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Chapter 1

Introduction

Since the rise of quantum theory in the early 20th century, substantial discoveries in

the field have been made and various quantum phenomena have been experimentally

studied and theoretically described. In the last two decades, significant effort has been

invested in the question, whether these quantum phenomena can help to surpass the

performance of classical information processing and communication. With that, the

field of quantum information science was born. Several protocols exist in this field, in

which the superposition of quantum states and entanglement between spatially separated

systems is of central importance. For example, in quantum computing one replaces the

classical bits with so called quantum bits, or qubits, which can be realized by quantum

two-level-systems. A qubit can be in any superposition of two eigenstates and thus, in

contrast to classical bits, a continuum of states is available. For certain types of problems,

quantum computers are expected to provide a significant speed-up compared to classical

computers [1, 2].

Furthermore, quantum key distribution [3, 4], quantum teleportation [5–7], heralded

entanglement between distant atoms [8, 9] and a future quantum network [10] are topics

of high interest. Here, the exchange of quantum information between multiple parties is

required and the question of how to achieve this exchange arises. Apart from directly

transporting the entity, in which a quantum state is encoded, one can use a ’carrier’,

which interacts with the quantum state and travels to the desired location to retrieve

the information there. In quantum electrodynamics (QED) one studies the interaction

between light and matter. The photons can then take the role of the ’carrier’ which carries

information about the quantum state of the object.

In a basic quantum optics experiment one uses optical photons in a cavity and single

atoms, acting as natural two-level-systems, to study the quantum phenomena resulting

from the interaction between the photons and the qubit. From that the field of cavity

QED [11] was created and substantial progress has been made over the last years [12].

However, the interaction strength between atoms and the light field in an optical cavity is

limited by the small dipole moments of the atoms and low field strengths due to the large

mode volume of a cavity.
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2 Chapter 1 Introduction

Replacing the atom by a superconducting circuit acting as an effective two level system

and the cavity by an on-chip superconducting microwave resonator opens up the new field

of circuit QED. Due to the large dipole moments of the superconducting qubits [13] and

the small mode volumes inside a quasi one-dimensional coplanar waveguide resonator,

large interaction strengths between qubit and resonator are easily achievable [14]. It is

even possible to surpass the coupling strengths of cavity QED and explore new physics in

the ultra-strong coupling regime [15].

In contrast to optical cavity QED, where optical photons with frequencies of several

hundred THz are used, typical frequencies for circuit QED experiments with supercon-

ducting circuits are in the microwave regime around several GHz, leading to two severe

experimental drawbacks. First, the superconducting circuits need to be cooled below their

transition temperature to become superconducting, in order to be used as an effective

two-level system with low loss, forming a qubit. Second, a microwave photon frequency of

several GHz corresponds to a temperature of around several 100 mK. Therefore, in an

experiment at room temperature the tiny microwave quantum signal would always be

obscured by a comparatively huge thermal noise contribution. That is also the reason why

there are no efficient single photon detectors for microwave photons at room temperature.

To analyze quantum microwave signals despite the lack of single photon detectors,

one needs to amplify the signal, which is inevitably associated with adding noise to

the signal [16]. Commercial cryogenic high-electron-mobility transistors (HEMTs) are

commonly used at low temperatures as phase-insensitive amplifiers, adding only a few tens

of noise photons to a signal during amplification. With a recently developed signal recovery

technique, the dual-path state reconstruction scheme [17, 18], we are able to analyze

quantum states in the presence of a considerable amount of noise. Furthermore, due to

the use of a beam splitter, this technique enables one to characterize the entanglement of

quantum microwave signals propagating along two spatially separated paths [19].

Another approach is to use phase-sensitive amplifiers to detect quantum signals. For

that purpose Josephson Parametric Amplifiers (JPAs)[20–23] are an essential resource.

If operated in the phase-sensitive mode, JPAs exhibit noise performances far below the

standard quantum limit [23–25] and can be used as low noise pre-amplifiers followed by

standard phase-insensitive amplifiers. At the same time, JPAs are also used to create

non-classical microwave states. Due to parametric effects, squeezed states can be generated

in a JPA. In a squeezed state the symmetric uncertainties of the two quadratures of a signal

are deformed in a way, so that the noise of one quadrature is reduced below the vacuum

level. Single-mode squeezed states [19, 23, 24] or two-mode squeezed states [26], depending

on the operation mode, have been observed. Since squeezed states are non-classical, they

are an important resource in quantum information science protocols for e.g. creating

path entanglement [19] or the generation of EPR-pairs for quantum teleportation in the

microwave regime [27].
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In this work we use a flux-driven JPA [20], consisting of a coplanar waveguide resonator,

where the inner conductor is grounded on one side by a direct-current superconducting

quantum interference device (dc-SQUID). The flux dependent non-linear inductance of the

dc-SQUID is utilized to tune the resonant frequency of the resonator. By applying a fast

varying flux, the resonant frequency is periodically modulated, giving rise to parametric

effects and leading to the generation of squeezed propagating microwave states, which leak

out of the JPA through a coupling capacitance. Similarly, two-mode squeezed states can

be generated by the dynamical Casimir effect, where quantum fluctuations of a resonator

field are converted to a measurable signal by rapidly changing the boundary conditions of

the resonator, which has been observed with a similar superconducting circuit [28].

Furthermore, not only squeezed vacuum states, which are located at the origin of the

phase-space, but also displaced squeezed states are of interest. On one hand, a squeezed

coherent state is generated by sending a coherent signal to a JPA. The center of the

resulting squeezed state is no longer located at the origin of the phase space anymore, but

is shifted along a certain direction. On the other hand, if one first squeezes the vacuum

with a JPA and then feeds the squeezed state into a highly asymmetric directional coupler,

which is biased by a strong coherent signal, on obtains a displacement operation on the

input state [29] and, thus, a displaced squeezed state is generated. Such a displacement

operation is the equivalent to a linear transformation in quantum information protocols

when working with continuous variables [27]. Also, a displaced squeezed state is a mixture

of a classical signal, the coherent signal, and a non-classical state, the squeezed state,

making it an interesting object to study.

This thesis is structured in the following way. First, in chapter 2, we lay a theoretical

background for the understanding of propagating quantum microwave signals, including

the description of microwave states and the fundamentals of the dual-path reconstruction

method. Also, we introduce the constituents of a Josephson Parametric Amplifier and

present the working principle of the latter. Furthermore, parametric amplification and

the generation of squeezed light are discussed in context of the flux-driven JPA. Next, the

experimental techniques with the cryogenic setup and the IQ-cross correlation detector

are presented in chapter 3. In chapter 4, the dependence of the resonant frequency of

the JPAs on an external flux is studied and simulations, describing the experiments, are

presented. Furthermore, non-degenerate gain measurements and the noise properties of a

JPA are discussed. Subsequently, we use the JPA in the phase sensitive mode and squeeze

vacuum states in chapter 5. We study squeezed vacuum states for different non-degenerate

signal gains of the JPA as well as for different displacements in phase space. We present

simulations, helping to understand the measured states. Finally, we conclude with a

summary and give a short outlook in chapter 6.





Chapter 2

Theory

This chapter provides theoretical background of our work. We start by introducing

propagating quantum microwave signals and their representation by quasi-probability

distributions, in particular by a Wigner function. Next, important microwave states,

including coherent and squeezed states, are discussed. Detection of propagating quantum

microwave signals is realized with a dual-path state reconstruction method.

Furthermore, we address the fundamental building blocks of a Josephson Parametric

Amplifier (JPA), including Josephson junctions and dc-SQUIDs. Finally, we discuss the

physics of a flux-driven JPA and its application for the generation of squeezed microwave

light.

2.1 Propagating quantum microwaves

2.1.1 Representation of quantum microwaves

A single-mode classical microwave signal A(t) with frequency f = ω/(2π) can be expressed

as

A(t) = I(t) cos(ωt) +Q(t) sin(ωt), (2.1)

where I(t) is an in-phase and Q(t) is an out-of-phase quadrature component.

For the quantum description of a corresponding photonic field, one has to take into

account additional properties imposed by quantum mechanics. One of them is the

Heisenberg uncertainty relation between two complementary variables such as quadrature

components q̂ and p̂, which are the quantum mechanical analogies to the classical in-phase

and out-of-phase components I and Q, respectively. Classically it is possible to measure

both complementary variables with infinite accuracy at the same time, whereas in quantum

mechanics the knowledge of both variables is limited by the Heisenberg relation

∆q∆p > 1
4 , (2.2)

5



6 Chapter 2 Theory

where the standard deviation ∆A of an observable A is given by

(∆A)2 = 〈(∆Â)2〉 ≡ 〈Â2〉 − 〈Â〉2 . (2.3)

The operator for an one-dimensional, single-mode electrical field is given by [30]

Â(r,t) = C
[
â†ei(ωt−kr) + â e−i(ωt−kr)

]
, (2.4)

where C is a normalization constant, ω = 2πf the angular frequency of the light mode

and k the wave vector. We also introduced the creation and annihilation operators â† and

â, respectively, with the usual commutator [â, â†] = 1.

By comparing to a reference plane oscillating as cos (ωt− kr), one can introduce

relations between the field quadratures and the respective field operators [31]

q̂ = â+ â†

2 and p̂ = â− â†

2i , (2.5)

obeying the commutation relation [q̂, p̂] = i
2 . If the reference plane has an arbitrary

phase-shift θ, that means an oscillation like cos (ωt− kr − θ), the generalized quadrature

operators read

q̂θ =

(
âe−iθ + â†eiθ

)
2 and p̂θ =

(
âe−iθ − â†eiθ

)
2i , (2.6)

or utlilizing Eq. (2.5)

q̂θ = q̂ cos(θ) + p̂ sin(θ) and p̂θ = −q̂ sin(θ) + p̂ cos(θ) . (2.7)

Therefore, a phase shift θ corresponds to a rotation of the axis spanned by q and p in a

phase space representation.

There exist several ways to describe a quantum state, one being via quasi-probability

distributions. Such distributions can not be regarded as a full analogy to a classical

probability distribution, since the Heisenberg uncertainty relation prohibits the knowledge

of both quadratures at the same time. So the classical approach of defining a probability

to find a system in a state with well defined q and p is not possible. Nevertheless, the

extension to quantum mechanics to so-called quasi-probability distributions proved to be

useful in describing quantum states, where the first one was introduced by Wigner [32, 33]

W (q,p) = 1
π~

∫
〈q − y|ρ̂|q + y〉e2ipy/~dy , (2.8)

where q and p are the dimensionless amplitudes of the quadratures and ρ̂ is the density

matrix of the quantum state. It can be understood as a mapping between phase-space and

an operator representation of a quantum state and is called the Weyl-Wigner transform [34].
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There also exist other formulations of the Wigner function. One can define the Wigner

function as the Fourier transform of a symmetrically ordered characteristic function [30]

ξ(η) = Tr{ρ̂D̂(η)} = Tr{ρ̂eηâ†−η∗â} , (2.9)

where we also introduced a displacement operator D̂(α) = exp
(
αâ† − α∗â

)
. Therefore,

The characteristic function gives an expectation value of the displacement operator. The

Wigner function can then be written as

W (α) = 1
π2

∫
exp(η∗α− ηα∗)ξ(η) d2η . (2.10)

By defining the complex amplitude α = q + ip, Eq. (2.10) also maps a quantum state

to a phase space. The marginal distributions for q and p, giving the probabilities to

find the state with a certain q or p, are w(q) =
∫∞
−∞W (q,p)dp and w(p) =

∫∞
−∞W (q,p)dq,

respectively. They can be understood as projections of the Wigner function onto the

respective axis.

Based on a different approach, the characteristic function ξ(η) and, thus, the Wigner

function, can also be expressed in terms of the normally ordered moments of the creation

and annihilation operators 〈(â†)mân〉 [35, 36]

ξ(η) = e−|η|
2/2 ∑

m,n

〈
(â†)mân

〉
m!n! ηm (−η∗)n . (2.11)

By inserting the last expression for ξ(η) in Eq. (2.10), the Wigner function is expressed

by the moments

W (α) =
∑
m,n

〈
(â†)mân

〉
π2m!n!

∫
ηm (−η∗)n exp

(
−|η|

2

2 + η∗α− ηα∗
)

d2η . (2.12)

Consequently, the knowledge of all moments 〈(â†)mân〉 allows the calculation of the

Wigner function. In fact, the description of a quantum state by means of all moments is

equal to the description by the Wigner function, or by the density operator [37–40]. It

should be noted that for an arbitrary quantum state the knowledge of all moments is

needed to fully describe the state. From an experimental point of view the measurement

of an infinite amount of moments is not feasible due to a finite measurement time for

each moment. In Ref. [36], starting from the Schrödinger-Robertson inequality [41] an

uncertainty relation in terms of moments 〈(â†)mân〉 with m+ n 6 2 as well as inequalities

up to fourth order are derived. Such conditions can be used to discard unphysical sets of

reconstructed moments.

Based on the principle of maximum entropy first introduced by Jaynes [42], Buzek et al. [40,

43] investigated the reconstruction of the Wigner function with a finite number of moments.

On the observation level O2 = {â†â,(â†)2,â2,â†,â}, the approach yields an expression for
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the Wigner function, which only contains moments up to the second order

W (q,p) = 1
π
√

(ν + 1/2)2 − |µ|2

× exp
[
−(ν + 1/2)|ζ − 〈â〉|2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ − 〈â†〉)2

(ν + 1/2)2 − |µ|2

]
, (2.13)

where ζ = q+ ip, µ = 〈â2〉−〈â〉2 and ν = 〈â†â〉−|〈â〉|2. The phase space variables p and q

are normalized so that |ζ|2 = p2 + q2 is in units of number of photons. Furthermore, it was

shown that the reconstruction is complete on the observation level O2, if ν(ν + 1) = |µ|2
holds since for such states the associated entropy is zero [40]. Consequently, all pure

Gaussian states with ν(ν + 1) = |µ|2 are fully described by moments up to the second

order and the Wigner function is positive.

2.1.2 Gaussian quantum microwave states

In this subsection, important types of quantum microwave states are introduced and their

basic properties are discussed. Further, the description on the basis of moments and

corresponding Wigner functions is presented.

Thermal states

Thermal states, emitted by a black body emitter with a certain equilibrium temperature

T , follow the Bose-Planck statistics with a mean photon number

〈n̂〉 = Tr(â†âρth) = 1
exp

(
hf
kBT

)
− 1

, (2.14)

for a mode with frequency f , where kB is the Boltzmann constant and h the Planck

constant. For T = 0, it follows that 〈n̂〉 = 0, thus describing a state with zero thermal

photons on average. We emphasize that 〈n̂〉 describes the thermal occupation of photons.

Due to zero-point fluctuations any state, quantum or classical, is at least occupied by

1/2 a photon. Thus, a state for T = 0 is referred to as a vacuum state, where only the

zero-point fluctuations are present.

Expressed in the basis of Fock states |n〉, the density operator ρth consists only of

diagonal elements and reads [44]

ρth =
∑
n

〈n̂〉n

(1 + 〈n̂〉)n+1 |n〉〈n| . (2.15)
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Figure 2.1: (a) Vacuum state with 〈n̂〉 = 0 and (b) thermal state with 〈n̂〉 = 2. Left figures show Wigner

functions and right figures show the time dependence of the signal amplitude. The red line

represents the expectation value and the shaded grey area illustrates the uncertainty for the

amplitude at a given time.

Using the density operator one can also find the moments of a thermal state [35]〈
(â†)mân

〉
th

= 〈n̂〉nn!δmn , (2.16)

where δmn denotes the Kronecker delta.

It is important to consider thermal states when investigating quantum microwave

signals, since thermal states could limit an observation of certain properties of quantum

states. To achieve low thermal populations for microwaves in the GHz regime, sub-Kelvin

temperatures of an experimental environment are needed. In turn, it is possible to generate

thermal states by controlling the temperature of a black body emitter. In the microwave

domain, matched 50 Ω resistors or attenuators are suitable for this purpose.

By inserting the moments of a thermal state from Eq. (2.16) into the general expression

Eq. (2.13), it follows that the Wigner function

W (q,p) = 1
π
(
〈n̂〉+ 1

2

) exp
− q2 + p2(

〈n̂〉+ 1
2

)
 , (2.17)

is rotationally symmetric and it can easily be seen that the variances for the quadratures

q and p are equal and depend on the mean photon number

〈
(∆q)2

〉
=
〈
(∆p)2

〉
= 〈n̂〉2 + 1

4 . (2.18)

Thus, only the vacuum state with 〈n̂〉 = 0, corresponding to T = 0 K, is a minimum

uncertainty state, exhibiting the equal sign in Eq. (2.2). The variance of thermal states
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increases linearly with the mean photon number. Fig. 2.1 shows Wigner functions and

timetraces of a signal in a vacuum and a thermal state with 〈n̂〉 = 0 and 〈n̂〉 = 2,

respectively. One can clearly see an increased uncertainty of the thermal state in both

quadratures indicated by a grey shaded area in the timetraces around the mean value

denoted by a red line.

Coherent states

The displacement operator already introduced in Sec. 2.1.1

D̂(α) = exp
(
αâ† − α∗â

)
(2.19)

allows to displace an arbitrary quantum state by the complex amplitude α. Particularly

interesting is the coherent state, which is generated by a displacement of the vacuum state

|α〉 = D̂(α)|0〉 . (2.20)

Schrödinger derived the coherent state as a solution to the Schrödinger equation in

1926 [45] and found that the coherent state satisfies the correspondence principle. For

the coherent state a well defined phase operator can be given and it is also a minimum

uncertainty state with (∆q)2 = (∆p)2 = 1
4 , which makes the coherent state the closest

analog to a classical signal. In fact, coherent states are readily generated by commercially

available microwave sources.

Using the fact that the coherent state is an eigenfunction of the annihilation operator

â|α〉 = α|α〉 with the complex eigenvalue α = |α|eiΘ = Q+ iP , the Wigner function takes

the form

W (q,p) = 2
π

exp
[
− 2

(
(q −Q)2 + (p− P )2

)]
. (2.21)

Thus, the Wigner function of an ideal coherent state is just the Wigner function of the

vacuum with the center shifted to (Q,P ) in phase space. In this thesis, we use the angle

between displacement direction and the p-axis θ = π/2−Θ. A coherent state displaced by

|α|2 = 16 photons at the angle of θ = 45° is shown in Fig. 2.2. The timetrace illustrates

the resemblance between a coherent state and a classical field with a sinusoidal time

dependence. One can understand the timetrace by imagining the Wigner function rotating

around the origin in time. The probability distribution of the amplitude for each time is

then given by the projection of the circle onto the q-axis, being equal to the marginal

distribution w(q) =
∫∞
−∞W (q,p)dp of the Wigner function. Since the Wigner function

of a coherent state is radially invariant, the uncertainty of the amplitude shown in the

timetrace is constant in time.

The displacement of an arbitrary input state can be experimentally implemented by a

directional coupler acting as a highly asymmetric beam splitter in the microwave regime.
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Figure 2.2: Coherent state displaced by |α|2 = 16 with a displacement angle of θ = 45°. The left figure

shows the Wigner function and the right figure shows the time dependence of the signal

amplitude. The red line represents the expectation value and the shaded grey area illustrates

the uncertainty for the amplitude at a given time.

The transmitted signal takes the form [29]

âout =
√
τ âin +

√
1− τ b̂coh , (2.22)

where τ is the transmissivity, âin is the state we want to displace, and b̂coh a coherent

signal incident to the coupled port of the directional coupler corresponding to |α̃〉. b̂coh

acts on the coherent state, meaning that b̂coh|α̃〉 = α̃|α̃〉, where α̃ is the eigenvalue. In

the limit of high transmissivity τ → 1 and a strong coherent signal |α̃| � 1, Eq. (2.22)

becomes

âout ' âin +
√

1− τ α̃ . (2.23)

This is analog to one property of the displacement operator D̂(α) [30]

D̂†(α)aD̂(α) = a+ α , (2.24)

with α =
√

1− τ α̃ and, thus, the directional coupler applies a displacement operation to

an input state. In Ref. [29] a more detailed theoretical description is given.

Squeezed states

Apart from vacuum and coherent states, ideal squeezed states are also minimum uncertainty

states. But here the uncertainties in different quadrature directions are not equal. Squeezed

states are generated by applying a squeezing operator [30]

Ŝ(ξ) = exp
(1

2ξ
∗â2 − 1

2ξ(â
†)2
)
, (2.25)

with the complex squeeze amplitude ξ = reiϕ, to the vacuum

|ξ〉 = Ŝ(ξ)|0〉 . (2.26)
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Figure 2.3: Squeezed vacuum state with a squeezing angle of γ = 90° and a squeezing amplitude r = 1,

corresponding to a squeezing of S = 8.7 dB below the vacuum. Left figure shows the Wigner

function and the right figure shows the time dependence of the signal amplitude of the

states. The red line represents the expectation value and the shaded grey area illustrates the

uncertainty for the amplitude at a given time.

