈ 454 GHz is indicated by the
dotted line.

u ≈ 0.54− 0.64q + 0.015q2 , (2.53)

v ≈ 0.43− 0.86q + 0.540q2 , (2.54)

with

q = log

(
w

h1

)
. (2.55)

Expression (2.50) is claimed to be valid up to the THz regime with an ac-

curacy better than 5 % for 0.1 < w/g < 5, 0.1 < w/h1 < 5, 1.5 < εr < 50,
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and 0 < f/fTE < 10. In order to stay in this range of recommended pa-

rameters the calculations are carried out for a height h1 = 50 µm as the

minimum width for our CPW section is wmin = 5 µm. Figure 2.7 presents

the calculated data. The CPW shows negligible dispersion for frequencies

f < 100 GHz. Compared to the MS (see Figure 2.4), εeff(f) increases more

gradually in this regime until f is comparable to the cut-off frequency. At

infinite frequencies εeff(f) approaches εr.

In order to legitimate the assumption h1 = 50 µm for our calculations a

section of CPW with an aspect ratio of 2/3 and dimensions as encountered

0

1

0.5

µm

0

- 20
µm0- 15 15

Figure 2.8: 2D plot with color-coded equipotential lines for a section of CPW
with aspect ratio 2/3 and w = 20 µm.

in our design was simulated using the FemLab c© software. Unfortunately the

material library did not include perfect electric conductors (PEC) or super-

conductors, so the simulation was carried out for a thin copper film. Figure

2.8 shows a 2D plot with color-coded equipotential lines. The potential across

the inner conductor and the groundplanes is assumed to be static. In a depth

of 20 µm from the dielectric-conductor interface the normalized potential de-

creases to ≈ 25% of its value at the surface. Under these circumstances the

approximation for h1 = 50 µm seems quite reasonable.
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2.3.3 Superconducting Microstrip

The definitions of the fundamental transmission line parameters are still valid

for MS consisting of superconducting materials. Now we have to derive

expressions for the inductance L, the capacitance C, and the attenuation

α that take into account superconducting materials.

Inductance

In general, the inductance per unit length of a superconductor consists of

two different parts. The internal or kinetic inductance is associated with

the kinetic energy of the Cooper pairs and the external inductance with the

energy stored in the external field outside the superconductor. This inter-

pretation results from the expression for the energy stored in the magnetic

field and is given in reference [23] as,

Wm =

∫
all space

1

2
µH2 dV +

∫
SC

1

2
mv2n dV , (2.56)

where m, v, and n are the mass, velocity, and density of the Cooper pairs, re-

spectively. For a superconductor of uniform cross section and current density

J whose material properties are independent of H and J, Equation (2.56)

can be expressed as

Wm =
1

2
LextI

2 +
1

2

m

ne2

l

A︸ ︷︷ ︸
Lkin

I2 (2.57)

where l is the length and A is the cross-sectional area of the superconductor.

The concept of kinetic inductance is inherent in the London theory of super-

conductivity.

W.H. Chang derives in reference [24] an analytical formula to calculate the in-

ductance of a finite-width superconducting strip transmission line using con-

formal mapping techniques and evaluating the fluxoid of the strip line. The

formula gives an accurate inductance value when the aspect ratio w/h > 1

and is given by

L =
µ0

wF (w, h, ts)

[
h + λs coth

(
ts
λs

)
+ λg coth

(
tg
λg

)]
, (2.58)
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Figure 2.9: The fringe field factor F (w, h, ts) as a function of the aspect ratio.
This plot is taken from reference [24].

where λs and λg are the penetration depths3 of the metal strip and the

groundplane, respectively. The first term in Equation (2.58) represents the

contribution due to the external field (Lext), the second term is the contri-

bution from the strip conductor, and the last term is the contribution from

the groundplane (the second and third term thus represent Lint ). F (w, h, ts)

is called the fringe field factor and is plotted in Figure 2.9 for different ra-

tios ts/h. When the aspect ratio w/h → ∞, then F (w, h, ts) → 1 and

Equation (2.58) reduces to that derived by Swihart in reference [25]. When

the fringe field cannot be neglected, the inductance is reduced as though the

width of the strip line is increased by a factor of F (w, h, ts). With ts = 600 nm

and h = 500 nm, the MS sections of all our resonators have a ratio ts/h ∼ 1,

and an aspect ratio w/h = 10 leading to a fringe field factor F (w, h, ts) ∼ 1.4

3 In general, the London penetration depth is temperature dependent and is given by
λ(T ) = λ(0)

(
1− (T/Tc)4

)−1/2. The measured Tc(H = 1000 Oe) of our Nb-MRs is 8.6
K (Tc(H = 0 will be slightly higher). As our measurements are carried out at 4.2 K this
leads to an error of approximately 3% when neglecting the temperature dependence in
Equation (2.58).
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and therefore reducing the inductance by almost 30% of its value when fringe

fields are neglected. With w = 5 µm, λs,g = 90 nm, ts = 600 nm, and

tg = 300 nm the calculated external inductance is Lext = 90 nH/m while the

contribution from the internal inductance is Lint = 32 nH/m, leading to a

total inductance of Ltot = 122 nH/m. Thus, neglecting the internal induc-

tance would cause another error of approximately 30%. The values for λs,g

and ts,g are taken from reference [26].

Capacitance

The capacitance per unit length of a superconducting strip line is the same

as for the normal conducting case and is given by

C =
εeff(f)ε0w

h
F (w, h, ts) , (2.59)

where εeff(f) is the frequency-dependent effective dielectric constant calcu-

lated in 2.35. Calculating the capacitance per unit length in the frequency

regime of interest (0 - 10 GHz) yields a mean value of C = 0.52 nF/m.

Attenuation

In section 2.2.2 we derived an expression for the attenuation constant α in

the case of a low-loss line,

α ' R

2Z0

+
GZ0

2
= αc + αd , (2.60)

where αc represents the attenuation due to conductor losses while αd accounts

for losses in the dielectric. In general, there is one more source for attenu-

ation namely radiation loss. However, for our frequency regime of interest,

f < 10 GHz, these losses can be neglected. The characteristic impedance for

the superconducting case Z0 =
√

L/C can be easily calculated using Equa-

tions (2.58) and (2.59). In general, the shunt conductance is given by

G = ωC tan δ , (2.61)

where C is the capacitance per unit length from Equation (2.59) and tan δ is

the so called loss tangent. The loss tangent is a frequency dependent value,
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defined as the ratio between the real and the imaginary part of the total

displacement current4. It was difficult to find appropriate values for the loss

tangent of SiO2 for a frequency span of 0 - 10 GHz in literature5. In ref-

erence [27] the value for the loss tangent for fused quartz (which consists

mainly of SiO2) at 10 GHz is given by tan δ = 3 · 10−4. This value will be

taken for further calculations.

For the evaluation of R in Equation (2.60) we will shortly introduce the

two-fluid model for superconductors which is discussed in more detail in var-

ious textbooks, e.g. [28]. In the framework of this model, current is carried

by two non-interacting fluids consisting of normal and superconducting elec-

trons, respectively. Like electrons in normal metals, the normal electrons

are causing dissipation which can be modeled by a channel consisting of a

resistor in parallel with an inductor. The channel for the superconducting

electrons, however, manifests itself as a purely inductive channel. Figure

2.10 shows an equivalent circuit representing the basic idea of the two-fluid

model. The total current density is the sum of the current densities for the

normal and superconducting channel, Jtot = Jn +Js. This leads to a complex

conductivity for superconductors given by

σ = σ1 − jσ2 = σ1n − j(σ2n + σ2s) , (2.62)

where the indices n and s denote normal and superconducting charge carri-

ers, respectively. The full expression for the complex conductivity σ is given

in reference [28],

σ =
nne

2τ

m(1 + ω2τ 2)
− j

(
nne

2ω2τ 2

mω(1 + ω2τ 2)
+

nse
2

mω

)
. (2.63)

Here, nn and ns are the number densities of electrons in the normal and

superconducting channel, τ is the momentum relaxation time, ω = 2πf is

4The loss tangent is defined as tan δ = ωε
′′

+σ
ωε′

. ε
′

and ε
′′

are the real and imaginary
part of the complex permittivity ε and σ is the conductivity. See reference [27] for further
reading.

5The Hypres, Inc. design rules given in reference [26] lack any information about the
loss tangent of their SiO2 dielectric. Up to now, no measurements were performed to
determine tan δ [S. Tolpygo, Hypres, Inc.; private communication].
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Figure 2.10: Equivalent circuit for the admittance of a unit volume of supercon-
ductor in the two-fluid model.

the angular frequency, and m is the mass of the charge carriers. As we will

see later on, the number densities are temperature dependent.

For frequencies f < 100 GHz we can approximate ω2τ 2 � 1 and Equa-

tion (2.63) gives the effective conductivity in the form

σeff = σn
nn

n
− j

1

ωµ0λ2
, (2.64)

where n = nn + 2ns is the temperature independent total density of conduc-

tion electrons in the normal state, σn = ne2τ/m is the conductivity in the

normal state, and

λ =

√
m

µ0nse2
(2.65)

is the London penetration depth. As mentioned before the number densities

for the paired and unpaired electrons are temperature dependent,
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nn(T ) = n

(
T

Tc

)4

, (2.66)

ns(T ) =
1

2
n

(
1−

(
T

Tc

)4
)

, (2.67)

where Tc is the transition temperature for the superconducting state. The

factor 1/2 in Equation (2.67) arises from the fact that Cooper pairs con-

sist of two electrons with opposite spin and momentum. Equations (2.66)

and (2.67) are of course only valid for T ≤ Tc.

The resistance R per unit length is now given by,

R =
<{2ZS}

w
, (2.68)

where

ZS =

√
jωµ0

σ
, (2.69)

is the complex surface impedance of the superconductor. < denotes the real

part and the factor 2 arises as we have to take into account both, the metal

strip and the ground plane. Inserting the two-fluid relation for the effective

conductivity σeff from Equation (2.64) into Equation (2.69), using a binomial

expansion and the fact that

n
(2.66)
= nn(T )

(
T

Tc

)−4

, (2.70)

the expression for the resistance R can finally be written as

R =
ω2µ2

0λ
3σn

w

(
T

Tc

)4

. (2.71)

In reference [29], Mattis and Bardeen developed a microscopic theory for

the complex conductivity that is more complicated and contains the effect

of the energy gap as well as a more correct way of handling the paired and

unpaired electrons. The limit of every model describing the high frequency
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properties of superconductors is the fact that photon energies higher than

twice the energy gap ∆(0) destroy superconductivity due to the breaking up

of Cooper Pairs. In reference [30] one finds 2∆(0) ≈ 3 meV for Niobium

which leads to a frequency of f ≈ 725 GHz. This frequency is much higher

than the operation frequencies of our MR, which are in the range of 2 - 10

GHz.

Inserting Equations (2.61) and (2.71) into Equation (2.60) gives the total

attenuation in Nepers/m. Nepers can be converted to dB by multiplying

Figure 2.11: Frequency and temperature dependance of the attenuation α.

with the factor 8.686. Figure 2.11 shows the attenuation α as a function

of frequency f and normalized temperature T/Tc. We calculated the data

for this plot with the same set of parameters as encountered in our real

MR design: transition temperature of Niobium Tc(H = 1000Oe) = 8.6 K,

normal conductivity of Niobium6 σn = 6.93 · 106 S/m, London penetration

depth λ = 90 nm, width w = 5 µm, aspect ratio w/h = 10, strip thickness

6http://de.wikipedia.org/wiki/Niob
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ts = 600 nm, ground thickness tg = 300 nm, effective dielectric constant

εeff(10 GHz) = 4.25, and fringe field factor F (w, h, ts) = 1.4. As expected the

attenuation is increasing both with temperature and frequency. In general,

the increase of αd is due to heating effects in the dielectric region between

the two conductors and scales linearly with frequency. The increase od αc

is mainly determined by the power dissipation of currents flowing in a thin

region ∼ λ of the conductors and scales with ω2. The calculated attenuation

is only an approximate value as we neglected the temperature dependence

of λ and the penetration depth enters by the power of 3. On the one hand,

for a measuring temperature of T = 4.2 K the error is only ∼ 10%. On

the other hand, for T → Tc where λ diverges, one should take the calculated

values from Figure 2.11 with a pinch of salt. Figure 2.12 shows αd and αc as

function of frequency for a temperature of T = 4.2 K. In the superconducting

state, the conductor losses are negligible compared to the dielectric losses.

Furthermore, the calculated values for the attenuation are in good agreement

with literature values found in references [31] and [32].
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Figure 2.12: αd and αc as function of frequency for T = 4.2 K.
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2.3.4 Superconducting Coplanar Waveguide

In this section we will shortly present the expressions for the inductance and

attenuation in a superconducting CPW.

Inductance

In analogy to the superconducting MS, we have to take into account the two

different contributions to the total inductance of a superconducting CPW,

L = Lint + Lext. However, the contributions from Lint are very small and it

will be shown that they can be neglected for our case. In reference [33], a

closed form expression for Lint is calculated for a static field approximation

and by comparison with results from a partial wave analysis. In order to

show that the contributions from the internal inductance are negligible in

our case, we first have to derive an expression for Lext. Using the general

expression for the characteristic impedance we obtain,

Z0 =

√
L

C
=

L√
LC

= Lvph
(2.41)
= L

c
√

εeff,qs

. (2.72)

Now, solving for L and using the relation for Z0 from Equation (2.48) we

get

=⇒ Lext = Z0

√
εeff,qs

c

(2.48)
=

30π

c

K(k
′
0)

K(k0)
=

µ0

4

K(k
′
0)

K(k0)
, (2.73)

where all quantities are defined as in section 2.3.2. For the three differ-

ent aspect ratios k0 = 1/6, 1/3, and 2/3 that are realized in our de-

signs we calculated values for the external inductance per unit length of

Lext = 634 nH/m, 491 nH/m,and 331 nH/m, respectively.

