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Abstract

In quantum information science, efficient methods for communicating information play

a central role. In particular, the secure exchange of information is of high practical

relevance and can be realized with certain protocols by making use of fundamental

quantum-mechanical properties. In this thesis, we present key developments towards

the realization of quantum communication with propagating quantum microwaves. We

employ superconducting Josephson parametric amplifiers as the central elements for the

generation and manipulation of propagating quantum microwaves. As a first result, we

demonstrate the generation of propagating two-mode squeezed (TMS) microwave states by

superimposing two squeezed states at a microwave beam splitter. The resulting TMS states

possess strong path entanglement, manifesting itself in nonlocal correlations between the

signal quadratures in the different paths. Furthermore, we study fundamental properties

of the TMS states against finite-time delays in one propagation path of these states and

determine the maximally tolerable time delays until the entanglement disappears. We

also investigate the influence of environmental noise on the propagating TMS states and

observe, independent of the initial entanglement strength, a sudden death of entanglement

upon injecting roughly one noise photon to one path of the TMS states. In addition, we

study quantum discord, which describes quantum correlations beyond entanglement, and

find an asymptotic robustness of quantum discord in TMS states against finite-time delays

and injected noise. The knowledge gained from these investigations is crucial for the

application of propagating microwaves in advanced quantum communication protocols.

As our main result, we realize deterministic remote state preparation (RSP) with

continuous-variable microwaves. In this quantum communication protocol, the aim is to

prepare a known quantum state at a distant location. For this task, we employ TMS

states as an entangled resource and an additional Josephson parametric amplifier for

the generation of a feedforward signal. We are able to remotely prepare squeezed states

with a squeezing level below the vacuum limit and theoretically describe our results.

Additionally, we investigate how the entanglement strength influences the preparable

squeezed states. Finally, we relate the RSP scheme to an extension of the one-time pad

cryptographic protocol in the quantum regime. Here, we implement close-to-perfectly

secure communication of a quantum state in the vicinity of the optimal operation point of

RSP.
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Kurzzusammenfassung

In der Quanteninformationsverarbeitung spielt die effiziente Kommunikation von In-

formation eine zentrale Rolle. Insbesondere ist eine abhörsichere Kommunikation von

hoher praktischer Relevanz und kann für gewisse Quantenkommunikationsprotokolle durch

Ausnutzen fundamentaler quantenmechanischer Eigenschaften realisiert werden. In die-

ser Arbeit stellen wir Schlüsselbeiträge zum Forschungsfeld der Quantenkommunikation

mit propagierenden Quantenmikrowellen vor. Wir verwenden Josephson parametrische

Verstärker als zentrale Elemente zur Erzeugung und Verarbeitung von propagierenden

Quantenmikrowellen. Zuerst demonstrieren wir, dass wir zwei-Moden-gequetschte (TMS)

Mikrowellenzustände erzeugen können, indem wir zwei gequetschte Zustände an einem

Strahlteiler überlagern. Die dadurch erzeugten TMS-Zustände besitzen eine starke Pfad-

verschränkung, die sich in nichtlokalen Korrelationen zwischen den Signalquadraturen der

verschiedenen Pfade manifestiert. Des Weiteren untersuchen wir fundamentale Eigenschaf-

ten der TMS-Zustände in Bezug auf eine Zeitverzögerung in einem der Propagationspfade

und bestimmen die maximal tolerierbaren Zeitverzögerungen, ab denen die TMS-Zustände

nicht mehr verschränkt sind. Zudem studieren wir den Einfluss von Rauschen auf die

propagierenden TMS-Zustände und beobachten, dass die Verschränkung abrupt verschwin-

det, sobald ungefähr ein Rauschphoton in einen der Pfade injiziert wird. Dieser Effekt ist

unabhängig von der ursprünglichen Stärke der Verschränkung. Außerdem diskutieren wir

Quantendiscord, welcher Quantenkorrelationen jenseits von Verschränkung beschreibt, und

beobachten eine asymptotische Robustheit von Quantendiscord gegenüber Zeitverzögerun-

gen sowie der Anzahl der injizierten Rauschphotonen. Die Erkenntnisse aus diesen Studien

sind essentiell für die Anwendung von propagierenden Mikrowellen in fortgeschrittenen

Quantenkommunikationsprotokollen.

Das zentrale Ergebnis dieser Arbeit ist die Realisierung einer deterministischen nichtlo-

kalen Erzeugung von Quantenzuständen (RSP) mit Mikrowellenzuständen der kontinu-

ierlichen Variablen. Das Ziel in diesem Quantenkommunikationsprotokoll besteht darin,

einen bekannten Quantenzustand an einem entfernten Ort zu erzeugen. Für diese Aufgabe

nutzen wir die TMS-Zustände als Ressource für Verschränkung und einen zusätzlichen

Josephson parametrischen Verstärker, um ein klassisches Kommunikationssignal zu er-

zeugen. Wir sind in der Lage, gequetsche Zustände zu erzeugen und unsere Ergebnisse

theoretisch zu beschreiben. Außerdem untersuchen wir, wie die Stärke der Verschränkung

die erzeugten Zustände beeinflusst. Schließlich verknüpfen wir RSP mit einer Erweiterung

des kryptographischen One-Time-Pads in den Bereich der Quantenkommunikation. Hier

zeigen wir eine sichere Übertragung von einem Quantenzustand mit nahezu perfekter

Abhörsicherheit in der Umgebung des optimalen Arbeitspunktes von RSP.
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Chapter 1

Introduction

Over the last century, quantum mechanics lead to various developments of new technologies

and groundbreaking discoveries in fundamental science. However, only within the last few

decades quantum mechanics was entering information science, leading to the highly active

and prospering field of quantum information science. It encompasses various subjects such

as quantum computing [1], quantum cryptography [2], quantum communication [3, 4],

quantum simulation [5], and quantum sensing [6, 7]. In quantum information science, one

exploits fundamental quantum mechanical properties such as superposition or quantum

entanglement to achieve a quantum advantage in terms of security, efficiency, or computing

power. Moreover, meanwhile key concepts of quantum information theory are successfully

used for the description of many body systems and novel phenomena of quantum matter.

Until today, various physical platforms have been developed to implement concepts

of quantum information science. Each of these platforms have certain advantages and

disadvantages. A particularly promising approach utilizes superconducting circuits op-

erating in the quantum regime [8]. Here, Josephson junctions serve as a key element

and tool for building of such circuits. They provide a nonlinear, tunable and lossless

inductance which can be exploited to build quantum circuits operating in the gigahertz

regime and behaving as artificial atoms. Superconducting quantum circuits have been

successfully used to study the fundamental interaction between light and matter in the

field of circuit quantum electrodynamics. In particular, the large dipole moments of the

artificial atoms in combination with the small mode volume and, in turn, an enhanced

field strength of quasi one-dimensional transmission line resonators, enables strong [9] or

even ultrastrong light-matter coupling [10]. Without any doubt, the large present interest

in quantum information science in the microwave frequency regime is motivated by the

ongoing progress in constructing a quantum computer based on superconducting quantum

circuits [11].

In the framework of quantum computing with superconducting circuits, a major chal-

lenge consists within connecting multiple quantum processors in a quantum network. This

goal requires an efficient method of communication between them. To this end, deter-

ministic direct state transfer protocols between localized discrete-variable systems in the

microwave regime have been reported [12, 13]. Another approach for such a task utilizes

1



2 Chapter 1 Introduction

continuous-variable systems where the information is encoded into variables with a contin-

uum of observable eigenstates [14]. Quantum communication with continuous-variables is

a flourishing field of intense research [15, 16] where, for optical systems, quantum teleporta-

tion [17, 18], quantum key distribution [19, 20], dense coding [21], and free-space quantum

communication [22] have been experimentally achieved. However, continuous-variable

quantum communication schemes in the microwave frequency regime, which are required

to interlink superconducting quantum processors, are still lacking. To fill this gap, one

promising approach focuses on propagating quantum microwaves where the communicated

information is embedded into quadratures of the propagating electromagnetic field [16].

They are a natural choice since the frequency of the propagating quantum signals can

be easily matched to those in superconducting quantum circuits. Furthermore, most

communication and computational tasks are nowadays realized with highly developed

technology operated in the microwave regime. These facts make propagating quantum

microwaves a promising candidate for the realization of advanced quantum communication

protocols.

The realization of quantum information processing tasks in the microwave regime is

accompanied by several experimental challenges. First of all, the low photon energy of

microwave photons in the gigahertz range requires cryogenic temperatures of a few tens

of millikelvins to avoid excessive thermal noise. Additionally, the employed superconduct-

ing circuits require temperatures below their critical temperatures in order to become

superconducting. Moreover, advanced experiments require micro- and nano-fabricated

circuits combined with modern microwave technology. In particular, the detection and

reconstruction of quantum microwaves poses a challenge since microwave single-photons

detectors [23, 24] are not yet readily available for routine applications. Alternatively,

weak quantum signals can be amplified by commercially available high-electron-mobility

transistors and measured at room temperature. However, these amplifiers add a con-

siderable amount of noise to the signal and, consequently, sophisticated signal recovery

techniques [25, 26] are required for the control and measurement of the propagating

quantum microwaves. Such techniques have been developed and pioneered at the Walther-

Meißner-Institute over the past decade.

In our experiments, we employ superconducting circuits called Josephson parametric

amplifiers (JPA) [27–30] which can be understood as weakly-nonlinear, tunable resonators.

They can be used to produce or manipulate nonclassical states of light by utilizing

parametric effects which are induced by the interaction of microwave fields with a nonlinear

medium. In practice, the parametric effects are caused by modulating the Josephson

inductance by an external microwave drive leading to a parametric modulation of the

JPA resonance frequency. In this way, the JPA can generate squeezed states where

the noise in one quadrature is reduced below the vacuum level, while the noise in the

orthogonal quadrature is proportionally increased. Propagating quantum microwaves in

the form of squeezed states are produced by letting the JPA intra-resonator field leak into a
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transmission line coupled to the JPA. Squeezed states are an essential nonclassical resource

for continuous-variable quantum information tasks as they allow for the generation of

entanglement. Furthermore, their manipulation is straightforward and well-understood [16].

They have been employed for sideband cooling of mechanical oscillators [31], the enhanced

detection of magnetic resonances [32], the stroboscopic readout of qubits [33], and the

generation of path entanglement [25]. Alternatively, JPAs are routinely employed for, e.g.,

the efficient readout of qubits where they act as phase-insensitive amplifiers with a noise

performance close to the quantum limit [33–35].

For the realization of quantum communication tasks, a quantum correlated resource is a

necessary prerequisite. In continuous-variable systems, two-mode squeezed (TMS) states

are commonly employed as such an entangled state [15]. The TMS states are in close

analogy to the original notion of entanglement first discussed by Einstein, Podolsky and

Rosen [36]. Here, a measurement of the position or momentum of one particle determines

the corresponding quantity of the second particle with certainty. For entangled states

of light, not the position and momentum are quantum correlated but the respective

electromagnetic field quadratures in the two propagation paths. For an infinitely squeezed

TMS state, knowledge about one quadrature in one path reveals full information on

the corresponding quadrature in the other path. In quantum optics experiments, TMS

states have been employed as entangled resource for quantum teleportation [17, 37],

entanglement swapping [38], and dense coding [21]. However, in the microwave regime,

TMS states have not yet been employed for quantum communication tasks. In this

thesis, we utilize TMS states for the realization of a fundamental quantum communication

protocol using continuous-variable microwaves. In order to employ these states for such a

purpose, we require path-entangled TMS states where strong correlations exist between

electromagnetic field quadratures in different propagation paths [16]. We achieve this goal

by superimposing two squeezed states at a beam splitter. If correctly balanced, the TMS

states at the two output ports of the beam splitter possess strong cross-correlations but

no local correlations [39]. We characterize the balancing and quantum correlations in the

TMS states by employing a previously established method for full state tomography based

on the measured quadrature moments [25]. Furthermore, the effect of a finite time delay in

one propagation path on the quantum correlations is interesting from a fundamental point

of view as it provides insight into the dephasing of quantum correlations. In addition, the

finite-time properties of the TMS states provide information on whether delay lines are

required in application scenarios. We also investigate the effect of environmental noise on

the quantum correlations in TMS states. The robustness of cross-correlations to noise is

particularly relevant for quantum microwave states as the thermal population is negligible

only at low temperatures around a few tens of millikelvins.

After characterizing the TMS states as an entangled resource, we employ them for

the realization of the remote state preparation (RSP) protocol [40–43]. Here, a known

quantum state is safely communicated from one party to another by employing similar tools
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as in quantum teleportation [44]. Previously, only conditional schemes have been realized

in quantum optics with continuous-variables [45, 46]. In the microwave regime, quantum

communication has only been realized for discrete-variable systems in the form of quantum

teleportation between on-chip superconducting qubits [4] or, more recently, direct state

transfer schemes [12, 13]. We employ propagating TMS microwave states as entangled

resource and a feedforward in order to realize deterministic RSP of squeezed states [47].

We present full tomography and the phase space of preparable states. Furthermore,

we investigate how the initial entanglement strength affects the prepared states. Since

entanglement is essential for RSP, we probe the quantum correlations in different steps of

the protocol and explore the correlation consumption. Finally, we consider how one can

safely transfer quantum states using RSP by connecting the latter to an extension of the

one-time pad to the quantum regime.

The thesis is structured in the following way. In chapter 2, we present the theoretical

foundations for this work. Here, we introduce important concepts in Gaussian quantum

information and relevant quantum states. Furthermore, the operation principle and

theoretical description of the employed JPAs are presented, which is followed by a detailed

description of the RSP protocol. Chapter 3 describes the employed cryogenic and room

temperature setups. Additionally, the data acquisition and processing as well as calibration

procedures are presented. In chapter 4, we focus on the experimental generation of balanced

TMS states by superimposing two squeezed microwave states at a 50:50 beam splitter.

In addition, the effect of finite-time delays and environmental noise is experimentally

investigated and theoretically described. The main results of this thesis are discussed

in chapter 5, where we show the realization of deterministic RSP of squeezed states in

the microwave regime. Furthermore, we investigate the quantum correlations in different

parts of the protocol and study how one can safely transfer quantum states using our

scheme. Finally, we summarize our work and provide an outlook in chapter 6.



Chapter 2

Propagating microwaves and

superconducting circuits

In this chapter, we introduce the theoretical foundations relevant for this thesis. First, we

discuss Gaussian states and their quantum mechanical description in Sec. 2.1. In addition,

we introduce exemplary classes of quantum correlations, including entanglement and

quantum discord. In Sec. 2.2, we describe the superconducting circuits used for building a

flux-driven Josephson parametric amplifier (JPA), which serves as a source of nonclassical

microwave radiation. Finally, we introduce the central quantum communication protocol

experimentally implemented within this work, namely, remote state preparation (RSP) in

Sec. 2.3 and compare it to related quantum communication protocols.

2.1 Gaussian quantum information

In Gaussian quantum information, one utilizes Gaussian states and Gaussian operations

to perform various tasks in the framework of quantum communication [17], quantum

information processing [15, 16] or quantum illumination [48, 49]. In this section, we

introduce quantum mechanical representations and fundamental properties of continuous-

variable Gaussian states. Gaussian states possess a Gaussian probability distribution of

their field quadratures and can be conveniently described by their corresponding covariance

matrix which represents an analog of the density matrix. A particular covariance matrix

offers full knowledge about a given Gaussian state. It allows one to estimate various

physical quantities of the state - such as expectation values of observables, entropic

quantities, and entanglement estimators.

2.1.1 Representation of propagating quantum microwave states

In this work, we investigate the quantum properties of electromagnetic fields in the

frequency range of 4 − 6 GHz which propagate along quasi one-dimensional structures

such as coaxial cables or coplanar waveguides. Such signals A(r, t) can be described

classically by their in-phase and out-of-phase quadrature components, I(t) and Q(t). The

5
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description of A(r, t) in terms of the quadratures is, in particular, useful if one considers

quasi single-mode signals with a small bandwidth compared to the mode frequency, δf� f .

Then, an arbitrary signal A(r, t) with a carrier frequency f =ω/2π at position r can be

expressed as sinusoidal oscillations of the field quadratures I(t) and Q(t),

A(r, t) = I(t)cos(ωt− kr) +Q(t)sin(ωt− kr) , (2.1)

where k is the wave vector. Here, the relevant information is fully encoded in the

quadratures I(t) and Q(t) which represent the in-phase and out-of-phase instantaneous

amplitudes.

A similar approach is useful for the description of propagating quantum-mechanical

signals. However, for that, one needs to take into account additional effects imposed by

quantum mechanics. The electrical field of a one-dimensional, single-mode signal is given

by [50]

Â(r, t) = C
[
â†ei(ωt−kr) + âe−i(ωt−kr)

]
= 2C [q̂ cos(ωt− kr) + p̂ sin(ωt− kr)] , (2.2)

where ω= 2πf is the angular frequency and C a constant chosen such that Â(r, t) corre-

sponds to the electrical field of the signal. Here, the creation and annihilation operators

of the field, â and â†, obey the usual bosonic commutation relation [â, â†] = 1 and are

related to the complementary quadrature operators q̂ and p̂ by

q̂ = â+ â†

2 and p̂ = â− â†

2i . (2.3)

The quadrature operators obey the commutation relation [q̂, p̂] = i/2 and are the quantum-

mechanical counterparts of the classical quadratures I and Q. In general, q̂ and p̂ can be

defined with a relative phase shift θ. Then, the generalized definition of the quadrature

operators reads [51]

q̂θ = âe−iθ + â†eiθ

2 and p̂θ = âe−iθ − â†eiθ

2i . (2.4)

This means that a phase shift of θ of the chosen reference frame leads to a rotation of the

axis spanned by q̂ and p̂ in a specific phase space.

In contrast to a classical scenario, q̂ and p̂ cannot be measured simultaneously with

infinite accuracy due to the Heisenberg uncertainty relation [52]

∆q∆p ≥ 1
4 , (2.5)

where the standard deviation ∆O of an observable Ô is given by (∆O)2 = 〈(∆Ô)2〉 ≡
〈Ô2〉 − 〈Ô〉2. The Heisenberg uncertainty stems from the fact that q̂ and p̂ are comple-
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mentary observables with a non-zero commutator. From Eq. (2.5) it becomes evident

that a full description of a general quantum state with just the expectation values of

the quadrature components is not possible. There are multiple ways to fully describe a

quantum state and we discuss the relevant ones for Gaussian quantum states below.

Density operator

A widespread method to describe a general quantum state is the density operator ρ̂ which

is particularly useful for mixed states. The density operator

ρ̂ =
∑
j

pj |ψj〉 〈ψj| (2.6)

is defined as the sum of basis states |ψj〉 where pj denotes the probability to be in state

|ψj〉. The expectation value of an observable Ô can be calculated by using the trace

〈Ô〉= Tr(Ôρ̂). For pure states, we have Tr(ρ̂2) = 1, while for mixed states Tr(ρ̂2)< 1. The

description of Gaussian quantum states in terms of the density operator is possible but

not very practical since one typically would need to consider a high-dimensional Hilbert

space in this description.

Moments of signal operator

Another description of a single-mode quantum state is provided by the moments of the

signal operators â and â†. The signal moments 〈(â†)mân〉 with m, n∈N0 contain the

same information as the density operator and, thus, fully define a quantum state [53].

Even though an infinite number of signal moments exists, a finite number of them fully

determines certain quantum states. For example, Gaussian states are fully defined by

signal moments up to the second order, m+n≤ 2 [54]. If one considers a two-mode state,

the signal operators of both modes needs to be taken into account, which results in the

signal moments 〈(â†1)k(â†2)lâm1 ân2 〉 with k, l, m, n∈N0. Note that operators of different

modes always commute [âi, â†j] = δij where δij is the Kronecker delta.

Statistical moments

The most natural description of an arbitrary N -mode Gaussian state is given by the

statistical moments of the quadratures. The first statistical moment is the mean r̄ = 〈r〉
where r̂ = (q̂1, p̂1, ..., q̂N , p̂N) is a vector consisting of all quadratures of the N modes.

Quadratures of different modes commute. The second statistical moment is given by the

covariance matrix V which is a 2N × 2N real symmetric matrix and is defined as

Vij = 〈r̂ir̂j + r̂j r̂i〉/2− 〈r̂i〉〈r̂j〉 , (2.7)
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for i, j= 1, ..., 2N . A Gaussian state is fully described by r̄ and V [15]. The purity of a

Gaussian state is independent of r̄ and can be written as [55, 56]

µ = 1
4N
√

det V
. (2.8)

Consequently, a Gaussian state is only pure if its covariance matrix fulfills det V = 1/42N .

In this work, we only consider Gaussian states with up to two modes. Then the

covariance matrix can be expressed in the form

V =
(

A C
CT B

)
, (2.9)

where A, B and C are 2× 2 matrices describing the local state A on the first mode, local

state B on the second mode and cross-correlations between both parties, respectively. For

a two-mode Gaussian state, it is useful to define the local symplectic invariants of the

covariance matrix [55]

I1 = det A, I2 = det B, I3 = det C, I4 = det V , (2.10)

which do not change under local symplectic transformations, i.e., local unitary Gaussian

transformations such as squeezing or displacement, which are defined in the next subsection.

With the symplectic invariants, we can define the two symplectic eigenvalues of the bipartite

Gaussian state

ν± =
√

∆±
√

∆2 − 4I4

2 , (2.11)

where ∆ = I1 + I2 + 2I3. Importantly, ν± can be used to calculate various essential

quantities of the bipartite state. In particular, ν− can be utilized to verify whether an

experimentally reconstructed Gaussian state is physical, since the Heisenberg uncertainty

relation can be written as [57]

ν− ≥
1
4 . (2.12)

Wigner function

The description of quantum states as a quasi-probability distribution in the phase space is

particularly useful for continuous-variable states. For a classical description, a well-defined

probability to find a system at a particular coordinate (q, p) exists. In contrast, in

quantum mechanics, the Heisenberg uncertainty prohibits precise knowledge of q and p

at the same time. However, it is possible to extend the concept of classical probability

distributions to quantum systems by introducing quasi-probability distributions such as

the P-representation [58, 59] or Q-function [60]. The first quasi-probability distribution

W (r) was introduced by Wigner [61] and takes the following form for a N -mode Gaussian
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state [16]

W (r) =
exp

[
−1

2(r− r̄)V−1(r− r̄)T
]

(2π)N
√

det V
, (2.13)

where r = (q1, p1, ..., qN , pN). The Wigner function W (r) is normalized
∫∞
−∞W (r)dr = 1.

From Eq. (2.13) it can be seen that the Wigner function of a N -mode Gaussian state is

always positive. For non-Gaussian quantum states, the Wigner function can take negative

values which is a sufficient indicator for the nonclassicality of these states. However,

also states with positively-valued Wigner functions, such as Gaussian states, can show

quantum-mechanical properties.

For single-mode Gaussian states, the Wigner function can be expressed in terms of the

signal moments up to the second order [54, 62]

W (q, p) = 1
π
√

(ν + 1/2)2 − |µ|2

× exp
[
−(ν + 1/2)|ζ − 〈â〉|2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ − 〈â†〉)2

(ν + 1/2)2 − |µ|2

]
, (2.14)

where ζ = q + ip, µ = 〈â2〉 − 〈â〉2 and ν = 〈â†â〉 − |〈â〉|2.

The observable probability distribution of a specific quadrature in an experiment can be

obtained by integrating the Wigner function over the remaining quadratures. For example,

for a single-mode Gaussian state, the probability distribution of the q-quadrature is given

by w(q) =
∫∞
−∞W (q, p)dp. In general, the marginal distribution of a N -mode Wigner

function for specific quadratures is obtained by integration over the rest of the quadratures.

For example, the local marginal distribution of mode 1 of a two-mode squeezed state is

given by

Wq1p1(q1, p1) =
∫ ∞
−∞

∫ ∞
−∞

W (q1, p1, q2, p2) dq2 dp2 . (2.15)

2.1.2 Fundamental Gaussian quantum states

In this subsection, we introduce the Gaussian states which are relevant for our work and

introduce their key properties. In particular, we discuss the three fundamental single-mode

Gaussian states, namely, vacuum and thermal states, coherent or displaced states, and

finally, squeezed states. We note that one could also describe any Gaussian state as a

thermal squeezed displaced state which is a combination of the fundamental states.

Vacuum and thermal state

Due to the canonical quantization, even the lowest possible energy state possesses fluc-

tuations in the electromagnetic field. This lowest energy state is typically referred to

as a vacuum state |0〉. It is a minimum uncertainty state with equal variances in both

quadratures (∆q)2 = (∆p)2 = 1/4. We note, that the particular value of the vacuum vari-
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Figure 2.1: (a) 3D representation and (b) top view of the Wigner function of a vacuum state with nth = 0
corresponding to (∆q)2 = (∆p)2 = 1/4. (c) Top view of the Wigner function of a thermal

state with nth = 2 corresponding to (∆q)2 = (∆p)2 = 5/4.

ance depends on the prefactor in the definition of the quadrature operators [see Eq. (2.3)],

which can be chosen arbitrarily. Since the vacuum state is the lowest possible energy state,

we can ascribe a zero equilibrium temperature, T = 0, to it. Even though it is impossible

to realize T = 0 in our experiments, we can approximate our states as vacuum states if

the condition kBT � hf is fulfilled.

If one now considers a black body emitter with T > 0, the emitted mean photon number

into a single mode with a frequency f follows the Bose-Einstein statistics [63]

nth ≡ Tr(â†âρth) = 1
exp

(
hf
kBT

)
− 1

, (2.16)

where kB is the Boltzmann constant and h is the Planck constant. The density matrix of

a thermal state

ρth =
∑
n

nnth
(1 + nth)n+1 |n〉〈n| (2.17)

only depends on its mean photon number nth. The mean and covariance matrix of a

thermal state are

r̄th = 0 and Vth = (2nth + 1) I24 , (2.18)

where I2 is the 2× 2 identity matrix. The signal moments of a thermal state can be

calculated from the density matrix and are 〈(â†)mân〉th = 〈n̂〉nn!δmn. Figure 2.1 shows

the Wigner functions of the vacuum state and a thermal state with nth = 0 and nth = 2,

respectively.

Coherent state

Coherent states |α〉, sometimes also called displaced states, are eigenstates of the anni-

hilation operator, â |α〉 =α |α〉. Since the oscillatory behavior of coherent states is very

similar to the dynamics of a classical harmonic oscillator, they are often regarded as the
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Figure 2.2: (a) 3D representation and (b) top view of the Wigner function of a coherent state with

|α|= 15 and θ= 3π/4.

“most classical” states. Displaced states are the second class of states with equal minimum

uncertainties in both quadratures aside from the vacuum state and are, consequently, pure

states with µ= 1. In fact, they can be theoretically described by displacing the vacuum

state in the phase space |α〉 = D̂(α) |0〉 by using the displacement operator

D̂(α) = exp
(
αâ† − α∗â

)
, (2.19)

where α= |α|ei(π/2−θ) =Q+iP is a complex number describing the displacement amplitude.

We define the displacement angle θ as the angle between the displacement direction and

the p-axis, as can be seen in Fig. 2.2. The center of the coherent state Wigner function

is shifted to (Q,P ) in the phase space leading to the following quadrature mean and

covariance matrix

r̄coh = (Q,P ) = (Reα, Imα) and Vcoh = I24 . (2.20)

In our experiments, we implement the displacement operation D̂(α) by utilizing a

directional coupler acting as a highly asymmetric beam splitter in the microwave regime [64].

The to-be-displaced state âin is incident at the port with high transmissivity τ while a

strong coherent signal b̂coh is applied to the weakly coupled port. The resulting signal

takes the form [65]

âout =
√
τ âin +

√
1− τ b̂coh . (2.21)

Since the strong coherent signal b̂coh has a large amplitude |α̃|� 1, we can treat it

classically and use b̂coh |α̃〉 = α̃ |α̃〉 to approximate it with α̃. For τ → 1, we obtain

âout ≈ âin +
√

1− τ α̃= âin +α with α=
√

1− τ α̃ [65].

Single-mode squeezed state

Single-mode squeezed (SMS) states are another class of minimum uncertainty states

with unit purity. The name originates from the fact that the variances in different
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Figure 2.3: (a) 3D representation and (b) top view of the Wigner function of a single-mode squeezed

state with γ=π/2 and r= 0.6 corresponding to a squeezing level S= 5.2 dB.

quadrature directions are different. Consequently, the Wigner function of a SMS state is

not rotationally symmetric but has an ellipsoidal, i.e. a “squeezed”, shape. For a SMS

state, one variance along a certain quadrature direction is lower than the variance of a

vacuum state. In this case, the Heisenberg uncertainty relation dictates that the variance

of the orthogonal quadrature must be increased accordingly. Theoretically, squeezed states

can be described by the application of the squeezing operator

Ŝ(ξ) = exp
(1

2ξ
∗â2 − 1

2ξ(â
†)2
)

(2.22)

to the vacuum state |ξ〉 = Ŝ(ξ) |0〉. Here, ξ= reiϕ is the complex squeezing amplitude.

The phase ϕ defines the orientation of the squeezed state in the phase space. We define

the squeezing angle γ= −ϕ/2 as the angle between the antisqueezed quadrature direction

and the p-axis (see Fig. 2.3). The squeezing factor r determines the amount of squeezing

and defines the variances along the squeezed quadrature and antisqueezed quadrature

as σ2
s = e−2r/4 and σ2

a = e2r/4, respectively. In our experiments, we employ Josephson

parametric amplifiers for the generation of squeezed microwave states (see Sec. 2.2). Also,

in an experimental setting, we quantify the amount of squeezing and antisqueezing in

decibel as

S = −10 log10

[
σ2

s /0.25
]

and A = 10 log10

[
σ2

a/0.25
]
, (2.23)

where 0.25 is the quadrature variance of the vacuum which originates from the non-

commutation of the quadrature operators. Positive levels of S indicate squeezing below

the vacuum limit and we expect S=A= 20rlog10(e) for an ideal squeezed state. Using

the latter definitions of S and A, we can reformulate the Heisenberg uncertainty relation

to A−S≥ 0. The quadrature mean and covariance matrix of a squeezed state are

r̄sq = 0 and Vsq = 1
4

(
e−2r cos2 ϕ

2 + e2r sin2 ϕ
2 − sinh 2r sinϕ

− sinh 2r sinϕ e2r cos2 ϕ
2 + e−2r sin2 ϕ

2

)
. (2.24)
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The latter expression is obtained by using the definition of the quadratures in Eq. (2.3)

and the transformation properties of the squeezing operator [60]

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiϕ sinh r , (2.25)

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iϕ sinh r . (2.26)

We note that these expressions have the form of a Bogoliubov transformation which

originally appeared as a solution in the BCS theory of superconductivity [66, 67]. Since

the Bogoliubov transformation is the most general linear transformation of â and â†, it is

used in various fields of physics [68–70].

2.1.3 Two-mode squeezed state

Until now, we only considered singe-mode Gaussian states which implies locality of these

states. In continuous-variable quantum information, two-mode squeezed (TMS) states are

an important nonlocal resource for various protocols. They possess entanglement and are

closely related to the famous Einstein-Podolsky-Rosen (EPR) states [36] which are the

first states connected with the notion of entanglement. A TMS state can be described by

the two-mode squeezing operator [50]

Ŝ1,2 = exp
(
ξ∗â1â2 − ξâ†1â

†
2

)
, (2.27)

where âi is the annihilation operator of the i-th electromagnetic mode and ξ= reiϕ. Here,

the amount of two-mode squeezing is given by r and the phase ϕ determines which

quadratures on the two modes are correlated. For ϕ= 0, the quadrature mean and

covariance matrix of a pure TMS state are [16]

r̄tms = 0 and Vtms = 1
4


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 , (2.28)

where we now consider r̂ = (q̂1, p̂1, q̂2, p̂2) consisting of the quadratures of both modes.

From Eq. (2.28) and Fig. 2.4, we can observe that locally the modes look like thermal states

with a photon number nth = sinh2 r. This means that there exist no local correlations or

local squeezing in an ideal TMS state. The correlations between the modes are encoded

in the off-diagonal 2× 2 matrices, which becomes clearer if one considers the Wigner

function [16]

W (x) = 4
π2 exp

{
−(q1 + q2)2 + (p1 − p2)2

e2r − (q1 − q2)2 + (p1 + p2)2

e−2r

}
, (2.29)
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Figure 2.4: Marginal distributions of the Wigner function of a TMS state with r= 1.2 and ϕ= 0. Panels

(a) and (b) are the local marginal distributions which are equivalent to thermal states. Panels

(c-f) are the marginal distributions in the nonlocal phase spaces which reveal correlations in

the quadrature pairs (q1, q2), (q1, p2), (p1, q2), and (p1, p2).

where x = (q1, p1, q2, p2). For r→∞, we obtain W (x)∝ δ(q1− q2)δ(p1 + p2) which means

that the pairs (q1, q2) and (p1, p2) are perfectly correlated and anti-correlated, respectively.

If one considers the sum and difference operators q̂±= (q̂1±q̂2)/
√

2 and p̂±= (p̂1±p̂2)/
√

2
of a TMS state with ϕ= 0, we obtain for the variances (∆q−)2 = (∆p+)2 = e−2r/4 and

(∆q+)2 = (∆p−)2 = e2r/4. This is consistent with the Wigner function since the variance

in q̂− and p̂+ exponentially decreases with increasing r.

2.1.4 Entropy of quantum states

We now discuss various entropic quantities based on the von Neumann entropy. The

latter is a useful information-theoretic tool for characterizing quantum states and can be

calculated from the covariance matrix of Gaussian quantum states.

Classical information theory

In classical information theory, the Shannon entropy [71] is a basic quantity. Let us consider

an ensemble X with elements xi which occur with a probability pi where
∑
i pi = 1. Then,
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the Shannon entropy is defined as [72]

Hsh(X) = −
∑
i

pi log pi , (2.30)

where the logarithm can be taken to different bases. Commonly, base two is used so that

the entropy is measured in bits. However, for continuous variables, the information is

often measured in nats where the natural logarithm is used for calculation of the entropies.

The entropy can be interpreted in different ways. On the one hand, it quantifies the

uncertainty, or the lack of information, in a system. This can be understood in the context

of thermodynamics where the entropy increases for higher levels of disorder in the system.

On the other hand, in information theory, the entropy quantifies the information required

to fully describe the system. In fact, according to Shannon’s noiseless coding theorem [71],

the entropy provides the minimum number of classical bits encoding all information about

the system.

Von Neumann entropy

The von Neumann entropy H(X) = −Tr (ρ̂xlog ρ̂x) of a quantum state X with density

operator ρ̂x is the quantum information analogue of the entropy used in thermodynamics

(up to a factor of the Boltzmann constant kB). In general, the von Neumann entropy is

enclosed in the Shannon entropy, H(X)≤Hsh(X) [72]. Furthermore, similar as for the

Shannon entropy, one can find different interpretations of the von Neumann entropy. On

the one hand, H(X) measures the mixedness of a quantum state. On the other hand,

H(X) provides the optimal compression in quantum coding, i.e., the minimal number of

qubits required to represent a quantum state X faithfully [73, 74].

For Gaussian states, H(X) can be calculated from their covariance matrices V and, for

single-mode Gaussian states, is given by [15]

H(X) = f
(√

det V
)
, (2.31)

where f(x) =
(
2x+ 1

2

)
log

(
2x+ 1

2

)
−
(
2x− 1

2

)
log

(
2x− 1

2

)
. Here and in the rest of this

work, we use the natural logarithms when calculating H(X) and related quantities. The

joint entropy of the whole bipartite state is given by [55]

H(A, B) = H(B, A) = f (ν+) + f (ν−) , (2.32)

where ν± are the symplectic eigenvalues defined in Eq. (2.11). For such a bipartite system,

we also define the quantum mutual information which captures all correlations, quantum

and classical, in the system [55]

I(A : B) = H(A) +H(B)−H(A, B) = f
(√

I1

)
+ f

(√
I2

)
− f(ν+)− f(ν−) . (2.33)
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Finally, we introduce the quantum conditional entropies

H(A|B) = H(A, B)−H(B) = f(ν+) + f(ν−)− f
(√

I2

)
, (2.34)

H(B|A) = H(A, B)−H(A) = f(ν+) + f(ν−)− f
(√

I1

)
, (2.35)

which are the entropy of A conditioned on full knowledge about B or vice versa. If both

parties are correlated, knowledge about B will reveal information about A, and thus,

decrease its entropy, H(A|B)<H(A). We want to note that H(A|B)< 0 and H(B|A)< 0
indicate entanglement between A and B which will be discussed in detail in the next

subsection.

2.1.5 Quantum entanglement

One of the most intriguing properties a quantum-mechanical system may possess is

quantum entanglement. We already mentioned entanglement in the context of TMS states

in Sec. 2.1.2. The latter states are a prime example of entangled states in continuous

variables. Whether a bipartite quantum state is entangled or not is defined via the

separability of the density operator ρ̂AB of the state. A quantum state is not entangled

if ρ̂AB is separable, meaning that ρ̂AB can be expressed as a convex sum of product

states [16]

ρ̂AB =
∑
i

piρ̂i,A ⊗ ρ̂i,B . (2.36)

In general, it is nontrivial to find quantitative measures of entanglement for arbitrary

quantum states. However, for our case of bipartite Gaussian states, there exist multiple

of such measures [57]. We will use negativity N which is based on the partial transpose

of the density matrix and is an entanglement monotone. It reduces to [57]

N = max
[
0, 1− 4ν̃−

8ν̃−

]
= max[0, Nk] (2.37)

for bipartite Gaussian states. We note that Eq. (2.37) is written for our vacuum variance

of 1/4 whereas Ref. [57] uses a vacuum variance of 1. The quantity ν̃− is one of the

symplectic eigenvalues of the partially transposed density matrix defined as [75]

ν̃− =

√√√√∆̃−
√

∆̃2 − 4I4

2 , (2.38)

where ∆̃ = I1 + I2 − 2I3. The state is separable if ν̃−≥ 1/4 and entangled otherwise. Con-

sequently, a positive negativity kernel, Nk > 0, indicates entanglement and for maximally

entangled states Nk →∞.
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2.1.6 Quantum discord

In quantum mechanics, there exist quantum correlations which go beyond entanglement

as illustrated in Fig. 2.5 (a). One quantity to gain insight into such quantum correlations

is quantum discord. It is defined as the difference between two classically-equivalent

definitions of the mutual information [76, 77] [see Fig. 2.5 (b)]. The first is the quantum

mutual information I(A : B), defined in Eq. (2.33), which captures all correlations (both

classical and quantum) in the bipartite system. The second one is the one-way classical

correlation J which depends on a measurement-based quantum analogue of the conditional

entropy. Intuitively, quantum discord can be understood as a measure of “quantumness”

of a state. In particular, non-zero quantum discord is only a necessary but not a sufficient

condition for correlations in a bipartite state to surpass the classical limit [78].

Let us consider a bipartite quantum state ρ̂AB under a local projective measurement on

B. The measurement can be mathematically represented as a positive operator-valued

measure (POVM) ΠB = {Π̂i} where the elements Π̂i correspond to the measurement

outcome i. The post-measurement state of A is given by ρ̂A|i = 1/pi TrB(ρ̂ABΠ̂i) and it

occurs with the probability pi = TrAB(ρ̂ABΠ̂i) [79]. Here, TrB denotes the partial trace of

the subsystem B. We can define the conditional entropy obtained under the measurement

ΠB on B as CΠB
(A|B) = ∑

i piH(ρ̂A|i). The one-way classical correlation is defined as [79]

J(A|B) = H(A)− inf
ΠB

CΠB
(A|B) = H(A)− Cmin(A|B) , (2.39)

where infΠB
CΠB

(A|B) denotes minimization of the conditional entropy over all possible

measurements and Cmin(A|B) is the minimized conditional entropy. With the above

S(A)

DA

S(B)

J(A|B)

S(A,B)

I(A:B)

entanglement quantum
discord

general
correlations

(a) (b)

Figure 2.5: (a) Classification of different types of correlations. The grey shades indicate the strength

of “quantumness” which is increasing with decreasing brightness of the grey shades. (b)

Venn diagram for the description of quantum discord for mixed unentangled bipartite states

which are correlated. The bipartite state has a joint entropy S(A, B) (union of both circles)

while the individual states have entropy S(A) and S(B) (left and right circle). The mutual

information I(A : B) (overlap of both circles) between A and B consists of the sum of quantum

discord DA (violet region) and one-way classical correlations J(A|B) (yellow region).