The phase ϕ is related to the angle of the squeezed and anti-squeezed quadrature compo-

nents. In the following we use the squeezing angle γ = −ϕ/2 between the anti-squeezed

quadrature direction and the p-axis in the phase-space representation. The squeezing

factor r quantifies the amount of squeezing. The variances for a squeezed vacuum state

along the squeezed and anti-squeezed quadratures are e−2r/4 and e2r/4, respectively. At

this point it is also useful to define a squeezing level in decibel as

S = −10 log10

[
(∆Xsq)2/0.25

]
, (2.27)

where we compare the variance of the squeezed quadrature (∆Xsq)2 with the vacuum

variance. (∆Xsq)2 can also be expressed in terms of the signal moments up to second

order [44], resulting in the expression

S = −10 log10

[
〈â2〉e−iϕ + 〈(â†)2〉eiϕ + 2〈â†â〉+ 1− 〈â〉2e−iϕ − 〈â†〉2eiϕ − 2〈â†〉〈â〉

]
.

(2.28)

For an ideal squeezer with vacuum as an input state, the squeezing would be Sideal =
20r log10(e). Therefore a positive squeezing S means squeezing below the vacuum and

larger S means higher squeezing. S < 0 indicates that the state is not squeezed below

vacuum but nevertheless it gives information about the quadrature variance.

The Wigner function of a squeezed vacuum state takes the form

W (q,p) = 2
π

exp
[
−(e2r+e−2r)|q+ip|2 − 1

2(e2r−e−2r)e−iϕ(q+ip)2

−1
2(e2r−e−2r)eiϕ(q−ip)2

]
, (2.29)

where the 1/e contour takes the form of an ellipse around the origin in phase space. An

example for a squeezed vacuum state is shown in Fig. 2.3. When imagining the squeezed

state rotating around the origin, the marginal distribution w(q) is changing in time. This
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results in an oscillating uncertainty of the amplitude above and below the one of the

vacuum state. Furthermore, the timetrace illustrates that one needs more than the first

order moments of the signal to obtain full information about the squeezed state, since

first order moments only give the mean value of the amplitude which is zero.

Squeezed coherent states

In general, there are two possibilities to generate squeezed coherent states. They differ

in the order of applying the squeezing Ŝ(ξ) and the displacement operators D̂(α) to the

vacuum state. Let us consider the case where we first squeeze the vacuum and then

displace the squeezed state. The displaced squeezed coherent state then reads

|α,ξ〉 = D̂(α)Ŝ(ξ)|0〉 , (2.30)

where ξ = reiϕ and α = |α|eiΘ. In this order, the displacement of the final state is

independent of the previous squeezing parameters r and ϕ and is solely given by α. By

changing the order to Ŝ(ξ)D̂(α)|0〉, the final displacement depends on the squeezing

parameters and we refer the reader to a deeper theoretical description in Ref. [44] or an

experimental implementation in the microwave regime in Ref. [24].

The moments for an ideal displaced squeezed state with a displacement operation after

the squeezing of the vacuum are

〈â〉 = α , (2.31)

〈â2〉 = α2 − eiϕ sinh r cosh r , (2.32)

〈â†â〉 = |α|2 + sinh2 r , (2.33)

〈â3〉 = α3 − 3αeiϕ sinh r cosh r , (2.34)

〈â†â2〉 = |α|2α + 2α sinh2 r − α∗eiϕ sinh r cosh r , (2.35)

〈â4〉 = α4 − 6α2eiϕ sinh r cosh r + 3e2iϕ sinh2 r cosh2 r , (2.36)

〈â†â3〉 = |α|2α2 + 3α2 sinh2 r − 3|α|2eiϕ sinh r cosh r − 3eiϕ sinh3 r cosh r , (2.37)

〈â†2â2〉 = |α|4 − α2e−iϕ sinh r cosh r − α∗2eiϕ sinh r cosh r
+ 4|α|2 sinh2 r + sinh2 r cosh2 r . (2.38)

Other moments with m+ n 6 4 are calculated via 〈(â†)mân〉 = 〈(â†)nâm〉∗. By setting r

or α to zero one can also use these expressions to obtain the moments for coherent or

squeezed states, respectively.

The Wigner function of a displaced squeezed state is the same as for a squeezed

state but shifted by the displacement α = |α|eiΘ = Q + iP . This corresponds to the

operation p→ p− P and q → q −Q in Eq. (2.29). Various squeezed vacuum states with

different displacement angles θ but with a fixed squeezing angle γ = 90° are shown in
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Figure 2.4: Various squeezed vacuum states displaced by |α|2 = 16 photons with different displacement

angles θ, squeezing angle γ = 90° and r = 1. Left figures show Wigner functions and right

figures show the time dependence of the signal amplitude for the respective states. The red

line represents the expectation value and the shaded grey area illustrates the uncertainty for

the amplitude at a given time. (a) Amplitude squeezed state with θ = 0°, (b) Phase squeezed

state with θ = 90° and (c) mixture of amplitude and phase squeezed state with θ = 45°.

Fig. 2.4. Subfigures (a) and (b) represent amplitude squeezed and phase squeezed states,

respectively, whereas (c) is a mixture of both. The uncertainty in amplitude for each

shown timetrace exhibits different time dependencies while the expectation value is the

same as for a coherent state.

2.1.3 Dual-path state reconstruction method

Depending on the quantum state under investigation, there exist various methods to

detect certain properties of a quantum state. In the optical domain quantum correlations

are routinely measured by optical homodyning [31], using the fact, that optical photons

have vacuum temperatures much higher than room temperatures, allowing for efficient

single photon detectors. In the microwave regime, these techniques can not be easily

implemented due to a low energy of microwave photons. The lack of efficient single

microwave photon detectors requires the use of linear amplifiers. Due to the uncertainty

principle, phase-insensitive linear amplifiers add at least half a photon of noise to the

signal [16]. To avoid this issue, one can use phase-sensitive amplifiers to amplify only one

field quadrature and add less than half a photon of noise to it [46].
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Figure 2.5: Scheme of the dual-path reconstruction method. The signal â and a weak thermal state v̂

are incident on a hybrid ring, acting as beam splitter (BS). Each path is amplified by G1,2,

adding uncorrelated noise ĥ†1,2 to the signal. The quadratures Î1,2 and Q̂1,2 for each path are

obtained via IQ-demodulation, adding the noise v̂†1,2 and subsequently measured.

An alternative way to detect quantum microwave signals makes use of phase-insensitive

amplifiers, which add a substantial amount of noise photons. In Refs. [47, 48] a single

amplification path is used to reconstruct the signal moments, whereas the vacuum is used

as a reference state to account for the added noise of the amplification path. Another

approach is based on the idea of splitting the signal into two paths and measuring cross-

correlations between them (see Fig. 2.5). This approach bears the name ”dual-path state

reconstruction”. It has been recently developed at WMI and applied for the detection

of propagating quantum signals [17–19, 49]. In this thesis we make use of the dual-path

detection method and explain the scheme in more detail below.

The basic operation principle is depicted in Fig. 2.5 where a signal â is equally split by a

hybrid ring (which functions as a 50:50 beam splitter for microwaves) and then each path

is individually amplified, adding uncorrelated noise ĥ†1,2 to the signal. Afterwards each

amplified signal is split into its quadratures I1,2 and Q1,2 by an IQ-mixer, again adding

noise v̂†1,2, and finally detected.

Using the beam splitter relations(
ĉ1

ĉ2

)
= 1√

2

(
1 1
−1 1

)(
â

v̂

)
, (2.39)

one obtains a superposition of the signal â and the reference state v̂. The dual-path

reconstruction assumes full knowledge of this reference state. In our experiments, a natural

choice for the reference state is a weak thermal state with a temperature around 25 mK.

According to quantum theory for linear amplifiers [16] the amplification by G1,2 adds a

certain amount of noise, represented by a bosonic creation operator ĥ†1,2, to the signal

Ĉ1,2 =
√
G1,2

2 (± â+ v̂) +
√
G1,2 − 1ĥ†1,2. (2.40)
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Finally, by taking into account the IQ-mixer, one arrives at

ξ̂1 =
√
G1
2 ( + â+ v̂) +

√
G1 − 1ĥ†1 + v̂†1 , (2.41)

ξ̂2 =
√
G2
2 (− â+ v̂) +

√
G2 − 1ĥ†2 + v̂†2 , (2.42)

where we introduced the unitless complex envelope function ξ1,2. It is defined by the

relation

ξ̂1,2 ≡
(
Î1,2 + iQ̂1,2

)
/
√
κ , (2.43)

where Î1,2 and Q̂1,2 are the corresponding operators of the measured quadratures and κ is

the photon number conversion factor, relating the measured quadratures to number of

photons (see Sec. 3.2.3).

Introducing

V̂1,2 ≡
√√√√ 2
G1,2

(√
G1,2 − 1 ĥ1,2 + v̂1,2

)
, (2.44)

Ŝ1,2 ≡
√√√√ 2
G1,2

ξ̂1,2 , (2.45)

we obtain from Eqs. (2.41) and (2.42)

Ŝ1 = + â+ v̂ + V̂ †1 , (2.46)

Ŝ2 = − â+ v̂ + V̂ †2 , (2.47)

where the signal Ŝ1,2 is now referred to the input of the hybrid ring.

With Eqs. (2.43) and (2.45) it is possible to relate the measured quadratures 〈Îj1 Îk2 Q̂m
1 Q̂

n
2 〉

to 〈(Ŝ†1)j′(Ŝ†2)k′Ŝm′1 Ŝn
′

1 〉. This enables us to calculate the signal moments 〈(â†)râl〉 in a

recursive fashion. For a more detailed description we refer the reader to Ref. [49] or [19].

Theoretically, this approach allows for the calculation of moments up to an arbitrary order

with r,l ∈ N0, enabling one to calculate the Wigner function according to Eq. (2.12) and

therefore fully describe an arbitrary quantum state. In this thesis we calculate the signal

moments only up to the fourth order r + l 6 4. This is equivalent to a calculation of the

measured quadrature moments up to the fourth order j + k +m+ n 6 4. For Gaussian

states only signal moments up to the second order are required for full state reconstruction

and the Wigner function is given by Eq. (2.13). To verify that the measured states are

Gaussian, we evaluate the cumulants up to fourth order as described in Appendix B. For

pure Gaussian states only the cumulants up to the second order are non-zero and all

higher orders vanish.
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2.2 The Josephson Parametric Amplifier

As the name already suggests, the Josephson Parametric Amplifier (JPA) is a parametric

device which allows to modulate one of its respective parameters, which, in turn, may

lead to a parametric amplification of an input signal. A flux-driven JPA consists of a

superconducting microwave resonator in a coplanar waveguide (CPW) geometry. By

terminating the microwave resonator on one side to the ground plane via a direct current

superconducting quantum interference device (dc-SQUID), the resonant frequency can be

tuned by an external magnetic flux applied to the dc-SQUID loop. In the following we

introduce the physics relevant for a description of the flux-driven JPA.

2.2.1 Josephson junctions

Both the microwave resonator and the dc-SQUID consist of superconducting materials,

namely niobium and aluminum, respectively. An important property of the supercon-

ducting state is the Meissner-Ochsenfeld effect, where magnetic fields are expelled from

the bulk material below the transition temperature. One consequence of this effect is

the perfect conductivity of a superconductor, which makes superconducting materials

a natural choice for building resonators and, thus, minimizing resistive losses. Since

superconductivity is a quantum phenomenon manifesting on macroscopic scales, various

interesting effects such as the Josephson effect can be observed. The Josephson effect

which was first theoretically predicted by Josephson [50] is observed for two weakly coupled

superconductors and originates from an overlap of the macroscopic wave functions of each

superconductor

Ψ1,2(r,t) =
√
n∗1,2(r,t)eiθ1,2(r,t) , (2.48)

where the indices 1 and 2 represent superconductor 1 and 2, respectively.
√
n∗i (r,t) is

the density of superconducting Cooper pairs, and θi(r,t) is the global phase of the wave

function for each superconductor. One way to establish such a weak link is to place an

insulating layer between the two superconductors (see Fig. 2.6 (a)).

The gauge invariant phase difference between the two superconductors is [51]

ϕ(r,t) = θ2(r,t)− θ1(r,t)− 2π
Φ0

∫ 2

1
A(r,t) · dl , (2.49)

where Φ0 = h
2e is the magnetic flux quantum and A(r,t) is a magnetic vector potential.

The integration path is along a line from superconductor 1 to superconductor 2. For

simplicity, we consider only lumped Josephson junctions, where the supercurrent density

and the phase difference is spatially homogeneous in the junction area. The first Josephson

equation, also called the current-phase relation, describes the supercurrent Is through the

Josephson junction

Is(ϕ) = Ic sin(ϕ) , (2.50)
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Figure 2.6: (a) Josephson junction with superconductors in grey and insulating barrier in orange. (b)

dc-SQUID with total transport current Itot, circulating current Icirc, currents through each

arm I1,2 and magnetic field B through the SQUID loop.

where Ic is the critical Josephson current.

The second Josephson equation relates the voltage V across the Josephson junction to

the derivative of the phase difference

∂ϕ

∂t
= 2π

Φ0
V (t) , (2.51)

and is therefore called the voltage-phase relation. By applying a constant voltage across

the Josephson junction, the phase difference increases linearly in time

ϕ(t) = ϕ0 + 2π
Φ0
V · t , (2.52)

and according to the first Josephson equation this leads to a sinusoidal oscillation of the

supercurrent Is. In turn, if no voltage is applied across the Josephson junction, the phase

difference stays constant in time, resulting in a dc supercurrent depending on the phase

difference ϕ.

Due to the finite overlap of the wave functions, there is a binding energy EJ called the

Josephson coupling energy associated with the Josephson junction

EJ(ϕ) = Φ0Ic
2π (1− cosϕ) = EJ0(1− cosϕ) , (2.53)

where EJ0 = Φ0Ic/(2π). When a current Is, acting as a generalized force, is flowing

through a Josephson junction the potential energy is given by the tilted washboard

potential

Epot(ϕ) = EJ(ϕ)− Is
(

Φ0

2πϕ
)

= EJ0

(
1− cosϕ− Is

Ic
ϕ
)
. (2.54)

The phase difference ϕ can be considered as a classical particle inside this potential. For

|I| < Ic the particle resides in one of the local minima of the potential. For |I| > Ic,
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no local minima exist anymore and the particle will move down the potential. For

these two scenarios, the Josephson junction is in the zero-voltage and the voltage state,

respectively. A more detailed model of the Josephson junction is the so called Resistively

and Capacitively Shunted Junction (RCSJ) model, taking into account a finite capacitance

C and a normal resistance R, yielding an equation of motion for the phase difference [52, 53]

ϕ̈

ω2
p

+ ϕ̇

ωc
= j − sinϕ = − 1

EJ0

∂Epot(ϕ)
∂ϕ

, (2.55)

where ωp =
√

2πIc/Φ0Cs is the plasma frequency, ωc = 2πIcRs/Φ0 is a characteristic

frequency and j = Is/Ic is the normalized current through the Josephson junction. By

neglecting the resistive term and using the kinetic energy K(ϕ̇) corresponding to the first

term on the left hand side, one can write down a Lagrangian for the Josephson junction

L = K(ϕ̇)− Epot(ϕ) = ~
2ϕ̇2

4EC
− EJ0 (1− cosϕ− jϕ) , (2.56)

where EC = (2e)2/2Cs is the charging energy of the capacitor corresponding to one Cooper

pair. The equation of motion
d

dt

∂L
∂ϕ̇
− ∂L
∂ϕ

= 0 (2.57)

can readily be derived from the Lagrangian.

By using the two Josephson equations and the definition of the inductance V = LdIs

dt ,

one arrives at an expression for a non-linear inductance of a Josephson junction

Ls = Φ0

2πIc cosϕ = Lc
1

cosϕ , (2.58)

where Lc = Φ0
2πIc

corresponds to the minimal inductance of the Josephson junction.

2.2.2 Dc-SQUID

A direct current quantum interference device (dc-SQUID) consists of a superconducting

loop biased by a transport current Itot, as shown in Fig. 2.6 (b). Each arm of the loop

incorporates a Josephson junction with a current I1,2 flowing through it. A magnetic field

B is applied through the loop, resulting in a magnetic flux Φext. The total phase change

along a closed contour C around the dc-SQUID loop needs to be 2πn with n ∈ N0∮
C
∇θ = 2πn . (2.59)
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To evaluate the integral, we use the gauge invariant phase difference across the Josephson

junctions in Eq. (2.49) as well as the phase gradient in the bulk superconductor [51]

∇θ = 2π
Φ0

(ΛJs + A) , (2.60)

where Js is the supercurrent density, A is the vector potential and Λ = m∗/n∗sq
∗2

is the

London parameter with superconducting particles of mass m∗, density n∗s and charge

q∗. If the integration path is deeper inside the bulk superconductor than the London

penetration depth, one can neglect the terms with Js and obtains the condition

ϕ2 − ϕ1 = 2πΦ
Φ0

+ 2πn . (2.61)

This generates a link between the phase differences ϕ1,2 across the junctions and the

total magnetic flux Φ through the loop. The total magnetic flux is determined by the

externally applied flux and a contribution originating from the self inductance Lloop of

the superconducting loop

Φ = Φext + LloopIcirc , (2.62)

where we introduced the circulating current

Icirc = I1 − I2

2 = Ic cos
(
ϕ1 + ϕ2

2

)
sin

(
ϕ1 − ϕ2

2

)
= −Ic cosϕ+ sinϕ− . (2.63)

We also introduced new phase differences

ϕ+ ≡
ϕ1 + ϕ2

2 , (2.64)

ϕ− ≡
ϕ2 − ϕ1

2 , (2.65)

to simplify the notation.

Now we can write the total flux in the form

Φ
Φ0

= Φext

Φ0
− βL

2 cosϕ+ sinϕ− , (2.66)

where a screening parameter

βL ≡
2LloopIc

Φ0
, (2.67)

relates the maximal induced flux LloopIc by the circulating current Ic to half of a flux

quantum Φ0/2.

The total transport current is given by the sum of the currents through each arm

Itot = I1 + I2 = 2Ic sin
(
ϕ1 + ϕ2

2

)
cos

(
ϕ1 − ϕ2

2

)
= 2Ic sinϕ+ cosϕ− . (2.68)
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Furthermore, the fluxoid quantization with the new phase difference (2.65) reads

ϕ− = π
Φ
Φ0

+ πn . (2.69)

For the case βL ≈ 0, the self inductance Lloop of the dc-SQUID loop can be neglected

and Eq. (2.66) simplifies to Φ ≈ Φext. Then the maximum supercurrent is given by the

expression [52]

Imax
c (Φext) = 2Ic

∣∣∣∣∣cos
(
π

Φext

Φ0

)∣∣∣∣∣ . (2.70)

This means that in this case the dc-SQUID can be considered as a single Josephson

junction with a flux-modulated maximum supercurrent and thus, in analogy to Eq. (2.58),

an inductance for the dc-SQUID can be defined [54]

Lc,SQUID(Φext) = Φ0

2πImax
c

= Φ0

4πIc
∣∣∣cos

(
πΦext

Φ0

)∣∣∣ . (2.71)

For the case βL > 0, the self inductance of the loop cannot be neglected anymore.

Therefore, the full Eqs. (2.66) and (2.68) describe the behavior of the dc-SQUID and

need to be solved self-consistently under the constraint of Eq. (2.61). In general, it is not

possible to give an analytic expression but nevertheless it is convenient to write

Imax
c (Φext) = 2Ic · jc(Φext) , (2.72)

Lc,SQUID(Φext) = Φ0

4πIc · jc(Φext)
, (2.73)

where jc(Φext) is a dimensionless normalized critical supercurrent through the dc-SQUID.

We refer the reader to Sec. 4.1 for a detailed discussion of jc(Φext). It should also be noted,

that jc(Φext), in general, is a multi-valued function of Φext. It also depends on the history

of the phase particle movement in the dc-SQUID potential.

