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Chapter 1

Introduction

The reconstruction of 3D-objects is an important but challenging issue [1], and technologies that

solve this task are highly relevant for computer graphics [2], artificial intelligence [3] and virtual

reality [4], but also for quality tests in material science [5] and for forensics [6]. One of the most

famous applications is probably medical imaging [7], which gives access to 3D-images of the

interior of the body, and hence is a crucial tool, e.g. for cancer diagnosis and treatment [8]. In

modern applications, these images are obtained by computer aided tomography (CT scan) [9], a

procedure that enables us to reconstruct a 3D-object by performing projective measurements.

In quantum information processing (QIP), it is of utmost importance to be able to characterize

quantum systems [10], and we exploit the fact that the physics of a quantum two-level-system

(TLS) can be described and understood using an auxiliary 3D geometric picture [11]. The

quantum state of the system is then uniquely described by a 3D vector, and we obtain full

access to the quantum system if we are able to reconstruct this quantity [12]. Since this access is

realized, in analogy to the CT scan, by performing projective measurements, the correponding

procedure is called quantum state tomography (QST) [13]. In principle, this technique also

succeeds for higher dimensional quantum systems, despite we no longer have an intuitive ge-

ometric interpretation [12]. Furthermore, we can generalize this technique and use projective

measurements to completely characterize quantum processes on arbitrary quantum systems

[14]. This method of reconstructing quantum operations is called quantum process tomography

(QPT) [12].

The reconstruction of quantum states and processes has become especially important in recent

years, because QIP has gained significant public attention and offers a broad spectrum of

applications [15]. Quantum computing, which enables fast prime factorization [16] as well as

solving complex optimization problems [17], is just one of them. One reason for this high interest

is the fact that there has been significant progress in hardware architectures that allow for the

realization of the theoretical concepts of QIP, and which may finally enable us to build scalable

QIP devices [18]. One of the most promising platforms are superconducting quantum circuits

[19, 20] that are coupled to the electrical modes of a microwave resonator. Superconducting

circuits give the opportunity to build artificial atoms with engineered coupling strengths [21].
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Chapter 1 Introduction

They replace the natural atoms used in cavity quantum electrodynamics (QED) [22, 23]. In this

field, which is called circuit QED [24], a large variety of experiments has been performed with

coplanar 2D waveguide resonators, reaching from the detection of topological phase transitions

[25] to models for photosynthesis processes [26]. In addition, there are multiple approaches using

3D cavity resonators [27] with enhanced photon lifetimes up to 0.1 ms [28, 29]. The latter allow us

to build scalable architectures [30] and give access to various different physical phenomena [31–33].

One crucial step necessary for realizing QIP devices is an adequate coherence time of the

quantum system, i.e., we have to be able to store quantum states sufficiently long [34]. In our

experiment, we propose and build an architecture that can serve as a quantum memory [35].

Our setup consists of a superconducting qubit placed in a 3D cavity resonator, and we exploit

the enhanced coherence time of the cavity to store the qubit state as a Fock state in one of

its long-lived electrical modes. This concept has already been realized using shorter-lived 2D

resonators [36]. Within this thesis, we use QST and QPT to chracterize the system and the

quality of the complete memory process. Besides QPT, there are other well known procedures,

such as randomized benchmarking [37, 38].

The thesis is structured as follows. First of all, we introduce the concept of the transmon

qubit and discuss the physics of a driven two-level system (TLS) in Chapter 2. We develop

the theory for QST and QPT and describe how we can compare quantum states and quatum

processes, respectively. After that, we deal with the theoretical ideas behind our memory

experiment and understand the pulse protocol that is necessary for storage and retrieval of

a quantum state. Chapter 3 deals with the realization of the quantum memory experiment.

We explain the sample as well as the cryogenic setup. In addition, we discuss the microwave

electronics at room temperature and explain the qubit control in detail. We show the results

from qubit characterization measurements. Subsequently, we characterize the actual quantum

memory. In Chapter 4, we implement the pulse schemes necessary for QST and QPT and test

the resulting protocols by reconstructing known sin gle qubit states and processes. We then

use QST to reconstruct stored states after retrieval. We use QPT to characterize the quantum

memory process and investigate the decoherence processes induced by the memory protocol. We

perform time-resolved QPT and compare the outcome with a master equation simulation of the

memory process. A summary of the main results, as well as an outlook, is given in Chapter 5.
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Chapter 2

Theory

2.1 Superconducting qubits: the transmon qubit

A quantum bit (qubit) forms the elementary building block for most quantum computing

architectures [39] and can be regarded as the quantum mechanical generalization of the classical

bit [12]. It represents the basic logic module in digital electronics and for classical information

processing [40]. From a physical point of view, every TLS can act as a qubit, and the physics of

a general TLS is explained in detail within this section and in Sec. 2.4.

We find a large variety of physical realizations of a qubit, and many of them are directly

provided by nature: ions that can be trapped in optical lattices [41, 42], but also, spin 1/2

fermions [11] such as electrons, NV centers in diamond [43, 44] or the polarization of photons

[45].

Using artificial atoms as qubits has the big advantage that many of their properties, such

as the coupling strength or the energy splitting, are not fixed by nature. Instead, they can be

engineered in a desired manner. There is a large amount of artificial atom implementations, such

as quantum dots [46], and also superconducting circuits [24, 47, 48] . The crucial element of all

superconducting qubits is the Josephson junction, as depicted in Fig. 2.1. A Josephson junction

consists of two superconductors separated by a thin insulating barrier [49], which allows the

tunneling of Cooper pairs [50]. The physics of this element is governed by the two Josephson

equations [51], which inter alia imply that a Josephson junction can be regarded as a nonlinear

inductance LJ = Φ0/2πIc cosϕ [52] with the flux quantum Φ0 = h/2e ' 2.067 82 · 10−15 Wb,

the critical current Ic of the juction and the phase difference ϕ between the macroscopic wave

functions Ψ1 and Ψ2 describing the superconducting charge carriers in the respective super-

conducting electrodes. Additionally, a Josephson junction forms a capacitance CJ between the

electrodes according to classical electrodynamics.

For our quantum memory experiment, we use one of the most promising designs of a super-

conducting qubit: the transmission line shunted plasma oscillation (transmon) qubit [19, 53], It

is derived from the Cooper Pair Box (CPB) [54, 55] and is used for modern implementations of

quantum computing devices (currently up to 72 qubits [56]). In the following, we give a brief

explanation of the physics behind the transmon qubit. The nonlinear Josephson inductance

leads to a non-equidistant spacing of the energy levels of the quantized transmon circuit, in

3



Chapter 2 Theory

contrast to an ordinary quantized LC-circuit, which can be described as a harmonic quantum

oscillator [57]. If we have a sufficiently large detuning, the lowest two energy levels can serve as

a qubit.

Insulating 
Barrier

a) b)

Figure 2.1: Circuit diagram of a transmon qubit.

The JJ is marked as a blue cross and

forms an inductance LJ, a capacitance

CJ and has an energy EJ. CS is the

shunt capacitance, CG labels the cou-

pling capacitance. On the right, a JJ is

illustrated schematically.

The transmon circuit consists of a Josephson

junction shunted by a sufficiently large capac-

itance CS [53]. The system possesses an ad-

ditional coupling capacitance CG with respect

to the resonator. Figure 2.1 shows the cir-

cuit representation of the transmon. We de-

fine the Josephson energy EJ ≡ IcΦ0/2π and

the capacitive energy EC ≡ e2/2CΣ, where

CΣ = (CJCS+CGCJ+CGCS)/(CGCJ+CGCS) is

the total capacitance of the system. The Hamil-

tonian of the circuit reads

Ĥ = 4EG(n̂− ng)2 − EJ cos ϕ̂. (2.1)

where n̂ denotes the number operator for the

Cooper pairs on the superconducting island that

is formed by the JJ, CG and CS, ϕ̂ denotes the

phase operator for the Josephson junction and

ng represents the charge offset.

If we work in the phase basis with n̂ = −i ∂∂ϕ , the Schrödinger equation for the transmon

is equivalent to Mathieu’s differential equation [58]. The eigenenergies can be expressed in terms

of Mathieu’s characteristic values aν(ng)(−EJ/2EC) [59] and their shape strongly depends on

the ratio EJ/EC.

Figure 2.2: Energy dispersion of the transmon qubit for different ratios of EJ/EC, normalized to the asymptotic

qubit energy. For EJ/EC ' 1, the energy levels oscillate with “sweet spots” at ng = k + 1/2, k ∈ Z.
The oscillation amplitude decreases exponentially with EJ/EC, whereas the anharmonicity between

the approximately constant energy levels decreases polynomially.

In Fig. 2.2, we plot the lowest three energy levels as a function of ng. For EJ/EC � 1, the

4



2.1 Superconducting qubits: the transmon qubit

peak-to-peak value of the oscillation of the mth energy level can be approximated as [60]

Em(ng = 1/2)− Em(ng = 0) ' (−1)mEC
24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4
e−
√

8EJ/EC . (2.2)

As a result, the energy dispersion flattens exponentially with increasing EJ/EC. A large ratio

of EJ/EC can be realized by increasing the value of the shunt capacitance. For sufficiently

large EC, the spacing between the energy levels becomes independent of ng, which implies that

the system becomes insensitive to charge noise (fluctuations in ng), which yields a significant

improvement in quantum coherence (this term describes the lifetime of quantum superpositions

and is defined more rigorously later in this chapter). We write Eij ≡ Ej − Ei and expand

cosϕ = 1 − ϕ2/2! + ϕ4/4! + O(ϕ6), thus, Eq. (2.1) approximately describes an anharmonic

Duffing oscillator [61]. The asymptotic energy difference for the lowest levels can be quantized

as [53]

E10 '
√

8EJEC − EC E21 ' E10 − EC. (2.3)

We define the anharmonicity α ≡ −EC/h and the relative anharmonicity αr = αh/E10 '
−
√
EC/8EJ/h. As a result, with increasing EC, the anharmonicity only decreases with a power

law, which means there is a regime of EJ/EC in which we have a flat energy dispersion, but

keep a sufficiently large αr. This transmon regime is characterized by 20 . EJ/EC � 5 · 104,

and typical transmons are operated at EJ/EC ' 50.

However, due the comparatively small anharmonicity, higher energy levels can induce undesired

effects, such as state leakage, which may lead to certain limitations in the experiment.

In order to understand how the transmon qubit can be used for QIP, we discuss a general TLS

[11, 52]. Thus, we consider that our system consists of a ground state level |g〉 = (1,0)T and an

excited state level |e〉 = (0,1)T separated by an energy difference Eq = E10 = ~ωq. In contrast

to a classical bit, which can only take either state |g〉 or |e〉, a qubit can be in any superposition

of |g〉 and |e〉 (cf. Fig. 2.1)

|ψ〉 = a|g〉+ b|e〉 (2.4)

with complex numbers a and b that satisfy the normalization condition |a|2 + |b|2 = 1.

If we measure the qubit state, |a|2 (|b|2) is

the probability to obtain the outcome |g〉
(|e〉). The normalization condition allows us

to project the qubit state onto the surface

of a unit sphere

|ψ〉 = cos
(
θ

2

)
|g〉+ sin

(
θ

2

)
eiϕ|e〉 (2.5)

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

Figure 2.3: A classical bit, can take the discrete

states |g〉 or |e〉, whereas a qubit can

take a continuum of states between |g〉
and |e〉

The qubit state is described by the Bloch vector a = (ax, ay, az)T ≡ (sin θ cosϕ, sin θ cosϕ, cos θ)T .

This intuitive description is called the Bloch sphere representation and it is schematically depicted

in Fig. 2.4 [62]. The entire physics of an ideal qubit can be understood in the Bloch sphere

picture, and it has been studied in detail especially within spin 1/2 nuclear magnetic resonance

5



Chapter 2 Theory

(NMR) [63, 64].

Consequently, we use this picture through-

out this work in order to interpret exper-

imental results. Due to interaction of the

qubit with the environment, the excited

state |e〉 decays exponentially on a timescale

T1 (energy relaxation). Furthermore, the

phase information in the xy−plane of the

Bloch sphere is lost on a timescale Tϕ (pure

dephasing) [12]. The loss of information

due to energy relaxation and dephasing is

then usually characterized by the qubit T1
time and the decoherence time T2, where

1
T2

= 1
2T1

+ 1
Tϕ
. (2.6) Figure 2.4: Bloch sphere representation of a pure

qubit state characterized by its Bloch

vector a(θ,ϕ)

Density matrix formalism The Hilbert-vector representation in Eq. (2.4) is only possible if

the quantum system is in a pure state [12, 65]. Coupling of the qubit to the environment yields

a loss of the statistical information of the qubit state, which means that we can no longer find a

commuting and complete set of observables for the quantum system [66]. For this reason, we

make use of the density operator formalism, which allows us to describe arbitrary qubit states by

the density matrix ρ. For a physical system, ρ is normalized (Trρ = 1) and positive- semidefinite

(〈ψ|ρ|ψ〉 ≥ 0). If ρ describes a pure state, we have Trρ2 = 1. For mixed states, iwe always find

Trρ2 < 1 [12]. For a qubit, ρ is given by

ρ = 1
2

(
1 + az ax − iay
ax + iay 1− az

)
. (2.7)

This notation enables us to calculate the Bloch vector as a = (2ρ11 − 1, (ρ12 + ρ21)/2,−i(ρ21 −
ρ12)/2)T . Every operator for single qubit operations can be written as a Hermitian (2 × 2)
matrix. It is common to use the (2× 2) identity matrix I together with the Pauli matrices {σ̂i}
as an operator basis [66]. The Pauli matrices are defined as [67]

σ̂1 = σ̂x =
(

0 1
1 0

)
σ̂2 = σ̂y =

(
0 −i
i 0

)
σ̂3 = σ̂z

(
1 0
0 −1

)
. (2.8)

σ̂x, σ̂y and σ̂z correspond to the measurement operators of the qubit state with respect to the

x−, y− or z− axis of the Bloch sphere. The single qubit Hamiltonian can be expressed in the

Pauli basis as [52]

Ĥq = ~ωq
2 σ̂z. (2.9)
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2.1 Superconducting qubits: the transmon qubit

We define the vector of the Pauli matrices as σ ≡ (σ̂x, σ̂y, σ̂z)T . The Pauli matrices obey the

relations [12]

ρ = 1
2(I + a · σ) = 1

2(I + Tr(ρσ̂x)σ̂x + Tr(ρσ̂y)σ̂y + Tr(ρσ̂z)σ̂z) (2.10)

and

σ̂j σ̂k = δjkI + i
3∑
l=1

εjklσ̂l. (2.11)

with the Kronecker delta δjk and the Levi-Civita symbol εjkl. An important quantum state is

the completely mixed state (CMS) and denoted with ρ∗. In the single qubit case, this state

corresponds to the center of the Bloch sphere [52], ρ∗ = I/2. For a quantum system of dimension

d, we obtain ρ∗ = I/d [68].

7



Chapter 2 Theory

2.2 Reconstruction of a quantum state

In Sec. 2.1, we state that we can describe the physics of a qubit entirely by considering its

density operator ρ, however, we may ask how we can get experimental access to the qubit state

and how we can manipulate our system. These questions will be our guidelines throughout

this section, and we will see that we can solve this problem by coupling our transmon qubit to

electrical field modes [69]. First of all, we discuss how this setup can be used to measure the

qubit state with respect to the quantization axis (z-axis) in Sec. 2.2.1. After that, we point

out how the same setup can be used for qubit control by applying pulsed microwave radiation.

Finally, we explain how to perfom QST, which enables us to reconstruct the total density matrix

of the qubit.

2.2.1 Coupling of qubit and cavity

Within this section, we show how a detuned resonator can serve for readout (RO) purposes

[24, 52]. The schematic setup is depicted in Fig. 2.5. The qubit is coupled to the cavity in such

𝛫int

𝛫ext

g
γ 𝛫ext

Figure 2.5: Circuit QED setup: the qubit (green) is placed inside a 3D cavity resonator (gray). The coupling

to the electrical field (orange) is characterized by g. The quantity κ = κint + κext characterizes the

resonator decay by internal and external channels, such as the antennas (black). γ denotes the qubit

decay rate.

a way that it interacts with the transversal standing wave pattern of the electrical field. For a

rectangular cavity with length L, width W and height H, we obtain the frequency of the mnlth

transversal electric mode (TEmnl) as [70]

ωmnl = πc
√
εrµr

√(
m

L

)2
+
(
n

W

)2
+
(
l

H

)2
(2.12)

with the electric (magnetic) permittivity εr (µr) and the speed of light c = 2.997 92 · 108 m s−1.
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2.2 Reconstruction of a quantum state

lq
w

q

lc

gq

Figure 2.6: Conceptual design of our transmon

qubit. The shunt capacitance is formed

by two paddles with a length lC and

a width wc. The total length lq deter-

mines the dipolar coupling strength.

Our transmon design shown in Fig. 2.6

has the advantage that the shunt capac-

itor CS can be simultaneously used as a

dipolar antenna. Hence the coupling con-

stant g depends on the dipole moment

and reads g = −lqe
√

2ωr/ε0~V , where

e = 1.602 · 10−19 C labels the elementary

charge and ε0 = 8.854 · 10−12 A s V−1 m−1.

We recognize that g can be varied by engi-

neering the transmon length lq or the res-

onator volume V . The cavity is physically

described as a harmonic quantum oscillator

with a multimode stucture.

Driving the system with a classical microwave signal induces a coherent state |α〉, which is a

superposition of the eigenstates of the photon number operator â†â (Fock states) that obeys

a Poissonian distribution [71]. â† and â denote the photon creation and annihilation operator,

respectively.

We operate the system in the strong coupling regime, which means that the coupling strength g

for qubit-resonator coupling satisfies g � γ, κ, where γ and κ denote the decay rates for the

qubit and the resonator respectively [24]. κ is directly related to the loaded Q−factor QL of

the resonator via κ = 2πωr/QL = 2π∆ω, with the resonance frequency ωr and the linewidth

∆ω of the Lorentzian resonator peak [72]. Furthermore, we let g � ωq, ωr, which implies that

the interaction strength is weak in comparison to the eigenenergies of the system. The physics

of the total system consisting of cavity and qubit is then described by the Jaynes-Cummings

Hamiltonian [24, 73]

ĤJC = ~ωr

(
â†â+ 1

2

)
+ ~ωq

2 σ̂z + ~g(âσ̂+ + â†σ̂−) (2.13)

where σ̂+ and σ̂− label the creation and annihilation operator for qubit excitations, respectively.

In the special case of dispersive circuit QED, the detuning of resonator and qubit is much larger

than the coupling strength |∆| ≡ |ωq −ωr| � g. Hence, the direct energy exchange is prohibited.

By applying the canonical transformation Û = exp(g/∆(âσ̂+ − â†σ̂−)) [24, 52] to ĤJC and

expanding up to second order in g, considering terms up to g2/∆, we obtain the dispersive

Hamiltonian

Ĥdisp = ÛĤJCÛ
† = ~

(
ωr + g2

∆ σ̂z︸  ︷︷  ︸
AC Stark

shift

)
â†â+ ~2

(
ωq + g2

∆︸︷︷︸
Lamb
shift

)
σ̂z +O

(
g2

∆2

)
. (2.14)

We define the dispersive shift as χ = g2/∆ [47] and we observe that the qubit modifies the

resonance frequency. Moreover, we observe that the resonator frequency shifts monotonically

from ωr +χ to ωr−χ with the qubit population in |e〉, which means that we can use the resonator

transmission as a direct measure for the qubit state. The AC Stark effect [64] implies that every

9



Chapter 2 Theory

photon in the cavity causes an additional frequency shift of χ. However, we must state that

Eq. (2.14) and the resulting dispersive shift is just an approximation. The energy ladder for the

dispersive system is shown in Fig 2.7. For a transmon qubit, the low anharmonicity can yield

a population of higher levels, which causes additional shifts χij = gij/(ωij − ωr) [19, 53]. Let

|f〉 denote the third energy level of the transmon (cf. Fig. 2.2). The |g〉 ↔ |f〉 transition can

cause an effect because ωgf/2 is close to ωq and the transition can be induced as a second order

process. We denote the resulting effective shift for the transmon qubit with χ′ = χge − χef/2.

Furthermore, we neglect higher order effects, such as the Kerr shift [74, 75], that scales with

the square of the photon number (â†â†ââ) and which is characterized by its coupling constant

K. Moreover, coupling to additional cavity modes is neglected in Eq. (2.14), which would yield

additional shifts.