18 Chapter 2 Propagating microwaves and superconducting circuits

quantities, we can define quantum discord as [76]

DA = I(A : B)− J(A|B) = H(B)−H(A, B) + Cmin(A|B) . (2.40)

In general, quantum discord is not symmetric, i.e., it matters if the measurements are

considered to be performed on system A or system B. DB =I(A : B)−J(B|A) is obtained

by swapping the roles of A and B. Interestingly, by using Eq. (2.34), quantum discord

can also be expressed as the difference between the two conditional entropies

DA = Cmin(A|B)−H(A|B) . (2.41)

From an intuitive point of view, quantum discord can be linked to the indistinguishability

of quantum states. For non-orthogonal states, it is not possible to perfectly distinguish

two states with a single measurement. This means that a single measurement cannot, in

general, reveal all information on the quantum state. Quantum discord is only non-zero

for a bipartite state if at least one of the local states cannot be expressed in terms of an

orthonormal basis. This is consistent with the fact that quantum discord DB vanishes for

classical-quantum states such as [80]

ρ̂AB =
∑
i

pi |i〉 〈i|A ⊗ ρ̂
(i)
B , (2.42)

where ρ̂
(i)
B is an arbitrary quantum state of B, pi the probability for state |i〉, and |i〉 an

orthonormal basis of A’s state. Due to the orthonormal basis, the states on A are fully

distinguishable and, thus, DB = 0 while DA may be non-zero [81].

For general quantum states, it is hard to find analytic expressions for quantum discord

since one needs to find the optimal POVM which minimizes the conditional entropy.

For our case of Gaussian states, it was shown that quantum discord can be calculated

analytically [79, 82, 83]. For a bipartite Gaussian state, we can write the minimized

conditional entropy as Cmin(A|B) = f
(√
Emin
A|B

)
, where [82]

Emin
A|B =


[
|I3|+
√
I2

3−(I1−16I4)(I2−1/16)
(4I2−1/4)

]2
if (I1I2−I4)2

(I1+16I4)(I2+1/16)I2
3
≤ 1,

I1I2+I4−I2
3−
√

(I1I2+I4−I2
3 )−4I1I2I4

2I2
otherwise.

(2.43)

Here, we use the symplectic invariants from Eq. (2.10). Note that the expression for Emin
A|B

is written for our definition of the quadratures and corresponds to the vacuum variance of

1/4. Finally, the quantum discord for a Gaussian state is given by

DA = f
(√

I2

)
− f (ν+)− f (ν−) + f

(√
Emin
A|B

)
. (2.44)
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Again, one obtains DB by exchanging A↔ B.

We note that quantum discord can be related to entanglement of formation EF which

is an entanglement monotone [84]. For pure states, the mathematical definitions of

quantum discord and EF coincide, meaning that the entanglement encloses all quantum

correlations in the absence of noise [82]. Only for mixed states, there is a difference

between entanglement and quantum discord [85].

2.1.7 Second-order correlation function

Photon statistics provide important information on the properties of an electromagnetic

field emitted from a light source. However, single photons might be hard to directly

observe in an experiment. Nevertheless, one can gain information on the photon statistics

by measuring the intensity correlations of the field. These correlations can be measured

in configurations similar to the famous Hanbury-Brown-Twiss experiment [50, 86]. The

second-order correlation function g(2)(τ) for stationary fields is defined as [87]

g(2)(τ) = 〈â
†(0)â†(τ)â(τ)â(0)〉
〈â†(0)â(0)〉2

, (2.45)

where τ is a time delay. The function g(2)(τ) provides insight into the probability of

finding photons at a time τ if a photon was present at time τ = 0 [50]. For coherent light,

the photons are evenly distributed in time and the second-order correlation function is

constant, g(2)(τ) = g(2)(0). If it is likely to detect multiple photons in a short time interval,

g(2)(τ)<g(2)(0), the light is called bunched. Thermal or squeezed states are examples

from the class of Gaussian states for such bunched light. In the case of g(2)(τ)>g(2)(0),
the light is called antibunched. Here, an important example are single photons emitted by

e.g. a quantum two-level system. In Ref. [88], it was shown that antibunched light can be

produced by combining squeezing and displacement in a certain parameter regime.

The second-order correlation function at τ = 0 also provides direct insight into the

photon statistics by reformulating it to [50]

g(2)(0) = 1 + Var(â†â)− 〈â†â〉
〈â†â〉2

, (2.46)

where Var(â†â) is the photon number variance. For the cases of g(2)(0) = 1, g(2)(0)> 1 and

g(2)(0)< 1 we have Poissonian, super-Poissonian, and sub-Poissonian light, respectively [60].

We summarize the properties of different fundamental quantum states in Tab. 2.1. For a

squeezed displaced state with photon number |α|2 + sinh2 r, one obtains [50]

g(2)(0) = 1 + |α|
2(cosh 2r − sinh 2r cos 2θ − 1) + sinh2 r cosh 2r(

|α|2 + sinh2 r
)2 . (2.47)
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Table 2.1: Photon number 〈n̂〉 = 〈â†â〉, photon number variance Var(â†â) and g(2)(0) for different quan-

tum states. The number of photons in a Fock state is denoted by N .

〈n̂〉 Var(â†â) g(2)(0) photon statistics

coherent state |α|2 |α|2 1 Poissonian

thermal state nth n2
th + nth 2 super-Poissonian

squeezed state sinh2 r 2 sinh2 r cosh2 r 3 + 1/〈n̂〉 super-Poissonian

Fock state N 0 1− 1/〈n̂〉 sub-Poissonian

2.2 Josephson parametric amplifiers (JPA)

In the previous section, we have discussed general properties of Gaussian states of

light. Now, we theoretically describe means of generating these states in the microwave

regime with a flux-driven Josephson parametric amplifier (JPA). A flux-driven JPA is a

superconducting circuit consisting of a coplanar waveguide (CPW) resonator which is

short-circuited to ground through a direct-current superconducting quantum interference

device (dc-SQUID). It is a parametric device which allows for amplification of microwave

signals with a noise performance close to the standard quantum limit or generation of

quantum signals in the form of squeezed light.

2.2.1 Superconductivity and Josephson junctions

One of the most important properties of a superconductor is the Meißner-Ochsenfeld

effect, i.e., the expulsion of magnetic flux from the bulk of the superconductor (perfect

diamagnetism) below a certain transition temperature. An important consequence of this

effect is perfect conductivity which makes superconducting materials a good choice to

minimize dissipative losses. Another intriguing phenomenon is the Josephson effect, first

theoretically predicted by Josephson [89], which can be observed if two superconductors

are weakly coupled to each other. The effect can be understood by considering that

superconductivity is a quantum-mechanical phenomenon which manifests on macroscopic

scales. The Josephson effect originates from the overlap of the wave functions of each

superconductor Ψi(r, t) =
√
n∗i (r, t)eiθi(r,t), where i= 1, 2 denotes superconductor 1 or

2 [90]. Here,
√
n∗i (r, t) is the density of superconducting Cooper pairs, and θi(r, t) is

the global phase of the wave function for each superconductor. An overlap of the wave

functions can be achieved by placing a thin layer of non-superconducting material, such as

an insulator, between the two superconductors, as shown in Fig. 2.6 (a). Such a structure

is referred to as a Josephson junction. Due to the weak coupling, there can be a finite

phase difference across the Josephson junction which will be important to describe the

Josephson effect. The gauge invariant phase difference across the Josephson junction is
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Figure 2.6: (a) Schematic of a Josephson junction with superconductors in gray and an insulating layer

in green. (b) Schematic of dc-SQUID with one Josephson junction in each arm of the

superconducting loop. Each Josephson junction is associated with a phase difference ϕi.

given by [91]

ϕ(r, t) = θ2(r, t)− θ1(r, t)− 2π
Φ0

∫ 2

1
A(r, t) · dl , (2.48)

where Φ0 = h
2e is the magnetic flux quantum and A(r, t) is a magnetic vector potential.

The integration path is along a line from superconductor 1 to superconductor 2. In

our experiments, we can neglect the spatial dependence of the Cooper pair density.

The Josephson effect is commonly described by two equations, the first one being the

current-phase relation [92]

Is(ϕ) = Ic sin(ϕ) , (2.49)

where Is is the supercurrent through the Josephson junction and Ic is the critical Josephson

current.

The second Josephson equation, also called the voltage- or energy-phase relation,

describes the time evolution of the phase difference in the presence of a finite energy

difference 2eV = ~ω= ~∂ϕ/∂t between the coupled superconductors. That is, it connects

the voltage V across a Josephson junction to the time-derivative of the phase difference [92]

∂ϕ

∂t
= 2π

Φ0
V (t) . (2.50)

Consequently, a constant voltage across a Josephson junction leads to a linear evolution

of ϕ in time which, in turn, causes a sinusoidal oscillation of the supercurrent Is.

In this context, it is useful to define the nonlinear inductance of a Josephson junction [92]

Ls(ϕ) = Φ0

2πIc cosϕ = Lc
1

cosϕ , (2.51)

where Lc = Φ0/(2πIc) corresponds to the minimal Josephson junction inductance. Ls can

be derived by using the Josephson equations and definition of the inductance V = LdIs
dt .

The nonlinear properties of a Josephson junction make it a central building block for
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superconducting circuits where it is often utilized as a nonlinear, lossless inductance.

The dynamics of a Josephson junction can also be described using related energies and

potentials. The Josephson coupling energy EJ originates from the finite overlap of the

wave functions and is defined as [92]

EJ(ϕ) = Φ0Ic

2π (1− cosϕ) = EJ0(1− cosϕ) , (2.52)

where EJ0 = Φ0Ic/2π.

If one drives a Josephson junction with an external current I, acting as a generalized

force, the potential energy is given by the tilted washboard potential [92, 93]

Epot(ϕ) = EJ(ϕ)− I
(

Φ0

2πϕ
)

= EJ0

(
1− cosϕ− I

Ic
ϕ
)
. (2.53)

To gain an intuitive understanding of the dynamics under the external current I, one

can imagine the phase difference ϕ as a classical particle moving inside this potential.

The zero-voltage state and voltage state of a Josephson junction are related to the phase

particle resting and moving in the potential, respectively. The first state can be obtained

for |I| < Ic, where the particle rests in a local minimum of the potential in the absence

of noise sources. The second state corresponds to the phase particle rolling down the

potential for |I| > Ic, where no local minima exist anymore.

If we consider a Josephson junction with a finite capacitance C and normal resistance

R, we can describe the Josephson junction dynamics with the Resistively and Capacitively

Shunted Junction (RCSJ) model. This model is only an approximation since it does not

consider the superconducting energy gap. The equation of motion within the RCSJ model

reads [93, 94]
ϕ̈

ω2
p

+ ϕ̇

ωc
= j − sinϕ = − 1

EJ0

∂Epot(ϕ)
∂ϕ

, (2.54)

where ωp =
√

2πIc/Φ0C is the plasma frequency, ωc = 2πIcR/Φ0 a characteristic frequency

and j = I/Ic the normalized supercurrent through the Josephson junction.

Alternatively, the dynamics of a Josephson junction can be described with the cor-

responding Lagrangian. This approach will be useful when investigating more complex

scenarios such as the response of JPAs to an applied magnetic flux. If we neglect the

resistive term, we obtain the Lagrangian of a single Josephson junction,

L = K(ϕ̇)− Epot(ϕ) = ~
2ϕ̇2

4Ec
− EJ0 (1− cosϕ− jϕ) , (2.55)

where Ec = (2e)2/2C is the charging energy of the capacitor with the charge of one Cooper

pair and K(ϕ̇) is the kinetic energy corresponding to the first term on the left hand side
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of Eq. (2.54). The equation of motion can be obtained from the Lagrangian as

d

dt

∂L
∂ϕ̇
− ∂L
∂ϕ

= 0 . (2.56)

We note that Eqs. (2.54) and (2.55) are a quasi-classical description of the Josephson

junction dynamics. They describe the classical motion of a phase particle in the tilted

washboard potential. For a description of superconducting qubits based on Josephson

junctions, a full quantum mechanical description of the Josephson junctions is required.

In particular, the commutation relation between the operators for the phase difference

ϕ̂ and the charge Q̂ needs to be considered [95]. Depending on the relative magnitude

of the Josephson energy EJ and the charging energy Ec, one obtains different types of

superconducting qubits [96]. For the Josephson junctions used in the JPAs presented in this

thesis, the Josephson energy strongly dominates over the charging energy, EJ/Ec ' 103.

Furthermore, as discussed in Sec. 2.2.4, the Josephson nonlinearity in JPAs is diluted

by galvanically connecting the Josephson junctions to a coplanar waveguide resonator.

Consequently, the dynamics of the phase difference ϕ̂ can be well described with the

above quasi-classical model, and the charging energy of the Josephson junction and any

uncertainty between the charge and phase degree of freedom can be neglected.

2.2.2 Dc-SQUID

A central building block of the JPA is a direct current superconducting quantum inter-

ference device (dc-SQUID). It consists of two Josephson junctions with critical currents

Ic in a superconducting loop, as shown in Fig. 2.6 (b). For simplicity, we assume equal

critical currents of the Josephson junctions but different Ic are also possible. An externally

applied magnetic field B causes a magnetic flux Φext through the loop. Due to boundary

conditions, the total phase change along a closed contour C around the dc-SQUID loop

is fixed to
∮
C ∇θ = 2πn with n ∈ Z0. By using the gauge invariant phase difference in

Eq. (2.48) and the phase gradient in the bulk superconductor, we can write [92]

∇θ = 2π
Φ0

(ΛJs + A) , (2.57)

where Js is the supercurrent density, A is the vector potential and Λ is the London

parameter. For simplicity, we choose an integration path inside the superconductor where

the supercurrent density Js is approximately zero and obtain

ϕ2 − ϕ1 = 2πΦ
Φ0

+ 2πn . (2.58)

This equation provides us with a connection between the phase differences ϕ1,2 across

the Josephson junctions and the total magnetic flux Φ threading the loop. The total
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magnetic flux Φ = Φext + LloopIcirc consists of the externally applied flux Φext and the

self-induced flux LloopIcirc, where Lloop is the self-inductance of the superconducting loop.

The circulating current is given by

Icirc = I1 − I2

2 = Ic cos
(
ϕ1 + ϕ2

2

)
sin

(
ϕ1 − ϕ2

2

)
= −Ic cosϕ+ sinϕ− , (2.59)

where we introduced new phase differences

ϕ+ ≡
ϕ1 + ϕ2

2 and ϕ− ≡
ϕ2 − ϕ1

2 , (2.60)

in order to simplify the notation. For example, the fluxoid quantization condition in terms

of the new phase difference ϕ− reads

ϕ− = π
Φ
Φ0

+ πn . (2.61)

Here, it is useful to define the total transport current through the dc-SQUID

Itr = I1 + I2 = 2Ic sin
(
ϕ1 + ϕ2

2

)
cos

(
ϕ1 − ϕ2

2

)
= 2Ic sinϕ+ cosϕ− , (2.62)

which is given by the sum of the currents through each Josephson junction. The screen-

ing properties of the superconducting loop are summarized in the so-called screening

parameter [97]

βL ≡
2LloopIc

Φ0
, (2.63)

which relates the maximally induced flux LloopIc to half of a flux quantum Φ0/2. With

the above equations we can write the total flux through the dc-SQUID loop as

Φ
Φ0

= Φext

Φ0
− βL

2 cosϕ+ sinϕ− , (2.64)

If we now consider βL ' 0, the self-induced flux by the dc-SQUID can be neglected and,

consequently, the total flux can be approximated by the externally applied flux, Φ ≈ Φext.

Then, in analogy to the critical current of a Josephson junction, one can define a maximum

transport current of the dc-SQUID [93]

Imax
s (Φext) = 2Ic

∣∣∣∣∣cos
(
π

Φext

Φ0

)∣∣∣∣∣ . (2.65)

Consequently, for βL ' 0, the dc-SQUID can be considered as a single Josephson junction

with a flux-modulated maximum supercurrent and, thus, in analogy to Eq. (2.51), a
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flux-tunable inductance of the dc-SQUID can be defined as [98]

Ls(Φext) = Φ0

2πImax
s

= Φ0

4πIc

∣∣∣cos
(
πΦext

Φ0

)∣∣∣ . (2.66)

This equation nicely illustrates that the dc-SQUID can be applied both as an in-situ

flux-tunable inductance as well as a nonlinear element in superconducting circuits.

For the case βL > 0, the self-inductance of the loop cannot be neglected anymore.

Therefore, the behavior of the dc-SQUID is described by Eqs. (2.62) and (2.64). These

two equations need to be solved self-consistently under the constraint of the fluxoid

quantization condition in Eq. (2.58). For general cases, it is not possible to obtain an

analytic expression but nevertheless one can define

Imax
s (Φext) = 2Ic · jc(Φext) , (2.67)

Ls(Φext) = Φ0

4πIc · jc(Φext)
, (2.68)

where jc(Φext) is a dimensionless critical supercurrent through the dc-SQUID. We refer

the reader to Sec. 2.2.5 and Sec. 2.2.4 for a detailed discussion on how we simulate and

use jc(Φext) in order to describe the flux dependence of a coplanar waveguide resonator

short-circuited to ground by a dc-SQUID.

Similarly to the case of one Josephson junction, one can write Kirchhoff’s law for both

junctions [93]

ϕ̈1

ω2
p1

+ ϕ̇1

ωc1
= − sinϕ1 + jtr + 1

πβL

(
ϕ2 − ϕ1 − 2πΦext

Φ0

)
, (2.69)

ϕ̈2

ω2
p2

+ ϕ̇2

ωc2
= − sinϕ2 + jtr −

1
πβL

(
ϕ2 − ϕ1 − 2πΦext

Φ0

)
, (2.70)

where indices 1 and 2 denote the two Josephson junctions and jtr = Itr/(2Ic). Finally, we

neglected the dissipative terms and define the Lagrangian of a dc-SQUID [99]

L = ~2

4Ec
(ϕ̇2

1+ϕ̇2
2)−EJ0 (2− cosϕ1 − cosϕ2 − jtr(ϕ1 + ϕ2))− EJ0

2πβL

(
ϕ2 − ϕ1 − 2πΦext

Φ0

)2

,

(2.71)

which can also be written in the form

L = ~2

2Ec
(ϕ̇2

+ + ϕ̇2
−)−EJ0 (2− 2 cosϕ+ cosϕ− − 2jtrϕ+)− 2EJ0

πβL

(
ϕ− − π

Φext

Φ0

)2

. (2.72)
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Figure 2.7: (a) Distributed element model of a CPW resonator. Here, L0 and C0 are the inductance and

capacitance per unit length, and Cc is a coupling capacitance which allows an input signal ain

to enter and a signal aout to leave the resonator. (b) Input-output model of a resonator with

an internal mode â and internal loss rate κint which couples to a loss mode b̂out. Input-output

coupling is expressed by an external coupling rate κext. The operators âin, âout, â, and b̂out

are treated quantum-mechanically. (c) Reflection magnitude |Γ| and reflection angle Arg (Γ)
versus readout frequency for Qext = 300, Qint = 1000 and ω0/2π= 5 GHz.

2.2.3 Coplanar waveguide resonators

In circuit quantum electrodynamics, superconducting resonators have various purposes.

For example, they can serve as quantum bus [100], quantum memory [101], or can be

applied to study fundamental light-matter interactions [10]. Furthermore, they are an

essential part of JPAs.

First, we consider a coplanar waveguide (CPW) which acts as a quasi one-dimensional

transmission line. Since we are interested in frequencies in the gigahertz regime, the lateral

dimensions of the CPW should be on the order of a few millimeters. Therefore, the CPW

needs to be described with a distributed element model, where each circuit element is

considered to be infinitesimally small. The wave propagation through such a system is

generally described by the telegrapher’s equations [102]. Since our CPW structures consist

of a superconducting material, we can approximate the CPW with a lossless transmission

line with a characteristic impedance [102]

Z =
√
L0

C0
, (2.73)

where L0 and C0 are the inductance and capacitance per unit length of the transmission line,

respectively. In general, disregarding polarization, an infinite homogeneous transmission

line does not have any mode restrictions due to the absence of boundary conditions.

In order to create a resonant structure, one needs to apply boundary conditions to the

waves propagating through the transmission line. One way to realize such a boundary

condition is to create a discontinuity in the transmission line by introducing a line break

with a corresponding capacitance Cc. Simultaneously, this capacitor acts as an external
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port to couple to the field inside the resonator. Alternatively, one can short-circuit the

CPW to ground which creates a voltage node and current antinode. We focus on quarter-

wavelength resonators where both of these boundary conditions are employed, namely, a

coupling capacitance at one end of the resonator and a short to ground at the other end

as shown in Fig. 2.7 (a). The fundamental resonance frequency of a quarter-wavelength

resonator with length l is given by [103]

fr = c
√
εeff

1
4l = 1

4l
√
L0C0

, (2.74)

where εeff = c2/v2
ph is the effective permittivity of the CPW, c is the velocity of light in

vacuum and vph = 1/
√
L0C0 is the phase velocity. The length of the resonator is connected

to the wavelength of the fundamental mode as l=λ/4, hence the name quarter-wavelength

resonator.

In order to probe the resonator, a microwave tone is applied and the reflected signal

from the resonator is measured as depicted in Fig. 2.7 (b,c). The reflected signal can

differ in amplitude and phase from the applied signal which is captured by the complex

reflection coefficient [104]

Γ = (ω − ω0)2 + iκint(ω − ω0) + (κ2
ext − κ2

int)/4
[(ω − ω0) + i(κext +κint)/2]2

, (2.75)

which is calculated using an input-output formalism. Here, κint and κext are the internal

and external loss rates, respectively, and ω0 is the resonance frequency of the resonator in

angular units.

The loss rates are related to the quality factor Q of the resonator which is an important

quantity characterizing its performance. The quality factor is defined as [102]

Q = 2πaverage energy stored
energy loss/cycle = ω0

κtot
, (2.76)

where κtot =κint + κext defines the total loss rate. Consequently, the loaded quality factor

Ql is defined by the sum of loss rates

1
Ql

= 1
Qint

+ 1
Qext

= κint + κext

ω0
, (2.77)

where Qint =ω0/κint and Qext =ω0/κext are the internal and external quality factor, respec-

tively. The external loss rate is mainly defined by the coupling capacitance and determines

how well a probe tone couples to the resonator. The internal loss rate is a sum of various,

typically unwanted, loss mechanisms such as loss from two-level fluctuators [105], surface

resistance [106], or eddy currents [107].
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2.2.4 Resonance frequency of the JPA

We now consider the flux-driven JPA [108] consisting of a quarter-wavelength CPW

resonator which is short-circuited to ground by a dc-SQUID (see Fig. 2.8). Here, the

dc-SQUID acts as a flux-tunable nonlinear inductor which contributes to the quasi-static

resonance frequency ω0 of the JPA. As discussed in Sec. 2.2.2, we can use a magnetic flux

to tune the dc-SQUID inductance and, in this way, the resonance frequency of the whole

JPA circuit. In order to induce parametric effects, an on-chip antenna couples inductively

to the dc-SQUID loop via the loop inductance Lloop and is used to apply a strong coherent

pump tone with an angular frequency ωp = 2ω0.

In the following, we discuss how the resonance frequency of the JPA circuit depends on

an external magnetic flux Φext threading the dc-SQUID loop. The treatment is applicable

for arbitrary flux-screening of the dc-SQUID which can be quantified by the dimensionless

screening parameter βL, as defined in Eq. (2.63). Based on the distributed element model

for the quarter-wavelength resonator and a lumped element model for the dc-SQUID (see

Fig. 2.8), one arrives at a transcendental equation for the resonance frequency ω0 of the

JPA [109–111]

πω0

2ωr
tan

(
πω0

2ωr

)
= (2π)2

Φ2
0
LrEs(Φext)−

2Cs

Cr

(
πω0

2ωr

)2

. (2.78)

Here, Lr, Cr, and ωr/2π are the total inductance, the total capacitance and the resonance

frequency of the bare resonator, respectively, Es(Φext) is the flux-dependent energy of the

dc-SQUID as defined below, and Cs is the capacitance of one Josephson junction. For the

presented samples, the last term in Eq. (2.78) can be neglected, since the capacitance of

the Josephson junctions is much smaller than the one of the resonator, Cs � Cr. For a

vanishing transport current Itr through the dc-SQUID, the normalized critical supercurrent

jc(Φext), used in Eqs. (2.67) and (2.68), only depends on ϕ− and can be simplified to

jc = | cosϕmin
− (Φext)| , (2.79)

resonator pumpdc-SQUID

L0 L0

Itr

Icirc

Φdc+Φrf
ϕ2ϕ1

2
Lloop

2
LloopC0 C0

Cc
ain

aout

Figure 2.8: Circuit diagram of a JPA consisting of a CPW resonator which is short-circuited to ground

by a dc-SQUID. The crosses indicate Josephson junctions. The dc-SQUID has a non-zero

loop inductance Lloop, and thus, inductively couples to an external magnetic flux Φdc + Φrf .

The flux Φrf is generated by an adjacent pump line.
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where ϕ±≡ (ϕ1 ± ϕ2)/2 are defined in Eq. (2.60). The superscript in ϕmin
± (Φext) denotes

the steady-state phase differences for a given external flux Φext. Thus, the Josephson

inductance of the dc-SQUID reads

Ls(Φext) = Φ0

4πIc| cosϕmin
− (Φext)|

, (2.80)

where Ic is the critical current of a single Josephson junction. Using Ls, we can express

the flux-dependent energy of the dc-SQUID as

Es(Φext) = Φ2
0

(2π)2
1

Ls(Φext) + Lloop/4
, (2.81)

where the non-zero dc-SQUID loop inductance Lloop is split between both arms of the

dc-SQUID [112].

The tangent in Eq. (2.78) can be expanded into a Laurent series near π/2 for ω0/ωr ' 1.

Consequently, we obtain a simplified expression for the resonance frequency of the JPA in

terms of inductances

ω0(Φext) = ωr

1 +
Ls(Φext) + Lloop/4

Lr

−1

. (2.82)

We now discuss the effect of flux-screening of the dc-SQUID depending on the screening

parameter βL. In general, ϕmin
− (Φext) exhibits a non-trivial dependence on the external

magnetic flux. According to the fluxoid quantization, ϕmin
− (Φext) is related to the total flux

Φ = Φext +LloopIcirc threading the dc-SQUID according to ϕmin
− = π(Φ/Φ0). As already

discussed in Sec. 2.2.2, we have Φ≈Φext in the case of a vanishing screening parameter

βL' 0. In this case, the phase of one Josephson junction relative to the other one is fixed

by the fluxoid quantization, reducing the available degrees of freedom from two to one.

This results in a single-valued dependence ϕmin
− =π(Φext/Φ0). A mechanical analog of this

situation are two strongly coupled pendula, where the system can be described by a single

deflection angle, i.e., a single degree of freedom due to the rigid coupling. However, if the

screening parameter βL becomes non-zero, there is no analytic expression for ϕmin
− (Φext)

anymore and the dependence has to be calculated numerically. Consequently, the JPA

resonance frequency can exhibit a non-trivial behavior when varying the external flux.

The results presented in this subsection have been published by us in Ref. [113]. Parts

of the text and figures are adapted from this reference.

2.2.5 Simulation of the dc-SQUID potential

In this subsection, we discuss hysteretic dc-SQUIDs for non-zero screening βL > 0 under a

varying external magnetic field. To describe the behavior of a dc-SQUID in equilibrium,
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we consider a phase particle in the two-dimensional dc-SQUID potential [93, 99]

U(ϕ+, ϕ−)
EJ

= 2− 2 cosϕ+ cosϕ− − 2jtrϕ+ + 2
πβL

(
ϕ− − π

Φext

Φ0

)2

, (2.83)

where jtr≡ Itr/2Ic is the normalized dc-SQUID transport current and EJ≡ IcΦ0/2π is the

coupling energy of a single Josephson junction. The potential U(ϕ+, ϕ−) can be derived

from the Lagrangian in Eq. (2.72) by using L=K(ϕ̇+, ϕ̇−)− U(ϕ+, ϕ−). The dc-SQUID

potential U(ϕ+, ϕ−), calculated according to Eq. (2.83), for different values of the external

flux Φext and with a typical experimental value of βL = 0.6 as well as jtr = 0 is shown in

Fig. 2.9. Note that there is no tilt of the potential landscape along the ϕ+-direction for

vanishing transport current, jtr = 0. In our simulations and experiments, jtr is negligible

at all times due to the small applied microwave signal which is in contrast to other works

investigating hysteretic dc-SQUIDs [99, 114, 115]. Consequently, the possible equilibrium

phase differences (ϕmin
+ , ϕmin

− ) of the dc-SQUID are given by the local minima shown in

Fig. 2.9.

To get an intuition on the origin of the hysteretic behavior, we now consider a phase

particle with coordinates (ϕmin
+ , ϕmin

− ) residing in one of the potential minima. Multiple

equivalent local minima, which describe the same state of the dc-SQUID, exist due

to the periodicity of the potential. For Φext = 0, all local minima are degenerate and

correspond to the same dc-SQUID state. However, for non-zero Φext and βL there exist

at least two classes of minima corresponding to screening currents with a clockwise and

counterclockwise direction. One is shifted downwards and the other one upwards in energy,

therefore corresponding to a class of stable and metastable states, respectively.

In order to obtain ϕmin
− (Φext), we record the equilibrium positions of the phase particle

for a continuously varied external magnetic flux Φext. Figure 2.9 depicts the behavior

of the phase particle for increasing and decreasing Φext. In our simulation, we neglect

thermally activated switching and tunneling processes of the phase particle as well as

the finite charging energy of the Josephson junctions. In other words, we assume that

the phase particle resides in a specific minimum as long as the minimum exists. Only if

this minimum vanishes due to a changed Φext, the phase particle will perform transitions

to one of the two adjacent minima. Since the adjacent minima always correspond to a

different class of local minima, ϕmin
− (Φext) exhibits a discontinuity. The magnetic flux at

which the discontinuity appears depends on the magnitude of βL. Since the dc-SQUID

inductance Ls(Φext), and therefore the JPA resonance frequency ω0(Φext), is dependent

on ϕmin
− (Φext), we can experimentally observe the discontinuity as a jump of ω0(Φext), as

discussed in Sec. 3.2.2. The flux dependence of the resonance frequency for the whole

JPA circuit is obtained by evaluating Eq. (2.82) with the simulated ϕmin
− (Φext) as shown

in Fig. 2.9 (g).

The two-dimensional potential landscapes shown in Fig. 2.9 are calculated for jtr = 0.

However, in our experiments discussed in Sec. 3.2.2, a finite microwave signal is applied to
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Figure 2.9: Two-dimensional dc-SQUID potential U for different normalized external flux values

ϕext = Φext/Φ0 with βL = 0.6 and jtr = 0. The position of the phase particle is marked

by white dots, whereas red dotes denote the positions of other local minima. (a)-(d) and

(e), (f) correspond to increasing and decreasing external flux Φext, respectively. (g) JPA reso-

nance frequency ω0 as a function of external flux calculated from Eq. (2.82) for Lr = 10Ls,min,

Ls,min = Φ0/(4πIc), and Lloop = 0. Furthermore, the white markers correspond to the position

of the phase particle in panels (a)-(f).

the JPA. The microwave signal results in a finite microwave current across the dc-SQUID

which resides in a current anti-node of the resonator. This finite microwave current results

in a periodic tilt of the dc-SQUID potential along the ϕ+-axis which affects the dynamics

of the phase particle. However, in our experiments we apply only very weak microwave

signals, resulting in small microwave currents inside the resonator. By taking into account

the quality factors and inductance of the JPA resonators, we find that the microwave

current, depending on the investigated JPA (see Sec. 3.2.2), is at least two orders of
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magnitude smaller than the junction critical current. As a consequence, the negligible

periodic tilt of the dc-SQUID potential along the ϕ+-axis can be neglected when analyzing

the phase dynamics. Note that the finite microwave current results in a smearing of the

hysteretic ϕmin
− versus Φext dependence similar to thermal or other noise currents.

The results presented in this subsection have been published by us in Ref. [113]. Parts

of the text and figures are adapted from this reference.

2.2.6 Parametric amplification with flux-driven JPAs

Amplification in JPAs is enabled by driving a parametric process with a pump tone. The

pump tone typically varies one parameter of a system in a periodic fashion which gives rise

to parametric effects [116, 117]. In general, such a system requires a nonlinear element.

For superconducting circuits, Josephson junctions are routinely used for this purpose and

a variety of parametric amplifiers have been realized based on them [27, 28, 118–122]. We

focus on flux-driven JPAs [108] where the pump tone is inductively coupled to the JPA

and has a frequency ωp of twice the resonance frequency of the circuit. Here, the pump

tone leads to a periodic modulation of the dc-SQUID inductance which, in turn, causes a

periodic modulation of the resonance frequency ω0 of the JPA circuit. Consequently, the

induced parametric modulation enables a three-wave mixing process where an incident

signal mode at frequency ωs =ωp/2 + δω and detuning δω is amplified, as depicted in

Fig. 2.10. At the same time, an idler mode at frequency ωi =ωp/2− δω is created. One

can imagine this process as a pump photon splitting into one signal photon and one idler

photon such that the energy is conserved, ωp =ωs +ωi [123].

In order to describe the flux-driven JPA analytically, we employ an input-output model

for the JPA developed by Yamamoto et al. [104] and start with an unperturbed classical

harmonic oscillator whose resonance frequency ω0 is periodically modulated such that

ω0 → ω0 [1 + ε/2 cos(αω0t)], where ε/2 and αω0 are the amplitude and frequency of the

frequency

pumpsignal

ω0 ωp/2+δωωp/2-δω0

idler

ωp

Figure 2.10: Scheme of relevant frequencies for parametric amplification with a flux-driven JPA. The

pump frequency ωp is at roughly twice the JPA resonance frequency ω0. The signal mode

at frequency ωp/2 + δω is amplified and an idler mode at frequency ωp/2− δω is created.
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modulation, respectively. Consequently, the classical equation of motion reads [104]

d2x

dt2
+ ω2

0 [1 + ε cos(αω0t)]x = 0 . (2.84)

Here, we neglected the ε2 term since we only consider small modulation amplitudes, i.e.,

small pump amplitudes. In a quantum-mechanical picture, the corresponding Hamiltonian

in terms of the annihilation and creation operators reads

H = ~ω0

[
â†â+ 1

2 + ε cos(αω0t)(â+ â†)2
]
. (2.85)

After introducing a signal port and a loss port to the Hamiltonian, the Heisenberg equation

of motion for the resonator field â can be solved in a frame rotating with αω0/2 and

one obtains expressions for the output field of the JPA. For details on the derivation, we

refer the reader to Ref. [104]. We only consider the case where the applied pump tone

is twice the resonance frequency of the JPA, ωp = 2ω0, corresponding to α= 2. One can

differentiate between two operation modes of the JPA which are discussed in the following.

Nondegenerate gain

The JPA is operated in the nondegenerate operation mode if the input signal at frequency

ωs =ωp/2 + δω has a non-zero offset to half the pump frequency, δω , 0. In the nondegen-

erate operation mode, every quadrature of the signal is amplified equally, and therefore,

the JPA acts as a phase-preserving amplifier. For a flux-driven JPA, we can then write

explicit expressions for the signal and idler power gain as [104]

Gs(δω) = κ2
intδω

2 + [(κ2
int − κ2

ext)/4− ε2ω2
0 − δω2]2

κ2
totδω2 + [κ2

tot/4− ε2ω2
0 − δω2]2

, (2.86)

Gi(δω) = κ2
extε

2ω2
0

κ2
totδω2 + [κ2

tot/4− ε2ω2
0 − δω2]2

, (2.87)

where κtot =κext +κint is the sum of external and internal loss rates. Equations (2.86)

and (2.87) are only valid for modulation amplitudes below a certain the threshold value

ε ≤ εc =κtot/2ω0. Above this threshold, the JPA acts as a Josephson parametric phase-

locked oscillator where two dynamical coherent states exist inside the oscillator [104]. The

threshold appears, similar to a driven Duffing oscillator, because multiple stable states

exist for a highly-driven JPA [110]. For vanishing internal losses, κint = 0, we obtain the

relation Gs(δω)−Gi(δω) = 1.

JPAs are routinely used as low-noise amplifiers of microwave signals in the gigahertz

regime since they provide an excellent noise performance [4, 35, 124, 125]. According to

the Haus-Caves theorem [126, 127], phase-preserving amplifiers possess a lower limit on

the noise they add to the amplified signal. In order to provide a universal measure between
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different amplifiers, the added noise is expressed in added noise photons A referred to the

input of the amplifier and is limited by [127]

A ≥ 1
2

∣∣∣∣1− 1
Gs

∣∣∣∣ . (2.88)

Consequently, for Gs� 1, a phase-preserving amplifier adds at least half of a noise photon

to the input signal which is known as the standard quantum limit for phase-insensitive

amplification. From a theoretical point of view, this fundamental limit originates from the

fact that the bosonic commutation relation of the amplified mode needs to be fulfilled [28].

The physical origin of the added noise consists in the admixture of the idler mode to

the signal mode. During the parametric amplification, the noise at the idler frequency

ωi =ωp/2− δω is converted to the signal frequency ωs, where it is combined with the

amplified original signal [123]. The limit of at least half of an added noise photon is

attributed to the noise floor of the idler mode limited by the quantum fluctuations.

Degenerate gain

We now consider the case where half the pump frequency and the signal frequency are

degenerate, ωs =ωp/2, which implies δω= 0. In this scenario, the signal and idler modes

have the same frequencies which allows them to interfere with a fixed phase relation. This

results in a phase-sensitive amplification where different quadratures are amplified with

different gains [28]. For our case of flux-driven JPAs, the degenerate signal gain depends

on the phase θ between the pump and the microwave signal and is given by [104]

Gd(θ) =

(
κ2

ext−κ2
int

4 + ε2ω2
0

)2
+ ε2κ2

extω
2
0 − 2εκextω0

(
κ2

ext−κ2
int

4 + 4δ2ω2
0

)
sin(2θ)(

κ2

4 − ε2ω
2
0

)2 . (2.89)

The latter equation is again only valid below the threshold ε ≤ εc. If we assume an

overcoupled JPA, κext >κint, or more precisely (κ2
ext − κ2

int)/4 + ε2ω2
0 > 0, we can define

the minimum and maximum degenerate gains

Gmin
d =

(
εω0 − (κext − κint)/2
εω0 + (κext + κint)/2

)2

, (2.90)

Gmax
d =

(
εω0 + (κext − κint)/2
εω0 − (κext + κint)/2

)2

, (2.91)

for θmin =π/4 +nπ and θmax = 3π/4 +nπ, respectively. The difference between the phases

is π/2 which means that the maximally amplified and deamplified quadratures are

orthogonal to each other. Furthermore, without any internal losses, κint = 0, we obtain

Gmin
d Gmax

d = 1 . (2.92)
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In the phase-sensitive regime, JPAs allow for amplification without adding any additional

noise to the signal according to the Haus-Caves theorem. In fact, for a phase-sensitive

amplifier, different amounts of noise can be added to each quadrature [127]

A1A2 ≥
1
16

∣∣∣∣∣1− 1√
G1G2

∣∣∣∣∣
2

, (2.93)

where A1 and A2 denote the added noise photons in orthogonal quadratures with respective

gains G1 and G2. If we consider an amplifier for which one quadrature is amplified (G1> 1)

while the orthogonal quadrature is deamplified (G2< 1), the added noise can be zero

under the condition G1G2 = 1. According to Eq. (2.92), JPAs can reach this limit in the

absence of internal losses. In fact, it has been experimentally demonstrated that JPAs

can phase-sensitively amplify weak microwave signals with a noise performance below the

standard quantum limit [28, 29, 128].

