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Chapter 1

Introduction

Quantum computation is a field of research which has been attracting more and more attention from
scientists and engineers, as problems in science become more complicated over time. A quantum
computer is a device for computation that takes advantage of phenomena existing only in quantum
mechanics, such as superposition of states and quantum entanglement [1]. In contrast to a classical
computer, where a memory consists of well-known bits, a quantum computer performs operations on
quantum bits (qubits). A qubit is a quantum mechanical two-level system with the eigenstates |0〉 and
|1〉 [1]. A qubit is thus in general described by the expression

|ψ〉 = α|0〉 + β|1〉,

where α and β are complex coefficients and |α|2 (|β|2) represents the probability to find the state |0〉
(|1〉) after measurement of |ψ〉. Due to this superposition, it is possible to store 2n pieces of information
with only n qubits, while in n classical bits only n pieces of information can be stored.
However, the implementation of a quantum computer is not without challenges. One unsolved problem
in quantum computing is quantum decoherence, which results from the interaction of the qubit with
its environment und causes information loss over time. There are several approaches aiming to build
decoherence-resistant quantum computers. One of them is adiabatic quantum computation, which is
theoretically predicted to be more robust against noise than other methods [2, 3, 4]. This prediction is
attributed to the fact that in this approach, the ground state of a slowly evolving Hamiltonian is initially
prepared and remains as the ground state throughout the evolution process [1, 5]. Since the system
is always in the ground state, interaction with the environment cannot induce transitions to a lower
state [1]. However, one must ensure that the temperature of the bath remains lower than the energy gap
between the ground and the first excited state, such that thermal fluctuations cannot induce transitions
to the higher states [1]. If this requirement is met, the state of final Hamiltonian will be in the ground
state, in which the solution of the problem is encoded [5].
In all-to-all Ising spin glass formulation of adiabatic quantum annealing, the problem cost function is



Chapter 1 Introduction

cast into the form

Hf =

N∑
i=1

∑
j<i

Ji jσ
(i)
z σ

( j)
z +

N∑
i=1

biσ
(i)
z , (1.1)

where σ(i)
z is the z-Pauli matrix associated with the ith spin. The interaction matrix Ji j and the additional

local magnetic fields bi fully parameterize the optimization problem [6]. The goal is to end up in the
ground state of Hf by turning the classical spin variables into qubits and adiabatically transferring the
system from a trivial initial state, for example the ground state of H0 =

∑
i hiσ

(i)
x , to Hf [6].

However, the spin-glass formulation of adiabatic quantum annealing is not without challenges. A
fundamental challenge in this scheme is the required all-to-all connectivity [7, 8], while the natural
qubit interactions only cover a finite range of values [9, 10]. Moreover, the possible quantum speedup
due to the scaling of the minimal gap and the sensitivity of errors are still open fundamental questions
[11, 12]. Recently, there is a proposal called parity adiabatic quantum optimization (PAQC) scheme
aiming to address several of these challenges [6]. In this scheme, the logical qubits σ, which define
the problem in Eq. (1.1), are redundantly encoded in the topology of a new architecture, enabling an
intrinsic fault tolerance of the device [6]. To accommodate for all interaction matrix elements, the
system size in this architecture is enlarged from N logical qubits to K = N(N − 1)/2 physical qubits σ̃
available in the laboratory. This increased number of degrees of freedom is compensated by K − N + 1
constraints Cl [6]. Thus, the optimization problem is encoded in the Hamiltonian [13]

Hp =

K∑
k=1

Jkσ̃z
(k) +

K−N+1∑
l=1

Cl. (1.2)

Lately, in the framework of superconducting qubits, a physical implementation of PAQC scheme has
been suggested. The two-qubit building is based on Transmon qubits [13] and shown in Fig. 1.1.

Figure 1.1: Illustration of the circuit diagram for the two-qubit building block of a quantum annealing processor
based on Transmon qubit. As all interactions are assumed to be equal, this is the only required
building block. Two Transmon qubits with charging energy EC and Josephson energies EJa and EJb

respectively are coupled by a Josephson ring modulator with Josephson energy EJRM [13].

Hereby, the circuit incorporates Josephson ring modulators (JRM) to build Ising pair interactions that
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are large compared to the onsite energies [13]. With a microwave drive, fully tunable longitudinal
fields and transversal fields in a frame rotating with the microwave drive are introduced [13]. However,
the behavior and the properties of this implementation have not been studied well yet and Leib omits
the parasitic capacitance of Josephson junction in JRM [13], which, in turn, motivates this study.
This thesis is structured as follows: In chapter 2, we review several theory aspects, which are essential
for chapter 3. Our main focus is on the method of electrical network graph theory, which enables us
to obtain the proper Hamiltonian for our circuit. Based on this theory, the derivation of Hamiltonian
is presented in chapter 3. In this chapter, we first extract several important information from our
Hamiltonian. Next, we study the behavior of our Hamiltonian during quantum annealing process both
under idealized conditions and under consideration of jump operators.
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Chapter 2

Theory

In order to derive the Hamiltonian of a relatively complex superconducting circuit, electrical network
graph theory turns to be advantageous over the method of nodes [14]. Furthermore, our circuit consists
of two Transmon qubits connected with a JRM, so we also review some important aspects of these
circuit elements.

2.1 Electrical Network Graph Theory

Electrical network graph theory is a rigorous mathematical formalization of the Kirchhoff's current
and voltage laws. As such, one can abstractly adapt it to graph theroy based on these laws. The
method to derive the Hamiltonian used in this thesis combines the methods of Rasmussen and Zlatko
[14, 15]. Before we present the electrical network graph theory, it is indispensable that we review some
fundamental definitions from graph theory, since the electrical network graph theory is build upon
them. Here, all definitions are taken from Rasmussen [14].

2.1.1 Fundamental Definitions of Graph Theory

Definition 1 (Graph) A graph G = (N ,B) is a set of nodes N = {n1,...,nN}, where N is the number of
nodes, and a set of branches B = {b1,...,bB}, where each branch connects a pair of nodes and B is the
number of branches. The number of nodes is called the order of the graph and is denoted |G| = N.

The very first step of any circuit analysis is to label every branch of the graph, usually via the flux
flowing through each element Φi ≡

∫ t
−∞

Vi(t′) dt′. There are no specific conventions to label the branches
and they can therefore be labeled in different ways [14].

Definition 2 (Subgraph) A graph H = (NH ,BH ) is called a subgraph of G = (NG,BG), written
H ⊆ G, ifNH ⊆ NG and BH ⊆ BG. IfH is a subgraph of G butH , G it is called a proper subgraph.

With the definition of subgraphs, we can then define the spanning tree.



2.1 Electrical Network Graph Theory

Definition 3 (Spanning tree) A spanning tree of a graph G is a connected subgraph T that contains
the same nodes as G and contains no loops. The branches of the spanning tree are called twigs and the
branches of the complement of the spanning are called links. Note that there are BG − (NG − 1) links.

The noteworthy feature of spanning tree is that it connects every pair of nodes through exactly one
path. From a physical point of view, the number of twigs corresponds to the maximum number of
eigenmodes arising in the quantum system. Choosing a spanning tree allows us to define fundamental
cutsets and fundamental loops.

Definition 4 (Cut) Given a graph G = (N ,B) a cut is a partitioning of nodes N into two disjoint sets
NA and NB. With every cut we can associate a cutset, which is the set of branches that have endpoints
in both NA and NB.

Definition 5 (Fundamental cut) Given a graph G and a spanning tree T we define a fundamental
cut or f-cut as a cut, whose cutset contains only one twig, yet any links.

Because per definition fundamental cutset only contains one twig, the total number of fundamental
cutsets is always equal to the number of twigs of our circuit.

Definition 6 (Fundamental loop) Given a graph G and a spanning tree T we define a fundamental
loop or f-loop as a loop consisting of exactly one link and one or more twigs.

The number of fundamental loop that can be formed is equal to the number of links of our circuit.
Hence, the number of fundamental cuts and fundamental loops corresponds to the number of branches
of our circuit.

Definition 7 (Fundamental loop matrix) Given a graphG = (N ,B), with spanning tree T , we define
a fundamental loop matrix, or f-loop matrix, F(L) as

F(L)
i j ≡


+1 if b j ∈ fi and li, b j have the same orientation,

−1 if b j ∈ fi and li, b j have the opposite orientation,

0 if b j < fi,

where 1 ≤ i ≤ |B \ T | = B − (N − 1) and 1 ≤ j ≤ B and li is the link in the ith f-loop, fi.

The definition 7 means nothing else than that we iterate through the branches and the set of f-loops. If
the given branch is in the f-loop - which we consider, then the matrix entry becomes ±1. The entry
takes the value +1, if the branch has the same orientation as the link contained in the f-loop and -1, if it
has the opposite orientation as the link. From the electrical circuit point of view, the fundamental loop
matrix describes the Kirchhoff's voltage law.
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Chapter 2 Theory

Definition 8 (Fundamental cut matrix) Given a graph G = (N ,B), with spanning tree T , we define
fundamental cut matrix, or f-cut matrix, F(C) as

F(C)
i j ≡


+1 if b j ∈ ci and ti, b j have the same orientation,

−1 if b j ∈ ci and ti, b j have the opposite orientation,

0 if b j < ci,

where 1 ≤ i ≤ |T | = N − 1 and 1 ≤ j ≤ B and ti is the twig of the ith cutset, ci.

