
From strong to ultrastrong coupling 
in circuit QED architectures

Thomas Niemczyk





TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

The field of cavity quantum electrodynamics (cavity QED) studies the interaction between

light and matter on a fundamental level: a single atom interacts with a single photon. If

the atom-photon coupling is larger than any dissipative effects, the system enters the

strong-coupling limit. A peculiarity of this regime is the possibility to form coherent su-

perpositions of light and matter excitations – a kind of ’molecule’ consisting of an atomic

and a photonic contribution. The novel research field of circuit QED extends cavity QED

concepts to solid-state based system. Here, a superconducting quantum bit is coupled

to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small

mode-volume of the resonant cavity, the large dipole moment of the ’artificial atom’ and

the enormous engineering potential inherent to superconducting quantum circuits, remark-

able atom-photon coupling strengths can be realized.

This thesis describes the theoretical framework, the development of fabrication techniques

and the implementation of experimental characterization techniques for superconducting

quantum circuits for circuit QED applications. In particular, we study the interaction be-

tween superconducting flux quantum bits and high-quality coplanar waveguide resonators

in the strong-coupling limit. Furthermore, we report on the first experimental realization

of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-

photon coupling rate reaches a considerable fraction of the relevant system frequencies.

In these experiments we could observe phenomena that can not be explained within the

renowned Jaynes-Cummings model.





Kurzfassung

Das Forschungsgebiet der Hohlraum-Quantenelektrodynamik (cavity QED) untersucht die

Wechselwirkung zwischen Licht und Materie auf fundamentaler Ebene: ein einzelnes Atom

wechselwirkt mit einem einzelnen Photon. Falls die Atom-Photon Kopplung stärker ist als

alle anderen dissipativen Effekte, befindet sich das System im sogenannten Regime starker

Kopplung. Eine Besonderheit dieses Regimes besteht in der Möglichkeit der Formierung

eines kohärenten Superpositionszustands aus Licht- und Materieanregungen – einer Art

’Molekül’ bestehend aus einem atomaren und einem photonischen Anteil. Das neuar-

tige Forschungsfeld der Schaltkreis QED weitet Hohlraum QED Konzepte auf festkörper-

basierte Systeme aus. Hierbei wird ein supraleitendes Quantenbit mit einem supraleiten-

den, eindimensionalen Wellenleiterresonator gekoppelt. Aufgrund des kleinen Modenvolu-

mens der resonanten Kavität, des großen Dipolmoments des ’künstlichen Atoms’ und der

den supraleitenden Schaltkreisen anhaftenden Flexibilität im Herstellungsprozess lassen

sich beachtliche Atom-Photon Kopplungsstärken realisieren.

Diese Arbeit beschreibt das theoretische Fundament zur Beschreibung supraleitender Schalt-

kreise sowie die Entwicklung von Fabrikationstechniken und die Implementierung exper-

imenteller Charakterisierungsmethoden in Schaltkreis QED Anwendungen. Von beson-

derem Interesse ist hierbei die Wechselwirkung zwischen supraleitenden Fluss-Quantenbits

und koplanaren Wellenleitern hoher Güte im Regime starker Kopplung. Weiterhin berichten

wir über die erste experimentelle Realisierung eines Schaltkreis QED Systems welches im

Bereich ultrastarker Kopplung betrieben wird, in dem die Atom-Photon Kopplungsrate

einen beachtlichen Anteil der relevanten Systemfrequenzen erreicht. In diesen Experi-

menten zeigen sich Strukturen, welche nicht innerhalb des renommierten Jaynes-Cummings

Models erklärt werden können.
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Chapter1
Introduction

In July 1962, Brian D. Josephson published a theoretical article [1], predicting phenomena

associated with the tunneling of Cooper pairs between two superconductors. Shortly af-

ter, these phenomena generally known as Josephson effects were verified experimentally [2]

and led to the invention of the Josephson junction. Roughly half a year after Josephson’s

findings, an important paper in a completely different field of physics was published. In

this work, Edwin T. Jaynes and Fred W. Cummings theoretically studied the interaction

between an atom and a quantized mode of a radiation field [3]. Many phenomena observed

in quantum optics can be described correctly by treating the electromagnetic fields semi-

classically, e.g. the existence of coherent excitation transfer between atom and field, the

so-called Rabi oscillations. However, within the fully quantized Jaynes-Cummings model,

additional phenomena were predicted, e.g. the collapse and revival of the Rabi nutation [4].

It took experimentalists working in the field of quantum optics 24 years until they were

able to observe these phenomena [5].

Without much doubt, neither Josephson nor Jaynes and Cummings could imagine in the

early 1960’s how their pioneering works would be united in a fascinating new area of re-

search, namely circuit quantum electrodynamics. This term – first introduced in 2004 [6,7]

for superconducting circuits – is adopted from cavity quantum electrodynamics (QED),

an area of research in the field of quantum optics. In cavity QED, photons and atoms

are interacting inside a high finesse cavity, thus enabling the study of fundamental light-

matter interaction. Such experiments can be conducted at a level involving only a few or

even single quanta of light and ’matter’. Circuit QED can be thought of as the solid-state

implementation of cavity QED. In the circuit QED architecture, microwave photons stored

in an on-chip resonator are coupled to superconducting ’artificial atoms’. Although there

are many different realizations of these superconducting solid-state atoms, they are all

composed of small electrical circuits sharing a fundamental building block: the Joseph-

son junction. Though consisting of many billions of atoms, macroscopic circuits involving

one or more Josephson junctions reveal their quantum mechanical nature at sufficiently

low temperatures. Similar to natural atoms, they exhibit a discrete multi-level structure.

Moreover, owing to the inherent non-linearity of Josephson junctions, it is possible to iso-

late the two lowest energy levels from higher ones, effectively realizing a quantum two-level

system or qubit. In general, qubits play an important role as the computational building

blocks of future quantum computers.

1



2 1.1 Quantum information processing

Both in cavity and circuit QED, the atom-photon dynamics is conveniently described by

the Jaynes-Cummings model, which was validated in many fascinating and far reaching

experiments. Essentially, this model describes the dipole coupling of a two-level system to

the quantized mode of an electromagnetic field. If the interaction rate g between atom and

photon is larger than the cavity decay rate κ and the atom decay rate γ, the system enters

the so-called strong-coupling regime. A peculiarity of this regime is the possibility to form

coherent superpositions of light and matter excitations – a kind of ’molecule’ consisting of

a 50% atomic and 50% photonic component.

In cavity QED, the interaction strength is typically very weak due to the small dipole mo-

ment of natural atoms. However, the strong-coupling limit can be reached by using high-

finesse cavities and due to the exceptional coherence times of isolated atoms. In contrast,

circuit QED the qubit coherence times suffer from the unavoidable coupling to dissipative

degrees of freedom in the solid-state environment. Compared to cavity QED, however,

the lower coherence times are more than compensated by the huge atom-photon coupling

strengths that can be realized – and engineered – in circuit QED systems. Ultimately, the

strong-coupling limit can be reached far more easily in circuit QED architectures.

This thesis describes the theoretical framework and realization of a circuit QED archi-

tecture for studying fundamental light-matter interaction. To this end, fabrication and

characterization techniques for a specific type of artificial atom – the superconducting

flux qubit – had to be developed and implemented. As central point of this work, we

studied different qubit-resonator coupling schemes, thereby reaching the strong-coupling

regime. Moreover, during this thesis we were able to push a circuit QED system into the

ultrastrong-coupling limit [8]. In this yet unexplored regime, the atom-photon coupling

rate g becomes comparable to the cavity and atom transition frequencies. A cornerstone

of ultrastrong-coupling physics is the breakdown of the Jaynes-Cummings model which

could be observed in our experiment for the first time.

1.1 Quantum information processing

One of the great breakthroughs in science and technology in the twentieth century was the

invention of integrated circuits. Continuous progress in semiconductor device fabrication

and miniaturization gave rise to the current information age. Off-the-shelf powerful digital

computers and the world wide web allow to process and transfer digital information fast

and over long distances. The idea of a universal quantum computer was born in the early

1980’s, when Richard Feynman [9], among others [10–12], began to investigate the gener-

alization of conventional information science concepts to quantum physical systems. The

field of quantum information processing was born, attracting and inspiring scientists from

many different disciplines. It was shown theoretically that certain mathematical prob-

lems [13–18] can be solved much faster using a quantum computer instead of a classical

computer. The superposition principle allows a quantum computer to perform a large

number of computations simultaneously, a phenomena sometimes called ’quantum paral-

lelism’. Furthermore, quantum information systems allow the simulation of large quantum

systems [9,19] and provide the possibility for secure communication using quantum cryp-

tography [20,21].
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Scientists started to work on different approaches and physical implementations of qubits –

the fundamental building block for future quantum computers – both theoretically and ex-

perimentally. Since the mid 1990’s, tremendous progress has been made with NMR based

systems [22, 23] and in quantum optics with trapped ions [24–28], polarization entangled

photons [29–32] and cavity QED systems [33–38]. However, any concept has to meet the

DiVincenzo criteria [39], which state simple but necessary (hardware) conditions for viable

quantum computation and communication. In the above mentioned systems, molecules,

ions or circular Rydberg atoms play the role of microscopic qubits. On the one hand, these

types of qubits can be isolated quite efficiently from the environment and therefore these

setups profit from long coherence times. On the other hand, they lack a good scalability

potential. In terms of large-scale applications with 100 or even more qubits, solid-state

approaches including quantum dots [40–44], nitrogen vacancy centers in diamond [45,46],

and superconducting qubits [47–49] are much more promising candidates. An up-to-date

and very thorough overview of different experimental approaches towards the realization of

a quantum computer can be found in Ref. [50] while Ref. [51] summarizes basic quantum

information concepts.

Quantum computation and communication is a relatively novel field in modern physics.

It is difficult to foretell which approach will prove successful. Even though we are still far

away from the ambitious goal of a large-scale quantum computer, groundbreaking progress

has been made in understanding the complex interplay of quantum mechanical systems.

In this sense, the investigation of fundamental light-matter interaction and basic laws of

quantum physics in this thesis has to be attributed to basic research rather than applied

quantum information science.

1.2 Superconducting qubits vs. natural atoms

Superconducting qubits are electrical circuits consisting of inductors, capacitors and, most

importantly, one or more Josephson junctions [52, 53]. This crucial building block – a

dissipationless source of non-linearity – is discussed in detail in section 2.1. Owing to the

amazing properties of superconductors in general and of Josephson junctions in partic-

ular, these circuits behave like macroscopic quantum objects when cooled to sufficiently

low temperatures. With their discrete level structure, superconducting qubits resemble

natural atoms in many ways. In addition, their inherent in situ tunability and their enor-

mous engineering potential make them extremely versatile. Moreover, superconducting

quantum bits can be fabricated with well-established lithographic and thin-film fabrica-

tion techniques as they are found in modern semiconductor device fabrication.

Depending on the ratio of the qubit’s characteristic energy scales and thus the relevant

macroscopic quantum variable, one distinguishes between three major types of supercon-

ducting qubits:

• Charge qubit: quantum information is encoded in the number of excess Cooper pairs

(and thus the charge) located on a small superconducting island [54–58]. The island

is connected to a much larger reservoir via one or more Josephson junctions. This

type of qubit is also known as ’Cooper Pair Box’ (CPB). Applying a gate voltage
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changes the number of Cooper pairs on the island while an additional flux bias

controls the transition energy between the ground and excited state.

Modified versions of the CPB are the ’quantronium’ [59–61] and the ’fluxonium’ [62].

• Flux qubit: the macroscopic quantum variable governing the dynamics is the mag-

netic flux threading the qubit loop. In general, flux qubits consist of a superconduct-

ing ring interrupted by one or more Josephson junctions [63–67]. The information

is encoded in the sign of a persistent current flowing in the qubit loop. This type

of qubit is at the heart of this thesis work and will be discussed in section 2.2 more

thoroughly. Recently, the transmon qubit [68–70] – a flux sensitive qubit based on

the CPB – gained a lot of attention due to its superior coherence properties.

• Phase qubit: this type of qubit consists of a relatively large current-biased Josephson

junction [71–75]. The dynamic quantum variable is the phase difference across the

junction and the quantum information is encoded in oscillatory states with distinct

tunneling probabilities through a adjustable potential barrier.

In general, the electric and magnetic dipole moments associated with an atomic transition

are a measure of the size of the atom. Superconducting qubits resemble ’artificial atoms’

with dimensions ranging from few hundreds of nanometers up to more than 100µm, while

typical separations in natural atoms are of the order of ångström. For example, the mag-

netic dipole moment µ associated with a flux qubit (persistent current Ip = 100− 500 nA;

area A = 10 − 100µm2) is µ = 105 − 106 µB. This value is 102 − 103 times larger than

that of circular Rydberg-atoms [34] used in cavity QED setups. In contrast to natural

atoms, the large dipole moments of superconducting qubits allow one to considerably tune

the transition energy between the ground and excited state by applying moderate control

fields. Moreover, the dipole moment determines how strongly an atom interacts with a

given electromagnetic field.

On the other hand, however, a large dipole moment increases the qubit’s sensitivity to

electric and magnetic noise sources effectively reducing the coherence times. Under-

standing decoherence mechanisms and eliminating microscopic and macroscopic noise

sources [69, 76–87] is still one of the biggest challenges for any type of superconducting

qubit.

1.3 Circuit vs. cavity QED

Circuit and cavity QED both investigate the interaction of atoms representing single

quanta of ’matter’ to quantized electromagnetic field modes. Under certain conditions,

quantum entanglement of radiation and matter is possible, a phenomena unique to the

world of quantum mechanics. Illustrations of typical experimental cavity and circuit QED

setups are shown in Figure 1.1 a and b, respectively. In both fields, the interaction strength

between atoms and photons is increased by confining the photons to a small volume be-

tween two highly reflecting mirrors. In a very figurative picture, photons are reflected by

the mirrors many times and thus collide frequently with the atom whose size is propor-

tional to its dipole moment. Eventually the photon is lost owing to mirror imperfections

which in turn defines a photon loss rate κ. In general, the atom-photon coupling energy

~g is given by the product of the dipole moment and the zero-point electromagnetic field
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γγ

g cavitycavity ωr

ωa atomatom

κ

a b

Figure 1.1: Analogies between cavity and circuit QED architectures. (a) Schematic of a cavity

QED setup. The cavity (light blue) consists of two highly reflecting mirrors and supports

the formation of a standing electromagnetic wave with fundamental resonance frequency ωr.

Mirror imperfections define a photon loss rate κ. An atom (green) with a transition frequency

ωa between the ground state |0〉 (blue) and the first excited state |1〉 (red) is placed inside

the cavity. Spontaneous emission into modes other than the cavity mode is modeled by the

atom decay rate γ. The atom-photon interaction rate g (magenta) depends on the atom’s

dipole moment and the electromagnetic field strength. (b) Photograph of a circuit QED

setup as realized within this thesis. The cavity consists of a narrow, meandering strip of

superconducting metal interrupted by small discontinuities (light blue box) acting analogue

to the mirrors in the cavity QED setup. A superconducting flux qubit (green box) is fabricated

at a suitable position and resembles an artificial atom. The decay rates κ and γ and the atom-

photon interaction rate g are defined as in (a) but omitted in the picture for clarity.

strength E of the cavity mode. The latter can be enhanced by decreasing the available

effective mode volume Vm since E ∝ 1/
√
Vm.

The Fabry-Pérot cavities used in cavity QED setups are 3-dimensional (see Fig. 1.1a)

with effective mode volumes of the order of Vm/λ
3 ≈ 103 − 104 and Vm/λ

3 ≈ 1 − 10 for

optical [88, 89] and microwave [90, 91] wavelengths λ, respectively. With 2-dimensional

photonic crystal nanocavities, effective mode volumes of Vm/λ
3 = 0.01 − 1 have been re-

ported [92–94].

On the other hand, the cavities used in circuit QED architectures (see Fig.1.1 b) are quasi-

1-dimensional structures. While one dimension is of the order of the wavelength λ, the

electromagnetic field is confined in the other two dimensions on length scales of ∼ 10µm.

Therefore, the effective mode volume [6, 7] can be as small as Vm/λ
3 = 10−5 − 10−6. In

combination with the huge dipole moment of superconducting artificial atoms, the tiny

mode volume leads to greatly enhanced coupling rates g ∝ 1/
√
Vm. Another advantage of

circuit QED setups is based on position-independent coupling strengths. The qubit can be

fabricated by lithographic processes precisely at a desired position – usually at the nodes

of the electromagnetic field – in order to maximize the coupling. In contrast, in cavity

QED, beams of atoms effusing from vapor cells or ovens are sent through the cavity after

velocity selection. Variations in the atoms trajectory with respect to the spatial mode and

additional variations in the transit time through the cavity effectively lead to a position-

dependent coupling.

A very interesting regime – the strong-coupling limit – is reached when the coupling rate

g exceeds the atom (γ) and cavity (κ) decay rates, i.e. g > κ, γ. When the atomic transi-

tion from the excited state to the ground state is resonant with the cavity, a quantum of

energy coherently oscillates with the vacuum Rabi frequency Ω = 2g between an atomic
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excitation and a cavity photon. Quantum mechanically, atom and cavity are entangled,

forming a kind of light-matter molecule. Using a very weak probe beam, the eigenenergies

of the entangled atom-cavity system can be inferred, revealing two distinct split peaks in

the cavity’s transmission spectrum.

Reaching the strong-coupling limit1 has been one of the major challenges in cavity QED

for decades. In 1985, a one atom-maser operating in the strong-coupling limit was real-

ized in Munich [96]. Later, in 1992, the vacuum Rabi splitting was observed at optical

frequencies [97] with caesium atoms from a vapor cell passing through a high-finesse cav-

ity. Solid-state systems have proven to be very promising for studying strong light-matter

interaction: only a few years after the first realizations of superconducting qubits, the

strong coupling limit could be reached experimentally [7] in a circuit QED architecture

with a superconducting charge qubit embedded in a quasi-1-dimensional transmission line

resonator. Shortly afterwards, this limit was reached with a single quantum dot in a

photonic crystal nanocavity [98,99].

1.4 Overview and state-of-the-art in circuit QED

Before concluding this brief introductory paragraph with an outline of this thesis, an

overview of recent and current developments in the field of circuit QED is given. The term

’circuit QED’ was first introduced in 2004 with the pioneering work involving the obser-

vation of the vacuum Rabi splitting using a charge qubit and a distributed resonator [7].

Simultaneously, the coherent dynamics of a flux qubit to a lumped element LC-circuit

were observed [100]. Today, the term ’circuit QED’ is used for systems investigating the

interplay between superconducting qubits and quantum harmonic oscillators – which in-

volves LC-circuits and microscopic defects but also nanomechanical resonators. However,

in this overview we will restrict ourselves to research highlights mostly involving distributed

transmission line cavities. Experiments comprising lumped element resonant circuits will

be summarized at the end of Chapter 4.

After the development of basic techniques for the time-domain [101] and frequency-domain

characterization [102] of qubits in a cavity, circuit QED entered the strong dispersive limit.

In this regime, the quantum nature of the cavity field can be directly observed by means of

photon number splitting [103, 104]. Quantum state tomography was performed with sin-

gle and entangled phase qubits using a dc-SQUID readout [105,106] and with a transmon

qubit by mapping the qubit state onto the photon state [107]. This experiment realized for

the first time an on-chip deterministic single-photon source in the microwave regime and

showed the ability to utilize photons as ’flying qubits’ for quantum communication. Shortly

afterwards, quantum state transfer between two qubits using the cavity as a quantum bus

was demonstrated [108, 109]. It was suggested that the cavity could function as a use-

ful short-term quantum memory. The photon-storage capabilities of a high-quality-factor

cavity were utilized in an experiment, demonstrating the controlled generation of multi-

photon Fock states up to six [110] and shortly thereafter 15 photons [111]. Fock states

were generated by an excitation of the qubit which was then transferred to the cavity by

resonant interaction. The techniques developed in these experiments led to one of the

1The road towards the domain of strong-coupling in cavity QED is nicely reviewed in Ref. [95].
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most beautiful experiments in circuit QED: the synthesization of arbitrary superpositions

of Fock states in a superconducting resonator [112]. Here, complex superposition states of

light were deterministically prepared and fully reconstructed by means of Wigner tomogra-

phy. Further important experiments highlighting fundamental quantum physics included

single artificial atom lasing [113], the confirmation of the non-linear scaling behavior inher-

ent in the Jaynes-Cummings [114] and Tavis-Cummings models [115], the supersplitting

of entangled light-matter states under resonant driving [116] and the violation of Bell’s

inequality [117]. Another important experimental contribution involving two-qubit entan-

glement was the first solid-state realization of a superconducting quantum processor and

the implementation of two quantum algorithms [118]. Very recently, qubit energy relax-

ation and dephasing times of up to T1 ∼ 60µs and T2 ∼ 20µs were reported [119], thereby

exceeding the coherence times of previous state-of-the-art superconducting qubits by more

than one order of magnitude. Furthermore, a key ingredient for quantum error correction –

multi-qubit entanglement – was demonstrated recently by different groups independently.

First, tripartite entanglement between two qubits and a cavity was demonstrated [120]

and shortly afterwards, three-qubit Greenberger-Horne-Zeilinger (GHZ) states as well as

so-called W states were prepared deterministically and analyzed by quantum state tomog-

raphy [121,122] in different setups. Almost simultaneously, the novel and exciting regime

of ultrastrong light-matter interaction could be accessed experimentally in a circuit QED

setup for the first time [8]. In this regime, the qubit-cavity coupling rate becomes compa-

rable to the atomic and photonic transition frequency and the renowned Jaynes-Cummings

model is no longer valid. The experiments in this new limit – inaccessible yet in cavity

QED setups – constitute one of the major results presented in this thesis.

1.5 Thesis outline

Prerequisites for experiments in the field of circuit QED are two fundamental devices:

superconducting qubits and high finesse cavities. The first part of chapter 2 summarizes

important theoretical aspects of the physics of Josephson junctions – the building block

for all superconducting qubits. The physics of specific Josephson junction devices, the

dc-SQUID and the flux qubit, are discussed in section 2.2.1 and 2.2.2 respectively. The

second part of chapter 2 addresses important concepts of superconducting coplanar waveg-

uide cavities. Chapter 3 deals with fabrication techniques and design considerations for

our superconducting quantum circuits. Additional on-chip circuit elements enabling an

improved flux qubit readout are presented. The characterization of superconducting res-

onators by means of transmission measurements is reported at the end of this chapter.

Next, in chapter 4, flux qubits are characterized by a standard readout technique involv-

ing a dc-SQUID. The cryogenic setup and sample mounting techniques are introduced

briefly. We then turn to the experimental results on flux qubits including current-voltage

characteristics and switching current measurements (see section 4.2.1). In section 4.4, the

qubit transition frequency from the ground to the first excited state is determined spec-

troscopically and evidence for multi-photon transitions is presented in section 4.4.1. In

section 4.4.2 we demonstrate the excitation of red and blue qubit-SQUID sidebands by

high-amplitude microwave irradiation. Chapter 5 is devoted to the realm of circuit QED.

After the Jaynes-Cummings model and its implications are introduced theoretically, we

analyze coupled qubit-cavity systems in the strong-coupling regime of circuit QED. Differ-
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ent coupling schemes are realized, thereby enhancing the qubit-cavity coupling rate. This

allows performing multi-photon spectroscopy (see section 5.5.2) and provides evidence for

symmetry breaking in a circuit QED architecture. Furthermore, in section 5.6, we ex-

tend the matter-light coupling into the ultrastrong-coupling limit. A brief summary in

chapter 6 is followed by an outlook on promising new research activities in the field of

ultrastrong light-matter physics. Finally, the appendices summarize fabrication recipes,

sample parameters and a short instruction manual for the electron beam evaporator.



Chapter2
Superconducting Quantum Circuits

Superconducting circuits can be engineered to exhibit quantum mechanical properties on

a macroscopic scale. Though these circuits consist of many billions of atoms they can

have a discrete and anharmonic level structure making them resemble a single, natural

atom. In analogy to classical circuits, quantum circuits can be constructed of capacitors

and inductors.

However, there is one fundamental element unique to the world of superconductors with-

out a classical counterpart: the Josephson junction. Without exaggeration, the Josephson

junction is the most crucial element in the realization of macroscopic quantum two-level

systems. It is the only electronic element that is both non-linear and dissipationless at suf-

ficiently low temperatures [48]. In the case of a superconducting quantum bit, non-linearity

is necessary to address distinctively the lowest two energy levels while low dissipation is

accompanied by long coherence times.

A prerequisite for observing quantum phenomena in superconducting circuits are low tem-

peratures. First of all, materials like aluminum and niobium have to be cooled below the

respective superconducting transition temperature Tc. In the superconducting state, elec-

trons are strongly bound in Cooper pairs which can be described by a single macroscopic

wavefunction. Thus, macroscopic variables like voltages and currents can show quantum

mechanical behavior. Second, the quasiparticle excitation spectrum is separated by an

energy gap 2∆s(T ) = 3.52 kBTc

√
1− T/Tc from the superconducting condensate. For

T � Tc, the density of quasiparticles as well as the intrinsic dissipation for frequencies be-

low 2∆s(0)/h becomes exponentially small. For aluminum, 2∆s(0)/h ∼ 80 GHz while typ-

ical transition frequencies of aluminum based quantum bits are between ωq ∼ 2− 20 GHz.

Most importantly, however, the temperature must be low enough to avoid thermal popu-

lation of higher states. Therefore, superconducting quantum circuits have to be operated

in dilution refrigerators at mK temperatures (kBT � ~ωq � ∆s).

The first sections of this chapter discuss the most important properties of Josephson junc-

tions which are necessary to understand the physics of the two Josephson junction devices

presented in this thesis – the dc-SQUID (see section 2.2.1) and the flux qubit (see sec-

tion 2.2.2). Finally, in section 2.3, we shall address a special type of transmission line

resonator. This device essentially behaves as a quantum harmonic oscillator and is a

prerequisite for experiments in the field of circuit QED.

9
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2.1 The Josephson junction

In general, a Josephson junction is established by a weak contact between two supercon-

ducting electrodes. A detailed introduction into the physics of Josephson junctions can

be found in various textbooks, e.g. Ref. [52] and Ref. [53]. Throughout this work we are

considering SIS-type Josephson junctions (see Fig. 2.1 a) consisting of two superconduct-

ing electrodes (S) separated by an insulating tunnel barrier (I) of appropriate thickness

(typically 1−2 nm). Figure 2.1 b shows a scanning electron microscope (SEM) image of an

Al/AlOx/Al Josephson junction. Details on the fabrication process are given in Chapter 3.

200 nm

a b

Figure 2.1: Josephson junction schematic and scanning electron microscope (SEM) image. (a)

Sketch of a SIS-type Josephson junction. The superconducting electrodes (S) are separated

by a thin insulating barrier (I). (b) False-color SEM image of a typical Al/AlOx/Al Josephson

junction. The image resembles a top view of the junction sketched in (a). The area of the

junction is roughly 100 x 200 nm2.

2.1.1 Josephson effects and RCSJ model

In 1962, B. D. Josephson published a theoretical paper [1] predicting the existence of two

fascinating phenomena supposed to occur in weakly linked superconductors. These so-

called Josephson effects have their origin in the overlap (interference) of the macroscopic

wavefunctions of each electrode and are a direct manifestation of a coherent macroscopic

quantum effect. Semiclassically, the Josephson equations are given by

Is = Ic sinϕ 1st Josephson equation (2.1)

dϕ

dt
=

2π

Φ0
V 2nd Josephson equation (2.2)

where Is is the supercurrent flowing through the junction, Ic the critical current1, ϕ the

difference in phase of the macroscopic wavefunctions in each electrode, V the voltage across

the junction and Φ0 = h/2e the magnetic flux quantum.

Figure 2.2 a and b respectively show a sketch and the corresponding equivalent circuit of

a Josephson junction biased by a current I. In this resistively and capacitively shunted

junction (RCSJ) model, the Josephson junction is modeled by its self-capacitance C, a

resistance R due to quasiparticle tunneling and an ideal Josephson branch carrying a

1The critical current is the maximum current that can be carried as supercurrent.
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I

R

C

Is

ba

I

Figure 2.2: Schematic and equivalent circuit of a current driven Josephson junction. (a) Sketch

of a SIS-type Josephson junction biased by a current I. (b) Equivalent circuit for the junction

sketched in (a).

supercurrent Is. For the circuit depicted in Fig. 2.2 b, current conservation leads to an

equation of motion for the variable ϕ which can be interpreted as the motion of a ’phase

particle’ with mass M and damping η in a one-dimensional potential U(ϕ), where

M =

(
Φ0

2π

)2

C (2.3)

η =

(
Φ0

2π

)2 1

R
(2.4)

U(ϕ) = EJ(1− cosϕ− I

Ic
ϕ) . (2.5)

Here, EJ = Φ0Ic/2π is the Josephson coupling energy2. The potential U(ϕ) is known as

the tilted washboard potential and is visualized in Fig. 2.3 for different values of the bias

current I. The RCSJ model gives an intuitive picture for understanding the dynamics of

the Josephson junction devices discussed in section 2.2.

2.1.2 Non-linear inductance and characteristic energy scales

Using the Josephson equations, Eqs.(2.1) and (2.2), the ideal Josephson branch in the

parallel circuit depicted in Fig. 2.2 b can be interpreted in terms of a non-linear inductance

LJ =
Φ0

2πIc cos(ϕ)
=

LJ0

cos(ϕ)
. (2.6)

It is this non-linearity which enables the design of superconducting circuits effectively mim-

icking quantum two-level systems. In terms of energy scales, the junction is conveniently

described by the Josephson energy EJ = Φ0Ic/2π and the charging energy EC = e2/2C.

EJ and EC are the energies required to store one flux quantum in the Josephson induc-

tance LJ and to charge the junction’s self-capacitance C with one elementary charge e,

respectively.

Like position and momentum, charge and flux are conjugate variables in the framework of

quantum mechanics and obey the commutation relation [Q̂, Φ̂] = i~. For the Josephson

junction devices discussed in this work, EJ/EC ≈ 20− 80 (flux quantum circuits). In this

2In general, the ϕ-dependent Josephson energy is given by EJ,ϕ = EJ(1 − cosϕ), where EJ is the

maximum Josephson energy. In the remainder of this work, we will refer to EJ as the Josephson energy.
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ϕ

ωp

U/EJ

I = 0

I    Ic

I ≥ Ic

M    C∝

η    1/R∝

macroscopic 
quantum tunneling

~<

Figure 2.3: Sketch of the potential U(ϕ) for various bias currents I. For I > 0 this potential

is referred to as the tilted washboard potential. In general, three important cases can be

distinguished. I = 0: the phase particle (yellow) with mass M ∝ C oscillates around the

minimum with the plasma frequency ωp =
√

2πIc
Φ0C

. I . Ic: the phase particle can tunnel

through the lowered potential barrier (macroscopic quantum tunneling [123]) if the potential

is sufficiently tilted. The retrapping process depends on M and η ∝ 1/R. For T → 0, thermal

activation over the potential barrier is suppressed exponentially. I ≥ Ic: independent on the

damping, the phase particle can no longer be trapped due to the absence of potential minima.

According to the 2nd Josephson equation a change in ϕ results in a finite voltage drop across

the junction. The retrapping process for decreasing bias current I follows similar dynamics.

case, the flux Φ (or equivalently the phase ϕ) is a well defined quantum variable whereas

the charge Q (or equivalently the number N of charges) fluctuates strongly.

2.2 Josephson junction devices

In this section we review two devices based on the Josephson effects and fluxoid quantiza-

tion [53,124,125]: the dc-SQUID and the flux qubit. While the dc-SQUID is widely used in

many fields of application concerning everyday life (e.g. Magnetoencephalography (MEG),

Magnetocardiography (MCG), SQUID microscopy for oil prospection), the flux qubit itself

is living a dire existence in basic research. Since this section only covers the most impor-

tant aspects of three-Josephson junction based flux qubits, we suggest Refs. [47,48,75] for

a general overview and Refs. [59, 65, 68, 73] for further reading covering different types of

Josephson junction based qubits.
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2.2.1 dc-SQUID

The direct-current superconducting quantum interference device (dc-SQUID) is a highly

sensitive magnetometer. It consists of two Josephson junctions connected in parallel in a

superconducting loop. A schematic and a false-color SEM image of a dc-SQUID are shown

in Fig. 2.4 a and b, respectively. Effectively, a dc-SQUID is a flux-to-voltage converter

and owing to its sensitivity, it can be used to read out the state of superconducting flux

qubits. In this section we will only discuss the main features of the dc-SQUID that are

necessary to understand the readout of flux qubits. For a more thorough investigation of

the physics of dc-SQUIDs we refer the reader to Refs. [52, 53,126,127].

Figure 2.4 c shows a sketch of the current-voltage characteristic (IVC) of a current biased

dc-SQUID for zero applied flux Φsq = 0. In the following, we assume a dc-SQUID consisting

of two identical junctions (each with a critical current Ic/2) and in absence of any noise.

For increasing bias current I and as long as I < Ic, the current is flowing as supercurrent

through the SQUID and no voltage drop is observed. We note that in our nomenclature Ic

refers to the maximum critical current of the dc-SQUID, which is the sum of the critical

currents of each junction. For I = Ic the SQUID switches to the so-called voltage state

and a finite voltage drop Vg is observed. In general, the SQUID behaves like an non-

linear resistor Rn(V ) for I > Ic, however, in many cases it can be modeled as an ohmic

resistor Rn. The three parameters Ic, Vg and Rn are related by the Ambegaokar-Baratoff

Φsq

I RCSJ
5 μm

0

1

I c,
sq

 / 
I c

-2 -1 0 1 2
Φsq / Φ0

a b

c d

Φsq = 0

I /
 I c

-1

0

1

-1 0 1
V / Vg

Figure 2.4: Direct-current superconducting quantum interference device (dc-SQUID). (a)

Schematic of a current biased dc-SQUID. The Josephson junctions are visualized by a red

box with a cross. The equivalent circuit of each junction is based on the RCSJ model. (b)

False-color SEM image of a dc-SQUID (light blue) surrounding a flux qubit. The two Joseph-

son junctions are highlighted by dashed red boxes. (c) Current-voltage characteristic (IVC) of

an underdamped (large C and/or Rn) dc-SQUID. For increasing current I (light blue curve),

a voltage drop of Vg is observed when I = Ic. For an underdamped SQUID, decreasing I

(magenta curve) leads to a hysteresis in the IVC. (d) Maximum critical current Ic,sq of the

dc-SQUID as a function of the magnetic flux Φsq threading its loop. Ic,sq is periodic in Φ0

and oscillates with an amplitude of Ic.
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relation [128]

Ic =
π

4

Vg

Rn
, (2.7)

where Vg = 2∆s/e. Here, 2∆s denotes the superconducting energy gap. Originally, the

Ambegaokar-Baratoff relation was stated for a single junction and is based on a micro-

scopic description of the Josephson effects.

When decreasing I, the IVC of the SQUID depends strongly on C and Rn and can be de-

scribed by the dimensionless Stewart-McCumber parameter3 βC = Φ0
2π IcR

2
nC [129, 130].

The IVC depicted in Fig. 2.4 c shows a strong hysteresis which is characteristic for

underdamped Josephson junctions. In the picture of a phase particle in a tilted (two-

dimensional) washboard potential, this behavior corresponds to a high mass M (large C)

and/or small damping η (large R) and consequently βC � 1. Varying the external flux

Φsq leads to an oscillatory behavior of Ic,sq(Φsq) as shown in Fig. 2.4 d, where

Ic,sq(Φsq) = Ic

∣∣∣∣cos

(
π

Φsq

Φ0

)∣∣∣∣ . (2.8)

In this sense, the dc-SQUID behaves like a single Josephson junction with tunable Ic,sq

[131,132]. The Φ0-periodicity is a direct consequence of the fluxoid quantization in super-

conducting loops [133,134].

a b
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Figure 2.5: Switching current distributions. (a) Top panel: tilted washboard potential with

phase particle of low mass and large plasma frequency ωp. For temperatures below the

so-called crossover temperature, the quantum tunneling rate exceeds the thermal activation

rate [135]. In this regime, the escape rate Γ ∝
√
ωpU exp(−U/ωp), where U is proportional to

the light blue colored area. Bottom panel: typical switching current histogram. The standard

deviation σ is affected by thermal and quantum fluctuations. (b) same as in (a) but for a

phase particle with large mass and therefore low ωp.