Similarly to the case of one Josephson junction, one can write Kirchhoff’s law for both

junctions

ϕ̈1

ω2
p1

+ ϕ̇1

ωc1
= − sinϕ1 + j + 1

πβL
(ϕ2 − ϕ1 − 2πϕext) , (2.74)

ϕ̈2

ω2
p2

+ ϕ̇2

ωc2
= − sinϕ2 + j − 1

πβL
(ϕ2 − ϕ1 − 2πϕext) , (2.75)

where the indices 1 and 2 denote the two Josephson junctions, ϕext = Φext/Φ0, j =
Itot/(2Ic). The sum of the second and the third term on the right hand side is equal to

Ii/Ic for junctions 1 and 2, respectively1. Neglecting the dissipative terms and assuming

1This can be seen by using Eqs. (2.63) and (2.68) to express Ii in terms of Itot and Icirc and then use
Eqs. (2.62) and (2.61) to replace Icirc.
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that both junctions have the same critical current Ic, the Lagrangian of a dc-SQUID is

given by

L = ~2

4EC
(ϕ̇2

1 + ϕ̇2
2)−EJ0 (2− cosϕ1 − cosϕ2 − j(ϕ1 + ϕ2))− EJ0

2πβL
(ϕ2 − ϕ1 − 2πϕext)2 ,

(2.76)

which can also be written in the form

L = ~2

2EC
(ϕ̇2

+ + ϕ̇2
−)− EJ0 (2− 2 cosϕ+ cosϕ− − 2jϕ+)− 2EJ0

πβL
(ϕ− − πϕext)2 . (2.77)

2.2.3 Coplanar waveguide resonator

Another important part of the JPA is a coplanar waveguide resonator. Since the dimensions

of the resonator are comparable to the wavelength of the microwave field, one needs to use

a distributed-element model to describe the resonator correctly. For a detailed description,

we refer the reader to Ref. [55]. For a homogeneously distributed, lossless transmission

line, the characteristic impedance is given by

Z =
√
L′

C ′
, (2.78)

where L′ and C ′ are the inductance and capacitance per unit length, respectively. The

phase velocity of an electromagnetic waves inside the transmission line is

vp = 1√
L′C ′

, (2.79)

from which, one can find a frequency ω for a given wavelength λ

ω = 2π
λ
√
L′C ′

. (2.80)

By considering a transmission line, which is short-circuited to the ground after a certain

length d and coupled to an input line via a coupling capacitance Cc, one obtains a

reflection-type resonator. Such a resonator is often called a λ/4 resonator, since the

wavelength of a fundamental mode λ = 4d is four times the length of the resonator. With

Eq. (2.80), one obtains the resonant frequency of the fundamental mode

ω0 = 2π
4d
√
L′C ′

= π

2
√
LC

, (2.81)

where L = L′d and C = C ′d are the total inductance and capacitance of the resonator,

respectively. Since an ideal resonator is harmonic, the frequency of higher modes is given

by (2n+ 1) · ω0 with n ∈ N0.
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There exist several approaches to experimentally characterize a resonator. In the case of

a λ/4 resonator, the reflection coefficient Γ is an important quantity. Imagine a traveling

microwave signal with amplitude ain from a region with impedance Z0 to another one with

an input impedance Zin (see Fig. 2.7). Then part of the signal is reflected back, giving

rise to an output signal with amplitude aout. The ratio between the amplitude of the back

reflected signal aout and the input signal ain is called the reflection coefficient [55]

Γ = aout

ain
= Zin − Z0

Zin + Z0
. (2.82)

Finding an expression for the frequency dependent input impedance Zin(ω), allows to

calculate Γ(ω). To this end the resonator can be modeled by lumped-elements, whereas

a description based on distributed elements is also possible and provides more accurate

results in the microwave regime [55] (see Fig. 2.7 (a,b)). In analogy to a cavity in quantum

optics (see Fig. 2.7 c)), one can also consider the microwave resonator to be a cavity with

reflective mirrors, which allows one to use the input-output formalism to calculate the

reflection coefficient [56]

Γ =
(ω − ω0)2 + iκ2(ω − ω0) + κ2

1−κ
2
2

4
(ω − ω0 + iκ1+κ2

2 )2 , (2.83)

where

κ1 = ω0

Qext
, (2.84)

κ2 = ω0

Qint
, (2.85)

are the coupling rates to the input line and a loss port, respectively. Here we also

introduced an external quality factor Qext and an internal quality factor Qint.

The external quality factor Qext is mainly determined by the coupling capacitance Cc
and describes how strongly the resonator is coupled to the input port. For a weak coupling,

the external quality factor is high and vice versa.

The internal quality factor Qint describes internal losses of the resonator originating

from several loss mechanisms. Microwave losses at milli-Kelvin temperatures are usually

caused by two level systems (TLS) residing on the surface of the superconductor or in the

dielectric [57]. A finite surface resistance of superconductors at microwave frequencies

also contributes to internal losses of a superconducting resonator. Since experiments are

done at a finite temperature, there is always a finite amount of excited quasi-particles.

They can also interact with the microwave signals and lead to additional dissipation [58].

Another loss mechanism are radiation losses, which dependent on the geometry of the

waveguide [59].
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Figure 2.7: Different models for microwave resonators with input signal of amplitude ain and output

signal of amplitude aout. Z0 denotes the impedance of the input line and Zin the input

impedance to the resonator. Cc denotes a coupling capacitance, which couples the resonator

to the input/output line. a) Lumped-element model of the resonator with capacitance C,

inductance L and resistance R. b) Distributed element model, where C ′∆x describes an

elementary capacitance of the transmission line with a length ∆x and so on. c) Input-output

formalism for a double sided cavity modeled by partially transparent mirrors, where one side

of the cavity acts as input/output port of a λ/4 resonator and the other one as loss port.

Input modes ain and output modes aout couple to the cavity modes a via a coupling κ1. The

loss port is modeled by a coupling rate κ2 to a loss mode bout. Here the modes ain, aout and

bout are treated as quantum mechanical modes.

Both quality factors can be combined into a loaded quality factor [55]

1
Q

= 1
Qint

+ 1
Qext

, (2.86)

which compares the stored energy in the resonator to the energy lost per cycle

Q = ω0
average energy stored
energy loss per second . (2.87)

The full width at half maximum ∆ωFWHM of the resonance peak relates to the loaded

quality factor

∆ωFWHM = ω0

Q
. (2.88)

2.2.4 Coplanar waveguide resonator grounded by a dc-SQUID

Until now, we assume that the inner electrode of the resonator is connected directly to

the ground plane. In the following, we will present the influence of a dc-SQUID on the

resonator. As depicted in Fig. 2.9 the dc-SQUID effectively grounds the transmission line

with an additional non-linear inductance Lc,SQUID(Φext), originating from the dc-SQUID.

The added inductance is flux-dependent and therefore the resonant frequency of the

resonator is also flux-dependent. In a straightforward approach, one writes the total
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inductance as a sum of both inductances

Ltot = Lres + Lc,SQUID(Φext) , (2.89)

where Lres is the inductance of the bare resonator without dc-SQUID. Hence, by inserting

Ltot in Eq. (2.81), the flux-dependent resonant frequency reads

f0(Φext) = fres√
1 + Lc,SQUID(Φext)

Lres

, (2.90)

where we introduced the resonant frequency of the bare resonator fres = 1
4
√
LresCres

without

a dc-SQUID.

This approach does not take into account that the resonator is of distributed-element

nature and the dc-SQUID is grounding the resonator at the end. To find a better expression

for f0(Φext), we follow Ref. [60] and use the Lagrangian of the resonator to obtain a field

equation for a λ/4 resonator

φ̈(x,t)− ν2φ′′(x,t) = 0 , (2.91)

where ν = 1/
√
L′C ′ is the phase velocity, depending on the inductance and capacitance

per unit length and φ(x,t) is the phase.

With the boundary condition at the input of the cavity

φ′(0,t) = 0 , (2.92)

we obtain possible solutions of the form

φ(x,t) = φ1 sin(kνt) cos(kx) , (2.93)

where k = 2π/λ is the wave vector, corresponding to a wavelength λ. The boundary

condition at the dc-SQUID side reads

φ(d,t) = ϕ+(t) . (2.94)

Using the total Lagrangian Ltot = LSQUID + Lresonator and approximating the dc-SQUID

Lagrangian (see Eq. (2.77)) for ϕ+ ≈ 0 with cosϕ+ ≈ 1− ϕ2
+ and using Eq. (2.57), we

find the boundary condition to be

Φ2
0Cs

(2π)2 φ̈(d,t) + Φ2
0d

(2π)2Lres
φ′(d,t) + 2EJ0| cosϕ−|φ(d,t) = 0 , (2.95)

where Cs is the capacitance of one Josephson junction, Lres = dL′ is the total inductance of

the resonator. Using Eq. (2.93), one arrives at the dispersion relation for the flux-dependent
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resonant frequency f0(
π

2
f0

fres

)
tan

(
π

2
f0

fres

)
= 2(2π)2

Φ2
0
LresEJ0| cosϕ−| −

Cs
Cres

(
π

2
f0

fres

)2

, (2.96)

where we used the substitution kd = π
2
f0
fres

. For f0 → 0, which corresponds to zero

Josephson energy or infinite Josephson inductance, one obtains an open transmission line.

For f0 → fres, corresponding to infinite Josephson energy or zero Josephson inductance,

one obtains a standard λ/4 resonator without any dc-SQUID. In general, an externally

applied flux will change the Josephson energy as well as the Josephson inductance, and

hence the resonant frequency of the whole resonator, according to Eq. (2.96).

2.2.5 Parametric amplification and generation of squeezed light

A parametric oscillator can, in general, be described as an oscillator where one or more

of its parameters are periodically varied in time, hence the name parametric oscillator.

From such a system various phenomena with different applications emerge. We put our

focus on parametric amplification, which can be understood as a non-linear interaction

between a strong pump tone fpump, a signal mode fsignal and an idler mode fidler (see

Fig. 2.8). Depending on whether the amplifier exhibits three or four photon processes,

one or two pump photons are split into a signal and an idler photon, obeying the relations

fpump = fsignal + fidler or 2fpump = fsignal + fidler [23]. If the generated signal and idler

photons have different frequencies fsignal , fidler, the process is usually referred to as

non-degenerate or phase-insensitive parametric amplification.

For any phase-insensitive linear amplifier, linear meaning that the output and input are

linearly related, it was shown by Caves [16] that the minimum number of added noise

quanta A is related to the power gain G by

A >
1
2

∣∣∣∣1− 1
G

∣∣∣∣ . (2.97)

Thus, for large gains G the minimum added noise approaches 1/2 added noise photons.

For a phase-sensitive amplifier, one obtains different numbers of noise quanta added for

each quadrature

A1A2 >
1
16

∣∣∣∣∣1− 1√
G1G2

∣∣∣∣∣
2

, (2.98)

where A1 and A2 are the noise numbers added and G1 and G2 are the gains for the

quadratures X1 and X2, respectively. One can identify the two quadratures with the

in-phase q and out-of-phase p quadratures as it was defined in Sec. 2.1.1. This means that

for fixed G1G2 = 1, no noise is added to the signal. One can amplify one signal quadrature

(G1 > 1) but in turn needs to deamplify the other one (G2 < 1). In fact, this phenomenon

corresponds to squeezing of a coherent input state incident to the phase-sensitive amplifier
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Figure 2.8: Scheme for parametric amplification with a three photon process. A signal mode with an

amplitude of A at frequency fsignal = f0−∆f and a pump signal with frequency fpump = 2f0

are incident to the JPA. For ∆f , 0, the signal is amplified by G and an idler mode is

generated at frequency fidler = f0 + ∆f . For ∆f = 0, the signal and idler mode have a

degenerate frequency f0.

as experimentally shown in Ref. [24], where a flux-driven JPA was used for this purpose.

The variance of the deamplified quadrature is then reduced below the vacuum level while

the variance of the amplified quadrature is increased, giving rise to a squeezed coherent

state.

A parametric amplifier can be understood as such a phase-sensitive amplifier. In the

degenerate operation mode, the signal and idler photons are frequency degenerate with

fsignal = fidler. From the Hamiltonian describing the interaction between the signal mode

a and the pump tone one can derive that the quadratures related to the signal mode a

can be squeezed [30, 44]. This is done by solving the Heisenberg equations of motion and

identifying the result with the generator of a squeezed state given in Eq. (2.25).

In the non-degenerate mode with fsignal = f0 − ∆ and fidler = f0 + ∆ one obtains

a two-mode squeezed state, where there are correlations between the upper and lower

sidebands around f0, corresponding to the signal and idler mode, respectively [26].

Squeezed states are an important resource for continuous variables in quantum informa-

tion processing. In the optical as well as in the microwave regime squeezed states can be

used as a resource to create and distribute entanglement, enabling realizations of quantum

teleportation, quantum key distribution and other protocols which require entanglement

between bipartite or multipartite systems.

2.2.6 Flux-driven JPA

Now we focus on the flux-driven Josephson Parametric Amplifier shown in Fig. 2.9. The

JPA is a parametric amplifier, where the λ/4 coplanar waveguide resonator acts as an
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Figure 2.9: (a) Coplanar waveguide resonator (red) with inductance L′∆x and capacitance C ′∆x per

unit length grounded by a dc-SQUID (blue). The dc-SQUID loop has a loop inductance

Lloop, which allows to inductively couple to a flux Φdc + Φrf generated by a coil and a pump

line (green), respectively. Crosses indicate Josephson junctions. (b) Resonant frequency vs

externally applied flux according to Eq. (2.96). The resonant frequency f0 is normalized to

the bare resonator frequency without dc-SQUID fres. Φdc determines a working point at a

frequency fdc. A pump tone with 2fdc induces a time varying flux, resulting in an oscillating

resonant frequency, which is required for parametric amplification.

oscillator and the dc-SQUID together with the pump line allow one to periodically vary

the resonant frequency. By applying a dc magnetic field Φdc through the dc-SQUID loop,

one can tune the resonant frequency to a desired operating point ωdc (see Fig. 2.9 (b)). A

time varying flux through the dc-SQUID loop Φrf is induced via a pump line and allows

for a modulation of the resonant frequency with the frequency of the pump tone 2fdc. The

periodic modulation gives rise to parametric amplification [20], where one pump photon

splits into a signal and an idler photon. Thus, the dc-SQUID allows to in-situ tune the

resonant frequency of the JPA and is the central component of the parametric oscillator.

Starting with the equation of motion for an unperturbed harmonic oscillator

d2q

dt2
+ ω2

0q = 0 , (2.99)

and assuming a modulation of the resonant frequency ω0 → ω0[1+δ cos(αω0t)], one arrives

at
d2q

dt2
+ ω2

0[1 + 2δ cos(αω0t)]q = 0 , (2.100)

where we neglected the δ2 term, since we assume a small modulation amplitude of the

resonant frequency. After introducing the creation and annihilation operators for a

harmonic oscillator, one arrives at the Hamiltonian of the parametrically-modulated

harmonic oscillator

H = ~ω0

[
a†a+ 1

2 + 2δ cos(αω0t)(a+ a†)2
]
. (2.101)
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Yamamoto et al. [56] investigated the flux-driven JPA using the input-output formalism

for both the non-degenerate and degenerate operation mode. In Ref. [61], the detailed

theoretical description of Ref. [56] can be found. For the degenerate case, where the pump

frequency is twice the signal frequency ωpump = 2ωsignal, one arrives at a signal gain of

Gd =

(
κ2

1−κ
2
2

4 + 4δ2ω2
0

)2
+ 4δ2κ2

1ω
2
0 − 4δκ1ω0

(
κ2

1−κ
2
2

4 + 4δ2ω2
0

)
sin(2θ)(

(κ1+κ2)2

4 − 4δ2ω2
0

)2 , (2.102)

where θ is a constant phase between the signal and pump tones, κ1 and κ2 are the coupling

rates defined in Eqs. (2.84) and (2.85), δ is the pump amplitude and ω0 is the resonant

frequency. The sin(2θ) term shows, that the JPA is acting as phase sensitive amplifier.

Furthermore, the minimum and maximum signal gains are

Gmin
d =

(
2δω0 − κ1−κ2

2
2δω0 + κ1+κ2

2

)2

for θ = π

4 + nπ , (2.103)

Gmax
d =

(
2δω0 + κ1−κ2

2
2δω0 − κ1+κ2

2

)2

for θ = 3π
4 + nπ , (2.104)

where we use the condition (κ2
1 − κ2

2)/4 + 4δ2ω2
0 > 0 and thereby assuming higher internal

than external quality factors.

We also note, that for κ2 = ω0/Qint = 0 the product of the maximum and minimum

gain is

Gmin
d ·Gmax

d = 1 , (2.105)

and therefore it is theoretically possible to amplify one quadrature with the flux-driven

JPA without adding any noise photons to the overall signal if the JPA has no internal losses.

In fact, several experiments have shown that JPAs operated in the phase sensitive mode

exhibit noise temperatures below the standard quantum limit [23–25]. In combination

with the generation of squeezed light, the JPA is a useful tool in the field of propagating

quantum microwaves, either as resource for the generation of quantum states or as nearly

noiseless amplifier.





Chapter 3

Experimental techniques

3.1 Cryogenic setup

In our studies, we focus on squeezed light generated by a JPA. The generated microwave

signals have a frequency around 6 GHz, which corresponds to a characteristic temperature

of 288 mK. To study the quantum properties of the generated microwave signals, one needs

to strongly reduce the number of thermal excitations, which degrade the quantum signal.

Therefore, temperatures well below 288 mK are required to reduce thermal contributions

to a minimum. Furthermore, low temperatures are required for the superconducting

circuits we use to generate quantum microwave signals. For that, a cryogen-free or dry
3He/4He-dilution refrigerator is used.

3.1.1 Cryostat

The cryostat was designed and constructed at the Walther-Meißner-Institute by A. Marx,

K. Uhlig, S. Höss, T. Brenninger, and the workshop team. Details on the cryostat can be

found in Refs. [62, 63]. As depicted in Fig. 3.1, the dilution refrigerator has six temperature

stages, where the first two stages pre-cool the cryostat with a Cryomech PT410-RM pulse

tube cryocooler (PTC) to 50 K and 3 K, respectively. To increase the cooling power up

to 100 mW at around 1 K, an additional 4He-1K-loop is installed as third temperature

stage. The 4He circulation reduces the heat load on the dilution circuit by acting as heat

sink for output lines as well as the 3He/4He gas flow. The dilution circuit consists of one

continuous heat exchanger, two step heat exchangers, a mixing chamber and the still. The

still constitutes the fourth temperature stage at around 600 mK and is also fixed to a large

copper plate so input and output lines can be thermalized. After the continuous heat

exchanger, the first step exchanger is fixed to the fifth stage at around 100 mK. Finally,

the mixing chamber is bolted to a copper plate. In the present setup the cryostat reaches

a base temperature of approximately 15 mK. The usable space at the lowest temperature

stage has an approximate height of 60 cm and a diameter of 30 cm and, thus, allows for

multiple experiments to fit simultaneously in the cryostat. Furthermore, the cryostat is

equipped with a 4He pre-cool loop, which is thermally connected to all temperature stages.

31
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Figure 3.1: Photograph of the 3He/4He-dilution refrigerator. 1: HEMT amplifiers, 2: Microwave

circulators for isolation of output lines and 3: Cryoperm shield with the sample rod inside.
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Figure 3.2: Schematic of the cryogenic setup with JPA Q200 (in a dual-path configuration) and JPA Q600

(in a single-path configuration). JPA Q200 is replaced by JPA Q200new for the measurements

discussed in chapter 5. The grey region indicates the cryogenic part of the dual-path setup.

Female-female adapters between cables are omitted. SS: Stainless steel, SSS: silver plated

stainless steel. For cables: XX/YY denotes the inner conductor XX and outer conductor YY.

Since the temperature stages of the dilution circuit are thermally well isolated from each

other by mounting tubes made from glass fiber reinforced epoxy, the precooling loop is

required to cool these stages as well as the 1K stage to v 10 K during the cool-down

procedure.
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Figure 3.3: Optical micrographs of a JPA sample chip (JPA Q200). (a) JPA sample with a designed

external quality factor of Qext = 200. Red and green rectangles mark the coupling capacitor

and the dc-SQUID with the pump line, respectively. (b) Zoom-in to the coupling capacitor.

(c) Zoom-in to the dc-SQUID with the adjacent pump line. The size of the dc-SQUID loop is

4.2× 2.4µm2.

3.1.2 Sample preparation

The JPA samples were designed and fabricated at NEC Smart Energy Research Laborato-

ries, Japan and RIKEN, Japan. In this thesis, three JPA samples are investigated. The

samples JPA Q200 and JPA Q200new have a designed external quality factor Qext = 200.

The third sample, JPA Q600, has a designed external quality factor Qext = 600. An

optical micrograph of JPA Q200 is shown in Fig. 3.3. Thermally oxidized silicon with a

thickness of 300µm is used as substrate. The silicon is visible as black/dark brown color

in Fig. 3.3 (a)/(b,c). The resonator and the pump line are patterned into a previously

sputtered Nb film with a thickness of 50 nm. A coplanar waveguide geometry (CPW) is

used for the resonator and the pump line. The remaining Nb is visible as light brown

color in the figure. The dc-SQUID is fabricated using a shadow evaporation technique [64]

and consists of aluminum (white color in Fig. 3.3 (c)). The chip with a designed external

quality factor Qext = 600 has a smaller coupling capacitor and a higher designed critical

current of the Josephson junctions in the dc-SQUID but otherwise an identical sample

layout.
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Figure 3.4: (a) Photograph of the JPA Q200 in the side-mounted sample box. The signal and pump lines

are connected to microwave connectors via a PCB and a glass bead. (b) Photograph of the

JPA sample box mounted in the aluminum shield (shown without cover). The sample box

is thermalized with two silver wires connected to a silver rod. A temperature sensor and a

heater are installed inside the aluminum shield. A magnetic field can be generated by a coil

made of NbTi wire, mounted on top of the JPA sample box.

As seen in Fig. 3.4 (a), the JPA chips are glued to a sample box with GE-varnish to

ensure mechanical fixation and thermal coupling to the box. Electrical connection of the

center conductors on the chip to the printed circuit board (PCB) is realized by aluminum

wires, which are placed with an ultrasonic bonding machine. The PCBs also have a CPW

geometry. Furthermore, the ground planes of the chip and the PCBs are grounded to the

sample box by aluminum bond wires. At one side of the PCBs, the center pin of a glass

bead (V-110, Anritsu) is soldered to the center conductor. The PCBs improve the stability

and reproducibility of the high frequency connection between a microwave connector

and the JPA chip. The other side of the glass bead is connected to the center pin of a

V-Male connector (V102M-R, Anritsu), where a SMA connector (2.4 mm, Southwest) is

connected. We note that for JPA Q200 and JPA Q200new, a side-mounted sample box

is used, whereas for JPA Q600, a top-mounted one is used. For further details on the

influence of bonding and the connectors, we refer to Ref. [61].

The side-mounted sample box is installed inside an aluminum shield to provide screening

from stray magnetic fields as shown in Fig. 3.4 (b). Inside the shield, a superconducting

coil is installed which allows to control the magnetic flux through the dc-SQUID loop.

