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Abstract

Nanomechanical systems are promising candidates for the realization of highly precise
sensing devices as well as for testing fundamental quantum mechanics and for applications
in quantum information processing and storage. One of the outstanding characteristics
of tensile stressed nanomechanical beams, cantilevers or membranes is their high mechan-
ical quality factor, enabling precise frequency measurement and long coherence times.
The integration of nanomechanical resonators into hybrid systems allows combining these
properties with additional functionality or enhanced control of the mechanics via external
parameters.

In this thesis, nanomechanical resonators interacting with magnetic or electrical degrees
of freedom are investigated. We use tensile stressed nanomechanical beams which we couple
to a magnetic thin film or a superconducting coplanar waveguide microwave resonator.

First, we present fabrication and basic characterization of tensile stressed silicon nitride
and aluminium nanobeams and determine their relevant material properties. Besides, we
derive a theoretical description of the mechanics of multilayer nanobeams and verify it by
comparing model predictions to experimental findings. Next, we present a magnetome-
chanical hybrid system consisting of a tensile stressed silicon nitride nanoresonator covered
with a thin cobalt or nickel film. In a proof-of-principle experiment, we demonstrate that
this platform can be used to probe magnetostriction in thin films via its impact on the
mechanics.

Turning to circuit electromechanics, we fabricate and characterize a device in which
a pure silicon nitride nanobeam is integrated into a superconducting niobium microwave
resonator. This hybrid system features high quality factors in both the mechanical and
the microwave resonator and thus allows for the sensitive study of damping mechanisms in
silicon nitride at low temperatures. Besides, we present a circuit electromechanical device
consisting of a tensile stressed aluminium nanobeam and an aluminium microwave res-
onator. We characterize the microwave and the mechanical resonator and show sideband
cooling of the fundamental mechanical mode. Additionally, we investigate electromechan-
ically induced transparency and thus demonstrate backaction of the mechanics on the
microwave resonator. The presented all-aluminium platform allows for the integration of
transmon qubits and thus constitutes an important step towards circuit electromechanics
in the quantum regime. We propose protocols that allow ground state cooling, mechani-
cal state preparation and three-body entanglement in a similar circuit electromechanical
device and present first steps towards its experimental implementation.
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In conclusion, the results of this thesis are useful, e. g., for the realization of sensing
devices, for the investigation of magnetoelastic properties of thin films and for the study of
mechanical damping in nanoresonators. Besides, we open the path for fundamental tests
of quantum mechanics with circuit electromechanical systems and for possible applications
of nanomechanical beam resonators in quantum information processing and storage.



Zusammenfassung

Nanomechanische Systeme sind vielversprechende Kandidaten für die Realisierung
hochpräziser Sensoren, für das Studium grundlegender Quantenphänomene und für An-
wendungen in der Prozessierung und Speicherung von Quanteninformation. Eine der
herausragenden Eigenschaften zugverspannter Nanoresonatoren ist ihre hohe mechani-
sche Güte, was eine genaue Messung ihrer Resonanzfrequenz und lange Kohärenzzeiten
ermöglicht. Nanomechanische Hybridsysteme verbinden diese Vorteile mit zusätzlicher
Funktionalität oder erlauben die Kontrolle mechanischer Eigenschaften mithilfe externer
Parameter.

Diese Arbeit beschäftigt sich mit nanomechanischen Resonatoren, die mit magneti-
schen oder elektrischen Freiheitsgraden wechselwirken. Wir nutzen hierfür zugverspannte
Nanobalken, die an einen magnetischen Dünnfilm oder an einen supraleitenden Mikro-
wellenresonator im koplanaren Wellenleiterdesign gekoppelt sind.

Im ersten Teil der Arbeit werden die Fabrikation und die grundlegende Charakterisie-
rung von zugverspannten Siliziumnitrid- und Aluminium-Nanobalken vorgestellt und deren
wichtigste Materialparameter bestimmt. Wir leiten außerdem eine theoretische Beschrei-
bung der Mechanik von mehrlagigen Nanobalken her und verfizieren sie durch Vergleich
mit experimentellen Ergebnissen. Ferner untersuchen wir ein magnetomechanisches Hy-
bridsystem auf der Basis eines zugverspannten Siliziumnitrid-Nanobalkens, der mit einem
Cobalt- oder Nickel-Dünnfilm bedeckt ist. In einem Grundlagenexperiment weisen wir
nach, dass dieser Aufbau dazu benutzt werden kann, Magnetostriktion in einem Dünnfilm
mit Hilfe mechanischer Messgrößen zu untersuchen.

Der zweite Teil der Arbeit behandelt das Gebiet der Schaltkreis-Elektromechanik. Wir
zeigen die Fabrikation und Charakterisierung eines reinen Siliziumnitrid-Nanobalkens, der
in einen supraleitenden Niob-Mikrowellenresonator integriert ist. Aufgrund seiner hohen
mechanischen und elektrischen Güte eignet sich eine derartige Probe zur Untersuchung der
Dämpfungsmechanismen in Siliziumnitrid bei tiefen Temperaturen. Des Weiteren unter-
suchen wir ein Hybridsystem, das aus einem zugverspannten Aluminiumbalken und einem
Aluminium-Mikrowellenresonator aufgebaut ist. Wir charakterisieren den mechanischen
und den Mikrowellenresonator und demonstrieren Seitenbandkühlung der fundamentalen
Schwingungsmode des Nanobalkens. Wir untersuchen ferner elektromechanisch induzierte
Transparenz und weisen damit eine Rückwirkung der mechanischen Schwingung auf den
Mikrowellenresonator nach. Das gezeigte aluminiumbasierte Hybridsystem ermöglicht die
Integration von Transmon-Quantenbits und stellt damit einen wichtigen Schritt hin zu
Schaltkreis-Elektromechanik im Quantenlimes dar. Wir entwickeln Protokolle zur Reali-
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sierung von Grundzustandskühlung, Präparation mechanischer Zustände und Dreikörper-
Verschränkung in solch einem elektromechanischen System und zeigen erste Schritte hin
zur experimentellen Implementierung.

Die Ergebnisse dieser Arbeit können z. B. für die Realisierung nanomechanischer
Sensoren, für die Bestimmung magnetoelastischer Eigenschaften in Dünnfilmen und für
die Untersuchung von Dämpfungsmechanismen in Nanoresonatoren von Nutzen sein.
Darüberhinaus ebnen sie den Weg für Experimente zu den Grundlagen der Quanten-
mechanik auf der Basis von Schaltkreis-Elektromechanik und für mögliche Anwendun-
gen nanomechanischer Balkenresonatoren in der Quanteninformationsverarbeitung und
-speicherung.
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Chapter1
Introduction

In the past decades, micro- and nanomechanical resonators have gained enormous impor-
tance in science and industrial applications. Whereas centimeter- to meter-sized mechan-
ical resonators have been used for a long time (in form of mechanical clocks or tuning
forks, for instance), the development of micro- and nanofabrication techniques, starting
in the 1960s, provided the means to scale down the size of mechanical resonators and
greatly extend their range of applications [1]. Apart from serving as frequency refer-
ence (e. g. quartz crystals in a watch), micromechanical resonators are widely employed
as sensing devices. Micromechanical vibrating accelerometers and gyroscopes, e. g., are
commonly used in smartphones [2], route guidance systems [3], electronic stability control
in cars [4] or for the detection of a free fall in a variety of electronic devices [5]. In a lot of
technical applications and consumer electronics, where ultimate sensitivity is not required,
such microelectromechanical systems (MEMS) serve as compact, low-cost and low-energy
consuming sensing devices [6, 7].

From a scientific point of view, the integration of micromechanical resonators has
pushed the sensitivity of various analytic tools in physics and material science: Microme-
chanical cantilevers are the key element of atomic force microscopy (AFM) and scanning
tunneling microscopy (STM) and allow for the precise investigation of surface texture,
topography and defects [8]. Recently, cantilever resonators have been employed for the
mechanical manipulation and read-out of spin qubits in diamond [9], nanoscale magnetic
resonance imaging [10] and for the investigation of forces and folding behaviour of pro-
teins [11]. Moving on to nanoscale mechanical resonators, sensitivity can even be increased.
One of the most fascinating perspectives of nanoscale mechanical resonator sensing de-
vices is the detection and identification of single molecules or even atoms in a gas or an
aerosol [12–14]. To this end, a doubly-clamped nanostring resonator – a tensile stressed
nanobeam or a carbon nanotube – is placed in a flow of highly diluted gas molecules/atoms.
If a particle hits the nanoresonator and sticks to it, the mass of the nanostring changes,
resulting in a shift of its resonance frequency. So the adsorption of a molecule/atom can be
detected by continuously monitoring the resonance frequency of the high-Q nanoresonator.
In an ultrahigh vacuum environment and at low temperature (4 K), mass sensitivities down
to the yoctogram range have been demonstrated, corresponding to the mass of a single
proton [14]. Even if such systems are still in the stage of fundamental research, in future
applications similar devices could serve, e. g., as sensors for the analysis of gases and de-
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tection of toxins or explosives, providing a quick and low-cost alternative to conventional
mass spectroscopy [15–17].

Apart from these perspectives in sensing applications, micro- and nanomechanical res-
onators have become a promising tool for the investigation of fundamental questions in
quantum mechanics and possible applications in quantum information processing and stor-
age. Integrating a micro/nanomechanical resonator into an optical cavity or a microwave
circuit allows to precisely control and read out the motion of the mechanical element [18].
This idea led to the emergence of the fields of cavity optomechanics and, derived from this,
circuit electromechanics [19].

Cavity opto- and electromechanical systems combine the excellent mechanical proper-
ties of tensile stressed, low-loss mechanical resonators with the controllability and the sensi-
tivity of the readout techniques developed for optical cavities or microwave resonators. For
the latter, a natural choice are superconducting resonators due to their ultralow damping
rates [18, 20, 21]. Such circuit electromechanical hybrid devices, consisting of a nanome-
chanical resonator and a superconducting microwave resonator, can be combined with
other degrees of freedom (e. g. qubits/artificial atoms) for enhanced state control or exci-
tation transfer experiments [22,23].

Recently, important steps towards experiments with mechanical systems in the quan-
tum regime have been taken. It is possible to cool single modes of a MHz mechanical
resonator to the quantum ground state and to prepare them in a squeezed vacuum state,
where one of the quadratures of mechanical motion is reduced below the standard quantum
limit [24,25]. Furthermore, entanglement of mechanical motion with a microwave state in
a circuit electromechanical hybrid system was demonstrated, a key ingredient for possible
applications in quantum information processing and storage [26].

From a quantum application perspective, mechanical resonators are a promising candi-
date for the conversion of single optical to microwave photons and vice versa [27]. Whereas
the direct photon-photon interaction is weak, a mechanical element that is strongly coupled
to both an optical and a microwave cavity can serve as a transducer for quantum infor-
mation stored in optical or microwave photons. First experiments towards the realization
of this idea have already been published [28,29].

In this thesis, we investigate high-Q nanomechanical resonators embedded in mag-
netomechanical or circuit electromechanical hybrid devices. We use tensile stressed
nanobeam resonators, fabricated from a silicon nitride or aluminium thin film, and couple
them to a magnetic thin film or a superconducting microwave circuit, respectively. In
the first case, the magnetomechanical coupling allows to control the mechanical properties
via external magnetic fields or to operate the nanobeam resonator as a sensor for magne-
toelastic effects. Regarding the circuit electromechanical devices, we demonstrate control
and read-out of the nanobeam motion via the microwave circuit and show backaction ef-
fects of the mechanics on the microwave resonator. Besides, we report on theoretical and
experimental progress towards the integration of a transmon qubit into a circuit electrome-
chanical device, enabling single phonon control and novel state preparation protocols.

Chapter 2 lays the foundations for the mathematical description of nanomechanical
resonators. We use an effective one-dimensional oscillator model to describe the vibrational
motion of a tensile stressed nanobeam resonator. We derive the amplitude spectrum of
thermal motion and the response spectrum in the non-linear regime of high displacement,
which will be an important tool in the experiments later.
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In Chap. 3, we discuss the fabrication and characterization of pure silicon nitride and
aluminium nanobeams and determine their relevant material parameters. This is the basis
for the integration of nanobeams into more complex hybrid systems. For this purpose,
usually multilayer nanobeams are employed, fabricated of a stack of two or more thin film
layers. We derive a comprehensive description of the mechanics of multilayer nanobeams in
Chap. 4. In particular, we show that the vibrational modes of such multilayer nanobeams
can be described similar to the motion of homogeneous beams by introducing effective
material parameters. Knowing the relations between these effective parameters and the
bare material properties of the individual layers allows to tailor the properties of multilayer
nanobeams and to study material properties in multilayer hybrid systems.

An application of a double-layer nanobeam used for sensing purposes is given in
Chap. 5. Here we present a platform which allows to quantitatively investigate mag-
netostriction in a ferromagnetic thin film. The presented technique is based on a tensile
stressed silicon nitride nanobeam covered with a magnetic thin film. We use the interaction
between magnetization and elastic properties to determine the magnetostriction constants
of the magnetic thin film by resonance spectroscopy of the nanobeam motion.

The last part of this thesis discusses the topic of circuit electromechanics. Chapter 6
introduces the fundamental concepts of circuit electromechanics and gives a brief overview
of the experimental realization based on superconducting coplanar waveguide (CPW) mi-
crowave resonators. In Chaps. 7 and 8, we present two approaches towards circuit elec-
tromechanics, where a nanobeam resonator is coupled to a CPW microwave resonator.
First, we integrate a pure silicon nitride nanobeam into a niobium microwave resonator
(Chap. 7). We present the fabrication process, characterize the hybrid system and deter-
mine the electromechanical vacuum coupling. As an alternative approach, promising in
particular for quantum applications, we combine a tensile stressed aluminium nanobeam
with an aluminium CPW microwave resonator (Chap. 8). We show basic characterization
measurements and demonstrate sideband cooling of the mechanical motion and electrome-
chanically induced transparency (EMIT), an interference effect similar to optomechanically
induced transparency. Finally, we provide an outlook on ongoing experimental work at
the Walther-Meißner-Institut regarding circuit electromechanics in the quantum regime.
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Chapter2
Nanomechanical resonators

For many applications, the motion of nanomechanical resonators, like nanobeams, can-
tilevers or membranes, can formally be treated as a one-dimensional, damped and
(nearly) harmonic oscillator. Consequently, the description of the mechanics of the three-
dimensional body can be reduced to a single degree of freedom, as illustrated in Fig. 2.1,
by introducing effective parameters like effective mass, damping rate and potential. In
case of small displacements, this effective potential is nearly harmonic, and nonlinearities
can be taken into account via perturbation theory.

t

w

l

me�

k
 

Figure 2.1: Schematic illustration of a doubly-clamped nanobeam resonator with length l, width
w and thickness t. Its vibrational motion, indicated by the light green arrows, can be described
in a one-dimensional oscillator model with stiffness k and effective mass meff .1

In this chapter, we briefly review the fundamental relations which are used to describe
nanomechanical resonators within the above mentioned one-dimensional model with effec-
tive parameters. In Chap. 4, we will derive these effective parameters for a doubly-clamped,
tensile stressed nanobeam, which will be investigated throughout this thesis. Thereby we
will prove the validity of the one-dimensional model.

1We assume the modes of the nanobeam to be uncoupled (which is usually the case), so they can be
described as effectively independent one-dimensional resonators with respective parameters k, meff and Γm.
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6 2.1 Equation of motion

2.1 Equation of motion

The equation of motion of a one-dimensional damped harmonic oscillator with external
coherent drive is given by

ẍ+ Γmẋ+ k

meff
x = F0

meff
exp(−iΩt) . (2.1)

Here, x is the displacement and Γm, k, meff , F0 and Ω/2π denote the damping rate, the
effective spring constant, the effective mass, the driving force and the drive frequency,
respectively.

With the ansatz x(t) = x0 exp(−iΩt), we obtain the complex steady-state solution

x0 = F0/meff
(Ω2

m − Ω2)− iΓmΩ , (2.2)

where we have defined the angular resonance frequency Ωm =
√
k/meff . The quality factor

of the resonance is defined as
Q := Ωm

Γm
.

For a highly tensile-stressed nanobeam, the resonance frequency of the n-th vibrational
mode is [30]

ΩHTS,n = nπ

l

√
σ0
ρ
, (2.3)

where l, σ0 and ρ denote the length, prestress and density of the nanobeam. A comparison
with the generic relation Ωm =

√
k/meff shows that the prestress σ0 acts as an effective

stiffness of the resonator while the density ρ replaces the effective mass meff .
For typical tensile-stressed nanobeams, the resonance frequency can be written more

precisely by taking into account bending effects to first order2:

ΩTS,n = Ωn,HTS
l
√
σ0A

l
√
σ0A− 2

√
EI

. (2.4)

Here, A, E and I are the cross-section, Young’s modulus and the area moment of inertia
of the beam. The latter is given by Iip = w3t/12 for in-plane and Ioop = wt3/12 for
out-of-plane vibrational modes [31,32], and w and t denote the width and thickness of the
beam, respectively.

In experiments, usually the squared magnitude and the phase of the displacement x0
are measured. The first is given by

|x0|2 = F 2
0 /m

2
eff

(Ω2
m − Ω2)2 + Γ2

mΩ2 ≈
(
F0/meff

2Ωm

)2 1
(Ωm − Ω)2 + Γ2

m/4
.

The approximation is valid for Γm � Ωm, which is satisfied for all mechanical resonators
studied in this thesis. Thus, for these resonators, the response spectrum has Lorentzian
lineshape.

The phase of the mechanical response relative to the drive can be written as

ϕ = arg(x0) = arctan
( ΓmΩm

Ω2
m − Ω2

)
≈ arctan

( Γm
2(Ωm − Ω)

)
. (2.5)

2Please see Chap. 4 for a detailed derivation of Eq. 2.4 and a comparison to the approximation of a
highly tensile-stressed beam.
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As can be seen in Fig. 2.2, the derivative dϕ/dΩ reaches its maximum in resonance, where

dϕ
dΩ (Ω = Ωm) = 2

Γm
. (2.6)

Especially for high-Q resonators (Γm � Ωm), the resonance frequency can therefore be
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Figure 2.2: Lorentzian amplitude spectrum of mechanical motion. The squared magnitude |x0|2,
normalized to |x0,max|2 := (F0/(meffΩmΓm))2, is plotted in black, the phase ϕ in red. Note
that, due to the minus sign in the ansatz x(t) = x0 exp(−iΩt), a positive ϕ corresponds to a
phase lag of the mechanical response relative to the drive.

measured precisely by monitoring the phase of the response function. We will make use
of this in Chap. 5, where we investigate magnetostrictive resonance frequency shifts in
nanobeam resonators covered with a magnetic thin film.

2.2 Thermal motion

Even without an externally applied coherent drive, the modes of a nanomechanical res-
onator are excited due to thermal energy. In experiments, this Brownian motion is com-
monly utilized to calibrate the read-out of the mechanical amplitude. We therefore derive
the relation between the temperature of the nanobeam resonator and its thermal motion
amplitude.

According to the equipartition theorem [33], the energy of a system in thermal equi-
librium with its environment is kBT/2 per degree of freedom, where kB is the Boltzmann
constant and T the temperature of the bath. In case of a nanomechanical resonator with
effective mass meff and resonance frequency Ωm/2π, the thermal energy can therefore be
expressed by [34]

1
2kBT = 1

2meffΩ2
mx

2
th . (2.7)

Here, x2
th is the mean squared displacement of the nanobeam and related to the mechanical

motion spectrum via
x2

th :=
∫ ∞

0
Sxx(Ω)dΩ

π
, (2.8)

where we have introduced the (single-sided) amplitude spectrum of the mechanical res-
onator Sxx(Ω), given in units of m2/Hz [21, 34, 35]. Please note that this is a spec-
trum in terms of angular frequency Ω and related to the (bare) frequency spectrum by
Sxx(Ω) = Sxx(f)/2π with the frequency f = Ω/2π.
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For a high-Q resonator (Γm � Ωm) in thermal equilibrium with its environment, the
amplitude spectrum has a Lorentzian lineshape and can be written as [34]

Sxx(Ω) =
(
Fth(Ω)/meff

2Ωm

)2 1
(Ω− Ωm)2 + Γ2

m/4
, (2.9)

where F 2
th(Ω) is the thermal driving force spectrum, given in units of force2/bandwidth, i.e.

[F 2
th(Ω)] = N2/Hz. Substituting Eq. 2.9 into Eq. 2.8 and assuming a frequency-independent

thermal force spectrum in the vicinity of the mechanical resonance, F 2
th(Ω) ≈ F 2

th(Ωm), we
get

x2
th = F 2

th(Ωm)
2m2

effΓmΩ2
m
.

Together with the equipartition theorem (Eq. 2.7), we obtain the thermal driving force [34]

F 2
th(Ωm) = 2meffΓmkBT .

Inserting this into Eq. 2.9 finally leads to the calibrated mechanical response spectrum,
which relates the system temperature to the displacement via

Sxx(Ω) = kBT

2Ω2
mmeff

Γm
(Ω− Ωm)2 + (Γm/2)2 . (2.10)

Owing to the small effective mass and the high quality factor of tensile stressed nanome-
chanical resonators, their thermal motion can often be detected even at mK temperatures.
This provides an easy way for calibrating the mechanical displacement spectrum and de-
termining the absolute displacement for a given driving force. We will make use of this
technique in Chaps. 3, 7 and 8.

2.3 Duffing nonlinearity

Whereas for small displacement the motion of a nanobeam can well be described as a
damped harmonic oscillator, nonlinear effects modify the dynamics of the beam for high
amplitude states [36, 37]. In general, different mechanisms contribute to this nonlinear
behaviour. For tensile stressed nanobeams, on which we will focus in this thesis, the
dominating contribution is the geometric nonlinearity the origin of which will be discussed
in Sec. 4.1.7. To account for it, we add a cubic term to the equation of motion 2.1, leading
to the Duffing equation [36, 38]

ẍ(t) + Γmẋ(t) + Ω2
mx(t) + αx3(t) = F0

meff
exp(−iΩt) .

The Duffing nonlinearity α is related to material properties of the nanobeam by [37,39]3

α = π4 E

4l4ρ > 0 . (2.11)

3In literature, sometimes the relation α = π4(E + 3
2σ0)/(4l4ρ) is given, where σ0 denotes the prestress

of the nanobeam; but as usually σ0 � E, the contribution of the prestress to the nonlinearity α can safely
be neglected.
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Here, E and ρ denote Young’s modulus and the mass density of the nanobeam, respectively.
The amplitude spectrum of a Duffing oscillator is given by the implicit equation [38][

Γ2
m + 4

(
Ω− Ωm −

3
8
α

Ωm
x2

0

)2
]
x2

0 = F 2
0

m2
effΩ2

m
. (2.12)

For a weak external drive, the response function of the Duffing oscillator is nearly a
Lorentzian around the resonance frequency Ωm/2π. For increasing drive power, how-
ever, the maximum of the amplitude spectrum x0,max shifts to higher frequencies Ωeff , as
illustrated in Fig. 2.3. This behavior is summarized as backbone curve [38]
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Figure 2.3: Amplitude spectrum of a Duffing oscillator. For amplitudes exceeding the critical
amplitude xcrit, the response spectrum is bistable. When sweeping the frequency over the
resonance from left to right, one accesses the high-amplitude state as illustrated by the blue
arrows. The maxima of the amplitude spectra follow the backbone curve indicated by the red
dotted line.

x2
0,max = 8

3
Ωm
α

(Ωeff − Ωm) . (2.13)

If x0,max exceeds the so-called critical amplitude xcrit = (4/3)3/2√ΓmΩm/α, the Duffing
oscillator enters a bistable regime so that for a small frequency range below Ωeff , there
are two stable and one metastable amplitude states (where the latter cannot be accessed
experimentally). When sweeping the drive frequency over the resonance from low to high
frequencies, the nanobeam remains in the high-amplitude state up to Ωeff , jumping down
to lower amplitudes for Ω > Ωeff , as illustrated in Fig. 2.3 (dashed blue line). This allows
to experimentally determine Ωeff as a function of the applied driving force F0. For a more
detailed discussion of the Duffing oscillator, please see Refs. [21, 38,40].

In this thesis, we will employ the Duffing nonlinearity to gain information about the
mechanical properties of the nanobeam (Chap. 4) and to determine the beam motion
amplitude when the material parameters are known (Chap. 7).



10 2.3 Duffing nonlinearity



Chapter3
Characterization of silicon nitride and
aluminium nanobeam resonators

3.1 Fabrication of pure silicon nitride and aluminium beams

The fabrication of doubly-clamped nanobeam resonators is based on a process developed at
the chair of Prof. J. Kotthaus at LMU Munich. This process has been modified within the
scope of this thesis to allow the integration with magnetic materials and superconducting
microwave circuits: To investigate the interaction of mechanics with magnetic degrees of
freedom (see Chap. 5), we use Si3N4/ferromagnet bilayer nanobeams, whereas for circuit
nano-electromechanics, we fabricate pure Si3N4 beams in a niobium microwave circuit
(Chap. 7) and pure aluminium beams in an aluminium microwave circuit (Chap. 8).

In this chapter, we introduce the fabrication process for pure Si3N4 and aluminium
nanobeams and present measurements which allow to characterize the mechanical proper-
ties of the nanobeams such as the prestress σ0 and Young’s modulus E.

3.1.1 Silicon nitride nanobeams

The fabrication of tensile stressed Si3N4 nanobeams starts with a commercial silicon wafer
on which 100 nm of tensile stressed Si3N4 have been deposited, as illustrated in Fig. 3.1a
(i). Using electron beam lithography and negative resist, the nanobeams and rectangular
clamping pads are patterned on the chip (ii). The pattern is transferred to the Si3N4 in an
anisotropic Ar/SF6 reactive ion etching (RIE) step (iii). A subsequent isotropic RIE step
(SF6 only) releases the nanobeams from the substrate (iv). The sample is cleaned with
hot acetone and remover, if necessary.

Figure 3.2 shows a scanning electron microscope (SEM) image (top view and tilted
view) of a typical Si3N4 nanobeam. Here, we have etched approximately 500 nm into the
silicon substrate to release the nanobeam. Due to the comparatively high acceleration
voltage UEHT = 20 kV used here, the underetched parts of the Si3N4 film can be identified
as they appear as bright areas along the clamping pads of the nanobeam (in particular in
Fig. 3.2b). Besides, the tilted SEM image reveals the ridge below the Si3N4 nanobeam as
a residue of the isotropic RIE process.

11
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a. Si3N4 nanobeam (Sample #1):

b. Aluminium nanobeam (Sample #2): 

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv) (v)

Si Si3N4

EBL resist (neg.) EBL resist (pos.)

Al

Figure 3.1: Schematic of the fabrication processes of (a) Si3N4 and (b) aluminium nanobeam
resonators on a silicon substrate.

3.1.2 Aluminium nanobeams

We use a blank commercial silicon wafer as a substrate [Fig. 3.1b, (i)] and define the inverse
pattern (nanobeam and clamps) with electron beam lithography and positive resist (ii).
A 100 nm thin aluminium film is deposited on the chip using electron beam evaporation,
followed by a lift-off step (iii). In order to generate a tensile stress in the aluminium film,
the sample is annealed at 350 ◦C in vacuum for 30 min (iv). As a last step, we release the
beam with an isotropic RIE process (v).

Figure 3.3a shows a scanning electron microscopy (SEM) image of a typical aluminium
nanobeam. To illustrate the effect of annealing on the stress in the aluminium thin film, we
have fabricated an aluminium nanobeam sample without the annealing step (see Fig. 3.3b).
Obviously there is a compressive stress in the evaporated aluminium film, resulting in a
buckled nanobeam. The fabrication of high-Q nanobeam resonators in the MHz frequency
range, however, requires a tensile stressed aluminium film. We therefore apply the an-
nealing step, which releases the compressive stress and generates a modest tensile stress
instead. For aluminium nanobeams, this tensile stress can be further increased by cool-
ing the sample to low temperatures due to the large difference in the thermal expansion
coefficient of aluminium and the silicon substrate. We will discuss this in more detail in
Chap. 8.
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a.

b.

10 µm

Figure 3.2: SEM images of a 50 µm long and 290 nm wide Si3N4 nanobeam, fabricated as
described in Sec. 3.1.1. a. Top view. b. Tilted view (tilt angle: 60◦). To take these images,
a comparatively high acceleration voltage UEHT = 20 kV was used, which allows to clearly
identify the underetched parts of the Si3N4 film along the borders of the clamping pads.

a. b.

10 µm 10 µm

Figure 3.3: a. SEM image (at a tilt angle of 60◦) of a 30 µm long and 340 nm wide, tensile
stressed aluminium nanobeam, made from an annealed 100 nm thick film of e-beam evaporated
aluminium. b. SEM image of an aluminium beam where the annealing step has been left out,
resulting in a buckled beam shape caused by compressive prestress.

3.2 Experimental setup for room temperature mechanical
spectroscopy

In the past decades, several techniques for the experimental investigation of the motion of
nanomechanical resonators have been developed. While electrically conducting nanobeams
can be driven and measured using magnetomotive forces [41], for insulating nanobeams a
dielectric drive and read-out scheme has been developed. Here, we use optical interfero-
metry to detect the nanobeam motion, while driving it with a piezoelectric actuator. This
method is versatile in the sense that it does not require electrical contacts on the sample
and can be applied to both insulating and conducting nanobeams.

3.2.1 Optical laser interferometry

To characterize our nanomechanical beam resonators, an optical free space laser interfero-
meter (IFM 1 ) was developed, designed and installed at the WMI (see Fig. 3.4a,b). It
provides a quick and easy way to characterize the nanobeam samples and therefore plays
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an important role for the control of fabrication parameters and pre-characterization of
nanoelectromechanical or magnetomechanical hybrid systems.

a.

b. c.

20 µm

Figure 3.4: a. Photograph of the optical laser interferometer. b. Detailed view of the sample
mounted inside the vacuum chamber. c. Live microscope image of a Si3N4 nanobeam sample.
The laser spot is focused on one of the nanobeam resonators to detect its mechanical motion.

Figure 3.5 shows a schematic of the interferometry setup. A HeNe laser (λ = 673 nm)
with an output power of 2.3 mW is filtered and focused on the sample with a 10x or 20x
objective. The reflected light is analyzed using a fast photodetector (Thorlabs DET10A,
bandwidth 1 GHz). Before being incident on the nanobeam, the originally linearly polar-
ized laser light is converted to circularly polarized light using a λ/4 plate. This ensures that
the reflected light intensity is independent of the relative orientation of the nanobeam and
the polarization axis1. The reflected laser light transits the λ/4 plate again and therefore
the circular polarization is converted back to a linear polarization, which is perpendicu-
lar to the polarization of the incoming laser beam. In this way, we efficiently couple the
reflected laser light onto the photodetector using a polarizing beam splitter.