3The Stewart-McCumber parameter β was originally defined for a single Josephson junction, however,

its value remains unchanged when considering a dc-SQUID consisting of two identical Josephson junctions.
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Switching current distribution

The switching of the dc-SQUID into the voltage state is a statistical process and occurs

when the phase particle escapes from the metastable minimum in the tilted washboard po-

tential. This escape is either governed by thermal activation (kBT � ~ωp) or by quantum

tunneling (kBT � ~ωp) [136, 137]. Subsequent measurements of Ic,sq at a fixed flux bias

will lead to a distribution of the switching current with a mean value Isw and a standard

deviation σ as shown in Fig. 2.5. The susceptibility to undesired switching events – and

therefore σ – can be reduced by increasing the mass M of the phase particle. This is

equivalent to lowering the plasma frequency ωp ∝
√

1/C. Experimentally, this can be

realized by an increase of the Josephson junction area or by shunting the dc-SQUID with

large external or on-chip shunt capacitors [66,138–140].

2.2.2 Superconducting flux qubit

The experiments presented in this thesis are based on a specific type of superconducting

qubit: the three-Josephson-junction flux qubit [49,63,64]. This type of qubit, schematically

shown in Fig. 2.6 a, comprises a superconducting loop interrupted by three Josephson

junctions. Two of these junctions have an area A, while the third junction is smaller by a

factor of α. Typically, 0.5 < α < 0.8 and A ∼ 0.02− 0.04µm2. Figure 2.6 b shows a false-

color SEM image of a flux qubit surrounded by a readout dc-SQUID. An external magnetic

field threading the superconducting qubit loop induces screening currents due to the fluxoid

quantization. In turn, these clockwise or counter-clockwise circulating persistent currents

Φx
- Ip- Ip+ Ip+ Ip

A

αA

A

5 μm

20 μm20 μm

a b

c d

Figure 2.6: Schematic and SEM images of superconducting flux qubits. (a) Sketch of a super-

conducting three-Josephson-junction flux qubit. For an external flux bias Φx 6= 0, persistent

screening currents ±Ip are induced. (b) False-color SEM image of a flux qubit (green) sur-

rounded by a dc-SQUID. The dashed red boxes mark the positions of the qubit’s Josephson

junctions. (c) and (d) False-color SEM images of flux qubits coupled (c) galvanically and (d)

via the mutual inductance to resonant cavities.
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± Ip generate a small magnetic flux, roughly ∼ 10−3 Φ0 for realistic qubit parameters.

It is exactly this small change in magnetic flux that can be detected by the dc-SQUID.

Furthermore, fluxoid quantization demands that the total flux enclosed by the loop sums

up to an integer multiple of a flux quantum Φ0. Figure 2.6 c and d show images of flux

qubits coupled to planar transmission lines. In this case, the readout of the qubit is based

on dispersive interactions between qubit and cavity which will be explained in more detail

in section 5.1.1.

Potential energy

The potential energy Uqu of the flux qubit sketched in Fig. 2.6 a is the sum of the potential

energies of each individual junction in absence of any bias current. Following Ref. [63],

Uqu can be written as

Uqu = EJ [(1− cosϕ1) + (1− cosϕ2) + α(1− cosϕ3)] (2.9)

= EJ [2 + α− cosϕ1 − cosϕ2 − α cos(2πf + ϕ1 − ϕ2)] , (2.10)

where f = Φx/Φ0 is the so-called frustration and Φx represents the flux threading the qubit

loop. In expression (2.9), one phase difference (in this case ϕ3) can be eliminated utilizing

fluxoid quantization4. In general, the qubit potential is 2π-periodic along each axis and

exhibits a double-well structure if α > 0.5. The two minima correspond to states with

persistent currents ±Ip of opposite direction. Furthermore, at the so-called degeneracy

points, where f = n+ 1/2 and n ∈ Z, the potential Uqu is symmetric. Figure 2.7 a shows

2
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ϕ 2
/2
π
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c

Figure 2.7: Potential energy landscape according to Eq. (2.10) for f = 0.5 and α = 0.8 . (a)

Color-coded plot of the two-dimensional qubit potential Uqu. The two minima within a unit

cell (dashed white box) correspond to states with opposite persistent current Ip. (b) Cut along

ϕ1 = −ϕ2 connecting the nearest neighbor minima A and B within a unit cell. The cut is

indicated by the solid black line in (a). (c) Cut along the direction connecting the minima A

and C located in different unit cells. The cut is indicated by the solid red line in (a).

4Furthermore, for the derivation of Eq. (2.10) one has to assume that the geometric inductance of the

qubit loop L is small compared to LJ. For all the junctions and qubit parameters presented in this work

L/LJ � 1.
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a color-coded plot of Uqu as a function of the phase differences ϕ1 and ϕ2 for f = 0.5 and

α = 0.8 . Figure 2.7 b shows a cut along the direction connecting the two minima within

a unit cell, while Figure 2.7 c represents a cut along the direction to the next-nearest

minimum. A comparison of Fig. 2.7 b and c suggests that the matrix element for intracell

quantum tunneling will be much larger than for tunneling between minima of adjacent

unit cells. Thus, for an appropriate choice of α and EJ/EC it is possible to engineer a

well-defined quantum two-level system using macroscopic circuit elements.

Close to a degeneracy point the flux qubit can be described quantum mechanically by the

Hamiltonian

Ĥq =
ε

2
σ̂z +

∆

2
σ̂x =

1

2

(
ε ∆

∆ −ε

)
, (2.11)

where σ̂z and σ̂x are Pauli operators. This Hamiltonian has a very general form and

describes a two-level system whose energy levels are coupled by a tunneling matrix element

[141]. In our case, the two persistent current states | + Ip〉 and | − Ip〉, which are the

eigenstates of (ε/2) σ̂z, are coupled by an off-diagonal energy term ∆ which is proportional

to the tunneling matrix element. The flux-dependent energy bias ε is given by

ε ≡ ε(Φx) = 2
∂Uqu

∂Φx
δΦx = 2IpδΦx , (2.12)

where we introduced the relative flux bias δΦx = Φx − fΦ0. The derivative in Eq. (2.12)

has to be evaluated in the minima of the double-well potential where

ϕ1 = −ϕ2 = ± arccos(1/2α) (2.13)

yielding the relation

Ip = Ic

√
1− (1/2α)2 . (2.14)

The energy level spectrum of Ĥq is plotted in the top panel of Fig. 2.8 a. At δΦx = 0, the

degeneracy between the unperturbed eigenstates | − Ip〉 and |+ Ip〉 is lifted by formation

of an energy gap ∆. The qubit’s ground state |g〉 and excited state |e〉 are symmetric and

antisymmetric superpositions of |+ Ip〉 and | − Ip〉. Sufficiently far away from δΦx = 0,

where ∆� ε, the energy ground state |g〉 and excited state |e〉 of Ĥq are in good approx-

imation identical to | − Ip〉 and | + Ip〉. In general, the flux-dependent energy difference

between the qubit levels is given by

Ege = ~ωq =
√

∆2 + ε(Φx)2 . (2.15)

At the qubit degeneracy points, ε = 0 and therefore ∂Ege/∂Φx = 0. This implies that Ege

is stationary with respect to small variations of δΦx which in turn yields optimum qubit

coherence properties [81]. The bottom panel of Fig. 2.8 a visualizes the flux dependence of

the current Iq = Ip〈σ̂z〉 = ∂Ege/∂Φx circulating in the qubit loop. Therefore, Iq → 0 when

approaching a degeneracy point which complicates measurements that rely on the detection

of a quantity ∝ Iq, e.g. the dc-SQUID readout presented in chapter 4. Figure 2.8 b shows

schematically the shape of the qubit double-well potential (cf. Fig. 2.7 c). This shape can

be adjusted by varying the relative flux bias δΦx. Only at the qubit degeneracy points the

potential is symmetric and implies selection rules for specific photon-induced transitions

(see section 5.5.2) [142].
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Figure 2.8: Qubit’s energy level diagram, persistent current and double-well potential. (a)

Top panel: eigenenergies of the qubit Hamiltonian Ĥq as a function of the relative flux bias

δΦx. The persistent current states | − Ip〉 and | + Ip〉 are indicated by blue and red arrows,

respectively. For ∆ = 0, the eigenenergies are given by the dashed gray lines. In general, the

energy difference Ege between |g〉 and |e〉 has a hyperbolic flux dependence. Bottom panel:

sketch of the circulating current Iq = Ip〈σ̂z〉. For clarity, Iq associated with |e〉 is plotted with

less opacity. (b) Sketch of the qubit’s double-well potential along the black line in Fig. 2.7 a

as a function of δΦx. Sketches of the wavefunctions are indicated. Furthermore, the energies

of these states are well separated from higher energy states (gray dotted line).

Dependence of ∆ on EJ and EC

At the degeneracy point δΦx = 0, the qubit transition frequency from |g〉 to |e〉 is given by

∆/h. A prerequisite for a well-defined quantum two-level system is ∆ � kBT . Further-

more, it can be shown [63,64,138] that

∆ ∝ ~ωp exp(−a
√
EJ/EC) (2.16)

where the plasma frequency ωp =
√

2πIc
Φ0C

can be written as

~ωp ∝ b
√
EJEC = bEC

√
EJ/EC . (2.17)

In the above expressions, the parameters a and b are of the order of unity [64] and can be

evaluated numerically. The expression for ∆ in Eq. (2.16) can be interpreted in the picture

of a phase particle performing oscillations with frequency ωp in the one-dimensional qubit

double-well potential (see Fig. 2.7 c and Fig. 2.8 b). ωp ∝ EC can be interpreted as the

attempt frequency for tunneling into the neighboring well. Furthermore, the tunneling

probability is proportional to exp(−
√
EJ/EC). It is evident, that a large EC is favorable

since EC ∝ 1/C ∝ 1/M (see Fig. 2.3 c). However, the ratio EJ/EC must be large enough
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to ensure that flux is a well-defined quantum variable.

Summing up, large EJ/EC ratios and simultaneously a large EC is required, which implies

Josephson junctions with a small area A ∝ C. Because EJ ∝ Ic, a small area in turn

demands high critical current densities jc = Ic/A. We give an estimate of typical flux

qubit parameters: the frequency associated with a temperature of T ∼ 25 mK is roughly

0.5 GHz. Thus, we require a moderate EC/h ∼ 5 GHz which corresponds to a Josephson

junction with area A ∼ 0.04µm2 assuming a specific capacitance cs ∼ 100 fF/µm2 for

aluminum based junctions [143, 144]. With EJ/EC ∼ 50, the critical current density of

the junction has to be roughly jc ∼ 1.3 kA/cm2 = 13µA/µm2. We will see in chapter 3

that such small areas can be reproducibly realized by standard lithographic techniques.

However, high critical current densities are technologically very challenging as jc depends

exponentially on the thickness of the insulating barrier. The reproducibility and the spread

of c of our Josephson junctions is discussed in appendix A.10.
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2.3 Coplanar waveguide resonators

One of the fundamental building blocks for experiments studying light-matter interaction

is a device allowing for the storage of photons. In the field of optical cavity QED, such

devices – commonly called cavities or resonators – are realized by two highly polished

mirrors that enable the reflection of optical photons. In the microwave regime, cavities

can be realized as superconducting on-chip transmission lines.

There are various transmission line geometries that can be used for engineering microwave

cavities. We will focus on resonators in a coplanar waveguide (CPW) geometry. This

specific geometry is the two-dimensional analog to a coaxial cable. Here, a center conduc-

tor is separated on both sides by gaps from lateral groundplanes. The most important

advantages for using CPW resonators in the scope of this thesis were:

• In contrast to microstrip geometries, the characteristic impedance Z0 is not signifi-

cantly constrained by substrate properties. It is thus possible to fix Z0 (usually to

50 Ω) by keeping the aspect ratio of the relevant dimensions along the cross-section

constant. However, the actual dimensions can vary by orders of magnitude making

the CPW geometry extremely versatile in the context of microwave engineering.

• CPW resonators can be easily realized to operate between 1−10 GHz thus matching

typical transition frequencies of quantum bits.

• Although their lengths are typically l = 10− 40 mm, their lateral dimensions can be

of the order of a few µm. This results in a small mode volume Vm which in turn

enhances the electromagnetic field strength ∝ 1/
√
Vm (cf. section 1.3).

Furthermore, by using superconducting materials like aluminum and niobium, quality fac-

tors up to several hundred thousands [145–149] can be realized, corresponding to photon

storage times of the order of hundreds of µs.

In the following sections we will only emphasize the most important properties of CPW

resonators relevant for understanding the results presented in this thesis. A more de-

tailed theoretical overview, especially on mapping transmission line resonances to that of

lumped element LCR-circuits, can be found in Refs. [148,150,151]. Furthermore, Ref. [148]

constitutes a very thorough experimental analysis of aluminum based resonators and the

transmission matrix model.

2.3.1 General properties of λ/2-resonators

Figure 2.9 a and b show schematic views of a λ/2-resonator and its cross-section geometry,

respectively. The resonator is defined by a center conductor (length l and width w) coupled

capacitively to in- and output ports. Furthermore, the center conductor is separated by

a gap (width s) from the lateral groundplanes. Usually, the extent of the groundplanes is

much larger than w and s. The conducting layers have a thickness t and are fabricated on

a substrate with relative dielectric constant εr and height h.

Two general types of coupling capacitors are shown in Fig. 2.9 c and d. Owing to the large

impedance mismatch, these coupling capacitors act similar to highly reflective dielectric

mirrors and are the on-chip complement to the optical mirrors in cavity QED experiments.

The resonator allows the formation of standing electromagnetic waves with wavelengths
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Figure 2.9: Schematic and cross-sectional view of a coplanar waveguide (CPW) λ/2-resonator.

(a) The resonator is defined by a center conductor with length l (white arrow) coupled capaci-

tively to in- and output ports. The red line indicates a standing wave (λ = l) corresponding to

the position-dependent current amplitude. (b) Cross-section of a conventional CPW. For fixed

substrate thickness h, the characteristic impedance Z0 depends on the aspect ratio w/(w+2s).

For the devices studied in this work l� h� w, s� t. (c) Interdigital finger capacitor. Each

finger has a length lf and width wf . The distance between each edge is sf . (d) Gap capacitor

with gap width sg.

fulfilling the boundary conditions at the position of the coupling capacitors5. In a particle

picture, these standing waves correspond to photons with specific resonance frequencies

ωn/2π. The lifetime T of the photons inside the resonator depends predominately on the

capacitance Cκ of the coupling capacitors (T ∝ C−2
κ ). For the resonant cavity in Fig. 2.9 a,

only standing waves with wavelengths

λn =
2l

n
(2.18)

fulfill the boundary conditions. In the following, we present expressions for Z0 and the

resonance frequencies of a resonant cavity similar to the one in Fig. 2.9 a.

Characteristic impedance Z0 and resonance frequencies ωn

The impedance of a conventional CPW on a dielectric substrate of finite thickness is given

by [152]

Z0 =
30π
√
εeff

K(k′0)

K(k0)
(2.19)

with the effective dielectric constant

εeff = 1 +
εr − 1

2

K(k1)

K(k′1)

K(k′0)

K(k0)
. (2.20)

5The standing wave representing the position-dependent current amplitude has invariably a node at the

position of the coupling capacitors (see red line in Fig. 2.9 a)
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Figure 2.10: (a) Color-coded plot of Z0 as a function of w and s. The plot was generated

for h = 525µm and εr = 11.9 (silicon) reflecting the substrate parameters of the resonators

presented in this thesis. Impedances close to the optimum value of Z0 = 50 Ω (white regions)

are realized when the aspect ratio w/s ∼ 5/3. (b) Sketch of the normalized transmission

spectrum of a capacitively coupled resonator as shown in Fig. 2.9 a. Close to a resonance ωn
the spectrum has a Lorentzian line shape (magenta) with a full width at half maximum of κn.

The quality factor Q is a measure for the average storage time of photons inside the cavity.

Here, K denotes the complete elliptic integral of the first kind and

k0 =
w

w + 2s
(2.21)

k1 =
sinh(πw/4h)

sinh[π(w + 2s)/4h]
(2.22)

k′i =
√

1− k2
i with i = 0, 1 (2.23)

Figure 2.10 a shows a color-coded plot of Z0 for a realistic range of w and s. For non-

magnetic substrates, the phase velocity is given by vph = c/
√
εeff . Therefore, the expression

for the nth resonance frequency is

ωn/2π =
vph

λn
= n

c

2l
√
εeff

. (2.24)

A typical normalized transmission spectrum close to a resonance ωn is shown schematically

in Figure 2.10 b. The spectrum has a Lorentzian line shape with a full width at half

maximum given by the cavity decay rate κn. The quality factor Q of the nth mode is given

by

Qn = ωn/κn (2.25)

and is proportional to the energy stored in the circuit divided by the energy dissipation per

cycle [150]. Thereby, a high quality factor corresponds to a long average photon lifetime

inside the cavity. In Fig. 2.11, the resonance frequency ω1 of the fundamental λ/2-mode

is shown as a function of the resonator length l.

2.3.2 Capacitive coupling to an external load

In order to determine ωn, κn and therefore Qn, the resonator is inevitable coupled to a

measurement device representing an external load RL. In this section we review how the

capacitive coupling to the outside world influences the properties of the resonant circuit.
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Figure 2.11: Measured fundamental resonance frequency ω1/2π (violet data points) as a function

of the length l of the resonator’s center conductor. The red line is a fit to the data using

Eq. (2.24) and εeff as fit parameter. The fit procedure yields εeff = 6.19 which deviates by a

maximum of 6% from the calculated values using Eq. (2.20).

The equivalent circuit of a distributed CPW resonator modeled as transmission line [150]

is depicted in Fig. 2.12 a. Basically, the transmission line is modeled by many blocks

consisting of lumped circuit elements, each block having the same characteristic impedance

Z0. Close to the resonance frequencies ωn, the distributed resonator can be mapped

[148, 151] onto a parallel lumped element LCR-circuit as shown in Fig. 2.12 b. The

coupling through the capacitor Cκ in series to an external load RL can be modeled by

the effective circuit consisting of a parallel combination of R∗ and C∗ (see Fig. 2.12 c),

where

R∗ =
1

ω2
nC

2
κRL

+RL (2.26)

C∗ =
Cκ

1 + ω2
nC

2
κR

2
L

. (2.27)

With ωn ∼ 109 − 1010 s−1 and typically Cκ ∼ 10−15 F, the small capacitors Cκ transform

each resistive load RL = 50 Ω into a large impedance R∗ equivalent to additional losses.

The resonance frequency of the LCR-circuit is slightly shifted by δω due to the capacitive

loading (parallel combination of C and C∗ ≈ Cκ). This frequency shift is small and given

by [148]

δω = −ωn
Cκ
C

. (2.28)

The overall losses can be expressed in terms of a loaded quality factor QL which is a

parallel combination of internal and external quality factors

1

QL
=

1

Qint
+

1

Qext
(2.29)

with

Qint = ωnRC and Qext = ωnR
∗C/2 . (2.30)
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Figure 2.12: Equivalent circuit of a distributed CPW resonator. (a) The center conductor with

length l (black arrow) is modeled by a series connection of small identical blocks (orange

regions; ith block shown in detail). Each block consist of lumped circuit elements Li, Ri, Ci
and Gi which are defined per unit length. The resonator is symmetrically coupled to an

external load RL through the capacitors Cκ (blue regions). (b) Close to a resonance frequency

ωn, the circuit in (a) can be modeled as parallel lumped element LCR-circuit, with e.g.

L = l Li. (c) The series combination of RL with Cκ can be transformed into an equivalent

parallel circuit of C∗ and R∗ (dashed red boxes). The latter can act as an additional dissipative

channel.

In essence, the capacitance Cκ determines whether QL is governed by Qint or Qext. It is

convenient to define the coupling coefficient gc = Qint/Qext and to distinguish two cases:

• gc < 1 (small Cκ, Qext > Qint): the resonator is called undercoupled. In the extreme

case of an uncoupled resonator (Cκ = 0, Qext → ∞), the loaded quality factor is

governed only by intrinsic losses (e.g. dielectric or resistive losses).

• gc > 1 (large Cκ, Qext < Qint): the resonator is called overcoupled. In this regime the

loaded quality factor is governed by Qext and can be engineered by an appropriate

choice of Cκ.

The internal losses can be minimized by using superconductors and low-loss substrates.

In our case, Qint � Qext and the loaded quality factor can be well approximated by

QL = Qext =
C

2ωnC2
κRL

∝ 1

C2
κ

(2.31)

and scales as 1/n for increasing mode index. The total capacitance C = l Ci in Eq. (2.30)

and Eq. (2.31) can be calculated using [152]

Ci = 4ε0εeff
K(k0)

K(k′0)
, (2.32)

where ε0 is the vacuum permittivity.



2 Superconducting Quantum Circuits 25

2.3.3 Kinetic inductance

In general, the total inductance Ltot of a superconductor is the sum of a purely geometric

contribution L and a kinetic contribution Lkin. The temperature independent part L

resembles energy stored in magnetic fields. Lkin arises from kinetic energy stored in the

motion of charge carriers. In the case of a CPW, the geometric contribution per unit

length is given by

Li =
µ0

4

K(k′0)

K(k0)
, (2.33)

where µ0 is the vacuum permeability6. An explicit expression for Lkin can be found in

Refs. [153, 154] and is omitted here7. However, the two most important and relevant

aspects are:

• Lkin ∝ λ2
L [53]. Here, the temperature-dependent London penetration depth [156]

is given by λL ≡ λL(T ) = λ0/
√

1− Y0(T ). In this expression, λ0 is the zero-

temperature London penetration depth and Y0(T ) ∝ exp(−∆s/kBT ) is the Yosida

function [157]. Thus, for low temperatures λL ≈ λ0. The London penetration depth

is the characteristic decay length of magnetic fields in superconductors.

• Lkin/L ∼ 10−2 for our niobium CPW resonators. The kinetic inductance has negli-

gible influence on the value of the resonance frequencies and in good approximation

Ltot ≈ L. However, a small temperature-dependent influence on the resonance fre-

quencies remains since ω ∝ 1/
√
Ltot.

2.3.4 Intrinsic resonator losses

In the overcoupled regime, the external losses can be ’engineered’ and the capacitive cou-

pling limits the quality factor. On the contrary, in the extremely undercoupled regime,

intrinsic resonator losses are the dominant factor limiting Qint. In this subsection we

compare distinct internal loss mechanisms: resistive, dielectric and radiative losses.

Resistive Losses

Resistive losses in superconductors due to the presence of high-frequency alternating cur-

rents are well captured by the two-fluid model [53]. In this model, the superconductor

is described by a resistive channel (quasiparticles or ’normal electrons’) in parallel to an

inductive channel (kinetic inductance of Cooper pairs). Thus, the presence of a finite re-

sistance for any non-zero temperature and frequency involves dissipation.

It can be shown [53,151,154] that the resistive losses per surface area Rs(ω) are frequency-

dependent and scale as

Rs(ω) ∝ nn

ns
Lkinω

2 . (2.34)

6This result can be obtained e.g. by using vph = c/
√
εeff = 1/

√
LiCi and Z0 =

√
Li/Ci with the

approximation c ≈ 3 · 108 m/s
7We note, that some text books and scientific publications cite Ref. [155] instead of Ref. [153] for the

calculation of Lkin. The discrepancy between the calculated kinetic inductances from the formulas given

in these two publications is significant (factor ∼ 1.7 for our actual design parameters but a factor ∼ 750 (!)

for w = 1µm and s = 20µm). Furthermore, the dependence of Lkin on the magnetic penetration depth is

linear in Ref. [155] but quadratic in Ref. [153]. The calculations in this thesis are based on the formula given

in Ref. [153] which is derived analytically by conformal mapping techniques. In contrast, the expression

given in Ref. [155] is an analytical approximation to numerical results published elsewhere.
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Here, ni denotes the density of normal (i = n) and superconducting (i = s) electrons. For

T → 0 the BCS theory [156,158] predicts nn/ns ∝ exp(−Tc/T ) and therefore

Qres ∝ 1/Rs ∝ exp(Tc/T ) . (2.35)

The resistively limited Qres scales exponentially with the reduced temperature Tc/T . At

very low temperatures and input powers, however, the quality factor is limited by dielectric

loss.

Dielectric losses

Dielectric loss is thought to be one of the primary sources of decoherence in supercon-

ducting quantum bits [83] and also a limiting factor for the maximum attainable quality

factor for CPW resonators. When electric or magnetic fields pass a lossy substrate, energy

is invariably lost. The dielectric loss can be expressed by an imaginary part εIm of the

dielectric constant ε. It is then possible to define a quality factor Qdiel for an effective

LCR-circuit with

Qdiel =
1

tan δ
. (2.36)

The quantity tan δ = εIm/εRe is the loss tangent. To minimize dielectric losses it is there-

fore essential to use substrate materials with a small tan δ [147, 159]. Furthermore, it

was observed that for very small input powers Pin the loss tangent scales ∝ 1/
√
Pin and

saturates at an intrinsic value [147]. This effect is attributed to two-level state (TLS)

defects [160] in the dielectric which absorb energy at low powers but become saturated at

higher powers and temperatures. It is beyond the scope of this thesis to give a detailed

overview about dielectric losses and TLS defects. Thus, for further reading, the author

suggests the following references, capturing properties of superconducting resonators in-

cluding TLS dielectrics [159, 161, 162], the modeling of TLS defects [163] and resonator

properties in the low power limit at mK temperatures [164,165].

Radiative losses

Even at zero temperature and assuming no dielectric loss mechanisms, the internal quality

factor of a CPW resonator would be limited by energy loss by radiation into free space.

Assuming a straight CPW transmission line [166, 167] it can be shown that the radiation

limited quality factor scales as

Qrad ∝ 3

(
l

w + 2s

)2

. (2.37)

Here, w and s are defined as depicted in Fig. 2.9 b and l is the length of the CPW

transmission line. The factor 3 in Eq. (2.37) was evaluated numerically and decreases

for increasing mode index n. For GHz resonators with large aspect ratios l/(w + 2s) ≈
(0.5 − 1) · 103 as they are presented in this thesis, radiation losses are not the limiting

factor.

2.3.5 Quantization of the LC-resonant circuit

In section 2.3.2, the distributed CPW resonator was modeled as parallel lumped element

circuit. Such an electronic harmonic oscillator can be described quantum mechanically,
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with operators resembling electric circuit quantities.

The voltage across the inductance L and the capacitance C of a lossless LC-circuit is given

by

V = Q/C = −L∂I
∂t

. (2.38)

The classical Hamilton function representing the total energy can be written as

H =
1

2
LI2 +

1

2
CV 2 =

Φ2

2L
+
Q2

2C
, (2.39)

where we used Φ = LI representing the flux in the inductor and Q = CV is the charge

stored in the capacitor. We see that

∂H

∂Q
= Q/C = V = −L∂I

∂t
= −Φ̇ and (2.40)

∂H

∂Φ
= Φ/L = I = Q̇ , (2.41)

which implies that Q and Φ correspond to generalized canonical position and momentum

variables, respectively. Therefore, we can map these classical variables directly to quantum

mechanical operators Q̂ and Φ̂ with the commutation relation

[Q̂, Φ̂] = i~ . (2.42)

In analogy to a particle moving in a harmonic potential, the operators Q̂ and Φ̂ can be

expressed in terms of bosonic creation (â†) and annihilation (â) operators as [168]

Q̂ =

√
~

2Zc
(â† + â) and (2.43)

Φ̂ = i

√
~Zc

2
(â† − â) . (2.44)

Here, Zc =
√
L/C is the characteristic impedance of the LC-circuit and

â =
ZcQ̂+ iΦ̂√

2~Zc
. (2.45)

â† and â obey the renowned commutation relation [â, â†] = 1. Using Eqs. (2.43), (2.44), and

(2.39), the Hamiltonian of a quantum mechanical oscillator with frequency ω = 1/
√
LC

can be written as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.46)
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Chapter3
Design & Fabrication Technology

The primary goal of the author’s efforts in the early stages of this thesis was the design and

fabrication of superconducting quantum circuits. Unfortunately, former PhD and diploma

students did not succeed in fabricating the main building block - the superconducting flux

quantum bit. The last sentence is not to be misunderstood as derogating their commitment

and efforts. Rather, it should point out that one of the most important contributions

to a reproducible fabrication of flux qubits was the implementation of a new aluminum

evaporation facility at the WMI by T. Brenninger [169]. In the framework of this thesis the

fabrication processes for superconducting flux qubits were successfully established in the

new evaporation system. Besides design considerations for resonators, Josephson junction

devices and their electromagnetic on-chip environment, this chapter also covers different

lithographic and deposition techniques. In general, our quantum circuits are fabricated

using a mix and match process where high resolution electron beam lithography patterns

are precisely aligned into existing patterns made by optical lithography. This process is

illustrated in Fig. 3.1.

The fabrication processes described in this chapter involve many steps, each one important

and some of them rather time-consuming. Process parameters may vary over time and

consequently have to be adjusted. This requires a good knowledge of the interplay of these

parameters and most importantly, constant monitoring. The detailed recipes and process

parameters for each device in appendix A should serve as a good starting point.

3.1 Josephson junction devices

For flux quantum bits we require Josephson junctions with areas A ∼ 0.02 − 0.04µm2 to

ensure a large charging energy EC (see section 2.2.2). In addition, high critical current

densities are needed to ensure a sufficently large EJ/EC ratio. In a conventional readout

scheme, the qubit is surrounded by a dc-SQUID, which detects the flux generated by the

persistent currents in the qubit loop. Both devices are fabricated simultaneously using

electron beam lithography and shadow evaporation [170] of aluminum. While the flux

qubit is not connected galvanically to any device, the dc-SQUID has to be connected to

a readout circuitry. Such devices are studied experimentally in chapter 4. For the circuit

QED experiments discussed in chapter 5, a flux qubit is coupled to a distributed CPW

resonator and the state of the qubit can be inferred from the shift of the transmission

29
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Figure 3.1: Roadmap towards integrated quantum circuits. The mix and match process used at

the WMI combines optical and electron beam lithography. Each lithography step is followed

by either a deposition or a removal of a thin metal film. The images in the top panel belong to

qubit-SQUID devices while the images in the bottom panel depict flux quantum bits coupled

to distributed coplanar waveguide resonators.

spectrum.

In both cases, prior to the fabrication of flux qubits, comparatively large patterns (e.g bias

lines or CPW resonators) with dimensions of several mm have to be realized. This is done

by optical lithography which allows the patterning of large areas within a single exposure

step. The spatial resolution of optical lithography (at least with standard equipment)

is limited by the wavelength of the ultraviolet (UV) light used and is typically ≥ 1µm.

Thus, small area Josephson junctions have to be realized using electron beam lithography

(EBL). However, EBL is a serial lithography technique and is not suited for large area

applications due to its limited throughput.

3.1.1 On-chip bias lines

The bias lines and contact pads necessary for a four-point readout of the dc-SQUID are

fabricated in a lift-off process using optical lithography and sputter deposition of gold. The

application of gold has several advantages, e.g. good thermal and electrical conductivity.

In addition, as a noble metal gold barely oxidizes which is favorable for wire bonding.

We used two different substrate materials for qubit-SQUID systems, silicon with native

oxide and thermally oxidized silicon with an oxide thickness of 50 nm. Although flux

qubits could be successfully fabricated and characterized on both substrate materials, the

production process is now optimized for silicon wafers with a thermally grown oxide layer

since the CPW resonators are fabricated on that material, too. The specific material

characteristics can be found in appendix A. Figure 3.2 shows the two designs for bias lines

and contact pads used for the majority of experimental results presented in this thesis.

The layouts differ in complexity and in the available space for additional circuit elements.
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Figure 3.2: Layouts of optical masks. (a) Layout of an optical mask for lithography of dc-SQUID

contact pads. Magnified views of the area indicated by the blue square are shown from left to

right. Filled orange polygons correspond to subsequently metalized areas. In the right panel,

an 120 x 120µm2 EBL writefield can be defined by the four crosses. (b) Sophisticated sample

layout. The high resistance bias and readout leads attenuate external noise. The additional

EBL writefields allow the patterning of circuit elements prior to flux qubit and dc-SQUID

fabrication.

The simpler design (see Fig. 3.2 a) was used mainly in the early stages of flux qubit

production. It contains 72 writefields for subsequent high-resolution EBL and therefore

allows to vary design and/or exposure parameters over a wide range during a single EBL

run. In addition, its simple geometry makes it especially easy to fabricate. The more

complex design (see Fig. 3.2 b) comprises 36 chips, each with an 50 Ω impedance matched

CPW transmission line that can be used as on-chip microwave antenna for time-domain

measurements and qubit spectroscopy. Moreover, this layout provides enough space for

the implementation of an on-chip controlled electromagnetic qubit environment e.g. dc-

SQUID shunt capacitors [139]. The bias and readout lines consist of narrow, meandering

strips representing ohmic on-chip resistors. These resistors reduce parasitic resonances and

together with the shunt capacitors they form effective RC-low pass filters [87,132] with cut-

off frequencies in the MHz regime. Although time-domain measurements were not carried

out within the scope of this thesis, the majority of the qubit-SQUID measurements in

chapter 4 were performed using this chip layout. Details on each layout can be found in

Ref. [171].

Optical lithography for lift-off processes

Optical lithography is used to define a geometric pattern in a chemical resist layer using

UV-light and a chromium photo mask. It is the most widely used process in microfab-

rication and shares fundamental principles with photography. For the on-chip bias lines

we decided to use a lift-off process, where the pattern is defined prior to the deposition

of the metal. This was done primarily to ensure smooth edge profiles of the sputtered

gold films and therefore ensuring good galvanic contact of the aluminum layers evaporated
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Figure 3.3: Schematic of optical lithography for lift-off processes. (a) A thin layer of AZ 5214

image-reversal resist is spun on the substrate and the wafer is heated on a hotplate to reduce

the solvent content. (b) A flood exposure and an additional reversal bake procedure allow

the definition of an undercut. The cross-linked resist region is slightly darkened. (c) The

desired pattern is defined by UV-light and an optical mask using a mask aligner. (d) After

the chemical development, the pronounced undercut profile allows the sputtering of thin-films

which is shown in (e). (f) During the lift-off procedure, the resist with the excess metal is

removed.

later on. The process steps for the fabrication of sputtered thin-films are visualized in

Fig. 3.3 and summarized point-by-point in appendix A. We use a single-layer resist system

(image-reversal resist AZ 5214E; Microchemicals GmbH) that is spun onto the cleaned

wafer resulting in a resist thickness of roughly ∼ 1.4µm (see Fig. 3.3 a). After a baking

process which reduces the remaining solvent content in the resist, the whole wafer is ex-

posed shortly to UV-light without any photomask (flood exposure; see Fig. 3.3 b). This has

the effect of exposing surface-near regions with a higher dose than substrate-near regions.

In the following reversal bake, the stronger exposed surface-near resist areas are converted,

which later on results in a pronounced undercut. Since sputtering is an isotropic process,

the presence of an undercut is of utmost importance. Without the undercut, the metal

would cover the resist edges completely, therefore making a subsequent lift-off in a solvent

complicated if not unfeasible. Even if the lift-off worked, there is a high probability of

an almost vertical, residual metallization at the edges, making a good galvanic contact

virtually impossible. The desired pattern is defined using a chrome mask and a MJB3

Photomask Aligner from Süss MicroTec (see Fig. 3.3 c). After that, the exposed resist

areas are removed using a chemical developer (see Fig. 3.3 d). We note, that the under-

cut profile strongly depends on the flood exposure time and the reversal bake parameters.

Usually, the undercut is visible under an optical microscope as a ’corona’ around the actual

structures. The wafer is now ready to be transferred to the sputtering chamber.

