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Abstract
In almost all current technological devices, the feedback amplifiers are used

for example in cell phones, DVD players, and wireless communication tech-
nologies. This important concept provides a robust transfer function and
various interesting functionalities such as log amplifiers, active filters, and
Lock-In amplifiers. Since in the quantum world quantum devices such as
quantum computers, quantum sensors, and quantum communications are a
hot topic between the researchers, the development of quantum feedback
amplification theory and its application is highly demanded, as this feedback
system is fundamental to electronic devices.
In this research we suggest a 2-input-2-output quantum feedback amplifier

and investigate the feedback gain and quantum-noise limit with respect to
added noises. We observe this scheme makes the controlled amplifier signif-
icantly robust, and furthermore it realizes the minimum-noise amplification
even under realistic imperfections.

This feedback concept is then used to design a directional active differ-
entiator and integrator for a quantum signal. We obtain the condition for
achieving minimal added noise is exactly the same as the condition for achiev-
ing high feedback gain in both cases.

Further, by combining those with a proportional amplifier we suggest a
basic construction method of a coherent PID controller and study its prop-
erties. Especially, the effect of added noises coming from the coherent PID
controllers is investigated for coherent P, PI, and PD feedback control sys-
tem through a concrete example, namely, through an optomechanical sys-
tem. It appears for coherent P controller this can be used to further cool the
sideband-cooled optomechanical system. In case of coherent PI controller,
we notice the effect of the idler coming from coherent I controller is immense
such that the steady state variance of the system operator spreads dramat-
ically. Finally, for coherent PD controller the cold-damping method for the
optomechanical system is studied and compared with the measurement-based
feedback system. This results that if the detection efficiency is 1, then the
coherent PD feedback system can never outperform the measurement-based
one.
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論旨

増幅器とコントローラーが組み込まれているフィードバック回路で構成さ
れているフィードバック（FB）増幅器と呼ばれるものは,Black氏が 1927年
に長距離通信のために初めて提案されたもので,今現在でも電話などによる
通信において欠かせない存在である．というのも、増幅器自体は環境変化を
受けやすい機器で,FBを施さないと,通話中に相手が言ったことが聞き取れな
かったからである．しかし,FB増幅器の応用先は通信技術に止まらず,現在使
われている全ての電子デバイスの基盤となっている．その背景には,フィー
ドバック増幅が内包している多様で斬新な安定機能にある．その一部を例に
挙げるのであれば,バンドパスフィルター,シュミットトリガ,PID制御器など
である。つまり,日常的に使っているコンピューター,携帯電話,電車や自動
車に至るまであらゆる電子回路で動いているものを FB増幅器は我々の日常
を支えているのである．そして近年,量子通信,量子コンピューター,量子セ
ンサーなど様々な量子デバイスが盛んに研究されている．そして,電子デバ
イスの発展の歴史にFB増幅器の発展の歴史が必ずついて回っているように,
量子デバイスの発展には量子 FB増幅器の発展が必要不可欠である．
本研究では,2入力 2出力量子フィードバック増幅器を提案し,フィードバッ
クゲインと追加ノイズを視野に入れた量子雑音限界について研究する．この
スキームは制御されている増幅器を非常にロバスト化し,更に現実的な状況
においても最小雑音を持った増幅が可能であることが示された．
このフィードバック構造を使い,量子信号に対する指向性を持った能動的な
微分器と積分器を構成することが出来る．最小追加雑音を得るための条件が
最大フィードバックゲインを得る条件と一致することが判明した．
加えて,これと信号振幅を定数倍させる増幅器を合わせたコヒーレントな

PID制御器の構成法を提案し,その性質を探る．特に,コヒーレントP,PI,PD
フィードバック制御システムにおけるコヒーレントPID制御器から出てくる
追加雑音の効果をオプトメカ系という例を通じて調べる．コヒーレントP制
御をしようするとサイドバンド冷却されたオプトメカを更に冷却できること
が判明した．コヒーレントPI制御の場合は,コヒーレント積分器から出てく
るアイドラーの効果が非常に大きく,システム演算子の定常分散の拡大に大
きく貢献することが分かった．最後に,コヒーレント PD制御を粘性冷却法
でオプトメカ冷やし,測定フィードバク系とその冷却パフォーマンスを比較
した．結果,測定効率が 1である場合,コヒーレントPD制御が測定ベースの
冷却より上回ることができないということが分かった．
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Zusammenfassung
In vielen technologischen Geräten wie zum Beispiel in Smartphones, DVD-

Spielern und drahtlosen Kommunikationstechnologien werden heutzutage so-
genannte Feedback-Verstärker benutzt. Dieses wichtige Konzept garantiert
eine robuste Übertragungsfunktion und verschiedenartige interessante Funkti-
onalitäten wie Log-Verstärkung, aktive Filter, und Lock-In-Verstärker. Da
nun Quantentechnologien wie Quantencomputer, Quantensensoren und Quan-
tenkommunikationen weltweit von Wissenschaftlern aktiv erforscht werden,
ist die Entwicklung einer Quanten-Feedback-Verstärkungstheorie und ihrer
Anwendungen sehr erwünscht.

In dieser Masterarbeit schlagen wir in diesem Zusammenhang einen 2-
Input-2-Output Quanten-Feedback-Verstärker vor. Wir untersuchen seinen
Feedback-Gain und sein Quantenrauschlimit bezüglich zusätzlichem Rausch-
en. Wir sehen, dass das Feedback-Schema den Verstärker äußerst robust
macht und dass es zudem das minimale Rauschlimit auch unter realistischen
Bedingungen verwirklicht.
Dieses Feedback-Konzept wird dann benutzt, um einen direktionalen aktiven
Differentiator und einen aktiven Integrator für ein Quantensignal zu gestal-
ten. Wir erhalten, dass die Bedingung für das Erreichen des minimalen
Rauschens genau mit der für hohen Feedback-Gain übereinstimmt.
Indem wir Integrator und Differentiator mit einem Proportionalitätsverstär-

ker verbinden, schlagen wir zusätzlich eine grundlegende Konstruktionsmeth-
ode für ein kohärentes PID Feedback-Kontrollsystem vor und untersuchen
dessen Eigenschaften. Insbesondere wird der Effekt des zusätzlichen durch
den kohärenten PID-Regler hinzugefügten Rauschens für das kohärente P-
, PI- und PD-Feedback-Kontrollsystem anhand eines konkreten Beispiels,
nämlich eines optomechanischen Systems, bestimmt. Wir finden, dass der
kohärente P-Regler für seitenbandgekühlte optomechanische Systeme zusätz-
liche Kühleffekte erzielt. Im Fall des kohärenten PI-Reglers erkennen wir,
dass das Rauschen aus dem kohärenten I-Regler die stationäre Varianz der
Systemoperatoren stark erhöht. Zuletzt wird ein Cold-Damping-Szenario im
optomechanischen System für den kohärenten PD-Regler untersucht und mit
einem messungsbasierten Feedbacksystem verglichen. Es stellt sich heraus,
dass bei perfekter Quanteneffizienz das kohärente PD-Feedbacksystem das
messungsbasierte nicht übertreffen kann.
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1 Introduction
In our daily life, we are using electronic technologies such as cell phones,

DVD players, and global positioning systems or in optics such as optical fiber
systems and wireless communication technologies. All those inventions are
supported by the so-called feedback amplification theory, which is a com-
bination of the amplifier, controller, and feedback theory [1, 2, 3, 4]. An
amplifier with feasible isolation between inputs and outputs in electronics
was first invented by Lee DeForest in 1906, known as Audion tube [1, 2]. Af-
ter the invention of transistors by Bardeen, Brattain, and Shockley and the
impressive developments in solid-state technology, most microwave amplifiers
are transistor amplifiers such as Si BJT, MOSFET or HEMT due to robust
and low-cost properties. However, amplification itself is not enough to reach
those technologies mentioned above. Only with the combination of feedback
theory, first suggested by Harold S. Black in 1927 [5, 6], the electronic devices
could be revolutionized as one found the feedback amplification is not only
useful for stabilizing signals, but also for building-up new functionalities such
as Differentiators and Lock-In Amplifiers by choosing proper controllers.
If we now look at the quantum world, some physicists have started not to re-

search on fundamental quantum physics, but its application to the quantum
devices such as quantum computers, quantum network and quantum sensors
[7, 8, 9, 10]. As the feedback system composed of amplifier and controller is
fundamental to the electronic devices, the quantum feedback amplifier based
on quantum amplifiers and controllers will play an important role. Indeed,
there are quantum amplifiers to amplify tiny quantum signals, which can-
not be detected without the so-called phase-preserving quantum amplifiers.
In quantum optics, this is achieved by utilizing a crystal with Kerr effect
[11], and in superconducting circuits by Josephson Bifurcation Amplifier[12],
Josephson Ring Modulator[13, 14] or just by SQUID[15]. Additionally, co-
herent controllers such as cavities and beam splitters exist, to design the
so-called coherent feedback circuits. But there are no quantum feedback am-
plifiers with specific functionalities, which are urgently needed.

In this thesis, we present quantum feedback amplification concept for 2-input-
2-output amplifiers for superconducting circuits (the Directional SQUID Am-
plifier [15]), and suggest for the first time a quantum feedback amplifier
(QFA) with certain functionality, namely the coherent proportional-integral-
derivative controller, and its applications to optomechanical system.
This thesis is largely organized into two parts. The preliminaries are from
the second to fifth section, while the contents of this research start from
the sixth to the eighth section. In the last section, we summarize and con-
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clude this thesis. In the preliminary, we begin with the basics of operational
amplifiers and feedback amplifiers in the second section. In the next sec-
tion, the classical PID controller is explained: firstly introducing the three
term controller, then secondly expressing the state space representation of
PID feedback control system, and lastly discussing about the PID control
performance. The fourth section is about the derivation of quantum elec-
tromagnetic circuit theory which enters with the classical transmission line
theory and consequently to its quantization. The relation between the hybrid
and scattering parameters is also shown. Finally, the function of directional
microwave SQUID amplifier is discussed. The main research begins with 2-
input-2-output quantum feedback amplifier with its modeling, feedback gain
analysis, and quantum-noise limit and added noises. In the seventh section,
the feedback scheme for coherent proportional, differentiator and integrator is
suggested, and its added noises are also discussed. Finally, utilizing the pre-
vious results, the coherent PID feedback control is investigated. Beginning
with the basic coherent PID feedback control system scheme, we discuss the
steady-state covariance matrix for coherent P feedback control by applying
this to the sideband-cooled optomechanical system. Having this application
in mind, we then explore the added noise effect of the coherent PI controller
and compare this effect with the previous coherent P controller. The coher-
ent PD feedback control is then introduced and applied to the cold-damping
of the optomechanical system. Its cooling performance is investigated by
comparing it with the homodyne-detected controller. In the last subsection,
we briefly discuss the coherent PID feedback control.
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2 Amplifiers in Electronic Circuit
Amplifiers associated with feedback are one of the fundamental building

blocks in an electronic circuit and are integrated into most of the electronic
devices. As mentioned in the introduction, the first motivation of using
feedback was providing gain stability of the signal, extending the bandwidth
of an amplifier, or matching the input and output impedances. But its utility
is not restricted in this small area, the potential of feedback amplifiers also
opens the doors to active filters, PID controllers, Schmitt triggers, etc.. So
the concept of amplifier and feedback is of enormous importance, and will be
briefly explained in this section.

2.1 General Model of Operational Amplifier

In electronics, the so-called operational amplifiers (op amp) are the domi-
nant circuit building block used as an amplifier. Speaking of op amps, often
voltage amplifiers are intended, but there are four different types of ampli-
fiers dependent on what kind of output should be increased as a function of
the input: voltage amplifier, current amplifier, transconductance amplifier,
and transresistance amplifier. For the signal analysis purposes, we can rep-
resent the op amps with amplifier gain A, input impedance Zi, and output
impedance Zo, and thus with the network parameters Z, Y,G, and H in Eqs.
(4.28) - (4.31). In case of voltage amplifier the input voltage is amplified
as an output voltage (network parameter G), in case of current amplifier
the input current as an output current (network parameter H), in case of
transconductance amplifier the input voltage as an output current (network
parameter Y ), and in case of transresistance amplifier the input current as
an output voltage (network parameter Z)(Fig. 4.3). The amplifier gain A is
dependent on which amplifier we want to consider:

A =


G11 , voltage amplifier
H22 , current amplifier
Z21 , transresistance amplifier
Y21 , transconductance amplifier

(2.1)

which we can say is a connection between the signal analysis and electronic
circuit point of view. Then some of the readers might ask, what the meaning
of G22, H11, Z12, and Y12 is, if G12, H12, Z11, and Y11 correspond to input
impedances and G21, H21, Z22, and Y22 to output impedances. Physically,
these imply reverse gain, which is often neglected in electronic circuits due to
the consideration of an ideal case or due to the high performance of practical
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op amps [2, 4, 16].

As we will explain later, we will handle the input-output relation in scat-
tering parameters (see also section 4.2 about scattering parameters and its
merit in section 4). Hence, it is convenient to see the op amp in that repre-
sentation. Surprisingly, the (reverse) gain in the scattering parameter, s21, is
proportional to the (reverse) gain of all four amplifiers (for confirmation see
Appendix A):

s21 ∝ A =


G11 , voltage amplifier
H22 , current amplifier
Z21 , transresistance amplifier
Y21 , transconductance amplifier

(2.2)

s12 ∝ λ =


G22 , voltage amplifier
H11 , current amplifier
Z12 , transresistance amplifier
Y12 , transconductance amplifier

(2.3)

Hence, we do not have to consider every four cases, which input is amplified
since we know any kind of inputs from the "left" side goes through the
amplifier to the "right" side as an increased output.
From an electronic circuit point of view the op amp has three terminals: two
input terminals v+ and v− and one output terminal vo. Those three voltages
including the power supplies VCC and VEE are referenced to the common
(ground) terminals (Fig. 2.1 and Tab. 2.1).

2.2 Feedback Amplifier

Now introduced the four different kinds of amplifiers, we can move to the
feedback amplifier. But before going directly to this concept for the electronic
circuit, we briefly review the general abstract feedback amplifier model with
its physical interpretation.
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input\output Voltage V2 Current I2

Voltage V1 G Y
(voltage amplifier) (transconductance amplifier)

Current I1 Z H
(transresistance amplifier) (current amplifier)

Table 2.1: The signal input-output relation of network parameters Z, Y,G,
and H as amplifiers, which describes the input from "left" side (index 1) to
the output at "right" side (index 2) based on the scheme in Fig. 2.1.

Figure 2.1: op amp with power supplies. Two input voltages v+ and v−
and one output voltage vo with the power supplies VCC and VEE. A is the
amplifier gain. Normally, the depiction of power supplies are not shown, but
they are implicitly supposed. Figure adapted from [2].

2.2.1 Abstract Feedback Amplifier Model

The block diagram for the feedback amplifier system is depicted in Fig. 2.2.
If we want to solve it mathematically, we start with the equation

y[s] = G[s](u[s] +K[s]y[s]), (2.4)

which can be solved easily as

y[s] =
G[s]

1−G[s]K[s]
u[s], (2.5)

where G[s] is the gain in Laplace s-domain, K[s] the controller gain, u[s]
the input signal and y[s] the output signal. However, a problem arises if we
want to interpret and solve the Eq. (2.4) physically. That is, if we view the
feedback loop as an infinite circulation of the open loop gain G[s]K[s], then
we can write it as a series,
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Figure 2.2: The input u travels through the amp G, part of the signal is fed
back through the controller K and added to the input (positive feedback),
and the other part leaves the feedback system as an output y.

y[s] = G[s](u[s] +K[s]y[s]) (2.6a)
= G[s](u[s] +K[s](G[s](u[s] +K[s]y[s]))) (2.6b)

= G[s]
∞∑
k=1

(G[s]K[s])ku[s]. (2.6c)

In this case, the series converges if and only if (iff) |G[s]K[s]| < 1 is satisfied.
But experiments show there are cases, where the output converges even for
|G[s]K[s]| > 1.

This problem was first solved by Nyquist. He noted in his paper [17] 1

we should first consider the problem in the time domain and look for the
steady state2. The important points to consider are the building-up process
(transients) of the input signal, the causality and the exponential decay of
the controller. The key point is the (convolution) integral over time. As
depicted in Fig. 2.2, the input signal travels through G. When the signal
arrives G, the outgoing signal at time t is also affected by the past because
the effect of the past signal in the device can still remain, which we call as
"memory effect". This is described by the convolution integral

ỹ(t) =

∫ ∞

−∞
dτG(t− τ)u(τ). (2.7)

1The discussion of this convergence problem is very well discussed in his paper, and I
personally suggest the readers to read it once because this leads in the end to the infamous
Nyquist plot.

2This implies the stability condition of the whole system, where in Laplace domain all
roots of the denominator of the transfer function has to lie on the left half of the complex
plane.
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But we have a problem since the above equation diverges. But since in the
physical point of view the device can only react, if the signal has been built
up at time t0 (transients: Θ(τ − t0)) and not if there is still no signal yet,
and does not response to the signal in the future at time t1 > t (causality:
Θ(t1 − t)), the integration region is therefore restricted, such that

ỹ0(t) =

∫ t

t0

dτG(t− τ)u(τ). (2.8)

Assuming
∫
dtG(t) exists, which has mostly an exponential decay character,

Eq. (2.8) is integrable. This convolution integral has a nice property that
the integrand can be just expressed by a multiplication in Laplace s-domain

ỹ0[s] = G[s]u[s]. (2.9)

In the feedback loop, we can just write every k-th round trip as

ỹk[s] = (G[s]K[s])kG[s]u[s]. (2.10)

Since the total output y is just an infinite sum of the above round-trip-
outputs, we can write it in the time domain as

y(t) = lim
n→∞

1

2πi

∫
ds

n∑
k=0

(G[s]K[s])kestG[s]u[s] (2.11a)

= lim
n→∞

1

2πi

∫
ds

(
1

1−G[s]K[s]
− (G[s]K[s])n+1

1−G[s]K[s]

)
estG[s]u[s] (2.11b)

=
1

2πi

∫
dsest

G[s]u[s]

1−G[s]K[s]

− lim
n→∞

1

2πi

∫
dτds′

G[s′]u[s′]

1−G[s′]K[s′]
es

′(t−τ)

∫
ds(G[s]K[s])n+1esτ︸ ︷︷ ︸

→0

.

(2.11c)

One can then show the second term vanishes provided the first term exists,
and the transient is assumed. This means all direct/normal outputs of the
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Figure 2.3: Physical interpretation of the second term in Eq. (2.11) which
vanishes in the time domain for n → ∞. As can be seen, infinite feedback
loop generates infinite sum of outputs which are destructively interfering with
each other in the time domain. This example is an active differentiator for
an electronic device with the controller transfer function K[s] = 1/(1+sCR)
(see also Fig. 2.5).

devices (i.e., the transfer functions in the numerator) will not contribute
to the total output. Nyquist then discovered that the system diverges iff
1−G[s]K[s] = 0 is satisfied.

Now in the limit G[s] −→ ∞, we read for Eq. (2.5) Gfb[s] = 1/K[s]. If
for example K[s] = β is a robust passive device, then feedback gain only
depends on the robust feedback factor β, which is the reason for stability
against gain fluctuations. This can be clearly seen by calculating the relative
sensitivity

∆Gfb[s]

Gfb[s]
=

1

1−G[s]K[s]

∆G[s]

G[s]
. (2.12)

2.2.2 Feedback Amplifier in Electronic Circuit

Obviously, since there are four types of op amps, we obtain four differ-
ent feedback amplifiers. While the op amps can be named as the voltage
amplifier, current amplifier, transconductance amplifier, and transresistance
amplifier, they can also be abstractly designated as G,H, Y, and Z parame-
ters, respectively. The same occurs in this feedback amplifier. While we can

8



Figure 2.4: The signal input-output and schematic representation of feed-
back amplifiers which describes the input from "left" side (index 1) to the
output at "right" side (index 2).

just add the word "feedback" behind the op amp names, in the abstract case
we call them as Series-Shunt, Shunt-Series, Series-Series, and Shunt-Shunt
Feedback amplifier, respectively (Fig. 2.4). The reason for such naming lies
on the abstract representation of the electronic circuit. For example, if we
look at series-shunt feedback amplifier of Fig. 2.4, we realize that the left
side of G and H is connected in series, while their right side is connected in
parallel - hence series-shunt.

The input-output relation of these feedback amplifiers are calculated as fol-
lows:
• feedback voltage amplifier (Series-Shunt Feedback Amplifier)[

V2

I1

]
=
(
G−1 +H

)−1︸ ︷︷ ︸
Gfb

[
V1

I2

]
, (2.13)

• feedback current amplifier (Shunt-Series Feedback Amplifier)[
V1

I2

]
=
(
H−1 +G

)−1︸ ︷︷ ︸
Hfb

[
V2

I1

]
, (2.14)
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• feedback transconductance amplifier (Series-Series Feedback Amplifier)[
I1
I2

]
=
(
Y −1 + Z

)−1︸ ︷︷ ︸
Y fb

[
V1

V2

]
, (2.15)

• feedback transresistance amplifier (Shunt-Shunt Feedback Amplifier)[
V1

V2

]
=
(
Z−1 + Y

)−1︸ ︷︷ ︸
Zfb

[
I1
I2

]
. (2.16)

We can recognize the same structure of the feedback gain matrix (2.13) -
(2.16) as in the general structure of feedback amplifier 2.5. Indeed in the
ideal case, we can directly use Eq. (2.5) for calculating the feedback gain of
feedback amplifiers [4].

2.2.3 Advantages of Active Filter over Passive Filter

In electronic and even in quantum electromagnetic circuits, the so-called
filters are used, in order to suppress undesired frequencies. For instance, the
low-pass filter (or integrator) let only signals pass with relatively low frequen-
cies such that high frequencies are cut off. This is very useful since unwanted
noises normally increase proportionally to the frequency. Thus, integrators
are used for suppressing noises. For example, in electronic circuits, those
filters are realized with resistance and capacitor as depicted in Fig. 2.5. But
there is a problem that the gain and the cut-off frequency are fixed by 1 and
by the parameters 1/RC, respectively, as can be seen,

vout[ω] =
1

1− iωRC
vin[ω]. (2.17)

Figure 2.5: (a) A low-pass filter and (b) a high-pass filter realized by a
circuit.
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On the other hand, if we use a high-pass filter with the transfer function

vout[ω] = KHP [w]vin[ω] (2.18a)

=
−iωRC

−iωRC + 1
vin[ω] (2.18b)

as a controller of a feedback amplifier system, due to the relation (2.5), we
also obtain a low-pass filter.

vout[ω] =
A

1− AKHP [ω]
vin[ω] (2.19a)

=
A(1− iωRC)

1− (A+ 1)iωRC
vin (2.19b)

A→∞→ (
1

−iωRC
+ 1)vin[ω]. (2.19c)

However, as we can also see from Fig. 2.6, the cut-off frequency ωco,LP =
1/(A + 1)RC can be arbitrarily set by choosing the amplifier gain properly,
and the gain itself increases for low frequencies. Additionally, the region of
1/ω-dependence will be expanded.