Similar like definition 7, we iterate through the branches and the set of cutsets. If the given branch is in
the given cutset, the matrix entry becomes ±1, with a plus if the branch has the same orientation as the
twig. If the branch is not in the f-cutset, the matrix entry is 0. In constrast to fundamental loop matrix,
fundamental cut matrix is based on Kirchhoff's current law.
Before we proceed to the next subsection, the calculation of f-cut matrix and f-loop matrix of charge
qubits as illustrated in Fig. 2.1 is demonstrated as a concrete example. At first, the f-cutset as well as

Figure 2.1: Circuit diagram of the single Cooper pair box without driving. The twig Φ1 is marked with blue
color of the branch. The cross denotes Josephson junction with Josephson energy EJ, while CJ and
Cg represent parasitic and gate capacitance, respectively.

f-loop need to be determined. The f-cutset is simply the circuit itself, since it has only one twig, while
the f-loop is depicted in Fig. 2.2. As the circuit only has one twig from three branches, the f-cut matrix
has the dimension of

∣∣F(C)
∣∣ = 1 × 3 and is given by

F(C) =
(

1 1 −1
)
,

where we conventionally use +1 for fluxes Φi going towards the node and −1 for fluxes going from

6



2.1 Electrical Network Graph Theory

Figure 2.2: Fundamental loop of the circuit, which contains a) the first link Φ2 and b) the second link Φ3.

the node. Subsequently, F(C)
11 (F(C)

12 ), which represents Φ1 (Φ2), takes the value +1, while F(C)
13 , which

represents Φ3, takes −1. Indeed, if we multiply f-cut matrix with the current vector I =
(
I1,I2,I3

)T and
equate to 0, we recover Kirchoff's current law. Next, we take a look in Fig. 2.2. Since there are two
links from three branches, the f-loop matrix has the dimension of

∣∣F(L)
∣∣ = 2 × 3 and is provided by

F(L) =

(
−1 1 0
1 0 1

)
,

where the first row of f-loop matrix F(L)
1 j is based on Fig. 2.2a), whereas the second row F(L)

2 j is based on
Fig. 2.2b). All links rotate counterclockwise. As Φ1 in Fig. 2.2a) flows clockwise, the entry F(L)

11 takes the
value −1. The entry F(L)

21 takes the value +1, since Φ1 in Fig. 2.2b) flows counterclockwise. Analogously,
as we multiply the f-loop matrix with the flux vector Φ =

(
Φ1,Φ2,Φ3

)T , we find Kirchhoff's voltage
law.
Furthermore, one can easily verify that

F(L)
(
F(C)
)T

= 0 (2.1)

applies for the f-loop matrix and f-cut matrix of a single Cooper pair box. The Equation (2.1) is valid
in general. This is attributed to the fact that the (i, j)th element depends only on the ith f-loop and the
jth f-cut. If the f-cutset and f-loop share no branches, all the terms are zero, and in the case, where they
share exactly two branches, we get two non-zero terms with opposite sign.
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Chapter 2 Theory

2.1.2 Finding the Lagrangian

The first step of deriving the Lagrangian of the circuit is to label the fluxes and currents flowing through
all the circuit branches. In the method of Rasmussen [14], these are written as vectors

Φ ≡

(
Φt

Φl

)
, I ≡

(
It

Il

)
, (2.2)

where Φt (It) are the fluxes (currents) of all the twigs and Φl (Il) are the fluxes (currents) of all the
links. The next step is defining the corresponding fundamental cut matrix as well as fundamental loop
matrix according to definition 8 and 7. Expressing Kirchoff’s laws of current and voltage in terms of
this theory yields

F(C)I(t) = 0, F(L)Φ(t) = Φ̃(t) −
∫ t

−∞

VV(t′) dt′, (2.3)

where Φ̃T = (Φ̃1,...,Φ̃B−N+1) is the vector external fluxes through the fundamental loops and (VV)i is the
voltage generated by the source on the ith branch or 0, if the ith branch does not have a voltage source.
Using Eq. (2.3), we can write the fluxes of our circuit without explicit dependence on the fluxes of the
links

Φ =
(
F(C)
)(T )
Φt +

(
0

Φ̃ −
∫ t
−∞

VV(t′) dt′

)
, (2.4)

where the twigs of the circuit are chosen in the way that they do not include any voltage source.
Under the assumption that the circuit does not contain any linear inductance, the Lagrangian of our
circuit is given by

L =
1
2
Φ̇T

t CΦ̇t + Q0 · Φ̇t

+ EJ ·

(
cos
((

F(C)
)(T )Φt

Φ0
+

(
0

Φ̃ −
∫ t
−∞

VV(t′) dt′

)
·

1
Φ0

)
− 1
)
,

(2.5)

where
C ≡ F(C) DC

(
F(C)
)T (2.6)

is the capacitance matrix with diagonal matrix DC, whose matrix entries are circuit capacitances, and

Q0 ≡ F(C)DC

(
0
˙̃Φ

)
(2.7)

are the offset charges. Furthermore, EJ is the vector of Josephson energy, whose entries take the value
of corresponding Josephson energy. Φ0 ≡ ~/(2e) is the reduced magnetic flux quantum and 1 is simply
a vector (1,...,1)T with the dimension of the total number of circuit branches. Similarly, the cosine term
in Eq. (2.5) means a vector (cos(φ1),..., cos(φN))T with the same dimension. The Φi-entries are equal to

8



2.1 Electrical Network Graph Theory

the ith-element of
(
F(C)
)(T )
Φt/Φ0 +

(
0, Φ̃/Φ0 −

∫ t
−∞

VV(t′)/Φ0 dt′
)
.

2.1.3 Eigenmodes of the linearized Josephson Circuit

In principle, one can find the Hamiltonian of the circuit by performing a Legendre transformation
on the Eq. (2.5). One might, however, be interested in the eigenmodes of the circuit and change to
the associated eigenbasis, as this can be used to control unwanted couplings between modes [14].
This approach is useful for implementing a system with direct and thus strong multibody interactions
[16], like four-body couplings, which are necessary for quantum annealing. There are as such many
proposals for their implementation, though the interaction is a higher-order interaction, which is not
directly visible in the first-order Hamiltonian. Such indirect interactions are generally slower and
noisier, as they consist of multiple subprocesses [14]. For this reason, the Lagrangian needs to be
diagonalized first. Hence, one separates the linear part of Lagrangian, which consists of the capacitive
and linear inductive parts, from the non-linear part, which arises due to the Josephson terms. The
diagonalization is then performed on the linear part, leaving the non-linear part undiagonalized. Later,
the non-linear part is expressed in the newly attained basis. The method presented here is all based on
Minev [15].
The inductance matrix L−1 of the circuit is a positive-definite, real, symmetric (PDRS) matrix, so that
it can be diagonalized with a real orthogonal matrix OL. This procedure yields

Llinear =
1
2
Φ̇T

t CΦ̇t −
1
2

(ΦT
t OLΛL

−1/2)IL
−1(ΦT

t OLΛL
−1/2)T , (2.8)

where ΛL
−1/2 is the square-root of the diagonalized L−1 and IL

−1 is an identity matrix with the physical
dimension of inductance. By defining

Φ̆ ≡ ΛL
−1/2OL

TΦt, (2.9)

where C̆ ≡ (ΛL
1/2OL

T )C(ΛL
1/2OL

T )T is a transformed capacitance matrix, which is positive-definite,
real, and symmetric. For this reason, C̆ can be diagonalized using a real orthogonal matrix OC̆. By
defining

Φm ≡ OC̆
TΦ̆ (2.10)

the Lagrangian is finally diagonalized as follows

L̃linear =
1
2
Φ̇T

mΛC̆ICΦ̇m −
1
2
ΦT

mIL
−1Φm, (2.11)

where ΛC̆ is the diagonal form of C̆ and IC is an identity matrix with physical dimension of a
capacitance. To obtain the full Lagrangian, one simply adds non-linear part L̃nl to the linear part L̃linear,
where the non-linear part L̃nl needs to be expressed in terms of the new basis, which is related to the

9



Chapter 2 Theory

old basis via
Φt = EΦm, E ≡ OLΛL

1/2OC̆. (2.12)

After the diagonalization process, a Legendre transformation provides the Hamiltonian

H =
1
2

QT
mΩ

2ILQm +
1
2
ΦT

mIL
−1Φm − L̃nl, (2.13)

where
Ω ≡ Λ

−1/2
C̆ Iω = diag(ω1,...,ωM) (2.14)

is the diagonal eigenfrequency matrix of the linear HamiltonianHlinear, into which the linear Lagrangian
transforms after the Legendre transformation.