2.2.2 Qubit control

In order to investigate the qubit dynamics induced by a coherent microwave drive, we write

down the driven qubit Hamiltonian in the lab-frame [52],

Ĥd = ~ωq

2 σ̂z + ~Ωd cos(ωdt+ ϕd)σ̂x, (2.15)

with the drive amplitude Ωd, the drive frequency ωd and the phase ϕd. From an intuitive point

of view, we expect periodic population exchange, because the drive couples |g〉 and |e〉 via the

off-diagonal elements of Ĥd. Similar to Larmor precession of a magnetic moment [76], the Bloch

vector precesses about the z-axis with ωd. We get rid of these dynamics by transforming to a

BSB

RSB

Figure 2.7: Energy levels resulting from the Jaynes-Cummings model. The left (right) ladder depicts the energy

levels for Fock states in the cavity if the qubit is in state |g〉 (|e〉). The energy spacing o the cavity

modes depends on the qubit state and differs by a term χ. The AC Stark effect yields a shift of χ in

ωq for each photon in the cavity. The nonlinear Kerr shift is neglected, which means that the cavity is

treated as a harmonic quantum oscillator

10



2.2 Reconstruction of a quantum state

0 1 2 3 4 5

0

0.5

1

0 1 2 3 4 5

0

0.5

1

=0
 = 3 d

 (MHz)

Figure 2.8: a) Qubit Rabi oscillations for Ωd/2π = 7 MHz. b) Slices for a detuning of δ = 0 and δ =
√

3Ωd. With

increasing detuning, the amplitude decreases whereas the Rabi frequency increases hyperbolically. c)

Geometric picture for detuned Rabi oscillations. With increasing δ, the rotation plane gets tilted away

from the z-axis. We depict the case β = −30◦, corresponding to δ = Ωd/
√

3. d) Rabi oscillations,

including depolarization with a decay time T1 = 2µs. For t� T1, the steady state is the CMS

coordinate system that rotates with the drive frequency via ψ = Uψ′ with U = ei
ωdt

2 σ̂z [52]. The

Hamiltonian in the rotating frame after applying the rotating wave approximation (RWA) then

reads

Ĥ ′d = U †ĤU − i~U †∂U
∂t

= ~δ2 σ̂z + ~ΩR
2 (cosϕdσ̂x + sinϕdσ̂y) (2.16)

with δ ≡ ωq − ωd the Rabi frequency [77] ΩR =
√

Ω2
d + δ2. Equation (2.16) implies that the

qubit population is modulated between |g〉 and |e〉 with frequency ΩR. The amplitude of this

modulation depends on the detuning δ. We usually drive the system with δ = 0, which means

that the Rabi frequency is equal to the drive amplitude. Theory plots for these Rabi oscillations

are depicted in Fig 2.8 a) and Fig 2.8 b). A Rabi oscillation can be interpreted as a rotation

movement of the Bloch vector about an axis that is defined by the phase ϕd of the microwave

drive [11]. The rotation plane is tilted by an angle β with sin β = δ/ΩR [cf. Fig. 2.8 c)]. We

rotate about the y-axis for ϕd = 0 and about the x-axis for ϕd = π/2. For experimental purposes,

we define the θ-time tθ for a rotation by an angle θ at resonance and we find tθ = θ/ΩR. We

11



Chapter 2 Theory

define a θ-pulse as a microwave pulse with duration tθ. Important types of pulses for QIP

protocols are the π-pulse [64], which swaps the |g〉 and |e〉 population, i.e., we reach the first

maximum of the Rabi oscillation, and the π/2-pulse [64], that creates superposition states in

the xy-plane from |g〉 or |e〉.

Sideband transitions In Fig. 2.7, we see that it is possible to obtain transitions between the

left and the right energy ladder, called sideband transitions [47, 78]. For our memory protocol,

we need the blue sideband (BSB) transition |g0〉 ↔ |e1〉, which is induced by a simultaneous

excitation of the qubit and the resonator. Conservation of parity requires a two photon (second

order) process in order to drive the BSB. The interaction Hamiltonian for the BSB then reads

[78]

ĤBSB = ~g3Ω2
d

(ωm − ωb/2)2(ωq − ωb/2)2 (â†σ̂+ + âσ̂−) = A(â†σ̂+ + âσ̂−) (2.17)

with the mode frequency ωm and the BSB frequency ωb = ωm + ωq +
∑
i χ
′
i, where we have to

correct the sum frequency of resonator and qubit with dispersive shifts χ′i of the respective cavity

modes, which also depend on photon population n. We label the prefactor of the Hamiltonian

that depends on the coupling strength g and the respective frequencies as A. We observe that

Eq. (2.17) couples only states |n,g〉 and |n+ 1,e〉, hence the system decouples to doublets similar

to the Jaynes-Cummings model [52, 79]

ĤBSB,n

(
|n,g〉
|n+ 1,e〉

)
=
(

0 A
√
n+ 1

A
√
n+ 1 0

)
·
(
|n,g〉
|n+ 1,e〉

)
. (2.18)

2.2.3 Quantum state tomography

A measurement projects the state onto the quantization axis, which implies that all information

about the ϕ-angle of the Bloch vector is lost. In order to reconstruct the Bloch vector a, we

need to prepare the state two more times 1 and detect its projections onto the x- and y-axis

respectively [80], which can be realized by rotating the x- and y-components with π/2-pulses.

This technique is called quantum state tomography (QST) [12, 81]. For the single qubit case,

we aim for finding the evolution coefficients in Eq. (2.10). We reconstruct the density matrix

ρ by using a quantity µ that can be obtained by measuring the qubit state with respect to

the z-axis. µ should uniquely identify the probabilities for the qubit to be in the |g〉 or in

the |e〉 state. This means that the system is in |e〉 if we measure µe and in state |g〉 for µg.

The probability pe(µ) for finding the system in |e〉 should be a monotonic function of µ with

min(µg, µe) ≤ µ ≤ max(µg, µe) and pe(µe) = 1 and pe(µg) = 0, which allows us to uniquely

identify the projection of the qubit state onto the quantization axis. QST is then performed as

follows:

1. Measure the projection of the qubit state onto the z-axis in order to obtain µz
2. Measure the projection of the qubit state onto the x-axis. To do that, we apply a π

2 -pulse

with 0◦ phase and obtain µx

1Despite the loss of geometrical intuition, this procedure can be generalized for arbitrarily large systems of
dimension d, requiring O(d2) projections [12], which results from the fact that any d-dimensional density
matrix can be written as a linear combination of d2 basis matrices.

12



2.2 Reconstruction of a quantum state

Figure 2.9: Schematic illustration of the effect of the MLE. The red dots denote several measurement outcomes of

the same state affected by noise in the experiment. The Bloch vector (blue) is calculated from the

raw data. Unphysical states correspond to |a| > 1 and are reprojected onto the surface of the Bloch

sphere (green)

3. Measure the projection of the qubit state onto the y-axis, which means we apply a π
2 pulse

with 90◦. This yields µy
This information, together with the known functional behavior pe(µ), is sufficient to reconstruct

the density matrix using Eq. (2.7).

Maximum-likelihood-estimation for QST Although it is apparent that ρ is already normed

and Hermitian, in experiment, there can be unphysical reconstructed states which show Trρ2 > 1,

caused e.g. by noise. We enforce physicality by using a maximum-likelihood-estimation (MLE)

[82]. Intuitively, unphysical reconstructed states correspond to Bloch vectors a with |a| > 1, and

the MLE can be regarded as a reprojection of these states onto the Bloch sphere, as illustrated

in Fig. 2.9. A detailed discussion can be found in Sec. A.2 in the appendix. We parametrize an

arbitrary physically valid state ρ̃({µ̃i}) with ρ̃ = T †T/Tr(T †T ) with

T =
(

t1 0
t3 + it4 t2

)
(2.19)

where t1, t2, t3, t4 ∈ R [81]. We repeat the experiment for N times, which enables us to calculate

the standard deviations σx,y,z of the outcomes, assuming a normal distribution. The probability

that t1, t2, t3 and t4 describe the state of the physical system is then given by

P (t1, t2, t3, t4) = N
∏

i=x,y,z

N∏
j=1

e
−

(µ(j)
i
−µ̃i)

2

2σ2
i (2.20)
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Prepare

Prepare

Prepare

MLE

Valid state

Figure 2.10: Schematic illustration of single qubit QST. The state is prepared for 3 times and projected onto the

z-, x- and y-axis. After that, the MLE is applied in order to obtain the density matrix, which is

plotted as a 3D bar graph. This example depicts the ground state reconstruction.

where N is a normalization constant. From Eq. (2.20), it can be directly derived that we

maximize the probability that ρ̃ is the physical state of the qubit by considering the minimum

of the likelihood-functional

L(t1, t2, t3, t4) =
∑

i=x,y,z

1
2σ2

i

(µ̃i − µi)2 (2.21)

where µi is the average of the N values µ
(j)
i . Our QST routine including MLE is summarized in

Fig. 2.10
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2.3 Reconstruction of quantum processes

2.3 Reconstruction of quantum processes

Within this section, we introduce the concept of a quantum process (QP), which can be regarded

as a transition from a quantum state ρ to another quantum state ρ′ [12]. This allows us to

investigate the effect of controlled manipulations of our system, but also effects induced by energy

relaxation, dephasing or general noise. In order to reconstruct quantum processes experimentally,

we introduce quantum process tomography (QPT) in Sec. 2.3.2. We make use of the standard

QPT approach, a procedure that uses a set of prepared input states in order to get full access to

the QP [14]. We discuss this technique for an arbitrary quantum system of dimension d, after

that, we focus on the single qubit system with d = 2.

2.3.1 Quantum processes

If we consider a quantum system on a d-dimensional Hilbert space H, a quantum process E is a

linear map E : H → H′ and ρ′ = E(ρ). E is often referred to as a “superoperator” since it takes a

density operator as input argument and maps it onto another density operator. Throughout

this thesis, we deal with Markovian quantum processes (QP’s) [83], which implies that E is

completely positive (CP)

[12]. For a physically valid QP, we can find a Kraus representation [84], which means there

are operators {Ei} such that

E(ρ) =
d2∑
i=1

EiρE
†
i . (2.22)

The Kraus operators satisfy the trace-preserving (TP) condition

d2∑
i=1

EiE
†
i = I. (2.23)

This means that the identity I is a fixed point of E . An important result for QP’s on a d-

dimensional system is the Choi-Jamiolkowski isomorphism [85] that maps the space L(Hd) of

linear operators on the Hilbert space Hd onto the Hilbert space Hd ⊗Hd [86]. This means that

there exists a bijection between the quantum process E in L(Hd) and the quantum states ρE in

Hd2

ρE = 1
d

d∑
i,j=1

(Id ⊗ E)|ii〉〈jj| (2.24)

with an orthonormal qubit basis |j〉 and the d-dimensional identity matrix Id. ρE can be regarded

as an auxiliary d2 dimensional density matrix. Thus, all concepts introduced for quantum state

can be used for quantum processes [87]. This is especially important for the distance measures

that are discussed in Sec. 2.4 For the single qubit case (d = 2), a quantum process can be

regarded as an affine map for the Bloch vector, which means that E maps a onto a′ via [88]

a′ = M · a + c (2.25)
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Figure 2.11: Rotation about the y-axis. This operation is induced by applying a π/2-pulse with a phase of 0◦ to

the |g〉 state. The quantization axis ẑ is rotated onto the x-axis.

with a 3× 3 matrix M which, in an intuitive picture, causes deformations and rotations of the

Bloch sphere and a translation c [12]. We expand the Kraus operators in the Pauli basis

Ei = αiI +
3∑

k=1
aikσ̂k. (2.26)

The coefficients αi and aik can be obtained by multiplying Eq. (2.26) with I and with each

Pauli matrix σ̂m, respectively, using Eq. (2.11) and taking the trace. It can then be derived

that we can calculate the mapping matrix M and the translation c as [12]

Mjk =
4∑
l=1

alja∗lk + a∗ljalk +

|αl|2 − 3∑
p=1

alpa
∗
lp

 δkj + i
3∑
p=1

εjkp(αla∗lp − α∗l alp)

 (2.27)

ck = 2i
4∑
l=1

3∑
j,p=1

εjpkalja
∗
lp. (2.28)

In order to get an intuition, we want to discuss some categories of quantum processes that are

relevant for our experiments and their effect on the Bloch sphere, namely rotations, energy

relaxation, dephasing and the depolarizing process. We observe that the simplest process is

given by E(ρ) = ρ, with the identity as the only Kraus operator. This process also describes an

ideal quantum memory, as it is desired that the regained state is preserved during the memory

storage time.

Rotations A rotation about an axis n by an angle α is described by the operator [12]

R̂n(α) ≡ e−i
α
2 n·σ = cos α2 I − i sin α2 n · σ. (2.29)
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2.3 Reconstruction of quantum processes

Figure 2.12: Effect of energy relaxation. The Bloch sphere shrinks towards the north pole, which represents the

ground state. For t→∞, the Bloch sphere contracts to a single point. The |e〉-state decays with

e−t/T1

We especially obtain for rotations about the x-, y- and z-axis [89]

R̂x(α) =
(

cos α2 −i sin α
2

−i sin α
2 cos α2

)
R̂y(α) =

(
cos α2 − sin α

2
sin α

2 cos α2

)
R̂z(α) =

(
e−i

α
2 0

0 ei
α
2

)
. (2.30)

As ρ′ = R̂n(α)ρR̂n(α)†, R̂n(α) is the only Kraus operator. Figure 2.11 shows the transformation

of the Bloch sphere Eq. (2.25) for a π/2 rotation about the y-axis.

Energy relaxation Intuitively, energy relaxation maps every quantum state to |g〉 for t� T1,

which means the Bloch sphere shrinks to a single point located at its north pole. This process

possesses two Kraus operators [12]

E0 =
(

1 0
0
√

1− γ

)
E1 =

(
0 √

γ

0 0

)
(2.31)

and is depicted in Fig. 2.12 for t = T1.

Dephasing Dephasing can be modelled by considering “random-walk” rotations about the

z-axis. If we consider a phase flip with probability p, we obtain two Kraus operators E0 = √pI
and E1 =

√
1− pσ̂z [12]. If we apply this process multiple times assuming Markovian behavior,

we project the Bloch sphere to the z-axis. We illustrate the process in Fig. 2.13 for p = 0.75

Depolarizing process The depolarizing process is characterized by a loss of statistical infor-

mation about the system. This will always be the case during the time we drive our system.

We model the process again with a Markov assumption and state that we loose all statistical
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information (that means, we end up in ρ∗), with probability p. That means, we have [12]

E(ρ) = pρ∗ + (1− p)ρ. (2.32)

The Kraus operators for the system are then given by E0 =
√

1− 3p/4I, E1 = √
pσ̂x/2,

E2 = √
pσ̂y/2 and E3 = √

pσ̂z/2. We depict the process in Fig. 2.14 for p = 0.5. The

asymptotic behavior for long times is modelled by p = 1. We label this process the “completely

depolarizing process” (CDP) and denote it E∗ with

E∗(ρ) = 1
4(ρ+

3∑
i=1

σ̂iρσ̂i). (2.33)

Figure 2.13: Bloch sphere representation of the pure dephasing process. The loss of phase coherence in the

xy-plane leads to a shrinkage of the Bloch sphere towards the quantization axis. For t → ∞, the

Bloch sphere contracts completely to the quantization axis.

Figure 2.14: Effect of the depolarizing channel. Depolarization leads to a mixing of the qubit state. The Bloch

sphere contracts symmetrically and continuously towards the CMS ρ∗
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2.3.2 Quantum process tomography

In this section, we show how we can obtain the Kraus representation experimentally by using

QPT. Since this technique works for quantum systems with arbitrary dimension d, we initially

discuss QPT for this general case and after that, we deal with single qubit QPT. The first idea

is to choose d2 fixed operators {Bm} which form an operator basis, in which we evolve E [90]

E(ρ) =
∑
m,n

BmρB
†
nχmn (2.34)

with the positive and Hermitian quantum process matrix χ of dimension (d2×d2), which encodes

all information of the superoperator E [12]. This means that our goal of reconstructing the QP

is achieved if an expression for the χ-matrix in terms of experimentally available data can be

found. To do so, we need to apply the process under investigation to d2 independent quantum

states ρi of the system [14]. The ρi then form a basis for the space of the complex Hermitian

(d× d) matrices. We apply E to the input states and reconstruct the outcome ρi with QST. We

decompose the result in the ρi-basis

E(ρi) =
∑
j

λijρj . (2.35)

Furthermore, we use the ρi-basis to write

BmρiB
†
n =

∑
j

βmnji ρj . (2.36)

If χ is reshaped into a column vector χ and the d2 coefficients λij are reordered in a column

vector λ, the βmnji can be interpreted as the entries of a matrix β with βji,mn = βmnji and the

problem can be rewritten as

λ = β · χ. (2.37)

This means that χ can be obtained by multiplying λ with the (pseudo-)inverse of β and reshaping

χ [12]. After that, χ can be diagonalized χ = UDU † with D = diag(q1,...,qd2) and the Kraus

operators Ei can be calculated by using [88]

Ei = √qi
∑
m

UmiBm. (2.38)

If χ represents a physical process matrix, it must be positive Hermitian, which implies that there

are no negative eigenvalues: qi ≥ 0. Additionally, χ should be trace-preserving according to Eq.

(2.23) ∑
m,n

BmB
†
nχmn = I. (2.39)

In the same manner as for QST, it can happen that the reconstructed χ is not positive or that

Eq. (2.39) is not satisfied. In order to deal with these unphysical outcomes [91], we again employ

an MLE approach [92, 93]. We thus parametrize an arbitrary physical process matrix χ̃(t) and

minimize the distance ∆(t) to the reconstructed χ under the constraint Eq. (2.39) [88]. We
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discuss this procedure in detail in Sec. A.4 in the appendix. The optimization problem then

reads

∆(t) = ‖χ̃(t)− χ‖2F + λ‖B · (χ̃(t)⊗ I) · B† − I‖2F (2.40)

where B ≡ (B†1...B
†
d2) is a (d× d3) block matrix consisting of the conjugated basis matrices and

‖ · ‖F denotes the Frobenius norm 2. λ is introduced as a Lagrangian multiplier. We obtain

χ̃(tmin) with tmin = arg mint ∆(t). We have to state that the optimization problem is not convex

in general, implying that it can happen that we do not converge to the global minimum. We

can avoid that we get stuck in a local solution by starting from a proper initial guess [88] (cf.

Sec. A.4 in the appendix).

Basis change The χ-matrix depends on the chosen operator basis. The following statement

describes the change of a general (d2 × d2) χ-matrix under basis transformations: Let χ be the

process matrix in the {Bm} basis and χ′ be the process matrix in the {Am} basis respectively.

Then the transformation yields χ′mn = λ̄mnχmn where λ̄mn is the arithmetic or geometric mean

of the eigenvalues of the matrix MmM
†
n with Mk = A−1

k Bk. The proof can be found in Sec. A.3

the appendix.

Single qubit QPT For the single qubit case, we have d2 = 4 and we choose the basis

{I, σ̂x, −iσ̂y, σ̂z} [12]. We need 4 distinct input states and we choose [12] |g〉, |e〉, |+〉 ≡
(|g〉 + |e〉)/

√
2 and |−〉 ≡ (|g〉 + i|e〉)/

√
2, which are simple in experimental realization. The

quantum process E is applied to each of these states. The states and the outcomes E(|g〉〈g|),
E(|e〉〈e|), E(|+〉〈+|) and E(|−〉〈−|) are reconstructed using QST. The calculation is simplified if

we use the states ρ1 = |g〉〈g|, ρ2 = |g〉〈e|, ρ3 = |e〉〈g| and ρ4 = |e〉〈e| as input. These ρi are often

referred to as the “computational basis states”. We reconstruct the process using E(ρi) = ρ′i [12],

where each computational basis state ρi is mapped to the yet unknown state ρ′i by E , respectively.

The transformation from the chosen input states to the computational basis states reads

ρ′1 = E(|g〉〈g|) (2.41)

ρ′2 = E(|+〉〈+|) + iE(|−〉〈−|)− (1 + i)
2 (E(|g〉〈g|) + E(|e〉〈e|)) (2.42)

ρ′3 = E(|+〉〈+|)− iE(|−〉〈−|)− (1− i)
2 (E(|g〉〈g|) + E(|e〉〈e|)) (2.43)

ρ′4 = E(|e〉〈e|). (2.44)

We state that β = Λ⊗ Λ with

Λ = 1
2

(
I σ̂x
σ̂x −I

)
(2.45)

and obtain a closed expression for χ [12]

χ = Λ ·
(
ρ′1 ρ′2
ρ′3 ρ′4

)
· Λ. (2.46)

2‖X‖F =
√

Tr(X†X) =
√∑

i,j
(Xij)2
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2.3 Reconstruction of quantum processes

We can obtain the Kraus operators as described for the general case, from which we can

reconstruct the Bloch sphere after the process using Eq. (2.27) and Eq. (2.28). We give a

schematic description of single qubit QPT in Fig. 2.15. The experimental implementation

of QPT is straightforward, however, it can be shown that in order to reconstruct a QP on a

d-dimensional system, we need at least d4 − d2 projective measurements [94]. The number of

measurements grows very fast, as for a single qubit, we require 12 projections, but for QPT on

two qubits, 240 measurements are required. In practice, the MLE requires additional averaging

na for each measurement. Characterizing the initial states requires an additional factor of 2,

which increases the amount of operations to 2na(d4 − d2). For a system with nq qubits, we have

d = 2nq , hence QPT shows a complexity of O(nae
4nq ln 2) scaling exponentially with the number

of qubits [12, 38]. This means the method may become impractical for large qubit systems.

Another disadvantage of QPT is that the process is treated as a black box [14], which means

that we can only compare input with output, knowing nothing about the time evolution of the

system during the process. In order to get access to the system’s dynamics, we need to apply a

master equation approach [88, 95, 96] as described in Sec. 2.5.
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Figure 2.15: Illustration of single qubit QPT for the identity process. Four independent input states are prepared,

after that, the quantum process is applied to each input state. The resulting output states are

reconstructed using QST. This gives access to the raw process matrix. The physical process matrix

is then calculated with an MLE.