Furthermore, a temperature sensor and a heater are installed to stabilize the temperature

of the JPA during experiments. The sample box is thermalized by silver wires, which are

connected to the sample rod.
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Figure 3.5: (a) Front and (b) rear views of the sample rod with experimental components. The rod is

made out of silver and is attached to the mixing chamber plate.

3.1.3 Sample stage

As shown in Fig. 3.2, most of the microwave components and the JPA samples are located

inside a cryoperm shield mounted to a silver rod. Only three additional circulators are

placed on top of the mixing chamber plate and provide isolation from signals coming

down the outputs lines (see Fig. 3.1). A photograph of the sample rod made out of silver

is shown in Fig. 3.5 from the (a) front and (b) rear view. The sample rod is fixed to the

mixing chamber plate by two copper pieces and additionally thermalized with multiple

silver wires. A ’measurement circulator’ separates the incoming and outgoing signals to

and from the JPA, respectively. One is placed in front of each JPA.

For the Q200 samples, a heatable 30 dB attenuator is placed in the input line to

the measurement circulator and is used for the calibration of the dual-path setup (see

Sec. 3.2.3). The output of the measurement circulator is connected to a directional coupler

(CPL-4000-8000-20-C) from Miteq with a coupling of -20 dB and an insertion loss of at

least -0.2 dB. The directional coupler applies a displacement operation to an incident state
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if a coherent signal is applied to the coupled port. The transmitted port is connected to a

customized hybrid ring (CPL-5850-100B) from Miteq [65], which acts as a microwave beam

splitter. The second input to the hybrid ring is terminated with a 50 Ω load, providing

a vacuum state incident to the input. The two outputs of the hybrid ring are directly

connected to two circulators on the sample rod and from there to additional circulators

on top of the mixing chamber plate as seen in Fig. 3.2 and Fig. 3.5.

For JPA Q600, no dual-path setup is used and therefore the output of the measurement

circulator is connected to the output line via an additional circulator. Also, no 30 dB

attenuator is installed in the input line.

Each component is either thermalized by fixing it tightly to the sample rod or by silver

wires. The 50 Ω loads, the 30 dB attenuator and bigger components, such as the JPA

sample boxes with a coil and the aluminum shield, are additionally thermalized by silver

wires. The silver wires are bent into the desired shape and thermally annealed at 900 ◦ for

one hour to heal defects in its crystal structure. Subsequently they are installed without

further bending them. This procedure increases the thermal conductivity of the silver

wires and allows for better thermal coupling.

3.1.4 Input and output lines

Input lines

As shown in the sketch of our setup in Fig. 3.2, we use coaxial cables with inner and outer

conductors made of stainless steel (SS) for the input lines. The dielectric layer consists

of PTFE and the cables are manufactured by Coax Co., Ltd. With a specified loss of

9.44 dB/m at a frequency of 5 GHz, the losses are quite high. Therefore we use such cables

mainly for input lines, where power dissipation is of minor importance. At four different

temperature stages, the input lines are attenuated by 10 dB at the feedthroughs through

the respective plates. This helps to thermalize the inner and outer conductors of the

cables, so that thermal noise, coming from room temperature, is reduced by the attenuator

value down to a local equilibrium noise level and the heat load on lower temperature

stages is reduced. In short, attenuators at the different temperature stages are needed to

obtain a desired power level but keep an acceptable signal-to-noise ratio and keep up to

the cooling power of the cryostat at each temperature stage. The JPA pump lines are

attenuated by 14 dB less, since higher pump power levels are required.

Each signal input line is connected to a measurement circulator from which a su-

perconducting NbTi/NbTi cable is connected to the JPA signal input. Here we use a

superconducting cable to minimize losses, since this cable acts simultaneously as output

cable. For the Q200 samples, a heatable 30 dB attenuator is installed before the mea-

surement circulator and is connected to this circulator by a superconducting NbTi/NbTi

cable. This cable reduces the thermal coupling and cable losses between the attenuator

and the measurement circulator, which is important during calibrations of the detection

chains (see Sec. 3.2.3).
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Output lines

For detecting quantum states, low losses of the microwave components until the first

amplification stage are crucial. Therefore, up to the high electron mobility transistor

(HEMT) amplifier, the output lines of the dual-path configuration consist of supercon-

ducting NbTi/NbTi cables. After the HEMT amplifier stainless steel cables with a silver

plated stainless steel inner conductor are used. The superconducting cables are ordered

from Coax Co., Ltd. and come in a length of 1 m and an outer diameter of 2.19 mm.

After cutting and bending them into the desired shape, SMA connectors from Radiall are

crimped to the ends. For the stainless steel cables, the SMA connectors are soldered to

the previously prepared cables.

To isolate the setup on the sample rod at millikelvin temperatures from thermal noise

and downward propagating microwaves from higher temperature stages, the output lines

are connected to circulators at the mixing chamber plate. The output superconducting

cables are thermally coupled to each temperature stage by annealed silver wires or copper

braids, which are pressed to the outer conductor of the cable.

The cryogenic HEMT amplifiers (LNF-LNC4 8A, Low Noise Factory) constitute the first

amplification stage. With a specified amplification and noise temperature of approximately

38 dB and 2 K, respectively, they determine the noise temperature of the whole detection

chain. The specified values were measured by the manufacturer at 10 K. To stabilize

the HEMT gains over several days, the temperature of the power supply of the HEMT

amplifiers is PID controlled within ±0.1◦C.

3.2 IQ Cross-correlation detector

The IQ cross-correlation detector consists of three parts. A cryogenic part, discussed in

the previous section, a room temperature dual-path receiver, and the data acquisition

and processing by the Acqiris card. In the following, the latter two parts are discussed in

more detail.

3.2.1 Room temperature dual-path receiver

As seen in Fig. 3.6, the room temperature dual-path receiver is the extension of the

cryogenic dual-path setup. An input signal to the hybrid ring, for example a displaced

squeezed vacuum state, is split into two independent amplification paths. The second

input port of the hybrid ring is terminated with a broadband precision 50 Ω load, which

is at a temperature of approximately 25 mK and, thus, serves as a vacuum reference

state for the dual-path reconstruction1. Various isolators and circulators reduce spurious

correlations between the two amplification chains. After the first amplification stage with

1The finite temperature causes the emission of a weak thermal state of the load which is taken into
account during the state reconstruction.
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Figure 3.6: Setup of the dual-path receiver for JPA Q200new with analog filters at the Acqiris card input.

Blue parts are the cryogenic part of the dual-path setup. Green parts constitute the room

temperature dual-path receiver. Displacement, pump and signal source are connected to the

corresponding inputs in Fig. 3.2. Numbers next to filters denote the passband range.
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Figure 3.7: Peltier cooler with installed room temperature AMT and JS3 amplifiers. Red arrows indicate

the signal direction.

the cryogenic HEMT amplifiers, the paths are further amplified at room temperature by

AMT-A0033 (Agile MwT) and JS3-25-8P (Miteq) amplifiers, which are stabilized at a

temperature of 19.5± 0.05 ◦C by a Peltier cooler (see Fig. 3.7). A bandpass filter with a

passband from 4.9 to 6.2 GHz provides a rough filtering around the desired RF frequency.

Now a mixer, biased by a strong local oscillator signal ALO cos(ωLOt + φLO), down-

converts the RF signal to an intermediate frequency (IF) around 11 MHz. The local

oscillator signal for both mixers is generated by a single microwave source and a subsequent

beam splitter. In one path of the local oscillator signal, a phase shifter is inserted to adjust

the relative phase between the IF signals in both chains to 180◦. An incident arbitrary

RF signal A cos(ωt+ φ) to the mixer, produces an output A(t) of the form

A(t) = Ã cos(ωIFt+ φ) , (3.1)

where ωIF = ω − ωLO and Ã is the amplitude of the IF signal after the mixer. The sum

frequency ωIF + ωLO, which is also generated, can be neglected due to bandpass filters

after the mixer, which efficiently filter the high RF frequency. We note here, that also a

sideband at the RF frequency ω−2ωIF is down-converted to a IF signal with the frequency

−ωIF. This unwanted contribution to the IF signal cannot be filtered away digitally after

the down-conversion in the current setup configuration. Rather, a very steep analog RF

filter would be required to filter the sideband frequency ω − 2ωIF before the mixer. This

approach, however, would limit the receiver to a certain frequency ω. This problem can

potentially be circumvented by using image reject mixers which filter out a blue or a red

sideband of an incident RF-signal, in respect to a LO, during down-conversion to the

intermediate frequency. Also, if a digitizer with four input channels is available, IQ-mixers

instead of single ended mixers can be used, where it is possible to filter the sideband
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Figure 3.8: Photograph of the room temperature dual-path receiver. The top and bottom chains would

be used for an FPGA-based setup, where IQ mixers are used instead of mixers.

frequency during digital down-conversion of the I and Q signals to dc for each chain [49].

After the mixers, step attenuators are inserted to adjust the amplitude of the IF signal

to the detection range of the ADCs inside the Acqiris card and also to balance the signal

amplitude in the chains relative to each other. Bandpass filters provide filtering of the high

frequency output of the mixers and also reduce the incident power to the IF amplifiers

to prevent compression effects. IF amplifiers (AU-1447-R, Miteq) further amplify the

IF signals, where the noise bandwidth is reduced by subsequent low pass filters with

a passband from 0 to 22 MHz. DC-blocks prevent dc-currents from the receiver to the

ADCs. Finally, narrow band-pass filters with a passband from 11.3 to 11.7 MHz determine

the measurement bandwidth and are installed directly at the Acqiris card input. ADCs

then digitize the input signal with a sampling rate of 400 MHz, where calculations of the

moments from the digitized data are performed on the computer, as described in the

following in more detail. All microwave sources are synchronized by a 10 MHz reference

signal from a rubidium clock.

3.2.2 Data acquisition and processing with Acqiris card

We use an Acqiris DC440 card with 12-bit resolution to digitize IF signals with a sampling

rate of 400 MHz. Two ADC inputs with adjustable input voltage ranges from ±125 mV
to ±5 V are available. Depending on the attenuation of the step attenuators and whether

narrow analog filters at the input to the Acqiris card are used or not, different input

voltage ranges are used to maximize the resolution of the ADCs. A sketch depicting

the data processing is shown in Fig. 3.9. Each segment recorded by the Acqiris card
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Figure 3.9: Sketch of the Acqiris card based data acquisition and processing. Each segment is triggered

by a trigger pulse from a DTG. Figures show exemplary data recorded for a coherent input

signal. The first part of the traces is without coherent input signal for comparison. ”Sa”

denotes the sample index. Averaging over segments and cycles is performed on a computer.
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contains M sample points for each detection chain. Due to the limited internal memory

of the Acqiris card, N segments are recorded and then sent to a computer for further

data processing. The raw data is transferred to a computer via a PXI-8570 module

(ADLINK Technology INC.) installed in the Acqiris card. In the computer a PXI-to-PCI

card (ADLINK Technology INC.) is installed in one PCI slot on the mainboard. Each

raw trace, containing M samples, is then digitally IQ demodulated to dc, so for each

chain both quadratures are obtained. The quadratures I and Q are obtained by numerical

integration over one period of the IF signal A(t) = Ã cos(ωIFt+ φ), following the formulas

I = ωIF

2π

∫ t

t−2π/ωIF
cos(ωIFτ)A(τ)dτ = Ã

2 cos(φ) , (3.2)

Q = ωIF

2π

∫ t

t−2π/ωIF
sin(ωIFτ)A(τ)dτ = Ã

2 sin(φ) . (3.3)

Since a whole period of data points needs to be available for the numerical integration, the

quadrature components of the first 35 samples2 of each segment cannot be calculated and

are thus discarded in the further data analysis. If no analog band pass filter is used at the

Acqiris card input, a digital FIR filter is used after the IQ demodulation, to filter the higher

frequency components and reduce the detection bandwidth to a desired value. As next

step, the quadrature moments 〈Ij
′

1 I
k′
2 Q

m′
1 Qn′

2 〉 up to fourth order 0 < j′ + k′ +m′ + n′ ≤ 4
for each sample point are calculated. Afterwards the whole process is repeated for L cycles.

Each segment is triggered by a pulse generated by a Data Timing Generator DTG5334

from Tektronix which is also referenced to the rubidium 10 MHz reference source. Finally,

the calculated moments for each sample trace of length M are averaged over segments and

cycles, so every quadrature moment is averaged N × L times. This procedure preserves

the time information in one sample trace, so time-domain measurements are possible

if needed. During the calculation of the signal moments 〈(â†i )râli〉 from the quadrature

moments 〈Ij
′

1 I
k′
2 Q

m′
1 Qn′

2 〉 of each sample point i, following the dual-path reconstruction

method [19], the sample trace is averaged to obtain the averaged signal moments 〈(â†)râl〉.

3.2.3 Calibration

This section describes the calibration procedure of the IQ cross-correlation detector. Even

though, the dual-path method does not rely on identical amplification paths, amplitude

and phase balancing improve the measurement precision. Furthermore, the determination

of the photon number conversion factor (PNCF) for each quadrature is an important

issue.

Amplitude and phase balancing between the amplification chains

Before each PNCF calibration, the balancing between the amplification chains with respect

to amplitude and phase is checked. For that, we first stabilize the heatable attenuator to

2The exact number depends on the intermediate frequency ωIF and the sampling rate of the ADCs.
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Figure 3.10: Unbalanced histograms of the total counts for each ADC bin for (a) channel 1 and (b)

channel 2. The ADC bins correspond to the 12-bit resolution of the ADCs and thus span

the x-axis with 4096 points. Red lines are Gaussian fits to the data.
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Figure 3.11: Balanced time traces for a strong coherent signal incident to the Acqiris card input for

channel 1 (blue squares) and channel 2 (red dots). The lines are sinusoidal fits to the data.

600 mK and record the raw ADC readings for each chain. If we observe clipping effects,

meaning that the ADCs are overloaded in the chosen input voltage range, the voltage

range is adjusted or the attenuation of the step attenuators is increased. In Fig. 3.10 an

exemplary unbalanced measurement for both channels is shown. By adjusting the step

attenuators we balance both chains, so that both Gaussian distributions are identical and

no clipping effects occur.

Next, we apply a strong coherent test signal to the JPA input line and record the

signal with the Acqiris card. After fitting sinusoidal curves to the data (see Fig. 3.11),

we can extract a balancing factor and also the relative phase between each input. In

the measurement program for the Acqiris card, the balancing factor serves as a voltage

pre-factor for one channel, so that both channel amplitudes are equal. These corrected

amplitudes are also used for the moment calculation in later measurements. The relative

phase between the two channels is manually adjusted by an analog phase shifter in one

local oscillator signal path. The relative phase needs to be 180◦, since the dual-path

reconstruction assumes this phase difference between the two chains, due to the use of the
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hybrid ring. The hybrid ring output signals have a relative phase of 180◦ in respect to

each other, due to the device geometry. Fig. 3.11 shows a balanced measurement with

respect to amplitude and relative phase of the two channels.

Photon number conversion factor (PNCF) calibration

After balancing both chains the photon number conversion factors (PNCFs) for each

quadrature component of the detected IF signals are determined. The detected quadrature

moments 〈Ij
′

1 I
k′
2 Q

m′
1 Qn′

2 〉 have units of volts to a power depending on the order of the

moment. However, the desired signal moments 〈(â†)lâm〉, obtained from dual-path state

reconstruction are given in units of photon number. Thus, a conversion factor between the

measured voltages and the corresponding number of photons at the input to the hybrid

ring is needed.

To this end, a calibrated photon source needs to be placed in front of the hybrid ring in

order to provide a known number of photons. A qubit could be used for that purpose, but

in the absence of a qubit, we use a heatable noise source and conduct a Planck spectroscopy

experiment [66]. A heatable 30 dB attenuator is installed in the input line to the JPA.

The attenuator acts as broadband black body emitter, whose temperature and thus its

output power in a given bandwidth can be experimentally controlled. Due to the weak

thermal coupling of the attenuator to the mixing chamber plate and the other microwave

components, the temperature can be varied in the range Tatt = 40− 600 mK, while other

component retain a stable temperature. By using a superconducting NbTi/NbTi cable

between the attenuator and the measurement circulator we further reduce the thermal

coupling to the cryostat and also reduce losses. The total detected power P1,2 of each

amplification chain is

P1,2(Tatt) =
〈I2

1,2〉+ 〈Q2
1,2〉

R

=
κG1,2

R

[
1
2 coth

(
hf0

2kBTatt

)
+ n1,2

]
, (3.4)

where R = 50 Ω, h is the Planck constant, kB is the Boltzmann constant, and f0 the

center frequency of the detection bandwidth. The hyperbolic cotangent term describes the

emitted photons of the black body emitter at a frequency f0 and temperature Tatt. n1,2 is

the number of added noise photons and G1,2 the signal gain in each amplification chain.

The product of κ = R×2×BW ×hf0 and G1,2 relates the measured quadrature moments

〈I2
1,2〉 and 〈Q2

1,2〉, with units V2, to the number of photons emitted by the attenuator.

Here, we treat both quadratures identically. In the data analysis, however, we fit all four

moments 〈I2
1 〉,〈Q2

1〉, 〈I2
2 〉 and 〈Q2

2〉 individually and retrieve κG and n for each moment.

During fitting, we take losses between the attenuator and the hybrid ring input with

the beam splitter model into account and also consider a temperature gradient along the
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Figure 3.12: (a) 〈I2
1 〉 and (b) 〈I2

2 〉 plotted as a function of the attenuator temperature Tatt. Blue dots

are experimental data and the red line is a fit according to Eq. (3.4). The JPA temperature

is stabilized to 50 mK. Each data point is averaged over 5.6× 108 samples.

cable between the heatable attenuator and the measurement circulator. The losses from

the heatable attenuator to the measurement circulator are estimated to be 0.15 dB and

the losses from the measurement circulator to the input of the hybrid ring, including the

JPA insertion losses, are estimated to be 0.98 dB. Thus, we obtain a conversion factor

between measured voltages and number of photons at the input to the hybrid ring.

In Fig. 3.12, the measured in-phase quadrature moments 〈I2
1 〉 and 〈I2

2 〉 are shown,

corresponding to amplification path 1 and 2, respectively. Extracted fitting parameters are

summarized in Tab. 3.1. We observe, that below approximately 60 mK, the contribution

of the heatable attenuator to the measured quadrature moments is negligible and the

detected signal mainly consists of noise added by the amplification paths. Furthermore,

〈I2
2 〉 corresponding to the cryostat output 2 in Fig. 3.2, yields slightly higher number of

noise photons and deviates stronger from the theory curve (see Fig. 3.12 (b)), as compared

to the other chain. After various tests, we conclude that the inferior performance of one

chain originates from inside the cryostat, since swapping the amplification chains at several

points outside the cryostat always yields a poorer performance for the cryostat output 2.

Furthermore, we observe, that thermal anchoring of the superconducting output cables to

the different temperature stages is important, since otherwise a thermal equilibrium of

the cables is only reached after several days after cooling down the cryostat.

PNCF κG (10−3 · V2) Noise photons n

Chain 1
I1 channel 8.4± 0.1 27.1± 0.3
Q1 channel 8.5± 0.1 26.9± 0.3

Chain 2
I2 channel 7.9± 0.2 28.1± 0.9
Q2 channel 7.9± 0.2 28.1± 0.8

Table 3.1: PNCF and number of noise photons in the two detection chains calculated from fitting Eq. (3.4).

Uncertainties are from 95% confidence bounds of fitting.
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JPA characterization

In this chapter, we characterize three different JPA samples, JPA Q200, JPA Q600 and

JPA Q200new. First, the dependence of the resonant frequency on an external magnetic

flux for the different JPA samples is studied. For JPA Q600 we observe a strong hysteretic

behavior, originating from a large screening parameter βL. We developed an approach to

describe the flux dependence for an arbitrary βL and apply it to our measurement results.

Furthermore, we present both the extracted quality factors for the different samples and

finally, the non-degenerate amplification properties of a JPA.

4.1 Flux dependence

As already discussed in Sec. 2.2.6, a dc-flux Φdc applied to the dc-SQUID loop will tune

the resonant frequency f0 of a flux-driven JPA. Additionally, a superposed oscillating

magnetic field, with a frequency of approximately 2f0 applied via a pump line, will cause

parametric amplification. The amount of amplification depends on the amplitude of the

modulation of f0 caused by the pump tone and thereby on the pump power as well as on

the slope of the dependence of the JPA resonant frequency on the external flux. A careful

choice of a flux working point is essential, since a flat flux dependence will not allow for

reasonable gains and a too steep dependence makes the JPA susceptible to flux noise.

The flux dependence of the resonant frequency f0 is measured by sweeping the frequency

of the JPA input signal and measuring the response with a Vector Network Analyzer

(VNA) at different coil currents, corresponding to different flux values. Since a λ/4
resonator geometry is used, one needs to measure the signal reflected from the JPA, as

depicted in Fig. 4.1. We use a measurement circulator to separate the input signal ain to

the JPA from the back-reflected signal aout = Γain. Both the magnitude and the phase of

the reflected signal, which correspond to |Γ| and arctan Im Γ
Re Γ , respectively, are recorded.

The VNA measures complex S-parameters by comparing the output and input signals

going into and coming out of the device under test. In our measurements, we record

the transmission coefficient S12 through the whole setup, including the JPA reflection

coefficient as well as the input and output lines. Thus, one needs a calibration of the

input and output lines to extract only the reflection coefficient Γ of the JPA alone.

47
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Figure 4.1: Setup for the measurement of the flux dependence with a Vector Network Analyzer (VNA).