Sputtering is a technique used to deposit thin films of a material onto a substrate by first

creating a plasma and then accelerating the ions from this plasma onto a target material

(see Fig. 3.3 e). The table-top sputtering chamber at the WMI allows the deposition of

three different metal layers without breaking the vacuum. This feature is very useful as

we use 5 nm chromium as an adhesive layer prior to the deposition of 25 nm gold. For the

lift-off procedure (see Fig. 3.3 f), the wafer is ultrasonically cleaned in a warm acetone

bath.

http://www.microchemicals.com/
http://www.suss.com/
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3.1.2 Submicron Josephson junctions

In this section we present fabrication details and layout considerations for realizing devices

embedding submicron Josephson junctions. In particular, the flux qubit design discussed

here is suitable for a conventional dc-SQUID readout scheme and also for circuit QED

applications. Fortunately, several resist systems were already implemented at the WMI

Nano-Facilities. Owing to the effort of former PhD and diploma students, the author

of this thesis was already equipped with good initial process parameters [172, 173]. The

layouts for flux qubits, SQUID loops and shunting capacitors can be designed with a CAD

program1. Figure 3.4 a and b show an actual layout and a false-color SEM image of the

fabricated device. For our designs we explicitly make use of the so-called proximity effect.

In short, the proximity effect is the exposure of areas in close vicinity by backscattered

electrons during EBL. In Fig. 3.4 a, the red polygons – the so-called proximity bars –

have two functions. First, the presence of the two proximity bars to the left and right of

the dc-SQUID results in a symmetrically exposed environment for the SQUID junctions.

Second, from the geometry of our design, the flux qubit α-junction is not exposed as much

as the other two junctions by the unavoidable proximity effect due to the dc-SQUID loop.

SJJ

Sprox

c

SJJ

SJJWline

Wline

Sq,s

d

a

5 μm

b

qubit

SQUID

proximity 
bars

Figure 3.4: CAD layouts and fabricated structure. (a) CAD layout of a flux qubit (green)

coupled inductively to a readout dc-SQUID (blue). The red polygons depict proximity bars.

(b) False-color SEM image of the fabricated CAD layout shown in (a). The color code is the

same in all panels. (c) Magnified view of the rotated area highlighted by the black dashed

box in (a). Sprox is the distance between the inner proximity bar and the α-junction. In this

particular layout Sprox ∼ 300 nm. The best results – with respect to the deviation between

designed and fabricated area of the α-junction – were obtained for Sprox ∼ 700 nm. (d)

Magnified view of the area highlighted by the orange dashed box in (a). The qubit and

SQUID have the same width Wline ∼ 500 nm and are separated by a distance Sq,s ∼ 1µm.

The spacing SJJ ∼ 600 nm is kept fixed in all designs presented in this thesis.

1We used Xic, LayoutEditor and the built-in editor of the EBL software. These programs are capable

of writing GDS or GDSII files used by the EBL software.

http://www.wrcad.com/xic.html
http://www.layouteditor.net/
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LJJ

WJJ

LJJαWJJ

a b

200 nm 200 nm

Figure 3.5: Layout and SEM images of flux qubit Josephson junctions. (a) Josephson junction

with width WJJ ∼ 200 nm and length LJJ ∼ 300 nm. (b) α-junction incorporated in the qubit

loop (α ∼ 0.63). In all designs, α ∼ 0.54 − 0.72 is adjusted by the width of the finger-like

structure while the length is kept constant.

One could increase the exposure time of the α-junction itself, however, we found that the

additional proximity bar (see Fig. 3.4 c) resulted in a much better reproducibility of the

α-junction area. In Fig. 3.4 d, designs for the other two junctions and one of the SQUID

junctions is shown. Typical lateral dimensions are given in the caption of Fig. 3.4. A

magnified view of the actual Josephson junction designs and SEM images of fabricated

tunnel junctions are shown in Fig. 3.5.

The flux qubit designs for circuit QED applications are similar. Since the dc-SQUID is

missing, proximity bars in vicinity to all Josephson junctions were introduced. Figure 3.6

shows the qubit layout and a false-color SEM image of a flux qubit galvanically coupled

to the center strip of a CPW resonator.

20 μm

SJJ

SJJ/2

loop area
~ 180 μm2

Figure 3.6: Specific circuit QED layout of a flux qubit (green) galvanically coupled to a CPW

resonator. The qubit loop area is roughly 180µm2. An additional Josephson junction located

in the narrow strip enhances the qubit-resonator coupling significantly. In comparison to

qubit-SQUID systems, additional proximity bars (red) compensate the proximity effect due

to the missing SQUID. In this design, SJJ ∼ 600 nm.
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Electron beam lithography and shadow evaporation

Electron beam lithography is an ideal technique for realizing structures with minimum

feature sizes of about 20 nm. In contrast to optical lithography, a focused electron beam

draws the circuit patterns in a serial manner into the resist. Owing to the small de-Broglie

wavelength of the high energy electrons, EBL is one way to overcome the resolution limit

given by the diffraction limit of UV-light. Although the throughput of EBL is limited

compared to parallel lithography techniques, it is very versatile as layout modifications

can be implemented easily. At the WMI Nano-Facilities we use a XL30-SFEG Scanning

Electron Microscope from FEI that is equipped with a Raith laser-stage and a Raith

Elphy Plus pattern generator for lithography applications. Figure 3.7 summarizes the

most important lithographic steps in junction fabrication. For EBL we use a double-

layer PMMA2 electron beam resist system. The bottom layer consist of a 680 nm thick

PMMA/MA copolymer layer. This resist has a significant higher sensitivity to high energy

electrons than the top PMMA/950k layer, which is only 70 nm thin (see Fig. 3.7 a). The

solvent content of each layer is reduced using a hotplate. During EBL, the double-layer

resist system is exposed with 30 keV electrons (see Fig. 3.7 b). The bottom layer is

3 - 4 times more sensitive than the top layer which leads to a distinct undercut. It is

chemical development

30 kV electrons

substrate

PMMA/950k

PMMA/MA 33%

a d

e
b

c

1 μm

30 μm

Figure 3.7: Schematic of essential steps in electron beam lithography. (a) For EBL a bi-layer

resist system is used. (b) After mounting and aligning the wafer, the circuit pattern is directly

drawn into the resist system by a focused electron beam. (c) The exposed resist is dissolved

during development. If the structures are narrow enough, free standing resist bridges are

formed due to the pronounced undercut. (d) False-color SEM image of a suspended resist

bridge. The image was taken after the deposition of a thin metal layer. (e) Qubit-SQUID

pattern after EBL and development. The rectangles close to the four crosses are remnants of

the EBL automatic write field alignment.

2PolyMethylMethAcrylate is liquid Plexiglasr

http://www.fei.com/
http://www.raith.com/
http://www.raith.com/
http://www.raith.com/
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thus possible to form free-standing resist bridges after development (see Fig. 3.7 c and d).

We note, that in contrast to sputtering, the electron beam evaporation of metal is a very

directional deposition technique which enables good lift-off properties with less pronounced

undercuts. The smoothness of the edges of the circuit pattern is determined by the top

layer which serves as mask during the following evaporation process. Figure 3.7 e shows

a qubit-SQUID pattern after EBL and chemical development. The wafer is now mounted

on a sample holder and installed in an electron beam evaporator tailored to the needs

of Josephson junction fabrication. A very detailed description of this device is given in

Ref. [169] while appendix A.9 captures the most important aspects. In order to form

overlapping metal junctions, the sample holder can be tilted by a step motor. The bottom

aluminum layer of the Josephson junction is evaporated under a fixed angle −θ = −16◦

(see Fig. 3.8 a). The sample is then brought into a horizontal position (θ = 0◦) and one of

a

b

c

d

100 nm

e

500 nm

f

1 μmg

resist stripping

Josephson junction

aluminum evaporation ( + θ )

in situ oxidation

substrate

aluminum evaporation ( − θ )

Figure 3.8: Schematic of double-angle electron beam evaporation. (a) Evaporation of the junc-

tion bottom layer under an angle −θ = −16◦. The angle is controlled reproducibly by a

step motor. (b) In situ oxidation of the bottom layer. The oxidation can be stopped within a

fraction of a second. (c) Evaporation of the top aluminum layer under an angle +θ = +16◦ de-

fines the Josephson junction. (d) Resist stripping. (e)-(g) Different views of typical Josephson

junctions. In (f), a proximity bar is located in vicinity of the junction.
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the most crucial steps in Josephson junction fabrication – the in situ oxidation process –

is initiated (see Fig. 3.8 b). At the WMI, we use pure oxygen to form tunnel barriers

with an AlOx thickness of 1− 2 nm, depending on the oxidation time and pressure. With

a pressure of pO2 ≈ 2 · 10−4 mbar and oxidation times between 22 − 23 minutes, we are

able to produce Josephson junctions with critical current densities jc ∼ 1.0− 2.5 kA/cm2.

The oxidation process is stopped by evacuating the process chamber and the top layer is

evaporated under an angle +θ = +16◦ (see Fig. 3.8 c). To ensure a smooth coating of the

bottom layer, the thickness of the top layer is larger by at least 10 nm. Finally, the wafer

is sonicated in a warm acetone bath (see Fig. 3.8 d) for resist stripping. In Figure 3.8 e-

g, SEM images of submicron Josephson junctions after resist stripping are shown. The

detailed evaporation parameters are summarized in appendix A. Different techniques on

how to form oxide barriers with a thickness of a few nanometers can be found in the

literature. Some groups use an argon/oxygen mixture (90%/10% or 99%/1%) and usually

they oxidize at a higher pressure for a shorter time [174,175]. The oxidation technique we

use at the WMI was adapted from junction fabrication with the ’old’ evaporation facility.

This oxidation is not time-critical owing to a very low partial oxygen pressure. The

oxidation pressure is established by a control valve in front of the turbo molecular pump

while a mass flow controller induces a constant gas flow. We operate the control valve in

the so-called position mode3. Here, the valve remains in a stable, half-open position and

with an oxygen flow of 3 sccm we are able to adjust the pressure to (2± 0.1) · 10−4 mbar.

3.1.3 Shunting capacitors & on-chip microwave antenna

The dc-SQUID susceptibility to thermal and quantum fluctuations can be reduced by

shunting it with a large capacitance. We use parallel plate shunt capacitors [87,140] owing

to their much larger specific capacitance compared to interdigitated finger capacitors [139].

The fabrication steps for the top and bottom electrode as well as an optical microscope

image of the entire circuit are shown in Fig. 3.9 a-c. While the top electrode of the shunt

capacitor Csh is fabricated in the same run as the qubit and the SQUID, the bottom

electrode has to be fabricated beforehand. For this purpose we utilize the inner EBL

writefield (see Fig. 3.2 b) and evaporate a 30 nm aluminum film at an angle θ = 0◦. We

then oxidize the bottom electrode at ambient pressure on a hotplate for several hours

yielding typical specific capacitances of csh ≈ 10 − 20 fF/µm2 [176]. The self-inductance

of the aluminum leads and the shunt capacitors form an effective lumped element LC-

circuit. The resonance frequency ω = 1/
√
LCsh can be easily adjusted to the GHz regime

enabling experiments in the realm of circuit QED. In contrast to distributed transmission

line resonators as discussed in section 2.3, such LC-circuits usually suffer from large photon

decay rates κ and support only a single resonant mode [132].

The characterization of flux qubits requires the irradiation with microwaves in order to

induce transitions from the ground to the excited state. For this purpose, an on-chip

microwave antenna is realized in close vicinity to the qubit. It consists of a 1µm wide

aluminum strip short-circuiting an impedance-matched coplanar waveguide transmission

3In the beginning of junction fabrication with the new evaporation facility, the valve was operated in

a pressure mode, i.e. the valve was regulating the pressure to a preset value. For this technique to work

properly, a correct calibration of the capacitive pressure gauge is of utmost importance. Moreover, during

the first seconds of the oxidation process, the valves feedback mechanism is to slow, resulting in a large

pressure spike.
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line (see Fig. 3.9 d and inset therein). The large-area aluminum strips at the edges of the

CPW minimize the contact resistance at the aluminum-gold interface.

C C
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Figure 3.9: Shunt capacitor layout and optical image of a fabricated sample. (a) Schematic of the

dc-SQUID shunt capacitor bottom electrode. The bottom electrode is fabricated in a separate

EBL and evaporation step prior to the flux quantum circuits. The red crosses and orange

bars represent EBL alignment marks. (b) The top electrode of the three shunt capacitors

are evaporated together with the flux quantum circuits. The dc-SQUID and qubit loop are

depicted in the lower part of the schematic. (c) Optical microscope image of a fabricated

device. For better visibility, the bottom electrode is colored pink. (d) Optical microscope

image showing the qubit in its electromagnetic on-chip environment. The microwave antenna

is coupled inductively to the qubit and consists of a short-circuited coplanar waveguide (CPW)

transmission line. The CPW structure is fabricated using optical lithography and can be

identified more clearly in the inset image (red box), where a whole sample is shown.
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3.2 Coplanar waveguide resonators

This section comprises the fabrication processes and characterization of coplanar waveg-

uide (CPW) resonators which have been discussed theoretically in section 2.3. While the

resonance frequency ωr can be adjusted by changing the length l of the center conductor,

the quality factor Qn is predominantly determined by the value of the coupling capaci-

tors Cκ. In order to be able to produce resonators with specific characteristics on-demand,

many different designs have been realized on varying substrate materials, finally converging

to CPW resonators similar to the one shown in Fig. 3.10 a. The resonator is defined by a

meandering center strip with length l = 23 mm which is terminated by coupling capacitors

(see Fig. 3.10 b and c). The center strip has a width of w = 20µm and is separated from

the lateral groundplanes by a gap of width s = 12µm. In order to connect the resonator

to a readout circuitry, the dimensions of the CPW in- and output ports are much larger

(w = 500µm and s = 245µm). Both, w and s are smoothly and gradually tapered towards

the dimensions of the center conductor, maintaining a characteristic impedance Z0 ≈ 50 Ω.

As substrate material, we use high-resistivity silicon (ρ > 3000 Ωcm) wafers with a 50 nm

thick, thermally grown SiO2 layer. We chose niobium as superconducting material owing

to its high Tc ≈ 9.2 K which enables a characterization of our resonators at liquid helium

temperatures (T ∼ 4.2 K). In addition, quasiparticle excitations can be safely neglected

at these temperatures since the normal fluid density nn ∝ exp(−Tc/T ) (see section 2.3.4).

3.2.1 Optical lithography and reactive ion etching

In contrast to the optical lithography for lift-off processes described earlier in section 3.1.1,

the CPW resonators are fabricated using dry etching technology. A schematic overview of

our fabrication process is illustrated in Fig. 3.11. After cleaning the substrate, a niobium

layer is deposited by dc-magnetron sputtering (see Fig. 3.11 a). The quality of our Nb

thin films is determined from a four-point transport measurement (residual resistance

10 mm

6 mm

a b

c

20 μm

74 μm

Figure 3.10: Images of a niobium CPW resonator and different coupling capacitors. (a) Our res-

onators have a length l = 23 mm and are fabricated on substrates with an area of 10 x 6 mm2.

The resonator is coupled to the readout circuitry by identical capacitors (light blue box). (b)

SEM image of a gap capacitor with a gap width of sg = 4µm resulting in a capacitance

Cκ ≈ 2 fF. (c) SEM image of a interdigitated finger capacitor. The two fingers with length

lf = 74µm and width wf = 8µm are separated by sf = 4µm. For this type of capacitor we

calculated a capacitance of Cκ ≈ 7 fF. For a definition of coupling capacitor dimensions see

Fig. 2.9 c and d.
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Figure 3.11: Fabrication schematic for CPW resonators. (a) Deposition of a thin niobium film

by dc-magnetron sputtering. (b) Using a resist spinner, the wafer is covered by a roughly 1µm

thick AZ 5214 resist layer. (c) The wafer is exposed to UV-light using an optical mask and a

mask aligner. (d) During a chemical development, the previously exposed resist is removed.

(e) Using a more physical etching process, the niobium is removed in the reactive ion etcher.

(f) A bath in sonicated, warm acetone is used for resist stripping.

ratio ρRRR ≈ 5.1 for a 200 nm-thick film; critical temperature Tc ≈ 9.1 K). For optical

lithography we use the same resist (AZ 5214) as for the lift-off process of thin gold films.

However, by omitting the flood exposure and the reversal bake, this resist is now used as

positive resist (see Fig. 3.11 b). The CPW pattern is transferred into the resist using an

optical mask and UV-light (see Fig. 3.11 c). The chemical development (see Fig. 3.11 d)

dissolves the exposed resist and the wafer is transferred into a reactive ion etching (RIE)

system. During the RIE process, the niobium can be etched both, chemically using a

reactive fluoride plasma or physically using argon ions. It is furthermore possible to mix

physical and chemical etching by an appropriate choice of process parameters, such as

gas flow, pressure, radio frequency (RF) power and inductively coupled plasma (ICP)

power. During the etching process (see Fig. 3.11 e), the resist acts as a sacrificial layer,

protecting the niobium where it shall remain. We note that the physical RIE process is

a highly anisotropic process and allows for a very steep edge profiles. Resist stripping in

a sonicated, warm acetone bath removes the remaining resist and finalizes the production

of superconducting CPW resonators.

3.2.2 Device mounting and experimental setup

Before we can characterize our CPW resonators in a transmission measurement, the wafer

has to be mounted in a box and connected to a readout circuitry. Our sample holder

consists of a gold-plated copper box into which a recess is milled so that our wafer fits

in neatly. As shown in Fig. 3.12 a, the box contains two drillings for SMA connectors

(Rosenberger, 32K724-600S5). Galvanic contact between the center pin of these connectors

and the in- and output ports of our resonator is established using conductive silver glue (see

Fig. 3.12 b) under a microscope. It is very important to cover the resonator ground planes

extensively with silver glue and connect them to the sidewalls of the gold-plated box as

shown in Fig. 3.12 c. A well-defined ground and small chip dimensions4 are a prerequisite

for suppressing parasitic groundplane modes. For transmission measurements, the box

4As a rule of thumb, the length of the center conductor should be at least twice the length of the largest

wafer dimension.

http://rosenberger.com/index.com.html
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Figure 3.12: Device mounting and measurement setup. (a) Gold-plated copper box with a

coplanar waveguide (CPW) resonator similar to the one shown in Fig. 3.10 a. (b) Magnified

view of the area highlighted by the magenta circle in (a). The center pin of the microwave

connector is connected galvanically to the input port of the CPW using conductive silver glue.

For better visibility, the image was post processed to increase the contrast of the niobium.

(c) Stitched image showing a top view of a mounted CPW resonator. To provide a good

ground, all edges of the chip are excessively covered with silver glue and connected to the

side walls of the box. (d) Schematic measurement setup for characterizing CPW resonators

at liquid helium temperatures. The transmission through the resonator at a frequency ωrf

can be probed using a vector network analyzer (VNA).

is connected to a vector network analyzer (VNA) via stainless steel coaxial cables and

mounted in a liquid helium dewar. A schematic of the measurement setup is shown in

Fig. 3.12 d. This setup allows an easy and fast characterization, especially of overcoupled

CPW resonators as they are used in our circuit QED experiments. By evaporative cooling,

the temperature can be further reduced to roughly 1.5 K. However, this temperature

limitation and the lack of a cryogenic amplifier prevent measurements at very low input

powers and photon numbers.

3.2.3 Transmission measurements

The transmission power spectrum of a driven harmonic oscillator exhibits a Lorentzian

line shape

P (ω) = A
(κ/2)

(ω − ωr)2 + (κ/2)2
, (3.1)

where κ is the full width at half maximum, ωr the bare resonance frequency and A = P0κ/2

is related to the maximally transmitted power P0. Figure 3.13 shows the transmission

spectra of the first three modes of an overcoupled CPW resonator with length l = 23 mm.

This choice of length is very convenient as our cryogenic amplifiers in the circuit QED
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Figure 3.13: Transmission spectra of a λ/2-resonator. (a) Measured power transmission spec-

trum (dB-scale) of an overcoupled (lf = 90µm, Cκ ≈ 9 fF) CPW resonator at T = 1.5 K.

The resonator acts as a frequency filter, strongly suppressing transmission at ωrf 6= ωn. (b)

Transmission spectra of the first three resonator modes close to their resonance frequen-

cies. Bottom panel: fundamental λ/2-mode (ω1/2π = 2.610 GHz). Middle panel: λ-mode

(ω2/2π = 5.216 GHz). Top panel: 3λ/2-mode (ω2/2π = 7.818 GHz). The solid red line

in each panel shows a Lorentzian fit to the transmission power spectrum. On resonance, the

transmission is close to unity (0 dB; dashed gray lines), which is a characteristic of overcoupled

resonators. The data was recorded with Pout = −40 dBm.

setup operate between 2 − 8 GHz. The power transmission is measured in a logarithmic

scale, 10 log(Pin/Pout) dB, where Pin and Pout are the powers at the in- and output ports

of the VNA, respectively. According to Eq. (2.26) and Eq. (2.30), the quality factor of

the nth resonator mode should scale as Qn/Q1 = 1/n, where Q1 refers to the funda-

mental λ/2-mode. Though we observe a decrease in Qn/Q1 with increasing n, our data

lacks quantitative agreement. In particular, we observed that independent of the coupling

capacitor geometry, the quality factor of the λ-mode (see Fig. 3.13 b, middle panel) is

smallest. This behavior is most probably related to the specific geometry (and symmetry)

of the meandering center conductor. However, for each resonator mode, the quality factor

QL ≈ Qext = ωr/κ is determined to be well above 5 · 103. This value relates to a maxi-

mum photon decay rate κ of roughly 1 MHz which is more than sufficient for many circuit

QED applications. Figure 3.14 shows the measured quality factor QL as a function of the

coupling capacitance Cκ. In the overcoupled regime, Cκ was increased by extending the

length lf of each finger (lf = 74µm, 90µm and 110µm in Fig. 3.14). For some applica-

tions, however, it might be necessary to design CPW resonators with relatively low quality

factors QL < 103, e.g. for a fast cavity readout. Such strongly overcoupled resonators are

most conveniently realized by increasing the number5 of fingers [148, 175] instead of their

length lf .

In contrast, highly undercoupled resonators can be designed using gap capacitors as shown

in Fig. 3.10 b. By increasing the gap width sg it is possible to realize resonator modes with

decay rates dominated by intrinsic losses. Figure 3.15 shows the transmission spectra

5QL scales inversely with the square of the number of fingers N assuming that Cκ ∝ N
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Figure 3.14: Measured loaded quality factor QL of the fundamental λ/2-mode as a function of

Cκ. The data was recorded for a CPW resonator with l = 23 mm at T = 1.5 K. The coupling

capacitance Cκ was extracted numerically using FastCap. In general, the interdigital finger

capacitors (blue filled circles) are suitable for the design of overcoupled (gc > 1) resonators,

while undercoupled (gc < 1) resonators can be realized using gap capacitors (green circles).

The solid red line visualizes QL calculated from Eqs. (2.29) and (2.31) while the dashed gray

lines indicate the asymptotic behavior.
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Figure 3.15: Transmission spectra of the λ/2-mode of an highly undercoupled resonator at

T = 4.2 K (light blue) and T = 1.5 K (violet). The resonator with length l = 48 mm and

fundamental resonance frequency ω1/2π = 1.245 GHz is coupled to the in- and output ports

by gap capacitors (gap width sg = 4µm). At T = 1.5 K we extract a QL ≈ Qint of 2.3 · 105.

The strongly reduced transmission is a characteristic of undercoupled resonators.

and the measured quality factors QL ≈ Qint of the fundamental λ/2-mode of an under-

coupled CPW resonator. We observe a shift of ω1 towards higher frequencies for decreas-

ing temperature owing to the temperature dependence of the kinetic inductance Lkin. At

T = 1.5 K we measured a quality factor of Qint ∼ 2.3 · 105. We note, that this measurement

was conducted at an input power corresponding to many thousands of photons on average.

Therefore, dissipative two-level systems in the dielectric substrate (cf. section 2.3.4) are

http://www.fastfieldsolvers.com/
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saturated. A more detailed study on the power and temperature dependence of high-Q

CPW resonators can be found in Refs. [147,175].



Chapter4
Characterization of flux qubits via

dc-SQUID readout

Detecting the quantum state of a superconducting qubit can be achieved by several read-

out methods [60, 61, 102, 177–181]. In this chapter, we use a very common readout tech-

nique [64–67,132], where the qubit state is determined by measuring the switching current

of a nearby dc-SQUID. Simultaneous excitation of the qubit by microwave irradiation al-

lows a reconstruction of the qubit transition frequency ωq. In contrast to circuit QED

experiments, no sophisticated microwave equipment is needed and therefore this measure-

ment technique allows a relatively simple implementation and a large throughput.

The measurement technique relies on the fact, that the dc-SQUID’s switching current

depends in a oscillatory manner on the total flux Φsq threading its loop (see Fig. 2.4 in

section 2.2.1). Here, Φsq is the sum of an externally applied flux bias and a small contribu-

tion from the qubit due to its finite inductance and the persistent current ± Ip. Although

the additional qubit-related flux contribution typically is very small (∼ 10−3 Φ0), it can be

detected with a dc-SQUID inductively coupled to the flux qubit. Close to one of the qubit

degeneracy points where the qubit’s relative flux bias δΦx = Φx − (n + 1/2)Φ0 changes

sign, Ip reverses direction. Consequently, sweeping the external flux close to δΦx ≈ 0 leads

to a step-like structure – the so-called qubit step – superposed on the dc-SQUID signal.

Recording a qubit step under continuous microwave irradiation with fixed frequency ide-

ally reveals a peak and a dip-like structure symmetrically located around δΦx = 0. The

peaks and dips result from microwave-induced transitions between the qubit ground |g〉
and first excited state |e〉 which have persistent currents with opposite sign. They occur

at flux values for which Ege = ~ωs, where Ege reflects the energy difference between |g〉
and |e〉 and ωs denotes the spectroscopy frequency. Measuring several qubit steps at dif-

ferent frequencies allows a reconstruction of the flux dependence of the qubit transition

frequency ωq(δΦx). However, this spectroscopy technique is not suitable close to the qubit

degeneracy point as Iq = Ip〈σ̂z〉 → 0 for δΦx → 0 (see Fig. 2.8 b).

In the following, we describe the characterization procedure for flux qubits using an in-

ductive dc-SQUID readout. Two cryogenic systems were available for measurements of

Josephson junction devices. We will shortly address each cryostat’s assets and drawbacks,

a more detailed description can be found in Ref. [173,182].

45
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4.1 Switching current detection

A simplified measurement setup is shown in Fig. 4.1 a. For a fixed externally applied flux,

the dc-SQUID is biased by a current source with a linearly increasing current Isq while

monitoring the amplified voltage across the SQUID. The principle of switching current

detection is sketched in Figure 4.1 b. Since the switching to the voltage state is a statisti-

cal process based on quantum tunneling, 50-1000 switching events are typically recorded.

The middle panel of Fig. 4.1 b illustrates the detection of a single switching event. Within

a defined pulse sequence, Isq is linearly increased with typically 0.1 − 0.2µA/ms. When

Isq ≈ Isw(Φsq), the SQUID switches to the voltage state. The voltage drop is detected by a

threshold detector and a sample-and-hold circuit which allows to record the current value

at which the switching occurred. After the switching event, the bias current is decreased

to zero and the protocol can be repeated. Effectively, this yields a switching current his-

togram (see Fig. 2.5) with mean value Isw for each flux value.

For a reliable readout, it is necessary to ensure that the SQUID is initialized in the zero-

voltage state after a switching event was detected. For an unshunted SQUID this can be

achieved by decreasing the bias current to zero. However, a highly underdamped SQUID

(see Fig. 2.4 c) might remain in the voltage state even for zero bias current. Therefore,

a short negative bias current should be applied after each current ramp to initialize the

SQUID for the next measurement (see Fig. 4.1 b, middle panel). It is worthwhile men-
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Figure 4.1: Experimental setup and measurement protocol. (a) Schematic of a simplified mea-

surement setup for switching current detection. The voltage drop Vsq across the SQUID is

monitored while biasing it with a dc current Isq. (b) Principle of switching current detection.

The signal amplitude is plotted as a function of time for three distinct time intervals. The

gray boxes mark the areas magnified in subsequent panels. Top panel: schematic showing

many consecutive detection cycles. Middle panel: single detection sequence. Isq is linearly

increased until the SQUID switches to the voltage state. The current value at which the

voltage drop across the SQUID exceeds a threshold voltage Vth is detected as Isw. Bottom

panel: in order to avoid false negative detection events, Vth has to be adjusted accordingly

while simultaneously minimizing the unavoidable time delay ∆t.
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tioning that the time difference ∆t between the actual switching of the SQUID and the

detection of this switching event (see Fig. 4.1 b, bottom panel) can be adjusted by varying

the threshold voltage Vth of our electronics. In our experiments we adjust Vth to be large

enough avoiding false negative detection events due to amplifier noise and small enough

to not substantially distort Isw. Typically ∆t is of the order of 10− 100µs which leads to

an increase of the measured Isw of 1− 10 nA.

4.2 Initial characterization: 3He refrigerator

The fridge used in the experiments presented in this section is based on evaporative cooling

of condensed 3He. It allows a fast cooldown within a few hours, however, the base tem-

perature is limited to roughly 500 mK and microwave spectroscopy can not be performed

due to space limitations and the consequential lack of a microwave coaxial line. Primarily,

this cryostat was used to characterize the dc-SQUID and to detect the qubit step.

An image of the sample holder with four specimens is shown in Fig. 4.2 a. It consists of a

printed circuit board (PCB) with copper contact pads and is screwed onto a copper block.

16 measurement lines are soldered to these contact pads which allows a characterization of

up to four samples, each in a four-point configuration. After dicing, the individual speci-

men are glued onto the PCB using GE varnish and contacted by aluminum wire bonds1.

The sample holder is then screwed to a copper rod and a magnet coil is fastened roughly

0.5 mm above the samples (see Fig. 4.2 b). After enclosing the sample holder with a cryop-

erm shield providing local magnetic shielding, the dip-stick is inserted into the 3He insert

magnet
coil

a b

10 mm

Figure 4.2: Sample mounting for low temperature measurements in a 3He refrigerator. (a)

After dicing, the individual samples are glued onto a printed circuit board and contacted

via aluminum wire bonds. Each sample is measured in a four-point configuration. (b) After

screwing the sample holder to the copper rod and fasten a small superconducting magnet coil,

a cryoperm shield (not shown in the picture) enclosing the sample holder is attached.

1For that purpose, we use a manual thin-wire wedge bonder (F&K Delvotec). During the bonding

procedure, all measurement lines and the person performing the bonding procedure should be grounded.

Furthermore, it is advisable to clean the potentially oxidized copper contact pads mechanically using a

glass fibre pencil prior to gluing the specimen.

http://www.oxinstdirect.com/oidirect/catalog/product_info.php?products_id=597
http://www.fkdelvotec.com/
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which resides in a glass fibre reinforced cryostat with additional µ-metal shields. While

the cryoperm and µ-metal shields provide sufficient2 protection from static or slowly vary-

ing electromagnetic fields, they are ineffective at radio frequencies. For that purpose, the

whole setup is located in a radio frequency shielded cabinet.

4.2.1 Current-voltage characteristic & switching current measurements

In order to get a first estimate of the Josephson junction properties, we measure the

current-voltage characteristic (IVC) of the dc-SQUID. The IVC is recorded by biasing the

readout SQUID with a dc current and sampling the time-averaged voltage drop across the

SQUID. In the following, we will discuss a typical IVC of an unshunted SQUID at Φsq = 0

as shown in Fig. 4.3 b. Such a measurement allows determining important parameters

like the normal resistance RN = 139 Ω and the critical current Ic = 1.24µA. The critical

current density jc ∼ 1.4 kA/cm2 can be calculated using the average area determined by

SEM investigation of SQUID Josephson junctions similar in design and fabricated in the

same run. From these values and with a specific capacitance of cs ∼ 100 fF/µm2 we can

estimate EJ/h ∼ 310 GHz and EC/h ∼ 5 GHz. This yields an EJ/EC ratio of roughly3 60

for a Josephson junction with area AJJ ∼ 0.04µm2. The qubit’s EJ/EC ratio has to be

scaled accordingly by a factor β2, if the area of one of the two regular Josephson junctions

embedded in the qubit loop is βAJJ. For the particular sample shown in Fig. 4.3 a, the

scaling factor β ∼ 1.

Furthermore, the gap voltage Vgap can be directly determined from the IVC. Here, Vgap '
360µV is close to the BCS value VBCS = 2∆s/e = 3.52kBTc/e = 364µV which indicates a

good quality of our aluminum thin films. For the calculation of VBCS we used Tc = 1.2 K

for the critical temperature of aluminum. The shape of the hysteresis strongly depends on

the capacitance of the SQUID’s Josephson junctions. In the case of an unshunted SQUID

as shown in Fig. 4.3 a, the switching to the zero-voltage state occurs at a non-zero bias

current. The IVC of a dc-SQUID with large area shunting capacitors (see Fig. 3.9) is dis-

cussed in the next section. Moreover, for decreasing currents below Ic, the SQUID shows

a non-linear characteristic with additional structures. The subgap structure in Fig. 4.3 b

most likely originates from a non-linear quasiparticle tunneling characteristic and non-

equilibrium phenomena.

The flux dependence of the SQUID’s switching current is shown in Fig. 4.3 c. The mea-

sured curve is close to the ideal | cos(πΦsq/Φ0)| dependence expected for a dc-SQUID for

which the Josephson inductance dominates the geometric loop inductance (see Fig. 2.4 d).

However, small step-like structures are visible (see Fig. 4.3 c, gray box) which originate

from the additional flux contribution due to the presence of the qubit. The position of

the qubit steps within the SQUID’s cosine-shaped Isw(Φsq)-pattern depends on the area

ratio Asq/Aq of the two Josephson devices. Here, Asq and Aq are the areas enclosed by

SQUID and qubit loop, respectively. The flux-sensitivity of the SQUID is particulary low

close to a maximum of Isw. For this reason, we select an area ratio such that the qubit

step is located at a position where |∂Isw/∂Φsq| is large. A measurement with higher flux

resolution in this region is shown in Fig. 4.3 d. The measurement clearly reveals the qubit

2Cryoperm and µ-metal are nickel-iron alloys. The magnetic permeability of cryoperm at cryogenic

temperatures is comparable to that of µ-metal at room temperature (µr ∼ 104 − 105).
3We note, that this estimation gives a lower bound of the EJ/EC ratio since the measured Ic depends

on the temperature and on the effective filtering.
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step superposed on the dc-SQUID signal which is in good approximation linear. The qubit

degeneracy point δΦx = Φx − 0.5Φ0 = 0 is located at Φsq ≈ 0.685 Φ0 which yields an ex-

perimentally determined area ratio of Asq/Aq ∼ 1.37, in very good agreement with the

design value of 1.36 .

We note, that the presence of a qubit step in Isw is not necessarily an indicator for a

quantum two-level system suitable for further investigation by microwave spectroscopy.

Figure 4.4 a and b show switching current histograms around δΦx = 0 for two qubits with

a substantially different EJ/EC ratio. While Fig. 4.4 a reflects the gradual change of sign

of Iq = Ip〈σ̂z〉, the data plotted in Fig. 4.4 b lacks evidence for a superposition state at

Iq = 0. Here, the tunnel barrier between the minima in the qubits double well potential is
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Figure 4.3: Initial characterization of an unshunted readout SQUID with an inductively coupled

flux qubit. (a) Microscope image of the device. The measurement is performed in a four-point

configuration. (b) Typical current-voltage characteristic (IVC) of an unshunted SQUID with

slightly overdamped Josephson junctions. Following Fig. 2.4 c, increasing (decreasing) current

is depicted light blue (magenta). For Φsq = 0, the switching current Isw ≈ Ic. The normal

resistance RN is given by the inverse of the slope in the ohmic region. The gap voltage Vgap

can be directly determined from the voltage drop across the SQUID. (c) dc-SQUID’s Isw(Φsq)

curve. The gray box marks the area where the first qubit step appears. The position of the

qubit step in the Isw(Φsq)-pattern can be estimated from the designed area ratio Asq/Aq.