2.4 Characterizing QST and QPT

For benchmarking our QST and QPT protocols, we need certain measures on the space of

density matrices that quantify the distance between two quantum states [87]. This mathematical
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2.4 Characterizing QST and QPT

tool can then be used to compare tomography results with the ideal predicted outcome. Thus,

we obtain access to omnipresent errors caused by decoherence and avoidable errors such as

inaccurate state preparation. The Choi-Jamiolkowski isomorphism described in Sec. 2.3.1 allows

us us to generalize these distance measures also for QP’s [86]. If the process matrix χ is expressed

in the basis of the computational basis states, the isomorphism yields ρE = χ/2 [87]. We further

derive distance limits that can be used as an indicator whether our protocol is dominated by

decoherence processes. We introduce the loyalty as a measure for the randomness of our protocol.

2.4.1 Distance measures

Within this thesis, we make use of the intuitive trace distance [12] and the less intuitive, but

commonly used fidelity [97]. In contrast to the trace distance, the fidelity is not a metric on

the space of quantum states, but it directly yields several metrics. As a general measure for

the distance between two QP’s, we introduce the diamond norm [98] and derive an explicit

expression that allows us to calculate this norm for our quantum memory protocol.

Trace distance The trace distance between two quantum states ρ1 and ρ2 is defined as

D(ρ1, ρ2) = 1
2Tr|ρ1 − ρ2| =

1
2‖ρ1 − ρ2‖1 (2.47)

where |X| ≡
√
X†X. ‖X‖1 ≡ Tr|X| is called the trace norm. D(ρ1, ρ2) fulfills the requirements

for a metric on the space of density matrices. This implies especially that D(ρ1, ρ2) = 0 if

and only if ρ1 = ρ2. Furthermore, D(ρ1, ρ2) is invariant under unitary transformations and

D(E(ρ1), E(ρ2)) ≤ D(ρ1, ρ2) for any physically valid quantum process E . This especially denies

the existence of quantum processes that increase the distinguishability of two quantum states

[87]. There are two important interpretations of the trace distance. We consider a single qubit

system and define a1 as the Bloch vector for ρ1 and a2 as the Bloch vector for ρ2. The trace

distance between the states then obeys the relation [12]

D(ρ1, ρ2) = 1
2 |a1 − a2| (2.48)

which is just half the Euclidian distance of the corresponding Bloch vectors, as depicted in

Fig. 2.16. Another interpretation of the trace distance is based on the distinguishability of two

quantum states. A measurement with outcomes “1” or “2” is performed and we state that the

system is in ρ1 for “1” and in state ρ2 for “2”. The probability p that our guess is correct is then

given by [12, 87]

p = 1
2[1 +D(ρ1, ρ2)]. (2.49)

This means that the trace distance can be regarded as a measure on how well we can discern ρ1
and ρ2 using measurement outcomes.
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Figure 2.16: Bloch sphere represenation for two qubit states ρ1 and ρ2. The trace distance is given by half the

Euclidean distance of the Bloch vectors

Fidelity A second and widely used measure for comparing two quantum states ρ1 and ρ2 is the

fidelity f [97]. For our purposes, f is defined as [12]

f(ρ1, ρ2) ≡ Tr
√√

ρ1ρ2
√
ρ1. (2.50)

The cyclicity of the trace implies that f(ρ1, ρ2) is invariant under unitary transformations.

Furthermore, it can be shown that 0 ≤ f(ρ1, ρ2) ≤ 1 and that f(ρ1, ρ2) = 1 if and only if ρ1 = ρ2.

f(ρ1, ρ2) can be seen as a “monotonically increasing” function with respect to the deviation of

ρ1 from ρ2. Moreover, the fidelity obeys f(ρ1, ρ2) = f(ρ2, ρ1). For the single qubit case, it can

be derived that [68]

f(ρ1, ρ2) =
√

Tr(ρ1ρ2) + 2
√

det(ρ1) det(ρ2) (2.51)

which simplifies the practical evaluation of the fidelity. In some cases, we prefer using the

infidelity 1− f(ρ1, ρ2) [99], since it equals zero if and only if ρ1 = ρ2, which is also the case for

the other distance measures which we use in this thesis. In contrast to the trace distance, the

fidelity only has physical interpretation if one of the states is pure. Consider the pure state

|Ψ〉〈Ψ| and an arbitrary state state ρ, which might be an imperfect experimental implementation

of |Ψ〉〈Ψ|. The fidelity then reduces to f(|ψ〉〈ψ|, ρ) =
√
〈ψ|ρ|ψ〉 [87], directly measuring the

state overlap. f(ρ1, ρ2) does not satisfy the requirements to be a metric [87]. However, we can

use the fidelity to define the commonly used Bures distance [88, 100]

B(ρ1, ρ2) ≡
√

2(1− f(ρ1, ρ2)). (2.52)
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2.4 Characterizing QST and QPT

For pure states, the Bures metric equals their Euclidian distance [87]. A metric directly related

to quantum computing is given by the C-distance [87, 88]

C(ρ1, ρ2) ≡
√

1− f(ρ1, ρ2)2. (2.53)

If we use the computational basis states as an operator basis for the process and consider that

we want to evaluate a function f(x) (e.g. factoring) using a quantum operation E(|x〉〈x|), and

Eid(|x〉〈x|) denotes the ideal process which succeeds in evaluating f(x) with probability one, the

average probability p that E fails obeys p ≤ C(ρE , ρE id)2 [87].

Diamond norm In quantum information, a frequently used measure for the distance between

two quantum processes E1 and E2 is the diamond norm [98] which is defined as [101]

‖E1 − E2‖� ≡ supρ‖(E1 ⊗ Ik)(ρ)− (E2 ⊗ Ik)(ρ)‖1. (2.54)

Where Ik is the identity for a k-dimensional state space. In contrast to the previously discussed

metrics, which allow to assert average properties of the quantum process (cf. average overlaps,

average probabilities), the fact that we take the supremum in Eq. (2.54) enables us to perform

worst case estimations [87]. Intuitively, the diamond norm generalizes the trace norm by applying

E to systems of arbitrary large dimension and taking its maximum value. The additional k-

dimensional part can be regarded as an ancilla for the system and we maximize over all states

ρ = ρsystem ⊗ ρancilla. Although Eq. (2.54) is not practical for direct evaluation, we can derive

a simple expression for the case of a quantum memory if we express E in the Pauli basis

{I, σ̂x, σ̂y, σ̂z}. We exploit the fact that the ideal memory process Eid an identity. In this case,

the diamond norm can be calculated as

‖Eid − E‖� =
√

Tr(χ2)− (χ2)11 = ‖Pχ‖F (2.55)

where E denotes the non-ideal reconstructed process, χ is the measured process matrix and

P ≡ diag(0,1,1,1) is a projector (cf. Sec. B.1 in the appendix). We use the convention that we

calculate the trace distance, the fidelity and the resulting metrics in the basis {I, σ̂x,−iσ̂y, σ̂z}
and the diamond norm in the Pauli basis.

2.4.2 Distance limits

In this section, we derive some specific values of the previously discussed distance measures for

our quantum memory process. To this end, we gain a better intuition for the quality of our

process. Since our distance measures are monotonic functions of our process quality, we obtain

limits by considering the CMS ρ∗ for QST and the CDP E∗ for QPT. In the single qubit case,

E∗ maps every initial quantum state ρ to the center of the Bloch sphere. For a d-dimensional

quantum system, we have ρ∗ = 1/d · Id and χ∗ = 1/d2 · Id2 for the process matrix of E∗ 3. If we

3Id and Id2 denote the identity matrix of dimension d and d2 respectively
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aim for reconstructing a pure state ρp, we can compare it to ρ∗ and obtain

f(ρp, ρ∗) = 1√
d
. (2.56)

This is obvious for ρp = |g〉〈g| and holds for arbitrary pure states [68]. For the single qubit state,

this can be intuitively understood by the spherical symmetry of the Bloch sphere. We state that

our tomography procedure only makes sense if we measure a fidelity above this limit. If χid is

the process matrix for the identity process, we obtain a similar limit for our memory protocol:

f(χid, χ∗) = 1
d
. (2.57)

Thus, if we measure a process fidelity f(χid, χ∗) ≤ 1/d, our reconstructed process is dominated

by decoherence, assuming that there are no avoidable errors such as inaccurate state preparation.

A similar discussion can be performed for the other distance measures discussed in Sec. 2.4.1.

We derive upper limits for our distance measures in a way that values above this bound indicate

that our process does not provide any value compared to E∗. For the single qubit case, these

limits can be derived in a straightforward way using the expressions from the last section. The

results for both QST and QPT are listed in Tab. 2.1

Distance measure d d = 2 d = 4
Trace distance 1− 1/d 1/2 3/4

1-Fidelity 1− 1/
√
d 1− 1/

√
2 ' 0.293 1/2

Bures-metric
√

2(1− 1/
√
d)1/2

√
2−
√

2 ' 0.765 1
C-metric

√
1− 1/d 1/

√
2 ' 0.707

√
3/2 ' 0.866

Diamond norm
√
d− 1/d 1/2

√
3/4 ' 0.433

Table 2.1: Theoretical distance limits for QST and QPT

2.4.3 Loyalty

If we take a set of randomly chosen pure or mixed state for a d-dimensional quantum system

and compare it to the CMS, we obtain an average fidelity of [68, 102, 103]

〈f〉 =
√

2 Γ(5/4)
Γ(3/4)Γ(5/2) +O(1/d

3
2 ) = 2

√
2G

3 +O(1/d
3
2 ) (2.58)

where G = 0.834... is Gauss’s constant. The underlying assumption is that the states are

distributed according to the Bures measure [104]. This means that the average fidelity takes the

limit 〈f〉 = 0.787 for d→∞. If we measure the process χ matrix for the memory process for

multiple times and compare each outcome to χ∗, we obtain a measure on whether our protocol

produces “random” or well-defined outcomes. For single qubit processes, we have d = 4, hence

we can assume that the error in Eq. (2.58) is lower than 1/4
3
2 = 12.5 %, this method is not very

accurate for such a system. However, it is well suited for systems with multiple qubits, since the
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2.5 Quantum master equations

deviation from the limit value decreases with O(1/8nq) where nq is the number of qubits. We

calculate the corrected fidelity f c∗ of the process matrix with the χ∗-matrix for the CDP and

define the loyalty ξ of the protocol as

ξ ≡ lim
N→∞

∣∣∣∣ 1
N

N∑
i=1

f c∗i −
2
√

2G
3

∣∣∣∣. (2.59)

We approximate this number by increasing the number of measurements N . If ξ is bigger than a

certain tolerance ε, we conclude that the protocol returns non-random output values. We choose

ε of the magnitude O(1/d
3
2 ), which means 10 % in our case.

2.5 Quantum master equations

For an ideal quantum system, the dynamical behavior is described by the Schrödinger equation

[11], which is suited for calculating the unitary time evolution of pure states for our system.

However, for a realistic system there are non-unitary contributions [14], such as energy relaxation

and dephasing, induced, e.g., by spontaneous emission, (electronic) noise contributions, the

Purcell effect [105] or, in general, due to coupling to the environment. This means that we

have to consider ρ = ρsys ⊗ ρenv on a Hilbert space H = Hsys ⊗Henv where “sys” denotes our

quantum system and “env” the environment. Throughout this whole thesis, we assume Markovian

behavior and when applying the Born-Markov approximation [106], we obtain the Lindblad

master equation for the system [95]

dρ

dt
= − i
~

[Ĥ, ρ]︸        ︷︷        ︸
Unitary

+
d2−1∑
j=1

(
2L̂jρL̂†j − {L̂

†
jL̂j , ρ}

)
︸                             ︷︷                             ︸

Non-Unitary

(2.60)

where {·, ·} denotes the anticommutator. The Lindblad operators L̂j describe the time evolution

that lead to CMS’s, and the Lindblad term yields a loss of the “quantumness” of our system on

large timescales. If the Lindblad term vanishes, Eq. (2.60) reduces to the von Neumann equation

[11], which is equivalent to the Schrödinger equation. We use Eq. (2.60) in order to simulate our

quantum memory protocol. The T1-decay is modelled as annihilation of excitations with decay

rate γ1 = 2π/T1, which yields the Lindblad operator L̂1 = √γ1σ̂
− [12]. We model dephasing as

rotation about the z-axis with rate γϕ = 2π/Tϕ [107] leading to L̂ϕ = √γϕσ̂z. We reshape ρ

into a column vector ρ ≡ (ρ11, ρ12, ρ21, ρ22)T and rewrite Eq. (2.60) as an ordinary differential

equations (ODE) system

ρ̇ =
(
− i
~
Ĥ+ L̂

)
· ρ (2.61)
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which can be solved numerically. For the driven qubit including energy relaxation and dephasing,

we obtain (cf. Chap. D in the appendix)

H = ~Ωd
2


0 i cosϕd − sinϕd −i cosϕd − sinϕd 0

i cosϕd − sinϕd −2i δΩd
0 −i cosϕd − sinϕd

−i cosϕd + sinϕd 0 2i δΩd
i cosϕd − sinϕd

0 −i cosϕd + sinϕd i cosϕd + sinϕd 0


(2.62)

and

L̂ =


0 0 0 2γ1
0 −4γϕ − γ1 0 0
0 0 −4γϕ − γ1 0
0 0 0 −2γ1

 . (2.63)

Given the initial state of our system, Eq. (2.61) describes the time evolution of our system

including dissipative effects.

2.6 Quantum memory theory

Within this section, we describe how we can use a long-lived resonator mode [35] as a quantum

memory for our qubit. We discuss the theoretical concepts and ideas behind the experiment,

which were also realized using 2D transmission line resonators [36].

Injection of the microwave signals We drive the microwave field in the cavity with two

antennas, and the decay rate of the electric field sensitively increases with the dipolar coupling

strength of the mode to the antennas, κext ∝ p ·E(x,y,z). If we assume that the antenna points

in the y-direction, the external decay rate κext of mode (cf. Fig 2.5) reads [108]

κext = Cx
~

(∫ la

−∞
E‖,a(x,y,z)dy

)2

(2.64)

with the parallel electric field E‖,a, the antenna length la and the coupling capacitance Cx.

Figure 2.17 shows the result of a finite element (FEM) simulation for the TE101, the TE201

and the TE102 modes of the cavity.

Antenna positioning The cavity is physically described as a harmonic quantum oscillator

with a multimode stucture. For the readout mode (ROM), a good assumption is E‖,a(y) =
E0/(exp(y/r) + 1) with a suitable constant r, which depends on the arperture, and we obtain

[108]

κ101,ext = CxE
2
0r

2

~
ln2(e

la
r + 1). (2.65)

The antennas are placed in a way that their position matches with the node of the TE201

mode, suppressing decay induced by coupling to the antennas. If we assume that we have linear

field dependence close to the node, with vanishing field exactly a the node position, we obtain
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Figure 2.17: FEM simulation of the TE101, the TE201 and the TE102 mode. The black bars denote the qubit

position. The antenna position is denoted by the circles on the top and the bottom. The antenna

is placed in a way that the TE201 mode does not couple, whereas we have strong coupling to the

TE101 mode. We place the qubit in the node of the TE102 mode, implying that this mode does not

couple at all. Figure taken with friendly permission from E. Xie [108]

κ201,ext ∝ r2
al

2
a indicating that we have sensitive dependence on the antenna radius ra and the

antenna length la. We still maintain strong coupling to the qubit for the TE201 mode. Due to

κ101,ext � κ201,ext, we expect a significantly longer lifetime for the TE201 mode, which we call

the storage time Ts in the following.

Qubit positioning We place the qubit and the antennas close to the antinode of the TE101

mode, which means we have strong qubit coupling to this mode and simultaneously fast decay.

Thus, this mode is suitable for fast qubit readout, hence we call it readout mode (ROM) in the

following. We call the TE201 mode the “storage mode” (SM) [35]. 4 If we manage to engineer

ROts

Prepare BSB qubit qubit BSB

Store as Fock state

a) b)

Figure 2.18: a) Energy levels for the Jaynes-Cummings model. Starting from |g0〉 the BSB transition (straight

blue line) is induced as a second order process. After that, the qubit is deexcited (straight green line).

As a result, |g〉 is stored as Fock state |1〉s in the cavity mode. The stored qubit state is retrieved

by driving transitions in a reversed order (blue and green dashed lines). b) Pulse sequence for the

quantum memory. The first pulse prepares the state to be stored. The state is stored by driving the

BSB transition and finally flipping the qubit population. After a waiting time ts, the reverted pulse

scheme is applied to retrieve the stored state. The ROM is pulsed in order to measure the qubit

population.
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the system in a way that Ts � T1, where T1 denotes the decay time of the qubit, we are able to

significantly enhance the decay time of the information encoded in the qubit by transferring it

into the storage mode as a superposition of Fock states [108]. For these purposes, we reconsider

the Jaynes-Cummings energy scheme from Fig. 2.7 and drive the transitions depicted in Fig.

2.18 a). This is realized with the pulse sequence depicted in Fig. 2.18 b). In the following, we

discuss the effect of this protocol. We assume that we are initially in state |g0〉. The first π-pulse

with frequency ωb/2 drives the BSB with a two photon process simultaneously exciting qubit

and resonator, yielding |g0〉 → |e1〉 [78]. The second π-pulse with frequency ωq deexcites the

qubit, which implies |e1〉 → |g1〉. This means that in the ideal case, we store the ground state

of the qubit as Fock state |1〉s in the cavity. We observe that if the qubit is initially in |e〉, the

drive on the BSB transition has no effect, hence we keep Fock state |0〉s. The third and the

fourth pulse in Fig. 2.18 b) revert the procedure described above, which enables us to retrieve

the qubit state back from the SM. For an arbitrary superposition state characterized by the

coefficients a and b, the effect of the quantum memory protocol, neglecting decoherence, can be

summarized as follows:

a|g〉+ b|e〉 Transfer to SM−−−−−−−−−→ a|1〉s + b|0〉s −→ Store for time ts
Retrieve−−−−−→ a|g〉+ b|e〉 (2.66)

The memory enhancement then results from the fact that a|g〉+ b|e〉 decays on a timescale T1,

whereas a|1〉s + b|0〉s decays with a decay time Ts � T1.

4The qubit is positioned in a way that the TE102 mode, which can be regarded as a “twin” mode of TE201, does
not couple to the qubit.
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Setup and experimental techiques

In order to realize the theoretical concepts of our quantum memory architecture described in

Sec. 2.6, we need a high-Q 3D cavity resonator and a suitable transmon qubit. In order to

avoid thermal photons in the cavity and thermal qubit excitations, we need to perform our

experiments at millikelvin temperatures. This will be further explained in the second section,

which deals with the cryogenic setup. We discuss the time domain microwave setup and explain

how we manipulate our quantum system with microwave pulses. We point out how we engineer

the shape of the control pulses and discuss the advantages and disadvantages of different pulse

shapes. Subsequently, we characterize our qubit-resonator system in the third section, and we

briefly discuss the procedures and protocols that are necessary to measure the coupling and

decay constants of the qubit. We realize the quantum memory protocol in the fourth section

and measure the respective decay times.

3.1 Sample description

Within this section, we give details on the design of cavity and the transmon qubit. For our

experiment, we use a cavity milled from aluminum with an Al purity of 99.5 % [109]. The cavity

is engineered in a way that the frequency ν101 = ω101/2π of the ROM is compatible with the

microwave setup [108]. We are especially limited by the bandwidth (4− 8 GHz) of the cryogenic

high electron mobility transistor (HEMT) amplifiers. The technical dawing in Fig. 3.1 illustrates

the cavity desgin, and the dimensions are chosen in a way that ν101 ' 5.6 GHz. In order to

enhance the external Q-factor, a 0.1 mm Au wire serves as an antenna. In practice, we achieve a

loaded Q factor of QL ' 3.7 · 105 [108].

The transmon qubit is fabricated onto an Si chip (6 mm × 10 mm × 0.52 mm) and fixed with

indium, improving thermalization. Our single-junction transmon qubit sample has the dimensions

lC = 355µm, wq = 305µm and a gap value of gq = 50µm (cf. Fig. 2.6), yielding CΣ ' 105 fF
[108].

We measure a qubit frequency of ωq/2π = 6.226 GHz, yielding Ic ' 52.8 nA.
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Figure 3.1: Technical drawing of one cavity half. The cavity has a length of a = 38.46 mm, a width of d = 37.28 mm
and a total height of b = 7.4 mm. Figure taken with friendly permission from E. Xie [108].

3.2 Measurement setup

3.2.1 Cryogenic setup

We need kBT � ~ωq in order to prevent that the qubit gets thermally populated. We can fulfill

these conditions by performing the experiments at temperatures below 100 mK. This is realized

by mounting the cavity in a home built wet 3He/4He dilution refrigerator [110]. The detailed

operation principle as well as the technical data of this machine is discussed in Ref. [111]. A

picture of the inside of the cryostat, as well as an illustration of the cryogenic electronics is given

in Fig. 3.2.