Analogously, we can design a high-pass filter with the feedback amplifier
using the passive low-pass filter as a controller (Eq. (2.17)) formulated as

vout[ω] =
A

1− AKLP [ω]
vin[ω] (2.20a)

=
A(1− iωRC)

A+ 1− iωRC
vin (2.20b)

A→∞→ (1− iωRC)vin[ω]. (2.20c)

In this case, the cut-off frequency ωco,HP = (A + 1)/RC widens the ω-
dependent region, which is useful in terms of derivative control (see section
3).

To distinguish from the first low-pass filter, we call this filter as an active
low-pass filter, since we are using amplifier which is putting energy into the
system and hence actively modifying the transfer function, while the other
one is called passive low-pass filter because it is only waiting for the incoming

11



Figure 2.6: (left) A low-pass filter and (right) a high-pass filter realized by
a passive and active filter. Time constant RC = 5 and gain A = 1, 5, 10, 50
are chosen. The vertical dotted line shows the frequency cut-off of a passive
filter, and the tilted dotted line that of an active filter.

signal.
Generally, we call all filters using an energy supplier such as amplifier as

an active filter, and the others as a passive filter.
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3 Classical PID Controller
In industrial mass production, stable uniform quality of its products is

highly demanded. But industrial control systems can be very complex such
that detailed knowledge of those systems can be nearly impossible to control
it precisely. However, the three-term proportional-integral-derivative con-
troller (PID controller) modifies the controller input in such a way that the
output of the plant tracks the reference value/signal, independent of the pre-
cise knowledge of the system. Thus, the PID controller is the most widely
used control technique in the process industries.

In this section, we want to show how this controller is mathematically de-
scribed as a transfer function and in a state space representation. The latter
is introduced to connect this description with the application of the coherent
PID controller to the optomechanical system in section 8. The PID control
performance is also briefly discussed for the section 8.

3.1 Three Term Controller

The basic PID control feedback structure is shown in Fig. 3.1. What
the PID controller precisely does is, it tries to make the error between the
reference (setpoint) and the output of the plant zero. So, if the difference is
zero, no control is needed, since we have achieved the desired output. The
output of the PID controller calculates from the error, how much input is
needed for the desired output (control input). We explain the function of
each controller P, I, and D by taking a robotic motor arm operated by a
current, which is affected under gravity, inertial mass or other forces. The
setpoint is set to be in a certain position regardless of the weight of a thing
the robotic arm is holding.

Figure 3.1: Block diagram of a basic PID control feedback structure. The
reference signal r is subtracted by a current output value y, and its error e
is put in into a PID controller to manipulate it into a control input u such
that the output y of the plant tracks the reference signal.
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The P controller multiplies the error by a proportional gain KP

yP (t) = KP e(t) (3.1a)
yP [s] = KP e[s], (3.1b)

which works as a simple "energy" supplier. So, usually the factor KP is set
such that the robotic arm is supplied by a sufficient current to maintain its
position. But this control fails if the robotic arm has to grab a light or heavy
thing. If e.g. the proportional gain is set for a light one, the motor does not
have enough current to keep. Hence, the integrator I is additionally required.

The integrator I changes its energy supply based on the past behavior of
the error to cover the non-sufficient proportional gain KP

yI(t) = KI

∫ t

0

dτe(τ) (3.2a)

yI [s] = KIe[s]/s. (3.2b)

Therefore, the I controller brings the error to zero, however, the convergence
is slow. Moreover, in case of too large KI , the so-called integral wind-up
occurs. Hence, we need a derivative control to speed down the error change
for fast convergence.

The function of the derivative control is not to react on the error itself, but
to its temporal change

yD(t) = KD
d

dt
e(t) (3.3a)

yD[s] = KDse[s]. (3.3b)

So, if the error changes rapidly, the D controller tries to let it slow down
such that the difference does not get too large. Thus, fast convergence is
achieved because it calculates the futuristic behavior3. But in the physical
system, there is no system which can predict the future. Hence, we use an
approximation[18]. If we have the following transfer function

3If we remember the definition of the derivative, we find that the derivative predicts
the future.
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Figure 3.2: Comparison of convergence performance between three con-
trollers: P controller, PI controller, and PID controller. The transfer func-
tion of the plant is a standard second order process (damped oscillator)
Gosc[s] = 1/(s2 + γs+ ω2

0)

GD[s] =
s

s+ ωD

(3.4a)

=
s

ωD

+O(s2), (3.4b)

we can approximate it for ωD ≫ |s| and obtain a D controller, where ωD

is some time constant. Indeed, as introduced in section 2.2.3, the high-pass
filter is a D controller. In this case, the time constant is ωD = 1/RC. In the
time domain, Eq. 3.4 is rewritten as

GD(t) =
d

dt
(Θ(t)ωDe

−ωDt). (3.5)

The derivative control lets the output signal rapidly converge to the setpoint.
However, we have to take this carefully because the noise increases with the
frequency such that in the noisy environment the derivative control makes
the noise contribution dominant.

The convergence performance of P, PI, and PID controller is demonstrated
in Fig. 3.2.
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Figure 3.3: Realization of series PID controller using feedback amplifiers.
Blue shaded controller is a P controller, green an I controller, and red a D
controller. Figure adapted from [19].

3.2 Series PID Controller

As some readers have noticed, if we want to realize a PID controller with
active filters in electronic circuits (see 2.2.3), there are no pure integral or
derivative term, but its transfer function is added by ±1. While current
modern PID controllers are in parallel form, in analog circuits we have to
use in series form [18, 19] (see Fig. 3.3). Since the coherent PID controller
introduced in section 8 adopts the series form, we briefly explain the conver-
sion between two types.

As depicted in Fig. 3.4, the PID control law is given in terms of a product
of transfer functions

u[s] = Ksr
P (1 +

Ksr
I

s
)(1 +Ksr

D s) (3.6a)

= Ksr
P (1 +Ksr

I Ksr
D ) +

Ksr
P Ksr

I

s
+Ksr

P Ksr
D s, (3.6b)

where the first term is the effective P control with KP , the second the effec-
tive I control with KI , and the last the effective D control with KD. The
backtransformation is calculated as

Figure 3.4: Series PID controller block diagram
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Ksr
P =

KP

2KIKD

±
√

(
KP

2KIKD

)2 − 1

KIKD

(3.7a)

Ksr
I =

KP

2KD

±
√
(
KP

2KD

)2 − KI

KD

(3.7b)

Ksr
D =

KP

2KI

±
√
(
KP

2KI

)2 − 1

KDKI

(3.7c)

3.3 State Space Systems and PID Control

Here, we present the implementation of PID controller into the state space
representation, which is very important for investigating and simulating the
dynamical behaviour[18] and for calculating steady-state covariance matrix of
state x e.g. due to the use of Lyapunov equation, which is needed in section 8.
Further, we can discuss it generic and for multi-input-multi-output system.
Thus, we exploit this opportunity to discuss it briefly.

The state space representation for a linear system is formulated as follows

ẋ(t) = Ax(t) +Bu(t) (3.8)
y(t) = Cx(t) +Du(t), (3.9)

where x is system state variable, u input, and y output. In the physical point
of view, we can interpret the first equation as the Langevin equation and the
second one the input-output relation. In this case, u is a control input. Since
the discussion here is on classical level, we investigate the further analysis
with the commonly used value D = 0 under P-I, P-D, and P-I-D control.

P-I Control

Given the state space representation for a linear system in Eq. (3.9), the
control input u is represented in the time domain as the sum of Eqs. (3.1a)
and (3.2a) according to Fig. 3.1, so

u(t) = KP e(t) +KI

∫ t

0

dτe(τ), (3.10)

where the error signal is given by
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e(t) = y(t)− r(t). (3.11)

Combining both equations with the input-output equation (3.9), we obtain
the control input as a function of the state space variable x, integrated error
signal eI :=

∫
dτe(τ), and reference signal r

u(t) = KPCx(t)−KP r(t) +KIeI(t). (3.12)

Henceforth, the Langevin equation is read as

ẋ(t) = (A+BKPC)x(t) +BKIeI(t)−BKP r(t). (3.13)

In addition to that, we know ėI = e, so the first order differential equation
representing the whole PI feedback system is given by

d

dt

[
x
eI

]
=

[
A+BKPC BKI

C 0

] [
x
eI

]
+

[
−KPB
−1

]
r, (3.14)

where we have omitted the time dependence expression for clarity.

P-D Control

As usual, we start with the control input giving

u(t) = KP e(t) +KD
d

dt
e(t). (3.15)

Evaluating now the error signal, we obtain

u(t) =KP (Cx(t)− r(t)) +KD

(
C

d

dt
x(t)− d

dt
r(t)

)
=KP (Cx(t)− r(t)) +KD(C(Ax(t) +Bu(t)),

which results to

u(t) = (1−KDCB)−1 ((KPC +KDCA)x(t)−KP r(t)) , (3.16)

where we have exploited the fact r is time independent for t > 0 because of
r(t) = rΘ(t).
Therefore, the closed-loop state space representation for PD feedback system
is described by

d

dt
x =

(
A+B (1−KDCB)−1 (KPC +KDCA)

)
x−B (1−KDCB)−1KP r.

(3.17)
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P-I-D Control

We start again with finding an expression of additional states for the aug-
mented state space model by exploiting the fact that the control input u(t)
is following the dynamics

u(t) = KP e(t) +KI

∫ t

t0

dτe(τ) +KD
d

dt
e(t) (3.18)

and, we define eI(t) :=
∫ t

0
dτe(τ) and eD(t) := de(t)/dt. Inserting Eq. (3.11)

and the state space model into (3.18) to eliminate eD, the control input
changes to

u(t) = (1−KDCB)−1 ((KPC +KDCA)x(t) +KIeI(t)−KP r(t)) . (3.19)

As a result, we obtain a combination of Eqs. (3.14) and (3.17)

[
ẋ
ėI

]
=

[
A+B (1−KDCB)−1 (KPC+KDCA) B (1−KDCB)−1KI

C 0

] [
x
eI

]
−
[
B (1−KDCB)−1KP

1

]
r. (3.20)

Laplace s-domain

In case of Laplace s-domain, we can get the state space equation far more
simply. First, the control input u[s] is expressed as

u[s] = GPID[s]e[s] (3.21a)
= GPID[s](r[s]− y[s]) (3.21b)
= (1+GPID[s])

−1GPID[s](r[s]− Cx[s]) (3.21c)

where

GPID[s] = KP +
KI

s
+KDs. (3.22)

We note that GPID is a matrix form if the parameters are individually set for
each input, otherwise it is a scalar. Now inserting Eq. (3.21) into Laplace-
transformed Eq. (3.9), we obtain
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x[s] = (s1−A+B(1+GPID[s])
−1GPID[s]C︸ ︷︷ ︸

fb term

)−1B(1+GPID[s])
−1GPID[s]r[s].

(3.23)
We can then prove the output y indeed converges to the reference r as follows

y∞ = lim
t→∞

y(t) (3.24a)

= lim
s→0

sy[s] (3.24b)

= lim
s→0

s(Cx[s] + (1+GPID[s])
−1GPID[s](r[s]− Cx[s]) (3.24c)

= lim
s→0

sr[s] (3.24d)

= r∞, (3.24e)

where we have used the Finite Value Theorem in Eq. (3.24b) and in Eq.
(3.24d) the fact

(1+GPID[s])
−1GPID[s] = (s1+KP s+KI +KDs

2)−1(KP s+KI +KDs
2)

(3.25a)
→ K−1

I KI (3.25b)
= 1. (3.25c)

In this proof, no assumption has been made, thus for any linear system, PID
controller is able to let the output signal tracks the reference signal, which is
a strong statement. But we have to remind this perfect tracking is valid as
long as the I controller is present.

3.4 PID Control Performance

So far we have discussed the ideal case, i.e., no noise in this feedback system
has been considered. However in reality, this situation is nearly impossible,
hence we want to know how well the output can converge to the reference
under noisy environment.

There are four types of noise we want to consider: measurement noise N ,
bias rejection B, load disturbance DL, and supply disturbance DS. In this
thesis, we do not consider bias rejection. The general system framework is
depicted in Fig. 3.5.
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Figure 3.5: General PID system framework. Adapted from [18].

Before studying the PID control performance it is convenient to rewrite the
transfer function of the plant system as

GP [s] = C(s1− A)−1B + 1 (3.26a)

=
1

|s1− A|
(Cadj(s1− A)B + |s1− A|1) (3.26b)

=:
gP [s]

dP [s]
, (3.26c)

with dP [s] := |s1−A|. We note the degree of the characteristic polynomials
in the numerator gP [s] and denominator dP [s] is both the same.

Closed-Loop Stability

In control engineering, it is critical to investigate the closed-loop stability
as stated in section 2.2.1. The closed-loop transfer function is

GCL[s] = (1+GP [s]GPID[s])
−1GP [s]GPID[s] (3.27a)

= (sdP [s]1+ gP [s](sKP +KI + s2KD))
−1gP [s](sKP +KI + s2KD)

(3.27b)
= ρCL[s]

−1gP [s](sKP +KI + s2KD), (3.27c)
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where the the roots of the closed-loop characteristic expression ρCL have to
lie in the open left half of the complex plane for the closed-loop stability, i.e.,

ρCL[s] = sdP [s]1+ gP [s](sKP +KI + s2KD) = 0. (3.28)

For example, for a standard second-order process with GP [s] = 1/(s2 + γs+
ω2
0) we read

ρCL[s] = s3 + (γ +KD)s
2 + (1 +KP )s+KI ,

hence we have a broader flexibility to assign closed-loop poles since we can
regulate the PID parameters.

Measurement Noise Rejection

The transfer function of the measurement noise is the same as that of the
reference signal, hence

yN [s] = (1+GP [s]GPID[s])
−1GP [s]GPID[s]N [s]. (3.29)

For example in the case of a standard second-order process, we recognize

yN [s] =
sKP+KI+s2KD

s3+(γ+KD)s2+(1+KP )s+KI

s→∞−→ KD

s
. (3.30)

So the noise rejection performance is of the order 1/s.

Load Disturbance Rejection

System load disturbance let the controlled variables deviate from their
respective set points. Physically, these load variables are white noises for
instance due to thermal noises of electrons in transmission lines. Thus, those
disturbances are low-frequency phenomena which can be modeled by a step-
signal model dL[s] = dL/s. Applying this to calculate the steady state of the
load disturbance rejection performance, we read
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ydL(t → ∞) =lim
s→0

s ydL [s]

=lim
s→0

s (1+GP [s]GPID[s])
−1dL[s]

=lim
s→0

(sdP [s]1+ gP [s](sKP +KI + s2KD))
−1sdP [s] dL

=(gP [0]KI)
−1dP [0] lim

s→0
s dL

=0. (3.31)

As can be seen from this result, the integral term secures the load disturbance
is rejected.

Supply Disturbance Rejection

As in the case of load disturbance, noises can affect the control input u,
which is called supply disturbance phenomenon. In some case, this supply
disturbance is a low-frequency noise, hence a white noise with dS[s] = dS/s.
Since its transfer function is formulated as

ydS [s] = (1+GP [s]GPID[s])
−1GP [s]dS[s], (3.32)

the steady state of the supply disturbance leads to

ydS(t → ∞) =lim
s→0

s ydS [s]

=lim
s→0

s (1+GP [s]GPID[s])
−1GP [s]dS[s]

=lim
s→0

(sdP [s]1+ gP [s](sKP +KI + s2KD))
−1sgP [s] dS

=(gP [0]KI)
−1gP [0] lim

s→0
s dS

=0. (3.33)

So as in the case of load disturbance rejection, the integral controller guar-
antees the perfect rejection.
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4 Quantum Electromagnetic Circuit
Before we go into the detail of quantum electromagnetic circuit, we want

to make some notes regarding it. Basically, the quantum electromagnetic
circuit is a quantum mechanical version of microwave circuit (or also known
as high-frequency technique). The reason why microwave circuit theory has
branched off from the standard circuit theory is that its high frequency makes
the behavior of an ordinary circuit element such as resistance deviate from its
linear characteristic. For instance, the voltage applied to the resistance does
not follow the Ohm’s law anymore. That is because the device dimensions
are now on the order of electric wavelength, which consideration has not been
needed in the low-frequency regime due to the large wavelength and thus all
the components of the electric circuit could be approximated linearly [3]. In
addition to that, in case of superconducting circuits, interesting effects can
be observed in all devices based on Josephson junctions by using the radio-
frequency source [20, 21]. Especially since the quantum-limited amplifiers are
mostly based on the three- or four-wave mixing, high-frequency operation
is essential [11, 16]. Therefore, the quantum electromagnetic circuit is of
significant importance in the analysis of superconducting circuits and devices.

4.1 Transmission Line Theory

The main physical variables used in circuit theory are obviously voltage
and current, where lumped components such as a resistor, capacitor, induc-
tor, and conductor make the explicit connection between them, while those
used in field analysis are amplitude and phase, where the scattering matrix
gives the relationship between input and output field. Hence to bridge this
gap, transmission line theory, which connects the languages of the electronic
circuit to that of (quantum) optics, is applied.

4.1.1 Classical Transmission Line Theory

In order to bridge its gap between two theories, we have to remind that the
circuit theory basically uses four different lumped elements: the resistance,
inductance, conductance, and capacitance. Additionally, if possible, we want
to use those characteristic variables as linear elements, but we cannot neglect
the fact that physical dimensions of the electrical wavelength are microscopic.
Therefore, we take an infinitesimally small fraction of the transmission line
as a lumped-element circuit and can approximate those four components
linearly, where R is the series resistance per unit length, L the series induc-
tance per unit length, G the shunt conductance per unit length, and C the
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Figure 4.1: Transmission lines represented as a lumped-element circuit.
Figure adapted from [3].

shunt capacitance per unit length (Fig. 4.1). Here, we note that two parallel
transmission lines are always considered because of incoming and outgoing
propagating waves through those lines. Thus, due to this parallel alignment
not only series but also shunt elements have to be taken into account.

Solving the Kirchoff’s voltage law

∂V (z, t)

∂z
= −RI(z, t)− L

∂I(z, t)

∂t
(4.1)

and current law

∂I(z, t)

∂z
= −GV (z, t)− C

∂I(z, t)

∂t
(4.2)

as depicted in Fig. 4.1, we obtain from those two wave Eqs. (4.1) and (4.2)
as a traveling wave solutions by transforming into the frequency space

V (z) = Vine
−γz + Voute

γz (4.3)

I(z) = Iine
−γz + Ioute

γz, (4.4)

where

γ =
√
(R + iωL)(G+ iωC). (4.5)
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The terms with e−γz represents the incoming wave propagation in the +z
direction and the term with eγz the outgoing wave propagation in the -z
direction with carrier frequency ω. Then, Vin,out is the voltage amplitude of
incoming and outgoing wave, respectively, and Iin,out is the current amplitude.
Furthermore, we obtain the so-called characteristic impedance Z0 from the
Eqs. (4.1), (4.2), (4.3) and (4.4)

Z0 =

√
R + iωL

G+ iωC
(4.6)

and therefore the Eq. (4.4) can be rewritten as

I(z) =
1

Z0

(Vine
−γz − Voute

γz). (4.7)

Hence, we can describe the whole dynamics by Vin and Vout
4. In case of

lossless line, R = G = 0 such that the characteristic impedance reduces to

Z0 =

√
L

C
. (4.8)

Now, we want to connect this voltage and current representation with
the field representation, which will be later related to the field creation and
annihilation operator in quantum mechanics. The good starting point is to
begin with the Lagrangian by first introducing the flux variable5 [16, 22]

φ(z, t) ≡
t∫

−∞

dτV (z, τ)

4Strictly speaking, we have to distinguish between incoming wave and +z propagating
wave, and outgoing wave and -z propagating wave, respectively, when dealing with equa-
tions (4.3) and (4.7). The reason lies that normally the relationships written in equations
(4.3) and (4.7) hold only for ±z traveling waves and Vin and Vout are arbitrary indepen-
dent functions. But when two transmission lines are somehow connected such as in case
of semi-infinite lines, the incoming and outgoing waves are suddenly related due to the
boundary conditions and thus the equality of both wave types holds [3, 16].

