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1 Introduction

The copper-oxygen superconductors, discovered in 1986 by Bednorz and Müller [1], are
highly correlated, nearly two-dimensional metals having transition temperatures Tc up
to 135 K. While the initial interest was mainly driven by the fascinating and unprece-
dently high transition temperatures, it soon turned out that also many aspects of the
so-called “normal state” are at odds with conventional metal physics, treating the elec-
trons as independent quasiparticles. Although the cuprates are among the most intensively
studied material systems in modern condensed matter physics, no general consensus as to
the understanding emerges yet. This highlights the scientific significance of the cuprate
superconductors which reaches beyond the material class itself and touches the recently
discovered iron-based [2] or the heavy Fermion superconductors [3, 4].

It is widely accepted that the CuO2 planes represent the key structural element of the
cuprates which determines the low-energy electronic properties. By varying the environ-
ment of the planes, additional charge carriers can be added or removed. This substantially
affects the material properties and leads to a rich variety of new and interesting phenom-
ena including high temperature superconductivity [5, 6]. Surprisingly enough, the overall
phase diagram of the cuprates is found to be similar for a large number of compounds.
For example at half-filling, where the electron count predicts a good metal, all materi-
als are antiferromagnetic insulators since charge transport is suppressed by a large on-site
Coulomb repulsion. For increasing carrier concentration, the long-range antiferromagnetic
order vanishes, and many compounds develop superconductivity with transition tempera-
tures above 90 K. Upon further increasing the doping, superconductivity starts to disappear
again, and a more conventional, metallic ground state evolves. It is this transition from
moderate to strong correlations which is at the origin of the continuous and wide interest
in the cuprates. Its deeper understanding is considered the key towards explaining the
superconductivity in the cuprates.

On this background, the question has to be answered as to whether superconductivity
can be explained as a low-temperature instability of a normal metallic state where, as
in conventional superconductors, a retarded bosonic interaction mediates pairing between
electrons, or whether a new ground state of the electronic system itself is established due
to instantaneous electronic interactions. This aspect is referred to as the “glue issue”,
and the controversy about it was fuelled again recently [7, 8]. An early proposal for such
a new ground state is the resonating valence bond (RVB) state which emerges from the
Néel state upon doping [9], while possible candidates for exchange bosons are primarily
spin- and/or charge-ordering fluctuations. Although recent work provides support for a
retarded interaction scenario [8, 10], up to now no conclusive answer as to the origin of
superconductivity has been given, and the results in the cuprates are still far from converging
into a unified picture.

On the experimental side, the continuous improvement of sample quality and the tremen-
dous advances in many techniques such as, e.g., angle-resolved photoemission spectroscopy
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1 Introduction

(ARPES) or scanning tunneling microscopy (STM/STS), allows one to identify an increas-
ing number of intrinsic properties common to all cuprate materials, and to safely distinguish
them from material specific peculiarities. Concerning the unconventional properties of the
normal state, nowadays a wealth of experimental results is available. For instance, the
pseudogap phenomenon [11] is a well-established common feature: It can be understood as
a momentum dependent gap in the electronic density of states that evolves at and below
optimal doping (p=0.16), and goes along with the gradual loss of quasiparticle coherence
on some parts of the Fermi surface as observable by ARPES [12, 13] and STM [14, 15]. It
has been proposed that these normal-state anomalies existing in large parts of the phase di-
agram could be related to a quantum phase transition with a quantum critical point (QCP)
hidden below the SC dome at approximately optimal doping [16, 17, 18, 19].

In contrast to single-particle results obtained from ARPES and STM, two-particle tech-
niques such as nuclear magnetic resonance (NMR) and electronic Raman scattering reveal
anomalies already at much higher doping levels at approximately p� 0.21 [20, 21, 22, 23].
Generally, such discrepancies between single- and two-particle properties are not surprising
in strongly correlated systems since here the residual many-body correlations of the created
electron-hole pairs must be properly taken into account [24]. Therefore, it can be expected
that the quantitative comparison of single- and two-particle correlation functions reveals
important information on the underlying interactions which may be missed when analyzing
single- or two-particle results independently [23]. Hence, the purpose of this comparative
study is to identify properties of the electronic relaxation mechanisms in the cuprates by
comparing ARPES and Raman results.

Electronic Raman scattering (ERS) has proven to be a useful tool to access the quasipar-
ticle dynamics of strongly correlated systems [23]. This is, on the one hand, based on the
fact that ERS represents a two-particle correlation function which is sensitive to many-body
effects similar to, e.g., optical transport (IR) or NMR. On the other hand, ERS allows one
to selectively probe electronic excitations in different regions of the Brillouin zone via the
light scattering selection rules being controlled by the polarizations of the incoming and the
scattered photons. In the specific case of the cuprates, the dynamics of the nodal (π/2, π/2)
and antinodal (π, 0) quasiparticles can be accessed independently [25]. In addition, ERS has
a good energy resolution and, due to the long penetration depth of visible light in cuprate
materials, represents a true bulk sensitive probe.

In this thesis, ERS is used to study the doping dependence of the normal state electronic
properties of various cuprate superconductors. It is organized as follows: After a brief
review of the essential properties of the cuprate material class in Chapter 2, elements of the
electronic Raman scattering technique are introduced in Chapter 3. Chapter 4 is devoted
to the Raman setup focusing on the correct preparation of the incident polarization inside
the sample. Additionally, the set of samples used for the experiments is introduced and
some issues concerning sample preparation are addressed. In Chapter 5, the experimental
results are discussed qualitatively, before in Chapter 6 single- and two-particle quantities
are compared by establishing a phenomenological description of the Raman response on
the basis of analytic approximations to the single-particle spectral function as obtained in
ARPES experiments.
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2 The cuprates

The discovery of superconductivity in the LaBaCuO ceramic compound in 1986 by G. Bed-
norz and A. Müller [1] with its unprecedented transition temperature of Tc =30 K was one
of the most celebrated events in superconductivity research. In the following years many
other compounds exhibiting even higher Tcs have been synthesized, all characterized by
building blocks of one or more CuO2 planes. Already in 1987, a Tc of approximately 90 K
was observed in YBa2Cu3O6+δ [26], while the highest Tc of 133 K found to date at ambient
pressure was obtained later in the trilayer system HgBa2Ca2Cu3O8+x [27]. Due to the com-
mon CuO2 planes the newly discovered material class was soon referred to as the cuprate
or simply high-Tc superconductors. The recent discovery of the iron arsenides shows that
high transition temperatures in the range of 50 K [28, 29] are also possible in other material
systems.

In this chapter basic properties of the cuprate superconductors are reviewed emphasizing
the issues relevant for this work. Besides the general structural properties, the focus is
placed on the electronic properties in the so-called “normal state” which are found to be
far from being normal. It is widely believed that a profound understanding of the normal
state properties is required to finally solve the riddle of superconductivity.

2.1 Structural properties

The cuprates are transition metal oxides which exhibit a layered crystal structure. Their
most important structural element is the CuO2 plane forming single- or multi-layer blocks
which are separated from each other by the so-called charge reservoir layers as illus-
trated in Fig. 2.1. To date a large number of different compounds is known which dif-
fer in the composition of the charge reservoir layers and in the number N of adjacent
CuO2-layers in such a characteristic block. Depending on N , the cuprates are classified as
single-layer (e.g. La2-xSrxCuO4, Nd2-xCexCuO4, Bi2Sr2CuO6+δ), bilayer (e.g. YBa2Cu3O6+δ,
Bi2Sr2CaCu2O8+δ) and trilayer (e.g. Bi2Sr2Ca2Cu3O10+δ) compounds, etc. The number of
adjacent CuO2 layers also affects the superconducting properties since within each family
of cuprates Tc increases as a function of N , at least for N ≤ 3 [30, 31]. For example, in
the Bi-based cuprates the maximum Tc of 34, 96 and 110 K is observed for N = 1, 2, 3,
respectively [32].

Due to their layered structure a strong anisotropy between a-b and c-axis is characteristic
for the cuprates, and the electrons are confined to the CuO2 planes [33]. By changing the
stoichiometry of the reservoir layers one can dope charge carriers into the CuO2 planes
and a rich phase diagram evolves as a function of doping (see 2.3). Depending on the
material class, electrons or holes can be doped into the CuO2 plane and, consequently, one
speaks of electron- and hole-doped compounds, respectively. The vast majority of cuprate
materials is hole-doped, and there exist only a few electron-doped compounds. However,
during the last decade substantial progress has been achieved concerning growth [34, 35]
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Figure 2.1: Illustration of the layered structure common to the all cuprate superconductors.
The single- or multi-layer CuO2 plane blocks are separated by the so-called charge reservoir
layers which, depending on their composition, dope electrons or holes into the planes.

and characterization of electron-doped materials (see Ref. [36]). It is widely believed that
important theoretical implications can be derived from the comparison of electron- and
hole-doped compounds [36, 37].

2.2 Electronic properties

The low energy electronic properties of the cuprates are mainly determined by the CuO2

planes. A single CuO2 layer, in which copper and oxygen form a square planar lattice, is
illustrated in Fig. 2.1 and Fig. 2.2 (a) placing the focus on the ionic sites and the relevant
electronic orbitals, respectively. Although the crystal structure obviously influences the
electronic properties considerably, many theoretical descriptions start from generic models
considering only a single CuO2 plane. This is useful to keep the models simple on the one
hand and, on the other hand, justified by the observation that the electronic properties are
surprisingly similar for all compounds.

2.2.1 Single particle band structure

Band structure calculations in local density approximation (LDA) show that all bands
around the Fermi level have predominantly Cu 3d and O 2p character [38]. Substantial
simplification is achieved by the observation that the essential features of the bands close
to the Fermi level are reproduced by considering a square lattice with only three orbitals:
The Cu dx2−y2 , and the O px and py orbitals as illustrated in Fig. 2.2 (a). Therefore, a
two-dimensional tight-binding model including the p dσ interaction between the Cu dx2−y2

orbitals and the neighbouring O px and py orbitals is widely used in the literature. Within
the model only the antibonding band is present at the Fermi level [13]. It can be expanded
into lattice harmonics [39] as

εk = − 2t(cos kx + cos ky) + 4t′ cos kx cos ky

− 2t′′(cos 2kx + cos 2ky) + . . . + ε0

(2.1)
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Figure 2.2: (a) Illustration of the relevant orbitals of the CuO2 planes where the arrows
indicate the crystallographic a- and b-axis and the dashed square the CuO2 unit cell with a
the lattice constant. (b) Illustration of the band structure obtained from the tight binding
expansion given in Eq. (2.1) for t=0.25 eV, t′=0.35 t and μ=unit1.3t resulting in p=0.26.

with kx and ky the crystal momenta along the x and y principle axis in units of (π/a) and
ε0 a constant used to adjust the proper band filling. As illustrated in Fig. 2.2 (a), t, t′ and
t′′ represent the effective hopping integrals (≥ 0) to the nearest, 2nd and 3rd nearest Cu
site, respectively.

Fig. 2.2 (b) illustrates a single-electron band dispersion in the first quadrant of the
Brillouin zone for parameters consistent with angle-resolved photoemission spectroscopy
(ARPES) results. It was especially ARPES that discovered great detail about the elec-
tronic band structure, e.g. an almost cylindrical Fermi surface (FS) around (π, π) which
is represented in the figure by the white solid line. It highlights the proximity of the van-
Hove-singularity at (π, 0) to the Fermi level, and its cylindrical shape implies the inclusion
of at least second nearest neighbor hopping t′. In some cases, hopping terms up to the
fifth order can be found in the literature [40] in order to obtain not only the proper shape
of the Fermi surface, but also a magnitude of the Fermi velocity consistent with ARPES
results. In compounds with more than a single layer as e.g. the bilayer compound Bi2212,
it could be clarified that the proximity of the two adjacent CuO2 layers causes the elec-
tronic band at the Fermi level to split into bonding and antibonding sheets (for a review
see [13]). This splitting can be accounted for by the introduction of a bilayer splitting
term ±t⊥(cos kx − cos ky)2. But also angular magneto-resistance oscillations (AMRO) have
provided new insight recently. For overdoped Tl2201, a coherent 3D Fermi surface with
a weak dispersion along the z-axis has been discovered [41] showing that electrons under
some circumstances develop three dimensional character. Nevertheless, 2D models are the
first-choice starting points to understand the physics of the cuprates.

2.2.2 Electronic correlations

Of course, LDA band structure calculations, representing an independent-particle approx-
imation, neglect the strong electronic correlations which are found to be indispensable for
the understanding of the cuprates. For example, in the undoped mother compounds which
have one electron per CuO2 formula unit, single-electron theory predicts a half-filled band
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(a) (b) (c)

(d) (e)

Figure 2.3: (a) Electronic bands derived from LDA calculations considering only nearest
neighbor hopping with anti-bonding (AB), non-bonding (NB) and bonding band (B) and
(b) illustration of the corresponding density of states (DOS). (c,d) Illustration of the DOS
redistribution of the originally half-filled valence band due to strong electronic correlations;
the AB band is split into upper and lower Hubbard band, UHB and LHB, respectively. Two
cases are shown: U �Δ and Δ�U with U the on-site electron-electron repulsion and Δ the
charge transfer energy. (d) DOS redistribution including the formation of Zhang-Rice-Singlets
(ZRS). The figure is reproduced from [13].

and, therefore, a good metal. This is illustrated in Fig. 2.3 (a) and (b), where the Fermi
level is centered in the anti-bonding band (AB). Instead, these undoped materials are found
to be anti-ferromagnetic insulators. This indicates that the undoped compounds belong to
the class of Mott-Hubbard-insulators in which metallic behavior is quenched by a large
on-site electron-electron repulsion U which is larger than the bandwidth W = 8t. In this
picture, U leads to the formation of the fully occupied lower Hubbard band (LHB) and the
empty upper Hubbard band (UHB) (see Fig. 2.3 (c,d)) and, thus, to insulating behavior.
When holes are doped into the system they go first on the O sites [42], however, they form
a cloud around the Cu atom and behave as if the hole would reside on the Cu ion [43].
This is commonly referred to as the formation of Zhang-Rice-Singlets (ZRS), and it has
been suggested that the cuprates could be approximated by an effective one-band Hubbard
model with the ZRS band playing the role of the lower Hubbard band. This picture is
widely used in the literature, although its appropriateness is still under debate.

2.3 Phase diagram

Starting from half-filling, corresponding to one electron per CuO2 formula unit, where all
compounds are consistently found to be antiferromagnetic insulators, charge carriers can be
doped into the CuO2-planes profoundly altering their electronic properties. As discussed
before, depending on the compound this can be electrons or holes. In this work, both
material classes are investigated and, therefore, the combined phase diagram is displayed
in Fig. 2.4. Following the general convention, n and p denote the additional electron and
hole concentration away from half filling, respectively1.

1More precisely, n and p ≥ 0 are given by n = ntotal−1 and p = 1−ntotal with ntotal the total number of
electrons per CuO2 formula unit and 1 corresponding to ntotal at half filling.

6



2.3 Phase diagram

SC
Tc

T*

TN

SC
Tc

T* T0

TN

0

100

200

300

0 0.30.20.10.10.20.3

Te
m

pe
ra

tu
re

 (K
)

n pdoping

AF

La2-xSrxCuO4RE2-xCexCuO4

RE = Nd, Pr, Sm YBa2Cu3O6+δ

Y1-xCaxBa2Cu3O6+δ

Bi2Sr2CaCu2O8+δ

pseudogap

Fe
rm

i l
iq

ui
d?

Figure 2.4: Schematic phase diagram of the electron- and hole-doped cuprate superconduc-
tors displayed on the left and right panel, respectively. The different phases and crossover
lines are described in the text, while the arrows indicate the doping ranges accessible with
different compounds.

In general, the hole doped side of the phase diagram has been investigated in more
depth as only a few electron-doped compounds exist. Another reason is that some of
the hole doped compounds are easier to grow, exhibit higher superconducting transition
temperatures and/or are better suited for some experimental techniques. Therefore, the
following discussion starts with the more familiar hole-doped compounds.

2.3.1 Hole-doped compounds

Considering the evolution of the electronic properties with doping, all hole-doped cuprates
have surprisingly similar phase diagrams. The strong electronic correlations lead to nu-
merous different phases and competing order upon increasing the doping level [44]. The
parent compounds at zero doping (p=0) are antiferromagnetic insulators with a Néel tem-
perature TN of the order of room temperature. Upon increasing the hole concentration, the
long-range antiferromagnetic order (AF) is suppressed rapidly and vanishes at approx-
imately p=0.02.

Superconductivity (SC) exists in the range 0.05≤p≤0.27. Here, the superconducting
transition temperature, Tc, exhibits a maximum at p=0.16 which is denoted optimal doping,
while the doping levels below and above optimal doping are referred to as underdoped and
overdoped regimes, respectively. The onset points of superconductivity at psc1 = 0.05 and
psc2 =0.27, as well as the optimal doping level popt =0.16, are consistently observed for most
material systems. Furthermore, the variation of Tc with doping is found to be quadratic
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2 The cuprates

to a good approximation. These findings have been summarized by Tallon et al. in the
empirical relation [45]

Tc(p) = Tmax
c [ 1 − 82.6 (p − 0.16)2], (2.2)

with Tmax
c the maximal superconducting transition temperature of a specific compound.

Only Tmax
c seems to be strongly material dependent. It varies substantially, not only as

a function of N , the number of adjacent CuO2 planes. For example, La2-xSrxCuO4 and
Tl2Ba2CuO6+δ, both single layer compounds, have a Tmax

c of 40 K and 95 K, respectively.
It is widely accepted that the superconducting gap exhibits dx2−y2 symmetry.

But also the electronic properties in the “normal state”, i.e. above Tc, exhibit anomalies,
especially in the underdoped regime. Here the opening of a momentum dependent gap in
the electronic excitation spectrum is observed which referred to as the pseudogap [11]. In
Fig. 2.4, T ∗ represents the approximate crossover temperature to the pseudogap regime,
although also other crossover lines (T 0) are found which depend on the employed exper-
imental technique. This may be explained by the respective characteristic time scales of
different experimental techniques and, therefore, different experiments could see the same
transition but at different positions in the phase diagram [21]. In approximately the same
doping range charge and spin modulations have been detected in La-based compounds [46]
which are often referred to as stripes and potentially play an important role in the cuprate
physics [47]. Altogether, the underdoped regime is intensively examined, but detailed un-
derstanding of the relevant aspects is still missing. While in the underdoped regime the
“normal state” properties strongly deviate from standard metallic behavior, in the over-
doped regime a more conventional picture evolves which is believed to be understandable
in terms of Landau Fermi liquid theory. Experimental evidence supporting this hypothesis
are, for instance, coming from transport measurements showing ρa,b, ρc ∝ T 2 behavior in
overdoped LSCO (p = 0.30) [48] and quantum oscillations in overdoped Tl2201 [49]. Also
other experimental techniques such photoemission spectroscopy, where sharp quasiparticle
peaks are observed on the entire Fermi surface [50, 51], provide pieces of evidence for Fermi
liquid behavior.

2.3.2 Electron-doped compounds

Comparing p- and n-type cuprate superconductors, only an approximate symmetry exists
about zero doping as opposed to what could be naively expected. This is manifest in
the antiferromagnetic phase which is found to be much more robust and persists to much
higher doping levels. Also the doping range in which superconductivity occurs is found to
be almost five times narrower, while the maximum transition temperature Tmax

c does not
exceed 30 K at n � 0.15 [36]. Similar to the empiric relation for Tc(p) on the hole doped
side (see Eq. (2.2)), Lambacher et al. have provided an equivalent formula for NCCO [35]
which is given by

Tc(p) = Tmax
c [ 1 − 1320 (p − 0.146)2]. (2.3)

with Tmax
c =25.1 K. At present, the question whether or not there is a pseudogap also for

electron doped compounds cannot be conclusively answered [36], although recent studies
provide some pieces of evidence in favor of pseudogap phenomena [52, 53].
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2.4 Basic properties of the 214 compounds

Recently, a remarkable feature of the Fermi surface topology was discovered in NCCO
by ARPES experiments [52, 54]. In the very overdoped regime, a large Fermi surface
seems to exist which is centered around (π, π) and is well-explained by an LDA band
structure. Towards lower doping, however, the electronic band splits into two distinct sheets,
and only electron pockets centered around (π, 0) are still observable in the underdoped
regime. Support for the split band structure scenario is provided by quantum oscillation
experiments [55, 56, 57] which find small Fermi surface orbits incompatible with the large
LDA band structure up to doping levels of p=0.172.

2.4 Basic properties of the 214 compounds

In the present work the main focus is placed on the Raman response of the n- and p-type
members of the 214 material system, La2-xSrxCuO4 and Nd2-xCexCuO4, respectively, and,
in particular, on the overdoped to optimally doped regime. Therefore, the basic structural
properties of these compounds are discussed below.

The 214 compounds are single-layer compounds as illustrated in Fig. 2.5 which avoids
complications due to bilayer splitting of the band structure. Crystals can be obtained in
high qualities and large quantities which make the compounds also suitable for neutron
scattering experiments. As illustrated in Fig. 2.4, both compounds can be doped over
a wide range facilitating systematic studies of the entire phase diagram. In particular,
La2-xSrxCuO4 crystals of the highest doping levels can be prepared where high quality
crystals of other compounds do not exist. This permits access to a region of the phase
diagram where correlation effects are weak and Fermi liquid theory is believed to apply. One
advantage of the 214 system is the opportunity to directly compare n- and p-type compounds
having similar crystal structures—the main disadvantage is the laborious preparation of
clean surfaces which are suitable for surface sensitive techniques in a limited range only.

2.4.1 La2−xSrxCuO4

La2-xSrxCuO4 is a representative of the hole-doped cuprate superconductors which is char-
acterized by a body-centered tetragonal (bct) crystal structure, called the T -structure, as
displayed in Fig. 2.5 (a). Per unit cell, it exhibits two single CuO2-layers in which the copper
Cu and the oxygen O(1) atoms are separated by approximately 1.91 Å. Neighboring CuO2

layers are approximately 6.6 Å apart and displaced by (1
2 ,12) along the in-plane diagonal

with respect to each other. They are separated by two LaO layers which form the charge
reservoir. In c-direction additional oxygen ions are located above and below each Cu atom,
called the apical or O(2) oxygen. This results in an octahedral oxygen coordination of each
copper ion, where the distance to the apical oxygen is larger (� 2.4 Å) than in-plane and,
thus, the in-plane bonds dominate.

In the undoped mother compound, La2CuO4, oxygen and lanthanum have O2− and La3+

valences, respectively. In order to ensure charge neutrality, the copper assumes Cu2+ con-
figuration having a net spin of 1

2 . Doping away from half filling is achieved by substitution
of trivalent La3+ by bivalent Sr2+ which removes electrons from the CuO2-planes. It is
generally assumed that one complete electron is removed for each Sr ion and, therefore, the

2For more details refer to section 5.2.2.
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Figure 2.5: Crystal structure of La2-xSrxCuO4 (a) and Nd2-xCexCuO4 (b) which crystallize
in the T - and T′-structures, respectively.

doping p, the number of mobile holes per CuO2 formula unit, is to a good approximation
equivalent to the Sr content x. It can be varied over a range of x = 0 to x� 0.30, where
the solubility limit for single crystals is reached. Further increase leads to Sr precipitations
during crystal growth.

As a function of doping, the typical electronic ground states evolve including an anti-
ferromagnetic phase and superconductivity with a maximum Tc � 40 K. In addition,
La2-xSrxCuO4 exhibits a structural phase transition from the high temperature tetrago-
nal (HTT) phase [see Fig. 2.5(a)] to the low temperature orthorhombic (LTO) phase which
can be understood as a rigid rotation and tilting of the CuO6 octahedra [58, 59]. How-
ever, the tetragonal crystal structure is stabilized by Sr substitution and the transition
temperature starting from 530 K for x=0 decreases continuously and vanishes around op-
timal doping. Therefore, the structural phase transition does not play a major role in the
overdoped regime on which the focus is placed here.

2.4.2 Nd2−xCexCuO4

Nd2-xCexCuO4 is the electron-doped counterpart of the La2-xSrxCuO4 compound. It also
crystallizes in a body-centered tetragonal (bct) crystal structure displayed in Fig. 2.5(b)
which is called the T′-structure. Similarly to the T-structure, the oxygen occupies two
distinct crystal sites: the in-plane oxygen, O(1), and the out-of-plane oxygen, O(2). The
O(2) oxygen, however, does not occupy the apex site, but is located above the O(1) oxygen
atoms which results in an expanded a- and b-, and a reduced c-axis. The vacant apex oxygen
site represents a potential impurity site, which can be partially occupied after growth [60,

10



2.4 Basic properties of the 214 compounds

61]. In contrast to La2-xSrxCuO4, the crystal structure is stable with respect to structural
phase transitions at low temperatures.

The undoped compound, Nd2CuO4, exhibits the oxygen, neodymium and copper va-
lences O2−, Nd3+ and Cu2+, respectively, and in complete analogy, doping is achieved by
substitution of Nd3+ by Ce4+ resulting additional electrons in the CuO2 plane. Also here
direct correspondence of n and x, the Ce content, can be assumed. Crystal growth is found
to be stable up to a Ce content of x�0.18.
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3 Raman spectroscopy

Raman spectroscopy is a light scattering technique which analyzes the small fraction of
light scattered inelastically from a sample. It is based on the Raman effect describing a
light scattering process in which the energy of the incident photon is split between the
scattered one and an elementary excitation in the sample. Theoretically the effect was first
predicted by Smekal in 1923 [62] in terms of a periodically modulated polarizability, while
Kramers and Heisenberg provided the more appropriate quantum mechanical description
in 1925 [63]. Experimentally, the effect was discovered thereafter in 1928 independently by
two groups: Raman and Krishnan observed inelastic light scattering in organic liquids [64]
and Landsberg and Mandelstam in quartz crystals [65]. Already in 1930, C. V. Raman was
awarded the Nobel prize and since then his name was associated with the effect.

Light can be scattered inelastically by many excitations in gases, liquids and solids. Over
decades Raman scattering was predominantly used to investigate molecular and lattice vi-
brations including whole dynamical matrices of crystals. However, because of substantial
improvements in the experimental equipment it is nowadays possible to examine electrons
in solids. One big advantage of electronic Raman scattering (ERS) over other spectroscopic
techniques is the ability to exploit the Raman selection rules to access different symmetry
contributions of the electronic response by simple adjustment of the polarizations of the in-
cident and scattered photons. Therefore, ERS has become an important tool to understand
the many-body physics in correlated materials [23].

In the case of the cuprates it has been demonstrated that ERS is capable to focus on the
quasiparticle dynamics in different regions of the Brillouin zone [25, 66, 67]. This illustrates
the power of employing the Raman selection rules and distinguishes Raman scattering
from other methods being restricted to measure Brillouin zone averaged quantities such
as, e.g., transport measurements focusing on the quasiparticles with the highest velocities.
Thus electronic Raman scattering provides valuable information, which is in many respects
complementary to other spectroscopic techniques.

In this chapter elements of the theory of Raman spectroscopy for the present work are
introduced following Ref. [23], where more details on Raman scattering from correlated
electrons can be found. After a general introduction of the Raman effect the focus is placed
on the electronic Raman response outlining a formalism to calculate the Raman response in
the normal and superconducting state. This formalism is adopted to calculate the Raman
response in chapter 6 where the resulting response is compared to the experimental data of
chapter 5.

3.1 The Raman effect

Raman scattering is an inelastic two-photon process, in which the incident photon char-
acterized by (ki, ωi, ei) is scattered into another photonic state with (ks, ωs, es), while the
system from which the photon is scattered experiences a transition from the initial state
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(ks,ωs,es)
(ki,ωi,ei)

(q,Ω)

Anti-Stokes process

ν

I

F

(ki,ωi,ei)
(ks,ωs,es)

(q,Ω)

Stokes process

ν

I

F

(b)(a)

Figure 3.1: Illustration of the Raman scattering process: It is called “Stokes” when energy is
transferred from the incident photon to the system (�Ω > 0) and “Anti-Stokes” when energy
from the system is transferred to the scattered photon (�Ω < 0).

|I〉 to the final state |F 〉. Such a process involving an intermediate state |ν〉 is illustrated
in Fig. 3.1, where �ki (�ks) is the momentum, �ωi (�ωs) the energy and ei (es) the complex
polarization vector of the incident (scattered) photon. The Raman scattering process is an
instantaneous process and takes place in the time interval Δt.

In the overall scattering process the energy and crystal momentum are conserved accord-
ing to the canonical energy and momentum conservation laws

�Ω = �ωi − �ωs (3.1)
�q = �ki − �ks. (3.2)

Here �Ω and �q denote the energy and the momentum transfer to the sample, respectively.
�Ω is usually denoted the Raman shift, since it corresponds to the energy shift of the
scattered photon. As illustrated in Fig. 3.1 the process is called Stokes (ST) for �Ω > 0
and Anti-Stokes (AS) for �Ω < 0.

3.2 Connection with the experiment

In Raman experiments the photon scattering rate Ṅ is measured as a function of the energy
transferred to the sample for a specific polarization configuration1. It is proportional to the
differential scattering cross section

dṄ ∝ ∂2σ

∂Ω∂ωs

dΩ dωs (3.3)

which is defined as the probability of scattering the incident photon of frequency ωi into a
solid angle interval [Ω, Ω+dΩ] and a frequency interval [ωs, ωs+dωs].

1Polarization configurations will be explained in detail in the present and the following chapter.
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3.2 Connection with the experiment

The connection of experiment and microscopic models is established by the general ex-
pression for the differential light scattering cross section

∂2σ

∂Ω∂ω
= �r2

0

ωs

ωi

R, (3.4)

where r0 =e2/4πε0mec
2 is the Thompson radius with e the elementary charge, me the bare

mass of the electron, ε0 the vacuum permittivity and c the speed of light. R represents the
transition rate of scattering an incoming photon (ki, ωi, ei) into an outgoing state (ks, ωs, es)
and can be determined via Fermi’s golden rule

R =
1
Z
∑
I,F

e−βEI |MF,I |2 δ(EF − EI − �Ω), (3.5)

with β = 1/kBT , Z the partition function and MF,I = 〈F |Ĥint|I〉 the transition matrix
element. Ĥint represents the perturbation Hamiltonian of the interaction between the light
field and the sample, while the sum corresponds to the thermodynamic average over all
possible initial and final states determined by the experimental situation. In order to
establish the relation between experiment and linear response function, the differential
scattering cross section is expressed as

∂2σ

∂Ω ∂ω
= �r2

0

ωs

ωi

Sγγ(q, ω), (3.6)

where Sγγ is the generalized structure function, which can be related to the imaginary part
of the Raman response function through the fluctuation-dissipation theorem

Sγγ(q, Ω) = −(1/π) {1 + n(Ω, T )}χ′′
γγ(q, Ω), (3.7)

with n(Ω, T ) the Bose-Einstein distribution and χ′′
γγ the generalized Raman susceptibility.

In summary, the above equations establish a quantitative relation between the photon
count rate Ṅ experimentally accessible, and the imaginary part of the Raman response
function χ′′

γγ as

Ṅ(ω, T ) = Rγγ{1 + n(ω, T )} ·χ′′
γγ(ω, T ). (3.8)

Here Rγγ is a polarization configuration dependent scaling factor which collects all ω inde-
pendent multiplicative constants and the factor ωs/ωi from Eq. (3.6).

Since the Raman process is instantaneous it is invariant against the reversion of time
and due to this time reversal symmetry and phase space considerations, the Stokes- and
Anti-Stokes scattering rates can be related by the principle of detailed balance [68] as

ṄAS

ṄST

=
(

ωi + Ω
ωi − Ω

)2

· e−
�Ω

kBT . (3.9)

Here Ω is positive, and the Stokes- and Anti-Stokes scattering rates are given by ṄST =Ṅ(Ω)
and ṄAS = Ṅ(−Ω), respectively; kB is the Boltzmann constant and T the temperature. In
typical experiments, Ω is small compared to ωi which causes the term in the parenthesis to
be of order 1 increasing toward larger Ω. Since the complete expression is dominated by the
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3 Raman spectroscopy

exponential factor and ṄAS is generally smaller than ṄST, the ratio ṄAS/ṄST decreases ex-
ponentially with increasing Ω and decreasing T . Hence, the temperature in the experiment
can be determined via Eq. (3.9).