1As the laser wavelength λ is similar to the width of typical nanobeams (100 to 500 nm), the reflected
light amplitude and phase can depend on the angle between nanobeam and polarisation direction in case
of linearly polarized light. To avoid this, we use circularly polarized light.
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Figure 3.5: Schematic of the free beam interferometer shown in Fig. 3.4. The sample is mounted
on a piezopositioner and located in a vacuum chamber to avoid gas damping. The laser beam
is focused on a nanobeam resonator, and the reflected light is analyzed with a photodetector.
An integrated optical microscope allows to monitor and adjust the position of the laser spot
on the sample.

The sample, mounted on a piezoelectric actuator to excite the nanobeam resonance, can
be positioned in all three spatial directions (x, y, z) with an Attocube piezopositioner. To
avoid gas damping [42,43], the sample is operated in a vacuum chamber (p < 10−4 mbar).

In order to control the position of the laser spot on the sample, an optical microscope
is integrated into the laser interferometer. This allows a simple and fast positioning and
focusing of the laser spot on the nanobeam. For an exemplary microscope image, see
Fig. 3.4c.

3.2.2 Measurement setup

Figure 3.6 schematically shows the measurement setup (including the RF spectroscopy
components) which was used to investigate the motion of pure Si3N4 and aluminium
nanobeams and to pre-characterize nanomechanical hybrid samples.

To excite the motion of the nanobeam with a time-dependent force F0 exp(−iΩt), the
output of a vector network analyzer (VNA, Rohde&Schwarz ZVA 8 or ZVB 8 ) is connected
to the piezoactuator on which the sample is mounted. The reflected laser light, which
is modulated by the nanobeam motion, is converted to a photovoltage signal, amplified
(Femto DHPVA-200 ) and measured with the VNA. Sweeping the VNA frequency over the
resonance frequency of the nanobeam allows investigating the response spectrum of the
respective mode and extracting e. g. its resonance frequency and linewidth.
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To measure the thermal motion spectrum of the undriven mechanical resonator, the
VNA is replaced by a spectrum analyzer (Rohde&Schwarz FSV ). We use this to calibrate
the interferometric read-out as derived in Sec. 2.2, which allows to convert the measured
photovoltage to the absolute displacement of the nanobeam.
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Figure 3.6: Setup used for the characterization of nanobeam resonators with the optical laser
interferometer shown in Fig. 3.4. For reasons of clarity, the optics have been strongly simplified
in this schematic.

3.3 Silicon nitride nanobeams

In this section, we show experimental data of a pure Si3N4 nanobeam fabricated from a
t = 100 nm thin tensile stressed Si3N4 film on a silicon substrate, as detailed above (Sam-
ple #1 ). The beam length and width is l = 60 µm and w = 550 nm, respectively. By
measuring the thermal motion spectrum of the beam, we can calibrate the interferomet-
ric readout, i. e. we can determine the constant of proportionality relating the measured
photovoltage to the amplitude of the beam motion. Additionally, the measured resonance
frequency allows to calculate the prestress along the beam axis. Second, we measure the
response spectrum of the driven nanobeam as a function of drive power in the nonlin-
ear regime (i. e. for high amplitudes) to determine the Duffing parameter α and Young’s
modulus E of the beam.

Figure 3.7 shows the thermal motion spectrum of the fundamental out-of-plane mode,
measured at room temperature (T = 293 K), together with the square root of the
Lorentzian fit according to Eq. 2.10. From the experimental data, we extract a photovolt-
age amplitude of

√
Smax

UU = 0.73 µV/
√

Hz, corresponding to a thermal motion amplitude
of
√
Smax

xx = 3.5 pm/
√

Hz at the resonance frequency. The calibration factor, which allows
to convert a measured photovoltage to a mechanical displacement, is therefore given by
C :=

√
Sxx/SUU = 11.3 pm/µV.

In Fig. 3.8a, the amplitude spectrum of the driven mechanical motion is plotted for a
weak driving force, from which we extract the resonance frequency Ωm/2π = 4.485 MHz
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Figure 3.7: Thermal motion spectrum of the fundamental out-of-plain mode of Sample #1 (Si3N4

nanobeam). From the Lorentzian fit according to Eq. 2.10, the calibration factor relating the
maximum measured photovoltage to the mechanical displacement of the nanobeam can be
extracted.

and the linewidth2 Γm/2π = 28.6 Hz, corresponding to a quality factor Q = Ωm/Γm =
1.57 × 105. This value is slightly lower than expected (cf., e. g., Ref. [44]), which we
attribute to linewidth broadening due to a slight thermal instability of the resonance
frequency during the measurement.
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Figure 3.8: a-b. Amplitude spectrum of the fundamental out-of-plain mode of Sample #1 for
(a) weak (Upiezo = 0.2 mVrms) and (b) increasing drive power (Upiezo = 1.7 to 9.4 mVrms).
The red line is a Lorentzian fit to the experimental data. c. Maximum of the amplitude
spectra versus effective resonance frequencies for various driving strengths (backbone curve),
extracted from the spectra shown in (b). The green line is a linear fit, which allows to extract
Young’s modulus according to Eq. 2.13.

To determine Young’s modulus of the Si3N4 beam, we increase the drive power to
access the Duffing regime of the resonator (see Sec. 2.3). Figure 3.8b shows the amplitude
spectrum for drive voltages between 1.7 and 9.4 mVrms, applied to the piezoactuator. We
observe the expected shift of the effective resonance frequency for increasing drive power
and the emerging bistable region, where the amplitude jumps at the effective resonance
frequency. As we are sweeping the drive frequency from lower to higher values in our
experiments, we always access the upper branch of the bistable region (see Sec. 2.3). For
a comparison of frequency up- and downsweeps, please see Ref. [40].

2Throughout this thesis, linewidth always means the full width at half maximum (FWHM).
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In Fig. 3.8c, the square of the peak amplitude x2
0,max is plotted versus the effective

resonance frequency Ωeff/2π. According to Eq. 2.13, the slope of this so-called backbone
curve is related to the Duffing nonlinearity α, for which we find α = 1.2 × 1026 m−2s−2.
Using Eq. 2.11, we obtain the Young’s modulus ESiN = 162 GPa. This is significantly
reduced compared to the literature value for spatially homogeneous Si3N4 thin films
ESiN,film = 300 GPa [45], but in good agreement with experimental values found for highly-
stressed Si3N4 nanoresonators [39,44].

Using the experimentally determined Young’s modulus, Eq. 2.4 and the density of
Si3N4, ρSiN = 2600 kg/m3 [46], we can calculate the tensile stress from the measured
resonance frequency and obtain σ0 = 732 MPa, which is in good agreement with previously
measured values from similar Si3N4 films [39,44,47].

3.4 Aluminium nanobeams

Similar to Sample #1, a l = 30 µm long tensile stressed aluminium nanobeam (Sample #2 )
with cross-section w × t = 340 nm × 100 nm has been characterized at room temperature
to determine its material parameters. Figure 3.9a,b shows the amplitude spectrum of
the fundamental out-of-plane mode in the linear (weak drive) and nonlinear (increasing
drive power) regime, respectively. From these data, we extract the resonance frequency
Ωm/2π = 4.177 MHz, the linewidth Γm/2π = 520 Hz (Q = 8.0× 103) and the nonlinearity
α = 5.3 × 1026 m−2s−2. We proceed as above and obtain the Young’s modulus EAl =
47.3 GPa and the prestress σ0 = 159 MPa. Again, the experimentally determined Young
modulus is lower than the literature value for bulk aluminium EAl ≈ 70 GPa [32]. The
values that can be found for thin film aluminium deviate strongly dependent on fabrication
parameters (see, e. g., Refs. [48, 49]).
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Figure 3.9: a-b. Amplitude spectrum of the fundamental out-of-plain mode of Sample #2 for
(a) weak (Upiezo = 0.7 mVrms) and (b) increasing drive power (Upiezo = 90 to 350 mVrms).
The red line is a Lorentzian fit to the experimental data. c. Maximum of the amplitude
spectra versus effective resonance frequencies for various driving strengths (backbone curve),
extracted from the spectra shown in (b). The green line is a linear fit, which allows to extract
Young’s modulus according to Eq. 2.13.

The high damping rate Γm/2π = 520 Hz, exceeding the one measured for the Si3N4
beam by a factor of 18, is caused by defect losses typically occuring in metal (or met-
allized) nanomechanical resonators at room temperature. It is consistent with previ-
ous experiments analyzing the damping rates of metallized Si3N4 membranes [50] and
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nanobeams [51]. At low temperature, however, these defects freeze out, which significantly
reduces the damping rate [52, 53]. In Chap. 8, we will demonstrate this and compare the
room temperature and mK damping rates of an aluminium beam integrated in a super-
conducting circuit.

3.5 Summary

In this chapter, we have introduced the fabrication process of pure Si3N4 and aluminium
nanobeam resonators on a silicon substrate. Employing optical laser interferometry, we
have characterized a 60 µm long Si3N4 beam and a 30 µm long aluminium beam, fabri-
cated from tensile stressed Si3N4 and aluminium films, respectively. By measuring the
thermal motion of the nanobeam resonators, we calibrated the interferometric read-out
and determined the amplitude of the beam motion. Analyzing the response spectra of
the nanobeam resonators as a function of drive power allowed access to two important
material properties, prestress and Young’s modulus. Here, we made use of the non-linear
Duffing regime of a strongly driven nanobeam. We determined prestress, Young’s modulus
and damping rates for both Si3N4 and aluminium samples and compared the measured
quantities to literature values. While Si3N4 nanobeams, fabricated from a highly tensile
stressed Si3N4 thin film, feature high resonance frequencies and excellent damping charac-
teristics even at room temperature, the quality factors of aluminium nanobeams are limited
to several thousand at room temperature due to defect losses. Nevertheless, aluminium
nanobeams are well suited for the integration into all-aluminium superconducting circuits,
as the damping rates are significantly reduced at low temperatures. We will show this in
Chap. 8, where we present experimental data of an aluminium nanobeam integrated in a
superconducting microwave circuit.
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Chapter4
Mechanics of homogeneous and multilayer
nanobeams

Nanomechanical multilayer structures offer the possibility of tailoring the properties of a
nanoresonator to a large extent and are therefore ideally suited for integration into hybrid
systems [50, 51]. The combination of different materials – often tensile stressed silicon ni-
tride together with a metal thin film – allows realization of excellent mechanical properties
together with a good coupling to other degrees of freedom, like microwave circuits [54],
magnetic systems [55] or spin currents [56]. We will make use of this idea in Chap. 5,
where we form a magneto-mechanical hybrid system by depositing a magnetoelastic thin
film onto a nanobeam resonator. The resulting hybrid system can be used to probe mag-
netostriction via its impact on the mechanical properties of the nanobeam resonator.

This chapter provides a theoretical description of the mechanics of multilayer nano-
beams. A thorough understanding of these systems allows to tailor the properties of multi-
layer nanobeams a priori and to infer material properties from experimentally determined
quantities.

First, we present an analytical description of the flexural motion of homogeneous,
tensile stressed nanobeams and relate the resonance frequency of their vibrational modes
to the material properties of the beam. Based on this, we derive an analytical description
of the mechanics of multilayer nanobeams and show that the vibrational modes of such
beams can be treated similar to the ones of a nanobeam with homogeneous cross-section
by introducing effective variables for the relevant material parameters. We compare the
predictions of this multilayer beam theory to experimental data and demonstrate good
quantitative agreement between experiment and model.

The results presented in this chapter have partly been published in [57].

4.1 Mechanics of a nanobeam with homogeneous cross-
section

4.1.1 Forces acting on an infinitesimal volume element

We consider a volume element of the beam with length dx and cross-sectional area A as
indicated in Fig. 4.1. The beam is aligned along the x-axis, the displacement v(x) is in

21
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z-direction. The thickness of the beam (along the z-direction) is denoted t, the width
(along ŷ) is w1. According to standard beam theory [58], the bending of the beam is
associated with a shear force Fs(x) and a torque M(x) (along the y-direction) acting on
the infinitesimal volume element depicted in Fig. 4.1b. The net force in z-direction applied
to the volume element is then given by Fbending = −∂Fs

∂x dx. Here, the minus sign is due to
the sign convention of Ref. [31], as illustrated in Fig. 4.1b. The net moment on the volume
element, ∂M

∂x dx, is related to the shear force Fs by [31,58]

∂M

∂x
dx = Fs

dx
2 +

(
Fs + ∂Fs

∂x
dx
) dx

2 ≈ Fsdx . (4.1)

neutral axisFs

Fs+ (Fs/x) dx

M

M+ (M/x) dx

dx

x

v(x)

x = -l/2 x = l/2

z

y

a.

b.

Figure 4.1: a. Definition of the coordinate system used in this chapter. The beam with length
l is aligned along the x-direction, the displacement v(x) is in the x-z-plane. b. Shear force
and torque acting on an infinitesimal volume element, caused by the bending of the beam.
We follow the beam sign convention in [31].

For a prestressed beam, there are additional axial forces Fax,1 and Fax,2 acting on the
volume element, as indicated in Fig. 4.2. They are given by

Fax,1 = σ0A(− cosϕ1x̂ + sinϕ1ẑ) and
Fax,2 = σ0A(cosϕ2x̂− sinϕ2ẑ),

where σ0 is the prestress. The net force due to the prestress is then given by

dFprestress = Fax,2 + Fax,1 = σ0A [(cosϕ2 − cosϕ1)x̂ + (sinϕ1 − sinϕ2)ẑ] .

For small displacement of the beam (v � l and ϕ1,2 � 1), we can use the approximations
cosϕ2 − cosϕ1 ≈ 0 and sinϕ1 − sinϕ2 ≈ ϕ1 − ϕ2 = dϕ. Furthermore, we have dϕ ≈ dx/r
and the curvature radius r is given by [59]

1
r

=
∂2v
∂x2[

1 +
(
∂v
∂x

)2
]3/2 ≈

∂2v

∂x2 .

1Compared to the previous chapters, we slightly change the nomenclature: The displacement of the
beam is now described by v, whereas x, y and z denote spatial coordinates. We restrict our discussion to
transverse vibrational modes and can therefore assume v ‖ ẑ.
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Figure 4.2: Axial force in a prestressed beam.

For the approximation on the right hand side we have used ∂v/∂x� 1 for small displace-
ment. With the above approximations we finally get

dFprestress = σ0Adx ∂
2v

∂x2 ẑ. (4.2)

Note that the axial force due to the prestress does not contribute to the bending moment
acting on the volume element.

The total force on the volume element, acting in y-direction, is the sum of the axial
force due to prestress dFprestress and the shear force due to bending dFbending = −∂Fs

∂x dx.

4.1.2 Relation between bending moment and displacement curvature

As mentioned above, an axial force due to prestress does not cause any bending moment.
Therefore, we can neglect the prestress in this subsection and assume σ0 = 0.

In order to derive the relation between the bending moment M and the curvature of
the beam ∂2v/∂x2, we consider the volume element shown in Fig. 4.3. By definition, the
length of the neutral axis r̃ = r̃nf does not change under influence of a bending moment,
while the other layers of the beam are elongated (r̃ > r̃nf) resp. compressed (r̃ < r̃nf). The
change in length of such a layer is given by

dx′ − dx = dxr̃ − r̃nf
r

.

This results in a stress [59]

σ = E
dx′ − dx

dx = E
r̃ − r̃nf
r

, (4.3)

corresponding to the torque

dM = σwdr̃(r̃ − r̃nf) = Ewdr̃ (r̃ − r̃nf)2

r
. (4.4)

The total bending moment can be calculated by integration of dM :

M =
∫ t

r̃=0
dM =

∫ t

r̃=0
Ewdr̃ (r̃ − r̃nf)2

r
,
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Figure 4.3: Derivation of the relation between torque and curvature of the beam.

where t is the thickness of the beam. In case of a homogeneous beam, the neutral axis
is in the center of the beam, r̃nf = t/2, and we get M = Ewt3/(12r). Defining the area
moment of inertia as I = wt3/12 and using 1/r ≈ ∂2v/∂x2 yields [32,59]

M = EI
∂2v

∂x2 . (4.5)

With Eq. 4.1 and dFbending = −∂Fs
∂x dx, we then obtain the relation

dFbending = −∂
2M

∂x2 dx = −EI ∂
4v

∂x4 dx . (4.6)

4.1.3 Equation of motion and resonance frequency

Using Eqs. 4.2 and 4.6, the total restoring force acting on the infinitesimal volume element
can be expressed as

dFrestoring = dFbending + dFprestress = −EI ∂
4v

∂x4 dx+ σ0Adx ∂
2v

∂x2 . (4.7)

This results in the following equation of motion for the transverse vibrational mode of the
beam [58,60]

− EI ∂
4v

∂x4 + σ0A
∂2v

∂x2 = ρA
∂2v

∂t2
, (4.8)

where ρ denotes the mass density of the volume element.
To solve this equation of motion, we first assume a harmonic time dependence v(x, t) =

v(x) exp(−iΩt), which leads to the following differential equation for v(x) [58]:

− EIv(4)(x) + σ0Av
′′(x) = −ρAΩ2v(x) . (4.9)

The general solution of this differential equation is

v(x) = c1 exp(αx) + c2 exp(−αx) + c3 sin(βx) + c4 cos(βx) (4.10)
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with

µ± =
σ0A±

√
σ2

0A
2 + 4EIρAΩ2

2EI ,

I = wt3

12 ,

α = √
µ+ > 0 , and

β = −i√µ− > 0 .

For a doubly-clamped beam, the boundary conditions are [32,58]

v(x = −l/2) = 0 ,
v(x = l/2) = 0 ,

v′(x = −l/2) = 0 , and
v′(x = +l/2) = 0 .

(4.11)

The application of these boundary conditions to the general solution (4.10) results in a
homogeneous system of four linear equations and four variables cj (j = 1, 2, 3, 4). The
determinant of this system of equations has to vanish, which is a necessary condition for
the existence of solutions:

e−αl
[(
α2 − β2

) (
e2αl − 1

)
sin(βl) + 4αβeαl − 2αβ

(
e2αl + 1

)
cos(βl)

]
= 0 (4.12)

As α and β are functions of Ω, this condition allows to determine the possible resonance fre-
quencies Ωn/2π of the beam. In general, there are no analytical solutions to this equation;
thus, the resonance frequencies Ωn/2π have to be determined numerically.

For special cases, however, there are approximations which allow to give an analytical
expression for Ωn. This will be discussed in the next section.

4.1.4 Approximations for resonance frequency and beam shape

In case of a nanobeam with vanishing or dominating stress, one can neglect one of the
two contributions on the left hand side of Eq. 4.9 and/or modify the boundary conditions
Eq. 4.11, which allows solving the equation of motion analytically. In the following, we will
review these approximations and additionally derive a formula for the resonance frequency
of a tensile stressed beam which includes bending effects to first order. We show that this
expression is suitable to predict the resonance frequency of typical tensile stressed beams
precisely and compare all approximations to the full numerical solution.

Unstressed beam [US] (σ0 ≈ 0):
In this case, the second term on the left hand side of Eq. 4.9 vanishes and α = β =
(ρA/EI)1/4Ω1/2. Substituting the general solution 4.10 into the set of boundary
conditions 4.11 leads to the determinant cos(αl) cosh(αl)− 1 = 0, the roots of which
have to be found numerically: αnl = 0, 4.730..., 7.853..., 10.996..., ... [32]. Here, n
denotes the mode index. The corresponding resonance frequencies are given by

ΩUS,n =
√
EI

ρA
α2
n



26 4.1 Mechanics of a nanobeam with homogeneous cross-section

and the beam shape is described by

vUS,n(x) = an (cos(αnz)− cosh(αnz)) + bn (sin(αnz)− sinh(αnz)) (4.13)

with an/bn = 1.018..., 0.999..., 1.000... for the first three modes.

Tensile stressed beam with simply-supported ends [TS-SS]:
Assuming simply-supported ends instead of fixed, i. e. clamped, ends, the last two
equations of the boundary condition 4.11 are replaced by v′′(x = ±l/2) = 0. The
modified set of boundary conditions is fulfilled by the solution

vTS−SS(x) = v0 cos(nπx/l) . (4.14)

With this, the equation of motion 4.8 reduces to [30]

v̈(t)−
(
nπ

l

)2
[
σ0
ρ

+
(
nπ

l

)2 EI

ρA

]
v(t) = 0 . (4.15)

The resonance frequencies are therefore given by

ΩTS−SS,n = n2π2

l2

√
EI

ρA

√
1 + σ0Al2

n2EIπ2 . (4.16)

.

Highly tensile stressed beam [HTS] (σ0 � EIπ2/Al2):
Here, we can simplify the equation of motion 4.15 further and obtain [30,37]

v̈(t)−
(
nπ

l

)2 σ0
ρ
v(t) = 0 (4.17)

with the resonance frequency

ΩHTS,n = nπ

l

√
σ0
ρ
. (4.18)

This approximation means that we fully neglect the contribution of the bending
energy to the equation of motion (first term of the left hand side of Eq. 4.8) and
approximate the nanobeam as a flexible string (nanostring).

While the nanostring approximation is usually employed when dealing with tensile
stressed Si3N4 beams, it implicates significant errors of several percent depending on the
respective material parameters. This is particularly relevant for the precise investiga-
tion of material parameters via resonance frequency measurements. We therefore present
an alternative analytical approximation of the resonance frequency of a tensile stressed
nanobeam, which includes bending effects to first order. For a complete derivation of this
approximation, please see App. A.

Starting from the full determinant (Eq. 4.12), we derive the equation

(−1)n2αβ + (α2 − β2) sin(βl) = 0 ,

which holds for σ2
0A � 2EIρΩ2. With the approximations α ≈ α0 :=

√
σ0A/EI and

β ≈ Ω
√
ρ/σ0 (see App. A), this relation can be simplified further:

(−1)n2β + α0 sin(βl) = 0



4 Mechanics of homogeneous and multilayer nanobeams 27

For the n-th mode, βl ≈ nπ. Therefore, we can expand sin(βl) around βl ≈ nπ, which
leads to

β = nα0π

α0l − 2 .

Substituting the definition of β into this expression, we finally obtain

ΩTS,n = nσ0π
√
A/ρ

l
√
σ0A− 2

√
EI

= Ωn,HTS
l
√
σ0A

l
√
σ0A− 2

√
EI

(4.19)

with ΩHTS,n = (nπ/l)
√
σ0/ρ as defined above.

Equation 4.19 illustrates that the derived expression is a first order correction to the ap-
proximation of a highly tensile stressed beam. Obviously, Ωn,TS > Ωn,HTS. This can easily
be understood as the bending contribution to the total energy of the vibrating nanobeam
leads to an effective stiffening of the resonator, resulting in an increased eigenfrequency.

In the next section, we will demonstrate that for typical tensile stressed nanomechanical
beams, this approximation can reproduce the full numerical solution of Eq. 4.12 much more
precisely than the usually employed high-prestress approximation 4.18.

4.1.5 Comparison of the full numerical solution to approximated results

In order to compare the full numerical calculation of beam shape and resonance frequency
to the approximations introduced above, we choose the parameters of the tensile stressed
Si3N4 and aluminium beams (Samples #1 and #2) characterized in Chap. 3.

Figure 4.4a shows the calculated resonance frequency of both in-plane and out-of-
plane modes of Sample #1 and #2, using the full numerical solution of Eq. 4.12, the
approximation of a tensile stressed beam with included bending effects (TS, Eq. 4.19)
as well the usually employed approximations of a simply-supported tensile stressed beam
(TS-SS, Eq. 4.16) and a highly tensile stressed beam (HTS, Eq. 4.18). While the latter
show significant deviations from the measured resonance frequency values (up to 15%),
the approximation TS can reproduce the data within |∆Ω/Ω| < 0.4%. In particular for
the determination of material parameters from resonance frequency measurements, it is
therefore necessary to take bending effects into account in order to reproduce the resonance
frequency correctly.

In Fig. 4.4b, the beam shape of the fundamental in-plane and out-of-plane mode is
plotted for Sample #1 (red lines) and #2 (blue lines), together with the limiting cases of
a highly prestressed beam and an unstressed, doubly-clamped beam.

4.1.6 Effective mass

In the previous sections, we have treated the nanobeam resonator as a three-dimensional
elastic solid and derived the equation of motion, the resonance frequency and the beam
shape of the resonator modes. When dealing with nanomechanical resonators integrated in
hybrid systems or sensing devices, however, it is more convenient to describe the mechanical
resonator as a one-dimensional harmonic oscillator with effective mass meff , resulting in
the equation of motion introduced in Chap. 2:

ẍ+ Γmẋ+ Ω2
mx = F0

meff
exp(−iΩt) .
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Figure 4.4: a. Relative error of the calculated resonance frequency compared to the full nu-
merical solution. TS: tensile stressed beam with included bending effects (Eq. 4.19); TS-SS:
tensile stressed beam with simply-supported ends (Eq. 4.16); HTS: highly tensile stressed
beam (Eq. 4.18). b. Numerically calculated beam shape of the in-plane (ip) and out-of-plane
(oop) mode of Sample #1 and #2, compared to the shape of an unstressed (dots) and a
highly tensile stressed beam (dashed line). For reasons of clarity, only one half of the axially
symmetric beam profile is shown for both Sample #1 and #2.

Here, we have introduced the phenomenological damping term Γmẋ and the external driv-
ing force F0 exp(−iΩt).

To determine the effective mass meff from the full three-dimensional description pre-
sented above, we start with the energy stored in the oscillation of a nanomechanical beam
(see Supplementary Information of [44]):

U = 1
2ρwtΩ

2
m

∫ l/2

−l/2
dx v2(x) (4.20)

Substituting the numerically calculated (or approximated) beam shape v(x) into Eq. 4.20
allows determining the integral

∫ l/2
−l/2 dx v2(x). Conversely, the total energy of a one-

dimensional harmonic oscillator with displacement x0 is given by

U = 1
2meffΩ2

mx
2
0 , (4.21)

where we define x0 := v(0) as the displacement of the center of the beam. Comparing
Eqs. 4.20 and 4.21, we obtain

meff = ρwt

x2
0

∫ l/2

−l/2
dx v2(x) . (4.22)

Note that the effective mass depends on the mode shape and therefore varies for the
different modes of the mechanical resonator.

For a highly tensile stressed beam, the displacement follows v(x) ∝ cos(nπx/l) (see
Eq. 4.14) and therefore the effective mass meff,HTS/m = 0.5 is independent of the mode
index n. For an unstressed beam, meff,US/m = 0.396 for the fundamental mode (n = 1).
Here, we have used the beam shape given by Eq. 4.13. The effective mass meff of a tensile
stressed beam is limited by these two borderline cases, meff,US < meff < meff,HTS.

Table 4.1 lists the calculated effective masses of the fundamental in-plane and out-of-
plane mode of Sample #1 and #2.
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mip
eff/m moop

eff /m

Sample #1 0.46 0.49
Sample #2 0.45 0.48

Table 4.1: Effective mass of the fundamental in-plane and out-of-plane modes of Sample #1 and
#2, relative to their real masses mS#1 = 8.6 pg and mS#2 = 2.8 pg.

4.1.7 Geometric nonlinearity

In the above derivation of the prestress-induced restoring force dFprestress on an infinites-
imal volume element of the beam (see Sec. 4.1.1), we assumed a constant prestress σ0
independent of the beam displacement v(x). Hereby, we neglected that a finite displace-
ment elongates the nanobeam and therefore increases the prestress by δσ = Eδl (where δl
denotes the elongation of the beam). Thus, the restoring force depends on the amplitude
state of the nanobeam.

In the following, we will show that this so-called geometric nonlinearity leads to an
additional term αv3(t) in the equation of motion. This modified equation of motion is
known as the Duffing equation [61]. To derive this we employ the approximation of a
highly tensile stressed beam2, as introduced in Sec. 4.1.4.

The length of the displaced nanobeam is given by

l′ =
∫ l/2

−l/2

√
1 + v′2(x)dx ≈

∫ l/2

−l/2

(
1 + v′2(x)

2

)
dx .

Here we have expanded the square root to first order as v′(x)� 1. Using the approximation
of a highly tensile-stressed beam, v(x) = v0 cos(nπx/l) (see Sec. 4.1.4), we obtain

l′ = l

(
1 + n2v2

0π
2

4l2

)
. (4.23)

This elongation of the displaced beam increases the tensile stress along the beam axis:

σ = σ0 + E
l′ − l
l

= σ0 + n2v2
0π

2E

4l2

Substituting this into the equation of motion of a highly tensile-stressed beam (Eq. 4.17)
yields

v̇(t)−
(
nπ

l

)2 σ0
ρ
v(t)− n2Eπ4

4l4ρ v3(t) = 0 .

Obviously, the elongation of the displaced beam leads to an additional term in the equation
of motion which is proportional to v3. The constant of proportionality, called Duffing
parameter, is defined by

α := n2Eπ4

4l4ρ . (4.24)

Whereas the Duffing nonlinearity can usually be neglected for small displacement, it leads
to an effective resonance frequency shift and a bistable behaviour for large mechanical

2The geometric nonlinearity is only a small correction of the harmonic oscillator potential. Therefore,
the errors induced by using the highly tensile stressed beam approximation are of second order and therefore
negligible.
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amplitudes, which they typically occur for strong drive power. Please see Chap. 2 for
a detailed discussion of the effects of the Duffing nonlinearity on the behaviour of the
mechanical beam.

4.2 Double-layer beam – out-of-plane vibrational mode

Up to now, we have focused on a beam with homogeneous cross-section. Here, we extend
the discussion to beams consisting of two or more layers stacked in z-direction. For the
sake of clarity, we restrict the following derivation to a system of only two layers with
thickness tA and tB, as illustrated in Fig. 4.5. The Young’s modulus and prestress of these
layers are denoted EA and EB resp. σ0,A and σ0,B. This scheme, however, is rather generic
and can therefore be extended to three or more layers easily. In this section, we focus on
the discussion of the out-of-plane mode, i. e. the displacement u(x) is along ẑ.

x

z

tA

tB A

B

r=0~
r=tA
~

r=tA+tB
~

r=rnf
~ ~

Figure 4.5: Nomenclature for the double-layer beam. The beam consists of two layers A and B
with thickness tA and tB, stacked in z-direction.

As above, we consider an infinitesimal volume element of the nanobeam as illustrated
in Fig. 4.5. Here, the axial force due to prestress is the sum of the forces in the two layers
and can therefore (analogously to the derivation in Sec. 4.1.1) be written

dFprestress = dFprestress,A + dFprestress,B = (σ0,AwtA + σ0,BwtB)dx∂
2u

∂x2 ẑ .

By defining the effective prestress σeff , we can treat the double layer system similar to the
homogeneous beam:

dFprestress = σeffAdx∂
2u

∂x2 ẑ ,

with A = w(tA + tB) and
σeff := σ0,AtA + σ0,BtB

tA + tB
.