5Another approach is to start with the Maxwell equations, which would provide a
clearer connection between the voltage and current representation and the field represen-
tation than the Lagragian approach, but then the analogy with the quantum optics would
be difficult to see. For interested readers, the author refers to Ref. [3].
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or

V (z, t) = ∂tφ(z, t). (4.9)

The local value of the current is then calculated as

I(z, t) = − 1

L
∂zφ(z, t). (4.10)

Having obtained the flux representation, we can derive the Lagragian density

L(z, t) ≡ C

2
(∂tφ(z, t))

2 − 1

2L
(∂zφ(z, t))

2, (4.11)

for which we obtain the momentum conjugate of φ(z, t) as a charge density

q(z, t) ≡ δL(z, t)
δ∂tφ(z, t)

= C∂tφ(z, t). (4.12)

The Hamiltonian is then given by

H(t) ≡
∫

dz
1

2C
(q(z, t))2 +

1

2L
(∂zφ(z, t))

2. (4.13)

Since we will see a wave equation described by the flux, if we calculate the
Euler-Lagrange equation, the charge density and the flux are oscillating vari-
ables, i.e., the Hamiltonian given in Eq. (4.13) demonstrates a simple har-
monic oscillator. Therefore, we want to rewrite this as a field variable to see
the quantum analogy of the Hamiltonian written in creation and annihilation
operators. This can be obtained by defining

Ak(t) ≡
1√
l

∫
dze−ikz

(
1√
2C

q(z, t)− i

√
k2

2L
φ(z, t)

)
, (4.14)
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where the fields as a function of wave vector k obey periodic boundary con-
dition on a length l. Then we have

H(t) =
1

2

∑
k

(A∗
kAk + AkA

∗
k). (4.15)

From Eqs. (4.9) and (4.14), the input voltage Vin and output voltage Vout

can be written as

Vin(z, t) =

√
1

2lC

∑
k>0

[Ak(0)e
+i(kz−ωkt) + A∗

k(0)e
−i(kz−ωkt)] (4.16a)

Vout(z, t) =

√
1

2lC

∑
k<0

[Ak(0)e
+i(kz−ωkt) + A∗

k(0)e
−i(kz−ωkt)], (4.16b)

where the frequency ωk is dependent on k. By defining

Ain(z, t) ≡
√

1

2lL

∑
k>0

[Ak(0)e
+i(kz−ωkt) + A∗

k(0)e
−i(kz−ωkt)] (4.17a)

Aout(z, t) ≡
√

1

2lL

∑
k<0

[Ak(0)e
+i(kz−ωkt) + A∗

k(0)e
−i(kz−ωkt)] (4.17b)

we can describe the input voltage Vin and output voltage Vout as a function
of input and output field, respectively,

Ain(z, t) =
1√
Z0

Vin(z, t) (4.18a)

Aout(z, t) =
1√
Z0

Vout(z, t). (4.18b)

4.1.2 Quantization of Transmission Line Theory

As we have obtained the relationship between voltage-current representa-
tion and field representation in classical transmission line theory, we begin
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with its quantization. When introducing Lagragian density, the momentum
conjugate of φ(z, t) has been derived, which was the charge density. Using
the correspondence principle [16], we can just set those two physical variables
as operators obeying the commutation relation

[q̂(z), φ̂(z′)] = −iℏδ(z − z′),

in which follows that the quantized field amplitude of Eq. (4.14) obeys

[
Âk, Âk′

]
= ℏωkδk,k′ .

Therefore, we can write down the quantized field operator with creation â†k
and annihilation operators âk by

Âk =
√

ℏωkâk. (4.19)

Thus, we see by expressing the quantized Hamiltonian with Eq. (4.19) it is
consistent with the classical Hamiltonian form in Eq. (4.15)

Ĥ =
∑
k

ℏωk

[
â†kâk +

1

2

]
. (4.20)

The quantization of input and output voltage (4.16) reads

V̂in(t) =

√
1

2lC

∑
k>0

√
ℏωk

[
âke

−iωkt + h.c.
]

(4.21a)

=

∫ ∞

0

dω

2π

√
ℏωZ0

2

[
âin[ω]e

−iωt + h.c.
]

(4.21b)
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V̂out(t) =

√
1

2lC

∑
k<0

√
ℏωk

[
âke

−iωkt + h.c.
]

(4.22a)

=

∫ ∞

0

dω

2π

√
ℏωZ0

2

[
âout[ω]e

−iωt + h.c.
]
, (4.22b)

where

âin,out[ω] ≡ 2π

√
1

l

1

LC

∑
k≷0

âkδ(ω − ωk) (4.23)

is the input/output field annihilation operator obeying the commutation re-
lation [

âin,out[ω], (âin,out[ω
′])†
]
= 2πδ(ω − ω′). (4.24)

Finally, we obtain for the quantized voltage and current in frequency domain
as

V̂ [ω] = V̂in[ω] + V̂out[ω] =

√
ℏωZ0

2
(âin[ω] + âout[ω]) (4.25a)

Î[ω] =
1

Z0

(V̂in[ω]− V̂out[ω]) =

√
ℏω
2Z0

(âin[ω]− âout[ω]). (4.25b)

Now, the next question may arise how to deal with the load impedance
ZL, if we want to express it only by incoming and outgoing wave amplitude
Vin,out. This can be solved by using Ohm’s law

V = ZLI, (4.26)

where the voltage reflection coefficient Γ is read as6 (z = 0)

aout = Γain =
ZL − Z0

ZL + Z0

ain. (4.27)

6From now on, we will omit the hat for operators.
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So if ZL ̸= Z0, part of the incident wave is reflected. In other words, to
achieve no reflection, we have to set ZL = Z0

7. In this case, the impedances
are matched, and this is of significant importance to deliver the power without
loss or to obtain no reflection, which is favored, e.g. in environment-sensible
qubit measurement[16, 13, 23, 15, 24, 25].

To summarize this subsection, we have the relationship between voltage-
current representation and field representation classically and quantum me-
chanically.

4.2 Hybrid and Scattering Parameters

In this network analysis, which considers more than one input and one
output, we restrict ourselves to study the behavior of two inputs and out-
puts through a scattering element. In microwave network analysis, if the
component is connected only by two transmission lines - each for one input
and one output -, it is called "one-port network", while it is called "two-port
network", if the element is connected by four transmission lines - every two
inputs and two outputs -.

If we study the outputs through a device for some inputs, we have to
decide, what kind of input and output we want to consider, because this
consideration determines the characterization of the electronic component.
For example, if we apply a current as an input, we can measure the voltage
as an output. Hence, the component can be characterized by an impedance,
which can be also called as a transfer function in the language of control
theory. In the two-port network case, if two different currents are flowing
through the element as inputs from each port, obviously two different voltages
can be measured at each side (Fig. 4.2). Then, the device is described as a
2× 2 impedance matrix (also called as Z parameters)

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Z

[
I1
I2

]
, (4.28)

7At first glance, it may be confusing because two lines are connected and thus some
would naively expect aout = ain. However, ZL = Z0 does not mean a simple line, but a
disconnection, because ZL consists of the same "medium" as Z0 as it was for z < 0
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Figure 4.2: Schematic representation of impedance matrix Z. Two currents
are flowing as an input and two voltages are measured at each port. In case
of admittance matrix Y , the inputs and outputs are interchanged.

or, if the inputs and outputs are switched, a 2 × 2 admittance matrix (also
called as Y parameters)

[
I1
I2

]
=

[
Y11 Y12

Y21 Y22

]
︸ ︷︷ ︸

Y

[
V1

V2

]
. (4.29)

Furthermore, such as in voltage feedback amplifier, voltage and current can
be used as inputs, where we apply the voltage, e.g. at port 1 and want to
have the current as an output at port 2 and vice versa. In this case, the
so-called H or G parameters fulfill this requirement, namely,

[
V1

I2

]
=

[
H11 H12

H21 H22

]
︸ ︷︷ ︸

H

[
V2

I1

]
(4.30)

and [
V2

I1

]
=

[
G11 G12

G21 G22

]
︸ ︷︷ ︸

G

[
V1

I2

]
. (4.31)

The abstract model of the network parameters Z, Y,G, and H is depicted in
Fig. 4.3.
If we connect the components in cascade, it is convenient to use the so-
called ABCD matrix, which transmits the voltage and current at port 2 to
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(a) Network parameter Z

(b) Network parameter Y

(c) Network parameter G

(d) Network parameter H

Figure 4.3: Network parameters Z, Y,G,H represented as an abstract cir-
cuit model. Green variables correspond to inputs, and blue ones to outputs.
As described in general model of amplifier, (a) models the transresistance
amplifier with gain Z21, (b) the transconductance amplifier with gain Y21,
(c) the voltage amplifier with gain G11, and (d) the current amplifier with
gain H22.
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1 directly, in particular,

[
V1

I1

]
=

[
A B
C D

] [
V2

I2

]
. (4.32)

As we can see from Eqs. (4.3) and (4.4), it is difficult to measure voltages
and currents at high frequencies because the direct measurement of those
quantities requires the magnitude and phase of a traveling or of a standing
wave. Therefore, physical insights are somewhat lost. On the other hand,
the so-called scattering matrix which relates the incident and reflected waves
to each other can be directly obtained by a vector network analyzer. Once
the scattering parameters of the device are known, the conversion to network
parameters (Z, Y,H,G, and ABCD) (4.28) - (4.32) is possible. The scatter-
ing matrix S is defined as

[
aout
bout

]
=

[
S11 S12

S21 S22

] [
ain
bin

]
. (4.33)

Each conversion to different parameters can be found in appendix A.
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5 Directional Microwave SQUID Amplifier
Josephson effect is certainly one of the most important phenomena in the

field of superconductivity due to its various applications in electronics, sen-
sors, and high-frequency devices. A practical magnetic sensor is the Su-
perconducting Quantum Interference Detector (SQUID), which consists of a
superconducting loop interrupted by one or more Josephson junctions, de-
vices with the Josephson effect. Another application is using them as direc-
tional microwave SQUID amplifier (MWSA), which is a quantum amplifier
based on dc-SQUID. Its advantages over other amplifiers such as Josephson
Parametric Amplifier are high gain, wide bandwidth, near-quantum-limited
operation and physical separation of input-output signal (nonreciprocity)
[15]. The essences of directional amplification of MWSA are nonreciprocity
in spatial channels (such as circulator) and temporal channels (asymmetric
frequency conversion).

But before going into the details, we review the basics of Josephson Junc-
tion and dc-SQUID.

5.1 Josephson Junction

Josephson junction (JJ) is a device forming a superconductor-insulator-
superconductor layer8. This system makes use of the quantum phenomenon
called tunnel effect, which allows two superconductors to interact such that
an interesting effect arises - the celebrated Josephson effect. The fact that
this effect has so many applications is owned by its high nonlinearity. Indeed,
as in this MWSA the JJ is used for nonreciprocal frequency conversion[21],
which will be discussed at the end of this subsection.

Josephson Equations

The supercurrent Js is a direct consequence of the macroscopic quantum
feature of superconductivity. That is, because we can describe the macro-
scopic coherent quantum wave function as Ψ(r, t) = Ψ0(r, t)e

iθ(r,t), we can
say n∗

s = |Ψ0|2 as a Cooper pair density and

Js(r, t) =
q∗n∗

sℏ
m∗

(
∇θ(r, t)− 2π

Φ0

A(r, t)

)

8The insulator part is not a must, it can be replaced, e.g. by semiconductor or metal,
as well.
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as a supercurrent density, where θ is the global phase of the wave function, q∗
the charge and m∗ the mass of the Cooper pair, Φ0 = h/2e the quantum flux
and A the vector potential. This result is analogous to the wave functions of
quantum particles with |Ψ0| as a probability density and Jp as a probability
current, which can be obtained from the continuity equation. We want to
calculate the supercurrent density Js flowing between two superconductors
(thus in the insulator). In the microscopic derivation, we model the system
(macroscopic wavefunction inside the insulator) as

iℏ
∂

∂t
ΨL =µLΨL +KΨR

iℏ
∂

∂t
ΨR =µRΨR +KΨL

with Ψk =
√
nke

iθk , k = L,R, where ΨL/R denotes the wave function from
the left and right side of the insulator, respectively, and µL/R its chemical
potential. Then, we obtain the magnetic flux sensitive Josephson current

Is(ϕ) = I0 sin(ϕ)

with ϕ(r, t) = θR(r, t) − θL(r, t) − 2π
Φ0

∫ R

L
dl·A(r, t) and the characteristic

current I0, and the voltage dependent time varying phase difference ϕ

∂ϕ

∂t
=

2π

Φ0

V

with eV = µR − µL.

Response to a dc Current Source

The first Josephson equation is a result for current smaller than the char-
acteristic current I0. However, if we apply a dc current greater than I0 < IB,
part of the current changes to a normal current, since it exceeds the capable
superconducting current flowing across the junction. So, we obtain

IB = I0 sin (ϕ(t)) +
V (t)

R
. (5.1)

The reason for the time-dependency in the voltage V (t) despite the fact that
the constant bias current IB is flowing across the resistance R lies on Eq.
(5.1) itself. Since IB is fixed and the superconducting current I0 sinϕ(t) is
alternating, the normal voltage is the only remaining part oscillating. This
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Figure 5.1: Model of Current-biased resistively shunted junction (RSJ).
Adapted from [26].

plays an important role as a fluctuation term of the phase part Π(t) in the
harmonic balance treatment and contributes to generation of higher Joseph-
son harmonics nωJ , n ∈ Z (see following subsections).

Nonreciprocity in Frequency Conversion

Kamal et al. has derived the nonreciprocity in frequency conversion of
resistively-shunted JJ (RSJ) by using harmonic balance treatment[15, 21,
26](see Fig. 5.1). The harmonic balance analysis is a method to find the
steady state of a nonlinear differential equation, which system has a single or
multitone excitation. But strictly speaking, they have not used the harmonic
balance analysis, but the related small signal analysis, where the nonlinear
circuits are excited by two tones, one of which is very large (in this case JJ
is excited by a "local oscillator" with the Josephson frequency ωJ = 2eV/ℏ)
and the other is vanishing small (signal frequency ωm)[27]. The circuit is first
analyzed via harmonic balance under local oscillation alone. After that, we
examine the small-signal linear, time-varying circuit as a quasi-linear circuit
under small-signal MW excitation.

What we need for the analysis are the two Josephson equations9

ω̂ =ω0 sinϕ (5.2a)

ω̌ =ϕ̇ (5.2b)

with ω̂ := IR/ϕ0, ω̌ := V/ϕ0, and ω0 := I0R/ϕ0. From this, we can obtain the
boundary condition by making use of the result of the quantized transmission
lines (see Eq. (4.25))

ω̌ + ω̂ = ωB + 2ωin (5.3)
9We adopt the notations of the original paper[15, 26].
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with ωB = IBR/ϕ0 the "bias current". We assume the phase consists of the
running state term (ωJt) and fluctuation terms due to bias (Π)10 and signal
modulation (Σ), which are treated separately and thus gives

ϕ(t) = ωJt+ δϕ(t) = ωJt+Π(t) + Σ(t),

where

Π(t) :=
K∑
k=1

pxk cos(kωJt) + pyk sin(kωJt)

Σ(t) :=
N∑

n=−N

sxn cos(nωJt+ ωmt) + syn sin(nωJt+ ωmt).

K denotes the number of Josephson harmonics (kωJ) in steady state and N
the number of Josephson harmonics (nωJ + ωm) in small signal modulation
we want to consider.

As pointed out previously, we first attack this nonlinearity problem with
the harmonic balance treatment with the large local oscillation ωJ . Since
we have to analyze the steady-state response, we do not consider the signal
contribution such as ωin and Σ. Thus, by putting the Josephson equations
(5.2) into (5.3)11, collecting both quadratures (sin and cos) and comparing
the pump coefficients p

x/y
k , we obtain for example for K = 1

Π(t) = ϵ cos(ωJt)

and for K = 2

Π(t) =

(
ϵ+

ϵ3

4

)
cos(ωJt)−

ϵ2

4
sin(2ωJt),

where ϵ = ω0/ωB can be interpreted as a measure of nonlinearity, since for
ϵ → 1 the temporal behavior of the voltage ω̌ is highly nonlinear[26, 28]. The
meaning of this result is the "colored" pump: As mentioned before, Π repre-
sents the pumping from the bias current ωB and normally this pump should
have a monochromatic contribution. Indeed, in the first harmonic treatment
(K = 1) we see only frequency ωJ , but in the additional Josephson harmonic
(K = 2) we further obtain 2ωJ , which breaks the symmetry between the up-
and down-frequency conversion amplitudes.

10This treatment is justified by Eq. (5.1).
11Here, we expand the current-phase relation by Π, namely sin(ϕ) = sin(ωJ t + Π) ≈

sin(ωJ t) + cos(ωJ t)Π
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After the harmonic balance analysis, we are left with dealing the quasi-
linear circuit under small MW excitation. The participation of the signal into
the system leads to spatial asymmetry between the up- and down-frequency
conversion amplitudes. This can be confirmed by studying the scattering
matrix. For this purpose, we aim to get a relation

⃗̂ω =M̂Σ⃗ (current− phase relation)

⃗̌ω =M̌Σ⃗ (voltage− phase relation)

with the bases

X⃗ =


X[ωm]

X[ωJ + ωm]
X[−ωJ + ωm]

X[−ωm]
X[−ωJ − ωm]
X[ωJ − ωm]

 ,

because we can transform the admittance matrix YJ = M̂M̌−1 to the scatter-
ing matrix S = W−1(1+YJ)

−1(1−YJ)W with W = diag(|ωJ+ωm|, |ωm|, |ωJ−
ωm|)/ωB (see section 4.2). Henceforth, for this matrix representation above
we use those Josephson equations (5.2), where for the current-phase relation
we make the following approximation

sin(ϕ(t)) ≈ sin(ωJt) + cos(ωJt)Π(t)− sin(ωJt)Π(t)Σ(t).

Finally, the scattering matrix that gives the relationship between each in-
coming and outgoing mode of the system aout[ωm]

aout[ωJ + ωm]
aout[−ωJ + ωm]

 =

 rm td sd
tu r+ v+−
su v−+ r−

 ain[ωm]
ain[ωJ + ωm]
ain[−ωJ + ωm]

 ,

where
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Figure 5.2: Asymmetry in frequency conversion in RSJ. (a) Frequency
landscape for different expansions: three-wave mixing with (K = 1, N = 1)
(upper panel) and three- and four-wave mixing (K = 2, N = 1). While
the frequency conversion occurs symmetric in the first Josephson harmonic
case (ωJ), due to the appearance of the second Josephson harmonics (2ωJ)
the symmetric conversion is broken. (b) Asymmetry in frequency conversion
for the two cases discussed above parametrized as (|tu|2 + |su|2) − (|td|2 +
|sd|2). The lower plot (purple) represents (K = 1, N = 1) and shows no
asymmetry, while in (K = 2, N = 1) case the strong nonreciprocal frequency
up-conversion can be recognized. Adapted from [26].

rm =1 +
ϵ2

1− (ωm/ωB)2
,

r± =1∓ ϵ2

2ωm/ωB(1− ωm/ωB)
,

tu =
−iϵ√

ωm/ωB(1 + ωm/ωB)

(
1 +

ϵ2

4

3 + (ωm/ωB)
2

1− (ωm/ωB)2

)
,

td =
−iϵ√

ωm/ωB(1 + ωm/ωB)

(
1 +

ϵ2

4

1− ωm/ωB

1 + ωm/ωB

)
,

su =
iϵ√

ωm/ωB(1 + ωm/ωB)

(
1 +

ϵ2

4

3 + (ωm/ωB)
2

1− (ωm/ωB)2

)
,

sd =
iϵ√

ωm/ωB(1 + ωm/ωB)

(
1 +

ϵ2

4

1− ωm/ωB

1 + ωm/ωB

)
,

v±∓ =± ϵ2

2ωm/ωB

√
1∓ ωm/ωB

1± ωm/ωB

.

This result tells us two key points regarding to pumped JJ: Firstly, this device
has a preferred frequency conversion due to the bias current. Secondly, the
scattering matrix is not symmetric. That is, there is a favored direction for
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each input with different frequencies (see also Fig. 5.2). So, this pumped
JJ already tells us the dc-SQUID possesses a very interesting effect. Indeed,
this asymmetric up- and down-frequency conversion amplitudes of JJ plays
an essential key in the directional MWSA.

5.2 dc-SQUID

A superconducting quantum interference device (SQUID) consists of two
JJs connected parallel and joined by a superconducting loop. The device
is called dc-SQUID if a dc-current flows through the SQUID. In MWSA,
this dc-current works as a pump into the amplifier together with an external
flux. Now, the dc-SQUID is responsible for the nonreciprocity in a temporal
channel as in case of JJ, which yields to the "colored" pump and hence to
nonequality in gain and reverse gain (cf. 2).

Superconducting current of a dc-SQUID

The key point of the high nonlinearity is the fluxoid quantization in the
superconducting loop given by

∮
c
dl·∇θ =

∮
c
dl· 2π/Φ0(ΛJs +A) = 2πn, n ∈

Z, because as a consequence the phase difference ϕL and ϕR are connected
to each other with

ϕR − ϕL =
2πΦ

Φ0

=: 2ϕD,

where Φ is the total flux enclosed by the loop. As a result, by Kirchhoff’s
law, we obtain with a common phase ϕC := (ϕR + ϕL)/2

IB =Is,L + Is,R = I0(sinϕL + sinϕR) = 2I0 cos(
ϕR − ϕL

2
) sin(

ϕR + ϕL

2
)

=2I0 cos(π
Φ

Φ0

) sin(ϕC). (5.4)

Now, we have to consider the inductance effect of the superconducting loop,
which follows

Φ = Φext + Φloop

and
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Is,L =IC + ID

Is,R =IC − ID

with

IC =I0 cos(π
Φ

Φ0

) sin(ϕC)

ID =− I0 sin(π
Φ

Φ0

) cos(ϕC),

which leads to asymmetry in the current flow. So, the nonequality ϕL ̸= ϕR

is the cause of this high nonlinearity. Hence,

Φ = Φext + LID = Φext − LI0 sin(π
Φ

Φ0

) cos(ϕC). (5.5)

It is also important to note regarding the biases that the bias current IB
plays the role of common mode bias and the external flux Φext the role of
differential mode. Indeed, in MWSA analysis, IB is responsible for energy
supply and Φext for transferability of the input signal (differential mode) into
the output signal (common mode)[15, 20, 26].

Hamiltonian of dc-SQUID

Since in the next subsection we will discuss the current-phase relation and
voltage-phase relation for the dc-SQUID, we shall write its Hamiltonian[20]

HSQUID =
Q2

C

2C
+
Q2

D

2C
+2EJ

(
1

πβL

(
ϕD − ϕext

2

)2

− cos(ϕD) cos(ϕC)−
IB
2I0

ϕC

)
︸ ︷︷ ︸

USQUID

with

ϕD =
1

2
(ϕL − ϕR) , ϕC =

1

2
(ϕL + ϕR) ,

ID =
1

2
(IL − IR) , IC =

1

2
(IL + IR) ,

βL =
2LI0
Φ0

, EJ =
I0Φ0

2π
,

Φ0 =
h

2e
, ϕ0 =

ℏ
2e

, ϕext =
2πΦext

Φ0

,
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Figure 5.3: Circuit schematic of a conventional MWSA. The SQUID loop is
biased by a direct current IB and an external flux Φext. An input voltage V1

generates an oscillating current, which is transformed through an inductance
as a small flux modulation δΦ. This causes an output voltage V2 = Vout =
VΦδΦ. Adapted from [26].

where we have already transformed the operators into common and differen-
tial modes.