The gray dashed lines are a guide to the eye highlighting the qubit step for positive Φsq. (d)

Magnified view of the area marked by the gray box in (c). The qubit step is clearly visible

(gray broken lines: guide to the eye). At the qubit degeneracy point δΦx = 0 (dashed red

line), the qubit’s ground and excited state are symmetric and antisymmetric superpositions

of persistent current states with opposite sign, yielding zero net current. From the position of

the center of the qubit step, we calculate Asq/Aq ∼ 1.37 in good agreement with the design

value.
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too high and broad, leading to a vanishing tunnel matrix element. This can be caused by

a unfortunate EJ/EC ratio, either due to a large critical current density jc and/or large

areas of the qubit’s Josephson junctions. In the picture of a phase particle in the qubit’s

double well this corresponds to a large mass and therefore a low tunneling matrix element.

However, both data sets would yield a smooth qubit step (see Fig. 4.4 c) when computing

Isw as the mean value for each histogram.

According to Eq. (2.15), the qubit’s energy level splitting between the ground and the first

excited state Ege is a function of ε ≡ ε(Φx) = 2IpδΦx and ∆. The latter denotes the qubit’s

level splitting at δΦx = 0. In principle, ∆ and ε could be reconstructed from the shape and

the slope of the qubit step itself [183]. For a reasonable fit, the qubit step has to be recorded

for several temperatures and in particular for temperatures T � ∆/kB ≈ 50 − 300 mK.

However, in the following sections we will determine ∆ and ε by spectroscopy. Although

the measurement principle is straightforward, the experiments can be very time consuming.

The need for lower temperatures requires a more complicated cryogenic setup. Compared

to the 3He cryostat, roughly 30 hours have to be invested until the fridge reaches a stable

base temperature of approximately 30 mK. Thus, only pre-characterized and promising

samples (in terms of proper EJ/EC ratios) should be investigated spectroscopically.
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Figure 4.4: Color-coded switching current histograms for qubits with distinct EJ/EC ra-

tios. (a) Smooth qubit step showing evidence for superposition states at δΦx = 0 where

Iq = Ip〈σ̂z〉 = 0. (b) Switching current histograms for a qubit with EJ/EC > 200. In

the picture of the qubit’s double-well potential, the tunneling barrier is too high and broad.

Therefore, the wavefunctions corresponding to the persistent current states | ± Ip〉 do not

overlap sufficiently. (c) Isw computed from the data set shown in (b). The linear SQUID

contribution was subtracted.
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4.3 Spectroscopy fridge: 3He/4He dilution refrigerator

The experiments presented in the remainder of this chapter were performed in the 3He/4He

dilution refrigerator shown in Fig. 4.5 a. This homemade fridge was designed for the mi-

crowave spectroscopy of aluminum and niobium-based Josephson junction devices. During

this thesis, the complete sample stage, the sample holder (see Fig. 4.5 b), the microwave

coaxial cable and the cryogenic filtering were renewed. Especially the modification of

sample holder and stage resulted in a much simpler mounting procedure compared to

the previous setup. However, the fridge is not suited for time-domain characterization of

Josephson junction devices owing to the limited space available. Such experiments require

large bandwidth measurement lines and ideally a separate microwave line for every single

sample. The compact sized dilution unit used here is optimized for large throughput. In

our setup, up to four specimen can be irradiated by microwaves which are applied by

the dismantled end of an superconducting coaxial line (see Fig. 4.5 c). This antenna –

located approximately 2 mm above the sample plane – is thermally anchored at several

temperature stages. The low bandwidth bias and readout lines are severely filtered against

mixing chamber

copper powder
filter

magnet coil

still

continuous
heat exchanger

superconducting
coaxial line

4 K anchoring
for dc lines

thermalized
attenuator

Joule-Thompson
stage

sample stage

bronze
bonding pads

microwave antenna

screw thread
(for magnet coil)

a b

c

5 mm

3 cm

Figure 4.5: 3He/4He-fridge and sample mounting. (a) Image of the 3He/4He dilution unit used

for qubit microwave spectroscopy. Important components of the setup are indicated. A more

detailed description of the cryogenic hardware is found in Ref. [182]. (b) Renewed ’plug &

play’ sample holder with four bonded specimens. The bonding wires are additionally covered

with silver glue for mechanical stability at the bronze pads. (c) Mounted sample holder. The

dismantled end of the superconducting coaxial cable roughly 2 mm above the samples serves

as microwave antenna.
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high-frequency noise by stainless steel powder filters (cut-off frequency ωc/2π ≈ 2 GHz).

Details on the properties and the fabrication details of these particular filters can be found

in Ref. [171]. Additional LCR-filters (ωc/2π ≈ 100 kHz) and commercially available filters

(Mini-Circuits, BLP 1.9 MHz+, ωc/2π ≈ 1.9 MHz) complete the filtering at room temper-

ature.

For the magnet coil we used a 100µm thick single filament Nb-Ti-wire in a Cu-matrix.

The coil body was fabricated of silver and can be fastened by a screw in a recess below

the sample holder (see Fig. 4.5 c). The coil wire was soldered to the 4 K anchoring and

thermalized at various temperature stages and in particular along the full length of the

spiral continuous heat exchanger.

4.3.1 Preliminary measurements

Prior to spectroscopy measurements an IVC and - more importantly - the Isw(Φsq)-curve

have to be recorded. Figure 4.6 a and b show the IVC for a unshunted and a shunted

(underdamped) SQUID, respectively. The latter has a more pronounced hysteresis owing

to the additional shunt capacitors in parallel to the SQUID junctions. Since the dilution

fridge provides a superior filtering and a lower base temperature compared to the 3He

refrigerator, the measured Ic at Φsq = 0 is typically 20 − 40 % higher than at 540 mK.

Analog to the initial characterization in the 3He fridge, the qubit step has to be located

within the oscillatory SQUID signal (see Fig. 4.6 c). Therefore, the area ratio between

SQUID and qubit has to be known. The conversion factor between magnet coil current

and a single flux quantum can be inferred from the Φ0-periodicity of the SQUID.

4.4 Qubit microwave spectroscopy

In this section, we determine the qubit transition frequency ωq ≡ ωq(δΦx) = Ege/~ by

continuous-wave (cw) microwave spectroscopy [66,138]. To this end, the qubit is irradiated

with a spectroscopy tone of fixed frequency ωs while recording the qubit step in a region

of roughly ± 15 mΦ0 around δΦx = 0. For flux values where the resonance condition

ωs ≈ ωq is fulfilled, population of the excited state leads to a change in Iq = Ip〈σ̂z〉
(see Fig. 2.8). Therefore, a peak and a dip appear symmetrically around δΦx = 0 in the

Isw(δΦx) curve. Repeating such a measurement for various spectroscopy frequencies ωs

allows a reconstruction of ωq. The experimental results of this protocol are summarized

in Figure 4.7 for two different specimen. In both cases, the readout SQUID was highly

underdamped (Csh ∼ 10 pF) and each qubit step is recorded with a flux resolution of

roughly 0.05 mΦ0. The qubit steps shown in Fig. 4.7 a and b were recorded with different

power levels ranging from −25 dBm up to −13 dBm referred to the output of our microwave

source. In general, the visibility of the peaks and dips within each qubit step depends in

a complex manner on the applied power, the SQUID-qubit interaction and of course on

the spectroscopy frequency ωs. Figure 4.7 c and d show the frequency-dependent peak/dip

positions extracted from the measurements in Fig. 4.7 a and b, respectively. A numerical

fit to Eq.(2.15) yields the qubit parameters ∆ and ε(δΦx) = 2IpδΦx, thus allowing the

reconstruction of the hyperbolic δΦx-dependence of the qubit transition frequency. Please

note, that in the expression for ε in Fig. 4.7 c and d, δΦx is given in units of mΦ0.

The significant deviation of the peak/dip positions from the asymptotic limit (see gray

http://www.minicircuits.com
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Figure 4.6: Preliminary characterization steps at 50 mK. (a) IVC for an unshunted SQUID at

Φsq = 0. The IVC for increasing (decreasing) bias current is plotted light blue (magenta).

The gray line depicts the measurement at roughly 540 mK (see also Fig. 4.3 b). Due to the

lower temperature and the improved filtering, a larger critical current is measured. The gap

voltage (Vgap ≈ 340µV) is indicated by the red dashed line. An optical microscope image is

shown in the inset. (b) Same as in (a) but for a dc-SQUID shunted by additional capacitors

(area ∼ 25 x 25µm2, capacitance C ≈ 10 pF). (c) Color-coded switching current histograms

as a function of the external flux Φx threading the qubit loop. The data shows the qubit step

at Φx = −1.5 Φ0 and roughly half an oscillation period of the SQUID. The top axis labels the

flux Φsq in the SQUID loop. For this particular sample Asq/Aq ∼ 1.76. Inset: area marked

by the gray box. The graph shows Isw as a function of the qubit’s relative flux bias δΦx. The

dashed black lines are guides to the eye.

lines in Fig. 4.7 c and d) near δΦx = 0 is a direct consequence of the repulsion of the

qubit’s two lowest energy levels. From Ip and Eq.(2.14), a lower bound for the scaling

factor α of the small Josephson junction in the qubit loop can be calculated analytically4.

In contrast to the adiabatic-shift pulse method [85,87,140], our measurement scheme does

not allow to determine ∆ directly as the expectation value for the persistent current –

for both, ground and excited state – is zero at δΦx = 0. Moreover, the visibility of the

peaks and dips in our measurements is virtually zero in a region ±2 mΦ0 around the qubit

degeneracy point, i.e. for spectroscopy frequencies close to ∆/h. Even for ωs/2π ≈ 2∆/h,

the peaks and dips are hard to identify (see lowest trace in Fig. 4.7 b) in comparison to

higher spectroscopy frequencies.

4For the calculation of α, the critical current of a qubit junction has to be known. Ic cannot be

determined directly, however, it can be estimated from the dc-SQUID’s current-voltage characteristic.
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Figure 4.7: Qubit microwave spectroscopy and reconstruction of the qubit transition frequency

ωq. (a) and (b) Qubit step under continuous microwave irradiation for different spectroscopy

frequencies ωs/2π. Symmetrically around δΦx = 0 a peak and a dip appear. The background

SQUID signal is subtracted and the traces are offset by arbitrary values for clarity. (c) and

(d) Measured peak and dip positions (blue circles) as a function of δΦx. The red line is a

numerical fit to Eq.(2.15) and the gray lines denote the asymptotic limit ε(δΦx) � ∆. The

calculated αexp is in reasonable agreement with the CAD design value αdes.

4.4.1 Multi-photon transitions

An atom exposed to a sufficiently intense radiation field can absorb several incident pho-

tons if the energy difference between the states is equal to the sum of the involved pho-

ton frequencies [184]. Multi-photon transitions appear in a large number of atomic and

molecular systems and on different energy scales. In systems of artificial atoms at mi-

crowave frequencies, multi-photon resonances have been observed in a wide range of ex-

periments [58,142,185–189]. In this section we will shortly address multi-photon resonances

in a coupled qubit-SQUID system. This topic will be discussed more thoroughly in sec-

tion 5.5.2 for a circuit QED system operating in the strong coupling limit.

The device discussed here was the first one where our spectroscopic data (see Fig. 4.8) sug-

gested a substantial qubit energy gap ∆� kBT ≈ h · 1 GHz at T ∼ 50 mK. The SQUID’s

IVC and Isw(Φsq)-dependence for T ∼ 540 mK as well as an optical image of our sample

are shown in Fig. 4.3. It consists of a qubit with a loop area of 10 x 10µm2 coupled to



4 Characterization of flux qubits via dc-SQUID readout 55

−0.52 −0.50 −0.48

1.0

1.1

1.2

1.3
I sw

 (μ
A

)

Φx (mΦ0)

T ~ 50 mK

co
un

ts

-10 0 10

-1

0

1
1 2 3

data
fit

δI
sw

 (n
or

m
al

iz
ed

)

δΦx (mΦ0)

T ~ 50 mK

-10 -5 0 5 10
0

6

12

18

24

δΦx (mΦ0)

ω
s/2

π 
(G

H
z)

Δ/h ~ 5.60 GHz

ε/h ~ 2.13 GHz · δΦx

Ip ~ 342 nA

T ~ 50 mKfit

1
2
3

ωs/2π = 8.1 GHz

a b

c

Figure 4.8: Qubit spectroscopy data. (a) dc-SQUID switching current histograms as a function of

the flux Φx threading the qubit loop. The data is recorded close to the qubit degeneracy point

Φx = −0.5 Φ0 and under continuous microwave irradiation with frequency ωs/2π = 8.1 GHz.

(b) Normalized qubit contribution to the SQUID’s Isw as a function of the qubits relative

flux bias δΦx. The peaks and dips highlighted by colored arrows reflect n-photon transitions

(blue: n = 1, orange: n = 2, green: n = 3) which occur when ωq ≈ n ·ωs. The red line

shows the theoretically expected curve for δIsw [183] without microwave irradiation and with

the parameters extracted from the data in (c). (c) Qubit spectroscopy data including data

points from multi-photon resonances. A numerical fit (red solid line) to Eq.(2.15) yields

∆/h = 5.60 GHz� kBT/h.

an unshunted dc-SQUID. For a large amplitude microwave drive we observed additional

peak/dip structures in our spectroscopic data for certain frequencies (see Fig. 4.8 a and b).

These resonances could be attributed to multi-photon transitions which occur at flux po-

sitions where the flux-dependent qubit transition frequency ωq equals an integer multiple

of ωs. Figure 4.8 b shows the normalized qubit contribution to the dc-SQUID switching

current δIsw as a function of the relative flux bias δΦx. We observed resonant peaks and

dips of up to three-photon processes for ωs/2π = 7 GHz. Owing to the large amplitude

spectroscopy tone, the qubit is saturated and the probability of finding it in the ground

or excited state is close to 1/2. Hence, the peak and dip associated with a single-photon

excitation of the qubit approaches δIsw = 0.

Compared to the measurements shown in Fig. 4.7 a and b, the peaks and dips might be

significantly power broadened. However, due to the moderate quality of our data, possi-

ble power broadening could not be resolved. In general, the widths of the multi-photon

absorption peaks and dips should scale as Bessel functions with arguments given by the

ratio of the driving field strength to the frequency of the photons [185]. A detailed analysis

would allow to estimate the relaxation Tr,n and dephasing Tϕ,n times of the nth photon
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absorption process. Figure 4.8 c shows the one-, two- and three-photon spectroscopy data.

For the qubit we find a transition frequency of ∆/h ∼ 5.60 GHz at δΦx = 0. We note that

a more conservative fit including exclusively the one-photon data yields a substantially

lower ∆/h = 4.08 GHz and Ip = 412 nA.

4.4.2 Sideband transitions

In radio transmission, frequency modulation (FM) and amplitude modulation (AM) are

used to encode audio frequency information on a much higher frequency electromagnetic

wave, usually referred to as the carrier wave. Either form of modulation produces fre-

quencies – the so-called sidebands – which are the sum and difference of the carrier and

the modulation frequency. In this section we will spectroscopically investigate an induc-

tively coupled qubit-oscillator system. For sufficiently large driving amplitudes, we resolve

additional resonances that correspond to sidebands of the modulated qubit transition fre-

quency.

The electromagnetic environment of the qubit consists of the readout dc-SQUID and a

lumped element LC-circuit. An optical microscope image and the equivalent circuit dia-

gram are shown in Fig. 4.9 a and b, respectively. Figure 4.9 c shows the Norton equivalent

of the voltage-driven circuit displayed in Fig. 4.9 b. It consists of an ideal current source in

parallel to the impedance ZLC of the LC-resonator and the inductance of the dc-SQUID

Lsq. The latter is dominated by the inductance of the Josephson junctions embedded in

the SQUID loop. An equivalent circuit of ZLC is depicted in Fig. 4.9 d. We now turn to

the spectroscopic response of our coupled qubit-oscillator system. Figure 4.10 a shows the

C
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Figure 4.9: Electromagnetic environment of the flux qubit. (a) Optical microscope image of the

relevant circuitry. The flux qubit is surrounded by the dc-SQUID which in turn is coupled to a

lumped element LC-resonator. (b) Equivalent circuit with scanning electron microscope image

of the qubit and the readout SQUID. The three shunting capacitors and the self-inductance

of the aluminum leads form a resonant circuit with resonant frequency ωr = 1/
√
LC. (c)

Norton equivalent of the circuit shown in (b). The total impedance is given by the parallel

combination of the impedance ZLC and the total SQUID inductance Lsq. (d) Equivalent

circuit of ZLC .
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Figure 4.10: Spectroscopic response and resonant modes of the qubit environment. (a) Qubit

contribution δIsw after subtraction of the SQUID background under continuous microwave

irradiation for various ωs. (b) Normalized δIsw-curve for ωs/2π = 16.361 GHz. At large

microwave powers (black) a multiplet of resonances are visible. The additional peaks/dips

which were absent in the low power measurement (green) are resonantly driven sidebands of

the coupled qubit-oscillator system (black arrow: bare qubit, ωq; blue arrow: blue sideband,

ωq + δ; red arrow: red sideband, ωq − δ) (c) Qubit spectroscopy data including the first blue

and red sideband transitions (colored squares) as well as the bare qubit data (black circles).

The latter was extracted from the low power measurement. (d) Absolute value of the total

impedance for the calculated inductances of our circuit. The sidebands observed in (a)-(c)

are attributed to the SQUID-mode at δ/2π = 1.346 GHz.

qubit contribution δIsw to the SQUID’s switching current as a function of δΦx and for

various spectroscopy frequencies ωs/2π. The data was recorded with a microwave power

of −20 dBm at the output of the generator. For specific frequencies, multiplets consisting

of 3− 7 equidistant dips/peaks can be identified. In Fig. 4.10 b the normalized δIsw(δΦx)

trace for ωs/2π = 16.361 GHz is shown for two different power levels. From the low power

measurement, the central peak/dip of the high-power multiplets can be associated with

the bare qubit transition frequency ωq/2π. However, the resonances to the left and right
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of the central peak/dip correspond to resonant transitions of the combined qubit-oscillator

system. They occur at flux values for which the spectroscopy tone is resonant with

ωbsb = ωq + δbsb and ωrsb = ωq − δrsb . (4.1)

Here, ωbsb and ωrsb denote the blue and red sideband transition frequencies, respectively,.

We determine the frequency shifts δbsb and δrsb by first fitting the bare qubit spectroscopy

data obtained from low power measurements to Eq.(2.15) which yields ∆/h = 1.84 GHz

and ε/h = 3.48 GHz · δΦx (see Fig. 4.10 d). From a separate fit to Eq.(4.1) we then extract

δbsb/2π = 1.279 GHz and δrsb/2π = 1.411 GHz. These values are in good agreement with

the peak/dip distances that were observed in multiplets with a larger number of resonances

(e.g. δIsw trace for ωs/2π = 17.375 GHz). In the following we assume δbsb ≈ δrsb in

agreement with the experimental error and relate the frequency shift δ = (δbsb + δrsb)/2 =

2π · 1.345 GHz to a single resonant mode present in our system.

In general, the resonant modes of the circuit shown in Fig. 4.9 c are determined by the

minima and maxima of the total impedance

Z(ω) =

(
1

ZLC(ω)
+

1

iωLsq

)−1

. (4.2)

Figure 4.10 d shows the absolute value of Z(ω) for L1 ≈ 8 pH, L2 ≈ 200 pH and L3 ≈
115 pH. These values were estimated using FastHenry . Furthermore, we used Lsq ≈ 615 pH

which we estimated from the dc-SQUID’s IVC and Isw(Φsq)-pattern [138]. Since the value

of the SQUID’s shunt capacitor represent the quantity with the largest uncertainty, we

used C as free parameter. In the relevant frequency range and for C = 16.7 pF, the

spectrum in Fig. 4.10 d shows two prominent resonances5. While the LC-circuit supports

a single resonant mode with frequency ωLC/2π = 1/2π
√
LC = 2.608 GHz a second mode

– which we will call SQUID-mode – is present at a frequency δ/2π = 1.346 GHz.

The qubit transition frequency is shifted by ±δ (see Fig. 4.10 c), resulting in the blue

and red sidebands which we observe in our spectroscopy data. We believe that the bare

qubit transition frequency ωq is modulated by the SQUID-mode rather than the LC-

mode due to the following reasons: first, our circuit only supports two modes which are

well separated in frequency for reasonable values of inductances and capacitances. Thus,

the small discrepancy between δbsb and δrsb is not related to different modes but is rather

based on measurement uncertainties. Second, if the sidebands were related to the LC-mode

only, we would have to assume an error of a factor of two in both, L and C. However,

the numerically extracted inductances are in good agreement with values reported for very

similar designs6. Furthermore, with an area of 25 x 25µm2, the fitted value for the shunt

capacitor C yields an effective specific capacitance of cs ≈ 26 fF/µm2. This value is in

reasonable agreement with specific capacitances as realized with the oxidation protocol at

the WMI Nano-Facilities [176]. Finally, by measuring the Isw(ω)-dependence of the dc-

SQUID for different flux biases, the resonance frequency of the LC-circuit can be inferred.

Unfortunately, such a measurement was not carried out for the specific sample under

discussion. However, for a different specimen with a very similar LC-circuit design we

extracted a resonance frequency of ωLC ≈ 2.091 GHz (data not shown).

5We note that by including the resistive bias leads into the expression for the total impedance, the

frequency of the resonant modes is not changed. Therefore, resistive contributions were neglected in

Eq.(4.2) which yields a purely imaginary Z(ω).
6Please note that we adapted the LC-circuit design as it was originally presented in Refs. [87,132,140]

http://www.fastfieldsolvers.com/


Chapter5
Circuit Quantum Electrodynamics

In the preceding chapters, two building blocks necessary for circuit QED experiments

– a resonant cavity and the superconducting flux qubit – were introduced and charac-

terized individually. This chapter is entirely devoted to the physics of strongly coupled

qubit-cavity systems. After a theoretical description of the light-matter coupling within

the Jaynes-Cummings model, the experimental techniques allowing the characterization

of our artificial atom inside the cavity are introduced. In the resonant case, cavity trans-

mission measurements allow to determine the atom-photon coupling strength while the

dispersive regime is favorable for qubit spectroscopy. A central topic of this chapter is the

engineering potential of circuit QED setups. In this context we will show how the atom-

photon interaction can be strongly enhanced by introducing different coupling schemes.

In turn, this enables experiments demonstrating multi-photon physics and controlled sym-

metry breaking in circuit QED systems. Finally, we will discuss a prototype of a circuit

QED architecture pushing the light-matter interaction into the ultrastrong-coupling limit.

Here, the atom-photon coupling rate g becomes comparable to the transition frequencies

of both, qubit and cavity. With normalized coupling ratios g/ωr of up to 12%, our cav-

ity transmission data reveals unambiguous features that cannot be explained within the

framework of the renowned Jaynes-Cummings model.

5.1 Jaynes-Cummings model

The coherent interaction between a two-level system and a quantized radiation mode is

described by the Jaynes-Cummings Hamiltonian [3]

Ĥ = ~ωr

(
â†â+

1

2

)
+

~
2
ωqσ̂z + ~g

(
â†σ̂− + âσ̂+

)
. (5.1)

The first term describes a single electromagnetic mode with resonance frequency ωr. In

the resonator, â† and â are the bosonic creation and annihilation operators of the photon

field, respectively. The second term represents a single two-level system with a transition

frequency ωq and σ̂z is a Pauli spin operator. Finally, the last term describes the interaction

between atom and cavity field: the atom can absorb (âσ̂+) or emit (â†σ̂−) a photon

from or into the cavity mode at a rate g. The interaction term in the Jaynes-Cummings

Hamiltonian is an approximation of the more general dipole interaction Hamiltonian

Ĥint = ~g(â† + â)(σ̂+ + σ̂−) . (5.2)

59
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In this expression, (σ̂+ + σ̂−) ∝ σ̂x describes the ’matter field’ with σ̂+ and σ̂− represent-

ing the atom’s raising and lowering operators, respectively. Within the framework of the

Jaynes-Cummings model, the terms proportional to â†σ̂+ and âσ̂− in Eq.(5.2) are neglected

by a rotating wave approximation. This approximation is valid when ωr+ωq � g, |ωr−ωq|.
Almost all systems consisting of a harmonic oscillator and a two-level system can be de-

scribed by a Jaynes-Cummings Hamiltonian although operating at different energy scales,

e.g. superconducting circuits [6, 7], quantum dots [98, 99], nanomechanical systems [190]

and hybrid systems [191,192].

Owing to the off-diagonal interaction term in Eq.(5.1), the eigenstates of the uncoupled

system (i.e. the tensor product of the cavity’s photon number state |n〉 and the atoms

ground |g〉 and first excited state |e〉, respectively) are no longer eigenstates of the Jaynes-

Cummings Hamiltonian. However, the operator representing the total number of excita-

tions, M = â†â+ σ̂+σ̂−, commutes with the Hamiltonian in Eq.(5.1) and is a constant of

motion [38]. Therefore, Eq.(5.1) only connects subspaces with an equal number of exci-

tations and the new eigenstates can be calculated analytically (see e.g. Ref. [151]). The

dipole coupled states are given by

|−, n〉 = cos Θ|g, n〉 − sin Θ|e, n− 1〉 , (5.3)

|+, n〉 = sin Θ|g, n〉+ cos Θ|e, n− 1〉 , (5.4)

where 2Θ = arctan(2g
√
n/δ) is the photon number-dependent mixing angle and δ = ωq−ωr

the atom-cavity detuning. |q, n〉 = |q〉⊗ |n〉 denotes an eigenstate of the uncoupled system

(g = 0) with photon occupation n ∈ N and q = {g, e} representing the qubit ground or

excited state, respectively. The entangled states given in Eq.(5.3) and Eq.(5.4) are the

so-called dressed states of the joint qubit-cavity system.

5.1.1 Strong-coupling regime

The strong coupling regime is reached when the single-atom single-photon interaction rate

is larger than any dissipation rate [34, 38]. This condition is fulfilled when g > κ, γ,

where κ is the cavity’s photon loss rate and γ the rate at which the atom decays into

dissipative modes other than the cavity mode (see section 1.3). A different definition of

strong coupling often used in cavity QED is given by C = g2/2κγ > 1, where C is the

so-called cooperativity [95]. In the following we will discuss two important limits of the

Jaynes-Cummings model in the strong coupling regime.

Resonant limit, δ = 0

The form of the eigenstates of the Jaynes-Cummings Hamiltonian in Eq.(5.3) and Eq.(5.4)

implies that the atom acquires a photonic component and vice versa. The interaction

between atomic and photonic states becomes most prominent when the atom’s transition

frequency ωq matches the cavity frequency ωr and the two systems can exchange energy.

Here, δ = 0 and consequently sin Θ = cos Θ = 1/
√

2. In this special case, the eigenstates

|±, n〉 of the joint system are symmetric and antisymmetric superpositions of the uncoupled

basis states

|±, n〉 =
|g, n〉 ± |e, n− 1〉√

2
. (5.5)

Figure 5.1 a shows the energy level diagram of Eq.(5.1) in the resonant limit. The degener-
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Figure 5.1: Resonant limit, δ = 0. (a) Energy level diagram of the Jaynes-Cummings Hamilto-

nian. The uncoupled basis states are given by the solid black lines. On resonance (ωr = ωq),

the eigenstates of the joint system (magenta) are separated in frequency by 2g
√
n. (b) Sim-

ulated normalized cavity transmission (color coded; linear scale) in the anticrossing region as

a function of the detuning δ. The dashed green and blue line correspond to the uncoupled

qubit and cavity transition frequencies, respectively. In circuit QED with flux qubits, δ can

be adjusted by an external flux bias. (c) Cavity transmission along δ = 0 in (b). In the

strong coupling regime, the linewidths associated with |±, n〉 are smaller than their separa-

tion in frequency which allows to resolve the corresponding eigenfrequencies ωr ± g (magenta

Lorentzians). The blue line shows the expected cavity transmission for g = 0.

acy between the uncoupled basis states |g, n〉 and |e, n−1〉 is lifted due to the qubit-cavity

coupling. The new eigenstates are separated by an energy gap 2~g
√
n which depends on

the number of excitations present in the system. Figure 5.1 b shows the resulting avoided

crossing (or anticrossing) in a simulated transmission spectrum.

The underlying physics can be easily understood considering the case n = 1. Here, a

quantum of energy coherently oscillates with the vacuum Rabi frequency Ω = 2g between

an atomic excitation (|e, 0〉) and a cavity photon (|g, 1〉). Quantum mechanically, atom

and cavity are maximally entangled and thus, lose their individual character. They form

a kind of ’light-matter molecule’ with new eigenenergies E± = ~(ωr ± g). Moreover, if

the system is in the strong coupling regime, it can undergo several Rabi cycles before the

excitation is finally lost and E± can be resolved spectroscopically (see Fig. 5.1 c).

Dispersive limit, |δ| � g

The dispersive (or non-resonant) limit is characterized by a substantial detuning |δ| � g

between atom and cavity. However, both systems are still coupled and the interaction
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Figure 5.2: Dispersive limit, |δ| � g. (a) Energy level diagram of Eq.(5.1) in the dispersive

limit (gray solid lines) for δ = ωq − ωr > 0. The uncoupled basis states are given by the solid

black lines. Depending on the qubit state, the cavity frequency is shifted by an amount ±g2/δ

(light blue and red arrows). The dressed atom frequency ω̃q = ωq + (2n+ 1)g2/δ depends on

the intracavity photon number n (green arrows). (b) Normalized transmission amplitude (top

panel) and phase (bottom panel) in the dispersive limit. With the atom in the ground state,

maximum transmission through the cavity occurs at ωr−g2/δ (light blue), if the atom is in the

excited state at ωr + g2/δ (red). The unperturbed cavity resonance (g = 0) is indicated (dark

blue). The state-dependent shift of the cavity resonance can be utilized in e.g. spectroscopy

experiments.

is mediated by virtual photons. This leads to dispersive level shifts of both atom and

cavity which are shown schematically in Fig. 5.2 a. In the dispersive limit, the Jaynes-

Cummings Hamiltonian in Eq.(5.1) can be approximated using the unitary transformation

Û = exp
[g
δ

(
âσ̂+ − â†σ̂−

)]
[6]. Expanding ÛĤÛ † up to second order in g yields

Ĥeff = ÛĤÛ † ≈ ~
(
ωr +

g2

δ
σ̂z

)(
â†â+

1

2

)
+

~
2
ωqσ̂z . (5.6)

The first term describes a harmonic oscillator with an effective resonance frequency ω̃r =

ωr ± g2/δ depending on the state of the atom (see Fig. 5.2 b and c). In other words,

the qubit state is mapped onto the phase and amplitude of cavity photons. We will see

in section 5.4.2 how the qubit state-dependent shift of the resonance frequency can be

utilized for spectroscopy measurements [102, 181]. In order to highlight the effect of the

dispersive interactions on the atom, Eq.(5.6) can be rearranged as

Ĥeff ≈ ~ωr

(
â†â+

1

2

)
+

~
2
ω̃qσ̂z , (5.7)

where

ω̃q = ωq +
2g2

δ
â†â+

g2

δ
(5.8)
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represents the dressed qubit transition frequency. Thus, the bare atomic transition fre-

quency ωq is shifted by the photon number-dependent ac-Zeeman term 2g2â†â/δ and the

constant Lamb shift g2/δ due to vacuum fluctuations. The ac-Zeeman shift is the mag-

netic analogue to the ac-Stark shift in atomic physics and was observed in e.g. cavity

QED setups [193] or in circuit QED experiments with charge qubits [102]. In general,

the dispersive regime allows for quantum non-demolition measurements of the intracavity

photon number n = 〈â†â〉 and the atom state [91, 194–197]. In section 5.4.4 we will use

the qubit’s ac-Zeeman shift for a calibration of n.

Furthermore, the large coupling rates realizable in circuit QED architectures allow en-

tering the strong dispersive regime which is not yet accessible in cavity QED setups. In

this regime, 2g2/δ > κ, γ and the qubit transition spectrum decomposes into a separate

spectral line for each photon number state of the microwave field [103,104,198,199].

5.1.2 Multi-mode Jaynes-Cummings Hamiltonian and effective coupling

This thesis investigates flux qubits coupled to a distributed λ/2-transmission line resonator.

The latter supports n resonant modes with resonance frequencies ωn. In the case of a

homogeneous transmission line geometry, ωn = n ·ω1 (n ∈ N), where ω1 = ωλ/2 is the

resonance frequency of the fundamental λ/2-mode. Furthermore, the expressions given

in Eq.(5.1) and Eq.(5.6) are only valid at the qubit degeneracy point. Away from this

point, flux-dependent terms have to be taken into account which arise from transforming

the qubit Hamiltonian Ĥq in Eq.(2.11) into the qubit energy eigenbasis, i.e. the eigenbasis

of Ĥq. This results in an effective coupling g̃n = gn sin θ where the flux dependence is

encoded in the mixing angle

θ ≡ θ(Φx) = arctan

(
∆

ε(Φx)

)
. (5.9)

In our notation, gn represents the maximum coupling of the qubit to the nth resonator

mode at the qubit degeneracy point where sin θ = ∆/~ωq = 1. Thus, the multi-mode

Jaynes-Cummings Hamiltonian can be expressed as

Ĥ =
~
2
ωqσ̂z +

∑
n

[
~ωn

(
â†nân +

1

2

)
+ ~g̃n

(
â†nσ̂− + ânσ̂+

)
− ~gn cos θ

(
â†n + ân

)
σ̂z

]
,

(5.10)

where we introduced â†n and ân as the photon creation and annihilation operators of the

nth resonator mode, respectively.

5.2 Measurement setup for circuit QED experiments

In this section, the 3He/4He dilution unit used for the circuit QED experiments presented

in this thesis is briefly introduced. Some of our measurements are conducted at a level of

a single microwave photon present in our circuit. This translates to the feeble power of

roughly 10−18 W and therefore, sophisticated microwave equipment is needed both inside

the fridge and at room temperature.
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Figure 5.3: Experimental setup. (a) Schematic measurement circuit. The input signal ωrf

generated by the vector network analyzer (VNA) and the spectroscopy source ωs is strongly

attenuated at various temperature stages (colored regions) and coupled into the resonator

(light blue) through the capacitor Cκ. Here, we schematically depict the case of a flux qubit

(dark red; crossed boxes represent Josephson junctions) coupled by its geometric loop induc-

tance to the cavity. (b) - (d) Photographs of parts of of the dilution unit. The most important

elements are marked by capital letters (color indicates the approximate temperature, see (a)).

(A) 4 K flange. (B) persistent switch for magnet coil. (C) cryogenic HEMT-amplifier. (D)

1 K-pot. (E) circulator. (F) still. (G) continuous heat exchanger. (H) step exchanger. (I)

mixing chamber. (K) silver sample rod. (e) side view of (d) showing the magnet coil (L) and

two gold-platted copper boxes (M), each containing a qubit-cavity system.

5.2.1 3He/4He dilution refrigerator & instrument rack

Our homemade fridge is able to reach a base temperature of ∼ 15 mK. It provides sufficient

space for the necessary microwave components at low T and allows the characterization

of two different samples during a single cooldown since it is equipped with two ampli-

fier chains. A schematic measurement setup and photographs of the dilution unit are

shown in Fig. 5.3. In our experiments, we probe the transmission through the coupled

qubit-cavity system at ωrf using a R & S ZVA 24 vector network analyzer (VNA) (see

Fig. 5.3 a). For qubit spectroscopy, an additional microwave signal at ωs can be applied to

the device under test using a R & S SMF 100A microwave signal generator. The two input

signals are combined using a passive microwave splitter (Mini-Circuits, ZFRSC 183-S+).

Fixed attenuators inside the fridge damp the microwave input signal and thermalize the

coaxial cables’ inner conductor. After passing our superconducting quantum circuit and

a circulator1 which prevents noise from entering our quantum system, the output signal

is amplified at 4 K using a custom-made cryogenic low-noise amplifier (noise temperature

1The circulator is terminated at one port with a 50 Ω load and effectively acts as an isolator, suppressing

any signal coming from higher temperature stages by ∼ 20 dB.

http://www2.rohde-schwarz.com/
http://www2.rohde-schwarz.com/
http://www.minicircuits.com/
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TN ∼ 6 ± 1 K, gain ∼ 27 dB, bandwith ∼ 2 − 8 GHz [200]). An additional water-cooled

amplifier (MITEQ, JS2-293) installed at room temperature (gain ∼ 26−28 dB) completed

the amplification chain. As depicted in Fig. 5.3 a, the probe tone signal (ωrf) is attenuated

by 40 dB more than the spectroscopy tone (ωs). The difference in attenuation is necessary

as ωs is applied off-resonant to the cavity mode. Including all attenuators, the splitter and

the loss of the coaxial lines, we measured a total attenuation of ∼ 106 dB at ωrf = 5.24 GHz

of the input line2. Photographs of important elements of our dilution unit are shown in

Fig. 5.3 b-e. For a more detailed description of the cryostat’s interior we refer to Ref. [200].