3.3 Electronic Raman scattering

3.3.1 Electronic coupling to light

The starting point to describe the interaction of a light field with an electron system is the
Hamiltonian for N electrons coupled to the electromagnetic field [69, 70]

Ĥ =
N∑
i=1

1
2me

[p̂i − eÂ(ri)]2 + ĤCoulomb + Ĥfields, (3.10)

with p̂i =−i�∇i the momentum operator of the ith electron and Â(ri) the electromagnetic
field operator at space-time point ri. ĤCoulomb represents the Coulomb interaction of the
electrons and Ĥfields the free part of the electromagnetic field. By expanding the kinetic
energy one obtains

Ĥ = Ĥ0 + Ĥfields +
e

2me

N∑
i=1

[ p̂i · Â(ri) + Â(ri) · p̂i ]︸ ︷︷ ︸
ĤI

+
e2

2me

N∑
i=1

Â(ri) · Â(ri)︸ ︷︷ ︸
ĤII

(3.11)

with Ĥ0 =ĤCoulomb + (1/2me)
∑

i p̂
2
i the unperturbed Hamiltonian of the electronic system.

ĤI and ĤII represent the interaction of the electronic system with the light field. Since
Raman scattering is a two-photon process, only terms quadratic in Â contribute. Con-
sequently, only ĤII enters in first order perturbation theory, while ĤI has to be taken to
second order involving an intermediate state.

3.3.2 Raman response for single-particle excitations and weak correlations

For the following considerations a momentum representation of the eigenstates of Ĥ0 is
assumed. Further the intermediate states |ν〉 of the many-electron-system are considered
to differ only by a single electron excitation from either, the initial state |I〉 and the final
state |F 〉. This is exact in the case of non-interacting electrons and neglects correlation
effects and, therefore, represents a good approximation for systems in which single particle
excitations are relatively well defined.

Evaluating the matrix element MF,I for the interaction Hamiltonian Ĥint = ĤI + ĤII and
through Eq. (3.3)-(3.7) it can be shown that the Raman response χγγ measures “effective”
density fluctuations of the electronic system. At finite temperature it is given by [71]

χγγ(q, iΩ) =
∫ β

0
dτ e−iΩτ 〈Tτ [ρ̃q(τ)ρ̃−q(0)]〉 , (3.12)
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3.3 Electronic Raman scattering

with 〈. . .〉 indicating a thermal average as shown explicitly in Eq. (3.5), τ the complex time
and Tτ the complex time ordering operator2. ρ̃q is the effective charge density operator
representing a weighted momentum average of the charge density and given by

ρ̃(q) =
∑
k,σ

γk,q(ωi, ωs) c†k+q,σck,σ. (3.13)

Here c†k+q,σ and ck,σ are the creation and annihilation operators of the electrons with spin σ
and momentum k+q and k, respectively. γk,q(ωi, ωs) denotes the so called Raman scattering
amplitude or Raman vertex. It contains the details of the interaction and is determined
from the Raman matrix elements which depend not only on k, q, ωi and ωs as indicated
in Eq. (3.13), but also on the polarization vectors of the incident and scattered photons,
ei and es. This is mathematically expressed by writing the Raman vertex as a 3×3 tensor
from which elements are projected out according to

γ(k,q) =
∑
α,β

eα
i γα,β(k,q) eβ

s . (3.14)

The single tensor components are given by

γα,β(k,q) = δα,β +
1

me

∑
kν

{〈k+q| p̂β
s |kν〉〈kν | p̂α

i |k〉
εk − εkν + �ωi

+
〈k+q| p̂α

i |kν〉〈kν | p̂β
s |k〉

εk − εkν − �ωs

}
(3.15)

with p̂α
i,s representing projected momentum operators. In Eq. (3.15), the sum over the

intermediate states kν includes both, states of the conduction band as well as the states
separated from the conduction band.

3.3.3 Screening effects

In order to calculate the Raman response in charged systems screening effects have to
be considered properly. They are needed to guarantee particle number conservation and
ensure gauge invariance. The exact expression for the screened Raman response χsc

γγ is given
by [72, 73]

χsc
γγ = χγγ − χγ1 χ1γ

χ11

+
χγ1 χ1γ

χ2
11

χsc, (3.16)

where χγγ represents the Raman response from a hypothetical uncharged system, while
the additional terms represent the correction due to the long range Coulomb interaction.
Formally, χγγ is the Raman density-Raman density susceptibility, while χ11, χγ1 and χ1γ

represent the density-density and density-Raman density susceptibilities. They are obtained
replacing the first, the second or both momentum-dependent vertices γk in Eq. (3.12) by
constants. Finally, χsc =χ11(1 − νqχ11)−1, with νq the bare Coulomb interaction.

2Introducing the complex time τ is a mathematical trick to simplify the calculation for χγγ at finite
temperatures. The imaginary part of χγγ , the quantity of interest, is obtained by analytic continuation
substituting iΩ → Ω + i0+.
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3 Raman spectroscopy

In tetragonal systems these backflow terms are only important for light scattering ge-
ometries with parallel polarizations, while for crossed light polarizations χ1γ =χγ1 ≡ 0 due
to symmetry [23]. Therefore, the correction terms vanish and the Raman response for the
cross-polarized configurations is equivalent to the one of neutral systems.

3.3.4 Effective mass approximation of the Raman vertex

From Eq. (3.13) to Eq. (3.15) it is expected that the Raman vertex generally depends non-
trivially on k, q, ωi and ωs. For metals, however, the momentum transfer �q is similar to
1/δ with δ the skin depth at the corresponding photon energies [74]. Since δ=λ/4πk with
k the imaginary part of the refractive index [74, 75] which is usually smaller than 1 for the
cuprates, it can be concluded that for incident photons in the visible range (�ω=1.5-3 eV,
λ = 400-800 nm) the relevant momentum scale q is much smaller than the Fermi wave
vector kF

∼= π
a with a the lattice constant. Therefore, in all cases considered here, the

limit q→0 is a good approximation. Concerning the Raman vertex, it can be shown that
in this limit the contribution of the intermediate states in the conduction band can be
neglected [69] and, therefore, the vertex does not depend sensitively on q [23]. Further
assuming that the remaining intermediate states are well separated from the conduction
band εk, i.e. �ωi,s � |εk−εkν |, the widely used effective mass approximation of the Raman
vertices is recovered. It is given by

lim
ωi,ωs→0

γα,β(k,q → 0) ∝ 1
�2

∂2εk

∂kα∂kβ
, (3.17)

which is e.g. derived in Ref. [74]. It can be obtained by comparing Eq. (3.15) in the limits
q → 0 and ωi, ωs → 0 with the expression for the effective mass tensor of Bloch electrons
given in Appendix E of Ref. [76].

Hence, the Raman vertex corresponds to symmetry components of the effective mass
tensor reflecting the curvature of the conduction band. The selected component depends
on the polarization of the incident and scattered photons which is expressed compactly
by [25]

γk(ei, es) =
me

�2

∑
α,β

eα
i

∂2εk

∂kα∂kβ
eβ

s = ei · ↔
γk · es . (3.18)

Here
↔
γk = me

↔
M−1 is the dimensionless Raman vertex tensor with

↔
M the effective band

mass. eα
i and eβ

s denote the x,y,z-components of the (complex) photon polarization vectors
ei and es, respectively. Eq. (3.18) highlights the importance of light polarizations for Raman
scattering from electrons with anisotropic dispersion relation.

3.3.5 Symmetry and Raman selection rules

The Raman response is described by the (tensor) Raman response function
↔
χ

γγ from which,
depending on the polarization of the incoming and scattered photons, different symmetry
components are projected out. The goal of this section is to outline the meaning of the
symmetry components and the Raman selection rules which are important for the further
discussion.
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3.3 Electronic Raman scattering

Figure 3.2: Symmetry components of the Raman tensor in the D4h point group [77]. All
elements not indicated in the tensors are zero.

When considering Raman scattering from crystals, not all tensor elements are indepen-
dent since crystal symmetry puts constraints on the Raman tensor. These constraints
are dealt with by the rules of group theory which allow to decompose the Raman tensor
into symmetry components. The appropriate decomposition is determined by the crystal-
lographic space group of the crystal. In the case of the cuprates, most crystals have a
close to tetragonal D4h crystal symmetry and, therefore, the Raman response is usually
discussed in terms of the D4h symmetry components which are given by the five irreducible
representations of the point group: A1g, A2g, B1g, B2g and Eg.

Reference framework & relevant scattering configurations

The following discussion of symmetries and selection rules requires a reference framework
which is chosen to be the common right-handed orthonormal coordinate system locked to the
CuO2-plane. More specifically, the unit vectors x̂ and ŷ are taken to be oriented along the
Cu-O bonds and ẑ is pointing along the crystallographic c-axis. In this coordinate system
the symmetry components of the Raman tensor are given by the 3×3-tensors explicitly
listed in Fig. 3.2.

The scattering configurations used in the experiments are defined by the light propagation
directions k̂i and k̂s, as well as the polarization vectors ei and es of the incoming and
scattered photons, respectively. Using Porto notation, this can be compactly expressed as

k̂i(ei; es)k̂s (3.19)

Since the main focus is placed on the electron dynamics of the CuO2 planes, the z(ei, es)z̄
scattering geometries are most relevant, where the direction of propagation of incident and
scattered photons are parallel and anti-parallel to the crystallographic c-axis. For sake of
simplicity, the propagation directions z and z̄ are often suppressed.

In this context, the six mostly used polarization configurations are: the linear configu-
rations xx and xy, the primed linear configurations x′x′ and x′y′ as well as the circular
configurations RR and RL. The six polarization vectors involved are defined accordingly:
the linear polarizations with x = x̂, y = ŷ, and x′ = 1√

2
(x̂ + ŷ), y′ = 1√

2
(x̂ − ŷ) pointing

along the principle axes and the diagonals of the Brillouin zone, respectively, as well as the
circular polarizations R= 1√

2
(x̂ ± iŷ) and L= 1√

2
(x̂ ∓ iŷ) which describe the right and left

circularly polarized photons, respectively3.

3The ambiguity in the sign of the circular polarizations has its origin in the sign change in the propagation
direction between the incident and scattered photons.
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B1g+B2gA1g+A2g

+

A1g+B2g A2g+B1g
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+
A2g+B2g

xx RRx'y'xy x'x' RL

Figure 3.3: Illustration of the six different polarization configurations used in the present
thesis with the polarization vectors of the incident and scattered light depicted in the center
of each CuO2 plaquette.

Symmetry analysis of the Raman response

In the following it is derived which symmetry components contribute to the Raman response
in a specific polarization configuration. To this end, the Raman vertex tensor,

↔
γk, is first

expanded into its symmetry components. Considering the z(ei, es)z̄ configurations only, the
discussion can be restrict to the (x, y)-subspace where merely four tensor components are
finite: A1g, A2g, B1g and B2g. These symmetries can be associated with the complete set
of Pauli-matrices τi [25] as

A1g �→ τ0, A2g �→ τ2, B1g �→ τ3, B2g �→ τ1 . (3.20)

The expansion of the Raman tensor is then given by
↔
γk =

∑
i γ

i
kτi with γi

k the k-dependent,
scalar expansion coefficients. Explicit evaluation of γk(ei, es) = ei · ↔

γk · es =
∑

i(eiτies)γi
k

finally yields the symmetry contributions to the given scattering configuration.
The result of this evaluation is illustrated in Fig. 3.3 where six CuO2 plaquettes are

shown, one for each polarization configuration as indicated by the arrows in the center. For
each of the six configurations, always exactly two symmetries contribute as indicated below.

Extraction of pure symmetry components

To extract the pure symmetry contributions of the Raman response χ′′
μ with μ ∈ {A1g, A2g,

B1g, B2g}, it is necessary to introduce the projected Raman responses χ′′
ν recorded in one of

the six scattering configurations ν ∈ {xx, xy, x′x′, x′y′, RR, RL}. According to Fig. 3.3, a
system of six equations can be derived which permits to extract the pure Raman symmetry
contributions. The system of equations is given by

χ′′
xx = χ′′

A1g
+ χ′′

B1g
χ′′

x′x′ = χ′′
A1g

+ χ′′
B2g

χ′′
RR = χ′′

A1g
+ χ′′

A2g

χ′′
xy = χ′′

A2g
+ χ′′

B2g
χ′′

x′y′ = χ′′
A2g

+ χ′′
B1g

χ′′
RL = χ′′

B1g
+ χ′′

B2g
.

(3.21)

Eq. (3.21) shows that the linear polarization configurations alone are insufficient to deter-
mine the pure symmetry components, since the system of the four left equations is underde-
termined, and the circular polarization configurations must be included. In contrast, with
all six configurations measured the system is overdetermined and the consistency of the ex-
perimental data can be checked. This is achieved evaluating the sum of all intensities from
the linear χ′′

xx + χ′′
xy, the primed linear χ′′

x′x′ + χ′′
x′y′ and circular polarization configurations

χ′′
RR +χ′′

RL. In all three cases the same result, χ′′
A1g

+χ′′
A2g

+χ′′
B1g

+χ′′
B2g

, is expected which is
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(a) (b) (c)
max

0.

min

Figure 3.4: Illustration of the lowest order Brillouin zone harmonics for the A1g, B1g and
B2g symmetry in panels (a), (b) and (c), respectively.

illustrated by the rectangular frames in Fig. 3.3. Finally, by solving the system of equations
given in Eq. (3.21) the pure symmetry contributions can be extracted in a symmetric way
according to

χ′′
A1g

= 1
3{[χ′′

xx + χ′′
x′x′ + χ′′

RR] − 1
2 [χ′′

xy + χ′′
x′y′ + χ′′

RL]}
χ′′

A2g
= 1

3{[χ′′
xy + χ′′

x′y′ + χ′′
RR] − 1

2 [χ′′
xx + χ′′

x′x′ + χ′′
RL]}

χ′′
B1g

= 1
3{[χ′′

xx + χ′′
x′y′ + χ′′

RL] − 1
2 [χ′′

xy + χ′′
x′x′ + χ′′

RR]}
χ′′

B2g
= 1

3{[χ′′
xy + χ′′

x′x′ + χ′′
RL] − 1

2 [χ′′
xx + χ′′

x′y′ + χ′′
RR]}

(3.22)

The extraction of the pure symmetry contributions is of particular interest, since the
different Raman symmetries have different sensitivities in k-space which is discussed in
more detail in the following. This property enables electronic Raman scattering to probe
the quasiparticle dynamics in different regions of the Brillouin zone. For small Raman shifts,
i.e. Ω<1000 cm−1, it is found experimentally that the A2g contribution can be by and large
neglected [78]. Thus, the B1g and B2g Raman contributions are to a good approximation
directly derivable from the x′y′ and xy configurations only.

3.3.6 Momentum dependence of the Raman vertex

The polarization dependence of the Raman response can be classified using arguments of
group theory. This is possible since the Raman matrix elements MF,I can be decomposed
into basis functions Φμ(k) which transform according to the μth irreducible representation
of the point group of the crystal [72, 79, 80, 81]. This classification is inherited by the
Raman vertex which can be expanded into the same set of functions [71]

γk(ωi, ωs) =
∑

μ

γμ(ωi, ωs) Φμ(k), (3.23)

with γμ(ωi, ωs) the energy dependent expansion coefficients. Often the energy dependence
is neglected and the γμ are approximated to be constants. This is supported by the exper-
imental observation, that the electronic continuum depends only weakly on the energy of
the incident photons ωi. In lowest order, the crystal harmonics in the relevant symmetries
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in tetragonal D4h crystal symmetry are given by

ΦA1g(k) = constant + [cos(kxa) + cos(kya)] + . . .

ΦB1g(k) = [cos(kxa) − cos(kya)] + . . .

ΦB2g(k) = [sin(kxa) sin(kya)] + . . .

(3.24)

with the k-dependence illustrated in Fig. 3.4. It is obvious that the Raman response,
proportional to Φ2

μ(k), is sensitive to different regions of the Brillouin zone, e.g. in B1g

symmetry the Raman response probes inelastic light scattering events along the principle
axis of the Brillouin zone, while B2g focuses on the diagonals.

3.4 Memory function analysis

One possibility to perform a more quantitative analysis of the normal state Raman response,
χ′′

γγ(ω, T ), is a method known as the extended Drude model. Originally, it was applied to
analyze optical conductivity data [82, 83, 84] and has been adopted recently for the analysis
of Raman spectroscopy data [85]. Within the method the response function χ is expressed
as

χ(ω, T ) =
M(ω, T )

ω + M(ω, T )
. (3.25)

with M(ω, T ) a holomorphic function called the memory or relaxation function. It is given
by

M(ω, T ) = ω λ(ω, T ) + iΓ(ω, T ), (3.26)

with Γ(ω, T ) and 1+λ(ω, T )=m∗(ω, T )/me representing a dynamical relaxation rate and a
mass renormalization factor, respectively. Both quantities are connected through Kramers-
Kronig-relations due to causality. The imaginary part

χ′′(ω, T ) =
ωΓ(ω, T )

ω2(1 + λ(ω, T ))2 + Γ2(ω, T )
, (3.27)

for which the symmetry index μ has been dropped here for simplicity, can be directly
compared to experimental Raman data using appropriate model expressions for Γ and λ.
Alternatively, the equation serves as a starting point to extract Γ and λ numerically from
experimental Raman data χ′′(ω, T ). This approach is sketched below following the original
derivation in Ref. [85].

First, two real valued functions, I(ω, T ) and K(ω, T ), are introduced as

I(ω, T ) =
χ′′(ω, T )

ω
(3.28)

and

K(ω, T ) = − 2
π

P
∞∫
0

I(ξ, T )
ξ2 − ω2

dξ, (3.29)
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3.5 Raman response simulation

where P denotes the principle value of the integral. Using these newly defined functions,
Γ(ω, T ) and 1 + λ(ω, T ) can be expressed as

Γ(ω, T ) = R
I(ω, T )

I2(ω, T ) + ω2K2(ω, T )
, (3.30)

and

1 + λ(ω, T ) = R
K(ω, T )

I2(ω, T ) + ω2K2(ω, T )
, (3.31)

respectively. Here, R has the role of a normalization factor which is determined by the sum
rule

R =
2
π

∞∫
0

χ′′(ω, T )
ω

dω, (3.32)

which follows from the causality of χ. In particular, R ensures full convertibility into
absolute physical units such that, e.g., Γ can be obtained in the same physical units as ω.

In summary, the above analysis method allows one to extract symmetry dependent, dy-
namic Raman scattering rates Γμ(ω, T ) and mass enhancement factors λμ(ω, T ) from ex-
perimental Raman data by numeric evaluation of Eq. (3.30) and Eq. (3.31), respectively.
The resulting Γ and λ are two-particle quantities which, due to the k-dependence of the
Raman vertices, are sensitive in different regions of the Brillouin zone and, therefore, offer
some k-resolution. Γμ, for example, measures the effective scattering rate of the quasipar-
ticles in the correlated material, being most sensitive to the (π, 0) and (π/2, π/2) points for
μ=B1g and B2g, respectively. Therefore, it can be best thought of as a k-resolved Raman
resistivity.

The memory function analysis method is used in chapter 5 to perform a comprehensive
study of the Raman relaxation rates in the static limit Γ0,μ(T ) = Γμ(ω → 0, T ). There
the temperature and symmetry dependence of Γ0,μ(T ) extracted for the 214 compounds is
discussed for various doping levels.

3.5 Raman response simulation

Here, an alternative way to analyze the Raman response quantitatively is introduced. It is
applied in chapter 6 to compute the Raman response from analytic approximations to the
single particle spectral function. The approach is based on the Kubo formalism and allows
to consider the case of interacting electrons in a relatively simple manner which is, e.g.,
necessary to explain the broad electronic continuum observed in the cuprates.

Generally, the effective density correlation function representing the Raman response can
be evaluated for interacting electrons either using the formalism of the kinetic equation or
via diagrammatic techniques [73]. In the following discussion the diagrammatic approach
is used for the normal and superconducting states.
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γγ

(b)

Γγ

(a)

Figure 3.5: Diagrammatic representation of the Raman response function χγγ (a) with and
(b) without vertex corrections.

3.5.1 Normal state

The Raman response of the normal state is represented by the diagram shown in Fig. 3.5(a)
in which the wiggly and double lines correspond to the photonic and renormalized fermionic
propagators, and the details of the interaction are contained in the bare and renormalized
Raman vertices, γ and Γ. Correspondingly, the general expression for the Raman response
is given by [23]

χγγ(q, iΩ) = − 2
V β

∑
k,iω

γ(k) G(k, iω) G(k, iω+iΩ)Γ(k, iω, iΩ), (3.33)

where G(k, iω) is the renormalized fermionic propagator, V the volume and iΩ and iω are
the bosonic and fermionic Matsubara frequencies [86]. The renormalized vertex Γ accounts
for the renormalization of the Raman vertex due to the electronic correlations and can be
expressed in terms of a Bethe-Salpeter equation [73]

Γ(k, iω, iΩ) = γk+
1

V β

∑
iω′,k′

V (k−k′, iω−iω′)×G(k′, iω′)G(k′, iω′+iΩ)×Γ(k′, iω′, iΩ), (3.34)

where V (k, ω) is the generalized electron-electron interaction. However, for weakly inter-
acting electrons it is a reasonable approximation to neglect the corrections of the vertex and
approximate Γ by the bare vertex γ [73]. Hence, the expression for the Raman response
function reduces to the diagram shown in Fig. 3.5(b). After analytic continuation, the ex-
pression for the imaginary part of the Raman response function assumes the particularly
simple form [23, 71]

χ′′
γγ(Ω) =

2
V

∑
k

γ2
k

∫ ∞

−∞
dω

π
G′′(k, ω) ·G′′(k, ω+Ω) × [f(ω, T ) − f(ω+Ω, T )] , (3.35)

where ω and Ω are real frequencies with Ω the Raman shift, f(ω, T ) the Fermi distribu-
tion and the factor 2 accounts for spin degeneracy. G′′ represents the imaginary part of
the renormalized electronic propagator (also known as Green’s function) which can be ob-
tained by photoemission for the occupied states4. Eq. (3.35) is the starting point for the
phenomenological investigation of the Raman response in chapter 6.

4See the discussion in 6.1.1.
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G G0 G0

Σ ΣΣ

Σ Σ Σ

Figure 3.6: Diagrammatic representation of the Dyson equation.

Normal state Green’s function

Formally, the electronic propagator G(k,z) is a complex valued function which depends
on momentum k and complex frequency z [86]. For real frequencies ω, the imaginary
part of G has the meaning of the electronic spectral function A(k, ω) which represents the
probability of finding an electron with momentum k at energy ω. The relation between the
two quantities is given by [13]

A(k, ω) = − 1
π

lim
δ→0

G′′(k, ω+iδ), (3.36)

with ω and δ being real numbers. In particular, the k-resolved density of states can be
obtained from G′′.

In this context, non-interacting electrons are described by the so-called bare propagator
which is is defined as G0(k, z)=(z−ξk)−1 with ξk=εk−μ denoting the bare electronic band
dispersion and μ the chemical potential. According to Eq. (3.36) the corresponding spectral
function is a Dirac δ-function peaked at the pole of the propagator, where the frequency ω
equals the bare band energy ξk. This means that for a given k all the spectral weight of the
particle is concentrated at a single energy ξk indicating that k is a good quantum number.

In general, however, electrons interact with their environment, and the electronic propa-
gator is renormalized, e.g., due to impurities, phonons or electronic correlations. Treating
the interactions perturbatively, the corrections to the Green’s function can be expressed in
terms of the proper electronic self-energy Σ=Σ′+iΣ′′ which is a complex function depending
on temperature, momentum and energy. Diagrammatically, Σ corresponds to the sum of
all irreducible Feynman diagrams with respect to the interaction. Its real and imaginary
parts describe the renormalization of the particle energy and the damping of the particle
motion, respectively [86, 87]. Moreover, Σ′ and Σ′′ are not independent, but connected
through Kramers-Kronig relations, since G represents a causal function. The renormalized
propagator is obtained via the Dyson equation [86, 87]

G−1(k, z) = G0(k, z)−1 − Σ(k, z) = z − ξk − Σ(k, z), (3.37)

which is illustrated diagrammatically in Fig. 3.6. Here, the single and double lines repre-
senting the bare and the renormalized electronic propagators and Σ the self-energy terms.
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3 Raman spectroscopy

Figure 3.7: Illustration of the spectral function A(k, ω): The false color representation cor-
responds to the spectral function displayed for a cut in momentum space (x-axis). The
underlying bare band is represented by the solid red line and the inset shows the correspond-
ing Fermi surface; the self-energy is assumed to be the marginal Fermi liquid (mFL) type5

introduced in detail in chapter 6.

Spectral function

In order to illustrate the effects of electronic interactions on the electronic spectral function,
A(k, ω) is computed using the Dyson equation for a simple band structure and self-energy.
For the band structure a t-t′ tight-binding expression, as introduced in Eq. (2.1), is used.
The self-energy is assumed to be of the marginal Fermi liquid (mFL) type which is studied in
more detail in chapter 6. Generally, the mFL model predicts a linear T - and ω-dependence
of Σ′′ (for more details see section 3.5.2 and [16]).

The result of the calculation is displayed in Fig. 3.7 which shows a false color representa-
tion of the spectral function A(k, ω) on a cut along high symmetry lines in momentum space.
The underlying bare band structure, being equivalent to the bare electronic propagator, is
depicted as the red solid line with the corresponding Fermi surface displayed in the inset.
The figure clearly illustrates the energy renormalization and the broadening of the spectral
function by considering the electronic interactions. Moreover, it highlights that A(k, ω)
can be considered a generalization of the bare band dispersion describing non-interacting
electrons, to a formulation including interactions.

Raman response

Sorting back to Eq. (3.35), a better understanding of the Raman response in the given
approximations can be achieved. Considering the equality G′′(k, ω) = −πA(k, ω), the ex-
pression for the Raman response is essentially a weighted k-sum over the auto-correlation
of the k-dependent density of states; here, G′′(k, ω) and G′′(k, ω+Ω) represent the occupied
and unoccupied states involved in the scattering process, respectively, and the difference of
the Fermi distributions [f(ω, T ) − f(ω+Ω, T )] accounts for the available phase space.

From Eq. (3.35), it is also possible to understand the importance of electronic correlations
for electronic Raman scattering. Since for non-interacting electrons the spectral function
−1/π G′′ is proportional to a Dirac δ-function, the product of the Green’s functions vanishes

5Parameters: T =100 K, α=1.1, β=2.5, c0 =10 meV, t=0.25 eV, t′/t=0.35

26



3.5 Raman response simulation
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Figure 3.8: Illustration of the momentum distribution n(k) at T = 0 for a Fermi gas de-
scribing non-interacting electrons (a) and a Fermi liquid including electronic interactions (b)
which reduce the quasiparticle weight Zk. Finally, there is the hypothetical marginal Fermi
liquid case in which Zk vanishes completely (c).

for Ω �= 0, while for Ω = 0 the difference of the Fermi distributions is 0. Thus in the limit
q → 0, the Raman response vanishes identically (χ′′

γγ(Ω) ≡ 0) in the case of non-interacting
electrons and illustrates that a finite self-energy is required to observe electronic Raman
scattering.

3.5.2 Model systems for correlated electrons

The above discussion shows that the knowledge of the self-energy is crucial to understand the
many-particle-interactions in the system. However, the exact calculation of the self-energy is
an extremely difficult task since correlations lead to non-trivial temperature and frequency
dependences determined by the underlying interaction. Also complicated anisotropies can
occur due to interactions strongly peaked in momentum space.

Although the single-particle scattering rate is subject to a wealth of investigations, to date
no widely accepted model self-energy exists describing the electronic many-particle-system
in the cuprates. In this context, it has been a long standing issue, whether the Fermi liquid
(FL) theory developed by Landau [88, 89, 90] is applicable to the cuprates or not. In this
section the relevant aspects of the FL picture are briefly summarized mainly following a
representation given in Ref. [13]. Subsequently, the marginal Fermi liquid (mFL) picture is
introduced being an example in which the quasiparticle notion is marginally violated [16].

Fermi liquid theory

The notion of Landau starts from the non-interacting case in which k is a good quantum
number. Therefore, the momentum distribution n(k) at zero temperature is character-
ized by a sudden drop from 1 to 0 at k = kF defining an exact and sharp Fermi surface
[see Fig. 3.8(a)]. Switching on the electronic correlations adiabatically, such that the char-
acter of the bare-electronic states is preserved, leads to a finite probability that an electron
in a Bloch state is scattered. The scattering process leaves the system in an excited state
and, therefore, the momentum distribution n(k) shows a finite occupation number for states
with k>kF even at T =0. As a consequence, n(k) will exhibit a discontinuity Zk smaller
than 1 at kF as displayed in Fig. 3.8(b). According to Landau the correlated electron system
can be described in terms of well-defined quasiparticles, i.e. electrons dressed with a cloud
of excitations, as long as Zk is finite.

The quasiparticles in the Landau Fermi liquid have similar properties as the electrons in
a free-electron gas. However, they exhibit a renormalized energy dispersion and mass, εk
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and m∗, respectively, as well as a finite lifetime τk = 1/Γk. The quasiparticle description
is strictly valid only in the vicinity of the Fermi surface, where the above parameters can
be related to the underlying self-energy. With Zk = (1 − ∂Σ′

k/∂ω)−1 the renormalized
dispersion and the scattering rate can be expressed as εk = Zk(εk +Σ′

k) and Γk = Zk|Σ′′
k|,

respectively, with εk the bare dispersion. For a Fermi liquid in two or more dimensions Γk is
proportional to [(πkBT )2 +ω2] [69, 91], although logarithmic corrections should be included
in the two-dimensional case [92]. Using these expressions A(k, ω) can be separated into a
coherent and an incoherent part [69]

A(k, ω) = Zk

Γk/π

(ω − εk)
2 + Γk

2
+ Ainc. (3.38)

Since A(k, ω) has the meaning of a k-dependent density of states, and still describes real
electrons, the integral over all energies must obey the sum rule

∫
dωA(k, ω) ≡ 1. This

illustrates that Zk is the fraction of spectral weight representing the coherent part in the
pole of A(k, ω). Therefore, Zk is often referred to as the quasiparticle weight which naturally
must fulfill Zk ≤ 1.

Marginal Fermi liquid picture

Probably the most prominent example in which the cuprate superconductors do not follow
the canonical Fermi liquid (FL) behavior, is the T -linear behavior of the in-plane resistivity
ρab observed for a wide temperature range at optimal doping [93]. To explain the anomalous
normal-state properties a number of non-FL ground state models have been proposed. As
an example, here the marginal Fermi liquid (mFL) picture is discussed briefly which uses
a scale invariant scattering rate indicative of the proximity to a quantum critical point. In
contrast to the ω2- and T 2-behavior in the case of the FL scattering rate, ΣmFL exhibits a
linear ω- and T -dependence assumed to be of the form [16, 94]

Σ(k, ω) = λ
[
α ln (x/ωc) + i

π

2
x
]
, (3.39)

with x := max(|ω| , T ), ωc an ultraviolet cutoff and λ a coupling constant. From Eq. (3.39)
it can be derived that Zk vanishes as 1/ lnω for ω → 0 and T =0, i.e. A(k, ω=0) becomes
completely incoherent. This is also reflected in the momentum distribution as it does not
show a finite discontinuity, but only an infinite slope at k=kF as illustrated in Fig. 3.8(c).

3.5.3 Superconducting state

The Raman response in the superconducting state is formally given by a generalization of
Eq. (3.33) to the Nambu particle-hole space [95] as

χγγ(q, iΩ) = − 2
V β

∑
k,iω

Tr
[
γ̂(k) Ĝ(k, iω) γ̂(k) Ĝ(k−q, iω+iΩ)

]
, (3.40)

where Tr denotes the trace operator, γ̂k =γkτ3 the generalization of the bare Raman vertex
and Ĝ(k, iω) the 2×2 matrix Green’s function [23]. In Eq. (3.40) the vertex corrections have
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already been neglected and, after analytical continuation, the Raman response assumes the
form [96]

χ′′
γγ(Ω) =

2
Nk

∑
k

γ2
k

∫ ∞

−∞
dω

π

[
G′′(k, ω) ·G′′(k, ω+Ω) − F ′′(k, ω) ·F ′′(k, ω+Ω)

]
× [f(ω, T ) − f(ω+Ω, T )] ,

(3.41)

with G′′ and F ′′ the imaginary parts of the diagonal and off-diagonal elements of the matrix
Green’s function Ĝ. G and F are often referred to as the normal and anomalous part of the
Green’s function, since F ≡ 0 for T > Tc. Consequently, Eq. (3.40) and Eq. (3.41) assume
their normal state forms Eq. (3.33) and Eq. (3.35) above Tc.