Voltage State and Amplification

Voltage state occurs, if the constant bias current goes above the maximal
superconducting current I0 at zero applied magnetic flux. We introduce this
subsection because it is important to physically understand the directional
MWSA, which cannot really be read out from the next section. Let us
consider the case βL ≪ 1, which aim is to see, where the gain actually comes
from. In this limit, Eq. (5.5) reduces to

Φ

Φ0

=
Φext

Φ0

− βL

2
sin(π

Φ

Φ0

) cos(ϕC) ≈
Φext

Φ0

= const.. (5.6)

Since there is a normal current flowing across the junctions, we add in Eq.
(5.4) the voltage term proportional to time derivative of the common phase
ϕC

IB = 2I0 cos(π
Φ

Φ0

) sin(ϕC) +
2

R

Φ0

2π

d

dt
ϕC .

We can then obtain the time-averaged voltage
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⟨V (t)⟩ = I0R

√(
IB
2I0

)2

− cos2
(
π
Φext

Φ0

)
, (5.7)

which is relevant to define the "gain" of the amplifier VΦ := ∂ ⟨V (t)⟩ /∂Φext.
Usually, this sensitivity of the flux to voltage is called flux-to-voltage transfer
coefficient. The highest sensitivity can be achieved for Φext = Φ0/4[20, 26,
28]. The reason for interpreting VΦ as a gain can be found by investigating
the time-averaged voltage ⟨V (t)⟩. If we expand it by the flux Φext at Φ0/4,
we have

⟨V (t)⟩ (Φext) = ⟨V (t)⟩ (Φ0/4)︸ ︷︷ ︸
bias term

+VΦ (Φ0/4) δΦ︸ ︷︷ ︸
Vout

+... ,

henceforth sensitive to small flux variations(see Fig. 5.3). But the problem
is the constant flux Φ due to βL ≪ 1 because this yields to no differential
voltage, thus no input in the SQUID loop, which is in differential mode, can
be amplified12. On top of that, it is better to take βL ∼ 1 to increase the
sensitivity, but avoiding hysteresis curves. It turns out the differential current
appears as an inductive current term Icirc circulating around the SQUID loop
described by

Icirc =
I0
πβL

(−2ϕD + ϕext) .

The detailed current-phase relation of common and differential mode is held
in the next section.

5.3 Directional Microwave SQUID Amplifier

The directional MWSA is a dc-SQUID connected with external circuits
for incoming input signals and outgoing output signals (see Fig. 5.4). This
signal input contributes to the second nonreciprocity, the physical separation
of input-output signals.

In this thesis, we are working with the scattering matrix of MWSA. Thus
we want to discuss its derivation briefly. The calculation flow is analogous
to that of RSJ, but now with two different modes in this case.

12Nevertheless, the flux will fluctuate in time due to oscillating voltage contributing to
steady-state response as Π(t).
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Figure 5.4: Representations of two-port amplifiers (a) in network parame-
ters Y , (b) Z, and (c) H (see 2 for details). The left pictures are representing
the corresponding network parameters, and the right ones the configurations
for the dc-SQUID. As mentioned in the main text, the boxed device is the
dc-SQUID connected by external circuits. Figure dapted from [15].

Small Signal Analysis

Inserting the result of the dc-SQUID Hamiltonian into the equation IC,D/I0 =
−∂(USQUID/2EJ)/∂ϕC,D, the current-phase and voltage-phase relation is given
by

ω̂C =
ωB

2
− ω0 sinϕC cosϕD, ω̌C =

ϕ̇C

ϕ0

ω̂D =
ω0

πβL

(−2ϕD + ϕext)− ω0 cosϕC sinϕD, ω̌D =
ϕ̇D

ϕ0

.

Now, we want to use the boundary condition for common and differential
modes with the input-output relation (see Eq. (4.25)). These common and
differential inputs and outputs come from the same bias port as illustrated
by Fig. 5.4 and are separated into left and right currents and voltages in the
SQUID-loop. Since we want to utilize the wave amplitude representation,
we model the resistance of JJ as a semi-infinite transmission line by making
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Figure 5.5: Model of the directional microwave SQUID amplifier. IB =
ILB+IRB is the common mode bias current and ϕD = ϕR−ϕL is the differential
mode bias flux. We stress the "real" input and output come from the bias
port as depicted in Fig. 5.4 and are separated into "left" and "right" currents.
Figure dapted from [26].

use of Caldeira-Leggett model [15, 22, 29, 26]. Henceforth, these lead to
the appearance of two input and output signals representing the currents
and voltages dropped across the left/right resistance(see Fig. 5.5). Since we
obtain the common and differential modes by inserting into the left and right
propagating waves, the left and right resistance of JJ has also the meaning
of representing the common and differential modes. That is, we can neglect
the external circuit.
Finally, we get using the above relations

ω̌C,D(t) = ω̂C,D(t) + 2ωin,(C,D)(t).

Since we have everything to start with the harmonic balance analysis, we
again distinguish between fluctuations due to the bias (ΠC,D) and due to the
signal modulations (ΣC,D)

ϕC(t) =ωJt+ δϕC(t) = ωJt+ΠC(t) + ΣC(t),

ϕD(t) =φ0 + δϕD(t) = φ0 +ΠD(t) + ΣD(t),

where ωJ = Vdc/ϕ0 and φ0 are the average static values of each phases. In dc-
SQUID case, Vdc is the static voltage applied across the SQUID loop biased
in the running state of the phase particle. As usual we expand ΠC,D and
ΣC,D as

ΠC,D(t) :=
K∑
k=1

pxk,(C,D) cos(kωJt) + pyk,(C,D) sin(kωJt)

ΣC,D(t) :=
N∑

n=−N

sxn,(C,D) cos(nωJt+ ωmt) + syn,(C,D) sin(nωJt+ ωmt)
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such that we can evaluate the coefficients of ΠC,D by putting into the steady-
state boundary conditions

ω̌C,D − ω̂C,D = 0.

One will then notice that the external flux ϕext plays an important role
regarding to asymmetry. The essence in this discussion is ϕext can change the
number of harmonics of the Josephson oscillation involved in Π. For example,
ΠD = 0 for ϕext = 0, which means ΠD cannot contribute to the asymmetric
frequency conversion. As pointed out in [20] and [15] the trajectory in the
SQUID potential is maximized for ϕext = π/2 and will lead to directional
gain in the MWSA.

As we get the steady-state response, we can move on to the small signal
analysis. Hence, we include ΣC,D term in our calculation as the small signal
perturbation. For this, as in RSJ case, we describe the current-phase and
voltage-phase relationship in matrix form as

[
⃗̂ωC

⃗̂ωD

]
=

[
M̂CC M̂CD

M̂DC M̂DD

]
︸ ︷︷ ︸

M̂

[
Σ⃗C

Σ⃗D

]
[
⃗̌ωC

⃗̌ωD

]
=

[
M̌CC M̌CD

M̌DC M̌DD

]
︸ ︷︷ ︸

M̌

[
Σ⃗C

Σ⃗D

]

giving

Y = M̂M̌−1.

The basis of those vectors are defined in all signal and sideband frequencies
of interest, namely (ΣC [nωJ +ωm],ΣD[nωJ +ωm]), n ∈ [−N,+N ] yielding to
a 4(2N + 1)× 4(2N + 1) admittance matrix.

Scattering Matrix of MWSA

Using the result of the admittance matrix, we use the identity to obtain
the scattering representation of the quantum amplifier

S = (1+ Y)−1 (1− Y) .
Since we are only interested in signal frequencies ωm and not their sideband
frequencies nωJ + ωm, the 2-input-2-output relation is expressed as
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Figure 5.6: Frequency spectrum of Josephson harmonics, and small scat-
tering gain and reverse gain of dc-SQUID with different expansions of non-
linearity: (a) to the first, (b) third, and (c) fifth order. Parameters used were
Φext = Φ0/4, βL = 1, and ΩC = 1. Figure dapted from [15].

[
AC,out[ωm]
AD,out[ωm]

]
=

[
sCC [ωm] sCD[ωm]
sDC [ωm] sDD[ωm]

] [
AC,in[ωm]
AD,in[ωm]

]
The numerical result is shown in Fig. 5.6. But this is not a correct input-
output relation, and henceforth we need to add idlers to be able to require
|sCD[ωm]| > 1, i.e.,

[
AC,out[ωm]
AD,out[ωm]

]
=

[
sCC [ωm] sCD[ωm]
sDC [ωm] sDD[ωm]

] [
AC,in[ωm]
AD,in[ωm]

]
+

[
FC [ωm]
FD[ωm]

]
.

(5.8)
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in order to fulfill the commutation relation

[
AC,out[ωm], A

†
C,out[ωm]

]
=|sCC [ωm]|2 + |sCD[ωm]|2 +

[
FC [ωm], F

†
C [ωm]

]
= 1

(5.9a)[
AD,out[ωm], A

†
D,out[ωm]

]
=|sDC [ωm]|2 + |sDD[ωm]|2 +

[
FD[ωm], F

†
D[ωm]

]
= 1.

(5.9b)
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6 2-input-2-output Quantum Feedback Ampli-
fier

In this section, we analyze properties of the 2-input-2-output QFA (2i2o
QFA) in the feedback system because they have different features compared
to the conventional quantum amplifiers (the phase-preserving amplifiers).
Notably, while Yamamoto proved the feedback control of the signal is possible
by using the idler in the phase-preserving amplifier case [30], it is not apparent
the second signal coming into the 2i2o amplifier is able to feedback control
the target signal. Here, we mean by feedback controllability, whether we
get a similar result as in classical feedback amplifier case, namely, G/(1 +
GK). We also demonstrate the gain fluctuations of the MWSA can indeed
be suppressed by the signal. In addition to that, we show the quantum-noise
limit can be reached and how the added noise in the feedback system affects
the total noise of the output.

6.1 Model

The model we study is shown in Fig. 6.1. At the moment, we do not
consider added noises, that is, d4, d5, and FK will be not investigated until
subsection 6.3.

Obviously, the suggested model here is one of many possibilities to design,
but the inputs and outputs of the MWSA G cannot be changed. I. e., a3
and b1 has to be the system output and input, respectively, and ã2 and b2
is the input and output of the feedback loop. The reason is the scattering
element sG21 which is the only gain as mentioned in section 2. If we remember

Figure 6.1: 2-input-2-output quantum feedback amplifier model.
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the physical interpretation of the feedback amplifier mechanism in subsection
2.2.1, the key idea is that the multiplication of the controller and the gain is
in the feedback loop circle. Therefore, the inputs and outputs of G cannot
be replaced13. On the other hand, the inputs and outputs at the controller
can be chosen arbitrarily. One can confirm that for each combination we
will obtain different controller transfer function in the denominator, that is,
1− sG21s

K
ij .

The input-output relations of the amplifier and the controller is described
as follows: Assume an arbitrary unitary coherent controller K (i.e. sK,†sK =
sKsK,† = 1) with [

a2
b3

]
=

[
sK11 sK12
sK21 sK22

] [
a1
b2

]
. (6.1)

Now combining Eq. 6.1 with Eq. 5.8, where in this case AD,in = a2, AC,in =
b1, AD,out = a3, and AC,out = b2, we obtain the feedback gain scattering
matrix sG,fb

21

[
a3
b3

]
=

1

1− sG21s
K
12

[
sG11s

K
11 sG12 + sK12|sG|

sK21 + sG21|sK | sG22s
K
22

] [
a1
b1

]
+

1

1− sG21s
K
12

[
1− sG21s

K
12 sG12s

K
11

0 sK22

] [
F1

F2

]
.

(6.2)

In the ideal quantum limit, we then have

[
a3
b3

]
=

[
0 0

− |sK |
sK12

0

] [
a1
b1

]
+

[
1 0

0 − sK22
sK12

1
sG21

][
F1

F2

]
. (6.3)

Hence, we obtain a similar structure as in classical case (Eq. (2.5)). We
remind the readers that FG

1 scales with O(1), but FG
2 with O(sG21). Thus,

the order of the effective idler is accordingly reduced to O(1/sK12).

How can we interpret this result physically? This feedback amplification
physics is demonstrated in Fig. 6.2. For simplicity, we set a beam splitter
(mirror) as a feedback controller, but as can be seen from the picture, this can
be treated generically. We remind the readers the input signal a1 does only
have the option to be transmitted by sK21 and reflected by sK11, and vice versa
for b2 in the feedback loop. If we now assume an ideal quantum amplifier with

13However, if the directionality is not present, and the device can amplify bidirectionally,
the only restriction is the off-diagonal scattering element is in the feedback loop.
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Figure 6.2: Physical interpretation of 2-input-2-output quantum feedback
amplifier model. The ideal quantum amplifier is designated by a triangle,
where the other port for b1 and a3 is not depicted for clarity, and the beam
splitter (mirror) by a blue box. In the ideal amplifier limit, the gain is infinite.

infinite gain sG21 → ∞, then the output of a signal (b2) would also be infinite.
This is, however, a huge problem because the amplitude of b3 is finite14. So,
the only solution is to require the input of the amplifier a2 is 015. Then, let
us begin with the incoming signal a1, which will be partly transmitted to b3
by sK21 and partly reflected by sK11. The reflected signal sK11a1 is traveling to
the amplifier, but this device only accepts zero-amplitude. The only way to
fulfill this requirement is to send another signal which is π-shifted in order to
obtain destructive interference. But from where? This signal is provided by
the quantum amplifier, which output gives −sK11/s

K
12a1. So, this signal then

transmits through the beam splitter to eliminate the wave from a1, and the
reflected one finally ends up with

b3 =

(
sK21 −

sK11s
K
22

sK12

)
a1 = −|sK |

sK12
a1.

6.2 Feedback Gain Analysis

In this subsection, we want to analyze the relative sensitivity of each element
as a function of the relative sensitivity of the original gain ∆sG21/s

G
21. Using

14In the reality, this means the gain is much higher than the expected output.
15In the real consideration, this means small enough amplitude.
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|x+ ϵ| − |x| = Re[x⋆ϵ]/|x|+O(ϵ), we can prove the relative sensitivity looks
similar to Eq. 2.12, namely,

∆sG,fb
11

sG,fb
11

= Re

[
∆sG11
sG11

+
sK12s

G
21

1− sG21s
K
12

∆sG21
sG21

]
= Re

[
1

1− sG21s
K
12

∆sG21
sG21

]
,

∆sG11
sG11

=
∆sG21
sG21

(6.4a)

∆sG,fb
12

sG,fb
12

= Re

[
sG12

sG12 + sK12|sG|
∆sG12
sG12

+
sK12s

G
21

1− sG21s
K
12

∆sG21
sG21

+
1

1 + sG12/s
K
12|sG|

∆|sG|
|sG|

]
= Re

[
1

1− sG21s
K
12

∆sG21
sG21

+
1

1 + sG12/s
K
12|sG|

∆|sG|
|sG|

]
,

∆sG12
sG12

=
∆sG21
sG21
(6.4b)

∆sG,fb
21

sG,fb
21

= Re

[
1

1− sG21s
K
12

sK11s
K
22s

G
21

sK12 + sG21|sK |
∆sG21
sG21

]
(6.4c)

∆sG,fb
22

sG,fb
22

= Re

[
∆sG22
sG22

+
sK12s

G
21

1− sG21s
K
12

∆sG21
sG21

]
= Re

[
1

1− sG21s
K
12

∆sG21
sG21

]
,

∆sG22
sG22

=
∆sG21
sG21

. (6.4d)

All relative sensitivities are suppressed by O(1/(1 − sG21s
K
12)), thus robust

against gain fluctuations. However, we see the relative sensitivity is depen-
dent on sG21s

K
12, so thus increasing sG21 is not enough, if sK12 is taken very small.

The result of gain without and with feedback is given in Fig. 6.3.

6.3 Quantum-Noise Limit and Added Noise

After we have evaluated the closed-loop feedback scattering matrix and the
relative sensitivities of each scattering elements, questions may arise, how
much the idler noise FG or unwanted noises would contribute to the signal
because these limit the detection performance of tiny signals. Therefore, we
consider all noises as depicted in Fig. 6.1. To quantify the noise attributes,
we make use of signal-to-noise ratio

(S/N) :=
|⟨x⟩|2⟨
|∆x|2

⟩ (6.5)
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Figure 6.3: Power gain of the MWSA with no-feedback (ϵ = 0.16± 0.016)
(blue) and with feedback with ϵ = 0.34 ± 0.034 and sK12 = −1/20 (orange).
The simulation is done with K = 3, N = 2. The parameters are chosen
Φext = Φ0/4, βL = 1, ΩC = 1.

where ⟨
|∆x|2

⟩
:=

1

2

⟨
∆x∆x† +∆x†∆x

⟩
(6.6)

with ∆x = x− ⟨x⟩.
First, as an introduction, let us study only the output of a quantum amplifier
G. We actually recognize the operational amplifier (op-amp) (and henceforth
MWSA) is 2-signal-2-idler quantum amplifier [16], which can be described
by

[
a3
b2

]
=

[
sG11 sG12
sG21 sG22

] [
a2
b1

]
+

[
FG
1

FG
2

]
=

[
sG11 sG12
sG21 sG22

] [
a2
b1

]
+

[
sG13 sG14
sG23 sG24

] [
d1
d†2

]
,

(6.7)

with the vacuum noise di, so
⟨
d†idj

⟩
= 0 and

[
di, d

†
j

]
= δi,j. Applying Eqs.

(6.5) and (6.6), the signal-to-noise ratio of b2 is
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( ˜S/N)2 =
|⟨b2⟩|2⟨
|∆b2|2

⟩ =

∣∣∣⟨a2⟩+ sG22
sG21

⟨b1⟩
∣∣∣2⟨

|∆a2|2
⟩
+
∣∣∣ sG22sG21

∣∣∣2 ⟨|∆b1|2
⟩
+

1

2

∣∣∣∣sG23sG21

∣∣∣∣2 + 1

2

∣∣∣∣sG24sG21

∣∣∣∣2︸ ︷︷ ︸
=A

,

(6.8)
where A(0)

2 is called added noise. In this case, the added noise is just the idler
of the quantum amplifier. This added noise can be generalized for N−2 noise
sources as

A(0)
2 =

1

2|sG21|2
N∑
k=3

|sG2k|2 =
1

2
−

1−
∣∣sG22∣∣2

2 |sG21|
2 +

N∑
k ̸=4

|sG2k|2 (6.9)

=

∣∣∣∣sG24sG21

∣∣∣∣2 − 1

2
+

1−
∣∣sG22∣∣2

2 |sG21|
2 (6.10)

≥1

2
−

1−
∣∣sG22∣∣2

2 |sG21|
2 , (6.11)

where the last two equality and inequality can be shown by using the canon-
ical commutation relation (CCR) (see Appendix B for the proof). Because
of the restriction to the degree of freedom in the added noises, we can actu-
ally express A(0)

2 only with three matrix elements. Furthermore, we notice
the added noise can indeed reach the quantum noise limit A(0)

2 ≥ 1/2 for
|sG21| → ∞ since |s22| ≤ 1. We note we have not made any assumptions
here except for being sG21 the gain. That is, the added noise of any transfer
functions, including closed-loop transfer functions, written by Eq. (6.7) with
21 matrix element as the gain can be expressed as the equation above. So,
Eq. (6.11) is quite fundamental.

Now let us assume there are additional noise contributions in the follow-
ing way: The quantum amplifier and the controller experience another noise
source such that

[
FG
1

FG
2

]
→
[
sG13 sG14 sG15
sG23 sG24 sG25

] d1
d†2
d3

 (6.12)

and [
FK
1

FK
2

]
=

[
sK13
sK23

]
d4. (6.13)
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In addition to that, we model the loss of transmission lines as a beam splitter
such that the inputs a2 at G and b2 at K change to

b2 → b̃2 = α1b2 + δ1d5 (6.14)
a2 → ã2 = α2a2 + δ2d6. (6.15)

Finally, we reach to the following closed-loop input-output relation

[
a3
b3

]
=

1

1− α1α2sG21s
K
12

[
α2s

G
11s

K
11 sG12 + α1α2s

K
12|sG|

sK21 + α1α2s
G
21|sK | α1s

G
22s

K
22

] [
a1
b1

]
+

[
F̃G
1

F̃G
2

]
+

[
F̃K
1

F̃K
2

]
,

(6.16)

with16

[
F̃G
1

F̃G
2

]
=

[
sG,fb
13 sG,fb

14 sG,fb
15 sG,fb

16

sG,fb
23 sG,fb

24 sG,fb
25 sG,fb

26

]
d1
d†2
d3
d6

 (6.17)

and [
F̃K
1

F̃K
2

]
=

[
sK,fb
13 sK,fb

14

sK,fb
23 sK,fb

24

] [
d4
d5

]
. (6.18)

So the matrix elements sGij(i, j = 1, 2) in Eq. (6.11) changes to

sG11 → sG,fb
11 =

α2s
G
11s

K
11

1− α1α2sG21s
K
12

, sG12 → sG,fb
12 =

sG12+α1α2sK12|sG|
1−α1α2sG21s

K
12

,

sG21 → sG,fb
21 =

sK21 + α1α2s
G
21|sK |

1− α1α2sG21s
K
12

, sG22 → sG,fb
22 =

α1sG22s
K
22

1−α1α2sG21s
K
12
. (6.19)

16For the detailed description of those elements, see Appendix B.
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Analogous to the proof in Appendix B, we then obtain

A(fb)
2 =

1

2|sG,fb
21 |2

N=8∑
k=3

|sG,fb
2k |2

=
1

2
−

1−
∣∣∣sG,fb

22

∣∣∣2
2
∣∣∣sG,fb

21

∣∣∣2 +
N∑
k ̸=4

|sG,fb
2k |2 (6.20a)

=

∣∣∣∣∣sG,fb
24

sG,fb
21

∣∣∣∣∣
2

− 1

2
+

1−
∣∣∣sG,fb

22

∣∣∣2
2
∣∣∣sG,fb

21

∣∣∣2 (6.20b)

≥1

2
−

1−
∣∣∣sG,fb

22

∣∣∣2
2
∣∣∣sG,fb

21

∣∣∣2 . (6.20c)

In the quantum amplifier limit, we have the following relations

∣∣∣∣∣sG,fb
24

sG,fb
21

∣∣∣∣∣ =
∣∣∣∣ α1s

K
22s

G
24

sK21 + α1α2sG21 |sK |

∣∣∣∣→ ∣∣∣∣sK22α2

∣∣∣∣ ∣∣∣∣sG24sG21

∣∣∣∣ ≈ ∣∣∣∣sG24sG21

∣∣∣∣ (6.21a)∣∣∣∣∣sG,fb
22

sG,fb
21

∣∣∣∣∣ =
∣∣∣∣ α1s

K
22s

G
22

sK21 + α1α2sG21 |sK |

∣∣∣∣→ ∣∣∣∣sK22α2

∣∣∣∣ ∣∣∣∣sG22sG21

∣∣∣∣ ≈ ∣∣∣∣sG22sG21

∣∣∣∣ , (6.21b)

where we have assumed in the last approximation
∣∣sK22∣∣ ≈ |α2|. If

∣∣sK22∣∣ ≈
|α2| ≲ 1, which indirectly requires high feedback gain limit

∣∣∣sG,fb
21

∣∣∣ ≈ 1/
∣∣sK12∣∣→

∞ because of the unitary requirement of sK , we obtain

lim
|sG,fb

21 |→∞
A(fb)

2 ≈ lim
|sG21|→∞

A(0)
2 =

∣∣∣∣sG24sG21

∣∣∣∣2 − 1

2
, (6.22)

thus the added noise is only limited by the idler noise sG24 and is independent
of other noise sources. So to reach the quantum noise limit, the feedback
system can be designed more or less roughly, but the quantum amplifier
itself has to be noiseless as possible.
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Figure 7.1: Coherent P controller in physical model (left) and in block
diagram (right).