The relation between bending moment and beam curvature can be derived analogously
to Sec. 4.1.2 considering that E depends on z (resp. r̃) and that the neutral axis is not
necessarily located in the center of the beam. To calculate r̃nf for a double-layer beam,
we use the fact that the total force acting on the infinitesimal volume element is the
sum of the axial force due to prestress and a bending force, as described above. The
latter does not stretch the beam, i. e. the stress normal to the beam cross-section due to
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elongation/compression (as illustrated in Fig. 4.3) has to vanish when integrated over the
cross-section. Using Eq. 4.3, this integral reads for the double-layer beam∫ tA+tB

r̃=0
dr̃σ(r̃) =

∫ tA+tB

r̃=0
dr̃E(r̃) r̃ − r̃nf

r
= 0 .

Solving this for r̃nf yields

r̃nf = EAt
2
B + 2EAtAtB + EBt

2
A

2(EAtB + EBtA) ,

where we have used E(r̃) = EA for r̃ < tA and E(r̃) = EB for r̃ > tA. As above (cf. Eq. 4.4),
the bending moment is given by

M =
∫ tA+tB

r̃=0
dM =

∫ tA+tB

r̃=0
E(r̃)wdr̃ (r̃ − r̃nf)2

r
.

This leads to

M = w
[
E2

At
4
B + 2EAEBtAtB

(
2t2A + 3tAtB + 2t2B

)
+ E2

Bt
4
A
]

12r(EAtB + EBtA) .

Therefore, we can treat the double-layer beam similar to the homogeneous case,

M = EeffI
∂2u

∂x2 ,

by defining I = w(tA + tB)3/12 and the effective Young’s modulus

Eeff = E2
At

4
B + 4EAEBt

3
AtB + 6EAEBt

2
At

2
B + 4EAEBtAt

3
B + E2

Bt
4
A

(tA + tB)3(EAtB + EBtA) . (4.25)

With these effective material parameters, the resulting equation of motion for the double-
layer beam reads

− EeffI
∂4u

∂x4 + σeffA
∂2u

∂x2 = ρeffA
∂2u

∂t2
, (4.26)

where the effective density is given by

ρeff = ρAtA + ρBtB
tA + tB

. (4.27)

Equation 4.26 is fully equivalent to Eq. 4.9 if one replaces the material parameters ρ, σ and
E by the effective material parameters ρeff , σeff and Eeff . Hence, the resonance frequency
of the out-of-plane mode of a double-layer nanomechanical beam is (analogously to a
homogeneous beam) given by Eqs. 4.18 resp. 4.19, employing effective parameters.

4.3 Double-layer beam – in-plane vibrational mode

Similar to the previous section, we investigate a nanobeam consisting of two layers with
thickness tA and tB stacked in z-direction, as illustrated in Fig. 4.6. Now, we focus on the
in-plane vibrational motion of the beam, i. e. the displacement u(x) is along ŷ.

Again, we consider an infinitesimal volume element of the nanobeam as illustrated in
Fig. 4.6. The restoring forces dFre,A and dFre,B arising from bending and elongation of
the two beam layers A and B act on the respective centers of mass of the two layers.
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Figure 4.6: a. Schematic illustration of the in-plane vibrational motion of the double-layer
nanomechanical beam. b. Infinitesimal volume element of the beam with dimensions dx ×
b × (tA + tB). Tilt and torsion of the volume element are indicated. c-d. Top view and
cross-sectional view of the volume element, illustrating the restoring forces and corresponding
torques.

The distance between the center of mass of A (B) and the center of mass of the whole
volume element is denoted dA (dB). As the restoring forces dFre,i (i = A,B) do not act
on the center of mass of the whole volume element, they induce a torque dMre,i = dFre,idi
along x̂ on the volume element as depicted in Fig. 4.6d. The net torque is then given by
dMre = dMre,A − dMre,B. This torque induces a tilt (angle θ) of the volume element so
that the in-plane vibrational mode is accompanied by an oscillating x-dependent torsion
of the double-layer beam.

In the following, we will show that the corresponding tilt angles θ(x) are small and the
torsional energy is about four orders of magnitude smaller than the total energy stored
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in the beam vibration. Therefore, the contribution of the beam torsion may be neglected
when describing the in-plane motion of the double-layer nanobeam, as shown in more
detail in Sec. 4.3.3.

4.3.1 Vibrational in-plane motion

We first focus on the pure vibrational in-plane motion of the double-layer beam neglecting
beam torsion. We show that the vibrational in-plane motion of a double-layer beam can
be described analogous to that of a homogeneous beam by defining effective material
parameters. In the next section, we turn to the torsional degree of freedom and estimate
the tilt angle θ of the torsional motion as well as the corresponding energy stored in the
torsion of the beam. We use these results to show that the torsional motion can indeed be
neglected.

For a double-layer beam, the restoring force acting on the infinitesimal volume element
is given by (see Fig. 4.6c)

dFre = dFre,A + dFre,B ,

where dFre,i = dFprestress,i + dFbending,i (i = A,B) is defined similar to Eq. 4.7. With the
effective density ρeff = (ρAtA +ρBtB)/(tA +tB) and the beam cross-section A = w(tA +tB),
Newton’s second law for the volume element reads

dFre,A + dFre,B = ρeffdxA ∂2u

∂t2
.

Using Eqs. 4.2 and 4.6 and defining the effective Young’s modulus

Eeff = EAIA + EBIB
IA + IB

= EAtA + EBtB
tA + tB

and the effective prestress
σeff = σ0,AtA + σ0,BtB

tA + tB
,

the resulting equation of motion for the double-layer beam reads

− EeffI
∂4u

∂x4 + σeffA
∂2u

∂x2 = ρeffA
∂2u

∂t2
, (4.28)

where I = IA + IB.
Similar to the case of out-of-plane motion, Eq. 4.28 is fully equivalent to Eq. 4.9 if

one replaces the material parameters ρ, σ and E by the effective material parameters ρeff ,
σeff and Eeff . Hence, the resonance frequency can be calculated similar to the one of a
homogeneous beam using the above defined effective parameters. Note that the definition
of the effective Young’s modulus is different for in-plane and out-of-plane motion.

4.3.2 Torsional motion

Equation 4.28, which describes the in-plane vibrational motion of a double-layer nanobeam,
only holds for small beam torsion θ � 1, where the displacement of the two beam layers
from the equilibrium position is approximately equal: uA ≈ uB = u. In the following, we
will estimate the tilt angle θ of the in-plane beam motion and in this way justify the above
assumption.
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As illustrated in Figs. 4.6b and d, there are two different types of torque acting on the
volume element: First, we have dMre = dMre,A − dMre,B (introduced at the beginning of
Sec. 4.3), which arises from the fact that the forces dFre,A and dFre,B act on the center of
mass of the layers A and B and in general do not compensate each other:

dMre = dMre,A − dMre,B = dFre,AdA − dFre,BdB . (4.29)

Second, if the beam is twisted, there is a corresponding torque proportional to ∂θ/∂x

acting on the cross-section of the beam at x and x+ dx. This torque is – similar to dMre
– directed along x̂ and given by [32]

Mtwist(x) = µIp
∂θ(x)
∂x

, (4.30)

where Ip is the polar moment of inertia and µ the shear modulus. Summing up all torques
along x̂ acting on the infinitesimal volume element leads to the equation of motion for the
torsional oscillation of the beam (cp. Ref. [32])

Mtwist(x+ dx)−Mtwist(x) + dMre = ρIpdx ∂
2θ

∂t2
.

We use Eq. 4.30 and expand Mtwist(x) in a Taylor series around x. Together with
Eq. 4.29, we then obtain

µIp
∂2θ

∂x2 + dMre
dx = ρIp

∂2θ

∂t2
, (4.31)

where

dMre
dx =

(
σ0,AAA

∂2uA
∂x2 − EAIA

∂4uA
∂x4

)
dA −

(
σ0,BAB

∂2uB
∂x2 − EBIB

∂4uB
∂x4

)
dB . (4.32)

The lever arms dA and dB can easily be calculated from the thickness of the two layers
tA and tB and the respective densities ρA and ρB. Then, the quantities vA and vB are
related to the center-of-mass motion u via uA = u − dA sin θ and uB = u + dB sin θ as
can be seen in Fig. 4.6d. For small θ, we can further approximate sin θ ≈ θ. For a rough
estimation, we assume θ(x, t) ∝ u(x, t) with the proportionality constant C = θ/u and
use the approximate beam displacement u(x) ≈ u0 cos(πx/l) (see Sec. 4.4). Substituting
this into Eqs. 4.31 and 4.32 allows determination of the proportionality constant C that
fulfils the equation of motion for the torsion (cf. Eq. 4.31) for all x. Finally, this yields the
maximum twist angle θ(0) = C u(0) connected with a given beam displacement amplitude
u(0).

4.3.3 Torsion, elongation and bending energy

At last we calculate the torsional energy of the fundamental in-plane mode of the beam
and compare it to the elongation and bending energy. The amount of energy stored in the
torsion of the twisted beam is given by [62]

Utorsion =
∫ l/2

−l/2
Mtwist(x) dθ

dxdx .

Using Eq. 4.30, we find

Utorsion = µIp

∫ l/2

−l/2

(dθ
dx

)2
dx . (4.33)
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The contributions of elongation and bending to the energy of a displaced nanomechanical
beam have been derived by Unterreithmeier et al. [44]. These are

Uelongation = Aσeff
2

∫ l/2

−l/2

(
∂u

∂x

)2
dx (4.34)

and

Ubending = w3tEeff
24

∫ l/2

−l/2

(
∂2u

∂x2

)2

dx , (4.35)

where we have used the effective material parameters σeff and Eeff as justified above. In the
next section, we will use Eqs. 4.33–4.35 to demonstrate that indeed the torsional degree
of freedom can be neglected when describing the in-plane vibrational motion of typical
double-layer nanomechanical beams.

4.4 Comparison with experimental data

To verify the above derived theory of doubly-clamped, multi-layer nanomechanical beams,
we compare it to experimental data taken by F. Hocke during his PhD thesis [21] and
published in Ref. [57]. The sample has been fabricated by X. Zhou [63]. We will not
give a complete overview of this circuit electromechanical hybrid sample (Sample #3 ) and
its electromechanical features. Instead, the coupling of the mechanical resonator to the
microwave circuit is used only for read-out of the mechanical motion here. For a more
detailed discussion of Sample #3, please see Refs. [21, 63].

4.4.1 Sample and experimental setup

Sample #3 consists of a l = 60 µm long and w = 140 nm wide Si3N4/niobium nanobeam
integrated into a superconducting microwave circuit. The thickness of the nanobeam layers
is tSiN = 70 nm and tNb = 130 nm, resulting in an effective mass of meff = 5.4 pg. Here, we
have used the relation meff = 0.5ρeff lw(tSiN + tNb) and Eq. 4.27 for the effective density
with ρSiN = 2600 kg m−3 [46] and ρNb = 8570 kg m−3 [64]. 3

The nanomechanical beam is capacitively coupled to a λ/4 superconducting coplanar
waveguide microwave resonator with a resonance frequency of ωc/2π = 6.07 GHz and a
quality factor of Q ≈ 8 000. Figure 4.7 shows the simplified experimental setup and a
circuit diagram of the sample.

The microwave resonator is driven at its resonance frequency ωc/2π with low power
to minimize backaction on the mechanics. The nanobeam is excited by application of an
additional MHz (AC ) drive tone from the vector network analyzer (VNA) which is added
to the microwave drive with a bias tee. Due to the electromechanical coupling between the
microwave cavity and the mechanical resonator, the nanobeam motion induces sidebands
in the microwave transmission which are measured using a homodyne detection scheme
(see Fig. 4.7). Using frequency noise calibration4, the height of the observed sidebands
can directly be converted into a mechanical amplitude.

The experiment is conducted at a temperature of 400 mK.
3The value of meff differs from the one given in Ref. [57] due to a deviating definition of the effective

mass: In Ref. [57], meff = 0.63ρeff lw(tSiN + tNb) was used.
4For details on the experimental techniques used in circuit electromechanics, please refer to Chap. 6.
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Figure 4.7: Schematic of the experimental setup used for analyzing the vibration characteristics
of Sample #3.

4.4.2 Measurement results and comparison to multilayer beam theory

Figure 4.8a shows the measured homodyne signal as a function of the AC drive frequency,
for a comparatively weak drive of Pac = −100 dBm. We observe a Lorentzian lineshape
with a resonance frequency of Ωm/2π = 1.45 MHz and a linewidth of Γm/2π ≈ 15 Hz. Upon
increasing the AC drive power, the nanobeam motion enters the non-linear Duffing regime,
where the effective resonance frequency shifts as a function of drive power (see Fig. 4.8b).
The relation between mechanical amplitude and effective resonance frequency is hereby
given by the backbone equation 2.13, which allows to extract the Duffing non-linearity
α = 3.7× 1025 m−2s−2 (similar to Secs. 3.3 and 3.4).

Using the experimentally determined resonance frequency Ωm/2π and Duffing param-
eter α allows to calculate the effective prestress and Young’s modulus, σeff and Eeff , of the
nanobeam resonator. In the following, we want to compare the full numerical calculation
to the approximation of a tensile-stressed nanobeam (TS, see Eq. 4.19) and the widely
employed approximation of a highly tensile-stressed beam (HTS, see Eq. 4.18).

First, we use Eq. 4.24 to determine Eeff from the measured Duffing nonlinearity α

and obtain Eeff = 126 GPa. With this, we can calculate the effective prestress from the
measured Ωm/2π using the full numerical solution of the determinant Eq. 4.12 and obtain
σeff = 182 MPa. Employing the above mentioned approximations of a tensile stressed or a
highly tensile stressed beam, we get σeff,TS = 183 MPa or σeff,HTS = 196 MPa, respectively.

For comparison with the above derived multilayer beam theory, we use the material
parameters ESiN = 160 GPa, σ0,SiN = 830 MPa (both experimentally determined for a
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Figure 4.8: a. Amplitude spectrum of the fundamental in-plane mode of the nanobeam for low
drive power and Lorentzian fit. The peak at ΩAC −Ωm = −2π× 50 Hz is used for calibrating
the readout circuit. b. Amplitude spectra as a function of drive power (0.1 to 4.0 pW, light
to dark blue lines) and fitted backbone curve (black line).

similar sample [44]), ENb = 105 GPa [32] and an estimated compressive stress in the
niobium film of σ0,Nb ≈ −150 MPa5. This results in

Eeff = 124 GPa and
σeff = 204 MPa .

These values are in good agreement with the experimentally determined parameters and
thus support the validity of the multilayer beam theory.

4.4.3 Torsional motion associated to the in-plane mode

Next, we verify that the contribution of torsional motion to the in-plane mode is sufficiently
small to be neglected. To this end, we calculate the twist angle as derived in Sec. 4.3.2
and obtain θ(0) = C u(0) = 0.0014◦ for a typical displacement of u(0) = 1 nm (C =
2.43 × 104 rad/m). Here, we have used the lever arms dA = 12.3 nm and dB = 87.7 nm,
the polar moment of inertia Ip = 1.54 · 10−28 m−4 [31] and the mean shear modulus
µ = (µAtA + µBtB)/(tA + tB) = 91 GPa (as µNb = 38 GPa,6 and µSiN = 120 GPa [66]).

Substituting the approximate beam shape u(x) = u0 cos(πx/l) with u0 = 1 nm and
θ(x) = C u(x) into Eqs. 4.33 – 4.35, we find

Utorsion = 1.9× 10−23 J ,
Uelongation = 4.2× 10−19 J , and
Ubending = 1.1× 10−21 J .

Hence, the torsional energy of the in-plane mode is about four orders of magnitude smaller
than the total energy Utot = Utorsion +Uelongation +Ubending. The torsional degree of freedom
can therefore safely be neglected when describing the in-plane vibrational motion of the
presented double-layer nanomechanical beam.

5We cannot directly access the compressive stress in our sputtered niobium films. The assumed stress,
however, is consistent with values reported in literature for superconducting Nb thin films deposited by
DC magnetron sputtering [65].

6This value was calculated from µ = E/(2(1 + ν)) [32] with the Poisson ratio νNb = 0.40 [32] and
Young’s modulus ENb = 105 GPa [32].
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4.5 Summary

In this chapter, we have given a solid mechanics description of the flexural modes of
a prestressed, doubly-clamped nanobeam resonator. We have derived the equations of
motion and reduced them to an effective one-dimensional description of an effective mass
in a harmonic potential with Duffing nonlinearity. The latter can be attributed to the
geometric nonlinearity of a displaced nanobeam.

For practical purposes, the full numerical solution of the equations of motion is in-
convenient. We have therefore derived an analytical expression which can reproduce the
resonance frequency of a typical tensile-stressed nanobeam within 1% tolerance, much
better than the usually employed highly-stressed beam approximation. We have demon-
strated this by comparing to experimental parameters of the pure Si3N4 and aluminium
nanobeam samples presented in Chap. 3.

Based on this, we have shown that a multilayer nanobeam can be treated similar to
a beam with homogeneous cross-section when introducing effective material parameters
for density, prestress and Young’s modulus. This holds for the out-of-plane modes as well
as for the in-plane modes. Regarding the latter, there is an additional torsional motion
component which, however, can be neglected for typical parameter sets. We have compared
the results of this multilayer beam theory to experimental data and demonstrated good
quantitative agreement.

These results can be used to extract material parameters from (relatively simple) char-
acterization experiments and in this way investigate material properties of thin films at
room temperature or at low temperatures down to mK. Besides, in future experiments,
the understanding of the mechanics of multilayer resonators allows to a priori tailor the
parameters of such systems according to experimental demands.



Chapter5
Magnetostriction sensing with a
nanomechanical beam

Nanomechanical systems are an established platform for mass and force detection. In
particular, the high quality factors of their vibrational modes [44] make them ideally
suited for high-precision sensing applications in (nano)biology, medicine, chemistry and
physics [10,15,17,67,68]. For example, nanomechanical resonators allow for the detection
of DNA molecules [69] and atoms [14], and nanomechanical resonance spectroscopy has
been proposed as a versatile tool and extension of conventional spectroscopy techniques
in biology and chemistry [70]. In solid state physics, nanomechanical sensors are utilized
for the investigation of material properties of thin films [71–73], which often significantly
differ from those of bulk materials [74, 75]. One particular aspect is the investigation of
externally tunable material properties as discussed in the field of multiferroics [76]. For
example, it has been demonstrated that magnetostriction and magnetic anisotropy in a
Ga0.948Mn0.052As thin film can precisely be investigated using a nanomechanical beam
setup [77].

Here, we extend this concept and present a versatile platform for the experimental
investigation of magnetostrictive thin films which uses a doubly-clamped silicon nitride
nanobeam covered with a thin layer of the material of interest. This approach allows for the
investigation of any magnetostrictive thin film material – conducting as well as insulating
– which can be deposited on a Si3N4 nanobeam, using e. g. electron beam evaporation,
thermal evaporation or sputtering.

In the given sample layout, the magnetic thin film is tightly connected to the underly-
ing nanobeam. An externally applied magnetic field does therefore not cause a measurable
deformation of the magnetic film (as for usual magnetostriction measurement techniques);
instead, it gives rise to magnetoelastic stress which can be read out by monitoring the reso-
nance frequency of the double-layer nanobeam. This allows to deduce the magnetostriction
constants of the thin film (see also [77]).

As a proof-of-principle experiment, we use the presented method to investigate two
well-characterized materials, a cobalt and a nickel thin film (both polycrystalline), to
allow comparison to literature data obtained with well-established methods.

As the thin film deposition is the last step in the sample fabrication process, the fer-
romagnetic film is not exposed to etching solution or dry etch reactants, which allows to

39
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a. Si3N4/Co nanobeam (Sample #4a):

Si Si3N4 EBL resist (neg.)Al EBL resist (pos.)

(i) (ii) (iii)

(iv) (v)

SiO2 Co Ni

b. Si3N4/Ni nanobeam (Sample #4b):

(i) (ii) (iii) (iv) (v)

(vi)

Figure 5.1: Schematic of the fabrication processes of Sample #4a and #4b. The individual steps
are explained in the main text.

apply this technique to a broad range of materials. Moreover, the measurement sensi-
tivity is expected to be independent of the film thickness which could be useful for the
investigation of very thin magnetostrictive films.

The results shown in the following have partly been published in [78].

5.1 Sample fabrication

The fabrication process of the Si3N4/Co sample (Sample #4a) starts with a single-crys-
talline silicon wafer commercially coated with a 200 nm thick thermal oxide and a tSiN =
90 nm thick LPCVD (low pressure chemical vapor deposition) highly stressed Si3N4 film
[Fig. 5.1a (i)]. We use electron beam lithography (ii), aluminium evaporation and lift-off
to create an etch mask for the l = 25 µm long and w = 350 nm wide, doubly-clamped
nanomechanical beam (iii). With a reactive ion etching step, we pattern-transfer the
structure to the silicon nitride layer (iv). We subsequently remove the aluminium mask and
release the nanobeam with buffered hydrofluoric acid (v). Finally, we deposit tCo = 10 nm
of cobalt on the chip using electron beam evaporation (vi).
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The Si3N4/Ni sample (Sample #4b) is fabricated slightly differently1. Similar to Sam-
ple #1, we start with a single-crystalline silicon wafer coated with 100 nm of highly tensile-
stressed LPCVD Si3N4 [Fig. 5.1b (i)]. We pattern the Si3N4 nanobeam using electron beam
lithography (ii) and an anisotropic RIE step with Ar/SF6 (iii), followed by an isotropic
RIE process with SF6 only (iv). Lastly, the tNi = 10 nm thick nickel film is deposited using
electron beam evaporation (v).

5.2 Experimental setup

5.2.1 Optical free beam interferometer in an electromagnet

The experiments with Sample #4a have been conducted with a fiber interferometer built
by Rasmus Holländer during his Bachelor’s thesis at the Walther-Meißner-Institut. This
setup is described in detail in [79] and will not be discussed here.

Within Peter Jörg’s Bachelor’s thesis, which I supervised, the setup was redesigned
and rebuilt as a free beam interferometer, which is shown in Fig. 5.2. We have used
this modified interferometer (Magnet-IFM ) for the experiments with Sample #4b. In the
following, we will give a quick overview of the interferometer setup. For a more detailed
description, please see Ref. [80].

The Magnet-IFM consists of a vacuum and an ambient pressure part. The sample
and the objective are placed inside a vacuum dipstick (Fig. 5.2a,c), which is positioned
between the poleshoes of a Bruker B-E 10 electromagnet. This electromagnet, providing
a homogeneous magnetic field up to 200 mT at the sample position, can be rotated around
an axis orthogonal to the magnetic field direction. The angle between the sample and
the magnetic field orientation can be controlled over a range of approximately 240◦. Most
of the optical elements of the interferometer are concentrated in an interferometer head,
mounted on top of the vacuum dipstick (see Fig. 5.2b). Similar to IFM1, the Magnet-IFM
includes an optical microscope which provides a live image of the device under test and
thus allows a fast and easy positioning of the laser spot on the sample surface.

The design of the interferometer head is inspired by the layout developed at the chair
of Prof. J. Finley (Walter Schottky Institute, TU Munich) [81]. A schematic of the inter-
ferometer head is shown in Fig. 5.3.

To keep the weight of the interferometer head low, the laser source, a frequency- and
power-stabilized diode laser (Ondax LM-633-PLR-40, λ = 633 nm), is mounted on an
additional optical table and connected to the interferometer with an optical single-mode
fiber. On the first level of the interferometer head, the laser beam is coupled from the
fiber into the optical path of the interferometer using two mirrors and a λ/2 plate. The
latter converts the linear polarization of the laser light into circular polarization. The laser
beam is guided through a window into the vacuum dipstick and focused on the sample
using a MellesGriot lens array (working distance 0.8 mm). The lens array replaces the
microscope objective used in typical interferometers (see e. g. Chap. 3). The main reason

1We have used different fabrication processes for Sample #4a and Sample #4b for technical reasons
only. At the beginning of this work, the fabrication was based on Si/SiO2/Si3N4 wafers, where the SiO2

buffer layer was etched with buffered hydriflouric acid. To make the fabrication process compatible with
aluminium structures (see Chap. 8), we moved to Si/Si3N4 chips and released the nanobeams by introducing
an isotropic RIE step. For simplicity, Sample #4b was fabricated according to this new process even if
aluminium was not used on this sample.
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a. b.
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electro-
magnet
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(mounted on 
piezoactuator)
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window
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Figure 5.2: Photograph of the magnet free beam interferometer used to investigate Sample #4b.
The sample is mounted on a piezoelectric XYZ-positioner (c) and located inside a vacuum
tube. The optical elements for the generation and detection of the laser beam as well as the
microscope optics are collected in the interferometer head (b) on top of the vacuum dipstick.
The vacuum dipstick is placed between the poleshoes of an electromagnet, which can be
rotated around its vertical axis (a).

is that the casing of this lens array is made of aluminium and therefore non-magnetic,
while standard microscope objectives contain magnetic parts, which would distort both
imaging and interferometry in an external magnetic field.

The sample is mounted on an Attocube XYZ -positioner which allows to move it relative
to the position of the laser spot. The laser light reflected at the sample surface is directed
back to the interferometer head and focused on a photodetector (Thorlabs DET10A, band-
width 1 GHz), which is located on the second level of the interferometer head. The third
level contains the microscope optics: a LED for illumination of the sample and a CCD
camera onto which the sample image is projected. As a light source, we use a super-bright
red LED whose emission wavelength λ = 615 nm is close to the laser wavelength to min-
imize the focal shift between the microscope image and the laser spot on the sample2.
A notch filter in front of the CCD camera reduces the intensity of the laser spot on the
camera and prevents saturation (or damage) of the CCD. In contrast to IFM1, we here
do not use the polarization of the laser light to separate the reflected from the incoming

2In contrast to standard microscope objectives, the MellesGriot lens array used here is not corrected
for focal shifts as it is typically employed for monochromatic laser light.
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Figure 5.3: Schematic of the free space laser interferometer integrated into a vacuum dipstick
for magnetic field measurements (Magnet-IFM ).

laser light, i. e. we use non-polarizing beam splitters throughout. The reason is that due
to the magneto-optical Kerr effect [82] the polarization of the laser light can be rotated
after reflection at the surface of a magnetized film. Using a polarizing beam splitter in
the optical path would therefore lead to a magnetization-dependent laser intensity on the
detector and thus distort the measured signal.

Compared to a fiber interferometer, the Magnet-IFM has several advantages: First,
the integrated microscope allows for a fast and easy positioning of the laser spot on the
sample surface. Second, the working distance between the sample and the objective is
much larger than the fiber-sample distance in a fiber interferometer, which is typically
several µm. This prevents damaging of the sample and the optics. Besides, the laser light
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Figure 5.4: a. Schematic of Sample #4a/b, a doubly-clamped Si3N4 nanobeam (green) covered
with a thin ferromagnetic film (dark red). The external magnetic field µ0H is oriented in the
sample plane (i. e. the x-y-plane). b. Illustration of the experimental setup. A laser beam
is focused on the sample and the reflected light is guided to a photodetector. The measured
photovoltage is analyzed with a vector network analyzer, whose output is used to drive the
nanobeam motion via a piezoelectric actuator. The sample is located in a vacuum chamber
to avoid air damping. For reasons of clarity, the optics have been strongly simplified in this
schematic.

reflected at the sample surface can effectively be coupled back into the optical path and
guided to the photodetector, enabling a more sensitive detection of the nanobeam motion.

5.2.2 Measurement setup and coordinate system

The measurement setup is schematically shown in Fig. 5.4. The experiments are per-
formed at room temperature and in vacuum (p < 10−4 mbar) to avoid air damping. Using
a piezoelectric actuator onto which the sample is glued, we can resonantly drive the flexu-
ral modes of the nanobeam. The beam motion modulates the reflected laser light, which
linearly translates into a modulation of the detected photovoltage [83]. Employing signal
vector analysis we study the mechanical response of the beam as a function of the ap-
plied actuator drive frequency. Additionally, to control the magnetization direction of the
nanobeam, we apply a static magnetic field provided by the electromagnet, which we are
able to rotate in the sample plane (i. e. the x-y-plane). The azimuthal angle Φ is defined
between the external field direction and the main beam axis (see Fig. 5.4a).

5.3 Model connecting mechanical resonance frequency
changes to magnetostriction

In this section, we present a model predicting the add-on stress on the magnetic layer
caused by the magnetostrictive effect. We start with the magnetostrictive deformation of a
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polycristalline free-standing ferromagnetic (FM) film with cylindrical shape and transform
the corresponding strain tensor to the xyz-coordinate system (where the x-axis is parallel
to the nanobeam). Then we use this result to calculate the magnetoelastic stress in a FM
thin film on top of a nanobeam resonator and the induced resonance frequency shift.

5.3.1 Magnetostrictive strain in a free-standing magnetic thin film

φ

x’ || M

x

y

z || z’

y’

L ∆LW

∆W

ΦΦ

H

Figure 5.5: Definition of the x′y′z′-coordinate system which is rotated by φ with respect to
the xyz-coordinate system, with z′ ‖ z. The magnetization is along the x′-axis, while the
nanobeam is parallel to the x-axis. Aligning the magnetization in a free-standing magne-
tostrictive thin film (for illustration purposes we have chosen a cylindrically shaped film here)
causes a strain λ‖ (λ⊥) along the x′ (y′ and z′) axis.

First, we consider a free-standing FM thin film, which is centered around the origin
of the xyz-coordinate system (the lab system), as illustrated in Fig. 5.5 (dashed circle).
In a sufficiently large magnetic field, the FM film is fully magnetized, i. e. all magnetic
moments are aligned along the external field direction. Due to magnetostriction, the
magnetic film is mechanically deformed along the magnetization direction M/Ms, which
also induces a deformation in both orthogonal directions (dependent on Poisson’s ratio), as
sketched in Fig. 5.5. The relative contraction/elongation ε‖,⊥ for the directions along and
perpendicular to the magnetization orientation is given by the magnetostrictive constants
λ‖ and λ⊥, respectively [84]:

ε‖ = ∆L
L

= λ‖ and ε⊥ = ∆W
W

= λ⊥.

For cobalt, iron and nickel, λ‖ < 0 and λ⊥ > 0.
We define a second coordinate system x′y′z′ which is rotated relative to the xyz-system

by an angle of φ around the z-axis. Here, φ denotes the angle between the x-axis and the
magnetization direction and Φ is the angle between the x-axis and the external magnetic
field orientation, as shown in Fig. 5.5. The x′y′z′-coordinate system represents the natural
system for the magnetostriction. In this frame of reference, the magnetization M is along
the x′-axis and the magnetostrictive strain tensor is given by

ε′mag =

λ‖ 0 0
0 λ⊥ 0
0 0 λ⊥

 .
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Using the rotation tensor R, which maps the xyz-coordinate system to the x′y′z′-
coordinate system,

R =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ,
we obtain the components of the strain tensor in the xyz-coordinate system of the
nanobeam:

εmag = RT ε′magR

=

λ‖ cos2 φ+ λ⊥ sin2 φ (λ⊥ − λ‖) cosφ sinφ 0
(λ⊥ − λ‖) cosφ sinφ λ⊥ cos2 φ+ λ‖ sin2 φ 0

0 0 λ⊥

 .