The expression for Lint is strongly dependent on λ and the aspect ratio of

the CPW and is given by

Lint = µ0λ
C

4ADK(k0)

(
1.7

sinh(t/2λ)
+

0.4√
[(B/A)2 − 1][1− (B/D)2]

)
,

(2.74)

where
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Figure 2.13: Internal inductance for the different aspect ratios of the CPW
section realized in our design calculated from the closed form expression in refer-
ence [33].

A = − t

π
+

1

2

√(
2t

π

)2

+ w2 ,

B =
w2

4A
,

C = B − t

π
+

√(
t

π

)2

+ g2 ,

D =
2t

π
+ C .

(2.75)

The quantities w, g, and t are defined as in Figure 2.5 and the temperature

dependence of λ is explicitly suppressed here (see footnote on page 31). Fig-

ure (2.13) shows the calculated values for Lint as a function of λ. In our case,

the penetration depth is λ = 90 nm leading to Lint < 20 nm/H � Lext for all

aspect ratios. Thus, at low temperatures, the characteristic impedance for

the superconducting CPW is mostly dominated by the expression for Z0 for

the normal conducting case. Finally, we give a short error estimation con-

cerning the temperature dependence of λ. For T = 0.9 Tc the temperature

dependent penetration depth is ∼ 1.7 times its value at T = 0 K. Even for
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λ = 1.7 · 90 nm ≈ 150 nm the assumption Lint � Lext is still a very good

approximation, leading to an error < 5% for all aspect ratios.

Attenuation

In this section we will again neglect the loss due to radiation as it is small

compared to conductor and dielectric losses. In reference [34] an expression

for αc is found which is valid for arbitrary conductor thickness,

αc ≈
Rsmb2

16Z0[K2(a/b)](b2 − a2)

(
1

a
ln

(
2a(b− a)

∆(b + a)

)
+

1

b
ln

(
2b(b− a)

∆(b + a)

))
,

with a = w/2 and b = w + 2g = 30 µm for all our designs. This expres-

sion takes into account losses occurring in the center strip conductor and in

the two ground planes. The groundplanes are assumed to extend to infinity,

which is a good assumption for our MR as we will see later on. ∆ is the so-

called stopping distance which takes into account the edge profile θ, the strip

thickness t, and the material properties. As we have no data for the edge pro-

file we assume θ = 90◦. Various values for ∆ are listed in reference [21]. For

our case, the stopping distance was estimated to be ∆ = 10/3 nm. K(a/b) is

the complete elliptic integral of the first kind and Rsm is a modified surface

impedance for a superconductor strip of thickness t given by

Rsm = µ0ωt=
{

cot(kct) + csc(kct)

kct

}
. (2.76)

Here, the complex wavenumber kc in a superconductor enters,

k2
c = (1/λ)2 + 2j(1/δs)

2, (2.77)

with

δs =

√
2

µ0ωσn

being the skindepth of the conductor. Figure 2.14 shows αc for the different

aspect ratios of our samples. Note, that for w = 10 µm the conductor losses

are smallest; αc is not linear in the aspect ratio. As expected, the conductor

losses are very small and may be neglected in comparison to dielectric losses
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Figure 2.14: αc as a function of frequency for the realized aspect ratios of our
CPW section.

as we will see.

The attenuation constant due to dielectric losses is the same as for a normal

conducting material. An expression for the attenuation constant due to di-

electric losses is given in reference [35] as

αd =
π

λ0

εr√
εeff,qs

q tan δ [Neper/m] , (2.78)

where λ0 is the free-space wavelength and tan δ is the loss tangent. εr and

εeff,qs are the relative and effective dielectric constant, respectively. The filling

factor q takes into account the geometry of the CPW and can be rewritten

in terms of εr and εeff,qs,

q =
εeff,qs − 1

εr − 1
. (2.79)

Thus, the geometry enters through the different εeff,qs for different aspect

ratios. However, in our case q = 0.49 is a constant numerical factor as

εeff,qs = 6.37 for all realized aspect ratios and frequencies of interest (see sec-
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tion 2.3.2). With εr = 11.9 and tan δ = 0.004 at 10 GHz for Si7 we get the

result

αd ≈ 8.41 · 10−10 f [dB/m] . (2.80)

Figure 2.15 shows the frequency dependence of αd. The dielectric losses
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Figure 2.15: αd as a function of frequency. αd is not dependent on the aspect
ratios as we assumed a constant εeff,qs for the frequency range of interest.

exceed the conductor losses at least by a factor of 20. Comparing these

values with those of the MS shows, that the dielectric losses in the CPW are

the dominating factor and probably are the main source for a decrease in

the quality factor of our MRs. The high values of αd are mainly due to the

presence of a dielectric with a higher permittivity. Replacing the Si dielectric

with SiO2 would reduce αd by 3 dB/m for f = 10 GHz.

7Many different values for the loss tangent of Si were found in literature, though they
may vary by a factor of 3. In reference [27] for instance, the loss tangent is stated to
be tan δ = 0.004 at 10 GHz while in reference [17] a value of tan δ = 0.01 for the same
frequency is found. As we have taken already the tan δ value for SiO2 from reference [27]
we will do so for Si, too.
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2.4 Distributed Resonators

Resonant circuits can be formed by combining discrete capacitors and induc-

tors in parallel or series. These are so-called lumped-element resonators as

their dimensions are small compared to the wavelength λ. In this type of

resonators the capacitors are used for storing electric energy while the induc-

tors store magnetic energy. Thus, both energies are stored in different spatial

regions of the resonator. At the resonance frequency there is an exchange of

energy between the capacitor and the inductor every quarter-cycle.

In contrast to the lumped-element resonators, the distributed resonators (usu-

ally formed by transmission lines) share the same region for storing electrical

and magnetic energy and their dimensions – at least along one spatial coor-

dinate – is comparable to the wavelength.

Whenever there is a mismatch of impedance between a transmission line

and a load, reflections will occur. If the incident signal is a continuous ac

waveform, these reflections will mix with the incident waveform to produce

stationary waveforms, so-called standing waves. Depending on the termi-

nation impedance at the load end, transmission lines exhibit resonances at

frequencies determined by the physical length l and the phase velocity vph.

In this section we will focus on the short-circuit load (ZL = 0) and the

open-circuit load (ZL = ∞). For both loads the incident wave will be fully

reflected and the standing wave has to fulfill the boundary conditions at the

short and open, respectively. This situation is analogous to standing sound

waves in tubes.

In general, one can distinguish between asymmetrically and symmetrically

distributed load ends which is schematically shown in Figure 2.16 (a) and (b),

respectively. In the case of a microstrip geometry, the short can be realized

by etching or milling a hole through the strip conductor and the dielectric

and then short the strip conductor to the groundplane.

For a fixed length l and in the case of two different load ends, only odd mul-

tiples of a quarter-wavelength can fulfill the different boundary conditions.

This situation is shown in Figure 2.16 (a) and this type of resonator is referred

to as λ/4-resonator. In the case of symmetrical load ends, only even multi-

ples of a quarter-wavelength satisfy the boundary conditions and one speaks

of a λ/2-resonator. This situation is shown in Figure 2.16 (b). Replacing the

short by an open and vice versa does not change the type of resonator, how-

ever, in the standing wave patterns of Figure 2.16 one has to replace voltage
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0 λ/4 0 λ/2

Open Open OpenShort
(a) (b) ZL = ∞ZL = ∞ZL = ∞ ZL = 0

Figure 2.16: Standing wave patterns for a section of a transmission line. (a)
Standing wave pattern for asymmetrically distributed load ends leading to λ/4-
resonator. (b) Standing wave pattern for symmetrically distributed load ends
leading to λ/2-resonator.

by current and vice versa. The most convenient way to couple these types of

resonators to the external circuitry is by means of coupling capacitors. The

presence of coupling capacitors effectively modifies the load impedance seen

by the electromagnetic wave, however, as long as the coupling capacitors are

small enough, ZL = ∞ and ZL = 0 are good approximations8. The MR to

be discussed in the next chapter can be modeled as an open λ/2-resonator.

The resonance frequencies of these types of resonators are given by

fn,λ/4 = n
vph

4l
(n odd) , (2.81)

fn,λ/2 = n
vph

4l
(n even) . (2.82)

8The actual value of the coupling capacitors for which the assumption ZL = ∞ and
ZL = 0 are still valid strongly depends on the overall dimensions of the resonator. The
coupling capacitors will be discussed in more detail in section 3.2.
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The Superconducting

Microstrip Resonator

3.1 Introduction

A. Wallraff et al. experimentally showed strong coupling between a super-

conducting charge qubit, the Cooper Pair Box, and a superconducting CPW

transmission line in reference [15]. For this purpose, transmission line res-

onators with a high internal quality factor Q are needed. The layout for the

superconducting Microstrip Resonator (MR), to be discussed in this chapter,

is based on the design of the dc SQUID microstrip amplifier originally pro-

posed by M. Mück and J. Clarke in reference [36]. M. Mariantoni suggested

this design for qubit manipulation and readout provided that the MR has

both, a high quality factor Q > 104 and a high cavity-qubit coupling g in

order to access the strong coupling regime of Circuit-QED.

In this Chapter the general layout of the MR is presented. We used the stu-

dent version of the Xic c© software from Whiteley Research, Inc. for designing

our structures. Expressions for the resonance frequencies and the quality

factor Q are presented and the presence of a slitted washer groundplane, ef-

fectively increasing the inductance per unit length of our transmission line,

will be taken into account. The coupling capacitances of the MR as well as

the washer inductance are estimated using the FastHenry c©, FastCap c©, and

3D-MLSI c© simulation software. Finally, we theoretically discuss the quality

factors and the resonance frequencies of our MR.
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3.2 General Layout

Signal Input Grounding Pads

Signal Output

Groundplane

RESONANT CIRCUIT

1.2 mm

Figure 3.1: Photograph of a MR fabricated at Hypres, Inc.

The MR is a distributed transmission line resonator consisting of a niobium

spiral coil deposited on top of a SiO2 dielectric over a niobium groundplane.

It has a microstrip geometry with a cross-section shown in Figure 2.3. Figure

3.1 shows a photograph of the whole chip containing the signal in- and output

ports as well as the grounding pads of the groundplane. These pads consist

of a thin Ti/PdAu film with a thickness of approximately 350 nm. The ac-

tual resonant circuit is defined by the section of transmission line coupled

capacitively to the in- and output ports and is magnified in Figure 3.2. It is

important to note, that the resonant LC-circuit is formed by the inductance

of the coil and the capacitance between coil and groundplane and not by the

capacitance of the coupling capacitors.

Looking at Figure 3.2 it becomes clear why we also discussed the CPW so

intensely: in order to leave the uppermost layer containing the spiral input

coil we have to break-through the dielectric layer and make a connection to

a small section of CPW. In the following, this MS-to-CPW transition is re-

ferred to as via. Usually, vias are fabricated by etching a hole through the

dielectric layer followed by metallization of the hole.
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The via is a critical point in the design of our resonator since the impedance

of the MS (ZMS) is not equal to the impedance of the CPW section (ZCPW).

According to the Hypres, Inc. design rules given in reference [26], the via

must have a minimum edge length of 3 µm and the niobium surrounding it

must exceed the vias dimensions by at least 1.5 µm. Thus, the minimum

width of the MS section was chosen to be 5 µm. The thickness of the SiO2

dielectric can not be changed and has a value of h = 0.5 µm. With the cal-

culated values for L and C in section 2.3.3 we get a characteristic impedance

of

ZMS =

√
L

C
=

√
122 nH/m

0.52 nF/m
= 15.7 Ω . (3.1)

Increasing the width would decrease the characteristic impedance as ZMS

Coupling
Capacitors

Groundplane

Section of CPW

MS Spiral Coil

MS-to-CPW
Transition

100 µm

Figure 3.2: Magnified view on the actual resonant LC-circuit.

is proportional to 1/w. On the other hand, we have some restrictions con-

cerning the CPW section. For this layer the design rules require a minimum

spacing of 2.5 µm between adjacent conductors which is then determining

our minimum gap width g. In general, a smaller gap g leads to a smaller
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w[µm] 10 50 250 2500 20000

ZCPW [Ω] 38.4 26.5 21.7 17.6 15.7

Table 3.1: Calculated impedances for a minimum gap g = 2.5 µm using the
TXLine c© software package

impedance. To make a quick estimation of the width necessary to achieve an

impedance around 15 Ω when the gap is fixed to g = 2.5 µm, we used the

software tool TXLine c© from Applied Wave Research, Inc., which is capable

of calculating impedances for various passive circuits and corresponding di-

mensions. The calculations were carried out for a conventional CPW with a

height of h = 50 µm, a conductor thickness of t = 0.3 µm, an εr = 11.9 and

a loss tangent of tan δ = 0.015.

Table 3.1 shows the calculated impedances for different values of w of the

CPW center strip. For a conventional MS, impedance matching at the point

of the via would be impractical if we chose reasonable dimensions for our

transmission lines. In the next section, we will see how the presence of a slit-

ted groundplane will influence the properties of our MS leading to a higher

impedance and thus better matching. We decided to design our CPW section

with a fixed w + 2g = 30 µm and designed three different center strips with

a width of w = 5 µm, 10 µm, and 20 µm, respectively. Using Equation (2.48)

we calculate the following impedances for our different CPW sections:

ZCPW,1/6 = 75.3 Ω ,

ZCPW,1/3 = 58.5 Ω ,

ZCPW,2/3 = 39.3 Ω .

