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Abstract

The decay of quantum mechanical states with high masses remains experimentally not
tested even after 120 years of quantum mechanics. This arises from the difficulty of the
generation of massive quantum objects. Cavity optomechanics is a promising approach to
address this fundamental question. In this thesis we investigate doubly-clamped nanome-
chanical aluminum string oscillators coupled to quantum electrodynamical circuits, based
on superconducting microwave resonators containing Josephson junctions which act as loss-
less nonlinear inductors. The Josephson junctions are either integrated into the resonator
or part of a quantum bit element coupled to an electromechanical resonator. With our cou-
pling scheme, we realize for the first time an inductive coupling between a nanomechanical
and an electronic resonator with a coupling strength exceeding previously reported values.
We theoretically study the physics of the coupled electromechanical system, discuss the ba-
sics of electromechanics and address the key features of quantum electrodynamical circuits
including the imposed limitations in the photon number by the Josephson junctions. We
also derive the noise contributions and assess them in the context of low photon numbers.
We also acquaint the experimental setups and present a cryogenic interferometer that al-
lows to measure mechanical motion with microwaves for low radiation pressures. Moreover
we set up an experiment for the investigation of quantum bits in the time domain.
The first nanomechanical system studied consists of a transmon qubit and a nanome-
chanical string oscillator that are capacitively coupled to a microwave resonator. This
configuration allows for an individual control of both elements and thus a read-out of the
microwave resonator’s photon occupation spanning over a range of nine orders of magni-
tude from lowest to highest detected excitation. In addition, we resolve the decoherence
of the quantum bit coupled to the electromechanical resonator, which is limited by the
dephasing of the qubit state.
We further derive an expression for the strength of the inductive coupling presented in the
second sample. We show that theoretically the coupling strength can be tuned either by
the applied magnetic field, or by varying the resonance frequency of the microwave res-
onator. Both tuning possibilities are then confirmed experimentally and the total coupling
strength of 1.6 kHz is determined by microwave spectroscopy of the mechanically induced
sidebands for the string being in thermal equilibrium. This allows to gain insight into
the noise contributions. The noise analysis shows that a sub-attonewton force precision
is achievable in the low photon number regime. Moreover, the nanostring is externally
driven, which leads to mechanical sidebands of the microwave resonance frequency. By
this we can measure phonon numbers of the order of several billions. We conclude by
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discussing possible future research lines.
The results presented in this work are an important step towards the investigation of
macroscopic quantum states, allow for new sensing applications and the storage of quan-
tum information in mechanical states.



Zusammenfassung

Der Zerfall quantenmechanischer Zuständen mit hohen Massen ist auch nach 120 Jahren
seit Entdeckung der Quantenmechanik experimentell nicht überprüft. Dies beruht auf der
schwierigen Erzeugung von massiven Quantenobjekten. Hohlraum-Optomechanik is ein
vielversprechender Ansatz um diese fundamentale Frage zu beantworten. In dieser Arbeit
untersuchen wir doppelt eingespannte nanomechanische Saitenoszillatoren aus Aluminium
die an quantenelektrodynamische Schaltkreise gekoppelt sind, welche aus supraleitenden
Mikrowellenresonatoren mit Josephson Kontakten bestehen, die wiederum als verlustfreie
nichtlineare Induktivitäten dienen. Die Josephson Kontakte sind entweder im Resonator
integriert oder als Teil eines Quantenbits an einen elektromechanischen Resonator gekop-
pelt. Mit unserem Kopplungsschema realisieren wir erstmalig eine induktive Kopplung
zwischen nanomechanischen und elektrischem Resonator mit einer Kopplungstärke größer
als bisher berichtet.
Wir untersuchen die Theory des gekoppelten elektromechanischen Systems, diskutieren
die Grundlagen der Elektromechanik und besprechen grundlegende Eigenschaften von
quantenelektrodynamischen Schaltkreisen inklusive der Limitierungen in der Photonen-
zahl durch die Josephson Kontakte. Außerdem untersuchen wir die Rauschanteile und
bewerten diese im Zusammenhang mit geringen Photonenzahlen.
Wir erläutern auch die experimentellen Aufbauten und stellen ein kryogenes Interferometer
vor, dass die Untersuchung mechanischer Auslenkungen bei niedrigem Strahlendruck er-
laubt. Zusätzlich installieren wir ein Experiment zur Untersuchung von zeitlichen Abläufen
bei Quantenbits.
Das erste untersuchte nanomechanische System besteht aus einem Transmon-Quantenbit
und einer nanomechanischen Saite die jeweils beide kapazitiv an einen Mikrowellenres-
onator gekoppelt sind. Diese Konfiguration erlaubt die individuelle Kontrolle beider Ele-
mente und dadurch eine Auslese der Photonenzahl des Mikrowellenresonators über neun
Größenordnungen zwischen niedrigster und höchster Besetzung. Zusätzlich bestimmen wir
die Kohärenz des Quantenbits, das an den Resonator gekoppelt ist, welche durch die De-
phasierung des Quantenbit-Zustandes limitiert ist.
Ferner berechnen wir eine Gleichung für die Stärke induktiven Kopplung bei der zweiten
Probe. Wir zeigen, dass die theoretische Kopplung entweder durch das angelegte magnetis-
che Feld oder durch Variation der Resonanzfrequenz des Mikrowellenresonators eingestellt
werden kann. Beide Einstellmöglichkeiten werden dann experimentell bestätigt und
eine maximale Stärke von 1.62 kHz bestimmt, unter Zuhilfenahme von Mikrowellenspek-
troskopie der mechanisch induzierten Seitenbänder der Saite im thermischen Gleichgewicht.
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Dies erlaubt uns auch Einblick in die Rauschanteile. Diese Rauschanalyse zeigt, dass eine
Kraftsauflösung unterhalb von atto-Newton mit niedrigen Photonenzahlen erreicht wird.
Zudem wird die Nanosaite auch extern angeregt, was zu mechanischen Seitenbändern des
Mikrowellenresonators führt. Dadurch können Phononenzahlen im Bereich mehrerer Mil-
liarden gemessen werden. Wir beenden die Untersuchungen mit einem Ausblick auf weitere
mögliche Studien.
Die Ergebnisse in dieser Arbeit stellen einen wichtigen Schritt zur Untersuchung von
makroskopischen Quantenzuständen dar, sie zeigen neue Anwendungen in der Sensorik,
sowie die Speicherung von Quanteninformation in mechanischen Zuständen.
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Chapter1
Introduction

The worthwhile problems are the ones you can really solve or help solve, the ones you can
really contribute something to. [...] No problem is too small or too trivial if we can really

do something about it.

Richard Feynman, [1], 1966

Among all physical foundations, quantum physics might have changed the view on the
world the most. This is due to its predictions, like superposition [2], entanglement [3, 4],
tunneling [5], being counter-intuitive to our classical world. Of course, even today our
everyday life is influenced by quantum physics allowing for the realization of lasers [6]
or more recent quantum computers [7], to mention just two examples. However, we do
not directly experience quantum physics in our life which is taking place on macroscopic
scales where quantum phenomena are not observable. This is referred to as the quantum
measurement problem [8], where the question arises, why and how the quantum superpo-
sition decays with the particle mass, preventing such observations. Similar, and connected
to this issue of massive quantum objects, the question emerges how quantum mechanics
relates to gravity.
Since cavity optomechanics can be implemented with systems having masses over 20 orders
of magnitude, it seems the ideal candidate to address these challenges [9]. There, the light
field of an optical cavity is influenced by a mechanical oscillator, e.g. by mounting one
mirror plate on a suspended element. The combination of massive test objects with optical
quantum states allows to investigate nature on the Planck-scale [10]. Using optomechanics,
recently gravitational waves have been detected for the first time [11]. However, the light-
matter interaction is based on the radiation pressure [12], which is a rather low force on
the single-photon single-phonon scale. Switching from optical cavities to superconducting
microwave resonators, which have a high quality and small mode volume gave rise to the
area of (resonator) electromechanics [13]. Using a photon number enhanced radiation pres-
sure (or an effective coupling) the strong coupling regime between microwave resonator
and nanomechanical oscillator was entered [14], ground state cooling of the mechanical
motion was demonstrated [15] and squeezed states were realized which allow for an en-
hanced measurement precision [16–18]. Yet, the underlying states of these experiments
were all Gaussian (coherent states of harmonic oscillators), as the intrinsic coupling was
not sufficient to generate non-gaussian ones, such as Fock states. So nonlinear elements are
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required for the generation of arbitrary quantum states. In superconducting circuits, this
can be realized by combining linear microwave resonators and Josephson junction based
quantum bits, leading to the prospering field of circuit quantum electrodynamics (c-QED)
[19, 20]. First experiments on such hybrid systems including superconducting quantum
bits and nanomechanical oscillators proved the generation of quantum mechanical states
on the picogram scale [21–27].
Recently the study of levitated superconducting micro spheres was proposed [28]. The
study of such objects on the ng-scale allows to falsify some common theories on the col-
lapse model [29]. In these experiments dc-SQUIDs are required to detect the motion of
the levitating sphere in a magnetic field. So far however, mechanical motion has only
been read-out in a direct current configuration [30–33], not via a microwave resonator and
so without the capability for sideband cooling of the mechanical motion. Therefor, the
detection of the motion via a SQUID integrated in a microwave resonator is desired to
study ground state cooled mechanical quantum motion.
Within this thesis we study two hybrid systems based on circuit QED integrating a dou-
bly clamped nanomechanical string resonator. One consists of a transmon qubit and a
nanostring capacitively coupled to one and the same microwave resonator. Using both
systems we can calibrate the photon numbers in the resonator ranging 9 orders of magni-
tude from the lowest to highest detected occupation [34]. The second system realizes for
the first time a microwave read-out of a mechanical motion via a dc-SQUID, as required
for the detection of the levitating quantum spheres. We achieve this by integrating a
nanostring in the loop of a dc-SQUID that shunts a microwave resonator as proposed by
Ref. [35–38]. By this inductive coupling scheme we find a single photon-phonon coupling of
1.62± 0.12 kHz, which exceeds current realizations in electromechanical resonators, where
previously 280 Hz were found [24]. The remaining thesis is structured as follows:
The key theoretical concepts to provide a general understanding on the electromechanical
systems are explained in chapters 2-4. Chapter 2 gives an overview of resonance effects and
discusses a classical, driven harmonic oscillator in time and frequency domain. We then
derive the results for a quantum mechanical treatment and compare them to the classical
result, to summarize the requirements for the observation of nonclassical states. We give
a brief overview on the effects of Duffing nonlinearities at the end.
The next chapter 3 introduces the field of superconducting circuits including Josephson
junctions as nonlinear elements, which we require for the detection of the string’s motion.
At first, the single Josephson junction is discussed in detail, followed by the combina-
tion of two junctions in a superconducting loop, the so-called dc-SQUID configuration.
In addition, we derive potential limitations imposed by the integration of the SQUID. A
description of flux tuneable resonators follows. These resonators consist of a microwave
coplanar waveguide resonator shunted to ground by a dc-SQUID. Finally, we explore the
principles of a transmon qubit. Such c-QED elements will provide the quantum part of
this thesis.
Chapter 4 reviews opto- and electromechanical interactions. At first, general optomechan-
ical interactions are discussed, and realizations in nano-electromechanics are introduced.
Then, we exploit the mechanical displacement spectra. Also we have a look at the depen-
dence of the electromechanical noise contributions, in particular depending on the photon
numbers in the microwave resonator. By the use of nonlinear Josephson elements, some
limitations on reachable photon numbers are imposed, so these consideration are of special
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interest. Further, we discuss sideband cooling of the mechanical element and the behavior
of the microwave resonator when the strings are externally driven.
The experimental, cryogenic environment is introduced in chapter 5. Here, we introduce
a cryogenic microwave interferometer for the detection of nonlinear electromechanical cir-
cuits. This interferometer allows the detection of mechanical signals with a reduced photon
number present in the system. This is of particular interest for nonlinear electromechanical
resonators, e.g. when Josephson elements are present. We give a short example based on
an electromechanical resonator coupled to a transmon qubit. Afterwards, we introduce a
measurement setup for time domain measurements on qubits, and explain the measure-
ment principle, as well as the data acquisition. The chapter concludes with a brief overview
of the applied pulse sequences.
A nanomechanical hybrid c-QED device is analyzed in chapter 6. It consists of a mi-
crowave resonator that is capacitively coupled to a nanostring oscillator and a transmon
qubit. We show the fabrication process, as well as the individual control of the elements,
which allow for an ultra-wide range photon number calibration, spanning over nine orders
of magnitude. Further, the transmon qubit is investigated in the time domain. We use this
study to characterize its decoherence channels. We summarize the time domain results
and deduct potential improvements for future sample generations.
Chapter 7 then focuses on inductively coupled nano-electromechanics, that is, a mechanical
compliant string oscillator coupled inductively to the Josephson inductance of a flux tun-
able microwave resonator. The coupling mechanism is based on a mechanical modulation
of the SQUID loop. The area change modulates the magnetic flux threading the SQUID
loop when a magnetic field is applied. This in turn modulates the SQUID inductance and
thereby the eigenfrequency of the microwave resonator. Due to the nonlinearity of the
Josephson inductance the single photon-phonon coupling is increased, which is of special
interest for the study of quantum mechanical states and realizes a microwave read-out of
mechanical motion via SQUID.
Finally in chapter 8 we summarize the results within this thesis and give an outlook on
possible future research directions on nanomechanical quantum systems at the Walther-
Meißner-Institut.
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Chapter2
The harmonic oscillator

It’s always fun to learn something new about quantum mechanics.

Benjamin Schumacher

In this chapter, we give a detailed overview on classical, harmonic oscillators. We de-
scribe its excitation in time and frequency domain and analyze the respective decay rates.
Further, we discuss the mechanical susceptibility describing the sting’s response to an ex-
ternal drive. As the doubly clamped nanostring oscillator is a three dimensional object,
we will discuss how the mechanical system and a superconducting microwave resonator
can be described as harmonic oscillators. After discussing the classic harmonic oscillator,
we will turn to the quantum mechanical harmonic oscillator. We highlight the differences
between a classical and quantum mechanical oscillator. By this we find requirements for
the observation of quantum mechanical states in the literal sense. We conclude with a
brief summary on quantum mechanical Duffing oscillators.

2.1 The classical harmonic oscillator

We start the treatment with the general equation of motion for a damped, harmonic
oscillator with driven external force [39]. We will solve the equation in the complex space
for a complex coordinate X(t). The physical displacement x(t) of the oscillator is simply
described by the real part of the complex coordinate:

∂2
tX + 2

Tcor
∂tX + Ω2

0X = FeiΩt (2.1)

where we have introduced the general displacement X, the relaxation time Tcor, the angular
eigenfrequency of the oscillator Ω0, and an external driving force of amplitude F and
frequency Ω. Within this thesis we will consider only so-called high quality oscillators
with decay rates T−1

cor � Ω1
0.

We solve the equation of motion using the concept of a homogenous and a particular
solution.

2.1.1 Undriven harmonic oscillator

The homogenous solution is given by

Xhom(t) = C1e
− t
Tcor
−iΩ̃0t + C2e

− t
Tcor

+iΩ̃0t, (2.2)

5



6 2.1.1 Undriven harmonic oscillator

where we introduced the damped eigenfrequency Ω̃0 =
√

Ω2
0 − T

−2
cor , which we will approx-

imate via the undamped eigenfrequency Ω0, due to the low damping of the investigated
oscillators. We then can describe the displacement of the oscillator x(t) = Re[X(t)] and
identify the integration constants C1, C2 with an oscillation amplitude A and phase δ

xhom(t) = Ae−
t

Tcor cos (Ω0t+ δ) . (2.3)

The motion consists of an exponentially damped amplitude and a periodic oscillation with
frequency Ω0. The two independent integration constants A and δ have to be chosen to
fulfill the boundary conditions [39]. We calculate the time derivative of the displacement,
corresponding to its velocity and hence the momentum of the oscillator by:

vhom(t) = ∂txhom(t) ≈ AΩ0e
− t
Tcor sin (Ω0t+ δ) . (2.4)

The approximation is set to make clear that we investigate only highly coherent systems
(Tcor � Ω0). We find that the velocity becomes rescaled with Ω0 and phase shifted by π/2.
For simplicity, we introduce the rescaled momentum p? = vhom/Ω0, such that the rescaled
momentum is proportional to the momentum p = mvhom, including the total mass m of
the oscillator object. The benefit of the rescaled momentum is, that its amplitude has the
same dimension as the displacement. We plot the time trace of both xhom (blue) and p?

(red) in Fig. 2.1a), for an example parameter set of

Ω0
2π = 1 Hz A = 1 Tcor = 10 s. (2.5)

In agreement with the Eqs. (2.3-2.4) they obey an exponential decay by t/Tcor (black
dotted line) and phase difference of π/2.
Next, we display the time evolution in the phase space, that is a parametrization of the
coordinates xhom and vhom. Any point [xhom(t1), vhom(t1)] in the phase space represents
the state of the system at the point’s corresponding time (t1). Hence, the trajectory
displays the time evolution of the oscillator’s state. The phase space for the analyzed
oscillator is found in Fig. 2.1b). As we plot via the normalized momentum, we find a spiral
(in general elliptically) decaying towards the center of the phase space, corresponding to
zero energy. The direction of the trajectory indicates the time direction. In addition to
the example parameters of Eq. 2.5, we also plot a high coherent case with T ′cor = 1000 s
(grey). Here, the plotted timescale is much lower than the decoherence time and so the
total energy remains identical. In the phase space this corresponds to the observed circle
of constant radius.

In Eq. (2.1) we have introduced the equation of motion with a decay time Tcor of the
amplitude of motion X(t). However, in experiments we will employ a continous-wave
setup, that is a constant measurement tone and investigate the spectral components of it.
For this, we are now going to briefly discuss the motional amplitude in frequency space
[c.f. Eq. (2.3)]. So, we perform a Fourier transformation on the example dataset and plot
the transmission amplitude over angular frequency in panel c) in analogy to Ref. [39]. The
amplitude is normalized, as its precise value depends on the definition of the Fourier trans-
formation and its prefactors.
We find a Lorentzian lineshape with slight asymmetry for the weak damped (blue) and
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Figure 2.1: Solutions of an undriven, damped harmonic oscillator Panel a) shows the time trace
for the position (blue) and momentum (red). A phase offset of π/2 is observed in agreement
with Eqs. (2.3 - 2.4). The amplitudes decay exponentially with t/Tcor (black dotted line).
In panel b) the time trace in phase space is shown for the parameters of panel a) (blue)
and a higher coherent scenario (grey). We find decaying spirals, having a counter-clockwise
rotations indicate the time direction. For the high coherent oscillator almost no decay is
observed. The normalized Fourier amplitude of the displacement is displayed panel c). A
Lorentzian lineshape of decay rate Γ is found. The slight asymmetry arises from the relative
high damping (blue) in contrast to the high quality scenario (grey).

negligible asymmetry for the high coherent case (grey), which is closer to the experimental
data explored later. We will refer to the full with at half maximum (FWHM) in frequency
space and the linewidth Γ = 2π ·FWHM corresponding to the FWHM in angular frequen-
cies. Between the decay time of the motion amplitude and the Fourier linewidth we find
the correlation [40]

Γ
2π = 2

Tcor
, (2.6)

and so we can attribute Γ to the energy decay of the system. This becomes clear, when
looking at the motion amplitude decay (∝ t/Tcor) and so for the energy decay we find
∝ x2(t) ∝ 2t/(Tcor). By this association we can express the quality of the system as the
ratio of stored energy to the dissipated energy [40]:

Q = Ω0
Γ , (2.7)

and the introduced high coherent systems within this thesis have Q > 103.
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2.1.2 Driven harmonic oscillator with damping

In the previous section we have discussed the equation of motion for an harmonic oscillator
in the absence of an external driving force, related to the homogenous solution of Eq. (2.1).
Next, we solve the particular solution Xpart by introducing the susceptibility χ:

Xpart(t) = χ(Ω)FeiΩt, (2.8)

relating the displacement to a general force. We note, that the principle of a susceptibility
derived here is found in many area of physics, e.g. describing the response of a material
in an electric or magnetic field. We calculate the susceptibility by solving Eq. (2.1) with
the ansatz for the particular solution of Eq. (2.8) to [39]:

χ(Ω) =
[
Ω2

0 − Ω2 + iΓΩ
]−1

. (2.9)

The susceptibility is derived in the frequency domain and so, to determine the time trace
of the full solution, we Fourier transform (FT) it to obtain spatial information. Further,
by the linearity of the equation of motion the full solution of the displacement can be
derived from the real part of the complex solution. In summary we find [39]

x(t) = Re
{
Xhom + FT

[
χ(Ω)FeiΩt

]}
, (2.10)

which describes the general time evolution of the mechanical displacement. The start
parameters and boundary conditions determine the precise trajectory. The corresponding
momentum is derived similar to the homogenous solution via p = m∂tx(t).

2.2 Classical mechanical oscillators and electrical resonators

The results given in the previous section were derived for the general case of a damped,
driven, and harmonic oscillator. Now, we will discuss how we can use these results to
describe the two systems studied in this thesis: i) nanomechanical, doubly clamped string
oscillators and ii) superconducting, coplanar waveguide microwave resonators. A brief
overview is given in Table 2.1, a detailed discussion found in Ref. [41]. We like to note, that
the correspondences given here is done for the classical oscillator. However, a quantum
mechanical treatment reveals identical correspondences.

We like to highlight an important aspect here, that is the effective mechanical mass
meff we have introduced. It arises from the reduction of the three dimensional motion of
a doubly clamped nanostring to a one dimensional oscillator. We can identify an effective
mass by comparing the stored energy in the nanostring with length l, width w, thickness
t and material density ρ, considering only displacements u(x) (no bending) [42]

Estring = 1
2ρwtΩ

2
l/2∫
−l/2

u(x)2 · dx, (2.11)

with the energy stored in a harmonic one dimensional oscillator with effective mass and
maximum displacement xm

Eoscillator = 1
2meffΩ2xm. (2.12)
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Harmonic oscillator Nanostring oscillators Electric resonators

Force Actuation F Voltage U
Velocity Momentum ∂tx Current I
Amplitude Displacement x Charge Q
Mass Effective Mass meff Inductance L
Compliance Pre-stress σ Charge C−1

Linewidth Damping Γm Resistance / Impedance R
Resonance frequency Ωm =

√
σ/ρ(2l)−1 ωc =

√
1/LC

Table 2.1: From harmonic oscillators to nanostring oscillators and superconducting microwave
resonators.

Hereby, we define the effective mass as

meff = ρwt

x2
m

l/2∫
−l/2

u(y)2 · dy. (2.13)

We find, that the effective mass depends on the square of the displacement profile as
mode shape of the nanomechanical string. In highly stressed doubly clamped nanostrings
the displacement follows u ∝ cos(πy/l) for the fundamental mode [43]. Then, the effective
mass is given by meff = m/2. For unstressed strings a ratio of meff = 0.4m is found due
to the difference of the mode shape [43]. The devices discussed in this thesis operate in
the high tensile stress limit.

2.3 Quantum mechanical treatment of an harmonic oscilla-
tor

In the following section we will discuss the quantum mechanical treatment of an one
dimensional harmonic oscillator in the absence of an external drive. This allows to compare
between quantum mechanical and classical mechanical solutions.

2.3.1 The quantum mechanical harmonic oscillator

We start the discussion by introducing the position operator x̂ and momentum operator
p̂ = i~∂x. The corresponding Schrödinger equation of the harmonic oscillator then reads:[

− ~2

2m∂2
x + mΩ2

2 x2
]

Ψ(x) = EΨ(x). (2.14)

We further introduce the characteristic length,

xo =

√
~

Ωm, (2.15)
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which is connected to the zero-point motion via xzpm = xo/
√

2. In addition, we introduce
the creation† and annihilation operator

a†o = Ωmx− i~∂x√
2Ωm~

= 1√
2

(
x

xo
− xo∂x

)
ao = Ωmx+ i~∂x√

2Ωm~
= 1√

2

(
x

xo
+ xo∂x

)
,

(2.16)

which follows the commutation relation [ao, a
†
o] = 1. By this we can rewrite Eq. (2.14) in

the form
~Ω
(
a†oao + 1

2

)
Ψ(x) = EΨ(x), (2.17)

and so the remaining task is to find the eigenvalues ~Ω(a†oao+1/2) for the number operator
n = a†oao in the form nψν = νψν .
The lowest possible eigenvalue is ν = 0, for which aoψ0 = 0 [44]. Then, the corresponding
differential equation for the ground state is(

x

x2
o

+ ∂x

)
ψ0 = 0, (2.18)

which is solved by

ψ0 = Cq · exp
[
−1

2

(
x

xo

)2
]
. (2.19)

The integration constant is obtained from the normalization of 〈ψ|ψ〉 ≡ 1 to a value of
C = (

√
πxo)−1/2. However this only solves n = 0, but all higher orders can be reduced

using the attributes of the creation and annihilation operators to the ground state via [44]

ψn = 1√
n
a†oψn−1 = 1√

n!

(
a†o

)n
ψ0. (2.20)

By this we find the full solution of the differential equation, and so also of Eq. (2.17) [44].
By the use of Hermite polynomials [45]

Hn(x) = (−1)nex2∂nxe
−x2

, (2.21)

we can express the wave function in the common way of [44]:

Ψn = 1√
2nn!
√
πxo

exp
[
−1

2

(
x

xo

)2
]
Hn

(
x

xo

)
. (2.22)

The corresponding expectation value of the eigenenergy is quantized and of the shape

Eqm
n = ~Ω

(
n+ 1

2

)
. (2.23)

The oscillation amplitude is described as wave, so its location density ρqm
x is found by

ρqm
x = ΨnΨ?

n. (2.24)

The wavefunctions given by Eq. (2.22) are displayed in Fig. 2.2a). For the ground state
we find a Gaussian distribution centered at the origin. By increasing the occupation the
wave function spreads out in space. We find a point (axis) symmetry for odd (even)
occupations. The wavefunctions are offset by the expectation value of the eigenenergy. As
the wavefunction decay over length, the energy value is found at the edges of the plot.
The ground state energy is given by E0 = ~Ω/2.
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Figure 2.2: The harmonic quantum mechanical oscillator. In panel a) the wavefunctions Ψn are
plotted for the lowest five states. The higher the excitation value, the further the wavefunction
reaches into space. Additionally, the wavefunctions are offset by the expectation value of the
corresponding eigenenergy for clarity. The harmonic potential is indicated by a black dotted
line. Panel b) displays the probability density for a classical harmonic oscillator (blue) and
quantum mechanical oscillator (red) for an occupation of n = 0. The most likely position of
the quantum state is at the center, while in the classical case its at the edge of the oscillation
(here at x = 1). This changes at higher occupations as found in panel c) for n = 60. Here, the
probability density of the quantum mechanical state oscillates around the classical value and
so the classical treatment is a good approximation. We like to note, that the comparison of the
quantum and classical ground state shown here is only an illustration for the understanding
between classical and quantum physics.

2.3.2 Comparison to classical oscillators

With the results obtained above we can now discuss the differences between the quantum
and classical harmonic oscillator. For a comparison, we define a classical probability density
in analogy to the quantum probability density [cf. Eq. (2.25)] [44]

ρcl
x = 1

πxno
√

1− (x/xno )2 , (2.25)
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Figure 2.3: Harmonic and Duffing potential. The potential of an harmonic (blue) and Duffing

oscillator (red) are plotted for a nonlinearity of α = −0.01 in panel a) and α = +0.01 in
panel b) is shown as straight lines. Due to the weak nonlinearity almost no difference in the
potential is found. Additionally the corresponding energy states are calculated. They differ
significantly besides the weak anharmonicity.

assuming a classical, undamped oscillation of xcl = xno sin(Ωt) [cf. Eq. (2.3)] and a potential
energy of Ecl = mΩ2(x/xno )2/2. We link the classical displacement to the characteristic
quantum length via

xno = xo
√

2n+ 1, (2.26)

in dependence of the occupation value n. With the derived equations we compare the
classical ρcl

x and quantum mechanical probability density ρqm
x in Fig. 2.2 for the ground

state in panel b) and an occupation of n = 60 in panel c).
For the ground state we find the quantum mechanical probability, similar to the wavefunc-
tion, centered around the origin. This is in contrast to the classical expectation, where the
highest probability is found at x/xo = xno = ±1 for the vacuum state. However, at higher
occupations the quantum probability starts to oscillate and the expectation position is
shifted towards the edges. We show this by plotting both densities for an excitation value
of 60 in Fig. 2.2c). Here, the quantum mechanical density fluctuates, but the classical
treatment follows the center of the quantum mechanical oscillation amplitude very well.
We conclude, that for an observation of nanomechanical quantum or non-classical states
occupation values close to the ground state are required, as otherwise deviations from the
classical state become smaller and smaller with increasing occupation.
Within this thesis the lowest occupation we find in our mechanical oscillators is nm,xx ≈
140, and so a classical mechanical treatment seems sufficient.

2.4 Nonlinear effects in resonant systems

We will conclude the discussion of resonant systems by having a look at deviations from
the harmonic model. Here, we want to indicate the relation of the nonlinear terms with
respect to the physics of Josephson junctions and highly driven mechanical strings. The
physics of nonlinear responses and oscillations is very rich and intensively discussed (cf.
Ref. [46]). Typically, for the treatment of nonlinear oscillations an additional term is added
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to the Hamiltonian of an harmonic oscillator [cf. Eq. (2.17)] , in particular a quartic term
as [47]

H = ~Ω
(
a†oao + 1

2

)
+ α

(
ao + a†o

)4
. (2.27)

The potential shape is often discussed in the context of classical Duffing oscillators [48].
The corresponding energy expectation values are found by [47]

En = ~Ω (n+ 1/2)− α
(
6n2 + 6n+ 3

)
. (2.28)

This will be of special interest in the next sections, as we use Josephson nonlinear elements
for our quantum circuits, that we can describe via [45]

cos(ϕ) = 1− ϕ2 + ϕ4 +O(ϕ6), (2.29)

and therefore resemble the shape of a harmonic oscillator with a quartic perturbation term.
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Chapter3
Circuit quantum electrodynamics

Das hier ist ein völlig anderes Biest, gemacht für das Multiversum.

Hartmut Neven, about quantum computers in [7], 2019

In this chapter, we introduce superconductivity as a macroscopic wave phenomena de-
scribing the superconducting state. This wavefunction allows for a transmission through
a tunneling barrier, the Josephson junction. Adding two of those in a superconducting
loop comprises a dc-SQUID, which is one of the building blocks of our devices. Further,
we discuss another building block, namely microwave resonators. Then a SQUID is inte-
grated in such a microwave resonator. This allows the resonator to be tuned in frequency,
and also adds a nonlinearity to the system. We further discuss what happens when the
nonlinearity is enhanced by design, leading to transmon qubits. This type of qubit is then
discussed in detail, especially in terms of a strong interaction with a microwave light field
and the resulting effects, like the ac-Stark shift.

3.1 From the macroscopic wavefunction to Josephson
physics

Superconductivity can be understood by the concept of a macroscopic wavefunction. That
is a condensation of bosonic cooper pairs obeying one and the same wavefunction derived
from the Schrödinger equation of a single particle in the presence of a vector A and scalar
Φ potential [

1
2m

(~
i
∇− qA

)2
+ qΦ

]
Ψ = i~∂tΨ, (3.1)

with the mass of the condensed cooper pairs m, which is twice the mass of an electron
(m = 2me). Same applies for the charge of the considered particle (q = −2e). We then
interpret the complex wavefunction consisting of an amplitude, linked to the cooper pair
density 〈Ψ|Ψ?〉 = ρc, and a phase of the collective state ϕc [49]

Ψ = √ρce
iϕc . (3.2)

The conclusions how to describe superconductivity by this approach are discussed in
Ref. [50]. We will now consider two superconducting areas separated by a non-conductive

15
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intersection. In contrast to a classical scenario, the quantum mechanical wavefunction can
reach into the adjacent area for small potentials. So, the quantum mechanical transmission
differs from the classical derivation [51]. Such intersections are named Josephson junctions.
The superconductive current across the junction, I = q/mRe[Ψ(−i~)Ψ], is found to be [52]

I = Icsinθ, (3.3)

which is know as first Josephson equation. Here, we have introduced the gauge invariant
phase difference between the two areas of [52]

θ = ϕ2
c − ϕ1

c −
2π
Φ0

2∫
1

Adl, (3.4)

where Φ0 = h/2e is the flux quantum [53, 54], and the numerical indices 1 or 2 refer to the
area of the intersection. The time derivative of the phase difference is known as second
Josephson equation

∂tθ = 2π
Φ0
V. (3.5)

The Josephson equations state, that up to a critical value Ic, a superconducting current
is send across the junction and if a voltage V is applied across it, an oscillating current
appears. Taking Eqs. (3.3) and (3.5) to determine the energy stored in the system we
quantify the Josephson energy, similar to a potential energy

EJ =
t∫

0

IV dt = E0
J (1− cos(θ)) , (3.6)

with E0
J = Φ0Ic/(2π). We see, that we can identify the phase difference θ as a position, or

angle in a mechanical analogue [52]. The time derivative of the phase change is attributed
to a kinetic energy or momentum. This can be derived by considering the two supercon-
ducting interfaces as a capacitor with capacitance CJ. The stored energy in this capacitor
is

E = 1
2CJV

2 = 1
2CJ

(Φ0
2π

)2
(∂tθ)2, (3.7)

which is typically compared to the charging energy across the junction EC = e2/(2CJ),
which describes the energy required to charge the capacitance with an elementary charge
[52].
If we consider a small change of the phase δθ at a given, arbitrary phase θ0 we find a
change in current δI = Iccosδθ, as well as a change in Josephson energy

δEJ = E0
Jsin(θ0)
Iccos(θ0) δI → LJ = Φ0

2πIccos(θ) , (3.8)

we can associate this change with the Josephson induction as δEJ = LIδI. As this result
is obtained from the change of the charge carriers δI (cf. Tab. 2.1) it becomes clear, that
the Josephson inductance behaves as a kinetic inductance [55].
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3.2 Superconducting quantum interference devices

Next we connect two Josephson junctions in a superconducting loop, having a critical
current of Ic,i and phase difference θi. This configuration is called direct current super-
conducting quantum interference device (dc-SQUID). As the superconducting loop obeys
flux quantization the global phase difference between the single junctions becomes [56]

θ2 − θ1 = 2πΦext
Φ0

, (3.9)

derived from Eq. (3.4). Here we introduce the external flux Φext = BextAloop determined
by the applied external field Bext through the SQUID loop Aloop. Via Kirchhoffs law, we
find the maximal critical current in a dc-SQUID to be in general [57]

Im
Σ = IΣ

∣∣∣∣cos
(
π

Φext
Φ0

)∣∣∣∣
√

1 + d2tan2
(
π

Φext
Φ0

)
= 2Ic

∣∣∣∣cos
(
π

Φext
Φ0

)∣∣∣∣ . (3.10)

Here, we describe the sum of the current through both junctions IΣ = Ic1+Ic2 and account
for an asymmetry between the two junctions with d = (Ic1 − Ic2)/IΣ. Within this thesis
we only consider d = 0 corresponding to the right hand side of the equation.
The total current is derived as in classical parallel circuits by adding the single branches
(IΣ = Ic1 + Ic2). By these considerations we find the Josephson energy of the SQUID to
be [56]

Esquid
J = Φ0IΣ

2π

[
1− cos

(
πΦext

Φ0

)]
. (3.11)

As the inductors in a parallel circuit add reciprocally, the Josephson inductance of a dc-
SQUID with two identical junctions is half of the single junction value

Lsquid
J = Φ0

2πIΣ |cos(πΦext/Φ)| . (3.12)

These equations can be derived similar to Eqs. (3.6) and (3.8) in Sec. 3.1.

An important aspect when designing such SQUIDs is the fact, that the considerations
above only hold for a low self inductance of the SQUID loop ring (LLoop = Lkin + Lgeo),
which is obtained by the kinetic Lkin and the geometric Lgeo contribution. The ratio of
the loop inductance to Josephson inductance is described by the screening parameter βL
[56]

βL ≡
2LLoopIc

Φ0
. (3.13)

An important design aspect for devices is the fact that for high values of βL the tuning
range of the critical current is reduced [56], e.g. for a screening parameter of βL = 1
the maximum critical current tunes from 2Ic to 1Ic, and therefor no longer reaches the
minimum of 0. Further, at high βL values, the critical current to flux curve becomes
hysteretic. When the SQUID is inserted into a microwave resonator this can happen for
values even below βL = 1 [58], so we aim for a design value of βL < 0.1. In the following,
we will give a brief discussion on a potential sample design.
First, the kinetic inductance of the SQUID is in our device design dominated by the thin
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and long mechanical string oscillators. Previous studies on devices from our lab showed
that the kinetic inductance is best expressed by the ’dirty limit’ with [59–61]:

Lkin = ~ρnl

π∆0wt
= 45 fHµm · l

wt
[µm]. (3.14)

Here, we introduced the normal resistivity of the superconductor ρn, the energy gap of
aluminum at zero temperature ∆0, and the string design (l, w, t) as discussed in Sec. 2.2.
So an estimation for a typical string having a cross-section of wt = 0.1 × 0.1µm2 and
length of l = 20µ results in a kinetic inductance of 90 pH of the SQUID.
Second, the geometric inductance is derived by the geometry of the conductor loop modeled
as classical rf-circuit [61–63]

Lgeo/0.4 [µH] = 2d− 2(lLoop + b) + s− lLoopln(d+ lLoop)− bln(d+ b) + (l+ b)ln
(4lLoopb

S

)
,

(3.15)
with the SQUID loop diagonal d, consisting of the SQUID loop width b and the SQUID
loop length lLoop as well as the wire diameter S = 2(t2 + w2)1/2. In total, we find a
geometric inductance of 22 pH for a SQUID loop length which is dominated by the string’s
length lLoop ≈ l, a SQUID width of 2µm and the string parameters given above. This
shows that the dominant part of the loop inductance stems from the kinetic inductance,
which is given by the thin, long strings realizing the mechanical element.
We can now estimate the achievable critical current for such mechanical SQUIDs assuming
a target screening parameter of βL = 0.1 to

Idesign
c = βLΦ0

2LLoop
= 0.9µA. (3.16)

This value is from a fabricational point of view no issue to design [64, 65]. However as we
will see later, this corresponds to a photon number on the order of ncrit ≈ 10 photons,
which makes the detection of an electromechanical signal challenging.