2.1.4 Quantization and Truncation

After the diagonalization process, the full Hamiltonian is now ready to be quantized. The quantization
procedure works similar as for a quantum mechanical harmonic oscillator. That is, we introduce the
annihilation operator [15]

â(t) ≡
1
√

2~Ω
(Φm(t)1−1/2

H + iΩQm(t)11/2
H ), (2.15)

which is equivalent to the following substitution [15]

Φ̂m ≡

√
~
2
Ω1/2IH1/2(â† + â), Q̂m ≡ i

√
~
2
Ω−1/2IH−1/2(â† − â). (2.16)

The next and final step of deriving the Hamiltonian of our circuit is to truncate the Hamiltonian into
n-energy levels. Assuming that during the whole annealing process the circuit is not provided with the
energy greater than the difference between the first E1 and the second E2 eigenenergy, it is actually
sufficient to truncate the Hamiltonian to two lowest states. These states are ground state |0〉 and first
excited state |1〉. Together, those two states form a two-level quantum mechanical system, which is
called qubit and on which a quantum annealer performs operations. The two-level truncation of the
several possible combinations of creation and annihilation operators can be seen in table 2.1.
In reality, however, it is highly likely, that the noise from the environment might excite transitions from
the first excited to the second excited state, so that truncating to more than two levels is necessary. In
this case, the matrix entries of Hamiltonian terms M̂ can be found through M̂i j = 〈i|M̂| j〉.
There is an optional step prior to truncation, which is the rotating wave approximation. The idea of
this approximation is to neglect all terms, which in the interation picture rotate very fast. In order to
carry out this approximation, one needs to split the quantized Hamiltonian into the free part Ĥ0 and
the interaction part ĤI,S . The linear quantized Hamiltonian is usually chosen as the free part, whereas

10



2.2 Transmon Qubits

Step operators Pauli operators
â† − â −iσy

â† + â σx

(â† + â)3 3σx

(â† + â)4 −6σz

(â†i − âi)(â
†

j − â j) −σx
iσ

x
j

(â†i + âi)(â
†

j + â j) σx
iσ

x
j

(â†i + âi)3(â†j + â j) 3σx
iσ

x
j

(â†i + âi)2(â†j + â j)2 σz
iσ

z
j − 2σz

i − 2σz
j

Table 2.1: Overview of the different combinations of the step operators and their truncation to two dimensional
Pauli operators. Subscripts are included for the interaction terms, and refer to different nodes. All
constant terms have been neglected [14].

the rest is treated as interaction part. By transforming into the frameH0 as follows, [14]

Ĥ → ĤR = Û(t)†ĤÛ(t) + i
∂Û(t)†

∂t
U(t), (2.17)

where Û(t) ≡ exp(−iĤ0t). Frequently, one can then neglect all terms proportional to exp(iωt), if ω is
sufficiently larger than the term coefficients [14].
This approximation is, however, not performed in our work, since the time evolution of the Hamiltonian
is studied numerically.

2.2 Transmon Qubits

Among superconducting qubits, Transmon qubits are a leading platform with respect to energy
relaxation and dephasing times [17, 18, 19, 20]. They have a strong resilience to the ubiquitous charge
noise in any superconducting qubit devices [13]. This resilience stems from the fact that the charge
dispersion flattens exponentially in EJ/EC, while the anharmonicity only decreases algebraically in
EJ/EC [14]. To reach higher EJ/EC ratio, a large shunting capacitance CB is often installed in parallel
to the Josephson junction with Josephson energy EJ and parasitic capacitance CJ [14]. The circuit can
be seen in Fig. 2.3. Due to the shunting capacitor, the effective capacitive energy becomes

EC =
e2

2(CJ + CB + Cg)
, (2.18)

which gives us much more freedom in choosing the ratio EJ/EC and we can thus solve the Hamiltonian
for the energy dispersion for larger EJ/EC [14].
Using electrical network graph theory, one can show that the behavior of Transmon qubit can be

11



Chapter 2 Theory

Figure 2.3: Circuit diagram of the Transmon qubit, consisting of a Josephson junction - with energy EJ and
parasitic capacitance CJ , in series with a capacitor of capacitance Cg. The Josephson junction is
shunted by a large capacitance, CB [14].

described by the quantized Hamiltonian

Ĥ = 4EC(n̂ − n̂g)2 − EJ cos
(
Φ̂
)

= 4EC

∞∑
n=−∞

(n − ng)2|n〉〈n| −
EJ

2

∞∑
n=−∞

(|n〉〈n + 1| + h.c.), (2.19)

where n̂g ≡ CgVg/2e is the offset charge [14]. The plot of of the lowest lying states of the Transmon
qubit as a function of the offset charge ng can be seen in Fig. 2.4.
Without Josephson energy (EJ/EC = 0), the energy spectrum of the system is a set of parabolas when
plotted against ng, one for each eigenvalue of n̂ . The parabolas cross at ng = n + 1/2, where n ∈ Z, see
Fig. 2.4(a). We notice that the states |n〉 and |n + 1〉 are degenerate at ng = n + 1/2.
Introducing the Josephson junction lifts the degeneracy, thus making an avoided crossing at ng = n+1/2,
see Fig. 2.4(b)-(d). The distance between these avoided crossings is approximately equal to the
Josephson junction energy EJ for the lowest states in the spectrum [14]. It is also noticeable that the
steepness of the energy dispersion around the working point ng = n + 1/2 is inversely related to the
ratio EJ/EC. This explains, why the large EJ/EC ratio of Transmon qubit helps reducing its sensitivity
to small fluctuations of the gate voltage Vg, as this gate voltage changes ng. Since the eigenstates of
the Transmon qubit are characterized by small zero-point fluctuations, it is appropiate to truncate the
Josephson energy, which is given by the cosine of the phase, to fourth order [13]

Ĥ = 4EC(n̂ − n̂g)2 − EJ cos
(
Φ̂
)
≈ 4EC(n̂ − n̂g)2 − EJ + EJ

Φ̂2

2
− EJ

Φ̂4

24
, (2.20)

12



2.3 Josephson Ring Modulator
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(a) EJ/EC = 0.0
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(c) EJ/EC = 3.0
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(d) EJ/EC = 10.0

Figure 2.4: The energies of the lowest lying states of the Transmon qubit as a function of the offset charge ng.

which, with the help of rotating wave approximation, becomes

4EC(n̂ − n̂g)2 − EJ + EJ
Φ̂2

2
− EJ

Φ̂4

24
≈
√

8EJECa†a −
EC

2
a†a†aa. (2.21)

2.3 Josephson Ring Modulator

In several cases, one wants to build a circuit, where its qubits can interact with each other. The smallest
example of multibody interaction must consist of four nodes, as we can always decouple the center-of-
mass-node leaving three true degrees of freedom [14]. An example for a circuit, which can be used to
couple several qubits, is Josephson ring modulator (JRM) depicted in Fig. 2.5. The symbol ϕi denotes
the nodes of the circuit and is not to be mistaken with Φi, which denotes the fluxes of the circuit.
We consider the case that CJRM,i = CJ for i ∈ {1,2,3,4}. The capacitance matrix describing the circuit in

13



Chapter 2 Theory

Figure 2.5: Circuit diagram of the JRM with four nodes ϕ.

Fig. 2.5 is given by

C =


2CJRM + CJ −CJRM −CJ −CJRM

−CJRM 2CJRM −CJRM 0
−CJ −CJRM 2CJRM + CJ −CJRM

−CJRM 0 −CJRM 2CJRM

 ,

which after diagonalization yields the modes

vCM =
1
2
(
1,1,1,1

)T
, v1 =

1
2
(
1,0, − 1,0

)T

v2 =
1
2
(
0,1,0, − 1

)T
, v3 =

1
2
(
1, − 1,1, − 1

)T
,

with eigenvalues λCM = 0, λ1 = λ3 = 4C, and λ2 = 2C [14]. These modes correspond to charge
oscillating between nodes 1 and 3 (v1), between nodes 2 and 4 (v2), and charge oscillations involving
the nodes 1 and 3 as well as the nodes 2 and 4 (v3) [14],[21].
Later, we denote v1 as Y-eigenmode, v2 as X-eigenmode, and v3 as Z-eigenmode. Now, if the capaci-
tance matrix C is diagonalized, one attains the diagonalized form as follows [14]

K =


0 0 0 0
0 2

(
CJRM + CJ

)
0 0

0 0 2C 0
0 0 0 4C



14



2.3 Josephson Ring Modulator

Figure 2.6: Illustration of a) eigenmode v1, b) eigenmode v2, and c) eigenmode v3 of a JRM.

and the potential energy [14]

U(Φm) = −EJ cos
(√

2Φm,1
)
− 4EJRM cos

(
Φm,1
√

2

)
cos
(

Φm,2
√

2

)
cos
(
Φm,3

)
.

In addition, one could introduce external magnetic flux Φext flowing through the JRM ring. As a
consequence, the Hamiltonian of JRM, expressed in terms of eigenmodes, is given by [21, 22]

Ĥring = − 4EJ cos
(

Φm,1

2Φ0

)
cos
(

Φm,2

2Φ0

)
cos
(

Φm,3

Φ0

)
cos
(

Φext

4Φ0

)
− 4EJ sin

(
Φm,1

2Φ0

)
sin
(

Φm,2

2Φ0

)
sin
(

Φm,3

Φ0

)
sin
(

Φext

4Φ0

)
,

(2.22)

where Φm,1 = ϕ1 − ϕ3 labels the flux flowing between the node ϕ1 and ϕ3, Φm,2 = ϕ2 − ϕ4 denotes the
flux flowing between the node ϕ2 and ϕ4, and Φm,3 = ϕ1 − ϕ2 + ϕ3 − ϕ4 represents the sum of flux
ϕ1 − ϕ2 and flux ϕ3 − ϕ4.
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Chapter 2 Theory

2.4 Quantum Annealing

Quantum annealing is a protocoll designed to solve hard optimization problem and is based on adiabatic
quantum computation. The idea behind this protocoll is to encode the solution of optimization problem
in the ground state of the Hamiltonian [5]

Ĥ0 = −
∑
i< j

Ji jσ
z
iσ

z
j − σihiσ

z
i (2.23)

where Ji j denotes the coupling strength between spins i and j, and hi describes the magnetic field at
site i. Then a suitably chosen non-commuting quantum tunneling Hamiltonian

Ĥ1 =
∑

i

∆iσ
x
i (2.24)

is to be added, where ∆i denotes the interaction strength with the tunneling term. Hence, the total
Hamiltonian takes the form

Ĥ = Ĥ0 − Γ(t)
∑

i

∆iσ
x
i = Ĥ0 + Ĥ1(t), (2.25)

where Γ(t) denotes the time dependence of Ĥ1 [5]. By numerically solving the time dependent
Schrödinger equation

i~
∂|Ψ〉

∂t
= [Ĥ0 + Ĥ1(t)]|Ψ〉 (2.26)

starting with the ground state of the Hamiltonian, the final state of the Hamiltonian will be the ground
state of Ĥ = Ĥ0 for a sufficiently slow variation of Γ(t) according to the adiabatic theorem [5]. Hereby,
one designs the system such that Γ(0) = 1 and Γ(τ) = 0, where τ is the annealing time.