(3.2)

3.2.1 Mode of Operation

In section 1.4 we discussed the coupling between a resonant transmission

line and a rf-SQUID qubit. The coupling g depends upon the mutual in-

ductance between the qubit and the LC-circuit and on the currents flowing

in the qubit and the transmission line. Now we will have a closer look on

the presence of a slit in our superconducting groundplane. Figure 3.3 shows
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Φ

(a) (b)

W

d

Figure 3.3: (a) In the absence of a slit, the current in the input coil (red) is fully
screened by a counter-rotating current in the washer (blue). (b) The slit forces
the screening current in the washer to complete its path by turning in towards the
center of the washer and around the hole. This creates a net flux Φ in the center
of the washer and thus increases the inductance in the input coil.

a schematic comparison between the paths of the screening currents (blue)

with and without a slit in the washer. In the absence of the slit, screening

currents in the washer are able to completely cancel the flux induced by the

input current in the coil. The coil thus behaves as if it was stretched out

linearly over an infinite groundplane. In the presence of the slit, however, the

screening currents are forced to complete the circuit by following the inner

path around the slit and washer hole. This current is not balanced by an

oppositely directed current in the input coil and thus establishes a flux Φ in

the center of the washer. This flux in turn increases the inductance reflected

into the input coil.

In the model of Ketchen and Jaycox given in reference [37], the total induc-

tance of a n-turn coil tightly coupled to washer with inductance Lwasher is

found to be

Ltot ' lL + n2Lwasher , (3.3)

where l is the length of the input coil and L is its self-inductance per unit

length. This effect is increasing the characteristic impedance of the MS sec-
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tion and decreasing the resonance frequency of the MR as we will see later

on. Furthermore, Ketchen and Jaycox state that the coupling coefficient α2

and the mutual inductance between the washer and the coil are given by

α2 '
(

1 +
L

n2Lwasher

)−1

, (3.4)

M ' nL . (3.5)

The spiral input coil and the washer groundplane are coupled in essentially

the same manner as a n : 1 turn thin-film transformer.

Estimate of the Washer Inductance

In reference [37] Ketchen and Jaycox present a closed form expression for the

inductance of a washer groundplane as shown in Figure 3.3 (a),

Lwasher = 1.25µ0d for W > d , (3.6)

where d is the width of the hole and W is the outer width of the washer.

The hole size of our MR is d = 100 µm for all designs leading to a washer

inductance of Lwasher = 157 pH. Equation (3.6) does not take into account

the presence of a slit.

To obtain more reliable data, we used two different software tools and mod-

eled the washer groundplane with the exact dimensions we used in our MR

designs. Inductance extraction algorithms need to simulate a current flowing

through the conductor in order to solve the Maxwell- and London Equations.

Thus, current input and output terminals have to be defined and it turned

out that the calculated inductances depend on the location of these termi-

nals. The two grounding pads extending the main washer area (right hand

side of Figure 3.1) acted as current terminals for the simulations. For these

terminals the current path is symmetric around the hole and the slit. In

addition, this configuration yields the longest current path and therefore we

get an upper limit for Lwasher.

One program was the Fasthenry c© inductance extraction program which is

capable of simulating superconducting materials. Another advantage is that
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Figure 3.4: Screenshot of the Xic c© design software in which Fasthenry c© is
implemented. The discretization grid of the area around the washer hole was
chosen to be much smaller than in the rest of the groundplane area.

Fasthenry c© is implemented in the Xic c© software we used for designing our

structures and allows an easy way for discretization the conductor area. Fig-

ure 3.4 shows a screenshot of the washer groundplane and its hole. As men-

tioned before, the screening currents on the washer are following the inner

path around the slit and the hole. In this area the discretization of the con-

ductor was chosen to be much finer than in the rest of the conductor area

in order to obtain more accurate results. Fasthenry c© calculated an induc-

tance of Lwasher = 848 pH in the frequency range from 0 - 10 GHz and for

a thickness of tg = 300 nm. This is more than 5 times the value obtained

using Equation (3.6).

The other program used was the student version of 3D-MLSI c©1 which is

also capable of simulating superconducting materials. In addition, one can

visualize the current streamlines and the relative magnitude of the current

densities. Unfortunately the program lacks the feature of local conductor dis-

cretization. Figure 3.5 (a) shows a screenshot of the complete washer and the

1M.M. Khapaev, Moscow State University, Dept. of Computational Mathematics and
Cybernetics. Email: mkhap@pn.npi.msu.ru, http://www.cmc.msu.ru/vm/sotr/vmhap
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(a) (b)

highlow current density

Figure 3.5: Screenshots of the 3D-MLSI c© inductance extraction program. (a)
Streamline plot of the Niobium groundplane. The terminals of the washer were
chosen to be the two grounding pads that extend the groundplane area. (b) Mag-
nified view of the relative current distribution around the washer hole.

current streamlines calculated with 3D-MLSI c©. The calculated inductance

was Lwasher = 880 pH which is in good agreement with the value calculated

with Fasthenry c©. Figure 3.5 (b) shows a magnified view of the relative cur-

rent densities flowing around the washer hole.

The large discrepancy between the simulated washer inductances and the

inductance obtained by Equation (3.6) is rather disconcerting. The washer

inductance is the dominating term in (3.3) because of the n2 factor. On the

one hand, Clarke and Mück used in reference [36] an inductance calculated

by Equation (3.6). On the other hand, the measured resonance frequencies in

reference [36] are a factor 2 - 3 smaller than predicted by theory. As we will

see later on, the resonance frequency is proportional to 1/
√

n2Lwasher. The

discrepancies in reference [36] could be assigned to a too small washer induc-

tance. Therefore, we will take the result from Fasthenry c© as many groups

published results based on this simulation software, too. Furthermore, this

result contains the effect of the slit which is clearly not included in Equa-

tion (3.6).

The typical length of our spiral input coil is in the range of 0.8 mm - 2.6
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mm. Even for n = 1 the total inductance would be dominated by Lwasher and

therefore we will neglect the self-inductance of the coil. The characteristic

impedance is then given by

ZMS =

√
n2Lwasher

lC
, (3.7)

where l is the length of the input coil. The impedances of the MS section are

increased by the presence of the slitted washer groundplane. The shortest

sample has a length of 0.8 mm and 1 turn, the longest 2.6 mm and 4 turns.

Therefore, the impedances of our MS sections lie in a range of 45.1 Ω -

100.2 Ω. Consequently, αc and αd of the MS section have to be modified while

the expressions for the attenuation for the CPW can be adopted without

change from section 2.3.4.

Modifications of the Microstrip attenuation

In section 2.3.3 we discussed the attenuation of a superconducting MS. In

this model we assumed a conventional infinite groundplane. We now have to

make corrections due to the presence of a slitted washer groundplane that

effectively increases the characteristic impedance ZMS. The expressions for

conductor and dielectric losses from Equation (2.60) assumed a characteristic

impedance Z0 = 15.7 Ω as given in Equation (3.1). Therefore, the calculated

attenuation constants of section 2.3.3 have to be multiplied by a numerical

factor that accounts for the impedance rise in presence of a slitted ground-

plane,

α
′

c = καc , (3.8)

α
′

d = κ−1αd , (3.9)

where αc and αd are given in Equation (2.60). The numerical factor κ is

given by

κ =
15.7 Ω

ZMS

, (3.10)
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where ZMS is the actual impedance of the MS section given in Equation (3.7).

3.2.2 Transmission Line Analysis of the MR

In this section we want to model the MR by means of transmission line theory.

Figure 3.6 shows a schematic view of our resonator and its outer circuitry.

The actual resonator (dotted box) consists of two sections of transmission

line with different impedance, length, and propagation constant γ = α + iβ.

These sections are interconnected through a via and capacitively coupled to

4
321

Figure 3.6: Schematic layout of the Microstrip Resonator. The different sections
are denoted by numbers, Ck,MS and Ck,CPW are the coupling capacitors for the
different transmission line sections, and RL is the 50 Ω load modeling our outer
circuitry.

the outer circuitry represented by a load resistance RL = 50 Ω.

In section 2.2.3 we derived an expression for the input impedance Zin of a

lossy transmission line terminated in an arbitrary load impedance ZL,

Zin(l) = Z0
ZL + Z0 tanh(γl)

Z0 + ZL tanh(γl)
. (3.11)

For deriving Zin for our MR we will use the following iterative procedure:
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• Calculate the impedance Z1 = RL − j/ωCk,MS for section 1 as seen in

Figure 3.6.

• Calculate Zin,2 from Equation (3.11) with ZL = Z1 and Z0 = ZMS from

section 2. Make sure to use the appropriate length lMS and propagation

constant γMS = αMS + jβMS. For the calculation α must be converted

to [Nepers/m]. Note that αMS is the sum of the impedance corrected

expressions from Equations (3.8) and (3.9).

• Use this Zin,2 as new load impedance ZL and calculate Zin,3 with Z0 =

ZCPW, lCPW and γCPW.

• Calculate the overall input impedance in section 4, Zin = Zin,3 −
j/ωCk,CPW + RL.

It is important to note that the propagation constant is a function of fre-

quency, γ ≡ γ(ω), as α and β are frequency dependent. Therefore, Zin ∈ C
is a frequency dependent quantity. At the resonance frequency, the real part

of the input impedance will show a finite Lorentz peak in the frequency do-

main because we are treating lossy lines here. The impedance of an ideal line

would diverge at the resonance frequency.

For the calculation of the phase constant β, the expression from Equa-

tion (2.23) was rewritten in terms of known quantities for the MS and CPW,

βMS = ω

√(
Lwasher

lMS

+ LMS

)
CMS for the MS, (3.12)

and

βCPW = LCPW
ω

ZCPW

for the CPW. (3.13)

Coupling Capacitors

In order to calculate the input impedance of our MR we have to know the

value of our coupling capacitors. To obtain maximum power transfer between

a resonator and a feedline, the resonator must be matched to the feed at the

resonance frequency. The resonator is then said to be critically coupled to
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the feed. In reference [27] an expression for Ck in case of critical coupling is

given and may be rewritten for our case as,

Ck =
bc

ωZMS

, (3.14)

where

bc =

√
π

2Q
(3.15)

is the normalized coupling capacitor susceptance at resonance and Q is the

quality factor of the resonator. As it is clear from Equation (3.14), a change

in the length – and thus in the impedance of the MR – will change the value

of the necessary capacitance for critical coupling. In reference [38] a general

expression for Q is derived

Q ≡ ω · energy stored at frequency ω

average power loss at frequency ω
, (3.16)

which can be rewritten in terms of α and β as

Q =
β

2α
. (3.17)

Here, α and β are the attenuation and phase constant at the resonance fre-

quency. For the purpose of Circuit-QED (external2) quality factors Q > 104

are necessary. The theoretical calculated values for α and β of our MR yield a

maximum (internal) quality factor of Q ' 3·104 leading to a bc ≈ 7.236·10−3.

Therefore, the minimum and maximum values of Ck for critical coupling are

estimated to be

Ck,min =
7.236 · 10−3

2π · 10 GHz · 100.2 Ω
≈ 1.1 fF , (3.18)

Ck,max =
7.236 · 10−3

2π · 1 GHz · 45.1 Ω
≈ 25.5 fF , (3.19)

2The terms internal and external quality factor will be explained on page 59
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in the frequency range from 0 - 10 GHz.

For implementation in our CAD designs we have to extract the capacitance

out of the geometry of the specific capacitors. Therefore, we used the capaci-

tance extraction program FastCap c© that is, like FastHenry c©, included in the

Xic c© design software. It is very important to treat the coupling capacitors

for the MS and CPW sections separately: Firstly, because the groundplanes

in the CPW section have strong influence on the value of Ck and secondly

because the dielectric beneath is different for these sections.

5 x 5 µm2

(a) (b) (c)

Figure 3.7: The three types of coupling capacitors (red) realized in our res-
onators. (a) and (b) represent interdigital finger capacitors while (c) is simply a
gap capacitor. The discretization grid (white) of the FastCap c© software tool is
indicated.

In general, three different types of capacitors are realized in our designs.

Figure 3.7 (a) and (b) are showing interdigital finger capacitors while (c)

represents a simple gap capacitance. The green square in Figure 3.7 has an

area of 25 µm2. A photograph of the different capacitors in the CPW section

is shown in Figure 3.8.

The MS and CPW sections of every resonator are equipped with the same

coupling capacitor though, as mentioned before, the value of Ck,CPW is dif-
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(a) (b) (c)

Figure 3.8: Photograph of the three different coupling capacitors discussed pre-
viously. (a) and (b): interdigital finger capacitors; (c): gap capacitance, here with
a gap width of 30 µm. In (c) a small part of the spiral input coil can be seen.
Note, that due to fabrication processes the edges are not sharp as designed in the
CAD program.

ferent from Ck,MS. In addition the CPW section is realized with different

aspect ratios leading also to slightly different coupling capacitances. Table

3.2 lists values for some of the coupling capacitors realized in our designs.

The indices s, b, and g refer to the capacitors (a),(b), and (c) in Figure 3.7,

respectively. The number after g stands for the width of the gap in µm.

Capacitors in the CPW section have an additional number after the comma,

indicating the center strip width of the CPW.