3.3 Flux tunable microwave resonators

Next we are going to discuss the ground mode of a flux tunable resonator, in particular,
a superconducting coplanar waveguide (CPW) resonator in λ/4 configuration with a dc-
SQUID at the current anti-node. By the tunable inductance of the dc-SQUID, the joined
system can be treated as a distributed-element resonator with a lumped element tunable
inductance [58], see Fig. 3.1a). As the dc-SQUID was already introduced, we will now
discuss the bare microwave resonator and later combine both systems.
We model the coplanar waveguide with a inductance and capacitance per unit length
[66, 67]

Ll = µ0
4
K(k′0)
K(k0) Cl = 4ε0εeff

4
K(k0)
K(k′0) . (3.17)

Here K describe the complete elliptic integral of the first kind. Further, the parameters
k0 = wc/(wc + 2sc) and k′0 =

√
1− k2

0 are defined by the waveguides center conductor
width wc and the gap between it and the ground plane sc. The phase velocity of the
microwave vphase = 1/

√
LlCl = c/

√
εeff is defined by the speed of light in vacuum c and

the effective dielectric constant εeff . Additionally, the resonator impedance Z =
√
Ll/Cl
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Figure 3.1: Flux tunable resonators in a nutshell. The modeled circuit is sketched in panel
a) consisting of a distributed element coplanar waveguide resonator in λ/4 configuration,
shorted to ground by a dc-SQUID. Panel b) shows the flux tuning of the resonance frequency
in accordance to Eq. (3.22) for different critical currents at the Josephson junctions. We find
a periodic behavior, tuning down to zero frequency. The maximum frequency and the slope
of the tuning is influenced by the critical current.

is typically designed such, that it matches the 50 Ω environment of the electric setup.
For the discussed case of a shorted λ/4 resonator, the wavelength corresponds to lc = λ/4
on resonance to the electric circuit, defined by the inductance and capacitance of an
equivalent lumped circuit Lc, Cc such that [68, 69]

ω0 = 1√
LcCc

= π

2lc
√
LlCl

, (3.18)

with the equivalent total inductance Lc = 8Lllc/π
2 and capacitance Cc = Cllc/2. For

a typical resonator of ωc/2π = 7.5 GHz matched to 50 Ω this corresponds to values of
Lc = 1.1 nH and Cc = 440 fF. By examining these parameters it becomes clear, why we
focus only on the capacitance of the CPW within this work, as the coupling capacitance is
typically smaller than 10 fF [70] and the Josephson capacitance on a similar scale around
15 fF [71] and therefor do not influence the resonance frequency significantly.
To determine the flux tunable resonator’s eigenfrequency ωc following the approach men-
tioned above [cf. Fig. 3.1a)], a transcendental equation has to be solved [58, 72, 73]

πωc
2ω0

tan
(
πωc
2ω0

)
= 2π2

Φ2
0
LcEs(Φext). (3.19)

Here, we have introduced the flux energy of the dc-SQUID as [58]

Es(Φext) = Φ2
0

(2π)2
1

LJ(Φext) + LLoop/4
, (3.20)

consisting of contributions from the Josephson junctions and the geometric loop induc-
tance, for details on the determination of the SQUID inductance refer to Ref. [74]. To ex-
plicitly determine the resonator frequency tuning, we expand the left hand side of Eq. (3.19)
around the sweet spot, where ωc/ω0 ≈ 1

πωc
2ω0

tan
(
πωc
2ω0

)
≈ − 1

ωc/ω0 − 1 − 1 +O(ωc
ω0
− 1). (3.21)
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The deviations between l.h.s. and r.h.s. are less than 0.5 % for the experiments in this
work. Combining the approximation with the left hand side of Eq. (3.19) we find the
microwave resonator frequency tuning with the applied external flux [58]

ωc(Φext) = ω0

(
1 + LJ(Φext) + LLoop/4

Lc

)−1
, (3.22)

for moderate flux bias around Φext/Φ0 ≈ n ∈ Z. As the dc-SQUID can act as nonlinear
element, we briefly estimate the effect of the nonlinearity. The energy spacing between
two adjecent levels is derived to be [72]

δEn = −6n2 + 6n+ 3
4 BωEc with Bω =

1
4cos2

(
πωc
2ω0

)
1 + 2πωc

2ω0
/sin

(
πωc
2ω0

) , (3.23)

with the charging energy of the microwave resonator Ec = (2e2)/(2Cc). The similarity
to Eq. (2.29) is not a coincidence as both results relate to a Duffing potential. Therefore,
we can directly associate the nonlinearity of the FTR to α = BωEc/4, which scales with
(Ec(1/48− (Lcα

′Ic)2). This nonlinearity is dominated by the charging energy, but diluted
by a term influenced by the critical current, the total conductor inductance and the cor-
responding prefactors α′. This is similar but in contrast to highly nonlinear systems, e.g.
transmon qubits, where the nonlinearity depends only on the charging energy (α = −Ec),
see Sec. 3.4.2.
In Fig. 3.1b) we plot the resonance frequency of Eq. (3.22) for a CPW resonator as function
of the flux through the SQUID loop for various critical currents ranging from Ic = 1 to
4µA. We find a periodic behavior in Φ0. Starting from a maximum transition frequency,
that shifts with the critical current, the frequency tunes to zero, with a slope depending
on the critical current. The quantitative dependence of the critical current to those two
parameters can be derived from Eq. (3.22).
For now, we like to conclude on the results of flux tunable resonator, briefly discuss desired
design parameters, and the limits imposed by the other components in inductively coupled
electromechanical systems.
As we will see, the electromechanical single photon-phonon coupling strength scales with
the slope of the frequency tuning, cf. Sec. 7.1. Additionally, the effective coupling can
be enhanced in electromechanics by increasing the photon number in the microwave res-
onator. Both aspects demand to design the critical current as high as possible, as both
increase the slope [cf. Fig. 3.1b)], and reduces the nonlinearity of the SQUID [Eq. (3.23)].
However, this is in contrast to the aspect of flux hysteresis [cf. Eq. (3.16)], which will
lead to undesired jumps for a flux bias point, and also reduces the available tuning range
respectively the accessible slope. For this we keep the critical current within the calculated
limit of Eq. (3.16), resulting in a system which is more stable to operate. To compensate
the tuning range, we design the microwave resonator at a bare resonator frequency around
7.5 GHz, close to the limit of the cryogenic amplifiers (8 GHz), so that a larger tuning
range becomes accessible (down to 4 GHz) and the restrictions of the slope are overcome.
The limitations on the low photon numbers in the nonlinear microwave resonator, im-
posed by the SQUID, are bypassed by enhancing the phonon number resulting in a higher
electromechanical signal, as discussed in Sec. 5.2.
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Figure 3.2: Transmon parameters derived from a shorted transmission line. Panel a) displays
the model of a dc-SQUID in a transmission line (λ/2-configuration). For a transmon qubit the
CPW length is shortened so that Lc is reduced. The size of the capacitors define the nonlinear
regime EJ/EC. Panel b) shows the frequency tuning of the transmon qubit explored in Sec. 6
(green). From a maximum transition frequency with vanishing tuning slope the frequency
tunes periodically in Φ0. Further the fixed frequency CPW read-out resonator is indicated
(red). Panel c) and d) sketch a tuneable two-level system strongly coupled to a fixed frequency
resonator. In panel c) when they are on resonance with each other. The strong coupling results
in an avoided crossing with a frequency separation of twice the coupling strength. Panel d)
displays the off-resonant scenario: the TLS and resonator are tuned by a dispersive shift. In
the case of a transmon qubit as quasi TLS, its nonlinearity has to be taken into account for
the determination of the dispersive shift (not shown).

3.4 Transmon qubits

3.4.1 From nonlinear transmission lines to quantum bits

In the following we switch from a λ/4 CPW-resonator shunted to ground by a dc-SQUID
to a λ/2 resonator. Nevertheless the dc-SQUID remains at the current anti-node. By this
we can consider the system as a dc-SQUID with two LC elements, see Fig. 3.2a). So far,
we have found a finite nonlinearity of such systems, describing the energy spacing between
two adjacent levels. When the nonlinearity is sufficiently large that the spacing in energy
δEn overcomes the decay rate of the resonator κ, the levels can be independently adressed
and the system acts as a (quasi-) two level system (TLS).
As the nonlinearity of such systems can be defined by the charging energy of the system
EC = 2e/CΣ diluted by the inductance of the LC elements (see Sec. 3.3 and Ref. [57]),
reducing the length of the LC elements increases the nonlinearity. We can relate the
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Josephson (potential) energy to the charging (kinetic) energy EJ/EC, which then does
relate the nonlinearity in terms of the dominating Josephson energy. When the nonlinearity
is increased sufficiently such that the system can be treated as a quasi two-level system,
we reach the so-called transmission line shunted plasmon oscillation (transmon) qubit
regime (50 < EJ/EC) [75], or the charge qubit / cooper pair box regime EJ/EC ≈ 1 [19].
This regime can be realized by an appropriate design of the charging capacitance. The
capacitor plates can also be used to address the qubit, which lead to the development of
the so-called x- or g-mon qubits [76, 77].
We note, that Ref. [57] derived the generation of squeezed states in FTRs and showed
that by the increased nonlinearity of transmon qubits the generation of cat states becomes
feasible.

3.4.2 Details on transmon qubits

Combining the energy contributions as introduced in Eqs. (3.7) and (3.11) applied to the
transmon circuit, cf. Fig. 3.2a), we obtain the transmon Hamiltonian [75]

HT = 1
2CΣ

(Φ0
2π

)2
(∂tθ)2 + Esquid

J [1− cos (θ)] . (3.24)

Here, the capacitance of the shunt and the Josephson junction is described by CΣ. As the
phase difference θ can associated to a position (cf. Sec. 3.1), one can identify the above
equation as a particle in a cos-potential, like a rotor of angle θ in a gravitational field of
effective mass and charge in a homogenous magnetic field set by Φext [75]. The effective
mass of it is described by CΣ[Φ0/(2π)]2. In the transmon regime, as EC � EJ, the particle
is well trapped within one period of the potential, corresponding to a large effective mass.
So this mechanical analog must not be confused with the RCSJ-model typically used to
describe the dynamics of a single Josephson junction in a tilted washboard potential [52].
We note, that the Josephson energy is described by EJ = 2E0

J |cos(πΦext/Φ0)|, with E0
J

the Josephson energy of a single junction with critical current Ic [75].
Developing the above equation for the cosine leads to a splitting of the eigenenergies in a
Duffing manner [75]

En = −EJ +
√

8EJEC

(
n+ 1

2

)
− EC

12
(
6n2 + 6n+ 3

)
, (3.25)

where in the transmon literature the nonlinearity is defined as α = −EC/~ [75]. This cor-
responds to the nonlinearity of Sec. 3.4.1 in the limit Lc → 0 of a short transmission line.
The ground state is found around the plasmon frequency of the SQUID ~ωq =

√
8EJEC.

We display the frequency tuning of the transmon qubit in Fig. 3.2b) (green), for a system
similar to the one analyzed in Sec. 6.
We find periodic behavior in Φext/Φ0, with the maximum transition frequency located
at integer ratios and at a frequency of about 8 GHz. This spot is referred to as sweet
spot, since the tuning slope ∂Φωq = 0. So flux noise is efficiently avoided and the quality
the highest. From the sweet spot the qubit tunes down to zero. In the figure we have
further indicated the position of the fixed frequency read-out resonator (red), but without
a coupling present between the two systems, the influence of such a coupling is discussed
next.



3 Circuit quantum electrodynamics 23

3.4.3 Qubit interaction with light

In a first iteration we can assume the transmon qubit as an effective two-level system
if the anharmonicity is sufficiently larger than the qubit linewidth κq. The investigated
system in Sec. 3.2 indeed obeys α/2π = 188 MHz � κq/2π = 7 MHz. Approximating the
transmon as TLS one can write the Hamiltonian using Pauli-Matrix σz as [78]

HT = 1
2~ωqσz, (3.26)

identical to an isolated spin in a magnetic field, or an artificial atom. The qubit state can
hence be intuitively described as a vector in a Bloch sphere. However, the reduction to a
two-level system is insufficient for a transmon qubit, due to its relatively low anharmonicity
in comparison to a pure two-level system, realized by e.g. a charge qubit. In the following
we will discuss the light-matter interaction of a two-level system in general and then take
the finite transmon anharmonicity into account.
If the systems are coupled strongly the interaction of a light source with a two-level system
is described via the quantum Rabi model, derived for cQED systems in Ref. [79]. Strong
coupling means that the coupling strength gq is larger than the loss rates of the subsystems
κ, κq. If the coupling is well below the system energies it is sufficient to apply the Jaynes-
Cummings model [80, 81]

HT = ~ωq
2 σz + ~ωc

(
a†a+ 1

2

)
+ ~gq

(
σ+a+ σ−a

†
)
, (3.27)

which consists of the qubit term, the microwave read-out resonator with (fixed) eigenfre-
quency ωc, and an interaction term, where an excitation in the qubit can be created by
absorption of a photon (σ+a), or the qubit excitation can create a photon in the microwave
resonator σ−a†. Analyzing the interaction, one finds that it is depending on the detuning
between qubit and resonator ∆qc = ωq − ωc, so we discuss two scenarios:

Resonant interaction In the resonant regime ∆qc ≈ 0 and due to the strong coupling
a dressed state between resonator and qubit is observed, having an avoided crossing of
2gq. This is schematically depict in Fig. 3.2c). It can be shown [82], that the states are
transferred with the so-called Rabi frequency ΩRabi =

√
∆2

qc + Ω2
q, where Ωq describes the

driving strength of the qubit.

Dispersive interaction In the dispersive regime (∆qc � gq), the Jaynes-Cummings
Hamiltonian can be expressed as [81]

Hdisp
T = 1

2ωcσz + (ωc + χσz)
(
a†a+ 1

2

)
. (3.28)

Here, we have introduced the dispersive coupling strength or shift χ. Equation (3.28)
states that the microwave resonator frequency becomes an effective one, depending on the
qubit state and the dispersive shift χ, as indicated in Fig. 3.2d). This allows to determine
the qubit state via the resonator, as explained in Sec. 5.3.1 in detail.
Importantly, the dispersive shift for a transmon qubit is expressed by [75]

χ =
g2

q
∆qc

α

~∆qc + α
. (3.29)
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We see, that for a perfect two-level system, where α→∞, the second term cancels. Then
the dispersive shift is sufficiently described by g2

q/∆qc. For the transmon qubit however
this leads to a reduced shift in opposite direction, as α/~ < 0 < ∆qc. We note, that
the anharmonicity also allows for an enhanced, positive dispersive shift in the so-called
straddling regime, for 0 < ∆qc < |α/~| [75].
But the dispersive shift not only influences the microwave resonator, it also acts on the
qubit state, as discussed next, and indicated in Fig. 3.2d) for an ideal two-level system.

3.4.4 Ac-Stark shift of a transmon qubit

Rearranging Eq. (3.28) in terms of σz we find

Hdisp
T =

(1
2ωc + χa†a+ 1

2χ
)
σz + ωca

†a+ ωc
2 . (3.30)

Here we see, that the dispersive shift also acts on the qubit, and interpreting a†a ≡ n̄c, the
average photon number in the microwave resonator, we can observe a photon dependent
shift of the qubit, the ac-Stark shift ∝ χn̄c, as well as a photon number independent one,
the Lamb shift χ/2. When the resonator-qubit system is well characterized, this allows
for a precise determination of the photon numbers in the microwave resonator, as shown
in Sec. 6.5.
From this the main benefit of transmon qubits become clear: their relative long coherence
times. Flux noise is sufficiently screened by tuning the transmon on the sweet spot. Then
a dominant loss mechanism remaining is charge noise, thermal random excitations on the
microwave resonator (〈nphot〉) causing the qubit frequency to change due to the ac-Stark
shift. This leads to a dephasing of the qubit state. Via the large capacitances of the
transmon, the anharmonicity is reduced, and so the dispersive shift takes the form of
Eq. (3.29). Designing the sweet spot above the straddeling regime, the transmon qubit
coherence benefits from the reduced ac-Stark shift. However, as the shift is reduced, so is
the read-out sensibility. Yet, the frequency tuneability of the transmon qubit allows to set
it either in the straddeling regime for read-out or to the sweet spot for storage. By this
one benefits in both ways from the anharmonicity, making transmon qubits nowadays the
working horses of cQED.
We like to note, that Eqs. (3.28) and (3.30) respectively, are linearized. So for higher
photon numbers a correctional term ∝ n̄2

c , the so-called cross-Kerr has to be taken into
account [83].

3.4.5 Limitation in photon numbers induced by the Josephson nonlin-
earity

We have seen, that the nonlinearity is typically enhanced when reducing the critical cur-
rent, cf. Sec. 3.2. So the nonlinear systems can reach a critical photon number, when
the oscillating current exceeds the critical current of the Josephson junctions and the
dc-SQUID switches into the voltage state. The critical number is reached for [57]

nsquid
c = EJ

~ωc(n) . (3.31)

We like to note, that the calculations above are performed for the current/excitation in
the dc-SQUID, which is in contrast to the critical photon number in the (fixed-frequency)
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microwave resonator when reading out a transmon qubit via the dispersive shift. Here,
the effective coupling has to remain within the detuning ∆qc [84]:

ndisp
crit =

∆2
qc

4g2
q
. (3.32)
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Chapter4
Electromechanical interactions

〉 [quote] goes here 〈,

Joel Thomas Zimmerman, [85]

In the upcoming chapter we will frame the context of nano-electromechanical coupled
systems. We start by a brief summary of cavity optomechanics and move forwards how to
realize such by using superconducting microwave resonators as optical cavities coupled to
nanomechanical string oscillators. Further, we will introduce the mechanical displacement
spectra and the imposed noise contributions via electromechanical detection. We discuss a
realistic measurement setup and the imposed limitations when using nonlinear Josephson
quantum circuits as electric resonators. In addition, we discuss sideband cooling realized
by the high frequency resonators. At the end, we consider the scenario of externally driven
strings, and how we can boost the effective frequency shifts exceeding the resonator decay
rate that we will later determine experimentally.

4.1 From cavity optomechanics to quantum nano-
electromechanics

4.1.1 Optomechanics in a nutshell

We start by considering an optical resonator, consisting of two mirrors separated by a
length lc. The ground mode of the resonator then is determined by ωc/2π = vphase/2lc.
The optical case typically holds vphase = c. By connecting one mirror plate to a mechanical
oscillator, the length of the resonator becomes dependent on the mechanical position and
so also the resonator’s eigenfrequency. We show this in Fig. 4.1a) schematically.
We see a Fabry-Perot interferometer of two mirrors (blue) coupled to the environment with
a rate κext and internal losses κint. The suspended mirror couples to a mechanical oscillator
(brown) of displacement x(t) and a damping rate Γm with a single photon-phonon rate
of gm0 (red). When we describe the position x = xt0(t = 0) + x(t) by a rest position set
to t0 = 0, and a time depending shift of the oscillator. The linearized optomechanical
frequency is then found by:

ωc(x) = ωc(x0) + (∂xωc)x(t). (4.1)

27
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Figure 4.1: From opto- to electromechanics. Panel a) shows an optomechanical resonator con-
sisting of two mirror plates of separation length lc setting the eigenfrequency of the resonator
ωc. One mirror is connected to a mechanical spring. A position change in the mechanical
element alters the length of the resonator and hereby the resonator’s eigenfrequency depends
on the state of the displacement of the mechanical oscillator [ωc(x)]. The translation of the
mechanical motion to a frequency change is described by the single photon-phonon coupling
strength gm0. Further, the system’s damping constants are indicated: κint, κext for the inter-
nal and external losses of the optical resonator, as well as Γm for the mechanical oscillator.
Switching from optical to electrical resonators their eigenfrequency is determined by the in-
ductance and capacitive of the circuit. Panel b) and c) indicate the working principle of such
electromechanical hybrid systems for a capacitively (b) and inductively (c) coupled realiza-
tion. In either case an additional capacitance or inductance that depends on the state of the
mechanical oscillator is inserted to the LC-resonator.

Here, we associate the microwave resonator’s frequency with ωc when the mechanical
oscillator has a displacement of x = 0. In addition, the coupling is associated by ∂xωc = G.
So far, we have treated the system classically, however a quantum mechanical description
is desired for the investigation of non-classical states. A review on the topic is found in
[86]. We focus on a short summary, starting by the Hamiltonian of the system [9]:

Ĥ = ~ωc(x)
(
â†â+ 1

2

)
+ ~Ωm

(
b̂†b̂+ 1

2

)
, (4.2)

where we describe the system by two harmonic oscillators: the mechanical one with eigen-
frequency Ωm and the optical resonator having a mechanical displacement sensitivity ωc(x).
The corresponding ladder operators are â (b̂) for the optical (mechanical) oscillators. We
determine the excitation numbers by the operation â†â = n̄c for the photons and b̂†b̂ = nm
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for the phonons. We describe the displacement x̂ in agreement with the already introduced
Eqs. (2.15) and (2.26).

x̂ = xzpm
(
b̂† + b̂

)
, with xzpm =

√
~

2meffΩm
. (4.3)

Here, we have used the zero-point motion of the mechanical element x2
zpm = 〈0|x̂2|0〉

[9], with the mechanical vacuum state |0〉. By this we find the total displacement
x̂ = xzpm

√
2nm, which can separately be derived from the thermal occupation [87, 88]

In the quantum mechanical treatment, we describe the resonance frequency of the mi-
crowave resonator for small displacements with ~ωc(x)(â†â) ≈ ~(ω0 − Gx̂)(â†â) by using
Eq. (4.1) and assuming small displacements [9]1. From this we derive the electromechanical
interaction term to

Ĥint = −~Gx̂â†â = −~gm0â
†â
(
b̂† + b̂

)
, (4.4)

introducing the single-photon-phonon coupling strength gm0 = Gxzpm. Note that this
interaction strength determines the time required for a photon to be converted into a
phonon and vice versa. The radiation pressure in such an opto- or electromechanical
system is given by [9]

F̂ba = −dĤint
dx̂

= ~
gm0
xzpm

â†â, (4.5)

which results in an important aspects of optomechanics: the radiation pressure is rather
weak. Even for a relatively high coupling strength of gm0/2π = 500 Hz and a corresponding
zero-point motion of xzpm = 50 fm, it is about 7 aN per photon. However, the additive per
photon shows one of the benefits of optomechanics: when populating the optical resonator
by 1.5 · 108 [34], the total backaction force is boosted to about 1 nN, which is measurable
with commercial available micro balances [89]. We see, that the weak radiation pressure
can be compensated by populating the microwave resonator. We will discuss details of
the backaction force when we consider the noise contribution of electromechanical systems
in Sec. 4.2. For now we want to transition from an optical resonator to the field of nano-
electromechanics.

4.1.2 Nano-electromechanical realizations

To realize a nano-electromechanical device, we replace the optical resonator by an electric
LC resonant circuit which is typically operated in the microwave regime. The microwave
resonator frequency then is determined by the (total) contributions of inductance and
capacitance ω =

√
1/LcCc, c.f. Sec. 3.3. As in the optical scenario [c.f. Fig. 4.1a)], we can

attribute a length to the microwave resonator ω = vphase/λ with a phase velocity vphase and
the wavelength λ. For the phase velocity we have to consider an effective dielectric constant
εeff = 6.4 [64], as we use silicon based microchips with superconducting aluminum for our
microwave resonators. So, the microwave resonator lengths are on the order of some mm
for λ/4 resonators and frequencies in the low GHz regime. When operating these chips in a
cryogenic environment of 100 mK we find the resonator to be naturally in the ground state,
as n̄th

c = kBTcryo/(~ω) = 0.3 for a frequency of ωc/2π = 7 GHz. As the eigenfrequency of
1the minus sign takes care that a positive displacement results in a reduced resonator frequency, for

G > 0



30 4.1.2 Nano-electromechanical realizations

the electric resonator is determined by the combination of capacitance and inductance, we
can identify possible implementation categories for the electromechanical interaction:

Capacitively coupled electromechanics Here, an additional capacitance with a me-
chanically compliant capacitance is integrated in the circuit, see Fig. 4.1b). This was first
introduced in the form of a doubly clamped nanomechanical string oscillator [13], acting
as an additional capacitance in the circuit. Further Ref. [90] addressed the capacitive cou-
pling by changing the dielectric within the capacitor plates using a non-metalized, ultra
high-Q dielectric string resonator. The weak coupling strength of the nanostrings was soon
overcome by changing from a string to a drum oscillator, that allowed the observation of
strong coupling [14] and ground state cooling of the mechanical element [15], which was
later also achieved in optical phononic [91] and electronic phononic crystals [92], as well
as for a membrane in a 3D microwave cavity [93]. The drum oscillators in superconduct-
ing resonators later were squeezed below the standard quantum limit [16, 94], as well as
coherent state transfer between the microwave and mechanical systems [95].
The capacitive coupling can also act on nonlinear circuits like Josephson based quantum
bits. A state transfer between such a circuit and a piezoelectric resonator was demonstrated
in [96], however the high mechanical decoherence limited the mechanical storage time. In
addition, electromechanical Rabi oscillations were found when integrating a nanostring in
a transmon circuit [97]. Thermal states where transferred between a electromechanical
drum resonator and a phase qubit in Ref. [22]. The observation of a mechanical superposi-
tion state was found by using a qubit as non-classical state source on a separate microchip
coupled to an electromechanical resonator [24].
Here, however, we will integrate a transmon qubit capacitively coupled to an electrome-
chanical circuit consisting of a microwave resonator and a doubly-clamped nanomechanical
string oscillator. We will show the individual control of qubit, microwave resonator, and
mechanical oscillator. The combination of those systems allows for an ultra-wide range
photon number calibration, with photon numbers deviating by nine orders of magnitude,
see Sec. 6.

Inductively coupled electromechanics Similar to the capacitive coupling an induc-
tive coupling can be realized with a mechanical dependent inductance added to the circuit,
as sketched in Fig. 4.1c). The approach of integrating a nanomechanical dc-SQUID, that
is a dc-SQUID with a released nanostring, into a superconducting resonator was first pro-
posed by [35], however coupling strength and radiation pressure where kept on a moderate
level. In a follow up paper, the authors showed, that the nonlinearity of the dc-SQUID in
the microwave resonators induces a nonlinearity, leading to a Duffing spring-softening of
the resonator. The authors claim that by this nonlinearity a closer cooling to the ground
state, as well as position detection closer to the standard quantum limit becomes possi-
ble [36]. Later it was shown that the vacuum coupling strength can theoretically exceed
the damping of the microwave resonator, entering the single photon-phonon ultrastrong
coupling regime. By this a mechanical induced dynamical Casimir effect can be observed
[37]. Further Ref. [38] showed that the integration of dc-SQUID with asymmetric junctions
allows to determine higher order couplings at the degenerate point of Φext = Φ/2.
These proposals built up on initial work by van der Zant et al. [30], which read-out the
motion of a nanomechanical dc-SQUID via a direct current [31–33].
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We will show first experimental data on such a system by integrating a mechanical dc-
SQUID including a 20µm long nanostring at the current anti-node of a quarter-wavelength
coplanar waveguide resonator, see Sec. 7.

4.2 Noise considerations

In the following section we introduce the mechanical displacement spectrum and discuss
its contributions for measurements in thermal equilibrium to the environment. We will
additionally have a look at the measurement induced noise spectra, such as imprecision
and back-action induced uncertainties. We conclude by calculating a realistic scenario and
highlight the imposed limits due to nonlinear effects in the electric circuits. We discuss
the obtained findings in terms of improvements for the measurement setup.

4.2.1 Thermal motion of a nanostring

Next we will discuss an electromechanical displacement spectrum and its components. For
this, we first focus on the mechanical displacement spectra of the nanostring, which we
assume to be in thermal equilibrium with the environment at a temperature of 125 mK. As
the string’s eigenfrequency is at the low single-digit MHz-regime, it is thermally excited
and a classical treatment is sufficient, a quantum mechanical treatment of the following
calculation is found in [98]. The string’s (double sided) noise power spectral density is
defined as [9]

Sxx(Ω) ≡
∞∫
−∞

〈x(t)x(0)〉eiΩt · dt. (4.6)

We like to note, that here we used the angular frequency (Ω/2π = f) spectrum Sxx(Ω),
which can be transferred to the direct frequency spectrum Sxx(f) = Sxx(Ω)/2π 2[43].
For a physical interpretation we link this to the spectral density 〈|x̃(Ω)|2〉, where x̃(Ω)
describes the Fourier transform of the time trajectory of the mechanical displacement for
a specific measurement time τ , c.f. Sec. 2.1. The link is realized via the Wiener-Khinchin
theorem which results in the spectral density approaching Sxx for τ →∞ [9], and we relate
the area of the measured power spectral density to match the variance of the mechanical
displacement [9]:

∞∫
−∞

Sxx(Ω)dΩ
2π = 〈x2〉. (4.7)

By the equipartition theorem it is stated, that the system’s energy is distributed with
1/2kBT per degree of freedom [99]. Therefor, in thermal equilibrium, the energy is dis-
tributed by

1
2kBT = 1

2meffΩ2〈x2〉 → 〈x2〉 = kBT

meffΩ2 . (4.8)

In combination with Eq. (4.7) we see, that when the environmental temperature is reduced,
the signal area is also shrinking. This requires a detection efficiency close to the quantum
limit the closer the quantum regime is approached.
Next we introduce the mechanical susceptibility relating the string’s motion coordinate

2an additional factor of 2 can arise from single or double sided detection
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to an external force x(Ω) = χm(Ω)Fex(Ω), again defined in the angular frequency space,
see also Eq. (2.9). It can be derived by solving the equation of motion of an individual3

nanostring in (angular) frequency space to

χm(Ω) =
[
meff

(
Ω2

m − Ω2
)
− i ·meffΓmΩ

]−1
. (4.9)

Then, assuming thermal equilibrium, the fluctuation dissipation theorem allows to express
the thermal noise power spectral density to [9]

Sth
xx(Ω) = 2kBT

Ω Im(χm), (4.10)

corresponding to Lorentzian features at the frequencies ±Ωm (double sided) having a
linewidth Γm. Now we quantified the spectral density of the nanostring. We see, that
it linearly depends on the string’s temperature. Later, we will make use of this relation
to determine the vacuum coupling strength of the electromechanical system. Now two
questions arise from this derivation: first, this calculation was done neglecting any noise
contributions. How is the electromechanical and technical noise influencing the spectra?
And second: When discussing nanomechanical quantum systems, why is the semi-classical
treatment valid in this scenario?
Regarding the second part this treatment is justified, as the environmental temperature
at 125 mK is still much higher than the quantum mechanical ground state (0.4 mK for a
resonance frequency of Ωm/2π = 6.343 MHz). In a quantum mechanical treatment the
displacement density is found to be [98]

Sth
xx(Ω) = 2 ~

1− e~Ω/(kBT ) Im(χm). (4.11)

This expression approaches (4.10) for ~Ω� kB. So when investigating the classical thermal
noise power spectral density of a temperature of 125 mK and a mechanical frequency of
Ωm/2π = 6.343 MHz the deviations between the quantum [Eq. (4.11)] and the classical
description [Eq. (4.10)] are negligible.

4.2.2 Frequency noise contribution

So far, we have analyzed the mechanical displacement density of a nanostring. When such
a string is coupled to an opto- or electronic resonator the string’s displacement modu-
lates the resonator frequency as discussed in Sec. 4.1.1. When the microwave resonator
is investigated by a spectroscopy tone, the mechanical motion adds sidebands as a phase
modulation onto the tone.
In the following we will discuss the noise contributions from the phase imprecision and the
back-action onto the electromechanical system in such a realization. We do this for a probe
tone on resonance to the electric resonator (∆p = ωp − ωc = 0). By this the mechanical
motion modulates the phase response of the probe tone. A direct and important conclu-
sion from this is that the probe tone’s phase fluctuations determine the noise level of the
measurement [17]. This noise floor can be reduced by increasing the drive power, as the

3assuming no back-action to the resonator
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statistical phase imprecision readout scales ∝
√
n̄c. The quantum limited (no additional

noise phonons nadd = 0) imprecision spectrum reads [9]

Simp
xx (Ω) =

κx2
zpm

16n̄cg2
m0

(
1 + 4Ω2

κ2

)
. (4.12)

We find the imprecision noise floor to reduce when using high quality resonators (κ small).
This increases the transduction from mechanical motion to the cavity. Additionally, high
electromechanical couplings increase this translation, here the noise floor is decreased
quadratically. When reaching the standard quantum limit, the use of squeezed light enables
the reduction of the phase noise and herby improves the imprecision noise [17]. Besides
that, it seems obvious to simply increase the amount of photons. However, this increases
the back-action force, see Eq. (4.5). The back-action force noise is described by [9]:

Sba
FF(Ω) = n̄c

4~2g2
m0

κx2
zpm

(
1 + 4Ω2

κ2

)−1

, (4.13)

for which we find a linear increase in the photon number. Under the assumption of optimal
detection we now have found the universal result Simp

xx (Ω)Sba
FF(Ω) = ~2/4, which reflects

the Heisenberg uncertainty principle: increasing the amount of photons reduces the phase
noise, but at the same time increases the amplitude fluctuations, leading to an increased
back-action force. We find the photon numbers for the optimum total displacement noise
floor Min

[
Simp

xx + Sba
xx

]
, where we have translated the back-action force spectral density

into a displacement density via Sba
xx = Sba

FF(Ω)|χm(Ω)|2 to

n̄opt
c (Ω) =

x2
zpm

8g2
m0

κ2 + 4Ω2

~κ
|χm(Ω)|. (4.14)

We see, that we can push the optimal photon number towards small numbers by increasing
the electromechanical coupling strength gm0. The corresponding spectral density of the
optimal photon number can be associated to the nanostring’s zero-point motion as the
standard quantum limited displacement density

Ssql
xx (Ω) = ~|Im(χm(Ω))|. (4.15)

For a nanostring as introduced in Sec. 7.2 this corresponds to a value of Ssql
xx (Ωm) =

~/(meffΓmΩm) = 2.8 · 10−29 m2s on resonance to the mechanical element. We reach this
low value by the use of thin, annealed aluminum nanostrings.
Taken the obtained findings together we quantify the total measured spectrum for the case
of quantum limited detection described by the individual terms introduced before as

Stotal
xx = Sth

xx(Ω) + Simp
xx (Ω) + Sba

FF(Ω)|χm(Ω)|2. (4.16)

We can express this in terms of the standard quantum limit (which was defined by the
minimum of the last two terms). So the relation to the thermal spectrum remains, which
is simply

Sth
xx(Ω)/Ssql

xx (Ω) = 2kBT

~Ω = 2nth
m , (4.17)

calculated by Eq. (4.10) and (4.15). It is remarkably, that this result is independent of
the mechanical frequency.
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Figure 4.2: Frequency noise contributions at optimal drive power. We derive the ideal total signal
(red), the thermal motion spectra of the nanostring (brown), as well as electromechanical noise
contributions at an optimal drive power (blue) consisting of the back-action and impression
noise (black dotted line). We note, that on mechanical resonance both noise contributions
are equal at the optimal driving point. The right axis was calibrated in units of the standard
quantum limit of the string.

4.2.3 Thermal displacement spectras

Now we have derived all electromechanical noise sources contributing to the displacement
spectra. In Fig. 4.2 we plot the expected spectrum and contributions for an optimal
photon number n̄opt

c (Ωm), at a temperature of 125 mK, and for a mechanical element as
later discussed (for parameters see Sec. 7.2). We do this using Eqs. (4.9)-(4.16).

As the string is thermally populated (nm = 410) and the electromechanical noise
reduced by assuming an ideal detection and optimal driving, we find the measured
total spectrum (red) only slightly above the thermal spectra of the nanostring (brown).
This is expected as for the given parameters on resonance (Ω = Ωm) Eq. (4.10) states
Sth

xx = 2.3 · 10−26m2/Hz and Eqs. (4.12), (4.13) predict Simp
xx + Sba

xx = 2.8 · 10−29m2/Hz.
Further for the ratio between the electromechanical noise terms (Simp

xx +Sba
xx) is found to be

2nm = 820, in agreement to Eq. (4.17). Also note, that at the resonance point Simp
xx = Sba

xx ,
which is hidden in the logarithmic scale of the figure. When the thermal occupation
of the nanostring is reduced to reach quantum mechanical states (c.f. Sec. 2.3.2), the
high ratio between Sth

xx and Simp
xx + Sba

xx is shrinking [see Eq. (4.17)]. Especially when
considering imperfect detection (e.g. Simp

xx → Simp
xx +Stech

xx [17]). Therefor the experimental
investigation of nonclassical states benefits greatly by the installation of quantum limited
amplifiers, in particular Josephson Parametric Amplifiers (JPAs) reducing the amplifier
noise considerably. We like to note, that for a full quantum mechanical description the
classical displacement spectrum has to be replaced by the quantum distribution (Eq. 4.11),
which was not done here due to the high thermal excitation.
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Figure 4.3: Electromechanical noise versus photon numbers. The graph shows the total ideal
electromechanical noise for three different coupling strengths. The experimental scenario of
about 500 Hz coupling is shown in blue, a weaker one in orange and a stronger coupled scenario
in green. As the nonlinearity of the electric resonator limits us to photon numbers of the order
of 10 (area above in grey), the detected signal height becomes drastically reduced. Only for
the stronger coupling scenario the optimal drive power can be reached.

Although, the optimal photon number cannot always be reached. One potential sce-
nario in which this limitation can occur is when the electromechanical interaction is so
weak, that the required photons for the optimal photon number are high enough that the
resonator becomes unstable, or the experiment gets heated up by the probe tone power.
Another scenario arises within this thesis, as we use nonlinear elements, in particular
Josephson junctions. Their intrinsic nonlinearity limits the amount of photons we can
apply to the circuit (c.f. Sec. 3.4.5), before the electric resonator stops acting harmonic.
We discuss such photon number limitations quantitatively in Fig. 4.3, using similar pa-
rameters as in Fig. 4.2, that is: zero detuning ωp = ωc, on resonance to the mechanical
string Ω = Ωm, optimal detection Stech

xx = 0, an environmental temperature of 125 mK
and the string’s parameter as introduced in Sec. 7.2. We plot the electromechanical noise
contributions in blue for a coupling of gm0/2π = 525 Hz, equivalent to Fig. 4.2, as well
as a weaker (orange) and stronger (green) coupling. In both figures 4.2 and 4.3 the blue
line indicates the electromechanical noise contribution to the displacement spectrum. In
Fig. 4.2 this is shown for an optimal photon number over the angular frequency Ω, while
in Fig. 4.3 this is plotted on resonance to the mechanical string (Ω = Ωm) as a function
of the inserted photons. So, while in the first figure imprecision and back-action noise
contributed equally, we now find the imprecision noise dominating below n̄opt

c in ∝ 1/n̄c,
while after the optimal photon number, the back-action noise becomes dominant (∝ n̄c).
As we will later show in Sec. 7.4.3 for the working spot we analyze, the photon num-
ber is limited to about n̄c = 10 by the microwave resonator including the SQUID
(grey area). Furthermore the developed measurement schemes will be performed around
n̄c ≈ 1 photon. Independent of the photon number, the thermal displacement is always
found at Sth

xx = 2.3 · 10−26m2/Hz (brown solid line). So when we reduce the photon num-
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bers from the optimal point of 318 to 10 or 1, the background is increasing (following
the blue dashed line), which reduces the signal to noise ratio. We find ratios of 820, 51,
and 4 for photon numbers of n̄c = 318, 10, 1. By this the electronic setup has to be well
optimized, so that the observation of the nanostring remains feasible.
We find the noise contributions shifting quadratically in the photon numbers when chang-
ing the electromechanical vacuum strength in accordance to Eq. (4.14). For weaker cou-
pling (orange) an observation of the mechanical motion is not possible given the limitations
imposed by the nonlinear Josephson elements. Higher coupling (green) allows to shift the
optimal photon number within the reach of the electric resonator. For the realization of
inductive coupling (c.f. Sec. 7) this can be achieved by higher magnetic fields. However
in our experiments, the currents inducing the external field via an external coil already
started heating the sample and so, the moderate coupled scenario (blue) had to be exam-
ined.
We discuss contributions by the measurement detection (Stech

xx ) in Sec. 7.6.5, on the basis
of our experimental data.

4.3 Electromechanical sideband cooling

To investigate the radiation pressure induced dynamical back-action effects, we employ the
input-output formalism, in a semi-classical limit, valid if photon and phonon numbers are
sufficiently large, such that we can describe the resonator field amplitude via a(t) = 〈â(t)〉
and the nanostring’s position by x(t) = 〈x̂(t)〉. We find two coupled differential equation
[9]:

∂ta(t) = −κ2a(t)− i(ωc −Gx(t))a(t) +
√
κext

2 sin(t), (4.18)

meff∂
2
t x(t) = −meffΩ2x(t)−meffΓm∂tx(t) + ~G|a(t)|2. (4.19)

When solving these equations for a weak test force, the calculated response is equivalent
to the modified mechanical susceptibility, for which one finds [9]

χm,eff =
{
meff

[
Ω2

m − Ω2 + 2ΩδΩm(Ω)− iΩΓm − iΩΓopt(Ω)
]}−1

. (4.20)

Where we introduced modifications in comparison to Eq. (2.9) by the electromechanical
interaction for the mechanical spring constant leading to a shift δΩm, and to an additional
damping rate Γopt. For the electromechanical changes now follows [9]

δΩm(Ω) = n̄cg
2
m0

Ωm
Ω

[ ∆mc + Ω
(∆mc + Ω)2 + (κ/2)2 + ∆mc − Ω

(∆mc − Ω)2 + (κ/2)2

]
, (4.21)

Γopt(Ω) = n̄cg
2
m0

Ωm
Ω

[
κ

(∆mc + Ω)2 + (κ/2)2 −
κ

(∆mc − Ω)2 + (κ/2)2

]
. (4.22)

We note, that a quantum mechanical treatment of the interaction Hamiltonian lead to
similar equations in the quantum regime, as derived in [43, 100], which differ from this
semiclassical calculations only for phonon numbers in the single digit regime [101].
The total damping on resonance to the mechanical oscillator becomes an effective linewidth

Γeff = Γm + Γopt(Ωm), (4.23)
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Figure 4.4: Schematical depiction of sideband cooling in electromechanics. Panel a) Raman tran-
sition diagram. The mechanical element has an eigenfrequency in the low megahertz regime.
The electromechanical photon-phonon interaction causes Stokes and anti-Stokes sidebands on
the drive tone ωd. In general three processes on those sidebands can be found: the indicated
red transition removing a phonon from the mechanical oscillator. Second the photon can be
absorbed by the electric resonator (grey) and third a phonon in the mechanical element can
be created (light grey). By setting the drive tone detuning, these processes can be selec-
tively switched on and off. For a detuning of −Ωm, the phonon annihilation is the dominant
scattering process, where the inserted drive tone photon and a removed phonon scatter into
the electric resonator, effectively cooling the mechanical mode. Panel b) displays the EMIA
configuration, with the mechanical sidebands shown in brown, a red detuned drive tone, set-
ting the photon numbers in the microwave resonator (blue). An additional weak probe tone
around the resonator frequency (orange) interferes with the scattered photons, leading to the
electromechanically induced absorption

with the electromechanical contribution from Eq. (4.22). We see, that depending on the
drive tone frequency detuning ∆mc = ωd − ωc, we can increase or decrease the effective
linewidth. The decrease can even lead to a self-oscillation regime [102, 103].

We will now interpret this result physically, with focusing on a scenario when the drive
tone is red detuned (∆mc = −Ωm), corresponding to an effective cooling of the mechanical
mode. For this we start by having a look of this scenario in the transition diagram found
in Fig. 4.4a).
The sidebands generated by the mechanical element on the microwave resonator allow for
two further scattering processes besides an absorption of the drive photon by the resonator
(grey): i) via a Stokes process (light grey), the inserted photon creates a phonon in the
mechanical oscillator. The required energy is taken from the photon and it remains with
∆mc = ωd − ωc = +Ωm. ii) the anti-Stokes process (red), when a phonon is removed
from the oscillator to scatter with the probe photon into the resonator. We can associate
these scatterings with a rate A− (anti-Stokes) and A+ (Stokes), and so we can describe
the electromechanical damping with [9]:

Γopt(Ωm) = A− −A+. (4.24)

In comparison with Eq. (4.22) we directly find the corresponding rates. In a quantum
mechanical treatment, they can be derived from Fermi’s golden rule [98]. In a continous
wave experiment, we can measure the steady-state solution of the phonon population by
comparing the linewidth change via [9]:

ncooled
m = A+ + nth

m Γm
Γopt + Γm

= nth
m Γm
Γeff

, (4.25)
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where the right equivalent is only valid for the case of an optimal red-sideband drive
(∆mc = +Ωm). Equivalently we can determine the final mode temperature when switching
from particle to a temperature picture Tfinal = TinitΓm/Γeff [9]. A detailed derivation on
the final occupation up to second order can be found in [15, 104].
We briefly like to discuss the fundamental limit of sideband cooling, which is in the resolved
sideband regime (κ� Ωm) given by [9]:

nmin
m =

(
κ

4Ωm

)2
< 1. (4.26)

This demonstrates the importance of designing the electromechanical samples in the re-
solved sideband regime. If the devices are not in this regime, the result of Eq. (4.26) is
larger 1, preventing ground state cooling.