The reflected signal from the JPA is separated from the input signal by a measurement

circulator. The pump is turned off during these measurements. The current through a

superconducting coil determines the flux Φdc through the dc-SQUID loop.
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Figure 4.2: Flux dependence of JPA Q600 without a pump tone. For an increasing current through the

coil (a) and (c) show the reflected magnitude and phase, respectively. (b) and (d) show the

reflected magnitude and phase, respectively, for decreasing coil current.

In the presented data this is achieved by looking for coil currents, where the resonant

frequency of the JPA is outside of the measured frequency window and, thus, no magnitude

or phase response of the JPA are visible in the reference measurements. The recorded

magnitude and phase of the VNA at these coil currents are then averaged and subtracted

from the actual measurement data. For the phase, one additionally needs to perform a

linear fit over the measured frequency range and subtract this fit from the measured phase

data, since the VNA records the unwrapped phase resulting in a linear phase increase

with frequency.

Fig. 4.2 shows the recorded flux dependence for the strongly hysteretic JPA Q600 with
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Figure 4.3: Flux dependence of JPA Q200 without a pump tone. (a) Magnitude and (b) phase for

increasing coil current. No hysteretic behavior is observed in the measured frequency range.
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Figure 4.4: Flux dependence of JPA Q200new without a pump tone. (a) Magnitude and (b) phase for

increasing coil current. No hysteretic behavior is observed in the measured frequency range.

The central period shows a very weak magnitude response indicating high internal quality

factors Qint.

a designed external quality factor of 600. The resonant frequency f0 depends on the

direction of the current sweep. The dependence is periodic in the externally applied

magnetic field and at certain field values the resonant frequency f0 jumps from a low to a

high value if one follows the direction of the magnetic field sweep.

We also investigated two other samples, JPA Q200 and JPA Q200new, which both have

a designed external quality factor of 200. Fig. 4.3 and Fig. 4.4 show the flux dependencies

for these samples. The resonant frequencies for both samples are single-valued and, thus,
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Figure 4.5: (a) and (b) show the reflection magnitude and phase of JPA Q600, respectively, at a coil

current of 72µA. The measured data (blue) is fitted according to input-output formalism

(red). The extracted quality factors for the shown fit are Qext = (11.3 ± 0.8) · 103 and

Qint = (1.1± 0.1) · 103. Since the external quality factor is larger than the internal one, the

JPA Q600 is undercoupled. This can easily be seen in the characteristic change in phase

when crossing the resonant frequency. The phase does not make a complete 360◦ phase shift

but rather exhibits a dip-peak structure.

no hysteretic behavior is observed. For JPA Q200 we observe a clear dip in the magnitude

response of approximately 3 dB, which is independent of the coil current. In contrast, for

JPA Q200new the magnitude response depends on the coil current. The central period

shows a very weak dip in the reflected magnitude but a similar phase response over the

whole coil current range. This behavior indicates an increased internal quality factor for

low coil currents.

4.1.1 Quality factors

For resonators, or in our case JPAs, the internal and external quality factors are important

quantities. The internal quality factor Qint provides information about internal losses

of the resonator. In general one wants to achieve Qint as high as possible to minimize

such losses and, thus, improve the lifetime of photons inside the resonator. The external

quality factor Qext is mainly defined by the coupling capacitor Cc (see Fig. 2.7), which

couples the resonator to the input and output port. If Qext is large then the coupling is

weak and the chance for photons to enter or to leave the resonator is small.

As discussed in Sec. 2.2.3, one can model the λ/4 resonator with the input-output

formalism, leading to a reflection coefficient

Γ =
(ω − ω0)2 + iκ2(ω − ω0) + κ2

1−κ
2
2

4
(ω − ω0 + iκ1+κ2

2 )2 , (4.1)

where κ1 = ω0
Qext

and κ2 = ω0
Qint

are the coupling rates, related to the external and the

internal quality factors, respectively, and ω0 is the resonant frequency of the JPA for a

given external flux. By fitting the magnitude and the phase of the reflected JPA signal
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Figure 4.6: (a) and (b) show the reflection magnitude and phase of JPA Q200, respectively, at a

resonant frequency of 5.85 GHz. The measured data (blue) is fitted according to input-output

formalism (red). The extracted quality factors for the shown fit are Qext = 310 ± 2 and

Qint = (1.8 ± 0.1) · 103. Since the external quality factor is smaller then the internal one,

the JPA Q200 is overcoupled, as seen in the 360◦ phase shift, when crossing the resonant

frequency.

simultaneously for every coil current, one can determine the three fitting parameters ω0,

Qext and Qint.

Fig. 4.5 shows an exemplary fit of JPA Q600 at a coil current of 72µA. The extracted

quality factors from the fit are Qext = (11.3± 0.8) · 103 and Qint = (1.1± 0.1) · 103 with

uncertainties given by the 95% confidence bounds. The averaged quality factors for the

coil current range shown in Fig. 4.2 are Qext = (12.0±0.7) ·103 and Qint = (1.2±0.1) ·103.

Both Qext and Qint show no obvious dependence of the coil current. The external quality

factor strongly differs from the design parameter Qdesign
ext = 600 as well as the internal

quality factor. Thus, JPA Q600 is in the undercoupled regime, resulting in the typical

reflection phase response shown in Fig. 4.5 (b), where the phase exhibits a dip-peak

structure when crossing the resonant frequency. Due to the low internal quality factor,

JPA Q600 is not suitable for squeezing measurements.

For the sample JPA Q200 we observe an overcoupled behavior, where Qint is larger

than Qext as shown in Fig. 4.6. A characteristic phase shift of 360◦, when crossing the

resonant frequency is clearly visible. However, the average internal quality factor with a

mean value of Qint = (1.8± 0.1) · 103 is not very large, indicating high internal losses of

the JPA. Furthermore, a resonant frequency dependent external quality factor Qext in the

range of 270 – 310, similar as discussed later for JPA Q200new, is observed. The external

quality factor for this sample is therefore quite close to the design value Qdesign
ext = 200.

For sample JPA Q200new, we again observe an overcoupled behavior, as shown in

Fig. 4.7. The magnitude of the reflected signal is barely visible and the reflection phase

undergoes a 360◦ phase shift when crossing the JPA resonant frequency. The extracted

quality factors for the shown fit at a coil current of 44µA are Qext = 275 ± 5 and

Qint = (33.1± 4.9) · 103. This internal quality factor is surprisingly high and the scatter
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Figure 4.7: (a) and (b) show the reflection magnitude and phase of JPA Q200new, respectively, at a coil

current of 44µA. The measured data (blue) is fitted according to input-output formalism

(red). For comparison fits with fixed internal quality factors of Qint = 10 · 103 (black) and

Qint = 100 · 103 (green) are shown as dashed lines. The extracted quality factors for the

shown red fit are Qext = 275 ± 5 and Qint = (33.1 ± 4.9) · 103. Since the external quality

factor is much smaller than the internal one, the JPA Q200new is strongly overcoupled, as

seen in the 360◦ phase shift, when crossing the resonant frequency. (c) shows the external

quality factors Qext extracted from fitting as a function of the resonant frequency f0. The

fits are performed for coil currents between −150 uA and 150 uA.

in the data is rather large. Therefore, fitted curves with fixed internal quality factors

of Qint = 10 · 103 and 100 · 103 are shown for comparison. One can clearly see, that the

unbounded fit describes the data best, whereas the fits with fixed internal quality factors

lead to a too high or low dip in the reflected magnitude.

For this sample the designed external quality factor of Qdesign
ext = 200 is again close to

the extracted ones (see Fig. 4.7 (c)). Furthermore, the fitted external quality factors

decrease by a factor of approximately 80 when going from resonant frequencies around

5 GHz to the maximal values at 5.62 GHz. The external quality factors are equal for every

period in the external flux dependence of the JPA resonant frequency.

The internal quality factors, on the other hand, exhibit a strong dependence on the coil

current, which can already be seen in the reflection magnitude shown in Fig. 4.4 (a). The

left and right period show a visible magnitude response, yielding internal quality factors

in the range of 5 · 103 − 50 · 103. For the central period, the magnitude response vanishes

completely for low magnetic fields and, thus, the fitting procedure fails and no internal
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quality factors can be extracted. Nevertheless, for lower frequencies in the central period,

e.g. at a coil current of 44µA, as shown in Fig. 4.7 (a,b), one can still find reasonable

quality factors.

We note that even when the reflection magnitude cannot be fitted, one can still extract

the external quality factor from fitting the phase response, which is clearly visible for all

coil currents. JPA Q200new exhibits high internal quality factors for regions where no

clear response in the reflection magnitude is observed. For high internal quality factors

the phase response is only weakly dependent on the exact value of the internal quality

factor but depends mainly on the external one. To understand this, we look again at

the fits with fixed quality factors and the unbounded fit shown in Fig. 4.7 (a,b). The

magnitude response is clearly different, but the phase response is nearly identical for all

three fits1 and the extracted external quality factors only scatter by 1%. Thus, under

the assumption of high internal quality factors in the regions, where no clear reflection

magnitude is seen, one can still extract reasonable external quality factors from the phase

response (see Fig. 4.7 (c)).

4.1.2 Simulation of the dc-SQUID potential

We now focus on the dependence of the resonant frequency on the external flux through

a dc-SQUID loop. As shown in Sec. 2.2.4, the resonant frequency f0 depends on the

Josephson energy, which in turn is depending on the external flux Φext. For an arbitrary

βL, a numerical approach is required to describe the flux dependence of f0, since the

induced circulating currents depend on the history of the applied flux and are, in general,

multi-valued. Since, we are only interested in equilibrium states of the dc-SQUID, we

start from the normalized potential of the dc-SQUID (see Sec. 2.2.2)

u(ϕ+,ϕ−) = U(ϕ+,ϕ−)
EJ0

= 2− 2 cosϕ+ cosϕ− − 2jϕ+ + 2
πβL

(ϕ− − πϕext)2 , (4.2)

where ϕ+ = (ϕ1 + ϕ2)/2 and ϕ− = (ϕ2 − ϕ1)/2, j = Itot/(2Ic) and ϕext = Φext/Φ0. The

potential can be derived from the Lagrangian in Eq. (2.77) by using L = K(ϕ̇+,ϕ̇−) −
U(ϕ+,ϕ−).

For βL = 0, it follows from the last term in Eq. (4.2), that one needs to satisfy

ϕ− = πϕext in order to minimize the potential2, and thus an imaginary phase-particle

is effectively moving inside the one-dimensional potential u(ϕ+, πϕext). In this case,

one recovers the result that the dc-SQUID can be seen as one Josephson junction with

Ic → 2Ic
∣∣∣cos

(
πΦext

Φ0

)∣∣∣. An analog to this system would be two rigidly coupled pendula.

Due to the strong coupling, only one degree of freedom remains. If one now loosens

1The phase response for all three fits are plotted in Fig. 4.7 (b), however the frequency dependence is
nearly identical so the topmost phase response covers the other two.

2This is consistent with the fluxoid quantisation in Eq. (2.69), if one substitutes Φ = Φext +LloopIcirc =
Φext for βL = 0.
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Figure 4.8: (a-f) show the dc-SQUID potential for different external flux values ϕext and βL = 0.592.

Green dots denote the present position of the phase particle, whereas red dots are adjacent

local minima. (a-d) and (e,f) correspond to increasing and decreasing ϕext, respectively.

Yellow arrows indicate a jump of the phase particle to an adjacent minimum, when the

present minimum disappears. The obtained normalized dc-SQUID critical currents jc(ϕext)
when sweeping ϕext up (blue line) and down (orange line) are shown in (g). Furthermore,

the corresponding jc values of the phase particle in (a-f) are denoted by green dots in (g).
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the coupling, by increasing βL, one needs to consider both coordinates, ϕ1 and ϕ2, or

equivalently ϕ+ and ϕ−, of the phase particle moving inside the potential of Eq. (4.2).

Fig. 4.8 illustrates the behavior of the phase particle (shown as a green dot) for increasing

and decreasing the external flux for a screening parameter βL = 0.592 and no transport

current through the dc-SQUID j = 0. If one looks at the ϕ+-axis, the local minima

(shown as red dots) are located at multiples of π, thus ϕ+ = nπ with n ∈ Z. To be more

precise, if the local minima have even ϕ−/π, then the local minima are also located at

even ϕ+/π. If ϕ−/π is odd, then the local minima are located at odd ϕ+/π. Thus, it

can be understood that the phase particle needs to jump at a certain flux value, if ϕext,

and therefore ϕ−, is varied. The position of the jump depends on the magnitude of βL.

We assume, that the phase particle will reside in one minimum as long as the minimum

exists and will then jump to an adjacent one. In general, the depths of the minima will be

different, thus leading to a discontinuity of the dc-SQUID critical current 2Ic · jc. Here we

introduced the normalized critical current jc, which denotes the normalized current j at

which the local minimum of the phase particle vanishes. The discontinuity, in turn leads

to a discontinuity of the dc-SQUID inductance LSQUID(Φext), which can be experimentally

observed in a jump of the resonant frequency f0(Φext) of the JPA.

Let us come back to Fig. 4.8 and explain the behavior in more detail. Fig. 4.8 (a-

f) show a surface plot of the dc-SQUID potential for consecutive external flux values

ϕext = 0, 0.5, 0.79, 1, 0.5 and 0.21. In (a) the phase particle (green dot) starts at

ϕ+ = ϕ− = 0 for the external flux ϕext = 0. When the external flux increases, the

minimum of the green dot gets shallower while other minima at ϕ+ = ±π appear and

get deeper. (b) For ϕext = 0.5, all minima have the same depth and therefore the same

normalized critical current jc, nevertheless the phase particle will stay in its present

minimum, since there is still a potential barrier separating the minima. (c) If the external

flux is increased to a threshold flux ϕjump
ext = 0.79, the potential barrier vanishes and the

phase particle will jump to one of the minima at ϕ+ = ±π. The threshold flux depends

on the magnitude of βL. For βL = 0, it is exactly 0.5 3 and increases with increasing βL.

(d) While further increasing ϕext, the phase particle resides in the new minimum until

it would vanish again at ϕext = ϕjump
ext + 1 and so on. In general, one obtains jumps for

increasing flux at ϕext = ϕjump
ext + n with n ∈ Z. (e) If the external flux is now decreased to

ϕext = 0.5 again, the phase particle resides in the minimum at ϕ+ = −π contrary to (b),

where it was at ϕ+ = 0 for this particular ϕext. (f) If the external flux is further decreased

to ϕext = 0.21, we again reach a jump point of the phase particle. For decreasing flux,

these jump points are at ϕext = n− ϕjump
ext . (g) depicts the normalized critical current jc

for increasing (blue) and decreasing (orange) external flux. Furthermore, the jc values for

(a-f) are also marked by green dots. One observes regions of jc where the upward and

downward sweep yield overlapping curves as well as regions where they do not overlap.

3For βL = 0 no hysteretic behavior is observed, since for ϕext = 0.5 all minima vanish and thus jc = 0.
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Figure 4.9: (a-d) show the dc-SQUID potential for different transport currents j at a fixed external flux

ϕext = 0.55 and βL = 0.592. Green and red dots denote local minima with uneven ϕ+/π

and even ϕ−/π, respectively. For this particular external flux, the green local minima are

deeper than the red ones. When the transport current j is increased above a certain threshold

jred
c , the red local minima disappear, while the green ones are still present. When reaching

the second threshold jgreen
c , also the green local minima disappear and the phase particle

will inevitably slide down the two dimensional washboard potential. (e) shows the critical

current jc(ϕext), which is obtained by looking at the local minima of the phase particle when

increasing the transport current j for different ϕext. When the local minimum disappears at

a certain j, we denote this transport current as jc for this particular ϕext. When comparing

with Fig. 4.8, one sees that jred
c and jgreen

c correspond to increasing and decreasing ϕext,

respectively.
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The procedure to determine the normalized critical current jc(ϕext) for every flux step

is shown in Fig. 4.9. (a-d) show the dc-SQUID potential for different transport currents

j = 0, 0.2, 0.35 and 0.5. For a given external flux ϕext, the phase particle will be in

a local minimum with even or odd ϕ+/π, which depends on whether one increases or

decreases ϕext. The even (red) and odd (green) minima have different threshold transport

currents jred
c and jgreen

c , respectively. These threshold currents are given by the transport

current, when the respective local minima disappear. In Fig. 4.9 (g), one can see the

obtained normalized critical current jc(ϕext) with jred
c and jgreen

c marked in red and green,

respectively. Thus it can be seen, that sweeping the flux up and down produces the blue

and orange curve, respectively. For a more detailed description of the numerical approach

on how to simulate the dc-SQUID potential and the normalized critical current jc, we

refer the reader to Appendix A.

4.1.3 Comparison with experimental data

The numerically calculated jc(Φext), determines a certain dc-SQUID inductance (see

Eq. (2.73))

Lc,SQUID(Φext) = Φ0

4πIc · jc(Φext)
, (4.3)

where Ic is the critical current of one Josephson junction. This equation can be used to

calculate the resonant frequency of the JPA by rewriting Eq. (2.96) in the form(
π

2
f0

fres

)
tan

(
π

2
f0

fres

)
= Lres

Lc,SQUID(Φext) + Lloop
= 2LresIc

Φ0

2πjc(Φext)
+ Φ0βL

, (4.4)

taking into account a finite loop inductance Lloop of the dc-SQUID ring and using

βL = 2IcLloop
Φ0

. Here fres and Lres are the bare resonant frequency and the inductance of

the resonator without the dc-SQUID, respectively, and f0 is the actual, flux-dependent,

resonant frequency of the JPA. Furthermore, the last term in Eq. (2.96) is neglected,

since the capacitance of the bare resonator Cres is much larger than the capacitance of

the Josephson junctions Cs and thus Cs/Cres vanishes. The experimental data is fitted

with Eq. (4.4) by a least-mean-square algorithm and fitting parameters LresIc, βL and f0.

Furthermore, we obtain a conversion factor between the coil current and the flux Φext

from fitting.

For JPA Q600 the dependence of the resonant frequency f0 on the external flux Φext

is shown in Fig. 4.10. The resonant frequencies are extracted from fits with input-

output formalism. Fig. 4.10 (a) and Fig. 4.10 (b) show the obtained resonant frequencies

(blue circles) and corresponding fit (red line) for increasing and decreasing coil current,

respectively. When combining both sweep directions (Fig. 4.10 (c)), one observes that the

fit describes the overall dependency very well. To match the jump points from the lower to
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Figure 4.10: Resonant frequency f0 of JPA Q600 (blue circles), extracted from fitting the magnitude

and phase with input-output formalism and fitted flux dependence (red). (a) and (b) show

the resonant frequency for increasing and decreasing external flux, respectively, and (c) the

combined resonant frequencies for both sweep directions. For fitting results see table 4.1.

the upper branches, we introduce a switching current jsw
c in the simulations. If the present

local minimum of the phase particle has a lower jc then jsw
c , then the particle jumps

to another potential minimum, even though the present minimum did not vanish yet.

The switching currents jsw
c can be understood as a noise floor originating from internal

losses and contributions from external noise. For a shallow potential minimum small flux

changes or transport currents, induced by a noisy setup or the environment, are enough to

lift the particle out of the present minimum before the minimum vanishes. Furthermore,

internal losses are connected to a certain noise level. We note that including jsw
c in the

simulations only changes the jump points but does not influence the overall dependence

shown in Fig. 4.10 (c).

To obtain Ic from the fitting parameters, we estimate Lres from the geometrical design

parameters and matching to 50 Ω, and obtain Lres = 2 nH. Table 4.1 summarizes the

obtained results. We find a screening parameter of βL = 0.592, critical current of one

Josephson junction of Ic = 26.76µA and a resonant frequency of the bare resonator of

fres = 6.158 GHz. Ic is substantially higher than the design parameter Idesign
c = 4µA, thus

resulting in a relative high βL parameter leading to hysteretic behavior. We attribute this

deviation to problems in the fabrication process of the JPA, since we observed a similar

hysteretic behavior in a different JPA sample.

Fig. 4.11 depicts the flux dependence of the resonant frequency of JPA Q200 and

JPA Q200new. For both measurements the coil current was only increased, since no
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Figure 4.11: Resonant frequency f0 of (a) JPA Q200 and (b) JPA Q200new (blue circles), extracted from

fitting the magnitude and phase with input-output formalism and fitted flux dependence

(red). For fitting results see table 4.1.

Sample Ic (µA) βL fres (GHz) Ej/h (103 ·GHz) 2Ic · jsw
c (µA)

JPA Q600 26.76 0.592 6.158 13.29 3.05

JPA Q200 5.72 0.24 6.070 2.84 1.64

JPA Q200new 3.30 0.10 5.849 1.64 >0.26

Table 4.1: Fitting results of flux dependence of the resonant frequency for the measured samples JPA Q600,

JPA Q200 and JPA Q200new under the estimation of Lres = 2 nH.

pronounced hysteretic behavior is visible in the measured frequency range. Again the

fitting results are summarized in table 4.1. Both Ic are now closer to the design parameter

of Idesign
c = 2µA, resulting in lower βL parameters. The switching current 2Ic · jsw

c of

JPA Q200 is significantly larger than for JPA Q200new, indicating a higher noise level in

JPA Q200. This also coincides with the fact, that for JPA Q200new we observed very

high internal quality factors, which corresponds to a lower internal contribution to the

noise level and thus leading to a reduced switching current.