For applying an external flux bias to our quantum circuit, a superconducting magnet coil is

located on the backside of the sample rod (see Fig. 5.3 e). The coil consists of a thin single

filament Nb-Ti-wire embedded in a Cu-matrix and has an inductance of ∼ 1 mH [201].

Moreover, the coil is equipped with a persistent switch (see Fig. 5.3 b), which allows to trap

a dissipationless current in the solenoid for fixed flux bias measurements. Figure 5.4 shows

our instrument rack. Besides the VNA and the SMF, it contains a dc-current source and

a Picowatt resistance bridge and temperature controller. The current source provides two

output ports, each controllable via an external ±10 V signal from a National Instruments

PCI-6052E 16-bit acquisition card3. Although the inductance of the magnet coil is quite

large and current noise is suppressed quite effectively, additional low-pass filters (cut-off

frequencies of 1.9 MHz and ∼ 100 Hz, respectively) were installed at room temperature.

Figure 5.4: Instrument rack used for circuit QED experiments (left panel). For clarity, the

important instruments are labeled in the black & white image on the right hand side.

2The second input line had a slightly different configuration of fixed attenuators (6 dB at 4 K and 10 dB

at the 1 K-pot).
3Using our 16-bit PCI card, the minimum current resolution is ∼ 0.3 nA.

http://www.miteq.com/
http://www.picowatt.fi/
http://www.ni.com/
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5.3 Engineering coupling strengths in circuit QED

Before we start with the main results of this thesis, a short categorization of the experi-

ments discussed in the following with respect to the different coupling schemes is presented.

As mentioned already in the introduction, circuit QED setups have many advantages com-

pared to cavity QED experiments based on natural atoms. One particular advantage is

the design flexibility and the engineering potential inherent to superconducting artificial

atoms.

Figure 5.5 shows scanning electron microscope images of the qubit-cavity systems that will

be discussed in the subsequent sections. In order to compare the different coupling schemes

it is convenient to express the coupling strength as

hg = M Ip Ir,n . (5.11)

Here, M denotes the mutual inductance between qubit and cavity and Ip the qubit’s

persistent current. The quantity

Ir,n =

√
~ωn
Lr

(5.12)

is the vacuum current of the nth cavity mode which can be calculated if the total induc-

tance Lr of the coplanar waveguide (CPW) resonator and the nth resonance frequency ωn
are known. We note that for coplanar waveguide resonators with a position-independent

inductance and capacitance per unit length, ωn is in good approximation an integer mul-

tiple of the fundamental mode frequency ωλ/2 = ω1. According to Eq.(5.11), an easy way

to engineer – and thereby increase – the coupling is to modify M .

In Fig. 5.5 a for example, the mutual inductance is of purely geometric origin (M ∼ 5 pH

for the 8 x 30µm2 loop shown) and scales linearly with the edge length of the qubit. Thus,

by using relatively large qubits, the strong-coupling limit of circuit QED can be reached.

a b c

20 μm20 μm12 μm

atom-photon coupling rate, g/2π

1 μm

Figure 5.5: False-color scanning electron microscope images of qubit-cavity systems. The cou-

pling rate g/2π increases from (a)-(c) by more than an order of magnitude. This is achieved by

design modifications and thus highlights the engineering potential in circuit QED. (a) Two flux

qubits (magenta) fabricated in the gap of a coplanar waveguide (CPW) resonator. The mutual

inductance between qubit and cavity is determined purely by geometry. (b) Two flux qubits

coupled galvanically to the CPW center conductor by a narrow aluminum strip. In addition

to the geometric inductance, the large kinetic inductance of the aluminum constriction has to

be considered. (c) Circuit QED prototype for the exploration of ultrastrong-coupling physics.

With its Josephson inductance LJ, the additional junction embedded in the aluminum strip

(red box and inset) effectively acts as a local and very large inductance.
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The system depicted in Fig. 5.5 a will be discussed in section 5.4. In Fig. 5.5 b, qubit and

cavity are galvanically connected by a narrow strip (width ∼ 500 nm) of aluminum. The

kinetic inductance Lkin (see section 2.3.3) of this strip thus constitutes an additional large

contribution to M . In such a setup, Lkin and thus g can be further enhanced by simply

reducing the width and/or increasing the length of the shared edge. In turn, an enhanced

coupling allows to observe and study e.g. multi-photon transitions and the controlled

symmetry breaking in the strong-coupling limit of circuit QED as discussed in more detail

in section 5.5.2. A different and more sophisticated approach for a further enhancement

of the qubit-cavity coupling rate is depicted in Fig. 5.5 c. Here, an additional Josephson

junction embedded in the narrow constriction of a galvanically coupled qubit-cavity system

acts as a (non-linear) local inductance. We have seen in section 4.2.1 that typical current

densities of our Josephson junctions are of the order of 1 kA/cm2. Considering a relatively

large junction area of 0.3µm2, this would yield LJ ≈ 110 pH. This value is roughly one

order of magnitude larger than for a pure galvanic coupling without the additional cou-

pling junction. Moreover, since LJ ∝ 1/Ic ∝ 1/AJJ, smaller and/or series configurations of

Josephson junctions can increase the coupling dramatically. In section 5.6, a qubit-cavity

system similar to the one shown in Fig. 5.5 c allowed for the first time the exploration of

ultrastrong-coupling physics in a circuit QED architecture.

The ultrastrong-coupling regime will not be accessible in cavity QED setups dealing with

natural atoms in the near future, if ever. Although the strong-coupling regime (g � κ, γ

and C ∼ 102 − 105) is reached easily nowadays by minimizing cavity and atomic decay

rates, g is still very small compared to the atomic and the cavity transition frequencies.

In analogy to the definition of the cooperativity parameter C = g2/2κγ we introduce a

dimensionless parameter Cusc = g2/2ωqωr describing systems at the edge of ultrastrong-

coupling physics. For typical cavity QED setups [33, 34, 91] we estimate Cusc ∼ 10−12.

In cavity QED, both the atom’s dipole moment and the cavity mode volume are limiting

factors for achieving large atom-photon coupling rates.

On the other hand, circuit QED architectures are pursuing to reach the strong-coupling

regime by enhancing g due to their engineering potential. The enormous coupling rates

g achieved in these systems benefit from the huge dipole moments of artificial atoms, the

small cavity mode volumes and versatile capacitive and inductive coupling schemes. For

strongly coupled circuit QED devices cooperativity parameters of up to C ∼ 105 and

Cusc ∼ 10−4 were reported [116] while the ultrastrong-coupling prototype discussed in

section 5.6 reaches C ∼ 103 and remarkable Cusc ≈ 1.7 %.
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5.4 Strong-coupling of superconducting qubit-cavity systems

The experiments discussed in this section are based on flux qubits coupled to the center

strip of an overcoupled CPW resonator via a purely geometric mutual inductance. A

schematic of the measurement setup and images of the flux qubits and the CPW resonator

are shown in Fig. 5.6 a and b, respectively. Owing to the limited bandwidth of our

cryogenic amplifier, we are able to observe the first three modes of our CPW resonator. The

resonance frequencies are determined at a flux position where the qubit-cavity detuning

|δ| � ωn, ωq, g. The flux qubits have an area of 30 x 8µm2 and are fabricated in the gap

of the CPW at an antinode of the λ-mode (ω2/2π = 5.244 GHz). In the following, we

will introduce the experimental techniques necessary to characterize such a circuit QED

system.

10 mm

cryogenic
amplifier4 K

0.7 K

15 mK

300 K

circulator

ωrfωs

 amplifier

flux qubit

Cκ
resonatorCκ

VNA

0.1 K

a b Aqu ~ 30 x 8 μm2

c
I(x)

x
qubit

position

0
L

Figure 5.6: Measurement setup, images of the quantum circuit and sketch of the resonator’s

current distribution. (a) The amplified cavity transmission at ωrf is probed using a vector

network analyzer. For spectroscopy, a second tone ωs can be applied to the cavity (light

blue). For clarity, only one of the two qubits (dark red; crossed boxes represent Josephson

junctions) is sketched. The microwave components are explained in the caption of Fig. 5.3.

(b) Optical and false-color scanning electron images of the quantum circuit. The position

of the flux qubits (magenta) is indicated by the red box and the light blue boxes mark the

position of the coupling capacitors. (c) Sketch of the current distribution I(x) of the first three

resonator modes. Their resonance frequencies are: ω1/2π = 2.624 GHz (λ/2-mode, green),

ω2/2π = 5.244 GHz (λ-mode, magenta) and ω3/2π = 7.860 GHz (3λ/2-mode, blue). The

cavity has a length L = 23 mm and with Cκ ∼ 6 fF, all quality factors Qn > 15 · 103.

5.4.1 Cavity transmission

Owing to the dispersive and/or resonant interactions, the cavity’s mode frequencies are

modified in presence of one or more qubits inside the resonator. With the qubit in the

ground state, each cavity mode frequency is shifted by g̃2
n/δn, where δn = ω̃q(Φx) − ωn.

Since δn is a flux-dependent quantity and periodic in Φ0, the qubit’s flux-periodicity is

directly mapped to the cavity’s mode frequencies.

Before we turn to the spectrum of the specimen shown in Fig. 5.6 b, it is instructive to
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Figure 5.7: Resonator response. (a) Color-coded cavity transmission (λ-mode, linear scale, ar-

bitrary units) as a function of the probe frequency ωrf/2π and the magnet coil current Icoil for

a single qubit embedded in the resonator (yellow indicates high and white low transmission).

The flux periodicity of the qubit is encoded in the spectrum. (b) Resonance frequency ω2/2π

as a function of Icoil. Furthermore, we observe an offset by almost Φ0/2 due to flux trapping

during the cooldown procedure. (c) Same as in (a) but for two qubits and the 3λ/2-mode.

When qubit and resonator are on resonance, the transmission is strongly suppressed (white

vertical regions). (d) An intended qubit area difference results in a different flux quantum

periodicity (I1
Φ0
6= I2

Φ0
) which is highlighted by different colors. At Icoil ∼ −5µA, the degener-

acy points of the qubits almost coincide and can not be distinguished within the measurement

resolution. The area of the gray box is shown in Fig. 5.8.

look at a simpler system with only one qubit coupled to the resonator. Figure 5.7 a shows

the cavity transmission spectrum of the λ-mode as a function of the applied magnet coil

current Icoil. We observe periodic shifts of the resonance frequency ω2 towards lower fre-

quencies (see Fig. 5.7 b) which indicates that ω̃q > ω2. In order to extract ω2, a Lorentzian

is fitted to each transmission spectrum ωrf(Icoil) in Fig. 5.7 a. Furthermore, the Φ0 − Icoil

conversion factor is obtained from the spectrum. At the qubit degeneracy points, the dis-

persive cavity shift is maximum.

We now turn to the cavity spectrum for the case of two flux qubits present in our cavity.

Figure 5.7 c and d show the cavity transmission spectrum of the 3λ/2-mode and the res-

onance frequency ω3 as function of Icoil, respectively. Here, the periodic features in the

spectrum indicate qubit-cavity anticrossings due to resonant interaction. When ωq = ω3

the cavity transmission is reduced substantially (white vertical regions in Fig. 5.7 c) which

complicates the fitting procedure and leads to irregular shifts in ω3 (see Fig. 5.7 d). A

slightly different exposure dose (∼ 13 % difference) results in an area difference of the

qubits of ∼ 5 %. Figure 5.8 shows the flux-dependent transmission spectra for all observ-

able cavity modes in the region indicated by the gray box in Fig. 5.7 d. The spectrum of the

3λ/2-mode clearly reveals avoided crossings for current values where the flux-dependent
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Figure 5.8: Cavity transmission (linear scale, arbitrary units) around 9µA (see gray box in

Fig. 5.7 d). In the spectrum of the 3λ/2-mode (top panel) we observe two avoided crossings

for each qubit. The other two modes (bottom panels) reveal dispersive frequency shifts which

are maximum at the respective qubit degeneracy point.

qubit transition frequency ωq is resonant with ω3. At these points, the eigenstate of the

qubit-cavity system is a superposition of qubit- and cavity-like excitations. Observing

such a clear anticrossing is already a strong indication for coherent qubit-cavity interac-

tion. The lower two panels of Fig. 5.8 show the flux-dependent transmission spectra of the

λ- and λ/2-mode, respectively. If ω̃q(Φx) is known and if the dispersive cavity spectrum

is recorded at a sufficiently low input power, the qubit-cavity coupling rate gn can be

extracted from the flux dependence of the resonance frequencies (see section 5.4.3).

5.4.2 Qubit microwave spectroscopy

In the dispersive limit (δn � gn), the qubit state can be inferred from the shift of the

cavity’s resonance frequency [6,7]. In the following we describe the measurement protocol

for an experimental technique referred to as two-tone spectroscopy [102,181,202].

For fixed δΦx, we monitor phase and amplitude at the probe tone frequency ωrf where

maximum cavity transmission occurs. A second microwave signal with frequency ωs and

power Ps is applied to the system (see Fig. 5.3 a). Since this so-called spectroscopy tone is

off-resonant with respect to ωrf and owing to the filtering effect of the cavity, Ps is typically

104− 106 times larger than the probe tone power Prf of the readout mode. When ωs = ω̃q

and for sufficiently large amplitude of the continuous spectroscopy tone, the qubit is excited

and saturated, yielding an equal population of ground and excited state, respectively. As

illustrated in Fig. 5.9 a and b, this leads to a frequency shift of g̃2
n/δn which is reflected

in a phase shift (δP) and a decrease in magnitude (δM) at ωrf . Repeating this protocol

for different δΦx allows to map out the dressed qubit transition frequency ω̃q. In order

to avoid frequency shifts due to the photon number dependence of ω̃q, the measurement
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must be performed with a negligible photon population of the cavity mode (Prf → 0)

used for readout. The photon number calibration will be discussed in section 5.4.4. The

upper panels in Fig. 5.9 c and d summarize the spectroscopic response of the two qubits

with respect to the relative phase and magnitude shift at ωrf , respectively. The cavity

transmission data in Fig. 5.8 suggests to utilize the λ/2- and the λ-mode as readout tone

for qubit 1 and qubit 2, respectively. In both data sets, the hyperbolic flux-dependence of

ω̃q is visible. However, the spectroscopic response of qubit 2 shows a substantially better

signal-to-noise ratio (SNR) since δ2 is ∼ 5 times smaller than δ1 and in the small phase

shift limit [151] the SNR is proportional to (g̃n/δn)2. The lower panels in Fig. 5.9 c and d
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Figure 5.9: Two-tone qubit microwave spectroscopy. (a) Schematic of the dispersive qubit

readout defining the (a) relative phase shift δP and (b) relative magnitude shift δM. (c) Top

panel: δP of the readout tone (gray-scale) as a function of δΦx for qubit 1 (see Fig. 5.8).

Bottom panel: fitted center frequencies of the qubit signal (blue circles). The red solid line

represents a numerical fit to Eq.(2.15) yielding the qubit parameters ∆ and ε. (d) Same as in

(a) but for qubit 2 and with respect to δM. The panel on the right hand side visualizes typical

transmission spectra away from (violet) and close to (green) the qubit degeneracy point. The

numbers give the FWHM of the qubit signal, which is slightly power broadened for the spectra

shown. For qubit 2 we extract a FWHM ∼ 17 MHz at δΦx = 0 and in the low power limit

(Ps → 0, data not shown). Around ωs/2π ∼ 7.2 GHz the spectroscopic response is reduced

significantly due to the presence of a spurious fluctuator coupled to the qubit.
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depict the fitted center frequency of the qubit signal as a function of the relative flux bias

δΦx. Using Eq.(2.15) we find ∆/h ∼ 5.75 GHz and ∆/h ∼ 5.84 GHz for qubit 1 and 2,

respectively. Furthermore, Fig. 5.9 d depicts two cuts along δΦx ≈ 0 and δΦx ≈ −2.5 mΦ0

for qubit 2. In the low power limit (Ps → 0), the FWHM of the qubit signal is ∝ 1/T2,

where T2 is the dephasing time. Close to the qubit degeneracy point,

∂Ege

∂Φx
=

∂ε

∂Φx
cos θ (5.13)

is small which in turn yields optimum qubit coherence properties. This fact is qualitatively

reflected by our spectroscopic data, however, we did not study the dephasing and energy

relaxation of our qubits in detail within this thesis. Due to the lower SNR, the spectrum

for qubit 1 shown in Fig. 5.9 c could not be recorded in the low power limit and the qubit

signal is substantially power broadened. In section 5.4.5, the spectroscopic response of

qubit 1 at δΦx = 0 will be discussed for varying Prf and Ps. Finally we note, that in

contrast to a conventional dc-SQUID readout the dispersive circuit QED readout allows

to determine ω̃q spectroscopically at δΦx = 0 since the qubit state is mapped onto the

cavity’s resonance frequency.

5.4.3 Determination of coupling strengths

Now that ω̃q(δΦx) is known, the coupling strengths between qubit and the respective cav-

ity mode can be determined. In principle, there are several ways to determine gn which

all require a negligible photon population of the cavity modes.

The most straightforward way to investigate the coupling is to record the vacuum Rabi

splitting, however, due to a low SNR we were not able to record the vacuum Rabi split-

ting with our setup. At the end of this section we will address this topic more thoroughly.

Another possibility is to determine the coupling strengths by a two-tone qubit spectroscopy

measurement. By sweeping the spectroscopy tone over a wide frequency range including

the resonator modes, the spectrum could be fitted to the energy levels given by Eq.(5.10).

However, when the spectroscopy tone is close to the frequency of the qubit-cavity anti-

crossings, the large spectroscopy drive (Ps � Prf) will populate the cavity mode which

induces shifts and leads to a non-linear splitting of the (vacuum) Rabi resonance [116]. In

the following, we determine the coupling strengths from the low-power cavity transmission

spectrum shown in Fig. 5.10 a. The spectrum was recorded prior to the qubit spectroscopy
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ω
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Figure 5.10: Determination of qubit-cavity coupling strength g2/2π. (a) Cavity transmission

(λ-mode, linear scale, arbitrary units) as a function of δΦx and probe frequency ωrf/2π. The

spectrum is recorded at a power level of Prf ∼ −145 dBm which corresponds to 0.67 photons

on average (see section 5.4.4). The black solid line is a numerical fit to Eq.(5.14) yielding

g2/2π = 44.4 MHz.
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Figure 5.11: Measured and calculated spectra of all three resonator modes. The panels on the

left hand side show the cavity transmission spectra of qubit 2 as a function of δΦx and probe

frequency ωrf/2π. The spectra were recorded with the same input power Prf ∼ −137 dBm but

with different frequency resolution. On the right hand side, the simulated cavity transmis-

sion spectra are shown as obtained by solving Eq.(5.16). The spectra were simulated using

the experimentally determined γ/2π = 16.8 MHz, κ1/2π = 113 kHz, κ2/2π = 340 kHz and

κ3/2π = 484 kHz.

data in Fig. 5.9. With the qubit in the ground state, the flux dependence of the nth cavity

mode is given by Eq.(5.6) and can be written as

ω̃n = ωn −
g̃n
δn

= g2
n

sin2 θ

ωq − ωn
, (5.14)

where ωq and θ are given by Eq.(2.15) and Eq.(5.9), respectively. Fitting the spectrum

of the λ-mode to Eq.(5.14) with n = 2 yields g2/2π = 44.4 MHz. With γ/2π = 1/T2 and

κ/2π < 1 MHz, the system is in the strong-coupling limit. We note, that the evaluation

of the coupling strength by Eq.(5.14) is only valid for moderate gn. In the ultrastrong-

coupling regime, the cavity transmission spectra are fitted to the energy-level spectrum

of the full Hamiltonian as discussed in section 5.6. For moderate gn and in the case

of a homogeneous transmission line resonator4, the coupling constants g1 and g3 can be

determined from g2 by

gi = g2

√
ωi
ω2

ηi with i = 1, 3 . (5.15)

According to Eq.(5.11) and Eq.(5.12), the square root term accounts for the decrease or

increase of the vacuum current and ηi is a factor arising from the geometry of our quantum

4The coplanar waveguide cavities discussed so far (see section 2.3 and section 3.2) are homogeneous

transmission line resonators. They are distinguished by a position-independent inductance and capacitance

per unit length.
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circuit as depicted in Fig. 5.6 c. Since the qubit is fabricated at an antinode of the λ-mode,

the amplitudes of the standing current waves for the other observable modes are reduced

by a factor η1 = η3 = 1/
√

2 (see Fig. 5.6 c). Using Eq.(5.15) we calculate g1 = 22.2 MHz

and g3 = 38.4 MHz for the coupling strengths to the λ/2- and 3λ/2-mode, respectively.

In order to verify our results, we simulate the transmission spectra numerically solving the

master equation
dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+ κD[â]ρ̂+ γD[σ̂−]ρ̂ (5.16)

where the superoperators D[L̂] have the standard Lindblad form

D[L̂]ρ̂ =
(

2L̂ρ̂L̂† − L̂†L̂ρ̂− ρ̂L̂†L̂
)
/2 (5.17)

and describe the effect of damping. The calculations were carried out using Matlab and

the Quantum Tool Box, an easy to use computational tool for quantum and atomic physics

systems [203]. The Hamiltonian in Eq.(5.16) is given by the Jaynes-Cummings Hamiltonian

in Eq.(5.1) plus an additional external driving term

E
(
e−iωdtâ† + eωdtâ

)
, (5.18)

where E and ωd are the amplitude and angular frequency of the drive, respectively.

Figure 5.11 shows the simulated spectra side by side with the experimental results (cf.

Fig. 5.8). The excellent agreement between experiment and theory confirms the fitted and

calculated gn. We note that Eq.(5.16) was solved for each cavity mode separately which

is valid5 for gn/ωn � 1. From our results and using Eq.(5.11) we estimate a mutual in-

ductance between qubit and resonator of ∼ 5.8 pH. This result is also in good agreement

with the extracted coupling rates of qubit 1.

Rabi mode splitting

Recording a low-power cavity transmission spectrum at a flux position of an avoided cross-

ing (δn = ωq−ωn = 0) reveals two peaks separated by 2g̃n/2π (vacuum Rabi mode splitting,

see Fig. 5.1 c). With g̃n = gn sin θ and sin θ = ∆/~ωq(δΦx) the maximum coupling strength

can be calculated. Observing the vacuum Rabi splitting is experimentally challenging but

has been demonstrated with different kinds of qubits [7, 107, 109, 204, 205]. Typically, the

amplitude of the two peaks corresponding to the entangled qubit-cavity states is signifi-

cantly reduced compared to the bare cavity mode [7, 151] because on resonance, the two

systems can exchange energy and a decay of the qubit into non-radiative channels elimi-

nates the shared excitation of the joint system. Such processes thus lead to a significant

reduction of the transmitted microwave photons which in turn requires more averaging

time. Furthermore, the Rabi peaks become inhomogeneously broadened with increasing

power. On the one hand, this indicates that the Rabi splitting is not simply the avoided

crossing of two harmonic oscillators but has indeed the character of a harmonic mode

coupled to a highly non-linear system. On the other hand, the average photon population

has to be negligible small (n ∼ 0.01) in order to avoid obscuring the spectrum. Unfortu-

nately, we were not able to record a spectrum at such low input powers in a reasonable

amount of time owing to our measurement setup and the relative large qubit decay rate

into channels not captured by the cavity. Figure 5.12 shows the resonator transmission

5In the ultrastrong-coupling regime, gn ∼ ωn, and Ĥ in Eq.(5.16) had to be replaced with a multi-mode

Jaynes-Cummings Hamiltonian (see Eq.(5.10)) and Lindblad operators for each cavity mode.

http://www.mathworks.com/
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Figure 5.12: Cavity transmission spectra. (a) Resonator response for different δΦx where δ3 = 0

(green) and δ3 � g3 (blue). The spectra are normalized with respect to the latter and the

red curve represents a fit to two Lorentzians for δ3 = 0. Note that the maximum transmission

for δ3 = 0 is reduced by a factor of ∼ 5 · 102 compared to δ3 � g3. The fitted FWHM

is in reasonable agreement with the expected width of (γ + κ3)/2 [6]. Due to the strongly

reduced transmission on resonance, the spectra were recorded with an input power of Prf ∼
−130 dBm. Therefore, the photon population n3 ∼ 9.8 of the mode is too large and the Rabi

peaks become inhomogeneously broadened and frequency shifted [151]. (b) A comparison

between the measured (top panel) and simulated (bottom panel) cavity transmission spectra

contradicts the qubit-cavity coupling g3/2π ∼ 13.7 MHz extracted from the Rabi splitting.

of the 3λ/2-mode for flux values where δ3 � g3 and δ3 = 0. The spectra were recorded

with an input power corresponding to an average photon number of n3 ∼ 9.8 . Although

we observe the split peak situation, the extracted coupling strength g3/2π = 13.7 MHz is

strongly reduced compared to our result obtained from fitting the flux-dependent cavity

frequency shift. The discrepancy between the coupling strength extracted from the mode

splitting and our experimental results is visualized in Fig. 5.12 b.

5.4.4 ac-Zeeman shift & photon number calibration

Although we presented in the previous sections spectra recorded at specific average photon

numbers, the relation between the vector network analyzer’s output power and the mean

number of intracavity photons n can only be calibrated when the coupling rates gn are

known. In this section we explain how the photon number dependence of the dispersive

ac-Zeeman shift can be utilized for a calibration of Prf on the basis of qubit 2.

The qubit’s ac-Zeeman shift is measured spectroscopically at δΦx = 0 for a fixed spec-

troscopy power Ps ∼ −25 dBm referred to the output of the SMF microwave source. The

qubit state is inferred from the frequency shift of the cavity’s λ-mode when ω̃q = ωs.

For increasing Prf , the qubit transition frequency is shifted towards higher frequencies as

shown in Fig. 5.13 a. Since our readout tone represents a coherent signal, the photon dis-

tribution inside the cavity is Poissonian with photon number fluctuations of the order
√
n.

It can be shown that the spectrum of the qubit is given by a sum of Lorentzians centered

around ω̃q but with different widths and weights [103]. If the average photon number n

is small, only a few terms contribute and the qubit spectrum has a Lorentzian line shape

slightly broadened due to measurement-induced dephasing. On the other hand, for large

n, the qubit spectrum is given by the sum of many Lorentzians, effectively resulting in a
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Figure 5.13: Qubit ac-Zeeman shift. (a) Relative shift in transmission magnitude δM (color

coded; blue: large; white: small) as a function of Prf and the spectroscopy frequency ωs/2π

at δΦx = 0. For increasing Prf , the effective qubit transition frequency is shifted due to the

photon number dependence of ω̃q. The top axis refers to the average photon number n2 in

the readout mode (λ-mode) as extracted from the data in (b). Inset: typical qubit spectra

for different input powers Prf . The transition from a Lorentzian to a Gaussian line shape is

clearly visible. (b) Fitted center frequencies (black squares) of ω̃q/2π as a function of n2. The

red line represents a fit to the linear region and has a slope of 2g2
2/δ2 ≈ 6.9 MHz. Around

ncrit,2 ≈ 41, the ac-Zeeman shift per photon becomes power-dependent and decreases with

increasing n2. Inset: magnified view of ω̃q in the low-n2 region. The green filled data point

represents the average photon number at which the qubit spectroscopy data in Fig. 5.9 d was

recorded.

Gaussian line shape. The transition between these two limits is visualized by the spectra

shown in the inset of Fig. 5.13 a.

Since the coupling constant g2 and δ2 = ωq − ω2 are known, the shift per cavity photon

2g2
2/δ2 ≈ 6.9 MHz can be calculated. In order to obtain this shift, we have to assume a

total attenuation of 110 dB which is in good agreement with the estimated attenuations in

our measurement setup (see section 5.2.1). In Fig. 5.13 b, the fitted center frequencies of

the qubit signal are plotted for increasing n2, where we used the relation Prf = n2~ω2κ2.

We note, that the linear relation between Prf and n2 is valid only for low photon num-

bers and tends to break down [6, 151] in a region close to the critical photon number

ncrit,2 = δ2
2/4g

2
2 ∼ 41 in good agreement with our experimental results. For n > ncrit, the

lowest-order dispersive approximation breaks down and χn = 2g2
n/δn becomes a power-

dependent quantity.

Measuring the qubit ac-Zeeman shift thus allows a calibration of the average photon num-

ber (e.g. n2 ∼ 0.67 in our spectroscopy experiment, see Fig. 5.9 d). When the shift per

cavity photon is larger than the qubit linewidth, this measurement allows to spectroscopi-

cally resolve the photon number states inside the cavity [104], which is not the case in our

situation.

5.4.5 Sidebands & multi-photon spectroscopy

In section 4.4.2, we spectroscopically resolved sideband transitions of a coupled SQUID-

qubit system for sufficiently large drive amplitudes of the spectroscopy tone. Such an
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Figure 5.14: Two-tone spectroscopy of qubit 1 at δΦx = 0. (a) The relative magnitude shift

δM at ωrf (color-coded) is plotted as a function of ωs/2π and the probe tone power Prf . In

this measurement, Ps ∼ −100 dBm and the 3λ/2-mode (ω3/2π = 7.860 GHz) was used as

readout cavity mode. Since ω3 > ω̃q, the qubit transition frequency ω̃q is shifted towards

lower frequencies for increasing Prf . (b) Ps ∼ −95 dBm. At small Prf only the |g,0〉 → |e,0〉
transition (red arrow) is visible. The black solid line in (b) - (d) represents the spectrum

at Prf ∼ −140 dBm. (c) Ps ∼ −90 dBm. The two-photon induced transition |g,0〉 → |e,1〉
(green arrow) becomes more prominent. (d) Ps ∼ −85 dBm. A third spectroscopic feature

corresponding to the three-photon induced transition |g,0〉 → |e,2〉 is unveiled.

experiment can be conducted in a circuit QED architecture, too. Figure 5.14 shows two-

tone spectroscopy measurements6 of qubit 1 at its degeneracy point δΦx = 0. For small

spectroscopy powers Ps (see Fig. 5.14 a), we observe the expected ac-Zeeman shift of ω̃q

for increasing probe tone powers Prf . The most prominent feature in our data corresponds

to the transition from the qubit ground to its first excited state. Since we are well in

the dispersive limit (δ3 = 7.860 GHz − 5.753 GHz � gn), this transition corresponds to

|g,0〉 → |e,0〉, where we followed the notation introduced in section 5.1. Furthermore,

we only take into account the λ-mode (ω2/2π = 5.243 GHz) as the other cavity modes

are far detuned and, in addition, g2 = 62.8 MHz > g1, g3. For increasing Ps, a second

spectroscopic feature becomes visible. This feature appears only for large Prf but with

increasing Ps, already at moderate probe tone powers (see Fig. 5.14 c and d) and could be

identified as the two-photon driven transition |g,0〉 → |e,1〉. In other words, this transition

can be driven when 2ωs = ω̃q + ω2 and constitutes a second order process. Therefore, the

transition probability is significantly reduced compared to single-photon processes which is

6The full data set for each panel in Fig. 5.14 comprises 18 probe powers Prf . The spectroscopy tone was

swept between 5.35 GHz and 6.25 GHz with an increment of 4 MHz. We operated the VNA in cw-mode

and averaged 20 times over 2 points with an intermediate frequency (IF) bandwidth of 10 Hz. Thus, the

measurement time for each spectroscopy power Ps was approximately 225 min.
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reflected by a strongly reduced amplitude in our spectroscopy data7. By further increasing

the spectroscopy amplitude, a third line becomes visible (see Fig. 5.14 d). We identify this

spectroscopic signature as the three-photon induced transition |g,0〉 → |e,2〉 which can be

driven when 3ωs = ω̃q + 2ω2. At such large spectroscopic drives, the linewidths of the one-

and two-photon transition are substantially power broadened.

In this section we introduced techniques for characterizing coupled qubit-cavity systems by

means of spectroscopy and cavity transmission experiments. Furthermore, our experiments

show that the fabrication process of our flux qubits - initially optimized for SQUID-qubit

systems - could be successfully expanded into circuit QED architectures. Moreover, even

for qubits coupled via a purely geometric inductance, the strong-coupling limit could be

reached. In the following section we will exploit the engineering potential of our quantum

devices to further increase the qubit-cavity coupling rates gn.

7We note that two-photon driving of the qubit alone is not possible at δΦx = 0 owing to symmetry

considerations (see section 5.5.2).
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5.5 Selection rules in a strongly coupled qubit-cavity system

One of the key features of circuit QED setups is their design flexibility and the ability to

tune their properties in situ by an external control parameter. This triggered experimen-

tal studies of multi-photon driven artificial atoms, including population inversion [206],

Mach-Zehnder interferometry [186], Landau-Zener interference [188], qubits coupled to

microscopic defects [207], amplitude spectroscopy [208], multi-photon spectroscopy of hy-

brid quantum systems [209] and sideband transitions [202]. Recently, an experimental

investigation of a two-photon driven flux qubit coupled to a lumped-element LC resonator

shed light on the controllability of fundamental symmetry properties of circuit QED sys-

tems [142]. However, in that particular work, the effect of microscopic defects and a

weak-coupling scenario caused by the high loss rate of the lumped element LC-resonator

complicated the analysis of the data.

In this section, we present one- and two-photon spectroscopy data of a qubit-resonator sys-

tem in the strong coupling limit. Our results provide clear experimental evidence for the

controlled transition from an operating point governed by dipolar selection rules [210] to a

regime where one- and two-photon excitations of the artificial atom coexist. In addition,

we find that the vacuum coupling between qubit and resonator can be straightforwardly

extracted from the two-photon spectra because the detuned two-photon drive does not

populate the relevant resonator mode significantly. The results presented in this section
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Figure 5.15: Measurement setup, images of our quantum circuit and sketch of the current

distribution. (a) The experimental setup is identical to the one depicted in Fig. 5.6, however,

the qubits are coupled galvanically to the resonator which is indicated by the dashed red-blue

line. (b) Optical and false-color scanning electron images of the galvanically coupled quantum

circuit. The position of the flux qubits (magenta) is indicated by the red box and the light

blue boxes mark the position of the coupling capacitors. (c) Sketch of the current distribution

I(x) of the first three resonator modes. Their resonance frequencies are: ω1/2π = 2.745 GHz

(λ/2-mode, green), ω2/2π = 5.324 GHz (λ-mode, magenta) and ω3/2π = 7.775 GHz (3λ/2-

mode, blue). The center conductor has a length L = 23 mm and is terminated at both ends

with interdigital finger capacitors (Cκ ∼ 10 fF). The quality factors Qn > 6.3 · 103 and the

resonance frequencies were determined at maximum qubit-cavity detuning.
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are summarized in Ref. [211]. Figure 5.15 a and b show a schematic of the measurement

setup and images of our quantum circuit, respectively. The setup is identical to the one

used in the previous section, however, the two qubits are now coupled galvanically to the

resonator [181]. At a current antinode of the λ-mode, a 80µm section of the resonator’s

center conductor is replaced by a narrow (∼ 500 nm) aluminum strip with two galvani-

cally connected flux qubits (see Figure 5.15 b). This modification of the transmission line

geometry gives rise to a position-dependent inductance L(x) and capacitance C(x) per

unit length. In turn, this leads to an asymmetric8 distribution [212] of the higher mode

frequencies, ωn 6= n ·ω1 with n ∈ N. More importantly, the kinetic inductance Lkin of the

narrow strip constitutes an additional large contribution to the overall mutual inductance

M , thereby enhancing the qubit-cavity coupling. In the following, we extract the coupling

rates gn from qubit spectroscopy and cavity transmission measurements employing the

experimental techniques presented in the last section. Although two qubits are present in

our system, our analysis will focus on one qubit only.