We briefly want to discuss what happens when a second weak probe tone is switched
on, scanning along the scattered anti-Stokes photons around the microwave resonator
frequency. The experimental scheme is depicted in Fig. 4.4b). When we consider the mi-
crowave resonator to be of a λ/2 one, measured in transmission (experimental situation in
Sec. 6), the microwave probe tone is only detected on resonance to the electric resonator,
as otherwise the signals are blocked by it. Under the influence of a strong drive tone (red)
applied to the electromechanical resonator in the red-sideband configuration, anti-Stokes
photons are generated at ωd+Ωm ≈ ωc in a Lorentzian lineshape with the effective mechan-
ical damping rate Γeff (brown). As these upconverted photons now destructively interfere
with the probe tone (orange), we find an electromechanically induced absorption (EMIA)
or transparency (EMIT) depending on the microwave transmission. The EMIA/EMIT
feature is a Lorentzian peak with linewidth Γeff . When sweeping the drive tone power,
the amount of resonator photons is changed. Plotting the effective linewidth over drive
power, we can calibrate the photon numbers, as it remains the only free fit parameter, if
the electromechanical resonator was precharacterized before properly.

4.4 Coherent mechanical excitations in electromechanical
systems

In the following we consider an externally driven mechanical motion of a nanostring. As we
will consider coherent motion of the nanostring, a classical treatment is sufficient. We will
focus on the results of the calculations and refer for details of the calculation to App. G.
One possible realization for such a scenario can be a piezo actuator shaking the elec-
tromechanical system [90], alternatively the coherent motion can also be excited by a blue
sideband drive [105]. By a proper choice of the probe tone and the intrinsic low radiation
pressure force [cf. Eq. (4.5)], the electromechanical backaction becomes negligible. This
decouples the electromechanical differential equations and we solve for the string’s motion
[cf. Eq. (4.19)]:

x(t) = x0sin (Ωmt) . (4.27)

Here the motion amplitude x0 is the maximum displacement which is a consequence of the
external driving force. By this only Eq. (4.18) has to be solved for an applied input field
of sin(t):

∂ta(t) +
[
κ

2 − i (ωc −Gx(t))
]
a(t) =

√
κextsin(t). (4.28)
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The solution of this inhomogeneous differential equation is constructed from the homoge-
nous solution ah(t) for sin(t) = 0 and a partial solution ap(t). The full solution is given by
their sum. For the homogenous solution we find

ah(t) = exp
[(
−κ2 + iωc

)
t+ iβcos (Ωmt)

]
, (4.29)

where we have introduced the dimensionless parameter [105]

β = Gx0
Ωm

. (4.30)

This parameter relates the maximum frequency shift of the microwave rsonator Gx to the
energy scale of the mechanical element. The numerator resembles the shape of a driven
coupling as Gx0 = gm0

√
2nm, similar to the effective (undriven) coupling g = gm0

√
n̄c

typically used in electromechanical systems [9, 14].
In the following, we use Bessel-functions of first kind and n-th order Jn(β) to describe the
oscillations on exponential functions. This concept has been used successfully to calculate
the response of Josephson junctions to ac-driven voltages [45, 52, 105]

exp [−iβcos(Ωmt)] =
∞∑

n=−∞
(−i)nJn(β)exp(inΩmt). (4.31)

Then the particular solution is given by

ap =
√
κextsin

∞∑
n,m=−∞

(i)m−nJn(β)Jm(β)exp {i[ω + (n−m)Ωm]t}
κ
2 + i(∆p + nΩm) . (4.32)

The solution to the differential equation (4.28) is given by ah(t) + ap(t). However, the
exponential decay of ah(t) with κ/2 [cf. Eq. q. (4.29)] in combination with typical mea-
surement bandwidths of 1 kHz allows to neglect ah(t). Thus, the steady state solution of
the resonator field is described by ap(t).
So the detected output field transmitted through the mechanically driven sample becomes
sout = sinexp(iωt)−√κextap(t). Then the complex transmission parameter is found to be

S21 = sout
sin

= 1−
√
κext ap(t)/sinexp(−iωt)

= 1− κext

∞∑
n,m=−∞

(i)m−nJn(β)Jm(β)exp [i(n−m)Ωmt]
κ
2 + i(∆p + nΩm)

(4.33)

Another important fact is that we perform the experiment using a network analyzer. Thus
the device only records signals on resonance with the probe. Thus we have to consider
only vanishing rotations of the signal [set by exp(i(n−m)Ωmt)] when m = n. We use this
simplification when we later compare the absolute transmission of the signal to the data
[105]

|S21|2 = 1− κext (κ− κext)
∞∑

n=−∞

[Jn(β)]2

(κ/2)2 + (∆p + nΩm) , (4.34)

in agreement with Ref. [100] for capacitively coupled electromechanics.
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Intermediately driven strings In the following we will discuss the solution of
Eq. (4.28) in the sense β � 1, for which we will linearize in β. We do this to inter-
pret the result physically.
The homogenous solution remains fast decaying and so is not of further interest. The
linearized particular solution reads:

ap,w =
√
κext

sin(t)
κ
2 + i∆p{

1 + 2βΩm
−2Ωmcos(Ωmt) + (κ+ 2i∆p)sin(Ωmt)

(κ+ 2i∆p) [κ+ 2i(∆p + Ωm)] (iκ+ 2(−∆p + Ωm))

}
.

(4.35)

Again, the output field is quantified by sout,w = −√κextap,w, which allows to similarly
calculate the scattering parameter S21,w, which is for an on-resonance microwave drive
(∆p → 0) given by

S21,w = 1− κext
κ

+ i2κext
κ
βΩm

2Ωmcos(Ωmt)− κsin(Ωmt)
κ3 + 4κΩ2

m
. (4.36)

In this notation we can directly determine the real and imaginary part of the scattering
parameter and transform them for a physical interpretation of the results in transmission
|S21,w|2 and phase φ. Starting with the transmission, we find

|S21,w|2 = S21,wS̄21,w = 1−2κext
κ

+2
(
κext
κ

)2
+4(κ

2
ext
κ2 β2Ω2(. . . )2) ≈

(
1− κext

κ

)2
. (4.37)

Here, we abbreviated the fraction of Eq. (4.36) to (. . . ), as it is of no further interested
for this estimation. We see no effect of the nanostring on the transmission signal for weak
mechanical excitations. However, having a look at the phase, we find:

ϕ = arctan
[

Im (S21,w)
Re (S21,w)

]
= arctan

[
2κext

κ βΩm(· · · )
1− κext

κ

]
∝ Ωmβ = Gx0. (4.38)

The proportionality is introduced as we assume small displacements, leading to the small
angle in the argument of the arc tangent. This results in a modulation of the microwave
resonator’s phase. In other words, the mechanical mode is transformed linearly into a
phase change of the resonator, while the transmission remains unchanged. Only for higher
displacements or coupling strengths the absolute value of the transmission begins to be
influenced by the string, showing sidebands with a splitting of the mechanical frequency,
see Eq. (4.34). When the induced modulation becomes comparable to the frequency of the
string, mechanical sidebands occur in the transmission, as discussed above.
Alternatively to the introduced approach, one can reduce the results from the strongly
driven calculations by only taking n = {0,±1} into account for the Bessel functions of
first kind, e.g. derived in [106], leading to similar results.
How such modulations are detected in experiments is detailed in Sec. 5.2.



Chapter5
Low noise detection

The remaining problem is just one of implementation.

Frank Deppe, during Qubit-Group meeting, 04.06.2019

In this section we like to give a short overview on the experimental environment and the
techniques required to measure mechanical motion, as well as quantum mechanical states
on the low photon level.
For this we introduce the cryostat with a brief discussion of the microwave setup. Then
we discuss the implementation of a microwave interferometer at cryogenic temperatures to
study electromechanical circuits limited by the available radiation pressure due to nonlinear
Josephson elements. We will describe the working principle and show the functionality on
an exemplary dataset.
Another aspect is the implementation of a time-domain spectroscopy that allows to study
the qubit, and (hopefully) in future studies the mechanical decoherence directly. We derive
the dispersive shift of the transmon qubit on the microwave resonator, that allows us to
determine the qubit state. Further, we introduce the specific setup we utilized within this
thesis. Also aspects of the data acquisition are presented. We conclude by discussing the
pulse schemes employed here.

5.1 Low temperature environments

To operate our microwave circuits on the single quantum level, we operate the device at
a temperature in the millikelvin regime. For this we use a commercial dry dilution fridge,
a Triton 400 from Oxford Instruments [107]. The working principle of such dry fridges,
as discussed in detail in Ref. [108], allows for a large sample environment, and requires no
filling with liquified helium. In Fig. 5.1 a) a photo of this cryostat is shown. The base
temperature of about 50 mK ensures that microwave circuit elements are indeed in their
thermal ground state. Further, radiation is screened by a variety of thermal shields. How-
ever, special care has to be taken on the microwave setup, since it has to be prevented
that room temperature radiation reaches the sample, as sketched in Fig. 5.1b) for an ex-
emplary configuration: The input lines are heavily attenuated using so-called microwave
attenuators, which are thermally coupled to the corresponding temperature stage. Their
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Figure 5.1: Triton cryostat. An image of the open Triton fridge is shown in panel a), where the
individual temperature stages can be found. In addition, a sketch of an exemplary microwave
wiring through the stages is depicted in panel b). We use attenuators or couplers on the
input lines, as well as circulators and a HEMT amplifier for the outgoing signals, to overcome
thermal noise.

dissipated power heats the respective temperature stage and therefor the power dissipa-
tion has to be considered when planning the microwave circuit. One option to circumvent
power dissipation on the mixing chamber plate is to use microwave couplers. They consist
of two microwave lines capacitively coupled to each other. By this only a fraction of the
signal enters the sample stage. This acts effectively as an attenuation between the lines,
but without power dissipation at the mixing chamber stage. Most of the signal passes the
mixing chamber and is shunted to a 50 Ω resistor at the PT-head stage. At this stage the
cryostat’s cooling power is much higher than on the mixing chamber. A downside of such
couplers is the need for an additional microwave line as well as the device dimensions.
When passing through the sample the signal enters the output line that consists of circu-
lators preventing the noise to enter. The circulator has three ports, in which the incoming
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signal is directed to the next port, effectively rotating the signal between the ports, as
indicated by its name. So, incoming noise from room temperature is dissipated at a 50 Ω
resistor, while the sample signal is passing the circulators with negligible loss.
As the signals stemming from the investigated device are typically rather weak they have
to be amplified before being send to the room temperature detection setup. Within our
experiments we use dc-SQUIDs as circuit elements, which allow to investigate magnetic
fields with high resolution. On the other side this high sensitivity requires a screening
of background fields, like the earth magnetic field. Superconducting materials are good
candidates to screen magnetic fields, due to their perfect diamagnetism. We make use
of this principle when screening our samples from magnetic fields by aluminum boxes, as
shown in App. C. We detail the setups used for the experiments in App. A.

5.2 Cryogenic microwave interferometer

In this thesis we study circuit QED systems coupled to mechanical motion of nanostrings,
similar to electromechanics with superconducting resonators [13]. Yet in our systems the
critical current of the Josephson junctions limit the amount of photons n̄c that typically
are used to boost the effective coupling g =

√
n̄cgm0. A compensation of this by a Junction

array which allows for higher currents however reduces the vacuum coupling strength. So
we designed a single loop SQUID and overcome this restriction using a different approach,
that also shortens the required measurement times: we have developed a microwave inter-
ferometer working at millikelvin temperatures. In our interferometer the electromechanical
signal, to be precise the frequency fluctuations δωd, are enhanced by exciting the mechan-
ical motion via a piezo actuator. In the following we discuss such an interferometer in
detail.

5.2.1 Setup / Working principle

For an insight in the working principle of the cryogenic interferometer we have a brief look
at a room temperature optical interferometer, as developed in [64], shown in Fig. 5.2a):
A laser beam is split up in two arms, where one is reflected by the sample, mounted on

a piezo actuator. The reflected beam is send back to interfere with the first, unperturbed
one and these interferences are detected using a photo diode. The inteference of the two
beams results in a light intensity modulated at the detector diode. Hereby displacements
can be measured. We create a coherent string motion by an external mechanical drive
using a vector network analyzer. It compares the drive signal send to the piezo with the
incoming voltage of the detector at the drive frequency Ω. When the mechanical frequency
Ωm matches Ω the string is excited effectively, resulting in a large displacement amplitude.
By that, the displacement is measured and the string’s eigenfrequency Ωm identified.
In the cryogenic interferometer, in contrast, a microwave source instead of a laser beam is
used. The signal tone ωp is send to the sample that is placed in a cryostat and contains
an electromechanical device. Similar to the room temperature interferometer, the sample
is actuated by a piezo crystal of frequency Ω. On resonance (Ω = Ωm) the nanostring
is excited and so displaced, which leads to a change in the complex transmission of the
microwave resonator. Hereby, the mechanical motion is modulation on the incident mi-
crowave probe tone as mechanical sidebands at ωp ±Ωm. At room temperature the probe
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Figure 5.2: Cryogenic microwave interferometer. Panel a) displays an optical interferometer at
room temperature, as introduced by [64]. An incoming laser beam is guided to the sample,
that is excited by a frequency Ω using a vector network analyzer. The reflected light inter-
acts with the nanostring, interferes with itself, and so the mechanical motion is obtained.
The interferometric signal is collected by a photon detector, which is connected to the VNA.
By this we measure the string’s motion sensitively. Panel b) sketches a cryogenic electrome-
chanical interferometer. Here a microwave tone probes an electromechanical resonator on its
eigenfrequency. Again, the sample including the resonator, is actuated by a piezo crystal,
sweeping the excitation frequency Ω. When excitation and string frequency are matched, the
mode frequency is excited inducing an elongation x̄. Since the electromechanical frequency
depends on the mechanical state [cf. Eq. (4.1)], a transmission change of the homodyne down
converted probe tone is detected.

signal is interfered with a second tone of identical frequency using an I-Q mixer and di-
rectly detected by a vector network analyzer. The analyzer records the power modulation
as [90]

Phom(Ω) ∝ K(Ω)
Ω2 δω2

d = K(Ω)G2

Ω2 x2
0, (5.1)

with the driven frequency shift amplitude δωd = Gx0 using G = gm0/xzpm and x0 =
xzpm

√
2nm for a further analysis. Here we have placed a proportionality since the exact

solution depends on the detection of the microwave signal as single or doubled sided spec-
trum [43]. In addition, the transfer function on resonance to the microwave resonator has
to be quantified [106]:

K(Ω) = 16κ2
extΩ2

κ2(Ω2 + κ2/4) , (5.2)

for which we determine the resonator decay rates in-situ by microwave spectroscopy. Next,
by plotting the mechanical resonance frequency fluctuations via

δωd(Ωm) =
√
Phom(Ωm)Ω2

K(Ω) =
√
nmgm0, (5.3)

we get a signal response directly proportional to the vacuum coupling strength. The benefit
of this method is that the frequency shift of the electromechanical resonator is significantly
enhanced (nm up to 109) in comparison to regular thermal motion measurements, where
nm is ≈ 103, and hence the amount of photons in the microwave resonator can be reduced.
In the following, we will give a short example of such measurements on a transmon qubit
coupled to an electromechanical resonator. We will focus only on results related to the
cryogenic interferometer, further details on this sample are discussed in Sec. 6.
We start by sweeping the flux bias of the transmon qubit via an external superconducting



5 Low noise detection 45

-20 -15 -10

-300

0

300

Udetect (µV)

Pdrive (dBm)

(Ω
 −

 Ω
m
) /

 2
π

(M
H

z)

0 100 200 300

-20 -15 -10

-300

0

300

d)

Pdrive (dBm)

(Ω
 −

 Ω
m
) /

 2
π

(M
H

z)

0 100 200 300Udetect (µV)
c)

-60 -50 -40 -30

5.86

5.87

5.88

5.89

b)
|S21|

2 (arb. u.)

Pprobe (dBm)

ω
 / 

2π
(G

H
z)

0.0 0.1 0.2
a)

0 50 100

5.86

5.87

5.88

5.89

Icoil (µA)

ω
 / 

2π
(G

H
z)

0.0 0.1 0.2 |S21|
2 (arb. u.)

A B

A B

Figure 5.3: Low photon read-out of an electromechanical QED system. Panel a) shows the
transmon-resonator transmission over applied field. We find the qubit positioned at the sweet
spot at a coil current of 27µA, and a resonator frequency of about 5.86 GHz. The undisturbed
resonator frequency is found at 5.875 GHz. We fix Icoil to the maximum transition frequency of
the transmon qubit and sweep the probe tone power, as shown in panel b). At about −45 dBm
probe power the transmon-resonator system becomes unstable with reduced transmission
and it vanishes completely after reaching the critical photon number of n̄c ≈ 120 at about
−40 dBm. For high powers the bare mw-resonator frequency becomes visible (red square).
The photon numbers scale linear to the probe tone power and range in this figure from 1.2
to 1200. Panel c) displays the recorded detector voltage of the driven nanostring for a probe
tone power of 60 photons, indicated by A in b). The string is clearly visible until about
−15 dBm piezo drive power, from where on it vanishes. We speculate, that the drive tone
induces dissipation and thus heating. With the temperature changing, the magnetic field bias
is influenced, e.g. by paramagnetic effects. This changes the effective B-field bias and so shifts
the microwave resonator. In panel d) we repeat the previous measurement, yet with a higher
probe power close to the critical photon number. No string signature is found.

coil, while recording the microwave transmission through the device. Results are shown in
Fig. 5.3a). We find an avoided crossing between transmon qubit and microwave resonator,
attributed to the strong coupling between them. For Icoil = 27µA we find the resonator
transmission to reach a maximum, which indicates that the qubit is positioned at its max-
imum transition frequency, the so-called sweet spot. Here, the point of best transmission
through the sample has a local maximum at 5.860 GHz. We fix the coil current to the
mentioned value and sweep the probe tone power and frequency through the sample. The
microwave transmission is found in Fig. 5.3b). At weak probe powers a lorentzian tran-
mission peak is found at the resonator’s eigenfrequency. When the probe tone is further
increased (at about −45 dBm or 60 photons) the transmission reduces more and more. At
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high powers spikes in the transmission become observable (red square) at the resonators
undisturbed frequency of about 5.875 GHz (see digital version for clarity).
Next we will compare the nanostring’s motion measured via the cryogenic interferome-
ter configuration for two different photon numbers, indicated by A and B in Fig. 5.3b),
which correspond to 30 or 120 photons, respectively. The probe tone frequency was set to
5.860 GHz.
In both cases we sweep the drive power send to the piezo and record the transmission
change in Phom around the mechanical resonance. Results are shown in Fig. 5.3c) and d).
In the case of 30 photons a clear indication of the string is found, having an eigenfrequency
of Ωm/2π = 3.0530 MHz. For very high drive powers the signal starts to disappear. We
speculate that this comes from heating effects. The high drive power is dissipated on
the sample, so that the environment heats up. Paramagnetic materials then change the
effective B-field bias of the transmon qubit, which shifts the microwave transmission out
of resonance. Similar effects have been observed in Ref. [64]
For higher photon numbers, one would expect the electromechanical interaction to be in-
creased by a factor of 2 due to the higher radiation pressure. Yet, we observe no feature
that we can attribute to the nanostring. This can be explained when looking at the res-
onator transmission in Fig. 5.3b). Due to the nonlinear interaction causing a bifurcation,
the transmission is broadened. By this, the transfer function is changed, such that the
motion of the string is insufficient to overcome the background noise floor.
So we can conclude that the introduced cryogenic interferometer allows to operate the elec-
tromechanical hybrid systems at low photon numbers, sufficiently low to operate highly
nonlinear elements, as we have shown exemplary in Fig. 5.3.

5.2.2 Phase-independent homodyne conversion

By coupling our mechanical element to circuits with Josephson junctions acting as nonlin-
ear inductance, the frequency of the electric resonator becomes flux tunable. This requires
a detection principle that is frequency independent. For this we have developed a tech-
nique based on the commonly used homodyne detection, as follows:
We start by recording the microwave transmission of an electromechanicals system via a
homodyne down-conversion, similar to the previous introduced cryogenic interferometer
[cf. Fig. 5.2b)]. In such a scenario a microwave oscillation of the upper path acts as local
oscillator, while the second path through the sample carries the mechanical oscillations.
We can describe the general microwave signals via:

MW1 = A1exp [iω1t+ φ1]
MW2 = A2exp [iω2t+ φ2] .

(5.4)

Here Ai and ωi refer to the complex transmission amplitude and frequency of path 1 or
2 respectively, while the phase φ1 corresponds to the phase delay of the signal due to the
length of the upper path, and φ2 carries the delay of the microwave circuit. Using an
I-Q-mixer both signals are multiplied:

MW1 ·MW2 = (X + iY )exp (i(ω1 + ω2)t+ ∆φ) , (5.5)

where we introduced the complex amplitude X + iY = A1A2/2 depending on the mi-
crowave transmission through the interferometer, and the phase difference ∆φ = φ1 − φ2.
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In homodyne detection configuration, that is ω1 = −ω2, the oscillations of the carrier
frequency are reduced to 0. We can then associate real and imaginary part with the I
(in-phase) and Q (out-of-phase) output of the IQ-mixer as (w.l.o.g.)

I = Xcos(∆φ)− Y sin(∆φ),
Q = Y cos(∆φ) +Xsin(∆φ).

(5.6)

The information of the mechanical string is modulated on the microwave transmission
only on the imaginary part for the typical weakly driven strings, cf. Sec. 4.4, and takes
the shape of Y = Y0 + κext/2Gxcos(Ωmt) [100].
By this we find the probe tone modulation of the string rotated between I and Q in
dependence of the phase difference, which acts as rotation angle. For a fixed frequency
resonator, a phase shifter allows to set the phase shift such, that the interaction is displayed
in only one quadrature, that is later detected via a spectral analyzer. This however is only
applicable for fixed frequencies. For a tuneable resonator, we add the two quadratures
phase shifted by π/2 on all time dependent signals. This leads to

I(t) +Qπ/2(t) = −κext
2 Gx (sin(∆φ)cos(Ωmt)− cos(∆φ)sin(Ωmt)) =

I(t) +Qπ/2(t) = −κext
2 Gxsin (∆φ− Ωmt) ,

(5.7)

which corresponds to oscillations at Ωm proportional to Gx, independent of the phase (as
the recorded bandwidth is much lower than Ωm), and so also for any microwave resonator
frequency.

5.3 Time domain measurements

Before we introduce the time domain setup, we will give a short overview on the dispersive
read-out of a transmon qubit, which is the basic experimental technique for insights in the
transmon characteristic for both continuous wave, as well as time domain measurements.
Then we will discuss the setup configuration in detail and some technical aspects on the
noise screening. We will conclude by an overview of common pulse sequences one can
employ to measure the qubit decoherence.

5.3.1 Dispersive read-out

We start by looking at the phase transmission of the microwave resonator and the trans-
mon qubit being positioned at its maximum transition frequency. For parameters based on
Ref. [34] this corresponds to ωc/2π = 5.860 GHz and ∆qc/2π = (ωq−ωc)/2π = 2.056 GHz.
Including the linewidth of the resonator of κ/2π = 2.0 MHz and κext/2π = 1.0 MHz, we
can plot the phase transmission of the scattering parameter [109], as we show in red in
Fig. 5.4.
We find the phase changing by π with highest change on resonance (max. ∂ωφ). This
transition is valid for an unexcited qubit (|g〉), as the resonators eigenfrequency appears
according to the qubit state shifted by σzχ, cf. Eq. (3.28), where σz describes the projec-
tion of the qubit state on the z-axis, while χ denotes the dispersive shift of the transmon
qubit, cf. Eq. (3.29). We plot the shifted phase transmission for a fully excited transmon
(|e〉) in Fig. 5.4 (green). In that case the resonator is shifted by 2χ, as indicated by the
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Figure 5.4: Dispersive read-out of a transmon qubit. We plot the phase transmission of a
microwave resonator coupled to a transmon qubit as a function of the probe frequency. When
the transmon is not externally excited (red), a phase shift of π is observed. When exciting
the transmon (green) the resonance frequency is shifted and a finite phase shift ∆φ can be
observed, as indicated by the black arrow.

black arrows. χ was determined by a coupling strength of gq/2π = 134 MHz, and an an-
harmonicity of α/h = −188 MHz.
We can now make use of this shift to read-out the qubit state by applying a constant
probe tone on resonance to the unexcited qubit, as indicated by a grey dot in Fig. 5.4. On
excitation the resonator’s phase is shifted (second grey dot) determining the phase shift
(∆φ on the y-axis in Fig. 5.4).
We like to note, that this setup is somehow similar to an electromechanical read-out in-
troduced before (cf. Sec. 5.2), where the phase transmission is analogue to the transfer
function K, and the dispersive shift corresponds to the induced frequency fluctuations. In
other words the electric resonator is the investigated system, while the transmon parame-
ters determine how much the resonator is influenced by an external spectroscopy drive.

5.3.2 Devices

An illustration of the time domain setup is found in Fig. 5.5. We control the pulse shapes
by a Keysight 81160A pulse function arbitrary noise generator as an arbitrary waveform
generator (AWG). In general this allows us to design an arbitrary waveform, even up to
optimal control pulses, yet in our case we used rectangular pulse shapes for simplicity. It
turned out to excite the qubit sufficiently.
These pulses are then send to the I-input of a Rhode&Schwarz SGS 100A vector signal
generator, while the Q input is shunted by 50 Ω. The output of the SGS source excites the
qubit via an external antenna on the chip.
The second pulse channel is used for the read-out, controlling a Rhode&Schwarz SMF 100A
microwave generator. By this we apply a probe tone in dispersive read-out configuration
as described in Sec. 5.3.1. After the cryogenic part the signal is filtered by a MiniCircuits
VBFZ-5500-S+ bandpass and amplified by a Agile MwT AMT-A0033. Then it enters a
Marki IQ 0307 LXP IQ-mixer. Here, the signal is homodyne downconverted by a local
oscillator tone from an Agilent/Keysight E8257D signal generator.
The I and Q quadrature paths are identically build up consisting of coaxial cables (black)
or, as we found it is a critical part of the noise screening, true blue microwave wires (blue).
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Figure 5.5: Electric configuration for time resolved qubit spectroscopy. We use an arbitrary
waveform generator (AWG) to control the spectroscopic drive (s) and probe tone (p) source.
Via an antenna the spectroscopic drive sends pulses of defined length to the transmon qubit.
The probe tone is measuring the microwave resonator transmission, which depends on the
qubit state. So a read-out of the transmon qubit is achieved. The signal is sent out of the
cryostat, filtered by a bandpass and amplified via a room temperature amplifier. Afterwards, it
is homodyne downconverted in an IQ-mixer, using a third microwave source (LO). Then I and
Q quadrature are amplified with identical amplifiers and sent to an analog-digital converter
(ADC) which we use as a detector. The ADC is synchronized to the AWG. During the
measurements we found out, that the connecting wires between IQ-mixer and ADC are prone
to pick up noise, as further explained in the text.

The signal is further amplified by a Femto DHPVA-200 amplifier and then detected by
a GaGe Razor CSE1642 analogue-digital converter (ADC), that is synchronized to the
AWG. The hardware was controlled using the WMI measurement tool DollRotate for
which individual VIs were written by H. Huebl and S. Weichselbaumer.

5.3.3 Data acquisition

Now we will discuss the measurement principle by an example on driven Rabi-oscillations,
as shown in Fig. 5.6. For the example case we employ a τdR = 5 ns long spectroscopy tone
on resonance to the qubit via its antenna, as well as a 2µs long read-out pulse, directly send
after the excitation pulse (at t = 5 ns) via the transmission line. We start the measurement
at t = 0 and record both voltages at the I and Q input, see Fig. 5.6a). The measurements
are repeated by the averaging factor with the recorded voltages averaged for each time
point. Results are shown in Fig. 5.6a) for I (orange) and Q (red).
At first the voltages fluctuate around 2 mV before they go to −18 mV and −12 mV during
the read-out pulse. This confirms that the read-out tone is activated. When it is turned
off again, the voltage drops back to the initial value of 2 mV. In addition, we find a certain
delay time between the start of the measurements and the recording of about 0.25µs when
looking at the end of the read-out pulse.
As the I and Q quadrature are orthogonal, we can derive the complex transmission by
w.l.o.g. S = I + iQ and determine the transmission amplitude |Udet| = |S| and phase
φ = Arg[S].
The extracted phase is shown in Fig. 5.6b). Here we find a phase of π/4 when the read-out
tone is off. For an active read-out, the phase changes by π. Due to the periodicity of the
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Figure 5.6: Details on the data acquisition. In panel a) the recorded voltages at the ADC are
displayed for I (orange) and Q (red) traces starting with fluctuations around 2 mV, before the
read-out pulse is detected. This manifests by a drift, saturating after about 1µs. When the
read-out pulse is turned off after 2µs the voltage drops back to the initial background value.
We can calculate the probe tone transmission amplitude and phase from the both quadratures
and plot the phase shift in panel b). We find the background fluctuations before and after the
read-out pulse at about 0.25π. Due to the probe tone the phase shifts above π and therefore
reappears at −π. When the pulse arrives at the detector, an exponential increase in the phase
is observed, saturating at approx. −0.8π. After the read-out pulse the data drifts back to the
initial background value. We show an analysis of this trace in panel c) for the analysis time
(indicated in blue). The exponential decay is well described by a model from which we can
extract the phase shift ∆φ (black solid line).

Arg-function its flipped by 2π and keeps increasing up to −0.8π where it saturates during
the read-out pulse. Afterwards its dropping back to the initial value.
For an analysis of the transmon qubit’s projection along the z-axis due to the excitation
pulse, we focus on a specific time frame tanalysis as indicated by the blue arrow in Fig. 5.6b).
The starting time at tanalysis is defined by the pulse length (5 ns) and a delay time of 400 ns
making sure the read-out pulse has reached the detector. A length of tanalysis = 1.2µs is
sufficient to stay within the read-out pulse for the longest excitation pulses (not shown in
this example). To sum up, we analyze the phase change from t = [405− 1605] ns as shown
in Fig. 5.6c).
An exponential increase from 0.95 to 0.8π is found, which comes from a shifted transmon
frequency by the probe tone due to the ac-Stark shift. We model this phase shift by

φ = A0exp
(−t
τ

)
+ φ0. (5.8)

By this we determine a decay amplitude of −3.88(−1.24π) rad, a phase offset of
−2.56(0.81π) rad, and a decay rate of 187 ns, which leads to a phase value of φ(tanalysis =
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Figure 5.7: Time resolved measurement noise. In panel a) averaged time traces of the read-
out pulse for wiring configuration 1 (black) and 2 (blue) are shown. In both cases periodic
fluctuations are found, in configuration 2 the total amount of signal is reduced but also the
elongation of the fluctuations. Panel b) displays the amplitude of a discrete Fourier-analysis
on the recorded time traces. In both wiring configurations a dominant peak is found at
10 MHz for both configuration. In the second wiring this peak is reduced but an additional
peak at 20 MHz is arising. Nevertheless on average the frequency distribution is reduced in
comparison to the first wiring.

0) = 3.01(0.96π). We conclude our analysis by subtracting this from the phase offset
leading to the induced phase shift

∆φ = φ(tanalysis = 0)− φ0 = 0.448 (0.143π) rad. (5.9)

Finally we have extracted the first data point of Fig. 6.12. As it will become clear at a
later stage this phase shift corresponds to an excitation probability slightly below 0.5 (right
axis), which is close to the equatorial plane of the Bloch sphere. The other datapoints of
this figure are achieved by a systematic sweep of the pulse length τdR.

5.3.4 Technical noise screening

For long averages we become sensitive to noise sources from the outside world, as we are
going to explain in the following. For this, we repeat a measurement, one time with regular
BNC cables (black in Fig. 5.5) and with True Blue microwave wires (blue in Fig. 5.5).
The measurement consists of a single read-out pulse, n̄c ≈ 10, averaged 150,000 times.
We calculate the transmission magnitude, as introduced before, and plot the results in
Fig. 5.7a).
Similar to Fig. 5.6c) we find an exponential increase, roughly from −0.28π saturating at
−0.40π so a phase shift of ∆φBNC = −0.12π. In an analogue way we find ∆φTB = −0.08π.
Beside this, an additional feature stands out after such a long averaging: finite oscillations
on the signal with a distinct frequency, which seem to be reduced by the higher screening of
the True Blue wires. For a detailed analysis we perform a Fourier analysis on the time trace
as shown in Fig.5.7b). It reveals a distinct peak for both cases arising at exactly 10 MHz.
This frequency contribution can be linked to the microwave sources being synchronized
among each other on 10 MHz. For the True Blue wires we find a reduction of these
contributions by 2.5. Including the reduced phase shift by the lower transmission of the
wires, we end up by an improvement on the signal to noise ratio of 1.7, and so we kept
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Figure 5.8: Applied qubit pulse schemes. Within this thesis four different pulse schemes were
applied to a transmon qubit to investigate its decoherence.

the microwave wire configuration for all other time domain measurements shown in this
thesis.
We note, that such noise contribution have been observed before and advanced shielding
techniques for this were engineered and discussed in detail, cf. Ref. [110].

5.3.5 Pulse schemes

In the following, we will discuss the pulse schemes we apply to the investigated transmon
qubit within this thesis. As these techniques have been well established, we focus on a
short summary and introduce our notation. More details on such schemes are reviewed in
Ref. [111].

We give an overview of the applied pulse schemes in Fig. 5.8. We used rectangular
pulse shapes with a rise time of 1 ns. AWG channel 1 controlled the spectroscopy tone
(green) sent to the qubit antenna, while channel 2 regulated the read-out pulse through
the microwave resonator (orange).
In the driven Rabi configuration a drive pulse with frequency ωs, a specific driving
strength, and duration τdR is send to the qubit. The spin vector along the Bloch sphere
now starts to rotate induced by this drive in dependence of the drive tone detuning ωs−ωq
and the drive strength. By applying a probe tone directly after τdR we measure the qubit
state along the z-direction on the Bloch sphere. When this projection is plotted over τdR
for zero detuning one finds the so called Rabi-oscillations having a Rabi frequency ωRabi
which allows to determine the length of π/2 and π pulses. In reality, these oscillations
decay exponentially with τRabi corresponding to the energy decay time T1, before it reaches
a steady state solution on the equatorial plane. Another potential decay in this pulse
sequence can occur when noisy tones are applied. Since in this sequence the drive pulse
is constantly on, the qubit is sensitive to such effects. When driving the qubit out of
resonance the spin vector no longer rotates along the z-direction which leads to an higher
frequency ωRabi and the decay becomes influenced by dephasing processes τRabi 6= T1.
For the Rabi decay we send a π pulse on resonance to the transmon qubit, shifting it to
a full excitation. Next it decays, in contrast to the driven Rabi sequence unperturbed by
any drive, before its projection along the z-Axis is read-out again. We found τdecay ≈ τRabi,
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indicating low induced noise of our microwave pulses.
Both Rabi sequences focus on the energy decay of the qubit. Yet the spin vector has a phase
component, which dephases if the transmon qubit’s energy is fluctuating, for example by
photon fluctuations on the microwave resonator [112].
To investigate such dephasing processes a Ramsey sequence can be applied. It consists
of a π/2 pulse, that shifts the qubit state along the equatorial plane. Here, the spin
vector is sensitive to dephasing processes, that it undergoes within a waiting time τRamsey.
Then it is shifted on the z-axis by a second π/2 pulse, and its projection again read-out
directly. On resonance to the transmon qubit the bare dephasing is observed equivalent
to T2, while off-resonant the qubit contains energy components and therefore T ∗2 is found
by the exponential decay rate TRamsey extracted from the Ramsey oscillations.
Another method to determine the dephasing is the Spin Echo or Hahn sequence. Its
similar to the Ramsey sequence, besides a π pulse send in between the π/2 pulses, with an
identical waiting time τSE in between the pulses. This π pulse rotates the vector so that
the dephasing is refocused. This introduced time reversal allows then to screen 1/f noise
and field asymmetries [110], and hence their influence can be determined by comparing
the Spin Echo dephasing with the Ramsey dephasing.
We experimentally employ these pulse schemes to analyze a transmon qubit coupled to an
electromechanical resonator in Sec. 6.6.
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Chapter6
Ultra-wide range photon number
calibration

What we’d like to do is put these vibrations of the [mechanical element] in a quantum
state, so it’s in two places at once: it’s vibrating up and, at the same time, it’s vibrating

down.

John D. Teufel, [113], 2017

In the following we study a hybrid microchip consisting of a transmon qubit coupled to
an electromechanical microwave resonator. As such systems, based on superconducting
circuits, are prime candidates for investigating quantum properties of mechanical motion
[16, 22, 94, 114–119].
In particular, we will show the photon number calibration via both the qubit and the
nanostring for an occupation between nine orders of magnitude, based on Ref. [34]. To
this end we start by theoretically introducing the applied methods, detail the fabrication
process and the utilized setup. Afterwards, the elements of the microchip are characterized
individually to determine the photon numbers in the following. Further, the transmon
qubit coherence is characterized in detail, using time domain measurements.

6.1 Methods for photon number calibration

We will start the introduction of the investigated system by giving a short theoretical
overview, beginning with the description of the average photon number in the microwave
resonator. Our device then offers two complementary approaches to calibrate this photon
number, namely the ac-Stark effect [78, 120–122] of the transmon qubit, as well as elec-
tromechanically induced absorption [15, 103, 123, 124] of the aluminum nano-string which
will be discussed.
We describe the average photon number of a double sided microwave resonator (λ/2) with
symmetric input and output coupling rates κext by [9, 98]

n̄c = Pp
~ωp

κext/2
(κ/2)2 + ∆2

p
. (6.1)

Here, ∆p = ωp − ωc is the detuning between the resonance frequency ωc and the incident
microwave probe tone ωp. In experiment, it is typically difficult to determine the input
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Figure 6.1: Methods for an ultra-wide range photon number calibration. Panel a) the average
photon number n̄c can be calibrated via the transmon qubit as its bare transition frequency
ωq,0 is influenced by the average photon number leading to the so-called ac-Stark shift δω(n̄c)
(light green). To determine this shift we use a spectroscopy tone ωs (dark green). Panel b)
displays the photon number calibration via the electromechanical interaction. The mechanical
element (blue) has an eigenfrequency Ωm in the low megahertz regime. The electromechanical
photon-phonon interaction causes Stokes and anti-Stokes sidebands on the drive tone ωd (red).
Choosing this drive frequency such that the anti-Stokes sideband is in close proximity to the
mw resonator ωc scattering processes removing phonons from the string become active. In
combination with the drive photons these phonons can interfere with weak probe photons
around the mw frequency (orange) leading to electromechanically induced absorption.

power Pp incident to the input port of the microwave resonator. Therefore, calibration
experiments are employed and the discrepancy between the applied power sent to the
experiment Pappl and Pp is parametrized as an effective loss parameter L = Pp/Pappl. The
discrepancies between the applied Pappl and setted power on the measurement instruments
Pset will be discussed in the measurements section 6.3. Hence, Eq. (6.1) becomes

n̄c = 2Pappl

~ωp
(
κ2 + 4∆2

p

) Lκext︸ ︷︷ ︸
x

, (6.2)

where we further combined the effective loss parameter L and the external coupling rate
of the microwave resonator κext to a total loss coefficient x1. Next we discuss how we can
corroborate this calibration factor for low powers via the transmon qubit, xqb, and for
high drive powers using the string oscillator, xEMIA.

6.1.1 Photon number calibration via the ac-Stark shift

For a determination of the microwave photon number we set the transmon qubit in the
dispersive regime, that is a sufficient detuning between it and the microwave resonator.

1within this chapter we refer to x as photon calibration factor, not a displacement as elsewhere in the
thesis
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The system is then described by the Hamiltonian quantified in Eq. (3.30). The dispersive
shift of the transmon qubit obeys Eq. (3.29).
In case the anharmonicity α is small compared to the detuning of transmon to resonator
∆qc = ωq − ωc and if the detuning ∆qc is large compared to the transmon-microwave
resonator coupling gq, the transition frequency of the qubit ωq shifts as a function of n̄c
by [75]:

δω = 2
g2

q
∆qc

α

α+ ~∆qc
n̄c(κ). (6.3)

With a proper sample characterization we determine the parameters necessary to calcu-
late the ac-Stark shift per photon, quantifying the parameters of the right hand side of
the equation.
For the experimental investiagation of δω(n̄c) we have summarized the experimental con-
figuration and show all relevant frequencies in Fig. 6.1a)
We start by measuring the ac-Stark shift via a probe tone through the mw resonators ωp
on resonance to it (orange), while sweeping a second tone ωs to perform spectroscopy of the
qubit (green) which enables the determination of the qubit frequency ωq. Systematically
sweeping the probe tone power we find δω(Pappl). By this we can then directly obtain the
microwave resonator photon number. For a comparison with the electromechanical system
we then derive the corresponding calibration factor xqb via Eq. (6.2).
Note, that this calibration scheme is limited to low photon numbers due to the multi-level
nature of the transmon qubit and the conditions imposed by the dispersive limit of about
102 [84].