3.2.2 Room temperature setup

The quantum memory protocol requires time domain measurements. The complete time domain

setup is depicted in Fig. 3.3 and explained in the following. In principle, a pulsed microwave

setup consists of an RF source, which gives out a continuous microwave signal at a specific

frequency and power, and an arbitrary waveform generator (AWG), which modulates a desired

pulse envelope onto the microwave signal 1. However, in order to control the qubit phase ϕ,

which is necessary for characterizing the whole Bloch sphere, we need an additional wideband

IQ control [108]. The underlying working principle is explained in the following. In Sec. 2.2.2,

we derive that the qubit phase ϕ in the xy-plane matches with the phase ϕd of the microwave

drive in the rotating frame. We characterize the microwave signal A cos(ωdt + ϕd) into a 0◦

1We use Agilent 81160A AWG’s
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Figure 3.2: a) Photograph of the sample stage of the cryostat at room temperature and of the lower part of the

cryogenic electronics. The RF lines enter the 3D cavity which is positioned at the bottom. b) Circuit

diagram of the cryogenic electronics consisting of RF lines for qubit control and RO and DC lines for

temperature measurement and heating.

quadrature I = A cos(ϕd) and an orthogonal quadrature Q = A sin(ϕd) [112] resulting in

A =
√
I2 +Q2 ϕd = arctan Q

I
(3.1)

which means that any signal can be generated as a superposition of I and Q. For this reason,

we use a vector RF source 2 for driving the qubit 3. The IQ-input is controlled with two

AWG channels (2.5GSa/s, 14 bit vertical resolution, 500MHz bandwidth), two for I and Q,

respectively. For the BSB drive, no phase control is necessary, hence we use a common RF source
4 in pulsed mode, controlled by another AWG. The same argument holds for RO purposes 5.

For a typical measuremet, The RO signal is pulsed by using a diode consisting of a series of 2

2We use a Agilent E8267D PSG RF source
3Otherwise, we need to calibrate an external IQ-mixer [113], which can be broken down to the inversion of a

2D-function, which can be quite challenging [114]
4We use a Rhode & Schwarz SMF100A RF source
5We use a Rhode & Schwarz SMB100A RF source
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Figure 3.3: Schematic illustration of the time domain setup, consisting of a pulse generation part and a part

responsible for down conversion and data acquisition. The BSB and the RO pulse are generated

by analog RF sources. The on/off ratio of the RO source is modulated with two mixers that are

controlled by an AWG. The BSB source is controlled by an AWG via the PulseIn port. For the qubit,

a vector RF source with an external differential IQ input is used. I and Q are controlled with the

two channels of an another AWG. The signal is converted to the IF regime using a local oscillator.

The data is recorded and processed with an FPGA that is triggered by the RO AWG. The devices are

synchronized with a frequency reference.

mixers that is controlled by an AWG. One mixer has an insertion loss of 7 dBm, and we use 2

mixers in order to push the on/off ratio to approximately 40 dBm. A 10 MHz reference 6 serves

for synchronization and pulse timing purposes. The pulsed drive signal leads to modifications of

the qubit state, which are picked up by the RO pulse [111]. The RO signal is amplified by a

HEMT amplifier before it is demodulated from GHz to MHz and then further processed by an

FPGA-enhanced analog-to-digital converter card. Within each measurement cycle, we average

over about 106 values. The FPGA then calculates the moments 〈InQm〉. For our experiment,

we only need 〈I〉 and 〈Q〉 and we can use the second order moments for calculating the variance

Var(s) = 〈s2〉−〈s〉2 and the standard deviation σ =
√

Var(s). However, in practice, we estimate

the standard deviation by repeating the experiment for 10-50 times from the respective first

order moments. From 〈I〉 and 〈Q〉, we are able to calculate the amplitude and phase of the

readout signal in order to draw conclusions on the qubit state.

3.2.3 Pulse shaping

The shape of the envelope of the control pulses is a crucial aspect regarding the fidelity of

quantum operations [108]. The reason for that is the the sensitivity of the transmon to parasitic

frequencies due to its low anharmonicity. Hence, we need narrow pulses in frequency space,

which can be challenging for short pulses due to the Fourier reciprocity ∆t ∝ 1/∆ω. The relation

6We use a Stanford Research FS725 atomic clock

34



3.2 Measurement setup

between time- and frequeny space is given by the Fourier transform [115]

P (t) c P̃ (ω) = 1√
2π

∫ ∞
−∞

P (t)e−iωtdt. (3.2)

The simplest possible pulse shape is provided by rectangular pulses, which show the big advantage

that the tθ-time increases linearly with the pulse area A, tθ ∝ A ∝ τ , yielding sinusoidal Rabi

oscillations as a function of the pulse length τ . However, rectangular pulses follow a sinc-function

in frequency space (cf. Fraunhofer diffraction [116]), rect(t/τ) c τ/
√

2π · sinc(τω/2π). This

gives an undesired broad frequency spectrum.

Another possibility is given by Gaussian pulses P (t) = exp(−t2/2τ2σ2). We also obtain a

Gaussian shape in frequency space

P (t) c P̃ (ω) = 1√
2π

∫ ∞
−∞

e−
t2

2σ2τ2−iωtdt =
√

2στe−ω2τ2σ2
(3.3)

which possesses a narrower frequency spectrum. The relative anharmonicity αr of the qubit gives

a constraint for the FWHM (full width half maximum) of the pulse length and for the pulse

time: τ ≥ 4~
√

ln 2/|αr|ωqσ, implying that we have a lower bound for τ of the magnitude of

nanoseconds for typical αr. A big disadvantage of Gaussian pulses is that we have A =
√
πστ/2,

yielding longer pulses compared to rectangular pulses, implying that the qubit is affected more

by depolarization in comparison with rectangular pulses. In order to combine the advantages of

both pulse shapes, we define flat-top Gaussian pulses [108], which are rectangular pulses with a

Gaussian ramp, as illustrated in Fig. 3.4 a). If tr denotes the ramp time, we distinguish τ ≤ 2tr

51 2 3 4

a) b)

1 2 3 4 5

Figure 3.4: a) Flat-top Gaussian pulse envelope with pulse length τ and ramp time tr. b) Pulse area dependig on

the pulse length. For τ > 2tr, the pulse area increases faster with τ than for τ < 2tr, resulting in a

kink at τ = 2tr

and τ > 2tr. In the first case, we choose a Gaussian pulse, since the total pulse length is not
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sufficient for the given ramp up and ramp down time. In the second case, we define

P (t) =



e−
(
t−tr
2σtr

)2

if 0 ≤ t ≤ tr,
1 if tr ≤ t ≤ τ − tr
e−
(
t−τ−tr

2σtr

)2

if τ − tr ≤ t ≤ τ
0 else

. (3.4)

Due to the fact that we smooth the edges of the rectangular pulse, the pulses are much narrower

in the frequency domain. A minor drawback of this technique is that we obtain a discontinuous

function of the pulse length and the pulse area

A(τ) =


√
π · erf( 1

2σ )στ if 0 ≤ τ ≤ 2tr
2(
√
πσ · erf( 1

2σ )− 1)tr + τ if 2tr ≤ τ
. (3.5)

This is exemplary depicted in Fig. 3.4 (b) and implies that we have a lower Rabi frequency for

τ < 2tr and hence 2tπ/2 , tπ. We can try to choose σ in a way that the kink vanishes. This

requires erf(x) = 2x
√
π with x ≡ 1/2σ, which has the only solution x = 0, which means σ has to

be infinitely large, giving an infinitely large slope. It is not possible to “smooth” the curve in Fig.

3.4 b) for an arbitrarily smooth ramp f(t) since this requires f(t) = 1, which is a contradiction.

In practice, we choose tr = 20 ns and σ = 0.2, and estimate tπ/2 = tπ/2 + tr(1−
√
πσ), which

yields

tπ/2[µs] = tπ[µs]
2 + 0.0129. (3.6)

As a consequence, we need to take into account the deviation in pulse lengths for π- and

π/2-pulses.

3.3 Qubit characterization

In this section, we explain step by step how we can get experimental access to all the relevant

parameters of the qubit and the resonator. We work through a characterization strategy

protocol that is capable of determining these quantities [108]. First of all, we measure the cavity

transmission with a vector network analyer (VNA) [117] 7 and sweep the drive frequency ω. We

obtain a Lorentzian profile for the transmission amplitude P (ω) and an arctan profile for the

transmission phase ϕ(ω) near the cavity transmission frequency ω0/2π = 5.519 GHz [70]

P (ω) = 1
2

(
G

1 +G

)2 κ/2
(ω − ω0) + (κ/2)2 ϕ(ω) = − arctan(2/κ(ω − ω0)). (3.7)

Here, G is a measure for the external cavity coupling strength. The results of the transmission

measurement are depicted in Fig. 3.5. As explained in Sec. 2.2.1, the AC-Stark shift modulates

the cavity resonance frequency depending on the qubit state. Hence, we can determine the

dispersive shift χ by considering the shift of the transmission peak [52]. We perform frequency

7We use a Rhode & Schwarz ZVA8 with 2 ports
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3.3 Qubit characterization

Figure 3.5: a) Transmission amplitude of the cavity. We observe a Lorentzian profile and measure a transmission

peak at ω0/2π = 5.519 GHz b) Readout phase for a transmission measurement. The data points follow

an arctan-function. ϕ = 0 corresponds to the cavity resonance frequency ω0/2π

sweeps around the cavity resonance frequency and simultaneously sweep the drive power. The

results are shown in Fig. 3.6. For low powers, the qubit has negligible |e〉 state population,

Tr
an

sm
is

si
on

 m
ag

ni
tu

de

a) b)

VNA Power (dBm)

Transm
ission  (dBm

)

Figure 3.6: a) Transmission magnitude depending on the drive frequency and the drive power, measured with a

VNA. At a VNA power of about −40 dBm, the transmission peak shifts. b) Dispersive shift for the

RO phase b) Transmission peak for −60 dBm (blue) and for −20 dBm (red). The peaks are separated

by χ/2π

whereas beyond some threshold power Pmax, the qubit saturates in a steady mixed state with an

excited state population of pe = 1/2 yielding a shift of χ [108]. We measure χ/2π = 3.41 MHz.

We use the resonator readout phase ϕRO as indicator for the qubit state and choose a readout

frequency of ωRO/2π = 5.518GHz (cf. Fig. 3.5). Due to this particular choice, we detect the

dispersive shift as the linear ramp of the arctan-function [53] and obtain the relation

ϕRO = −2
κ

(ωRO − ω0) +O(ωRO − ω0)3. (3.8)
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Furthermore, we gauge the setup in a way that ϕRO = 0 corresponds to the |g〉 state. Since the

RO power has to be so low that we have negligible population in |e〉, we choose it to be −40 dBm.

The qubit frequency can be determined to be ωq/2π = 6.226 GHz. We are then able to calculate

the detuning ∆/2π = 0.707 GHz and the coupling strength g/2π =
√
χ∆/2π ' 49.1 MHz. The

anharmonicity is determined to be αr = (E20 − 2E10)/2E10 ' −2.63 %. In the following, we

describe how we obtain the necessary pulse duration times and the qubit decay times with a

time resolved setup. .

Rabi oscillations For tomography experiments, we need the π- and the π/2-times. We determine

these times with Rabi experiments, which means that we vary the pulse duration time τ and

measure the coherent population exchange of the qubit from |g〉 to |e〉 via ϕRO. For the following

experiments, we fix the drive power Pd to −40 dBm. Since the Rabi frequency is an approximately

linear function of
√
Pd[W], we calibrate our pulse lengths for a specific power. The result of

such a measurement is shown in Fig. 3.7. The first maximum corresponds to the π-pulse length.

We measure a π-pulse length of tπ = 0.087µs. The tπ/2 time can then be obtained by Eq. (3.6),

however, it turns out that is more accurate to simultaneously sweep the lengths of two equal

successive pulses and measure the first maximum of the corresponding Rabi oscillations [108].

The π/2-pulse length is then given by the length of one of these pulses. For the parameters

above, we measure tπ/2 = 0.049µs. For QST and QPT experiments, we need drive pulses with

ϕd = 0◦ and with ϕd = 90◦. Hence, it is important to know that it can happen that the π-pulse

length is dependent on the qubit phase angle. This implies that there are aysmmetries in the

Bloch sphere, e.g., induced by elctronic noise. Figure 3.8 shows a polar plot of the π-pulse length

for various phase angles. In order to account asymmetries, we can measure the π-pulse length

for ϕ = 0◦ [tπ(0◦)] and for 90◦ [tπ(90◦)], respectively. Assuming that tπ(0◦) and tπ(90◦) for the

RORO

Figure 3.7: a) Population exchange manifested as Rabi oscillations. The inset shows the applied pulse pattern,

The length lp of the qubit drive pulse is increased.
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3.3 Qubit characterization

Figure 3.8: π-pulse length depending on the phase angle, which is realized with the external IQ-control.

semi axes of an ellipse, we can correct for this ellipticity and calculate tπ(ϕ).

T1 measurement The energy relaxation time T1 is measured by exciting the qubit with a

π-pulse and directly measuring the exponential decay. This is realized by sending a continuous

RO tone after the excitation, which allows us to directly detect the time evolution of the

dispersive shift [108]. We measure T1 = 1.76± 0.06µs, and we observe fluctuations in T1 up to

40 %, as shown in Fig. 3.9. These flucuations are probably a result from coupling to microscopic

two level-fluctuators [118, 119]. We also state that there are big variations in T1 from cooldown

to cooldown. During the cooldown within which we perform our quantum memory experiment,

we measure a T1 time of 1.21 ± 0.09µs. This reduced energy relaxation time is possibly an

 
   

  C
ou

nt
s

b)a)

0 2 4 6 8
-0.3

0.0

0.3

0.6

0.9

1.2

Figure 3.9: a) T1 decay of the qubit state after excitation with a π-pulse. The qubit population pe and decays

exponentially with a decay time T1 = 1.9µs b) T1-statistics that is recorded by repeating the

measurement from a) for about 300 times. The T1-times are normal distributed with a maximum at

1.76µs and standard deviation of 0.06µs
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Figure 3.10: Ramsey oscillations for a detuning ∆/2π = 700 kHz. Fitting an exponentially damped sin-function

yields a decoherence time T2 = 2.66± 0.10µs, The inset shows the Ramsey pulse scheme.

artifact from the aging process of the sample or from trapped flux during the cooldown.

Ramsey fringes In order to measure the decoherence time T2, we need more advanced measure-

ment techniques, such as the Ramsey protocol [120], which consists of two π/2-pulses separated

by a variable delay time tw. The first pulse creates the |+〉 superposition in the xy-plane. During

tw, the system loses phase coherence on the timescale Tϕ and the |e〉-population of the state

(ideally 1/2) decays on the timescale T1, yielding a total energy decay time of 2T1 for the state.

Thus, regarding Eq. (2.6), the total decay time is given by T2. If we drive with a small detuning

∆ = ωq − ωd, we observe exponentially damped oscillations with frequency ∆, as depicted in

Fig. 3.10. We find that the qubit is T1-limited, i.e., the overlap of the uncertainties contains

T2 = 2T1. We estimate Tϕ ≥ 0.33 ms where Tϕ = 0.33 ms is the worst-case estimation within

the error bounds.
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3.4 Memory characterization

3.4 Memory characterization

The memory protocol consists of qubit and BSB pulses. Hence, we need to perform a similar

characterization procedure as described in Sec. 3.3 for the BSB transition. We search for the BSB

by sweeping ωd in the time domain setup. We drive the system at half the BSB frequency ωb/2
in order to induce a two photon process. Furthermore, we sweep the drive power from 16 dBm
to 23 dBm at the RF source. The BSB has a narrow FWHM, but broadens with increasing

power. For a drive power of 21 dBm, it is on the order of 10 MHz, hence we need a relatively

good initial guess. We use ωinit/2π = (ωq + ωm)/4π ' 7.565 GHz, neglecting the Kerr shift and

the AC Stark shift. Especially the latter one is actually relevant because it drags ωb down to

lower frequencies with increasing photon numbers. The measurement results are depicted in

Fig. 3.11. We especially observe that the transition frequency decreases linearly with the drive

power in microwatts. This is a characteristic property for the BSB transition [78], allowing

us to differentiate this transition from, e.g., bare cavity excitations, which do not shift. We

understand this behavior by considering the AC Stark shift as a function of the photon number

ωb(n) = ω0 + nχ and P [W] ∝ n. For our memory experiment, we choose a drive power of

21 dBm and determine ωb/2π = 7.339 GHz. Again, we determine the BSB π-pulse time with a

Rabi experiment, yielding tBSB
π . We can determine TBSB

1 in the same manner as in the qubit

case, and expect TBSB
1 < T q

1 due to multiple decay channels. This can be understood by a rate

equation 1/TBSB
1 = α/T g0

1 +β/T g1
1 where T g0

1 (T g1
1 ) is the decay time to |g0〉 (|g1〉) and α and β

are constants. We measure TBSB
1 = 0.77±0.15µs. The BSB TBSB

2 time is again determined with

a Ramsey experiment, which yields TBSB
2 = 1.83± 0.19µs. Although TBSB

2 > 2TBSB
1 , the 2TBSB

1
limit still lies within the overlap of the error bounds of 2TBSB

1 and TBSB
2 . As a consequence, we

can conclude that the dephasing time TBSB
ϕ is large compared to the energy relaxation time,

implying that we are TBSB
1 -limited. In order to optimize the pulse lengths and the frequencies

for the qubit and the BSB pulses, we use an optimization procedure that is embedded into the

a) b)

Figure 3.11: a) BSB transition for different drive powers. We observe an exponential shift to lower frequencies if

we increase the drive power b) AC Stark shift for the BSB transition. We express the drive power in

linear units to visualize the linear relation between power (photon number) and transition frequency.
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Figure 3.12: Realized pulse pattern of the memory protocol, consisting of a preparation pulse, followed by the

first BSB π-pulse and a qubit π-pulse for storage. After that, we drive another qubit π-pulse and

apply a second BSB π-pulse, which allows state retrieval. The last pulse is necessary for QST. The

RO pulse is not depicted.

LabView control code and explained in Ref. [108] .

After that, the memory pulse sequence can be realized. Due to the fact that we use dif-

ferent kinds of RF sources for the pulses and in order to correct the delay due to different cable

lengths, we adjust the pulse timing using an oscilloscope 8. We detect a delay of 67 ns for the

qubit pulses, which we correct for in the actual memory pulse sequence. The resulting pulse

pattern is depicted in Fig. 3.12. In the next step, we measure the storage time by applying

the memory protocol for the |g〉-state and varying the time between the two qubit π-pulses

[108]. The resulting exponential decay is depicted in Fig. 3.13 and we extract a storage time

RO
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1.0

Figure 3.13: Exponential decay of the qubit population that has been transferred into the storage mode. Ideally,

the curve describes the decay of the Fock state |1〉s. We measure a decay time T s
1 = 5.19± 0.79µs

Ts = 5.19 ± 0.79µs, yielding an improvement factor of Ts/T
q
1 ' 4.3 regarding information

preservation. For the ROM, we measure a decay time of TRO
1 = 0.08µs. This means that due to

the special qubit and antenna positioning, we are able to perform fast readout, whereas we have

8We use a LeCroy WaveMaster 8600A oscilloscope
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Figure 3.14: Ramsey measurment for the quantum memory. A π/2-pulse creates a superposition state that is

stored and retrieved after some time tr. After the state regain, another π/2-pulse is applied. We

measure a decoherence time T s
2 = 7.6± 2.8µs

a slowly decaying storage mode. If we directly drive the storage mode, we have a decay on the

timescale Tm
1 = 9.2µs, which is higher than T s

1 . Reasons for this deviation may be non-ideal

π-pulses, decoherence during the pulse preparation, statistical T1 fluctuations of the qubit or

residual |e〉 population for the initial state.

We check whether our measured decay times are consistent. We do this by using a simplified

rate equation model for the system, yielding the relation Ts = T q
1 T

BSB
1 /(T q

1 − TBSB
1 ) where

we assume Ts � T q
1 . We conclude that the storage time Ts increases with increasing TBSB

1
and decreasing T q

1 . Within the error bounds of our measurement, we find T q
1 = 1.12µs and

TBSB
1 = 0.92µs, yielding Ts ≤ 5.15µs, which is close to the measured value. We then measure

the dephasing time for the stored state again with an adopted Ramsey protocol, as illustrated

in Fig. 3.14 [108]. We prepare |+〉 with a π/2-pulse, store this resulting state, vary again

the storage time, retrieve the state back and apply another π/2 pulse. Since the damped

oscillation seems to be superimposed with an increasing linear trend, we fit the data using

pe(t) = y0 +A sin
(
π(t−tc)
w

)
e−t/T

s
2 +m · t, where y0, A, tc, w, T

s
2 and m denote fit parameters. We

find T s
2 = 7.6± 2.8µs. We extract a dephasing time T s

ϕ = 28.6µs of the storage mode.
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Chapter 4

Benchmarking a 3D quantum

memory

In this chapter, we discuss the main results of this thesis, which is the setup of a QST and

a QPT protocol in order to characterize the quality of our quantum memory. Based on the

theory described in Sec. 2.2.3 and in Sec. 2.3.2, we realize the respective pulse patterns with

our arbitrary pulse software. We use a Matlab® routine 1 for data analysis and the MLE for

QST and QPT, respectively. In the first section, we introduce the implementation of QST and

test our protocol by reconstucting well known single qubit states. After that, we are able to

realize a QPT protocol, which is discussed in the second section. We benchmark QPT with

single qubit processes [38], i.e., specific rotations and decoherence. We reconstruct the Bloch

sphere for each process and discuss the reasons for deformations. With this toolbox at hand,

we are able to apply it to the quantum memory process. In the third section, we use QST in

order to reconstruct quantum states that have been stored in the memory mode. Finally, in the

fourth section, we obtain the quantum process fidelity of our quantum memory process, which

can be regarded as the main result of this thesis. We discuss observations and possible reasons

regarding fidelity limitations. We face the remaining problem that QPT is a blackbox by using

a master equation approach that models the process matrix in a time-resolved manner [88].