In order to fit the flux dependence of JPA Q200new properly, one also needs to include

a modulation of jc caused by a parasitic in-plane component of the magnetic fields

penetrating the insulating tunnel barrier of the Josephson junctions. Thus, we obtain an

additional modulation jc(Φext)→ jc(Φext) · |sinc(BπΦext/Φ0)| [67]. The factor B accounts

for the fact, that the flux penetrating the dc-SQUID loop perpendicular to the plane
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Φext and the in-plane flux through the tunnel barriers of the Josephson junctions are not

the same but approximately proportional to each other. We observe this effect, because

the magnetic field generated by the superconducting coil is not perfectly homogeneous

or the placement of the coil is such, that the field is not exactly perpendicular to the

dc-SQUID loop. For the other samples JPA Q200 and JPA Q600 the in-plane magnetic

field is negligible, probably due to the placement of the coil on the sample box.

To summarize, we found an approach to describe hysteretic and non-hysteretic behaviors

of the resonant frequencies of Josephson parametric amplifiers based on a λ/4 resonator

shunted with a dc-SQUID to the ground. We achieve this by simulating the position of

the phase particle in the two-dimensional tilted washboard potential of the dc-SQUID,

whose topology strongly depends on the screening parameter βL. Furthermore, we apply a

distributed-element model to describe the flux dependent resonant frequency f0 of the JPA.

We conclude, that even for small screening parameters βL, one obtains a quantitatively

different dependence of f0 on the external flux as compared to the case with βL = 0.

4.1.4 Comparison to literature

Dc-SQUIDs with various βL factors have already been extensively investigated in liter-

ature [68–71]. All approaches make use of numerical calculations to describe the flux

dependence of the maximal supercurrent but investigate the dc-SQUID independently. In

our experiments, the dc-SQUID is grounding a resonator, which leads to a characteristic

change in the resonant frequency of the JPA. We only measure the resonant frequency,

which is related to the inductance of the dc-SQUID by Eq. (4.4). The actual transport

current through the dc-SQUID Itot is at all times very small or vanishing, since we do not

apply a dc-bias to the JPA. Therefore, in the presented experiments we only probe the

inductance (see Eq. (4.3)), and thus jc and not the maximum supercurrent Imax
c of the

dc-SQUID. These two maximum currents differ in the condition how to choose the local

minimum for the determination of the critical current. For jc, one chooses the present

local minimum of the phase particle, regardless of whether it is the deepest or a shallow

one, and for Imax
c the deepest minimum is chosen. Imax

c then gives the maximal transport

current at which the dc-SQUID is still in the zero-voltage state. Above this threshold, the

dc-SQUID goes into the voltage state4.

Our simulation can be easily adjusted to also reproduce the well known modulation of

the maximal supercurrent Imax
c depending on the externally applied flux Φext for different

βL. One just needs to replace the condition that the phase particle stays in the present

minimum as long as it exists with the condition that it always resides in the deepest local

minimum. Fig. 4.12 shows the resulting dependence for various screening parameters

βL as it can also be seen in Refs. [52, 71]. With increasing βL the modulation of the

maximum supercurrent is reduced.

4In fact the actual switching transport current to bring the dc-SQUID into the voltage state depends on
the noise level and the junction parameters [52, 71].
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Figure 4.12: Maximum supercurrent of a dc-SQUID Imax
c vs. external flux Φext for different screening

parameters βL.

4.2 Non-degenerate operation mode

4.2.1 Non-degenerate signal gain

Now the JPA is operated in the non-degenerate mode, meaning it acts as a phase-insensitive

amplifier for an input signal at a frequency f0 − ∆f . To this end, we turn the pump

in Fig. 4.1 on and set it to a frequency 2f0 which is approximately twice the resonant

frequency of the JPA without pump signal. In addition to the amplified signal at f0−∆f ,

an idler signal at f0 + ∆f is generated. As long as ∆f is finite and thus signal and idler

are at different frequencies, the JPA is operated in the non-degenerate mode.

Fig. 4.13 (a) shows the signal gain spectra for different pump powers at a pump frequency

of 2f0 = 11.02 GHz and a coil current of 44µA for JPA Q200new. The measurement is

performed with a VNA by sweeping the frequency of the signal at the input to the JPA

and measure the reflected signal. We thus measure only the signal gain and not the idler

mode. A measurement with the pump tone turned off serves as reference measurement.

Up to a certain pump power, the signal gain increases and reaches a maximum at

approximately 15 dB. For higher pump powers the signal gain decreases again, since

non-linear effects set in, which hinder the signal amplification. From fitting each spectrum

with a Lorentzian, we extract the maximal signal gains in Fig. 4.13 (b). The maximal

signal gain for a given pump power is observed at approximately half the pump frequency

f0. In the data analysis we discard points at exactly f0, since ∆f = 0 would mean

phase sensitive degenerate amplification. In the recorded spectra, we see the effect of

phase-sensitive degenerate amplification by random pronounced dips or peaks at ∆f = 0.

The dips or peaks are randomly appearing, since the VNA does not preserve the start

phase for each frequency sweep and so the relative phase between VNA signal and pump

tone changes for every frequency sweep.
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Figure 4.13: (a) Spectrum of the non-degenerate signal gain vs. pump power and (b) extracted maximal

signal gains from Lorentzian fits for JPA Q200new. The pump frequency is at 2f0 =
11.02 GHz and the coil current is 44µA. Error bars show 95% confidence bounds of fits.

We note that the optimal pump frequency for a given external flux is not necessarily twice

the resonant frequency of the JPA at zero pump power, but rather depends on the pump

power, since the pump tone will shift the resonant frequency to slightly lower values. The

slightly deamplified region in Fig. 4.13 (a) can be explained by a not perfectly chosen

pump frequency. If the pump frequency is too high or too low, when compared to the

optimal point, one observes a dip-peak structure in a recorded spectrum as we see in the

shown data for pump powers between 12 and 18 dBm.

4.2.2 Noise properties

The noise properties of an amplifier are important characteristics, since they describe

the degradation of the signal-to-noise ratio during amplification. In our experiments,

the added noise by the JPA will limit the maximum squeezing level which can be

observed. We use a spectrum analyzer to measure the noise power of the two amplification

chains depending on the temperature of an attenuator, acting as noise source in front

of JPA Q200. The spectrum analyzer is connected to the corresponding AMT-A0033

amplifier output in Fig. 3.6 and no input or displacement signal is applied. We set the JPA

to a non-degenerate signal gain of 10.7 dBm at a pump frequency of 2f0 = 11.788 GHz.

The spectrum analyzer is set to a resolution bandwidth of RBW = 200 kHz and a video

bandwidth of V BW = 500 kHz. The JPA is stabilized to 50.5 mK during the measurement.

The noise power depending on the attenuator temperature Tatt can be described by [66]

P (Tatt) = GB

[
hf0

2 coth
(

hf0

2kBTatt

)
+ kBTtotal

]
, (4.5)

where h is the Planck constant, kB the Boltzmann constant, G the gain of the whole

amplification chain and B the bandwidth of the detector, given by the resolution bandwidth
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Figure 4.14: Detected noise power for different attenuator temperatures, acting as noise source, for

chain 1 (blue squares) and chain 2 (red circles). JPA Q200 is set to a signal gain of 10.7 dBm

at a pump frequency of 2f0 = 11.788 GHz. Solid lines are fits according to Eq. 4.5.

RBW . Ttotal gives the total noise temperature of the amplification chain, including the

JPA and HEMT amplifier. The first term in Eq. (4.5) describes the emitted noise power

with frequency f0 of a black body radiator at temperature Tatt.

A heatable 30 dB attenuator acts as such a black body radiator and is connected to a

measurement circulator via a 17 cm stainless steel coaxial cable. By taking the total loss

of approximately 1.5 dB from the attenuator to the measurement circulator into account,

we obtain the effective power incident to the JPA. The losses are modeled with the beam

splitter model.

By fitting the detected noise power for different attenuator temperatures for both ampli-

fication chains, we obtain Ttotal,1 = 233± 4 mK and Ttotal,2 = 445± 5 mK, corresponding

to ntotal,1 = 0.82± 0.01 and ntotal,1 = 1.57± 0.02 noise photons for chain 1 and chain 2,

respectively. Uncertainties are given from 95% confidence bounds from fitting. We observe,

that we only add a little amount of noise photons to the signal in the whole amplification

chains. Chain 1 is close to the standard quantum limit for phase-insensitive amplification

of 0.5 photons. Even tough the setup for both chains is equal, chain 2 adds roughly

double the noise photons. Noise photons are inevitably added by the JPA and the rest

of the amplification chain, including the HEMT amplifier, room temperature amplifiers

and various microwave components. If we also consider the gains G1 = (9.74± 0.06) · 106

and G2 = (7.75± 0.05) · 106 for chain 1 and 2, respectively, we attribute the additional

added noise to a lower amplification in chain 2, which leads to a worse signal to noise

ratio. In fact, we observed a poorer performance of the fridge output 2, corresponding to

amplification chain 2, also for PNCF calibration measurements, which were discussed in

Sec. 3.2.3. However, the measurements shown here, were recorded before the improvements

of the setup. With the improved setup, the noise properties of both amplifications chains

are similar.

For a detailed characterization of JPA Q200 and JPA Q600, we refer the reader to

Ref. [72] and the upcoming master thesis of Martin Betzenbichler.





Chapter 5

Displacement of squeezed microwave

states

In protocols for quantum information processing, such as remote state preparation,

quantum teleportation and quantum cryptography, control over quantum states is essential.

A linear transformation is an important building block for such protocols. For propagating

quantum microwaves, the displacement operation facilitates such a linear transformation

in phase space.

We study displaced squeezed states, where a vacuum state, incident to the JPA, is

squeezed, transmitted, and subsequently displaced with a directional coupler. The resulting

states take the form D̂(α)Ŝ(ξ)|0〉. In principle, one could apply such a displacement

operation to an arbitrary state incident to the directional coupler.

If not stated otherwise, the cryogenic and the room temperature setup schemes shown

in Fig. 3.2 and Fig. 3.6 are used for the measurements. All shown measurements are

performed with JPA Q200new.

5.1 Squeezed vacuum states

In order to produce a single-mode squeezed state, on needs to operate the JPA in the

degenerate mode. This means that the frequency of an input signal needs to coincide

with half the pump frequency. The Acqiris card is referenced to a rubidium source with

10 MHz.

Even if no signal is applied one always has a broadband vacuum state incident to the

JPA input. By choosing a suitable working point and applying a pump tone, one can

produce squeezed vacuum states as shown in Fig. 5.1. First, we choose a coil current

of 20µA, corresponding to a flux of 0.17 Φ0 inside the dc-SQUID loop. This working

point has a corresponding JPA frequency f0 = 5.594 GHz. At an estimated pump power

Ppump = −39 dBm at the input of the JPA sample box, 3.0 dB of non-degenerate signal

gain is obtained. The JPA temperature is stabilized at 40 mK. As discussed in Sec. 3.2.3,

an accurate PNCF calibration of the whole detection chain is crucial to reconstruct the

correct state at the input to the hybrid ring, so a new PNCF calibration is performed

before the measurements.

65
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Figure 5.1: Evaluation of 50 measurements based on the dual-path detection. Each measurement contains

5.6× 108 raw data samples at a working point of f0 = 5.594 GHz. (a) Reconstructed Wigner

function, calculated from the average of all 50 measurements. The average photon number

and the average squeezing of the state are indicated. (b) 1/e contour of the ideal vacuum

state (orange) and squeezed vacuum state (blue). p and q are dimensionless variables

spanning the phase space. (c) Histogram of reconstructed squeezing levels with an average of

S = 2.00+0.42
−0.38 dB. The averaging is performed on linear scale and afterwards converted to

logarithmic scale. (d) Histogram of reconstructed angles of the anti-squeezed quadratures

with an average of γ = 45.1◦ ± 4.1◦. The JPA temperature is stabilized at 50 mK.

All shown measurements are performed using the following phase stabilization protocol

to stabilize the angle of the anti-squeezed quadrature γ. For that, a short measurement

is recorded and state reconstruction is performed. The deviations from the setpoint

in the reconstructed angle γ are corrected by changing the phases of the respective

microwave source. In that way a higher degree of stability for the angles is obtained.

In total 50 measurements with subsequent phase correction after state reconstruction

are performed. Each measurement consists of 5.6 × 108 raw data samples. Fig. 5.1 (a)
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shows the reconstructed Wigner function calculated from the averaged moments of each

measurement. We emphasize, that the reconstructed state corresponds to the input of

the hybrid ring. The total photon number is 0.48 ± 0.02 with an average squeezing of

S = 2.00+0.42
−0.38 dB. The averaging for the squeezing level is performed on linear scale

and then converted to logarithmic scale. The 1/e-contours (Fig. 5.1 (b)) show that the

squeezed state (blue) is indeed squeezed below the vacuum (orange). The third and fourth

order cumulants are small or vanish, giving a strong indication for the Gaussianity of the

reconstructed states (see Appendix B). In Fig. 5.1 (c), the statistics of the reconstructed

squeezing levels is shown. The deviations from the mean value can be explained by

a limited detection efficiency of the Acqiris card based setup. Due to data processing

on a CPU, one obtains rather slow averaging capabilities when compared to a FPGA

based setup with real-time data processing. The reconstructed angles of the anti-squeezed

quadrature γ = 45.1◦ ± 4.1◦, shown in Fig. 5.1 (d), also deviate from the setpoint of

γset = 45◦, which again are explained by the limited detection efficiency.

5.2 Squeezing versus signal gain

5.2.1 Experimental results

By increasing the pump power, the amplitude of the modulation of the resonant frequency

of the JPA also increases. This translates into an increased signal gain in the degenerate

and the non-degenerate operation modes of the JPA, which leads to a higher squeezing

level and higher photon numbers in the state as depicted in Fig. 5.2. The operation point

and the PNCF calibration are the same as in the previous section. At this working point,

we achieve the largest squeezing of S = 2.00+0.42
−0.38 dB at a signal gain of 3.0 dB. If the

signal gain is further increased, we observe a decrease in the squeezing level. This is

attributed to the fact, that the JPA enters the bifurcation regime for high pump powers

and thus high signal gains. In this regime, the squeezing is reduced, since higher order

effects set on [30]. Fig. 5.2 and Fig. 5.3 (a) illustrate this behavior. The squeezing level as

well as the photon number increase until a signal gain of 3.0 dB. Beyond this signal gain,

the squeezing level decreases while the photon number still increases further. Also, for

these high signal gains the higher order cumulants do not vanish anymore, in contrast to

lower signal gains where the cumulants are reasonably small or vanish. In Sec. 5.2.2 we

discuss the data in the context of two models describing the squeezing level by considering

thermal contributions to the ideal squeezed vacuum states.

In the ideal case, we can identify the signal voltage gain in the non-degenerate mode

with the squeezing factor Gv = cosh(r) [23, 44]. Furthermore, the number of photons

in a squeezed state is given by nsq = sinh2(r) (see Eq. 2.33). Using both relations and
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Figure 5.2: From left to right: Reconstructed Wigner functions for signal gains of 0.8 dB, 3.0 dB and

8.1 dB for a squeezing angle γ = 45◦ at the working point of f0 = 5.594 GHz. For each

signal gain, 50 measurements with the phase stabilization protocol are performed, where each

measurement is averaged over 5.6× 108 raw data samples. The average photon number and

the average squeezing of the states are indicated. Insets show 1/e contours of the ideal vacuum

state (orange) and corresponding squeezed vacuum state (blue). The JPA temperature is

stabilized at 50 mK.

cosh2(r)− sinh2(r) = 1, one can write

nsq = Gp − 1 , (5.1)

where Gp = G2
v is the signal power gain in the non-degenerate mode of the JPA. Thus,

one expects a linear dependence of the photon number in a pure squeezed state on the

non-degenerate signal power gain. The slope is one and the y-intercept is -1. However,

from fitting we extract the dependence nsq = −0.51Gp − 0.58, as shown in Fig. 5.3 (b).

The difference by a factor of approximately 1/2 is explained by the contribution of an

parasitic unsqueezed red sideband to the detected signal. The sideband only contains

weakly non-degenerate amplified vacuum. The presence of a sideband contribution during

the PNCF calibration of the detection chains leads to a reduction of the reconstructed

number of photons in the squeezed state by approximately a factor of 1/2. For details

concerning the red sideband contribution, we refer to Sec. 5.2.2.

Next the working point is shifted to a coil current of 44µA corresponding to a flux

of 0.28 Φ0 through the dc-SQUID loop. This working point has a lower frequency of

5.51 GHz, meaning that the slope of the resonant frequency as a function of the external

flux is higher compared to the previous working point at 5.594 GHz. Therefore, for the

new working point, we expect higher non-degenerate signal gains of the JPA at the same

pump powers compared to the previous working point. We confirm this behavior in our

experiments.
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Figure 5.3: (a) Average squeezing below vacuum (blue) and photon number (orange) versus non-

degenerate signal gain for a working point at 5.594 GHz. For each signal gain, 50 mea-

surements with the phase stabilization protocol are performed, where each measurement is

averaged over 5.6× 108 raw data samples. The working point is 5.594 GHz. The lines are

guides for the eyes. The error bars are of statistical nature. (b) Photon number (orange)

as a function of signal power gain in linear units. The green line is a linear fit. The JPA is

stabilized at 50 mK.

In contrast to the previous measurements, the Acqiris card is not referenced to a rubidium

source with 10 MHz and IQ-mixers (Marki, IQ4509LXP) instead of single ended mixers

are used. The phase stability protocol is comprised of 150 measurements, where each

measurement is averaged over 1.68×108 raw data samples. Fig. 5.4 (a) shows the squeezing

level and the photon number as a function of the signal gain. The highest squeezing

of S = 1.41+0.77
−0.59 dB is achieved at a signal gain of 1.4 dB. For higher signal gains, the

squeezing level decreases again, while the number of photons in the state still increases,

similar as for the working point at 5.594 GHz. For the highest two signal gains, no

squeezing below vacuum is observed anymore.

For this working point, the photon number as a function of the signal power gain (see

Fig. 5.4 (b)) exhibits the dependence nsq = 0.97Gp − 0.95, extracted from fitting. This

result is in good agreement with Eq. (5.1), however the sideband is also present for this

working point. Thus, we would expect a similar behavior as for the working point at

5.594 GHz, where the slope is approximately 1/2. We attribute this to the fact that the

gain calibration for the pump power is not accurate or nsq = sinh2(r) is not valid for this

working point, since it does not take into account possible thermal contributions to the

number of photons.
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Figure 5.4: (a) Average squeezing (blue) and photon number (orange) versus non-degenerate signal gain

for a working point at 5.51 GHz. For each signal gain, 150 measurements with the phase

stabilization protocol are performed, where each measurement is averaged over 1.68× 108

raw data samples. The lines are guides for the eyes. The error bars are of statistical nature.

(b) Photon number (orange) as a function of non-degenerate signal power gain in linear units.

The green line is a linear fit, excluding the data for the highest gain. The JPA and the 30 dB

attenuator temperatures are stabilized at 40 mK and 60 mK, respectively.

5.2.2 Models describing the squeezing level

From the theoretical model of a JPA based on the input-output formalism as described in

Sec. 2.2.6, we would expect much higher levels of squeezing for the shown measurements.

In the following we present two approaches for explaining the reconstructed states and

give upper bounds for the achievable squeezing levels.

Thermal squeezed vacuum state

The first approach assumes, that a vacuum state is incident to the JPA input. If a pump

tone is applied, a squeezed vacuum state will be produced by the JPA. Now a certain

amount of thermal photons nth is added to the signal. This contribution of thermal

photons may arise from various sources. On the one hand, we recently discovered, that

a second sideband is down-converted into the intermediate frequency. This sideband

effectively adds noise photons to the detected signal (see next part for further details).

On the other hand, we observed trigger problems with the Acqiris card. This gives rise to
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Figure 5.5: Squeeze factor r and squeezing level S as a function of the non-degenerate signal gain of

the JPA. Values are shown for the two working points at 5.51 GHz (green) and 5.594 GHz

(red). Lines are guides for the eyes. The error bars are of statistical nature. The squeezing

is related to r via S = 20r log10(e). Squeezing factors r are calculated for thermal squeezed

states from the dual-path reconstruction.

phase fluctuations of the squeezing angle γ as well as the displacement angle θ. Since these

fluctuations are correlated between the two detection channels, the dual-path method

assumes these fluctuations are already present at the input to the hybrid ring. The

fluctuations degrade the signal, if the signal is not rotationally invariant. Thus, squeezed,

coherent, and displaced squeezed states are affected by the trigger problems, whereas

thermal and vacuum states are unaffected. Noise photons are also partially added by

inevitable cable losses, JPA losses, and connection losses before the input to the hybrid

ring. Also spurious correlations between the two amplification paths can lead to an altered

reconstructed signal at the hybrid ring input. Using the relations between the moments

〈(â†)mân〉 up to second order and the squeezing parameters r, ϕ as well as the displacement

amplitude α (see Eqs. (2.31-2.33)), one obtains a system of equations, which can be solved

to obtain r, ϕ, α and nth from the measured moments. For that, the moment 〈â†â〉 is

modified to also account for thermal photons in the signal

〈â†â〉 = |α|2 + sinh2 r + nth . (5.2)

We apply this analysis to our data for the working points at 5.594 GHz and 5.51 GHz

shown in Fig. 5.3 and 5.4, respectively. The resulting squeezing factors r for both working

points are depicted in Fig. 5.5. Furthermore, the squeezing level S calculated from the

squeezing factor by S = 20r log10(e) is also shown. One observes that the predicted

squeezing levels (see Fig. 5.5) are well beyond the maximum squeezing we observed

directly in our experiments (see Fig. 5.3 and 5.4). For example at the respective signal

gains with the highest measured squeezing levels, we obtain 4.8 dB and 4.3 dB of squeezing

for the working points at 5.594 GHz and 5.51 GHz, respectively. In our experiments we

do not observe these squeezing levels directly, since thermal photons from the unwanted
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Frequency
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(squeezed state)
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(vacuum or thermal state)

f0-2fIFfIF0

fIF fIF
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Figure 5.6: Sketch of the sidebands. The local oscillator with a frequency fLO defines two sidebands, which

are down-converted to the intermediate frequency fIF. The blue sideband with a frequency

equal to the working point f0, contains a squeezed state from degenerate amplification. The

red sideband with a frequency of fsb = f0 − 2fIF contains a vacuum or thermal state, due to

a certain bandwidth of the non-degenerate amplification of the JPA (green line).

sideband pollute our IF signal and increase the variance of the squeezed quadrature. Even

contributions on the level below one thermal photon increase the reconstructed state

variance drastically.