Table 3.2 lists approximate values since the fabrication at Hypres, Inc. in-

volves photolithographic and etching processes. Thus, the size of structures

on the wafer may differ somewhat from the design layout. The Hypres, Inc.

design rules (see reference [26]) state the following biases for the different

layers:

• MS-layer: (−0.2± 0.25) µm

• CPW-layer: (−0.3± 0.25) µm
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Capacitor Value [fF]

Cs 1.7

Cb 6.8

Cg5 0.6

Cg10 0.5

Cs,5 1.8

Cs,20 2.0

Cb,20 10.0

Cg5,20 1.4

Cg10,20 0.9

Table 3.2: Values for the coupling capacitors calculated by FastCap c©. The
indices s, b, and g stand for small, big, and gap, respectively. The number after
g is the width of the gap in µm. A comma followed by a number stands for the
capacitors in the CPW section, the number is the width of the CPWs center strip.

Quality Factors – Over- and Undercoupled Resonators

The quality factor defined in the preceding section is the internal quality fac-

tor Qint of the resonant circuit in the absence of any loading effects caused

by external circuitry. In practice, however, a resonant circuit is invariably

coupled to external circuitry giving rise to the definition of an external quality

factor Qext. Then, the overall, or loaded quality factor QL can be expressed

as

1

QL

=
1

Qint

+
1

Qext

. (3.20)

In Appendix B an expression for the external quality factor in dependence

on known quantities is derived. The important fact is, that there are two

regimes for our MR. On the one hand, if Ck is small enough, the resonant

circuit will be undercoupled and the measured quality factor QL ≈ Qint. On

the other hand when Ck is large, the resonant circuit is said to be overcoupled

allowing the measurement of QL ≈ Qext. As mentioned before, for Circuit-

QED experiments an external quality factor of Qext > 104 is favorable.

For any frequency the normalized susceptance bc of a coupling capacitor Ck

of our MRs may be written as
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bc = ωCkZMS . (3.21)

Remember, that Equation (3.15) was only valid at the resonance frequency.

Therefore, we can conclude:

Ck <
1

ωZMS

√
π

2Q
→ undercoupled → Qint (3.22)

Ck >
1

ωZMS

√
π

2Q
→ overcoupled → Qext (3.23)

Actually, this discussion is only reasonable for the MS section of our MRs.

Due to the very short length of our CPW section its internal quality factor is

in the range of 100-300 leading to a bc ten times larger than that for the MS.

Therefore, the capacitors at the CPW section should be a factor ten times

larger which is impractical for our designs.

3.3 Resonance Frequencies

In the preceding section we derived a way to calculate the resonance frequen-

cies of our MRs by means of transmission line theory. However, the standard

expression for calculating the fundamental resonance frequency of an elec-

tromagnetic resonator is found in many textbooks (e.g. [39]) and is given by

f0 =
vph

2l
, (3.24)

where vph = (LC)−1/2 is the phase velocity of the wave and l = λ/2 is the

length of the resonator. L and C are quantities given per unit length. For

our MR we have to include the increase of the inductance due to the presence

of the slitted groundplane. Therefore the fundamental resonance frequency

occurs at

f0,λ/2 =
1

2
√

(lL + n2Lwasher) · lC
. (3.25)

The value of the resonance frequency is, as mentioned before, dominated by
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the inductance of the washer. We neglected here the contribution from the

short CPW section. The resonator is equivalent to a parallel tuned circuit.

Higher order resonance frequencies are easily calculated from Equation (3.25),

fn,λ/2 = f0,λ/2 + n · f0,λ/2 , n ∈ N . (3.26)

In the next chapter we will compare the measured resonance frequencies with

the one obtained by the transmission line model and by Equations (3.25)

and (3.26).
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Experimental Results

4.1 Introduction

In this chapter, the S-parameter measurements of several Microstrip Res-

onators (MR) are presented. The critical temperature Tc of a MR was de-

termined in a SQUID magnetometer. The relevant dimensions of the MRs

are summarized in Table 4.1 on page 76. A complete overview over all pro-

duced samples is found in Appendix C. We will begin with the presentation

of the measurement setup, the sample box, and the different printed circuits

boards used to mount the MRs. A brief introduction to S-parameters will be

followed by a discussion of the calibration scheme. After the presentation of

the experimental results we will give a conclusion and an outlook concerning

improvements of the MR design and the calibration scheme. Finally, the

cryogenic wafer probing system – allowing for measurements at 4.2 K with-

out outer circuitry (e.g. bonding wires and printed circuit boards) – will be

presented.

4.2 Measurement Setup

Figure 4.1 shows a schematic of the measurement setup. The setup consists

of a cryostat where the device under test (DUT) is mounted onto a sample

holder. A HP8722D network vector analyzer (NVA) is connected to the two

ports of the DUT via coaxial cables and V-to-SMA adapters1. The tem-

1These adapters were necessary as the same measurement setup was also used by an-
other student. For his experiments, V connectors were a crucial component so the coaxial
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silicon 
diode

Figure 4.1: Schematic measurement setup. The DUT is mounted onto a sample
holder and cooled down in a cryostat to a base temperature of 4.2 K. A HP8722D
network vector analyzer (NVA) is connected to the DUT via coaxial cables, allow-
ing S-parameter measurements at different temperatures. The temperature was
read out using a NEOCERA LTC-21 temperature controller and a silicon diode at-
tached to the outer surface of the sample holder (red dot). The NVA was controlled
by LabView c© via IEEE.
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perature was measured using a NEOCERA LTC-21 temperature controller

(TC) and a silicon diode attached to the outer surface of the sample holder.

Since the measurement calibration is temperature dependent (c.f. section

4.4) it was essential to monitor the temperature during the measurement.

The NVA and TC were read out via IEEE interface using a PC equipped

with the LabView c© software package. Furthermore, a 90 Ω heating resistor

was attached 10 cm below the sample holder and connected to the analog

heater output of the TC. This heating resistor was used to speed up the

evaporation of liquid helium.

Most measurements were carried out using an output power of the NVA of

Pout = −30 dBm. For output powers much lower than this value, the S-

parameter measurements became very noisy though a qualitative change of

the S-parameters in the power range from -5 dBm to -60 dBm could not be

observed. The NVA is able to measure the S-parameters in a range from 50

MHz to 40 GHz with a maximum of 1601 data points per frequency sweep.

Most of our measurements were carried out in a frequency range from 50 MHz

to 12 GHz. The first fundamental resonance of all our measured samples was

expected to be in that frequency range.

4.2.1 Sample Box and Printed Circuit Boards (PCB)

The measured MRs have an area of approximately 1.2 x 1.2 mm2 (see Figure

3.1). The bonding pads for signal in- and output have a triangular shape

with a base of 150 µm and a height of 180 µm, the grounding pads have an

area of 100 x 100 µm2. The most convenient way of connecting such small

pads is to wire bond the pads to a much larger PCB and then to connect the

PCB to the outer circuitry and the NVA.

Figure 4.2 (a) and (b) show the PCBs used for measurement and calibra-

tion, respectively. The circle in (a) indicates the position where the sample

is glued. Both PCBs are designed in a CPW geometry with a center strip

width of 1.6 mm and a gap of 0.8 mm. The dielectric is RF-35 and has a

permittivity of εr = 3.5, a height of 0.76 mm, and the copper pattern has a

thickness of 35 µm. With this dimensions, the software package AppCad c©

from Agilent Technologies c© calculated an impedance of 50.3 Ω. It is im-

cables were originally produced with this connector type. However, SMA connectors are
much more convenient for our purpose and thus we decided to use adapters (INMET 5154
and a combination of INMET 5149 & Anritsu 34VFK50).
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portant to note, that the PCBs have an additional ground on the backside.

Thus, for impedance calculation one has to make sure to use formulas for a

so-called conductor backed CPW. The in- and output ports of the MR are

then wire bonded to the center strip of the PCB in Figure 4.2 (a). The

chamfered bend of the calibration PCB is a convenient way to reduce par-

asitic capacitances and bend reactances. The design for this mitered bend

was adapted from reference [40].

Figure 4.2 (c) shows the brass sample box containing the calibration PCB.

The SMA connectors are suitable for frequencies up to 18 GHz and the PCB

center strip is connected with the SMA pin via silver glue. This is done

primarily to reduce parasitic capacitances between the pin and the copper

line and to improve electrical contact. A magnified view of the connector pin

attached to the center strip is shown in Figure 4.2 (d). For measurements

the sample box was closed with a bended brass top cover.

1.5 cm

(a) (b)

Measurement PCB Calibration PCB

(c)
(d)

Figure 4.2: (a) 50 Ω measurement PCB. The circle indicates where the MR is
glued. (b) 50 Ω calibration PCB. The chamfered bend is a convenient way of
reducing parasitic reactances. (c) Brass sample box containing the PCB in (b).
The box has inner dimensions of 1.5 cm x 1.5 cm and a height of 1.0 cm. The
two SMA connector pins were attached to the center strip of the CPW PCB with
silver glue. The grounding area of the PCBs were connected to the box with silver
glue. (d) Magnified view of the SMA pin connected to the center strip.
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Initially, we used a different box geometry as well as different PCBs (FR4

dielectric). The measurement results obtained with this old setup were not

convincing. Therefore, the dielectric was changed from FR4 to RF-35 (more

reliable at low temperatures and high frequencies), the dimensions of the

brass box were reduced and the MR was mounted in a small recess in the

PCB to allow for flat bonding wires [Stephan Manus, LMU München; private

communication]. The hole was milled at the position indicated by the circle

in Figure 4.2 (a). Figure 4.3 (a) and (b) show photographs from a bonded

MR and the mounted sample box, respectively.

(a) (b)

Figure 4.3: (a) Photograph of a bonded MR. The aluminum wire bonds over the
copper line are covered with silver glue in order to reduce parasitic capacitances
and improve the electrical contact. (b) Sample box with a bonded MR fastened
to the sample holder.

4.3 S-parameters – The Scattering Matrix

A practical problem exists when trying to measure voltages and currents at

microwave frequencies: direct measurements usually involve the magnitude

and phase of a wave traveling in a given direction. One cannot simply con-

nect a voltmeter or current probe and get accurate measurements due to the



68 Chapter 4: Experimental Results

impedance of the probes themselves and the difficulty of placing the probes

at the desired positions. A representation in accordance with direct mea-

surements, and with the ideas of incident, reflected, and transmitted waves,

is given by the scattering matrix. The scattering matrix provides a complete

description of the network as seen at its N -ports.

Consider the N -port network shown in Figure 4.4, where V +
n is the ampli-

tude of the incident voltage wave at port n, and V −
n is the amplitude of the

reflected voltage wave from port n (n = 1...N). The scattering matrix, or

Figure 4.4: An arbitrary N -port microwave network.
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[S] matrix, is defined as


V −

1

V −
2
...

V −
N

 =


S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

. . .
...

SN1 SN2 · · · SNN




V +
1

V +
2
...

V +
N

 (4.1)

or in short form

[V −] = [S][V +] . (4.2)

An element of the [S] matrix can be written as

Sij =
V −

i

V +
j

∣∣∣
V +

k = 0 for k 6=j
. (4.3)

That means the S-parameter Sij can be found by driving port j with an

incident wave of voltage V +
j and measuring the reflected wave amplitude V −

i

at port i. The incident waves on all other ports k 6= j have to be zero, which

means that these ports have to be terminated in matched loads in order to

avoid reflections. It is important to emphasize that the reflection coefficient

Γi looking into port i is not equal to Sii, unless all other ports are matched.

Similarly, the transmission coefficient from port j to port i is not equal to

Sij, unless all other ports are matched. The S-parameters of a network are

inherent properties of the network and defined under the condition that all

ports are matched. The accuracy of a S-parameter measurement depends

strongly on this condition.

S-parameter measurements can be performed in frequency and time domain

using a network vector analyzer (NVA). For a short explanation of the op-

eration principle of the NVA see reference [27], a more detailed introduction

(also about S-parameters and error correction) is given in reference [41].

The HP8722D NVA displays the S-parameters in a logarithmic magnitude

format though S-parameters are inherently complex, linear quantities. The

conversion between these two different formats is given by

Sij[dB] ≡ 20 · log(|Sij|) , (4.4)
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|Sij| ≡ 10
Sij [dB]

20 . (4.5)

Point of interest

Figure 4.5 visualizes the S-parameters for a two-port network. A network

is called reciprocal when Sij = Sji, which implies [S] = [ST ]. Practically

S11

REFLECTED
S22

REFLECTED

S21

TRANSMITTED

S12

TRANSMITTED

PORT 1 PORT 2

INCIDENT

(FORWARD)
a1

b1

INCIDENT

(BACKWARD)

a2

b2

DUT

Figure 4.5: S-parameters for a two-port network.

this means that interchanging the input and output ports does not change

the transmission properties. Our resonators, as passive devices consisting

of a piece of transmission line, are a good example for reciprocal networks.

This property of our network was verified during several experiments. Non-

reciprocal networks are for example amplifiers and ferrite devices. Further-

more, a network is called lossless when the S matrix is unitary, [S†] = [ST ]−1.

This means that for a lossless network the dot product of any column of [S]

with the conjugate of that column gives unity, e.g. |S11|2 + |S21|2 = 1. How-

ever, this is not the case for our resonators.
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An interesting example is a lossy resonator. Figure 4.6 shows the transmis-

sion and reflection spectrum for an ideal measurement. The peak in the

 

 

Ma
gn

itu
de

 (d
B)

F r e q u e n c y  ( G H z )

 T r a n s m i s s i o n  ( S 1 2 ,  S 2 1 )
 R e f l e c t i o n  ( S 2 2 ,  S 1 1 )

0  

Figure 4.6: S-parameters for an ideal measurement of a lossy resonator.

transmission spectrum is accompanied by a corresponding dip in the reflec-

tion spectrum. The magnitude of Sij at the resonance frequency is called

insertion loss (IL).