4.1 Single qubit benchmarking for QST

For implementing and testing QST, a few preliminary experimental requirements have to be

fulfilled. As described in Sec. 2.2.3, we need a measure µ that contains information about the

qubit state with respect to the quantization axis and that is easy to access in experiment. For our

purposes, we choose the readout phase ϕRO of the cavity TE101 mode [108]. Since the dispersive

shift is small compared to the linewidth of the resonator, we are still in the linear regime as

indicated by Eq. (3.8). Furthermore, our working point is chosen such that ϕe ≤ ϕRO ≤ ϕg,

where ϕe (ϕg) denotes the RO phase for |e〉 (|g〉). This implies that we can reconstruct the

1We use MATLAB R2016a
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density matrix as

ρ({ϕi}) = 1
ϕg − ϕe

(
ϕz − ϕe ϕ̄− ϕx − i(ϕ̄− ϕy)

ϕ̄− ϕx + i(ϕ̄− ϕy) ϕg − ϕz

)
(4.1)

with ϕ̄ ≡ (ϕg + ϕe)/2. A derivation can be found in Sec. A.1 in the appendix. For the MLE, we

parametrize ϕ̃x,y,z({ti}) from Eq. (4.1):

ϕ̃x,y,z({ti}) = ϕ̄− Tr(ρ̃σ̂x,y,z)
2 (ϕg − ϕe) (4.2)

where ρ̃ = ρ̃({ti}) is defined as described in Sec. 2.2.3. Equation (4.1) allows us to directly

calculate the fidelity as a function of the RO phases, which is necessary for calculating the

uncertainty in fidelity from the measurement uncertainties. Consider that we measure ρ ∈
{|g〉〈g|, |e〉〈e|, |+〉〈+|, |−〉〈−|} and compare the result with the respective theoretical density

matrix ρt. We use Eq. (2.51) and obtain a fidelity f(ρ,ρt) =
√

Trρρt. This yields

f|g〉〈g| =
√
ϕz − ϕe
ϕg − ϕe

f|e〉〈e| =
√
ϕg − ϕz
ϕg − ϕe

f|+〉〈+| =
√
ϕx − ϕe
ϕg − ϕe

f|−〉〈−| =
√
ϕy − ϕe
ϕg − ϕe

. (4.3)

These analytic expressions allow us to calculate the propagation of the error [121]. For |g〉, we

obtain

∆f|g〉〈g| =
1

2f|g〉〈g|(ϕg − ϕe)

√√√√(ϕz − ϕg
ϕg − ϕe

)2

(∆ϕe)2 + (∆ϕz)2. (4.4)

We obtain similar results for the other states in Eq. (4.3). For the CMS, we obtain from

Eq. (2.51) and Eq. (4.1) that

f∗ ≡ f(ρ∗, ρt) =
√

1
2 + 1

ϕg − ϕe

√
(ϕz − ϕe)(ϕg − ϕz)− (ϕ̄− ϕx)2 − (ϕ̄− ϕy)2. (4.5)

We perform error propagation [121], which yields

∆f = 1
4f∗(ϕg − ϕe)2(2f2

∗ − 1)

×
√

((2f2
∗ − 1)(ϕg − ϕe) + 2(

∑
i=x,y,z

ϕi − 2ϕg − ϕe)2(∆ϕe)2 + 4
∑

i=x,y,z
(ϕi − ϕ̄)2(∆ϕi)2. (4.6)

In this case, we neglect effects resulting from the MLE, and we assume for our error estimation

that the uncertainties are not affected by the MLE. An alternative approach is the comparison

of the phases before and after the MLE and a proper scaling of the measurement uncertainties,

under the assumption that the relative uncertainties stay constant. We define in our measurement

routine ϕg ≡ 0, and we determine an average ϕe from a sufficient amount of measurements,

where we prepare the qubit with a π-pulse. The small depolarization during the finite π-pulse

length is neglected. We observe a decrease of the measured fidelities of 1 − 2 % if we use the

corrected value ϕe ·exp(tπ/T1). With these measures at hand, we are now able to tomographically

reconstruct arbitrary qubit states. We test our protocol by measuring the density matrix for
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|g〉, |e〉, |+〉 and |−〉. We choose these particular states because we use them as inputs for

our QPT protocol, which means that our benchmarking procedure for QST simultaneously

precharacterizes the initial states for QPT. Each projective measurement is repeated for a

sufficient number of times, which enables us to accurately approximate the standard deviation.

For each reconstructed state, we calculate the distance measures introduced in Sec. 2.4.1 in

Tab. 4.1. As an initial test, we measure the density matrix for |g〉. The result is depicted in

Fig. 4.1 a) We obtain a fidelity of f|g〉 = 0.966 ± 0.008. The other measured density matri-

ces are found in Fig. 4.1 b)-e) and the fidelities and distance measures are summarized in Tab. 4.1.

|g〉 |e〉 |+〉 |−〉 CMS Distance limit

D(ρ, ρt) 0.0700 0.0512 0.0604 0.0402 0.0267 0.5
1− f(ρ, ρt) 0.0338 0.0013 0.0018 0.0161 0.0004 0.293
B(ρ, ρt) 0.2601 0.0512 0.0605 0.1794 0.0267 0.765
C(ρ, ρt) 0.2579 0.0512 0.0604 0.1786 0.0267 0.707

Table 4.1: Distance measures for QST benchmarking for the reconstruction of |g〉, |e〉, |+〉, |−〉 and the CMS. The

distance measures are equal to zero for the ideal case.

In order to measure the density matrix of the CMS, we create the CMS by driving the qubit at

ωq with a pulse length τ = 8.7µs� T1 such that we end up in the CMS. The reconstructed state

ρ∗ is depicted in Fig. 4.1 e). We calculate a fidelity of f∗ = 0.9996±0.0034. For all reconstructed

states, we observe that we are way below the distance limits (cf. Tab. 4.1), proving that we are

able to perform single qubit QST.

Distance limits for QST The QST benchmarking measurements allow us to verify the distance

limits derived in Sec. 2.4.2. We realize this by calculating dist(ρ|g〉, ρ∗,t) and dist(ρ∗, ρ|g〉,t),
where ρ∗,t (ρ|g〉,t) denotes the theoretical density matrix of the CMS (|g〉), and ρ|g〉 (ρ∗) is the

respective reconstructed density matrix. dist(·, ·) denotes the trace distance, the infidelity, the

Bures distance and the C-distance respectively. The results are listed in Tab. 4.2

dist(ρ|g〉, ρ∗,t) dist(ρ∗, ρ|g〉,t) Distance limit

Dlim 0.4740 0.5018 0.5
1− flim 0.2747 0.2936 0.293
Blim 0.7413 0.7663 0.765
Clim 0.6885 0.7079 0.707

Table 4.2: Experimental verification of the distance limits derived in Sec. 2.4.2

We observe that all distance measures are close to their theoretical limit. Deviations can

be attributed to slight temporal fluctuations in ϕe, which are not taken into account by the

calibration. We especially observe that we are slightly above the limits when we compare

the reconstructed ρ∗ with ρ|g〉,t, which is not expected since the limits are considered as an

upper bound. We explain this behavior with a residual population in |e〉 due to thermal

excitations, which breaks the symmetry between |g〉 and |e〉 for the CMS. Let pe denote the

47



Chapter 4 Benchmarking a 3D quantum memory
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Figure 4.1: QST of a) the |g〉-state, b) the |e〉-state, c) the |+〉-state, d) the |−〉-state and e) the CMS.
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Figure 4.2: Absolute (white dots) and relative (black dots) fidelity for the reconstructed |−〉-state for different

amounts of averages n. The fidelity measures converge for n & 10. We extract an asymptotic difference

of ∆f = 3 %

residual population of |e〉. We then expect to measure ρ∗,11 = 1/2(1−pe) and ρ∗,22 = 1/2(1+pe)
and obtain pe = 1− 2f2, where f is measured fidelity. Hence, we estimate pe = 0.2 %, which is

consistent with the result found in Ref. [108].

Influence of averaging A limiting factor for the time expenditure of QST is the amount

of averages that we have to consider, i.e. the number of repetitions for each measurement

cycle. In our specific setup described in Sec. 3.2.2 to record and process a single ϕRO-value,

we need to spend approximately 5 s. This measurement time already includes a number of

2 × 107 averages [108, 111]. Our QST routine consists of 3 projective measurements, hence

we need a total measurement time of 15 s × n, where n denotes the number of repetitions of

each projection measurement. As an example, we reconstruct the |−〉-state for varying n. Let

ρn denote the measured density matrix after n repetitions. We reconstruct ρn for 1 ≤ n ≤ 50
and calculate the fidelity f (n) ≡ f(ρn, ρt), where ρt denotes the theoretically expected result.

Furthermore, we calculate the relative fidelity f
(n,m)
rel ≡ f(ρn+m, ρn) (cf. Ref. [122]) for m = 5

and n ∈ {0, 5, 10, 15, 20, 25}. In contrast to the absolute fidelity, the relative fidelity is a measure

for the influence of statistics and depends only on n. Both quantities are depicted Fig. 4.2

as a function of n. If f
(n,m)
rel → 1, we know that additional averaging does no longer improve

the result, as ρn+m and ρn become indistinguishable. The quantity Q(n,m) ≡ |f (n,m)
rel − f (n)|

is a measure for losses in fidelity due to decoherence, inaccurate state preparation, non-ideal

pulse lengths and higher levels resulting from the low anharmonicity and we define the fidelity

deviation ∆f ≡ limn→∞Q(n,5). From Fig. 4.2, we obtain ∆f = 3 %. We especially observe that

the fidelity is significantly worse for n = 1, compared to n = 2. An explanation for that is that

the MLE needs at least two averages in order to calculate the standard deviation. Then, the

MLE significantly improves the result. We notice that we only need to repeat the experiment
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Figure 4.3: a) Infidelities for the reconstructed state ρϕ in the xy-plane. The infidelity gets significantly worse

for ϕ → 180◦. b) Infidelities 1 − f(ρϕ, ρ90◦,t) for reconstructed states ρϕ with 0◦ ≤ ϕ ≤ 90◦. The

infidelity decreases monotonically with ϕ. The blue curve shows the expected fidelity, assuming ideal

pulses and neglecting decoherence and the finite anharmonicity.

for about five to ten times in order to get precise results.

Benchmarking the phase control In the next step, we test the phase sensitivity of our QST

procedure, which depends on the accuracy of our IQ-control. We investigate this by driving

π/2-pulses while varying the phase angle ϕ. This means that we reconstruct states in the

xy-plane with discrete steps in phase angle ϕ. The expected theoretical density matrix ρϕ,t can

be directly derived from Eq. (2.7),

ρϕ,t = 1
2

(
1 cosϕ

cosϕ 1

)
+ i

2

(
0 − sinϕ

sinϕ 0

)
= 1

2(I + cosϕσ̂x + sinϕσ̂y). (4.7)

We sweep ϕ from 0◦ to 360◦ in steps of 10◦ and reconstruct ρϕ for each angle. In Fig. 4.3 a),

we plot the respective infidelities 1 − f(ρϕ, ρϕ,t). We measure an infidelity of approximately

∆f = 3 % for ϕ ≤ 120◦ and ϕ ≥ 270◦. The infidelity increases towards ϕ = 180◦. We assign

this to numerical errors due to the fact that ϕ = 180◦ corresponds to the in-phase quadrature

I = 0 and we have to divide by I in order to obtain ϕ [cf. Eq. (3.1)]. We further investigate the

ϕ-range from 0◦ to 90◦ in more detail. We choose this range because it is relevant for our QPT

protocol. Again, we reconstruct ρϕ for each phase angle. We calculate the fidelities f(ρ90◦,t, ρϕ)
and plot the result in Fig 4.3 b). We observe that the infidelity decreases approximately linearly

towards 3 % for ϕ = 90◦, which is consistent with the value obtained in Fig. 4.2. We calculate

the theoretical fidelity curve from Eq. (4.7) and obtain

fϕ,t ≡ f(ρ90◦,t, ρϕ,t) =
√

1 + sinϕ
2 . (4.8)

We observe an offset of 3−4 %, compared to the measured data points, which equals approximately

the fidelity deviation ∆f . Hence, we conclude that we are able to perform QST for arbitrary

pure and mixed single qubit with a fidelity limited by the IQ microwave equipment.

50



4.2 QPT for single qubit operations

4.2 QPT for single qubit operations

Resulting from the fact that we are able to perform QST, we can now implement a protocol

for single qubit QPT (cf. Fig. 2.15). We work in the basis {I, σ̂x,−iσ̂y, σ̂z} [12] to keep the

calculations simple, as described in Sec. 2.3.2. For testing our protocol, we determine the

χ−matrix for simple quantum operations, i.e., single qubit rotations and the CDP. We calculate

the Kraus representation of the process with Eq. (2.38). Equation (2.27) and equation (2.28)

allow us to illustrate the process result with the Bloch sphere.

First, we perform QPT for the identity process. We expect a process matrix

χI,t =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (4.9)

The measured process matrix, the reconstructed Bloch sphere as well as the theoretical results

are depicted in Fig 4.4 a).
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We calculate a process fidelity of fI = 0.9743. The respective distance measures (cf. Sec.

2.4.1) are listed in Tab. 4.3.

I R̂y(π) R̂y
(
π
2
)

R̂x
(
π
2
)

CDP

D(χ, χt) 0.2253 0.1133 0.1941 0.1830 0.1161
1− f(χ, χt) 0.0257 0.0295 0.0665 0.0897 0.0118
B(χ, χt) 0.2258 0.2430 0.3647 0.4235 0.1533
C(χ, χt) 0.2253 0.2412 0.3586 0.4139 0.1529
‖E − Eid‖� 0.0520 - - - -

Table 4.3: Distance measures for QPT benchmarking for the reconstruction of the identity process (I), a rotation

by π about the y-axis, a rotation by π/2 about the y-axis, a rotation by π/2 about the x-axis and the

CDP. The distance measures are equal to zero for the ideal case. The diamond norm is only calculated

for the identity process since this is the relevant process for characterizing a quantum memory and we

can use Eq. (2.55)

In order to analyze rotation processes, we derive an explicit expression for the process matrix for a

rotation about an axis n by an angle α. Starting with Eq. (2.29) and using eiαA = cosαI+i sinαA
[12] for quadratic matrices A, we obtain

ρ′ = R̂n(α)ρR̂n(α)† (4.10)

=

cos α2 I − i sin α2

3∑
j=1

nj σ̂j

 ρ(cos α2 I
† + i sin α2

3∑
k=1

nkσ̂
†
k

)

After reordering the terms, we obtain

χn,α =


cos2 α

2 i sin α
2 cos α2nx sin α

2 cos α2ny i sin α
2 cos α2nz

−i sin α
2 cos α2nx sin2 α

2n
2
x −i sin2 α

2nxny sin2 α
2nxnz

sin α
2 cos α2ny i sin2 α

2nxny sin2 α
2n

2
y i sin2 α

2nynz
−i sin α

2 cos α2nz sin2 α
2nxnz −i sin2 α

2nynz sin2 α
2n

2
z

 (4.11)

We analyze the process incuced by a π-pulse with ϕ = 0◦, i.e., a 180◦ rotation about the y-axis.

We expect

χR̂y(π) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (4.12)

In Fig. 4.4 b), we plot the predicted and the measured results. We obtain a process fidelity

fR̂y(π) = 0.9705, calculate the remaining distance measures and show the results in Tab. 4.3.

An analogue procedure is performed for a rotation by 90◦ about the y-axis. We extract a fidelity

of fR̂y(π2 ) = 0.9335 and depict the results in Fig. 4.4 c) and in Tab. 4.3. The last rotation under

investigation is a rotation by 90◦ about the x-axis. In contrast to the rotation about the y-axis,

this rotation contains a finite phase angle of ϕ = 90◦. We calculate a fidelity of fR̂x(π2 ) = 0.9103.
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Figure 4.4: Reconstruction of a) the identity process, b) a rotation by π about the y-axis and c) a rotation by

π/2 about the y-axis. The measurement results are compared with the theoretically predicted results,

respectively. We observe that the radius of the Bloch sphere shrinks (depolarization). We observe

from b) that R̂y(π) does not rotate the Bloch sphere by exactly 180◦.
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Figure 4.5: Reconstruction of a) a rotation by π/2 about the x-axis and b) the CDP. The measurement results

are compared with the theoretically predicted results, respectively. For the CDP, the Bloch sphere

contracts to its center.

For the process matrices, we expect

χR̂y(π2 ) = 1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 χR̂x(π2 ) = 1
2


1 i 0 0
−i 1 0 0
0 0 0 0
0 0 0 0

 . (4.13)

We plot the theoretical predictions as well as the reconstructed data in Fig. 4.5 a). We
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4.2 QPT for single qubit operations

summarize the distance measures in Tab 4.3. In order to investigate the effect of depolarization,

we reconstruct the CDP. We realize this process with a microwave pulse with a length of

τ = 8.7µs� T1. This process maps every single qubit state to the center of the Bloch sphere.

We predict

χ∗ = 1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.14)

and measure a process fidelity of f∗ = 0.9882. The theoretically expected and the measured

results are depicted in Fig. 4.5 b) and the distances are calculated in Tab. 4.3. For the ideal CDP,

the Bloch sphere contracts to a single point, implying that its volume is zero after the process.

We determine the remaining volume for the reconstructed CDP by calculating the Bloch vec-

tors a|g〉〈g| = (0.0518,−0.0351,−0.0121)T , a|+〉〈+| = (0.0178,−0.0281,−0.0539)T and a|−〉〈−| =
(0.1761,−0.0663,−0.0604)T . We assume that the reconstructed deformed Bloch sphere in Fig. 4.5

b) has an ellipsoidal shape, yielding a Bloch volume VBloch ' 4π(|a|g〉〈g|||a|+〉〈+|||a|−〉〈−||)/3 '
0.0033. The high fidelity of the reconstructed single qubit processes is also reflected in the

distance limits, which are summarized in Tab. 4.4.

dist(χI ,χ∗,t) dist(χ∗,χI,t) Theoretical limit

Dlim 0.6994 0.6720 0.75
1− flim 0.4003 0.4241 0.5
Blim 0.8948 0.9209 1
Clim 0.8002 0.8175 0.866
‖ · ‖�lim − 0.3996 0.433

Table 4.4: Distance limits for QPT. The measurement results for the reconstruction of the identity are compared

with the ideal CDP and the reconstructed CDP is compared with the ideal identity process. The

fourth row shows the theoretically predicted distance limits.

Influence of temperature fluctuations We observe that there may be fluctuations in the RO

phase for different measurement cycles. We usually measure ϕe ' −8◦ and detect deviations ∆ϕ
between 0.5◦ − 1◦, i.e. relative fluctuations of about 10 %. This is especially important for the

calibration of our QST and QPT protocols, since they are based on an accurately measured and

constant ϕe, implying that the variations in the RO phase may influence the tomography fidelities.

We may ask ourselves whether these phase fluctuations come from changes in temperature or

from the used pulse pattern, which can cause excitations of higher levels. Another reason could

be variations in ωq, which tilts the rotation plane as illustrated in Fig. 2.8 c). We discuss the

influence of these effects on QPT and QST experiments. Changes in temperature may impact

the RO phase in different manners. We analyze effects induced by a temperature modification

∆T , such as [108]

� thermal photons inside the cavity, which shift the qubit away from the working point due

to an AC Stark shift,
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� thermal expansion of the cavity, which implies changes in the resonance frequencies

� photons induced by the antennas inside the cavity

For the first case, we find a change ∆Nth for the thermal photon population Nth [123] (cf. Sec.

C.1 in the appendix)

∆ϕ
ϕg − ϕe

= ∆Nth = Nth(t+ ∆T )−Nth(T ) = 6ζ(3)V
π2

(
kB
~c

)3
T 2∆T +O(∆T 2) (4.15)

with the cavity volume V , the Boltzmann constant kB, the speed of light c and the Riemann zeta

function ζ [115]. The AC Stark shift scales linearly with the photon number, and as described in

Sec. 4.1, we assume a linear dependence for the change ∆ϕ of the RO phase. For the measured

temperatures (T ' 30 mK, ∆T ' 4 mK), we estimate that

∆ϕ
ϕg − ϕe

' 0.2 % (4.16)

which is negligible compared to the observed fluctuations.

Furthermore, temperature fluctuations could change the dimensions of the cavity, which changes

the frequency ω0 of the transmission peak and hence the detected readout phase. In Sec. C.2 in

the appendix, we derive an expression for the changes in the RO phase induced by this effect.

In summary, we obtain
∆ϕ

ϕ0 − ϕ1
= ω0

χ
α∆T. (4.17)

With the thermal expansion coefficient α. Since the expansion coefficent decreases at low

temperatures, we obtain an upper bound if we take α [124] at room temperature. For aluminum,

we have αRT = 23.5 · 10−6 K−1 [125]. This yields, for ∆T = 4 mK,

∆ϕ
ϕ0 − ϕ1

≤ fp
χ/2παRt∆T ' 0.01 %, (4.18)

which is negligible.