Due to the strong interactions that occur in cuprate superconductors often the case of
strong coupling superconductors is considered for which the matrix Green’s function is given
by [86, 96]

Ĝ(k, ω) =
ωZτ0 + (ξk+χ) τ3 + Φ τ1

ω2Z2 − (ξk+χ)2 − Φ2
(3.42)

where Z = Z(k, ω), χ = χ(k, ω) and Φ = Φ(k, ω) represent renormalization functions,
which are coupled through Dyson equations [86]. These functions have to be found self-
consistently, which is impossible in practically all cases, and strong approximations have to
be made [96].

In the weak coupling case Eq. (3.42) reduces to the BCS expression by substituting Z =1,
χ=0 and Φ=Δk, with Δk the superconducting gap, and the matrix Green’s function can
be expressed as [23]

Ĝ(k, ω) =
ωτ0 + ξkτ3 + Δkτ1

ω2 − E2
k

, (3.43)

with E2
k=ξ2

k + Δ2
k the renormalized dispersion of the quasiparticles.
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4 Experimental details and samples

In this chapter the experimental Raman setup used for most of the experiments performed
during the present work is briefly described. In the second part, special attention is paid to
the preparation of the polarization state of the incident light which is critical for the precise
application of the Raman selection rules. Concerning this aspect considerable improve-
ments have been achieved during this work which allow a precise analysis of the symmetry
components of the Raman response. Finally, the set of samples is introduced and briefly
characterized.

4.1 Raman setup

A schematic representation of the experimental Raman setup is shown in Fig. 4.1 which
can be virtually divided into three logical units: Following the path of the light there is (1.)
the excitation part, including the light source and all components until the light reaches
the sample, (2.) the cryogenic environment in which the sample sits and (3.) the detection
part consisting of all components between sample and CCD sensor.

4.1.1 Excitation part

Light source

The light source of the Raman setup is a continuous wave (cw) Ar+ laser (Coherent Innova
304), which can be operated at several emission lines. In the present work lines at 458,
476, 514 nm have been used which can be selected by tuning the laser cavity. The emitted
light is, however, not purely monochromatic, since it contains not only the light frequency
in resonance with the cavity, but also small contributions from all allowed transitions in
the plasma which are called the plasma lines of the laser. For Raman experiments it is
important to suppress these lines which is achieved here by the two spatial filters, (L1,
S1, L2) and (L3, S2, L4), and a prism monochromator. The first filter consists of two
achromatic lenses L1 (f = 30 mm) and L2 (f = 50 mm) sharing a common focal point in
which a pin-hole (∅=30 �m) rejects all light which is not emitted with equal divergence as
the laser beam. This suppresses already a large fraction of the plasma line intensity which
is radiated into 4π. In order to remove the remaining intensity propagating along with the
laser beam, a prism monochromator (PMC) is used as a dispersive element. In combination
with the second filter, which consists of two achromatic lenses, L3 (f = 100 mm) and L4
(f = 100 mm) and an adjustable slit (S2) perpendicular to the dispersion direction, this
represents a spectral filter which rejects of the undesired plasma lines differing from the
laser frequency by more than 30 cm−1.
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Figure 4.1: Illustration of the Raman setup. Here L1-L7 represent achromatic lenses, S1
and S3 pinholes and S2 a slit, PMC is a prism monochromator and M1-M3 plane mirrors,
P and A are polarizers1and the retardation plates are indicated by λ/2 and λ/4, SBC is a
Soleil-Babinet compensator, O1-O3 denote objectives, PM a digital laser power meter, and S
is the shutter of the CCD sensor.

Mirrors

The mirrors M1 and M2 are used for beam steering and, adjusted correctly, they guarantee
defined conditions for the use of the other optical components. Mirror M3 determines
the angle of incidence on the sample. Due to its position after the components used for
polarization preparation, P and SBC, its effect on the polarization state has to be considered
carefully. This is discussed in detail below.

Adjusting the absorbed excitation power

To directly compare the intensity of different experiments the absorbed laser power has to
be controlled precisely. This is achieved by rotating the natural polarization of the laser
beam by the λ/2-retardation plate in front of the Glan-Thompson polarizer P which is
used to set the desired polarization. The resulting laser power is determined by a digital
laser power meter (PM) always at the same position in the converging beam after lens
L6. However, the absorbed power also depends on the transmission coefficients which are
dependent on the angle of incidence, the incident polarization and the optical constants of
the sample. In the experiments, the effect of transmission into the sample is anticipated to
keep the absorbed power constant.

1Following the common convention, the first polarizer is denoted P and the second A, an abbreviation for
analyzer
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Figure 4.2: Illustration of (a) the scattering geometry and (b) the orientation of the samples
crystal axes. The arrows indicate the laboratory frame convention used in the present thesis.

Preparing the polarization state of the incident light

To exploit the polarization selection rules in the Raman experiments it is crucial to control
the polarization state of the incident light after transmission into the sample. Since the
transmission process itself changes the polarization it is necessary to anticipate the effect.
At this point only a brief introduction of the necessary optical components is given, while
the exact method is worked out in detail in sections 4.2 and 4.3. The Glan-Thompson
polarizer (P) which is mounted in a rotational cage controls the polarization direction of
linearly polarized light at an angle ϕ, while with the Soleil-Babinet compensator (SBC) it
is subsequently possible to add an arbitrary phase shift δ. With ϕ and δ properly selected
any polarization state can be obtained.

Another spatial filter removes stray light introduced by P and SBC and, therefore, restores
the Gaussian intensity profile of the laser beam before it is focused on the sample. The
filter consists of a microscope objective lens (O1, Spindler and Hoyer, ×10), a pin-hole (S3,
∅=20 �m), and an achromatic lens (L5, f =30 mm).

Scattering geometry

Fig. 4.2 (a) illustrates the scattering geometry of the experimental setup. The collimated
laser beam with a defined polarization state P1 is focused on the sample by the achromatic
lens L6 (f = 250 mm). In all the experiments presented here, the incident angle was set
to approximately 66◦ which is close to the pseudo-Brewster angle. This minimizes the
reflected intensity of the light polarized parallel to the plane of incidence. The remaining
part is absorbed by a beam stopper. Finally, the inelastically scattered light is collected
by the objective O2 (Minolta, f = 58 mm, 1:1.4) and focused on the entrance slit of the
spectrometer. The optical elements used to analyze the polarization state of the scattered
light are described in 4.1.3.
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4.1.2 Cryogenic environment

The sample is glued on a oxygen free copper (OFHC) block and mounted in a gold plated
sample manipulator which can be attached to the coldfinger of a He-flow cryostat [97].
Thermal contact to the He bath allows sample temperatures between 1.8 and 350 K which
are measured by a Si diode attached to the sample holder. Since the absorbed laser light
heats the sample locally, the correct temperatures in the experiments are determined by
comparing the Stokes and Anti-Stokes intensities (see 3.2 and [97]). The sample is sitting
in the cryogenically pumped vacuum chamber of the cryostat, operating at a pressure
of approximately 5 · 10-7 mbar. More details on the cryogenic equipment can be found
in Ref. [98].

Orientation of the sample

The second prerequisite to properly exploit the Raman selection rules is the precise orien-
tation of the sample. The Raman spectra presented here are all taken on polished surfaces
perpendicular to the sample’s c-axis. This surface is oriented perpendicular to the optical
axis of the detection system, hence the sample’s c-axis points parallel to the x-axis of the
laboratory frame [see Fig. 4.2 (b)]. The orientation of the a and b crystalline axes is deter-
mined by a Laue image taken after mounting the sample in the manipulator. Subsequently,
the sample is transferred into the cryostat with the Cu-O bonds parallel to or at 45◦ to
the y- and z-axis of the laboratory frame. The example illustrated in the figure shows
the incoming and scattered light polarized along y- and z-axes, respectively, corresponding
to an orientation along the a- and b-axes of the CuO2 planes. This specific polarization
configuration will project out the A2g + B2g symmetry components of the Raman response
function as discussed in section 3.3.5.

4.1.3 Detection part

Optical components

The inelastically scattered light is collected by a standard camera objective lens (O2, Mi-
nolta, f =58 mm, 1:1.4) and focused on the entrance slit of the spectrometer. The desired
polarization of the scattered photons can be selected by the λ/4-retardation plate and the
second polarizer (A). For the linear polarizations, the retardation plate is not needed and
simply oriented with its fast or slow axis parallel to the transmission axis of the polarizer,
while circular polarizations can be selected with the fast or slow axis oriented at 45◦. The
λ/2 plate in front of the entrance slit of the spectrometer allows one to rotate the linearly
polarized light into the direction of maximal transmission of the spectrometer.

Spectrometer

The spectrometer is a Jarrel-Ash 25-100 double monochromator in Czerny-Turner configu-
ration as illustrated in Fig. 4.3 (a) and (b). The two identical monochromator stages have
a focal length of 1 m and are coupled in subtractive mode. The light entering the entrance
slit (S4) is transformed into a parallel beam by the spherical mirror (Sp1) and dispersed
by grating (G1). The dispersed light is collected by the second spherical mirror (Sp2) and
focused on the intermediate slit (S5) which selects a small frequency band to enter the sec-
ond identical stage of the spectrometer. This frequency band depends on the width of the
intermediate slit and the rotation angle of the rigidly coupled gratings [Fig. 4.3(b)]. The
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Figure 4.3: Double monochromator used in the experimental setup: (a) 3D- and (b) 2D
Illustration

second spectrometer stage transforms the dispersed light back and generates a real image of
the intensity distribution at S4 on the exit slit (S6) of the spectrometer, now containing only
the light within the small frequency band selected: The spectrometer acts as an effective
band pass filter.

CCD sensor

The scattered light which has passed the spectrometer is subsequently focused by an achro-
matic lens (L7, f = 200 mm) and a camera objective (O3, Nikon, f = 50 mm, 1:1.8) on a
cryogenically cooled CCD detector (Tektronix TK-512). Since the spectrometer is operated
in subtractive mode the spectra are acquired point by point using the CCD chip as a single
channel detector.

4.1.4 Some additional aspects: Units, calibration and resolution

In Raman experiments the photon scattering rate Ṅ is measured as a function of the
energy ωs of the scattered photons. The energies usually are given in inverse wave numbers
(cm−1) a common energy unit in spectroscopy. It is related to eV energy units by

ν̃ =
1
λ

=
E

h · c = 8065.54 cm−1 eV−1 ·E, (4.1)

The recorded intensity is corrected for the sensitivity of the setup including the optics,
the spectrometer and the CCD sensor which is achieved by calibration [97]. Furthermore,
the recorded intensity is normalized to the acquisition time, the absorbed power and the
frequency band width selected by the intermediate slit which was set at approximately 5,
10 or 40 cm−1 depending on the required spectral resolution. Altogether the intensity of
the spectra is, therefore, measured in units of photon counts per second and absorbed laser
power (counts s−1 mW−1).
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4.2 Polarization state and Jones formalism

In this section, a new standard procedure to prepare the proper polarization state of the
incident light inside the sample is derived and experimentally verified. It is based on the
Jones formalism and carries forward the method outlined in [78]. The introduced method
leads to considerable simplifications and improved precision of the polarization states.

In the following, first the description of the polarization state of the electromagnetic vector
waves is worked out in great detail, since it is indispensable to use consistent conventions
in order to guarantee the reliability of the procedure. Here, the relative phase of the vector
wave δ needs special attention. Then, the Jones formalism is introduced and applied to
the single optical components introduced above. Finally, the procedure to determine the
correct settings for the optical components is derived and verified experimentally.

4.2.1 Mathematical description of the polarization state of the light

The laser beam in the Raman experiments can be described to a good approximation by
plane vector waves for which the polarization state is defined as the “nature of the curve
which the end point of the electric field vector describes at a typical point in space” [99].
Here the basics of these waves are reviewed following the conventions in Ref. [99] which also
represent the basis for the formulation of the Jones formalism later on.

Plane waves are a solution of the Maxwell equations which are best described in complex
notation

E(r, t) = R
{
E0 · ei(k·r−ωt−δ0)

}
(4.2)

where the column vector E0 = (Êx, Êy, Êz)T ∈ C
3 represents the complex amplitude and

δ0 the overall phase, which can be always neglected for our purpose. In the following
the notation of R is suppressed assuming that the real part is taken whenever physical
observables are calculated. Without loosing generality, a plane wave propagating in positive
z-direction is considered at the spacial point r = 0 where Eq. (4.2) assumes the form

E(r = 0, t) =

⎛
⎝Ex · e−iδx

Ey · e−iδy

0

⎞
⎠ e−i(ωt+δ0) =

(
Ex

Ey · e−iδ

)
e−iωt. (4.3)

Here the x- and y-components of the amplitude vector have been replaced by their polar
representations, Êx =Ex · e−iδx and Êy =Eye

−iδy . In the second step, the phase difference
δ := δy−δx is transferred to the Ey-component neglecting the unimportant phase factor δ0.
Also the Ez-component has been dropped since it always vanishes due to the transversality
of light waves. From Eq. (4.3) it is clear that the polarization state of the plane vector wave
can be fully described by the three quantities Ex, Ey and δ.

The curve described by the tip of the electric field vector E(r=0, t) in one time period
t ∈ [0, T = 2π

ω ] is generally elliptic. This includes two cases of special importance: First,
one speaks of linearly polarized light when the ellipse is degenerated to a single line and,
second, of circularly polarized light when the ellipse assumes the form of a circle. In the
latter case it is further distinguished between right and left circular polarization depending
on the sense of rotation.
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Figure 4.4: Polarization ellipse. The ellipse inscribed into the rectangle represents the curve
which the end point of the electric field vector describes at a typical fixed point in space. In a
right handed system with the light propagating along z (out of the plane), the wave indicated
is left handed polarized.

A general case of such a polarization ellipse is displayed in Fig. 4.4 for arbitrary values
of Ex, Ey and δ illustrating that the polarization state of the light has a geometrical inter-
pretation including the sense of rotation indicated by the arrows in the figure. The ellipse
is displayed in a right handed orthogonal coordinate system, meaning the positive z-axis
points out of the plane, i.e. the observer looks against the direction of propagation2.

The ellipse is inscribed into a rectangle whose sides are of length 2Ex and 2Ey and
parallel to the x- and y-coordinate axes, respectively. This shows that the parameters Ex

and Ey define the frame for the polarization ellipse, while the relative phase δ determines
its orientation including the eccentricity, the sense of rotation and the actual position. This
is illustrated in Fig. 4.5, where the evolution of the ellipse is shown for fixed values of Ex

and Ey and increasing values of δ. From the figure it is obvious that the polarization ellipse
changes the sense of rotation from clock-wise to counter-clock-wise for increasing δ from
0<δ<π to π<δ<2π. This leads to the following definition: In general, one speaks of right-
handed polarized light when to an observer looking against the direction of propagation of
the light, the electric field vector describes the ellipse clockwise, and left-handed when the
field vector describes the ellipse counter-clockwise.

2The choice of the coordinate system matters, since the rotation sense of the ellipse changes sign, when
the observer looks in the opposite direction. The definitions used here are according to the traditional
not the natural nomenclature.
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π < δ < 2π3−2δ = π3−2π < δ <    π3−2δ = π

< δ < ππ−2δ = π−20 < δ < π−2δ = 0

Figure 4.5: Polarization ellipses for various phase differences δ. The sense of rotation of the
ellipse changes from clock- to counter-clock-wise upon increasing δ from 0<δ<π to π<δ<2π.
This corresponds to right- and left-handed polarization, respectively.

In this context, using the complex notation has advantages, since it allows immediately
to determine the nature of polarization from the ratio of the complex amplitude vector
components

Êy

Êx

=
Ey

Ex

· ei(δx−δy) =
Ey

Ex

· e−iδ. (4.4)

For example, for linear polarizations the ratio is given by Êy/Êx = ±Ey/Ex. For circularly
polarized light Êy/Êx = ±i, is obtained with the “+”- and “−”-sign referring to the left-
and right-handed case, respectively. More generally, it can be shown that for left- and
right-handed polarized light the ratio Êy/Êx exhibits a positive and negative imaginary
part, respectively.

4.2.2 Jones formalism

In order to treat the polarization state of the light and the effect of the various optical
components conveniently, in this section the formalism introduced by R. C. Jones [100, 101,
102] is adopted to the situation in our experiments. The formalism describes the polarization
of the light as a complex 2-component vector and the effect of optical components as 2×2-
matrices.

Jones vectors

Everything necessary to define the Jones vector was already worked out in section 4.2.1.
From Eq. (4.3) it is obvious that the polarization state of the light wave can be described
by a complex 2-component vector ε = (Êx, Êy)T . The Jones vector ε not only contains all
the information on the polarization of the wave, but also carries information on its intensity
which is proportional to its length |ε|. The intensity is therefore, obtained from ε according
to

I ∝ Ê∗
x Êx + Ê∗

y Êy = ε∗ε = εε∗, (4.5)
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with ε∗ = (Ê∗
x , Ê∗

y )T denoting the complex conjugate of ε, and ε = (Êx, Êy) the correspond-
ing row vector.

Jones matrices

The basic idea underlying the Jones formalism is that the effect of optical components
like polarizers, retardation plates, etc. can be described as linear transformations acting on
Jones vectors. This is made plausible by considering that light with polarization state ε0 still
has a defined polarization state after passing an optical component and can be described
by another Jones vector ε1

3. Thus an optical component can be identified with a complex
2×2-matrix M1 transforming ε0 into ε1 according to

ε1 = M1 ε0. (4.6)

The generalization to a multi-component system is straightforward, and the resulting po-
larization state after passing n components in increasing order is given by

εn = Mn · . . . ·M2M1 ε0 = M (n)ε0. (4.7)

Since the global phase is negligible, the matrix representation can be shifted adding an
arbitrary phase Φ according to M ′ = eiΦ ·M with both matrices, M and M ′, containing
the same information.

Reflection and transmission as “optical components”

Concerning polarization state transitions, the relevant optical components of the Raman
setup are the polarizers (P, A), the retardation plates and the Soleil-Babinet compensator
(SBC) introduced above. However, not only these components affect the polarization state
of the light, but also the reflection and transmission processes at the mirror and into the
sample, respectively. Mathematically, these processes are described by the Fresnel formulae
(see 4.2.3) and can be treated as linear transformations in full analogy to the optical com-
ponents. Therefore, from the viewpoint of the formalism they just represent another type
of “optical component”. For example, the transmission process into the sample is described
by

ε1 = Mt ε0, (4.8)

where the polarization of the incident light ε0 is changed to ε1 inside the sample according
to the transmission matrix Mt.

The formal rules of linear transformations together with other details of optical compo-
nents serve as a starting point to derive general rules and theorems of optical systems which
are not further discussed here. The interested reader may refer to Refs. [100, 101, 102] for
further information.

3The present discussion assumes that only optical components which do not depolarize the light are consid-
ered. To take into account also depolarizing elements a more sophisticated formalism is required which
is known as the Mueller calculus.
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4.2.3 Preparing the Jones formalism for numerical use

In order to formulate the matrix representations of the single optical components for the use
in numerical computations the same reference frame is assumed as used for the description of
the polarizations in section 4.2.1, namely, a right-handed coordinate system with the positive
z-axis defined by the propagation direction of the light. The choice of the x- or y-axis is
in some sense arbitrary, where the choice of the one determines the other. Since the effect
of all components considered here can be split into contributions on mutually orthogonal
axes, this degree of freedom can be used to obtain a normal form of the associated Jones
matrix representations which then assume the following diagonal form

N =
(

Nx 0
0 Ny

)
. (4.9)

To get the matrix representation for arbitrary orientations the normal form can be rotated
around the z-axis by the operation

M = S(ϕ) N S(−ϕ), (4.10)

with ϕ the rotation angle measured between the x-axes of the initial and final coordinate
system and S(ϕ) the usual rotation matrices

S(ϕ) =
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
. (4.11)

In practice, n optical components are sitting one after another in the laser beam and share
a common z-axis which is defined by the propagation direction of the light. In such cases, it
is advantageous to define a common x-axis which determines an overall reference coordinate
system. The rotation angle ϕi of the ith component is then measured with respect to the unit
vector x̂. Introducing such a reference frame also simplifies the numerical implementation
considerably.

In the case of reflection and transmission processes the situation is slightly more com-
plicated, since the propagation direction of the light and, therefore, the z-axis changes.
In these cases it is crucial to keep track of the parallel and perpendicular components of
the light field as only such bookkeeping guarantees that the Jones vectors provide valuable
information.

In the following the Jones matrix representations of the optical components used in the
Raman setup are introduced.

Polarizer

An ideal polarizer suppresses one polarization component completely, while the perpen-
dicular component passes without losses. Therefore, its matrix representation with the
transmission direction set parallel to the x-axis is given by

Np =
(

1 0
0 0

)
. (4.12)
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Figure 4.6: Illustration of a Glan-Thompson polarizer (a), a retardation plate (b) and the
Soleil-Babinet compensator (c), as well as the illustration of the reflection- and transmission
process at the sample surface (d).

Retardation plates

Retardation plates are commonly realized using birefringent crystals. They are cut in
such a way that for perpendicular incidence two orthogonal axes can be defined which
exhibit different refractive indices [see Fig. 4.6 (b)]. They are called the ordinary no and
extraordinary ne index of refraction. The matrix representation for a retardation plate
(rp) with thickness d and the optical axis parallel to the y-axis is obtained by considering
the phase shifts added to the x- and y-components upon traversing the plate. For δx =
(2π/λ)nod and δy = (2π/λ)ned with λ being the vacuum wavelength of the light one obtains

Nrp =
(

eiδx 0
0 eiδy

)
= eiδx

(
1 0
0 eiδ

)
= ei(δx+δy)/2

(
e−iδ/2 0

0 eiδ/2

)
. (4.13)

Here the invariance of N with respect to the global phase is used to write it in different
ways, where each prefactor can be neglected. δ = δy−δx is defined as before and in expanded
form given by

δ =
2π

λ
(ne−no) d (4.14)

Here (ne−no) d=:Δl is the difference in the optical light path of x- and y-polarized light.
Obviously, for λ/4- and λ/2-plates (with Δl = λ/4 and λ/2), the absolute value of the
relative phase shift δ is π/2 and π, respectively.

Soleil-Babinet compensator

The Soleil-Babinet compensator (SBC) can be considered a retardation plate with variable
thickness. This is achieved by putting two retardation plates of the same material in series
with their optical axes rotated by 90◦ as illustrated in Fig. 4.6 (c). The second retardation
plate is composed of two wedges, one of which can be moved mechanically. Thus, the
thickness of the 2nd retardation plate can be varied continuously. This leads to a Jones
matrix representation similar to the one of the simple retardation plate with

δc =
2π

λ
(ne − no)(d2 − d1). (4.15)

Here d2 is the variable part which is, technically speaking, a function of the displacement
of the micrometer screw xc moving the longer wedge. In zero position (d2 = d1), the second
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retardation plate exactly compensates the effect of the first one. The zero position, as well
as the slope of the function d2(xc) has to be determined experimentally, and the calibration
procedure is described e.g. in Ref. [78]. The SBC has a special importance, since it allows
to determine the magnitude, as well as the sign of the phase shift δ.

Reflection and transmission into a metal

Finally, the polarization state changes due to reflection and transmission processes and the
formulation in the language of the Jones formalism is introduced. Fig. 4.6 (d) illustrates
the refraction and reflection of a plane wave incident on the sample surface. The incident
(A), reflected (R) and transmitted (T) waves are represented by their wave vectors. It is
assumed that the sample sits in vacuum with refractive index ni = 1 and can be modelled
as a metal with a complex index of refraction, nt = n+ik, with k the attenuation index.
Considering refraction, Snell’s law also holds for complex nt and is given by

sin Θt =
sin Θi

nt

. (4.16)

However, Θt does not have the meaning of an angle of refraction anymore, but is now a
complex quantity.

The relations between the amplitude vectors of incident, reflected and transmitted waves
are obtained by considering the boundary conditions at the metal surface. This consider-
ation yields the Fresnel formulae which are represented by independent equations for light
polarizations parallel and perpendicular to the plane of incidence. The Fresnel formulae for
the reflection r‖ and r⊥, as well as for the transmission coefficients t‖ and t⊥ are explicitly
given by

r‖ =
R‖

A‖
=

nt cos Θi − ni cos Θt

nt cos Θi + ni cos Θt

(4.17)

r⊥ =
R⊥

A⊥
=

ni cos Θi − nt cos Θt

ni cos Θi + nt cos Θt

(4.18)

and

t‖ =
T‖

A‖
=

2ni cos Θi

nt cos Θi + ni cos Θt

(4.19)

t⊥ =
T⊥

A⊥
=

2ni cos Θi

ni cos Θi + nt cos Θt

. (4.20)

Here A‖ (A⊥), R‖ (R⊥) and T‖ (T⊥) are the parallel (perpendicular) electric field amplitudes
of the incident, reflected and transmitted vector waves.

Using the expressions Eq. (4.17)-(4.20) the formulation of the Jones matrices is straight-
forward. Associating the x and y direction with the parallel and perpendicular components,
respectively, the matrices representing the transmission and reflection process are given by

Nt =
(

t‖ 0
0 t⊥

)
(4.21)
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and

Nr =
(

r‖ 0
0 r⊥

)
, (4.22)

respectively. Note that the reflection and transmission coefficients are complex numbers
with their respective polar representations r‖ = ρ‖e

iΘ‖ , r⊥ = ρ⊥eiΘ⊥ , t‖ = τ‖e
iΦ‖ and t⊥ =

τ⊥eiΦ⊥ . Therefore, Nt and Nr do not only carry information on the change of the field
amplitudes contained in ρ‖/⊥ and τ‖/⊥, but also on the relative phase shift δr =Θ⊥−Θ‖ and
δt =Φ⊥−Φ‖ introduced by the transmission and reflection process, respectively.

4.3 Application of the Jones formalism

For practical use, the Jones formalism with the Jones vectors and matrix representations
of the optical components as introduced above was compiled into a numerical library using
the python programming language. Within the given approximations, the library permits
to calculate the necessary settings of polarizer (P) and Soleil-Babinet-Compensator (SBC)
to achieve an arbitrary polarization inside the sample. The calculation, however, requires
the knowledge of the sample’s refractive index as an input parameter which is generally not
available. Fortunately, from the discussion above everything is at hand needed to determine
the optical constants experimentally.

In the following, first the determination of the optical constants of the sample is described.
With the obtained optical constants it is then possible to perform the calculation of the ap-
propriate settings for P and SMB in the Raman setup which is demonstrated subsequently.
This section is concluded with the experimental verification of the method introduced to
prepare the polarization state inside the sample.

4.3.1 Experimental determination of the optical constants

From the Fresnel formulae it is possible to derive an expression for the refractive index
nt = n+ ik of a sample, which relies only on quantities that can be measured from light
reflected off the sample surface. This expression is given by [78, 99]

nt =

√(
cos 2Ψ + i sin 2Ψ sin Δ

1 + sin 2Ψ cosΔ
· sin Θi tan Θi

)2

+ sin2 Θi (4.23)

with Δ := Θ‖−Θ⊥ and Ψ defined by tanΨ := ρ⊥/ρ‖. Hence, the optical constants can be
inferred from the polarization state of the light after reflection at the sample surface using
an appropriate setup. The experimental technique described here is commonly known as
ellipsometry. Therefore, it is important to determine the polarization state of the reflected
light.

Experimental determination of the polarization state

Fig. 4.7 (a) shows the configuration for measuring the polarization state of the light after
reflection at the sample surface. The analyzing polarizer (A) can be rotated while the
intensity I(ϕ) is recorded by the power meter (PM) as a function of the polarizer angle
ϕ. Using the Jones formalism it is simple to derive an analytic expression for I(ϕ). With
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Figure 4.7: Experimental configuration to measure the polarization state of the light (a) and
the optical constants (b).

ε0 = (Ex, Eye
iδ)T the polarization state of the light to be analyzed and by employing

Eqs. (4.10), (4.11) and (4.12), one obtains

ε1 = S(ϕ) Np S(−ϕ)ε0, (4.24)

for the polarization vector ε1 after the polarizer with Np representing the polarizer’s Jones
matrix. Its intensity is, according to Eq. (4.5), given by

I(ϕ) ∝ E2
x cos2(ϕ) + E2

y sin2(ϕ) + ExEy sin(2ϕ) cos(δ). (4.25)

The parameters Ex, Ey and |δ| are obtained via a least square fit to the experimental data for
I(ϕ). As indicated by the absolute value of δ, the method does not provide full information
on the polarization state of the light, since the sign of δ cannot be accessed. This simply
indicates that only the shape of the polarization ellipse, but not its sense of rotation can be
obtained within the above method. In order to overcome this deficit the compensator has
to be used to determine the sign of δ.

Measuring the optical constants

Fig. 4.7 (b) shows the complete setup used to the experimentally determine the optical
constants. The light first passes through the polarizer (P) and the Soleil-Babinet com-
pensator (SBC) which are used to adjust a linear polarization of the incident beam with
ε0 = E0 · (1, 1)T . This is achieved by setting the polarizer angle at ϕp = 45◦. The SBC is
set to its zero position leaving the polarization state unchanged. The beam is then focused
on the sample surface by the lens L6 with the angle of incidence being set to Θi =66◦ equal
to the one used in the Raman experiment. Finally, the reflected beam is analyzed by the
polarizer-power meter combination described before [see Fig. 4.7 (a)].

The analysis of the polarization state of the reflected light according to Eq. (4.25) pro-
vides Ex, Ey and |δ|. However, to obtain the optical constants, Ψ and Δ are needed in
Eq. (4.23). The relations between the quantities are again established via the Jones formal-
ism by expressing the resulting polarization after the reflection process. In the calculation,
the required coordinate system is chosen by setting the z-axis parallel to the propagation
direction of the light (following the above convention) and by associating the x- and y-axis
with the components parallel and perpendicular to the plane of incidence. One of the two
possible choices which is used below is displayed in Fig. 4.7 (b). In this configuration one

44



4.3 Application of the Jones formalism

obtains the polarization state after reflection as

ε1 = E0

(
ρ‖e

iΘ‖ 0
0 ρ⊥eiΘ⊥

)(
1
1

)
= E0 · eiΘ‖

(
ρ‖

ρ⊥ ei(Θ⊥−Θ‖)

)
=
(

Ex

Ey eiδ

)
. (4.26)

Obviously, the desired relations are given by

tan Ψ = Ey/Ex and
Δ = −δ

(4.27)

To determine the sign of δ the compensator can be used which is, for example, achieved
by setting the phase shift of the compensator to +|δ| or −|δ|. Subsequent determination of
the polarization state after reflexion yields linear polarization for the correct choice of sign.
The optical constants are finally obtained according to Eq. (4.23).

4.3.2 Controlling the polarization state inside the sample

Knowing the sample’s refractive index, the Jones formalism can also be used to compute
the proper settings for P and SBC in order to prepare the desired polarization state ε inside
the sample. For this purpose, the reflection process at mirror M3 (see Fig. 4.1) and the
transmission into the sample are taken into account. The two relevant Jones matrices are
given by Mr which has been determined experimentally4 and Mt a transmission matrix
derived from the measured optical constants of the sample according to Eq. (4.21).

As the Jones vector inside the sample is given by ε2 = MtMrε0, the relevant question
is: Which polarization state ε0 has to be prepared in front of the mirror M3 to achieve the
desired polarization ε2 inside the sample. The answer is obtained by simply inverting the
expression according to

ε0 = M−1
r M−1

t ε2. (4.28)

This expression enables us to anticipate the effects introduced by the mirror and the sample
by simple linear algebra and demonstrates the power of the whole formalism.

Finally, the settings for the optical components P and SBC can be derived easily from
the Jones vector ε0 parameters, Ex, Ey and δ. The proper shape of the polarization ellipse
is thereby dependent on the ratio Ey/Ex and the phase shift δ only, with each of the
two quantities being controlled by the settings of P and SBC independently. While the
rotation angle of P strictly follows from ϕp = arctan(Ey/Ex), the SBC settings are not
well-defined since the compensator has two degrees of freedom: the rotation angle ϕc and
the displacement of the movable wedge xc. Therefore, the same phase shift δ = δ(ϕc, xc)
allows multiple settings. In practice, it is convenient to fix the SBC rotation angle such
that the compensator axes are parallel and perpendicular to the plane of incidence. Thus,
the matrix representation of the compensator matrix is diagonal with a phase shift δ = δc.
The setting for the displacement screw xc then directly follows from xc(δ) which represents
the inverse of the compensator’s calibration curve.