2.5 Transmon Quantum Annealer

Here, the derivation of the circuit Hamiltonian on Fig. 1.1 is briefly presented. In order to derive the
Lagrangian, the following fluxes Φm,1 ≡ Φ1 − Φ3, Φm,2 ≡ Φ2 − Φ4, and Φm,3 ≡ Φ1 − Φ2 + Φ3 − Φ4 are
defined, where Φi =

∫ t
−∞

Vi dt′ is the flux variable defined as the time integral of the electrical potential
Vi of island i [13]. The two differential modes Φm,1 and Φm,2 of the JRM are associated with the modes
that couple the two flux signals Φa and Φb generated by two Transmon qubits by connecting them with
conducting leads [13]. Under the assumption that all JRM junctions have the same Josephson energy
EJRM, all qubit capacitances CJ are equal, no parasitic capacitance is present, and no external magnetic

16



2.5 Transmon Quantum Annealer

flux flows through the JRM loop, the Lagrangian is calculated as

L′2T =
CJ

2
Φ̇a

2
+ EJa cos

(
Φa

Φ0

)
+

CJ

2
Φ̇b

2
+ EJb cos

(
Φb

Φ0

)
+ 4EJRM cos

(
Φa

2Φ0

)
cos
(

Φb

2Φ0

)
cos
(

Φz

2Φ0

)
,

(2.27)

which after Legendre transformation and quantization becomes

Ĥ ′2T = 4ECN̂2
a − EJa cos

(
Φ̂a
)

+ 4ECN̂2
b − EJb cos

(
Φ̂b
)

− 4EJRM cos
(

Φ̂a

2

)
cos
(

Φ̂b

2

) (2.28)

for ϕz = 0. By introducing creation and annihilation operator

N̂x ≡
i
2

(
EJx + EJRM

2EC

)1/4(
x̂ − x̂†

)
, Φ̂x ≡

(
2EC

EJx + EJRM

)1/4(
x̂ + x̂†

)
(2.29)

where x ∈ {a,b}. Truncating the Hamilton operator to the fourth order as well as performing a rotating
wave approximation yields

Ĥ ′2T ≈ Ĥ2T = Eaâ†â −
EC

2
â†â†ââ + Ebb̂†b̂ −

EC

2
b̂†b̂†b̂b̂ − g(â + â†)2(b̂ + b̂†)2 (2.30)

with
Ei ≡

√
8EC(EJx + EJRM)

g ≡
EC

2
EJRM

√
EJa + EJRM

√
EJb + EJRM

.
(2.31)

Introducing microwave drives Ĥdrive = Aa(âeiωd,at + â†e−iωd,at) + Ab(b̂eiωd,bt + b̂†e−iωd,bt) and transform-
ing into a frame rotating with the microwave drives Ux = exp(−iωd,xtx†x) gives us the following
Hamiltonian

Ĥ2T,Qubit = Aaσ
a
x + Abσ

b
x + Jaσ

a
z + Jbσ

b
z − gσa

zσ
b
z , (2.32)

where Ji ≡ Ei − 2~g − ~ωd,i for i ∈ {a,b} [13]. Hence, during annealing protocoll, one needs to initially
set up the microwave frequency equal to the corresponding Ei

~ − 2g and continually reduces it to zero
at t → τ, while the amplitude of the microwave starts at any small enough value and ends at zero.
In case of capacitors installed in parallel to each Josephson junction of JRM, the anharmonicity
terms αx are to be added to equation (2.30), which consequently modifies Ji in equation (2.32) to
Ji = Ei − ~αi − 2~g − ~ωd,i [21].
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Chapter 3

Results and Discussion

3.1 Deriving Circuit Hamiltonian

The first of all steps is to derive the Hamiltonian of our circuit, as depicted in 3.1, and examine several
important information in it. As we incorporate a JRM to couple our Transmon qubits, our circuit
consists of 4 nodes and 14 branches. These nodes comprise a ground node and 3 real nodes, therefore
we expect 3 eigenmodes (X,Y, and Z) in accordance with the theoretical foundations described in Sec.
2.3. Meanwhile, of 14 branches, 3 are twigs, whereas the rests are links. Therefore, the dimension of
f-cut matrix should be 3 × 14, whilst the f-loop matrix should be of dimension 9 × 14.

Figure 3.1: Circuit of two Transmon qubits coupled by a JRM. Each Transmon qubit is driven by its correspond-
ing voltage source and an external magnetic flux flowing through the JRM loop is introduced. Here,
the twigs are marked with blue lines.



3.1 Deriving Circuit Hamiltonian

Applying the electrical network graph theory from Sec. 2.1, the branches of our circuit are marked as
Φ =

(
Φt,Φl

)T , where Φt =
(
Φ1,Φ2,Φ3

)T are the twig branches and Φl =
(
Φ4, . . . ,Φ14

)
are the link

branches. The f-cut as well as f-loop matrix are given by

F(C) =
(

1 F
)
, F(L) =

(
−FT 1

)
,

F(L) =

1 1 1 1 1 0 0 0 0 1 0
0 −1 −1 0 0 1 −1 −1 0 0 −1
0 0 0 −1 −1 0 1 1 1 0 1

 ,
(3.1)

where the identity matrix 1 in F(C) is of dimension 3 × 3, whilst 1 in F(L) has the dimension of 11 × 11.
One can then promptly determine the Lagrangian

L =
1
2
(
Φ̇1 Φ̇2 Φ̇3

)
C

Φ̇1

Φ̇2

Φ̇3

 + Q0 ·

Φ̇1

Φ̇2

Φ̇3

 − 1
2
(
Φ1 Φ2 Φ3

)
L−1

Φ1

Φ2

Φ3


−

(
S · Φext

Φ1

Φ2

Φ3

 + C · Φ2
ext

)
+Lnl

(3.2)

with

C =

CA + CJ1 + CJRM3 + CJRM4 −CJRM4 −CJRM3

−CJRM4 CB + CJ2 + CJRM1 + CJRM4 −CB −CJ2

−CJRM3 −CB −CJ2 CB + CJ2 + CJRM2 + CJRM3

 ,

L−1 =

EJ1 + EJRM3 + EJRM4 −EJRM4 −EJRM3

−EJRM4 EJ2 + EJRM1 + EJRM4 −EJ2

−EJRM3 −EJ2 EJ2 + EJRM2 + EJRM3

 · 1
Φ2

0
,

Q0 =

 CJRM4 Φ̇ext −CAVA

−CJ2 Φ̇ext −CJRM4 Φ̇ext −CB
(
Φ̇ext − VB

)
CJ2 Φ̇ext + CB

(
Φ̇ext − VB

)
 ,

S =

 EJRM4

−EJRM4 − EJ2

EJ2

 · 1
Φ2

0
, C =

EJRM4 + EJ2

2Φ2
0

,

(3.3)
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Chapter 3 Results and Discussion

and the non-linear Lagrangian as well as its approximation

Lnl = EJ1

(
cos
(Φ1

Φ0

)
+

Φ2
1

2Φ2
0
− 1
)

+ EJRM1

(
cos
(Φ2

Φ0

)
+

Φ2
2

2Φ2
0
− 1
)

+ EJRM2

(
cos
(Φ3

Φ0

)
+

Φ2
3

2Φ2
0
− 1
)

+ EJRM3

(
cos
(Φ1 − Φ3

Φ0

)
+

(Φ1 − Φ3)2

2Φ2
0

− 1
)

+ EJRM4

(
cos
(Φ1 − Φ2 + Φext

Φ0

)
+

(Φ1 − Φ2 + Φext)2

2Φ2
0

− 1
)

+ EJ2

(
cos
(
−Φ2 + Φ3 + Φext

Φ0

)
+

(−Φ2 + Φ3 + Φext)2

2Φ2
0

− 1
)
,

Lnl ≈ EJ1
Φ4

1

4!Φ2
0

+ EJRM1
Φ4

2

4!Φ4
0

+ EJRM3

(
Φ1 − Φ3

)4

4!Φ4
0

+ EJRM2
Φ4

3

4!Φ4
0

+ EJRM4

(
Φ1 − Φ2 + Φext

)4

4!Φ4
0

+ EJ2

(
−Φ2 + Φ3 + Φext

)4

4!Φ4
0

.