We now discuss the third case. It may occur that the antennas inside the cavity heat up, either

by Joule heating from high microwave drive powers or by thermally coupling to upper stages

of the cryostat, which are higher in temperature. In order to give a rough estimation for the

influence of photons induced by the antennas, we assume that the antennas heat up by ∆T . The

resulting change in internal energy is then emitted as photons with a mean wavelength λ̄ that is

calculated from the Planck curve. In Sec. C.3 in the appendix, we find

∆ϕ
ϕ0 − ϕ1

= ρ2γd2πlb

4Mmolhc︸         ︷︷         ︸
≡β

·∆T (4.19)

with the antenna material density ρ, the Sommerfeld coefficient γ [49], the molar mass Mmol

of the antenna material, the antenna length l, the antenna diameter d, the Planck constant

h and a Wien-like constant b = 0.003 669 7 K m [126, 127]. We find β ' 1 · 1018 K−1, which
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yields large phase fluctuations for small temperature fluctuations. However, we have to take into

account that only a small part of the heat is transported via thermal radiation. One reason for

that are the low operation temperatures. To show that we assume that radiation is the only

channel for heat transfer. The emitted energy in an infinitesimal time interval dt is given by

the Stefan-Boltzmann law dE = εσAT 4dt [124] with the emissivity ε and the Stefan-Boltzmann

constant σ = 5.67 · 10−8 W m−2 K−4. The cooling of the antenna is then given by ca(T )mdT
and we obtain

εσAT 4 = γT
ρ

Mmol
·mdT

dt
. (4.20)

We solve this equation with the initial condition T (0) = Te + ∆T , where Te is the temperature

in thermal equilibrium. This allows us to calculate the time trad after which the system reaches

again an equilibrium state. Since the emissivity depends on the surface structure as well as on

the temperature of the material, we need to make estimations. Hence, we set ε to one, assuming

that the antennas are black-body emitters. Thus, Eq. (4.21) gives us a lower bound for trad [125]
2.

trad = ρ2γd

8εσMmol

( 1
T 2
e

− 1
(Te + ∆T )2

)
≥ 1.9 · 1012 s (4.21)

if we consider Te = 50 mK and ∆T = 10 mK. We conclude that only a small part of the heat is

transported via thermal radiation, since it is plausible that themalizing happens on timescales

� trad. This effect may be responsible for the fluctuations in the RO phase. In order to

investigate the effect of thermal radiation caused by the antennas in a precise way, we need to

formulate and solve the complete energy balance equation for the system.

Influence of higher transmon qubit levels Another effect that can cause RO phase fluctuations

is a population of higher levels of the transmon qubit. The pulse pattern varies from measurement

to measurement, implying that the number of pulse edges is not constant. Thus, the pulse

patterns look different in frequency space, which means that we can have different resulting higher

level excitations that cause additional disperive shifts. We investigate this effect experimentally

by performing “discrete” Rabi oscillations using sequences of Gaussian pulses with a length of

τdis = 40 ns. As a result, we can measure the RO phase only for discrete times N · τdis. We then

compare the result with an ordinary Rabi oscillation that is measured directly after the discrete

Rabi experiment in order to prevent the system suffering from thermally induced fluctuations in

the RO phase. The result for the discrete Rabi experiment is depicted in Fig. 4.6. We measure

the lowest RO phase ϕdis
1 = −7.129◦ for tdis = 200 ns. In order to compare this result to the

ordinary Rabi oscillation, we have to take into account that the pulse area increases differently

with the pulse length for the discrete Rabi oscillations. If tdisθ (tcontθ ) denotes the θ-time for

the discrete (continuous) Rabi experiment, we find tcontθ =
√
πσ(tdisθ − 2tr) + 2tr with the ramp

time tr and the standard deviation σ. We find tcont ' 96.7 ns. This corresponds to a RO phase

ϕcont
1 = −7.131. In order to investigate the effect of higher levels, we have to correct for the T1

2We use γ = 0.729 mJ mol−1 K−2 [49], ρ = 19.32 · 103 kg m−3, Mmol = 0.197 kg, d = 1 · 10−4 m [125] and
l = 1 · 10−2 m

57



Chapter 4 Benchmarking a 3D quantum memory

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

-8

-6

-4

-2

0
R

ea
do

ut
 p

ha
se

 (d
eg

)

Figure 4.6: Discrete Rabi oscillations for the RO phase using Gaussian pulses with a length of 40 ns respectively.

The black dots denote the measured data points. We extract a π-pulse length of 0.2µs. For comparison,

a continuous Rabi measurement is performed (cf. Fig. 3.7, white dots).

decay during the pulses. We can realize this by calculating the corrected phase ratio

R = ϕdis
1

ϕcont
1
· e(tdisπ −tcontπ )/T1 ' 1.089. (4.22)

Ideally, this ratio should be equal to one. Deviations in this quantity must be assigned to

differences in the amount of pulse edges. We observe that the pulse pattern may indeed impact

the RO phase, since the deviation is on the same order of magnitude. Nevertheless, we have to

take into account that the corrected phase ratio also depends on statistical fluctuations in T1.

4.3 QST for the quantum memory

In this section, we apply QST to our memory protocol. We prepare the states |g〉, |e〉, |+〉, |−〉,
|◦〉 ≡ 1/

√
2(|g〉− |e〉) and |�〉 ≡ 1/

√
2(|g〉− i|e〉), i.e., the pure states with Bloch vector in ẑ, −ẑ,

x̂, −x̂, ŷ and −ŷ dirction and store them in the cavity mode. We retrieve the state immediately

after the storage procedure, i.e. we have ts = 0. After the state retrieval, we reconstruct the

density matrix with QST and calculate the distance measures in Tab. 4.5. At first, we store the

ground state |g〉. The results are shown in Fig. 4.7 a). We calculate a fidelity of f|g〉 = 0.9035.
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Figure 4.7: Reconstruction of a) the |g〉-state and b) the |e〉-state after retrieval from the memory

|g〉 |e〉 |+〉 |−〉 |◦〉 |�〉
D(ρ, ρt) 0.4149 0.1034 0.3455 0.3542 0.3230 0.3190

1− f(ρ, ρt) 0.0965 0.0466 0.1633 0.1267 0.1383 0.1442
B(ρ, ρt) 0.4393 0.3052 0.5714 0.5034 0.5260 0.5370
C(ρ, ρt) 0.4285 0.3016 0.5476 0.4872 0.5075 0.5173

Table 4.5: Distance measures for the reconstructed states |g〉, |e〉, |+〉, |−〉, |◦〉 and |�〉 after storage and retrieval.

After that, we reconstruct the state |e〉, and depict the results in Fig. 4.7 b). We obtain a fidelity

f|e〉 = 0.9534. We observe that we have a significantly higher fidelity for |e〉, although we have

shorter preparation pulse lengths for |g〉, resulting in a lower amount of depolarization. This can

be explained by the fact that only the |g〉-population is affected by the memory protocol. The

BSB transitions as well as the additional qubit π-pulses of the memory protocol cause additional

fidelity losses, which increase with the |g〉 population of the state.

In the next step, we reconstruct the |+〉 and the |−〉 state and show the result in Fig. 4.8 a)

and Fig. 4.8 b). We detect f|+〉 = 0.8367 and f|−〉 = 0.8733. We observe fast decay for the

off-diagonal elements (coherences) of the density matrices and attribute this either to the BSB

transition or to dephasing processes which are probably caused by deexciting the qubit after

the first BSB drive and reexciting it for state retrieval. The results for the reconstruction of

the |◦〉 state and the |�〉 state are shown in Fig. 4.8 c) and in Fig. 4.8 d). We measure the

fidelities f|◦〉 = 0.8617 and f|�〉 = 0.8558 and calculate the remaining distance measures. Again,
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Figure 4.8: Reconstruction of a) the |+〉-state and b) the |−〉-state, c) the |◦〉-state and d) the |�〉-state after

retrieval from the memory
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4.3 QST for the quantum memory

Figure 4.9: Reconstruction of the qubit part of the |+q,+r〉-state for averaging over na data points recorded

during the RO pulse. The real part of the off-diagonal elements vanishes with increasing na, indicating

that the phase information is lost on short timescales.

we observe that the phase coherence is lost fast in comparison with the benchmarking cases

in Sec. 4.1. One reason for this behavior can be found in the number of averages. For several

cases, we detect an increase in phase coherence for significantly higher amounts of averages.

This implies that it is possible that we have high noise contributions regarding the qubit phase,

meaning a large number of averaged measurements is advantageous. Averaging is performed

within the RO pulse length of 2.7µs, i.e., we take the average over a number of na data points

during this RO time interval. We note, that more averaging results in higher contributions of

T1-decay, thus decreasing the fidelities of the measurement.

Influence of the BSB transition In order to investigate the fidelity loss caused by the BSB

π-pulse, we investigate the qubit when it is prepared with a BSB π-pulse (|g0〉 ↔ |e1〉). We

reconstruct the qubit part of |g,0〉 and |+q,+r〉 ≡ 1/2(|g,0〉 + |e,1〉) and find fBSB
|g〉 = 0.9657

(na = 100) and fBSB
|+〉 = 0.9340 (na = 5). We choose this low number of averages for |+q,+r〉

because we observe systematic phase drifts for more averages. For na = 100, the fidelity reduces

to 0.7883. The respective density matrices for |+q,+r〉 for na = 5 and na = 100 are depicted in

Fig. 4.9. We conclude that the phase coherence is lost on short time scales. Additionally, we

observe significant influence of the T1-decay, which is a result from the short TBSB
1 time. Thus,

it is possible that the loss of phase information for the memory protocol is mainly a result from

the BSB drive. We guess that it is possible that the enhanced dephasing is a result from noise

contributions caused by the relatively high drive power. Alternatively, the dephasing can be

a result from the linear phase trend detected in Fig. 3.14. This is plausible since we observe

monotonic “swapping” of the coherences from the real to the imaginary part for increasing na.

Furthermore, we observe that the excited resonator may cause dephasing. We state that we are

able to reconstruct retrieved states from the memory mode with distance measures clearly below

the theoretical limit, although we are limited by decoherence processes.
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Figure 4.10: Expected and reconstructed process χ matrix for the quantum memory protocol. We observe that

the only significant contribution except IρI† is given by σ̂xρσ̂
†
x. The Bloch sphere contracts towards

its center and we observe faster decay in z- and y-direction.

4.4 QPT for the quantum memory

Our QPT benchmarking procedure in Sec. 4.2 shows that we are able to accurately characterize

single qubit processes. This enables us to reconstruct the χ-matrix for our quantum memory

protocol. We store the four basis states |g〉, |e〉, |+〉 and |−〉 and immediately retrieve them

back, implying ts = 0. We then apply the QPT protocol and calculate χ as well as the Bloch

sphere after the process. The results are shown in Fig. 4.10. We measure a process fidelity

of fM ≡ f(χ, χI,t) = 0.8772. The distance measures are listed in Tab. 4.6. For the purpose

of investigating the influence of different pulse shapes, we repeat the same experiment with

rectangular pulses with a 1 ns rise time. We observe that the distance measures get significantly

worse for rectangular pulses. When evaluating the distance measures for the data in Fig. 4.10,

we observe that we are well below the distance limits. In order to correct for the fidelity losses

due to QPT pulses, we can reconstruct the identity χI directly before reconstructing the memory

process χ and calculate the fidelity f(χ, χI). In the ideal case, the difference to one is just caused

by decoherence and errors induced by the memory protocol. We compare the principle of the

procedure to a four point resistivity measurement, where we are interested in the resistance of

the respective material without contact resistances and the resistances of the cables, respectively

[128]. We compare the reconstructed process matrix χ for the memory with the result χI
obtained in Fig. 4.4 a) and obtain f(χ, χI) = 0.947. This result may be not very accurate since

the measurements are not performed in a directly consecutive manner.

62



4.4 QPT for the quantum memory

D 1− f B C ‖E − Eid‖�
Flat-top Gaussian 0.2344 0.1238 0.4956 0.4802 0.2099

Rectangular 0.6264 0.3883 0.8812 0.7911 0.5632
dist(χ,χ∗,t) 0.5144 0.2366 0.6879 0.6460 −

Table 4.6: Distance measures for the reconstructed memory process. The first two rows show the results for two

different pulse shapes. The distance measures with respect to the CDP are listed in the fourth row.

Estimation of uncertainties for the fidelity In order to estimate the uncertainty in fidelity for

this measurement, we derive an explicit expression for f({ϕ(j)
i }), where ϕ

(j)
i denotes the RO

phase and i ∈ {|g〉〈g|, |e〉〈e|, |+〉〈+|, |−〉〈−|}, j ∈ {x,y,z}. The nomenclature is chosen in a way

that ϕ
(j)
i is the RO phase for the projection measurement onto the j-axis for the prepared input

state i. We exploit that the ideal memory process is an identity, yielding f(χ,χI,t) = √χ11.

We define ϕ ≡ (ϕ(x)
|g〉〈g|, ϕ

(y)
|g〉〈g|, ... ,ϕ

(z)
|−〉〈−|)

T ≡ (ϕ1, ϕ2, ... , ϕ12) and obtain (cf. Sec. B.2 in the

appendix)

f({ϕ(j)
i }) = 1

2

√
1 + a ·ϕ

ϕg − ϕe
(4.23)

with a ≡ (1,−1, 1, 1,−1,−1,−2, 0, 0, 0, 2, 0)T . Propagation of error then translates the error in

RO phase to uncertainty in fidelity

∆f = 1
8(ϕg − ϕe)f({ϕ(j)

i })

√√√√∑
k

(ak∆ϕk)2 +
(

a ·ϕ
ϕg − ϕe

∆ϕe

)2

(4.24)

where ∆ϕk denotes the uncertainty for the RO phase with index k and ∆ϕe labels the uncertainty

for the ϕe phase obtained from the calibration measurements. For the measurement results

depicted in Fig. 4.10, we obtain ∆f ' 0.025. Equation (4.23) gives us the opportunity to

estimate the corrected fidelity f c from the uncorrected fidelity f . In the correction, we take into

account losses resulting from depolarization, on a time scale T1. Our system is T1-limited, hence

we only consider energy decay. We use the approximation that each RO phase ϕk decays with a

factor e−τ/T1 , where τ is the length of the pulse. This yields

f c ' 1
2

√
1 + a ·ϕ

ϕg − ϕe
e
τ
T1 = 1

2

√
1 + (4f2 − 1)e

τ
T1 . (4.25)

For a protocol consisting of N pulses, where each pulse has a length τi and a decay time T (i) for

1 ≤ i ≤ N , we conclude via induction that

f c = 1
2

√√√√1 + (4f2 − 1)
N∏
i=1

e
τi

T (i) . (4.26)

For our memory protocol with N = 4, we obtain
∏N
i=1 e

τi/T
(i) = etBSB/T

BSB
1 · etq/T

q
1 where tBSB

(tq) is the total length of the two BSB (qubit) pulses. From Eq. (4.26), we estimate a corrected

fidelity of f c ' 0.966.
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In Fig. 4.10, we observe that only χ11 and χ22 are significantly larger than 0. As a result, we can

model the resulting process as E(ρ) ' (1−p)IρI†+pσ̂xρσ̂
†
x with the constant p [12]. We compare

this with the CDP described by Eq. (2.33) and hence interpret the σ̂xρσ̂
†
x term as depolarization

towards x and p as the respective probability, where we assume Markovian behavior. Regarding

the dephasing process (cf. Fig. 2.13), we can state that the term corresponds to dephasing in the

yz-plane. Thus, we expect the Bloch sphere to contract towards the x-axis, which is consistent

with the behavior of the Bloch sphere in Fig. 4.10. This is probably a technical artifact, resulting

from differences in the I and Q channel. According to Eq. (3.1), a rotation about the x-axis

corresponds to the RF quadratures I = 0 and Q = A [cf. Eq. (3.1)]. A higher dephasing rate

about x, compared to the y-axis, can then be a result from the Q-channel adding more noise

to the system than the I channel. Especially, it is possible that I and Q show different on/off

ratios, yielding asymmetries regarding the depolarization behavior. Another explanation for this

behavior is the BSB drive, which is always performed with a fixed phase. It is possible that the

RF source for the BSB pulses adds phase sensitive noise, disturbing the symmetry of the Bloch

sphere. Possibly, this may be a result from the linear trend detected in Fig. 3.14.

In order to investigate whether the asymmetry with respect to dephasing is reproducible,

we repeat the QPT experiment for the memory protocol for 25 times. From these results, we

calculate an average corrected fidelity of f c = 0.886 ± 0.065. We measure deviations in the

experimental outcomes, especially regarding the diagonal elements of χ. This implies that

depolarization behaves different for each measurement and we may ask whether this yields well

defined results. We are able to divide the reconstructed χ-matrices into three different categories,

as depicted in Fig. 4.11 We introduce the parameter n ∈ {1,2,3}, which denotes the number of

diagonal elements of χ which are significanty different from zero. n is a measure for the symmetry

of the depolarization process, i.e., n = 1 means that we mainly loose coherence in one plane (xy,

xz, yz) of the Bloch sphere, n = 2 implies a loss of coherence in two planes and n = 3 states

that depolarization takes part for all directions. For the 25 QPT measurements, we obtain 16
times n = 1, seven times n = 2 and two times n = 3. We additionally observe that the measured

fidelities are independent of n, implying that the total fidelity loss due to decoherence is the same

for each measurement, whereas only the phase distribution of the decoherence process differs.

A possible explanation for this behavior is that the RF source adds the same amount of noise

for each QPT experiment, which is from measurement to measurement differently distributed

to the I and Q channels. Furthermore, we observe that for a fixed n, each of the n diagonal

elements different from 0 that correspond to σ̂x, −iσ̂y or σ̂z have approximately the same value,

which we label δ. For example, for n = 2, we obtain δ = χ22 ' χ33.

In order to calculate the loyalty ξ of the protocol, we need to calculate the corrected fidelity with

respect to the CDP. We use the previously described characterization by n to approximate this

quantity. From the definition of the fidelity, Eq. (2.50), it follows that f∗ ≡ f(χ, χ∗) = 1/2 ·Tr
√
χ

[68]. We assume that χ is diagonal, which is consistent with the measurement data. For most of

the reconstructed χ-matrices, we observe that the off diagonal elements are small compared to the

diagonal elements which are significantly larger than zero. Thus, f(χ, χ∗) ' 1/2 ·(√χ11 +n ·
√
δ).

From Trχ = 1, we conclude δ = (1− χ11)/n. This allows us to calculate f∗ as a function of the
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Figure 4.11: Three categories of measurement results for the χ-matrix of the memory protocol. We distinguish

the categories by n ∈ {1,2,3}

process fidelity

f∗ = 1
2(f +

√
n
√

1− f2). (4.27)

We use Eq. (4.26) to calculate the corrected fidelity f c∗ with respect to the CDP

f c∗ '
1
4

√√√√1 + (4f2 − 1)
N∏
i=1

e
τi

T (i) +
√
n

2

√√√√3− (4f2 − 1)
N∏
i=1

e
τi

T (i) . (4.28)

This allows us to calculate a loyalty of ξ = 0.16± 0.11. We conclude that despite the direction

of the depolarization is randomly distributed, the reconstructed process is well defined since ξ is

significantly larger than 0 and larger than the threshold of 10 % which we define in Sec. 2.4.3. In

order to further characterize the quantum memory process, we repeat the characterization mea-

surements for rotations that are performed in Sec. 4.2, but insert the memory protocol between

the rotation pulse and the QST pulses, which means that the result from the rotation process

is stored and regained before performing QST. In Fig. 4.12, we plot the result of the R̂x(π/2)
rotation. We measure a fidelity fR̂x(π/2,M) = 0.8310. The distance measures are listed in Tab. 4.7
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Figure 4.12: Rotation by π/2 about the x-axis. After the rotation process, the resulting state is stored in the

memory mode and retrieved.

DR̂x(π/2,M) 1− fR̂x(π/2,M) BR̂x(π/2,M) CR̂x(π/2,M)
0.3973 0.1690 0.5815 0.5563

Table 4.7: Distance measures for the reconstruction of a rotation by π/2 about the x−axis followed by the memory

protocol.

We observe that the Bloch sphere rotates by an angle smaller than π/2. We explain this behavior

with the enhanced dephasing about the x-axis, caused by the memory protocol. The χ-matrix

displays this result with |χ11| < |χ22|. We repeat the experiment for a π-pulse about the y-axis

[R̂y(π)] and for a π/2-pulse about the y-axis [R̂y(π/2)] and obtain the fidelities fR̂y(π),M = 0.7060
and fR̂y(π/2),M = 0.7095. We observe that these values are worse than the fidelities obtained in

the benchmarking procedure, which is again a result from increased decoherence due to longer

pulse sequences and from the dephasing processes that occur during the memory protocol.
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4.5 Time-resolved tomography of the memory

As shown in Sec. 4.4, we are able to completely characterize the quantum memory process with

QST. However, as stated in Sec. 2.3.2, QPT has the disadvantage that the process is treated as

a black box [14]. Within this section, we want to get access to the dynamical evolution of χ,

which means that we want to obtain χ(ts), where ts is the time for which the respective state

is stored in the storage mode. We thus vary ts and reconstruct the resulting process matrix

for a set of times {t(i)s } with QPT. Intuitively, we expect that the fidelity f(χ(ts), χI,t) decays

exponentially with ts. In order to enhance the performance of the procedure, we exploit this

behavior and exponentially increase the spacing between the ts for which we reconstruct the

process [88, 96]. We choose a total time T , an initial time interval ∆t and an amount of sample

points N . We set t
(i)
s = ∆t · 2i and obtain a relation between T , ∆t and N using

T = ∆t
N−1∑
i=0

2i = ∆t(2N − 1). (4.29)

In order to be able to compare the measured data with the predicted time evolution of χ during

storage, we simulate the memory protocol using the Lindblad master equation Eq. (2.5). We

solve the system of equations in Eq. (2.61) for the driven qubit, the BSB transition and for

energy decay and dephasing for the non-driven system. For the driven qubit, we use Eq. (2.62)

for the unitary part and Eq. (2.63) for the non-unitary evolution. Equation (2.63) additionally

models the decay of the non-driven system. A more detailed discussion can be found in Chap. D

in the appendix. The BSB transition for the qubit is modelled by using the Hamiltonian Eq.