2.2.7 Squeezing with flux-driven JPAs

In the last subsection, we discussed how JPAs can be used as nondegenerate and degenerate

amplifiers of microwave signals. In addition, JPAs can also be employed as a tool to

generate quantum signals in the form of squeezed states. From the discussion of single-

mode squeezed (SMS) states in Sec. 2.1.2, we know that the variance along different

quadrature directions varies for SMS states. In this sense, single-mode squeezing of the

JPA is closely connected to the degenerate operation mode of the JPA. In order to obtain

expressions for the variances of a squeezed state produced by a flux-driven JPA, we assume

the fictional homodyne setup depicted in Fig. 2.11. The squeezed signal at the output

of the JPA is sent to a mixer which is driven by a local oscillator (LO) with frequency

ωp/2 and phase φLO [129]. The mixer down-converts the squeezed input signal to zero

frequency. The power spectral density P at the mixer output is directly proportional to a

certain quadrature variance of the squeezed signal. This specific quadrature is determined

pump
mixer

P

JPA

local oscillator

ωp

ωp/2
ωrf

Figure 2.11: Scheme for the description of the squeezing properties of a flux-driven JPA which is pumped

at a frequency ωp. The squeezed signal around the frequency ωrf =ωp/2 is down-converted

to zero frequency by a mixer which is driven by a local oscillator with frequency ωp/2 and

phase φLO. The power spectral density P at the mixer output is directly proportional to

the variance in different quadrature directions of the squeezed signal.
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Figure 2.12: (a) Quadrature gain P as a function of the local oscillator phase φLO for different modulation

amplitudes ε/εc and Qint = 1 · 106. (b) Maximum gain Pmax and minimum gain Pmin as a

function of the modulation amplitude ε/εc for different internal quality factors Qint. Both

panels are calculated with Qext = 300 and ω0/2π= 5 GHz.

by the LO phase φLO. In this way, we can investigate the variance in different quadrature

directions by changing φLO. From the theory of a flux-driven JPA presented in Ref. [104],

we obtain

P =
∣∣∣Jb + |Kb|ei(2φLO−π/2)

∣∣∣2 +
∣∣∣Jc + |Kc|ei(2φLO−π/2)

∣∣∣2 , (2.94)

where the first term describes the degenerate signal gain with

Jb = ε2ω2
0 + (κ2

ext − κ2
int)/4

ε2ω2
0 − κ2/4 and Kb = −iεκextω0

ε2ω2
0 − κ2/4 , (2.95)

and the second term describes the noise added by the loss channel with

Jc = κ/2√κextκint

ε2ω2
0 − κ2/4 and Kc = −iε

√
κextκintω0

ε2ω2
0 − κ2/4 . (2.96)

For a given phase φLO, P provides the gain for the corresponding quadrature as shown

in Fig. 2.12 (a). For φLO =π/4, we obtain the minimum gain Pmin which corresponds to

the squeezed quadrature. For the orthogonal antisqueezed quadrature at φLO = 3π/4, we

obtain the maximum gain Pmax. Since the internal quality factor Qint = 1 · 106 is high, we

observe Pmax ·Pmin' 1. This observation corresponds to noiseless degenerate amplification

discussed in the previous subsection, and therefore, the produced squeezed state is pure.

In Fig. 2.12 (b), we show how Qint influences the maximum and minimum quadrature

gains. In general, the antisqueezed quadrature is only slightly affected by internal losses

while the squeezed quadrature drastically depends on Qint. We note that, in contrast

to the degenerate signal gain in Eq. (2.89), it is important to consider the added noise

due to the loss channel if the JPA is treated as a squeezer. Without consideration of the

loss channel, we would obtain Pmax · Pmin < 1 for low enough Qint which would lead to a
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violation of the Heisenberg uncertainty, and thus, to an unphysical state generated by the

theory.

As shown in Appendix A, we can express the Hamiltonian of a pumped JPA in the

interaction picture and rotating-wave approximation in the form

Ĥint = i~
λ

2
(
â2e−iϕ − (â†)2eiϕ

)
, (2.97)

where ϕ is the pump phase and λ=ω0ε is the effective nonlinearity due to the frequency

modulation induced by the pump tone. As presented in Ref. [16], a direct connection of

the JPA interaction Hamiltonian Ĥint to the squeezing operator can be made. For ϕ= 0,

the Heisenberg equation of motion is

d

dt
â(t) = 1

i~
[â(t), Ĥint] = −λâ†(t) , (2.98)

which is solved by â(t) = â(0) cosh(λt)− â†(0) sinh(λt). This solution coincides with the

action of the squeeze operator on the annihilation operator, as given in Eq. (2.25).

Furthermore, the unitary evolution under the action of the Hamiltonian Ĥint is given by

Û(t) = exp
[
− i
~
Ĥintt

]
= exp

[
λ

2
(
â2e−iϕ − (â†)2eiϕ

)
t

]
. (2.99)

By introducing the dimensionless interaction time r=λt, we recreate the original squeezing

operator as defined in Eq. (2.22)

Û(t) = Ŝ(ξ) = exp
(1

2ξ
∗â2 − 1

2ξ(â
†)2
)
, (2.100)

with ξ= reiϕ.

In practice, JPAs always produce two-mode squeezed (TMS) states due to their naturally

finite bandwidth. Here, correlations exist between quadratures of frequency modes which

are symmetric around half the pump frequency [121, 130]. During the parametric process

in the JPA, photons in these upper and lower sideband modes are generated from a single

pump photon. Consequently, it is intuitively clear that these modes should be correlated.

In our experimental heterodyne detection scheme (see Sec. 3.1.2 for details), we apply an

analog and a digital down-conversion step to the JPA signal, as shown in Fig. 2.13. The

digital down-conversion step overlaps both correlated modes to the same frequency. As

a consequence, the physical TMS state is reconstructed as a SMS state in our quantum

state reconstruction.
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frequency

P
pumpJPAintermediate frequency

analog down-conversion

ω00 ωif 2ω0

digital down-conversion

Figure 2.13: Frequency conversion in a typical heterodyne detection setup where an analog down-

conversion step to an intermediate frequency ωif is followed by a digital down-conversion.

The bandwidth of the JPA is indicated by the red (lower sideband) and blue (upper sideband)

regions. In the digital down-conversion step, both sidebands are converted to the same

frequency.

2.3 Continuous-variable quantum communication

In this section, we discuss a fundamental quantum communication protocol known as

remote state preparation (RSP). We give a general introduction to continuous-variable RSP

and present a detailed theoretical description for our experimentally implemented RSP

protocol. Finally, we compare RSP to other known quantum communication protocols.

2.3.1 Continuous-variable remote state preparation

Remote state preparation is a quantum communication protocol where nonclassical

correlations are employed to realize a more efficient transfer of quantum information

when compared to the best known classical methods [16, 131]. In a scenario where a

quantum bit (qubit) should be sent to a receiving party and is classically known to

the sender, RSP can achieve this task with only one classical bit per sent qubit. This

RSP protocol was initially proposed and theoretically investigated by Pati [41], Lo [40]

and Bennett et al. [42]. In general, it is desirable to minimize the required classical

communication between parties that is needed to achieve the transfer of a certain amount

of information. As depicted in Fig. 2.14, this goal is achieved in RSP by using pre-shared

quantum entanglement. However, the distribution of entangled states to both parties

requires certain resources and might be experimentally challenging. Therefore, a protocol

in which one can choose between sending more classical communication or using more

entanglement is fundamentally important. RSP exhibits such a trade-off between classical

and quantum resources [42].

The RSP protocol was extended to the remote preparation of Gaussian continuous-

variable states by Paris et al. [43]. In particular, they considered the preparation of

squeezed states by employing a two-mode squeezed (TMS) state as an entangled resource

which is distributed to the two communicating parties, referred to as Alice and Bob. In
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order to understand the idea of RSP, we reformulate the Wigner function of a TMS state

from Eq. (2.29) into the form

W (r) = 4
π2 exp

{
−
q2

+ + p2
−

2σ2
+
−
q2
− + p2

+
2σ2
−

}
, (2.101)

where r = (q+, q−, p+, p−), q±= (q1 ± q2)/
√

2 and p±= (p1 ± p2)/
√

2. Also, the variances,

defining the two-mode squeezing level, are given by σ2
+ = e2r/4 and σ2

−= e−2r/4. We note

that the number of photons in the TMS state is given by N = 2 sinh r2. To remotely

prepare a squeezed state, Alice performs an ideal homodyne detection of the q-quadrature

on her part of the TMS state with a measurement outcome x. The resulting conditional

Wigner function on Bob’s side reads [43]

WB|x(q2, p2) = 2
π

exp
{
−(q2 − ax)2

2Σ2
1

− p2
2

2Σ2
2

}
, (2.102)

where the parameters are

ax =

√
N(N + 2)
1 +N

x , Σ2
1 = 1

4
1

1 +N
, and Σ2

2 = 1
4(1 +N) . (2.103)

Consequently, the state on Bob’s side is a displaced squeezed state with the displacement

amplitude ax depending on the measurement outcome of Alice. In order to deterministically

prepare a squeezed state on Bob’s side, Alice sends her measurement result x via the

classical communication channel to Bob, where he displaces his state by −ax. As a

consequence, the state at Bobs side is independent of the result of the homodyne detection

and reads

WB(q2, p2) = 2
π

exp
{
− q2

2
2Σ2

1
− p2

2
2Σ2

2

}
. (2.104)

Since Σ2
1 · Σ2

2 = 1/16, the remotely prepared state is a pure squeezed state with squeezing

BobAlice

measurement

classical communication

entanglement
source local operationtarget encoding 

i 〉Ψ|)i(f U

Figure 2.14: General scheme for remote state preparation. An entangled resource is shared between

Alice and Bob. Alice performs a projective measurement on her part of the entangled state

and encodes the known target state |Ψ〉 in a feedforward signal (classical communication)

according to the measurement result. Bob performs a unitary local operation on his part of

the entangled state using the feedforward signal.
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in the q-direction and a squeezed variance of Σ2
1 = 1/(4 cosh 2r). For large two-mode

squeezing, r� 1, we can approximate cosh 2r' e2r/2 and obtain for the squeezed variance

of the prepared state Σ2
1 = 2e−2r/4 = 2σ2

−. Consequently, the squeezed variance of the

prepared state is at least twice the initial squeezing in the TMS state.

The quantum advantage of RSP consists in a smaller amount of classical information

sent through the feedforward channel in order to prepare a desired state as compared to a

purely classical protocol [132, 133]. If we restrict ourselves to ideal RSP with squeezed

states, we can intuitively understand the quantum advantage by considering that one

remotely prepares pure squeezed states while sending only one real number to Bob. The

prepared states require two real numbers, defining the squeezing level and squeezing angle,

to be fully described. Consequently, in the described RSP protocol, one is able to reduce

the classical communication cost by one real number when compared to a scenario where

all the information about the prepared state is sent classically to Bob.

2.3.2 Remote state preparation with propagating microwaves

We now present the theory for remote state preparation of squeezed states using propa-

gating quantum microwaves. The discussed theory allows us to describe the experiments

presented in detail in chapter 5.

Full model

Figure 2.15 depicts a detailed scheme of RSP using JPAs and linear circuit elements. First,

an entangled resource has to be shared between Alice and Bob. For that, we generate

a symmetric TMS state by superimposing two single-mode squeezed (SMS) states at a

50:50 beam splitter. The SMS states are generated using two JPAs (JPA 1 and JPA 2)

which are modeled as squeezers with the same squeezing parameter, r1 = r2 = r, but with

different squeezing angles γ1 and γ2. The squeezing operator Ŝ12 for JPA 1 and JPA 2

acting on the annihilation operators âi of path 1 (Alice) and path 2 (Bob) describes the

1η

2η rpθ

, n2, γr

JPA 1

JPA 2

JPA 3

, , )fG(fnfθ+fγfG

, n1, γr

12Ŝ 3Ŝ ĈB̂ R̂1L̂ 2L̂

〉n|

〉n|

β

〉Ψ|

ε

ε

Bob

Alicev̂

v̂ v̂

v̂ fn

Figure 2.15: Scheme for RSP with propagating microwaves. The angles γ1, γ2 and γf are used in units

of radians for all equations. Symbols are explained in the main text.
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single-mode squeezing of each JPA and is given by [60]

Ŝ†12

(
â1

â2

)
Ŝ12 =

(
â1cosh r − â†1e−2iγ1sinh r
â2cosh r − â†2e−2iγ2sinh r

)
. (2.105)

The added noise of JPA 1 and JPA 2 is modeled by an effective thermal state |n, n〉 with

a noise photon number n1 =n2 =n incident to the JPAs such that the state after JPA 1

and JPA 2 is Ŝ12 |n, n〉.
We assume equal losses ε1 = ε2 = ε in both paths after JPA 1 and JPA 2 and include

the insertion loss of the beam splitter in ε. The loss is described with a beam splitter

model [131]

L̂†1

(
â1

â2

)
L̂1 =

(√
1− εâ1 +

√
εv̂1√

1− εâ2 +
√
εv̂2

)
, (2.106)

where v̂i is the operator describing the environment of path i. The environment can be

reasonably well approximated to be in the vacuum state due to the millikelvin temperature

of the lossy components in the experiment.

The input-output relations of the symmetric 50:50 beam splitter are given by [16]

B̂†
(
â1

â2

)
B̂ = 1√

2

(
â1 + â2

−â1 + â2

)
. (2.107)

The beam splitter output state B̂ L̂1 Ŝ12 |n, n〉 is a symmetric TMS state if the squeezing

angles of JPA 1 and JPA 2 are orthogonal to each other. This TMS state is distributed to

Alice and Bob with additional losses ηi in both paths

L̂†2

(
â1

â2

)
L̂2 =

(√
1− η1â1 + √η1v̂1√
1− η2â2 + √η2v̂2

)
. (2.108)

Alice uses another JPA (JPA 3) to perform strong phase-sensitive amplification with a

gain Gf on her part of the TMS state. The amplified quadrature is determined by the

amplification angle γf . This operation models the feedforward generation in the limit of

Gf� 1. In order to describe the realistic actions of JPA 3, we assume that classical noise

is added to the JPA input signal which is followed by ideal phase-sensitive amplification

Ŝ†3

(
â1

â2

)
Ŝ3 =

(â1 + ζ) cosh rf −
(
â†1 + ζ∗

)
e−2i(γf+γopt)sinh rf

â2

 , (2.109)

where the degenerate gain Gf is related to rf as Gf = e2rf , and γopt is the theoretically

optimal JPA 3 amplification angle for RSP. The classical noise is described by the complex

Gaussian random variable ζ with 〈ζ〉= 0, 〈ζζ∗〉=nf and 〈Re(ζ)2〉= 〈Im(ζ)2〉=nf/2, where

nf is the effective thermal noise photon number. In general, the JPA noise is gain-dependent
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which we take into account by a linear dependence on Gf . This implies nf =n′fGf , where

n′f is a proportionality constant determined from an experimental fit.

Finally, Alice sends the JPA 3 output signal to Bob where he uses it to displace his

part of the TMS state. The displacement on Bob’s side is implemented with a directional

coupler and is described as a highly asymmetric beam splitter [65]

Ĉ†
(
â1

â2

)
Ĉ =

( √
τ â1 +

√
1− τ â2

−
√

1− τ â1 +
√
τ â2

)
, (2.110)

where τ = 1− 10β/10 is the transmissivity and β is the coupling in decibel. In order to

accurately model an experimental setup, we need to take the electrical length of different

components into account. The total electrical lengths as well as different path lengths

after the beam splitter are compensated with a rotation R̂ by the angle θrp of the final

remotely prepared state on Bob’s side

R̂†
(
â1

â2

)
R̂ =

(
â1

â2e
−iθrp

)
. (2.111)

With the operator definitions in Eqs. (2.105)–(2.111), we can write the overall RSP

protocol as a sequence of operators

|Ψ〉 = R̂ Ĉ Ŝ3 L̂2 B̂ L̂1 Ŝ12 |n, n〉 , (2.112)

where n is the noise photon number of JPA 1 and JPA 2, and |Ψ〉 is the final bipartite

state containing the remotely prepared state as a subsystem. The moment matrices for

both paths of the final state are calculated as(
〈(b̂†1)nb̂m1 〉
〈(b̂†2)nb̂m2 〉

)
= 〈Ψ|

(
(â†1)nâm1
(â†2)nâm2

)
|Ψ〉 , (2.113)

where 〈(b̂†1)nb̂m1 〉 are the moments of the second directional coupler output signal and

〈(b̂†2)nb̂m2 〉 are the moments of the remotely prepared state. With the definition of the

quadratures q̂2 = (b̂2 + b̂†2)/2 and p̂2 = (b̂2 − b̂†2)/2i, the moments 〈(b̂†2)nb̂m2 〉 are used to

calculate the squeezing angle γrp, squeezed variance σ2
s and antisqueezed variance σ2

a of

the remotely prepared state as

γrp = −1
2Arg

(
−〈b̂2

2〉
)
, (2.114)

σ2
s = 1

4
(
〈b̂2

2〉e2iγrp + 〈(b̂†2)2〉e−2iγrp + 2〈b̂†2b̂2〉+ 1
)
, (2.115)

σ2
a = 1

4
(
−〈b̂2

2〉e2iγrp − 〈(b̂†2)2〉e−2iγrp + 2〈b̂†2b̂2〉+ 1
)
, (2.116)
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Figure 2.16: (a,c,e) Squeezing level Srp and (b,d,f) purity µ= 1/(4√σsσa) of remotely prepared states

at the optimal point as a function of initial squeezing level S12 of JPA 1 and JPA 2. Panels

(a,b), (c,d) and (e,f) are plotted for different JPA 1 and JPA 2 noise photon numbers n,

JPA 3 noise photon numbers nf and total losses χ, respectively. Except for the corresponding

panels, we use n=nf =χ= 0. The dark blue line in all panels corresponds to ideal RSP

with no imperfections.

where Arg(·) is the argument of a complex number and the first order moments are taken

to be zero since we only consider undisplaced states. From the moments 〈(b̂†2)nb̂m2 〉, one

can determine the full covariance matrix of the prepared state. Full expressions for the

covariance matrix of the prepared states are given in Appendix B.

We can now look into the effect of possible experimental imperfections on RSP. In

particular we consider non-zero JPA 1 and JPA 2 noise photon numbers n, JPA 3 noise

photon numbers nf and total losses χ on RSP. The total loss is defined as χ1 =χ2 =χ,

where χ1 = 1− (1− ε)(1− η1) = ε+ η1− εη1 and χ2 = 1− (1− ε)(1− η2) = ε+ η2− εη2.

Here, we only consider the optimal point of RSP which is defined by the highest purity

of the remotely prepared state when varying the gain and amplification angle of JPA 3

with otherwise fixed resources. For the optimal point, the only relevant loss is the total

loss χ, i.e., the individual losses ε, η1, and η2 do not influence the prepared state as

long as the total loss is χ. In Fig. 2.16, we show the squeezing level and purity of the

optimally remotely prepared state as a function of the initial squeezing level S12 of JPA 1
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and JPA 2 for various experimental imperfections. The coupling of the directional coupler

is β = −15 dB. The JPAs creating the TMS state have orthogonal squeezing angles.

As shown in Fig. 2.16 (a,b), the noise photon number n of JPA 1 and JPA 2 reduces

both the squeezing level as well as the purity of the prepared state. Interestingly, the

purity does not depend on S12. This is in contrast to the effect of added noise nf by

JPA 3 or total losses χ in the setup, where the purity decreases with increasing S12, as

depicted in Fig. 2.16 (d,f). Figure 2.16 (c,e) illustrates that nf and χ have a strong

effect on the optimally achievable squeezing level Srp. Also, both nf and χ have a similar

detrimental effect on the remotely prepared state. We emphasize, that for τ → 1 and

for ideal parameter settings, we reproduce the results of Paris et al. [43] where a state

with squeezed variance Σ1 = 1/(4 cosh 2r) is remotely prepared. Here, r characterizes the

squeezing strength of the entangled TMS state.

Simplified model

Since the full expressions for the parameters of the remotely prepared state are very lengthy,

we now derive a simplified model for which we can find compact analytic expressions. For

that, we choose γ1 = γf = 0°, γ2 = γopt = 90°, equal losses after the beam splitter (η1 = η2),

neglect the effect of the electrical path lengths (θrp = 0), and use the total loss χ as defined

above. The protocol works optimally for a fixed entangled resource if a state with the

highest purity is remotely prepared. In the limit of high JPA 1 and JPA 2 squeezing

level, r� 1, we reach this optimal point for a JPA 3 gain Gf = τ/(1− τ) and, by using

Eqs. (2.114)–(2.116), obtain the following result for the optimally remotely prepared state

γ̃rp = γ1 , (2.117)

σ̃2
s = 1

4
[
2(1 + 2n)e−2r(1− χ)τ + 2(χ+ nf)τ

]
, (2.118)

σ̃2
a = (1 + 2n)(1− χ) [e2r + e−2r(1− 2τ)2]

8τ + 2nf(1− τ)2 + (1− 2τ + 2τ 2)χ
4τ . (2.119)

In general, the optimal JPA 3 gain depends on r in a nontrivial manner and converges

to Gf = τ/(1− τ) for r→∞. However, the latter expression offers a good approximation

to the optimal JPA 3 gain even for r≈ 1, since the deviation of γ̃rp, σ̃2
s , and σ̃2

a between

the optimal JPA 3 gain and Gf = τ/(1− τ) is below 1% for the parameters used in our

experiments (see Tab. 5.1).

We observe from Eq. (2.118) that the squeezing of the prepared state is at least two

times smaller than the initially used squeezing of JPA 1 and JPA 2 which coincides with

the discussion in the previous subsection. Also, we find that a squeezed state can only be

remotely prepared if Alice and Bob share an entangled state, corresponding to a non-zero

two-mode squeezing level, r > 0.

The results presented in this subsection have been published by us in Ref. [47]. Parts

of the text and figures are adapted from the supplementary material of this reference.
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2.3.3 Related quantum communication protocols

Until now, we only discussed remote state preparation as a fundamental quantum com-

munication protocol. However, there exist various other protocols which have similar

requirements as RSP. In this subsection, we introduce other relevant communication

protocols and discuss their connection to RSP.

Quantum teleportation

One of the most well-known quantum communication protocols is quantum teleporta-

tion proposed by Bennett et al. [44] for discrete-variable systems. There exist several

experimental realizations for teleportation with, e.g., photon polarization states [134, 135],

trapped ions [136, 137], superconducting circuits [4], solid-state qubits [138] and qubit

states over free-space [139, 140]. Quantum teleportation has also been extended to

continuous-variables [18, 141] and experimentally realized for coherent states [17].

The aim of quantum teleportation is to communicate an unknown quantum state

from one party to another. Due to the no-cloning theorem [142], obtaining full classical

knowledge of an unknown quantum state is, in general, not possible and, therefore,

sending purely classical information about the quantum state is not always an option.

Also, directly sending the quantum state, including the physical quantum-information

carrier, might not be feasible due to various technical constraints. Quantum teleportation

is a quantum communication protocol where entanglement and a limited amount of

classical communication can be used to communicate an unknown quantum state without

directly sending it. For continuous variables, the information cost is two real numbers and

one entangled EPR pair [131]. In the case of a squeezed state, the required tools for RSP

and quantum teleportation are similar. For example, RSP can be implemented using one

real number and one entangled EPR pair. However, in contrast to quantum teleportation,

RSP transfers a known quantum state [43].

Quantum state transfer

Another possibility to deterministically transfer a quantum state from one party to another

is quantum state transfer [143]. Here, an existing quantum state, stored in a stationary

system at the sending node, is released to a quantum channel in the form of propagating

photons. At the receiving node, these photons are captured in order to obtain the original

quantum state [12, 13]. For a successful protocol, no entanglement is required since the

quantum state is sent directly. This is in contrast to RSP or quantum teleportation where

no direct state transfer takes place. Furthermore, we note that quantum state transfer

can be used to generate, e.g., entangled qubit states [12, 13].
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One-time pad

Cryptographic protocols ensure a safe transfer of information between parties. A prime

example of a classical cryptographic protocol is the one-time pad [144] which allows for

perfect information-theoretic security. Here, we consider a continuous version of the

one-time pad where Alice possesses a message M consisting of a string of real numbers

which she wants to securely communicate to Bob. To this end, she adds uniformly

distributed random numbers acting as the key K to the message and obtains the cipher

text C =M + K. The cipher is then sent to Bob via a classical (insecure) channel. In

order to decrypt the cipher, Bob needs to subtract the key from the cipher M =C −K,

and obtains the original message M . If each key is only used once and only Alice and

Bob have access to the key, the protocol is secure because it is impossible to determine

the actual message M from just the cipher text C. Perfect security in the protocol can

be proven by using Shannon entropies. If knowledge of the cipher C does not reveal any

information on the message M , the protocol is secure. This condition can be expressed

using the conditional entropy Hsh(M |C) and reads [145]

Hsh(M) = Hsh(M |C) . (2.120)

Kurucz et al. showed that continuous-variable RSP can be connected to the one-

time pad [132, 146]. Here, a maximally entangled EPR state with a Wigner function

W (p1, p2) ∝ δ(p1 + p2) is used as a resource which provides the effective key to both

parties. Consequently, the p-quadratures of both parties are perfectly correlated but

locally uniformly distributed, i.e., locally the variances are infinite Var p1 = Var p2 =∞. If

Alice measured the q-quadrature of her EPR pair and obtains the measurement results K,

she knows with certainty that a measurement of Bob’s EPR pair would yield the result

−K. Afterwards, Alice prepares a cipher text C =M +K and sends it classically to Bob

where he performs an appropriate displacement operation on C to obtain the message

M [146]. In this protocol, the key is provided to both parties by the entangled resource.

In Sec. 5.3, we present how RSP can be related to an extension of the one-time pad to

the quantum regime where we consider the prepared quantum states as the message.

We note that, quantum teleportation is also secure against an eavesdropper in the

classical feedforward [16]. In both RSP and quantum teleportation, the security originates

from the use of the entangled resource which is essential for a successful protocol. In

contrast, direct state transfer protocols [12, 13, 143] do not rely on entanglement but

directly transmit quantum states between parties. Therefore, an eavesdropper in the

communication channel can intercept the sent quantum state which makes direct state

transfer protocols inherently insecure.
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Quantum key distribution

In contrast to RSP, quantum teleportation, or quantum state transfer, where the goal

is to send a quantum state, the aim of quantum key distribution (QKD) is to generate

private classical keys between two parties over a public channel by utilizing quantum

mechanical effects [72].

For qubits, a prominent example of a QKD protocol is BB84 named after Bennett

and Brassard [147, 148]. Here, Alice encodes classical bits in qubit states with random

non-orthogonal bases and sends them openly to Bob. Then, he measures the received

states in a randomly chosen basis. After publicly comparing the chosen bases of both

parties and performing information reconciliation and privacy amplification [72], a secret

key can be generated between Alice and Bob. The generated key can later be used in,

e.g., a one-time pad protocol to realize secure communication of a message [149]. The

security of such a prepared key can be theoretically proven [150].

An alternative quantum key distribution protocol is E91 which relies on pre-shared

entanglement and was first described by Ekert in 1991 [151]. The protocol relies on the

fact that maximally entangled qubit pairs are perfectly correlated. A secret key can

be obtained similar to the BB84 protocol by measuring the entangled pair in random

bases on each side. After comparing the measurement results and applying a suitable

post-selection, a secret classical key between Alice and Bob can be obtained. Since the

E91 protocol relies on shared entanglement, a comparison to RSP can be made. Both

protocols use the fact that the measurement of one part of an entangled state reveals

information on the other part. In RSP this information is used to deterministically prepare

a desired quantum state at the other party by sending classical information depending on

the obtained measurement result. Importantly, only one part of the entangled state is

measured in RSP. In the E91 protocol, both parts of the entangled state are measured

which ultimately provides a classical secret key to both parties. We note that QKD

protocols which do not explicitly require entanglement, such as BB84, can be equivalently

viewed as entanglement-based protocols where the “virtual” entanglement plays a role in

investigating security criteria for the generation of a secure key [152].

In BB84 and E91, the presence of an eavesdropper Eve can be detected by the commu-

nicating parties since Eve needs to perform measurements on the sent quantum states

in order to gain any information. However, a measurement will inevitably disturb the

quantum state [72]. This fact is closely connected to the no-cloning theorem which forbids

to make exact copies of an arbitrary quantum state.

2.3.4 Quantum information processing with continuous and discrete

variables

In this work, we focus on continuous-variable (CV) protocols where quantum information is

encoded into the quadratures of a propagating electromagnetic field. Since the quadrature
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operators possess continuous eigenstates, such systems are commonly referred to as

CV systems and correspond to infinite-dimensional Hilbert spaces. In contrast, with

discrete-variables (DV), one typically utilizes the discrete energy levels of, e.g., artificial

atoms to perform quantum information processing tasks. Here, the corresponding Hilbert

space possesses a finite dimension. In the following, we discuss differences between both

approaches.

Many CV protocols rely on Gaussian states. Their generation and manipulation can

be routinely realized with a standard experimental toolbox. For example, squeezed

states are easily generated by parametric processes which require relatively low levels

of nonlinearity in the system. For DVs, one typically utilizes highly nonlinear systems

as central elements, which, in the simplest case, can be described as quantum two-level

systems (qubits). Experimentally, it is much easier to realize systems with lower levels

of nonlinearity which makes Gaussian CVs advantageous. However, the sets of logical

operations required for universal CV and DV computing are also significantly different.

Unitary operations and gates on the qubits are realized by applying drive pulses which

lead to a controllable change of a qubit state. In general, the precise control of qubit states

requires a sophisticated experimental setup which is a well-studied area nowadays [123].

The situation with CV logical gates is more involved. Some operations, such as beam-

splitting, which allows for the generation of entangled states [15, 16], or displacement [64],

are linear and straightforward to implement. Unfortunately, other operations, such as a

non-Gaussian cubic phase gate [153] or a sum gate [154], are not. The implementation of

the latter operations is still an experimental challenge. Luckily, some CV protocols do not

require these complicated non-Gaussian operations at all and can be implemented by only

using beam splitters and displacement operators.

The effect of losses on Gaussian CV states has various aspects. On the one hand, they

do not possess a fixed number of photons so that small losses do not influence the states

heavily. Consequently, Gaussian CVs can inherently tolerate limited photon losses. On the

other hand, it is difficult to detect or correct for these photon losses because they change

only the average observables of the states. In contrast, for certain DV protocols, where

photon numbers might be strictly fixed, one can use various post-selection or conditional

schemes to account, or even correct, for the photon loss. These actions will generally

reduce the rate at which the protocol is successfully executed but, in turn, increase the

fidelity.

Finally, there exist various types of error correction codes for both systems. For CVs, the

faithful distribution of entangled states is central for many protocols. However, in practice,

sharing of such entangled states between parties is imperfect and will inevitably add a finite

amount of noise to the entangled states, which leads to a decrease of the entanglement

strength. Such errors can be corrected in entanglement distillation protocols [155]. Also,

in quantum computing with CV cluster states, errors are induced due to finite squeezing

in the cluster states and proposals for correction of such errors exist [156]. In general, CV
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error correction schemes are impossible to realize with only Gaussian operations [157]

and, therefore, non-Gaussian operations are required [158, 159]. For quantum computing

with DVs, a well-known error correction protocol is the surface code. Here, quantum

information is encoded into logical qubits. The logical qubits consist of multiple physical

qubits which are coupled in a specific manner so that qubit errors can be detected and

corrected [160]. However, for the surface code a large number of physical qubits is required

to implement a fault-tolerable logical qubit which makes the practical realization difficult.

We note that also hybrid schemes exist, which combine aspects from both CVs and DVs.

One prominent example is the encoding of qubits in CV Gottesman-Kitaev-Preskill (GKP)

states in an oscillator [161]. The GKP states are robust against fluctuations in the

quadratures and occurring errors can be corrected. However, the generation of GKP states

is very demanding and requires non-Gaussian operations [162].

Both approaches to quantum information processing, either with CVs or with DVs,

have their own advantages. Which system is preferable depends strongly on the task

which should be achieved. Finally, we note that various hybrid protocols, which promise

to overcome the individual limitations in both systems, have already been realized [14].





Chapter 3

Experimental techniques

The experimental methods and techniques presented in this chapter are the foundation for

advanced experiments with propagating quantum microwaves. In general, sophisticated

cryogenic and room-temperature setups combined with signal reconstruction techniques

are required. In Sec. 3.1, we explain how we build our measurement setup, implement

the detection of quantum microwaves, and discuss experimental challenges. In our

experiments, we use Josephson parametric amplifiers (JPAs) for the generation and

manipulation of quantum microwaves. The characterization of JPAs in terms of their flux

tunability, nondegenerate and degenerate gains, as well as their capability to generate

propagating squeezed states is discussed in Sec. 3.2. Finally, the detailed cryogenic and

room temperature setups for particular measurements are introduced in Sec. 3.3.

3.1 Detection of quantum microwaves

In this section, we describe how to detect and reconstruct propagating quantum microwave

signals in the frequency range of a few gigahertz. This task is associated with a number of

experimental challenges. Firstly, a temperature of 50 mK corresponds to thermal radiation

with a mean photon number of one at a frequency of 1 GHz. Therefore, we require

temperatures around 10-20 mK to suppress thermal effects in the electromagnetic modes

for the relevant frequency range of 5-6 GHz and preserve quantum coherence. Quantum

information processing in general, and quantum communication in particular, require

vanishingly small thermal population levels because the latter are typically very detrimental

to these protocols. A second major challenge arises due to omnipresent microwave losses

which lead to the decay of quantum states. Therefore, a sophisticated cryogenic setup

capable of reaching millikelvin temperatures and minimized losses are imperative to realize

complex protocols involving propagating quantum microwaves. Furthermore, the reliable

reconstruction of quantum states is a central task in our experiments. To this end, we

require a precise output line calibration which also allows us to reconstruct quantum

states at different positions in the cryogenic setup.

51
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3.1.1 Basic cryogenic setup for experiments with propagating

microwaves

Experiments with propagating quantum microwaves are challenging due to the cryogenic

temperatures. In our experiments, these temperatures are provided by means of a dry

dilution refrigerator (cryostat) which imposes some constraints on the experimental

setup. In particular, the lowest temperature stage provides a limited amount of usable

experimental volume and is physically inaccessible during operation of the cryostat.

Therefore, the whole cryogenic setup needs to be carefully designed, prepared, and tested

before each cool-down. In the following, we describe and discuss the central parts of the

cryogenic setup.

Dilution refrigerator

The experiments presented within this work are performed with a home-made dry dilution

refrigerator which was designed and constructed by A. Marx, K. Uhlig, S. Höss, and

T. Brenninger at the Walther-Meißner-Institute. Details on the cryostat can be found in

Refs. [163, 164]. As shown in Fig. 3.1 (a), the cryostat has several temperature stages,

where the first two stages are cooled by a Cryomech PT410-RM pulse-tube cryocooler to

50 K and 3 K, respectively. The third temperature stage has a temperature of 1.2 K which

is cooled by a separate 4He-1K-loop. The addition of the latter temperature stage allows

for extra cooling power to the dilution circuit since it acts as a heat sink for output cables

(lines) and pre-cooles the 3He/4He mixture circulating in the dilution circuit. The latter

circuit composes the main part of any dilution cryostat and is based on the spontaneous

phase separation of the 3He/4He mixture at a temperature of a few hundred millikelvin.

This process happens in the so-called mixing chamber, which is the coldest part of the

cryostat, and is used to cool down the cryostat to temperatures of a few millikelvin.

Details on the operation principle of 3He/4He dilution cryostats can be found in Ref. [165].

Input and output lines

In order to perform measurements, the cryostat is equipped with multiple microwave

input and output lines as shown in Fig. 3.1 (b,c). In our cryostat, eight semi-rigid

coaxial cables are used as input lines. The inner and outer conductors of these cables

consist of stainless steel with polytetrafluoroethylene (PTFE) as a dielectric layer (SC-

219/50-SS-SS, Coax Co., Ltd.) between them. The stainless steel cables provide a good

thermal isolation between the temperature stages of the cryostat but have significant

microwave loss of 6 dB/m at a frequency of 6 GHz and temperature of 4 K. The inner

and outer conductor of the input cables are thermalized by attenuators at four different

temperature stages of the cryostat. In this way, the thermal radiation coming from

room temperature is attenuated, such that, ideally, the number of thermal photons nth
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Figure 3.1: (a) Photograph of 3He/4He dilution refrigerator with respective temperature stages. (b)

Photograph of microwave input lines with attenuators. (c) Photograph of thermal anchor

for dc-cable looms and thermalization of microwave output lines. (d) Photograph of HEMT

amplifiers at the 1k pot stage.

corresponds to the ambient temperature of the mixing chamber (few millikelvin), that is,

nth� 1. For the microwave output lines, we use two types of semi-rigid coaxial cables.

Since it is extremely important to minimize losses before the first amplification stage, we

use superconducting cables (SC-219/50-NbTi-NbTi, Coax Co., Ltd.) from the sample

stage to the first amplification stage which is located either at 1 K or 3 K cryostat stage.

The superconducting cables consist of NbTi as inner and outer conductors as well as
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PTFE as a dielectric layer and have microwave losses smaller than 0.3 dB/m below a

temperature of 4 K. After the first amplification stage, we can tolerate minor losses, and

therefore, use normal-conducting coaxial cables (SC-219/50-SSS-SS, Coax Co., Ltd.) with

a silver-plated stainless steel inner conductor and stainless steel outer conductor as well

as PTFE as a dielectric layer. The microwave losses for these output cables are 1.5 dB/m
at a frequency of 6 GHz and temperature of 4 K. The output cables are thermalized to

different temperature stages by pressing annealed silver wires or copper braids to the

outer conductor of the cable. In each output line, we use two circulators (CTH1184-KS18,

Quinstar and RADC-4-8-Cryo Raditek) mounted to the mixing chamber plate to isolate

the cryogenic setup from noise and reflections of the following amplifiers. More details

on the input and output lines can be found in Ref. [166]. We use cryogenic high electron

mobility transistor (HEMT) amplifiers (LNF-LNC4 8A, Low Noise Factory) at the first

amplification stages as shown in Fig. 3.1 (d). The HEMT amplifiers have a specified

bandwidth from 4 GHz to 8 GHz with a noise temperature of approximately 2 K and signal

gain G= 38 dB. Since they have a high gain G� 1, the HEMT amplifiers determine the

noise temperature of the whole detection chain. In order to ensure a long-term phase and

gain stability of the setup, the temperature of the HEMT power supply is stabilized by

an external proportional-integral-derivative (PID) controller at 26± 0.1 ◦C.

Thermometry and dc-wiring

The cryostat is equipped with multiple twisted pair wires which are employed for ther-

mometry and experimental purposes at low frequency. We use beryllium-copper looms

between the 3 K cryostat stage and the room temperature stage as well as superconducting

NbTi wires below the 3 K stage. The wires are thermalized at different temperature stages

of the cryostat by gently pressing them between two copper plates together with Kapton

foil. We are able to measure up to 16 temperature lines with an alternating current

resistance bridge (Model 370, LakeShore) in the four-wire measurement scheme. Two of

the temperature lines can be used for temperature stabilization of different components

in the cryogenic setup with two additional resistance bridges (AVS-47B, Picowatt) and

two temperature controllers (TS-530A, Picowatt). Additional dc-wiring for experimental

purposes is physically separated from the temperature lines in order to minimize crosstalk.