(3.4)

Here, the truncation to fourth order is only applied for the case without driving. Later, when the qubits
are driven, we abstain from the truncation and treat the non-linear Lagrangian as such.
The linear part of the Lagrangian in Eq. (3.2), which comprises the capacitive term C and the inductive
term L−1, can easily be diagonalized by diagonalizing the capacitive part and then the inductive part,
following the recipe from Subsec. 2.1.3, yielding the following Lagrangian

L̃ =
1
2
Φ̇T

mΛC̆ICΦ̇m −
1
2
ΦT

mIL
−1Φm + Q0 ·

(
EΦ̇m

)
−

(
S · EΦextΦm + CΦ2

ext

)
+ L̃nl

(
Φt
(
Φm
))
, (3.5)

where E ≡ OLΛL
1/2OC̆ is the basis change matrix, which expresses Φt in terms of eigenmodes Φm. A

Legendre transformation is then performed on Eq. (3.5), providing the Hamiltonian

H =
1
2

QT
mΩ

2ILQm +
1
2
ΦT

mIL
−1Φm −Q0 ·EΩ2ILQm +

(
S ·EΦextΦm + CΦ2

ext

)
− L̃nl

(
Φt
(
Φm
))
. (3.6)

Now, we examine the Hamiltonian from Eq. (3.6) without driving. This eliminates the offset charges
Q0 and the external magnetic flux Φext, leaving only the first, second, and last term of Eq. (3.6). By
introducing creation and annihilation operator for quantization as given by Eq. (2.16), one obtains the
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3.1 Deriving Circuit Hamiltonian

quantized Hamiltonian after algebraic simplification

Ĥ =

3∑
k=1

~ωk
(
â†k âk + 1/2

)
−

3∑
k=1

~αk

12
(
â†k + âk

)4
−
∑

k

∑
j,k

~gz
jk

4
(
â†j + â j

)2(
â†k + âk

)2

+

3∑
k=1

∑
j,k

∑
i, j,i,k

~ξk
(
â†k + âk

)2(
â†j + â j

)(
â†i + âi

)
+
∑

k

∑
j,k

~gx,1
jk

(
â†k + âk

)3(
â†j + â j

)
+ ~gx,2

jk

(
â†k + âk

)(
â†k + âk

)3
,

(3.7)

where ωk, αk, and gz
jk is the eigenfrequency of eigenmode k, the anharmonicity of eigenmode k, and the

coupling between qubit k and j, respectively. In this work, we mainly work with the following parameter
values: ∀i ∈ {1,2,3,4} EJRM,i/h = EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz,
and CJ1 = CJ2 = 50 fF. Using these parameters, we recognize that ξk, gx,1

jk , g
x,2
jk ≈ O

(
10−7 rad s−1

)
, while

ωk, αk, gz
jk � O

(
10−7 rad s−1

)
. For this reason, the last two terms of Eq. (3.7) can be safely ignored.

Numerical calculation involving Mathematica yields the following parameter values

ω1 ≈ 2π · 4.98 · 109 Hz, ω2 ≈ 2π · 4.98 · 109 Hz, ω3 ≈ 2π · 4.49 · 109 Hz,

α1 ≈ 2π · 76.67 · 106 Hz, α2 ≈ 2π · 76.67 · 106 Hz, α3 ≈ 2π · 48.43 · 106 Hz,

gz
12 ≈ 2π · 34.96 · 106 Hz, gz

13 ≈ 2π · 58.20 · 106 Hz, gz
23 ≈ 2π · 58.20 · 106 Hz.

(3.8)

One notices here that ω1 = ω2 due to the symmetry of our parameters choice for the JRM. These
eigenfrequencies correspond to the X and Y eigenmode, whose corresponding qubits are driven later
with voltage source and external magnetic flux, whereas the last ω3 is associated with Z eigenmode,
whose corresponding qubit is only driven by external magnetic flux. The numerically obtained value of
ω1, ω2, ω3, and α3 confirm the work of Leib [13] and Roy [21], where the analytical expressions for
these variables are derived [13, 21] and the existence of third qubit arising from parasitic capacitance
is presented. These analytical expressions are

ω1 =

√
8
(
EJRM + EJ1

)
ECJ1

~
, ω2 =

√
8
(
EJRM + EJ2

)
ECJ2

~
,

ω3 =

√
32EJRMECJRM

~
, α3 =

ECJRM

~
,

(3.9)

where

ECJ1 =
e2

2
(
CJ1 + CJRM

) , ECJ2 =
e2

2
(
CJ2 + CJRM

) , ECJRM =
e2

8CJRM
. (3.10)

In order to have an insight to the eigenmodes of our circuit, the inverse of E is simply determined,
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Chapter 3 Results and Discussion

thereby expressing Φm in terms of twigs basis Φt. By this mean, we obtain

ṽ1 ≈

(
−1, 0, 0

)T
, ṽ2 ≈

(
0,
−1
√

2
,

1
√

2

)T
, ṽ3 ≈

( 1
√

3
,
−1
√

3
,
−1
√

3

)T
.

Through comparison with the eigenmodes reported by Rasmussen [14] and Roy [21] as written in
Sec. 2.3, we recognize that ṽi corresponds with vi for i ∈ {1,2,3} in Sec. 2.3. The difference here is
that ṽCM is not revealed in our result, as we set one node as ground node. In addition, we express our
eigenmodes as flux flowing between nodes, whereas in Sec. 2.3 the eigenmodes are presented in terms
of flux flowing to or from nodes. Moreover, one notices here that ṽ1 is perpendicular to ṽ2, which
is in turn orthogonal to ṽ3. The eigenmode ṽ1

(
ṽ2
)

corresponds to Y-eigenmode (X-eigenmode) and
the eigenmode ṽ3 corresponds to Z-eigenmode. For the annealing protocol, the qubit associated with
Y (X) mode is driven with the voltage source VA

(
VB
)
, which is installed in parallel with Φ1 (Φ10)

and Φ4-branches (Φ11-branches), whilst the third qubit from Z-eigenmode ṽ3 is not driven by voltage
source. The coupling g between these 3 qubits is controlled via external magnetic flux Φext, which
drives all qubits and is deactivated slowly during annealing protocol.
For clarity, the visualization of each eigenmode in terms of flowing fluxes is illustrated in Fig. 3.2.

Figure 3.2: Illustration of a) eigenmode ṽ1, b) eigenmode ṽ2, and c) eigenmode ṽ3 of JRM with a transmon
qubit. The red arrows depict the flow direction of the twig fluxes for their corresponding eigenmodes.
This figure depicts a part of full circuit in Fig. 3.1
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3.2 Quantum Annealing

3.2 Quantum Annealing

For the rest of Sec. 3.2, we work with the circuit illustrated in Fig. 3.1. This circuit has the Hamiltonian

Ĥ =
1
2

Q̂T
mΩ

2ILQ̂m +
1
2
Φ̂T

mIL
−1Φ̂m−Q0 ·EΩ2ILQ̂m +

(
S ·EΦextΦ̂m +CΦ2

ext

)
−L̃nl

(
Φ̂t
(
Φ̂m
))
, (3.11)

which results from the quantization of Eq. (3.6), following the recipe from Eq. (2.16).
For the purpose of annealing process, the frequency of the microwave driveωA (ωB) is set initially equal
to ω1 (ω2) from Eq. (3.8). This frequency is linearly reduced, until it vanishes at t → τ. At the same
time, the amplitude of our voltage source is also diminished, following the relation VA,B ∼

(
1 − 20√t/τ

)
.

This dependency is chosen, in order to suppress the voltage amplitude quickly at the beginning. As we
shall see, the voltage amplitude turns out to be proportional to the eigenenergy fluctuation over time,
for which reason the observation of eigenenergy evolution would be hampered, if the amplitude is too
large. Furthermore, the applied external magnetic flux begins at Φext = 2πΦ0 and is linearly decreased
to zero at t = τ.
In summary, the protocol of our quantum annealing is given by

VA(t) = V0

(
1 − 20

√
t
τ

)
cos(ωAt), ωA(t) = ωY

(
1 −

t
τ

)
,

VB(t) = V0

(
1 − 20

√
t
τ

)
cos(ωBt), ωB(t) = ωX

(
1 −

t
τ

)
,

Φext(t) = Φext,0

(
1 −

t
τ

)
, Φext,0 = 2πΦ0,

(3.12)

where V0 is the initial voltage amplitude, τ is the annealing time, and Φ0 is the reduced magnetic flux
quantum.

3.2.1 Idealized Quantum Annealing

Our next goal is to understand the behavior of the evolving eigenstate during the annealing protocol.
To proceed, we ignore the interaction with the environment and first simulate the time evolution of
eigenenergies under idealized circumstances with QuTip [23, 24]. For this, we set τ = 1 µs. The choice
of annealing time τ is arbitrary, as our program only numerically solves the eigenvalue problem of
the circuit Hamiltonian. Not only that we are interested in the influence of initial voltage amplitude
V0 during the course of eigenenergy evolution, but also the study of this time evolution is necessary
to extract minimum energy gap ∆Emin between the ground energy E0 and the first excited energy E1.
Information about the minimum energy gap enables us to estimate the time, which the annealing time
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τ needs to significantly exceed, such that the state evolves adiabatically, as given by [25]

τ≫ O

(
1

∆E2
min

)
. (3.13)

The evolution of three lowest eigenenergies as well as the energy difference to the ground energy
are depicted in Fig. 3.3. The first feature one can recognize is that the main course of eigenenergies
is approximately symmetrical with respect to red dashed vertical line. We attribute this result to the
even property of the cosine, which appears as cos

(
Φ1−Φ2+Φext

Φ0

)
and cos

(
−Φ2+Φ3+Φext

Φ0

)
in L̃nl

(
Φ̂t
(
Φ̂m
))

(see Eq. (3.4) or Eq. (3.11)), and the small flux Φ̂i for i ∈ {1,2,3} according to transmon's resilience to
the ubiquitous charge noise during whole annealing process [13]. Due to this reason, every term in
L̃nl
(
Φ̂t
(
Φ̂m
))

except those containing Φext-dependency can be approximated as vanishingly small and
Φext becomes the main contributor of cos