6.1.2 Photon number calibration via the electromechanical interaction

At higher photon numbers we employ the electromechanical induced absorption of the
microwave drives. This is realized by driving one mechanical eigenfrequency below the
microwave resonator ωd ≈ ωc − Ωm. This creates an anti-Stokes field inside the resonator
at ωd +Ωm, as indicated in Fig. 6.1b). A second (weak) tone probes this anti-Stokes field as
both fields interfere with each other. This results in a transparency, absorption or reflection
signature of the complex transmission of the probe tone. The details of the signature
depend on the specific setup of the measurement configuration [9, 103, 123, 125, 126]. In
any case this drive tone effectively cools the eigenmode of the mechanical oscillator (see
section 4.3) as it is highly thermally excited (for typical values nm = kBTcryo/(~Ωm) ≈ 103).
Then the effectively cooled mode has an increased linewidth described by [123, 125, 126]

Γeff = Γm

(
1 + 4g2

m0
κΓm

2PapplxEMIA
~ωd (κ2 + 4∆2

mc)

)
. (6.4)

Since the parameters of Eq. (6.4) can be characterized we can calibrate xEMIA by determine
this linewidth. This only works if the effective broadening is sufficiently large in comparison
to the bare mechanical oscillator linewidth, hence for high photon numbers in contrast to
the calibration mechanism of the qubit.

6.2 Fabrication of a nanomechanical c-QED device

For a quantitative comparison of xqb and xEMIA we designed a hybrid device consisting
of a superconducting mw resonator, a transmon qubit, and a doubly clamped nanostring
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Figure 6.2: Sample layout and microscopic images. Panel a) displays the chip layout including
the λ/2 coplanar waveguide microwave resonator (red), the transmon qubit (green box), and
the aluminum nanostring oscillator (blue box). In panel b) a scanning electron micrograph
of the 60µm long nanostring is shown, including a a zoom to the right clamp. We tilded the
zoomed image to make the successful release visible. The transmon qubit antenna is depicted
at the bottom of the panel c).

oscillator. An overview of this layout as well as microscope images are found in Fig. 6.2.
We will describe an overview of the fabrication steps, details are found in Ref. [127]. Af-
terwards we will briefly summarize the sample parameters.
Fabrication starts with a 6×10 mm2 highly resistive (> 10kΩcm) single crystalline silicon

substrate. Using negative resist, electron-beam (e-beam) lithography and a lift-off process,
a 100 nm thick aluminum coplanar waveguide (CPW) resonator, capacitively coupled to
an input and output line, is patterned on the chip. This step already includes the defi-
nition of the nanomechanical string oscillator with a length of 60µm and a string-ground
plane separation of 120 nm. Additionally, we also leave a pocket in the ground plane of the
microwave resonator for the later placement of the transmon qubit. After Al evaporation
and lift-off, the sample is annealed at 300 ◦C for 30 minutes to generate a tensile stress
in the aluminum thin film. In a next step, the tuneable transmon qubit is fabricated on
the chip using e-beam lithography, aluminum shadow evaporation and lift-off techniques
[128, 129]. In addition to the microwave input and output ports of the resonator, we use a
broadband antenna next to the transmon to apply ωs. To release the nano-string oscillator,
we define an etching window using e-beam lithography with positive resist. We then use
two reactive ion etching steps to release the string: (i) We start with an anisotropic RIE
process, (ii) followed by an isotropic process to under-etch the nano-string. Finally, the
remaining resist is removed by solvent followed by critical point drying.
An analysis of the final sample parameters using electron microscopy confirmed an alu-
minum thickness of 120 nm for the electro- and mechanical resonator, as well as a string
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width of 230 nm. Hence the mechanical resonator has a total mass of m = VbeamρAl =
1.66µm3 · 2.70 g/m3 = 4.5 pg. For doubly clamped nanomechanical oscillators the effective
mass in good approximation is given by meff = 1/2m, cf. Sec. 2.2. The string is separated
160 nm from the ground plane, leading to a coupling of gm0/2π = 0.31 Hz. At a fridge
temperature of Tcryo ≈ 50 mK we found a string eigenfrequency of Ωm/2π = 3.15018 MHz,
from which we determine a zero point motion xzpm =

√
~/(2meffΩm) of 35 fm, cf. Eq. (4.3).

The intrinsic damping rate of the mechanical oscillator is found to be Γm/2π = 12.4 Hz,
leading to a ultra-high quality factor of Qm ≈ 2.5 · 105. This is of particular interest as
the thermal coherence then corresponds to τthermal = ~Qm/(kBTcryo) = 38µs.
When the transmon qubit is tuned down to its minimum frequency, far away from the res-
onator frequency, the bare microwave resonator frequency ωc/2π = 5.875 GHz is observed.
Its linewidth depends on both, the working point of the transmon qubit, as well as the
photon number. Therefor the mw resonator linewidth is discussed in a seperate section
6.4.3.
The maximum of the excited qubit mode, found at the sweet spot, is determined by
ωq/2π = 7.916 GHz, leading to a detuning of ∆qc/2π = 2.056 GHz. In addition, we
find a transmon nonlinearity of α/h = −188 MHz, and a transmon-resonator coupling
of gq/2π = 134 MHz. The decoherence of the transmon qubit is discussed in detail in
Sec. 6.6.5 and Sec. 6.6.

6.3 Spectroscopic configuration for an ultra-wide range pho-
ton number calibration

The microwave setup, sketched in Fig. 6.3, consists of several microwave sources to excite
the qubit (ωs, green) via an antenna, a drive (ωd, red) and probe tone (ωp, orange) joined
at a power combiner, as well as a local oscillator (ωlo, black). The signal inputs are heavily
attenuated before they enter the sample and its antenna. Afterward, circulators guide the
signal to a bandpass and a cryogenic HEMT, before it enters room temperature again.
There, the signal is further amplified (not shown) and divided in two arms using a beam
splitter. One percent is sent to a vector network analyzer (VNA) to determine the complex
scattering parameter S21. The rest is homodyne downconverted via a mixer to analyze its
spectral densities using a spectral analyzer (SA). Further details on the employed devices
are specified in Sec. A.1.

As in this configuration the photon numbers can be set by the drive or probe tone, a
power calibration of the set power on the device Pset becomes necessary. For this we we
record the transmitted power after the power combiner for each mw source individually,
as depicted in Fig. 6.4a).
That allows us to determine a damping factor Ki(ω, P ) as

Pappl = Ki(ω, P )Pset. (6.5)

Here, the index i indicates the individual device (i ∈ {d, p}). As pointed out, this power
calibration is required for each drive frequency and power. Figure 6.4b) shows such a
calibration measurement over eight orders of magnitude in power. On average we find a
derivation of about 1 dBm. We can then use the calibrated power Pappl for a comparison
of the determined photon numbers.
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Figure 6.3: Spectroscopy framework. Three microwave sources carry the red-sideband drive
tone ωd, qubit spectroscopy tone ωs, and local oscillator ωlo. The vector network analyzer
(VNA) probes and analyzes the microwave resonator transmission. Furthermore, a spectrum
analyzer records the sideband fluctuations of the mechanical oscillator. The output signal of
the microwave resonator is preamplified with a cryogenic HEMT amplifier at 4 K, followed by
post-amplification at room temperature (not shown).

6.4 Continuous wave spectroscopy on the hybrid system

In the following section we present our results of a transmon qubit coupled to an electrome-
chanical microwave resonator in continuous wave (cw) spectroscopy. For the calibration
of the resonator’s photon number we start by characterizing the individual interactions
between transmon and nanostring to it. Then we discuss the resonator linewidth as it
directly influences the photon number. We conclude by analyzing the transmon decoher-
ence so we can compare the cw results with the pulsed measurements showed in the next
section.

6.4.1 Transmon-resonator interaction

Now we focus on interactions between the microwave resonator and the transmon qubit.
The λ/2 microwave coplanar waveguide resonator has a fixed frequency defined by its
geometry, as introduced in Sec. 3.3. The transmon qubit, on the contrary, is a highly
nonlinear oscillator based on a capacitively shunted dc-SQUID loop [75]. Furthermore, its
flux dependent Josephson-energy EJ(Φ) [cf. Eq. (3.6)] allows to tune the qubit frequency
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Figure 6.4: Calibration of the microwave sources. Panel a) shows the experimental setup. The
output of a microwave source (SMF) and the vector network analyzer (VNA) are joined via
a power combiner. The emitted power is determined via spectral analyzer. Panel b) displays
the power calibration K over Pset for the microwave source SMF (SMF, red) and VNA (ZVB,
blue).

via an externally applied magnetic flux. We located the transmon at the electric field
anti-node of the coplanar waveguide resonator mediating a capacitive coupling between
the two circuit elements.
In Fig. 6.5 a) we display the absolute scattering parameter |S21|2 of a low probe tone,
coming from the VNA, through the microwave resonator with an equivalent average
resonator photon number n̄c = 1.7 as function of the applied dc bias flux. This dataset
shows the characteristic fingerprint of strong coupling between transmon qubit and
resonator, i.e. an avoided crossing around Φ/Φ0 = 0.28 with an higher (ω+) and lower
(ω−) frequency branch. Additionally, we confirm the expected periodic behavior of the
frequency evolution of the coupled system stemming from the flux quantization in the
SQUID loop. When the transmon qubit is tuned to its minimum frequency (e.g. at
Φ/Φ0 = 0.5) the pure resonator transmission frequency is observed at ωc/2π = 5.875 GHz
with a linewidth of κ/2π = (1.468± 0.022) MHz.
In panel b) of figure 6.5 we plot the peak separation ω+ − ω− around the anti-crossing
for n̄c < 1. From the minimal splitting we can extract the transmon-resonator
coupling as Min[ω+ − ω−] = 2gq. By this we determine a coupling strength of
gq/2π = (134.1± 2.3) MHz.

Tuning the transmon qubit away from the resonator, in the dispersive regime, the
probed resonance frequency of the microwave resonator is depending on the qubit state
via Eq. (3.28). Hence, when driving the qubit selectively with ωs while probing the res-
onator’s transmission, two-tone spectroscopy of the qubit state is performed, see Sec. 5.3.1.
We show such spectroscopy on the transmon qubit in Fig. 6.6. From panel a) we determine
a qubit frequency (|g〉 ↔ |e〉 transition) of ωq/2π = (7.916± 0.001) GHz at the sweet spot
of Φ = 0.
As the transmon qubit is not an ideal two-level system, its anharmonicity α is reducing the
ac-Stark shift, making the transmon less sensitive to shot noise of the microwave resonator
[75]. To determine its anharmonicity we increase the spectroscopy amplitude at Φ/Φ0 = 0.
Then multi-photon processes become observable [130, 131]. We find the two-photon tran-
sition |g〉 − |f〉 at ωgf/4π = (7.822 ± 0.001) GHz determining a transmon anharmonicity
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Figure 6.5: Resonant transmon qubit and microwave resonator interaction. Panel a) Microwave
transmission |S21|2 of the sample versus applied magnetic flux Φ. We observe a periodic tuning
with integer flux ratio. Tuning the transmon on resonance with the microwave resonator a
splitting is observed. Panel b) displays the extracted splitting around an anti-crossing, from
which the transmon-resonator coupling is determined.

α/h = −(188± 1) MHz, as α/~ = 2ωq −ωgf . For transmon qubits this is equivalent to the
negative charging energy, cf. Sec. 3.4.2.
The ratio between Josephson and charging energy is an important transmon characteriza-
tion parameter. As we can express the transmon frequency via ωq =

√
8EJEC/~ [75], we

get a ratio of EJ/EC = 222, far away from the charge qubit regime [75].

6.4.2 Electromechanical interactions

Now, we aim to characterize the nanostring and the respective electromechanical coupling
strength. For this we study symmetric sideband spectroscopy of the nanostring’s thermal
motion as used in Refs. [103, 106, 123, 132] and reveal a photon-phonon coupling strength
of gm0/2π = 0.308 Hz.

At large, we probe the microwave resonator on resonance (ωp = ωc) including a defined
frequency modulation and record the homodyne downconverted frequency fluctuations
induced by the nanostring. Figure 6.7a) displays the measured power spectral density
detected by a spectral analyzer. The thermal motion at 365 mK of the nanostring is shown
in the middle of the graph with a mechanical eigenfrequency of Ωm/2π = 3.15018 MHz and
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Figure 6.6: Dispersive transmon qubit read-out. Panel a) two-tone spectroscopy on the transmon
qubit revealing its transition frequency ωq as a function of the applied flux. The maximum
frequency is observed at zero flux. Displayed is the phase change of the probe signal through
the microwave resonator. Panel b) Strong driving the transmon qubit at the sweet spot
Φext/Φ0 = 0 (green dots) reveals the single photon |g〉 ↔ |e〉 transition at ωq as well as the
two photon |g〉 ↔ |f〉 transition at ωgf as schematically depicted on the right.

a linewidth of (33.5 ± 0.1) Hz indicating an ultra-high Q-factor of about 105. Further we
find a power spectral densitiy of SPP(Ωm) = 4.8 pW/Hz. The frequency modulation of the
probe tone (having Ωmod/2π = 3.1498 MHz and Ωφ/2π = 80 Hz) results in a sharp peak
found on the left, from which we determine SPP(Ωmod) = 2.85 nW/Hz. By comparing the
thermal motion amplitude with the calibration amplitude we are able to determine the
integrated displacement noise 〈δω2〉 (for details see [103, 106, 123]):

〈δω2〉 =
∫ ∞
−∞

Sωω(ω)dω2π = φ2
0Ω2

mΓm
4ENBW · SPP(Ωm)

SPP(Ωmod) = 2g2
m0nm. (6.6)

In our experiment we were applying a phase modulation of φ0 = Ωφ/Ωmod ≈ 2.5 · 10−5,
and a measurement bandwidth ENBW of 1 Hz.
We want to note, that the electromechanical interaction can cause a back-action on
the nanostring by the drive tone, resulting in a finite back-action temperature [nm →
kB(Tba + Tsample)/~Ωm]. To take this possibility into account, we next record the fre-
quency fluctuations while cooling the cryostat. The integrated displacement noise of this
experiment is found in Fig. 6.7b). We resolve the expected linear behavior rising with
s/(2π)2 = (1.253± 0.035) kHz2/K, resulting in single photon-phonon coupling rate of:

gm0 =
√
s~Ωm
kB

= 2π · (0.308± 0.004) Hz, (6.7)

The determined vacuum coupling strength is lower but close to the previously deter-
mined ones achieved with pure aluminum coupled electromechanical resonators (gm0/2π =
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Figure 6.7: Homodyne detected motion of nanostring. Panel a) shows the recorded power spectral
density of the string’s motion for a sample temperature of 365 mK. We find the nanostring in
the middle of the plot with a narrow linewidth. We extract peak height and linewidth for the
calibration via thermal sidebands. In addition, we determine the peak size of a well-defined
frequency modulation, seen on the left. By this we find the fluctuations in frequency, plotted
for a systematical temperature sweep in panel b). We fit a linear dependency to the data
(black solid line) that allows us to determine the vacuum coupling by Eq.(6.6), assuming
thermal equilibrium between sample and nanostring.

0.57 ± 0.6 Hz in [43]). The nanostring’s geometry in our case was more conservative as
we additionally were placing a qubit on the microchip, and so a higher yield in the string
release was required. Nevertheless, by a proper design of the circuitry higher couplings
can in principle by achieved, see also [133].

6.4.3 Microwave resonator decoherence

From Eq. (6.2) we directly see that the average photon number of the resonator depends
on its linewidth κ. So for a proper analysis of the resonators occupation the total
linewidth dependence has to be taken into account. As it is a combination of internal
and external losses, where the later one is only defined by the resonators geometry, we
assume the external linewidth to be independent of the working spot or probe power.
This allows us to compare xqb and xEMIA by the model of Eq. (6.2). The transmon
and electromechanical regime correspond to two different working spots of the qubit, as
indicated by A and B in Fig. 6.5a). These lead to different linewidth dependencies which
we depicted versus applied power in Fig. 6.8 for the qubit calibration in panel a) and for
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Figure 6.8: Microwave resonator decoherence in dependence of probe power and working spot.
Panel a) reveals the extracted linewidth in the qubit regime (green dots) for a resonator
frequency of ω/(2π) = 5.862 MHz [corresponding to point A in Fig. 6.5a)]. The applied power
range is 0.02− 1.2 nW. We find a linear trend, that is fitted by the black solid line. In panel
b) we plot the in-situ observed linewidth of the microwave resonator for the electromechanical
calibration (blue dots) in an applied power range of 0.9−97 mW, for which we find a non-trivial
behavior. Here, the operation point of the transmon qubit was set to point B in Fig. 6.5a).

the electromechanical in b), respectively.

We measure the resonator linewidth from 22 pW up to 1.2 nW at the working spot
used for the ac-Stark measurements, revealing a linear increase with an offset of (1.53 ±
0.01) MHz and a slope of (181 ± 14) kHz/nW. To calibrate the damping parameter xqb
we interpolate this behavior to calculate the δωκ2 product in Fig. 6.10. In contrast to a
typically observed decrease of the linewidth for higher occupations, as two-level fluctuators
get saturated [134], we find an increase of it. We speculate, that the transmon qubit
linewidth of around 7 MHz (see next section), being higher than the resonator’s, is causing
this broadening as the systems hybridize.
In contrast to this linear trend, a non-trivial behavior is found in the electromechanical
regime. First a peak at 0.9 mW with a local maximum of up to 2.7 MHz is observed, before
it is quickly dropping down. Afterwards, a continuous increase for probe powers up to
Pappl = 97 mW is determined. Since the statistic fluctuations in this characteristics appear
small, we directly take the measured value into account, as we perform this measurement
in-situ while determining the EMIA interference. A potential reason for this behavior, in
particular the peak at 0.9 mW, could be the Josephson junctions of the transmon qubit
switching into the voltage state. As we have no direct measurement of this switching we
can only speculate here.
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Figure 6.9: Continuous wave determined transmon qubit decoherence at the sweet spot. We plot

the extracted transmon linewidth squared (green) over the drive power of the spectroscopy
tone and find a linearly increasing behavior. By fitting this trend (black solid line) we find
the intrinsic transmon decoherence.

6.4.4 Transmon decoherence

In analogy to the discussed resonator linewidth, we will now focus on the transmon
linewidth. For this we employ a two-tone spectroscopy as previously introduced, cf.
Sec. 5.3.1. By this we determine the qubit response to a drive tone via the antenna,
resulting in a Lorentzian peak. By fitting the spectra we obtain the linewidth of the qubit
in dependence of the spectroscopy probe tone power Ps, for which we expected a theoretical
correlation of [120, 135], cf. Eq. (2.6):

κq/2 = 1/T ′2 =
( 1
T 2

2
+ csPs

T1
T2

)1/2
. (6.8)

Here a calibration constant cs was introduced for the proportionality of csPs = nsωvac,
linking the spectroscopy photons ns and the vacuum Rabi frequency ωvac to the spectral
drive power. For a systematical analysis we therefore plot the squared linewidth over the
applied spectroscopy power in Fig. 6.9. Indeed the linear connection is observed, from
which we determine an increase of 2π · (1.033± 0.018) · 1020Hz2/W and an intrinsic qubit
linewidth of κq/2π = (6.0± 1.1) MHz in the low power regime (Ps → 0), corresponding to
a dephasing time of

T ′2 = T2 = (53± 9 )ns. (6.9)

In comparison to literature values reporting up to millisecond lifetime this is rather low
[136]. On the other side we like to state that the microchip design has potential for
optimizations in the transmon qubit decoherence. In addition, the aim of such electrome-
chanical hybdrid systems is to overcome restrictions in the qubit decoherence by storing
the information in the mechanical element. We will discuss potential storage times of the
hybrid system in Sec. 6.7. Finally we have to mention that the determination of the trans-
mon decoherence is rather indirect and should be seen as a lower boundary. A detailed,
direct analysis requires pulsed schemes which will be the focus of the next section.
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Figure 6.10: Photon number calibration via ac-Stark shift. We plot the extracted product δωκ2

(green dots) per probe tone power Pappl. We observe a linear decreasing trend for low probe
powers. In this regime we apply the linear model from Eq. (6.3) to the data (black solid line)
to determine the corresponding photon number (top axis). The deviations from the linear
model then are calibrated to start above eight photons.

6.5 Photon number calibration

As we have now fully characterized our electromechanical cQED sample, we can determine
the photon numbers in the microwave resonator. We start by measuring the ac-Stark shift
of the transmon qubit and then the broadening of the mechanical linewidth via EMIA
experiments. As we will see, combining these methods allows for an ultra-wide range
calibration of the occupation number n̄c.

6.5.1 Ac-stark shift

First we have to calculate the so called ac-Stark shift of the transmon qubit on its eigen-
frequency induced by the microwave photons in the resonator. By the characterization
of the transmon-resonator interaction we find the parameters gq/2π = (134.1± 2.3) MHz,
α/2π = −(188 ± 1) MHz, and detuning ∆qc/2π = 2.056 GHz. So the expected ac-Stark
shift is given by Eq. (3.29) and we derive

δωq
2πn̄c

= −(1.761± 0.055) MHz/photon. (6.10)

For the experimental investigation we set the transmon qubit to its maximum transition
frequency [working spot A in Fig. 6.5a)] using the mounted superconducting dc-coil. Next
we experimentally investigate the transmon qubit frequency in dependence of the applied
probe tone power Pappl, via the dispersive shift. By this we find δω(Pappl).
Following the approach in Ref. [120], we then plot the product δω(Pappl) times the square
of the extracted resonator linewidth from Sec. 6.4.3, and show the result in Fig. 6.10. For
low drive powers we find the expected linear behavior as predicted by Eq. (6.3), having a
slope of −(2π)3 · (9.36± 0.02) · 1019 /s3nW. Deviations from this linear trend are observed
at higher probe tone powers that we speculate to arise from contribution of higher lying
transmon levels [137].

Finally by merging the extracted experimental slope δω(Pappl) with the expected shift
from Eq. (6.10) δω(n̄c) we find the number of photons per applied probe tone power, see
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top axis in Fig. 6.10. Plugging these results in Eq. (6.2), we determine a calibration factor
of xqb = (4.08±0.25) s−1. Assuming an external coupling of κext/2π = 1 MHz as observed
in prestudies for the given geometry [70], we can quantify the microwave attenuation of
Λ = 61.9 dB. Taking the built in attenuation into account this corresponds to a cable loss
of 9.9 dB.
Using the ac-Stark shift of the transmon, we demonstrated that we are able to calibrate
the average photon populations n̄c of the microwave resonator stemming from the probe
tone to powers equivalent to n̄c / 8 photons. We note, that this is far below the critical
photon number of ncrit = ∆2

qc/(2gq)2 ≈ 60 for which the assumptions of the dispersive
limit are valid [84, 138].

6.5.2 Electromechanical induced absorption

To specify higher resonator photon numbers we set the transmon qubit to its minimum
frequency [spot B in Fig. 6.5a)] and turn to the two-tone EMIA spectroscopy scheme [cf.
Fig. 6.1b)]. Thus, we apply a drive tone on the red sideband ωd = ωc − Ωm and interfere
the resulting anti-Stokes field with a probe tone ωp around ωc. The drive tone strength
now sets n̄c determining the EMIA interference manifesting itself in form of an additional
absorption signal close to ωd + Ωm. By fitting a lorentzian lineshape to the EMIA data we
extract the effective mechanical linewidth Γeff(Pappl). We display an overview of three drive
amplitudes in Fig. 6.11a), where we plot the normalized transmission |S21,n|2, which sets
the cavity transmission off-resonant to the EMIA signal to unity. We find an absorption
of up to 25 % of the initial microwave transmission scattering |S21,n|2. Next we plot the
extracted effective mechanical linewidth Γeff in Fig. 6.11b) for a systematical sweep of the
drive tone amplitude. As predicted by Eq. (6.4) we observe a linear broadening of the
damping. By the sample characterization in Sec. 6.4, we are able to fit the model from
Eq. (6.4) to the data where we use the intrinsic linewidth Γm and the calibration factor
xEMIA as the only free fit parameters. We note, that here we take the microwave resonator
linewidth of the corresponding drive tone power as found in Sec. 6.4.3 directly into account.
For low photon numbers we find an intrinsic damping factor of Γm/2π = (12.4 ± 0.3) Hz
corresponding to a quality factor of 2.5 · 105 at 50 mK. This is in good agreement with
previous characterized samples fabricated at the WMI, which found 13.3 Hz at 50 mK [43],
and to reported values from literature for such pure aluminum nanostrings [139, 140] which
are found to be in the Q ≈ 105 range.
In addition, we resolve a damping factor of xEMIA = (5.41 ± 0.25) s−1, corresponding to
Λκext. Again assuming an external coupling of 2π · 106 s−1 we can calculate the microwave
loss of the setup to λ = −60.6 dB of attenuation, or −8.6 dB for the microwave cabling
without the installed attenuators, seeming realistically. By this calibration we can translate
the applied powers for this measurement corresponding to n̄c = 1.4 · 106 up to 1.4 · 108, see
top axis in Fig. 6.11b).

6.5.3 Comparison of the calibration results

We have calibrated the resonator photon number via the transmon qubit measuring the
ac-Stark shift from 0.5 to 8 photons and obtain a loss coefficient of xqb = (4.08±0.26) s−1.
Higher occupations were determined by EMIA spectroscopy of the effective nanomechan-
ical linewidth measuring the resonator in a population range from 1.4 · 106 to 1.4 · 108
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Figure 6.11: EMIA spectroscopy on the resonator-nanomechanical hybrid system at about 50 mK.
In panel a) the normalized EMIA signature (dotted) is displayed for three drive powers Pappl

±120 Hz around the mechanical response. An EMIA dip is found that increases with drive
power. We fit Lorentzian models to the EMIA results (black solid lines) to extract Γeff . In
panel b) the effective linewidth Γeff (blue dots) is plotted for a sweep of the red-sideband drive
amplitude. By applying the EMIA model introduced in the main text, we find xEMIA and
hence the photon occupation in the microwave resonator (top axis).

photons. In the electromechanical experiments, we revealed a calibration factor xEMIA =
(5.41± 0.25) s−1.
By combining circuit-QED with electromechanical techniques, as described above, we can
therefore resolve photon numbers being apart up to nine orders in magnitude. Within this
ultra-wide range the calibration agrees within 25 %. In terms of the technical attenuation,
given in dB and assuming κext = 2π · 106 s−1, we find a deviation of 1.2 dB. The obtained
uncertainties are lower than this discrepancy but of equal size. Overall we conclude with
an averaged calibration of x = 4.75 /s, corresponding to an attenuation of −61.2 dB when
assuming an external linewidth of κext/2π = 1 MHz. Besides the built in attenuation this
corresponds to a loss of −9.2 dB of the microwave cables in the given setup.

6.6 Time resolved qubit spectroscopy

In the following we start by investigating the qubit performance via Rabi-Oscillations.
In particular, we will compare driven Rabi oscillations for two different working points
measured via two different methods. Further we apply advanced pulse schemes at the sweet
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Figure 6.12: Rabi oscillations of the transmon qubit on resonance. The recorded phase change
of an incident microwave probe tone on the electric resonator, directly applied after a spec-
troscopy tone of varying length (green dots) is shown. We find an oscillation decaying over
time, corresponding to the qubit excitation. We fit the data applying a Rabi-decay function
(black solid line), which allows us to calibrate the transmon excitation Pe (right axis), as well
as to extract the time length of π− and π/2− pulses.

spot to investigate the decoherence of the transmon qubit. The results are summarized
and discussed at the end.

6.6.1 Driven Rabi-Oscillations

Sweet spot decoherence We start our analysis by setting the transmon qubit to
the sweet spot. Further we apply a spectroscopy tone via the antenna using a constant
amplitude but sweeping its pulse length τRabi. Directly after the spectroscopy tone we
apply a read-out probe tone on resonance to the microwave resonator, which allows for a
direct measurement of the qubit state. This pulse sequence was introduced in Sec. 5.3.5 as
Driven Rabi. We plot the detected phase change for a spectroscopy on resonance to the
transmon qubit in Fig. 6.12, where we find decaying oscillations, indicating the rotation
of the qubit on the Bloch sphere. These oscillations have a distinct frequency, the so-
called Rabi frequency. On the long run a steady state in the equatorial plane of the Bloch
sphere between excited and ground state is reached, corresponding to Pe = 0.5. We fit the
Rabi-decay behavior by

A0e
− t
TRabi sin [ωRabit/(2π)] + ∆Φ0 (6.11)

revealing the Rabi frequency ωRabi/2π = 42 MHz and decay time TRabi = 151 ns for the
example set in Fig. 6.12.
Next, we sweep the spectroscopy frequency [cf. Fig. 6.1a)] and show the findings in
Fig. 6.13a), revealing the |g〉 → |e〉 tranistion ωq/2π = 7.918 GHz and the |g〉 → |e〉
transition at half of its frequency ωgf/4π = 7.822GHz. The |g〉 → |e〉 tranistion is
observed over a broad frequency range showing a typical driven Rabi response, consisting
of oscillations of the qubit state with the Rabi frequency ωRabi, which has its minimum
at the transmon frequency. A finite dent is observed around the qubit frequency, that we
attribute to an insufficient magnet field screening and which will be discussed further at
another working spot. The signature of the first harmonic, observed at half its frequency,
has a higher amplitude as well as a lower Rabi frequency, and a small frequency range
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Figure 6.13: Driven Rabi oscillations of the transmon qubit at the sweet spot. Panel a) displays
the recorded Rabi oscillations for a systematical sweep of the spectroscopic frequency. Typical
Rabi oscillations are found for the ground mode and signatures arising from the transmon
nonlinearity. A small dent is observed close to the transmon resonance frequency ωq/2π =
7.92 GHz. In panel b) a discrete fourier analysis of the recorded data is shown. One finds the
expected parabolic tuning of the frequencies, the higher harmonic is hard to see due to the
limited data. Panel c) shows the extracted decay in relation to the applied spectroscopy tone.
Longest coherence is found on resonance to the qubit.

to observe it. As it is excited only via multi-photon processes in this configuration the
effective excitation amplitude is highly reduced, leading to a lower Rabi frequency.
Next we apply a Fourier transformation on the recorded data, to determine the spectral

frequency contributions. Results are displayed in Fig. 6.13b). We find a minimum
Rabi-frequency of the ground mode at about 40 MHz parabolically increasing when the
spectroscopy frequency turns of resonant to the qubit. The signature from the |g〉 → |e〉
transition has a much lower frequency as previously discussed. For a systematical analysis
we plot the extracted decay time for the observable range of Rabi oscillations on the
|g〉 → |e〉 transition, as found in Fig. 6.13c). Around the resonance frequency we find
a decay time of TRabi = (175 ± 22) ns. Off the resonance the decay is enhanced. This
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indicates a limitation by dephasing processes, since an off-resonant drive pulses the qubit
in positions with x-y contributions of the Bloch sphere.
We have now analyzed the Rabi-oscillations at the sweet spot, where the influence of
the magnetic field noise is minimized. We found good agreement between expected and
measured oscillations. Only a small dent was found not explained by the theory.

Detuned Now we tune the transmon at a point with finite sensitivity to magnetic
fluctuations, ωq/2π = 7.776 GHz to be precise. Here, the field sensitivity extracted from
Fig. 6.6a) is ω′q/(2πΦ0) = 3.4 GHz/Φ0.
Again, we record the Rabi oscillations systematically in dependence of ωs, as plotted in

Fig. 6.14a). Like before, we observe the typical Rabi fingerprint, this time with a reduced
contrast and the |g〉 → |e〉 transition being barely visible. In addition, the dent around the
resonance frequency is increased. Besides the working spot, the experimental environment
was kept constant, so we conclude that this feature must arise from field noise. A plausible
cause as there was no magnetic shielding used in this experiment.
For a further analysis we perform a Fourier analysis, see Fig. 6.14b). In contrast to the
sweet spot we find two equal parabolas, shifted by ∆ωq/2π = (44±4) MHz. Since we have
determined the field sensitivity above we can connect the frequency shift in a magnetic
field value of

∆ωqω
′
q = ∆Φ = 13 mΦ0, (6.12)

or knowing the area of the qubit to be Aq = 254µm2 to a field fluctuation of about
0.1µT. To determine the Rabi decay we fit the model in Eq. (6.11) assuming a single Rabi
oscillation. The extracted times are found in Fig. 6.14c). Around the minimum of the
FFT parabolas we find TRabi = (113± 25) ns. Approaching the transmon qubit frequency
a decrease to 50 ns is observed. Yet, we note that here the used model of a single oscillation
could be optimized by using one with an interference of two oscillations. On the other
hand, the data shows that on this resonance the steady state on the equatorial plane of the
Bloch sphere is reached fast, leading to a constant phase shift, so only a few datapoints
are available. Modeling and a detailed analysis hence becomes challenging.

Nonlinear qubit read-out Until here we have determined the Rabi frequencies
recording the state dependent dispersive shift of the microwave resonator. Yet this
read-out is limited to photon numbers within the dispersive regime, here n̄c ≈ 60. This
also limits the applied radiation pressure in the resonator, and so prevents to boost the
effective electromechanical coupling via g =

√
n̄cgm0. In the following we show a driven

Rabi read-out using the nonlinear qubit-resonator interaction, based on Refs. [141, 142].
This allows to increase the number of read-out photons by about 280, significantly
enhancing the electromechanical coupling. To introduce the principle of this read-out
scheme, we start with a spectroscopy of the microwave resonator transmission at the sweet
spot of the transmon qubit, as function of the applied probe power. Here, the transmon
qubit stays in its ground state. The result is displayed in Fig. 6.15a). At first we find the
microwave resonance at 5.862 GHz, as before. Increasing the probe power a bifurcation
is observed, at around −50 dBm or 40 photons. For higher probe tone powers, a new
area of microwave transmission arises. This is found at the bare microwave resonator’s
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Figure 6.14: Influence of magnetic field noise on the qubit for a finite field sensitivity. In panel a)
the recorded Rabi oscillations for the detuned transmon are shown. As earlier the oscillation
frequency is highest on resonance to the transmon qubit. Yet the dent around it is increased in
comparison to the sweet spot. In panel b) the discrete Fourier analysis reveals two oscillations
parabolically tuning with the spectral tone. A hint of the higher harmonic is found at lower
frequencies. Panel c) shows the extracted Rabi frequency, assuming a single Rabi-oscillation
for which we find a minimum of the coherence at the interference point. Besides decay times
of about 100 ns are found.

eigenfrequency of 5.875 GHz. We relate this to multi-photon excitation of the transmon
qubit by the probe tone, which saturates the transmon qubit and hence the resonator
is changing back to its bare transmission, cf. Eq. (3.30). The strongly driven read-out
scheme is based on an arising bright state in this high power regime with high contrast in
the resonator transmission when the qubit is excited [141]. So, as before, we first pulse the
qubit via the antenna and then apply the probe tone, though this time with 5.875 GHz
and a power of −32 dBm, corresponding to 8.4 · 103 photons. This allows us to record
driven Rabi-oscillations with high radiation pressure as found in Fig. 6.15b). Again a
Rabi fingerprint is observed, although due to a lower drive power (−15 dBm here) having
a lower oscillation frequency. This can also be seen in the Fourier analysis in Fig. 6.15c),
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Figure 6.15: Rabi oscillations applying a strong probe tone. Panel a) reveals the qubit-resonator
transmission behavior at the sweet spot of the transmon qubit for a varying probe tone power.
At low probe tone powers the regular transmission of the resonator is found. At intermediate
powers a bifurcation is observed and at the bare resonator frequency signal starts to be
transmitted. When the probe power is increased beyond this bifurcation, signal is transmitted
only on resonance to the bare microwave resonance. In panel b) the extracted Rabi-oscillations
of the transmon qubit at the sweet spot are shown. In contrast to the previous results, here
the resonator was probed with a power beyond the dispersive regime, on resonance to its bare
eigenfrequency. This allowed to push the photon number by a factor of about 400. Frequency
and time range is equivalent to Fig. 6.13. The Fourier analysis of the measurement is found
in panel c). The parabola tuning of the ground mode’s Rabi frequency is visible, while in
contrast to the weak read-out, the higher harmonic is hardly observable.

where a parabola displays the expected Rabi frequency tuning. On resonance to the
transmon qubit we find a decay time of TRabi = (183± 46) ns. This is in good agreement
to the extracted time of 175 ns we resolved using conventional techniques. We conclude
that we are able to measure Rabi oscillations in the nonlinear regime using the described
protocol. In principle, this method is not limited to a driven Rabi pulse sequence but
can be transferred also to other sequences we will discuss in the next section. However
we only recorded Rabi oscillations in this thesis, as a proof of principle. Nevertheless
this is a technical realization for future experiments on nanomechanical hybrid devices
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Figure 6.16: Excitation decay at the sweet spot. Phase change of the resonator, corresponding to

the transmon excitation (green) read-out after specific delay times. The transmon was excited
using a π−pulse determined from Rabi-experiments. Its excitations decays exponentially with
an energy decay time of 163 ns.

with an enhanced effective coupling by a factor of 17 in comparison to the dispersive regime.

The introduced Rabi frequencies allow us to extract the corresponding pulse length of
a π or π/2 pulse at a given power of the spectral tone. Combining these pulses in specific
sequences reveals further insight in the transmon qubit’s decoherence, which we will show
in the following at the sweet spot of transmon qubit.

6.6.2 Decay measurements

To extract the energy decay of the qubit, along to the z-axis on the Bloch sphere, we apply
a π-pulse as determined by a previous driven Rabi experiment. Further, we measure the
dispersive shift of the resonator after a specific delay time τdecay. This pulse sequence is
displayed in Fig. 5.8 as Rabi decay. The extracted phase change, equivalent to the energy
remaining of the transmon qubit at that time, is found in Fig. 6.16. We fit an exponential
decay of the following kind:

∆φ(t) = ∆Φ0exp
(
− t

Tdecay

)
. (6.13)

Here the delay time τdecay of the read-out pulse corresponds to the measurement time
t, further the phase shift amplitude ∆Φ0 corresponds to a fully excited qubit state with
Pe = 1. From the fit we extract a shift amplitude of (0.120 ± 3) rad and a decay time of
Tdecay = (163± 6) ns. This coincides to the previously determined decay times using Rabi
frequencies.
Including the Rabi experiments have now measured the energy decay rate using three
different methods. This was undertaken by measuring the qubit state along the z-axis of
the Bloch sphere, next we want to analyze the dephasing time, corresponding to a decay
along the equatorial plane.

6.6.3 Ramsey sequence

For an investigation of the dephasing time we now apply a π/2 pulse, sending the qubit
on the equatorial plane, corresponding to a superposition of excited and ground state. In
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this setting the transmon is sensitive to dephasing processes. To analyze this dephasing
we apply a second π/2 pulse after a certain delay time τRamsey. This rotates the qubit
to the z-axis. Without dephasing the final position of the qubit would be a pure excited
state. The more the qubit has dephased during the delay time, the less the spin will align
along the z-axis, and thus we can extract the dephasing time TRamsey. The read-out of its
excitation is then performed as before, by recording the phase change of an on-resonance
probe tone of the microwave resonator. The pulse sequence is discussed in Sec. 5.3.5 as
Ramsey
The recorded phase shift is found in Fig. 6.17a), where the spectral frequency was set on-
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Figure 6.17: Ramsey fringes at the transmon qubit sweet spot. Panel a) displays the on-resonance
dephasing of the transmon qubit, detected via a Ramsey sequence, in particular the phase
change of the microwave resonator. Panel b) shows the phase response for a systematic
sweep of the spectroscopy frequency and the read-out delay. Symmetrically to the transmon
transition frequency at 7.918 GHz, oscillations of the phase start to appear, increasing in
frequency with increasing detuning. In panel c) the extracted decay times arise by modeling
the data shown in panel b). The T2 time fluctuates around 175 ns, except on resonance.

resonance to the qubit (ωs = ωq). As expected the longer the delay time between the pulses,
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Figure 6.18: Spin echo response of the transmon qubit. Detected phase shift (green) plotted

over Hahn-pulse time τSE at the sweet spot. An exponential decay is observed and analyzed
(black solid line), revealing a Hahn decay time of 163 ns.

the less excitation is observed, following an exponential law. We extract the decay time by
modelling Eq. (6.13) indicated by the black solid line. We note, that in this sequence Tdecay
corresponds to T2, for which the fit yields T2 = (98± 9) ns. We proceed by systematically
sweeping the spectral frequency and display the measurement results in Fig. 6.17b). We
find the so-called Ramsey fringes, decaying oscillations having a frequency |ωq − ωs| and
a decay time TRamsey which is equivalent to the T ′2 time. Similar to Rabi-oscillations we
fit Eq. (6.11) to the data. This allows to extract both: the frequency detuning and the
Ramsey decay time. These we plot for detuned spectroscopy tones in Fig. 6.17c). When
we average the off-resonant values a dephasing time of T ′2 = TRamsey = (175 ± 24) ns is
found.
We have now measured the on- and off-resonant dephasing of the transmon qubit coupled
to an electromechanical resonator. We found a shortened T2 time on resonance, while off-
resonant the T ′2 time is round about the extracted value of the T1 times. Both dephasing
times show that the examined qubit seems to be limited by dephasing processes.
For a detailed analysis we next apply a Hahn-Echo sequence, which also allows to extract
a T2 time, but independent of 1/f noise as previously stated.