4Since mirrors usually have special coatings the effect of mirror M3 on the polarization under reflection
is determined experimentally by measuring the polarization state after reflection under properly chosen
conditions.
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Figure 4.8: Raman response recorded from a YBCO sample to verify the polarization prepa-
ration method discussed above. To this end, the YBCO B1g phonon at 340 cm−1 is used as
an extremely sensitive probe of the polarization state inside the sample. The pseudo-xy spec-
trum illustrates the importance of the correct treatment of the sign conventions for the phase
shift δ.

4.3.3 Experimental verification

To verify the applicability of the above method using the Jones formalism in general, and to
check the correctness of the numerical implementation in particular, a sensitive experimental
test was performed using the strong B1g phonon at 340 cm−1 in YBCO as a sensitive
probe for the polarization state of the light inside the sample. The phonon provides an
almost 2 orders of magnitude higher scattering intensity than the continuous electronic
background. The basic idea is to measure the Raman response in scattering configurations
in which the response of the phonon is expected to vanish due to the selection rules. Even a
small misalignment of the polarization will then lead to considerable scattering intensity at
340 cm−1 and, therefore, allows one to estimate the validity and the errors of the method.
Note that the experiment is most sensitive when the incident polarization state has equal
projections, parallel and perpendicular to the plane of incidence.

For the experiment an undoped YBCO sample was used with the optical constants de-
termined to be n̂ = 1.86+0.55i. According to the Raman selection rules discussed in
section 3.3.5, B1g contributions are visible in the xx and x′y′ and, conversely, vanish in
the x′x′ and xy scattering configurations. Since crossed polarizations reduce the amount
of elastically scattered stray light entering the spectrometer, in the following the xy and
x′y′ configurations will be considered. With this choice the sample has to be placed in the
cryostat with the crystal axes at 45◦ to the laboratory frame in order to ensure that both,
parallel and perpendicular polarization components are involved in the xy configuration in
which the response of the phonon is expected to vanish.
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Fig. 4.8 shows the Raman response as the green and red solid lines, respectively, obtained
in xy- and x′y′-configuration for the settings of P and SBC calculated on the basis of n̂.
As expected, in the x′y′ spectrum a strong phonon is visible at 340 cm−1 which has a
peak intensity of 61 cts/mWs. In the xy spectrum the phonon is expected to vanish and,
indeed, only a small contribution of the phonon intensity of 0.23 cts/mWs is observed. This
corresponds to a suppression of better than 4 · 10-3 and demonstrates that the procedure
works well. In particular, it illustrates that for a typical electronic Raman intensity of
Ṅ <5 cts/mWs, the systematic error due to the misalignment of the incident polarization is
smaller than 0.02 cts/mWs and, therefore, well below the statistical error. The remaining
intensity may arise from one or a combination of the following effects: (i) wrong settings
of P and SMB resulting from the uncertainty in the determination of the optical constants,
(ii) a misalignment of the sample’s crystal axes, (iii) depolarization effects of the optical
components and/or the cryostat’s sealed glass windows.

To check the conventions concerning the sign of the phase shift δ, also a “pseudo-xy” spec-
trum was recorded, where a phase shift of opposite sign (−δ), was introduced by the SBC.
The spectrum is represented by the dotted green curve in Fig. 4.8. The considerable phonon
contribution observed for −δ underlines the consistent treatment of the conventions within
the method.

Altogether, the experiment demonstrates the capability of the method described above to
precisely control the polarization of the incident photons inside the sample, even if the po-
larization is not parallel or perpendicular to the plane of incidence. This is essential for large
incident angles used in the experiments and, in particular, for the circular polarizations.

4.4 Samples

Table 4.4 summarizes the properties of the samples discussed in the thesis. It contains newly
investigated samples, as well as samples from earlier studies. The Tl2Ba2CuO6+δ (Tl2212)
crystals were grown by a self-flux technique in crucibles [107], while all La2-xSrxCuO4

(LSCO), Nd2-xCexCuO4 (NCCO) and Bi2Sr2CaCu2O8+δ (Bi2212) samples were prepared
in image furnaces via the traveling solvent floating zone (TSFZ) method [34, 35, 59].

In general, as-grown crystals are not ready-to-use and require adequate post-growth treat-
ment. For example in Bi2Sr2CaCu2O8+δ, the doping p can be controlled via the oxygen
content δ, where p can be adjusted to values around optimal doping by oxygen anneal-
ing [78, 108]. The same holds true for Tl2Ba2CuO6+δ [107], where the accessible doping
range is shifted to slightly higher doping levels. Since after growth, δ is usually not homo-
geneous over the entire crystal and not at the desired value, proper post-growth annealing
in air or Ar/O2 atmosphere at defined temperatures and oxygen partial pressures has to be
applied. This procedure then yields sharp transition temperatures and the desired doping
levels. In this regard, it should be kept in mind that, depending on p, the samples are not
necessarily stable on an extended time scale as the oxygen mobility is high in these com-
pounds. Therefore, the measurements on the Bi2212 and Tl2201 samples were performed
shortly after annealing.
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sample sample ID doping Tc (K) ΔTc (K) comment

La1.98Sr0.02CuO4 LSCO-02 0.02 0 - as grown d∗

La1.96Sr0.04CuO4 LSCO-04 0.04 0 - O2 annealed a†

La1.95Sr0.05CuO4 LSCO-05 0.05 5 3 O2 annealed a
La1.92Sr0.08CuO4 LSCO-08 0.08 18 4 O2 annealed d†

La1.90Sr0.10CuO4 LSCO-10 0.10 25 4 O2 annealed d∗

La1.88Sr0.12CuO4 LSCO-12 0.12 30 3 O2 annealed d∗

La1.85Sr0.15CuO4 LSCO-15 0.15 38 3 O2 annealed a
La1.85Sr0.15CuO4 LSCO-15(2) 0.15 38 4 O2 annealed d∗

La1.83Sr0.17CuO4 LSCO-17 0.17 39 1 O2 annealed b
La1.80Sr0.20CuO4 LSCO-20 0.20 24 3 as grown a
La1.75Sr0.25CuO4 LSCO-25 0.25 12 3 as grown a
La1.75Sr0.25CuO4 LSCO-25-O2 0.25 12 3 O2 annealed a
La1.74Sr0.26CuO4 LSCO-26-cl 0.26 0 - O2 ann., cl. d∗

La1.74Sr0.26CuO4 LSCO-26 0.26 0 - O2 annealed d
La1.70Sr0.30CuO4 LSCO-30 0.30 0 - as grown a
La1.70Sr0.30CuO4 LSCO-30-O2 0.30 0 - 100 bar O2 a

Tl2Ba2CuO6+δ Tl2201-20 0.20 78 5 O2 annealed c
Tl2Ba2CuO6+δ Tl2201-24 0.24 46 5 O2 annealed c

Bi2Sr2CaCu2O8+δ Bi2212-16 0.16 94 2 air annealed b

Nd1.88Ce0.12CuO4 NCCO-12 0.12 0 - Ar annealed a
Nd1.87Ce0.13CuO4 NCCO-13 0.13 9.9 7.5 Ar annealed a
Nd1.85Ce0.15CuO4 NCCO-15 0.15 23.6 1.3 Ar annealed a
Nd1.84Ce0.16CuO4 NCCO-16 0.16 16.2 2.5 Ar annealed a
Nd1.83Ce0.17CuO4 NCCO-17 0.17 5 3.5 Ar annealed a

Table 4.1: Complete list of the samples. The results on the samples marked by * are repro-
duced from earlier studies (e.g. [103, 104, 105, 106]), while those indicated by † were part of
the diploma thesis of B. Muschler. Note that LSCO-26 was remeasured more precisely during
the present work. Samples labeled with (a) have been prepared by M. Lambacher and A. Erb
(WMI Garching) [35], with (b) by S. Ono, S. Komiya and Y. Ando (CRIEPI, Tokyo and Osaka
University), with (c) by D. Peets, R. Liang, W. Hardy and D. Bonn (Vancouver) [107], and
with (d) by N. Kikugawa and T. Fujita (Hiroshima and Tokyo). The transition temperatures
were measured either resistively, via magnetometry or via the non-linear ac response. For
LSCO-05 the onset point of the transition is taken as Tc.
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Figure 4.9: (a) doping dependence of Tc of the electron doped NCCO samples. The values
are obtained by squid measurements and reproduced from [34] (b) doping dependence of Tc

for the different LSCO samples. The solid lines in (a) and (b) represent the empirical laws
for the doping dependence of Tc published by Tallon et al. and Lambacher et al. for the hole
and electron doped compounds (see section 2.3 for the explicit expressions). The error bars
denote the transition width ΔTc and the uncertainty in doping Δp.

For the La2-xSrxCuO4 and Nd2-xCexCuO4 samples the situation is slightly different.
Members of the 214 material class represent so-called solid solution crystals and, as dis-
cussed in section 2.4, the doping is essentially determined by the Sr- and Ce-contents,
x, respectively. It turns out, however, that also here oxygen plays an important role as
excess-oxygen and oxygen-deficiencies are responsible for noticeable disorder in the oxygen
sub-lattice of the as-grown NCCO and LSCO crystals, respectively [35, 48]. As discussed in
more detail below, proper post-growth O2-annealing can reduce this disorder substantially.
Altogether, most samples used in the Raman experiments were post-annealed as indicated
in the table.

4.5 The 214 sample set: Growth, Characterization & Preparation

In this work, a number of LSCO and NCCO samples were studied. While some older
LSCO samples originate from various sources, the newly prepared ones were grown and
conditioned in the crystal lab at the Walther Meissner Institute (WMI) by M. Lambacher
and A. Erb. Using the TSFZ method, polycrystalline feed rods, which are prepared in
several prereaction steps from highly pure (99.99 %) metal oxides, are crystallized to ingots
(∅≈5-6 mm, l≥10 cm, see e.g. Fig. 1 in Ref. [35]) containing only a few large grains.
A comprehensive description of the growth method and a characterization of the NCCO
crystals can be found in Refs. [34, 35].

Since no crucibles are necessary, the purity of the resulting crystals is essentially deter-
mined by the purity of the starting materials. Only a small gradient of Sr (Ce) concentration
at the bottom of the ingot (where crystallization starts) has to be considered. This gradient
originates from the different solubility of La and Sr (Nd and Ce) in the growing crystal and
vanishes after a few millimeters when the La/Sr (Nd/Ce) concentration ratio in the solvent
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Figure 4.10: Effect of oxygen annealing on the B1g Raman response recorded from the
strongly overdoped La2-xSrxCuO4 sample LSCO-30 with x=0.30. On panel (a) and (b) the
Raman response temperature dependence is displayed before and after annealing, respectively.

reaches its equilibrium [109]. Therefore, only pieces from the top of the ingot, after a few
centimeters of crystal growth, are used in the experiments. In general, using suitable growth
conditions the dopant concentration is homogeneous in radial and growth direction even in
large crystals of several 100 mg and can be controlled to within an error of Δx = 0.002 [110].
The Sr (Ce) concentration has been checked by EDX5 spectroscopy for all crystals and is
found to coincide with the nominal concentration of the starting materials.

The transition temperatures Tc of the superconducting samples listed in Table 4.4 have
been determined from SQUID6 magnetic susceptibility measurements and/or by measuring
the third harmonic of the ac susceptibility (see Ref. [78] for a detailed description). The
results of both techniques are found to agree to within ±0.5 K, where the transition width
ΔTc has been determined preferentially from the SQUID measurement taking the 10%-
and 90%-points of the susceptibility χ. Fig. 4.9 shows a compilation of Tc versus doping
for the LSCO and NCCO samples listed in Table 4.4. For LSCO, Tc(p) is found to fol-
low the empirical law reported in [45]. For NCCO, an analogous fit to the experimental
data by Lambacher et al. [34, 35] is shown as a guide to the eye. It is obvious that the
superconducting dome is much smaller on the electron doped side of the phase diagram.

After growth, the obtained crystals have to be prepared for the experiments. This includes
the separation of the single crystalline grains, orientation and subsequent cutting along the
crystallographic axes, post-growth annealing, as well as appropriate preparation of the
sample surface. The implications of the two latter preparation steps on the Raman results
are discussed briefly in the following sections.

4.5.1 Post-growth annealing

Ideal growth conditions for NCCO require atmospheres with sufficiently high oxygen partial
pressure p02 which, however, result in excess oxygen on the apical oxygen sites. Therefore,
post-growth reduction annealing is needed to remove the surplus of oxygen and to uncover

5EDX - energy-dispersive X-ray
6SQUID - Superconducting QUantum Interference Device
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4.5 The 214 sample set: Growth, Characterization & Preparation

the intrinsic properties of the samples such as sharp superconducting transition tempera-
tures [35]. In contrast, for as-grown LSCO crystals oxygen deficiencies are reported and
oxygen annealing is used to improve the crystal quality [48, 111]. To examine the effects
on the Raman scattering results, measurements before and after annealing for 1 week in
100 bar O2 at 500 ◦C were performed on the LSCO-30 sample. The B1g Raman response
recorded from approximately the same spot on the sample surface is displayed in Fig. 4.10
and, indeed, substantial differences are observed.

The Raman response of the as-grown sample, which is displayed on panel (a), shows
narrow bands at 150, 400-500, and 600-700 cm−1, although in LSCO the La phonon at
240 cm−1 is the only allowed mode in B1g symmetry. The additional bands can be at-
tributed to lattice vibrations which become Raman active since oxygen deficiencies break
the crystal symmetry. After high pressure oxygen loading these bands nearly vanish as
shown in Fig. 4.10 (b). This demonstrates that the defects largely disappear and that the
translational symmetry is restored.

The improved crystal quality also has a major impact on the electronic continuum, which
has now a much stronger temperature dependence. This is, for example, manifest in the
much steeper initial slopes of the Raman spectra at low temperatures which indicate reduced
scattering as it is linked with the Raman relaxation rate. But also the spectral shape of the
electronic response changes. While it exhibits a more or less monotonic increase towards
higher energies before, it develops a peak around 250 cm−1 shifting towards lower energies
after annealing. Finally, the temperature evolution of the response becomes non-monotonic,
which is evident from the 10 K response falling below the 100 K spectrum above 100 cm−1.
In contrast, the results of the as-grown sample show a monotonic increase for decreasing
temperature. Here the changes between the 10 K and 100 K are very small.

Altogether, the observed differences suggest that in the as-grown sample static impurity
scattering plays an important role and dominates the quasiparticle relaxation at low tem-
perature. Conversely, dynamic relaxation is observed for the annealed sample due to the
improved crystal quality with reduced microscopic disorder. Therefore, post-growth an-
nealing is essential for uncovering the genuine electronic properties of LSCO. The observed
changes of the Raman response highlight the sensitivity of Raman spectroscopy to disorder.
Note also that the discussed temperature and energy dependence of the annealed sample is
consistent with the results of LSCO-26 introduced below and, therefore, can be considered
characteristic for overdoped LSCO.

4.5.2 Surface preparation

Although Raman scattering is bulk sensitive, it requires mirror-like surfaces to prevent
elastically and diffusively scattered stray light from entering the spectrometer. All the
NCCO and LSCO samples used for the Raman experiments are large pieces of crack- and
inclusion free, high-quality single crystals. These crystals are, however, difficult to cleave,
and, at best, fractured surfaces with tiny areas appropriate for the Raman experiments can
be obtained. Therefore, most of the sample surfaces have been prepared for the Raman
experiments by polishing in the crystal laboratory of the Technical University of Munich
(TUM) using diamond paste with grain sizes down to 0.25 �m.

To investigate the effects of polished surfaces, comparative measurements on an overdoped
La2-xSrxCuO4 crystal with x = 0.26 have been performed. The single crystal was cleaved
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Figure 4.11: Comparison of the Raman response for the polished (a+c) and the cleaved
(b+d) surface recorded from the La2-xSrxCuO4 samples with x=0.26. The two samples were
prepared from a single crystal which was cleaved into two pieces, LSCO-26-cl and LSCO-26.
In the first case, the spectra were recoded directly on the cleaved surface, while for LSCO-26
the surface of the second piece was polished. Panels (a+b) and (c+d) show the B1g and
B2g response, respectively.

into two pieces. One piece, LSCO-26-cl, was used in 2001 to perform measurements directly
on the cleaved surface7. The opposite surface on the second piece, LSCO-26, was polished
in 2008, and measurements were performed on the newly prepared, polished surface.

Fig. 4.11 displays the comparison of the B1g and B2g Raman responses at three different
temperatures for either case. Only little difference is observed. Having a close look to
the spectra, one might recognize a slight tendency of the polished sample towards reduced
initial slopes and enhanced phononic bands. This probably results from surface strain
introduced during the polishing procedure which could be relaxed in a reannealing step.
However, polished surfaces usually suffer from heat treatment resulting in enhanced elastic
stray light as, for example, visible from the upturn in the LSCO-030-O2 data in Fig. 4.10.
Since the overall effect on the Raman response is negligible, the Raman experiments are
performed on polished surfaces without further treatment of the crystals.

In summary, cleaved and appropriately polished surfaces are essentially equivalent. More-
over, the experiment demonstrates that no aging effects are observed in overdoped LSCO
and the crystals can safely be considered long term stable from the Raman point of view.
For more information on the LSCO annealing and a discussion of aging effects in Bi2212
refer to Ref. [112].

7These first measurements were performed by F. Venturini.
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Figure 4.12: Temperature dependence of the Raman response of sample LSCO-026. Panels
(a,b) and (g,h) illustrate the experimental low (Ω = 15-1000 cm−1, ΔΩ = 5 cm−1) and high
(Ω = 50-8000 cm−1, ΔΩ = 50 cm−1) energy Raman response, respectively. All panels on
the left and right hand side correspond to the B1g and B2g Raman responses, respectively,
with (a,b) and (g,h) the raw Raman response, (c,d) an illustration of the phononic response
determination and (e,f) the resulting electronic part obtained via phonon subtraction.
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4.6 Phonon subtraction

The analysis of the Raman response presented in the subsequent chapters is largely based on
series of spectra recorded at different temperatures which have been acquired systematically
for a large number of samples of different compounds and various doping levels p. As an
example, Fig. 4.12 shows the experimental results for LSCO-026, together with first analysis
steps. In the figure, panels (a,b) and (g,h) represent the raw experimental low- and high-
energy Raman responses in B1g and B2g symmetry, respectively.

The raw Raman susceptibility is, however, composed of phononic and electronic contri-
butions and, since the quasiparticle dynamics of the electronic system is of main interest in
the further course of the thesis, it is essential to isolate the electronic part.

To achieve this, it is assumed that the electronic part varies smoothly as a function
of transferred energy �Ω. Therefore, in each symmetry, the phononic response can be
roughly estimated by modelling the lower envelope of the temperature-averaged Raman
spectrum with a smoothly varying phenomenological curve, as illustrated in Fig. 4.12 (c,d).
Subsequent subtraction from the average Raman spectrum yields a temperature-averaged
estimate of the phononic response. The procedure assumes a temperature independent
Raman response from the lattice which is a poor approximation. On the other hand, the
assumption obviously works quite well in the whole Ω range in B2g, and at least above
250 cm−1, in B1g symmetry. This can be seen on panels (e) and (f) displaying the B1g and
B2g Raman response from which the phonon part has been subtracted. Only the La phonon
at 240 cm−1 shows a considerable temperature dependence visible from the artifacts in the
spectra at low and high temperature.

Generally, only expressions with the correct analytic properties, as e.g. χ′′
γγ(−ω) =

−χ′′
γγ(ω), have been used for the modelling. Since it is, of course, impossible to distin-

guish between photons scattered by the lattice and photons scattered by the electronic
degrees of freedom, the choice of the model expression and the specific parametrizations is
always arbitrary to some extent. However, the introduced error is small and affects neither
of the conclusions drawn in the following chapters. Different model parametrizations have
been used for the analysis, and the specific example shown in Fig. 4.12 is based on a cubic
Bézier interpolation between 0 and 1000 cm−1.
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5 Experimental results and qualitative
discussion

In this chapter, the results of the Raman experiments are presented and discussed qualita-
tively. The aim of the present study is a better understanding of the doping evolution of
the Raman response in cuprate superconductors in the normal state. On both sides of the
phase diagram, the main focus is placed on the overdoped regime, where the quasi-particle
concept of crystal electrons is supposed to hold and conventional approaches may be applied
for their description. Additionally, the evolution down to approximately optimal doping is
considered.

On the hole-doped side special attention is devoted to the strong renormalization of the
Raman response which occurs on the way from over- to optimal doping, and which has
been attributed to the existence of a quantum critical point (QCP) at pc�0.21±0.01 in the
Bi2212 compound [22]. This part of the study is closely related to the more quantitative
investigation of the Raman response in terms of a Kubo phenomenology introduced and
discussed in detail in chapter 6.

It is widely believed that important theoretical implications can be obtained by looking
at the electron-doped compounds. Therefore, also electron doped samples have been inves-
tigated, and first results are presented in the second part of this chapter. To cover as broad
doping ranges as possible, the study is mainly based on the LSCO and NCCO compounds
complemented by other materials whenever meaningful.

5.1 Doping dependence of the Raman response of LSCO

In this work, LSCO samples in the whole accessible doping range have been investigated
systematically. This includes the Raman response up to high energy transfers of Ω ≤
8000 cm−1 ≈ 1 eV, and the superconducting state. Some of the experimental data were
recently published in the review article Ref. [112]. There, the main focus is placed on the
underdoped regime, where additional response from charge-ordering fluctuations is observed
at low-energy; the article also includes a brief discussion of the doping evolution of magnon
scattering in LSCO found in the high energy spectra in undoped up to slightly overdoped
crystals. Additionally, the high energy spectra for x≥ 0.15 have recently been subject to
theoretical investigations in which the Raman response is modelled for correlated electrons
with interactions mediated by charge and spin collective modes [113, 114].

The discussion here is restricted to the doping evolution of the low-energy part of the
normal state Raman response (Ω ≤ 1000 cm−1) from the overdoped, down to the optimally
doped regime which is motivated by the aim to investigate in detail the strong renormal-
izations found in the B1g Raman response.
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5.1.1 Renormalization of the B1g Raman response and overall intensity

First, the overall doping dependence of the Raman response is discussed. To this end,
Fig. 5.1 reproduces the temperature series of the raw B1g and B2g Raman response for
the LSCO samples from optimal to overdoped doping levels (see Table 4.4). Already at
first glance, it is evident that the doping dependence of the spectra in the two symmetries
is distinctly different. While considerable evolution of the spectral shape takes place in
B1g symmetry, in B2g symmetry only the overall intensity changes.

The changes of the spectral shape are highlighted in Fig. 5.2 (a,b) displaying the B1g and
B2g doping dependences for T = 200 K. The B2g spectra coincide over the whole energy
range at all doping levels, while the B1g spectra evolve from a peaked shape for overdoped
samples (p ≥ 0.26) to a monotonically increasing spectrum at optimal doping (p = 0.15).
This observation is consistent with earlier results on Bi2212 [22] which are reproduced on
Fig. 5.2 (c,d).

In LSCO, along with the spectral shape, also the overall intensity is subject to substantial
changes. The most obvious trend in Fig. 5.1 is the continuous decrease of the B2g response
towards higher doping. Note the enhancement factors ×2 and ×4 for x ≥ 0.20 indicated
on the respective panels. In contrast, the B1g response at 1000 cm−1 is found to be ap-
proximately constant in the doping range covered in Fig. 5.1. Beyond this range, more
specifically for 0.17 ≥ x ≥ 0.05, also the B1g intensity is found to decrease by at least a
factor of 4, before it becomes constant again for x ≤ 0.05. A detailed analysis of the B1g and
B2g Raman intensities as a function of doping and temperature is available in Ref. [112].
There, integrated intensities between 800 and 1000 cm−1, IB1g =

∑
χ′′

B1g
and IB2g =

∑
χ′′

B2g
,

as well as the associated ratio IB1g/IB2g , are extracted from the results displayed in Fig. 5.1
and beyond, covering the entire doping range (0≤x≤0.30).

The strong doping dependence of the Raman intensity is peculiar for LSCO and its expla-
nation remains elusive. Since for Raman scattering no strict conservation laws exist [115],
as, e.g., the well-known f -sum rule for the optical (IR) conductivity [84], the absolute inten-
sities are less relevant. Therefore, one often looks at the intensity ratio IB1g/IB2g which is
motivated by the tight-binding result IB1g/IB2g =(t/2t′)2 obtained from the effective mass
approximation, when the nearest (t) and the next nearest neighbor hopping (t′) is taken
into account [25].

In this context, it was realized already early on that the suppression of the B1g intensity
in LSCO, found to be as large as one order of magnitude with respect to the B2g intensity
on going from high to low doping levels, cannot be explained within this simple band pic-
ture [116]. In the meantime, the observation has been confirmed experimentally by other
groups [112, 117, 118] including the present study. A possible explanation may be related
to a symmetry dependent resonance which has already been observed in the superconduc-
ting state for Nd2-xCexCuO4 [119] and Bi2212 [120] using red and ultraviolet excitation,
respectively. Resonance effects, however, would only affect the overall intensity, but cannot
explain the changes of the spectral shape in B1g symmetry. In the present work no exper-
iments as a function of the excitation energy were conducted to clarify the issue, and it is
left open for future investigations.
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Figure 5.1: Low-energy Raman response as a function of temperature in the doping range
0.15≤x≤ 0.26. On the left and right panels the Raman response in B1g and B2g symmetry
is displayed, respectively. Since the B2g intensity decreases for increasing doping, the spectra
are multiplied by factors of 2 and 4 for LSCO-20, 25 and 26, as indicated on the respective
panels. The spectra at the lowest temperature for x = 0.15, 0.17 and 0.20 show features
induced by superconductivity which manifest themselves as redistribution of spectral weight
below approximately 400 cm−1.
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Figure 5.2: Doping dependence of the spectral shape for LSCO at 200 K (a,b) and Bi2212
180 K (c,d). The Bi2212 data are reproduced from [22]. In both cases the intensities have
been normalized at around 3000 cm−1 for better comparability.

5.1.2 Memory function analysis and static Raman relaxation rates

The renormalization of the B1g Raman response identified in the previous section for LSCO
has a major impact on the temperature dependence of the initial slopes of the Raman
spectra which are tied to the static Raman scattering rates Γ0,μ(T ). In this section, Γ0,μ(T )
is analyzed quantitatively as a function of doping which is particularly interesting since
it represents momentum resolved information on the two-quasiparticle scattering in the
cuprates (see section 3.4). Note that a similar study on Bi2212 inferred the existence of
a quantum critical point (QCP) at p � 0.21 from the strong anisotropy of the electron
relaxation rates which evolves upon lowering the doping from the overdoped regime to
optimal doping levels [22].

To obtain the static Raman relaxation rates, Γ0,μ(T ), first the dynamic ones, Γμ(ω, T ),
have to be extracted from the experimental data using the memory function analysis (MFA)
method introduced in section 3.4. To this end, first the phononic contribution is subtracted
from the short range spectra as illustrated in Fig. 4.12. Subsequently, the electronic part
of the spectra are continued constantly to an upper cutoff energy ωc = 17000 cm−1 which
is of the order of the band width1. Finally, evaluation of Eq. (3.30) provides Γμ(ω, T )
which, extrapolated to ω = 0, finally yields Γ0,μ(T ) = Γμ(0, T )2. Γ0,μ(T ) is expected to be
proportional to the inverse initial slope of the corresponding Raman spectrum or, expressed
mathematically, Γ0,μ(T )=[∂χ′′

μ(Ω, T )/∂Ω|Ω→0]−1 [22, 23, 71].
A compilation of the results of the analysis for all LSCO samples investigated so far

is displayed in Fig. 5.3. The Γ0,μ(T ) results on the dark gray shaded panels originate

1Introducing ωc ensures the convergence of the integrals Eq. (3.29) and Eq. (3.32). Due to the strongly
decaying integrands its variation affects Γ0,μ(T ) only logarithmically.

2The application of the procedure to the LSCO data is discussed in detail in chapter 5 of Ref. [117].
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5.1 Doping dependence of the Raman response of LSCO

Figure 5.3: Doping dependence of the static La2-xSrxCuO4 Raman scattering rates,
Γ0,B1g(T ) (red diamonds) and Γ0,B2g(T ) (green squares). The solid black lines on some of
the panels represent the dc resitivities obtained from the very same crystals for comparison.
For further details refer to [112, 117]. The relaxation rates on the dark gray shaded panels
correspond to the Raman response presented previously in this chapter. The light gray shaded
panel shows the static scattering rate of LSCO-25-O2 which is obtained from LSCO-25 after
1 week of oxygen annealing. The corresponding Raman data can be found in Ref. [112].

from the experimental data presented in Fig. 5.1, while the scattering rates obtained for
x=0.25 (light gray panel) do not correspond to the spectra in Fig. 5.1 (g,h), but to those
recorded after annealing LSCO-25 for 1 week in 1 bar oxygen (LSCO-25-O2). Together
with the remaining temperature series, they can be found in Ref. [112]. Since electronic
Raman scattering (ERS) measures a response function χ′′(ω, T ) analogous to that of the
optical conductivity, it is natural to compare the Γ0,μ(T ) to the dc resistivity. Hence, where
available, dc resistivity data measured from the very same crystals [109, 111] are displayed
as solid black lines on the corresponding panels. The resistivities have been converted to
units of cm−1 via the Drude expression, Γρ =1.08 ω2

pl ρ(T ) [23]3.
For x ≥ 0.25, the extracted scattering rates, Γ0,B1g(T ) and Γ0,B2g(T ), are found to be

similar in both, magnitude and temperature dependence. Together with ∂Γ0,μ(T )/∂T >0,
this indicates isotropic, metallic behavior of the electronic quasiparticles. In particular,
Γ0,μ(T ) closely tracks the dc resistivity for both symmetries as visible on the p=0.26 panel.

Upon lowering the doping level, only mild changes are observed for Γ0,B2g(T ) in the range
0.04 ≤ p ≤ 0.20 which is consistent with the essentially doping independent B2g spectra
[see Fig. 5.2 (b)]. In particular, the B2g scattering rates remain in agreement with the
dc resistivity which is experimentally confirmed here for x≥0.10. Therefore, in some sense
Γ0,B2g(T ) continues to mark the conventional metallic quasiparticle behavior. In contrast,
Γ0,B1g(T ) evolves considerably with doping as can be expected from the remarkable spectral
shape changes upon decreasing the doping [see Fig. 5.1 and Fig. 5.2 (a)]. The decreased
initial slopes of the B1g spectra are reflected in the increased magnitudes of Γ0,B1g(T ), clearly
visible at elevated temperatures. However, Γ0,B1g(T ) remains metallic for all samples above
p≥0.04. As discussed in more detail below, this behavior is peculiar for LSCO and can be

3In the given expression it is assumed that ωpl, the plasma frequency, and ρ(T ), the dc resistivity, are given
in units of eV and �Ωcm, respectively.
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5 Experimental results and qualitative discussion

traced back to an additional low-energy peak originating from incipient fluctuating charge-
and spin-order often referred to as the formation of charged stripes [103, 121].

This additional peak also represents the key to understand the abrupt changes of the
scattering rates at x=0.02 which are mainly manifest in B1g symmetry. The magnitude of
the B1g scattering rates is found to be strongly increased, and Γ0,B1g(T ) even turns weakly
insulating. Nonetheless, Γ0,B1g continues to be much larger than Γ0,B2g , and now both Ra-
man resistivities disagree with the dc resistivity. It is conspicuous that these pronounced
changes occur in the doping regime where charged stripes in LSCO are found to rotate by
45◦ which was first observed by neutron scattering [122]. Based on symmetry considera-
tions, it has been argued that along with this rotation of the charged stripes the additional
Raman response flips from the B1g to the B2g channel and, therefore, explains the abrupt
changes [104, 121].

5.1.3 Comparison with results from other compounds and discussion

Although LSCO offers the unique advantage of covering the entire doping range, the com-
pound has some material specific peculiarities which have to be considered carefully. The
most prominent example is the afore mentioned tendency to spin- and charge-ordering which
may also be the reason for the reduced Tmax

c �40 K of the material system [123]. It is, there-
fore, important to distinguish between the intrinsic features of the Raman response which
apply to all hole-doped cuprates, and the results specific of LSCO. Therefore, in this section
the Raman results on LSCO presented above are put into the context of other hole-doped
compounds.