(
Φ1−Φ2+Φext

Φ0

)
and cos

(
−Φ2+Φ3+Φext

Φ0

)
. Meanwhile, the quadratic

terms are eliminated by terms from L−1, S, and C, as these terms emerge only due to the expansion of
Lnl in Eq. (3.4) prior to quantization. As a consequence, the term cos

(
Φ1−Φ2+Φext

Φ0

)
and cos

(
−Φ2+Φ3+Φext

Φ0

)
exhibits vertical symmetry with respect to t ≈ 0.5τ, at which Φext = πΦ0. The second observation is
that the initial voltage amplitude positively influences the oscillation of eigenenergy, particularly in the
beginning of annealing process, as Fig. 3.3(e) and 3.3(f) exhibit stronger oscillations than Fig. 3.3(a)
and Fig. 3.3(b). We think that this occurs since the increase of initial voltage amplitude would influence
the potential landscape of our circuit's Hamiltonian more strongly and thus causes stronger eigenenergy
oscillation. As strong eigenenergy oscillation hinders the observation of the main eigenenergy evolution,
the voltage amplitude is chosen to be VA,B ∼

(
1 − 20√t/τ

)
as described in Sec. 3.2. Another remarkable

observation is that the energy gap between the first (second) excited state and the ground state
∆Emin,10/h

(
∆Emin,20/h

)
occurs around t/τ ≈ 0.5. Around this point, ∆Emin,10/h

(
∆Emin,20/h

)
amounts

to approximately 164.65 MHz (3.64 GHz), 164.91 MHz (3.64 GHz), and 187.09 MHz (3.62 GHz) for
V0 = 1.26 µV, V0 = 150 µV, and V0 = 1.8 mV, respectively. Apparently, the initial voltage amplitude
does not have substantial effect on the minimum energy gap.
The second step of studying how the eigenstate behaves during the annealing process is to investigate
the effect of annealing time τ on the fidelity F 2(t) ≡ |〈φ0(t)|ψ(t)〉|2, which is a measure of how close
the evolving eigenstate |ψ(t)〉 is to instantaneous ground state |φ0(t)〉 of the Hamiltonian. In the best
case, by which τ → ∞, we would have perfectly adiabatic process such that F 2 → 1. In the other
extreme case, where τ → 0, we would have a perfectly diabatic process and F 2 would move away
from 1, because the eigenstate cannot adapt to the changing Hamiltonian and might be excited to the
next higher states.
In order to attain the changing eigenstate |ψ(t)〉 in dependence of time, we numerically solve the
Schrödinger equation and eigenvalue problem

i~
∂|ψ(t)〉
∂t

= Ĥ(t)|ψ(t)〉, Ĥ(t)|φ0(t)〉 = E0|φ0(t)〉, (3.14)
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(a) Eigenenergy evolution for V0 = 1.26 µV
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(b) Energy difference evolution for V0 = 1.26 µV
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(c) Eigenenergy evolution for V0 = 150 µV
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(d) Energy difference evolution for V0 = 150 µV

0.0 0.2 0.4 0.6 0.8 1.0
Time ( s)

0

10

20

30

40

50

En
er

gy
 (G

Hz
)

V0 = 1.8 mV

E0
E1
E2

(e) Eigenenergy evolution for V0 = 1.8 µV
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(f) Energy difference evolution for V0 = 1.8 µV

Figure 3.3: Selected eigenenergies and eigenenergy differences as a function of time. The time, when the
minimal gap ∆Emin,10 and ∆Emin,20 are reached, is marked with the red dashed line, while the
local minimal gap ∆Emin,21 is marked with the purple dotted line. The following parameter values:
∀i ∈ {1,2,3,4} EJRM,i/h = EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz,
and CJ1 = CJ2 = 50 fF are used
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using QuTip during annealing process, where the initial state of |ψ(0)〉 is the ground state of the
initial Hamiltonian Ĥ(0). By this mean, we are able to calculate the fidelity or infidelity and thus
determines the final fidelity F 2(τ) or final infidelity 1−F 2(τ). Hereafter, we can plot the final infidelity
in dependence of the annealing time, which is illustrated in Fig. 3.4.
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Figure 3.4: Final infidelity 1 − F 2(τ) in dependence of annealing time τ (µs). The following parameter values:
∀i ∈ {1,2,3,4} EJRM,i/h = EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz,
CJ1 = CJ2 = 50 fF, and V0 = 1.26 µV are used.

One can qualitatively recognize in Fig. 3.4 that the final infidelity is inversely proportional to the
annealing time τ, obeying the adiabatic theorem. However, our simulation shows that the final infidelity
starts to get saturated around τ ≈ 20 µs and deviates from our exponential fit function for τ > 20 µs.
This exponential fit is an attempt to attain a phenomenological description of final infidelity behavior
and is numerically determined using Matlab, which yields the following value

1 − F 2(τ) = a · e−bτ, a = 1.006 ± 0.0138, b = (0.2153 ± 0.0104) MHz,

where τ is in µs. The exponential function is intentionally chosen as fit function, in order to mimic the
Landau-Zener formula of diabatic transition probability [26]

Pna = exp
{
−2π
|H12|

~
|H12|

v|F12|

}
, (3.15)
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3.2 Quantum Annealing

where H12 is the constant coupling matrix element in the diabatic basis, F12 ≡ F1 − F2 is the difference
between the slope 1 of E1(x) and slope 2 of E2(x), and v is the magnitude of the relative velocity ẋ(t),
which is assumed constant thoroughout. The fact that our circuit Hamiltonian does not have constant
H12, F12, and v may cause the deviation of final infidelity for τ > 20 µs from the exponential fit.

(a) Annealing time τ = 0.1 µs (b) Annealing time τ = 1.0 µs

(c) Annealing time τ = 10.0 µs (d) Annealing time τ = 100.0 µs

Figure 3.5: Infidelity 1 − F 2(t) as a function of time. The following parameter values: ∀i ∈ {1,2,3,4} EJRM,i/h =

EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz, CJ1 = CJ2 = 50 fF, and
V0 = 1.26 µV are used.

In addition, we are also interested in the change of the eigenstate during the annealing process,
in particular for low τ, for which the state is not close to the instantaneous ground state of the
corresponding Hamiltonian Ĥ(t). Therefore, we show Fig. 3.5, which depicts the course of infidelity
in dependence of time for four various annealing times.
One can easily notice that, except for Fig. 3.5(d), a rapid growth of the infidelity occurs around
t/τ ≈ 0.5, where the Hamiltonian of our circuit has the minimum energy gap ∆Emin,10, as marked with
red dashed line in Fig. 3.3. We suspect that due to quick annealing process, the eigenstate does not
have suffice time to evolve into the instantaneous Hamiltonian's ground state at t/τ ≈ 0.5 µs and thus
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Chapter 3 Results and Discussion

has higher probability to be excited to the higher states. This statement is, however, only a hypothesis.
Hence, the exact reason, why the infidelity rapidly jumps at the minimum energy gap ∆Emin,10, needs
to be investigated further. This investigation is unfortunately not carried out due to the limited time
frame of this work.
Because we deal with an adiabatic process, we naturally want to understand the change of the eigenstate
during the annealing process, especially around the time, at which the infidelity climbs rapidly.
Therefore, using QuTip we track the path of state evolution through calculation of the probability
for excitation in the higher states. For this calculation, the instantaneous ground state 〈φ0(t)| in the
definition of the fidelity F 2(t) is substituted with instantaneous higher states, i.e. first (second) excited
state 〈φ1(t)| (〈φ2|). The corresponding results are shown in Fig. 3.6, which exhibits the probability of
transition to the first and second excited state. We are aware that transitions to even higher states are are
also possible. Hence, the cumulative probability to find the system in either one of three lowest states
is also determined via Pcum(t) = F 2(t) + |〈φ1(t)|ψ(t)〉|2 + |〈φ2(t)|ψ(t)〉|2, which is displayed in Fig. 3.7.
One could easily observe the trend in Fig. 3.6 that the probability of transitions to higher states
decreases with increasing annealing time τ. Likewise, the cumulative probability in Fig. 3.7 tends to
be closer to the value 1 with increasing annealing time. This can be attributed again to the behavior
of evolving state, which more closely resembles an adiabatic process for longer annealing times, as
the Hamiltonian is changed more slowly. For the particularly short annealing times like τ = 0.01 µs
and τ = 0.1 µs, the probability of excitation to first or second excited state is relatively small at the
beginning until it bypasses the first ∆Emin,21 marked by left purple dotted line. Around this time point,
the state still behaves adiabatically as it is still in ground state and the point ∆Emin,10 or ∆Emin,20 has
not been reached. However, as the state evolution reaches the point, where the minimum gap ∆Emin,10

occurs, the state can no longer adapt to the instantaneous ground state and could thus be excited to
the first state E1 with certain probability. Yet, the transition to second state E2 around this point is still
improbable, because ∆Emin,20 is still too large. When the state reaches the second ∆Emin,21 labeled with
the right purple dotted line, it can, however, be excited to the second state, since it is now in the first
excited state and hence requires less energy for transition to the next higher state. After the state passes
this time point, the probability of transition to both E1 and E2 for annealing time τ = 0.01 µs drops in
sudden. This sudden decrease is, however, not attributed to the transition to ground state, but rather
the excitation to next higher states, since Fig. 3.7(a) likewise displays a rapid decline, indicating low
probability of the system in either one of three lowest eigenstates. The similar train of thought but with
less probability for transition to higher states can be extended for τ = 0.1 µs and τ = 1.0 µs.
We remark for τ = 0.1 µs, τ = 1.0 µs, and τ = 10.0 µs that around the point t/τ ≈ 0.8 the probability
of transition to E1 declines quickly, while the probability of transition to E2 climbs rapidly. This
observation appears probably due to a third minimum energy gap ∆Emin,21/h, which according to Fig.
3.3(b), (d), and (f) occurs near the point t/τ ≈ 0.8. This minimum energy gap happens around t/τ ≈ 0.2
as well, yet since the state still stays in ground state, no striking rapid drop (increase) for probability of
transition to first (second) excited state is observed. This drop or increase could perhaps be observed
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(a) Probability of transition for τ = 0.01 µs
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(b) Probability of transition for τ = 0.1 µs
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(c) Probability of transition for τ = 1.0 µs
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(d) Probability of transition for τ = 10.0 µs
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(e) Probability of transition for τ = 100.0 µs