The cryostat is equipped with additional twelve twisted-pairs which are used for applying

currents to coils or heaters, and for the operation of cryogenic switches. Most of the

discussed twisted pairs are filtered by low-pass filters at room temperature in order to get

rid of high-frequency noise.

3.1.2 Data acquisition and processing

The heterodyne detection setup and data processing discussed in this subsection are

similar to the experiments presented in Refs. [167, 168] and supplementary materials
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Figure 3.2: Photograph of the dual-path receiver. The top and bottom IF chains are not used.

of Ref. [39]. For tomographic measurements of quantum microwaves, we employ the

dual-path receiver shown in Fig. 3.2. After amplification, the microwave signals from the

cryostat are roughly filtered around the relevant frequency frf and down-converted to an

intermediate frequency (IF) of fif = 11 MHz. For that, we apply a strong local oscillator

(LO) signal at a frequency frf + fif to an image-rejection mixer (IRM4080B, Polyphase).

The image-rejection mixer is crucial for a correct reconstruction of squeezed states since,

with a normal mixer, the blue sideband at frf + 2fif would be also down-converted to fif

(see Fig. 3.3). However, the squeezed state is only present in a comparatively narrow

bandwidth around frf . Consequently, the blue sideband would distort the squeezed signal

and limit the maximal observable squeezing to 3 dB below the vacuum limit. Details can

be found in Ref. [168]. After the down-conversion, the signal amplitude can be adjusted

by step attenuators (ESA2-1-10/8-SFSF, EPX microwave Inc.) which are used to balance

the two paths of the receiver and avoid compression effects of the following amplification.

Furthermore, the step attenuators are used to fine tune the power of the amplified signals

in order avoid clipping effects during the digitization of the signal at analog-to-digital

converters (ADC). Before further amplification by IF-amplifiers (AU-1447-R, Miteq), the

signal is band-pass filtered (Mini-Circuits, SBP-10.7+) with a passband of 9.5-11.5 MHz

in order to avoid compression effects of the IF-amplifiers. Finally, the signal is low-pass

filtered (Mini-Circuits, SLP-21.4+) with a bandwidth of 0-22 MHz and sent to the ADCs

of the digitizer card. The relative phase difference between the two paths is adjusted

to 180° with a manual phase shifter in one of the LO paths. The scheme of the full

experimental setups are shown later in Figs. 3.22 and 3.24.

The dual-path receiver is the analog part of a heterodyne detection setup. In comparison

to a homodyne detection of microwave signals, where a signal is down-converted to zero

frequency in a single step, we use two down-conversion steps, i.e., a heterodyne detection
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Figure 3.3: Frequency conversion scheme during analog down-conversion with image-rejection mixers.

The red sideband at a frequency frf contains the squeezed signal while the blue sideband at

a frequency frf + 2fif contains an unwanted weak thermal state. The gray area marks the

frequency sideband which is filtered out (rejected) by the image-rejection mixer.

scheme. Here, the signal is first converted to an intermediate frequency of a few megahertz

such that the 1/f -noise before digitization of the signal is reduced. Subsequently, the

signal is converted to zero frequency in a digital down-conversion (DDC) step which

happens already during the data post-processing. We use an intermediate frequency of

11 MHz in order to avoid spurious signals from the 10 MHz reference signals which are

used to synchronize all microwave devices.

A scheme of the employed digital signal processing is depicted in Fig. 3.4 (a). For

digitization of the signals, we use an Acqiris DC440 card (Agilent). The Acqiris card has

two ADCs with a 12-bit resolution and adjustable input voltage ranges between ±125 mV
and ±5 V. We adjust the input voltage range such that we obtain a sufficiently high

resolution but avoid clipping of the signal (events when the signal amplitude exceeds the

preset voltage range). Throughout this work, we always use a sampling rate of 400 MHz.

After a trigger signal is received, a timetrace of length M is recorded for each channel and

saved in an internal memory of the Acqiris card. The process is repeated for N segments

until the internal memory of 8 · 106 samples per channel is reached. Subsequently, the

signal is transferred to a computer via a PXI-8570 module (ADLINK Technology Inc.) on

the back-end Acqiris card. At the computer, the data is received by a PXI-to-PCI card

(ADLINK Technology Inc.) and further processed by a custom C++ code. Here, a DDC

step is applied to the data where, at the same time, the signal is IQ demodulated. For

that, sine and cosine timetraces at the intermediate frequency fif are digitally generated

and multiplied by the IF signal A1,2(t). This step is followed by numerical integration

such that the two quadratures I and Q are obtained via

I = 2fif

∫ t+1/fif

t
cos(2πfifτ)A(τ)dτ , (3.1)

Q = 2fif

∫ t+1/fif

t
sin(2πfifτ)A(τ)dτ . (3.2)
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Figure 3.4: (a) Scheme of data acquisition and processing with the Acqiris digitizer card. Each segment

is initiated by a separate external trigger pulse. Processing of data is performed on a PC.

(b,c) Measured filter characteristics of two FIR filters with full bandwidths Ω1 = 430 kHz
and Ω2 = 820 kHz as a function of the detuning from the center frequency at 5.323 GHz,

respectively. The asymmetry in the frequency dependence is caused by artifacts from the

calibration.

Subsequently, the quadratures are filtered with a digital finite-impulse response (FIR)

filter. In our experiments, we use two FIR filters with different bandwidths, as shown in

Fig. 3.4 (b,c). Finally, after FIR filtering, all correlation quadrature moments 〈In1 Im2 Qk
1Q

l
2〉

with n+m+ k+ l≤ 4 for n,m, k, l ∈ N are calculated and averaged over the N segments.

The whole process is repeated for L cycles and the moments are saved to the PC for later

analysis and reconstruction of quantum states. We note that the temporal information

within each time trace is preserved during the data processing. This fact allows us to

utilize a pulsed measurement scheme where different parts of the time trace correspond

to different quantum states in the cryostat. The ability to pulse is crucial for the later

reference-state reconstruction (see Sec. 3.1.3) and stabilization of the squeezing angles

(see Sec. 3.3.3).
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3.1.3 Quantum state reconstruction

The reconstruction of quantum signals in the microwave regime is a challenging task

since the weak quantum signals are strongly diluted by thermal excitations at room

temperature and, consequently, lose most of their quantum-mechanical properties. One

possibility for the detection of quantum microwaves is to utilize single-photon detectors

at cryogenic temperatures. Even though such detectors have been already experimentally

realized [23, 24], they suffer from various drawbacks which render them difficult to utilize

for a routine detection of quantum microwaves. In an alternative approach, one can

employ linear amplifiers to amplify weak quantum signals and detect them at room

temperature. However, phase-insensitive amplifiers add at least half a photon of noise

to the signal [127]. In realistic scenarios, when the best available commercial HEMT

amplifiers are used, the added noise is around 10 noise photons for frequencies in the range

of 4-8 GHz. In order to reconstruct quantum states with this significant noise contribution,

advanced signal recovery techniques need to be applied. Throughout this work, we use the

so-called reference-state reconstruction and dual-path state reconstruction schemes which

are introduced in the following. In both schemes, the quadrature moments 〈In1 Im2 Qk
1Q

l
2〉

are related to the moments of the complex envelopes Ŝ1,2 = (Î1,2 + iQ̂1,2)/
√
κ where Î1,2

and Q̂1,2 correspond to the measured quadratures and κ is the photon number conversion

factor relating the measured voltages of the quadratures at room temperature to the

number of photons of the quantum signals at the mixing chamber stage (see Sec. 3.1.4).

The aim of both reconstruction schemes is to retrieve the signal moments of propagating

quantum signals before the action of the amplification chain.

In the reference-state reconstruction, a well-known signal is used as a reference state

which allows one to calibrate out the actions of the amplification chain [25, 26, 121]. In our

experiments, the reference state is a weak thermal state with, e.g., 0.01 photons at 5 GHz
and 50 mK. Due to the low thermal population, such states are also well approximated by

a vacuum state. The complex envelope can be written in the form Ŝ1,2 = (â1,2 + V̂ †1,2) where

V̂1,2 is the added noise by the respective detection chain. Here, â1,2 denotes the annihilation

operator of the propagating quantum signal in both path 1 and 2, respectively. For the

reference state, the complex envelope is given by Ŝref = (t̂1,2 + V̂ †1,2) where t̂1,2 describes a

weak thermal state in both paths. Consequently, the signal moments 〈(â†1)n(â†2)mâk1âl2〉 can

be calculated from the moments of both envelope functions, which, in turn, are related to

the measured quadrature moments 〈In1 Im2 Qk
1Q

l
2〉.

In the dual-path reconstruction, the quantum signal â is sent to a 50:50 beam splitter

at cryogenic temperatures. We use a 180°-hybrid ring (CPL-5850-100B, Miteq) as such

a microwave beam splitter. The second input of the beam splitter needs to be a known

state v̂, i.e. a vacuum or weak thermal state. The outputs of the beam splitter are

then amplified and detected, which masks the quantum signal with noise. The complex

envelope function now reads Ŝ1,2 =
(
±â+ v̂ + V̂ †1,2

)
/2. Since the first order moment of
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the noise vanishes, 〈V̂1,2〉 = 0, and the added noise between the chains is uncorrelated, the

signal moments 〈(â†)nâk〉 can be calculated from cross-moments of the envelope functions

of both output paths. For more details, we refer the reader to Refs. [167, 169, 170].

In both methods, we calculate the signal moments up to the fourth order which requires

measured quadrature moments up to the fourth order. For Gaussian states, only the first

and second order moment are required for a full state reconstruction. However, the higher

order moments are useful for verifying that our experimentally measured states are indeed

Gaussian, as discussed in Sec. 3.2.6.

3.1.4 Output line calibration

As discussed in the previous subsection, both reconstruction methods of quantum mi-

crowaves require a photon number conversion factor κ (PNCF). The PNCF relates the

measured quadrature voltages to the signal moments which are expressed in terms of

photon numbers. Furthermore, the gain of the amplification chain is required to determine

the correct amplitude of quantum signals in the cryostat. A thorough determination of

the PNCF and gain is essential for our experiments since only a proper calibration allows

us to obtain reproducible results.

Balancing of amplification chains

Before the output line calibration, we balance both channels in amplitude. For that, we

record a histogram of the raw ADC readings from the Acqiris card for both amplification

chains while no signal or pump tones are applied to the cryostat. In this way, we can

correct for possibly unbalanced broadband powers of the Gaussian noise by adjusting the

step attenuators in the dual-path receiver. Here, we also verify that the input voltage

to the ADCs is well below the chosen maximum input voltage range. Subsequently, we

apply a coherent signal through the cryostat and record an averaged timetrace of the

signal. From the recorded sinusoidal oscillation, we extract a narrowband balancing factor

and the phase between the channels. The amplitude of one channel is multiplied by

this balancing factor during the digital moment calculation. The balancing of channels

before every PNCF measurement allows us to verify if the experimental setup is functional

and consistent with previous measurements. Furthermore, balanced amplitudes in both

channels avoid rounding errors during the calculation of cross-moments in the digital signal

processing. Finally, the relative phase between both paths is adjusted to 180° by a manual

phase shifter in one local oscillator signal path. This step is required for the dual-path

reconstruction since exactly this phase difference is required for the reconstructions.
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Photon number conversion factor

In order to calibrate the amplification chains, we require a calibrated photon source inside

the cryostat which emits a known number of photons. For that purpose, we use a 30 dB
attenuator which acts as black body radiator emitting thermal radiation into the coaxial

cables [171]. As shown in Fig. 3.5, the attenuator is placed in the input line of one of the

JPAs. The emitted power is determined by the temperature of the attenuator which can

be varied in a range Tatt = 40− 700 mK using an external PID controlled loop. For that,

a heater and temperature sensor are placed on an oxygen-free high thermal conductivity

(OFHC) copper holder which is fixed to the 30 dB attenuator. Since we want to change

the temperature of the attenuator without heating the rest of the mixing chamber stage,

the heatable attenuator is only weakly coupled to the cryostat. This is achieved by

using a stainless steel input cable and a NbTi/NbTi coaxial cable after the heatable

attenuator. The superconducting cable is crucial since the emitted thermal radiation

from the attenuator should be transmitted with as little losses as possible to increase

the precision of the output line calibration. Since the thermal conductivity of both used

coaxial cables is low and can be mostly neglected, we use an additional thin silver ribbon

to weakly couple the heatable attenuator to the mixing chamber plate. The additional

thermal coupling ensures that the black body radiator reaches a minimal temperature of

around 40 mK within a reasonable time after heating it. At the same time, the thermal

coupling needs to be small enough such that the temperature of the mixing chamber stage

is only negligibly affected when sweeping the temperature of the heatable attenuator.

The total detected power P1,2 for each amplification chain at the digitizer card is given

cryogenic

to JPAinput

NbTi/NbTi cableNbTi/NbTi cableSS/SS cableSS/SS cable

heaterheater silver ribbonsilver ribbonsuperconducting
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Figure 3.5: (a) Scheme for output line calibration by using a heatable attenuator as black body radiator.

The thermal signal is split by a beam splitter (hybrid ring) at cryogenic temperatures and

amplified before it is detected with a heterodyne detection setup. (b) Photograph of heatable

attenuator setup. All components are fixed to a gold-plated OFHC copper holder. SS/SS

denotes a coaxial cable with stainless steel as inner and outer conductors. NbTi is used as

inner and outer conductors for NbTi/NbTi cables.
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Figure 3.6: (a,b) Exemplary calibration measurement of amplification chains for path 1 and path 2,

respectively. Symbols depict experimental data and solid lines are corresponding fits according

to Eq. (3.3). The center frequency of the detection bandwidth is f0 = 5.435 GHz and the

bandwidth is Ω = 430 kHz.

by [167, 171]

P1,2(Tatt) =
〈I2

1,2〉+ 〈Q2
1,2〉

R
= κ1,2

R

[
1
2 coth

(
hf0

2kBTatt

)
+ n1,2

]
, (3.3)

where R= 50 Ω, h is the Planck constant, kB is the Boltzmann constant, f0 is the center

frequency of the detection bandwidth, and the quantity κ1,2/R is the detected power

per microwave photon. The PNCF, defined as κ1,2 =G1,2 × R × Ω × hf0, relates the

measured voltages to the photon numbers before amplification where Ω is the full detection

bandwidth. The quantities G1,2 and n1,2 are the gain and noise photon number of both

amplification chains, respectively. From Eq. (3.3) it becomes evident that a changed

temperature Tatt of the heatable attenuator leads to a different photon number and,

hence, different detected powers. The PNCF and gain of the amplification chain are

essentially determined by the measured slope of the measured power versus Tatt. The offset

determines the added noise photon number of the amplification chain. In Fig. 3.6, we

show an exemplary calibration measurement with a corresponding fit of Eq. (3.3). From

the fit, we obtain similar values of κ1 = 1.69± 0.02 (mV)2 and κ2 = 1.68± 0.02 (mV)2 due

to the pre-balancing of both chains. However, the added noise photons n1 = 16.5 ± 0.2
and n2 = 27.7± 0.4 deviate significantly between the paths. We note that the observed

noise photon numbers are roughly twice as high as expected from the datasheet values for

the HEMT amplifiers. This originates from the fact that a beam splitter is placed in front

of the HEMT amplifiers which reduces the signal power by a factor of two. Consequently,

the noise photon number of the whole amplification chain, including the beam splitter, is

doubled. Taking this effect into account, the observed n1 fits nicely to the datasheet noise

properties of the employed HEMT amplifier in path 1. For path 2, the observed noise

photon number of the chain, is above the expected value due to a faulty circulator used

http://i.imgur.com/Ftjo0.jpg
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before the HEMT. The results of the fit for the quadrature moments 〈Q2
1〉 and 〈Q2

2〉 are

similar to the ones of the corresponding I-quadratures.

Reconstruction point

If no losses are considered during the calibration of the output lines, the quantum states

would be reconstructed at the noise source, i.e., the heatable attenuator. However, in

the experiments, we want to reconstruct the quantum states at different positions in the

setup. In order to achieve that goal, we carefully estimate the losses from the heatable

attenuator to a desired reconstruction point in the experimental setup. The losses are

then taken into account during determination of the PNCF factors κ1,2 which are required

for the quantum state reconstruction. A sketch of a simplified situation is depicted in

Fig. 3.7. In order to shift the reconstruction point from the heatable attenuator (point A)

to, for example, the output of the hybrid ring (point B), we carefully estimate the losses

L between A and B. The total gain G′1,2, referenced to point A, is then related to the

gain G1,2, referenced to point B, as

G′1,2 = G1,2 · 10−L/10 , (3.4)

where the losses are given in decibel and L> 0 correspond to non-zero losses between A

and B. During the fitting procedure of Eq. (3.3), we also take the temperature gradient

between the heatable attenuator and a circulator in front of the JPA into account which

provides a small correction to the PNCFs. For that, the cable between the heatable

attenuator and the circulator is discretized into 100 equal segments where each segment

possesses a proportional part of the total loss of the cable. Each segment is assumed

to have a temperature defined by the linear temperature gradient of the cable. The

transmitted thermal photons from the heatable attenuator are then calculated with an

iterative approach over all cable segments, where the loss and temperature of each segment

is taken into account by a beam splitter model [131].

to amplficiation chain
heatable attenuator

30 dB

JPA

G’

A

G1,21,2

B

Figure 3.7: Sketch describing the procedure for shifting of the reconstruction point between different

positions in the setup. G′1,2 and G1,2 denote the total gain of the amplification chain starting

from the points A and B, respectively. Blue lines denote cold connections. A temperature

gradient between the heatable attenuator and the circulator is taken into account during

fitting of κ1,2.
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3.2 Characterization of flux-driven JPAs

Throughout this work, we employ JPAs for the generation and manipulation of propagating

quantum microwaves. For these tasks, a careful characterization of the JPAs is crucial. In

this section, we present how the properties and performance of each JPA are determined

during our experiments. First, we probe the flux dependence of the JPA resonance

frequency and the JPA nondegenerate gain. If the JPA is later employed as a phase-

sensitive amplifier, we also determine its degenerate gain. Otherwise, the JPAs are

typically utilized for the generation of squeezed states. Finally, we discuss Gaussianity

and effect of losses on propagating squeezed microwave states.

3.2.1 JPA sample preparation and packaging

We employ JPAs as the key element in experiments with propagating quantum microwaves.

Since we operate multiple JPAs in a single experiment, the bandwidth and resonant fre-

quency of the JPAs must be compatible. Consequently, an established and reproducible

fabrication routine is mandatory for advanced experiments involving JPAs. Throughout

this thesis, we use JPAs designed and fabricated at NEC Smart Energy Research Labora-

tory, Japan and RIKEN, Japan. An optical micrograph of a JPA is shown in Fig. 3.8 where

the quarter-wavelength coplanar waveguide (CPW) resonator is visible. At one end, the

resonator is short-circuited to the ground plane via a dc-SQUID [108, 113]. The resonator

and pump line are patterned into a 50-nm-thick Nb film which has been deposited by

magnetron sputtering onto a 300-µm-thick silicon substrate covered by a thermal oxide.

The dc-SQUID is fabricated using an aluminum shadow evaporation technique [172].

50 µm 50 µm

Qext=200 Qext=600

10 µm

pump line

dc-SQUID

2.
5 

m
m

5.0 mm

S P

(a)

(c)

(b)

Figure 3.8: (a) Optical micrograph of a JPA sample chip. The red and green rectangles mark the coupling

capacitance and dc-SQUID, respectively. The signal and pump port are marked by S and P,

respectively. (b) Zoom-in to the coupling capacitance for a designed external quality factor

Qext = 200 (left panel) and Qext = 600 (right panel). (c) Zoom-in to the dc-SQUID with

adjacent pump line. The size of the dc-SQUID loop is 4.2× 2.4µm2.
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(a) (b)JPA sample

glass bead pinsilver glue sensor

silver
wire

PCB superconducting
coilAl shield

heater sample box
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2 mm

Figure 3.9: (a) Optical photograph of a JPA sample bonded in the sample box. The signal and pump

ports of the JPA are coupled to RF connectors of the sample box via a PCB and glass bead.

(b) Sample box mounted into a superconducting aluminum shield. The superconducting coil,

temperature sensor and heater are installed on the sample holder inside the shield. Two

annealed silver wires provide thermalization to all components.

The JPA samples are placed inside a sample box fabricated out of OFHC copper, as

shown in Fig. 3.9 (a). In order to ensure mechanical stability and good thermalization,

the JPA samples are glued with GE varnish (GE 7031, SCB) to the sample box. The

JPA sample is galvanically coupled to the box ground via aluminum bonds. The signal

and pump ports of the JPA are bonded to the inner conductors of CPW transmission

lines on a printed circuit board (PCB). At the other ends, the inner conductors of the

CPW transmission lines on the PCBs are soldered to glass bead pins (K-100, Anritsu)

which serve as an interface to radio frequency (RF) K-connectors (K102F-R, Anritsu)

outside of the sample box. We use silver glue in order to galvanically connect one side of

the PCB to the sample box. In this way, we achieve good impedance matching to 50 Ω
with a reproducible maximum mismatch of ±3 Ω.

The sample box with JPA is placed inside of an aluminum box which serves as a shield

from external magnetic fields after the aluminum becomes superconducting at ' 1 K. An

aluminum shield with removed lid is shown in Fig. 3.9 (b). In order to be able to tune

the JPA resonance frequency, we place a superconducting coil on top of the sample box

inside the aluminum shield. The coil body is made out of OFHC copper and we use

approximately 300 m of single-filament NbTi superconducting wire (C510/NbTi, Supercon

Inc.) for winding of the coil. GE varnish is used to glue, and thus, better thermalize,

wire layers in the coil. Furthermore, we fix a temperature sensor and heater to the JPA

sample box which are used to control the temperature with an external PID controller.

The heater consists of a 100 Ω thin-film resistor which is glued to a thin silver strip. All

components are thermalized with two silver wires which are clamped to the sample holder

at different positions.
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3.2.2 Quality factors and flux dependence

For resonators, the internal and external quality factors are important quantities. The

internal quality factor Qint provides information about the internal losses of the resonator,

while the external quality factor Qext is mainly given by the coupling capacitance Cc which

determines the coupling strength of the resonator to the signal port [107]. To determine

the quality factors and the resonance frequencies for different external flux values, we

record the S-parameters corresponding to a microwave signal reflected from the JPA as

depicted in Fig. 3.10. The S-parameter is measured for different probe frequencies and

external flux values. The measurements are performed in the low power regime with less

than one photon on average inside the JPA resonator. In this subsection, we study six

JPA samples (JPA 1 to JPA 6) with different screening parameters βL as well as different

external and internal quality factors (see Tab. 3.1). Also, no additional external pump

signal is applied to the JPA during the experiments.

For a theoretical description of the reflection coefficient and corresponding S-parameters,

we use the expression obtained from the input-output formalism in Eq. (2.75). For samples

JPA 1 to JPA 3, we extract internal quality factors up to Qint & 3 × 104, depending on

the external flux, while the external quality factors Qext decrease with increasing JPA

resonance frequency ω0. JPA 1 to JPA 3 show an overcoupled behavior. Furthermore, we

observe a strongly undercoupled behavior for samples JPA 4 to JPA 6, where the external

quality factor is much larger than the internal quality factor. Moreover, for these samples,

Qext as well as Qint are flux independent and the Qint values are lower than those of

samples JPA 1 to JPA 3. The low Qint for the sample batch containing JPA 4 to JPA 6

is explained by intensive Ar ion milling before evaporation of the Al which degrades the

quality of the metal-substrate interface leading to increased losses [173]. Furthermore, for

JPA 1 to JPA 3 the extracted Qext coincide well with the design target of 200 while for

JPA 4 to JPA 5 the extracted Qext deviate substantially from the design target.

In Fig. 3.11, we show the flux-dependent JPA resonance frequencies for two samples

cryostat stages
300 K 60 mK

pump

S

P

VNA
port A port B

coil

amplification
chain measurement

circulator

JPA

room temperature

attenuation chain

attenuation chain

sample stage
17 mK - 50 mK

Figure 3.10: General scheme for the characterization of JPAs with a vector network analyzer (VNA).

The reflected signal from the JPA is separated from the incoming signal by a measurement

circulator. The flux Φext through the dc-SQUID loop is controlled by a superconducting

coil.
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Table 3.1: JPA parameters extracted from fitting of the flux-dependence of the JPA resonance frequency

for different JPA samples. Here, Ic is the critical current of a single Josephson junction,

Lloop and βL are the loop inductance and screening parameter of the dc-SQUID, respectively,

and ωr/2π is the resonance frequency of the bare resonator. The Josephson junctions of the

dc-SQUID are assumed to be identical. The external quality factors Qext and internal quality

factors Qint are obtained from independent fits of Eq. (2.75).

Sample Ic (µA) βL Lloop (pH) ωr/2π (GHz) Qext Qint
JPA 1 2.19± 0.12 0.096± 0.008 45.4± 4.7 5.863± 0.018 265-300 >30000

JPA 2 2.34± 0.01 0.087± 0.001 38.3± 0.1 5.829± 0.001 310-380 >30000

JPA 3 2.14± 0.10 0.095± 0.005 45.9± 3.4 5.856± 0.015 280-340 >30000

JPA 4 12.16± 0.08 0.536± 0.001 45.6± 0.3 6.214± 0.001 5300± 100 1280± 30
JPA 5 9.82± 0.12 0.553± 0.001 58.2± 0.7 6.164± 0.001 12000± 1000 1100± 100
JPA 6 9.64± 0.27 0.557± 0.001 59.7± 1.7 6.216± 0.003 72000± 13000 1300± 300

together with numerical fits according to Eq. (2.82) where the critical current Ic, the

screening parameter βL = 2LloopIc/Φ0 and the bare resonator frequency ωr/2π are used

as fitting parameters. In the experimentally accessed frequency range, Eq. (2.82) holds

with an error of less than 0.5% compared to the exact solution from Eq. (2.78). The

magnetic flux threading the dc-SQUID is controlled by applying a current through a

superconducting coil mounted on the JPA sample box. As a current source, we use

a source measurement unit (SourceMeter 2401, Keithley). For the investigated JPAs,

the conversion factor of the coil current to the magnetic flux threading the dc-SQUID

is ' 6.5 Φ0/mA.

Using Lr = 2 nH, as estimated from the geometric design parameters and the charac-

teristic impedance of the transmission line, Z0 = 50 Ω, one can extract important JPA

parameters from the measurement of the flux-dependent S-parameter as summarized in

Tab. 3.1. In order to quantitatively model the flux dependence of JPA 1 to JPA 3, the

decrease of the JPA resonance frequency with increasing absolute value of Φext has to

be taken into account. This can be achieved by considering the flux dependence of the

kinetic inductance of the resonator [174], which leads to a flux dependent bare resonator

frequency ωr(Φext) =ωr(0)[1− γΦ2
ext]. Here, γ is a constant depending on the material

and geometry of the resonator.

For the samples JPA 1 to JPA 3, a weak hysteretic behavior is experimentally observed

[see Fig. 3.11 (a,c)]. Overall, the fit describes the experimental data very well. However,

the simulations of the JPA flux dependence (see Sec. 2.2.5 for details) predict a more

pronounced hysteresis than observed in the experimental data. We attribute the observed

deviation to a finite noise floor which causes a premature hopping of the phase particle to

an adjacent minimum. Therefore, it is expected that the hysteresis is not as pronounced

in the experimental data as predicted by simulations.

For the three other samples, JPA 4 to JPA 6, a strong hysteretic behavior is observed
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Figure 3.11: Resonance frequency of (a,c) JPA 2 and (b) JPA 4 as a function of the external magnetic

flux Φext. Blue circles and green triangles mark the data taken for increasing and decreasing

values of Φext, respectively. Symbols depict experimental data and solid lines are the

corresponding fits. The errors of the ω0 values obtained from fitting the data are smaller

than the symbol size. The fit for JPA 2 is shown for γ= 5.8× 10−3 Wb−2. The fitting

results are summarized in Tab. 3.1.

in the resonance frequency versus applied flux dependence. As an example, Fig. 3.11 (c)

shows an overlay of both sweep directions of the external flux for JPA 4. The flux

dependence is described very well by the model calculations. The hysteresis over a large

frequency window is explained by larger screening parameters βL as compared to JPA 1 to

JPA 3. With increasing βL, the rigid coupling between the two phase differences across the

junctions is lost, allowing for multiple classes of minimal energy states of the dc-SQUID for

a given external flux. These different classes of minimal energy states manifest themselves

in different resonance frequencies of the JPA. For the measured samples, we find only

two such classes, whereas even more can exist for sufficiently large βL. Depending on the

history of the dc-SQUID regarding the external flux, different eligible minimal energy

states are occupied by the dc-SQUID and, thus, a hysteretic behavior when changing the

sweep direction of the external flux is observed.

To avoid this hysteresis, one would prefer a negligible Lloop which is possible by decreasing

the dc-SQUID loop areas. However, to allow for an efficient coupling to the pump line,

the loop area for flux-pumped parametric devices is usually chosen to be on the order of

10µm2 [98, 108, 128, 175]. From numerical estimations with FastHenry3 [176], we obtain

the total loop inductance Lloop ' 30 pH consisting of both the geometrical inductance of

the loop itself and the kinetic inductance, where the latter dominates due to the thin

superconducting dc-SQUID electrodes. In order to minimize the hysteretic behavior of

the JPAs while still maintaining a sufficient coupling to the pump line, one could reduce
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the kinetic inductance by choosing a dc-SQUID design with thicker Al electrodes in future

devices. Since all JPAs have the same dc-SQUID loop design, we attribute the spread

in the extracted values of Lloop to variations of the kinetic inductance originating from

differences during the fabrication process of the JPAs. Regarding the critical currents Ic

for the sample batch containing JPA 1 to JPA 3, the extracted values are consistent with

the design value of 2µA. In contrast, Ic significantly exceeds the design values of 4µA for

the sample batch containing JPA 4 to JPA 6. The larger values of Ic for this sample batch

are most likely caused by an excessive outgassing process of the resist mask during the Al

evaporation which causes fluctuations in the Josephson junction parameters.

In addition, we find from our simulations that there is always a hysteretic behavior

for any non-zero βL. However, for small βL, hysteretic behavior only appears at frequen-

cies which are much smaller than the maximum resonance frequency. Furthermore, in

experiments, a very small hysteresis may be hard to observe due to smearing caused by

the thermally activated hopping between adjacent local energy minima of the dc-SQUID.

Nevertheless, the behavior observed in our devices is markedly different from the textbook

discussion of the total flux in a dc-SQUID as a function of the external flux. There, the

hysteretic behavior only occurs above a certain threshold value βL≥ 2/π of the screen-

ing parameter [97], whereas, in our devices, hysteretic behavior is already observed for

βL� 2/π. The reason for this difference is that we take into account the full dc-SQUID

potential without any simplifications.

The results presented in this subsection have been published by us in Ref. [113]. Parts

of the text and figures are adapted from this reference.

3.2.3 Nondegenerate gain

We now investigate the nondegenerate gain of two JPAs, where one JPA is overcoupled

(Qext <Qint) and the other one is undercoupled (Qext >Qint). To this end, a flux value

corresponding to a certain resonance frequency ω0 of the JPA is fixed. Then, a pump

tone with the frequency ωp = 2ω0 is applied to the JPA via the pump port. A scheme of

the measurement setup is shown in Fig. 3.10. Regarding the input signal, the JPAs are

operated in the nondegenerate mode, meaning that the frequency of the applied signal

ωs =ωp/2 + δω always has a non-zero offset from half the pump frequency, δω , 0. In

order to evaluate the experimental data, we use explicit expressions of the nondegenerate

gain for the case of a flux-driven JPA. As discussed in Sec. 2.2.6, the nondegenerate signal

gain Gs(δω) and idler gain Gi(δω) for ωp = 2ω0 are given by [104]

Gs(δω) = κ2
intδω

2 + [(κ2
int − κ2

ext)/4− ε2ω2
0 − δω2]2

κ2
totδω2 + [κ2

tot/4− ε2ω2
0 − δω2]2

, (3.5)

Gi(δω) = κ2
extε

2ω2
0

κ2
totδω2 + [κ2

tot/4− ε2ω2
0 − δω2]2

, (3.6)
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Figure 3.12: (a,b) Experimental spectra of the nondegenerate signal and idler gains as a function of ε

and signal detuning δω from half the pump frequency of ωp/4π= 5.4 GHz for JPA 2. The

smallest detuning is |δω|/2π= 0.15 MHz. (c,d) Theoretical calculations with g' 3.49 V−1

of the signal and idler gains computed from Eqs. (3.5) and (3.6), respectively. (e) Maximal

signal and idler gains extracted from Lorentzian fits along vertical cuts in (a,b). (f) Signal

and idler gains as a function of the signal frequency along the dashed lines. The symbols

mark the experimental data and solid lines are fits of the data by Eqs. (3.5) and (3.6). The

JPA temperature is stabilized at 50 mK.

where κtot is the total resonator loss and ε= gApump is related to the root-mean-squared

pump amplitude Apump at the sample box via a coupling constant g. Eqs. (3.5) and (3.6)

are only valid for ε ≤ εc =κtot/2ω0.

Figure 3.12 (a) and Fig. 3.12 (b) show the measured nondegenerate signal and idler

gains as a function of ε for the overcoupled JPA 2. The pump frequency is fixed at

ωp/2π= 10.8 GHz corresponding to a flux working point of Φext = 0.39 Φ0 with Qext = 365,

Qint & 3×104 and εc = 1.39× 10−3. We measure the idler gain by comparing the generated

idler mode at frequency ωi =ωp/2− δω to the applied signal at frequency ωs =ωp/2 + δω.

Amplification can only be observed within a frequency window defined by the resonator

bandwidth and centered at the resonance frequency. In this region, we observe an increased

gain for both the signal and idler modes with increasing pump power. Theoretical

predictions from Eqs. (3.5) and (3.6) are depicted in Fig. 3.12 (c) and Fig. 3.12 (d) for the

signal and the idler mode, respectively. Only the coupling constant g ' 3.49 V−1 is used

as a fitting parameter, while the quality factors and the resonance frequency are fixed to

previously determined experimental values. The given values for g include an additional

uncertainty from the estimation of the pump line attenuation of 61 dB which is used to
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Figure 3.13: (a,b) Experimental spectra of the nondegenerate signal and idler gains as a function of ε

and signal detuning δω from half the pump frequency of ωp/4π= 6.125 GHz for JPA 4. The

smallest detuning is |δω|/2π= 25 kHz. (c,d) Theoretical calculations with g' 0.17 V−1 of

the signal and idler gains computed from Eqs. (3.5) and (3.6), respectively. (e) Maximal

signal and idler gains extracted from Lorentzian fits along vertical cuts in (a,b). (f) Signal

and idler gains as a function of the signal frequency along the dashed lines. The symbols

mark the experimental data and solid lines are fits of the data by Eqs. (3.5) and (3.6). The

JPA temperature is stabilized at 30 mK.

relate the pump power at the output of the microwave source to Apump at the sample box.

Figure 3.12 (e) shows the maximal signal and idler gains extracted from the detuning

dependence and Fig. 3.12 (f) shows the signal and idler spectra at a fixed ε. Evidently,

the model reproduces both the signal and idler modes very well.

Next, the undercoupled sample JPA 4 is investigated in the nondegenerate mode by

applying a fixed pump tone at the frequency ωp/2π= 12.25 GHz. The flux working point

is Φext =− 0.40 Φ0 with Qext = 5283, Qint = 1267 and εc = 4.89× 10−4. The experimentally

obtained spectra of the signal and idler as a function of the pump power are depicted in

Fig. 3.13 (a) and Fig. 3.13 (b). For δω/2π' 50 kHz, the incident signal is increasingly

deamplified by up to −30 dB with increasing pump power, while the idler gain increases.

Since these undercoupled devices are described well by our parametric amplifier theory,

we still call them JPAs although they do not act as amplifiers but rather as tunable

attenuators. Again Fig. 3.13 (c) and Fig. 3.13 (d) depict theoretical predictions with

g ' 0.17 V−1 as the only fitting parameter. They reproduce the experimentally observed

behavior accurately. The deamplification behavior of JPA 4 is in strong contrast to sample

JPA 2 where the signal gain increases with increasing pump power. To understand this
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behavior qualitatively, we simplify Eqs. (3.5) and (3.6) for δω→ 0 and obtain

Gs ≈
[(κ2

int − κ2
ext)/4− ε2ω2

0]2

[κ2
tot/4− ε2ω2

0]2
, (3.7)

Gi ≈
κ2

extε
2ω2

0

[κ2
tot/4− ε2ω2

0]2
. (3.8)

If the sample is overcoupled (κext >κint), the numerator of Eq. (3.7) is monotonously

increasing while the denominator is monotonously decreasing with increasing ε. However,

for an undercoupled JPA (κext <κint) the numerator crosses zero for a certain threshold

value ε= εcrit <εc, meaning that the signal is increasingly deamplified with increasing ε

until the threshold is reached. In the overcoupled regime, the JPA acts as an amplifier

for an incident signal, whereas for undercoupled JPAs the incident signal is deamplified

depending on the pump power. In this case, the device is no longer an amplifier but acts

as a tunable microwave attenuator. In contrast, the idler gain Gi always increases for

increasing ε independent of the fact whether the JPA is overcoupled or undercoupled.

The input-output model yielding Eqs. (3.5) and (3.6) directly relates the material and

design parameters, such as internal and external quality factors, to the amplification

performance of the JPAs. For example, it predicts that increasing Qint from 104 to 105,

for Qext = 365, results in a similar gain-bandwidth product and an improvement of the

maximal gain of 3.5 dB at a fixed pump power. Nevertheless, in the high gain limit higher-

order nonlinear effects, which are not included in the model, might limit the amplification

of the JPAs [110].

The results presented in this subsection have been published by us in Ref. [113]. Parts

of the text and figures are based on this reference.

3.2.4 Degenerate gain

In the later experiments, we want to employ JPA 3 as phase-sensitive amplifier where

one quadrature of an incoming signal is strongly amplified while the orthogonal one

pump

signal

S

P

coil

amplification
chain

data
processing measurement

circulator

sample stage

JPA

cryostat stages
300 K 60 mK 30 mK

room temperature

attenuation chain

attenuation chain
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ADC〉mQkI〈

Figure 3.14: General scheme for characterization of JPAs using a heterodyne detection setup. LO denotes

a local oscillator. A detailed experimental scheme is given in Fig. 3.24.
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Figure 3.15: (a) Phase-dependent degenerate gain Gd and (b) maximum degenerate gain Gmax
d of JPA 3

for different values of the pump power at the pump port of the JPA. For clarity, the curves

in panel (a) are shifted in phase direction such that the minima coincide. The signal at the

input of the JPA has a power of −144.8 dBm and a frequency of 5.43 GHz.

is deamplified. This is in contrast to vacuum squeezing where no signal is incident to

the JPA. As discussed in Sec. 2.2.6, phase-sensitive amplification allows, in theory, for

noiseless amplification of one quadrature. The JPA allows for phase-sensitive amplification

in the degenerate operation mode. Here, a pump signal at twice the resonance frequency

ωp = 2ω0 is applied to the JPA, similar to the case of the nondegenerate gain. However,

for degenerate amplification, the signal frequency ωs =ωp/2 is exactly half the pump

frequency. Thus, the idler mode is generated at the same frequency as the signal which

leads to interference effects of the idler and signal. Depending on the relative phase

between the pump and signal, the interference can be constructive or destructive. All

pump powers are given at the input of the pump port of the JPA.