7 Directional Coherent Active P, I, and D Con-
troller

Now, since we know the second signal can indeed feedback control the
other signal, we go to the next stage, namely, giving the quantum feedback
amplifier a certain functionality. For the realization of a CPID controller,
we obviously need coherent P, I, and D controller. In this subsection, those
three controllers are presented.
In contrast to NDPA, thanks to its directionality we only need two circula-
tors for realizing a coherent P and D controller instead of three. On top of
that, if we use the NDPA, constructing the coherent I controller would be
difficult: For designing this with a cavity as a feedback controller we need a
feedback loop involving only reflected waves. However, this kind of feedback
loop violates the Ito rule, which is not the case for MWSA due to its nonre-
ciprocity.
The focus mainly lies on the added noises in the whole feedback system by
applying the result obtained in section 6. From here on, we assume a perfect
directional quantum amplifier, that is, sG11 = sG22 = 0, and |sG| = 117.

7.1 Coherent P Controller

The P control scheme uses a beam splitter or mirror as a controller as
depicted in Fig. 7.1. The feedback controller is just[

α −β
β α

]
.

17For non-ideal case, the result is given in Appendix B

58



Since it has the same structure as that introduced in section 6 and the control
parameters are frequency-independent, further discussions are omitted.

7.2 Coherent D Controller

In case of D controller, the feedback structure is the same, but we replace
the beam splitter with the cavity, where its transfer function sK is written
as [

a2
b3

]
=

1

s− i∆+ γ/2

[
s− i∆ −γ/2
−γ/2 s− i∆

] [
a1
b2

]
(7.1)

with the detuning from the carrier frequency ∆ = ωP − ωcav and the decay
rate γ. Applying this Eq. 7.1 to Eq. 6.2, we obtain

[
a3
b3

]
=sD

[
a1
b1

]
+

[
FD
1

FD
2

]
=

1

1− sG,D
21 sK,D

12

[
0 sG,D

12 + sK,D
12 |sG,D|

sK,D
21 + sG,D

21 |sK,D| 0

] [
a1
b1

]
+

1

1− sG,D
21 sK,D

12

[
1− sG,D

21 sK,D
12 0

0 sK,D
22

] [
FG,D
1

FG,D
2

]
=

1

s+ (sG,D
21 + 1)γD

2

[
0 sG,D

12 (s+ γD
2
)− γD

2

sG,D
21 (s+ γD

2
)− γD

2
0

] [
a1
b1

]
+

[
1 0
0 s

s+(sG,D
21 +1)γD/2

] [
FG,D
1

FG,D
2

]
(7.2)

Figure 7.2: Coherent D controller in physical model (left) and in block
diagram (right).
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Figure 7.3: Gain plot of coherent passive and active D controller with
different amplifier gains sG21 = 1, 10, 100, and ∞.

and in the ideal limit sG,D
12 → 0 and sG,D

21 → ∞

[
a3
b3

]
=

[
0 0

s
γD/2

+ 1 0

] [
a1
b1

]
+

[
1 0
0 − s

sG21γD/2

] [
FG,D
1

FG,D
2

]
. (7.3)

The superscript and subscript D stresses the elements are referring to the D
controller. Thus we have a derivative control with an offset +1. The gain
plot for different gains compared with a passive D controller is demonstrated
in Fig. 7.3.

Some readers might be curious about its time domain representation. In
the time domain, the transfer function for the input signal transforms to

L−1

[
sG,D
21 (s+ γD

2
)− γD

2

s+ (sG,D
21 + 1)γD

2

]
= −

(
sG,D
21

2
+ 1
) γD

2
e−

γD
2

(sG,D
21 +1)t + sG,D

21 δ(t),

(7.4)
which results in the high gain limit to

L−1

[
sG,D
21 (s+ γD

2
)− γD

2

s+ (sG,D
21 + 1)γD

2

]
→ 1

γD/2

d

dt
δ(t) + δ(t). (7.5)
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Let us consider the same transfer function with the signal, as well. In the
rotating frame, the signal a1 is just an operator a1(t) = Θ(t)a1, which yields
to a1[s] = a1/s in s-domain. The inverse Laplace transformation of the 21
element of its transfer function multiplied with the signal is calculated as

L−1

[
sG,D
21 (s+ γD

2
)− γD

2

s+ (sG,D
21 + 1)γD

2

1

s

]
=

sG,D
21

2
+ 1

sG,D
21 + 1

e−
γD
2

(sG,D
21 +1)t +

sG,D
21 − 1

sG,D
21 + 1

, (7.6)

hence in the gain limit, we have

sG,D
21

2
+ 1

sG,D
21 + 1

e−
γD
2

(sG,D
21 +1)t +

sG,D
21 − 1

sG,D
21 + 1

→ 1

γD/2
δ(t) + 1

=
1

γD/2

d

dt
Θ(t) + 1

= L−1

[(
s

γD/2
+ 1

)
1

s

]
,

where we have used the fact δ(t) = lim s21 exp(−s21t).
Analogously, the transfer function of idler in the time domain is described
by

L−1

[
s

s+ (sG,D
21 + 1)γD

2

]
=− γD

2

(
sG,D
21 + 1

)
e−

γD
2

(sG,D
21 +1)t + δ(t) (7.7)

→ 1

sG,D
21 γD/2

δ̇(t) + δ(t), (7.8)

where we remind the readers that the idler FG,D
2 is of O(sG,D

21 ) in the limit
such that the coefficient 1/sG,D

21 in the first term is compensated.
Now, we have seen in the previous section 6 that the added noise effect can

be hugely reduced to the sum of the added noise of the quantum amplifier
and vacuum noise, if the feedback amplifier gain is high enough and the
transmission lines are not that lossy. For example, for P controller small
transmittance β of the beam splitter should be chosen, because its inverse
gets very large. The question arises how we can obtain such huge gain in D
controller or how can we reduce the added noise as much as possible. As in
the case of the beam splitter, we now deal with the internal loss of the cavity

61



Figure 7.4: The added noise of coherent D controller as a function of
external loss γD,ex.

and the transmission lines. The input-output relation of the cavity is then
corrected

[
a2
b3

]
=

1

s− i∆+ γD/2

[
s− i∆+ γD,0/2 −γD,ex/2

−γD,ex/2 s− i∆+ γD,0/2

] [
a1
b2

]
+

1

s− i∆+ γD/2

[
−
√
γD,0γD,ex/2

−
√
γD,0γD,ex/2

]
ξi, (7.9)

where ξi represents the internal loss mode with
[
ξi, ξ

†
i

]
= 1 and with internal

decay rate γD,0. The total decay rate is the sum of internal and external
decay rate, namely, γD = γD,0 + γD,ex.
For the coherent D controller, we insert the Eq. (7.3) into Eq. (6.20a) and

the added noise of the controller is then calculated as
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A(fb)
2,D =

1

2
− 1

2
∣∣∣sG,fb

21

∣∣∣2 +

∣∣∣∣∣sK,fb
23

sG,fb
21

∣∣∣∣∣
2

=
1

2
− 1

2

∣∣∣∣ −iω − i∆+ γD/2 + sG21γD,ex/2

−γD,ex/2 + sG21 (−iω − i∆+ (γD,0 − γD,ex)/2)

∣∣∣∣2
+

∣∣∣∣ sG21(−iω−i∆+γD/2)+(−iω−i∆+γD/2)

−γD,ex/2+sG21(−iω−i∆+(γD,0−γD,ex)/2)

∣∣∣∣2 γD,0γD,ex/2

|−iω−i∆+γD/2|2
(7.10a)

→1

2
− 1

2

∣∣∣∣ γD,ex/2

−iω − i∆+ γD/2

∣∣∣∣2 + γD,0γD,ex/2

|−iω−i∆+γD/2|2
, (7.10b)

or just insert into Eq. (6.20b) as a lower bound

A(fb)
2,D =

1

2

∣∣∣∣ γD,ex/2

−iω − i∆+ γD/2

∣∣∣∣2 + ∣∣∣∣ 1

αD,2

−iω − i∆+ γD,0/2

−iω − i∆+ γD/2

∣∣∣∣2 ∣∣∣∣sG24sG21

∣∣∣∣2 − 1

2

→ 1

2

∣∣∣∣ γD,ex/2

−iω − i∆+ γD/2

∣∣∣∣2 + 1

2
, (7.11a)

where αD,2 is the transmittance of the beam splitter modeled for its loss
in the feedback path (a2-ã2-path in Fig. 6.1), γD = γD,0 + γD,ex the total
decay rate of the cavity composed of the internal loss decay rate γD,0 and
external loss γD,ex. We have used the fact

∣∣sG24∣∣ →
∣∣sG21∣∣ in Eq. (7.11a).

Additionally, the limit γD,ex ≪ γD,0 has been taken, and thus |αD,2| ≈
|(−iω − i∆+ γD,0/2)/(−iω − i∆+ γD/2)| in Eq. (7.11a). That is, if the
external loss is negligibly small such that it is even much smaller than the
internal loss, the added noise effect can be reduced up to the vacuum noise
in the ideal quantum amplifier limit. But this noise spectrum exactly has the
form of a low pass filter (or band-pass filter). I.e., in order to suppress the
noise contribution (that is low gain limit), we also have to design this filter as
a good cavity γD ≪ ωcav, since this limit makes the Lorentzian distribution
sharp, and hence the bandwidth of the noise small. But this is simultane-
ously the demanded condition for a high gain D controller.
The reason why we have a high added noise in the center as shown in Fig.
7.4 can be explained by the last term of Eq. (7.9). The added noise has a
peak at γD,0 = γD,ex and hence around the center.
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7.3 Coherent I Controller

For the coherent I controller, we need to design a feedback structure as
shown in Fig. 7.6. After a simple algebra calculation, we read for a general
expression

[
a3
b3

]
=

1

1 + sG21s
K
11

[
−sG11s

K
12 −sG12 + sK11|sG|

sK22 + sG21|sK | sG22s
K
21

] [
a1
b1

]
+

1

1 + sG21s
K
11

[
−(1 + sG21s

K
11) sG11s

K
11

0 sK21

] [
FG,I
1

FG,I
2

] (7.12)

Therefore, we obtain in the perfect directionality limit

[
a3
b3

]
=

1

s(sG,I
21 + 1) + γI

2

[
0 s− sG,I

12 (s+ γI
2
)

s+ sG,I
21 (s+ γI

2
) 0

] [
a1
b1

]
+

[
−1 0

0 −γI/2

s(sG,I
21 +1)+

γI
2

] [
FG,I
1

FG,I
2

]
(7.13)

and in the ideal case[
a3
b3

]
=

[
0 0

γI/2
s

+ 1 0

] [
a1
b1

]
+

[
1 0

0 −γI/2

ssG21

][
FG,I
1

FG,I
2

]
. (7.14)

Hence, we obtain an integral term with the offset +1. The gain plot for
different gains compared with a passive D controller is demonstrated in Fig.
7.5.

Using the inverse Laplace transform, the time domain description of the I
controller is given by

L−1

[
s+ sG,I

21 (s+ γI
2
)

s(sG,I
21 + 1) + γI

2

]
=
γI
2

sG,I
21 − 1

sG,I
21 + 1

e
− γI

2
t

s
G,I
21 +1 + δ(t) (7.15a)

→γI
2

+ δ(t), (7.15b)

where the last limit gives the result in the high gain limit. Hence, we see the
first term works as an integrator due to
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Figure 7.5: Gain plot of coherent passive and active I controller with dif-
ferent amplifier gains sG21 = 1, 10, 100, and ∞.

L−1

[
s+ sG,I

21 (s+ γI
2
)

s(sG,I
21 + 1) + γI

2

a1[s]

]
→
∫ t

0

dt′
(γI
2

+ δ(t− t′)
)
a1(t

′)

=

∫ t

0

dt′
γI
2
a1(t

′) + a1(t).

For example, in the rotating frame, we have a time-independent signal a1
yielding to

L−1

[
s+ sG,I

21 (s+ γI
2
)

s(sG,I
21 + 1) + γI

2

1

s

]
= sG,I

21

(
1− e

− γI
2

t

s
G,I
21 +1

)
+ e

− γI
2

t

s
G,I
21 +1 (7.16)

thus in the gain limit, we have

sG,I
21

(
1− e

− γI
2

t

s
G,I
21 +1

)
+ e

− γI
2

t

s
G,I
21 +1

→ γI
2
t+ 1

=
γI
2

∫
dτΘ(t− τ) + 1

= L−1

[(
γI
2

1

s
+ 1

)
1

s

]
, (7.17)
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Figure 7.6: Coherent I controller in physical model (left) and in block
diagram (right). The π shift is needed for the stability.

as expected.
In the idler case, its time domain is represented by

L−1

[
−γI/2

s(sG,I
21 + 1) + γI

2

]
=− γI

2

1

sG,I
21 + 1

e
− γI

2
t

s
G,I
21 +1 (7.18)

→− γI
2

1

sG,I
21

. (7.19)

Analogously to the D controller, we can calculate the added noise of the
coherent integral controller with Eq. (6.11), but with the following matrix
elements sGij(i, j = 1, 2)

sG11 → sG,fb
11 =

α2s
G
11s

K
12

1 + α1α2sG21s
K
11

, sG12 → sG,fb
12 =

−sG12+α1α2sK11|sG|
1+α1α2sG21s

K
11

,

sG21 → sG,fb
21 =

sK22 + α1α2s
G
21|sK |

1 + α1α2sG21s
K
11

, sG22 → sG,fb
22 =

α1sG22s
K
21

1+α1α2sG21s
K
11
. (7.20)

Hence, the added noise in the ideal limit is given by
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Figure 7.7: The added noise of coherent I controller as a function of external
loss γI,ex.
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1

2
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2
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21
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13s
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∣∣∣∣2 (7.21a)

=
1

2
− 1

2

∣∣∣∣ −iω − i∆+ γI + sG21(−iω − i∆+ γI,0/2)

−iω − i∆+ γI,0/2 + sG21(−iω − i∆+ (γI,0 − γI,ex) /2)

∣∣∣∣2
+

∣∣∣∣ (sG21 + 1)(−iω−i∆+γI/2)

−iω−i∆+γI,0/2+sG21(−iω−i∆+(γI,0−γI,ex)/2)

∣∣∣∣2 γI,0γI,ex/2

|−iω−i∆+γI/2|2
(7.21b)

→1

2
− 1

2

∣∣∣∣−iω − i∆+ γI,0/2

−iω − i∆− γI

∣∣∣∣2 + γI,0γI,ex/2

|−iω−i∆−γI/2|2
, (7.21c)

where the limit is the other way round of the derivative controller, namely,
γI,0 ≪ γI,ex. In the low frequency limit |ω +∆| ≪ γI,0, even vacuum noise
can be achieved. Thus, the noise spectrum of the I controller is, in this case,
a high-pass filter (or a band rejection). I.e., we have to aim for a bad cavity
limit, to reject the noise through a broad region, which is again a high gain
I controller condition.
The reason for a high added noise in the center as demonstrated in Fig. 7.7
is the same as in the coherent D controller case.
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8 Coherent PID Feedback Control
In experiments preparing a stable steady-state is one of difficult practical

tasks. Indeed, experimentalists and theorists suggest a measurement-based
feedback using system-based quantum filtering theory[11, 31, 32, 33, 34] and
a classical PID control[35, 36, 37, 38, 39]. But its critical drawbacks are the
significant signal loss and time delays due to the use of classical components
such as detectors, signal processors, and actuators. In the coherent case, there
is a systematic coherent feedback control strategy for achieving steady-state,
but this requires engineering a certain Hamiltonian and perfect knowledge
about the system itself which cannot be always fulfilled[40, 41, 42]. In con-
trast to these feedback strategies, a coherent PID (CPID) feedback control
system uses only three controllers, namely P, I, and D controller, let the state
automatically converge to the reference signal without any need of detailed
information about the system and works on a coherent level.

In this thesis, we suggest the CPID feedback control system method with
some concrete examples and primarily focus on the covariance (matrix) of
system variable x, because in contrast to the classical PID controller the out-
put of CPID controller contains idlers/added noises due to CCR restrictions,
which have to be considered. In this thesis, the state variables are either
annihilation/creation operators or its quadrature variables. Hence its covari-
ance matrix is naturally related to particle numbers or just system energy.
We start this section with the basic idea of constructing the CPID feedback
control system by combining the essential elements of classical PID feedback
control system with the quantum elements, namely, the quantum detectors
and converters.
In order to get familiar with this new feedback system, it is instructive, to
begin with a coherent P (CP) feedback control, so just with a P controller.
In the next subsection, the coherent PI (CPI) feedback control is introduced,
and its associated problem. Furthermore, we study the coherent PD (CPD)
feedback control with an application to cooling an optomechanical system
with the so-called cold-damping method. Finally, the CPID feedback control
will be shortly studied.

8.1 Basic Coherent PID Feedback Control System

As mentioned previously, for the construction of the coherent feedback
system we look at the key elements of its quantum counterpart. With this
observation, we then replace all classical parts with quantum ones.
As shown in Fig. 3.1, the fundamental points we have to implement are: error
signal, PID controller, plant (system), and the feedback of system output.
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Figure 8.1: Image and example of conversion-system-detection concept in
classical and quantum (coherent) PID feedback control system. (Classical)
The temperature T (system state/variable) is electronically measured (detec-
tion) and modified via PID controller. This electronic control input is then
converted to corresponding temperature control input (conversion). (Quan-
tum) The spin state σz is transformed from a standing wave into a traveling
wave and is "detected" (but no measurement). This traveling output is mod-
ified by a coherent PID controller to a traveling control input and converted
again into a corresponding standing wave to regulate the spin state.

But if we think of a temperature regulator for example, where the system
variable is temperature, but the output or the control is done electrically,
there has to be also a measurement device and a converter (see Fig. 8.1).

Since we have recognized the key elements, we change our focus to the quan-
tum world. The error signal is realized by a half mirror, which let the ref-
erence signal and output destructively interfere. As we have already CPID
controller and a quantum system, we need to figure out the classical counter-
part of a measurement device and a converter. Here, we make use of the idea
written in the paper[16]. For example, the system-coupled cavity with the
Hamiltonian Hplant = Hsys + ℏωcava

†a(1 + Az) is a quantum detector and a
quantum transducer simultaneously, where a is the annihilation operator in
cavity mode and z is some system operator, because for weak coupling A ≪ 1
the reflection phase shift can be approximated by θ ≈ 4ωcavAz/κ. Hence-
forth, we can gain information about z from the phase shift θ. The whole
procedure is thus the cavity transforms laser input into a cavity photon,
which couples to the system, and transforms back to laser output working as
a quantum detector. We exploit this basic idea, where the system output y
is going out from the quantum detector and the control input u is converted
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Figure 8.2: Basic coherent PID feedback control system (a) in a block
diagram and (b) as a physical realization. The dashed line indicates this line
can be cut if necessary.

to a system variable x in an appropriate Hilbert space. Finally, we end up
with the following basic CPID feedback control system depicted in Fig. 8.2.
Indeed, these concepts also appear in the measurement-based feedback con-
trol such as [38, 37, 35, 31].
The Hamiltonian of the plant is thus generally expressed by

Hplant =Hconv +Hc−s +Hsys +Hs−d +Hdet (8.1)
=Hconv + ℏgcs(c†s+ cs†) +Hsys + ℏgsd(d†s+ ds†) +Hdet, (8.2)

where Hconv,sys,det are bare Hamiltonians of the converter, system, and detec-
tor, respectively. The interaction Hamiltonian Hc−s describes the interaction
between the converters and system and Hs−d that between the system and
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detector. If these interactions can be modeled as a beam-splitter like Hamil-
tonian, then they are coupled with strength gcs between the converter and
system and with gsd between the system and detector, respectively, where c,
s, and d are annihilation operators involved in these interactions. If we can
write the Hamiltonians as

Hconv =ℏωcc
†c (8.3)

Hsys =ℏωss
†s (8.4)

Hdet =ℏωdd
†d, (8.5)

then the quantum Langevin equation is given by

d

dt

 c
s
d

=
 −iωc− κc

2
−igcs 0

−igcs −iωs− κs

2
−igsd

0 −igsd −iωd− κd

2

 c
s
d


−

 √
κc 0 0
0

√
κs 0

0 0
√
κd

 u
W
F

 (8.6)

and its input-output relation

 rout
W̃
y

 =

 √
κc 0 0
0

√
κs 0

0 0
√
κd

 c
s
d

+

 u
W
F

 . (8.7)

with

u(t) = KP e(t) +KI

∫ t

0

e(t) +KD
d

dt
e(t) + F PID. (8.8)

Details about the control input u will be discussed in each following sections.
Thus, we have the same structure as the classical state space representation
with some additional "noises", namely,

d

dt
x =Ax+Bu+Baddξ (8.9a)

y =Cx+Dξ, (8.9b)

where
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Figure 8.3: Coherent P feedback control system (a) in block diagram and
(b) as a physical model. The coherent P controller is denoted by "C.P". For
|KP | > 1, we use the model depicted in Fig. 8.4 and the idler is added, while
for |KP | < 1 we just set a mirror. (c) The sideband-cooled optomechanical
system as a concrete example for the special case, where the cavity acts as a
detector and converter simultaneously.