4.4 Calibration of the Measurement Setup

In order to measure the S-parameters correctly the NVA must be calibrated

with known calibration standards. These calibration standards are special

connectors representing either a short, an open, or a broadband load termi-

nation. Our DUT is a two port device and the HP8722D provides six types

of calibrations available for 2-port measurements although only the following

three are important for us:
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• S12 response calibration

• S11 1-port calibration

• S22 1-port calibration

A nice overview of the other calibration schemes is given in references [41, 42].

There the interested reader gets more detailed information about the type of

error corrected, too.

4.4.1 Response Calibration – S12

Response calibration is a normalized measurement in which a reference trace

is stored in the network analyzers memory, and later on the measurement

data is divided by the stored trace for normalization. This is the simplest

calibration scheme to perform but only corrects two of the 12 possible sys-

tematic errors. The advantage of this error correction is the fact that only a

50 Ω through standard is needed which is provided by our calibration PCB

in Figure 4.2 (b). Thus, we are able to perform a temperature dependent

calibration2 and we are able to remove the effects of the brass sample box

as well as the attenuation in the PCB3. With this calibration scheme we are

therefore able to measure the transmission through our MR and its bonding

wires. The only way to measure the MR without the effects of bonding wires

is to use a probe station. We will come to this topic later. Figure 4.7 (a)

shows the calibration scheme for the S12 response calibration.

On resonance, the power transfer through our MR is maximum and therefore

one should observe a peak at the resonance frequency in the S12 curve with

a maximum magnitude of 0 dB.

2The previously mentioned calibration standards are very expensive devices that must
be handled with much care. In no case one should cool down these standards to liquid
helium temperatures or even liquid nitrogen temperatures. They should only be used at
room temperature and thus, e.g. a temperature dependent full-2-port calibration, which
would correct for all twelve systematic errors, is impractical.

3Remember, that both PCBs in Figure 4.2 have a designed impedance of approximately
50 Ω
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(a) (b)

Figure 4.7: (a) Calibration scheme for the S12 response calibration. (b) Calibra-
tion scheme for the S11 and S22 1-port calibration

4.4.2 Reflection calibration – S11 and S22 1-port cali-

bration

The Sii parameters are a measure for the reflected power at port i. As just

mentioned, on resonance the power transfer through the MR is maximum

and thus, the Sii curve should have dip at the resonance frequency. The

Sii 1-port calibration needs all three calibration standards (short, open, and

broadband load). Therefore it is not possible to make a temperature depen-

dent calibration (see the footnote on page 72). Instead we have to calibrate

at room temperature (RT) and then recall the saved data at 4.2 K. Further-

more, a S11 measurement at 4.2 K then requires to connect the (matched)

broadband load to port 2 of the cryostat SMA feed-through (and vice versa).

Figure 4.7 (b) shows the calibration scheme for the Sii 1-port calibration.

Note, that the V-to-SMA adapters are included in the calibration data as

the calibration standards are connected after the adapters.

In order to estimate the error we are inducing by neglecting the temperature

dependent calibration data for the Sii measurements, we performed a S12

calibration measurement with the coaxial cables and the adapters connected
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Figure 4.8: S12 measurement showing the uncalibrated and calibrated data of the
cryostats coaxial cables and adapters. The green curve is the difference between
the uncalibrated data at 4 K and RT.

via a SMA female/female through connector. Figure 4.8 shows the collected

data. The green curve is the difference between the non-calibrated data col-

lected at 4 K and at RT. Most of our Sii measurements are performed up to a

frequency of 10 GHz. At this frequency, the error induced by neglecting the

temperature dependence of our whole setup is approximately 3.6 dB. This

difference is due to the temperature and frequency dependent attenuation

of the coaxial cables. In the measurements discussed in this chapter we will

present the raw data and thus the reader should keep in mind that the Sii

spectra may exceed the 0 dB line.

The presented calibration schemes have one major disadvantage. After record-

ing the temperature dependent calibration data for one set of parameters of

the NVA, e.g. power or frequency span, it is not possible to make any changes

to these parameters. In order to resolve a certain peak more clearly for ex-

ample, a measurement with a different frequency span as in the calibration

measurement would be necessary. This however, requires a new calibration

of the whole setup.
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4.5 Measurements

4.5.1 Tc-Measurement

In order to determine the value of Tc a measurement with a SQUID magne-

tometer was performed. The Quantum Design c© SQUID was operated in the

7 . 0 7 . 5 8 . 0 8 . 5 9 . 0 9 . 5 1 0 . 0
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Figure 4.9: SQUID measurement for the determination of Tc. The applied field
was set to 1000 Oe.

dc-mode. With an applied field of 1000 Oe we measured the magnetization

dependent on the temperature. For temperatures lower than Tc the magne-

tization drops significantly due to the Meissner-Ochsenfeld-effect. Figure 4.9

shows the measured data and the critical temperature of our niobium MR is

determined to be

Tc ≈ 8.6 K . (4.6)

This value is smaller than reference values of Tc(H = 0) = 9.20 K − 9.46 K

found in literature which is at least partially due to the significant measuring

filed. A detailed introduction into the working principles of SQUIDs is found,

e.g. in reference [4].
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Sample 37 133 148 1

n 3 3 3 3

lMS [µm] 2140 2140 2447 2140

ZMS [Ω] 84.2 84.2 79.0 84.2

CMS [fF] 1.7 0.5 1.7 1.7

lCPW [µm] 125 125 460 125

wCPW [µm] 20 20 20 5

ZCPW [Ω] 39.3 39.3 39.3 75.3

CCPW [fF] 2.0 0.9 – 1.8

f0 [GHz] 5.326 5.331 4.966 5.329

f1 [GHz] 10.651 10.662 9.932 10.653

f0,λ/2 [GHz] 5.335 5.335 4.977 5.335

f1,λ/2 [GHz] 10.670 10.670 9.954 10.670

Washer n.g. g. g. & n.g. g.

Table 4.1: Properties of the measured MRs. n is the number of turns of the
spiral input coil. f0,1 are the fundamental and first harmonic resonance as cal-
culated with the TLM. f0,λ/2 and f1,λ/2 are the fundamental and first harmonic
resonance frequency calculated with Equations (3.25) and (3.26), respectively. The
abbreviations n.g. and g. stand for not grounded and grounded.

4.5.2 Resonance Frequencies and Quality Factors

In this section we will present the S-parameter measurements of our MRs. We

did not perform any phase measurements as the resonances should be clearly

visible and the quality factors can be extracted by fitting4 a Lorentzian to

the measured transmission data at T = 4 K. The measured resonance fre-

quencies are compared to the theoretical values obtained by the transmission

line model (TLM) of section 3.2.2 and Equation (3.25). Table 4.1 lists the

characteristic properties of the MRs. 28 different experiments were carried

out and the measured data often was not consistent. Samples with very sim-

ilar geometry showed very different transmission and reflection spectra. The

data presented in the following sections represents the data where we could

clearly observe peaks and corresponding dips in our spectra.

I want to point out the two major measurement schemes that were performed.

For some measurements we did not ground the washer (floating groundplane)

4For the fitting procedure we used Origin 7.0 c©.
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while for other experiments the washer was grounded with a bonding wire

of approximately 3 mm length. The bonding wire has a width of 30 µm

and represents an inductor that is connected in series to the groundplane.

In reference [38] an approximate formula for the inductance of short round

wires is found,

Lbond [nH] = 0.2l[ln(4l/d)− 1 + d/2l] , (4.7)

where l and d are the wires length and diameter in mm, respectively. Thus,

the used bonding wire5 for grounding has an inductance of Lbond ≈ 3 nH. M.

Mück and J. Clarke reported in reference [36] that in the case of a floating

washer the resonance frequencies increased by a factor of approximately 1.6

and the quality factor by 3. The rise in the resonance frequency is explained

by a stronger feedback from the washer to the spiral input coil via their

distributed capacitance.

Washer not grounded – Sample 37 & 148

We first want to turn to those measurements where we did not ground the

washer. Sample 148 has a special design, the perceptive reader may have

recognized that in table 4.1 no value for the capacitor at the CPW section is

given. This is due to the fact that we designed Sample 148 to have its second

capacitor on the inner edge of the input coil as shown in Figure 4.10, though

this is actually not a photograph of Sample 148 itself6. It is easy to adapt

this change to the presented TLM in section 3.2.2. The value for the series

capacitor at the CPW section is replaced by that of the MS section and it is

implemented in section 3 rather than in section 1.

Figure 4.11 shows the calculated real part of the input impedance for Sample

37 and Sample 148 as calculated with the TLM. The value for the funda-

mental resonance of both samples is in excellent agreement with the value

calculated with Equations (3.25) and (3.26). The small deviation is not

surprising as Equation (3.25) does not take into account the presence of the

5We also included the shorter (∼ 1 mm) bonding wires that connect our specimen with
PCB feed line in the TLM. They were included in series with the coupling capacitors, but
even though they have a quite high reactance in the frequency range from 0 - 10 GHz, no
shift in the calculated resonance frequency could be observed.

6Sample 148 has a wCPW = 30 µm but the capacitor in Figure 4.10 is the same as for
Sample 148.
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Figure 4.10: MR with the second capacitor at the inner edge of the spiral input
coil. The capacitance is calculated to be 1.7 fF.

(a) (b)

Figure 4.11: Real part of the input impedance versus frequency as calculated with
the TLM of section 3.2.2. (a) Sample 37: fundamental resonance at f0 = 5.326 GHz
and first harmonic at f1 = 10.651 GHz. (b) Sample 148: fundamental resonance
at f0 = 4.966 GHz and first harmonic at f1 = 9.932 GHz.
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very short CPW section. The second harmonics are at f2 = 15.977 GHz

(Sample 37) and f2 = 14.927 GHz (Sample 148).

In reference [36] the authors observed that the first and second harmonic

resonances are at higher frequencies as expected. They contributed their

observation to the fact, that for higher order frequencies not all the current

flowing in the resonator is in the same direction. Then, less current is forced

around the slit and the hole and the inductance reflected into the input coil

is reduced leading to higher resonance frequencies.

The measured S-parameters for Sample 37 are shown in Figure 4.12. The

output power of the NVA was Pout = −30 dBm. For better clarity the S12

spectrum is shown from 2 - 10 GHz and for only 3 temperature values. At T

= 4 K we can see a resonance peak at f = 6.891 GHz with a gain of approxi-

mately 4 dB. As expected, this peak is accompanied by a dip of roughly -5.8

dB in the S22 and -3.5 dB in the S11 spectrum. The second, much larger, dip

at 7.276 GHz lacks the corresponding peak in S12. The resonance vanishes

at RT and shows a clear temperature dependence. At 40 K the resonance

occurs at 6.958 GHz. This is quite astonishing as one expects a rise in the

resonance frequency with lower temperature as observed in many other ex-

periments, e.g. reference [43]. There are two additional peaks in the S12
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- 3 0
- 2 5
- 2 0
- 1 5
- 1 0
- 5
0
5

 

 

Ma
gn

itu
de

 (d
B)

F r e q u e n c y  ( G H z )

 S 1 2  @  4  K
 S 1 2  @  4 0  K
 S 1 2  @  R T
 S 1 1  @  4  K
 S 2 2  @  4  K

Figure 4.12: Measured S-parameters of Sample 37 (n.g.) at different tempera-
tures.
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spectrum. The very small peak at approximately 3.3 GHz, can not be as-

signed to our MR. Firstly, this peak has no corresponding dip in the S22 and

S11 spectra, which is usually the strongest evidence for a resonance of our

sample. Secondly, one sees neither an increase nor a shift of the peak position

for different temperatures, just an overall reduction in magnitude, which can

be clearly accounted for by the reduction of the attenuation for decreasing

temperatures. Last but not least, this peak is also found in the spectrum of

many other samples, e.g. Sample 148 and Sample 90, at exactly the same

position. The second peak around 9 GHz is also observed for other samples

(e.g. Sample 133) though with a less pronounced increase in magnitude as

for Sample 37. This peak is not accompanied by a dip in the Sii spectra and

at T = 4 K the peak exceeds the 0 dB line, which is physically impossible7.

A Lorentz fit to the S12 data at 4 K is shown in Figure 4.13. The fitted

Q ≈ 50

Sample 37

Figure 4.13: Lorentz fit to the S12 data of Sample 37 (n.g.) at T = 4 K.

peak frequency is ffit = 6.873 GHz and the quality factor is determined by

dividing the center frequency by the full width at half maximum (FWHM).

This yields a relatively poor quality factor of Q ≈ 50. Using Equation (3.22)

we see that our MR should be undercoupled (Sample 37 has coupling capac-

7Remember that the Sii spectra may exceed the 0 dB line.
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itors like those in Figure 3.7 (a)), the measured quality factor is thus the

internal quality factor Qint. Frunzio et al. reported a Qint ≈ 5000 for a CPW

resonator at T = 4 K. This value differs by a factor of 100 from our quality

factor.

It is reasonable to fit for the washer inductance Lwasher in order to match the

observed resonance frequency. Assuming that the resonance we see is the

fundamental λ/2 resonance and by using Equation (3.25) we get

Lwasher,fit = 499 pH . (4.8)

Inserting this result in the TLM and calculating the resonance frequency of

the fundamental resonance yields f1 = 6.863 GHz, which is in very good

agreement with the observed resonance frequency.

We now turn to the measurement results for Sample 148. Figure 4.14 shows

the S-parameter spectrum in the range from 2 - 10 GHz with Pout = −30 dBm.