5.5.1 Transmission spectra and one-photon qubit spectroscopy

Figure 5.16 summarizes the initial characterization measurements. The spectroscopic re-

sponse of the coupled qubit-cavity system is shown in Fig. 5.16 a and reflects the hy-

perbolic flux dependence of ω̃q. For this measurement, we used the λ-mode as probe

tone and performed two-tone spectroscopy. Fitting the center frequencies of the qubit’s

spectroscopic response to Eq.(2.15) yields the qubit parameters ∆/h = 6.88 GHz and

ε/h = 1.66 GHz · δΦx[mΦ0] (see Fig. 5.16 b). Additional features can be identified in

our spectroscopy data: first, around ωs/2π ∼ 7.00 GHz, a flux-independent signature is

faintly visible and can be attributed to a spurious fluctuator present in our system. Such

fluctuators can be either resonant modes or microscopic two-level systems and can sig-

nificantly degrade the coherence properties of solid-state based artificial atoms [78]. We

extract a relatively large splitting of ∼ 81 MHz at the flux positions of the qubit-fluctuator

avoided crossing (δΦx ∼ ±1 mΦ0). Recently, a time-domain characterization of the qubit-

fluctuator dynamics [213] and multi-photon spectroscopy [207] were performed in systems

exhibiting similar large qubit-fluctuator couplings. Furthermore, it was shown that the

presence of two-level fluctuators can lead to symmetry breaking [142], however, this was

not the case in our experiment and for the remainder of this section we will therefore

neglect the presence of the fluctuator level. Second, in the region ωs/2π ≈ 7.4 − 7.6 GHz

our data reveals a flux-dependent spectroscopic signature which is consistent with a two-

photon driven blue-sideband transition of the qubit and the 3λ/2-mode (resonance con-

dition: 2ωs = ω̃q + ω3) [142, 202, 214]. Figure 5.16 c and d show the cavity transmis-

sion spectra of the λ- and 3λ/2-mode, respectively. We extract the couplings gn by fit-

ting the energy level spectrum of the multi-mode Jaynes-Cummings Hamiltonian given

in Eq.(5.10) to the measured spectra. For the fit procedure we use the qubit param-

eters from Fig. 5.16 b and from two-tone spectroscopy performed on the second qubit

(∆/h = 2.12 GHz, ε/h = 1.69 GHz · δΦx[mΦ0]; data not shown). We find qubit-cavity cou-

pling rates of g1/2π = 56.7 MHz, g2/2π = 106.5 MHz and g3/2π = 90.7 MHz in excellent

8For our CPW, the resonance frequencies scale as 1 : 1.93 : 2.83 .
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Figure 5.16: Microwave spectroscopy and cavity transmission measurements. (a) Relative shift

in transmission magnitude δM (gray-scale) of the readout tone as a function of δΦx and ωs/2π.

(b) Fitted center frequencies of the spectroscopic response (colored circles) shown in (a). The

solid red line is a fit to Eq.(2.15) while the green line represents a fit to the fluctuator data

points. The solid blue curve corresponding to the qubit-cavity blue sideband (BS) is evaluated

using the fit parameters from the qubit data and the experimentally determined frequency

ω3. (c) Cavity transmission spectrum of the λ-mode (linear scale, arb. units) as a function

of δΦx and probe frequency ωrf/2π. The solid lines represent a numerical fit of the spectrum

according to Eq.(5.10) to the data. In contrast to the black lines, the gray lines represent

energy levels of states with more than one excitation. (d) Same as in (c) but for the 3λ/2-

mode.

agreement with the data shown in Fig. 5.16 c9 and d. Moreover, we find a FWHM of the

qubit spectroscopy signal of γ/2π ≈ 43 MHz (see section 5.5.3) and since κn < 1.4 MHz

for all cavity modes, our quantum circuit is in the strong-coupling limit. Using Eq.(5.11),

g2, Ip and Ir,2 = 19.0 nA we find M ≈ 14 pH. The value for M can be further enhanced

by reducing the width of the narrow aluminum strip connecting qubit and resonator [212].

Finally, a measurement of the power-dependence of the qubit’s ac-Zeeman shift yields a

calibration for Prf and thus for the average photon number (n < 0.94 for all measurements

shown in Fig. 5.16).

9We note, that a fit to the cavity’s ac-Zeeman shift of the λ-mode according to Eq.(5.14) yields a slightly

larger g2/2π = 110 MHz. The discrepancy is attributed to the presence of the additional strongly coupled

cavity modes which is not captured by Eq.(5.14).
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5.5.2 Two-photon spectroscopy: selection rules and controlled symme-

try breaking

We now investigate the spectroscopic response of the qubit-cavity system under direct

two-photon driving. Again we use the flux-dependent transmission maximum of the λ-

mode (see Fig. 5.16 c) as probe frequency. However, to induce two-photon transitions, the

spectroscopy drive is applied in a frequency range where 2ωs ≈ ω̃q. The gray-scale data

and the fitted center frequencies of the spectroscopy signal are shown in Fig. 5.17 a and b,

respectively. We observe a feature with a hyperbolic flux dependence and two anticrossings

located symmetrically around δΦx = 0. These signatures are the two-photon spectroscopic

response of the qubit strongly coupled to the 3λ/2-mode. Furthermore, a one-photon

driven red sideband transition (resonance condition ωs = ω̃q − ω2) can be identified. This

transition corresponds to an exchange of an excitation between the qubit and the λ-mode

(|g, 1〉 ↔ |e, 0〉). A fit of the qubit-like spectroscopic response to Eq. (2.15) yields the two-

photon qubit parameters ∆2p/h = 3.48 GHz and ε2p/h = 0.926 GHz · δΦx[mΦ0] which are

in good agreement with the expected values ∆2p = ∆/2 and ε2p = ε/2. We attribute the

deviations in the two-photon response to a higher intracavity photon number (n2 ∼ 2.2)

inducing an ac-Zeeman shift in ω̃q towards higher frequencies.

In the following, we analyze the gradual disappearance of the qubit spectroscopy signal

(see Fig. 5.17 a) for δΦx → 0. Depending on the value of the external control parameter

δΦx, the symmetry of the Jaynes-Cummings Hamiltonian will imply selection rules on the

allowed transitions. Formally, selection rules are intimately connected to the quantum

mechanical concept of parity. The parity operator10 Π̂ divides the set of all states into
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Figure 5.17: Microwave spectroscopy under two-photon driving. (a) Relative shift in the trans-

mission magnitude δM (gray-scale) at the probe tone frequency ωrf as a function of δΦx and

the spectroscopy frequency ωs/2π. The two avoided crossings correspond to the qubit-cavity

anticrossings visible in the cavity transmission spectrum of the 3λ/2-mode (see Fig. 5.16 d).

On the left hand side, a one-photon driven red sideband transition is visible. (b) Fitted center

frequencies of the two-photon spectroscopy signal (green circles) as a function of δΦx. The

solid green line represents the numerically evaluated energy level spectrum of Hamiltonian

(5.10) with ωn → ωn/2, ωq → ωq/2 and gn → gn/2. Dotted blue line: 1/2 ·ω3/2π. Dashed

red line: calculated flux dependence of the red sideband transition using ∆ and ε extracted

from the one-photon spectroscopy data.

10A very good pedagogical introduction to the parity operator can be found in Ref. [215].
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three groups: even states |ψ+〉, odd states |ψ−〉 and states without well-defined parity.

The former two are eigenstates of Π̂ with eigenvalues +1 and −1, respectively. In a similar

fashion, it is possible to divide the set of all operators into the same classes. While an

even operator Â+ commutes with Π̂, an odd operator Â− anticommutes with Π̂. It can

be shown [141], that the matrix elements of an even operator are zero between states of

different parity

〈ψ+|Â+|ψ−〉 = 〈ψ−|Â+|ψ+〉 = 0 , (5.19)

while the matrix elements of an odd operator are zero between states of equal parity

〈ψ+|Â−|ψ+〉 = 〈ψ−|Â−|ψ−〉 = 0 . (5.20)

At δΦx = 0, the two lowest qubit energy eigenstates |g〉 and |e〉 represent symmetric and

antisymmetric superpositions of the persistent current states | ± Ip〉. Transitions between

|g〉 and |e〉 are induced by an external drive ∝ (â† + â) with respect to a frame rotating

at the drive frequency (see Eq. (5.18)). It is easy to verify that the drive (â† + â) is an

odd parity operator [215]. Since |g〉 and |e〉 correspond to states with different parities,

one-photon transitions are allowed at the qubit degeneracy point. On the other hand, a

two-photon (n-photon) transition is equivalent to the application of two (n) subsequent

drives with frequency ω̃q/2 (ω̃q/n). With

(Π̂Â−Π̂)n = (−1)nÂn− , (5.21)

the two-photon drive acts as an even parity operator and two-photon transitions between

|g〉 and |e〉 are strictly forbidden.

Away from the qubit degeneracy point (δΦx 6= 0), the parity of the Hamiltonian (5.10)

is not well-defined owing to the asymmetry of the qubit’s double well potential (see

Fig. 2.8 b). Mathematically, the operator representing the total number of excitations,

M = â†â + σ̂+σ̂− (see section 5.1) does not commute with the Hamiltonian due to the

presence of terms ∝ gn cos θ(â†n + ân)σ̂z.

In the dispersive limit, the effective Hamiltonian can be derived by means of a Schrieffer-

Wolff transformation yielding finite transition matrix elements [132,142,149]

D(1) =
Ω

4
sin θ , (5.22)

D(2) =
Ω2

4∆
sin2 θ cos θ (5.23)

for one- and two-photon transitions, respectively. In the above expressions, Ω refers to the

driving strength. The cos θ-dependence of the two-photon spectroscopy signal is qualita-

tively reproduced by our data (see Fig. 5.17 a) and explains the gradual disappearance of

the qubit signature (cos θ → 0 for δΦx → 0). The selection rules for one- and two-photon

driven red and blue sideband transitions can be derived [214] in a similar fashion. The two-

photon blue sideband illustrated in Fig. 5.16 corresponds to the transition |g, 0〉 → |e, 1〉.
These states have the same parity and since the two-photon drive has even parity, the

transition is in principle possible for arbitrary δΦx. However, as a second-order transi-

tion, its amplitude is small and the spectroscopic signature can not be resolved within

our measurement resolution and for low spectroscopy powers Ps. Finally we note, that for
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the harmonic resonator potential multi-photon transitions are forbidden in general [142],

which is illustrated by the absence of a flux-independent spectroscopic feature at ωs = ω3/2

except for the anticrossing regions. Here, a flux-independent resonator-like signature is vis-

ible owing to the large qubit-like component in the eigenstates of the Jaynes-Cummings

Hamiltonian (see Eqs. (5.3) and (5.4)).

5.5.3 Anticrossing under two-photon driving

The anticrossings in the spectrum shown in Fig. 5.17 a represent the spectroscopically

resolved Rabi mode splitting between the qubit and the 3λ/2-mode using a two-photon

drive. Figure 5.18 a shows the relative shift in magnitude δM at the probe tone frequency as

a function of δΦx and ωs/2π for the anticrossing at positive δΦx. The fact that we observe a

resonator-like (i.e. flux-independent) two-photon response indicates that the corresponding

eigenstate is considerably ’dressed’ by the qubit. However, at flux values where qubit and

cavity mode are detuned, the different linewidths allow to clearly distinguish qubit and

cavity. On resonance, the eigenstates |±, 1〉 of the coupled system are symmetric and

antisymmetric superpositions of |g, 1〉 and |e, 0〉. Here, the linewidths become equal and

are given by (γ + κ3)/2 ≈ 22 MHz. From the fitted center frequencies of the spectroscopy

signal we extract a minimum separation of 1/2 · 2g̃3/2π = g̃3/2π = 77.4 MHz. Taking into

account that sin θ = 0.89 at that particular flux position, we obtain g3/2π ≈ 87.0 MHz.

The experimentally determined qubit-cavity coupling rate is in very good agreement with

g3/2π = 90.7 MHz determined from fits to the low-power cavity transmission spectra and

one-photon qubit spectroscopy (see Fig. 5.16). Thus, a dispersive readout of the qubit-

cavity anticrossings constitutes an alternative experimental technique to determine the

vacuum Rabi splitting. In contrast to a resonant readout (see section 5.4.3), the drive

tones ωrf and ωs do not populate the relevant cavity mode since they are applied both

off-resonant.
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Figure 5.18: Vacuum Rabi splitting. (a) Qubit-cavity anticrossing under two-photon driving

for positive δΦx. The plot shows the shift in magnitude δM at ωrf as a function of δΦx and

ωs/2π. The strongly flux-dependent and broad spectroscopic feature corresponds to a qubit-

like response while the flux-independent signature has cavity-like character. (b) On resonance,

the separation between the two dips is g3 sin θ = 77.4 MHz. The red solid line represents a fit

to Lorentzian line shapes. From the FWHM, γ/2π ≈ 43 MHz can be estimated. This value is

in agreement with the linewidth obtained from low-power one-photon spectroscopy.
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Figure 5.19: One- and two-photon spectroscopy of superconducting flux qubits. (a) Measured

probability Pe (color-coded) of finding the qubit in the excited state as a function of δΦx and

the spectroscopy frequency ωs/2π for a weakly coupled oscillator-qubit system. Around 6 GHz,

the flux-independent resonator level is directly driven. The data is taken from Ref. [142]. The

color boxes in (a) and (b) mark the areas which are compared to our results in (c) and (d),

respectively. (b) One- and two photon spectroscopy of the circuit QED setup discussed in this

section. The plot shows the relative shift in the transmission magnitude δM (gray-scale) as

a function of δΦx and the spectroscopy frequency ωs/2π. (c) Comparison of the two-photon

spectroscopy data at δΦx = 0. While the presence of a fluctuator level breaks the symmetry

(left panel) thus allowing two-photon transitions, the signal amplitude vanishes in our setup

owing to dipolar selection rules (right panel). (d) Two-photon avoided crossing. The vacuum

Rabi splitting can not be resolved due to the large resonator loss rate κ (weak-coupling limit,

see left panel). In our setup (right panel), the avoided crossing can be clearly resolved since

the strong coupling condition gn > κn, γ is fulfilled.

Finally, we compare our results to an experimental investigation of a two-photon driven

flux qubit published recently [142]. Here, the state of the qubit was detected using a

dc-SQUID coupled to a lumped-element LC resonator. The setup is almost identical to

the SQUID-qubit system discussed in section 4.4.2. Microwave spectroscopy was per-

formed using the adiabatic shift pulse method [85, 87], yielding the one- and two-photon

spectroscopy data depicted in Fig. 5.19 a. The extracted qubit-resonator coupling rate

g/2π = 115 MHz is similar to the coupling strength realized in our circuit QED setup.

While the one-photon branch has a very broad linewidth owing to a large resonator decay

rate of κ/2π ∼ 210 MHz, the linewidth of the two-photon branch is considerably smaller.

This constitutes direct evidence that a two-photon drive is not populating the resonator

but selectively drives the qubit.

In contrast to our results which are summarized in Fig. 5.19 b, a non-vanishing two-photon

signal is visible at δΦx = 0. This is attributed to a flux-independent two-level fluctuator

around ωf = 3.94 GHz. The presence of this fluctuator breaks the symmetry of the to-

tal system, leading to a not well-defined parity. Thus, the strict selection rules discussed
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above do not apply and only a reduction in signal amplitude is observed, while in our

measurements the two-photon signal vanishes at δΦx = 0 (see Fig. 5.19 c). Furthermore,

κ is larger than g near the two-photon qubit-resonator anticrossing (weak coupling limit)

and compared to our measurement, the vacuum Rabi splitting can not be resolved exper-

imentally (see Fig. 5.19 d). The excitation energy is rapidly lost to the environment via

the low-quality factor (Q ∼ 100) lumped element LC resonator.

Our data presented in this section provides clear experimental evidence for the existence of

selection rules in a strongly coupled circuit QED setup. Moreover, a two-photon readout

of the qubit-resonator avoided crossing allows to determine the vacuum Rabi frequency

using a dispersive readout scheme.
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5.6 Circuit QED in the ultrastrong-coupling regime

In this section we present one of the central results of this thesis. We report on the first

experimental realization of a circuit QED system operating in the ultrastrong-coupling

regime [212,216–218]. In this regime, the qubit-cavity coupling rates gn reach a consider-

able fraction of the cavity transition frequencies ωn and consequently, the rotating wave

approximation (RWA) inherent to the Jaynes-Cummings model is not applicable. In our

system we realized remarkable normalized coupling strengths gn/ωn of up to 12% by en-

hancing the inductive coupling [212] of a flux qubit to a transmission line resonator. To

this end, we use the large non-linear inductance of a Josephson junction shared between

qubit and cavity.

The observation of ultrastrong-coupling was recently reported in a solid-state semiconduc-

tor system [219,220] consisting of multiple quantum wells embedded in a microcavity with

resonance frequency ωr. The presented data only showed quantitative deviations from the

Jaynes-Cummings model and although gN/ωr ≈ 0.24 could be realized in a system consist-

ing of N = 25 quantum wells [221], the experiment effectively probed the collective N -atom

interaction strength given by gN = g
√
N . This

√
N -scaling – theoretically analyzed by the

Tavis-Cummings model [222] – has been observed in many different experimental setups

operating in various energy regimes (see Ref. [115] and references therein).

In our setup, however, ultrastrong-coupling is realized between a single atom and a cavity
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Figure 5.20: Measurement setup, images of our quantum circuit and sketch of the current

distribution. (a) The experimental setup is identical to the one depicted in Fig. 5.15. In

addition to a galvanic coupling (dashed red-blue line), qubit and resonator share a large-area

Josephson junction (dashed red-blue crossed box). The large Josephson inductance LJ of

this junction mediates the ultrastrong coupling. (b) Optical and false-color scanning electron

images of the quantum circuit. The position of the flux qubit (magenta) is indicated by

the red box and the light blue boxes mark the position of the interdigital finger capacitors

(Cκ ∼ 10 fF). (c) Sketch of the current distribution I(x) of the first three resonator modes.

Their resonance frequencies are: ω1/2π = 2.782 GHz (λ/2-mode, green), ω2/2π = 5.357 GHz

(λ-mode, magenta) and ω3/2π = 7.777 GHz (3λ/2-mode, blue).
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mode (N = 1). Furthermore, the transmission spectra of our qubit-cavity system reveal

anticrossings that cannot be explained within the Jaynes-Cummings model. These anti-

crossings result from counterrotating terms in the qubit-cavity interaction Hamiltonian and

become prominent only in the ultrastrong-coupling regime with large normalized coupling

strengths gn/ωn. The most important results of this section are summarized in Ref. [8].

5.6.1 Experimental setup & circuit design

Figure 5.20 a and b show a schematic of the measurement setup and images of our quantum

circuit, respectively. The qubit-cavity system can be characterized by cavity transmission

and two-tone spectroscopy measurements [102, 181] as explained in sections 5.4 and 5.5.

The qubit is fabricated at a maximum of the current distribution for the λ-mode (see

Fig. 5.20 c). The galvanic connection to the resonator’s center conductor is realized by

a narrow (∼ 1µm) aluminum strip as shown in Fig. 5.21 a. For the bottom and top

aluminum layer we evaporate a 50 nm and 80 nm thick aluminum film, respectively. In

order to ensure a smooth galvanic coating (see Fig. 5.21 b and c), we used a niobium

film thickness of 100 nm for our CPW resonator. The crucial building block of our quan-

tum circuit is a large-area Josephson junction interrupting the narrow constriction (see

Fig. 5.21 d). This junction shared between qubit and cavity represents a large induc-

tance LJ and mediates the ultrastrong-coupling. According to Eq. (5.11), the qubit-cavity

coupling is determined by the mutual inductance M = LJ + L. Here, L represents the

inductance of the shared edge between center conductor and the qubit including kinetic

and geometric contributions. Although LJ > L dominates M , it has negligible influence
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Figure 5.21: Optical microscope and SEM images of our flux quantum circuit. (a) Optical

microscope image of the 80µm gap interrupting the CPW’s center conductor and the galvani-

cally connected flux qubit (loop area: 20 x 9µm2). The Nb-Al interface in the overlap regions

is formed by native Nb oxides and is not specially cleaned prior to the aluminum deposition.

The color boxes mark the areas magnified in (b)-(e). (b) and (c) SEM images of the edges

in the overlap regions. (d) SEM image of the large Josephson junction. The area of the

coupling junction is approximately 7AJJ. Here, AJJ ≈ 250 x 140 nm2 represents the area of a

regular Josephson junction embedded in the qubit loop as shown in (e). From SEM images of

test samples fabricated in the same run we determined the scaling factor for the small qubit

junction α ∼ 0.7.
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on the vacuum current Ir,n ≈
√
~ωn/Lr in the resonator because the total resonator

inductance Lr � LJ, L. For typical critical current densities jc ∼ 1− 2 kA/cm2 a coupling

junction area of 500 x 500 nm2 results in a Josephson inductance LJ ∼ 65 − 130 pH. This

inductance – and thus the qubit-cavity coupling rates gn – can be further increased by

reducing the area of the coupling junction as long as LJ ∝ 1/Ic is small compared to the

total inductance of the qubit which is typically Ltot ≈ 2− 3 nH.

In the qubit eigenbasis, the combined system can be described by the Hamiltonian

Ĥ = Ĥq +
∑
n

[
Ĥn + ~gn

(
â†n + ân

)
(cos θ σ̂z − sin θ σ̂x)

]
. (5.24)

Here, Ĥq = ~ωqσ̂z/2 is the qubit Hamiltonian and Ĥn = ~ωn(â†nân + 1/2) represents

the Hamiltonian of the nth cavity mode. The Pauli operator σ̂x can be expressed as

sum of the qubit raising (σ̂+) and lowering (σ̂−) operator. Thus, the Hamiltonian in

Eq. (5.24) explicitly contains counterrotating terms of the form â†nσ̂+ and ânσ̂−. Using a

RWA, Eq. (5.24) reduces to the well-known multi-mode Jaynes-Cummings model given by

Eq. (5.10).

5.6.2 Microwave spectroscopy & power calibration

The qubit-cavity system is characterized by two-tone spectroscopy techniques as described

in the previous sections. Figure 5.22 a shows the dressed qubit transition frequency with

the expected hyperbolic flux dependence and a minimum at δΦx = 0. Furthermore, the

two lowest resonator modes (ω1 and ω2) are visible. Our measurement resolution does not

allow us to reliably determine the undressed qubit energy gap ∆ and the coupling constants
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Figure 5.22: Two-tone spectroscopy and ac-Zeeman shift. (a) Microwave spectroscopy of the

qubit using the 3λ/2-mode (ω3/2π = 7.777 GHz) for readout. The shift in magnitude δM
(gray-scale) is measured as a function of δΦx and ωs/2π. The spectrum was recorded at Prf

corresponding to n3 ∼ 0.5 . Near the anticrossing regions with the two lowest cavity modes,

the transmitted signal through the readout mode ω3 disappears in the noise floor. The yellow-

red dashed line indicates the dressed energy level spectrum of the Hamiltonian in Eq. (5.24)

obtained with the fit parameters from the cavity transmission data in Fig. 5.23. (b) Center

frequency of the qubit spectroscopy signal at δΦx = 0 as a function of the probe power Prf .

In the low-power limit (Prf , Ps → 0), the FWHM of the qubit signal is approximately 80 MHz.

The red line is a fit to the linear region using Eq. (5.25). The green filled dot indicates the

power level at which the cavity transmission spectrum in Fig. 5.23 a was recorded.
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gn in this situation. Instead, we extract them from a cavity transmission spectrum with

negligible photon population. For that purpose, we first measure the power-dependent

ac-Zeeman shift of the qubit transition frequency at δΦx = 0 as shown in Fig. 5.22 b.

The average photon number n3 can be estimated using the relation Prf = n3~ω3κ3, where

κ3 = 3.7 MHz is the FWHM of the cavity resonance.

In the dispersive limit of the Jaynes-Cummings model, the qubit’s ac-Zeeman shift per

cavity photon is given by χn = 2g2
n/δn. In the ultrastrong-coupling limit, counterrotating

terms have to be taken into account. An expression for χn in the dispersive limit can be

found by an analytical treatment beyond the RWA [223] and is given by

2g2
n

(
1

ωq − ωn
+

1

ωq + ωn

)
. (5.25)

The analytical theory shows good quantitative agreement with numerical results up to

gn/ωn = 0.1. In general, the dispersive frequency shifts are overestimated (underesti-

mated) for δn < 0 (δn > 0) within the RWA.

5.6.3 Low-power cavity transmission spectra

Figure 5.23 a and b show the color-coded low-power cavity transmission spectra for the

3λ/2- and λ-mode, respectively. In contrast to the spectra presented in the previous sec-

tions (see Fig. 5.8 and Fig. 5.16 c and d), we observe a rich structure with additional

anticrossings. The origin of these anticrossings will be discussed later in more detail.

To extract the individual coupling constants gn and the qubit parameters ∆ and ε, we

compute the lowest nine transition frequencies of the Hamiltonian given in Eq. (5.24) in-

corporating the first three resonator modes. Fitting the results to the spectrum of the

3λ/2-mode shows excellent agreement with the measured data as shown in Fig. 5.23 c. We

note that the spectrum for the λ-mode shown in Fig. 5.23 d can be well described without

additional fitting using the parameters extracted from the 3λ/2-mode. For the qubit, we

obtain ε/h = 1.97 GHz · δΦx[mΦ0] and ∆/h = 2.25 GHz. The latter deviates significantly

from the dressed qubit transition frequency ω̃q = 2.04 GHz at δΦx = 0 (see Fig. 5.22)

due to the strong qubit-cavity interaction. Most importantly, we find coupling rates of

g1/2π = 314 MHz, g2/2π = 636 MHz, and g3/2π = 568 MHz corresponding to normalized

coupling rates gn/ωn of remarkable 11.2 %, 11.8 %, and 7.3 %, respectively. These values

are up to one order of magnitude larger than the highest values reported so far in a circuit

QED architecture [116,224].

The significant deviation of 210 MHz between ∆ and ω̃q at δΦx = 0 (see Fig. 5.22) can be

attributed to vacuum induced Lamb shifts. Taking into account that the quantum mechan-

ical zero-point energy is present in all three cavity modes, we calculate a total Lamb shift

of δL,tot ≈ 203 MHz in good agreement with our data. Since the detuning between ω1 and

∆/h is smallest, the λ/2-mode contributes 112 MHz to the total Lamb shift. Even with only

the vacuum present, the qubit is extensively ’dressed’ due to the enormous qubit-cavity

interaction. While in typical cavity QED setups the Lamb shift constitutes 10−7 − 10−6

of the corresponding atomic transition frequency [38,193], the enormous coupling rates in

our system give rise to δL,tot/∆ ≈ 0.09 . Furthermore, this ratio is almost 7 times larger

than the value of 0.014 reported recently in a strongly coupled circuit QED setup [198].

According to Eq. (5.11) we can calculate the total mutual inductance M ≈ 70 pH, where

we used g2/2π = 636 MHz, Ir,2 = 18.8 nA and Ip = 315 nA. With L ≈ 10 pH combing
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Figure 5.23: Cavity transmission spectra in the ultrastrong-coupling regime and determination

of coupling rates gn. (a) Spectrum of the 3λ/2-mode (linear scale, arb. units) as a function

of δΦx and probe frequency ωrf/2π. The data is recorded at an input power Prf ≈ −140 dBm

(green data point in Fig. 5.22 b) corresponding to n3 ≈ 0.18 . (b) Same as in (a) but for

the λ-mode. Owing to a higher insertion loss of this cavity mode, the spectrum is recorded

at Prf corresponding to n2 ≈ 0.9. (c) Same spectrum as in (a). The black lines represent a

numerical fit of the spectrum of the Hamiltonian given by Eq. (5.24) to the data. (d) Same

spectrum as in (b). Here, the black lines represent the numerically evaluated energy level

spectrum without additional fitting using the parameters extracted from (c).

geometrical and kinetic contributions to M , we estimate a Josephson inductance of the

coupling junction of LJ ≈ 60 pH in agreement with our junction parameters.

5.6.4 Beyond the Jaynes-Cummings model

The large coupling rates realized in our setup allow us to enter the ultrastrong coupling

regime and, as we will show below, lead to significant deviations from the Jaynes-Cummings

physics. In this section, we analyze the features in our data which constitute unambiguous

evidence for the breakdown of the RWA inherent to the Jaynes-Cummings model.

In the following, we use the notation ϕ = |q,N1, N2, N3〉 = |q〉 ⊗ |N1〉 ⊗ |N2〉 ⊗ |N3〉,
where q = {g, e} denote the qubit ground or excited state, respectively, and |Nn〉 =

{|0〉, |1〉, |2〉, . . . } represents the Fock-state with photon occupation N in the nth resonator

mode. The origin of the additional anticrossings in the cavity transmission spectra can be

intuitively understood by first considering the energy level diagram of the Hamiltonian in

Eq. (5.24) for gn = 0. Figure 5.24 a and b show the lowest transition frequencies and parts
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Figure 5.24: Lowest transition frequencies given by Eq. (5.24) for gn = 0. (a) The color-

coded plot represents a part of the spectrum of the 3λ/2-mode (see Fig. 5.23). The flux-

independent levels represent the first three cavity modes. The lines with the hyperbolic

flux-dependence represent the bare qubit transition (|e, 0, 0, 0〉) and transitions consisting of

combined qubit and cavity excitations (|e, 1, 0, 0〉, |e, 0, 1, 0〉 and |e, 2, 0, 0〉). We note that

the states |e, 0, 1, 0〉 and |e, 2, 0, 0〉 have slightly different energies since 2ω1 6= ω2 due to the

inhomogeneous transmission line geometry. (b) Same as (a) but with parts of the spectrum

of the λ-mode.

of the cavity transmission spectrum for the 3λ/2- (|g, 0, 0, 1〉) and λ-mode (|g, 0, 1, 0〉),
respectively. In addition to the expected crossings where a cavity mode is resonant with

the qubit (|e, 0, 0, 0〉), further level crossings exist, where a higher cavity mode is degenerate

with a level combining a qubit excitation and excitations in a lower cavity mode.

For a quantitative analysis, we compute the energy level spectrum of the Hamiltonian in

Eq. (5.24) as shown in Fig. 5.25. The largest six contributions to the eigenstate of the cou-
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Figure 5.25: Energy level spectrum. (a) Numerically evaluated frequency spectrum obtained

from Eq. (5.24) in close vicinity of the 3λ/2-mode (see Fig. 5.23 c and d). The dashed gray

lines indicate the flux values of anticrossings between adjacent levels. The inset shows a

magnified view of the area close to the innermost anticrossings. (b) Same as in (a) but for the

λ-mode. The energy levels are color-coded, Lx denotes the xth energy level of the Hamiltonian

in Eq. (5.24).
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pled system

|ψ±〉 =
∑
m

cmϕm . (5.26)

at the positions of the respective anticrossings are summarized in Table 5.1. At the out-

ermost anticrossing of the 3λ/2-mode (δΦx = 3.780 mΦ0; see Fig. 5.25 a), where ω3 ≈ ω̃q,

the eigenstates |ψ±〉 of the coupled system are in good approximation symmetric and an-

tisymmetric superpositions of |e, 0, 0, 0〉 and |g, 0, 0, 1〉 (see L6 and L5 in Tab. 5.1). This

exchange of a single excitation between qubit and resonator is a characteristic of the

Jaynes-Cummings model.

On the contrary, the origin of the anticrossing at δΦx = 2.378 mΦ0 is of different nature:

here, the dominant contributions to the eigenstates |ψ±〉 are superpositions of the degener-

ate states ϕ1 = |g, 0, 0, 1〉, ϕ2 = |e, 1, 0, 0〉 and ϕ3 = |g, 1, 1, 0〉 (see L7 and L6 in Tab. 5.1).

A transition from ϕ1 to ϕ2 can be understood as the creation of two excitations, one in

the λ/2-mode and one in the qubit, while, simultaneously, annihilating only one excitation

δΦx(mΦ0) 3λ/2-mode

0.723

L9
|cm|2 0.477 0.191 0.148 0.106 0.023 0.007

ϕm |g, 0, 0, 1〉 |e, 2, 0, 0〉 |g, 3, 0, 0〉 |e, 0, 1, 0〉 |g, 1, 1, 0〉 |e, 0, 0, 0〉

L8
|cm|2 0.417 0.301 0.230 0.010 0.005 0.004

ϕm |g, 0, 0, 1〉 |e, 2, 0, 0〉 |g, 3, 0, 0〉 |g, 2, 1, 0〉 |g, 2, 0, 0〉 |e, 0, 0, 0〉

0.788

L8
|cm|2 0.477 0.245 0.126 0.052 0.042 0.016

ϕm |g, 0, 0, 1〉 |e, 0, 1, 0〉 |g, 1, 1, 0〉 |e, 2, 0, 0〉 |g, 3, 0, 0〉 |g, 0, 2, 0〉

L7
|cm|2 0.483 0.299 0.117 0.025 0.019 0.018

ϕm |g, 0, 0, 1〉 |e, 0, 1, 0〉 |g, 1, 1, 0〉 |e, 2, 0, 0〉 |g, 0, 2, 0〉 |g, 3, 0, 0〉

2.378

L7
|cm|2 0.464 0.290 0.185 0.018 0.007 0.006

ϕm |g, 0, 0, 1〉 |e, 1, 0, 0〉 |g, 1, 1, 0〉 |e, 0, 0, 0〉 |e, 2, 0, 0〉 |g, 0, 1, 1〉

L6
|cm|2 0.490 0.303 0.153 0.014 0.006 0.005

ϕm |g, 0, 0, 1〉 |e, 1, 0, 0〉 |g, 1, 1, 0〉 |g, 1, 0, 1〉 |e, 2, 0, 0〉 |g, 0, 1, 1〉

3.780

L6
|cm|2 0.475 0.434 0.047 0.009 0.007 0.007

ϕm |e, 0, 0, 0〉 |g, 0, 0, 1〉 |g, 1, 1, 0〉 |e, 1, 0, 0〉 |e, 0, 1, 0〉 |g, 0, 1, 1〉

L5
|cm|2 0.518 0.442 0.007 0.006 0.005 0.005

ϕm |g, 0, 0, 1〉 |e, 0, 0, 0〉 |g, 1, 1, 0〉 |e, 0, 1, 0〉 |g, 0, 1, 1〉 |e, 1, 0, 0〉
δΦx(mΦ0) λ-mode

1.245

L5
|cm|2 0.459 0.401 0.070 0.028 0.008 0.008

ϕm |g, 2, 0, 0〉 |g, 0, 1, 0〉 |e, 1, 0, 0〉 |e, 0, 0, 0〉 |g, 3, 0, 0〉 |g, 1, 0, 0〉

L4
|cm|2 0.517 0.331 0.090 0.012 0.011 0.009

ϕm |g, 0, 1, 0〉 |g, 2, 0, 0〉 |e, 1, 0, 0〉 |g, 1, 1, 0〉 |e, 0, 0, 0〉 |g, 0, 2, 0〉

2.523

L4
|cm|2 0.867 0.037 0.028 0.023 0.019 0.011

ϕm |g, 2, 0, 0〉 |g, 0, 1, 0〉 |g, 3, 0, 0〉 |e, 0, 0, 0〉 |g, 1, 0, 0〉 |g, 2, 1, 0〉

L3
|cm|2 0.573 0.384 0.012 0.007 0.004 0.004

ϕm |g, 0, 1, 0〉 |e, 0, 0, 0〉 |g, 0, 2, 0〉 |g, 0, 0, 0〉 |e, 0, 1, 0〉 |e, 1, 0, 0〉

Table 5.1: Calculated contributions to the eigenstate |ψ±〉. The contributions are evaluated

at δΦx[ mΦ0] of the anticrossings of adjacent levels Lx and L(x − 1) (see Fig. 5.25). Only

the outermost anticrossing of the 3λ/2-mode (δΦx = 3.780) can be understood within the

Jaynes-Cummings model. All other anticrossings are caused by non-negligible contribution

from counterrotating terms in the qubit-cavity Hamiltonian.
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in the 3λ/2-mode. Such a process11 can only result from counterrotating terms as they

are present in the Hamiltonian given in Eq. (5.24), but not within the Jaynes-Cummings

approximation. At the innermost anticrossings of the 3λ/2-mode (δΦx = 0.723 mΦ0 and

0.788 mΦ0; see Fig. 5.25 a, inset), the structure of |ψ±〉 has a more complicated character.