B =

 −√
κc

0
0

 , Badd =

 0 0
−√

κs 0
0 −√

κd

 ,

C =
[
0 0 1

]
, D =

[
0 1

]
, ξ =

[
w
F

]
.

If we interpret the noises F PID and Baddξ as the system supply disturbance
and Dξ as the system load disturbance in the language of PID control theory,
we have shown in section 3 the output y indeed converges to the reference
signal r.

8.2 Coherent P Feedback Control

In this subsection, we present the coherent P feedback control with a focus
on the steady-state covariance matrix of system operator x. As a concrete
example, we will prove the cooling performance is better than the no-feedback
sideband-cooling method for optomechanical system.

8.2.1 State Space Representation

The state-space representation of the P controlled feedback system (see
Fig. 8.3) is presented. This model is a special case of the feedback system
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suggested in Fig. 8.2, where the converter, system and the quantum detector
are all in one. Since the input-output relation of the controller is different for
the P parameter |KP | > 1 and |KP | < 1, we have to consider both cases: In
|KP | > 1 case, we are using the feedback amplified P controller introduced
in section 6, while in |KP | < 1 case we choose a mirror/beam-splitter as a P
controller.

|KP | > 1 case

The input-output relation of the coherent P controller for |KP | > 1 is read
(cf. Eq. (6.3))

[
rout
u

]
=

[
0 0
KP 0

] [
e
d

]
+

[
1 0

0
√

K2
P − 1

][
FG,P
1

dP
†

]

with KP = 1/β in the ideal limit, if the scattering matrix of the feedback
controller is [

α −β
β α

]
.

The state-space representation for |KP | > 1 is then

ẋ =

(
A− KP√

2−KP

BBT

)
x− KP√

2−KP

Br +

√
2√

2−KP

BFP +Bww

(8.10)

y =−
√
2√

2−KP

BTx− KP√
2−KP

r +

√
2√

2−KP

FP , (8.11)

where FP =
√
K2

P − 1dP
† is the idler of P controller.

|KP | < 1 case

In |KP | < 1 case, we have

[
rout
u

]
=

[
α −β
β α

] [
e
d

]
The state-space representation for |KP | < 1 is
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Figure 8.4: Coherent P controller for |KP | > 1.

ẋ =

(
A− KP√

2−KP

BBT

)
x−

√
2−K2

P√
2−KP

Br +

√
2√

2−KP

BFP +Bww

(8.12)

y =−
√
2√

2−KP

BTx−
√

2−K2
P√

2−KP

r +

√
2√

2−KP

FP (8.13)

with KP = β−α and FP =
√

1−K2
Pd

P . It should be noted that for KP = 0
we recover the original system with input −r.

As we can see, the only differences between them are the coefficient of the
reference signal r is different and the operation of Hermitean conjugation
in the idler. Thus, the system matrix AP of the state space representation
remains the same.
Now, we see we have a KP dependent coefficient before every "input" matrix
B. This seemingly by KP modified input/decay rate is quite an interesting
phenomenon since this coupling rate itself is just a naturally given value and
therefore cannot be changed. The physical interpretation of this weird result
is the following: The essence is the modification of the signal amplitude
resulting in an effective modified decay rate. We start with the output of the
plant y = −BTx+ u. After going through the half-mirror, the error signal e
is changed by the coherent P controller, which gives

u = −BT KP√
2−KP

x− KP√
2−KP

r + noise.

Here, the important point is the controller let the signal, x, interfere, but has
not changed −BT . This control input then goes into the plant, which results
to add the x term in the Langevin Eq.. As it will be shown in Eq. (8.17) as
an example, the decay term in the system matrix AP can give
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1

2
κ

(√
2 +KP√
2−KP

a

)
=

1

2

(
κ

√
2 +KP√
2−KP

)
a.

The above equation shows two ways of interpretation. First of all, in the
SLH description the decay operator is written

√
κa and hence −κa/2 in the

system matrix A, which can be interpreted as this decay rate is reserved
for one amplitude quantum. Now, the left-hand side expresses the modified
photon amplitude. For example, in the stable case explained later, where the
coefficient is below 1, the amplitude is reduced. That is, it takes more time
to let an amplitude quantum decay. The right-hand side, on the other hand,
says this delay can be modeled by the reduced decay rate for one quantum.
We can easily prove the stability region ranges KP ∈

(
−
√
2 , 0]. This can be

physically explained by input and decay rate. We observe the coefficient of
input rate of r in the Langevin equation is

√
2/(

√
2−KP ) for |KP | > 1 and√

2−K2
P/(

√
2−KP ) for |KP | < 1, while the decay rate in the input-output

relation is
√
2/(

√
2−KP ). As plotted in Fig. 8.5, the effective decay rate is

equal or larger than the effective input rate for KP ∈
(
−
√
2 , 0]. So it does

not produce more internal state than it decays, which means stability. For
KP > 0 this relation changes and causes instability.

8.2.2 Steady-State Covariance Matrix of state x

For the calculation of the steady-state covariance matrix Px :=
⟨
xx†⟩

ss
, we

use the Lyapunov equation

APx + PxA
† +Q = 0, (8.14)
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where A is the system matrix and Q is the dissipation matrix with

Q = BRwB
T . (8.15)

Here, Rw =
⟨
diag(uu†, ξξ†)

⟩
ss

is the covariance matrix of signal inputs u and
noise inputs ξ. Generally speaking, the physical meaning of Px and Q are the
generalized total energy and the generalized dissipation, respectively. In the
linear quantum system case, Px contains information about the number of
(quasi-)particles and correlations between them and Q about its dissipation
energy. The steady-state covariance matrix can be directly calculated by

Px =

∫ ∞

0

dteA
†tQeAt. (8.16)

Now let us start with the study of steady-state covariance matrix through
a concrete example: the optomechanical system. The idea behind this choice
is the following: It is known in (no-feedback) sideband-cooling method there
exists an optimal optical decay rate κ as a function of mechanical frequency
ωm (κ/ωm = 1/

√
32 in [43] and κ/ωm ≈ 0.2 in [39]). Now, looking at the

quantum Langevin equations (8.10) and (8.12) we notice the "decay matrix"
B is associated with the parameter KP . That is, we can freely choose and
control the value of the decay rate. Therefore, thanks to this feedback we
can have an optimal effective decay rate. But because its dependence on
parameter KP is everywhere not the same, a careful analytical calculation
will be performed in the following.
We deal this problem within the rotating-wave approximation, i.e., as a beam-
splitter-like Hamiltonian or as a passive system, to be able to calculate ana-
lytically, which system matrix gives

AP =

[
−iωm − γm

2
ig∗

ig i∆− 1
2

√
2+KP√
2−KP

κ

]
, (8.17)

where ωm is the mechanical eigenfrequency, γm its coupling strength with
the heat bath, ∆ = −ωm the detuning of the cavity, g the coupling strength
between them, and κ is the external coupling of the cavity. The modified
dissipation matrix QP is expressed as
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QP =BPRwB
T
P

=

(
K2

P

(
√
2−KP )2

Θ(|KP |−1)+
2−K2

P

(
√
2−KP )2

Θ(1−|KP |)
)
BBT+Bw

⟨
ww†⟩BT

w

=

 γm coth
(

ℏωm

2kBT

)
0

0
K2

P

(
√
2−KP )2

κΘ(|KP |−1)+
4−3K2

P

(
√
2−KP )2

κΘ(1−|KP |)

 ,

(8.18)
=:diag (q1, q21) (8.19)

where due to
⟨
FPF

†
P

⟩
= (K2

P − 1)
⟨
dP

†
dP
⟩
= 0 and

Rw =


⟨
diag

(
rr†, FPF

†
P , ww

†
)⟩

ss
= diag

(
1, 0, coth

(
ℏωm

2kBT

))
, |KP | > 1⟨

diag
(
rr†, ww†)⟩

ss
= diag

(
1, coth

(
ℏωm

2kBT

))
, |KP | < 1.

To be able to consider the idler effect, we have to take attention into the
Hermitean conjugate of the system, as well, namely, A†

P and Q†
P yielding to

Q†
P =BPR

†
wB

T
P

=

(
2K2

P − 2

(
√
2−KP )2

Θ(|KP | − 1)

)
BBT

=

[
0 0

0
2K2

P−2

(
√
2−KP )2

Θ(|KP | − 1)κ

]
, (8.20)

=:diag (0, q22) (8.21)

where

R†
w =

{⟨
diag

(
r†r, F †

PFP , w
†w
)⟩

ss
= diag (0, K2

P − 1, 0) , |KP | > 1⟨
diag

(
r†r, w†w

)⟩
ss
= diag (0, 0) , |KP | < 1.

Since

Px =


nPhonon,ss + 1

⟨
ba†
⟩
ss

0 0⟨
ab†
⟩
ss

nPhoton,ss + 1 0 0
0 0 nPhonon,ss

⟨
b†a
⟩
ss

0 0
⟨
a†b
⟩
ss

nPhoton,ss

 , (8.22)
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where nPhonon,ss and nPhoton,ss are steady-state number, and a and b annihi-
lation operator of phonons and photons, respectively, we obtain

2nPhonon,ss + 1 =
q1

||V ||2

(
−|v−|2

λ+ + λ∗
+

+Re

[
2

λ+ + λ∗
−

]
+

−|v+|2

λ− + λ∗
−

)
+

q2
||V ||2

(
−1

λ+ + λ∗
+

+Re

[
2

λ+ + λ∗
−

]
+

−1

λ− + λ∗
−

)
(8.23)

2nPhoton,ss + 1 =
q2

||V ||2

(
−|v−|2

λ+ + λ∗
+

+Re

[
2

λ+ + λ∗
−

]
+

−|v+|2

λ− + λ∗
−

)
+

q1
||V ||2

(
−1

λ+ + λ∗
+

+Re

[
2

λ+ + λ∗
−

]
+

−1

λ− + λ∗
−

)
, (8.24)

where

λ± =− 1

2

(
2iωm +

γm
2

+
1

2

√
2 +KP√
2−KP

κ

)
±

√√√√(γm
4

− 1

4

√
2 +KP√
2−KP

κ

)2

− |g|2

v± =
1

ig∗

γm
4

− 1

4

√
2 +KP√
2−KP

κ±

√√√√(γm
4

− 1

4

√
2 +KP√
2−KP

κ

)2

− |g|2


|V | =v− − v+, q2 = q21 + q22.

8.2.3 Quantum Limit of Steady State Covariance Matrix

It is interesting to consider the lower bound of tr(Px), since this corre-
sponds to the lower bound of the total number of (quasi-)particles because
any physical observables can be expressed by annihilation and creation op-
erators. If we have the Lyapunov equation (8.14), then the trace bound can
be calculated by[45, 46]

tr(Px) ≥ − tr(Q)

tr(A+ A†)
=

tr(BRwB
T )

tr(BTB)
. (8.25)

We can physically interpret this inequality that the total number of parti-
cles is lower bounded by the averaged dissipated particle number, because the
numerator gives the total dissipation energy and the denominator the to-
tal dissipation energy in the ground state (zero-point fluctuation included).
However, we have to be careful that this result is the average per particle
(mode). Hence, for T → 0 this lower bound does not show the real lower
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Figure 8.6: Trace of Steady State Covariance Matrix as a function of KP at
T = 0.01K. Total particle number with P-controlled system in rotating-wave
approximation(blue) and without control (orange). Total particle number
with P-controlled system without rotating-wave approximation (green) and
without control (red). As expected, they are lower bounded by tr(Px) ≥ 2
due to two particle modes: phonon and cavity photon. We have used for the
simulation: ωm = 2π × 10.56 MHz, gm = 2π × 32 Hz, g = 2π × 20 kHz, and
κ = 2π × 200 kHz. Values adapted from [44].

bound. In the linear quantum system, the quantum limit is directly obtained
from Px itself by

tr(Px) =
m∑
k=1

coth

(
ℏωk

2kBTeff,k

)
≥ m, (8.26)

where m is the number of particle modes in the system, ωk the eigenfrequency
and Teff,k the effective temperature of k-th particle mode.

8.2.4 Which System is the Best?

Now, we want to study, which system can cool the phonon better: sideband-
cooled, coherent P controlled system with |KP | > 1 or with |KP | < 1. It turns
out the coherent P controller feedback system with |KP | < 1 can perform
the best cooling.
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Figure 8.7: The best parameter Kmin
P,<1 as a function of T . One can rec-

ognize the position of the minimum does not change. We have used for the
simulation: ωm = 2π × 10.56 MHz, gm = 2π × 32 Hz, g = 2π × 20 kHz,
κ = 2π × 200 kHz, and T = 4.4 K. Values adapted from [44].

no P controlled vs. P controlled system

One can get the sideband-cooled steady state phonon number from Eq.
(8.23) by putting KP = 0

nPhonon,ss(KP =0)=
κ

γm+κ

4g2

4|g|2+γmκ
+

γm
γm+κ

4|g|2+κ(γm + κ)

4|g|2+γmκ
coth

(
ℏωm

2kBT

)
.

(8.27)
In order to know, which is the best, the simple approach to take is: Is there

a parameter KP ̸= 0, which decreases the steady state phonon number more
than for KP = 0? So let us expand nPhonon,ss to the first order, which results
to

nPhonon,ss(KP ) =nPhonon,ss(0)

+
γmκ

(γm + κ)2

√
24|g|2 (κ2−4|g|2)
(4|g|2 + γmκ)

2

(
coth

(
ℏωm

2kBT

)
−1

)
KP

+O
(
K2

P

)
. (8.28)

Thus, indeed, there exists a KP ̸= 0 which perform better cooling than for
KP = 0, namely,
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Figure 8.8: Steady State Phonon Number as a function of KP . Phonon
number with P-controlled system in rotating-wave approximation(blue) and
without control (orange). Phonon number with P-controlled system without
rotating-wave approximation (green) and without control (red). We have
used for the simulation: ωm = 2π×10.56 MHz, gm = 2π×32 Hz, g = 2π×20
kHz, κ = 2π × 200 kHz, and T = 4.4 K. Values adapted from [44].

KP < 0 for κ2 − 4|g|2 > 0

KP > 0 for κ2 − 4|g|2 < 0.

|KP | > 1 vs. |KP | < 1

We are now left with |KP | > 1 and |KP | < 1 system. In this steady state
problem, the only difference is q2 in Eq. (8.18). If we introduce

Kmin
P,≷1 := min

|KP |≷1
nPhonon,ss(KP ), (8.29)

we have just to check, which Kmin
P,≷1 decreases q2 even more. One can prove

for the feedback system with |KP | > 1 the phonon number is monotonically
decreasing for κ2 − 4|g|2 > 0 and KP < −1, so the best parameter one can
choose is Kmin

P,>1 = −1. Since it is an large intense equation, we do not write
it down, but we can show

nPhonon,ss(KP =−1) > nPhonon,ss(KP =−1+0+) ≥ nPhonon,ss(K
min
P,<1) ∀T > 0.
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Figure 8.9: Coherent PI controller scheme. a1 is the input signal and d3 is
the output signal. When implemented in the feedback scheme, the input is
an error signal and the output a control input of the plant.

One can find that Kmin
P,>1 is temperature independent (see Fig. 8.7).

Fig. 8.8 shows the steady state phonon number as a function of P parameter,
where the exact calculation (active system) case is also plotted. In an active
system case, there is a temperature T , which best parameter KP lies in
KP < −1.

So, the essence of this enhanced cooling compared to the no-feedback scheme
is the controllable effective decay rate κeff (KP ).

8.3 Coherent PI Feedback Control

In this subsection, we show the idler from the coherent I controller largely
contributes to the added noise such that the steady-state variance of the sys-
tem operator x spreads dramatically for huge amplifier gain in I controller.
This effect will be demonstrated with a simple toy model and with an op-
tomechanical system.

8.3.1 Coherent PI Controller

From now on, we see the advantage of directional I controller. Thanks
to this nonreciprocity, we can align the coherent P and I controller in series
without having the input d1 in Fig. 8.9 in output d3 = u in the ideal quantum
amplifier limit, namely,
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[
rout
u

]
=

[
0 0

sI21s
P
21 0

] [
e
d1

]
+

[
sP12 0
0 1

] [
F P
1

F P
2

]
+

[
1 0
0 sP21

] [
F I
1

F I
2

]
,

(8.30)

where the matrix sP,I is the scattering matrix of the signal in coherent P and
I controller, respectively (see Eqs. (6.3) and (7.14))18. The added noise of
the coherent P controller is described F P

2 =
√

|K2
P − 1|dP (†) for |KP | < 1

and |KP | > 1, respectively. Then, the control input u can be written as

u[s] =sI21[s]s
P
21[s]e[s] + F P

2 [s] + sP21F
I
2 [s] (8.31)

=

(
1 +

γI/2

s

)
sP21e[s] + F P

2 [s] + sP21F
I
2 [s]

=:KP e[s] +KI
e[s]

s
+ F P

2 [s] +KPF
I
2 [s]. (8.32)

Thus,

KP := sP21, KI := sP21γI/2.

8.3.2
⟨
F †
PI(t)FPI(t

′)
⟩

Divergence Problem

Here, we want to study the behavior of
⟨
F †
PI(t)FPI(t

′)
⟩
. To evaluate it,

we switch to the QSDE (quantum stochastic differential equation) form and
define

dF̃PI(t) :=

∫ t+dt

t

dτFPI(τ) (8.33)

dDP,I(t) :=

∫ t+dt

t

dτdP,I(τ). (8.34)

Then, the calculation steps are as follows:

18For non-ideal case, see Appendix B.
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⟨
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(8.38)

t=t′→∞−−−−−→
(
K2

P − 1
)
Θ(|KP | − 1) dt+K2

P

(
sG,I
21

2 − 1
)
dt, (8.39)

where we have used KI = KPγI/2 and dτ1(t) = dt in the last equation. The
equality dτ1(t) = dt holds because of the definition in Eq. (8.34)

dDI(τ1 = t) =

∫ (τ1=t)+d(τ1=t)

τ1=t

dτdI(τ).
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Figure 8.10: Coherent PI Feedback Control System depicted as (a) block
diagram and (b) physical realization.

The reason lies merely on the fact that the integration effect occurs on the
idler, as well, to satisfy the CCR. Henceforth, increasing the amplifier gain
means extending the integration time (see Eq. (7.15)), and thus its ampli-
tude, which is needed because the purpose of the coherent I controller is to
eliminate the steady-state error by increasing (integrating) the signal.

Toy model: Cavity Photon

To see how this will affect to the system variable, we use a simple cavity
system as a toy model. The whole state space representation is given by

d

dt

[
a
eI

]
=

[
−i∆− 1

2

(
κc + κd +KP

√
2κcκd

)
−KI

√
κc√
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2
0

] [
a
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]

+
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(√

κd +KP

√
κc

2

)
KP

√
κc

2
−√

κc
1√
2

− 1√
2

0

] ain
r

FPI

 , (8.40)
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where the detuning of the cavity is represented by ∆ = ωc − ωL with the
cavity frequency ωc and laser frequency ωL, the decay rate at converter side
by κc, and the decay rate at quantum detector side by κd.
To obtain the steady state cavity photon number, we solve the Lyapunov
equations

APIP + PA†
PI +Q =0 (8.41)

P †A†
PI + APIP

† +Q† =0, (8.42)

where we note P ̸= P † and Q ̸= Q†, because the operators are non-commutative,
i.e.,
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]

=:

[
q
(†)
11 0
0 0

]
.
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Figure 8.11: Steady state cavity photon number for (orange) sG,I
21 = 10,

(blue) sG,I
21 = 50, and (green) sG,I

21 = 100. Parameters are chosen as ∆ = 0,
κc = κd = 2π × 200 kHz. For a high gain, the photon number nphoton is very
sensitive to the parameter change KP .

That is, q(†)11 is proportional to the gain squared.
Finally, we obtain for the steady state photon number as

2nPhoton,ss + 1 =
q1

||V ||2

(
−|v−|2

λ+ + λ∗
+

+Re

[√
2κd/κc

λ+ + λ∗
−

]
+

−|v+|2

λ− + λ∗
−

)

+
q22

||V ||2
κd

2κcKI

(
−1

λ+ + λ∗
+

+Re

[
2

λ+ + λ∗
−

]
+

−1

λ− + λ∗
−

)
+ 2

q12
||V ||2

1√
KI

Re

[
−v−

2Re[λ+]

v+
λ− + λ∗

+

+
−v+

2Re[λ−]

]
(8.43)

where
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λ± =− 1

2

(
i∆+

κc + κd +KP

√
2κcκd

2

)

±

√
1

4

(
i∆+

κc + κd +KP

√
2κcκd

2

)2

−KI

√
κcκd/2

v± =
1√
KIκc

(
1

2

(
i∆+

κc + κd +KP

√
2κcκd

2

)

±

√
1

4

(
i∆+

κc + κd +KP

√
2κcκd

2

)2

−KI

√
κcκd/2


|V | =v− − v+, q1 = q11 + q

(†)
11 .

The result for various gains is shown in Fig. 8.11.
If we only focus on FPI contribution to the cavity photon, we have

2nPhoton,ss + 1 =
q
(†)
1

||V ||2

(
−|v−|2

λ+ + λ∗
+

+Re

[√
2κd/κc

λ+ + λ∗
−

]
+

−|v+|2

λ− + λ∗
−

)
∝sG,I

21

2
. (8.44)

This means the photon cavity number increases by the gain squared. For
example, let us choose the reference power such that ⟨r⟩ss =

√
κd and let

⟨ain⟩ss = 0 be a vacuum state. In this case the mean cavity photon amplitude
results to

⟨a⟩ss = 1,

then the amplitude of cavity photon number gives a = 1±O(10), even if we
choose sG,I

21 = 10. Of course, we can regulate this variance by KP , however,
this must be chosen much smaller than the inverse of the gain, such that we
can achieve a stable mean number.

8.3.3 State Space Representation of the Special Case

Analogous to the classical P-I control case, we can derive the augmented
state space representation, but with the differences C = −BT and the exis-
tence of idlers and noises in the system.