We note, that in theory the squeezing factor or, equivalently, the squeezing level of a

noiseless JPAs should be the same at identical signal gains for different working points.

However, the working point at 5.594 GHz exhibits lower squeezing factors compared to the

other one, which is attributed to the fact that the JPA is not a perfect noiseless amplifier.

This means that effectively a thermal state is incident to the JPA input, which will then

be amplified by the JPA. Under the assumption that a thermal state is added after the

JPA, this leads to higher calculated squeezing factors. In turn this means, that at the

working point of 5.51 GHz, the JPA already adds more noise photons to the input signal,

which can be attributed to the higher sensitivity of the resonant frequency of the JPA to

an externally applied flux and, thus, to flux noise. This is also observed for the extracted

thermal photons nth depicted in Fig. 5.7 (b) and Fig. 5.8 (b) for the two working points.

At the same signal gains, more thermal photons are added to the squeezed state at the

working point of 5.51 GHz.

Contributions of a sideband

At later stages of our experiment, we discovered that during mixing of the RF-signal with

the local oscillator to the intermediate frequency fIF of 11.5 MHz, a red sideband with

frequency fsb = f0 − 2fIF is also down-converted to the intermediate frequency. This

means that for a working point at 5.51 GHz and intermediate frequency of 11.5 MHz, also

a signal contribution from 5.487 GHz is present after mixing1. At this red sideband the

1In our experiments, we choose the local oscillator frequency to be below the working point frequency
f0. So the red sideband is always located at f0 − 2fIF, where fIF is the intermediate frequency.
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non-degenerate signal gain of the JPA is small but nevertheless finite. Due to the small

detuning of fsb from the working point frequency f0, both sidebands are amplified equally

in the amplification chains and finally mixed to the same intermediate frequency by a

mixer (see Fig. 5.6). Since we use a single ended, harmonic double-balanced mixer, it is

not possible to filter the red sideband contribution from the signal at the desired frequency

digitally.

Therefore, we developed a basic model including the red sideband contribution in order

to estimate the effect of the sideband on the squeezing level. Both bands are superposed

with the beam splitter model. The reconstructed variance of the squeezed quadrature

(∆qsq)2 is determined by a contribution from a squeezed vacuum and from a vacuum or a

thermal state from the red sideband

(∆qsq)2 = η
(1

4G
min
d (Apump)

)
+ (1− η)

(1
4 + 1

2 ñthGp(Apump)
)
, (5.3)

where Apump is the pump amplitude, η = 0.5 is the contribution of each sideband and

Gp(Apump) is the measured non-degenerate signal power gain depending on the pump

amplitude and ñth a constant, so that ñthGp(Apump) gives the thermal photons for the

respective signal gain. The first term represents the variance of the squeezed quadrature

of the band we want to measure and the second term the variance of a thermal state

in the red sideband. Both bands are treated equally by the amplification paths, so the

weight of both is 1/2, hence η = 0.5.

Gmin
d is the minimal signal gain of the JPA in the degenerate operation mode (see

Eq. (2.103)) and depends, after the substitution δ → (Apump −∆A)εa, on Apump

Gmin
d (Apump) =

(
2(Apump −∆A)εaω0 − κ1−κ2

2
2(Apump −∆A)εaω0 + κ1+κ2

2

)2

, (5.4)

where εa is a conversion factor from a pump amplitude to a frequency modulation δ, ω0

is the resonant frequency of the JPA, κ1, κ2 are the coupling rates and ∆A an offset of

the pump amplitude, describing the onset of the frequency modulation δ. The offset is

explained by the fact that in experiments we only control the pump amplitude Apump at

the microwave source, but a resonant frequency modulation δ is induced by the magnetic

field threading the dc-SQUID loop generated by the pump line. We use a linear approach

to describe the dependence δ(Apump), however higher order terms might also play a role,

which can lead to an offset ∆A in the linear approach. Second, vacuum or weak thermal

fluctuations induce flux fluctuations in the dc-SQUID loop. In order to amplify or squeeze

a signal with a JPA, the pump amplitude at the JPA and the thereby induced flux need

to be larger than these fluctuations. Thus, a certain threshold ∆A of the pump amplitude

at the microwave source needs to be exceeded.

By fitting our data for the two working points at 5.594 GHz and 5.51 GHz with Eq. (5.3),

we obtain Fig. 5.7 and Fig. 5.8, respectively. The fitting results are summarized in Tab. 5.1.



74 Chapter 5 Displacement of squeezed microwave states

Signal gain (dB)

0 2 4 6 8 10

S
q

u
e

e
z
in

g
 (

d
B

)

-20

-10

0

10

20

(a)

Squeezed

Anti-squeezed

Signal gain (dB)

0 2 4 6 8 10

T
h

e
rm

a
l 
p

h
o

to
n

s

0

0.1

0.2

0.3

0.4

(b)

Fit

Dual-path

Figure 5.7: (a) Squeezing of the squeezed quadrature (red) and anti-squeezed quadrature (green) as a

function of the signal gain at 5.594 GHz. Squares and triangles represent the experimental

data. The solid lines are a fit to the data after Eq. (5.3). The dashed lines are the theoretical

squeezing without any noise contributions, η = 1, for the extracted fitting parameters. (b)

Number of thermal photons obtained from fitting (blue) and dual-path reconstruction with

thermal squeezed vacuum states (orange) as a function of the signal gain. Lines are guides

for the eyes. If no error bars are shown, the error is smaller than the marker size.
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Figure 5.8: (a) Squeezing of the squeezed quadrature (red) and anti-squeezed quadrature (green) as a

function of the signal gain at 5.51 GHz. Squares and triangles represent the experimental

data. The solid lines are a fit to the data after Eq. (5.3). The dashed lines are the theoretical

squeezing without any noise contributions, η = 1, for the extracted fitting parameters. (b)

Number of thermal photons obtained from fitting (blue) and dual-path reconstruction with

thermal squeezed vacuum states (orange) as a function of the signal gain. Lines are guides

for the eyes. If no error bars are shown, the error is smaller than the marker size.
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Working point ñth εa (kV−1) ∆A (V)
5.594 GHz 0.029± 0.005 0.220± 0.008 0.104± 0.075
5.51 GHz 0.070± 0.021 0.559± 0.047 0.318± 0.110

Table 5.1: Fitting results of the squeezing level with red sideband contribution for the two working points.

Uncertainties are from 95% confidence bounds of fitting.

We note, that the fit is performed simultaneously for the squeezed and the anti-squeezed

quadratures2.

At 5.594 GHz, the fit follows both the squeezed as well as the anti-squeezed quadrature

very well (see Fig. 5.7 (a)). The effect of thermal photons in the red sideband on the

variance of the anti-squeezed quadrature is, in the limit of large anti-squeezing and

small number of thermal photons, a reduction by 3 dB as compared to the theory curve

neglecting the red sideband. For larger contributions of thermal photons the difference

between the curves is smaller than 3 dB. Therefore, the general trend of the anti-squeezed

quadrature should be similar with and without a red sideband, which is confirmed by

our measurements (see green triangles and dashed green line in Fig. 5.7 (a)). The total

reconstructed squeezing of the squeezed quadrature, on the other hand, depends strongly

on the red sideband contribution. Even with infinite squeezing at the JPA and a vacuum

state added through the red sideband, one can achieve a maximum squeezing of 3 dB

in the combined signal. If more than half a thermal photon is added through the red

sideband, no squeezing below the vacuum can be measured any more. Therefore, a red

sideband contribution will drastically reduce the reconstructed squeezing level of the

hybrid ring input signal.

In Fig. 5.7 (b), the obtained number of thermal photons ñthGp(Apump) (blue circles)

from fitting Eq. (5.3) are shown for the respective signal gains. Additionally, the number of

thermal photons (orange circles) from the dual-path reconstruction under the assumption

of thermal squeezed vacuum states, as discussed previously, are shown for comparison. The

extracted numbers of thermal photons from both approaches deviate from one another,

but show an increase for increasing signal gain.

For 5.51 GHz, the squeezed quadrature is fitted reasonably well but the anti-squeezed

quadrature slightly deviates from the fit (see Fig. 5.8 (a)). We note, that the signal

gain range for both plots is different. The conversion factor εa from pump amplitude

to frequency modulation δ for this frequency is bigger than for the working point at

5.594 GHz. This is expected, since the slope of the resonant frequency as a function of the

external flux is smaller at 5.594 GHz. This translated to a smaller frequency modulation

δ for the same pump amplitudes. Again, the number of thermal photons from fitting as

well as the dual-path reconstruction are depicted in Fig. 5.8 (b). Similarly to the other

2The total variance of the anti-squeezed quadrature (∆qanti−sq)2 is given by Eq. (5.3) where Gmin
d is

replaced by the maximal signal gain of the JPA Gmax
d (see Eq. (2.104)).
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working point, they deviate from one another, but at the same signal gains show a similar

behavior.

At the respective signal gains with the highest measured squeezing levels, we obtain

7.55 dB and 7.95 dB of squeezing for the working points at 5.594 GHz and 5.51 GHz,

respectively, if the red sideband contribution is neglected. These values give an absolute

upper bound to the possible squeezing level at the respective signal gains, since they do

not include noise contributions from the detection setup or connection losses at the JPA

sample.

5.3 Displacement of quantum states

In the following, we are interested in the displacement of quantum states, particularly in

displaced vacuum states and displaced squeezed states. To this end a vacuum state is

incident to the JPA input and a coherent signal to the coupled port of the directional

coupler with high transmissivity is applied. An incoming signal to the directional coupler

is then displaced by a certain amount of photons. If no pump tone is applied to the JPA,

a vacuum state is incident to the directional coupler, which will be displaced and, thus,

results in a coherent state at the input to the hybrid ring. When a pump tone is applied

to the JPA, one obtains a displaced squeezed state at the input to the hybrid ring. The

cryogenic and the room temperature setup schemes are shown in Fig. 3.2 and Fig. 3.6,

respectively, where JPA Q200new is used for the measurements.

We now turn the pump to the JPA on and also apply a displacement signal to the

coupled port of the directional coupler. By accounting for losses of the microwave input

line, the displacement power at the directional coupler input is estimated to −126 dBm. By

changing the phase θ of the displacement signal, one can adjust the angle of displacement

as seen in Fig. 5.9. The working point is at 5.51 GHz and the phase stabilization protocol

with 100 measurements per displacement angle is applied, where the squeezing angle as

well as the displacement angle are stabilized. In Fig. 5.9 (a), an overlay of the reconstructed

Wigner functions for displacement angles of θ = 0◦, 45◦, 90◦ and 135◦ and a squeezing angle

of γ = 45◦ is shown. The corresponding 1/e contours of the Wigner functions and vacuum

states with the respective displacement angles are depicted in Fig. 5.9 (b). We observe,

that the target values of squeezing and displacement angles coincide very well with the

mean values obtained from averaging 100 measurements. However, the standard deviation

for both angles is of the order of degrees (see Fig. 5.9 (c,d)) and, thus, similar to the

squeezed vacuum states (compare to Fig. 5.1). The standard deviation of the anti-squeezed

quadrature angle is larger than the one of the displacement angle, because we displace the

state by approximately 45 photons and therefore obtain a rather strong coherent signal.

The phase of such a strong coherent signal can be measured more precisely than the phase

of the anti-squeezed quadrature. In theory, one expects a constant squeezing level for

different displacement angles. In contrast, we observe a non-constant dependence of the
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Figure 5.9: (a) Wigner functions for four different displacement angles of θ = 0◦, 45◦, 90◦, 135◦ with

anti-squeezed angle γ = 45◦. The individual Wigner functions are overlayed to produce the

figure. The estimated displacement power at the directional coupler input is −126 dBm. (b)

1/e contours for the respective displacement angles of the vacuum state (orange) and the

squeezed displaced state (blue). Histograms of (c) the angle of anti-squeezed quadrature

and (d) displacement angle for a target displacement angle θ = 45◦. (e) Average squeezing

(blue) and photon number (orange) as a function of the displacement angle θ for a working

point at 5.51 GHz. The negative squeezing level, meaning squeezing above vacuum, for some

displacement angles is caused by phase fluctuations or a misestimation of the PNCF factors

as described in Fig. 5.10 for simulated phase fluctuations. For each displacement angle, 100

measurements with the phase stabilization protocol are performed, where each measurement

is averaged over 5.6 × 108 raw data samples. The lines are guides for the eyes. The error

bars are of statistical nature. The JPA is stabilized to 40 mK.
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Figure 5.10: (a) Wigner functions of simulated signals for displaced squeezed vacuum states with r = 0.48,

γ = 45◦, nth = 0.21 photons and displacement of 44.8 photons at displacement angles of

θ = 0◦, 45◦, 90◦ and 135◦. Both angles fluctuate with a standard deviation of 3.0◦ in the

simulation. The individual Wigner functions are overlayed to produce the figure. (b)

Unbiased cross-correlation between θ and γ for different lags of the 100 measurements. (c)

Average squeezing from experiments for a working point at 5.51 GHz (blue) and simulated

squeezing (green) versus displacement angle θ. The line is a guide for the eyes. The error

bars are of statistical nature. The JPA is stabilized to 40 mK.

squeezing level on the displacement angle θ. The cumulants are not vanishing for theses

measurements, indicating that the states are non-Gaussian. If the difference between the

angle of the anti-squeezed quadrature γ and the displacement angle θ is 0◦, we observe the

lowest squeezing levels. If the difference is 90◦, the highest squeezing levels are observed

(see Fig. 5.9 (e)). In between, the squeezing level has intermediate values. The photon

number also follows this trend.

In order to describe the behavior of the squeezing level for different displacement

angles, one can simulate a signal with phase fluctuations of the displacement angle as

well as the squeezing angle with a standard deviation of 3.0◦ (for details see Sec. 5.4.2).

Wigner functions as shown in Fig. 5.10 (a) can be reconstructed from the simulated

signals. The reconstructed Wigner functions are calculated for displaced squeezed vacuum
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states with r = 0.48, γ = 45◦, nth = 0.21 photons and a displacement of 44.8 photons at

displacement angles of θ = 0◦, 45◦, 90◦ and 135◦. For each θ, 10000 averages are performed.

The measured squeezing level and the Wigner functions are reproduced quite well by

the simulation (see Fig. 5.10 (a,c)). We note, that the values for r and the number of

thermal photons nth are not unique, similar Wigner functions and squeezing levels can be

simulated with different values.

In Fig. 5.10 (b), the unbiased cross-correlation 〈θi · γj〉 between θ and γ of the four

measured displacement angles is shown. The cross-correlation is calculated in a way

so that i − j = m is fulfilled and, thus, m defines a shift between θi and γj of the 100

individual measurements from the phase stabilization protocol. For m = 0, meaning that

the 100 individual measurements of θ and γ are not shifted with respect to each other, the

cross-correlation shows a distinct peak for all four displacement angles. If one calculates

the cross-correlation between shifted θ and γ, lower values are obtained. This indicates,

that the phase fluctuations are correlated. Reasons for such correlated phase fluctuations

could be trigger issues with the Acqiris card or an unstable phase of the local oscillator

signal.

5.4 Squeezing versus displacement

5.4.1 Experimental results

After investigating squeezed states for different displacement angles θ, we are now interested

in displacing squeezed states by a different amount of photons. Similar to the previous

section, we turn on the pump tone to the JPA, but now the power of the coherent signal

incident to the coupled port of the directional coupler is changed. The working point is

at 5.537 GHz. The setup is as in Fig. 3.6 but no JS3 amplifiers and IQ-mixers (Marki,

IQ4509LXP) instead of single ended mixers are used. The phase stabilization protocol

with 35 measurements per displacement power is applied, where the squeezing angle as

well as the displacement angle are stabilized. We also displace vacuum states3, where

the JPA pump is off, with 10 measurements each. Each measurement is averaged over

5.6× 108 raw data samples.

First, one can look at the number of photons by which an incident state to the directional

coupler is displaced when the displacement power at the microwave source is changed.

For that, we take the reconstructed first moments 〈â〉 = α, which are equal to the

complex amplitude α. Then, |α|2 gives the number of photons by which the incident

state is displaced. Fig. 5.11 shows the resulting displacement photons as a function of

the displacement power at the microwave source. As expected, a linear fit describes the

3A displaced vacuum state is nothing else than a coherent state, since a coherent state is produced by
displacing the vacuum. However, we use the notation displaced vacuum to emphasize that we use the
directional coupler as displacer.
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Figure 5.11: Number of photons by which (a) a squeezed state or (b) a vacuum state is displaced in

phase space as a function of the displacement power at the microwave source. Red squares

are data points and green lines are linear fits to the data. For displaced squeezed states

35 and for displaced vacuum states 10 phase stabilization steps are performed, where each

measurement is averaged over 5.6 × 108 raw data samples. The error bars (black) are of

statistical nature. The JPA is stabilized at 40 mK.

data very well for both displaced squeezed (Fig. 5.11 (a)) and displaced vacuum states

(Fig. 5.11 (b)). Such fits can be used as a calibration for further experiments where

the directional coupler is used for linear transformations in e.g. quantum information

protocols.

The reconstructed Wigner functions of the same datasets are depicted in Fig. 5.12 (a,b).

The squeezing angle is γ = 45◦ and the displacement angle is θ = 135◦. For increasing

displacement, the Wigner functions deform and get more smeared out in the direction

perpendicular to the displacement direction. We emphasize, that this happens for displaced

squeezed states as well as displaced vacuum states. Furthermore, we observed that the

deformation is always perpendicular to the displacement direction. Additionally, the

cumulants are small or vanish for all displacement powers, except for the highest one with

32.6 photons of displacement. Here a slight increase of the cumulants is observed. We

refer the reader to the next section for a more detailed analysis of these issues.

In Fig. 5.12 (c,b) the extracted squeezing levels of displaced squeezed states and displaced

vacuum states averaged over the phase stabilization steps are shown, respectively. As

expected, the squeezing level of the displaced squeezed state is nearly constant as a

function of the displacement up to 32.6 photons. The squeezing levels of the displaced

vacuum states show a slight decrease with increasing displacement, which is attributed

to the mentioned shape change of the Wigner function. As predicted in theory [29], our

results show that a directional coupler with high transmissivity can be used to implement

a displacement operation for classical and non-classical input states in the microwave

regime.
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Figure 5.12: (a) Displaced squeezed states for different displacements with γ = 45◦ and θ = 135◦. (b)

Displaced vacuum states or coherent states with different displacements with θ = 135◦. For

(a,b) the number of displacement photons is 0.1, 10.4 and 32.6. For displaced squeezed

states 35 and for displaced vacuum states 10 phase stabilization steps are performed, where

each measurement is averaged over 5.6× 108 raw data samples. The working point is at

5.537 GHz. (c,d) Squeezing level of displaced squeezed state and displaced vacuum as a

function of displacement, respectively. The lines are guides for the eyes. The error bars are

of statistical nature. The JPA is stabilized at 40 mK.

Furthermore, one can investigate quantum entanglement between the output states of

the hybrid ring. It was shown previously, that by sending a squeezed state into a beam

splitter, the output states of the beam splitter exhibit path entanglement [19, 49]. By

using the beam splitter relations, one can calculate the output states ĉ1,2 of the beam

splitter from the reconstructed signal moments

ĉ1 = 1√
2

(â+ v̂) , ĉ2 = 1√
2

(−â+ v̂) , (5.5)

where â is the bosonic annihilation operator of the signal and v̂ bosonic annihilation

operator of a reference mode, which is a weak thermal state with a temperature of

approximately 30 mK. From the output states, the negativity kernel N can be calculated.

As described in Appendix C, the negativity kernel N is an entanglement witness for an
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Figure 5.13: Negativity kernel of the evaluated outputs of the hybrid ring as a function of displacement.

The negativity kernel is calculated with the hybrid ring input-output relations for an incident

displaced squeezed state. The reconstructed moments used for calculation are the same as

for Fig. 5.12. The lines are guides for the eyes. The error bars are of a statistical nature.

arbitrary bi-partite system. Fig. 5.13 shows the calculated negativity kernel for the data

shown in Fig. 5.12 (a). The kernel is positive and, thus, indicates the path entanglement

between the output paths of the hybrid ring. Furthermore, it is nearly constant up to a

displacement of 33 photons of the displaced squeezed state, which is the input state to

the hybrid ring. This means, the quantum mechanical correlations between the output

states of a beam splitter are not destroyed when a classical coherent signal, that is the

displacement signal, is added to a quantum state, that is the squeezed state, before

sending it to a beam splitter. However, in comparison with results by Menzel et al. [19] the

obtained values of the negativity kernel are smaller. This is explained by a substantially

lower squeezing level of the states in the presented experiments resulting in smaller values

of the negativity kernel.