Figure 3.6: Probability of transition to first (second) excited state E1 (E2) as a function of time for five different
annealing times τ. The red dashed line marks ∆Emin,10 and ∆Emin,20, while the purple dotted line
marks ∆Emin,21. The following parameter values: ∀i ∈ {1,2,3,4} EJRM,i/h = EJRM/h = 13 GHz,
CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz, CJ1 = CJ2 = 50 fF, and V0 = 1.26 µV are used.
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(a) Cumulative probability for τ = 0.01 µs (b) Cumulative probability for τ = 0.1 µs

(c) Cumulative probability for τ = 1.0 µs (d) Cumulative probability for τ = 10.0 µs

(e) Cumulative probability for τ = 100.0 µs

Figure 3.7: Cumulative probability to find the circuit in either one of three lowest states for five different
annealing times τ as a function of time. The following parameter values: ∀i ∈ {1,2,3,4} EJRM,i/h =

EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz, CJ1 = CJ2 = 50 fF, and
V0 = 1.26 µV are used.
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better, if a log scale on y−axis is used.

3.2.2 Parameters Fluctuations

The physical implementation of circuit illustrated in Fig. 3.1 is naturally subject to parameter fluctua-
tions, as every fabrication is always fraught with uncertainties, which might have not been predicted,
especially for small parameter magnitude. These uncertainties could eventually change the property
and behavior of our circuit during qubit driving, for which reason the final fidelity during the annealing
process is investigated under parameter fluctuations. For this purpose, we assume that during fabrica-
tion the parameters EJRM,i, CJRM,i for i ∈ {1,2,3,4}, EJ,j, CJ,j for j ∈ {1,2}, and Ck for k ∈ {A,B} deviate
at maximum 30% from their intended value. By generating random numbers based on this maximum
deviation, we are able to plot the occurrence of final fidelities. Due to non-symmetric parameters,
the eigenmodes could deviate from ṽ1, ṽ2, and ṽ3 reported in Subsec. 3.1. To avoid driving error, we
adjust manually the initial driving frequencies with corresponding eigenfrequencies of the qubit for
each randomly generated parameter set. For this investigation, we set τ = 5 µs and V0 = 1.26 µV. This
procedure yields the results depicted in Fig. 3.8.
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Figure 3.8: Distribution of final fidelities F 2(τ) from 80 random parameter sets for τ = 5 µs. The bottom,
middle, and top horizontal dashed red line depicted in right figure marks the 25%, 50%, and 75%
percentile, respectively. The initial V0 = 1.26 µV for the annealing protocol is used here.

Figure 3.8(a) shows that most of random parameter sets yield final fidelity with value ranging from
around 0.9 to 1.0, which is pretty close to 1.0. The 50% percentile in Fig. 3.8 intersects with the
cumulative distribution at F 2(τ) ≈ 0.994. This means that, one expects to attain final fidelity lower and
higher than 0.994, each for 50% of the parameter sets. Meanwhile, 25% and 75% percentiles intersect
with cumulative distribution around F 2(τ) ≈ 0.772 and F 2(τ) ≈ 0.999, respectively.
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3.2.3 Quantum Annealing with Dissipation

In reality, a quantum system always interacts with its environment, as nothing in nature can be perfectly
isolated [27]. Consequently, one needs to add an environmental Hamiltonian ĤE and the Hamiltonian
ĤS E governing the interaction of the system with its environment [14]. This Hamiltonian is then put
into the Schrödinger or von-Neumann equation ∂ρ̂T

∂t = − i
~[ĤT , ρ̂T ] to obtain the time evolution of

total system's state or density operator over time during annealing process [14, 27]. However, the
environment typically has much more degrees of freedom than the system of interest, which makes
von-Neumann equation solvable only for very limited special cases. As we are only interested in the
dynamics of our system, we trace over the environment degrees of freedom to obtain the reduced density
matrix of the system ρ̂(t) = TrE[ ρ̂T ] [27]. In order to simplify the problem further, the Markovian
and Born approximation are made. The first approximation assumes that the time development in the
equations of motion for the reduced system density matrix only depends on the present state ρ̂(t), while
the latter assumes the separability of the total system ρ̂T (t) = ρ̂(t) ⊗ ρ̂E(t) [14, 27, 28]. In addition,
the rotating wave approximation is performed to neglect all fast rotating terms [28], yielding the
Gorini-Kossakowski-Sudarshan-Lindblad or Lindblad equation as follows [28]

∂ρ̂(t)
∂t

= −
i
~

[Ĥ(t), ρ̂(t)] +
∑

k

Γk

(
L̂k(t)ρ̂(t)L̂†k(t) −

1
2
{L̂k(t)L̂

†

k(t), ρ̂(t)}
)
, (3.16)

where L̂k denotes jump operators, through which the environment couples with the system, and Γk are
the corresponding rates. The numerical solution of Eq. (3.16) is supported by QuTip.
Due to interaction with environment, our proposed circuit is prone to decay and dephasing phenomena,
which cause information loss during annealing time. The first phenomenon describes depolarization
along the qubit quantization axis, so that it is often referred to as energy decay. This causes a loss of
circuit energy and thus the excitation rate is suppressed exponentially [14]. The latter phenomenon
is caused by longitudinal noise that couples to the qubit via the z−axis. This noise causes the qubit
frequency to fluctuate such that it is no longer equal to the interaction frame frequency [14]. Due to
interaction, qubits generally experience both excitation and relaxation, yet due to Boltzmann statistics
and as qubits are usually operated at low temperature (T . 20 mK) with frequencies in the GHz regime,
the qubits tend to lose energy to the environment, meaning that the relaxation normally dominates [14].
These two phenomena affect the behavior of our circuit, which in turn motivates this study.
For this study, the decay and dephasing process for k ∈ {1,2,3} is introduced via the following jump
operators

L̂k,decay = âk, Γk,decay =
2π
Tγ

,

L̂k,dephasing = â†kak, Γk,dephasing =
2π
Tφ

,

where 1
Tγ

denotes the decay rate of the qubit and 1
Tφ

marks the dephasing rate of the qubit. Thus, we
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assume equal decay and dephasing rates for each qubit. At first, we want to examine the influence of
the decay and dephasing of each qubit on the density operator evolution during annealing protocol. To
proceed, we introduce L̂k,decay or L̂k,dephasing only for k−qubit of our interest and neglect the interaction
of other qubits with the environment. Due to the symmetry of JRM, we introduce the jump operators
separately on two qubits, namely qubit associated with Y-eigenmode (k = 2) and qubit corresponding
to Z-eigenmode (k = 3). We remind that qubits associated with X- and Y-eigenmode stem from our
two Transmon qubits, which are coupled via JRM, while qubit associated with Z-eigenmode arises
from the parasitic capacitance of the Josephson junctions in our JRM, which is also confirmed by Roy
[21]. This qubit is coupled as well with the qubit X and Y, as we have the terms gz

j3 in Eq. (3.7). Hence,
the separate introduction of jump operators L̂3,decay and L̂3,decoherence aims to investigate the influence of
the interaction between the environment and the qubit associated with Z-eigenmode on the behavior
of the whole circuit. For this investigation, we set τ = 5 µs again. The following parameter values:
∀i ∈ {1,2,3,4} EJRM,i/h = EJRM/h = 13 GHz, CJRM,i = CJRM = 100 fF, EJ1/h = EJ2/h = 11 GHz, and
CJ1 = CJ2 = 50 fF are used. The result for Y-eigenmode and Z-eigenmode can be seen in Fig. 3.9 and
3.10, respectively.
Figure 3.9(a), 3.10(a), 3.9(b), and 3.10(b) show that at the beginning of the annealing protocol,
around the third minimum local energy gap ∆Emin,21/h at t ≈ 1 µs or somewhat ealier, the infidelity
increases steadily, before it rapidly jumps at t ≈ 2.5 µs, where the minimum energy gap ∆Emin,10/h
is reached. In between, the steepness of the infidelity evolution is proportional to the decay rate and
dephasing rate. However, after rapid jump at t ≈ 2.5 µs the decay jump operator L̂decay has a different
influence on the infidelity from the influence of dephasing jump operator L̂dephasing. The first one
contributes to the decline of infidelity, whilst the latter slightly affects the growth of infidelity after
its rapid drop, especially for Tφ = 30 µs. The decline (increase) of infidelity seems to correspond
to the decay (dephasing) rate. From our point of view, the decrease of infidelity is attributed to the
annihilation operator â, which represents the relaxation of qubits. The relaxation enables the excited
state to descend into the ground state and thus suppressing infidelity, whereby the suppression depends
positively on the decay rate 1