(2.17) in its matrix form, Eq. (2.18), and tracing out the resonator term. Similar to Eq. (2.62),

we rewrite this contribution as

ĤBSB = A
√
n+ 1


0 −1 1 0
−1 0 0 1
1 0 0 −1
0 1 −1 0

 . (4.30)

3 Since we do not exactly know the attenuation caused by the RF source, the RF lines and

the cryogenic setup, we choose the value for Ωd in a way that the simulated Rabi oscillations

show the same period as in experiment. This is the case for Ωsim
d,q /2π ' 5.01 MHz. A similar

procedure is performed for the BSB transition, and we choose the constant A in a way that the

Rabi frequency in simulation coincides with the measured Rabi frequency. This is the case for

Asim/2π~ = 3.21 MHz.

We check consistency by considering the definition of A in Eq. (2.17). For g, ωq and ωb, we

take the values from the characterization experiments in Sec. 3.3. We use ωm/2π = 8.708 GHz
[108]. The drive power Ωd,BSB is calculated from the drive power Ωsim

d . In experiment, the BSB

transition is driven with LBSB
p = 21 dBm and for the qubit, we have Lq

p = −40 dBm. We have

3We benchmark the simulations for the driven system with the initial condition ρi = |g〉〈g| and observe the
expected damped Rabi oscillations, decaying on the timescale T1.
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Figure 4.13: Schematic illustration of the simulation of the memory protocol. We use |g〉〈g| as initial input. The

first qubit pulse serves for state preparation. The memory protocol is then simulated step by step.

The last step is necessary for QST, which either consists of free decay or a qubit π/2-pulse.

to take into account that the qubit RF line contains an additional combiner with an attenuation

of 3 dBm (cf Fig. 3.3). Thus, we state that Ωsim
d,BSB = Ωsim

d,q · 10(LBSB
p −Lq

p−3 dBm)/20. Altogehter,

we calculate A/2π~ = 2.71 MHz. We obtain Asim/A ' 1.6954. We use this as an indicator that

our results are consistent, since we make use of several approximations for estimating Asim/A.

Deviations in this ratio can be assigned to measurement uncertainties, especially in g, which

may have high impact due to A ∝ g3. Furthermore, for the estimation of Ωd,BSB, we include all

differences in the RF cabling and attenuation at room temperature as compared to the qubit

drive line. However, we do not take into account that there may be additional deviations in

the impedances of the BSB and the qubit RF lines. Furthermore, we assume that we have pure

rectangular pulses in the simulation, whereas we use flat-top Gaussian pulses in the experiment.

We simulate the memory protocol by starting in |g〉〈g| and we solve the Lindblad equation step

by step for the respective pulse sequence, i.e., we use the result from the ith pulse as inital

condition for the (i+1)th pulse, as illustrated in Fig. 4.13. For reconstructing the behavior

of χ(ts) for 0 ≤ ts ≤ Ts, we consider Eq. (4.29) and choose ∆t = 10 ns, T = 5.12µs, yielding

N = 11. In order to obtain more accurate results, we additionally reconstruct the χ(ts) for

ts ∈ {1.7µs, 2.2µs, 3.5µs, 4.0µs}, however, we only estimate the errors for the data points

corresponding to the exponentially increasing times ts due to better performance. We plot

the fidelities f(χ(ts), χI,t) in Fig. 4.14 and adopt an exponential fit to the data (red curve).

For comparison, we additionally plot the results of our simulation (blue curve). We observe

that the simulated curve reproduces the behavior of the measurement and that the simulated

values lie within the error bars for most of the data points. From the fit curve, we observe that

the measured fidelities are worse than the ones obtained from the simulation. This behavior

is expected, since there may be additional sources of decoherence which we do not take into

account in our simulation. We observe that the difference of the fidelity curves is approximately

equal to the value ∆f = 3 % measured in Sec. 4.1. Furthermore, discrepancies may also result

from the fact that, in the simulation, we assume that our transmon qubit is an ideal TLS. Hence,

we neglect effects resulting from the low anharmonicity and higher levels, such as state leakage

[35]. This is probably the explanation why the simulated values for ts = 0 are higher than the

measured results. Another reason for the deviation is the fact that we use pure rectangular

pulses for the simulation, neglecting that the pulse lengths may slightly differ from the ones used

in experiment. Furthermore, decoherence during the RO pulse is not taken into account. From

Sec. 3.3 and Sec. 3.4, we observe the existence of fluctuations in the decay times. We include this

statistical effect into the simulation by assuming that the T1-times are normally distributed with
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Figure 4.14: Exponential decay of the measured fideliy. The red curve is a fit to the experimental results, whereas

the blue curve results from a master equation simulation of the system. We take into account that

the decay times are normal distributed, which yields fluctuations of the fidelity (light blue).

a standard deviation given by the estimated statistical uncertainty. The resulting flucuations

of the fidelity are shown in Fig. 4.14, and we observe that these variations in the T1-times

are a possible explanation for the divergence of the measurement points, especially regarding

the measurement uncertainties in fidelity of up to ±0.08. Nevertheless, we observe that our

measured data points are still below the theoretically expected values.

We compare the simulated χ-matrix for ts = 0µs with the QPT result in Fig. 4.10 and calculate

the fidelity f(χsim(0µs), χexp(0µs)) = 0.95. We observe that for this case, the total degree of

decoherence (i.e., the deviation of χ11 from one) is similar for the simulated and the reconstructed

process. The fact that the asymmetric behavior of decoherence described in Sec. 4.4 is not

reproduced by the simulation substantiates the hypothesis that this might be a result from

asymmetries regarding the I and Q channel.

We compare the χ-matrices for the experimental and the simulated process for times simi-

lar to or larger than Ts. In order to interpret the results, we have to state that for ts →∞, the

memory protocol does not reproduce the CDP, but a contraction of the Bloch sphere towards its

south pole, i.e. a reverted T1-decay. We understand this with the energy level scheme from Fig.

2.18 a). For ts � Ts, every stored state ends up in |g,0〉 before retrieval. The qubit π-pulse of

the retrieval sequence then yields the state |e,0〉, which is not affected by the second BSB pulse.
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Figure 4.15: Comparison of the simulated and the measured process matrix for ts = 0. In the simulation, the

decoherence is similarly distributed to χsim,22, χsim,33 and χsim,44, whereas in the experiment, we

observe that mainly χexp,22 is affected. The total degree of decoherence is similar for the simulated

and the measured case.

Let χsp be the process matrix for the quantum process Esp that maps every quantum state ρ to

the south polse |e〉〈e|, i.e., Esp(ρ) = |e〉〈e| for arbitrary ρ. Inserting the process outcome into

Eq. (2.41) and using Eq. (2.46) gives

χsp = 1
4


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 . (4.31)

We perform a similar calculation for the process Enp that maps arbitrary states ρ to the north

pole of the Bloch sphere [12], i.e., conventional T1-decay for times t→∞. The corresponding

process matrix reads

χnp = 1
4


1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

 . (4.32)
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Figure 4.16: Simulated and reconstructed process matrix for ts = 5.12µs. The reverted T1 decay during storage

is observable for both cases.

We depict the simulated and one of the measured process matrices for ts = 5.12µs in Fig. 4.16.

For this measurement, we calculate a fidelity of f [χsim(5.12µs), χexp(5.12µs)] = 0.975. We

especially observe contributions of the reverted T1 decay described by Eq. (4.31). The distance

measures are listed in Tab. 4.8

D 1− f B C
0.2006 0.025 0.2224 0.2210

Table 4.8: Distance measures for the comparison of the reconstructed and the simulated process matrix for

ts = 5.12µs.

In Tab. 4.9, we compare the experimenal result with the ideal process χI (first row). In order to

interpret the distance measures for this process, we need to adopt the limits in a way that we

do not compare the ideal memory protocol with the CDP but with Eq. (4.31) and Eq. (4.32).

These limits correspond to a T1 decay for t→∞ and we label them with subscript ∞. We list

the results in Tab. 4.9. For the theoretical limits, we only consider T1 decay, neglecting different

types of decoherence processes during the RF pulses.
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Figure 4.17: a) Simulated distance measures depending on the time ts. The distance measures converge for

ts � Ts. b) Simulated distance measures as a function of the time td between the memory protocol

and the QST pulse.

D 1− f B C ‖ · ‖�
ts = 5.12µs 0.6855 0.4285 0.9257 0.8206 0.4488

ts →∞ (Theory) Φ/2 ' 0.809 1/2 1
√

3/2 ' 0.866
√

6/4 ' 0.612

Table 4.9: Distance limits for the comparison of the ideal memory process and T1 decay for timescales t→∞.

Where Φ ' 1.618... denotes the golden ratio [115]. We verify these limits with our simulation. In

Fig. 4.17 a), we plot the distance measures for increasing time ts. Figure 4.17 b) shows the sim-

ulated distance limits depending on the time td between last BSB pulse of the memory protocol

and the QST pulse, i.e. we apply the memory process, wait for a time td and then reconstruct

the result. We state that for our conventions, we always have 1− f ≤ ‖ · ‖� ≤ D ≤ C ≤ B, which

is consistent with our measurement results. In Tab. 4.10, we summarize the distance measures

for td = ts = 25µs.

D 1− f B C ‖E − Eid‖�
ts = 25µs 0.7822 0.4979 0.9979 0.8648 0.5409
td = 25µs 0.8090 0.500 1.000 0.8660 0.6124

Table 4.10: Distance measures for the simulated process matrices after ts = 25µs and td = 25µs with respect to

the ideal memory process.

We observe that the fidelity and the resulting Bures and C-distance are close to the limit in

Tab. 4.10 for both cases, whereas in the case of varying ts, the trace distance and the diamond

norm converge to values smaller than the predicted limit for T1-decay and larger than their limit

for depolarization. An explanation is that the fidelity only depends on the height of χ11, which

implies that it does not differ between T1 decay and depolarization towards the CMS and, hence,

always converges to the same limit. The trace distance and the diamond norm are additionally

affected by the off-diagonal elements, which is reflected by the fact that they have different
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Figure 4.18: a) Fidelity of the reconstructed process, depending on the time td between the memory protocol

and the QST pulses. The blue curve is a result of the master equation simulation. Fluctuations in

fidelity resulting from statistical variations in the decay times are shown in light blue. b) Real part

of the simulated and measured process matrix for td = 4.096µs. All matrix elemets of the imaginary

part are negligibly small.

distance limits for energy relaxation and depolarization. Thus, the resulting limit consists of

contributions from depolarization during the drive pulses as well as from pure energy decay.

In the next step, we vary the time td between the memory protocol and the QST pulses. Starting

from Eq. (4.29), we choose ∆t = 1 ns, N = 14, implying T = 4.12µs. The result is depicted in

Fig. 4.18 a), together with the simulated fidelities (blue curve). In Fig. 4.18 b), we depict the

reonstructed process matrixt with td = 4.096µs as well as the simulated result. For the two

matrices in Fig. 4.18 b), we find the fidelity f [χsim(4.096µs), χexp(4.096µs)] = 0.9493. Further-

more, we compare the experimental outcome for td = 4.096µs with the ideal process χI . We

find the distances that are listed in Tab. 4.11

D 1− f B C ‖ · ‖�
0.8009 0.5151 1.015 0.8746 0.5566

Table 4.11: Distance measures for the comparison of the reconstructed and the ideal process matrix for td =
4.096µs.

We observe that we reach the predicted distance limits. Discrepancies regarding the trace

distance and the diamond norm are again a result from depolarization during the QST pulses.

Similar to Fig. 4.14 a), we observe that the fidelities for the reconstructed state are located

below the simulated fidelity curve. We explain this again with the fact that there may be sources

of decoherence in the experiment that are not included in the simulation.
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Chapter 5

Summary and outlook

In this thesis, we use quantum state tomography (QST) and quantum process tomography

(QPT) to characterize a quantum memory consisting of a transmon qubit placed in a 3D cavity

resonator. The working principle of the quantum memory is based on the multimode structure

of the cavity, and we use different electrical modes for readout and storage, respectively. In

oder to understand QPT, we introduce the relevant physical concepts as well as the theory of a

quantum process, which can be interpreted as a displacement, followed by a deformation and

a rotation of the Bloch sphere in the single qubit case. Furthermore, we discuss how we can

compare quantum states and quantum processes mathematically.

Characterization measurements for the qubit and the quantum memory setup yield the coupling

constants as well as the decay rates and the required pulse lengths. For the qubit, we obtain

T1 = 1.21µs and a dephasing time Tϕ � T1, implying that we are limited by energy decay. The

memory decays with T s
1 ≈ 4.3T1, showing that we are able to significantly enhance the decay

time. We realize a pulse protocol for QST and benchmark the routine by reconstructing pure

and mixed single qubit states with fidelities close to one. We investigate the phase dependence

of the quality of our QST protocol and prove that the IQ control works properly. After that, we

implement a QPT protocol, which is successfully tested by reconstructing rotations on the Bloch

sphere and the completely decohering process (CDP) with high fidelities. We discuss limitations

of our realization of QPT.

QST is used for the reconstruction of states that have been stored in and retrieved from

the memory mode, yielding fidelities higher than 0.84. We assign the loss in fidelity to a higher

impact of energy decay and observe additional dephasing, which may be caused either by the

resonator mode inheriting the qubit non-linearity or by the blus sideband (BSB) drive. We

then characterize the memory process with QPT, which gives us a process fidelity of 0.877. We

repeat the experiment for 25 times and observe deviations regarding the dephasing process

and obtain an average corrected fidelity of 0.886. The asymmetric dephasing behavior can be

possibly explained by phase sensitive noise, either resulting from the high drive power of the

BSB pulses or by the IQ control for the qubit pulses. We develop an empiric model in order to

categorize the measurement results.
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We vary the time ts for which the respective state is stored in the memory mode and per-

form QPT for various ts, enabling us to determine the dynamical behavior of the process

matrix χ. We compare the outcomes with the ideal memory process and observe the expected

exponential decay of the process fidelity. The memory process is simulated with a master

equation approach. Deviations between simulation and experiment are explained by simplified

assumptions in the theoretical model as well as by technical artifacts that cannot be reproduced

by the simulation. We conclude that we demonstrate that the proposed architecture for a

quantum memory works in principle, although we observe limitations that require further, more

detailed investigations.

To test whether the asymmetries in dephasing are a result from phase sensitive noise con-

tributions from the IQ channels, we can exchange the vector RF source for the qubit and check

if the observed results are reproducible. If this is the case, the microwave electronis can be

exchanged device by device and we can repeat the experiment, respectively. We furthermore

need to find methods to increase the process fidelity, since we need fidelities > 0.9999 [37] for

applicable QIP devices. This can be achieved by further decreasing external loss channels, e.g.,

by lowering the external coupling of the cavity or by optimizing the drive pulses with bandpass

filters to avoid excitations of higher energy levels and state leakage [108]. Another possibility is

the implementation of advanced pulse shapes, such as DRAG (derivative removal by adiabatic

gate) [129–131].

From the theoretical point of view, we need to advance our master equation simulation, which is

yet based on empirical assumptions. Ideally, we want to be able to simulate the whole protocol,

which includes the reproduction of e.g. the BSB transition, starting from the general Rabi

Hamiltonian [52, 132]. Furthermore, we need to include the effect of different pulse shapes in

the simulation. Time-resolved tomography can be performed for a bigger variety of times ts,

which allows us to investigate the long time behavior of the process fidelity and with advanced

techniques, enhancing stability [88, 96].

Another interesting option is the realization of alternative protocols for process characteri-

zation, such as ancilla-assisted QPT (AAQPT) [133]. In order to substantiate our QPT results,

we can additionally implement randomized benchmarking for the system [37]. This may especially

become interesting if we extend our system to multiple qubits. These systems can be realized

for example by using higher electrical modes of the cavity with additional nodes/antinodes. The

qubits can then be positioned in a way that each qubit can be adressed individually, and we

can use different modes to store the state of the respective qubit. In another approach, we can

build a system of multiple qubits and cavities arranged in a way that they take the form of a

Bose-Hubbard chain [134] for analog quantum simulation.
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Appendix A

QST and QPT

A.1 Density matrix for QST

We consider Eq. (2.10) and use the Born-rule [66] to interpret the evolution coefficients as

expectation values

Tr(ρσ̂x) = 〈σ̂x〉 (A.1)

Tr(ρσ̂y) = 〈σ̂y〉 (A.2)

Tr(ρσ̂z) = 〈σ̂z〉 (A.3)

we assume that the projection to the quantization axis, which is a measurement of σ̂z with the

outcome 〈σ̂z〉, depends linearly on the respective RO phase ϕz. The reason for this is the small

dispersive shift. Hence, we make the ansatz

〈σ̂z〉(ϕz) = aϕz + b (A.4)

and determine the coefficients a and b using the conditions

〈σ̂z〉(ϕg) != 1 (A.5)

〈σ̂z〉(ϕe)
!= −1 (A.6)

which yields

〈σ̂z〉(ϕz) = 2ϕz − ϕg − ϕe
ϕg − ϕe

. (A.7)

We obtain similar results for 〈σ̂x〉 and for 〈σ̂y〉. Inserting the outcomes into Eq. (2.10) gives

ρ = 1
2

(
I + 2ϕz − ϕg − ϕe

ϕg − ϕe
σ̂z + 2ϕy − ϕg − ϕe

ϕg − ϕe
σ̂y + 2ϕx − ϕg − ϕe

ϕg − ϕe
σ̂x

)
, (A.8)

which directly yields Eq. (4.1).
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A.2 Maximum likelihood estimation for QST

The probability P (t1, t2, t3, t4) in Eq. 2.20 takes its maximal value if the exponent is minimized

[81]. We write

P (t1, t2, t3, t4) = N
∏

i=x,y,z

N∏
j=1

e
−

(µ(j)
i
−µ̃i)

2

2σ2
i = N e

−
∑

i=x,y,z

∑N

j=1
(µ(j)
i
−µ̃i)

2

2σ2
i (A.9)

We thus search for parameters ti that minimize

L({ti}) ≡
∑

i=x,y,z

N∑
j=1

(µ(j)
i − µ̃i)2

2σ2
i

(A.10)

And need to show that the resulting ti also minimize Eq. (2.21). We calculate

L({ti}) ≡
∑

i=x,y,z

N∑
j=1

(µ(j)
i − µ̃i)2

2σ2
i

=
∑

i=x,y,z

1
2σ2

i

N∑
j=1

(µ(j)
i

2 − 2µ(j)
i µ̃i + µ̃2

i )

=
∑

i=x,y,z

1
2σ2

i

N(µ̄2
i − 2µ̄iµ̃i + µ̃2

i ) =
∑

i=x,y,z

1
2σ2

i

N [σ2
i + (µi − µ̃i)2]

= 3
2N +NL({ti})

where L({ti}) is the likelihood-functional Eq. (2.21). We conclude that if the set {ti} minimizes

L, it simultaneously minimizes L.

A.3 Basis change for QPT

We expand E in the {Bm} and in the {Am} basis.

E(ρ) =
∑
m,n

BmρB
†
nχmn =

∑
m,n

AmρA
†
nχ
′
mn. (A.11)

Since this holds for arbitrary states ρ, it follows that

χmnBmB
†
n = χ′AmA

†
n ⇔ χ′mn · I = χmnMmM

†
n (A.12)

The result is obtained by either taking the trace:

χ′mn · d = χmnTr(MmM
†
n) = χmn

d∑
i=1

λ(i)
mn ⇔ χ′mn = λ̄mnχmn (A.13)

where λ̄mn denotes the arithmetic mean of the eigenvalues, or by taking the determinant

(χ′mn)d = χdmndet(MmM
†
n) = χdmn

d∏
i=1

λ(i)
mn ⇔ χ′mn = λ̄mnχmn (A.14)
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where this time, λ̄mn is the geometric mean. In the application, the result Eq. (A.13) is

implemented due to simplicity.

A.4 Maximum likelihood estimation for QPT

We parametrize a physically valid process matrix χ̃(t) [88].