6.6.4 Hahn echo signature

In a spin- or Hahn-echo sequence the qubit is pulsed in the equatorial plane (π/2), where
the spin dephases for a certain time τHahn. Then the spin is rotated by 180◦ applying a π
pulse, which allows to refocus the spin. For a read-out, we apply a final π/2 pulse after
t = 2τSE rotating the spin on the z-axis to determine the remaining amount of excitations.
This is achieved by probing the microwave resonator directly after the second π/2 pulse.
We show the measured result in Fig. 6.18. Again, we fit an exponential decay to the data
(black solid line) using Eq. (6.13). By this we extract Tdecay = (83.6 ± 3.1) ns. When
interpreting this data one has to note, that τHahn is only half the read-out time, as the
delay time appears twice in the pulse scheme. So the Hahn decay time is double the
extracted decay:

THahn = 2Tdecay = (167± 6) ns. (6.14)
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Method t (ns) Decay time

Continuous wave TCW = (53± 9) T2

Rabi sweet spot TRabi = (175± 22) T1
Rabi finite field TRabi = (113± 25) T1
Nonlinear Rabi TRabi = (183± 46) T1

Energy decay Tdecay = (163± 6) T1

Ramsey decay Tdecay = (98± 9) T2
Ramsey off-resonant TRamsey = (175± 24) T ′2

Hahn-Echo THahn = (167± 6) T ′2

Table 6.1: Summary of collected decay times.

This is in close proximity to the extract dephasing time via the off-resonant Ramsey
sequence, but longer than on-resonance. This can be interpret in such a way that the
Ramsey sequence is prone to 1/f noise, while the Hahn sequence due to the time reversing
π-pulse sufficiently screens the spin from it. These observation indicate the presence of a
dominant low frequency field noise.

6.6.5 Decoherence analysis

In the previous sections we have studied the coherence of a transmon qubit coupled to an
electromechanical microwave resonator. We used a variety of measurements, continuous
and pulsed, to extract the longitudinal and transversal dephasing of the qubit state.
An overview of the determined decay times is given in Tab. 6.1. The most important
result when comparing the decay times is the observation that we find T2 ≈ T1. This
indicates that actually the dephasing of the transmon qubit is the limiting factor. A
closer look at the dephasing time via Ramsey and Hahn sequences revealed that the
dominant noise stems from 1/f fluctuations. These can come from surface two-level
systems, one can get rid by a proper chip cleaning [110]. Further reducing the transmon
surface by changing from a finger type to a plate capacitor can enhance the coherence [143].

Dephasing happens when the transmon qubit frequency is changed, respectively the
energy of the excited state. This is caused either by field noise shifting the working spot,
or due to photon number fluctuations inducing ac-Stark shifts.
The influence of the magnetic field noise was found in the Rabi experiments. Even for a
slight detuned transmon (140 MHz off the sweet spot), the coherence time was reduced by
1/3. In addition, a dent in the Rabi fingerprint, leading to two parabolas in the Fourier
spectrum disclosed a field noise on the order of 10−7 T. To screen these fields a supercon-
ducting shield was designed and fabricated out of aluminum, cf. App. C. For a further
improvement the transmon frequency parabola can be flattened by lowering its maximum
transition via a lower critical current as ωq =

√
8EJEC and EJ ∝ Ic. One could argue,
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that in addition also the charging energy can be reduced. This we do not recommend,
since it actually could enhance the decay as discussed below:
The remaining source of decoherence is caused by photon fluctuations in the microwave
cavity. The benefit of the transmon qubit is that by increasing the anharmonicity, equiva-
lent to the charging energy, the ac-Stark shift is reduced [see Eq. (6.3)] [75]. For our system
with a high anharmonicity (EJ/EC ≈ 200) a further increase will allow for the undesired
excitation of higher modes, and lowering it enhances the ac-Stark induced dephasing. So
we suggest to keep the charging energy of future chip generation within that range. Nev-
ertheless we note, that this dephasing process becomes dominant in our experiments, as
the measured decay of the continuous read-out, having a finite photon occupation, is the
shortest decay time we find. Improvements addressing this limitation can be lower ex-
perimental temperature as they affect the thermal photon occupation, minimizing photon
fluctuations. In addition, lower coupled transmon qubits, studied in [133], will have less
induced dephasing.

6.7 Nanomechanical transmon qubit systems

With the presented work we demonstrate the unification of circuit QED and resonator
electromechanics by coupling a transmon qubit and a nanomechanical string oscillator to
one and the same microwave resonator.
To this end we introduced how the resonator photon number can be quantitatively com-
pared using the ac-Stark shift as well as electromechanically induced absorption. Further
we fabricated the hybrid device and analyzed it at cryogenic temperatures via microwave
spectroscopy. In particular, we determine the transmon and string coupling strength of
gq/2π = 134 MHz and gm0/2π = 0.3 Hz respectively. Further the microwave resonator
decoherence was analyzed. These characterizations enable a calibration of the resonator
occupation using the transmon qubit from 0.5 to 8 photons and obtain a loss coefficient of
xqb = (4.08± 0.26) s−1 or via the nanostring from 1.4 · 106 to 1.4 · 108 photons leading to
xEMIA = (5.41±0.25) s−1. Despite the photon numbers being up to 9 orders of magnitude
apart, the agreement in the loss coefficient is remarkably below 25%.
Further we investigated the transmon decoherence in the time domain. We found the qubit
decoherence to be limited by dephasing processes, dominated by pink noise. To extend
the lifetime of a quantum state in the transmon one can reduce the two-level surface fluc-
tuators by a proper chip cleaning, reduce the magnetic field noise using a superconducting
shield, and optimize the microchip design, in particular reducing the coupling strength, as
well as the critical current in the dc-SQUID loop.
On the other hand, storing the quantum information in the mechanical resonator one can
circumvent the limitations of the qubit decoherence. For this doubly clamped nanome-
chanical string oscillators are promising aspirants as their ultra high mechanical quality
corresponds to a thermal coherence times of 38µs for the examined sample. In this sense
the presented work is an important step towards the information storage of quantum me-
chanical states using vibrational degrees of freedom.
Besides the design improvements for the interplay of a qubit coupled to electromechanical
microwave resonator, the direct integration of a mechanical element capacitively coupled
to a transmon qubit seems as a promising next step since it allows the generation of non-
classical mechanical states [119]. Within this thesis a potential fabrication process was
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Figure 6.19: Integration of a nanomechanical aluminum string oscillator in a transmon qubit.
Panel a) shows an overview image of the transmon qubit, consisting of two capactive plates, a
superconducting loop containing two Josphson junctions. An additional capacitance is added
to the circuit by placing a nanomechanical string in close proximity to an extension of one of
the capacitor plates. In panel b) the successful release of the nanostring is shown at the right
clamp [blue box in panel a)]. Panel c) shows the suspension of one of the Josephson junctions,
due to the fabrication process.

developed in collaboration with Dr. N. Segercrantz. We have attached SEM images of
such a system in Fig. 6.19. We find an overview image in panel a), recorded unter a tilded
observation angle to show the successful release of the nanostring, which is also highlighted
in the zoom image of panel b). Further panel c) shows an image of the transmon’s Joseph-
son junctions, that were also underetched in the fabrication process.
The design and fabrication process already included the suggested improvements within
this thesis, observable e.g. on the reduced capacitor surface.



Chapter7
Inductive coupled cavity electromechanics

It’s a real PhD killer!

Garry A. Steele, private discussion during poster session of the FCQO conference,
Klosterneuburg 2018

In this chapter we will derive the mechanism of a nanostring coupled inductively via a
dc-SQUID to a microwave resonator, which allows for a high vacuum coupling rate ex-
ceeding previous realizations. We then introduce the fabrication process we invented for
the realization of such samples, before we show spectroscopy data on the hybrid system.
We start our experiments by having a detailed look on the individual parts, the microwave
resonator and the nanostring. We will investigate their characteristic parameters and
discuss the results, before we switch to measurements related to the electromechanical
interaction. There, we discuss a measurement of the induced sidebands by the nanostring
in thermal equilibrium to the cryogenic environment. By this we can calibrate the vacuum
coupling strength exceeding previous publications. In addition, we analyze the displace-
ment spectrum revealing the noise performance of the interaction, confirming the predicted
imprecision limitation, cf. Sec. 4.2.2, and find a sub attonewton force sensitivity on the
single photon level. Then we will have a closer look at the electromechanical coupling,
especially the predicted linearity to the magnetic field and microwave resonator tuning.
Further, we show how we can increase the effective coupling by driving the nanostring
up to ten times the mechanical eigenfrequency, which allows us to measure the string’s
mode amplitude. At the end, we will give a short summary and discuss potential future
experiments.

7.1 Coupling mechanism

The electromechanical coupling is derived similar to the general case in Sec. 4.1, cf.
Fig. 4.1c). For the inductive coupling we use an electric resonator that has an eigen-
frequency depending on the penetrating flux, see Fig. 7.1 for details on the modeling of
the sample circuit. This flux depends on the applied external field and the SQUID loop
area. This area can be split into a constant part, with the nanostring at rest, and the
area modulated by the string’s motion. The latter one changes the penetrating flux, and
so the Josephson inductance of the hybrid circuit, which influences the eigenfrequency of
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Figure 7.1: Modelling the inductive coupling. A λ/4 microwave resonator is shunted to ground by
a dc-SQUID at its current anti-node. The dc-SQUID integrates two released nanomechanical
oscillators (bright brown) influencing the SQUID loop area. By this the SQUID’s working
spot Φ/Φ0 is modulated by the string, changing the microwave resonator’s eigenfrequency.
The circuit is modelled by the diagramm on the left: a LC circuit capacitively coupled to a
feedline contains a mechanical tuneable inductance (bright brown)

the resonator. We describe the electromechanical resonator frequency ωc(x) analogue to
Eq. (4.1)

ωc(x) = ωc(Φext) + ∂xωc(x)|x=0 x(t). (7.1)

We associate Φ(x = 0) = Φext and have linearized the induced flux by the mechanical
element. This linearization is valid since the induced flux in comparison to the external
flux is very small. In our samples the total squid length is comparable to the mechanical
arm length and as the external field is assumed constant over the SQUID area, the flux
contributions are proportional to the displacement of the nanostring, which is on the
nanometer length, and the width of the dc-SQUID loop, some micrometer. So the induced
flux change is about one permil of the external flux.
The mechanical induced frequency shift is given by

∂xωc(x) = ∂ωc
∂Φ

∂Φ
∂x

= ∂ΦωcBextγsl, (7.2)

consisting of the derivative of the microwave resonator frequency [cf. Eq. (3.22)] with
respect to the flux penetrating the loop, the applied external field Bext, as well as a string
displacement of a length l and a correctional term α that takes care of the deviations of the
mode shape by the doubly clamped strings from a sinusoidal oscillation. When plugging
this result back in Eq. (7.1) we identify the electromechanical vacuum coupling strength
via Eq. (4.4) to be

gm0 = ∂Φωc(Φext)Bextγslxzpm. (7.3)

This is in agreement with the coupling determined by several proposals [35–38]. With the
displacement of the system quantified by Eq. (4.3), the system is described via the full
electromechanical Hamiltonian taking the shape

Ĥ = ~ωc(Φext)
(
â†â+ 1

2

)
+ ~Ωm

(
b̂†b̂+ 1

2

)
+ ~gm0â

†â
(
b̂† + b̂

)
, (7.4)

An important aspect of inductively coupling the electrical to mechanical mode is the po-
tential high vacuum coupling strength, that we will discuss in the following. The coupling
consists of five factors contributing equally to it. However, they are imposing limitations
among each other and so it is not straightforward to determine the optimal realistic cou-
pling parameters. We discuss aluminum realizations first and later give a short outlook on
potential benefits and upcoming challenges for niobium based microchips.
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We focused on the flux tuneable resonator to remain stable in the working spot, as this
is a requirement for reliable and repeatable measurements. Otherwise random flux jumps
occur during the measurements and the recorded data becomes useless.
The conflict for the stability is that the mechanical parts should be long and thin to achieve
a high zero-point motion, as well as low decoherence. This requirement is in conflict with
high critical currents enable steep frequency slopes and high photon numbers. In addi-
tion, the screening parameter βL becomes large for high critical currents, which leads to
a hysteretic behavior of the microwave frequency when tuned with the external flux, as
discussed in Sec. 3.2. For the first sample generation, we conservatively went with a string
width of 200 nm only.
Next we like to detail the individual factors determining the electromechanical coupling
strength and estimate feasible values:

• The flux to frequency transfer function, also referred to as frequency slope, is defined
by the microwave resonator design. Given the parameters stated in Sec. 3.3, we find
a maximum slope around 10 GHz/Φ0 before the resonator becomes no longer observ-
able. In previous studies on FTRs higher values of up to 60 GHz/Φ0 were realized
[64]. However, one has to note that the steeper the slope becomes, the more sensi-
tive to flux noise the microwave resonator becomes. As this broadens the resonator
linewidth, the measured electromechanical signal is reduced. The decoherence of the
microwave resonator is studied in Fig. 7.7b).

• The maximum value of the applied external field to the structure is either limited by
the critical field of the superconducting material, or by its experimental generation,
i.e. the heating effects of the applied current in the coil. We have determined the
critical in-plane field of our fabricated circuits in separate experiments discussed in
App. E and found microwave transmission through the flux tunable resonators up to
130 mT. In this thesis we employ an out-of-plane field created by a small coil which
allows to control precise working points and a calibration of the external field via
the dc-SQUID. Hereby, we can experimentally confirm Eq. (7.3) with respect to Bext.
Moreover, this allows for a careful analysis of the field frequency dependence of the
microwave resonator and hence ∂Φωc. However in this configuration the accessible
field was limited to around 0.5 mT by the dissipation of the coil current.

• A proper string annealing during the sample fabrication takes care of a high pre-
stress. This stress results in a high mechanical quality and allows for a mode shape
close to a sinus [144]. The shape factor α is then expected to be around 0.9− 1 [30].

• Although in principle, the string length can be set to any desired length, two limita-
tions are worth considering. The resonance frequency of the string Ωm scales with its
inverse length l. For ground state cooling using sideband drives , it is required to be
in the resolved sideband regime, that is Ωm > κ [9]. This limits the string’s length
to around 70µm for a linewidth of 2 MHz, cf. Fig. 7.7a) and 7.11a). Improvements
on the resonator decoherence can allow for longer strings. But another dominant
restriction arises due to the high kinetic inductance imposed by such strings in the
SQUID loop, leading to instability. To circumvent this we restricted the string length
to 20µm.
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• The zero-point motion, derived by Eq. (2.15), depends on the inverse square root
of the string’s mass and its eigenfrequency. As the latter is set by the limit of the
resolved sideband, see previous item, we can optimize the zero-point fluctuation by
a low mass of the nanostring. Its mass is connected to the material density. Thus
aluminum is a good choice due to its low value of ρAl = 2700 kg/m3, the ability to
fabricate it in the required nanometer dimensions, the relative expansion coefficient
with respect to silicon and last but not least its superconducting properties. The
string length is compensated by the proportionality of the eigenfrequency in first
order. To minimize the mass of the string by its dimension, we like to note, that
the length is already set by the resolved sideband regime and so the tuning knob
becomes the string’s cross-section, which is in this case desired to be as small as
possible. We note, that this is also of benefit for the mechanical quality factor [144].
The thickness is however determined by the fabrication process to 110 nm. As we
have discussed in Sec. 3.2 a screening parameter of βL = 0.05 is desired, the design
width is fixed to 200 nm. The corresponding zero-point motion then is 47 fm.

All in all, with the extracted parameters of ∂Φωc = 10 GHz/Φ0, = 0.5 mT α = 1, l =
20µm, and xzpm = 47 fm we find an expected coupling of gm0/2π = 2.35 kHz in the
experimental realization discussed in this chapter. Assuming in contrast to the presented
out-of-plane field bias an in plane field of 130 mT, the coupling gm0 can be boosted to
611 kHz, corresponding to 20% of the microwave resonator linewidth of ≈ 3 MHz, cf.
Fig. 7.7a). Given a string linewidth of Γm/2π = 25 Hz, see Fig. 7.10a), we conclude a
single photon-phonon cooperativity C0 of:

C0 = 4g2
m0

κΓm
= 19.9 · 103 (7.5)

being of reach. For further sample generations we see the single photon-phonon coupling
therefore within reach, by increasing the string length carefully such that the microwave
resonator remains stable, and improvements of the resonator’s decoherence, e.g. by a
proper surface cleaning.
As the critical field in niobium is ten times higher compared to aluminum [145], it can
be beneficial to switch to an all-niobium realization of the sample design. This however
requires the use of silicon nitride as a mechanical support material for the nanomechanical
string, due to the low pre-stress in niobium [100]. Further, the fabrication of Josephson
junctions based on niobium in the low µA range remains challenging [146].

7.2 Fabrication

In the following we will present and discuss the fabrication process we developed within
this thesis. Further we will give a short summary on the final device parameters, however
not discuss them in detail, as this will be done later, when these parameters are measured.
The interaction of a nanomechanical string oscillator coupled via the nonlinear Josephson
inductance of a flux tuneable microwave resonator is a challenging task as both the circuit
QED elements as well as the nanostring have to be merged. This leads to compromises
in both designs and the fabrication procedure. Nevertheless, we were able to develop the
following recipe, which is how the sample investigated in this section was fabricated.
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First we start with a commercial high resistive silicon waver, sliced in 10 × 6 mm2, and
clean its surface by rinsing it in a ultrasonic bath using acetone and isopropanol to remove
the cover resist, and dry it in a nitrogen flow. By RIE ashing any remaining organic
particles can be removed, which allows higher coherence times, however this was not done
with the current sample. We will show later that even without this step an overdamped
resonator can be created. Next, a double layer resist consisting of Allresist AR-P 617.08
(PMMA 33%) and Allresist AR-P 679.02 (PMMA 950 K) are spin coated with a top
speed of 2000 rpm maximum. Typically, the top layer is spin coated with higher rotation
speeds, which creates a very thin film with a high writing precision. However, in our case
the lower coating speed allows for a thick and stable resist bridge that we require to create
Josephson junctions on the order of 1µm width, where a precision on a few nanometers
is not the most critical step. We further prevent a collapse of the bridge by minimizing
the influence of scattered electrons, to be precise by cutting out the ground plane about
25µm around the SQUID. This technique developed during this thesis turned out to work
very well also for other projects fabricating flux tunable resonator at the WMI facilities
[147, 148]. The full sample design including a transmission line, the coplanar waveguides
galvanically shunted to ground via mechanical dc-SQUIDS including the nanostrings is
then patterned into the resist via a NanoBeam Limited: nB5 Electron Beam Lithography
System using doses of 7.5 C/µm2. Then the resist is developed in Allresist AR 600-56
and isopropanol cooled to four degrees Celsius. This cooled isopropanol allows for a well
defined development of written and unwritten parts of the PMMA 33% especially in the
area of the undercut, created by a ghost pattern. Next, the aluminum layers having a
height of 40 and 70 nm are deposited using electron beam evaporated shadow-evaporation
technique with an angle of ±17 degrees. After the deposition of the first layer it is oxidized
to create a non-conductive interlayer for the Josephson junctions for 120 min under a flow
of 5 sccm and a valve position of 45%. After the evaporation of aluminum the remaining
resist is removed by a lift-off process using 70◦C hot aceton for 60 minutes, applying a
turbulent flow with a pipette to assist. Afterwards the sample is annealed at 350◦C for
30 minutes to increase the pre-stress in the nanostrings. Then the strings are released
via reactive ion etching in two steps: first an anisotropic etch where the reactive ions
are strongly accelerated towards the sample, which creates a deep etching pattern in the
silicon. This is followed by a second step under high pressure and almost no acceleration
voltage, resulting in a isotropically etch, releasing the strings.

We show images of the finalized sample in Fig. 7.2. The coplanar waveguide, found
in panel a), has a conductor width of 10µm and a gap width of of 8µm to the ground
plane resulting in a 56 Ω impedance, matched to the 50Ω feed line. The bare eigenfre-
quency without the SQUIDs inductance corresponds to ω0/2π = 7.7 GHz, assuming an
effective dielectric constant of εeff = 6.45 [64]. Another important resonator parameter
is its linewidth. It depends on its working spot, applied probe power and environmental
temperature. We found the highest coherence at the sweet spot and about Bext = 0.5 mT
applied perpendicular to the SQUID loop having intrinsic losses of κint/2π = 1 MHz and
an external coupling rate of κext/2π = 1.8 MHz.
We show a scanning electron microscopic image of such a mechanical dc-SQUID in panel
b). We find two released nanostrings. The length of the measured nanostrings later is
l = 20µm, the ones in the figure differ as the shown SQUID was not further investi-
gated. The string’s mechanical in- and out-of-plane modes show eigenfrequencies from
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Figure 7.2: Microscope images of the investigated sample generation. Panel a) presents a micro-
scopic image of a flux tunable microwave resonator, consisting of a coplanar waveguide and
a dc-SQUID shunting the center conductor to ground. In addition the microwave feedline
is shown on the left. In panel b) a tilted SEM image of the electromechanical SQUID is
depicted, showing the successful suspension of the two nanomechanical strings. The corre-
sponding Josephson junctions are shown in a zoom via panel c).

Ωm/2π = 5.7 to 6.4 MHz. The string’s cross-section of 110x200 nm2 corresponds to a mass
of 1.2 pg. Under the assumption of a highly stressed string, we find meff = m/2 and a zero
point motion of 47 fm for mode number 4 with an eigenfrequency of 6.343 MHz, which we
will mostly focus on. For a cryostat temperature of about 120 mK we find a mechanical
linewidth of Γm/2π = 25 Hz for this mode, corresponding to a quality of 2.5 · 105. Further
the dc-SQUID loop contains two symmetric Josephson junctions with a design width of
0.5µm and total area of 1.3 · 105 nm2 (per junction), see panel c). As further explained
in the text, we extract a total critical current of 1.8µA from the frequency shift of the
microwave resonator from its bare eigenfrequency. This corresponds to a critical current
density of 6.9µA/µm2, in accordance to previous findings [65]. The whole SQUID loop
area is determined by its design to 44.6µm2, so a field of 46.4µT corresponds to a flux
quantum (Φ0 = 2.056 · 10−15 Tm2 [53, 54]). We like to comment that in panel c) we finds
blow-ups of the aluminum layer. We speculate these to stem from resist residues due
to insufficient development and/or surface cleaning. When annealing the sample these
residues expand underneath the film and cause these visible bubbles. We speculate that
the dielectric resist remains might act as loss channels for the microwaves and thus cause
an undesired linewidth broadening. For future generation we therefore recommend a RIE
ashing of the sample before spin coating and a longer development time to avoid such
blow-ups. However, the measured sample is in the resolved sideband regime, and the
microwave resonator had an overcoupled regime accessible [cf. Fig. 7.7b)].

7.3 Setup including active mechanical excitation

For the investigation of the electromechanical device we employ the principle of a cryo-
genic microwave interferometer, as introduced in Sec. 5.2. Details on the configuration are
sketched in Fig. 7.3a): a microwave source (MW) and a vector network analyzer (VNA)
send a probe tone to the microchip, or (VNA only in this configuration) drive a piezo
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Figure 7.3: Experimental arrangement of microwave wiring and cryogenics. Panel a) reveals the
full setup including several microwave drives and detectors at room temperature on the left,
as well as the cryogenic structure of the experiment on the right. Panel b) shows the sample
box including the piezo crystal and the mounted sample
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Figure 7.4: Power calibration of the microwave pathes. Both times we plot the difference in the
detected power. In panel a) we show the probe tone calibration, measured at the position of
the power combiner, see Fig. 7.3. We find an average deviation of about −24 dB. Panel b)
displays the drive power calibration, for the microwave signal send to drive the piezo actuator.
Here we have rewired the setup such that the ZVA signal is directly send to the piezo, reducing
the microwave deviation to about −21 dB.

actuator mounted on the sample box, see Fig. 7.3b). The probe input line is attenuated
by −42 dB before it is capacitively coupled to the electromechanical resonator. On the
outcoming path two circulators prevent thermal noise to enter the microwave circuit and
a high electron mobility transistor (HEMT) amplifies the outcoming sample signal with
a cryogenic background noise level. Outside the cryostat the signal is further amplified
before it is divided in a directional coupler acting as a beam splitter. The majority (99%)
is further amplified and homodyne downconverted in Marki IQ 0307 LXP IQ mixer using
an additional microwave source (LO). Then the I and Q quadrature is added as described
and discussed in Sec. 5.2.2 allowing a frequency independent detection of the phase modu-
lations the mechanical oscillator adds on the probe tone. A final amplification is performed
before the downconverted signal is detected either by the network analyzer or a spectral
analyzer. The remaining 1% of the signal are further amplified and send directly to the
VNA, which allows for a direct investigation of the microwave resonator transmission. The
sample box was placed in a full aluminum capsule (cf. App. C) screening magnetic field
noise. In our setup we use two different microwave sources: a network analyzer (R&S
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ZVA-8A) with a −20 dB attenuator directly after its output, and a microwave generator
(R&S SMF-100A), see Fig. 7.3. For a comparison of the probe tone photons and the ap-
plied voltage of the piezo drive we therefor apply a power calibration similar to the one in
Sec. 6.3.
In detail, we connect either the network analyzer path, including attenuator and a Marki
PD-02220, to the input port of the ZVA and measure the detected power for a sys-
tematic sweep of the set power of the microwave device. We repeat the measurement
with the SMF path, and subtract the detected powers in units of dBm ∆|S21|2 =
PZVA[dBm] − PSMF[dBm]. The result is plotted in Fig.7.4a). We find fluctuations for
low set powers that decrease by higher powers. Altogether we find a calibration value of
∆|S21|2 = −(24.7 ± 0.2) dB indicating the additional losses by the attenuator (−20 dB),
the power divider (−3.5 dB) and the remaining due to the microwave cables.
We note, that by this we have determined the transmission losses from the devices to the
power divider where ZVA and SMF are combined. In this section, we will refer to the
power Pp ≡ as the power at the microwave resonator. The power is determined taking a
further attenuation of −6 dB of power by the divider, the build in attenuators of −42 dB,
and the microwave wiring which was calibrated to −9.2 dB in Sec. 6.5.3, into account.
For a determination of the photon numbers we further have to consider the resonator’s
linewidth, see Eq. (6.2). As it depends on the working spot and cryostat temperature, we
will use κext/2π = 2 MHz and κ/2π = 3 MHz as determined for weak detunings from the
sweet spot for rough estimations, while precise values are calculated from measuring the
microwave resonator linewidth in-situ with the measurements.
A second calibration becomes necessary for experiments with a constantly driven string
(Sec. 7.8). Here we rewire the setup such that the SMF source is switched to the power split-
ter (Marki PD-02220 ) and the ZVA to the divider (Miteq PD2000/8000-S), see Fig. A.1d)
in the appendix. The remaining connectors are shunted by a 50 Ω resistor. We perform an
analogue calibration and plot the transmission change in Fig. 7.4b). This time fluctuations
for low power are also observed, however we find an additional peak of about 0.5 dB (or
1.12), stemming from the SMF RF output power. In total we find a calibration factor of
−(20.8± 0.3) dB in this configuration.

7.4 Flux tunable microwave resonators

In the following we will have a detailed look at the fabricated microwave resonator. We
discuss the obtained frequency tuneability and compare it with the predictions given the
design values. Further, we will investigate its decoherence in dependence of the environ-
mental temperature, as well as the tuning slope. These insights help to fabricate a higher
coherence in future samples. Furthermore, we will have a look at the nonlinearity induced
by the Josephson junctions and quantify critical photon numbers for the investigation of
the electromechanical interaction.

7.4.1 Frequency tuning

We start at a cryostat temperature of 81.2 mK, probing a microwave signal of Pp = 0.26 fW
at the microwave resonator corresponding to about 1.8 photons through the microwave
setup, while sweeping a dc-bias current at an external coil. We find a periodic tuning
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Figure 7.5: Frequency tuning of the flux tunable resonator. Panel a) displays the frequency
tuning for low applied fields at 82 mK. In panel b) the extracted resonator eigenfrequency
ωc from panel a) is plotted around the maximum transition frequency. Panel c) shows the
extracted resonance at higher temperature, to determine changes of the resonator parameters.
For better comperability the last two plots are shown in flux values Φext/Φ0

with a spacing of (1.165 ± 0.005) mA. Knowing the SQUID loop area of 44.6µm2 we
can determine the applied external magnetic field bias from the superconducting coil to
(39.8± 0.2) mT/A.
Next, we determine the transmission of the microwave setup S21,MW by averaging over 200
traces with the microwave resonator tuned to a frequency outside the region of interest
resonator not present. All transmission data presented is then calibrated in the sense that
we compute S21(Φext)/S21,MW in the complex space. We plot the absolute value of this
complex transmission parameter (|S21|2) in Fig. 7.5a) as function of the applied magnetic
flux.
We find the microwave resonator periodically tuning from 6.7 GHz up to its sweet spot
at 7.45 GHz. An external mode coupling to the microwave transmission is found at
≈ 7.3 GHz. Further we have noted eleven working spots, labeled with letters from A to J,
which we will refer to in later experiments. From the frequency tuning behavior, we can
determine that the fabricated junctions are symmetric and expect a screening parameter
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Tcryo 81.2 mK 262 mK

IΣ (µA) 1.792 1.774
LLoop (pH) 52.0 59.8

βL(%) 4.5 5.1

Table 7.1: Temperature dependence of the flux tunable resonator.

βL � 1, (see Sec. 3.2).
For a quantitative analysis of the dc-SQUID shunting the microwave resonator we extract
the eigenfrequency of it from panel a) and plot it for moderate flux detunings in panel b)
(blue dots). We fit the data in accordance to Ref. [58], cf. Eq. (3.22), for low detunings
only (Φext/Φ ≈ n ∈ N), assuming a bare resonator frequency of ω0/2π = 7.654 GHz, and a
resonator inductance of Lc = 7 nH, determined by the resonator design. With the critical
current IΣ and the SQUID loop inductance as remaining free fit parameter, we find the
extracted values shown in Table 7.1 for the resonator tuning at 81.2 and 262 mK.
We find a total critical current of 1.79µA, with a vanishing influence of the environmental

temperature. This result is in good agreement to the designed value of 1.6µA, and
corresponds to a Josephson energy of EJ/h = IΣΦ0/(hπ) = 1.78 THz, within the typical
range of such flux tunable resonators [58]. From the design, we would further expect
a geometric inductance of 28 pH and 47 pH for the kinetic inductance for the SQUID
loop. We see that the inductance is dominated by the kinetic one, which arises from
the thin and long strings forming the loop. The total sum of 75 pH is 30 % higher than
the extracted 52 pH. We suspect one main reason for a measured lower inductance is
that the string’s width ended up broader than designed. This leads to a decrease in the
assertive kinetic inductance and so a lower inductance LLoop is found. In addition, the
temperature dependence of LLoop as found in Tab. 7.1 is associated with an increased
kinetic inductance, as the geometric inductance remains constant over T .
We like to commend on the loop design, that in order to avoid a hysteretic flux tuning,
which would also reduce the accesible slopes ∂Φωc, the screening parameter has to stay
not only below, but well below one [58]. Calculating βL via Eq. (3.13) from the fitted
parameters we find the parameter indeed in the single digit percent range, indicating a
sufficiently balanced SQUID design.

We proceed by a further analysis of the resonator tuning. For this we extract the
frequencies of the resonator from Fig. 7.5a) up to Φ/Φ0 = 0.5. We plot the result in
Fig. 7.6a). Besides a gap attributed to the coupling mode of the sample at 7.3 GHz the
tuning is fully extracted. From this we numerically compute the frequency slope ∂Φω =
∂ω/(∂Φ). The benefit of this is to experimentally determine the slope, in contrast to a
model fit to the data and derive the resulting frequency function. There, the question
arises whether the applied model [cf. Eq. (3.22)] describes the resonator sufficiently well
at working spots close to the singularity of the Josephson inductance (at Φ/Φ0 = 0.5).
This could lead to deviations from the experimental obtained values especially for high
slopes, were we expect to reach the highest coupling strength. So, we remain closest to
the experiment by the described method of directly measuring the slope.
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Figure 7.6: Insights in the frequency tuneability. Panel a) displays the extracted frequencies of

the microwave resonator around a Φ0 at 82 mK. In panel b) the frequency slope ∂Φωc ≡ ω′ is
shown over the frequency setpoint, which is extracted from the frequencies in panel a). Up to
10 GHz / Φ0 are found, decreasing with an increasing frequency until the sweet spot. After
the slope is again increasing, however in negative direction then.

We show the extracted slope over the resonator working spot in Fig. 7.6b). We find tunings
up to 10 GHz/Φ0. As we have analyzed the resonator tuning on both sides of the sweet
spot, we find a symmetric tuning. When we investigate characteristics related to the slope,
we will extract it from this measurement in accordance to the working spot frequency.

7.4.2 Resonator linewidth

Next we will analyze the flux tunable resonator’s decoherence. For this we bias the res-
onator to working spot J at ωc/2π = 6.89 GHz, corresponding to ∂Φωc/2π = 6.6 GHz/Φ0
and sweep a weak probe tone across it. We then fit the extracted transmission |S21|2 in
accordance to Ref. [109], revealing the resonators internal (κint) and external linewidth
(κext). We start by examining the temperature dependency. For this we apply a probe
tone of Pp = 0.26 fW, equivalent to about two photons, and ramp the sample temperature
from 120 to 300 mK. We bias the dc-coil with a current higher than 10 mA, corresponding
to a field value of Bext = 431 mT. This high current heats up the sample environment
such that the lowest examined temperature is around 120 mK. In Fig. 7.7a) we show the
determined internal (blue dots) and external (orange squares) linewidth behavior.
As the latter is only influenced by the coupling capacitance, and therefor determined
by design, we expect it to be constant. Here, we find it to be nearly constant by
κext/2π = (865 ± 111) kHz. However a slight increase for higher temperature is found.
We attribute this to a fitting challenge: a Lorentzian with total linewidth is fitted, con-
sisting of both external and internal contributions. When one of those becomes dominant,
contributions from the other one have only minor effect. By this the external linewidth
follows the internal one and appears larger.
A carefull analysis of superconducting microwave losses is found in Ref. [134]. Here, the
total loss channel is systematically analyzed as a sum of individual channels with specific
contributions. Temperature dependent loss channels are found to be two-level-scattering
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Figure 7.7: Resonator decoherence at external magnetic fields of |Bext| = 0.45 mT. Panel a)
shows an example transmission (blue dots) on working spot J, including the fitted model of
Ref. [109] (black solid line), being in good agreement with the measurement. Further panel
b) displays the extracted internal (blue), and external (orange) linewidth over the cryostat
temperature at a working spot of ωc/2π = 6.89 GHz. We find a constant external linewidth,
while the internal one, larger than the external, increases exponentially with the sample
temperature. We model the internal losses (blue line) with contributions from quasiparticle
(turquoise line) and two-level-fluctuators (pink line) and find a good agreement with the data.
Panel c) plots the same parameters, this time for a fixed temperature of 125 mK, sweeping the
working spot of the resonator. As expected, we find an increase in the internal linewidth when
decreasing the frequency, since field fluctuations cause larger frequency shifts. The external
linewidth has a much smaller variation, becoming smaller for lower resonator frequencies.

(∝ tanh(1/x)) and quasiparticle losses (∝ eT ). To model these decoherence channels we
use the following temperature parameters for aluminum:

ξ = ~ωc
2kBT

= 0.165/T,

ζ = ∆0
kBT

= 2.09/T.
(7.6)

Where we use a energy gap in aluminum of ∆0 = 180 eV [145]. In this simple approach we
assume that the linewidth is only influenced by losses due to quasi-particles and two-level
fluctuator scattering as:

κint = Aqp
e−ζsinh(ξ)K0(ξ)

1− e−ζ
(√

2π/ζ − 2e−ξI0(ξ)
) +ATLS

tanh(ξ)√
1 +BTLS

. (7.7)

We have introduced the modified Bessel functions of first, and second kind K0, I0. When
modeling this to the data we have the amplitude factors Aqp and ATLS as well as the pa-
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rameter BTLS describing the saturation of the two-level-fluctuators by the applied power,
as remaining free fit parameters. For the measured data, we obtain Aqp/ωc = 1.2,
ATLS/ωc = 1.0 · 10−3, and BTLS = 12. We have added the contributions from two-
level fluctuators (pink line) and quasiparticles (turquois line) as well as the total internal
linewidth (blue line) in Fig. 7.7a). The amplitude parameters are divided by the resonators
frequency as Ref. [134] fits the scattering parameter δ = 1/Q = κ/ωc. Then we can inter-
pret Aqp/ωc = 2γqp/π, where γqp = 1.9 for the extracted parameter, describes the ratio
of kinetic to the total inductance of the cpw resonator. We speculate that the losses due
to quasiparticles at the surface to become dominant, and as the Josephson inductance, a
kinetic one, is not included in Ref. [134], γqp can exceed one.
The intrinsic quality factors, dominated by the two-level fluctuators, can be calculated
from Eq. (7.7) by Q0 =

√
1 +BTLSωc/ATLS = 3.6 · 103 or κ0/2π = 1.9 MHz. These arise

from the fabrication process. Similar to Sec. 6.6.5 we suggest this can be improved by a
proper surface treatment. For a detailed analysis of the factor BTLS = (Pr/Pc)β/2 de-
scribing the power ratio of the circulating power in the resonator Pr and a characteristic
power of the two-level fluctuators Pc and a geometrically defined parameter β, further
experiments on the power dependence are required.
Another important aspect of the resonator’s linewidth is its sensitivity to the working spot.
We have seen that the electromechanical coupling is predicted to increase linearly with the
frequency slope. However, a steeper slope will make the resonator more susceptible to field
noise resulting in a broadening of the resonator linewidth. So we are interested how the
linewidth of the resonator behaves as a function of the resonator frequency tuning (∂Φωc).
To determine this we record its transmission for several working spots at 125 mK. We ob-
tain the slope of the working spot by Fig. 7.6b). Then we fit the resonance as introduced
above, and plot the resulting external (orange) and internal (blue) linewidth in panel b)
of Fig. 7.7.
Close to the sweet spot we find the resonator to be overcoupled (κext > κint). Both re-
laxation rates appear constant. However when the frequency slope is increased by tuning
the resonator further down in frequency, the external linewidth is slightly decreased from
around 1.80 MHz, in agreement with Fig.7.7a), down to about 1 MHz. A similar behavior
was found in [69]. The decrease can be partly explained as the external linewidth depends
on the eigenfrequency of the resonator: ∝ ω2

c . Since we shift the resonator from 7.45 GHz
down to 6.70 GHz, this explains a decrease from 1.80 MHz down to 1.46 MHz.
For higher slope values the internal linewidth seems to increase linearly, and indeed a
linear model (solid line) fits the data quite well. We obtain an intrinsic linewidth of
κint0/2π = (762 ± 146) kHz and an increase of (660 ± 56) kHzΦ0/GHz. From this we see
that the quantum parameter ’gm0/κ’ [9] is not increased when tuning the resonator down,
as the linear effects cancel out. However the cooperativity C = g2

m0/(κΓm) can be en-
hanced by this. To overcome this restriction we suggest to enhance the coupling by an
external in-plane field and biasing the working spot with a small coil, including a persistent
current switch. This experimental setup has been developed in [149], cf. App. E.
In conclusion we like to note, that the resonator decoherence given our circuit is depen-
dent on the cryostat temperature, the applied probe power, the working spot, and also
the experimental history, in the sense that during a cooldown at some point flux vortexes
can get trapped on the circuit which cause additional decoherence. This makes a com-
parison between individual measurement runs difficult. E.g. when comparing the two



94 7.4.3 Nonlinear effects related to the Josephson inductance

- 1 4 0 - 1 3 0 - 1 2 0 - 1 1 0 - 1 0 0
6 . 8 4

6 . 8 7

6 . 9 0

6 . 9 3

b )

a ) | S 2 1 | 2

P p  ( d B m )

ω
 / 2

π (
GH

z)

0 . 6

0 . 8

1 . 0
c )

0 . 0 1 0 . 1 1 1 0 1 0 0
n c

- 1 3 0 - 1 2 0 - 1 1 0 - 1 0 0 - 9 0 - 8 0
6 . 8 4

6 . 8 7

6 . 9 0

6 . 9 3

P p  ( d B m )

ω
 / 2

π (
GH

z)

0 . 5

1 . 0

1 . 5
| S 2 1 | 21 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5

n c

3 x 1 0 - 2 3 x 1 0 0 3 x 1 0 2 3 x 1 0 40 . 1

1

1 0

1 0 0

|∆ω
| / 

2π
 (M

Hz
)

P p  ( f W )

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4
n c

Figure 7.8: Influence of the Josephson nonlinearity on the microwave resonator at working
spot J. Panel a) displays the transmission of a probe tone with a varying power from 0.01
photons up to 500. Below one photon a symmetric Lorentzian response is found. Above the
frequency starts to shift downwards. In addition the Lorentzian peaks turns into a Duffing
shape with a sharp cut-off at lower frequencies. In panel b) a second experiment we apply a
constant excitation tone on resonance to the initial eigenfrequency and measure the resonator
transmission via a weak probe tone. Again we find a downshift starting around 1 photon. In
contrast, in this setup we find a splitting with a weak branch of enhanced transmission (red)
symmetric to the downshift of the resonator (blue). In panel c) we plot the deviation from the
original frequency as a function of the constant tone’s power (blue dots). By fitting a linear
model (black solid line), we reveal a functionality of |∆ω| ∝ P 1/3

appl.

panels b) and c) in Fig. 7.7, we have to note that b) was measured at a slope of around
7 GHz/Φ0, and panel c) at a temperature of 125 mK. We find some deviations in both
external (0.8/1 MHz) and 2/5 MHz internal linewidth. We attribute this to flux being
trapped within the measurements, which in particular increased the internal linewidth.