We use the dual-path receiver for the characterization of the degenerate gain as it

allows for precise measurements of the signal power. A principle scheme of the setup is

shown in Fig. 3.14. We apply both a coherent signal with a frequency ωs/2π= 5.43 GHz
as well as a pump tone with a frequency ωp = 2ωs to JPA 3. Considering the input line

attenuation, the power of the incident signal to the signal port of JPA 3 is estimated to be

−145 dBm. After amplification the phase-sensitively amplified signal is down-converted

to 11 MHz and digitized as discussed in Sec. 3.1.2. The power of the amplified coherent

signal Pamp = 〈I〉2 + 〈Q〉2 is determined by the measured quadrature moments. As a

reference measurement, we use the power Pref recorded with no pump tone applied to the

JPA. By changing the phase of the signal, we record the phase-dependent power Pamp

which allows us to calculate the degenerate gain Gd =Pamp/Pref . Figure 3.15 (a) shows

Gd for different pump power levels when varying the relative phase between the pump

and signal tones. The extracted maximum degenerate gain Gmax
d as a function of the

pump power is depicted in Fig. 3.15 (b) and serves as a calibration measurement for the

experiments presented in chapter 5.

Apart from the gain, the 1 dB-compression point is another important figure of merit for
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Figure 3.16: (a) Phase-dependent degenerate gain Gd and (b) maximum degenerate gain Gmax
d of JPA 3

for different values of the signal power. For clarity, the curves in panel (a) are shifted in

phase direction such that the minima coincide. The pump power at the pump port of the

JPA is −35 dBm and the signal has a frequency of 5.43 GHz. Top top x-axis in panel (b)

corresponds to the reconstructed coherent photons in the measurement bandwidth 430 kHz.

amplifiers. It specifies the signal input power at which the gain of the amplifier is reduced

by 1 dB below its low input power value [102]. We now fix the pump power at the pump

port of the JPA to −35 dBm, corresponding to a maximum degenerate gain of Gd' 16 dB,

and increase the signal power while measuring the phase-dependent degenerate gain.

Figure 3.16 (a) shows the phase dependence of Gd for two different signal powers. We

observe that for the higher signal power, the amplification gain is reduced compared to

lower signal powers. However, the deamplification is not influenced by this difference.

This behavior is expected, as compression effects are typically caused by pump depletion

or higher-order nonlinear effects [177, 178]. However, these compression mechanisms only

occur if a signal is amplified which can either cause a lack of energy provided by the

pump signal (pump depletion) or a high photon population in the resonator leading to

higher-order nonlinear effects caused by the Josephson junctions. Neither of these effects

occur when a signal is deamplified. Figure 3.16 (b) depicts the maximum degenerate gain

Gmax
d for increasing signal power. For the chosen gain, the 1 dB-compression point occurs

at −131 dBm which corresponds to roughly 70 photons on average in the bandwidth of

430 kHz.

3.2.5 Generation of squeezed states

A central task of the JPAs is to generate single-mode squeezed (SMS) states. The latter

leak out of the JPAs and propagate along the microwave coaxial lines and components. In

this work, we investigate fundamental properties of propagating microwave SMS states and

apply them for the generation of path entanglement. Therefore, a routine characterization

method for the squeezing properties of the JPAs is required.
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Figure 3.17: (a) Squeezing level Se and (b) purity µ as a function of the pump power at the pump port

of JPA 1. The reference-state (RS) reconstruction and dual-path (DP) reconstruction are

employed for the reconstruction of the quantum states. If not shown, the standard error of

the mean is smaller than the symbol size. The JPA resonance frequency is ω0/2π= 5.435 GHz
and the filter bandwidth is 430 kHz.

After finding a suitable working point of the JPA, we apply a pump tone at a frequency

2ω0, that is at twice the resonance frequency of the JPA. We detect the generated SMS

states around the frequency ω0 with the dual-path receiver. In this sense, the operation

mode is similar to the one of the degenerate gain measurements. However, for squeezing,

we do not apply any input signal to the JPA such that the JPA output consists of a weak

squeezed thermal state. The photon population of the weak thermal state is determined

by the temperature of the mixing chamber stage. These temperatures are typically around

30− 50 mK, and therefore, the input state can be quite well approximated by a vacuum

state.

As discussed in Sec. 3.1.3, we can reconstruct the quantum microwave states either by

using the dual-path (DP) or the reference-state (RS) reconstruction. In Figure 3.17 (a)

we have plotted the squeezing levels Se of SMS states versus the pump powers applied

to the JPA. The states are reconstructed at the input of the hybrid ring. We observe

an increase of the squeezing level with increasing pump power of up to −43 dBm where

both reconstruction methods coincide. Upon a further increase of the pump power, the

reconstruction methods start to deviate from each other in their reconstructed Se. Above

−40 dBm pump power, all states reconstructed via the DP method become unphysical, i.e.

show complex squeezing levels Se. The RS reconstruction still yields physical states and

we observe squeezing above the vacuum level of up to 40 dB. The states reconstructed

with the DP method are unphysical because a central assumption for the DP method,

which is that a vacuum state is incident to the second hybrid ring input, is no longer valid

for high pump powers. This effect is caused by the pump signal of JPA 1 leaking through

to JPA 2 which was not frequency-detuned during the measurements. Consequently, a

weak squeezed state, generated by JPA 2, is incident to the second hybrid ring input.

This squeezed state leads to a fact that the DP method yields unphysical results for the
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state reconstructed at the first hybrid ring input. A similar cross-talk between JPAs is

also observed in later experiments (see Sec. 5.1.2 for details) and originates from the fact

that the hybrid ring and circulators are not designed for our pump frequencies at around

11 GHz. Consequently, the isolation of the microwave components is not sufficient to

suppress the pump signal.

Figure 3.17 (b) depicts the purities µ of the produced states. For increasing pump

powers, the purity decreases and coincides between the DP and RS method for a wide

range of pump powers. The degradation of the squeezing level and purity is caused by

nonidealities of the JPAs. On the one hand, the Josephson junctions inside the JPAs are

highly nonlinear elements. The lowest-order nonlinearity is required for the parametric

effects since it allows for the flux-tunability of the JPA. However, under sufficiently strong

driving, e.g. by the pump tone, also higher-orders of the nonlinearity play a role in the

JPA dynamics. In general, these effects lead to a deviation from an ideal parametric

amplification and degrade the quality of the squeezed states [128, 177]. These higher-order

nonlinear effects also lead to non-Gaussianity of the JPA output states, as discussed in

detail in the next subsection. Apart from these nonidealities, the increased pump powers

lead to high microwaves fields inside the JPA resonator. The high fields can lead to an

increased coupling to loss channels. This causes the quantum states to become impure

due to the added noise. Under the assumption of Gaussian states, both mechanisms lead

to a reduced purity of the quantum states which is verified by our experimental results

shown in Fig. 3.17 (b).

3.2.6 Gaussianity

All our quantum state reconstruction methods function under the assumption that the

states are Gaussian, and thus, can be fully described by their signal moments up to

the second order. The cumulants 〈〈(â†)nâm〉〉 with order n+m provide insight into the

Gaussianity by characterizing, e.g., the asymmetry (third order) and sharpness (fourth

order) of the characteristic function of the bosonic field operators [179]. The cumulants

can be calculated from the signal moments 〈(â†)nâm〉 according to [121, 179]

〈〈(â†)nâm〉〉 = ∂nx∂
m
y ln

∑
α,β

〈(â†)αâβ〉xαyβ
α!β!

∣∣∣∣∣
x=y=0

, (3.9)

where ∂nx is the n-th partial derivative with respect to x and ln is the natural logarithm. In

order to check for the Gaussianity of the states, we verify that the cumulants of the third

and fourth order (n+m≥ 3) are vanishingly small, as expected for Gaussian states [25].

Cumulants with the order n+m≤ 2 can be non-zero for Gaussian states.

Figure 3.18 (a,b) shows absolute values of the cumulants of squeezed states for varied

pump power of JPA 1 reconstructed with the RS and DP methods, respectively. For low

pump powers, we observe an increase of the cumulants 〈〈â†â〉〉 and 〈〈â〉〉 while the other
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Figure 3.18: (a,b) Absolute value of cumulants |〈〈(â†)nâm〉〉| as a function of pump power reconstructed

with the RS and DP methods, respectively. Solid lines show cumulants up to second order.

Third and fourth order cumulants are marked with dashed lines. The legend denotes the

exponents (n, m) of the cumulants and defines the order n+m. The experimental data is

the same as in Fig. 3.17. For better comparison, the same vertical and horizontal scales are

used for both panels.

cumulants stay at much smaller constant values. Around −41 dBm pump power, the

fourth order cumulants cross the second order cumulants for both reconstruction methods.

Above this point the signals are clearly non-Gaussian. This finding coincides with the

rapid decrease of the squeezing level observed in Fig. 3.17 (a) for the RS reconstruction.

As discussed in the previous subsection, all states reconstructed with the DP method

are unphysical for the pump powers above −40 dBm. For the lower pump powers, both

reconstruction methods yield similar values of the cumulants.

3.2.7 Reference-state reconstruction from histograms

In our usual detection and reconstruction of quantum microwaves, we measure the

quadrature moments 〈In1 Im2 Qk
1Q

l
2〉 up to the fourth order and use them to reconstruct

the signal moments 〈(â†)nâm〉. This approach allows for flexible measurements with a

sufficient voltage resolution in the quadrature moments, even if only a fraction of the full

input range of the 12-bit ADC is used. Furthermore, the amount of required random

access memory (RAM) during data processing and hard disk space for the saved data

is acceptable since it is solely determined by the product of the number of calculated

moments and the trace length. One drawback of this approach is that it is impossible to

determine moments with orders > 4 from already processed data which might be crucial

for evaluation of non-Gaussian effects.

As an alternative approach, one can record raw histograms of the quadratures I and

Q and store the data on the hard drive. In principle, quadrature moments of arbitrary

order can be calculated from these IQ-histograms. However, this approach requires a

large amount of RAM for histograms of sufficient precision, if they are to be used for
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Figure 3.19: (a) Squeezing level S and (b) squeezing angle γ for different measurement approaches.

Circles correspond to directly averaged quadrature moments during the raw data processing

and crosses correspond to measured quadrature histograms where the quadrature moments

are calculated after the measurement is finished. (c,d) Corresponding errors of the squeezed

quadrature σ2
s and squeezing angle in percent, respectively. If not shown, the standard

error of the mean is smaller than the symbol size. The JPA resonance frequency is

ω0/2π= 5.435 GHz and the filter bandwidth is 430 kHz.

calculations of the quadrature moments later. Consequently, the amplitude range of the

histograms should be optimized for the expected signal amplitudes which requires careful

estimations and calibration measurements.

In Fig. 3.19, we compare both methods of obtaining the quadrature moments. We utilize

the reference-state reconstruction to obtain the squeezing level S and squeezing angle γ for

varying pump powers applied to JPA 1. We observe a very good agreement between both

measurement methods in both the mean values as well as the statistical standard errors of

the mean. Consequently, for moments up to the second order, both methods can be applied

to reconstruct quantum microwaves. However, the stored data and analysis time (after the

measurement is finished) of the histogram-based approach is significantly increased when

compared to directly measuring the quadrature moments. Also, as mentioned previously,

for every measurement, the histogram range needs to be carefully adjusted such that

no clipping effects occur if the histogram range is too small. On the other hand, if the

range is to large, the resolution might be not sufficient for accurate determination of the

quadrature moments. However, the measurement of the histograms have several important

advantages. In particular, as already mentioned, the histograms allow for the calculation

of an arbitrary order of the quadrature moments which is prohibitively difficult with direct,
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real-time moment calculation. This potentially allows for a moment-based tomography

of non-Gaussian states. Furthermore, the histogram-based approach gives access to a

direct tomography of propagating states as their Q-function can be calculated from the

histograms [125].

3.2.8 Effect of losses and physicality check on reconstructed

squeezed states

Even in superconducting environments, propagating microwave states can be subject to

notable losses which have detrimental effects on the quantum properties of these states.

In our experiments, we utilize squeezed microwave states which are propagating along

lossy components. Therefore, the understanding of the effect of losses on the squeezed

states is essential for complex experiments. Since we cannot directly control losses in

the experiment, we utilize the fact that we can shift the reconstruction point of the RS

method by changing the PNCF of the respective amplification chain during the data

post-processing (see Sec. 3.1.4). A change of the PNCF by a factor of 10L/10 corresponds

to a shifted virtual RS reconstruction point after losses L. Consequently, a doubled PNCF

amounts to L= 3 dB. Therefore, we can reconstruct the squeezed states after these virtual

losses using the same dataset. Figure 3.20 (a) shows the effect of such losses on the

squeezing level S and antisqueezing level A of a squeezed state. We observe that S is

strongly affected by losses for high squeezing levels while A shows a weaker dependence

on losses.

As discussed in Sec. 3.3.3, we separate every measurement into multiple shorter iterations

in order to stabilize the squeezing angles of the JPA. In every iteration, we perform a RS

reconstruction and obtain various squeezed state parameters. Some reconstructed states

can be unphysical due to a lack of averaging or unlucky noise events. A squeezed state is

only physical if the Heisenberg uncertainty relation

σ2
sσ

2
a ≥ 1/16 (3.10)

is fulfilled. Here, σs and σa are the squeezed and antisqueezed quadrature variances,

respectively. If Eq. (3.10) is violated, we call the respective state unphysical. Figure 3.20 (a)

shows the mean squeezed state parameters when only physical states or all states are

averaged over the iterations as a function of the losses. We note that in both cases, the

mean values of σ2
s and σ2

a correspond to a physical state. We observe that for low losses,

i.e., high squeezing levels S, there is a deviation between only averaging physical states and

averaging all states. If all states are considered, the resulting averaged S is significantly

increased. For higher losses, i.e. lower S, both cases coincide. The antisqueezing level A

is only negligibly affected by the different averaging procedures.

We can theoretically model the effect of losses with an asymmetric beam splitter with
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Figure 3.20: (a) Squeezing level S and antisqueezing level A as well as (b) purity µ for different losses.

Symbols depict experimental data obtained from RS reconstructions with virtual losses.

Lines depict the theoretically expected dependence according to Eq. (3.11). Open symbols

and dashed lines correspond to averaged values where only physical states are considered.

Full symbols and lines correspond to averaged values over all states. The JPA resonance

frequency is ω0/2π= 5.435 GHz and the filter bandwidth is 430 kHz.

transmissivity τ = 10−L/10, where L are the losses in units of decibel. We assume an

incident vacuum state to the second input of the beam splitter due to low temperatures

of the microwave components in our experiment. Consequently, we obtain the quadrature

variances

σ̃2
i = τσ2

i + (1− τ)1
4 , (3.11)

where σ̃2
i and σ2

i are the quadrature variances after and before losses, respectively, and

i ∈ {s, a} denotes the squeezed and antisqueezed quadrature variance, respectively. We

use the experimentally reconstructed σ2
i for L= 0 dB in order to calculate σ̃2

i for L> 0 dB
for the two different cases of averaging where (i) only physical states or (ii) all states are

considered. If only physical iterations are considered, we observe a deviation between

reconstructed and theoretically expected squeezing levels. In contrast, we obtain an

excellent agreement if all states are considered for the averaged values of S. Again, the

antisqueezed quadrature variance coincides well in both cases of averaging. The difference

is explained by the finite amount of averaging in each iteration which causes a certain

error in the reconstructed squeezed variances σs for every iteration. For highly squeezed

states, σs is close to zero. Therefore, a small averaging fluctuation due to noise might

cause a violation of Eq. (3.10) which makes the reconstructed state unphysical. However,

if σs is increased due to this fluctuations, the state remains physical. Consequently, the

physicality check of the states in every iteration yields a weaker (smaller) squeezing level

on average if only physical states are considered. On the other hand, if all states are

considered during averaging, weaker squeezed states are not specifically favored and the

mean value is more accurate. This explanation fits nicely to the fact that nearly all

reconstructed states are physical above ' 1 dB loss and, consequently, both methods of

averaging coincide.
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Figure 3.20 (b) depicts the purity µ of the SMS states. Similar as for S and A, we

observe that the reconstructed behavior for different losses coincides best with Eq. (3.11)

if all states are considered for averaging. For increasing losses L, the purity µ decreases

until L' 3 dB. For higher L, the purity increases again because the added vacuum to

the squeezed states slowly starts to dominate in the state. Since the purity of a vacuum

state is unity, we expect µ= 1 for L→∞ which implies that the entire signal is lost and

substituted with vacuum fluctuations.

3.3 Advanced setups for experiments with propagating

microwaves

In this section, we focus on the technical side of the cryogenic and room temperature

setups in our experiments. A carefully designed and reliable cryogenic setup is crucial for

successful experiments involving propagating microwaves. Here, we describe the key ideas

behind the design of our setups and give technical details on the realization. Furthermore,

we discuss how to stabilize the phases of the JPA pumps with a flexible pulse modulation

scheme.

3.3.1 Setup for generation and characterization of two-mode

squeezed states

In Fig. 3.21, we show a photograph of the cryogenic setup used in the experiments presented

in chapter 4. Here, two JPAs inside individual aluminum shields are connected to a 180°-
hybrid ring (CPL-5850-100B, Miteq). In order to separate the incoming from the outgoing

signal of the JPAs, measurement circulators (CTH1184-KS18, Quinstar) are placed in

the signal line of the JPAs. At one input and one output of the hybrid ring, we place a

directional coupler (CPL-4000-8000-20-C, Miteq/Sirius) with a coupling of −20 dB which

allows to perform displacement operations (including the noise injection). All components

are thermally connected to a silver rod which in turn is mounted and thermally anchored

to the mixing chamber plate. In this way, all components in the cryogenic setup are

thermalized to the base temperature of the cryostat. Unused ports of the microwave devices

are terminated with precision 50 Ω loads which are also thermalized. For connections

where low losses are essential, we either use direct connections or superconducting coaxial

cables. The semi-rigid superconducting coaxial cables (SC-219/50-NbTi-NbTi, Coax Co.,

Ltd.) are all custom-made to fit to exact locations of the experimental setup. For the SMA

connectors of the superconducting cables, we use crimp connectors (R125.052.900, Radiall)

which provide good impedance matching to the 50 Ω standard with an average error

of ±1.5 Ω. In order to preserve the quantum-mechanical properties of the propagating

microwaves, the minimization of losses and environmental noise is of utmost importance.
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Figure 3.21: Photographs of the cryogenic setup for the experiments presented in chapter 4. Panels

(a) and (b) show the setup without and with a cryoperm shield, respectively. Additional

circulators of the microwave output lines are fixed at the top side of the mixing chamber

plate.

The whole setup is enclosed in a cryoperm shield in order to shield the JPA samples

from external magnetic fields during the cooldown. The additional magnetic shielding

is required since the individual aluminum boxes for each JPA only provide magnetic

shielding below the transition temperature of aluminum (' 1.2 K) which is significantly

below the one of niobium (' 9.2 K). The latter forms the resonators and ground planes in

our JPAs. We found that the probability of trapping flux in the niobium ground planes of

the JPAs during the cooldown is significantly reduced when enclosing the whole setup in

a cryoperm shield.

The full experimental setup is depicted in Fig. 3.22. The cryogenic setup corresponds

to the previously shown photograph. The JPAs are pumped with room temperature

microwave sources (SGS100A, Rohde&Schwarz). Since the relative phase stability between

all microwave sources is crucial for the experiments, we reference all sources to a 10 MHz
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Figure 3.22: Experimental scheme for the measurements presented in chapter 4. The intertwined lines

between the outputs of the hybrid ring symbolize quantum entanglement. Detailed timings

of the pulses are presented later together with experimental results. The noise is generated

at room temperature by either amplified thermal radiation of a 30 dB attenuator or an

arbitrary-waveform generator (AWG). All microwave devices are referenced to a 10 MHz
rubidium frequency standard (not shown).
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rubidium frequency standard (FS725, Stanford Research Systems). The timings and

trigger pulses are provided by a data timing generator (DTG 5334, Tektronix). Details

on the referencing and pulse generation are given in Sec. 3.3.3. For the detection of the

quantum signals, we first amplify the signals with HEMTs which are either placed at 1 K
or 3 K. The first amplification stage is followed by additional RF-amplifiers (AMT-A0033,

AgileMwT and JS3-25-8P, Miteq) at room temperature which are temperature stabilized

with a Peltier cooler to 19.5± 0.1 °C.

We employ room temperature switches (N1810TL, Agilent) in order to remotely switch

between characterization measurements with a vector network analyzer (ZVA24, Ro-

hde&Schwarz) and heterodyne tomographic measurements with an Acqiris card.

3.3.2 Setup for remote state preparation

In Fig. 3.23, we show a photograph of the cryogenic setup used in the experiments presented

in chapter 5. The principles of designing the cryogenic setup are the same as discussed

above. In particular, we use superconducting coaxial NbTi/NbTi cables at all connections

where quantum signal propagate in the experiment in order to reduce the microwave losses.

Due to the size constraint of the cryoperm shield, we use L-shaped copper holders to fix

various components to the silver rod. For the remote state preparation (RSP) experiment,

we need three JPAs each mounted in an aluminum shield. Furthermore, we employ a

cryogenic 5-port switch (N1812UL, Agilent) with a specified insertion loss of 0.4 dB at

5 GHz in order to be able to switch in-situ between the actual RSP protocol or calibrating

the setup. In order to toggle the cryogenic switch, a voltage pulse is applied to it. This

pulse leads to a short but strong heat dissipation at the mixing chamber stage. In turn,

the temperature of the sample rod increases to roughly 100 mK and relaxes to its base

temperature over few tens of minutes. We note that the JPA flux working points are

not affected by toggling of the microwave switch and the subsequent short increase in

temperature. For the RSP experiments, we use a directional coupler (CPL-4000-8000-15-C,

Miteq/Sirius) with a coupling of −15 dB. During all experiments, the temperature of

the sample boxes of JPA 1 and JPA 2 is stabilized to 50 mK in order to ensure long-term

stability of the JPAs and prevent an unstable temperature when the JPAs are pumped. The

temperature of 50 mK is sufficiently low such that the corresponding thermal population

is negligibly small. Optimally, all JPAs would be temperature stabilized. However,

during the experiments only two AVS temperature bridges were available for continuous

temperature stabilization of JPAs. We employ multiple heatable attenuators to calibrate

all three output lines from the cryostat.

The full experimental setup is depicted in Fig. 3.24. We include an additional microwave

switch at room temperature in order to switch between the direct JPA 3 measurements

and measurements of the second directional coupler output. Due to a flexible architecture,

we can straightforwardly measure, control, and phase stabilize the third JPA.
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Figure 3.23: Photographs of the cryogenic setup for the remote state preparation experiments presented

in chapter 5. Panels (a) and (b) depict different viewing angles on the setup. During

experiments the setup is enclosed in a cryoperm shield (not shown).

3.3.3 Phase stabilization and pump modulation

For the later experiments, we require means to stabilize the squeezing angles of all JPAs

to desired values. Without an active stabilization procedure, the squeezing angles of the

JPAs would slowly drift over time due to phase drifts of the pump signal generated by our

microwave sources. We minimize such phase drifts by synchronizing the vector network

analyzer, DTG, Acqiris card and local oscillator to a 10 MHz rubidium frequency standard.

The pump microwave sources are referenced to the local oscillator source with a 1 GHz
signal. Without active squeezing angle stabilization, we achieve a low linear squeezing

angle drift of ' 0.8 °/h with this setup.

For even better stabilization of the squeezing angles to specific target angles, we employ

a flexible scheme for the pulse modulation of the JPA pumps which allows us to insert

or remove certain pulses, as shown in Fig. 3.25. Here, the central element is a data
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Figure 3.24: Experimental scheme for the RSP measurements presented in chapter 5. The JS3-25-8P

RF-amplifiers are not used in the measurements presented in Sec. 5.2 and Sec. 5.3. The

intertwined lines between the outputs of the hybrid ring symbolize quantum entanglement.

JPA 3 and the directional coupler are separated by 35 cm of superconducting cable. Detailed

timings of the pulses are presented later together with experimental results. All microwave

devices are referenced to a 10 MHz rubidium frequency standard (not shown).
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timing generator generates modulation pulses and a trigger pulse for the digitizer card. The

modulation pulses control the amplitude of the JPA pump tones generated by microwave

sources. The squeezing angles γexp
i of all JPAs are calculated “on the fly” and utilized to

obtain phase corrections 2δγi for the corresponding pump sources.

timing generator (DTG). It provides a trigger signal for the Acqiris card as well as the

modulation pulses for the JPA pump microwave sources (SGS100A, Rohde&Schwarz). For

the experiments presented in chapter 4, we use external mixers to modulate the continuous

microwave pump tones. This method has the drawback that the mixers have 7 dB of

insertion loss which limits the maximal pump power at the JPA chips. Furthermore,

the mixers provide a limited on-off ratio. As an improvement, we employ the internal

IQ-modulation of the SGS microwave sources to pulse the pump tones for the experiments

presented in chapter 5. This approach allows for higher effective pump powers and a

better on-off ratio of ' 40 dB. Together with the trigger signal, we use four channels of the

DTG to allow for various combinations of three JPAs being pumped or not. In a minimal

scenario, only two modulation pulses are needed for the reference-state reconstruction.

The first one is the reference pulse with all JPAs turned off and for the second one all

JPAs are pumped such that the actual protocol is executed. During all pulses, the JPAs

are in a steady state since the pulse length of several tens of microseconds is much longer

than the ring-up time of the JPAs. During the data analysis, the first ' 20µs of each pulse

are discarded due to the FIR filter ring-up. The total pulse length is adjusted accordingly

such that a sufficient amount of recorded data remains in each pulse. In general, the pulse

length should be as long as possible in order to maximize the usable data in each pulse.

As mentioned before, we use an active method to stabilize the JPA squeezing angles.

For that, we use three additional pulses in which only a single JPA is pumped. The pulses

are used to perform a reference-state reconstruction for each squeezed state produced by



3.3 Advanced setups for experiments with propagating microwaves 87

the JPAs. Subsequently, the obtained signal moments are used to calculate the squeezing

angles γexp
i for each JPA “on the fly” in order to obtain a respective angle correction

δγi = γext
i − γ

target
i which is then used to adjust the phase of the microwave pump tone

by 2δγi. Here, γtarget
i is the desired target squeezing angle of the i-th JPA. The factor of

two originates from the fact that a phase change of the pump tone by δγ translates to

a squeezing angle change of δγ/2 due to the definition of γ. The time of averaging per

reconstruction, i.e. the interval between angle corrections, varies between measurements

but is around the order of 1 min.





Chapter 4

Quantum correlations in single- and

two-mode squeezed microwaves

In this chapter, we focus on the experimental investigation of quantum correlations in

single-mode and two-mode squeezed (TMS) propagating microwaves. In Sec. 4.1, we

present our method for the generation of TMS states by superimposing two orthogonally-

squeezed states at a beam splitter. We show a full tomography of the resulting states in the

form of Wigner functions. The effect of finite time delays on the quantum correlations in

propagating squeezed states is investigated in Sec. 4.2, which is relevant for the application

of TMS states in quantum communication tasks. Finally, in Sec. 4.3, we study how noise

disturbs quantum correlations in propagating TMS states. We observe the effects of

sudden death of entanglement and quantum discord robustness towards noise injection.

4.1 Generation of frequency degenerate two-mode

squeezed states

In the microwave regime, there exist different techniques to generate TMS states. In

one approach, one utilizes Josephson junction-based superconducting circuits to generate

entanglement between different frequency-nondegenerate modes. In particular, such

TMS states have been generated by flux-pumping a dc-SQUID terminating a microwave

transmission line [180] or current-pumped Josephson parametric amplifiers [130]. Another

approach uses Josephson mixers to generate two-mode squeezing between two different

physical outputs [181]. The Josephson mixer is a nonlinear superconducting circuit which

allows to parametrically couple two superconducting resonators at distinct frequencies

by pumping at the sum frequency of both resonators [182]. In both cases, the entangled

modes of the TMS state are at different frequencies. In contrast, in our work, we use two

squeezed states incident to a 50:50 beam splitter to produce path-entangled TMS states

between frequency-degenerate output modes. Here, the entanglement exists between

the outputs modes which are at the same frequency. In the following, we discuss the

theoretical foundations for this process and present our experimental results.

89
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4.1.1 Path entanglement via a beam splitter

In general, path entanglement can be produced by sending a nonclassical state of light

to a symmetric beam splitter [183]. For example, one can use a squeezed state as such a

nonclassical resource. To theoretically describe the resulting state at the beam splitter

outputs, we start with two orthogonally squeezed single-mode states, with the same

squeezing levels, incident to the beam splitter. Without any loss of generality, we can

assume the first state to be squeezed in q direction, so that â1 = v̂1 cosh r− v̂†1 sinh r,
and the second state to be squeezed in p direction, so that â2 = v̂2 cosh r+ v̂†2 sinh r [cf.

Eq. (2.25)]. Here, v̂i is the annihilation operator describing the initial state at the input

of the squeezer and âi is the annihilation operator after it. Then, the outputs of the

symmetric beam splitter are given by the relation [16]

(
b̂1

b̂2

)
= 1√

2

(
1 1
−1 1

)(
â1

â2

)
. (4.1)

The quadratures of the two beam splitter outputs states are defined as q̂j = (b̂j + b̂†j)/2
and p̂j = (b̂j − b̂†j)/2i for j= 1, 2. In order to describe the squeezing in the produced TMS

state, we define new collective quadratures, corresponding to the sum and difference of

the original quadrature operators, q̂±= (q̂1 ± q̂2)/
√

2 and p̂±= (p̂1 ± p̂2)/
√

2. Finally, we

obtain q̂−= e−rq̂v1 and p̂+ = e−rp̂v2, where q̂v1 and p̂v2 are the corresponding quadratures

of the initial state incident to the squeezer. If this initial state is a vacuum state, we

obtain variances of the collective quadratures (∆q−)2 = (∆p+)2 = e−2r/4 and observe that

they are squeezed for any r > 0 [16]. We also introduce a two-mode squeezing level STMS

in decibel as the geometric mean of the two squeezed variances

STMS = −10 log10


√

(∆q−)2(∆p+)2

0.25

 . (4.2)

In this way, for ideal TMS states, the two-mode squeezing level is equal to the initially

used single-mode squeezing, STMS =S1 =S2. Furthermore, under the assumption of

indistinguishable local states, STMS > 0 implies inseparability of the bipartite states [184–

186].

In principle, in order to produce path entanglement, at least one state incident to the

beam splitter needs to be nonclassical [183]. Therefore, it is also possible to generate path

entanglement by sending only one squeezed state to the beam splitter. However, for such

a scenario the resulting state will possess residual local squeezing and, consequently, will

be unbalanced. In contrast, a balanced TMS state exhibits no self-correlations and locally

looks like a thermal state while preserving strong entanglement between the propagation

paths. Such balanced states are crucial for quantum communications as they allow to

achieve perfect security.
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4.1.2 Balancing of two-mode squeezed states

In order to generate the aforementioned balanced TMS states in an experiment, we use

the scheme shown in Fig. 4.1 (a). Two JPAs produce squeezed states with approximately

the same squeezing levels S1 ' S2 but orthogonal squeezing angles, γ1 = 45° and γ2 = 135°.
The states are sent through superconducting coaxial cables to the inputs of a hybrid ring

acting as a 50:50 beam splitter. Technical details on the experimental setup are described

in Sec. 3.3. We tune both JPA 1 and JPA 2 to working points with the same resonance

frequency of ω0/2π= 5.43 GHz. We reconstruct the propagating states at the hybrid ring

outputs using the reference-state method. In order to do so, we modulate the JPA pumps

with pulses from a data timing generator in a four-segment scheme. All segments have a

duration of T = 64µs. Each reconstruction for each pulse is based on 5× 109 raw samples

before demodulation of the signal.

As a first step for the balancing of the TMS states, we estimate the pump powers

for each JPA at which the produced squeezed states have roughly the same squeezing

level. These pump powers can be found from the points at which the corresponding

nondegenerate gains of both JPAs are equal. In Fig. 4.2 (a), we show a partly balanced

TMS state when both JPAs are pumped such that a state with a squeezing level of

approximately 7.4 dB is incident at the input of the beam splitter. In order to quantify

the balancing in the TMS states, we consider the squeezed variances σ2
s,i and antisqueezed

variances σ2
a,i for the local states at the beam splitter output. Here, i= 1, 2 denotes path

1 or path 2. For a perfectly balanced state, we expect σ2
s,i =σ2

a,i and, therefore, define

the variance ratio σ2
r =σ2

a,1/σ
2
s,1 · σ2

a,2/σ
2
s,2 as a measure of the imbalance. Note that σ2

r is

unity for a perfectly balanced state and increases with increasing imbalance. For example,

we obtain σ2
r = 1.76 for the partly balanced state in Fig. 4.2 (a). If we slightly adjust
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Figure 4.1: Scheme for the generation and reconstruction of TMS states. JPA 1 and JPA 2 produce

squeezed states with a similar squeezing level S1≈S2 but orthogonal squeezing angles. The

squeezed states are superimposed at a beam splitter in order to produce a TMS state at

the outputs. The quantum states are reconstructed at the inputs and outputs of the bean

splitter using a dual-path detector. The JPA pumps are modulated with pulses from a data

timing generator in a four-segment scheme (P1-P4). Each segment has the same duration T

specified in the text. The cryogenic part of the setup is marked with the blue box.
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Figure 4.2: (a,b) Local marginal distributions of the Wigner function of a TMS state for path 1 (top) and

path 2 (bottom). Panel (a) shows a partly balanced TMS state with residual self-correlations.

Panel (b) shows the best balanced state with negligible self-correlations. (c) Variance ratio

σ2
r =σ2

a,1/σ
2
s,1 · σ2

a,2/σ
2
s,2 as a function of the squeezing levels of the states produced by JPA 1

and JPA 2. The TMS state is balanced if σ2
r = 1. The inset shows the relation between the

JPA squeezing levels reconstructed at the beam splitter inputs and the corresponding pump

powers. The JPA resonance frequencies are ω0/2π= 5.43 GHz and the filter bandwidth is

Ω = 430 kHz

the squeezing level of JPA 1 by increasing the pump power, we obtain a better balancing

with σ2
r = 1.17, as shown in Fig. 4.2 (b). In general, we experimentally balance the TMS

states by fixing a specific JPA 2 squeezing level and sweep the squeezing level of JPA 1

by adjusting the corresponding pump power. At a specific pump power combination, we

obtain a minimum in σ2
r which indicates the best balancing for the chosen JPA 2 squeezing

level. A measurement for the balancing of TMS states with different squeezing levels is

shown in Fig. 4.2 (c). For high squeezing levels, we observe clear minima in σ2
r for fixed

JPA 2 squeezing. For lower squeezing levels, the minima become less pronounced because

the number of photons in the states is lower, decreasing the precision of the reconstruction.

As discussed in Sec. 2.1.2, the TMS state is an entangled bipartite state closely related

to the EPR state. We use the negativity kernel Nk to characterize the strength of the

path entanglement. This entanglement criterion is based on a partial transpose of the

covariance matrix and can be calculated from the covariance matrix of a Gaussian state.

We ensure that our experimental states are Gaussian by verifying that the cumulants of

order three or higher are vanishingly small. In Fig. 4.3 (a), we show Nk as a function of the

initial squeezing of JPA 1 and JPA 2. As expected, the negativity kernel, and therefore the
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Figure 4.3: (a) Negativity kernel and quantum discord of TMS states for different initial squeezing levels

of the states produced by JPA 1 and JPA 2. (b) Purity µTMS of TMS states as a function

of the purity µs of the initial squeezed states used to generate the TMS state. The JPA

resonance frequencies are ω0/2π= 5.43 GHz and the filter bandwidth is Ω = 430 kHz. Error

bars give the standard error of the mean. The solid line shows µTMS =µ2
s expected for a

lossless beam splitter.

entanglement strength, increases with increasing squeezing level. Aside from entanglement,

there exist more general quantum correlations. These can be quantified by the quantum

discord DA and are particularly interesting for mixed quantum states where entanglement

might vanish but other types of nonclassical correlations remain. Similar to Nk, quantum

discord DA increases with the squeezing level. We note that for a bipartite system,

quantum discord is, in general, not symmetric and two values exist for a given quantum

state, as discussed in Sec. 2.1.6. However, for our case of balanced TMS states, both values

of quantum discord show the same qualitative behavior. The nonclassical correlations

in the propagating TMS states are an essential resource for quantum communication

protocols. Since the entangled modes are physically separate, we can straightforwardly

link them to distant parties, for example, in order to distribute quantum entanglement

for further use. Apart from the strength of the nonclassical correlations, the purity of

the TMS states is another important quantity because it quantifies the mixedness, or the

contribution of noise, in our states. For an N -mode Gaussian state, the purity is given by

µ = 1
4N
√

det V
, (4.3)

where V is the covariance matrix of the N -mode Gaussian state. It is unity for a pure state,

i.e, a state which fulfills the Heisenberg uncertainty with an equal sign. In Fig. 4.3 (b),

we show the purity µTMS of the generated TMS state as a function of the purity µs of the

initial squeezed states. For a lossless beam splitter, and therefore a unitary entangling

operation, µTMS =µ2
s would be fulfilled. This dependence is nicely reproduced in our

experiments. Consequently, the losses of the hybrid ring only weakly affect the purity of

the TMS states.



94 Chapter 4 Quantum correlations in single- and two-mode squeezed microwaves

0 45 90 135 180
 (°)

0.0

0.5

1.0

1.5

2.0

qu
an

tu
m

 c
or

re
la

tio
ns

 (a
.u

.)

Nk
DA

(a) (b)

0 45 90 135 180
 (°)

-5

0

5

sq
ue

ez
in

g 
le

ve
l (

dB
) S1

S2

Figure 4.4: (a) Negativity kernel Nk and quantum discord DA as a function of squeezing angle difference

∆γ between JPA 1 and JPA 2. The dashed line marks the threshold for entanglement (Nk > 0).

(b) Local squeezing levels Si at the hybrid ring outputs for path 1 and path 2. The dashed line

marks the threshold for squeezing below vacuum (Si> 0). In both panels, the initial squeezing

level is ' 7.4 dB. The squeezed states are centered at a frequency ω0/2π= 5.323 GHz and

the filter bandwidth is Ω = 820 kHz. If not shown, the standard error of the mean is smaller

than the symbol size.

In order to produce a balanced TMS state, the squeezing angles of JPA 1 and JPA 2

need to be orthogonal. If we deviate from this condition, the produced states at the

beam splitter outputs are no longer ideal TMS states but exhibit residual single-mode

squeezing. In Fig. 4.4 (a), we investigate the effect of a squeezing angle difference ∆γ
between JPA 1 and JPA 2 for fixed γ2 = 135°. Here, the JPA pumps are modulated by

pulses with a duration of T = 40µs. For ∆γ= 0, we observe no entanglement (Nk < 0)

and nearly vanishing quantum discord DA, as expected for parallel squeezing angles. Both

Nk and DA increase up to a maximum at ∆γ' 90°. At this squeezing angle difference,

the balanced TMS states are produced. On further increasing ∆γ, the magnitude of

quantum correlations decreases. In Fig. 4.4 (b), the local squeezing levels at the hybrid

ring outputs are shown. Here, we observe a maximum squeezing below the vacuum limit

for ∆γ= 0°. For the case of ∆γ= 90°, the states, locally, do not possess any squeezing

and look like thermal states. This behavior shows, that it is possible to transfer local

squeezing into a nonlocal one (squeezing in collective nonlocal quadratures) and vice

versa by changing the relative squeezing angle ∆γ between the incident squeezed state.

From another perspective, one can define an invariant for general two-mode Gaussian

states which captures both local nonclassicality and quantum correlations between the

two modes [187]. The action of a lossless beam splitter allows for an exchange of local

and nonlocal correlations while keeping the invariant constant.

4.1.3 Wigner function of two-mode squeezed states

After investigating the magnitude of quantum correlations in TMS states, we now turn to

a full tomography of bipartite states at the hybrid ring outputs. For that, we reconstruct
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the full Wigner function of the TMS states. The JPA pumps are modulated by pulses with

a duration of T = 40µs. The Wigner function depends on four dimensions, corresponding

to the quadratures q1, p1, q2 and p2 in the case of bipartite states, which makes it difficult

to visualize. However, the Wigner function can be integrated over two certain quadratures

to obtain a marginal distribution which only depends on the two other quadratures.