We see a resonance peak at 7.369 GHz which is accompanied by the corre-

Figure 4.14: Measured S-parameters of Sample 148 (n.g.) at different tempera-
tures. The inset shows the resonance in the region 7.2 GHz - 7.7 GHz.
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sponding dips in the S22 (-14.0 dB) and S11 (-1.9 dB) spectra, though the

dip in the S11 spectrum is very small. The inset illustrates the temperature

dependent shift of the resonance peak. This resonance is approximately 2.4

GHz higher than expected from the TLM and Equation (3.25).

The Lorentz fit to the S12 data at T = 4 K is shown in Figure 4.15. The fitted

peak frequency is ffit = 7.393 GHz with a FWHM of 0.240 GHz yielding an

internal quality factor of approximately 30 (like Sample 37, we are slightly

undercoupled).

Q ≈ 30

Sample 148

Figure 4.15: Lorentz fit to the S12 data of Sample 148 at T = 4 K.

A fit for the washer inductance assuming that the observed peak corresponds

to the fundamental λ/2 resonance yields

Lwasher,fit = 366 pH . (4.9)

This result is not consistent with the fit obtained for Sample 37. Further-

more, from Equation (3.25) we see that the frequency of the fundamental

resonance is inverse proportional to the length of a resonator, f0,λ/2 ∝ 1/l.

Sample 148 is about 300 µm longer than Sample 37 therefore we expect

a lower resonance frequency (see Table 4.1). In our experiment, however,
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the measured resonance frequency of Sample 148 is approximately 0.5 GHz

higher. In addition, the question arises why the magnitude of the resonance

peak of Sample 148 does not show the expected temperature dependence.

The magnitude at 4 K, -10.7 dB, is only |-1.9 dB| larger than at RT. One

would expect a much larger increase due to the effect of superconductivity

which should especially reduce the conductor losses. Additionally, we ob-

serve the same temperature dependent shift as for Sample 37: the resonance

frequency decreases for decreasing temperatures. This effect is not fully un-

derstood at this point. The poor internal quality factors are a factor of 100

(Sample 37) and 170 (Sample 148) smaller compared to the result L. Frunzio

et. al in reference [43].

Q ≈ 180 Q ≈ 160

(a) (b)Sample 37 Sample 148

Figure 4.16: (a) Lorentz fit to the S22 data of Sample 37 at 4 K. (b) Lorentz fit
to the S22 data of Sample 148 at 4 K.

In reference [15] Wallraff et al observed a shift of the resonance frequency

– depending on the state of their qubit coupled to their cavity (see section
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1.4) – in a transmission measurement. However, this shift should be ob-

served in a reflection measurement, too. Then, the quality factors from the

Sii measurements are important and have to be extracted from the dips in

the reflection spectra corresponding to the peaks in the transmission spec-

tra [Robert Wanner, Lehrstuhl für Hochfrequenztechnik der TU München;

private communication]. Figure 4.16 (a) and (b) show the Lorentz fit to the

S22 data of Sample 37 and Sample 148 at T = 4 K, respectively. The quality

factors of the S22 resonances increased by a factor of 3.6 (Sample 37) and

5 (Sample 148) in comparison to the transmission spectra. These quality

factors are roughly a factor of 30 smaller compared to the values reported in

reference [43].
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Figure 4.17: S22 data for Sample 37 & 148 at T = 4 K.

The reader may have recognized that the reflection spectra look similar for

the two different samples. In Figure 4.17 we plotted the S22 data for Sample

37 and Sample 148 at T = 4 K in order to demonstrate that the observed

resonances should indeed correspond to the different properties of our sam-

ples. The smaller dips in the reflection spectra are separated by 0.125 GHz

while the larger dips are separated by 0.093 GHz. A systematic error in our

measurement would imply an equidistant separation of both dips.
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At the point of the via the reflection coefficient for both samples can be cal-

culated using Equation (2.28),

Γ =
ZMS − ZCPW

ZMS + ZCPW

≈ 0.36 . (4.10)

Thus, |Γ|2 ≈ 13% of the incident power will be reflected at the via. Despite

the fact that we do not observe two peaks in the S12 spectra, one could try to

explain the two neighbouring dips in the S22 spectra assuming that a certain

fraction of the energy is constantly reflected between the via and the open

end – the coupling capacitor – of the MS section, while the other fraction of

the energy is reflected between both coupling capacitors as expected from our

λ/2 resonators. Thus, in the first case, the effective length of the resonator

is smaller leading to a higher resonance frequency. However, this assumption

is only valid for Sample 37 as Sample 148 has both coupling capacitors in

the MS section (see Figure 4.10). Using Equation (3.25) the ratio of reso-

nance frequencies fl1/fl2 corresponding to different lengths l1 and l2 can be

expressed as

fl1

fl2

=

√
l2L + n2Lwasher√
l1L + n2Lwasher

. (4.11)

With fl1 = 7.276 GHz for l1 = lMS = 2140 µm (second dip in Figure 4.17) and

fl2 = 6.946 GHz for l2 = lMS+lCPW = 2265 µm (first dip in Figure 4.17)we get

1.047 ≈ fl1

fl2

6=
√

l2L + n2Lwasher√
l1L + n2Lwasher

≈ 1.002 , (4.12)

where we used Lwasher = 499 pH. This result is evident as the washer induc-

tance is dominating the value of the resonance frequency8.

The presented model is not able to explain the dips in the S22 spectrum of

Sample 148. Furthermore, we should have observed similar reflection spectra

like that in Figure 4.17 in more measurements, however, this was not the

case. Thus, the assumption that the dips in the S22 spectra correspond to

different effective lengths in our resonator is not correct. We have strong

8Neglecting the presence of the groundplane and using the figure of merit given in
Equation (3.24) yields 1.047 ≈ fl1/fl2 = l2/l1 ≈ 1.058. Although the calculated values
only differ by 2% the result is in contrast to the Ketchen-Jaycox model.
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evidence that the observed resonances correspond to the different properties

of our samples.

Washer grounded – Sample 148

We now want to turn to those measurements where we grounded the washer

as shown in Figure 4.3 (a). Measurements on Sample 37 with a grounded

washer were also performed, but unfortunately no peaks in the transmission

spectrum could be observed. Sample 37 will be discussed later in combination

with the data of Sample 1 so we first turn our attention to Sample 148. The

spectra for an output power of Pout = −30 dBm are shown in Figure 4.18.

The temperature dependent evolution of three peaks, one around 4.25 GHz

2 3 4 5 6 7 8 9 1 0- 7 0
- 6 0
- 5 0
- 4 0
- 3 0
- 2 0
- 1 0

0
1 0

 

 

Ma
gn

itu
de

 (d
B)

F r e q u e n c y  ( G H z )

 S 1 2  @  4  K
 S 1 2  @  4 0  K
 S 1 2  @  R T
 S 1 1  @  4  K
 S 2 2  @  4  K

Figure 4.18: Measured S-parameters of Sample 148 (g.) at different tempera-
tures.

and a double peak with center frequencies around 6.91 GHz and 7.78 GHz,

can be clearly seen. For the peak at 6.91 GHz, the corresponding dip in the

S22 spectrum (-23.9 dB) is shifted by approximately 0.11 GHz towards lower

frequencies. This shift was also observed for Sample 133 and can actually

not be explained by a measurement error as the other resonances and their

corresponding dips occur more or less at the same frequency. Furthermore, in
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comparison to the measurements with a floating groundplane, the S11 spec-

trum is very noisy and no dip at all can be observed. Let us first focus on

the peak around 4.25 GHz.

The question arises to what extent we see the response of our resonator

at this point. As mentioned before, Mück and Clarke observed a decrease

in the resonance frequency of their device by a factor of 1.6 when ground-

ing the washer. Assuming that the peak around 4.25 GHz is indeed our

first harmonic and comparing to the measurement with the floating washer

(ffit = 7.369 GHz) we get a decrease by a factor of approximately 1.7, which

would be in quite good agreement to reference [36]. In contrast to their mea-

surements, however, we have a high decrease in the quality factor.

Q ≈ 4Q ≈ 2 Sample 148 (grounded)

(a) (b)

Figure 4.19: Lorentz fit to the S12 data of Sample 148 (g.) at (a) T = 4 K and
(b) T = 40 K. K

Figure 4.19 (a) shows the Lorentz fit to the measured S12 data at T = 4

K. The fitted peak frequency is ffit = 4.278 GHz with a FWHM of 2.409

GHz. Again this sample should be capacitively undercoupled, Q ≈ Qint.

The quality factor, Qint ≈ 2, dropped by a factor of more than 15 in com-

parison to the previous measurement. As the resonance peaks are quite wide

we also fitted the S12 data at T = 40 K in order to see the resonance shift
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for different temperatures. The fit is shown in Figure 4.19 (b) and here the

center frequency is calculated to be 4.241 GHz with a Qint ≈ 4 . This is not

consistent with previous measurements where we always observed a shift to

lower frequencies with lower temperatures. However, the shift is very small.

The measurments with the grounded washer are in better agreement with the

TLM and Equation (3.25) compared to the measurement with the floating

groundplane. A fit for the inductance of the washer groundplane assuming

that the resonance at 4.278 GHz is the fundamental λ/2 resonance yields

Lwasher,fit = 1159 pH . (4.13)

This result could be explained by the presence of the bonding wire, effec-

Sample 148 (grounded)

Q ≈ 21

Q ≈ 34

(a) (b)

Figure 4.20: (a) Lorentz fit to the measured data of the resonance around 6.91
GHz at T = 4 K for (a) S12 and (b) S22.

tively increasing the inductance of the groundplane. However, we can not

observe the first harmonic λ/2 resonance, neither in S12 nor in Sii.

The origin of the two peaks around 6.91 GHz and 7.78 GHz can not be

explained by higher order λ/2 resonances. Both peaks clearly show the ex-

pected increase in magnitude for decreasing temperatures. However, the sec-

ond peak lacks the corresponding dip in the reflection spectra. For the sake
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of completeness we fitted the measured data for the S12 and S22 spectra of the

resonance around 6.91 GHz. The fitted peak frequency is ffit = 6.947 GHz

with a FWHM of 0.336 GHz. Following the assumption that this resonance

is the fundamental λ/2 resonance yields Lwasher,fit = 419 pH which is not

consistent with the results obtained so far. The quality factor of the fit to

the S22 data represents a lower limit due to the noisy spectra.

Washer grounded – Sample 133

To shed some light on the measurement results obtained so far we performed

an additional calibration scheme in parallel to the one mentioned in section

4.4. After the sample box was mounted into the cryostat, we performed

a response calibration at RT with the resonator already bonded. The cali-

bration data was saved onto a floppy disk. Then, we performed our usual

measurement scheme. A T = 4 K the NVA was reset and the calibration data

containing the bonded sample was recalled from the floppy disk. Thus, we get

the S12 spectrum of our resonator at T = 4 K normalized to the spectrum at

RT. Furthermore, we recalled this calibration data once more after heating

up to RT. One then expects a flat line at 0 dB in the S12 spectrum assuming

perfect reproducibility.

Figure 4.21 shows the conventional measurement of the S12-parameters at

4 K, 40 K, and RT, respectively. As one can see from table 4.1, Sample

133 is constructed in the same way as Sample 37, except for the coupling

capacitors which are in the case of Sample 133 gap capacitors with a gap

of 10 µm. The TLM analysis of Sample 133 is essentially the same as for

Sample 37, the fundamental resonance should occur at f0 = 5.331 GHz, the

first harmonic at f1 = 10.662 GHz.

Around 6.0 GHz we see a shallow dip (-4.6 dB) in the S11 spectrum and

another sharper dip (-8.6 dB) in the S22 spectrum around 7.1 GHz. Both

dips lack the corresponding peaks in S12, in fact we see also dips in the trans-

mission spectrum. These dips are also seen at RT. A dip in the transmission

spectrum implies that at this frequency less power is transmitted through

our device. One would then expect that this fraction of power is either re-

flected or dissipated. The latter must be the fact for our case as reflected

power would not cause dips in the Sii spectra. Furthermore, these dips in

S12 were not observed for Sample 37 when we grounded the washer. Another
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Figure 4.21: Measured S-parameters of Sample 133 (grounded washer) at differ-
ent temperatures. The inset shows a magnified view of the resonance around 9.5
GHz

interesting fact is that for T = 40 K the dip is shifted to higher frequencies

with respect to RT, while for T = 4 K it is shifted to lower frequencies. This

behavior was not observed for any other specimen.

I want to turn the attention to the resonance near 9.5 GHz, which is magni-

fied in the inset of Figure 4.21. This resonance shows the same temperature

dependence, meaning the shift to lower frequencies for decreasing tempera-

tures, as seen in the previous experiments. However, it needs some fantasy

to see here the expected Lorentzian.

The S12 and Sii spectra obtained with the additional calibration scheme9 are

shown in Figure 4.22. The resonance around 9.5 GHz is now clearly visible

and shows the expected shape. A Lorentz fit shown in Figure 4.23 yields a

quality factor of Qint ≈ 56 with a fitted center frequency of ffit = 9.592 GHz.

This resonance is more than 1 GHz lower in frequency than expected from

the TLM and Equation (3.25). This result is in accordance with the previous

measurement of Sample 148, where we observed a lower resonance as pre-

dicted by theory when grounding the washer. A fit for the washer inductance

9With this alternative measurement scheme the transmission spectrum may of course
exceed the 0 dB line in contrast to the standard 50 Ω response calibration.
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Figure 4.22: Measured S-parameters of Sample 133 (g.) at T = 4 K. As men-
tioned in the text, we used a different calibration scheme. This measurement shows
the transmission at T = 4 K normalized to the transmission at RT in a frequency
range from 5 - 11 GHz.
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Figure 4.23: Lorentz fit to the S12 resonance of Sample 133 (g.) at T = 4 K for
our alternative calibration scheme.
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assuming the peak represents the first harmonic λ/2 resonance yields

Lwasher,fit = 1056 pH , (4.14)

which is in quite good agreement with the result obtained for Sample 148.