7.4.3 Nonlinear effects related to the Josephson inductance

By integrating a dc-SQUID in a coplanar waveguide resonator, we add a nonlinear ele-
ment, in particular the Josephson inductance LJ. We showed that this can be modeled in a
Duffing behavior, where the effect of the nonlinearity becomes higher the more excitations
are in the resonator, cf. Sec. 2.3 and Sec. 3.3. However, in cavity electromechanics the
weak radiation pressure coupling is typically enhanced by increasing the photon pressure
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and so the coupling is effectively increased as geff =
√
n̄cgm0. By this technique strong

electromechanical coupling, as well as ground state cooling, was reached by applying 104

photons [14, 15]. So the questions arise at what photon number the nonlinearity becomes
relevant and whether we can influence this by design?
For an experimental check on this we set the tunable resonator to a frequency of 6.89 GHz
(Spot J), at an external field of Bext = 0.43 mT and a temperature of 125 mK. We then
probe the transmission of the resonator, as a function of the probe power. We plot the
result in Fig.7.8a) over the calibrated applied power send to the cryostat. We further
express the probe tone power in terms of a photon number (top axis) assuming a resonant
excitation. We find a nonlinear response of the microwave resonator above 1 photon, as
here the resonator’s eigenfrequency starts to tune downwards. The shift to lower frequen-
cies indicates a Duffing parameter α < 0, for an harmonic oscillator based on a test mass
connected to a spring, this would correspond to a spring constant that becomes softer with
drive power [48]. As the nonlinearity originates from the Josephson junctions it can be
adjusted by the applied flux ratio, hence the working spot. By this the critical photon
number is increased the further we reach the resonator’s sweet spot. This has already been
studied in Refs. [64, 88], which revealed that the sign of the duffing parameter can even be
switched when asymmetric Josephson junctions are placed in the SQUID (corresponding
to a stiffer spring for high drive powers).
Here, we will focus on the particular working spot J and send a constant tone on reso-
nance to the microwave resonator while probing the transmission with a weak (n̄c < 1)
tone. Then the constant tone’s power sets the number of photons in the resonator and
by systematically increasing it, we can examine the resonators response for a fixed photon
number (in the previous measurement the probe tone setting the photon number had a
detuning depending on the probe tone frequency, and so the excitation of the resonator
was not constant). The measured spectrum is shown in panel b) of Fig. 7.8. In agreement
to the previous measurement we find the resonator to detune starting around 1 photon. In
contrast, the resonator appears not in a Duffing shape. Further we find a weak resonance
mirroring the downshift having an increased transmission (above 1, red).
For a functional analysis we extract the transmission minimum of panel b) and plot its
deviation from the original frequency |∆ω| over the applied power in Fig. 7.8c) (blue
dots). By displaying it in a log-log scale we find a linear context. The proportionality
of (0.378± 0.012) obtained from the fit to the data (black line) is in close proximity to a
P

1/3
appl dependence of the splitting. We briefly like to comment on a second feature arising,

a weak enhanced transmission tuning symmetrically to the downshift up in frequency, cf.
Fig. 7.8b). Such features have been reported in strongly driven systems [150].

7.5 Mechanical characteristics of aluminum nanostrings at
millikelvin temperatures

Similar to the previous section, we will now investigate the mechanical attributes of the
fabricated microchip. We will briefly discuss the full spectrum of mechanical peaks and
then focus on the highest mechanical mode. Its mechanical coherence and eigenfrequency
tuning over temperature will be examined. As within this thesis a 20µm long aluminum
string is investigated, we compare our results to previous findings in literature, Refs.
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Figure 7.9: Resonance response of the driven mechanical strings. Panel a) reveals the overview
spectra of the two nanomechanical strings. Panel b) and c) show a zoom in the lower (higher)
frequency modes respectively. We find two pair of modes for the two nanostrings, we assign
to the in- and out-of-plane modes. Minor indications of other modes are found in between
them, as discussed in the text.

[43, 127, 139, 140]. Previously only strings up to 5µm length were fully analyzed. So by
this we gain a detailed insight for design estimation on future samples. We conclude by
discussing some future applications and the optimal string designs for it.

7.5.1 Driven string response

The investigated sample consists of two nanostrings in the SQUID loop. For a single string
we expect an in- and one out-of-plane mode to have a dominant displacement from the
string’s rest position. So by placing two of them in one resonator we expect to find four
modes: for an external field applied perpendicular to the sample plane we expect to ob-
serve two in-plane modes. The observation of out-of-plane modes should be suppressed,
nevertheless imperfections of the field alignment (i.e. an out-of-plane field component) will
allow their observation.
We begin our experiments on the nanostring via the configuration of the cryogenic inter-

ferometer (cf. panel c. in Fig. A.1). and setting the microwave resonator at working spot
J, at a magnetic field bias of Bext = −462µT, and a sample temperature of 111 mK. We
apply a probe tone on the electromechanical resonator’s eigenfrequency of 6.89 GHz, hav-
ing a power of Pp = 0.26 fW, or two probe photons. Then we sweep a drive tone around the
expected mechanical eigenfrequency via the piezo actuator and obtain the spectra shown
in Fig. 7.9.
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As expected we find four dominant peaks at the spectrum at frequencies of Ωmi/2π = 5.888,
5.909, 6.310, and 6.343 MHz. We like to note, that due to the detection configuration of a
measurement bandwidth of 20 Hz, exceeding the mechanical linewidth, the detected power
is neither proportional to the displacement, nor related to the coupling strength. To iden-
tify the out-of-plane and in-plane modes we like to comment, that in further experiments
we have not found signals of the lower two modes when they were only thermally excited,
so they must be weaker coupled than the higher frequency ones. By that, we identify the
higher modes as in-plane modes coupling to the perpendicular applied external magnetic
field. The lower modes, swinging in out-of-plane direction, couple to imperfections of the
magnetic field, e.g. an awry mounted coil.
Next, we like to comment on the two strings and their possible mechanical coupling due to
their shared clamping port as introduced in Ref. [151]. There, two silicon nitride strings of
identical design length were coupled with each other by a shared support. The two non-
metalized strings were having a frequency deviation of 8 kHz and a coupling of 830 Hz. In
our case we use aluminum strings instead of silicon nitride so a direct comparison is chal-
lenging. Also our geometry deviates. However, we find a mode spacing of 21 and 33 kHz,
which is slightly larger than for the non-metalized strings. From this we can set an upper
boundary for the potential coupling, as the coupled strings will create an avoided crossing
of twice the coupling frequency in case of strong coupling. So by the current spacing we can
determine an upper boundary of 11 and 17 kHz if the strings are coupled but not higher.
This upper boundary is much higher than the coupling determined by Ref. [151], and so
can only be seen as a rough limit. As for the strong coupling regime the linewidth of the
mechanical element, being on the order of 20 Hz, we suspect a clever design of the shared
support can easily achieve the strong coupling regime, allowing a state transfer between
the mechanical elements. However within this thesis we did not observe any indications of
the strings being coupled.
In the approximation of a tensile stressed string, its eigenfrequency is determine by [43]

Ωm
2π = 1

2l

√
σ

ρ
· l

√
Sσ

l
√
Sσ + 2

√
EYIm

, (7.8)

given a material density ρ = ρAl = 2700 kg/m3, the string cross section S = t × w =
110 × 200 nm2, a mode inertia of I ip

m = w3t/12 for the in-plane and Ioop
m = wt3/12 for the

out-of-plane motion. Further a pre-stress of σ and a Young modulus of EY depending on
the aluminum film growth. To determine these two material parameters, we solve Eq. (7.8)
with the parameters above for mode 2 as out-of-plane and mode 4 as in-plane mode. By
this we can quantify the values of σ = 0.13 GPa and EY = 75 GPa, which is in good
agreement with previous studies on aluminum nanostrings that have determined σ = 0.15
and EY = 70 GPa [140].
For a full insight in the complex structure of the nanostrings we suggest simulations using
finite element techniques, as described in Ref. [43]. This could allow to study other modes
like torsional ones as well, since we see indications of other excitations in Fig.7.9b) at 5.891
and c) at 6.331 MHz. Though those modes were coupled so low a further investigation of
them was not achievable within this thesis. So we focused in the following on mode 4 only.
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Figure 7.10: Characterization of the nanomechanical string oscillator versus cryogenic temper-
ature. In panel a) the linewidth of the nanostring over the cryostat temperature, determined
by thermal sideband spectroscopy is shown. A linear decrease is found, revealing an intrin-
sic linewidth of Γ0/2π = 6 Hz. Datapoints were averaged over the probe tone sweep, error
bars indicate the standard deviation from the averaging. In panel b) the string’s change in
eigenfrequency is plotted, extrapolated to its frequency at 1 K (red dots). Deviations are less
than the marker size. We find an increase when increasing the environmental temperature,
as predicted by Eq. (7.9), which we model to the data (black solid line).

7.5.2 Temperature dependencies of a 20 µm long aluminum nanostring

Next, we examine the temperature dependencies of the pure aluminum string, in particular
its linewidth and eigenfrequency. We do this by measuring the thermal motion, when the
string is only coupled to the thermal bath of the environment and potential other driving
forces that could distort the measurements are suppressed. This allows to study the me-
chanical attributes in the absence of thermal contractions as the corresponding coefficients
have vanished in the millikelvin regime [152].
Figure 7.10a) shows the linewidth of the nanostring over the sample temperature, aver-

aged over the applied probe tone power. The error bars indicate the standard deviation
from the averaging. We find a linear behavior of the form Γm(T ) = Γ0 + γmT , where we
refere to the intrinsic linewidth Γ0 = Γm(Tcryo = 0 K), and a temperature damping coef-
ficient γm. A linear model fit reveals Γ0/2π = (6 ± 3) Hz and γm/2π = (138 ± 17) Hz/K.
The intrinsic linewidth is in good agreement with the reported values from previous work
at the WMI on pure aluminum nanostrings (7 Hz [127], and 10 Hz [43]). For a comparison
with the literature we determine a quality factor of 3.2 · 105 at 100 mK.
The linear increase in the linewidth over temperature was already confirmed in [43, 127,
139, 140]. It has been shown, that this linear behavior can be attributed to the dominant
loss channel being the scattering of phonons to two-level-systems (TLS) [139]. In panel
b) we have applied the same averaging over the probe tone power on the string’s eigenfre-
quency. However there the error bars are less than the circle diameters.
In previous studies on short aluminum strings the frequency increase was modeled in anal-
ogy to sound waves in amorphous insulators (e.g. glasses) at the millikelvin regime [153].
Then the frequency is described by [139]

∆Ω/Ωm = C · ln(T/T0) where C = νTLSγ
2
C/E, (7.9)
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in the low temperature range below < 1 K [139]. Here, the constant C links the density
of states of the TLS νTLS with the interaction constant γC and the Young’s modulus E.
This model was introduced to describe sound waves in amorphous insulators (e.g. glasses)
in the millikelvin regime [153]. The interaction constant γC found to be, independent
of the material, in the range of 10−3 to 10−4 [154, 155], which we will refer to as the
universal amorphous regime.
For a solid analysis of Eq. (7.9) a measurement up to T0 would be desirable. However
with the microwave losses becoming dominated by exponentially increasing quasiparticle
losses, our experimental data is limited to 250 mK, cf. Fig. 7.7a). As the literature reports
a clear limit of 1 K for such nanostrings [139], we take this as transition temperature
T0. Then by plotting the frequency shift over Log(T ) extrapolated to T0, we fit Eq. (7.9)
(black solid line) and obtain C = (9.38 ± 0.06) · 10−6, which is more than an order of
magnitude below the universal amorphous regime. We note, that the slope extracted in
Fig. 7.10b) describes ∆Ωm, while the constant C in Eq.(7.9) refers to ∆Ωm/Ω.
We also like to note, that in previous work on capacitively coupled aluminum strings,
frequency shifts as predicted by Eq. (7.9) were not observed [43]. It was speculated
that electrostatic charge between the two capacities of string and ground plane could
have prevented this. In our configuration, an inductively coupled system, where such
electrostatic charge is not present, however the predicted tuning [cf. Eq. (7.9)] being
observed, seems to confirm this speculation.

7.5.3 Collection of data on aluminum nanostrings

In the following we will discuss the collected data for the eigenfrequency, the quality factor
Qm, and their related temperature parameters, e.g. the temperature shift C, and the
quality change γm. We will systematically compare our results with the published work on
pure aluminum strings from Refs. [127]→ 1, [43]→ 2, [140]→ 3, and [139]→ 4. The present
work is referred to as 5. As the samples were developed using similar but not identical
processes and the nanostrings deviate within a factor of 2 in width, a precise analysis
seems challenging. However we will see, that some context can be revealed already on the
existing database.

Eigenfrequency We start our analysis with the mechanical eigenfrequency of the
nanostrings Ωm. The eigenfrequency is predicted in first approximation by Ωm/2π =
vphase/2l [156] including the phase velocity vphase =

√
σ/ρ, described by the tensile stress

σ, and the string’s density, here ρ = ρAl = 2700 kg/m3. This statement however is only
valid for highly tensile stressed strings. Lower stresses strings scale with l−2. We show
the reciprocal behavior in a log-log plot, see Fig. 7.11a). The datapoints from all publica-
tions are aligned on a allometric model with Ωm/2π = kl−b (black solid line), for which
we obtain k = 9.6 ± 5 , and b = 1.26 ± 0.03. k−b is slightly deviating from the expected
linear behavior for highly tensile stressed strings (cf. Sec. 2.2). We attribute this to a
lower pre-stress in the metalized aluminum string, in contrast to, e.g. highly pre-stressed
silicon-nitride strings. For tensile stressed strings with simple support ends, one expects
b = 2 [43]. So the observed b = −1.26 can be seen as a correction of the highly stressed
model. To determine the tensile stress of the nanostring fabricated here, we however em-
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Figure 7.11: Comparison of the extracted parameters with the literature. In panel a) we explore
the dependence of the mechanical eigenfrequency by the length of the nanostring. We find
a reciprocal behavior (black solid line). Panel b) shows the mechanical quality factors at
an environmental temperature of 100 mK, for nanostrings from 1− 50µm. Starting at small
length, the quality factor is increased when its length is enlarged. However around 10µm the
quality grows slower. Panel c) displays the frequency shift of the strings. We find a decrease
of the proportionality of 1.6 by a linear model to the log-log plot (black solid line), and by
the comparable long length of our nanostring we determine a factor well below the universal
regime for amorphous insulators. In panel d) we plot the temperature dependence γm of the
nanostrings over length. In contrast to the quality factor saturating at a certain length, the
dependence continuously shrinks for longer strings, indicating a lower increase of the linewidth
when the environment is heated.

ploy the linear model from above, revealing a phase velocity of 250 m/s. This corresponds
to σAl = 175 MPa < σSiN = 830 MPa, calculated from the phase velocity. Nevertheless,
this is sufficiently high for the assumption of pre-stressed strings, defined by [144]

σ = 175 MPa� π2Et2

12l2 = 0.5 MPa, (7.10)

given the current string design, and using a Young modulus of 70 GPa [140].

Mechanical Quality As the quality factors of the mechanical string are influenced by
a multitude of parameters and processes [144], we will stick to a qualitative description
for estimations on future sample designs. We determine the power laws of the quality
dependency via a log-log plot and revealing two regimes, as indicated in Fig.7.11b):
(i) for short strings (0.6 to 5µm) a parabolic behavior is found. The quality factor is
significantly rising when increasing the length. We attribute this to losses by the bending,
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which lead to Qm ∝ (l/t)2 [157]. The longer the string becomes, the less the string is
bended and so losses induced by lattice defects become less significant. When the string
becomes longer we seem to enter a regime where this is no longer the dominating loss
channel:
(ii) for longer strings (l > 5µm) the parabolic trend saturates and, given the current
data, we find a square root behavior. However, the data is not clear, as this seems to
be a transition regime. We note, that clamping losses, known to be a dominant factor in
strings’ decoherence, are described by a linear behavior, so when interpreting the current
data, it seems that a transition from bending losses (l2), to clamping losses (l), to intrinsic
material losses due to the elastic strain (constant) is found. This would mean that simple,
doubly clamped strings reach a limit of about Qm ≈ 106, which can be overcome by soft
clamping and/or strain engineering if required, as shown in Ref. [157] for silicon nitride
beams.

Temperature shift In the millikelvin regime we found the mechanical frequency shift-
ing as predicted for amorphous insulators, indicating phonon scattering a dominant con-
tribution. In previous studies the strength of the shift C was found to be in agreement
with the statement, that ’remarkably, the value of C is known to be almost universal for
all amorphous materials, C ≈ 10−3− 10−4’ [139, 154, 155]. This was determined for short
strings up to 5µm. Being motivated by storage applications in circuit-QED, nanomechan-
ics at the WMI have focused on longer strings 50 − 60µm, capacitively coupled to an
electric resonator [43, 100]. There, however, this behavior was not observed, potentially
due to thermally induced charge between the ground plane and center conductor [43]. Via
the inductive coupling we are now able to observe a value exceeding the universal regime
by more than an order of magnitude, as we have measured a string four times longer
than previously reported. In figure 7.11c) we plot the literature findings as well as the
determined shift (red dot) and obtain a power decline of

C = (17.1± 0.7)l(−1.2±0.1). (7.11)

By Eq. (7.9), we can directly relate this behavior to the scattering rate γC ∝ l−0.6, as
neither the density of the TLS nor the Young modulus is depending on the string’s length.
We see that we can design the strings either short, having a high temperature sensitivity,
or as desired for storage application, long strings with a temperature stability exceeding
the ’universal regime’ for l > 1.5µm. This corresponds to an aspect ratio of wt/L = 0.015
for a typical cross-section of wt = 1502 nm2.

Temperature dependent quality factor We have seen that the mechanical quality
factor tends to saturate for long string lengths. While we were sweeping the sample tem-
perature, we found a linear increase in the linewidth of the nanostring. When comparing
the slope of this trend γm, we found a systematic decrease for shorter strings, as shown in
Fig. 7.11d). A power law modeling revealed

γm = (36.1± 0.7) · 103l(−1.6±0.1). (7.12)

We see that the temperature dependent loss scales with l−3/2. For the dominant loss chan-
nels we discuss two contributions:
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Ωm/2π (Hz) 9.6 · l−5/4

Qm(T = 100 mK) 4.8 · 1015 · l2 l < 5µm
6.4 · 107 · l1/2 l > 10µm

C 1.61 · 10−10/l

γm (kHz/K) 3.4 · 10−5l−3/2

Table 7.2: Predicted aluminum string parameters for sample designs over string length.

i) the scattering by electrons to TLS systems which can be identified via γem/2π =
(νeγe)2kB/~ = 10−2, for the typical found density times scattering product of 10−1Hz/K.
So the electron contributions are much smaller, as we have found γm = 105Hz/K.
ii) for short strings phonon scattering to TLS seems the dominant factor. As the nanos-
tructures are smaller than the phonon wavelength λ > 0.25µm, they can be treated
one-dimensional [139]. The linear phonon spectrum leads to a constant density of states
[145] and we relate [139, 158]

~Γm(T ) = a2
Al/(wt)kBT, (7.13)

where the lattice constant of aluminum at low temperatures is aAl = 4.03 Å[159]. We
determine γm = a2

AlkB/(~wt) and find a predicted value of γm/2π = 1.5 · 105Hz/K for
cross-section of wt = 1502 nm2. As we see this is slightly higher than the reported values
and as the length of the string is increased this discrepancy is increased as well.
We conclude from these observations, that the scattering is dominated by phonons to TLS
systems. The origin of such systems are kinks or dislocations at the clamps, which are
getting smaller the longer the string becomes, explaining the drop in the scattering value.
The influence of electron scattering is negligible, as such kinks are smooth in soft materials
like aluminum, and so the Peierls barrier is low [160] and their interaction with electrons
reduced [161].

7.5.4 Predictions of design parameters

In the following we collect the extracted parameter dependencies from Sec. 7.5.3 and like
to give a guideline for future sample designs. The collected parameters are found in
Table 7.2. We like to discuss four potential applications and the respective optimized
nanostring parameters:

Capacitively coupled nanostrings for electromechanical resonators Due to the
low electromechanical interaction in capacitively coupled electromechanical resonators (cf.
Sec. 6) a long string length is desired, as it directly enhances the vacuum coupling strength
gm0. Further it allows for a high mechanical quality [cf. Fig. 7.11b)], and so long thermal
coherence times [τth = Qm~/(kBT )]. An upper boundary of the string length is set by
the limitation of the resolved sideband regime (Ωm/κ), which can be influenced by the
external coupling κext, and a proper fabrication process (κint small). A further point
worth mentioning is the enhancement of the electromechanical coupling by the use of
relatively thick strings, which form the coupling capacitor plates, but this has to be done
carefully as it also influences the mechanical quality [144].
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Cavity electromechanics using inductive coupling Integrating the nanostring in
the dc-SQUID loop of a microwave resonators sets high demands on the optimization of the
string’s parameter. To achieve high coupling, the flux tunable resonator requires a high
critical current, without the screening parameter βL becoming too large. However the
screening parameter is dominated by the kinetic inductance of the SQUID, see Sec. 7.4.1,
and so by the string’s thin and long geometry. For our device geometry the layer thickness
was fixed to 110 nm. To achieve a suitable βL, we broadened the string to a width of 200 nm
and designed the length to 20µm. This geometrical setting allows for a decent mechanical
quality, while keeping Ωm in the resolved sideband limit, even for working points with large
∂Φωc [cf. Fig. 7.7b)]. A moderate single junction critical current of Ic = 0.9µA guarantees
that the flux tuning remains non-hysterical and that large frequency slopes of 10 GHz/Φ0
are accessible.

Integrated nanostrings in superconducting qubits The capacitive coupling of
a nanostring to a qubit allows for the generation of non-classical states [119]. In this
proposal, one design criteria is that the mechanical resonance frequency is of the size
of the anticrossing Ωm ≈ 2gq. A long string (causing small Ωm) therefor reduces the
accessible transmon coupling, and the transmon signal can become overlapped from noise
contributions, or even no longer strongly coupled. So here, a string length of around
10µm seems preferable in accordance to the data in Tab. 7.2. It allows for moderate
quality factor and a maximum transmon coupling being around 11 MHz. Time resolved
transmon spectroscopy has already been shown for such coupling rates and an internal
resonator linewidth of up to 1 MHz [22].

High precision temperature sensing Another application of such nanostrings arises
from their temperature sensitivity of their resonance frequency Ωm(T ) in the millikelvin
regime, expressed by the parameter C. This parameter is largest for short strings, cf.
Tab. 7.2. In the following we will compare a string published in Ref. [139] having dimensions
of l = 1µm, w = 0.06µm, and t = 0.1µm, to derive its temperature sensitivity δTΩ, and
compare it to the sensitivity using a resistive state-of-the-art read-out δTR. From the
temperature dependence of the string [cf. Eq. (7.9)] follows a sensitivity of

δTΩ = T

C

δΩm(T )
Ωm(T ) . (7.14)

As the strings frequency shifts with ∆Ω ∝ C the relative change is rather low. So the
strings total frequency is assumed to be constant in the following Ωm(T )/2π = (Ωm +
∆Ω(T ))/2π = 360 MHz, the error of this approximation is highest at 1 mK and there
around 0.1%. However the high mechanical quality factor of the nanostring allows for a
very precise measurement of the resonance frequency shift. The frequency resolution is
determined by half a linewidth, so δΩm(T ) = Γm(T )/2. The linewidth increases linear
with the temperature, so from the parameters of Ref. [139] we extract:

Γm(T )/2π = (γT + Γ0)/2π = 36 kHz/K ·T + 8.4 kHz. (7.15)

By this we have collected all parameters necessary to quantify Eq. (7.14).
Next, we determine the temperature resolution of a resistive read-out of the sample’s
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Figure 7.12: Temperature sensitivity of an on-chip nanostring vs. a resistive read-out. Start-

ing from measurements at 10 K the resistance sensitivity (blue) decreases until it reaches a
minimum around 20 mK given the current read-out parameters. As the resistance grows expo-
nentially, the read-out steps of the resistance bridge appear closer the cooler the temperature.
The grey dots are deviations of the calibration from the theoretical resistance. These and the
switching of the bridge seem to limit the sensitivity to around 10−1 mK. The strings resolution
(red line) can only be read-out below 1K. Over the full frequency range it remains about an
order of magnitude higher than the resistive read-out, however it does not saturate at lower
temperatures.

temperature sensor (ldd0 ) using a commercial Lakeshore 372 resistance bridge. Similar to
the string we obtain the temperature precision via

δTR = δR

(
∂R

∂T

)−1
. (7.16)

The first term is a step wise function determined by the resistance bridge precision. It
depends on the sensing range of the measurement and the applied excitation voltage,
which is in our case 6.32µV. The steps are found in Ref. [162] and have to be adjusted with
the sensor resistivity. The second term is determined from the calibration measurement,
as it directly allows to determine the slope of the resistance curve (∂R/∂T ). We derive
both parameters in App. D in detail. Then Eq. (7.16) is quantified and we can compare
the measurement precision of both methods, as shown in Fig. 7.19.

We find the resistive read-out reaching from 10 K to 20 mK (shown in blue). Three
challenges in the resistive read-out are observable here: i) the switching of the resistance
bridge, striking especially around 70 mK as the resistance resolution has to be adapted
to the total resistance of the sensor. ii) deviations in the calibration from the ideal
resistance tuning (indicated in grey) lead to a saturation of the read-out precision. iii)
the calibration and so the read-out range is only accessible within the calibration range,
here down to 20 mK.
The introduced read-out principle of the nanostring can only be applied below a critical
temperature of 1 K, when the eigenfrequency obeys Eq. (7.9). The total precision remains
an order of magnitude higher than the resistive read-out over the full temperature range.
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As the string’s eigenfrequency tuning can be derived from Eq. (7.9) a sensing over the full
temperature range becomes feasible. A further benefit of a mechanical read-out is that
the sensor - the nanostring - is placed directly at the microchip, hence the sample. An
additional sensor, thermally well anchored to the sample is not necessary.
However by now, given the current data, a resistive read-out remains more precise. For
a read-out via the eigenfrequency of a nano-oscillator, the string’s parameter have to be
further optimized.

To conclude, in this section we have given a prediction on the design parameters for
all aluminum nanostrings in devices operated in the millikelvin range. Further, we have
had a detailed look in four potential application, capacitively and inductively coupled
electromechanical resonators, as well as capacitively coupled mechanical transmon qubits
and an on-chip temperature read-out. However we like to note, that the database of this
analysis stems from the reported literature [43, 127, 139, 140] as well as this thesis and
has not been determined in a systematical parameter study using a constant fabrication
procedure, nor identical string geometries. So the collected parameters in Tab. 7.2 should
be seen as a rough estimation only, when designing future samples.

7.6 Thermal motion analysis on the blue sideband

In this section we measure the displacement noise of the thermal motion of the nanostring.
This measurement allows to determine the single photon-phonon coupling rate gm0. We
will focus on mode 4.

7.6.1 Experimental configuration

For the determination of gm0 and the measurement of the thermal displacement noise
Sxx(Ω) we configure the device to operate at the bias point J (cf. Fig. 7.5) and an
out-of-plane magnetic field of Bext = −471µT. As we discuss in more detail during this
section, we will operate the device on the blue sideband regime to obtain the thermal
spectra with highest signal to noise ratio. We will furthermore use a temperature
dependent measurement of the mechanical sideband, calibrated by a modulation tone, to
determine the electromechanical coupling [13, 106], for which we find a record value of
gm0/2π = 1.6 kHz.
In particular we employ the method derived in Ref. [106] using a homodyne detection of
the phase modulation induced by the mechanical element. These are then compared to an
additionally inserted phase modulation with a frequency close to the mechanical element.
This allows to transform the detected voltage fluctuations SUU to frequency fluctuations
Sωω, which are linked to the thermal displacement motion Sxx via the electromechanical
coupling (Sωω = g2

m0/x
2
zpmSxx). As the mechanical occupation in thermal equilibrium is

known, the electromechanical coupling is determined. By this the measured mechanical
displacement spectrum is quantified, as well as the corresponding electromechanical noise
contributions (cf. Sec. 4.2). So, the full performance of the electromechanical system is
characterized.
We like to note, that the mentioned method was developed in the optical domain, using a
phase modulation on both arms of the interferometer, a beam splitter, and an intensity
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Figure 7.13: Recorded data of the thermal sideband spectroscopy. Panel a) displays the recorded
voltage spectral density of the mechanical string (right) and an additional induced calibration
tone (left) for a sample temperature of 186 mK and an average photon occupation of n̄c = 1.6.
The voltage spectral density is later transformed in a frequency density as explained in the
text. For this a calibration is required, which we perform by inserting a modulation tone of
known frequency depth. In panel b) we plot the extracted modulation tone amplitude of each
probe tone power. As expected, we find a linear behavior, that we model (black solid line) to
obtain an averaged calibration function. The higher modulation stems from the imprecision
noise floor being reduced linearly via the photon number.

detector. Here, in the microwave domain, we apply the modulation tone only through the
sample arm, use an I-Q mixture for the homodyne measurement, and detect the voltage
of the quadrature. In this configuration, the phase modulation tone and the mechanical
induced phase shift do not obey the same transfer function. However this is overcome
simply by the factor the transfer functions deviate Y.

7.6.2 Sideband spectroscopy of the thermal motion of the string

Fig. 7.14a) shows the sideband noise measured with a spectrum analyzer using the mea-
surement configuration in Fig. A.1c). We observe a mechanical signature at 6.343122 MHz
with a linewidth of Γm/2π = 34 Hz. As we use the calibration tone technique introduced
by Gorodetsky [106], we further obtain a signature stemming from the modulation
tone at 6.341100 MHz. Note, that the y-axis of the spectrum given in µV2/Hz, is the
actual recorded voltage spectral density of the spectral analysis, thus all amplifiers and
attenuators contribute to this value. The peak amplitudes are modulated on top of
the background Simp

UU = 6.32µV2/Hz. For the data displayed in Fig. 7.14a), recorded
at Tcryo = 186 mK, an average photon number of n̄c = 1.6, the flux bias point J with
∂Φωc/2π = 6.6 GHz/Φ0, we find SUU(Ωm) = 1.39µV2/Hz, SUU(Ωmod) = 2.69µV2/Hz. In
this experiment we have used a phase modulation of φ0 = 3.94 · 10−4 and a measurement
bandwidth of ENBW= 1 Hz.
In addition to the spectra obtained in panel a), we have measured the sideband noise as
function of the probe tone power. This discloses any power or photon number dependent
effects. As the imprecision noise decreases with increased power, we find a linear increase
in the modulation tone amplitude, as shown in 7.14b), where we have highlighted the
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Figure 7.14: Towards the calibration function Y. In panel a) the in-situ measured microwave
transmission (blue dots) revealing the resonator decoherence by the electromechanical res-
onator model (black solid line) is found. Panel b) displays the summary of extracted transfer
functions, ranging around 0.01 − 0.03. At 186 mK the highest value is found, indicating a
minimal linewidth in this measurement run.

value extracted from panel a) by a color filling. Modeling the linear trend allows to
average over statistical fluctuations within the individual spectras, for which we find a
calibration function of S̄Ωmod

PP (Pappl) = (908± 24) V2/W−1Hz (black solid line).

In addition to the mechanical spectrum, we require the ratio between probe tone mod-
ulation and mechanical amplitude. For the given experimental setup, that is the detection
of voltage fluctuations of a homodyne downconverted signal using an I-Q mixer. Following
the approach presented in Ref. [106], we find

Y ≈ 16η2κ2Ω2

(4∆2 + κ2) (4(∆− Ω)2 + (1− 2η)2κ2) , (7.17)

using the external to total linewidth ratio η = κext/κ.
The required decoherence rate of the microwave resonator are not trivial deterministic as
they depend on the applied photon number, the temperature, the flux bias point, and
additional ’aging’ effects, when flux get trapped on the microchip, an in-situ measurement
becomes necessary. For this we apply the probe tone which we use for the mechanical
element set to the parameters for the experiment (∆, Pappl), while sweeping a weak probe
tone around the resonator. By this we guarantee to record the correct microwave trans-
mission function for the analysis of the transfer function Y. In Fig. 7.17a) we show an
example transmission corresponding to the mechanical spectrum of Fig. 7.14a), where we
have subtracted a linear background due to a non-uniformal microwave transmission of
the cabling. Here, we require to fit the model of our calculations deriving Eq. (7.17) and
so we fit

|S21|2 =
∣∣∣∣sout
sin

∣∣∣∣2 = (o1− i (K)) (o1 + iK̄), (7.18)

with
K = o2 + 2ηκ

2∆ + iκ
. (7.19)

Here, we have taken an additional complex background into account, due to undesired
interferences between resonator and feedline, which is normalized by o2 =

√
1− o12. For
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Figure 7.15: Mechanical induced frequency fluctuations. In panel a) the calibrated frequency
density is shown for a variety of probe photons, as indicated by the inset. The area of the
signal corresponds to the thermal photon number (here ≈ 600) times the coupling squared.
The background is reduced at higher photon numbers, as the phase imprecision is reduced. We
extract the peak height and the linewidth of the mechanical signal. We average the results over
the photon numbers and plot the product of them, the total frequency fluctuations, in panel
b) over the sample temperature. The observed linear trend (black solid line) is directly related
to the coupling strength and so allows for a calibration of the vacuum coupling strength. The
obtained coupling then allows to determine the mechanical displacement density, right axis in
panel a).

the fitparameters we find ωc/2π = 6.882 GHz, κ/2π = 4.64 MHz, η = 0.082, and o1 =
0.966, which lead to the model shown as black solid line. With the probe tone set to
the mechanical blue sideband (∆ = +Ωm), we find a transfer function of Y = 0.034 at a
temperature of Tcryo = 186 mK.
For the calibration by thermal sidebands we require a temperature sweep of the cryostat.
The temperature dependence of the transfer function is found in Fig. 7.14b). Here we
have repeated the measurements of the microwave transmission for cryostat temperatures
of Tcryo = {126, 145, 165, 186, 209, 232}mK. We find the highest transfer function at the
presented 186 mK (bold dot), which is derived from a local minimum in the microwave
decoherence. We speculate that for this set, the saturation of two-level fluctuators balance
the created quasi-particles in the material for this temperature.

7.6.3 From frequency fluctuations to the electromechanical coupling

In the following we outline the transformation from the detected signal in voltage fluctua-
tions SUU in a frequency spectral density Sωω, which allows us to calibrate the electrome-
chanical coupling. The applied method has the benefit that a precise knowledge of the
amplification and attenuation chain is not necessary, as gm0 is directly determined by the
thermal motion. Here, we focus on the principle procedure. The transformation is based
on the dependency

SUU = 2KΨ
Ω2 Sωω, (7.20)
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which is derived by the resonator shift of a mechanical oscillation x0cos(Ωmt) [106]. Here
the function KΨ describes the ratio between the mechanical motion and the measured
voltage fluctuation, which relies on a precise knowledge of the full electric attenuation and
amplification chain. Using the calibration tone at Ωmod and modulation φ0 we overcome
this, as it only requires the extraction of the modulation tone amplitude SUU(Ωmod) to
find

KΦ = 2ENBW
φ2

0
SUU(Ωmod). (7.21)

We note, that the frequency modulation of the probe tone and the mechanical element do
not necessary obey the same functionality. In general one can express

KΨ = YKΦ, (7.22)

and derive the transfer function Y depending on the applied measurement configuration.
We have stated the result of Y for the applied configuration previously in Eq. (7.17). Sum-
marizing Eq. (7.20)-(7.22), we transform the detected voltage fluctuations into a frequency
spectral density by

Sωω = φ2
0Ω2

m
4ENBW

SPP

YS̄Ωmod
PP (Pappl)

. (7.23)

The next step toward the determination of the vacuum coupling strength gm0 is to trans-
form all voltage spectras using Eq. (7.23). We plot the example set at Tcryo = 186 mK for
all applied probe tone powers spanning 240 Hz around the mechanical eigenfrequency in
Fig. 7.15a). The corresponding probe photons are indicated in the inset, where the value
of 1.6 (dark blue) corresponds to the power spectral density shown in Fig. 7.14a). The
increase in the background level when decreasing the probe tone power is discussed later
in detail.
The frequency fluctuations are directly related to the displacement spectra by the elec-
tromechanical coupling (Sωω = g2

m0/x
2
zpmSxx), which we display already as right axis in

Fig. 7.15b) using the later determined coupling strength gm0/2π = 1.6 kHz and the zero-
point fluctuations of the nanostring xzpm = 47 fm. We initially assume that the area of the
mechanical signal is independent of the probe tone power and thus corresponds to twice
the thermal phonon population. This is difficult to observe when displayed like here in the
log-scale, however we will have a detailed look at this after the determination of the cou-
pling strength, when we can determine any influence of the probe tone. For a quantitative
analysis we fit the data in accordance to Ref. [106] to a Lorentzian lineshape

Sωω = 2AΓ
Γ2Ω2 + (Ω2 − Ω2

m)2 + BCK. (7.24)

Hereby, we obtain the mechanical frequency Ωm, the linewidth Γm, signal amplitude on
resonance Sωω(Ωm) = 2A/(ΓΩ2

m), the background value BCK, and the peak area A linked
to the phonon number. We show the resulting fits as black solid lines in Fig. 7.15a).
The temperature dependencies of frequency and linewidth have already been discussed in
Sec. 7.5. The frequency fluctuations, that is the peak area above the background next is
obtained by [106]

〈δω2〉 =
∞∫
−∞

Sωω(Ω) d2π = A = Sωω(Ωm)Γm
2 = 2nmg

2
m0. (7.25)
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Next, we average the obtained frequency fluctuations for all measured probe tone powers.
The deviations are statistical uncertainties and so define the error bars of the measurement.
Plotting the result in Fig. 7.15b) as function over temperature, we find a linear increase.
Then we model the result with a weighted linear fit (〈δω2〉 = s(T ) + s0), leading to a
functionality of s(T ) = (18.7± 2.6) GHz/K and a finite offset s0 = (0.84± 0.45)GHz. This
can be explained when expressing the phonon numbers via [13]

nm = kB
~Ωm

(Tsample + Tba) , (7.26)

containing a finite back-action temperature from the electromechanical interaction. So by
Eq, (7.26) we only link the slope of the frequency fluctuations s(T ) to the electromechanical
coupling in Eq. (7.27), and find

gm0 =
√
s(T )~Ωm

2kB
= 2π · (1.69± 12)s−1, (7.27)

for the given working spot.

However the shown calibration experiment relies on the thermalization of the mechan-
ical element. As we apply a probe tone on the blue mechanical sideband (∆ = Ωm),
Stokes scattering is highly enhanced. This is the insertion of a phonon by the probe tone,
effectively heating the mechanical element. By this the mechanical damping rate is modi-
fied by the electromechanical or optomechanical damping rate [c.f Eq. (4.22), ∆p = +Ωm,
Ω2

m � κ2]

Γopt = −4n̄cg
2
m0

κ
, (7.28)

as already derived in Sec. 4.3, however here for the blue sideband Γopt < 0 and so the
effectively measured linewidth is expected to shrink when increasing the blue probe tone
power (Γeff < Γm). The determination of the coupling strength gm0/2π = 1.6 kHz, was
performed with an average photon number of n̄c = 1.18, average resonator decoherence
κ/2π = 5.86 MHz and mechanical linewidth of Γm/2π = 33 Hz. So by Eq. (7.28) we expect
an optical linewidth of Γopt/2π = 2 Hz, which allows to quantify the phonon number of
the nanostring in analogy to Eq. (7.29) by

nheated
m = nth

m Γm
Γeff

, (7.29)

indicating an increase of 6.5% in the experiment. However, the coupling scales with √nm
and so the vacuum coupling is systematically overestimated by 2.5%. This is below our
statistical uncertainty of 120/1600 = 7.5%, which is why expect not to be able to resolve
this effect in measurements, which we indeed show in App. H. Nevertheless, we take this
systematic deviation into account by reducing the measured coupling strength by the de-
termined overestimation and conclude with gm0/2π = (1.65± 0.12) kHz. This corresponds
to G = gm0/xzpm = 35 MHz/nm .
In comparison to the theoretical prediction with the experimental parameters of ω′/2π =
6.6 GHz/Φ0, Bext = 0.47 mT, α = 1, l = 20µm, and xzpm = 47 fm, we expect a coupling
strength of 1.5 kHz, in good agreement with the measurement. This value is already higher
than previous realizations in nano-electromechanics [24], yet the full magnetic field range
of up to 130 mT has not yet been exhausted.
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Figure 7.16: Detected mechanical displacement density over sample temperature. We show the
mechanical displacement for selected temperatures, with an decrease in the mechanical signal
area and linewidth when cooling down the sample temperature. The area is reduced as
it displays the phonon occupation, which is dominated by the thermal excitation given the
experimental configuration. The photon number for these measurements was around 1.6. The
decrease in linewidth is discussed in detail in Sec. 7.5

7.6.4 Detected thermal displacement density

Via this coupling we are now able to determine the measured displacement spectral density,
as we have already indicated in Fig. 7.15a) by the transformation Sxx = Sωωx

2
zpm/g

2
m0.