5.3.2 Magnetoelastic stress in a magnetic thin film on top of a substrate

In case of a thin magnetic film deposited on a substrate, the shared interface imposes a
boundary condition on the FM. More precisely, the geometric dimensions of the FM are
fixed in x- and y-direction, which means, the effective strain along these axes vanishes.
We describe this by introducing an additional strain εb so that the net strain

εnet = εmag + εb

vanishes along the x- and y-direction:

εnet,x = εnet,y = 0 .

In a more intuitive picture, magnetostriction changes the equilibrium dimensions of the
film. Along the magnetization direction, e. g., the equilibrium length of the film is reduced
(λ‖ < 0). However, the boundary conditions require a constant length, which results in
a tensile stress in the FM film along the x-axis. Analogously, magnetostriction creates a
compressive stress in the FM along the y-direction. Perpendicular to the film plane, the
FM is free to expand. Thus, the strain applied by the boundary conditions creates the
stress

σmag = C εb (5.1)

with the elasticity tensor C [85].
In Voigt notation (see, e. g., Ref. [85]), εb is

εb =



εb,xx
εb,yy
εb,zz
2εb,yz
2εb,xz
2εb,xy


=



λ‖ cos2 φ+ λ⊥ sin2 φ

λ⊥ cos2 φ+ λ‖ sin2 φ

εb,zz
0
0

2(λ⊥ − λ‖) cosφ sinφ


(5.2)
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and the elasticity tensor C is given by

C =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(5.3)

with the shear modulus µ, the Lamé constant λ = (2µ2 − Eµ)/(E − 3µ) and Young’s
modulus E [85, 86].

As the FM film can expand freely in z-direction, the stress component σmag,zz has to
vanish. Thus,

εb,zz = λ‖

(
1− E

2µ

)
, (5.4)

where we have used µ = E/(2(1+ν)) [85] and λ‖ = −νλ⊥ (as volume magnetostriction can
be neglected in first order [84]). Here, ν denotes the Poisson ratio of the magnetostrictive
material.

Using Eqs. 5.1–5.4, we obtain the following expression for the stress σmag in the mag-
netic film:

σmag =

σmag,xx
σmag,yy
σmag,zz

 = −

Eλ‖ cos2(φ)
Eλ‖ sin2(φ)

0

 .
5.3.3 Effective stress in the double-layer nanobeam

To obtain the effective stress present in the double-layer beam, we take into account the
stress in the silicon nitride, σSiN, as well as in the magnetic thin film, σtot

film. For a double-
layer system, the effective stress along the beam direction is given by [51,57]

σeff =
σSiNtSiN + σtot

film,xtfilm

tSiN + tfilm
.

Note that the total stress in the magnetic layer contains stress contributions from the
fabrication process as well as the magnetoelastic stress, σtot

film = σ0
film + σmag.

For a highly tensile-stressed nanobeam, the resonance frequency of the fundamental
flexural mode is well approximated by Ωres/2π = (1/2l)

√
σ/ρ, where σ and ρ denote

prestress and density of the nanobeam (see, e. g., Ref. [30]). Using effective values for
stress and density of the double-layer beam [51,57], we obtain

Ωres(φ)
2π = 1

2l

√
σeff
ρeff

= 1
2l

√
σ0 − σ1 cos2(φ)

ρeff
, (5.5)

where we have defined σ0 = (ρSiNtSiN +σ0
film,xtfilm)/(tSiN + tfilm) and σ1 = Etfilmλ‖/(tSiN +

tfilm).
For |σ1/σ0| � 1, we can Taylor-expand Eq. 5.5 and obtain for the relative resonance

frequency shift
∆Ωres(φ)

Ωres,0
= Ωres(φ)− Ωres,0

Ωres,0
= − σ1

2σ0
cos2(φ) (5.6)
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with Ωres,0/2π = (1/2l)
√
σ0/ρeff the resonance frequency at φ = 90◦.

We thus expect a cos2(φ)-dependence of the resonance frequency as a function of the
magnetization direction. By measuring the tuning amplitude σ1/2σ0 of the resonance
frequency, we can deduce the magnetostriction constants λ‖ and λ⊥.

5.4 Experimental results

5.4.1 Magnetostriction of a cobalt thin film

In this section, we study magnetostriction in a 10 nm thin polycrystalline cobalt film using
Sample #4a. To spectroscopically investigate the sample, we use the fiber interferometer
described in [79] and the setup depicted in Fig. 5.4.

Resonance frequency measurements at high magnetic field

First, we measure the resonance frequency of the beam in an external magnetic field of
constant magnitude µ0H = 200 mT, which is above the coercive field and the in-plane
anisotropy fields of the Co film. In this regime, the magnetization is, in a good approx-
imation, aligned along the external field direction (φ ≈ Φ). We rotate the external field
between Φ = −35◦ and 200◦, where Φ = 0◦ corresponds to µ0H ‖ x̂ (see Fig. 5.5).
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Figure 5.6: Measured photovoltage spectra for an external magnetic field of µ0H = 200 mT
applied along the nanobeam axis (x-axis) and at an angle of 45◦, 90◦ and 180◦ to the x-axis.
The angle misalignment of 4◦ is due to the finite angle resolution in the experiment.

Figure 5.6 shows the measured homodyne photovoltage as a function of the drive
frequency for four different external field directions Φ = −4◦, 41◦, 86◦, 176◦. The drive
voltage applied to the piezoactuator is Upiezo = 7 mVrms. We observe a clear resonance
peak corresponding to the fundamental vibrational out-of-plane mode of the nanobeam,
whose frequency shifts as a function of the magnetic field orientation. The magnetostrictive
frequency shift significantly exceeds the linewidth of the resonance peaks, which is Γm/2π ≈
300 Hz. In addition to the resonance frequency shift, we observe a variation of the resonance
peak amplitude when rotating the external magnetic field vector, as can be seen from
Fig. 5.6. We attribute this to a slight translational shift of the sample position in high
magnetic fields. In this case the laser spot is not centered on the nanobeam any more,
which decreases the detected photovoltage amplitude. The small discrepancy between the
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resonance frequency at Φ = −4◦ and 176◦ is due to thermal drift of the resonance frequency
during the measurement.
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Figure 5.7: Resonance frequency of the fundamental flexural mode as a function of the external
magnetic field orientation Φ for µ0H = 200 mT. a. Measured photovoltage U as a function of
drive frequency and external field direction. b. Fitted resonance frequency Ωres(Φ)/2π and
expected cos2(Φ) behaviour.

To analyze the observed field orientation dependence in more detail, we measure
the amplitude spectrum of the nanobeam as a function of Φ, as shown in Fig. 5.7a.
The experimental data confirm the expected 180◦-periodicity of the resonance fre-
quency Ωres(Φ)/2π. From these data we extract the maximum resonance frequency shift
∆Ωres,max := Ωres(0◦) − Ωres(90◦) = 2π × 8.00 kHz (see Fig. 5.7b). We observe slight
deviations between the measured Ωres(Φ) and the expected cos2(Φ) behaviour, especially
around Φ = 45◦ and 135◦. This is quantitatively understood, as the magnetization for
these angles Φ is not perfectly aligned in parallel with the applied magnetic field due to
the finite shape anisotropy of the nanobeam (see next section for details). Additionally,
this quantitative model is compatible with the absence of crystalline magnetic anisotropies
in our nanobeam, warranting the assumption of a polycrystalline cobalt film (see Ref. [78]).

To determine the magnetostriction constants λ‖ and λ⊥ from the experimental data,
we first calculate the static prestress σ0 in the nanobeam. With Ωres(φ = 90◦)/2π =
(1/2l)

√
σ0/ρeff , we obtain σ0 = 892 MPa. Here we have used the effective density ρeff =

3410 kg m−3, which we determine from ρSiN = 2800 kg m−3 [44] and ρCo = 8900 kg m−3 [64]
using ρeff = (ρSiNtSiN + ρCotfilm)/(tSiN + tfilm) [57]. With Eq. 5.6, the Young’s modulus of
cobalt E = 175 GPa [87] and the relation λ⊥ = −νλ‖, the observed maximum resonance
frequency shift of ∆Ωres,max = 2π × 8.00 kHz corresponds to a magnetostriction constant
of λ‖ = −79.7× 10−6 (λ⊥ = 27.9× 10−6).

To compare these values to literature, we calculate λ‖ and λ⊥ in polycrystalline magnet-
ically saturated cobalt from the crystal magnetostriction constants λA,B,C,D as described
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in [88] and obtain λ‖ = −78.4×10−6 and λ⊥ = 27.5×10−6. This is in very good agreement
with the experimentally determined values. Thus we conclude that the proposed method
conforms with standard magnetostriction measurement techniques, which e. g. use the
bending of a cantilever covered with a thin magnetostrictive film [89–92], and is therefore
suitable to quantitatively determine the magnetostriction constants of thin films.

Impact of imperfect magnetization alignment on the resonance frequency shift

To study the deviation of the measured Ωres(Φ) from the expected cos2(Φ) behaviour
in more detail, we repeat the above measurement for lower magnetic fields. Whereas
for µ0H = 200 mT the magnetization M is roughly aligned along µ0H, this is not the
case for smaller external fields where magnetic anisotropies significantly contribute to the
orientation of the magnetization.

To predict the magnetization direction, we use a Stoner-Wolfarth approach and as-
sume a saturated magnetization state |M| = Ms (see e. g. Ref. [84]). To determine the
equilibrium direction of M as a function of the external field orientation, we start with
the free energy density Ftot, containing Zeeman energy density and shape anisotropy. The
first is given by FZeeman = −µ0M ·H [84], the latter is Fshape = (µ0/2)M ·N ·M, where
N denotes the demagnetization tensor [93]. We approximate the cobalt thin film on the
Si3N4 nanobeam as an ellipsoid with axis lengths l, w and tfilm. The corresponding de-
magnetization tensor has diagonal form with the components Nxx ' 0, Nyy = 0.03 and
Nzz = 0.97 [94]. Note that we neglect magnetocrystalline anisotropy contributions to Ftot,
assuming that they average out in a polycrystalline film [95]. The contribution of magne-
toelastic energy to Ftot is about two orders of magnitude smaller than the contribution of
shape anisotropy and can therefore be neglected.

For the present experimental geometry, external magnetic field and magnetization are
in the x-y-plane (see Fig. 5.5). Thus, the total free energy density is given by

Ftot = −µ0MsH cos(Φ− φ) + µ0M
2
s

2 Nyy sin2(φ). (5.7)

In Fig. 5.8a-c, we plot the total free energy density as a function of the external
magnetic field orientation and the magnetization direction for the parameter values Ms =
1167 kA/m (measured by SQUID magnetometry for a similar Co thin film), Nyy = 0.03
and µ0H = 200 mT, 100 mT and 25 mT. The minima, which determine the equilibrium
magnetization direction, are highlighted by green lines. If the external field significantly
exceeds the demagnetization field µ0Hdemag = (µ0/2)MsNyy ≈ 22 mT, the magnetization
is approximately parallel to the external field, i. e. φ ≈ Φ. Nevertheless, even for µ0H =
200 mT there are slight deviations between the calculated energy density minima and the
ideal case φ = Φ (indicated with the dashed blue line in Fig. 5.8a). For small external fields
µ0H . µ0Hdemag, the shape anisotropy of the thin cobalt stripe forces the magnetization
direction towards the x-axis, as Fig. 5.8c points out.

In Fig. 5.8d, the measured resonance frequency is plotted as a function of the external
field orientation Φ for the field strengths µ0H = 200 mT, 100 mT and 25 mT. The solid
lines show the modeled resonance frequency behaviour, based on Eq. 5.6 and the calculated
equilibrium magnetization orientation φ(Φ). In particular for µ0H = 200 mT, we observe
excellent agreement between the experimental data and the model. For weak magnetic
fields, e. g. µ0H = 25 mT, our simple model explains the resonance frequency shift at
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Figure 5.8: a-c. Total free energy density as a function of external magnetic field orientation
Φ and magnetization direction φ for µ0H = 200 mT (a), 100 mT (b) and 25 mT (c). The
green lines indicate the angle dependence of the free energy density minimum. The colorbar
has been rescaled individually for each graph. d. Resonance frequency versus external field
orientation Φ for various field strengths µ0H = 200, 100, 25 mT. The symbols represent the
experimental data, the modelled resonance frequencies are plotted as solid lines.

least qualitatively, reproducing the switching of the magnetization at Φ = 110◦ and the
measured maximum frequency shift.

5.4.2 Magnetostriction of a nickel thin film

In this section, we present experimental data for Sample #4b, consisting of a tNi = 10 nm
thin nickel film on a tSiN = 100 nm thin doubly-clamped Si3N4 nanobeam resonator
(l = 40 µm, w = 350 nm). Whereas the above measurement has been done with a fiber
interferometer [79], we here employ the modified free space interferometer introduced in
Sec. 5.2.1. In addition to an improved mechanical stability, the Magnet-IFM allows more
efficient coupling of the reflected laser light into the optical path and therefore a higher
signal-to-noise ratio.

Mechanical response spectra

Figure 5.9a shows the amplitude spectrum of the nanobeam motion as a function of the
external magnetic field direction, with a constant field magnitude µ0H = 200 mT. We use a
piezoactuator voltage of Upiezo = 22 mVrms, driving the nanobeam motion still in the linear
regime. As already observed for Sample #4a, we find a clear modulation of the resonance
frequency when rotating the external magnetic field. The observed maximum resonance
frequency shift ∆Ωres,max/2π = 1.0 kHz is significantly smaller than for Sample #4a, but
still large compared to the linewidth of the resonance Γm/2π ≈ 325 Hz. Due to the
improved mechanical stability of the setup, the signal is clearly visible for all external field
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Figure 5.9: a. Measured photovoltage as a function of drive frequency Ω/π and external mag-
netic field orientation Φ for µ0H = 200 mT. b. Mechanical response spectra for Φ = 0◦
and 90◦, extracted from (a). c. Fitted resonance frequency as a function of Φ and expected
cos2(Φ)-dependence.

directions, as shown in Fig. 5.9b for the two perpendicular orientations Φ = 0◦ and 90◦.
In Fig. 5.9c, the fitted resonance frequency as a function of the magnetic field direction
Φ is plotted together with the expected cos2(Φ) dependence. The deviation between
the expected and the measured resonance frequency around Φ = 45◦ and 135◦ can be
attributed to anisotropy effects in the Ni thin film, causing a small misalignment of the
magnetization vector M relative to the externally applied field µ0H. We have already
discussed this issue in detail in Sec. 5.4.1.

To determine the magnetostriction constants of the Ni film, we proceed similarly to
Sec. 5.4.1. From the minimum resonance frequency Ωres(Φ = 90◦)/2π = 5.913 32 MHz, we
determine the prestress in the Si3N4/Ni nanobeam, σ0 = 710 MPa. Here we have used
the effective density ρeff = 3170 kg m−3, which we calculate from ρSiN = 2600 kg m−3 [46],
ρNi = 8900 kg m−3 [96] and the thickness of the Si3N4 and Ni films given above.

With Eq. 5.6, Young’s modulus of nickel E ≈ 200 GPa [97] and the observed maximum
resonance frequency shift of ∆Ωres,max/2π = 1.00 kHz, we find λ‖ = −13.2 × 10−6. This
deviates significantly from the literature value λNi

‖ = −38× 10−6 [98].
To investigate this inconsistency in more detail, we measure the saturation magnetiza-

tion of the Ni film using SQUID magnetometry. We find Ms = 291 kA/m, which is severely
reduced compared to values reported for other Ni thin films (MNi film

s = 370 kA/m [99])
or for bulk nickel (MNi bulk

s = 485 kA/m [100]). This could be explained by a partial
oxidization of the film which would also deteriorate the magnetoelastic properties of the
film. Besides, in literature different values for Young’s modulus of Ni thin films can be
found [49, 101, 102]. So we cannot exclude that Young’s modulus of our Ni film modulus
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deviates from the assumed value E = 200 GPa, and this would also affect the calculated
magnetostriction constant. Thus, further analysis of the magnetic and elastic properties
of the Ni film is necessary in order to understand the origin of the small magnetoelastic
coupling in this film.

In addition to the resonance frequency shift, we analyze linewidth and amplitude of
the measured mechanical response spectra as shown in Fig. 5.10. This was not possible for
the experiment with Sample #4a because of an insufficient signal-to-noise ratio. We find a
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Figure 5.10: a. Fitted linewidth and b. photovoltage amplitude as a function of the external
magnetic field direction Φ.

90◦-periodicity of linewidth and amplitude as a function of the magnetic field orientation
Φ. While the linewidth is minimal at Φ = 0◦, 90◦ and 180◦ and increases by approximately
25% around Φ = 45◦ and 135◦, the amplitude of the Lorentzian response function, U0,
shows the inverse behaviour.

To explain the observed Φ-dependence of the measured linewidth Γm, various contribu-
tions have been considered. However, we could not find a quantitative explanation of the
experimental findings yet. In the following, we briefly discuss two damping mechanisms
that might contribute to the observation of a Φ-dependent linewidth and compare them
to the experimental results.

First, as the magnetic thin film is electrically conducting, its motion in a static magnetic
field induces eddy currents due the Lorentz force. The orientation of these currents is
perpendicular to the magnetic field direction Φ. The high aspect ratio between width
and length of the magnetic ”nanowire” on top of the Si3N4 beam suggests an anisotropic
conductivity of the magnetic film, thus causing a Φ-dependent damping channel. This
contribution, however, would exhibit a 180◦-periodicity, similar to the geometry of the
sample. Therefore, it cannot be the dominating damping mechanism observed in our
experiment.

An alternative approach to explain the measured Φ-dependence of Γm is the assump-
tion of magnetoelastic damping. The basic idea is that the time-dependent strain in the
ferromagnet caused by the mechanical motion of the nanobeam leads to an oscillation
of the equilibrium orientation of the magnetization due to the inverse magnetostrictive
effect. This periodic re-alignment of the magnetization direction is subject to damping,
which contributes to the total damping of the Si3N4/FM nanoresonator. This mechanism
can reproduce the 90◦-periodicity of the damping as a function of Φ, as we will show
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in the following. Quantitatively, however, this damping contribution is several orders of
magnitude smaller than the observed effect.

Magnetoelastic damping model

We start with the free energy density of the ferromagnetic thin film (Eq. 5.7), which we
extend by a magnetoelastic contribution:3

Ftot(Φ, φ, εxx) = −µ0H0Ms cos(Φ− φ) + µ0M
2
s

2 Nyy sin2 φ+ b1Msεxx(t) cos2 φ .

Here, the magnetoelastic coupling constant is b1 = −3λsµ (with the magnetostriction con-
stant λs and the second Lamé constant µ) [99], and we assume a dominating xx-component
of the strain, caused by the elongation of the displaced nanobeam (see Sec. 4.1.7). Its time-
dependence is given by εxx(t) = ε0xx cos(Ωmt) and its amplitude is related to the maximum
displacement x0 and the length l of the nanobeam via

ε0xx = x2
0π

2

4l2 .

Here, we have used Eq. 4.23 and εxx = (l′− l)/l, where l′ (l) is the length of the displaced
(undisplaced) beam.

For a given external field orientation Φ0, the magnetization direction φ minimizes the
free energy density:

∂Ftot
∂φ

(Φ0, φ0, 0) = 0 . (5.8)

The dynamic strain εxx(t) leads to an oscillation of the magnetization direction φ around
φ0 according to φ(t) = φ0 + δφ cos(Ωmt), where δφ is given by

∂Ftot
∂φ

(Φ0, φ0 + δφ, ε0xx) = 0 . (5.9)

Note that, as the mechanical resonance frequency Ωm ∼ MHz is about three orders of
magnitude smaller than the ferromagnetic resonance (FMR) frequency (ωFMR ∼ GHz),
we assume the magnetization to follow the strain immediately, i. e. the magnetization is
always aligned so that it minimizes the free energy density Ftot.

From Eqs. 5.8 and 5.9, we can derive δφ as a function of ε0xx. To this end, we Taylor-
expand ∂Ftot/∂φ around φ = φ0 and εxx = 0. In case of a sufficiently high external
magnetic field µ0H0, we can assume φ0 ≈ Φ0 and µ0H0 � µ0MsNyy, 2b1ε0xx and obtain
the relation [103]

δφ = b1ε
0
xx sin(2Φ0)
µ0H0

. (5.10)

Thus, δφ shows a 180◦-periodic behaviour as a function of Φ0. The modulation of the
magnetization direction is typically small: For our Si3N4/Ni sample and a displacement
of x0 = 1 nm, we obtain δφmax ≡ δφ(Φ0 = 45◦) ∼ 1◦ × 10−5.

The oscillation of the magnetization direction can formally be treated as an effective
magnetic driving field, in analogy to the discussion in Ref. [104]. This allows determination
of the magnetoelastic damping contribution using a standard Gilbert damping approach.

3So far, we have neglected the magnetoelastic energy contribution as it is small compared to the Zeeman
and anisotropy energy.
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The total damping rate of the mechanical motion of the Si3N4/FM nanobeam resonator
can be written as [105]

Γm = Γm,el + Γm,mag

with the elastic damping rate Γm,el and the magnetoelastic damping contribution Γm,mag.
The latter can be defined as

Γm,mag = Pdiss,mag
U

,

where Pdiss,mag denotes the power dissipated by the continuous re-alignment of the mag-
netization and U the energy stored in the nanobeam motion.

Assuming that the elastic energy highly exceeds the magnetic energy, U is given by
(see Eq. 4.21)

U = 1
2meffΩ2

mx
2
0 ∼ 10−18 J .

The magnetoelastic power dissipation can be calculated similar to the ansatz given in
Ref. [104],

Pdiss,mag = µ0ΩmV

2 H2
0δφ

2Im(χxx(Ωm)) ,

with the volume of the magnetic layer V and the susceptibility tensor χ, whose relevant
component is given by Im(χxx(Ω)) = γµ0Msα(Ω/ωFMR) [105]. Here, γ and α denote the
gyromagnetic ratio and the Gilbert damping parameter, respectively. With Eq. 5.10, we
obtain

Pdiss,mag = αγVMsb
2
1(ε0xx)2

2

( Ωm
ωFMR

)2
sin2(2Φ0) . (5.11)

As sin2(2Φ0) = (1− cos(4Φ0))/2, the resulting magnetoelastic damping Γm,mag ∝ Pdiss,mag
reproduces the experimentally determined 90◦-dependence as a function of the external
field orientation Φ0.

Using typical parameters, we find the magnitude of the calculated energy dissipation to
be Pdiss,mag ∼ 10−25 W. The estimated magnetoelastic damping rate is therefore Γm,mag =
Pdiss,mag/U ∼ 2π×10−7 Hz, which is about ten orders of magnitude smaller than expected.
Experimentally, we find Γexp

m,mag ≡ Γm(Φ0 ≈ 45◦)− Γm(Φ0 ≈ 0◦) ≈ 2π × 60 Hz.
So far, we could not resolve this discrepancy. The theoretically predicted magnetoelas-

tic damping is small mainly due to the low mechanical resonance frequency Ωm � ωFMR,
which enters Eq. 5.11 as a square. Possibly there are low-frequency damping mechanisms
which are not covered by the presented Gilbert damping ansatz. On the experimental side,
further measurements are required to verify (and quantify) the observed magnetization-
dependent damping contribution. Here, cross-check experiments with metallic, non-
magnetic thin films could allow separating current-induced and magnetoelastic damping
contributions.

Sensitive detection of the magnetoelastic frequency shift using the phase

So far, we have extracted the resonance frequency shift of the nanobeam from amplitude
spectra measured at various magnetic field orientations. Here, the resonance frequency
uncertainty is given by approximately half the mechanical linewidth δΩres ≈ Γm/2 ≈
2π× 160 Hz. This is sufficient for the characterization of the presented 10 nm thick cobalt
and nickel films. For the investigation of ultrathin films or films with small magnetoelastic
coupling, however, the measurement sensitivity can be improved by using a phase-locked
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loop (PLL) measurement of the resonance frequency, utilizing the steep slope of the phase
of the response spectrum ϕ as a function of the drive frequency Ω/2π (see Chap. 2).

In the following, we briefly estimate the sensitivity of such a PLL measurement. To this
end, we measure the phase spectrum of the nanobeam resonance as a function of the mag-
netic field orientation Φ. Figure 5.11 shows two of the measured spectra, for Φ = 0◦ and
90◦.4 To determine the resonance frequency shift, we read off the frequency at the phase
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Figure 5.11: Phase ϕ of the mechanical response as a function of the drive frequency Ω/2π
for two different external magnetic field orientations Φ = 0◦ (red) and 90◦ (black). Around
ϕ0 = 1.99 (indicated by the dashed line), the slope of the measured phase spectra is maximal,
which allows to precisely detect resonance frequency shifts.

ϕ0 = 1.99, where the slope of the ϕ(Ω) curve is maximal. The resonance frequency mea-
surement uncertainty is then given by δΩ′res = (dϕ/dΩ)−1δϕ. Here, δϕ denotes the phase
measurement uncertainty. Using δϕ ≈ 0.02 rad and dϕ/d(Ω/2π) ≈ 6.8 × 10−3 rad/Hz,
extracted from Fig. 5.11, we calculate δΩ′res/2π ≈ 3 Hz. This is an improvement by a
factor 50 compared to δΩres. In the next section, we will use this to calculate the magne-
tostriction measurement sensitivity, regarding in particular the investigation of ultrathin
films.

5.4.3 Stress-to-frequency conversion and estimated measurement sensi-
tivity

In contrast to cantilever-based experiments, where magnetostriction causes a bending
of the mechanical element, the present approach uses a prestressed, doubly-clamped
nanobeam where the magnetoelastic stress modifies the total stress along the beam axis and
therefore changes the resonance frequency of the beam. This stress-to-frequency conver-
sion allows for an effective determination of the magnetostriction constants via a frequency
measurement which does not rely on a quantitative measurement of the beam displacement
(as it is the case for cantilever-based techniques). The high quality factor of prestressed
Si3N4 nanobeam resonators [44] therefore allows to precisely investigate magnetostriction
in thin films.

4As the response spectra are asymmetric, caused by superposition of a complex background, the mea-
sured phase spectra are somewhat deformed compared to the expected arctan-behaviour (see Eq. 2.5).
This, however, does not affect the sensitivity of the resonance frequency measurement because the maxi-
mum slope dϕ/d(Ω/2π), extracted from the experimental data, is very similar to the theoretical expectation
2/Γm (see Eq. 2.6).
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Although the presented method only allows to experimentally access one stress direc-
tion (i. e. the stress component along the beam direction), it can be particularly useful for
the investigation of very thin (or nanopatterned) magnetostrictive films with a high preci-
sion. The reason is that, as we will show in the following, the experimental uncertainty of
the calculated magnetostriction constants does not necessarily increase for decreasing film
thickness as it is the case for cantilever-based measurement techniques.

To illustrate this, we first calculate the stress-frequency gauge factor, i. e. the change of
the resonance frequency of the beam as a function of the stress variation. For Sample #4a,
this is

∆Ωres
σmag,x

= − Ωres,0tfilm
2σ0(tSiN + tfilm) = 2π × 0.57 Hz/kPa.

Assuming a frequency measurement precision of δΩres ≈ Γm/2 (with the linewidth of
the resonance Γm), this allows to resolve a stress variation of δσmag,x = 0.26 MPa. This
corresponds to an experimental uncertainty in the parallel magnetostriction constant of
δλ‖ = δσmag,x/E = 1.5 × 10−6. Using a phase-locked loop (PLL) to track the resonance
frequency of the beam, however, would increase the frequency resolution significantly,
allowing an uncertainty δλ‖ well below 10−6 as estimated in Sec. 5.4.2. This is comparable
to other methods [77, 89, 90, 92], even though the thickness of our magnetostrictive films
is only 10 nm. In particular, reducing the film thickness further does not necessarily
reduce the measurement precision. This is due to the fact that the quality factor of a
highly stressed Si3N4 beam covered with a thin film typically strongly depends on the film
thickness. For Si3N4/Au nanobeams, it has been shown recently that the inverse quality
factor is proportional to the film thickness for Au layers between 10 nm and 100 nm as
the damping in a highly prestressed silicon nitride film is much lower than in the Au film
[51]. Therefore, for very thin magnetostrictive films on a highly prestressed Si3N4 beam,
the resonance frequency measurement uncertainty is proportional to the film thickness,
δΩres ∝ tfilm. In first approximation, the uncertainty δλ‖ ∝ δσmag,x = 2δΩresσ0(tfilm +
tSiN)/(Ωres,0tfilm) is thus independent of the film thickness (assuming tfilm � tSiN). This
characteristic makes the proposed technique an ideal platform for the investigation of
magnetostriction in thin and ultrathin films.

5.5 Summary

In this chapter, we have proposed a method to quantitatively investigate magnetostric-
tion in thin films. To this end we used a Si3N4 nanomechanical resonator covered with
a thin magnetostrictive film. By measuring the resonance frequency of the fundamental
vibrational mode of the beam as a function of an external magnetic field, we could de-
duce the magnetoelastic stress along the beam direction and hence the magnetostriction
constants λ‖ and λ⊥. Compared to previously reported methods, the proposed technique
does not rely on a quantitative measurement of the mechanical displacement but utilizes
a resonance frequency shift caused by magnetostriction. Besides, it offers a measure-
ment precision which is independent of the film thickness. This enables the investigation
of ultrathin magnetostrictive films and paves the way to studying magnetostriction as a
function of the film thickness. The proposed technique can be applied to any conducting
or insulating material which can be deposited on a Si3N4 nanobeam via, e. g., electron
beam evaporation, thermal evaporation or sputtering. The material under investigation
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does not have to be etch-resistent as it is deposited on the nano-resonator as last step of
the sample fabrication process.



Chapter6
Circuit nano-electromechanics

In this chapter, we introduce the basic ideas and concepts of circuit nano-electromechanics.
Most of them have originally been developed for cavity optomechanical systems and later
been adapted for circuit electromechanics. In both fields, a mechanical degree of freedom is
coupled to a photon cavity; while in cavity optomechanics optical or near-infrared photons
are used, circuit electromechanical systems operate at frequencies in the GHz range.

For a comprehensive review of the field of cavity opto/electromechanics, please see
Refs. [19,106,107]. This chapter focuses on the concepts and relations that will be relevant
for the experimental chapters 7 and 8.