Here, the eigenstates |ψ±〉 are composed of |g, 0, 0, 1〉 and non-negligible contributions from

states with up to three excitations, e.g. |e, 2, 0, 0〉 and |g, 3, 0, 0〉 (see L9, L8 and L7 in
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Figure 5.26: Breakdown of the Jaynes-Cummings-model. (a) Cavity transmission (3λ/2-mode,

linear scale, arb. units) as a function of δΦx and probe frequency ωrf/2π. Dashed black lines in

all plots: energy level spectrum obtained from the Hamiltonian given in Eq. (5.24). Colored

lines in all plots: energy level spectrum obtained from the Jaynes-Cummings model (blue:

|g, 0, 0, 1〉, except for anticrossing region shown in (c); solid green: |e, 1, 0, 0〉; dashed green:

|e, 2, 0, 0〉; magenta: |e, 0, 1, 0〉. The latter two are indistinguishable within the resolution of

this plot. The area marked by the gray broken boxes is magnified in (c) - (e). (b) Same as in

(a) but for the λ-mode. With the exception of the single excitation anticrossing region, the

magenta line represents |g, 0, 1, 0〉. (c) Single excitation anticrossing for the 3λ/2-mode. (d)

Avoided crossing due to a coupling between the degenerate states |g, 0, 0, 1〉 and |e, 1, 0, 0〉.
The contribution from |g, 1, 1, 0〉 in the expression for the eigenstate is omitted in this plot for

clarity. (e) Same as (d), but for the Jaynes-Cummings model. Within numerical accuracy, no

anticrossing is predicted, clearly contradicting the data. (f) The dominant contributions to

the superposition states of the innermost anticrossings are |g, 0, 1, 0〉, |g, 2, 0, 0〉 and |e, 1, 0, 0〉.
(g) Same as (f), but for the Jaynes-Cummings model.

11The transitions |g, 0, 0, 1〉 ↔ |e, 1, 0, 0〉 correspond to terms of the form â1σ̂−â
†
3 and â†1σ̂+â3 in the

Hamiltonian.
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Figure 5.27: Higher-order transitions. (a) Color-coded cavity transmission (3λ/2-mode, log-

arithmic scale) as a function of ωrf/2π and δΦx. The data is recorded at an input power

Prf ≈ −124 dBm corresponding to n3 ≈ 6.1 . The black arrows mark additional spectroscopic

features that cannot be explained by excitations from the ground state to a higher energy

level. (b) Same as in (a) but for the λ-mode and n2 ≈ 0.9 . (c) and (d) Same as in (a) and

(b). The solid black lines in both plots represent the energy difference between the eigenen-

ergies of the Hamiltonian given in Eq. (5.24) with respect to the 2nd lowest eigenenergy. (e)

and (f) Same as in (c) and (d) but for the 3rd lowest eigenenergy.

Tab. 5.1). Similar arguments apply to the anticrossings visible in the spectrum of the λ-

mode (δΦx = 1.245 mΦ0 and 2.523 mΦ0; see Fig. 5.25 b), however, both anticrossings have

non-Jaynes-Cummings character. Although one expects a single excitation anticrossing

between L3 and L4 at δΦx = 2.523 mΦ0, the eigenstate of the coupled system attains a

large (86.7 % for L4) contribution from the |g, 2, 0, 0〉 state (two excitations in the λ/2-

mode). The size of the contribution can be understood by taking into account that even

though the cavity modes are non-harmonically spaced, 2ω1 − ω2 = 2π 207 MHz� g2.

Finally, we compare the energy level spectrum of the Hamiltonian in Eq. (5.24) to that of a

three-mode Jaynes-Cummings model on the basis of our fit parameters. Depending on δΦx,

there are regions where our data can be well described by the Jaynes-Cummings model,

and regions where there are significant deviations (see Fig. 5.26 a and b). Figure 5.26 c

shows a magnified view of one of the outermost anticrossings of the 3λ/2-mode which is in

good agreement with predictions based on the Jaynes-Cummings model. The quantitative

deviations from Eq. (5.24) can be attributed to the small admixture of the state |g, 1, 1, 0〉
(see Tab. 5.1). Although counterrotating terms in principle exist in any real circuit QED
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Figure 5.28: Numerically evaluated transition matrix elements. (a) Color-coded plot (normal-

ized) of |Mi,f |2 according to Eq. (5.27). The different intensity of the innermost spectroscopic

features in Fig.5.27 a (black arrows at δΦx = 0 mΦ0 and δΦx = ±2 mΦ0) is reproduced quanti-

tatively for the 3λ/2-mode. (b) Same as in (a) but for the λ-mode. The spectroscopic features

indicated by the black arrows (cf. Fig. 5.27 b) are much less pronounced in our spectroscopic

data than predicted by theory.

system, their effects become prominent only in the ultrastrong coupling limit with large

normalized couplings gn/ωn as realized in our system. The observed anticrossing shown

in Fig. 5.26 d and f are a direct experimental manifestation of physics beyond the rotating

wave approximation in the Jaynes-Cummings model. As shown in Fig. 5.26 e and g, the

latter would imply a crossing of the involved energy levels, which is not observed.

Additional less pronounced structures and anticrossings are visible in the low-power trans-

mission spectra (see Fig. 5.23). To elucidate their origin, we measure the cavity transmis-

sion of the 3λ/2-mode at a higher intracavity photon number, where these patterns become

more distinct. The data in Fig. 5.27 a and b shows the color-coded cavity transmission

on a logarithmic scale for the 3λ/2- and λ-mode, respectively. Most of the additional

features in our spectra can be explained by computing the lowest 16 energy levels of the

Hamiltonian given in Eq. (5.24) and calculating the energy differences with respect to the

2nd (see Fig.5.27 c and d) and 3rd lowest eigenenergy (see Fig.5.27 e and f), respectively.

For both spectra, the observed features are in good agreement with the numerically eval-

uated transitions given by Eq. (5.24). Only the outer anticrossings in the spectrum of

the 3λ/2-mode (i.e. the anticrossings at δΦx ≈ ±8 mΦ0) lack quantitative agreement. We

attribute the deviations to the presence of higher cavity modes12 which cannot be captured

numerically due to computational limitations. Furthermore, the larger intracavity photon

number leads to an ac-Zeeman shift of ω̃q which is not explicitly included in our theoretical

model. The observed intensity of the involved transitions can be qualitatively understood

by calculating the corresponding matrix elements

|Mi,f |2 = |〈ψf |Ĥd,n |ψi〉|2 with i = 2, 3 . (5.27)

Here,

Ĥd,n = E
(
â†n + ân

)
(5.28)

12While the qubit-cavity coupling of the 2λ-mode should be negligible due to a current node at the qubit

position, the presence of the 5λ/2-mode may not be neglected.
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is the drive Hamiltonian of the nth cavity mode inducing transitions between the initial ψi
and final ψf eigenstate of the full Hamiltonian given in Eq. (5.24). The calculated matrix

elements are shown in Fig. 5.28 a and b for the 3λ/2- and λ-mode, respectively. Except for

the spectroscopic features indicated by the black arrows in Fig. 5.28 b, the relative intensity

of the observed transitions are in good agreement with the spectrum of the respective

mode. Even at large intracavity photon numbers, similar higher-order transitions were

not observed in circuit QED systems which can described within the Jaynes-Cummings

model. The fact, that some of these transitions can be spectroscopically resolved even at

low intracavity photon numbers emphasizes the importance of the counterrotating terms

for the physics of our system.
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Chapter6
Summary and outlook

The rapidly developing and prospering field of circuit QED studies the fundamental inter-

action between light and matter using superconducting circuits. Circuit QED systems are

promising candidates for conceptual building blocks in quantum information processing

(QIP). Basic gate operations and quantum computing algorithms have successfully been

demonstrated [118, 225–227]. Compared to cavity QED with natural atoms, circuit QED

architectures have numerous advantages.

First, the design flexibility inherent to superconducting circuits make them one of the most

versatile architectures for quantum engineering, i.e. the tailoring of quantum systems. The

non-linearities and tuning capabilities provided by SQUIDs and qubits allow for the de-

velopment of parametric amplifiers for quantum limited amplification and the generation

of squeezed light [228–235]. In addition, in situ rapidly tunable resonators [236] have been

suggested for a parametric generation of photons and the observation of quantum vacuum

radiation [237–240].

Furthermore, the large effective dipole moments of superconducting qubits and the small

mode volumes realized in quasi-1-dimensional transmission line resonators allow reaching

the strong-coupling regime far more easily. In this regime, the atom-photon interaction is

coherent which permits e.g. the transfer of quantum information [108,109] and synthesiz-

ing arbitrary quantum states [112].

While major breakthroughs [7, 104, 106, 108–110, 112–114, 118, 121, 122] in the field of cir-

cuit QED were achieved using charge, phase and transmon-type qubits, the potential of

flux qubits for circuit QED applications has not yet been explored thoroughly. This is

caused by the fact that in general the fabrication of flux qubits is more demanding since

high critical current densities in combination with submicron Josephson junction areas

are needed. However, flux qubits are particularly promising for experiments situated in

the regime of ultrastrong light-matter interaction due to the possibility of enhancing the

qubit-resonator coupling drastically by implementing additional Josephson elements. Up

to now, no architectures based on other superconducting qubit types capable of going be-

yond Jaynes-Cummings physics have been envisioned.

In the scope of this thesis, the main building blocks for circuit QED applications – artifi-

cial atoms and resonant cavities – were successfully developed, fabricated and character-

ized [149]. Different qubit-resonator coupling schemes were explored with the main focus
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on enhancing the qubit-cavity coupling rate g. Utilizing the non-linear inductance of a

Josephson junction, we were able to enter the ultrastrong-coupling regime in a circuit QED

architecture for the first time.

The fabrication process for superconducting flux quantum bits was implemented in the new

evaporation facility of the WMI, thus enabling experiments on ’homemade’ flux qubits for

the first time. At first, the qubits were characterized using an inductive dc-SQUID read-

out technique. The microwave excitation of the qubits leads to characteristic peaks and

dips in the flux dependence of the SQUID’s switching current histograms. From the po-

sition of these peaks and dips and by measuring at different excitation frequencies, the

transition frequency of the qubit can be reconstructed. Our measurement data provide

evidence that we are able to fabricate flux qubits with energy gaps ∆� kBT ≈ h · 0.5 GHz

at T = 25 mK. Moreover, on-chip circuit elements like shunt capacitors and microwave

antennas were successfully implemented in our designs and improved the readout signifi-

cantly. This allowed observing sideband transitions in a system consisting of a flux qubit,

a dc-SQUID and a lumped element LC-resonator. Simultaneously, high-quality super-

conducting transmission line resonators tailored for the needs of circuit QED experiments

were designed, fabricated and characterized at cryogenic temperatures.

The large dipole moments of our flux qubits combined with small cavity mode volumes al-

low for coupling rates g exceeding the decay rates of our quantum circuits. With a coupling

scheme based purely on the geometric component of the mutual inductance we were able

to meet the criteria for strong-coupling: a cornerstone for studying coherent interactions

between light and matter. Embedded in distributed coplanar waveguide resonators, the

flux qubits were characterized by cavity transmission and dispersive two-tone spectroscopy

experiments. Our spectra and the extracted coupling rates are in excellent agreement with

the Jaynes-Cummings-model and to simulations based on the quantum Markovian master

equation.

Using a galvanic coupling scheme, the coupling strengths could be increased further. Multi-

photon spectroscopy in a strongly-coupled qubit-cavity system provided clear experimental

evidence for the existence of selection rules similar to those of electric dipole transitions in

atomic physics. At the degeneracy point of the qubit, two-photon transitions are strictly

forbidden due to symmetry considerations. Away from the degeneracy point, the system

has no well-defined parity and one- and two-photon excitations can coexist. Moreover,

two-photon spectroscopy in the dispersive limit allows observing the vacuum Rabi split-

ting. While the feeble entanglement between light and matter states is difficult to observe

in a transmission experiment with qubit and cavity on resonance, the dispersive readout

technique does not populate the relevant resonator modes.

Most importantly, the engineering potential inherent to circuit QED allowed increasing the

coupling rate g between a flux quantum bit and a transmission line resonator into a new

regime: the ultrastrong-coupling regime [8]. This was achieved by utilizing the non-linear

inductance of a Josephson junction shared between qubit and cavity. With g/ωr ≈ 12 %,

the normalized coupling rates in our system exceed those of other circuit QED setups

by one order of magnitude. Owing to the non-negligible contribution of counterrotating

terms in the system Hamiltonian, the observed transmission spectra exhibit anticrossings

which result from a coupling between eigenstates with a distinct number of excitations.

Our spectra are in excellent agreement with theoretical predictions and for the first time

provide clear evidence for physics beyond the renowned Jaynes-Cummings-model. In the
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latter, only states with an equal number of excitations can be coupled.

Although the ultrastrong-coupling limit was investigated both theoretically and experi-

mentally in semiconductor systems in recent years [216, 217, 219–221, 241], the extracted

couplings in these studies refer to a collectiveN -atom interaction. Compared to our results,

the normalized couplings of gN/ω = 0.09 and gN/ω = 0.24 reported in Refs. [219] and [221]

for N = 50 and N = 25, respectively, would only correspond to ratios gn/ωn ≈ 1.3 % and

gn/ωn ≈ 4.8 %. This emphasizes once more the uniqueness of our prototype circuit, where

the ultrastrong-coupling regime is reached with only a single artificial atom coupled to a

resonant cavity mode.

Many exciting phenomena have been predicted to arise in systems realizing ultrastrong

light-matter interaction [212,216,217,242–244]. When the coupling strength is large enough

and the rotating wave approximation is non-applicable, these systems resemble solid-state

implementations of the E⊗β Jahn-Teller model [212,243,245–248]. The quantum mechan-

ical description of this model predicts an entangled ground state of the qubit-resonator

entity. In this ground state, the oscillator is displaced by a qubit state-dependent quantity

and contains a finite number of virtual ’bound’ photons [212, 216, 243]. While these pho-

tons can not escape the cavity directly, their presence and distribution could be measured

using a second qubit in a photon number splitting experiment [103, 104] or by switching

off the qubit-resonator interaction [249] in a non-adiabatic way. Then, the system will

relax towards the new ground state which corresponds to the standard vacuum [216] and

the emitted photons can be measured. Furthermore, the average photon number and

higher-order statistical correlations between the emitted photons could be inferred using

a dual-path setup [250,251].

As mentioned in section 5.6.1 the coupling strengths can be further increased either by

reducing the size of the coupling junction or making use of the
√
N -scaling of gN within the

Tavis-Cummings model. Combining both approaches, it could be possible to observe the

Dicke1 superradiant phase transition [255,256]. In the large N limit and above the critical

coupling gn > (ωqωn/4)1/2, such systems are known to exhibit power-law scaling [257],

quantum chaos [258] and critical entanglement [259,260].

Another interesting quantum phenomenon is to be observed in the deep strong coupling

regime [244] where gn/ωn & 1. Here, the system evolves along different parity chains

depending on the initial state of the coupled qubit-resonator system. Interestingly, in a

parity basis, the photon statistics of an initial single photon Fock state will spread inde-

pendently, reach an energy barrier and bounce back repeatedly. Starting from a Fock state

with higher photon number generates counter-propagating photon number wave packets

in both directions and leads to interference effects.

Recently, a scheme for one-step N -qubit Greenberger-Horne-Zeilinger (GHZ) state gener-

ation was proposed [261]. This scheme is robust to operation errors and decoherence and

it was shown, that the preparation time t of the GHZ state is minimum for gn/ωn = 1/4.

Last but not least, qubit-cavity systems operating in the ultrastrong-coupling regime are

promising candidates for studying strongly interacting polaritons in cavity arrays [262–264]

1In his publication, Dicke treated the electromagnetic field semiclassically [252]. Nevertheless, super-

radiant behavior – the collective, spontaneous emission of photons from N atoms – is often referred to

as Dicke model although the fields are quantized. For a recent overview of the Dicke model we refer to

Refs. [253,254].
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and causality effects in quantum field theory [265] using an open transmission line instead

of a resonant cavity.

During this thesis work, tremendous progress has been made with solid-state based systems

both in quantum information processing and in studying fundamental quantum physics

phenomena. For a very thorough overview of the prospects of strongly coupled circuit

QED setups in general, we refer the interested reader to Ref. [199]. The circuit QED

architecture is and will continue to be an ideal test bed for future explorations of quantum

mechanical systems owing to its numerous advantages: design and engineering flexibil-

ity, in situ variability and scalability. Although there are several technological challenges

ahead, there is a considerable chance that the first ’meaningful’ quantum computation and

simulation will be carried out using a circuit QED setup.



AppendixA
Fabrication recipes & electron beam

evaporator details

The following sections summarize the process steps for the fabrication of on-chip bias lines

(see section 3.1.1), CPW resonators (see section 3.2) and Josephson junction devices (see

section 3.1.2). As mentioned in the introductory paragraph of chapter 3, the parameters

given in the following tables should serve as a good starting point but have to be adjusted

eventually. Additional fabrication recipes for circuit QED devices - with emphasis on

charge and transmon qubits - can be found in Refs. [151,175,199].

A.1 Wafer cleaning

Process step Details Comments

Wafer cleaning Acetone bath (hotplate, 5 min, 70◦ C),

ultrasonic cleaning (2 min, power 4)

Removes dicing protection resist or silver

glue remnants. Keep wafer under con-

stant acetone flow when switching to the

next basin.

Acetone bath, ultrasonic cleaning (2 min,

power 2)

Keep wafer under constant acetone flow

when switching to the next basin.

Acetone bath, ultrasonic cleaning (2 min,

power 2)

Rinse wafer with isopropanol before

switching to the isopropanol basin.

Isopropanol bath, ultrasonic cleaning

(2 min, power 2)

Rinse wafer with fresh isopropanol.

Dry wafer with N2 Do not scratch with tweezers.

Inspect wafer under optical microscope Repeat cleaning procedure and/or initi-

ate RIE O2 plasma ashing for 60 s to re-

move stubborn dirt/resist remnants.
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A.2 RIE O2 plasma ashing

Process step Details Comments

Sample mount-

ing

Vent the RIE process chamber, place

wafer centrally on silicon coverplate and

evacuate the recipient

Parameters:

O2 flow: 50 sccm

Ar flow: 0 sccm

SF6 flow: 0 sccm

RF power: 100 W

ICP power: 0 W

He backing: 10 sccm

Chamber pressure: 5 mTorr

Strike pressure: 50 mTorr

Ramp rate: 5 mTorr/s

A.3 On-chip bias lines

The following table outlines the steps necessary for the fabrication of bias lines as shown

in Fig. 3.2. The structures defined by the optical lithography process described below,

exhibit a pronounced undercut which is needed for sputtering thin metal films.

Process step Details Comments

Wafer cleaning Clean wafer according to App. A.1

Resist spinning Place wafer centrally on corresponding

chuck of the resist spinner

Initiate vacuum and clean wafer with N2

Program spinner (4000 rpm for 1 min)

Use fresh pipette and place at least 3−4

droplets of AZ 5214E resist centrally on

wafer

The tip of the pipette must not con-

tact anything else except the re-

sist. It is advisable to dry the tip of

the pipette with N2 before use, too.

Closing the resist spinner lid initiates the

program

Using AZ 5214E and 4000 rpm results in

a resist thickness ≈ 1.4µm.

Softbake Bake wafer on hotplate (70 s, 110◦ C)

Flood exposure Turn on MJB3 Photomask Aligner ac-

cording to instruction manual

The UV lamp should be turned on

20 min before the first exposure.

Expose wafer to UV-light without any

photomask (0.1−0.2 s, MJB3 Photomask

Aligner)

continued on next page
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continued from previous page

Process step Details Comments

Reversal bake Bake wafer on hotplate (120 s, 130◦ C) The temperature should be kept con-

stant within ±1◦ C.

Mask exposure Adjust exposure time to obtain an en-

ergy density of 36 mJ/cm2 using the

365 nm UV-metre

Typically the exposure time should be

4− 5 s.

Clean chrome and glass side of opti-

cal mask rinsing with acetone and iso-

propanol; dry mask with N2

Stubborn resist remnants can be re-

moved using a wet cleanroom fabric.

Do not use extensive pressure on the

chromium side to avoid damaging the

coating mechanically.

Follow instruction manual for exposure

processes

Use vacuum contact (High-Precision)

mode and press ’Vakuum Kammer’ but-

ton.

Development Microchemicals AZ 726 MIF developer

(∼ 15 min)

Move basin occasionally. The develop-

ment time can vary by several minutes.

Stop development by placing the wafer

subsequently in two H2O basins (each ∼
1 min)

Dry extensively with N2

Check structure under optical micro-

scope

If the structure is not fully developed, re-

peat developing procedure for additional

short time intervals using fresh developer

and H2O. After successful development,

the chip is ready to be mounted in the

table top sputtering chamber.

Sputtering Place wafer in table top process chamber

and follow instruction manual

sputter 5 nm Cr (Isp = 120 mA, t =

30 s, pAr = 5 · 10−2 mbar)

The Cr layer is used as adhesive layer for

the subsequent Au sputter process.

sputter 25 nm Au (Isp = 15 mA, t =

135 s, pAr = 5 · 10−2 mbar)

Lift-off Acetone bath (hotplate, 15 min, 70◦ C),

ultrasonic cleaning (2 min, power 2)

Repeat process if gold film is not com-

pletely removed. Renew acetone bath if

necessary but keep chip wet when switch-

ing basins.

Isopropanol bath, ultrasonic cleaning

(2 min, power 2)

Dry wafer carefully with N2 and inspect

under optical microscope

Damaged structures can be used for EBL

dose series tests.
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A.4 CPW resonators

The following table comprises the fabrication steps for Nb CPW resonators as discussed in

section 3.2. For circuit QED applications with galvanically coupled flux qubits, we chose

a Nb thickness of 100 nm.

Process step Details Comments

Wafer cleaning Clean wafer according to App. A.1 After mounting up to six substrates

(10 x 6 mm2), the sample holder can be

moved to the niobium sputtering facility.

Sputtering Transfer sample holder from loadlock to

ultra-high vacuum sputtering chamber

The pressure before sputtering should be

1− 3 · 10−9 mbar.

Position sample holder in front of Nb

chimney (rot: 199◦, long: 0◦)

Follow sputtering manual and adjust

process parameters

Process pressure: 2.73 · 10−3 mbar

Ar flow: 10 sccm

Power: 200 W

Ramp: 5 s

Open manual shutter earliest af-

ter 60 s pre-sputtering; sputter rate:

∼ 40 nm/min

The sputter rate may vary over time

and should be checked by reflectometry

methods regularly. After sputtering the

desired thickness, the wafer can be trans-

ferred to the clean room facilities for op-

tical lithography and reactive ion etch-

ing.

Wafer cleaning Clean wafer according to App. A.1

Resist spinning Place wafer centrally on corresponding

chuck of the resist spinner

Initiate vacuum and clean wafer with N2

Program spinner (8000 rpm for 1 min)

Use fresh pipette and place at least 3−4

droplets of AZ 5214E resist centrally on

wafer

The tip of the pipette must not con-

tact anything else except the resist.

Dry the tip of the pipette with N2 before

use, too.

Closing the resist spinner lid initiates the

program

Using AZ 5214E and 8000 rpm results in

a resist thickness < 1.14µm.

Softbake Bake wafer on hotplate (70 s, 110◦ C)

Edge bead re-

moval

Expose wafer to UV-light using spe-

cially designed edge-bead removal struc-

ture (∼ 20 s, MJB3 Photomask Aligner)

This structure protects the resist from

UV-light, except for a 150µm-thick strip

at the edges of the wafer.

continued on next page
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continued from previous page

Process step Details Comments

Development Microchemicals AZ 726 MIF developer

(60 s)

Move basin occasionally.

Stop development by placing the wafer

subsequently in two H2O basins (∼ 1 min

each)

Dry extensively with N2

Mask exposure Adjust exposure time to obtain an en-

ergy density of 36 mJ/cm2 using the

365 nm UV-metre

Typically the exposure time should be

4− 5 s.

Clean chrome and glass side of opti-

cal mask rinsing with acetone and iso-

propanol; dry mask with N2

Stubborn resist remnants can be re-

moved using a wet cleanroom fabric.

Do not use extensive pressure on the

chromium side to avoid damaging the

coating mechanically.

Follow instruction manual for exposure

processes

Use vacuum contact (High-Precision)

mode and press ’Vakuum Kammer’ but-

ton.

Development Microchemicals AZ 726 MIF developer

(85 s)

Move basin occasionally.

Stop development by placing the wafer

subsequently in two H2O basins (∼ 1 min

each)

Dry extensively with N2

Check resonator under optical mi-

croscope intensively

It is of utmost importance, that the cen-

ter strip, the lateral gaps, the coupling

capacitors and the alignment marks for

EBL are well defined. Any particles

and/or resist remnants have to be re-

moved by short ultrasonic pulses (H2O,

power 2) and/or subsequent developing

intervals. After successful development,

the chip is ready to be processed in the

RIE.

RIE physical

etching

Initiate etching procedure according to

App. A.5 (2 min 50 s for 200 nm Nb)

RIE O2 plasma

ashing

Initiate plasma ashing according to

App. A.2 for 2 min

Chip inspection Check resonator under optical micro-

scope intensively

If the niobium is not removed com-

pletely, repeat RIE etching process for

shorter time intervals.

continued on next page
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continued from previous page

Process step Details Comments

Resist stripping Acetone bath (hotplate, 10 min, 70◦ C),

ultrasonic cleaning (2 min, power 4)

Stubborn resist remnant can be removed

using subsequent RIE O2 plasma ashing

for 15− 30 s.

A.5 RIE physical etching

Process step Details Comments

Sample mount-

ing

Vent the RIE process chamber, place

wafer centrally on silicon coverplate and

evacuate the recipient

Parameters:

O2 flow: 0 sccm

Ar flow: 10 sccm

SF6 flow: 20 sccm

RF power: 100 W

ICP power: 50 W

He backing: 10 sccm

Chamber pressure: 15 mTorr

Strike pressure: 30 mTorr

Ramp rate: 5 mTorr/s
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A.6 Electron beam lithography

The fabrication of circuit QED devices with only one or a few qubits patterned in the gap

of a CPW differs from processing an 1-inch wafer with 36 SQUID-qubit devices. With bias

lines, shunt capacitors, microwave antenna and the actual flux quantum circuits, the latter

comprises structures with distinct areas. The following table summarizes the fabrication

steps for defining Josephson junction devices as presented in chapter 4. Special fabrication

steps and parameters necessary for circuit QED devices (i.e. flux qubits coupled to CPW

resonators) are emphasized by a gray color. In general, all Josephson junction devices

discussed in this thesis were fabricated using a 120 x 120µm2 writefield and a magnification

of 650.

Process step Details Comments

Wafer cleaning Clean wafer according to App. A.1 Be careful not to not scratch the wafer

with the tweezers.

Resist spinning Place wafer centrally on corresponding

chuck of the resist spinner

Initiate vacuum and clean wafer with N2

Program spinner (2000 rpm for 2 min)

Use fresh pipette and place at least 6−7

droplets of PMMA/MA 33 % resist cen-

trally on 1-inch wafer (2− 3 droplets for

6 x 10 mm2 wafer)

The tip of the pipette must not con-

tact anything else except the resist.

Dry the tip of the pipette with N2 before

use.

Closing the resist spinner lid initiates the

program

Using PMMA/MA 33 % and 2000 rpm

results in a resist thickness ≈ 680 nm.

Clean back side of 6 x 10 mm2 wafer care-

fully using acetone

To ensure a good thermal contact be-

tween the wafer and the hotplate, resist

remnants sticking to the backside of the

wafer have to be removed.

Baking proce-

dure

Bake wafer on hotplate (10 min, 160◦ C) It is advisable to heat-up the hotplate al-

ready 30 min earlier and start a dummy

bake procedure to ensure a good temper-

ature stability during the actual process.

The temperature should not vary more

than ±0.5◦ C.

Resist spinning Place wafer centrally on corresponding

chuck of the resist spinner

Initiate vacuum and clean wafer with N2

Program spinner (4000 rpm for 2 min)

Use fresh pipette and place at least 4 −
5 droplets of PMMA 950k resist cen-

trally on 1-inch wafer (2 droplets for

6 x 10 mm2 wafer)

Use fresh pipette. The tip of the

pipette must not contact anything

else except the resist. Dry the tip of

the pipette with N2 before use, too.

continued on next page
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continued from previous page

Process step Details Comments

Closing the resist spinner lid initiates the

program

Using PMMA 950k and 4000 rpm results

in a resist thickness ≈ 70 nm.

Clean back side of 6 x 10 mm2 wafer care-

fully using acetone

To ensure a good thermal contact be-

tween the wafer and the hotplate, resist

remnants sticking to the backside of the

wafer have to be removed.

Baking proce-

dure

Bake wafer on hotplate (10 min, 160◦ C) The temperature should not vary more

than ±0.5◦ C. The wafer is now ready

for EBL.

Chip mounting Place wafer centrally on specially de-

signed 1-inch wafer holder and screw

tight holding frame

If the wafer is not in the correct position,

it may break when fasten the screws of

the holding frame.

Place 6 x 10 mm2 wafer on flat holder The edges of the wafer should be parallel

to the edges of the sample holder.

Vent, slide sample holder on laser stage

and evacuate EBL recipient

Preliminary

setup

Push ’HT’ button and set 30 kV gun

voltage (spot size 1)

Reset all global and local 3-point adjust-

ments

Execute ’Find Home Position’ routine

Set writefield (120µm, magnification

650)

Chose SE detector, use the Elphy Plus

software to approach the respective Fara-

day cup (’Faraday Cup (1” holder)’ or

’Faraday Cup (flat holder)’ ) and save

current position under ’Aktueller Fara-

day Cup’

Coarse positions of the different Faraday

cups (FC) are saved within the Elphy

Plus software. The crosshair can be ad-

justed centrally either by using the joy-

stick or by taking an image and adjusting

the stage via the Elphy Plus software.

Measure and write down beam current in

EBL logbook (∼ 27 pA for 30 kV, spot 1)

The beam current is measured executing

the ’Dwell Time Correction’ script.

3-point align-

ment

Go to ’Approach Point’ and use the joy-

stick to find the first alignment mark

Depending on the gun voltage and spot

size, contrast and brightness will differ

strongly and have to be adjusted.

Use the joystick to find the lower left cor-

ner of the 6 x 10 mm2 using a small mag-

nification; carefully approach the first

alignment mark and increase magnifica-

tion

Critical chip regions (e.g. center strip

and lateral gaps) should not be exposed

during alignment.

continued on next page
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Process step Details Comments

Go to maximum magnification and burn

a circular contamination dot (diameter

20 − 30 nm) close to the gold alignment

mark; monitor beam current

A working distance of 6.6 − 6.8 mm is a

good starting point when using the 1-

inch holder. When in focus, the beam

current will drop by 2 % in less than 10 s.

To obtain a circular dot, the focus

and stigmatism have to be adjusted

iteratively by burning several dots

in vicinity to the alignment mark.

Go to maximum magnification and burn

a circular contamination dot (diameter

20−30 nm) close on the silicon alignment

mark; monitor beam current

A working distance of 6.0 − 6.3 mm is a

good starting point when using the flat

holder. When in focus, the beam cur-

rent will drop by 2 % in less than 10 s.

To obtain a circular dot, the focus

and stigmatism have to be adjusted

iteratively by burning several dots

in vicinity to the alignment mark.

Set writefield (120µm, magnification

650) and

Read and adjust working distance (WD);

save center of alignment mark as first U-

and V-coordinate according to mask de-

sign

The focus correction in the ’Adjust UVW

(Global)’ window should be on.

Repeat contamination dot procedure at

two additional distant alignment marks

The WD is only adjusted at the first

alignment mark. The software internally

saves the WD at the other marks and

interpolates linearly between them. Ad-

justing the stigmatism is one of the most

important steps during EBL. Note, that

in contrast to the WD (focus), the stig-

matism is a global setting.

Approach all alignment marks and refine

3-point alignment coordinates if neces-

sary

Use Elphy Plus image scans for coordi-

nate refinement.

Approach all alignment marks and per-

form 10µm line scans; execute ’Thresh-

old algorithm’

If the algorithm (’Align Write Field’

for sputtered and ’Niob’ for etched

alignment marks) is not able to detect

the center of a mark, adjust contrast,

brightness, threshold levels and/or width

range.

Exposure Prepare and check CAD file It is of utmost importance to check

the correct definition and order of the

auto alignment marks (for each align-

ment mark: first U-direction scan, then

V-direction scan). Also check the in-file

dose factor and the order of the exposed

polygons. Best results were obtained

when exposing the Josephson junctions

of the SQUID and qubit layer at the

end. Furthermore, the working area

edges should be integer multiples of the

writefield size.

continued on next page
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Process step Details Comments

Prepare and check position list (PL) Double-check correct coordinates, se-

quence and dose factor (DF) of exposed

layers. For large-area structures (e.g.

microwave antenna) switch to spot size

3 within the position list and perform a

dwell time correction.

Execute an auto alignment scan (layer

61, DF 0.02) from the PL

Check if all alignment marks were de-

tected correctly and save ’Zoom’, ’Shift’

and ’Rotation’ values displayed in the

’Align Writefield’ window.

Go to ’Aktueller Faraday Cup’ and per-

form dwell time correction

Check the area dwell time and the stan-

dard dose (200µC/cm2) using the ’Cal-

culator’ in the ’Exposure’ window.

Exposure parameters:

Microwave antenna and T-structure:

300µC/cm2

These structures are written using a

larger aperture (spot size 3).

Shunt capacitor groundplane:

300µC/cm2

Shunt capacitor and aluminum bias

lines: 360− 460µC/cm2

SQUID and qubit: 500− 560µC/cm2

Qubit: 660− 760µC/cm2 The exposure doses are higher due to

the missing proximity effect of the dc-

SQUID.

Step size: 5.5 nm↔ 3 pixel The polygons in the CAD file have to be

an integer multiple of the step size.

Area mode: meander In this mode, the ’Flyback factor’ is not

used.

Settling time: 0.1 ms The settling time is the waiting period

at the beginning of each element. An op-

timum settling time depends on the or-

der and distance of different elements. If

the settling time is too short, the beam

blanker opens already although the de-

flection unit has not yet positioned the

electron beam at the desired position.

continued on next page
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Process step Details Comments

Development AllResist AR-P 600-56 developer

(2 min 20 s)

Stop development by placing the wafer

subsequently in two Isopropanol basins

(45 s each)

Chip inspection Check wafer under optical microscope in-

tensively

Sample mount

for electron

beam evapora-

tion

Mount wafer in 1-inch sample holder The 6 x 10 mm2 wafer is fastened by a

small droplet of silver glue to a 1-inch

copper plate. After 10 min the silver glue

dried and the copper plate can be in-

serted in the 1-inch sample holder. In

general, the wafer hast be aligned ac-

cording to the tilt direction of the evap-

oration sample stage. The wafer is now

ready for aluminum shadow evaporation.

A.7 Shadow evaporation

The following table comprises the details of the shadow evaporation procedure established

during this thesis. Images of the relevant instruments and components can be found in

Fig. A.1.

Process step Details Comments

Sample mount-

ing

Close large gate valve to UHV process

chamber

The magnetic transfer arm must be re-

treated completely in order to be able to

close the gate valve (micro switch).

Close gate valve of load lock (LL) turbo-

molecular pump (TMP)

Vent LL chamber (N2), open fast entry

air lock door and mount sample on mag-

netic transfer arm; close air lock door

Pump down

procedure

Use scroll pump and open correspond-

ing valve by hand; wait until LL pressure

reaches ∼ 5 · 10−2 mbar

Close scroll valve and open gate valve of

LL TMP; wait until LL pressure reaches

∼ 1 · 10−7 mbar (∼ 1 h)

If the load lock pressure is not dropping

below ∼ 1 · 10−6 mbar, close correspond-

ing valves and vent the load lock cham-

ber. Use a wet isopropanol fabric and/or

N2 to clean the rubber o-ring. Repeat

the pump down procedure.

continued on next page
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Process step Details Comments

Sample transfer Open gate valve to UHV chamber

Transfer sample to manipulator accord-

ing to instruction manual

Retreat magnetic transfer arm and close

gate vale of UHV chamber

The sample is now ready for evaporation

of aluminum.