Consequently, there exist six marginal distributions for any bipartite state. Examining

the marginal distributions allows us to gain a qualitative understanding of the two-mode

squeezing. Figure 4.5 (a) shows the reconstructed local states at the inputs and outputs

of the hybrid ring. As expected for a balanced TMS state, we do not observe any self-

correlations in the local states at the outputs if two squeezed states with squeezing levels

S1 ' S2 ' 7.9 dB but orthogonal squeezing angles (γ1 = 45° and γ2 = 135°) are incident to

hybrid ring. The output states in the self-correlated subspaces {q1, q2} and {q2, p2} are

thermal states with a mean photon number nth = 2.6. The correlations are only visible

in the cross-correlated subspaces {q1, p2} and {p1, q2}, as depicted in Fig. 4.5 (b). The

TMS state is entangled with the strength of entanglement characterized by the negativity

kernel Nk = 2.1, or the two-mode squeezing level STMS = 7.0 dB. It is also possible to

shift the cross-correlations to the other subspaces of the bipartite state while keeping the
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Figure 4.5: Experimental marginal distributions of the Wigner function of a balanced TMS state at the

frequency ω0/2π= 5.323 GHz. (a) Local states at the hybrid ring inputs and outputs. The

incident squeezed states have squeezing levels S1 ' S2 ' 7.9 dB and orthogonal squeezing

angles γ1 = γ2 + 90°. The states at the hybrid ring outputs show no local squeezing and locally

correspond to thermal states with a mean photon number nth = 2.6. (b) Marginal Wigner

function distributions in the cross-correlated subspace for the TMS state with the negativity

kernel Nk = 2.1 and the two-mode squeezing level STMS = 7.0 dB. The filter bandwidth is

Ω = 820 kHz.
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Figure 4.6: Experimental marginal distributions of the Wigner function of the state at the hybrid ring

output for the case of two parallel squeezed states at the frequency ω0/2π= 5.323 GHz. (a)

Marginal Wigner function distributions of local states at the hybrid ring inputs and outputs.

The incident squeezed states have squeezing levels S1 ' S2 ' 7.8 dB and parallel squeezing

angles γ1 = γ2. The hybrid ring outputs are locally squeezed. (b) Marginal Wigner function

distributions between the outputs show no squeezing in the cross-correlations. The filter

bandwidth is Ω = 820 kHz.

entanglement strength constant. This can be achieved by a simultaneous rotation of the

squeezing angles of both JPA 1 and JPA 2 such that they stay orthogonal to each other.

If the squeezing angles of JPA 1 and JPA 2 deviate from the strict orthogonality, the

produced state at the hybrid ring outputs becomes less entangled. In the extreme scenario

of parallel squeezing angles γ1 = γ2, shown in Fig. 4.6, the resulting state is not entangled

at all but only exhibits self-correlations in the form of local squeezing in the output paths.

There is no visible correlation in the cross-correlated subspaces. Therefore, the hybrid

ring output states are separable and are described by two locally squeezed states.

4.2 Finite-time quantum entanglement in propagating

squeezed microwaves

If TMS states are to be used in communication or sensing protocols, it is important to

investigate the fragility of their entanglement or other quantum correlations towards time

delays in one of the propagating paths in respect to the other. In practice, time delays

might appear due to many reasons such as a different electrical length of corresponding

paths or different data processing delays at the communicating parties. The effect of
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finite-time delays on propagating squeezed states is also interesting from a fundamental

point of view since we can gain insight into the underlying physical processes of relative

dephasing. Here, we first investigate the second-order correlation function and negativity

against time delays of locally squeezed states using our dual-path detector in order to

probe temporal correlations in the input states incident to the hybrid ring. Afterwards, we

apply a finite-time delay in one of the paths of a propagating TMS state and observe how

entanglement and quantum discord are affected by this asymmetric delay in the hybrid

ring output states.

Parts of the results presented in this subsection have been published by us in Ref. [39].

4.2.1 Finite-time correlations in single-mode squeezed states

In order to measure the second-order correlation function g(2)(τ) of squeezed states, we

employ the dual-path detector and delay one path relative to the other by τ during the

digital data processing as schematically shown in Fig. 4.7. For these measurements, we

turn off JPA 2 so that only one squeezed state is incident to the hybrid ring. In this

sense, our setup is similar to the Hanbury-Brown-Twiss experiment [86]. As described in

Sec. 2.1.7, the second-order correlation function g(2)(τ) in terms of the signal moments is

given by [87]

g(2)(τ) = 〈â
†(0)â†(τ)â(τ)â(0)〉
〈â†(0)â(0)〉2

= G(2)(τ)
G(1)(0)2 , (4.4)

where we introduced the first-order correlation function G(1)(τ) = 〈â†(0)â(τ)〉2 and the

unnormalized second-order correlation functions and G(2)(τ) = 〈â†(0)â†(τ)â(τ)â(0)〉. In

order to obtain G(1)(τ) and G(2)(τ) from the measured quadrature moments, we apply a

variant of the dual-path reconstruction [169, 170, 188]. As in the dual-path reconstruction,
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Figure 4.7: Scheme used for measurement of finite-time correlations of squeezed states. Only JPA 1 is

used so that a weak thermal state is present at the second input of the hybrid ring acting as

beam splitter. A time delay τ is implemented in path 2 during the digital data processing.

The pump of JPA 1 is modulated with pulses from a data timing generator in a two-segments

scheme (P1-P2). Both segments have the same duration T = 40µs. The cryogenic part of the

setup is marked with the blue box.
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we utilize the complex envelopes Ŝ1,2 = (Î1,2+iQ̂1,2)/√κ1,2 of path 1 and path 2, respectively,

in order to reconstruct the signal moments of the quantum states in the cryostat from the

measured quadrature moments 〈In1 Im2 Qk
1Q

l
2〉. Here, κ1,2 is the photon number conversion

factor for path 1 and path 2 referenced to the outputs of the hybrid ring, respectively (cf.

Sec. 3.1.4). Then, the first-order correlation function is given by [189]

G(1)(τ) = 2〈Ŝ†1(0)Ŝ2(τ)〉 . (4.5)

Furthermore, we can write the unnormalized second-order correlation function as [189]

G(2)(τ) = 4〈Ŝ†1(0)Ŝ†2(τ)Ŝ2(τ)Ŝ1(0)〉 − 2G(1)(0)〈V̂2(τ)V̂ †2 (τ)〉−
2G(1)(0)〈V̂1(0)V̂ †1 (0)〉 − 4〈V̂1(0)V̂ †1 (0)〉〈V2(τ)V †2 (τ)〉 , (4.6)

where the first term is related to measured quadratures including the added noise by the

amplification chains and the last three terms account for this added noise. The added

noise in each path is given by

V̂1,2 =
√

1
G1,2

(√
G1,2 − 1ĥ1,2 + m̂1,2

)
, (4.7)

where G1,2 and ĥ1,2 represent the total gain and the added noise of the amplification

chains, respectively, and m̂1,2 is the added noise of the IQ-mixer in both paths.

First, we set the time delay to τ = 0 and use JPA 1 to produce squeezed states with

different squeezing levels S, and, respectively, different photon numbers n. The JPA

resonance frequency is set to ω0/2π= 5.323 GHz and the filter bandwidth is Ω = 820 kHz.

The dual-path detection scheme allows us to calculate g(2)(0) of the input state from
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Figure 4.8: Normalized second-order correlation function g(2)(0) of squeezed states at the frequency

ω0/2π= 5.323 GHz, where n is the photon number 〈â†â〉 of the squeezed states. The dashed

line marks the expected behavior of g(2)(0) for a pure squeezed state. The solid line marks

the theoretical squeezing level S of a pure squeezed state with photon number n. The filter

bandwidth is Ω = 820 kHz. If not shown, the standard error of the mean is smaller than the

symbol size.
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the auto- and cross-correlations of the output paths. Each measurement consists of

6× 109 raw data samples. In Fig. 4.8, we plot g(2)(0) for a zero time delay between the

paths as a function of n. We also show the theoretically expected squeezing level S of a

pure squeezed state with photon number n. The dependence of g(2)(0) fits nicely to the

expected behavior for a pure squeezed state, g(2)(0) = 3 + 1/n (see Tab. 2.1). In principle,

the experimentally realized squeezed states are not pure and possess a non-zero thermal

population. We expect g(2)(0) = 2 for any thermal state. Therefore, we conclude that

the thermal population of the experimental squeezed states only marginally affects the

statistics which remains close to the one of a pure squeezed state. We note that g(2)(0)
of squeezed states is super-Poissonian and higher than the one of a thermal state. This

can be understood by recalling that photons are created in pairs during the parametric

process used to generate the squeezed state. Consequently, it is likely to find two photons

bunched together which is reflected by g(2)(0)> 1.

After investigating the second-order correlation function for a zero time delay, we now

proceed with finite-time delays τ in order to probe the temporal envelope of correlations

in squeezed states. The experimental parameters are the same as for τ = 0 and the

respective results are shown in Fig. 4.9 (a). We observe a super-Poissonian and bunched

character of the squeezed states indicated by g(2)(0)> 1 and g(2)(τ)<g(2)(0), respectively.

Squeezed states with lower squeezing possess a higher g(2)(τ). In particular, we can notice

a significant scatter in g(2)(τ) for low squeezing levels. This is caused by low photon

numbers of the signal. First, the low photon numbers lead to a low signal-to-noise ratio

which increases the scatter in the measured data. Second, g(2)(τ) is inversely proportional

to the photon number and, thus, very sensitive to scatter in the low photon regime. We

can theoretically describe our results using [88]

g(2)(τ) = 1 + sinc2(Ωτ)1 + 4σ2
s (2σ2

s − 1) + 4σ2
a(2σ2

a − 1)
(1− 2σ2

s − 2σ2
a)2 , (4.8)

where σ2
s and σ2

a are the squeezed and antisqueezed variances, respectively, Ω is the

smallest bandwidth in the setup, and sinc(x) = sin(πx)/(πx). In our case, the bandwidth

is defined by a low-pass FIR filter after digital down-conversion with a filter bandwidth

Ω = 820 kHz. We model the squeezed states realized in our experiments as single-mode

squeezed thermal states, meaning that a small thermal state with a photon number nth is

squeezed. In this case, we can write [190]

σ2
s = (1 + 2nth)e−2r/4 and σ2

a = (1 + 2nth)e2r/4 , (4.9)

where r is the squeezing factor of the JPA and nth is the number of noise photons added

by the JPA referred to the input. Using the latter expression for the variances, we can
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Figure 4.9: (a) Second-order correlation function g(2)(τ) of squeezed states fitted with Eq. (4.10). (b)

Negativity kernel Nk(τ) fitted with Eq. (4.11). Symbols depict experimental data and solid

lines are the corresponding fits. Fitting parameters are the same for both panels, where S is

the fitted squeezing level and nth is the fitted noise photon number. The squeezed states with

experimental squeezing levels Se are generated at the frequency ω0/2π= 5.323 GHz and the

experimental filter bandwidth is Ω = 820 kHz. If not shown, the standard error of the mean is

smaller than the symbol size. The experimental data in this figure is the same as in Ref. [39].

rewrite Eq. (4.8) as

g(2)(τ) = 1 + sinc2(Ωτ)1− 2(1 + 2nth) cosh(2r) + (1 + 2nth)2 cosh(4r)
[(1 + 2nth) cosh(2r)− 1]2

. (4.10)

From the latter equation, we observe that r and nth do not influence the temporal shape

of g(2)(τ) but only define the value at zero delay g(2)(0). The temporal shape of g(2)(τ) is

solely defined by the filter bandwidth Ω. We note that we approximate the digital FIR

filter with an ideal low-pass filter, i.e. a filter with a sharp cut-off frequency in Eqs. (4.8)

and (4.10), which results in the sinc-dependence versus τ . From fitting of Eq. (4.10) to

our experimental data, we obtain a fitted filter bandwidth Ωfit' 750 kHz which coincides

well with the FIR filter bandwidth Ω = 820 kHz. The fits and resulting parameters are

summarized in Fig. 4.9 (a).

Even though the second-order correlation function provides information about the

statistics of propagating quantum microwaves, it does not reveal directly whether or not

quantum correlations exist between the outputs of the hybrid ring. In order to obtain

this information, we directly measure the finite-time behavior of quantum entanglement

between the output paths of the hybrid ring. As before, we use the negativity kernel Nk

to quantify the strength of entanglement but now include a time delay in one path to

obtain Nk(τ). For our general scenario of two squeezed states incident to a beam splitter,
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we can write for the negativity kernel of the resulting TMS state [39]

Nk(τ) = −1
2 + 1

2 {(n1 − n2)2 + ñC + [ñC − (n1 + n2 + 1)2]sinc2(Ωτ)− ñD|sinc(Ωτ)|}1/2 ,

(4.11)

where ñ≡ (1 + 2n1)(1 + 2n2), C ≡ cosh2(r1 + r2), D≡ sinh(2r1 + 2r2). Here, r1 (r2) and

n1 (n2) are the squeezing factor and noise photon number of the squeezed state produced

by JPA 1 (JPA 2), respectively. We set r2 =n2 = 0 and n1 =nth for the case of a single

squeezed state incident to the hybrid ring. The experimentally obtained values and fits of

Nk(τ) for a single squeezed state incident to the hybrid ring are depicted in Fig. 4.9 (b).

In contrast to g(2)(τ), where only Ω defines the temporal shape, we observe a clear

dependence of Nk(τ) on the squeezing level S= − 10 log10[(1 + 2nth)e−2r]. The maximum

delay τd, at which entanglement is still present in the bipartite state, decreases with

increasing squeezing level. This observation can be intuitively understood by considering

that the correlations in squeezed states exist between photon pairs generated during

the parametric process inside the JPA. With an increased squeezing level, the number

of such correlated photon pairs in the state is increased. Consequently, a time delay

in one path will cause a temporal overlap of uncorrelated photons leading to vanishing

entanglement. However, for states with lower squeezing, the density of photon pairs is

lower. Consequently, uncorrelated photons only overlap after a bigger time delay when

compared to a scenario with high density of photons. From the fit, we observe that the

noise nth added by the JPA increases for higher squeezing levels Se. This effect can be

explained by stronger required pump powers to reach these values of Se. Consequently,

the microwaves fields inside the JPA increase. This can cause higher-order effects [177]

and lead to an increased coupling to loss channels which ultimately lead to an increase of

nth.

4.2.2 Entanglement strength versus delay in two-mode squeezed

states

We now use both JPA 1 and JPA 2 to produce balanced TMS states after the hybrid ring,

as described in Sec. 4.1. In this way, we can reach higher entanglement strengths and avoid

residual local squeezing in the paths. The experimental scheme is depicted in Fig. 4.10.

The experimentally measured dephasing of TMS states for different input squeezing

levels and two filter bandwidths, 430 kHz and 820 kHz, is shown in Fig. 4.11. We find an

excellent agreement between the experiment and fit. For fitting, we use Eq. (4.11) under

the assumption of equal squeezing factors r1 = r2 = r and equal noise photon numbers

n1 =n2 =nth of both JPAs. The bandwidth Ω is taken to be the corresponding FIR

bandwidth, such that only the parameters r and nth are fitted. We again observe a strong

dependence of the dephasing time τd on the initial squeezing level, similar to the case

with a single squeezed state incident to the hybrid ring. With a higher initial squeezing
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Figure 4.10: Scheme for measurement of finite-time correlations of TMS states. A time delay τ is realized

in path 2 during the digital data processing. The JPA pumps are modulated with pulses

from a data timing generator in a four-segment scheme (P1-P4). Each segment has the

same duration T = 40µs. The cryogenic part of the setup is marked with the blue box.

level, and accordingly a larger negativity kernel, the entanglement vanishes faster in time

corresponding to shorter τd. Additionally, we note that increasing the filter bandwidth

Ω also leads to a decrease in the dephasing time τd as larger bandwidths correspond to

shorter times in time domain. Both of these effects are captured by Eq. (4.11). In the

extreme case of an absent digital filter, we would be limited by the JPA bandwidth which

is on the order of ∆f ' 5 MHz in our case. These observations imply that for applications

of propagating microwave TMS states in quantum communication protocols, one might

need to balance the entanglement strength as well as the bandwidth against possible time

delays.

Furthermore, for application scenarios, the maximal rate of transferred entangled

bits (ebits) is an important quantity. We can estimate this rate by quantifying the

entanglement of the TMS state in terms of the entanglement of formation EF for which

a lower bound can be calculated under the assumption of Gaussian states [191]. For

EF = 1, the entanglement in a TMS state corresponds to one pair of maximally entangled

qubits [192, 193]. Without a digital filter, we obtain EF = 0.86, corresponding to Nk = 1.08,

in the bandwidth ∆f defined by the JPA bandwidth. Consequently, we arrive at the

upper bound on the possible entangled bit-rate of 4.3× 106 ebits · s−1. This number sets a

maximum on the information transfer capacity of any quantum communication protocol

exploiting these particular propagating microwave TMS states as the entangled resource.

4.2.3 Quantum discord versus delay in two-mode squeezed states

Apart from the finite-time behavior of entanglement in TMS states, we can also investigate

the temporal dependence of quantum discord. Here, we use the same measurement data

as presented in the last subsection and use Eq. (2.43) to calculate quantum discord

DA from the measured covariance matrix V of propagating TMS states. As shown in

Fig. 4.12, we observe a similar behavior of DA(τ) when compared to Nk(τ). In both
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Figure 4.11: Negativity kernel Nk(τ) with a finite-time delay τ in path 2 of the dual-path detector.

Panels (a,b) and (c,d) show data for a filter bandwidth of Ω = 430 kHz and Ω = 820 kHz,

respectively. Red lines mark the boundary between entangled (Nk > 0) and separable

(Nk < 0) regions. Symbols in panels (b,d) mark experimental data and solid lines are the

corresponding fits using Eq. (4.11). S is the fitted squeezing level and nth is the fitted noise

photon number. Se is the experimental squeezing level of JPA 1 and JPA 2 at the frequency

ω0/2π= 5.323 GHz. If not shown, the standard error of the mean is smaller than the symbol

size. The experimental data in this figure is the same as in Ref. [39].

cases, the quantum correlations decrease with increasing τ . Also, higher initial quantum

correlations and a larger bandwidth cause a faster decay of the correlations. However,

one important difference is that here there exists no finite dephasing time τd for quantum

discord DA. We observe DA> 0 for all measured time delays τ . Consequently, quantum

discord is asymptotically resilient to finite-time delays which makes it a promising resource

in quantum communication tasks. In order to theoretically describe our results, we use

the formalism described in detail in the supplementary material of Ref. [39]. Then, the

covariance matrix of a TMS state with a delay of τ in one path is given by

V = 1 + 2nth

4


cosh 2r 0 sinc(Ωτ) sinh 2r 0

0 cosh 2r 0 −sinc(Ωτ) sinh 2r
sinc(Ωτ) sinh 2r 0 cosh 2r 0

0 −sinc(Ωτ) sinh 2r 0 cosh 2r

 ,
(4.12)
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Figure 4.12: Quantum discord DA(τ) with a finite-time delay τ in path 2. Panels (a) and (b) show

data for a filter bandwidth of Ω = 430 kHz and Ω = 820 kHz, respectively. Symbols mark

experimental data and solid lines are the corresponding fits. S is the fitted squeezing level

and nth is the fitted noise photon number. Se is the experimental squeezing level of JPA 1

and JPA 2 at the frequency ω0/2π= 5.323 GHz. If not shown, the standard error of the mean

is smaller than the symbol size. Fitting parameters are the same as for the corresponding

data in Fig. 4.11.

where Ω is the bandwidth and we assume equal squeezing factors r1 = r2 = r and noise

photon numbers n1 =n2 =nth for JPA 1 and JPA 2. Furthermore, we use orthogonal

squeezing angles, γ1 = 0 and γ2 = 90°. Note, that Eq. (4.12) is in the standard form of a

covariance matrix of a Gaussian state. Any covariance matrix of a Gaussian state can

be transformed into such a standard form [75]. Also, other orthogonal combinations of

squeezing angles of JPA 1 and JPA 2, γ1 = γ2 + 90°, would influence the entries in the

covariance matrix which encode the cross-correlations while the local states in both paths

remain unchanged. However, the strength of quantum correlations is not influenced by

different γi as long as they are orthogonal. This fact allows us to fit DA with the generic

covariance matrix given in Eq. (4.12). Again, only r and nth are fitted since we set the

bandwidth Ω to the FIR filter bandwidth. We observe an excellent agreement between

experiment and theory for both experimental filter bandwidths. The theory confirms the

asymptotic behavior of quantum discord against finite-time delays.

4.3 Two-mode squeezed states in a noisy environment

In the last subsection of this chapter, we investigate propagating microwave TMS states

in noisy environments. The entanglement behavior of propagating microwave states under

the effect of external noise has not been experimentally studied before. A temperature

of 350 mK corresponds to a thermal population of one photon at 5 GHz. Since it is

technologically demanding to achieve cryogenic temperatures around hundred millikelvin

over long distances, the effect of noise on the quantum correlations in TMS states is

very relevant for applications of propagating microwaves in quantum communication.

Furthermore, the robustness of quantum correlations against environmental noise is
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Figure 4.13: (a) Scheme for asymmetric noise injection into one path of a TMS states. The JPA pumps

are modulated with pulses from a data timing generator in a five-segment scheme (P1-

P5). Segments P1-P4 have the same duration T = 40µs and segment P5 has a duration

of T = 34µs. The noise is generated at room temperature by either (b) amplified thermal

radiation of a 30 dB attenuator or (c) an arbitrary-waveform generator (AWG). The noise is

either pulsed directly with a mixer [panel (b)] or via the up-conversion signal [panel (c)].

The cryogenic part of the setup is marked with the blue box.

interesting for fundamental studies of the physical natural of quantum correlations.

We use the scheme shown in Fig. 4.13 (a) where balanced TMS states are subject to

injected noise in one path. This scenario could be relevant for quantum communication

protocols where one part of the TMS states is stored locally in a quantum memory and

the other one is sent over a noisy channel. In our experiments, the noise is generated in

two distinct ways. In the first method, we employ a 30 dB attenuator, whose temperature

is stabilized to ' 20 ◦C, to act as a black body radiator. The emitted thermal radiation

is subsequently amplified and filtered before it is sent into the cryostat. We control the

mean number of injected noise photons nn with a step attenuator after amplification

at room temperature. In the second method, we use an arbitrary waveform generator

(AWG) to generate synthesized noise with a specified bandwidth of 160 MHz and an

approximate Gaussian amplitude distribution with a specified crest factor of 7.0. The crest

factor defines the ratio of the peak amplitude to the root-mean-squared amplitude of the

waveform. The noise is up-converted to our reconstruction frequency ω0/2π= 5.323 GHz
with a local oscillator at frequency ωLO/2π= 5.354 GHz and filtered before it is sent into

the cryostat. We detune the local oscillator from ω0 such that the spurious local oscillator

signal after the mixer is filtered by the FIR filter during the digital data processing. Both

methods are depicted Fig. 4.13 (b,c). In the cryostat, the noise is coupled to one path of

a TMS state by a directional coupler with a coupling ratio of β'−20 dB.

First, we experimentally confirm that we can add noise to path 2 using the two described
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Figure 4.14: (a) Added thermal photons nn as a function of step-attenuator transmission. (b) Added

noise photons nn from synthesized noise as a function of squared peak-to-peak voltage U2
pp.

Symbols mark experimental data and solid lines are linear fits.

methods above. We achieve this by applying different noise powers to the coupled port of

the directional coupler and reconstructing the resulting state in path 2. In Fig. 4.14 (a),

we observe a clear linear dependence of the added thermal noise photons nn in path 2 after

the directional coupler on the step attenuator transmission. Furthermore, we measure

g(2)(0) = 2.06± 0.08 of the corresponding noise state which, within the error bar, coincides

with the expected second-order correlation function of a thermal state, g
(2)
th (0) = 2 (see

Tab. 2.1). Due to the strong attenuation inside the cryostat, we are only able to inject

nn . 1.2 noise photons to path 2. Using the AWG to generate synthesized noise, we

can reach higher photon numbers, as shown in Fig. 4.14 (b). The dependence between

reconstructed photons nn and squared peak-to-peak voltage U2
pp of the generated noise is

linear up to nn' 3. For higher values, the added nn stays below the linear trend which is

most likely attributed to compression effects during the frequency up-conversion of the

noise. Additionally, we find g(2)(0) = 1.92± 0.02 which is lower than the expected value

for Gaussian noise. We attribute the slightly lower value of g(2)(0) to the fact that the

synthesized noise is not perfectly Gaussian as a result of the finite crest factor of 7.0 which

should be infinite for a perfect Gaussian distribution.

After confirming that we can add noise to path 2, we now use both JPA 1 and JPA 2 in

order to investigate propagating microwave TMS states as a function of the mean number

of injected noise photons. The filter bandwidth for these measurements is Ω = 430 kHz.

Figures 4.15 and 4.16 show the measured effect of added thermal noise and synthesized

noise to the TMS state, respectively. We again quantify the strength of entanglement by the

negativity kernel Nk. Interestingly, for any initial entanglement strength, the entanglement

vanishes for nn' 1. This phenomenon is called sudden death of entanglement and has been

originally found for qubit states [194, 195]. Later, the sudden death of entanglement has

been theoretically investigated also for Gaussian states [196]. However, no experimental

evidence for sudden death of entanglement in Gaussian microwave states has been reported

so far. For TMS states, the entanglement manifests in strong cross-correlations between

certain quadratures in both paths. In order for entanglement to occur, these correlations
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Figure 4.15: (a) Negativity kernel Nk and (b) quantum discord DA as a function of added thermal

noise to path 2 of a propagating TMS state at the frequency ω0/2π= 5.323 GHz. The filter

bandwidth is Ω = 430 kHz. Symbols mark experimental data and solid lines are fits. Fitting

parameters are the same for both panels. S is the fitted squeezing level and nth is the fitted

noise photon number. If not shown, the standard error of the mean is smaller than the

symbol size.

need to have a certain strength when compared to the variances of the local states. The

injection of noise in one path via a directional coupler only marginally influences the

strength of cross-correlations but increases the local variance in path 2 proportional to

the injected noise photons. If the local variance is increased too much by the noise, when

compared to the cross-correlations, entanglement vanishes. For our case of injected noise

into one path of a propagating TMS state, this sudden death of entanglement occurs

at ' 1 injected noise photon even though the noise is added gradually and the TMS state

asymptotically loses its purity. In contrast, we find that quantum discord DA does not

vanish at a specific added noise photon number but is asymptotically resistant to noise.

This property of quantum discord makes it a very intriguing resource for certain types

of quantum communication protocols. This asymptotic robustness of quantum discord

against environmental influences has also been predicted theoretically [196, 197] whereas

experimental evidence for Gaussian microwave states is missing in literature. Furthermore,

TMS states with initially higher values of DA remain higher under the addition of noise.

We also note that both investigated noise types have a similar influence on Nk and DA.

In order to theoretically describe our results, we use a similar approach as in the

derivation of Eq. (4.12). The injection of noise in path 2 after the hybrid ring is modeled

by an asymmetric beam splitter with input-output relations given in Eq. (2.110). The

asymmetric beam splitter describes the action of the directional coupler which is used in

the experiments for the purpose of adding noise to path 2. Again, under the assumption

of equal parameters of JPA 1 and JPA 2, r1 = r2 = r and n1 =n2 =nth, but orthogonal

squeezing angles, γ1 = 0 and γ2 = π/2, we obtain the covariance matrix after the injection
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Figure 4.16: (a) Negativity kernel Nk and (b) quantum discord DA as a function of synthesized noise

added to path 2 of a propagating TMS state at the frequency ω0/2π= 5.323 GHz. The filter

bandwidth is Ω = 430 kHz. Symbols mark experimental data and solid lines are linear fits.

Fitting parameters are the same for both panels. S is the fitted squeezing level and nth is

the fitted noise photon number. If not shown, the standard error of the mean is smaller

than the symbol size. The insets show a zoom-in with the same range as in Fig. 4.15.

of noise in path 2 in the form

V =
(

A C
CT B

)
, (4.13)

where

A = (1 + 2nth) cosh 2r
4 I2 , B = (1 + 2nth)τ cosh 2r + (1 + 2ñ)(1− τ)

4 I2 ,

C = (1 + 2nth)
√
τ sinh 2r

4 I2 .

(4.14)

Here, τ = 0.99 is the transmissivity of the directional coupler, and ñ is the noise photon

number at the input of the coupled port of the directional coupler. The added noise

photons to path 2 are given by nn = (1− τ)ñ. We now use Eq. (4.13) to simultaneously fit

the experimentally measured negativity kernel and quantum discord. We obtain a good

quantitative agreement between data and theory [198]. However, in particular for the

highest squeezing level, the experimental squeezing level Se and fitted squeezing level S

deviate from each other. This observation can be explained by the fact that the statistical

errors of Se, Nk and DA are increased for increasing squeezing levels which can lead to a

mismatch between experiment and theory.

Summary

In conclusion, we have studied the generation of balanced TMS states and investigated the

effect of finite-time delays as well as environmental noise on the TMS states in this chapter.

For the generation of TMS states, we have employed two JPAs producing squeezed states

with orthogonal squeezing angles and a hybrid ring. The reconstruction of the bipartite
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quantum states in terms of the signal moments, has allowed us to perform full tomography

of the TMS states and determine their bipartite Wigner functions and their covariance

matrices. Subsequently, one path of the TMS states is delayed by a finite time to probe

the relative dephasing in propagating microwave TMS states. We discover a clear effect

of the squeezing level as well as the detection bandwidth on the maximally acceptable

time delay until the TMS states become disentangled. Furthermore, we have studied

asymmetric noise injection in the TMS states and have found that entanglement always

vanishes after injection of approximately one noise photon, independent of the initial

entanglement strength. In addition, we have studied more general quantum correlations,

quantified by quantum discord, under the effect of finite-time delays and injected noise.

Here, an asymptotic robustness of quantum discord has been observed.





Chapter 5

Remote state preparation of squeezed

microwave states

In this chapter, we focus on remote state preparation (RSP) which is a fundamental

quantum communication protocol. In RSP, the goal is to prepare a known quantum

state at a distant location by employing entanglement and classical communication. In

Sec. 5.1, we show a successful implementation of deterministic RSP in the microwave

regime with continuous variables. In our approach, we utilize propagating two-mode

squeezed microwave states as the entangled resource. In Sec. 5.2, we investigate quantum

correlations in RSP and present the evolution of correlations during the protocol. Finally,

we connect our scheme to the secure one-time pad and show how one can securely transmit

quantum states using RSP in Sec. 5.3.

5.1 Quantum remote state preparation of propagating

microwaves

In this section, we realize deterministic continuous-variable RSP by creating Gaussian

squeezed states with adjustable squeezing level and squeezing angle over a macroscopic dis-

tance of 35 cm. We investigate the phase space of remotely preparable squeezed states and

find a good agreement with our model calculations based on the input-output formalism.

Since the generation and manipulation of Gaussian states is well understood [15], they

offer a viable option for building future intracity low-temperature quantum networks [199].

The results presented in this section have been published by us in Ref. [47]. Parts of

the text and figures are adapted from this reference.

5.1.1 Background and experimental realization

In quantum technologies, an efficient and secure exchange of quantum information between

quantum nodes in a network plays a crucial role [143] as already discussed in Sec. 2.3. One

of the first protocols realizing such a task was quantum teleportation, where an unknown

111
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quantum state is safely transferred from one party to another by using a pre-shared

entangled resource and classical communication [44, 134]. In a slightly different scenario,

where one party has full classical knowledge about a to-be-communicated quantum state,

remote state preparation (RSP) can be used to remotely create this quantum state

by employing similar tools as in quantum teleportation [40–43]. As compared to the

best known classical methods, both protocols provide a quantum advantage as they

require a smaller amount of classical information in the feedforward signal in order to

communicate a desired quantum state [132]. However, in contrast to quantum teleportation,

RSP allows for a nontrivial trade-off between the amount of classical communication

and entanglement necessary for a successful protocol [42]. Furthermore, the use of an

entangled resource allows RSP to operate perfectly secure [132]. RSP is already extensively

investigated both theoretically and experimentally for discrete-variable systems [200–

202]. However, for continuous-variable systems, only conditional schemes have been

experimentally implemented [45, 46] which means that deterministic implementations

with continuous-variables are still lacking. At the same time, quantum communication

based on continuous-variables is a field of intense research [15, 16] investigating, e.g.,

quantum key distribution [20], quantum teleportation [17, 18], dense coding [21], and

free-space quantum communication [22].

The majority of the previously mentioned implementations have been performed in the

optical domain. On the other hand, quantum communication in the microwave domain is

motivated by the tremendous progress in the area of quantum information processing with

superconducting circuits. In particular, the development of superconducting multi-qubit

processors [203, 204], operated at gigahertz frequencies has been highly successful. In

our work, we promote an approach of quantum communication directly in the microwave

regime based on propagating squeezed states. Since these states have the same frequency

and are generated by technology platforms already used for superconducting quantum

computers, there is no mismatch between communication and data processing units. This

approach is expected to be useful for short and medium distances, where superconducting

waveguides can be used.

In contrast to already demonstrated quantum state transfer protocols for discrete-

variable systems with superconducting circuits [12, 13], our protocol does not directly

send an existing target quantum states to a receiving party. Instead, in RSP, the final

squeezed state only appears at the receiving party. Furthermore, entanglement is required

for a successful remote preparation of a quantum state, whereas in quantum state transfer,

the target quantum state is directly sent via a quantum channel without the requirement

of any entanglement. In addition, the preshared entanglement in RSP enables the secure

communication between parties.

A scheme of our experimental implementation of RSP using continuous-variable mi-

crowave states is depicted in Fig. 5.1 (see also Ref. [205]). We use flux-driven Josephson

parametric amplifiers (JPAs) as the key elements for the generation and manipulation
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Figure 5.1: (a) General scheme for RSP. Alice performs a projective measurement on her part of an

entangled state and uses the measurement result to encode the known target state |Ψ〉 in

a feedforward signal (classical communication). Bob obtains the target state by applying

a unitary local operation on his part of the entangled state using the feedforward signal.

(b) Schematic of experimentally implemented RSP using propagating microwaves. A two-

mode squeezed state serves as entangled resource. Alice decides on the prepared state by

adjusting the degenerate gain Gf and amplification angle γf of JPA 3. The feedforward is

finalized with a directional coupler on Bob’s side. The JPA pumps are modulated with pulses

from a data timing generator in a five-segment scheme (P1-P5). Segments P2-P4 serve for

the stabilization of the squeezing angles of JPA 1-JPA 3, respectively. All JPAs are turned on

in segment P5. Segments P1, P4, P5 have a duration T = 160µs and P2, P3 have duration

T = 80µs.

of squeezed microwave states [107, 108, 113]. We operate all JPAs in the degenerate

regime at the frequency ω0/2π= 5.435 GHz with a pump frequency ωp = 2ω0. The task

of JPA 1 and JPA 2 is to generate propagating squeezed states which are incident to an

entangling beam splitter. The resulting balanced two-mode squeezed (TMS) [39, 181]

states have a two-mode squeezing level of STMS = 7.1 dB and an entanglement strength

characterized by the negativity criterion of Nk = 2.2. Details on the experimental genera-

tion and characterization of the TMS states are given in Sec. 4.1. The negativity kernel Nk

quantifies the strength of nonlocal correlations present between field quadratures of signals

propagating along different beam splitter output paths. Additionally, the balanced TMS

states have negligible local squeezing within each path. In other words, the microwave

signals propagating on the two paths locally look like thermal states with, nevertheless,

strong entanglement between them.

In the next step, we employ the balanced propagating TMS states as a resource

for remotely preparing the target squeezed microwave states. For this purpose, the
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TMS states are continuously distributed between two parties, Alice and Bob, who are

separated by 35 cm of superconducting cable. Alice generates a feedforward signal carrying

the classical information about her choice on what quantum state is to be remotely

prepared at Bob’s side. Finally, Bob displaces his part of the resource state proportionally

to the communicated signal by using a directional coupler with a fixed coupling of

β'−15 dB [64, 131]. We experimentally generate the feedforward signal with JPA 3

operated as a phase-sensitive amplifier at Alice’s side. She uses it to choose and strongly

amplify a certain quadrature of the incoming TMS states. Note that, in contrast to

the other JPAs, it does not matter whether the outgoing feedforward signal from JPA 3

is squeezed or not (see Sec. 5.2.2 for details). The essential classical information, as

required for a successful RSP, is encoded in the large instantaneous amplitude of the

phase-sensitively amplified field quadrature. For ideal RSP, the coupling β should be

vanishingly small. However, since β needs to be approximately compensated by the

degenerate gain of JPA 3, we are limited to a certain range of β values due to the noise

performance and 1-dB compression point of JPA 3.

5.1.2 Tomography of remotely prepared states

Figure 5.2 (a) shows the experimental performance of the RSP protocol as a function of

the JPA 3 degenerate gain Gf for a fixed JPA 3 amplification angle γf = 0°. The latter is

defined as the deviation from the angle of the optimal working point at which we achieve

the highest purity in the remotely prepared states. We fully characterize these states in

terms of their squeezing level Srp, antisqueezing level Arp, and squeezing angle γrp. We

clearly observe squeezing levels of up to Srp = 1.6± 0.1 dB in the final states at the output
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Figure 5.2: (a) Squeezing level Srp (circles), antisqueezing level Arp (diamonds), and squeezing angle

γrp (triangles) of remotely prepared states as a function of the JPA 3 degenerate gain Gf at

fixed angle γf = 0°. Symbols mark experimental data and lines show the corresponding fit

according to Eqs. (2.114)–(2.116). If not shown, the standard error of the mean is smaller

than the symbol size. (b,c) Reconstructed Wigner functions of the remotely prepared states

for the optimal and one of the non-optimal JPA 3 gains as marked by the dashed lines in

panel (a).
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Figure 5.3: (a-c) Srp, γrp, and Arp of the remotely prepared states as a function of the feedforward

parameters. Panels (d-f) show a joint fit of the three quantities (Srp, Arp, γrp) to the

corresponding data in panels (a-c)as described in the text, respectively. The green lines in

panel (a) mark the threshold Srp≥ 0 dB for squeezing below the vacuum limit. The optimal

point is marked by the blue star. Dotted lines show the data and fit shown in Fig. 5.2.

of the displacer near the optimal JPA 3 gain of Gf ' 13 dB [see Fig. 5.2 (b)]. Srp decreases

and the states even become non-squeezed upon moving away from the optimal JPA 3

gain as shown in Fig. 5.2 (c). The remotely prepared states can be encoded not only

by varying Gf but also by changing γf . The latter leads to a different quadrature in the

resource TMS states being projected, and accordingly, to a different state being remotely

prepared. Srp, γrp and Arp of the remotely prepared states, obtained by sweeping both Gf

and γf , are shown in Fig. 5.3 (a-c), respectively.

We theoretically describe our experiment by a model based on the input-output trans-

formations for every component in the setup including transmission losses. In particular,

we define χ1 as the total loss between JPA 1 (or JPA 2) and JPA 3, and χ2 as the total

loss between JPA 1 (or JPA 2) and the directional coupler. This definition implies that

all path losses between JPA 1 or JPA 2 and any component after the beam splitter are

assumed to be equal. Additionally, we assume imperfect JPAs adding a certain amount of

noise with mean thermal photon numbers ni (i∈{1, 2, f}) to the JPA input signal. Here,

nf is the noise photon number of JPA 3. From theory (cf. Sec. 2.3.2), the RSP protocol

is expected to work optimally for Gf = τ/(1− τ) and γf = 0°, where τ = 1− 10β/10 is the

transmissivity of the directional coupler. At this optimal point and under the condition
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Figure 5.4: Schematic for the origin of the JPA cross-talk. The JPA 3 pump signal (orange) is leaking

backwards through the setup to JPA 1 and JPA 2 since the circulator and beam splitter have

only small isolation at the pump frequencies around 11 GHz. The cross-talk to JPA 1 is

dominant due to worse isolation of neighboring ports in the hybrid ring..