6.1 Fundamental concepts in cavity opto- and electrome-
chanics

δx

Γm

κex

κin

nc

lc

Figure 6.1: Schematic illustration of a cavity optomechanical system. One of the mirrors of a
Fabry-Pérot cavity is free to move, which results in a displacement-dependent cavity resonance
frequency. The curly arrows indicate the loss channels of the system: the internal and external
loss rate of the cavity, κin and κex, and the damping rate of the mechanical system Γm.

We start with the cavity optomechanical hybrid system depicted in Fig. 6.1. A Fabry-
Pérot cavity consisting of two parallel mirrors is coupled to an additional mechanical
degree of freedom by connecting one of the mirrors to a spring. The length of the cavity,
and thus its resonance frequency, depends on the displacement δx of this mechanical
element. For a cavity with length lc and resonance frequency ωc/2π, the frequency shift
is δωc = −ωc · δx/lc.
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Conversely, the photons in the cavity transfer momentum to the movable mirror, re-
sulting in a radiation pressure force acting on the mechanical resonator [19],

Frp = ~ωcn̄c
lc

,

where n̄c is the average number of photons in the cavity. Thus, there is a mutual coupling of
the optical and mechanical degree of freedom which can be used to read out or manipulate
the mechanics via the optical cavity and vice versa. The investigation of these interaction
effects has lead to the development of the field of cavity optomechanics [19,106,108].

The idea of cavity optomechanics can be transferred to the microwave domain by
coupling a microwave resonator to a mechanical degree of freedom. In this thesis, we
use a superconducting coplanar waveguide (CPW) resonator into which we integrate a
nanobeam mechanical resonator as demonstrated, e. g., in Refs. [18,54]. Massel et al. have
realized a similar system with a lumped element microwave resonator instead of a CPW
resonator [109]. Alternative approaches are based on a drum or membrane mechanical
resonator coupled to a lumped element microwave resonator [20] or a membrane inside
a three-dimensional microwave cavity [110]. Recently, a graphene membrane has been
employed as a mechanical resonator in a circuit electromechanical device, featuring a
particularly small mass and therefore high sensitivity to external perturbations [111]. All
these systems can be reduced to the schematic representation Fig. 6.1 and are therefore
covered by standard cavity opto/electromechanics theory.

In order to describe the electromechanical interaction in such systems quantitatively,
we start with the generic Hamiltonian [19,21]

Ĥ = ~ωc(x)
(
â†â+ 1

2

)
+ ~Ωm

(
b̂†b̂+ 1

2

)
+ Ĥd ,

where ωc/2π and Ωm/2π are the resonance frequencies of the microwave and the mechan-
ical resonator, respectively, â† and â (b̂† and b̂) are the photon (phonon) creation and
annihilation operators and Ĥd describes the microwave drive. The resonance frequency of
the microwave cavity1, ωc = ωc(x), depends on the displacement of the mechanical element
x, which is related to the ladder operators b̂ and b̂† via

x̂ = xzpm(b̂† + b̂) .

Here, we have defined the quantum mechanical zero-point motion of the nanomechanical
resonator [19]

xzpm = ~√
2meffΩm

. (6.1)

As the electromechanical coupling is typically weak, we can Taylor-expand ωc(x)
around the equilibrium position of the mechanical resonator, x = 0, and obtain

ωc(x) = ω0 + ∂ωc
∂x

x+ . . . . (6.2)

1Throughout this thesis, we use the term microwave cavity as a synonym for microwave resonator.
Even if, in its literal sense, a microwave cavity is a three-dimensional box resonator, we use this expression
here for consistency with most of the literature in the field of circuit electromechanics and for reasons of
clarity (as it avoids confusion between the microwave and the mechanical resonator).
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Defining the coupling parameter G = ∂ωc/∂x and substituting Eq. 6.2 into the Hamilto-
nian leads to

Ĥ = ~ω0

(
â†â+ 1

2

)
+ ~Ωm

(
b̂†b̂+ 1

2

)
+ ~Gxzpm â

†â
(
b̂† + b̂

)
+ Ĥd .

Similar to cavity optomechanics, we can define the radiation pressure force acting on
the mechanical element as

Frp = −∂H
∂x

= −~Gn̄c , (6.3)

where we have used the average photon number n̄c = 〈â†â〉. Analogously, the average
number of phonons in the mechanical resonator is given by n̄m = 〈b̂†b̂〉.

To analyze the backaction of the microwave photons on the motion of the mechanical
resonator caused by the radiation pressure force Eq. 6.3, we introduce the mechanical
susceptibility χ. It is defined by χ(Ω) := δx(Ω)/δF (Ω) and describes the displacement
response of the nanobeam, δx, to an external force δF .

For an undisturbed harmonic oscillator, χ is given by (cf. Chap. 2, Eq. 2.2)

χ(Ω)−1 = meff
(
−Ω2 + Ω2

m − iΓmΩ
)
,

where meff , Ωm/2π and Γm/2π denote the effective mass, the resonance frequency and the
linewidth of the mechanical resonator. To account for the radiation pressure force Eq. 6.3,
the susceptibility has to be modified according to

χ(Ω)−1 = meff

(
−Ω2 +

(
Ω2

m + kba(Ω)
meff

)
− iΩ (Γm + Γba(Ω))

)
.

Here, kba and Γba describe backaction-induced modifications of spring constant and damp-
ing rate of the mechanical resonator [19,21], given by

kba = ~G2n̄c

( ∆ + Ω
(∆ + Ω)2 + (κ/2)2 + ∆− Ω

(∆− Ω)2 + (κ/2)2

)
and

Γba = ~G2n̄c
meffΩ

(
κ/2

(∆ + Ω)2 + (κ/2)2 −
κ/2

(∆− Ω)2 + (κ/2)2

)
.

Thus, the mechanical element can still be described as a damped harmonic oscillator with
an effective angular resonance frequency Ωeff and an effective damping rate Γeff . For
frequencies close to the mechanical eigenfrequency, Ω ≈ Ωm, and weak backaction – which
is the case for typical cavity opto/electromechanical systems – we obtain

Ωeff ≈ Ωm + g2
0n̄c

( ∆ + Ωm
(∆ + Ωm)2 + (κ/2)2 + ∆− Ωm

(∆− Ωm)2 + (κ/2)2

)
and (6.4)

Γeff ≈ Γm + 2g2
0n̄c

(
κ/2

(∆ + Ωm)2 + (κ/2)2 −
κ/2

(∆− Ωm)2 + (κ/2)2

)
. (6.5)

Here, we assume a coherent microwave drive at the frequency ωd/2π and define ∆ =
ωd−ωc as the detuning of the drive tone with respect to the cavity resonance frequency2.
Additionally, we have introduced the electromechanical vacuum coupling rate g0 = Gxzpm,

2Strictly speaking, the resonance frequency of the microwave cavity is shifted by the presence of the
nanobeam resonator: ωc = ω̃c + Gx̄. Here, ω̃c is the (undisturbed) resonance frequency of the bare
microwave cavity and x̄ is the static displacement of the nanobeam. The frequency shift ωc− ω̃c, however,
is small in typical circuit electromechanical systems and will therefore be neglected in the following.
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which serves as a figure of merit for cavity opto/electromechanical systems as we will show
later.

In the following, we briefly discuss the physical origin of Eqs. 6.4 and 6.5 and their
implications on experiments with circuit electromechanical systems. Following [21,35], we
distinguish between three qualitatively different cases, depending on the detuning ∆.

Undetuned drive (∆ = 0): In this case, the backaction on the mechanics vanishes, lead-
ing to an undisturbed resonance frequency and damping, Γeff = Γm and Ωeff = Ωm.
This result can be understood as follows:

Due to the interaction between microwave and mechanical resonator, microwave drive
photons can undergo scattering events in which a phonon is created or annihilated.
In case of phonon generation, the energy of the scattered photon is reduced by ~Ωm
(Stokes process), whereas in case of phonon annihilation, the energy of the scattered
photon is increased by ~Ωm (anti-Stokes process).

This is similar to inelastic light scattering (Raman scattering), where incoming pho-
tons are scattered with phonons in a solid. When measuring the transmission spec-
trum of the microwave resonator, Stokes and anti-Stokes processes lead to the gen-
eration of sidebands, shifted by ±Ωm relative to the microwave cavity resonance
frequency (see Fig. 6.2).

Ωm

ω
ωd = ωc

κ
Ωm

drive

anti-
StokesStokes

Figure 6.2: Schematic of Stokes and anti-Stokes sidebands for an undetuned drive (∆ = 0,
i. e. ωd = ωc). The density of states, defined by the microwave cavity, is equal for Stokes and
anti-Stokes peak, thus the net phonon number is unchanged3. This configuration allows for a
quantum non-demolition measurement of the state of mechanical motion.

If the drive tone is centered at the cavity resonance, the density of states, defined
by the microwave cavity, is equal for Stokes and anti-Stokes peaks, so that the
rates of Stokes and anti-Stokes processes are equal3. The number of phonons in the
mechanical resonator is therefore not changed by the electromechanical interaction.

This configuration can be used for a quantum non-demolition measurement of the
mechanical excitation state and for the determination of the electromechanical cou-
pling g0, as we will show in Sec. 6.3.

Red-detuned drive (∆ < 0): According to Eq. 6.5, a red-detuned drive tone induces a
linewidth broadening of the mechanical resonance, which is maximal at ∆ = −Ωm
(optimum red-detuning). This additional damping channel results from the imbalance

3More precisely, the ratio of the rates of anti-Stokes and Stokes processes for an undetuned microwave
drive is given by the Boltzmann factor exp(−~Ωm/kBT ), which is close to one for typical parameters
Ωm/2π ' 1 . . . 10 MHz and T ' 50 mK [85].
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of the rates of Stokes and anti-Stokes processes, as Fig. 6.3 illustrates: For a red-
detuned drive, the density of states in the microwave cavity is larger at ωd + Ωm
than at ωd − Ωm, favoring anti-Stokes processes rather than Stokes processes. In
particular, for an ideally red-detuned drive (∆ = −Ωm), the frequency of the anti-
Stokes photons matches the cavity resonance frequency (where the density of states
is maximal), while the Stokes process is strongly suppressed. Hence, the rate of
anti-Stokes scattering events dominates, resulting in a net annihilation of phonons.
This can be viewed as an additional loss channel of the mechanical system leading
to an effective linewidth broadening.

Ωm

ω
ωd

κ
Ωm

drive anti-
Stokes

Stokes

ωc  nc, nm-1〉

 nc+1, nm-1〉
 nc+1, nm〉

 nc, nm〉

 nc+1, nm+1〉

 nc, nm+1〉

ħΩmħωc

b.a.

Figure 6.3: a. Schematic of Stokes and anti-Stokes sidebands for an ideally red-detuned drive
(∆ = −Ωm, i. e. ωd = ωc − Ωm). The anti-Stokes process dominates, as the density of
states, defined by the microwave cavity, is maximal at ωd + Ωm. The Stokes peak is strongly
suppressed, as Ωm � κ (resolved sideband regime). b. Energy level scheme, illustrating the
dominating anti-Stokes process. Drive photons with energy ~ωd (depicted by the blue arrow)
are converted to cavity photons (~ωc) by annihilation of phonons (~Ωm). This configuration
thus allows cooling of the mechanical subsystem.

A red-detuned microwave drive can be employed to transfer excitations from the me-
chanical to the microwave resonator and in this way cool the mechanical resonator.
The ability to depopulate the mechanical resonator via electromechanical interac-
tions is one of the key features in cavity opto/electromechanics and a prerequisite
for experiments in the quantum regime. We will give a quantitative description of
sideband cooling in Sec. 6.4.

Blue-detuned drive (∆ > 0): For a blue-detuned drive, the effective damping rate Γeff
is reduced due to phonon creation in the dominating Stokes process (see Fig. 6.4).
For sufficiently large g2

0n̄c, the effective damping rate Γeff can even vanish, resulting
in a self-oscillation of the mechanical resonator. In this regime, where the intrinsic
mechanical damping is overcompensated by the electromechanically induced phonon
generation rate, phonon lasing has been demonstrated [21,112,113].

Within the scope of this thesis, we will focus on circuit electromechanical experiments
with an undetuned or ideally red-detuned drive. In particular, we use the quantum non-
demolition measurement configuration to characterize the mechanical resonator via its
interaction with the microwave resonator, calibrate the readout circuit and determine
the electromechanical coupling rate. Using an ideally red-detuned drive, we demonstrate
sideband cooling and electromechanically induced transparency, an interference effect that
will be discussed in Sec. 6.5.
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Figure 6.4: a. Schematic of Stokes and anti-Stokes sidebands for an ideally blue-detuned drive
(∆ = Ωm, i. e. ωd = ωc + Ωm). The Stokes process dominates, as the density of states, defined
by the microwave cavity, is maximal at ωd−Ωm. The anti-Stokes peak is strongly suppressed,
as Ωm � κ (resolved sideband regime). b. Energy level scheme, illustrating the dominating
Stokes process. Drive photons with energy ~ωd (depicted by the blue arrow) are converted
to cavity photons (~ωc) by generation of phonons (~Ωm). This configuration thus allows to
amplify the mechanical motion.

Before we give a more detailed quantitative description of these techniques and experi-
ments, we introduce our approach to realize circuit electromechanics with superconducting
coplanar waveguide resonators and present some basic relations regarding microwave res-
onators which are necessary to model the circuit electromechanical hybrid system.

6.2 Circuit nano-electromechanics with superconducting
CPW resonators

In this thesis, we investigate circuit nano-electromechanical systems consisting of a super-
conducting coplanar waveguide resonator with an integrated tensile stressed nanomechan-
ical beam. This approach allows the combination of the high quality factors of both the
microwave circuit and the mechanical resonator. The mechanical resonance frequencies
are in the low MHz regime. We design the mechanical resonance frequencies to exceed
the total loss rate of the microwave resonator, so that our circuit electromechanical de-
vices operate in the resolved sideband regime, enabling e. g. efficient sideband cooling or
electromechanically induced transparency.

6.2.1 Microwave resonators

We employ a coplanar waveguide (CPW) microwave resonator fabricated from a supercon-
ducting aluminium or niobium thin film deposited on a highly resistive silicon substrate.
We use λ/2 or λ/4 resonators (length lc) that are capacitively coupled to an input/output
or transmission line, as depicted in Fig. 6.5. In an equivalent circuit picture, a CPW
resonator can be seen as an LC circuit (see Fig. 1b) with impedance Z0 =

√
Ll/Cl, where

Ll and Cl denote the inductance and capacitance per length of the resonator line [114].

λ/2 resonator, measured in transmission: The resonance frequency of a λ/2 CPW
resonator is given by

ωc = 1√
LnC

(6.6)

with the effective capacitance C = Cllc/2, the effective inductance Ln = 2Lllc/(n2π2)
and the mode index n [114].
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Figure 6.5: Design and equivalent circuit of superconducting coplanar waveguide resonators.
a. λ/2 resonator coupled to an input and an output microwave line. b. λ/4 resonator coupled
to a transmission line. The impedance of the input, output and transmission lines is 50 Ω.

To experimentally investigate a λ/2 resonator capacitively coupled to a microwave
circuit as sketched in Fig. 6.5a, we apply a microwave tone to the input line and mea-
sure the power transmission through the sample, which is defined as T := |sout/sin|2.
Here, sin and sout denote the (complex) voltage amplitude of the incoming and out-
going microwave signal, respectively.

In this configuration, the power transmission spectrum of the microwave circuit is
given by the Lorentzian [115,116]

T (ω) = κexκ/4
(ω − ωc)2 + (κ/2)2 , (6.7)

which is maximal at the resonance frequency ωc/2π and vanishes for |ω − ωc| � κ.
Here, we have defined the external damping rate κex which describes the loss of
microwave photons due to the coupling to the input and output line [114]:

κex = 2ω2
cRL

C2
c
C

(6.8)
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with the coupling capacitance4 Cc and the load RL = 50 Ω. The internal damping
rate caused by two-level state losses, quasiparticle losses and eddy current losses
(cf. Ref. [117]) can be written as [114]

κin = αlc
Z0C

,

where α is the damping constant per length. The total damping rate, which equals
the full width at half maximum (FWHM) of the measured transmission peak, is then
κ = κin + κex.

λ/4 resonator, measured in absorption: The resonance frequency of a λ/4 resonator
can, similar to the previous case, be written as

ωc = 1√
LnC

(6.9)

by defining the effective capacitance and inductance as C = Cllc/2 and Ln =
8Lllc/(n2π2).
In the experiment presented in Chap. 8, we capacitively couple a λ/4 resonator to a
microwave transmission line, as shown in Fig. 6.5b. For this configuration, the power
transmission follows [21,116]

T (ω) = 1− (κ/2)2 − (κin/2)2

(ω − ωc)2 + (κ/2)2 . (6.10)

In resonance (ω = ωc), we obtain

T (ωc) =
(
κin
κ

)2
. (6.11)

This allows extraction of the internal and external damping rate from linewidth and
insertion loss of a measured transmission spectrum.

Under experimental conditions, the transmission spectrum of microwave resonators
often shows significant deviations from the ideal Lorentzian lineshape. These devia-
tions can be attributed to impedance mismatches and discontinuities in the microwave
lines [118–120]. We therefore fit a modified Lorentzian to the experimental data, which
phenomenologically covers these effects by introducing a constant complex background.
Please see App. B for details.

The average number of microwave photons in the cavity n̄c is related to the drive power
by [21]

n̄c = Pd
~ωd

κex/2
(κ/2)2 + ∆2 , (6.12)

where ωd denotes the angular frequency of the drive, ∆ = ωd − ωc its detuning from the
cavity resonance and Pd the drive power at the sample input. The latter is related to the
output power of the microwave source, Psource, by

Pd = Att · Psource , (6.13)

where Att is the signal attenuation along the microwave input line between microwave
source and sample.

4We assume symmetric coupling to the input and output line, i. e. two equal coupling capacitors with
capacitance Cc each.
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6.2.2 Capacitive coupling

L C0 Cg(x)

Figure 6.6: Equivalent circuit diagram of a microwave resonator with an embedded mechanical
degree of freedom, forming a circuit electromechanical hybrid system.

In order to implement an electromechanical coupling, we integrate a nanomechanical
beam resonator into a CPW microwave resonator so that the capacitance of the microwave
resonator depends on the displacement of the nanobeam, as sketched in Fig. 6.6:

C(x) = C0 + Cg(x) ,

where C0 and Cg(x) are the static and dynamic part of the capacitance, respectively, and
x denotes the displacement of the nanobeam. In Chaps. 7 and 8, we will present two
different approaches to experimentally realize such a capacitive coupling.

In this section, we focus on the relation between Cg(x) and the coupling parameter G.
Later this will be useful to estimate the electromechanical coupling a priori and verify the
experimentally determined coupling rates.

Assuming Cg � C0, we can expand Eq. 6.6 (or 6.9) to first order in Cg/C0 and obtain
for the disturbed resonance frequency of the microwave resonator

ωc(x) = ω0

(
1− Cg(x)

2C0

)
,

where we have defined ω0 = 1/
√
LnC0.

The electromechanical coupling parameter G = ∂ωc/∂x is therefore given by

G = − ω0
2C0

∂Cg(x)
∂x

. (6.14)

In order to identify C0 in Eq. 6.14, we use the expressions for Z0, C and Ln, given in
Sec. 6.2.1, and obtain for a λ/2 resonator

G = −Z0ω
2
0

nπ

∂Cg(x)
∂x

. (6.15)

Analogously, we calculate for a λ/4 resonator

G = −2Z0ω
2
0

nπ

∂Cg(x)
∂x

. (6.16)

The derivative ∂Cg(x)/∂x depends on the geometry of the sample and has to be calcu-
lated numerically using finite element modeling. We will demonstrate this below for both
circuit electromechanical hybrid samples presented in Chap. 7 and 8.

For typical sample geometries, the finite element model yields ∂Cg(x)/∂x ≈ 0.02 . . .
20 aF/nm. Using Z0 = 50 Ω and ωc/2π ' 6 GHz therefore results in a typical coupling
strength of G ' 0.1 . . . 100 kHz/nm.
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6.3 Detection of mechanical motion, frequency noise cali-
bration and determination of the coupling rate

As described in Sec. 6.1, an undetuned microwave drive can be used to read out the excita-
tion state of the mechanical resonator via the microwave resonator without backaction on
the mechanics. This also allows calibrating the microwave readout circuit and determining
the electromechanical coupling g0, as we will show in the following.

If the mechanical resonator is in equilibrium with its environment at temperature T ,
the average number of thermally excited phonons is [19]

n̄m = kBT

~Ωm
(6.17)

and its thermal motion spectrum is given by Eq. 2.10, which we reproduce here to facilitate
reading:

Sxx(Ω) = kBT

2Ω2
mmeff

Γm
(Ω− Ωm)2 + (Γm/2)2 . (6.18)

Due to the electromechanical coupling, a beam displacement δx induces a frequency
shift δωc = Gδx of the microwave resonator. The mechanical motion spectrum Sxx there-
fore translates into a frequency fluctuation spectrum Sωω = G2Sxx of the microwave cavity.
In a homodyne detection scheme, these frequency fluctuations lead to the generation of
sidebands at ωd ±Ωm. The measured power spectrum of these sidebands is related to the
frequency fluctuation spectrum via SPP = (2K(Ω)/Ω2)Sωω, where the transfer function
K(Ω) covers the effects of signal attenuation and amplification in the microwave output
line of the cryostat and the down-conversion of the microwave photons for homodyne detec-
tion.5 The factor 2 takes into account that we measure single-sided power spectra [21,35].

Technically, K(Ω) can be calculated from the microwave input power, the mixer down-
conversion characteristics and the internal and external damping rate of the microwave
cavity [21]. This, however, requires precise knowledge of the microwave attenuation and
amplification along the signal path, which is usually not available. Instead, we use fre-
quency noise calibration to determine K(Ω) experimentally [35]. To this end, we apply a
known frequency modulation to the cavity drive tone, leading to an additional modulation
sideband peak in the measured homodyne transmission spectrum. For a monochromatic
frequency modulation Sωω = (1/2)Ω2

dev(δ(Ω−Ωmod) + δ(Ω + Ωmod)), the measured power
spectrum is [35]

Smod
PP = Ω2

dev
2Ω2

mod
· K(Ωmod)

ENBW , (6.19)

where ENBW denotes the detection bandwidth of the spectrum analyzer, Ωmod/2π the
modulation frequency and Ωdev/2π the modulation depth (i. e. the maximum frequency
deviation). When choosing Ωmod ≈ Ωm, Eq. 6.19 allows determining K(Ωm) ≈ K(Ωmod)
from the measured calibration peak height Smod

PP .
Having calculated K(Ωm), the measured sideband height of thermal motion of the

nanobeam can be used to determine the coupling rate g0. To this end, we substitute
Eqs. 6.1 and 6.17 into Eq. 6.18 and get

Sxx(Ωm) =
8n̄mx

2
zpm

Γm
.

5Please note that K(Ω) depends on the microwave drive power, K(Ω) ∝ Pd.
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With SPP(Ω) = (2G2K(Ω)/Ω2)Sxx(Ω) and g0 = Gxzpm, we obtain the relation between
the sideband power and the electromechanical vacuum coupling rate

1
2SPP(Ωm)Γm = 4g2

0
K(Ωm)n̄m

Ω2
m

. (6.20)

This equation allows determination of g0 from the measured power spectral density
SPP(Ωm) of the sidebands of thermal motion. To calculate g0 directly from the sideband
height of thermal motion and the calibration peak, we substitute Eq. 6.19 into Eq. 6.20
and solve for g0:

g2
0 = Ω2

devΓm
16n̄mENBW

SPP(Ωm)
Smod

PP
. (6.21)

6.4 Sideband cooling of mechanical motion

As mentioned above, an optimally red-detuned drive tone can be utilized to annihilate
phonons from the mechanical resonator and thus reduce its motion. To analyze sideband
cooling quantitatively, we define the effective mode temperature Teff of the nanobeam
by [21]

Teff = ~Ωmn̄m
kB

in analogy to Eq. 6.17.
In case of an ideally red-detuned drive, the dominating anti-Stokes process annihilates

phonons from the mechanical system, resulting in a reduced steady-state phonon number.
Due to a finite coupling to the environment, the mechanical system is repopulated with
thermal phonons, limiting the minimum attainable phonon number.

The steady-state phonon number n̄m for a system driven on the red sideband depends
on the rates of Stokes and anti-Stokes processes as well as on the damping rate of the
mechanical resonator and the ambient temperature. In the limit of small coupling g0 � κ,
which is fulfilled for typical circuit electromechanical systems, and a significant cooling
rate (this is the case for Γeff � Γm), n̄m is given by [21,121]

n̄m ≈
Γm
Γeff

kBT

~Ωm
+ A+

A−
, (6.22)

where we have defined the rates of Stokes and anti-Stokes processes, A+ and A−, by

A± = g2
0n̄cκ

(∆∓ Ω)2 + (κ/2)2 .

Note that A+ and A− are related to the effective damping rate Γeff by Γeff(Ωm) = Γm +
A−−A+ (cf. Eq. 6.5). In the resolved sideband regime (Ωm � κ), we have A− � A+ and
therefore

Γeff ≈ Γm + 4g2
0n̄c
κ

= Γm(1 + C) , (6.23)

where we have introduced the electromechanical cooperativity

C = 4g2
0n̄c

Γmκ
= 4g2

Γmκ
. (6.24)
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The right-hand side of Eq. 6.23 reveals that the coupling to the (comparatively lossy)
microwave cavity opens an additional damping channel for the mechanics, resulting in a
linewidth broadening and phonon depopulation via the microwave cavity.

In the resolved sideband regime (Ωm � κ), the minimum attainable phonon number
is, according to Eq. 6.22, given by

n̄min
m ≈ κ2

16Ω2
m
� 1 . (6.25)

Thus, cavity electromechanical systems operating in the resolved sideband regime can
in principle be cooled to the ground state using the electromechanical interaction and a
red-detuned microwave drive, independent of ambient temperature and coupling strength.
In practice, however, Johnson noise and sideband noise of the microwave drive tone coun-
teract the cooling mechanism. Therefore a low environment temperature together with
a sufficiently high electromechanical coupling is necessary to cool a MHz mechanical res-
onator to its ground state [21,121,122].

6.5 Electromechanically induced transparency

Investigating a cavity opto/electromechanical system with two-tone spectroscopy allows
the observation of electromechanically induced transparency or absorption (EMIT/EMIA),
two effects based on the interference of electromechanically generated anti-Stokes/Stokes
photons with an additional microwave probe tone.

In case of an ideally red-detuned drive tone (∆ ' −Ωm), e. g., the interaction between
microwave drive photons and phonons leads to the generation of anti-Stokes photons at
ωd + Ωm ' ωc, as discussed in the previous section. When applying an additional weak
coherent microwave tone to probe the cavity transmission around ωc (see Fig. 6.7), the
anti-Stokes photons interfere destructively with the probe photons, which manifests as an
effective transparency of the microwave circuit for probe photons at ωd +Ωm. The width of
the transmission window is determined by the effective mechanical damping rate, given by
Eq. 6.5. The electromechanical hybrid system therefore acts as a tunable and extremely
narrow bandpass filter for microwave photons.

In case of a blue-detuned drive tone, the Stokes process dominates and the Stokes
photons interfere constructively with the probe tone at ωp ' ωd − Ωm. This results in an
additional absorption of the probe tone at ωd − Ωm, as demonstrated e. g. in [112].

A detailed quantitative description of EMIT and EMIA, based on the full Hamiltonian
of the coupled circuit electromechanical system, is given in [21]. Here, we only review the
final result, relating the power transmission T of the probe tone to the probe frequency
ωp = ωd + Ω and the drive detuning ∆ = ωd − ωc. For a λ/4 resonator, capacitively
coupled to a transmission line (as discussed in Sec. 6.2.1), we obtain

T =

∣∣∣∣∣∣1− κex/2
−i(∆ + Ω) + κ/2 + g2

0 n̄c
−i(Ω−Ωm)+Γm/2

∣∣∣∣∣∣
2

.

In case of an ideally red-detuned drive tone (∆ = −Ωm), the transmission at cavity
resonance ωp = ωc simplifies to

T0 =
∣∣∣∣1− κex/κ+ C

1 + C

∣∣∣∣2 , (6.26)
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Figure 6.7: Two-tone spectroscopy with an ideally red-detuned drive (EMIT configuration). a.
A strong drive tone (at ωd = ωc − Ωm) generates anti-Stokes photons at ωc which interfere
destructively with a weak probe tone applied around the cavity resonance frequency, ωp ≈
ωc. This leads to a transmission window around ωc, whose width is given by the effective
mechanical damping rate Γeff . b. Energy level scheme, illustrating the dominating anti-Stokes
process. Drive photons (blue arrow) with energy ~ωd are converted into cavity photons (~ωc)
by annihilation of phonons (~Ωm). The scattered photons interfere destructively with the
weak probe tone (green arrow).

where we have used the cooperativity C as defined in Eq. 6.24.
In Chap. 8, we will demonstrate EMIT in a sample consisting of an aluminium CPW

microwave resonator coupled to an aluminium nanomechanical beam.
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Chapter7
Circuit nano-electromechanics with a
non-metallized nanobeam

In typical circuit nano-electromechanical devices, a metallized mechanical resonator is
capacitively coupled to a superconducting microwave resonator [18,20,54]. In such devices
the mechanical motion modulates the capacitance of the microwave resonator, allowing
efficient coupling of both subsystems. This scheme enables, e. g., sensitive measurement of
mechanical motion [18], ground state cooling [20] or the control of microwave signals [54].

To realize even higher coupling strengths, piezoelectric sandwich-like resonators have
been integrated into superconducting microwave circuits. This open the path for state
transfer experiments between a superconducting qubit and a mechanical resonator via a
microwave resonator used as a bus for quantum information [22]. These mechanical res-
onators, however, suffer from relatively small quality factors prohibiting resolved sideband
experiments.

In this chapter, we present an alternative approach towards circuit nano-electrome-
chanics based on a pure, i. e. non-metallized, nanobeam that is coupled to a superconduct-
ing microwave resonator via dielectric forces. Even if the expected coupling is compara-
tively small, this approach is promising for the realization of high quality factors of both
the mechanical and the microwave resonator as it avoids any additional dissipation due
to metallization of the mechanical resonator [51, 123–125]. We here extend previous work
at the chair of Prof. J. Kotthaus, where the dielectric coupling of non-metallized Si3N4
nanoresonators has been established as an alternative transduction and control scheme
for high-Q nano-electromechanical systems [126, 127]. While for the temperature range
between 10 and 300 K, conventional copper microstrip cavities have been employed for
the read-out of mechanical motion [46], we here use a superconducting CPW resonator,
providing a more sensitive read-out due to its higher quality factor.