The control input u changes to
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u(t) = KP e(t) +KI

∫ t

0

dτe(τ) + FPI(t), (8.45)

with

FPI(t) = F P
2 +KPF

I
2 (t)

→ ∓
√

|K2
P − 1|dP2 (t)

(†) −KI

∫ t

0

dt′dI2(t
′)
†
. (8.46)

Henceforth, the augmented coherent equation of motion is changed to

d

dt

[
x
eI

]
=

[
A− KP√

2−KP
BBT KI

1−KP /
√
2
B

− 1√
2−KP

BT KI√
2−KP

][
x
eI

]
+

−1√
2−KP

[
KPB
1

]
r

+

[
Bw

0

]
w +

1√
2−KP

[ √
2B
1

]
FPI , (8.47)

where we have omitted the time dependence for clarity, as usual.

8.3.4 Stability Analysis

The closed-loop stability for the coherent PI feedback system with no in-
ternal loss is provided.

But before going into the analysis, we first want to prove a lemma: In the
linear quantum system, we can express the state space representation, i.e.,
the quantum Langevin equations and the input-output relation, in terms of
ABCD model (see Eq. (3.9)), which is a function of the bare system Hamilto-
nian and the interaction Hamiltonian with the environment or just the decay
rate. Now, the bare passive system Hamiltonian is described as Hsys = a†Ωa

with the annihilation operators in vector form a = [a1 a2 ... an]
T , while B

is representing the decay rate. Keeping these in mind, we want to state the
following lemma:

Lemma 8.1 If a square matrix A = −iΩ− 1
2
BBT ∈ Cn×n with Ω = Ω† has

its complex eigenvalues {λk}k=1,...,n, then we can express its eigenvalues as
λk = −iωk − γk/2 with Ω = U †diagk(ωk)U and BBT = U †diagk(γk)U , where
U is the change of basis matrix with UU † = U †U = 1. Moreover, γk ≥ 0 ∀k.

Proof. Since λk ∈ C, we can write λk = −iλi,k − λr,k with λi,k, λr,k ∈ R ∀k.
Since A is diagonalizable, we can decompose it as
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A =U †diagk(λk)U

=U †diagk(−iλi,k − λr,k)U

=U †diagk(−iλi,k)U + U †diagk(−λr,k)U

=− iΩ− 1

2
BBT .

We also consider its Hermitean conjugate

A† =U †diagk(iλi,k)U + U †diagk(−λr,k)U

=iΩ− 1

2
BBT .

Summing and subtracting both equations we obtain

Ω = U †diagk(λi,k)U,
1

2
BBT = U †diagk(λr,k)U.

Hence, λi,k = ωk and λr,k = γk/2 for all k = 1, ..., n. Since 1/2BBT is a
semi-positive definite matrix, we naturally obtain γk ≥ 0. Therefore,

λk = −iωk − γk/2, ∀k = 1, ..., n. □

This means we can treat the "imaginary" Hermitean matrix and the "real"
Hermitean matrix independently in terms of diagonalization.

For the stability analysis, we have to find the conditions where the solutions
of a characteristic polynomial are all lying in the left side of the complex
plane. If we consider the augmented differential equation as in Eq. (3.14)
with A = −iΩ− 1/2BBT and C = −BT , we have to calculate

∣∣∣∣∣
[

s1− A+ KP√
2−KP

BBT − KI

1−KP /
√
2
B

1√
2−KP

BT s1− KI√
2−KP

1

]∣∣∣∣∣
=

∣∣∣∣s− KI√
2−KP

∣∣∣∣2
∣∣∣∣∣s1− A+

KP√
2−KP

BBT +
1

s− KI√
2−KP

√
2KI

(
√
2−KP )2

BBT

∣∣∣∣∣ .
(8.48)

Now let us assume the plant is composed of the quantum detector and system
such that only the detector feels the signal input into the plant. Other noise
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inputs are not considered because those are providing further decays and
widen the stability region. Hence, the quantum Langevin equation of the
plant is

d

dt

[
xsys

xdet

]
=

[
−iΩsys −iGsys−det

−iG†
sys−det −iΩdet − 1/2BdetB

T
det

] [
xsys

xdet

]
+

[
0

Bdet

]
u,

(8.49)

where Ωsys/det is the system/detector Hamiltonian matrix, Gsys−det the cou-
pling matrix between them, and Bdet the "input matrix" to the detector.
Using the lemma above we can diagonalize A for SISO configuration as

A = U †diag(−iω1, iω1, ...,−iωn, iωn,−iωdet −
γ

2
, iωdet −

γ

2
)U, (8.50)

where ωk is the k-th eigenfrequency, which is equivalent to the eigenvalue
of system matrix A, and ωdet is the eigenfrequency affected by the coupling
strength γ with

BBT =

[
0 0
0 BdetB

T
det

]
= U †diag(0, ..., 0, γ, γ)U. (8.51)

Since the second factor of Eq. (8.48) is only composed of the matrices Ω
and BBT , we can rewrite (8.48) thanks to the lemma above stating that the
imaginary and real part can be treated independently when diagonalizing as

∣∣∣∣s− KI√
2−KP

∣∣∣∣2
∣∣∣∣∣s1− A+

KP√
2−KP

BBT +
1

s− KI√
2−KP

√
2KI

(
√
2−KP )2

BBT

∣∣∣∣∣
=

∣∣∣∣∣s2 + (iωdet +
1

2

√
2 +KP√
2−KP

γ − KI√
2−KP

)s

+

(
−iωdet −

1

2

√
2 +KP√
2−KP

γ

)
KI√

2−KP

+

√
2KI

(
√
2−KP )2

γ

∣∣∣∣∣
×

n∏
k=1

|s− iωk| |s+ iωk|

= 0. (8.52)

So, we have changed the complex characteristic polynomial of an augmented
state space representation into a simple quadratic problem. For convenience,
we define
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ωdet γ=0.01

ωdet/γ=1

ωdet/γ=10
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K
I/
γ

Figure 8.12: Stability region as a function of KP and KI with different
eigenfrequency-decay ratio: ωdet/γ = 0.01, 1, 10.

a1 :=iωdet +
1

2

√
2 +KP√
2−KP

γ

a2 :=
KI√

2−KP

b :=

√
2KI

(
√
2−KP )2

γ.

Thus, the eigenvalues are solved as

s = −1

2
(a1 − a2)±

√
1

4
(a1 + a2)

2 − b. (8.53)

Finally, for stability we have to require Re[s] < 0. The result of stable regions
for different ratios ωdet/γ is plotted in Fig. 8.12.
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Figure 8.13: Steady State Phonon Number as a function of KP and KI .
Phonon number without feedback control (green), with CP-controlled system
(blue), and with CPI-controlled system (sG,I

21 = 10) (orange). We have used
for the simulation: ωm = 2π × 10.56 MHz, gm = 2π × 32 Hz, g = 2π × 20
kHz, κ = 2π × 200 kHz, and T = 4.4 K. Values adapted from [44].

8.3.5 Comparison with Coherent P Controller

While we have demonstrated the effectiveness of the added noise FPI in
the previous subsection via a simple toy model, we go to more practical
level. We have seen in section 8.2 the coherent P control is proven to be very
useful to cool the optomechanical system. Hence, the comparison between the
CP feedback controlled and CPI feedback controlled optomechanical cooling
system gives us a clearer picture with respect to the effect of idlers.
Since the calculation procedure is the same as in previous ones, we just write

down the dissipation matrix QPI . If the system variables are in quadrature
forms, we obtain

QPI =

[
Qw 0
0 Qdet

]
with

Qw :=

[
0 0

0 γm coth
(

ℏωm

2kBT

) ]
, Q†

w :=

[
0 0
0 0

]
and
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Figure 8.14: Steady State Phonon Number as a function of KP and KI .
Phonon number without feedback control (green), with CP-controlled system
(blue), and with CPI-controlled system (sG,I

21 = 10) (orange). We have used
for the simulation: ωm = 2π × 10.56 MHz, gm = 2π × 32 Hz, g = 2π × 20
kHz, κ = 2π × 200 kHz, and T = 0.01 K. Values adapted from [44].

Qdet :=


2κ 0 −

√
−2KIκ 0

0 2κ 0 −
√
−2KIκ

−
√
−2KIκ 0 −KI 0
0 −

√
−2KIκ 0 −KI


× (K2

P − 1) (Θ(|KP | − 1)−Θ(1− |KP |)) +K2
P (s

G,I
21

2 − 1)

2
(√

2−KP

)2
Q†

det :=


κKP 0 −

√
−KIκ 0

0 κKP 0 −
√
−KIκ

−
√
−KIκ 0 0 0
0 −

√
−KIκ 0 0

 KP

2
(√

2−KP

)2 .
As one can find, the thermal bath contribution Qw and the input contribu-
tion Qdet can be completely separated. Additionally, we can recognize the
first term is the idler contribution and the second term is the "real" input
contribution. Now, solving the Lyapunov equation, the steady state phonon
number can be found as a function of KP and KI in Fig. 8.13. As expected,
the influence of FPI is quite large even for sG,I

21 = 10, and the minimal steady-
state phonon number approximately increases by 60 phonons compared to
CP controlled system. However, we can still manage to perform better than
the no-feedback cooling by properly choosing the parameter KP ≈ −0.6 for
T = 4.4 K. This can be roughly explained by saying the mechanical system
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is heated by the idler of coherent I controller, which adds K2
P (s

G,I
21

2−1) ≈ 36
phonons to the CP-controlled optomechanical system. Indeed, the steady
state particle number at KP = −0.6 is about 60 phonons in CP case, while in
CPI it is about 85. If we now compare their cooling performance at T = 0.01
K, we observe CPI controlled feedback system entirely fails to cool much
better than the no-feedback one does (cf. Fig. 8.14). The reason is clear.
At a cryogenic temperature near the ground state, the steady state phonon
number is of the order of 1, while the idler contribution has not changed.
Therefore, in contrast to T = 4.4 K case, the added noise effect is significant.
However, this is not crucial because there is no point in using an I controller,
which plays a role as steady-state error eliminator, in the first place for near-
ground state operation since no steady-state error will appear. Thus, we can
conclude, by properly choosing the amplifier gain CPI-controlled system can
still be useful, if the effect of the idlers can be tolerated compared to the
steady state mean value of the system variable or output signal, while for
example for ground state operation CPI-controlled system is not useful with
respect to the variance.

8.4 Coherent PD Feedback Control

Here, we want to utilize the coherent PD controller for cooling an op-
tomechanical system. In contrast to previous sideband-cooling with coherent
P controller, the cold-damping method is chosen, where the essence of this
cooling is increasing the mechanical damping rate such that the vibration of
the system is slowed down due to high "viscosity". We see the coherent PD
feedback control system can reach the standard quantum limit even in the
presence of idlers. In the last section, we also compare the performance with
the homodyne-measurement-based feedback system, and we reach to the con-
clusion, the coherent one can in principle outperforms the measurement one,
but under common experimental situations, the homodyne-measurement can
cool better. The following calculations are very similar to that of Vitali et
al.[38].

8.4.1 Coherent PD Controller

Same as in coherent PI controller case, we can exploit the directionality of
the devices following to
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Figure 8.15: Coherent PD controller scheme. As in case of coherent PI
controller (Fig. 8.9), a1 is the input signal and d3 is the output signal.

[
dout
u

]
=

[
0 0

sD21s
P
21 0

] [
e
d1

]
+

[
sP12 0
0 1

] [
F P
1

F P
2

]
Θ(|sP21| − 1)

+

[
1 0
0 sP21

] [
FD
1

FD
2

]
, (8.54)

where the matrix sP,D is the scattering matrix of the signal in coherent P
and I controller, respectively (see Eqs. (6.3) and (7.3))19. The input e and
outputs u and dout correspond to a1, d3 and a3, respectively. Then, the
control input u is described in Laplace-s domain by

u[s] =sD21[s]s
P
21[s]e[s] + F P

2 [s]Θ(|sP21| − 1) + sP21F
D
2 [s] (8.55)

=

(
1 +

s

γD/2

)
sP21e[s] + F P

2 [s]Θ(|sP21| − 1) + sP21F
D
2 [s]

=:KP e[s] + sKDe[s] + F P
2 [s]Θ(|KP | − 1) +KPF

D
2 [s]. (8.56)

Thus,

KP := sP21, KD :=
sP21
γD/2

.

19For non-ideal case, see Appendix B.
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Figure 8.16: Coherent PD Feedback Control System depicted as (a) block
diagram and (b) physical realization. "mech" and "cavity" refer to mechan-
ical system and cavity, respectively. (c) Detailed plant configuration, where
the converter is not needed due to the direct interaction between input and
system.

8.4.2 Quantum Langevin Equation of PD controlled feedback sys-
tem

In this subsection, we only focus on the optomechanical system. Its lin-
earized quantum Langevin equation (classical contributions are omitted)
without feedback is expressed in quadrature form as

d

dt


Q
P
X
Y

=


0 ωm 0 0
−ωm −γm 2G 0
0 0 −γc

2
0

2G 0 0 −γc
2




Q
P
X
Y

−


0 0 0
1 0 0

0
√
γc
2

0

0 0
√
γc
2


 W

Xin

Yin


where ωm and γm is the eigenfrequency and decay rate of the mechanical
system, and G the coupling constant between by the quadratures (Q,P )
described phonons and by (X,Y ) characterized cavity photons, and γc is the
cavity decay rate20. The detuning ∆ is set to 0. (Xin, Yin) are vacuum inputs,
and W is thermal noise input with

20Note all system variables in quadrature form A and its canonical conjugate B are
represented here in annihilation/creation operators a(†) as: A = (a† + a)/2, B = i(a† −
a)/2. However, all inputs and outputs are written: Ain/out = (a†in/out+ain/out), Bin/out =

i(a†in/out − ain/out).
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⟨
W (t)W (t′)†

⟩
=

1

2π

γm
ωm

(Fr(t− t′) + iFi(t− t′)) ,

Fr(t) =

∫ ϖ

0

dωω cos(ωt) coth

(
ℏω

2kBT

)
,

Fi(t) =−
∫ ϖ

0

dω sin(ωt),

where ϖ is the frequency cutoff of the reservoir spectrum.
The associated input-output relation is

Xout =2
√
γcX +Xin

Yout =2
√
γcY + Yin. (8.57)

Now we consider the feedback effect, which feedback system is depicted in
Fig. 8.16. The feedback flow is as follows: A vacuum input FD

1 is coming
into the cavity and is reflected giving y. This output interferes with the
reference signal r (vacuum) destructively and the error signal e is evaluated
by the coherent PD controller, which gives the control input u. This control
input u directly acts as a radiation pressure against the mechanical system
and makes its motion viscous.
The control input u is given by

u(t) = KP e(t)−KDė(t) + FPD, (8.58)

where

e(t) =
1√
2
(y(t)− r(t)) (8.59)

and

FPD(t) :=
√

K2
P − 1Θ(|KP | − 1)dP

†(t) +
√
1−K2

PΘ(1− |KP |)dP (t)︸ ︷︷ ︸
=:FP

+KDḋ
†
D(t)︸ ︷︷ ︸

=:ḞD

(8.60)

in the ideal quantum amplifier limit21. This control input adds a feedback
Hamiltonian term[37, 38].

21Some readers might concern about the CCR of the control input u. For its calculation
see Appendix B
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Hfb =
(√

γcKPYe(t)−KDẎe(t)/
√
γc +

√
γcY

PD
F

)
Q

with Yx := i(x† − x), x = e, F .
On the other hand, we have to determine the signal coming from the other
port of coherent PD controller. We will see the fed-back signal contribution
is so small such that only the idler FD

1 is going into the cavity: The con-
structively interfered signal d is changed after going through the controller
to

− 1

KP + sG,P
12

1

1 + sG,D
21

d+ FD
1 +

1

1 + sG,D
21

F P
1 ,

where s
G,(P,D)
21 is the amplifier gain of the quantum amplifier in the propor-

tional and derivative controller, respectively, and F P,D
1 is the idler of the P

and D controller, which is the same as that of the amplifier, FG,(P,D)
1 . There-

fore, for a high gain limit, d and F P
1 vanish, and only FD

1 remains, which is
equivalent to vacuum noise. In the following, we define

Xin :=FD
1

†
+ FD

1

Yin :=i
(
FD
1

† − FD
1

)
.

After adiabatic elimination (by assuming very low quality factor of the cavity)
the quantum Langevin equation is modified to

d

dt

[
Q
P

]
=

[
0 ωm

−ω′
m −γ′

m

] [
Q
P

]

−

[
0 0 0 0 0 0

1 2G/
√
γc −KP√

2

√
γc
2

KD

2
√
2
√
γc

√
γc
2

1
2
√
γc

]


W
Xin

Yin + Yr

Ẏin + Ẏr

YFP

ẎFD

 ,

(8.61)

where
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ω′
m :=ωm +

KP√
2
4G, γ′

m :=γm − 2
√
2KDG

ωm

γc
,

YP :=i(dP − d†P ), YFP
:=

(√
K2

P−1Θ(|KP |−1)−
√
1−K2

PΘ(1−|KP |)
)
YP ,

YD :=i(dD − d†D), YFD
:=KDYD.

.

Note that we have⟨
Ẏin(t)Ẏin(t

′)
⟩
=
⟨
Ẏr(t)Ẏr(t

′)
⟩
=
⟨
ẎD(t)ẎD(t

′)
⟩
= −δ̈(t− t′).

8.4.3 Steady-State Covariance of Q and P

The previous quantum Langevin equation (8.61) can be solved as follows:

Q(t) =K(t)Q(0) + χ(t)P (0) +

∫ t

0

dt′χ(t− t′)ξ(t′) (8.62)

with

ξ(t) :=−W (t)− 2G
√
γc
Xin(t) +

KP√
2

√
γc

2
(Yin(t) + Yr(t))

− KD

2
√
2
√
γc
(Ẏin(t) + Ẏr(t))−

√
γc

2
Y PD
F (t)

χ(t) :=
ωm√

ωmω′
m − γ2

m

(
1+g2
2

)2 e−(1+g2)γmt/2 sin

√ωmω′
m − γ2

m

(
1 + g2

2

)2

t


K(t) :=1− ωm

∫ t

0

dt′χ(t′), g2 := −

√
ζ

γmγc
ωm

KD√
2
, ζ :=

16G2

γmγc
.

So, ξ is the total noise/input operator, g2 is the rescaled feedback derivative
gain and ζ the rescaled input power.

Thus, the steady state of its variance can be calculated as

⟨
Q2
⟩
ss
:= lim

t→∞

⟨
Q(t)2

⟩
=

1

4

(
1− ωm

ω′
m

)2

+

∫ ∞

0

dt′
∫ ∞

0

dt′′χ(t′)χ(t′′)c(t′ − t′′),
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where we have defined c for the stationary symmetric correlation function
of the noise term ξ(t). That is, the term Fi(t) of the thermal noise term
vanishes. Considering the commonly met condition ℏωm ≪ kBT , we then
obtain

⟨
Q2
⟩
ss
=
1

4

(
1− ωm

ω′
m

)2

+
ωm

ω′
m

1

1 + g2

(
ζ

8
+

γc
8γm

(
K2

P + 2
∣∣K2

P − 1
∣∣))

+
g22
4ζ

1

1 + g2
+

ωm

2ω′
m

1

1 + g2

kBT

ℏωm

. (8.63)

The first and second term is the input contribution, the third the feedback
and the last the thermal noise contribution.
In case of P , in the narrow feedback frequency cut-off limit, we have to make

a logarithmic correction regarding to the thermal contribution, namely,

⟨
P 2
⟩
ss,th

=
ωmγm
4ω′

mγm

1

1 + g2

(
kBT

ℏωm

+
γm
πωm

ln

(
ℏϖ

2πkBT

))
.

However, in the common experimental situation, γm ≪ ωm is given such that
we can neglect the correction. Hence, we obtain ⟨Q2⟩ss ≈ ⟨P 2⟩ss.

Let us also calculate the optimal feedback derivative gain g2,opt, which reads

g2,opt =

√
1 +

ωm

ω′
m

(
ζ2

2
+

ζ

2

γc
γm

(K2
P + 2 |K2

P − 1|) + 2
kBTζ

ℏωm

)
− 1. (8.64)

The remarkable point is the optimal feedback gain is now dependent on
temperature and on γc/γm. That is, due to g2 ∝

√
ζKD we have to choose

a high input power ζ and/or parameter KD = KP/(γD/2) for ℏωm ≪ kBT
and γm ≪ γc, respectively. This results to

⟨
Q2
⟩
ss,opt

ℏωm≪kBT−−−−−−→ 1

2

√
ωm

ω′
m

√
2kBT

ℏωmζ
(8.65)

and

⟨
Q2
⟩
ss,opt

γm≪γc−−−−→ 1

8

√
ωm

ω′
m

√
2γc
γmζ

(K2
P + 2|K2

P − 1|) ≥ 1

8

√
ωm

ω′
m

√
2γc
γmζ

.

(8.66)
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Figure 8.17: Schematic description of of the system using homodyne mea-
surement. Figure adapted from [38].

Furthermore, by choosing the optimal feedback gain, we can indeed reach the
standard quantum limit ⟨Q2⟩ss = 1/4 for ζ → ∞, since only the first term
in Eq. (8.63) remains. We remind the readers ω′

m = ωm +KP

√
γmγcζ/2.