We now discuss the obtained spectrum at a probe strength of around 1.6 photons, for
temperatures of 232 (red, cf. Fig. 7.15a)), 186 (green), and 125 mK (blue) in Fig. 7.16.
Here, we find the signal area and the linewidth decreasing when the temperature is reduced.
The decrease in linewidth over temperature was discussed in Sec. 7.5. The shrinking of the
peak area is explained by the reduced thermal phonon occupation, decreasing linear in T ,
cf. Eq. (7.27). As the linewidth is already linearly decreasing we find this the dominant
contribution to the area reduction, the signal amplitude above the background remains of
identical size. The background shows no systematic trend over temperature, as it depends
on a multitude of parameters, like the resonator linewidth, the applied probe photons, as
well as technical noise sources, e.g. the cold amplifier performance.
We like to comment on the ratio between measured displacement density Sdet

xx to the
theoretical thermal displacement density Sth

xx, cf. Eq. (4.10), as this becomes important
for the force detection sensitivity. For the bare (theoretical) displacement density of the
nanostring we obtain a value of Sth

xx(Ωm) = 2.58 · 10−2 pm2/Hz at 186 mK (not shown in the
figure), while the detection states Sdet

xx (Ωm) = 1.26 · 10−1 pm2/Hz, and so we find a ratio
of Sdet

xx /S
th
xx = 4.8 between detected and ideal displacement on resonance. Off-resonant

this value increases, as the imprecision noise then dominates the detection, while the bare
displacement density decreases by the mechanical linewidth.

7.6.5 Electromechanical noise contributions

For a closer look at the noise contributions, we extract the displacement background level
from each measurement, which we will refer to Sdet

xx in the following. In Fig. 7.16 this
corresponds to a value of 1.03 · 10−1 pm2/Hz at 186 mK and 1.6 photons, or in terms of
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Figure 7.17: Electromechanical noise contributions in inductively coupled systems. We show
the detected background noise level over photon numbers in units of the standard quantum
level. We find a linear decrease indicating an imprecision limitation, that we model (black
dotted line) to obtain the average detection level. The ideal - or quantum limited level is
indicated by a black solid line. For the given coupling strength we find an optimal photon
power around 103. As we measure on the single photon level, we operate deep within the
imprecision limited regime. Form the deviation between ideal and detected noise we can
extract the noise temperature, as shown in the inset. The contributions shown in the full
frame correspond to the breakaway at 5.6 K, besides that the noise level is close to the HEMT
noise level of 2.3 K, indicated by the black line.

the standard quantum limit Ssql
xx = ~/(meffΩmΓm) = 1.8 · 10−29m2/Hz (cf. Sec. 4.2.2) to a

ratio of about 104. In Fig. 7.17, we show the obtained ratio (in red) for a temperature of
186 mK and all applied probe powers ranging from 0.7 to 1.6 photons. The black solid line
indicates the quantum limited detection, cf. Eq. (4.16) and the average system parameters
of κ/2π = 4.9 MHz, Γm/2π = 39 Hz, Ω = Ωm = 2π · 6.3431 · 106/ s, gm0/2π = 1.6 kHz, and
xzpm = 47 fm at this temperature. For these parameters we find a decreasing imprecision
noise of Simp

xx /Ssql
xx = 14/n̄c [cf. Eq.(4.12)]. In addition, we determine an optimal photon

power of n̄opt
c = 28. By this we conclude that we are within the imprecision limited

regime. The observation that the off-resonant noise linearly decreases with the microwave
power supports this. So we model a linear trend to the data (black dotted line) and find
Sdet

xx /S
sql
xx = (9.2 ± 1.1) · 103/n̄c. We see, that the electromechanical imprecision Simp

xx is
negligible in comparison to the technical one Sdet

xx . So, the ratio Sdet
xx /S

sql
xx can be interpret

as technical noise phonons
ntech

m,xx = 9.2 · 103. (7.30)

This figure can be recast as noise photons. As ωc ≈ 103 ·Ωm, the noise level corresponds
to 9.2 photons. To compare this value with the performance of the microwave cryogenic
HEMT amplifier, we use Tnoise = ntech

m,xx~Ωm/kB = 2.7 K. The noise temperature of the
cold HEMT amplifier is specified to ’2.3 K typically’ [163]. Thus, the technical noise
observed is in reasonable agreement with the equipment used.
In the inset of Fig. 7.17 we plot the result of the extracted noise temperature Tnoise over
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the full temperature sweep Tcryo. Overall we find a temperature around the specified
noise figure of 2.3 K (black dotted line). However two of the six datapoints break out of
this, nevertheless staying below 5 K.
A further decrease of the noise temperature can be realized by an additional quantum
limited amplifier, e.g. a JPA. Here, the typical noise temperature is around 500 mK
[164], improving the detection by one magnitude. The benefits of quantum limited
detection in electromechanical systems are discussed in detail in Refs. [15, 164]. Further
the non-linearity of the Josephson junctions should allow for a squeezing of the deployed
resonator’s vacuum phase, further reducing the measured imprecision [17].

7.6.6 Total measurement precision

An important parameter for the characterization is the achieved measurement precision
in terms of the standard quantum limit. As we drive off-resonant on the blue mechanical
sideband we expect a minimum value of Ssql =

√
2~ [98, 105]. Next, we have to determine

the product of the displacement and force density Stech
xx Sba

FF. It is lowest at the lowest
temperature and highest drive power. Here, we find a measurement imprecision of
Stech

xx = 1.66 · 10−25 m2/Hz. The backaction force is approximated in first order to stem
from thermal contribution Sba

FF = Sth
FF = 4~ΩmΓm(nm + 1/2) = 5.0 · 10−37 N2/Hz [100].

This results in a measurement precision of Stech
xx Sba

FF = 1.9 · 103√2~. This is a higher value
than previously found in capacitively coupled systems using the same setup, as there a
value of 165

√
2~ was found [100]. The high value has two reasons: First, by the limitation

of the photon numbers a high imprecision noise floor is present, enhanced also by the
use of non-quantum limited amplification, as discussed in Sec. 7.6.5. The second factor is
the high thermal excitation of the nanostring, as we do not employ any sideband cooling
techniques.
The later increases the detected displacement as Sth

xx ∝ nm, cf. Eq. (4.17). However, we
can give an estimation on the measurement precision for sufficiently cooled nanostrings by
excluding the thermal contributions, as derived in [165]. The respective force sensitivity
then is given by Scryo

FF = 4meffkBTsampleΓm [165]. For this we obtain a precision of 66
√

2~.
Since previously in capacitively coupled systems a value of 100

√
2~ was found [100] for

this particular setup, we have indeed an improvement by almost a factor of 2.
So, besides all limitations discussed above for the first sample generation, we already
obtain an improvement in comparison to capacitively coupled electromechanics. However,
given the current electronic setup configuration, the obtained value exceeds the standard
quantum limit by about 50 for sideband-cooled nanostrings. This shows that the impre-
cision limitations will become a challenge when reducing the thermal string occupation
(reducing Sth

xx), as the remaining background is significantly higher. By this we conclude
that the reason for the detected signal to noise ratio in e.g. Fig. 7.16 seems to be caused
by the high electromechanical vacuum coupling in combination with the high phonon
occupation of the string.
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Figure 7.18: Details on the force sensitivity in inductively coupled electromechanics. Panel a)
plots the on-resonance achievable force sensitivity. We find a linear decrease with an intrinsic
sensitivity of 50 zN/Hz1/2. Panel b) shows the detected force sensitivity over frequency. We
find the highest sensitivity on resonance, increasing via the mechanical linewidth. We are able
to detect a force sensitivity already close to the theoretical limit (×2.8).

7.6.7 Sub-attonewton force detection

We like to conclude our discussions about the measurement performance of inductively
coupled nanomechanics by discussing the force sensitivity. The quantum limited force
sensitivity on resonance to the mechanical string is given by [164, 166]

SFF(Ωm) = 4meffkBTsampleΓm. (7.31)

identical to the contribution from the thermal bath, in Sec. 7.6.6. Here, the low mass of
the thin aluminum nanostring, as well as its high mechanical quality factor are beneficial
to obtain the high force sensitivity stated here.
As we have determined the oscillator’s linewidth as a function of the cryostat temperature,
cf. Fig. 7.10a), we plot the result of Eq. (7.31) in Fig. 7.18a) (red dots). We quantify
SFF(Ωm) = (2.14±0.10) ·Tsample[K] aN/Hz1/2 + (41±19) zN/Hz1/2 (black solid line). The
intrinsic force sensitivity at Tsample → 0 stems from the intrinsic mechanical linewidth of
Γ0/2π = 6 Hz. The uncertainties arise from the fluctuations of the mechanical linewidth.
Further we find that, by reducing the cryostat temperature to 20 mK, we can achieve
a sensitivity of 84 zN/Hz1/2. However in our experiment we were limited by the heat
dissipations of the field bias coil to 120 mK.
Having discussed the theoretical force sensitivity we next quantify the detected one. We
derive the spectral force density from the detected mechanical displacement density (cf.
Fig. 7.16) via [164]

Sdet
FF (Ω) = 2Sdet

xx (Ω)
|H(Ω)|2 , with H(Ω)−1 = meff(Ω2 − Ω2

m − iΓmΩ) (7.32)

We plot the results for selective temperatures in Fig. 7.18b). We find the lowest force
density - corresponding to the highest sensitivity - for Ω close to Ωm. This plateau scales
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with the mechanical linewidth Γm which is itself temperature dependent. In addition,
the sensitivity is enhanced when cooling the sample, as linewidth and phonon occupation
decrease. The lowest experimentally detected force sensitivity is close to the theoretical
limit from panel a) of the respective temperature, where we achieve a sub-attonewton force
sensitivity of Sdet

FF (Ωm, Tcryo = 126 mK) = 0.82 aN/Hz1/2, versus an optimal theoretic value
of 0.31 aN/Hz1/2. We benefit here from the high coupling, that allows to resolve a high
displacement to thermal motion ratio besides the high imprecision noise - even for a low
photon number of 1.6.

We like to mention previous work, using an all aluminium electromechanical resonator,
consisting of a capacitively coupled doubly clamped nanostring, and employing a JPA,
which achieved a force sensitivity of 0.51 aN/Hz1/2 at 77 mK [164]. Three dimensional
drum resonator that achieve a higher electromechanical coupling strengths than nanos-
tring oscillators suffer in the force sensitivity SFF due to their high mechanical mass
(48 pg in [15] vs. meff = 0.6 pg used here). Moreover, our results have also to be compared
to the sensitivity achieved by the use of ultra-light carbon nanotubes where a record force
sensitivity of (12 ± 8) zN/Hz1/2 was experimentally achieved at a moderate cryogenic
temperature of 1.2 K [166], and a sensitivity of 1 zN/Hz1/2 derived from resonator’s
characteristics at 44 mK [167].

7.7 Tuneable inductive coupling in nano-electromechanics

We next confirm the tuneability to the electromechanical interaction as proposed by
Eq. (7.3), in particular the linearity in the frequency slope ∂Φωc and the external field
Bext. To reduce the measurement time for theses experiments, we switch to the cryo-
genic interferometer which enhances the phonon number by active driving and so the
mechanical signal. We will show the nanostring’s response measured systematically over
the resonator’s tuning. Further, we extract the measured response δωd(Ωm), proportional
to the coupling strength. We will compare this quantitatively with the resonator’s slope
and find a linear dependency. In addition, we repeat the measurements at a frequency
tuning corresponding to working spot J and sweep the magnetic field. Here, we also show
the measured response and combine the result with four measurements in which we have
determined the electromechanical coupling via a spectroscopy of the thermal sideband, cf.
Sec. 7.6.1. By this we also confirm the linearity of the coupling to the applied external
field.

7.7.1 Mechanical response along the resonator tuning

We record the string’s response to a drive voltage of Vpiezo = 0.42 mV, for a probe tone on
resonance to the microwave resonator, corresponding to a photon number of 2−3 photons.
In particular, we record the homodyne detected microwave power Phom, as well as the
microwave resonator characteristics. From the later we obtain the on-resonance transfer
function K, cf. Eq. (5.2). With that, we can calculate the induced frequency shifts δωd
from the recorded power, cf. Eq. (5.1). When the mechanical excitation is on resonance
with the mechanical string’s eigenfrequency this is proportional to the coupling strength,
cf. Eq. (5.3). As a side note, the resonator is coupling to a loss channel around 7.325 GHz
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Figure 7.19: Detected string motion for different resonator working spots. From top left to
bottom right the detected signal of the driven nanomechanical string is shown via sweep along
the working spots of the microwave resonator, indicated in Fig. 7.5a). We start at moderate
flux tunings, from which we approach the sweet spot. As we do so, the tuning is decreased
and so does the on-resonance peak height, which is proportional to the coupling. Around
the sweet spot the mechanical peak vanishes in the background noise. When increasing the
tuning again, it reappears and follows the linear dependency.

(at spot G, as found in the Fig. 7.5a)). There, the resonator’s response did not allow to
obtain the transfer function, which is why we exclude this working point in our analysis.
We show the recorded shifts in Fig. 7.19 for the remaining working spots. As we start
at a moderate working spot A, corresponding to a flux tuneability of −0.76 GHz/Φ0, we
find a peak amplitude of 0.6 MHz. As the slope is reduced from spot A - C, the peak
amplitude decreases, until it vanishes for point C. Afterwards it increases again, as the
slope is rising.

7.7.2 Frequency slope dependence

The next step is to systematically investigate the peak height over the resonator tuning to
confirm Eq. (7.3). For this, we refer to the resonator tuning on points A − C as negative
tuning, and account for this by multiplying the obtained peak amplitude by −1. Therefor,
we expect a straight line through the origin for the case of a linear relation between
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Figure 7.20: Tuneability of the electromechanical coupling in inductively coupled systems. Panel
a) shows the in terms of vacuum coupling transformed frequency shifts at high (dark green)
and low drive power (bright green). We find a linear increase for both drive strengths when
the resonator’s tuning is increased. This agrees with the predicted tunebality of the coupling,
cf. Eq. (7.3). In panel b) we plot the extracted vacuum coupling strength for both the driven
(dark green) and thermal motion analysis (red). Both confirm the expected linearity of the
coupling.

gm0 and ∂Φωc. This is indeed what we find with a proportionality of δωd(Ωm)/2π =
0.97 MHzΦ0/GHz = 0.97 mΦ0. By the thermal motion measurements we determine a
coupling of gm0/2π = 0.22µΦ0 · ∂ω/(2π∂Φ) for the sample parameters, an external field
of Bext = 440µT, and so we find a transformation constant of

xVpiezo=0.42 mV = 0.97 mΦ0
0.22µΦ0

= 4.41 · 103. (7.33)

This transformation constant then allows us to display the extracted on resonance fre-
quency shift δωd(Ωm) in calibrated vacuum coupling gm0 = xVpiezoδωd(Ωm), cf. App. F for
details. We show this in Fig. 7.20a) in dark green for the results of Fig. 7.19, following
the linear increase of 0.22µΦ0 · ∂ω/(2π∂Φ)(black solid line). The two highest values are
slightly higher than the linearity proposes. We suspect, that at some point the induced
electromechanical shift becomes sufficiently large, such that higher order effects have to
be taken into account and the reduction of the induced shift on only the phase of the
resonator fails, cf. Eq. (4.38) and Sec. 4.4. We avoid this by reducing the drive tone power,
as well as the probe tone power by an order of magnitude. The obtained peak amplitudes
(δωd(Ωm)) for the lower drive amplitude of Vpiezo = 0.13 mV is plotted in the same figure
in bright green. For the lower drive, we find a decreased slope of δωd(Ωm) = 0.27 mHzΦ0
and so

xVpiezo=0.13 mV = 1.22 · 103. (7.34)
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The decrease is expected, as we drive now with less power and so induce less displacement.
In this drive voltage regime we therefore can confirm the expectation of the ideal piezo
susceptibility (Vpiezo ∝ x0) as

0.42 mV
0.13 mV = 3.2 ≈ 3.6

xVpiezo=0.42 mV

xVpiezo=0.13 mV
. (7.35)

The ratio we obtain is slightly lower, which we attribute to the aspect that the excitation
force provided by the piezo is not perfectly linearwith the driving voltage in this regime.
Overall we conclude that the inductive coupling can indeed be tuned via the resonator
detuning and that they are directly proportional to each other, cf. Eq. (7.3).

7.7.3 Field dependence

In addition to the tuneability via the frequency slope, we now analyze the coupling as
function of the applied external magnetic field. For this, we bias the resonator to working
point J and repeat the measurements via the cryogenic interferometer for several applied
field values Bext. We multiply the findings by −1 for negative field values to show the pro-
portionality [as we did previously for the slope dependence in Fig. 7.20a)]. The extracted
on-resonance frequency shifts δωd(Ωm) are transformed to the calibrated coupling strength
gm0 as before in Sec. 7.7.2 and plotted in Fig. 7.20b) (dark green). They obey a linear de-
pendency. For a quantification of the electromechanical coupling strength, we further
include the results of the vacuum coupling strength obtained by the spectroscopy of ther-
mal sidebands at this flux bias point of ∂ωc/(2π∂Φ) = 6.6 GHz/Φ0 (red), cf. Sec. 7.6.1.
We find the highest vacuum coupling at an external field of −471µT corresponding to
gm0/2π = (1.62± 0.12) kHz, or G = 34.5 MHz/nm.
This exceeds previous realizations, as to our knowledge the highest single photon-phonon
coupling in resonator nano-electromechanics was reported in Ref. [24] to be gm0/2π =
280 Hz. This value was realized using a three dimensional drum oscillator capacitively
coupled to superconducting lumped element resonator, where the drum acted as capac-
itive element. Further, the drum was biased by a dc-voltage to decrease the distance
between the two capacitor plates.
By using the complete dataset of the thermal spectra we can fit a linear relation
gm0/2π = {(3.13± 0.20)Bext[µT] + (80± 70)}Hz at this flux bias point. This allows to
restrict the value of the mode shape factor in the range γs = [1 − 0.94] for the string
parameters stated in Sec. 7.1.

We now have confirmed the tuneability of inductively coupled electromechanics by the
frequency slope of the flux tuneable resonator as well as the applied external magnetic
field, which are predicted by Eq. (7.3).

7.8 Strong mechanical coupling

In Sec. 4.4 we have found that by a strong drive of the mechanical oscillator, we can
increase the induced frequency shift Gx0 = gm0

√
2nm, even beyond the mechanical

eigenfrequency. Then the microwave transmission minimum of the resonator starts
to split with a separation defined by the mechanical frequency, following a Bessel-type
behavior, as derived via Eq. (4.34). In the following, we will explore these signatures under
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Figure 7.21: Technical details for mechanical driven resonator spectroscopy. In panel a) the
microwave transmission is plotted with (blue) and without (black) the tuneable resonator at a
working spot of 6.9 GHz. Panel b) displays the sample temperature under a strong mechanical
drive tone applied to the piezo. For intermediate drive powers no signature of the drive
tone can be found. However at very high drive powers, the sample temperature is increased
almost twice its initial value. Panel c) shows a typical theory fit to the extracted microwave
transmission. Details on the fit in the text. Overall an agreement is found. Deviations are
further discussed in the text.

strong mechanical drives at a highly coupled working spot of the microwave resonator.
We will find induced frequency shifts (corresponding to an effective driven coupling
gm0
√

2nm) on the order of one percent of the microwave resonator’s eigenfrequency.

7.8.1 Experimental procedure

For this we rewire the microwave setup as detailed in Fig. A.1d), such that the microwave
source is directly send to the piezo actuator and the vector network analyzer only probes
the microwave transmission. By the rewiring a second calibration of the room tempera-
ture attenuation was necessary, which we take into account in the following, cf. Fig. 7.4b).
The benefit of this configuration is that both the mechanical and the electric element only
receives their explicit probe tones. However, we like to note, that an in-situ observation
of the mechanical string by the piezo drive is no longer possible in this setup.
We start by biasing the resonator to working point J, and apply an external field of
+0.45µT. Here, the electromechanical coupling strength is gm0/2π = 1.41 kHz. We mea-
sure the microwave transmission via the network analyzer within a frequency range of
80 MHz around the microwave resonator frequency, and send a drive tone on resonance
with the mechanical oscillator Ωm via the microwave source. By this the displacement is



120 7.8.2 Effective strong mechanical coupling

- 6 0 - 4 0 - 2 0
6 . 8 6
6 . 8 8
6 . 9 0
6 . 9 2

b )
| S 2 1 | 2  ( l i n )

P a p p l
d r i v e  ( d B m )

| S 2 1 | 2  ( l i n )

ω
 / 2

π (
GH

z)

0 . 80 . 91 . 0a )

- 6 0 - 4 0 - 2 0
6 . 8 6
6 . 8 8
6 . 9 0
6 . 9 2 M o d e l

P a p p l
d r i v e  ( d B m )

ω
 / 2

π (
GH

z)
0 . 80 . 91 . 0

E x p

Figure 7.22: Extracted resonator transmission and model for mode 4 of the nanostring. We
plot the calibrated transmission of the microwave resonator over applied drive power. Panel
a) displays the measured data, panel b) shows the modeled transmission using Eq. (4.34)
with the eigenfrequency and phonon number as only free fit parameters. The experimental
data is in good agreement with the model. For weak drives the resonator transmission re-
main Lorentzian. When the effective shift gm0

√
nm exceeds the mechanical eigenfrequency, a

splitting up to 7nth order with a spacing of the mechanical frequency is found.

driven coherently with an amplitude ∝ √nm. In Figure 7.21a) we show an exemplary data
trace of the uncalibrated microwave transmission T (blue). To reveal the pure resonator
response, we calibrate the transmission using a trace of the microwave resonator detuned
(black). This calibration is done by a normalization of the complex scattering parameter.
For the realization of large displacements, strong drive powers are required. Nevertheless,
in the given configuration, the piezo drive power is dissipated by the piezo actuator and
limits the experimental range by heating the mixing chamber stage, see Fig. 7.21b).
At low drive powers Pdrive, the microwave transmission shows the characteristic microwave
resonator transmission feature, which allows us to extract the loss rates at this particular
working point κext/2π = 0.5 MHz and κint/2π = 4.6 MHz in agreement with previous
results [cf. Fig. 7.7b)]. Using the vacuum coupling strength of gm0/2π = 1.41 kHz, we can
fit the data to Eq. (4.34), where the microwave resonator frequency ωc and the displace-
ment x0 remaines as only free fit parameters. Figure 7.21c) shows the calibrated dataset
from panel a) (blue triangles) and the described fit to the data (black). We find a good
agreement between the fit and the data, which is also confirmed when comparing the full
datasets, as found in Fig. 7.22:

7.8.2 Effective strong mechanical coupling

Figure 7.22a) shows the detected transmission of the microwave resonator as a function
of the piezo drive power Pdrive, with the piezo drive frequency set to Ωm. For low drive
powers we find the unperturbed Lorentzian transmission of the microwave resonator. When
the drive is increased the single peak splits up, in spacings ∝ nΩm, where n ∈ Z and
Ωm/2π = 6.3431 MHz. We are able to detect 7 orders of the splitting. Though, for
very high drive powers the splitting becomes large and the remaining peak height low, so
the transmission approaches unity. Further, the induced heating via the drive tone [cf.
Fig. 7.21b)] might have influenced the magnetization of the setup shifting the electrical
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Figure 7.23: Bessel function behavior of the driven electromechanical resonator. In panel a)
we plot the squared Bessel function of first kind, for zero to fourth order. We find the first
maximum of the n-th order to be located at the intersection of n− 1 and n+ 1, as indicated
for the first two maxima. In panel b) we show the absolute value of the scattering parameter
for n-th mechanical order of mechanical mode 4 as dots. By plotting its difference to unity,
we find a directly proportionality Bessel functions of the upper panel. The lines are the
corresponding values of the fit to the data. In agreement with the mathematical prediction,
we find the n-th maximum at the intersection as stated before.

resonator off-resonance (given the resonator slope of 6.7 GHz/Φ0 and a SQUID loop are of
44.6µm2, 33 nT are sufficient to tune the resonator by one linewidth κ). In addition such
temperature changes also influence the mechanical eigenfrequency, cf. Fig. 7.10b), such
that both systems became tuned out of resonance.

7.8.3 Mathematical description by Bessel functions

Next, we compare the result of the detected splitting to the model of Sec. 4.4 based on
Bessel functions to describe the modulated mechanical oscillation onto the electric reso-
nance {exp[Icos(Ωmt)]}. For an easy quantitative comparison we plot the square of the
Bessel functions of first kind up to fourth order of the argument β from 0 to 7, as found in
Fig. 7.23a). Here, the nth-maximum is located at the intersection between the n − 1 and
n+ 1 order. We have indicated this in Fig. 7.23a) by dotted lines for the n = 1 maximum,
located at the function arguments β = 1.83 and n = 2 at β = 3.06.
Further, we extract the resonant transmission of the microwave resonator S21(ωc) and the
nearby orders Sn21(ωc + nΩm) of up to fourth order. We plot this data as a function of
Pdrive in Fig. 7.23b) (dots). In addition, we show the obtained transmission of the modeled
data from Sec. 7.8.2 (line). As we calculate the transmission change from unity, the plotted
data is expected to show the behavior from the top panel, cf. Eq. (4.34). We find good
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Figure 7.24: Piezoelectric translation at millikelvin temperatures. We show the extracted dis-
placement obtained by modelling Eq. (4.34) to the data systematically over the applied piezo
drive voltage. We were able to detect displacements between 0.7 and 10 nm. Analogue we
can describe the displacement by the zero-point motion and the phonon numbers (right axis),
for which we find excitations between 108 and 3 · 1010. The scaling exponent of an allometric
fit applied to the data (black solid line), reveals a square root behavior between displacement
and piezo drive voltage, as expected. Minor deviations from this model are found for low
drive voltages.

agreement with the Bessel theory, in particular as the intersection of n+ 1 with the n− 1
order is identical with the maximum of the nth order. E.g. the maximum of n = 1 (green)
corresponds here to −42 dBm, or n = 2 (orange) to −34 dBm.

7.8.4 Piezoelectric transduction

Previously, we have identified the experimental measurement to the mathematical descrip-
tion by a Bessel-model and identified two drive powers to the argument of the mathemat-
ical function β. In the following, we will now systematically compare the extracted β

factors from the modeling to the drive power. This is realized by the identification of
β = Gx0/Ωm(or = gm0

√
2nm/Ωm, cf. Eq. (4.30). Since the electromechanical coupling

and mechanical frequency are already determined, we can use this to calibrate the string’s
displacement to the piezo driving force - and obtain the phonon numbers for highly driven
strings.
In Fig. 7.24 we plot the obtained displacement from the fit model described by Eq. (4.34)

to the data in Fig. 7.22a) as function of the piezo drive voltage Vdrive = Pdrive · 50Ω. We
find displacements ranging from 0.7 to 10 nm, increasing with the piezo drive voltage. As
we can express the displacement by x0 =

√
2nmxzpm, we can calculate the phonon occu-

pation number which we display on the right axis. Here, the obtained excitations range
from 108 to above 1010. For the functionality between displacement and piezo voltage we
fit a power function (black solid line) and obtain

x0 = (46± 2) · 10−6V 0.47±0.01
appl (7.36)

revealing a proportionality of x0 ∝ V
1/2

appl. The model deviates from the data for low
drive powers, that we suspect to stem from only small deviations in the mechan-
ical sideband transmission for low drive powers. Via the mechanical susceptibility
of χ−1 = 2.2 · 10−6 kg/s2 on resonance, linking the displacement to a driving force,
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Figure 7.25: Coupling development over time at the WMI. In 2013 the development of electrome-
chanics was triggered by initial work of F. Hocke achieving a coupling strength in the kHz/nm
range. A dielectric coupling then was invented with ultra-high mechanical Q values, however
with a reduced coupling strength. All aluminum microchips with capacitively coupled strings
allowed a slight increase in the coupling strength. The integration of Josephson elements
showed only a minor loss in coupling strength in comparison to bare coupled resonators. By
the use of inductively coupled strings the coupling strength was enhanced by three orders of
magnitude, for moderate field strength already. We expect an additional increase by a fac-
tor of 260 when switching to an in-plane field configuration (dotted line). Given the current
resonator decoherence the strong single photon-phonon coupling is not yet in reach. Though
we expect the remaining gap can be reach by a design optimization of both the mechanical
coupling and the microwave resonator decoherence.

we can determine the induced force of the piezo to 0.1 nN/V2. The relatively small
force translation has to be seen in the context that the piezo is mounted on the sam-
ple box and the direction of its excitation is perpendicular to the nanostring, cf. Fig. 7.2b).

All in all we were able to push the electromechanical interaction having a high coupled
system and driving the mechanical motion to a region of gm0x0/Ωm = 9.2, revealing a
splitting of the electromechanical resonator up to 7th order. Further, we were able to
calibrate the phonon drive of the piezo for mechanical excitations in the billions.

7.9 Summary & Outlook

Within this chapter we have presented first experiments on inductively coupled systems.
The main motivation for this was to study a strong coupled electromechanical system. In-
deed, we reached coupling strengths above previous realizations in nano-electromechanics.
Also the predicted tuneability was confirmed.
By applying the magnetic field via an external (small) superconducting coil in out-of-plane
direction, we where able to precisely measure the fields, however only on a moderate scale
up to 0.5 mT. The induced coil currents already heated the cryostat, such that the lowest
cryogenic temperature was limited to 120 mK. Sideband cooling of the mechanical motion
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was prevented by the negative nonlinearity stemming from the Josephson junctions. Fur-
ther the junctions limited the applicable photon numbers to below 10 photons, setting the
experiment on the imprecision limited range. Also, the external antenna of the sample was
not working, such that the benefits of the tuneable coupling could not be investigated.
We therefor suggest for next experiments the application of in-plane magnetic fields, which
are available in the cryostat. There, the field is not limited by the coils but the critical field
of the superconducting aluminum film, which we found to be above 130 mT [cf. Sec. E].
Then the potential higher mechanical coupling of up to 0.4 MHz might allow for ground
state cooling of the mechanical motion. For the detection of such low excited strings we
however suggest the installation of quantum limited amplifiers. It will also be of interest
how the noise performance turns out in the highly coupled configuration.
An additional external antenna can be used to squeeze the microwave field in the res-
onator, which allows to control the noise contributions potentially reaching higher force
sensitivities. Also, the electromechanical coupling can be tuned parametrically such that
the mechanical motion can be amplified or cooled.
We like to conclude by a short summary of the realized coupling values G to demonstrate
the future road map towards strong vacuum coupling. For this we have plotted previ-
ous results from the Walther-Meißner-Institut ([100]→ {1}, [90]→ {2}, [43]→ {3}, and
[34]→ {4}) in combination with the current work ({5}) in Fig. 7.25. It shows the realized
increase of the coupling strength by a factor of 400 within this framework. Further, we
have indicated the limitations when switching to in-plane fields (black dotted line) for this
sample of first generation. For a strong vacuum coupling both mechanical and electric
elements have to be further optimized, as with the given sample a gap by a factor 20
remains.



Chapter8
Future prospects in hybrid c-QED devices

It is difficult to make predictions, especially about the future.

Niels Bohr, [168].

Within this thesis we studied mechanical oscillators integrated in superconducting
quantum circuits, by using evaporated aluminum on silicon microchips as a basis. The
hybrid circuits form coupled systems of a mechanical oscillators and electromagnetic
resonators allowing for the realization of photon-phonon interaction. The electromagnetic
resonator is made intrinsically nonlinear by building in a dc-SQUID acting as nonlinear
loss-less inductance. In this way, a novel inductive coupling scheme with enhanced cou-
pling strength has been implemented. As we use quasi-onedimensional doubly clamped
nanostring oscillators as the mechanical element, the resulting total coupling strength of
1.6 kHz is significantly higher than any previous realization in superconducting resonators.
In addition, we showed how such nanomechanical quantum systems can be used as an
ultra-wide range photon, and precise temperature sensor.

This thesis builds up on previous work by F. Hocke and M. Pernpeintner, who built up
electromechanical hybrid systems, realized by coupling nanostring oscillators capacitively
to a superconducting linear LC-circuit. M. Pernpeintner et al. then theoretically described
a a coupled qubit-mechanical resonator system and showed how such a system can
be used to generate non-classical mechanical states. D. Schwienbacher then developed
a fabrication process that allowed the combined fabrication of transmon qubits and
mechanical string oscillators on the same microchip. In this thesis one of these samples
was spectroscopically analyzed in detail. We then unfolded a fabrication process that
allows the direct integration of a mechanical element in a Josephson junction circuit and
investigated a transmission line resonator containing a mechanical dc-SQUID. This system
is based on an inductive coupling scheme and for the first time led to a photon-phonon
coupling in the kHz-regime. Together with N. Segercrantz we were also able to fabricate
the circuit design proposed by Pernpeintner consisting of a capacitively coupled string in
a transmon qubit.

In the first parts of this thesis we theoretically describe the concepts and methods
deployed here.
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Beginning with the example of a classical harmonic oscillator we showed how both
mechanical oscillators and electric resonators can be reduced to this configuration and
highlighted the differences between time and frequency domain measurements. Next we
compared the classical oscillator to an harmonic quantum oscillator. This made clear
that the observation of quantum mechanical states in the literal sense requires a sufficient
cooling of the mechanical motion. As the lowest phonon number shown here was around
130 phonons, overcoming the limitations of sideband cooling imposed by the use of
quantum circuits for electromechanical systems remains an important point to exploit in
future studies.
We then discussed the concepts of circuit electrodynamics and described the dynamics of
a nonlinear circuit consisting of a dc-SQUID integrated in a transmission line resonator,
which allows to read-out the dc-SQUID flux in the microwave domain (FTR). We addi-
tionally showed that a transmon qubit can be derived from such a system, highlighting
the similarities between a FTR and a transmon qubit. We further showed an important
limitation of such systems, a reduced applicable photon number. Due to this limitation,
the typical electromechanical approach of enhancing the coupling by the amount of
photons is no longer possible on the typical orders.
Next we discussed the optomechanical concepts employed here. We focused on the
displacement spectra and discussed the electromechanical noise contributions. Due to the
limited amount of photons, we found out to be imprecision limited even for the relatively
high coupling strength observed here. In such a scenario the signal peak area is drastically
reduced. As the area scales with the amount of phonons in the mechanical oscillator this
was overcome by sensing thermally excited states far above the single phonon level, and
externally driven ones.

Future potential studies in the single phonon range could benefit from quantum limited
detection, realized by the use of Josephson parametric amplifiers, which we tested within
this framework. Another achievement which can be leveraged further, was the realization
of a cryogenic microwave interferometer by placing a piezo-actuator at the sample box.
The active drive of the mechanical oscillator allowed to overcome the restrictions of the
low photon numbers in the nonlinear quantum circuits and detect the mechanical motion
on the single photon level. Additionally we implemented a time domain setup to study
the qubit state decoherence. In combination with the cryogenic microwave interferometer
this allows to study the dephasing of the qubit in the presence of a high mechanical
displacement density, which could act as a fast qubit reset.

The capacitive coupling of a transmon qubit and a nanostring oscillator to the exact
same microwave resonator was analyzed spectroscopically. We were able to characterize
the subsystems individually. In combination, we were able to determine the photon
number in the shared microwave resonator spanning nine orders of magnitude between
lowest and highest detected occupation.
Further we used the electromechanical resonator to perform transmon measurement in the
time domain to detail its coherence. We found a limitation caused by two-level fluctuators
and magnetic field fluctuations. The magnetic field fluctuations can be reduced in future
experiments by superconducting screening boxes that we developed. A final conclusion
whether the fluctuators on the surface of the microchip, arise from the fabrication of the
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qubit (e.g. insufficient surface cleaning), or from etching processes when releasing the
nanostring (RIE etching), remains open for future studies on these electromechanical
hybrid microchips. However, the qubit decoherence only needs to be sufficient long for a
state transfer protocol, as we aim for a state storage within the mechanical element. So
the coupled qubit-mechanical system’s state storage time will be limited by the thermal
storage time of the mechanical element. We were able to show a potential thermal storage
time of 38µs for the given sample of first generation.
The lower coupling to the electric resonator and its linewidth broadening for high photon
numbers prevented an effective cooling of the mechanical motion, such that we were only
able to cool to 130 phonons using a red detuned sideband drive.
The low electromechanical coupling strength can be enhanced by directly integrating
the nanostring in the qubit. The fabrication techniques introduced here allowed the
development of such a sample.

Also a mechanical dc-SQUID was integrated in a transmission line resonator. The
resulting frequency tuning was described by the theory introduced previously.
The decoherence of the microwave resonator was limited by two-level fluctuators, similar
to the qubit. Additionally we found that the loss due to scattering on quasi-particles
becomes dominant above 250 mK. We speculate this scattering to arise at the surface
oxide. Further, we found a linear dependence on the resonator linewidth to the frequency
slope, which sets a limit for the quantum parameter gm0/κ

The nanostring’ frequency tuning over temperature suggests that in previous studies on
capacitive coupled systems thermally induced charge prevented the observation of the
intrinsic string behavior. Without the coupling capacitance in the explored inductively
coupled system we found agreement to previous studies on aluminum nano-oscillators at
millikelvin temperatures. Moreover, we were able to extend the observed lengthscale,
which showed a significant deviation from the universal regime of amorphous materials,
due to the longer string length. We also compared the temperature precision one
can achieve using the string parameters of a published aluminum string as an on-chip
temperature sensor to the regular resistive read-out, and found the string’s sensitivity one
order of magnitude higher than the resistive one.
As this thesis shows the first observation of an inductively coupled electromechanical
system, we characterized the electromechanical interaction in detail for moderate magnetic
field values to precisely determine its characteristics. The highest determined electrome-
chanical coupling was gm0 = (1.62 ± 0.12) Hz. In addition, the limitations of the critical
photon number induced by the Josephson junctions lead to a dominant imprecision noise
floor. However, due to the low mass of the nanostring and the high coupling strength, we
found a sub-attonewton force sensibility accessible at the single photon level. We further
confirmed the predicted linearity of the coupling strength to the frequency slope and the
applied external field.
The negative nonlinearity of the flux tunable resonator made a sideband cooling challeng-
ing as an increasing red sideband drive power shifted the resonance towards it, further
increasing the photon numbers and so the shift. With this, instabilities and flux jumps
occurred, preventing an effective cooling given the current coupling strength. Therefore
we suggest to investigate the cooling in future studies at higher fields enhancing the
interaction, as the required photon numbers are reduced quadratically by the coupling
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strength.
We further showed that the external driving of the mechanical oscillator allowed to push
the electromechanically induced frequency shift above the oscillators frequency, leading to
the observation of discrete splittings on the microwave transmission. The analyzed shift
was on the order of Gx/Ωm = 9.2 and Gx/ωc = 8.5 · 10−3, becoming comparable to the
eigenenergies of the system. Further increasing the single photon-phonon coupling using
higher magnetic fields could lead to a potential coupling strength of 400 kHz. Reaching
the strong single photon-phonon coupling regime however requires future effort on the
microwave decoherence. A lower decoherence is of particular interest, as the string’s
length then can be increased, remaining still within the resolved sideband regime. The
longer string length then enhances the electromechanical vacuum coupling strength.
Further studies on inductively coupled systems could arise from an external microwave
drive, e.g. by adding an antenna in close proximity to the dc-SQUID. This could allow
to squeeze the electric (vacuum) field of the microwave resonator. A hybridization of the
electrical and mechanical system (red sideband drive), could allow for the generation of
highly squeezed mechanical states, and thus enhance the resolution of the mechanical
displacement. An additional feature of such an antenna in combination with the tunable
coupling is that it would allow for a fast tuning of the coupling on the time scale of the
mechanical oscillator, driving it parametrically.
The similarities between a flux tunable resonator and a transmon qubit derived in
Sec. 3.4.1 show that the inductive coupling realized within this thesis can be directly
transformed to transmon or charge qubit designs. Those have a much higher nonlinearity
as they can be approximated as two-level system, and so quantum superposition states
can be generated [57]. With the mechanical element directly integrated in the qubit
circuit the realization of, e.g. mechanical cat states, then seems straightforward.

The main achievement within this work was the detection of mechanical motion
via a dc-SQUID integrated in a microwave resonator. In this realization, the study of
the mechanical motion benefits from established electromechanical techniques, such as
sideband cooling. Further, the nonlinearity of the electric resonator can be parametrically
driven and so apply squeezed light for the investigation of the mechanical motion. By
this a higher precision in the read-out sensitivity can be reached in comparison to
coherent light. The observed behavior of such flux tunable resonators as a mechanical
displacement detector are an important technical development for the detection of
quantum gravitational motion emphasized within the framework of the MaQSens project.

In summary we realized electromechanical hybrid systems consisting of nanostring
oscillators and electrical quantum circuits. This combination allows precise sensing appli-
cations, like photon numbers, temperatures, displacements, and forces. Further the high
mechanical quality can be used as a compact on-chip storage of quantum information
processed within c-QED circuits.