Tγ
. On the other hand, the dephasing jump operator is equal to the number

operator â†â, which corresponds to a dephasing of the off-diagonal elements of the density matrix, a
mechanism washing out the phase relationship between states without changing their population [29].
This dephasing effect causes the quantum system to lose its coherence with rate 1

Tφ
and thus enhances

the infidelity.
This result of course raises a question, whether one can carries out quantum annealing protocol by
increasing the decay rate indefinitely. We think, that this possibility is limited, as one needs to cool
down the environment further to suppress the excitation of ground state or to increase the decay rate
[14]. We hypothesize, that the increase of decay rate is not indefinite with decreasing temperature, but
starts to saturate after the environment temperature falls below a certain temperature.
Figure 3.9(c), 3.10(c), 3.9(d), and 3.10(d) depict the transition probability to first excited state, which is
distinguished through its rapid jump around t ≈ 2.5 µs as similar as Fig. 3.6. After that, the system with
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different decay rates
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Figure 3.9: Effect of jump operator L̂2,decay (left) and L̂2,dephasing (right) of qubit associated with Y-eigenmode on
the behavior of circuit's state, plotted as a function of time. The annealing time is set to be τ = 5 µs.
The red dashed line marks the time point, at which ∆Emin,10/h and Emin,20/h is reached, whilst the
purple dotted line marks the time point of ∆Emin,21/h.
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(d) Probability of transition to first excited state for three
different dephasing rates
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(e) Probability of transition to second excited state for three
different decay rates
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(f) Probability of transition to second excited state for three
different dephasing rates

Figure 3.10: Effect of jump operator L̂3,decay (left) and L̂3,dephasing (right) of qubit associated with Z-eigenmode
on the behavior of circuit's state, plotted as a function of time. The annealing time is set to be
τ = 5 µs. The red dashed line marks the time point, at which ∆Emin,10/h and Emin,20/h is reached,
whilst the purple dotted line marks the time point of ∆Emin,21/h.
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Chapter 3 Results and Discussion

energy relaxation exhibits a rapid decline of transition probability (see Fig. 3.9(c) and 3.10(c)), whereas
a somewhat slower decrease can be seen in Fig. 3.9(d) and 3.10(d) for a system with a dephasing jump
operator. In addition, in Fig. 3.9(e), 3.10(e), 3.9(f), and 3.10(f) one can observe a local peak, which
is attributed to the local minimum energy gap ∆Emin,21/h. The peak of transition probability to the
second excited state is recognized again at t ≈ 4 µs, where the third minimum energy gap ∆Emin,21/h
around t/τ ≈ 0.8 is located. At this time point, the population in first excited state tends to pass over
the second excited state.
Since both Fig. 3.9 and Fig. 3.10 show a tendency for the infidelity to increase due to dephasing jump
operator, whilst decay jump operator suppresses transition to higher states, one expects both jump
operators to compete with each other, when they are simultaneously introduced to the system. Thus, as
a last part of this study, we show the time evolution of the circuit state with all its qubits interacting
with their surroundings in Fig. 3.11. We assume here, for simplicity, that the decay rate and dephasing
rate of all qubits to be equal to each other (Tk,γ = Tγ for k ∈ {1,2,3} and Tk,φ = Tφ for k ∈ {1,2,3}).
As our intuition predicts, the infidelity appears to maximally decline for circuit with large decay rates.
Here, the dephasing mechanism has negligible effect on the behavior of circuit state. For smaller decay
rates, we observe the infidelity of the state to be somewhat closer to ideal quantum annealing. The
largest jump of infidelity appears, again, at t ≈ 2.5 µs, where ∆Emin,10/h and ∆Emin,20/h lay. This time
point is characterized by a local peak of transition probability to the first excited state, as observed in
Fig. 3.11(b). Shortly after this jump, the infidelity as well as the transition probability to the first excited
state drops quickly. This drop is partially attributed to the decay to the ground state and to the excitation
to the next higher states, i.e. the second excited state, since local peak in Fig. 3.11(c) intersects with
right purple dotted line. Afterwards, around the third local minimum energy gap ∆Emin,21/h at t ≈ 4 µs,
the transition probability to first excited state decreases, whereas the transition probability to second
excited state increases.
Figure 3.11(a) and Figure 3.11(d) illustrate the increase in infidelity and the probability to be in
either one of three lowest states. One can recognize that, at the beginning, the circuit interacting
with environment exhibits a growing infidelity, even for circuits with high decay rate. This behavior
is somewhat counterintuitive and occurs perhaps since both decay and dephasing jump operators
negatively affect the adaptability of circuit state during the early phase of annealing protocol. Hence,
the probability of being in instantaneous ground state become dispersed over higher states, inferred
from the reduction of cumulative probability shown in Fig. 3.11(d).
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(b) Comparison of transition probability to first excited state
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(c) Comparison of transition probability to second excited
state
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(d) Comparison of cumulative probability

Figure 3.11: The behavior of circuit's state with and without interaction with the environment. "Ideal", "Dis
1", "Dis 2", "Dis 3", and "Dis 4" denote no interaction, Tγ = 20 µs and Tφ = 330 µs, Tγ = 0.2 µs
and Tφ = 30 µs, Tγ = 2 µs and Tφ = 330 µs, Tγ = 0.2 µs and Tφ = 1000 µs, respectively. The red
dashed line marks the time point, at which ∆Emin,10/h and Emin,20/h is reached, whilst the purple
dotted line marks the time point of ∆Emin,21/h.
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Chapter 4

Summary and Outlook

We review our main findings once more and highlight several important keynotes of our discussion.
In Sec. 3.1 we introduced a coupler circuit based on JRM, and derived its governing Hamiltonian
H by applying electrical network graph theory of Rasmussen [14] and Zlatko [15]. By quantizing
the Hamiltonian, we were able to extract essential parameter values and confirmed the analytical
expression derived by Leib [13] and Roy [21]. Furthermore, our eigenmode results also coincide with
JRM-eigenmodes calculated by Roy [21] and Flurin [22].
Next, in Sec. 3.2 the annealing protocol was investigated. The voltage sources were initially turned on
with finite voltage amplitudes and drive frequencies equal to the eigenfrequency of qubit A or B. These
initial values were slowly diminished over time. This protocol produced an eigenenergy evolution,
from which we extracted the minimum energy gap ∆Emin,10/h ≈ 165 MHz and ∆Emin,20/h ≈ 3.6 GHz.
After that, we studied the influence of the annealing time τ on the infidelity 1 − F 2(t) of our circuit
under ideal conditions and fitted an exponential function to the obtained data. This approach yielded
the dependency of final infidelity on the annealing time. By this mean, we could confirm the adiabatic
theorem, as the final infidelity turns out to be inversely proportional to the annealing time. Besides
that, a rapid jump of the final infidelity typically occurs at the time t/τ ≈ 0.5 where the system has
the minimum energy gap ∆Emin,10/h and ∆Emin,20/h ≈ 3.6 GHz. Moreover, we also tracked the path
of the evolving state and found out that the probability of transition to E1 (E2) is largest at ∆Emin,10

(∆Emin,21) for low annealing time. The probability of excitation to energy levels beyond the second
excited state is also higher, the shorter the annealing time is. By assuming maximum deviation of a
30% for each component of our circuit from the ideal parameter value, we showed that final fidelities
overwhelmingly amounts to 0.9−1.0 for τ = 5 µs, indicating robustness of our circuit under fabrication
inaccuracies. By introducing the decay jump operator âk with its corresponding decay rate as well as
dephasing jump operator â†k âk with its corresponding dephasing rate, we observed a reduction (slight
increase) of the final infidelity for large decay (dephasing) rates. Despite of qubit relaxation, we also
observed a reduction of the cumulative probability for circuits with large decay rate, which, from our
point of view, is attributed to the worsening of circuit state adaptability during the early phase of the
annealing protocol. The reduced adaptability, in turn, causes circuit state to be more dispersed over
higher energy levels.



As a closing statement, we would like to mention that this work puts heavy emphasis on numerical
solution of the Schrödinger equation and Lindblad equation supported by QuTip. As such, the result is
fraught with numerical inaccuracies brought by Python and QuTip. We were, for instance, aware at the
end of the work, that there is a discrepancy between Mathematica and Python, which results in different
E−1, the matrix, which expresses Φm as a linear combination of twigs Φt. Therefore, the eigenmodes
ṽ1 and ṽ2 computed with Python are not perfectly orthogonal to each other, even though they should
be, as the matrix C and L−1 are positive-definite, real, and symmetric. By manually correcting E, the
minimum energy gap ∆Emin,10/h approximately doubles, which probably decreases the infidelity even
further. Qualitatively, however, the eigenenergy evolution is still highly similar to the eigenenergy
evolution without correction. The exact, quantitative consequence of this correction could unfortunately
not be investigated due to the limited time frame of this work. Nevertheless, because of the larger
energy gap ∆Emin,10/h, we expect the maximum and final infidelity after correction to be as high as
without correction at the most.
Another conceivable numerical inaccuracy is the annihilation operator âk, which is truncated first and
is contained in the non-linear Lagrangian in Eq. (3.4). Due to earlier truncation, the multiplication of
âk with itself produces several errors in the matrix entries of 〈i|â2

k | j〉. To minimize this inaccuracy, we
truncated the annihilation operator to the four lowest energy eigenbasis states.
Due to the numerical inaccuracies described above, we advise to investigate the infidelity of our
quantum annealing protocol after correction of E−1 and 〈i|â2

k | j〉. Moreover, a study of state infidelity
under parameter fluctuations and jump operators would also be an interesting thing to know, as
non-symmetrical circuit interacting with its environment perhaps would behave differently from
symmetrical one.
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