5.4.2 Effect of phase fluctuations and the PNCF

As discussed in the previous sections, the observed Wigner functions reconstructed from

the experimental data differ from the theoretical expectations, especially if the states are

displaced by a large amount of photons. In detail, we observe a change in the squeezing

level for different displacement angles θ, as well as broadening of the reconstructed

Wigner functions perpendicular to the displacement direction. The latter was observed

for displaced squeezed and displaced vacuum states. We attribute the observed behavior

to the presence of phase fluctuations of the displacement angle θ and the squeezing angle

γ as well as to misestimations in the photon number conversion factors (PNCFs).

The phase fluctuations most probably arise from trigger issues of the Acqiris card or

phase instabilities of the local oscillator signal at the mixers. A modified version of the

measurement program showed standard deviations of the phase, at which the Acqiris

card triggers, of up to 3.6◦. Trigger issues would also explain the correlation between

θ and γ (see Fig. 5.10 (b)). The misestimation in the PNCF is caused by an imperfect
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Figure 5.14: Wigner functions of simulated signals for displaced vacuum states with (a) only phase

fluctuations, (b) only a misestimation of the PNCFs in one chain by a factor of 0.88,

(c) both phase fluctuations and a misestimation of the PNCFs in one chain by a factor

of 0.94 as well as (d) experimentally obtained Wigner functions for a displacement of

12, 39 and 124 photons. The displacement signal is at 5.932 GHz. 100 phase stabilization

steps are performed, where each measurement is averaged over 8.0× 107 raw data samples.

The JPA temperature is stabilized at 50.5 mK.
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Planck spectroscopy we perform to calibrate the detection paths, due to limited detection

efficiency of the Acqiris card and small instabilities in the amplification chains. The

extracted PNCFs from fitting have 95% confidence bounds with a deviation of 2 − 3%
of the PNCF value. As discussed in the following, a misestimation on this order causes

deformations of the Wigner function for large displacements with large photon numbers.

In Fig. 5.14 (a-c) we show Wigner functions of simulated signals for displaced vacuum

states with various displacement angles θ and displacement amplitude of 12, 39 and 124
photons. The individual Wigner functions are overlayed to produce the figure. In

Fig. 5.14 (a), only phase fluctuations with a standard deviation of 3.0◦ of the displacement

angle θ are considered in the simulation. For the simulation, the in-phase and out-of-

phase quadratures for both amplification chains are simulated and reconstructed with the

dual-path method in the same way as for a real measurement. Without phase fluctuations

of the displacement angle, the simulations yield displaced vacuum states, as expected

from theory. If one includes phase fluctuations in the displacement angle, the simulation

reproduces the broadening perpendicular to the displacement direction. With increasing

displacement, the maxima of the Wigner functions becomes shallower. Furthermore,

with increasing displacement, both quadrature variances increase above the vacuum level.

However, the quadrature variance perpendicular to the displacement direction is increased

by a much larger amount than the parallel one (see Tab. 5.2).

In Fig. 5.14 (b), only a misestimation of the PNCF of one chain by a factor of 0.88 is

simulated. For that the amplitude of the simulated displaced vacuum state of one chain is

multiplied by a factor of 0.88. The smearing is similar as for (a), but now the maxima of

the Wigner functions increase with increasing displacement. Also the squeezing level of

the displaced vacuum state depends strongly on the displacement. For large displacements

the states show higher levels of squeezing.

If both, phase fluctuations with a standard deviation of 3.0◦ and a PNCF misestimation

of one chain by 0.94, are taken into account simultaneously, one obtains the Wigner

functions shown in Fig. 5.14 (c). Now the maxima of the Wigner functions decrease with

increasing displacement, but the squeezing level increases with increasing displacement.

The simulation in Fig. 5.14 (c) describes the measured displaced vacuum states shown in

Fig. 5.14 (d) with respect to the maxima of the Wigner functions as well as the dependence

of the squeezing on the displacement. For the measurement data, the displacement signal

is at 5.932 GHz. 100 phase stabilization steps are performed, where each measurement is

averaged over 8.0× 107 raw data samples.

In Fig. 5.15 (a) and (b), we show simulations of displaced squeezed states for γ = 45◦
and γ = 135◦, respectively, for various displacement angles θ and displacements of 39

and 124 photons. Only fluctuations of the displacement angle θ and the angle of the

anti-squeezed quadrature γ with a standard deviation of 3.0◦ for both angles are taken

into account. We observe, that the Wigner functions change their shape for different

displacement angles. Simulated squeezing levels are depicted in Fig. 5.15 (c) and (d) for
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Photons n
Fig 5.14

n = 12 n = 39 n = 124
Phase -0.002 -0.004 -0.009 (a)

PNCF 0.238 0.807 3.353 (b)

PNCF+Phase 0.051 0.166 0.551 (c)

Experiment −0.02+0.36
−0.33 0.13+0.50

−0.45 0.60+0.48
−0.43 (d)

Table 5.2: Squeezing levels in dB for simulations shown in Fig 5.14 (a-c) and measured displaced vacuum

states in Fig 5.14 (d). n denotes the amount of photons by which the vacuum is displaced.

γ = 45◦ and γ = 135◦, respectively. If θ − γ is an uneven multiple of π/2 the state best

resembles the undisplaced squeezed state and also exhibits a nearly unchanged squeezing

level for both values of γ. If the difference θ− γ is an even multiple of π/2, then the effect

of the phase fluctuations is the largest. The Wigner function is strongly deformed and

the squeezing level changes drastically. In general, the cumulants are not vanishing for

such kind of reconstructed states.

From these results, we conclude that a very precise phase control of the used microwave

sources and a reliable PNCF calibration are crucial for large displacements. Both displaced

vacuum states and displaced squeezed states are affected by phase fluctuations and incorrect

PNCFs.
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Figure 5.15: Wigner functions of simulated signals for displaced squeezed states with (a) γ = 45◦ and

(b) γ = 135◦ for various displacement angles θ. Only fluctuations of the displacement angle

θ and the angle of the anti-squeezed quadrature γ with a standard deviation of 3.0◦ for

both angles are taken into account. The states are displaced by either 39 (red) or 124

(green) photons. (c) and (d) show the squeezing as a function of the displacement angle for

γ = 45◦ and γ = 135◦, respectively. The black dashed line indicates the squeezing level of

the undisplaced squeezed state. The lines are guides for the eyes.



Chapter 6

Conclusions and outlook

In this work, flux-driven Josephson Parametric Amplifiers (JPAs) are used for the genera-

tion of squeezed light in the microwave regime. A JPA consists of a coplanar waveguide

microwave resonator where the inner conductor is grounded on one side by a dc-SQUID.

The flux dependent non-linear inductance of the dc-SQUID is utilized to tune the res-

onant frequency of the resonator. Multiple JPAs are characterized with respect to the

dependence of the resonant frequency on an externally applied flux through the dc-SQUID

loop. One sample shows a strong hysteretic behavior for different sweep directions of the

external flux. The state of a dc-SQUID can be described by a phase-particle moving inside

the two-dimensional potential of the dc-SQUID. To describe the hysteretic behavior, we

developed an approach to simulate the position of the phase-particle inside this poten-

tial for a varying external flux. The thereby obtained flux dependence of the resonant

frequency for both hysteretic and non-hysteretic JPAs are in good agreement with the

experimental results. Additionally, the internal and external quality factors of the samples

are determined.

With JPA Q200new, squeezing measurements are performed, since this sample exhibits

very high internal quality factors. For that, an Acqiris card based dual-path setup with a

digital IQ-demodulation is used. We investigate two different working points at frequencies

of 5.51 GHz and 5.594 GHz of the JPA. For the two working points, the maximal squeezing

levels S = 1.41+0.76
−0.60 dB and S = 2.00+0.42

−0.38 dB of squeezed vacuum states are obtained for

signal gains of 1.4 dB and 3.0 dB, respectively. For higher signal gains, the squeezing level

diminishes. We attribute this decrease to a contribution of an unsqueezed red sideband.

The signal band, which contains the squeezed signal, is thereby diluted by a weak thermal

state and the overall squeezing level evaluated by the dual-path reconstruction diminishes

drastically. We developed a simple model to account for the unsqueezed red sideband

contribution to the squeezing level and find good agreement with the measured data. After

correction of the red sideband, we obtain calculated upper bounds for the squeezing levels

at the two different working points of the JPA of 7.95 dB and 7.55 dB. This unwanted red

sideband is a natural limitation of a 2-channel setup. However, in the future, it should be

possible to filter out this sideband by using specific image reject mixers instead of usual

harmonic double-balanced mixers.
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Furthermore, a highly asymmetric directional coupler is used to displace squeezed vacuum

states by biasing the coupled port with a strong coherent signal. We are able to control the

angle and amount of displacement by changing the phase and power of the displacement

signal, respectively. Thus, we are able to confirm that the directional coupler applies a

displacement operation to an incident quantum state. Up to 33 photons of displacement,

the squeezing level is nearly constant, showing that mixing the squeezed state with a

classical coherent state, does not destroy the quantum correlations in the signal. However,

for large displacements, the reconstructed Wigner functions and squeezing levels of

squeezed as well as coherent states deviate from the expected behavior. The source of

these effects, are misestimations of the photon number conversion factors (PNCFs) of the

order of several percent and phase fluctuations, most probably caused by trigger issues of

the Acqiris card or phase instabilities of the local oscillator signal.

Currently, the focus lies on eliminating the contribution of the red sideband, since

the latter is the limiting factor in current measurements, regarding the squeezing level.

On the one hand, a sharp analog filter at RF-frequencies could filter the red sideband,

but would also limit the dual-path receiver to one frequency. A FPGA-card based

setup, where analog IQ-mixers are used to extract the quadratures of the microwave

signal, is a more robust alternative. Here, one can filter the red sideband during digital

down-conversion of the IF-frequency. Furthermore, the FPGA allows for real-time data

processing, increasing the detection efficiency drastically and decreasing the measurement

time. This also contributes to a more precise determination of the PNCF factors, making

higher displacements of squeezed states feasible. Next, phase instabilities need to be

addressed, since for high squeezing levels, very high phase control of the squeezing angle is

required. Also, connection and cable losses between the JPA and the input to the hybrid

ring are not compensated by the dual-path state reconstruction, so keeping these losses at

a minimum is of crucial importance. Furthermore, before the HEMT amplifiers, one can

use JPAs as low-noise pre-amplifiers to significantly enhance the detection efficiency.

With the current setup, the commutation relation between the squeezing operator

Ŝ(ξ) and the displacement operator D̂(α) can be experimentally investigated. By either

applying a coherent signal to the JPA and no displacement signal at the directional

coupler or first squeezing the vacuum with the JPA and subsequent displacement by

the directional coupler, one obtains final states of the form Ŝ(ξ)D̂(α)|0〉 or D̂(α)Ŝ(ξ)|0〉,
respectively. By comparing the resulting states it is possible to experimentally verify the

commutation relations between the operators.

With the displacement operation and the entanglement between the output chains,

two main building blocks for quantum teleportation with continuous variables in the

microwave regime are available.



Appendix A

Simulation of dc-SQUID potential

loop for external flux 

loop for transport current j

I. Calculate
potential

II. Find
minima

III. Select
minima

IV. Check
jc< jc

sw

V. Find
minima

VI. Check
for jump

ϕ
ext

Figure A.1: Sketch for simulation of dc-SQUID potential and determination of normalized critical current

jc(ϕext).

Fig. A.1 depicts a sketch describing the simulation of dc-SQUID potential and determi-

nation of normalized critical current jc(ϕext). The numerical simulations are implemented

in MATLAB. An outer loop sweeps the external flux ϕext for increasing and decreasing

sweep directions.

(I.): For every loop iteration, the dc-SQUID potential for the present external flux is

calculated after Eq. (4.2).

(II.): All potential minima around a certain start point are found with with fmincon

in combination with the MultiStart class. In order to find the correct local minima, the

function is supplied with the gradient and the hessian of the potential, which also decreases

the calculation time. In the first iteration, the start point is manually chosen, whereas

for the following iterations, the starting point is determined by the position of the phase

particle in the last iteration.

(III.): From the obtained local minima, the closest one to the starting point and thereby

to the position of the phase particle in the previous iteration, is chosen as new position of

the phase particle. Here, a new or the old minimum can bee chosen.
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(IV.): If the normalized critical current jc for the last iteration is smaller than the

specified switching current jsw
c , then the previously selected minimum is discarded and

the next closest one is selected. This procedure induces the preliminary switching of local

minima even though the present minimum of the phase particle did not vanish.

(V.): Now a sub-loop is started in which the normalized critical current jc is determined.

For that one sweeps the transport current through the dc-SQUID and again finds the

local minima around the selected minimum, acting as start point for the algorithm.

(VI.): For every transport current, one checks how far the closest found local minimum

deviates from the start point. If the distance is larger than a given threshold, one interprets

this as jump, the sweep is stopped and the latest transport current is saved as jc for

this particular external flux ϕext. One can easily verify, that for every βL the jump is

above a certain threshold value. However, in numerical simulations too low thresholds

produce false-positive jumps due to the finite transport current sweep step, since different

transport currents move the local minima of the potential slightly.

Then the next loop iteration of the outer loop is started, beginning at (I.) again. With

that procedure one finds the normalized critical current jc(ϕext) depending on the external

flux ϕext. The obtained dependencies are different depending on whether ϕext is increased

or decreased in the outer loop.



Appendix B

Cumulants and Gaussianity

The reconstruction of the Wigner function after Eq. (2.13) assumes Gaussian states. We

use cumulants 〈〈(â†)mân〉〉 as a measure for the Gaussianity of the reconstructed states.

The signal moments 〈(â†)mân〉 and the cumulants can be used equivalently to describe a

probability distribution. The cumulants can be calculated from the density matrix ρ of a

quantum state [73]

〈〈(â†)mân〉〉 ≡ ∂m

∂(ix)m
∂n

∂(iy)n
[
xy

2 + ln Tr
(
e(ixâ†+iyâ)ρ

)]∣∣∣∣∣
x,y=0

, (B.1)

where â† and â are the creation and annihilation operators, respectively. However, an

expression of the cumulants in terms of the signal moments is more convenient [48, 74]

〈〈(â†)mân〉〉 ≡ ∂m

∂xm
∂n

∂yn
∑
k,l

〈(â†)kâl〉xkyl
k!l!

∣∣∣∣∣∣
x,y=0

. (B.2)

For Gaussian states only a finite number of cumulants are non-zero. In particular,

only cumulants with order m + n ≤ 2 are non-zero and higher orders vanish. In our

experiments we calculate the cumulants up to 4th order from the signal moments 〈(â†)mân〉
with m+ n ≤ 4 in order to check the consistency with Gaussian states.

For completeness, we spell out the cumulants in terms of the signal moments up to 4th

order from Eq. (B.2) [74]

〈〈â〉〉 = 〈â〉 (B.3)

〈〈â2〉〉 = 〈â2〉 − 〈â〉2 (B.4)

〈〈â†â〉〉 = 〈â†â〉 − 〈â†〉〈â〉 (B.5)

〈〈â3〉〉 = 〈â3〉 − 3〈â2〉〈â〉+ 2〈â〉3 (B.6)

〈〈â†â2〉〉 = 〈â†â2〉 − 〈â†〉〈â2〉 − 2〈â†â〉〈â〉+ 2〈â†〉〈â〉2 (B.7)

〈〈â4〉〉 = 〈â4〉 − 4〈â3〉〈â〉 − 3〈â2〉2 + 12〈â2〉〈â〉2 − 6〈â〉4 (B.8)

91



92 Appendix B Cumulants and Gaussianity

〈〈â†â3〉〉 = 〈â†â3〉 − 〈â†〉〈â3〉 − 3〈â†â2〉〈â〉 − 3〈â†â〉〈â2〉+ 6〈â†〉〈â2〉〈â〉
+ 6〈â†â〉〈â〉2 − 6〈â†〉〈â〉3 (B.9)

〈〈(â†)2â2〉〉 = 〈(â†)2â2〉 − 2〈(â†)2â〉〈â〉 − 〈(â†)2〉〈â2〉+ 2〈(â†)2〉〈â〉2 − 2〈â†â2〉〈â†〉
− 2〈â†â〉2 + 8〈â†â〉〈â†〉〈â〉+ 2〈â†〉2〈â2〉 − 6〈â†〉2〈â〉2 (B.10)

Other cumulants of 4th order are calculated with 〈〈(â†)mân〉〉 = 〈〈(â†)nâm〉〉∗.



Appendix C

Negativity

The discussions in this section are based on the supplementary material from Ref. [19].

For a bipartite system, the amount of entanglement between the subsystems A and B can

be quantified by means of the negativity

N (ρ) ≡ ||ρ
TB ||1 − 1

2 , (C.1)

where ρ is the density matrix of the total system, and ||ρTB ||1 = Tr|ρTB | is the trace norm

of the partial transpose of ρ with respect to subsystem B, ρTB . If N (ρ)> 0, the state is

entangled. For a maximally entangled state, N (ρ)→∞.

In the case of Gaussian states, all measures of entanglement are equivalent, and they

are defined by the covariance matrix

σ =
(

α γ

γT β

)
. (C.2)

Annihilation and creation operators, s1,2 and s†1,2 , are used to represent the two subsystems.

We define the matrices

α ≡
(
α1 α3

α3 α2

)
,β ≡

(
β1 β3

β3 β2

)
,γ ≡

(
γ11 γ12

γ21 γ22

)
(C.3)

with

α1 = 〈ŝ2
1〉+ 〈(ŝ†1)2〉+ 2〈ŝ†1ŝ1〉 − 〈ŝ1 + ŝ†1〉2 + 1 (C.4)

α2 = −〈ŝ2
1〉 − 〈(ŝ

†
1)2〉+ 2〈ŝ†1ŝ1〉+ 〈ŝ1 − ŝ

†
1〉2 + 1 (C.5)

α3 = i
(
− 〈ŝ2

1〉+ 〈(ŝ†1)2〉+ 〈ŝ1〉2 − 〈ŝ
†
1〉2
)

(C.6)

β1 = 〈ŝ2
2〉+ 〈(ŝ†2)2〉+ 2〈ŝ†2ŝ2〉 − 〈ŝ2 + ŝ†2〉2 + 1 (C.7)

β2 = −〈ŝ2
2〉 − 〈(ŝ

†
2)2〉+ 2〈ŝ†2ŝ2〉+ 〈ŝ2 − ŝ

†
2〉2 + 1 (C.8)
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β3 = i
(
− 〈ŝ2

2〉+ 〈(ŝ†2)2〉+ 〈ŝ2〉2 − 〈ŝ
†
2〉2
)

(C.9)

γ11 = 〈ŝ1ŝ2 + ŝ1ŝ
†
2 + ŝ†1ŝ2 + ŝ†1ŝ

†
2〉/2

+ 〈ŝ2ŝ1 + ŝ2ŝ
†
1 + ŝ†2ŝ1 + ŝ†2ŝ

†
1〉/2

− 〈ŝ1 + ŝ†1〉〈ŝ2 + ŝ†2〉 (C.10)

γ12 = 〈ŝ1ŝ2 − ŝ1ŝ
†
2 + ŝ†1ŝ2 − ŝ

†
1ŝ
†
2〉/2i

+ 〈ŝ2ŝ1 + ŝ2ŝ
†
1 − ŝ

†
2ŝ1 − ŝ

†
2ŝ
†
1〉/2i

+ i〈ŝ1 + ŝ†1〉〈ŝ2 − ŝ
†
2〉 (C.11)

γ21 = 〈ŝ1ŝ2 + ŝ1ŝ
†
2 − ŝ

†
1ŝ2 − ŝ

†
1ŝ
†
2〉/2i

+ 〈ŝ2ŝ1 − ŝ2ŝ
†
1 + ŝ†2ŝ1 − ŝ

†
2ŝ
†
1〉/2i

+ i〈ŝ1 − ŝ
†
1〉〈ŝ2 + ŝ†2〉 (C.12)

γ22 = 〈−ŝ1ŝ2 + ŝ1ŝ
†
2 + ŝ†1ŝ2 − ŝ

†
1ŝ
†
2〉/2

+ 〈−ŝ2ŝ1 + ŝ2ŝ
†
1 + ŝ†2ŝ1 − ŝ

†
2ŝ
†
1〉/2

+ 〈ŝ1 − ŝ
†
1〉〈ŝ2 − ŝ

†
2〉 (C.13)

and γT being the transpose of γ. Finally, the negativity becomes [75]

N = max
{

0,1− ν2ν

}
≡ max

{
0,Ñ

}
, (C.14)

where ν≡
√(

∆(σ)−
√

∆2(σ)− 4 det σ
)
/2 and ∆(σ)≡ det α + det β − 2 det γ.

Note that, despite not being a measure, the negativity kernel Ñ is a witness for arbitrary

bipartite entanglement. In fact, if a non-Gaussian state has the same first and second

moments as an entangled Gaussian state, it is entangled [76]. Consequently, Ñ > 0 implies

entanglement for any bipartite state.
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