First, we present the sample layout and the fabrication steps of this dielectrically
coupled circuit nanoelectromechanical hybrid device. Next we calculate the electric field
distribution in the coupling area which allows to a priori estimate the expected electrome-
chanical coupling. Having introduced the experimental setup, we characterize the device
and calibrate the readout circuit via frequency noise calibration. We determine the elec-
tromechanical coupling rate by utilizing the nonlinear Duffing response of the nanobeam.

73
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Regarding the potential use of this platform as a sensing device, we estimate the mass
sensitivity of this hybrid system.

The main results presented in this chapter have been published in [128].

7.1 Sample layout and fabrication

The dielectrically coupled nano-electromechanical device (Sample #5 ) consists of four su-
perconducting λ/2 CPW microwave resonators which are capacitively coupled to an input
and an output microwave line. One of these resonators is dielectrically coupled to a doubly-
clamped, highly tensile-stressed Si3N4 nanobeam, as shown in Fig. 7.1a-c. The nanobeam
is located between the CPW center line and ground plane with a gap of s = 150 nm be-
tween beam and electrodes. The capacitance between these electrodes depends on the
displacement of the nanobeam. The microwave resonator can therefore be modeled as an
LC equivalent circuit [Fig. 7.1d], where part of the capacitance depends on an additional
mechanical degree of freedom (the displacement of the nanobeam).

µw resonator

a.

50  µm

b.

2 µm

center line
Nb

ground
plane

Si

Si3N4

c.

Nb

d.

in out

C0

Cg
δxL

sin

sout

1mm

Figure 7.1: a-b. Optical micrograph, c. false color scanning electron micrograph and d. equiva-
lent circuit diagram of the Si3N4/Nb circuit nano-electromechanical hybrid sample (Sam-
ple #5 ).

The sample is fabricated on a single-crystalline silicon wafer coated with 400 nm of
thermal oxide (SiO2) and 100 nm of highly tensile-stressed LPCVD (low pressure chemical
vapor deposition) silicon nitride (Si3N4) [Fig. 7.2(i)]. First, a l = 20 µm long and w =
170 nm wide nanobeam as well as supporting clamping rectangles are defined using e-
beam lithography (ii) and covered with aluminium (iii) serving as an etch mask. Next,
the unprotected silicon nitride and approximately 100 nm of SiO2 are removed by an
anisotropic SF6 reactive ion etching (RIE) step (iv). In this way, we align the lower
surface of the beam (i. e. the SiO2-Si3N4 interface) approximately with the upper surface
of the niobium film deposited later on. With a second e-beam lithography step (v) followed
by aluminium sputtering and lift-off (vi), we define a small rectangularly-shaped protective
cover for the Si3N4 beam and its vicinity. Then, a 100 nm thick niobium film is deposited
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Figure 7.2: Schematic of the fabrication process of Sample #5. For details, please refer to the
main text.

by magnetron sputtering (vii). Subsequently, the microwave resonator and its input and
output line are patterned by a third e-beam lithography (viii) and a second RIE step (ix).
The resist and the aluminium coating are removed with acetone, potassium hydroxide and
Piranha, i. e. a mixture of hydrogen peroxide and sulphuric acid (x). Finally, we release
the silicon nitride beam using buffered hydrofluoric acid (xi).

7.2 Modeling of the dielectric electromechanical coupling

7.2.1 Electric field distribution and electromechanical coupling

To understand the electromechanical coupling mechanism and to estimate the coupling rate
a priori, we use a COMSOL 2D model representing the cross-section of the sample at the
position of the nanobeam, as depicted in Fig. 7.3a (cf. Ref. [126]). We calculate the electric
field distribution, using the geometry parameters of the sample as given above and the
dielectric constants of silicon, silicon oxide and silicon nitride, εSi = 11.7 [129], εSiO = 3.9
[130] and εSiN = 7.5 [130]. The niobium is assumed to be a perfect conductor, while silicon,
silicon oxide and silicon nitride are modeled as perfect insulators. We further assume a
static potential difference between ground plane (Φ = 0) and center line (Φ = Φ0 > 0) of
the microwave resonator.
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Figure 7.3: a. Two-dimensional static COMSOL model to simulate the electromechanical cou-
pling. The black arrows indicate the electric field strength and direction, resulting from an
electrostatic potential difference Φ0 between the niobium electrodes. The light green arrow il-
lustrates the dynamic displacement of the nanobeam (not to scale). b. Calculated capacitance
change, ∆Cg(x0) := Cg(x0)− Cg(0), as a function of the beam displacement x0.

In Fig. 7.3, the calculated electric field distribution is plotted. As expected, the pres-
ence of the Si3N4 nanobeam modifies the electric field between the center line and the
ground plane of the microwave resonator due to its high dielectric constant. From the
field distribution, we determine the capacitance per length, cg, between the Nb electrodes.
Using the effective length leff = 0.613l of the nanobeam, which accounts for the shape of
the displaced beam (see App. C), we obtain Cg = leffcg = 1.37 fF for the capacitance in
the surrounding of the nanobeam. In Fig. 7.3b, the change of this capacitance, ∆Cg, for
a small (static) out-of-plane beam displacement x0 is plotted. This allows to numerically
determine ∂Cg/∂x0 = 29.2 zF/nm.

With this, we can estimate the electromechanical coupling, as derived in Sec. 6.2.2.
Using Eq. 6.15, the designed impedance Z0 = 70 Ω of the microwave resonator and the
measured resonance frequency ωc/2π = 5.67 GHz, we estimate the coupling G/2π =
132 Hz/nm.

With an effective mass meff = 0.43 pg and the mechanical resonance frequency
Ωm/2π = 13.952 MHz (see below), we calculate the zero-point motion of the nanobeam,
xzpm = 37 fm, and thus obtain the electromechanical vacuum coupling g0/2π = 4.8 mHz.

7.2.2 Impact of geometry

For sensing applications, a high electromechanical coupling is beneficial because is enables
a fast and precise readout of the nanobeam motion via the microwave resonator. In the
following, we therefore briefly discuss how the coupling depends on the beam dimensions
and on the gap size between the niobium electrodes and the beam.

According to Eq. 6.15, the coupling G is proportional to the variation of the capacitance
with the beam displacement, ∂Cg/∂x. Fig. 7.4 shows the calculated ∂Cg/∂x as a function
of the beam thickness t, the beam width w and the gap size s. For each of these three
figures, we have varied one of the parameters t, w and s, while fixing the other two
parameters to the values given in Sec. 7.1.

As expected, ∂Cg/∂x increases with the thickness of the nanobeam, as a larger t implies
a larger volume of the dielectric in an otherwise unchanged capacitor (see Fig. 7.4a). The
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Figure 7.4: Change of the capacitance with beam displacement, ∂Cg/∂x, as a function of (a)
the beam thickness, (b) the beam width and (c) the gap size. The dashed lines indicate the
thickness (width, gap size) of Sample #5.

effect, however, saturates at large t because the electric field vanishes far away from the
Nb electrodes.

Varying the width of the nanobeam instead of the thickness, as plotted in Fig. 7.4b,
shows that there is an optimum width around 240 nm. The reason is that for small w,
the volume of the dielectric beam is small and so its effect on the capacitance. For large
w, however, the capacitance between the Nb electrodes shrinks as their distance is given
by w + 2s (here, we have fixed s to 150 nm). The actual nanobeam width realized in our
experiment is close to the optimum value.

The most effective way of increasing the electromechanical coupling is to decrease
the gap size, as Fig. 7.4c illustrates. The fabrication of such a system with a gap size
below 100 nm, however, is challenging, as all the fabrication steps shown above have to be
carefully adjusted and aligned with respect to each other.

An alternative approach to increase the electromechanical coupling is to increase the
impedance Z0 =

√
Ll/Cl of the microwave resonator, as G ∝ Z0. This can be achieved by

replacing the CPW resonator by a lumped element resonator (see, e. g., Refs. [20, 109]).

7.3 Experimental setup

To experimentally characterize Sample #5, we employ the homodyne measurement setup
depicted in Fig. 7.5. The chip, placed inside a gold-plated copper box, is mounted at the
mixing chamber stage of a home-made wet dilution refrigerator (”Kermit”, Cryostat #1 )
and connected to an input and an output microwave line. The microwave resonator is
driven by a microwave source (Agilent E8267D) at its resonance frequency ωc/2π with
an estimated microwave power of 2.5 nW (−56 dBm) at the device input. The output
microwave signal is amplified with a cryogenic low-noise HEMT (high-electron-mobility
transistor) amplifier (Low Noise Factory, LNC 4 8A) and a room temperature broadband
low-noise amplifier (LNA, Kuhne BB 202 A). The sample is mounted on a piezoelectric
actuator (manufacturer: PI Ceramic) driven by the output of a vector network analyzer
(VNA, Rohde&Schwarz ZVA 8 ). This allows us to excite the fundamental flexural mode of
the nanobeam to a high amplitude state. For phase sensitive detection with the VNA, the
microwave signal is downconverted using an I-Q-demodulator (Marki IR0408LC2Q). A
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Figure 7.5: a-b. Photograph of the inset of Cryostat #1 (4 K stage and below). c. Schematic
illustration of the experimental setup and the microwave circuitry inside Cryostat #1. The
signal from the microwave source is split up into a drive tone for the superconducting mi-
crowave resonator and a reference tone. The drive tone is attenuated within the cryostat and
capacitively coupled to the superconducting microwave resonator. The sample output signal
is amplified, down-converted, filtered and detected with a vector network analyzer that drives
the piezoelectric actuator on which the sample is mounted. The photos (a) and (b) have been
taken from Ref. [21].

phase shifter (ATM PNR P1607 ) is used to adjust the phase in a way that the homodyne
signal measured at the VNA is maximal corresponding to the quadrature response of the
device.

7.4 Experimental results

7.4.1 Characterization of microwave cavity and mechanical resonator

First we spectroscopically investigate the response spectrum of the microwave resonator
to determine resonance frequency and linewidth of its fundamental mode. To this end, we
employ a vector network analyzer (VNA) connected to the microwave input and output
lines of the cryostat and measure the microwave transmission through the sample as a func-
tion of the probe frequency. All following experiments were carried out at a temperature
of 550 mK.
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Figure 7.6a shows an overview of the transmission spectrum of Sample #5. It features
four distinct resonance peaks corresponding to the four λ/2 microwave resonators on the
chip, operated in transmission. In the following, we focus on the microwave resonator at
ωc/2π = 5.67 GHz, into which the nanobeam resonator is integrated.

Figure 7.6b depicts the transmission spectrum around ωc, which we use to determine
the linewidth κ/2π = 749 kHz of the microwave resonator. By design, the microwave
resonator is coupled critically to the input and output lines, i. e. κin ≈ κex ≈ κ/2.
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Figure 7.6: a. Uncalibrated transmission spectrum of Sample #5, containing four supercon-
ducting CPW microwave resonators with frequencies between 5.4 and 6.1 GHz. The arrow
indicates the resonator at 5.67 GHz which is coupled to a Si3N4 nanobeam. b. Detailed view
of the transmission spectrum of the microwave resonator at 5.67 GHz. The probe power at
the sample input is 5.0 pW (−83 dBm).

To experimentally characterize the mechanical resonator embedded in the microwave
circuit, we employ the homodyne measurement setup depicted in Fig. 7.5 as described in
the previous section.

When driving the microwave cavity and exciting the beam with the piezoactuator si-
multaneously, the microwave drive tone with frequency ωd/2π is modulated by the beam’s
motion, resulting in the generation of sidebands at ωd ± Ωm. The corresponding fre-
quency fluctuation amplitude is given by δωc = Gx0 [35], where G is the electromechanical
coupling and x0 the mechanical amplitude. In the homodyne setup employed here, the
sidebands of mechanical motion are mapped to the frequency Ωm/2π and the measured
down-converted signal is given by [35]

Phom(Ω) = 2K(Ω)
Ω2 δω2

c = 2K(Ω)G2

Ω2 x2
0

with the oscillation frequency of the beam Ω/2π and the transfer function K(Ω).
Note that we here drive both the nanobeam and the microwave resonator simultane-

ously and measure the response of the nanobeam as a function of the RF drive applied
to the actuator. Therefore, the measured quantity Phom is not a spectral power, but the
absolute sideband power (unit: Watt) induced by the resonantly driven nanobeam. This is
in contrast to the usually applied sideband spectroscopy of thermal motion (see Sec. 6.3),
where the observable is a power spectrum SPP in units of power/frequency.

Figure 7.7 shows the down-converted spectroscopy signal of the silicon nitride
nanobeam when excited in the linear (weak driving) regime. Here, the nanobeam follows
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Figure 7.7: Power spectrum of the weakly driven nanomechanical beam (Upiezo = 35 µVrms),
measured with the homodyne setup depicted in Fig. 7.5. The red line is a Lorentzian fit to
the experimental data.
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Figure 7.8: Homodyne power spectrum for a weak external drive (Upiezo = 35 µVrms) using a
frequency-modulated cavity drive tone. The sideband peak at Ωmod/2π = 13.9517 MHz is
scaled by a factor of 0.0025. Analyzing the height of this calibration sideband peak allows to
determine the transfer function K(Ωm).

the behavior expected for a harmonic oscillator. At T ≈ 550 mK, we find an eigenfrequency
Ωm/2π = 13.95225 MHz of the nanobeam with a linewidth of Γm/2π = 29 Hz correspond-
ing to a quality factor of Q = 480 000. This quality factor exceeds those of comparable
nanobeams with niobium metallization [21] by more than a factor of three.

7.4.2 Frequency noise calibration

Next we determine the transfer function K(Ω) which relates the measured sideband
power to the mechanically induced frequency fluctuation δωc. To this end, we apply a
frequency-modulated drive tone with a well-known modulation depth Ωdev/2π = 4.2 kHz
at a frequency Ωmod/2π near the mechanical resonance frequency (see Fig. 7.8). Mea-
suring the corresponding sideband height Pmod, we can determine the transfer function1

K(Ωmod) = PmodΩ2
mod/(2Ω2

dev) and obtain K(Ωm) ≈ K(Ωmod) = 1.2 mW.

1To derive this relation from Eq. 6.19, we use Pmod = ENBW·Smod
PP , where ENBW denotes the detection

bandwidth of the VNA.
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a. b.

Figure 7.9: a. Homodyne power spectrum (left axis) resp. mechanical amplitude spectrum
(right axis) of the nanobeam for varying external drive power (Upiezo = 35 to 89 µVrms). The
amplitude scale (on the right) is based on the amplitude calibration described in the main
text. b. Maximum homodyne power as a function of the effective resonance frequency. The
red line is a linear fit to the experimental data – the so-called backbone curve – according to
Eq. 7.1.

7.4.3 Determination of the coupling rate via Duffing nonlinearity

To determine the coupling rate g0, usually the sidebands of thermal motion of the
nanobeam are measured. Comparing the sideband height to the displacement of the
nanobeam, which can be calculated from the sample temperature, allows determining
the coupling g0, as derived in Sec. 6.3.

Here, the coupling is too small to resolve the thermal motion of the nanobeam. We
therefore use an alternative way to access the coupling g0, which is based on the Duffing
nonlinearity of the strongly driven beam.

In the previous chapters, we have already made use of the nonlinear behaviour of
tensile stressed nanobeams to determine the prestress and Young’s modulus of the beam
via its response spectrum. This relies on the fact that the Duffing parameter α, which can
be determined from spectroscopy measurements, is related to material properties of the
nanobeam.

Here, we reverse this scheme and calculate the Duffing nonlinearity directly from well-
known material parameters of the pure Si3N4 nanobeam. Comparing this to the observed
resonance frequency shift for strong drive allows to relate the measured sideband height
(in units of power) to absolute displacement and thus determine the coupling g0.

To calculate the Duffing nonlinearity α, we use Eq. 2.11, the length of the nanobeam
l = 20 µm, the literature values E = 160 GPa [44], σ = 830 MPa [44], ρ = 2600 kg/m3 [46]
and obtain α = 9.4× 1027 m−2s−2.

Next, we measure the response of the nanobeam motion, Phom, as a function of the
piezo drive frequency Ω/2π for various driving strengths, as plotted in Fig. 7.9a. From
these data, we extract the effective resonance frequency Ωeff/2π and the maximum of
the homodyne power spectrum Phom,max for each applied drive voltage Upiezo, leading to
Fig. 7.9b.
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To compare this to the expected backbone curve, we rewrite the backbone curve
Eq. 2.13 as

Phom,max = 16
3

Ωm
α

K(Ωm)G2

Ω2
m

(Ωeff − Ωm) , (7.1)

where we have used the relation Phom = (2K(Ω)G2/Ω2)x2
0.

Thus, we can determine the coupling G from the slope of the linear fit in Fig. 7.9b and
obtain G/2π = 312 Hz/nm. The electromechanical vacuum coupling rate is g0 = Gxzpf =
2π × 11.5 mHz with the zero-point motion of the beam xzpm =

√
~/2meffΩm = 37 fm.

Compared to a similar nano-electromechanical hybrid system with a metallized beam
[54], the coupling is about two orders of magnitude smaller here, as it solely relies on the
dielectric interaction between nanobeam and niobium electrodes.

7.5 Temperature dependence of the mechanical quality fac-
tor

As demonstrated in several studies before, the quality factor of nanomechanical resonators
strongly depends on temperature [52, 53, 73, 131]. In particular, two-level defects, which
significantly contribute to the overall damping at room temperature, freeze out at low
temperatures [73]. In this section, we compare the mK quality factor of the nanobeam
motion to values measured at room temperature and at liquid helium temperature and
check the observed trend against expectations.

To determine the room temperature quality factor of the fundamental out-of-plane
mode of the nanobeam, the sample has been pre-characterized in an optical laser inter-
ferometry setup similar to the one sketched in Fig. 3.5. We find a resonance frequency
of ΩRT

m /2π = 13.955 MHz and a linewidth of ΓRT
m /2π = 349 Hz, corresponding to a qual-

ity factor of QRT
m ≈ 40 000. Compared to similar nanobeams fabricated at the chair of

Prof. J. Kotthaus before [44], the quality factor is slightly reduced. We attribute this to
damage of the Si3N4 nanobeam during the second RIE step (Fig. 7.2i), in which we used
a sputtered aluminium coating to protect the Si3N4. Presumably, the aluminium film was
too thin, especially at the edges of the nanobeam, so that the Si3N4 was exposed to the
argon ions used for the etching process of the microwave resonator.

The quality factor at liquid helium temperature was measured in the setup described in
Sec. 7.4.1, with the circulation of the 3He/4He mixture of the dilution fridge switched off.
We find the resonance frequency Ω4K

m /2π = 13.952 MHz and the linewidth Γ4K
m /2π = 97 Hz

(Q4K
m ≈ 144 k).
In Fig. 7.10, the quality factor is plotted for all three studied temperatures. We observe

a strongly increasing Q at low temperatures, which can roughly be described by a Q ∝√
T behaviour over the whole temperature range from T = 0.5 to 300 K. This agrees

with predictions by Seoánez et al., who theoretically investigated defect-related damping
mechanisms in doubly-clamped nanobeams and found a dominating Q ∝

√
T behaviour

at low temperature, caused by relaxation absorption of biased two-level systems (TLS)
[132]. Experiments with doubly-clamped gold nanobeams confirmed this temperature
dependence for temperatures between 30 and 500 mK [133]. In contrast, for aluminium
nanobeams, Q ∝ 1/T has been observed at low temperatures (T . 1 K) [52, 53]. Still, to
our best knowledge, no data covering the full temperature range from room temperature
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Figure 7.10: Quality factor of mechanical motion for three different temperatures: 550 mK,
4.2 K and room temperature (black squares). The dashed line is a guide to the eye and the
solid line depicts a T−1/2-behaviour. For comparison, the red circles show the temperature
dependence of the quality factor of a comparable aluminium nanobeam integrated in a cir-
cuit electromechanical hybrid device (Sample #6). This device will be discussed in detail in
Chap. 8.

down to mK have been reported for doubly-clamped nanobeam resonators. In particular,
for Si3N4 nanobeams the temperature range below 4 K has not been studied yet. Faust
et al. studied the temperature-dependent damping in tensile stressed Si3N4 nanobeams
between 4 K and 350 K and found a comparatively weak, non-monotonic temperature
dependence, which is attributed to coupling to TLS [73].

The presented platform can be useful to study the damping mechanisms at low temper-
ature and clarify their temperature dependence. Certainly, a more detailed experimental
investigation of the damping as a function of temperature will be necessary to substantiate
the few data points plotted in Fig. 7.10.

Compared to other materials, silicon nitride features particularly high quality factors
(see, e. g., Refs. [42,44,71]). To illustrate this, we have added the measured quality factor of
a comparable aluminium nanobeam as a function of temperature to Fig. 7.10. The response
spectrum of the aluminium nanobeam resonator has been investigated via its coupling to
a microwave circuit. We will discuss this device in Chap. 8 in detail. The measured
quality factor of the aluminium nanobeam shows a similar temperature dependence (see
also Ref. [52]), but is shifted to lower values compared to the Si3N4 nanobeam.

The exceptionally high quality factors of Si3N4 nanoresonantors are based on the fact
that Si3N4 thin films can be fabricated with high intrinsic prestress. The tensile stress
in the Si3N4 does not significantly affect the damping rate of mechanical motion, Γm,
but strongly increases the resonance frequency Ωm/2π, resulting in a high quality factor
Q = Ωm/Γm. Due to the high impedance mismatch between the discrete long-wavelength
vibrational modes of the resonator and high-frequency bulk phonon states, acoustic radi-
ation losses into the beam clamps are highly suppressed. Thus, for highly stressed Si3N4
nanobeams with large aspect ratio, intrinsic losses are the dominant damping mecha-
nism [44,71]. They are caused by surface defects [134] as well as by bulk defects due to the
amorphous nature of the material [73]. The microscopic mechanisms, however, are still
subject to investigation.
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The presented hybrid platform, in which a high-Q microwave circuit is employed to
sensitively read out mechanical motion, can be useful for studying damping in Si3N4 at
temperatures between several mK and 4 K. Extending the work of Faust et al. [73], this
could provide further insight into the damping mechanisms in Si3N4 and open the path to
ultra-high-Q nanomechanical beam resonators.

7.6 Estimated mass sensitivity

For sensing applications, the response of the nanobeam resonator to externally induced
changes of its mechanical properties is of particular interest. This can, e. g., be a change
of its mass, caused by attaching a particle to the nanobeam, which results in a shift of the
resonance frequency of the beam. This concept allows for the detection and identification
of particles in a gas flow, for instance.

Even if the presented platform should be understood as a proof-of-principle experiment,
we briefly estimate the mass sensitivity of the device.

Adding a point mass δm to the nanobeam will induce a shift of the resonance frequency
[14]

δΩm
Ωm

= 2δm
meff

.

The factor 2 is due to the fact that we assume the additional mass to be located at the
center of the beam, where the displacement and therefore its contribution to the total
energy of the oscillation is maximal.

The frequency resolution is given by half of the linewidth of the weakly driven beam,
in our case Γm/2 = 14.5 Hz. With the values given above for resonance frequency and
effective mass, Ωm/2π = 13.952 MHz and meff = 0.43 pg, respectively, we obtain a mass
sensitivity of δm = 0.44 ag. This corresponds to the mass of approximately 104 carbon
atoms.

To optimize the mass sensitivity of nanomechanical sensing devices, usually low-weight
resonators, like carbon nanotubes, are employed. In the last ten years, sensitivities down to
the yoctogram range could be realized, corresponding to the mass of a single proton [12–14].
This ultimate sensitivity has been reached with a carbon nanotube resonator oscillating
at almost 2 GHz and requires low-temperature operation (4 K) in an ultra-high vacuum
environment to prevent adsorption of unwanted molecules [14].

In the future, nanomechanical mass sensors could be employed as low-cost devices for
the detection and identification of single molecules or atoms and thus be used for the
analysis of gases and aerosols, with possible applications in biology or chemistry.

7.7 Summary

We have fabricated and characterized a circuit nano-electromechanical hybrid system con-
sisting of a superconducting microwave resonator and a pure Si3N4 nanomechanical beam
with a resonance frequency of 14 MHz. We used the electromechanical coupling to read
out the mechanical motion via the microwave resonator. To this end, we monitored the
mechanically induced sidebands of the microwave resonator transmission in a homodyne
measurement setup. At 550 mK, we observed a mechanical quality factor of 480 000, which
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is about one order of magnitude higher than the room temperature quality factor deter-
mined by optical interferometry.

For strong external driving forces we observed the transition from the linear to the
Duffing regime and used this effect to quantify the mechanical displacement. By fitting
the peak values of the measured homodyne power spectra, we determined the mechanical
amplitude of the nanobeam motion. This method is complementary to the usually em-
ployed calibration via thermal motion [35,135] and especially useful for systems where the
Brownian motion is not straightforwardly detectable. Moreover, the precise knowledge of
the motional amplitude allowed us to derive the electromechanical coupling g0. For our
device, we found g0/2π = 11.5 mHz, which is corroborated by numerical modeling of the
device.

The employed coupling scheme is based on dielectric forces between the microwave res-
onator and the nanobeam. The coupling is therefore about two orders of magnitude smaller
than for similar circuit electromechanical systems with a metal/metallized nanobeam res-
onator. The presented approach, however, allows the realization of particularly high me-
chanical quality factors which are not limited by dissipation in a metal thin film. Thus,
the concept of dielectrically coupling a pure Si3N4 nanobeam to a high-Q microwave res-
onator is promising especially for sensing devices (e. g. for the detection of single molecules)
which require high frequency resolution and thus low damping rates. Moreover, this work
opens the path for further experimental studies of mechanical losses in silicon nitride at
millikelvin temperatures, extending previous work on the damping mechanisms in Si3N4
nanomechanical beams [44,73].
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Chapter8
Circuit nano-electromechanics with an
aluminium nanobeam

The integration of metal or metallized mechanical elements into a microwave circuit allows
for an efficient electromechanical coupling based on capacitive forces and is therefore the
most promising approach towards quantum experiments like the preparation or transfer of
non-classical states [24–26, 122]. While in previous experiments at the Walther-Meißner-
Institut, a silicon nitride nanobeam covered with a niobium thin film was employed, we
here pursue a different approach based on a pure aluminium nanobeam integrated in an
aluminium microwave resonator (see also Refs. [18, 109]). First, this scheme reduces the
number of fabrication steps as both the microwave resonator and the nanobeam can be
fabricated simultaneously. Second, this fabrication process allows for the integration of
a standard aluminium transmon qubit as a single photon source. In particular, the di-
rect coupling of a mechanical resonator to a transmon qubit could open the path to a
new class of experiments, which we will briefly discuss at the end of this chapter. Besides,
aluminium-based nano-electromechanical systems could allow the realization of higher cou-
pling strengths, using e. g. focused ion beam milling as a fabrication technique in order to
produce ultra-narrow gaps between the nanobeam and the adjacent ground plane [53].

In this chapter, we show fabrication and characterization of a circuit nano-electro-
mechanical hybrid sample consisting of a pure aluminium nanobeam resonator which is
coupled to a superconducting aluminium CPW microwave resonator. We demonstrate side-
band cooling of the mechanical resonator and electromechanically induced transparency.
Besides, we discuss novel approaches towards experiments in the quantum regime, based
on an inductive electromechanical coupling between a microwave and a mechanical res-
onator, and first steps towards a three-body circuit electromechanical device consisting of
a transmon qubit, a microwave resonator and a nanobeam.

The sample fabrication and part of the measurements have been done by Daniel
Schwienbacher within the scope of his master’s thesis at WMI, which I supervised [136].

8.1 Sample fabrication

Sample #6 consists of a microwave transmission line which is capacitively coupled to eight
λ/4 CPW microwave resonators. Their impedance is Z0 = 50 Ω and their resonance

87
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frequencies are chosen between 6 and 8 GHz. Into six of the microwave resonators, a
nanomechanical beam is integrated at the voltage anti-node of the resonator, coupled
galvanically to the center line of the microwave resonator. The nanobeam and the adjacent
ground plane form a capacitor with capacitance Cg which adds to the capacitance of
the bare microwave resonator C0. Similar to the previous chapter, this results in an
electromechanical coupling between the microwave resonator and the nanobeam.

The fabrication process of Sample #6 is schematically shown in Fig. 8.1. Starting
with a commercial highly resistive silicon substrate (i), the microwave resonators and
the nanobeams are patterned onto the chip simultaneously using e-beam lithography (ii),
electron beam evaporation (t = 100 nm of aluminium) and lift-off (iii). After annealing
the aluminium film at 350 ◦C for 30 minutes (iv), the chip is covered with a protective
resist layer, into which etch windows are patterned around the nanobeam resonators in a
second e-beam lithography step (v). The nanobeams are released in a subsequent isotropic
reactive ion etching process with an Ar/SF6 mixture (vi). Finally, the protective resist
layer is removed with acetone and the sample is dried in a critical point dryer (vii). This
is necessary in order to prevent adhesion of the nanobeams to the adjacent aluminium
ground plane caused by strong capillary forces in the solvent and by the comparatively
low tensile stress in the aluminium at room temperature.

ws

t

(i) (ii) (iii) (iv)

(vi) (vii)(v)

Si EBL resist (neg.)Al EBL resist (pos.)

Figure 8.1: Schematic illustration of the fabrication process of Sample #6. The individual steps
are explained in the main text.

In the following, we focus on the experimental investigation of microwave resonator #2
(resonance frequency ωc/2π = 6.158 GHz) which is coupled to a l = 50 µm long and
w = 120 nm wide nanobeam (see Fig. 8.2). The gap between the nanobeam and the
ground plane is s = 150 nm.
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Figure 8.2: a. Micrograph of resonator #2 on Sample #6. At the voltage anti-node of the res-
onator, a nanomechanical beam is integrated. b. False-colored SEM image of the nanobeam.
c. Detailed view of the nanobeam, including one of the clamping pads and the adjacent
aluminium ground plane.

8.2 A priori estimation of the electromechanical coupling

To model the electromechanical coupling between microwave cavity and nanobeam res-
onator, we employ a COMSOL 2D finite element model similar to Sec. 7.2. We use the
sample geometry given in the previous section and assume the aluminium to be a perfect
conductor. We calculate the electric field distribution, plotted in Fig. 8.3a, and the capac-
itance between the nanobeam and the adjacent aluminium ground plane as a function of
the beam displacement x0 (see Fig. 8.3b). As the nanobeam is galvanically connected to
the center line of the microwave cavity, its capacitance Cg to the ground plane contributes
to the total capacitance of the microwave cavity, resulting in a capacitive coupling between
microwave and mechanical resonator.
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Figure 8.3: a. Finite element model of the cross-section of Sample #6 at the position of the
nanobeam. b. Calculated variation of the capacitance Cg between nanobeam and ground
plane as a function of the beam displacement x0.