8.4.4 Coherent PD Controller vs. Homodyne Detected Controller

Now, we want to compare the performance of coherent feedback and mea-
surement feedback system. In case of measurement feedback, we use homo-
dyne detected feedback system as shown in Fig. 8.17.
The steady-state covariance of Q is obtained by[38]22

⟨
Q2

hd

⟩
ss
=

1

1 + g2
√
η

(
g22
4ζ

+
γc
8γm

+
ζ

8
+

kBT

2ℏωm

)
, (8.67)

where η is the quantum/detection efficiency of the homodyne measurement.
As in the coherent controller case, ⟨P 2

hd⟩ss = ⟨Q2
hd⟩ss for γm ≪ ωm. The

optimal rescaled feedback gain g2,hd,opt is obtained by

22Here, we have additionally considered the CCR of outputs such that we have changed
two points to their calculations: 1. Modeling the imperfect detection with an ideal detector
intercepted by a beam splitter with transmissivity √

η, so mixing the incident field with a
vacuum field[47]. 2. Adding the added noise coming out from the derivative controller.
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Figure 8.18: Comparison between coherent PD feedback controlled system
(orange) and homodyne measurement feedback controlled system (blue) for
η = 1. For both systems, optimal rescaled feedback derivative gain is chosen.
For any input power ζ, the coherent PD controller cannot outperform the
measurement-based controller. We have used for the simulation: ωm = 2π×
4.3 MHz, gm = 2π × 5.7 Hz, g = 2π × 10.1 MHz, γc = 2π × 9.1 MHz, and
T = 1.0 K. Values are adapted from [35].

g2,hd,opt =

√
1 +

γc
2γm

ζ +
ζ2

2
+ 2

kBT

ℏωm

ζ − 1
√
η
. (8.68)

The optimal ⟨Q2
hd⟩ss then gives for ℏωm ≪ kBT

⟨
Q2

hd

⟩
ss,opt

ℏωm≪kBT−−−−−−→ 1

2

√
1

η

√
2kBT

ℏωmζ
(8.69)

⟨
Q2
⟩
ss,opt

γm≪γc−−−−→ 1

8

√
1

η

√
2γc
γmζ

. (8.70)

This means, the better the quantum efficiency η the better the cooling per-
formance.
Comparing both systems at optimal values in Eqs. (8.65) and (8.69) for
ℏωm ≪ kBT and Eqs.(8.66) and (8.70) for γm ≪ γc, its cooling supremacy
depends on the effective mechanical frequency ω′

m and quantum detection η
with

⟨Q2⟩ss,opt
⟨Q2

hd⟩ss,opt
≥
√

ωm

ω′
m

η. (8.71)
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Figure 8.19: Comparison between coherent PD feedback controlled system
(orange) and homodyne measurement feedback controlled system (blue) for
η = 0.5. For both systems, optimal rescaled feedback derivative gain is
chosen. For relatively small KP , the coherent PD controller can outperform
the measurement-based controller. We have used for the simulation: ωm =
2π × 4.3 MHz, gm = 2π × 5.7 Hz, g = 2π × 10.1 MHz, γc = 2π × 9.1 MHz,
and T = 1.0 K. Values are adapted from [35].

If we consider typical experimental values √
γcγm ≪ ωm, we have

⟨Q2⟩ss,opt
⟨Q2

hd⟩ss,opt
≥ √

η. (8.72)

That is for perfect detection, CPD feedback control system cannot cool the
optomechanical system better than the measurement-based one. The nu-
merical simulation of both feedback systems is demonstrated in Fig. 8.18
and 8.19. The reason why we have a minimum at KP = 1 can be explained
that KP ̸= 1 is equivalent to have a superposition with another state, which
produces a new zero point energy and therefore added noises.

8.5 Coherent PID Feedback Control

Because we now have all necessary components for the CPID controller, we
design it, and then embark on a strategy towards its feedback system.

As the reader might have already noticed, the transfer function of the
coherent P, I, and D controller is similar to that of the analog electrical circuit
using feedback amplifier (see section 2.2.3). Thus, due to its directional
properties, we can straightforwardly adapt the series PID controller scheme
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as shown in Fig. 8.20. In the ideal limit, we have the transfer function for
|KP | > 1

[
a3
u

]
=

[
0 0

1
β

(
γI/2
s

+ 1
)(

s
γD/2

+ 1
)

0

] [
e
d1

]
+

[
0 0
0 α

β
1

sG,P
21

] [
F P
1

F P
2

]

+

[
0 0

0 γI/2
s β

1

sG,I
21

] [
F I
1

F I
2

]
+

[
1 0

0 s+γI/2
βγD/2

1

sG,D
21

] [
FD
1

FD
2

]
,

(8.73)

where e = a1 is the error signal and u = d3 the control input, and ∆ = 0 is
set. Here, we remind the readers that F P,I,D

1 are scaling by O(1) and F P,I,D
2

by O(sG21). Hence, F P,I,D
2 in u do not diverge, but remain by O(1).

If we pick up the 21 element of CPID matrix and define the PID factors as

GPID
21 [s] =

1

β

(
γI/2

s
+ 1

)(
s

γD/2
+ 1

)
=

1

β

(
γI
γD

+ 1

)
+

(
γI/2

s β

)
+

(
s

βγD/2

)
=: KP +

KI

s
+KDs,

(8.74)

as already formulated in Eq. (3.7) in section 3, we then choose the parameters
β, γI , and γD as a function of KP , KI , and KD as follows

1

β
=

KP

2KIKD

±
√
(

KP

2KIKD

)2 − 1

KIKD

(8.75a)

γI =
KP

2KD

±
√

(
KP

2KD

)2 − KI

KD

(8.75b)

1

γD
=

KP

2KI

±
√
(
KP

2KI

)2 − 1

KDKI

. (8.75c)

In case of |KP | < 1 with the scattering matrix[
α −β
β α

]
the transfer function of the CPID controller changes to
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Figure 8.20: Coherent PID controller scheme. a1 is the input signal and d3
is the output signal. When implemented in the feedback scheme, the input
is an error signal and the output a control input of the plant.

[
a3
u

]
=

[
0 0

β
(

γI/2
s

+ 1
)(

s
γD/2

+ 1
)

−α

][
e
d1

]

+

[
0 0
0 β 1

sG,I
21

] [
F I
1

F I
2

]
+

[
1 0

0 β
(

γI/2
s

+ 1
)

1

sG,D
21

] [
FD
1

FD
2

]
,

(8.76)

Expressing the parameters in KP , KI and KD we just replace 1/β → β in
Eq. (8.75). We also remind the readers

F P
2 [s] =

√
K2

P − 1dP
†

F I
2 [s] =− γI

2

1

s
dI

†

FD
2 [s] =− s

1

γD/2
dD

†

in the ideal quantum amplifier limit.
For the realization of the feedback structure of the CPID in Fig. 8.2, we

use a half mirror or a half beam splitter with[
e
d1

]
=

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

] [
r
y

]
,

to obtain an error signal e and exploit the property of the directionality such
that the error signal goes as a control input u to the plant.
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Assuming the converter-system-detector configuration and using the descrip-
tion in Eq. (8.9), the augmented state-space representation is expressed by

[
ẋ
ėI

]
=

[
A+BC(KP +KDA) KIB

C 0

] [
x
eI

]

+

[
KPBD+KDBCBadd −KPB KDBD −KDB B

D −1 0 0 0

]
ξ
r

ξ̇
ṙ

FPID

 .

(8.77)
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9 Summary and Conclusion
In this thesis, we have suggested the quantum feedback amplification scheme

based on 2-input-2-output quantum amplifier and found the quantum ampli-
fier can indeed be feedback-controlled. Depending on which element of the
controller we want to have in the feedback gain, we have to choose the appro-
priate feedback scheme. In the feedback gain analysis, we see the sensitivity
of gain fluctuations dramatically reduces by applying the feedback scheme
in contrast to the no-feedback case. Thus, robustness against fluctuations
is achieved. Furthermore, a broad gain bandwidth can be obtained. While
these results are similar to classical ones, its quantum-noise limit and added
noises are quantum. A remarkable result is the quantum feedback amplifier
can reach its quantum-noise limit despite noisy feedback system.

We have applied this feedback scheme to construct an active directional
coherent differentiator and integrator. In both controllers, the condition for
minimum noise is the same for achieving a high gain. For a coherent D con-
troller, a bad cavity limit is required, while for a coherent I controller a good
cavity limit is demanded. In addition to that, using detuning the coherent
D controller can work as a band-pass filter in that detuning frequency, while
the coherent I controller can act as a band-pass rejector.

Finally, combining the previous results we have suggested a coherent PID
controller and its basic coherent PID feedback control system based on conver-
ter-system-detector concept. Since the main difference between the classical
PID controller and this coherent PID controller lies on the existence of idlers
coming from that controller, we have analyzed the effect of those added noises
by investigating the steady-state covariance matrix of the system operators.
Applying the coherent P feedback control, we could modify the decay rate
in order to get the optimal mechanical-frequency-to-cavity-decay-rate-ratio
for enhanced sideband-cooling of an optomechanical system. In the coherent
PI controller case, the divergence problem of

⟨
F †
PIFPI

⟩
in the gain limit has

been found yielding to an immense variance in the steady-state covariance
matrix. But the proper choice of the amplifier gain still opens the way to use
the CPI-controlled system for semi-classical system, where a trade-off prob-
lem occurs. For near ground-state control, CPI-control might not be useful,
which is not a crucial problem, because I controller acts to eliminate the
steady-state error and the ground-state control does not require additional
supply. In the coherent PD feedback control section, we have compared its
cooling performance with that of the homodyne-detected measurement-based
feedback control system by applying them to cold-damping of the optome-
chanical system. As a result, we have found if the quantum efficiency is
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1, then the coherent PD controller can never outperform the measurement-
based one.
As a conclusion, this new suggested no measurement- and no system-based

coherent PID controller enables now to fully operate the system on the quan-
tum level for achieving steady-state system. For an outlook, we can generalize
the analysis of idler more abstractly to gain more deep insights. Additionally,
we can extend this coherent PID controller to a coherent lock-in amplifier
to coherently lock the oscillation frequency such as Rabi oscillation in the
system.
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B Proof of Equations and Detailed Formula-
tions

In this section, all proofs and detailed formulations are written. Each
subsection is categorized in sections of the main text in order to find them
easily.

B.1 2-Input-2-Output Quantum Feedback Amplifier

B.1.1 Lower Bound of the Added Noise A in Eq. (6.11)

Here, we substantiate that the added noise is lower bounded by 1/2. The
key point of this fundamental limit is the canonical commutation relation
(CCR), which restricts the degree of freedom of added noises with

[
bj, b

†
j

]
= 1 =

∣∣sGj1∣∣2 + ∣∣sGj2∣∣2 − ∣∣sGj4∣∣2 + N∑
k ̸=1,2,4

∣∣sGjk∣∣2 . (B.1)

From here on, w.l.o.g., we set j = 2, in order to be able to directly compare
with the result in section 6. From Eq. (B.1), we obtain the lower bound of∣∣sG24∣∣2 being responsible for permitting values

∣∣sG21∣∣2 > 1

∣∣∣∣sG24sG21

∣∣∣∣2 =
∣∣sG21∣∣2 + ∣∣sG22∣∣2 − 1 +

∑N
k ̸=1,2,4

∣∣sG2k∣∣2
|sG21|

2

≥ 1−
1−

∣∣sG22∣∣2
|sG21|

2 . (B.2)

Further, by combining the CCR (B.1) with Eq. (6.11), we find the funda-
mental limit of the added noise

A(0)
2 =

1

2|sG21|2
N∑
k=3

|sG2k|2

=

∣∣∣∣sG24sG21

∣∣∣∣2 − 1

2
+

1−
∣∣sG22∣∣2

2 |sG21|
2

≥1

2
−

1−
∣∣sG22∣∣2

2 |sG21|
2 . (B.3)

For
∣∣sG21∣∣ → ∞, we obtain the celebrated quantum noise limit A(0)

2 ≥ 1/2
[48, 30].
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B.1.2 Detailed Formulation of Feedback Noises under Added Noise
Environment in Eqs. (6.17) and (6.18)

First, Eq. (6.17) is described by

[
F̃G
1

F̃G
2

]
=

1

1− α1α2sK12s
G
21

[
1− α1α2s

K
12s

G
21 α1α2s

K
12s

G
11

0 α1s
K
22

]

×

[ sG13 sG14 sG15
sG23 sG24 sG25

] d1
d†2
d3

+ α2δ2

[
sG11
sG21

]
d6

 (B.4)

=

[
sG,fb
13 sG,fb

14 sG,fb
15 sG,fb

16

sG,fb
23 sG,fb

24 sG,fb
25 sG,fb

26

]
d1
d†2
d3
d6


and the Eq. (6.18) by

[
FK
1

FK
2

]
=

1

1− α1α2sK12s
G
21

[
α2s

G
11 0

α1α2s
K
22s

G
21 1− α1α2s

K
12s

G
21

]
×
([

sK13
sK23

]
d4 +

[
sK12
sK22

]
α1δ1d5

)
(B.5)

=

[
sK,fb
13 sK,fb

14

sK,fb
23 sK,fb

24

] [
d4
d5

]
.

B.2 Coherent PID Controller

B.2.1 Input-Output Formalism of Coherent PI Controller in Non-
Ideal Quantum Amplifier Case

The detailed formulation of coherent PI controller is provided. According
to Fig. 8.9, we have the following input-output relation

[
rout
u

]
=

1

1− sI22s
P
11

[
sI11 − |sI |sP11 sI12s

P
12

sI21s
P
21 sP22 − |sP |sI22

] [
e
d1

]
+

1

1− sI22s
P
11

[
sP12 0

sI22s
P
21 1− sI22s

P
11

] [
F P
1

F P
2

]
Θ(|sP21| − 1)

+
1

1− sI22s
P
11

[
1− sI22s

P
11 sI12s

P
11

0 sP21

] [
F I
1

F I
2

]
(B.6)
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with [
F P
1

F P
2

]
=

1

1− sG,P
21 sK,P

12

[
1− sG,P

21 sK,P
12 sG,P

12 sK,P
11

0 sK,P
22

] [
FG,P
1

FG,P
2

]
(B.7)

and

[
F I
1

F I
2

]
=

1

1 + sG,I
21 sK,I

11

[
−(1 + sG,I

21 sK,I
11 ) sG,I

11 sK,I
11

0 sK,I
21

] [
FG,I
1

FG,I
2

]
. (B.8)

B.2.2 Calculation of CCR of Control Input u in Coherent PI Con-
trol Feedback System

In this subsection, we assume |KP | > 1 for simplicity. The |KP | < 1 case
goes analogously.

frequency domain

The control input u[ω] in frequency domain is expressed as

u[ω] =KP e[ω] +KI
e[ω]

−iω
+
√

K2
P − 1dP

†
[ω]Θ(|KP | − 1)

+
√

1−K2
Pd

P [ω]Θ(1− |KP |) +KI
dI

†
[ω]

−iω
, (B.9)

where

[
e[ω], e†[ω′]

]
=
1

2

[
y[ω], y†[ω′]

]
+

1

2

[
r[ω], r†[ω′]

]
=δ(ω − ω′)

with e[ω] = (y[ω]− r[ω])/
√
2. Hence the CCR becomes

[
u[ω], u†[ω′]

]
=

∣∣∣∣KP +
KI

−iω

∣∣∣∣2 δ(ω − ω′) +
(
1−K2

P

)
δ(ω − ω′)

−
∣∣∣∣ KI

−iω

∣∣∣∣2 δ(ω − ω′) (B.10)

=δ(ω − ω′). (B.11)
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time domain

In the time domain, the control input u(t) is described by

u(t) =KP e(t) +KI

∫ t

0

dτe(τ) +
√

K2
P − 1dP

†
(t)Θ(|KP | − 1)

+
√
1−K2

Pd
P (t)Θ(1− |KP |) +KI

∫ t

0

dτdI
†
(τ). (B.12)

Thus,

[
u(t), u†(t′)

]
=K2

P δ(t− t′) +K2
I

∫ t

0

dτ1

∫ t′

0

dτ2δ(τ1 − τ2)

+
(
1−K2

P

)
δ(t− t′)−K2

I

∫ t

0

dτ1

∫ t′

0

dτ2δ(τ1 − τ2) (B.13)

=δ(t− t′), (B.14)

which satisfies the CCR.

B.2.3 Calculation of CCR of Control Input u in Coherent PD
Control Feedback System

frequency domain

The control input u[ω] in frequency domain is expressed as

u[ω] =KP e[ω]− iωKDe[ω] +
√

K2
P − 1dP

†
[ω]Θ(|KP | − 1)

+
√
1−K2

Pd
P [ω]Θ(1− |KP |)− iωKDd

D†
[ω], (B.15)

where

[
e[ω], e†[ω′]

]
=
1

2

[
y[ω], y†[ω′]

]
+

1

2

[
r[ω], r†[ω′]

]
=δ(ω − ω′)

with e[ω] = (y[ω]− r[ω])/
√
2. Hence the CCR becomes

[
u[ω], u†[ω′]

]
= |KP − iωKD|2 δ(ω − ω′) +

(
1−K2

P

)
δ(ω − ω′)

− |−iωKD|2 δ(ω − ω′) (B.16)
=δ(ω − ω′). (B.17)
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time domain

In the time domain, the control input u(t) is described by

u(t) =KP e(t)−KD
d

dt
e(t) +

√
K2

P − 1dP
†
(t)Θ(|KP | − 1)

+
√
1−K2

Pd
P (t)Θ(1− |KP |) +KD

d

dt
dD

†
(t). (B.18)

Note the CCR between derivatives gives

[
d

dt
x(t),

d

dt′
x†(t′)

]
=

∫
dω

2π

∫
dω′

2π
(−iω) (iω′)

[
x[ω], x†[ω′]

]
eiω

′t−iωt

=

∫
dω

2π
ω2e−iω(t−t′)

=− d2

dt2
δ(t− t′).

Thus,

[
u(t), u†(t′)

]
=K2

P δ(t− t′)−K2
D

d2

dt2
δ(t− t′)

+
(
1−K2

P

)
δ(t− t′) +K2

D

d2

dt2
δ(t− t′) (B.19)

=δ(t− t′), (B.20)

which satisfies the CCR.

B.2.4 Corrected Calculation of Homodyne-Detected Cold-Damping
Method

We revise the result of the paper [38].

Output Homodyne Photocurrent

In Eq. (12) of [38] the output homodyne photocurrent is written as

Yout(t) = 2η
√
γcY (t)−√

ηY η
in(t),

where η is the detection/quantum efficiency of the detector and Y η
in is a

generalized phase input noise. But because this output does not satisfy the
CCR we have to add a vacuum noise Y ν

in [47] yielding to

Yout(t) = 2
√
η
√
γcY (t)−√

ηY η
in(t) +

√
1− ηY ν

in(t). (B.21)
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Idler of Derivative Controller

As can be seen from Eq. (21) of [38], the output after time derivation is
expressed as

Ỹout(t) = −KD
d

dt
Yout(t),

where KD = gcd in their notation. Since this does not fulfill the CCR re-
quirement, we add a vacuum noise F (t) with

F (t) = dµ(t) +KD
d

dt
dξ

†
(t) (B.22)

as an annihilation operator expression with the vacuum noises dµ and dξ. In
the phase quadrature formalism, we write

YF (t) = Y µ(t) + Y ξ(t) (B.23)

with

Y µ(t) =i(dµ†(t)− dµ(t)), Y ξ(t) =i(dξ(t)− dξ
†
(t)). (B.24)

Quantum Langevin Equation

Eq. (22) in [38] then becomes

d

dt
Q(t) =ωmP (t) (B.25)

d

dt
P (t) =− ωmQ(t)− γmP (t) + 2GX(t)−KD

√
η
d

dt
Y (t)

−
KD

√
η

2
√
γc

d

dt
Y η
in(t)−

KD

√
1− η

2
√
γc

d

dt
Y ν
in(t)−

√
γc

2
Y µ(t)

− KD

2
√
γc

d

dt
Y ξ(t)−W (t)− f(t) (B.26)

d

dt
Y (t) =− γc

2
Y (t) + 2GQ(t)−

√
γc

2
Yin(t) (B.27)

d

dt
X(t) =− γc

2
X(t)−

√
γc

2
Xin(t), (B.28)

where we have used different input definition leading to + → − in all inputs.
Adiabatic elimination of the cavity mode gives us
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d

dt
Q(t) =ωmP (t) (B.29)

d

dt
P (t) =− ωmQ(t)− γmP (t) +

2G
√
γc
Xin(t)−W (t)− f(t)

− 4GKD

γc

√
η
d

dt
Q(t) +

KD
√
η

2
√
γc

d

dt
Yin(t)−

KD
√
η

2
√
γc

d

dt
Y η
in(t)

− KD

√
1− η

2
√
γc

d

dt
Y ν
in(t)−

√
γc

2
Y µ(t)− KD

2
√
γc

d

dt
Y ξ(t). (B.30)

After some calculations, we then obtain Eq. (8.67).

B.2.5 Input-Output Formalism of Coherent PID Controller in
Non-Ideal Quantum Amplifier Case

Since in reality there is no ideal quantum amplifier, it is useful to have
written down as a formula e.g. for numerical simulations, although no clar-
ity may be present. Thus, the input-output relation of CPID for non-ideal
quantum amplifier is expressed as

[
rout
u

]
=

1

1− sD22s
I
11 − sD22 |sI | sP11 − sI22s

P
11

× (

[
sD11+

∣∣sD∣∣ (∣∣sI∣∣ sP11−sI11)−sD11s
I
22s

P
11 sD12s

I
12s

P
12

sD21s
I
21s

P
21 sP22+

∣∣sP ∣∣ (sD22 ∣∣sI∣∣−sI22)−sD22s
I
11s

P
22

] [
e
d1

]
+

[
sD12s

I
12 0

sI22s
P
21 − sD22

∣∣sI∣∣ sP21 1− sD22s
I
11 − sD22

∣∣sI∣∣ sP11 − sI22s
P
11

] [
F P
1

F P
2

]
+

[
sD12(1− sI22s

P
11) sD12s

I
12s

P
11

sD22s
I
21s

P
21 sP21(1− sD22s

I
11)

] [
F I
1

F I
2

]
+

[
1− sD22s

I
11 − sD22

∣∣sI∣∣ sP11 − sI22s
P
11 sD12s

I
11 − sD12

∣∣sI∣∣ sP11
0 sI21s

P
21

] [
FD
1

FD
2

]
)

(B.31)

with

[
F

P/D
1

F
P/D
2

]
=

1

1− s
G,P/D
21 s

K,P/D
12

[
1− s

G,P/D
21 s

K,P/D
12 s

G,P/D
12 s

K,P/D
11

0 s
K,P/D
22

][
F

G,P/D
1

F
G,P/D
2

]
(B.32)

and
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[
F I
1

F I
2

]
=

1

1 + sG,I
21 sK,I

11

[
−(1 + sG,I

21 sK,I
11 ) sG,I

11 sK,I
11

0 sK,I
21

] [
FG,I
1

FG,I
2

]
. (B.33)

Now the matrix elements s
P/I/D
ij represent the transfer function of the P, I,

D (feedback) system, sG,x
ij and sK,x

ij (x = P, I,D) are the quantum amplifier
and the controller scattering matrix elements in the P, I, and D system,
respectively. Analogously, F

P/I/D
i are effective noises of the P, I, and D

system, and FG,x
i are idler noises of the quantum amplifier in the P, I, and D

system. To have an overlook, each input-output-relations (referring to Fig.
7.2 and 7.6) are described as

[
a3
b3

]
=sP/D
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]
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