Renormalization of the B1g response

Fig. 5.2 highlights that the renormalization of the B1g response in the doping range 0.15 ≤
p ≤ 0.25, combined with the almost doping independent B2g response, is not exclusively
linked to LSCO, but represents a more common feature. Earlier studies on Bi2212 showed
that the renormalizations come along with a strongly reduced temperature dependence of
the B1g response at optimal doping [22] which is consistent with the results on LSCO (see
Fig. 5.1). Support for the universality of this observation is provided by recent results on
Tl2201, a single layer thallium compound with a particularly high Tmax

c � 95 K. The Raman
response shows that the pronounced temperature dependence of the B1g response disappears
between 0.24 and 0.20 (see Fig. 12 in Ref. [112] for the results on sample Tl2201-20 and
Tl2201-24). In particular, these doping levels are above and below the “critical” doping level
of p � 0.21 for which abrupt changes are observed in Bi2212 [22]. When finally considering
YBCO, for which the accessible doping range is restricted to pmax≤0.19 using oxygen doping
alone, comparably flat and essentially temperature independent B1g spectra are observed
up to pmax [85, 106] which fits well into the present scenario. Progress towards higher doping
levels could be achieved by Ca co-doping, enabling doping levels up to pmax�0.23 [104].

In summary, the renormalization of the B1g spectra associated with a strongly reduced
temperature dependence at and below optimal doping, along with the essentially unaffected
B2g response are found to be generic features of all hole doped compounds.
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5.1 Doping dependence of the Raman response of LSCO

MFA results and doping dependence of the quasiparticle scattering

While Fig. 5.2 emphasizes the doping evolution of the spectral shape at fixed temperature,
the results of the memory function analysis (MFA) in Fig. 5.3 shed more light on the static
scattering rates of the nodal and anti-nodal quasiparticles and, therefore, on the doping
evolution of the temperature dependence of the spectra. In this respect, the interpretation
and comparison between the different compounds is complicated by the material specific
tendency towards charge- and spin-ordering. More specifically, the related fluctuations are
capable to open up an additional Raman scattering channel [121]. In some compounds,
this leads to an anomalous low-energy Raman peak observable at low temperatures and
doping levels superposed on the electronic background. The additional response has a
major impact on the scattering rates extracted via the MFA method. This can be made
plausible as an additional peak at low energy will significantly increase the initial slope of
the Raman spectra.

In LSCO with its comparatively strong tendency towards charge ordering, for example,
such an extra peak becomes resolvable below p� 0.15 in B1g symmetry, gains in intensity
upon decreasing doping, and flips to B2g symmetry upon crossing p � 0.05. This sudden
change of symmetry goes along with the rotation of the stripes by 45◦ from collinear with,
to diagonal to the principle axes of the CuO2 plane [103, 112]. In YBCO an equivalent
peak is observed, yet only below p � 0.05 [124]. This emphasizes that, on the one hand,
charge ordering plays a general role in the hole-doped cuprates and, on the other, that
the effects of charge ordering are quite individual for different materials. Theoretically,
the low-energy response can be reproduced quantitatively for both, LSCO and YBCO, in
terms of Aslamazov-Larkin (AL) type of diagrams which correspond to the exchange of two
charge-ordering fluctuations [121].

As a consequence of the additional fluctuation response, the MFA results of LSCO repre-
sent the exception not the rule. This is manifest, for example, in the different doping levels
for which Γ0,B1g(T ) crosses over to insulating behavior (∂Γ0,B1g(T )/∂T ≤0). While increas-
ing B1g scattering rates at room temperature clearly indicate a qualitative change of the
anti-nodal quasiparticle scattering and mark the incipient anisotropy of the quasiparticle
behavior in the doping range between p = 0.20 and 0.25, Γ0,B1g(T ) remains metallic down
to doping levels of x=0.04 (see Fig. 5.3). This follows from the fact that the additional AL
response from the fluctuations is strong for low T , and successively vanishes for increasing
temperatures. In contrast, Bi2212 and YBCO show slightly insulating behavior already at
optimal doping [22, 104, 106, 125].

Quantum critical point scenario

The transition from isotropic to anisotropic scattering has been studied in detail for Bi2212
by Venturini et al. who found an abrupt crossover at p�0.21±0.01 [22] and interpreted the
observation in terms of an unconventional metal-insulator-transition (MIT). In a nutshell,
this means that upon decreasing the doping level the anti-nodal quasiparticles become
insulating, while the nodal quasiparticles remain metallic. The authors further associate
the abrupt crossover with the existence of a quantum critical point.

As Γ0,B1g(T ) remains metallic in LSCO down to p = 0.04 (see Fig. 5.3), obviously no
analogous abrupt transition to insulating behavior at p = 0.21 is observed. On the other
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hand, there is unambiguous indication for a transition from isotropic and anisotropic scat-
tering between p=0.20 and 0.25 which may provide a hint for a similar scenario in LSCO.
However, up to now the sample basis is insufficient to decide whether the transition is
abrupt or continuous. In fact, more striking evidence for the existence of a QCP in LSCO
comes from the analysis of the doping dependence of the AL peak [112], where scaling ar-
guments provide strong support for a charge ordering quantum critical point (CO-QCP) at
p�0.19 ± 0.01.

These findings suggest the following scenario: The LSCO Raman response shows dis-
tinctly different behavior from that in Bi2212 and other compounds. This is manifest, e.g.,
in the temperature evolution of Γ0,B1g(T ) for p≤0.20. Nevertheless, the differences can be
reconciled with each other assuming that the B1g response in LSCO is a superposition of
two anomalies: (i) an enhanced scattering of the antinodal quasiparticles which is consis-
tently observed in Bi2212, Y123, Tl2201 and LSCO and (ii) the AL peak which is specific
to LSCO. The enhanced scattering in LSCO is visible mainly from the large values of Γ0,B1g

at elevated temperatures, while the additional AL peak significantly reduces the extracted
B1g scattering rates at low temperatures.

In summary, the LSCO response fits well to the experimental Raman results from other
compounds when properly considering the peculiarities of the material class. Therefore, a
consistent phenomenological understanding of the doping evolution of the Raman response
of the hole-doped cuprates seems close. In particular, the “unconventional MIT” associated
with a quantum critical point seems to be a generic feature of a large number of hole-doped
cuprates including LSCO. The related strong renormalization of the Raman B1g response
is investigated more qualitatively in chapter 6.

5.2 Doping dependence of the Raman response of NCCO

NCCO represents the electron-doped counterpart of the hole-doped LSCO with the undoped
mother compound, NCO, being an anti-ferromagnetic (AFM) insulator, as for all cuprates.
Also for the electron-doped compounds, essentially all theoretical descriptions start from
tight binding approaches with the insulating behavior being explained by electronic corre-
lations originating from a large on-site Coulomb repulsion U . This yields the large category
of Mott-Hubbard models which are believed to describe likewise, electron- and hole-doped
materials.

Without going too much into detail, most approaches implicitly assume electron-hole sym-
metry which, at first glance, suggests similar properties for samples with equal electron- and
hole-concentration away from half-filling. This is contrasted by the experimental findings
revealing a non-symmetric phase diagram as briefly described in chapter 2. Therefore, it
is widely believed that important implications on theory can be derived by looking at the
actual asymmetry between the electron- and hole-doped side of the phase diagram.

5.2.1 Raman results on NCCO

To study differences between electron- and hole-doping from the Raman point of view,
experiments were performed on NCCO samples which were prepared by M. Lambacher [34]
and subsequently used by T. Helm et al. for quantum oscillation measurements reported in
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Refs. [55, 56, 57]. Starting from the strongly overdoped regime, samples covering the entire
doping range in which superconductivity occurs were investigated.

Fig. 5.4 and Fig. 5.5 show the low- and high-energy Raman response with the B1g and
B2g spectra displayed on the left and right panels, respectively. The response is composed
of a smooth electronic continuum on which energetically more or less sharp features are
superposed at low energies (<800 cm−1). Additionally, traces of the two-magnon excitation,
which is found to be at 2900 cm−1 for undoped NCO [126], are still visible in the B1g response
at n=0.12 and 0.13 at approximately the same energy.

The sharp features have various origins. For example, the strongly temperature depen-
dent structures at 167 cm−1 and 206 cm−1 are known to be crystal field excitations of the
Nd3+-ion which obey A2g and B1g symmetry, respectively [127]. The feature at approxi-
mately 340 cm−1 is a B1g phonon representing the only Raman allowed phonon mode in
the presented symmetries. It hardens by 10 cm−1 upon cooling from room temperature to
approximately 10 K for all samples shown here. This is in agreement with an earlier study
focusing on the phonon’s temperature dependence in electron doped compounds [128]. Fi-
nally, a rather broad feature is observed at 590 cm−1. It has been ascribed to interstitial
oxygen sitting on the oxygen apex positions [128].

Commonly, small amounts of apical oxygen are found in NCCO crystals after growth, and
the intrinsic properties of the material are only uncovered by proper reduction annealing [34,
35]. While sharp superconducting transitions are less critical to obtain, it turns out that
Raman scattering is highly sensitive to these lattice imperfections4. To reduce the mode at
590 cm−1, annealing in pure argon at temperatures close to the stability limit of the crystals
is therefore necessary, always running the risk of structural decomposition [35]. With this
approach it is possible to substantially suppress the mode which was also reported elsewhere
in the literature [129]. Since the reduction process was still being optimized at the time of
measurements reported here, especially the samples with n≤0.13 could be further improved.

The continuous electronic part of the NCCO spectra changes surprisingly little in the
entire doping range from n = 0.12 to 0.17 in either symmetry. This becomes particularly
evident by comparing the responses of the different samples at T =300 K [see Fig. 5.6 (a,b)].
The spectra are found to nearly coincide identically on a large energy range when normalized
at 1400 cm−1 and 1000 cm−1 for B1g and B2g symmetry, respectively. Differences of the
spectral shape are only observed above 2800 cm−1, the approximate energy of the two-
magnon excitation. Here the relative spectral weight decreases systematically with doping.
The comparison of the B1g and B2g responses, exemplary shown for n=0.17 in Fig. 5.6 (c),
illustrates that the spectral shapes at room temperature are not only similar for different
doping levels, but also for the two symmetries.

When focusing on the overall temperature dependence, qualitatively similar behavior is
found for all samples investigated. As indicated by the arrows in Fig. 5.5, at each doping
level the spectra coincide at comparable energies. Explicitly, for values between 1400 cm−1

and 2000 cm−1, and at roughly 1000 cm−1 for B1g and B2g symmetry, respectively. Above
and below this energy the Raman response increases and decreases upon lowering the tem-
perature.

4see also the discussion on LSCO in section 4.5.1.
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Figure 5.4: Low-energy Raman response of NCCO in the doping range 0.12≤n≤0.17. On
the left and right panels the B1g and B2g Raman response is displayed, respectively. For
sake of completeness, also here the response in the superconducting state, displayed as the
cyan dotted lines, is included (see samples with x = 0.15 and 0.16). As expected, it evolves
considerably and the resulting redistribution of spectral weight below 250 cm−1 which is found
to be strongest near optimal doping, at n=0.15.
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Figure 5.5: High-energy Raman response of NCCO. On the left and right panels the B1g

and B2g Raman response is displayed, respectively. The arrows on each panel indicate the
approximate energy at which all spectra essentially coincide.
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Figure 5.6: Comparison of the NCCO Raman response at 300 K. Panels (a) and (b) show
the normalized response in B1g and B2g symmetry, respectively, where on the main panels,
and on the corresponding insets, the low- and high-energy responses are displayed. Panel (c)
illustrates for n=0.17, exemplary for all other doping levels, that also the B1g and B2g response
is found to be very similar. In the inset the ratio of the integrated intensities is displayed
with IB1g =

∑
χ′′

B1g
and IB2g =

∑
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B2g
obtained by integration from 700 to 1000 cm−1.

Differences between the doping levels are found for small Raman shifts (Ω ≤ 250 cm−1)
which is mainly manifest in B2g symmetry. Most obvious for n = 0.17, an isolated peak
develops at low temperatures which is accompanied by a suppression of spectral weight
below 800 cm−1 [Fig. 5.4 (k)]. This peak was already subject of an earlier study at a
comparably high doping level [130] and is found here to loose intensity and to shift towards
lower energies upon lowering the doping level [Fig. 5.4 (d, f, h, k)].

The relatively high doping levels at which the peak occurs and its tendency to weaken
upon decreasing doping suggest that the peak does not originate from charge ordering as
the low-energy peak observed for underdoped LSCO and YBCO. This is supported by
the analysis of the Raman scattering rates which reveal qualitative agreement of Raman
scattering rates and dc resistivity [37, 117]. This is in marked contrast to LSCO and YBCO
at doping levels where charge ordering occurs (see Fig. 5.3).

Instead, the peak in NCCO most likely arises from direct particle-hole excitations, with
the sharpness of the feature indicating relatively long-lived quasiparticles. This interpreta-
tion receives support from the results of the Raman response phenomenology introduced
and discussed in detail in chapter 6. There pronounced peaks at similar energies are ob-
tained when choosing the scattering rates to be low enough. More interestingly, a rather
simple, phenomenological Fermi liquid like self-energy produces a temperature dependence
strongly reminiscent of the B2g spectra at n=0.17 [compare Fig. 6.9 (c) and Fig. 5.4 (k)].
Altogether, this suggests that the B2g Raman response at elevated doping levels can be
explained in a rather conventional scenario based on quasiparticles with a considerable life-
time. The origin of its evolution on doping, and why the B1g spectra on the contrary show
almost no indications of an equivalent peak, have to remain open at the moment.
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5.2 Doping dependence of the Raman response of NCCO

The presented results show that the Raman response of the electron doped compound
NCCO is not just a copy of the response of its hole doped counterpart LSCO as one might
naively expect from the simplest perspective assuming particle-hole symmetry across half-
filling. Instead differences are found concerning several aspects.
For example, the NCCO response is much more isotropic highlighted by the comparison
of the B1g and B2g spectral shapes at room temperature (Fig. 5.6). This is underlined by
the almost equal intensities found for both symmetries at n=0.17. In contrast, for LSCO
ratios of IB1g/IB2g =3 are found at high doping which, however, decrease considerably upon
lowering the doping [112]. Contrary, NCCO shows a slight gain of the B1g intensity [see
inset of Fig. 5.6 (c)]. These findings may be linked to the qualitatively different doping
dependences of the high energy responses: While in NCCO spectral shape changes are only
observed for Ω≥2800 cm−1, in LSCO spectral weight is continuously transferred from high
to low energies upon increasing doping, leading to relatively flat spectra at high doping
levels5. Moreover, the strong renormalization of the B1g response found for all hole-doped
compounds on the way from strongly over- to optimal doping levels (see discussion in 5.1.1),
is completely absent in the NCCO experimental results.

5.2.2 Fermi surface reconstruction and its implications on the Raman response

One possible route to a better understanding of the peculiarities in the Raman response of
NCCO may arise from a band structure effect which is often referred to as Fermi surface
reconstruction and was recently discovered by photoemission experiments [131].

A visualization of the phenomenon is shown in Fig. 5.7 (A) (d-f), where experimental
Fermi surface maps at different doping levels are displayed. At low doping, electrons first
occupy the Brillouin zone regions around the (π, 0) points [Fig. 5.7 (A) (d)]. This is in
marked contrast to the hole-doped compounds, where first the nodal regions around (π

2 , π
2 )

are populated [13]. Approximately at n = 0.10 quasiparticle weight also appears in the
nodal regions successively getting stronger upon further doping [Fig. 5.7 (A) (e,f)]. Finally,
a large cylindrical Fermi surface forms towards the highest doping levels which is closed
around the (π, π) points. This type of Fermi surface is expected from LDA band structure
calculations and is also observed for hole doped samples in the overdoped regime [51].

The Fermi surface reconstruction has been assigned to the formation of separate electron-
and hole-pockets belonging to two distinct electronic band sheets which originate from the
splitting of the LDA band due to electronic correlations. This has been worked out early
on for a single band t-t′-t′′-U Hubbard approach by Kusko et al. [54]. Simulated Fermi
surface maps thereof indeed show excellent agreement with the experimental observation
[Fig. 5.7 (A,a-c)]. The doping dependence in the model is induced by a doping dependent on-
site repulsion U which has been adjusted to match the experiment. Support for this scenario
is provided by recent transport [34]6 and quantum oscillation measurements [55, 56, 57] on
optimally to overdoped NCCO. In the latter publications, indications for small Fermi surface
orbits are reported up to the highest doping levels at p=0.17.

5Refer to Refs. [37], [112] or [117], for compilations of the long range Raman spectra of LSCO.
6Concerning transport a Boltzmann framework has been implemented during this work which is based on

the approach by Kusko. It was, however, mainly used by M. Lambacher to analyze the NCCO transport
data and is only briefly mentioned here. For more details refer to appendix A.1.2 and mainly Ref. [34].
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5 Experimental results and qualitative discussion

(A) (B)

2Δ

(f )(e)(d)
(c)(b)(a)

Figure 5.7: Doping dependence of the band structure in NCCO, with both panels reproduced
from Ref. [54]. (A) The bottom row shows experimental Fermi surface maps corresponding
to the quasiparticle weight around the Fermi level which originally stem from Ref. [131]. The
top row shows the corresponding results of the model. (B) Corresponding modelled band
structures. Note that the model uses “coherence” factors, u2

k and v2
k = 1−u2

k representing
the relative spectral weights of the upper and the lower band, respectively. u2

k and u2
k are

indicated as the thickness of the bands.
To highlight aspects mentioned in the text, some guides to the eye were added. On the panels
for x=0.10 in either subfigure, the blue rectangles and red ellipses indicate the electron- and
hole-pockets, while on panel (A,c) the antiferromagnetic Brillouin zone boundary and the LDA
Fermi surface are shown as the white and black dashed lines, respectively. Correspondingly,
the LDA band structure εk is indicated as the red dashed line on panel (B,d).

The basic idea of the approach by Kusko et al. is better accessible from the underlying
resulting electronic band structures displayed in Fig. 5.7 (B). On the way from high to
low doping levels, the LDA band structure εk successively splits into two distinct sheets
due to increasing electronic correlations. In the figure, these sheets are denoted the upper
and lower Hubbard band (UHB and LHB) which represent combinations of εk and εk+q, a
band replica shifted by the antiferromagnetic wavevector q =(π, π). The gap is controlled
by an additional parameter Δ7. Special attention deserve the relative spectral weights of
the upper and lower Hubbard band, u2

k and v2
k = 1−u2

k, respectively, which are indicated
as the thickness of the respective band in Fig. 5.7 (B). One quite appealing aspect of the
approach is that these relative weights enable a continuous transition from the undisturbed
single band at high doping levels, to the two band scenario becoming progressively more
pronounced for lower doping levels.

In the following, possible implications of the above scenario on the Raman response shall
be discussed. First, it is important to realize that the two band scenario potentially affects
the Raman vertices which is best made plausible by taking the two band scenario literally
for a moment. This is realized by neglecting the k-dependence of the relative band weights
by setting u2

k=v2
k= 1

2 which yields fully developed, well-defined band sheets. The constant
relative weight of 1

2 for each band sheet in the gedankenexperiment ensures the conservation
of the total number of electrons as the Brillouin zone is effectively reduced to one half. Since
the Raman vertices are proportional to the band curvature in effective mass approximation
(see section 3.3.4), the two band scenario results in considerable changes of the vertices
in some regions of the Brillouin zone as high curvatures are introduced especially at the

7see Eq. (A.2) and Ref. [54] for the exact expressions.
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5.2 Doping dependence of the Raman response of NCCO

newly formed band extrema (see Fig. 5.7 (B)). Of course, the two fully developed band
sheets represent an ideal case which is, if at all, only realized for very low doping levels. At
intermediate doping levels the effective mass vertices are ill-defined as the k-dependence of
uk and vk has to be taken into consideration, while for high dopings—on which the focus
is placed here—at least qualitative statements are possible on the basis of the standard
vertices as the single electronic band is only weakly disturbed.

In the context of the present discussion, the doping dependence of the B1g and B2g re-
sponse is revisited. As illustrated in the inset of Fig. 5.6 (c) the integrated intensities, IB1g

and IB2g , develop oppositely upon doping: Starting from approximately equal intensities
at n = 0.17, IB1g increases, while IB2g decreases towards lower doping. This fits well into
the above scenario as it may indicate the gradual redistribution of spectral weight from the
hole- to the electron-pockets upon lowering the doping level as observed by ARPES.

On the other hand, there are also aspects which seem to be at odds with the split band
scenario illustrated in Fig. 5.7 (B). Since the two band sheets are separated by direct band
gaps of approximately 2Δ, inter-band transitions should be allowed. Therefore, one would
expect a pronounced peak in the B2g response at approximately 2Δ as the band gap at
(π

2 , π
2 ) is situated close to the Fermi level8. The expectation of such a peak structure

in the B2g Raman response is fully confirmed by first calculations based on the Raman
response phenomenology introduced in the following chapter. The simulation adapts the
Green’s function provided in Ref. [54] including the effects of the spectral weight factors
u2
k and v2

k, and uses a constant quasiparticle scattering rate. The fact that no such peak,
expected to move to higher energies upon decreasing doping, is observed experimentally
demonstrates that the yet simple approach, capturing relevant details of the ARPES results,
produces inconsistencies with the experimental Raman response. This contradiction may
be resolved when considering more complex schemes, for example, accounting for the k-
dependent nature of the quasiparticles.

Recently, the Raman response was studied for a single-band Hubbard model using quan-
tum Monte Carlo (QMC) simulations featuring a doping independent interaction strength
U [132]. This approach yields a more complex, however not completely unsimilar spectral
function. In Ref. [132], the resulting response is compared to the experimental results of
LSCO and NCCO presented above. It is found that the approach qualitatively captures fea-
tures of the doping and temperature dependence of the Raman response, as well as features
of the asymmetry observed between electron- and hole-doped compounds which shows that
U not necessarily has to be doping dependent to explain the experimental observation.

Up to now the understanding of the phenomena in the n-doped compounds is less elab-
orate, since the vast majority of experimental work has been performed on the p-doped
compounds. However, due to the tremendous progress concerning sample growth and the
experimental characterization of the material class achieved during the last decade nowa-
days high-quality samples are available. Maybe the most protruding example highlighting
the improved crystal quality is the observation of quantum oscillations in optimal to over-
doped NCCO [55, 56, 57]. Especially these new high-quality samples are worthwhile to be
studied in detail by means of Raman spectroscopy.

8Note that the closeness of the band gap to the Fermi level is a key feature of the model, necessary to
explain the vanishing spectral weight of the hole-pockets.
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5 Experimental results and qualitative discussion

In the second part of this chapter Raman results obtained from the same batch of crys-
tals as used for the quantum oscillation experiments were presented covering the entire
doping range in which superconductivity occurs. Surprisingly, only little evolution of the
electronic Raman response is observed. The only significant change is a low energy peak
in B2g symmetry which is most pronounced at high doping levels and successively weakens
for decreasing doping. It suggests an interpretation of the B2g Raman response in terms of
long-lived quasiparticles. Compared to LSCO, the response is found to have a much more
isotropic character. In particular, the strong renormalization which was consistently found
for several hole-doped compounds on the way from over- to optimal doping is found to be
absent in the Raman response of NCCO.

Important results can be expected from a systematic continuation of the study towards
lower doping levels as a significant evolution of the Raman response can be expected on the
basis of ARPES results and from first measurement on undoped NCO [37].
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6 Phenomenology of the Raman response

As a function of doping, strong renormalizations of the B1g Raman response were consis-
tently observed for all hole-doped compounds (chapter 5), which is in marked contrast to
the practically unchanged B2g spectra. As in other two-particle quantities, these effects
already emerge at relatively high doping levels around p � 0.21. This is in contrast to,
for example, the single-particle spectral function obtained from photoemission experiments
where the strong changes are observed at considerably lower doping levels, at and below
optimal doping [13].

In systems with strong correlations, discrepancies between single- and two-particle prop-
erties are expected and it is believed that their comparison is capable to reveal important
information on the underlying physics [23]. Here, the Raman response representing a two-
particle property is calculated on the basis of results from angle-resolved photoemission
spectroscopy probing the electronic single-particle spectral function.

6.1 Phenomenological model

Single electron states in solids are typically described by their energy dispersion and a char-
acteristic lifetime, ξk and τk, respectively. These states can be represented by the single-
particle propagator G(k, ω) which is defined through the Dyson equation as G(k, ω)−1 =
ω−ξk−Σ (see 3.5.1) with Σ the single-particle self-energy containing all information about
the interaction of the electron with its environment. Single-particle properties are accessed
experimentally by angle-resolved photo-emission spectroscopy (ARPES), scanning tunnel-
ing spectroscopy (STM) or specific heat measurements. ARPES, for example, provides k-
and ω-dependent information on the single-particle propagator of the occupied states.

The propagator, however, does not provide information on how the electrons transport
heat, current, energy or entropy. Theoretical treatments of these concerns typically include
two-particle correlation functions which are applicable to quantities like optical and Raman
spectroscopy, as well as neutron scattering. For weakly interacting electrons in the limit
q → 0 such correlation functions can be expressed as generalized Kubo susceptibilities
χ′′

a,b(Ω) given by [23, 71, 86]

χ′′
a,b(Ω)=

2
N

∑
k

akbk

∫ ∞

−∞
dω

π
G′′(k, ω) ·G′′(k, ω+Ω) × [f(ω, T ) − f(ω+Ω, T )] . (6.1)

Here, N is the number of sampling points in the first Brillouin zone, G′′ the imaginary
part of the renormalized propagator, f the Fermi distribution function and the factor 2
accounts for spin degeneracy. ak and bk are the bare vertices which represent, e.g., the
quasiparticle charge (ak = bk = 1), the quasiparticle current (ak = bk = jk = evk) or can
be approximated by the curvature of the electronic bands in the case of electronic Raman
scattering (ak =bk =γk).

71



6 Phenomenology of the Raman response
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Figure 6.1: (a) Illustration of the experimental geometry for photoemission [13], (b) ARPES
intensity I(k, ω) recorded from an optimally doped Bi2212 sample and represented by the false
color map on the main panel. The two insets on the right display two different projections
of I(k, ω): one at constant energy (upper right, momentum distribution curve or MDC)
and another for fixed momentum (lower right, energy distribution curve or EDC). The up-
per left inset shows the corresponding Fermi surface where the arrow indicates the line in
momentum space along which I(k, ω) was recorded; (c) energy dependence of Σ′′ for three
different temperatures. The values of Σ′′ were obtained from EDC (open) and MDC analysis
(closed symbols) of ARPES intensity maps as displayed on panel (b). Panels (b) and (c) are
reproduced from [12].

Eq. (6.1) is used here to calculate the Raman response from analytic approximations to the
electronic propagator to elucidate which features of the Raman response can be understood
on the basis of single-particle properties. In the phenomenology, G′′ is approximated using
tight binding band expressions consistent with ARPES results combined with different forms
of electronic self-energies.

6.1.1 Single-particle properties from ARPES

The most direct way to obtain information on single-particle electronic properties is ARPES.
ARPES measures the photo current which is created when a sample is exposed to monochro-
matic high energy photons. A comprehensive overview of the experimental technique can
be found in Ref. [13] from which the illustration of the experimental geometry is reproduced
in Fig. 6.1 (a).

By recording the photoelectrons with an energy analyzer with finite acceptance angle it
is possible to determine the kinetic energy and momentum of the emitted electrons, Ekin

and p, respectively. For materials with quasi-2-dimensional electronic structure, like the
cuprates, it is possible to identify the recorded energy and momentum with the binding
energy EB and the crystal momentum �k of the electron inside the crystal according to

Ekin = hν − Φ − |EB|
p‖ = �k‖ =

√
2meEkin · sin ϑ · e‖

(6.2)

with Φ the work function, p‖ the momentum parallel to the sample surface; ϑ is the polar
angle as defined in Fig. 6.1 (a) and e‖ the normalized projection of p on the sample surface.

Since typically synchrotron radiation or radiation from a gas discharge lamp is used
for excitation with photon energies of several tens of eV, the “sudden approximation” is
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6.1 Phenomenological model

justified [133]. It assumes that the photoelectron leaves the sample so quickly that the
interactions with the electrons left behind are negligible. Therefore, the ARPES intensity
or photocurrent, I(k, ω), is essentially proportional to the spectral function A(k, ω) repre-
senting the probability of finding an electron at momentum �k and energy �ω inside the
sample. Within the sudden approximation the photocurrent can be expressed as [13]

I(k, ω) = Gk · |Mf,i(k)|2 [A(k, ω) f(ω, T )], (6.3)

where Gk is a geometrical prefactor and Mf,i(k) the one-electron matrix element dependent
on the electron momentum k and on the energy and polarization of the incoming photon;
f(ω, T ) accounts for the fact that direct photoemission only probes the occupied electronic
states.

However, this idealized expression does not capture the k-independent extrinsic back-
ground B(ω) which is observed experimentally and most likely originates from secondary
electrons having suffered an additional inelastic scattering event before leaving the sample.
Additionally taking into account the finite experimental resolution, one arrives at a more
realistic expression for the photocurrent [13, 134] given by

I(k, ω) = Gk · |Mf,i(k)|2 [A(k, ω) f(ω, T )] ⊗ Rk,ω + B(ω). (6.4)

Here ⊗ denotes the convolution with the energy and momentum resolution function Rk,ω

of the experimental setup. Since A(k, ω) is connected to the imaginary part of the single-
particle Green’s function through G′′(k, ω)=−πA(k, ω) (see 3.5.1) ARPES provides direct
information on the single electron propagator with full k resolution.

Spectral function from ARPES

As an example, Fig. 6.1 (b) illustrates the ARPES intensity recorded from an optimally
doped Bi2212 sample [12]. It is taken on a cut along the Brillouin zone diagonal as illustrated
together with the corresponding Fermi surface on the upper left inset. The two insets on
the right hand side display different cuts of the recorded intensity: one at constant energy
(ω = 0) on the upper panel, and another one at fixed momentum (k = kF) on the lower
panel; these cuts are commonly denoted momentum- and energy distribution curves, MDC
and EDC, respectively.

At first glance, it is tempting to directly use the raw ARPES spectra in Eq. (6.1) to
calculate the Raman response. However, it turns out that the extraction of A(k, ω) is ham-
pered considerably by matrix element effects, the experimental resolution, the continuous
background and other experimental details [13, 134, 135, 136, 137]. Although normalization
procedures have been developed to deal with these shortcomings, it is practically impossible
to extract A(k, ω) for the whole irreducible octant which would be necessary to perform
the simulation of the Raman response at a single temperature. And even so, the lack of
information about the unoccupied states and the lack of an absolute intensity scale would
preclude quantitative simulations anyway.
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6 Phenomenology of the Raman response

Material specific issues

Due to the short penetration depth of the high energy photons of the order of the lattice
constant, ARPES is a very surface sensitive technique that requires extremely good surfaces
and crystal quality. For this reason, in the discussion of the ARPES results also some
material specific aspects should be kept in mind. While the Bi-based compounds have the
best surface due to a nonpolar cleavage plane, they exhibit a superstructure and are non-
stochiometric. In contrast, Y123 offers a much better crystal quality, but has polar surfaces
which leads to self-doping of the surface layer [138, 139]. Finally, LSCO cleaves sufficiently
well but represents a mixed crystal with non-canonical properties due to the formation of
stripes. Nevertheless, this material is appealing since it offers access to the complete doping
range from undoped to highly overdoped [140].

For the present comparison of ARPES and Raman spectroscopy, the main focus is placed
on the LSCO material system since it allows one to follow the doping evolution from the
overdoped regime, for which the introduced Raman phenomenology is best suited, to opti-
mal doping, where results for Bi2212 supplement the findings for LSCO.

Single-particle self-energy from ARPES

Although the direct extraction of the electronic propagator is hampered, as discussed above,
alternative methods have been developed to gain information (at least) on the self-energy
Σ and band structure ξk. While more sophisticated approaches strive to extract Σ and ξk
self-consistently [141], many others are based on simple linewidth analysis of the ARPES
spectra yielding Σ′′.