In contrast to the previous measurements, the observed resonance is accom-

panied only by a dip in the S11 spectrum. This dip is shifted by 0.11 GHz

towards lower frequencies as observed for Sample 148 when grounding the

washer. Figure 4.24 shows the Lorentz fit to the S11 data a T = 4 K. The fit-

ted dip frequency is ffit = 9.484 GHz with a FWHM of 45.802 MHz yielding

a Qint ≈ 207 which is a factor of 24 smaller than reported in reference [43].

This is the highest Qint obtained so far10.

Q ≈ 207

Sample 133 (grounded)

Figure 4.24: Lorentz fit to the S11 data of Sample 133 (g.) at T = 4 K.

The peak around 10.2 GHz in Figure 4.22 could not be observed in the stan-

dard calibration measurement from Figure 4.21 and unfortunately the Sii

spectra were only recorded in the range 0 - 10 GHz.

The small peak and its corresponding dip around 7.2 GHz in Figure 4.22 can

not be explained by λ/2 resonances, provided that the previously discussed

resonance is indeed the first harmonic λ/2 resonance. However, for the

10This value for Qint represents a lower limit as the data point at -32 dB could not be
implemented in our fit procedure.
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Sample 133 (grounded)

Q ≈ 83

Q ≈ 145

Figure 4.25: (a) Lorentz fit to the S12 spectrum around 7.2 GHz at T = 4 K.
(b) Lorentz fit to the S22 spectrum around 7.2 GHz at T = 4 K.

2 3 4 5 6 7 8 9 1 0 1 1

- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5

 
 

Ma
gn

itu
de

 (d
B)

F r e q u e n c y  ( G H z )

 S 1 2  @  4  K
 S 1 2  @  R T  ( a f t e r  h e a t i n g  u p )

C a l i b r a t i o n  @  R T

Figure 4.26: S12 data at T = 4 K and RT after heating up. The peaks observed
at T = 4 K are still present at RT yet with a smaller magnitude.
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sake of completeness, a Lorentz fit to the S12 and S22 spectrum around 7.2

GHz is shown in Figure 4.25 (a) and (b), respectively. The quality factor

extracted from the peak in the S12 spectrum was Qint = 83 with a center fre-

quency of 7.207 GHz while the quality factor for the reflection measurement

is Qint ≈ 145 at a center frequency of 7.139 GHz.

After heating up to RT we recalled the calibration data and expected to see

a flat line at 0 dB. However, this was not the case and Figure 4.26 shows the

measured data. In fact we observed peaks at the same positions as for the

measurement at T = 4 K but with smaller magnitude. Under these circum-

stances, only the resonance around 9.5 GHz can be clearly assigned to our

sample as it was observed for both calibration schemes.

Washer grounded – Sample 1 (no calibration) & Sample 37

In this section we will discuss the S-parameter measurements of Sample 1 and

Sample 37 simultaneously. By combining the results of these two measure-

ments we will get more insight into the behavior of our MRs when grounding

the washer.

Both resonators are identical except for the width of the CPW section lead-

ing to a different ZCPW and CCPW (see Table 4.1). As the TLM is quite

insensitive to ZCPW and the coupling capacitors of the CPW section only

differ by 0.2 fF, the calculated resonance frequencies are essentially the same

for both specimen.

Sample 1 was the first resonator we measured and we did not perform the

standard calibration scheme at this time. Furthermore, we were not aware of

the importance of a simultaneous reflection measurement. Figure 4.27 shows

the measured data in the frequency range from 4 - 4.9 GHz and for a broad

range of temperatures. We observe a resonance peak at 4.677 GHz with an

increase in magnitude for decreasing temperature, however, we expected a

more explicit increase for T < Tc. The quality factor at T = 4 K is only

Qint ≈ 23 with a center frequency ffit = 4.646 GHz. In contrast to our pre-

viously discussed results, we observe the expected increase of the resonance

frequency for decreasing temperature as reported in reference [43].

The measured S-parameters of Sample 37 with a grounded washer are shown

in Figure 4.28. Although we see no resonances in the different S12 spectra11,

11The increase in magnitude around 9 GHz was observed for many more samples and
can not be accounted for by our MR as discussed earlier in the text.
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the S11 spectrum clearly shows two dips at ffit,0 = 4.837 GHz (Qint ≈ 10) and

ffit,1 = 9.623 GHz (Qint ≈ 23). The second dip is also observed in the S22

spectrum. These two dips are separated by 4.786 GHz ≈ ffit,0 as expected
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Figure 4.27: Measured S-parameters of Sample 1 (grounded washer) at different
temperatures without calibration. The quality factor of the resonance peak at
T = 4 K is Qint ≈ 23 with a center frequency of ffit = 4.646 GHz.

for an open λ/2 resonator assuming that the dip at 4.837 GHz corresponds

to the fundamental λ/2 resonance. Thus, we have strong evidence, that the

peak at ffit = 4.646 GHz observed for Sample 1 is the fundamental λ/2 res-

onance and corresponds to the observed dip in the S11 spectrum of Sample

37. A fit for the washer inductance yields,

Lwasher,fit = 1127 pH , (4.15)

where we used ffit = 4.646 GHz. Fitting the washer inductance with the

resonance frequencies obtained from the S11 spectrum of Sample 37 yields

Lwasher,fit =

{
1038 pH for ffit,0 = 4.837 GHz

1049 pH for ffit,1 = 9.623 GHz
(4.16)

These results are in very good agreement with the results obtained for Sample

148 and Sample 133 when grounding the washer. Furthermore, as Sample 37
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Figure 4.28: Measured S-parameters of Sample 37 (grounded washer) at different
temperatures. The quality factor of the dip in the S11 spectrum at ffit = 4.837 GHz
is Qint ≈ 10.

and Sample 133 have the same parameters except for the coupling capacitors,

we can conclude that the resonance observed for Sample 133 was indeed the

first harmonic λ/2 resonance. So far, we have strong evidence, that grounding

the washer effectively increases its inductance to a value of approximately

1.1 nH. However, the poor quality factors obtained for both samples are way

beyond the expected values.

Disregarded Measurements

As mentioned earlier in the text, we performed 28 measurements on 14 differ-

ent samples. The obtained data was often not consistent with the expected

behavior of our MRs. Only for the measurements presented in this thesis, we

could observe peaks in the transmission spectra and the corresponding dips

in the reflection spectra. The following section gives a short overview over

some of these measurements.

Measurements performed on samples with the three-finger interdigital cou-

pling capacitors12 showed a very noisy reflection spectra and in the transmis-

sion spectra neither peaks nor dips could be observed. However, this effect is

not necessarily associated with the value of the coupling capacitor since we

12See Figure 3.8 (b)
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also observed noisy reflection spectra for small values of the coupling capac-

itors.

After that we concentrated on measurements with small gap coupling capac-

itors. One of the most promising samples (Sample 160) in terms of a small

reflection coefficient Γ ≈ 5 · 10−3 at the via showed a clear dip in the S11

spectrum but no resonance in the transmission spectrum could be observed.

The same reflection spectrum was observed for Sample 177 which has in con-

trast to Sample 160 Γ ≈ 0.3 and a negligible smaller value of the coupling

capacitor. As the best measurement results were obtained for samples with

Γ ≈ 0.36 we can conclude that impedance matching at the point of the via

does not seem to be the crucial factor for the performance of the resonator.

We also performed measurements on Sample 37 H60 which has the same

parameters as Sample 37 except that the square shaped hole in the washer

has a width of 60 µm. For this measurement we grounded the washer and

expected similar spectra as for Sample 37 (g.). Similar to the case of Sample

37 (g.) we did not observe peaks in the S12 spectrum, however, two dips in

the S11 spectrum, one at 5.702 GHz and the other at 9.284 GHz were clearly

visible. This result is in contrast to the measurement of Sample 37 (g.) where

we observed equidistant dips at 4.837 GHz and 9.623 GHz. Furthermore, the

reduction of the size of the hole leads to an increase of Lwasher ≈ 930 pH,

therefore, the expected resonance frequency should be smaller than for Sam-

ple 37 (g.).

In the following chapter we will give a summary and an outlook on an alter-

native measurement scheme involving a cryogenic wafer probing system.
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Chapter 5

Summary and Outlook

This thesis was motivated by the idea to design a high-Q superconducting

Microstrip Resonator (MR) for application in Circuit-QED. The device is

based upon the SQUID microstrip amplifier discussed by M. Mück and J.

Clarke [36]. Theoretically, the geometry of the device should allow for a

strong qubit-cavity-coupling g ≈ 200 MHz which is twice the value calcu-

lated in reference [13].

The fundamental transmission line parameters Z0 and γ = α + jβ have been

derived for normal conducting metals and low-loss lines. These expressions

were then modified for the case of superconducting materials and the two

important types of transmission lines realized in our design – the microstrip

(MS) and the coplanar waveguide (CPW). A short introduction to the topic

of distributed resonators formed of transmission lines was followed by the

discussion of the actual design of the MR.

The MR was designed with the Xic c© software package and the build-in induc-

tance and capacitance extraction programs FastHenry c© and FastCap c© were

used for estimation of the washer inductance and the coupling capacitors,

respectively. In accordance with the Ketchen-Jaycox model, the resonance

frequency of the MR is dominated by the inductance of the slitted washer

and the number of turns of the spiral input coil. The values for the washer in-

ductance obtained by the analytical formula (157 pH) given in reference [37]

differ by a factor of 5 from the values obtained from simulations (FastHenry c©

(848 pH) and 3D-MLSI c© (880 pH)). From our experimental results we can

conclude that the actual washer inductance lies in between the analytical

value and the value obtained by the simulations. Due to the effects of the

slitted washer, the expressions for the attenuation in the MS section had to
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Sample Resonance [GHz] Qint Transm. Qint Refl. Lwasher,fit

37 (n.g.) f0,λ/2 = 6.873 50 180 499 pH

148 (n.g.) f0,λ/2 = 7.393 30 160 366 pH

148 (g.) f0,λ/2 = 4.278 2 - 1159 pH

133 (g.) f1,λ/2 = 9.592 56 207 1056 pH

1 (g.) f0,λ/2 = 4.646 23 - 1127 pH

37 (g.) f0,λ/2 = 4.837 - 10 1038 pH

37 (g.) f1,λ/2 = 9.623 - 23 1049 pH

Table 5.1: Measured resonance frequencies and quality factors for transmission
and reflection. The abbreviations n.g. and g. stand for not grounded and grounded,
respectively.

be modified. We modeled the MR by means of transmission line theory and

the calculated values for the resonance frequencies are in very good agree-

ment with the values obtained by the figure of merit for a λ/2-resonator. The

measurement setup, the topic of S-parameters, and the calibration schemes

for transmission and reflection measurements were discussed thoroughly. A

measurement with a SQUID magnetometer determined the critical temper-

ature Tc of our MRs.

Table 5.1 lists the measured resonance frequencies and quality factors for the

samples discussed in this thesis. For the measurements where we did not

ground the washer, the obtained resonance frequencies are at lest a factor of

1.3 higher than predicted by theory. In order to match the observed reso-

nances to theory, we fitted for the washer inductance as this is the dominating

term. However, the results are not consistent and differ by a factor of 1.3

for Sample 37 (n.g.) and Sample 148 (n.g.). Especially for the measurement

of Sample 148 (n.g.) the question arises to what extent we measured the

response of our resonator as the resonance frequency of this sample should

be definitely lower than for Sample 37 (n.g.).

For the measurements where we grounded the washer, we observe in general

a lower resonance frequency than predicted by theory. However, for these

measurements all the fitted washer inductances have a value around 1.1 nH.

We explain this increase in Lwasher by the presence of the bonding wire, which

represents a series inductance to the washer.

Unfortunately, the quality factors extracted from the transmission and re-
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flection spectra at T = 4 K are very small (Qint = 2− 207) compared to the

theoretical calculated value of Qint ≈ 3 · 104. As we can neglect conductor

losses in the superconducting state, the attenuation due to dielectric loss in

the very thin SiO2 layer is most probably much higher than assumed the-

oretically. Up to now, Hypres, Inc. does not provide any data concerning

the dielectric attenuation or the loss tangent. In general, the measured S-

(a) (b)

(c) (d)

Figure 5.1: Cryogenic wafer probing system. (a) Exterior view of the probe
station (without NVA). (b) Interior view of the probe station with the two sleds
on which the probing tips are mounted. (c) Photograph of the copper sample
holder with a MR. (d) Microscope photograph of the probing tips connected to
our MR. The outer pins of the probing tips are connected to ground and the
signal is applied through the pin in the middle (Ground-Signal-Ground (GSG)
arrangement). The spacing between the pins is 150 µm.

parameter spectra of our resonators do not show the expected pattern of a

common λ/2-resonator, except for the S11 spectrum of Sample 37 (g.). The

MR is a quite complicated device as it consists of two different types of trans-

mission lines connected through a via. Without the knowledge of the exact

washer inductance it is very difficult to match the impedances of the two dif-

ferent types of transmission lines. In our measurements, however, it turned

out that we obtained the best results for samples with a ZCPW = 39.3 Ω. Al-
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together we performed 28 measurements – most of them with the additional

calibration scheme – on 14 different samples, however, only 5 measurements

yielded relevant results.