From Fig. 8.3b, we estimate ∂Cg/∂x = 2.59 aF/nm. With Eq. 6.16, the impedance
Z0 = 50 Ω of the microwave cavity and its resonance frequency ωc/2π = 6.158 GHz, we
calculate the coupling parameter G/2π = 19.6 kHz/nm. Using the effective mass meff =
0.81 pg and the measured resonance frequency of the nanobeam, Ωm/2π = 4.872 MHz (see
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below), we determine the zero-point motion xzpm = 46 fm. Thus, the estimated vacuum
coupling is g0/2π = 0.90 Hz.

8.3 Cryogenic setup

To experimentally investigate Sample #6, we use an Oxford Instruments Triton dilution
refrigerator (Cryostat #2 ), which allows operation down to approximately 35 mK. The
microwave circuitry in the fridge is schematically shown in Fig. 8.4. The sample is mounted
at the mixing chamber stage of the cryostat and connected to a microwave input and output
line. The input line is heavily attenuated to suppress Johnson noise, while the output line
is equipped with three circulators (to prevent backscattering of noise photons) and a cold
HEMT amplifier (Low Noise Factory LNC4 8A), which amplifies the output signal by
approximately 38 dB. The DC input line as well as the reference microwave input line are
not used in the experiments presented in this chapter.
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Figure 8.4: Schematic illustration of the microwave circuitry inside Cryostat #2.

8.4 Experimental results

In this section, the experimental results of Sample #6 are presented. First, we show charac-
terization measurements of the relevant microwave resonator as well as the corresponding
nanobeam resonator. Next, we calibrate the microwave readout circuit using frequency
noise calibration and determine the electromechanical vacuum coupling by homodyne spec-
troscopy of the thermal motion of the nanobeam. We further demonstrate sideband cooling
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of the mechanical motion and electromechanically induced transparency (EMIT) and thus
prove the functionality of the circuit nano-electromechanical hybrid device.

8.4.1 Characterization of the microwave resonator

To characterize the microwave circuit of Sample #6, we measure the transmission through
the sample as a function of frequency. The measurement is performed at T = 40 mK and
with a probe power of Pp = 0.3 pW (−95 dBm) at the sample input. Figure 8.5a shows the
transmission spectrum of Sample #6 over a wide frequency range. We observe six distinct
resonance dips corresponding to six microwave cavities with frequencies between 6.0 and
7.8 GHz. Two additional microwave resonators are broken.
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Figure 8.5: a. Uncalibrated transmission spectrum of Sample #6. The arrow indicates res-
onator #2, on which we focus in this chapter. b. Detailed view of resonator #2 (resonance
frequency ωc/2π = 6.158 GHz) with Lorentzian fit (red line). The probe power applied to the
sample input is Pp = 0.3 pW (−95 dBm).

In the following, we focus on resonator #2, into which a nanomechanical beam with
length l = 50 µm has been integrated. Figure 8.5b shows the absorption spectrum of
resonator #2, which has already been normalized so that T = 1 far away from resonance.
From this spectrum, we extract the resonance frequency ωc/2π = 6.158 GHz and the
linewidth κ/2π = 638 kHz, which results in a quality factor of Q = 9650. Additionally, the
depth of the transmission dip allows extracting the internal and external damping rates1,
κin/2π = 404 kHz and κex/2π = 238 kHz, according to Eq. 6.11.

1In some of the measurements with Sample #6 (frequency noise calibration, determination of g0 and
temperature dependence of the mechanical linewidth and resonance frequency), the internal damping rate
was significantly higher than the value given here: κ′in/2π ≈ 692 kHz. These measurements have been
performed in a first cooldown during which external magnetic fields have been applied to the sample
several times. We therefore attribute the increased internal loss rate to magnetic flux pinned in the
superconducting aluminium film. During the second cooldown, no intentional magnetic fields have been
applied. The external damping rate was found to be equal in both cooldowns; this is expected, as κex

only depends on the coupling capacitance between microwave resonator and transmission line, which is
not affected by magnetic flux (see Eq. 6.8). For the quantitative evaluation of the experimental data, we
therefore use κ′in/2π = 692 kHz in Secs. 8.4.3 and 8.4.5 and κin/2π = 404 kHz in Sec. 8.4.4.
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8.4.2 Characterization of the nanobeam resonator

To spectroscopically characterize the mechanical resonator integrated in microwave res-
onator #2, we use the detection scheme illustrated in Fig. 8.6. We drive the microwave
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Figure 8.6: Experimental setup used to characterize the mechanical resonator, determine the
electromechanical vacuum coupling and demonstrate sideband cooling of mechanical motion.
The cryogenic part of the microwave circuitry has been simplified for reasons of clarity.

resonator at its resonance frequency, ωd = ωc, with Pd = 2.4 nW (−56 dBm) at the sample
input. The transmitted signal is amplified with a HEMT amplifier at 4 K and a room tem-
perature broadband amplifier (B&Z BZP110UC1X2 ) and down-converted using a Marki
IQ0307LXP I-Q-demodulator with a local oscillator frequency ωLO = ωd. The Stokes
and anti-Stokes sidebands arising from the thermal motion of the nanobeam are therefore
mapped to the eigenfrequency Ωm/2π of the mechanical element. The down-converted sig-
nal is measured with a Rohde&Schwarz FSV spectrum analyzer and plotted in Fig. 8.7a2

Fitting a Lorentzian to the experimental data, we extract the resonance frequency
Ωm/2π = 4.872 MHz and the linewidth Γm/2π = 13.2 Hz of the fundamental in-plane
mode of the nanobeam resonator. This corresponds to a quality factor of Qm = 3.69× 105

at T = 50 mK.
With the measured resonance frequency, the length of the beam l = 50 µm and the den-

sity of aluminium ρAl = 2700 kg m−3 [137], we determine the tensile stress in the nanobeam
using the relation Ωm ≈ π/l

√
σ0/ρ (Eq. 2.3) and obtain σ0 = 641 MPa. Comparing to

the prestress at room temperature, σRT
0 = 234 MPa (ΩRT

m /2π = 2.95 MHz), we observe an
increase by ∆σ0 = 407 MPa, which is consistent with estimations based on the thermal
expansion coefficient of aluminium (see App. D).

2Please note that all measured spectra are single-sided, i. e. SPP is defined for positive values of Ω only.
In the given down-conversion setup, the Stokes and the anti-Stokes peak are therefore mapped to the same
frequency Ωm/2π.
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Figure 8.7: a. Measured power spectrum of thermal motion of the nanobeam at T = 50 mK.
The red line is a Lorentzian fit to the mechanical response spectrum. b. Resonance frequency
(black) and linewidth (red, with linear fit) of the fundamental in-plane mode of the nanobeam
as a function of temperature.

In Figure 8.7b, resonance frequency and linewidth are plotted as a function of tempera-
ture between 50 and 400 mK. We observe an approximately linear temperature dependence
of the linewidth, Γm(T ) = Γm,0 + γ T , with γ ≈ 66 Hz/K and an extrapolated linewidth at
T = 0 of Γm,0/2π ≈ 10 Hz. This is consistent with observations reported in literature for
pure aluminium nanobeams [52, 53] and Si3N4/Nb nanobeams [21]. The linear tempera-
ture dependence of Γm(T ) suggests that coupling of phonons to two-level states (TLS) is
the dominating loss mechanism in this type of nanobeam resonator at low temperatures.
These TLS can be modeled as a double-well potential whose major damping mechanism
is given by tunneling between the potential minima. In a nanobeam resonator, the po-
tential is modulated periodically by the oscillating strain, which couples the TLS to the
nanobeam motion. The relaxation rate of the TLS depends on the phonon density and thus
on the environment temperature T . As discussed in [21, 52, 53], a T−1-dependence of the
damping rate Γm(T ) is expected for tensile stressed nanobeams. Yet, for a more detailed
investigation of the damping of our aluminium nanobeams, ring-down experiments with
pulsed excitation would be required, as they allow to separated dissipative and dephasing
contributions to the mechanical damping [138].

Regarding the temperature dependence of the resonance frequency, we observe a shift
to lower values for increasing temperature. This shift, significantly exceeding the linewidth
of the resonance, cannot be attributed to thermal effects, as thermal expansion coefficients
vanish at low temperature. The coupling to TLS leads to a temperature-dependent reso-
nance frequency, but the expected frequency shift is one order of magnitude smaller and
opposite to our experimental finding (see, e. g., Ref. [21]). A possible explanation for the
observed frequency shift could be static charging of the center conductor of the microwave
resonator, resulting in a (static) capacitive force between nanobeam and ground plane.
With the current sample layout, however, we cannot verify this, as the microwave res-
onator is not connected galvanically to any DC or microwave line. In future experiments,
a design similar to Ref. [139] could allow to apply a voltage or charge bias to the microwave
resonator and in this way tune the resonance frequency of the nanobeam as well as increase
the electromechanical coupling.
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8.4.3 Determination of the electromechanical vacuum coupling

To quantify the electromechanical coupling, we perform frequency noise calibration as de-
scribed in Sec. 6.3. This data is measured at an elevated temperature of T = 300 mK
to guarantee the sample to be in thermal equilibrium with its environment. We use the
detection scheme illustrated in Fig. 8.6 and modulate the drive tone with a maximum
frequency deviation of Ωdev/2π = 80 Hz at Ωmod/2π = Ωm/2π − 100 Hz, i. e. near the me-
chanical resonance frequency. The measured transmission spectrum, plotted in Fig. 8.8a,
shows the calibration peak at Ωmod, resulting from the applied frequency modulation, in
addition to the sideband of thermal motion at Ωm, originating from the Stokes and anti-
Stokes processes. From the height of this calibration peak, we can determine the transfer
function K(Ωm) ≈ K(Ωmod) = 52 mW according to Eq. 6.19.

4.8717 4.8718 4.8719 4.8720

0.4

0.6

0.8

40

45

100 200 300 400

9

12

15

18a.

 

S PP
 (p

W
/H

z)

Ω/2π (MHz)

b.

 

(π
/2

) Γ
m

 S
PP

 (p
W

)

T (mK)

Figure 8.8: a. Thermal motion power spectrum of the nanobeam, measured at T = 300 mK,
together with the calibration peak at Ωmod/2π = Ωm/2π−100 Hz. The red line is a Lorentzian
fit to the mechanical response spectrum and the shaded region corresponds to the fitted area
under the response spectrum A ≡ (π/2)ΓmSPP(Ωm). b. Fitted area below the mechanical
response spectrum, A, as a function of the cryostat temperature (black circles). The linear
fit (red line) allows extracting the coupling g0 and the backaction-induced temperature offset
Tba.

Using Eq. 6.20, the resonance frequency Ω300 mK
m /2π ≈ Ωm/2π = 4.872 MHz, the fitted

linewidth at 300 mK, Γ300 mK
m /2π = 34 Hz, and the thermal phonon number n̄m(T =

300 mK) = 1282 (see Eq. 6.17), we calculate the electromechanical vacuum coupling rate
g0/2π = 0.67 Hz.

To experimentally verify the thermalization of the sample and to account for the effects
of backaction of cavity photons on the mechanical motion, we exploit the temperature
dependence of the mechanical motion spectra. We fit a Lorentzian to all measured spectra
and plot the area below the response spectrum A = (π/2)ΓmSPP(Ωm) as a function of
temperature as shown in Fig. 8.8b. The slope of the fitted straight line in Fig. 8.8b allows
to extract the coupling g0, while the intercept allows to quantify a potential temperature
offset caused by backaction effects. To illustrate this, we use Eq. 6.20 and plug in the
relation between the thermal phonon number and the sample environment temperature,
given by Eq. 6.17. To account for backaction of the microwave drive on the mechanics, we
introduce a temperature offset Tba. With this, we obtain

π

2 ΓmSPP(Ωm) = 4πkB
~Ω3

m
g2

0K(Ωm) (T + Tba) .
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Using the transfer function K(Ωm) = 52 mW, we extract the coupling g0/2π ≈ (0.57 ±
0.06) Hz from the data plotted in Fig. 8.8b. This is in reasonable agreement with the value
obtained above. In addition, we find a backaction temperature of Tba ≈ 80 mK, caused by
the comparatively high drive power used in this measurement [19,21].

The experimentally determined coupling agrees well with the predicted value
gFEM

0 /2π = 0.90 Hz, which we obtained from a simple finite element model (see Sec. 8.2).
Besides, the measured coupling g0 is consistent with values reported for similar sam-
ples [18,21,54].

8.4.4 Sideband cooling of mechanical motion

Up to now, we have driven the microwave cavity at its resonance frequency (ωd = ωc),
which allows to read out the mechanical motion of the nanobeam without backaction on
its motion. Employing a red- or blue-detuned drive tone, however, the nanobeam motion
can be damped or amplified, resulting in a broadening/narrowing of the linewidth Γm
and a reduction/increase of the average phonon number n̄m. At the Walther-Meißner-
Institut, these effects have already been demonstrated with a similar device in which a
Si3N4/Nb bilayer nanobeam is capacitively coupled to a superconducting CPW microwave
resonator [21].

Here, we demonstrate that these effects can be reproduced with the present all-alumi-
nium sample. This opens the path for the integration of, e. g., superconducting qubits for
quantum experiments with a circuit nano-electromechanical device.

In this section, we demonstrate sideband cooling of the nanobeam motion from the
initial thermal occupation number n̄m = 171 at T = 40 mK down to n̄min

m ≈ 10. We drive
the microwave resonator ideally red-detuned (∆ = −Ωm) and monitor the sidebands of
mechanical motion in the detection scheme depicted in Fig. 8.6.

Figure 8.9a shows the measured power spectrum SPP(Ω) for three different drive power
values Psource = 32, 50, 79 mW. For increasing drive power, we observe a decrease of the
area A below the response curve. As A ∝ n̄m, this indicates a reduction of the phonon
number and thus a cooling of the mechanical mode. In addition, the spectrum broadens
as expected from the discussion in Sec. 6.1.

We extract the effective linewidth Γeff by fitting a Lorentzian to the measured response
spectra for various driving strengths between Psource = 1.8 mW and 106 mW, as shown in
Fig. 8.9b, and observe the expected linear drive power dependence. Fitting Eq. 6.23 to the
measured effective linewidth as a function of the microwave power Psource allows extracting
the low-power limit of the mechanical linewidth Γm/2π ≈ 12.2 Hz and the attenuation of
the input microwave line Att ≈ 1/331 k (corresponding to 55 dB). Here, we have used the
fact that n̄c and the microwave source output power Psource are related via Eqs. 6.12 and
6.13. Therefore, Att can be determined from the slope of the linear fit in Fig. 8.9b using
the coupling rate g0 determined in the previous section.

Having calculated the attenuation along the input microwave line, we can determine
the intra-cavity photon number n̄c from Psource, as the upper horizontal axis of Fig. 8.9b
indicates.
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Figure 8.9: a. Measured power spectra of mechanical motion (with Lorentzian fit) for an ideally
red-detuned drive and three different cavity photon numbers (corresponding to Psource =
32, 50 and 79 mW, dark to light blue). b. Effective linewidth of the mechanical resonance as
a function of microwave drive power or cavity photon number, respectively.

Figure 8.10 shows the extracted phonon number n̄m as a function of the cavity photon
number n̄c together with the theoretical prediction given by Eq. 6.22. To determine n̄m
from the measured power spectra of mechanical motion, we use Eq. 6.21.3

Starting at a thermal phonon number of n̄th
m ≈ 171, we are able to cool down the

fundamental in-plane mode of the nanobeam to n̄min
m ≈ 10, corresponding to an effective

mode temperature of Tmin
m ≈ 2.3 mK.
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Figure 8.10: Phonon number n̄m as a function of the cavity photon number n̄c for an ideally
red-detuned drive. The black circles indicate the experimental data, the red line shows the
theoretical prediction, given by Eq. 6.22. At the maximum available drive power, we reach a
minimum phonon number of 10. The phonon number in thermal equilibrium is n̄th

m = 171.

3Technically, the transfer function K(Ω) is proportional to signal power PSig at the mixer, which in
turn scales linearly with the drive power Pd at the sample input [21]. The transfer function thus has to be
measured for a single drive power value only, even if the drive is varied during the experiment as shown
e. g. in Fig. 8.9. Here, however, large cavity photon numbers are required so that the signal power at
the sample output reaches the compression point of the cryogenic amplifier, where the amplification drops
significantly. For high drive power, the transfer function is therefore reduced. To account for this, we
determine the transfer function for each applied drive power separately using frequency noise calibration.
With this, we determine n̄m from the measured power spectra.
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Whereas in previous sideband cooling experiments with a Si3N4/Nb sample at WMI
[21], the phonon number saturated at high cavity photon numbers (n̄c & 107) due to
sideband noise from the microwave source, this technical issue is not present here. The
reason is that thanks to the higher mechanical resonance frequency, the sideband noise
(relative to the output power) at the offset frequency Ωm/2π is significantly reduced [140]
compared to Ref. [21]. Instead, our minimum attainable phonon number is limited by
the available microwave power Psource . 100 mW, as the electromechanical coupling of our
sample is somewhat smaller than that of the mentioned Si3N4/Nb sample [21]. Assuming
infinite available drive power, the limit n̄min

m would be given by the nonlinearity of the
microwave resonator which starts shifting its eigenfrequency at a cavity photon number of
approximately 6× 107.

The fundamental lower limit of the phonon number for the presented system is n̄min
m =

0.001 (see Eq. 6.25). The noise photon number in the cavity is approximately n̄noise
c ≈ 0.2,

where we have taken into account the Johnson noise inside the microwave circuitry and the
thermal occupation of the microwave resonator. As n̄noise

c � 1, we can exclude excitation
transfer from the microwave resonator to the nanobeam when driving on the red sideband.

8.4.5 Electromechanically induced transparency

In this section, we investigate Sample #6 via two-tone spectroscopy. In particular, we
focus on the effect of electromechanically induced transparency (EMIT) which is similar to
optomechanically induced transparency [141–143] and has first been demonstrated in [20].

We apply a strong, continuous red-detuned drive tone to the sample while probing the
transmission through the sample around the cavity resonance with a weak probe tone.
In this configuration, the drive photons scatter with thermal phonons and generate anti-
Stokes photons at ωd+Ωm which interfere destructively with the probe tone, preventing the
probe tone to be coupled into the microwave cavity. Thus, the photon-phonon interaction
generates a narrow microwave transmission window around the frequency ωd + Ωm.

To investigate EMIT experimentally, we employ the setup depicted in Fig. 8.11. We
apply a strong drive tone at ωd ≈ ωc − Ωm and simultaneously measure the microwave
cavity transmission spectrum using a weak probe tone with frequency ωp/2π.

In Fig. 8.12a, the resulting transmission spectrum is plotted for a drive power of
Pd = 43 nW (−44 dBm) and a probe power of Pd = 0.3 pW (−95 dBm). Within the
broad cavity absorption dip, we observe a sharp transmission peak at ωd + Ωm. The
height of the transmission peak T0 as well as its linewidth depend on the drive power Pd,
as Fig. 8.12b illustrates. Here, the transmission window around ωd + Ωm is plotted for
various drive power values Pd ∈ {1.7, 3.8, 8.5, 19, 43, 96} nW. We observe an increase of
the transmission window linewidth with increasing drive power, which can be unterstood
in terms of linewidth broadening of the nanobeam resonance for a red-detuned drive as
discussed in Sec. 6.1.

Additionally, the transmission maximum increases with the drive power. As derived
in Sec. 6.5, we expect the transmission T0 to converge against unity for a cooperativity
C � 1. Comparing the measured maximum transmission T0 as a function of the cavity
photon number to the theory curve Eq. 6.26 shows excellent agreement, as Fig. 8.13a
demonstrates. Note that there are no free parameters here, as all relevant quantities – the
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Figure 8.11: Experimental setup used to investigate electromechanically induced transparency.
Similar to Fig. 8.6, the cryogenic part of the microwave circuitry has been simplified for
reasons of clarity.

vacuum coupling g0, the microwave attenuation Att and the damping rates of mechanics
and microwave resonator, Γm, κin and κex – have been determined independently before.

In Fig. 8.13b, the n̄c-dependence of the center frequency and linewidth of the transmis-
sion window is plotted. According to Eqs. 6.4 and 6.5, we expect an undeturbed frequency
and a linewidth broadening for an ideally red-detuned drive. The latter can be reproduced
well in the EMIT measurement. The observed resonance frequency shift is presumably due
to a slight deviation of the detuning ∆ from the optimally red-detuned case ∆ = ωc−Ωm.

8.5 Steps towards circuit electromechanics in the quantum
regime

One of the driving forces in cavity opto/electromechanics is the perspective of studying
quantum effects in macro/mesoscopic mechanical systems. There are, however, several
prerequisites that have to be fulfilled to reach the quantum regime with circuit electrome-
chanical systems:

Ground state cooling of the mechanical resonator: Even at mK temperatures, the
thermal population of a mechanical resonator at MHz frequencies significantly ex-
ceeds unity. To investigate single phonons in such a system, it is necessary to
cool the resonator to the ground state. This can be done by sideband cooling
with a red-detuned drive, as shown above, or with other, more elaborate cooling
schemes [144–147]. Meanwhile, ground state cooling of MHz mechanical resonators
has been demonstrated by several groups [24,25,122].
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Figure 8.12: a. Two-tone spectroscopy of Sample #6 with a strong red-detuned drive tone
(Pd = 43 nW [−44 dBm]). The interaction between electromechanically generated anti-Stokes
photons and the probe tone leads to a transmission window at ωp = ωd + Ωm (electrome-
chanically induced transparency). b. Transmission window for various cavity photon numbers
n̄c ∈ {0.3, 0.7, 1.7, 3.7, 8.4, 18.8} × 106 (blue to green). The lines are Lorentzian fits to the
experimental data.
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Figure 8.13: a. Maximum of the transmission window, T0, as a function of the cavity photon
number n̄c. The red line is a parameter-free curve, showing the n̄c-dependence of the trans-
mission T0 according to Eq. 6.26. b. Effective linewidth (black, with linear fit) and resonance
frequency (red) as a function of n̄c. The drive tone is ideally red-detuned (∆ = −Ωm), the
probe power is fixed at Pd = 0.3 pW (−95 dBm).

Preparation of non-classical mechanical or entangled electromechanical states:
Driving the microwave resonator on the blue sideband generates entangled photon-
phonon pairs and thus allows entangling the states of the mechanical and the
microwave resonator [26,148]. This can be useful for applications in quantum infor-
mation processing as well as for experiments on fundamental quantum mechanics.
Besides, it has been demonstrated recently that a micromechanical resonator can
be prepared in a squeezed vacuum state, where one of the quadratures falls below
the standard quantum limit [24, 25]. Similar squeezed states can be employed for
testing quantum mechanics in macro/mesoscopic systems.

Strong single photon coupling: One of the drawbacks of circuit nano-electromechani-
cal systems is the typically small vacuum coupling. While, e.g., superconducting
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qubits can easily be coupled to a CPW microwave resonator with the vacuum cou-
pling exceeding the damping rates of both resonator and qubit [149,150], this turns
out to be complicated for circuit nano-electromechanical systems. O’Connell et al.
have coupled a piezoelectric sandwich-like resonator to a superconducting qubit,
resulting in a coupling strength of g/2π = 62 MHz [22]. The mechanical quality
factor, however, is rather small, which prevents operation in the resolved sideband
regime. Apart from piezoelectric mechanical resonators, the highest vacuum cou-
pling strengths reported are in the order of several hundred Hz [20,26], which is far
below the damping rate of the microwave resonator (several hundred kHz). When
biasing the microwave cavity with a high average photon number n̄c � 1, however,
the effective coupling rate g = g0

√
n̄c can exceed both the mechanical and microwave

damping rate. In the strong coupling regime (g & Γm, κ), photons can coherently
be converted to phonons, giving rise to, e. g., normal mode splitting or Rabi oscilla-
tions [20,151].

For quantum experiments with single photons/phonons, however, strong single pho-
ton coupling is required. This means that the vacuum coupling g0 needs to exceed
the damping rates of both microwave and mechanical resonator, g0 & Γm, κ. Strong
single photon coupling would allow a coherent transfer of a single photon to a phonon
and vice versa within the relevant decay times. Currently, there are no systems sat-
isfying this condition.

Generation of single photonic or phononic excitations: A possible approach for
generating single phonons in a circuit electromechanical system is the integration
of a qubit into the microwave circuit, serving as a single photon source, and a coher-
ent transfer of this excitation into the mechanical system via a microwave resonator
(see, e. g., Ref. [22]). Such a device would strongly extend coupled qubit-resonator
systems (see, e. g., Refs. [149,150,152]) by a mechanical degree of freedom.

Within the scope of this thesis, first steps in overcoming these challenges have been
taken. To increase the electromechanical coupling beyond the current state of the art,
we couple a nanobeam to a microwave resonator via a SQUID (superconducting quantum
interference device), acting as a tunable inductor. More precisely, the mechanical motion
of the nanobeam modulates the inductance of the SQUID and thus changes the resonance
frequency of the microwave resonator. The vacuum coupling of this inductively coupled
electromechanical hybrid system is expected to reach the mid kHz regime, significantly
exceeding the coupling rates of current circuit electromechanical systems. Additionally,
the inductive coupling can be tuned via an externally applied magnetic field, allowing to
switch the coupling on and off faster than the relevant decay rates of the system.

Second, we have started to integrate a transmon qubit into a circuit electromechanical
system consisting of a microwave resonator and a nanobeam. The qubit can serve as a
single photon source for future quantum experiments. Besides, this three-body system
could open the path for the preparation and investigation of novel quantum states of
phonons, photons and qubit excitations.
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8.5.1 Inductive coupling between a microwave resonator and a
nanobeam

In this section, we estimate the inductive coupling between a nanobeam resonator and
a superconducting CPW microwave resonator, mediated by a SQUID, and present first
results towards its experimental realization. This work has been pursued together with
Friedrich Wulschner [153] and, in particular, Philip Schmidt which I supervised during his
master’s thesis [40]. Here, we summarize the modeling and the experimental results. For a
more detailed description, please see Ref. [40]. Related theoretical and experimental work
can be found in Refs. [154–157].

sin sout

in outa. b.

L0 C
LJ(x)

Figure 8.14: a. Schematic illustration and b. equivalent circuit of an inductively coupled circuit
electromechanical hybrid system, in which a mechanical resonator is coupled to a microwave
resonator via a dc-SQUID.

We investigate the hybrid system sketched in Fig. 8.14, where a coplanar waveguide,
capacitively coupled to a transmission line, is connected to ground via a SQUID, forming a
λ/4 microwave resonator (cf. Ref. [158]). The Josephson inductance LJ of the SQUID adds
to the inductance of the bare microwave resonator, L0, so that the resonance frequency of
the microwave resonator is given by

ωc = 1√
(L0 + LJ)C

, (8.1)

where C is the effective capacitance of the resonator.
The inductance of the dc-SQUID depends on the applied magnetic flux through the

SQUID loop φext according to [153]

LJ = φ0
2πIΣ| cos(πφext/φ0)| .

Here, φ0 = h/2e is the magnetic flux quantum and IΣ denotes the maximum critical current
over both Josephson junctions. Note that LJ can take values between Lmin

J = φ0/2πIΣ and
infinity, depending on φext, so that the resonance frequency of the microwave resonator,
given by Eq. 8.1, can be tuned from a maximum value ωmax

c = 1/
√

(L0 + Lmin
J )C down to

0.
We introduce a mechanical degree of freedom in this tunable microwave resonator by

replacing one of the SQUID arms by a nanobeam resonator as illustrated in Fig. 8.14a.
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Thus, the flux through the SQUID loop depends on the displacement of the nanobeam x0
via

φ(x) = φp + leffBextx0 ,

where φp is the static flux through the SQUID loop and Bext denotes the applied magnetic
field. The effective length leff ≈ 0.5l accounts for the shape of the displaced nanobeam
(cf. App. C).

In this system, the electromechanical coupling is given by

G = ∂ωc
∂x

= leffBext
∂ωc
∂φ

. (8.2)
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Figure 8.15: Transmission spectrum of the inductively coupled electromechanics sample, con-
taining two tunable microwave resonators, as a function of the external magnetic field. A
frequency-dependent background has been subtracted. a. Overview spectrum over a broad
magnetic field range. b. Detailed view around Bext ≈ 8 µT. At 3.3 GHz, the extracted slope
of the resonance frequency versus magnetic field corresponds to ∂ωc,1/∂φ ≈ −2π×59 GHz/φ0

and ∂ωc,2/∂φ ≈ −2π × 19 GHz/φ0, respectively.

In a first step, a tunable microwave resonator, consisting of a niobium CPW and
an aluminium SQUID with Al/AlOx/Al Josephson junctions, has been fabricated, into
which a l = 50 µm long Si3N4/Al nanobeam is integrated. The resonance frequency of the
fundamental in-plane mode of the nanobeam is ΩRT

m /2π = 3.635 MHz at room temperature.
At mK temperatures, we expect Ωm/2π ≈ 4.7 MHz due to the strong thermal contraction
of the aluminium film on top of the Si3N4 nanobeam [40]. Although the experimental
characterization is still in progress, first results already show that the derivative ∂ωc/∂φ

can reach values up to 2π×59 GHz/φ0 (see Fig. 8.15). With an experimentally determined
maximum applicable magnetic field4 Bmax

ext ≈ 1 mT, Eq. 8.2 predicts an electromechanical
coupling of G/2π = 0.69 GHz/nm. Using the estimated zero-point motion of the nanobeam
xzpm ≈ 19 fm, we expect the vacuum coupling rate g0/2π ≈ 13 kHz.

To compare the projected coupling to the relevant decay rates of the system, we assume
damping rates of κ/2π ' 2 MHz for the microwave resonator and Γm/2π ' 30 Hz for the

4The maximum allowed magnetic field is limited by the critical field of the superconducting thin film
and is therefore lower than the critical field of bulk aluminium. Experimentally, we find that at 2.2 mT
the superconductivity in the microwave resonator breaks down. We therefore intend to apply a maximum
magnetic field Bmax

ext ≈ 1 mT, which is well below the breakdown field.
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mechanical resonator. Hence, we obtain g2
0/Γmκ ' 2.8, i. e. we expect to reach strong

single-photon cooperativity with such a device.

8.5.2 Coupling of a transmon qubit to a circuit electromechanical hybrid
system

As mentioned above, a prerequisite for quantum experiments in a circuit electromechan-
ical hybrid system is the ability of generating single excitations in the microwave and/or
mechanical resonator. To this end, we couple a transmon qubit to a hybrid system con-
sisting of an aluminium CPW microwave resonator and an aluminium nanobeam, similar
to Sample #6.

The fabrication of such an integrated device, however, is challenging and requires a
thorough optimization of the process parameters. Within Daniel Schwienbacher’s master’s
thesis [136], a fabrication process was developed allowing integration of a tensile-stressed
aluminium nanobeam into an aluminium CPW microwave resonator which is strongly cou-
pled to a transmon qubit. First experiments show that the qubit parameters (in particular
its plasma frequency, anharmonicity and coupling to the microwave resonator) can be con-
trolled in the desired regime with the prospect of using the qubit as a single photon source
in future experiments.