Here an approach is discussed which was introduced after the advent of a new generation
of electron analyzers. The new analyzers offered a higher spectral and angular resolution,
as well as the possibility to simultaneously record multiple EDCs on one dimensional cuts
in momentum space. This provides energy and momentum dependent maps of the ARPES
intensity as, e.g., illustrated in Fig. 6.1 (b), and allows one to analyze the momentum-
rather than the traditional energy-dependence. This has advantages since the EDCs are
typically characterized by a complex line shape due to the non-trivial ω-dependence of the
self-energy, the presence of an additional background B(ω), and the low-energy cutoff due
to the Fermi function (see Fig. 6.1 (b), lower right panel). In contrast, on cuts normal
to the Fermi surface, assuming that the self-energy Σ and the matrix elements are slowly
varying functions of k, the corresponding MDCs can be approximated by simple Lorentzians
centered at k=kF + [ω −Σ′(ω)]/v0

F with a FWHM given by 2Σ′′(ω)/v0
F [12, 13, 78], where

v0
F is the bare Fermi velocity normal to the Fermi surface.
Indeed approximately Lorentzian MDC line shapes are observed [see the upper left inset

of Fig. 6.1 (b)] and the approach is widely used in the literature to extract Σ′′ from MDC
linewidths. As an example, Fig. 6.1 (c) shows the energy dependence of Σ′′ for three different
temperatures extracted from ARPES data similar to those displayed in Fig. 6.1 (b). It is
obvious that Σ′′ has two different domains as it scales linearly with ω for larger energies,
while it has a constant regime for small energies; the constant value of the low energy part
is found to scale linearly with temperature as the rescaled plot in the inset shows. This
behavior seems to support a marginal Fermi liquid (mFL) picture [16] and was interpreted
by the authors as indication of quantum critical behavior around optimal doping.
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6.1 Phenomenological model

Although the majority of the ARPES linewidth analyses in the literature support a
marginal Fermi liquid (mFL) form for the low energy part of the self-energy, also different
low energy dependences are reported, ranging from a tendency to superlinear behavior in
overdoped Bi2201 [142] to a description in terms a conventional FL like behavior with
characteristic ω2-dependence [143]. At least for binding energies ω > 50-100 meV linear ω-
dependences are consistently observed also in these cases. For even higher binding energies
(ω≈0.5 eV) some authors find evidence for scattering rate saturation [144, 145].

Concerning the momentum dependence, a strong k-anisotropy with considerably en-
hanced scattering rates around (π, 0) are observed at optimal doping level which has been
interpreted as the gradual loss of coherence of the antinodal quasiparticles [146]. In suffi-
ciently overdoped samples, the observed anisotropy vanishes [142, 144, 147] and coherent
quasiparticle excitations are found on the whole Fermi surface [50, 51].

6.1.2 Model self-energies

Here, technical aspects of the model self-energies used to approximate the single-particle
spectral function A(k, ω) in the Raman response phenomenology are briefly discussed. First,
the focus is placed on a marginal Fermi liquid (mFL) self-energy which was originally
proposed to explain, among other things, the flat continuum of the Raman response [16].
As discussed in the previous section, it seems to receive support from numerous ARPES
experiments.

However, the applicability of the mFL approach remains controversial which was high-
lighted by a debate about the interpretation of optical conductivity data briefly reviewed
below. Since transport quantities are governed by effective transport scattering rates, they
provide indirect information on the self-energy. Therefore, the linear dependence of the dc
resistivity in a wide temperature range around optimal doping [93, 148] is usually interpreted
in favor of a mFL picture. Also the optical conductivity found to be linear in frequency
seems to support the scenario [149]. However, this interpretation has been questioned by
Hussey et al. proposing an alternative, more conventional Fermi liquid (FL) approach [150].
Therefore, the form of Σ′′ proposed by Hussey et al. [151, 152] is considered as well.

mFL type of self-energy

The mFL approach is characterized by the imaginary part of the self-energy as Σ′′
mFL ≈

max(|ω|, T ) [16, 94]. To work with smooth functions, the interpolation formula Σ′′ =√
(αω)2 + (βT )2 is used in the Raman response calculation, where � and kB have been

set to 1, and α and β are dimensionless constants characterizing the variation of Σ′′ with
energy and temperature, respectively. The expression is extended by two residual constant
scattering terms, and the full parametrization is given by

−Σ′′(k, ω) =
√

(αω)2 + (βT )2 + c2
0 + c1 + c2

( | cos kx − cos ky|
2

)η

, (6.5)

where Γ(k) = c1 + c2(| cos kx−cos ky|/2)η represents a static but k-dependent scattering
term consistent with the mFL model. Γ(k) has been attributed to static impurity scat-
tering [94, 153], and its functional form is substantiated by the results of momentum and
doping dependent ARPES linewidth analysis [142]. To reproduce enhanced scattering rates
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Figure 6.2: (a) Temperature dependences of the mFL and FL self-energies. The displayed
self-energy parametrizations are explicitly given by Σ′′

c0
=
√

(αω)2 + (βT )2 + c2
0 with α=1.1,

β=2.5 and c0 =10 meV (red), Σ′′
c1

=
√

(αω)2 + (βT )2+c1 with α=1.1, β=2.0 and c1 =10 meV
(blue), and Σ′′

FL = a + b [ T 2 + (�ω/2πkB)2] with a = 10 meV and b = 8.9 · 10-7 eV/K2 (green),
respectively. The solid and dashed lines correspond to the cases with and without the smooth
high energy cutoff at 0.5 eV, respectively. (b) Energy dependences of Σ′′

c0
, Σ′′

c1
and Σ′′

FL for the
same parameters. The solid and dashed lines correspond to self-energies with and without
the high energy cutoff, respectively, which is illustrated as the black dashed line at 500 meV.

of the antinodal quasiparticles towards low doping levels, Γ(k) is chosen to be maximal
at (π, 0) with the parameters c2 and η controlling the magnitude at, and the degree of
concentration to these points, respectively.

While Γ(k) is added according to Matthiessen’s rule, the second term, c0, is purely
phenomenological and motivated by the experimental findings discussed later in the chapter.
Its role becomes more clear by comparing the zero-energy temperature dependence of Σ′′

c0 =
−√(αω)2 + (βT )2 + c2

0 and Σ′′
c1 = −√(αω)2 + (βT )2 + c1, displayed as the red and blue

dashed lines in Fig. 6.2 (a). The choice of parameters, α=1.1, β =2.5, c0 =10 meV for Σ′′
c0

and α = 1.1, β = 2.0 and c1 = 10 meV for Σ′′
c1 , is similar to an earlier study for overdoped

Bi2212 [78]. Note that in the case of Σ′′
c1 a linear temperature dependence is obtained as

expected for the mFL approach. In contrast, c0 introduces superlinear behavior for small T ,
where assuming the same value for β in both cases, would lead to reduced scattering rates
at high temperatures for Σ′′

c0 . This is compensated in the example by assigning a larger
value to β which provides better agreement with the experimental Raman data.

FL self-energy by Hussey

The approach proposed by Hussey et al. assumes ω2- and T 2-behavior at least for small
ω and T , as well as a strong in-plane anisotropy and a high energy saturation of the
quasiparticle scattering [150, 151]. Without saturation, the discussion of which is postponed
to the following paragraph, the scattering rate used in the proposal is given by

Γideal(Φ, ω, T ) = a[1 + c cos2(2Φ)] + b [1 + e cos2(2Φ)] [T 2 + (�ω/2πkB)2]. (6.6)

Here, Φ represents the angle between the in-plane Fermi wave vector and (kx, 0), a is the
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6.1 Phenomenological model

residual scattering and b controls the variation with energy and temperature1; c and e are
doping-dependent anisotropy factors for the impurity and T -dependent scattering rates,
respectively. The same functional form was used earlier to phenomenologically describe
different dc transport properties from the overdoped regime down to optimal doping using
a Boltzmann approach [151, 152]. Note that the degree of anisotropy is found to be strongly
doping dependent and to vanish in the strongly overdoped regime [49].

To use the parametrization within the Raman response calculations the scattering rate
Γ is identified with the self-energy Σ′′

FL(k, ω) by replacing cos2(2Φ)-terms with the fully k-
dependent anisotropy term [(cos kx−cos ky)/2]2 providing comparable k-dependences. The
green dashed line in Fig. 6.2 (a) represents Σ′′

FL for c=e=0.

High-energy saturation

The imaginary part of the self energy Σ′′ corresponds to the scattering rate Γ = 1/τ or,
equivalently, the mean free path � of a quasiparticle (−2Σ′′=�/τ ≈�vF /�). Since according
to the Joffe-Regel limit � cannot become arbitrarily small (� � a), Σ′′ has an upper limit
of the order of the bandwidth W [154, 155]. Therefore, a smooth cutoff ΓMIR = 0.5 eV is
introduced in both, the mFL and the FL parametrizations used for the Raman response
calculations. The mathematical form is adopted from the phenomenology by Hussey and
coworkers who use a high energy saturation inspired by the parallel-resistor-model [156, 157].
In the model, the scattering rates Γideal and ΓMIR are not combined as one would expect
for two different scattering channels, but rather phenomenologically as if two resistors were
connected in parallel. This leads to an effective scattering Γeff according to

1
Γeff

=
1

Γideal

+
1

ΓMIR

. (6.7)

The effect of this procedure can be inspected in Fig. 6.2 (a) and (b) where ideal and effective
self-energies are represented by the dashed and solid lines, respectively. Not surprisingly,
the effective Σ′′s are generally smaller than the ideal ones and restricted to values smaller
than ΓMIR =0.5 eV represented by the black dashed line in Fig. 6.2 (b). Although the low
energy behavior is preserved in all cases, also Σ′′

FL crosses over to linear ω-dependence for
the intermediate regime before it finally saturates.

In the calculations of Raman response, the effective self-energy Σ(k, ω) = Σ′(k, ω)+
iΣ′′(k, ω) is generally obtained on the basis of the ideal scattering rates provided in Eq. (6.5)
and Eq. (6.6). Subsequently, the smooth high-energy cutoff of ΓMIR =0.5 eV is introduced
according to the Joffe-Regel limit as described above. Finally, the real part of the self energy
Σ′ is obtained assuming a particle-hole symmetric relaxation Σ′′

k(−ω)=Σ′′
k(ω) via analytic

Kramers-Kronig transformation.
For sake of simplicity only Σ′′ forms have been chosen which permit an analytic determi-

nation of Σ′. The phenomenological marginal Fermi liquid form, e.g., captures the essential
features at low energy observed by ARPES measurements, while it ignores the so-called kink
feature in the electronic dispersion [13]. The kink is a sudden change of the slope in the

1Note that α and β in the original expressions have been replaced by a and b to avoid confusion with the
mFL parameters.
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Figure 6.3: (a) Illustration of the sampling points in k-space: due to crystal symmetry the
k-sum can be restricted to the first irreducible octant (filled circles); (b) illustration of the ω
sampling range: the [f(ω, T ) − f(ω+Ω, T )] term (blue solid line) effectively restricts the range
of integration; however, G′′ must also be evaluated at the shifted energy ω+Ω corresponding
to the unoccupied states. The additional ω-range necessary for the calculation is illustrated
by the red dashed line.

renormalized quasiparticle band at approximately 50-70 meV. It is observed in the nodal
direction and is attributed to an interaction of the electronic system with a dispersion-less
bosonic mode. Since its energy corresponds to 400-560 cm−1 and it occurs only in parts of
the Brillouin zone it would not significantly change the Raman response (Ω≤ 1000 cm−1)
obtained from Eq. (6.1). However, the feature is present in the model spectral function used
further below for the calculations in the superconducting state which was derived by direct
comparison of parametric model and ARPES data, and is described in Appendix A.3.

6.1.3 Some numerical aspects

In an earlier doctoral thesis a similar approach was used to compare the ARPES and Raman
response for an overdoped Bi2212 sample. The results indicate that it is possible to reconcile
ARPES and Raman spectra in the overdoped regime [78]. However, in the calculation the
k-sum was restricted to the Fermi surface, potentially missing the effect of the van-Hove-
singularity of the band structure close to the Fermi level at (π, 0). Therefore, an extension
of the simulation of the Raman response to a full k-integration was developed and a time
efficient simulation machinery for the Raman response including full k-sums in Eq. (6.1)
using different model Green’s functions was set up.

The extra dimension in the k-sum increases the numerical effort substantially and, there-
fore, new strategies had to be developed. For the simulation code, it was decided to use
python, an interpreted programming language with strong and growing support in the sci-
entific community [158, 159]. It offers software packages for scientific applications of which
here the numpy/scipy package is most extensively used. It is a combination of an opti-
mized numerical extension capable to deal with large numerical arrays and a collection of
frequently used scientific algorithms for integration, linear algebra, etc. [160].

Here, only some essential numerical aspects important for time efficiency are outlined.
Besides the optimized array arithmetic inherited from numpy, the strategy to substantially
reduce the computational time is to anticipate the sampling points in (k, ω)-space needed
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6.2 Simulations of the Raman response in the normal state of overdoped material

to compute the complete Raman spectrum, then to compute the values of G′′ and f and
to store these values in look-up tables. This avoids double computations performing the Ω-
iteration which turned out to be the reason for long simulation times in our first approaches.

In this context, the k-sampling is performed in (kx, ky)-subspace where the k-summation
can be further restricted to the first irreducible octant of the first Brillouin zone due to
symmetry [see Fig. 6.3 (a)] which reduces the number of k sampling points by a factor of
approximately 1/8. The ω-integration is restricted to a finite interval by the difference of
the Fermi distributions, f(ω, T ) − f(ω+Ω, T ). This is most obvious for T = 0 K where
the term is finite for ω ∈ [−Ω, 0] and zero otherwise. For finite temperatures, thermal
broadening requires larger ω-integration intervals which are extended in the calculations by
10 kBT on either side. This ensures to capture the whole energy range where the integrand
is substantially different from zero [see Fig. 6.3 (b)]. Of course, not only the integration
range, but also the resolution matters, and the (k, ω)-mesh has to be fine enough to avoid
numerical artifacts. This is carefully checked by looking at the intermediate result of G′′

in all simulations presented here. Finally, it is not necessary to compute the integral in
Eq. (6.1) twice for a B1g and B2g spectrum since only γk is different.

These optimizations are sufficient to reduce the simulation time per Raman spectrum to
less than a minute on a standard personal computer. The achieved reduction in computa-
tional time represents a necessary prerequisite for a systematic study.

6.2 Simulations of the Raman response in the normal state of
overdoped material

In the overdoped regime the assumptions made in Eq. (6.1) are expected to apply. Therefore,
the discussion of the phenomenology of the Raman response is started for doping levels above
the superconducting regime, and results of the calculations are compared to experimental
data of the LSCO-26 sample with p=0.26.

6.2.1 Analytic approximation of the spectral function

The analytic approximation of the single particle spectral function A(k, ω) requires expres-
sions for the bare electronic band structure ξk and the single-particle self-energy Σ.

To model the electronic conduction band, tight binding expressions εk [see Eqs. 2.1 and
A.1] in accordance with the experimental findings are assumed, where in this section only
nearest and next-nearest neighbor hopping are taken into account. Since the expressions
for the Raman response depend on the bare electronic energy ξk=εk−μ, measured relative
to the chemical potential μ, the knowledge of μ is a necessary prerequisite to perform
the calculation. Instead of treating the chemical potential as a fit parameter, here μ(T )
is determined on the basis of εk from its direct relation to the doping level p. For two
dimensions, it is given by the implicit equation

n = 2
∫

BZ

dk
4π2

f(εk − μ, T ) , (6.8)

where n = 1−p represents the total number of electrons per CuO2 formula unit, T the
temperature and f the Fermi distribution function.
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Figure 6.4: Illustration of the bare electronic band structure (a) and the single particle mFL
self-energy (b) used to model the spectral function in the simulation of the Raman response.

Fig. 6.4 (a) illustrates ξk obtained for t=0.25 eV, t′=0.35 t (=87.5 meV) and μ(100 K)=
1.3t (=0.325 eV), where μ is chosen to achieve the proper band filling of p=0.26. Note that
the van-Hove singularity at (π, 0) is close to the Fermi level with ξ(π,0) =-25 meV and that
this proximity leads to a considerable temperature dependence of the chemical potential.
The inset of Fig. 6.4 (a) illustrates that μ changes by approximately 6 meV between 50 K
and 300 K when keeping the doping level fixed.

The second component necessary for the analytic approximation of A(k, ω) is the single-
particle self-energy Σ. Fig. 6.4 (b) displays the real and imaginary parts of the marginal
Fermi liquid type of self-energy Σc1 for a number of temperatures2. As discussed above the
k-independent imaginary part Σ′′

c1 , resembling the one obtained from ARPES experiments
for p ≥ 0.16 [12, 13, 50, 141], represents the starting point of the parametrization. It is
displayed on the upper panel and, for comparison, the dotted and dashed lines in the upper
panel represent Σ′′

mFL≈max(α|ω|, βT ) at 300 K and the high energy cutoff ΓMIR, respectively.
The real part Σ′

c1 is obtained via analytic Kramers-Kronig transformation (KKT) and is
shown on the lower panel.

The expressions for ξk and Σ, finally, allow one to calculate the single-particle spectral
function A(k, ω)=−(1/π) G′′(k, ω) by employing Dyson’s equation, G(k, ω)=(ω−ξk−Σ)−1

Since A(k, ω) describes the probability of removing/adding an electron with momentum k
and energy ω from/to a many-body system it obeys certain sum rules. A fundamental one
is ∫ ∞

−∞
dω A(k, ω) = 1 (6.9)

which indicates that A(k, ω) describes real electrons for which also in correlated systems
the probability of finding one at momentum k is unity. This sum rule, and other properties
of the spectral function as, for example, its positive-definiteness have been used to check
the numerical implementation.

2See 6.1.2 for the details; parameters for Σ′′
c1 : α=1.1, β=2.5, c1 =10 meV, ΓMIR =0.5 eV.

80



6.2 Simulations of the Raman response in the normal state of overdoped material

(a) (b)

Figure 6.5: Comparison of experimental (a) and analytically approximated ARPES data
(b). Panel (a) is reproduced from [12], and the parameters used to calculate A(k, ω) · f(ω, T )
on panel (b) are those of Fig. 6.4.

Fig. 6.5 shows the comparison of real ARPES data, already discussed in 6.1.1 and re-
produced on panel (a), and A(k, ω) · f(ω, T ) obtained from the model on panel (b). Both
illustrations include a false color representation for a cut along the Brillouin zone diagonal
on the main panel, the corresponding Fermi surface on the upper left inset, as well as the
momentum- and energy distribution curves on the upper and lower right insets, respectively.
Additionally, the bare band structure ξk is represented by the red solid line on panel (b).

The figure illustrates that the result from the model is qualitatively similar to the ex-
perimental data. Note, however, that the latter were recorded from an optimally doped
Bi2212 sample, while the analytic spectral function is used below to compute the Raman
response for strongly overdoped LSCO. Neither ξk, nor Σ have been, therefore, adjusted to
reproduce the ARPES data on panel (a), and the comparison should be considered quali-
tative. Nevertheless, the comparison is justified since ARPES spectra along the Brillouin
zone diagonal do not qualitatively change from optimal to high doping levels [50]. All in all,
Fig. 6.5 underlines the qualitative agreement of the model and experimental observations
from ARPES experiments.

6.2.2 Comparison of Raman response simulation and experiment

On the basis of the analytic approximation of A(k, ω) it is now possible to compute the
Raman response in lowest order according to Eq. (6.1). Fig. 6.6 displays the response using
the parameters of the previous section, where the B1g and B2g spectra obtained from the
phenomenology are represented by the smooth solid lines, while the noisy lines represent
the electronic part of the experimental spectra for the strongly overdoped sample LSCO-26
which were discussed in the previous chapter.

In the calculation, μ is determined for each temperature according to Eq. (6.8) to achieve
the proper band filling of p = 0.26. The overall intensity is adjusted by a single prefactor
for both symmetries and all temperatures, chosen to match the intensity in B2g symmetry
at 1000 cm−1 and T = 199 K. The Raman vertices γμ(k) with μ ∈ {B1g, B2g} are those
obtained from ξk within the effective mass approximation (see 3.3.4).
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Figure 6.6: Comparison of simulated and experimental Raman data. The panels show the
temperature dependence of the B1g and B2g Raman response recorded from the overdoped,
non-superconducting La1.74Sr0.26CuO4 sample discussed earlier. The smooth lines represent
the Raman response obtained from the phenomenology described in the text. The simulation
parameters for the band structure ξk are given by t = 0.25 eV and t′ = 0.35 t with μ(T )
adjusted to achieve a proper band filling of p=0.26, while the self-energy parameters for Σ′′

c1

are represented by α=1.1, β=2.5, c1 =10 meV and ΓMIR =0.5 eV.

In this approximation, the Raman vertices and, consequently, the Raman responses are
proportional to t and t′ in B1g and B2g symmetry, respectively. Therefore, the relative
Raman intensity χ′′

B1g
/χ′′

B2g
can be adjusted by tuning the band parameters and, in this first

simulation, the proper relative intensity at 1000 cm−1 is obtained by choosing t′/t=0.35.
It is remarkable that the phenomenological approach provides an almost quantitative

reproduction of the electronic Raman response for a single set of parameters with α, β, c1,
ΓMIR and t, t′, μ representing the parameters for Σ′′

c1 and ξk, respectively. In the latter case,
t is the only free parameter since μ is determined through the band filling p = 0.26 and t′

follows from the relative intensity as discussed above.

Note that the phenomenology reproduces not only the symmetry-, but also the the energy-
and temperature-dependence of the experimental Raman response. In particular, the tem-
perature evolution of the initial slope which is connected to the Raman lifetime of the
carriers and the flat high energy continuum3 are obtained from the k-independent mFL
self-energy for all temperatures and both symmetries. These findings suggest that the
phenomenology captures relevant aspects of the Raman response in the overdoped regime.

Band structure effects

In this section, the discussion is turned to the effects of the band structure ξk on the
phenomenological response, where ξk influences the response in two ways. First, the quasi-
particle propagator G′′ is directly affected through the Dyson equation and, second, ξk
determines the Raman vertices γμ(k) via the effective mass approximation. The latter
can have strong effects on the relative intensities between the different Raman symmetries,
where tuning t′/t to adjust the χ′′

B1g
/χ′′

B2g
, as discussed in the last section, is only the sim-

3In fact, the agreement extends beyond the energy range shown in the figure.
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Figure 6.7: (a) Doping dependence of the Fermi surface in LSCO as observed by photoemis-
sion experiments (reproduced from [161]). The light blue lines correspond to tight binding
fits to the ARPES momentum distribution maps with t′ and ε0 being the fit parameters
and assuming t = 0.25 meV and t′′ = − 1

2 t′. (b,c) Illustration of the t-t′-band structures for
t = 0.25 eV, different ratios of t′/t and μ fixed to obtain a band filling of p = 0.26. While
panel (b) shows bare band energy for cut along high symmetry directions in momentum
space, panel (c) illustrates the resulting Fermi surface.

plest example. More severe changes can be expected when including higher Brillouin zone
harmonics4. Here, however, the focus is placed on the consequences of the direct changes in
G′′, where tuning of the van-Hove singularity (vHS) relative to the Fermi level is selected
for a detailed discussion.

The main motivation for this investigation is the change in the Fermi surface (FS) topol-
ogy with doping which has been observed by photoemission spectroscopy in the LSCO
compounds [13, 161]. This crossover is illustrated in Fig. 6.7 (a) showing ARPES momen-
tum distribution maps at the Fermi level recorded from LSCO crystals at different doping
levels. The light blue curves represent the experimentally determined Fermi surfaces which
clearly indicate a transition from a hole-like FS closed around (π, π), to an electron-like
FS closed around the Γ-point between p = 0.15 and 0.22. These Fermi surfaces and the
displayed band parameters are obtained from fits to the experimental Fermi wave vectors
kF. The fits are based on a tight binding band parametrization including the third-nearest
neighbor hopping with ε0 denoting the chemical potential, and assuming t = 0.25 eV and
t′′=−1

2 t′.
It is important to realize that the method applied to extract the band parameters does

not account for the band structure renormalization due to Σ. Therefore, the obtained
4Although higher harmonics have been implemented in the numerical framework up to fifth order, this issue

is not addressed here in detail. For further information the interested reader may refer to Appendix A.1.1.
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Figure 6.8: Raman response calculated for Σ′′
c1

and a varying band structure ξk as illustrated
in Fig. 6.7 (b) and (c). The Raman intensity has been normalized to 1 at Ω=1000 cm−1 and
T =150 K (the spectra are not shown) by a symmetry dependent prefactor.

parameters are so-called “renormalized” band parameters, whereas the phenomenology dis-
cussed here requires “bare” band parameters to avoid double counting of renormalization
effects. In the literature, several strategies to obtain bare band parameters are reported.
They range from manual tuning of renormalized parameters to compensate the renormal-
ization effects for specific Σs starting from tight binding parametrizations up to fifth or-
der [40], to the afore mentioned approach, striving to extract the band parameters together
with an assumed model Σ in a self-consistent manner [141]. However, especially in the
light of a possible kz-dispersion [161] and the recently discovered surface doping effects
in YBCO [138, 139], one should not overestimate the precision with which tight binding
parameters can be extracted from ARPES data.

Therefore, to keep the Raman calculations straightforward and to avoid side-effects from
higher order harmonic vertex changes, the following considerations are restricted to a simple
t-t′-band structure where the change from a hole- to an electron-like FS is induced by
decreasing the ratio t′/t from 0.4 to 0.2. The resulting band structures are illustrated
in Fig. 6.7 (b) showing ξk on a cut along high symmetry lines in momentum space with
the inset illustrating the distance of the vHS to the Fermi level. Panel (c) shows the
corresponding Fermi surfaces and illustrates the crossover from a hole to an electron-like
topology near t′ = 0.3 t. Support for these smaller values of t′/t in LSCO is provided by
LDA band structure calculations which find a correlation of t′/t and the maximum critical
temperature Tmax

c in different compounds [162].

The B1g and B2g Raman response for different ratios of t′/t has been calculated for
temperatures ranging from 10 to 300 K. In Fig. 6.8 the response is shown for T =10 K (solid)
and 300 K (dashed lines) with the spectra in each temperature series being normalized to
1 at Ω=1000 cm−1 and T =150 K by symmetry-dependent prefactors.

First the focus is placed on the B2g response on the right panel. Here the B2g Raman
vertex is zero along the principle axes and, therefore, particularly at the position of the
vHS at (π, 0). Consequently, only small overall changes are obtained upon tuning t′/t
as expected. The general trend of weakly increasing spectral weight below 1000 cm−1 for
increasing ratios of t′/t, results from decreasing the distance of the bottom of the band at
k=Γ to the Fermi level [see Fig. 6.7 (b)].
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Figure 6.9: Phenomenological Raman response for the three different self-energies discussed
in the text. The response corresponds to: (a) Σ′′

c1
=
√

(αω)2 + (βT )2 + c1 with α = 1.1,

β = 2.5 and c1 = 10 meV (repeated from Fig. 6.6), (b) Σ′′
c0

=
√

(αω)2 + (βT )2 + c2
0 with

α = 1.1, β = 2.0 and c0 = 10 meV and (c) Σ′′
FL = α + β [ T 2 + (�ω/2πkB)2] with α = 10 meV

and β =8.9 · 10-7 eV/K2. ΓMIR =0.5 eV is equally set for each simulation, as well as the band
parameters which correspond to those in Fig. 6.6.

Since the B1g vertex is maximal at the position of the vHS picking up its full effect, the
situation in B1g symmetry is different. At 10 K a pronounced peak around 70 cm−1 evolves
when the vHS crosses the Fermi level. It reflects the quasiparticle density available close to
the Fermi level, and its evolution is found to be approximately symmetric around the Fermi
level. For increasing temperature the peak successively vanishes due to thermal broadening
of the quasiparticle spectral function leading to very similar Raman spectra for elevated
temperatures as illustrated by the 300 K spectra.

Summarizing, the phenomenological Raman response develops a B1g peak at low energy
and temperature when the vHS crosses the Fermi level, whereby the spectral shape of the
B1g response is found to be mainly dependent on the energy difference between vHS and
Fermi level. Comparison with the experimental results, therefore, may indicate the proxim-
ity of the vHS to the Fermi level in the LSCO-26 sample since at low temperatures a small
peak is observed in B1g, but not in B2g symmetry. However, the results clearly demonstrate
that the strong renormalizations of the B1g Raman response found experimentally, cannot
be explained by the change of the Fermi surface topology.

Self-energy dependence

After the variation of the band structure at fixed Σ, now the effects of different Σs at fixed
ξk are investigated. To illustrate the effect of the three k-independent model self-energies
introduced in section 6.1.2 on the model Raman response, Fig. 6.9 displays a compilation
of the simulation results for the t-t′-band structure with t = 0.25 eV and t′ = 0.35 t used
before. While panel (a) repeats the response obtained for Σ′′

c1 [see Fig. 6.6], panels (b) and
(c) show the results obtained for Σ′′

c0 and Σ′′
FL, respectively.
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Figure 6.10: Raman scattering rates obtained from a memory function analysis applied to
the phenomenological Raman result presented in Fig. 6.9. (a) Comparison of Γ0 obtained
from the experimental Raman response of LSCO-26 (open symbols) and the phenomenological
Raman response for Σ′′

c1
, Σ′′

c0
and Σ′′

FL (solid symbols). The black dashed line represents the
resistivity [111]. (b) Σ′′

FL on a double logarithmic scale, where m denotes the slope of the linear
fits (red and green dashed line).

First, the Raman response arising from the two mFL parametrizations is compared in
panels (a) and (b). Obviously, for elevated temperatures (T ≥ 150 K) the spectral shapes
for both cases are very similar which is not surprising since the relative differences between
the two parametrizations in this temperature range are small. Towards lower temperatures
a peak below 200 cm−1 evolves for Σ′′

c0 not present in the spectra obtained from Σ′′
c1 . The

existence of this peak can be traced back to the smaller scattering rates at low temperatures
associated with Σ′′

c0 [see Fig. 6.2 (a)]. In fact, such a peak arises in the Raman response of
systems exhibiting long-lived quasiparticles and is, therefore, sometimes referred to as the
quasiparticle peak [23]. Despite these differences, the high energy continuum is equally well
reproduced for Σ′′

c0 .
The mFL results are contrasted by those obtained from Σ′′

FL on panel (c) which implies
even smaller scattering rates below 200 K. Following the trend outlined above, this results
in a pronounced peak in the spectra which, obviously, does not meet the spectral shape
of the experimental response recorded from overdoped LSCO. It is more reminiscent of
the B2g response observed for electron-overdoped NCCO (refer to chapter 5 or Ref. [130]).
To rescue the FL picture for hole-overdoped compounds one could naively expect that an
increased residual scattering could provide more appropriate spectral shapes. As a side-
effect, however, this would also decrease the initial slopes of the modeled Raman spectra
which, as will be discussed in the following section, already agrees well with the experimental
observation at low temperatures.

Static Raman relaxation rates

None of the phenomenological models discussed above is based on a microscopic theory. It
is, therefore, essential to judge the results of each parametrization in comparison with the
experimental facts. At best, this yields a phenomenological description which matches the
experimental findings reasonably well. In this section, the memory function analysis (MFA,
see 3.4 and 5.1.2), is used as a quantitative measure which permits to asses the level of
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6.2 Simulations of the Raman response in the normal state of overdoped material

agreement between simulation and experiment. The static Raman relaxation rates, Γ0,μ(T ),
derived via the MFA are related to the initial slopes of the Raman spectra. Therefore, the
analysis discussed below predominantly reflects the low energy part of the Raman response.

The Γ0,μ(T ), which originate from the phenomenological Raman results for Σ′′
c1 , Σ′′

c0 and
Σ′′

FL, are displayed on the three panels of Fig. 6.10 (a). The red and green solid symbols
represent the scattering rates for B1g and B2g symmetry, respectively. For the sake of
comparison, the open symbols on each panel represent the experimental Γ0,μ(T ), and the
dashed black line the dc resistivity, both determined for the LSCO-26 sample.

Looking at the data, there are several aspects which are consistently true for all model
self-energies considered here. First, the Raman scattering rates at the lowest temperature
are consistent with the experimental observation. This means that the residual scattering,
assumed to be 10 meV in either case, approximately matches the real one. Second, the type
of the temperature dependence of Σ′′ is directly reflected in the Raman relaxation rates.
While Σ′′

c1 is found to be strictly linear in T , Σ′′
c1 is linear only for T ≥ 100 K and levels off

for small temperatures; Σ′′
FL finally shows approximate quadratic behavior which is analyzed

in more detail in the double logarithmic plot in Fig. 6.10 (b). Therein the according linear
fits exhibit a slope of approximately 2 and are represented by the red and green dashed
lines. Third, there is a general trend of Γ0,B2g being larger than Γ0,B1g which is interesting
since the model Σs are k-independent5. At first glance, the effect seems to originate from
the increased initial slope of the B1g spectra (see Fig. 6.8, left panel) which arises from
the proximity of the van-Hove singularity to the Fermi level. Further analysis, however,
suggests that the explanation of this minor detail is inherent in the MFA and probably
related to the sum-rule normalization.

When comparing the phenomenological with the experimental scattering rates, the ap-
proach using Σ′′

FL provides approximately a Γ0∝T 2 dependence which does not agree with
the experimental observation. In contrast, both mFL self-energies provide a linear in T
dependence over a wide temperature range which is in good agreement with the experimen-
tal findings, although in the specific examples shown here, the increase of the scattering
rates is slightly too strong. Technically speaking, this could be remedied by reducing β to
1.5 as the self-energy parameter β controls the increase of the quasiparticle scattering with
temperature. Since the differences in the Raman scattering rates between the two mFL
self-energies are rather small, it is—considering the Raman relaxation rates alone—hard to
decide which one matches the experiment better.