STMS≥3 dB, we obtain the squeezed variance of the remotely prepared state,

σ2
s = 1

4
[
2(1 + 2n)e−2r(1− χ)τ + 2(χ+ nf)τ

]
. (5.1)

In this simplified expression, we assume equal noise photon numbers n1 =n2 =n and

squeezing factors r1 = r2 = r of JPA 1 and JPA 2 as well as equal losses χ1 =χ2 =χ. More

details of our theory model can be found in Sec. 2.3.2. Equation (5.1) indicates that

the prepared squeezing level Srp at the optimal point is approximately 3 dB lower than

the squeezing level of the used resource. In order to better model the experiment, we

additionally include a finite crosstalk between JPA 3 and the JPAs creating the TMS

states. As depicted in Fig. 5.4, the crosstalk originates from the pump of JPA 3 leaking

through to JPA 1 and JPA 2 via the beam splitter which results in a finite influence of

the JPA 3 pump on the squeezing level and squeezing angle of JPA 1 and JPA 2. Since

experimentally the crosstalk to JPA 1 dominates and mainly influences γ1, we approximate

the effect of the crosstalk by a linear dependence of γ1 on the gain Gf and angle γf

of JPA 3, γ1 = γ
(0)
1 + κGf + λγf , where γ

(0)
1 is the unperturbed squeezing angle of JPA 1

incorporating a constant offset due to the crosstalk. This linear approximation is consistent

with independent measurements of the crosstalk. In future experiments, the crosstalk

between JPAs can be avoided by utilizing circulators and a beam splitter with better

isolation at the pump frequencies around 11 GHz. In order to improve our model further,

we use asymmetric losses χ1 ,χ2 in the data analysis. Figure 5.3 (d-f) depicts a joint fit

to the corresponding data. We observe a very good coincidence between the experimental

results and our model for the following essential parameters: JPA 1,2 squeezing levels

S= 10.1 dB, n= 0.04, as well as χ1 = 0.22 and χ2 = 0.21 corresponding to losses of 1.1 dB
and 1.0 dB, respectively. All values nicely agree with those obtained from independent

JPA characterization measurements and loss estimations. In Tab. 5.1, we summarize all

parameters used for the theoretical description of our data.

We emphasize that the bare model only requires three fitting parameters (n, r, n′f) in

order to obtain a good fit while the remaining parameters are estimated from independent
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Figure 5.5: (a) Experimental and (b) theoretical purity µ of remotely prepared states as a function of

the feedforward parameters. The purity in panel (b) is calculated using the fitted parameters

from Tab. 5.1. The optimal point is marked by the blue star for which we obtain the purity

µ= 0.54± 0.01.

measurements. Including β, γopt, θrp, and the crosstalk parameters (γ
(0)
1 , κ, λ) as fitting

parameters, only slightly improves the quantitative agreement between the experiment

and the theory. For details on the model and parameters, we refer the reader to Sec. 2.3.2.

The purity µ= 1/(4
√

detV), where V is the covariance matrix of the remotely prepared

state, incorporates the information about the antisqueezed quadrature and is a measure

of how close the state is to a pure state. It vanishes, µ→ 0, for maximally mixed states

and is unity, µ= 1, for a pure state. The performance of RSP can be best quantified

by the purity as it is unity only for an ideal RSP protocol. This is in contrast to the

squeezing level of the prepared states which is fundamentally linked to the initial two-mode

squeezing level. In Fig. 5.5 (a), we show the purity of the remotely prepared states for

different feedforward parameters. At the optimal point, we achieve the highest uncorrected

purity µ= 0.54± 0.01 which is sufficient for many applications of squeezed states such

as entanglement generation [25], sideband cooling of optomechanical systems [31], and

quantum illumination [49]. The purity decreases for increasing deviation from the optimal

point. We observe a good agreement between the experimental purity and the calculated

purity using the parameters in Tab. 5.1.

Table 5.1: Model parameters used to theoretically describe the RSP protocol. The total losses χ1 and χ2

are estimated from the individual loss of the components. γ2 is fixed to the experimentally

chosen squeezing angle of JPA 2. The JPA 3 noise photon number is nf =n′fGf , where n′f is

a proportionality constant. The angle γopt is the theoretically optimal JPA 3 amplification

angle and θrp compensates the difference in electric path lengths.

n r γ
(0)
1 (°) γ2 (°) n′f β (dB) χ1 χ2 γopt (°) θrp (°) κ (°) λ

0.04 1.20 49.6 135.0 0.0059 −14.6 0.22 0.21 136.5 68.5 −0.17 0.02
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As mentioned above, we utilize the purity as the main quantifier for the performance of

RSP instead of a fidelity criterion. The definition of a fidelity would be desired but is

non-trivial as the prepared quantum state only appears on Bob’s side at the final step

of the protocol. Therefore, one would need to theoretically specify an ideal target state

to calculate the fidelity of RSP. However, since we work with continuous variables, the

corresponding Hilbert space is infinite and there is, to the best of our knowledge, no

unique definition of such a target state. However, a suitable group of target states are

pure states with the same squeezing level as experimentally prepared. Therefore, the

purity of the prepared state quantifies the performance of the RSP protocol better than

an artificially defined fidelity.

5.1.3 Phase space of remotely prepared states

The manifold of undisplaced Gaussian states we can prepare can be intuitively understood

by plotting the results from Fig. 5.3 (a-c) in the phase spaces spanned by the parameters

of the prepared states. In Fig. 5.6 (a,b), we show the phase spaces spanned by {Srp, γrp}
and {Srp, Arp}, respectively. We can prepare states with different squeezing angles γrp

between 90° and 130° while still preparing states with squeezing below the vacuum limit

(Srp> 0). However, with increasing deviation from the optimal point, the purity of the
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Figure 5.6: Purity of remotely prepared states in different phase spaces. (a) Phase space of the prepared

states spanned by Srp and γrp. (b) Phase space of the prepared states spanned by Srp and

Arp. The grey area contains states squeezed below the vacuum limit. The color code indicates

the purity µ of remotely prepared states. The optimal point is marked by the white star.

The inset in panel (a) shows the Wigner function 1/e contours of the experimental state at

the optimal point with µ= 0.54 and a pure squeezed state with the same squeezing level.

The vacuum 1/e contour is indicated in grey.
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prepared states decreases. In this context, one should remember that our protocol allows

for the preparation of continuous-variable squeezed states with a degree of squeezing Srp

that is fundamentally linked to the initial two-mode squeezing of the resource state. In the

current implementation, even for a fixed resource TMS state, Srp and γrp can be changed

at the expense of a reduced purity µ. We note that the preparable γrp are related to which

quadratures are correlated in the resource TMS state. By adding a phase shifter [206] on

her side, Alice could effectively change which quadratures on her side are correlated with

the ones on Bob’s side. By extending our theory model with such a phase shifter, we find

that the optimal JPA 3 amplification angle would be changed proportional to the phase

shift which, ultimately, would lead to different γrp of the prepared states. These actions

would not affect the achievable Srp and µ.

Using an appropriate model of our experiment, we are able to investigate the effect

of imperfections in different parts of the protocol on the purity of the prepared state at

the optimal point. If the resource TMS state is pure (µ= 1) and distributed ideally to

Alice and Bob, the model predicts an improved purity µ= 0.60 for otherwise unchanged

experimental parameters. Alternatively, ideal operations of Alice and Bob (noiseless

JPA 3, nf = 0, combined with no losses on Alice’s and Bob’s sides) together with the

imperfect experimental entangled resource would yield a purity µ= 0.62. Overall, the

observed purity is limited by the added noise of the JPAs and the losses in the setup.

Upon reducing the JPA noise photon numbers by one order of magnitude as well as the

total losses to χ1 =χ2 = 0.05 (0.2 dB), we expect an optimized purity µopt = 0.80 for the

prepared state at the optimal point. Such a reduction of losses could be achieved by using

a superconducting hybrid ring, optimized cable connectors, and improved circulators. The

latter could be realized by on-chip superconducting circulators for which various approaches

for practical realizations exist. Some of the most popular approaches use mechanical

oscillators [207, 208], and some others employ Josephson nonlinearities [209, 210] to

realize nonreciprocal transmission of microwaves under appropriate driving of the system.

However, until now, the best reported insertion losses are around 0.5 dB [209] which are

notably higher than the ones of the currently employed commercial circulators (CTH1184-

KS18, Quinstar). Nevertheless, it is believed that the insertion losses in these on-chip

circulators can and will be brought down in the next few years, since most obstacles

there have a technological nature and can be resolved. In the future, superconducting

circulators could be combined with on-chip JPAs to further avoid losses due to the absence

of interconnections and related reflections.

As discussed in Sec. 2.3.1, the quantum advantage of ideal RSP consists in the fact that

only one real number is required to be communicated to Bob in order to prepare a desired

pure squeezed state, which requires two real numbers to be fully described. However, in

our implementation of RSP, we cannot avoid losses and noise added by the JPAs which

results in the preparation of mixed squeezed states at Bob’s side. These imperfections

reduce the achievable quantum advantage in our RSP protocol. First, in the current
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experiment, we utilize JPA 3 for the generation of the feedforward signal. Here, only the

amplified quadrature will affect the signal at Bob’s side due to the low coupling β� 0 dB
of the displacer. Consequently, we send two real numbers to Bob via the feedforward

signal. Second, the prepared mixed squeezed states require three real numbers (Srp, Arp,

γrp) to be fully described. It is challenging to accurately quantify the quantum advantage

for our case. One reason is that all real numbers possess a certain precision in a realistic

scenario and, consequently, it is not sufficient to only compare the number of real numbers

alone. One would need to quantify the amount information, in bits or nats, by other

means. The quantum advantage could then be obtained by comparing the amount of

information sent in the feedforward signal with the one required to describe the prepared

quantum state.

5.1.4 Error phase space of preparable states

We now discuss theoretically which states in the phase space are expected to be remotely

preparable for our experimental parameters. According to the underlying theory model

(see Sec. 2.3.2), the position of prepared states inside the phase space does not uniformly

depend on Gf and γf . Since we select a finite and uniform step size of Gf and γf in the

experiment, the measured remotely prepared states do not uniformly span the phase

space.

In order to get a better insight into the expected phase space of remotely preparable

states, we use the model of RSP discussed in Sec. 2.3.2 together with the parameters in

Tab. 5.1 and calculate an expected phase space of prepared states for the experimental

range of JPA 3 gains Gf and amplification angles γf . In Fig. 5.7 (a,b), we show the resulting

expected phase spaces spanned by {Srp, γrp} and {Srp, Arp}, respectively. Additionally,

in order to estimate the error of the fit, we use an iterative method to calculate the

error phase space. Here, we apply a random sampling routine where a value from the

95% confidence intervals of each fitting parameter is randomly selected and the resulting

error phase space is calculated. If the new error phase space lies partly or fully outside

the old error phase space, the latter is expanded so that it includes the new error phase

space. The process is repeated until the change of the area in the error phase space is

negligible between iterations. We observe that the expected phase space does not include

all experimentally prepared states but shows a good qualitative agreement. However, the

error phase space of the fit includes all measured remotely prepared states.

In Fig. 5.7 (c,d), we show the expected phase spaces of the accessible prepared states

under the assumption of reduced JPA noise photon numbers by one order of magnitude

(n= 4 · 10−3 and nf = 6 · 10−4) and reduced total losses to χ1 =χ2 = 0.05 corresponding to

a loss of 0.2 dB. Other parameters are kept as in Tab. 5.1. The range of preparable Arp

and γrp is only slightly affected by the optimized parameters while the accessible squeezing

levels Srp are significantly increased up to ' 5.5 dB from the current experimental limit
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Figure 5.7: (a,b) Phase space of experimental remotely prepared states spanned by {Srp, γrp} and

{Srp, Arp}, respectively. The green and blue shaded area indicate the expected phase space

from the fit and the error phase space, respectively. The color code indicates the purity µ of

the remotely prepared states. The optimal point is marked by the white star. (c,d) Expected

theoretical phase space of preparable states for an improved setup in the phase space spanned

by {Srp, γrp} and {Srp, Arp}, respectively. Here, we reduce the JPA noise photon numbers

by one order of magnitude and the total losses to χ1 =χ2 = 0.05 with otherwise unchanged

parameters from Tab. 5.1. The red dashed lines mark the threshold for squeezing below the

vacuum limit. The solid lines mark states with constant purity.

of ' 1.6 dB. Consequently, it is imperative to minimize losses and JPA noise photons in

future experiments in order to achieve higher squeezing levels of the prepared states.

5.1.5 Quantum Fisher information and quantum Cramér-Rao bound

Until now, we considered RSP as a quantum communication protocol where the goal is

to send a known quantum state to another party. However, one can also consider to use

RSP for the communication of classical information. In such a scenario, the classical

parameters of the prepared squeezed state are regarded as sent information. There are

multiple equivalent ways to fully describe an arbitrary single-mode squeezed state by

three real numbers. Here, we will use the squeezing gain λ= e−2r, the squeezing phase

ϕ= − 2γ, and the thermal photon number nth of the squeezed state.

In order to characterize how well we can encode information in the prepared squeezed

states, we use the quantum Fisher information (QFI). One way to define the QFI is via the

Bures distance d2
B = 2

(
1−

√
F (ρ1, ρ2)

)
[211] between two quantum states ρ1,2 where we
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use the Uhlmann fidelity F (ρ1, ρ2) =
(
Tr
√√

ρ1ρ2
√
ρ1
)2

[212]. Then, the QFI [213, 214],

Fθ = 8 lim
ε→0

1−
√
F (ρθ, ρθ+ε)
ε2

(5.2)

quantifies how well we can distinguish between two quantum states ρθ and ρθ+ε. In other

words, the QFI measures the amount of information one can gain about a parameter θ

from a quantum state ρθ which depends on θ [215]. If the quantum state ρθ only weakly

depends on θ, the QFI Fθ is small. On the other hand, if small changes in θ strongly

alter ρθ, one obtains large values of Fθ. For general Gaussian states, one can find analytic

expressions for Fθ in respect to various parameters of the Gaussian states [213, 216]. For

the three parameters λ, ϕ, and nth, the QFI of an arbitrary squeezed state is given by [216]

Fλ = 1
1 + µ2

1
λ2 , (5.3)

Fϕ = 1
1 + µ2

(1− λ2)2

λ2 , (5.4)

Fnth = 1
nth + n2

th
, (5.5)

where µ is the purity of the state. We obtain r and nth from the experimentally mea-

sured squeezed and antisqueezed variances, which we write as σ2
s = (1 + 2nth)e−2r/4 and

σ2
a = (1 + 2nth)e2r/4, respectively. The latter expressions can be rearranged to get

r = 1
4lnσ

2
a
σ2

s
, (5.6)

nth =
(√

16σ2
sσ

2
a − 1

)
/2 . (5.7)

We now use Eqs. (5.3) – (5.5) to calculate the QFI for the prepared states during RSP.

In Fig. 5.8 (a-c), we show the resulting QFI quantities for the experimentally prepared

states. We observe that the optimal point in RSP, where we achieve the highest purity,

is not necessarily the best point for communication of classical information encoded in

the squeezed state parameters. For example, Fλ and Fϕ exhibit comparatively small

values at the optimal point while much larger values can be reached away from this point.

Intuitively, this observation can be understood by considering the squeezing level and

antisqueezing level of the prepared squeezed states [see Figs. 5.3 (a,c)]. For regions of

high Fλ and Fϕ, the prepared states are squeezed below the vacuum limit and possess a

comparatively high antisqueezing level. This combination leads to the fact that λ and

ϕ and can be more precisely estimated when compared to the optimal point where the

antisqueezing level is lower. In contrast, Fnth shows a similar behavior as the purity of

the remotely prepared states and is maximal around the optimal point. This observation
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Figure 5.8: (a-c) Quantum Fisher information Fθ for different parameters θ = {λ, ϕ, nth}, where λ= e−2r

is the squeezing gain, ϕ= − 2γ is the squeezing phase, and nth is the thermal photon number

of the prepared squeezed states. Fθ are shown as a function of the feedforward parameters

with the same range as in the RSP measurements. (d) Effective number of bits N for the

squeezing phase ϕ of the prepared states. The optimal point of RSP is marked by the blue

star.

originates from the fact that a higher purity is linked to a lower number of thermal photons

nth in the state. According to Eq. (5.5), Fnth exhibits a similar dependence on nth as the

purity, which explains the similar behavior of both quantities. In addition, we observe

that Fλ and Fϕ are bigger than Fnth for the full experimental range of JPA 3 parameters.

To quantify the amount of classical information sent via the prepared squeezed states, we

can utilize the effective number of bits N of the classical parameters of the prepared states.

Here, we focus only on the squeezing phase since it is most suitable for communication of

classical information. We estimate N by assuming an ideal analog-to-digital converter

which samples the reconstructed squeezing phase ϕ of the prepared state. When neglecting

distortion effects of the signal, we can define N = (SNR− 1.76 dB)/6.02 dB [217], where

SNR= 10 log10

[
∆ϕ2/σ2

ϕ

]
is the signal-to-noise ratio in decibel. Here, ∆ϕ= 2π is the full

range of squeezing phases of a squeezed state and σϕ is the standard deviation of ϕ.

To obtain a lower bound for σϕ, we use the quantum Cramér-Rao bound [218], which

relates the quantum Fisher information to a lower bound of the estimation error of ϕ
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as σ2
ϕ≤ 1/Fϕ. In Fig. 5.3 (d), we show the resulting effective number of bits N for the

prepared states. Similar as for Fϕ, we observe the highest values of N of up to 4.1 bits
away from the optimal point of RSP.

These observations do not contradict the interpretation of the optimal point in RSP.

The reason is that the original purpose of RSP is the preparation of a quantum state

at a remote location. There, the optimal point is defined as the point at which we

are able to prepare a squeezed state with the highest obtainable purity and squeezing

level. In contrast, in this subsection we investigate the QFI of the prepared states which

provides insight into the question of how good we can estimate the classical squeezed state

parameters. The optimal operational points for both tasks is not necessarily the same.

For example, according to Eqs. (5.3) and (5.3), Fλ and Fϕ are bigger for lower purity of

the squeezed states.

5.1.6 Effect of entanglement strength on remote state preparation

Until now, we kept the entanglement strength in the TMS states fixed in the RSP

measurements. However, as previously discussed, the highest achievable squeezing level of

the prepared state is closely linked to the two-mode squeezing level of the resource state.

TMS states with varying entanglement strength are produced by changing the pump

powers of JPA 1 and JPA 2 in such a way that the resulting TMS states stay well balanced,

as presented in Sec. 4.1. The TMS states are then used in RSP as the entangled resource.

Here, we only investigate the optimal point of RSP with the JPA 3 parameters fixed to the

optimal values of Gf ' 13 dB and γf = 0°. With an increasing two-mode squeezing level,

i.e. stronger entanglement, the prepared states in RSP show an increasing squeezing level.
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Figure 5.9: (a-c) Wigner functions of remotely prepared states during RSP for different TMS states with

increasing entanglement strength quantified by the two-mode squeezing level STMS. All three

states are shown for the optimal working point of RSP with the JPA 3 parameters Gf ' 13 dB
and γf = 0°. The text inside the panels provides the purity, photon number, and squeezing

level of the prepared states from top to bottom, respectively.
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Figure 5.10: (a) Two-mode squeezing level STMS and negativity kernel Nk as a function of the squeezing

levels of the states produced by JPA 1 and JPA 2. (b) Squeezing level Srp and antisqueezing

level Arp of remotely prepared states. The green dashed line marks maximum achievable

Srp for the experimental TMS states under ideal operations on Alice’s and Bob’s side

(noiseless JPA 3 and no losses). (c) Purity of TMS states and remotely prepared states.

The solid orange line marks maximum achievable purity µ̃rp =
√
µ̃TMS of remotely prepared

states when using the TMS states with purity µ̃TMS given by the dashed black line and

corresponding STMS. The operations on Alice’s and Bob’s side are assumed to be ideal

for this estimation. (d) Quantum Fisher information (QFI) Fθ for different parameters

θ = {λ, ϕ, nth}, where λ= e−2r is the squeezing gain, ϕ= − 2γ is the squeezing phase, and

nth are the thermal photons of the prepared squeezed states. Here, F̃ =Fλ Fϕ Fnth is the

product of different QFI quantities. If not shown, the standard error of the mean is smaller

than the symbol size.

This behavior is well visible in the Wigner functions of the prepared states, as shown

in Fig. 5.9. We also observe a strong increase of the antisqueezed quadrature which is

connected to a larger number of noise photons in the TMS states with larger two-mode

squeezing, corresponding to stronger entanglement.

In Fig. 5.10, we summarize the relevant quantities of RSP as a function of the entan-

glement strength. Upon increasing the squeezing levels of the states produced by JPA 1

and JPA 2, the negativity kernel Nk and two-mode squeezing level STMS of the resulting

TMS states increase, as shown in Fig. 5.10 (a). The corresponding squeezing levels Srp

and antisqueezing levels Arp of the remotely prepared states are shown in Fig. 5.10 (b)
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and generally increase for increasing STMS. However, Srp saturates to a constant value

around STMS' 6 dB. From Fig. 5.10 (c), we observe that the dependence of µrp and µTMS

on STMS is similar. However, we emphasize that µrp does not solely depend on µTMS but

also on the losses on Alice’s and Bob’s side as well as the added noise by JPA 3. If these

imperfections are negligible, one can even achieve µ̃rp =
√
µ̃TMS = µ̃s, where µ̃s is the purity

of the squeezed states produced by JPA 1 and JPA 2. The latter relation is explained by

the fact that a TMS state with purity µ̃TMS is produced by two squeezed states with purity

µ̃s (see Sec. 4.1.2). It is then intuitive to understand that, in the absence of imperfections

during RSP, the purities of the initial squeezed states and remotely prepared states are

identical, i.e., µ̃rp = µ̃s.

Finally, we determine the QFI of the remotely prepared states depending on the two-

mode squeezing level STMS. For that, we use Eqs. (5.3)–(5.5) to calculate the QFI for

the different parameters λ, ϕ and nth and show the result in Fig. 5.10 (d). We observe

a decrease in Fnth for increasing STMS. This behavior is expected since Fnth inversely

depends on the thermal population nth of the prepared squeezed state. The latter increases

for prepared squeezed states with increasing squeezing level. The dependence is inverted

for Fλ and Fϕ which increase for higher STMS, and therefore, higher squeezing of the

prepared squeezed state. This fact can be intuitively understood by considering that the

squeezing gain λ and the squeezing phase ϕ can be easier estimated for a high antisqueezed

quadrature. Consequently, we observe a cross-over for the best parameter to estimate

from the prepared states in RSP at the optimal point. For low STMS, i.e. low squeezing

levels and high purities of the prepared states, nth can be best estimated while it is

easier to determine λ and ϕ for high STMS > 6.5 dB, i.e., higher squeezing levels and lower

purities of the prepared states. In addition, we calculate the product F̃ =Fλ Fϕ Fnth of

the different QFI quantities and observe increasing F̃ for increasing STMS. The previous

conclusions are only fully valid for the optimal point of RSP. As we have seen in Fig. 5.8,

Fnth decreases upon moving away from the optimal point of RSP and λ as well as Fϕ can

substantially increase for high Gf . Therefore, when considering non-optimally prepared

states, it can be advantageous to estimate λ and ϕ even for low STMS. In conclusion, we

find a cross-over of which single parameter can be best estimated from the prepared states

while the product F̃ increases with stronger entanglement.

5.2 Quantum correlations in remote state preparation

In the previous section, we mainly discussed the preparable states during RSP. This

section focuses on studying classical and quantum correlations during different stages

of the protocol. In particular, we investigate quantum entanglement, quantified by the

negativity kernel Nk, and quantum discord D which is a more general quantifier for

quantum correlations. Quantum correlations are necessary for successful RSP. For remote

state preparation of qubit states, geometric discord has been shown to be a sufficient
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stage (RSP) corresponds to the final state after the remote preparation of a squeezed state.

The two paths of the bipartite states are marked with A and B. (b) Pump modulation

scheme employed for measurements of the TMS stage and FF stage. (c) Pump modulation

scheme employed for measurements of the RSP stage. The cryogenic part of the setup is

marked with the blue box.

resource in Ref. [200]. However, it has been argued that entangled states still could

yield higher efficiencies if compared to separable resource states [219]. In our particular

implementation of RSP, we cannot prepare squeezed states with squeezing below the

vacuum limit without an entangled resource. Intuitively, this property can be explained

by considering that TMS states are locally thermal states. To obtain a squeezed state by a

local displacement operation, one needs to rely on correlations with a strength that allows

for a reduction of the antisqueezed variance of the local TMS state below the vacuum

variance. In our case, this is only possible with entangled resource states.

As shown in Fig. 5.11, we will focus on three different key stages of RSP and, in this

way, investigate how correlations are consumed or transformed during the protocol [220].

The first stage (TMS) is the entanglement distribution to Alice and Bob. The second stage

(FF) is after the phase-sensitive amplification of JPA 3. The final stage (RSP) is after the

local operation on Bob’s side. In all stages, we can experimentally probe classical and

quantum correlations between the two paths. We note that, due to a modified cryogenic

setup, the experimental results in this section quantitatively slightly differ but show the

same qualitative behavior when compared to the previous section.
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5.2.1 Entanglement distribution

The entanglement distribution stage (TMS stage) is essential for RSP since it provides

the entangled resource to both parties. We use propagating microwave TMS states as

such entangled states. Details on the generation of TMS states are provided in Sec. 4.1.

Experimentally, we are able to investigate the TMS and feedforward stages by utilizing a

cryogenic switch at Alice’s side after JPA 3. In one position of the switch, we perform RSP

by sending the feedforward signal to Bob (the directional coupler). In the other position

of the switch, we send the feedforward signal to one path of the dual-path receiver for

detection. Technical details on the cryogenic and room-temperature setups are provided

in Sec. 3.3.2.

Different characteristic quantities of the TMS state, later serving as entangled resource

in RSP, are shown in Tab. 5.2. Here, we choose a TMS state for which we are able to

obtain high purities and squeezing levels in the RSP protocol. Apart from the negativity

kernel Nk, negative conditional entropies H(A|B)'H(B|A)< 0 also reveal entanglement

in the TMS state. Furthermore, we can calculate a lower bound on the entanglement of

formation EF, which is a commonly used quantifier for the entanglement strength [191].

Additionally, the two-mode squeezing level STMS shows that field quadratures in the two

paths are strongly correlated. From the von Neumann entropies, one can gain insight

into the local properties of the state. The joint entropy of the TMS state is smaller than

the entropies of the local states, H(A,B)<H(A) and H(A,B)<H(B). This observation

coincides with the fact that TMS states are locally thermal states while the joint entropy

of the whole quantum state can be zero in the limit of pure states with µ= 1. In our

experiments, the joint entropy is non-zero due to a finite noise in the TMS states which

results in a purity µ< 1. Finally, the TMS state possesses a non-zero mutual information

I(A :B) encompassing both classical and quantum correlations. The quantum correlations

can be quantified by the quantum discord DA and DB. Furthermore, the similar values

of DA≈DB, H(A|B)≈H(B|A) and H(A)≈H(B) indicate that the TMS states are

symmetric upon exchanging A and B.

Table 5.2: Different characteristic quantities of a particular TMS states. The errors are the standard

error of the mean. The quantities are described in detail in the main text.

Nk EF H(A|B) H(B|A) STMS (dB) µ

1.84± 0.04 1.16± 0.02 −0.80± 0.02 −0.79± 0.02 6.5± 0.1 0.55± 0.01

DA DB H(A,B) H(A) H(B) I(A :B)

1.04± 0.01 1.05± 0.01 0.97± 0.02 1.768± 0.001 1.770± 0.001 2.56± 0.02
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5.2.2 Feedforward signal

In theory, the feedforward signal sent to Bob should be fully classical for ideal RSP.

Therefore, we now turn to the feedforward (FF) stage and investigate the bipartite

states after the phase-sensitive amplification of JPA 3 at A. Similar to the entanglement

distribution stage, we can calculate different quantifiers for correlations in the bipartite

states at the FF stage. However, now the properties of the bipartite states depend also on

the amplification parameters of JPA 3. In the case of ideal phase-sensitive amplification,

the correlations between A and B would not be affected by the unitary action of JPA 3.

However, in the experiments, JPA 3 inevitably adds a finite amount of noise to state A

due to its imperfections. Consequently, the correlations between A and B are affected by

the amplification by JPA 3.

First, we only consider how the amplification by JPA 3 affects the quantum correlations,

as shown in Fig. 5.12 (a) for fixed γf = 0°. For low values of the JPA 3 gain Gf , there still

exists entanglement between A and B. However, the negativity kernel Nk is significantly

reduced in comparison to the one of the initial TMS state. The negativity kernel further

decreases with increasing Gf until the states become and stay separable (Nk < 0) above a

certain Gf . This observation is related to an increased number of added noise photons

of JPA 3 to A which ultimately leads to a sudden death of entanglement (see Sec. 4.3)

at Gf = 12.5 dB. Since we cannot directly determine the JPA 3 noise photon number

nf referenced to the JPA input, we use the fitted proportionality constant n′f = 0.0059
from Tab. 5.1 to determine the JPA noise photon number via the relation nf =n′fGf .

Furthermore, we can express the noise photon number in the amplified quadrature after

JPA 3 asNf =nfGf = 1.9 for the JPA gain of vanishing entanglement. However, as discussed

in Sec. 4.3, we expect that the sudden death of entanglement appears at ' 1 added noise

photon to one path. We attribute the difference to a changed noise performance of JPA 3
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Figure 5.12: (a) Negativity kernel Nk and quantum discord DA,B in the FF stage as a function of Gf for

γf = 0°. (b) Purity µf of states produced by JPA 3 with the other JPAs turned off. The data

point for Gf ' 12 dB is averaged over two adjacent γf values around γf = 0°. If not shown,

the standard error of the mean is smaller than the symbol size.
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Figure 5.13: (a) Squeezing level Sf and antisqueezing level Af as well as (b) mean photon number in the

FF stage for γf = 0°. The data point for Gf ' 12 dB is averaged over two adjacent γf values

around γf = 0°. If not shown, the standard error of the mean is smaller than the symbol size.

between measurement runs such that the value of n′f is not fully accurate for the results

presented in this section. The noise photon number of JPA 3 can be indirectly evaluated

by the purity µf of the state produced by JPA 3, as shown Fig. 5.12 (b). Here, JPA 1 and

JPA 2 are turned off (segment P4 in Fig. 5.11), meaning that, in good approximation,

a vacuum state is incident to JPA 3. The purity µf decreases with increasing Gf which

indicates an increasing thermal population of the state produced by JPA 3.

Quantum discord is affected in a similar way as Nk as it decreases for increasing Gf . For

low Gf , both DA and DB coincide but start to deviate with increasing Gf . For Gf > 15 dB,

quantum discord DB is approximately zero while DA' 0.05. From the observation DB ' 0
for high Gf , we can gain insight into the classicality of the feedforward signal. As discussed

in Sec. 2.1.6, quantum discord DB only vanishes for fully distinguishable states, i.e.

classical states, on A. Consequently, we can treat the feedforward signal classically for

high Gf . Since DA> 0, the states at B are not fully distinguishable due to their remaining

quantum mechanical properties. Consequently, the bipartite state at the FF stage is

approximately a classical-quantum state [see Eq. (2.42)] for high Gf .

To further investigate the classicality of the feedforward signal, we show the squeezing

level Sf and antisqueezing level Af in the FF stage in Fig. 5.13 (a). The feedforward

signal is squeezed below the vacuum for low Gf and becomes non-squeezed for Gf ≥ 15 dB
while Af > 18 dB for all Gf . Our theory model and experimental evidence show that the

deamplified, and at times squeezed, quadrature has a negligible effect on the prepared

state during RSP. This can be understood by considering that the feedforward signal

is only weakly coupled to Bob’s part of the entangled state by the directional coupler.

Therefore, only the strongly amplified quadrature in the feedforward signal will affect the

prepared state on Bob’s side.

We consider the feedforward signal as classical if it (i) has a positive Wigner function,

(ii) is not squeezed below the vacuum, and (iii) is not entangled with the signal on Bob’s

side. Therefore, under these criteria, all feedforward signals for Gf ≥ 15 dB are classical.



5.2 Quantum correlations in remote state preparation 131

(a) (b)

-2 -1 0 1 2
Srp (dB)

90

100

110

120

130

rp
 (°

)

0.35 0.40 0.45 0.50 0.55

-2 -1 0 1 2
Srp (dB)

90

100

110

120

130

entangled FF disentangled FF

rp
 (°

)
Figure 5.14: (a) Purity of remotely prepared states in the phase space spanned by Srp and γrp. The

gray area marks squeezing below the vacuum limit. The color code indicates the purity µ of

the remotely prepared states. The optimal point is marked by the white star. (b) Phase

space of remotely prepared states with separable (black dots) and entangled (red crosses)

bipartite states during the feedforward.

In Fig. 5.13 (b), we show the mean photon number of the feedforward signal. The high

mean photon numbers together with the observation Af > 18 dB support our conclusion

that the feedforward signal can be treated classically.

In the previous discussion, we stated that the prepared state at Bob’s side is dominantly

affected by the amplified quadrature of JPA 3. Therefore, entanglement between A and B

after the action of JPA 3 should have no considerable effect on the range of preparable

states. In Fig. 5.14 (a), we show the full phase space spanned by Srp and γrp of the

prepared states in RSP. In order to check for the impact of entanglement on the RSP

protocol, we exclude points with non-zero entanglement during the feedforward from the

phase space of prepared states, as shown in Fig. 5.14 (b). The range of states which

we can prepare is only negligibly reduced. In particular, the states with high squeezing

level Srp are not influenced when only considering separable states during the FF stage.

Consequently, entanglement in the FF stage does not play a role for successful RSP.

We note that the data in this subsection is obtained in a different measurement run as

compared to Sec. 5.1. Nevertheless, the qualitative behavior between the runs is the same

and we observe also a good quantitative agreement.

5.2.3 Correlation consumption in remote state preparation

We now summarize and compare different types of correlations in the three stages of

RSP, as shown in Fig. 5.15. We restrict the analysis to the optimal JPA 3 amplification

angle γf = 0°. As shown previously in Tab. 5.2, we start with a correlated TMS state
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Figure 5.15: (a) Mutual information I(A :B), (b) one-way classical correlations J(B|A), (c) quantum

discord, and (d) negativity kernel Nk at different stages of the RSP protocol. The data

point for Gf ' 12 dB for the FF stage is averaged over two adjacent γf values around γf = 0°.

serving as the entangled resource for RSP. After the local phase-sensitive amplification

by JPA 3 on Alice’s side, we observe a reduced I(A :B) which further decreases with

increasing Gf . The mutual information I(A :B) consists both of classical and quantum

correlations between A and B. Notably, the one-way classical correlation J(B|A) is much

less affected by the amplification of JPA 3 than the quantum correlations quantified by

quantum discord. The latter is drastically reduced in the FF stage and nearly vanishes for

high Gf . Quantum entanglement, quantified by the negativity kernel Nk, is also strongly

affected by the action of JPA 3. The reduced classical and quantum correlations can be

attributed to the added noise by JPA 3 during the amplification process and path losses

of the propagating signals.

Finally, the RSP stage is considered, where we perform the RSP protocol as described

in Sec. 5.1 while simultaneously detecting the second output of the directional coupler

on Bob’s side. Here, A is the path corresponding to the second output of the directional

coupler, which mainly consists of the feedforward signal, and B denotes the path of the

prepared state in RSP. For all feedforward parameters Gf and γf , the states at the RSP

stage are separable with Nk < 0. Furthermore, most correlations are consumed, resulting

in comparatively small I(A :B) if compared to the other two stages. At the optimal

JPA 3 gain Gf ' 13.7 dB, we observe nearly vanishing classical and quantum correlations.
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standard error of the mean is smaller than the symbol size.

This observation indicates the operational meaning of I(A :B) since a larger correlation

consumption during RSP leads to more optimally prepared states. For non-optimal Gf ,

the quantum discord DB is nearly completely consumed while some classical correlations

remain in the RSP stage. In Fig. 5.16, we show both values of quantum discord in the RSP

stage at the optimal amplification angle γf = 0° (see Appendix C for the full dependence

of quantum discord on Gf and γf). Similar to the FF stage, we observe DA>DB for the

same feedforward parameters indicating that the states at A are better distinguishable

than the states at B. Towards optimal Gf , the values of both DA and DB decrease. At the

optimal point, DB is vanishingly small while DA is roughly one order of magnitude larger

than DB. Consequently, the initial correlations are most efficiently used at the optimal

operation point of RSP where squeezed state with the highest squeezing level and purity

are remotely prepared. This observation illustrates that correlations are essential for RSP.

In our current implementation of RSP, we can only optimally utilize the correlations

for γf = 0° since the correlated quadratures in the TMS resource state are fixed during

the experiments. Consequently, only one JPA 3 amplification angle exists at which a

correlated quadrature at Alice’s side is amplified optimally in respect to the corresponding

quadrature at Bob’s side. Then, Bob’s local displacement, which is proportional to the

feedforward signal, allows for a reduction of the variance below the vacuum limit in one

particular quadrature direction.

5.2.4 Bit-rates in remote state preparation

Finally, we discuss different types of bit-rates in the RSP protocol. First, we calculate the

entangled bit-rate during the TMS stage. As discussed in Sec. 4.2.2, the entanglement

of formation EF can be utilized for that task since EF' 1 corresponds to one pair of

maximally entangled qubits. From the measurement bandwidth Ω = 430 kHz and Ef = 1.16,

we obtain the upper bound on the entangled bit-rate of 5.0× 105 ebits · s−1.
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The maximal classical bit rate of the feedforward channel and remotely prepared state

channel can be estimated using the Shannon-Hartley theorem [221]

C = Ω log2

(
1 + S

N

)
, (5.8)

where C is the channel capacity in bits/s, Ω is the bandwidth, S is the signal power,

and N is the average noise power of Gaussian white noise. The theorem provides an

upper limit for the maximal bit-rate transmitted over a channel under Gaussian white

noise. In our scenario, we assume that the signals are detected with the amplification

chains utilized in our experiments. The noise in the amplification chain is dominated

by the noise added during the amplification by the cryogenic HEMT amplifiers and is

typically around namp' 10 photons. During the FF stage, the feedforward signal has a

mean photon number nf ' 33 at the optimal point. By using nf/namp =S/N , we find a

channel capacity of the feedforward Cf = 9.1× 105 bits · s−1. We calculate the channel

capacity corresponding to the final prepared state at the optimal point with nrp = 0.8 in

the same way and obtain Crp = 4.8× 104 bits · s−1. Consequently, the channel capacity of

the feedforward is higher than the one of the final state, which is expected due to the

higher mean photon numbers in the feedforward signal.