χ̃(t) = T (t)†T (t) (A.15)

with a lower triangular matrix T that depends on d4 paramters ti ∈ R and t = (t1,...,td4). For

the single qubit case, we set

T =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 (A.16)

We minimize the distance ∆ of χ and χ̃ under the constraint that the trace is preserved [88]

∆(t) =
∑
m,n

|χ̃mn(t)− χmn|2 + λ

∣∣∣∣∑
m,n

B†mχ̃mn(t)Bn − I
∣∣∣∣2. (A.17)

λ is introduced as a Lagrangian multiplier. For better practical implementation, a (d× d3) block

matrix B that contains all basis matrices is defined

B ≡ (B†1...B
†
d2) (A.18)

therefore, the problem can be reformulated as

∆(t) = ‖χ̃(t)− χ‖2F + λ‖B · (χ̃(t)⊗ I) · B† − I‖2F (A.19)

where ‖ · ‖F denotes the Frobenius norm and ⊗ is the Kronecker product. This optimization is

performed using the fminsearch() [135] function in Matlab®, but the trace-preserving condition

is not fulfilled very well after convergence. As a result, trace-preserving is enforced before the

minimization procedure. Again for practical reasons, this condition is written in the form

M †(t)M(t) = I (A.20)

with

M ≡ (T (t)⊗ I) · B (A.21)

The optimization problem is then solved by minimizing

∆(t) = ‖T †(t)T (t)− χ‖2F (A.22)
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under the constraint Eq. (A.20) using the fmincon() [136] function in Matlab®. It is an

important issue that the optimization problem for ∆(t) is not convex in general, which means

that many local minima may exist. The problem that the solving algorithm converges towards

such a local minimum has to be avoided [88]. This can be achieved by assuming that the physical

process matrix χ̃ dows not differ too much from the measured unphysical matrix χ. Let χ0
denote the initial guess matrix for the minimization algorithm. Physicality of χ0 enforces the

matrix can be decomposed in the way described in A.15:

χ0 = T0(t)†T0(t) (A.23)

This can be achieved via Cholesky decomposition [137]. In order to realize this, χ0 needs to be

constructed as a positive definite matrix, which means that all eigenvalues have to be larger

than 0. Let {qi} be the set of the eigenvalues of the experimentally determined χ. A diagonal

matrix D0 = diag(p1,...,pd2) is constructed in the way [138]

pi =

qi if qi > 0
ε else

(A.24)

where ε > 0 is a tolerance limit which is set to single type machine precision (' 10−7). We

obtain an expression for χ0 that is positive definite by construction and in some sense “close” to

the measured χ-matrix

χ0 = UD0U
† (A.25)
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Appendix B

Distance measures

B.1 Diamond norm for the identity process

We write χ = (χ)mn, m,n ∈ {0, 1, 2, 3} and expand the reconstructed process Eexp in the Pauli

basis. We obtain

‖Eid − Eexp‖� = supρ (‖(Eid ⊗ I)(ρ)− (Eexp ⊗ I)(ρ)‖1)

= sup
ρ

Tr
√

(Eid(ρ1)⊗ ρ2 − Eexp(ρ1)⊗ ρ2)†(Eid(ρ1)⊗ ρ2 − Eexp(ρ1)⊗ ρ2)

= sup
ρ

Tr

√√√√√ 3∑
j,k=1

χjkσ̂jρ1σ̂
†
k

⊗ ρ2

†  3∑
l,m=1

χlmσ̂lρ1σ̂
†
m

⊗ ρ2


= sup

ρ
Tr

√√√√ 3∑
j,k,l,m=1

χ∗jkσ̂kρ
†
1σ̂
†
jχlmσ̂lρ1σ̂m

† ⊗ ρ†2ρ2

= sup
ρ

Tr

√√√√ 3∑
j,k,l,m=1

χ∗jkχlmσ̂kρ
†
1(δjlI + i

3∑
n=1

εjlnσ̂n)ρ1σ̂
†
m ⊗ ρ†2ρ2

= sup
ρ

Tr

√√√√ 3∑
j,k,m=1

χ∗jkχjmσ̂kσ̂mρ
†
1ρ1 ⊗ ρ†2ρ2

= sup
ρ

Tr

√√√√ 3∑
j,k,m=1

χ∗jkχjm(δkmI +
3∑

n=1
εkmnσ̂n)ρ†1ρ1 ⊗ ρ†2ρ2

= sup
ρ

Tr

√√√√ 3∑
j,k=1

χkjχjkρ
2
1 ⊗ ρ2

2 =

√√√√ 3∑
k=1

(χ2)kk · supρTr
√
ρ2

=
√

Tr(χ2)− (χ2)00 =
√

Tr(P · χ2) =
√

Tr(Pχχ†P †) = ‖Pχ‖F .

with P ≡ diag(0,1,1,1).
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B.2 Quantum memory fidelity

We expect

χI,t =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (B.1)

and hence f(χI , χI,t) = √χ11, which means it is sufficient to calculate χ11 as a function of the

raw measurement data (i.e. the resonator RO phase). We then use the following nomenclature

introduced in Tab. B.1.

Input state ϕx ϕy ϕz
E(|g〉〈g|) ϕ1 ϕ2 ϕ3

E(|e〉〈e|) ϕ4 ϕ5 ϕ6

E(|+〉〈+|) ϕ7 ϕ8 ϕ9

E(|−〉〈−|) ϕ10 ϕ11 ϕ12

Table B.1: Nomenclature for the RO phases for the respective input states

Equation (4.1) then yields

E(|g〉〈g|) = 1
ϕg − ϕe

(
ϕ3 − ϕe ϕ̄− ϕ1 − i(ϕ̄− ϕ2)

ϕ̄− ϕ1 + i(ϕ̄− ϕ2) ϕg − ϕ3

)
(B.2)

. Analogous results are obtained for E(|1〉〈1|), E(|+〉〈+|) and E(|−〉〈−|). We calculate ρ′1, ρ′2, ρ′3
and ρ′4 using Eq. (2.41). We obtain

(ρ′2)11 = 1
ϕg − ϕe

{ϕ9 −
1
2(ϕ3 + ϕ6) + i[ϕ12 −

1
2(ϕ3 + ϕ6)]}

(ρ′2)12 = 1
ϕg − ϕe

{−ϕ7 − ϕ11 + 1
2(ϕ1 + ϕ4) + 1

2(ϕ2 + ϕ5) + i[ϕ8 − ϕ10 + 1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5)]}

(ρ′2)21 = 1
ϕg − ϕe

{−ϕ7 + ϕ11 + 1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5) + i[−ϕ10 − ϕ8 + 1
2(ϕ1 + ϕ4) + 1

2(ϕ2 + ϕ5)]}

(ρ′2)22 = 1
ϕg − ϕe

{−ϕ9 + 1
2(ϕ3 + ϕ6)− i[ϕ12 −

1
2(ϕ3 + ϕ6)]}

(ρ′3)11 = 1
ϕg − ϕe

{ϕ9 −
1
2(ϕ3 + ϕ6) + i[−ϕ12 + 1

2(ϕ3 + ϕ6)]}

(ρ′3)12 = 1
ϕg − ϕe

{−ϕ7 + ϕ11 + 1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5) + i[ϕ8 + ϕ10 −
1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5)]}

(ρ′3)21 = 1
ϕg − ϕe

{−ϕ7 − ϕ11 −
1
2(ϕ1 + ϕ4) + 1

2(ϕ2 + ϕ5) + i[ϕ10 − ϕ8 −
1
2(ϕ1 + ϕ4) + 1

2(ϕ2 + ϕ5)]}

(ρ′3)22 = 1
ϕg − ϕe

{−ϕ9 + 1
2(ϕ3 + ϕ6) + i[ϕ12 −

1
2(ϕ3 + ϕ6)]}
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We use Eq. (2.46) which gives

χ = 1
4

(
ρ′1 + σ̂xρ

′
3 + ρ′2σ̂x + σ̂xρ

′
4σ̂x ρ′1σ̂x + σ̂xρ

′
3σ̂x − ρ′2 − σ̂xρ′4

σ̂xρ
′
1 − ρ′3 + σ̂xρ

′
2σ̂x − ρ′4σ̂x σ̂xρ

′
1σ̂x − ρ′3σ̂x − σ̂xρ′2 + ρ′4

)
(B.3)

it is sufficient to calculate

χ11 = 1
4(ρ′1 + σ̂xρ

′
3 + ρ′2σ̂x + σ̂xρ

′
4σ̂x)11. (B.4)

A lengthy, but straightforward calculation gives

χ11 = 1
4(ϕg − ϕe)

(ϕ3 − ϕe − ϕ2 + ϕ11 + 1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5) + i[−ϕ8 − ϕ10 + 1
2(ϕ1 + ϕ4)

+ 1
2(ϕ2 + ϕ5)]− ϕ7 + ϕ11 + 1

2(ϕ1 + ϕ4)− 1
2(ϕ2 + ϕ5)

+ i(ϕ8 + ϕ10 −
1
2(ϕ1 + ϕ4)− 1

2(ϕ2 + ϕ5) + ϕg − ϕ6)

= 1
4[1 + 1

(ϕg − ϕe)
(ϕ1 − ϕ2 + ϕ3 + ϕ4 − ϕ5 − ϕ6 − 2ϕ7 + 2ϕ11)]

we conclude that f({xi}, ϕe) = √χ11 is equivalent to Eq. (4.23).

We define ϕ ≡ (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6,ϕ7,ϕ8,ϕ9,ϕ10, ϕ11, ϕ12)T and ∆ϕi as the uncertainty of ϕi.

Propagation of error [121] then yields

∆f =

√√√√ 12∑
i=1

(
∂f(ϕ, ϕe)

∂ϕi
·∆ϕi

)2
+
(
∂f(ϕ, ϕe)
∂ϕe

∆ϕe

)2
(B.5)

∂f(ϕ, ϕe)
∂ϕe

= 1
4
√

1 + a·ϕ
ϕg−ϕe

a ·ϕ
(ϕg − ϕe)2 (B.6)

∂f(ϕ, ϕe)
∂xi

= 1
4
√

1 + a·ϕ
ϕg−ϕe

ai
(ϕg − ϕe)

(B.7)

We obtain the result Eq. (4.24) by inserting Eq. (B.6) and Eq. (B.7) into Eq. (B.5).
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Appendix C

RO phase fluctuations

C.1 Thermal photons in the cavity

We calculate the number of thermal photons Nth in the cavity [123]

Nth =
∫
cavity

dV

∫ ∞
0

dωn(ω,T ) ·D(ω) (C.1)

with the Bose-Einstein distribution n(ω,T ) and the density of states D(ω). For photons, we

have [123]

n(ω,T ) = 1

e
~ω
kBT − 1

(C.2)

D(ω) = ω2

c3π2 . (C.3)

Thus

Nth = V

∫ ∞
0

dω
1

e
~ω
kBT − 1

ω2

c3π2 (C.4)

We substitute x = ~ω/kBT and obtain [115]

Nth = V

(
kBT

~

)2 1
π2c3

kT

~

∫ ∞
0

dx
x2

ex − 1︸               ︷︷               ︸
=Γ(3)ζ(3)

= V

(
kBT

~c

)3 2ζ(3)
π2 . (C.5)

For the difference in thermal photons, we obtain

∆Nth = Nth(t+ ∆T )−Nth(T ) = 6ζ(3)V
π2

(
k

~c

)3
T 2∆(T ) +O(∆T 2). (C.6)

This yields a shift

∆ω = 2χ∆Nth (C.7)

and a readout phase

ϕ = arctan 2(ω − ωm)
κ

= 2
κ

(ω − ωm) +O((ω − ωm)3). (C.8)

85



In the linear regime, the shift in the readout phase ϕg and ϕe is induced by a frequency shift of

2χ
ϕg − ϕe = 2

κ
· 2χ (C.9)

Thus
∆ϕ

ϕg − ϕe
= ∆Nth. (C.10)

C.2 Thermal expansion of the cavity

We calculate the frequency for the TEmnl mode, where we use f = ω/2π

fmnl = c

2π√εrµr

√(
mπ

a′

)2
+
(
nπ

b

)2
+
(
lπ

d

)2
(C.11)

where d is the height of the cavity, b the width and a′ is an effective length which takes the

curvature of the cavity ends into account [108, 109]

a′ = a− b+ π

4 b (C.12)

where a is the length of the rectangular part of the cavity without the semicircles. For readout,

TE101 is used and we obtain the resonance frequency

fp = f101 = c

2√εrµr

√( 1
a′

)2
+
(1
d

)2
(C.13)

a change in the effective length and the height translates into

∆fp = ∂fp
∂a′

∆a′ + ∂fp
∂d

∆d (C.14)

Where higher order terms are neglected. This caluculation gives

∆fp = − fp
a′2 + d2

(
d2∆a′

a′
+ a′2∆d

d

)
(C.15)

Again, we assume that we are in the linear regime for the readout phase

ϕg − ϕe = 2
κ
· 2χ (C.16)

We also assume linear dependence of thermal expansion [124]

∆a′ = αa′∆T (C.17)

∆d = αd∆T (C.18)
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With the expansion coefficient α. We then obtain

∆ϕ
ϕg − ϕe

= fp
χ/2πα∆T (C.19)

Since the expansion coefficent usually decreases with decreasing temperature [49], we obtain an

upper bound if we take α at room temperature.

C.3 Thermal radiation by the antennas

Consider that the antenna absorbs the energy E. This leads to emission of photons into the cavity,

which yields an AC Stark shift and a shift in the readout phase. In a simplified assumption, we

obtain N photons with an average wavelength λ̄

E = N · hc
λ̄

(C.20)

The average wavelength can be calculated from the Planck curve [139] and obeys a Wien-like

displacement law [126, 127]

λ̄ = b

T
. (C.21)

The antennas heat up by ∆T , which can be calculated by E = cam∆T where ca [124] is the

specific heat. If d is the antenna diameter, l the length and ρ the density, we have m = ρπd2l/4.

ca can be calculated by cmol = γT + αT 3 [49] and we neglect the phononic contribution because

we operate at mK temperatures. The specific heat per volume is then given by ca = ργT/Mmol

with the mol mass Mmol. We obtain a relation

∆ϕ
ϕg − ϕe

= ∆N = ∆E λ̄

hc
= ρ2γd2πlb

4Mmolhc︸         ︷︷         ︸
≡β

·∆T (C.22)
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Appendix D

Master equation

We start with the Lindblad equation

dρ

dt
= − i
~

[Ĥ, ρ] + γ1(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−) + γϕ(2σ̂zρσ̂z − σ̂zσ̂z︸  ︷︷  ︸
=I

ρ− ρ σ̂zσ̂z︸  ︷︷  ︸
=I

). (D.1)

We analyze the unitary part for the driven qubit. We start with the Hamiltonian in Eq. 2.16

Ĥd = ~2

(
δ Ωd cosϕd − iΩd sinϕd

Ωd cosϕd + iΩd sinϕd −δ

)
. (D.2)

We parametrize ρ as

ρ =
(
ρ11 ρ12
ρ21 ρ22

)
(D.3)

and calculate the commutator [Ĥd, ρ] and finally obtain

[Ĥd, ρ]11 = ~2(ρ12(−Ωd cosϕd − iΩd sinϕd) + ρ21(Ωd cosϕd − iΩd sinϕd))

[Ĥd, ρ]12 = ~2(ρ11(−Ωd cosϕd + iΩd sinϕd) + ρ22(Ωd cosϕd − iΩd sinϕd) + 2δρ12)

[Ĥd, ρ]21 = ~2(ρ11(Ωd cosϕd + iΩd sinϕd) + ρ22(−Ωd cosϕd − iΩd sinϕd)− 2δρ12)

[Ĥd, ρ]22 = ~2(ρ12(Ωd cosϕd + iΩd sinϕd) + ρ21(−Ωd cosϕd + iΩd sinϕd)).

We define ρ = (ρ11, ρ12, ρ21, ρ22)T and rewrite the commutator as a system of linear equations

Ĥ · ρ, which directly yields Eq. 2.62. We perform a similar calculation for the energy relaxation

term

2γ1

(
0 1
0 0

)(
ρ11 ρ12
ρ21 ρ22

)(
0 0
1 0

)
− γ1

(
0 0
1 0

)(
0 1
0 0

)(
ρ11 ρ12
ρ21 ρ22

)
− γ1

(
ρ11 ρ12
ρ21 ρ22

)(
0 0
1 0

)(
0 1
0 0

)

=
(

2ρ22 −ρ12
−ρ21 −2ρ22

)

89



We again rewrite this as a system of linear equations

L̂1 · ρ = γ1


0 0 0 2
0 −1 0 0
0 0 −1 0
0 0 0 −2

 ·

ρ11
ρ12
ρ21
ρ22

 . (D.4)

We perform the same procedure for the dephasing term

2γϕ

(
1 0
0 −1

)(
ρ11 ρ12
ρ21 ρ22

)(
1 0
0 −1

)
− 2γϕ

(
ρ11 ρ12
ρ21 ρ22

)
= −4γϕ

(
0 ρ12
ρ21 0

)

which yields

L̂ϕ · ρ = γϕ


0 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 0

 ·

ρ11
ρ12
ρ21
ρ22

 . (D.5)

We set L̂ = L̂1 + L̂ϕ, which leads to Eq. 2.63. Energy decay and dephasing of the free qubit and

the memory mode are modelled with L̂ and Ĥ = 0. For the memory mode, the population is

reverted before solving the equation and finally reverted again, since the decaying Fock state

|1〉 corresponds to the |g〉 state and not to |e〉. The excitation and deexcitation of the BSB

is modelled using Eq. (4.30). The systems of ordinary differential equations are then solved

in Matlab® using the ode45-function [140], which is based on the Runge-Kutta (4,5)-formula

[141]. We recongnize that the solver only works for real valued systems. Hence, we map the

complex (4× 4)-systems to auxiliary real valued (8× 8)-systems, solve the equations, and revert

the mapping. Consider an arbitrary linear system of equations with a squared matrix A, i.e.

ẋ = A · x. We decompose x = r + ij and A = R+ iJ . Reordering the terms gives(
ṙ
j̇

)
=
(
R −J
J R

)
·
(

r
j

)
(D.6)

We reshape ρ into a column vector with eight real entries. The system matrix can then be

written as

0 −Ωd sinϕd −Ωd sinϕd −2γ1 0 −Ωd cosϕd Ωd cosϕd 0
Ωd sinϕd −γ1 − 4γϕ 0 −Ωd sinϕd −Ωd cosϕd 2δ 0 Ωd cosϕd
Ωd sinϕd 0 −γ1 − 4γϕ −Ωd sinϕd Ωd cosϕd 0 −2δ −Ωd cosϕd

0 Ωd sinϕd Ωd sinϕd −2γ1 0 Ωd cosϕd −Ωd cosϕd 0
0 Ωd cosϕd −Ωd cosϕd 0 0 −Ωd sinϕd −Ωd sinϕd 2γ1

Ωd cosϕd −2δ 0 −Ωd cosϕd Ωd sinϕd −γ1 − 4γϕ 0 −Ωd sinϕd
−Ωd cosϕd 0 2δ Ωd cosϕd Ωd sinϕd 0 −γ1 − 4γϕ −Ωd sinϕd

0 −Ωd cosϕd Ωd cosϕd 0 0 Ωd sinϕd Ωd sinϕd −2γ1


which can be solved with ode45

90



Bibliography

[1] F. Simões, M. Almeida, M. Pinheiro, R. D. Anjos, A. D. Santos, R. Roberto, V. Teichrieb,

C. Suetsugo, and A. Pelinson, in 2012 14th Symposium on Virtual and Augmented Reality

(2012), pp. 74–83.

[2] M. K. Agoston, Computer Graphics and Geometric Modelling: Implementation & Algo-

rithms (Springer-Verlag, Berlin, Heidelberg, 2004), ISBN 1852338180.

[3] A. P. Witkin”, “Recovering surface shape and orientation from texture”, Artificial Intelli-

gence 17, 17 (1981).

[4] R. Dörner, Virtual und Augmented Reality (VR/AR) - Grundlagen und Methoden der

Virtuellen und Augmentierten Realität (2014), ISBN 978-3-642-28902-6.

[5] D. Samak, A. Fischer, and D. Rittel, “3D Reconstruction and Visualization of Microstruc-

ture Surfaces from 2D Images”, CIRP Annals 56, 149 (2007).

[6] D. Raneri, “Enhancing forensic investigation through the use of modern three-dimensional

(3D) imaging technologies for crime scene reconstruction”, Australian Journal of Forensic

Sciences 50, 697 (2018).

[7] R. Smith-Bindman, D. L. Miglioretti, E. Johnson, C. Lee, H. S. Feigelson, M. Flynn,

R. T. Greenlee, R. L. Kruger, M. C. Hornbrook, D. Roblin, L. I. Solberg, N. Vanneman,

S. Weinmann, and A. E. Williams, “Use of Diagnostic Imaging Studies and Associated

Radiation Exposure For Patients Enrolled in Large Integrated Healthcare Systems, 1996-

2010”, JAMA 307, 10.1001/jama.2012.5960 (2012).

[8] J. V. Frangioni, “New Technologies for Human Cancer Imaging”, J Clin Oncol 26, 4012

(2008).
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[81] A. M. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. M. Steinberg, and D. F. V.

James, “Self-calibrating quantum state tomography”, New Journal of Physics 14, 085003

(2012).

[82] K. Bffeynmananaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-

likelihood estimation of the density matrix”, Phys. Rev. A 61, 010304 (1999).

[83] A. A. Markov, “An Example of Statistical Investigation of the Text Eugene Onegin

Concerning the Connection of Samples in Chains”, Science in Context 19, 591â600 (2006).
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[107] F. Marquardt and A. Püttmann, Introduction to dissipation and decoherence in quantum

systems (2008).

[108] E. Xie, “A scalable 3D quantum memory”, Ph.D. thesis, TU München (2018).

98

http://dx.doi.org/10.1103/PhysRevA.68.012305
http://dx.doi.org/10.1063/1.4867625
http://dx.doi.org/10.1063/1.4867625
http://dx.doi.org/10.1103/PhysRevA.67.042322
http://dx.doi.org/10.1103/PhysRevLett.111.183601
http://dx.doi.org/10.1103/PhysRevLett.111.183601
http://prola.aps.org/pdf/PR/v69/i11-12/p674_2
http://prola.aps.org/pdf/PR/v69/i11-12/p674_2
http://dx.doi.org/10.1103/PhysRevA.31.2403
http://dx.doi.org/10.1103/PhysRevA.31.2403


[109] J. Müller, “3D Cavities for Circuit Quantum Electrodynamics”, Bachelor’s Thesis, TU

München (2014).

[110] C. Enss and S. Hunklinger, Low-Temperature Physics, SpringerLink: Springer e-Books

(Springer Berlin Heidelberg, 2005), ISBN 9783540266198, URL https://books.google.

de/books?id=ufM7sPMTGdAC.
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