Phenomenological transport

Here, the ability to treat transport phenomena within the Kubo approach presented in
this chapter is discussed together with the consistency of the phenomenological results
concerning dc transport. The discussion is based on the fact, that the in-plane optical
conductivity σ′(ω) can be obtained from Eq. (6.1) replacing the Raman by the current
vertex akbk = j2

ν(k)∝ (∂ξk/∂kν)
2 with ν ∈{x, y}. This is possible since (i) σ′ is connected

to the imaginary part of the dielectric function ε= ε′+iε′′ via the electrodynamic material
equations as σ′(ω) = (ω/4π)ε′′ and since (ii) ε can be, similar to the Raman response,
expressed as a two-particle correlation function, which is then the so-called current-current
correlation function χjj [84, 86].

5Note that the same tendency is also seen in the experimental results.
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Figure 6.11: (a) k-dependence of the Raman B1g (red) and B2g vertices (green), as well as
the current vertex (blue). In the latter case the blue dashed line on the main panel is the
j2
x current vertex, while the solid line represents the effective one discussed in the text. For

better comparison the vertices have been normalized to 1. (b) comparison of the resistivity
obtained from the model and experimental data.

The focus is first placed on the k-dependence of the current vertex j2
x(k) which is il-

lustrated in Fig. 6.11 (a) in comparison with the Raman vertices γ2
μ(k) for B1g and B2g

symmetry. While the color maps on the right hand side show the dependence on the com-
plete Brillouin zone, the main panel focuses on the Fermi surface illustrated in the upper
inset of panel (a). As discussed earlier, the Raman B1g (red) and B2g (green) vertices cause
the response to be sensitive on the antinodal and nodal region of the Brillouin zone, re-
spectively. Considering the current vertex the situation is more complicated. By selecting
a specific direction, here the x- or kx-direction, the vertex loses the full crystal symme-
try which is visible from the lower color map or the dashed blue line on the main panel.
However, the in-plane transport in a tetragonal system, like the cuprates, cannot depend
on this arbitrary selection. In fact, it is integrated out performing the k-sum in the Kubo
formula. This consideration can be included in the definition of an equivalent effective
vertex j2

eff∝ j2
x(kx, ky)+j2

x(ky, kx) which is necessary to perform the calculation in the first
irreducible octant of the Brillouin zone and restores the full crystal symmetry. The effective
vertex is displayed as the blue solid line in Fig. 6.11 (a) and shows a k-dependence similar
to the Raman B2g vertex, most sensitive on the Brillouin zone diagonals. The similarity
highlights the close relation between the B2g Raman response and optical in-plane con-
ductivity [163, 164]. However, in contrast to the Raman vertex the conductivity has finite
sensitivity along the principle axes. Note also that these conclusions solely apply to the
in-plane transport, while the IR c-axis conductivity, especially in the 123 compounds, is
known to be sensitive on the antinodal regions, like the Raman B1g response since c-axis
hopping is maximal at the (π, 0)-points in (kx, ky)-subspace.

Fig. 6.11 (b) shows the dc resistivity ρ(T )=1/σ′(ω→0) obtained from Eq. (6.1) for Σ′′
c1 ,

Σ′′
c0 and Σ′′

FL in comparison with experimental resistivity data measured from the LSCO-26
sample [111]. Considering the T -dependence it is found that also here the underlying self-
energy is clearly preserved in the calculated ρ. This leads to a linear dependence for the mFL
self-energies which levels off for Σ′′

c0 , and a quadratic behavior for Σ′′
FL. The temperature

dependence of the experimental data shows superlinear, although not quadratic behavior.
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Therefore, neither the mFL nor the FL self-energy models can reproduce the experimental
resistivity. Considering the reasonable agreement with the Raman spectra, Σ′′

c1 could be
a good compromise for an unified phenomenological description of Raman response and
dc conductivity in the overdoped regime.

6.3 Normal state doping dependence

Upon decreasing the doping level, only little change is expected on the basis of the ARPES
spectra. Even at optimal doping still considerable quasiparticle spectral weight is found
on the entire Fermi surface and all changes are continuous [13, 140]. In contrast, the B1g

Raman spectra of Bi2212 change abruptly close to pc =0.21 [22]. This aspect is investigated
here by extending the phenomenological results to the Bi2212 material system and doping
levels down to optimal doping.

6.3.1 Isotopic mFL scattering

Since there is no discontinuity in the ARPES spectra, the normal state Raman response
of LSCO and Bi2212 is first compared to phenomenological results using the same model
functions for Σ′′ and ξk which proved to be successful in the case of overdoped LSCO. The
comparison between the prediction on the basis of the ARPES results (smooth lines) and
the experimental Raman response (dots) is shown for samples above and below the critical
doping pc =0.21 in Fig. 6.12. The panels on the left and right hand side show corresponding
compilations of LSCO and Bi2212 data for the two different doping levels, while in either
case the upper and lower panel shows data for the overdoped and optimally doped cases,
respectively. On all four panels the B1g and B2g symmetries are displayed in red and green
color, respectively.

The experimental data have been recorded at approximately 100 K from comparable,
high quality samples which come from the same source in the case of Bi2212. The phe-
nomenological results on each panel are obtained using the k-independent self-energy Σ′′

c1
with the parameters α = 1.1, β = 1.5, while c0 = 7.5-10 meV was slightly adjusted for each
sample. As before, the tight binding bands are modelled in by a t-t′-tight binding band
with t=0.25 eV, as well as t′/t=0.35 and 0.375 for LSCO and Bi2212, respectively. Again
the chemical potential μ has been adjusted to reproduce the according doping levels6. For
the sake of simplicity, equal band parameters have been used for high and optimal doping
levels, an approach known as the rigid band model. This approximation is sufficient here,
since the phenomenological results have proven to be quite robust against moderate changes
of the band parameters, as long as the van Hove singularity at (π, 0) is sufficiently separated
from the Fermi level.

Since Bi2212 is a bilayer compound the coupling of the two adjacent CuO2-planes splits
the conduction band into two sheets which coincide along the Brillouin zone diagonals
and are maximally separated at (π, 0) (see e.g. Ref. [13] section VI-C-2). The correspond-
ing band representations are obtained introducing the additional bilayer splitting term
±t⊥(cos kx − cos ky)2/4. The resulting Raman response for the bonding band (BB, −)
and anti-bonding band (ABB, +) is displayed as the dotted and dashes lines, respectively,

6In the Bi2212 case p is taken as the arithmetic average of p for bonding and anti-bonding band.
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Figure 6.12: Comparison of experimental (dots) and phenomenological Raman response
(solid lines) for La2-xSrxCuO4 and Bi2Sr2CaCu2O8+δ at approximately 100 K. The upper
and lower panels show data for over- and optimal doping levels, respectively. The exper-
imental data on panel (b) are spectra reproduced from [22] which show narrow structures
originating from phonons, while the phononic response on the other panels has been sub-
tracted. In the case of Bi2212 the phenomenological response is the sum of the responses of
the bonding (dotted) and anti-bonding bands (dashed lines).

where in the calculation t⊥ =40 meV has been assumed in accordance with recent ARPES
measurements [13, 165]. Not surprisingly, strong differences are only observed in the B1g

channel which is sensitive to the (π, 0) regions, while the B2g response, most sensitive to
(π/2, π/2), is practically unaffected. Fortunately, it can be shown that the full B1g and
B2g Raman response in bilayer compounds, is well approximated by a sum of the responses
of the two individual bands, while mixing terms only contribute to the fully symmetric
channels as e.g. A1g [166]. Therefore, the resulting full Raman response in Fig. 6.12 (b) and
(d) is the average of bonding and anti-bonding band displayed as the solid lines.

The focus is first placed on the overdoped cases displayed in Fig. 6.12 (a) and (b). While
the LSCO data are those of the previous section and have been discussed already, panel
(b) illustrates that the phenomenology also provides good agreement for overdoped Bi2212
in both, B1g- and B2g-symmetry7. As in the case of LSCO, a broad peak below 200 cm−1

is observed in B1g symmetry which probably arises from the proximity of the vHS of the
anti-bonding band to the Fermi level observed by photoemission experiments [165].

When shifting the focus to panels (c) and (d) which show similar comparisons at optimal
doping, it is evident that the phenomenological B2g Raman response still reproduces the

7On panel (b) the phonons have not been subtracted since the data are taken from Ref. [22].
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Figure 6.13: Comparison of the experimental temperature dependence of the Raman re-
sponse of LSCO-15 and the phenomenological results (smooth lines) derived for the k-
independent, mFL type of self-energy Σ′′

c1
and lowest order tight binding bands.

experimental observation, while the B1g response shows pronounced deviations for both
compounds. Note the remarkable similarity of the electronic Raman spectra of LSCO and
Bi2212 at comparable doping levels. In either case, approximately 30% of the spectral
weight in the range up to 1000 cm−1 is lost in the B1g spectra on the way from high to
optimal doping. As discussed in chapter 5, the findings for LSCO are consistent with the
abrupt change of the B1g Raman response at p=0.21±0.01 observed for Bi2212 [22]. Since
the response from overdoped, non-superconducting LSCO with x=p=0.26 is quite similar
to the one from Bi2212 at p>0.21 it is concluded that there is no additional change of the
spectra at the onset of superconductivity at psc2�0.27.

The considerable drop of the B1g spectra below the simulation, which is observed in both
compounds, is indeed remarkable. Although the spectral shapes are similar in Bi2212 and
LSCO, the overall LSCO intensity is subject to additional variations leading to changes in
the relative intensities of the B1g and B2g spectra from p=0.26 to p=0.15 (see discussion in
section 5.1.1). In the following, the focus is placed only the qualitative change of the spectral
shape. To adapt the phenomenological B1g spectra to the intensity observed experimentally,
an additional adjustment factor of ×0.44 is introduced as indicated in Fig. 6.12 (c).

While considerable changes of the spectral shape of the B1g Raman response is encoun-
tered upon lowering the doping level (Fig. 6.12), the spectral shape of the B2g response is
nearly unchanged (see chapter 5). This observation is substantiated by considering the full
temperature dependence of the optimally doped LSCO sample which is displayed together
with the corresponding phenomenological results in Fig. 6.13 (a) and (b) for B1g and B2g

symmetry, respectively. Remarkably, also the B2g temperature dependence is still repro-
duced almost quantitatively by the phenomenology without any further adjustment. In
contrast, the phenomenology cannot reproduce the experimental B1g response which is now
practically temperature independent. For similar doping levels in Bi2212, even a reversion
of the temperature dependence of the initial slopes is observed [22] which indicates insulat-
ing behavior of the nodal quasiparticles. This kind of behavior cannot be reproduced with
the phenomenology discussed here.
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In summary, the phenomenology using an k-independent, mFL-like self-energy provides
results which are in excellent agreement with the experiment not only for overdoped LSCO,
but also for overdoped Bi2212. However, towards optimal doping this simple approach
cannot explain the B1g response, while the B2g response is found to be reproduced without
further adjustments.

6.3.2 Anisotropic scattering approaches

One possible explanation for the discrepancies between simulation and experiment could
arise from the increasingly anisotropic nature of the quasiparticles as observed by many
experiments towards low dopings. Therefore, two different approaches using anisotropic
self-energies in the lowest-order Raman response will be discussed briefly.

Anisotropic mFL scattering

First, anisotropic scattering is introduced in the mFL type of self-energy Σ′′
c1 as outlined

in section 6.1.2. According to Eq. (6.5) the self-energy is given by Σ′′ =Σ′′
c1 + c2(| cos kx−

cos ky|/2)η, where c2 controls the strength of the additional scattering and η its concentra-
tion to the (π, 0) points. A series of simulations starting from Σ′′

c1 used in Fig. 6.13 was
performed, aiming at the reproduction of the Raman B1g spectra by tuning c2 and η, while
changing the B2g response as little as possible.

Fig. 6.14 (a) and (b) repeat the experimental LSCO data at p=0.15, this time in compar-
ison with the temperature series of the phenomenology obtained for c2 =200 meV and η=2.
Concerning the agreement with the experimental data, the choice of parameters can be con-
sidered close to the optimum of what is achievable with the above parametrization. From
panel (a) it is obvious that the phenomenological response now approximately coincides
with the experimental B1g spectra. However, the strong additional scattering also leaves
traces in the B2g response. Especially, the initial slopes which were well reproduced before
[see Fig. 6.13 (b)] are altered significantly. To remedy this, one could think of restricting the
additional scattering more strongly to the (π, 0) regions by increasing η. However, it turns
out that then the B1g response does not change sufficiently. Apparently, it is impossible
to disentangle the changes in B1g symmetry from those in B2g Raman response due to the
finite overlap of the respective vertices [see Fig. 6.11 (a) for an illustration].

The main argument against the applicability of the above self-energy parametrization,
however, are the extremely high scattering rates of Γ(π, 0)> 200 meV which are necessary
in order to reproduce the B1g spectra. They lead to a substantial depletion of the spectral
weight around (π, 0) as illustrated in the left inset of Fig. 6.14 (a) which represents the
energy integral of the spectral function in the range from -20 meV to 2 meV binding energy.
To this extent the depletion is in marked contradiction to the observations by ARPES
experiments at optimal doping displayed in the right inset [13, 140].

Anisotropic FL scattering by Hussey et al.

The second example featuring anisotropic scattering is the phenomenological model pro-
posed by Hussey et al. (see section 6.1.2). It was successfully used to reproduce various
transport quantities within a phenomenological Boltzmann description [151, 152] including
also IR spectroscopy data for optimally doped Bi2212 [150]. The authors argue that the
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Figure 6.14: Comparison of the simulations derived for two different k-dependent self-
energies (smooth lines) with the corresponding experimental data. Panels (a) and (b) show
experimental data of LSCO-15 and the Raman response obtained from the mFL self-energy
Σ′′

c1
+ c2(| cos kx−cos ky|/2)η for c2 =200 meV and η=2; the left inset in panel (a) displays the

corresponding integrated quasiparticle weight for the binding energy interval [-20 meV, 2 meV].
For comparison, the right inset shows the quasiparticle spectral weight at the Fermi level ob-
tained from a LSCO sample with p=0.15 using ARPES [161]. Panels (c) and (d) display the
data of the optimally doped Bi2212 sample in comparison with the response obtained for k-
dependent self-energy Σ′′

Hussey =a [1+c (| cos kx−cos ky|/2)2]+b [1+e (| cos kx−cos ky|/2)2] [T 2+
(�ω/2πkB)2] with a=8 meV, b=8.9 · 10-7 eV/K2, c=3, e=9 and ΓMIR =0.5 eV. These param-
eters are the ones used in Ref. [150].

Boltzmann results concerning optical transport (IR) do not differ significantly from those
obtained within the more precise Kubo formalism and that the whole approach could pave
the way towards a more conventional understanding of the cuprates down to optimal doping
levels [152].

To test if the proposed model is also capable to explain the Raman scattering results at
optimal doping, the parameter set and model functions provided in Ref. [150] were used to
calculate the Raman response. The resulting spectra are displayed in Fig. 6.14 (c) and (d)
in comparison with experimental Raman data from an optimally doped Bi2212 sample.
Concerning the experimental response, the phonon part has been subtracted as before. The
electronic bands in the simulation are simplified t-t′-versions of the more complex band
structure used in the Ref. [150]. However, this simplification does not significantly alter the
results of the calculation.

Compared to the k-independent version of the self-energy, used in section 6.2.2 in the
overdoped regime, finite values for c and e introduce considerable momentum dependence
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Figure 6.15: Comparison of (a) the experimental and phenomenological data from Ref. [150]
and (b) the IR response obtained within the present Kubo phenomenology.

in the quasiparticle scattering rate with enhanced scattering around (π, 0). Also here,
this leads to a strongly depleted quasiparticle spectral weight at the Fermi level in the
(π, 0) regions being in contradiction with ARPES results. However, the effect of the en-
hanced scattering on the phenomenological B1g spectra is smaller than in the anisotropic
mFL approach. In particular, the temperature dependence of the initial slope of the Raman
spectra is not significantly affected, and a pronounced temperature dependence is preserved.
In marked contrast, the experimental B1g response for the Bi2212 sample is found to be
practically temperature independent [see Fig. 6.14 (c)]. As discussed in chapter 5, this
behavior is experimentally well established, and has been interpreted in terms of an uncon-
ventional metal-insulator transition for the Bi2212 material system [22]. Consequently, the
pronounced difference in the temperature dependence only allows one to conclude that the
anisotropic FL model self-energy is not appropriate to reproduce the experimental Raman
results at optimal doping.

The study of the approach proposed by Hussey et al. is complemented by the calculation
of the IR response σ(ω) using the same set of parameters. As discussed in 6.2.2, this is
possible by replacing the Raman- by the current vertex in Eq. (6.1). The resulting response
is displayed in Fig. 6.15 (b), while on the left and right hand side of panel (a), the original
experimental data [149] and the phenomenological results by Hussey [150] are reproduced.

In agreement with the experiment, the two model calculations approximately share the
same temperature dependence for ω→ 0. However, the Kubo approach provides generally
higher σ values for ω > 0. This is, e.g., visible from the higher energy of approximately
600 cm−1 at which the responses of the different temperatures coincide [panel (b)]. This
energy has to be compared to the approximately 250 cm−1 obtained within the Boltzmann
type of simulation. This deviation is inherent since the two approaches have very different
foundations. While the Boltzmann approach is based on an ω- and T -dependent scattering
rate Γ(Φ, ω, T ) which is defined on the Fermi surface only, the Kubo formulation is based
on the fully k-, ω- and T -dependent spectral function A(k, ω). Therefore, the approaches
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6.4 Raman response in the superconducting state

are approximately equal for ω = 0, while increasing differences between the two approxi-
mations can be expected for successively larger energy transfers ω. Nevertheless, Fig. 6.15
demonstrates that in both cases qualitatively similar results are obtained.

In summary, anisotropic scattering cannot explain the renormalization of the B1g Raman
response observed experimentally below pc ≈ 0.21. Therefore, from the Raman scattering
point of view, it has to be concluded that elastic scattering is insufficient to reconcile single-
and two-particle properties using the approximation which was successfully applied at high
doping. The reason why the in-plane transport can be reproduced reasonably well by the
Boltzmann approximation is not immediately clear. Part of the answer may be the kind of
“normal” quasiparticle behavior which is observed around the Brillouin zone diagonals to
which both, the B2g Raman and in-plane IR response, are most sensitive to (see discussion
in 6.2.2). In contrast, anomalies in IR experiments are observed in the c-axis conductivity of
the 123 compounds which, like the B1g Raman response, is more sensitive to the anti-nodal
regions [84, 167, 168]. Apparently, the Raman experiments unveil the transition from an
essentially conventional metallic state to one with strong and anisotropic interactions where
the self-energy alone does not capture its many-body physics.

6.4 Raman response in the superconducting state

Finally, the phenomenology is extended to the superconducting state. Again, the com-
parison of ARPES and Raman spectroscopy is based on an analytic approximation of the
ARPES single-particle spectral function A(k, ω) = −1/π G′′(k, ω). The parametric model
used for this comparison was originally introduced by Inosov et al. to compare ARPES and
neutron scattering [169, 170]. As above, it is based on a tight binding band structure directly
extracted from ARPES data, and a phenomenological self-energy Σ′′. The latter is assumed
to be k-dependent and to consist of an electronic and a bosonic part with Σ′′ =Σ′′

el+Σ′′
bos.

While Σ′′
el ∝αω2 represents the Fermi-liquid component originating from electron-electron

interaction, Σ′′
bos models the coupling to a single bosonic mode. For the physical foundation

and further details of the model the reader is referred to the original publications [169, 170]
and the references therein. A brief summary of the relevant mathematical details including
the employed set of parameters can be found in Appendix A.3.

The model parameters have been optimized by Inosov et al. to closely match the experi-
mental ARPES response of an optimally doped Bi2212 sample at T =30 K below the critical
temperature of Tc = 92 K. For a single parameter set, the authors are able to reproduce
the nodal “kink” and the antinodal “peak-dip-hump” feature of the ARPES spectra. These
renormalization features of the electronic dispersion are interesting topics by themselves
since their understanding may contribute to a better understanding of the pair formation
mechanism in the cuprates (for a recent review see e.g. Ref. [171]). Here, however, the
focus is placed solely on the analytic spectral function providing “artificial” ARPES data
necessary to perform the comparison between photoemission and Raman spectroscopy.

As discussed in section 3.5.3, the Raman response calculation in the superconducting
state requires the knowledge of the normal part G(k, ω) and the anomalous part F (k, ω)
of the matrix Green’s function Ĝ. Although F is not directly accessible by ARPES, the
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Figure 6.16: Illustration of the evolution of the superconducting gap in the model spectral
function for the antibonding band around (π, 0) as indicated in the inset of panel (a). The
false color representation displays A(k, ω) = −1/π G′′(k, ω) with G′′ the imaginary part of
the normal Green’s function G. The color scale, as displayed exemplary on panel (b), has
been adjusted individually for each panel. The panels show the evolution of an increasing
gap of Δ0 ranging from 0 (normal state) to 35 meV, the nominal value in the parametrization
proposed by Inosov et al. [169, 170]. On panel (c), three characteristic energies of the model
spectral function, 2Δ0 = 565 cm−1, ΔEvHS ≈ 613 cm−1 and 2(Δ0+Ωa) = 1242 cm−1 are indi-
cated as double-headed arrows. These energies are reflected as peaks in the resulting Raman
response due to the enhanced available phase space increasing the scattering probability [see
Fig. 6.17(b)].

parametrization by Inosov provides expressions for both, G and F , following an approach
formerly established in Ref. [172]. These expressions are based on the electronic band
structure ξk, the self-energy Σ(k, ω), and the superconducting gap Δk only8. The super-
conducting gap in the model is assumed to be d-wave with Δk= 1

2Δ0(cos kx−cos ky).

The resulting model spectral function A(k, ω), or more precisely its evolution around
(π, 0) upon tuning Δ0, is illustrated in Fig. 6.16. From left to right, Δ0 is increased starting
from 0 meV on panel (a), representing the model’s normal state, to 35 meV on panel (c),
the model’s actual gap value also used for the calculations of the Raman response presented
below. Compared to the simpler normal state approaches discussed above, two new aspects
come into play: first, the coupling to a bosonic mode and, second, the transition to the
superconducting state. The first one is best inspected on panel (a) where the changes due
to superconductivity are not present. Here, the coupling to a single bosonic mode leads to
a strong renormalization of the quasiparticle dispersion which develops an interruption at
the boson energy �Ωa = ±42 meV as indicated by the white dashed lines. This behavior
was theoretically first described for systems with electron-phonon coupling by Engelsberg
and Schrieffer [174], while more recent discussions with special focus on photoemission on
cuprate superconductors can be found e.g. in Refs. [169, 175].

In the figure, the transition to the superconducting state is evident from the depletion of
the quasiparticle weight, at and around the Fermi level, on panels (b) and (c). Concerning
the extension to the superconducting state, it is needless to say that the analytic properties
of A(k, ω), as e.g. its positive definiteness or the ω-integrated spectral weight sum rule, have
been carefully checked and are fully preserved in the present implementation.

8For the full expressions also refer to Appendix A.3.
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Figure 6.17: Simulated Raman response (red solid line) corresponding to the spectral func-
tion displayed in Fig. 6.16 (c) in comparison with a compilation of the experimental elec-
tronic response below Tc, and the corresponding weak coupling results (black dashed lines).
The energy is given in units of kBTc. The experimental results have been recorded from
various Bi2Sr2CaCu2O8+δ samples and the compilation is discussed in more detail in [173].
The hatched area indicates the energy region where the superconducting and normal spectra
merge. The blue arrows indicate the characteristic energies 2Δ0 and ΔEvHS displayed as the
double-headed arrows in Fig. 6.16 (c). In the present case, the energy of the vHS measured
from the Fermi level almost coincides with the superconducting gap energy such that the
resulting peaks nearly merge completely, and the one corresponding to ΔEvHS is only visible
as a small shoulder in the simulated response.

The resulting Raman response in the superconducting state is displayed in Fig. 6.17 (red
solid lines) together with a compilation of experimental data recorded from Bi2212 samples
at various doping levels and corresponding weak coupling results (black dashed lines). When
focusing on the experimental data, it is evident that the Raman response shows distinctly
different variations for the two symmetries. The B2g response [Fig. 6.17(a)] is found to
be universal as it scales with the individual Tc and is satisfactorily described by the weak
coupling prediction. In contrast, the B1g spectra [Fig. 6.17(b)] clearly do not scale with Tc

but rather as (1−p) [23, 173, 176, 177]. It was concluded in [173] that the spectra reflect
sample specific behavior and that it is, therefore, hard to understand the B1g response in
terms of a pure pair-breaking effect.
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6 Phenomenology of the Raman response

This qualitative reasoning is fully confirmed by the strong-coupling simulations. While
the B2g spectrum fits the experiment equally well as the weak coupling result, there is
no agreement between the simulation and the B1g Raman response although the sample
Bi-UD92 is coming from the same source as the one used by Inosov et al. for the ARPES
experiments [170]. This provides further evidence that the B1g spectra do not directly
and exclusively reflect the maximal gap Δ0, but seem to be only activated by pairing
correlations. Further, it only allows the conclusion that at optimal doping (p = 0.16) also
the B1g pair breaking features observed by Raman scattering are inconsistent with the
single-particle results. In general, the B1g response appears to be a crucial test for the
relevant interactions in the cuprates.

6.5 Summary

In this chapter Raman and photoemission spectroscopy (ARPES) have been compared
quantitatively using a Kubo approach in lowest order. To this end, the Raman responses
for B1g and B2g symmetry are calculated in the normal and superconducting state from
simple analytic approximations of the single-particle spectral function A(k, ω) consistent
with experimental ARPES results.

In the normal state, the analytic approximation of A(k, ω) is based on realistic tight bind-
ing expressions for the electronic band structure ξk and two distinct, purely phenomeno-
logical self-energies inspired by Fermi liquid (FL) and marginal FL (mFL) behavior. The
self-energies are assumed to saturate according to the Joffe-Regel limit corresponding to a
mean free path of �≈a. In this framework different dependences of the calculated Raman
response have been addressed as, for example, band structure effects and variations of the
self-energy including k-independent versus k-dependent forms of both, the FL and mFL
self-energies. From the Raman point of view, the mFL approach generally provides better
agreement with the experiment than the FL approach.

At high doping levels, in particular above a critical doping of pc�0.21, an almost quan-
titative reproduction of the Raman response is obtained from the momentum independent
mFL type of self-energy. The different spectral shapes of the B1g and B2g responses can
be traced back to the band structure alone, more specifically, to the proximity of the van
Hove singularity at (π, 0) to the Fermi level. The agreement of single- and two-particle
properties at higher doping strongly suggests that the lowest order approximation given in
Eq. (6.1) is sufficient for the calculation of the response function and that the self-energy
alone captures the essential many-body physics.

Moving across pc towards lower doping levels leads to pronounced discrepancies between
simulation and experiment which are almost exclusively present in the B1g spectra reflect-
ing the dynamics of the anti-nodal quasiparticles. In contrast to the phenomenological
treatment of in-plane transport phenomena [151, 152, 178], a momentum dependent, static
relaxation term alone is found to be insufficient to explain the differences. Also simple band
structure effects can safely be excluded. Thus, no consistent picture of ARPES and Raman
spectroscopy at optimal doping could be achieved in the lowest order approach discussed
here. Remarkably, the B2g response seems to be completely unaffected by the interactions
causing the strong renormalization in B1g symmetry. Therefore, it is concluded that the
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Figure 6.18: Phase diagram of the hole doped cuprates as experienced by Raman
spectroscopy.

origin of the discrepancies is due to dynamic processes which cannot be described by the
single-particle self-energy alone.

In the superconducting state the comparison of ARPES and Raman spectroscopy is con-
ducted on the basis of a parametric model for A(k, ω) closely resembling experimental
ARPES data of optimally doped Bi2212 below Tc [169, 170]. Similar to the normal state,
the experimental B2g response can be reproduced from the strong coupling phenomenology.
This is, however, not the case in B1g symmetry and the superconductivity induced features
observed by Raman scattering are found to be inconsistent with the calculations based on
the single-particle results.

Fig. 6.18 summarizes the above conclusions in the phase diagram of the hole-doped
cuprates and, therewith, highlights the relation to experimental observation discussed in
chapter 5. The red and green arrows indicate the doping domain in which agreement be-
tween single- and two-particle properties could be achieved using the Kubo formalism in
lowest-order. The gray shaded area represents the approximate doping range close to pc

below which this agreement cannot be maintained in B1g symmetry due to the strong renor-
malizations observed for essentially all hole-doped compounds. QCP and the dashed line
at the border of the yellow shaded area illustrate the strong evidence for a charge ordering
quantum critical point at p = 0.19±0.01 and the associated crossover line, both derived
by the detailed analysis of the Aslamazov-Larkin peak’s doping dependence, respectively.
Finally, the diagonal blue lines below p = 0.05 highlight the general importance of charge
ordering phenomena for all hole-doped cuprates as they illustrate the doping region, where
Raman scattering provides evidence for diagonal charge order for both, LSCO and YBCO.

Motivated by the results presented here, Caprara et al. studied the effects of higher-order
terms on the Raman response [114]. The applied microscopic approach considers retarded
electronic interactions mediated by critical charge- and spin-fluctuations, and includes self-
energy as well as vertex correction terms. One important aspect for the present discussion
is the role of the latter, not included in the above phenomenology. In Ref. [114] it is argued
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6 Phenomenology of the Raman response

that vertex corrections lead to important symmetry dependent cancellation effects. Such
symmetry-selective effects, although being pivotal to reproduce the experimental observa-
tion, cannot be achieved using the self-energy corrections alone due to the finite overlap of
the Raman vertices (refer to section 6.3).

The authors show that taking into account self-energy and vertex corrections arising
from both, charge- and spin-fluctuations, allows to extend the realm of agreement to the
optimally doped regime as it yields a complete description of the doping and temperature
evolution of the normal state Raman response of LSCO presented in chapter 5. It is demon-
strated that corrections due to spin- and charge-fluctuations predominantly contribute to
B1g and B2g symmetry, respectively. Moreover, the relative importance of the two scatter-
ing mechanisms is found to switch from charge in the overdoped regime to spin at optimal
doping. Note that, although the critical fluctuations lead to interactions strongly peaked in
momentum space, the microscopic results are found to result in functional forms similar to
that predicted by the mFL phenomenology used above. Altogether, the study corroborates
the above conclusions.
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Inelastic light scattering is applied to systematically study the doping-, temperature- and
momentum-dependent electron dynamics of hole- and electron-doped cuprates. In the ex-
periments, exclusively the in-plane electron dynamics is investigated. With the incoming
and outgoing photon polarizations oriented perpendicularly with respect to each other, and
at 45◦ or 0◦ with respect to the Cu-O bonds, antinodal and nodal electrons can be projected
out in B1g and B2g symmetry, respectively. The study aims at a better understanding of
the normal state interaction processes in the cuprates. The focus is thereby placed on
the strongly overdoped regime, where conventional quasiparticle behavior seems to prevail,
down to optimal doping, where strong correlations leave traces in essentially all observables.

The experiments require the exact determination of the photon polarizations inside the
crystal. The preparation of the incoming photons’ polarization state was substantially
improved by adopting the Jones formalism to the experimental situation of the Raman
setup. It was shown experimentally that the deviations from the desired polarization of the
exciting photons inside the sample were smaller than 1 %. As a second experimental issue,
the interplay of doping and disorder was studied systematically. To this end, comparative
measurements of as-grown and O2 annealed samples, and for cleaved and polished surfaces,
have demonstrated that post-growth O2 annealing is essential for a high quality of the
La2-xSrxCuO4 (LSCO) and Nd2-xCexCuO4 (NCCO) crystals, while polished sample surfaces
do not strongly effect the experimental results.