For a detailed description of the fabrication process and first experimental results,
please see Ref. [136].

8.5.3 Three-body interactions in an electromechanical resonator-qubit
hybrid system

In this section, we present the proposal of a novel three-body hybrid system, consisting of
a transmon qubit, a microwave resonator and a mechanical resonator. This project, led by
Mehdi Abdi (TU Munich), provides some interesting prospects of circuit electromechanics
in the quantum regime, featuring, e. g., a three-body polariton-mechanical mode and a
strong nonlinear transmon-mechanical interaction. The results have been published in
Ref. [147].

b.

nanobeam

qubit

{

a.

Lc Cc

Cg(x)

Cχ

x
EJ

microwave resonator

Figure 8.16: a. Schematic layout of the proposed three-body hybrid system, consisting of a
transmon qubit, a CPW microwave resonator and a nanobeam resonator. b. Equivalent
circuit diagram.

We investigate the qubit-resonator-nanobeam hybrid system illustrated in Fig. 8.16.
The transmon qubit is capacitively coupled to the microwave resonator, with the coupling
χ exceeding the damping rates of both qubit and cavity, γtr and κ, respectively. We
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propose to integrate a nanobeam into the shunt capacitance of the transmon and forms
a displacement-dependent capacitance Cg(x), where x denotes the displacement of the
mechanical resonator.

A possible realization of the proposed hybrid system uses an l = 100 µm long aluminium
nanobeam with a cross-section of w × t = 120 × 100 nm2 and a distance of 10 nm to the
neighboring aluminium plane. For this geometry, the displacement-dependent change of
the capacitance between nanobeam and counterelectrode can reach ∂Cg/∂x ' 0.9 fF/nm.
The total capacitance of the transmon is given by Ctr(x) = C0 + Cg(x) with the con-
stant shunt capacitance C0 � Cg. The coupling between transmon qubit and nanobeam
resonator can be written as

G = ∂ωtr
∂x

= ∂ωtr
∂Cg

∂Cg
∂x

,

where ωtr/2π is the plasma frequency of the transmon qubit. As ωtr ∝ C
−1/2
t [153],

the derivative is ∂ωtr/∂Cg = ωtr/2Ct. Assuming a qubit frequency of ωtr/2π ' 10 GHz
and a typical shunt capacitance of C0 ' 60 fF, we estimate an electromechanical vacuum
coupling between qubit and nanobeam of g0/2π ' 2.3 kHz. The effective coupling is given
by gt = g0

√
2ζ with ζ = EJ/EC (EJ: Josehpson energy, EC: charging energy of the

transmon qubit).
In addition, we assume a strong capacitive coupling χ between transmon qubit and

microwave resonator, dominating the dephasing rates of both qubit and cavity: χ �
γtr, κ. In this regime, the qubit-resonator system can be described in terms of dressed
state excitations, so-called polaritons. Here, the polariton-mechanical mode interaction
cannot be linearized, in contrast to standard cavity opto/electromechanical systems. This
characteristic allows new prospects for the engineering of quantum states of a mechanical
resonator via microwave signals.

First, the presented three-body hybrid system enables ground state cooling of the
mechanical resonator via sidebands similar to a standard cavity opto/electromechanical
system, which is a prerequisite for quantum experiments. The proposed cooling scheme
is based on a large cavity-transmon detuning. In this case, the transmon-like polariton
strongly interacts with the mechanical mode (at a rate close to gt), while the photon-like
polariton is nearly decoupled from the mechanical mode. The minimum phonon number
that can be achieved with this cooling scheme is determined by the total dephasing time
T ∗2 of the qubit. For ΩmT

∗
2 > 1, the ground state can be reached (for details see Ref. [147]).

In addition, the system allows the preparation of mechanical Fock states via the strong
interaction between polaritons and the mechanical resonator. In order to generate a single-
phonon Fock state, the mechanical resonator has to be cooled down to the ground state
first, using e. g. sideband cooling as mentioned above. Then, a single polaritonic excitation
is created in the cavity-transmon system. Here, we excite the polariton with the higher
frequency (ω+) by applying a properly shaped microwave pulse. In the next step, the
transmon is tuned so that the eigenfrequency difference of the polaritons matches the
mechanical resonance frequency, ω+ − ω− = Ωm. After an evolution time of τ1 = π/2g̃
(where g̃ is the effective coupling rate, see Ref. [147]), the higher-energy polariton has
been converted to a lower-energy polariton and a phonon. Using another microwave pulse,
the lower-energy polariton is annihilated and the system ends up in a single-phonon Fock
state. This scheme can easily be repeated to prepare higher number states.
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Lastly, a protocol is proposed which allows the generation of tripartite hybrid en-
tanglement between qubit, microwave cavity and mechanical resonator. To describe this
protocol, we use the original picture of qubit, cavity and mechanical resonator states in-
stead of dressed states. Again, the mechanical resonator has to be in its ground state
at the beginning of the protocol. We apply a [π/2]0↔1 pulse to the qubit to prepare it
in a symmetric superposition of ground state and first excited state. Next, we let the
qubit interact with the mechanical resonator for half of the mechanical oscillation period.
This interaction leads to a conditional displacement of the state of the mechanics in phase
space, depending on the qubit excitation state. In realistic devices, the nanobeam-qubit
coupling gt is significantly smaller than the mechanical resonance frequency Ωm, so that
the displacement of the mechanical resonator is too small to be detected. We can solve
this issue by repeating the nanobeam-qubit interaction step several times, each time fol-
lowed by application of a [π]0↔1 pulse to the qubit. After Np steps, the system is in the
state5 (|0〉t |0〉c |β〉m + |1〉t |0〉c |−β〉m)/

√
2 with β = (Np + 1)gt/Ωm. Here, | · 〉t,c,m denotes

the state of the transmon (t), cavity (c) or mechanical resonator (m), respectively. By
application of a [π/2]0↔1 pulse to the qubit, the mechanical resonator can be prepared
in a superposition of odd and even cat states, (|0〉t |0〉c |Ψ+〉m + |1〉t |0〉c |Ψ−〉m)/2, where
|Ψ±〉 ∝ (|β〉 ± |−β〉) is an even-odd cat state. Last, we generate a single photon in the
microwave cavity. To this end, we apply a [π]1↔2 pulse to the transmon and thus flip the
qubit from the first to the second excited state. Then we tune the transmon in resonance
with the cavity for a time span π/2

√
2χ, so that the second qubit excitation decays by

emitting a photon into the cavity. The resulting state of the three-body system is

|Ψtcm〉 = 1
2 (|0〉t |0〉c |Ψ+〉m + |1〉t |1〉c |Ψ−〉m) ,

which is a hybrid Greenberger-Horne-Zeilinger (GHZ) state [159].
To account for energy relaxation and dephasing of qubit, mechanical resonator and cav-

ity, the protocols described above are performed numerically by solving the corresponding
master equation. These calculations show that for a realistic set of parameters, the single-
phonon Fock state as well as the GHZ state can be realized with high fidelity (∼ 80%).6
Thus we are confident that an experimental implementation of the proposed three-body
hybrid system will allow for the realization of the protocols described above and thus
provide a tool for quantum state engineering in circuit electromechanics.

8.6 Summary

We have demonstrated the experimental realization of an all-aluminium circuit nano-
electromechanical hybrid device consisting of a superconducting CPW microwave resonator
into which a tensile-stressed nanobeam resonator is integrated. We observed a mechanical
quality factor of 369 k at 50 mK, at a resonance frequency of 4.87 MHz. Using frequency
noise calibration and sideband spectroscopy of the thermal nanobeam motion, we deter-
mined the electromechanical vacuum coupling rate g0/2π = 0.67 Hz, which is corroborated
by finite element modeling. We demonstrated sideband cooling of the nanobeam motion to

5Here, we neglect an irrelevant global phase factor.
6For a detailed list of parameters and for the numerical results, please see Ref. [147].
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approximately 10 phonons, limited by the available microwave drive power. Besides, we in-
vestigated the device with two-tone spectroscopy and showed electromechanically induced
transparency, an interference effect between electromechanically generated cavity photons
and a weak probe tone. With this, we demonstrated the functionality of the presented
circuit electromechanical device.

The all-aluminium architecture employed here provides the basis for future, more com-
plex hybrid devices, combining e. g. a transmon qubit with a nanobeam resonator. This
would allow for state preparation and transfer experiments with single photonic/phononic
excitations, which are key requirements for quantum information processing. More-
over, a three-body hybrid system consisting of a qubit, a microwave resonator and a
nanobeam could open new routes in quantum state engineering due to the expected strong
nonlinear polariton-mechanical interaction, which cannot be realized in current cavity
opto/electromechanical systems.



Chapter9
Summary and Outlook

In this thesis, we have investigated nanomechanical resonators integrated in hybrid sys-
tems. We have used doubly-clamped nanobeam resonators fabricated from a tensile
stressed silicon nitride or aluminium thin film, characterized them and integrated them
into magnetomechanical and circuit electromechanical hybrid devices. The presented re-
sults can be important for sensing applications and material studies as well as for cavity
optomechanical-like experiments and mechanics in the quantum regime.

Based on former work at the Walther-Meißner-Institut and at the chair of Prof. J. Kott-
haus (LMU Munich), we have developed processes for the fabrication of various hybrid
devices. By optimizing and adapting the individual fabrication steps – electron beam
lithography, thin film deposition, lift-off, dry and wet etching techniques and critical point
drying – to the respective demands, we have established the processes for the fabrication
of magnetomechanical and circuit electromechanical hybrid systems.

In the first part of this thesis, we demonstrated the fabrication and characterization
of high-Q nanobeam resonators made from a tensile stressed Si3N4 or aluminium film.
We determined the two most relevant material parameters, prestress and Young’s mod-
ulus, which are consistent with literature values. With these results, we developed the
basis for the integration of high-Q nanobeam resonators into hybrid devices. For the
characterization measurements, we have designed and installed an optical free space laser
interferometer into which a microscope is integrated. This setup allows for a fast and
easy investigation of the motion of nanomechanical resonators and is also useful for the
pre-characterization of electro- or magnetomechanical hybrid devices.

In a second step, we extended our analysis to nanobeams consisting of a stack of two
or more layers. The combination of different materials in a nanomechanical beam allows
tailoring the system’s material properties to meet particular experimental requirements.
Besides, multilayer nanobeams allow to combine excellent mechanical properties with ef-
ficient coupling to other degrees of freedom of e. g. optical cavities, microwave circuits or
magnetic/multiferroic materials. Therefore multilayer nanobeams play a vital role for the
realization of nanomechanical hybrid devices. We presented a comprehensive theoretical
analysis of the mechanics of multilayer nanobeams. Taking the inhomogenity of a multi-
layer nanobeam’s cross-section into account, we derived the equation of motion describing
the vibrational in-plane and out-of-plane modes of the beam. We showed that the mo-
tion of multilayer nanobeams can be described similar to the one of a homogeneous beam
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when introducing effective material parameters for prestress, Young’s modulus and density.
These effective parameters can be calculated from the properties of the individual layers,
which allows predicting the properties of the multilayer nanobeam or extracting material
properties from a spectroscopic investigation of the nanobeam motion. We verified the
presented theory by comparing to experimental data of a Si3N4/Nb bilayer nanobeam.

Next, we investigated a magnetomechanical hybrid system, where a ferromagnetic thin
film (FM) has been deposited on a Si3N4 nanobeam. We showed that this platform can
be used to probe magnetostriction in thin films. As a proof-of-principle experiment, we
studied magnetostriction in a cobalt and a nickel thin film. Due to magnetoelastic coupling
in the ferromagnet, an alignment of the magnetization generates stress in the magnetic
film. In the presented Si3N4/FM bilayer nanobeams, this magnetoelastic stress translates
into a resonance frequency shift of the beam’s vibrational modes. We measured this fre-
quency shift as a function of an externally applied magnetic field and could thus deduce
the magnetostriction constants of the magnetic thin films. Furthermore, we analyzed the
measurement sensitivity of this magnetostriction measurement method and showed that
the presented approach is promising in particular for the investigation of thin and ultra-
thin films. As the magnetoelastic interaction results in a frequency shift in the presented
device, the magnetostriction constants can easily be determined by a resonance frequency
measurement, which does not require a quantitative read-out of the displacement of the
nanobeam. Besides, the platform is versatile in the sense that it can be applied to any
magnetic thin film that can be deposited via electron beam evaporation, thermal evapo-
ration or sputtering. The presented device layout opens the path for the investigation of
magnetostriction in films consisting of few (or even a single) monolayer(s) and thus study
of magnetoelastic coupling in (quasi-)2D materials.

In a next step, a similar magnetomechanical hybrid system could be employed to study
coherent magnon-phonon coupling. Using a nanobeam with a periodic hole pattern acting
as a superlattice, mechanical modes in the GHz regime can be realized, which are efficiently
decoupled from the environment [160]. Similarly, the magnons (quantized spin waves) in
such a patterned nanobeam covered with a ferromagnetic thin film can be tailored in a
way that their resonance frequency matches the mechanical eigenfrequency [161]. In such
a system, cooled down to mK temperatures, magnon-phonon interaction in the quantum
limit could be studied. Besides, sideband coupling of the MHz fundamental vibrational
mode of the nanobeam to the magnetic degrees of freedom could allow to transfer the field
of cavity opto/electromechanics to magnetism (cf. Refs. [162,163]).

Turning to circuit electromechanics, we presented two devices with a tensile stressed
nanobeam coupled to a superconducting coplanar waveguide (CPW) microwave resonator.
In the first realization, we used a pure Si3N4 nanobeam integrated into a niobium mi-
crowave cavity. Thus we extended previous work on the dielectric actuation and read-out
of nanomechanical resonators by using the superconducting high-Q microwave resonator to
detect the motion of the nanobeam. We characterized the system and determined the elec-
tromechanical coupling between the nanobeam and the microwave resonator. Even if the
coupling rate is small compared to typical circuit electromechanical devices, the presented
sample layout enables particularly high mechanical quality factors as it avoids additional
damping contributions caused by a metallization of the nanobeam. This approach is
therefore well-suited to study mechanical damping in silicon nitride at low temperatures.
In particular, analyzing the temperature dependence of the damping rate could allow to
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identify damping mechanisms and thus contribute to the understanding of the relevant
damping channels on a microscopic level. High mechanical quality factors are required
especially for sensing devices and therefore the precise investigation and elimination of
loss contributions is currently subject to extensive research [71, 73, 164]. The presented
platform allows access to the temperature range below 4 K, which could not be investi-
gated so far. In the long term, magnetic and multiferroic materials can be integrated into
the Si3N4 nanobeam, enabling new ways of static and dynamic control of the mechanical
properties.

In addition, we have developed the fabrication of tensile stressed aluminium nanobeams
which we have integrated into a superconducting aluminium CPW microwave resonator.
With this approach, we continued previous work at the Walther-Meißner-Institut on cir-
cuit electromechanics with a Si3N4/Nb bilayer beam coupled to a niobium microwave
resonator. We transfered this idea to an all-aluminium basis, which allows for the direct
integration of, e. g., SQUIDs (superconducting interference devices) or transmon qubits,
based on Al/AlOx/Al Josephson junctions. We demonstrated the functionality of the
aluminium circuit electromechanical hybrid device and characterized the microwave res-
onator as well as the nanobeam resonator. This allowed us to determine the prestress in
the aluminium film at mK temperatures and analyze the damping rate as a function of
temperature. Besides, we demonstrated sideband cooling of the fundamental vibrational
mode of the nanobeam to a phonon number of approximately ten. Using the example of
electromechanically induced transparency, we showed the effects of mechanical backaction
on the microwave circuit.

The presented all-aluminium design is promising with respect to the realization of cir-
cuit electromechanics in the quantum regime. First, by introducing e. g. focused ion beam
milling in order to separate the nanobeam from the adjacent ground plane [53], the gap be-
tween beam and ground plane could be reduced by approximately one order of magnitude,
resulting in a coupling enhancement by a factor of ten. Second, the electromechanical
coupling can be increased further by replacing the CPW microwave resonator with a high-
impedance lumped element resonator (see, e. g., Refs. [20,24,25]). The projected coupling
is then comparable to the one reached with drum-like aluminium mechanical resonators,
coupled to a lumped element microwave cavity [20, 24, 25]. Compared to membrane res-
onators, tensile stressed nanobeams feature particularly small masses and therefore large
zero-point motion. This is beneficial for sensing applications as well as for fundamental
quantum mechanics experiments below the standard quantum limit.

Furthermore, the realization of the all-aluminium circuit electromechanical hybrid de-
vice opens the path for the integration of a transmon qubit as a single photon source.
This allows, e. g., the preparation of Fock states in the mechanical resonator [23]. Besides,
the nanobeam can be integrated directly into the shunt capacitor of the transmon qubit.
This system has been proposed for the generation of mechanical Fock and cat states and
hybrid tripartite entangled states. Furthermore, it features intrinsically strong nonlinear
interactions between the transmon and the nanobeam resonator, which is qualitatively
different from standard cavity opto/electromechanical systems [147].

As an alternative approach towards strong electromechanical coupling, we have de-
signed an inductively coupled nanobeam-microwave resonator hybrid system, in which the
electromechanical interaction is mediated via a SQUID. The vacuum coupling is expected
to exceed the one of the presented (capacitively coupled) all-aluminium device by about
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three orders of magnitude and thus reach the single photon strong coupling limit. More-
over, the inductive coupling can be switched on and off faster than the relevant decoherence
times of the system, allowing e. g. novel state preparation protocols.

Thinking one step ahead, the combination of high-Q nanomechanical resonators with
superconducting qubits may open a door towards the realization of quantum computing
architectures. This idea has been subject to extensive theoretical investigation and formu-
lated in various proposals, of which we want to mention two. Rips et al. studied a network
of mechanical qubits formed by the two lowest excitation states of a strongly anharmonic
resonator [165]. In this system, single qubit rotations are performed by application of RF
electrical fields. A coherent optical photon field couples the mechanical qubits to each
other and allows the realization of two-qubit gates. Zou et al. investigated an electrome-
chanical network of Josephson charge qubits [166]. Here, a MHz mechanical resonator is
coupled to charge qubits via electrostatic forces and serves as a bus for quantum infor-
mation. The authors show the feasibility of quantum phase gates and the generation of
maximally entangled states in the presented system. The realization of these proposals
on the basis of the all-aluminium platform would constitute an important step towards
quantum information processing with nanomechanical elements.

One particular aspect of quantum effects in mechanical systems is the realization of a
phonon blockade, which means that a single phonon in a mechanical resonator can block
the excitation of a second one. This purely quantum mechanical effect is considered an
important step towards single phonon generation and detection, and thus constitutes a
crucial resource for quantum information processing with phonons [167,168]. Theory work
suggests a realization, e. g., by coupling a mechanical resonator to a charge qubit [169] or by
exploiting Kerr-type nonlinearities [170,171]. From the perspective of sample fabrication,
the first approach is close to the systems realized in the scope of this thesis and could
therefore be the next step towards nanomechanics in the quantum regime.

In conclusion, we have realized nanomechanical hybrid systems which combine the
specific features of tensile stressed nanobeams (high quality factors, small effective masses,
frequencies in the MHz regime) with magnetic and electrical degrees of freedom. This
is relevant for sensing applications as well as for fundamental quantum mechanics and
quantum information processing and storage.



AppendixA
Analytical approximation of the resonance
frequency of a tensile stressed nanobeam
including bending effects

In Sec. 4.1.5, we have demonstrated that the resonance frequency of our typical tensile
stressed nanobeam resonators cannot be reproduced very precisely using the approxima-
tion of a highly tensile stressed (HTS) nanostring (Eq. 4.18). We therefore derive an
approximation which includes the contribution of bending in a tensile stressed nanobeam
to first order. This new expression, which can be regarded as a first order correction of the
HTS formula, reduces the error of the predicted resonance frequency by about one order
of magnitude (relative to the exact numerical solution) and can still be written in a handy
analytical form.

We start with the determinant of the system of linear equations, which we derive by
substituting the general solution of the Equation of motion 4.9

v(x) = c1 exp(αx) + c2 exp(−αx) + c3 sin(βx) + c4 cos(βx)

with

µ± =
σ0A±

√
σ2

0A
2 + 4EIρAΩ2

2EI , (A.1)

I = wt3

12 ,

α = √
µ+ > 0 , and (A.2)

β = −ı√µ− > 0 (A.3)

into the set of boundary conditions (Eq. 4.11)

v(x = −l/2) = 0
v(x = l/2) = 0

∂v(x = −l/2)/∂x = 0
∂v(x = +l/2)/∂x = 0 .
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The determinant has to vanish to allow non-trivial solutions (i. e. solutions with at least
one non-vanishing coefficient cj , j = 1, .., 4):

e−αl
[(
α2 − β2

) (
e2αl − 1

)
sin(βl) + 4αβeαl − 2αβ

(
e2αl + 1

)
cos(βl)

]
= 0 (A.4)

For typical tensile stressed nanobeams, 4EIρAΩ2 � σ2
0A

2. We can therefore expand
the square root in A.1 to first order and obtain

µ± ≈
σ0A

2EI

[
1±

(
1 + 2EIρAΩ2

σ2
0A

2

)]
.

With Eqs. A.2 and A.3, we get

α ≈ α0 :=
√
σ0A

EI
and (A.5)

β ≈
√
ρ

σ0
Ω . (A.6)

In the HTS approximation (where bending effects are neglected), the resonance fre-
quency of the n-th order mode is given by Ωn,HTS = nπ/l

√
σ0/ρ (see Eq. 4.18). We

substitute this into Eq. A.6 and obtain

βl =
√
ρ

σ0
Ωl ≈ nπ (A.7)

and therefore
cos(βl) ≈ (−1)n .

With this, we can simplify Eq. A.4 to(
α2

0 − β2
) (
e2α0l − 1

)
sin(βl) + 2α0β

[
2eα0l − (−1)ne2α0l + (−1)n

]
= 0 . (A.8)

Applying typical geometry and material parameters (as given, e. g., in Chap. 3), we
notice that α0 & 10β with βl ≈ nπ > 1. We can therefore safely assume eα0l � 1 and
reduce Eq. A.8 to

(α2
0 − β2) sin(βl)− (−1)n2α0β = 0 .

Approximating α� β, we obtain

α0 sin(βl)− (−1)n2β = 0 . (A.9)

In order to solve this for β, we employ Eq. A.7 and expand sin(βl) around nπ:

sin(βl) ≈ (−1)n(βl − nπ)

Substituting this into Eq. A.9, we get

β = nα0π

α0l − 2 .

Finally, we use Eqs. A.5 and A.6 to replace α0 and β by the geometry and material
parameters σ0, A, E, I and ρ and the resonance frequency Ωn/2π. Solving for Ωn yields

Ωn,TS = nσ0π
√
A/ρ

√
σ0A l − 2

√
EI

= Ωn,HTS

√
σ0A l√

σ0A l − 2
√
EI

. (A.10)

Equation A.10 illustrates that the derived expression is a first order correction to the ap-
proximation of a highly tensile stressed beam. Obviously, Ωn,TS > Ωn,HTS. This can easily
be understood as the bending contribution to the total energy of the vibrating nanobeam
leads to an effective stiffening of the resonator, resulting in an increased eigenfrequency.
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AppendixB
Lorentzian response spectrum with
complex background

In experiments, the transmission spectroscopy of microwave resonators often shows sig-
nificant deviations from the ideal Lorentzian lineshape (Eq. 6.7 resp. 6.10). These devi-
ations can be attributed to impedance mismatches and discontinuities in the microwave
lines [118–120]. We therefore fit a modified Lorentzian to the experimental data, which
phenomenologically covers these effects by introducing a constant complex background.

We start with the complex voltage transmission of a λ/2 microwave resonator, coupled
to an input and output line as shown in Fig. 6.5a, which is given by [115,116]

t(ω) =
√
κexκ/2

κ/2 + i(ω − ωc)
,

where κin and κex denote the internal and external damping rate, respectively, and κ =
κin + κex is the total damping rate.

We introduce a complex background ic1 that modifies the measured voltage transmis-
sion as

tmeas(ω) = t(ω) + ic1 .

The power transmission spectrum of the resonator can then be written as

Tmeas(ω) = |tmeas(ω)|2 =
∣∣∣∣ic1 +

√
κexκ/2

κ/2 + i(ω − ωc)

∣∣∣∣2 + c2 , (B.1)

where c2 accounts for a constant real background due to amplifier noise, for instance.
Analogously, we can write the transmission of a λ/4 microwave resonator, coupled to

a transmission line as depicted in Fig. 6.5b, as

Tmeas(ω) = 1−
∣∣∣∣ic1 +

√
κexκ/2

κ/2 + i(ω − ωc)

∣∣∣∣2 + c2 . (B.2)

Within this thesis, we use Eqs. B.1 and B.2 to fit the measured power transmission
spectra of our microwave resonators and determine ωc, κin and κex from the experimental
data.
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AppendixC
Effective length of a nanobeam integrated
in a CPW microwave resonator

For an a priori estimation of the electromechanical coupling between the nanobeam and
the superconducting microwave resonator of Sample #5 and #6, we employ a COMSOL
finite element model that allows to determine the change of the capacitance Cg as a function
of the displacement of the nanobeam v0 ≡ x0

1. To save computing power, we use a 2D
model representing the cross-section of the devices at the position of the nanobeam, as
illustrated in Figs. 7.3 and 8.3, respectively. With this, we can calculated the derivative
∂cg/∂v0, where cg is the capacitance per length between the electrodes. When calculating
the total capacitance from cg, we have to take into account that the nanobeam displacement
is not uniform over the length of the nanobeam, i. e. the mechanical displacement and thus
its effect on the capacitance is maximal at the center of the beam.

Considering that the displacement v is a function of the position x along the beam,
the capacitance variation δCg induced by a displacement v(x) is given by

δCg = ∂cg
∂v

∫ l/2

−l/2
dx v(x) .

In linear approximation, we write

∂Cg
∂v0

≈ δCg
v0

= ∂cg
∂v

∫ l/2

−l/2
dx v(x)

v0
.

The integral can be solved numerically using the beam shape calculated in Sec. 4.1.5,
or approximated analytically using v(x) = v0 cos(πx/l) (which is the exact solution for the
fundamental mode of a highly tensile stressed nanobeam). In the latter case, we obtain∫ l/2

−l/2
dx v(x)

v0
= 2l
π
.

Thus, we define
∂Cg
∂v0

= ∂cg
∂v
· leff ,

1Similar to Chap. 4, we denominate the displacement of the beam v(x), where x is the coordinate along
the beam axis. The displacement at the center of the beam, at x = 0, is denoted v0.
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where leff := 2l/π ≈ 0.637 l is the effective length of the beam.
In Ref. [128], we have calculated the beam shape of the fundamental out-of-plane mode

of the tensile stressed Si3N4 nanobeam integrated in Sample #5 and found∫ l/2

−l/2
dx v(x)

v0
≈ 0.613 l ,

corresponding to an effective length lS #5
eff ≈ 0.613 l.
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AppendixD
Temperature dependence of the resonance
frequency of a tensile stressed nanobeam

We assume a tensile stressed nanobeam resonator, fabricated on a thick single-crystalline
silicon substrate, as illustrated e. g. in Fig. 2.1 [left-hand side]. Typically, the resonance fre-
quency of such a nanobeam depends on temperature, which is caused by different thermal
expansion coefficients of the nanobeam material and the substrate.

In this section, we derive the thermally induced stress and the resulting resonance
frequency shift for a given temperature change ∆T as a function of the relevant material
parameters. We use this to estimate the stress in annealed aluminium nanobeams at room
temperature and at mK temperatures.

When applying a temperature change ∆T , an unclamped nanobeam with a room-
temperature length l0 would elongate according to [85]

l′ = l0αbeam∆T .

Similarly, the silicon substrate changes its dimensions according to

l′′ = l0αSi∆T .

The thermal expansion of the beam relative to the substrate is therefore

∆l = l′ − l′′ = l0 (αbeam − αSi) ∆T .

In case of a doubly-clamped nanobeam, the length of the beam is given by the distance
between the clamping points. The different thermal expansion coefficients of beam and
substrate therefore result in a thermal stress along the beam axis [85]

∆σ = Ebeam
∆l
l0

= Ebeam (αbeam − αSi) ∆T . (D.1)

To calculate the impact on the resonance frequency, we use Eq. 2.3 and obtain

Ω′m = π

l′

√
σ0 + ∆σ

ρ
≈ π

l0

√
σ0
ρ0

√
1 + ∆σ

σ0
≈ Ωm

(
1 + ∆σ

2σ0

)
.

With Eq. D.1, we find for the relative resonance frequency shift

∆Ωm
Ωm

:= Ω′m − Ωm
Ωm

≈ ∆σ
2σ0

= αbeam − αSi
2σ0

Ebeam∆T .
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In the following, we estimate the expected thermal stress and relative frequency shift
for two cases relevant within this thesis.

D.1 Annealing of an aluminium beam

As mentioned in Sec. 3.1.2, we use an annealing step (30 min at 350 ◦C) after the aluminium
evaporation to generate a tensile stress σ0 in the aluminium thin film. To estimate the
resulting stress, we use the thermal expansion coefficients of aluminium and silicon at room
temperature, αAl = 23.1×10−6 K−1 [96] and αSi = 3.3×10−6 K−1 [172] and Young’s modu-
lus of aluminium, EAl = 70 GPa [137]. With ∆T ≈ 330 K, we obtain σ0 ≡ ∆σ = 460 MPa.
This clearly exceeds the experimentally determined values σ0 = 159 MPa (Sample #2) and
σ0 = 243 MPa (Sample #6), respectively. We thus conclude that the aluminium thin film
consolidates at a temperature significantly below 350 ◦C and therefore releases part of the
expected strain during the cooldown process.

D.2 Cooling an aluminium beam to mK temperatures

When cooling a tensile stressed aluminium nanobeam to mK temperatures, the stress
will increase further. To estimate this stress contribution, we have to consider that the
thermal expansion coefficients of most materials vanish at low temperature. To account for
this, we average the temperature-dependent thermal expansion coefficients for aluminium
and silicon, given in [173], over the temperature range between 0 and 300 K and obtain
αmean

Al = 15.3 × 10−6 K−1 and αmean
Si = 0.9 × 10−6 K−1. Together with EAl = 70 GPa (we

neglect the slight increase of EAl at low temperatures [174]), we obtain ∆σ = 295 MPa,
corresponding to a relative frequency shift of ∆Ωm/Ωm ≈ 0.63 for Sample #6. This agrees
roughly with the value ∆σexp = 407 MPa, experimentally determined for Sample #6. The
deviations are due to the fact that we do not know the precise material constants for our
thin films and have therefore used literature bulk values.
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[109] F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hako-
nen, and M. A. Sillanpää, Nature 480, 351 (2011).
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