With the presented calibration scheme we are only able to measure the MR

and the bonding wires connecting it. In order to measure the MRs correctly,

a deembedding procedure in combination with a TRL (Through-Reflect-

Line) calibration is necessary. The requirements for a TRL calibration are

comprehensively summarized in reference [27]. For our case this would mean

to design calibration specimens that have then to be ordered from Hypres,

Inc.. However, if the quality factors of our MRs were in the range of Q ∼ 104

we should have observed this in our experiments.

The best system to measure the properties of our resonators would be a

cryogenic wafer probing system (probe station). One sample was measured

with the help of D. König at the chair for solid state physics of J.P. Kot-

thaus (LMU München). Here, a probe station from attocube c© systems1 was

available, allowing for measurements at T = 4.2 K without outer circuitry

(e.g. bonding wires and printed circuit boards). Unfortunately the probing

system was not designed for operation at GHz frequencies.

At the moment we are setting up a cryogenic probe station at the WMI which

is suitable for operation at GHz frequencies. The system is shown in Figure

5.1 and described thoroughly in reference [44]. It allows for measurements

at liquid helium temperatures. Another advantage of this system is the pos-

sibility to measure a large number of samples simultaneously. Definitely the

most promising samples should be investigated with the probe station to get

more insight into the complicated behavior of our MRs.

1http://www.attocube.com/



Appendix A

Quantization of the series

LC-circuit

The uncoupled Microstrip Resonator discussed in this thesis can be modeled

as a parallel LC-circuit in the vicinity of ωr. However, according to refer-

ence [27], the series coupling capacitor has the effect of inverting the driving

point impedance of the resonator. Thus, the Microstrip Resonator must be

modeled as a series LC-circuit in the vicinity of ωr.

It is convenient to map the problem of the resonant circuit on the well-known

formalism for the harmonic oscillator (HO). The Hamiltonian for a series LC-

circuit with capacitance C and inductance L is given by

ĤLC =
1

2L
L2I2 +

1

2C
Q2 , (A.1)

where I denotes the current and Q is the charge on the capacitor. This ex-

pression can be derived using a Legendre transformation on the Lagrangian

of the series LC-circuit which is found in many textbooks, e.g. [45]. Com-

paring Equation (A.1) with the Hamiltonian of the HO

ĤHO =
1

2m
p2 +

mω2

2
x2 (A.2)
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gives rise to the following substitutions:

p ⇐⇒ LI

x ⇐⇒ Q

m ⇐⇒ L

ω ⇐⇒ 1√
LC

(A.3)

We will adopt the same formalism for quantizing the HO as shown in refer-

ence [46]. Therefore, with (A.3), the non-hermitian creation and annihilation

operators for the LC-circuit can be written as

a† =
Z0Q− iLI√

2~Z0

and a =
Z0Q + iLI√

2~Z0

, (A.4)

with the commutator relation1

[a, a†] = 1 . (A.5)

Solving for Q and LI gives

Q =

√
~

2Z0

(a† + a) and LI = i

√
~Z0

2
(a† − a) . (A.6)

Inserting Equations (A.6) in (A.1) under consideration of Equation (A.5)

yields the quantized Hamiltonian for the LC-circuit,

ĤLC = ~ω

(
a†a +

1

2

)
, (A.7)

which is the same as the Hamiltonian for the quantum harmonic oscillator.

1As mentioned in section 1.3, the charge Q and the flux Φ = LI are conjugate vari-
ables with [Q̂, Φ̂] = i~ = [x̂, p̂]. Therefore, the commutator relation for the creation and
annihilation operators of the LC-circuit must be the same as in the case of the HO,
[a, a†]LC = 1 = [a, a†]HO
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External Quality Factor Qext

In many textbooks the expression for the external quality factor of a parallel

resonant circuit is given by

Qext =
Rext

ωrL
, (B.1)

where Rext represents the outer circuitry, ωr is the resonance frequency, and

L the inductance of the circuit. With ωr =
√

L/C and Rext = 1/Gext Equa-

tion (B.1) yields

Qext =
ωrC

Gext

. (B.2)

Let us first assume a symmetrically coupled MR as shown in Figure B.1. At

the resonance frequency, the external impedance Zext seen at one end of the

resonator is given by

Zext = RL − j
1

ωrCk

. (B.3)

Then, the external admittance Yext = 1/Zext can be calculated as

Yext =
ωrCk

RLωrCk − j
=

RLω2
rC

2
k

1 + R2
Lω2

rC
2
k

+ j
ωrCk

1 + R2
Lω2

rC
2
k

. (B.4)

Now, the overall external conductance for both branches of the MR is given by
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Ck CkZext

Figure B.1: Capacitive coupled MR. Out of symmetry reasons it is sufficient to
calculate Zext for only one half of the MR.

Gext = 2 · <{Yext} =
2RLω2

rC
2
k

1 + R2
Lω2

rC
2
k

. (B.5)

In the case of an asymmetrically coupled MR, the external conductance can

be expressed as the sum of the external conductances for each branch,

Gext =
RLω2

rC
2
k,MS

1 + R2
Lω2

rC
2
k,MS

+
RLω2

rC
2
k,CPW

1 + R2
Lω2

rC
2
k,CPW

. (B.6)

Here, Ck,MS and Ck,CPW denote the coupling capacitors for the MS- and

CPW-section, respectively. Inserting Equation (B.6) into Equation (B.2)

gives the external quality factor depending on known quantities of our circuit.
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Specimen Overview

MS CPW CPW CPW CPW

w [µm] 5 5 10 15 20

Cs [fF] 1.7 1.8 1.9 2.0 2.0

Cb [fF] 6.8 9.5 - - 10.0

Cg,5 [fF] 0.6 0.5 - - 1.4

Cg,10 [fF] 0.5 0.4 - - 0.9

Cg,15 [fF] 0.5 0.2 - - 0.6

Cg,20 [fF] 0.5 0.2 - - 0.5

Cg,25 [fF] 0.5 0.1 - - 0.3

Cg,30 [fF] 0.3 0.1 - - 0.3

Table C.1: Approximate values of the coupling capacitors realized in our designs.
The indices s, b, and g stand for small, big, and gap, respectively. The number after
g is the width of the gap in µm. w is the width of the corresponding transmission
line section.

From 196 designed samples 98 were chosen for production. Tables C.2 -

C.5 contain the parameters of all Microstrip Resonators that were ordered

from Hypres, Inc.. n is the number of turns of the spiral input coil, lMS

and lCPW are the lengths from the via to the coupling capacitor in the MS-

and CPW-section, respectively. Thus, l = lMS + lCPW is the total length of

the resonator. wCPW is the width of the center strip in the CPW section

and Ck is the type of coupling capacitor. The values for the different types

of coupling capacitors are found in Table C.1. f0,λ/2 is the fundamental
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resonance frequency calculated with Equation (3.25) where we used Lwasher =

848 pH.

Sample n lMS [µm] lCWG[µm] wCWG[µm] Ck f0,λ/2 [GHz]

1 3 2140 125 5 Cs 5.335

2 2 1354 125 5 Cs 9.990

3 1 694 125 5 Cs 27.254

4 2 1173 35 5 Cs 10.768

5 3 1688 39 5 Cs 6.028

6 2 1682 303 5 Cs 8.914

7 2 890 60 5 Cs 12.422

8 3 2487 250 5 Cs 4.935

9 3 1391 109 5 Cs 6.656

10 1 1132 339 5 Cs 20.753

11 4 2529 45 5 Cs 3.701

12 3 2138 295 5 Cs 5.337

13 3 2140 125 10 Cs 5.335

19 2 890 60 10 Cs 12.422

23 4 2529 45 10 Cs 3.701

25 3 2140 125 15 Cs 5.335

31 2 890 60 15 Cs 12.422

35 4 2529 45 15 Cs 3.701

37 3 2140 125 20 Cs 5.335

38 2 1354 125 20 Cs 9.990

39 1 694 125 20 Cs 27.254

Table C.2: Parameters of all produced resonators. n denotes the number of
turns and lMS and lCPW are the lengths from the via to the coupling capacitor
in the MS- and CPW-section, respectively. wCPW is the width of the center strip
in the CPW-section, Ck denotes the type of coupling capacitor, and f0,λ/2 is the
calculated resonance frequency.
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Sample n lMS [µm] lCWG[µm] wCWG[µm] Ck f0,λ/2 [GHz]

40 2 1173 35 20 Cs 10.768

41 3 1688 39 20 Cs 6.028

42 2 1682 303 20 Cs 8.914

43 2 890 60 20 Cs 12.422

44 3 2487 250 20 Cs 4.935

45 3 1391 109 20 Cs 6.656

46 1 1132 339 20 Cs 20.753

47 4 2529 45 20 Cs 3.701

48 3 2138 295 20 Cs 5.337

49 3 2140 125 5 Cb 5.335

50 2 1354 125 5 Cb 9.990

51 1 694 125 5 Cb 27.254

52 2 1173 35 5 Cb 10.768

53 3 1688 39 5 Cb 6.028

54 2 1682 303 5 Cb 8.914

55 2 890 60 5 Cb 12.422

56 3 2487 250 5 Cb 4.935

57 3 1391 109 5 Cb 6.656

58 1 1132 339 5 Cb 20.753

59 4 2529 45 5 Cb 3.701

60 3 2138 295 5 Cb 5.337

85 3 2140 125 5 Cb 5.335

86 2 1354 125 5 Cb 9.990

87 1 694 125 5 Cb 27.254

88 2 1173 35 5 Cb 10.768

89 3 1688 39 5 Cb 6.028

90 2 1682 303 5 Cb 8.914

91 2 890 60 5 Cb 12.422

92 3 2487 250 5 Cb 4.935

93 3 1391 109 5 Cb 6.656

Table C.3: Parameters of all produced resonators. n denotes the number of
turns and lMS and lCPW are the lengths from the via to the coupling capacitor
in the MS- and CPW-section, respectively. wCPW is the width of the center strip
in the CPW-section, Ck denotes the type of coupling capacitor, and f0,λ/2 is the
calculated resonance frequency.
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Sample n lMS [µm] lCWG[µm] wCWG[µm] Ck f0,λ/2 [GHz]

94 1 1132 339 5 Cb 20.753

95 4 2529 45 5 Cb 3.701

96 3 2138 295 5 Cb 5.337

97 3 2140 125 5 Cg,10 5.335

98 2 1354 125 5 Cg,10 9.990

99 1 694 125 5 Cg,10 27.254

100 2 1173 35 5 Cg,10 10.768

101 3 1688 39 5 Cg,10 6.028

102 2 1682 303 5 Cg,10 8.914

103 2 890 60 5 Cg,10 12.422

104 3 2487 250 5 Cg,10 4.935

105 3 1391 109 5 Cg,10 6.656

106 1 1132 339 5 Cg,10 20.753

107 4 2529 45 5 Cg,10 3.701

108 3 2138 295 5 Cg,10 5.337

133 3 2140 125 20 Cg,10 5.335

134 2 1354 125 20 Cg,10 9.990

135 1 694 125 20 Cg,10 27.254

136 2 1173 35 20 Cg,10 10.768

137 3 1688 39 20 Cg,10 6.028

138 2 1682 303 20 Cg,10 8.914

139 2 890 60 20 Cg,10 12.422

140 3 2487 250 20 Cg,10 4.935

141 3 1391 109 20 Cg,10 6.656

142 1 1132 339 20 Cg,10 20.753

143 4 2529 45 20 Cg,10 3.701

144 3 2138 295 20 Cg,10 5.337

145∗ 3 2447 460 5 Cs 4.977

148∗ 3 2447 460 20 Cs 4.977

149∗ 2 1319 460 5 Cs 10.129

Table C.4: Parameters of all produced resonators. n denotes the number of
turns and lMS and lCPW are the lengths from the via to the coupling capacitor
in the MS- and CPW-section, respectively. wCPW is the width of the center strip
in the CPW-section, Ck denotes the type of coupling capacitor, and f0,λ/2 is the
calculated resonance frequency. For samples denoted by a ∗, the second coupling
capacitor is situated on the inner edge of the input coil as shown in Figure 4.10.
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Sample n lMS [µm] lCWG[µm] wCWG[µm] Ck f0,λ/2 [GHz]

152∗ 2 1319 460 20 Cs 10.129

153 2 1173 35 5 Cg,5 10.768

157 2 1173 35 5 Cg,15 10.768

158 2 1173 35 5 Cg,20 10.768

159 2 1173 35 5 Cg,25 10.768

160 2 1173 35 5 Cg,30 10.768

177 2 1173 35 20 Cg,5 10.768

181 2 1173 35 20 Cg,15 10.768

182 2 1173 35 20 Cg,20 10.768

183 2 1173 35 20 Cg,25 10.768

184 2 1173 35 20 Cg,30 10.768

185 3 2140 125 5 Cs 5.335

186 2 1354 125 5 Cs 9.990

37 100 3 2140 125 20 Cs 5.335

37 60 3 2140 125 20 Cs 5.335

37 H60 3 2140 125 20 Cs 5.335

37 H80 3 2140 125 20 Cs 5.335

Table C.5: Parameters of all produced resonators. n denotes the number of
turns and lMS and lCPW are the lengths from the via to the coupling capacitor
in the MS- and CPW-section, respectively. wCPW is the width of the center strip
in the CPW-section, Ck denotes the type of coupling capacitor, and f0,λ/2 is the
calculated resonance frequency. For samples denoted by a ∗, the second coupling
capacitor is situated on the inner edge of the input coil as shown in Figure 4.10.
For Sample 37 100 and Sample 37 60, the slit in the groundplane has a width of
100 µm and 60 µm, respectively. For Sample 37 H60 and Sample 37 H80, the
square shaped hole in the washer has a width of 60 µm and 80 µm, respectively.
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