In an alternative approach, we directly estimate the classical bit-rate of RSP from the

reconstructed quantum states. As discussed previously, the prepared squeezed states are

described by three real parameters. For the following analysis, we will use the squeezed

variance σs, antisqueezed variance σa, and the squeezing angle γrp of the remotely prepared

states at the optimal point. In contrast to Sec. 5.1.5, here, we use a direct approach to

estimate the number of classical bits encoded in the parameters of the prepared states. For

that, we consider that the three parameters are only reconstructed with a certain precision

during our experiments. In order to estimate the precision, we repeat the preparation of a

squeezed state at the optimal point multiple times and calculate the mean and standard

error of the mean for every parameters. In a simple approach, the precision is given by

the significant digits of the three parameters up to the digit limited by the standard error

of the mean. Consecutively, we calculate the number of bits required to express the three

truncated parameters and obtain a number of 22 bits. Every respective reconstruction

takes 125 s which leads us to an uncorrected bit-rate of 0.2 bits·s−1. We note that the latter

bit-rate is directly estimated without any corrections or optimization of the measurement

procedure. Higher rates could be easily achieved by optimizing the measurement scheme

in a way that only the remotely prepared states are measured. If, in addition, the data

transfer and processing are improved such that we are limited by the sampling rate

of the digitizer card of 400 MHz, we expect bit-rates of 23 bits · s−1. Nevertheless, the

direct estimate of the bit-rate is much lower than the one from the channel capacities

since our implementation of RSP has not been yet optimized for transmission of classical

information.
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5.3 Quantum one-time pad

Secure communication between parties is a permanently relevant subject. Nowadays

commonly-used classical encryption techniques typically rely on a so-called computational

complexity to provide security [222]. With the steady progress towards building large-

scale quantum processors, new ways for secure communication are required since some

classically complex problems can be efficiently solved on a quantum computer [223]. One

prominent example of secure protocols against the computing power of quantum computers

is quantum key distribution (QKD), as discussed in Sec. 2.3.3. The security in QKD

protocols stems from the fact that they are not based on computational complexity but

rather on unique properties of quantum-mechanical systems such as superposition or

entanglement [147]. Also, in QKD protocols, the no-cloning theorem plays a central role

as it ensures that an eavesdropper can only gain a certain amount of information on the

publicly communicated quantum states from which the secret keys are generated. However,

QKD is only one class of applications in the broader field of quantum cryptography which

encompasses a variety of protocols. In the following, we investigate how the RSP scheme

can be applied to securely send information from one party to another.

We now relate our experimental RSP scheme to the cryptographic protocol known as

the one-time pad [144] by extending the latter to the quantum regime [132, 224]. Both the

classical and quantum version of the one-time pad allow for information-theoretic security.

In our case, Alice aims to securely send a quantum state M to Bob over an insecure

channel. We identify the transmitted message M as the remotely prepared state on Bob’s

side and the openly communicated cipher C as the feedforward signal (see Fig. 5.17).

The entangled TMS state provides the random key K in the form of correlated quantum

fluctuations to both parties. Note that K is essential for the one-time pad since it is used

by Alice and Bob to encode and decode M . For secure communication, K needs to be a

uniform random variable, such that an eavesdropper with knowledge about C does not

gain any information about M [145]. Formally, we can write this security criterion in the

BobAlice
classical communication

entanglement
source

M M
C C

K K

JPA3

pump

M

CC
C ′fG ,f

Figure 5.17: Interpretation of the RSP setup in terms of the one-time pad. Here, the message M is a

prepared squeezed state, the cipher C is the classical communication, and the key K is

provided by an entangled resource. Intertwined red-blue lines symbolize the entanglement.
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Figure 5.18: (a) Entropy difference δ=H(M)−H(M |C ′) as a function of the feedforward gain Gf and

angle γf . (b) Entropy H(M) of remotely prepared states. The red shaded area is the

conditional entropy H(M |C ′). The optimal point is marked by the blue star.

following form

H(M)−H(M |C) = 0 , (5.9)

where H(M) is the von Neumann entropy of the remotely prepared state and H(M |C) is

the conditional entropy of M given the feedforward signal. The conditional entropy is

defined as H(M |C) =H(M,C)−H(C), where H(M,C) is the joint entropy and H(C)
is the entropy of the cipher (see Sec. 2.1.4 for details). We experimentally investigate

the quantum one-time pad by measuring the prepared states as a function of the JPA 3

parameters while additionally detecting the signal C ′ from the second output of the

directional coupler. Otherwise, the experimental setup and pulse modulation are the

same as in Sec. 5.1. We compute δ=H(M) − H(M |C ′) to verify Eq. (5.9) under the

approximation C ′≈C using state tomography. The latter relation is justified by the high

transmissivity of the directional coupler τ ' 1. In Fig. 5.18 (a), we observe a decrease

in δ when moving towards the optimal point where the smallest value δ= 0.06± 0.04 is

reached and the entropy of the prepared state is H(M) = 0.80± 0.02. The observation

δ � H(M) indicates that the remote preparation of a quantum state on Bob’s side is

close to perfect security when approaching the optimal point. Upon a deviation from

the optimal point, the entropy of the prepared state increases, as shown in Fig. 5.18 (b).

However, H(M |C ′) is approximately constant for the experimental range of Gf and γf

which results in increasing δ when moving away from the optimal point. Consequently,

there is a trade-off between the security and range of prepared states. We do not reach

δ= 0 inside the statistical error in the experiment. The biggest contribution to this

deviation is caused by non-optimal JPA 3 parameters. From model calculations, we expect
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to obtain δ' 2× 10−3 upon fine-tuning the JPA 3 gain and amplification angle. In order

to approach the perfect secrecy scenario (δ= 0), the protocol needs to be ideal, i.e., no

losses and vanishing JPA noise. As mentioned in Sec. 5.1, a straightforward extension of

the optimal working range of RSP can be realized by adding a phase shifter on Alice’s

side. Then, all optimally prepared states would correspond to minimal δ for arbitrary

squeezing angles while the accessible squeezing level and purity stay unaffected. However,

also in this scenario, the protocol needs to be ideal in order to reach δ= 0.

Equation (5.9) only ensures security against an eavesdropper (Eve) who has access

solely to the cipher C. However, other types of attacks are also possible. In general, an

eavesdropper who exclusively listens to the two-mode squeezed resource state (random key

K), will not be able to gain any information about the desired prepared state (message M)

since the latter is encoded by Alice. To gain information about the prepared state, Eve

would need to additionally intercept the feedforward signal. Also, Eve’s interaction with

the entangled resource would most probably reduce the entanglement between Alice and

Bob which reduces the purity and squeezing level of the prepared states. The reduction of

the latter quantities under the actions of the eavesdropper on the TMS states potentially

allows Bob to detect the presence of Eve. For example, Eve could be detected in a scenario

where Alice and Bob arrange to only prepare squeezed states with squeezing below the

vacuum level. It is only possible to remotely prepare states with squeezing below the

vacuum limit if Alice and Bob share at least some finite entanglement. Therefore, Bob can

directly notice the presence of an entanglement-breaking eavesdropper from a suddden

change of the squeezing level of prepared states on his side.

The results presented in this section have been published by us in Ref. [47]. Parts of

the text and figures are adapted from this reference.

Summary

We have successfully implemented a deterministic RSP protocol over a distance of 35 cm
in the microwave regime with continuous variables and explored the influence of different

parameters on the remotely prepared states. We have demonstrated the remote prepa-

ration of squeezed states with a squeezing level of up to 1.6 dB below the vacuum limit

and a purity of 0.54. By increasing the entanglement strength, we have been able to

achieve squeezing levels up to 1.7 dB while reducing the purity to 0.49. Furthermore, in

our specific RSP implementation and for fixed entanglement strength, Alice can control

the squeezing level and, to some extent, the squeezing angle of the remotely prepared

state at the expense of a reduced purity. Additionally, we demonstrate that the protocol

can be interpreted as a secure one-time pad near the optimal point. The operational range

of both the RSP and quantum one-time pad protocols can be extended to any angle γrp

by an additional phase shifter on Alice’s side. The demonstrated protocol opens up new

possibilities for a multitude of intriguing experiments with quantum microwaves such as

probing the Holevo bound limits [225], studying the role of quantum discord in quantum
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communication protocols [226], exploring hybrid continuous-discrete schemes of quan-

tum information processing [14], and implementing quantum illumination protocols [49].

Squeezing operations can further be exploited for the preparation of Gottesman-Kitaev-

Preskill (GKP) states for continuous-variable quantum error correction [161, 162]. Our

experiment proves that prototypical local quantum networks using continuous-variable

quantum microwaves are within experimental reach.
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Conclusion and outlook

In this thesis, we develop fundamental concepts and techniques for quantum communi-

cation with propagating quantum microwaves. In our experimental approach, we use

superconducting quantum circuits operated in the microwave regime which presently

are considered the most promising technology platform for building a scalable quantum

computer. Therefore, the development of efficient techniques for communication between

such future quantum processors become a necessity. We utilize superconducting quantum

circuits and linear circuit elements to generate propagating two-mode squeezed (TMS)

states which serve as an entangled resource for advanced experiments. In particular, we

successfully apply them as a resource in a fundamental quantum communication protocol,

namely, remote state preparation.

In our experiments, superconducting Josephson parametric amplifiers (JPA) play a

central role. We employ them for the generation and manipulation of propagating quantum

microwaves. During this thesis, we have developed routine methods for the characterization

and calibration of multiple JPAs in a single experiment. These developments are essential

as they allow us to utilize multiple JPAs for advanced quantum communication protocols.

If employed as generators of squeezed states, the JPAs can routinely produce squeezed

states with squeezing levels up to 10 dB below the vacuum limit.

As a first main result, we have successfully demonstrated the generation of propagating

TMS microwave states. We have achieved this task by superimposing two squeezed

states with the same squeezing level but orthogonal squeezing angles at a microwave

hybrid ring acting as a 50:50 beam splitter. The resulting TMS states possess path

entanglement between the hybrid ring outputs manifesting itself in nonlocal correlations

between quadratures in different paths. We have produced balanced TMS states with

nearly vanishing self-correlations. This clearly demonstrates our ability to precisely control

the properties of the squeezed states. We have reached record entanglement strengths

quantified by the negativity of up to 3.9 which corresponds to a two-mode squeezing level

of 9.4 dB.

Furthermore, we have systematically characterized the properties of the TMS states

as a prerequisite for their application in future experiments. First, the behavior against

finite-time delays between the propagation paths of the TMS states has been clarified. We
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have found that, for low squeezing levels, the TMS states remain entangled for asymmetric

time delays of up to 1µs, whereas the maximally acceptable delay, until the entanglement

disappears, decreases for increasing squeezing level. We also found that a wider detection

bandwidth decreases the tolerable time delays. Second, we have investigated the influence

of environmental noise on the propagating TMS states in detail. This is crucial for

practical implementations of quantum communication protocols. We have discovered a

sudden death of entanglement when adding roughly one noise photon to one path of the

TMS state. This sudden death of entanglement is found to be independent of the initial

entanglement strength. Third, we have studied quantum discord which quantifies quantum

correlations beyond entanglement. Interestingly, quantum discord in our TMS states is

found to be asymptotically robust against both finite-time delays and environmental noise.

A key result of this thesis is the first successful realization of deterministic remote

state preparation (RSP) with continuous-variable quantum microwaves. To this end, we

have employed the TMS states as an entangled resource and an additional JPA as a

phase-sensitive low-noise amplifier for the generation of a feedforward signal. In this way,

party A can remotely prepare a known quantum state at a distant location B. In our

prototypical experiment, the distance between A and B was set to be 35 cm, and thus, the

propagation distance of the feedforward signal encompasses multiple signal wavelengths.

We have remotely prepared squeezed states with squeezing levels of up to 1.7 dB below the

vacuum limit and a purity of ' 0.50 at the optimal operation point. We have found good

agreement between our experimental results and a theoretical model description based on

the input-output formalism. In addition, we have explored how the entanglement strength

influences the range of preparable states in RSP. As predicted by our theoretical model,

the squeezing level of the prepared states increases for increasing entanglement strengths.

Also, the classical and quantum correlations in different stages of the RSP protocol have

been studied where we have observed that, at the optimal point of RSP, most correlations

are used up after the protocol. Finally, we have clarified the relation of the RSP scheme

to an extension of the one-time pad cryptographic protocol into the quantum regime. We

have succeeded to implement close-to-perfectly secure communication of a quantum state

in the vicinity of the optimal point of RSP.

The fundamental studies and technical developments achieved in this thesis lay the

foundations for further research on propagating quantum microwaves and their application

on advanced quantum communication protocols. In future experiments, different technical

details can be optimized. First, the generation of the path-entangled TMS resource states

can be simplified by integrating two JPAs and a hybrid ring on a single chip. This approach

would avoid additional connection losses between the different components, resulting in

TMS states with a higher purity and squeezing level. Towards the fabrication of quantum

circuits with a higher degree of integration, recently a JPA and a superconducting qubit

have been integrated on a single chip in order to provide a more efficient qubit readout [124].

Second, the measurement times can be significantly reduced by utilizing a modern field
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programmable gate array (FPGA) for data processing. With an increased measurement

efficiency, the phase stability of squeezed states between measurements will be improved

and states with high squeezing levels can be reconstructed more reliably. We also note that,

FPGAs are essential for experiments with digital feedforward as the time delays for state

tomography must not exceed a few hundred nanoseconds. Third, the reduction of path

losses will increase the purity and fidelity of quantum states in future experiments. The

detailed analysis of the RSP protocol shows that presently we are limited to a large extent

by connection and insertion losses of different components in the current experimental

setup. The reduction of losses can be achieved by using optimized cable connectors,

superconducting hybrid rings, and superconducting on-chip circulators.

In the near future, we plan to utilize the same toolbox as in RSP to realize deterministic

quantum teleportation of squeezed microwave states [131]. Assuming similar losses and

JPA performances as in the current RSP implementation, we expect fidelities of the

teleported state of around 0.85. This fidelity could be further improved by reducing

microwave losses and optimizing the noise performance of the JPAs. Furthermore, it is

interesting to consider the application of propagating quantum microwaves in continuous-

variable quantum key distribution schemes. Here, a key challenge is the efficient detection

of microwave signals in order to achieve high key rates.

On a longer timescale, we envision a realization of a small local quantum network

using propagating microwaves where quantum information can be communicated via

teleportation or RSP schemes. Here, a central element is the realization of a cryogenic

link between nodes in the quantum network which would enable the realization of such

schemes.





Appendix A

JPA Hamiltonian in the interaction

picture

In order to illustrate the connection of a JPA to a degenerate parametric amplifier,

we write the JPA Hamiltonian in the interaction picture. Doing so, we start with the

Hamiltonian Ĥ of a flux-driven JPA given in Eq. (2.85) and assume a flux pump with

phase ϕ̃ at twice the resonance frequency ω0. Then, the Hamiltonian takes the form

Ĥ = ~ω0

[
â†â+ 1

2 + ε cos(2ω0t− ϕ̃)(â+ â†)2
]

= Ĥ0 + Ĥ1(t) , (A.1)

where Ĥ0 = ~ω0â
†â+ 1/2, Ĥ1(t) = ~ω0ε cos(2ω0t− ϕ̃)(â+ â†)2, and ε/2 is the amplitude

of the frequency modulation which depends on the pump strength. The transformation

of a Hamiltonian to the interaction picture is a unitary transformation with the unitary

operator Û = eiH0t/~. The JPA Hamiltonian in the interaction picture then reads

ĤI = ÛĤÛ † − i~Û
(
∂

∂t
Û †
)

= ÛĤ1(t)Û † , (A.2)

where we used

ÛĤÛ † = Ĥ0 + ÛĤ1(t)Û † , (A.3)

i~Û

(
∂

∂t
Û †
)

= −H0 . (A.4)

By using the relations

Û â2 Û † = â2e−2iω0t , (A.5)

Û (â†)2 Û † = (â†)2e2iω0t , (A.6)

Û â†â Û † = â†â , (A.7)
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and the commutation relation [â, â†] = 1, we arrive at

ĤI = ~ω0ε

2
(
e2iω0t−iϕ̃ + e−2iω0t+iϕ̃

) (
â2e−2iω0t + (â†)2e2iω0t + 2â†â+ 1

)
, (A.8)

where we additionally express the cosine in terms of exponential functions. We are only

interested in slowly oscillating terms. Therefore, we apply the rotating wave approximation

where we neglect terms oscillating with frequencies ω�ω0 and obtain

ĤI = ~ω0ε

2
(
â2e−iϕ̃ + (â†)2eiϕ̃

)
. (A.9)

Finally, we introduce the effective frequency modulation λ=ω0ε and shift the pump phase

by π/2 such that ϕ̃=ϕ− π/2. The resulting Hamiltonian

ĤI = i~
λ

2
(
â2e−iϕ − (â†)2eiϕ

)
(A.10)

is equivalent to the Hamiltonian of a degenerate parametric amplifier [16, 177].



Appendix B

Full model for remote state preparation

Here, we present the full analytic expressions for the prepared state during remote state

preparation (RSP) calculated in Mathematica. The expressions depend on the noise

photon number n, squeezing factor r, and squeezing angles (γ1 and γ2) of JPA 1 and JPA 2

as well as the degenerate gain Gf , amplification angle γf , and noise photon number nf of

JPA 3. Furthermore, the prepared state is affected by the losses ε, η1, and η2. Details on

the model are given in Sec. 2.3.2.

The final state is a single-mode squeezed state with a covariance matrix

V =
(
V11 V12

V12 V22

)
, (B.1)

where

V11 = e−2r

64Gf

{
2nε cos(2γ2−4γf)η1−2nετ cos(2γ2−4γf)η1−ετ cos(2γ2−4γf)η1−16τe2rGf−

8(e4r − 1)(1 + 2n) sin(γ1 − γ2) sin(γ1 + γ2 − 2γf)λGf − 4(τ − 1)e2r sin2(γf)(8nf + 4)−
4(τ − 1) sin2(γf)ε

[
2(2n− 2e2r + e4r(1 + 2n) + 1) + (e4r − 1)(1 + 2n)(C13 + C23)

]
η1G

2
f−

8(e4r − 1)(1 + 2n)ε(τ − 1)Gf cos(γ1 − γ2) sin(2γf) sin(γ1 + γ2 − 2γf)η1+
4τεGf

[
−2(2n− 2e2r + e4r(1 + 2n) + 1) + (e4r − 1)(1 + 2n)(cos(2γ1) + cos(2γ2))

]
η2+

8e2r−8e2rτ+8e2r cos(2γf)−8e2rτ cos(2γf)−4e4r cos(2γ1)λ−8e4rn cos(2γ1)λ+8n cos(2γ1)λ+
4 cos(2γ1)λ+ 4e4r cos(2γ2)λ+ 8e4rn cos(2γ2)λ− 8n cos(2γ2)λ− 4 cos(2γ2)λ−

4e4rC13λ− 8e4rnC13λ+ 8nC13λ+ 4C13λ+ 4e4rC23λ+ 8e4rnC23λ− 8nC23λ− 4C23λ−
4e4r cos(2γ1)λGf−8e4rn cos(2γ1)λGf +8n cos(2γ1)λGf +4 cos(2γ1)λGf +4e4r cos(2γ2)λGf+
8e4rn cos(2γ2)λGf − 8n cos(2γ2)λGf − 4 cos(2γ2)λGf − 32e2r(τ − 1) cos2(γf)nf − 8e2rεη1+
4e4rεη1 + 8e4rnεη1 + 8nεη1 + 4εη1 + 8e2rετη1 − 4e4rετη1 − 8e4rnετη1 − 8nετη1 − 4ετη1−
e4rε cos(2γ1)η1 − 2e4rnε cos(2γ1)η1 + 2nε cos(2γ1)η1 + ε cos(2γ1)η1 + e4rετ cos(2γ1)η1+

2e4rnετ cos(2γ1)η1−2nετ cos(2γ1)η1−ετ cos(2γ1)η1−e4rε cos(2γ2)η1−2e4rnε cos(2γ2)η1+
2nε cos(2γ2)η1 + ε cos(2γ2)η1 + e4rετ cos(2γ2)η1 + 2e4rnετ cos(2γ2)η1 − 2nετ cos(2γ2)η1−
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ετ cos(2γ2)η1 − 8e2rε cos(2γf)η1 + 4e4rε cos(2γf)η1 + 8e4rnε cos(2γf)η1 + 8nε cos(2γf)η1+
4ε cos(2γf)η1+8e2rετ cos(2γf)η1−4e4rετ cos(2γf)η1−8e4rnετ cos(2γf)η1−8nετ cos(2γf)η1−
4ετ cos(2γf)η1−2e4rεC13η1−4e4rnεC13η1+4nεC13η1+2εC13η1+2e4rετC13η1+4e4rnετC13η1−
4nετC13η1 − 2ετC13η1 − 2e4rεC23η1 − 4e4rnεC23η1 + 4nεC23η1 + 2εC23η1 + 2e4rετC23η1+
4e4rnετC23η1 − 4nετC23η1 − 2ετC23η1 − e4rε cos(2γ1 − 4γf)η1 − 2e4rnε cos(2γ1 − 4γf)η1+
2nε cos(2γ1−4γf)η1 +ε cos(2γ1−4γf)η1 +e4rετ cos(2γ1−4γf)η1 +2e4rnετ cos(2γ1−4γf)η1−
2nετ cos(2γ1−4γf)η1−ετ cos(2γ1−4γf)η1−e4rε cos(2γ2−4γf)η1−2e4rnε cos(2γ2−4γf)η1+

ε cos(2γ2 − 4γf)η1 + e4rετ cos(2γ2 − 4γf)η1 + 2e4rnετ cos(2γ2 − 4γf)η1

}
, (B.2)

V22 = e−2r

32Gf

{
2ετ sin(γ2) sin(γ2 − 2γf)η1 + 4nετ sin(γ2) sin(γ2 − 2γf)η1+

8(1 + 2n) cos(γf) sin(γ1 − γ2) sin(γ1 + γ2 − γf)λGf − 2(τ − 1)e2r cos2(γf)(8nf + 4)−
2(τ − 1) cos2(γf)ε

[
2(2n− 2e2r + e4r(1 + 2n) + 1) + (e4r − 1)(1 + 2n)(C13 + C23)

]
η1G

2
f +

4(−1 + e4r)(1 + 2n)ε(τ − 1)Gf cos(γ1 − γ2) sin(2γf) sin(γ1 + γ2 − 2γf)η1+
2τGfε

[
2(2n− 2e2r + e4r(1 + 2n) + 1) + (e4r − 1)(1 + 2n)(cos(2γ1) + cos(2γ2))

]
η2+

4e2r + 8e2r sin2(γf)− 8e2rτ sin2(γf) + 4e4r cos2(γ1)λ+ 8e4rn cos2(γ1)λ− 4e4r cos2(γ2)λ−
8e4rn cos2(γ2)λ+8n sin2(γ1)λ+4 sin2(γ1)λ−8n sin2(γ2)λ−4 sin2(γ2)λ−4e4r cos(γ1)C̃13λ−

8e4rn cos(γ1)C̃13λ+ 4e4r cos(γ2)C̃23λ+ 8e4rn cos(γ2)C̃23λ− 8n sin(γ1) sin(γ1 − 2γf)λ−
4 sin(γ1) sin(γ1−2γf)λ+8n sin(γ2) sin(γ2−2γf)λ+4 sin(γ2) sin(γ2−2γf)λ+4e4r cos2(γ1)λGf+

8e4rn cos2(γ1)λGf − 4e4r cos2(γ2)λGf − 8e4rn cos2(γ2)λGf + 4e4r cos(γ1)C̃13λGf+
8e4rn cos(γ1)C̃13λGf−4e4r cos(γ2)C̃23λGf−8e4rn cos(γ2)C̃23λGf−16e2r(τ−1) sin2(γf)nf+
e4rε cos2(γ1)η1 +2e4rnε cos2(γ1)η1−e4rετ cos2(γ1)η1−2e4rnετ cos2(γ1)η1 +e4rε cos2(γ2)η1+

2e4rnε cos2(γ2)η1 − e4rετ cos2(γ2)η1 − 2e4rnετ cos2(γ2)η1 + e4rεC̃2
13η1 + 2e4rnεC̃2

13η1−
e4rετC̃2

13η1 − 2e4rnετC̃2
13η1 + e4rεC̃2

23η1 + 2e4rnεC̃2
23η1 − e4rετC̃2

23η1 − 2e4rnετC̃2
23η1+

2nε sin2(γ1)η1+ε sin2(γ1)η1−2nετ sin2(γ1)η1−ετ sin2(γ1)η1+2nε sin2(γ2)η1+ε sin2(γ2)η1−
2nετ sin2(γ2)η1− ετ sin2(γ2)η1−8e2rε sin2(γf)η1 +8e2rετ sin2(γf)η1 +2nε sin2(γ1−2γf)η1+
ε sin2(γ1 − 2γf)η1 − 2nετ sin2(γ1 − 2γf)η1 − ετ sin2(γ1 − 2γf)η1 + 2nε sin2(γ2 − 2γf)η1+
ε sin2(γ2 − 2γf)η1 − 2nετ sin2(γ2 − 2γf)η1 − ετ sin2(γ2 − 2γf)η1 − 2e4rε cos(γ1)C̃13η1−

4e4rnε cos(γ1)C̃13η1 + 2e4rετ cos(γ1)C̃13η1 + 4e4rnετ cos(γ1)C̃13η1 − 2e4rε cos(γ2)C̃23η1−
4e4rnε cos(γ2)C̃23η1+2e4rετ cos(γ2)C̃23η1+4e4rnετ cos(γ2)C̃23η1−4nε sin(γ1) sin(γ1−2γf)η1−

2ε sin(γ1) sin(γ1 − 2γf)η1 + 4nετ sin(γ1) sin(γ1 − 2γf)η1 + 2ετ sin(γ1) sin(γ1 − 2γf)η1−

4nε sin(γ2) sin(γ2 − 2γf)η1 − 2ε sin(γ2) sin(γ2 − 2γf)η1

}
, (B.3)
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V12 = e−2r

64Gf

{
ε sin(2γ2 − 4γf)η1 − 2nετ sin(2γ2 − 4γf)η1 − ετ sin(2γ2 − 4γf)η1+

2e4rnετ sin(2γ2 − 4γf)η1 + e4rετ sin(2γ2 − 4γf)η1 − 2(τ − 1)e2r sin(2γf)(8nf + 4)−
2(τ − 1) sin(2γf)ε

[
2(2n− 2e2r + e4r(1 + 2n) + 1) + (e4r − 1)(1 + 2n)(C13 + C23)

]
η1G

2
f−

4(−1+e4r)(1+2n)ε cos(γ1−γ2)(2(τ−1) cos(2γf) sin(γ1+γ2−2γf)η1−2τ sin(γ1+γ2)η2)Gf−
8e2r sin(2γf)+8e2rτ sin(2γf)+4e4r sin(2γ1)λ+8e4rn sin(2γ1)λ−8n sin(2γ1)λ−4 sin(2γ1)λ−

4e4r sin(2γ2)λ− 8e4rn sin(2γ2)λ+ 8n sin(2γ2)λ+ 4 sin(2γ2)λ+ 4e4r sin(2γ1)λGf+
8e4rn sin(2γ1)λGf−8n sin(2γ1)λGf−4 sin(2γ1)λGf−4e4r sin(2γ2)λGf−8e4rn sin(2γ2)λGf+
8n sin(2γ2)λGf+4 sin(2γ2)λGf+16e2r(τ−1) sin(2γf)nf+e4rε sin(2γ1)η1+2e4rnε sin(2γ1)η1−
2nε sin(2γ1)η1 − ε sin(2γ1)η1 − e4rετ sin(2γ1)η1 − 2e4rnετ sin(2γ1)η1 + 2nετ sin(2γ1)η1+
ετ sin(2γ1)η1 + e4rε sin(2γ2)η1 + 2e4rnε sin(2γ2)η1 − 2nε sin(2γ2)η1 − ε sin(2γ2)η1−

e4rετ sin(2γ2)η1 − 2e4rnετ sin(2γ2)η1 + 2nετ sin(2γ2)η1 + ετ sin(2γ2)η1 + 8e2rε sin(2γf)η1−
4e4rε sin(2γf)η1 − 8e4rnε sin(2γf)η1 − 8nε sin(2γf)η1 − 4ε sin(2γf)η1 − 8e2rετ sin(2γf)η1+

4e4rετ sin(2γf)η1 + 8e4rnετ sin(2γf)η1 + 8nετ sin(2γf)η1 + 4ετ sin(2γf)η1−
e4rε sin(2γ1− 4γf)η1− 2e4rnε sin(2γ1− 4γf)η1 + 2nε sin(2γ1− 4γf)η1 + ε sin(2γ1− 4γf)η1+
e4rετ sin(2γ1−4γf)η1+2e4rnετ sin(2γ1−4γf)η1−2nετ sin(2γ1−4γf)η1−ετ sin(2γ1−4γf)η1−

e4rε sin(2γ2 − 4γf)η1 − 2e4rnε sin(2γ2 − 4γf)η1 + 2nε sin(2γ2 − 4γf)η1

}
. (B.4)

Here, we use λ = ε
√

(1− τ)τGfη1η2, C13 = cos(2γ1 − 2γf), C23 = cos(2γ2 − 2γf),
C̃13 = cos(γ1 − 2γf), and C̃23 = cos(γ2 − 2γf) in order to simplify the expressions. In

order to describe our experimental results, the total electrical lengths as well as different

path lengths are taken into account by the parameters γopt and θrp. For that, we substitute

γf → γf + γopt in Eqs. (B.2) to (B.4) and rotate the final state by an angle θrp according

to Eq. (2.4).





Appendix C

Quantum discord at RSP stage

In Fig. C.1, we show the values of quantum discord, DA and DB, as a function of the

feedforward parameters in the RSP protocol. The latter parameters are the JPA 3 gain

Gf and amplification angle γf . As discussed in Sec. 5.2.3, we observe nearly vanishing

quantum discord around the optimal point of RSP while DA>DB. However, for both DA

and DB, we find a shift to negative γf in the characteristic “V-shape” which is observed

in the squeezing level Srp of the remotely prepared states. Also, there is no symmetry

around a certain γf value which we observe in, e.g., the prepared squeezing level Srp,

antisqueezing level Arp, or the purity µ. For the RSP parameters discussed in Sec. 5.1

(including the cross-talk), the shift and asymmetry are not reproduced by our theory

model. However, they might be explained by a stronger cross-talk which, in general,

causes an asymmetry in respect to the optimal γf . Furthermore, in the current model, we

only consider a cross-talk to the squeezing angle of JPA 1. However, the squeezing level of

JPA 1, and possibly JPA 2, is weakly affected by the cross-talk as well.
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Figure C.1: Quantum discord (a) DA and (b) DB as a function of the feedforward parameters at the

RSP stage. The optimal point is marked by the blue star. The dashed line marks the optimal

amplification angle γf = 0°.
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[54] V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection

of quantum coherences on different observation levels”, Phys. Rev. A 54, 804 (1996).

[55] A. Serafini, F. Illuminati, and S. D. Siena, “Symplectic invariants, entropic measures

and correlations of Gaussian states”, J. Phys. B 37, L21 (2004).

[56] G. Adesso, A. Serafini, and F. Illuminati, “Determination of Continuous Variable

Entanglement by Purity Measurements”, Phys. Rev. Lett. 92, 087901 (2004).

[57] G. Adesso and F. Illuminati, “Gaussian measures of entanglement versus negativities:

Ordering of two-mode Gaussian states”, Phys. Rev. A 72, 032334 (2005).

[58] R. J. Glauber, “Coherent and Incoherent States of the Radiation Field”, Phys. Rev.

131, 2766 (1963).

[59] E. C. G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical De-

scriptions of Statistical Light Beams”, Phys. Rev. Lett. 10, 277 (1963).

[60] M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press,

Cambridge, 1997).

http://dx.doi.org/10.1038/s41467-019-10727-7
http://dx.doi.org/10.1038/s41467-019-10727-7
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1038/s41598-017-08505-w
http://dx.doi.org/10.1016/0079-6727(94)00007-L
http://dx.doi.org/10.1016/0079-6727(94)00007-L
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1088/0954-8998/2/6/004
http://dx.doi.org/10.1103/PhysRevA.54.804
http://dx.doi.org/10.1088/0953-4075/37/2/L02
http://dx.doi.org/10.1103/PhysRevLett.92.087901
http://dx.doi.org/10.1103/PhysRevA.72.032334
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRevLett.10.277


156 Bibliography

[61] E. Wigner, “On the Quantum Correction For Thermodynamic Equilibrium”, Phys.

Rev. 40, 749 (1932).
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[103] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek,

G. Puebla, L. Steffen, and A. Wallraff, “Coplanar waveguide resonators for circuit

quantum electrodynamics”, J. Appl. Phys. 104, 113904 (2008).

[104] T. Yamamoto, K. Koshino, and Y. Nakamura, “Parametric Amplifier and Oscillator

Based on Josephson Junction Circuitry”, in Principles and Methods of Quantum

Information Technologies, edited by Y. Yamamoto and K. Semba (Springer Japan,

Tokyo, 2016), pp. 495–513.

[105] D. S. Wisbey, J. Gao, M. R. Vissers, F. C. S. da Silva, J. S. Kline, L. Vale,

and D. P. Pappas, “Effect of metal/substrate interfaces on radio-frequency loss in

superconducting coplanar waveguides”, J. Appl. Phys. 108, 093918 (2010).

[106] C. L. Holloway and E. F. Kuester, “Edge shape effects and quasi-closed form

expressions for the conductor loss of microstrip lines”, Radio Sci. 29, 539 (1994).

[107] J. Goetz, F. Deppe, M. Haeberlein, F. Wulschner, C. W. Zollitsch, S. Meier,

M. Fischer, P. Eder, E. Xie, K. G. Fedorov, E. P. Menzel, A. Marx, and R. Gross,

“Loss mechanisms in superconducting thin film microwave resonators”, J. Appl. Phys.

119, 015304 (2016).

[108] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver,

Y. Nakamura, and J. S. Tsai, “Flux-driven Josephson parametric amplifier”, Appl.

Phys. Lett. 93, 042510 (2008).

[109] M. Wallquist, V. S. Shumeiko, and G. Wendin,“Selective coupling of superconducting

charge qubits mediated by a tunable stripline cavity”, Phys. Rev. B 74, 224506

(2006).

[110] W. Wustmann and V. Shumeiko, “Parametric resonance in tunable superconducting

cavities”, Phys. Rev. B 87, 184501 (2013).

[111] J. Bourassa, F. Beaudoin, J. M. Gambetta, and A. Blais, “Josephson-junction-

embedded transmission-line resonators: From Kerr medium to in-line transmon”,

Phys. Rev. A 86, 013814 (2012).

[112] P. Bhupathi, P. Groszkowski, M. P. DeFeo, M. Ware, F. K. Wilhelm, and B. L. T.

Plourde, “Transient Dynamics of a Superconducting Nonlinear Oscillator”, Phys.

Rev. Appl. 5, 024002 (2016).

[113] S. Pogorzalek, K. G. Fedorov, L. Zhong, J. Goetz, F. Wulschner, M. Fischer,

P. Eder, E. Xie, K. Inomata, T. Yamamoto, Y. Nakamura, A. Marx, F. Deppe,

and R. Gross, “Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven

Josephson Parametric Amplifiers”, Phys. Rev. Appl. 8, 024012 (2017).

http://dx.doi.org/10.1063/1.3010859
http://dx.doi.org/10.1063/1.3499608
http://dx.doi.org/10.1029/93RS03062
http://dx.doi.org/10.1063/1.4939299
http://dx.doi.org/10.1063/1.2964182
http://dx.doi.org/10.1063/1.2964182
http://dx.doi.org/10.1103/PhysRevB.74.224506
http://dx.doi.org/10.1103/PhysRevB.87.184501
http://dx.doi.org/10.1103/PhysRevA.86.013814
http://dx.doi.org/10.1103/PhysRevApplied.5.024002
http://dx.doi.org/10.1103/PhysRevApplied.5.024002
http://dx.doi.org/10.1103/PhysRevApplied.8.024012


160 Bibliography

[114] F. Balestro, J. Claudon, J. P. Pekola, and O. Buisson, “Evidence of two-dimensional

macroscopic quantum tunneling of a current-biased dc SQUID”, Phys. Rev. Lett.

91, 158301 (2003).

[115] E. Hoskinson, F. Lecocq, N. Didier, A. Fay, F. W. J. Hekking, W. Guichard,

O. Buisson, R. Dolata, B. Mackrodt, and A. B. Zorin, “Quantum Dynamics in a

Camelback Potential of a dc SQUID”, Phys. Rev. Lett. 102, 097004 (2009).

[116] W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum Fluctuations and Noise in

Parametric Processes. I.”, Phys. Rev. 124, 1646 (1961).

[117] J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum Fluctuations and Noise

in Parametric Processes. II”, Phys. Rev. 129, 481 (1963).

[118] M. A. Castellanos-Beltran and K. W. Lehnert, “Widely tunable parametric amplifier

based on a superconducting quantum interference device array resonator”, Appl.

Phys. Lett. 91, 083509 (2007).

[119] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio,

D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, “Phase-preserving

amplification near the quantum limit with a Josephson ring modulator”, Nature

465, 64 (2010).

[120] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi, “Dispersive magne-

tometry with a quantum limited SQUID parametric amplifier”, Phys. Rev. B 83,

134501 (2011).

[121] C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A. Wallraff, “Quantum-Limited

Amplification and Entanglement in Coupled Nonlinear Resonators”, Phys. Rev. Lett.

113, 110502 (2014).

[122] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D.

Oliver, and I. Siddiqi, “A near-quantum-limited Josephson traveling-wave parametric

amplifier”, Science 350, 307 (2015).

[123] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf,

“Introduction to quantum noise, measurement, and amplification”, Rev. Mod. Phys.

82, 1155 (2010).

[124] A. Eddins, J. M. Kreikebaum, D. M. Toyli, E. M. Levenson-Falk, A. Dove, W. P.

Livingston, B. A. Levitan, L. C. G. Govia, A. A. Clerk, and I. Siddiqi, “High-

Efficiency Measurement of an Artificial Atom Embedded in a Parametric Amplifier”,

Phys. Rev. X 9, 011004 (2019).

http://dx.doi.org/10.1103/PhysRevLett.91.158301
http://dx.doi.org/10.1103/PhysRevLett.102.097004
http://dx.doi.org/10.1103/PhysRev.124.1646
http://dx.doi.org/10.1103/PhysRev.129.481
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1038/nature09035
http://dx.doi.org/10.1103/PhysRevB.83.134501
http://dx.doi.org/10.1103/PhysRevLett.113.110502
http://dx.doi.org/10.1126/science.aaa8525
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/PhysRevX.9.011004


Bibliography 161

[125] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold, L. Frunzio, L. Jiang,

M. H. Devoret, and R. J. Schoelkopf, “Controlled release of multiphoton quantum

states from a microwave cavity memory”, Nat. Phys. 13, 882 (2017).

[126] H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers”, Phys. Rev.

128, 2407 (1962).

[127] C. M. Caves, “Quantum limits on noise in linear amplifiers”, Phys. Rev. D 26, 1817

(1982).

[128] L. Zhong, E. P. Menzel, R. Di Candia, P. Eder, M. Ihmig, A. Baust, M. Haeberlein,

E. Hoffmann, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, F. Deppe,

A. Marx, and R. Gross, “Squeezing with a flux-driven Josephson parametric ampli-

fier”, New J. Phys. 15, 125013 (2013).

[129] B. Yurke and E. Buks, “Performance of cavity-parametric amplifiers, employing

Kerr nonlinearites, in the presence of two-photon loss”, J. Light. Technol. 24, 5054

(2006).

[130] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M. Fink, S. Filipp, and

A. Wallraff, “Observation of Two-Mode Squeezing in the Microwave Frequency

Domain”, Phys. Rev. Lett. 107, 113601 (2011).

[131] R. Di Candia, K. Fedorov, L. Zhong, S. Felicetti, E. Menzel, M. Sanz, F. Deppe,

A. Marx, R. Gross, and E. Solano, “Quantum teleportation of propagating quantum

microwaves”, EPJ Quantum Technol. 2, 25 (2015).

[132] Z. Kurucz, P. Adam, Z. Kis, and J. Janszky, “Continuous variable remote state

preparation”, Phys. Rev. A 72, 052315 (2005).

[133] N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus,

“Derivation and experimental test of fidelity benchmarks for remote preparation of

arbitrary qubit states”, Phys. Rev. A 81, 012334 (2010).

[134] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,

“Experimental quantum teleportation”, Nature 390, 575 (1997).

[135] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental

Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and

Einstein-Podolsky-Rosen Channels”, Phys. Rev. Lett. 80, 1121 (1998).
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