AppendixA
Detailed microwave setups

A.1 Ultra-wide range photon number calibration

The setup consists of two Rhode & Schwarz SMF100A and a Agilant E8257D microwave
sources as well as a Rhode & Schwarz ZVB8 vector network analyzer and FSV signal
analyzer. One SMF and the network analyzer are combined by a Marki PD 0220 power
combiner. The signal is lead into an Oxford Instruments Triton cryofree dilution fridge.
The input line is attenuated by 10 dB at 40 K, 6 dB at 4 K and another 6 dB at 700 mK. At
the mixing stage the input signal is additionally attenuated by 10 dB and a Miteq 2000-
18000-20C 20 dB directional coupler before it reaches the sample. After it a QuinStar
CTH0408KCS circulator and for symmetry an additional 20 dB directional coupler, this
time in through connection, is placed. Before leaving the mixing chamber stage, a second
circulator is placed. After, the signal is lead to another circulator at the 4 K stage, followed
by a MiniCircuits VBFZ-5500+ bandpass filter before it reaches a Low noise factory LNC4-
8A low noise cold amplifier and is send outside the fridge. At room temperature the signal
is filtered by a MiniCircuits MC-VBFZ-5500+ bandpass filter and amplified by an Agile-
amt-A0033 broadband amplifier before it reaches a MITEQ CD 401-802-20s coupler. 1 %
of the signal is amplified by a broadband microwave amplifier and send to the network
analyzer. The rest of the signal is lead to the rf input of a Marki IQ 0307 LXP IQ
mixer. The second SMF is send to the lo input after the mw phase was adjusted by a
Aeroflex/Weinschel Coaxial Phase Shifter. One quadrature was shunted while the other
one, containing the full signal, is filtered by a MiniCircuits LowPass 0-48MHz, amplified
via a FEMTO DHPVA-200 voltage amplifier, and send to the signal analyzer. The Agilent
microwave source is directly lead to the cryostat where it is attenuated by 10 dB at 40 K,
20 dB at 4 K, 20 dB at 700 mK and 20 dB at the mixing chamber stage before the signal
reaches the antenna of the qubit. To control the current through the magnetic coil we use
a Yokogawa GS-200 current source.

A.2 Inductively coupled electromechanics

The microwave setup for the detection of inductively coupled nanostrings is depicted in
Fig. A.1. The microwave tones are generated using a Rhode & Schwarz SMF100A or Rhode
& Schwarz ZVA8 vector network analyzer (VNA). The VNA output is attenuated by
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−20 dB and equally split up by a Marki PD 0220. One part is send to the piezo actuator,
while the other is combined with the SMF source by a Miteq PD 2-2000/8000-30S. The
input line is attenuated by −42 dB in total, where −20 dB are achieved by the use of
a microwave coupler Miteq 2000-18000-20C, In particular the signal is attenuated by
−10,−6 and −6 at the 40, 4.2 and 1.5 K stage. Next, the signal is guided to the sample,
where it capacitively couples to the electromechanical resonator, c.f. panel b). The output
line is further screened from thermal noise using three circulators QuinStar CTH0408KCS
before it is amplified using a high electron mobility amplifier (HEMT) Low noise factory
LNC4-8A, thermalized at 4 K. At room temperature the signal is send to a DITOM
D3I4080 ciculator and further amplified using a Miteq AFS. Afterwards, the signal is
splitted up by a Miteq CD-402-802-20S −20 dB coupler. One percent of the signal then
is amplified by a AMT A0033 and detected via the vector network analyzer. The other
part is also amplified in a AMT A0284 before it is homodyne downconverted using a
Marki MLIQ 0416-L mixer. An additional Rhode & Schwarz SMF100A acts as local
oscillator. We add I and Q and amplify the signal via a Femto DHPVA. The signal is then
either directly send to a Rhode & Schwarz FSV spectral analyzer or to a MiniCircuits
ZFRSC-183-S+ where it is combined with the high frequency signal.

The dc-field bias was set by a self-made superconducting coil with a current controlled
by a Yokogawa GS 200. Antenna lines were not used.

In a second configuration, shown in Fig. A.1d) we rewire the input signal, such that
the network analyzer only probes the microwave transmission and the SMF source directly
drives the piezo crystal. By this we make sure that the high drives required in the specific
experiments in Sec. 7.8 are only send to the particular elements.
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Figure A.1: Details on the employed microwave setup. Panel a) shows the cryogenic microwave
cabling. Panel b) displays the circuit diagram of the nanomechanical sample. Panel c) and
d) detail the room temperature wiring.
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AppendixB
Frequency downshift of a flux tunable
microwave resonator

The integrated dc-SQUID causes a power-dependent shift of the resonator’s eigenfrequency,
since a probe tone causes a current through the Josphson junctions. This can be modeled
an additional inductance. We can account this power or current dependent inductance by
[36]

LS(I,Φ) = LJ + L2(I/Ic)2, (B.1)

including a parabolic correction term. Then the resonator’s eigenfrequency [c.d Eq. (3.22)]
becomes

ωc(I,Φext) = ω0

(
1 + LLoop

4Lc
+ LJ
Lc

+ L2(I/Ic)2

Lc

)−1

. (B.2)

The definition of the unperturbed resonator frequency ω0
c (Φext) = ωc(0,Φext) allows to

describe Eq. (B.2) via the nonlinear terms:

ωc(I,Φext) = ω0
c (Φext)

[
1− L2

Lc + LLoop/4 + LJ

(
I

Ic

)2
]

(B.3)

In the experiment, c.f. Sec. 7.4.3, we set the resonator at a certain flux bias at ω0
c . Next,

we apply a weak probe tone at the resonator’s initial frequency ωp = ω0
c . Then an

additional weak tone probes the resonators transmission for a systematic sweep of the
(constant frequency) probe tone power. At a certain power, the resonator starts to shift
downwards. We find a shift increasing with P

1/3
appl.

To derive this behavior we describe the currents in the SQUID loop being proportional
to the probe tone power, that is (I/Ic)2 = cn̄c. For the experimental setup the photon
number in the λ/4 microwave resonator is described by [98]

n̄c = 4Pp

~ωp
(
κ2 + 4∆2

p

) . (B.4)

Further, as in the experiment, we set ωp = ω0
c . Solving Eq. (B.3) and (B.4) then leads to

ωc ≈ ω0
c − ( L2Lc

LJ + LLoop/4
cκext
~

)1/3 P 1/3
p (B.5)
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when the resonator is sufficiently shifted from the initial frequency (∆p > κ). As in the
experiment confirmed, the microwave resonator is expected to shift by P 1/3

p .
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AppendixC
Aluminum magnetic field screening boxes

For the sufficient magnetic field screening we constructed aluminium boxes that become
superconducting at the typical experimental temperatures. The challenge in the construc-
tion was to fit them for both sample boxes and JPA devices. This allows for full flexibility
in planning the experimental setup. However the samples require up to 5 microwave lines,
while the JPA requires 2. A solution was found by constructing an asymmetric lid. Then
a rotation by π blocks the asymmetrically designed wiring, while symmetric ones remain
open.
We show an image of the constructed boxes in Fig. C.1a). Here, the mounted sample is
shown in panel a). We see up to 5 lines that are potentially addressable.
The lid asymmetry is shown in panels b) for the open configuration, and panel c) for a
closed one. One finds the center lines on the left, open always independent of the lid
rotation. On the right side of each figure the additional microwave lines for the sample
are shown, that can be closed depending on the lid rotation.
In addition, we allowed a thermalization of the sample, which is important as the super-
conducting aluminum has a very low thermal conductivity. Further some feedthroughs for
dc-cables were also added to the box design.
The construction design is attached in the next pages.
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Figure C.1: Magnetic screening boxes. Panel a) mounted sample in the constructed aluminum
box. Panelb) and c) show the flexibility to use the boxes either for JPA microchips (two MW
input lines) or for multiplex sample gemeometries (up to five MW lines).
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AppendixD
Details on the temperature calibration

The discussion of the resistive temperature sensitivity is based on the calibration measure-
ments by Dr. K. Neumaier, who determined the resistivity of the sensor at a calibrated
temperature. The results are shown in Fig. D.1. An exponential increase is found, in
accordance to the literature prediction [169]:

R = R0exp
[(

T

T0
)x
]
, (D.1)

for which we find an intrinsic resistance of R0 = 630 Ω, an critical temperature of T0 =
1.69 K and an temperature scaling of x = 0.39. For the model we have excluded deviations
from the model (grey) that might have been caused by the calibration measurement and
only take the data at higher temperatures (blue) into account [170]. With the stated
parameters we find good agreement between data and theory.

1 1 0 1 0 0 1 0 0 01

1 0

1 0 0

1 0 0 0
δR  =  0 . 5 %  +  0 . 0 8 %  r a n g e

δR  =  0 . 3 %  +  0 . 0 5 %  r a n g e

R (
kΩ

)

T  ( m K )

δR  =  0 . 1 %  +  0 . 0 1 5 %  r a n g e

Figure D.1: Calibration of the applied temperature sensor ’ldd0’. The resistivity measured
by K. Neumaier over a calibrated temperature is for the temperature sensor used in
Sec. sec:ChapInductive is shown. An exponential increase is modeled to the data (black solid
line). Deviations at low temperatures (grey) were excluded from the data of the modeling
(blue). Further, the resistance bridge accuracy ranges are indicated.
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By this we can determine the slope of the resistivity by either deriving Eq. (D.1) over
temperature:

∂R

∂T
= R0exp

[(
T

T0

)x] x
T

(
T

T0

)x
, (D.2)

or we derive the measured data, as shown directly from the measurement data.
Important for the read-out accuracy is the precision of the resistance measurement set by
the resistance bridge. This is specified by the manufacturer in Ref. [162]. The correspond-
ing ranges for the employed excitation voltage of 6.32µV are displayed in Fig. D.1.
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AppendixE
Flux tunable resonators in high in-plane
magnetic fields

Within this thesis we discussed an inductively coupled circuit for electromechanical de-
vices. An advantage of this coupling scheme is that it allows us to reach a record coupling
strength of 1.6 kHz. Another benefit is the tunability of the coupling by the applied mag-
netic field. The measurements present here were done for moderate out-of-plane fields of
0.5 mT maximum, which has the positive effect, that we can precisely set and determine
the external field to study its influence on the coupling strength. However the question
arises how far the coupling can be boosted when switching to an in-plane field configura-
tion, where the critical field of the superconductor is supposed to be higher than in the
out-of-plane one.
To determine the critical field, we have mounted a similar circuit as presented within this
work (however without any mechanical element) within the center of a 1-1-7 T x-y-z vector
magnet, as shown in Fig. E.1a). The z-direction has the ability to use a persistent current
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κ
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Figure E.1: Aluminum flux tunable microwave resonators exposed to high in-plane fields. Panel
a) shows the measurement configuration, consisting of large vector magnets (unmounted) that
allow us to apply up to 7 T via a persistent current switch in z (in-plane). Additionally an
external coil found at the center allows to set precise out-of-plane fields. Panel b) displays
the extracted resonator linewidth at the sweet spot over the applied in-plane field. We were
able to follow its signature up to 130 mT.
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switch, which reduces field fluctuations from the applied coil current. Further, we mounted
a small coil on top of the sample box, which allows us to set the resonator flux bias.
We then set an in-plane field in z-direction using the persistent current switch. We probed
the microwave transmission to determine the eigenfrequency ωc and linewidth κ of the
resonator. Further, we swept the out-of-plane field to determine these parameters in de-
pendence of the resonators working spot. Then we increased the in-plane field and repeated
the flux bias sweep.
By this we were able to observe the resonator transmission for in-plane fields of up to
130 mT, a potential enhancement of the coupling by 260, with a maximum coupling
strength of 460 kHz.
We like to note, that when trying to reach the strong-coupling regime, gm0 > κ, one also
has to study the effects of such high fields on the resonator linewidth. This we study
in Fig. E.1b), where we plot the extracted linewidth of the resonator at its sweet spot
(κ(Φ = 0)). We find an increase of up to 30 MHz, so a factor of 10.
We conclude that the in-plane field configuration shows the potential to come closer to
the strong coupling regime as the broadened linewidth is weaker than the increase in the
coupling strength. Moreover the cooperativity is drastically enhanced, as here the coupling
enters quadratically (C = 4g2

m0/(κΓm).
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AppendixF
Calibration of the electromechanical
coupling strength via driven strings

A big benefit of the inductive coupling is that it is flux tunable (∂ωc/∂Φ) and controllable
by the applied magnetic field [cf. Eq. (7.3)]. By that we expect a linear scaling of the
vacuum coupling rate gm0 with both parameters. A possible solution to explore this scal-
ing behavior are experiments using the thermal displacement noise of the nanostring. A
more time efficient way however, is to measure the frequency shift δωd of the microwave
resonator at a fixed mechanical drive power. Here, the string displacement is significantly
increased which allows a faster data acquisition. In particular, we use a piezo actuator
mounted on the sample box to drive the mechanical motion. For a fixed drive power we
then measure the driven frequency shift δωd of the microwave resonator as functions of
∂ωc/∂Φ and .
The setup used for this experiment is shown in Fig. A.1a) and c). The cryostat is set to
Tsample ≈ 120 mK. We will begin with the investigation via ∂ωc/∂Φ at a constant value of
≈ −440µT. We measure δωd, by subjecting a constant microwave tone on-resonance to
the microwave resonator (∆ = 0). The signal is then homodyne down-converted using a
local oscillator. Moreover, we use the VNA to drive the piezo and so apply an oscillating
force to the nanostring. When the mechanical resonance is matched, we induce a mechan-
ical displacement which causes the microwave resonator frequency to shift, according to
the electromechanical Hamiltonian. Then this shift is recorded via the VNA. In a more
detailed way, the detected power of the vector network analyser Phom is proportional to
the frequency shift δωd. In analogy to Ref. Pernpeintner2014 we define

Phom
Z0

≡ 2
Ω2 (δωd)2 . (F.1)

Here, contains the characteristics of the microwave resonator and so relates to the induced
resonance frequency shift of the nanostring to the recorded power. These characteristics,
in particular κext and κint setting are determined from measurements on the microwave
resonator transmission after each experiment. With this we are able to relate the mea-
sured Phom to a quantity proportional to the frequency shift δωc. We show such spectra
in Fig. 7.19 as frequency shift δωd derived from Eq. (F.1) and the recorded Phom. Next, we
extract the amplitude of the peak at Ωm by fitting a lorentzian lineshape to the data Ωm.
The extracted amplitudes (δωd(Ωm)) are found in Fig. F.1 for two different piezo drive
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Figure F.1: Driven frequency shift. Panel a) displays the extracted frequency shift from Fig. ??
over the resonator responsivity ∂ωc/∂Φ. We multiplied the coupling strength by −1 in the
case of negative responvities to highlight the linear dependence beyond the sweet spot. We
confirm the linear tuning. Panel b) shows the frequency shift for higher responsitivities, with a
reduced piezo drive power. Here, we confirm the linearity for responsitivites up to 10 GHz/Φ0.
If not shown, the error bars are smaller than the marker size.

amplitudes.
For our analysis we further assume, that independent of the particular coupling strength,
the fixed mechanical drive power is exciting a fixed mechanical amplitude. So the recorded
δωd(Ωm) is proportional to gm0 and allows us to rescale these datapoints to the scaling
presented in Fig. 7.20.
Figure F.1a) and b) show the extracted δωd(Ωm) as function of the flux responsivity
∂ωc/∂Φ. In both panels, a linear dependence is observed. To remain in the linear trans-
duction regime of the mechanical motion, we have reduced the excitation power in panel b)
at higher responsitivities (hence larger coupling rates), which leads to a reduced linearity.

As mentioned above, next we relate the results of Fig. F.1 to the electromechanical
coupling rate measured via the thermal displacement spectra of the nanostring and so
determine gm0(∂ωc/∂Φ) as presented in Fig. 7.20a).
In analogy to the procedure detailed above, we repeat this method with respect to the
magnetic field bias at a resonator frequency of 6.6 GHz resulting in Fig. 7.20b).
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AppendixG
Mathematical details on strongly driven
strings

In the following we consider a driven mechanical motion of a nanostring, described by

x(t) = x0sin (Ωmt) . (G.1)

Here the motional amplitude is x0. This string is embedded in a electromechanical res-
onator, for which the field amplitude a(t) can be derived from a coupled mode theory
[106]:

∂ta(t) +
[
κ

2 − i (ωc −Gx(t))
]
a(t) =

√
κextsin(t). (G.2)

This is a inhomogeneous differential equation of the shape a′ + ba = r, with the general
solution a(t) = ah(t) + ap(t) derived from the full solution of the homogeneous equation
ah(t)′ + bah(t) = 0 and a partial solution ap(t) of the inhomogeneous one (r 6= 0). The
homogenous solution is derived from ah(t) = ch · exp(−A(t)), where

A(t) =
∫
b · dt =

(
κ

2 − iωc

)
t− iGx0

Ωm
cos (Ωmt) . (G.3)

We introduce the dimensionless parameter β = Gx0/Ωm = gm0
√
nm/Ωm, which relates the

effective driven electromechanical coupling to the energy scale of the mechanical element.
So the homogenous solution reads

ah(t) = chexp
[(
−κ2 + iωc

)
t+ iβcos (Ωmt)

]
. (G.4)

The particular solution is found from ap = cpah with c′p = r · exp(A(t)), which requires
the anti-derivative of

c′p =
√
κexts0 · exp

[(
κ

2 − iωc + iω

)
t− iβcos (Ωmt)

]
. (G.5)

Here, we have introduced the probe field sin(t) = s0 · exp(iωt). Further we introduce the
probe tone detuning ∆ = ω− ωc. In addition, we make use of the Bessel functions of first
kind Jn using [105]

exp [−iβcos(Ωmt)] =
∞∑

n=−∞
(−i)nJn(β)exp(inΩmt). (G.6)
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Combining the introduced abbreviations and Eq. (4.31), we find the anti-derivative of
Eq. (G.5) to be

cp =
√
κexts0

∞∑
n=−∞

(−i)nJn(β)
κ
2 + i(∆ + nΩm)exp

{[
κ

2 + i(∆ + nΩm)
]
t

}
. (G.7)

We can now describe the particular solution via

ap =
√
κextchs0

∞∑
n=−∞

(−i)nJn(β)
κ
2 + i(∆ + nΩm)exp [i(ω + nΩm)t+ iβcos (Ωmt)] .

=
√
κextchs0

∞∑
n,m=−∞

(i)m−nJn(β)Jm(β)exp {i[ω + (n−m)Ωm]t}
κ
2 + i(∆ + nΩm)

(G.8)

Now the mathematical solution is found by the sum of ah(t) + ap(t), as introduced before.
Yet we find an exponential decay of ah(t) by κ/2, that has canceled out for ap(t). As we
measure with a bandwidth in the order of 1 kHz or less, corresponding to tmeas � κ/2,
the experimental measured probe field is sufficiently described by ap(t). Therefore the
measured field transmitted through this mechanically driven electromechanical resonator
is given by sout = s0exp(iωt)−√κextap(t) and so the scattering parameter becomes

S21 = sout
sin

= 1−
√
κextap(t)/sinexp(−iωt)

= 1− κextch

∞∑
n,m=−∞

(i)m−nJn(β)Jm(β)exp [i(n−m)Ωmt]
κ
2 + i(∆ + nΩm)

= 1− κextch

∞∑
n,m=−∞

Jn(β)Jm(β)
κ2

4 + (∆ + nΩm)2

im−nei(n−m)Ωmt
[
κ

2 + i(∆ + nΩm)
]

(G.9)

As we perform our measurements with network analyzers, we only have to consider rota-
tions of the signal with m = n. Further, we later like to fit the absolute transmission of
the signal, and so we derive [105]

|S21|2 = 1− κext (κ− κext)
∞∑

n,m=−∞

[Jn(β)]2

(κ/2)2 + (∆ + nΩm) , (G.10)

in agreement with Ref. [100] for capacitively coupled electromechanics. Discuss real and
imaginary part. From this follows t2 and φ, which should be reducible for 1 � β to the
known shape.

weakly driven string In the following we will discuss the solution of Eq. 4.28 in the
sense β � 1, for which we will neglect all higher orders in β. The homogenous solution
remains unchanged by this. However, in this case we can expand the exponential function
for β in c′p and find a homogenous solution for

c′p,w =
√
κexts0 · exp

[(
κ

2 + i∆
)
t

]
[1− iβcos (Ωmt)] . (G.11)

An integration yields:

cp,w =
√
κexts0 · exp [(κ/2− i∆)t]

{ 1
κ/2− i∆ + iβ

(κ+ 2i∆)cos(Ωmt) + 2Ωmsin(Ωmt)
[κ/2 + i(∆− Ωm)] [iκ− 2(∆ + Ωm)]

}
,

(G.12)
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from which we derive the partial solution

ap,w =
√
κext

chsin(t)
κ
2 + i∆

{
1 + 2βΩm

−2Ωmcos(Ωmt) + (κ+ 2i∆)sin(Ωmt)
(κ+ 2i∆) [κ+ 2i(∆ + Ωm)] (iκ+ 2(−∆ + Ωm))

}
.

(G.13)

Again, the homogenous solution decays during the continuous measurement, and so the
output field is given by sout,w = −√κextap,w, which allows to similarly calculate the scat-
tering parameter S21,w, which is for an on-resonance drive (∆→ 0) given by

S21,w = 1− 2κext
κ

+ i4κext
κ
βΩm

2Ωmcos(Ωmt)− κsin(Ωmt)
κ3 + 4κΩ2

m
. (G.14)

This allows directly to determine the real and imaginary part of the scattering parameter.
For a physical interpretation of this result we calculate the transmission |S21,w|2 and phase
φ.

|S21,w|2 = S21,wS̄21,w = 1− 4κext
κ

+ 4
(
κext
κ

)2
+ 16(κ

2
ext
κ2 β2Ω2(. . . )2 ≈

(
1− 2κext

κ

)2
,

(G.15)
in first order independent of the string’s motion. However for the phase one find a direct
linearity:

ϕ = arctan
[

Im (S21,w)
Re (S21,w)

]
= arctan

[
4κext

κ βΩm(· · · )
1− 2κext

κ

]
∝ Ωmβ = Gx0. (G.16)

So, weak driven strings modulate the phase transmission of the electromechanical res-
onator. Only for higher elongations or couplings the absolute value of the transmission
begins to be influenced by the string. When the induced modulation becomes comparable
to the frequency of the string, mechanical sidebands occur in the transmission, as discussed
above.
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AppendixH
Influence of sideband drives on the
nanostring’s phonon occupation

In Sec. 7.6.3 we have determined the electromechanical coupling strength between the
nanostring and the microwave resonator. For this we have applied a probe tone on the
blue mechanical sideband, that is ∆ = +Ωm. In this configuration, the probe tone effec-
tively heats the mechanical element by amplifying the mechanical motion, as discussed in
Sec. 4.3. As for the determination of gm0 we require the nanostring to be thermalized with
the cryostat this can potentially falsify the calibration. An estimation of this systematic
induced photons showed that overall the coupling is overestimated by 2.5%, three times
smaller than the statistic fluctuations of 7.5%. By this estimation we suspect that in the
experiment we are not able to resolve these heating effects.
In the following we will quantify this, by investigating the effective mechanical linewidth.
Its the sum of the intrinsic mechanical linewidth and the electro/opto- mechanical induced
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Figure H.1: Influence of the radiation pressure on the mechanical linewidth. In panel a) the
linewidth depending on the blue detuned drive tone power in resonator photons is displayed.
We find a decrease by the power, a potential indication of induced heating. In panel b)
we compare this result (red) to the other sample temperatures (blue). We find fluctuations
between ±15 Hz. The average value of +2 Hz indicates that the measurement precision is not
suffering from induced mechanical phonons given the applied power, as this leads to negative
values.
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linewidth = Γm + Γopt. In Sec. 7.6.3 we have highlighted that a heating of the mechanical
element corresponds to Γopt < 0, respectively a shrinking of when the photon number is
increased.
Figure H.1a) plots the extracted mechanical linewidth over the probe tone power for the ex-
ample set at Tcryo = 186 mK. Indeed we find a decrease in when the probe tone is enhanced.
To quantify the effect, we model a linear trend revealing sΓ/2π = −(8± 4) Hz/photon and
a power independent offset of Γ0

m = (49 ± 6) Hz. The increase is slightly higher than the
first estimation in Sec. 7.6.3 predicted, which was a value of 2Hz/photon.
However, when we plot the extracted change sΓ for all temperatures in Fig. H.1b), where
we have highlighted the extracted value at 186 mK in bold, we find fluctuations around
−10 to +20 Hz. The average shown by the black solid line is found at the positive value
of 〈sΓ〉/2π = (2.6 ± 5.1) Hz/photon, which indicates a cooling of the nanostring. Never-
theless, it fits to the predicted slope of 2Hz/photon within the statistical fluctuations, c.f.
Sec. 7.6.3.
So we conclude, that the influence of the blue sideband drive does not significantly influence
our calibration measurement.
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Further Statistics
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In this section we will have a look at recent developments in cavity opto / resonator
electromechanics. For this, we have collected the data from current publications, as found
in Tab. I.1. We have tried to cover a broad range and include most important works.
Further, we sorted the mechanical systems in two dimensional string (three dimensional
drums) and display them in the following as squares (circles). Similar we use red (blue)
for optical (microwave) realizations. In addition, we focus on opto/electromechanical
resonators, so qubit or two level systems are excluded in the data visualization. For the
table we have used the following abbreviations for simplicity: SAW: surface accoustic
wave, BAW: bulk acoustic wave, OM: optomechanical, SC: superconducting, CPW:
coplanar waveguide, WGM: whispering gallery mode, FPC: Fabry-Perot cavity, LE:
lumped element, SP: superpolished, SC 3D: superconducting 3D cavity, O: optical, FTR:
flux tunabel superconducting microwave resonator.
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Figure I.1: Development of the single photon-phonon coupling strength. The time evolution of
the single photon-phonon coupling strength gm0 is shown. In general, optical systems seem
to allow higher coupling rates. For microwave realizations drum oscillators showed a much
higher coupling than nanostrings, however recently by the use of inductively coupled systems
the drum values were overcome.

We start by an analysis of the bare vacuum coupling strength gm0. It describes the
required time for a state transfer between optic/electric and mechanical system. Hence,
a high rate allows for fast transfer. We plot the reported coupling strengths in Fig. I.1.
We find a trend to higher coupling strengths for optical systems, but this has to be seen
in the context of a much higher optical cavity frequency (THz vs. GHz). The microwave
realizations were first developed using string oscillators [13], until three dimensional drum
oscillators were invented [14]. These show in general a higher coupling strength. However
recently using inductively coupled systems, [208], and Sec. 7, comparable coupling rates
were achieved. The coupling presented in this thesis exceeds all microwave realizations.
As we have discussed in Secs. 7, and App. E, we expect the presented sample to allow for
an enhanced coupling by 260 when in-plane magnetic fields are used, which we indicate
by a black arrow. This would even exceed coupling strengths realized in optical systems.

Next, we discuss the ’quantum parameter’ gm0/κ, that relates the coupling strength
gm0 to the cavity/resonator decoherence κ. Its name describes the fact, that a high
ratio can be seen as an increase in ~ [9]. In the strong coupling regime (Ωm > κ), the
discreteness of the photons in the cavity can be observed, and so it is also been referred as
’granularity parameter’ [209]. The evolution of this parameter is found in Fig. I.2. Here,
a clear trend between the systems is not observed. So, the optical systems cannot benefit
from their bare higher coupling (c.f. Fig. I.1) due to their higher decoherence. The highest
value reported was achieved using a high coherent superconducting lumped element
circuit and a three dimensional nanodrum [14]. The in-plane magnetic field configuration
for our sample in Sec. 7 allows to overcome previous realization by almost two orders of
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Figure I.2: Towards strong coupling in cavity optomechanics. In terms of the ’quantum’ or
’granularity’ parameter gm0/κ both optical and electric systems perform similar. Highest
ratios were reported for superconducting resonators. Further, the inductively coupled systems
from Sec. 7 seem promising candidates to reach the strong coupling regime gm0/κ > 1, as the
in-plane field configuration allows for highest coupling ratios. However, for the first sample
generation the strong coupling regime seems out of reach (black arrow).

magnitude. Yet, reaching the strong coupling regime requires further optimization on
both the mechanical coupling and resonator decoherence as previously discussed in Sec. 7.
These considerations towards strong coupling have to be seen in the context, that we
assume only a negligible influence of the magnetic field on the resonator decoherence.

Besides the comparison of coupling strength to the decoherence rate, the comparison
to the systems energy level is also of interest. We take this into account by analyzing the
ratio of gm0/ωc, that is the coupling strength gm0 over the optical/electric eigenfrequency.
Above gm0/ωc = 0.1 the system enters the ultra-strong coupling regime. This has been
demonstrated in cQED by coupling a qubit to a microwave resonator [20]. So far,
the weaker photon-phonon coupling has prevented the investigation of this regime in
optomechanics. We collected the data in Fig. I.3. Here, we find the optical systems to
suffer from their high intrinsic frequency. The highest ratio reported is on the order of
10−7 and found in Sec. 7 of this thesis. The in-plane field configuration (black arrow)
allows to push even further towards the ultra-strong coupling regime, yet with some space
in between remaining. Superconducting resonators demonstrate once again their potential
for high coupling rates due to their small field confinement.

We conclude these comparisons by having a look at the thermal coherence τth in
nanomechanical hybrid systems. It refers to the storage time within the mechanical sys-
tem. As optomechanical systems are considered to overcome the higher loss rates within
the cavity or resonator by storing the state in the mechanical oscillator, τth is the theo-
retically maximum of the state storage within the system. The extracted data is plotted
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Figure I.3: The path to ultra-strong coupled electromechanics. The relation of coupling strength
to the system’s eigenenergy shows a clear advantage of superconducting resonators (blue) ver-
sus optical cavities (red). The highest ratio is found by the realization in Sec. 7 of this thesis,
which can be further boosted towards 10−4 using in-plane fields. Yet the ultra-strong coupling
requires further efforts on the circuit design, as three orders of magnitude remain. Neverthe-
less, the inductive coupling demonstrates the advantage of superconducting microchips as
they allow for (ultra) high coupling strengths.

in Fig. I.4. Here, cryogenic systems, and especially superconducting resonators, benefit
from the low environmental temperature that allows for a long storage (τth ∝ Tsample).
Highest coherence times have been published for a 3D superconducting cavity that is ca-
pacitively coupled to a mechanical membrane oscillator [124, 191] reaching up to 35 ms.
The presented work in Sec. 7 suffered from the induced heating currents of the magnetic
field bias in two ways: i) the high temperature of 125 mK directly reduces the available
time and ii) due to the high temperature the mechanical linewidth becomes unnecessary
broadened, c.f. Fig. 7.10a). Considering a cryogenic temperature of 15 mK, the potential
storage time is drastically enhanced as indicated by the black arrow and reaches a value
around previous realizations using an aluminum string of same length [208].
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Figure I.4: Potential state storage times using optomechanical hybrid samples. The highest values
exceeding milliseconds were found for superconducting 3D-resonators coupled to mechanical
drum oscillators. In addition, a clear trend is found indicating higher coherence times using
superconducting resonators. The work discusses in Sec. 7 suffered from the induced heating
currents. Excluding them allows to approach the millisecond range as previously reported for
an aluminum string of identical length.
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Rev. Lett. 115, 243601 (2015).

[95] T. Palomaki, J. Teufel, R. Simmonds, and K. Lehnert, Science 342, 710 (2013).

[96] A. O’Connel, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero,
M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. Martinis, and A. N. Cleland,
Nature 464, 697 (2010).

[97] J.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. A.
Sillanpaa, Nature 494, 211 (2013).

[98] A. Clerk, M. Devoret, S. Girvin, F. Marquardt, and R. Schoelkopf, Rev. Mod. Phys.
82, 1155 (2010).

[99] L. Boltzmann, Wiener Berichte 63, 679 (1871).

[100] F. Hocke, Microwave circuit-electromechanics in a nanomechanical hybrid system,
Ph.D. thesis, Walther-Meißner-Institut and Technische Universität München (2013).

[101] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter,
Phys. Rev. Lett. 108, 033602 (2012).

[102] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys.
Rev. Lett. 95, 033901 (2005).

[103] F. Hocke, X. Zhou, A. Schliesser, T. Kippenberg, H. Huebl, and R. Gross, New J.
Phys. 14, 179 (2012).

[104] J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Phys. Rev. Lett. 101, 263602
(2008).

[105] A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Nat.
Phys. 4, 415 (2008).

[106] M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. Kippenberger,
Opt. Express 18, 23236 (2010).

[107] Triton - The new generation Cryofree dilution refrigerator , Oxford Instruments Ltd.
(2019).

[108] R. Gross, Low temperature physics (Walther-Meißner-Institut, Garching, 2005).

[109] C. Deng, M. Otto, and A. Lupascu, J. Appl. Phys. 114, 054504 (2013).

[110] J. Goetz, The Interplay of Superconducting Quantum Circuits and Propagating Mi-
crowave States, Ph.D. thesis, Walther-Meißner-Institut and Technische Universität
München (2016).

[111] A. Schweiger and G. Jeschke, Principles of pulse electron paramagnetic resonance,
reprinted. ed. (Oxford Univ. Press, Oxford, 2005).

162

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.243601
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.243601
https://science.sciencemag.org/content/342/6159/710/tab-pdf
https://www.nature.com/articles/nature08967.pdf
https://www.nature.com/articles/nature11821.pdf
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1155
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1155
http://www.wmi.badw.de/publications/theses/Hocke,Fredrik_Doktorarbeit_2013.pdf
http://dx.doi.org/ 10.1103/PhysRevLett.108.033602
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1103/PhysRevLett.95.033901
https://iopscience.iop.org/article/10.1088/1367-2630/14/12/123037/pdf
https://iopscience.iop.org/article/10.1088/1367-2630/14/12/123037/pdf
http://dx.doi.org/10.1103/PhysRevLett.101.263602
http://dx.doi.org/10.1103/PhysRevLett.101.263602
http://dx.doi.org/10.1038/nphys939
http://dx.doi.org/10.1038/nphys939
https://www.osapublishing.org/DirectPDFAccess/FC77E009-ABC7-F771-2E1BBAC5D99E54E1_206729/oe-18-22-23236.pdf?da=1&id=206729&seq=0&mobile=no
https://nanoscience.oxinst.com/assets/uploads/products/nanoscience/documents/4640_NS_Triton_Brochure.pdf
http://www.wmi.badw.de/teaching/Lecturenotes/SLTTP_II/TTP2013_Kap4.pdf
http://dx.doi.org/10.1063/1.4817512
http://www.wmi.badw.de/publications/theses/Goetz,Jan_Doktorarbeit_2017_TUM.pdf


[112] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gud-
mundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke,
A. J. Kerman, and W. D. Oliver, Nat. Commun. 7, 12964 (2016).

[113] J. D. Teufel, “Scientists bring ’nonsensical’ quantum physics into the real world for
the first time,” (2017).

[114] C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt,
A. A. Clerk, and K. C. Schwab, Phys. Rev. Lett. 117, 100801 (2016).

[115] V. C. Vivoli, T. Barnea, C. Galland, and N. Sangouard, Phys. Rev. Lett. 116,
070405 (2016).

[116] S. G. Hofer, K. W. Lehnert, and K. Hammerer, Phys. Rev. Lett. 116, 070406 (2016).

[117] M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J.
Hartmann, Phys. Rev. Lett. 116, 233604 (2016).

[118] K. Børkje, Phys. Rev. A 94, 043816 (2016).

[119] M. Abdi, M. Pernpeintner, R. Gross, H. Huebl, and M. Hartmann, Phys. Rev. Lett.
114, 17360 (2015).

[120] D. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Girvin, and
R. Schoelkopf, Phys. Rev. Lett. 94, 123602 (2005).

[121] F. R. Ong, M. Boissonneault, F. Mallet, A. Palacios-Laloy, A. Dewes, A. C. Doherty,
A. Blais, P. Bertet, D. Vion, and D. Esteve, Phys. Rev. Lett. 106, 167002 (2011).

[122] T. Yamamoto, K. Inomata, K. Koshino, P.-M. Billangeon, Y. Nakamura, and J. S.
Tsai, New J. Phys. 16, 015017 (2014).

[123] X. Zhou., F. Hocke, A. Marx, H. Huebl, R. Gross, and T. Kippenberg, Nat. Phys.
9, 179 (2013).

[124] M. Yuan, V. Singh, Y. Blanter, and G. A. Steele, Nat. Commun. 86, 1391 (2015).
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and M. A. Sillanpää, Nat. Commun. 6, 6981 (2015).

[187] D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg,
Nature 524, 325 (2015).

[188] T. P. Purdy, P.-L. Yu, N. S. Kampel, R. W. Peterson, K. Cicak, R. W. Simmonds,
and C. A. Regal, Phys. Rev. A 92, 031802 (2015).

[189] R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, Nat.
Commun. 6, 10021 (2015).

[190] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Phys.
Rev. X 5, 041037 (2015).

[191] M. Yuan, M. A. Cohen, and G. A. Steele, Appl. Phys. Lett. 107, 263501 (2015).

[192] J. D. Teufel, F. Lecocq, and R. W. Simmonds, Phys. Rev. Lett. 116, 013602 (2016).

[193] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Phys.
Rev. Lett. 116, 043601 (2016).

[194] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W.
Lehnert, and C. A. Regal, Phys. Rev. Lett. 116, 063601 (2016).
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Laufen halten und mich an ihrem Wissen teilhaben liesen. Außerdem Christoph Kastl
und Andreas Russo die sich jederzeit mit meinen Elektronikproblemen befasst haben.

Unserer Werkstatt um Helmut Thieß, Alexander Rößl, Georg Nischke und Chris-
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mehr persönlich ausrichten kann. Michael Bauer, Prof. Harald Friedrich, Robert
Doll, Ullrich Guggenberger und Robert Müller.

Und das Beste am Ende, nicht zuletzt meiner Familie. Danke für alles! Ihr seid die beste
Familie die ich je hatte.

179


	Abstract
	Zusammenfassung
	Introduction
	The harmonic oscillator
	The classical harmonic oscillator
	Undriven harmonic oscillator
	Driven harmonic oscillator with damping

	Classical mechanical oscillators and electrical resonators
	Quantum mechanical treatment of an harmonic oscillator
	The quantum mechanical harmonic oscillator
	Comparison to classical oscillators

	Nonlinear effects in resonant systems

	Circuit quantum electrodynamics
	From the macroscopic wavefunction to Josephson physics
	Superconducting quantum interference devices
	Flux tunable microwave resonators
	Transmon qubits
	From nonlinear transmission lines to quantum bits
	Details on transmon qubits
	Qubit interaction with light
	Ac-Stark shift of a transmon qubit
	Limitation in photon numbers induced by the Josephson nonlinearity


	Electromechanical interactions
	From cavity optomechanics to quantum nano-electromechanics
	Optomechanics in a nutshell
	Nano-electromechanical realizations

	Noise considerations
	Thermal motion of a nanostring
	Frequency noise contribution
	Thermal displacement spectras

	Electromechanical sideband cooling
	Coherent mechanical excitations in electromechanical systems

	Low noise detection
	Low temperature environments
	Cryogenic microwave interferometer
	Setup / Working principle
	Phase-independent homodyne conversion

	Time domain measurements
	Dispersive read-out
	Devices
	Data acquisition
	Technical noise screening
	Pulse schemes


	Ultra-wide range photon number calibration
	Methods for photon number calibration
	Photon number calibration via the ac-Stark shift
	Photon number calibration via the electromechanical interaction

	Fabrication of a nanomechanical c-QED device
	Spectroscopic configuration for an ultra-wide range photon number calibration
	Continuous wave spectroscopy on the hybrid system
	Transmon-resonator interaction
	Electromechanical interactions
	Microwave resonator decoherence
	Transmon decoherence

	Photon number calibration
	Ac-stark shift
	Electromechanical induced absorption
	Comparison of the calibration results

	Time resolved qubit spectroscopy
	Driven Rabi-Oscillations
	Decay measurements
	Ramsey sequence
	Hahn echo signature
	Decoherence analysis

	Nanomechanical transmon qubit systems

	Inductive coupled cavity electromechanics
	Coupling mechanism
	Fabrication
	Setup including active mechanical excitation
	Flux tunable microwave resonators
	Frequency tuning
	Resonator linewidth
	Nonlinear effects related to the Josephson inductance

	Mechanical characteristics of aluminum nanostrings at millikelvin temperatures
	Driven string response
	Temperature dependencies of a 20m long aluminum nanostring
	Collection of data on aluminum nanostrings
	Predictions of design parameters

	Thermal motion analysis on the blue sideband
	Experimental configuration
	Sideband spectroscopy of the thermal motion of the string
	From frequency fluctuations to the electromechanical coupling
	Detected thermal displacement density
	Electromechanical noise contributions
	Total measurement precision
	Sub-attonewton force detection

	Tuneable inductive coupling in nano-electromechanics
	Mechanical response along the resonator tuning
	Frequency slope dependence
	Field dependence

	Strong mechanical coupling
	Experimental procedure
	Effective strong mechanical coupling
	Mathematical description by Bessel functions
	Piezoelectric transduction

	Summary & Outlook

	Future prospects in hybrid c-QED devices
	Detailed microwave setups
	Ultra-wide range photon number calibration
	Inductively coupled electromechanics

	Frequency downshift of a flux tunable microwave resonator
	Aluminum magnetic field screening boxes
	Details on the temperature calibration
	Flux tunable resonators in high in-plane magnetic fields
	Calibration of the electromechanical coupling strength via driven strings
	Mathematical details on strongly driven strings
	Influence of sideband drives on the nanostring's phonon occupation
	Further Statistics
	Bibliography
	List of Figures
	List of Tables
	List of Publications
	Acknowledgments