Preliminaries Turn on high-pressure cooling water cir-

culation and compressor

Turn on high-voltage power supply,

evaporation controller, rate controller,

voltage supply for manipulator and PC

Check distance of oscillating crystal used

for aluminum processes

The second oscillating crystal is used to

determine the film thickness when evap-

orating gold.

Tilt manipulator (±4267 ≈ ±16◦) using

IP-CommV2 software

The sign of the tilt depends on the

wafer alignment on the sample holder.

In general, the finger-like structure of

the Josephson junctions (see Fig. 3.5) is

evaporated as top-layer.

Use process 4 and enter desired final

thickness of bottom layer using LabView

(’Set Process&FinalThickness.vi’ )

The aggregated total thickness of the

previous user can be reset by pressing

’Reset’ and ’F1’ on the rate controller.

Bottom layer thickness:

40 nm = 0.4 kÅ Suitable for SQUID-qubit devices with

30 nm-thick gold bias lines and for non-

galvanically coupled flux qubits.

50 nm = 0.5 kÅ Suitable for galvanically coupled flux

qubits.

Double-check crucial evaporation param-

eters: density, Z-ratio, final thickness

and evaporation rate (12 Å/s)

Chose sufficiently filled aluminum liner The liners that have been filled recently

and can be used for evaporation are

listed in the logbook.

Turn on scroll pump, wait until ready

and use scroll as backing pump of the

UHV’s chamber TMP

Check and equilibrate the capacitive

pressure gauge

Use the Maxi Gauge for electronic (chan-

nel 6) or the respective screw driver

for manual equilibration. The mea-

sured pressure should vary between

±1 · 10−5mbar.

continued on next page
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Process step Details Comments

Set VAT adaptive pressure controller

’Setpoint 3’

Check settings of mass flow controller

(’SP1’, 3 sccm)

Equilibrate VAT controller (press ’Zero’

for 5 s)

Evaporation Start and execute LabView script (’V

2.4.0.vi’, measuring mode: ’Inficon’ )

Write down all parameters in evapora-

tion log

Turn on high-voltage using the evapora-

tion controller (8 kV)

All interlocks (e.g. cooling water, vac-

uum, liner) have to be enabled in order

to be able to turn on the high-voltage.

Press ’Start Process’ in the LabView

front panel; monitor emission current on

evaporation controller (∼ 430− 480 mA

during actual evaporation)

The shutter opens automatically when

the desired rate is stabilized within

±20% for more than 5 s. After the de-

sired final thickness is reached, the shut-

ter closes and the emission current is re-

duced automatically.

Press ’Stop’ in LabView panel and turn

of high-voltage on evaporation controller

Oxidation Bring manipulator in horizontal position

(IP-CommV2 software, 0)

Switch to measuring mode: ’Oxidation’

enter desired L-product (0.275 mbar s) The L-product is defined as: L = pO2 · t,
where pO2 is the partial O2 pressure and

t the oxidation time.

Execute LabView script and enter file-

name

Press ’On’ on mass flow controller and

’Position Mode’ on VAT pressure con-

troller simultaneously; start stop-watch

for additional time reference

The gate valve in front of the large TMP

is in a half-open position. With the con-

stant O2 flow of 3 sccm, an constant oxi-

dation pressure of 2 · 10−4 mbar is estab-

lished. The status of the oxidation pro-

cess is visualized by LabView. Typically,

L = 0.275 mbar s corresponds to an oxi-

dation time of t ≈ 23 min.

continued on next page
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Process step Details Comments

Stop oxidation by pressing ’Off’ on mass

flow controller and ’Open’ on VAT pres-

sure controller

Within a few seconds, the pressure in the

UHV chamber (Maxi Gauge, channel 2)

drops below 5 · 10−7 mbar.

Evaporation Tilt manipulator (bottom layer:

±4267 → top layer: ∓4267) using

IP-CommV2 software

Use process 4 and enter desired final

thickness of top layer using LabView

(’Set Process&FinalThickness.vi’ )

The aggregated total thickness of the

previous evaporation is reset by ’F1’ on

the rate controller.

Top layer thickness:

50 nm = 0.5 kÅ Suitable for SQUID-qubit devices with

30 nm-thick gold bias lines and for non-

galvanically coupled flux qubits.

80 nm = 0.8 kÅ Suitable for galvanically coupled flux

qubits.

Execute LabView script (’V 2.4.0.vi’,

measuring mode: ’Inficon’ )

Turn on high-voltage using the evapora-

tion controller (8 kV)

Press ’Start Process’ in the LabView

front panel; monitor emission current on

evaporation controller (∼ 430− 480 mA

during actual evaporation)

After the desired final thickness is

reached, the shutter closes and the emis-

sion current is reduced automatically.

Retreat sample from manipulator ac-

cording to instruction manual

To close the gate vale to the UHV cham-

ber, the magnetic transfer arm has to be

retreated completely (micro switch).

Switch back to diaphragm pump as

backing pump of the UHV’s cham-

ber TMP

The scroll pump is used for evacuating

the LL after the sample is retreated.

Close gate valve of load lock LL TMP

Vent LL chamber (N2), open fast entry

air lock door and retreat sample; close

air lock door and use scroll to evacuate

LL chamber (∼ 5 · 10−2 mbar)

Close scroll valve and open gate valve of

LL TMP; shutdown scroll pump

After 15 min, turn off compressor and

high-pressure cooling water circulation

except for large TMP

continued on next page



A Fabrication recipes & electron beam evaporator details 117

continued from previous page

Process step Details Comments

Logbook Write down aggregated thickness of both

evaporation processes using the LabView

log files

The aluminum liner should be switched

after evaporation of a total thickness of

20 kÅ. The sample is further processed

in the cleanroom.

Resist stripping Acetone bath (hotplate, 30 − 45 min,

70◦ C), ultrasonic cleaning (4 min,

power 2)

Repeat process if aluminum film is not

completely removed. After the alu-

minum is removed completely, switch

to a clean acetone basin (hotplate,

10 min, 70◦ C). Keep the wafer con-

stantly wet when switching basins.

Isopropanol bath (hotplate, 5 min,

70◦ C), ultrasonic cleaning (2 min,

power 2)

Dicing 1-inch wafer can be diced using the man-

ual wafer scratcher and the dicing tool
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A.8 Wafer specifications

Device Details

SQUID-qubit devices Manufacturer: CrysTec

1-inch wafer with flat

Orientation: (100)

Thickness: 525µm

Specific resistance: 1− 20 Ωcm

Dopant: Bor (p-type)

Oxide: 50 nm (thermally oxidized)

Circuit QED devices & CPW resonators Manufacturer: CrysTec

4-inch wafer diced into 6 x 10 mm2 wafer

Orientation: (100)

Thickness: 525µm

Specific resistance: > 3000 Ωcm

Dopant: none (n-type)

Oxide: 50 nm (thermally oxidized)

A.9 Electron beam evaporator

Figure A.1 shows images of the electron beam evaporation (EVAP) facility and its com-

ponents. This thin film deposition system (see Fig. A.1 a) installed by T. Brenniger [169]

was used for the production of all Josephson junction devices presented in this thesis. It

consists of a large process UHV chamber (A) evacuated by a turbomolecular pump (TMP)

with a pumping speed of 1000 l/s (D; see also Fig. A.1 d). The process chamber is equipped

with a 5 kW electron beam evaporator (B) from the company MBE-Komponenten. In con-

trast to the old evaporation facility [169], the distance between the evaporation source and

substrate was increased by 100 % to 65 cm. Therefore, backside cooling of the sample to

avoid a collapse of the sensitive resist bridges owing to a high thermal load can be omitted.

A pneumatically activated gate valve separates the process chamber from the load lock

(C). The load lock is equipped with a TMP (pumping speed 260 l/s; not shown in this pic-

ture) and can be evacuated to a pressure of 1 · 10−7 mbar within 1 h. A magnetic transfer

arm (E) with a specially designed sample holder (see Fig. A.1 b) allows an easy transfer

of the sample from the load lock to the tiltable manipulator (see Fig. A.1 c) installed in

the process chamber.

Both TMP’s use diaphragm pumps as backing pumps (F and G; see Fig. A.1 d). During

the oxidation of the Josephson tunnel junctions, the oil-free scroll pump (H) is used as

backing pump of the process chamber’s TMP. Using a bypass, the scroll pump is also used

to evacuate the load lock chamber to a sufficiently low pressure for the load lock’s TMP. A

capacitive pressure gauge (I) in front of the adaptive gate valve (K) is used for measuring

the O2 pressure during the formation of the Josephson tunnel barriers. Figure A.1 e shows

a part of the pressure control rack. The adaptive gate valve is connected to a VAT pressure

controller (L). In combination with a mass flow controller (M), the oxygen pressure in the

http://www.crystec.de/crystec-d.html
http://www.crystec.de/crystec-d.html
http://www.mbe-components.com/products/products.html
http://www.vatvalve.com/publicCatalog/catGlobal.aspx
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process chamber can be controlled very precisely in a range 1 · 10−4 mbar− 5 · 10−2 mbar.

All pressure gauges are connected to a Pfeiffer Maxi Gauge vacuum measurement and con-

trol unit (O). The evaporation unit is controlled by an FerroTec evaporation controller (P)

and an Inficon IC5 thin film deposition controller (Q) shown in Fig. A.1 f. A high-voltage

power supply (R) and a filament power supply (not shown) complete the evaporation unit.

The manipulator stepping motors and the IC5 are controlled via a LabView interface (T).

The electron beam is created by heating a tungsten filament coil. For our fabrication

process, we use an acceleration voltage of 8 kV. A permanent magnet forces the electrons

on a 270◦ circle while four magnet coils are used for focusing the electron beam in the

crucible. For the fabrication of Josephson junction devices, high purity (5N) aluminum

is used. A typical process diagram is shown in Fig. A.2 a. First, the emission current Ie

is ramped to 30 % of its maximum value (Ie,max = 500 mA) and kept constant for 30 s in

order to heat up the aluminum. Then, Ie is further increased to ≈ 85 %− 90 % of Ie,max.

When the rate is stabilized around 12 Å/s by the Inficons IC5 PID controller, the shutter

opens. The evaporation rate and aggregated film thickness is determined by measuring

the mass-dependent resonance frequency (∼ 6 MHz) of a quartz crystal. After the desired
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Figure A.1: Images of the aluminum evaporation system. (a) Overview image. The most

important elements are marked by capital letters: (A) UHV process chamber. (B) Evaporation

unit. (C) Load lock with fast entry air lock door. (D) Process chamber’s TMP. (E) Magnetic

transfer arm system. (b) Image of the magnetic transfer arm’s sample holder. (c) Image of

the revolvable and tiltable manipulator inside the UHV process chamber (maximum rotation

angle: ±180◦; maximum tilt angle: ±90◦). (d) Magnified view of the pumping system. (F)

and (G) Diaphragm backing pumps. (H) Scroll pump. (I) Capacitive pressure gauge used

during oxidation processes. (K) Adaptive gate valve. (e) Part of the pressure control rack. (L)

Pressure controller (controls the adaptive gate valve). (O) Maxi Gauge vacuum measurement

and control unit. (M) Mass flow controller. (f) Image of the evaporation control rack. (P)

Evaporation controller. (R) High-voltage supply. (Q) Rate controller. (T) LabView interface.

http://www.pfeiffer-vacuum.com/home/index.action
http://www.ferrotec.com
http://www.inficon.com/en/index.html
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thickness is evaporated, the shutter closes automatically and Ie is reduced in two steps to

zero.

The oxidation process (see Fig. A.2 b) is initiated promptly after evaporation of the Joseph-

son junction’s bottom layer. A precise equilibration of the VAT pressure controller and

the capacitive pressure gauge via the Maxi Gauge (see Fig. A.1 d and e) has to be accom-

plished prior to evaporation of the first aluminum layer. While the oxidation is started and

stopped manually, the oxidation progress is monitored using a LabView interface. In order

to obtain Josephson junctions with a high critical current density jc ∼ 1.0− 2.5 kA/cm2,

we oxidize the bottom aluminum layer 22 − 23 min at pO2 ≈ 2 · 10−4 mbar which corre-

sponds to a L-product of 0.264− 0.276 mbar · s.
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Figure A.2: Evaporation and oxidation process diagrams. (a) Evaporation diagram showing

typical evaporation parameters for pressure (pUHV, green), emission current (Ie, blue) and

evaporation rate (red) as a function of time. The dashed gray lines indicate: (1) melting

point of aluminum; Ie ≈ 260 − 280 mA. (2) shutter opens. (3) shutter closes. (b) Oxidation

pressure pO2 as a function of time. The oxidation can be stopped within a few seconds by

fully opening the adaptive gate valve (K, see Fig. A.1 d) in front of the process chamber’s

TMP. Inset: complete process diagram. The red solid line is a a fit to the data yielding

pO2 = 1.96 · 10−4 mbar.

A.10 Reproducibility of critical current densities

One of the main goals during this thesis was to establish a reliable fabrication processes for

Josephson junction devices in the new evaporation system. In contrast to other types of

qubits, large critical current densities and small Josephson junction areas are a prerequisite

for flux qubits with energy gaps ∆ � kBT ≈ 1 GHz at T = 50 mK (see section 2.2.2).

While the areas of Josephson junctions can be reliably fabricated by EBL within 6 %−8 %

margins, the oxide layer thickness is more difficult to control. Figure A.3 a shows the

measured critical current densities of our dc-SQUIDs as a function of L = pO2 · t. During

this thesis, various designs of Josephson junction devices were realized. In the beginning of

junction optimization t ≈ 18 min was sufficient to form Josephson junctions with jc ≈ 1−
2 kA/cm2. Very abruptly, the oxidation time had to be increased by more than 4 min to

obtain similar values for jc. Unfortunately, we can give no final conclusion concerning

the circumstances which led to this sudden, large variation in L. The expected power-law

dependence of jc(L) can not be inferred from Fig. A.3 a. Based on a good estimate for L

from the ’old’ evaporation facility, the pressure-time-product had to be varied only slightly.

Figure A.3 shows the linear relation between 1/Rn and the measured switching current of
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our dc-SQUIDs. A numerical fit to the Ambegaokar-Baratoff relation given in Eq. (2.7)

yields Vg = (352 ± 11)µV in agreement with the expected value of VBCS = 2∆s/e =

3.52kBTc/e = 364µV. Although an increase of Vg and Tc was observed for 5− 30 nm thick

aluminum films [172, 266], we observe a gap voltage close to the bulk value for our 90 nm

thick aluminum junctions indicating high-quality thin films.

The data depicted in Fig. A.3 indicates a good control of crucial fabrication parameters for

realizing Josephson junction devices. At present, the yield of flux qubits with an intended

∆ > 2 GHz embedded in CPW resonators – all in all 16 devices – is 100%.
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Figure A.3: Comprehensive overview of junction properties. (a) Experimentally determined

critical current densities jc of our dc-SQUIDs as a function of the pressure-time product L

(error bars: standard deviation). The symbols represent different layouts (squares: no shunt

capacitors, see Fig. 3.2 a for layout and Fig. 4.3 a for sample image; circles: modified layout

(not shown) with additional shunt capacitors; triangles: shunt capacitors and microwave

antenna, see Fig. 3.2 a for layout and Fig. 3.9 d for sample image). The color of the symbols

indicates different fabrication runs and the dashed gray box encloses the fabrication runs

including flux qubits with ∆ > 2 GHz. (b) Measured inverse normal resistance R−1
n as a

function of the maximum switching current Isw for various dc-SQUIDs. The red solid line is a

numerical fit yielding Vg = (352 ± 11)µV. The color and symbol code is the same as in (a).



122 A.10 Reproducibility of critical current densities



Bibliography

[1] Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1,

251–253 (1962).

[2] Anderson, P. & Rowell, J. Probable Observation of the Josephson Superconducting

Tunneling Effect. Phys. Rev. Lett. 10, 230–232 (1963).

[3] Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radi-

ation theories with application to the beam maser. Proc. IEEE 51, 89 (1963).

[4] Eberly, J. H., Narozhny, N. B. & Sanchez-Mondragon, J. J. Periodic Spontaneous

Collapse and Revival in a Simple Quantum Model. Phys. Rev. Lett. 44, 1323–1326

(1980).

[5] Rempe, G., Walther, H. & Klein, N. Observation of quantum collapse and revival

in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987).

[6] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity

quantum electrodynamics for superconducting electrical circuits: An architecture

for quantum computation. Phys. Rev. A 69, 062320 (2004).

[7] Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit

using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

[8] Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling

regime. Nature Physics 6, 772–776 (2010).

[9] Feynman, R. P. Simulating physics with computers. Int. J. Theo. Phys. 21, 467–488

(1982).

[10] Benioff, P. The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys.

22, 563–591 (1980).

[11] Benioff, P. Quantum mechanical hamiltonian models of turing machines. J. Stat.

Phys. 29, 515–546 (1982).

[12] Albert, D. Z. On quantum-mechanical automata. Phys. Lett. A 98, 249 – 252 (1983).

123

http://dx.doi.org/doi:10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1103/PhysRevLett.10.230
http://dx.doi.org/10.1103/PhysRevLett.10.230
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevLett.44.1323
http://dx.doi.org/10.1103/PhysRevLett.44.1323
http://dx.doi.org/10.1103/PhysRevLett.58.353
http://dx.doi.org/10.1103/PhysRevLett.58.353
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/DOI: 10.1007/BF02650179
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01342185
http://dx.doi.org/10.1016/0375-9601(83)90863-0


124 BIBLIOGRAPHY

[13] Deutsch, D. Quantum Theory, the Church-Turing principle and the universal quan-

tum computer. Proc. R. Soc. London, Ser. A 400, 97 (1985).

[14] Deutsch, D. & Jozsa, R. Rapid Solution of Problems by Quantum Computation.

Proc. R. Soc. London A 439, 553–558 (1992).

[15] Shor, P. W. Algorithms for Quantum Computation: Discrete Logarithms and Fac-

toring. In Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on the

Foundations of Computer Science, 124–134 (IEEE Computer Society, Los Alamitos,

1994).

[16] Grover, L. K. A fast quantum mechanical algorithm for database search. In STOC

’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-

ing, 212–219 (ACM, New York, NY, USA, 1996).

[17] Grover, L. K. Quantum Mechanics Helps in Searching for a Needle in a Haystack.

Phys. Rev. Lett. 79, 325–328 (1997).

[18] Simon, D. R. On the Power of Quantum Computation. SIAM J. Comp. 26, 1474–

1483 (1997).

[19] Lloyd, S. Universal Quantum Simulators. Science 273, 1073–1078 (1996).

[20] Bennett, C. & Brassard, G. Quantum cryptography: Public key distribution and coin

tossing. In Proceedings of IEEE International Conference on Computers, Systems,

and Signal Processing, 175–179 (1984).

[21] Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67,

661–663 (1991).

[22] Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experi-

mental realization of a quantum algorithm. Nature 393, 143–146 (1998).

[23] Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring

algorithm using nuclear magnetic resonance. Nature (London) 414, 883–887 (2001).

[24] Cirac, J. I. & Zoller, P. Quantum Computations with Cold Trapped Ions. Phys.

Rev. Lett. 74, 4091–4094 (1995).

[25] Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum State Transfer and

Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev.

Lett. 78, 3221–3224 (1997).

[26] Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404,

256–259 (2000).

[27] Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of

microtraps. Nature 404, 579–581 (2000).

[28] Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single

trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1109/SFCS.1994.365700 
http://dx.doi.org/10.1109/SFCS.1994.365700 
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1038/30181
http://dx.doi.org/10.1038/30181
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281


BIBLIOGRAPHY 125

[29] Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579

(1997).

[30] Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observa-

tion of Three-Photon Greenberger-Horne-Zeilinger Entanglement. Phys. Rev. Lett.

82, 1345–1349 (1999).

[31] Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys.

71, S288–S297 (1999).

[32] Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176

(2005).

[33] Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The

Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons. Science

287, 1447–1453 (2000).

[34] Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement

with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

[35] Monroe, C. Quantum information processing with atoms and photons. Nature 416,

238–246 (2002).

[36] Mabuchi, H. & Doherty, A. C. Cavity Quantum Electrodynamics: Coherence in

Context. Science 298, 1372–1377 (2002).

[37] Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity Quantum Elec-

trodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

[38] Haroche, S. & Raimond, J.-M. Exploring the Quantum (Oxford University Press

Inc., New York, 2006).

[39] DiVincenzo, D. P. The Physical Implementation of Quantum Computation. Fortschr.

Phys. 48, 771 (2000).

[40] Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137

(1998).

[41] Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys.

Rev. A 57, 120–126 (1998).

[42] Kroutvar, M. et al. Optically programmable electron spin memory using semicon-

ductor quantum dots. Nature 432, 81–84 (2004).

[43] Petta, J. R. et al. Coherent Manipulation of Coupled Electron Spins in Semiconduc-

tor Quantum Dots. Science 309, 2180–2184 (2005).

[44] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K.

Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

[45] Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of Co-

herent Oscillations in a Single Electron Spin. Phys. Rev. Lett. 92, 076401 (2004).

http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.82.1345
http://dx.doi.org/10.1103/PhysRevLett.82.1345
http://dx.doi.org/10.1103/RevModPhys.71.S288
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1126/science.287.5457.1447
http://dx.doi.org/10.1126/science.287.5457.1447
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1038/416238a
http://dx.doi.org/10.1126/science.1078446
http://dx.doi.org/10.1126/science.1078446
http://dx.doi.org/10.1088/0034-4885/69/5/R02
http://dx.doi.org/10.1088/0034-4885/69/5/R02
http://www.amazon.com/Exploring-Quantum-Cavities-Photons-Graduate/dp/0198509146
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1103/PhysRevLett.92.076401


126 BIBLIOGRAPHY

[46] Childress, L. et al. Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits

in Diamond. Science 314, 281–285 (2006).

[47] Makhlin, Yu., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-

junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

[48] Devoret, M. H., Wallraff, A. & Martinis, J. M. Superconducting qubits: A short

review (2004). ArXiv:cond-mat/0411174v1.

[49] Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042

(2008).

[50] Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

[51] Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature

404, 247–255 (2000).

[52] Likharev, K. K. Dynamics of Josephson Junctions and Circuits (Taylor & Francis

Ltd., Gordon and Breah Publishers, 1986).

[53] Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

[54] Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of Energy-Level Splitting

between Two Macroscopic Quantum States of Charge Coherently Superposed by

Josephson Coupling. Phys. Rev. Lett. 79, 2328–2331 (1997).

[55] Shnirman, A., Schön, G. & Hermon, Z. Quantum Manipulations of Small Josephson

Junctions. Phys. Rev. Lett. 79, 2371–2374 (1997).

[56] Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence

with a single Cooper pair. Physica Scripta T 76, 165–170 (1998).

[57] Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic

quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

[58] Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Rabi Oscillations in a Josephson-Junction

Charge Two-Level System. Phys. Rev. Lett. 87, 246601 (2001).

[59] Vion, D. et al. Manipulating the Quantum State of an Electrical Circuit. Science

296, 886–889 (2002).

[60] Siddiqi, I. et al. Dispersive measurements of superconducting qubit coherence with

a fast latching readout. Phys. Rev. B 73, 054510 (2006).

[61] Metcalfe, M. et al. Measuring the decoherence of a quantronium qubit with the

cavity bifurcation amplifier. Phys. Rev. B 76, 174516 (2007).

[62] Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: Single

Cooper-Pair Circuit Free of Charge Offsets. Science 326, 113–116 (2009).

[63] Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60,

15398–15413 (1999).

http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://arxiv.org/abs/cond-mat/0411174
http://arxiv.org/abs/cond-mat/0411174
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/35005001
http://www.amazon.com/Dynamics-Josephson-Junctions-Circuits-Likharev/dp/2881240429
http://www.amazon.com/Introduction-Superconductivity-Second-Dover-Physics/dp/0486435032
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevLett.87.246601
http://dx.doi.org/10.1103/PhysRevLett.87.246601
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1103/PhysRevB.73.054510
http://dx.doi.org/10.1103/PhysRevB.73.054510
http://dx.doi.org/10.1103/PhysRevB.76.174516
http://dx.doi.org/10.1103/PhysRevB.76.174516
http://dx.doi.org/10.1126/science.1175552
http://dx.doi.org/10.1126/science.1175552
http://dx.doi.org/10.1103/PhysRevB.60.15398


BIBLIOGRAPHY 127

[64] Mooij, J. E. et al. Josephson Persistent-Current Qubit. Science 285, 1036–1039

(1999).

[65] Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum

superposition of distinct macroscopic states. Nature (London) 406, 43–46 (2000).

[66] van der Wal, C. H. et al. Quantum Superposition of Macroscopic Persistent-Current

States. Science 290, 773–777 (2000).

[67] Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent Quantum

Dynamics of a Superconducting Flux Qubit. Science 299, 1869–1871 (2003).

[68] Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box.

Phys. Rev. A 76, 042319 (2007).

[69] Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge

qubits. Phys. Rev. B 77, 180502 (2008).

[70] Houck, A. A. et al. Controlling the Spontaneous Emission of a Superconducting

Transmon Qubit. Phys. Rev. Lett. 101, 080502 (2008).

[71] Martinis, J. M., Devoret, M. H. & Clarke, J. Energy-Level Quantization in the

Zero-Voltage State of a Current-Biased Josephson Junction. Phys. Rev. Lett. 55,

1543–1546 (1985).

[72] Clarke, J., Cleland, A. N., Devoret, M. H., Esteve, D. & Martinis, J. M. Quantum

Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction.

Science 239, 992–997 (1988).

[73] Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi Oscillations in a Large

Josephson-Junction Qubit. Phys. Rev. Lett. 89, 117901 (2002).

[74] Yu, Y., Han, S., Chu, X., Chu, S.-I. & Wang, Z. Coherent Temporal Oscillations of

Macroscopic Quantum States in a Josephson Junction. Science 296, 889–892 (2002).

[75] Martinis, J. Superconducting phase qubits. Quantum Information Processing 8,

81–103 (2009).

[76] Paladino, E., Faoro, L., Falci, G. & Fazio, R. Decoherence and 1/f Noise in Joseph-

son Qubits. Phys. Rev. Lett. 88, 228304 (2002).

[77] Martinis, J. M., Nam, S., Aumentado, J., Lang, K. M. & Urbina, C. Decoherence of

a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510 (2003).

[78] Simmonds, R. W. et al. Decoherence in Josephson Phase Qubits from Junction

Resonators. Phys. Rev. Lett. 93, 077003 (2004).

[79] Astafiev, O., Pashkin, Y. A., Nakamura, Y., Yamamoto, T. & Tsai, J. S. Quantum

Noise in the Josephson Charge Qubit. Phys. Rev. Lett. 93, 267007 (2004).

[80] Van Harlingen, D. J. et al. Decoherence in Josephson-junction qubits due to critical-

current fluctuations. Phys. Rev. B 70, 064517 (2004).

http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1126/science.1081045
http://dx.doi.org/10.1126/science.1081045
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1126/science.1069452
http://dx.doi.org/10.1126/science.1069452
http://dx.doi.org/10.1007/s11128-009-0105-1
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevB.67.094510
http://dx.doi.org/10.1103/PhysRevB.67.094510
http://dx.doi.org/10.1103/PhysRevLett.93.077003
http://dx.doi.org/10.1103/PhysRevLett.93.077003
http://dx.doi.org/10.1103/PhysRevLett.93.267007
http://dx.doi.org/10.1103/PhysRevLett.93.267007
http://dx.doi.org/10.1103/PhysRevB.70.064517
http://dx.doi.org/10.1103/PhysRevB.70.064517


128 BIBLIOGRAPHY

[81] Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev.

B 72, 134519 (2005).

[82] Bertet, P. et al. Dephasing of a Superconducting Qubit Induced by Photon Noise.

Phys. Rev. Lett. 95, 257002 (2005).

[83] Martinis, J. M. et al. Decoherence in Josephson Qubits from Dielectric Loss. Phys.

Rev. Lett. 95, 210503 (2005).

[84] Yoshihara, F., Harrabi, K., Niskanen, A. O., Nakamura, Y. & Tsai, J. S. Decoherence

of Flux Qubits due to 1/f Flux Noise. Phys. Rev. Lett. 97, 167001 (2006).

[85] Kakuyanagi, K. et al. Dephasing of a Superconducting Flux Qubit. Phys. Rev. Lett.

98, 047004 (2007).

[86] Koch, R. H., DiVincenzo, D. P. & Clarke, J. Model for 1/f Flux Noise in SQUIDs

and Qubits. Phys. Rev. Lett. 98, 267003 (2007).

[87] Deppe, F. et al. Phase coherent dynamics of a superconducting flux qubit with

capacitive bias readout. Phys. Rev. B 76, 214503 (2007).

[88] Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of Single Atoms in Cavity QED.

Phys. Rev. Lett. 83, 4987–4990 (1999).

[89] Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

[90] Rauschenbeutel, A. et al. Step-by-Step Engineered Multiparticle Entanglement. Sci-

ence 288, 2024–2028 (2000).

[91] Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon

in a cavity. Nature 446, 297–300 (2007).

[92] Painter, O. et al. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science

284, 1819–1821 (1999).

[93] Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Fine-tuned high-Q photonic-crystal

nanocavity. Opt. Express 13, 1202–1214 (2005).

[94] Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Laser oscillation in a

strongly coupled single-quantum-dot-nanocavity system. Nature Physics 6, 279–283

(2010).

[95] Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Physica

Scripta T 76, 127–137 (1998).

[96] Meschede, D., Walther, H. & Müller, G. One-Atom Maser. Phys. Rev. Lett. 54,

551–554 (1985).

[97] Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting

for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

[98] Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor

microcavity system. Nature 432, 197–200 (2004).

http://dx.doi.org/10.1103/PhysRevB.72.134519
http://dx.doi.org/10.1103/PhysRevLett.95.257002
http://dx.doi.org/10.1103/PhysRevLett.95.210503
http://dx.doi.org/10.1103/PhysRevLett.97.167001
http://dx.doi.org/10.1103/PhysRevLett.97.167001
http://dx.doi.org/10.1103/PhysRevLett.98.047004
http://dx.doi.org/10.1103/PhysRevLett.98.267003
http://dx.doi.org/10.1103/PhysRevLett.98.267003
http://dx.doi.org/10.1103/PhysRevB.76.214503
http://dx.doi.org/10.1103/PhysRevB.76.214503
http://dx.doi.org/10.1103/PhysRevLett.83.4987
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1126/science.288.5473.2024
http://dx.doi.org/10.1038/nature05589
http://dx.doi.org/10.1038/nature05589
http://dx.doi.org/10.1126/science.284.5421.1819
http://dx.doi.org/10.1364/OPEX.13.001202
http://dx.doi.org/10.1364/OPEX.13.001202
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/
http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1103/PhysRevLett.68.1132
http://dx.doi.org/10.1103/PhysRevLett.68.1132
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969


BIBLIOGRAPHY 129

[99] Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic

crystal nanocavity. Nature 432, 200–2003 (2004).

[100] Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscil-

lator. Nature 431, 159–162 (2004).

[101] Wallraff, A. et al. Approaching Unit Visibility for Control of a Superconducting

Qubit with Dispersive Readout. Phys. Rev. Lett. 95, 060501 (2005).

[102] Schuster, D. I. et al. ac Stark Shift and Dephasing of a Superconducting Qubit

Strongly Coupled to a Cavity Field. Phys. Rev. Lett. 94, 123602 (2005).

[103] Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement-induced

dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

[104] Schuster, D. I. et al. Resolving photon number states in a superconducting circuit.

Nature 445, 515–518 (2007).

[105] Steffen, M. et al. State Tomography of Capacitively Shunted Phase Qubits with

High Fidelity. Phys. Rev. Lett. 97, 050502 (2006).

[106] Steffen, M. et al. Measurement of the Entanglement of Two Superconducting Qubits

via State Tomography. Science 313, 1423–1425 (2006).

[107] Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449,

328–331 (2007).

[108] Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449,

443–447 (2007).

[109] Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage

and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442

(2007).

[110] Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit.

Nature 454, 310–314 (2008).

[111] Wang, H. et al. Measurement of the Decay of Fock States in a Superconducting

Quantum Circuit. Phys. Rev. Lett. 101, 240401 (2008).

[112] Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting

resonator. Nature 459, 546–549 (2009).

[113] Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

[114] Fink, J. et al. Climbing the Jaynes-Cummings ladder and observing its
√
n nonlin-

earity in a cavity QED system. Nature 454, 315–318 (2008).

[115] Fink, J. M. et al. Dressed Collective Qubit States and the Tavis-Cummings Model

in Circuit QED. Phys. Rev. Lett. 103, 083601 (2009).

[116] Bishop, L. et al. Nonlinear response of the vacuum Rabi resonance. Nature Physics

5, 105–109 (2008).

http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1103/PhysRevLett.95.060501
http://dx.doi.org/10.1103/PhysRevLett.95.060501
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1103/PhysRevLett.97.050502
http://dx.doi.org/10.1103/PhysRevLett.97.050502
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1103/PhysRevLett.101.240401
http://dx.doi.org/10.1103/PhysRevLett.101.240401
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1103/PhysRevLett.103.083601
http://dx.doi.org/10.1103/PhysRevLett.103.083601
http://dx.doi.org/10.1038/nphys1154


130 BIBLIOGRAPHY

[117] Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature

461, 504–506 (2009).

[118] DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting

quantum processor. Nature 460, 240–244 (2009).

[119] Paik, H. et al. How coherent are Josephson junctions ? (2011). ArXiv:quant-

ph/1105.4652v2.

[120] Altomare, F. et al. Tripartite interactions between two phase qubits and a resonant

cavity. Nature Physics 6, 777–781 (2010).

[121] Neeley, M. et al. Generation of three-qubit entangled states using superconducting

phase qubits. Nature 467, 570–573 (2010).

[122] DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a

superconducting circuit. Nature 467, 574–578 (2010).

[123] Voss, R. F. & Webb, R. A. Macroscopic Quantum Tunneling in 1-µm Nb Josephson

Junctions. Phys. Rev. Lett. 47, 265–268 (1981).

[124] London, F. Superfluids, vol. 76 (John Wiley & Sons, Inc., New York, 1950).

[125] Little, W. A. & Parks, R. D. Observation of Quantum Periodicity in the Transition

Temperature of a Superconducting Cylinder. Phys. Rev. Lett. 9, 9 (1962).

[126] Orlando, T. P. & Delin, K. A. Foundations of Applied Superconductivity (Addison-

Wesley Publishing Company, New York, 1991).

[127] Gross, R. & Marx, A. Applied Superconductivity: Josephson Effect and Supercon-

ducting Electronics (2005). Lecture notes.

[128] Ambegaokar, V. & Baratoff, A. Tunneling Between Superconductors. Phys. Rev.

Lett. 10, 486 (1963).

[129] McCumber, D. E. Effect of ac Impedance on dc Voltage-Current Characteristics of

Superconductor Weak-Link Junctions. J. Appl. Phys. 39, 3113–3118 (1968).

[130] Stewart, W. C. Current-Voltage characteristics of Josephson junctions. App. Phys.

Lett. 12, 277–280 (1968).

[131] Chen, Y. Macroscopic Quantum Tunneling in a dc SQUID. J. Low Temp. Phys. 65,

133–147 (1986).

[132] Deppe, F. Superconducting Flux Quantum Circuits: Characterization, Quantum

Coherence, and Controlled Symmetry Breaking. Ph.D. thesis, TU München (2009).
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Niemczyk, E. Hoffmann, E. Solano, A. Marx and R. Gross. Planck Spectroscopy

and Quantum Noise of Microwave Beam Splitters. Phys. Rev. Lett. 105, 133601

(2010)

• E. Hoffmann, F. Deppe, T. Niemczyk, T. Wirth, E. P. Menzel, G. Wild, H. Huebl,

M. Mariantoni, T. Weißl, A. Lukashenko, A. P. Zhuravel, A. V. Ustinov, A. Marx

and R. Gross. A superconducting 180◦ hybrid ring coupler for circuit quantum

electrodynamics. Appl. Phys. Lett. 97, 222508 (2010)

• T. Niemczyk, F. Deppe, E. P. Menzel, M. J. Schwarz, H. Huebl, M. Häberlein,
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I want to thank my colleagues Stephan Geprägs and Andreas Brandlmaier for sharing
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