On the hole-doped side, the systematic studies of LSCO have been completed by filling
in the gaps in the accessible doping range 0≤x≤0.30, where x corresponds to the number
of mobile holes p per CuO2 formula unit. The B2g response turns out to be essentially
doping independent in the range 0.05<p<0.30, while substantial losses of the low-energy
spectral weight are observed in the B1g response upon lowering p from the overdoped to the
optimally doped regime. Similar renormalization effects are known from Bi2Sr2CaCu2O8+δ

(Bi2212) and YBa2Cu3O6+δ (YBCO). In addition, first measurements on Tl2Ba2CuO6+δ

further substantiate this behavior to be generic. Below p=0.17, the B1g spectra of LSCO
start to show spectral shapes distinctly different from those in YBCO and Bi2212 as a peak
in the range below 200 cm−1 appears at low temperature. This additional response can be
traced back to Aslamazov-Larkin (AL) type of excitations corresponding to the exchange
of two charge-ordering fluctuations. The AL response shows directly that LSCO is much
closer to a charge-ordering instability than the compounds with high Tc. The analysis of
the AL peak in the underdoped regime in range 0.02 ≤ p ≤ 0.125 provides strong evidence
for a charge ordering quantum critical point at p=0.19±0.01.

To analyze the doping evolution of the Raman response on the hole-doped side more
quantitatively, a phenomenology based on a lowest order Kubo formalism was set up dur-
ing this work. Using analytic approximations of the single particle spectral function A(k, ω)
measured by angle-resolved photoemission spectroscopy (ARPES), the Raman response and
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other two-particle quantities could be derived. Above a doping level of p� 0.21, the phe-
nomenology yields nearly quantitative agreement for LSCO and Bi2212 suggesting that the
approach captures essential pieces of the physics in the overdoped regime. Around optimal
doping, however, the Raman response cannot be fully reproduced: While the B2g response
is still remarkably well obtained from the original scheme, the B1g response is found to be
inconsistent with the observations from ARPES. In particular, it was demonstrated that the
discrepancies can neither be traced back to band structure effects, nor be resolved by simple
modifications of the self-energy. Therefore, it is concluded that the B1g Raman response
around and below optimal doping cannot be explained solely on the basis of single-particle
quantities.

Motivated by these observations, recently higher-order terms contributing to the Ra-
man response were studied theoretically. In contrast to the phenomenology derived here,
the theoretical approach has a microscopic foundation and considers the effect of critical
charge- and spin-fluctuations on self-energy and vertex diagrams. While the fluctuations
lead to retarded electronic interactions strongly peaked in momentum space, the theory
essentially confirms the functional form of the phenomenological self-energy used above.
Furthermore, vertex corrections are identified to cause symmetry-dependent cancellation
effects in the Raman response, where spin- and charge-fluctuations are shown to contribute
predominantly in B1g and B2g symmetry, respectively. Therefore, the evolution of the Ra-
man response with doping could be derived separately in either symmetry. The analysis
shows that the influence of charge-fluctuations increases at the expense of spin-fluctuations
upon doping with a cross-over close to optimal doping where Tc is maximal.

On the electron-doped side, the Raman response of NCCO was studied in the range
0.12≤x≤0.18. Here, x is equivalent to n, the number of mobile electrons per CuO2. Due
to the excellent sample quality, as substantiated by the observation of quantum oscillations
in samples from the same source, the results can be considered similarly representative as
those on the hole-doped side. Here, two distinct differences to the hole-doped cuprates
were observed: (i) The doping dependence of the normal state Raman response of NCCO
is weak in the doping range in which superconductivity is observed. (ii) Particularly at
higher doping, the B2g response is much closer to what one expects for a Fermi liquid
manifesting itself in a low-energy peak and an gradual depletion of spectral weight in the
energy range between 100 and 600 cm−1. The depletion has to be distinguished from the
pseudogap on the hole-doped side since it goes along with increasing spectral weight in the
low-energy peak indicating long-lived quasiparticles. The physical origin of the electron-
hole asymmetry could originate from the different doping routes in that the extra electrons
reside on the copper, while the holes are created on the oxygen. In terms of the Hubbard
model, aspects of the asymmetry observed can indeed be derived in a qualitative fashion.
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Zusammenfassung

In vorliegender Arbeit wurde die Dotier-, Temperatur- und Impulsabhängigkeit der La-
dungsträgerdynamik in elektronen- und lochdotierten Kupferoxid-Supraleitern, der sog. Ku-
prate, mittels inelastischer Lichtstreuung untersucht. Hierbei wurde der Fokus ausschließlich
auf die Dynamik innerhalb der Kupferoxidebenen gelegt. Mit gekreuzten Polarisation von
einfallendem und gestreutem Licht, und einer Orientierung von 45◦ bzw. 0◦ bezüglich der
Cu-O Bindungen, können in B1g und B2g Symmetrie gezielt die Eigenschaften der antino-
dalen und nodalen Elektronenen heraus projiziert werden. Die Untersuchung zielt auf ein
besseres Verständnis der Wechselwirkungsmechanismen im Normalzustand. Das Hauptau-
genmerk galt hierbei Dotierungen beginnend im stark überdotierten Bereich, wo konven-
tionelles Quasiteilchen-Verhalten vorzuherrschen scheint, bis hin zu optimaler Dotierung,
wo starke elektronische Korrelationen Spuren in praktisch allen experimentellen Größen
hinterlassen.

Die Durchführung der Experimente erfordert eine präzise Bestimmung der Lichtpolari-
sationen im Kristall. Diesbezüglich wurde die kontrollierte Erzeugung des Polarisationszu-
standes der einfallenden Photonen beträchtlich verbessert, indem der Jones Formalismus
auf die Gegebenheiten des verwendeten Raman Versuchsaufbaus angewendet wurde. Es
konnte experimentell nachgewiesen werden, dass Abweichung von der gewünschten Polari-
sation der anregenden Photonen von kleiner als 1 % erreicht werden. Als zweiter experi-
menteller Aspekt wurde die Wechselwirkung von Dotierung und Fehlordnung systematisch
untersucht. Zu diesem Zweck wurden Vergleichsmessungen an as-grown und Sauerstoff ge-
temperten Proben, sowie an gespaltenen und polierten Kristallen durchgeführt. Es wurde
gezeigt, dass das Sauerstoff-Tempern eine notwendige Voraussetzung für eine hohe Kristall-
qualität der La2-xSrxCuO4 (LSCO) und Nd2-xCexCuO4 (NCCO) Proben darstellt, während
polierte Oberflächen die experimentellen Ergebnisse kaum beeinflussen.

Auf der lochdotierten Seite des Phasendiagramms wurden systematische Untersuchun-
gen an LSCO vervollständigt indem bestehende Lücken im zugänglichen Dotierungsbereich
0≤x≤0.30 geschlossen wurden. Hier deckt sich x mit der Anzahl der mobilen Löcher p pro
CuO2 Formeleinheit. Während sich der B2g Response im Bereich 0.05<p<0.30 als im We-
sentlichen dotierungsunabhängig erweist, verliert der B1g Response substanziell an spektra-
lem Gewicht niedriger Energie, wenn p vom überdotierten Bereich auf optimale Dotierung
erniedrigt wird. Ähnliche Renormalisierungseffekte sind von Bi2Sr2CaCu2O8+δ (Bi2212)
und YBa2Cu3O6+δ (YBCO) bekannt. Die Allgemeinheit dieser Beobachtung konnte durch
erste Messungen an Tl2Ba2CuO6+δ zusätzlich untermauert werden. Bei Dotierungen von
p ≤ 0.17 weisen die LSCO B1g Spektren unterhalb von 200 cm−1 für niedrige Temperaturen
einen zusätzlichen Peak auf, womit sich ihre spektrale Form deutlich von der für YBCO und
Bi2212 beobachteten unterscheidet. Der zusätzliche Response kann auf Aslamazov-Larkin
(AL) Anregungen zurückgeführt werden, die dem Austausch zweier Ladungsordnungsfluk-
tuationen entsprechen. Dies verdeutlicht, dass LSCO einer Ladungsordnungsinstabilität sehr
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viel näher ist als die Verbindungen mit höherem Tc. Darüber hinaus liefert eine Analyse der
Dotierungsabhängikeit des AL Peaks im unterdotierten Bereich (0.02 ≤ p ≤ 0.125) starke
Indizien für einen Ladungsordnungsquantenkritischen Punkt (QCP) bei p=0.19±0.01.

Um die Entwicklung des Raman Response mit der Dotierung quantitativ zu untersuchen,
wurde ein phenomenologisches Modell basierend auf dem Kubo Formalismus in niedrigster
Ordnung implementiert. Unter Verwendung von analytischen Näherungen der Einteilchen-
Spektralfunktion A(k, ω), die mittels winkelaufgelöster Photoemissionsspektroskopie (AR-
PES) zugänglich ist, konnte sowohl der Raman Response als auch andere Zweiteilchen-
Responsefunktionen abgeleitet werden. Für Dotierungen größer als p�0.21 liefert die Phe-
nomenologie eine nahezu quantitative Übereinstimmung mit den experimentellen Raman
Spektren für LSCO und Bi2212. Dies legt nahe, dass das Modell wesentliche Teile der Phy-
sik im überdotierten Regime erfasst. Für optimale Dotierung hingegen kann der Raman
Response nicht mehr reproduziert werden: Während der B2g Response vom ursprüngli-
chen Schema nach wie vor bemerkenswert gut wiedergegeben wird, kann der B1g Response
nicht mit den ARPES Beobachtungen in Einklang gebracht werden. Insbesondere wurde
gezeigt, dass sich die Widersprüche weder durch Bandstruktur-Effekte, noch durch einfache
Modifikationen der Selbstenergie auflösen lassen. Deshalb kann nur gefolgert werden, dass
der B1g Response um und unterhalb von optimaler Dotierung nicht allein auf Basis von
Einteilchen-Eigenschaften erklärbar ist.

Angeregt von den beschriebenen Ergebnissen, wurde kürzlich die Bedeutung von Ter-
men höherer Ordnung für den Raman Response theoretisch untersucht. Im Gegensatz zu
der hier beschriebenen phenomenologischen Herangehensweise hat der theoretische Ansatz
eine mikroskopische Basis und betrachtet die Auswirkungen von kritischen Ladungs- und
Spin-Fluktuationen auf Selbstenergie- und Vertex-Diagramme. Obwohl die Fluktuationen
zu retardierten Wechselwirkungen der Ladungsträger führen die stark auf bestimmte Punk-
te im Impulsraum konzentriert sind, bestätigt die Theorie dennoch die funktionale Form
der hier verwendeten phenomenologischen Selbstenergie. Darüber hinaus wurde gezeigt,
dass Vertex-Korrekturen zu wichtigen, symmetrie-abhängigen Aufhebungseffekten im Ra-
man Response führen. Dabei tragen Spin- und Ladungsfluktuationen vorwiegend in B1g

bzw. B2g Symmetrie bei. Deshalb konnte die Dotierungsentwicklung des Raman Responses
für beide Symmetrien separat angepasst werden. Die Analyse zeigt außerdem, dass mit stei-
gender Dotierung der Einfluss von Ladungs-Fluktuationen auf Kosten des Einflusses von
Spin-Fluktuationen zunimmt.

Auf der elektronen-dotierte Seite wurde der Raman Response von NCCO in einem Do-
tierungsbereich von 0.12 ≤ x ≤ 0.18 untersucht. Hier entspricht x der Anzahl von freien
Elektronen n pro CuO2 Formeleinheit. Durch die exzellente Qualität der untersuchten Pro-
ben, die durch die Beobachtung von Quantenoszillationen an Proben aus der gleichen Quel-
le bestätigt ist, können die Ergebnisse als gleichermaßen repräsentativ angesehen werden,
wie auf der lochdotierten Seite. Verglichen mit den lochdotierten Kupraten wurden zwei
deutliche Unterschiede beobachtet: (i) Die Dotierungsabhängigkeit des Raman Response
im Normalzustand von NCCO ist vergleichsweise schwach im gesamten Bereich in dem
Supraleitung beobachtet wird. (ii) Besonders bei hohen Dotierungen ist der B2g Respon-
se sehr viel näher an den Erwartungen für eine Fermi Flüssigkeit. Das manifestiert sich
in einem Peak niedriger Energie und einer graduellen Unterdrückung von spektralem Ge-
wicht zwischen 100 und 600 cm−1. Diese Unterdrückung muss vom Pseudogap-Phenomen
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auf der lochdotierten Seite unterschieden werden, da sie mit steigendem spektralen Ge-
wicht des niederenergetischen Peaks einher geht. Zusammengenommen konnte dies als Indiz
für Quasiteilchen mit langer Lebensdauer interpretiert werden. Der physikalische Ursprung
der Asymmetrie zwischen Elektronen- und Lochdototierung könnte auf die unterschiedli-
chen Dotiermechanismen zurück gehen, in denen zusätzliche Elektronen am Kupfer, Löcher
hingegen am Sauerstoff erzeugt werden. Betrachtungen im Rahmen des Hubbard Modells
konnten tatsächlich Aspekte der beobachteten Asymmetrie qualitativ reproduzieren.
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Appendix A

Further details of the Raman response
implementations

This Appendix summarizes details of the Raman response phenomenology. The structure
is as follows: First, aspects of the tight binding representation εk of the electronic band
structure are discussed including a brief survey of the Raman vertices derived using the
effective mass approximation. Second, details of the normal state model self-energies are
summarized before, finally, the parametric model of the superconducting Green’s function
proposed by Inosov et al. is introduced.

A.1 Tight binding band structure

The electronic band structure is part of the analytic approximations to electronic spectral
function A(k, ω) as it represents the dispersion of the unperturbed electronic system. For
the cuprates the tight binding representation, εk, of the 2 dimensional CuO2 plane can be
expanded as [39]

εk = − 2t(cos kxa + cos kya) + 4t′ cos kxa cos kyb − 2t′′(cos 2kxa + cos 2kya)
+ 4t3(cos kxa cos 2kya + cos 2kxa cos kya) + 4t4 cos 2kxa cos 2kya

− 2t5(cos 3kxa + cos 3kya) + . . . + ε0.

(A.1)

Here, ti representing the hopping integrals to the neighboring Cu sites. This convention is
adopted for the calculation of the Raman response. In the literature, expansions up to the
fifth order are used as e.g. in Ref. [40]. Therefore, in the Raman response phenomenology
expansion, terms up to the fifth order were explored, supplemented by the so called bilayer
splitting term ±t⊥(cos kx − cos ky)2/4.

Color maps of the five Brillouin zone harmonic (BZH) basis functions used in Eq. (A.1)
are displayed in Fig. A.1, together with the one representing the bilayer splitting term.
Each of the panels (a-f) corresponds to electronic hopping to one of its neighbor Cu sites
as illustrated in subfigure (h). Obviously some terms are similar as, for example, the
1st, 3rd and 6th order term which all describe hopping along the principle axes of the
CuO2 plane. This is reflected in the corresponding BZHs, where only the periodicity
changes. For this reason, the false color representations of the basis functions are grouped
in terms of equal symmetry: Panels (a), (b) and (c) represent hopping along the crystal
axes with the functional form [cos(n kxa)+cos(n kya)], panels (d) and (e) hopping along
the diagonals with [cos(n kxa)· cos(n kyb)], and panel (f) hopping at approximately 30◦ with
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2nd1st

3rd

4th

5th

6th

(h)

max0.min

(a)

(b)

(c)

(d)

(e)

(f ) (g)

Figure A.1: False color representation of the Brillouin zone harmonic (BZH) basis functions
of the CuO2 plane listed in Eq. (A.1) (a-f) and the bilayer splitting term (g). (h) displays
the CuO2 plane with the arrows indicating the hopping to the ith nearest Cu site. In the
expansion Eq. (A.1) the nearest neighbor hopping corresponds to the t- or t0-term which is
represented by BZH0 on panel (a), the second nearest neighbor hopping corresponds to the
t′- or t1-term (BZH1) and so on.

[cos(kxa cos(2kya) + cos(2kxa) cos(kya)]. For the bilayer splitting term, related to the hop-
ping perpendicular to the CuO2 plane [see panel (g)] the situation is different as it describes
the formation of the bonding and anti-bonding band in two adjacent CuO2 planes, as e.g. in
Bi2Sr2CaCu2O8+δ or YBa2Cu3O6+δ.

A.1.1 Effective mass vertices

As discussed in 3.3.4, the Raman vertices can be approximated by the curvature of the
conduction band εk in the so-called effective mass approximation. Restricting the consider-
ations to the two dimensions of the CuO2 plane, the Raman vertex is a 2×2-tensor

↔
γk which

can be expanded into the complete set of Pauli matrices as
↔
γk=

∑
i γiτi with each matrix

associated to a pure symmetry component μ ∈ {A1g, A2g, B1g, B2g}. The calculation of the
pure Raman vertex symmetry components γμ yields a combination of partial 2nd derivatives
explicitly given by 1

2{γxx+γyy}, 0, 1
2{γxx−γyy} and γxy = γyx, with γαβ = 1

�2
∂2εk

∂kα∂kβ
and for

A1g, A2g, B1g and B2g, respectively.

The Raman vertices of the BZH basis functions for B1g and B2g symmetry are displayed
in subfigure (A) and (B) of Fig. A.2, respectively, using the same order as in Fig. A.1.
The BZHs describing the hopping along the CuO chains [panels (a-c)] do not contribute
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max0.min

(a)

(b)

(c)

(d)

(e)

(f ) (g)

(a) B1g Raman vertices

max0.min

(a)

(b)

(c)

(d)

(e)

(f ) (g)

(b) B2g Raman vertices

Figure A.2: Effective mass approximation contributions of the single BZH basis functions
to the Raman vertex. The subfigures (A) and (B) display the B1g and B2g Raman vertex
contributions, respectively, where in each subfigure the ordering of panels (a-g) is equivalent
to Fig. A.1.

109



Appendix A Further details of the Raman response implementations

to B2g, while the ones for hopping along the CuO2 plane diagonals do not contribute to
B1g symmetry [panels (d,e)], respectively. The color scale for each panel has been adjusted
to the minimum and maximum values. Therefore, it is important to note that the curvature,
representing a second derivative, increases by a factor 4 from the first row to the second. The
vertices in B1g (B2g) symmetry vanish along the diagonals (principle axes) of the Brillouin
zone.

A.1.2 Band structure implementation, Boltzmann transport framework and
extension for n-type material

The electronic band structure Eq. (A.1) was implemented in python with some additional
functionality as, for example, determination of the Fermi vector kF on 1D cuts in the first
BZ using the Brent root finding algorithm, the calculation of the band filling according
to Eq. (6.8), and the determination of Fermi velocity vF, etc. These additional features
also paved the way for an additional application: Inspired by the Ong construction of the
Hall conductivity [181], which was successfully applied to the analysis of transport data of
overdoped LSCO (x=0.30) by Narduzzo et al. [182], the implementation of the electronic
bands was used to set up a Boltzmann transport framework during this work.

In Ref. [182], the Hall resistance RH(T ), the in-plane resistivity ρab(T ) and magneto-
resistance Δρab/ρab(T ) are consistently obtained from a single set of parameters using
an electronic band structure consistent with ARPES results and under the assumption
of k-dependent electronic scattering rates. The authors refer to this scenario as the “vi-
olation of the isotropic-� approximation”, with � being the electronic mean free path. In
particular, deviations from the simple Fermi liquid expectation, RH(T ) = 1/ne, could be
explained using a conventional Boltzmann approach.

In a first step, the calculations of Narduzzo et al. were reproduced. The main motivation
setting up the framework was, however, provided by the desire to investigate transport
data of NCCO more quantitatively (see Ref. [34] for the details). In collaboration with
M. Lambacher, who provided the analytic expressions for the transport quantities beyond
RH , the framework was extended to the case of NCCO for which the electronic band is
found to split into an upper and a lower sheet at least for dopings of p≤0.15 [52, 54] (see
also the discussion in section 5.2.2). To calculate transport quantities in this two-band
scenario, the splitting of the band was implemented according to [54]

ε±k =
1
2

[
εk + εk+q ±

√
(εk − εk+q)2 + 4Δ2

]
, (A.2)

including extensions for the determination of the band filling, the Fermi vector kF and the
Fermi velocity vF. In Eq. (A.2), εk is the original single band [see Eq. (A.1)], the +- and
−-sign apply in the upper and lower band case, respectively, and Δ is an adjustable Mott
gap parameter.

M. Lambacher used this approach in his PhD thesis and could explain the NCCO trans-
port data for x≥0.15 [34].
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A.2 Phenomenological normal state self-energies

Besides the unperturbed electronic band structure εk, electronic interactions are important.
In some cases, it is possible to capture the electronic correlations perturbatively by the
single particle self-energy Σ = Σ′+iΣ′′, where the imaginary part Σ′′ has the meaning of
a quasiparticle scattering rate, while the real part Σ′ describes the renormalization of the
quasiparticle energy with respect to εk.

A.2.1 Kramers-Kronig relations

Due to causality, Σ′ and Σ′′ are connected through Kramers-Kronig relations. Assuming
particle-hole symmetric scattering rates, formally expressed as Σ′′(−ω) = Σ′′(ω), they are
given by

Σ′(k, ω) =
2ω

π
P
∫ ∞

0
dξ

Σ′′(k, ω)
ξ2 − ω2

. (A.3)

and

Σ′′(k, ω) = − 2
π

P
∫ ∞

0
dξ

ξΣ′(k, ω)
ξ2 − ω2

, (A.4)

where P denotes the principle value of the integral. Eq. (A.3) is used to analytically derive
the real from the imaginary parts of the normal state model self-energies introduced in
section 6.1.2. The resulting expressions for the real parts are given in the subsequent
sections of this appendix.

Besides analytical integration, it is also possible to employ numerical Kramers-Kronig
transformation (KKT) methods. Here, two numerical approaches have been used for rapid
testing. The first one is a mere numerical integration which only requires to take care of the
integrals principle value and is straightforward in most cases. The second method is based
on the fast Fourier transformation (FFT) algorithm [183]. Note that the KKT of the model
self-energy in the superconducting state (see section A.3) is based on this latter approach.

A.2.2 Analytic KKT of the mFL self-energy

Analytic KKT of the phenomenological mFL type of self-energy is based on from the ex-
pression introduced in section 6.1.2 which is given by1

Σ′′
ideal(k, ω) = −

[√
(αω)2 + (βT )2 + c2

0 + C(k)
]
. (A.5)

Obviously, the model parameters α, β and c0 are relevant for the KKT as they directly
influence the ω-dependence of Σ′′. As ω-independent terms do not alter the result of the
KKT, it is less obvious that also the residual scattering term C(k) has to be considered.
However, due to the introduction of the high-energy cut-off discussed subsequently, C(k)
has indirect effects on Σ′.

1In the spirit of the high-energy scattering saturation proposal by N. Hussey et al., here the subscript “ideal”
is used in the sense of “without the additional high-energy saturation term”; it effectively represents the
low-energy behavior of the model self-energy.
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In the phenomenology, an upper cut-off for the scattering rate is introduced according
to the Mott-Ioffe-Regel limit for coherent transport. This is achieved using the parallel
resistor approach which was proposed by Hussey et al. for the cuprates and effectively
restricts −Σ′′<�ΓMIR. Mathematically, it is expressed as [151]

1
Γeff

=
1

Γideal

+
1

ΓMIR

(A.6)

with ΓMIR representing an additional model parameter. Furthermore, Γeff and Γideal are
identified with the negative imaginary parts of the self-energy, −Σ′′ and −Σ′′

ideal, respectively.
Analytic KKT finally yields the self-energy’s real part as

Σ′ = − 2
π

ω
γ2α

γ2 − δ2

[
γ√

γ2 − 1
ln
(
γ +

√
γ2 − 1

)
− δ√

δ2 − 1
ln
(
δ +

√
δ2 − 1

)]
(A.7)

using the following abbreviations:

Γ̃MIR = ΓMIR−C(k) (A.8)

γ =
Γ̃MIR√

(βT )2 + c2
0

(A.9)

ε =
αω√

(βT )2 + c2
0

(A.10)

δ =
√

1 + ε2 (A.11)

A.2.3 Analytic KKT of the FL self-energy by Hussey

The analytic Kramers-Kronig transformation of the normal state self-energy model intro-
duced by Hussey et al. (see [150] and section 6.1.2) is briefly summarized here. The ideal
scattering rate Γideal used in Ref. [150] is originally defined on the Fermi surface only and
is given by2

Γideal(Φ, ω, T ) = a [1 + c cos2(2Φ)] + b [1 + e cos2(2Φ)] [T 2 + (�ω/2πkB)2]. (A.12)

The Raman response phenomenology, however, requires expressions for the whole Brillouin
zone and, therefore, the momentum dependent term in [cos2(2Φ) in Eq. (A.12) ] is replaced
by

Φ(k) =
(

cos kx − cos ky

2

)2

(A.13)

2Note that α and β in the original expressions have been replaced by a and b to avoid confusion with the
mFL parameters.
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which provides an equivalent momentum dependence. To formulate the following expres-
sions more compactly, the following abbreviations are used:

Γ0(k) = a · (1 + c Φ(k)) (A.14)

Θ(k) = b · (1 + e Φ(k)) (A.15)

Λ(k) = ΓMIR + Γ0(k) + Θ(k) ·T 2 (A.16)

Consequently, the ideal scattering Γideal can be expressed as

Γideal(k, ω) = Γ0(k) + Θ(k) · (T 2 + ω2) (A.17)

where �/2πkB =1 has been set. As above, the full expression for Σ′′ is obtained introducing
the high energy cut-off through the parallel-resistor formula Eq. (A.6) and by identifying
the scattering rates with the negative imaginary parts of the self-energy. This yields the
imaginary part as

−Σ′′
Hussey(k, ω) = ΓMIR −

(
Γ2

MIR

Λ + Θ ω2

)
(A.18)

and, performing the analytic KKT, the real part as

Σ′
Hussey(k, ω) = ω Γ2

MIR

(
Θ
Λ

)1/2 (
1

Λ + Θ ω2

)
. (A.19)

Both phenomenological models, ΣmFL (A.2.2) and ΣFL (A.2.3), represent fully analytic
parametrizations of the single-particle self-energy. Together with the tight binding ex-
pressions for the electronic band structure introduced in A.1, they are used to compute the
Raman response of the normal state which is comprehensively discussed in chapter 6.
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A.3 Model Green’s function in the superconducting state

This section summarizes the parametric model of the Green’s function used to calculate the
Raman response in the superconducting state in section 6.4. It was originally introduced
by Inosov et al. to directly compute the itinerant component of dynamic spin susceptibility
from fits to experimental ARPES results [169, 170] and provides analytic expressions for
the normal and anomalous part of the Green’s function, G and F , respectively.

A.3.1 Normal and anomalous Green’s function

In the model, the normal (diagonal) and anomalous (off-diagonal) part of the Green’s func-
tion are derived in the spirit of a strong coupling approach [40, 175, 184]. The expressions
for G and F are given by

G(k, ω) =
ω − Σ(k, ω) + ξk

[ω − Σ(k, ω)]2 − Δ2
k

[
1 − Σ′(k,ω)

ω

]2 − ξ2
k

(A.20)

and

F (k, ω) =
Δk

[
1 − Σ′(k,ω)

ω

]
[ω − Σ(k, ω)]2 − Δ2

k

[
1 − Σ′(k,ω)

ω

]2 − ξ2
k

. (A.21)

Note that Σ has been replaced by Σ′ in [1−Σ′(k, ω)/ω] in order to maintain the analytically
correct form3–otherwise the spectral function A(k, ω)=−1/πG(k, ω) is not strictly positive
definite. Further, ξk=εk−μ represents the bare electronic band measured from the chemical
potential μ, and Σ(k, ω) a model single particle self-energy, both described in more detail
below. In the approximation, the superconducting gap Δk is assumed to be d-wave with
Δk = Δ0

2 (cos kx − cos ky).

A.3.2 Bare band structure

The tight binding band structure ξk, using up to third order neighbor hopping, is directly
extracted from experimental ARPES data using a self-consistent Kramers-Kronig proce-
dure [141, 185]. Here ξk is assumed to be of the form

ξ±k = μ − 2t(cos kx + cos ky) + 4t′ cos kx cos ky

− 2t′′(cos 2kx + cos 2ky) ± t⊥
(cos kx − cos ky)2

4
,

(A.22)

where the last term accounts for the bilayer splitting in Bi2212 with “+” and “−” corre-
sponding to bonding and antibonding band, respectively.

3The author would like to express his gratitude to I. Tüttő who derived the analytically correct expressions
for F and G
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A.3.3 Self-energy

The model assumes the self-energy to be fully k-dependent which is achieved by model-
ing the nodal and antinodal self-energies, Σ′′

n and Σ′′
a , independently. Subsequently, the

interpolation between the directions is performed as

Σ′′(k, ω) = Σ′′
n(k, ω) +

[
Σ′′

a (k, ω) − Σ′′
n(k, ω)

] · (cos kx − cos ky)2

4
, (A.23)

where both, Σ′′
a and Σ′′

n , are sums of electronic and bosonic contributions, Σ′′ = Σ′′
el+Σ′′

bos.
The convergence of the numerical Kramers-Kronig-Transformation is guaranteed by pulling
Σ′′ to zero for ω→∞ according to

Σ′′
a/n(ω) =

Σ′′
el + Σ′′

bos

1 + (|ω|/ω0)3
. (A.24)

The real parts Σ′
a/n are obtained by assuming particle-hole symmetric scattering, Σ′′(−ω)=

Σ′′(ω), and carrying out the Kramers-Kronig transformation numerically by employing the
FFT algorithm by Johnson [183].

In the following the specific forms of Σ′′
n and Σ′′

a are briefly summarized. In both cases the
electronic part Σ′′

el is assumed to be connected to the electronic density of states (DOS).

nodal self-energy Σn

In nodal direction the superconducting gap is zero and the nodal DOS at the Fermi level
is considered constant. Therefore, Σ′′

el arising from electron-electron interaction is assumed
to obey the typical quadratic Fermi liquid energy dependence

Σ′′
el(ω) = −αω2, (A.25)

while the interaction of the electrons with a single bosonic mode is taken into account by a
step-like function

Σ′′
bos(ω) = −βn

[
1 + exp

(−|ω| + Ωn

δωn

)]
(A.26)

with the empirical parameter δωn accounting for the finite broadening of the mode. For
δωn→0, the function corresponds to a step with amplitude βn at the bosonic energy Ωn.

antinodal self-energy Σa

In antinodal direction the structure of Σ is slightly more complicated. The authors again
start from the DOS which at the Fermi level is suppressed by the superconducting interac-
tion and exhibits a pile-up at ±Δ0, directly observable by scanning tunneling microscopy
(STM). In the approach the resulting partial density of states is, therefore, described by

P (ω, δ, Δ) =

∣∣∣∣∣Re

(
ω√

(ω − iδ)2 − Δ2

)∣∣∣∣∣ , (A.27)
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Figure A.3: Comparison of the modelled and real ARPES data recorded from an optimally
doped Bi2212 sample. The figure is reproduced from [170] and the description can be found
in the original caption displayed above.

a parametrization derived from STM measurements [186]. As before, the authors assume the
electronic contribution to the self-energy to be proportional to the square of the cumulated
number of states with energies lower than the electrons’ energy ω. It is given by

Σ′′
el = −α

[∫ ω

0
dωP (ω, δωa, Δ0),

]2

, (A.28)

while the bosonic contribution is approximated by

Σ′′
bos = −βaP (ω, δωa, Δ0 + Ωa) (A.29)

with Ωa the energy of the bosonic mode in antinodal direction and δωa the corresponding
broadening parameter.

A.3.4 Fitting procedure and model parameters

Due to the more complex form of G(k, ω) the extraction of the electronic self-energies from
Lorentzian fits to momentum distribution curves, as discussed in 6.1.1, is not possible in the
superconducting state. For this reason, model spectral function A(k, ω) and experimental
results recorded from an optimally doped Bi2212 sample have been directly compared in a
“fitting-by-eye”-procedure. To this end, the normal part of the Green’s function G(k, ω)
was calculated from the above expressions according to Eq. (A.20). As in the normal state,
the spectral function A(k, ω) is then given by −1/π G′′(k, ω). Inosov et al. adjusted all
free model parameters to achieve the best correspondence between simulation and experi-
ment [170].
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The results of this procedure are displayed in Fig. A.3, where panels (a), (b) and (c)
show direct comparisons between modelled and measured ARPES data. Panel (d) shows
the corresponding self-energies for nodal and antinodal directions. The resulting model
parameters, also used in the Raman calculations in section 6.4, are

t = 0.4 eV t′ = 0.084 eV t′′ = 0.042 eV t⊥ = 0.082 eV μ = 0.36 eV

for the underlying band structure, and

α = 3.0 eV−1 Δ0 = 35 meV ω0 = 0.33 eV
βn = 30 meV δωn = 10 meV Ωn = 60 meV
βa = 200 meV δωa = 0.08 Δ0 Ωa = 42 meV

for the model self-energies Σ′′
a and Σ′′

n .
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